Collected Algorithms from ACM

Volume II Algorithms 221-492

A collection of Algorithms 221-492 including Certifications, Remarks, and Translations from the Algorithms Department of Communications of the ACM, 1964-1974.

1980

Submittal of an algorithm for publication in the Collected Algorithms From ACM implies that unrestricted use of the algorithm within a computer is permissible. General permission to copy the algorithm in fair use, but not for profit, is granted provided ACM's copyright notice is given and reference is made to this publication, its date of issue, and to the fact that copying is by permission of the Association for Computing Machinery.

Price: ACM members $\$ 40$, others $\$ 55$. This price includes Algorithms 221-492 in this volume, a looseleaf compilation of Algorithms 493 ff and two looseleaf binders, and a one year free subscription of quarterly supplements to the Collected Algorithms. Prices subject to change without notice. For latest prices refer to the current ACM Publications Catalog available free of charge from ACM Order Department, P.O. Box 64145, Baltimore, MD 21264.

ISBN: 0-89791-026-5

Copyright © 1980, Association for Computing Machinery, Inc.

The algorithms and other items in this compilation are all excerpted from copyrighted ACM publications unless otherwise noted.

Preface

The Algorithms department of Communications of the ACM (CACM) was established in February 1960, with J. H. Wegstein as editor, for the purpose of publishing algorithms, consisting of procedures and programs, in the Algol language. In 1975 the publication of ACM algorithms material was transferred to ACM Transactions on Mathematical Software (TOMS). A wide variety of algorithms have been published and many of them have been used heavily-either in original form or as translated into other languages. Recognizing the general acceptance of the algorithm material published in CACM and TOMS, the Association for Computing Machinery (ACM) has collected and reprinted the algorithms to make them more readily accessible and more serviceable to a larger group of users.

This collection contains Algorithms 221-492; these appeared in the Algorithms department of CACM from 1964 1974.

Algorithms 221-492 were originally published as re-ceived-without any refereeing whatever. Many of these have since been certified and/or corrected by their authors or by other contributors.

To facilitate the updating and to make this volume convenient to use, an understanding of the page numbering scheme for the algorithms is helpful. The page designation is in a three-part format: the left part is the algorithm
number; the middle part is the page number within the algorithm (the first page of each algorithm is P1); and the right part is the number of the revision of that page. All sheets in the original, or first, insertion of an algorithm have " 0 " for the right part. The first revision of a page will have a page number having the left and middle parts identical with those on the page to be replaced, but the right part will be "R1" instead of " 0 ." The second revision of the same page would read R2, and so on. For example, 123-P2R1 would mean the first revision of page 2 of Algorithm 123.

Information on submitting algorithms for publication may be found in the introductory section located in the front of the current loose-leaf collection. Included in this material is a cumulative index to all the algorithms published since 1960 as well as the ACM Algorithms Policy, which guides the publication of all algorithms submitted to ACM.

Webb Miller
ACM Algorithms Editor
Department of Mathematics
University of California, Santa Barbara
Santa Barbara, CA 93106

ALGORITHM 221

GAMMA FUNCTION
Walter Gautschi (Ṙecd 10 Aug. 63)
Oak Ridge National Laboratory,* Oak Ridge, Tenn.

* Now at Purdue University, Lafayette, Ind.
real procedure gamma (z); value z; real z;
comment This is an auxiliary procedure which evaluates $\Gamma(z)$ for $0<z \leqq 3$ to 10 significant digits. It is based on a polynomial approximation given in H. Werner and R. Collinge, Math. Comput. 15 (1961), 195-197. This procedure must be replaced by a more accurate one if more than 10 significant digits are desired in Algorithm 222 below. Approximations to the gamma function, accurate up to 18 significant digits, rhay be found in the paper quoted above;

begin

integer k; real p, t; array $A[0: 10]$;
$A[0]:=1.0 ; A[1]:=.4227843370 ; A[2]:=.4118402518$;
$A[3]:=.0815782188 ; \quad A[4]:=.0742379076$;
$A[5]:=-.0002109075 ; A[6]:=.0109736958$;
$A[7]:=-.0024667480 ; A[8]:=.0015397681$;
$A[9]:=-.0003442342 ; \quad A[10]:=.0000677106$;
$t:=$ if $z \leqq 1$ then z else if $z \leqq 2$ then $z-1$ else $z-2$; $p:=A[10]$;
for $k:=9$ step -1 until 0 do $p:=t \times p+A[k]$;
gamma $:=$ if $z \leqq 1$ then $p /(z \times(z+1))$ else if $z \leqq 2$ then p / z else p
end gamma

CERTIFICATION OF ALGORITHM 221 [S14]

GAMMA FUNCTION [Walter Gautschi, Comm. ACM 7
(Mar. 1964), 143]
Van K. McCombs (Recd. 10 Apr. 1964 and 1 Jun. 1964) General Electric Co., Huntsville, Ala.

The algorithm was translated into Fortran IV for the IBM 7094. Computations were performed in double precision to take advantage of the ten significant digits given by the polynomial coefficients. The function $\Gamma(z)$ was evaluated for the range $0<z \leqq$ 10 with an increment of 0.1 , and the results were checked with the values published in Table of the Gamma Function for Complex Arguments, NBS Applied Mathematics Series 34 (1954). The algorithm gave ten-digit accuracy for the range indicated.

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION
[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2
[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL ARGUMENT
[William Holsten, Comm. ACM 5 (Mar. 1962), 166] ALGORITHM 221 [S14]
GAMMA FUNCTION
[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143] ALGORITHM 291 [S14] LOGARITHM OF GAMMA FUNCTION
[M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966), 684]
M. C. Pike and I. D. Hill (Recd. 12 Jan. 1966)

Medical Research Council's Statistical Research Unit, University College Hospital Medical School, London, England

Algorithms 34 and 54 both use the same Hastings approximation, accurate to about 7 decimal places. Of these two, Algorithm 54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) $R G A M$ should be in the parameter list of $R G R$.
(2) The lines
if $x=0$ then begin $R G R:=0$; go to $E X I T$ end and
if $x=1$ then begin $R G R:=1$; go to $E X I T$ end should each be followed either by a semicolon or preferably by an else.
(3) The lines
if $x=1$ then begin $R G R:=1 / y$; go to $E X I T$ end and
if $x<-1$ then begin $y:=y \times x$; go to $C C$ end should each be followed by a semicolon.
(4) The lines
$B B:$ if $x=-1$ then begin $R G R:=0 ;$ go to $E X I T$ end and
if $x>-1$ then begin $R G R:=R G A M(x)$; go to $E X I T$ end should be separated either by else or by a semicolon and this second line needs terminating with a semicolon.
(5) The declarations of integer i and real array $B[0: 13]$ in $R G A M$ are in the wrong place; they should come immediately after

begin real $z ;$

With these modifications (and the replacement of the array B in $R G A M$ by the obvious nested multiplication) Algorithm 80 ran successfully on the ICT Atlas computer with the ICT Atlas ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10 decimal places and to evaluate the gamma function it is therefore on grounds of speed that a choice should be made between them. Algorithms 80 and 221 take virtually the same amount of computing time, being twice as fast as 291 at $x=1$, but this advantage decreases steadily with increasing x so that at $x=7$ the speeds are about equal and then from this point on 291 is faster-taking only about a third of the time at $x=25$ and about a tenth of the time at $x=78$. These timings include taking the exponential of loggamma.

For many applications a ratio of gamma functions is required (e.g. binomial coefficients, incomplete beta function ratio) and the use of algorithm 291 allows such a ratio to be calculated for much larger arguments without overflow difficulties.

ALGORITHM 222

INCOMPLETE BETA FUNCTION RATIOS

Walter Gautschi (Recd 10 Aug. 63)
Oak Ridge National Laboratory,* Oak Ridge, Tenn.

* Now at Purdue University, Lafayette Ind.
comment Let. $\left.B_{x} \in p, q\right)=\int_{0}^{x} t^{p-1}(1-t)^{q-1} d t(p>0, q>0$, $0 \leqq x \leqq 1$) denote the incomplete beta function. The objective of this algorithm is to evaluate a sequence of ratios $I_{x}(p, q)=$ $B_{x}(p, q) / B_{1}(p, q)$, as one of the parameters p, q varies in steps of unity while the other remains fixed. The procedure incomplete beta q fixed evaluates $I_{x}(p+n, q)$ for $n=0,1, \cdots, n m a x$, assuming $0<p \leqq 1, q>0$, whereas the procedure incomplete beta p fixed evaluates $I_{x}(p, q+n)$ for $n=0,1, \cdots, n \max$, assuming $0<q \leqq 1, p>0$. The number d of significant digits desired can be specified, but is only guaranteed when $x \leqq \frac{1}{2}$. When $x>\frac{1}{2}$, the complements $1-I_{x}$ will be accurate to d significant digits. In the region $0<p \leqq 1,0<q \leqq 2, I_{x}(p, q)$ is calculated from a power series expansion. The sequences $f(n)$ $=I_{x}(p+n, q)$ and $g(n)=I_{x}(p, q+n)$, including initial values, are generated recursively by means of the recurrence relations $f(n+1)-(1+(n+p+q-1) x /(n+p)) f(n)+((n+p+q$ $-1) x /(n+p)) f(n-1)=0, g(n+1)-(1+(n+p+q-1)$. $(1-x) /(n+q)) g(n)+((n+p+q-1)(1-x) /(n+q))$ $\cdot g(n-1)=0$. Since the former is mildly unstable, a variant of the backward recurrence algorithm of J. C. P. Miller is applied to it. A global real procedure gamina (z) must be available (see Algorithm 221);
real procedure Isubx p and q small ($x, p, q_{*} d$);
value x, p, q, d;
integer d; real x, p, q;
comment This procedure evaluates $I_{x}(p, q)$ to d significant digits when $0<p \leqq 1$ and $0<q \leqq 2$. It first calculates $B_{x}(p, q)$ by a series expansion in powers oì x, and then divides the result by $B_{1}(p, q)=\Gamma(p) \Gamma(q) / \Gamma(p+q)$, using the real procedure gamma;
begin integer k; real epsilon, u, v, s;
epsilon $:=.5 \times 10 \uparrow(-d)$;
$u:=x \uparrow p ; \quad s:=u / p ; \quad k:=0 ;$
$L 0: u:=(k-q+1) \times(k+p) \times x \times u /(k+1)$;
$v:=u /(k+p+1) ; s:=s+v ; k:=k+1$;
if $a b s(v) / s>$ epsilon then go to $L 0$;
Isubx p and q small $:=s \times \operatorname{gamma}(p+q) /(\operatorname{gamma}(p) \times$ gamma(q))
end Isubx p and q small;
procedure forward ($x, p_{i} q, I 0, I 1, n \max , I$);
value $x, p, q, I 0, I 1, n \max$;
integer nmax; real $x, p, q, I 0, I 1$; array I;
comment Given $I 0=I_{x}(p, q), I 1=I_{x}(p, q+1)$, this procedure generates $I_{x}(p, q+n)$ for $n=0,1,2, \cdots, n m a x$, and stores the results in the array I;
begin integer n;
$I[0]:=I 0 ;$ if $n \max >0$ then $I[1]:=11$;
for $n:=1$ step 1 until nmax -1 do
$I[n+1]:=(1+(n+p+q-1) \times(1-x) /(n+q)) \times I[n]$
$-(n+p+q-1) \times(1-x) \times I[n-1] /(n+q)$
end forward;
procedure backward ($x, p, q, I 0, n \max , d, I$);
value $x, p, q, I 0, n \max , d$;
integer nmax, d; real $x, p, q, I 0$; array I;
comment Given $10=I_{x}(p, q)$, this procedure generates $I_{x}(p+n, q)$ for $n=0,1,2, \cdots, n \max$ to d significant digits, using a variant of J. C. P. Miller's backward recurrence algorithm. The results are stored in the array I;
begin
integer $n, n u, m$; real epsilon, r; array Iapprox,
Rr [0:nmax];
$I[0]:=I 0$; if $n \max >0$ then
begin

```
        epsilon:= .5 人 10\uparrow(-d);
```

 for \(n:=1\) step 1 until \(n \max\) do Iapprox[\(n]:=0\);
 \(n u:=2 \times n \max +5 ;\)
 $L 1: n:=n u ; \quad r:=0$;
L2: $\quad r:=(n+p+q-1) \times x /(n+p+(n+p+q-1) \times x$
$-(n+p) \times r)$;
if $n \leqq n \max$ then $\operatorname{Rr}[n-1]:=r ; n:=n-1$;
if $n \geqq 1$ then go to $L 2$;
for $n:=0$ step 1 until nmax -1 do
$I[n+1]:=\operatorname{Rr}[n] \times I[n] ;$
for $n:=1$ step 1 until nmax do
if abs $((I[n]-$ Iapprox $[n]) / I[n])>$ epsilon then
begin
for $m:=1$ step 1 until $n m a x$ do Lapprox $[m]:=I[m]$;
$n u:=n u+5 ;$ go to $L 1$
end
end
end backward;
procedure I subx q fixed $(x, p, q, n \max , d, I)$; value $x, p, q, n \max , d$;
integer n max, d; real x, p, q; array I;
comment This procedure generates $I_{x}(p+n, q), 0<p \leqq 1$, for
$n=0,1, \cdots, n \max$ to d significant digits, using the procedure
backward. In order to calculate the initial value $I 0=I_{x}(p, q)$, it
first reduces q modulo 1 to q_{0}, where $0<q_{0} \leqq 1$, then obtains
$I_{x}\left(p, q_{0}\right)$ and $I_{x}\left(p, q_{0}+1\right)$ by the real procedure $I s u b x p$ and q small,
and finally uses these as initial values for the procedure for-
ward, which connects with $I_{x}(p, q)$ by the recurrence in q;
begin integer m, mmax; real $s, q 0, I q 0, I q 1$;
$m:=\operatorname{entier}(q) ; \quad s:=\cdot q-m$;
$q 0:=$ if $s>0$ then s else $s+1$;
mmax $:=$ if $s>0$ then m else $m-1$;
$I q 0:=I s u b x p$ and $q \operatorname{small}(x, p, q 0, d)$;
if $\operatorname{mmax}>0$ then $I q 1:=I s u b x p$ and $q \operatorname{small}(x, p, q 0+1, d)$;
begin array $I q[0:$ mmax $]$;
forward ($x, p, q 0, I q 0, I q 1$, mmax, $I q$);
backward (x, $p, q, I q[$ mmax $], n \max , d, I)$
end
end Isubx q fixed;
procedure Isubx pfixed ($x, p, q, n \max , d, I$); value $x, p, q, n \max , d$;
integer $n \max , d$; real x, p, q; array I;
comment This procedure generates $I_{x}(p, q+n), 0<q \leqq 1$, for
$n=0,1, \cdots, n \max$ to d significant digits, using the procedure
forward. The initial values $I 0=I_{x}(p, q), I 1=I_{x}(p, q+1)$ are ob-
tained by twice applying the procedure backward. The initial
values for the latter are provided by the real procedure Isubx p
and q small;
begin integer $m, \operatorname{mmax} ;$ real $s, p 0, I 0, I 1, I q 0, I q 1$;
$m:=\operatorname{entier}(p) ; s:=p-m ;$
$p 0:=$ if $s>0$ then s else $s+1$;
$\operatorname{mmax}:=$ if $s>0$ then m else $m-1$;
$10:=I \operatorname{subx} p$ and $q \operatorname{small}(x, p 0, q, d)$;
$I 1:=I \operatorname{subx} p$ and $q \operatorname{simall}(x, p 0, q+1, d)$;
begin array $I p[0: m m a x]$;
backward $(x, p 0, q, I 0, \operatorname{mmax}, d, I p) ; I q 0:=I p[\operatorname{mmax}] ;$
$b a c k u \operatorname{ard}(x, p 0, q+1, I 1, \max , d, I p) ; I q 1:=I p[\operatorname{mmax}]$
end;
forward ($x, p, q, I q 0, I q 1, n \max , I$)
end Isubx p fixed;
procedure incomplete beta q fixed ($x, p, q, n \max , d, I$);
value $x, p, q, n \max , d$;
integer $n \max , d$; real x, p, q; array I;
comment This procedure obtains the final results $I_{x}(p+n, q)$, $0<p \leqq 1, n=0,1, \cdots, n m a x$, directly from the procedure Isubx q fixed, if $x \leqq \frac{1}{2}$, or via the relation $I_{x}(p+n, q)=$ $1-I_{1-x}(q, p+n)$ and the procedure Isubx p fixed, if $x>\frac{1}{2}$. The indicated substitution in the case $x>\frac{1}{2}$ is made to ensure fast convergence of both the power series used in the real procedure Isubx p and q small, and the backward recurrence algorithm used in the procedure backward. If the parameters $x, p, q, n \max$ are not in the intended range, control is transferred to a nonlocal label called alarm;
begin integer n;
if $x<0 \vee x>1 \vee p \leqq 0 \bigvee p>1 \bigvee q \leqq 0 \bigvee n \max <0$ then go to alarm;
if $x=0 \vee x=1$ then for $n:=0$ step 1 until $n \max$ do $I[n]:=x$ else
begin.
if $x \leqq .5$ then $I s u b x q \operatorname{fixed}(x, p, q, n \max , d, I)$ else begin

Isubx pfixed $(1-x, q, p, n \max , d, I)$;
for $n:=0$ step 1 until $n \max$ do $I[n]:=1-I[n]$
end
end
end incomplete beta q fixed;
procedure incomplete beta p fixed ($x, p, q, n \max , d, I$);
value $x, p, q, n \max , d ; \quad$ integer $n \max , d ; \quad$ real $x, p, q ; \quad$ array I; comment This procedure, the exact analogue to the procedure incomplete beta q fixed, generates the final results $I_{x}(p, q+n)$, $0<q \leqq 1, n=0,1, \cdots, n \max$. For the setup of the procedure, see the comment in incomplete beta q fixed;
begin integer n;
if $x<0 \vee x>1 \vee q \leqq 0 \vee q>1 \vee p \leqq 0 \vee n$ max <0 then go to alarm;
if $x=0 \vee x=1$ then for $n:=0$ step 1 until $n \max$ do $[[n]:=x$ else begin
if $x \leqq .5$ then Isubx p fixed $(x, p, q, n m a x, d, I)$ else begin

Isubx q fixed $(1-x, q, p, n \max , d, I)$; for $n:=0$ step 1 until $n \max$ do $I[n]:=1-I[n]$ end
end
end incomplete beta p fixed
Reference: Walter Gautschi, Recursive computation of special functions. U. of Michigan, Eng. Summer Conf., Numerical Analysis, 1963.

CERTIFICATION OF ALGORITHM 222

INCOMPLETE BETA FUNCTION RATIOS [Walter Gautschi, Comm. ACM 7 (March 1964), 143]
Walter Gautschi (Recd 2 Jan. 1964)
Purdue Univ., Lafayette, Ind.
begin integer n; array $I 1, I 2, I 3[0: 10]$;
comment This program calls the procedures Incomplete beta q fixed and Incomplete beta p fixed to calculate test values of $I_{.4}(.5+n, 7), I_{.4}(5,1+n), I_{.8}(5,1+n)$ for $n=0(1) 10$ to 6 significant digits. The following results were obtained on the CDC 1604-A computer, using the Oak Ridge ALGol compiler:

n	$I_{.4}(.5+n, 7)$	$I .4(5,1+n)$	$I .8(5,1+n)$
0	.99143646185	.010239999997	.32768000004
1	.93951533330	.040959999972	.65536000000
2	.83567307612	.096255999927	.85196799999
3	.69444760641	.17367039987	.94371839999
4	.54111709640	.26656767980	.98041856000
5	.39800862042	.36689674211	.99363061758
6	.27831789503	.46722580441	.99803463679
7	.18624810627	.56182177742	.99941875711
8	.11995785836	.64695815314	.99983399319
9	.074724512738	.72074301208	.99995395031
10	.045203802963	.78272229360	.99998753828

All results are in agreement with those tabulated in [1];
Incomplete beta q fixed (.4, .5, 7, 10, 6, I1);
Incomplete beta p fixed (.4, 5, 1, 10, 6, I2);
Incomplete beta p fixed (.8, 5, 1, 10, 6, I3);
for $n:=0$ step 1 until 10 do write ($I 1[n], I 2[n], I 3[n]$)
end Driver incomplete beta function ratios
In the original publication of the algorithm, the following correction of a printer's error is needed in the real procedure Isubx p and q small. The statement labelled $L 0$ should read as follows:

$$
u:=(k-q+1) \times x \times u /(k+1)
$$

[1] Pearson, K. Tables of the Incomplete Beta-Function. Cambridge University Press, London, 1934.

```
ALGORITHM 223
PRIME TWINS
M. Shimrat (Recd 7 June 1963; in final form 2 Jan. 1964)
University of Alberta, Calgary, Alberta, Canada
procedure Prime Twins ( }t,Twin1,Twin2, Storage, Act)
    value Storage; integer t,Twin1,Twin2, Storc,ge;
    procedure Act;
comment This procedure will generate successive "prime
    twins," i.e. pairs of primes Twin1, Twin2 which differ by }2
    Storage is the maximum number of primes that; can be stored.
    Act is any procedure for recording, examining, or utilizing each
    pair of twins as it is generated. t is a serial number for the
    twins. P[Storage] }\uparrow2\mathrm{ is the last number examined;
begin integer array }P[1:\mathrm{ Storage ]; integer j,m, previous,
        current;
    comment P[j] is the jth prime;
    P[1]:= 2; P[2]:= 3; j:=2; previous := 3; t:=0;
    for current := 5 step 2 until P[j]\times P[j] do
    begin m:=1; for m:=m+1 while P[m]\timesP[m]\leqqcur-
        rent do
        if current =(current }\divP[m])\timesP[m] then go to NoPrime
        comment If this point is reached, current is not divisible by
            any prime up to sqrt(current) and so is a prime. We now
            record the new prime, if storage permits, then check if it
            is the second of twins;
        if j< Storage then
            begin j:= j+1; P[j]:= current
            end;
        if current = previous +2 then
            begin t:=t+1; Twin1 := previous; Twin 2:= current;
            Act (t,Twin1,Twin2)
            end;
        previous := current;
        NoPrime:
    end;
end procedure Prime Twins
```


ALGORITHM 224

EVALUATION OF DETERMINANT

Leo J. Rotenberg

(Recd 7 Oct. 1963; in final form 20 Dec. 1963)
Box 2400, 362 Memorial Dr., Cambridge, Mass.

real procedure determinant (a, n);

value n; real array a; integer n;
comment This procedure evaluates a determinant by triangularization. The matrix supplied by the calling procedure is modified by this program. This procedure is an extensive revision and correction of Algorithm 41;
begin real product, factor, temp, div, piv, abpiv, maxpiv;
integer ssign, $i, j, r, i m a x ;$
ssign $:=1$; product $:=1.0$;
for $r:=1$ step 1 until $n-1$ do
begin maxpiv $:=0.0$;
for $i:=r$ step 1 until n do
begin piv $:=a[i, r]$;
abpiv $:=a b s(p i v)$;
if abpiv > maxpiv then
begin maxpiv $:=$ abpiv;
div := piv;
$i m a x:=i$

end

end;
if maxpiv $\neq 0.0$ then
begin if $i m a x=i$ then go to resume else begin for $j:=r$ step 1 until n do
begin temp $:=a[i m a x, j]$;
a[imax,$j]:=a[r, j]$;
$a[r, j]:=$ tem p
end;
ssign $:=-\operatorname{ssign}$;
go to resume
end
end;
determinant $:=0.0$;
go to return;
resume: for $i:=r+1$ step 1 until n do
begin factor $:=a[i, r] / d i v$;
for $j:=r+1$ step 1 until n do $a[i, j]:=a[i, j]-$ factor $\times a[r, j]$ end
end;
for $i:=1$ step 1 until n do
product $:=$ product $\times a[i, i]$;
comment Exponent overflow or underflow will most likely occur here if at all. For large or small determinants the user is cautioned to replace this with a call to a machine-language product routine which will handle extremely large or small real numbers;
determinant $:=\operatorname{ssign} \times$ product;
return:
end

CERTIFICATION OF ALGORITHM 224 [F3] EVALUATION OF DETERMINANT
[Leo J. Rotenberg, Comm. ACM 7 (Apr. 1964), 243]
Vic Hasselblad and Jeff Rulifson (Recd. 17 July 1964)
Computer Center, U. of Washington, Seattle, Wash.
The "Evaluation of Determinant" program was tested on an Algol 60 compiler for an IBM 709 (Share distribution *3032). When the 10 th line on page 244 was changed to read:
begin if imax $=r$ then go to resume else correct results were obtained. It was tested up through 4×4 matrices.

ALGORITHM 225
 GAMMA FUNCTION WITH CONTROLLED ACCURACY

S. J. Cyvin and B. N. Cyvin (Recd. 25 Oct. 1963)

Technical University of Norway, Trondheim, Norway
real procedure $G A M M A(m, x)$; value m, x; integer m; real x;
comment $\Gamma(x)$ is calculated with at least m significant figures (disregarding the machine's roundoff). The range of x is reduced by recursion to $5 \leqq x \leqq 6$, for which $\Gamma(x)$ is found (with $m-2$ significant decimals) according to

$$
\Gamma(x)=\int_{0}^{T} t^{x-1} e^{-t} d t+\int_{T}^{\infty} t^{t x-1} e^{-t} d t
$$

Simpson's formula is applied to the former integral, which is divided into $2 n$ parts. Here n, as well as T, are chosen automatically to give a result with the required accuracy. For x near zero or a negative integer, $\Gamma(x)$ is put, equal to a large value, 10^{60}. The procedure is slower than other algorithms for $\Gamma(x)$ [see Nos. 31, 34, 54, 80], but has the advantage of controlled accuracy;
begin integer i, n, f, T; real y, h, S;
$h:=1 ; y:=x ;$
A: if abs $(y)<10-60$ then begin $G A M M A:=1060 ;$ go to
E end else
if $y>6$ then begin $y:=y-1 ; \quad h:=h \times y ;$ go to A end else if $y<5$ then begin $h:=h / y ; \quad y:=y+1 ; \quad$ go to A end else begin real a;
$T:=20$;
$U: \quad$ if $(T \uparrow 5+4 \times T \uparrow 4+16 \times T \uparrow 3+48 \times T \uparrow 2+96 \times T+$ $96) \times \exp (-T)>.25 \times 10 \uparrow(2-m)$ then begin $T:=T+5$; go to U end;
$n:=1+\operatorname{entier}(\operatorname{sqrt}(\operatorname{sqrt}(T \uparrow 5 \times 10 \uparrow(m-2) / 30)))$;
$S:=0 ; f:=4$;
for $i:=1$ step 1 until $2 \times n$ do
begin
$a:=.5 \times i \times T / n ; \quad S:=S+f \times a \uparrow(y-1) \times \exp (-a) ;$ $f:=$ if $i=2 \times n-1$ then 1 else if $f=4$ then 2 else 4 end
end;
$G A M M A:=(S \times T /(6 \times n)+(.5 \times T \uparrow 5+3 \times T \uparrow 4+12 \times T \uparrow 3$ $+36 \times T \uparrow 2+72 \times T+72) \times \exp (-T)) \times h ;$
E:
end of $G A M M A$

CERTIFICATION OF ALGORITHM 225 [S14]
GAMMA FUNCTION WITH CONTROLLED ACCURACY [S. J. Cyvin and B. N. Cyvin, Comm. ACM 7 (May 1964), 295]
T. A. Bray (Recd. 25 May 1964 and 18 Jun. 1964)

Boeing Scientific Research Laboratories, Seattle, Wash.
Algorithm 225 was coded in Fortran IIf and run on the IBM 1620. No corrections were necessary and the following results were obtained for $m=2$:

x	GAMMA (m, x)	x	GAMMA (m, x)
.01	99.44362100	3.50	3.32349920
.05	19.47214000	4.00	6.00067550
.10	9.51444650	4.50	11.63224700
.50	1.77253280	5.00	24.00270200
1.00	1.00011250	5.50	52.34511500
1.50	.88626644	10.00	0.36286974_{10}
2.00	1.00011250	25.00	$0.62043066_{10} 24$
2.50	1.32939960	50.00	$0.60826434_{10} 63$
3.00	2.00022510		

These results are correct to at least two significant digits. The following results and times were obtained for $x=0.5$:

m	GAMMA (m, x)	TIME (in seconds $)$
2	1.77253280	58
3	1.77254230	105
4	1.77245370	200
5	1.77244430	405
6	1.77244020	885

The correct result is 1.7724539 . Note that the accuracy decreased as m increased and the result for $m=6$ is incorrect in the sixth significant digit.

This algorithm is extremely slow as compared to some others available. Algorithm 31 was used for the above set of arguments and gave seven-digit accuracy in 250 milliseconds per argument.

ALGORITHM 226

NORMAL DISTRIBUTION FUNCTION
S. J. Cyvin (Recd. 15 Oct. 1963)

Technical University of Norway, Trondheim, Norway
real procedure $F i(m, x)$; value m, x; integer m; real x;
comment $\Phi(x)=(1 / \sqrt{ } 2 \pi) \int_{-\infty}^{x} \exp \left(-\frac{1}{2} u^{2}\right) d u$ is found by computing $\int_{0}^{x} \exp \left(-\frac{1}{2} u^{2}\right) d u$ with aid of Simpson's formula. The latter integral is divided into $2 n$ parts, where n automatically is adjusted to give a result with at least m significant decimals (disregarding the machine's roundoff). The error function is obtainable as erf $(x)={ }^{-} 2 \Phi(x / \sqrt{ } 2)-1$. The practical use of the present method is not restricted to small or large ranges of x. Probably the method has some advantages compared to Algorithms 123, 180, and 209;
begin integer i, n, f; real b, S;
$b:=a b s(x)$;
$n:=1+\operatorname{entier}(\operatorname{sqrt}(\operatorname{sqrt}(b \uparrow 5 \times 10 \uparrow m /$ ($480 \times s q r t(2 \times 3.14159265))))$);
if $n<4$ then $n:=4 ; S:=1 ; f:=4$;
for $i:=1$ step 1 until $2 \times n$ do
begin
$S:=S+f \times \exp (-(i \times b / n) \uparrow 2 / 8) ;$
$f:=$ if $i=2 \times n-1$ then 1 else if $f=4$ then 2 else 4
end;
$F i:=.5+\operatorname{sign}(x) \times S \times b /(6 \times n \times s q r t(2 \times 3.14159265))$
end $F i$

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, $\operatorname{ERF}(x)$
[Martin Crawford and Robert Techo Comm. ACM 5 (Sept. 1962), 483]

ALGORITHM 180 [S15]

ERROR FUNCTION-LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]

COMPLEMENTARY ERROR FUNCTION-
LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]

GAUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]
ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]
ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION FUNCTIONS
[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL
[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June 1967), 374]
I. D. Hill and S. A. Joyce (Recd. 21 Nov. 1966)

Medical Research Council,
Statistical Research Unit, 115 Gower Street, London
W.C.1., England

These algorithms were tested on the ICT Atlas computer using the Atlas Algol compiler. The following amendments were made and results found:

ALGORITHM 123

(i) value x; was inserted.
(ii) $a b s(T) \leqslant{ }_{10}-10$ was changed to $\quad Y-T=Y$ both these amendments being as suggested in [1].
(iii) The labels 1 and 2 were changed to $L 1$ and $L 2$, the go to statements being similarly amended.
(iv) The constant was lengthened to 1.12837916710 .
(v) The extra statement $x:=0.707106781187 \times x$ was made the first statement of the algorithm, so as to derive the normal integral instead of the error function.
The results were accurate to 10 decimal places at all points tested except $x=1.0$ where only 2 decimal accuracy was found, as noted in [2]. There seems to be no simple way of overcoming the difficulty [3], and any search for a method of doing so would hardly be worthwhile, as the algorithm is slower than Algorithm 304 without being any more accurate.

ALGORITHM 180
(i) $T:=-0.56418953 / x / \exp (v)$ was changed to
$T:=-0.564189583548 \times \exp (-v) / x$. This is faster and also has the advantage, when v is very large, of merely giving 0 as the answer instead of causing overflow.
(ii) The extra statement $x:=0.707106781187 \times x$ was made as in (v) of Algorithm 123.
(iii) for $m:=m+1$ was changed to for $m:=m+2 . \quad m+1$ is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11 th decimal place.

ALGORITHM 181

(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative to the amendment suggested in [4].
The results were accurate to 9 significant figures for $x \leqslant 8$, but to only 8 significant figures for $x=10$ and $x=20$.

ALGORITHM 209

No modification was made. The results were accurate to 7 decimal places.

ALGORITHM 226

(i) $10 \uparrow m /(480 \times \operatorname{sqrt}(2 \times 3.14159265))$ was changed to $10 \uparrow m \times 0.000831129750836$.
(ii) for $i:=1$ step 1 until $2 \times n$ do was changed to
$m:=2 \times n$; for $i:=1$ step 1 until m do.
(iii) $-(i \times b / n) \uparrow 2 / 8$ was changed to $-(i \times b / n) \uparrow 2 \times 0.125$.
(iv) if $i=2 \times n-1$ was changed to if $i=m-1$
(v) $b /(6 \times n \times \operatorname{sqrt}(2 \times 3.14159265))$ was changed to $b /(15.0397696478 \times n)$.
Tests were made with $m=7$ and $m=11$ with the following results:

x	Number of significant figures correct	Number of decimal places correct	
	$m=7$	$m=11$	$m=7$
-0.5	7	11	$m=11$
-1.0	7	10	7
-1.5	7	10	7
-2.0	7	9	8
-2.5	6	9	8
-3.0	6	7	8
-4.0	5	7	8
-6.0	2	1	10

Perhaps the comment with this algorithm should have referred t.) decimal places and not significant figures. To ask for 11 significant figures is stretching the machine's ability to the limit, and where 10 significant figures are correct, this may be regarded as acceptable.

ALGORITIIM 272

The constant .99999999 was lengthened to .9999999999.
The accuracy was 8 decimal places at most of the points tested, but was only 5 decimal places at $x=0.8$.

ALGORITHM 304

No modification was made. The errors in the 11 th significant figure were:

$a b s(x)$	$x>0 \equiv$ upper	$x>0 \neq$ upper
0.5	1	1
1.0	1	2
1.5	$21^{\mathrm{n}}(5)$	2
2.0	$25^{\mathrm{a}}(0)$	4
3.0	0	0
4.0	2	3
6.0	14	0
8.0	23	0
10.0	35	0
20.0		0

- Due to the subtraction error mentioned in the comment section of the algorithm. Changing the constant 2.32 to 1.28 resulted in the figures shown in brackets.

To test the claim that the algorithm works virtually to the accuracy of the machine, it was translated into double-length instructions of Mercury Autocode and run on the Atlas using the EXCHLF compiler (the constant being lengthened to 0.398942280401432677939946). The results were compared with hand calculations using Table II of [5]. The errors in the 22nd significant figure were:

$a b s(x)$	$x>0 \equiv$ upper	$x>0 \not \equiv$ upper
1.0	2	3
2.0	7	1
4.0	2	0
8.0	8	0

Timings. Timings of these algorithms were made in terms of the Atlas "Instruction Count," while evaluating the function 100 times. The figures are not directly applicable to any other computer, but the relative times are likely to be much the same on other machines.

Instruction Count for 100 Evaluations								
$a b s(x)$	Algorithm number							
	123	180	181	209	$\begin{gathered} 226 \\ m=7 \end{gathered}$	272	$304^{\text {a }}$	$304^{\text {b }}$
0.5	58			8	97	24	25	24
1.0	65°			8	176	24	29	29
1.5	164	128	127	9	273	25	35	35
2.0	194	78	90	8	387	24	39	39
2.5	252	54	68	10	515	24	131	44
3.0		42	51	9	628	25	97	50
4.0		27	39	9	$900^{\text {d }}$	25	67.	44
6.0		15	30	6	$1400^{\text {d }}$	16	49	23
8.0		9	28	7	$2100^{\text {d }}$	18	44	11
10.0		10	25	5	$2700^{\text {d }}$	16	38	11
20.0		9	22	5	$6500{ }^{\text {d }}$	16	32	11
30.0		9		5	$10900^{\text {d }}$	16	11	11.

a Readings refer to $x>0 \equiv$ upper.
${ }^{1}$ Readings refer to $x>0 \neq$ upper.
$=$ Time to produce incorrect answer. A count of 120 would fit a smooth curve with surrounding values.
100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms available for normal curve tail areas. One should be very fast and reasonably accurate, the other very accurate and reasonably fast. We conclude that Algorithm 209 is the best for the first requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may be preferred for this reason, but the method used shows itself in Algorithm 181 to be not quite as accurate, and the introduction of this method solely for the circumstances in which Algorithm 180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her help with the double-length hand calculations.

References:

1. Thacher, Henry C. Jr. Certification of Algorithm 123. Comm. ACM 6 (June 1963), 316.
2. Ibbetson, D. Remark on Algorithm 123. Comm. ACM 6 (Oct. 1963), 618.
3. Barton, Stephen P., and Wagner, John F. Remark on Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.
4. Clausen, I., and Hansson, L. Certification of Algorithm 181. Comm. ACM 7 (Dec. 1964), 702.
5. Sheppard, W. F. The Probability Integral. British Association Mathematical Tables VII, Cambridge U. Press, Cambridge, England, 1939.
```
ALGORITHM 227
CHEBYSHEV POLYNOMIAL COEFFICIENTS
S. J. Cyvin (Recd. 15 Oct. 1963)
Technical University of Norway, Trondheim, Norway
procedure Tcheb ( }n,A);\mathrm{ value n; integer }n\mathrm{ ; integer array }A\mathrm{ ;
comment This procedure finds (by recursion) the coefficients
    of }\mp@subsup{T}{n}{}(x)\mathrm{ , rather than the value of the polynomial, which is the
    subject of Algorithms 10 and 36. The ( }n+2)\div2\mathrm{ nonvanishing
    coefficients are stored in one-dimensional integer array A in
    the following way:
    T2p}(x)=\mp@subsup{\sum}{i=0}{p}A[i+1]\mp@subsup{x}{}{2i}\quad(n\mathrm{ even),
    T}\mp@subsup{T}{2p+1}{}(x)=\mp@subsup{\sum}{i=0}{p}A[i+1]\mp@subsup{x}{}{2i+1}\quad(n\mathrm{ odd })
begin integer i,j; integer array }B[1:(n+2)\div2]; Boolean
    EVEN;
    A[1]:= B[1]:=1; EVEN := n\div2\times2=n; if n>1 then
    for }i:=2\mathrm{ step 1 until ( }n+2)\div2\mathrm{ do
    for }j:=i\mathrm{ step - 1 until 1 do
    begin
        A[j]:= if j=i then 2}\timesB[j-1] else if j=1 then - A[1
        else 2 }\timesB[j-1]-A[j]
        B[j]:= if j=i then 2\timesA[i] else 2\timesA[j]-B[j]
    end i loop;
    for }i:=1\mathrm{ step 1 until ( }n+2)\div2\mathrm{ do
        A[i]:= if EVEN then A[i] else B[i]
end Tcheb
```


ALGORITHM 228

Q-BESSEL FUNCTIONS $\bar{I}_{n}(t)$
J. M. S. Simões Pereira (Recd. 21 Sept. 63 and 6 Jan. 64)

Gulbenkian Scientific Computing Ctr, Lisboa, Portugal

```
procedure \(q\) Besselbar ( \(t, q, n, j, s\) ); integer \(n, j\); real \(t, q, s\);
comment This procedure computes values of any \(q\)-Bessel
    function \(\bar{I}_{n}(t)\) for \(n\) integer (positive, negative or zero) by the
    use of the expansion \(\bar{I}_{n}(t)=\sum_{k=0}^{\infty}\left(t^{n+2 k} /\left((q)_{k}(q)_{n+k}\right)\right)\) where
    \((q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right),(q)_{0}=1\) and \(\left(1 /(q)_{-n}\right)=0 \quad(n=1\),
    \(2, \cdots)\). This series is convergent for \(t \in(-\infty,+\infty)\) if \(|q|>1\)
    and for \(|t|<1\) if \(|q|<1, j+1\) denotes the number of terms
    (at least 2) retained in the summation and \(s\) stands for the sum
    of these first terms. See L. Carlitz, The product of \(q\)-Bessel
    functions, Portugaliae Mathematica, vol. 21;
begin integer \(k, m, p ;\) real \(c, u ; m:=a b s(n) ; c:=1\);
        if \(n=0\) then go to \(A\);
    for \(p:=1\) step 1 until \(m\) do \(c:=c \times(1-q \uparrow p)\);
    if \(n<0\) then go to \(B\);
\(A: u:=(t \uparrow n) / c ; \quad s:=u\);
    for \(k:=1\) step 1 until \(j\) do
    begin \(u \quad:=u \times(t \uparrow 2) /((1-q \uparrow k) \times(1-q \uparrow(n+k))) ; \quad s:=\)
        \(s+u\) end;
    go to \({ }^{(C)}\)
\(B: u:=t \uparrow(n+2 \times m) / c ; s:=u\);
    for \(k:=m+1\) step 1 until \(j\) do
    hegin \(u:=u \times(t \uparrow 2) /((1-q \uparrow k) \times(1-q \uparrow(n+k))) ; \quad s:=\)
        \(s+u\) end;
( \(\because\) : end
```


Abstract

ALGORITHM 229 ELEMENTARY FUNCTIONS BY CONTINUED FRACTIONS James C. Morelock (Recd. 1 Oct. 63 and in final form 24 Jan. 64) Computation Lab., Marshall Space Flight Ctr, NASA, Huntsville, Ala. procedure CONFRAC (x, n, parm, answer); integer parm, n; real x, answer; comment This procedure utilizes a continued fraction which is equivalent to the diagonal of the Pade table for $\exp z$, with error in the computed convergent less than $x^{2 n} /\left(2 \times 6^{2} \times(10)^{2}\right.$ $\left.\times \cdots \times(4 n-2)^{2}(4 n+2)\right)$. This fraction was developed by J. C. Morelock, Note on Padé Table Approximation, Internal Note MIN-COMP-62-9, Marshall Space Flight Center, Huntsville, Alabama, 1962. For source reference see Nathaniel Macon, On the computation of exponential and hyperbolic functions using continued fractions, $J . A C M, 2(1955), 262-266$. The argument, x, is assumed to be less than $\pi / 4$. For such x any desired level of accuracy is quickly computed for each function specified as follows:


```
garm:=1, answer := sin }x\quad\mathrm{ parm := 5, answer := sinh }
    parm:=2, answer:=\operatorname{cos}x\quad\mathrm{ parm }:=6,\quad\mathrm{ ansuer }:=\operatorname{cosh}x
    parm:=3, answer:= tan x parm:=7, answer := tanh x
    parm:=4, answer := exp x
```

The body of this procedure has been tested using extended Algol for the B-5000 Computer. It gave the following results:

$$
\begin{array}{lllll}
x=0.50 & n=1 & \text { par } m=1 & & \text { answer }=0.47938
\end{array} 801630
$$

```
    The value of \(n\) selects the continued fraction convergent;
begin integer \(i\), ndigt;
    real \(r, f\);
    \(r:=\) if \(p a r m \leqq 3\) then \(-x \uparrow 2\) else \(x \uparrow 2\);
    \(f:=4 \times n+2\);
    for \(i:=n\) step -1 until 1 do \(f:=4 \times i-2+r / f\);
    ndigt \(:=\) if parm \(\leqq 3\) then parm +1 else parm -3 ;
    answer \(:=\) if \(n\) digt \(=1\) then \((f+x) /(f-x)\)
        clse if ndigt \(=2\) then \(2 \times x \times f /((f \uparrow 2)-r)\)
        else if ndigt \(=3\) then \(((f \uparrow 2)+r) /((f \uparrow 2)-r)\)
        clse if \(n d i g t=4\) then \(2 \times x \times f /((f \uparrow 2)+r)\)
        else \(x\);
end
```

CERTIFICATION OF ALGORITHM 229 [B1]
ELEMENTARY FUNCTIONS BY CONTINUED
FRACTIONS [James C. Morelock, Comm. ACM 7 (May 1964), 296]
T. A. Bray (Recd. 18 June 1964)

Boeing Scientific Research Laboratories, Seattle, WA 98124
KEY WORDS AND PHRASES: continued factions, Padé table
CR CATEGORIES: 5.19
Algorithm 229 was coded in Fortran II and run on the IBM 1620 computer for $x=0.50$ and 0.75 , for $n=1,2,3,4$, and for parm $=1,2,3,4,5,6,7$.

For $x=0.50 \mathrm{my}$ values agree with the author's up to $\pm 10^{-11}$.
For $x=0.75$ and $n=4$, my values of $\sin x, \cos x, \tan x$, and $\exp x$ agree with tabulated values to within $\pm 10^{-11}$. For the same x and n my values of $\sinh x$, and $\cosh x$, and $\tanh x$ agree with tabulated values to within $\pm 10^{-10}$; no tables were available to check the 11th decimal.

```
ALGORITHM 230
MATRIX PERMUTATION
J. Boothroyd (Recd }18\mathrm{ Nov. 1963)
English Electric-Leo Computers, Kidsgrove, Stoke-on-
    Trent, England
procedure matrixperm (a,b,j,k,s,d,n,p); value n; real a,b;
    integer array }s,d;\mathrm{ integer j,k,n,p;
comment a procedure using Jensen's device which exchanges
    rows or columns of a matrix to achieve a rearrangement specified
    by the permutation vectors s,d[1:n]. Elements of s specify the
    original source locations while elements of d specify the desired
    destination locations. Normally a and b}\mathrm{ will be called as sub-
    scripted variables of the same array. The parameters j,k nom-
    inate the subscripts of the dimension affected by the permuta-
    tion, p}\mathrm{ is the Jensen parameter. As an example of the use of this
    procedure, suppose r,c[1:n] to contain the row and column sub-
    scripts of the successive matrix pivots used in a matrix inver-
    sion of an array a[1:n,1:n]; i.e. r[1],c[1] are the relative sub-
    scripts of the first pivot r[2],c[2] those of the second pivot and
    so on. The two calls
                            matrixperm (a[j,p],a[k,p], j,k,r,c,n,p)
            and matrixperm (a[p,j],a[p,k],j,k,c,r,n,p)
    will perform the required rearrangement of rows and columns
        respectively;
begin integer array tag,loc[1:n]; integer i,t; real w;
comment set up initial vector tag number and address arrays;
    for }i:=1\mathrm{ step 1 until }n\mathrm{ do tag[i]:= loc[i]:= i;
comment start permutation;
    for }i:=1\mathrm{ step 1 until }n\mathrm{ do
        begin t:= s[i]; j:= loc[t]; k:=d[i];
            if }j\not=k\mathrm{ then begin for }p:=1\mathrm{ step 1 until }n\mathrm{ do
                        begin w:=a; a:= b; b:=w end;
        tag[j]:= tag[k]; tag[k]:== t;
                                loc[t] := loc[tag[j]]; loc[tag[j]]:= j
    end jk conditional
        end i loop
end matrixperm
```


ALGORITHM 231
 MATRIX INVERSION

J. Boothroyd (Recd 18 Nov. 1963)

English Electric-Leo Computers, Kidsgrove, Stoke-onTrent, England
procedure matrixinvert ($a, n, e p s$, singular); value $n, e p s$; array a; integer n; real eps; label singular;
comment inverts a matrix in its own space using the GaussJordan method with complete matrix pivoting. I.e., at each stage the pivot has the largest absolute value of any element in the remaining matrix. The coordinates of the successive matrix pivots used at each stage of the reduction are recorded in the successive element positions of the row and column index vectors r and c. These are later called upon by the procedure matrixperm which rearranges the rows and columns of the matrix. If the matrix is singular the procedure exits to an appropriate label in the main program;
begin integer $i, j, k, l, p i v i, p i v j, p ;$ real $p i v o t ;$ integer array $r, c[1: n] ;$
comment set row and column index vectors;
for $i:=1$ step 1 until n do $r[i]:=c[i]:=i$;
comment find initial pivot; pivi $:=p_{i v j}:=1$;
for $i:=1$ step 1 until n do for $j:=1$ step 1 until n do if $a b s(a[i, j])>a b s(a[p i v i, p i v j])$ then begin pivi $:=i$; pivj $:=j$ end;
comment start reduction;
for $i:=1$ step 1 until n do
begin $l:=r[i] ; \quad r[i]:=r[p i v i] ; \quad r[p i v i]:=l ; \quad l:=c[i] ;$ $c[i]:=c[p i v j] ; \quad c[p i v j]:=l ;$
if $e p s>\dot{a} b s(a[r[i], c[i]])$ then
begin comment here include an appropriate output procedure to record i and the current values of $r[1: n]$ and $c[1: n]$; go to singular end;
for $j:=n$ step -1 until $i+1, i-1$ step -1 until 1 do $a[r[i], c[j]]$ $:=a[r[i], c[j]] / a[r[i], c \mid i]] ; \quad a[r[i], c[i]]:=1 / a[r[i], c[i]] ;$ pivot: $=0$;
for $k:=1$ step 1 until $i-1$, $i+1$ step 1 until n do
begin for $j:=n$ step -1 until $i+1, i--1$ step -1 until 1 do begin $a[r[k], c \mid j]]:=a[r[k], c[j]]-a[r[i], c[j]] \times a[r[k], c[i]] ;$ if $k>i \wedge j>i \wedge a b s(a[r[k], c[j]])>a b s($ pivot $)$ then begin pivi $:=k ; \quad p i v j:=j$; pivot $:=a[r[k], c[j]]$ end conditional end jloop; $a[r[k], c[i]]:=-a[r \mid i], c[i]] \times a[r[k], c[i]]$
end kloop
end i loop and reduction;
comment rearrange rows; matrixperm ($a[j, p], a[k, p], j, k, r, c, n, p$);
comment rearrange columns;
matrixperm ($a[p, j], a[p, k], j, k, c, r, n, p$)
end matrixinvert
[Editor's Note. On many compilers matrixinvert would run much faster if the subscripted variables $r[i], c[i], r[k]$ were replaced by simple integer variables $r i, c i, r k$, respectively, inside the j loop.G.E.F.I

REMARK ON ALGORITHM 231 [F1] MATRIX INVERSION

[J. Boothroyd, Comm. ACM 6 (June 1964), 347]
Mats Ferring (Recd. 23 Nov. 1964)
Flygmotor Aeroengine Company, Trollhättan, Sweden
The algorithm cannot accept the pivot element $=0$ which reduces the detection of singularities. We suggest the correction:

$$
\text { if } k>i \wedge j>i \wedge a b s(a[r[k], c[j]])>a b s(\text { pivot }) \text { then }
$$

should be
if $k>i \wedge j>i \wedge a b s(a[r[k], c[j]]) \geqq a b s($ pivot $)$ then

ALGORITHM 232
 HEAPSORT

J. W. J. Williams (Recd 1 Oct. 1963 and, revised, 15 Feb. 1964)
Elliott Bros. (London) Ltd., Borehamwood, Herts, England
comment The following procedures are related to TREESORT [R. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434, and A. F. Kaupe, Jr., Alg. 143 and 144, Comm. ACM 5 (Dec. 1962), 604] but avoid the use of pointers and so preserve storage space. All the procedures operate on single word items, stored as elements 1 to n of the array A. The elements are normally so arranged that $A[i] \leqq A[j]$ for $2 \leqq j \leqq n, i=j \div 2$. Such an arrangement will be called a heap. $A[1]$ is always the least element of the heap.

The procedure SETHEAP arranges n elements as a heap, INHEAP adds a new element to an existing heap, OUTHEAP extracts the least element from a heap, and SWOPHEAP is effectively the result of INHEAP followed by OUTHEAP. In all cases the array A contains elements arranged as a heap on exit.

SWOPHEAP is essentially the same as the tournament sort described by K. E. Iverson-A Programming Language, 1962, pp. 223-226-which is a top to bottom method, but it uses an improved storage allocation and initialisation. INHEAP resembles TREESORT in being a bottom to top method. HEAPSORT can thus be considered as a marriage of these two methods.

The procedures may be used for replacement-selection sorting, for sorting the elements of an array, or for choosing the current minimum of any set of items to which new items are added from time to time. The procedures are the more useful because the active elements of the array are maintained densely packed, as elements $A[1]$ to $A[n]$;
procedure $\operatorname{SWOPHEAP}$ (A, n, in,out);
value $i n, n$; integer n; real $i n, o u t$; real array A;
comment SWOPHEAP is given an array A, elements $A[1]$ to $A[n]$ forming a heap, $n \geqq 0$. SWOPHEAP effectively adds the element in to the heap, extracts and assigns to out the value of the least member of the resulting set, and leaves the remaining elements in a heap of the original size. In this process elements 1 to $(n+1)$ of the array A may be disturbed. The maximum number of repetitions of the cycle labeled scan is $\log _{2} n$;
begin integer i, j; real temp, temp 1 ;
if in $\leqq A[1]$ then out $:=$ in else
begin $i:=1$;
$A[n+1]:=$ in; comment this last statement is only necessary in case $j=n$ at some stage, or $n=0$;
out $:=A[1]$;
scan: $j:=i+i$;
if $j \leqq n$ then
begin tem $p:=A[j]$;
temp $1:=A[j+1]$;
if temp $1<$ temp then
begin temp $:=\operatorname{temp} 1$;
$j:=j+1$
end;

```
        if temp< in then
        begin A[i]:= temp;
            i:= j;
            go to scan
        end
        end;
        A[i]:= in
        end
    end SWOPHEAP;
procedure INHEAP (A, n, in);
    value in; integer n; real in; real array A;
    comment INHEAP is given an array A, elements A[1] to
        A[n] forming a heap and n\geqq0. INHEAP adds the element in
        to the heap and adjusts n accordingly. The cycle labeled
        scan may be repeated }\mp@subsup{\operatorname{log}}{2}{}n\mathrm{ times, but on average is repeated
        twice only;
    begin integer i,j;
        i:=n:=n+1;
    scan: if i>1 then
        begin j:= i\div2;
            if in<A[j] then
            begin A[i]:=A[j];
                i:= j;
                go to scan
            end
        end;
        A[i]:= in
    end INHEAP;
procedure OUTHEAP (A,n,out);
    integer n; real out; real array A;
    comment given array }A\mathrm{ , elements 1 to n of which form a heap,
        n\geqq1,OUTHEAP assigns to out the value of A[1], the least
        member of the heap, and rearranges the remaining members
        as elements 1 to n-1 of A. Also, n is adjusted accordingly;
    begin SWOPHEAP (A,n-1, A[n],out);
        n:= n-1
    end OUTHEAP;
procedure SETHEAP (A,n);
    value n; integer n; real array A;
    comment SETHEAP rearranges the elements A[1] to A[n]
        to form a heap;
    begin integer j;
        j:=1;
    L: INHEAP (A,j,A[j+1]);
        if}j<n\mathrm{ then go to }
    end SETHEAP
```

```
ALGORITHM 233
SIMPSON'S RULE FOR MULTIPLE
    INTEGRATION
Frank Olynyk* (Recd 24 Dec. 1963)
Case Institute of Technology, Cleveland, Ohio
*Partially sponsored by the National Science Foundation under Grant GP-642.
real procedure Simps ( \(X, x 1, x 2\), delta, \(f\) );
value \(x 1, x 2\), delta; real \(X, x 1, x 2\), delta, \(f\);
comment This procedure calculates a single integral by Simpson's rule in such a way that it can be called recursively for the evaluation of an iterated integral. \(x 1\) and \(x 2\) are the lower and upper limits, respectively, which may be any mathematically meaningful expressions. Hence in using Simps for multiple integration the region is not limited to rectangular boxes. The algorithm terminates when two successive evaluations pass the test involving delta. The formal parameter \(f\) stands for the expression to be integrated.
As an example of the use of Simps,
\[
\int_{0}^{1} d x \int_{0}^{\left(1-x^{2}\right)^{\frac{1}{2}}} g(x, y) d y
\]
would be evaluated by
\(\operatorname{Simps}(x, 0,1, \operatorname{delta}, \operatorname{Simps}(y, 0, \operatorname{sqrt}(1-x \uparrow 2), \operatorname{delta} 2, g(x, y)))\).
Simps has been written and run in Algol 60 on the Univac 1107 at Case Institute.
[Ediror's Note. Experience of W. McKeeman suggests the wisdom of choosing delta \(2<\) delta.-G.E.F.];
begin
Boolean turing; real \(z 1, z 2, z 3, h, k\);
turing := false;
if \(x 1=x 2\) then begin \(z 1:=0\); go to box 2 end;
if \(x 1>x 2\) then begin \(h:=x 1 ; x 1:=x 2 ; x 2:=h\); turing := true end;
\(X:=x 1 ; \quad z 1:=f ; \quad X:=x 2 ; \quad z 3:=z 1:=z 1+f ;\)
\(k:=x 2-x 1 ;\)
box:
\(z 2:=0 ; \quad h:=k / 2 ;\)
for \(X:=x 1+h\) step \(k\) until \(x 2\) do \(z 2:=z 2+f\);
\(z 1:=z 1+4 \times z 2\);
if \(h \times a b s((z 1-2 \times z 3) /(\) if \(z 1=0\) then 1.0 else \(z 1))<d e l t a\) then go to box2
else \(z 3:=z 1\);
\(z 1:=z 1-2 \times z 2\);
\(k:=h ;\)
go to box;
box2:
if turing then \(h:=-h\);
Simps \(:=h \times z 1 / 3\)
end Simps
```

REMARK ON ALGORITHM 233 [D1]
SIMPSON'S RULE FOR MULTIPLE INTEGRATION
[Frank Olynyk, Comm. ACM 7 (June 1964), 348]
L. G. Proll (Recd. 6 Apr. 1970)

Department of Mathematics, University of Southampton, U.K.

KEY WORDS AND PHRASES: numerical integration, multiple integration, Simpson's rule
$C R$ CATEGORIES: 5.16
Algorithm 233 fails in the case $x 1=x 2$ since h and, thus, the value of the function Simps are undefined. This situation can be avoided by replacing the line
if $x 1=x 2$ then begin $z 1:=0$; go to $b o x 2$ end;
by
if $x 1=x 2$ then begin Simps $:=0.0$; go to box3 end;
and by replacing the last two lines of the procedure by
Simps $:=h \times z 1 / 3.0$;
box3:
end Simps
The algorithm can be marginally improved by replacing each integer constant by its equivalent decimal number.

ALGORITHM 234
POISSON-CHARLIER POLYNOMIALS [\$23]
J. M. S. Simões Pereira (Recd. 6 Jan. 1964)

Gulbenkian Scientific Computing Center, Lisboa, Portugal
real procedure $\operatorname{PCpolynomial~(~} x, n, a$);
integer n; real x, a;
comment PCpolynomial computes values of the Poisson-
Charlier polynomial $p_{n}(x)$ defined by L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugaliae Mathematica 20 (1961), 43-46:

$$
p_{n}(x)=a^{n / 2}(n!)^{-1 / 2} \sum_{r=0}^{n}(-1)^{n \rightarrow r}\binom{n}{r} r!a^{\rightarrow}\binom{x}{r} .
$$

In this algorithm u stands for the successive terms of the summation, s stands for the sum of these terms and all other symbols possess evident meanings. Clearly each term of the summation is obtained from the preceding one by the indicated multiplication;

begin

integer j; real u, s, c;
$u:=(-1) \uparrow n ;$
$s:=u$;
$c:=1$;
for $j:=1$ step 1 until n do $c:=c \times j$;
for $j:=0$ step 1 until $n-1$ do
begin $u:=-u \times(n-j) \times(x-j) /(a \times(j+1)) ; s:=$ $s+u$ end;
$P C$ polynomial $:=\operatorname{sqrt}(a \uparrow n / c) \times s$
end PCpolynomial

CERTIFICATION OF ALGORITHM 234 [S23]

POISSON-CHARLIER POLYNOMIALS [J. M. S. Simões-Pereira. Comm. ACM 7 (July 1964), 420]
P. A. Samet (Recd. 17 Aug. 1964)

Computation Lab., The University, Southampton, Eng.
PC polynomial was compiled correctly by the Pegasus-Algol compiler and ran without trouble. The procedure was tested for $n=0(1) 4$, values of a in the range 0.2 to 2.0 , and x in the range 0 to 1 . The values produced were spotchecked by hand.

The procedure could be improved by
(i) putting x, n, a in the value part.
(ii) replacing $u:=(-1) \uparrow n$ by

$$
u:=\text { if } n=n \div 2 \times 2 \text { then } 1 \text { else }-1
$$

(iii) eliminating the separate evaluation of $n!$ by including the evaluation of $a^{n} \cdot(n!)^{-1}$ in the main loop. This gives a simpler argument for sqrt in the final assignment statement.

The revised algorithm then reads
real procedure $\operatorname{PCpolynomial}(x, n, a)$;
value x, n, a; real x, a; integer n;
begin integer j; real u, s, c;
$s:=u:=$ if $n=n \div 2 \times 2$ then 1 else -1 ;
$c:=1$;
for $j:=0$ step 1 until $n-1$ do
begin $u:=-u \times(n-j) \times(x-j) /(a \times(j+1))$;

$$
s:=s+u
$$

$$
c:=c \times a /(j+1)
$$

end;
PCpolynomial $:=\operatorname{sqrt}(c) \times s$
end $P C$ polynomial
This version gave the same results as the original but was appreciably faster.

```
ALGORITHM 235
RANDOM PERMU'TATION [G6]
Richard Durstenfeld (Recd. 2 Jan. 64)
General Atomic, San Diego 12, Calif.
procedure \(S H U F F L E\) ( \(a, n\), random);
    value \(n\); integer \(n\); real procedure random; integer
        array \(a\);
begin
    comment SHUFFLE applies a random permutation to the
        sequence \(a[i]\) where \(i=1,2, \ldots, n\). The procedure random is
        supposed to supply a random element from a large population
        of real numbers uniformly distributed over the open unit
        interval \(0<r<1\). The array \(a\) is declared to be integer but
        actually it suffices for its type to agree with that of the vari-
        able \(b\) (in the procedure body);
    integer \(i, j\); real \(b\);
    for \(i:=n\) step -1 until 2 do
        begin \(j:=\) entier \((i \times\) random +1\()\);
            \(b:=a[i] ; \quad a[i]:=a[j] ; \quad a[j]:==b\)
        end loop \(i\)
end SHUFFLE
```

Note. Numbers in brackets following Algorithm titles indicate the subject aategory for the algorithm, based on the Modified SHARE Classification listing given in the March, 1964 issue of the Communications of the ACM.

REMARK ON ALGORITHM 235 [G6]

RANDOM PERMUTATION [Richard Durstenfeld, Comm. ACM 7 (July 1964), 420]
M. C. Pike (Recd. 11 Feb. 1965 and 5 Apr. 1965)

Statistical Research Unit of the Medical Research Council, University College Hospital Medical School, London, England
$S H U F F L E$ applies a random permutation to the complete sequence $a[i]$ where $i=1,2, \cdots, n . S H U F F L E$ does this in such a way that after k calls of the real procedure random the elements $a[i]$ for $i=n-k+1, n-k+2, \cdots, n$ are a random permutation of the original n elements $a[i]$ where $i=1,2, \cdots, n$ taken k at a time. In many applications this will be all that is required and by coming out of the procedure at this point the remaining $n-k-1$ calls of random and the subsequent transfers will be avoided; this will result in a considerable saving in time if k is much smaller than n. The necessary modifications are:
(1) Amend the procedure heading by adding the variable k :
procedure $S H U F F L E$ (a, n, k, random);
value n, k; integer n, k;
(2) Amend the line
for $i:=n$ step -1 until 2 do
to read:
$k:=n+1-k ;$
for $i:=n$ step -1 until k do
Note that at exit $a[1: n]$ will still contain all the elements of the original $a[1: n]$, and that if $k=n$ that these modifications will make the procedure call random one more time than the original $S H U F F L E$.

ALGORITHM 236
BESSEL FUNCTIONS OF THE FIRST KIND [S17]
Walter Gautschi (Recd. 10 Aug. 1963 and 10 Apr. 1964)
Oak Ridge National Laboratory, Oak Ridge, Tenn.*

* Now at Purdue University, Lafayette, Ind:
real procedure $t(y)$; value y; real y;
comment This is an auxiliary procedure whieh evaluates the inverse function $t=t(y)$ of $y=t \ln t \quad(t \geqq 1)$ to an accuracy of about 1%. For the interval $0 \leqq y \leqq 10$ a fifth degree approximating polynomial was obtained by truncating a series expansion in Chebyshev polynomials. For $y>10$ the approximation $t(y) \doteq(y / \ln (y / \alpha))(1+(\ln \alpha-\ln \ln (y / \alpha)) /(1+\ln (y / \alpha)))^{-1} \quad$ where $\ln \alpha=.775 \dagger$ is used;

```
begin real \(p, z\);
    if \(y \leqq 10\) then
        begin
            \(p:=.000057941 \times y-.00176148 ; \quad p:=y \times p+.0208645\);
            \(p:=y \times p-.129013 ; \quad p:=y \times p+.85777\);
            \(t:=y \times p+1.0125\)
```

 end
 else
 begin
 \(z:=\ln (y)-.775 ; \quad p:=(.775-\ln (z)) /(1+z) ;\)
 \(p:=1 /(1+p) ; \quad t:=y \times p / z\)
 end
 end t;
procedure Japlusn ($x, a, n \max , d, J$); value $x, a, n \max , d$;
integer $n \max , d$; real x; a; array J;
comment This procedure evaluates to d significant digits the
Bessel functions $J_{a+n}(x)$ for fixed a, x and for $n=0,1, \cdots, n m a x$.
The results are stored in the array J. It is assumed
that $0 \leqq a<1, x>0$, and nmax $\geqq 0$. If any of these variables is
not in the range specified, control is transferred to a nonlocal
label called alarm. The procedure makes use of the real procedure
t. In addition, it calls for a nonlocal real procedure gamma which
evaluates $\Gamma(z)$ for $1 \leqq z \leqq 2$. (See [2].) The method of computa-
tion is a variant of the backward recurrence algorithm of J. C.
P. Miller. (See [1].) The purported accuracy is obtained by a
judicious selection of the initial value ν of the recursion index,
together with at least one repetition of the recursion with ν re-
placed by $\nu+5$. Near a zero of one of the Bessel functions
generated, the accuracy of that particular Bessel function may
deteriorate to less than d significant digits. The algorithm is
most efficient when x is small or moderately large;
begin integer $n, n u, m$, limit; real epsilon, sum, $d 1, \cdot r ; s, L$,
lambda; array Japprox, $\operatorname{Rr}[0: n$ max $] ;$
if $a<0 \vee a \geqq 1 \vee x \leqq 0 \vee n \max <0$ then go to alarm;
epsilon $:=.5 \times 10 \uparrow(-d)$;
for $n:=0$ step 1 until nmax do Japprox $[n]:=0$;
\dagger In an earlier version of this procedure the author used $\alpha=1$. The value $\ln \alpha=.775$ was found empirically by H. C. Thacher, Jr. to' yield somewhat better approximations.

```
sum \(:=(x / 2) \uparrow a /\) gamma \((1+a) ;\)
\(d 1:=2.3026 \times d+1.3863\);
if \(n \max >0\) then \(r:=n \max \times t(.5 \times d 1 / n \max )\) else \(r:=0\);
\(s:=1.3591 \times x \times t(.73576 \times d 1 / x)\);
    \(n u:=1+\) entier (if \(r \leqq s\) then \(s\) else \(r\) );
\(L 0: m:=0 ; L:=1\); limit \(:=\operatorname{entier}(n u / 2)\);
L1: \(m:=m+1\);
    \(L:=L \times(m+a) /(m+1)\);
    if \(m<\) limit then go to \(L 1\);
    \(n:=2 \times m ; r:=s:=0\);
L2: \(\quad r:=1 /(2 \times(a+n) / x-r)\);
    comment Conceivably, but very unlikely, division by an
        exact zero, or overflow, may take place here. The user may
        wish to test the divisor for zero, and, if necessary, enlarge it
        slightly to avoid overflow, before this statement is carried out.
        As such a test depends on the particular machine used, it was
        not included here;
    if entier ( \(n / 2\) ) \(\neq n / 2\) then lambda \(:=0\) else
        begin
            \(L:=L \times(n+2) /(n+2 \times a) ;\)
            lambda \(:=L \times(n+a)\)
        end;
    \(s:=r \times(\operatorname{lamb} b a+s) ;\) if \(n \leqq n\) max then \(\operatorname{Rr}[n-1]:=r\);
    \(n:=n-1 ;\) if \(n \geqq 1\) then go to \(L 2\);
    \(J[0]:=\operatorname{sum} /(1+s)\);
    for \(n:=0\) step 1 until \(n \max -1\) do \(J[n+1]:=\operatorname{Rr}[n] \times J[n]\);
    for \(n:=0\) step 1 until \(n \max\) do
    if \(\operatorname{abs}((J[n]-J a p p r o x[n]) / J[n])>\) epsilon then
    begin
            for \(m:=0\) step 1 until nmax do Japprox \([m]:=J[m] ;\)
            \(n u:=n u+5 ;\) go to \(L 0\)
            end
end Japlusn;
procedure \(\operatorname{Iaplusn}(x, a, n \max , d, I) ; \quad\) value \(x, a, n \max , d\);
    integer nmax, \(d\); real \(x, a\); array \(I\);
comment This procedure evaluates to \(d\) significant digits the
    modified Bessel functions \(I_{a+n}(x)\) for fixed \(a, x\), with \(0 \leqq a<1\),
    \(x>0\), and for \(n=0,1, \cdots, n \max\). The results are stored in the
    array \(I\). For the setup of the procedure, and the method of com-
    putation used, see the comment in Japlusn;
begin integer \(n, n u, m\); real epsilon, sum, \(d 1, r, s, L\), lambda;
    array Iapprox, \(\operatorname{Rr}[0: n \max ]\);
    if \(a<0 \vee a \geqq 1 \vee x \leqq 0 \vee n \max <0\) then go to alarm;
    epsilon \(:=.5 \times 10 \uparrow(-d)\);
    for \(n:=0\) step 1 until nmax do Iapprox \([n]:=0\);
    sum \(:=\exp (x) \times(x / 2) \uparrow a /\) gamma \((1+a)\);
    \(d 1:=2.3026 \times d+1.3863\);
    if nmax \(>0\) then \(r:=n \max \times t(.5 \times d 1 / n \max )\) else \(r:=0\);
    \(s:=\) if \(x<d 1\) then \(1.3591 \times x \times t(.73576 \times(d 1-x) / x)\) else
        \(1.3591 \times x\);
    \(n u:=1+\) entier (if \(r \leqq s\) then \(s\) else \(r\) );
\(L 0: n:=0 ; \quad L:=1\);
\(L 1: \quad n:=n+1\);
    \(L:=L \times(n+2 \times a) /(n+1)\);
    if \(n<n u\) then go to \(L 1\);
    \(r:=s:=0\);
```

```
L2: r:= 1/(2\times(a+n)/x+r);
    L:=L\times (n+1)/(n+2\timesa);
    lambda := 2 }\times(n+a)\timesL
    s :=r X (lambda+s); if n\leqq nmax then Rr[n-1]:= r;
    n;:=n-1; if n}\geqq1\mathrm{ then go to L2;
    I[0]:= sum/(1+s);
    for }n:=0\mathrm{ step 1 until nmax - 1 do }I[n+1]:=\operatorname{Rr}[n]\timesI[n]
    for }n:=0\mathrm{ step 1 until nmax do
        if abs((I[n]-Iapprox[n])/I[n])> epsilon then
            begin
                for m := 0 step 1 until nmax do Iapprox [m]:= I[m];
                nu:=nu+5; go to L0
            end
end Iaplusn;
```

procedure $J a m i n u s n(x, a, n \max , d, J)$; value $x, a, n m a x, d$; integer n max, d; real x, a; array J;
comment This procedure evaluates to d significant digits the Bessel functions $J_{a-n}(x)$ for fixed a, x, with $0<a<1, x>0$, and for $n=0,1, \cdots$, nmax. The results are stored in the array J. The procedure makes use of the real procedure t, and the procedure Japlusn. In addition, it calls for a nonlocal real procedure gamma which evaluates $\Gamma(z)$ for $1 \leqq z \leqq 2$. (See [2].) The accuracy may deteriorate to less than d significant digits if a is close to 0 or 1 ;
begin integer n; array $J 1[0: 1]$;
if $a=0$ then go to alarm;
$\operatorname{Japlusn}(x, a, 1, d, J 1)$;
$J[0]:=J 1[0]$;
$J[1]:=2 \times a \times J[0] / x-J 1[1] ;$
for $n:=1$ step 1 until $n \max -1$ do
$J[n+1]:=2 \times(a-n) \times J[n] / x-J[n-1]$
end Jaminusn;
procedure Iaminusn $(x, a, n \max , d, I)$; value $x, a, n \max , d$; integer nmax, d; real x, a; array I;
comment This procedure evaluates to d significant digits the modified Bessel functions $I_{a-n}(x)$ for fixed a, x, with $0<a<1$, $x>0$, and for $n=0,1, \cdots, n \max$. The results are stored in the array I. The procedure makes use of the real procedure t, and the procedure Iaplusn. In addition, it calls for a nonlocal real procedure gamma which evaluates $\Gamma(z)$ for $1 \leqq z \leqq 2$. (See [2].) The accuracy may deteriorate to less than d significant digits if a is close to 0 or 1 ;
begin integer n; array $I 1[0: 1]$;
if $a=0$ then go to alarm;
Iaplusn ($x, a, 1, d, I 1$);
$I[0]:=I 1[0]$;
$I[1]:=2 \times a \times I[0] / x+I 1[1]$;
for $n:=1$ step 1 until $n \max -1$ do
$I[n+1]:=2 \times(a-n) \times I[n] / x+I[n-1]$
end Iaminusn;
procedure Complex Japlusn ($x, y, a, n \max , a^{\prime}, u, v$); value x, y, a, $n \max , d$;
integer $n \max , d$; real x, y, a; array u, v;
comment This procedure evaluates to d significant digits the Bessel functions $J_{a+n}(z)=u_{n}+i v_{n}$ for fixed real a, fixed complex $z=x+i y$, and for $n=0,1, \cdots, n m a x$. The real parts u_{0}, $u_{1}, \cdots, u_{n m a x}$ of the results are stored in the array u, the imaginary parts $v_{0}, v_{1}, \cdots, v_{\text {nmax }}$ in the array v. It is assumed that $0 \leqq a<1, n \max \geqq 0$, and that z is not on the negative real axis $x \leqq 0, y=0$. Otherwise, control is transferred to the nonlocal label alarm upon entry of the procedure. The procedure makes use of the real procedure t. In addition, it calls for a nonlocal real procedure gamma which evaluates $\Gamma(z)$ for $1 \leqq z \leqq 2$. (See [2].) The method of computation is a complex extension of the method used in the procedure Japlusn. The algorithm is most efficient when $|z|$ is small or moderately large;
begin integer $n, n u, m$; real epsilon, $y 1, r 02, r 0, p h i, c, c 1, c 2$,
sum 1, sum $2, d 1, r, s, l a m b d a 1, ~ l a m b d a 2, L, r 1, r 2, s 1, s 2$; array uapprox, vapprox, $\operatorname{Rr} 1, \operatorname{Rr} 2[0: n m a x] ;$
if $a<0 \vee a \geqq 1 \vee(x \leqq 0 \wedge y=0) \vee n \max <0$ then go to alarm; epsilon $:=.5 \times 10 \uparrow(-d)$;
for $n:=0$ step 1 until $n \max$ do uapprox $[n]:=\operatorname{vapprox}[n]:=0$; $y 1:=a b s(y) ; r 02:=x \uparrow 2+y \uparrow 2 ; \quad r 0:=\operatorname{sqrt}(r 02)$;
phi:= if $x=0$ then 1.5707963268 else if $x>0$ then $\arctan (y 1 / x)$ else $3.1415926536+\arctan (y 1 / x)$;
comment The two constants $\pi / 2$ and π in the preceding statement are to be supplied with the full accuracy desired in the final results;
$c:=\exp (y 1) \times(r 0 / 2) \uparrow a / g a m m a(1+a)$;
sum $1:=c \times \cos (a \times p h i-x) ;$ sum $2:=c \times \sin (a \times p h i-x)$;
$d 1:=2.3026 \times d+1.3863$;
if $n \max >0$ then $r:=n \max \times t(.5 \times d 1 / n \max)$ else $r:=0$;
$s:=$ if $y 1<d 1$ then $1.3591 \times r 0 \times t(.73576 \times(d 1-y 1) / r 0)$ else $1.3591 \times r 0$;
$n u:=1+$ entier (if $r \leqq s$ then s else r);
$L 0: n:=0 ; L:=1 ; c 1:=1 ; ~ c 2:=0$;
L1: $n:=n+1$;
$L:=L \times(n+2 \times a) /(n+1) ;$
$c:=-c 1 ; c 1:=c 2 ; c 2:=c$;
if $n<n u$ then go to $L 1$;
$r 1:=r 2:=s 1:=s 2:=0 ;$
L2: $\quad c:=(2 \times(a+n)-x \times r 1+y 1 \times r 2) \uparrow 2+(x \times r 2+y 1 \times r 1) \uparrow 2$;
$r 1:=(2 \times(a+n) \times x-r 02 \times r 1) / c ;$
$r 2:=(2 \times(a+n) \times y 1+r 02 \times r 2) / c$;
$L:=L \times(n+1) /(n+2 \times a) ; \quad c:=2 \times(n+a) \times L$;
lambda1 $:=c \times c 1 ; ~ l a m b d a 2:=c \times c 2$;
$c:=c 1 ; \quad c 1:=-c 2 ; \quad c 2:=c$;
$s:=r 1 \times(l a m b d a 1+s 1)-r 2 \times(l a m b d a 2+s 2) ;$
$s 2:=r 1 \times(l a m b d a 2+s 2)+r 2 \times(l a m b d a 1+s 1) ;$
$s 1:=s$;
if $n \leqq n \max$ then begin $\operatorname{Rr} 1[n-1]:=r 1 ; \operatorname{Rr} 2[n-1]:=r 2$ end;
$n:=n-1$;
if $n \geqq 1$ then go to $L 2$;
$c:=(1+s 1) \uparrow 2+s 2 \uparrow 2$;
$u[0]:=(\operatorname{sum} 1 \times(1+s 1)+\operatorname{sum} 2 \times s 2) / c$;
$v[0]:=(s u m 2 \times(1+s 1)-\operatorname{sum} 1 \times s 2) / c$;
for $n:=0$ step 1 until $n \max -1$ do
begin

$$
u[n+1]:=\operatorname{Rr} 1[n] \times u[n]-\operatorname{Rr} 2[n] \times v[n]
$$

$v[n+1]:=\operatorname{Rr} 1[n] \times v[n]+\operatorname{Rr} 2[n] \times u[n]$
end;
if $y<0$ then for $n:=0$ step 1 until $n \max$ do $v[n]:=-v[n]$;
for $n:=0$ step 1 until nmax do
if $\operatorname{sqrt}(((u[n]$-uapprox $[n]) \uparrow 2+(v[n]-v a p p r o x[n]) \uparrow 2)$
$/(u[n] \uparrow 2+v[n] \uparrow 2))>$ epsilon
then
begin
for $m:=0$ step 1 until $n \max$ do
begin uapprox $[m]:=u[m] ;$ vapprox $[m]:=v[m]$ end; $n u:=n u+5 ;$ go to $L 0$
end
end Complex Japlusn

REFERENCES

1. Gautschi, W. Recursive computation of special functions. U. Mich. Engineering Summer Conferences, Numerical Analysis, 1963.
2. -. Algorithm 221-Gamma function. Comm. ACM 7 (Mar. 1964), 143.

CERTIFICATION OF ALGORITHM 236 [S17]

BESSEL FUNCTIONS OF THE FIRST KIND [Walter
Gautschi, Comm. ACM 7 (Aug. 1964), 479]
Walter Gautschi (Recd. 24 Aug. 1964 and 2 Nov. 1964)
Purdue University, Lafayette, Ind.
All procedures were tested on the CDC 1604-A computer, using the Oak Ridge Algol compiler.

1. The procedure Japlusn was submitted to the following tests:
(a) Values of $J_{n}(2)$ and $J_{n+1 / 2}(10)$ were produced for $n=0(1) 10$, calling for an accuracy of $d=6$ significant digits. The values obtained for $J_{n}(2)$ agreed with those of Table 9.4 in [1] to 10 significant digits (with occasional discrepancies of one unit in the tenth figure). The results for $J_{n+1 / 2}(10)$ were compared against those of $J_{n+1 / 2}(10)=2.523132521 \times j_{n}(10)$ obtained from Table 10.5 in [1]. The maximum discrepancy was found to be five units in the tenth figure, occurring for $n=3$.
(b) To observe the performance of the procedure near a zero of a Bessel function, we generated $J_{n}(x), n=0(1) 10$, for $x=2.40482556-$ the 8 D value of the first zero $j_{0,1}$ of J_{0}-calling for $d=10$ significant digits. The results are shown in the table below.

n	$J_{n}\left(j_{0,1}\right)$	n	$J_{n}\left(j_{0,1}\right)$
0	$-1.1936252775_{10}-9$	6	$3.4048184902_{10}-3$
1	$5.1914749680_{10}-1$	7	$6.0068836955_{10}-4$
2	$4.3175480738_{10}-1$	8	$9.2165787385_{10}-5$
3	$1.9899990578_{10}-1$	9	$1.2517271082_{10}-5$
4	$6.4746666371_{10}-2$	10	$1.5253656182_{10}-6$
5	$1.6389243276_{10}-2$		

The entry for $n=1$ agrees to 9 figures with that of $-J_{0}{ }^{\prime}\left(j_{0,1}\right)$ given in Table 9.5 of reference [1].
(c) We drove the procedure to calculate $J_{x+p-1}(x)$ to 6 significant digits, for $x=4(4) 20, \nu=0(.1) 1.9$. The results agreed with those tabulated in [2].
2. The procedure Iaplusn was called to generate test values to 6 significant figures of $I_{n}(20), I_{n+1 / 2}(10), I_{n+1 / 4}(.1)$, for $n=0(1) 10$. The first two sets of values were compared with those in [3] and in Table 10.10 of [1], respectively, and found to be in error by at most 5 units in the tenth figure. The value for $I_{1 / 4}(.1)$ agreed to 10 figures with that given in [5].
3. Further checks were made on the procedures Japlusn, Iaplusn, as well as the procedures Jaminusn, Iaminusn, by having them "verify" the relation

$$
f_{2 a+2}(2 x)=f_{a+1}^{2}(x)+2 \sum_{n=0}^{\infty} f_{a-n}(x) f_{a+n+2}(x)
$$

for $x=1, \quad a=.2(.2) .8$, where $f_{\nu}(x)$ stands for either $J_{\nu}(x)$ or $I_{\nu}(x)$ (cf. [4], p. 100, formula (21)). That is, we printed the relative errors incurred when the infinite series is truncated after the $(N+1)$ st term, $N=0(5) 20$. Selected results (rounded to four digits) are shown in the table below.

$a>$	0	5	10	15	20
. 2	1.16510-2	2.51910-4	-3.56810-5	1.04310--5	-4.23410-6
. 8	-7.94510-2	$4.968_{10}-5$	-3.45910-6	6.51710--7	-1.923 ${ }_{10}$-7
. 4	-8.091 $1_{10}-2$	$1.245_{10}-4$	$-1.456{ }_{10}-5$	3.71410-6	-1.361 $10-6$
. 6	$-1.023_{10}-1$	$7.590_{10}-5$	-7.041 $1_{10}-6$	1.55310-6	-5.11510-7

The first two lines refer to $f=J$, the last two lines to $f=I$. The driver program follows.

```
begin integer n; real a, sumJ, sumI, sJ, sI, errorJ, errorI;
    array J1, I1[0:3], J2, I2[0:22], J3, I3[0:20];
    for a}:=.2\mathrm{ step . }2\mathrm{ until . }9\mathrm{ do
    begin
        if 2 }\timesa<1\mathrm{ then
            begin
```

Japlusn (2.0, $2 \times a, 2,6, J 1$); Iaplusn (2.0, $2 \times a, 2,6, I 1$); $\operatorname{sumJ}:=J 1[2] ;$ sumI $:=I 1[2]$
end
else
begin
Japlusn (2.0, $2 \times a-1,3,6, J 1$);
Iaplusn (2.0, $2 \times a-1,3,6, I 1$);
sumJ $:=J 1[3] ;$ sumI $:=I 1[3]$
end;
Japlusn (1.0, a, 22, 6, J2); Jaminusn (1.0, a, 20, 6, J3);
Iaplusn (1.0, a, 22, 6, I2); Iaminusn (1.0, a, 20, 6, I3);
$s J:=s I:=0$;
for $n:=0$ step 1 until 20 do
begin
$s J:=s J+J 3[n] \times J 2[n+2] ; s I:=s I+I 3[n] \times I 2[n+2] ;$
if entier $(n / 5)=n / 5$ then
begin
errorJ $:=(J 2[1] \uparrow 2+2 \times$ s $J-$ sumJ $) /$ sumJ;
error $I:=(I 2[1] \uparrow 2+2 \times s I-$ sumI $) /$ sum $I ;$
outstring ($1, ~ ‘ a=’$); outreal ($1, a$); outstring ($1, ' ~(N=')$; outinteger ($1, n$); outstring (1, 'error $J=$ '); outreal (1 , errorJ); outstring (1, 'error $I=$ '); outreal (1, errorI)

end

end
end;
go to skip;
alarm: outstring (1 , 'parameters not in range');
skip: end
4. The procedure Complex Japlusn underwent the-following tests:
(a) Values of $J_{n}\left(r e^{i \phi}\right)$ were produced for $n=0,1, \phi=(r-2)$ $\times 30^{\circ}, \quad r=1(1) 6$, calling for an accuracy of 6 significant digits. Comparison with [6] showed agreement to 9-10 significant figures.
(b) We asked the procedure to "verify" the identity (cf. [4], p. 99, formula (2))

$$
(z / 2)^{a} J_{0}(z)=\sum_{n=0}^{\infty} \frac{\Gamma(1-a) \Gamma(a+n)}{(n!)^{2} \Gamma(1-a-n)}(a+2 n) J_{a+2 n}(z),
$$

by printing the moduli of the relative errors incurred when truncating the infinite series at $n=0(1) 5$. We let a and z run through values $a=.2(.2) .8, \quad z=2 \exp (i \phi), \phi=-150^{\circ}\left(30^{\circ}\right) 150^{\circ}$, respectively. Selected results (rounded to three figures) are displayed in the table below.

ϕ°	n	0	1	2	3	4	5
-120	. 2	1.1710-1	$5.51{ }_{10}-3$	$1.31{ }_{10-4}$	1.8510-6	$1.72{ }_{10}-8$	2.0210-10
-30	. 4	3.16.0-1	$2.02{ }_{10}-2$	5.6110-4	8.7010-6	8.6410-8	$5.27{ }_{10}-10$
60	. 6	$2.600_{10}-1$	$1.6510-2$	4.6710-4	7.4110-6	$7.51{ }_{10}-8$	$3.9310-10$
150	. 8	4.9510-1	$4.0010-2$	$1.29{ }_{10}-3$	$2.2310-5$	$2.41{ }_{10}-7$	$1.7510-9$

The same pattern persists throughout the range of the variables. The driver program follows.
begin integer m, n; real $a, p h i, c, s, x, y$, sum $1, \operatorname{sum} 2$,
$q, s 1, s 2, p$, error; array $u, v[0: 10]$;
for $a:=.2$ step .2 until .9 do
for $m:=-5$ step 1 until 5 do
begin
phi $:=.52359877560 \times m$;
$c:=\cos (a \times p h i) ; \quad s:=\sin (a \times p h i) ;$
$x:=2 \times \cos (p h i) ; \quad y:=2 \times \sin (p h i) ;$
Complex Japlusn ($x, y, 0,0,6, u, v$);
sum $1:=c \times u[0]-s \times v[0] ; \operatorname{sum} 2:=c \times v[0]+s \times u[0] ;$
Complex Japlusn ($x, y, a, 10,6, u, v$);
$q:=$ gamma $(1+a)$;
$s 1:=q \times u[0] ; \quad s 2:=q \times v[0] ; \quad p:=q / a ;$

```
    \(n:=0\);
\(L:\) error \(:=\) sqrt \(\quad((\) sum \(1-s 1) \uparrow 2+(\) sum \(2-s 2) \uparrow 2) /(s u m 1 \uparrow 2\)
    \(+\operatorname{sum} 2 \uparrow 2)\) );
    outstring ( 1, ' \(a=\) ’); outreal ( \(1, a\) );
    outstring ( 1, 'phi \(=\) '); outinteger \((1,30 \times m\) );
    outstring ( 1, ' \(n=\) '); outinteger ( \(1, n\) );
    outstring ( 1, 'error \(=\) '); outreal ( 1, error);
    \(n:=n+1\);
    if \(n \leqq 5\) then
    begin
        \(p:=-p \times((n+a-1) / n) \uparrow 2 ; q:=(a+2 \times n) \times p ;\)
        \(s 1:=s 1+q \times u[2 \times n] ; \quad s 2:=s 2+q \times r[2 \times n] ;\)
        go to \(L\)
    end
end;
```

go to skip;
alarm: outstring (1, 'parameters not in range'); skip: end

References

1. Abramowitz, M., and Stegun, I. A. (Eds.) Handbook of Mathematical Functions. NBS Appl. Math. Ser. 55, U.S. Govt. Printing Off., Washington, D.C., 1964.
2. Airei, J. R. Bessel functions of nearly equal order and argument. Philos. Mag (7) 19 (1935), 230-235.
3. BAAS. Bessel functions, part II, Functions of positive integer order. Mathematical Tables, vol. X, Cambridge E. Press, London, 1952.
4. Erdélyi, A. (Ed.) Higher Transcendental Functions, vol. II. McGraw-Hill, New York, 1953.
5. National Bureau of Standards. Tables of Bessel functions of fractional order, vol. II. . Columbia U. Press, New York, 1949
6. -Table of the Bessel Functions $J_{0}(z)$ and $J_{1}(z)$ for Complex Arguments. Coumbia U. Press, New York, 1943.

ACM Transactions on Mathematical Software, Vol. 1, No. 3, September 1975
REMARK ON ALGORITHM 236
Bessel Functions of the First Kind [S17]
[W. Gautschi, Comm. ACM 7, 8 (Aug. 1964), 479-480]
Ove Skovgaard [Recd 6 Nov. 1973 and 3 Feb. 1975]
Institute of Hydrodynamics and Hydraulic Enginecring, Technical University of Denmark, DK-2800 Lyngby, Denmark

The procedures in Algorithm 236 were coded in PL/I and run on the IBM $370 / 165$. The following error was discovered for $a=0$, nmax large, and x small, c.g. nmax $=50$ and $x=0.5$. In the last if statement in three of the procedures, Japlusn, Iaplusn, and Complex Japlusn, division by zero took place. Not all compilers and computers would pose problems for the above values of the parameters; whether or not they do depends on the permissible magnitude of the floating-point numbers for the compiler and computer used. For the IBM 370/165 the smallest positive floating-point number which the computer can hold is approximately $5.40 \times 10^{-79}($ see [10, p. 163]).

The following corrections should be made in the procedure Japlusn.
The last if statement should be replaced by
if $\operatorname{abs}(J[n]-J a p p r o x[n])>$ epsilon $\times a b s(J[n])$ then
comment Conceivably, but very unlikely, underflow, i.e. the exponent of the floating-point number exceeds its lower bound, may take place here. In that case the machine representation of "floating-point zero" must be produced if the program is to work properly;

The same comment should be inserted after the statement
$J[n+1]:=\operatorname{Rr}[n] \times J[n] ;$
The same corrections should be made in the procedures Iaplusn and Complex Japlusn at the appropriate places.

The corrections of the defective if clauses proposed above are most elegant, but not the most efficient for all compilers and computers. The following general corrections in the procedure Japlusn have only one call instead of two calls of the absfunction and are therefore more efficient for some compilers.

Before the last if statement two new lines should be inserted:

if $J[n] \neq 0$ then
 begin

and before the last end statement one new line should be inserted:
end

The two proposed comment statements are still necessary.
The numerical results are identical for the two methods.
The same efficient (in some cases) corrections can be made in the procedures Iaplusn and Complex Japlusn at the appropriate places.
According to [5], all the material relevant for the construction of Algorithm 236 is included in [4, especially Section 5]. This reference is used in the following comments, since reference [1] in Algorithm 236 is not easily available.
The last for statement (of which the delinquent if statement is a part) is included for checking purposes only, in order to verify that the required accuracy has indeed been attained. According to [5], Gautschi says, "I believe, however, that my initial choice of ν is conservative enough to guarantee this accuracy. For all practical reason, therefore, the whole for statement in question could be deleted." This has not been checked by the present author.

Because a simplified PL/I version of Algorithm 443 [2,3] had already been implemented in the local university computer library, the call to the real procedure t was replaced by an application of Algorithm 443 (version B). The solution of $w \exp (w)=y, y>0$ (furnished by Algorithm 443) corresponds to $w(y)=\ln (t(y))$ in terms of the procedure t, so that $t(y)=\exp (w(y))$ or $t(y)=y / w(y)$. Algorithm 443 is less efficient than procedure t. The former is more accurate, although this accuracy is not necessary here.
In order to improve the documentation and thereby facilitate modifications and/or translations of the procedures Japlusn, Iaplusn, and Complex Japlusn, the mathematical constants corresponding to the four decimal constants in the three procedures are given here: 2.3026 is $\ln 10,1.3863$ is $\ln 4,1.3591$ is $e / 2, .73576$ is $2 / e$.
The procedure Japlusn was coded using double precision floating-point calculations. For implementation on the IBM $370 / 165$ (chopping with 14 hexadecimal digits) this gives approximately 15 significant decimal digits. The procedure was used to calculate the Bessel function of the first kind for integer orders $J_{n}(x)$, i.e. $a \equiv 0$. The procedure was programmed with $d \equiv 15$ (the values of $J_{n}(x)$ were wanted with at least 15 significant digits). The values were checked using the tables in $[6,7,8]$ and Table III in [9]. It was discovered that the values often had an error of 1 to 2 units in the fifteenth digit, where there was no zero of one of the Bessel functions to deteriorate the accuracy to less than 15 digits. Tests were run to determine whether the results were dependent on the selection of the initial ν; it must be remembered that the estimate of ν is very conservative; see [4, pp. 50-51]. Systematic tests revealed that it was impossible to obtain the wanted accuracy with any ν. To simplify testing, when $a \equiv 0$, all even $\lambda \equiv 2$ were used (according to [4, p. 49, line 1]), rather than the recursively generated even λ (according to [4, p. 48, last 11 lines]). With this simplification the procedure evaluated $J_{n}(x)$ to 15 significant digits. Near a zero of one of the generated Bessel functions, the accuracy of that particular function still deteriorated to less than 15 significant digits. This deterioration was generally of the same magnitude as occurred when λ was generated recursively.
If the procedures Japlusn, Iaplusn, and Complex Japlusn are contemplated for use in the calculation of Bessel functions of integer order only, then they might be rewritten directly employing the explicit values of λ, rather than generating them by an upward and downward recursion. This will make the procedures more efficient and slightly more accurate. In this connection it is relevant to refer to two more recent algorithms, due to Sookne [11-14], dealing with Bessel functions of integer order. Procedure Beslri in [12] was translated to PL/I, and tests disclosed that the execution time for procedures Japlusn and Iaplusn is of the order twice the execution time for procedure Beslri. Therefore Sookne's procedures, and not the procedures in Algorithms 21 and 236 (see [1] and the editorial comment in [15]), should be used for the calculation of Bessel functions of integer order.

REFERENCES

1. Börsch-Supan, W. Bessel functions for a set of integer orders, Algorithm 21. Comm. ACM 3, 11 (Nov. 1960), 600.
2. Einarsson, B. Remark on Algorithm 443, Solution of the transcendental equation $w e^{w}=x$. Comm. ACM 17, 4 (April 1974), 225.
3. Fritsch, F.N., Shafler, R.E., and Crowley, W.P. Solution of the transcendental equation $w e^{w}=x$, Algorithm 443. Comm. ACM 16, 2 (Feb. 1973), 123-124.
4. Gautschi, W. Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1967), 24-82.
5. Gautschi, W. Personal communication, Nov. 1973.
6. Gray, A., Mathews, G.B., and MacRobert, T.M. A Treatise on Bessel Functions and Their A pplications to Physics, 2nd ed. Dover Publications, New York, 1966, pp. xiv and 327.
7. Annals of the Computation Lab., Harvard U. Tables of the Bessel Functions of the First Kind of Orders Two and Three, Vol. I V. Harvard U. Press, Cambridge, Mass., 1947, pp. v and 652.
8. Annals of the Computation Lab., Harvard U. Tables of the Bessel Functions of the First Kind of Orders Zero and One, Vol. III. Harvard U. Press, Cambridge, Mass., 1947, pp. xxxvii and 652.
9. Hayashi, K. Tafeln der Besselschen, Theta-, Kugel- und anderer Funktionen. Springer, Berlin, 1930, pp. v and 125.
10. IBM System/370 Principles of Operation. IBM Systems, Order No. GA22-7000-3, IBM, White Plains, N.Y., 1973, pp. xii and 318.
11. Sookne, D.J. Bessel functions I and J of complex argument and integer order. J. Res. Nat. Bur. Standards 77B (1973), 111-114.
12. Sookne, D.J. Bessel functions of real argument and integer order. J. Res. Nat. Bur. Standards $77 B$ (1973), 125-132.
13. Sookne, D.J. Certification of an algorithm for Bessel functions of complex argument. J. Res. Nat. Bur. Standards $77 B$ (1973), 133-136.
14. Sookne, D.J. Certification of an algorithm for Bessel functions of real argument. J. Res. Nat. Bur. Standards 77B (1973), 115-124.
15. Stafford, J. Certification of Algorithm 21, Bessel function for a set of integer orders. Comm. ACM 8, 4 (April 1965), 219.

ALGORITHM 237

GREATEST COMMON DIVISOR [A1]
J. E. L. Peck (Recd. 16 Dec. 1963)

University of Alberta, Calgary, Alberta, Canada
integer procedure Euclidean (a) dimension : (n) linear coefficients : (x); value a; integer array a, x; integer n;
comment This procedure finds the greatest common divisor of the n nonnegative elements of the vector a, and produces values for x_{i} in the expression $\left(a_{1}, a_{2}, \cdots, a_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots$ $+a_{n} x_{n}$;
begin integer array $M[1: n, 1: n]$;
integer i, j, min, max, imin, imax, q, t;
comment We set up M as an identity matrix;
INITIALISE:
for $i:=1$ step 1 until n do for $j:=1$ step 1 until n do $M[i, j]:=0$;
for $i:=1$ step 1 until n do $M[i, i]:=1 ; \max :=0$;
comment We search for the least nonzero integer in the array a. Note that this step need not be repeated at every iteration (see statement labelled DIVIDES);
MINIMUM:
for $i:=1$ step 1 until n do $\operatorname{begin} t:=a[i]$;
if $t \neq 0 \wedge(\max =0 \bigvee t<\max)$ then
begin max $:=t ; \operatorname{imax}^{\max }:=i$ end
end of minimum search. If the use of the identifier max is confusing, observe the two statements following the label MAXIMUM, where the confusion is resolved; if $\max =0$ then go to ERROR; comment ERROR is a global label;
MAXIMUM: imin $:=\operatorname{imax} ; \min :=\max ;$
comment We search for the greatest element of a;
$\max :=a[1] ;$ imax $:=1$;
for $i:=2$ step 1 until n do if $a[i]>\max$ then
begin $\max :=a[i] ;$ imax $:=i$ end of maximum search;
if $\max \neq \min$ then
REDUCTION:
begin comment Note that the identity $a_{i}=\sum_{i=1}^{n} m_{i j} a_{j}$ holds at each stage of the reduction;
$q:=\max \div \min ; a[$ imax $]:=\max :=\max -q \times \min ;$
for $j:=1$ step 1 until n do
$M[$ imax, $j]:=M[i \max , j]-q \times M[i \min , j] ;$
DIVIDES: go to if $\max =0$ then MINIMUM else MAXIMUM end of the reduction. Note that if $\max \neq 0$ then max now contains the new nonzero minimum.
If $\max =\min$ then we are ready with the results;
for $j:=1$ step 1 until n do $x[j]:=M[i m i n, j]$;
Euclidean := \min
end of proradure Euclidean

REFERENCE

1. Blankinship, W. A. A new version of the Euclidean algorithm. Amer. Math. Mon. 70 (1963), 742-745.

CERTIFICATION OF ALGORITHM 237 [A1]
GREATEST COMMON DIVISOR [J. E. L. Peck, Comm. ACM 7 (Aug. 1964), 481]
T. A. Bray (Recd. 8 Sept. 1964)

Boeing Scientific Research Laboratories, Seattle, Washington
This procedure was translated into the Fortran IV language and tested on the Univac 1107. No corrections were required and the procedure gave correct results for all cases tested.

ALGORITHM 238

CONJUGATE GRADIENT METHOD [F4]
C. M. Reeves (Recd. 18 Nov. 1963)

Electronic Computing Lab., Univ.. of Leeds, England
procedure conjugate gradients (x, r, n, matmult);
value n; real array x, r; integer n; procedure matmult; comment The method of conjugate gradients [cf: Beckman, F. S. Mathematical Methods for Digital Computers. Ch. 4, Ralston, A., and Wilf, H. S., (Eds.), Wiley 1960.] is applied to solve the equations $A x=b$ where A is a general nonsingular matrix of order n, and x and b are vectors. At entry x contains an initial approximation to the solution, and r contains b, the vector of constants. Both x and r have bounds [1: n]. Up to $n+1$ iterations are carried out and at exit the solution is in x and the corresponding residuals $r=b-A x$ are in r.
The procedure matmult has the following heading, with semicolons which must now be omitted:
procedure matmult (transpose, dat, res)
Boolean transpose real array dat, res
comment The datum vector dat is premultiplied by the matrix B and the result formed in res where, denoting the transpose of A by $A t$,

$$
B=\text { if transpose then } A t \text { else } A
$$

The body of matmult will depend upon whether A is stored on magnetic tape, and whether all or only its nonzero elements are stored. The products should be accumulated in double precision, if possible.;
begin integer itérations; real alpha, beta, At r sq;
real array p, temp $[1: n]$;
real procedure dot (u, v);
real array u, v;
comment $d o t$ is the scalar product of the vectors u and v; begin integer i; real sum; sum $:=0$;
for $i:=1$ step 1 until n do sum $:=\operatorname{sum}+u[i] \times v[i]$;
dot $:=$ sum
end of $d o t$;
procedure combine (f) plus: (c) times: (g) to form: (h);
value c;
real c; real array f, g, h;
comment $f+c g$ is formed in h;
begin integer i;
for $i:=1$ step 1 until n do $h[i]:=f[i]+c \times g[i]$
end of combine;
Start:
for iterations := 0 step 1 until n do
begin if iterations $=0$
then begin matmult (false, x) in : (temp);
combine ($r,-1$, temp) in : (r);
matmult (true, r) in : (p);
At $r s q:=\operatorname{dot}(p, p)$;
end of forming $r=b-A x, p=A t r$, and $A t r s q$
else begin matmult (true, r) giving A.t r in : (temp);
beta $:=\operatorname{dot}(t e m p, t e m p) /$ At $r s q$;
combine (temp, beta, p) in : (p);
At $r s q:=$ beta \times At $r s q$
end;

```
if Atr sq=0 then go to finish;
    matmult (false, p) giving Ap in : (temp);
    alpha := dot (temp, temp);
    if alpha=0 then ge to finish;
    alpha := dot (r,temp)/alpha;
        combine (x, alpha, p) in : (x);
        combine (r, -alpha, temp) in :(r)
    end of iterative loop;
finish :
end of conjugate gradients;
```


ALGORITHM 239

FREE FIELD READ［I5］

W．M．McKeeman（Recd． 12 Dec． 63 and 1 May 1964） Computation Center，Stanford University，Stanford，Calif．
procedure inreal（channel，destination）；value channel； integer channel；real destination；
begin comment Each invocation of inreal will read one 〈number〉 ［Revised Report ．．．ALGOT，60，section 2．5．1］from the input medium designated by the parameter channel and convert it into the internal machine representation appropriate for real numbers．Successive data values within the data string are separated by the blank character u．Integer values from the input medium are converted into values of type real．A nonlocal procedure error is invoked whenever a non－－number〉 is en－ countered in the input string．The action of verror is left un－ defined；
real $\operatorname{sig}, f p, d$
integer esig，ep，$i p$ ，$c h$ ；
integer procedure $C H A R$ ；
begin comment The value of $C H A R$ is the integer repre－ senting the next character from the input string．insymbol is defined in the＂Report on Input－Output Procedure for Algol 60，＂ALGOL Bull．No． 16 （May 1964），9－13；Comm．ACM，to ap－ pear．Characters occurring in the second parameter of in－ symbol are mapped onto the integers corresponding to their position，left－to－right，within the string．Other basic symbols map onto the integer 0 ．

The present procedure inreal differs from the inreal of the referenced Report on Input－Output Procedures for Algol 60 in the following ways：
（a）The report does not specify what values may be pre－ sented in its inreal，only that whatever is presented will be assigned to the second parameter of inreal．I demand that a ＜number〉 be presented．
（b）No separator of values on the foreign medium is speci－ fied．I demand an Algol string blank．； real c ； insymbol（channel，＇0123456789．－＋10u＇，c）；
if $c \leqq 0$ then error；comment an illegal character； $C H A R:=c-1$
end $C H A R$ ；
integer procedure unsigned integer；
begin comment 〈unsigned integer〉 $::=$ 〈digit）｜〈unsigned integer〉 〈digit＞；
integer u ；
$u:=0$ ；
$K: u:=10 \times u+c h$ ； ch $:=C H A R$ ； if $c h<10$ then go to K ； unsigned integer $:=u$
end unsigned integer；
$\operatorname{sig}:=1.0 ; \quad e p:=0 ; \quad f p:=0$ ；
L ：ch $:=C H A R$ ；
if $c h=14$ then go to L ；comment suppressinitial blanks；
comment 〈number〉 $::=$ 〈unsigned number〉｜＋（unsigned number \rangle｜－〈unsigned number〉；
if $c h=12$ then $c h:=C H A R$
else if $c h=11$ then
begin comment $12="+"$ and $11="-" ;$
$\operatorname{sig}:=-1.0$ ；
ch $:=C H A R$
end；
comment 〈unsigned number〉 $::=$ 〈decimal number〉｜（ex－
ponent part \rangle｜〈decimal number $\rangle\langle$ exponent part \rangle ；
if $c h \leqq 10$ then
begin comment 〈decimal number〉 $::=$ 〈unsigned integer〉｜〈decimal fraction〉｜〈unsigned integer〉〈decimal fraction〉；
if $c h<10$ then $i p:=$ unsigned integer else $i p:=0$ ；
if $c h=10$ then
begin comment 〈decimal fraction〉：：＝．〈unsigned integer〉； ch $:=C H A R$ ；
if $c h \geqq 10$ then error；comment a digit must follow the ＂．＂；
$f p:=0 ; \quad d:=0.1$ ；
$M: f p:=f p+c h \times d$ ； $d:=d \times 0.1$ ；
comment a table of reciprocal powers of ten is preferable
to the statement $d:=d \times 0.1$ ； ch $:=C H A R$ ； if $c h<10$ then go to M
end
end else if $c h=13$ then $i p:=1$ else error；
if $c h=13$ then
begin comment 〈exponent part〉 $::=10\langle$ integer \rangle ；
ch $:=C H A R$ ；esig $:=1$ ；
comment 〈integer〉 $::=$ 〈unsigned integer〉｜＋（unsigned integer $\mid-$＜unsigned integer〉；
if $c h=12$ then $c h:=C H A R$
else if $c h=11$ then
begin comment negative exponent；
esig $:=-1$ ；
ch $:=C H A R$
end；
if $c h<10$ then $e p:=$ unsigned integer \times esig else error
end；
if $c h \neq 14$ then error；comment the required＂u＇，separator； destination $:=\operatorname{sig} \times(i p+f p) \times 10.0 \uparrow e p$
end inreal

ALGORITHM 240

COORDINATES ON AN ELLIPSOID [Z]
Egon Dorrer (Recd. 8 Jan. 1964 and, rev., 19 May 1964)
Inst. f. Photogrammetrie, Techn. Hochschule, Munich, Germany
procedure $G E O D H 1(L, B, A Z, S, E P S, l i m, A, F, F A I L)$; value $S, E P S, \lim , A, F ;$ real $L, B, A Z, S, E P S, A, F$; integer lim; label FAIL;
comment $G E O D H 1$ solves the problem of transferring of geographical coordinates on an arbitrary ellipsoid of rotation. A is the radius of the equator, F is the flattening of the meridian ellipse. Before executing $G E O D H 1, L$ and B are longitude and latitude of a point P_{1} on the ellipsoid. $A Z$ is the azimuth at P_{1}, measured from north, of the geodesic to another point P_{2}, and S is the distance from P_{1} to P_{2}, measured in the same unit as A. After execution of $G E O D H 1, L$ and B represent the longitude and latitude of P_{2}, and $A Z$ is the final azimuth of the geodesic at P_{2}. Here $L, B, A Z$, and $E P S$ are measured in radians. Arbitrarily long distances S can be used, even more than the circumference. However, the geodesic must not cross the poles or come near to them. The problem has been solved by reiterated use of the Runge-Kutta method to solve the system of the three firstorder differential equations of the geodesic on a rotation ellipsoid. $E P S$ is the convergence parameter, e.g. a small number indicating the desired accuracy, normally 10^{-8} or 10^{-9}. lim is the upper limit on iterations, it depends on $E P S$, and should not be chosen greater than 11 or 12 . If lim is reached, computations stop, and the $F A I L$ exit is used:
begin
real $E P 2, L o, B o, A Z o, L L, B L, A Z L, S o: S L, H, D L, D B, D A Z$, $K L, K B, K A Z, B Q, A Z Q, W, H 1, T, S I N B Q$;
integer i, n, j, z;
$\operatorname{array} D[1: 4] ; D[1]:=D[4]:=1 ; \quad D[2]:=D[3]:=2$;
$E P 2:=F \times(2-F) ; L o:=L: B o:=B ; A Z o:=A Z$;
$n:=1 ; \quad z:=0$;
ITERATION: if $z=\lim$ then go to $F A I L$;
So $:=0 ; L L:=L o ; B L:=B o ; A Z L:=A Z o$;
for $i:=1$ step 1 until n do
begin
$S L:=S \times i / n ; \quad H:=(S L-S o) / A ;$
$D L:=D B:=D A Z:=K L:=K B:=K A Z:=0$;
for $j:=1$ step 1 until 4 do
begin
$T:=D[j] ;$
$B Q:=B L+D B / T ; \quad A Z Q:=A Z L+D A Z / T ; \quad S I N B Q:=$ $\sin (B Q)$;
$W:=1-E P 2 \times S I N B Q \times S I N B Q ; \quad H 1:=H \times \operatorname{sqrt}(W) ;$
$D L:=H 1 \times \sin (A Z Q) / \cos (B Q)$;
$D B:=H 1 \times W \times \cos (A Z Q) /(1-E P 2)$;
$D A Z:=D L \times S I N B Q$;
$K L:=K L+D L \times T ; K B:=K B+D B \times T ; K A Z:=$ $K A Z+D A Z \times T$
end j;
So $:=S L ; L L:=L L+K L / 6 ; B L:=B L+K B / 6 ;$
$A Z L:=A Z L+K A Z / 6$
end i;
$D L:=L L-L ; \quad D B:=B L-B ; \quad D A Z:=A Z L-A Z ;$
$L:=L L ; \quad B:=B L ; \quad A Z:=A Z L ;$
> if $a b s(D A Z)<E P S / \sin (S / A) \wedge(a b s(D L)<E P S / \cos (B) \vee$ $a b s(D B)<E P S)$ then go to $E N D$;
> $z:=1+z ; n:=2 \times n$;
> go to ITERATION;
> END:
> end GEODH 1

Abstract

ALGORITHM 241 ARCTANGENT [B1] K. W. Mrlls (Recd. 21 Nov. 1963)

Computing Centre, University of Adelaide, So. Australia real procedure $\arg (x, y)$ exit: (error); value $x, y ;$ real x, y; label error; comment This procedure calculates the argument of a complex number $x+i y$, using a method which is substantially that of E. G. Kogbetliantz, IBM J. Research Develop., Jan. 1958, pp. 43-53. The result lies in the interval $[-\pi, \pi]$ and the exit error is provided for the case when $x=y=0$. The procedure is es- sentially an ALGol program for the calculation of the arctan- gent. $\arctan (y)$ is obtained most conveniently by calling the pro- cedure with $x=1$;

begin
array $c t, c s c 2[2: 5], \operatorname{tn}[1: 4] ;$ integer k; real $w, v, p i, r, z$;
$p i:=3.1415926536 ;$ if $x=0$ then
begin
if $y=0$ then go to error;
$L 1: \arg :=p i / 2 \times \operatorname{sign}(y)$; go to exit
end;
$w:=y / x ; \quad v:=a b s(w) ;$
if $v>1.34108$ then go to $L 1$;
if $v<2.1310-22$ then $r:=w$ else
begin
ct $[2]:=\operatorname{tn}[4]:=2.7474774195 ;$
$\operatorname{ct}[3]:=\operatorname{tn}[3]:=1.1917535926$;
$\operatorname{ct}[4]:=\operatorname{tn}[2]:=.57735026919$;
$\operatorname{ct}[5]:=\operatorname{tn}[1]:=.17632698071$;
$\csc 2[2]:=8.548632169 ;$
$\csc 2[3]:=2.420276626 ;$
$\csc 2[4]:=1.333333333$;
csc2[5]:= 1.031091204;
if $v<\operatorname{tn}[1]$ then
begin
$k:=1 ; z:=.16363636364 \times v$
end
else

begin

for $k:=2$ step 1 until 4 do if $v<\operatorname{tn}[k]$ then go to $L 3$; $k:=5$;
$L 3: \quad z:=.16363636364 \times(c t[k]-c s c 2[k] /(v+c t[k]))$
end;
$r:=(p i \times(k-1) / 9+z /(z \times z+.216649136-.00270998425 /$ $(z \times z+.0511194591))) \times \operatorname{sign}(w)$
nd;
arg := if $x>0$ then r else
if $y=0$ then $r+p i$ else
$r+p i \times \operatorname{sign}(y) ;$
exit:
end arg

```
ALGORITHM 242
PERMUTATIONS OF A SET WITH REPETITIONS
    [G6]
T. W. SAG (Recd. 10 Feb. 1964 and 19 June 1964)
Math. Dept., Manchester U., Manchester, England
procedure PERMUTATION ( \(X, K, j\), process);
    array \(X\); integer array \(K\); integer \(j\); procedure process;
comment PERMUTATION generates all the distinct permuta-
    tions of an array of numbers consisting of \(K[1]\) numbers equal to
    \(X[1], K[2]\) numbers equal to \(X[2], \cdots, K[j]\) numbers equal to
    \(X[j]\). The \(K[i]\) 's must be positive integers. Each permutation is
    stored in the array \(Y\) and processed according to the user's wish
    by the procedure process before the next permutation is gen-
    erated.
        \(\{\) The procedure is more efficient if the sequence \(K[i]\) is mono-
    tone decreasing.--Ref.\};
begin
    real \(x\); integer \(M, N, i ; \quad\) array \(B[L: K[j]]\);
    procedure permutation ( \(x, M, N, j, B\), process);
    real \(x\); integer \(M, N, j\); array \(B\); procedure process;
    begin
            real \(A\); integer \(i, K K, N 1, N 2, j 1\);
                    integer array \(J[1: N+1]\);
            array \(Y[1: N+M] ; N 2:=N+M\);
            if \(M=0\) then go to 1 ;
            for \(i:=N+1\) step 1 until \(N 2\) do \(Y[i]:=x\);
            1: for \(i:=1\) step 1 until \(N\) do \(J[i]:=i\);
            \(J[N+1]:=N 2+1 ; j 1:=j-1 ; \quad K K:=N ;\)
            2: for \(i:=1\) step 1 until \(K K\) do \(Y[J[i]]:=B[i]\);
            if \(j 1 \leqq 1\) then begin process \((Y)\); go to 3 end;
            \(A:=X[j 1-1] ; \quad N 1:=K[j 1-1]\);
            permutation ( \(1, N 1, N 2, j 1, Y\), process);
            3: for \(i:=1\) step 1 until \(N\) do
            begin
                \(Y[J[i]]:=x ; \quad J[i]:=J[i]+1 ;\)
                if \(J[i]-J[i+1]+1 \leqq 0\) then go to 4 else go to 5 ;
                : \(K K:=i\); go to 2 ;
                \(J[i]:=i\)
            end
    end of permutation;
    if \(j=1\) then begin \(x:=X[1] ; \quad M:=0 ;\) go to 1 end;
    \(x:=X[j-1] ; \quad M:=K[j-1]\);
1: for \(i:=1\) step 1 until \(K[j]\) do \(B[i]:=X[j]\);
    permutation ( \(x, M, K[j], j, B\), process);
end of PERMUTATION
```


ALGORITHM 243

LOGARITHM OF A COMPLEX NUMBER [B3]
REWRITE OF ALGORITHM 48 [Comm. ACM 4 (Apr. 1961), 179; 5 (Jun. 1962), 347; 5 (Jul. 1962), 391; 7 (Aug. 1964), 485]

David S. Collens [Recd. 24 Jan. 1964 and 1 Jun. 1964]
Computer Laboratory, The University, Liverpool, 3, England

This procedure was tested using the DEUCE ALGOL Compiler and a small sample of the test data and results are given below. procedure $L O G C$ ($a, b, c, d, F A I L$); value $a, b, F A I L$; real a, b, c, d; label $F A I L$;
comment This procedure computes the number $c+d i$ which is equal to the principal value of the natural logarithm of $a+b i$, i.e. such that $-\pi<d \leqq+\pi$. A nonlocal label must be supplied as a parameter of the procedure, to be used as an exit when the real part of the result becomes $-\infty$. Where required in the body of the procedure the numerical values for $\pi, \pi / 2$, and the logarithm of the square root of 8 are provided;
if $a=0 \wedge b=0$ then go to $F A I L$
else
begin
real e, f;
$e:=0.5 \times a ; f:=0.5 \times b ;$
if $a b s(e)<0.5 \wedge a b s(f)<0.5$ then

begin

$c:=a b s(2 \times a)+a b s(2 \times b)$;
$d:=8 \times a / c \times a+8 \times b / c \times b ;$ $c:=0.5 \times(\ln (c)+\ln (d))-1.03972077084$
end
else
begin
$c:=a b s(0.5 \times e)+a b s(0.5 \times f) ;$ $d:=0.5 \times e / c \times e+0.5 \times f / c \times f ;$ $c:=0.5 \times(\ln (c)+\ln (d))+1.03972077084$
end;
$d:=$ if $a \neq 0 \wedge a b s(e) \geqq a b s(f)$ then $\arctan (b / a)+$ (if $\operatorname{sign}(a) \neq-1$ then 0 else if $\operatorname{sign}(b) \neq-1$ then 3.14159265359 else -3.14159265359$)$ else $--\arctan (a / b)$ $+1.57079632679 \times \operatorname{sign}(b)$
end LOGC
TEST OF LOGC

a	b	c	d
-2	-2	+1.039721	-2.356194
-2	+1	+0.804719	+2.677945
-1	-1	+0.346573	-2.356194
-1	+0	+0.000000	+3.141593
+0	-2	+0.693147	-1.570796
+0	-1	+0.000000	-1.570796
+0	+1	+0.000000	+1.570796
+0	+2	+0.693147	+1.570796
+1	-1	+0.346573	-0.785398
+1	+0	+0.000000	+0.000000
+2	-2	+1.039721	-0.785998
+2	+1	+0.804719	+0.463647

CERTIFICATION OF ALGORITHM 243 [B3]

LOGARITHM OF A COMPLEX NUMBER (David S.
Collens Comm. ACM 7(Nov. 1964), 660]
J. Boothroyd (Recd. 18 Jan. 1965)

Computing Centre, U. of Tasmania, Hobart, Tasmania
With the label parameter FAIL removed from the value list to accommodate a restriction of Elliott 503 Algol, the algorithm was successfully run on an Elliott 503, using the data test cases published with the algorithm. The constants in the algorithm were rounded to nine significant decimal digits, and this probably explains the two differences between the results obtained and those published, namely:

a	b	c	d
-1	-1	0.346574	d
2	1		0.463648

```
ALGORITHM }24
FRESNEL INTEGRALS [S20]
Helmut Lotsch* (Recd. }27\mathrm{ May 64 and 11 Jun. 64)
W. W. Hansen Laboratories, Stanford U., Stanford, Calif.
AND
Malcolm Gray }
Computation Center, Stanford U., Stanford, Calif.
    (* now at Northrup Space Laboratories, Hawthorne, Calif.)
    (\daggernow at The Boeing Company, Seattle, Wash.)
procedure FRESNEL (w,eps,C,S); value w,eps; real w,
    eps,C,S;
comment This procedure computes the Fresnel sine and cosine
    integrals }C(w)=\mp@subsup{\int}{0}{w}\operatorname{cos}[(\pi/2)\mp@subsup{t}{}{2}]dt and S(w)=\mp@subsup{\int}{0}{w}\operatorname{sin}[(\pi/2)\mp@subsup{t}{}{2}
    dt. It is a modification of Algorithm 213 (Comm. ACM, 6 (Oct.
    1963),617) such that the accuracy, expressed by eps, is improved.
    eps can arbitrarily be chosen up to eps=10-6 for a computer
    with sufficient word length as, for example, the Burroughs
    B5000 which has 11-12 significant digits. Referring to the formu-
    las of Algorithm 213: if |w|<\sqrt{}{}(26.20/\pi) the series expansions
    C(w) and S(w) are terminated when the absolute value of the
    relative change in two successive terms is \leqqeps. If }|w|
    V}(26.20/\pi) the series Q(x) and P(x) are terminated when th
    absolute value of the terms is \leqqeps/2. However, this truncation
    point is not necessarily valid for the range }\sqrt{}{}(26.20/\pi)\leqq|w
    < \sqrt{}{}(28.50/\pi) when eps = 10-6, since the asymptotic series
    must be terminated before arriving at the minimum. In this
    range the ignored terms of the series expansions are < 310-6,
    and for larger arguments < 10-6. This accuracy may be im-
    proved if desired: the switch-over point from the regular to
    the asymptotic series expansions has to be displaced to larger
    arguments;
begin
    real }x,x2,\mathrm{ term; integer }n\mathrm{ ;
    if }abs(w)\leqq10-12\mathrm{ then
        begin C:=S:=0; go to aend end
    else }x:=w\timesw/0.636619772368
    x2:=-x\timesx; if }x\geqq13.10\mathrm{ then go to asympt;
    begin
        real frs, frsi;
        frs :=x/3; n := 5; term := x }\timesx2/6
    frsi := frs + term/7;
loops: if abs((frs-frsi)/frs)\leqqeps then go to send;
    frs := frsi; term := term }\timesx2/(n\timesn-n)
    frsi:= frs + term/(2\timesn+1);
    n:=n+2; go to loops;
send: S := frsi }\times
    end;
    begin
        real frc, frci;
        frc := 1; n:= 4; term := x2/2;
        frci:=1 + term/5;
loopc: if abs((frc-frci)/frc)\leqqeps then go to cend;
        frc:= frci; term := term }\timesx2/(n\timesn-n)
        frci:= frc + term/(2\timesn+1);
        n:=n+2; go to loopc;
cend: C := frci }\times
    end;
    go to aend;
```


ALGORITHM 244

```
FRESNEL INTEGRALS [S20]
Helmut Lotsch* (Recd. 27 May 64 and 11 Jun. 64)
W. W. Hansen Laboratories, Stanford U., Stanford, Calif. and
Malcolm Gray \(\dagger\)
Computation Center, Stanford U., Stanford, Calif.
(* now at Northrup Space Laboratories, Hawthorne, Calif.)
( \(\dagger\) now at The Boeing Company, Seattle, Wash.)
procedure \(F R E S N E L\) ( \(w, e p s, C, S\) ); value \(w, e p s\); real \(w\), eps, \(C, S\);
comment This procedure computes the Fresnel sine and cosine integrals \(C(w)=\int_{0}^{w} \cos \left[(\pi / 2) t^{2}\right] d t\) and \(S(w)=\int_{0}^{w} \sin \left[(\pi / 2) t^{2}\right]\) \(d t\). It is a modification of Algorithm 213 (Comm. ACM, 6 (Oct. 1963), 617) such that the accuracy, expressed by eps, is improved. \(e p s\) can arbitrarily be chosen up to eps \(=10-6\) for a computer with sufficient word length as, for example, the Burroughs las of Algorithm 213: if \(|w|<\sqrt{ }(26.20 / \pi)\) the series expansions \(C(w)\) and \(S(w)\) are terminated when the absolute value of the relative change in two successive terms is \(\leqq e p s\). If \(|w| \geqq\) \(\sqrt{ }(26.20 / \pi)\) the series \(Q(x)\) and \(P(x)\) are terminated when the point is not necessarily valid for the range \(\sqrt{ }(26.20 / \pi) \leqq|w|\) \(<\sqrt{ }(28.50 / \pi)\) when eps \(=10-6\), since the asymptotic series must be terminated before arriving at the minimum. In this range the ignored terms of the series expansions are \(<310-6\), proved if desired: the switch-over point from the regular to the asymptotic series expansions has to be displaced to larger arguments;
begin
real \(x, x 2\), term; integer \(n\);
\(\operatorname{abs}(w) \leqq 10-12\) then
begin \(C:=S:=0\); go to aend end
else \(x:=w \times w / 0.636619772368\);
begin
real \(f r s\), frs \(i\);
frs \(:=x / 3 ; \quad n:=5 ; \quad\) term \(:=x \times x 2 / 6 ;\)
frsi \(:=\) frs + term \(/ 7\);
loops: if abs ((frs-frsi)/frs) \(\leqq\) eps then go to send;
frs \(:=\) frsi; term \(:=\) term \(\times x 2 /(n \times n-n)\);
\(n:=n+2\); go to loops;
send: \(S:=f r s i \times w\)
end;
gin
frc \(:=1 ; n:=4 ;\) term \(:=x 2 / 2\);
frci \(:=1+\) term \(/ 5\);
loope: if \(a b s((f r c-f r e i) / f r c) \leqq\) eps then go to cend;
frc \(:=\) frci; term \(:=\) term \(\times x 2 /(n \times n-n) ;\)
frci \(:=\) frc + term \(/(2 \times n+1)\);
\(n d: \quad C:=f r c i \times w\)
end;
go to aend;
```

```
asympt:
    begin
        real s1, s2, half, temp; integer i;
        x2:=4\timesx2; term := 3/x2; s1 := 1+ term; n:= 8;
        for }i:=1\mathrm{ step 1 until 6 do
        begin
            n:= n+4;
            term:= term }\times(n-7)\times(n-5)/x2
            s1:= s1+ term;
            if abs(term) \leqqeps/2 then go to next
        end i;
next: term := s2:= 0.5/x; n:=4;
        for }i:=1\mathrm{ step 1 until 6 do
        begin
            n:= n+4;
            term:= term }\times(n-5)\times(n-3)/x2
            s2:= s2 + term;
            if abs(term) \leqqeps/2 then go to final
        end i;
final: half:= if w<0 then -0.5 else 0.5;
        term }:=\operatorname{cos}(x); temp := sin(x); x2:= 3.14159265359\timesw
        C:= half + (temp\timess1-term\timess2)/x2;
        S:= half - (term }\timess1+temp\timess2)/x
    end;
aend:
end FRESNEL
```


ALGORITHM 245

TREESORT 3 [M1]

Robert W. Floyd (Recd. 22 June 1964 and 17 Aug. 1964)
Computer Associates, Inc., Wakefield, Mass.

```
procedure TREESORT 3 (M, n);
    value n; array M; integer n;
comment TREESORT 3 is a major revision of TREESORT
    [R. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434] sug-
    gested by HEAPSORT [J. W. J. Williams, Alg. 232, Comm.
    ACM 7 (June 1964), 347] from which it differs in being an in-place
    sort. It is shorter and probably faster, requiring fewer compari-
    sons and only one division. It sorts the array M[1:n], requiring
    no more than 2 < (2\uparrowp-2) }\times(p-1)\mathrm{ , or approximately }2
    n\times(\mp@subsup{\operatorname{log}}{2}{}(n)-1) comparisons and half as many exchanges in
    the worst case to sort n=2\uparrowp-1 items. The algorithm is
    most easily followed if M is thought of as a tree, with M[j\div2]
    the father of M[j] for 1<j\leqqn;
begin
    procedure exchange (x,y); real }x,y\mathrm{ ;
        begin real t; t:=x; x:= y; y:= t
        end exchange;
    procedure siftup (i,n); value i,n; integer i, n;
    comment M[i] is moved upward in the subtree of M[1:n] of
        which it is the root;
    begin real copy; integer j;
        copy := M[i];
    loop:j:= 2 }\timesi\mathrm{ ;
        if j\leqqn then
        begin if j<n then
            begin if M[j+1]>M[j] then j:= j+1 end;
            if M[j] > copy then
                begin M[i]:= M[j]; i:= j; go to loop end
        end;
        M[i]:= copy
    end siftup;
    integer }i\mathrm{ ;
    for }i:=n\div2\mathrm{ step -1 until 2 do siftup ( }i,n)\mathrm{ ;
    for }i:=n\mathrm{ step -1 until 2 do
    begin siftup (1,i);
        comment }M[j\div2]\geqqM[j]\mathrm{ for 1<j@i;
        exchange (M[1], M[i]);
        comment }M[i:n]\mathrm{ is fully sorted;
    end
end TREESORT 3
```


CERTIFICATION OF ALGORITHM 245 [M1]

TREESORT 3 [Robert W. Floyd, Comm. ACM 7 (Dec. 1964), 701]

Philip S. Abrams (Recd. 14 Jan. 1965)
Computation Center, Stanford University, Stanford, California
The procedure TREESORT 3 was translated into B5000 Extended Algou and tested on the Burroughs B5500. Tests were run on arrays of length 50 to 1000 in steps of 50 . For each array size, 50 random arrays were generated, sorted, timed and checked for sequencing. No corrections were required and the procedure gave
correct results for all cases tested.
exchange is unnecessary as a separate procedure, since it is used at only one place in TREESORT 3. Sorts were found to run significantly faster when the body of exchange was inserted in the appropriate place, than when run with the algorithm as published.

CERTIFICATION OF ALGORITHM 245 [M1]
 TREESORT 3 [Robert W. Floyd, Comm. ACM 7 (Dec. 1964), 701]: PROOF OF ALGORITHMS-A NEW KIND OF CERTIFICATION
 Ralph L. London* (Recd. 27 Feb. 1969 and 8 Jan. 1970)
 Computer Sciences Department and Mathematics Research Center, University of Wisconsin, Madison, WI 53706
 * This work was supported by NSF Grant GP-7069 and the Mathematics Research Center, US Army under Contract

 Number DA-31-124-ARO-D-462.ABSTRACT: The certification of an algorithm can take the form of a proof that the algorithm is correct. As an illustrative but practical example, Algorithm 245, TREESORT 3 for sorting an array, is proved correct.
KEY WORDS AND PHRASES: proof of algorithms, debugging, certification, metatheory, sorting, in-place sorting
$C R$ CATEGORIES: $4.42,4.49,5.24,5.31$

Certification of algorithms by proof. Since suitable techniques now exist for proving the correctness of many algorithms [for example, $3-7$], it is possible and appropriate to certify algorithms with a proof of correctness. This certification would be in addition to, or in many cases instead of, the usual certification. Certification by testing still is useful because it is easier and because it also provides, for example, timing data. Nevertheless the existence of a proof should be welcome additional certification of an algorithm. The proof shows that an algorithm is debuggged by showing conclusively that no bugs exist.

It does not matter whether all users of an algorithm will wish to, or be able to, verify a sometimes lengthy proof. One is not required to accept a proof before using the algorithm any more than one is expected to rerun the certification tests. In both cases one could depend, in part at least, upon the author and the referee.

As an example of a certification by proof, the algorithm TREESORT 3 [2] is proved to perform properly its claimed task of sorting an array $M[1: n]$ into ascending order. This algorithm has been previously certified [1], but in that certification, for example, no arrays of odd length were tested. Since TREESORT 3
is a fast practical algorithm for in-place sorting and one with sufficient complexity so that its correctness is not immediately apparent, its use as the example is more than an abstract exercise. It is an example of considerable practical importance.

Outline of TREESORT 3 and method of proof. The algorithm is most easily followed if the array is viewed as a binary tree. $M[k \div 2]$ is the parent of $M[k], 2 \leq k \leq n$. In other words the children of $M[j]$ are $M[2 j]$ and $M[2 j+1]$ provided one or both of the children exist.

The first part of the algorithm permutes the M array so that for a segment of the array, each parent is larger than both of the children (one child if the second does not exist). Each call of the auxiliary procedure siftup enlarges the segment by causing one more parent to dominate its children. The second part of the algorithm uses siftup to make the parents larger over the whole array, exchanges $M[1]$ with the last element and repeats on an array one element shorter. The above statemonts are motivation and not part of the formal proof.

That TREESORT 3 is correct is proved in three parts. First the procedure siftup is shown to perform as it is formally defined below. Then the body of TREESORT 3, which uses siftup in two ways, is shown to sort the array into ascending order. (The proof of the procedure exchange is omitted.) The proofs are by a method described in [3, 4, 7]: assertions concerning the progress of the computation are made between lines of code, and the proof consists of demonstrating that each assertion is true each time control reaches that assertion, under the assumption that the previously encountered assertions are true. Finally termination of the algorithm is shown separately.

The lines of the original algorithm have been numbered and the assertions, in the form of program comments, are numbered correspondingly. The numbers are used only to refer to code and to assertions and have no other significance. One extra begin-end pair has been inserted into the body of TREESORT 3 in order that the control points of two assertions (3.1 and 4.1) could be distinguished. In siftup the assertions 10.1 and 10.2 express the correct result; in the body of TREESORT 3 the assertions 9.3 and 9.4 do likewise.

Definition of siflup and notation. We now define formally the procedure $\operatorname{siftup}(i, n)$, where n is a formal parameter and not the length of the array M. Let $A(s)$ denote the set of inequalities $M[k \div 2] \geq M[k]$ for $2 s \leq k \leq n$. (If $s>n \div 2$, then $A(s)$ is a vacuous statement.) If $A(\dot{i}+1)$ holds before the call of $\operatorname{siftup}(i, n)$ and if $1 \leq i \leq n \leq$ array size, then after $\operatorname{siftup}(i, n)$:
(1) $A(i)$ holds;
(2) the segment of the array $M[i]$ through $M[n]$ is permuted; and
(3) the segment outside $M[i]$ through $M[n]$ is unaltered.

In arder to prove these properties of siftup, some notation is required. The formal parameter i will be changed inside siftup. Since i is called by value, that change will be invisible outside siftup. Nevertheless it is necessary to use the initial value of i as well as the current value of i in the proof of siftup. Let i_{0} denote the value of i upon entry to siftup.

Similarly let M_{0} denote the M array upon entry to siftup. The notation " $M=p\left(M_{0}\right)$ with $M:=c o p y$ " means 'if $M[i]:=$ copy were done, M is some permutation of M_{0} as described in (2) and (3) of the definition of siftup." " $M=p\left(M_{0}\right)$ " means the same without the reference to $M[i]:=c o p y$ being done.

Code and assertions for siftup.

0 procedure $\operatorname{siftup}(i, n)$; value i, n; integer i, n;
1 begin real copy; integer j;

comment

1.1: $1 \leq i_{0}=i \leq n \leq$ array size
1.2: $A\left(i_{0}+1\right)$
$1.3: M=p\left(M_{0}\right)$;

```
    copy : \(=M[i]\);
    loop: \(j:=2 \times i\);
    comment
        3.1: \(i \leq n\)
        3.2: \(2 i=j\)
        3.3: \(i=i_{0}\) or \(i \geq 2 i_{0}\)
        3.4: \(M=p\left(M_{0}\right)\) with \(M[i]:=c o p y\)
        3.5: \(A\left(i_{0}\right)\) or \(\left(i=i_{0}\right.\) and \(\left.A\left(i_{0}+1\right)\right)\)
        3.6: \(M[i \div 2]>\) copy or \(i=i_{0}\)
        3.7: \(M[i \div 2] \geq M[i]\) or \(i=i_{0}\);
    if \(j \leq n\) then
    begin if \(j<n\) then
        begin if \(M[j+1]>M[j]\) then
        \(j:=j+1\) end;
        comment
            6.1: \(i=j \div 2\)
            6.2: \(2 i \leq j \leq n\)
            6.3: \(i=i_{0}\) or \(i \geq 2 i_{0}\)
            6.4: \(M=p\left(M_{0}\right)\) with \(M[i]:=c o p y\)
            6.5: \(A\left(i_{0}\right)\) or \(\left(i=i_{0}\right.\) and \(\left.A\left(i_{0}+1\right)\right)\)
            6.6: \(M[i \div 2]>c o p y\) or \(i=i_{0}\)
            6.7: \(M[i \div 2] \geq M[i]\) or \(i=i_{0}\)
            6.8: \((2 i<n\) and \(M[j]=\max (M[2 i], M[2 i+1]))\) or
            \((2 i=n\) and \(M[j]=M[n])\)
            6.9: \(M[i] \geq M[j]\) or \(i=i_{*}\);
7 if \(M[j]>\) copy then
8a begin \(M[i]:=M[j] ;\)
        comment
            8.1: \(i=i_{0}\) or \(i \geq 2 i_{0}\)
            8.2: \(2 i \leq j \leq n\)
            8.3: \(M[j \div 2]=M[i]=M[j]>c o p y\)
            8.4: \(M[i \div 2] \geq M[j]\) or \(i=i_{0}\)
            8.5: \(M=p\left(M_{0}\right)\) with \(M[j]:=\) copy
            8.6: \(A\left(i_{0}\right)\);
8b \(\quad i:=j\);
        comment
            8.7: \(i \geq 2 i_{0}\)
            8.8: \(i=j \leq n\)
            8.9: \(M[i \div 2]>\) copy
            8.10: \(M[i \div 2] \geq M[i]\)
            8.11: \(M=p\left(M_{0}\right)\) with \(M[i]:=c o p y\)
            8.12: \(A\left(i_{0}\right)\);
        go to loop end
9 end;
    comment
        9.1: \(M[j] \leq c o p y\) if reached from 7 or
        \(2 i=j>n\) if reached from 4;
    \(M[i]:=c o p y ;\)
    comment
        10.1: \(M=p\left(M_{0}\right)\)
        10.2: \(A\left(i_{0}\right)\);
11 end siftup;
```

Verification of the assertions of siftup. Reasons for the truth of each assertion follow:
1.1-1.2: Assumptions for using siftup.
1.3: p is the identity permutation.
3.1-3.7: If reached from 2 ,
3.1: 1.1.
3.2: 3.
3.3, $3.5-3.7: i=i_{0}$ by 1.1. 3.5 also requires 1.2 . 3.4: 1.3 and 2.

If reached from 8 , respectively, $8.8,3,8.7,8.11,8.12$, 8.9 and 8.10.
6.1: At $3.2 j=2 i$ and by $6 \mathrm{~b}, j$ might be $2 i+1 . i=j \div 2$ in either case.
6.2: After $4, j \leq n . j$ is altered from 3.1 to 6.2 only at 6 b . Before $6 \mathrm{~b}, j<n$ by 5 . Hence $j \leq n$ at $6.2 .2 i \leq j$ by 6.1 .
6.3-6.7: 3.3-3.7, respectively.
6.8: If 4 is true and 5 is false, $j=2 i=n$ (using 3.2) so the second clause of 6.8 holds. If 4 is true and 5 is true, then at $6 \mathrm{a}, 2 i=j<n$ (using 3.2) so $M[j+1]=M[2 i+1]$ is defined. Now at $6.8, j=2 i$ or $j=2 i+1$. In either case, by 6 a and 6 b , the first clause of 6.8 holds.
6.9: By $6.5 i \neq i_{0}$ gives $A\left(i_{0}\right) .2 i_{0} \leq 2 i \leq j \leq n$ by 6.3 and 6.2. Hence $A\left(i_{0}\right)$ and 6.1 give $M[i]=M[j \div 2] \geq M[j]$.
8.1: 6.3.
8.2: 6.2.
8.3: $\quad i=j \div 2$ by $6.1, M[i]=M[j]$ by 8 a and $M[j]>c o p y$ by 7 .
8.4: 6.7 and 6.9.
8.5: 6.4 requires that $M[i]$ be replaced by copy. Since $M[i]=$ $M[j]$ by $8 \mathrm{a}, M[j]$ may equally well be replaced with copy. 8.1 and 8.2 give $i_{0} \leq i \leq n$ so that the change to M at 8 a is in the segment $M\left[i_{0}\right]$ through $M[n]$.
8.6: By 8 a and if 6.8 (first clause) holds, $M[i] \geq M[2 i]$ and $M[i] \geq$ $M[2 i+1]$. By 8 a and if 6.8 (second clause) holds, $M[i]=$ $M[j]=M[n]=M[2 i]$ and $M[2 i+1]$ does not exist for this call of siftup. $A\left(i_{0}+1\right)$ holds at 6.5 since $A\left(i_{0}\right)$ implies $A\left(i_{0}+1\right)$. If $i=i_{0}, A\left(i_{0}+1\right)$ and the relations above on $M[i]$ give $A\left(i_{0}\right)$. If $i \neq i_{0}$, then $8 \mathrm{a}, 8.4, A\left(i_{0}\right)$ at 6.5 and the relations above on $M[i]$ give $A\left(i_{0}\right)$ at 8.6.
8.7: $8 \mathrm{~b}, 8.1$ and 8.2.
8.8: 8 b and 8.2.
8.9: 8 b and 8.3.
8.10: At $8.6,2 i_{0} \leq j \leq n$ by 8.1 and 8.2. Hence by $8.6, M[j \div 2] \geq$ $M[j]$. Use 8 b on $M[j \div 2] \geq M[j]$.
8.11: 8 b and 8.5 .
8.12: 8.6.
9.1: 9.1 is reached only if 7 is false or if 4 is false. $2 i=j$ by 3.2 . 10.1-10.2: If reached from 7,
10.1: 6.4 and 10. (6.2 and 6.3 give $i_{0} \leq i \leq n$ ensuring the change to M at 10 is in the segment $M\left[i_{0}\right]$ through $M[n]$.)
10.2: By 10, 9.1, 6.2 and $6.8, M[i]=c o p y \geq M[j] \geq$ $M[2 i]$ and, if $M[2 i+1]$ exists, $M[j] \geq M[2 i+1]$. If $i=i_{0}, \mathbf{1 0 . 2}$ follows as in 8.6. If $i \neq i_{8}, 6.6$ and 10 give $M[i \div 2]>c o p y=M[i] . A\left(i_{0}\right)$ at 6.5 now gives $A\left(i_{0}\right)$ at 10.2.
If reached from 4,
10.1: 3.4 and 10. (3.1 and 3.3 give $i_{0} \leq i \leq n$.)
10.2: $2 i>n$ means no relations in $A\left(i_{0}\right)$ of the form $M[i] \geq \cdots$. If $i=i_{0}, 3.5$ gives 10.2. If $i \neq i_{0}, 3.6$ and 10 give $M[i \div 2]>c o p y=M[i]$. $A\left(i_{0}\right)$ at 3.5 now gives 10.2 .
Code and assertions for the body of TREESORT 3.
0 integer i;
comment

$$
0.1: A(n \div 2+1) \text {; }
$$

for $i:=n \div 2$ step -1 until 2 do
begin comment
2.1: $A(i+1)$
2.2: Assumptions of siftup satisfied;
$3 \operatorname{siftup}(i, n)$;
comment
3.1: $A(i)$;

4 end;
comment
4.1: $M[p] \leq M[p+1]$ for $n+1 \leq p \leq n-1$
4.2: $A(2)$, i.e. $M[k \div 2] \geq M[k]$ for $4 \leq k \leq n$;
$5 \quad$ for $i:=n$ step -1 until 2 do
6 begin

comment

6.1: $M[p] \leq M[p+1]$ for $i+1 \leq p \leq n-1$
6.2: $M[k \div 2] \geq M[k]$ for $4 \leq k \leq \mathrm{i}$
6.3: $M[i+1] \geq M[r]$ for $1 \leq r \leq i$
6.4: Assumptions of siftup satisfied;

7 siftup (1,i);

comment

7.1: $M[p] \leq M[p+1]$ for $i+1 \leq p \leq n-1$
7.2: $M[k \div 2] \geq M[k]$ for $2 \leq k \leq i$
7.3: $M[1] \geq M[r]$ for $2 \leq r \leq i$
7.4: $M[i+1] \geq M[1] ;$

8 exchange ($M[1], M[i]$);
comment
8.1: $M[i] \geq M[r]$ for $1 \leq r \leq i-1$
8.2: $M[p] \leq M[p+1]$ for $i \leq p \leq n-1$
8.3: $M[k \div 2] \geq M[k]$ for $4 \leq k \leq i-1$;

9 end;
comment
9.1: $M[p] \leq M[p+1]$ for $2 \leq p \leq n-1$
9.2: $M[2] \geq M[1]$
9.3: $M[p] \leq M[p+1]$ for $1 \leq p \leq n-1$, i.e. M is fully ordered
9.4: M is a permutation of M_{0};

Verification of the assertions for the body of TREESORT 3.
Reasons for the truth of each assertion follow:
0.1: Vacuous statement since $2(n \div 2+1)>n$.
2.1: If reached from 0.1 , by 1 substitute $i=n \div 2$ in 0.1 .

If reached from 3.1, by 1 substitute $i=i+1$ in 3.1 to account for the change in i from 3.1 to 2.1 .
2.2: 2.1, the bound on i implied by 1 and the array size being n.
3.1: 2.1 and the definition of $\operatorname{siftup}(i, n)$.
4.1: Vacuous statement.
4.2: If $n \geq 4,3$ is executed; hence 3.1 with $i=2$. If $n \leq 3$, vacuous statement.
6.1-6.3: If reached from 4.1,
6.1-6.2: By 5 substitute $i=n$ in 4.1 and 4.2.
6.3: Vacuous statement for $i=n$.

If reached from 8.1, by 5 substitute $i=i+1$ in 8.2 , 8.3 and 8.1, respectively.
6.4: 5 and 6.2 , i.e. $A(2)$ for the subarray $M[1: i]$.
7.1: 6.1 and (3) of siftup.
7.2: 6.2 and (1) of siftup.
7.3: 7.2 noting that $M[1]=M[k \div 2]$ if $k=2$ and using the transitivity of \geq.
7.4: Vacuous for $i=n$. Otherwise 6.3 for the appropriate r since by (2) of siftup, $M[1]$ at 7.3 is one of the $M[r], 1 \leq r \leq i$, at 6.3.
8.1: 7.3 with the changes caused by 8 (only $M[1]$ and $M[i]$ are altered by 8).
8.2: By 8 substitute $M[i]$ for $M[1]$ in 7.4 ; then 7.1 also holds for $p=i$.
8.3: 7.2 excluding only the one or two relations $M[1] \geq \cdots$, and the one relation $\cdots \geq M[i]$.
9.1-9.3: If $n \geq 2,8$ is executed;
9.1: 8.2 with $i=2$.
9.2: 8.1 with $i=2$.
9.3: 9.1 and 9.2. If $n \leq 1,9.1-9.3$ are vacuous statements.
9.4: The only operations done to M are siftup and exchange all of which leave M as a permutation of M_{0}.

Proof of termination of TREESORT 3. Provided siftup and exchange terminate, it is clear that TREESORT 3 terminates. Note that each parameter of siftup is called by value so that i is not changed in the body of the for loops.

The procedure exchange certainly terminates. In siftup the only possibility for an unending loop is from 3 to 8 b and back to 3 . Note that all changes to i (only at 8b) and to j (only at 3 and 6 b) occur in this loop and that on each cycle of this loop both i and j are changed. By the test at 4 , it is sufficient to show that j strictly increases in value. $i \geq 1$ means $2 i>i$. At $8 \mathrm{~b}, j=i<2 i$ while at $3, j=2 i$, i.e. j (at 3$)=2 i>i=j$ (at 8b). Hence each setting to j
at 3 strictly increases the value of j. The only other setting to j (at 6 b), if made, similarly increases the value of j.

References:

1. Abrams, P. S. Certification of Algorithm 245. Comm. ACM 8 (July 1965), 445.
2. Floyd, R. W. Algorithm 245, TREESORT 3. Comm. ACM 7 (Dec. 1964), 701.
3. Floyd, R. W. Assigning meanings to programs. Proc. of a Symposium in Applied Mathematici, Vol. 19-Mathematical Aspects of Computer Science, J. T. Schwartz (Ed.), American Math. Society, Providence, R. I., 1967, pp. 19-32.
4. Knuth, D. E. The Art of Computer Programming, Vol. 1Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968, Sec. 1.2.1.
5. McCarthy, J. A basis for a mathematical theory of computation. In Computer Programming and Formal Systems, P. Braffort and D. Hirschberg (Eds.), North Holland, Amsterdam, 1963, pp. 33-70.
6. McCarthy, J., and Painter, J. A. Correctness of a compiler for arithmetic expressions. Proc. of a Symposium in Applied Mathematics, Vol. 19 -Mathematical Aspects of Computer Science, J. T. Schwartz (Ed.), American Math. Society, Providence, R. I., 1967, pp. 33-41.
7. Naur, P. Proof of algorithms by general snapshots. BIT 6 (1966), 310-316.

ALGORITHM 246

GRAYCODE [Z]
J. Boothroyd* (Recd. 18 Nov. 1963)

English Electric-Leo Computers, Kidsgrove, Stoke-onTrent, England

* Now at University of Tasmania, Hobart, Tasmania, Aust.
procedure graycode (a) dimension: (n) parity: (s); value n, s;
Boolean array a; integer n; Boolean s;
comment elements of the Boolean array $a[1: n]$ may together be considered as representing a logical vector value in the Gray cyclic binary-code. [See e.g. Phister, M., Jr., Logical Design of Digital Computers, Wiley, New York, 1958. pp. 232, 399.] This procedure changes one element of the array to form the next code value in ascending sequence if the parity parameter s $=$ true or in descending sequence if $s=$ false. The procedure may also be applied to the classic "rings-o-seven'" puzzle [see K. E. Iverson, A Programming Language, p. 63, Ex. 1.5];

```
begin integer \(i, j ; j:=n+1\);
    for \(i:=n\) step -1 until 1 do if \(a[i]\) then begin \(s:=~ ᄀ s\);
        \(j:=i\) end;
    if \(s\) then \(a[1]:=\neg a[1]\) else if \(j<n\) then \(a[j+1]:=\neg a[j+1]\)
        else \(a[n]:=\neg a[n]\)
end graycode
CERTIFICATION OF ALGORITHM 246 [Z]
GRAYCODE [J. Boothroyd, Comm. ACM 7 (Dec. 1964),
    701]
William D. Allen (Recd. 8 Feb. 1965 and 23 Feb. 1965)
Computing Ctr., U. of Kentucky, Lexington, Ky.
    graycode was coded in Fortran IV and tested on the IBM 7040.
graycode code was generated from 0 to 10,000 in both ascending
and descending sequence. The procedure required no corrections
and gave correct results for all cases tested.
```

ACM Transactions on Mathematical Software, Vol. 1, No. 3, September 1975.
REMARK ON ALGORITHM 246
Graycode [Z]
[J. Boothroyd, Comm. ACM 7, 12 (Dec. 1964), 701]
Jayadev Misra [Recd 13 May 1974 and 28 April 1975]
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712

The following modifications to Algorithm 246 will generate Gray code for any N, with each code word bcing generated in a bounded amount of time. Let A be a vector of zeros and ones of length N which will be the successive code words. New code words are successively generated by reversing a single bit in A each time. Routine OUTPUT, to be supplied by the user, is called on generation of every new code word.

Initially A contains all zeros. At every odd-numbered step, $A[N]$ is reversed. At every even-numbered step, $A[J-1]$ is reversed, where $A[J]$ is the rightmost one-bit in A. (In case $J=1$, the algorithm terminates.) The positions of all the one-bits are stored in an increasing order in a stack S, from bottom to top. This helps in quickly locating J, the rightmost one-bit.

REFERENCES

1. Ehrlich, G. Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J. ACM 20, 3 (July 1973), 500-513.

ALGORITHM 247

RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. Halton and G. B. Smith (Recd. 24 Jan. 1964 and 21 July 1964)
Brookhaven National Laboratory, Upton, N. Y., and University of Colorado, Boulder, Colo.
procedure $Q R P S H$ (K, N, P, Q, R, E);
integer K, N; real array P, Q; integer array R; real E; comment This procedure computes a sequence of N quasirandom points lying in the K-dimensional unit hypercube given by $0<x_{i}<1, \quad i=1,2, \cdots, K$. The i th component of the m th point is stored in $Q[m, i]$. The sequence is initiated by a "zero-th point" stored in P, and each component sequence is iteratively generated with parameter $R[i] . E$ is a positive errorparameter. K, N, E, and the $P[i]$ and $R[i]$ for $i=1,2, \cdots, K$, are to be given.
The sequence is discussed by J. H. Halton in Num. Math. 2 (1960), 84-90. If any integer n is written in radix- R notation as

$$
n=n_{m} \cdots n_{2} n_{1} n_{0} .0=n_{0}+n_{1} R+n_{2} R^{2}+\cdots+n_{m} R^{m},
$$

and reflected in the radical point, we obtain the R-inverse function of n, lying between 0 and 1 ,

$$
\begin{aligned}
\phi_{R}(n)=0 \cdot n_{0} n_{1} n_{2} \cdots n_{m}=n_{0} R^{-1} & +n_{1} R^{-2} \\
& +n_{2} R^{-3}+\cdots+n_{m} R^{-m-1} .
\end{aligned}
$$

The problem solved by this algorithm is that of giving a compact procedure for the addition of R^{-1}, in any radix R, to a fraction, with downward "carry".
If $P[i]=\phi_{R[i]}(s)$, as will almost always be the case in practice, with s a known integer, then $Q[m, i]=\phi_{R[i]}(s+m)$. For quasirandomness (uniform limiting density), the integers $R[i]$ must be mutually prime.
For exact numbers, E would be infinitesimal positive. In practice, round-off errors would then cause the "carry" to be incorrectly placed, in two circumstances. Suppose that the stored number representing $\phi_{R}(n)$ is actually $\phi_{R}(n)+\Delta$. (a) If $|\Delta|$ $\geqq R^{-m-1}$, we see that the results of the algorithm become unpredictable. It is necessary to stop before this event occurs. It may be delayed by working in multiple-length arithmetic. (b) If $n=R^{m+1}-1$, so that $\phi_{R}(n)=1-R^{-m-1}$, and $\Delta<0$, the computed successor of the stored value can be seen to be about R^{-m}, instead of $R^{-m-2}=\phi_{R}(n+1)$. This error can be avoided, without disturbing the rest of the computation, by adopting a value of E greater than any | Δ | which may occur, but smaller than the least $(n R)^{-1}$ (which is smaller than the least R^{-m-1}) to be encountered.
Small errors in the $P[i]$ will not affect the sequence. Any set of $P[i]$ in the computer may be considered as a set of $\phi_{R[i]}\left(s_{i}\right)$, for generally large and unequal integers s_{i}, with small round-off errors. The arguments used in J. H. Halton's paper to establish the uniformity of the sequence of points

$$
\left[\phi_{R_{1}}(n), \phi_{R_{2}}(n), \cdots, \phi_{R_{K}}(n)\right], \quad n=1,2, \cdots, N
$$

can be applied identically to the more general sequence

$$
\left[\phi_{R_{1}}\left(s_{1}+n\right), \phi_{R_{2}}\left(s_{2}+n\right), \cdots, \phi_{R_{K}}\left(s_{K}+n\right)\right], \quad n=1,2, \cdots, N .
$$

Thus, theoretically, any "zero-th point" P will do. However, the difficulty described in (a) above limits us to the use of $P[i]$ corresponding to relatively small integers s_{i}.;
begin integer i, m; real r, f, g, h;
for $i:=1$ step 1 until K do
begin $r:=1.0 / R[i]$;
for $m:=1$ step 1 until N do
begin if $m>1$ then $f:=1.0-Q[m-1, i]$ else
$f:=1.0-P[i]$;
$g:=1.0 ; h:=r$;
repeat: if $f-h<E$ then
begin $g:=h ; h:=h \times r$; go to repeat end; $Q[m, i]:=g+h-f$

end

end
end QRPSH

ALGORITHM 248

NETFLOW [H]

William A. Briggs (Recd. 18 Jan. 1964 and 17 Aug. 1964)

Marathon Oil Company, Findlay, Ohio
procedure NETFLOW (nodes, arcs, I, J, cost, hi, lo, flow, pi, INFEAS);
value nodes, arcs; integer nodes, arcs;
integer array I, J, cost, hi, lo, flow, pi; label INFEAS;
comment This procedure determines the least-cost flow pattern over an upper and lower bound capacitated flow network. Each directed network arc a is deined by nodes $I[a]$ and $J[a]$, has upper and lower flow bounds $h i[a]$ and $l o[a]$, and cost per unit of flow cost $[a]$. Costs and flow bounds may be any positive or negative integers. An upper flow bound must be greater than or equal to its corresponding lower flow bound for a feasible solution to exist. There may be any number of parallel arcs connecting any two nodes.

A multi-source, multi-demand, capacitated transportation or transshipment problem may be stated as a network flow problem as follows:

Append to the network (1) bounded arcs from the demand node(s) to a "super sink," (2) bounded ares from a "super source" to the supply node(s), (3) an are directed from the "super sink" to the "super source" with zero lower bound, a large positive upper bound, and a negatively large cost.
NETFLOW will maximize flow through the low-cost are from "supper sink" to "super source"-subject to the capacity constraints of the network-fulfilling all demands optimally.

The procedure returns vectors flow and pi. Flow[a] is the computed optimal flow over network arc $a . P i[n]$ is a number -the dual variable--which represents the relative value of injecting one unit of flow into the network at node n. NETFLOW may be entered with any values in vectors flow and $p i$ (such as those from a previous or a guessed solution) feasible or not. If the initial contents of flow do not conserve flow at any node, the solution values will also not conserve flow at that node, by the same amount. This fact can be frequently used to advantage in transportation problem definition. The closer initial values of flow and $p i$ are to solution values, the shorter the computation.

Procedure NETFLOW is a mechanization of the out-of-kilter network flow algorithm described by D. R. Fulikerson in J. Soc. Indust. Appl. Math. 9 (1961), 18-27, and elsewhere. Many thanks are due the referee for noting some erroneous comments and for suggesting ways to increase the efficiency and utility of the procedure;
begin integer $a, a o k, c, c o k, d e l, e, e p s, i n f, l a b, n, n i, n j, s r c, s n k$; integer array $n a, n b[1: n o d e s]$;
integer procedure $\min (x, y)$; value x, y; integer x, y;
begin if $x<y$ then $\min :=x$ else $\min :=y$ end min; comment check feasibility of formulation;
for $a:=1$ step 1 until arcs doif $l o[a]>h i[a]$ then go to $I N F E A S$; inf $:=99999999$; comment set inf to max available integer; aok $:=0$;
comment find an out-of-kilter are;

```
Seek: for a:= 1 step 1 until arcs do
    begin c:= cost[a]+pi[I[a]] - pi[J[a]];
        if flow [a]<lo[a]\vee(c<0\wedge flow[a]<hi[a]) then
        begin src :=J [a]; snk := I[a]; e := +1; go to LABL
        end;
    if flow [a]>hi[a]\vee(c>0^{fow[a]>lo[a]) then
        begin src := I[a]; snk:=J[a]; e:= -1; go to LABL
        end;
    end;
    comment no remaining out-of-kilter ares;
    go to FINI;
    comment attempt to bring found out-of-kilter arc into kilter;
LABL: if a=aok \na[src]\not=0 then go to SKIP;
    aok := a;
    for n:= 1 step 1 until nodes do na[n]:= nb[n]:= 0;
    na[src] := abs (snk) }\timese; nb[src]:=abs (aok) × e;
SKIP: cok:= c;
LOOP: lab := 0;
    for a}:=1\mathrm{ step 1 until arcs do
    begin if (na[I[a]]=0^na[J[a]]=0) \vee
        (na[I[a]]\not=0\wedgena[J[a]]\not=0) then go to XC;
        c:= cost[a] + pi[I[a]] - pi[J[a]];
        if na[I[a]]=0 then go to XA;
        if fow[a]}\geqqhi[a]\vee(flow[a]\geqqlo[a]\wedgec>0) then go to XC
        na[J[a]]:= I[a]; nb[J[a]]:=a; go to XB;
XA: if flow[a]\leqqlo[a]\vee(flow[a]\leqqhi[a]\c<0) then go to XC;
            na[I[a]]:= -J[a]; nb[I[a]]:= -a;
XB:lab:= +1;
        comment node labeled, test for breakthru;
        if na[snk]}\not=0\mathrm{ then go to INCR;
XC: end;
    comment no breakthru;
    if lab \not=0 then go to LOOP;
    comment determine change to pi vector;
    del := inf;
    for a:= 1 step 1 until arcs do
    begin if (na[I[a]]=0\wedgena[J[a]]=0) \vee
            (na[I[a]]\not=0\wedgena[J[a]]\not=0) then go to XD;
        c:= cost[a] + pi[I[a]] - pi[J[a]];
        if na[J[a]]=0^ flow[a]<hi[a] then del:= min (del,c);
        if na[J[a]] \not=0^flow[a]>lo[a] then del:= min (del, -c);
XD: end;
    if del = inf ^(flow[aok]=hi[aok]\flow[aok]=lo[aok]) then
        del := abs (cok);
    if del = inf then go to INFEAS; comment exit, no feasible
    flow pattern;
    comment change pi vector by computed del;
    for n:= 1 step 1 until nodes do if na[n]=0 then pi[n]:=
        pi[n] + del;
    comment find another out-of-kilter arc;
    go to SEEK;
    comment breakthru, compute incremental flow;
INCR: eps:= inf;
    ni:= src;
BACK: nj:=abs (na[ni]); a := abs (nb[ni]);
    c:= cost[a]-abs (pi[ni]-pi[nj])}\times\operatorname{sign}(nb[ni])
    if nb[ni]<0 then go to XE;
    if c>0\wedge flow[a]<lo[a] then eps := min(eps,lo[a]-flow[a]);
```

if $c \leqq 0 \wedge$ flow $[a]<h i[a]$ then $e p s:=\min (e p s, h i[a]-f l o w[a])$; go to $X F$;
$X E:$ if $c<0 \wedge \operatorname{flow}[a]>h i[a]$ then $e p s:=\min (e p s, f l o w[a]$ -hi[a]);
if $c \geqq 0 \wedge$ flow $[a]>l o[a]$ then $e p s:=\min (e p s, f l o w[a]-l o[a])$;
$X F: n i:=n j ;$ if $n i \neq \operatorname{src}$ then go to $B A C K$;
comment change flow vector by computed eps;
BACK2: $n j:=a b s(n a[n i]) ; a:=a b s(n b[n i])$;
flow $[a]:=$ flow $[a]+$ eps $\times \operatorname{sign}(n b[n i])$;
$n i:=n j ;$ if $n i \neq$ sre then go to $B A C K 2$;
comment find another out-of-kilter arc;
$a o k:=0$; go to $S E E K$;
FINI: end NETFLOW with a feasible, optimal flow pattern

REMARK ON ALGORITHM 248 [H]
NETFLOW [William A. Briggs, Comm. ACM 8 (Feb. 1965), 103]
J. H. Henderson, R. M. Knapp, and M. E. Volberding (Recd. 7 Apr. 1966)
Northern Natural Gas Company, Omaha, Neb.
KEY WORDS AND PHRASES: capacitated network, linear programming, minimum-cost flow, network flow, out-of-kilter $C R$ CATEGORIES: $5.32,5.41$

Algorithm 248 was transcribed into Burroughs Extended Algol for the Burroughs B5500. After modification it has been used successfully. Before modification it was found to give erroneous values of $p i$ for transportation problems and nonoptimal solutions for networks representing multitime level trans-shipment problems. This was caused by the method utilized within the procedure for exiting with the best solution. The difficulty was circumvented by inserting a statement just before label $S K I P$ reading:

$$
\text { if } n b[s r c]=\text { arcs then go to } F I N I
$$

This statement enables the user to exit the procedure without a pass through the $p i$ incrementation block and a final pass through the out-of-kilter arc-finding block, saving a significant amount of time on sizeable problems. With the arcs arranged so that the arc directed from the "super sink" to the "super source" is the last one in the arc array, it must be the last, arc remaining out-ofkilter. Therefore, by the time the search block discovers it as an out-of-kilter arc, an optimal solution has already been found.
[Algorithm 336 [Comm. ACM 11 (Sept. 1968), 631-632] is an improved version of Algorithm 248, which by its very construction bypasses this error.-J.G.H.]

REMARK ON ALGORITHM 248 [H]
NETFLOW [William A. Briggs, Comm. ACM 8 (Feb. 1965), 103]
T. A. Bray and C. Witzgall
(Recd. 2 Oct. 1967 and 20 May 1968)
Boeing Scientific Research Laboratories, Seattle, WA 98124

KEY WORDS AND PHRASES: capacitated network, linear programming, minimum-cost flow, network flow, out-of-kilter $C R$ CATEGORIES: 5.32,5.41

We found that

1. in the statement
$c:=\operatorname{cost} t[a]-a b s(p i[n i]-p i[n j]) \times \operatorname{sign}(n b[n i]) ;$
on page 103, column 2 , line 3 from below,
the "abs" should be deleted.
2. in the statement
$L A B L:$ if $a=a o k \wedge n a[s r c] \neq 0$ then go to $S K I P$; on page 103 , column 2 , line 13 from above, the value of $n a[s r c]$ may be undefined.
The algorithm worked satisfactorily after the corresponding changes had been made. We acknowledge a correspondence with R. M. Van Slyke and R. D. Sanderson of the University of California, Berkeley, on the subject.

Algorithm 336 [Comm. ACM 11 (Sept. 1968), 631-632] is an improved version of Algorithm 248 incorporating these changes.

ALGORITHM 249
OUTREAL N [I5]
Niklaus E. Wirth (Recd. 28 Aug. 1964 and 2 Nov. 1964)
Computer Science Div., Stanford U., Stanford, Calif.

```
procedure outreal \(n\) (ch, \(x, n\) );
    value \(c h, x, n\); real \(x\); integer \(c h, n\);
comment outreal \(n\) outputs to channel \(c h\) the real number \(x\) as
    a sequence of characters with \(n\) significant decimal digits in the
    form \(\pm d . d \cdots d_{10} \pm d \cdots d\), where \(d\) stands for a digit. Like the
    procedures outboolean, outstring, ininteger (cf. Report on Input-
    Output Procedures for ALGOL 60, [Comm. ACM 7, (Oct. 1964),
    628-629]) and inreal [Alg. 239, Comm.ACM 7 (Aug.1964), 481] it
    constitutes an example of the use of the primitive procedure
    pair insymbol-outsymbol defined in the referenced Report;
begin integer \(i, j, k, s\); real \(f\); integer array \(a[1: n]\);
    procedure outchar \((x)\) value \(x\); integer \(x\);
        outsymbol (ch,' \({ }^{\text {' }} 123456789+-.{ }^{\prime}, x+1\) );
    \(s:=k:=0 ; f:=; 1\);
    outchar (if \(x \geqq 0\) then 10 else 11); \(x:=a b s(x)\);
    if \(x=0\) then begin outchar \((0)\); go to \(L 4\) end;
    if \(x \geqq 1\) then
        begin \(L 1: f:=f \times 10 ; s:=s+1\); if \(x \geqq f\) then go to \(L 1\);
            \(f:=f \times 0.1 ; s:=s-1\)
        end
else
        begin \(L 2: \quad f:=f \times 0.1 ; \quad s:=s-1\);
            if \(x<f\) then go to \(L 2\)
        end;
    \(x:=x / f ;\) comment now \(1 \leqq x<10\);
    for \(j:=1\) step 1 until \(n-1\) do
    begin \(i:=\operatorname{entier}(x) ; \quad a[j]:=i ; \quad x:=(x-i) \times 10\) end;
    \(a[n]:=x\);
    for \(j:=n-1\) step -1 until 1 do
    begin if \(a[j+1]<10\) then go to \(L 6 ; a[j+1]:=0\);
        \(a[j]:=a[j]+1\)
    end;
    if \(a[1]=10\) then begin \(a[1]:=1 ; s:=s+1\) end;
L6: outchar (a[1]); outchar (12);
    for \(j:=2\) step 1 until \(n\) do outchar \((a[j])\);
    comment now process the scale factor \(s\);
    if \(s=0\) then go to \(L 4\);
    outchar(13);
    outchar (if \(s \geqq 0\) then 10 else 11); \(s:=a b s(s)\);
    \(j:=10\);
\(L 3: \quad\) if \(s \geqq j\) then begin \(j:=j \times 10 ; \quad k:=k+1\); go to \(L 3\) end;
\(L 5:\) if \(k>0\) then
    begin \(j:=j \div 10 ; i:=s \div j ;\) outchar ( \(i\) ) ; \(s:=s-i \times j\);
        \(k:=k-1 ;\) go to \(L 5\)
    end;
    outchar(s);
L4:
end
```


ALGORITHM 250

INVERSE PERMUTATION [G6]
B. H. Boonstra (Recd. 12 Oct. 1964)

Nationaal Kasregisters, NCR Holland, Amsterdam.
procedure inversepermutation (P) of natural numbers up to: (n); value n; integer n; integer array P;
comment given a permutation $P(i)$ of the numbers $i=1(1) n$, the inverse permutation is computed in situ. The process is based on the lemma that any permutation can be written as a product of mutually exclusive cycles. Procedure inversepermutation has been tested for several permutations including $n=1$;
begin integer i, j, k, first;
switch sss $:=$ tag, cycle, next, endcycle, finish;
tag: for $i:=1$ step 1 until n do $P[i]:=-P[i]$;
comment now $P[i]$ contains a negative number if original and a positive number if inverse;
first $:=1$;
cycle: $k:=$ first; $i:=-P[k]$;
next: $j:=-P[i] ; \quad P[i]:=k$;
if $i=$ first then go to endcycle;
$k:=i ; i:=j ;$ go to next $;$
endcycle: if first $=n$ then go to finish;
first $:=$ first +1 ;
if $P[$ first $]<0$ then go to cycle else go to endcycle;
finish: end inversenermutation

REMARK ON ALGORITHM 250 [G6]

INVERSE PERMUTATION

[B. H. Boonstra, Comm. ACM 8 (F'eb. 1965), 104]
C. W. Medlock (Recd. 12 Apr. 1965 and 14 July 1965)

IBM Corp., Programming Systems, Poughkeepsie, N.Y.
Several simplifications may be made to the subject algorithm to permit more efficient operation.

1. On many compilers, the procedure would be more efficient if the outer loop were written as a for locp.
2. The initialization of the vector P to negative values may be omitted by reversing the interpretation of positive and negative values. As revised, $P[i]$ contains a negative number if it contains the inverse value and i is less than the current value of the parameter $n . P[i]$ contains a positive value in all other cases. This allows the for loop labeled tag to be eliminated.
3. The variable first may be eliminated by declaring the parameter n as a value parameter, and utilizing it as the conirolled variable of the outer loop.

The author wishes to thank the referee for valuable suggestions. The revised algorithm then reads:
procedure inversepermutation (P) of natural numbers up to: (n); value n; integer n; integer array P;
comment Given a permutation $P(i)$ of the numbers $i=1(1) n$, the inverse permutation is computed in situ;
begin integer i, j, k;
for $n:=n$ step -1 until 1 do
begin $i:=P[n]$;
if $i<0$ then $P[n]:=-i$
else if $i \neq n$ then
begin $k:=n$;

```
loop: j:= P[i]; P[i]:=-k;
    if j=n then }P[n]:=
    else
        begin k:= i; i:= j; go to loop
        end
        end
    end
end inversepermutation
```


ALGORITHM 251

FUNCTION MINIMISATION [E4]

M. Wells (Recd. 13 July 1964 and 5 Oct. 1964)

Electronic Computing Lab., U. of Leeds, England
procedure FLEPOMIN (n, x, f, est, eps, funct, conv, limit, h, loadh);
value n, est, eps, loadh, limit;
real f, est, eps; integer n, limit; Boolean conv, loadh; array x, h; procedure funct;
comment function minimisation by the method of Fletcher and Powell [Comput. J. 6, 163-168 (1963)]. On entry $x[1: n]$ is an estimate of the position of the minimum, est an estimate of the minimum value, eps a tolerance used in terminating the procedure when the first derivative of f nearly vanishes, and loadh indicates whether or not an approximation to the inverse of the matrix of second derivatives of f is available. If loadh is true the procedure supplies the unit matrix as this estimate, otherwise it is assumed that the upper triangle of a symmetric positive definite matrix is stored by rows in $h[1: n \times(n+1) / 2]$. The statement funct (n, x, f, g) assigns to f the function value and to $g[1: n]$ the gradient vector.
A successful exit from FLEPOMIN, with conv true, occurs if two successive values of f are equal, or if a new value of f is larger than the previous value (due to rounding errors), or if after n or more iterations the lengths of the vectors s and sigma are less than eps. If the number of iterations exceeds limit, then an exit occurs with conv false. In either case, the final function value, estimated position of the minimum and inverse matrix of second derivatives are in f, x and h;

begin

real oldf, $s g$, $g h g$;
integer i, j, k, count;
array g, s, gamma, sigma [1:n];
real procedure $\operatorname{dot}(a, b)$;
array a, b;
comment inner product of a and b [In this procedure an α in up dot greater accuracy would be obtained by accumulating the inner products in double precision,-Ref.];
begin integer i; real $s ; s:=0$;
for $i:=1$ step 1 until n do $s:=s+a[i] \times b[i] ;$ dot $:=s$
end of $d o t$;
real procedure up dot (a, b, i);

value i;

array a, b; integer i;
comment multiply b by the i th row of the symmetric
matrix a, whose upper triangle is stored by rows;
begin integer j, k; real $s ; k:=i ; s:=0$;
for $j:=1$ step 1 until $i-1$ do
begin $s:=s+a[k] \times b[j] ; \quad k:=k+n-j$ end steps to diagonal. Now go along row;
for $j:=i$ step 1 until n do $s:=s+a[k+j-i] \times b[j]$; $u p$ dot $:=s$
end of $u p d o t$;
set initial h :
if loadh then
begin $k:=1$;
for $i:=1$ step 1 until n do
begin $h[k]:=1$;

```
        for \(j:=1\) step 1 until \(n-i\) do \(h[k+j]:=0\);
        \(k:=k+n-i+1\)
        end
```

 end formation of unit matrix in \(h\);
 start of minimisation:
conv $:=$ true;
funct (n, x, f, g);
for count $:=1$, count +1 while oldf $>f$ do
begin oldf: $=f$;
for $i \cdot=1$ step 1 until n do
begin sigma $[i]:=x[i] ;$ gamma $[i]:=g[i] ;$
$s[i]:=-u p \operatorname{dot}(h, g, i)$
end preservation of x, g and formation of s;
search along s:
begin real $y a, y b, v a, v b, v c, h, k, w, z, t$, ss;
$y b:=f ; v b:=\operatorname{dot}(g, s) ; \quad s s:=\operatorname{dot}(s, s) ;$
if $v b \geqq 0$ then go to skip;
$k:=2 \times(e s t-f) / v b ;$
scale: $h:=$ if $k>0$ and $k \uparrow 2 \times s s<1$ then k else $1 / s q r t(s s)$;
$k:=0$;
extrapolate: $y a:=y b ; v a:=v b$;
for $i:=1$ step 1 until n do $x[i]:=x[i]+h \times s[i]$;
funct (n, x, f, g);
$y b:=f ; v b:=\operatorname{dot}(g, s)$;
if $v b<0$ and $y b<y a$ then
begin $h:=k:=h+k$; go to extrapolate end;
$t:=0 ;$
interpolate: $z:=3 \times(y a-y b) / h+v a+v b$;
$w:=\operatorname{sqrt}(z \uparrow 2-v a \times v b) ;$
$k:=h \times(v b+w-z) /(v b-v a+2 \times w) ;$
for $i:=1$ step 1 until n do $x[i]:=x[i]+(t-k) \times s[i]$;
funct (n, x, f, g);
if $f>y a$ or $f>y b$ then
begin $v c:=\operatorname{dot}(g, s)$;
if $v c<0$ then
begin $y a:=f ; v a:=v c ; \quad t:=h:=k$ end
else
$\operatorname{begin} y b:=f ; v b:=v c ; \quad t:=0 ; h:=h-k$ end;
go to interpolate
end;
skip: end of search along s;
for $i:=1$ step 1 until n do
begin sigma $[i]:=x[i]-$ sigma $[i]$;
gamma $[i]:=g[i]-$ gamma $[i]$
end;
$s g:=\operatorname{dot}($ sigma, gamma $)$;
if count $\geqq n$ then
begin if $\operatorname{sqrt}(\operatorname{dot}(s, s))<e p s$ and $\operatorname{sqrt}(\operatorname{dot}($ sigma, sigma $))<$
eps then go to finish
end test for vanishing derivative;
for $i:=1$ step 1 until n do $s[i]:=u p \operatorname{dot}(h, \operatorname{gamma}, i)$;
ghg $:=\operatorname{dot}(s$, gamma $)$;
$k:=1$;
for $i:=1$ step 1 until n do for $j:=\mathrm{i}$ step 1 until n do
begin $h[k]:=h[k]+$ sigma $[i] \times$ sigma $[j] / s g-s[i] \times s[j] / g h g ;$
$k:=k+1$
end updating of h;
if count > limit then go to exit;
end of loop controlled by count; go to finish;
exit: conv := false;
finish: end of FLEPOMIN

CERTIFICATION OF ALGORITHM 251 [E4]
FUNCTION MINIMISATION [M. Wells, Comm. ACM
8 (Mar. 1965), 169]

R. Fletcher (Recd. 9 Aug. 1965 and 24 Mar. 1966)

Electronic Computing Lab., U. of Leeds, England
Two points need correcting concerning the procedure FLEPOMIN.
(i) When the method has converged, either or both of the vectors s and g can become zero, hence also the scalars $s g$ and $g h g$, causing division by zero when updating the matrix h.
(ii) The part of the procedure connected with the linear search along s does not make use of the fact that the identifier h (η in the Appendix to the source paper Fletcher and Powell [1]) tends to 1 as the process converges. This knowledge must be included to achieve the rapid convergence obtained by Fletcher and Powell. However, the particular choice of η given there can also be insufficient when its optimum value would be much greater than 1 (as happens for example in the minimization of $f(\mathbf{x})=[\mathbf{H}(\mathbf{x}-\mathbf{1})]^{2}$ where \mathbf{l} is the vector $(1,1, \cdots, 1)$ and \mathbf{H} is a segment of the Hilbert matrix, from an initial approximation $\mathbf{x}=(0,0, \cdots, 0)$).

An alternative approach is to estimate η by using its value at the previous iteration, increasing or decreasing its value by some constant factor when appropriate (I have arbitrarily used 4). This approach removes the need for the estimate est of the minimum value of $f(x)$.

The appropriate changes to be made are thus:
(i) omit est as a formal parameter,
(ii) include amongst the real identifiers at the head of the procedure body the following:
step, ita, fa,fb,ga,gb,w,z,lambda
(iii) replace the statements from the label start of minimisation
to the end of the program by the following:

```
start of minimisation:
    conv \(:=\) true; step \(:=1 ;\)
    funct ( \(n, x, f, g)\);
    for count \(:=1\), count +1 while oldf \(>f\) do
    begin
        for \(i:=1\) step 1 until \(n\) do
        begin sigma \([i]:=x[i] ;\) gamma \([i]:=g[i]\);
            \(s[i]:=-u p \operatorname{dot}(h, g, i)\)
end preservation of \(x, g\) and
    formation of \(s\);
search along s:
    \(f b:=f ; g b:=\operatorname{dot}(g, s) ;\)
    if \(g b \geq 0\) then go to exit;
    oldf \(:=f ; \quad\) ita \(:=\) step;
    comment a change of \(i t a \times s\) is made in \(x\) and the function
        is examined. ita is determined from its value at the previous
        iteration (step) and is increased or decreased by 4 where
        necessary. It should tend to 1 at the minimum;
extrapolate: \(f a:=f b ; g a:=g b\);
    for \(i:=1\) step 1 until \(n\) do \(x[i]:=x[i]+i t a \times s[i]\);
    funct ( \(n, x, f, g\) );
    \(f b:=f ; \quad g b:=\operatorname{dot}(g, s)\);
    if \(g b<0 \wedge f b<f a\) then
    begin ita \(:=4 \times\) ita; step \(:=4 \times\) step; go to extrapolate
end;
interpolate: \(z:=3 \times(f a-f b) / i t a+g a+g b\);
    \(w:=s q r t(z \uparrow 2-g a \times g b) ;\)
    lambda \(:=i t a \times(g b+w-z) /(g b-g a+2 \times w)\);
    for \(i:=1\) step 1 until \(n\) do \(x[i]:=x[i]-l a m b d a \times s[i]\);
    funct \((n, x, f, g)\);
    if \(f>f a \vee f>f b\) then
    begin step \(:=\) step \(/ 4\);
        if \(f b<f a\) then
```

begin for $i:=1$ step 1 until n do $x[i]:=x[i]+l a m b d a \times$
$s[i] ; f:=f b$
end else
begin $g b:=\operatorname{dot}(g, s)$;
if $g b<0 \wedge$ count $>n \wedge$ step $<10-6$ then go to exit;
$f b:=f ; \quad i t a:=i t a-l a m b d a$;
go to interpolate
end;
skip: end of search along s;
for $i:=1$ step 1 until n do
begin sigma $[i]:=x[i]-\operatorname{sigma}[i] ;$
gamma $[i]:=g[i]-$ gamma[i]
end;
$s g:=\operatorname{dot}($ sigma,gamma $)$;
if count $\geq n$ then
begin if $\operatorname{sqrt}(\operatorname{dot}(s, s))<e p s \wedge \operatorname{sqrt}(\operatorname{dot}(\operatorname{sigma}, \operatorname{sigma}))<e p s$
then go to finish
end;
for $i:=1$ step 1 until n do $s[i]:=u p \operatorname{dot}(h, g a m m a, i)$;
$g h g:=\operatorname{dot}(s, g a m m a)$;
$k:=1$;
if $s g=0 \vee g h g=0$ then go to test;
for $i:=1$ step 1 until n do for $j:=i$ step 1 until n do
begin $h[k]:=h[k]+\operatorname{sigma}[i] \times \operatorname{sigma}[j] / s g-s[i] \times s[j] / g h g ;$ $k:=k+1$
end updating of h;
test: if count $>$ limit then go to exit;
end of loop controlled by count; go to finish;
exit:conv := false;
finish:
end of FLEPOMIN
With these changes the procedure was run successfully on a KDF 9 computer on the first of the test functions used by Fletcher and Powell, and the appropriate rate of convergence was achieved. (The corresponding values in [1, Table 1, col. 4] being 24.200 , $\left.3.507,2.466,1.223,0.043,0.008,4 \times 10^{-5}\right)$. It could well be, however, that these changes may still not prove satisfactory on some functions. In such cases it will most likely be the search for the linear minimum along s which will be at fault, and not the method of generating s. It should not be necessary to evaluate the function and gradient more than 5 or 6 times per iteration in order to estimate the minimum along s, except possibly at the first few iterations.

I am indebted to William N. Nawatani of Dynalectron Corporation, Calif., for pointing out the discrepancies in the rates of convergence, and to the referee for his calculations and comments with regard to the Hilbert Matrix function.

REFERENCE

1. Fletcher, R., and Powell M. J. D. A rapidly convergent descent method for minimization. Comput. J. 6 (July 1963), 163.

REMARK ON ALGORITHM 251 [E4]
FUNCTION MINIMIZATION [M. Wells, Comm. ACM 8 (Mar. 1965), 169]
P. A. Hamilton and J. Boothroyd (Reed. 17 Dec. 1968) University of Tasmania, Hobart, Tasmania, Australia
KEY WORDS AND PHRASES: function minimization $C R$ CATEGORIES: 5.19

The changes proposed by Fletcher in his "Certification of Algorithm 251," Comm. ACM 9 (Sept. 1966), 686, contain one mistake and one unprotected possible source of error. On page 687, line 2, the assignment statement $f:=f b$ should be replaced by the procedure statement funct (n, x, f, g) in order to reset the gradients in $g[1: n]$.
In theory, the conditions on $z, g a, g b$ valid for interpolation imply $z \uparrow 2-g a \times g b \geq 0$. The statement $w:=\operatorname{sqrt}(z \uparrow 2-g a \times g b)$ should therefore be safe. In practice, round-off errors may give rise to small negative values of the argument, resulting in an error condition which may be avoided with:

$$
\begin{aligned}
& w:=z \uparrow 2-g a \times g b ; \\
& w:=\text { if } w<0 \text { then } 0 \text { else } \operatorname{sqrt}(w) ;
\end{aligned}
$$

Numerous tests of this procedure indicate that two other changes are beneficial in reducing the number of function calls required to yield a minimum to some prescribed accuracy. These concern the method of calculating the minimum of the interpolating cubic and a modification to the extrapolation strategy.

In the notation of Fletcher's identifiers, the position of the minimum alnng s over the interval ($a=0, b=i t a$) is $a+r$ where r is the root of a quadratic equation given by:

$$
\begin{equation*}
r=i t a \times(g a+z+w) /(g a+g b+2 \times z) \tag{1}
\end{equation*}
$$

and, for $g a+z \geq 0$, it may be shown that r is the root of larger magnitude; otherwise, it is the root of smaller magnitude. The distance of the minimum from b is lambda $=i t a-r$ and Davidon[1] seems to have originated the proposal that lambda should be evaluated by:

$$
l a m b d a:=i t a \times(g b+w-z) /(g b-g a+2 \times w)
$$

in order to avoid cancellation. In this respect it is only partly successful, and our experience shows that to avoid cancellation completely lambda should be calculated in the more orthodox manner:
lambda := $i t a \times(1-$ (if $g a+z \geq 0$ then $(g a+z+w) /(g a+g b+2 \times z)$
else $g a /(g a+z-w)))$;
Once the minimum along s has been bounded, the use of cubic interpolation is rewardingly accurate and it is natural to inquire whether cubic extrapolation can provide a better farther bound than is afforded by an arbitrary search. It may be shown that, provided $z \uparrow 2-g a \times g b \geq 0$ and $r>0$ where r is given by eq. (1), cubic extrapolation will yield the position of the prodicted minimum along s as $a+r$, using a value for $i t a$ given by the step length of the previous iteration. To bound the minimum we take the interval ($a, a+2 \times r$) if the above conditions are satisfied; otherwise, we adopt Fletcher's strategy of using the interval of the previous iteration scaled by a factor of 4 .

Reference:

1. Davidon, W. C. Variable metric method for minimization. ANL-5990. US Atomic Energy Commission Res. Develop. Rep., 1959.

Remark on Algorithm 251 [E4]

Function Minimization [M. Wells, Comm. ACM 8 (Mar. 1965), 169.]
F. R. House [Recd. 25 Aug. 1970 and 1 Dec. 1970]

Department of Pharmacology, Guy's Hospital Medical
School, London, S.E.1. England
The above procedure, as modified by Fletcher [1], and Hamilton and Boothroyd [2], may appear to fail if the process converges after fewer than n iterations. In particular, if the starting point coincides with the minimum, failure is certain. The trouble arises from the statement
if $g b \geq 0$ then go to exit;
which appears two lines after the label search along s.
The following modifications are proposed.
(i) After the first call of funct insert the statement
if $\operatorname{sqrt}(\operatorname{dot}(g, g))<e p s$ then

begin

for $i:=1$ step 1 until n do $x[i]:=x[i]+1 ;$ funct (n, x, f, g) end;
(ii) Replace the statement
if $g b \geq 0$ then go to exit;
by
if $g b=0$ then go to $s k i p ;$
if $g b>0$ then go to exit;
The apparently perverse move away from the minimum implied by modification (i) ensures that h is updated at least once.
(iii) The text from

if count $\geq n$ then

to
end;
should occur after the label test. The relevant portion of the program reads

```
est: if count \(\geq n\) then
    begin
        if \(\operatorname{sqrt}(\operatorname{dot}(s, s))<e p s \wedge \operatorname{sqrt}(\operatorname{dot}(\) sigma, sigma \())<e p s\)
        then go to finish
    end;
    if count \(>\) limit then go to exit;
```

Experience with the algorithm has shown that when the process converges from a poor starting point on a nonquadratic surface the final estimate of h is inclined to be somewhat erratic.

This modification causes h to be updated once more using the very latest information, and will often effect a substantial improvement in accuracy. The estimated position of the minimum is, of course, unaffected.

References:

1. Fletcher, R. Comm. ACM 9 (Sept. 1966), 686-687.
2. Hamilton, P. A., and Boothroyd, J. Comm. ACM 12 (Sept. 1969), 512-513.

ALGORITHM 252 [Z]
 VECTOR COUPLING OR CLEBSCIT-GORDAN COEFFICIENTS

J. H. Gunn

(Recd. 17 Aug. 1964, 13 Nov. 1964 and 21 Dec. 1964)
Nordisk Institut for Teoretisk Atomfysik, Copenhagen, Denmark
real procedure $V C C(J 1, J 2, J, M 1, M 2, M$, factorial $)$;
value $J 1, J 2, J, M 1, M 2, M$;
integer $J 1, J 2, J, M 1, M 2, M$; array faciorial;
comment VCC calculates the vector coupling or Clebsch-Gordan coefficients defined by the following formula
($j_{1} m_{1} j_{2} m_{2} \downharpoonright j_{1} j_{2} j m$)
$=\delta\left(m_{1}+m_{2}, m\right)\left[\frac{(2 j+1)\left(j_{1}+j_{2}-j\right)!\left(j_{1}-j_{2}-j\right)!\left(-j_{1}+j_{2}+j\right)!}{\left(j_{1}+j_{2}+j+1\right)!}\right]^{\frac{2}{2}}$
$\times\left[\left(j_{1}+m_{1}\right)!\left(j_{1}-m_{1}\right)!\left(j_{2}+m_{2}\right)!\left(j_{2}-m_{2}\right)!(j+m)!(j-m)!\right]^{2}$
$\times \sum_{z}(-1)^{z} /\left[z!\left(j_{1}+j_{2}-j-z\right)!\left(j_{1}-m_{1}-z\right)!\right]$

$$
\left.\left(j_{2}+m_{2}-z\right)!\left(j-j_{2}+m_{1}+z\right)!\left(j-j_{1}-m_{2}+z\right)!\right]
$$

where $j 1=J 1 / 2, j 2=J 2 / 2, j=J / 2, m 1=M 1 / 2, m 2=M 2 / 2$, $m=M / 2$. [Reference formula 3.6.11, p. 45 of Edmonds, Alan R. Angular momentum in quantum mechanics. In Investigations in Physics, 4, Princeton U. Press, 1957.]. The parameters of the procedure, $J 1, J 2, J, M 1, M 2$ and M, are interpreted as being twice their physical value, so that actual parameters may be integers. Thus to call the procedure to calculate ($\left.\frac{1}{2} 0 \frac{1}{2} 0 \right\rvert\, \frac{1}{2}$ $\left.\frac{1}{2} 00\right)$ the call would be $V C C(1,1,0,0,0,0$, factorial $)$. The procedure checks that the triangle conditions for the existence of a coefficient are satisfied and that $j 1+j 2+j$ is integral. If the conditions are not satisfied the value of the procedure is zero. The parameter factorial is an array containing the factorials from 0 up to $j 1+j 2+j+1$. Since in actual calculations the procedure VCC will be called many times it is more economical to have the factorials in a global array rather than compute them on every entry to the procedure;
begin integer $z, z \min , z \max$; real $c c$;
if $M 1+M 2 \neq M \vee a b s(M 1)>a b s(J 1) \vee a b s(M 2)>a b s(J 2) \vee$ $a b s(M)>a b s(J) \vee J>J 1+J 2 \vee J<a b s(J 1-J 2) \vee J 1$ $+J 2+J \neq 2 \times((J 1+J 2+J) \div 2)$ then $V C C:=0$ else
begin $z \min :=0$;
if $J-J 2+M 1<0$ then zmin $:=-J+J 2-M 1$;
if $J-J 1-M 2+z \min <0$ then $z \min :=-J+J 1+M 2$; $z \max :=J 1+J 2-J$;
if $J 2+M 2-$ zmax <0 then $z \max :=J 2+M 2$;
if $J 1-M 1-z \max <0$ then $z \max :=J 1-M 1$;
cc : $=0$;
for $z:=z \min$ step 2 until $z \max$ do
$c c:=c c+($ if $z=4 \times(z \div 4)$ then 1 else -1$) /($ factorial $[z \div 2]$
\times factorial $[(J 1+J 2-J-z) \div 2]$
\times factorial $[(J 1-M 1-z) \div 2]$
\times factorial $[(J 2+M 2-z) \div 2]$
\times factorial $[(J-J 2+M 1+z) \div 2]$
\times factorial $[(J-J 1-M 2+z) \div 2]$);

```
    VCC := sqrt((J+1) }\times\mathrm{ factorial[(J1+J2-J) }-2
    factorial[(J1-J2+J)\div2]
    factorial[(-J1+J2+J)\div2] }\times\mathrm{ factorial [ (J1+M1) }\div2
    factorial[(J1-M1)\div2] }\times\mathrm{ factorial[ [J2+M2) }\div2
     factorial[ (J2-M2)\div2] }\times\mathrm{ factorial[(J+M) }\div2
    factorial[ }(J-M)\div2]/\mathrm{ factorial [ (J1+J2+J+2) ب2])
    \times cc
end
end VCC
```

ALGORITHM 253 [F2]
EIGENVALUES OF A REAL SYMMETRIC MATRIX BY THE QR METHOD
P. A. Businger*
(Recd. 17 Aug. 1964, 3 Nov. 1964 and 8 Dec. 1964)
University of Texas, Austin, Texas

* This work was supported in part by the National Science Foundation through grant NSF GP-217 and the Army Research Office through grant DA-ARO(D) 31-124G388. Thanks are due the referee for suggesting several improvements.
procedure symmetric $Q R 1(n, g)$; value n; integer n; array g;
comment uses Householder's method and the QR algorithm to find all n eigenvalues of the real symmetric matrix whose lower triangular part is given in the array $g[1: n, 1: n]$. The computed eigenvalues are stored as the diagonal elements $g[i, i]$. The original contents of the lower triangular part of g are lost during the computation whereas the strictly upper triangular part of g is left untouched.

References:

Francis, J. G. F. The QR transformation-Part 2. Comput. J. 4 (1961), 332-345.
Ortega, J. M., and Kaiser, H. F. The LL ${ }^{T}$ and QR methods for symmetric tridiagonal matrices. Comput. J. 6 (1963), 99-101.
Parlett, B. The development and use of methods of LR type. New York U., 1963.

Wilkinson, J. H. Householder's method for symmetric matrices. Numer. Math. is (1962), 354-361.

Test Results:
A version of this procedure acceptable to the Oak Ridge Algol compiler was tested on a CDC 1604 computer (relative machine precision $1.5_{10}-11$). For a number of testmatrices of order up to 64 the dominant eigenvalue was found to at least 8 digits and it was always among the most accurate values computed. In some cases the accuracy of the nondominant eigenvalues varied greatly, in one case the least accurate value had only 4 good digits.

Example:

For the 5×5 symmetric matrix whose lower triangular part is

```
5
6
0}
2
1 3
```

this prodecure computed the cigenvalues 22.406875305 , 7.5137241530, 4.8489501197, -1.0965951813, 1.3270455994; begin
real procedure $\operatorname{sum}(i, m, n, a)$; value m, n; integer i, m, n; real a;
begin real $s ; s:=0$;
for $i:=m$ step 1 until n do $s:=s+a ;$ sum $:=s$
end sum;
real procedure $\max (a, b)$; value a, b; real a, b; $\max :=$ if $a>b$ then a else b;
procedure Householder tridiagonalization $1(n, g, a, b q$, norm); value n; integer n; array $g, a, b q$; real norm; comment nonlocal real procedure sum, max;
comment reduces the given real symmetric n by n matrix g to tridiagonal form using $n-2$ elementary orthogonal transformations $\left(I-2 w w^{\prime}\right)=\left(I-g a m m a u u^{\prime}\right)$. Only the lower triangular part of g need be given. The diagonal elements and the squares of the subdiagonal elements of the reduced matrix are stored in $a[1: n]$ and $b q[1: n-1]$ respectively. norm is set equal to the infinity norm of the reduced matrix. The columns of the strictly lower triangular part of g are replaced by the nonzero portions of the vectors u;
begin integer i, j, k; real t, absb, alpha, beta, gamma, sigma; array $p[2: n]$;
norm $:=a b s b:=0$;
for $k:=1$ step 1 until $n-2$ do
begin $a[k]:=g[k, k]$;
$\operatorname{sigma}:=b q[k]:=\operatorname{sum}(i, k+1, n, g[i, k] \uparrow 2)$;
$t:=a b s b+a b s(a \mid k]) ; a b s b:=\operatorname{sqrt}(\operatorname{sigma}) ;$
norm $:=\max$ (norm, $t+a b s b$);
if $\operatorname{sigma} \neq 0$ then
begin alpha $:=g[k+1, k]$;
beta $:=$ if $a l p h a<0$ then $a b s b$ else $-a b s b$;
gamma $:=1 /($ sigma-alpha \times beta $) ; \quad g[k+1, k]:=$ alphabeta;
for $i:=k+1$ step 1 until n do
$p[i]:=\operatorname{gamma} \times(\operatorname{sum}(j, k+1, i, g[i, j] \times g[j, k])+$
$\operatorname{sum}(j, i+1, n, g[j, i] \times g[j, k]))$;
$t:=0.5 \times g a m m a \times \operatorname{sum}(i, k+1, n, g[i, k] \times p[i])$;
for $i:=k+1$ step 1 until n do $p[i]:=p[i]-t \times g[i, k]$;
for $i:=k+1$ step 1 until n do
for $j:=k+1$ step 1 until i do $g[i, j]:=g[i, j]-g[i, k] \times p[j]-p[i] \times g[j, k]$
end
end k;
$a[n-1]:=g[n-1, n-1] ; \quad b q[n-1]:=g[n, n-1] \uparrow 2 ;$
$a[n]:=g[n, n] ; \quad t:=a b s(g[n, n-1])$;
norm $:=\max ($ norm, $a b s b+\operatorname{abs}(a[n-1])+t)$;
norm $:=\max ($ norm, $t+a b s(a[n]))$
end Householder tridiagonalization 1 ;
integer $i, k, m, m 1$; real norm, epsq, lambda, $m u, s q 1, s q 2, u$, $p q$, gamma, t; array $a[1: n], b q[0: n-1]$;
Houscholder tridiagonalization $1(n, g, a, b q$, norm $)$;
epsq $:=2.25_{10}-22 \times$ norm $\uparrow 2$; comment The tolerance used in the $Q R$ iteration depends on the square of the relative machine precision. Here $2.25_{10}-22$ is used which is appropriate for a machine with a 36 -bit mantissa;
$m u:=0 ; \quad m:=n$;
inspect: if $m=0$ then go to return else $i:=k:=m 1:=m-1$;
$b q[0]:=0$;
if $b q[k] \leqq e p s q$ then
begin $g[m, m]:=a[m] ; \quad m u:=0 ; \quad m:=k$;
go to inspect
end;
for $i:=i-1$ while $b q[i]>\operatorname{epsq}$ do $k:=i$;
if $k=m 1$ then
begin comment treat 2×2 block separately;
$m u:=a[m \mathbf{1}] \times a[m]-b q[m 1] ; \quad s q 1:=a[m 1]+a[m] ;$
$s q 2:=\operatorname{sqrt}((a[m 1]-a[m]) \uparrow 2+4 \times b q[m 1])$;
lambda $:=0.5 \times($ if $s q 1 \geqq 0$ then $s q 1+s q 2$ else $s q 1-s q 2)$;
$g[m 1, m 1]:=l a m b d a ; \quad g[m, m]:=m u / l a m b d a$;
$m u:=0 ; m:=m-2 ;$ go to inspect
end;

```
    \(l a m b d a:=\) if \(a b s(a[m]-m u)<0.5 \times a b s(a[m])\) then \(a[m]+0.5 \times\)
    \(\operatorname{sqrt}(b q[m 1])\) else 0.0 ;
    \(m u:=a[m] ; \quad s q 1:=s q 2:=u:=0\);
    for \(i:=k\) step 1 until \(m 1\) do
    begin comment shortcut single \(Q R\) iteration;
        gamma \(:=a[i]-l a m b d a-u ;\)
        \(p q:=\) if \(s q 1 \neq 1\) then \(g a m m a \uparrow 2 /(1-s q 1)\) else \((1-s q 2) \times\)
            \(b q[i-1]\);
        \(t:=p q+b q[i] ; \quad b q[i-1]:=s q 1 \times t ; \quad s q 2:=s q 1 ;\)
        \(s q 1:=b q[i] / t ; \quad u:=s q 1 \times(\) gamma \(+a[i+1]-l a m b d a) ;\)
        \(a[i]:=\) gamma \(+u+\) lambda
    end \(i\);
    gamma \(:=a[m]-l a m b d a-u\);
    \(b q[m 1]:=s q 1 \times(\mathbf{i f} \quad s q 1 \neq 1\) then gamma \(\uparrow 2 /(1-s q 1)\) else
        \((1-s q 2) \times b q[m 1]) ;\)
    \(a[m]:=\) gamma \(+l a m b d a ;\) go to inspect;
return: end symmetric ( \(R 1\)
```


CERTIFICATION OF : ALGORITHM 253 [F2]

EIGENVALUES OF A REAL SYMMETRIC MATRIX BY THE QR METHOD [P. A. Businger, Comm. ACM 8 (April 1965), 217]
John H. Welsch (Recd. 3 June 1965, 1 Aug. 1966 and 1 Mar. 1967)
Stanford Linear Accelerator Center, Stanford, California
The procedure symmetric $Q R 1$ was transcribed into AlGOL for the Burroughs B5500 (39-bit mantissa) and tested with no syntax or logic changes (except to change the tolerance from $2.25_{10}-22$ to $3.35_{10}-24$). The eigenvalues of the matrix in the example given in the procedure declaration were found to 15 units in the 11 th significant place and in the order given.

Two defects of this algorithm have been found (personal communication from Prof. W. Kahan); one concerning the convergence, the other concerning the numerical stability.

The procedure summetric $Q R 1$ was slow to converge on matrices of large order with the form

$$
\left[\begin{array}{lllllll}
0 & 1 & & & & & \\
1 & 0 & 1 & & & & \\
& 1 & 0 & 1 & & & \\
& & \cdot & & & & \\
& & & \cdot & & & \\
& & & & \cdot & & 1 \\
& & & & & 1 & 0
\end{array}\right]
$$

The trouble is caused by a poor choice of the shift, lambda, for accelerating convergence. The fault was corrected as described in the Certification of Algorithm 254.

The second defect is not as easy to detect or correct. On matrices of large order with pairs of eigenvalues of opposite sign, members of the pairs were found to varying accuracy. Another indication of an instability was a distinct jump in the computed values of the eigenvalues of the matrix

$$
\left[\begin{array}{rrrr}
x & 1 & & \\
1 & 1 & 1 & \\
& 1 & -x & 1 \\
& & 1 & -1
\end{array}\right]
$$

at $x=10^{-5}$, as x was given the values $10^{-3}, 10^{-4}, \cdots, 10^{-11}$.
It appears that the square-root-free $Q R$ Algorithm deseribed by Ortega and Kaiser ("The $L L^{T}$ " and $Q R$ methods for symmetric tridiagonal matrices," Comput. J. 6 (1963), 99-101) is numerically unstable; therefore Algorithm 253 should be avoided. [Rutis-
hauser (Letter to the Editor, Comput. J. 6 (1963), 133) suggested a modification which is also mentioned by Wilkinson (The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, p. 567). However, even with this modification the Algorithm is numerically unstable as was pointed out in a private communication from Wilkinson to Kahan (1966)-Ref.]

ALGORITHM 254 [F2]

EIGENVALUES AND EIGENVECTORS OF A REAL

 SYMMETRIC MATRIX BY THE QR METHOD
P. A. Businger*

(Recd. 17 Aug. 1964, 17 Nov. 1964 and 8 Dec. 1964) University of Texas, Austin, Texas

* This work was supported in part by the National Science Foundation through grant NSF GP-217 and the Army Research Office through grant DA-ARO (D) 31-124G388. Thanks are due the referee for suggesting several improvements.
procedure symmetric $Q R 2(n, g, x)$; value n; integer n; array g, x;
comment uses Householder's method and the $Q R$ algorithm to find all n eigenvalues and eigenvectors of the real symmetric matrix whose lower triangular part is given in the array g. The computed eigenvalues are stored as the diagonal elements $g[i, i]$ and the eigenvectors as the corresponding columns of the array x. The original contents of the lower triangular part of g are lost during the computation whereas the strictly upper triangular part of g is left untouched.

Refermences:
Francis, J. G. F. The QR transformation-Part 2. Comput. J. 4 (1961), 332-345.
Parlett, B. The development and use of methods of LR type. New York U., 1963.

Wilkinson, J. H. Householder's method for symmetric matrices. Numer. Math. 4 (1962), 354-361.

'Test Results:

A version of this procedure acceptable to the Oak Ridge Algol compiler was tested on a CDC 1604 computer (relative machine precision $1.5_{10}-11$). For a number of testmatrices of order up to (44 the dominant eigenvalue was found to at least 9 digits. Eigenvalues much smaller in magnitude than the dorminant eigenvalue have fewer accurate digits. In some cases the components of the eigenvectors were slightly less accurate than the eigenvalues.

Example:
For the 5×5 symmetric matrix whose lower triangular part is

```
6
0}
4 6 8
1
```

this procedure computed the eigenvalues $\lambda_{1}=22.406875306$, $\lambda_{2}=7.5137241547, \quad \lambda_{3}=4.8489501203, \quad \lambda_{4}=-1.0965951820$,
$\lambda_{5}=1.3270455995$, and the corresponding eigenvectors
$x_{1}=(0.24587793851,0.30239603954,0.45321452335$,
$0.57717715229,0.55638458400$),
$x_{2}=(0.55096195546,0.70944033954,-0.34017913315$,
$-0.083410953290,-0.26543567685)$,
$x_{3}=(0.54717279573,-0.31256992008,0.61811207635$,
$-0.11560659356,-0.45549374666)$,
$x_{4}=(-0.46935807220,0.54221219466,0.54445240360$,
$-0.42586566248,-0.088988503134)$,
$x_{5}=(-0.34101304185,0.11643462042,0.019590672072$,
$0.68204303436,-0.63607121400)$;

begin

real procedure $\operatorname{sum}(i, m, n, a)$; value m, n; integer i, m, n; real a;
begin real $s ; s:=0$;
for $i:=m$ step 1 until n do $s:=s+a ;$ sum $:=s$ end sum;
real procedure $\max (a, b)$; value a, b; real a, b; $\max :=$ if $a>b$ then a else b;
procedure Householder tridiagonalization 2 (n, g, a, b, x, norm); value n; integer n; array g, a, b, x; real norm; comment nonlocal real procedure sum, max;
comment reduces the given real symmetric n by n matrix g to tridiagonal form using $n-2$ elementary orthogonal transformations $\left(I-2 w w^{\prime}\right)=\left(I\right.$ gamma $\left.u u^{\prime}\right)$. Only the lower triangular part of g need be given. The computed diagonal and subdiagonal elements of the reduced matrix are stored in $a[1: n]$ and $b[1: n-1]$ respectively. The transformations on the right are also applied to the n by n matrix x. The columns of the strictly lower triangular part of g are replaced by the nonzero portion of the vectors u. norm is set equal to the infinity norm of the reduced matrix;
begin integer i, j, k; real t, sigma, alpha, beta, gamma, absb; array $p[2: n]$;
norm $:=a b s b:=0$;
for $k:=1$ step 1 until $n-2$ do
begin $a[k]:=g[k, k]$;
$\operatorname{sigma}:=\operatorname{sum}(i, k+1, n, g[i, k] \uparrow 2)$;
$t:=a b s b+a b s(a[k]) ; a b s b:=\operatorname{sqrt}(\operatorname{sigma}) ;$
norm $:=\max (n o r m, t+a b s b) ;$ alpha $:=g[k+1, k]$;
$3[k]:=$ beta $:=$ if alpha <0 then $a b s b$ else $-a b s b$;
if sigma $\neq 0$ then
begin gamma $:=1 /($ sigma $-a l p h a \times b e t a)$;
$g[k+1, k]:=$ alpha-beta;
for $i:=k+1$ step 1 until n do
$p[i]:=\operatorname{gamma} \times(\operatorname{sum}(j, k+1, \quad i, \quad g[i, j] \times g[j, k])$ $+\operatorname{sum}(j, i+1, n, g[j, i] \times g[j, k]))$;
$t:=0.5 \times g a m m a \times \operatorname{sum}(i, k+1, n, g[i, k] \times p[i])$;
for $i:=k+1$ step 1 until n do $p[i]:=p[i]-t \times g[i, k]$;
for $i:=k+1$ step 1 until n do
for $j:=k+1$ step 1 until i do
$g[i, j]:=g[i, j]-g[i, k] \times p[j]-p l i] \times g[j, k] ;$
for $i:=2$ step 1 until n do
$p[i]:=\operatorname{gamma} \times \operatorname{sum}(j, k+1, n, x[i, j] \times g[j, k]) ;$
for $i:=2$ step 1 until n do
for $j:=k+1$ step 1 until n do
$x[i, j]:=\grave{a}[i, j]-p[i] \times g[j, k]$
end
end k;
$a[n-1]:=g[n-1, n-1] ; \quad a[n]:=g[n, n] ; \quad b[n-1]:=g[n, n-1] ;$
$t:=a b s(b[n-1])$;
norm $:=\max ($ norm,$a b s b+a b s(a[n-1])+t) ;$
norm $:=\max ($ norm, $t+a b s(a \mid n]))$
end Householder tridiagonalization 2;
integer $i, j, k, m, m 1$; real t, norm, eps, sine, cosine, lambda, $m u, a 0, a 1, b 0, b e t a, x 0, x 1$;
$\operatorname{array} a[1: n], b[0: n], c[0: n-1], c s, s n[1: n-1]$;
for $i:=1$ step 1 until n do
begin comment set x equal to the identity matrix;
$x[i, i]:=1$;
for $j:=i+1$ step 1 until n do $x[i, j]:=x[j, i]:=0$
end i;

```
    Householder tridiagonalization \(2(n, g, a, b, x\), norm \()\);
    eps \(:=\) norm \(\times 1.5_{10-11}\); comment the tolerance used in the
        \(Q R\) iteration is set equal to the product of the infinity norm
        of the reduced matrix and the relative machine precision
        (here assumed to be \(1.5_{10^{-}} 11\) which is appropriate for a machine
        with a 36 -bit mantissa) ;
    \(b[0]:=m u:=0 ; \quad m:=n\);
inspect: if \(m=0\) then go to return else \(i:=k:=m 1:=m-1\);
    if \(a b s(b[k]) \leqq e p s\) then
    begin
        \(g[m, m]:=a[m] ; \quad m u:=0 ; m:=k ;\) go to inspect
    end;
    for \(i:=i-1\) while \(a b s(b[i])>e p s\) do \(k:=i\);
    lambda \(:=\) if \(a b s(a\lfloor m]-m u)<0.5 \times a b s(a[m]) \vee m 1=k\) then
        \(a[m]+0.5 \times b[m 1]\) else 0.0 ;
    \(m u:=a[m] ; \quad a[k]:=a[k]-l a m b d a ; \quad\) beta \(:=b[k]\);
    for \(j:=k\) step 1 until \(m 1\) do
    begin comment transformation on the left;
        \(a 0:=a[j] ; \quad a 1:=a[j+1 \mid-l a m b d a ; \quad b 0:=b[j] ;\)
        \(t:=\operatorname{sqrt}(a 0 \uparrow 2+b e t a \uparrow 2)\);
        cosine \(:=c s[j]:=a 0 / t ;\) sine \(:=s n[j]:=\) beta \(/ t\);
        \(a[j]:=\) cosine \(\times a 0+\sin e \times b e t a ; \quad a[j+1]:==-\sin e \times b 0+\)
            cosine \(\times 1\);
        \(b\lfloor j]:=\operatorname{cosine} \times b 0+\sin e \times a 1 ;\) beta \(:=b[j+1]\);
        \(b[j+1]:=\) cosine \(\times\) beta; \(c[j]:=\) sine \(\times b e t a\)
    cnd \(j\);
    \(b[k-1]:=c[k-1]:=0\);
    for \(j:=k\) step 1 until \(m b l\) do
    begin comment transformation on the right;
        sine \(:=s n[j] ;\) cosine \(:=c s[j] ;\)
        \(a 0:=a[j] ; \quad b 0:=b \backslash j] ;\)
        \(b[j-1]:=b[j-1] \times \operatorname{cosin} e+c[j-1] \times\) sine ;
        \(a[j]:=a 0 \times\) cosine \(+b 0 \times\) sine \(+\operatorname{lambda} ;\)
        \(b[j]:=-a 0 \times\) sine \(+b 0 \times\) cosine \(; \quad a[j+1]:=a \mid j+1] \times\) cosine \(;\)
        for \(i:=1\) step 1 until \(n\) do
        begin \(x 0:=x[i, j] ; \quad x 1:=x[i, j+1]\);
            \(x[i, j]:=x 0 \times \operatorname{cosine}+x 1 \times \sin e ; \quad x[i, j+1]:=-x 0 \times\) sine +
                \(x 1 \times \operatorname{cosine}\)
        end \(i\)
    end \(j\);
    \(a[m]:=a[m]+l a m b d a ;\) go to inspect;
return: end symmetric \(Q R 2\)
```


CERTIFICATION OF ALGORITHM 254 [F2]

 EJGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX BY THE QR METHOD[P. A. Businger, Comm. ACM 8 (April 1965), 218] John H. Welscii (Recd. 3 June 1965, 1 Aug. 1966 and

1 Mar. 1967)
Stanford Linear Accelerator Center, Stanford, California
The procedure symmetric $Q R 2$ was transcribed into Algol for the Burroughs B5500 (39-bit mantissa) and tested with no syntax or logic changes (except to change the tolerance from $1.5_{10}-11$ to $1.83_{10}-12$). The eigenvalues of the matrix given in the initial comment of the procedure declaration were found to 8 units in the 11 th significant place and in the order given. The components of the eigenvectors found by the procedure differed from those given by at most 7 units in the 10 th significant place and that occurred in the smallest component of X_{2}. The computed vectors X_{3} and X_{4} were the negative of those given.

It was found (personal communication from Prof. W. Kahan, University of Toronto) that symmetric $Q R 2$ was slow to converge on matrices of large order with the form

The trouble observed seems to be caused by a poor choice of the shift, lambda, for accelerating convergence. The following change corrects this fault and did not change the results of these tests except that the eigenvalues are found in a different order. Replace the 8 lines following the line labeled inspect by:

if $a b s(b[k]) \leqq e p s$ then

begin $g[m, m]:=a[m] ; m:=k$; go to inspect end;
for $i:=i-1$ while $a b s(b[i])>e p s$ do $k:=i$;
comment find eigenvalues of lower 2×2;
$b 0:=b[m 1] \uparrow 2 ; \quad a 1:=\operatorname{sqrt}((a \mid m 1]-a[m]) \uparrow 2+4 \times b 0) ;$
$t:=a\lfloor m 1] \times a[m]-b 0 ; a 0:=a[m 1]+a[m] ;$
lambda $:=0.5 \times($ if $a 0 \geqq 0$, then $a 0+a 1$ else $a 0-a 1)$;
$t:=t / l a m b d a$; comment compute the shift;
if $a b s(t-m u)<0.5 \times a b s(t)$ then $m u:=l a m b d a:=t$
else if $a b s(l a m b d a-m u)<0.5 \times a b s(l a m b d a)$ then $m u:=l a m b d a$ else begin $m u:=t ; \quad$ lambda $:=0$ end;
$a[k]:=a[k]-$ lambda; beta $:=b[k]$;
The modified procedure (called QR 2 below) was compared with the procedures given by J. H. Wilkinson [Numer. Math. 4 (1962), 354-376] of the Householder tridiagonalization, Sturm sequence bisection, and inversc iteration algorithms. Evaluation of the Sturm sequence caused exponent underflows and overflows, so the procedures were modified (referred to as $H S I$ below) by scaling and overflow detection.

To measure the effectivencss of the procedures, two quantities, E_{1} and E_{2}, were evaluated for each of eleven matrices used as test data. These quantities are suggested by Prof. W. Kahan (in "Inclusion Theorems for Clusters of Eigenvalues of Hermitian Matrices," University of Toronto, Feb. 1967) and are defined as follows. Let A be a Hermitian matrix, A a diagonal matrix of its approximate eigenvalues and V a matrix whose columns are approximate eigenvectors ordered to correspond with Λ. Define $W=V^{*} V-I$ and $R=A V-V \Lambda$, then

$$
E_{1}=\|W\|_{2} \text { and } E_{2}=\|R\|_{2} /\|\Lambda\|_{2}
$$

where $\|X\|_{2}^{2}=$ maximum eigenvalue of $X^{*} X$. Then it is shown that the maximum absolute error in an eigenvalue is less than or equal to

$$
\frac{E_{2}\|\Lambda\|_{2}}{\sqrt{1-E_{1}}} \quad \text { if } E_{1}<1
$$

The computation of W and R was done with double-precision inner products.

The results of the tests are summarized as follows:
(a) Both QR 2 and $H S I$ found the dominant eigenvalues to better relative accuracy, but the same or worse absolute accuracy than the other eigenvalues.
(b) $Q R 2$ was on the average 1.8 times faster than $H S I(Q R 2$ required 2.5 seconds on a Hilbert segment of order 15).
(c) $Q R 2$ always found orthogonal eigenvectors ($E_{1} \sim 10^{-11}$);
(d) in most cases $E_{1} \sim 10^{-11}$ for $H S I$ also, but several times $H S I$ found two eigenvectors almost parallel ($E_{1} \sim 1.0$).
(e) $E_{2} \sim 10^{-11}$ for both $Q R 2$ and $H S I$ with neither being consistently better than the other.

Conclusions. The orthonormalized eigenvectors, speed, and comparable accuracy would recommend symmetric $Q R 2$ over the Wilkinson procedures for finding all of the eigenvalues and eigenvectors of a real symmetric matrix. The latter procedures are good for finding selected eigenvalues and eigenvectors.

ALGORITHM 255

COMPUTATION OF FOURIER COEFFICIENTS [C6]
Linda Teijelo (Recd. 18 Nov. 1964 and 25 Nov. 1964)
Stanford Computation Ctr., Stanford U., Calif.
procedure $F O U R I E R(F$, eps, subdivmax, m, cosine, sine, cint, $\sin t)$;
value eps, subdivmax, m, cosine, sine; real $\epsilon p s$, cint, sint;
Boolean cosine, sine; integer subdivmax, n;
real procedure F;
comment FOURIER computes the Fourier coefficients cint $=$ $\int_{0}^{1} F(x) \cos (m \pi x) d x$ (if cosine is true) and./or $\sin t=\int_{0}^{1} F(x)$ $\sin (m \pi x) d x$ (if sine is true), where $m>0$. The method is that of Filon (for a brief exposition see [1] and for Filon's original work see [2] or [3]). Computation is terminated when the number of times the interval $[0,1]$ has been halved (n) has exceeded subdivmax (10 is suggested), or when $n>5$ and two successive approximations of the integral agree to within eps $\left(10^{-7}\right.$ is suggested) times the value of the last approximation. In the former case, cint or sint is assigned the value of the last approximation. The condition $n>5$ is imposed because of substantial cancellations which may take place during the early stages of subdividing;
begin real sumcos, sumsine, oddcos, oddsine, $p i, a, b, g, t, h, p, k$, $c 0, c 1, s 0, s 1$, int1, int 2 , prevint 1 , prevint 2, tn 1 , t3, temp;
integer n, i; Boolean bool;
bool $:=$ false; $p i:=3.14159265359 ; k:=m \times p i$;
sumcos $:=(F(1.0) \times \cos (k)+F(0)) \times .5 ;$
sumsine $:=F(1.0) \times \sin (k) \times .5$;
$L 0: n:=1 ; h:=0.5 ; \quad t:=.5 \times k ; t n 1:=1$;
$L 1: c 0:=\cos (2.0 \times t) ; \quad c 1:=\cos (t)$;
$s 0:=\sin (2.0 \times t) ; \quad s 1:=\sin (t) ;$
$t 3:=t \uparrow 3 ; \quad p:=c 1 \times s 1$;
$a:=(t \uparrow 2-s 1 \uparrow 2 \times 2.0+t \times p) / t 3$;
$b:=(2.0 \times(t \times(c 1 \uparrow 2+1.0)-2.0 \times p)) / t 3$;
$g:=4.0 \times(-t \times c 1+s 1) / t 3$;
if bool then go to $L 2$;
if sine then
begin
oddsine $:=F^{\prime}(h) \times s 1$;
for $i:=2$ step 1 until $\operatorname{tn} 1$ do
begin temp $:=c 1 \times c 0-s 1 \times s 0$;
$s 1:=s 1 \times c 0+c 1 \times s 0 ;$
$c 1:=$ temp;
oddsine $:=F((2 \times i-1) \times h) \times s 1+$ oddsine end;
if $n=1$ then
begin $n:=2 ; \quad h:=.25 ; \quad t:=.25 \times 1 ; \quad t n 1:=2$;
prevint $2:=(a \times(F(0)-F(1.0) \times \cos (k))+$
$b \times$ sumsine $+g \times$ oddsine $) \times .5$;
sumsine $:=$ sumsine + oddsine; go to $L 1$
end
else
begin int2 $:=h \times(a \times(F(0)-F(1.0) \times \cos (k))+$.
$b \times$ sumsine $+g \times o d d \sin e)$;
if $a b s($ prevint $2-i n t 2)<e p s \times i n t 2 \wedge n>5$ then
begin $\sin t:=$ int 2 ; bool $:=$ true; go to $L 0$ end else

$\operatorname{begin} n:=n+1$;

if $n>$ subdivmax then
begin bool $:=$ true;
$\sin t:=i n t 2 ;$ go to $L 0$
end;
sumsine $:=$ sumsine + oddsine $; h:=.5 \times h$;
$t:=.5 \times t ; \quad \operatorname{tn} 1:=2 \times \operatorname{tn} 1 ;$
prevint $2:=$ int 2 ; go to $L 1$

end

end
end of sine computations;
$L 2$: if cosine then
begin
oddcos $:=F(h) \times c 1$;
for $i:=2$ step 1 until $t n 1$ do
begin temp $:=c 1 \times c 0-s 1 \times s 0$;
$s 1:=s 1 \times c 0+c 1 \times s 0 ;$
$c 1:=$ temp;
oddcos $:=F((2 \times i-1) \times h) \times c 1+o d d c o s$
end;
if $n=1$ then
begin $n:=2 ; \quad h:=.25 ; \quad t:=.25 \times k ; \quad \operatorname{tn} 1:=2$;
prevint $1:=(a \times F(1.0) \times \sin (k)+b \times s u m \cos +g \times o d d c o s)$ $\times .5$;
sumcos $:=$ sumcos + oddcos; bool $:=$ true; go to $L 1$ end
else
begin int1 $:=h \times(a \times F(1.0) \times \sin (k)+b \times s u m c o s+g \times$ oddcos);
if $a b s($ prevint $\mathbf{1}-i n t 1)<e p s \times i n t 1 \wedge n>5$ then
begin cint $:=$ int 1 ; go to exit end
else
$\operatorname{begin} n:=n+1$;
if $n>$ subdivmax then begin cint $:=$ int 1 ;
go to exit end;
sumcos $:=$ sumcos + oddcos; $h:=.5 \times h ;$
$t:=.5 \times t ; \quad t n 1:=2 \times \operatorname{tn} 1 ;$
prevint1 $:=$ int1; go to $L 1$
end
end
end of cosine computations;
exit: end FOURIER

References:

1. Hamming, R. W. Numerical Methods for Scientists and Engineers. McGraw-Hill, 1962, pp. 319-321.
2. Tranter, C. J. Integral Transforms in Mathematical Physics. Methuen \& Co., Ltd., 1951, pp. 67-72.
3. Filon, L. N. G. On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinburgh 49, 1928-29, 38-47.

CERTIFICATION OF ALGORITHM 255 [C6]

COMPUTATION OF FOURIER COEFFICIENTS
[Linda Teijelo, Comm. ACM 8 (May 1965), 279]
Gillian Hall* and Valerie A. Ray \dagger (Recd. 31 Mar.
1969 and 1 July 1969)
National Physical Laboratory, Teddington, Middlesex, England

* M.R.C. team, Division of Computer Science (formerly of Division of Numerical and Applied Mathematics).
\dagger Division of Numerical and Applied Mathematics.
KEY WORDS AND PHRASES: numerical integration, Fourier coefficients, Filon's method
$C R$ CATEGORIES: 5.16

The algorithm was translated using the KDF9 Kidsgrove Algol compiler, and needed the following correction.

The tests for convergence on lines 51 and 83 should read respectively:
if $\operatorname{abs}($ prevint $2-i n t 2)<e p s \times a b s($ int 2$) ~ \wedge n>5$ then
if $a b s($ prevint $1-i n t 1)<e p s \times a b s($ int 1$) \wedge n>5$ then
With this alteration, the program was tested successfully on a series of functions $F(x)$ using a range of values of m and eps for each function. The parameter subdivmax was set at the recommended value, 10. For $F(x)=x^{2}$, for which the method is exact, results were obtained correct to machine accuracy, i.e. $10 \frac{1}{2}$ decimal places.

Remarks. (i) It would be better to declare the identifier $t n 1$ as type integer, i.e. to replace lines 20 and 21 of the text by:
$c 0, c 1, s 0, s 1$, int1, int 2 , prevint 1, prevint $2, t 3$, temp;
integer $n, i, t n 1$; Boolean bool;
(ii) There is no indication, after execution of the algorithm, whether the computation was terminated because of apparent convergence or because the number of times, n, that the interval was halved became greater than subdivmax. The following modification provides such an indication; it has the effect that cosine and sine will retain their entry values except in the case where cosine or sine has the value true on entry and n becomes greater than subdivmax in the course of computation. In this case the value on exit will be false.

Line 3 becomes:
value $e p s$, subdivmax, m; real eps, cint, sint;
Line 57 becomes:

```
sint \(:=\) int 2 ; sine \(:=\) false; go to \(L 0\)
```

Line 88 becomes:
cosine := false; go to exit end;
(iii) To avoid the repeated evaluation of $F(0), F(1.0)$ the following modification is suggested:

Declare a new variable term 1 of type real on line 20.
Replace lines 23 and 24 by:
term $1:=F(1.0) \times \cos (k)$;
sumcos $:=(F(0)+$ term 1$) \times 0.5$;
sumsine $:=0$;
term1 := $2 \times$ (sumcos-term1);
Replace lines 44,45 and 49,50 by:
prevint $2:=(a \times$ term $1+b \times$ sumsine $+g \times$ oddsine $) \times 0.5$;
begin int $2:=h \times(a \times$ term $1+b \times$ sumsine $+g \times$ oddsine $)$;
Replace lines 76, 77 and 81,82 by:
prevint $1:=(b \times$ sumcos $+g \times$ oddcos $) \times 0.5$;
begin int1 $:=h \times(b \times$ sumcos $+g \times$ oddcos $)$;
The work described above has been carried out at the National Physical Laboratory.

ALGORITHM 256

MODIFIED GRAEFFE METHOD [C2]

A. A. Grau (Recd. 29 July 1964, 23 Oct. 1964 and 18 Jan. 1965)

Northwestern University, Evanston, Illinois

The algorithm given here mechanizes a modified form of the Graeffe process designed to avoid an expanding number range. This was discussed in [1]; the notation used below is the same as in that article.

Let the given polynomial be

$$
a_{0} x^{n}+\cdots+a_{n}
$$

the degree n and the array of coefficients a are input parameters of the procedure. An additional input parameter w is used to determine the number of stages needed to obtain a desired order of resolution; this may be considered to be roughly the number of significant decimal places expected in the zeros of the polynomial.

The algorithm finds the moduli, $d_{s} \quad(s=1, \cdots, n)$, of the zeros of the polynomial and the number of stages used for this, p. If the algorithm succeeds, the output parameter q is set equal to 0 ; otherwise, the value of q serves as the indicator for the reason of failure: $q=1$ if the polynomial has a zero-valued coefficient, and $q=2$ if a zero-valued divisor is encountered somewhere in the process. In either case, the moduli of the zeros are not found. Apart from these two cases, the algorithm applies generally; this includes the cases where some zeros have equal moduli or are imaginary.

The algorithm has been tested with polynomials of degree up to 10 , including ill-conditioned cases such as polynomials with one or more sets of multiple or imaginary zeros. The algorithm has been compiled as it stands using both the Oak Ridge Algol Translator for the Control Data 1604 and the Share Algol Translator for the IBM 709/7090. In the case of the latter, one change as noted in a comment had to be made; this is presumably no longer necessary in a revision of the translator.

Garwick's device [2] is used as convergence criterion in both root extraction and the basic process. From w and the number of stages determined from it, it is possible to conclude whether some zeros may be considered to be of equal moduli; in such cases an adjustment of their values is possible and is made.

The quantities used in the modified Graeffe process are related to those occurring in the ordinary root-squaring process. This implies that in general the limitations of the Graeffe process (see, for example [3, pp. 67-69]) hold also in the modified process; the most serious of these is that initially the condition of successive polynomials may deteriorate.

An expanding number range is avoided by introducing at each step arithmetic divisions. It follows that if $c_{\text {; }}$ is near zero, overand underflow can occur in computing subsequent quantities. In the usual machine system, such a condition results in the automatic termination of computation; in this case this is not serious. In an Algol system where this is not true, a very unsatisfactory arrangement generally, machine-dependent facilities must be added to the algorithm to obtain the same effect; the Algol language contains no way of doing this. Theoretically a bridging mechanism is possible to work around near-zero divisors, but this has not been attempted here.

The modified process can be expected to perform somewhat better than the standard process in the case of equal moduli.
procedure Modified Graeffe (w, n, a, d, p, q);
value $w, n ;$ integer $w, n, p, q ;$ array a, d;
begin
real $a a$; eps, eps2, $h, h 1, h 2, h h 2, m, n h 2$;
integer $i, k, k 0, k 00, s, s 3$;
array $c[0: n], d 1, h h[1: n], e[1: n, 1: n / 2]$; comment Using the Share processor, the last subscript bound $n / 2$ was replaced by entier ($n / 2$);
eps $:=e p s 2:={ }_{10}-5$;
$k 00:=40$; comment This is the maximum number of stages needed on the CDC 1604 where about 10 significant decimal figures may be obtained. On the IBM machines it is less, but the figure was not changed for such use;
for $s:=0$ step 1 until n do
begin if $a[s]=0$ then begin $q:=1$; go to out end end;
Determine the number of stages:
$k 0:=$ entier $(3.56 \times w+3.21)$;
if $k 0>k 00$ then $k 0:=k 00$;
Initialization:
for $s:=1$ step 1 until n do
begin
if $s+s>n$ then $s 3:=n-s$ else $s 3:=s$;
for $i:=1$ step 1 until $s 3$ do
$e[s, i]:=a[s+i] \times a[s-i] /(a[s+i-1] \times a[s-i+1]) ;$ $d 1[s]:=a b s(a[s] / a[s-1])$
end;
$c[0]:=c[n]:=1$;
$m:=1$;
Main loop:
for $k:=1$ step 1 until $k 0$ do
begin
$m:=m / 2$;
for $s:=1$ step 1 until $n-1$ do
begin
if $s+s>n$ then $s 3:=n-s$ else $s 3:=s ;$
$h:=0$;
for $i:=s 3$ step -1 until 1 do
$h:=(1-h) \times e[s, i] ;$
$c[s]:=1-2 \times h ;$
if $c[s]=0$ then
begin $q:=2$; go to out end
end;
for $s:=1$ step 1 until n do
begin
if $s+s>n$ then $s 3:=n-s$ else $s 3:=s$;
for $i:=1$ step 1 until $s 3$ do
begin
$h:=(c[s+i] / c[s+i-1]) \times e[s, i] ;$
$e[s, i]:=(c[s-i] / c[s-i+1]) \times e[s, i] \times h ;$
end;
comment In the paper [1] on which the algorithm is based, there is an error in equation (13) and results derived from it. The equation should be

$$
e_{s i}^{(k+1)}=\left[e_{s i}^{(k)}\right]^{2} \frac{c_{s+i}^{(k+1)} c_{s-i}^{(k+1)}}{c_{s+i-1}^{(k+1)} c_{s-i+1}^{(k+1)}}
$$

Root extraction:
$a a:=a b s(c[s] / c[s-1]) ;$
comment If the \uparrow operation is suitably implemented for fractional exponent, the following 12 lines may be replaced by

$$
\begin{aligned}
& \quad h h[s]:=h 1:=a a \uparrow(1 / 2 \uparrow k) \\
& h 1:=h:=1+(a a-1) \times 10-2 \times m \\
& n h 2:=1
\end{aligned}
$$

$A B:$ for $i:=1$ step 1 until k do $h:=h \times h$;
$h 2:=(a a / h-1) \times m ;$
$h:=h 1:=h 1+h 1 \times h 2$;
$h h 2:=a b s(h 2)$;
if $h h 2>e p s$ then go to $A B$;
if $h h 2<n h 2 \wedge h h 2 \neq 0$ then
begin
$n h 2:=h h 2 ;$ go to $A B$
end;
$h h[s]:=h \mathbf{1}$;
$d 1[s]:=d 1[s] \times h 1$
end;
$h:=0$;
for $s:=1$ step 1 until n do
begin
$h 1:=a b s(h h[s]-1)$;
if $h 1>e p s$ then go to $A C$;
if $h 1>h$ then $h:=h 1$
end;
if $h<e p s 2 \wedge h \neq 0$ then
begin eps $2:=h$; go to $A C$ end;
go to Root determination;
$A C$: end Main loop;
$k:=k 0$;
Root determination:

```
    q:= 0; p:=k; s:=1;
```

$B A:$ for $i:=s$ step 1 until n do begin
if $a b s(c[i]-1)<e p s 2$ then
begin $k:=i$; go to $A E$ end
end;
$k:=n$;
$A E:$ if $k=s$ then
begin
$d[s]:=d 1[s] ;$ go to $A G$
end
else
begin $a a:=1 ;$
for $i:=s$ step 1 until k do
$a a:=a a \times d 1[i]$;
comment If the \uparrow operation is suitably implemented for fractional exponents, the following 13 lines may be replaced by
$h 1:=d 1[s] ;$
$n h 2:=1$;
$A F: h:=1$;
for $i:=s$ step 1 until k do
$h:=h \times h 1$;
$h 2:=(a a / h-1) /(k-s+1) ;$
$h 1:=h 1+h 1 \times h 2$;
$h h 2:=a b s(h 2)$;
if $h h 2>e p s$ then go to $A F$;
if $h h 2<n h 2 \wedge h h 2 \neq 0$ then
begin
$n h 2:=h h 2 ;$ go to $A F$
end;
for $i:=s$ step 1 until k do $d[i]:=h 1$
end;

TABLE 1

n	Coefficients (a_{s})	Actual Zeros	p	Computed M	Moduli (d_{s})
Results from CDC 1604					
4	$1-1-5-1-6$	$\pm i-23$	29	3.000000000 - 1.000000000	2.000000000 1.000000000
4	12322	$\pm i-1 \pm i$	35	1.414213563 1.000001068	$\begin{gathered} 1.414213563 \\ .9999989324 \end{gathered}$
4	14641	-1 (four-fold)	35	$\begin{gathered} 1.002108373 \\ .9999999400 \end{gathered}$	$\begin{aligned} & .9999999404 \\ & .9978961853 \end{aligned}$
5	$1-5-15125-226120$	$1234-5$	9	5.000000000 2.999999999 1.000000000	4.000000001 2.000000000
5	15101051	-1 (five-fold)	21	$\begin{gathered} 1.003023179 \\ 1.000737942 \\ .9977555433 \end{gathered}$	$\begin{gathered} 1.000737942 \\ .9977555433 \end{gathered}$
6	$11-4535524-1236720$	$1234-5-6$		5.999999999 3.999999998 2.000000000	5.000000004 3.000000001 1.000000000
6	1615201561	-1 (six-fold)	22	1.009739721 1.000072156 .9902827716	1.009739721 1.000072156 .9902827715
Resulta from IBM 709					
6	1615201561	-1 (six-fold)	22	1.0442011 1.0219216 . 97855264	$\begin{gathered} 1.0219216 \\ .97855264 \\ .95767000 \end{gathered}$
10	11045120210252210120 45101	-1 (ten-fold)	23	$\begin{array}{r} 1.1896983 \\ 1.0977241 \\ 1.0001204 \\ .91099190 \\ .84044056 \end{array}$	$\begin{gathered} 1.1896983 \\ 1.0977241 \\ 1.0001204 \\ .91099190 \\ .84044056 \end{gathered}$
10	$1-551320-18150157773$ -902055 3416930-8409500 12753576 - 106286403628800	$\begin{aligned} & 123445678 \\ & 910 \end{aligned}$	10	10.001153 8.0090868 6.0027695 3.9999811 2.0000007	8.9947183 6.9926022 4.9996995 2.9999883 1.0000000

$A G$: if $k=n$ then go to out;
$s:=k+1$;
go to $B A$;
out:
end Modified Graeffe
Tests. Some of the tests (Table 1) were run on the CDC 1604 using an earlier version of the algorithm; minor improvements incorporated afterwards should not affect the results substantially. The results obtained using the Share Algol translator and the IBM 709 suffer in comparison to those obtained on the 1604 for two main reasons: (1) significance of floating-point numbers is 27 bits vs. 35 , and (2) input conversion routines introduce greater perturbations into input numbers. The last cases given are very poorly conditioned, so that the rather poor results should not be especially surprising.

Thanks and acknowledgements are due to several members of the Mathematics Division of Oak Ridge National Laboratory for running tests on the Control Data 1604, and to Mrs. Virginia Klema for running tests on the IBM 709 computer at Northwestern University.

References:

1. Grau, A. A. On the reduction of number range in this use of the Graeffe process. J. ACM 10 (1963), 538-544.
2. Garwick, J. V. The limit of a converging sequence. Nord Tidskr. Informationsbehandlung (BIT) 1 (1961), 64.
3. Wilkinson, J. H. Rounding Errors in Algebraic Procesess. Prentice-Hall, New York, 1964.

REMARK ON ALGORITHM 256 [C2]
MODIFIED GRAEFFE METHOD [A. A. Grau, Comm. ACM 8 (June 1965), 379]
G. Stern (Recd. 8 Mar. 1965 and 24 Mar. 1965)

University of Bristol Computer Unit, Bristol 8, England
This procedure was tested on an Elliott 503 using the two simplifications noted in the comments on page 380 . When the 16 th line from the bottom of page 380 , first column, was changed to read $h 1:=a a \uparrow(1 /(k-s+1)) ;$
(as suggested in a private communication from the author) correct results were obtained.

```
ALGORITHM 257
HAVIE INTEGRATOR [D1]
Robert N. Kubik (Recd. 9 June 1964 and 21 Dec. 1964)
The Babcock \& Wilcox Co. Lynchburg, Viriginia
real procedure havieintegrator ( \(x, a, b\), eps, integrand, \(m\) );
    value \(a, b\), eps, \(m\); integer \(m\);
    real integrand, \(x, a, b, e p s\);
comment This algorithm performs numerical integration of defi-
    nite integrals using an equidistant sampling of the function and
    repeated halving of the sampling interval. Each halving allows
    the calculation of a trapezium and a tangent formula on a finer
    grid, but also the calculation of several higher order formulas
    which are defined implicitly. The two families of approximate
    solutions will normally bracket the value of the integral and
    from these convergence is tested on each of the several orders of
    approximation. The algorithm is based on a private communica-
    tion from F. Håvie of the Institutt for Atomenergi Kjeller Re-
    search Establishment, Norway. A Fortran version of the al-
    gorithm is in use on the Philco-2000. A few test cases have been
    run on the Burroughs B5000. In particular, \(a\) and \(b\) are the lower
    and upper limits of integration, respectively, eps is the con-
    vergence criterion, integrand is the value of the function to be
    integrated (sampled), and \(m\) is the maximum order approxima-
    tion to be considered in attempting to satisfy the eps conver-
    gence criterion. If convergence is not gained, then the value
    returned is that of the nonlocal variable, mask. The parameter
    integrand must be an expression involving the variable of in-
    tegration \(x\). See the driver program of this algorithm for ex-
    amples of the procedure call;
begin real \(h\), endpts, sumt, sumu, \(d\);
    integer \(i, j, k, n\);
    real array \(t\), u, tprev, uprev \([1: m]\);
    \(x:=a ;\) endpts \(:=\) integrand \(; \quad x:=b ;\) endpts \(:=0.5 \times\)
        (integrand+endpts);
    sumt \(:=0.0 ; \quad i:=n:=1 ; \quad h:=b-a ;\)
estimate: \(t[1]:=h \times(\) endpts + sumt \() ;\) sumu \(:=0.0\);
    comment \(t[1]=h \times\left(0.5 \times f[0]+f[1]+f[2]+\cdots+0.5 \times f\left[2^{i-1}\right]\right) ;\)
    \(x:=a-h / 2.0\);
    for \(j:=1\) step 1 until \(n\) do
    begin
        \(x:=x+h ;\) sumu \(:=\) sumu + integrand
    end;
    \(u[1]:=h \times\) sumu; \(k:=1\);
    comment \(u[1]=h \times\left(f[1 / 2]+f[3 / 2]+\cdots+f\left[\left(2^{i}-1\right) / 2\right]\right), k\)
        corresponds to approximate solution with truncation error
        term of order \(2 k\);
test: if \(a b s(t[k]-u[k]) \leq e p s\) then
    begin
        havieintegrator : \(=0.5 \times(t[k]+u[k])\); go to exit
    end;
    if \(k \neq i\) then
    begin
        \(d:=2 \uparrow(2 \times k) ;\)
        \(t[k+1]:=(d \times t[k]-\) tprev \([k]) /(d-1.0) ;\)
        tprev \([k]:=t[k]\);
        \(u[k+1]:=(d \times u[k]-u p r e v[k]) /(d-1.0) ;\)
        uprev \([k]:=u[k]\);
ALGORITHM 257
HAVIE INTEGRATOR [D1]
Robert N. Kubik (Recd. 9 June 1964 and 21 Dec. 1964)
The Babcock \& Wilcox Co. Lynchburg, Viriginia
real procedure havieintegrator ( \(x, a, b\), eps, integrand, \(m\) );
value \(a, b\), eps, \(m\); integer \(m\);
real integrand, \(x, a, b\), eps;
comment This algorithm performs numerical integration of defi-
nite integrals using an equidistant sampling of the function and
repeated halving of the sampling interval. Each halving allows
the calculation of a trapezium and a tangent formula on a finer
grid, but also the calculation of several higher order formulas
which are defined implicitly. The two families of approximate
solutions will normally bracket the value of the integral and
from these convergence is tested on each of the several orders of
approximation. The algorithm is based on a private communica-
tion from F. Håvie of the Institutt for Atomenergi Kjeller Re-
search Establishment, Norway. A Fortran version of the al-
gorithm is in use on the Philco-2000. A few test cases have been
run on the Burroughs B5000. In particular, \(a\) and \(b\) are the lower
and upper limits of integration, respectively, eps is the con-
vergence criterion, integrand is the value of the function to be
integrated (sampled), and \(m\) is the maximum order approxima-
tion to be considered in attempting to satisfy the eps conver-
gence criterion. If convergence is not gained, then the value
returned is that of the nonlocal variable, mask. The parameter
integrand must be an expression involving the variable of in-
tegration \(x\). See the driver program of this algorithm for ex-
amples of the procedure call;
begin real \(h\), endpts, sumt, sumu, \(d\);
integer \(i, j, k, n\);
real array \(t\), u, tprev, uprev \([1: m]\);
(integrand+endpts);
sumt \(:=0.0 ; \quad i:=n:=1 ; h:=b-a ;\)
estimate: \(t[1]:=h \times(\) endpts + sumt \() ;\) sumu \(:=0.0\);
comment \(t[1]=h \times\left(0.5 \times f[0]+f[1]+f[2]+\cdots+0.5 \times f\left[2^{i-1}\right]\right)\);
for \(j:=1\) step 1 until \(n\) do
begin
\(x:=x+h ;\) sumu \(:=\) sumu + integrand
[1]
comment \(u[1]=h \times\left(f[1 / 2]+f[3 / 2]+\cdots+f\left[\left(2^{i}-1\right) / 2\right]\right), k\) corresponds to approximate solution with truncation error term of order \(2 k\);
\(t e s t:\) if \(a b s(t[k]-u[k]) \leq e p s\) then
begin
havieintegrator \(:=0.5 \times(t[k]+u[k]) ;\) go to exit
end
begin
\(a:=2 \uparrow(2 \times k)\);
tprev \([k]:=t[k]\);
uprev \([k]:=u[k]\);
```

comment This implicit formulation of the higher order integration formulas is given in [Romberg, W. Vereinfachte Numerische Integration. Det Kong. Norske Videnskabers Selskabs Forhandl. 28, 7 (1955), Trondheim; and in Stiefel, E. Einführung in der Numerische Mathematik. Teubner Verlagsges., Stuttgart, 1961, pp. 131-136. (English translation: An Introduction to Numerical Mathematics, Academic Press, New York, 1963, pp. 149-155)]. See also Algorithm 60 where the same implicit relationship is used to calculate $t[k+1]$ only;
$k:=k+1$;
if $k=m$ then
begin
havieintegrator := mask; go to exit
end;
go to test
end;
$h:=h / 2.0 ;$ sumt $:=$ sumt + sumu;
tprev $[k]:=t[k] ;$ uprev $[k]:=u[k]$;
$i:=i+1 ; \quad n:=2 \times n$;
go to estimate;
exit: end havieintegrator
Following is a driver program to test havieintegrator.
begin comment First test case, $y=\int_{0}^{\pi / 2} \cos x d x=1.0$ (0.9999999981 as executed on the B5000), is an example of the higher order approximations yielding fast convergence as in Algorithm 60; second test case, $y=\int_{0}^{4}{ }_{0}^{3} e^{-x^{2}} d x=.8862269255$
(. 8862269739 as executed on the B5000), is an example where this algorithm is superior to Algorithm 60 because the higher order approximations converge more slowly than the linear approximations; see also [Thacher, H. C., Jr., Remark on
Algorithm 60. Comm. A.C.M. 7 (July 1964), 420];
real a, b, eps, mask, y, answer;
$a:=0.0 ; \quad b:=1.5707963 ;$ eps $:=0.000001 ;$ mask $:=9.99$;
answer $:=$ havieintegrator ($y, a, b, e p s, \cos (y), 12)$;
outreal (1, answer);
$a:=0.0 ; \quad b:=4.3$;
answer $:=$ havieintegrator ($y, a, b, \operatorname{eps}, \exp (-y \times y), 12)$;
outreal (1, answer);
end

CERTIFICATION OF ALGORITHM 257 [D1]

HAVIE INTEGRATOR [Robert N. Kubik, Comm. ACM 8 (June 1965), 381]
Kenneth Hillstrom (Recd. 28 Feb. 1966, 29 Apr. 1966 and 15 July 1966)
Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois
Work performed under the auspices of the U.S. Atomic Energy Commission.
Havie Integrator was coded in CDC 3600 Fortran. This routine and a Fortran-coded Romberg integration routine based upon Algorithm 60, Romberg Integration [Comm. ACM 4 (June 1961), 255] were tested with five and four integrands, respectively.

The results of these tests are tabulated below. (The Alqolcoded Havie routine was transcribed and tested for the two integrands used by Kubik, with identical results in both cases.)

In the following table, A is the lower limit of the interval of integration, B is the upper limit, $E P S$ the convergence criterion, $V I$ the value of the integral and $V A$ the value of the approximation.

Integrand	A !	B	EPS	VI	Routine	$V A$	Number of Func- tion Evalu- ations
$\cos x$	0	$\pi / 2$	10^{-6}	1.0	Havie	0.9999999981	17
					Romberg	1.000000000	17
$e^{-x^{2}}$	0	4.3	10^{-8}	0.886226924	Havie	0.886226924	17
					Romberg	0.886336925	65
$\ln x$	1	10	10^{-6}	14.0258509	Havie	14.02585084	65
					Romberg	14.02585085	65
$\left(\frac{(x)^{1 / 2}}{e^{x-4}+1}\right)$	0	20	10^{-6}	5.7707276	Havie	5.770724810	32,769
					Romberg	5.770724810	16,385
$\cos (4 x)$	0	π	10^{-6}	0.0	Havie	3.1415926536	$3{ }^{\text {a }}$

a Since in the Havie procedure, the sample points of the interval, chosen for function evaluation, are determined by halving the interval and are, therefore, function-independent, there are functions for which the convergence criterion is satisfied before the requisite accuracy is obtained. An example is the integrand $f(x)==\cos (4 x)$ integrated over the interval $[0, \pi]$. The value obtained from the routine is $=\pi$. The true value of the integral is 0 .

This inherent limitation applies to all integration algorithms that obtain sample points in a fixed manner.

CERTIFICATION OF ALGORITHM 257 [D1]

HAVIE INTEGRATOR [Robert N. Kubik, Comm.

 ACM 8 (June 1965), 381]I. Farkas (Recd. 29 Apr. 1966 and 18 Aug. 1966) Institute of Computer Science, University of Toronto, Toronto 5, Ont., Canada

Havieintegrator was translated with some modifications into Fortran IV and was run on the IBM 7094 II at the Institute of Computer Science, University of Toronto. To reduce the effect of roundoff, the calculations were carried through in double precision internally and the result was rounded to single precision. The main change made was that the parameters x and integrand in havieintegrator were replaced by a single parameter of type FUNCTION in Fortran IV. The other change was that mask was removed. The maximum order of approximation was kept less than or equal to 25 , and convergence was obtained in every case.

The results obtained for the two test cases were in agreement with the author's result. Besides, 14 other successful tests were made and those shown in Table I are typical.

	TABLE I					
Integrand	A	B	True value	eps	Error $\times 10^{8}$	Order required
e^{x}	0.0	1.0	1.7182818	10^{-6}	0	3
				10^{-4}	240	2
				10^{-2}	3700	2
x^{12}	0.01	1.1	.26555932	10^{-6}	-2	1
				10^{-4}	59	3
$\sqrt{ } x$	0.0	1.0	.66666667	10^{-2}	36041	2
				10^{-6}	-27	3
				10^{-4}	-1982	2
$1 / \sqrt{ } x$	0.01	1.0	1.8000000	10^{-6}	-126848	2
				10^{-4}	0	3
				10^{-2}	140	2
					790	2

Like other integration algorithms that determine sample points in the interval in a deterministic manner, havieintegrator may fail in certain instances. For example, any integrand with the property that $f(a)=f(b)=f[(a+b) / 2)]$ will lead to the value $(b-a) f(a)$ which will in general not be an acceptable approximation to $\int_{a}^{b} f(x) d x$. Thus $\int_{0}^{2 \pi} \sin ^{2} x d x$ leads to 0 . Moreover, $\int_{0}^{90} x e^{-x} d x$ leads to "almost zero" (in fact, 5.7966×10^{-17}).

ALGORITHM 258
 TRANSPORT [H]

G. Bayer (Reed. 4 May 1964 and 4 Mar. 1965);

Technische Hochschule, Braunschweig, Germany

```
procedure transport ( \(c, x, a, b, m, n\), inf, cost)
    value \(m, n\), inf; integer \(m\), \(n\), inf, cost;
        integer array \(c, x, a, b\);
comment The parameters are \(c[i, j]\) array of costs, the quantities
    available \(a[i]\), the quantities required \(b[j], \quad i=1, \cdots, m, j=\)
    \(1, \cdots, n\). Sum of \(a[i]=\) sum of \(b[j]\). inf has to be the greatest
    positive integer within machine capacity, all quantities have to
    be integer. The flows \(x[i, j]\) are computed by the "primal-dual-
    algorithm," cited in [Hadley, G. Linear Programming. Read-
    ing, London, 1962, pp. 351-367]. The procedure follows the de-
    scription given on p. 357. Multiple solutions are left out of
    account;
begin integer \(i, j, p, h, k, y, t, l\);
    integer array \(v, x s j, s, r, l i s t v[1: n], u, x i s, d, g\), listu[1:m];
    Boolean array \(x b[1: m, 1: n]\);
    integer procedure \(\operatorname{sum}(i, a, b, x) ;\) value \(a, b\);
        integer \(i, a, b, x\);
        begin integer \(s\);
            \(s:=0\);
                for \(i:=a\) step 1 until \(b\) do \(s:=s+x\);
                sum := s
        end;
    comment Array \(x b\) for notation of "circled cells," listu and
        list lists of labeled rows and columns. Other notations follow
        Hadley;
    for \(i:=1\) step 1 until \(m\) do \(x i s[i]:=a[i]\)
    for \(j:=1\) step 1 until \(n\) do \(x s j[j]:=b[j]\);
    for \(i:=1\) step 1 until \(m\) do
    begin \(h:=\) inf; for \(j:=1\) step 1 until \(n\) do
        legin \(x[i, j]:=0 ; \quad p:=c[i, j] ;\) if \(p<h\) then \(h:=p\) end;
        \(u[i]:=h\);
        for \(j:=1\) step 1 until \(n\) do
            \(x b[i, j]:=\) if \(c[i, j]=h\) then true else false
    end \(u[i]\);
    for \(j\) := 1 step 1 until \(n\) do
    begin \(h:=\) inf;
        for \(i:=1\) step 1 until \(m\) do
        begin if \(x b[i, j]\) then
                begin \(v[j]:=0\); go to \(a a\) end;
                \(d[i]:=p:=c[i, j]-u[i]\);
                if \(p<h\) then \(h:=p\)
    end;
    \(v[j]:=h ;\)
    for \(i:=1\) step 1 until \(m\) do
    begin if \(d[i]=h\) then \(x b[i, j]:=\) true end;
\(a a\) :
    end \(v[j]\)
    for \(j:=1\) step 1 until \(n\) do \(\operatorname{listv}[j]:=0\);
    for \(i:=1\) step 1 until \(m\) do \(\operatorname{listu}[i]:=0\);
\(s 2\) : for \(i:=1\) step 1 until \(m\) do
    begin for \(j:=1\) step 1 until \(n\) do
        begin if \(x b[i, j]\) then
                begin \(h:=x[i, j]:=\) if \(x s j[j] \leq x i s[i]\)
                    then \(x s j[j]\) else \(x i s[i]\);
                    \(x s j[j]:=x s j[j]-h ;\)
                    \(x i s[i]:=x i s[i]-h\)
```

```
        end
        end
    end;
s03: if \(\operatorname{sum}(j, 1, n, x s j[j])=0\) then go to \(s 6\);
    for \(j:=1\) step 1 until \(n\) do \(s[j]:=r[j]:=0\);
    \(h:=0 ; k:=1\);
s3: for \(i:=1\) srep 1 until \(m\) do
    begin if \(x i s[i]>0\) then
        begin \(d[i]:=x i s[i] ; \quad g[i]:=2 \times n\);
            for \(j:=1\) step 1 until \(n\) do
            begin if \(x b[i, j] \wedge r[j]=0\) then
                begin \(s[j]:=d[i] ; \quad r[j]:=i ; \quad\) listv \([k]:=j ; \quad k:=k+1 ;\)
                    if \(x s j[j]>h\) then
                    begin \(h:=x \operatorname{sj}[j] ; \quad p:=j\) end
                end
            end
        end
        else \(d[i]:=g[i]:=0\)
    end;
s53: if \(k=1\) then go to \(s 13\);
    \(l:=1\);
    for \(k:=1\) step 1 until \(n\) do
    begin \(j:=\operatorname{listv}[k] ; \quad\) listv \([k]:=0 ;\) if \(j=0\) then go to \(s 33\);
        for \(i:=1\) step 1 until \(m\) do
        begin if \(x b[i, j] \wedge x[i, j]>0 \wedge g[i]=0\) then
            begin \(d[i]:=\) if \(x[i, j] \leq s[j]\)
                then \(x[i, j]\) else \(s[j]\);
                    \(g[i]:=j ; \quad\) listu \([l]:=i ; \quad l:=l+1\)
            end
        end
    end;
\(s 33:\) if \(l=1\) then go to \(s 13\);
    \(k:=1\);
    for \(l:=1\) step 1 until \(m\) do
    begin \(i:=\) listu[l]; listu[l] \(:=0\); if \(i=0\) then go to \(s 43\);
            for \(j:=1\) step 1 until \(n\) do
            begin if \(x b[i, j] \wedge r[j]=0\) then
                begin \(s[j]:=d[i] ; \quad r[j]:=i ; \quad\) listv \([k]:=j ; \quad k:=k+1\);
                    if \(x s j[j]>h\) then
                    \(\operatorname{begin} h:=x \operatorname{sj}[j] ; \quad p:=j\) end
            end
        end
    end;
s43: go to s53;
\(s 13:\); comment end of labeling process;
    if \(h>0\) then go to \(s 4\) else
            if \(\operatorname{sum}(j, 1, n, x \operatorname{sj}[j])=0\) then go to \(s 6\) else go to \(s 5\);
\(s 4: k:=p\)
    \(h:=\) if \(s[k]<x s j[k]\) then \(s[k]\) else \(x s j[k] ;\)
s41: \(y:=r[k] ; \quad x[y, k]:=x[y, k]+h\);
    \(x i s[y]:=x i s[y]-h ; \quad x s j[k]:=x s j[k]-h ;\)
    \(t:=g[y] ; \quad\) if \(t=2 \times n\) then go to \(s 03 ; \quad x[y, t]:=x[y, t]-h ;\)
    \(x i s[y]:=x i s[y]+h ; x s j[t]:=x s j[t]+h ; k:=t ;\) go to \(s 41\);
\(s 5: h:=\) inf;
    for \(i:=1\) step 1 until \(m\) do
    for \(j:=1\) step 1 until \(n\) do
    begin if \(g[i] \neq 0 \wedge r[j]=0\) then
        begin \(p:=c[i, j]-u[i]-v[j]\);
            if \(p<h\) then \(h:=p\)
        end
    end;
```

```
for \(i:=1\) step 1 until \(m\) do
begin if \(g[i] \neq 0\) then \(u[i]:=u[i]+h\) end;
for \(j:=1\) step 1 until \(n\) do
begin if \(r[j] \neq 0\) then \(v[j]:=v[j]-h\) end;
for \(i:=1\) step 1 until \(m\) do
for \(j:=1\) step 1 until \(n\) do
begin if \(c[i, j]=u[i]+v[j]\) then \(x b[i, j]:=\) true end;
go to \(\mathbf{s 0 3}\);
s6: cost \(:=\operatorname{sum}(i, 1, m, a[i] \times u[i])+\operatorname{sum}(j, \mathbf{1}, n, b[j] \times v[j])\)
end;
```

REMARK ON ALGORITHM 258 [H]
TRANSPORT [G. Bayer, Comm. ACM 8 (June 1965), 381]
G. Bayer (Recd. 11 June 1965)

Technische Hochschule, Braunschweig, Germany
The following correction should be made in the procedure. Change the second line above the label $s 6$ from begin if $c[i, j]=w[i]+v[j]$ then $x b[i, j]:=$ true end;
to
$x b[i, j]:=c[i, j]=u[i]+v[j] ;$

CERTIFICATION OF:

ALGORITHM 258 [H]

TRANSPORT
[G. Bayer, Comm. ACM 8 (June 1965), 381]
ALGORITHM 293 [H]
TRANSPORTATION PROBLEM
[G. Bayer, Comm. ACM 9 (Dec. 1966), 869]
Lee S. Sims (Recd. 21 Feb. 1967 and 17 Mar. 1967)
Kates, Peat, Marwick \& Co., Toronto, Ont., Canada
Both of these algorithms were coded in Extended Algol 60 and tested on a Burroughs B5500. Three problems were solved correctly, one of them being of medium size (55×167). On this larger problem transp1 was found to be about twice as fast as transport.

In coding and debugging transp1 three apparent errors were found. In the right-hand column on page 870 , after line 27 which is $i:=\operatorname{listu[u];~nlvi}:=n l v[i] ;$
a line is missing. This line should read
for $s:=(i-1) \times n+1$ step 1 until nlvi do
Also in the right-hand column, the line
s4: ;
should be inserted ahead of line -12 , which begins
comment Step 4. A column j with $b[j]$ has been labeled, $b[j]$
On page 871 , in the left-hand column, line -22 which reads
for $s:=1$ step 1 until n do
should read
for $s:=l$ step 1 until n do

ALGORITHM 259

LEGENDRE FUNCTIONS FOR ARGUMENTS

 LARGER THAN ONE* [S16]Walter Gautschi (Recd. 5 Mar. 1965)
Purdue University, Lafayette, Ind. and Argonne National Laboratory, Argonne, Ill.

* Work performed in part under the auspices of the U.S. Atomic Energy Commission.

begin

comment Control is transferred to a nonlocal label, called alarm, whenever the input variables are not in the intended range;
procedure integer Legendre $1(x, a, n \max , P)$;
value x, a, nmax; integer $a, n m a x$; real x; array P;
comment This procedure generates the associated Legendre functions of the first kind,

$$
P_{a^{n}}(x)=\frac{\left(x^{2}-1\right)^{n / 2}}{2^{a} a!} \frac{d^{a+n}}{d x^{a+n}}\left(x^{2}-1\right)^{a},
$$

for $n=0(1) n m a x$, assuming $a \geq 0$ an integer, and $x>1$. The results are stored in the array P. The method of computation is derived from the (finite) continued fraction

$$
\begin{aligned}
(n+a) F_{n} / F_{n-1} & =\frac{(n+a)(a+1-n)}{n x_{1}+} \frac{(n+a+1)(a-n)}{(n+1) x_{1}+} \\
& \frac{(n+a+2)(a-n-1)}{(n+2) x_{1}+} \cdots \frac{2 a \cdot 1}{a x_{1}} \quad(1 \leqq n \leqq a),
\end{aligned}
$$

where $F_{n}=P_{a^{n}}(x) /(n+a)!, x_{1}=2 x\left(x^{2}-1\right)^{-\frac{1}{3}}$, and the identity

$$
\left.F_{0}+2 \sum_{n=1}^{a} F_{n}=\left[x+\left(x^{2}-1\right)^{\frac{i}{2}}\right]^{a} / a\right\} .
$$

If x is very close to 1 , the computation of x_{1} is subject to cancellation of significant digits. In such cases it would be better to use $y=x-1$ as input variable, and to compute $\left(x^{2}-1\right)^{\text {t }}$ by $[y(2+y)]^{\frac{3}{2}}$ everywhere in the procedure body;
begin integer n; real $x 1, c$, sum, r, s;
array $\operatorname{Rr}[0: n \max -1]$;
if $x<1 \vee a<0 \vee$ nmax <0 then go to alarm;
if $x=1 \vee a=0$ then
begin
$P[0]:=1$; for $n:=1$ step 1 until n max do $P[n]:=0 ;$ go to L
end;
for $n:=a+1$ step 1 until $n \max$ do $P[n]:=0$;
$x 1:=\operatorname{sqrt}(x \uparrow 2-1)$;
$c:=1$; for $n:=2$ step 1 until a do $c:=n \times c$;
sum $:=(x+x 1) \uparrow a / c ; \quad x 1:=2 \times x / x 1$;
$r:=s:=0$;
for n := a step - 1 until 1 do
begin
$r:=(a+1-n) /(n \times x 1+(n+a+1) \times r) ; s:=r \times(2+s) ;$
if $n \leq n \max$ then $\operatorname{Rr}[n-1]:=r$
end;
$P[0]:=c \times \operatorname{sum} /(1+s) ;$
for $n:=0$ step 1 until if $n \max \leq a$ then $n \max -1$ else $a-1$ do $P[n+1]:=(n+a+1) \times \operatorname{Rr}[n] \times P[n] ;$
L : end integer Legendre 1 ;
procedure integer Legendre $2(x, m, n \max , d, Q)$;
value $x, m, n \max , d$; integer $m, n \max , d$; real x; array Q; comment This procedure generates to d significant digits the associated Legendre functions of the second kind, $Q_{n}{ }^{m}(x)$, for $n=0(1) n m a x$, assuming $m \geq 0$ an integer, and $x>1$. The results are stored in the array Q. The procedure first generates $Q_{0}{ }^{m}(x)$ from the recurrence relation

$$
\begin{align*}
& Q_{n}^{r+1}+\frac{2 r x}{\left(x^{2}-1\right)^{\frac{1}{2}}} Q_{n}^{r}+(r+n)(r-n-1) Q_{n}^{r-1}=0 \tag{1}\\
& \quad(r=1,2, \cdots, m-1)
\end{align*}
$$

with $n=0$, and the initial values

$$
Q_{0}{ }^{0}(x)=\frac{1}{2} \ln \frac{x+1}{x-1}, \quad Q_{0}(x)=-\left(x^{2}-1\right)^{-\frac{1}{2}}
$$

Then a variant of the backward recurrence algorithm of J. C. P. Miller is applied to the recursion

$$
\begin{align*}
(n-m+1) Q_{n+1}^{m} \cdots(2 n+1) x Q_{n}^{m}+(n+m) Q_{n-1}^{m} & =0 \tag{2}\\
(n & =1,2,3, \cdots)
\end{align*}
$$

(For more details see [2]. See also [4] for a very similar algerithm.) If $m>1$, the leading coefficient in (2) vanishes for $n=m-1$, which invalidates the theoretical justification for the backward recurrence procedure. Nevertheless, it appears that the procedure produces valid results for arbitrary $m \geq 0$. Convergence of the backward recurrence algorithm is slow for x near 1, but improves rapidly as x increases;
begin integer $n, n u, p$; real $x 1, Q 0, Q 1, Q 2$, epsilon, r; array Qapprox, $\operatorname{Rr}[0: n$ max $]$;
if $x \leq 1 \vee n \max <0 \vee m<0$ then go to alarm;
$x 1:=\operatorname{sqrt}(x \uparrow 2-1)$;
$Q 1:=.5 \times \ln ((x+1) /(x-1))$;
if $m=0$ then $Q[0]:=Q 1$ else
begin
Q2 $:=-1 / x 1 ; \quad x 1:=2 \times x / x 1$;
for $n:=1$ step 1 until $m-1$ do
begin

$$
Q 0:=Q 1 ; \quad Q 1:=Q 2 ;
$$

$Q 2:=-n \times x 1 \times Q 1-n \times(n-1) \times Q 0$
end;
$Q[0]:=Q 2$
end;
for $n:=0$ step 1 until $n \max$ do Qapprox $[n]:=0$;
epsilon := . $5 \times 10 \uparrow(-d)$;
$n u:=20+$ entier ($1.25 \times n \max)$;
$L 0$: $r:=0$;
for $n:=n u$ step - 1 until 1 do
begin
$r:=(n+m) /((2 \times n+1) \times x-(n-m+1) \times r) ;$
if $n \leq n \max$ then $\operatorname{Rr}[n-1]:=r$
end;
for $n:=0$ step 1 until $n \max -1$ do $Q[n+1]:=\operatorname{Rr}[n] \times Q[n]$;
for $n:=0$ step 1 until nmax do
if $\operatorname{abs}(Q[n]-Q a p p r o x[n])>$ epsilon $\times a b s(Q[n])$ then
begin
for $p:=0$ step 1 until nmax do Qapprox $[p]:=Q[p]$; $n u:=n u+10 ;$ go to $L 0$
end
end integer Legendre 2;
procedure integer Legendre $3(x, n, \max , d, Q)$;
value x, n, mmax, d; integer n, mmax, d; real x; array Q; comment This procedure generates to d significant digits, and stores in the array Q, the Legendre functions of the second kind, $Q_{n}{ }^{m}(x)$, for $m=0(1) m m a x$, assuming $n \geq 0$ an integer, and $x>1$. The procedure integer Legendre 2 is used to obtain initial values $Q_{n}{ }^{0}, Q_{n}{ }^{1}$, and subsequent values are obtained from the recursion (1) of the preceding comment;
begin integer m; real $x 1$; array $Q 1[0: n]$;
if $n<0 \vee \operatorname{mmax}<0$ then go to alarm;
integer Legendre $2(x, 0, n, d, Q 1) ; \quad Q[0]:=Q 1[n] ;$
$x 1:=2 \times x / \operatorname{sgrt}(x \uparrow 2-1)$;
if mmax >0 then

begin

integer Legendre $2(x, 1, n, d, Q 1) ; Q[1]:=Q 1[n]$
end;
for $m:=1$ step 1 until max- $\mathbf{1}$ do
$Q[m+1]:=-m \times x 1 \times Q[m]-(m+n) \times(m-n-1) \times Q[m-1]$
end integer Legendre 3;
procedure Legendre 1 (x, alpha, nmax, $d, P 1$);
value x, alpha, nmax, d; integer nmax, α^{\prime};
real x, alpha; array $P 1$;
comment This procedure evaluates to d significant digits the Legendre functions

$$
P_{\alpha^{n}}(x)=\frac{\Gamma(\alpha+n+1)}{\pi \Gamma(\alpha+1)} \int_{0}^{\pi}\left[x+\left(x^{2}-1\right)^{\frac{9}{7}} \cos t\right]^{\alpha} \cos n t d t
$$

for $n=0(1) n$ max, where $x>1$ and α is real. The results are stored in the array $P 1$. It is assumed that a nonlocal procedure gamma be available which evaluates $\dot{\Gamma}(z)$ for $0<z \leq 2$. (See [3].) The procedure first gencrates the quantities $f_{n}=P_{\alpha}{ }^{n}(x) /$ $r(\alpha+n+1)$ from the recurrence relation

$$
f_{n+1}+\frac{2 n x}{(n+\alpha+1)\left(x^{2}-1\right)^{\frac{1}{2}}} f_{n}+\frac{n-\alpha-1}{n+\alpha+1} f_{n-1}=0
$$

and the identity

$$
f_{0}+2 \sum_{n=1}^{\infty} f_{n}=\frac{\left[x+\left(x^{2}-1\right)^{k}\right]^{\alpha}}{\Gamma(\alpha+1)}
$$

applying a variant of the backward recurrence algorithm of J. C. P. Miller. (See [2] for more details.) Then $P_{\alpha^{n}}(x)=$ $\Gamma(\alpha+n+1) f_{n}$ is obtained recursively. If $\alpha<-\frac{1}{2}$, we let $a=-\alpha-1$ and compute $P_{a}{ }^{n}(x)=P_{a}{ }^{n}(x)$. The substitution is made to avoid loss of accuracy when x is large. The rate of convergence of this procedure decreases as x increases. A general idea of the speed of convergence may be obtained from the graphs in $[2,86]$. If x is very close to 1 , the same changes as mentioned in the first procedure are recommended;
begin integer $n, n u, m$; real a, epsilon, $x 1$, sum, c, r, s;
array Papprox, $\operatorname{Rr}[0: n$ max $]$;
if $x<1 \vee$ nmax $<0 \vee$ entier (alpha) - alph $a=0$ then
go to alarm; if $x=1$ then
begin
$P 1[0]:=1$; for $n:=1$ step 1 until nmax do $P 1[n]:=0$;
go to $L 1$
end;
$a:=$ if alpha $<-.5$ then - alpha -1 else alpha;
for $n:=0$ step 1 until nmax do Papprox $[n]:=0$;
epsilon $:=.5 \times 10 \uparrow(-d)$;
if $a \leq 1$ then $c:=\operatorname{gamma}(1+a)$ else
begin
$m:=\operatorname{entier}(a)-1 ; \quad c:=\operatorname{gamma}(a-m)$;
for $n:=0$ step 1 until m do $c:=(a-n) \times c$ end;

```
    \(x 1:=\operatorname{sqrt}(x \uparrow 2-1) ; \quad\) sum \(:=(x+x 1) \uparrow a / c ; \quad x 1:=2 \times x / x 1\);
\(n u:=20+\) entier \(((37.26+.1283 \times(a+38.26) \times x) \times n \max /\)
    \((37.26+.1283 \times(a+1) \times x)) ;\)
L0: \(r:=s:=0\);
    for \(n:=n u\) step - 1 until 1 do
    begin
        \(r:=(a+1-n) /(n \times x 1+(n+a+1) \times r) ; s:=r \times(2+s) ;\)
        if \(n \leq n \max\) then \(\operatorname{Rr}[n-1]:=r\)
    end;
    P1[0]:= sum/(1+s);
    for \(n:=0\) step 1 until nmax -1 do
        \(P 1[n+1]:=\operatorname{Rr}[n] \times P 1[n] ;\)
    for \(n:=0\) step 1 until nmax do
        if abs ( \(P 1[n]-\) Papprox \([n])>\) epsilon \(\times\) abs \((P 1[n])\) then
        begin
            for \(m:=0\) step 1 until \(n m a x\) do Papprox \([m]:=P \mathbf{P}[m]\);
            \(n u:=n u+10\); go to \(L 0\)
        end;
    \(P 1[0]:=c \times P 1[0] ;\)
```

 for \(n:=1\) step 1 until \(n \max\) do
 begin
 \(c:=(a+n) \times c ; \quad P 1[n]:=c \times P 1[n]\)
 end;
 L1: end Legendre 1;
procedure Legendre $2(x, a, m, n \max , d, P 2)$;
value x, a, m, n max, d; integer $m, n \max , d ; \quad$ real x, a;
array $P 2$;
comment This procedure evaluates to d significant digits the
Legendre functions $P_{a+n}^{m}(x)$ for fixed $x>1, a, m \geq 0$, and for
$n=0(1) n m a x$. The results are stored in the array $P 2$. They are
obtained recursively from
$P_{a+n+1}^{m}(x)=\frac{2 n+2 a+1}{n+a-m+1} x P_{a+n}^{m}(x)-\frac{n+a+m}{n+a-m+1} P_{a+n-1}^{m}(x)$,
the initial values being calculated with the help of the procedure Legendre 1;
begin integer n; array $P 1[0: m]$;
if $m<0$ then go to alarm;
Legendre $1(x, a, m, d, P 1) ; \quad P 2[0]:=P 1[m] ;$
if $n \max >0$ then
begin
Legendre $1(x, a+1, m, d, P 1) ; \quad P 2[1]:=P 1[m]$
end;
for $n:=1$ step 1 until $n \max -1$ do
$P 2[n+1]:=((2 \times n+2 \times a+1) \times x \times P 2[n]$
$-(n+a+m) \times P 2[n-1]) /(n+a-m+1)$
end Legendre 2;
procedure conical (x, tau, nmax, d, P);
value x, tau, nmax, d; integer $n \max , d$; real x, tau; array P; comment This is an adaption of the procedure Legendre 1 to the case $\alpha=-\frac{1}{2}+i \tau$, where τ is real. The procedure thus generates Mehler's conical functions $P_{-\frac{1}{2}+i \tau}^{n}(x)$ to d significant digits for $n=0(1)$ nmax and $x>1$. The results are stored in the array P. To avoid excessively large and excessively small numbers, we let $f_{n}=P_{-\frac{1}{2}+i r}^{n}(x) / n$! and first compute f_{n} from the recurrence relation

$$
f_{n+1}+\frac{2 n x}{(n+1)\left(x^{2}-1\right)^{\frac{1}{2}}} f_{n}+\frac{\left(n-\frac{1}{2}\right)^{2}+\tau^{2}}{n(n+1)} f_{n-1}=0
$$

and the identity

$$
f_{0}+\sum_{n=1}^{\infty} \lambda_{n} f_{n}=\left[x+\left(x^{2}-1\right)^{\frac{2}{2}}\right]^{-\frac{1}{2}} \cos \left(\tau \ln \left[x+\left(x^{2}-1\right)^{\frac{1}{2}}\right]\right)
$$

where

$$
\lambda_{n}=n!\left[\frac{\Gamma\left(\frac{1}{2}+i_{\tau}\right)}{\Gamma\left(\frac{1}{2}+i_{\tau}+n\right)}+\frac{\Gamma\left(\frac{1}{2}-i \tau\right)}{\Gamma\left(\frac{1}{2}-i \tau+n\right)}\right]
$$

The λ 's are obtained recursively by

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{\frac{1}{4}+\tau^{2}}, \quad \lambda_{2}=\frac{3-4 \tau^{2}}{\left(\frac{1}{4}+\tau^{2}\right)\left(\frac{9}{4}+\tau^{2}\right)}, \\
& \lambda_{n+1}=\frac{1+\frac{1}{n}}{\left(1+\frac{1}{2 n}\right)^{2}+\left(\frac{\tau}{n}\right)^{2}}\left(2 \lambda_{n}-\lambda_{n-1}\right) \quad(n=2,3, \cdots)
\end{aligned}
$$

The procedure converges rather slowly if x and r are both large (see the graphs in $\S 6$ of [2]). If the accuracy requirement as specified by d is too stringent the procedure may not converge at all due to the accumulation of rounding errors;
begin integer $n, n u, m$; real epsilon, $t, x 1, x 2$, sum, lambda 1 , lambda 2, lambda, r, s; array Papprox, $\operatorname{Rr}[0: n m a x]$;
if $x<1 \vee$ nmax <0 then go to alarm;
if $x=1$ then
begin
$P[0]:=1$; for $n:=1$ step 1 until nmax do $P[n]:=0 ;$
go to $L 3$
end;
$t:=t a u \uparrow 2$;
for $n:=0$ step 1 until nmax do Papprox $[n]:=0$;
epsilon $:=.5 \times 10 \uparrow(-d)$;
$x 1:=\operatorname{sqrt}(x \uparrow 2-1) ; \quad x 2:=x+x 1$;
sum $:=\cos (\operatorname{tau} \times \ln (x 2)) / \operatorname{sqrt}(x 2) ; \quad x 1:=2 \times x / x 1$;
$n u:=30+$ entier $((1+(.140+.0246 \times$ tau $) \times(x-1)) \times n \max) ;$
$L 0: \quad n:=2$;
lambda $1:=1 /(.25+t)$;
lambda $2:=(3-4 \times t) /((.25+t) \times(2.25+t))$;
L1: lambda := (1+1/n) $\times(2 \times l a m b d a 2-l a m b d a 1) /$
$((1+.5 / n) \uparrow 2+(t a u / n) \uparrow 2) ;$
if $n<n u$ then
begin
lambda $1:=$ lambda 2, lambda $2:=$ lambda;
$n:=n+1 ;$ go to $L 1$
end;
$r:=s:=0$;
L2: $\quad r:=-((1-.5 / n) \uparrow 2+(t a u / n) \uparrow 2) /(x 1+(1+1 / n) \times r)$;
$s:=r \times(l a m b d a 2+s)$;
if $n \leq n \max$ then $\operatorname{Rr}[n-1]:=r$;
lambda $1:=$ lambda 2;
lambda $2:=2 \times$ lambda $2-((1+.5 / n) \uparrow 2+(t a u / n) \uparrow 2)$
\times lambda $/(1+1 / n) ;$
lambda := lambda 1;
$n:=n-1 ;$ if $n \geq 1$ then go to $L 2$;
$P[0]:=\operatorname{sum}_{i}(1+s)$;
for $n:=0$ step 1 until $n \max -1$ do $P[n+1]:=\operatorname{Rr}[n] \times P[n]$;
for $n:=0$ step 1 until nmax do
if abs $(P[n]-$ Papprox $[n])>$ epsilon $\times a b s(P[n])$ then begin
for $m:=0$ step 1 until $n \max$ do Papprox $[m]:=P[m]$;
$n u:=n u+60$; comment To avoid an infinite loop in case of divergence the user should provide for an upper bound on $n u$, say 1000 , and exit from the procedure when $n u$ exceeds this bound, printing an appropriate error message;
go to $L 0$
end;
$t:=1$;
for $n:=1$ step 1 until $n \max$ do
begin
$t:=n \times t ; \quad P[n]:=t \times P[n]$
end;
J.3: end conical;
procedure toroidal ($x, m, n m a x, d, Q$);
value $x, m, n \max , d ;$ integer $m, n \max , d ;$ real $x ;$ array Q; comment This procedure generates to d significant digits the toroidal functions of the second kind, $Q_{-\frac{1}{2}+n}^{m}(x)$, for $n=0$ (1) nmax, where $x>1$, and m is an integer, positive, negative or zero. The method of computation is based on the recurrence relation
$\left(n-m+\frac{1}{2}\right) Q_{-\frac{1}{2}+n+1}^{m}(x)-2 n x Q_{-\frac{1}{2}+n}^{m}(x)+\left(n+m-\frac{1}{2}\right) Q_{-\frac{1}{2}+n-1}^{m}(x)=0$, and the identity
$Q_{-\frac{1}{2}}^{m}(x)+2 \sum_{n=1}^{\infty} Q_{-\frac{1}{2}+n}^{m}(x)=(-1)^{m} \sqrt{\frac{\pi}{2}} \Gamma\left(m+\frac{1}{2}\right)(x-1)^{-\frac{1}{2}}\left(\frac{x+1}{x-1}\right)^{m / 2}$,
to which a variant of J. C. P. Miller's backward recurrence algorithm is applied. (See [2] for more details.) The convergence of this procedure is slow for x near 1 , and improves rapidly as x increases;
begin integer $n, n u, p ;$ real epsilon, $x 1, c, s u m, r, s$;
array Qapprox, $R_{r}[0: n m a x]$;
if $x \leq 1 \vee n \max <0$ then go to alarm;
for $n:=0$ step 1 until nmax do Qapprox $[n]:=0$;
epsilon $:=.5 \times 10 \uparrow(-d)$;
$c:=2.2214414691$;
if $m \geq 0$ then
for $n:=0$ step 1 until $m-1$ do $c:=-(n+.5) \times c$
else
for $n:=0$ step -1 until $m+1$ do $c:=-c /(n-.5)$;
sum $:=c \times((x+1) /(x-1)) \uparrow(m / 2) / \operatorname{sqrt}(x-1) ; \quad x 1:=2 \times x ;$
$n u:=20+$ entier $((1.15+(.0146+.00122 \times m) /(x-1)) \times n \max) ;$
$L 0: \quad r:=s:=0$;
for $n:=n u$ step -1 until 1 do
begin
$r:=(n+m-.5) /(n \times x 1-(n-m+.5) \times r) ; \quad s:=r \times(2+s) ;$
if $n \leq n$ max then $\operatorname{Rr}[n-1]:=r$
end;
$Q[0]:=\operatorname{sum} /(1+s)$;
for $n:=0$ step 1 until $n \max -1$ do $Q[n+1]:=\operatorname{Rr}[n] \times Q[n]$;
for $n:=0$ step 1 until $n \max$ do if $a b s(Q[n]-Q a p p r o x[n])>$ epsilon $\times a b s(Q[n])$ then begin
for $p:=0$ step 1 until nmax do Qapprox $[p]:=Q[p]$;
$n u:=n u+10 ;$ go to $L 0$
end
end toroidal;
comment All procedures were tested on the CDC 3600 computer. Some of the tests that were run are described below;
comment The procedures integer Legendre 1-3 were driven to print test values to 6 significant digits of $P_{n}{ }^{m}(x), Q_{m}{ }^{n}(x), Q_{n}{ }^{m}(x)$, $m=0(1) 10$, for $x=1.5,3,10$, and $n=0(1) 5$. As far as possible, the results were compared with values tabulated in [5], and found to be in complete agreement. Similarly, test values of $P_{-\frac{i}{2}+n}^{m}(x), m=0(1) 4$, were obtained from the procedure Legendre 1 , for $x=1.5,3,10$, and $n=0(1) 5$. All agreed with values tabulated in [5]. More extensive tests could be run by having the procedure "verify" the addition theorem

$$
\begin{aligned}
& P_{\alpha}\left(x y-\sqrt{ }\left(x^{2}-1\right) \sqrt{ }\left(y^{2}-1\right)\right)=P_{\alpha}(x) P_{\alpha}(y) \\
&+2 \sum_{m=1}^{\infty}(-1)^{m} \frac{\Gamma(\alpha-m+1)}{\Gamma(\alpha+m+1)} P_{\alpha^{m}}^{m}(x) P_{\alpha^{m}}(y), \quad x>1, y>1
\end{aligned}
$$

comment The procedure conical (with $d=6$) was run to produce test values of $P_{-i+i r}^{m}(x), m=0,1$, for $x=1.5,5,10,20$, and $\tau=0(10) 30$. The results agreed to 6 significant digits with those in [10], [11];
comment The procedure toroidal was driven to generate test values to 6 significant digits of $Q_{-\frac{1}{2}+n}^{m}(x), Q_{-\frac{1}{2}+n}^{-m}(x), \quad n=0(1) 5$,

COLLECTED ALGORITHMS (cont.)

for $x=1.5,3,10$, and $m=0(1) 4$. All values of $Q_{-i+n}^{m}(x)$ were checked against those in [5]. There were no discrepancies. The values of $Q_{-\frac{1}{2}+n}^{-m}(x)$ were compared with those of $\left[\Gamma\left(n-m+\frac{1}{2}\right) /\right.$ $\left.\Gamma\left(n+m+\frac{1}{2}\right)\right] Q_{-i+n}^{m}(x)$. The largest relative error observed was $1.5_{10}-9$, occurring at $m=4, n=5, x=1.5$;
comment Integrals of the form

$$
f_{n}\left(k^{2}, \alpha\right)=(-1)^{n} \int_{0}^{\pi / 2}\left[1-k^{2} \sin ^{2} \psi\right]^{\alpha} \cos 2 n \psi d \psi, \quad 0<k<1
$$

are repeatedly encountered in applied mathematics (see, e.g., [6]-[9], where $\alpha=-\frac{3}{2}$, or $\alpha=-\frac{5}{2}$). It is readily seen that

$$
f_{n}\left(k^{2}, \alpha\right)=(-1)^{n} \frac{\pi}{2} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha+n+1)}\left(1-k^{2}\right)^{\alpha / 2} P_{\alpha}^{n}\left(\frac{2-k^{2}}{2 \sqrt{ }\left(1-k^{2}\right)}\right)
$$

The program that follows generates $\left(1-k^{2}\right) f_{n}\left(k^{2}, \alpha\right), \quad n=$ $0(1) 10$, for $\alpha=-\frac{3}{2},-\frac{\pi}{2}$, and $k^{2}=.1, .5, .9$, calling for an accuracy of 6 significant digits. Selected results are shown below.

α	k^{2}	n	$\left(1-k^{2}\right) f_{n}\left(k^{2}, \alpha\right)$
-1.5	.1	0	1.5307576371
		5	$5.24564404 .72_{10}-8$
		10	$9.0801648667_{10}-16$
	.5	1	$3.43782288_{14} 9_{10}-1$
		4	$2.82958444 .23_{10}-3$
		7	$1.8215954881_{10}-5$
	.9	2	$4.8615561237_{10}-1$
		6	$5.2878408708_{10}-2$
		9	$8.8107743954_{10}-3$
-2.5	.1	0	1.6169191877
		5	$2.3969022984_{10}-7$
		10	$7.339411710610-15$
	.5	1	$8.472130846310-1$
		4	$1.494014960510-2$
		7	$1.4764302684_{10}-4$
	.9	2	4.9389962376
		6	$9.7073200383_{10}-1$
		9	$2.1695170317_{10}-1$

Those for $\alpha=-\frac{3}{2}$ were compared with values tabulated in [6]. There was agreement in all four decimal places given;
begin integer n; real alpha, $k 2, c$; array $P 1[0: 10]$;
for alpha $:=-1.5,-2.5$ do
for $k 2:=.1, .5, .9$ do
begin
$c:=1.570796327 \times(1-k 2) \uparrow(1+$ alpha $/ 2) ;$
Legendre $1(.5 \times(2-k 2) / \operatorname{sqrt}(1-k 2)$, alpha, 10, 6, P1);
for $n:=0$ step 1 until 10 do
begin
$P 1[n]:=c \times P 1[n] ; \quad c:=-c /(n+a l p h a+1) ;$
outreal (1, P1[n])
end
end;
go to skip;
alarm: outstring (1, 'parameters not in range');
skip: end;
comment The integrals
$\Omega_{j}(k)=\int_{0}^{\pi}\left(1-k^{2} \cos \phi\right)^{-1-j} d \phi, \quad 0 \leqq k<1, j=0,1,2, \cdots$
arose in recent radiation field studies ([1]). One has

$$
\Omega_{j}(k)=\pi\left(1-k^{4}\right)^{-\left(\frac{1}{4}+j\right) / 2} P_{-\frac{1}{2}+i}\left(\left(1-k^{4}\right)^{-\frac{1}{2}}\right) .
$$

The program below calculates $\Omega_{j}(k)$ to 8 significant digits for $k^{2}=.2(.2) .8, j=0(1) 9$. The results agree to 8 figures with the values tabulated in [1];
begin integer j; real $k 2, x, x 1$; array $P 2$, omega $[0: 9]$;
for $k 2:=.2$ step .2 until .9 do
begin
$x:=1 / \operatorname{sqrt}(1-k 2 \uparrow 2)$;
Legendre $2(x,-.5,0,9,8, P 2)$;
$x 1:=3.1415926536 \times \operatorname{sqrt}(x)$;
omega [0] : $=x 1 \times P 2[0]$;
for $j:=1$ step 1 until 9 do
begin
$x 1:=x \times x 1 ;$ omega $[j]:=x 1 \times P 2[j]$
end;
for $j:=0$ step 1 until 9 do outreal (1 , omega[j])
end;
gó to skip;
alarm: outstring (1, 'parameters not in range');
skip: end
end
References:

1. Epstein, L. F., and Hubbell, J. H. Evaluation of a generalized elliptic-type integral. J. Research NBS $67 B$ (1963), 1-17.
2. Gautschi, W. Computational aspects of three-term recurrence relations. Unpublished.
3. --. Algorithm 221-Gamma function. Comm. ACM 7 (Mar. 1964), 143.
4. Herndon, J. R. Algorithm 62-A set of associate Legendre polynomials of the second kind. Comm. ACM 4 (July 1961), 320-321; Remark on Algorithm 62. Comm. ACM 4 (Dec. 1961), 544.
5. NBS Tables of Associated Legendre Functions. Columbia University Press, New York, 1945.
6. Riegels, F. Formeln und Tabellen für ein in der räumlichen Potentialtheorie auftretendes elliptisches Integral. Archiv der Mathematik 2 (1949/50), 117-125.
7. Siekmann, J. Concerning an integral occurring in airfoil theory. SIAM Review 3 (1961), 243-246.
8. --. Analysis of ring aerofoils of elliptic cross section, Part I: General theory. J. SIAM 11 (1963), 941-963.
9.--. Note on a Riegels-type integral. Z. Angew. Math. Phys. 15 (1964), 79-83.
9. Žurina, M. I., and Karmazina, L. N. Tablicy funkcir Ležandra $P_{-i+i \tau}(x)$, Vol. I. Akad. Nauk SSSR, Moscow, 1962.
10. ——, AND —. Tablicy funkciî Ležandra $P_{-i+i \tau}^{1}(x)$. Akad. Nauk SSSR, Mọcow, 1963.

ACM Transactions on Mathematical Software, Vol. 3, No. 2, June 1977, Pages 204-205.
REMARK ON ALGORITHM 259
Legendre Functions for Arguments Larger than One [S16]
[W. Gautschi, Comm. ACM 8, 8 (Aug. 1965), 488-492]
J.K.M. Jansen [Recd 24 May 1976 and 12 August 1976]

Technological University, Eindhoven, The Netherlands
The purpose of the changes presented here is to simplify the procedures developed by Gautschi, in particular to remove the necessity of calling the gamma-function routine in procedure Legendre 1.
(i) procedure integer Legendre 1
(1) Replace $F_{n}=P_{a}{ }^{n}(x) /(n+a)$! by $\quad F_{n}=P_{a}{ }^{n}(x) \times a!/(n+a)!$
(2) Replace $F_{0}+2 \sum_{n=1}^{a} F_{n}=\left[x+\left(x^{2}-1\right)^{1 / 2}\right]^{a} / a$! by $\quad F_{0}+2 \sum_{n=1}^{a} F_{n}=\left[x+\left(x^{2}-1\right)^{1 / 2}\right]^{a}$
(3) Replace real $x 1, c, s u m, r, s$;
by real $x 1, s u m, r, s$;
(4) Omit the statements
$c:=1$; for $n:=2$ step 1 until a do $c:=n \times c$;
(5) Replace sum $:=(x+x 1) \uparrow a / c$;
by sum $:=(x+x 1) \uparrow a$;
(6) Replace $P[0]:=c \times s u m /(1+s)$;
by $\quad P[0]:=\operatorname{sum} /(1+s)$;
(ii) procedure Legendre 1
(1) Omit the sentence of the comment

It is assumed that a nonlocal procedure gamma be available which evaluates $\Gamma(z)$ for $0<z \leq 2$. (See [3].)
(2) Replace $f_{n}=P_{\alpha}{ }^{n}(x) / \Gamma(\alpha+n+1)$
by $\quad f_{n}=P_{\alpha}{ }^{n}(x) \times \Gamma(\alpha+1) / \Gamma(\alpha+n+1)$
(3) Replace $f_{0}+2 \sum_{n=1}^{\infty} f_{n}=\left[x+\left(x^{2}-1\right)^{1 / 2}\right]^{\alpha} / \Gamma(\alpha+1)$
by $\quad f_{0}+2 \sum_{n=1}^{\infty} f_{n}=\left[x+\left(x^{2}-1\right)^{1 / 2}\right]^{\alpha}$
(4) Replace $P_{\alpha}{ }^{n}(x)=\Gamma(\alpha+n+1) f_{n}$
by $\quad P_{\alpha}{ }^{n}(x)=[\Gamma(\alpha+n+1) / \Gamma(\alpha+1)] f_{n}$
(5) Omit the statements
if $a \leq 1$ then $c:=\operatorname{gamma}(1+a)$ else
begin
$m:=\operatorname{entier}(a)-1 ; c:=\operatorname{gamma}(a-m)$;
for $n:=0$ step 1 until m do $c:=(a-n) \times c$
end;
(6) Replace $\operatorname{sum}:=(x+x 1) \uparrow a / c$;
by sum $:=(x+x 1) \uparrow a$;
(7) Replace $P 1[0]:=c \times P 1[0]$;
by $\quad c:=1$;
(8) During computations it sometimes happens that entier (alpha) - alpha $=0$ and consequently the process stops. We remark that if entier (alpha) alpha $=0$ this algorithm accomplishes the same as the procedure integer Legendre 1, although in an inefficient manner. To continue the computations we propose to replace
if $x<1 \vee n \max <0 \vee \operatorname{entier}(a l p h a)-a l p h a=0$ then
by
if $x<1 \vee \max <0$ then
The same tests as described by Gautschi were run on the Burroughs B6700 and Philips P9200 digital computers of the Computer Center of the Technological University at Eindhoven and were found to be in complete agreement.

ALGORITHM 260

6-J SYMBOLS [Z]
J. H. Gunn (Recd. 13 Nov. 1964)

Nordisk Institut for Teoretisk Atomfysik, Copenhagen, Denmark
real procedure $S J S(J 1, J 2, J 3, L 1, L 2, L 3$, factorial);
value $J 1, J 2, J 3, L 1, L 2, L 3$;
integer $J 1, J 2, J 3, L 1, L 2, L 3$;
array factorial;
comment $S J S$ calculates the $6-j$ symbols defined by the following formula
$\{j 1 j 2 j 3\}=\Delta(j 1, j 2, j 3) \Delta(j 1, l 2, l 3) \Delta(l 1, j 2, l 3) \Delta(l 1, l 2, j 3)$
$\{l 1 l 2 l 3\}=\times \sum_{z}(-1)^{2}(z+1)!/((z-j 1-j 2-j 3)!(z-j 1-l 2-l 3)!$ $(z-l 1-j 2-l 3)!(z-l 1-l 2-j 3)!(j 1+j 2+l 1+l 2-z)!$ $(j 2+j 3+l 2+l 3-z)!(j 3+j 1+l 3+l 1-z)!)$
where

$$
\Delta(a, b, c)=\left[\frac{(a+b-c)!(a-b+c)!(-a+b+c)!}{(a+b+c+1)!}\right]^{\frac{1}{2}}
$$

and where $j 1=J 1 / 2, j 2=J 2 / 2, j 3=J 3 / 2, l 1=L 1 / 2, l 2=L 2 / 2^{\prime}$ $l 3=L 3 / 2$. [Reference formula 6.3 .7 page 99 of Edmonds, A. R. Angular momentum in quantum mechanics. In Investigations in Physics, 4, Princeton U. Press, 1957]. The parameters of the procedure $J 1, J 2, J 3, L 1, L 2, L 3$ are interpreted as being twice their physical value, so that actual parameters may be inserted as integers. Thus to calculate the $6-j$ symbol

$$
\left\{\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right\}
$$

the call would be $\operatorname{SJS}(4,4,0,4,4,0$, factorial). The procedure checks that the triangle conditions for the existence of a coefficient are satisfied and that $j 1+j 2+j 3, j 1+l 2+l 3$, $l 1+j 2+l 3$ and $l 1+l 2+j 3$ are integral. If the conditions are not satisfied the value of the procedure is zero. The parameter factorial is an array containing the factorials from 0 up to at least $1+$ largest of $j 1+j 2+j 3, j 1+l 2+l 3, l 1+j 2+l 3$ and $l 1+l 2+j 3$. Since in actual calculations the procedure $S J S$ will be called many times it is more economical to have the factorials in a global arrav rather than compute them on every entry to the procedure. The notation is consistent with that used in the procedure for calculating Vector-coupling coefficients. See Algorithm 252, Vector Coupling or Clebsch-Gordan Coefficients [Comm. ACM 8 (Apr. 1965), 217];
begin integer w, wmin, wmax;
real omega;
real procedure della (a, b, c);
value a, b, c;
integer a, b, c;
begin delta $:=$ sqrt (factorial $[(a+b-c) \div 2]$
\times factorial $[(a-b+c) \div 2]$
\times factorial $[(-a+b+c) \div 2] /$ factorial $[(a+b+c+2) \div 2])$
end delta;
if $J 1+J 2<J 3 \vee a b s(J 1-J 2)>J 3 \vee J 1+J 2+J 3 \neq$ $2 \times((J 1+J 2+J 3) \div 2)$
$\vee J 1+L 2<L 3 \vee a b s(J 1-L 2)>L 3 \vee J 1+L 2+L 3 \neq 2 \times$
$((J 1+L 2+L 3) \div 2)$

```
\(\vee L 1+J 2<L 3 \vee a b s(L 1-J 2)>L 3 \vee L 1+J 2+L 3 \neq 2 \times\)
    \(((L 1+J 2+L 3) \div 2)\)
\(\vee L 1+L 2<J 3 \vee a b s(L 1-L 2)>J 3 \vee L 1+L 2+J 3 \neq 2 \times\)
    \(((L 1+L 2+J 3) \div 2)\)
then \(S J S:=0\) else
begin
    omega \(:=0\);
    wmin \(:=J 1+J 2+J 3\);
    if wain \(<J 1+L 2+L 3\) then win \(:=J 1+L 2+L 3\);
    if \(w \min <L 1+J 2+L 3\) then win \(:=L 1+J 2+L 3\);
    if \(w \min <L 1+L 2+J 3\) then win \(:=L 1+L 2+J 3\);
    wmax \(:=J 1+J 2+L 1+L 2\);
    if \(w \max >J 2+J 3+L 2+L 3\) then max \(:=J 2+J 3+\)
        \(L 2+L 3 ;\)
    if max \(>J 3+J 1+L 3+L 1\) then max \(:=J 3+J 1+\)
        \(L 3+L 1\);
    for \(w:=w \min\) step 2 until \(w \max\) do
    omega \(:=\) omega \(+(\) if \(w=4 \times(w \div 4)\) then 1 else -1\()\)
        \(\times\) factorial \([w \div 2+1] /(\) factorial \(\cdot[(w-J 1-J 2-J 3) \div 2]\)
        \(\times\) factorial \([(w-J 1-L 2-L 3) \div 2]\)
        \(\times\) factorial \([(w-L 1-J 2-L 3) \div 2]\)
        \(\times\) factorial \([(w-L 1-L 2-J 3) \div 2]\)
        \(\times\) factorial \([(J 1+J 2+L 1+L 2-w) \div 2]\)
        \(\times\) factorial \([(J 2+J 3+L 2+L 3-w) \div 2]\)
        \(\times\) factorial \([(J 3+J 1+L 3+L 1-w) \div 2])\);
    \(S J S:=\) delta \((J 1, J 2, J 3) \times\) delta \((J 1, L 2, L 3)\)
        \(\times\) delta \((L 1, J 2, L 3) \times\) delta \((L 1, L 2, J 3) \times\) omega \(;\)
    end
end \(S J S\)
```


ALGORITHM 261

9-J SYMBOLS [Z]
J. H. Gunn (Recd. 13 Nov. 1964)

Nordisk Institut for Teoretisk Atomfysik, Copenhagen, Denmark
real procedure $N J S(J 11, J 12, J 13, J 21, J 22, J 23, J 31, J 32, J 33$, factorial);
value $J 11, J 12, J 13, J 21, J 22, J 23, J 31, J 32, J 33$;
integer $J 11, J 12, J 13, J 21, J 22, J 23, J 31, J 32, J 33$;
array factorial;
comment $N J S$ calculates the $9-j$ symbols defined by the following formula
$\left\{\begin{array}{lll}j 11 & j 12 & j 13 \\ j 21 & j 22 & j 23 \\ j 31 & j 32 & j 33\end{array}\right\}=\sum_{k}(-1)^{2 k}(2 k+1)\left\{\begin{array}{lll}j 11 & j 21 & j 31 \\ j 32 & j 33 & k\end{array}\right\}$ $\left\{\begin{array}{lll}j 12 & j 22 & j 32 \\ j 21 & k & j 23\end{array},\left\{\begin{array}{lll}j 13 & j 23 & j 33 \\ k & j 11 & j 12\end{array}\right\}\right.$. where $j 11=J 11 / 2, \quad j 12=J 12 / 2, j 13=J 13 / 2, \quad j 21=J 21 / 2$, $j 22=J 22 / 2, \quad j 23=J 23 / 2, \quad j 31=J 31 / 2, \quad j 32=J 32 / 2, \quad j 33=$ $J 33 / 2$ [Reference formula 6.4 .3 page 101 of Edmonds, A. R. Angular momentum in quantum mechanics. In Investigations in Physics, 4, Princeton U. Press, 1957]. The parameters of the procedure $J 11, J 12, J 13, J 21, J 22, J 23, J 31, J 32, J 33$ are interpreted as being twice their physical value, so that actual parameters may be inserted as integers. Thus to calculate the $9-j$ symbol

$$
\left\{\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right\}
$$

the call would be $\operatorname{NJS}(4,4,0,4,4,0,0,0,0$, factorial $)$ The procedure checks that the triangle conditions for the existence of a coefficient are satisfied and that $j 11+j 21+j 31, j 21+$ $j 22+j 23, j 31+j 32+j 33, j 11+j 12+j 13, j 12+j 22+$ $j 32, j 13+j 23+j 33$ are integral. If the conditions are not satisfied the value of the procedure is zero. The parameter factorial is an array containing the factorials from 0 up to at least $1+$ largest of $j 11+j 21+j 31, j 21+j 22+j 23, j 31+j 32+$ $j 33, j 11+j 12+j 13, j 12+j 22+j 32, j 13+j 23+j 33$. The procedure makes use of the procedure SJS [Algorithm 260, 6-j symbols, Comm. ACM 8 (Aug. 1965), 492], for calculating 6-j symbols;
begin integer k, kmin, kmax;
real $N J$;
if $J 11+J 21<J 31 \vee \operatorname{abs}(J 11-J 21)>J 31 \vee J 11+J 21+$ $J 31 \neq 2 \times((J 11+J 21+J 31) \div 2)$
$\vee J 21+J 22<J 23 \vee a b s(J 21-J 22)>J 23 \vee J 21+J 22+$ $J 23 \neq 2 \times((J 21+J 22+J 23) \div 2)$
$\vee J 31+J 32<J 33 \vee a b s(J 31-J 32)>J 33 \vee J 31+J 32+$ $J 33 \neq 2 \times((J 31+J 32+J 33) \div 2)$
$\vee J 11+J 12<J 13 \vee a b s(J 11-J 12)>J 13 \vee J 11+J 12+$ $J 13 \neq 2 \times((J 11+J 12+J 13) \div 2)$
$\vee J 12+J 22<J 32 \vee a b s(J 12-J 22)>J 32 \vee J 12+J 22+$ $J 32 \neq 2 \times((J 12+J 22+J 32) \div 2)$
$\vee J 13+J 23<J 33 \vee a b s(J 13-J 23)>J 33 \vee J 13+J 23+$ $J 33 \neq 2 \times((J 13+J 23+J 33) \div 2)$

```
then \(N J S:=0\) else
    begin \(N J:=0\);
    \(k m i n:=a b s(J 21-J 32) ;\)
    if \(k\) min \(<a b s(J 11-J 33)\) then \(k m i n:=a b s(J 11-J 33)\);
    if \(k\) min \(<a b s(J 12-J 23)\) then \(k m i n:=a b s(J 12-J 23)\);
        \(k \max :=J 21+J 32\);
    if \(k \max >J 11+J 33\) then \(k\) max \(:=J 11+J 33\);
    if \(k \max >J 12+J 23\) then \(k \max :=J 12+J 23\);
        for \(k:=k \min\) step 2 until kmax do
    \(N J:=N J+(\) if \(k=2 \times(k \div 2)\) then 1 else -1\() \times(k+1) \times\)
        \(S J S(J 11, J 21, J 31, J 32, J 33, k\), factorial \() \times\)
        SJS(J12, J22, J32, J21, k, J23, factorial) \(\times\)
        \(S J S(J 13, J 23, J 33, k, J 11, J 12\), factorial \()\);
    \(N J S:=N J\)
    end
end \(N J S\)
```

```
ALGORITHM 262
NUMBER OF RESTRICTED PARTITIONS OF N
    [A1]
J. K. S. McKay (Recd. 7.Dec. 1964 and 9 Mar. 1965)
Computer Unit, University of Edinburgh, Scotland
procedure set \((p, N)\); integer \(N\); integer array \(p\);
comment The number of partitions of \(n\) with parts less than
    or equal to \(m\) is set in \(p[n, m]\) for all \(n, m\) such that \(N \geq n \geq\)
    \(m \geq 0\).
        References:
    1. Gupta, H., Gwyther, C. E., and Milleir, J. C. P. Tables of
        partitions. In Royal Society Mathematical Tables, vol. 4,
        Cambridge U. Press, 1958.
    2. Hardy, G. H., and Wright, E. M. The Theory of Numbers.
    Ch. 19, 4th ed., Clarendon Press, Oxford, 1960;
begin integer \(m, n\);
    \(p[0,0]:=1\);
    for \(n:=1\) step 1 until \(N\) do
    begin \(p[n, 0]:=0\);
        for \(m:=1\) step 1 until \(n\) do
            \(p[n, m]:=p[n, m-1]+\)
            \(p[n-m\), if \(n-m<m\) then \(n-m\) else \(m]\)
    end
end set
```


ALGORITHM 263

PARTITION GENERATOR [A1]
J. K. S. McKay (Recd. 7 Dee. 1964 and 9 Mar. 1965)

Computer Unit, University of Edinburgh, Scotland.

```
procedure generate ( }p,N,\mathrm{ position, ptn, length);
    integer array p,ptn; integer N, length, position;
comment The partitions of N may be mapped in their natural
    order, 1-1, onto the consecutive integers from 0 to P(N)-1
    where P(N)(=p[N,N]) is the number of unrestricted partitions
    of N.The array p is set by the procedure set [Algorithm 262,
    Number of Restricted Partitions of N, Comm. ACM }8\mathrm{ (Aug.
    1965), 493]. On entry position contains the integer into which
    the partition is mapped. On exit length contains the number of
    parts and ptn[1: length] contains the parts of the partition in
    descending order.
        Reference:
    1. Littlewood, D. E. The Theory of Group Characters. Ch. 5,
            2nd ed., Clarendon Press, Oxford, 1958;
begin integer m,n, psn;
    n:=N; psn := position; length := 0;
A: length := length + 1; m:= 1;
B: if p[n,m]<psn then begin m}:=m+1; go to B end els
        if p[n,m]>psn then
C: begin
                ptn[length]:= m; psn := psn - p[n,m-1]; n:= n-m;
                if n}\not=0\mathrm{ then go to }A\mathrm{ ; go to }
    end
    else m:= m+1; go to C;
D: end generate
```


ALGORITHM 263 A

GOMORY 1 [H]
H. Langmaack (Recd. 17 June 1964 and 13 May 1965)

Mathematisches Institut der Technischen Hochschule, München, Germany
When testing Algorithm 153 GOMORY [F. L. Bauer, Comm. ACM 6 (Feb. 1963), 68] in Algol on the SIEMENS 2002 and TELEFUNKEN TR4 computers and in PROSA (assembler code) on the SIEMENS 2002 computer I found that some corrections were necessary. After discussions with Prof. Dr. Bauer I wish to submit the following remarks on Algorithm 153 GOMORY and on Certification of Algorithm 153 GOMORY [B. Lefkowitz and D. A. D'Esopo, Comm. ACM 6 (Aug. 1963), 449]. The improved algorithm GOMORY 1 is presented below.

1. The evaluation of the integer number $t[j]$ in the algorithm GOMORY or t in the revised form of the algorithm GOMORY is not correct, since $t[j]$ (or t) must be the largest integer number such that column j of the matrix a is not lexicographically less than column l multiplied by $t[j]$ (or t), provided such a $t[j]$ (or t) exists. A suitable change is incorporated in the algorithm GOMORY 1 given below.
2. The second remark deals with the fact that a theoretically correct Algol program may not necessarily run correctly when translated into a particular machine language and run on that machine. In general real numbers are represented only approximately and the mathematical division indicated by the Algol operator / is transformed into the approximate operation of machine division. There are two possibilities that the algorithm GOMORY might fail:
A. The lambda calculated by

$$
a b s(a[r, j] / t[j])
$$

in the algorithm GOMORY (or by

$$
-a[r, j] / t
$$

in the revised form of the algorithm GOMORY) may be less than the exact theoretical value of lambda. This may lead to columns which are lexicographically negative, but this situation is not allowed.
B. The quantities $c[j]$ (or c) calculated by

$$
\text { entier (} a[r, j] / \text { lambda })
$$

may be different from the exact values, a situation which may lead to incorrect matrix transformations.

To avoid these unwanted effects the author suggests remedying the problem in the following way:
a. Since lambda is only an intermediate result, it is proposed to keep the numerators and denominators of the candidates for lambda separate and to compare them by cross multiplication.
b. It is preferable to compute

A/lambda
by
($A \times$ denominator of lambda)/numerator of lambda
where A is an integer type expression.
c. In the algorithm GOMORY there are statements of the form

$$
C:=\operatorname{entier}(A / B)
$$

where C is an integer variable, and A and B are integer type expressions. In order to prevent roundoff errors the result C should be checked to make sure that

$$
C \times B \leq A<C \times B+B
$$

and corrected if these inequalities are not satisfied.
The corrections, a, b, c, lead to a program which cannot fail unless the products developed should overflow. However, anyone who wishes to use the algorithm may prefer to do some analysis of the particular division his computer performs and seek an alternative which is not as time-consuming. Many machines have a built-in Euclidean division instruction for integer numbers which would be very useful for Gomory's algorithm. Unfortunately Algol translators are not likely to produce this instruction in their object programs since an arithmetical expression A / B is a real type expression by definition.
procedure Gomory 1 (m, n) transient: (a) exit: (no solution); value m, n;
integer m, n;
integer array a;
label no solution;
comment Gomory 1 algorithm for all-integer programming. The objective of this procedure is to determine the integer solution $x[1], \cdots, x[n-1]$ of a linear programming problem with integer coefficients only. In other words: The problem is to find integer numbers
$x[1], \cdots, x[n-1]$
minimizing the objective function
$a[0,1] \times x[1]+\cdots+a[0, n-1] \times x[n-1]$
under the constraints
$x[1] \geq 0, \cdots, x[n-1] \geq 0$
and
$a[i, 1] \times x[1]+\cdots+a[i, n-1] \times x[n-1] \leq a[i, n]$
for $i=1, \cdots, m-n+1 \quad(2 \leq n \leq m)$.
The tableau matrix a used by the procedure consists of $m+1$ rows and n columns. The components are $a[i, j]$ for $i=0,1$, $\cdots, m, j=1, \cdots, n$.
The input values for the components are given partly by the problem itself (see above). The remaining components must have been previously assigned in the following manner:
$a[0, n]:=0$
and
$a[i, j]:=$ if $i=j+m-n+1$ then -1 else 0
for $i=m-n+2, \cdots, m, j=1, \cdots, n$. The tableau columns, with the exception of the last column, have to be lexicographically positive.

The algorithm is finished if all entries in the last column, except the topmost entry, are non-negative. Then $-a[0, n]$ is the value of the objective function. The optimal solution $x[1], \cdots, x[n-1]$ is given by the $n-1$ components $a[m-n+2, n]$, $\cdots, a[m, n]$ of the last column of a.
The exit no solution is used if a row is found which has a negative entry in the last column, but otherwise only nonnegative entries;
begin integer $i, k, j, l, r, c, t, s, l a m b d u$ num, lambda denom;
integer procedure Euclid (u, v); value u, v; integer u, v;
begin integer w; $w:=$ entier (u / v);
L8: if $w \times v>u$ then begin $w:=w-1$; go to $L 8$ end;
L9: if $(w+1) \times v \leq u$ then begin $w:=w+1$; go to $L 9$ end; Euclid := w
end Euclid;
$L 1$: for $i:=1$ step 1 until m do if $a[i, n]<0$ then begin $r:=i$; go to $L 2$ end;
go to end;
$L 2$: for $k:=1$ step 1 until $n-1$ do if $a[r, k]<0$ then go to $L 4$; go to no solution;
L4: $l:=k$;
for $j:=k+1$ step 1 until $n-1$ do if $a[r, j]<0$ then begin $i:=0$;
$L 3:$ if $a[i, j]<a[i, l]$ then $l:=j$ else
if $a[i, j]=a[i, l]$ then
begin $i:=i+1$; go to $L 3$ end
end;
$s:=0$;
$L 5:$ if $a[s, l]=0$ then
begin $s:=s+1$; go to $L 5$ end;
lambda num $:=-a[r, l]$;
lambda denom $:=1$;
for $j:=1$ step 1 until $l-1, l+1$ step 1 until $n-1$ do if $a[r, j]<0$ then
begin
for $i:=0$ step 1 until $s-1$ do if $a[i, j] \neq 0$ then go to $L 7$; $t:=$ Euclid (a[s, j], a[s, l]);
if $(t \times a[s, l]=a[s, j]) \wedge(l>1)$ then
begin $i:=s$;
L6: $\quad i:=i+1$;
if $t \times a[i, l]=a[i, j]$ then go to $L 6$ else
if $t \times a[i, l]>a[i, j]$ then $t:=t-1$
end;
if $-a[r, j] \times$ lambda denom $>t \times$ lambda num then
begin lambda num $:=-a[r, j]$; lambda denom $:=t$.end;
L7: end;
for $j:=1$ step 1 until $l-1, l+1$ step 1 until n do
begin $c:=$ Euclid (a $r, j] \times$ lambda denom, lambda num); if $c \neq 0$ then
for $i:=0$ step 1 until m do
$a[i, j]:=a[i, j]+c \times a[i, l]$
end;
go to $L 1$;
end:
end

CERTIFICATION OF ALGORITHM 263A [H]
GOMORY 1 [H. Langmaack, Comm. ACM 8 (Oct. 1965), 601-602]
L. G. Proll (Recd. 15 Sept. 1969)

Department of Mathematics, University of
Southampton, U.K.
IKEY WORDS AND PHRASES: linear programming, integer variables, dual method
CR CATEGORIES: 5.41
Algorithm 263A was coded in Algol for an ICL 1907 computer and ran successfully without alteration. Execution times and
pivot counts for a sample of 12 published examples are given in Table I.

Problem 1 is taken from Haley [1, p. 127]. Problems 2, 3, and 4 are Balas [2, ex. 2, 3, 4] in which the variables were not restricted to be 0 or 1. Problems 5-10 are IBM [3, test problems 1-5 and 9]. Problems 11 and 12 are Pierce [4, ex. 1, 2].

Wilson [5] has shown that it is possible to derive potentially stronger cuts than those of Gomory with little extra computation.

TABLE I				
Problem	m	n	No. of pivots	Time (sec.)
1	13	10	13	$\mathbf{1}$
2	17	11	8	1
3	13	10	35	1
4	18	13		$600 \dagger$
5	14	8	9	1
6	14	8	16	1
7	10	8	16	1
8	30	16	17	2
9	30	16	2569	248
10	65	16		$600 \dagger$
11	41	32	5	2
12	31	27	5	2

\dagger termination not reached

Wilson's cuts can be incorporated into GOMORY 1 by means of the following alterations:
(a) in the declarations at the head of the procedure body, insert Boolean null, nfag;
(b) in the line commencing $L 4: l:=k$; insert the stat ment null := true;
(c) replace $L 7$: end; by

L7: end
else null := false;
$c:=$ Euclid (a $[r, n] \times$ lambda denom, lambda num);
$s:=-(c+1) ; \quad t:=-a[r, n] ; n f l a g:=$ true;
if null then go to L 10 ;
for $j:=1$ step 1 until $n-1$ do if $a[r, j]>0$ then
begin $c:=$ Euclid (a[r, $j] \times$ lambda denom, lambda num); if $s \times a[r, j]<t \times c$ then
begin $t:=a[r, j] ; \quad s:=c$; nflag $:=$ false end end;
L10: if $s \times$ lambda num $<t \times$ lambda denom then
begin lambda num $:=$ if $n f l a g$ then $100 \times t-1$ else t; lambda denom := if n flag then $100 \times s$ else s end;
(d) replace the line commencing
$\operatorname{begin} c:=\operatorname{Euclid}(a[r, j] \times$ lambda denom, lambda num); by
begin $c:=$ if lambda denom $\neq 0$ then Euclid $(a[r, j] \times$
lambda denom, lambda num)
else if $a[r, j]<0$ then -1 else 0 ;

TABLE II

Problem	No. of pivots	Time (sec.)
7	7	1
9	2238	235

With these alterations some reduction in the number of pivots needed to solve problems 7, 9 was observed. New pivot counts and execution times for these problems are given in Table II.
Execution times for the problems not listed in Table II were unaltered.

References:

1. Haley, K. B. Mathematical Programming for Business and Industry. Macmillan, New York, 1968.
2. Balas, E. An additive algorithm for solving linear programs with zero-one variables. Oper. Res. 13 (1965), 517-545.
3. Haldi, J. 25 integer programming test problems. Working Paper No. 43, Grad. Sch. of Bus., Stanford U., Stanford, Calif., 1964.
4. Pierce, J. F. Application of combinatorial programming to a class of all zero-one integer programming problems. Man. Sci. 15 (1968), 191-209.
5. Wilson, R. B. Stronger cuts in Gomory's all-integer integer programming algorithm. Oper. Res. 15-(1967), 155-156.
```
ALGORITHM 264
MAP OF PARTITIONS INTO INTEGERS [A1]
J. K.S. McKAy (Recd. }7\mathrm{ Dec. }1964\mathrm{ and 9 Mar. 1965)
Computer Unit, University of Edinburgh, Scotland
integer procedure place ( }p,n,ptn)\mathrm{ ; value }n\mathrm{ ;
    integer array }p,ptn\mathrm{ ; integer }n\mathrm{ ;
comment place is the inverse of the procedure generate [Al-
    gorithm 263, Partition Generator, Comm. ACM 8 (Aug. 1965),
    493]. The array p is set by the procedure set [Algorithm 262,
    Number of Restricted Partitions of N, Comm. ACM 8 (Aug.
    1965), 493]. The procedure produces the integer into which
    the partition of n, stored in descending order of parts in ptn[1]
    onwards, is mapped;
begin integer j, d;
    d:= 0;
    if n=0 then go to }B\mathrm{ ;
    j:=0;
A: j:= j+1;d:= p[n, ptn[j]-1] +d; n:= n-ptn[j];
    if n \not=0 then go to A;
B: place := d
end place
```


ALGORITHM 264 A

INTERPOLATION IN A TABLE [E1]

J. Stafford (Recd. 16 Nov. 1964 and 7 June 1965)

Westland Aircraft Ltd., Saunders-Roe Division, East Cowes, Isle of Wight, England
real procedure $\operatorname{INPOL}(T, X, I, N, O U T, X O U T, E X P O L)$; value X, N; array T, X; integer I; integer array N; real $X O U T, E X P O L$; Boolean OUT;
comment Evaluation of a function by polynomial interpolation in a table of values.

The values may be specified at arbitrary intervals, at nodes of a multidimensional rectangular grid. The interpolation is by Neville's process, repeated in each dimension.
The given values are arranged in a one-dimensional real array T, as follows. The first value in the table, $T[0]$, is D, the number of independent variables (or dimensions). It will normally be integral (although of type real), but if not then its integral part is taken. $T[1], T[2], \cdots, T[D]$ are the numbers of values of $X 1, X 2, \cdots, X D$, and must be integral. These are followed by $T[1]$ values of $X 1, T[2]$ values of $X 2, \cdots T[D]$ values of $X D$. The values of each of these independent variables must all be distinct and must be arranged in monotonic order. Finally come the $T[1] \times T[2] \times \cdots \times T[D]$ values of the dependent variable $F(X 1, X 2, \cdots, X D)$, arranged as $T[D]$ sets of $T[D-1]$ sets of \cdots of $T[2]$ sets of $T[1]$ values of F^{\prime}.
The table is represented by a one-dimensional array because it is not feasible to use a general D-dimensional array.
The given values of the independent variables are $X[I]$ $(I=1,2, \cdots, D) . N[I]$ of the tabulated values $X[I]$ are used to interpolate in the Ith dimension. INPOL is the required value of the function. The actual parameter corresponding to the formal parameter EXPOL should be an expression which provides the value of $I N P O L$ if any of the $X[I]$ is outside the range covered by the array T. If this occurs $X O U T$ is the particular value of $X[I]$ concerned. The variables $I, O U T$ and XOUT are declared as formal parameters of INPOL so that they may be used in the actual parameter corresponding to the formal parameter EXPOL.
An example of a call of $I N P O L$ is $Z:=I N P O L(A, X, K, N$, OUT, Y, if $K=1$ then EXTRAPOLATE ($A, 1, N, O U T, Y$) else if $K=2$ then $\operatorname{LIMTAB}(A, 2, O U T, Y)$ else $Y-2)$. If $X[1]$ is outside the range covered by the array A this statement will use the extrapolatory procedure EXTRAPOLATE (given below) to provide a value for INPOL. If $X[2]$ is out of range the procedure LIMTAB (also given below) will be used to replace the value of $X[2]$ by its value at the nearer edge of the table, before returning to $I N P O L$ to continue the interpolation. If some other variable ($X[3]$, say) is out of range the value of $I N P O L$ is taken as $X[3]-2$.
The procedures INPOL, EXTRA POLATE and LIMTAB were tested on an ICT Atlas computer. They were also tested on a National-Elliott 803 computer, after being altered to conform to the restrictions of the 803 Algol compiler. The tests were for $D=0,1,2$ and 3 , and included all special cases; begin integer $D, J, K, L, M, Q, X I$;

```
procedure FORS3(N,P,V,UB);
    value N; integer N; procedure P;
    integer array }V,UB\mathrm{ ;
```

comment Nesting of for statements, adapted from procedure Fors 1 [Algorithm 137, Comm. ACM 5 (Nov. 1962), 555];
begin integer J;
if $N=0$ then P else for $J:=1$ step 1 until $U B[N]$ do begin $V[N]:=J ; \quad \operatorname{FORS} S(N-1, P, V, U B)$ end
end FORS3;
real procedure $N E V(X, A X, S A X, A Y, S A Y, N)$; value $X, S A X, S A Y, N$; real X; integer $S A X, S A Y, N$; array $A X, A Y$;
comment One-dimensional interpolation by Neville's process. N values of the independent variable are used in the interpolation, namely, N consecutive elements of array $A X$ starting at subscript $S A X$. The corresponding values of the dependent variable are the N consecutive elements of array $A Y$ starting at subscript $S A Y . X$ is the value of the independent variable for which the value of the dependent variable (namely, $N E V$) is to be interpolated;
begin integer $I, J, N J, K I$; array $F[0: N-1]$;
for $J:=0$ step 1 until $N-1$ do $F[J]:=A Y[S A Y+J]$;
for $J:=1$ step 1 until $N-1$ do
begin
$N J:=N-J-1 ;$
for $I:=0$ step 1 until $N J$ do
begin
$K I:=S A X+I ;$
$F[I]:=(F[I+1]-F[I]) \times(X-A X[K I]) /$
$(A X[K I+J]-A X[K I])+F[I]$
end;
$N E V:=F[0]$
end $N E V$;
$D:=$ entier ($T[0]$);
comment $D=$ number of dimensions. The special case $D=0$ implies that the tabulated function F is a constant, the value of which is $T[1]$. The same value is taken if $D<0$;
if $D<1$ then INPOL $:=T[1]$ else
begin $X I:=1$;
for $I:=1$ step 1 until D do
begin if $N[I]<2$ then $N[I]:=2$; if $N[I]>T[I]$ then $N[I]:=T[I]$;
comment Adjustment of number of points used for interpolation. Normally $N[I]$ must be at least 2 , and if $N[I]<2$ it is set equal to $2 . N[I]$ also may not exceed the number of values of the independent variable in the corresponding dimension (namely, $T[I]$), and if it does so it is reduced accordingly.

The combination of these two tests, in this order, permits as a special case one-point interpolation in any particular dimension (I, say), if $T[I]=1$. This implies that the dependent variable is independent of $X[I]$. If this is intended then the actual parameter corresponding to the formal parameter $E X P O L$ must be a function designator which (if called for) replaces the value of XOUT by the single value of the I th variable from the array T. (Procedure LIMTAB may be used for this purpose.)
Since array N is called by value none of these adjustments affects the values of $N[I]$ in the nonlocal array N; $X I:=X I+N[I]$
end I;
begin array $F[1: X I-N[1]]$; integer array $V, X I N I T$, YINC [1: D];

procedure ONEWAY;

comment Performs an interpolation in the first dimension. If this is the last of a set of $N[2]$ such interpolations, a further interpolation is performed in the second dimension, and so on to as many higher levels as necessary;
begin $F[V[1]]:=N E V(X[1], T, X I N I T[1], T, Q, L)$;
$I:=1 ; M:=0$;
for $K:=1$ step 1 until $D-1$ do
$\operatorname{begin} Q:=Q+Y I N C[K]$;
if $V[K] \neq N[K]$ then go to CONTINUE else
begin $M:=M+N[K]$;
$F[M+V[K+1]]:=N E V(X[K+1], T, X I N I T[K+1]$, $F, I, N[K])$;
$I:=I+N[K]$
end
end;
CONTINUE:
end ONEWAY;
$Q:=X I:=D+1 ; M:=1$;
for $I:=1$ step 1 until D do
begin $K:=X I+T[I]-1$;
$O U T:=(X[I]-T[X I]) \times(X[I]-T[K])>0 ;$
if OUT then
begin
XOUT $:=X[I] ; \quad$ IN POL $:=E X P O L ; \quad X[I]:=$ XOUT $;$ if $T[0] \leq 0$
then begin $K:=K+T[0] ; \quad T[0]:=D$ end end;
comment If $X[I]$ is outside the range covered by the table, the extrapolatory expression $E X P O L$ is evaluated. It is expected that it will often be or contain one or more function designators, together with criteria for choosing between them, as in the example above.

EXPOL may incorporate, e.g., any of the following alternatives. In the first and third of these the side effects are the important ones, the value assigned to EXPOL being merely a dummy to conform with Section 5.4.4 of the Revised Report on Algol 60 [Comm. ACM 6 (Jan. 1963), 1-17].

1. EXPOL may be a function designator which uses the interpolatory formula to extrapolate by executing the statement $O U T:=$ false and returning to $I N P O L$. The last $N[I]$ values of $X[I]$ are used in the formula, but $E X P O L$ may arrange to use the first $N[I]$ values instead (which will usually be preferable if $X[I]$ lies beyond the lower limit of the table) by executing the statement $T[0]:=N[I]-T[I]$ (in which the value of the local $N[I]$ is to be used if it differs from that of the nonlocal $N[I])$. The procedure EXTRA POLATE (given below) may be used for this purpose.
2. $E X P O L$ may use some other formula to extrapolate, after which it must return to $I N P O L$ without altering the value of the Boolean variable OUT'. If this is all that is required the actual parameter corresponding to $E X P O L$ may be an ordinary arithmetic expression containing no function designators.
3. EXPOL may be a function designator which constrains $X[I]$ to lie within range by replacing it by the value of the Ith variable at the nearer limit of the table (or by some other value). In doing this it must operate on the value of XOUT and not directly on
$X[I]$. The nonlocal array X will not be affected. EXPOL must also execute the statement OUT := false before returning to $I N P O L$. The procedure LIMTAB (given below) may be used for this purpose.
4. EXPOL may do something else and continue the program without returning to INPOL (e.g., by a go to statement referring to a nonlocal label). This should be considered an error exit as the value of INPOL will be undefined (see Section 5.4.4 of the Revised Report on Algol 60);
if $O U T$ then go to B;
comment If $O U T=$ true on exit from $I N P O L$ then extrapolation has occurred: The converse is not necessarily true, as it depends on the nature of the actual parameter corresponding to the formal parameter EXPOL
$J:=X I ;$
A: $\quad L:=(J+K) \div 2$;
if $(X[I]-T[J]) \times(X[I]-T[L])>0$ then $J:=L$ else $K:=L$;
if $K-J>1$ then go to A; comment Find $X[I]$ in table;
$L:=K-N[I] \div 2$;
if $L \leq X I$ then $L:=X I$ else
begin
$K:=X I+T[I]-N[I] ; \quad$ if $L>K$ then $L:=K$
end Adjustment near edge of table;
$Q:=Q+T[I]+(L-X I) \times M ; X I N I T[I]:=L ;$
$X I:=X I+T[I]$;
$Y I N C[I]:=M \times(T[I]-($ if $I=1$ then 0 else $N[I])) ;$
$M:=M \times T[I]$
end I;
$V[D]:=1 ; \quad L:=N[1] ;$
for $I:=1$ step 1 until $D-1$ do $N[I]:=N[I+1]$;
FORS3 $(D-1$, ONEW A $Y, V, N) ;$ INPOL $:=F[M+1]$
end scope of F
end $D \geq 1$;
B :
end IN POL;
real procedure EXTRAPOLATE (T, I, N, OUT, XOUT); array T; integer I; integer array N; Boolean OUT; real XOUT;
comment This function designator is intended for use in the actual parameter corresponding to the formal parameter $E X P O L$ in a call of procedure INPOL. The parameters have the same significance as in INPOL.
$E X T R A P O L A T E$ arranges for the interpolatory formula to be used to extrapolate for the I th variable, and for the first $N[I]$ values of this variable to be used in the formula instead of its last $N[I]$ values if it lies beyond the lower limit of the table;
begin integer J, K;
OUT := false; EXTRAPOLATE $:=0$;
comment This statement assigns a dummy value to EXTRAPOLATE to conform with Section 5.4.4 of the Revised Report on Algol 60;
$J:=1 ;$ for $K:=0$ step 1 until $I-1$ do $J:=J+T[K]$;
if $T[I]=1$ then XOUT $:=T[J]$ else if $\operatorname{abs}($ XOUT $-T[J])<a b s(X O U T-T[J+T[I]-1])$ then begin $K:=N[I]$;
if $K<2$ then $K:=2$;
if $K>T[I]$ then $K:=T[I]$;
$T[0]:=K-T[I]$
end
end EXTRAPOLATE;
real procedure $\operatorname{LIMTAB(T,I,OUT,XOUT);~}$
array T; integer I; Boolean OUT; real XOUT;
comment This function designator is intended for use in the actual parameter corresponding to the formal parameter $E X P O L$ in a call of procedure $I N P O L$. The parameters have the same significance as in INPOL.
LIMTAB replaces the value of XOUT, which is outside the range of the table, by the value of the I th variable at the nearer edge of the table;
begin integer J, K;
$J:=1$; for $K:=0$ step 1 until $I-1$ do $J:=J+T[K] ;$
$K:=J+T[I]-\mathbf{1} ;$
LIMTAB $:=$ XOUT $:=$ if $\operatorname{abs}\left(X O U T-T^{\prime}[J]\right)>$ abs (XOUT $-T[K]$) then $T[K]$ else $T[J]$;
comment This statement assigns a dummy value to LIMTAB to conform with Section 5.4.4 of the Revised Report on Algol 60;
OUT: : false
end LIMTAB

ALGORITHM 265

FIND PRECEDENCE FUNCTIONS [L2]
Niklaus Wirth (Recd. 14 Dec. 1964 and 22 Dec. 1964)
Computer Science Dept., Stanford U., Stanford, Calif.

```
procedure Precedence ( \(M, f, g, n, f a i l\) );
value \(n\); integer \(n\); integer array \(M, f, g\); label fail;
comment \(M\) is a given \(n \times n\) matrix of integers designating one
    of the four relations \(<,=,>, \circ\). The identifiers \(l s, e q, g r\) des-
    ignate variables declared outside the procedure to which distinct
    integers representing the relations \(<,=,>\) have been assigned.
    This procedure then determines integers \(f[1] \ldots f[n]\) and \(g[1]\)
    \(\ldots g[n]\) such that for all \(i, j, f[i] M[i, j] g[j]\) is true and so that the
    smallest of these integers is +1 . 。designates the empty relation,
    so that \(x \circ y\) is true for arbitrary \(x, y\). If \(M\) is such that no \(f\) and \(g\)
    exist which satisfy all \(n^{2}\) relations, then control is transferred to
    the label parameter fail. This procedure has been used to deter-
    mine the precedence functions of symbols in a given precedence
    grammar (see [Floyd, R. Syntactic analysis and operator
    precedence. J.ACM 10 (1963), 316-333]);
begin integer \(i, j, k, k 1\), fmin, gmin;
    procedure fixrow \((i, l, x)\); value \(i, l, x\); integer \(i, l, x\);
    begin integer \(j ; f[i]:=g[l]:+x\);
        if \(k=k 1\) then
        begin if \(M[i, k]=l s \wedge f[i] \geq g[k]\) then go to fail else
            if \(M[i, k]=e q \wedge f[i] \neq g[k]\) then go to fail
        end;
        for \(j:=k 1\) step -1 until 1 do
        if \(M[i, j]=l s \bigwedge f[i] \geq g[j]\) then \(f x c o l(i, j, 1)\) else
        if \(M[i, j]=e q \wedge f[i] \neq g[j]\) then fixcol \((i, j, 0)\)
    end fixrow;
    procedure \(f x\) xcol \((l, j, x)\); value \(l, j, x\); integer \(l, j, x\);
    begin integer \(\boldsymbol{i} ; g[j]:=f[l]+x\);
        if \(k \neq k 1\) then
        begin if \(M[k, j]=g r \wedge f[k] \leq g[j]\) then go to fail else
            if \(M[k, j]=e q \wedge f[k] \neq g[j]\) then go to fail
        end;
        for \(i:=k\) step -1 until 1 do
        if \(M[i, j]=g r \wedge f[i] \leq g[j]\) then fxxrow \((i, j, 1)\) else
        if \(M[i, j]=e q \wedge f[i] \neq g[j]\) then fixrow \((i, j, 0)\)
    end fixcol;
    \(k 1:=0\);
    for \(k:=1\) step 1 until \(n\) do
    begin \(\operatorname{fmin}:=1\);
        for \(j:=1\) step 1 until \(k 1\) do
            if \(M[k, j]=g r \wedge f \min \leq g[j]\) then \(f \min :=g[j]+1\) else
            if \(M[k, j]=e q \wedge f \min <g[j]\) then \(f \min :=g[j]\);
        \(f[k]:=f \min ;\)
        for \(j:=k 1\) step -1 until 1 do
            if \(M[k, j]=l s \wedge f m i n \geq g[j]\) then fixcol \((k, j, 1)\) else
            if \(M[k, j]=e q \wedge f \min >g[j]\) then fixcol \((k ; j, 0)\);
        \(k 1:=k 1+1 ; \operatorname{gmin}:=1\);
        for \(i:=1\) step 1 until \(k\) do
            if \(M[i, k]=l s \wedge f[i] \geq g\) min then \(g m i n:=f[i]+1\) else
            if \(M[i, k]=e q \wedge f[i]>g \min\) then \(g \min :=f[i]\);
        \(g[k]:=g m i n ;\)
        for \(i:=k\) step -1 until 1 do
            if \(M[i, k]=g r \wedge f[i] \leq g m i n\) then fuxrow \((i, k, 1)\) else
            if \(M[i, k]=e q \wedge f[i]<g m i n\) then fixrow \((i, k, 0)\)
    end \(k\)
end Precedence
```


ALGORITHM 266

PSEUDO-RANDOM NUMBERS [G5]

M. C. Pike and I. D. Hill

(Recd. 15 Feb. 1965 and 6 July 1965)
Medical Research Council, London, England
real procedure random (a, b, y);
real a, b; integer y;
comment random generates a pseudo-random number in the open interval (a, b) where $a<b$. The procedure assumes that integer arithmetic up to $3125 \times 67108363=209715196875$ is available. The actual parameter corresponding to y must be an integer identifier, and at the first call of the procedure its value must be an odd integer within the limits 1 to 67108863 inclusive. If a correct sequence is to be generated, the value of this integer identifier must not be changed between successive calls of the procedure;
legin
$y:=3125 \times y ; \quad y:=y-(y \div 67108864) \times 67108864$;
random $:=y / 67108864.0 \times(b-a)+a$
end random
Coveyou [2] showed that for multiplicative congruential methods of generating pseudorandom numbers, the correlation between successive numbers will be approximately the reciprocal of the multiplying factor. Greenberger [3] showed further that the factor should he considerably less than the square root of the modulus.

The method of Algorithm 133 [1] satisfies Greenberger's condition, but since the reciprocal of its multiplying factor is as high as 0.2 , Coveyou's result shows that it is very unsatisfactory for purposes requiring statistically independent consecutive random numbers.

Algorithms 133 and 266 have both been tested by computing a number of sets of 2000 successive random integers between 0 and 9 , dividing each set into 400 groups of 5 , and performing the poker test [4]. The results were classified in the following seven categories:

(i)	all different
$(i i)$	1 pair
$(i i i)$	2 pairs
$(i v)$	3 of a kind
(v)	3 of a kind and 1 pair
$(v i)$	4 of a kind
$(v i i)$	5 of a kind.

The following tables resulted:
ALGORITHM 133

Run	Starting Value	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
1	13421773	114	193	42	37	7	7	0
2	22369621	111	181	46	40	14	8	0
3	33554433	130	178	48	28	7	6	3
4	6871947673	118	179	51	35	10	5	2
5	11453246123	128	189	44	28	6	4	1
6	17179869185	135	155	45	52	6	5	2
Expected for each Run	120.96	201.60	43.20	28.80	3.60	1.80	0.04	
Total for 6 Runs	736	1075	276	220	50	35	8	
Expected for	725.76	1209.60	259.20	172.80	21.60	10.80	0.24	
Total								

ALGORITHM 266

Run	Starting Value	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
1	13421773	132	191	35	38	2	2	0
2	22369621	140	187	45	27	0	1	0
3	33554433	129	198	44	25	4	0	0
4	8426219	107	202	50	37	2	2	0
5	42758321	101	207	60	25	5	2	0
6	56237485	118	203	42	34	1	2	0
7	62104023	119	206	41	27	6	1	0
Expected for each Run		120.96	201.60	43.20	28.80	3.60	1.80	0.04
Total for 7 Runs		846	1394	317	213	20	10	0
Expected for Total		846.72	1411.20	302.40	201.60	25.20	12.60	0.28

Combining categories (vi) and (vii) in each case, the observed totals give χ^{2} values (on 5 degrees of freedom) of 159.0 for Algorithm 133, and of 3.28 for Algorithm 266.

References:

1. Behrenz, P. G. Algorithm 133, Random. Comm. ÁCM 5 (Nov. 1962), 553.
2. Coveyou, R. R. Serial correlation in the generation of pseudorandom numbers. J. ACM 7(1960), 72-74.
3. Greenberger, M. An a priori determination of serial correlation in computer generated random numbers. Math. Comput. 15(1961), 383-389. Correction in Math. Comput.16(1962), 126.
4. Kendall, M. G., and Babington-Smith, B. Randomness and random sampling numbers. J. Royal Statist. Soc. 101 (1938), 147-166.

REMARK ON ALGORITHM 266 ［G5］

PSEUDO－RANDOM NUMBERS［M．C．Pike and I．D． Hill，Comm．ACM 8 （Oct．1965），605］
M．C．Pike and I．D．Hill（Recd． 9 Sept．1965）
Medical Research Council，London，England
Algorithm 266 assumes that integer arithmetic up to $3125 \times$ $67108863=209715196875$ is available，which is not so on many computers．The difficulty arises in the statements
$y:=3125 \times y ; \quad y:=y-(y \div 67108864) \times 671.08864$ ；
They may be replaced by

integer k ；

for $k:=$（for list〉do
begin $y:=k \times y ;$ $y:=y-(y \div 67108864) \times 67108864$
end；
where the 〈for list〉 may be
125， 25 （requiring integer arithmetic up to less than 2^{33} ）
$25,25,5$（requiring integer arithmetic up to less than 2^{31} ）
or
$5,5,5,5,5$（requiring integer arithmetic up to less than 2^{29} ）
according to the maximum integer allowable．The first is appro－ priate for the ICT Atlas．［And also for the IBM 7090，the second for the IBM System／360 ．．．Ref．］

Note．There are frequently machine－dependent instructions available which will give the same values as the above statements much more quickly，if speed is of much importance．

REMARK ON ALGORITHM 266 ［G5］

PSEUDO－RANDOM NUMBERS［M．C．Pike and I．D． Hill，Comm．ACM 8 （Oct．1965），605］
L．Hansson（Recd． 25 Jan．1966）
DAEC，Riso，Denmark
As stated in Algorithm 266，that algorithm assumes that integer arithmetic up to $3125 \times 67108863=209715196875$ is available．Since this is frequently not the case，the same algorithm with the con－ stants 125 and 2796203 may be useful．In this case the procedure should read

```
real procedure random ( }a,b,y\mathrm{ );
    real }a,b; integer y
begin
    y=125\timesy;y:=y-(y\div2796203)}\times2796203
    random := y/2796203 }\times(b-a)+
end
```

The necessary available integer arithmetic is $125 \times 2796203=$ $348525375<2 \uparrow 29$ ．With this procedure body，any start value within the limits 1 to 2796202 inclusive will do．

Seven typical runs of the poker－test gave the results：

start value	all different	1 pair	2 pairs	3	$3+$ pair	4	；
100001	129	199	39	31	2	0	0
1082857	115	206	45	31	2	1	0
724768	120	195	49	32	3	1	0
78363	130	198	36	31	5	0	0
1074985	127	189	44	34	4	2	0
2567517	124	193	50	28	3	2	0
2245723	119	202	49	24	4	1	1
Totals for 7 runs：							
	864	1382	312	211	23	7	1

Totals for 100 consecutive runs with first start value 100001：
$\begin{array}{lllllll}12023 & 20297 & 4301 & 2837 & 358 & 181 & 3\end{array}$

Certification of Algorithm 266 ［G5］
Pseudo－Random Numbers［M．C．Pike and I．D．Hill， Comm．ACM 8 （Oct．1965），605］

Walter L．Sullins［Recd． 12 Feb．1971］
School of Education，Indiana State University
Terre Haute，IN 47809

Key Words and Phrases：pseudo－random numbers，testing random number generators
 CR Categories： 5.5

The Pike and Hill Algorithm 266 ［2］generates pseudo－random numbers in a prescribed open interval．Pike and Hill presented favorable evidence for the serial and poker tests［1］but omitted discussion of frequency tests．

The purpose of the present certification was to test the hy－ pothesis that the numbers generated by the algorithm are rec－ tangularly distributed．Nine sequences of numbers in the interval $(0,1)$ were generated，and each was divided into 500 blocks of various lengths．In each case the distribution of numbers was tested against a uniform distribution，with .1 interval width，by com－ puting χ^{2} on nine degrees of freedom for each of the 500 blocks within the sequence．The results are given in the table below．

Run	Starting value	Block length	Sequence length	Pro－ portion
1	32347753	400	200,000	.012
2	52142147	600	300,000	.018
3	52142123	640	320,000	.014
4	53214215	960	480,000	.008
5	23521425	1000	500,000	.006
6	42321479	1040	520,000	.006
7	20302541	1560	780,000	.006
8	32524125	1600	800,000	.010
9	42152159	2600	$1,300,000$.004

The proportions reported are the proportions of the 500 blocks which produced significant chi－square values when the probability of incorrectly rejecting the hypothesis of uniformity was set at ． 01 ． Thus there is considerable assurance that the numbers generated by the algorithm are rectangularly distributed．These findings also support the algorithm with respect to Yule＇s［3］recommendation that block sums be compared with expectation．

References

1．Kendall，M．G．，and Babington－Smith，B．Randomness and random sampling numbers．J．Royal Statist．Soc． 101 （1938）， 147－166．
2．Pike，M．C．，and Hill，I．D．Algorithm 266：Pseudo－random numbers．Comm．ACM 8 （Oct．1965）， 605.
3．Yule，G．Udny．A test of Tippett＇s random sampling numbers．
J．Royal Statist．Soc． 101 （1938），167－172．

ALGORITHM 267
RANDOM NORMAL DEVIATE [G5]
M. C. Pike (Recd. 3 May 1965 and 6 July 1965)
Medical Research Council, London, England
procedure $R N D(x 1, x 2$, Random $)$;
real procedure Random; real $x 1, x 2$;
comment $R N D$ uses two calls of the real procedure Random which is any pseudo-random number generator which will produce at each call a random number lying strictly between 0 and 1. A suitable procedure is given by Algorithm 266, PseudoRandom Numbers [Comm. ACM 8(Oct. 1965), 605] if one chooses $a=0, b=1$ and initializes y to some large odd number, such as 13421773. RND produces two independent random variables $x 1$ and $x 2$ each from the normal distribution with mean 0 and variance 1 . The method used is given by Box, G.E.P., and Muller, M.E., A note on the generation of random normal leviates. [Ann. Math. Stat. 29 (1958), 610-611];
\section*{begin real t;}
$x 1:=\operatorname{sqrt}(-2.0 \times \ln ($ Random $)) ;$
$i:=6.2831853072 \times$ Random;
comment $6.2831853072=2 \times p i$;
$x 2:=x 1 \times \sin (t) ; \quad x 1:=x 1 \times \cos (t)$
end $R N D$

Algorithm 121, NormDev [Comm. ACM 5 (Sept. 1962), 482; 8 (Sept. 1965), 556] also produces random normal deviates and Algorithm 200, NORMAL RANDOM [Comm. ACM 6 (Aug. 1963), 444;8 (Sept. 1965), 556] produces random deviates with an approximate normal distribution, but the procedure $R N D$ seems preferable to both of them.

We may compare NORMAL RANDOM to RND (which is exact) by noting that at recommended minimum n NORMAL RANDOM requires 10 calls of Random while $R N D$ gets two independent normal deviates from 2 calls of Random andi one call each of sqrt, $l n, \sin$ and \cos. Under the stated test conditions a single call of NORMAL RANDOM (with $n=10$) took 20 percent more computing time than a single call of $R N D$ when the real procedure Random was given by Algorithm 266.

To compare NormDev to RND in the same way, we have first to calculate the expected number of calls of $l n$, sqrt, exp and Random ior each call of NormDev. This may be done by noting that there is (1) an initial single call of Random, then (2) with probability 0.68 a random normal deviate restricted to $(0,1)$ has to be found and this requires on average 1.36 calls of Random and 1.18 calls of exp, and (3) with probability 0.32 a random normal deviate restricted to $(1, \infty)$ has to be found and this requires on average 2.04 calls of Random and 1.52 calls of each of $l n$ and sqrt. NormDev thus requires on average 2.58 calls of Random, 0.80 calls of exp, 0.49 calls of \ln and 0.49 calls of sqri. (Note: NormDev requires one further call of Random if a signed normal deviate is required.) Under the stated test conditions a single call of NormDev took virtually the same amount of computing time as a single call of $R N D$ when the real procedure Random was as above.
(Note: In testing NormDev the procedure was speeded up by replacing A by 0.6826894 wherever it occurred and removing it from the parameter list. In testing NORMAL RANDOM Mean, Sigma, n were replaced by $0,1.0$ and 10 respectively and removed from the parameter list.)

ALGORITHM 268

ALGOL 60 REFERENCE LANGUAGE EDITOR [R2]
W. M. McKeeman* (Recd. 9 Dec. 1964, 23 Feb. 1965 and 17 May 1965)
Computer Science Department, Stanford University, Stanford, California

* Supported in part by the Office of Naval Research under Contract Nonr 225(37), NR 044-211.

The author expresses his thanks to the referee for several valuable suggestions.
procedure Algoledit(characterset, linelimit);
string characterset;
integer linelimit;
comment If this procedure is presented an Algol 60 program or procedure in the form of a sequence of basic symbols, it will transmit to the output medium a copy of the text with indentations between each begin-end pair and some rearrangement of the blank spaces within the text. This procedure is an example of its own output. It is used to edit Algol 60 text that is difficult to read because, for example, the Algol has been transcribed from printed documents, or written by inexperienced programmers, or stored in compressed form (i.e., with all redundant blank spaces removed). The integer " -1 " will represent the nonbasic symbol "carriage return", " -2 " will represent an end-of-file mark, other symbols will have the integer value corresponding to their position in the parametric string "characterset". The string must contain exactly the 116 basic symbols of Algol 60. The parameter "linelimit" sets an upper bound on the number of basic symbols that the user wishes to appear on a line of output. The identifiers " $l s q$ " and " $r s q$ " will be used in place of strings of length one whose only elements are "،" and "'", respectively;
begin integer array spacesbefore, spacesafter[1:116], buffer [1 : linelimit $]$;
integer tabstop, symbol, i, symbolcount, level;
Boolean newline;
integer procedure val(s);
string s;
comment The value of this procedure is the integer
corresponding to the position in the string "characterset" of the symbol in the string " s ". The body of the
procedure must be expressed in code;
procedure get(symbol);
integer symbol;
begin insymbol(2, characterset, symbol);
if symbol $=-2$ then go to eof
end $g e t$;
procedure send(symbol);
integer symbol;
begin comment "send" must not break identifiers across lines or insert spurious characters into strings;

$$
\text { integer } i, u, v ;
$$

if symbol $=-1 \quad \vee$ symbolcount \geq linelimit

then

begin $v:=$ tabstop;
if newline then go to E;
if level $\neq 0$ then
begin comment Inside a string; for $i:=1$ step 1 until symbolcount do outsymbol(1, characterset, buffer[i]); outsymbol (1 , characterset, - 1); $\mathrm{v}:=0$
end else
begin u := symbolcount; newline := true; if symbol $=-1$ then go to D; comment Find a convenient place to break the line;
for $u:=$ symbolcount -1 step 1 until 1 do if buffer $[u+1]=$ $\operatorname{val}(' \mathrm{u}$ ') \vee buffer $[u]=\operatorname{val}(r s q)$ then go to D; $u:=$ symbolcount; comment Send the line;
D :for $i:=1$ step 1 until u do outsymbol(1, characterset, buffer $[i]$); outsymbol (1, characterset, - 1);
comment Find a non-blank character to start the next line;
for $i:=u+1$ step 1 until
symbolcount do if buffer $[i] \neq \operatorname{val}($ ' $\mathbf{~}$ ')
then go to F;
go to G;
comment Move a new line to the
head of the buffer area;
F : for $i:=i$ step 1 until
symbolcount do
begin $v:=v+1$; newline := false;
buffer $[v]:=$ buffer $[i]$
end;
comment Insert blanks for tab stops;
$G:$ for $i:=1$ step 1 until
tabstop do buffer[$i]:=\operatorname{val}(\mathbf{\prime} \mathbf{\prime}$ ')
end;
$E:$ symbolcount $:=v$
end;
comment Now we can put the new symbol in the buffer array;
if symbol $\neq-1 \wedge \neg$ (newline \wedge symbol $=\operatorname{val}($ ' u ')) then
begin symbolcount $:=$ symbolcount +1 ;
newline := false;
buffer[symbolcount] := symbol
end
end send;
for symbol $:=1$ step 1 until 116 do spacesbefore[symbol] $:=$ spacesafter $[$ symbol $]:=0$;
for symbol $:=\operatorname{val}(‘+’)$, $\operatorname{val}(‘-’)$, val('ᄀ'), val(':'),
 val(' \geq '), val(' $>$ ') do spacesbefore[symbol] := spacesafter[symbol] $:=1$;

```
    for symbol := val(`^`), val('V'), val('つ'), val('\equiv'),
    val('then'), val('else'), val('step'). ral('until'),
    val('while'), val('do') do spacesbeforelsymboll :=
    spacesafter[symbol] := 2;
    for symbol := ral('go to'), val('begin'), ral('if'),
    ral('for'), val('procedure'), val('value'), val('own'),
    val('real'), val('Boolcan'), val('integer'), val('array'),
    val('switch'), val('label'), val('string'), val(',') do
    spacesafter[symbol] := 2;
    level := symbolcount := tabstop := 0;
    newtine := 1rue
    nextsymbol : deblank : get(symbol);
    scanned : if symbol = ral('u') V symbol = - 1
    then go to deblank;
    if symbol = ral('begin') then send( - 1) else
    if symbol = ral('end') then
    hegin tabstop := tabstop - 5
        send( - 1)
    end
    for i := 1 step 1 umil spacesbefore[symboll do
    send(val('u'));
    send(symbol);
    for i := 1 step 1 until spaccsafter[symbol] do
    sfrd(val('u'));
    if symbol = ral('commment') then
    begin comment Pass comments on unchanged;
        for i := 1 while symbol \not= val(`;') do
        login get(symbol);
        send(symbol)
    end
    end else if symbol = val('end') then
    begin commment "end" comments;
    for i := 1 while symbol }\not=val(';') do
    begin get(symbol);
        if symbol = val('else') }V\mathrm{ symbol =
        val('end') then go to scanned;
        send(symbol)
    end
end else if symbol = val(lsq) then
begin comment Pass strings on unchanged;
    level := 1;
    for i := 1 while level }\not=0\mathrm{ do
    hegin get(symbol);
        send(symbol);
        if symbol = val(lsq) then level := level
        + 1 else if symbol = ral(rsq)
        then level := level - 1
    end
end;
if symbol = ral('begin') then tabstop := labstop + 5
else if symbol = ral(';') then send( - 1);
Mo to nextsymbol;
eof : sendi - lj;
outsymbol(1, charncterset, - 2)
end .Ilgoledit
```

RE.SARK ON ALGORITTHME 26s [R2]
ALGOL 60 REFERENCE LANGUACE EDITOR [W. .I. MeKeeman, Comm. AC.I/ 8 (Nov. 196:), 667] (1. Sauer (Recd. 2:3 Dec. 1968)

Institut für 'Theoretische Physik der Justus-Liebig-Universität, 63 (Yiessen, West (remmany
KEY WORDS AND PHRASES: symbol manipulation
CR CATEGORIES: 4.49

In the procedure send, replace the line
1 until 1 do if buffer $[u+1]=$
with the line
1 until tabstop do if buffer $[u+1]=\quad$ (1)
The published version fails to clear the buffer when a line to be printed contains no blanks and labstop >0, cansing an array bounds violation. Knowing buffer[tabstop +1$]$ never to contain a blank character, the search for blanks may be stopped at $u=$ tabstop +1 .
${ }^{1}$) The author is indebted to the referee for suggesting this brief form.

ALGORITHM 269

DETERMINANT EVALUATION [F3]
Jaroslav Pfann and Josef Straka
(Recd. 10 Sept. 1964 and 29 Dec. 1964)
Institute of Nuclear Research, Řež by Prague, Czechoslovakia
real procedure determinant (A, n); array A; integer n; comment This procedure evaluates a determinant by triangularization with searching for pivot in row and with scaling of the rows of the matrix before the triangularization. This was done as in procedure $E Q U I L I B R A T E$ of the Algorithm 135 [Comm. ACM 5 (Nov. 1962), 553];
begin real product, temp; integer i, j, r, s;
array mult $[1: n]$;
procedure $E Q U I L I B R A T E(A, n$, mult);
integer n; array A, mult;
begin integer i, j; real $m x$;
for $i:=1$ step 1 until n do
begin $m x:=0.0$;
for $j:=1$ step 1 until n do
if $a b s(A[i, j])>m x$ then $m x:=a b s(A[i, j])$;
if $m x=0.0$ then
begin determinant $:=0 ;$ go to RETURN end;
$m u l t \dagger i]:=m x$; comment $:=b a s e \uparrow e x$ for exact scaling; if $m x \neq 1.0$ then
for $j:=1$ step 1 until n do $A[i, j]:=A[i, j] / m x$;
end
end EQUILIBRATE;
EQUILIBRATE (A, n, mult);
product $:=1$;
for $r:=1$ step 1 until $n-1$ do
begin $s:=r$; temp $:=a b s(A[r, r])$;
for $j:=r+1$ step 1 until n do
if temp $<a b s(A[r, j])$ then
begin temp $:=\operatorname{abs}(A[r, j]) ; \quad s:=j$ end;
if temp $=0$ then begin determinant $:=0$; go to RETURN end;
if $s \neq r$ then
begin product := - product;
for $i:=r$ step 1 until n do
begin temp $:=A[i, r] ; \quad A[i, r]:=A[i, s] ;$
$A[i, s]:=t e m p$
end
end;
product $:=$ product $\times A[r, r]$;
comment Be on guard against overflow or underflow here;
for $i:=r+1$ step 1 until n do
begin temp $:=A[i, r] / A[r, r]$;
for $j:=r+1$ step 1 until n do
$A[i, j]:=A[i, j]-A[r, j] \times t e m p$
end
end;
temp $:=$ product $\times A[n, n]$;
for $r:=1$ step 1 until n do temp $:=$ temp \times mult $[r]$;
comment Again danger of overflow or underflow;
determinant $:=$ lemp;

RETURN:

end determinant
Reference:
McKeeman, W. M. Algorithm 135--Crout with equilibration and iteration. Comm. ACM 5 (Nov. 1962), 553.

CERTIFICATION OF:

ALGORITHM 41 [F3]
EVALUATION OF DETERMINANT
[Josef G. Solomon, Comm. ACM 4 (Apr. 1961), 171] ALGORITHM 269 [F3]

DETERMINANT EVALUATION

[Jaroslav Pfann and Josef Straka, Comm. ACM 8 (Nov. 1965), 668]
A. Bergson (Recd. 4 Jan. 1966 and 4 Apr. 1966)

Computing Lab., Sunderland Technical College, Sunderland, Co. Durham, England

Algorithms 41 and 269 were coded in 803 ALGOL and run on a National-Elliott 803 (with automatic floating-point unit).

The following changes were made:
(i) value n; was added to both Algorithms;
(ii) In Algorithm 269, since procedure EQUILIBRATE is only called once, it was not written as a procedure, but actually written into the procedure determinant body.

The following times were recorded for determinants of order N (excluding input and output), using the same driver program and data.

N	$\underset{\text { Algorithm }}{T_{1}}$	${ }_{\text {rithm }}^{269}$
10	0.87	0.78
15	2.77	2.18
20	6.47	4.78
25	12.47	8.99
30	21.37	14.98

From a plot of $\ln \left(T_{1}\right)$ against $\ln (N)$ it was found that

$$
T_{i}=0.00104 N^{2.92}
$$

Similarly,

$$
T_{2}=0.00153 N^{2.70}
$$

From a plot of T_{1} against T_{2}, it was found that Algorithm 269 was 30.8 percent faster than Algorithm 41, but Algorithm 41 required less storage.

ALGORITHM 270
 FINDING EIGENVECTORS BY GAUSSIAN ELIMINATION [F2]

Albert Newhouse (Recd. 3 May 1965 and 16 July 1965) University of Houston, Houston, Texas
procedure $N U L L S P A C E$ ($n, a, e c, e p s$); value $n, e p s$; integer n,ec; real eps; array a;
comment NULLSPACE computes the vectors x of order n such that $x a=z$, where a is an $n \times n$ matrix, z is the zero-vector of order n, eps is a small positive number such that if the maximum pivot element is numerically less than eps the procedure considers it zero. The ec vectors x are to be found in the first $e c$ rows of the matrix a upon exit from this procedure;
comment In finding the eigenvectors x of an $n \times n$ matrix B after having found the eigenvalues λ of B by any of the many available methods, it is often desirable to start from the original matrix B and not from its transform from which the λ 's were obtained. Whereas the resulting eigenvectors will still be influenced by errors in the λ 's, the eigenvectors would not be influenced by errors in the transformed matrix.
Since $\lambda I-B=A$ is a singular matrix of rank r the problem is to find $e c=n-r$ vectors x which form a basis of the left null space of A.

Note: If the right null space is desired the matrix A should be transposed.

The following algorithm finds these $n-r$ linearly independent vectors by the Gauss-Jordan elimination in place using the maximal available element for the pivot. The process will terminate after r steps, since the maximal available elements for pivoting are then equal to zero.

Now, replacing these zero pivot elements by unity, the rows of the matrix, from which no nonzero element has been chosen, are the basis of the null space of A, that is, if x is such a row then $x A=z$, the zero vector of order n.

The proof for this is established by the fact that the elimination amounts to premultiplying B by a matrix A^{\prime}, a product of elementary matrices, such that $A^{\prime} A$ is a matrix with ones on r of the diagonal positions and zeros everywhere else.

Test results. A version of this procedure acceptable to the IBM 7094 (ALCOR-ILLINOIS 7090 ALGOL Compiler) was tested.

With eps $=10^{-6}$ the results for the 5×5 matrix

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

showed the dimension of the null space as 3 having as a basis

$$
\begin{aligned}
& x_{1}=(-.75,1.00,0.00,0.00,-.25) \\
& x_{2}=(-.50,0.00,1.00,0.00,-.50) \\
& x_{3}=(-.25,0.00,0.00,1.00,-.75)
\end{aligned}
$$

exact to 6 decimal places;
begin integer array $r, c[1: n]$; integer $i, j, k, m, j j, k k, t$; real \max, temp;
for $i:=1$ step 1 until n do $r[i]:=c[i]:=0$; for $m:=1$ step 1 until n do

```
    begin \(\max :=0\);
        for \(k:=1\) step 1 until \(n\) do
        begin if \(r[k] \neq 0\) then go to \(L\) else
            for \(j:=1\) step 1 until \(n\) do
            if \(c[j]=0 \wedge a b s(a[k, j])>\max\) then
            begin \(k k:=k ; j j:=j ; \quad \max :=a b s(a[k, j])\)
            end \(j\) loop;
\(L\) : end \(k\) loop;
    if max < eps then go to SORT;
    \(c[j]]:=k k ; \quad r[k k]:=j j ;\) temp \(:=1 / \alpha[k k, j j] ; \quad a[k k, j j]:=1\).
    for \(j:=1\) step 1 until \(n\) do \(a[k k, j]:=a[k k, j] \times t e m p\);
    for \(k:=1\) step 1 until \(k k-1, k k+1\) step 1 until \(n\) do
    begin temp \(:=a[k, j j] ; a[k, j j]:=0\);
        for \(j:=1\) step 1 until \(n\) do
        begin
            \(a[k, j]:=a[k, j]-t e m p \times a[k k, j] ;\)
            if \(\operatorname{abs}(a[k, j])<e p s\) then \(a[k, j]:=0\)
        end;
    end \(k\) loop;
    end \(m\) loop;
SORT: for \(j:=1\) step 1 until \(n\) do
    begin
\(R E P E A T: \quad\) if \(c[j] \neq 0 \wedge j \neq c[j]\) then
        begin
        for \(k:=1\) step 1 until \(n\) do
            if \(r[k]=0\) then
            begin temp \(:=a[k, j]\);
            \(a[k, j]:=a[k, c[j]] ; \quad a[k, c[j]]:=\) temp
            end \(k\) loop;
        \(t:=c[j] ; \quad c[j]:=c[t] ; \quad c[t]:=t ;\) go to REPEAT
        end;
    end conditional and \(j\) loop;
    ec :=0;
    for \(k:=1\) step 1 until \(n\) do
        if \(r[k]=0\) then
        begin ec \(:=e c+1 ; \quad a[k, k]:=1 ;\)
            if \(e c \neq k\) then
            begin
                for \(j:=1\) step 1 until \(n\) do \(a[e c, j]:=a[k, j]\)
            end;
    end conditional and \(k\) loop;
    comment The first \(e c\) rows of the matrix \(a\) are the vectors
        which are orthogonal to the columns of the matrix \(a\);
end \(N U L L S P A C E\)
```


ALGORITHM 271
 QUICKERSORT [M1]

R. S. Scowen* (Recd. 22 Mar. 1965 and 30 June 1965) National Physical Laboratory, Teddington, England

* The work described below was started while the author was at English Electric Co. Ltd, completed as part of the research programme of the National Physical Laboratory and is published by permission of the Director of the Laboratory.

```
procedure quickersort ( \(a, j\) );
    value \(j\); integer \(j\); array \(a\);
```

begin integer i, k, q, m, p; real t, x; integer array $u t$,
$l t[1: \ln (a b s(j)+2) / \ln (2)+0.01]$;
comment The procedure sorts the elements of the array $a[1: j]$ into ascending order. It uses a method similar to that of QUICKSORT by C. A. R. Hoare [1], i.e., by continually splitting the array into parts such that all elements of one part are less than all elements of the other, with a third part in the middle consisting of a single element. I am grateful to the referce for pointing out that QUICKERSORT also bears a marked resemblance to sorting algorithms proposed by T. N. Hibbard [2, 3]. In particular, the elimination of explicit recursion by choosing the shortest sub-sequence for the secondary sort was introduced by Hibbard in [2].

An element with value t is chosen arbitrarily (in QUICKERSORT the middle clement is chosen, in QUICKSORT a random element is chosen). i and j give the lower and upper limits of the segment being split. After the split has taken place a value q will have been found such that $a[q]=t$ and $a[I] \leq t \leq a[J]$ for all I, J such that $i \leq I<q<J \leq j$. The program then performs operations on the two segments $a[i: q-1]$ and $a[q+1: j]$ as follows. The smaller segment is split and the position of the larger segment is stored in the $l t$ and $u t$ arrays ($l t$ and $u t$ are mnemonics for lower temporary and upper temporary). If the segment to be split has two or fewer elements it is sorted and another segment obtained from the $l t$ and $u t$ arrays. When no more segments remain, the array is completely sorted.
References:

1. Hoare, C. A. R. Algorithms 63 and 64. Comm. ACM 4 (July 1961), 321.
2. Hibbard, Thomas N. Some combinatorial properties of certain trees with applications to searching and sorting. J. ACM 9 (Jan. 1962), 13.
3. -.- An empirical study of minimal storage sorting. Comm. ACM 6 (May 1963), 206-213;
$i:=m:=1$;
N : if $j-i>1$ then
begin comment This segment has more than two elements, so split it;
$p:=(j+i) \div 2$;
comment p is the position of an arbitrary element in the segment $a[i: j]$. The best possible value of p would be one which splits the segment into two halves of equal size, thus if the array (segment) is roughly sorted, the middle element is an excellent choice. If the array is completely random the middle element is as good as any other.

If however the array $a[1: j]$ is such that the parts $a[1: j \div 2]$ and $a[j \div 2+1: j]$ are both sorted the middle element could be very bad. Accordingly in some circumstances $p:=(i+j) \div 2$ should be replaced by $p:=(i+3 \times j) \div 4$ or $p^{\bullet}:=R A N D O M(i, j)$ as in QUICKSORT;

```
    \(t:=\alpha[p] ;\)
    \(a[p]:=a[i]\);
    \(q:=j\);
    for \(k:=i+1\) step 1 until \(q\) do
    begin comment Search for an element \(a[k]>t\) starting
        from the beginning of the segment;
        if \(a[k]>t\) then
        begin comment Such an \(a[k]\) has been found;
        for \(q:=q\) step -1 until \(k\) do
        begin comment Now search for \(a[q]<t\) starting from
            the end of the segment;
            if \(a[q]<t\) then
            begin comment \(a[q]\) has been found, so exchange
                \(a[q]\) and \(a[k]\);
                \(x:=a[k]\);
                \(a[k]:=a[q]\);
                \(a[q]:=x\);
                \(q:=q-1\);
                comment Search for another pair to exchange;
                go to \(L\)
            end
        end for \(q\);
        \(q:=k-1\);
        comment \(q\) was undefined according to Para. 4.6 .5 of
            the Revised Algol 60 Report [Comm. ACM 6 (Jan.
            1963), 1-17];
        go to \(M\)
        end;
\(L\) : end for \(k\);
comment We reach the label \(M\) when the search going up-
    wards meets the search coming down;
\(M: a[i]:=a[q]\);
    \(a[q]:=t ;\)
    comment The segment has been split into the three parts
        (the middle part has only one element), now store the
        position of the largest segment in the \(l t\) and \(u t\) arrays and
        reset \(i\) and \(j\) to give the position of the next largest segment;
    if \(2 \times q>i+j\) then
    begin
        \(l t[m]:=i ;\)
        \(u t[m]:=q-1\);
        \(i:=q+1\)
    end
    else
    begin
        \(l t[m]:=q+1 ;\)
        \(u t[m]:=j\);
        \(j:=q-1\)
    end;
    comment Update \(m\) and split this new smaller segment;
    \(m:=m+1\);
    go to \(N\)
end
else if \(i \geq j\) then
begin comment This segment has less than two elements;
    go to \(P\)
end
else
begin comment This is the case when the segment has just
    two elements, so sort \(a[i]\) and \(a[j]\) where \(j=i+1\);
    if \(a[i]>a[j]\) then
```


begin

$x:=a[i] ;$
$a[i \mid:=a[j] ;$
$\alpha|j|:=x$
end;
comment If the $l t$ and $u t$ arrays contain more segments to be sorted then repeat the process by splitting the smallest of these. If no more segments remain the array has been completely sorted;
$P: m:=m-1$;
if $m>0$ then
begin $i:=l t[m] ;$ $j:=u t[m]$; go to N
end;
end
end quickersort

CERTIFICATION OF ALGORITHM 271 (M1)
QUICKERSORT [R. S. Scowen, Comm. ACM 8 (Nov. 1965), 669]

Charles R. Blair (Recd. 11 Jan. 1966)
Department of Defense, Washington, D.C.
QUICKERSORT compiled and ran without correction through the ALDAP translator for the CDC 1604A. Comparison of average sorting times, shown in Table I, with other recently published algorithms demonstrates QUICKERSORT's superior performance.

Number of items	Algorithm 201 Shellsort		Algorithm 207 Stringsort		Algorithm 245 Treesort 3		Algorithm 271 Quickersort	
	Integers	Reals	Integers	Reals	Integers	Reals	Integers	Reals
10	0.01	0.01	0.03	0.03	0.02	0.02	0.01	0.01
20	0.02	0.02	0.05	0.05	0.04	0.04	0.02	0.02
50	0.08	0.08	0.20	0.20	0.11	0.12	0.06	0.06
100	0.19	0.22	0.39	0.40	0.26	0.27	0.13	0.13
200	0.48	0.53	1.0	1.1	0.59	0.62	0.28	0.30
500	1.5	1.7	2.8	2.9	1.7	1.8	0.80	0.85
1000	3.7	4.2	6.6	6.9	3.7	4.0	1.8	1.9
2000	9.1	10.	13.	14.	8.2	8.7	3.9	4.1
5000	27.	30.	40.	41.	23.	24.	11.	12.
10000	65.	72.	93.	97.	49.	52.	23.	25.

ALGORITHM 272
 PROCEDURE FOR THE NORMAL DISTRIBUTION FUNCTIONS* [S15]

M. D. MacLaren

(Recd. 28 July 1964, 17 Nov. 1964 and 26 July 1965) Argonne National Laboratory, Argonne, Ill., and Boeing Scientific Research Laboratories, Seattle, Wash.

* Work performed in part under the auspices of the US Atomic Energy Commission.
real procedure $p h i(a, k)$; value a, k; real a; integer k; comment Before use, this procedure must be called once with $k=3$ to initialize own variables. Thereafter for $k=1$ the procedure gives

$$
\Phi(a)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-}^{a} \exp \left(-t^{2} / 2\right) d t
$$

and for $k=2$ it gives

$$
\begin{aligned}
\Phi^{*}(a) & =2(\Phi(|a|)-.5) \\
& =\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{0}^{|a|} \exp \left(-t^{2} / 2\right) d t
\end{aligned}
$$

begin own integer N;
own real $B, E P S, E P S 2, E P S 3, O N E, D E L T A, D E L T A 2, P I 2$; comment $\Phi^{*}(a)$ is computed by Taylor's series expansion in the interval $0 \leq a \leq B$, and by asymptotic series in the interval $B<a$. The Taylor's series expanson is made about one of the points $0, B / N, 2 B / N, \cdots, B$, and the coefficients in the series are computed using the recursion formula for Hermite polynomials. The number of terms to take in the series is determined by an error estimate based on a majorizing series. This procedure, which is essentially the familiar one of interpolating in a stored table of values, gives a fast program and can be used effectively for many functions. In this case another significant increase in speed could be obtained by also storing a table of values of the first derivative cf Φ^{*}. The own variables $B, E P S$ and N might be called program parameters. By suitably choosing their values the programmer may make the procedure as accurate as desired and may increase the speed of the procedure at the cost of extra storage space. This is the advantage of this procedure over others previously published in this journal (see [1-4]).

The values of these program parameters are determined when the procedure is coded, not when it is called. They are set by means of an initializing call with $k=3$. The other own variables are computed from $B, E P S$ and N when the initializing call is made. If Fortran IV were used, all the own variables could be set by use of a DATA statement, An alternative to either method is to replace all occurrences of the parameters by the appropriate constants.

The choice of the parameter N depends mainly on speed versus storage considerations. The larger N is, the faster the procedure will be and the more storage will be needed. Note, however, that N must be chosen large enough so that $B^{2}\left(1 /(2 N)+1 /\left(4 N^{2}\right)\right) \leq 1$, for otherwise the method of estimating the error in the Taylor's series may fail. The choice of B may also affect the speed, because for smaller values of a the
asymptotic series for $\Phi^{*}(a)$ will take longer than the Taylor's series. The choice of B depends, however, mainly on the error desired. Neglecting roundoff, the maximum error in the computed value of $\Phi^{*}(a)$ will be $E P S$ if $a \leq B$ or $\max (E P S, \delta(a) / 2)$ if $B<a$, where $\delta(a)$ is the absolute value of the smallest term in the asymptotic series for $\Phi^{*}(a)$. Some values of $\delta(a)$ are: $\delta(4)=3.0 \times 10^{-8}, \delta(5)=3.0 \times 10^{-12}, \delta(5.5)=1.4 \times 10^{-14}$, and $\delta(6)=4.4 \times 10^{-17}$. If N is large enough, roundoff will be no problem. (The referee has pointed out that the computation for $B<a$ could be made by continued fractions, as in Algorithm 180. The advantage of this would be that the continued fraction expansion converges for all $a>0$, but roundoff errors may be significant for smaller values of a.)

With the program parameters having the values given below, the procedure was compiled as a Fortran II subroutine on the IBM 1620, using eight-digit floating point arithmetic, and tested for many values of a. The error never exceeded 2×10^{-8}. The program was also compiled with $B=6.0, E P S=$ 2×10^{-15} and $N=60$, using 15 digit arithmetic. Spot checks turned up no errors greater than 2×10^{-15};
own real array $C[0: 16]$;
comment The array C must give the value of $\Phi^{*}(a)$ at the point of expansion, i.e., $C[m]$ must equal $\Phi^{*}(m B / N)$. Tables of $\Phi^{*}(a)$ to fifteen decimal places are published by the National Bureau of Standards [5]. The upper bound for the array must equal the value of the program parameter N;
real $f, f 1, f 2, x, y, z, t, t 2, x t$;
integer m;
real procedure $\max (x, y)$; value x, y; real x, y;
begin $\max :=$ if $x \leq y$ then y else x;
end max;
if $k=3$ then
begin comment initialize own variables;
$E P S:=.00000002 ; \quad B:=4.0 ; \quad N:=16 ; C[0]:=0.0 ;$
$C[1]:=.19741265$;
$C[2]:=.38292492 ; \quad C[3]:=.5467530$; $C[4]:=.68268949$;
$C[5]:=.78870045 ; \quad C[6]:=.86638560$; $C[7]:=.91988169$;
$C[8]:=.95449974 ; \quad C[9]:=.97555105$; $C[10]:=.98758067$;
$C[11]:=.99404047 ; \quad C[12]:=.99730020$; $C[13]:=.99884595$;
$C[14]:=.99953474 ; \quad C[15]:=.99982317$; $C[16]:=.99993666$;
ONE $:=.99999999$;
comment $O N E$ is the largest number less than 1 which may be represented in the machine. This prevents loss of accuracy in some implementations of floating point subtraction;
PI2 : = .797884560802865;
comment $P I 2=(2 / \pi)^{1 / 2}$;
DELTA $:=B / N$;
DELTA2 : = . $5 \times$ DELTA;
$E P S 3:=2.0 \times E P S$;
$t 2:=\max (B \times D E L T A, \operatorname{sqrt}(2.0) \times D E L T A 2)$;
$t:=D E L T A 2 \times(B+D E L T A 2) ;$
$x:=(t+\operatorname{sqrt}(t)) \times \exp (.5 \times t)$;
$y:=t 2 \times(1.0+t 2) \times \exp (.5 \times t 2 \uparrow 2) ;$
if $t 2 \leq 1 \wedge y \leq x$ then $E P S 2:=E P S / y$ else $E P S 2:=E P S / x$;

```
    phi \(:=0\)
end initialization
else
begin comment compute \(\Phi(a)\);
    \(y:=a b s(a)\);
    if \(y>B\) then
    begin comment computation by asymptotic series;
        \(x:=y \uparrow 2 ; \quad f:=P I 2 \times \exp (-.5 \times x) / y ;\)
        \(x:=1.0 / x ; \quad z:=f ; f 1:=-f \times x ;\)
            for \(m:=3, m+2\) while abs \((f 1)<a b s(f)\) do
            hegin \(z:=z+f 1 ; f:=f 1 ; f 1:=-f 1 \times m \times x\);
                    if \(a b s(f) \leq E P S 3\) then go to \(L 1\)
            end;
L1: \(\quad z:=O N E-z+.5 \times f\)
        end asymptotic computation
        else
        begin comment Taylor's series computation;
            \(m:=\operatorname{entier}(y / D E L T A)\);
            \(x:=m \times D E L T A ; \quad t:=y-x ;\)
        if \(D E L T A 2<t\) then
        begin \(m:=m+1 ; \quad x:=x+\) DELTA; \(t:=y-x\) end;
        \(x t:=x \times t ; \quad t 2:=t \uparrow 2\);
        \(f 1:=t \times P I 2 \times \exp (-.5 \times x \uparrow 2) ;\)
        \(f 2:=-.5 \times x t \times f 1\);
        \(z:=C[m]+f 1+f 2\);
        for \(m:=3, m+1\) while \((m-1) \times \operatorname{EPS} 2<\max (a b s(f 1)\),
                \(a b s(f 2))\) do
        begin
                \(f:=(--x t \times f 2-t 2 \times(m-2) \times f 1 /(m-1)) / m ;\)
                \(z:=z+f ; f 1:=f 2 ; f 2:=f\);
        end
    end Taylor's scrics computation;
    if \(k=1\) then
        begin
            \(z:=\) if \(0 \leq a\) then \(.5+.5 \times z\) else \(.5-.5 \times z\)
            end;
        \(p h i:=z\)
    end computation
end \(p h i\)
References:
1. Crawford, M., and Techo, R. Algorithm 123, Real error function, \(\operatorname{ERF}(x)\). Comm. ACM 5 (Sept. 1962), 482.
2. Thacher, H. C., Jr. Algorithm 180, Error function-large \(X\). Comm. ACM 6 (June 1963), 314.
3. Ibbetson, D. Algorithm 209, Gauss Comm. ACM 6 (Oct. 1963), 616.
4. Cyvin, S. J. Algorithm 226, Normal distribution function. Comm. ACM 7 (May 1964), 295.
5. Natienal Bureal of Standards. Tables of Normal Probability Functions. Applied Math. Series, No. 23, US Government Printing Off., Washington, D.C., 1953.
```

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, $\operatorname{ERF}(x)$
[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]
ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]

COMPLEMENTARY ERROR FUNCTION-

LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]
ALGORITHM 209 [S15]

GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]
ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
 PROCEDURE FOR THE NORMAL DISTRIBUTION FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]
ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL
[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June 1967), 374]
I. D. Hill and S. A. Joyce (Recd. 21 Nov. 1966)

Medical Research Council,
Statistical Research Unit, 115 Gower Street, London W.C.1., England

These algorithms were tested on the ICT Atlas computer using the Atlas Algol compiler. The following amendments were made and results found:

ALGORITHM 123

(i) value x; was inserted.
(ii) $a b s(T) \leqslant{ }_{10}-10$ was changed to $\quad Y-T=Y$ both these amendments being as suggested in [1].
(iii) The labels 1 and 2 were changed to $L 1$ and $L 2$, the go to statements being similarly amended.
(iv) The constant was lengthened to 1.12837916710 .
(v) The extra statement $x:=0.707106781187 \times x$ was made the first statement of the algorithm, so as to derive the normal integral instead of the error function.
The results were accurate to 10 decimal places at all points tested except $x=1.0$ where only 2 decimal accuracy was found, as noted in [2]. There seems to be no simple way of overcoming the difficulty [3], and any search for a method of doing so would hardly be worthwhile, as the algorithm is slower than Algorithm 304 without being any more accurate.

ALGORITHM 180

(i) $T:=-0.56418958 / x / \exp (v)$ was changed to
$T:=-0.564189583548 \times \exp (-v) / x$. This is faster and also has the advantage, when v is very large, of merely giving 0 as the answer instead of causing overflow.
(ii) The extra statement $x:=0.707106781187 \times x$ was made as in (v) of Algorithm 123.
(iii) for $m:=m+1$ was changed to for $m:=m+2 . \quad m+1$ is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11 th decimal place.

ALGORITHM 181

(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative to the amendment suggested in |4].

The results were accurate to 9 significant figures for $x \leqslant 8$, but to only 8 significant figures for $x=10$ and $x=20$.

ALGORITHM 209

No modification was made. The results were accurate to 7 decinti places.

ALGORITHM 226

(i) $10 \uparrow m /(480 \times \operatorname{sqrt}(2 \times 3.14159265))$ was changed to $10 \uparrow m \times 0.000831129750836$.
(ii) for $i:=1$ step 1 until $2 \times n$ do was changed to $m:=2 \times n$; for $i:=1$ step 1 until m do.
(iii) $-(i \times b / n) \uparrow 2 / 8$ was changed to $-(i \times b / n) \uparrow 2 \times 0.125$.
(iv) if $i=2 \times n-1$ was changed to if $i=m-1$
(v) $b /(6 \times n \times \operatorname{sqrt}(2 \times 3.14159265))$ was changed to $b /(15.0397696478 \times n)$.
Tests were made with $m=7$ and $m=11$ with the following results:

x	Number of significant figures correct	Number of decimal places correct		
	$m=7$	$m=11$	$m=7$	$m=11$
-0.5	7	11	7	11
-1.0	7	10	7	10
-1.5	7	10	8	10
-2.0	7	9	8	10
-2.5	6	9	8	11
-3.0	6	7	8	9
-4.0	5	7	10	11
-6.0	2	1	12	10
-8.0	0	0	11	9

Perhaps the comment with this algorithm should have referred to decimal places and not significant figures. To ask for 11 significant figures is stretching the machine's ability to the limit, and where 10 significant figures are correct, this may be regarded as acceptable.

ALGORITHM 272

The constant .99999999 was lengthened to .9999999999 .
The accuracy was 8 decimal places at most of the points tested, but was only 5 decimal places at $x=0.8$.
ALGORITHM 304
1
No modification was made. The errors in the 11th significant figure were:

$a b s(x)$	$x>0 \equiv$ upper	$x>0 \not \equiv$ upper
0.5	1	1
1.0	1	2
1.5	$21^{\text {a }}$ (5)	2
2.0	$25^{\text {a }}$ (0)	4
3.0	0	0
4.0	2	3
6.0	6	0
8.0	14	0
10.0	23	0
20.0	35	0

- Due to the subtraction error mentioned in the comment section of the algorithm. Changing the constant 2.32 to 1.28 resulted in the figures shown in brackets.

To test the claim that the algorithm works virtually to the accuracy of the machine, it was translated into double-length instructions of Mercury Autocode and run on the Atlas using the EXCHLF compiler (the constant being lengthened to 0.398942280401432677939946). The results were compared with hand calculations using Table II of [5]. The errors in the 22nd significant figure were:

$a b s(x)$	$x>0 \equiv$ upper	$x>0 \not \equiv$ upper
1.0	2	3
2.0	2	1
4.0	8	0
8.0	0	

Timings. Timings of these algorithms were made in terms of the Atlas "Instruction Count," while evaluating the function 100 times. The figures are not directly applicable to any other computer, but the relative times are likely to be much the same on other machines.

	Algorithm number							
abs(x)	123	180	181	209	$\begin{gathered} 226 \\ m=7 \end{gathered}$	272	$304{ }^{\text {a }}$	$304^{\text {b }}$
0.5	58			8	97	24	25	24
1.0	65°			8	176	24	29	29
1.5	164	128	127	9	273	25	35	35
2.0	194	78	90	8	387	24	39	39
2.5	252	54	68	10	515	24	131	44
3.0		42	51	9	628	25	97	50
4.0		27	39	9	$900^{\text {d }}$	25	67	44
6.0		15	30	6	$1400^{\text {d }}$	16	49	23
8.0		9	28	7	$2100^{\text {d }}$	18	44	11
10.0		10	25	5	$2700^{\text {d }}$	16	38	11
20.0		9	22	5	$6500^{\text {d }}$	16	32	11
30.0		9	9	5	$10900^{\text {d }}$	16	11	11

a Readings refer to $x>0 \equiv$ upper.
${ }^{b}$ Readings refer to $x>0 \neq$ upper.

- Time to produce incorrect answer. A count of 120 would fit a smooth curve with surrounding values.
${ }^{\text {d }} 100$ times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms available for normal curve tail areas. One should be very fast and reasonably accurate, the other very accurate and reasonably fast. We conclude that Algorithm 209 is the best for the first requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may be preferred for this reason, but the method used shows itself in

Algorithm 181 to be not quite as accurate, and the introduction of this method solely for the circumstances in which Algorithm 180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her help with the double-length hand calculations.

References:

1. Thacher, Henry C. Jr. Certification of Algorithm 123. Comm. ACM 6 (June 1963), 316.
2. Ibbetson, D. Remark on Algorithm 123. Comm. ACM 6 (Oct. 1963), 618.
3. Barton, Stephen P., and Wagner, John F. Remark on Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.
4. Clausen, I., and Hansson, L. Certification of Algorithm 181. Comm. ACM 7 (Dec. 1964), 702.
5. Sheppard, W. F. The Probability Integral. British Association Mathematical Tables VII, Cambridge U. Press, Cambridge, England, 1939.

REMARK ON ALGORITHM 272

PROCEDURE FOR THE NORMAL DISTRIBUTION FUNCTIONS [S15] [M. D. MacLaren, Comm. ACM 8 (Dec. 1965), 789]
M. D. MacLaren (Recd. 26 Dec. 1967)

Argonne National Laboratory, Argonne, Ill. 60439
KEY WORDS AND PHRASES: normal distribution function, error function, normal function, normal curve integral $C R$ CATEGORIES: 5.5,5.12

In [1] Hill and Joyce report that the value produced by Algorithm 272 for the argument $a=0.8$ is correct only to 5 decimal places, although the algorithm specifies an accuracy of 2×10^{-8}. Upon checking we have found that the source of this inaccuracy is a typographical error in the section beginning "begin comment initialize own variables;" The statement initializing $C[3]$ should be changed to " $C[3]=.54674530$." With this change the published algorithm is, as far as we know, accurate within the specified error limit of 2×10^{-8}.

In the first comment of the algorithm the lower limit of the first integral should be minus infinity and not merely a minus sign. Reference:

1. Hill, I. D., and Joyce, S. A. Remark on algorithm 123. Comm. ACM 10 (June 1967), 377.

ALGORITHM 273

SERREV [C1]

Henry C. Thacher, Jr. (Recd. 2 Apr. 1965)
Argonne National Laboratory, Argonne, Illinois
(Work supported by the US Atomic Energy Commission.)
procedure SERREV (A, B, C, N); value N; integer N; array A, B, C;
comment This procedure produces in the array C the coefficients of the power series $y^{i}=\sum_{i=j}^{N} C_{i j} x^{i}$, where y is the solution of

$$
f(y)=\sum_{i=1}^{N} A_{i} y^{i}=g(x)=\sum_{i=1}^{N} B_{i} x^{i}
$$

and $A_{1}=1$. The arrays A and B are linear, with bounds 1 and $M \geqq N$. The array C is square, with bounds $1: M, 1: M$. Elements above the diagonal are not used. The derivation of the method is given in [1];
begin integer $I, J, K, L I M$; real T;
for $I:=1$ step 1 until N do
begin for $J:=I-1$ step -1 until 1 do begin $T:=0 ; \quad L I M:=I-J ;$
for $K:=1$ step 1 until $L I M$ do $T:=C[K, 1] \times C[I-K, J]$ $+T ; \quad C[I, J+1]:=T$
end for J;
$T:=B[I] ;$
for $J:=2$ step 1 until I do $T:=T-A[J] \times C[I, J]$; $C[I, 1]:=T$
end for I
end
Reference:

1. Thacher, H. C., Jr. Solution of transcendental equations by series reversion. Comm. ACM 9 (Jan. 1966), 10-11.

ALGORITHMI 274
 GENERATION OF HILBERT DERIVED TEST MATRIX [F1]

J. Boothroyd (Recd. 19 May 1965 and 27 Aug. 1965)

University of Tasmania, Hobart, Tas., Australia
procedure testmx (a, n); value n; integer n; array a; comment T. J. Dekker, "Evaluation of Determinants, Solution of Sistems of Linear Equations and Matrix Inversion" [Rep. No. MR63, Mathematical Centre, Amsterdam] describes a test matrix $M[1: n, 1: n]$ with the following properties:
(a) elements $M[i, j]$ are positive integers,
(b) the inverse has elements $(-1) \uparrow(i+j) \times M[i, j]$,
(c) the degree of ill-condition increases rapidly with increasing n.
Such matrices may be formed by $M=F G^{-1} H G$ where F is a diagonal matrix $\operatorname{diag}(f i)$ with $f i=$ factorial $(n+i-1) /($ factorial $(i-1,2) /$ factorial $(n-i), H$ is the order n segment of a Hilbert matrix and G is diagonal, $\operatorname{diag}(g i)$, with $g i$ derived from the prime decomposition of $f i$ by:

$$
f i=p 1^{m 1} p 2^{m 2} \cdots p k^{m k}, \quad g i=p 1^{m \div-} p 2^{m \div 2} \cdots p k^{m k \div 2}
$$

This procedure forms matrices $a[1: n, 1: n]$ of this type and follows Dekker in principle but not in detail. Factorials are avoided by evaluating the $f i$ with a recursion sequence

$$
f[1]:=n, \quad f[i+1]:=f[i] \times(n \uparrow 2-i \uparrow 2) \div \underset{(i=1,2, \cdots, n-1)}{i \uparrow 2}
$$

permitting the exact computation of fi for much larger n than would otherwise be possible. In the evaluation of expressions of the form $(a \times b) \div c$, where the result is integral but c is not a factor of either a or b, numerator integer overflow is avoided by the simple device

$$
\text { expression }:=q \times b+(r \times b) \div c \text { where } a=q \times c+r
$$

Test matrices for $2 \leqq n \leqq 15$ have been computed on a machine with a 39 -bit integer register. During tests of the procedure the specification of the array parameter was changed from real to integer and the results checked by matrix multiplication using an exact double precision integer inner-product routinc. The unit matrix was obtained in all cases. As real arrays these matrices will find use only for values of n such that all integer elements have an exact floating point representation. For $10 \leqq n \leqq 15$ the values of the elements of largest modulus are:

n	$M[i, i] \max$
10	1616615
11	49884120
12	108636528
13	490804314
14	1859890032
15	$22096817600 ;$

[^0]```
 hegin \(d:=i \times i ; k:=j-d\);
 \(q:=f i \div d ; \quad r:=f i-q \times d ;\)
 \(f[i+1]:=f i:=q \times k+(r \times k) \div d\)
 end;
 comment And now, using a modified prime factors algorithm
 to obtain \(G=\operatorname{diag}(g i)\), we compute \(F G^{-1}\), whose elements re-
 place those of \(F\);
 for \(i:=1\) step 1 until \(n\) do
 begin \(d:=g i:=1 ; \quad q:=f i:=f[i] ; \quad j:=2\);
newj: even := false;
next: if \(q \geqq j\) then
 begin \(q:=f i \div j\);
 if \(f i \neq q \times j\) then
 begin \(j:=j+d ; \quad d:=2\); go lo newj end;
 if even then \(g i:=g i \times j ;\) even \(:=\neg\) even;
 fi \(:=q ;\) go to next
 end;
 \(g[i]:=g i ; \quad f[i]:=f[i] \div g i\)
 end;
 comment Finally, in one operation \(\left(F G^{-1}\right) H G\) where \(H\) is a
 nonexistent Hilbert matrix whose reciprocal elements,
 \(i+j-1\), are eomputed as we go;
 for \(i:=1\) step 1 until \(n\) do
 begin \(f i:=f[i]\);
 for \(j:=1\) step 1 until \(n\) do
 begin \(g i:=g[j] ; \quad k:=i+j-1\);
 \(q:=f i \div k ; r:=f i-q \times k ;\)
 \(a[i, j]:=q \times g i+(r \times g i) \div k\)
 end
 end
end testmx
```

REMIARK ON ALGORITHM 27t [F1]
(GENERATION OF HILBERT DERIVED) TENT
MATRIX [J. Boothroyd, Comm. ACM 9 (Jan. 1966), 11]
J. Boothroyis (Recd. 7 Jan. 1969)

University of Tasmania, Hobart, Tasmania, Australia
KEY WORIDA ANI PIHASES: test matrix, Hilbert matrix CR CATECORIES: 5.1+

An alternative, simpler, and more efficient procedure for generating test matrices having the same propertics as those generated by Algorithm $27+$ is given below. The method, like that of Algorithm 274 , is due to T. J. Dekker and may be described as follows.

The elements of the inverse of a segment of a Hilbert matrix are given by

$$
\left(H^{-1}\right)=(-1)^{i+i} \times f_{i} \times f_{j} /(i+j-1)
$$

where
$f_{i}=$ factorial $(n+i-1) /($ factorial $(i-1)) \uparrow 2 /$ factorial $(n-i)$.

The $f_{i}$ may be factored as $f_{i}=f_{i 1} \times f_{i 2}$, in which

$$
f_{i 1}=\binom{n+i-1}{i-1} \times n, \quad f_{i 2}=\binom{n-1}{n-i}
$$

Test matrices $T$ are constructed by $T=D_{1} H D_{2}$ where $D_{1}=$ diag $\left(f_{i 1}\right), D_{2}=\operatorname{diag}\left(f_{i 2}\right)$, and $H$ is the Hilbert matrix segment $H_{i, j}=1 /(i+j-1)$. It may be seen that this is equivalent to defining the $T$ matrices by:

$$
\begin{gathered}
T_{i, j}=(f i)(f j) /(i+j-1), \\
f i=\binom{n+i-1}{i-1} \times n, \quad f j=\binom{n-1}{n-j},
\end{gathered}
$$

with $f i, f j$ given by the recurrence relations:

$$
\begin{array}{ll}
(f i)_{1}=n, & (f i)_{i+1}=(f i)_{i} \times(n+i) / i, \\
(f j)_{1}=1, & (f j)_{j+1}=(f j)_{j} \times(n-j)^{\prime} j .
\end{array}
$$

That the condition $K(T)$ of these matrices is severe may be seen from an observation of the referee, who notes that

$$
\begin{aligned}
K\left(T^{\prime}\right) & =\|T\| \times\left\|T^{-1}\right\|, \\
& \geq\left(\max t_{i, j}\right) \uparrow 2=\left(t_{n,(n+1)} \div 2\right) \uparrow 2 \sim(2 \uparrow 3 n / 13 n) \uparrow 2, \\
& 1 \leq i, j \leq n
\end{aligned}
$$

where $\|\cdots\|$ is the $L_{1}, L_{2}, L_{\infty}$, or the Euclidean matrix norm.
Other properties of these matrices shared by those of Algorithm 274 are:
(a) Each matrix has unit determinant;
(b) The eigenvalues form a set $\lambda_{1}, \lambda_{2}, \cdots, 1 / \lambda_{2}, 1 / \lambda_{1}$, so that odd order matrices have one eigenvalue of unity.

The procedure testmx below has been tested on an Elliott 503 (positive integer word length of 38 bits ) and matrices of all orders up to 13 were generated before integer overflow occurred with $n=14$.
procedure testmx $1(a, n)$; value $n$; integer $n$; array $a$;
comment generates in $a[1: n, 1: n]$ test matrices with integer elements given by

$$
t_{i, j}=\binom{n+i-1}{i-1} \times n \times\binom{ n-1}{n-j} /(i+j-1)
$$

and such that the elements of $T$ inverse are ( -1$)^{i+j} \times t_{i, j}$.
To determine for a particular computer that limit on $n$ which permits the exact machine representation of all elements of these matrices, the following maximum values are listed:

| $n$ | $t_{i, j}(\max )$ |
| ---: | ---: |
| 8 | 163800 |
| 9 | 1178100 |
| 10 | 8314020 |
| 11 | 61108047 |
| 12 | $440936496 ;$ |

$$
\begin{aligned}
& \quad f i:=((n+i) \times f i) \div i \text {; iless } 1:=i \\
& \text { end } \\
& \text { end testmx } 1
\end{aligned}
$$

Proofs that the test matrices described above have integer elements and checkerboard inverses follow the lines of similar proofs given in [1].

Acknowledgments: Thanks are due to T. J. Dekker for communicating details of this method and to the referee for the contribution mentioned.

## Reference:

1. Dekker, T. J. Evaluation of determinants, solution of systems of linear equations and matrix inversion. Rep. No. MR63, Mathematical Centre, Amsterdam, June 1963, pp. 8 and 9.
```
begin
 integer i, j, fi, fj, iless1;
 fi:=n; iless 1 := 0;
 for }i:=1\mathrm{ step 1 until n do
 begin
 fj:= 1;
 for j:= 1 step 1 until n do
 begin
 a[i,j]:= (fi\timesfj) \div(iless1+j);
 fj:=((n-j)\timesfj)\divj
 end;
```


## ALGORITHM 275 <br> EXPONENTIAL CURVE FIT [E2]

Gerard R. Deily (Recd. 27 July 1964 and 16 Apr. 1965)
US Department of Defense, Washington, D. C.
(Now with HRB-Singer, Inc., State College, Pa.)
procedure EXPCRVFT ( $a, b, c, E$ squared, $n, x, y$, epsilon, $l$ max, fag);
integer $n, l$ max, flag;
real $a, b, c, E$ squared, epsilon;
real array $x, y$;
comment This algorithm will fit a curve defined by the equation $y=a \times \exp (b \times x)+c$ to a set $\left\{x_{i}, y_{i}\right\}$ of $n$ data points. The Taylor series modification of the classical least squares method is utilized to approximate a solution to the system of nonlinear equations of condition. After every iteration, the statistic $E$ squared is computed as a measure of the goodness of fit. Commencing with the second iteration, the successive values of $E$ squared are differenced, and when the difference in absolute value becomes less than epsilon, the calculations cease. If the number of iterations necessary to achieve this result exceeds $l$ max, a flag is set to a nonzero value and the procedure is terminated;

## begin

integer $i, l, m$;
comment Computation of initial estimates follows;
$b:=2 \times \ln (a b s(((y[n]-y[n-1]) \times(x[2]-x[1])) /$
$((y[2]-y[1]) \times(x[n]-x[n-1])))) /$
$(x[n]+x[n-1]-x[2]-x[1]) ;$
$a:=(y[n]-y[n-1]) /((x[n]-x[n-1])$
$\times \exp ((b \times(x[n]+x[n-1])) / 2) \times b) ;$
$m:=(n+1) \div 2$;
$c:=y[m]-a \times \exp (b \times x[m]) ;$
$E$ squared :=0;
for $i:=1$ step 1 until $n$ do
$E$ squared $:=E$ squared $+(y[i]-c-a \times \exp (b \times x[i])) \uparrow 2 ;$
comment Computation of corrections follows;
for $l:=1$ step 1 until $l$ max do
begin
real sumex 1 , sumex 2 , sumxiex 1 , sumxies 2 , sumxi2ex 2 , sumyi, sumyiex 1 , sumxyiex1, $d 11, d 12, d 13, d 22, d 23, d 33, e 1, e 2, e 3$, delta11, delta12, delta13, delta22, delta23, delta33, delta, $u, v, w$, save;
sumex $1:=$ sumex $2:=$ sumxiex $1:=$ sumxiex $2:=$ sumxi2ex $2:=$ sumyi $:=$ sumyiex $1:=$ sumxyiex $1:=0$;
for $i:=1$ step 1 until $n$ do
begin
real ex1, ex2, xiex1, xiex2, xi2ex2;
$\operatorname{ex1}:=\exp (b \times x[i]) ;$
$e x 2:=e x 1 \uparrow 2$;
$x i e x 1 \quad:=x[i] \times e x 1$;
$x i e x 2 \quad:=x[i] \times e x 2$;
$x i 2 e x 2:=x[i] \times x i e x 2$;
sumex $1:=$ sumex $1+e x 1$;
sumex $2:=$ sumex $2+e x 2$; sumxiex $1:=$ sumxiex $1+$ xiex $1 ;$ sumxiex $2:=$ sumxiex $2+x i e x 2$; sumxi2ex $2:=$ sumxi2ex $2+x i 2 e x 2$;
sumyi $\quad:=$ sumyi $+y[i] ;$
sumyiex $1:=$ sumyiex $1+y[i] \times e x 1$;
sumxyiex $1:=$ sumxyiex $1+y[i] \times$ xiex $1 ;$
end computation of sum terms in normal equations;
$d 11$ := sumex 2 ;
$d 12$ := sumxiex $2 \times a$;
$d 13:=$ sumex 1 ;
$d 22:=$ sumxi2ex $2 \times a \uparrow 2$;
$d 23:=$ sumxiex $1 \times a$;
$d 33:=n$;
$e 1:=-$ sumex $2 \times a$ - sumex $1 \times c+$ sumyiex $1 ;$
$e 2:=-$ sumxiex $2 \times a \uparrow 2-$ sumxiex $1 \times c \times a+$
sumxyiex $1 \times a$;
e3 $:=-$ sumex $1 \times a-n \times c+$ sumyi;
delta $11:=d 22 \times d 33-d 23 \uparrow 2$;
delta12 $:=d 13 \times d 23-d 12 \times d 33$;
delta $13:=d 12 \times d 23-d 13 \times d 22$;
delta $22:=d 11 \times d 33-d 13 \uparrow 2$;
delta $23:=d 12 \times d 13-d 11 \times d 23$;
delta33 $:=d 11 \times d 22-d 12 \uparrow 2$;
delta $:=d 11 \times$ delta $11+d 12 \times$ delta $12+d 13 \times$ delta $13 ;$
$u:=(e 1 \times$ delta $11+e 2 \times$ delta $12+e 3 \times$ delta 13$) /$ delta;
$v:=(e 1 \times$ delta $12+e 2 \times$ delta $22+e 3 \times$ delta23 $) /$ delta;
$w:=(e 1 \times$ delta $13+e 2 \times$ delta $23+e 3 \times$ delta33 $) / d e l t a ;$
$a:=a+u$;
$b:=b+v ;$
$c:=c+w ;$
E squared :=0;
for $i:=1$ step 1 until $n$ do
$E$ squared $:=E$ squared $+(y[i]-c-a \times \exp (b \times x[i])) \uparrow 2 ;$
if $l=1$ then go to retry;
if abs(save $-E$ squared) < epsilon
then go to 73
else if $l<l$ max
then go to retry
else go to unfurl;
retry: save $:=E$ squared;
end computation of corrected values of $a, b$, and $c$;
unfurl: flag := 1;
73: end least squares curve fit to $y=a \times \exp (b \times x)+c$

## ALGORITHM 276 <br> CONSTRAINED EXPONENTIAL CURVE FIT [E2]

Gerard R. Deily (Recd. 27 July 1964 and 16 Apr. 1965)
US Department of Defense, Washington, D. C.
(Now with HRB-Singer, Inc., State College, Pa.)
procedure CSXPCVFT ( $a, b, c, E$ squared, $n, x, y, k, z$, epsilon, $l$ max, flag, jump);
integer $n, k, l$ max, flag, jump;
real $a, b, c, E$ squared, $z$, epsilon;
real array $x, y$;
comment This algorithm will fit a curve defined by the equation $y=a \times \exp (b \times x)+c$ to a set $\left\{x_{i}, y_{i}\right\}$ of $n$ data points, and constrain the curve so it contains the point ( $x_{k}, z$ ). The Taylor series modification of the classical least squares method is utilized to approximate a solution to the system of nonlinear equations of condition. After every iteration, the statistic $E$ squared is computed as a measure of the goodness of fit. Commencing with the second iteration, the successive values of $E$ squared are differenced, and when the difference in absolute value becomes less than epsilon, the calculations cease. If the number of iterations necessary to achieve this result exceeds $l \max$, a flag is set to a nonzero value and the procedure is terminated. In normal usage, the jump parameter is brought in as a ZERO.
With certain data sets, convergence difficulties will be experienced. In these cases it is sometimes helpful to first utilize the procedure EXPCRVFT [Algorithm 275, Comm. ACM 9 (Feb. 1966), 85] to obtain initial values for $b$ and $c$, and then bring the jump parameter in as a ONE in order to bypass the following starting value computations for $b$ and $c$.;

## begin

integer $i, l, m$;
real exp factor;
if jump $=1$ then go to entry;
comment Computation of initial estimates follows;
$b:=2 \times \ln (a b s(((y[n]-y[n-1]) \times(x[2]-x[1])) /$
$((y[2]-y[1]) \times(x[n]-x[n-1])))) /$
$(x[n]+x[n-1]-x[2]-x[1]) ;$
$m:=(n+1) \div 2 ;$
$\exp$ factor $:=\exp (b \times(x[m]-x[k]))$;
$c:=(y[m]-z \times \exp$ factor $) /(1-\exp$ factor $) ;$
$a:=(z-c) \times \exp (-b \times x[k]) ;$
E squared:=0;
for $i:=1$ step 1 until $n$ do
$E$ squared $:=E$ squared $+(y[i]-c-a \times \exp (b \times x[i])) \uparrow 2 ;$
comment Computation of corrections follows;
entry: for $l:=1$ step 1 until $l$ max do
begin
real sumex 1 , sumex 2 , sumqex 1 , sumqex 2 , sumqex 1 lsex 2 , sumq2ex2, sumyi, sumyiex 1 , sumqyiex $1, z l s c, d 11, d 12, d 22$, e1, e2, delta, $v, w$, save;
sumex $1:=$ sumex $2:=$ sumqex $1:=$ sumqex $2:=$ sumqex 1 lsex $2:=$ sumq2ex $2:=$ sumyi $:=$ sumyiex $1:=$ sumqyiex $1:=0$; for $i:=1$ step 1 until $n$ do
begin
real $q$, ex1, ex2, qex1, qex2, qex1lsex2, $q 2 e x 2$;
$q \quad:=x[i]-x[k] ;$
$e x 1:=\exp (b \times q)$;
$e x 2:=e x 1 \uparrow 2$;
$q e x 1:=q \times e x 1$;
$q e x 2:=q \times e x 2 ;$
$q e x 1 l s e x 2:=q e x 1-q e x 2$;
$q 2 e x 2 \quad:=q e x 2 \times q ;$
sumex $1 \quad:=$ sumex $1+e x 1$;
sumex $2 \quad:=$ sumex $2+e x 2$;
sumqex $1:=$ sumqex $1+q e x 1$;
sumqex $2:=$ sumqex $2+q e x 2$;
sumqex1lsex $2:=$ sumqex 1 lsex $2+$ qex $1 l$ sex 2 ;
sumq2ex $2:=\operatorname{sumq} 2 e x 2+q 2 e x 2$;
sumyi $:=$ sumyi $+y[i]$;
sumyiex $1:=$ sumyiex $1+e x 1 \times y[i] ;$
sumqyiex $1:=$ sumqyiex $1+q e x 1 \times y[i]$;
end computation of sum terms in normal equations;
$z l s c:=z-c$;
$d 11:=\operatorname{sumq} 2 e x 2 \times z l s c \uparrow 2 ;$
$d 12:=$ sumqex $1 l s e x 2 \times$ zlsc $;$
$d 22:=n-2 \times$ sumex $1+$ sumex 2 ;
e1 $:=$ sumqyiex $1 \times z l s c-$ sumqex $2 \times z l s c \uparrow 2-$ sumqex $1 \times$ zlsc $\times c$;
$e 2:=$ sumyi - sumyiex $1+$ sumex $1 \times(2 \times c-z)+$
sumex $2 \times z l s c-n \times c$;
delta $:=d 11 \times d 22-d 12 \uparrow 2$;
$v:=(e 1 \times d 22-e 2 \times d 12) / d e l t a ;$
$w:=(e 2 \times d 11-e 1 \times d 12) / d e l t a ;$
$b:=b+v$;
$c:=c+w ;$
$a:=(z-c) \times \exp (-b \times x[k])$;
E squared :=0;
for $i:=1$ step 1 until $n$ do
$E$ squared $:=E$ squared +
$(y[i]-c-a \times \exp (b \times x[i])) \uparrow 2 ;$
if $l=1$ then go to retry;
if abs(save $-E$ squared) $<$ epsilon
then go to 73
else if $l<l$ max
then go to retry
else go to unfurl;
retry: save $:=E$ squared;
end computation of corrected values of $a, b$, and $c$;
unfurl: flag := 1;
73: end constrained least squares fit to $y=a \times \exp (b \times x)+$

## ALGORITHM 277 <br> COMPUTATION OF CHEBYSHEV SERIES COEFFICIENTS [C6]

Lyle B. Smith (Recd. 15 July 1965, 23 July 1965 and 20 Sept. 1965)
Stanford University, Stanford, California
procedure $C H E B C O E F F(F, N, O D D, E V E N, A) ;$ value $A$;
Boolean ODD, EVEN;
integer $N$;
real procedure $F$;
array $A$;
comment This procedure approximates the first $N+1$ coefficients, $a_{n}$, of the infinite Chebyshev series expansion of a function $F^{\prime}(x)$ defined on $[-1,1]$.

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} a_{n} T_{n}(x), \tag{1}
\end{equation*}
$$

where $\sum^{\prime}$ denotes a sum whose first term is halved, and $T_{n}(x)$ denotes the Chebyshev polynomial of the first kind of degrec $n$, defined by

$$
T_{n}(x)=\cos n \theta, \quad x=\cos \theta \quad(n=0,1,2, \cdots) .
$$

The truncated series $\sum_{n=0}^{N} a_{n} T_{n}(x)$, gives an approximation to $F^{\prime}(x)$ which has maximum error almost as small as that of the "best" polynomial approximation of degree $N$, sec [1]. In this procedure the cocfficients, $a_{n}$, are closely approximated by $B_{n, N}, n=0(1) N$, which are the coefficients of a "Lagrangian" interpolation polynomial coincident with $F(x)$ at the points $x_{i}, i=0(1) N$ where $x_{i}=\cos (\pi i / N)$, see [2]. The $B_{n, N}$ are given by

$$
B_{n, N}=\frac{2}{N} \sum_{i=0}^{N} F\left(x_{i}\right) T_{n}\left(x_{i}\right)=\frac{2}{N} \sum_{i=0}^{N} F\left(x_{i}\right) T_{i}\left(x_{n}\right),
$$

where $\sum^{\prime \prime}$ denotes a sum whose first and last terms are halved. The $B_{n, N}$ are evaluated by a recurrence relation described by Clenshaw in [1] and improved by John Rice [5]. This recurrence relation can also be used to evaluate the truncated series, $\sum_{n \rightarrow 0}^{N} a_{n} T_{n}(x)$, once CHEBCOEFF has found values for the coefficients. For even $N$ a relation between $B_{n, N / 2}$ aud $B_{n, N}$ (pointed out by Clenshaw [3, p. 27$]$ ) is used in computing $B_{n, N}$. For large $N, B_{n, N}$ is very close to $a_{n}$. In [2] the relation is given as

$$
\begin{equation*}
B_{n, N}=a_{n}+\sum_{n=1}^{\infty}\left(a_{2 p N-n}+a_{2 p N+n}\right) . \tag{2}
\end{equation*}
$$

This shows that $\frac{1}{2} B_{N, N}$ approximates $a_{N}$ quite well for large $N$ since from (2) we see that

$$
\begin{equation*}
\frac{1}{2} B_{N, N}=a_{N}+a_{3 N}+\cdots . \tag{3}
\end{equation*}
$$

For even $N$ a simple check on the accuracy is available. Since the relation

$$
\begin{equation*}
B_{n, N}=B_{n, N / 2}-B_{N-n, N}, \quad n=0(1) N / 2-1 \tag{4}
\end{equation*}
$$

is used in the computation, the difference

$$
\begin{equation*}
B_{n, N / 2}-B_{n, N}=B_{N-n, N}, \tag{5}
\end{equation*}
$$

which measures in some sense the accuracy of the approxima-
tion, is available to the user. For instance, in the example below with $N=8$ the number $A[7]$ is the difference between $A[1]$ for $N=4$ and $A[1]$ for $N=8$.
Parameter Explanation. If the function $F$ is odd or even then the Boolean parameters $O D D$ or $E V E N$ should be true respectively in which case every other coefficient in the array $A$ will be zero. The array $A$ will contain the coefficients of the truncated series with $N+1$ terms.
Example. For the function $F(x)=e^{x}$ the following values were computed for $A[n]$ with $N=4$ and $N=8$. The computations were done using this procedure written in Extended Algol for the Burroughs B5500 computer. Also shown are computed values for the coefficients of the "best" polynomial of degree 8 from [4] (digits differing from the correct result are in italics).


## begin

integer $i, m, N 2, S 1, S 2, T 1$;
real $b 0, b 1, b 2, p i, T W O X, F X N 2$;
array $F X, X[0: N]$;
Boolean TEST;
$p i:=3.14159265359$;
$N 2:=N \div 2$;
comment If $N$ is even TEST is set to true;
if $2 \times N 2=N$ then $T E S T:=$ true
else TEST := false;
comment Compute the necessary function values;
for $i:=0$ step 1 until $N$ do
begin
$X[i]:=\cos (p i \times i / N) ;$
$F X[i]:=F(X[i]) ;$
end;
$S 2:=1 ; \quad S 1:=0 ;$
comment If $F(x)$ is odd or even initialize accordingly;
if $O D D$ then
begin
for $m:=0$ step 2 until $N$ do
$A[m]:=0 ;$
$S 2:=2 ; \quad S 1:=1 ;$
end else
if EVEN then
begin
for $m:=1$ step 2 until $N$ do
$A[m]:=0 ;$
$S 2:=2 ; \quad S 1:=0 ;$
end;
comment If TEST is true the coefficients are computed in two steps;
$F X N 2:=F X[N] / 2.0 ;$

```
if TEST then
begin
 for \(m:=S 1\) step \(S 2\) until \(N 2\) do
 begin
 \(b 1:=0 ;\)
 \(b 0:=F X N 2\);
 TWOX := \(2.0 \times X[2 \times m]\);
 for \(i:=N-2\) step -2 until 2 do
 begin
 \(b 2:=b 1 ; \quad b 1:=b 0 ;\)
 \(b 0:=T W O X \times b 1-b 2+F X[i] ;\)
 end;
 \(A[m]:=2.0 \times(X[2 \times m] \times b 0-b 1+F X[0] / 2.0) / N 2 ;\)
 end;
 \(A[N 2]:=A[N 2] / 2.0\);
 \(T 1:=S 1\);
 if \(O D D \vee E V E N\) then
 begin
 if \(2 \times(N 2 \div 2)=N 2\)
 then \(S 1:=N 2+2-S 1\)
 else \(S 1:=N 2+1+S 1\);
 end
 else \(S 1:=N 2+1\);
end;
comment Compute the desired coefficients;
for \(m:=S 1\) step \(S 2\) until \(N\) do
begin
 \(b 1:=0\);
 \(b 0:=F X N 2\);
 TWOX := \(2.0 \times X[m]\);
 for \(i:=N-1\) step -1 until 1 do
 begin
 \(b 2:=b 1 ; \quad b 1:=b 0 ;\)
 \(b 0:=T W O X \times b 1-b 2+F X[i] ;\)
 end;
 \(A[m]:=2.0 \times(X[m] \times b 0-b 1+F X[0] / 2.0) / N ;\)
end;
if TEST then
begin
 for \(i:=T 1\) step \(S 2\) until \(N 2-1\) do
 \(A[i]:=A[i]-A[N-i] ;\)
end;
\(A[N]:=A[N] / 2.0 ;\)
end CHEBCOEFF
```

References:

1. Clenshaw, C. W. Chebyshev Series for Mathematical Functions. MR 26 *362, Nat. Phys. Lab. Math. Tables, Vol. 5, Dep. Sci. Ind. Res., Her Majesty's Stationery Off., London, 1962.
2. Elliott, D. Truncation errors in two Chebyshev series approximations. Math. Comp. 19 (1965), 234-248.
3. Clenshaw, C. W. A comparison of "best" polynomial approximations with truncated Chebyshev series expansions. $J . S I A M\{B\}, 1$ (1964), 26-37.
4. Computed values by Dr. C. L. Lawson. (private communication)
5. Rice, John. On the conditioning of polynomials and rational forms. (submitted for publication).
```
ALGORITHM 278
GRAPH PLOTTER [J6]
P. Lloyd (Recd. 4 June 1965)
Queen Mary College, London, England
procedure graphplotter (\(N, x, y, m, n\), xerror, yerror, \(g, L, S, E M\),
 \(C 0, C 1, C 2, C 3, C 4\), label \()\);
 value \(N, m, n\), xerror, yerror, \(g, L, S\);
 array \(x, y\);
 integer \(N, g, m, n, L, S\);
 real xerror, yerror;
 string \(E M, C 0, C 1, C 2, C 3, C 4\);
 label label;
comment This procedure is intended to be used to give an ap-
 proximate graphical display of a multivalued function, \(y[i, j]\) of
 \(x[i]\), on a line printer. Output channel \(N\) is selected for all out-
 put from graphplotter. The display is confined to points for which
 \(1 \leq i \leq m\) and \(1 \leq j \leq n\) where \(2 \leq n \leq 4\). If \(n=1\), then \(y\) is
 considered to be a one-dimensional array \(y[i]\) and the display is
 again given for \(1 \leq i \leq m\). The format of the print out is ar-
 ranged so that a margin of \(g\) spaces scparates the display from
 the left-hand side of the page. \(L\) and \(S\) denote the number of
 lines down the page and the number of spaces across the page
 which the display will occupy. The graph is plotted so that lines
 1 and \(L\) correspond to the minimum and maximum values of \(x\),
 and the spaces 1 and \(S\) correspond to the minimum and maxi-
 mum values of \(y\), that is, \(y\) is plotted across the page and \(x\) down
 the page. After the graph has been plotted, the ranges of \(x\) and
 \(y\) for which the display is given are printed out in the order as
 above, separated from the display by a blank line. The strings
 \(E M \cdots C 4\) must be such that they occupy only one character
 position when printed out. The characters of C1C2C3C4 repre-
 sent \(y[i, 1] y[i, 2] y[i, 3] y[i, 4] . E M\) is the character printed out
 round the perimeter of the display. \(C 0\) is printed at empty
 positions. At coincident points the order of precedence of the
 characters is C1C2C3 C4 EM C0. For the special case \(n=1\) the
 character \(C 1\) represents \(y[i]\). Control is passed from the pro-
 cedure to the point labeled label if the interval between the
 maximum value and minimum values of \(x[i]\) is less than xerror,
 or if the range of \(y\) is less than yerror. If the values of \(x[i]\) occur
 at equal intervals, choosing \(L=m\) will make one line equivalent
 to one interval of \(x\);
begin
 real \(p, q, x \max , x \min , y \max , y \min\);
 integer \(i, j\);
 integer array plot \([1: L, 1: S]\);
 \(x \max :=x \min :=x[1]\);
 for \(i:=2\) step 1 until \(m\) do
 begin
 if \(x[i]>x \max\) then \(x \max :=x[i]\);
 if \(x[i]<x \min\) then \(x \min : \doteq x[i]\)
 end of hunt for maximum and minimum values of \(x\);
 if \(n=1\) then go to \(N 1 A\);
 \(y \max :=y \min :=y[1,1]\);
 for \(i:=1\) step 1 until \(m\) do
 for \(j:=1\) step 1 until \(n\) do
 begin
 if \(y[i, j]>y \max\) then \(y \max :=y[i, j]\);
 if \(y[i, j]<y \min\) then \(y \min :=y[i, j]\)
 end of hunt for maximum and minimum values of \(y\);
ALGORITHM 278
GRAPH PLOTTER [J6]
P. Lloyd (Recd. 4 June 1965)
Queen Mary College, London, England
procedure graphplotter (\(N, x, y, m, n\), xerror, yerror, \(g, L, S, E M\), value \(N, m, n\), xerror, yerror, \(g, L, S\);
array \(x, y\);
integer \(N, g, m, n, L, S\);
real xerror, yerror;
label label;
comment This procedure is intended to be used to give an approximate graphical display of a multivalued function, \(y[i, j]\) of帾 N is selected for all out put from graphplotter. The display is confined to points for which \(\leq i \leq m\) and \(1 \leq j \leq n\) where \(2 \leq n \leq 4\). If \(n=1\), then \(y\) is again given for \(1 \leq i \leq m\). The format of the print out is arranged so that a margin of \(g\) spaces separates the display from the left-hand side of the page. \(L\) and \(S\) denote the number of which the display will occupy. The graph is plotted so that lines 1 and \(L\) correspond to the minimum and maximum values of \(x\), and the spaces 1 and \(S\) correspond to the minimum and maximum values of \(y\), that is, \(y\) is plotted across the page and \(x\) down \(y\) for which the display is given are printed out in the order as above, separated from the display by a blank line. The strings \(E M \cdots C 4\) must be such that they occupy only one character position when printed out. The characters of C1 C2 C3 C4 represent \(y[i, 1] y[i, 2] y[i, 3] y[i, 4] . E M\) is the character printed out round the perimeter of the display. \(C 0\) is printed at empty poriter is C1 C2 C3 C4 EM C0. For the ppecial ense \(=1\) the character \(C 1\) represents \(y[i]\). Control is passed from the procedure to the point labeled label if the interval between the or if the range of \(y\) is less than yerror. If the values of \(x[i]\) occur at equal intervals, choosing \(L=m\) will make one line equivalent to one interval of \(x\);
```


## gin

```
integer \(i, j\);
integer array plot \([1: L, 1: S]\);
\(x \max :=x \min :=x[1]\);
or \(i:=2\) step 1 until \(m\) do
begin
if \(x[i]>x \max\) then \(x \max :=x[i]\);
if \(x[i]<x \min\) then \(x \min : \doteq x[i]\)
end of hunt for maximum and minimum values of \(x\);
if \(n=1\) then go to N1A,
for \(i:=1\) step 1 until \(m\) do
for \(j:=1\) step 1 until \(n\) do
begin
if \(y[i, j]<y \min\) then \(y \min :=y[i, j]\)
end of hunt for maximum and minimum values of \(y\);
```

```
escape: if abs(xmax-xmin) < xerror \(\vee\) abs(ymax-ymin) <
 yerror then go to label;
 \(p:=(L-1) /(x \max -x \min) ; \quad q:=(S-1) /(y \max -y \min) ;\)
 for \(i:=1\) step 1 until \(L\) do
 for \(j:=1\) step 1 until \(S\) do \(p l o t[i, j]:=2\);
 for \(i:=1, L\) do
 for \(j:=1\) step 1 until \(S\) do \(p l o t[i, j]:=1\);
 for \(i:=2\) step 1 until \(L-1\) do
 for \(j:=1, S\) do \(\operatorname{plot}[i, j]:=1\);
 if \(n=1\) then go to \(N 1 B\);
 for \(i:=1\) step 1 until \(m\) do
 for \(j:=n\) step -1 until 1 do
 \(p \operatorname{lot}[1+\operatorname{entier}(0.5+p \times(x[i]-x \min))\),
 \(1+\operatorname{entier}(0.5+q \times(y[i, j]-y m i n))]:=j+2 ;\)
plotler:
 for \(i:=1\) step 1 until \(L\) do
 begin
 NEWLINE \((N, 1) ; \operatorname{SPACE}(N, g) ;\)
 comment NEWLINE and SPACE must be declared
 globally to graphplotter, \(N E W L I N E(N, p)\) outputs \(p\) car-
 riage returns and \(p\) line feeds on channel \(N, S P A C E(N, p)\)
 outputs \(p\) blank character positions on channel \(N\);
 for \(j:=1\) step 1 until \(S\) do
 begin
 switch \(S W:=S W 1, S W 2, S W 3, S W 4, S W 5, S W 6\);
 go to \(S W[p l o t[i, j]] ;\)
SW1: outstring \((N, E M)\); go to fin;
SW2: outstring \((N, C 0)\); go to fin;
SW3: outstring \((N, C 1)\); go to \(\operatorname{fin}\);
SW4: outstring \((N, C 2)\); go to fin;
SW5: outstring \((N, C 3)\); go to fin,
SW6: outstring \((N, C 4)\);
fin:
 end
 end of display output;
 NEWLINE \((N, 2)\); SPACE \((N, g)\); outreal \((N, x m i n)\);
 outreal (\(N, x \max\));
 outreal (\(N, y\) min); outreal (\(N, y m a x\));
 go to end;
\(N 1 A\) :
 \(y \max :=y \min :=y[1] ;\)
 for \(i:=2\) step 1 until \(m\) do
 begin
 if \(y[i]>y \max\) then \(y \max :=y[i]\);
 if \(y[i]<y \min\) then \(y m i n:=y[i]\)
 end of hunt for maximum and minimum values of \(y\) when
 \(n=1\);
 go to escape;
N1B:
 for \(i:=1\) step 1 until \(m\) do
 \(p l o t[1+e n t i e r(0.5+p \times(x[i]-x \min))\),
 \(1+e n t i e r(0.5+q \times(y[i]-y m i n))]:=3\);
 go to plotter;
end:
end of graphplotter
```


## ALGORITHM 279

CHEBYSHEV QUADRATURE [D1]
F. R. A. Hopgood and C. Litherland (Recd. 31 July 1964, 1 Dec. 1964, 16 Aug. 1965 and 29 Nov. 1965)
Atlas Computer Laboratory, S.R.C., Chilton, Berks, England

```
real procedure cheb (a,b, error, nmax, f);
 value a,b, error, nmax; real a,b, error; integer nmax; real
 procedure f;
comment This routine evaluates the integral of \(f(x)\) with lower and upper limits set to \(a\) and \(b\) respectively. The method is that suggested by Curtis and Clenshaw [Num. Math. 2 197-205 (1960),]. The method consists of fitting \(2 \uparrow n+1\) point Chebyshev pelynomial to integrand and thus finding integral. \(n\) is tried equal to 2 and increased by 1 if error, the relative error, is too large. If \(n\) reaches maximum nmax without required accuracy obtained a message is printed. Accuracy is determined by assuming that error is less than the contribution to the integral of the last term in the integrated Chebyshev polynomial. After \(n=2\) has been tried, an estimate of the integral is available and subsequently the last term in the Chebyshev polynomial is found first and this saves evaluating whole polynomial if accuracy not obtained. An extra check is that the next two terms are also tested allowing up to 8 times error on previous term in each case. A reasonable value for nmax is probably 7. Integrals requiring many more points than this would probably be better tackled using some method which subdivides the range. Also the temporary storage required increases considerably for larger values of \(n \dot{m a x}\). For example \(n \max =10\) requires 2048 words;
```

begin
real armin1, aradd1, bmina, badda, br, bsum, cs; csadd1, csadd2, esterr, $x$, estint, intdv2, twodvn, twotr, verror;
integer $j, k, m, r, s, m \max , m \max 22, r k$;
$k:=2 \uparrow(n \max -2)$;
mmaxd $2:=2 \times k$;
mmax $:=2 \times$ mmaxd $2 ;$
begin
real array func, cosine $[0: m m a x]$;
bmina $:=.5 \times(b-a)$;
badda $:=.5 \times(b \times a)$;
twodon $:=1 ; \quad m:=4 ;$
comment $m+1$ is number of points used in Chebyshev fit;
start: twodvn := $.5 \times$ twodvn;
bsum $:=\operatorname{aradd} 1:=0$;
$k:=k \div 2$;
$j:=$ if $m=4$ then 0 else $k$;
fnretn: if $j \leqq m$ maxd 2 then

## begin

cosine $[j]:=$ if $m=4$ then $\cos (3.14159265 \times j /$ mmax $)$
else if $j=k$ then $\operatorname{sqrt}((1+\operatorname{cosine}[2 \times j) / 2)$
else $($ cosine $[j-k]+\operatorname{cosine}[j+k]) /(2 \times \operatorname{cosine}[k])$;
cosine $[\max -j]:=-\operatorname{cosine}[j]$
end;
$x:=b \operatorname{mina} \times$ cosine $[j]+b a d d a ;$
func $[j]:=\mathbf{i f} j=m$ max then $.5 \times f(x)$ else $f(x)$;
$j:=2 \times k+j$;
comment Evaluates remaining values of integrand required storing $.5 \times$ lower bound for easier use in $C r$ recurrence formula;
if max $\geqq j$ then go to fnretn;
if $m=4$ then $k:=2 \times k$;
verror := error;
$r:=m$;
$r k:=$ mmax;
comment verror is the error allowed in Chebyshev coefficient compared with estimate of integral;
brretn: twotr : $=2 \times$ cosine $[r k]$;
csadd2 := 0;
csadd $1:=0 ;$
$s:=\max ;$
cretn:cs := twotr $\times$ csadd $1-$ csadd $2+$ func $[s]$;
if $s \neq 0$ then
begin
csadd $2:=$ csadd 1 ;
csadd1 :=cs;
$s:=s-k ;$
go to cretn
end recurrence to evaluate next Chebyshev coefficient of original function;
$\operatorname{armin} 1:=.5 \times$ twodvn $\times(c s-c s a d d 2) \times($ if $r=m$ then .5 else 1.0);
$b r:=.5 \times(\operatorname{armin} 1-\operatorname{aradd} 1) /(r+1)$;
comment $b r$ is Chebyshev coefficient of integrated function;
bsum $:=$ bsum $+b r$;
$\operatorname{aradd} 1:=\operatorname{armin} 1$;
comment integral $=(b-a) \times(b 1+b 3+\cdots+.5 \times b n)$;
if $r=m$ then esterr $:=b r$;
comment error assumed less than last term added in $b r$ sum;
if $m \neq 47433 m \neq \max 7433 r \geqq m-4$ then
begin
if $a b s(b r) \geqq$ verror $\times$ estint then

## begin

newm: $m:=2 \times m$;
go to start
end;
verror $:=8 \times$ verror
end Checks last 3 coefficients to ensure within allowed error bounds;
if $r \neq 0$ then
begin
$r:=r-2 ;$
$r k:=r k-2 \times k ;$
go to $b r r e t n$
end;
intdv $2:=$ bsum $\times$ bmina;
estint $:=a b s(b s u m)$;
if error $\times$ estint $<a b s(e s t e r r)$ then
begin
if $m \neq m \max$ then go to newm;
outstring (1, 'Accuracy not obtained');
end;
cheb $:=2 \times$ intd 22
end
end cheb

## REMARK ON ALGORITHM 279 <br> CHEBYSHEV QUADRATURE [D1]

F. R. A. Hopgood and C. Litherland
[Comm. ACM 9 (Apr. 1966), 270]
The 33 rd line of the second column on page 270 should read: if $m \neq 4 \wedge m \neq \max \wedge r \geq m-4$ then
A printing error showed $\wedge$ as 7433 .

## CERTIFICATION OF ALGORITHM 279 [D1]

CHEBYSHEV QUADRATURE [F. R. A. Hopgood and
C. Litherland, Comm. ACM 9, 4 (Apr. 1966), 270]

Kenneth Hillstrom (Recd. 16 Dec. 1966 and 30 Jan. 1967)

Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois

Work performed under the auspices of the US Atomic Energy Commission
The 40th line of the first column on page 270 should read: badda $:=.5 \times(b+a)$;

So corrected, Chebyshev quadrature was coded in CDC 3600 Algol. A modified version of this quadrature scheme was coded in 3600 Compass language. In this modification the cosine values are program constants, with 3600 single-precision accuracy, as opposed to program generated values, which tests show have maximum absolute errors of $2^{-35}$. These errors are carried into the integrand argument evaluation, resulting in large relative errors in the integrand evaluation, for functions bounded by unity over the interval of in tegration, for example, $e^{-x^{2}}$ over $(0,4.3)$ and $\sin (x)$ over $(0,2 \pi)$, which in turn delays convergence.

Since 3600 Compass does not permit dynamic allocation of storage, the dimension of the cosine array must be fixed. The choice of $129=2^{7}+1$ terms is based on the recommendation in the comments of Algorithm 279, "A reasonable value for $n \max$ is probably 7."

The Chebyshev quadrature 3600 Algol program, the modified 3600 Compass routine, and 3600 Fortran-coded Romberg and Havie integration routines were tested with six integrands. The


a The value $\int_{-1}^{+1} \frac{d x}{\left(x^{4}+x^{2}+0.9\right)}=1.5822329$ is obtained from C. W. Clenshaw and A. R. Curtis, "A method for numerical integration on an automatic computer," Numer. Math. 2 (1960), 203.

Romberg and Havie routines are based upon Algorithm 60, Romberg Integration [Comm. ACM 4, (June 1961), 225], and Algorithm 257, Havie Integration [Comm. ACM 8 (June 1965), 381].

The results of these tests are tabulated in Table I. In the table, $A$ is the lower limit of the interval of integration, $B$ is the upper limit, $E P S$ the convergence criterion, $V I$ the value of the integral, and $V A$ the value of the approximation.

Due to storage requirements, Chebyshev quadrature is restricted to a maximum of 129 function evaluations. For reasons of comparison, this limit is also imposed on Romberg and Havie quadratures. Thus, in some cases the accuracy called for was not obtained.

REMARK ON CORRECTION TO CERTIFICATION OF ALGORITHM 279 [D1]
CHEBYSHEV QUADRATURE [F.R.A. Hopgood and C. Litherland, Comm. ACM 9 (Apr. 1966), 270 and 10 (May 1967), 294]
Kenneth Hillstrom (Reed. 26 June 1967)
Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois

There are two corrections that should be appended to the certification of Algorithm 279.

Due to programming error, the integrand function routines for $e^{-x^{2}}$ and $\sin (x)+1$, used by the Chebyshev routine, incorrectly evaluated the functions at $x=0$, thus delaying convergence.

The revised Chebyshev routine still converges more rapidly than the original scheme in the first two examples, but the advantage is muct less pronounced than previously indicated.

The amended Table I should read as follows, with the numerical corrections italicized.

TABLE I

| Integrand | A | $B$ | EPS | VI | Routine | $V A$ | $\begin{aligned} & \text { Number } \\ & \text { of func- } \\ & \text { tion } \\ & \text { evalu- } \\ & \text { ations } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e^{-x 2}$ | 0 | 4.3 | $10^{-6}$ | 0.886226924 | Havie | 0.886226924 | 17 |
|  |  |  |  |  | Romberg | 0.886226925 | 65 |
|  |  |  |  |  | Chebyshev | 0.8862269261 | 33 |
|  |  |  |  |  | Chebyshev (Rev.) | 0.8862269258 | 17 |
| $\sin (x)+1$ | 0 | $2 \pi$ | $10^{-6}$ | 6.283185308 | Havie | 6.283185307 | 3 |
|  |  |  |  |  | Romberg | 6.283185307 | 3 |
|  |  |  |  |  | Chebyshev | 6.2881853086 | 9 |
|  |  |  |  |  | Chebyshev (Rev.) | 6.2831853089 | 5 |

## ALGORITHM 280

## ABSCISSAS AND WEIGHTS FOR GREGORY

 QUADRATURE [D1]John H. Welsch (Recd. 27 Apr. 1965, 14 May 1965, 14 Sept. 1965 and 9 Dec. 1965)
Computation Center, Stanford University, Stanford, California
procedure gregoryrule ( $n, r, t, w$ );
value $n, r$; integer $n, r$; real array $t, w$;
comment Computes the abscissas and weights of the Gregory quadrature rule with $r$ differences:

$$
\begin{aligned}
\int_{t_{0}}^{t_{n}} f(t) d t= & h\left(\frac{1}{2} f_{0}+f_{1}+\cdots+f_{n-1}+\frac{1}{2} f_{n}\right)-\frac{h}{12}\left(\nabla f_{n}-\Delta f_{0}\right) \\
& \quad-\frac{h}{24}\left(\nabla^{2} f_{n}+\Delta^{2} f_{0}\right)-\cdots-h c_{r+1}^{*}\left(\nabla^{\prime} f_{n}+\Delta^{r} f_{0}\right) \\
= & \sum_{i=0}^{n} w_{j} f\left(t_{j}\right),
\end{aligned}
$$

where $h=\left(t_{n}-t_{0}\right) / n$, and the $c_{j}{ }^{*}$ are given in Henrici [1964]. The number $r$ must be an integer from 0 to $n$, the number of subdivisions. The left and right endpoints must be in $t[0]$ and $t[n]$ respectively. The abscissas are returned in $t[0]$ to $t[n]$ and the corresponding weights in $w[0]$ to $w[n]$.

If $r=0$ the Gregory rule is the same as the repeated trapezoid rule, and if $r=n$ the same as the Newton-Cotes rule (closed type). The order $p$ of the quadrature rule is $p=r+1$ for $r$ odd and $p=r+2$ for $r$ even. For $n \geqq 9$ and large $r$ some of the weights can be negative.
For $n \leqq 32$ and $r \leqq 24$, the numerical integration of powers (less than $r$ ) of $x$ on the interval [ 0,1$]$ gave 9 significant digits correct in an 11-digit mantissa. Since the binomial coefficients are generated in the local integer array $b$, integer overflow may occur for large values of $r$. The type of $b$ can be changed to real to prevent this with no change in the results stated above.

## References:

Hildebrand, F. B. Introduction to Numerical Analysis. McGraw-Hill, New York, 1956, p. 155.
Henrict, Peter. Elements of Numerical Analysis. Wiley, New York, 1964, p. 252.;
begin integer $i, j$; real $h, c j$;
integer array $b[0: n]$; real array $c[0: n+1]$;
$b[0]:=1 ; \quad c[0]:=1.0 ; \quad c \mid 1]:=-0.5 ; \quad b[n]:=0 ;$
$h:=(t[n]-t[0]) / n ; w[0]:=w[n]:=0.5$;
for $i:=n-1$ step -1 until 1 do
$\operatorname{begin} w[i]:=1.0 ; \quad t[i]:=i \times h+t[0] ; \quad b[i]:=0$ end;
if $r>n$ then $r:=n$;
for $j:=1$ step 1 until $r$ do
begin $c f:=0.5 \times c[j]$;
for $i:=j$ step -1 until 1 do $b[i]:=b[i \mid-b[i-1] ;$
for $i:=3$ step 1 until $j+2$ do $c j:=c j+c[j+2-i] / i$;
$c[j+1]:=-c j$;
for $i:=0$ step 1 until $n$ do
$w[i]:=w[i]-c j \times(b[n-i]+b[i]) ;$
end;
for $i:=0$ step 1 until $n$ do $w[i]:=w[i] \times h$
end gregoryrule

## ALGORITHM 281

ABSCISSAS AND WEIGHTS FOR ROMBERG QUADRATURE [D1]
John H. Welsch (Recd. 27 Apr. 1965, 14 May 1965, 14 Sept. 1965 and 9 Dec. 1965)
Computation Centor, Stanford University, Stanford, California
procedure rombergrule ( $n, p, t, w$ );
value $n, p$; integer $n, p$; real array $t, w$;
comment Computes the abscissas and weights of the $p$ th order Romberg quadrature rule which features equally spaced abscissas and positive weights lying between $0.484 \times h$ and 1.4524 $\times h .(h=$ subdivision length $)$. The number of subdivisions $n$ must be a power of 2 (say $2 \uparrow q$ ) and $p$ an even number from 2 to $2 q+2$. Romberg integration is normally given as the extrapolation to the limit of the trapezoid rule. Let

$$
\begin{aligned}
& T_{0}^{(k)}=h\left(\frac{1}{2} f_{0}+f_{1}+\cdots+f_{2^{k}-1}+\frac{1}{2} f_{2}{ }^{k}\right), \text { and } T_{m}^{(k)} \\
&=\frac{4^{m} T_{m-1}^{(k+1)}-T_{m-1}^{(k)}}{4^{m}-1},
\end{aligned}
$$

then the Romberg quadrature rule gives

$$
\int_{t_{0}}^{t_{n}} f(t) d t=T_{m}^{(k)} \approx \sum_{j=0}^{n} w_{j} f\left(t_{j}\right)
$$

where $n=2^{q}, m=(p-2) / 2$, and $k=q-m$. The left and right endpoints must be in $t[0]$ and $t[n]$ respectively. The abscissas are returned in $t[0]$ to $t[n]$ and the corresponding weights in $w[0]$ to $w[n]$.
If $p=2$ the Romberg rule is the same as the repeated trapezoid rule, and if $p=4$, the same as the repeated Simpson rule.
For $n \leqq 128$ and $p \leqq 16$, the numerical integration of powers (less than $p$ ) of $x$ on the interval $[0,1]$ gave answers correct to one round off error in an 11-digit mantissa.
Reference: Bauer, F. L., Rutishauser, H., and Stiefel, E. New aspects in numerical quadrature. Proc. of Symp. in Appl. Math., Vol. 15: High speed computing and experimental arithmetic. Amer. Math. Soc., Providence, R. I., 1963, pp. 199-218;
begin integer $i, j, m, m 1, m 4, s$;
real $h, c i$; real array $c[0:(p-2) / 2]$;
$h:=(t[n]-t[0]) / n ; w[0]:=w[n]:=0 ;$
for $i:=n-1$ step -1 until 1 do
begin $w[i]:=c[i]:=0 ; \quad t[i]:=i \times h+t[0]$ end;
$m:=(p-2) / 2 ; \quad c[0]:=1.0 ; \quad s:=m 4:=1 ; c[n]:=0 ;$
if $m>\ln (n) / \ln (2)$ then $m:=\ln (n) / \ln (2)$;
for $j:=1$ step 1 until $m$ do
begin $m 4:=4 \times m 4 ; \quad m 1:=m 4-1$;
for $i:=j$ step -1 until 1 do
$c[i]:=(m 4 \times c[i]-c[i-1]) / m 1 ;$
$c[0]:=c[0] \times(m 4 / m 1)$;
end;
for $i:=0$ step 1 until $m$ do
begin $c i:=c[i] \times s$;
for $j:=0$ step $s$ until $n$ do $w[j]:=w[j]+c i$;
$s:=2 \times s$
end;
$w[0]:=w[n]:=0.5 \times w[0]$;
for $j:=0$ step 1 until $n$ do $w[j]:=w[j] \times h ;$
end rombergrule

## REMARK ON ALGORITHM 281 [D1]

ABSCISSAS AND WEIGHTS FOR ROMBERG QUADRATURE [Johr H. Welsch, Comm. ACM 9 (Apr. 1966), 273]
J. Boothroyd (Recd. 13 Sept. 1966 and 14 Nov. 1966) University of Tasmania, Hobart, Tasmania, Australia

The following changes which effect two minor improvements and correct two errors are recommended:

1. The expression $(p-2) / 2$, which occurs twice, should preferably be written ( $p-2$ ) $\div 2$
2. Delete $c[i]:=$ from the left part list of the statement $w[i]:=c[i]:=0$ which occurs within the scope of the first for statement
3. Delete the statement $c[n]:=0$;
4. Add, immediately following $m 1:=m 4-1$, the statement $c[j]:=0$;

These changes have been tested by the author of Algorithm 281 using B5500 Algol.

## ALGORITHM 282

DERIVATIVES OF $e^{x} / x, \cos (x) / x$, AND $\sin (x) / x^{*}$ [S22]
Walter Gautschi (Recd. 19 Aug. 1965)
Argonne National Laboratory, Argonne, Ill.

* Work performed under the auspices of the U.S. Atomic Energy Commission. Author's present address is Purdue University.
procedure $d s u b n(x, n m a x, d)$;
value $x$, nmax; integer $n \max$; real $x$; array $d$;
comment This procedure generates the derivatives

$$
d_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\frac{e^{x}}{x}\right)(n=0,1,2, \cdots, n \max )
$$

using the recurrence relation

$$
d_{n}(x)=\left(e^{x}-n d_{n-1}(x)\right) / x \quad(n=1,2,3, \cdots)
$$

The results are stored in the array $d$. If $x=0$, there is an error exit to a global label called alarm;
begin integer $n$; real $e$;
if $x=0$ then go to alarm;
$e:=\exp (x) ; d[0]:=e / x ;$
for $n:=1$ step 1 until $n \max$ do
$d[n]:=(e-n \times d[n-1]) / x$
end $d s u b n$;
procedure $\operatorname{csubn}(x, n \max , c)$;
value $x$, nmax; integer $n$ max; real $x$; array $c$;
comment This procedure obtains the derivatives

$$
c_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\frac{\cos x}{x}\right)(n=0,1,2, \cdots, n \max )
$$

from the recurrence relation

$$
c_{n}(x)=\left(\tau_{n}(x)-n c_{n-1}(x)\right) / x(n=1,2,3, \cdots)
$$

where $\left\{\tau_{n}(x)\right\}_{n=1}^{\infty}=\{-\sin x,-\cos x, \sin x, \cos x,-\sin x, \cdots\}$. The results are stored in the array $c$. If $x=0$, there is an error exit to a global label called alarm;
begin integer $n$; array tau[1:4];
if $x=0$ then go to alarm;

$$
\operatorname{tau}[1]:=-\sin (x) ; \quad \operatorname{tau}[2]:=-\cos (x)
$$

$\operatorname{tau}[3]:=-\tan [1] ; \operatorname{tau}[4]:=-\operatorname{tau}[2]$;
$c[0]:=\operatorname{tau}[4] / x$;
for $n:=1$ step 1 until $n \max$ do

$$
c[n]:=(\operatorname{tau}[n-4 \times((n-1) \div 4)]-n \times c[n-1]) / x
$$

end csubn;
procedure $\operatorname{ssubn}(x, n \max , d, s)$;
value $x, n \max , d$; integer $n \max , d$; real $x$; array $s$;
comment This procedure generates to $d$ significant digits the derivatives

$$
s_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\frac{\sin x}{x}\right)(n=0,1,2, \cdots, n \max )
$$

and stores the results in the array $s$. The method of computation is based on the recurrence relation

$$
s_{n}(x)=\left(\sigma_{n}(x)-n s_{n-1}(x)\right) / x \quad(n=1,2,3, \cdots)
$$

where $\left\{\sigma_{n}(x)\right\}_{n=1}^{\infty}=\{\cos x,-\sin x,-\cos x, \sin x, \cos x, \cdots\}$. The recurrence relation is applied in forward direction as long
as $n \leqq|x|$, and in backward direction for the remaining values of $n$, starting with an appropriately large $n=\nu$. A detailed discussion of the method will be published elsewhere. It is assumed that a global real procedure $t(y)$ is available, which evaluates the inverse function $t=t(y)$ of $y=t \ln t$ to low accuracy for
$y \geqq 0$. (See W. Gautschi, Algorithm 236, Bessel functions of
the first kind, Comm. ACM 7 (Aug. 1964), 479 Gautschi, W.
Computation of successive derivatives of $f(z) / z$, in press;
begin integer $n, n 0, n u$; real $x 1, d 1, s 1$; array sigma [1:4];
$x 1:=a b s(x)$;
$\operatorname{sigma}[1]:=\cos (x) ;$ sigma $[2]:=-\sin (x)$;
sigma [3] := - sigma [1]; sigma [4] := - sigma [2];
$n 0:=$ entier $(x 1) ; \quad s[0]:=$ if $x \neq 0$ then sigma $[4] / x$ else 1 ;
for $n:=1$ step 1 until if $n 0 \leqq n \max$ then $n 0$ else $n \max$ do
$s[n]:=(\operatorname{sigma}[n-4 \times((n-1) \div 4)]-n \times s[n-1]) / x ;$
if $n 0<n \max$ then
begin
$s 1:=0 ; \quad d 1:=2.3026 \times d+.6931 ;$
$n u:=$ if $n \max \leqq 2.7183 \times x 10$ then
$1+$ entier $(2.7183 \times x 1 \times t(.36788 \times d 1 / x 1))$ else
$1+\operatorname{entier}(n \max \times t(d 1 / n \max ))$;
for $n:=n u$ step -1 until $n 0+2$ do
begin
$s 1:=(\operatorname{sigma}[n-4 \times((n-1) \div 4)]-x \times s 1) / n ;$
if $n \leqq n \max +1$ then $s[n-1]:=s 1$
end
end
end ssubn

## REMARK ON ALGORITHM 282* [S22]

DERIVATIVES OF $e^{x} / x, \cos (x) / x$, AND $\sin (x) / x$ [Walter Gautschi, Comm. ACM 9 (April 1966), 272]
Walter Gautschi and Bruce J. Klein (Recd. 12 May 1969)

Computer Sciences Department, Purdue University, Lafayette, IN 47907 and College of Arts and Sciences, Virginia Polytechnic Institute, Blacksburg, VA 24061

* Work supported by the National Aeronautics and Space Administration NASA under Grant NGR 15-005-039.
KEY WORDS AND PHRASES: recursive computation, successive derivatives, error control
$C R$ CATEGORIES: 5.11, 5.12
For large values of $x$, and derivatives of order $n>x$, the first two procedures of Algorithm 282 incur substantial loss of accuracy. The reasons for this, as well as remedial measures, are described in the companion article [1]. The following revised procedures, based on this article, are believed to preserve accuracy as far as seems possible. Both procedures call upon the real procedure $t$ of Algorithm 236 [2].
procedure dsubn ( $x$, nmax, acc, machacc, d, error);
value $x$, nmax, acc, machacc; integer nmax, acc, machacc;
real $x$; array $d$; label error;
comment Given $x \neq 0$, nmax, and the number machacc of decimal digits available in the mantissa of machine floating-point numbers, this procedure generates the derivatives

$$
d_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\frac{e^{x}}{x}\right), \quad n=0,1,2, \cdots, n \max ,
$$

to an accuracy of acc significant decimal digits, except near a zero of $d_{n}(x)$, where some significance may be lost. The result $d_{n}(x)$ is stored in $d[n]$. If $x=0$, the procedure immediately exits to the label error;

## begin

integer $n 0, \min , n, n 1$; real $x 1, e, a, q$;
Boolean bool1, bool2;
if $x=0$ then go to error;
$x 1:=a b s(x) ; n 0:=x 1 ; \quad e:=\exp (x)$;
$d[0]:=e / x$;
$a:=1.1513 \times($ machacc-acc $)-.3466$;
if $a<2$ then $a:=2$;
bool1 :=x<0 $\vee \times x 1 \leqq a$; bool2 := n0<nmax;
$\min :=$ if bool2 then $n 0$ else $n \max$;
for $n:=1$ step 1 until if bool then nmax else $\min$ do $d[n]:=(e-n \times d[n-1]) / x ;$
if ( $\neg$ bool1) $\wedge$ bool2 then
begin

$$
n 1:=2.7183 \times x 1 \times
$$

$t((x 1+2.3026 \times a c c+.6932) /(2.7183 \times x 1))-1 ;$
if $n \mathbf{1}<n \max$ then $n 1:=$ nmax;
$q:=1 / x$;
for $n:=1$ step 1 until $n 1+1$ do $q:=-n \times q / x$;
for $n:=n 1$ step -1 until $n 0+1$ do
begin
$q:=(e-x \times q) /(n+1)$;
if $n \leqq n \max$ then $d[n]:=q$
end
end
end $d s u b n$;
procedure csubn ( $x$, nmax, acc, machacc, c, error);
value $x$, nmax, acc, machacc; integer nmax, acc, machacc;
real $x$; array $c$; label error;
comment This procedure generates the derivatives

$$
c_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\frac{\cos x}{x} \quad \text { for } n=0,1,2, \cdots, n \max \right)
$$

and stores them in the array $c$. The parameters acc, machacc have the same meaning as in the preceding procedure. There is an error exit if $x=0$;

## begin

integer $n 0, \min , n, n 1$; real $x 1, a, q$; array $\operatorname{tau}[1: 4]$;
Boolean bool1, bool2;
if $x=0$ then go to error;
$x 1:=a b s(x) ; \quad n 0:=x 1$;
$\operatorname{tau}[1]:=-\sin (x) ; \quad \operatorname{tau}[2]:=-\cos (x) ;$
$\operatorname{tau}[3]:=-\operatorname{tau}[1] ; \quad \operatorname{tau}[4]:=-\operatorname{tau}[2] ;$
$c[0]:=\operatorname{tau}[4] / x$;
$a:=2.3026 \times($ machacc-acc $)-.69315$;
if $a<3$ then $a:=3$;
bool1 := $x 1 \leqq a$; bool2 $:=n 0<n \max$;
$\min :=$ if bool2 then $n 0$ else $n \max$;
for $n:=1$ step 1 until if bool then $n \max$ else $\min$ do $c[n]:=(\operatorname{tau}[n-4 \times((n-1) \div 4)]-n \times c[n-1]) / x ;$
if ( $\neg$ bool1) $\wedge$ bool2 then
begin
$n 1:=2.7183 \times x 1 \times t((2.3026 \times a c c+.6932) /(2.7183 \times x 1))-1$;
if $n 1<n \max$ then $n 1:=n \max$;
$q:=1 / x ;$
for $n:=1$ step 1 until $n 1+1$ do $q:=-n \times q / x$;
for $n:=n 1$ step -1 until $n 0+1$ do

```
 begin
 q:= (tau[n+1-4\times(n\div4)]-x\timesq)/(n+1);
 if n\leqqnmax then c[n]:=q
 end
end
end csubn
```

References:

1. Gautschi, Walter, and Klein, Bruce J. Recursive computation of certain derivatives-A study of error propagation. Comm. ACM 18 (Jan. 1970), 7-9.
2. Gautschi, Walter. Algorithm 236, Bessel functions of the first kind [S17]. Comm. ACM 7 (Aug. 1964), 479-480.
```
ALGORITHM 283
SIMULTANEOUS DISPLACEMENT OF POLYNO-
 MIAL ROOTS IF REAL AND SIMPLE [C2]
Immo O. Kerner (Recd. }8\mathrm{ Sept. }1965\mathrm{ and }12\mathrm{ Nov. 1965)
Rechenzentrum Universitaet Rostock
procedure Prrs (A,X,n,eps); value n,eps;
 integer n; real eps; array }A,X\mathrm{ ;
comment Prrs (polynomial roots real simple) computes the n
 roots }X\mathrm{ of the polynomial equation
An}\mp@subsup{x}{}{n}+\mp@subsup{A}{n-1}{n}\mp@subsup{x}{}{n-1}+\cdots+\mp@subsup{A}{0}{}=
 simultaneously. On entry the array }X\mathrm{ contains the vector of
 initial approximations to the roots and on exit it contains the
 vector of improved approximations to the roots. The initial
 approximations must be distinct. Accuracy is specified by means
 of a parameter eps. Iteration is continued until the Euclidean
 norm of the correction vector does not exceed eps. The con-
 vergence is quadratic;
begin integer }i,k;\quad\mathrm{ real }x,P,Q\mathrm{ ;
 eps := eps \uparrow2;
W: Q := 0;
 for }i:=1\mathrm{ step 1 until n do
 begin }x:=P:=A[n]
 for k:= 1 step 1 until n do
 begin }x:=x\timesX[i]+A[n-k]
 if k\not=i then P}:=P\times(X[i]-X[k]
 end;
 X[i]:= X[i]-x/P;
 Q:=Q +(x/P)\uparrow2
 end;
 if }\mathcal{Q}>eps\mathrm{ then go to W
end
```


## ALGORITHM 284

INTERCHANGE OF TWO BLOCKS OF DATA [K2]
William Fletcher (Recd. 25 Oct. 1965 and 24 Nov. 1965)

Bolt, Beranek and Newman, Inc., Cambridge, Mass.
and
Roland Silver
The Mitre Corp., Bedford, Mass.
procedure interchange ( $\alpha, m, n$ );
value $m, n$; integer $m, n$; array $a$;
comment This procedure transfers the contents of $a[1] \cdots a[m]$ into $a[n+1] \cdots a[n+m]$ while simultaneously transferring the contents of $a[m+1] \cdots a[m+n]$ into $a[1] \cdots a[n]$ without using an appreciable amount of auxiliary memory.

The nonlocal procedure $g c d(x, y)$ has value the greatest common divisor of the integers $x$ and $y$. The nonlocal procedure $\operatorname{swap}(x, y)$ interchanges the values of the variables $x$ and $y$.

Let $G$ be the additive group of integers modulo $m+n$. The multiples $0, n, 2 n, \cdots$ of $n$ form a cyclic subgroup $C$ of $G$. The order of $C$ is $r=(m+n) / d$, where $d$ is the gxeatest common
divisor of $m$ and $n$. The integers $1, \cdots, d$ belong to distinct cosets $C_{1} \cdots C_{d}$ of $C$. These cosets form a disjoint covering of $G$.

The interchange procedure is based on the fact that if we start with a member $x$ of the $\operatorname{coset} C_{x}$, and add $n$ repeatedly modulo $m+n$, we will in $r$ steps have generated each member of $C_{x}$ just once;
begin
integer $d, i, j, k, r ;$
real $t$;
$d:=\operatorname{gcd}(m, n)$;
$r:=(m+n) \div d ;$
for $i:=1$ step 1 until $d$ do
begin
$j:=i ;$
$t:=a[i]$;
for $k:=1$ step 1 until $r$ do
begin
If $j \leqq m$ then $j:=j+n$ else $j:=j-m$;
$\operatorname{swan}(t, a[j])$
end $k$
end $i$
end interchange

ACM Transactions on Mathematical Software, Vol. 2, No. 4, December 1976, Pages-392-393.

## REMARK ON ALGORITHM 284

Interchange of Two Blocks of Data [K2]
[W. Fletcher and R. Silver, Comm. ACM 9, 5 (May 1966), 326]
M.R. Ito [Recd 25 July 1975 and 25 May 1976]

Department of Electrical Engincering, University of British Columbia, Vancouver, B.C., Canada, V6T 1 W5.

The relocation of two contiguous blocks of data performed by Algorithm 284 can be regarded as a permutation problem. That is, the first $m$ components and the last $n$ components of an ( $m+n$ ) dimensional vector, $a$, are interchanged by the transformation, $b=Q a$, where $Q$ is a permutation matrix defined in partitioned form as

$$
Q=\left[\begin{array}{c:c}
\mathrm{O} & I_{n} \\
\hdashline I_{m} & \mathrm{O}
\end{array}\right],
$$

and $I_{k}$ is the identity matrix of order $k$.
Algorithm 284 is in fact equivalent to the representation [1] of the desired permutation as the product of $r$ disjoint cycles, with each cycle comprising $d$ components, where
$d=$ greatest common denominator of $m$ and $n$;
$r=(m+n) \div d$.
A more efficient algorithm for performing the permutation is based on the following decomposition of $Q$. Let $P_{k}$ be the permutation matrix of order $k$ with ones along the minor diagonal (zeros elsewhere). Then, $Q$ can be decomposed as

$$
Q=P_{m+n} R S,
$$

where

$$
R=\left[\begin{array}{c:c}
I_{m} & \mathrm{O} \\
\hdashline \mathrm{O} & P_{n}
\end{array}\right], \quad S=\left[\begin{array}{c:c}
P_{m} & \mathrm{O} \\
\hdashline \mathrm{O} & I_{n}
\end{array}\right] .
$$

The partial permutation associated with $P_{k}$ can be represented as a product of ( $k / 2-(k / 2) \bmod 1)$ disjoint cycles; each cycle comprising only two components
with easily computed indices. This latter property, combined with the above decomposition of $Q$, leads to an algorithm which avoids the following features present in Algorithm 284:
(i) computation of the greatest common denominator;
(ii) conditional calculation of array element index in inner loop;
(iii) extra storage and variable assignment.

Geometrically, the matrix $Q$ can be interpreted as a rotation matrix, and the matrices $P_{m+n}, R$, and $S$ can be interpreted as reflection matrices.

The new algorithm is given below.

```
procedure rotatecirclist (\(a, m, n\));
 value \(m, n\); integer \(m, n\); array \(a\);
 comment This procedure transfers the contents of \(a[1] \ldots a[m]\) into \(a[n+1] \ldots a[n+m]\)
 while simultaneously transferring the contents of \(a[m+1] \ldots a[m+n]\) into \(a[1] \ldots a[n]\).
 The nonlocal procedure swap (\(x, y\)) interchanges the values of the variables \(x\) and \(y\).
 Fewer steps occur if the result of integer division is truncated rather than rounded, but
 the procedure also works in the latter case;
 begin
 if \(m \neq 0 \wedge n \neq 0\) then
 begin
 integer \(i, k, l\);
 \(k:=m+1 ; \quad l:=m \div 2\);
 for \(i:=1\) step 1 until \(l\) do swap (a[i],a[k-i]);
 \(k:=k+n ; \quad l:=n \div 2\);
 for \(i=1\) step 1 until \(l\) do \(\operatorname{swap}(a[m+i], a[k-i])\)
 \(l:=(m+n) \div 2\);
 for \(i:=1\) step 1 until \(l\) do \(\operatorname{swap}(a[i], a[k-i])\)
 end;
 end rotatecirclist;
```

REFERENCES

1. Knuth, D.E. The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading, Mass., 1969.

## ALGORITHM 285

THE MUTUAL PRIMAL-DUAL MENHOD [H]
Thomas J. Aird (Recd. 29 June 1964 and 5 Apr. 1965)
Wolf Research and Development Corporation
Manned Spacecraft Center
Houston, Texas
procedure Linearprogram ( $n, p, A, \min , p s o l$, dsol, bool);
value $p, n$; integer $p, n$; array $A, p s o l$, dsol; real min; Boolean bool;
comment This procedure solves the linear programming problem by the Mutual Primal-Dual Simplex Method. The problem is assumed to be in the following form:

$$
\begin{aligned}
A X+B & \leq 0 \\
X & \geq 0 \\
\min u & =d+C^{T} X
\end{aligned}
$$

where $A$ is $p \times n, B$ is $p \times 1$ and $C$ is $n \times 1$. The dual problem is then,

$$
\begin{aligned}
Y & \geq 0 \\
A^{T} Y+C & \geq 0 \\
\max v & =d+B^{T} Y .
\end{aligned}
$$

The matrix of coefficients, also called $A$ is formed in the following way:

$$
A=\left[\begin{array}{ccccc}
d & C_{1} & C_{2} & \cdots & C_{n} \\
b_{1} & A_{11} & A_{12} & \cdots & A_{1 n} \\
b_{2} & A_{21} & A_{\varepsilon 2} & \cdots & A_{2 n} \\
\vdots & & & \cdots & \\
b_{p} & A_{p 1} & A_{p 2} & \cdots & A_{p n}
\end{array}\right]
$$

The input matrix $A$ is declared [0:p,0:n], $\min$ is the value of the objective function, $p s o l$ is the solution vector for the primal problem, $d s o l$ is the solution vector for the dual problem, bool will be set to true if an optimal solution is found, otherwise bool will be set to false;
begin integer array row $[0: 2 \times p, 0: p]$, col $[0: 2 \times p, 0: n]$, norow, nocol $[0: 2 \times p]$, index $[0: n+p]$;
integer $i, j, k, s, t$;
procedure subschema ( $k$ ); integer $k$;
comment This procedure defines an admissible sequence of subschema $S_{k+1} S_{k+2}, \cdots$, assuming that $S_{1}, S_{2}, \cdots S_{k}$, have already been defined;
begin integer count;
for $i:=1$ step 1 until $p$ do if $A[i, 0]>0$ then go to WORK;
for $j:=1$ step 1 until $n$ do if $A[0, j]<0$ then go to WORK; $k:=0$; go to RETURN;
WORK: if $2 \times(k \div 2)=k$ then go to $E V E N$ else go to $O D D$; EVEN:
begin if $k=0$ then begin
for $i:=1$ step 1 until $p$ do if $A[i, 0]>0$ then
begin

$$
\operatorname{row}[1,0]:=i ; \text { go to } D 3
$$

end;

```
 row \([1,0]:=0\); go to \(D 3\)
 end;
 for \(j:=1\) step 1 until nocol \([k]\) do
```

        if \(A[r o w[k, 0]\), col \([k, j]]=0\) then go to \(D 1\);
        go to RETURN;
    $D 1$ : for $i:=1 \mathrm{step} 1$ until norow $[k]$ do
if $A[r o w[k, i]$, col $[k, 0]]>0$ then go to $D 2$;
go to RETURN;
D2: $\operatorname{row}[k+1,0]:=\operatorname{row}[k, i]$;
$\operatorname{col}[k+1,0]:=\operatorname{col}[k, 0] ;$
count $:=0$;
for $j:=1$ step 1 until nocol $[k]$ do
if $A[r o w[k, 0]$, col $[k, j]]=0$ then
begin
count $:=$ count +1 ;
$\operatorname{col}[k+1$, count $]:=\operatorname{col}[k, j]$
end;
nocol $[k+1]:=$ count $;$
D3: count :=0;
for $i:=1$ step 1 until norow $[k]$ do
if $A[r o w[k, i], \operatorname{col}[k, 0]] \leq 0$ then
begin
count $:=$ count +1 ;
$\operatorname{row}[k+1$, count $]:=\operatorname{row}[k, i]$
end;
norow $[k+1]:=$ count;
$k:=k+1$;
go to $O D D$
end $E V E N$;
$O D D$ :
begin
for $i:=1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, 0]]=0$ then go to $B 1$;
go to RETURN;
$B 1$ : for $j:=1$ step 1 until nocol $[k]$ do
if $A[r o w[k, 0]$, col $[k, j]]<0$ then go to $B 2$;
go to RETURN;
$B 2$ : $\operatorname{col}[k+1,0]:=\operatorname{col}[k, j] ;$
$\operatorname{row}[k+1,0]:=\operatorname{row}[k, 0]$;
count $:=0$;
for $i:=1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, 0]]=0$ then
begin
count $:=$ count +1 ;
$\operatorname{row}[k+1$, count $]:=\operatorname{row}[k, i]$
end;
norow $[k+1]:=$ count;
count :=0;
for $j:=1$ step 1 until nocol[k] do
if $A[r o w[k, 0], \operatorname{col}[k, j]] \geq 0$ then
begin
count $:=$ count +1 ;
$\operatorname{col}[k+1, \operatorname{count}]:=\operatorname{col}[k, j]$
end;
nocol $[k+1]:=$ count ;
$k:=k+1$;
go to $E V E N$
end $O D D$;
RETURN:
end subschema;
procedure pivot $(s, t)$; value $s, t$; integer $s, t$;
comment The procedure pivot performs the usual pivot operation on the matrix $A, A[s, t]$ is the pivot element;
begin integer $i, j$;
$A[s, t]:=1 / A[s, t]$;
for $i:=0$ step 1 until $s-1, s+1$ step 1 until $p$ do
begin $A[i, t]:=-A[i, t] \times A[s, t] ;$
for $j:=0$ step 1 until $t-1, t+1$ step 1 until $n$ do if $a b s(A[i, j]+A[i, t] \times A[s, j]) \leq a b s\left(A[i, j] \times_{10}-8\right)$ then $A[i, j]:=0$
else $A[i, j]:=A[i, j]+A[i, t] \times A[s, j]$
end;
for $j:=0$ step 1 until $t-1, t+1$ step 1 until $n$ do $A[s, j]:=A[s, j] \times A[s, t] ;$
$i:=$ index $[t]$;
index $[t]:=$ index $[n+s]$;
index $[n+s]:=i$
end pivot;
procedure pickapivot ( $k, s, t$ ); integer $k, s, t$;
comment The procedure pickapivot will choose a pivot element from $S_{k}$ or $S_{k-1}$ in a manner which will guarantee improvement in the goal vector;
begin real max, test;
if $2 \times(k \div 2)=k$ then go to $E V E N$ else go to $O D D$;
$O D D$ :

## begin

for $j:=1$ step 1 until nocol $[k]$ do if $A[\operatorname{row}[k, 0], \operatorname{col}[k, j]]<0$ then begin
for $i:=1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, j]]>0$ then go to $A 1$;
$s:=\operatorname{row}[k, 0]$;
$t:=\operatorname{col}[k, j] ;$
$k:=k-1$;
go to RETURN;
A1:
end;
for $j:=1$ step 1 until nocol $[k]$ do
if $A[\operatorname{row}[k, 0], \operatorname{col}[k, j]]<0$ then
begin
for $i:=1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, j]]>0$ then
begin $s:=\operatorname{row}[k, i]$;
$t:=\operatorname{col}[k, j]$;
$\max :=A[\operatorname{row}[k, i], \operatorname{col}[k, 0]] / A[\operatorname{row}[k, i], \operatorname{col}[k, j]] ;$
go to $A 2$
end
end;
go to $A 3$;
A2: for $i:=i+1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, j]]>0$ then
begin
test $:=A[\operatorname{row}[k, i], \operatorname{col}[k, 0]] / A[\operatorname{row}[k, i], \operatorname{col}[k, j]] ;$
if test $>$ max then
begin
$s:=\operatorname{row}[k, i] ;$
$\max :=$ test
end
end;
$k:=k-1$;
go to RETURN;
A3: for $j:=1$ step 1 until nocol $[k-1]$ do
if $A[\operatorname{row}[k, 0], \operatorname{col}[k-1, j]]<0$ then
begin
$s:=\operatorname{row}[k, 0] ;$
$t:=\operatorname{col}[k-1, j]$;
$\max :=A[\operatorname{row}[k-1,0], \operatorname{col}[k-1, j]] / A[\operatorname{row}[k, 0], \operatorname{col}[k-1, j]] ;$
go to $A 4$
end;
$s:=\operatorname{row}[k, 0]$;
$t:=\operatorname{col}[k, 0] ;$
$k:=k-2$;
go to RETURN;
A4: for $j:=j+1$ step 1 until nocol $[k-1]$ do
if $A[\operatorname{row}[k, 0], \operatorname{col}[k-1, j]]<0$ then
begin
test $:=A[\operatorname{row}[k-1,0], \operatorname{col}[k-1, j]] / A[\operatorname{row}[k, 0], \operatorname{col}[k-1, j]] ;$
if test $>\max$ then
begin
$t:=\operatorname{col}[k-1, j] ;$
$\max :=$ test
end
end;
$k:=k-2$;
go to RETURN
end $O D D$;
EVEN:
begin
for $i:=1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, 0]]>0$ then
begin
for $j:=1$ step 1 until nocol $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, j]]<0$ then
go to $B 1$;
$s:=\operatorname{row}[k, i]$;
$t:=\operatorname{col}[k, 0]$;
$k:=k-1$;
go to RETURN;
$B 1$ :
end;
for $i:=1$ step 1 until norow $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, 0]]>0$ then
begin
for $j:=1$ step 1 until nocol $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, j]]<0$ then
begin
$s:=\operatorname{row}[k, i] ;$
$t:=\operatorname{col}[k, j]$;
$\max :=A[\operatorname{row}[k, 0], \operatorname{col}[k, j]] / A[\operatorname{row}[k, i], \operatorname{col}[k, j]] ;$
go to $B 2$
end
end;
go to $B 3$;
$B 2$ : for $j:=j+1$ step 1 until nocol $[k]$ do
if $A[\operatorname{row}[k, i], \operatorname{col}[k, j]]<0$ then
begin
test $:=A[\operatorname{row}[k, 0], \operatorname{col}[k, j]] / A[\operatorname{row}[k, i], \operatorname{col}[k, j]] ;$
if test $>\max$ then
begin
$t:=\operatorname{col}[k, j] ;$
$\max :=$ test
end
end;
$k:=k-1$;
go to RETURN;
$B 3$ : for $i:=1$ step 1 until norow $[k-1]$ do
if $A[\operatorname{row}[k-1, i], \operatorname{col}[k, 0]]>$ then
begin
$s:=\operatorname{row}[k-1, i] ;$
$t:=\operatorname{col}[k, 0]$;
$\max :=A[\operatorname{row}[k-1, i], \operatorname{col}[k-1,0]] / A[\operatorname{row}[k-1, i], \operatorname{col}[k, 0]] ;$
go to $B 4$
end;

$$
\begin{aligned}
& s:=\operatorname{row}[k, 0] ; \\
& t:=\operatorname{col}[k, 0] ; \\
& k:=k-2 ;
\end{aligned}
$$

go to RETURN;
$B 4$ : for $i:=i+1$ step 1 until norow $[k-1]$ do
if $A[\operatorname{row}[k-1, i], \operatorname{col}[k, 0]]>$ then
begin
test $:=A[r o w[k-1, i], c o l[k-1,0]] / A[r o w[k-1, i], c o l[k, 0]] ;$
if test $>\max$ then
begin
$s:=\operatorname{row}[k-1, i]$;
max := test
end
end;
$k:=k-2$;
go to RETURN
end EVEN;
RETURN:
end pickapivot;
for $i:=1$ step 1 until $p+n$ do index $[i]:=i$;
for $i:=0$ step 1 until $p$ do $\operatorname{row}[0, i]:=i$;
for $j:=0$ step 1 until $n$ do $\operatorname{col}[1, j]:=j$;
norow $[0]:=p ;$ nocol $[1]:=n ; \quad k:=0$;
comment This is a check on the row constraints;
NEXTPIVOT:
for $i:=1$ step 1 until $p$ do
begin
if $A[i, 0] \leq 0$ then go to $N E X T I$;
for $j:=1$ step 1 until $n$ do
if $A[i, j]<0$ then go to $N E X T I$;
comment Row constraints are incompatible;
bool := false;
go to FINISH;
NEXTI:
end;
comment This is a check on the column constraints;
for $j:=1$ step 1 until $n$ do
begin
if $A[0, j] \geq 0$ then go to $N E X T J$;
for $i:=1$ step 1 until $p$ do
if $A[i, j]>0$ then go to $N E X T J$;
comment Column constraints are incompatible; bool := false;
go to FINISH;
NEXTJ:
end;
subschema $(k)$;
if $k=0$ then
begin
comment $k=0$ indicates that the present solution is opti-
mal. $A[0,0]$ is value of the objective function;
$\min :=A[0,0]$;
for $i:=1$ step 1 until $p+n$ do $p s o l[i]:=d s o l[i]:=0$;
comment Find the primal solution vector;
for $i:=1$ step 1 until $p$ do
$p s o l[$ index $[n+i]]:=-A[i, 0]$;
comment Find the dual solution vector;
for $i:=1$ step 1 until $n$ do
if index $[i]>n$ then
dsollindex $[i]-n]:=A[0, i]$
else
dsol[index $[i]+p]:=A[0, i] ;$
bool := true;
go to FINISH;
end;
pickapivot ( $k, s, t$ );
if $s=0 \vee t=0$ then

```
 begin
 comment No feasible solution;
 bool := false;
 go to FINISH;
end;
pivot (\(s, t\));
 go to NEXTPIVOT;
FINISH:
end Linearprogram
```

CERTIFICATION OF ALGORITHM 285 [H]
THE MUTUAL PRIMAL-DUAL METHOD
[Thomas J. Aird, Comm. ACM 9 (May 1966), 326]
H. Sрӥтн (Reed. 13 Feb. 1967)

Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum, Karlsruhe, Germany

The procedure Linearprogram has been translated into Fortran II and successfully run on the IBM 7074 Computer. The following corrections had been made (the first two are merely typographical errors).

1. P. 328 , left column, 1 line after label $B 3$ :
reads:
if $A[r o w[k-1, i], \operatorname{col}[k, 0]]>$ then
should read:
if $A[\operatorname{row}[k-1, i], \operatorname{col}[k, 0]]>0$ then
2. P. 328, left column, 1 line after label $B 4$ :
reads:
if $A[r o w[k-1, i], \operatorname{col}[k, 0]]>$ then
should read:
if $A[\operatorname{row}[k-1, i], \operatorname{col}[k, 0]]>0$ then
3. P. 328 , right column, after the end of the procedure pickapivot and before the label NEXTPIVOT there must be inserted the statement
$\operatorname{col}[0,0]:=0 ;$
Otherwise $\operatorname{col}[0,0]$ has no assigned value when the procedure subschema is entered for the first time.

## ALGORITHM 286

## EXAMINATION SCHEDULING [ZH]

J. E. L. Peck and M. R. Williams (Recd. 17 Mar. 1964, 25 Jan. 1965 and 1 Mar. 1966)
University of Alberta, Calgary, Alta., Canada
procedure partition (incidence) graph of order: $(m)$ into : $(n)$ parts using weights : $(w)$ bound : (max) preassignment : (preassign) of number: (pren);
Boolean array incidence; integer array $w$, preassign;
integer $m, n$, max, pren;
comment This is an heuristic examination time-tabling orocedure for scheduling $m$ courses in $n$ time periods. It is essentially the problem of graph partitioning and map coloring.
In the terminology of graph theory: Given a graph of $m$ vertexes with a positive integer weight $w[i]$ at the $i$ th vertex, partition this graph into no more than $n$ disjoint sets such that each set contains no two vertexes joined by an edge, and such that the total weight of each set is less than the prescribed bound max.
We represent the graph as an $m \times m$ symmetric Boolean matrix incidence whose $i, j$ th element is true if and only if vertex $i$ is joined to vertex $j$ by an edge (if a student is taking both course $i$ and course $j$ ), diagonal elements being assigned the value true. The weight assigned to the $i$ th vertex (number of students in the $i$ th course) is $w[i]$. We shall see below that preassignment is permitted. The number of courses to be preassigned is given in pren and the course preassign $[i, 1]$ is to be placed at the time preassign $\{i, 2]$.
This procedure does not minimize the second order incidence i.e. a vertex $i$ being assigned to the set $k$, where the set $k-1$ contains a vertex $j$ joined to $i$ (a student writing two consecutive examinations), but this may be done by rearranging the sets after the partitioning is completed. The procedure contains its own output statements, but its driver should provide the input;
begin integer array row $[1: m]$, number $[1: n]$;
integer $i, j$, sum, course, time;
Boolean preset, completed;
INITIALIZE: preset:= false;
for $j:=1$ step 1 until $n$ do number $[j]:=0$;
for $i:=1$ step 1 until $m$ do
begin sum := 0 ;
for $j:=1$ step 1 until $m$ do
if incidence $[i, j]$ then sum $:=$ sum +1 ;
row $[i]$ := sum
end INITIALIZE. Note that row [i] now contains the multiplicity of, or number of edges at the vertex $i$ (number of courses which conflict with the course $i$ ). Of course since the incidence matrix is symmetric, less than half ( $i>j$ ) need be stored. However, this procedure, for the sake of simplicity, is written for the whole matrix. Also note that row [i] will eventually contain the negative of the set number to which the $i$ th vertex is assigned (examination time for the $i$ th course) and number $[j]$ will contain the weight of the $j$ th set (number of candidates at time $j$ ). From here on we drop the allusions to graph theory in the comments;
THE PREASSIGNMENT: for $j:=1$ step 1 until pren do
begin comment preassignment of courses to times is now carried out. If pren $=0$, then there are no preassignments; course $:=$ preassign $[j, 1] ;$ time $:=$ preassign $[j, 21:$
comment We now attempt to assign this course to the given time;
SCRUTINIZE: if row [course] < 0 then
begin outstring ( 1 , 'This course'); outinteger ( 1, course); outstring ( 1 , 'is already scheduled at time');
outinteger ( $1,-$ row $[$ course $]$ ); go to $N E X T$
end;
if number $[$ time $]+w[$ course $]>$ max then
begin outstring ( 1 , 'Space is not available for course'); outinteger ( 1 , course); outstring ( 1 , 'at time'); outinteger ( 1, time); go to $N E X T$
end;
for $i:=1$ step 1 until $m$ do
if row $[i]=-$ time then
begin if incidence $\{i$, course] then
begin outstring ( 1 , 'course number');
outinteger ( 1, course); outstring ( 1, 'conflicts with'); outinteger ( $1, i$ );
outsiring ( 1 , 'which is already scheduled at');
outinteger ( 1, time) ,
go to $N E X T$
end if incidence
end if row;
SATISFACTORY: row[course] := -time;
number $[$ time $]:=$ number $[$ time $]+w[$ course $] ;$
preset := true;
NEXT:
end THE PREASSIGNMENT;
MAIN PROGRAM: begin Boolean array available [1:m];

## integer next;

procedure check (course); integer course;
begin integer $j$; comment This procedure renders unavailable those courses conflicting with the given course;
for $j:=1$ step 1 until $m$ do
if incidence $[$ course, $j]$ then available $[j]:=$ false
end of procedure check.
For each of the $n$ time periods we select a suitable set of nonconflicting courses whose students will fit the examination room;
START OF MAIN PROGRAM:
for time $:=1$ step 1 until $n$ do
if preset $\equiv$ number $[$ time $]>0$ then
begin comment The preceding Boolean equivalence directs the attention of the program initially only to those times where prescheduling has occurred. We now determine the available courses (i.e. unscheduled and nonconflicting). If course $i$ is already scheduled, then row $[i]$ is negative;
completed $:=$ true;
for $i:=1$ step 1 until $m$ do if row $[i]>0$ then
begin available $[i]:=$ true; completed $:=$ false end
else available $[i]:=$ false;
if completed then go to OUTPUT;
if preset then
begin comment Some courses were prescheduled at this time. It is necessary to render their conflicts unavailable;
for $i:=1$ step 1 until $m$ do
if row $[i]=-$ time then check ( $i$ )
end prescheduled courses.

We now select the available course with the most conflicts. This is essentially the heuristic step and therefore the place where variations on the method may be made;
AGAIN:
sum :=0;
for $i:=1$ step 1 until $m$ do
if available $[\mathrm{i}] \wedge$ row $[i]>$ sum then
begin next $:=i$; sum $:=$ row $[i]$ end most conflicts;
if $s u m>0$ then
begin comment There exists an available course, so we test it (viz next) for size. If it does not fit we look for another;
available $[$ next $]:=$ false;
if number $[$ time $]+w[$ next $]>\max$ then go to $A G A I N$; comment If we are here the course will fit so we use it; row $[$ next $]:=-$ time;
number $[$ time $]:=$ number $[$ time $]+w[$ next $]$;
check (next); go to AGAIN
end sum $>0$
end of the time loop;
if preset then
begin preset $:=$ false; go to START OF MAIN
PROGRAM end
In case of prescheduling this takes us back to try the remaining time periods.
If we have reached here with completed true then all courses are scheduled, but the converse may not be true, therefore;
if $\neg$ completed then
begin completed := true;
for $i:=1$ step 1 until $m$ do
if row $[i]>0$ then completed $:=$ false
end $\neg$ completed and
end of the main program;
OUTPUT: if $\neg$ completed then
begin comment The following for statement outputs the courses that were not scheduled;
outstring (1, 'courses not scheduled');
for $i:=1$ step 1 until $m$ do
if row $[i]>0$ then outinteger $(1, i)$
end not scheduled.
The following outputs the time period $j$, the number of students number $[j]$ and the courses $i$ written at time $j$;
TIMETABLE: outstring(1, 'time enrolment courses');
for $j:=1$ step 1 until $n$ do
begin outinteger ( $1, j$ ); outinteger ( 1, number $[j]$ );
for $i:=1$ step 1 until $m$ do
if row $[i]=-j$ then outinteger $(1, i)$
end $j$.
The following outputs the courses, the times at which they are written, and their enrolment;
outstring ( 1 , 'course time enrolment');
for $i:=1$ step 1 until $m$ do
if row $[i]<0$ then outinteger $(1, i)$; outinteger $(1$, row $[i])$;
outinteger ( $1, w[i]$ )
else
begin outinteger ( $1, i$ ); outstring ( 1 , 'unscheduled'); outinteger ( $1, w[i]$ ) end
end of the procedure

REMARK ON ALGORITHM 286 [H]
EXAMINATION SCHEDULING [J. E. L. Peck and M. R. Williams, Comm. ACM 9 (June 1966), 433].

The 6th and 7th lines from the end of the procedure should be corrected by the insertion of a begin end pair so that they read
if row $[i]<0$ then
begin outinteger (1, i); outinteger (1, row [i]); outinteger (1, w[i])
end

## ALGORITHM 287

MATRIX TRIANGULATION WITH INTEGER ARITHMETIC [F1]

## W. A. Blankinship

(Recd. 19 May 1965 and 17 Sept. 1965)
National Security Agency, Ft. Geo. G. Meade, Md.
integer procedure $I N T R A N K$ ( $m a t, m, n, e$ ); value $m, n, e$; integer $m, n, e$; integer array mat;
comment This procedure operates on an $m$ by $n+e$ matrix whose name is mat and whose elements are integers. If mat is considered as composed of two submatrices $U$ and $V$, where $U$ comprises the first $n$ columns of mat and $V$ comprises the last $e$ columns, then the effect of the procedure is as follows:
(1) The rank of the submatrix $U$ is returned as the value of INTRANK (designated by $r$ in the following discussion).
(2) mat is transformed by a sequence of elementary row operations in such a manner that $U$ is reduced to triangular form. Triangular form means that the leading, or first nonzero, element of each row appears to the right of the leading element of the preceding row.
(3) It is easy to deduce from the proof in [1, p. 72, Th. 12] that for any set of $k$ columns of mat, the greatest common divisor of all $k$ th order minors selected from those columns is preserved. In particular, the product of all leading elements in $U$ (final) (which are preserved as the first $r$ elements of the local array $a$ ) will be equal to the ged of all $n$th order minors of $U$.
(4) It is also easy to show, by the methods of [2] that if mat contains an $m \times m$ identity matrix, $I$, then $I$ ends up as a record of the row operations actually performed, specifically:

$$
m a t(\text { final })=I(\text { final }) \times m a t(\text { initial })
$$

(5) Since (3) implies that the rank of $U$ is preserved, and the rank of $U$ (final) is obviously equal to the number of nonzero rows that it contains, this number, $r$, is returned as the value of INTRANK.
(6) Under the conditions of (4), it follows that the last $m-r$ rows of $I$ (final) comprise a complete, linearly independent set of left-annihilators (row-dependences) of the matrix $U$.

The preceding properties are the basis of the claims for the procedure SOLVEINTEGER [Algorithm 288, Comm. ACM 9 (July 1966), 514] which calls this procedure.
INTRANK is designed to minimize the likelihood of overflow, the detection of which is left to the user. The best method is to include an identity matrix in mat and check the relation described in 4 (above). In many instances overflow doesn't matter. In particular, if (a) the machine-compiler combination does integer addition, subtraction and multiplication modulo $2 i+1$ where $i$ is the maximum integer representable in the machine, (b) division is done by the usual long-division algorithm, and (c) the answers sought are either known tr be less than $i$ in absolute value, or only desired modulo $2 i+1$, then, short of interference by an over-zealous monitor, the procedure will produce satisfactory results in spite of overflow. (Although the CDC 1604 does not satisfy (a), the same effect can be achieved by using a suitable subroutine in place of the multiplication sign in the procedure $R E D U C E$.)

Overflow is generally dependent upon the magnitude of the greatest common divisor of all $r \times r$ minors contained in $U$, as this number, or a large divisor of it will appear in the $r$ th row of mat (final) and as $a[r]$. Thus if $U$ is a square matrix whose determinant is a prime greater than the capacity of the machine, there is obviously no way to avoid overflow. Even if the determinant is composite, it is most likely that only small factors will be left on the diagonal and overflow will still occur. When elements of $U$ are chosen from a flat-random population of integers in the closed interval $[-13,+13]$ it has been found empirically that overflow almost never occurs for $m=n=11$ when run on the CDC 1604 , where $i=2^{46}-1$. See also the discussions on overflow in the procedure SOLVEINTEGER;
begin integer $i, j, k, Q, T$, topel, nextel, itop, inext;
integer array $a[1: m]$;
procedure $F I N D N E X T$;
begin nextel $:=0$;
for $k:=i$ step 1 until $m$ do
if $a[k]>n e x t e l \wedge k \neq$ itop then
begin nextel $:=a[k]$; inext $:=k$
end
end;
procedure $S W A P R O W S$;
begin for $k:=j$ step 1 until $T$ do
$\operatorname{begin} Q:=-\operatorname{mat}[i, k] ;$
mat $[i, k]:=$ mat $[i t o p, k]$;
mat $[$ itop,$k]:=Q$
end;
$a[i]:=a[i t o p] ;$
conmment The last statement is a luxury which ensures that, at the end of the algorithm, $a$ will contain the leading elements of the first INTRANK rows of mat;
end;
procedure $R E D U C E$;
begin $Q:=$ mat [itop,j] $\div$ mat [inext, $j]$;
for $k:=j$ step 1 until $T$ do mat $[$ itop,$k]:=$ mat $[$ ilop,$k]-Q \times$ mat $[$ inext,$k]$;
$a[$ itop $]:=$ if mat $[$ itop,$j]<0$ then - mat $[$ ito $p, j]$ else mat [itop,j];
end;
$i:=j:=$ ilop $:=0 ; T:=\imath+e$;
$N E X T R O W$ : if itop $\neq i$ then $S W A P R O W S$;
$i:=i+1$; if $i>m$ then go to $O U T$;
NEXTCOL: $j:=j+1$; if $j>n$ then go to $O U T$;
for $k:=i$ step 1 until $m$ do
$a[k]:=$ if mat $[k, j]<0$ then - mat $[k, j]$ else mat $[k, j]$;
comment Find the value and location of the largest element at or below position $(i, j)$ of mat.;
itop $:=i-1 ;$ FINDNEXT;
if nextel $=0$ then go to $N E X T C O L$;
CONTINUE: itop $:=$ inext; topel $:=$ nextel;
comment Find the value and location of the next largest element at or below position $(i, j)$;
FINDNEXT;
if nextel $=0$ then go to $N E X T R O W$;
comment Subtract row containing next highest element from that containing highest element. Repeat until highest element no longer ranks highest;
$R E D U C E ;$
go to CONTINUE;
OUT: INTRANK := i-1;
end
References:

1. Albert, A. A. Fundamental Concepts of Higher Algebra. U. of Chicago Press., Chicago, Ill., 1956.
2. Blankinship, W. A. A new version of the Euclidean algorithm. Amer. Math. Month. 70 (1963), 742-745.

## ALGORITHM 288 <br> SOLUTION OF SIMULTANEOUS LINEAR DIOPHANTINE EQUATIONS [F4] <br> W. A. Blankinship <br> (Recd. 19 May 1965 and 17 Sept. 1965) <br> National Security Agency, Ft. Geo. G. Meade, Md.

Boolean procedure SOLVEINTEGER (A) times: (x) equals the vector: (b) times a least integer: (d) where $A$ is a matrix of dimension one to: $(m)$ by one to: $(n)$ Also find: $(k)$ linearly independent auxiliary solutions and store in the matrix: $(Y)$; value $m, n$,
integer $m, n, d, k$;
integer array $A, x, b, y$;
comment Seeks the smallest positive integer, $d$, for which an integer solution to the equation $A x=b d$ exists.
If no solution exists then SOLVEINTEGER is returned as false. Otherwise SOLVEINTEGER is returned as true and the values of $d$ and the solution vector $x$ are returned.
If more than one solution exists then auxiliary solutions are returned in the matrix $Y$. The additional solutions are obtained by adding any linear combination of the first $k$ rows of $Y$ to the solution $x$.
It is assumed that
$A$ is dimensioned $[1: m, 1: n]$,
$x$ is dimensioned [ $1: n$ ],
$b$ is dimensioned [ $1: m$ ],
$Y$ is dimensioned $[1: n, 1: n]$.
Note that a diophantine solution exiscs if and only if $d$ is returned as 1 and SOLVEINTEGER is returned as true.

The procedure relies entirely on the action of the procedure INTRANK [Algorithm 287, Comm. ACM 9 (July 1966), 513]. In particular, a matrix, mat, is formed by adjoining $-b$ to the transpose of $A$, and then adjoining an $(n+1)$ th order identity matrix as follows:

$$
m a t=\left(\begin{array}{cc}
-b & I \\
A^{\boldsymbol{T}} & I
\end{array}\right)
$$

INTRANK is then called upon to triangularize the first $m+1$ columns of mat (reaching into the first column of $I$ ). The value of INTRANK will be returned as an integer $r$ which is 1 greater than the rank of $A$. Furthermore, as a consequence of properties (4) and (6) claimed under INTRANK, the last $n-r+1$ rows of $I$ (final) will comprise a complete set of left annihilators of the matrix $\binom{-b}{A^{T}}$. Since only the first of these rows (if any) will have a nonzero element in the first column, it follows that this first row expresses the value $d$ and the desired solution (if $d \neq 0$ ), and the succeeding $n-r$ rows constitute solutions to the homogeneous equation. If any linear combination of these last $n-r+1$ rows were to yield a vector whose elements have a greatest common divisor not equal to 1 , this would imply that $\operatorname{det}(I($ final $))=\operatorname{det}(I$ (initial $)) \neq 1$, which is false. This ensures that $d$ is the smallest value, as claimed.

Overflow cannot occur in this procedure except as inherited from the procedure INTRANK. Overflow seems to be no problem when solutions ( $x, d$ ) exist which are within the machine's capacity to verify. I am unable to fully explain this but numerous cases have been run on the CDC-1604 (47-bit integers plus
sign bit) with elements of $A$ chosen randomly between - 13 and +13 inclusive and for $m=n=5$ through 20 ( 10 or more cases each). Only a single failure (in the case $m=n=20$ ) occurred. These cases were devised by preassigning integer values to $x$, calculating $b$ and then calling SOLVEINTEGER. It is difficult to devise significant test cases where $\operatorname{det}(A) \neq d \gg 1$ as this involves assigning values of $x$ satisfying $A x=0(\bmod d)$. This implies $d$ must be a divisor of $\operatorname{det}(A)$ which must therefore be
precalculated. But det ( $A$ ) may overflow even though there may be a $d$ for which solution is possible. When $m=n$ the values of $x$ and $d$ will usually be, according to Cramer's rule, $n$th order determinants, or high divisors thereof, which may exceed machine capacity. When the elements of both $b$ and $A$ are chosen equiprobably between $-\alpha$ and $+\alpha$, inclusive, it can be shown that the standard deviation of such a determinant is $\left(n!\alpha^{n}(\alpha+1)^{n} / 3\right)^{t}$. Since this is an upper bound for the expected absolute value of such a determinant, it may be used as a rule of thumb to predict overflow. If $\alpha=13$, then for $n=11$ this value is $10^{13.6}$ and for $n=12$ it is $10^{15.0}$. 1604 capacity is $10^{14.1}$. In test cases, the procedure invariably succeeded for $n=11$ and invariably failed for $n=12$. (Remember, we are referring to cases where $b$ is chosen randomly so that an integer solution will hardly ever exist.)
Note that if $m=1$, this algorithm solves the ged problem in much the same way as Algorithm 237 [J. E. L. Peck, Comm. ACM 8 (Aug. 1964), 481];
begin integer $i, j$, rank, $s$;
integer array mat $[1: n+1,1: m+n+1]$;
for $j:=1$ step 1 until $m$ do
begin mat $[1, j]:=-b[j]$;
for $i:=1$ step 1 until $n$ do mat $[i+1, j]:=A[j, i]$ end;
for $j:=1$ step 1 until $n+1$ do
for $i:=1$ step 1 until $n+1$ do
mat $[i, j+m]:=$ if $i=j$ then 1 else 0 ;
rank $:=I N T R A N K$ (mat, $n+1, m+1, n$ );
$d:=$ mat $[r a n k, m+1]$;
if $d=0$ then begin SOLVEINTEGER := false; go to OUT cnd;
for $i:=\operatorname{rank}$ step 1 until $m$ do
if mat $\{r a n k, i] \neq 0$ then
begin SOLVEINTEGER := false; go to OUT end;
SOLVEINTEGER:= true;
$s:=$ if $d<0$ then -1 else $1 ; d:=s \times d$;
$k:=n-\operatorname{rank}+1$;
for $i:=1$ step 1 until $n$ do
begin $x[i]:=$ mat $[$ rank,$m+i+1] \times s$;
for $j:=1$ step 1 until $k$ do
$Y[j, i]:=$ mat $[r a n k+j, m+i+1]$
end;
OUT:
end of procedure SOLVEINTEGER

## ALGORITHM 289

CONFIDENCE INTERVAL FOR A RATIO [G1]
I. D. Hill and M. C. Pike (Recd. 8 Oct. 1965)

Statistical Research Unit, Medical Research Council, London, England

```
procedure Fieller (\(y, x, V y y, V x y, V x x, t, r 1, r 2\), inclusive);
 value \(y, x, V y y, V x y, V x x, t\);
 real \(y, x, V y y, V x y, V x x, t, r 1, r 2\);
 Boolean inclusive;
comment This procedure finds the (\(1-2 \times a\)) confidence limits
 for \(\theta / \phi\) where \(y\) and \(x\) are estimates of \(\theta\) and \(\phi\) respectively,
 subject to random errors 'normally' distributed with zero means,
 variance estimates \(V y y\) and \(V x x\), and covariance estimate \(V x y\),
 each based on \(f\) degrees of freedom, and \(t\) is the upper (\(100 \times a\))
 percent point of the \(t\) distribution on \(f\) degrees of freedom.
 At exit, if inclusive is true then the confidence interval in-
 cludes all values such that \(r 1 \leqq\) value \(\leqq r 2\), Otherwise the
 confidence interval includes all values such that - infinity \(\leqq\)
 value \(\leqq r 2\) and additionally all values such that \(r 1 \leqq\) value \(\leqq\)
 infinity.
 Where the interval is such that the value of \(r 1\) or \(r 2\) should be
 \(\pm\) infinity, the procedure sets the value to \(\pm\) the largest available
 real number.
 Reference: E. C. Fieller, A fundamental formula in the
 statistics of biological assay, and some applications, Quart. J.
 Pharm. Pharmacol. 17 (1944), 117-123;
begin
 real \(c, r\), infinity;
 inclusive := true; infinity \(:=10114\);
 comment Set infinity to largest available positive real number;
 \(c:=t \uparrow 2 ; r:=x \uparrow 2-c \times V x x ;\)
 \(r 1:=x \times y-c \times V x y ; \quad c:=y \uparrow 2-c \times V y y ;\)
 if \(r \neq 0\) then
 begin
 \(c:=r 1 \uparrow 2-r \times c ;\)
 if \(r>0 \wedge c<0\) then \(c:=0\);
 if \(\boldsymbol{c}<\mathbf{0}\) then go to unbounded;
 inclusive \(:=r>0 ; r:=1.0 / r ; \quad c:=\operatorname{sqrt}(c)\);
 \(r 2:=(r 1+c) \times r ; r 1:=(r 1-c) \times r\)
 end else
 begin
 if \(r 1 \neq 0\) then
 begin
 \(c:=c /(2.0 \times r 1) ;\)
 if \(r 1>0\) then
 begin
 \(r 1:=c ; r 2:=\) infinity
 end else
 begin
 \(r 1:=-\) infinity; \(r 2:=c\)
 end
 end else
 begin
unbounded: \(r 1:=-\) infinity; \(r 2:=\) infinity
 end
 end
end Fieller
```


## ALGORITHM 290

LINEAR EQUATIONS, EXACT SOLUTIONS [F4]
J. Boothroyd* (Recd. 7 Sept. 1965 and 21 Mar. 1966)
U. of Tasmania, Hobart, Tas., Australia

* Thanks are due to the referee for useful criticism and awkward test cases.
procedure exactle ( $a, b, n$, det); value $n$; integer $n$, det; integer array $a, b$;
comment solves the matrix equation $A x=b$ for $A=a[1: n$, $1: n]$ and $x, b[1: n]$ where the elements of $A, b$ are small integers and the results are required as ratios of integers. The solution vector overwrites $b$ and has values given by $\operatorname{det} A \times x$ where det $A$ is the determinant of $A$ and $x$ is the true solution vector. The user is warned that this procedure, of limited though useful application, is not a substitute for other well-established methods of solving general sets of linear equations owing to the inherent danger of integer overflow. This may occur in the reduction if the elements of the matrix are large or in the back substitution if the determinant and/or the elements of the righthand side are large and may even occur with small elements and determinant if the order of the matrix and the nature of the equations combine to produce large solution values. Four devices intended to avoid integer overflow are incorporated. These are, (1) choice of column pivots having the smallest nonzero absolute value, (2) division by previous pivots (both after Fox, L., An Introduction to Numerical Linear Algebra, Oxford U. Press, New York, 1965, p. 82), and (3) the local procedures crossmpy and abdivc which respectively evaluate integer expressions of the form $(a \times b-c \times d) \div e$ and $a \times b \div c$ by performing the divisions before the multiplications. The output parameter $\operatorname{det}$ yields the determinant of $A$. If $A$ is singular det $:=0$;
begin integer piv, pivot, sum, arii, aki, $i, j, k, p i v i, r i, r k, m$;
integer array $r[1: n]$; boolean zpiv;
integer procedure $i a b s(i t)$; value $i t$; integer $i t$; $i a b s:=$ if $i t<0$ then $-i t$ else $i t ;$
integer procedure crossmpy (a)times:(b)minus:(c) times:(d)all over:(e);

```
 value }a,b,c,d,e; integer a,b,c,d,e
```

begin integer $q a b, q c d, r, r e s ;$
if $i a b s(a)>i a b s(b)$ then
begin
$q a b:=a \div e ; r:=a-q a b \times e ;$
$q a b:=q a b \times b ; \quad$ res $:=r \times b$
end
else
begin

$$
q a b:=b \div e ; \quad r:=b-q a b \times e ;
$$

$$
q a b:=q a b \times a ; \text { res }:=r \times a
$$

end;

$$
\text { if } i a b s(c)>i a b s(d) \text { then }
$$

begin
$q c d:=c \div e ; \quad r:=c-q c d \times e ;$
$q c d:=q c d \times d ;$ res $:=r e s-r \times d$
end
else
begin
$q c d:=d \div e ; \quad r:=d-q c d \times e ;$
$q c d:=q c d \times c ;$ res $:=r e s-r \times c$
end;
crossmpy $:=q a b-q c d+r e s \div e$
end crossmpy;
integer procedure $a b \operatorname{divc}(a, b, c, s u m)$; value $a, b, c$; integer $a, b, c$, sum;
comment evaluates expressions of the form $a \times b \div c$ by performing divisions before multiplications, assigning the quotient to abdivc and accumulating the remainder in sum;
begin integer $q, r, t e m p$;
if $i a b s(a)>i a b s(b)$ then
$\operatorname{begin} q:=a \div c ;$ tem $p:=q \times b ;$
$r:=a-c \times q ;$
$q:=b \div c$;
$a b d i v c:=t e m p+q \times r ;$
sum $:=\operatorname{sum}+(b-q \times c) \times r$
end
else
$\operatorname{begin} q:=b \div c ; \quad \operatorname{tem} p:=q \times a$;
$r:=b-c \times q ;$
$q:=a \div c ;$
abdivc $:=\operatorname{temp}+q \times r$;
sum $:=\operatorname{sum}+(a-q \times c) \times r$
end
end $a b d i v c$;
procedure $\operatorname{permb}(b, r, n)$; value $n$; integer array $b, r$; integer $n$;
comment rearranges the elements of $b[1: n]$ so that $b[i]:=$
$b[r[i]], i=1,2, \cdots, n$;
begin integer $i, k, w$;
for $i:=n$ step -1 until 2 do
begin $k:=r[i]$;
$L$ :
if $k \neq i$ then
begin
if $k>i$ then begin $k:=r[k]$; go to $L$ end; $w:=b[i] ; \quad b[i]:=b[k] ; \quad b[k]:=w$
end
end
end permb;
$m:=1$;
for $i:=1$ step 1 until $n$ do $r[i]:=i$;
for $i:=1$ step 1 until $n$ do
begin pivot $:=0$; zpiv $:=$ true;
for $k:=i$ step 1 until $n$ do
begin aki $:=\operatorname{iabs}(a[r[k], i])$;
if $z p i v \wedge a k i>0 \vee a k i \neq 0 \wedge a k i<i a b s(p i v o t)$ then
begin zpiv $:=$ false; pivi $:=k$; pivot $:=a[r[k], i]$ end
end;
if pivot $=0$ then begin det $:=0$; go to out end;
$r i:=r[p i v i] ; \quad r[$ pivi $]:=r[i] ; \quad r[i]:=r i$; if pivi $\neq i$ then
$m:=-m ;$
for $k:=i+1$ step 1 until $n$ do
begin $r k:=r[k] ;$ aki $:=a[r k, i]$;
for $j:=i+1$ step 1 until $n$ do
$a[r k, j]:=$ if $i=1$ then $a[r k, j] \times$ pivot $-a k i \times a[r i, j]$
else $\operatorname{crossmpy}(a[r k, j], p i v o t, a k i, a[r i, j], p i v)$;
$b[r k]:=$ if $i=1$ then $b[r k] \times$ pivot $-a k i \times b[r i]$ else $\operatorname{crossmpy}(b[r k], p i v o t, a k i, b[r i], p i v)$
end;
piv := piv.ot
end;

```
ri:= r[n];
if m\not=1 then
begin det := aki:= - a[ri,n]; b[ri]:= - b[ri] end
 else det := aki:=a[ri,n];
 for }i:=n-1\mathrm{ step -1 until 1 do
 begin ri := r[i]; arii :=a[ri,i];
 sum := 0; piv:= abdivc(b[ri],aki,arii,sum);
 sum:= - sum;
 for j:= i+1 step 1 until n do
 piv := piv - abdivc(b[r[j]],a[ri,j],arii,sum);
 b[ri]:= piv - sum \divarii
 end;
 permb (b,r,n);
out:
end exactle
```

```
ALGORITHM 291
LOGARITHM OF GAMMA FUNCTION [S14]
M. C. Pike and I. D. Hill (Recd. 8 Oct. 1965 and 12 Jan. 1966)
Medical Research Council's Statistical Research Unit, University College Hospital Medical School, London, England
real procedure loggamma (\(x\)); value \(x\); real \(x\);
comment This procedure evaluates the natural logarithm of \(\operatorname{gamma}(x)\) for all \(x>0\), accurate to 10 decimal places. Stirling's formula is used for the central polynomial part of the procedure.;
begin
real \(f, z\);
if \(x<7.0\) then
\(\operatorname{begin} f:=1.0 ; z:=x-1.0\); for \(z:=z+1.0\) while \(z<7.0\) do \(\operatorname{begin} x:=z ; \quad f:=f \times z\) end; \(x:=x+1.0 ; f:=-\ln (f)\)
end
else \(f:=0\);
\(z:=1.0 / x \uparrow 2\);
loggamma : \(=f+(x-0.5) \times \ln (x)-x+.918938533204673+\) \((((-.000595238095238 \times z+.000793650793651) \times z-.00277\) \(7777777778) \times z+.083333333333333) / x\)
end loggamma
```

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION
[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2
[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180] ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL ARGUMENT
[William Holsten, Comm. ACM (Mar. 1962), 166] ALGORITHM 221 [S14]

## GAMMA FUNCTION

[Walter Gautschi, Comm. ACM 'y (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION [M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966), 684]
M. C. Pike and I. D. Hill (Recd. 12 Jan. 1966)

Medical Research Council's Statistical Research Unit, University College Hospital Medical School, London, England


#### Abstract

Algorithms 34 and 54 both use the same Hastings approximation, accurate to about 7 decimal places. Of these two, Algorithm 54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors: (1) $R G A M$ should be in the parameter list of $R G R$. (2) The lines if $x=0$ then begin $R G R:=0$; go to $E X I T$ end and if $x=1$ then begin $R G R:=1$; go to EXIT end should each be followed either by a semicolon or preferably by an else. (3) The lines if $x=1$ then begin $R G R:=1 / y$; go to $E X I T$ end and if $x<-1$ then begin $y:=y \times x$; go to $C C$ end should each be followed by a semicolon. (4) The lines $B B:$ if $x=-1$ then begin $R G R:=0$; go to $E X I T$ end and if $x>-1$ then begin $R G R:=R G A M(x)$; go to $E X I T$ end should be separated either by else or by a semicolon and this second line needs terminating with a semicolon. (5) The declarations of integer $i$ and real array $B[0: 13]$ in $R G A M$ are in the wrong place; they should come immediately after begin real $z$; With these modifications (and the replacement of the array $B$ in $R G A M$ by the obvious nested multiplication) Algorithm 80 ran successfully on the ICT Atlas computer with the ICT Atlas ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10 decimal places and to evaluate the gamma function it is therefore on grounds of speed that a choice should be made between them. Algorithms 80 and 221 take virtually the same amount of computing time, being twice as fast as 291 at $x=1$, but this advantage decreases steadily with increasing $x$ so that at $x=7$ the speeds are about equal and then from this point on 291 is faster-taking only about a third of the time at $x=25$ and about a tenth of the time at $x=78$. These timings include taking the exponential of loggamma.

For many applications a ratio of gamma functions is required (e.g. binomial coefficients, incomplete beta function ratio) and the use of algorithm 291 allows such a ratio to be calculated for much larger arguments without overflow difficulties.


REMARK ON ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION [M.C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966), 684]
Miss M. R. Hoare (Recd. 24 Aug. 1967)
\% C. Hoare and Co., 37 Fleet St., London, E.C.4.
(1) if $x<7.0$ then
$\operatorname{begin} f:=1.0 ; \quad z:=x-1.0$;
for $z:=z+1.0$ while $z<7.0$ do
would be better written as:
if $x<7.0$ then
$\operatorname{begin} f:=1.0 ;$
for $z:=x, z+1.0$ while $z<7.0$ do This avoids unnecessary operations.
(2) In the final statement, loggamma should read loggamma

## ALGORITHM 292

REGULAR COULOMB WAVE FUNCTIONS
Walter Gautschi (Recd. 8 Oct. 1965)
Purdue University, Lafayette, Indiana and Argonne National Laboratory, Argonne, Illinois
Work performed under the auspices of the U. S. Atomic Energy Commission.
real procedure $t(y)$; value $y$; real $y$;
comment This procedure evaluates the inverse function $t=t(y)$ of $y=t \ln t$ in the interval $y \geqq-1 / e$, to an accuracy of about 4 percent, or better. Except for the addition of the case $-1 / e \leqq y \leqq 0$, and an error exit in case $y<-1 / e$, the procedure is identical with the real procedure $t$ of Algorithm 236;
begin real $p, z$;
if $y<-.36788$ then go to alarm 1 ;
if $y \leqq 0$ then $t:=.36788+1.0422 \times \operatorname{sqrt}(y+.36788)$ else
if $y \leqq 10$ then
begin
$p:=.000057941 \times y-.00176148 ; \quad p:=y \times p+.0208645 ;$
$p:=y \times p-.129013 ; \quad p:=y \times p+.85777$;
$t:=y \times p+1.0125$
end
else
begin
$z:=\ln (y)-.775 ; \quad p:=(.775-\ln (z)) /(1+z) ;$
$p:=1 /(1+p) ; \quad t:=y \times p / z$
end
end $t$;
procedure minimal (eta, omega, eps, la $1, d m$ );
value eta, omega, eps; real eta, omega, eps, la $1, d m$;
comment This procedure assigns the value of $\lambda_{1}{ }^{\prime}$ to $l a 1$, accurately to within a relative error of $e p s$, where $\left\{\lambda_{L}{ }^{\prime}\right\}$ is the minimal solution (normalized by $\lambda_{0}{ }^{\prime}=1$ ) of the difference equation

$$
\lambda_{L+1}-\frac{2 L+1}{L+1} \omega \lambda_{L}-\frac{L^{2}+\eta^{2}}{L(L+1)} \lambda_{L-1}=0 \quad(\omega \neq 0)
$$

(For terminology, see [3].) If $\left\{\lambda_{L}\right\}$ denotes the solution corresponding to initial values $\lambda_{0}=1, \lambda_{1}=\omega-\eta$, the procedure also assigns to $d m$ the value $\lambda_{1}-\lambda_{1}{ }^{\prime}$. The negative logarithm of $\left|\lambda_{1}-\lambda_{1}{ }^{\prime}\right|$ may be considered a measure of the "degree of minimality" of the solution $\left\{\lambda_{L}\right\}$;
begin integer $L$, $n u$; real eta $2, r, r a$;
eta $2:=e t a \uparrow 2$;
$n u:=20 ; r a:=0$;
$L 1: r:=0$;
for $L:=n u$ step -1 until 1 do
$r:=-(L \uparrow 2+e t a 2) /(L \times((2 \times L+1) \times o m \epsilon g a-(L+1) \times r))$;
if $a b s(r-r a)>e p s \times a b s(r)$ then
begin
$r a:=r ; n u:=n u+10 ;$ go to $L 1$
end;
$l a 1:=r ; d m:=o m e g a-$ eta $-r$
end minimal;
procedure Coulomb (eta, ro, Lmax, d, F');
value eta, ro, Lmax, $d$; integer $L \max , d$; real eta, ro; array $F$;
comment This procedure generates to $d$ significant digits the regular Coulomb wave functions $F_{L}(\eta, \rho)$ for fixed $\eta \geqq<0, \rho \geqq 0$, and for $L=0(1) L m a x$. (For notation, see [2, Ch. 14]). The results are put into the array $F$. Letting

$$
f_{L}=\frac{2^{L} L!}{(2 L)!C_{L}(\eta)} F_{L}(\eta, \rho) ; \quad C_{L}(\eta)=\frac{2^{L} e^{-\pi \eta / 2}|\Gamma(L+1+i \eta)|}{(2 L+1)!}
$$

the procedure first obtains $f_{L}$ as the minimal solution of the recurrence relation
$\frac{L\left[(L+1)^{2}+\eta^{2}\right]}{(L+1)(2 L+3)} y_{L+1}-\left[\eta+\frac{L(L+1)}{\rho}\right] y_{L}+\frac{L(L+1)}{2 L-1} y_{L-1}=0$, using for normalization the identity

$$
\rho e^{\omega \rho}=\sum_{L=0}^{\infty} \lambda_{L} f_{L}, \quad \lambda_{L}=i^{L} P_{L}^{(i \eta,-i \eta)}(-i \omega)
$$

where $P_{L}^{(\alpha, \beta)}(z)$ denotes the Jacobi polynomial of degree $L$. The parameter $\omega$ is so chosen as to avoid undesirable cancellation effects. The final results $F_{L}$ are obtained recursively, by

$$
\begin{aligned}
& F_{L}(\eta, \rho)=c_{L} f_{L} \\
& c_{L}=\frac{2 L-1}{L(2 L+1)}\left[L^{2}+\eta^{2}\right]^{\frac{1}{c}} c_{L-1}(L=1,2,3 \cdots), \quad c_{0}=\left(\frac{2 \pi \eta}{e^{2 \pi \eta}-1}\right)^{\frac{1}{2}}
\end{aligned}
$$

A detailed justification of the process is to appear elsewhere ([3]). For large positive $\eta$ and $\rho$, the generation of the coefficients $\lambda_{L}$ is subject to some loss of accuracy. If $0 \leqq \eta \leqq 20,0 \leqq \rho \leqq 20$, none, or only a few decimal digits will be lost, however. Writing the procedure minimal in double precision will resolve the problem for $\eta, \rho$ up to about 50 , for normal accuracy requirements. In any case, if higher precision is desirable, the procedure puts out a message to this effect. There is an error exit, if $\rho<0$;
begin integer $L, n u, n u 1, m u, m u 1, i, k$;
real epsilon, ro1, eta2, omega, $d 1$, sum, $r, r 1, s, t 1, t 2$;
array lambda, lmin [0:1], Fapprox, $\operatorname{Rr}[0: L m a x]$;
switch coefficients $:=L 2, L 1, M 1$;
if ro $<0$ then go to alarm 2 ;
if $r o=0$ then
begin
for $L:=0$ step 1 until $L \max$ do $F[L]:=0$;
go to $L 5$
end;
epsilon $:=.5 \times 10 \uparrow(-d) ;$ ro $1:=1 /$ ro; eta $2:=$ eta $\uparrow 2$;
$t 1:=$ if eta $>0$ then $.5 \times$ ro/eta else 0 ;
omega $:=$ if eta $<1$ then 0 else
if $t 1 \geqq 1$ then $1.570796327 / t 1$ else
$(1.570796327-\arctan (\operatorname{sqrt}(1 / t 1-1))+\operatorname{sqrt}(t 1 \times(1-t 1))) / t 1 ;$
lambda [0] $:=\operatorname{lmin}[0]:=1$; lambda[1] $:=$ omega - eta;
sum $:=$ ro $\times \exp (o m e g a \times r o)$;
for $L:=0$ step 1 until $L \max$ do Fapprox $[L]:=0$;
$d 1:=2.3026 \times d+1.3863$;
$t 1:=1.3591 \times$ ro;
$L:=$ if $L \max <t 1$ then $1+\operatorname{entier}(t 1)$ else Lmax;
$t 1:=\exp (1.5708 \times$ eta $) ; s:=\operatorname{sqrt}(1+o m e g a \uparrow 2) ;$
$t 1:=$ if omega $=0$ then $t 1+1 / t 1$ else
$\exp (-\operatorname{eta} \times \arctan (1 /$ omega $)) ;$
$t 2:=$ omega $+s$;
$r:=1.3591 \times$ ro $\times t 2$;
$s:=(d 1+\ln (t 1 \times \operatorname{sqrt}(t 2 / s))-$ omega $\times r o) / r ;$
$n u:=$ if $s \geqq-.36788$ then entier $(r \times t(s))$ else 1 ;
$n u 1:=\operatorname{entier}(L \times t(.5 \times d 1 / L))$;
$n u:=$ if $n u<n u 1$ then $n u l$ else $n u$;
$n u 1:=1$;

```
if omega \(=0\) then \(i:=1\) else \(i:=2\);
```

$L 0$ : begin own array lambda[0:nu];
comment Dynamic own array declarations are not permitted in most of the current ALGOL compilers. It can be avoided here, at the cost of extra storage, if lambda is declared as an array of dimension $[0: 300]$ at the beginning of the procedure Coulomb. The same remark applies to the array $l \mathrm{~min}$ declared later in the block labeled $M 1$;
go to coefficients [i];
L1: minimal (eta, omega, $10-m, r 1, d 1$ );
comment The letter $m$ in $10-m$ is a place holder for a ma-chine-dependent integer, namely one less than the number of decimal digits carried in the precision mode (single, or double precision) of the procedure minimal. Similarly for the letter $n$ in the next statement, which is a place holder for the integer $m+1$. Both $m$ and $n$ are to be properly substituted by the user;
if $a b s(d 1 \times$ epsilon $) \geqq{ }_{10}-n$ then begin $i:=1$; go to $L 2$ end; outstring ( 1 , 'The requested accuracy cannot be guaranteed. Use of the procedure minimal in a higher precision mode appears indicated');
$i:=3 ; \quad m u 1:=0 ;$
M1: begin array $R r a, \operatorname{lam}[0: n u]$; own array $\operatorname{lmin}[0: n u]$; $m u:=$ entier $(1.25 \times n u)$;
for $L:=m u 1$ step 1 until $n u$ do $\operatorname{lam}[L]:=0$;
M2: $\quad r:=0$;
for $L:=m u$ step -1 until $m u 1+1$ do
begin
$r:=-(L \uparrow 2+e t a 2) /(L \times((2 \times L+1) \times o m e g a-(L+1) \times r)) ;$
if $L \leqq n u$ then $\operatorname{Rra}[L-1]:=r$
end;
for $L:=m u 1+1$ step 1 until $n u$ do
$\operatorname{lmin}[L]:=\operatorname{Rra}[L-1] \times \operatorname{lmin}[L-1]$;
for $L:=m u 1$ step 1 until $n u$ do
if $\operatorname{abs}(\operatorname{lmin}[L]-\operatorname{lam}[\mathrm{L}])>e p s i l o n \times \operatorname{abs}(\operatorname{lmin}[L])$ then
begin
for $k:=m u 1$ step 1 until $n u$ do $\operatorname{lam}[k]:=\operatorname{lmin}[k]$;
$m u:=m u+5$;
if $m u<5 \times n u$ then go to $M 2$ else
begin
outstring ( 1 , 'convergence difficulty in the generation of
the coefficients lambda sub $L^{\prime}$ );
go to $L 5$
end
end;
$\operatorname{lam}[0]:=-r 1 ; \quad \operatorname{lam}[1]:=1 ; \quad t 1:=d 1 /(1+r 1 \uparrow 2) ;$
for $L:=2$ step 1 until $n u$ do
begin
$\operatorname{lam}[L]:=((2 \times L-1) \times o m e g a \times \operatorname{lam}[L-1]+$
$((L-1) \uparrow 2+e t a 2) \times \operatorname{lam}[L-2] /(L-1)) / L ;$
$\operatorname{lambda}[L]:=\operatorname{lmin}[L]+t 1 \times(\operatorname{lam}[L]+r 1 \times \operatorname{lmin}[L])$
end
end;
go to $L 3$;
$L 2$ : for $L$ := $n u 1$ step 1 until $n u-1$ do
lambda $[L+1]:=((2 \times L+1) \times$ omega $\times$ lambda $[L]+$
( $L \uparrow 2+e t a 2$ ) $\times$ lambda $[L-1] / L) /(L+1)$;
$L 3: r:=s:=0$;
for $L:=n u$ step -1 until 1 do
begin
$t 1:=e t a /(L+1) ;$
$r:=1 /((2 \times L-1) \times(t 1 / L+r o 1-(1+t 1 \uparrow 2) \times r /(2 \times L+3)))$;
$s:=r \times($ lambda $[L]+s)$;
if $L \leqq L$ max then $\operatorname{Rr}[L-1]:=r$
end;

$$
F[0]:=\operatorname{sum} /(1+s) ;
$$

for $L:=1$ step 1 until $L$ max do $F[L]:=\operatorname{Rr}[L-1] \times F[L-1]$;
comment The for-statement which follows is of purely precautionary nature, making sure that the results have the required accuracy. If speed is important, the statement may be omitted:

```
for L := 0 step 1 until Lmax do
```

if $\operatorname{abs}(F[L]-F a p p r o x[L])>e p s i l o n \times a b s(F[L])$ then begin
for $k:=0$ step 1 until Lmax do Fapprox $[k]:=F[k]$;
$n u 1:=m u 1:=n u ; \quad n u:=n u+10$;
if $n u<300$ then go to $L 0$ else
begin outstring ( 1 , 'convergence difficulty in Coulomb'); go to $L 5$
end
end
end;
$t 1:=6.2831853072 \times \mathrm{eta} ;$
comment The constant $2 \pi$ in the preceding statement must be supplied more accurately if more than 11 significant digits are desired in the final results;
if $a b s(t 1)<1$ then
begin
$t 2:=s:=1 ; \quad L:={ }^{\prime} 1 ;$
$L 4: L:=L+1$;
$t 2:=t 1 \times t 2 / L ; \quad s:=s+t 2 ;$
if $a b s(t 2)>$ epsilon $\times a b s(s)$ then go to $L 4$;
$s:=\operatorname{sqrt}(1 / s)$
end
else
$s:=\operatorname{sqrt}(t 1 /(\exp (t 1)-1)) ;$
$F[0]:=s \times F[0] ;$
for $L:=1$ step 1 until Lmax do
begin

```
 s:= (L-.5)}\times\operatorname{sqrt(L}\uparrow2+eta2)\timess/(L\times(L+.5))
```

        \(F[L]:=s \times F[L]\)
    end;
L5: end Coulomb;
comment The procedure Coulomb was tested on the CDC 3600 computer, with the procedure minimal in single precision (un-
less stated otherwise). The tests included the following:
(i) Generation of $\Phi_{L}(\eta, \rho)=\left[C_{L}(\eta) \rho^{L+1}\right]^{-1} F_{L}(\eta, \rho), L=0(1) 21$, to 8 significant digits $(d=8)$ for $\eta=0,-5(2) 5, \rho=.2$, $1(1) 5$. The results were in complete agreement with values tabulated in [4].
(ii) Computation of $F_{0}(\eta, \rho), F_{0}{ }^{\prime}(\eta, \rho)=(d / d \rho) F_{0}(\eta, \rho)$ to 6 significant digits for $\eta=0(2) 12, \rho=0(5) 40$, using $F_{\theta^{\prime}}^{\prime}=\left(\rho^{-1}+\eta\right) F_{0}-\left(1+\eta^{2}\right) F_{1}$. Comparison with [5] revealed frequent discrepancies of one unit in the last digit. In addition, beginning with $\eta=8$, the results became progressively worse for $\rho=30,35,40$, being correct to only $2-3$ digits when $\eta=12, \rho=40$. With the procedure minimal in double precision, however, these errors disappeared.
(iii) Computation to 8 significant digits of $F_{0}(\eta, \rho), F_{0}{ }^{\prime}(\eta, \rho)$ for $\rho=2 \eta, \rho=.5(.5) 20(2) 50$. The results agreed with those published in [1] for $\rho \leqq 16$, but became increasingly inaccurate for larger values of $\rho$. Complete agreement was observed, however, when the procedure minimal was operating in the double-precision mode;

## References:

1. Abramowitz, M., and Rabinowitz, P. Evaluation of Coulomb wave functions along the transition line. Phys. Rev. 96 (1954), 77-79.
2. Abramowitz, M., and Stegun, I. A. (Eds.). Handbook of Mathematical Functions. NBS Appl. Math. Ser. 55, U. S. Gov't. Printing Off., Washington, D. C., 1964.
3. Gautschi,W. Computational aspects of three-term recurrence relations. SIAM Rev., to appear.
4. National Bureau of Standards. Tables of Coulomb Wave Functions, Vol. I. Appl. Math. Ser. 17, U. S. Gov't. Printing Office, Washington, D. C., 1952.
5. Tubis, A. Tables of nonrelativistic Coulomb wave functions. LA-2150, Los Alamos Scientific Lab., Lus Alamos, New Mexico, 1958.

REMARK ON ALGORITHM 292 [S22]
REGULAR COULOMB WAVE FUNCTIONS [Walter Gautschi, Comm. ACM 9 (Nov. 1966), 793]
Walter Gautschi (Recd. 5 July 1967)
Computer Sciences Department, Purdue University, Lafayette, Indiana, and Argonne National Laboratory, Argonne, Illinois

* This work was performed under the auspices of the United States Atomic Energy Commission.
KEY WORDS AND PHRASES: Coulomb wave functions, wave functions, regular Coulomb wave functions
$C R$ CATEGORIES: 5.12
The following changes are suggested to eliminate the need for multiple-precision arithmetic. The underlying theory will be published in Aequationes Math.

1. Remove the procedure minimal.
2. Change the statement (near the bottom of page 794)
$n u:=$ if $s \geq-.36788$ then entier $(r \times t(s))$ else 1
to read:
$n u:=$ if $s \geq-.36788$ then entier $(r \times t(s))$ else $r / 2.7183$
3. Change the statement labeled $L 1$ to read
$L 1: d 1:=2 \times \operatorname{eta} /(\exp (2 \times \operatorname{eta} \times \arctan (1 / / o m e g a))-1)$
and rephrase the comment following this statement to read:
comment The letter $n$ in the following statement is a place holder for a machine-dependent integer, namely, the number of (equivalent) decimal digits carried in the mantissa of floating-point numbers. This integer must be properly substituted by the user;
4. Omit the output statement
outstring (1, 'The requested accuracy cannot be guaranteed. Use of the procedure minimal in a higher precision mode appears indicated');
5. Insert the statement
$r 1:=\operatorname{lmin}[1] ;$
between the two lines
end;
and
$\operatorname{lam}[0]:=-r 1 ; \quad \operatorname{lam}[1]:=1 ; \quad t 1:=d 1 /(1+r 1 \uparrow 2) ;$
6. Change the line (near the middle of page 795)
$s:=\operatorname{sqrt}(t 1 /(\exp (t 1)-1))$;
to read
$s:=\exp (-t 1 / 4) / \operatorname{sqr} t((\exp (t 1 / 2)-\exp (-t 1 / 2)) / t 1)$;
(These statements are mathematically equivalent, but the latter delays overflow as the value of $t \mathrm{j}$ hecomes large.)
7. If large values of $|\eta|$ and/or $\rho$, say exceeding 100 , are contemplated, it may be necessary to increase the dimension of the arrays lambda and lmin (if they are declared at the beginning of the procedure Coulomb) and to correspondingly increase the upper limit for $n u$ in the conditional clause if $n u<300$
near the top of page 795. The user, in this case, should also be prepared to encounter overflow difficulties, especially in the later entries of the array lam.

With these revisions the algorithm produced correct results on the CDC 3600 for the three tests described at the end of Algorithm 292. It was also used (with input parameter $d=10$ ) to compute miscellaneous values of $F_{0}(\eta, \rho)$ and $\Phi_{0}(\eta, \rho)$ published in a paper by C. E. Fröberg (Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27 (1955), 399-411). The results are summarized in the table below.

| $\eta$ | $\rho$ | Algorithm 292 (revised) | Fröberg |
| ---: | ---: | ---: | :--- |
| 9 | 50 | $F_{0}=9.357085680_{10}-1$ | $9.3570855_{10}-1$ |
| 50 | 80 | $F_{0}=1.203662491_{10}-3$ | $1.203665_{10}-3$ |
| 50 | 120 | $F_{0}=2.002599349_{10}-1$ | $2.00255_{10}-1$ |
| 100 | 4 | $\Phi_{0}=5.722985154_{12} 21$ | $5.722985155_{10} 21$ |
| 200 | 1 | $\Phi_{0}=7.236604732_{10} 14$ | $7.236604731_{10} 14$ |

In addition, the algorithm was run (with $d=6$, and lambda, $l_{m i n}$ being declared as arrays of dimension [0:600]) for $\eta=$ $-200(20) 200, \rho=20(20) 200$, Lmax $=0(50) 100$. Apparently valid results were obtained as long as $\eta \leq 100$, though no tables seem to exist to check these results against. Overflow was observed in some of the entries of the array lam, for $\eta=120, \rho \geq 120 ; \eta=140$, $\rho \geq 60 ; \eta=160, \rho \geq 40 ;$ and $\eta=200, \rho \geq 20$. (For the purpose of this test, a number is considered to overflow if its modulus exceeds ${ }_{10300 .)}$

## CERTIFICATION OF ALGORITHM 292 [S22]

REGULAR COULOMB WAVE FUNCTIONS [Walter
Gautschi, Comm. ACM 9 (Nov. 1966), 793]
AND OF
REMARK ON ALGORITHM 292 [S22]
REGULAR COULOMB WAVE FUNCTIONS [Walter Gautschi, Comm. ACM 12 (May 1969), 280]
K. S. Kölbig (Recd. 10 Oct. 1967)

Applied Mathematics Group, Data Handling Division, European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

KEY WORDS AND PHRASES: Coulomb wave functions, wave functions, regular Coulomb wave functions $C R$ CATEGORIES: 5.12
Both the original and the revised version of the procedure Coulomb have been translated into Fortran and tested on a Control Data 6600 computer. It became apparent that the following changes in the original version are necessary:

1. The second sentence in the comment following the statement labeled $L 1$ in procedure Coulomb should be replaced by:

Similarly for the letter $n$ in the next statement, which is a place holder for the number of digits carried in the main program.
2. The second statement after this comment (beginning "outstring . . .") should be changed to

## if abs $(d 1 \times$ epsilon $)<10-m-1$ then

outstring ( 1 , 'The requested accuracy cannot be guaranteed. Use of the procedure minimal in a higher precision mode appears indicated.');
Since the original version of Coulomb is to be superseded by the revised one (see Remark), detailed test results are given here only for the latter. Most of the tests have already been described in the Algorithm itself or in the Remark. Those presented here are obtained on a different machine, and the results differ slightly in some cases from the previous ones. The tests included the following:
(i) Generation of $\Phi_{L}(\eta, \rho)=\left[C_{L}(\eta) \rho^{L+1}\right]^{-1} F_{L}(\eta, \rho), L=0(1) 21$, to 8 significant digits $(d=8)$ for $\eta=-5(1) 5, \rho=.2(.2) 5$. The results were in complete agreement with the values tabulated in [4] of Algorithm 292. In the cases where more than 8 significant digits are tabulated, the highest discrepancy was one unit in the last digit; e.g. for $L=0, \eta=5, \rho>3.4,10$ to 11 correct significant digits have been found.
(ii) Computation of $F_{0}(\eta, \rho), F_{0}{ }^{\prime}(\eta, \rho)=(d / d \rho) F_{0}(\eta, \rho)$ to 5 significant digits for $\eta=0(2) 12, \rho=0(5) 40$, using $F_{0}^{\prime}=\left(\rho^{-1}+\eta\right) F_{0}-$ $\left(1+\eta^{2}\right)^{\frac{1}{2}} F_{1}$. Comparison with [5] of Algorithm 292 revealed frequent discrepancies of one unit in the fifth digit. For $\eta=2$, $\rho=40$ the discrepancy in $F_{0}$ is 80 units of the fifth digit. This is probably an error in the table.
(iii) Computation to 8 significant digits of $F_{0}(\eta, \rho), F_{0}{ }^{\prime}(\eta, \rho)$ for $\rho=2 \eta, \rho=.5(.5) 20(2) 50$. The results agreed completely with those published in [1] of Algorithm 292.
(iv) Computation (with $d=10$ ) of the miscellaneous values of $F_{0}(\eta, \rho)$ and $\Phi_{0}(\eta, \rho)$ given in the Remark on Algorithm 292. The results obtained differ slightly from those given in the Remark. In the worst case, $\eta=50, \rho=120$, the discrepancy is 16 units in the tenth digit.
(v) After changing the dimensions of the arrays lambda, lmin into [0:600] and adjusting the upper limit for $n u$ to 600 (see Remark on Algorithm 292), $F_{L}(\eta, \rho)$ has been calculated with $d=6$ for $\eta=-200(20) 200, \rho=20(20) 200, L \max =0(50) 100$ merely to test whether overflow occurs or not. The following table indicates where overflow, indefinite results, or convergence difficulties in the generation of $\lambda_{L}$ (see Algorithm 292) have been observed.

| $\eta$ | $\rho \geq$ |
| ---: | ---: |
| 20 | 200 |
| 40 | 200 |
| 60 | 180 |
| 80 | 100 |
| 100 | 80 |
| 120 | 60 |
| 140 | 60 |
| 160 | 60 |
| 180 | 40 |
| 200 | 40 |

(vi) Calculation of $F_{L}(\eta, \rho)$ for $L=0(50) 100$ with $d=7$ for $\eta=1$, $\rho=10^{-n}, n=-20(1)-1$. Underflow occurred for $L=50, n \leq 5$; $L=100, n \leq 2$. The valid results have been compared with those obtained by summation of the power series for $\Phi_{L}(\eta, \rho)$ (see [4, (1.3) and (4.4)] of Algorithm 292). Agreement has been found to 7 significant digits.
(vii) Calculation of $\Phi_{L}(\eta, \rho)$ to 13 significant digits ( $d=13$ ) for $p=5, \eta=0(1) 5, L=0(10) 100$. The results have been compared with those obtained by summation in double precision mode
( 27 digits) of the power series mentioned in (vi). Agreement was found to at least 12 significant digits. The constant $2 \pi$ in the statement $t 1:=$. . on page 795 of Algorithm 292 was supplied here with 14 significant digits, as required by the comment.

Acknowledgment. I wish to thank Professor Gautschi for useful remarks and comments.

REMARK ON ALGORITHM 292 [S22]*
REGULAR COULOMB WAVE FUNCTIONS [Walter
Gautschi, Comm. ACM 9 (Nov. 1966), 793]
AND ON
REMARK ON ALGORITHM 292 [S22]
REGULAR COULOMB WAVE FUNCTIONS [Walter Gautschi, Comm. ACM 12 (May 1969), 280]
W. J. Cody and Kathleen A. Paciorek (Recd. 8 Sept. 1969 and 8 May 1970)
Argonne National Laboratory, Argonne, IL 60439
*Work performed under the auspices of the US Atomic Energy Commission.

KEY WORDS AND PHRASES: Coulomb wave functions, wave functions, regular Coulomb wave functions

## CR CATEGORIES: 5.12

The revised version of the procedure Coulomb was translated into IBM System/360 Algol and tested on an IBM S/360 Model 75 Computer. When $\eta>12$ overflow problems were encountered in the generation of intermediate arrays. These were due to the smaller exponent range of the $\mathrm{S} / 360,-64 \leq \exp \leq 63$. The following changes, while not completely eliminating the overflow probems, greatly alleviate them.

```
Insert real scale;
after begin integer L, nu, nul, mu,mu1, i,k;
```

Insert scale $:=16 \uparrow(-57)$;
comment This value of scale is appropriate for the IBM S/360.
On a machine with a different base and a different exponent
range, say $\alpha \leq \exp \leq \beta$, the value of scale should be base $\uparrow$
$(6-\beta)$;
between end;
and epsilon $:=.5 \times 10 \uparrow(-d)$;
Change $l a m b d a[0]:=\operatorname{lmin}[0]:=1 ;$ lambda [1] $:=$ omega-eta;
sum $:=$ ro $\times \exp (o m e g a \times r o) ;$
to $\operatorname{lambda}[0]:=$ scale; $\operatorname{lmin}[0]:=1$;
lambda [1] := (omega-eta) $\times$ scale;
sum $:=$ ro $\times \exp (o m e g a \times$ ro $) \times$ scale;
Change $\operatorname{lmin}[L]:=\operatorname{Rra}[L-1] \times \operatorname{lmin}[L-1]$;
to begin
$t 1:=\operatorname{Rra}[L-1] \times \operatorname{lmin}[L-1] ;$
comment The following constant $5 \uparrow(-10)$ is approximately
$2 \times$ base $\uparrow \alpha /$ scale, where base is the base of the floating-
point number system and $\alpha \leq \exp \leq \beta$;
$\operatorname{lmin}[L]:=$ if $a b s(t 1)>5 \uparrow(-10)$ then
$t 1$ else 0
end;
Change $\operatorname{lam}[0]:=-r 1 ; \operatorname{lam}[1]:=1$;
to $\operatorname{lam}[0]:=-r 1 \times$ scale; lam $[1]:=$ scale $;$
Change lambda $[L]:=\operatorname{lmin}[L]+t 1 \times(\operatorname{lam}[L]+r 1 \times \operatorname{lmin}[L])$
to lambda $[L]:=\operatorname{lmin}[L] \times$ scale $+t 1 \times$
$(\operatorname{lam}[L]+r 1 \times$ scale $\times \operatorname{lmin}[L])$
Change $F[0]:=s u m /(1+s)$;
to $F[0]:=\operatorname{sum} /($ scale $+s)$;
The authors gratefully acknowledge the referee's helpful sug-
gestions.

## ALGORITHM 293 <br> TRANSPORTATION PROBLEM [H] <br> G. Bayer (Recd. 9 July 1965 and 22 Aug. 1966) <br> Technische Hochschule, Braunschweig, Germany

procedure $\operatorname{transp} 1(m, n, \inf , c, a, b, x, k w)$; value $m, n$, inf;
integer $m, n$, inf, $k w$; integer array $c, a, b, x$;
comment transp 1 is derived from Algorithm 258, transport, [Comm. ACM 8 (June 1965), 381] in order to reduce running time by about 50 percent. The following notation is used.
c $\quad m, n$-matrix of unit costs,
$a \quad$ array of quantities available,
$b$ array of quantities required, following the usual description of the transportation problem,
inf greatest positive integer within machine capacity,
$x \quad m, n$-matrix of flows,
$k w$ optimal total costs (computed by procedure).
$c, a, b$ are disturbed by the procedure. Sum of $a[i]=$ sum of $b[i]$.
Multiple solutions are left out of account. [Ref.: G. Hadley,
Linear Programming, Reading, London, 1962, p. 351];
begin integer $i, j, u, v, k, l, s, t, g d, h, p, c i j, x i j, a i, b j, l s v j, n l v i$;
Boolean zg;
integer array $g$, listu, $n l v[1: m], r$, listv $1: n], l s[0: m+n-1]$, $n l[1: m \times n], l s v[0: n]$;
comment in the for-statement $u:=\cdots$ after $s 33$, operate on all pairs $i, j$ with $c[i, j]=0$. To win time the array $n l$ supervises those zeros; the $j$-indices of zeros in row $i$ are kept in $n l[(i-1) \times n+1] \cdots n l[n l v[i]]$. In the for statement $v:=\cdots$ after $s 33$, operate on all pairs $i, j$ with $x[i, j] \neq 0$ (and $c[i, j]=0$ ). $l s$ supervises those essential zeros, the $i$-indices of essential zeros in column $j$ are kept in $l s[l s v[j-1]+1] \cdots l s[l s v[j]$ Procedure in adds to list $l s$, procedure out takes out from list $l s$ an essential zero in position $i, j$;
procedure $i n$;
begin
$l s v j:=l s v[j] ;$
for $t:=l s v[n]$ step -1 until $l s v j$ do $l s[t-1]:=l s[t]$;
for $t:=j$ step 1 until $n$ do $l s v[t]:=l s v[t]+1$;
$l s[l s v j+1]:=i$
end ;
procedure out ;
begin
$l s v j:=l s v[j] ;$
for $t:=l s v[j-1]+1$ step 1 until $l s v j$ do
begin
if $l s[t] \neq i$ then go to next;
$s:=t$; go to $e x$;
next:
end ;
ex:
for $t:=j$ step 1 until $n$ do $l s v[t]:=l s v[t]-1$; $l s v j:=l s v[n]$;
for $t:=s$ step 1 until $l s v j$ do $l s[t]:=l s[t+1]$
end ;
for $i:=1$ step 1 until $m$ do
for $j:=1$ step 1 until $n$ do $x[i, j]:=0$;
for $i:=1$ step 1 until $m$ do $n l v[i]:=(i-1) \times n$;
$l s v[0]:=0$;
for $j:=1$ step 1 until $n$ do
begin
$l i s t v[j]:=1 ;$
$l s v[j]:=0$
end ;
s1:
$k w:=g d:=0 ;$
comment $g d$ is the defect, i.e., the sum of quantities not yet transported;
for $i:=1$ step 1 until $m$ do
begin
h := inf;
for $j:=1$ step 1 until $n$ do
if $c[i, j]<h$ then $h:=c[i, j]$;
for $j:=1$ step 1 until $n$ do
begin

$$
c i j:=c[i, j]:=c[i, j]-h ;
$$

if $c i j=0$ then
begin
$l i s t v[j]:=0 ;$
$n l v i:=n l v[i]:=n l v[i]+1$;
$n l[n l v i]:=j$

## end

end;
$k w:=h \times a[i]+k w$
end see next comment;
for $j:=1$ step 1 until $n$ do
begin
if $\operatorname{listv}[j]=0$ then go to nextj1;
$h:=i n f$;
for $i:=1$ step 1 until $m$ do
if $c[i, j]<h^{!}$then $h:=c[i, j]$;
for $i:=1$ step 1 until $m$ do
begin
$c i j:=c[i, j]:=c[i, j]-h ;$
if $c i j=0$ then
begin
$n l v i:=n l v[i]:=n l v[i]+1 ;$
$n l[n l v i]:=j$
end
end;
$k w:=h \times b[j]+k w ;$
nextj1:

## end;

comment in step 1 the usual reduction of the matrix of costs is achieved (dual problem), zeros are listed in $n l$;
$s 2$ :
for $i:=1$ step 1 until $m$ do
begin
$a i:=a[i] ; n l v i:=n l v[i] ;$
for $u:=(i-1) \times n+1$ step 1 until $n l v i$ do
begin
if $a i=0$ then go to nexti2;
$j:=n l[u]$;
$b j:=b[j]$;
if $b j=0$ then go to nextj4;
$h:=x[i, j]:=$ if $a i<b j$ then $a i$ else $b j$;
$a i:=a i-h ; b[j]:=b j-h ; i n ;$
nextj4:
end;
nexti2:

$$
a[i]:=a i ; g d:=g d+a i
$$

end;
comment applying a usual rule to all zeros we get an initial How (restricted primal problem) in step 2;
s31:
if $g d=0$ then go to $s 6$;
comment problem is solved if defect has become zero; s32:
for $j:=1$ step 1 until $n$ do $r[j]:=0$;
$k:=0$;
for $i:=1$ step 1 until $m$ do
begin if $a[i] \neq 0$ then begin
$k:=k+1 ; \operatorname{listu}[k]:=i ; g[i]:=\inf$ end else $g[i]:=0$
end;
comment $r[j]=0$ if column $j$ is unlabeled, $=i$ if labeled from row $i$. $g[i]=0$ if row $i$ is unlabeled, $=$ inf if $a[i] \neq 0$, i.e., $a[i]$ is a possible source of flow. The indices $i$ of labeled rows are kept in listu[1] $\cdots$ listu $[k]$. In step 3 , consisting of step 32 and step 33, the maxirnal flow is found by the labeling process. Labeling ends in only two ways: (a) a column $j$ with $b[j]>0$ has been labeled: go to step 4 , (b) all labeling is done, but a positive flow has not been found: go to $s 5$;
s33:
$l:=0$;
for $u:=1$ step 1 until $k$ do
begin
$i:=l i s t u[u] ; n l v i:=n l v[i] ;$
begin
$j:=n l[s] ;$
if $r[j] \neq 0$ then go to $n \operatorname{extj} 5$;
$r[j]:=i ; \quad l:=l+1 ; \quad$ listv[l] $:=j$; if $b[j]>0$ then go to $s 4$;
nextj5: end
end in each newly labeled row, see listu, look for zeros in unlabeled columns, list them in listv;
if $l=0$ then go to $s 5$;
$k:=0$;
for $v:=1$ step 1 until $l$ do
begin
$j:=l i s t v[v] ; \quad l s v j:=l s v[j] ;$
for $s:=l s v[j-1]+1$ step 1 until $l s v j$ do begin
$i:=l s[s] ;$
if $g[i]=0$ then

## begin

                \(g[i]:=j ; \quad k:=k+1 ;\)
                listu[k] \(:=i\)
            end
        end
    end in each newly labeled column, see listv, look for essential zeros in unlabeled rows, label these rows, list them in listu;
if $k=0$ then go to $s 5$;
go to 833 ;
comment step 4. A column $j$ with $b[j]$ has been labeled, $b[j]$ is the sink of a possible positive flow, the path of which is indicated by labels. Find the minimum flow $h$ along the path;
$n:=b[j] ; \quad p:=j$;
mark:
$i:=r[j] ; j:=g[i] ;$
if $j=$ inf then
begin
if $a[i]<h$ then $h:=a[i] ;$ go to $r e$
end;
if $x[i, j]<h$ then $h:=x[i, j]$;
go to mark;
re: ;
comment flow $h$ along the labeled path thus reduces defect without changing total costs. Correct list of essential zeros if necessary. Start labeling anew, optimizing the restricted primal problem;
$j:=p ; \quad b[j]:=b[j]-h ; \quad a[i]:=a[i]-h ;$
$g d:=g d-h ;$
re1:
$i:=r[j] ; \quad x i j:=x[i, j] ; \quad x[i, j]:=x i j+h ;$
if $x i j=0$ then $i n$;
$j:=g[i]$;
if $j=$ inf then go to $s 31$;
$x i j:=x[i, j]:=x[i, j]-h$;
if $x i j=0$ then $o u t$;
go to rel;
s5: ;
comment step 5 . Flow is maximal. To find a new solution to the dual, take the part of matrix $c$ which is the intersection of labeled rows and unlabeled columns, reduce matrix in a certain way;
$k:=0 ; \quad l:=n+1$;
for $j:=1$ step 1 until $n$ do
begin
if $r[j]=0$ then
begin
$k:=k+1 ; \quad$ listv $[k]:=j$
end
else
begin.
$l:=l-1 ; \quad$ listv $[l]:=j$
end
end list all labeled resp. unlabeled columns in listv;
$h:=$ inf;
for $i:=1$ step 1 until $m$ do
begin
if $g[i]=0$ then go to nexti6;
for $s:=1$ step 1 until $k$ do
begin
$j:=\operatorname{listv}[s] ;$
if $c[i, j]<h$ then $h:=c[i, j]$
end;
nexti6:
end find minimum $h$ in partial matrix;
for $i:=1$ step 1 until $m$ do
begin
$z g:=g[i] \neq 0 ; n l v i:=(i-1) \times n ;$
for $s:=1$ step 1 until $n$ do
begin
$j:=\operatorname{listv}[s] ;$
if $z g$ then $c i j:=c[i, j]$
else
$c i j:=c[i, j]:=c[i, j]+h ;$
if $c i j=0$ then
begin
$n l v i:=n l v i+1 ;$
$n l[n l v i]:=j$
end
end;
for $s:=1$ step 1 until $k$ do
begin

```
 \(j:=\operatorname{listv}[s] ;\)
 if \(z g\) then \(c i j:=c[i, j]:=c[i, j]-h\)
 else \(c i j:=c[i, j]\);
 if \(c i j=0\) then
 begin
 \(n l v i:=n l v i+1\);
 \(n l[n l v i]:=j\)
 end
 end;
 \(n l v[i]:=n l v i\)
 end reduction, add \(h\) to labeled columns, subtract \(h\) from
 labeled rows. Construct new list of zeros;
 \(k w:=h \times g d+k w\);
 comment total costs for new solution of dual;
 go to 832 ;
s6: ;
 comment solution, defect has become zero;
end
```


## CERTIFICATION OF:

ALGORITHM 258 [H]

## TRANSPORT

[G. Bayer, Comm. ACM 8 (June 1965), 381]
ALGORITHM 293 [H]
TRANSPORTATION PROBLEM
[G. Bayer, Comm. ACM 9 (Dec. 1966), 869]
Lee S. Sims (Recd. 21 Feb. 1967 and 17 Mar. 1967)
Kates, Peat, Marwick \& Co., Toronto, Ont., Canada
Both of these algorithms were coded in Extended Alqol 60 and tested on a Burroughs B5500. Three problems were solved correctly, one of them being of medium size ( $55 \times 167$ ). On this larger problem transpl was found to be about twice as fast as transport.

In coding and debugging transp1 three apparent errors were found. In the right-hand column on page 870 , after line 27 which is $i:=l i s t u[u] ; \quad n l v i:=n l v[i] ;$
a line is missing. This line should read
for $s:=(i-1) \times n+1$ step 1 until nlvi do
Also in the right-hand column, the line s4:;
should be inserted ahead of line -12 , which begins
comment Step 4. A column $j$ with $b[j]$ has been labeled, $b[j]$
On page 871 , in the left-hand column, line -22 which reads
for $s:=1$ step 1 until $n$ do
should read
for $s:=l$ step 1 until $n$ do

REMARK ON ALGORITHM 293 [H]
TRANSPORTATION PROBLEM [G. Bayer, Comm. ACM 9 (Dec. 1966), 869]
G. Bayer (Recd. 24 Aug. 1967, 30 Oct. 1967 and 8 Jan. 1968)

Technische Hochschule Braunschweig, Germany
KEY WORDS AND PHRASES: transportation problem, linear programming
$C R$ CATEGORIES: 5.41
There is an error in the algorithm concerning the number of
essential zeros which can be greater than $m+n-1$. An example is:

| $c:$ | 1 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- |
|  | 2 | 1 | 1 | 1 |
|  | 1 | 2 | 2 | 2 |
| $a:$ | 4 | 6 | 1 |  |
| $b:$ | 2 | 4 | 2 | 3 |

The difficulty may be overcome in two ways.

1. Declare array ls by:
integer array $l s[0: m \times n]$
instead of:
integer array $l s[0: m+n-1]$
2. As the case of more than $m+n-1$ essential zeros will seldom arise in practical problems, it may be enough to have

$$
l s[0: 2 \times m+n-1]
$$

(It is assumed that $m \leq n$ ). To make sure that list $l s$ does not overflow, add a statement to procedure in and remove inf from the value part.

```
procedure in;
begin if lsv[n]=2\timesm+n-1 then
 begin inf := 0; go to s6 end;
```

Thus in the case of overflow of $l s$, the procedure is left with inf $=0$ signalling that the optimum has not been reached and that the solution is possibly incomplete. (One would wish then to run the procedure anew with more space for $l s$ and using the solution obtained as an initial flow. This would only be possible by partly rewriting the algorithm.)

## ALGORITHM 294

UNIFORM RANDOM [G5]
W. Murray Strome (Recd. 26 May 1966)

Carnegie Institute of Technology, Pittsburgh, Pa.
real procedure $\operatorname{UNIFORM}(A, B, X 0, C, M)$;
value $A, B, X 0, C, M$; real $A, B$; integer $X 0, M, C$;
comment This procedure generates the next uniformly distributed pseudorandom number on ( $A, B$ ). The 'multiplicative congruential" method is used, namely

$$
Z_{n+1}=C \times Z_{n}(\bmod M)
$$

$M$ and $C$ are chosen to maximize the period and minimize the correlation of the sequence generated. To accomplish this, $M$ should be as large as possible subject to the following conditions [1]:
(i) $C \simeq \sqrt{ } M$ and suitably chosen.
(ii) The expression $X:=X 0 / M$ followed by $X:=X \times C$ within the procedure must be evaluated with no roundoff or truncation error for every positive integer $X 0<M$.
For most applications, $M$ and $C$ may be chosen as follows. Let $D$ denote the number base of the machine (e.g., $D=10$ for a decimal machine) and $n$ the number of significant $D$-digits of a real variable of the ALGOL implementation. Then let $M=D^{k}$ and $C=D^{n-k}-q$ where $k=\operatorname{entier}((2 n+1) / 3)$. For $D=2,4,5,8,10$ or 16 and $D^{n-k}>100, q=3$ is suitable. In general, choosing $M$ and $C$ in the above fashion will guarantee that condition (ii) be met, but this should be verified for the particular implementation. See [1] for a more detailed discussion on the choice of $C$ and $M$. The first time UNIFORM is used in a program, $X 0$ should be a positive integer less than and relatively prime to $M$. Subsequently, use $X 0=0$.

UNIFORM was translated into C.I.T's ALGOL-20 and run on a CDC G-20 computer with $M=2^{28}$ and $C=2^{14}-3$. Some scaling was required to prevent roundoff in the multiplications since the $\mathrm{G}-20$ is a 14 -octal digit machine rather than a 42 -bit binary one (the scaling would have been unnecessary had we used $M=8^{9}$, $C=8^{5}-3$, but the period of the sequence would have been shorter). In order to test the algorithm, the following statistical tests were performed for sequences of pseudorandom numbers generated on $(-1,1)$.

1. Distribution. We divided ( $-1,1$ ) into 10 equal subintervals. Denote by $f_{i}$ the number of numbers of a sequence of length 1000 in the $i$ th interval. The statistic

$$
\chi^{2}=.01 \sum_{i=1}^{10}\left(f_{i}-100\right)^{2}
$$

was computed for each of 62 different such sequences. For numbers drawn from a uniform distribution, this statistic has a $x^{2}$-distribution, with 9 degrees of freedom [2]. The results obtained were entirely consistent with the hypothesis that the numbers were distributed uniformly.
2. Independence. Define the serial correlation (lag $j$ ) by

$$
\rho_{j}=\frac{\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i+j}-\left(\frac{1}{N} \sum_{i=1}^{N} X_{i}\right)^{2}}{\frac{1}{N-1} \sum_{i=1}^{N} X_{i}{ }^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} X_{i}\right)^{2}} .
$$

If $X_{i}, X_{i+j}$ are independent, then for large $N, \rho_{j}$ is distributed normally with mean $-1 / N$ and standard deviation $1 / \sqrt{ } N$ [3]. $\rho_{1}$ was estimated for 16 different sequences each of length 5000 . The average, -0.004 , and the standard deviation, 0.011 , are consistent with the hypothesis of independence. $\rho_{j}$ was estimated for 3 different sequences each of length 9900 for $j=1,2, \cdots, 49$. These results were consistent with the hypothesis that $X_{i}, X_{i+j}$ are independent for these values of $j$.
The Von Neumann ratio test [4] for 16 sequences of length 1000 also yielded results consistent with the hypothesis of independence. The results of other tests for many values of $C$ and $M$ using this method are outlined in [1];
begin own real $X$;
if $X 0 \neq 0$ then $X:=X 0 / M$;
$X:=X \times C ; \quad X:=X-\operatorname{entier}(X)$;
UNIFORM $:=X \times(B-A)+A$
end procedure UNIFORM
References:

1. Hull, T. E., and Dobell, A. R. Random number generators. SIAM Rev. 4 (July 1962), 230-254.
2. Yamane, T. Statistics, An Introductory Analysis. Harper \& Row, New York, 1964, pp. 584-593.
3. Anderson, R. L. Distribution of the serial correlation coefficient, Ann. Math. Stat. 13 (1942), 1-13.
4. Hart, B. I. Tabulation of the probability for the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 13 (1942), 207-214.

ALGORITHM 295
EXPONENTIAL CURVE FIT [E2]

## H. Späth (Recd. 29 Apr. 1966)

Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe, Germany
procedure expfit ( $x, y, p, n, c a, c e, e p s, a, b, c, s, f x$, exit); value $n, c a, c e, e p s ;$ integer $n$; real $c a, c e, e p s, a, b, c, s$; label exit; array $x, y, p, f x$;
comment If the method of least squares is used to determine the parameters $a, b, c$ of a curve $f(x)=a+b e^{-c x}$ which approximates $n$ data points $\left(x_{i}, y_{i}\right)$ with associated weights $p_{i}$, then

$$
\begin{equation*}
s(a, b, c)=\sum_{i=1}^{n} p_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \tag{I}
\end{equation*}
$$

must be a minimum. A necessary condition for this is that

$$
\begin{equation*}
\frac{\partial s}{\partial a}=\frac{\partial s}{\partial b}=\frac{\partial s}{\partial c}=0 \tag{II}
\end{equation*}
$$

Usually (see [1]) it is attempted to solve this system of nonlinear equations by an iterative method which is based upon the linearization of $f$ in (II) and the convergence of which depends on the given starting values for $a, b, c$.

A simpler and more effective way which can always be chosen if there is only one nonlinear parameter in $f$ is the following: It is always possible to eliminate $a=a(c)$ and $b=b(c)$ from the equations $\partial s / \partial a=0$ and $\partial s / \partial b=0$ and to put these expressions into $\partial s / \partial c=0$. This gives only one equation in one variable

$$
F(c):=\frac{\partial s}{\partial c}(a(c), b(c), c)=0
$$

If a value $c^{\prime}$ is calculated with $F\left(c^{\prime}\right)=0$ then the corresponding values of $a$ and $b$ are obtained from $a^{\prime}=a\left(c^{\prime}\right)$ and $b^{\prime}=b\left(c^{\prime}\right)$.

The following procedure is based upon this idea which is fully treated in [2]. It allows to find a triple ( $a, b, c$ ) which solves (II) if you make available a nonlocal procedure Rootfinder which is able to get a zero $c$ of a function $F(c)$ in the interval [ $c a, c e]$ with the relative accuracy eps, if $\operatorname{sign}(F(c a)) \neq \operatorname{sign}(F(c e))$ otherwise leaving to the global label exil. As the above $F(c)$ is discontinuous at $c=0,[c a, c e]$ must not contain 0 . [T'he speed and efficiency of the algorithm depend on the choice of the procedure Root-finder.---ReF.]

Most of the symbols are self-explanatory. The array $f x$ finally contains the values $a+b e^{-c x_{i}}$;
begin integer $i$; real $t, u, v, w, f c, h 0, h 1, h 2, h 3, h 4, h 5, h 6, h 7$; procedure fronc ( $c, f c$ ); value $c$; reall $c, f c$;
comment computes for a given $c$ the value $f c=F(c)$ and $a=a(c), b=b(c) ;$
begin $h 0:=h 1:=h 2:=h 3:=h 4:=h 5:=h 6:=h 7:=0$;
for $i:=1$ step 1 until $n$ do
begin
$t:=x[i] ; \quad u:=\exp (-c \times t) ; \quad v:=p[i] ; \quad w:=y[i] ;$
$h 0:=h 0+v ; \quad h 1:=h 1+u \times v ; h 2:=h 2+u \times u \times v ;$
$h 3:=h 3+v \times w ; h 4:=h 4+u \times v \times w ;$ $h 5:=h 5+t \times u \times v ;$ $h 6:=h 6+t \times u \times u \times v ; h 7:=h 7-u \times v \times w \times t$
end $i$;

```
 \(t:=1.0 /(h 0 \times h 2-h 1 \times h 1) ; \quad a:=t \times(h 2 \times h 3-h 1 \times h 4) ;\)
 \(b:=t \times(h 0 \times h 4-h 1 \times h 3) ; f c:=h 7+(h 5 \times a+h 6 \times b)\)
end fronc;
Röotfinder (fronc, ca, ce, eps, \(c\), exit); \(t:=0\);
for \(i:=1\) step 1 until \(n\) do
begin
 \(v:=f x[i]:=a+b \times \exp (-c \times x[i]) ; \quad v:=v-y[i] ;\)
 \(t:=t+p[i] \times v \times v\)
end \(i\);
\(s:=t\)
end expfit
```


## References:

1. Deily, G. R. Algorithm 275, Exponential curve fit. Comm. ACM 9 (Feb. 1966), 85.
2. Oberländer, S. Die Methode der kleinsten Quadrate bei einem dreiparametrigen Exponentialansatz. ZAMM 43 (1963), 493-506.

## ALGORITHM 296 <br> GENERALIZED LEAST SQUARES FIT BY <br> ORTHOGONAL POLYNOMIALS [E2]

G. J. Makinson (Recd. 30 Sept. 1965 and 29 Aug. 1966)

University of Liverpool, Liverpool 3, England
procedure LSFITUW ( $f, x, w, m, k, s i, p, l, a l, b e, s$ ); value $m, k$; integer $m, k$; array $f, w, s i, p, x, a l, b e, s ;$ Boolean $l$;
comment LSFITUW accepts $m$ observations $x[i], f[i], i=1,2$, $\cdots, m$ each with its associated weight $w[i]$. The weights should be provided inversely proportional to the standard error of the observations.
$x[1]$ should be algebraically the smallest abscissa and $x[m]$ the largest.

The coefficients of the best fitting polynomial of degree $k$ or less, where $k<m-1$, are obtained in $p[0: k]$, with $p[0]$ the independent term. si $[0: k]$ contains the measures of the goodness of fit of each polynomial tested. The si[t] are examined successively and the best polynomial is chosen of degree $h$ if $h$ is the first value of $t$ found such that si[h]<si[h+1] provided that $s i[j]>0.6 \times s i[h]$ for $k \geqq j>h+1$. If $h$ is the first value of $t$ found such that $s i[h]<s i[h+1]$ but then a $j$ is found that satisfies si[j] $\leqq 0.6 \times s i[h]$ for $j>h+1$ the procedure will choose the polynomial of degree $j$ as best fit.

If an $h$ such that $s i[h]<s i[h+1]$ is not found then the polynomial is chosen of degree $k$. LSFITUW uses the procedure POLYX ( $a, b, c, d, n$ ) [Algorithm 29, Comm. ACM 3 (Nov. 1960), 604] to transform its results from the interval $(-2,2)$ to the interval ( $x[1], x[m]$ ).

Normally $l$ should be false but if the choice made is to be overruled after consideration of the si and the best fitting polynomial is required to be strictly of degree $k$, then $l$ should be true.

The programming is as outlined by G. E. Forsythe, [J. Soc. Indust. Appl. Math. 5 (1957), 74-88] and originally programmed by J. G. Mackinney [Algorithm 28/29, Comm. ACM 3 (Nov. 1960), 604]. LSFITUW incorporates remarks made by D. B. MacMillan [Comm. ACM 4 (Dec. 1961), 544].

The variables in the paper of Forsythe have been abbreviated as follows.
all $[i]$ is alphali], be[i] is beta[i], si[i] is (sigma[i]) $\uparrow 2, s[i]$ is the same, om is omega, $l w$ is $w[i, i], t w$ is $w[i+1, i+1]$, $c t p[j]$ is the coefficient of $x \uparrow j$ in This (the current) orthogonal polynomial, clp[j] is the coefficient of $x \uparrow j$ in the Last (previous) orthogonal polynomial, $c p[j]$ is the coefficient of $x \uparrow j$ in the most recently calculated polynomial of best fit, $t p[i]$ is the value at $x[i]$ of the present orthogonal polynomial, $l p[i]$ is the value at $x[i]$ of the last orthogonal polynomial, simin is the least value of (sigma $[i]) \uparrow 2$ found so far, swx becomes false as soon as (sigma[i+1]) $\uparrow$ $2 \geqq($ sigma $[i]) \uparrow 2$ one time, comp becomes true if $s w x$ is false and some (sigma[i]) $\uparrow 2<0.6 \times \operatorname{simin} ;$
hegin integer $i, j$; real $d u$, dels $q, o m, l w, t w, \operatorname{simin}, a, b$;
array ctp, cpsave, cp $[0: k], c l p[-1: k], l p, \operatorname{tp}[1: m]$;
Boolean swx, comp;
comment initialization;
for $i:=0$ step 1 until $k$ do $c p[i]:=0 ;$ simin $:=0$;
$s w x:=$ true; $b e[0]:=\operatorname{clp}[0]:=\operatorname{clp}[-1]:=$ delsq $:=o m:=0$; $\operatorname{ctp}[0]:=1 ; \quad t w:=0 ; \quad \operatorname{comp}:=$ false;
for $i:=1$ step 1 until $m$ do
hegin
$d e l s q:=d e l s q+w[i] \times f[i] \uparrow 2 ; \quad t p[i]:=1 ;$
$l p[i]:=0 ; \quad$ om $:=o m+w[i] \times f[i] ; \quad t w:=t w+w[i]$
end;
$s[0]:=c p[0]:=o m / t w ; \quad$ delsq $:=d e l s q-s[0] \times o m ;$
si[0]:=delsq/(m-1);
comment transformation of abscissa;
$a:=4 /(x[m]-x[1]) ; \quad b:=-2-a \times x[1] ;$
for $i:=1$ step 1 until $m$ do $x[i]:=a \times x[i]+b$;
comment main computation loop;
for $i:=0$ step 1 until $k-1$ do
begin
$d u:=0$;
for $j:=1$ step 1 until $m$ do $d u:=d u+w[j] \times x[j] \times t p[j] \uparrow 2 ;$
$a l[i+1]:=d u / t w ; \quad l w:=t w ; \quad t w:=o m:=0 ;$
for $j:=1$ step 1 until $m$ do
begin
$d u:=b e[i] \times l p[j] ;$
$l p[j]:=t p[j] ;$
$t p[j]:=(x[j]-a l[i+1]) \times t p[j]-d u ;$
$t w:=t w+w[j] \times t p[j] \uparrow 2 ;$
$o m:=o m+w[j] \times f[j] \times t p[j]$
end;
$b e[i+1]:=t w / l w ; s[i+1]:=o m / t w ;$
$\operatorname{dels} q:=\operatorname{dels} q-s[i+1] \times o m ; \quad$ si $[i+1]:=\operatorname{delsq} /(m-i-2) ;$
if $l$ then go to $L \mathbf{1}$;
if $\neg$ comp then
begin

## if $s w x$ then

begin
if $s i[i+1] \geqq s i[i]$ then
begin
comment higher power appears not to improve fit;
$s w x:=$ false;
simin $:=\operatorname{si[i]} ;$
for $j:=0$ step 1 until $k$ do
cpsave $[j]:=c p[j]$
end;
go to $L 1$
end;
if $\operatorname{si}[i+1]<0.6 \times \operatorname{simin}$ then comp $:=$ true;
comment termination of main loop at superior fit to first, one found;
comment recursion to obtain the coefficients $c p$ of the polynomial of best fit of degree $i+1$;
$L 1: \quad$ for $j:=0$ step 1 until $i$ do
begin
$d u:=c l p[j] \times b e[i] ;$
$c l p[j]:=c t p[j] ;$
$\operatorname{ctp}[j]:=\operatorname{clp}[j-1]-a l[i+1] \times \operatorname{ctp}[j]-d u ;$
$c p[j]:=c p[j]+s[i+1] \times c t p[j]$
end;
$c p[i+1]:=s[i+1] ; \quad \operatorname{ctp}[i+1]:=1 ; \quad c l p[i+1]:=0 ;$
if $\neg(\operatorname{comp} \vee s w x)$ then

```
 begin
 if }i=k-1\mathrm{ then
 for }j:=0\mathrm{ step 1 until }k\mathrm{ do
 cp[j]:=cpsave[j]
 end
 end
end end of main computation loop. Transformation of poly-
 nomial follows;
 POLYX(a,b,cp,p,k)
end LSFIT'IW
```


## REMARK ON ALGORITHM 296 [E2] GENERALIZED LEAST SQUARES FIT BY ORTHOGONAL POLYNOMIALS <br> [G. J. Makinson, Comm. ACM 10 (Feb. 1967), 87] <br> G. J. Makinson (Recd. 21 Mar. 1967) <br> University of Liverpool, Liverpool 3, England

The second sentence of the first comment should read "The weights should be provided inversely proportional to the square of the standard error of the observations."
instead of
"The weights should be provided inversely proportional to the standard error of the observations."

CERTIFICATION OF ALGORITHM 296 [E2] GENERALIZED LEAST SQUARES FIT BY
ORTHOGONAL POLYNOMIALS [G. J. Makinson, Comm. ACM 10 (Feb. 1967), 87]
Wayne T. Watson (Recd. 11 Feb. 1969 and 21 Mar. 1969)
Service Bureau Corp., Development Laboratory, 111 West St. John Street, San Jose, CA 95113
KEY WORDS AND PHRASES: least squares, curve fitting, orthogonal polynomials, three-term recurrence, polynomial regression, approximation, Forsythe's method
$C R$ CATEGORIES: 5.13, 5.5
LSFITUW was compiled and tested in CALL/360:PL/I. No modifications were made to the algorithm, and the computations were made in long precision (about 15 significant floating point digits). In addition, $P O L Y X$ [2] was used to transform the results of LSFITUW from the interval $(-2,2)$ to the interval $\left(x_{1}, x_{m}\right)$.

To generally test the algorithm, several small sets of data were used with LSFITUW and the results were compared with those obtained from an independently written polynomial curve fitting algorithm which does not use the method of orthogonal polynomials. Only polynomials of degree less than 5 were used to fit the data. Agreement between coefficients and standard errors was good.

As a more comprehensive test of the algorithm, all experiments that could be duplicated from the article by Ascher and Forsythe [1] were performed; a slight modification to $L S F I T U W$ was required to transform the data to the interval $(-1,1)$ instead of $(-2,2)$. Briefly, the experiments included:
(1) For certain equally spaced data, a cornparison of the $\alpha_{i}$ and $\beta_{i}$ calculated by the program against those values of $\alpha_{i}$ and $\beta_{i}$ obtained from known formulas ( $\alpha_{i}=0$ for equally spaced data).
(2) A fit of the function $f(x)=|x|$ over the interval ( $-1,1$ ) for equally spaced data for polynomials of degree as high as 30 .
(3) A fit of the function $f(x)=e^{x}$ for unequally spaced data inside the interval ( $-1,1$ ) for polynomials of degree as high as 32 .

The results of experiment (1) showed that LSFITUW produced values of $\beta_{i}$ differing only in the last significant digit (15) from those calculated by the known formula. The values of $\alpha_{i}$ produced were in the range of the floating point round-off error ( $10^{-16}$ ). The results of duplicating experiments (2) and (3) were better than those reported in [1] because of the greater precision used in the calculations (about 10.8 versus about 15 significant floating digits). While conducting the last two experiments, it was noted that for data values of $x$ symmetric about the origin, the value of $b$ in the transformation equation $x=a t+b$ may be computed to be a number in the floating point round-off range instead of exactly zero. When fitting polynomials of a sufficiently high degree, this may cause an underflow at line 4 of $P O L Y X$, the transformation routine. The user may find it desirable to branch on an underflow in POLYX and reset $b$ to zero.

To check the computations of the $\sigma_{k}{ }^{2}$ obtained by the recursive definition of $\sigma_{k}{ }^{2}$ used in the algorithm, the $\sigma_{k}{ }^{2}$ were compared with results computed directly from the equation

$$
\begin{equation*}
\sigma_{k}{ }^{2}=\sum_{j=1}^{m}\left(f_{j}-y_{k}\left(x_{j}\right)\right)^{2} /(m-k-1) \tag{*}
\end{equation*}
$$

where $y_{k}$ is the best fitting polynomial of degree $k$ for the data $x_{j}, f_{j}$. Experience with the algorithm indicates that a loss of accuracy in computing $\sigma_{k}{ }^{2}$ occurs at smaller values of $k$ when using the recursive definition than when using (*). If the values of $\sigma_{k}{ }^{2}$ are of importance to the user, he may find it useful to compute them using ( ${ }^{*}$ ) instead.

A comprehensive test of the algorithm's feature which uses the $\sigma_{k}{ }^{2}$ to automatically select the best fitting polynomial was not made, but the feature did work properly for the polynomials used. In connection with this feature, the user should be aware, though, of the possible difficulty mentioned above in computing $\sigma_{k}{ }^{2}$ accurately using the recursive definition. In this case, the user should not expect the algorithm to select the best fitting polynomial. This difficulty was experienced several times while testing the algorithm, but was circumvented by using (*) to calculate $\sigma_{k}{ }^{2}$. In order to detect a possible loss in accuracy, the $\sigma_{k}{ }^{2}$ should be examined carefully or compared with those obtained by (*).

Comprehensive tests were not made using weights; however, no problems were encountered with a moderate usage of this feature.
References:

1. Ascher, M., and Forsythe, G. E. SWAC experiments on the use of orthogonal polynomials for data fitting. J. ACM 5 (Jan. 1958), 9-21.
2. MacKinney, John G. Algorithm 29, Polynomial transformer. Comm. ACM 9 (Nov. 1960), 604.

ALGORITHM 297
EIGENVALUES AND EIGENVECTORS OF THE SYMMETRIC SYSTEM $(A-\lambda B) X=0$ [F2]
J. Bоotнroyd (Recd. 19 Aug. 1965, 7 Feb. 1966, 1 Aug. 1966, and 14 Nov. 1966)
University of Tasmania, Hobart, Tas., Australia
procedure eigensolve ( $a, b, x, n$, nondef); value $n$; integer $n$; label nondef; array $a, b, x$;
comment solves the equation $(A-\lambda B) X=0$ for symmetric $A, B$ in $a, b[1: n, 1: n]$ provided one of these is either positive or negative-definite. $B$ is decomposed symmetrically so that $B$ $=L L^{\prime}$ and the equation transformed to $(C-\lambda I) Y=0$ where $C=(L)^{-1} A\left(L^{\prime}\right)^{-1}$ is symmetric and $Y=L^{\prime} X$. If $B$ is negativedefinite $(A-(-\lambda)(-B)) X=0$ is solved. If $B$ is neither positive nor negative-definite the original equation is rearranged as $(B-(1 / \lambda) A) X=0$ and solved as such for positive-definite $A$ or as $(B-(-1 / \lambda)(-A)) X=0$ for negative-definite $A$. Failure to achieve one useful transformation from the four possibilities leads to exit via the label nondef.

The procedure calls procedure symmetric $Q R 2[\mathrm{P} . \mathrm{A}$. Businger, Algorithm 254, Eigenvalues and eigenvectors of a real symmetric matrix by the $Q R$ method. Comm. $A C M \&$ (April, 1965), 218-219] to evaluate the roots and vectors of $(C-\lambda I) \quad Y=0$. That procedure leaves untouched the strictly upper triangle of $C$. In conformity with this, eigensolve preserves the strictly upper triangles of $A$ and $B$. If, before entry to eigensolve, the user saves the diagonals of $A, B$, both these arrays may, if necessary, be fully restored after exit.
On exit from the procedure the eigenvalues occupy the diagonal elements $a[i, i]$ with the eigenvectors in corresponding columns of $x[1: n, 1: n]$;
begin integer $i, j, k, j l e s s 1, i l e s s 1, a d i, b d i$;
real $t$, sum, xij, lenglh;
Boolean recip;
procedure $L C H O L E S K I(a, n$, fail); value $n$; integer $n$;
label fail; array $a$;
comment performs the symmetric decomposition $A=L L^{\prime}$ for positive definite $A$ in $a[1: n, 1: n]$. The lower triangle of $A$ is overwritten by $L$. The strictly upper triangle of $A$ is intact. For nonpositive-definite $A$ the procedure exits via label parameter fail;
begin integer $i, j, k, j l e s s 1$;
real $a j j, a j k, a i j$;
jless $1:=0$;
for $j:=1$ step 1 until $n$ do
begin $a j j:=a[j, j]$;
for $k:=1$ step 1 until jless 1 do
begin $a j k:=a[j, k]$;
$a j j:=a j j-a j k \times a j k$
end;
if ajj $\leq 0.0$ then go to fail;
$a j j:=a[j, j]:=\operatorname{sqrt}(a j j)$;
for $i:=j+1$ step 1 until $n$ do
begin aij $:=a[i, j]$;
for $k:=1$ step 1 until $j l e s s 1$ do

$$
a i j:=a i j-a[i, k] \times a[j, k] ;
$$

$$
a[i, j]:=a i j / a j j
$$

## end;

jless $1:=j$
end $j$
end LCHOLESKI;
comment scan diagonals of $A, B$ setting adi, bdi respectively
to $+1,-1,0$ if the diagonal elements are all positive and non-
zero, all negative or neither. Save the diagonal of $B$ in $X$;
adi $:=\operatorname{sign}(a[1,1])$;
$x[1,1]:=t:=b[1,1]$;
$b d i:=\operatorname{sign}(t)$;
for $i:=2$ step 1 until $n$ do
begin $t:=a[i, i]$;
if $t=0.0 \vee(t>0 \equiv a d i<0)$ then adi $:=0$;
$x[i, i]:=t:=b[i, i]$;
if $t=0.0 \vee(t>0 \equiv b d i<0)$ then $b d i:=0$
end;
recip $:=$ false; comment prepare to solve $(A-\lambda B) X=0$;
if $b d i=0$ then go to swap; comment $B$ is nondefinite;
if $b d i<0$ then
begin comment prepare to solve $(A-(-\lambda)(-B)) X=0$;
for $i:=1$ step 1 until $n$ do
for $j:=1$ step 1 until $i$ do $b[i, j]:=-b[i, j]$
end;
newtry: LCHOLESKI (b, n, swap);
go to $o k$;
swap: if recip then go to nondef;
recip := true;
comment prepare to solve $(B-(1 / \lambda) A) X=0$;
if $a d i=0$ then go to swap; comment to escape, since $A$ is also nondefinite;
if $a d i<0$ then
begin comment prepare to solve $(B-(-1 / \lambda)(-A)) X=0$; for $i:=1$ step 1 until $n$ do
$\operatorname{begin} b[i, i]:=a[i, i] ; a[i, i]:=x[i, i] ;$
for $j:=i+1$ step 1 until $n$ do
begin $b[j, i]:=-a[i, j] ; a[j, i]:=b[i, j]$ end

## end

end
else
begin comment prepare to solve $(B-(1 / \lambda) A) X=0$;
for $i:=1$ step 1 until $n$ do
$\operatorname{begin} b[i, i]:=a[i, i] ; \quad a[i, i]:=x[i, i] ;$
for $j:=i+1$ step 1 until $n$ do
begin $b[j, i]:=a[i, j] ; \quad a[j, i]:=b[i, j]$ end end
end;
go to newtry;
comment form $C=(L)^{-1} A\left(L^{\prime}\right)^{-1}$ by $L X=A, C L^{\prime}=X . C$ replaces $A$;
ok: jless $1:=0$;
for $j:=1$ step 1 until $n$ do
begin iless $1:=0$;
for $i:=1$ step 1 until $j$ do
begin sum $:=a[j, i]$;
for $k:=1$ step 1 until iless 1 do
sum $:=$ sum- $x[k, j] \times b[i, k]$;
sum $:=x[i, j]:=\operatorname{sum} / b[i, i]$;
for $k:=1$ step 1 until $j$ less 1 do

```
 sum := sum - (if k\leqi then a[i,k] else a[k,i])}\timesb[j,k]
 a[j,i]:= sum/b[j,j];
 iless1 := i
 end;
 jless1 := j
end;
comment global call of symmetric QR 2 to solve (C-\lambdaI)Y=0.
 symmetric QR 2 includes a built-in precision tolerance. For
 use with eigensolve this constant should be changed to the
 value appropriate to whatever computer is used. Those in-
 terested in using JACOBI [Thomas G. Evans, Algorithm 85,
 JACOBI, Comm ACM }5\mathrm{ (April 1962), 208] in place of symmetric
 QR 2 may do so by copying the lower triangle of A to the upper
 triangle and making suitable changes to accommodate the
 parameter rho of that procedure before it is called. In this case
 the strictly upper triangle of }A\mathrm{ will not, be preserved on exit
 from eigensolve;
 symmetric QR 2 (}n,a,x)
 comment change the Y vectors, now ir. }x\mathrm{ by L' X = Y and
 normalize to unit length;
for }j:=1\mathrm{ step 1 until n do
begin length := 0.0;
 for }i:=n\mathrm{ step - 1 until 1 do
 begin sum := x[i,j];
 for }k:=i+1\mathrm{ step I until }n\mathrm{ do
 sum := sum -b[k,i]\times x[k,j];
 xij := x[i,j] := sum/b[i, i];
 length := length }+xij\timesxi
 end;
 length := sqrt(length);
 for }i:=1\mathrm{ step 1 until }n\mathrm{ do }x[i,j]:=x[i,j]/lengt
end;
comment take the reciprocals and/or change the signs of the
 roots if necessary;
for }i:=1\mathrm{ step 1 until }n\mathrm{ do
if recip then
begin
 if adi<0 then }a[i,i]:=-1.0/a[i,i
 else a[i, i] := 1.0/a[i,i] end
 else if bdi<0 then }a[i,i]:=-a[i,i
end eigensolve
```

ALGORITHM 298
DETERMINATION OF THE SQUARE-ROOT OF A POSITIVE DEFINITE MATRIX [F1]
H. Spӥтн (Recd. 20 Sept. 1966)

Institut für Neutronenphysik und Reaktortechnik
Kernforschungszentrum Karlsruhe, Germany
procedure $W U R Z E L(A, B, N$, theta, eps $)$;
value $N$, theta, eps; integer $N$; real theta eps; array $A, B$; comment Let $A$ be a symmetric positive-definite matrix of the order $N$. Further let $\lambda_{\text {min }}$ be the smallest and $\lambda_{\text {max }}$ be the greatest eigenvalue of $A$.
It is known [1] that for all $\theta$ with $0<\theta<1$ the sequence

$$
\begin{equation*}
B_{k+1}=B_{k}+c\left(A-B_{k}^{2}\right), \quad B_{0}=2 c A \tag{1}
\end{equation*}
$$

with

$$
c=\frac{\theta}{2 \sqrt{\lambda_{\max }}}
$$

converges to $\sqrt{A}$. The rate of convergence of the above sequence is given by the rate of convergence to zero of the sequence

$$
\begin{equation*}
x_{k}=\left(1-\theta \sqrt{\lambda_{\min } / \lambda_{\max }}\right)^{k} . \tag{2}
\end{equation*}
$$

As $\|A\|=\alpha \lambda_{\max }$ with $\alpha \geq 1$, we set

$$
c_{1}=\frac{\theta_{1}}{2 \sqrt{\|A\|}}
$$

(In the program we choose $\|A\|=\max _{i} \| \sum_{k}\left|a_{i k}\right|$ ). Then the sequence (1) with $c=c_{1}$ converges for all $\theta_{1}$ with

$$
0<\theta_{1}<\sqrt{\alpha}=\sqrt{\|A\| / \lambda_{\max }}
$$

and therefore in any case for $\theta_{1}$ with $0<\theta_{1}<1$. Because of (2) it is favorable to choose $\theta$ close to 1 and $\theta_{1}$ close to $\sqrt{\alpha}$, respectively. If nothing at all is known about $\alpha$, the optimum is to choose $\theta_{1}$ close to 1 . The computing time is proportional to $f\left(\theta_{1}\right) N^{3}$, where $f\left(\theta_{1}\right)$ decreases as $\theta_{1}$ increases.
Meaning of symbols in the formal parameter list:
$A=A[1: N, 1: N]$ must be symmetric and positive-definite.
$A$ is not destroyed after leaving $W U R Z E L$
$B=B[1: N, 1: N]$ contains $\sqrt{A}$ when $W U R Z E L$ is left $N$ is the order of $A$ and $B$
theta $=\theta_{1}$ is an input parameter as described above
eps is an accuracy parameter. The iteration is stopped when

$$
\max _{i, j}\left|b_{i j}^{(k+1)}-b_{i j}^{(k)}\right|<e p s ;
$$

begin integer $i, j, k ;$ real delta, $s, c$; array $b b[1: N]$;
comment determination of $c ; c:=0$;
for $i:=1$ step 1 until $N$ do
begin $s:=0$;
for $j:=1$ step 1 until $N$ do $s:=s+a b s(A[i, j])$;
$c:=$ if $c<s$ then $s$ else $c$
end;
$c:=.5 \times$ theta/sqrt(c);
comment now $B_{0}$ is set;
for $i:=1$ step 1 until $N$ do
for $j:=i$ step 1 until $N$ do

```
 \(B[i, j]:=B[j, i]:=2.0 \times c \times \Lambda[i, j] ;\)
 comment start of iteration;
REPEAT: delta := 0;
 for \(i:=1\) step 1 until \(N\) do
 begin for \(j:=i\) step 1 until \(N\) do
 begin \(s:=0\);
 for \(k:=1\) step 1 until \(N\) do \(s:=s-B[i, k] \times B[k, j] ;\)
 \(b b[j]:=B[i, j]+c \times(A[i, j]+s)\)
 end;
 for \(j:=i\) step 1 until \(N\) do
 begin \(s:=a b s(B[i, j]-b b[j])\);
 if \(s>\) delta then delta \(:=s\);
 \(B[i, j]:=b b[j]\)
 end
 end;
 for \(i:=1\) step 1 until \(N-1\) do
 for \(j:=i+1\) step 1 until \(N\) do \(B[j, i]:=B[i, j]\);
 if delta \(>\) eps then go to REPEAT
end WURZEL
```

    Reference:
    1. Babǔ̌ka, I., Práger, M., and Vitásek, E. Numerical Processes
in Differential Equations. John Wiley \& Sons, Ltd., London, 1966,
p. 31 ff .

CERTIFICATION OF ALGORITHM 298 [F1] DETERMINATION OF THE SQUARE ROOT OF A POSITIVE DEFINITE MATRIX (H. Späth, Comm. ACM 10 (Mar. 1967), 182]
B. J. Duke (Recd. 26 Apr. 1967, 16 July 1968 and 10 Oct. 1968)

Department of Chemistry, University of Lancaster, Bailrigg, Lancaster, England
KEY WORDS AND PHRASES: matrix, symmetric matrix, positive definite matrix, matrix square root
$C R$ CATEGORIES: 5.14

Algorithm 298 has been tested in ICT Algol and used successfully on a number of matrices. One minor modification seems advisable. To avoid the procedure looping if an error occurs in its call, a maximum number of iterations should be set, with the procedure exiting through a label if this number is reached. The modifications to the procedure are obvious.

Comparisons with an alternative method using a binomial series are interesting. If

$$
\begin{aligned}
C & =I-\frac{\theta}{\|A\|} A \\
A^{\frac{1}{2}} & =\left\{\frac{\|A\|}{\theta}\right\}^{\frac{1}{2}}\left\{I-\frac{1}{2} C-\frac{1}{8} C^{2}-\frac{1}{16} C^{3} \cdots\right\}
\end{aligned}
$$

For convergence,

$$
\theta<2\|A\| / \lambda_{\max }
$$

and thus a sufficient condition is $\theta<2$.
Optimum convergence is for

$$
\theta_{\text {opt }}=\frac{2\|A\|}{\lambda_{\max }+\lambda_{\min }} .
$$

Thus

$$
1<\alpha<\theta_{\mathrm{opt}}<2 \alpha
$$

where $\alpha=\|A\| / \lambda_{\max }$. The choice of $\theta$ is difficult, as the method is particularly slow for values of $\theta$ not close to $\theta_{\text {opt }}$. Unless other information is available, it seems preferable to choose $\theta$ in the range 1.4-1.8.

Both methods have been tested on over 30 positive definite matrices of order 2 to 12 arising from physical problems. In about half the cases studied all diagonal elements of $A$ were equal; two typical examples are illustrated below. There was no significant difference between the behavior of these matrices and matrices with diagonal elements differing in magnitude.
(a)

| $A$ | $=\left(\begin{array}{lllll}1.0 & 0.259952 & 0.03886876 & 0.01772265 & 0.03886876 \\ 0.259952 & 1.0 & 0.259952 & 0.03886876 & 0.01772265 \\ 0.03886876 & 0.259952 & 1.0 & 0.259952 & 0.03886876 \\ 0.01772265 & 0.03886876 & 0.259952 & 1.0 & 0.259952 \\ 0.03886876 & 0.01772265 & 0.03886876 & 0.259952 & 1.0\end{array}\right)$ |
| ---: | :--- |
| $A^{\natural}$ | $=\left(\begin{array}{lllll}0.9911413 & 0.1309132 & 0.0104918 & 0.0063647 & 0.0187119 \\ 0.1309132 & 0.9826457 & 0.1308604 & 0.0102163 & 0.0063647 \\ 0.0104918 & 0.1308604 & 0.9826144 & 0.1308604 & 0.0104918 \\ 0.0063647 & 0.0102163 & 0.1308604 & 0.9826457 & 0.1309132 \\ 0.0187119 & 0.0063647 & 0.0104918 & 0.1309132 & 0.9911413\end{array}\right)$ |


| $A$ | $=\left(\begin{array}{ccc}1.0^{7} & 0.74917 & 0.48985 \\ 0.74917 & 1.0 & 0.74917 \\ 0.48985 & 0.74917 & 1.0\end{array}\right)$ |
| ---: | :--- |
| $A^{\dagger}$ | $=\left(\begin{array}{lll}0.9017878 & 0.3893683 & 0.1875400 \\ 0.3893683 & 0.8347366 & 0.3893683 \\ 0.1875400 & 0.3893683 & 0.9017878\end{array}\right)$ |

In both methods iteration was continued until, at iteration $k$,


$$
\left|D_{i j}^{k}-D_{i j}^{k-1}\right|<10^{-7} \text { for all } i \text { and } j .
$$

Algorithm 298--No. of Iterations

|  | $N$ | $\alpha$ | $\theta$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  |  |  | 0.8 | 0.9 | 0.95 | 0.999 |  |  |
| (a) | 5 | 1.054 | 22 | 18 | 17 | 16 |  |  |
| (b) | 3 | 1.071 | 60 | 52 | 49 | 47 |  |  |

Series Method--No. of Iterations

|  | $\theta_{\text {opt }}$ | $\theta$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.01 .11 .2 | 1.31 .4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| (a) 5 | 1.59 | $\begin{array}{llll}21 & 19 & 17\end{array}$ | $16 \quad 14$ | 13 | 15 | 19 | 26 | 37 | 67 |
| (b) 3 | 2.006 | 118108100 | $93 \quad 87$ | 81 | 77 | 72 | 69 | 65 |  |

The behavior of Algorithm 298 was found to be similar in all cases studied. The best choice of $\theta$ is as close to $\alpha$ as possible. Normally, 0.999 must be chosen. The performance of the series method is well illustrated by the two examples chosen. It is difficult to determine a good value of $\theta$, and even if a value very close to $\theta_{\text {opt }}$ is accidentally used, the performance of the series method can be inferior to the method used in Algorithm 298.

The series method has one other disadvantage. For an efficient algorithm, several extra arrays are required as intermediate storage. The only clear advantage is that the series method can be readily modified for powers other than square root. Algorithm 298 is the most efficient method of the two.

## ALGORITHM 299

## CHI-SQUARED INTEGRAL [S15]

I. D. Hill and M. C. Pike (Recd. 9 Sept. 1965 and 3 Oct. 1966)
Medical Research Council, Statistical Research Unit, 115 Gower St., London W.C.1., England
real procedure chiprob ( $x, f$, bigx, normal, wrong);
value $x, f, b i g x$; real $x$; integer $f$; Boolean bigx;
real procedure normal; label wrong;
comment Finds the probability that $\chi^{2}$, on $f$ degrees of freedom exceeds $x$, i.e.,

$$
\frac{1}{2^{\frac{1}{} / \Gamma\left(\frac{1}{2} f\right)}} \int_{x}^{\infty} z^{\frac{1}{f}-1} e^{-\frac{1}{2} z} d z \quad(x \geqq 0, \quad f \geqq 1)
$$

The algorithm is based upon the recurrence formula

$$
P\left(\chi_{f}^{2}>x\right)=P\left(\chi_{f-2}^{2}>x\right)+\frac{\left(\frac{1}{2} \chi\right)^{\frac{1}{2} f-1} e^{-\frac{1}{2} x}}{\Gamma\left(\frac{1}{2} f\right)}
$$

[Handbook of Mathematical Functions, National Bureau of Standards, Appl. Math. Series 55 (1964), formula $26.4 ; 8$ ] by means of which any $\chi^{2}$-integral can be reduced to the sum of
(i) a series of terms that can be directly evaluated, and
(ii) a $\chi^{2}$-integral on 2 degrees of freedom (if $f$ is even), or on 1 degree of freedom (if $f$ is odd).
To evaluate (ii) we have either

$$
P\left(\chi_{2}^{2}>x\right)=e^{-\frac{1}{2} x}
$$

or

$$
P\left(\chi_{1^{2}}>x\right)=(2 / \sqrt{ } 2 \pi) \int_{\sqrt{x}}^{\infty} e^{-1 z^{2}} d z
$$

The evaluation of the latter expression is performed by the formal real procedure normal which must evaluate the lower tail area of the standardized normal curve (real procedure Gauss [D. Ibbetson, Alg. 209, Comm. ACM 6 (Oct. 1963), 616] may be used as the actual parameter).

The parameter $b i g x$ should be set to true if the value of $x$ is too big for $\exp (-0.5 \times x)$ to be accurately represented by the machine, or false otherwise.

For even degrees of freedom the method is exact, and the algorithm is essentially accurate to the accuracy of the machine. For odd degrees of freedom the accuracy will be dictated by the accuracy of the real procedure normal.

For large degrees of freedom, if speed is more important than great accuracy, it may be found preferable to use an approximation, e.g., the Wilson-Hilferty cubic formula [Wilson, E. B., and Hilferty, M. M., Proc. Nat. Acad. Sci. 17 (1931), 684] which may be expressed as
chiprob $:=$ normal $(-s q r t(4.5 \times f) \times((x / f) \uparrow(1 / 3)+2 /(9 \times f)-1))$.
This is accurate to 3 decimal places for $f>40$.
The authors thank the referee and the editor for helpful criticisms and suggestions;

```
begin
 if \(x<0 \vee f<1\) then go to wrong else
 begin
 real \(\alpha, \dot{y}, s\);
 Boolean even;
 \(a:=0.5 \times x ;\) even \(:=2 \times(f \div 2)=f\);
 if even \(\vee f>2 \wedge \neg\) bigx then \(y:=\exp (-\alpha)\);
 \(s:=\) if even then \(y\) else \(2.0 \times\) normal \((-s q r t(x))\);
 if \(f>2\) then
 begin
 real \(e, c, z\);
 \(x:=0.5 \times(f-1.0) ; z:=\) if even then 1.0 else \(0.5 ;\)
 if \(b i g x\) then
 begin
 \(e:=\) if even then 0 else \(0.572364942925 ; c:=\ln (a)\);
 comment \(0.572364942925=\ln (\operatorname{sgrt}(\pi))\);
 for \(z:=z\) step 1.0 until \(x\) do
 begin
 \(e:=\ln (z)+e\);
 \(s:=\exp (c \times z-a-e)+s\)
 end;
 chiprob \(:=s\)
 end else
 begin
 \(e:=\) if even then 1.0 else \(0.564189583548 / \operatorname{sqrt}(a) ; \quad c:=0\);
 comment \(0.564189583548=1 / \operatorname{sqrt}(\pi)\);
 for \(z:=z\) step 1.0 until \(x\) do
 begin
 \(e:=e \times a / z ;\)
 \(c:=c+e\)
 end;
 chiprob \(:=c \times y+s\)
 end
 end else chiprob \(:=s\)
 end
end chiprob
```


## CERTIFICATION OF ALGORITHM 299 [S15]

CHI-SQUARED INTEGRAL [I. D. Hill and M. C. Pike, Comm. ACM 10 (Apr. 1967), 243]
William M. O’Brien and Joan Wood (Recd. 17 Oct. 1967 and 1 Dec. 1967)
Department of Preventive Medicine, University of Virginia School of Medicine, Charlottesville, Virginia

KEY WORDS AND PHRASES: chi-squared integral, probability, special functions
$C R$ CATEGORIES: 5.5, 5.12
Chi-Squared Integral compiled and ran in Burroughs B5500 Algol with the following revisions:
(i) wrong was removed from the formal parameter list;
(ii) label wrong; was removed from the specification part
(iii) the last two lines were modified to read:
end,
wrong: end chiprob

These modifications were necessary since the heading of a typed procedure may not contain a label in Burroughs Extended Algol. [Editor's note: The question of whether a function procedure in Algol 60 may have a label as a formal parameter providing an exit from the procedure via a go to statement is not completely answered in the Algol 60 report. See D. E. Knuth, The remaining trouble spots in Algol 60, Comm. ACM 10 (Oct. 1967), 611-618 (614). The use of wrong as a formal parameter in chiprob may cause trouble in many compilers. Perhaps the best way to handle the problem of error exits is to provide a formal parameter, error, which is a procedure name and let the user provide his own procedure for error recovery.-JGH].
bigx was set to true if $\exp (-0.5 \times x)<10-10$ and Algorithm 209 [D. Ibbetson, Gauss, Comm. ACM 6 (Oct. 1963), 616] was used for the formal real procedure normal.

The following were calculated:

| Chi squared | Degrees of freedom |
| :---: | ---: |
| 0.001 | 1 to 3 |
| 2.2 | 1 to 17 |
| 8.2 | 1 to 32 |
| 82.0 | even values 34 to 70 |

The results were checked against E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, vol. 1, 2nd ed., Cambridge, 1962, pp. 122-129, which gives values of chi squared to five decimal places. The computer calculations, which were carried to nine places, gave identical results except in three instances, which were $\chi^{2}=2.2$ with df $=10, \chi^{2}=8.2$ with $\mathrm{df}=24$, and $\chi^{2}=82$ with $\mathrm{df}=$ 38. In all three cases the sixth figure would have rounded to a 5 and the discrepancies appear to be due to inconsistencies in the rounding of the original Biometrika Tables, rather than errors in the procedure.

ACM Transactions on Mathematical Software, Vol. 2, No. 4, December 1976, Pages $393-345$.
REMARK ON ALGORITHM 299
Chi-Squared Integral [S15]
[I.D. Hill and M.C. Pike, Comm. ACM 10, 4 (April 1967), 243]
Mohamed el Lozy, M.D. [Recd 20 May 1976 and 15 July 1976]
Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115.

This work was supported in part by the Agency for International Development under Contract AID/afr-650 and in part by the Fund for Research and Teaching, Department of Nutrition, Harvard School of Public Health.

This algorithm suggests the use of the Wilson-Hilferty formula [3] if an approximation is desired for large degrees of freedom. Peizer and Pratt [2] have since then described a family of normal approximations far superior to the cube-root family, their formula for the chi-squarc distribution being [eqs. (2.24b) to (2.27) of their paper]:

$$
z=d[(1+g(s / x)) / 2 x]^{1 / 2}
$$

where $z$ represents the corresponding normal deviate, $x$ represents the chi-squared value, $n$ represents the degrecs of frecdom, and

$$
\begin{aligned}
s & =n-1 \\
d & =x-n+2 / 3-0.08 / n \\
g(t) & =\left(1-t^{2}+2 t \ln t\right) /(1-t)^{2}, \quad t>0, t \neq 1 \\
g(0) & =1, \quad g(1)=0 .
\end{aligned}
$$

The two approximations were compared for degrees of freedom $n=1$ (1) 20 (5) 100 (2) 200 using, for each value of $n$, a grid of 500 chi-squared values uniformly distributed over the interval from $P=0.00001$ to $P=0.99999$. The "true" values of $P$ were calculated using an IMSL subroutine, MDCHDI [1] which is essentially a double precision Fortran version of Algorithm 299 not using any approximation. Table I shows the maximum difference between the "true" results and those obtained with both approximations; the superiority of the Peizer and Pratt approximation is clear. For'only 4 degrecs of freedom it will give 3 correct decimals; for 11 degrees of freedom it will give 4 correct decimals; for 31 degrees of freedom it will give 5 correct decimals; and for 120 degrees of frecdom it will give 6 correct decimals. In contrast, the Wilson-Hilferty approximation will give 3 correct decimals for 25 or more degrees of frecdom, and calculations with a coarse grid show that 4 correct decimals are achicved somewhere between 200 and 300 degrees of freedom.

Since full word length accuracy is rarely, if ever, needed in the evaluation of the integrals of probability functions, it is suggested that for more than 30 degrees of freedom the Peizer and Pratt approximation be used in place of the iterative algorithm. There would appear to be no justification for using the Wilson and Hilferty approximation.

The calculations were done on an IBM 370/168 using double precision through-

Table I. Maximum Absolute Errors for the Wilson-Hilferty and Peizer-Pratt Approximations to the Chi-Squared Integral

| Degrees of freedom | Maximum error using approximation of |  |
| :---: | :---: | :---: |
|  | Wilson-Hilferty | Peizer-Pratt |
| 5 | $.26 \mathrm{E}-2$ | $.33 \mathrm{E}-3$ |
| 10 | $.13 \mathrm{E}-2$ | $.58 \mathrm{E}-4$ |
| 15 | $.82 \mathrm{E}-3$ | $.22 \mathrm{E}-4$ |
| 20 | $.61 \mathrm{E}-3$ | $.72 \mathrm{E}-4$ |
| 25 | $.48 \mathrm{E}-3$ | $.73 \mathrm{E}-5$ |
| 30 | $.39 \mathrm{E}-3$ | $.50 \mathrm{E}-5$ |
| 50 | $.13 \mathrm{E}-3$ | $.19 \mathrm{E}-5$ |
| 100 | $.92 \mathrm{E}-4$ | $.55 \mathrm{E}-6$ |
| 120 | $.54 \mathrm{E}-4$ | $.41 \mathrm{E}-6$ |
| 200 |  | $.18 \mathrm{E}-6$ |

out, as it was desircd to test the accuracy of the approximation without having to worry about inaccuracies due to the short word length of the machine. Single precision calculations gave almost identical results for the Wilson-Hilferty approximation. In the case of the Peizer and Pratt approximation very similar results were obtained up to about 30 degrees of freedom, after which the maximum error obtained with single precision was greater than that obtained with double precision, and never fell below . $2 \mathrm{E}-5$. However, like the double precision version, the single precision routine gave 5 correct decimal places for 31 or more degrees of freedom.

The use of the $g$ function avoids inaccuracies that would arise if the simpler equation (2.24a) of [2] were used. In evaluating it, care must be taken near the two singularities. For 1 degree of freedom $s=0$; so the argument to $g(t)$ will be zero and $g(t)$ must be set to 1 . In the testing done, the smallest nonzero value of the argument to $g(t)$ was 0.04 , which did not lead to any numerical problems. On the other hand, values very close to 1 were obtained, the smallest absolute difference from 1 being $.14 \mathrm{E}-4$. In single precision at least such arguments can lead to great loss of accuracy; so for values of the argument close to 1 the power expansion given by Peizer and Pratt [2, eq. (10.3)] should be used:

$$
g(t)=\sum_{j=1}^{j=\infty} 2(1-t)^{j} /(j+1)(j+2)
$$

It is not clear what the optimal value of the crossover point from the logarithmic to the power series form of $g(t)$ is, but in the single precision version we have used an absolute value of $(1-t)$ less than 0.1 as the crossover criterion, taking the first 5 terms of the series.

## REFERENCES

1. Library I Reference Manual, Vol. 2. Int. Math. and Stat. Libraries, 3rd edition, 1974.
2. Peizer, D.B., and Pratt, J.W. A normal approximation for binomial, F, beta, and other common, related tail probabilities, I. J. Amer. Stat. Assn. 63 (1968), 1416-1456.
3. Wilson, E.B., and Hilferjy, M.M. The distribution of chi-square. Proc. Nat. Acad. Sci., 1931, pp. 684-688.

## ALGORITHM 300 <br> COULOMB WAVE FUNCTIONS [S22]

J. H. Gunn (Recd. 19 Feb. 1965)

Nordisk Institut for Teoretisk Atomfysik Blegdamsvej 15, Copenhagen, Denmark
procedure $\operatorname{Coulomb}$ ( $F, F d, G, G d$, sig, rho, etci, lmax, exit); value rho, eta, lmax;
real rho, eta; integer lmax; array $F, F^{\top} d, G, G d$, sig; label exit;
comment The Coulomb wave functions $F_{L}$ and $G_{L}$ are defined as the two independent solutions of the differential equation

$$
\frac{d^{2} y}{d \rho^{2}}+\left(1-2 \eta / \rho-L(L+1) / \rho^{2}\right) y=0
$$

having the asymptotic behavior for large $\rho$

$$
\begin{aligned}
F_{L} & \sim \sin \left(\rho-\eta \ln 2 \rho-\frac{L}{2} \pi+\sigma_{L}\right) \\
G_{L} & \sim \cos \left(\rho-\eta \ln 2 \rho-\frac{L}{2} \pi+\sigma_{L}\right)
\end{aligned}
$$

where $\sigma_{L}=\arg \Gamma(i \eta+L+1)$. The procedure calculates for a given $\rho=r h o$ and $\eta=e t a$, the functions $F_{L}$ and $G_{L}$, their derivatives $F_{L^{\prime}}$ and $G_{L^{\prime}}$, and $\sigma_{L}$ for all $L$ from 1 up to $\operatorname{lmax}(>0)$ and places the results in the arrays $F, G, F d, G d$, sig respectively, which must have bounds 0:lmax. rho must lie in the range $5-30$ and eta in the range $0.1-30$ : values outside this range cause the procedure to leave via the label exit. This range is one that is often used in scattering and reaction problems in physics. Details of the methods used are to be found in: C. E. Fröberg, "Numerical treatment of Coulomb wave functions," Rev. Mod. Phys. 27 (1955), 399-411, and in: H. F. Lutz and M. D. Karvelis, "Numerical calculation of Coulomb wave functions for repulsive Coulomb fields,'" Nucl. Phys. 43 (1963), 31-44. The author gratefully acknowledges the extensive help of Miss Margaret Wirt in the preparation of this procedure;

## begin

integer $n$; real rhom;
comment jump to label exit if rho and eta lie outside range of procedure;
if rho $<5 \vee$ rho $>30 \vee$ eta $<0.1 \bigvee$ eta $>30$ then go to exit;
begin real sto; integer $i$;
comment phase shifts $\sigma_{L}$ are calculated using formulae 44-45 of Lutz and Karvelis;
sto $:=16+$ eta $\uparrow 2$;
$\operatorname{sig}[0]:=-$ eta $+e t a / 2 \times \ln (s t o)+3.5 \times \arctan (e t a / 4)-$ $(\arctan (e t a)+\arctan (e t a / 2)+\arctan (e t a / 3))-e t a /(12 \times s t o) \times$ $(1+1 / 30 \times(e t a \uparrow 2-48) / s t o \uparrow 2+1 / 105$
$\times($ eta $\uparrow 4-160 \times$ eta $\uparrow 2+1280) /$ sto $\uparrow 4)$ :
for $i:=1$ step 1 until lmax do
$\operatorname{sig}[i]:=\operatorname{sig}[i-1]+\arctan (e t a / i)$
end;
if $r h o \leqq(5 \times$ eta -15$) / 3 \bigvee$ rho $\leqq$ eta then
begin comment $G[0]$ and $G d[0]$ are calculated using the Riccati method ( $\rho<2 \eta$ ) ref. formulae 9.1-9.4, Fröberg;
integer $i$; real $q, p s i, p s i d, f ;$ array $g, g d[0: 7], t, s[1: 10]$;
$t[1]:=r h o /(2 \times e t a) ; \quad s[1]:=1-t[1] ; \quad q:=\operatorname{sqrt}(t[1] \times s[1])$;
for $i:=2$ step 1 until 10 do
begin $t[i]:=t[1] \times t[i-1]$;
$s[i]:=s[1] \times s[i-1]$
end;
$g[0]:=q+\arctan (t[1] / q)-1.5707963 ;$
$g[1]:=0.25 \times \ln (t[1] / s[1])$;
$g[2]:=-(8 \times t[2]-12 \times t[1]+9) /(48 \times q \times s[1])$;
$g[3]:=(8 \times t[1]-3) /(64 \times t[1] \times s[3])$;
$g[4]:=(2048 \times t[6]-9216 \times t[5]+16128 \times t[4]-13440 \times t[3]-12240$
$\times t[2]+7560 \times t[1]-1890) /(92160 \times q \times t[1] \times s[4])$;
$g[5]:=3 \times(1024 \times l[3]-448 \times t[2]+208 \times t[1]-39) /(8192 \times t[2] \times$ $s[6])$;
$g[6]=-(262144 \times t[10]-1966080 \times t[9]+6389760 \times t[8]-11714560$
$\times t[7]+13178880 \times t[6]-9225216 \times t[5]+13520640 \times t[4]-$
$3588480 \times t[3]+2487240 \times t[2]-873180 \times t[1]+130977) /(10321920$
$\times q \times t[2] \times s[7])$;
$g[7]:=(1105920 \times t[5]-55296 \times t[4]+314624 \times t[3]-159552 \times t[2]$
$+45576 \times t[1]-5697) /(393216 \times t[3] \times s[9])$;
$g d[0]:=q / t[1] ;$
$g d[1]:=0.25 /(t[1] \times s[1])$;
$g d[2]:=-(8 \times t[1]-3) /(32 \times q \times t[1] \times s[2]) ;$
$g d[3]:=3 \times(8 \times t[2]-4 \times t[1]+1) /(64 \times t[2] \times s[4]) ;$
$g d[4]:=-(1536 \times t[3]-704 \times t[2]+336 \times t[1]-63) /(2048 \times q \times t[2]$ $\times s[5])$;
$g d[5]:=3 \times(2560 \times t[4]-832 \times t[3]+728 \times t[2]-260 \times t[1]+39) /$ ( $4096 \times t[3] \times s[7])$;
$g d[6]:=(-368640 \times t[5]-30720 \times t[4]+114944 \times t[3]-57792 \times t[2]$
$+16632 \times t[1]-2079) /(65536 \times q \times t[3] \times s[8])$;
$g d[7]:=3 \times(860160 \times t[6]+196608 \times t[5]+308480 \times t[4]-177280 \times$ $t[3]+73432 \times t[2]-17724 \times t[1]+1899) /(131072 \times t[4] \times s[10]) ;$
$f:=2 \times$ eta; psi $:=p$ sid $:=0 ; q:=-1$;
for $i:=0$ step 1 until 7 do
begin $p s i:=p s i+q \times f \times g[i] ;$
psid := psid $+q \times f \times g d[i]$;
$f:=f /(2 \times e t a) ; \quad q:=-q$
end;
$G[0]:=\exp (p s i) ; \quad G d[0]:=G[0] \times p s i d /(2 \times$ eta $) ; \quad$ rhom $:=$ rho
end else
if $r h o \geqq(30 \times e t a+75) / 13 \wedge r h o<2 \times$ eta $\uparrow 2$ then
begin comment $G[0]$ and $G d[0]$ are calculated using the second Riccati method ( $2 \eta<\rho$ ) ref. formulae 9.6-9:8, Fröberg;
integer $i$; real $A, B, p s i, p h i, M, q ;$ array $x, y, e[1: 10]$;
$x[1]:=2 \times$ eta/rho; $y[1]:=1-x[1] ; \quad q:=\operatorname{sqrt}(y[1]) ; \quad e[1]$ $:=2 \times e t a ;$
for $i:=2$ step 1 until 10 do
begin $x[i]:=x[1] \times x[i-1] ; \quad e[i]:=e[1] \times e[i-1]$; $y[i]:=y[1] \times y[i-1]$
end;
psi $:=-(8 \times x[3]-3 \times x[4]) /(64 \times e[2] \times y[3])+3 \times x[5] \times$ $(1024-448 \times x[1]+208 \times x[2]-39 \times x[3]) /(8192 \times e[4] \times y[6])-$ $x[7] \times(1105920-55296 \times x[1]+314624 \times x[2]-159552 \times x[3]+$ $45576 \times x[4]-5697 \times x[5]) /(393216 \times e[6] \times y[9])$;
$p h i:=e[1] \times(q / x[1]+0.5 \times \ln ((1-q) /(1+q)))+0.7853982$ $-(9 \times x[2]-12 \times x[1]+8) /(48 \times e[1] \times q \times y[1])$

- ( $2048-9216 \times x[1]+16128 \times x[2]-13440 \times x[3]-12240$

```
 ×x[4]+7560\timesx[5]-1890\timesx[6])/(92160 }\timese[3]\timesq\timesy[4]
 - (130977\timesx[10]-873180\timesx[9]+2487240\timesx[8]-3588480
 Xx[7]+13520640\timesx[6]-9225216\timesx[5]+15178880 }\timesx[4
 -11714560\timesx[3]+6389760\timesx[2]-1966080\timesx[1]
 +262144)/(10321920\timese[5] }\timesq\timesy[7])
A := q/x[2] + (8\timesx[1]-3\timesx[2])/(32\timese[2]\timesq\timesy[2])
 -x[3]\times(1536-704\timesx[1]+336\timesx[2]-63\timesx[3])/
 (2048\timese[4] }\timesq\timesy[5])+x[5]\times(368640-30720\timesx[1
 +114944\timesx[2]-57792\timesx[3]+16632\timesx[4]-2079\timesx[5])/.
 (65536\timese[6]\timesq\timesy[8]);
 B:=1/(4\timese[1]\timesy[1])-3\timesx[2]\times(x[2]-4\timesx[1]+8)/
 (64\timese[3]\timesy[4])+3\timesx[4]\times(2560-832\timesx[1]+728
 Xx[2]-260\timesx[3]+39\timesx[4])/(4096\timese[5]\timesy[7]) -- 3
 Xx[6]\times(1899\timesx[6]-17724\timesx[5]+73432\timesx[4]-177280
 Xx[3]+308480\timesx[2]+196608\timesx[1]+860160)/(131072
 Xe[7]\timesy[10]);
 M:= sqrt (1/q) }\times\operatorname{exp}(psi)
 G[0]:=M\times\operatorname{cos}(phi);
```

    \(G d[0]:=-x[2] \times(A \times M \times \sin (p h i)+B \times G[0]) ;\) rhom \(:=r h o\)
    end else
if $e t a<4$ then
begin comment $G[0]$ and $G d[0]$ are calculated using an asymp-
totic expansion, ref. formulae 12.3-12.7, Fröberg;
real ss, $s 1, t t, t 1, S S, S 1, T T, T 1, s n, t n, S n, T n, A n, B n$, theta,
cth, $s t h$; integer $i$;
rhom := if rho $\geqq 2 \times$ eta $\uparrow 2$ then rho else $2 \times$ eta $\uparrow 2$;
comment a suitable value of rhom is chosen for which the
expansion is valid;
$s s:=s n:=1 ; \quad t t:=t n:=0$;
$S S:=S n:=0 ; T T:=T n:=1-$ eta/rhom;
for $i:=0$ step 1 until $10,11, i+1$ while $\left(a b s(s n)>_{10-7}\right.$
$\times a b s(s s) \bigvee a b s(t n)>_{10-7 \times a b s(t t) \bigvee a b s(S n)>10 \rightarrow 7}$
$\times a b s(S S) \bigvee a b s(T n)>10-7 \times a b s(T T)) \wedge(a b s(s n)$
$<a b s(s 1) \wedge a b s(t n)<a b s(t 1) \wedge a b s(S n)<a b s(S 1) \wedge^{\prime} a b s(T n)$
$<a b s(T 1))$ do
begin $A n:=(2 \times i+1) \times$ eta $/(2 \times(i+1) \times$ rhom $)$;
$B n:=($ eta $\uparrow 2-i \times(i+1)) /(2 \times(i+1) \times$ rhom $) ;$
$s 1:=s n ; t 1:=t n ; S 1:=S n ; T 1:=T n ;$
$s n:=A n \times s 1-B n \times t 1 ;$
$t n:=A n \times t 1+B n \times s 1 ;$
$S n:=A n \times S 1-B n \times T 1-s n /$ rhom;
$T n:=A n \times T 1+B n \times S 1-t n /$ rhom;
$s s:=s s+s n ; \quad t t:=t t+t n ;$
$S S:=S S+S n ; \quad T T:=T T+T n$
end;
theta $:=-$ eta $\times \ln (2 \times$ rhom $)+$ rhom $+\operatorname{sig}[0]$;
cth $:=\cos ($ theta $) ; ~ s t h ~:=\sin ($ theta $)$;
$G[0]:=s s \times c t h-t t \times s t h ; G d[0]:=S S \times c t h-T T \times s t h$
end else
begin comment $G[0]$ and $G d[0]$ are calculated on the transition
line for $r$ hom $=2 \times$ eta, ref. formulae 10.3-10.4, Fröberg;
$G[0]:=1.22340416 \times$ eta $\uparrow(1 / 6) \times(1+0.0495957017 /$ eta $\uparrow(4 / 3)$
$-0.0088888889 /$ eta $\uparrow 2+0.00245519918 /$ eta $\uparrow(10 / 3)$
$-0.000910895806 /$ eta $\uparrow 4+0.000253468412 /$ eta $\uparrow(16 / 3))$;
$G d[0]:=-.707881773 \times$ eta $\uparrow(-1 / 6) \times(1-0.172826037 /$
eta $\uparrow(2 / 3)+0.000317460317 /$ eta $\uparrow 2-0.00358121485 /$ eta $\uparrow(8 / 3)$
$+0.000311782468 / e t a \uparrow 4-0.000907396643 / e t a \uparrow(14 / 3))$;
rhom $:=2 \times$ eta
end;
if $r$ hom $\neq r h o$ then
begin comment Integrate the solutions $G[0]$ and $G d[0]$ from the value of rhom at which they were evaluated to the value of rho required using Runge-Kutta formula;
integer $n h, i$; real $k 1, k 2, k 3, k 4, k 1 p, k 2 p, k 3 p, k 4 p, y, y p$, $x, h$;

```
 \(n h:=\) entier (abs (rhom-rho) \(\times 10+1\));
 \(h:=(r h o-r h o m) / n h ;\)
 \(x:=\) rhom \(; \quad y:=G[0] ; \quad y p:=G d[0]\);
 for \(i:=1\) step 1 until \(n h\) do
 begin \(k 1:=h \times y p ; \quad k 1 p:=-h \times(1-2 \times e t a / x) \times y\);
 \(k 2:=h \times(y p+k 1 p / 2) ; \quad k 2 p:=-h \times(1-2 \times e t a /(x+h / 2))\)
 \(\times(y+k 1 / 2)\);
 \(k 3:=h \times(y p+k 2 p / 2) ; \quad k 3 p:=-h \times(1-2 \times e t a /(x+h / 2))\)
 \(\times(y+k 2 / 2)\);
 \(k 4:=h \times(y p+k 3 p) ; \quad k 4 p:=-h \times(1-2 \times e t a /(x+h)) \times\)
 \((y+k 3) ; y:=y+(k 1+2 \times k 2+2 \times k 3+k 4) / 6 ;\)
 \(y p:=y p+(k 1 p+2 \times k 2 p+2 \times k 3 p+k 4 p) / 6 ;\)
 \(x:=x+h\)
 end;
 \(G[0]:=y ; \quad G d[0]:=y p\)
end;
\(n:=\) if rho \(>\operatorname{lmax}\) then entier \((r h o+10)\) else \(\operatorname{lmax}+10\);
```

begin comment Use downward recurrence relation (Millers method) and normalisation condition to obtain solutions $F[L]$;
array $f[0: n]$; real $f d 0$, alpha, sto; integer $L$;
$f[n]:=0$;
$f[n-1]:=1$;
for $L:=n-1$ step -1 until 1 do
$f[L-1]:=L / \operatorname{sqrt}(e t a \uparrow 2+L \uparrow 2) \times(((2 \times L+1) \times e t a /$ $(L \times(L+1))+(2 \times L+1) /$ rho $) \times f[L]-\operatorname{sqrt}(e t a \uparrow 2$ $+(L+1) \uparrow 2) /(L+1) \times f[L+1])$;
$f d 0:=(e t a+1 / r h o) \times f[0]-s q r t(e t a \uparrow 2+1) \times f[1] ;$
$G[1]:=(-G d[0]+(1 / r h o+e t a) \times G[0]) / s q r t(1+e t a \uparrow 2) ;$
alpha $:=1 /(s q r t(1+e t a \uparrow 2) \times(f[0] \times G[1]-f[1] \times G[0]))$;
$F[0]:=$ alpha $\times f[0]$;
$F d[0]:=$ alpha $\times f d 0$;
comment Upward recurrence relations for remaining solutions;
for $L:=0$ step 1 until $\operatorname{lmax}-1$ do
begin $F[L+1]:=$ alpha $\times f[L+1]$; sto $:=$ sqrt $($ eta $\uparrow 2+(L+1) \uparrow 2) /(L+1)$;
$F d[L+1]:=$ sto $\times F[L]-(e t a /(L+1)+(L+1) / r h o) \times$
$F[L+1] ; G[L+1]:=1 /$ sto $\times((e t a /(L+1)+(L+1) /$ rho $)$
$\times G[L]-G d[L]) ; G d[L+1]:=$ sto $\times G[L]-(e t a /(L+1)+$ $(L+1) / r h o) \times G[L+1]$
end
end
end Coulomb

CERTIFICATION OF ALGORITHM 300 [S22]
COULOMB WAVE FUNCTIONS [J. H. Gunn, Comm. ACM 10 (Apr. 1967), 244]
K. S. Kölbig (Recd. 8 Feb. 1968)

Applied Mathematics Group, Data Handling Division, European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
KEY WORDS AND PHRASES: Coulomb wave functions, wave functions
$C R$ CATEGORIES: 5.12
The procedure Coulomb was checked for a few parameter values using the Algol compiler of the CDC 3800 computer at CERN. It was found that for $\rho=\eta$ better results were obtained if the first line of the second if statement was altered to read:
if $r h o \leq(5 \times e t a-15) / 3 \vee r h o<e t a$ then
It was also necessary to correct a misprint in the first constant following the comment " $G[0]$ and $G d[0]$ are calculated on the transition line for rhom $=2 \times$ eta, ref. formulas 10.3-10.4, Fröberg." The line following this comment should read:
$G[0]:=1.223404016 \times$ eta $\uparrow(1 / 6) \times\left(1+0.0495957017 /\right.$ eta $\uparrow\left(\frac{1}{3}\right)$
The procedure was then translated into Fortran and tested in more detail on a CDC 6600 computer. The tests included the following:
(i) Generation of $\Phi_{L}(\eta, \rho)=\left[C_{L}(\eta) \rho^{L+1}\right]^{-1} F_{L}(\eta, \rho), L=0(1) 21$ for $\eta=1(1) 5, \rho=5$. The results were compared with values tabulated in [1]. In most cases, 6 to 7 significant digits agreed, except for $\eta=1$, where agreement was found to 3 to 4 significant digits. It is interesting to compare some results for $\rho=\eta=5$ obtained with and without the first of the above corrections:

| $L \backslash \Phi_{L}$ | Without carrection | With correction | Table [1] and <br> Gautschi [2] |
| :---: | :--- | :--- | :--- |
| 0 | $6.554097_{10} 3$ | $6.552297_{10} 3$ | $6.552292_{10} 3$ |
| 5 | $1.865738_{10} 1$ | $1.865226_{10} 1$ | $1.865225_{10} 1$ |
| 10 | $5.354953_{10} 0$ | $5.353482_{10} 0$ | $5.353478_{10} 0$ |
| 20 | $2.440859_{10} 0$ | $2.440188_{10} 0$ | $2.440187_{10} 0$ |

(ii) Computation of $F_{0}(\eta, \rho), F_{0}{ }^{\prime}(\eta, \rho)=(d / d \rho) F_{0}(\eta, \rho)$ for $\eta=$ $2(2) 12, \rho=5(5) 30$. Comparison with the table of Tubis [3] revealed frequent discrepancies of 1 (occasionally 2 ) units of the fifth significant digit. However, disagreement was observed in many fewer cases when comparing the calculated results with those obtained by Gautschi's algorithm [2].
(iii) Computation of $F_{0}(\eta, \rho), F_{0}{ }^{\prime}(\eta, \rho), G_{0}(\eta, \rho)$, and $G_{0}{ }^{\prime}(\eta, \rho)$ for $\rho=2 \eta, \rho=5(.5) 20(2) 30$. Comparing the results with the table of Abramowitz and Rabinowitz [4] or with the values obtained with Gautschi's algorithm, the following discrepancies were found in units of the seventh decimal place:
$F_{0}$-frequently 1 , occasionally 2 , units for $\rho \leq 10$;
$F_{0}{ }^{\prime}$-frequently 1 unit for $\rho \leq 8.5$;
$G_{0}$-for $\rho \leq 8$ up to 40 units, for $8<\rho \leq \mathbf{1 4 . 5}$ up to 2 or 3 units; $G_{0}{ }^{\prime}$-for $\rho \leq 7.5$ up to 13 units.
(iv) Calculation of $G_{0}(\eta, \rho), \mathrm{G}_{0}{ }^{\prime}(\eta, \rho)$ for $\eta=.5(.5) 20, \rho=5(1) 20$. The results have been compared with the tables given by Abramowitz [5]. Agreement was found in most cases to 5 significant digits. Discrepancies of 1 , occasionally more, units of the fifth significant digit were found, mainly for arguments near a line separating two methods used in the algorithm. In some cases (in the immediate neighborhood of a zero of $G_{0}$ or $G_{0}{ }^{\prime}$ ) there was agreement to only 2 or 3 significant digits.
(v) Generation of $F_{L}(\eta, \rho), F_{L^{\prime}}(\eta, \rho), G_{L}(\eta, \rho), G_{L}{ }^{\prime}(\eta, \rho), \sigma_{L}(\eta)$ for $L=0(1) 10, \rho=5,10, \eta=1(1) 5,10,25$. As a first step, the results were compared with values given in a table by Lutz and Karvelis [6]. Since important discrepancies were noted for $\eta=1, \rho=5$ and $\eta \geq 4$, the values for $F_{L}$ and $F_{L}^{\prime}$ were also calculated by Gautschi's algorithm, known to be correct by checking it against the table [1]. Lutz and Karvelis give 6 significant digits, but without commenting on a possible error tolerance. They state, "we test [the generated functions] to see how closely the Wronskian relation $F_{L}{ }^{\prime} G_{L}-F_{L} G_{L}{ }^{\prime}=1$ is obeyed." Comparison of their values with those obtained from Gautschi's algorithm shows, for $\eta<4$, occasional discrepancies of 1 unit in the sixth significant digit. For $\eta \geq 4$ [disregarding some obvious misprints, e.g. for $G_{1}(2,10)$ and $\left.G_{10}^{\prime}(10,10)\right]$ there are discrepancies which in a few cases exceed a 100 units in the sixth significant digit. Because of this, the table of Lutz and Karvelis was used for checking the procedure Coulomb only for $\eta<4$. For $\eta \geq 4$ check values were obtained from Gautschi's algorithm ( $F_{L}$ and $F_{L}$ only). The following discrepancies were found in units of the sixth significant digit:

```
\(\eta=1, \rho=5: \quad F_{L}-u p\) to 119 units \((L=8)\).
 \(F_{L^{\prime}}\)-up to 87 units (\(L=0\)).
 \(G_{L}\)-up to 350 units (\(L=2\)).
\(\eta=1, \rho=10\);
\(\eta=2,3 \quad: \quad 1\) or 2 units in several cases, exceptionally more;
one isolated case \(G_{3}(3,10)\) with 23 units. Compari-
son with Gautschi's values (where possible)
gives better agreement.
```

$\eta \geq 4 \quad: \quad$ Occasionally 1 unit for $F_{L}$ and $F_{L^{\prime}}$.
$\sigma_{L}(\eta)$ nearly always agreed to 6 significant digits for all tested $\eta$.
To complete the check, values of the functions at $\eta=1, \rho=5$, and $\eta=\rho=5$ were calculated using the Alqol procedure. The results agreed with those calculated by the Fortran program to the 6 significant digits which were compared.

## References:

1. National Bureau of Standards. Tables of Coulomb Wave Functions, Vol. I. Appl. Math. Ser. 17, U.S. Govt. Printing Office, Washington, D.C., 1952.
2. Gautschi, W. Algorithm 292. Regular Coulomb wave functions. Comm. ACM 9 (Nov. 1966), 793-795.
3. Tubis, A. Tables of Nonrelativistic Coulomb Wave Functions. LA-2150, Los Alamos Sci. Lab., Los Alamos, New Mexico, 1958.
4. Abramowitz, M., and Rabinowitz, P. Evaluation of Coulomb wave functions along the transition line. Phys. Rev. 96 (1954), 77-79.
5. -, and Stegun, I. A. (Eds.) Handbook of Mathematical Functions. NBS Appl. Math. Ser. 55, U.S. Govt. Printing Office, Washington, D.C., 1965.
6. Lutz, H. F., and Karvelis, M.D. Numerical calculation of Coulomb wave functions for repulsive Coulomb fields. Nucl. Phys. 43 (1963), 31-44.

REMARK ON ALGORITHM 300 [S22]
COULOMB WAVE FUNCTIONS [J. H. Gunn, Comm. ACM 10 (Apr. 1967), 244]; CERTIFICATION OF ALGORITHM 300 [K. S. Kölbig, Comm. ACM 12 (May 1969), 279]
K. S. Kölbig (Recd. 14 Apr. 1969)

Data Handling Division, European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
KEY WORDS AND PHRASES: Coulomb wave functions, wave functions, special functions, function evaluation $C R$ CATEGORIES: 5.12
Recently, Isacson [1] pointed out that the coefficient of $\eta^{-16 / 3}$ in the known asymptotic expansion for the irregular Coulomb wave function $G_{0}(\eta, \rho)$ on the transition line $\rho=2 \eta$ was erroneous.
In addition, he gave the expansions for $F_{0}, G_{0}, F_{0}{ }^{\prime}$ and $G_{0}{ }^{\prime}$ up to order $\eta^{-8}$, whereas the old expansions were given to order $\eta^{-16 / 3}$ only.
Therefore, and for reasons of speed, the relevant part of Algorithm 300 should be changed as follows:
begin comment $G[0]$ and $G d[0]$ are calculated on the transition line for rhom $=2 \times$ eta, ref. Isacson in remark;
array et[1:12]; real et1;
$e t[1]:=e \operatorname{eta} \uparrow(-2 / 3)$;

```
for }i:=2\mathrm{ step 1 until 12 do et[i]:= et[1] }\times\mathrm{ et[i-1];
et1 := ela \uparrow (1/6);
G[0]:=1.223404016 }\times\mathrm{ et 1 }\times(1+0.04959570165\times et [2]
-0.008888888889 }\times\mathrm{ et [3] + 0.002455199181 }\times\mathrm{ et [5]
-0.0009108958061 }\times\mathrm{ et [6] + 0.0008453619999 }\times\mathrm{ et [8]
-0.0004096926351 }\times\mathrm{ et [9] + 0.0007116506205 X et [11]
-0.00002439615603 }\times\mathrm{ et [12]);
Gd[0] := (-0.7078817734/et1) }\times(1-0.1728260369\times et [1]
+0.0003174603174 \times et [3] - 0.003581214850 }\times\mathrm{ et [4]
+0.0003117824680 }\times\mathrm{ et [6] - 0.0009073966427 }\times\mathrm{ et [7]
+0.0002128570749 < et [9] - 0.0006215584171 }\times\mathrm{ et [10]
+0.00003685244766 X et [12]);
rhom := 2 }\times\mathrm{ eta
end;
```

Furthermore, it was found in this connection that replacing the first line of the fourth if statement of the algorithm by if eta $<4 \wedge$ eta $<r h o / 2$ then
gives, together with the above expansions, better results for $\rho=2 \eta$ in test (iii) and for $\rho=3, \eta=5$ in test (i) of the Certification.

The relevant statements in test (iii) of the Certification should therefore be replaced by the following ones:
$F_{0}-1$ unit for $\rho=5, \rho=6$, and $\rho=8.5$.
$F_{0}{ }^{\prime}-1$ unit for $\rho=6$.
$G_{0}-1$ unit for $\rho=5.5, \rho=16$, and $\rho=30$.
$G_{0}{ }^{\prime}-1$ unit for $\rho=5.5$.
Reference:

1. Isacson, T. Asymptotic expansion of Coulomb wave functions on the transition line. BIT 8 (1968), 243-245.

## Remark 2 on Algorithm 300 [S22]

Coulomb Wave Functions [J.H. Gunn, Comm. ACM 10 (Apr. 1967), 244]; Certification of Algorithm 300 [K.S. Kölbig, Comm. ACM 12 (May 1969), 279)]; Remark on Algorithm 300 [K.S. Kölbig, Comm. ACM 12 (Dec. 1969), 692].
H. Vos [Recd. 9 Aug. 1971 and 8 Feb. 1972] Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands

Key Words and Phrases: Coulomb wave functions, wave functions, special functions, function evaluation CR Categories: 5.12

The procedure Coulomb can be used very well to generate the Coulomb wave functions $F_{L}$ and $G_{L}$ and their derivatives, needed in elastic scattering calculations in nuclear physics. When the procedure is used many times for many values of rho and eta, it is not only very useful but also necessary to have in each instance an indication about the accuracy of the results. It is obvious to use the Wronskian relations $F_{L}^{\prime} G_{L}-F_{L} G_{L}^{\prime} \equiv 1$ for the purpose of checking the results, as Fröberg [1] states after formula (3.4). However, one has to be very careful in using these relations. The most significant check is given later on, but first it is shown what can go wrong.

This investigation was part of the research program of the "Stichting voor Fundamental Onderzoek der Materie (F.O.M.)," which is financially supported by the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (Z.W.O.)".

Kölbig pointed out already in the certification that Lutz and Karvelis [2] failed to notice discrepancies exceeding 100 units in the sixth significant digit in their tables although they state "when all the functions are generated we test to see how closely the Wronskian relation $F_{L}^{\prime} G_{L}-F_{L} G_{L}^{\prime}=1$ is obeyed." The way Lutz and Karvelis generate the functions goes as follows. First they calculate $G_{0}$ and $G_{0}{ }^{\prime}$; then they use recurrence relations to get $G_{L}$ and $G_{L}^{\prime}$ for $L>0$; and lastly them use backward recurrence relations together with the relation $F_{0} G_{1}-G_{0} F_{1}=\left(\eta^{2}+1\right)^{-1}$ to get $F_{L}$ and $F_{L}{ }^{\prime}$ for all $L$. This last relation is in fact a different form of the Wronskian relation, see e.g. Fröberg [1] formula (3.5). The use of the Wronskian relations to check the results now gives information only about the stability in the use of the recurrence relations, not about the accuracy of the Coulomb wave functions.

As an independent check on the function values, the following procedure can be used. It is easy to calculate $F_{0}$ and $F_{v}^{\prime}$ directly, that is in the same way as $G_{0}$ and $G_{0}{ }^{\prime}$ are calculated (see Fröberg [1] and Isacson [3]). We call the results $F_{0}$ (dir) and $F_{0}{ }^{\prime}$ (dir). These values can be compared with the $F_{0}(r e c)$ and $F_{0}{ }^{\prime}(r e c)$ calculated via the recurrence relations, Wronskian relation, and $G_{0}$ and $G_{1}$ as in the procedure Coulomb. This direct test has to be preferred above a test via the Wronskian relation for the direct results $G_{0} F_{0}^{\prime}(d i r)-G_{0}{ }^{\prime} F_{0}(d i r)=1$ because errors in $F_{0}$ (dir) and $F_{0}{ }^{\prime}(d i r)$ sometimes cancel in the Wronskian. The other Wronskian relations (i.e. for $L>0$ and $F_{0}(r e c)$ and $\left.F_{0}{ }^{\prime}(r e c)\right)$ are hardly needed as a test because they only check the recurrence relations used. The experience is that errors herein are completely negligible (always less than one unit in the tenth digit for all values of $L$ for the 12 -digit EL-X8 computer of the Mathematisch Centrum in Amsterdam).

To include this check, Algorithm 300 should be changed as follows:

1. The line following the first begin should read

## integer $n$; real rhom, $q$;

2. The line following the fourth comment $(G[0]$ and $G d[0]$ are calculated using the Riccati method ( $\rho<2 \eta$ ) formulas 9.1-9.4, Fröberg;) should be altered, according to Fröberg [1] formulas (9.1) and (9.2), to read:
integer $i$; real $q, p s i, p s i d, p h i, p h i d, f$; array $g, g d[0: 7], t$, $s[1: 10]$;
3. The relevant lines after the statement starting with $\mathrm{gdl} \mid 7]:=\ldots$ should read:
$f:=2 \times$ eta $;$ psi $:=$ psid $:=$ phi $:=$ phid $:=0 ; 4:=-1$;
for $i:=0$ step 1 until 7 do
begin psi $:=p s i+q \times f \times g[i] ;$
psid $:=p s i d+q \times f \times g d[i] ;$
phi $:=p h i+f \times g[i]$;
phid $:=$ phid $+f \times$ gd[i];
$f:=f / 2 / e t a ; q:=-q$
end;
$G[0]:=\exp (p s i) ; G d[0]:=G[0] \times p s i d / 2 / e t a ;$
$F[0]:=0.5 \times \exp (p h i) ; F d[0]:=F[0] \times p h i d / 2 / e t a ;$
rhom $:=r h o$;
4. The line just before the fourth if statement (if eta $<4 \wedge$ eta $<r h o / 2$ then), i.e. end else, should according to Fröberg formula (9.8) be replaced by:

$$
\begin{aligned}
& ; F[0]:=M \times \sin (p h i) ; \\
& F d[0]:=-x[2] \times(B \times F[0]-A \times G[0])
\end{aligned}
$$

end else
5. Insert after the last line of the calculation using an asymptotic expansion, just before the third end else, according to Fröberg formula (12.7), the following lines:

$$
\begin{aligned}
& F[0]:=t t \times c t h+s s \times s t h \\
& F d[0]:=T T \times c t h+S S \times s t h
\end{aligned}
$$

6. The two statements after the line
```
et \(1:=e t a \uparrow(1 / 6)\);
i.e. \(G[0]:=\ldots\), and \(G d[0]:=\ldots\), should be replaced by:
\(q:=1 ;\)
here 1:
 \(G[0]:=1.223404016 \times e t 1 \times(1+q \times 0.04959570165 \times e t[2]\)
 \(-0.008888888889 \times e t[3]+q \times 0.002455199181\)
 \(\times e t[5]-0.0009108958061 \times e t[6]+q\)
 \(\times 0.0008453619999 \times e t[8]-0.0004096926351\)
 \(\times e t[9]+q \times 0.0007116506205 \times e t[11]\)
 \(-0.00002439615603 \times e t[12])\);
 \(G d[0]:=(-q \times 0.7078817734 / e t 1) \times(1-q\)
 \(\times 0.1728260369 \times\) et \([1]+0.0003174603174\)
 \(\times e t[3]-q \times 0.003581214850 \times e t[4]\)
 \(+0.0003117824680 \times e t[6]-q \times 0.0009073966427\)
 Xet [7]+0.000 \(2128570749 \times e t[9]-q\)
 \(\times 0.0006215584171 \times e t[10]+0.00003685244766\)
 \(\times \operatorname{et}[12])\);
 if \(q<0\) then begin
 \(q:=+1\);
 \(F[0]:=G[0] \times 0.7063326373 / 1.223404016 ;\)
 \(F d[0]:=G d[0] \times 0.4086957323 / 0.7078817734\);
 go to here 1
 end;
```

7. Replace the line
$x:=$ rhom $; y:=G[0] ; y p:=G d[0] ;$
after comment Integrate the solutions $G[0] \ldots$ by the lines
$x:=r h o m ; y:=G[0] ; y p:=G d[0] ; q:=+1 ;$
here 2:
8. Replace the line following the next for statement; i.e.

$$
G[0]:=y ; G d[0]:=y p
$$

by the lines
if $q>0$ then
$\operatorname{begin} G[0]:=y ; \operatorname{Gd}[0]:=y p ; q:=-1$;
$y:=F[0] ; y p:=F d[0] ; x:=r / h o m ;$ go to here 2
end else
begin $F[0]:=y ; F d[0]:=y p$
end;
9. Insert after the next end; before the line
$n:=$ if rho $>$ lmax then . . . the following lines:
outreal ( $F[0]$ ); outreal ( $F d[0]$ ); outreal ( $F d[0] \times G[0]-F[0] \times G d[0])$;
comment $\boldsymbol{F}_{0}($ direct $), \boldsymbol{F}_{0}{ }^{\prime}($ direct $)$ and the Wronskian for the direct results $W$ (direct) are printed;
10. Insert just before the comment (Upward recurrence
relations for remaining solutions) the lines:
outreal ( $F[0]$ ); outreal ( $F d[0]$ );
comment $F_{0}(r e c)$ and $F_{0}{ }^{\prime}(r e c)$ are printed;
The tests of the procedure Coulomb with these changes included all the computations mentioned in the Certification except those under (ii), and those in the Remark. The tests gave the same results as in the Certification and in the Remark. Moreover the following results were obtained:

The maximum $M$ of the absolute differences
$M=\max \left(\mid\left[F_{0}(\right.\right.$ dir $\left.)-F_{0}(r e c)\right] / F_{0}(r e c) \mid$,

$$
\left.\left|\left[F_{0}^{\prime}(d i r)--F_{0}{ }^{\prime}(r e c)\right] / F_{0}{ }^{\prime}(r e c)\right|\right)
$$

was always greater than the absolute difference between the Wronskian for the direct results $W$ (dir) and 1; i.e.
$M \geq \Delta W=\mid 1-W($ dir $) \mid$.

In some cases $W(d i r)$ differed not significantly from 1, while the test with $M$ indicated considerable discrepancies (see Table I, $\rho, \eta=6,1.5 ; 7,3.5$ and 19,5.5). It was found that for all discrepancies stated by Kölbig in the Certification and in the Remark, the relative error was smaller than or of the same order as $M$, so $M$ gives a good indication about the accuracy of the results (see Table $\rho, \eta=7,3.5$ (cert) and $7,3.5$ (remark)). So discrepancies of several units in the fourth or fifth significant digit were found near some lines in the $(\rho, \eta)$ plane separating two methods used in the Algorithm: namely, the lines $\rho=\eta$ for $5 \leq \rho \leq 7.5,5 \eta=$ $3 \rho+15,30 \eta=13 \rho-75$ and $\eta=4$, where integration of the Coulomb wave functions from the transition line to the desired arguments turned out to be the best method (see e.g. Table $\rho$, $\eta=5,5.5$ ). In some cases in the neighborhood of a zero of $G_{0}$ or $G_{0}{ }^{\prime}$, the check with $M$ indicated discrepancies in the third or fourth significant digit (see e.g. Table $\rho, \eta=19,5.5$ ).

These examples show that when the procedure Coulomb is used as a standard procedure in calculations where an accuracy of three or more digits is required, it is necessary to have in each instance an indication about the accuracy of the results. The quantity $M$ introduced above can be used very well for such a check.

Acknowledgment. We would like to thank Prof. Dr. C.C. Jonker for valuable discussions and comments.

Table I.

| $\rho$ | $\eta$ | $\Delta W \times 10^{6}$ | $M \times 10^{6}$ |  |  | Tabulated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 5.5 | 128 | 200 |  | $=.38701(+2)$ | . 38704 ( + 2 ) |
| 6 | 1.5 | 1.3 | 50 |  | $=-.60187$ | -. 60177 |
| 6 | 2 | 14.6 | 20 |  | $=.57306(-1)$ | . 57313 (-1) |
| 7 | 3.5* | . 4 |  |  | $=1.520489$ | 1.520492 |
| 7 | $3.5 \dagger$ | . 007 | . 05 |  | $=1.5204917$ | 1.520492 |
| 19 | 5.5 | 5 | 2000 |  | $=-.16442$ | -. 16427 |
|  | ertific <br> emark | ation. |  |  |  |  |

## References

1. Fröberg, C.E. Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27 (1955), 399-411.
2. Lutz, H.F., and Karvelis, M.D. Numerical calculation of Coulomb wave functions for repulsive Coulomb fields. Nucl.
Phys. 43 (1963), 31-44.
3. Isacson, T. Asymptotic expansion of Coulomb wave functions on the transition line. BIT (Nordisk Tidskrift for InformationsBehandling) 8 (1968), 243-245.

## ALGORITHM 301

## AIRY FUNCTION [S20]

Gillian Bond and M. L. V. Pitteway
(Recd. 7 Apr. 1966 and 19 Oct. 1966)
Cripps Computing Centre, University of Nottingham, England
procedure Airy (Ai, Bi, Aid, Bid, x, xia, control); value $x, x i a$, control; real $A i, A i d, B i, B i d, x, x i a$; integer control;
comment This procedure evaluates the real Airy functions and their derivatives by solution of the differential equation $y^{\prime \prime}=x y$. The solutions $A i$ and $B i$ satisfy the Wronskian relation $A i B i^{\prime}$ $B i A i^{\prime}=1 / \pi$. $A i$ decreases exponentially for large positive values of $x$. For large negative values of $x, A i$ and $B i$ have similar amplitudes but differ by $\pi / 2$ in phase.

The solution is tabulated in the interval $-6.6<x<6.6$ by Taylor integration of the differential equation in the stable directions (towards negative $x$ for $A i$ and away from the origin for $B i$ ) with step size 0.1. Alternate values are stored using 268 locations so that any point is within Taylor range for subsequent interpolation in the table. Asymptotic series are used outside this range. The solutions are accurate to eight decimal figures.

For extensive use, computation times can be reduced by ex. tending the tabular range to $-10<x<10$ and changing the step size to 0.05 , using 804 locations. The coefficients $A[7]$ to $A[10]$ may then be dropped from the asymptotic series, and tor [9] and tor [10] from the Taylor series (J. C. P. Miller, The Airy Integral, British Association Mathematical Tables, partvolume B, Cambridge, 1946).

The operation of the procedure is controlled by the integer code. A negative value should be assigned to code to set up the Airy function tables on the first call for the procedure, or whenever the tables have been disturbed. A subsequent entry with code greater than 0 will form:

$$
\begin{array}{rlrl}
A i & =\exp (x i a) \times A i(x) & & A i d=\exp (x i a) \times A i^{\prime}(x) \\
B i & =\exp (-x i a) \times B i(x) & B i d=\exp (-x i a) \times B i^{\prime}(x)
\end{array}
$$

If the derivatives are not required, code should be set to zero. This will avoid asymptotic series calculations, but Aid and Bid are set if $|x|<6.6$ even if code $=0$;
begin
real rtmdx, $x i$, factor, $p, q$, scale, $s, c, x t a b, h, p i$;
integer $n, r, j$;
array $A[0: 10]$;
own real array $A i t a b$, Bitab, Aidtab, Bidtab[-33:33];
procedure Taylor ( $y 1$, derivy $1, x, h, y$, derivy);
value $x, h, y$, derivy; real $y 1$, derivy $1, x, h, y$, derivy;
comment Calculates $y(x+h)$ from $y(x)$ by series expansion of $d y^{2} / d x^{2}=x y ;$
begin
real square;
array tor [0:10];
integer $n$;
if $h=0$ then

## begin

$y 1:=y ;$
derivy $1:=$ derivy;
go to zerostep
end shortcut
else
begin
tor $[0]:=y$;
$\operatorname{tor}[1]:=h \times \operatorname{derivy} ;$
square $:=h \times h$;
tor $[2]:=0.5 \times$ square $\times x \times$ tor $[0]$;
$y 1:=\operatorname{tor}[0]+\operatorname{tor}[1]+\operatorname{tor}[2]$;
derivy $1:=\operatorname{tor}[1]+2 \times \operatorname{tor}[2]$;
for $n:=3$ step 1 until 10 do
begin
tor $[n]:=$ square $\times(x \times \operatorname{tor}[n-2]+h \times \operatorname{tor}[n-3]) /$
$((n-1) \times n)$;
$y 1:=y 1+\operatorname{tor}[n]$;
$\operatorname{derivy} 1:=\operatorname{derivy} 1+n \times \operatorname{tor}[n]$
end;
derivy $1:=\operatorname{derivy} 1 / h$
end calculation of coefficients in series expansion;
zerostep:
end Taylor;
$p i:=3.1415926536$;
if control $<0$ then
begin
Bitab[0] := 0.6149266274 ;
Bidtab[0] :=0.44828 83574;
Aitab[33] : = $2.1565999525_{10}-6$;
Aidtab[33] $:=-5.619319442_{10}-6$;
$x t a b:=0$;
for $n:=0$ step 1 until 32 do
begin
Taylor (Bi, Bid, xtab, 0.1, Bitab[n], Bidtab[n]);
Taylor (Bitab[n+1], Bidtab $[n+1], x t a b+0.1,0.1, B i, B i d)$;
Taylor (Bi, Bid, -xtab, -0.1, Bitab[-n], Bidtab[-n]);
Taylor (Bitab[-n-1], Bidtab[-n-1], -xtab-0.1, -0.1, Bi, Bid);
$x t a b:=x t a b+0.2$
end setting up $B i$ tables;
for $n:=33$ step -1 until -32 do
begin
Taylor (Ai, Aid, xtab, -0.1, Aitab[n], Aidtab[n]);
Taylor (Aitab[n-1], Aidtab[n-1], xtab-0.1, -0.1, Ai, Aid);
$x t a b:=x t a b-0.2$
end setting $A i$ tables
end;
if $a b s(x) \leqq 6.6$ then
begin
$j:=5 \times x ;$
$x t a b:=j / 5$;
$h:=x-x t a b ;$
scale $:=\exp (-x i a)$;
Taylor (Ai, Aid, xtab,h, Aitab[j], Aidtab[j]);
Taylor (Bi, Bid, xtab, h, Bitab[j], Bidtab[j]);
Ai :=Ai/scale;
Aid $:=$ Aid/scale;
$B i:=B i \times$ scale;
Bid $:=$ Bid $\times$ scale;
go to finish

```
 end interpolation in previously established table;
 rtmdx := sqrt(abs(x));
 xi := rtmdx 个 3/1.5;
 factor := 1/(12\timesxi);
 A[0]:= 1/sqrl(pi\timesrtmdx);
 r:=6;
 for }n:=0\mathrm{ step 1 until 9 do
 begin
 A[n+1]:= (r-1)\times(r-5)}\times\mathrm{ factor }\timesA[n]/r
 r:=r+6
 end calculation of asymptotic series coefficients;
 if }x<0\mathrm{ then go to neg;
 p:=A[0]+A[2]+A[4]+A[6]+A[8]+A[10];
 q:=A[1] +A[3] +A[5] +A[7] +A[9];
 scale := exp(xi-xia);
 Ai:= (p-q)/(2\timesscale);
 Bi:= (p+q)}\times\mathrm{ scale;
 go to continue;
neg:
 p:=A[0]-A[2]+A[4]-A[6]+A[8]-A[10];
 q:=A[1]-A[3]+A[5]-A[7]+A[9];
 s:= sin (xi+pi/4);
 c:= cos(xi+pi/4);
 scale := exp(-xia);
 Ai:= (p\timess-q\timesc)/scale;
 Bi:= (p\timesc+q\timess)}\times\mathrm{ scale;
continue:
 if control =0 then go to finish
 else if }x<0\mathrm{ then
 begin
 p:=-(rtmdx/xi)}
 (-2\timesA[2]+4\timesA[4]-6\timesA[6]+8\timesA[8]-10\timesA[10]);
 q:= -(rtmdx/xi)}
 (A[1]-3\timesA[3]+5\timesA[5]-7\timesA[7]+9\timesA[9]);
 Aid := -(rtmd }x\timesBi)/(scale\timesscale)-Ai/(4\timesx
 - (p\timess-q\timesc)/scale;
 Bid := rtmdx }\times\mathrm{ Ai }\times\mathrm{ scale }\times\mathrm{ scale - Bi/(4×x)
 - (p\timesc+q\timess)}\times\mathrm{ scale;
 go to finish
 end calculation of derivatives;
 p:=(rtmdx/xi)}
 (2\timesA[2]+4\timesA[4]+6\timesA[6]+8\timesA[8]+10\timesA[10]);
 q:= -(rtmdx/xi)\times
 (A[1]+3\timesA[3]+5\timesA[5]+7\timesA[7]+9\timesA[9]);
 Aid := (p-q)/(2\timesscale) - Ai }\times(\mathrm{ rtmdx }+1/(4\timesx))
 Bid:= (p+q)}\times\mathrm{ scale + Bi }\times(rtmdx-1/'(4\timesx))
finish:
end Airy
```


## REMARK ON ALGORITHM 301 [S20]

AIRY FUNCTION [Gillian Bond and M.L.V. Pitteway,
Comm. ACM 10 (May 1967), 291]
M.L.V. Pitteway (Recd. 19 May 1967)

Brunel University, ACTON, W.3., England
The initial minus sign has been omitted from the line immedi ately following the line
end calculation of derivatives;
The statement should read
$p:=-(r t m d x / x i) \times(2 \times A[2]+4 \times A[4]+6 \times A[6]$ $+8 \times A[8]+10 \times A[10]) ;$

## ALGORITHM 302 <br> TRANSPOSE VECTOR STORED ARRAY [K2]

J. Boothroyd (Recd. 12 Sept. 1966, 28 Nov. 1966, and 6 Feb. 1967)

## U. of Tasmania, Hobart, Tas., Australia

procedure transpose $(\alpha, m, n)$; value $m, n$; integer $m, n$; array $a$, comment performs an in-situ transposition of an $m \times n$ array $A[1: m, 1: n]$ stored by rows in the vector $a[1: m \times n]$. The method is essentially that of Windley [1], modified for use with vectors having unit lower subscript bounds.

The algorithm processes only elements $A[1,2]$ through $A[m, n-1]$ since $A[1,1]$ and $A[m, n]$ retain their original positions. Elements $A[q, p]$ of the transposed matrix are placed in $a[i]$, in the order $i=2,3, \cdots, m n-2$, by an exchanging process. At the last step two elements are correctly placed which accounts for the value $m n-2$ as the upper bound on $i$. Valid subscripts of the vector $a[1: m \times n]$ are elements in the 1 -origin index set $[1,2, \cdots, m n]$. Computationally, however, it is more convenient to use the zero-origin set $[0,1, \cdots, m n-1]$. Denoting by $i_{0}\left(i_{0}=i-1\right)$ the corresponding zero-origin index of $a[i]$, to be occupied by $A[q, p]$, we have $i=m(q-1)+(p-1)$.

The corresponding zero-origin index $j_{0}$ of the $\mathbb{A}[p, q]$ element now in $a[j]$, which must be transferred to $a[i]$, is:

$$
j_{0}=j-1=n(p-1)+(q-1)=n \times i_{0} \bmod (m n-1)
$$

For each value of $i=2,3, \cdots, m n$ - 2 (or $i_{0}=$ $1,2, \cdots, m n-3$ ) we compute the index $j$ of $a[j]$ and exchange $a[i]$ and $a[j]$ provided $j \geqq i$ (i.e., $j_{0} \geqq i_{0}$ ). The case $j<i$ indicates that the element originally in $a[j]$ is now elsewhere following previous exchanges. Its present position is given by the first $j_{r} \geqq i_{0}$ in the series of zero-origin indices:

$$
j_{0}, j_{r+1}=n \times j_{r} \bmod (m n-1)
$$

The two sequences modulo $(m n-1)$ are generated by different methods. An additive process generates the first, using $k$ to duplicate the function of $j$, in case this is adjusted in the second recurrence-generated sequence if $j<i$.

Unlike the similar problem [3], transposition does not appear to be completely soluble on wholly group-theoretic lines. A general discussion of transposition and a reference to its formulation as a problem in Abelian-Groups is given in [2].
[1] P. F. Windley, Transposing matrices in a digital computer.
Comp. J. 2 (1959), 47-48. [2] G. A. Heuer, Control Data
Technical Report T.R.53, pp. 3-5. [3] Fletcher, W., and
Silver, R. Algorithm 284. Comm. ACM 9 (May 1966), 326;
begin integer $i, j, k$, iless 1 , mnless 1 , done, $j n$, modlessn;
real $t$;
mnless $1:=m \times n-1 ;$ modless $n:=m n l e s s 1-n$;
done $:=$ mnless $1-1 ; k:=0 ;$ iless $1:=1$;
for $i:=2$ step 1 until done do
begin comment computes $j=k=n \times i_{0} \bmod (m n-1)$;
$j:=k:=$ if $k \leqq$ modlessn then $k+n$ else $k-$ modlessn;
test: if $j<$ iless 1 then
begin comment computes $j_{r+1}=n \times j_{r} \bmod (m n-1)$;
$j n:=j \times n$;
$j:=j n-j n \div m n l e s s 1 \times$ mnless 1 ;
go to test
end;
comment avoid unnecessary exchanges;
if $j \neq$ iless 1 then
begin $j:=j+1$;
$t:=a[i] ; \quad a[i]:=a[j] ; \quad a[j]:=t$
end;
iless1 := $i$
end
end transpose

CERTIFICATION OF ALGORITHM 302 [K2]
TRANSPOSE VECTOR STORED ARRAY [J. Boothroyd, Comm. ACM 10 (May 1967), 292]
I. D. G. MacLeod (Recd. 8 Jan. 1968)

Department of Engineering Physics, Australian National University, Canberra 2600, Australia
KEY WORDS AND PHRASES: matrix transposition, array transposition, vector stored array
$C R$ CATEGORIES: 5.39
Algorithm 302 has been tested using both Fortran IV and ALGOL on A.N.U's IBM System 360 model 50 , with satisfactory results in each case.

There is a misprint in line 2 of the procedure: the comma between $a$ and comment should be replaced by a semicolon.

This compact algorithm can be written even more briefly and with improved efficiency by making the following changes:

1. Delete $j n$ from the list of declared integers.
2. Replace lines 8 through 13 of the procedure body by
if $j<i l e s s 1$ then
begin comment computes $j_{r+1}=n \times j_{r} \bmod (m n-1)$;
newj: $j:=j \times n-j \div m \times m n l e s s 1$; if $j<i l e s s 1$ then go to newj
end;
In-situ transposition of a vector stored array may be considered as a permutation which decomposes into a set of unique cycles. Accessing arrays may be a relatively slow process (as in Algol with subscript-bound checks) and, in general, unnecessary accesses should be avoided. The test in Algorithm 302 for unnecessary exchanges has been inserted for this purpose but it should be pointed out that only one exchange is saved in each cycle. The inclusion of this test yields a useful gain in efficiency only for those situations in which: (i) the implementation is such that array access time is dominant; and (ii) the required transposition decomposes into a high proportion of short cycles, e.g. transposition of a square matrix of order $n$ decomposes into $n$ cycles of length 1 and $n(n-1) / 2$ cycles of length 2.

If the implementation is such that accessing arrays is efficient, and the algorithm is to be used for rectangular as well as square matrices, replacement of lines 14 through 18 of the procedure body by

$$
\begin{aligned}
& j:=j+1 ; \\
& t:=a[i] ; \quad a[i]:=a[j] ; \quad a[j]:=t
\end{aligned}
$$

may make the algorithm more efficient and even more compact.

## ALGORITHM 303 <br> AN ADAPTIVE QUADRATURE PROCEDURE <br> WITH RANDOM PANEL SIZES [D1]

L. J. Gallaher (Recd. 8 Nov. 1966 and 1 Feb. 1967)

Georgia Institute of Technology, Engineering Experiment Station, Atlanta, Ga.
real procedure Integral ( $a, x, b, f x$, random number, error); value $a, b$, error;
real $a, x, b, f x$, error;
real procedure random number;
comment This procedure approximates the quadrature of the function $f x$ on the interval $a<x<b$ to an estimated accuracy of error. It does this by sampling the function $f x$ at appropriate points until the estimated error is less than error. The points to be sampled are determined by a combination of random sampling and of estimating what regions are more in need of sampling, this need being determined by the samples already taken. This process goes under the name "importance sampling" in nuclear reactor literature [for example, see J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, John Wiley, Inc., 1964, p. 57]. The form of importance sampling used here is based on estimates of the error contributed to the quadrature by the second derivative. That is, random samples of the average value of the second derivative of $f x$ in a region are taken and used to decide if more samples are needed in that region.
Randomness here is achieved through the real procedure random number. This procedure is not given explicitly here but can be any random number generator available, provided only that the numbers given are distributed on the interval 0 to 1 . The random numbers given need not be of particularly high quality (i.e., need not have low correlation). Further the random number generator need not be pasised as a parameter but could be either global or local to the procedure Integral.
This procedure is meant to be used for low-accuracy estimates of quadratures, especially large dimensional multiple integrals for which the high-accuracy methods would be too time consuming and expensive. It can achieve high accuracies but not ans efficiently as algorithms already in the literature. The general form of this algorithm is similar to Algorithm 145 [W. M. McKeeman, Adaptive Numerical Integration by Simpson's Rule, Comm. ACM 5 (Dec. 1962), 604] (and others) except that in subdividing the region of integration the panel sizes are determined in part by the random-number generator.
This quadrature procedure has been found particularly effective in integrating ill-behaved functions of the following type.
A. Functions having singularities on the boundary of the region of integration. Such integrals as

$$
\begin{aligned}
& \int_{0}^{1} x^{-1 / 2} d x \\
& \int_{0}^{2} d x \int_{0}^{\sqrt{1-(1-x)^{2}}} d y\left(x^{2}+y^{2}\right)^{-1 / 2}
\end{aligned}
$$

and

$$
\int_{0}^{1} d x \int_{0}^{\sqrt{1-x^{2}}} d y\left(x^{2}+y^{2}\right)^{-1 / 2}
$$

have been successfully integrated with this procedure to $1 \%$ accuracy.
B. Functions having an infinite number of zeros in the interval of integration. Such integrals as

$$
\begin{aligned}
& \int_{0}^{1} d y \sqrt{y} \sin (1.5 \ln y), \\
& \int_{0}^{1} d y y^{-1 / 2} \sin (0.5 \ln y),
\end{aligned}
$$

and

$$
\int_{1}^{2} d x \int_{0}^{1} d y x y^{(x-1)} \sin (x \ln y)
$$

have been successfully integrated with this procedure to $1 \%$ accuracy.
C. Functions having high-frequency oscillations or a large number of discontinuities. The function

$$
f(x)=\left\{\begin{array}{l}
2 \text { if the least significant bit of } x \text { is } 1 \\
0 \text { otherwise }
\end{array}\right.
$$

is almost as discontinuous as can be represented in a binary number computer. One hundred attempts at integrating this function on the interval 0 to 1 gave an average of the absolute value of the error $\approx 0.13$.
The main limitation in integrating anomalous functions of the above type is in the hardware or software of the particular machine being used. The procedure will fail when the interval is subdivided to a point where it is smaller than the smallest in magnitude nonzero number representable in the machine.

A histogram is given below of the errors in the evaluation of the integrals

$$
\int_{0}^{1} d y x y^{(x-1)} \sin (x \ln y)
$$

and

$$
\int_{0}^{1} d y x y^{(x-1)} \cos (x \ln y)
$$

for $x=1.04(0.04) 2.00$, with error tolerances $10^{-3}$ and $10^{-4}$.


Here $\epsilon_{0}$ is the error requested, $\epsilon$ is the error obtained.
The formal parameter $f x$ is an arithmetic expression dependent on $x$. In translating to another language it may be desirable to make this parameter a procedure identifier with appropriate modifications in the body of the program;
if $a=b$ then Integral $:=0$

```
else
begin real fl, fr,c;
 real procedure Int (a, x, b, fx,fc2, error);
 value a,b, fc2, error;
 real }a,x,b,fx,fc2, error
 begin real dx, dxc,fc1,fc3;
 error := error }\times0.577\mathrm{ ;
 comment The factor 0.577 is an approximation to 1/\sqrt{}{3}}\mathrm{ .
 The assumption here is that error contributed by the indi-
 vidual panels is random and not additive, thus the error
 from three panels is assumed to be \sqrt{}{3}}\mathrm{ (not 3) times the
 error of one panel;
 dxc':= (random number +0.5) }\times(b-a)/3
 dx:= (b-a-dxc)/2;
 x:=a+dx/2; fc1 := fx;
 x := b - dx/2; fc3 := fx;
 Int :=
 if abs(dx\times(fc1-2\timesfc2+fc3))\leqq error then
 dx\times(fc1+fc3)+dxc\timesfc2
 else
 Int (a, x, a+dx, fx, fc1, error)
 +Int (a+dx, x,b-dx, fx, fc2, error)
 +Int (b-dx, x,b,fx, fc3, error)
 end;
 c:=a+(random number +0.5)}\times(b-a)/2
 x := (a+c)/2; fl := fx;
 x:=(c+b)/2; fr := fx;
 error := abs(error) > 14.6;
 comment The factor 14.6 can be thought of as an empirical
 constant. There is some theoretical justification for calculat-
 ing an optimum value for this factor, but in practice it was
 determined empirically;
 Integral :=
 Int(a,x, c, fx, fl, error)
 +Int(c, x,b,fx, fr, error)
end
```


## ALGORITHM 304

NORMAL CURVE INTEGRAL [S15]
I. D. Hill and S. A. Joyce (Recd. 21 Nov. 1966)

Medical Research Council, Statistical Research Unit, 115 Gower Street, London W.C.1., England
real procedure normal ( $x$, upper);
value $x$, upper; real $x$; Boolean upper;
comment calculates the tail area of the standardized normal curve, i.e.,

$$
\frac{1}{\sqrt{2 \pi}} \int e^{-1 / 2 t^{2}} d t
$$

If upper is true the limits of integration are $x$ and $\infty$. If upper is false the limits are $-\infty$ and $x$.
If $x$ lies in the central area of the curve the method used is the convergent series

$$
e^{(1 / 2) x^{2}} \int_{0}^{x} e^{-(1 / 2) t^{2}} d t=x+\frac{x^{3}}{-\frac{x^{5}}{3 \times 5}+\frac{x^{7}}{3 \times 5 \times 7}+\cdots . . . . . . .}
$$

(See [1, 26.2.11].)
If $x$ lies in one of the tails the method used is the continued fraction

$$
e^{(1 / 2) x^{2}} \int_{x}^{\infty} e^{-(1 / 2) t^{2}} d \ell=\frac{1}{x+} \frac{1}{x+} \frac{2}{x+}-\frac{3}{x+} \frac{4}{x+} \cdots
$$

(See [1, 26.2.14].)
${ }^{r}$ The changeover point between the two methods is at $a b s(x)=$ 3.5 if the required area is greater than 0.5 . This value is chosen on grounds of speed. If, however, the required area is less than 0.5 , a changeover as far out as 3.5 will lead to the loss of three significant decimal figures due to cancellation error upon making a subtraction. In this case speed is sacrificed to accuracy and the changeover point is at $a b s(x)=2.32$, chosen as the point at which the area is 0.01 . The value 2.32 may be changed to 1.28 (the point at which the area is 0.1 ) if the full accuracy of the machine is desired over the range $1.28<a b s(x) \leqslant 2.32$, but this leads to a considerable loss of speed and the accuracy lost by using 2.32 is only one decimal place.

Except for this subtraction error, the procedure works virtually to the accuracy of the machine (provided that the constant $1 / \operatorname{sqrt}(2 \pi)$ is given to this accuracy) for $x \leqslant 7$ but to 1 decimal place less than the accuracy of the machine for $x>7$.

Reference: [1]. Abramovitz, M. and Stegun, I. A. Handbook of Mathematical Functions, National Bureau of Standards, Appl. Math. Ser. 55, US Government Printing Office, Washington, D.C., 1964;
if $x=0$ then normal $:=0.5$ else
begin
real $n, x 2, y$;
upper $:=$ upper $\equiv x>0$;
$x:=a b s(x) ; \quad x 2:=x \times x$;
$y:=0.3989422804014 \times \exp (-0.5 \times x 2)$;
comment $0.3989422804014=1 / \operatorname{sqrt}(2 \times \pi r)$;
$n:=y / x$;
if $\neg$ upper $\wedge 1.0-n=1.0$ then normal $:=1.0$ else
if upper $\wedge n=0$ then normal $:=0$ else
begin
real $s, t$;
if $x>$ (if upper then 2.32 else 3.5 ) then
begin
real $p 1, p 2, q 1, q 2, m$;
$q 1:=x ; \quad p 2:=y \times x$;
$n:=1.0 ; p 1:=y$;
$q 2:=x 2+1.0$;
if upper then
begin
$s:=m:=p 1 / q 1 ;$
$t:=p 2 / q 2$
end else
begin
$s:=m:=1.0-p 1 / q 1 ;$
$t:=1.0-p 2 / q 2$
end;
for $n:=n+1.0$ while $m \neq t \wedge s \neq t$ do
begin
$s:=x \times p 2+n \times p 1 ;$
$p 1:=p 2 ; \quad p 2:=s$;
$s:=x \times q 2+n \times q 1$;
$q 1:=q 2 ; \quad q 2:=s$;
$s:=m ; m:=t$;
$t:=$ if upper then $p 2 / q 2$ else $1.0-p 2 / q 2$
end;
normal $:=t$
end else
begin
$s:=x:=y \times x ; n:=1.0 ; \quad t:=0 ;$
for $n:=n+2.0$ while $s \neq t$ do
begin
$t:=s ; x:=x \times x 2 / n ;$
$s:=s+x$
end;
normal $:=$ if upper then $0.5-s$ else $0.5+s$
end
end
end normal

## REMARKS ON:

ALGORITHM 123 [S15]
REAL ERROR FUNCTION, $\operatorname{ERF}(x)$
[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

## ALGORITHM 180 [S15]

ERROR FUNCTION-LARGE $X$
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]
ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION-
LARGE $X$
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]
ALGORITHM 209 [S15]
GAUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]
ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION FUNCTIONS
[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]
ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL
[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June 1967), 374]
I. D. Hill and S. A. Joyce (Recd. 21 Nov. 1966)

Medical Research Council,
Statistical Research Unit, 115 Gower Street, London W.C.1., England

These algorithms were tested on the ICT Atlas computer using the Atlas Algol compiler. The following amendments were made and results found:

## ALGORITHM 123

(i) value $x$; was inserted.
(ii) $a b s(T) \leqslant{ }_{10}-10$ was changed to $\quad Y-T=Y$ both these amendments being as suggested in [1].
(iii) The labels 1 and 2 were changed to $L 1$ and $L 2$, the go to statements being similarly amended.
(iv) The constant was lengthened to 1.12837916710 .
(v) The extra statement $x:=0.707106781187 \times x$ was made the first statement of the algorithm, so as to derive the normal integral instead of the error function:
The results were accurate to 10 decimal places at all points tested except $x=1.0$ where only 2 decimal accuracy was found, as noted in [2]. There seems to be no simple way of overcoming the difficulty [3], and any search for a method of doing so would hardly be worthwhile, as the algorithm is slower than Algorithm 304 without being any more accurate.

## ALGORITHM 180

(i) $T:=-0.56418953 / x / \exp (v)$ was changed to $T:=-0.564189583548 \times \exp (-v) / x$. This is faster and also has the advantage, when $v$ is very large, of merely giving 0 as the answer instead of causing overflow.
(ii) The extra statement $x:=0.707106781187 \times x$ was made as in (v) of Algorithm 123.
(iii) for $m:=m+1$ was changed to for $m:=m+2 . m+1$ is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11th decimal place.

## ALGORITHM 181

(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(ii) Similar to (ii) of Algorithm 180.
(iii) $m$ was declared as real instead of integer, as an alternative to the amendment suggested in [4].
The results were accurate to 9 significant figures for $x \leqslant 8$, but to only 8 significant figures for $x=10$ and $x=20$.

## ALGORITHM 209

No modification was made. The results were accurate to 7 decimal places.

## ALGORITHM 226

(i) $10 \uparrow m /(480 \times \operatorname{sqrt}(2 \times 3.14159265))$ was changed to $10 \uparrow m \times 0.000831129750836$.
(ii) for $i:=1$ step 1 until $2 \times n$ do was changed to $m:=2 \times n ;$ for $i:=1$ step 1 until $m$ do.
(iii) $-(i \times b / n) \uparrow 2 / 8$ was changed to $-(i \times b / n) \uparrow 2 \times 0.125$.
(iv) if $i=2 \times n-1$ was changed to if $i=m-1$
(v) $b /(6 \times n \times \operatorname{sqrt}(2 \times 3.14159265))$ was changed to $b /(15.0397696478 \times n)$.
Tests were made with $m=7$ and $m=11$ with the following results:

| $x$ | Number of significant <br> figures correct | Number of decimal <br> places correct |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $m=11$ | $m=7$ | $m=11$ |  |
| -0.5 | 7 | 11 | 7 | 11 |
| -1.0 | 7 | 10 | 7 | 10 |
| -1.5 | 7 | 10 | 8 | 10 |
| -2.0 | 7 | 9 | 8 | 10 |
| -2.5 | 6 | 9 | 8 | 11 |
| -3.0 | 6 | 7 | 8 | 9 |
| -4.0 | 5 | 7 | 10 | 11 |
| -6.0 | 2 | 1 | 12 | 10 |
| -8.0 | 0 | 0 | 11 | 9 |

Perhaps the comment with this algorithm should have referred to decimal places and not significant figures. To ask for 11 significant figures is stretching the machine's ability to the limit, and where 10 significant figures are correct, this may be regarded as acceptable.

## ALGORITHM 272

The constant . 99999999 was lengthened to .9999999999 .
The accuracy was 8 decimal places at most of the points tested, but was only 5 decimal places at $x=0.8$.

## ALGORITHM 304

No modification was made. The errors in the 11 th significant figure were:

| $a b s(x)$ | $x>0 \equiv$ upper | $x>0 \neq$ upper |
| :---: | :---: | :---: |
| 0.5 |  |  |
| 1.0 | 1 | 1 |
| 1.5 | 1 | 2 |
| 2.0 | $21^{\mathrm{s}}(5)$ |  |
| 3.0 | 0 | 2 |
| 4.0 | 2 | 4 |
| 6.0 | 6 | 0 |
| 8.0 | 14 | 3 |
| 10.0 | 23 |  |
| 20.0 | 35 | 0 |

a Due to the subtraction error mentioned in the comment section of the algorithm. Changing the constant 2.32 to 1.28 resulted in the figures shown in brackets.

To test the claim that the algorithm works virtually to the accuracy of the machine, it was translated into double-length instructions of Mercury Autocode and run on the Atlas using the EXCHLF compiler (the constant being lengthened to 0.398942280401432677939946 ). The results were compared with hand calculations using Table II of [5]. The errors in the 22nd significant figure were:

| $a b s(x)$ | $x>0 \equiv$ upper | $x>0$ 差 upper |
| :---: | :---: | :---: |
| 1.0 | 2 | 3 |
| 2.0 | 7 | 1 |
| 4.0 | 2 | 0 |
| 8.0 | 8 | 0 |

Timings. Timings of these algorithms were made in terms of the Atlas "Instruction Count," while evaluating the function 100 times. The figures are not directly applicable to any other computer, but the relative times are likely to be much the same on other machines.

| $a b s(x)$ | Instruction Count for 100 Eivaluations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Algorithm number |  |  |  |  |  |  |  |
|  | 123 | 180 | 181 | 209 | 226 $m=7$ | 272 | $304{ }^{\text {a }}$ | $304{ }^{\text {b }}$ |
| 0.5 | 58 |  |  | 8 | 97 | 24 | 25 | 24 |
| 1.0 | $65^{\text {c }}$ |  |  | 8 | 176 | 24 | 29 | 29 |
| 1.5 | 164 | 128 | 127 | 9 | 273 | 25 | 35 | 35 |
| 2.0 | 194 | 78 | 90 | 8 | 387 | 24 | 39 | 39 |
| 2.5 | 252 | 54 | 68 | 10 | 515 | 24 | 131 | 44 |
| 3.0 |  | 42 | 51 | 9 | 628 | 25 | 97 | 50 |
| 4.0 |  | 27 | 39 | 9 | $900{ }^{\text {d }}$ | 25 | 67 | 44 |
| 6.0 |  | 15 | 30 | 6 | $1400{ }^{\text {d }}$ | 16 | 49 | 23 |
| 8.0 |  | 9 | 28 | 7 | $2100^{\text {d }}$ | 18 | 44 | 11 |
| 10.0 |  | 10 | 25 | 5 | $2700^{\text {d }}$ | 16 | 38 | 11 |
| 20.0 |  | 9 | 22 | 5 | $6500^{\text {d }}$ | 16 | 32 | 11 |
| 30.0 |  | 9 | 9 | 5 | $10900^{\text {d }}$ | 16 | 11 | 11 |

${ }^{3}$ Readings refer to $x>0 \equiv$ upper.
${ }^{5}$ Readings refer to $x>0 \neq$ upper.
" Time to produce incorrect answer. A count of 120 would fit a smooth curve with surrounding values.
d 100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms available for normal curve tail areas. One should be very fast and reasonably accurate, the other very accurate and reasonably fast. We conclude that Algorithm 209 is the best for the first requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may be preferred for this reason, but the method used shows itself in Algorithm 181 to be not quite as accurate, and the introduction of this method solely for the circumstances in which Algorithm 180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her help with the double-length hand calculations.

## References:

1. Thacher, Henry C. Jr. Certification of Algorithm 123. Comm. ACM 6 (June 1963), 316.
2. Ibbetson, D. Remark on Algorithm 123. Comm. ACM 6 (Oct. 1963), 618.
3. Barton, Stephen P., and Wagner, John F. Remark on Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.
4. Clausen, I., and Hansson, L. Certification of Algorithm 181. Comm. ACM 7 (Dec. 1964), 702.
5. Sheppard, W. F. The Probability Integral. British Association Mathematical Tables VII, Cambridge U. Press, Cambridge, England, 1939.

## CERTIFICATION OF AND REMARK ON

 ALGORITHM 304 [S15]NORMAL CURVE INTEGRAL [I. D. Hill and S. A. Joyce, Comm. ACM 10 (June 1967), 374]
A. Bergson (Recd. 11 Aug. 1967 and 9 Nov. 1967)

Computing Láboratory, Sunderland Technical College, Sunderland, Co. Durham, England

KEY WORDS AND PHRASES: normal curve integral, probability, special functions
$C R$ CATEGORIES: 5.5, 5.12
Algorithm 304 was coded in 803 Algol and run on a NationalElliott 803 (with automatic floating-point unit).
There are typographical errors in the first two integrals contained in the comment.

The integrals should read:
(i) $\frac{1}{\sqrt{2 \pi}} \int e^{-(\xi) t^{2}} d t$
(ii) $e^{(3) x^{2}} \int_{0}^{x} e^{-(3) t^{2}} d t=x+\frac{x^{3}}{3}+\frac{x^{5}}{3 \times 5}+\frac{x^{7}}{3 \times 5 \times 7}+\cdots$.

The algorithm was run as published and gave answers within the accuracy of the machine [1] for a random selection of values of $x$ and upper.

With the following alterations, however, the algorithm was made 0.2 percent more efficient in speed, and gave identical results as above.
(a) $n:=1.0$; was omitted from the line $n:=1.0 ; p 1:=y$;
(b) the ten lines after $q 2:=x 2+1.0$; were replaced by:
$m:=n ; \quad t:=p 2 / q 2$;
if $\neg$ upper then
begin $m:=1.0-m ; \quad t:=1.0-t$
end;
for $n:=2.0, n+1.0$ while $m \neq t \wedge s \neq t$ do
(c) in the line beginning $s:=x:=y \times x ; n:=1.0$; and $t:=0$; were omitted and the next line written:
for $n:=3.0, n+2.0$ while $s \neq t$ do
Reference:

1. A specification of 803 ALGOL; Description of 803 Library Program A104. Elliott-NCR Ltd., Borehamwood, Hertfordshire, England. (Jan. 1965, issue 4).

REMARK ON ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL [I. D. Hill and S. A. Joyce, Comm. ACM 10 (June 1967), 374]
Arthur G. Adams* (Recd. 17 Feb. 1969 and 11 June 1969)
Glaxo Research Ltd., Greenford, Middlesex, England

* Deceased 7 July 1969.

KEY WORDS AND PHRASES: normal curve integral, probability, special functions
CR CATEGORIES: 5.5, 5.12
Algorithm 304 may be made faster by using the continued fraction

$$
\frac{1}{x}\left(1+\frac{-1}{x^{2}+3+} \frac{-6}{x^{2}+7+} \frac{-20}{x^{2}+11+} \frac{-42}{x^{2}+15+} \frac{-72}{x^{2}+19+} \cdots\right)
$$

whose convergents are equal to alternate convergeats of the continued fraction

$$
\frac{1}{x+} \frac{1}{x+} \frac{2}{x+} \frac{3}{x+} \frac{4}{x+} \frac{5}{x+} \cdots
$$

used in the original algorithm when $x$ lies in one of the tails. This requires two extra statements in the iteration loop, which, however, will only be performed about half as many times.

The alteration required to implement this improvement is to replace the 19 lines between
if $x>$ (if upper then 2.32 else 3.5) then
and
$q 1:=q 2 ; q 2:=s ;$
by
begin
real $p 1, p 2, q 1, q 2, a 1, a 2, m$;
$a 1:=2.0 ; a 2:=0.0$;
$n:=x 2+3.0$;
$p 1:=y ; \quad q 1:=x$;
$p 2:=(n-1.0) \times y ; q 2:=n \times x ;$
$m:=p 1 / q 1 ; \quad t:=p 2 / q 2$;
if $\neg$ upper then
begin
$m:=1.0-m ; \quad t:=1.0-t$
end;
for $n:=n+4.0, n+4.0$ while $m \neq t \wedge s \neq i$ do
begin
$a 1:=a 1-8.0 ; a 2:=a 1+a 2 ;$
$s:=a 2 \times p 1+n \times p 2 ;$
$p 1:=p 2 ; p 2:=s ;$
$s:=a 2 \times q 1+n \times q 2 ;$
This also incorporates the alterations suggested in [1] below.
Comparison of the two versions using an ICL1903 (37-bit floating-point mantissa), showed that the number of iterations was approximately halved, and that the results differed only to the extent to be expected from rounding error.

The original Algorithm 304 contains in its comment, "The value 2.32 may be changed to $1.28 \cdots$ if the full accuracy of the machine is desired." However a test of the two versions taking arguments in the sequence 2.34 step -0.01 showed that the original version ran into overflow at 1.44, and the new version at 1.58, on a machine allowing exponents up to $10^{77}$.

## Reference

1. Bergson, A. Certification of and Remark on Algorithm 304, Normal Curve Integral. Comm. ACM 11 (Apr. 1968), 271.

REMARK ON ALGORITHM 304[S15]
NORMAL CURVE INTEGRAL [I. D. Hill and S. A. Joyce, Comm. ACM 10(June 1967), 374]
Bo Holmgren (Recd. 30 Apr. 1970)
Dept. KDO, ASEA, S-721 83 Västerås, Sweden
KEY WORDS AND PHRASES: normal curve integral, probability, special functions
CR CATEGORIES: 5.12,5.5
Algorithm 304 with the remark of Adams was translated into Fortran IV and run on a GE-625 computer. The GE-625 has a 28bit mantissa and allows exponents up to $10^{28}$. With upper $=$ false and $x<-2.32$, the routine ran into overflow at several values of $x$. To avoid this the following lines
if $q 2>10^{30}$ then
begin

$$
p 1:=p 1 \times{ }_{10}-30 ; \quad p 2:=p 2 \times{ }_{10}-30
$$

$q 1:=q 1 \times{ }_{10}-30 ; q 2:=q 2 \times{ }_{10}-30$
end;
were inserted after the line
$s:=m ; m:=t ;$

## ALGORITHM 305

SYMMETRIC POLYNOMIALS [C1]
P. Bratley and J. K. S. McKay (Recd. 23 Sept. 1966, 15 Feb. 1967 and 10 Mar. 1967)
Department of Computer Science, University of Edinburgh, Edinburgh, Scotland
real procedure express $(b$, unit, $n)$; value $n$; integer $n$;
integer array $b$; array unit;
comment express expresses the symmetric sum $\sum x_{i_{1}}^{b_{1}} x_{i_{2}}^{b_{2}} \cdots x_{i_{n}}^{b_{n}}$ over $n$ variables as a sum of determinants in the unitary symmetric functions $\sum x_{i_{1}} x_{i_{2}} x_{i_{2}} \cdots x_{i_{r}}$. The non-negative exponents $b_{i}(i=1, \cdots, n)$ are assumed to be in $b[1: n]$ on entry to express. (The elements of this array are altered by the procedure.) The symmetric sum is first expressed in terms of Schur functions which are then evaluated $\varepsilon$ es determinants in the unitary symmetric functions. The Schur functions are generated in the local array $c[1: i]$ with the sign in the local integer sig. The unitary functions of degree $r=1, \cdots, n$ should be in unit $[1: n]$ on entry to express.
This procedure may be used to determine the coefficients of a polynomial with roots the $k$ th ( $k$ a positive integer) powers of the roots of a given monic polynomial. Use is made of the procedures determinant [Algorithm 224, Comm. ACM 12 (Apr. 1964), 243)] and perm [Algorithm 306, Comm. ACM 10 (July 1967), 450]

References:

1. Littlewood, D. E. The Theory of Group Characters. Clarendon Press, Oxford, England 1958, 2nd ed., Ch. 6.
2. McKay, J. K. S. On the representation of symmetric polynomials. Comm. ACM 10 (July 1967), 428-429;
begin integer array $c, d[1: n]$;
integer sig, $p, q, i, j$; Boolean finish; real sigma;
procedure sort ( $x, c, n$ ); value $n$; integer $c, n$; integer array $x$;
comment sorts the integer array $x[1: n]$ into descending order. $c$ is set to $\pm 1$ according to whether the number of transpositions made is even or odd;
begin integer $i, j, k$;
$c:=1 ;$
$L A: i:=1 ; k:=0 ; \quad j:=x[1]$;
$L 1: i:=i+1 ;$ if $i>n$ then go to $L 3$;
if $x[i] \leq j$ then
begin $x[i-1]:=j ; \quad j:=x[i]$ end
else begin $x[i-1]:=x[i] ; k:=1 ; \quad c:=-c$ end; go to $L 1$;
$L 3: x[n]:=j ;$ if $k \neq 0$ then go to $L 4$
end sort;
procedure conjugate ( $p$, long1, $q$, long2); value long1; integer array $p, q$; integer long1, long2;
comment conjugate forms in $q[1: l o n g 2]$ the partition conjugate to that in $p[1:$ long 1$]$;
begin
integer $r, i, j$;
long $2:=0$;
for $r:=$ long 1 step -1 until 1 do
begin $i:=$ if $r=$ long 1 then $p[r]$ else $p[r]-p[r+1]$;
```
 for \(j:=1\) step 1 until \(i\) do
 begin long \(2:=\) long \(2+1 ; q[\) long 2\(]:=r\) end
 end
 end conjugate;
 finish \(:=\) true; sigma \(:=0\);
 sort (\(b\), sig, \(n\));
 if \(b[1]=0\) then begin sigma \(:=1\); go to \(L 99\) end;
L3: perm (b, \(n\), finish);
 if finish then go to \(L 99\);
 for \(i:=1\) step 1 until \(n\) do
 begin \(c[i]:=b[i]+n-i\);
 for \(j:=1\) step 1 until \(i-1\) do
 if \(c[i]=c[j]\) then go to \(L 3\)
 end;
 sort (\(c\), sig, \(n\));
 for \(i:=1\) step 1 until \(n\) do
 begin \(c[i]:=c[i]+i-n\);
 if \(c[i]=0\) then
 begin \(i:=i-1\); go to \(L 7\) end
 end;
 \(i:=n\);
 comment each Schur function and its sign are to be found in
 \(c[1: i]\) and \(s i g\) respectively;
L7: conjugate (\(c, i, d, q\));
 begin
 array \(x[1: q, 1: q]\);
 for \(i:=1\) step 1 until \(q\) do
 for \(j:=1\) step 1 until \(q\) do
 begin \(p:=d[i]-i+j\);
 \(x[i, j]:=\) if \(p<0 \vee p>n\) then 0 else
 if \(p=0\) then 1 else \(u n i t[p]\)
 end;
 sigma \(:=\operatorname{sigma}+\operatorname{sig} \times\) determinant \((x, q)\)
 end;
 go to \(L 3\);
L99: express := sigma
end express
```


## REMARK ON ALGORITHM 305 [C1]

SYMMETRIC POLYNOMIALS [P. Bratley and J. K. S. McKay, Comm. ACM 10 (July 1967), 450]
J. K. S. McKay (Recd. 13 Sept. 1967 and 18 Dec. 1967)

Atlas Laboratory, Science Research Council, Chilton, Didcot, Berks., England
KEY WORDS AND PHRASES: symmetric polynomials, symmetric sum, unitary symmetric functions, Schur functions
$C R$ CATEGORIES: 5.39
The published algorithm fails with subscript overflow if $\sum_{i=1}^{n} b_{i}$ is greater than $n$ and the partition conjugate to that in $c[1: i]$ has more than $n$ parts.

The symmetric sum is defined ambiguously in the initial comment.

The following alterations are suggested to remove the ambiguitv and correct the algorithm.
(1) In line 4,
... over $n$ variables ...
should be replaced by
... over all distinct terms in $n$ variables ...
to remove any ambiguity in the definition of the symmetric sum.
(2) In line 8, before

The symmetric sum ...
insert
Three examples to clarify the value of the symmetric sum are:

If $n=3$ and the $b_{i}$ are $3,2,0$ in any order the sum is $x_{1}{ }^{3} x_{2}{ }^{2}+x_{2}{ }^{3} x_{3}{ }^{2}+x_{3}{ }^{3} x_{1}{ }^{2}+x_{1}{ }^{3} x_{3}{ }^{2}+x_{2}{ }^{3} x_{1}{ }^{2}+x_{3}{ }^{3} x_{2}{ }^{2}$.
If $n=3$ and the $b_{i}$ are $2,2,0$ in any order the sum is $x_{1}{ }^{2} x_{2}{ }^{2}+x_{2}{ }^{2} x_{3}{ }^{2}+x_{3}{ }^{2} x_{1}{ }^{2}$.

If all $b_{i}$ are zero the procedure will return the value 1 .
(3) In lines 17-18, the reference to Algorithm 224 should read: Comm. ACM 7 (Apr. 1964), 243 and (Dec. 1964), 702.
(4) Lines $25-26$ integer array $c, d[1: n]$; integer sig, $p, q, i, j ; \quad \cdots$
should be replaced by integer $\operatorname{sig}, p, q, i, j ; \quad j:=0 ;$ for $i:=1$ step 1 until $n$ do $j:=j+b[i]$; begin integer array $c[1: n], d[0: j] ; \cdots$
(5) In line 72 , comment each Schur function...
should be replaced by comment at $L 7$ each Schur function...
(6) In line 87, an end should be inserted immediately before end express

ALGORITHM 306
PERMUTATIONS WITH REPETITIONS [G6]
P. Bratley (Recd. 23 Sept. 1966 and 15 Feb. 1967)

Department of Computer Science, University of Edinburgh, Edinburgh Scotland

```
procedure \(\operatorname{perm}(a, n\), last \()\); value \(n\); integer \(n\);
 integer array \(a\); Boolean last;
comment \(a[1: n]\) is an integer array. Initially the elements of
 \(a[1: n]\) must be arranged in descending order and last must be
 set true. If the elements of \(a\) are not initially in descending
 order the effect of the procedure is undefined. Successive calls of
 perm generate in \(a\) all permutations of its elements in reverse
 lexicographical order.
 last is set false if the procedure has generated a new permuta-
 tion, but if the procedure is entered after all the permutations
 have been generated, last will be set true. Neither \(a\) nor \(n\) should
 be altered between successive calls of the procedure;
begin integer \(i, p, q, r\);
 own integer \(m\); own integer array \(b[1: n]\);
 if \(\neg\) last then go to \(L 12\); last \(:=\) false;
 for \(i:=1\) step 1 until \(n\) do \(b[i]:=a[i]\);
 \(p:=b[n]\);
 for \(i:=n\) step -1 until 1 do
 if \(p \neq b[i]\) then
 begin \(m:=i\); go to \(L 99\) end;
 \(m:=0\); go to \(L 99\);
\(L 12\) : if \(m=0\) then go to \(L 10\);
 \(p:=b[m] ; \quad q:=m ; \quad r:=0 ;\)
L9: \(i:=n\);
\(L 4: \quad\) if \(a[i]=p\) then go to \(L 2\);
 if \(a[i]<p\) then \(r:=i\);
L5: \(\quad i:=i-1\); go to \(L 4\);
\(L 2: a[i]:=b[n]-1\); if \(r=0\) then go to \(L 8\);
\(L 1: a[r]:=p ; \quad q:=q+1\);
L3: \(r:=r+1\); if \(r>n\) then go to \(L 11\) else if \(a[r]>p\)
 then go to \(L 3\);
\(L 11:\) if \(b[q]=p\) then go to \(L 1 ; r:=0\);
\(L 6: r:=r+1\); if \(a[r] \geq p\) then go to \(L 6\);
 \(a[r]:=b[q] ;\) if \(q=n\) then go to \(L 7\);
 \(q:=q+1\); go to \(L 6 ;\)
L7: last := false; go to L99;
\(L 8: q:=q-1\); if \(q=0\) then go to \(L 10\);
 if \(b[q]=p\) then go to \(L 5\);
 \(p:=b[q] ;\) go to \(L 9\);
L10: last := true;
L99:
end perm
```


## ALGORITHM 307 <br> SYMMETRIC GROUP CHARACTERS [A1]

J. K. S. McKay (Reed. 23 Sept. 1966, 15 Feb. 1967, and 10 Mar. 1967)
Department of Computer Science, University of Edinburgh, Edinburgh, Scotland
integer procedure character ( $n$, rep, longr, class, longc, first); value $n$, rep, longr, class, longc; integer $n$, longr, longc; Boolean first; integer array rep, class;
comment character produces the irreducible character of the symmetric group corresponding to the partitions of the representation and the class of the group $S_{n}$ stored with parts in descending order in arrays rep[1:longr] and class[1:longc], respectively. Both arrays are preserved. The method is similar to that described by Bivins et al. [1]. Comét describes a later method.

On first entry to character, first should be set true in order to initialize the own array $p[0: n, 0: n]$. This single initialization is sufficient for all symmetric groups of degree less than or equal to $n$. character is intended for computing individual characters. If a substantial part of the character table is required it is suggested that procedure generate [Algorithm 263, Comm. ACM 8 (Aug. 1965), 493)] be used to produce the partitions prior to use of character. If this is done, then the own array $p$ should be replaced by a suitable global array, and first should be set false to avoid unwanted initialization. character uses procedures set, generate, and place [Algorithms 262, 263, 264, Comm. ACM 8 (Aug. 1965), 493].

References:

1. Bivins, R. L., Metropolis, N., Stein, P. R., and Wells, M. B. Characters of the symmetric groups of degree 15 and 16. MTAC 8 (1954), 212-216.
2. Littlewood, D. E. The Theory of Group Characters. Clarendon Press. Oxford, England 1958, 2d ed., Ch. 5.
3. Comet, S. Improved methods to calculate the characters of the symmetric group. MTAC. 14 (1960), 104-117.;
begin
integer procedure degree ( $n$, rep, length); value $n$, length; integer $n$, length; integer array rep;
comment degree gives the degree of the representation of the symmetric group on $n$ symbols defined by the partition rep[1:length] with parts in descending order;

## begin

own integer array $p[0: n, 0: n]$;
integer array $q[1: l e n g t h]$; integer $i, j$, deg;
integer procedure $f a c(n)$; value $n$; integer $n$;
$f a c:=$ if $n=1$ then 1 else $n \times f a c(n-1)$;
for $i:=1$ step 1 until length do
$q[i]:=r e p[i]+$ length $-i$;
$\operatorname{deg}:=f a c(n)$;
for $i:=1$ step 1 until length do
for $j:=i+1$ step 1 until length do
$\operatorname{deg}:=\operatorname{deg} \times(q[i]-q[j]) ;$
for $i:=1$ step 1 until length do
$\operatorname{deg}:=\operatorname{deg} \div f a c(q[i]) ;$
degree $:=$ deg
end degree;

## if first then

begin set $(p, n)$; first $:=$ false end;
begin
integer array $p r[1: n], r[0: 1,0: p[n, n]-1]$;
integer length, $m, t$, old, new, index, $i$, char, $k$, coeff, $u$, pos, j1, j2;
$m:=$ longc $;$
new $:=n$;
index := 1;
for $i:=0$ step 1 until $p[n, n]-1$ do
$r[$ index, $i]:=0$;
$r[$ index, $\operatorname{place}(p, n, r e p)]:=1$;
for $t:=1$ step 1 until $m$ do
begin if class $[t]=1$ then go to identity;
index $:=1$ - index; old $:=$ new; new $:=$ new - class $[t]$;
for $i:=0$ step 1 until $p[n e w, n e w]-1$ do $r[i n d e x, i]:=0$;
for $u:=p[o l d$, old $]-1$ step -1 until 0 do
begin if $r[1-$ index, $u]=0$ then go to $B$; generate ( $p$, old, $u, p r$, length); $k:=$ length; $j 1:=1$;
G: $\quad j 2:=j 1 ;$ coeff $:=r[1-i n d e x, u]$; for $i:=1$ step 1 until $k$ do $\operatorname{rep}[i]:=p r[i]$;
if $\operatorname{rep}[1]=$ old then go to $H$; $\operatorname{rep}[j 2]:=\operatorname{rep}[j 2]-\operatorname{class}[t]$; if $\operatorname{rep}[j 2]+k-j 2<0$ then go to $B$; if $\operatorname{rep}[j 2] \geq$ if $(j 2=k$ then 0 else $\operatorname{rep}[j 2+1])$ then go to $F$; if $\operatorname{rep}[j 2+1]=\operatorname{rep}[j 2]+1$ then go to $J$; $i:=\operatorname{rep}[j 2+1] ; \quad \operatorname{rep}[j 2+1]:=\operatorname{rep}[j 2]+1$; $\operatorname{rep}[j 2]:=i-1 ;$ coeff $:=-1$ coeff; $j 2:=j 2+1$; go to $E$;
$\begin{array}{ll}I: & \operatorname{rep}[1]:=\operatorname{rep}[1]-\operatorname{class}[t] ; \\ F: & \operatorname{pos}:=\operatorname{place}(p, \text { new, rep }) ;\end{array}$ $r[$ index, pos $]:=r[i n d e x, p o s]+$ coeff;
$J: \quad j 1:=j 1+1 ;$ if $j 1 \leq k$ then go to $G$;
$B$ :
end
end;
$A$ : char $:=r[$ index, 0$] ;$ go to $Z$;
identity: char $:=0$;
for $u:=p[n e w, n e w]-1$ step -1 until 0 do
begin if $r[$ index, $u]=0$ then go to $B B$; generate ( $p$, new, $u$, pr, length);
char $:=$ char $+r[$ index,$u] \times$ degree $(n e w, p r$, length $) ;$
$B B$ :
end;
Z: character := char
end
end character

REMARK ON ALGORITHM 307 [A1]
SYMMETRIC GROUP CHARACTERS
[J. K. S. McKay, Comm. ACM 10 (July 1967), 451]
J. K. S. McKay (Recd. 13 Sept. 1967)

Dept. of Computer Science, University of Edinburgh,
Edinburgh, Scotland

Three corrections are noted.
(1) Line 39:
own integer array $p[0: n, 0: n]$;
should be moved to the line after the begin in line 32 .
(2) At $E$ the line should read
$E$ : if $\operatorname{rep}[j 2] \geq$ (if $j 2=k$ then 0 else rep $[j 2+1]$ ) then go to $F$;
(3) Three lines, later

$$
\text { coeff }:=-1 \text { coeff; }
$$

should read

$$
\text { coeff }:=- \text { coeff; }
$$

## ALGORITHM 308 <br> GENERATION OF PERMUTATIONS IN PSEUDOLEXICOGRAPHIC ORDER [G6] <br> R. J. Ord-Smith (Recd. 11 Nov. 1966, 1 Dec. 1966, 28 Dec. 1966 and 27 Mar. 1967) <br> Computing Laboratory, University of Bradford, England

Lexicographic generation has the advantage of producing an order easily followed by the user, but its real value in certain combinatorial applications is that a ( $k-1$ )-th intransitive subgroup of permutations is generated before the $k$ th element is moved. By not insisting on strict lexicographic generation, though preserving the latter property, an enormous reduction in the total number of transpositions is obtained. The total number of transpositions in this algorithm can be shown to tend asymptotically to $(\sinh 1) n$ ! which is less than in Algorithm 86 [J. E. L. Peck and G. F. Schrack, Permute, Comm. ACM 5 (Apr. 1962), 208] and almost as good as Algorithm 115 [H. F. Trotter, Perm, Comm. ACM 5 (Aug. 1962), 434]. The algorithm offers a further useful facility. Like several others it uses a nonlocal Boolean variable called first, which may be assigned the value true, to initialize generation. On procedure call this is set false and remains so until it is again set true when complete generation of permutations has been achieved. At any subsequent call after initializing generation of permutations of degree $n$, one may set parameter $n=n^{\prime}$ where $n^{\prime} \leq n$. Further calls with this value may continue until the completion of the subgroup of degree ( $n^{\prime}-1$ ) when first will be set true. The process can be continued by resetting first false and calling with a larger value of $n$. This gives the user complete control over the main attribute which lexicographic order offers. There is no restriction on the elements permuted. Table I gives results obtained for ISCONOPERM. Times given in seconds are for an ICT 1905 computer. The algorithm has also been tested successfully on IBM 7094, Elliott 503 and STC Stantec computers. $t_{n}$ is the time for complete generation of $n$ ! permutations. $r_{n}$ has the usual definition $r_{n}=t_{n} /\left(n \cdot t_{n-1}\right)$.

TABLE I

| Algorithm | $t_{6}$ | $t_{7}$ | $t_{8}$ | $r_{0}$ | $r_{7}$ | $r_{8}$ | Number of <br> transpositions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ECONOPERM | 0.85 | 6.2 | 50.6 | -1.04 | 1.02 | $\rightarrow 1.175 n!$ |  |

procedure $\operatorname{ECONOPERM}(x, n)$; value $n$; integer $n$; array $x$;
begin own integer array $q[2: n]$;
comment own dynamic arrays are not often implemented.
The upper bound will then have to be given explicitly;
integer $k, l, m$; real $t$;
$l:=1 ; k:=2$;
if first then
begin first := false; go to label end;
comment the above is the initialization process;
loop: if $q[k]=k$ then
begin if $k<n$ then
begin $k:=k+1$; go to loop end
else begin first := true; go to finish end
end;

```
\(n:=k-1\);
comment note \(n\) called by value;
label: for \(m:=2\) step 1 until \(n\) do \(q[m]:=1\);
 comment after the initialization the for statement sets all
 elements of \(q\) array to 1 . Otherwise only the first \(k-2\) elements
 are reset 1 ;
 \(q[k]:=q[k]+1 ;\)
transpose: \(t:=x[l] ; x[l]:=x[k] ; x[k]:=t\);
 \(l:=l+1 ; k:=k-1 ;\)
 if \(l<k\) then go to transpose;
 comment when \(k<4\) only one transposition occurs. On final
 exit when first is reset true, no transposition occurs at all;
finish:
end of procedure ECONOPERM
```


## REMARK ON ALGORITHM 308 [G6]

GENERATION OF PERMUTATIONS IN PSEUDO-
LEXICOGRAPHIC ORDER [R. J. Ord-Smith, Comm. ACM 10 (July 1967), 452]
R. J. Ord-Smith (Recd. 21 May 1969)

Computing Laboratory, University of Bradford, England
KEY WORDS AND PHRASES: permutations, lexicographic order, lexicographic generation, permutation generation $C R$ CATEGORIES: 5.39

Following the construction of the very fast lexicographic permutation Algorithm 323 [1] it has become clear that the permutation sequence generated by the Algorithm 308 can be obtained more quickly. In fact, replacement of

```
trstart \(: m:=q[k] ; \quad t:=x[m] ; \quad x[m]:=x[k] ; x[k]:=t ;\)
 \(q[k]:=m+1 ; \quad k:=k-1 ;\)
```

by
trstart: $q[k]:=q[k]+1$;
in Algorithm 323 produces the ECONOPERM sequence of Algorithm 308.

The times are as follows on an ICT 1905, in seconds.

|  | $t_{7}$ | $t_{8}$ |
| :--- | :--- | :--- |
| Algorithm 323 | 6 | 47 |
| New ECONOPERM | 5.9 | 45 |
| Old ECONOPERM | 6.2 | 50.6 |

Reference:

1. Ord-Smith, R. J. Algorithm 323: Generation of permutations in lexicographic order. Comm. ACM 11 (Feb. 1968), 117.

## ALGORITHM 309

## GAMMA FUNCTION WITH ARBITRARY PRECISION [S14]

Antonino Machado Souza Filho and Georges Schwachнеim (Recd. 12 Apr. 1966 and 14 Apr. 1967)
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, ZC82, Brazil
procedure gamma(z,y,msize,error);
value $z$, msize; real $z$; integer msize; label error; comment This procedure computes the value $y$ of the gamma function for any real argument $z$ for which the result can be represented within the computer, working with msize decimal digits. An exit is made thru the label error when the argument is a pole or is too large, while a zero result is returned when the argument is too small for a correct internal representation of the result.
This procedure is especially useful for variable field length computers and for double- or multiple-precision computations, when a simple power series algorithm is no longer applicable.

It computes the gamma function thru the Stirling asymptotic series for the logarithm of the gamma function with an argument increased by an appropriate integer to insure the required precision with the least computation work.

Negative arguments are reduced to positive ones by:

$$
\Gamma(z)=\frac{\pi}{\sin (\pi z) \times \Gamma(1-z)}
$$

This procedure is not recursive and uses no own variable. It was translated to Fortran II and run on an IBM 1620. The errors were at most of a few hundred units in the last digit of the mantissa, being due to the use of logarithms;

## begin

real procedure loggamma ( $t$ ); value $t$; real $t$;
comment The loggamma auxiliary procedure computes the logarithm of the gamma function of a positive argument $t$. If its argument is below a value $t m i n$, loggamma first increases the argument by an integer value, using the relation:

$$
\ln \Gamma(t)=\ln \Gamma(t+k)-\ln \left(\prod_{i=0}^{k-1}(t+i)\right)
$$

where $\ln \Gamma(t+k)$ is computed by the procedure lgm.
The formula we use for $\operatorname{tmin}$ is a rough empirical relation to minimise computation time.
Indeed an increase of $k$ while decreasing the number of terms of the series, results in more computation for the factor $\ln \left(\prod_{i}(t+i)\right)$;
begin integer tmin;
$t \min :=$ if $m$ size $\geq 18$ then $m$ size -10 else 7 ;
if $t>\operatorname{tmin}$ then $\operatorname{loggamma}:=\lg m(t)$
else
begin real $f$;
$f:=t$;
$L: \quad t:=t+1$;
if $t<t \min$ then
$\operatorname{begin} f:=f \times t$;
go to $L$
end;
$\log g a m m a:=\operatorname{lgm}(t)-\ln (f)$
end
end of procedure loggamma;
real procedure $\operatorname{lgm}(w)$; value $w$; real $w$;
comment This procedure evaluates the logarithm of the
gamma function according to the Stirling asymptotic series:

$$
\ln \Gamma(w) \simeq\left(w-\frac{1}{2}\right) \times \ln (w)-w+\ln \sqrt{2 \pi}+\sum_{i} \frac{c_{i}}{z^{2 i-1}}
$$

The coefficients $c_{i}=B_{2 i} /(2 i(2 i-1)), \quad B_{2 i}$ being the Bernoulli numbers, are rational numbers given here as irreducible fractions.
Twenty terms are sufficient for a precision of up to 50 decimal digits;
begin array $c[1: 20]$; real $w 2$, presum, const, den, sum; integer $i$;
$c[1]:=1 / 12 ; \quad c[2]:=-1 / 360 ;$
$c[3]:=1 / 1260 ; \quad c[4] \quad:=-1 / 1680$;
$c[5]:=1 / 1188 ; \quad c[6] \quad:=-691 / 360360 ;$
$c[7]:=1 / 156 ; \quad c[8] \quad:=-3617 / 122400 ;$
$c[9]:=43867 / 244188 ; \quad c[10]:=-174611 / 125400$;
$c[11]:=77683 / 5796 ; \quad c[12]:=-236364091 / 1506960 ;$
$c[13]:=657931 / 300 ; \quad c[14]:=-3392780147 / 93960 ;$
$c[15]:=1723168255201 / 2492028 ;$
$c[16]:=-7709321041217 / 505920$;
$c[17]:=151628697551 / 396$;
$c[18]:=-26315271553053477373 / 2418179400$;
$c[19]:=154210205991661 / 444$;
$c[20]:=-261082718496449122051 / 21106800 ;$
const $:=.91893853320467274178032973640561763986139747363778$;
comment const $=\ln \sqrt{2 \pi}$;
den $:=w ; w 2:=w \times w ;$ presum $:=(w-.5) \times \ln (w)-$
$w+$ const;
for $i:=1$ step 1 until 20 do
begin sum $:=$ presum $+c[i] / d e n$;
if sum $=$ presum then go to exit:
den $:=\operatorname{den} \times w 2$;
presum := sum
end;
exit $: \lg m:=$ sum
end of procedure lgm;
comment: main procedure gamma starts here;
real $p i$;
$p i:=3.1415926535897932384626433832795028841971693993751$;
comment argov, argund, lnunder are hardware dependent constants that are compared to the arguments of intermediate results, setting error exit or zero result to prevent exponent over or underflow. Should be replaced in the procedure by the appropriate numbers;
if $z>$ argov then go to error else if $z=$ entier ( $z$ ) then
begin if $z \leq 0$ then go to error; $y:=1$;
if $z>2$ then
begin loop: $z:=z-1 ; y:=y \times z$;
if $z>2$ then go to loop
end
end when $z$ is integer
else if $\operatorname{abs}(z)<10 \uparrow(-m s i z e)$ then $y:=1 / z$
else if $z<0$ then
begin if $z<$ argund then $y:=0$
else
begin comment As the use of the sine subroutine for large arguments might introduce errors, some reductions of the argument are made before using it;
Boolean procedure parity ( $m$ ); real $m$; begin integer $j$;
$j:=\operatorname{entier}(m) ;$ parity $:=j=j \div 2 \times 2$
end parity;
real procedure decimal( $x$ ); real $x$;
begin integer $n$;
$n:=x$;
decimal $:=\alpha b s(x-n)$
end decimal;
real delta, ex;
delta $:=\operatorname{decimal}(z) \times p i$;
$e x:=($ if delta $<10 \uparrow(-m s i z e / 2)$ then $-\ln (\operatorname{decimal}(z))$ else
$\ln (p i /(\sin (d e l t a))))-\operatorname{loggamma}(1-z)$;
$y:=$ if $e x<$ lnunder then 0 else
if parity $(z)$ then $\exp (e x)$ else
$-\exp (\operatorname{ex})$
end
end when $z$ is negative
clse $y:=\exp ($ loggamma $(z))$
end of procedure gamma


#### Abstract

ALGORITHME 310 PRIME NUMBER GENERATOR 1 [AI] 13. 1. (hartres (Recd. 25 Oct. 1966 and 13 Apr. 1967)

Computer Science Center, University of Virginia, Charlottesville, Virginia integer procedure sievel ( $m, p$ ); value $m$; integer $m$; integer array $p$; comment sierel( $m, p$ ) generates the prime numbers less than or equal to $m$, and places them in the array $p$, setting $p\{1\}=2$, $p \mid 2\}=3, p|3|=5, \cdots, p \mid k]=$ (largest prime found). The value of the procedure is $k$, the number of primes less than or equal to $m$.

The method used is a modification of the Sieve of Eratust henes. In its customary form this method requires a repeated sweeping over $m$ numbers (or $m / 2$ odd numbers), crossing out all multiples of the $i$ th prime on the $i$ th sweep. The variation of the method used here condenses all these sweeps into one. When the odd integer $n$ is being tested ("if $n=q[i]$ ") to see whether it should be crossed out (" $t:=$ false"), $q[i]$, for $i=3,4, \cdots, j$, contains the smallest odd multiple of $p[i]$ which is no smaller than either $n$ or $p[i] \uparrow 2$. The sequence of values taken on by $q[i]$ defines the set of numbers crossed out because they are multiples of $p[i]$. The initial value of $q[i]$ is $p[i] \dagger 2$ because all smaller odd multiples of $p[i]$ have at least one other odd prime factor smaller than $p\{i\}$. For the same reason, $q[j+1]$ does not become active (" $j$ $:=j+1^{\prime}$ ') until $n$ has become equal to $p[j] \uparrow 2$. The dimension of the arrays $q$ and $d q$ is therefore the number of primes less than or equal to the square root of $m$. Thus we have replaced repeated sweeps over the array $p$ by (many more) repeated sweeps over part of the much smaller array $q$. This does not reduce the amomen of computation, but does lead to a much more efficient computer implementation, as only the arrays $q$ and $d q$ need be held in a random access store.;


## begin

integer array $q, d q[2: 2.7 \times s q r t(m) / \ln (m)]$.
integer $i, j, k, n$;
Boolean $t$;
$p[1]:=j:=k:=2 ; \quad p[2]:=3 ; \quad q[2]:=9 ; \quad d q[2]:=6 ;$
for $n:=5$ step 2 until $m$ do
begin
$t:=$ true;
for $i:=2$ step 1 until $j$ do
begin
if $n=q[i]$ then
begin
$q[i]:=n+d q[i] ; \quad t:=$ false;
if $i=j$ then
begin
$j:=j+1 ; ~ q \mid j]:=p[j \mid \uparrow 2 ;$
$d q[j]:=2 \times p[j] ;$ go to $A$
end
end
end;
if $t$ then
begin
$k:=k+\mathbf{1} ; \quad p[k]:=n$
end;
: end;
sieve $1:=k$
end sievel 1

## REMARK゙S ON:

ALGORITILMI 35 [A1]
Sieve [T. C. Wood, Comm. A('. I \& ( Mar. 1961), 151]
AL(xORITHXI 310 [A1]
PRIME NUMBER (iENERATOR 1 [B. A. Chartres,
(\%omm. ACM 10 (Sept. 1967), 569]
ALGORITHAI 311 [A1]
PRIME NUMBER CENERATOR 2 [B. A. Chartres,
Comm. AC.1/ 10 (Sept. 1967), 570]
13. A. Chartres (Recd. 13 Apr. 1967)

Computer Science Center, University of Virginia, Charlottesville, Virginia

The three procedures Sieve(m,p), sicve1 (m,p), and sieve2( $m, p$ ), which all perform the same operation of putting the primes less than or equal to $m$ into the array $p$, were tested and compared for speed on the Burroughs B5500 at the University of Virginia. The modification of Siere suggested by J.s. Hillmore [Comm. ACM 5 (Aug. 19fi2), 438| was used. It was also found that Sieve could be speeded up by a factor of 1.95 by avoiding the repeated evaluation of squl( $n$ ). The modification required consisted of declaring art integer variable $s$. inserting the statement $s:=\operatorname{sqrt}(n)$ immediately after $i:=3$, and replacing $p[i] \leq s q r t(n)$ by $p[i] \leq s$.

The ruming times for the eomputation of the first 10,000 primes were:

| Sicue (Algorithm 35) | $\$ 45 \mathrm{sec}$ |
| :--- | ---: |
| Sieve (modified) | 434 sec |
| sievel | 220 sec |
| sieve2 | 91 sec |

The time required to compute the first $k$ primes was found to be, for each algorithm, remarkably accurately represented by a power law throughout the range $500 \leq k \leq 50,000$. The running time of Sieve varied as $k^{1.40}$, that of sievel as $k^{1.53}$, and that of sieve 2 as $k^{1.33}$. Thus the speed advantage of sieve 2 over the other algorithms increases with increasing $k$. However, it should be noted that sieve 2 took approximately 33 minutes to find the first 100,000 primes, and, if the power law can be trusted for extrapolation past this point (there is no reason known why it should be), it would take about 12 hours to find the first million primes.

## CERTIFICATION OF ALGORITHM 310 [A1]

PRIME NUMBER GENERATOR 1 [B. A. Chartres, Comm. ACM 9 (Sept. 1967), 569]
Donald G. Rapp and Larry D. Scott (Recd. 21 Apr. 1969 and 13 Aug. 1969)
Computer Science Group, Texas A \&M University, College Station, TX 77843
KEY WORDS AND PHRASES: prime numbers, generator $C R$ CATEGORIES: 5.0

Algorithm 310 was coded in Algol 60 reference language and run on an IBM $360 / 65$. The algorithm was tested for a large range of values including $m=5,10,501$, and 2000. Reference [1] was
utilized to verify the theory involved in the algorithm before actual machine testing.

The intention of Algorithm 310 is to give only the number of primes less than or equal to $m$. Actual confirmation in the initial phases was accomplished through additional instructions that printed the array of prime numbers, $p$, and the number of primes, $k$. Both references listed were useful in substantiation of the prime numbers given. These references were again useful in verifying that all the primes in the array had been discovered and printed.

Each test produced the correct number of primes, $k$, for the specified range, $m$. When the primes were listed, the total taken by hand agreed with the number, $k$, given by the algorithm.

References:

1. Estermann, T. Introduction to Modern Prime Number Theory. Cambridge U. Press, Cambridge, England, 1952.
2. Lehmer, D. N. Carnegie Institution of Washington, Publication No. 165. Hafner, New York, 1956.
```
ALGORI'THMI }31
PRIME NUMBER GENERATOR 2 [A1]
B. A. Chartres (Recd. 25 Oct. }1966\mathrm{ and 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

PRIME NUMBER GENERATOR 2 [A1]
B. A. Chartres (Recd. 25 Oct. 1966 and 13 Apr. 1967)

Computer Science Center, University of Virginia,
Charlottesville, Virginia
```

integer procedure sieve 2(m,p); value m;

```
integer procedure sieve 2(m,p); value m;
 integer m; integer array p;
 integer m; integer array p;
comment sieve2 is a faster version of sieve1. Two changes were
comment sieve2 is a faster version of sieve1. Two changes were
 made to obtain higher speed.
 made to obtain higher speed.
 (1) The multiples q[i] are sorted, smallest first, so that each
 (1) The multiples q[i] are sorted, smallest first, so that each
 value of n does not need to be compared with every q[i]. The
 value of n does not need to be compared with every q[i]. The
 sorted order of the q[i] is indicated by an index array r. The
 sorted order of the q[i] is indicated by an index array r. The
 ith sorted element of q is q[r[i]]. It was found empirically that
 ith sorted element of q is q[r[i]]. It was found empirically that
 greater speed is obtained when the q[r[i]] are not kept con-
 greater speed is obtained when the q[r[i]] are not kept con-
 stantly sorted, but are re-sorted only at the time a new prime is
 stantly sorted, but are re-sorted only at the time a new prime is
 discovered. The integer jj indicates which of the q[r[i]] are sorted:
 discovered. The integer jj indicates which of the q[r[i]] are sorted:
 q[r[3]] through q[r[jj-1]] are out of order, whereas q[r[jj]] through
 q[r[3]] through q[r[jj-1]] are out of order, whereas q[r[jj]] through
 q[r[j]] are in order. Sorting is performed in two stages. A sift
 q[r[j]] are in order. Sorting is performed in two stages. A sift
 sort first rearranges r[3] through r[jj-1] into rr[3] through
 sort first rearranges r[3] through r[jj-1] into rr[3] through
 rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1]
 rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1]
 and r[jj] through r[j] into r[1] through r[j].
 and r[jj] through r[j] into r[1] through r[j].
 (2) All multiples of 3 are automatically excluded from con-
 (2) All multiples of 3 are automatically excluded from con-
 sideration by stepping }n\mathrm{ alternately by 2 and 4, and, in a similar
 sideration by stepping }n\mathrm{ alternately by 2 and 4, and, in a similar
 way, by stepping q[i] alternately by 2 }\timesp[i] and 4\timesp[i].;
 way, by stepping q[i] alternately by 2 }\timesp[i] and 4\timesp[i].;
begin
begin
 integer array }q,dq,sq,r,\operatorname{rr}[2:2.7\timessqrt(m)/ln(m)]
 integer array }q,dq,sq,r,\operatorname{rr}[2:2.7\timessqrt(m)/ln(m)]
 integer i, j, jj,k,n,ir, jr, dn;
 integer i, j, jj,k,n,ir, jr, dn;
 Boolean t;
 Boolean t;
 p[1]:=dn := 2; p[2]:=j:= jj:=k :=r[3]:= 3;
 p[1]:=dn := 2; p[2]:=j:= jj:=k :=r[3]:= 3;
 p[3]:= 5; q[3]:= 25; dq[3]:= 10; sq[3] := 30;
 p[3]:= 5; q[3]:= 25; dq[3]:= 10; sq[3] := 30;
 for }n:=7\mathrm{ step }dn\mathrm{ until m do
 for }n:=7\mathrm{ step }dn\mathrm{ until m do
 begin
 begin
 t:= true; dn:= 6-dn;
 t:= true; dn:= 6-dn;
 for }i:=3\mathrm{ step 1 until jj do
 for }i:=3\mathrm{ step 1 until jj do
 begin
 begin
 ir := r[i];
 ir := r[i];
 if n=q[ir] then
 if n=q[ir] then
 begin
 begin
 q[ir]:= n + dq[ir];
 q[ir]:= n + dq[ir];
 dq[ir]:=sq[ir] - dq[ir];
 dq[ir]:=sq[ir] - dq[ir];
 t:= false;
 t:= false;
 if i=jj then
 if i=jj then
 begin
 begin
 jj:= jj + 1;
 jj:= jj + 1;
 if ir = j then
 if ir = j then
 begin
 begin
 j:= j+1; r[j]:= j;
 j:= j+1; r[j]:= j;
 q[j]:= p[j]\uparrow2;
 q[j]:= p[j]\uparrow2;
 sq[j]:= 6 < p[j];
 sq[j]:= 6 < p[j];
 dq[j]:=sq[j]\times(1+(p[j]\div3)!-2\timesq[j]
 dq[j]:=sq[j]\times(1+(p[j]\div3)!-2\timesq[j]
 end
 end
 end
 end
 end
 end
 end;
 end;
 if t then
 if t then
 begin
 begin
 k:=k+1; p[k]:= n;
 k:=k+1; p[k]:= n;
A: if jj = 3 then go to }F\mathrm{ ;
A: if jj = 3 then go to }F\mathrm{ ;
 q[r[s]] through q[r[jj-1]] are out of order, whereas q[r (j)]] through
 q[r[s]] through q[r[jj-1]] are out of order, whereas q[r (j)]] through
 (2) Al muluples or 3 are automatically excluded rom con-
```

```
 (2) Al muluples or 3 are automatically excluded rom con-
```

```
```

    \(j j:=j j-1\);
    if \(q[r[j j]]<q[r[j j+1]]\) then go to \(A\);
    comment sift sort;
    \(r r[3]:=r[3]\);
    for \(i r:=4\) step 1 until \(j j\) do
    begin
            \(i:=i r-1\);
    $B: \quad$ if $q[r[i r]]<q[r r[i]]$ then
begin
$r r[i+1]:=r r[i] ; \quad i:=i-1$;
if $i \geqslant 3$ then go to $B$
end;
$r r[i+1]:=r[i r]$
end;
comment merge sort;
$i:=i r:=3 ; \quad j r:=j j+1$;
$C: \quad$ if $q[r r[i r]] \leqslant q[r[j r]]$ then
begin
$r[i]:=r r[i r] ; \quad i r:=i r+1 ;$
if ir $>j j$ then go to $E$
end
else
begin
$r[i]:=r[j r] ; \quad j r:=j r+1$;
if $j r>j$ then go to $D$
end;
$i:=i+1$; go to $C$;
D: $\quad i:=i+1 ; \quad r[i]:=r r[i r] ; \quad i r:=i r+1$;
if $i r \leqslant j j$ then go to $D$;
$j j:=3$
end;
$F$ : end;
sieve $2:=k$
end sieve 2

```

REMARKS ON:
ALGORITHM 35 [A1]
Sieve [T. C. Wood, Comm. ACM 4 (Mar. 1961), 151]
ALGORITHM 310 [A1]
PRIME NUMBER GENERATOR 1 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 569]
ALGORITHM 311 [A1]
PRIME NUMBER GENERATOR 2 [B. A. Chartres, Comm. ACM 10 (Sept. 1967), 570]
B. A. Chartres (Recd. 13 Apr. 1967)

Computer Science Center, University of Virginia, Charlottesville, Virginia

The three procedures Sieve \((m, p)\), sieve \(1(m, p)\), and \(\operatorname{sieve} 2(m, p)\), which all perform the same operation of putting the primes less than or equal to \(m\) into the array \(p\), were tested and compared for speed on the Burroughs B5500 at the University of Virginia. The modification of Sieve suggested by J. S. Hillmore [Comm. ACM 5 (Aug. 1962), 438] was used. It was also found that Sieve could be speeded up by a factor of 1.95 by avoiding the repeated evaluation
of \(\operatorname{sqrt}(n)\). The modification required consisted of declaring ant integer variable \(s\), inserting the statement \(s:=\operatorname{sqrt}(n)\) immediately after \(i:=3\), and replacing \(p[i] \leq \operatorname{sqrt}(n)\) by \(p[i] \leq s\).

The running times for the computation of the first 10,000 primes were:
\begin{tabular}{lr}
Sieve (Algorithm 35) & 845 sec \\
Sieve (modified) & 434 sec \\
sieve1 & 220 sec \\
Sieve2 & 91 sec
\end{tabular}

The time required to compute the first \(k\) primes was found to be, for each algorithm, remarkably accurately represented by a power law throughout the range \(500 \leq k \leq 50,000\). The running time of Sieve varied as \(k^{1.40}\), that of sieve 1 as \(k^{1.53}\), and that of sieve 2 as \(k^{1.35}\). Thus the speed advantage of sieve2 over the other algorithms increases with increasing \(k\). However, it should be noted that sieve 2 took approximately 33 minutes to find the first 100,000 primes, and, if the power law can be trusted for extrapolation past this point (there is no reason known why it should be), it would take about 12 hours to find the first million primes.

ALGORITHM 312
ABSOLUTE VALUE AND SQUARE ROOT OF A
COMPLEX NUMBER, [A2]
Paul Friedland (Recd. 13 Feb. 1967 and 16 June 1967)
Burroughs Corporation, Pasadena, California
```

real procedure cabs (x,y);
value }x,y; real x,y
comment This procedure returns the absolute value of the com-
plex number }x+iy\mathrm{ . The procedure provides for the possible
overflow on \mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}\mathrm{ in }|x+iy|=\sqrt{}{\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}}\mathrm{ ;}
begin
x:=abs (x); y:=abs (y);
cabs := if }x=0\mathrm{ then }y\mathrm{ else if }y=0\mathrm{ then }x\mathrm{ clse
if }x>y\mathrm{ then }x\times\operatorname{sqrt}(1+(y/x)\uparrow2
else}y\times\operatorname{sqrt}(1+(x/y)\uparrow2
end cabs;
procedure csqrt ( }x,y,a,b)\mathrm{ ;
value }x,y; real x,y,a,b
comment This procedure computes a and b}\mathrm{ where }a+ib
\sqrt{}{x+iy. For }x=y=0\mathrm{ we have that }a=b=0\mathrm{ so we will assume}
that }x\mathrm{ and }y\mathrm{ are not both zero.
Solving simultaneously for }a\mathrm{ and then b ...

```
\[
\begin{equation*}
a= \pm \sqrt{\frac{x \pm|x+i y|}{2}}, \quad b=y /(2 a) \tag{1}
\end{equation*}
\]
and for \(b\) and then \(a\)..
\[
\begin{equation*}
b= \pm \sqrt{\frac{-x \pm|x+i y|}{2}}, \quad a=y /(2 b) \tag{2}
\end{equation*}
\]

To keep the radical real, we will always use the positive sign with \(|x+i y|\) and use equation (1) with the sign of " \(a\) " taken positive for \(x \geq 0\) and (2) when \(x<0\), with the sign of " \(b\) " taken positive for \(y \geq 0\) and negative for \(y<0\);
begin
if \(x=0 \wedge y=0\) then \(a:=b:=0\) else
begin
\(a:=\operatorname{sqrt}((a b s(x)+\operatorname{cabs}(x, y)) \times 0.5)\);
if \(x \geq 0\) then \(b:=y /(a+a)\) else
begin
\(b:=\) if \(y<0\) then \(-a\) else \(a\);
\(a:=y /(b+b)\)
end
end
end \(c s q r t\)

ALGORITHM 313
MULTI-DIMENSIONAL PARTITION
GENERATOR [A1]
P. Braṭley and J. K. S. McKay (Recd. 23 Aug. 1966, 15 Feb. 1967 and 14 Apr. 1967)
Dept. of Computer Science, University of Edinburgh
procedure partition (\(N\), dim, use) ;
value \(N\), \(\operatorname{dim}\); integer \(N\), \(\operatorname{dim}\); procedure use;
comment A partition of \(N\) is an ordered sequence of positive integers, \(n_{1} \geq n_{2} \geq n_{3} \geq \cdots \geq n_{k}\), such that \(\sum_{i=1}^{k} n_{i}=N\). Such a partition may be represented by a Ferrers-Sylvester graph of nodes with \(n_{i}\) nodes in the \(i\) th row, e.g.,

represents \(5,4,2,2\). This two-dimensional diagram may be generalized in a natural way to three, or more, dimensions. More formally, we regard a \(d\)-dimensional partition of \(n\) as a set \(S\) of \(n\) nodes, each defined by its non-negative integer coordinates such that
\(\left(x_{1}, x_{2}, \cdots, x_{d}\right) \in S\) if and only if \(\quad\left(x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{d}{ }^{\prime}\right) \in S\) whenever
\[
0 \leq x_{i}^{\prime} \leq x_{i} \text { for all } i=1,2, \cdots, d
\]

This generalization reduces to the usual definition when \(d=2\). There is little literature on these generalized partitions. It is with a view to facilitating numerical studies that this algorithm is published.

After generation, each partition is presented to the procedure use, which should be supplied by the user for the purpose he requires. use has three formal parameters, the first being the name of a two-dimensional integer array, and: the second and third being integers giving the size of this array. When the procedure is called by
\[
\text { use (current, dim, } N \text {) }
\]
then the coordinates of the nodes entering into the newly generated multi-dimensional partition will be found in current [1: \(\operatorname{dim}, 1: N]\). The parameters of use should be called by value, or alternatively care should be taken that neither \(\operatorname{dim}, N\), nor the contents of the array current are disturbed.

References:
1. Gupta, H., Gwyther, C. E., and Miller, J. C. P. Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958.
2. MacMahon, P. A. Combinatory Analysis; Vol. 2, Cambridge Univ. Press, 1916.
3. Chaundy, T. W. Partition generating functions. Quart. J. Math. 2 (1931), 234-240.
4. Atkin, A. O. L., Bratley, P., MacDonald, I. G., and McKay, J. K. S. Some computations for \(m\)-dimensional partitions. Proc. Cambridge Phil. Soc. (to appear);

\section*{begin}
integer \(i\); integer array current \([1: \operatorname{dim}, 1: N]\),
\(x[1: \operatorname{dim}, 0:(N-1) \times \operatorname{dim}] ;\)
procedure part (\(n, q, r\)); value \(n, q, r\); integer \(n, q, r\);
begin integer \(s, i, j, k, p, m, z\);
for \(p:=q\) step 1 until \(r-1\) do
begin
for \(i:=1\) step 1 until dim do current \([i, n]:=x[i, p]\);
if \(n=N\) then begin use (current, \(\operatorname{dim}, N\)); go to \(L 2\) end;
\(s:=r\);
for \(i:=1\) step 1 until \(\operatorname{dim}\) do
begin
for \(j:=1\) step 1 until \(\operatorname{dim}\) do \(x[j, s]:=x[j, p]\);
\(x[i, s]:=x[i, s]+1\);
for \(j:=1\) step 1 until \(\operatorname{dim}\) do
begin
if \(x[j, s]=0\) then go to \(L 3\);
for \(k:=1\) step 1 until \(n\) do begin
for \(m:=1\) step 1 until \(\operatorname{dim}\) do
begin
\(z:=\) if \(j=m\) then 1 else 0 ;
\(\mathbf{f}\) ciurrent \([m, k] \neq x[m, s]-z\) then go to \(L 4\)
end;
go to \(L 3\);
\(L 4\) :
end \(k\);
go to \(L 5\);
L3:
end \(j\);
\(s:=s+1\);
\(L 5\) :
end \(i\);
part \((n+1, p+1, s)\);
L2: end \(p\)
end part;
for \(i:=1\) step 1 until \(\operatorname{dim}\) do \(x[i, 0]:=0 ; \quad \operatorname{part}(1,0,1)\)
end partition
```

ALGORITHM 314
FINDING A SOLUTION OF $N$ FUNCTIONAL
EQUATIONS IN $N$ UNKNOWNS [C5]
D. B. Dulley and M. L. V. Pitteway (Recd. 7 Apr. 1966,
19 Oct. 1966 and 5 July 1967)
Cripps Computing Centre, University of Nottingham,
England
procedure ndinvt (functions, initstep, error, cycles, $x, f$, accest, $n$ );
value $n$; procedure functions; real initstep, error;
integer cycles, $n$; array $x, f$, accest;
comment This procedure performs inverse interpolation in $n$
dimensions, i.e., it will find a set of values for $n$ variables $x$,
such that $n$ functions $f(x)$ are zero. A more sophisticated tech-
nique, suitable for large values of $n$, has been developed by
S. M. Robinson (Interpolative Solution of Systems of Nonlinear
Equations, SIAM Journal of Numerical Analysis, 9 (1966),
$650-658)$. It can also be used to fit a curve with $n$ arbitrary
parameters to a set of points, the $n$ functions being formed, in
this case, by equating to zero the differential of the sum of the
squares of the residues with respect to each parameter in turn.
The functions required are specified by a procedure of the
form functions ( $f, x$ ) where $f$ and $x$ are declared as arrays from
1 to $n$. This procedure should calculate the $n$ functions from a
set of values given in $x$, placing the results in $f$. The first step is
made by forming partial derivatives over an interval initstep.
$1_{10}-6$ should be suitable for values of $x$ of the order 1 to 10 .
Exit from the procedure will occur if:
(i) the root sum square of the $x$ increments is less than error. If error is negative, this condition must be satisfied for |error |, and in addition this process is continued until the root sum square of the incrementsfails to decrease
or (ii) the number of iterations is greater than cycles, implying that too much accuracy has been requested
or (iii) the specified equations are singular. In this case exit is by a jump to a label fails.
On entry, the array $x$ should contain the starting values. On exit, the array $x$ will contain the accurate root, $f$ the residues and accest the last increments made to $x$ as a measure of the accuracy.
This procedure calls on a global procedure eqnsolve ( $A, b, n$, label), which solves $n$ linear simultaneous equations in $n$ unknowns $A x=b$, placing the result in $b$. If $A$ is singular, it is assumed that an exit is made by a jump to label;
begin
real work, sumsqres, prevres;
integer $i, j$, count;
Boolean switch;
array $\operatorname{prevf}[1: n]$, copydelf $[1: n, 1: n]$, $\operatorname{delx}$, $\operatorname{delf}[1: n, 1: n+1]$;
functions(prevf, $x$ );
for $i:=1$ step 1 until $n$ do
begin
$x[i]:=x[i]+$ initstep;
functions ( $f, x$ );
for $\boldsymbol{j}:=1$ step 1 until $\boldsymbol{n}$ do
begin
$\operatorname{delf}[i, j]:=f[j]-\operatorname{prevf}[j] ;$

```
delx[i,j]:=0;
end differencing initial point;
\(\operatorname{delx}[i, i]:=\) initstep;
\(x[i]:=x[i]-\) initstep;
end setting up the initial matrix of points;
sumsqres \(:=1_{1030}\);
count :=0;
iterate:
switch := true;
prevres := sumsqres;
tryagain:
for \(\boldsymbol{i}:=1\) step 1 until \(\boldsymbol{n}\) do
begin
\(f[i]:=\operatorname{prevf}[i]\);
for \(j:=1\) step 1 until \(n\) do copydelf \([i, j]:=\operatorname{delf}[i, j]\)
end copying delf for destructive use in procedure eqnsolve;
eqnsolve (copydelf, \(f, n\), inline);
sumsqres \(:=0\);
for \(:=1\) step 1 until \(n\) do
begin
work :=0;
for \(j:=1\) step 1 until \(n\) do work \(:=\) work \(-\operatorname{delx}[i, j] \times f[j] ;\)
accest \([i]:=\) work;
\(x[i]:=x[i]+\) work;
sumsqres \(:=\) sumsqres + work \(\times\) work
end calculation of next point;
count \(:=\) count \(+\mathbf{1}\);
functions (\(f, x\));
if count \(>\) cycles \(\bigvee\) sumsqres \(<\) error \(\times\) error \(\wedge\) (error \(>0 \vee\) sumsqres \(>\) prevres) then go to exit;
for \(i:=1\) step 1 until \(n\) do
begin
work := f[i] - prevf[i];
prevf[i]:=f[i];
for \(j:=n\) step - 1 until 1 do
begin
\(\operatorname{delx}[i, j+1]:=\operatorname{delx}[i, j]-\operatorname{accest}[i] ;\)
\(\operatorname{delf}[i, j+1]:=\operatorname{delf}[i, j]-\) work
end calculation of new differences;
\(\operatorname{delx}[i, 1]:=-\operatorname{accest}[i] ;\)
\(\operatorname{delf}[i, 1]:=-\) work
end moving points up one place in tables;
go to iterate;
inline:
for \(i:=1\) step 1 until \(n\) do
begin
\(\operatorname{delx}[i, n]:=\operatorname{delx}[i, n+1] ;\)
\(\operatorname{delf} f i, n]:=\operatorname{delf}[i, n+1]\)
end discarding alternative point;
switch \(:=\neg\) switch;
if switch then go to fails else go to tryagain;
exit:
end ndinvt

REMARK ON ALGORITHM 314 [C5]
FINDING A SOLUTION OF \(N\) FUNCTIONAL

EQUATIONS IN \(N\) UNKNOWNS [D. B. Dulley and M. L. V. Pitteway, Comm. ACM 10 (Nov. 1967), 726].

James Vandergraft and Charles Mesztenyi
(Recd. 12 Aug. 1968)
Computer Science Center, University of Maryland, College Park, MD 20742
KEY WORDS AND PHRASES: functional equations, interpolation, nonlinear equations, secant method
\(C R\) CATEGORIES: 5.13, 5.15
The algorithm, as published, requires four iterations to find the solution to a pair of linear equations. The difficulty seems to lie in the last statement of the first column. If this is replaced by
\[
\operatorname{delf}[j, i]:=f[j]-\operatorname{prevf}[j] ;
\]
then the algorithm works well. In fact, however, it is now simply an \(n\)-dimensional secant method, which can be described by the iteration
\[
x^{k+1}=x^{k}-\delta x_{k}\left(\delta F_{k}\right)^{-1} F\left(x^{k}\right), \quad k=0,1,2, \ldots,
\]
where \(\delta F_{k}\) and \(\delta x_{k}\) are matrices whose \(i\) th columns are \(f\left(x^{k-i}\right)-\) \(f\left(x^{k}\right)\) and \(x^{k-i}-x^{k}\), respectively. The iteration is started by setting
\[
x^{-i}=x^{0}+h e_{i}
\]
where \(x^{0}\) is a given vector, \(h\) is a small positive constant, and \(e_{i}\) is the \(i\) th unit coordinate vector.

It should be observed, also, that the algorithm will not break down if \(\delta x_{k}\) becomes singular. However, if this should happen it means that \(x^{k}, x^{k-1}, \ldots, x^{k n}\) lie in a proper subspace \(S\) of \(E^{n}\), Euclidean \(n\)-space, and all successive iterates will also lie in S. Hence the algorithm may converge to a point in \(S\) which is not a solution to \(f(x)=0\). To prevent this, the norm of \(f(x)\) should be checked before leaving the procedure.

\section*{ALGORITHM 315}

\section*{THE DAMPED TAYLOR'S SERIES METHOD FOR} MINIMIZING A SUM OF SQUARES AND FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS [E4, C5]
H. Späth (Recd. 25 Oct. 1966 and 19 June 1967)

Institut für Neutronenphysik und Reaktortechnik
Kernforschungszentrum Karlsruhe, Germany
procedure TAYLOR (\(n, m, x, h, f\), itmax, eps1, eps 2 , der, \(S\), KENN, EXIT);
value \(n, m\), eps1, eps 2 ; integer \(n, m\), itmax, \(K E N N\); real eps1, eps2, S;
Boolean der; array \(x, h, f\); label EXIT; comment

Let
\[
\begin{equation*}
S\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=1}^{m} f_{i}^{2}\left(x_{1}, \ldots, x_{n}\right) \quad(m \geqq n) \tag{1}
\end{equation*}
\]
the function to be minimized. Such functions always appear if you apply the method of least squares to estimate nonlinear parameters. The following sequence
\[
\begin{align*}
& x^{(k+1)}=x^{(k)}-\beta \Delta x^{(k)}=x^{(k)}-\beta\left(F_{x(k)}^{\prime T} F_{x(k)}^{\prime}\right)^{-1} F_{x(k)}^{\prime} T\left(x^{(k)}\right) \\
& F=\left(f_{1}, \cdots, f_{m}\right), \quad F_{x}^{\prime}=\left(\frac{\partial f_{i}}{\partial x_{j}}\right) i=1, \cdots, m, j=1, \cdots, n \tag{2}
\end{align*}
\]
where \(\beta\), which is always possible, is chosen to be such that
\[
\begin{equation*}
S\left(x^{(k)}-\beta \Delta x^{(k)}\right) \leqslant(1-\beta \lambda) S\left(x^{(k)}\right) \quad(0<\lambda<1) \tag{3}
\end{equation*}
\]
is known to converge [1] for any \(x^{(0)}\) to a stationary point of \(S\) (grad \(S=2 F_{x}^{\prime}{ }^{T} F(x)=0\)), if on the carrying out of the iteration the matrix \(F_{x}^{\prime}{ }^{T} F_{x}^{\prime}\) does not become singular.

For \(m=n\) you have \(\Delta x=F_{x}^{\prime}-1 F(x)\) and (2) becomes a damped version of Newton's method for solving the system of nonlinear equations
\[
\begin{equation*}
F(x)=0 \tag{4}
\end{equation*}
\]

All zeros of (4) are stationary points of (1). Thus we are able to generate a sequence which converges for any \(x^{(0)}\) to a stationary point of (1) and the possible divergence of Newton's method (\(\beta=1\)) is avoided. It is not assured, however, that the method will always converge to a solution of (4). Numerical experience has shown that though Newton's method (\(\beta=1\)) diverges for a certain \(x^{(0)}\) the damped sequence converges to a solution of (4) for the same \(x^{(0)}\).
In the program we have chosen \(\lambda=.2\). At each iteration we set first \(\beta=1\) and then, if (3) is not valid, \(\beta=2^{-i}(j=1,2, \ldots, 16)\). If \(j\) is greater than 16 then \(\beta<.00002\) and we assume to have reached a stationary point of \(S\).
Meaning of the formal parameters:
\(n \quad\) the number of variables \(x_{i}\)
\(m \quad\) the number of functions \(f_{i}\)
\(x \quad\) the array \(x[1: n]\) which must first contain a starting value \(x^{(0)}\) and finally will contain a stationary point of \(S\), if \(F_{x}^{\prime}{ }^{\prime} F_{x}^{\prime}\) or for \(m=n F_{x}^{\prime}\), respectively, has not become singular
\(h \quad h[1: n]\) is a step size vector for the approximation of \(F_{x}^{\prime}\) (see below)
\(f\) the array \(f[1: m]\) will contain the function values at the last \(x\) calculated in TAYLOR
itmax must initially contain the maximum number of iterations to be performed. Leaving TAYLOR regularly, itmax contains the actual number of performed iterations
\(e p s 1 \quad\) the iteration is stopped when \(S<e p s 1\)
\(e p s 2\) the iteration is discontinued when \(\sum_{i=1}^{n}\left|\Delta x_{i}^{(k)}\right|<\) \(e p s 2 \times \sum_{i=1}^{n}\left|x_{i}^{(k+1)}\right|\)
der \(\quad\) if \(d e r=\) true the matrix \(F_{x}^{\prime}\) must be produced by a global procedure named DERIVE \((x, d f d x)\) which adjoins to the vector \(x[1: n]\) the array \(d f d x[1: m, 1: n]\). In this case the array \(h\) can be loaded by an arbitrary vector, for instance \(x\).
if \(d e r=\) false the matrix \(F_{x}^{\prime}\) is approximated by
\(\frac{\partial f_{i}}{\partial x_{j}}=\frac{f_{i}\left(x_{1}, \ldots, x_{j}+h_{j}, \ldots, x_{n}\right)-f_{i}\left(x_{1}, \ldots, x_{j}-h_{j}, \ldots, x_{n}\right)}{2 h_{j}}\)
where \(h\) is a given step size vector. With a suitable choice of the \(h_{j}\) the convergence behavior of the sequence (2) is not destroyed. \(\operatorname{DERIVE}(x, d f d x)\) must be formally declared outside of TAYLOR in this case.
[In some cases, particularly when solving nonlinear equations, the extra accuracy achieved by using central differences to estimate the derivatives is not necessary. A considerable saving in execution time can be obtained by using one-sided differences which means only minor changes in the program below. -Ref.]
\(S\)
should initially contain the greatest positive number that the employed computer can store. Finally \(S\) contains \(S=S\left(x^{(i t m a x)}\right)\), if TAYLOR is regularly left.
KENN if after having called TAYLOR
\(K E N N=0\) then one of the above interruptions applies (eps1, eps2),
\(K E N N=1\) then itmax iterations were carried out and TA YLOR is left,
\(K E N N=-1\) then \(\beta=2^{-17}\) and TAYLOR is left.
EXIT TAYLOR goes to this global label if i encounters a singular matrix.
Further two global procedures must be made available to
TAYLOR:
i) FUNCTION \((x, f)\) which is able to calculate for a given vector \(x[1: n]\) the function values \(f[1: m]\)
ii) \(\operatorname{GAUSS}(n, A, b, x, E X I T)\) which solves the linear system of \(n\) equations \(A x=b\) for \(x\). If \(A\) is singular then GAUSS returns to the global label EXIT. Any linear equation solver may be used for GAUSS;
begin integer \(i, j, k, z, l\); real \(h f, h l, h s, h z\);
array \(f p, f m[1: m], b, d x[1: n], d f d x[1: m, 1: n]\), aa[1:n, \(1: n]\);
\(h s:=S ; K E N N:=z:=0 ;\)
ITERATION: \(z:=z+1\);
if \(z>\) itmax then begin \(K E N N:=1\); go to \(E N D E\) end; \(l:=0 ; h l:=1.0 ;\)
DAMP: \(l:=l+1\);
if \(1>16\) then begin \(K E N N:=-1\); go to \(E N D E\) end;
FUNCTION \((x, f)\); \(h f:=0\);
for \(i:=1\) step 1 until \(m\) do \(h f:=h f+f[i] \times f[i]\);
```

    if }hf>hs\times(1.0-.2\timeshl) the
    begin hl:= hl }\times.5\mathrm{ ;
        for }k:=1 step 1 until n do x[k]:= x[k] + hl Xdx[k]
        go to DAMP
    end;
    hs:= hf; if hs < eps 1 then go to ENDE;
    if der then DERIVE (x,dfdx) else
    begin
        for }i:=1\mathrm{ step 1 until }n\mathrm{ do
        begin hf:=h[i]; hz:= 2.0\timeshf;
            x[i]:=x[i] +hf; FUNCTION (x,fp);
        x[i]:=x[i]-hz; FUNCTION (x,fm);
        x[i]:= x[i] +hf; hz:= 1.0/hz;
        for }k:=1 step 1 until m do
        dfdx[k,i]:= hz\times(fp[k] - fm[k])
        end
    end;
    if m=n then GAUSS(n,dfdx,f,dx,EXIT) else
begin
for i}\boldsymbol{i}=1\mathrm{ step 1 until }n\mathrm{ do
begin hf := 0;
for }k:=1\mathrm{ step 1 until m do
hf:=hf +dfdx[k,i]\timesf[k]; b[i]:= hf;
for }k:=i\mathrm{ step 1 until }n\mathrm{ do
begin hf := 0;
for j:= 1 step 1 until m do
hf:=hf+dfdx[j,i]\timesdfdx[j,k];
aa[i,k]:= aa[k,i]:= hf
end
end;
GAUSS(n, aa,b,dx,EXIT)
end;
hz:=hf:= 0;
for }i:=1\mathrm{ step 1 until n do
begin
x[i]:= x[i] - dx[i]; hz:= hz + abs(x[i]);
hf := hf +abs(dx[i])
end;
if hf \geqeps2\timeshz then go to ITERATION;
ENDE:FUNCTION (x,f); S:= 0; itmax := z;
for }i:=1\mathrm{ step 1 until m do S:=S+f[i] }\timesf[i
end TAYLOR

```

Reference:
[1] Braess, D. Über Dämpfung bei Minimalisierungsverfahren. Computing 1 (1966), 264-272.

REMARK ON ALGORITHM 315 [E4, C5]
THE DAMPED TAYLOR'S SERIES METHOD FOR MINIMIZING A SUM OF SQUARES AND FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS [H. Späth, Comm. ACM 10 (Nov. 1967), 726]. Gary Silverman (Recd. 4 Mar. 1969, 14 Apr. 1969 and 11 June 1969)
IBM Scientific Center, Los Angeles, CA 90067.
KEY WORDS AND PHRASES: solution of equations, least squares approximation, Newton's method
\(C R\) CATEGORIES: 5.13, 5.14, 5.15

The algorithm, as published, may introduce unnecessary truncation error into the solution. If the matrix \(F^{\prime}{ }_{x}\) is approximated by central differences (\(d e r=\) false) then the value of the iterate is used to compute these differences. This involves two additions to and one subtraction from the iterate, each of which may result in truncation error. To correct this, the following statements on page 727
\[
\begin{aligned}
& x[i]:=x[i]+h f ; \quad \text { FUNCTION }(x, f p) ; \\
& x[i]:=x[i]-h z ; \quad \text { FUNCTION }(x, f m) ; \\
& x[i]:=x[i]+h f ; \quad h z:=1.0 / h z ;
\end{aligned}
\]
may be replaced by
\[
\begin{aligned}
& h h:=x[i] ; \\
& x[i]:=x[i]+h f ; \text { FUNCTION }(x, f p) ; \\
& x[i]:=x[i]-h z ; \text { FUNCTION }(x, f m) ; \\
& x[i]:=h h ; \quad h z:=1.0 / h z ;
\end{aligned}
\]
after declaring an additional real variable \(h h\).
In solving two equations in two unknowns the published algorithm converged to a solution with \(S=8.83653 \times 10^{-13}\) and \(K E N N=-1\). After the above modification convergence was with \(S=0\) and \(K E N N=0\).

\section*{ALGORITHM 316}

SOLUTION OF SIMULTANEOUS NON-LINEAR EQUATIONS [C5]
K. M. Brown (Recd. 27 Oct. 1966, 31 Mar. 1967, 17 July 1967, and 26 July 1967)
Department of Computer Science, Cornell University, Ithaca, New York
procedure nonlinearsystem (\(n\), maxit, numsig, singular, \(x\)); value \(n\), \(n\) umsig; integer \(n\), maxit, numsig, singular; array \(x\); comment This procedure solves a system of \(n\) simultaneous nonlinear equations. The method is roughly'quadratically convergent and requires only \(\left(\left(n^{2} / 2\right)+(3 n / 2)\right)\) function evaluations per iterative step as compared with \(\left(n^{2}+n\right)\) evaluations for Newton's Method. This results in a savings of computational effort for sufficiently complicated functions. A detailed description of the general method and proof of convergence are included in [1]. Basically the technique consists in expanding the first equation in a Taylor series about the starting guess, retaining only linear terms, equating to zero and solving for one variable, say \(x_{k}\), as a linear combination of the remaining \(n-1\) variables. In the second equation, \(x_{k}\) is eliminated by replacing it with its linear representation found above, and again the process of expanding through linear terms, equating to zero and solving for one variable in terms of the now remaining \(n-2\) variables is performed. One continues in this fashion, eliminating one variable per equation, until for the \(n\)th equation, we are left with one equation in one unknown. A single Newton step is now performed, followed by back-substitution in the triangularized linear system generated for the \(x_{i}\) 's. A pivoting effect is achieved by choosing for elimination at any step that variable having a partial derivative of largest absolute value. The pivoting is done without physical interchange of rows or columns.

The vector of initial guesses \(x\), the number of significant digits desired numsig, the maximum number of iterations to be used, maxit, and the number of equations \(n\), should be set up prior to the procedure call which activates nonlinearsystem. After execution of the procedure, the vector \(x\) is the solution of the system (or best approximation thereto), maxit is now the number of iterations used and singular \(=0\) is an indication that a Jaco-bian-related matrix was singular-indicative of the process "blowing-up," whereas singular \(=1\) is an indication that no such difficulty occurred. Storage space may be saved by implementing the algorithm in a way which telkes advantage of the fact that the strict lower triangle of the array pointer and the same number of positions in the array coe are not used;
begin integer converge, \(m, j, k, i, j s u b\), itemp, kmax, kplus, tally; real \(f\), hold, \(h\), fplus, dermax, test, factor, relconvg;
integer array pointer \([1: n, 1: n]\), \(i s u b[1: n-1]\);
array temp, part \([1: n]\), coe \([1: n, 1: n+1]\);
procedure backsubstitution (\(k, n, x\), isub, coe, pointer);
value \(k, n\);
integer \(k, n\); integer array \(i s u b\), pointer; array \(x\), coe;
comment This procedure back-solves a triangular linear system for improved \(x[i]\) values in terms of old ones;
begin integer \(k m, k m a x, j s u b\);
for \(k m:=k\) step -1 until 2 do
begin \(k \max :=i s u b[k m-1] ; x[k m a x]:=0\);
for \(j:=k m\) step 1 until \(n\) do
begin \(j s u b:=\) pointer \([k m, j]\);
\(x[k \max]:=x[k \max]+\operatorname{coe}[k m-1, j s u b] \times x[j s u b]\)
end;
\(x[k \max]:=x[k \max]+\operatorname{coe}[k m-1, n+1]\)
end;
end backsubstitution;
procedure evaluatekthfunction (\(x, y, k\));
integer \(k\); real \(y\); array \(x\);
begin comment the body of this procedure must be provided by the user. One call of the procedure should cause the value of the \(k\) th function at the current value of the vector \(x\) to be placed in \(y\);
end evaluatekthfunction;
converge \(:=1 ;\) singular \(:=1\); relconvg \(:=10 \uparrow\) (-numsig);
for \(m:=1\) step 1 until maxit do
begin
comment An intermediate output statement may be inserted at this point in the procedure to print the successive approximation vectors \(x\) generated by each complete iterative step;
for \(j:=1\) step 1 until \(n\) do pointer \([1, j]:=j\);
for \(k:=1\) step 1 until \(n\) do
begin if \(k>1\) then backsubstitution (\(k, n, x, i s u b\), coe, pointer);
evaluatekthfunction \((x, f, k) ;\) factor \(:=.001\);
AAA: \(\quad\) tally \(:=0 ;\) for \(i:=k\) step 1 until \(n\) do
begin itemp \(:=\) pointer \([k, i] ;\) hold \(:=x[\) itemp \(]\);
\(h:=\) factor \(\times\) hold; if \(h=0\) then \(h:=.001\);
\(x[\) itemp \(]:=\) hold \(+h\);
if \(k>1\) then backsubstitution (\(k, n, x\), isub, coe, pointer); evaluatekthfunction (\(x\), fplus, \(k\)); part \([\) itemp \(]:=(f p l u s-f) / h\); \(x[\) itemp \(]:=\) hold; if \((\operatorname{abs}(\operatorname{part}[\) item \(p])=0) \vee\) \(\left(a b s(f / p a r t[i t e m p])>1.0_{10} 20\right)\) then tally \(:=\) tally \(+1 ;\) end;
if tally \(\leqq n-k\) then go to \(A A\); factor \(:=\) factor \(\times 10.0\); if factor \(>.5\) then go to \(S I N G\); go to \(A A A\);
\(A A:\) if \(k<n\) then go to \(A\); if \(a b s(\operatorname{part}[\) itemp]) \(=0\) then go to \(S I N G\);
\(\operatorname{coe}[k, n+1]:=0 ; k \max :=\) itemp; go to \(E N D K\);
A: \(\quad k \max :=\operatorname{pointer}[k, k] ; \operatorname{dermax}:=\operatorname{abs}(\operatorname{part}[k m a x])\); kplus \(:=k+1\);
for \(i:=k p l u s\) step 1 until \(n\) do
begin \(j s u b:=\) pointer \([k, i] ;\) test \(:=\operatorname{abs}(\) part \([j s u b])\);
if test \(<\) dermax then go to \(B\); dermax \(:=\) test; pointer [kplus, \(i]:=k \max ; k \max :=j s u b\); go to ENDI;
B: pointer \([k p l u s, i]:=j s u b\);
ENDI:
end;
if \(a b s(p a r t[k m a x])=0\) then go to \(S I N G ; \quad i s u b[k]:=k m a x ;\) \(\operatorname{coe}[k, n+1]:=0\);
for \(j:=k p l u s\) step 1 until \(n\) do
begin \(j s u b:=\) pointer \([k p l u s, j]\);
\(\operatorname{coe}[k, j s u b]:=-\operatorname{part}[j s u b] / p a r t[k m a x] ;\)
\(\operatorname{coe}[k, n+1]:=\operatorname{coe}[k, n+1]+\operatorname{part}[j s u b] \times x[j s u b]\)
end;
ENDK:
\(\operatorname{coe}[k, n+1]:=(\operatorname{coe}[k, n+1]-f) / \operatorname{part}[k \max]+x[k \max]\)
end \(k\);
\(x[k \max]:=\operatorname{coe}[n, n+1]\);
if \(\dot{n}>1\) then backsubstitution (\(n, n, x, i s u b\), coe, pointer);
if \(m=1\) then go to \(D\);
for \(i:=1\) step 1 until \(n\) do
if \(\operatorname{abs}((\) temp \([i]-x[i]) / x[i])>\) relconvg then go to \(C\); converge \(:=\) converge +1 ;
if converge \(\geqq 3\) then go to \(T E R M I N A T E\) else go to \(D\);
\(C\) : converge :=1;
\(D: \quad\) for \(i:=1\) step 1 until \(n\) do temp \([i]:=x[i]\)
end \(m\);
go to THROUGH;
TERMINATE:
maxit \(:=m\); go to \(T H R O U G H\);
SING:
singular :=0;
THROUGH:
end nonlinearsystem

\section*{APPENDIX}

We include a sample procedure evaluatekthfunction for the \(2 \times 2\) system:
\[
\begin{array}{r}
\left(1-\frac{1}{4 \pi}\right)\left(e^{2 x_{1}}-e\right)+\frac{e}{\pi} x_{2}-2 e x_{1}=0 \\
\frac{1}{2} \sin \left(x_{1} x_{2}\right)-\frac{x_{2}}{4 \pi}-\frac{x_{1}}{2}=0
\end{array}
\]
one solution of which is \((.5, \pi)\) see [2]
procedure evaluatekthfunction (\(x, y, k\));
integer \(k\); real \(y\); array \(x\);
begin switch functionnumber \(:=F 1, F 2\);
go to functionnumber [k];
\(F 1: \quad y:=2.71828183 \times(.920422528 \times(\exp (2 \times x[1]-1)-1)+\) \(x[2] / 3.14159265-2 \times x[1])\);
go to RETURN;
\(F 2: y:=.5 \times \sin (x[1] \times x[2])-x[2] / 12.5663706-x[1] / 2\);
RETURN:
end evaluatekthfunction;
References:
1. Brown, K. M. A quadratically convergent method for solving simultaneous non-linear equations. Doctoral Thesis, Dept. Computer Sciences, Purdue U., Lafayette, Ind., Aug., 1966.
2. Brown, K. M., and Conte, S. D. The solution of simultaneous nonlinear equations. Proc. ACM 22nd Nat. Conf., pp 111-114.

\section*{Remark on Algorithm 316 [C5]}

Solution of Simultaneous Nonlinear Equations
(K.M. Brown, Comm. ACM 10 (Nov. 1967), 728-729)

William J. Raduchel (Recd. 12 Aug. 1970
and 8 Jan. 1971)
Project for Quantitative Research in Economic
Development, Harvard University,
Cambridge, MA 02138

\section*{Key Words and Phrases: nonlinear equations CR Categories: 5.15}

The procedure was coded in both Burroughs 5500 algol and IBM Fortran-IV and ran correctly on the sample problem provided. However, two changes seem appropriate: In the loop to compute the partial derivatives following \(A A A\) replace
if \(h=0\) then \(h:=0.001 ;\)
with
if \(h=0\) then \(h:=\) factor;
for otherwise the purpose of the loop is lost for variables currently having the value zero. To avoid an interrupt for a zero-divide replace
if abs \(((\) tem \(p[i]-x[i]) / x[i])>r e\) lconvg
then go to \(C\);
with
if abs \(((\) temp \([i]-x[i]) /(\) if \(x[i] \neq 0\) then \(x[i]\) else if temp \([i] \neq 0\) then temp \([i]\) else 1)) \(>\) relconvg then go to \(C\)
As the author indicates there are unused positions in the arrays pointer and coe because of the triangularity of the method. Implementing the algorithm to use this fact to conserve storage is much easier if, in both the main procedure and in backsubstitution, values are stored and retrieved in natural order rather than according to the current pivot scheme.
```

ALGORITHM 317*
I'ERMUTATION [G6]
Charles L. Robinson (Recd. }12\mathrm{ Apr. 1967, 2 May }196
and 10 July 1967)
Institute for Computer Research, U. of Chicago, Chicago,
Ill.
* This work was supported by AEC Contract no. AT (11-1)-614.
procedure permute(n, k,v); value n, k; integer array v;
integer n, k;
comment This procedure produces in the vector v the kth
permutation on n variables. When }k=0,v\mathrm{ takes on the value
1,2,3,4,\cdots,n.This algorithm is not as efficient as pre-
viously published algorithms [1], [2], [3] for generating a
complete set of permutations but it is significantly better
for generating a random permutation, a property useful in
certain simulation applications. Any non-negative value of
k will produce a valid permutation. To generate a random
permutation, }k\mathrm{ should be chosen from the uniform distribu-
tion over the integers from 0 to n!-1 inclusive;
begin integer i, q, r, x,j;
for }i:=1\mathrm{ step 1 until n do v[i]:= 0;
for }i:=n\mathrm{ step - }1\mathrm{ until 1 do
begin
q:=k\divi; r:=k-q\timesi; x:= 0; j:= n;
no: if v[j] = 0 then
begin
if }x=r\mathrm{ then go to it else }x:=x+
end;
j:= j-1; go to no;
it: v[j]:= i; k:=q;
end
end
References:

1. Coveyou, R. R., and Sullivan, J. G. Algorithm 71, Permutation. Comm. ACM 4 (Nov. 1961), 497.
2. Peck, J. E. L., and Schrack, G. F. Algorithm 86, Permute. Comm. ACM 5 (Apr. 1962), 208.
3. Trotter, H. F. Algorithm 115, Perm. Comm. ACM 5 (Aug. 1962), 434.
```

\section*{ALGORITHM 318 \\ CHEBYSCHEV CURVE-FIT (REVISED) [E2] \\ J. Boothroyd (Recd. 15 May 1967) \\ University of Tasmania, Hobart, Tas., Australia}
procedure chebft \((x, y, n, a, m)\); value \(n, m\);
array \(x, y, a\); integer \(n, m\);
comment evaluates, in \(a[0]\) through \(a[m]\) of \(a[0: m+1]\), the coefficients of an \(m\) th order polynomial \(P(x)=a_{0}+a_{1} x+\cdots a_{m} x^{n}\) such that the maximum error \(a b s\left(P\left(x_{i}\right)-y_{i}\right)\)) is a minimum over the \(n(n>m+1)\) sample points \(x, y[1: n]\). The \(x[i]\) must form a strictly monotonic sequence.
This procedure is an extensive revision of Algorithm 91 (Albert Newhouse, Chebyshev Curve-Fit, Comm. ACM 5 (May 1961), 281). The polynomial \(P(x)\) is a best-fit polynomial in the Chebyshev sense as described by Stiefel (Numerical Methods of Tchebycheff Approximation), in Langer (Ed.), On Numerical Approximation, U. of Wisconsin Press, 1959, pp. 217-232. Sticfel (p. 221) shows that the procedure must terminate after a finite number of steps. This is not always so with imperfect arithmetic, where roundoff errors may cause cycling of the chosen reference sets. This condition is detected by checking that the reference deviation is always raised monotonically. At exit the absolute value of \(a[m+1]\) yields the final reference deviation. Negative \(a[m+1]\) indicates that the procedure has been terminated following the detection of cycling;
begin
integer \(i, j, k, m p l u s 1, r i, i 1, i m a x, r j, j 1\);
real \(d, h, a i 1, r h i 1\), denom, \(a i\), rhi, xj, hmax, himax, \(x i, h i, a b s h i\), nexthi, prevh;
integer array \(r[0: m+1]\); array \(r x, r h[0: m+1]\);
mplus \(1:=m+1\); prevh \(:=0\);
comment index vector for initial reference set;
\(r[0]:=1\); \(r[m p l u s 1]:=n\);
\(d:=(n-1) / m p l u s 1 ; \quad h:=d\);
for \(i:=1\) step 1 until \(m\) do
begin \(r[i]:=h+1 ; h:=h+d\) end;
start: \(h:=-1.0\);
comment select \(m+2\) reference pairs and set alternating deviation vector;
for \(i:=0\) step 1 until mplus1 do
begin
\(r i:=r[i] ;\)
\(r x[i]:=x[r i] ; \quad a[i]:=y[r i] ;\)
\(r h[i]:=h:=-h\)
end \(i\);
comment compute \(m+1\) leading divided differences;
for \(j:=0\) step 1 until \(m\) do
begin
\(i 1:=m p l u s 1 ;\) ai1 \(:=a[i 1] ;\)
\(r h i 1:=r h[i 1]\);
for \(i:=m\) step -1 until \(j\) do
begin
denom \(:=r x[i 1]-r x[i-j]\);
\(a i:=a[i] ; \quad r h i:=r h[i]\);
\(a[i 1]:=(a i 1-a i) /\) denom;
\(r h[i 1]:=(r h i 1-r h i) /\) denom;
\(i 1:=i ; a i 1:=a i ; \quad r h i 1:=r h i\)
end \(i\)
end \(j\);
comment equate \((m+1)\) th difference to zero to determine \(h\);
\(h:=-a[m p l u s 1] / r h[m p l u s 1]\);
comment with \(h\) known, combine the function and deviation differences;
for \(i:=0\) step 1 until mplus 1 do
\(a[i]:=a[i]+r h[i] \times h ;\)
comment compute polynomial coefficients;
for \(j:=m-1\) step -1 until 0 do
begin
\(x j:=r x[j] ; \quad i:=j ; \quad a i:=a[i] ;\)
for \(i 1:=j+1\) step 1 until \(m\) do
begin
ail \(:=\alpha[i 1]\);
\(a[i]:=a i-x j \times a i 1 ;\)
\(a i:=a i 1 ; \quad i:=i 1\)
end \(i 1\)
end \(j\);
comment if the reference deviation is not increasing mono-
tonically then exit;
\(h\) max \(:=a b s(h)\);
if hmax \(\leq\) prevh then
begin \(a[m p l u s 1]:=-h m a x ;\) go to fit end;
comment find the index, imax, and value, himax, of the largest absolute error for all sample points;
\(a[\) mplus 1\(]:=\) prevh \(:=\) hmax; imax \(:=r[0]\); himax \(:=h ;\)
\(j:=0 ; r j:=r[j]\);
for \(i:=1\) step 1 until \(n\) do
if \(i \neq r j\) then
begin
\(x i:=x[i] ; \quad h i:=a[m]\);
for \(k:=m-1\) step -1 until 0 do
\(h i:=h i \times x i+a[k] ;\)
\(h i:=h i-y[i] ; \quad a b s h i:=a b s(h i) ;\)
if \(a b s h i>h m a x\) then
begin \(h \max :=a b s h i\); himax \(:=h i ; \quad\) imax \(:=i\) end
end
else
if \(j<m p l u s 1\) then
begin \(j:=j+1 ; \quad r j:=r[j]\) end;
comment if the maximum error occurs at a nonreference point, exchange this point with the nearest reference point having an error of the same sign and repeat;
if \(\operatorname{imax} \neq r[0]\) then
begin
for \(i:=0\) step 1 until mplus1 do
if imax \(<r[i]\) then go to swap;
\(i:=\) mplus \(1 ;\)
swap: nexth \(i=\) if \(i-i \div 2 \times 2=0\) then \(h\) else \(-h\);
if himax \(\times\) nexth \(i \geq 0\) then \(r[i]:=\) imax
else
if imax \(<r[0]\) then
begin
\(j 1:=m p l u s 1\);
for \(j:=m\) step -1 until 0 do
begin \(r[j 1]:=r[j] ; \quad j 1:=j\) end;
\(r[0]:=\) imax
end
else
if imax \(>r[m p l u s 1]\) then
begin
```

            j:= 0;
            for j1:= 1 step 1 until mplus1 do
            begin r[j]:=r[j1}; j:= j1 end;
            r[mplus1]:= imax
    end
        else r[i-1]:= imax;
        go to start
        end;
    fit:
end chebfit

```

\section*{ALGORITHM 319 \\ TRIANGULAR FACTORS OF MODIFIED MATRICES [F1]}

David R. Green (Recd. 26 Apr. 1965, 19 Oct. 1965 and 30 Aug. 1967)*
Mount Isa Mines Ltd., Queensland, Australia
KEY WORDS AND PHRASES: matrix decomposition, matrix factors, matrix modifier, matrix perturbation
\(C R\) CATEGORIES: 5.14
procedure modifacs (\(l, c, x, m, n\), epsilon,fail); value epsilon, \(m, n\); array \(l, c, x\); integer \(m, n\); real epsilon; label fail;
comment Suppose that the symmetric, positive definite, \(n \times n\) matrix \(a\) has been decomposed into the matrix product \(l . l^{T}\) where \(l\) is a lower triangular matrix and \(T\) denotes transpose. If \(a\) is to be modified by the addition of a matrix triple product \(x . c . x^{T}\), this procedure will modify \(l\), in its own space, to produce the triangular factors of \(a+\) x.c. \(x^{T}\) in approximately \(m n^{2}\) operations (\(x\) is an \(n \times m\) matrix, \(c\) is a symmetric, \(m \times m\) matrix, \(m \geq 1, m \ll n\)).

This situation can arise, for example, in some treatments of network flow problems and the elastic plastic analysis of plane frames. The referee has pointed out that a further very useful application would be updating least squares solutions when additional readings have been obtained. A full description of the algorithm for general matrices is given by J. M. Bennett, Triangular Factors of Modified Matrices, Numer. Math. 7 (1965), 217-221.

On entry, array \(l\) should hold the lower triangular matrix \(l\). Elements above the diagonal of \(l\) are ignored by the procedure. On exit the modified values of \(l\) are held in the same format. The method will fail if the resulting matrix \(a+x . c . x^{T}\) is not positive definite, so should the absolute value of any pivot be less than the parameter epsilon, or should a pivot be negative, then exit through fail will occur;

\section*{begin}
array \(p[1: m]\);
integer \(i, j, k\);
real \(d, t\);
\(i:=1 ;\)
repeat:
\(d:=l[i, i] ;\)
\(t:=d \uparrow 2 ;\)
for \(k:=1\) step 1 until \(m\) do
begin
\(p[k]:=0 ;\)
for \(j:=1\) step 1 until \(m\) do
\(p[k]:=p[k]+x[i, j] \times c[j, k] ;\)
\(t:=t+x[i, k] \times p[k]\)
end;
if \(t<\) epsilon then go to fail;
\(l[i, i]:=\operatorname{sqrt}(t)\);
if \(i=n\) then go to exit;
for \(j:=1\) step 1 until \(m\) do \(p[j]:=p[j] / l[i, i] ;\)
for \(j:=i+1\) step 1 until \(n\) do
begin
```

    \(l[j, i]:=l[j, i] / d ;\)
    \(t:=0.0\);
    for \(k:=1\) step 1 until \(m\) do
    begin
        \(x[j, k]:=x[j, k]-x[i, k] \times l[j, i] ;\)
        \(t:=t+x[j, k] \times p[k]\)
    end;
    \(l[j, i]:=l[i, i] \times l[j, i]+t\)
    end;
for $j:=1$ step 1 until $m$ do
begin
$c[j, j]:=c[j, j]-p[j] \uparrow 2 ;$
if $j<m$ then
for $k:=j+1$ step 1 until $m$ do
$c[j, k]:=c[k, j]:=c[j, k]-p[j] \times p[k]$
end;
$i:=i+1$;
go to repeat;
exit:
end

```

\section*{ALGORITHM 320}

HARMONIC ANALYSIS FOR SYMMETRICALLY DISTRIBUTED DATA [C6]
D. B. Hunter (Recd. 1 June 1965, 4 Jan. 1966, and 26 June 1967)
Department of Mathematics, University of Bradford, Yorkshire, England

KEY WORDS AND PHRASES: harmonic analysis, cosine series, sine series, function approximation, curve fitting, trigonometric series
\(C R\) CATEGORIES: 5.13
procedure trigfit (index, \(n, m, h, e, x, f, m t, a\));
value index, \(n, m, h, e\); integer index, \(n, m, m t\); real \(h\), \(e\); array \(x, f, a\);
comment Approximates a function \(y\) of \(x\) by a half-range cosine or sine series of period \(2 h\) from values specified at discrete points, not necessarily equally-spaced, in the range (\(0, h\)). The input parameters are:
index-if index \(=0\), a cosine series is fitted, if index \(=1\), a sine series. No other value is permitted.
\(n\)--number of function-values given.
\(m\)-order of the highest harmonic required.
\(h\)--half-period of the fitted series.
\(e\)-used to terminate the process if rounding errors start to accumulate excessively (see note below).
\(x\)-the given values of \(x\) are stored on \(x[1], x[2], \cdots, x[n]\).
\(f\)-the value of \(y\) corresponding to \(x=x[i]\) is stored on \(f[i]\) \((i=1,2, \cdots, n)\).
The procedure then calculates the coefficients \(a[r]\) in the approximation
\[
S(x)= \begin{cases}\frac{1}{2} a[0]+\sum_{r=1}^{m t} a[r] \cos (r \pi x / h) & \text { if index=0,} \\ \sum_{r=1}^{m t} a[r] \sin (r \pi x / h) & \text { if index }=1 .\end{cases}
\]

Here normally \(m t=m\), but provision is included to calculate fewer harmonics if rounding errors begin to accumulate excessively (see note below).

Method of calculation. The coefficients \(a[r]\) are calculated so as to minimize the sum
\[
\sum_{i=1}^{n} w_{i}(f[i]-S(x[i]))^{2}, \quad w_{i}=\left\{\begin{array}{l}
\frac{1}{2} \text { if } x[i]=0 \text { or } h \\
1 \text { otherwise }
\end{array}\right.
\]

The method used is similar to that of [1]. First \(S(x)\) is expanded in the form
\[
S(x)=\sum_{i=i n d e x}^{m i} b_{i} p_{i}(x)
\]
where
\[
p_{i}(x)= \begin{cases}\frac{1}{2} a_{i 0}+\sum_{j=1}^{i} a_{i j} \cos (j \pi x / h ; & \text { if index }=0 \\ \sum_{j=1}^{i} a_{i j} \sin (j \pi x / h) & \text { if index }=1\end{cases}
\]

Then
\[
a[r]=\sum_{i=r}^{m t} b_{i} a_{i r}
\]

The polynomials \(p_{j}(x)\) are chosen so as to be orthogonal w.r.t. summation over \(x=x[i]\), with weights \(w_{i}\). This implies that
\[
b_{i}=\sum_{j=1}^{n} w_{j} f[j] p_{i}(x[j]) / \sum_{j=1}^{n} w_{j}\left[p_{i}\left(x_{j}\right)\right]^{2} .
\]

The \(p_{i}(x)\) are generated by a recurrence relation
\[
p_{i+1}(x)=\left(2 \cos (\pi x / h)-\alpha_{i}\right) p_{i}(x)-\beta_{i} p_{i-1}(x)
\]
where
\[
\begin{aligned}
& \alpha_{i}=\frac{2 \sum_{j=1}^{n} w_{j} \cos (\pi x[j] / h) \cdot\left[p_{i}(x[j])\right]^{2}}{\sum_{j=1}^{n} w_{j}\left[p_{i}(x[j])\right]^{2}} \quad(i \geq i n d e x), \\
& \beta_{i}=\frac{\sum_{j=1}^{n} w_{j}\left[p_{i}(x[j])\right]^{2}}{\sum_{j=1}^{n} w_{j}\left[p_{i-1}(x[j])\right]^{2}} \quad(i>i n d e x) .
\end{aligned}
\]

The initial forms are
\[
p_{0}(x)=\frac{1}{2} \quad \text { if } \text { index }=0
\]
or \(p_{1}(x)=\sin (\pi x / h)\) if index \(=1\).
Thus if the \(x[i]\) are equally spaced, i.e. if \(x[i]=(i-1) h /(n-1)\), it follows that
\(p_{k}(x)=\cos (k \pi x / h)\) or \(\sin (k \pi x / h)\) according as index \(=0\) or 1 .
The values of the \(p_{i}(x)\) are calculated by the method of [2].
Note. If the \(x[i]\) are verp irregular in their distribution serious rounding errors may accumulate, and it is recommended that the points be as nearly as possible equally spaced. However the procedure includes provision, under control of parameter \(e\), to reduce the number of harmonics calculated, \(m t\), if rounding errors do start to build up.

Rounding error is controlled by estimating the error which would occur in the analysis of a standard function \(q(x)\) for the given points, where
\[
q(x)= \begin{cases}1 & \text { if index }=0 \\ n \sin (\pi x / h) / \sum_{j=1}^{n}|\sin (\pi x[j] / h)| & \text { if index }=1\end{cases}
\]

The estimate used for the rounding error in the \(r\) th harmonic is
\[
e_{r}=\sum_{i=i n d e x+1}^{r} c_{i} \times d_{i}
\]
where
\[
\begin{aligned}
c_{i} & =\max \left|a_{i j}\right| \text { for index } \leq j \leq i \\
d_{i} & =\left|\sum_{j=1}^{n} w_{j} q(x[j]) p_{i}(x[j]) / \sum_{j=1}^{n} w_{j}\left[p_{i}(x[j])\right]^{2}\right|
\end{aligned}
\]

If for any \(r, e_{r}>e\), the procedure is terminated with \(m t=r-1\). References:
1. Clenshaw, C. W. Curve-fitting with a digital computer, Comput. J. 2, 170-173.
2. Watt, J. M. A note on the evaluation of trigonometric series. Comput.J. 1, 162;
begin
integer \(i, j ; \quad\) real \(s 1, s 2, s 3\), alpha, beta, \(c, d, u, v, w, g, s\), mean, \(p\), coeff, er, cer;
array \(c 1[0: m], c 2[0: m+1]\);
\(g:=3.1415926536 / h\);
if index \(=0\) then mean \(:=1\) else
begin mean \(:=0\);

\section*{for \(i:=1\) step 1 until \(n\) do}
mean \(:=\) mean \(+a b s(\sin (g \times x[i]))\);
mean := \(n /\) mean
end;
for \(i:=\) index step 1 until \(m\) do \(a[i]:=0\);
\(c 2[m+1]:=\) alpha \(:=\) cer \(:=0\);
for \(i:=0\) step 1 until \(m\) do \(c 1[i]:=c 2[i]:=0\);
c1[index] \(:=-1\);
beta \(:=s 3:=1 ; m t:=\) index;
loop: coeff \(:=0 ;\) for \(i:=\) index step 1 until \(m t\) do
begin
\(d:=\) (if \(i=0\) then \(c 2[1]\) else \(c 1[i-1])+c 2[i+1]-\) beta \(\times\) \(c 1[i]-a l p h a \times c 2[i] ;\)
\(c 1[i]:=c 2[i] ; \quad c 2[i]:=d ; \quad d:=a b s(d) ;\)
if \(d>\) coeff then coeff \(:=d\)
end;
\(s 1:=s 2:=d:=e r:=0\);
for \(i:=1\) step 1 until \(n\) do
begin
\(c:=2 \times \cos (g \times x[i])\);
if \(m t=0\) then begin \(p:=0.5\); go to sum end;
\(u:=v:=0\);
for \(j:=m l\) step -1 until 1 do

\section*{begin}
\(w:=c \times u-v+c 2[j] ; \quad v:=u ; \quad u:=w\)
end;
if index \(=0\) then
begin
\(s:=1 ; \quad p:=0.5 \times(u \times c+c 2[0])-v\)
end
else
begin
\(s:=\sin (g \times x[i]) ; \quad p:=u \times s\)
end;
sum: \(w:=\) if \(x[i]=0 \vee x[i]=h\) then 0.5 else 1 ; \(d:=d+w \times p \times f[i] ;\) if \(m t>\) index then \(e r:=e r+w \times p \times s \times\) mean; \(p:=w \times p \uparrow 2 ; s 1:=s 1+c \times p ; s 2:=s 2+p\)
end;
\(c e r:=c e r+c o e f f \times a b s(e r) / s 2\);
if cer \(>e\) then go to exit; alpha \(:=s 1 / s 2\);
beta \(:=s 2 / s 3 ; \quad d:=d / s 2 ; \quad s 3:=s 2\);
for \(i:=\) index step 1 until \(m t\) do
\[
a[i]:=a[i]+d \times c 2[i]
\]
\(m t:=m t+1 ;\) if \(m t \leq m\) then go to loop;
exit: \(m t:=m t-1\)
end trigft;
procedure harmanalsymm (\(n, m, h, e, x, y p o s, y n e g, m c, m s, a, b\)); value \(n, m, h, e\); integer \(n, m, m c, m s\); real \(h, e\); array \(x\), ypos, yneg, \(a, b\);
comment Approximates a function \(y\) of \(x\) by a finite trigonometric series of period \(2 h\) from values specified at discrete points in the range \((-h, h)\). Those points need not be equally spaced,
but must be symmetrically distributed about the value \(x=0\). Thus only the values of \(x\) in the range \(0 \leq x \leq h\) need be given.
The input parameters are:
\(n\)-number of values of \(x\) in the range \(0 \leq x \leq h\).
\(m\)-order of the highest harmonic required.
\(h\)-half-period of the fitted series.
\(e\)-used to terminate the process if rounding errors start to accumulate excessively (see note on trigfit).
\(x\)-the given values of \(x\) in the range \((0, h)\) are stored on \(x[1 \mid\), \(x[2], \cdots, x[n]\).
\(y p o s-\) the value of \(y\) corresponding to \(x=+x[i]\) is stored on \(\operatorname{ypos}[i](i=1,2, \cdots, n)\).
\(y n e g\)-the value of \(y\) corresponding to \(x=-x[i]\) is stored on \(y n e g[i](i=1,2, \cdots, n)\).
The procedure then calculates the coefficients \(a[r]\) and \(b[r]\) in the approximation
\[
S(x)=\frac{1}{2} a[0]+\sum_{r=1}^{m c} a[r] \cos (r \pi x / h)+\sum_{r=1}^{m s} b[r] \sin (r \pi x / h)
\]

Here normally \(m c=m s=m\), but provision is included to calculate fewer harmonics if rounding errors begin to accumulate excessively (see note on trigfit), or if \(m\) exceeds its maximum permissible value. For the cosine terms this maximum value is \(n-1\). For the sine terms it is \(n\), this figure being reduced by 1 for each \(x[i]\) equal to 0 or \(h\). The cosine and sine series are calculated separately by trigfit, with
\[
f[i]=\left\{\begin{array}{l}
0.5 \times(y \operatorname{pos}[i]+y n e g[i]) \text { for cosine series } \\
0.5 \times(y p o s[i]-y n e g[i]) \text { for sine series }
\end{array}\right.
\]
begin
integer \(i\), md; array \(f[1: n]\); procedure trigft;
for \(i:=1\) step 1 until \(n\) do
\(f[i]:=0.5 \times(y p o s[i]+y n e g[i]) ;\)
trigfit \((0, n\), if \(m \geq n\) then \(n-1\) else \(m, h, e, x, f, m c, a)\);
\(m d:=n\);
for \(i:=1\) step 1 until \(n\) do
begin
\(f[i]:=0.5 \times(y p o s[i]-y n e g[i]) ;\)
if \(x[i]=0 \vee x[i]=h\) then \(m d:=m d-1\)
end;
trigfit \((1, n\), if \(m d \geq m\) then \(m\) else \(m d, h, e, x, f, m s, b)\) end harmanalsymm

ALGORITHM 321

\section*{\(t\)－TEST PROBABILITIES［S14］}

John Morris（Recd． 6 Jan．1967， 18 July 1967，and 10 Oct．1967）
Computer Institute for Social Science Research，Michigan State University，East Lansing，Michigan

KEY WORDS AND PHRASES：\(T\)－test，Student＇s \(t\)－statistic，dis－ tribution function
CR CATEGORIES： 5.5
real procedure ttest（ \(x, d f\), maxn，gauss，error）；
value \(x, d f\) ，maxn；real \(x\) ；integer \(d f\) ，maxn；real procedure gauss；label error；
comment This procedure gives the probability that \(t\) will be greater in absolute value than the absolute value of \(x\) ，where \(t\) is the Student \(t\)－statistic，as defined and tabled by R．A．Fisher ［2］，evaluated at \(d f\) degrees of freedom：that is， 2 times the inte－ gral of the distribution function of \(t\) ，evaluated from \(a b s(x)\) to infinity．The procedure may also be used，e．g．，to estimate the two－tailed probability of a simple correlation，\(r\) ，where \(N=\) the number of pairs of observations，\(d f=N-2\) ，and \(t=r \times s q r t\) （df／（1．0－r \(\uparrow 2)\) ）（cf．e．g．［5］）．
For reasonably small \(d f\) ，Student＇s cosine formula is used［3， 4］：
\[
\text { ttest }=1.0-\operatorname{coef} \int_{0}^{\theta} \cos ^{d f-1} \theta d \theta
\]
where \(\theta=\arctan (t / \operatorname{sqrt}(d f))\) and
coef \(=(d f-1) /(d f-2) \times(d f-3) /(d f-4)\)
\[
\cdots \begin{cases}\left(\frac{4}{3}\right) \times(2 / \pi) & \text { for odd } d f, \\ \left(\frac{5}{4}\right) \times\left(\frac{3}{2}\right) \times\left(\frac{1}{2}\right) & \text { for even } d f .\end{cases}
\]

Integrated in series，this gives results which appear to be cor－ rect to very nearly the full single precision accuracy of the machine（in terms of the number of digits after the decimal point， not necessarily significant digits）．

An approximation due to R．A．Fisher［1］gives results accurate to within \(\pm 3 \times 10^{-7}\) when maxn has been set at 30 ．The tradeoff on time is also optimal at about this point．The real procedure gauss computes the area under the left－hand portion of the nor－ mal curve．Algorithm 209 ［6］may be used for this purpose．
Thanks to the referee for many helpful suggestions，most of which have been incorporated，and to David F．Foster，who wrote an early version of part of the program．

References：
1．Fisher，R．A．Metron 5 （1925），109－112．
2．－．Statistical Methods for Research Workers．Oliver and Boyd，Edinburgh， 1965.
3．Gosset，W．S．（Student）．The probable error of a mean． Biometrika 6 （1908）， 1.
4．－．New tables for testing the significance of observations． Metron 5 （1925）， 105.
5．Guilford，J．P．Fundamental Statistics in Psychology and Education．McGraw－Hill，New York，1956，pp．219－221．
6．Ibbetson，D．Algorithm 209，Gauss．Comm．ACM， 6 （Oct． 1963）， 616.
```

begin
if df<1 then go to error;
if }x=0\mathrm{ then ttest:= 1.0 else
begin real t;
t:= abs (x);
if df < maxn then
begin integer i,nh; real cth, sth, cthsq,xi,coef, z;
z:= t/sqrt(df);
cth := 1.0/sqrt(z\uparrow2+1.0);
sth := z\times cth;
cthsq := cth \uparrow 2;
nh:= (df-1) \div2;
if df=2\times(df\div2) then
begin
t:= sth;
if nh=0 then go to g;
cth := cthsq; xi := 1.0;
coef := 0.5 人 sth
end else
begin
t:= 0.6366197724 }\times\operatorname{arctan}(\textrm{z})
comment 0.6366197723675813430755351\cdots=2/\pi;
if nh=0 then go to g;
xi := 0; coef := 0.6366197724 }\times\mathrm{ sth
end;
for }i:=1\mathrm{ step 1 until nh do
begin
t:=t+coef }\times\mathrm{ cth; cth := cth }\times\mathrm{ cthsq;
xi:= xi + 2.0;
coef := coef }\timesxi/(xi+1.0
end;
g:t:=1.0-t
end else
if t>6.0 then t:= 0 else
if df< 106 then
begin real f,t2,t4,t6,t8,t10,t12,t14,t16,t18;

```

```

            t8:= t6 人 t2; t10:= t8\timest2; t12 := t10\timest2;
            t14:=t12\timest2; t16:=t14\timest2; t18:= t16 人 t2;
            comment 0.3989422804014326779399461\cdots= 1/sqrt (2\times\pi);
            t:=2.0\times(gauss (-t)+t\times0.3989422804\times\operatorname{exp}(-0.5\timest2)\times
                    ((t2+1.0)/(4.0\timesf)+(3.0\timest6-7.0\timest4-5.0\timest2-3.0)/
                    (96.0\timesf\timesf)+(t10-11.0\timest8+14.0\timest6+6.0\timest4-3.0\timest2-
                    15.0)/(384.0\timesf\uparrow 3)+(15.0\timest14-375.0\timest12+2225.0\timest10-
                    2141.0\timest8-939.0\timest6-213.0\timest4-915.0\timest2+945.0)/
                    (92160.0\timesf\uparrow4)+(3.0\timest18-133.0\timest16+1764.0\timest14-
                    7516.0\timest12+5994.0\timest10+2490.0\timest8+1140.0\timest6+180.0\times
            t4+5355.0\timest2+17955.0)/(368640.0\timesf\uparrow5)))
        end else t:=2.0 }\times\mathrm{ gauss(-t);
        ttest:= if t<0 then 0 else t
    end
    end ttest

```

\section*{REMARKS ON}

\section*{ALGORITHM 321 [S14] \(t\)-TEST PROBABILITIES}
[John Morris, Comm. ACM 11 (Feb. 1968), 115-6] ALGORITHM 344, STUDENT'S \(t\)-DISTRIBUTION
[David Levine, Comm. ACM 12 (Jan. 1969), 37-8]
G. W. Hill, and Mary Loughhead* (Recd. 16 Apr. 1969 and 29 Sept. 1969)
Commonwealth Scientific and Industrial Research Organization, Division of Mathematical Statistics, Glen Osmond, South Australia
* Present address: Monash University, Clayton, Victoria, Australia

KEY WORDS AND PHRASES: \(t\)-test, Student's \(t\)-statistic, distribution function, approximation
\(C R\) CATEGORIES: 5.12,5.5
Algorithm 321, as published, was coded in CSIRO 3200 Algol and run on a CDC 3200 with programmed floating point operations. A Fortran equivalent of Algorithm 321 was run for comparison with the Fortran Algorithm 344, which uses the same recurrence relation based on Student's cosine formula as that used in Algorithm 321 for df degrees of freedom less than maxn. Numerical results agreed with 6-digit tabulated values [1] and double precision calculations indicate that accuracy is limited by truncation of intermediate results to the precision of the processor, with error in the final result increasing as the square root of \(d f\). Timing tests rated Algorithm 344 at approximately (\(\frac{3}{4} d f+1 \frac{1}{2}\)) msec; slightly faster than Algorithm 321, which required approximately \(\left(\frac{3}{3} d f+2 \frac{1}{2}\right) \mathrm{msec}\) for \(d f<\operatorname{maxn}\).
For df \(\geq\) maxn Algorithm 321 uses Fisher's [2] fifth order approximation, whose accuracy is summarized in the diagram for \(d f=10(10) 50\) (see Figure 1). The shaded regions indicate values of \(t\) for which the claimed accuracy of \(3 \times 10^{-7}\) for maxn \(=30\) is not attained. For \(t>6.0\) this algorithm returns zero values, giving errors up to \(1.39 \times 10^{-6}\). The following alterations avoid this error and, by "nesting" Fisher's polynomial approximation, reduced the time from about 25 msec to 20 msec and reduced the store requirement by \(27 \%\).
Replace the 19 lines beginning " \(g: t:=1.0-t\) " by
```

g: x:= 1.0-t
end else
begin x:= 2.0 }\times\mathrm{ gauss (-t);
if df< }106\mathrm{ then
begin real f, t2;
f:= 0.25/df; t2:=t\timest;

```


Fig. 1
\[
\begin{aligned}
& x:=((((((()((((3.0 \times t 2-133.0) \times t 2 \\
&+1764.0) \times t 2-7516.0) \times t 2+5994.0) \times t 2+2490.0) \times t 2 \\
&+1140.0) \times t 2+180.0) \times t 2+5355.0) \times t 2+17955.0) \times f \\
&+((((((15.0 \times t 2-375.0) \times t 2+2225.0) \times t 2-2141.0) \times t 2 \\
&-939.0) \times t 2-213.0) \times t 2-915.0) \times t 2+945.0) \times f / 60.0 \\
&+(((t 2-11.0) \times t 2+14.0) \times t 2+6.0) \times t 2-3.0) \times t 2-15.0) \times f \\
&+((3.0 \times t 2-7.0) \times t 2-5.0) \times t 2-3.0) \times f / 6.0 \\
&+(t 2+1.0)) \times f \times t \times 0.7978845608 \times \text { exp }(-0.5 \times t 2)+x \\
& \text { end; } \\
& t \text { test }:=\text { if } x<0.0 \text { then } 0.0 \text { else } x
\end{aligned}
\]

The last statement, recommended by the referee, avoids negative results due to rounding errors when the answer is small.
In Algorithm 344 the three statements beginning " \(1 \mathbf{T}=\) \(\operatorname{ABS}(\mathrm{T})\) " were replaced by:
\[
\begin{aligned}
1 \mathrm{~T} 2 & =\mathrm{T} * \mathrm{~T} / \mathrm{FLOAT}(\mathrm{DF}) \\
\mathrm{T} 1 & =\mathrm{SQRT}(\mathrm{~T} 2) \\
\mathrm{T} 2 & =1 . /(1 .+\mathrm{T} 2)
\end{aligned}
\]
to avoid changing the calling parameter T .
Although Algorithm 321 occupies about twice the store space needed for Algorithm 344, and is slightly slower for \(d f<\operatorname{maxn}=\) 30 , it is about three times faster for \(d f=100\).

References:
1. Smirnov, N. V. Tables for the Distribution and Density Functions of \(t\)-distribution. Pergamon Press, New York, 1961.
2. Frsher, R. A. Expansion of "Student's" integral in powers of \(n^{-1}\). Metron. 5,3 (1926), 109-112.

\section*{ALGORITHM 322}

\section*{\(F\)-DISTRIBUTION [S14]}

Egon Dorrer (Recd. 25 Jan. 1967, 3 July 1967, and 17 Oct. 1967)
Institut für Photogrammetrie und Kartographie, Technische Hochschule München, W. Germany; now: Department of Surveying Engineering, University of New Brunswick, Fredericton, N.B., Canada
KEY WORDS AND PHRASES: Fisher's \(F\)-distribution, Student's \(t\)-distribution
\(C R\) CATEGORIES: 5.5
real procedure Fisher (\(m, n, x\));
value \(m, n, x\); integer \(m, n\); real \(x\);
comment Fisher's \(F\)-distribution with \(n\) and \(n\) degrees of freedom. Computation of the probability
\[
\operatorname{Pr}(F<x)=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)} \cdot \int_{0}^{w} \frac{\xi^{m / 2-1}}{(\xi+1)^{(m+n) / 2}} d \xi
\]
where \(w=(m / n) x\) and \(F=\left(\sum_{i=1}^{m} x_{i}{ }^{2} / m\right) /\left(\sum_{i=1}^{n} y_{j}{ }^{2} / n\right)\). The solution results recursively from the basic integrals
Fisher \((1,1, x)=2 \cdot \arctan \sqrt{w} / \pi, \quad\) Fisher \((1,2, x)=(w /(w+1))^{\frac{1}{2}}\),
Fisher \((2,1, x)=1-1 /(w+1)^{\frac{1}{2}}, \quad\) Fisher \((2,2, x)=w /(w+1)\).
\(\pi\) is introduced by \(0.3183098862=1 / \pi\). By calling Fisher (\(1, n\),
\(l \uparrow 2)\), Student's \(t\)-distribution will be obtained;
begin integer \(a, b, i, j\); real \(w, y, z, d, p\);
\(a:=2 \times(m \div 2)-m+2 ; \quad b:=2 \times(n \div 2)-n+2 ;\)
\(w:=x \times m / n ; z:=1 /(1+w) ;\)
if \(a=1\) then
begin
if \(b=1\) then
begin
\(p:=\operatorname{sqrt}(w) ; \quad y:=0.3183098862 ;\)
\(d:=y \times z / p ; \quad p:=2 \times y \times \arctan (p)\)
end else
begin
\(p:=\operatorname{sqrt}(w \times z) ; \quad d:=0.5 \times p \times z / w\)
end
end else
if \(b=1\) then
begin
\(p:=\operatorname{sqrt}(z) ; d:=0.5 \times z \times p ; p:=1-p\)
end else
begin
\(d:=z \times z ; \quad p:=w \times z\)
end;
\(y:=2 \times w / z\);
for \(j:=b+2\) step 2 until \(n\) do
begin
\(d:=(1+a /(j-2)) \times d \times z ;\)
\(p:=\) if \(a=1\) then \(p+d \times y /(j-1)\) else \((p+w) \times z\)
end \(j\);
\(y:=w \times z ; \quad z:=2 / z ; \quad b:=n-2\);
for \(i:=a+2\) step 2 until \(m\) do
begin
\[
\underset{j:=}{\operatorname{egin}}+b ; \quad d:=y \times d \times j /(i-2) ; \quad p:=p-z \times d / j
\]
end \(i\);
Fisher : \(=p\)
end Fisher

\section*{CERTIFICATION OF ALGORITHM 322 [S14]}
\(F\)-DISTRIBUTION [Egon Dorrer, Comm. ACM 11 (Feb. 1968), 116]
J. B. F. Field (Recd. 15 Aug. 1968)

Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia
KEY WORDS AND PHRASES: Fisher's F-distribution, Student's \(t\)-distribution \(C R\) CATEGORIES: 5.5

Algorithm 322 was coded into Fortran and run on a CDC 3200 , and its accuracy for moderate probability levels was tested using (a) 5 -figure critical values of the \(F\)-distribution at the .95 and .99 levels, taken from [1], and (b) 6 -figure probability values of the \(t\) distribution, taken from [2]. In both cases, limitations in the results appeared to be due to limitations in the tables, rather than in the algorithm.

232 values of the \(F\)-distribution were tested, for \(m=1\) and 12 using all tabulated values of \(n\), and for \(n=10\) and 21 using all tabulated values of \(m\). All the results agreed with the tabulated probability level to 4 significant figures, \(89 \%\) to 5 figures, and over half the results agreed to 6 or more figures.

300 values of the \(t\)-distribution were tested, for \(n=1(1) 30\) and \(t=.5(.5) 5\). All the results agreed with the tabulated probability to 5 significant figures, and \(90 \%\) to the full 6 figures given in the tables.

To test extreme probability levels, another 100 values of the \(F\)-distribution were used: for \(m=n=2,10,50,75,100,120,150\), 200,300 , and 400 for each of the values \(x=10^{i}\), where \(i=5(1) 5\). It was found that for probabilities which are extremely close to 0 or 1 , the algorithm may produce probabilities which are slightly less than zero, or slightly greater than 1 . It is recommended that a "guard" be inserted in the program to set these values equal to 0 or 1. For example, this could be done by inserting before Fisher: \(=p\) the additional statement
\[
p:=\text { if } p>1 \text { then } 1 \text { else if } p<0 \text { then } 0 \text { else } p
\]

The time taken by the algorithm was directly proportional to the sum of the degrees of freedom. The constant of proportionality depended mainly on whether \(m\) was even or odd (the time taken for \(m\) even being .81 of the time taken for \(m\) odd, using a CDC 3200 with programmed floating point). To a much lesser extent, it was influenced by whether \(n\) was even or odd (the time taken for \(n\) even being .99 of that for \(n\) odd).

\section*{REFERENCES}
1. Owen, D. B. Handbook of Statistical Tables. Addison-Wesley, Reading, Mass., 1962.
2. Smirnov, N. V. Tables for the Distribution and Density Functions of \(t\)-distribution. Pergamon Press, Oxford, 1961.

REMARK ON ALGORITHM 322 [S14]
F-DISTRIBUTION [Egon Dorrer, Comm. ACM 11
(Feb. 1968), 116]
Hubert Tolman (Recd. 7 Apr. 1970 and 13 Oct. 1970)
Department of Mathematics, Northeast Louisiana State College, Monroe, LA 71201
KEY WORDS AND PHRASES: Fisher's F-distribution, Student's t-distribution
CR CATEGORIES: 5.5
Replacing the statements
for \(j:=b+2\) step 2 until \(n\) do
begin \(d:=(1+a /(j-2)) \times d \times z ;\) \(p:=\) if \(a=1\) then \(p+d \times y /(j-1)\) else \((p+w) \times z\) end \(j\);
by the algebraically equivalent statements
if \(a=1\) then
begin
for \(j:=b+2\) step 2 until \(n\) do begin
\(d:=(1+a /(\mathrm{j}-2)) \times d \times z ;\)
\(p:=p+d \times y /(j-1)\)
end \(j\);
end
else
begin
\(z k:=z \uparrow((n-1) \div 2) ;\)
\(d:=d \times z k \times n / b\); \(p:=p \times z k+w \times z \times(z k-1) /(z-1) ;\)
end;
substantially reduces the execution time when \(m\) is even, and did not change the speed when \(m\) is odd. For the resulting algorithm, the execution time is proportional to \(m\) when \(m\) is even, and proportional to \(m+n\) when \(m\) is odd.

Table I. Percent Time Savings
\begin{tabular}{l|lllll}
\hline & & & \(m\) & & \\
& & 4 & 8 & 16 & 32 \\
\hline & 34 & 3 & 2 & 1 & 64 \\
16 & 37 & 32 & 20 & 12 & 7 \\
32 & 62 & 54 & 45 & 30 & 19 \\
\(n\) & 79 & 73 & 63 & 51 & 36 \\
128 & 88 & 85 & 78 & 68 & 54 \\
256 & 94 & 92 & 88 & 81 & 71 \\
512 & 96 & 95 & 93 & 90 & 83 \\
1024 & 98 & 97 & 96 & 94 & 90 \\
\hline
\end{tabular}

Both the new and original forms of the algorithm were coded in Fortran and timed. The percentage reductions in execution time are given in Table \(I\). The greatest reduction came when \(n\) is large and \(m\) is small. In many statistical applications \(n\) is substantially larger than \(m\) and seldom smaller, thereby falling in the region of the greatest saving in execution time.

\section*{ALGORITHM 323 \\ GENERATION OF PERMUTATIONS IN \\ LEXICOGRAPHIC ORDER [G6]}
R. J. Ord-Smith (Recd. 27 Apr. 1967 and 26 July 1967)

Computing Laboratory, University of Bradford, Bradford, Yorkshire, England

KEY WORDS AND PHRASES: permutations, lexicographic order, lexicographic generation, permutation generation CR CATEGORIES: 5.39
Author's Remark. Lexicographic generation involves more than the minimum of \(n!\) transpositions for generation of the complete set of \(n\) ! permutations of \(n\) objects. The actual number of transpositions required can be shown to tend asymptotically to (cosh 1) \(n!\doteqdot 1.53 n!\) However, lexicographic generation can be described by an algorithm requiring very simple book-keeping. The author is indebted to Professor H. F. Trotter for suggesting an improvement to an original algorithm, which now results in a process more than twice as fast as the previously fastest lexicographic Algorithm 202 [Comm. ACM 6 (Sept. 1963), 517]. Tabulated results below show BESTLEX to be only 9.3 percent slower than the transposition Algorithm 115 [Comm. ACM 5 (Aug. 1962), 434] when \(n=8\).

The usual practice is adopted of using a nonlocal Boolean variable called first which may be assigned the value true to initialize generation. On procedure call this is set false and remains so until it is again set true when complete generation of permutations has been achieved. Table I gives results obtained for BESTLEX. The times given in seconds are for an I.C.T. 1905 computer. \(t_{n}\) is the time for complete generation of \(n\) ! permutations. \(r_{n}\) has the usual definition \(r_{n}=t_{n} /\left(n \cdot t_{n-1}\right)\).

TABLE I
\begin{tabular}{|c|c|c|c|c|}
\hline Algorithm & n & \(t_{8}\) & rs & Number of \\
\hline BESTLEX & 6 & 47 & 0.98 & \(\rightarrow 1.53 n\) ! \\
\hline 202 & 12.4 & 100 & 1.00 & ? \\
\hline 115 & 5.6 & 43 & 0.98 & \(n\) ! \\
\hline
\end{tabular}
procedure \(B E S T L E X(x, n)\); value \(n\); integer \(n\); array \(x\); begin own integer array \(q[2: n]\); integer \(k, m\); real \(t\); comment own dynamic arrays are not of ten implemented. The upper bound will then have to be given explicitly;

\section*{if first then}
begin first := false;
for \(m:=2\) step 1 until \(n\) do \(q[m]:=1\)
end of initialization process;
if \(q[2]=1\) then
begin \(q[2]:=2\); \(t:=x[1] ; \quad x[1]:=x[2] ; \quad x[2]:=t ;\) go to finish
end;
for \(k:=2\) step 1 until \(n\) do
```

    if q[k]=k then q[k]:=1 else go to trstart;
    first:= true; k:= n; go to trinit;
trstart: m := q[k]; t:=x[m]; x[m]:=x[k]; x[k]:=t;
q[k]:=m+1; k:=k-1;
trinit: m := 1;
transpose: t:=-x[m]; x[m]:= x[k]; x[k]:= t;
m:=m+1; k:=k-1;
if m<k then go to transpose;
finish:
end of procedure BESTLEX

```

\section*{CERTIFICATION OF ALGORITHM 323 [G6]} GENERATION OF PERMUTATIONS IN LEXICOGRAPHIC ORDER [R. J. Ord-Smith, Comm. ACM 11 (Feb. 1968), 117]
I. M. Leitci (Recd. 9 July 1968, 6 Jan. 1969 and 17 Mar. 1969)
Department of Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne, England
KEY WORDS AND PHRASES: permutations, direct lexicographic order, reverse lexicographic order, lexicographic generation \(C R\) CATEGORIES: 5.39

The ranking function \(R_{d}\left(a_{1}, a_{2}, \cdots, a_{n}\right)\) which specifies the position of a permutation (\(a_{1}, a_{2}, \cdots, a_{n}\)) of the numbers 0 (1) \(n-1\) in a direct lexicographic order is commonly defined recursively[1] by
\[
R_{d}(0)=0
\]
and
\[
R_{d}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=a_{1} \cdot(n-1)!+R_{d}\left(M\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right)
\]
where \(M\left(a_{1}, a_{2}, \cdots, a_{n}\right)\) is the permutation of the numbers \(0_{0}^{\circ}(1)\) \(n-2\) obtained from \(a_{1}, a_{2}, \cdots, a_{n}\) by deleting \(a_{1}\) and reducing by unity all those elements which exceed \(a_{1}\).

Reverse lexicographic order of a permutation (\(b_{1}, b_{2}, \cdots, b_{n}\)) is defined by a similar ranking function,
\[
R_{r}\left(b_{1}, b_{2}, \cdots, b_{n}\right)=n!-1-R_{d}\left(b_{n}, \cdots, b_{2}, b_{1}\right)
\]

As reverse lexicographic order has the property (which direct order does not) that all the permutations which involve only the first \(K\) elements are generated before the (\(K+1\))-th, element is moved, it is sometimes preferred above the direct order. The two are closely related since in any \(n\)-element permutation vector a typical element \(a_{i}\) of the direct order corresponds to element \(a_{n-i+1}\) of the reverse order. As both of these orderings are in common use, it is inappropriate to describe either as lexicographic without further qualification.

After replacement of the dynamic upper bound of the own integer array by a constant (necessitated by a compiler implementation restriction), Algorithm 323 was compiled by the Kidsgrove Algol compiler and run on an English Electric KDF9 computer. The full permutation was generated for values of \(n=2\) (1)
9. The permutations generated by BESTLEX (Algorithm 323) were compared automatically with those of Algorithm 202 [Comm. ACM 6 (Sept. 1963), 517]. It was known that Algorithm 202 generated permutations in a direct lexicographic order, and it was found that permutations were produced by \(B E S T L E X\) in a reverse lexicographic order.

The order in which the permutations of BESTLEXX are generated is governed by the own integer array \(q\) of that procedure and its integer counters \(m\) and \(k\). Because of the simple relationship which exists between direct and reverse lexicographic order, the published algorithm may be modified so that it will generate permutations in direct lexicographic order by systematic application of the following three rules:
1. Wherever the value 1 or 2 occurs either as a subscript expression or an integer constant which is not part of a more complex expression, replace it by \(n\) or \(n-1\), respectively.
2. Redefine the bounds of \(q\) and the limits of both for loops to be from 1 to \(n-1\). Reverse the direction of the \(k\) for loop.
3. In the last seven lines of the algorithm, the integer counter \(k\) must be incremented by 1 from 1 (rather than decremented from \(n\)), and, similarly, wherever \(m+1\) appears in an assignment statement it is replaced by \(m-1\). Consequently \(m\) and \(k\) must be reversed in the comparison on the penultimate line of the algorithm.

At each call of the algorithm these modifications redirect attention from the beginning of the permutation vector to the end, and so cause permutations to be generated in direct order. However, because of the nature of these changes, no loss in computational efficiency should be expected (since the only extra arithmetic incurred is the evaluation of \(n-1\), which need be performed only once for each procedure call). This was confirmed at run times as the times taken to generate a full permutation in reverse order by the published algorithm and in direct order by the modified algorithm were identical.

Table I gives the time in seconds \(\left(t_{n}\right)\) which is required by each procedure for the complete generation of the \(n!\) permutations, \(r_{n}\) has the usual definition of \(t_{n} /\left(n \cdot t_{n-1}\right)\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE I} \\
\hline Algorithm & 4 & \(t_{3}\) & 1 \\
\hline BESTLEX & 10.01 & 80.08 & 1.00 \\
\hline 202 & 20.84 & 166.75 & 1.00 \\
\hline
\end{tabular}

Both algorithms were also tested under the Whetstone Algol interpreter on the KDF9, an ALgol compiler for the 1130, and the IBM 360 Model 67 Operating System Alqol "F"' compiler. As the last two implementations do not recognize the concept of own, results were obtained by inserting an integer array into the procedure heading as an additional parameter and by not declaring the own integer array in the procedure body. For comparison, execution times for the \(n!\) permutations which were recorded when the procedure was run on the IBM. 360/67 are given in Table II.
\begin{tabular}{cccc}
\multicolumn{4}{c}{ TABLE II } \\
& \(\boldsymbol{h}\) & \(\boldsymbol{t}^{2}\) & \(\boldsymbol{n}\) \\
BESTLEX & 7.6 & 61.01 & 0.99
\end{tabular}

\section*{References}
1. Lehmer, D. H. Teaching combinational tricks to a computer. Proc. of Symp. in Appl. Math., Vol. 10, Amer. Math. Soc., Providence, R. I., 1960, pp. 179-193.

\author{
Remark on Algorithm 323 [G6] \\ Generation of Permutations in Lexicographic Order [R.J. Ord-Smith, Comm: ACM 11 (Feb. 1968), 117] \\ Mohit Kumar Roy [Recd. 15 May 1972] \\ Computer Centre, Jadavpur University, Calcutta 32, India
}

In presenting Algorithm 323, BESTLEX, for generating permutations in lexicographic order, the author has mentioned the number of transpositions. It may be remarked here that equal numbers of transpositions are required by both BESTLEX and the previously fastest algorithm, Algorithm 202 [1]. The exact number of transpositions (\(\boldsymbol{T}_{n}\)) necessary to generate the complete set of \(n\) ! permutations is given by
\(T_{n}=n!\left(\psi_{n-1}\right)-(n+1) / 2, \quad\) if \(n\) is odd, and
\(T_{n}=n!\left(\psi_{n-2}\right)-n / 2\), if \(n\) is even,
where \(\psi_{2 n}=1+\frac{1}{2!}+\frac{1}{4!}+\cdots+\frac{1}{(2 n)!} \doteqdot 1.543\) for \(n \geq 3\).
The above expressions do not include the few extra transpositions (equal to the integral part of \(n / 2\)) required by BESTLEX to generate the initial arrangement from the final one, as this portion has not been included in Algorithm 202. Therefore, the number of transpositions has no importance in the context of the claim that BESTLEX is more than twice as fast as Algorithm 202.

The main factor contributing to the speed of BESTLEX is the substantial reduction in the number of comparisons required, by the introduction of the own integer array \(q\). Taking into account only those comparisons which involve array elements, the number of comparisons \(\left(C_{n}\right)\) required to generate all the \(n!\) permutations can be shown to be equal to
\(C_{n}(\) Algorithm 202 \()=\frac{n!}{2}\left[1+3 \varphi_{n-2}\right]+n\),
\(C_{n}(\) BESTLEX \()=n!\left\{\frac{1}{2}+\varphi_{n-1}\right\rfloor\),
where \(\varphi_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} \doteqdot 1.718\) for \(n \geq 6\).
This shows that the number of comparisons required by BESTLEX is lower by \(.859(n!)\) (approximately) in the case of the generation of all the \(n\) ! arrangements.

Finally, a modification of the BESTLEX algorithm is suggested which will reduce the number of comparisons again by (\(n!\))/2. The modification involves replacement of lines 2-14 of Algorithm 323 by the following.
begin own integer array \(q[3: n]\); integer \(k, m\);
real \(t\); own Boolean fag;
comment Own dynamic arrays are not often implemented. The upper bound will have to be given explicitly;
if first then
begin first \(:=\) false; flag \(:=\) true
for \(m:=3\) step 1 until \(n\) do \(q[m]:=1\)
end of initialization process;
if flag then
begin flag := false;
\(t:=x[1] ; \quad x[1]:=x[2] ; \quad x[2]:=t ;\)
go to finish
end;
flag : = true;
for \(k:=3\) step 1 until \(n\) do

\section*{References}
1. Shen, Mok-Kong. Algorithm 202, generation of permutations in lexicographical order. Comm. ACM 6 (Sept. 1963), 517.

Added in proof: An improved version of BESTLEX, viz. Algorithm 323A, Generation of Permutation Sequences: Part 2, by R.J. Ord-Smith [Comp. J. 14, 2 (May 1971), 136-139], which also incorporates the modification suggested here, has come to the author's attention.

\author{
ALGORITHMI 324 \\ MAXFLOW [H] \\ G. Bayer (Recd. 31 July 1967) \\ Technische Hochschule, Braunschweig, Germany
}

KEY WORDS AND PHRASES: network, linear programming, maximum flow
CR CATEGORIES: 5.41
procedure maxflow (from, to, cap, flow, v, n, mflow, source, sink, inf, eps);
value \(v, n\), source, \(\operatorname{sink}\), inf;
integer \(v, n\), source, sink; real inf, eps, mfow;
integer array from, to; array cap, flow;
comment The nodes of the network are numbered from 1 to sn . It is not necessary but reasonable that each number represent a node. The data of the network are given by arrays from, to, cap in the following manner. There is a maximum possible flow of \(\operatorname{cap}[i]\), nonnegative, leading from from \([i]\) to to \([i], i=1, \cdots, \dot{v}\). Compute the maximum flow mflow from source to sink, (source and sink given by their node numbers). inf represents the greatest positive real number within machine capacity. flow \([i]\) gives the actual flow from from \([i]\) to to \([i]\). Flows absolutely less than eps are considered to be zero. Literature: G. Hadley, Linear Programming, Addison-Wesley, Reading (Mass.) and London, 1962, pp. 337-344.
Multiple solutions are left out of account;
begin integer \(l, j, k, r, l k, e k, u, s\); real \(g j k, d\);
integer array low, up, klist, \(\operatorname{labj}[1: n]\), ind \([1: v]\); real array labf[1:n];
comment Note structure of data lists in \(u p\) and low;
\(l:=1\);
for \(j:=1\) step 1 until \(n\) do
begin \(\operatorname{low}[j]:=l\);
for \(r:=1\) step 1 until \(v\) do
begin if from \([r]=j\) then
begin ind \([l]:=r\);
flow \([l]:=\operatorname{cap}[l] ; \quad l:=l+1\)
end
end;
\(u p[j]:=l-1\)
end;
mflow := 0.0;
\(l a b: ;\)
comment Prepare lists for new labeling;
for \(j:=1\) step 1 until \(n\) do
begin \(\operatorname{labj}[j]:=k l i s t[j]:=0\);
labf[j]:= 0.0
end;
labf [source] := inf;
comment labeling;
\(j:=\) source; lk \(:=e k:=0\);
path:
\(u:=u p[j] ;\)
for \(s:=\) low \([j]\) step 1 until \(u\) do
begin \(l:=\operatorname{ind}[s]\);
\(k:=t o[l] ; \quad g j k:=\) flow \([l] ;\)
if \(l a b j[k] \neq 0 \vee a b s(g j k)<e p s\)
then go to end;
```

$l a b j[k]:=j ;$
$l a b f[k]:=$ if $g j k<l a b f[j]$ then $g j k$ else $l a b f[j] ;$
if $k=\sin k$ then go to reached;
$l k:=l k+1 ; k l i s t[l k]:=k ;$
end;
$e k:=e k+1 ; j:=k l i s t[e k] ;$
if $j \neq 0$ then go to path else go to max;
comment sink is labeled, find path and possible
flow, reduce excess capacities along path;
reached:
$j:=\operatorname{sink} ; \quad d:=\operatorname{labf}[j] ;$ mflow $:=$ mfow $+d ;$
look: $k:=\operatorname{labj}[j] ; \quad u:=u p[k] ;$
for $s:=$ low $[k]$ step 1 until $u$ do
$\operatorname{begin} l:=\operatorname{ind}[s]$;
if $t o[l]=j$ then fow $[l]:=$ fow $[l]-d$
end;
$u:=u p[j]$;
for $s:=l o w[j]$ step 1 until $u$ do
begin $l:=\operatorname{ind}[s]$;
if $t o[l]=k$ then flow $[l]:=$ flow $[l]+d$
end;
$j:=k$; if $j \neq$ source then go to look;
go to lab;
max:; comment maximal flow found;
for $l:=1$ step 1 until $v$ do
fow $[l]:=c a p[l]-$ fow $[l]$

```
end:
end

\author{
Remark on Algorithm 324 [H] \\ Maxflow [G. Bayer, Comm. ACM 11 (Feb. 1968), 117] \\ G. Bayer [Recd. 5 Aug. 1971] \\ Technische Universität, 33 Braunschweig, Germany
}

It is necessary to clarify the meaning of input parameters from, to and cap describing the given network.

A connection between two nodes, say \(a\) and \(b\), must be given by two arcs like this: At two index-positions, say \(i a\) and \(i b\), the input arrays have values
```

from $[i a]=a \quad$ from $[i b]=b$
to $[i a]=b$
to $[i b]=a$
$c a p[i a]=c a p a b \quad c a p[i b]=c a p b a$

```

Even if one of the two flows, say capab from node \(a\) to node \(b\), is zero, it must not be omitted, for otherwise the algorithm goes wrong.

If there is no connection between two nodes, then no arcs are to be given. In this case another input yields the same result: Two arcs are given, each with a maximum possible flow of zero. (But this case is not physically, or in the sense of the algorithm, the same as the first one.)

ALGORITHM 325
ADJUSTMENT OF THE INVERSE OF A SYMMETRIC MATRIX WHEN TWO SYMMETRIC
ELEMENTS ARE CHANGED [F1]
Gerhard Zielke (Recd. 24 Aug. 1967)
Institut für Numerische Mathematik der Martin Luther
Universität Halle-Wittenberg, German Democratic
Republic
KEY WORDS AND PHRASES: symmetric matrix, matrix inverse, matrix perturbation, matrix modification
CR CATEGORIES: 5.14
procedure INVSYM \(2(n, i, j, c, a, b)\);
value \(n, i, j, c\); integer \(n, i, j\); real \(c\); array \(a, b\);
comment INVSYM 2 computes the inverse \(A^{-1}=a\) of a nonsingular symmetric \(n\)th order matrix \(A=B+c\left(e_{i} e_{j}{ }^{\prime}+e_{j} e_{i}{ }^{\prime}\right)\) which arises from a symmetric matrix \(B\) by a change \(c\) in two elements \(B_{i j}\) and \(B_{j i}=B_{i j}(i \neq j)\). The inverse matrix \(B^{-1}=b\) is assumed to be known. The calculation with the new formula
\[
a=b-\frac{c}{d}\left[b_{. i}\left(h_{1} b_{j .}+h_{2} b_{i .}\right)+b_{. j}\left(h_{3} b_{j .}+h_{1} b_{i .}\right)\right]
\]
where
\(h_{1}=1+c b_{i j}, \quad h_{2}=-c b_{j j}, \quad h_{3}=-c b_{i i}, \quad d=h_{1}{ }^{2}-h_{3} h_{3}\)
requires \(n^{2}+O(n)\) multiplications, therefore only about the same number of operations as if the well-known ShermanMorrison formula for a change in one element (see Algorithm 51 [Comm. ACM 4 (Apr. 1961), 180]) is used. In these equations \(e_{i}\) denotes the \(i\) th column and \(e_{i}^{\prime}\) the \(i\) th row of the unit matrix, \(b_{. i}=b e_{i}\) denotes the \(i\) th column and \(b_{i .}=e_{i}^{\prime} b\) the \(i\) th row of the matrix \(b\);
begin integer \(k, l\); real \(h 1, h 2, h 3, d\);
array \(r, s[1: n]\);
\(h 1:=1+c \times b[i, j] ; h 2:=-c \times b[j, j]\);
\(h 3:=-c \times b[i, i] ; d:=h 1 \uparrow 2-h 2 \times h 3 ; d:=c / d ;\)
\(h 1:=h 1 \times d ; \quad h 2:=h 2 \times d ; h 3:=h 3 \times d\);
for \(k:=1\) step 1 until \(n\) do
begin
\(r[k]:=h 1 \times b[j, k]+h 2 \times b[i, k] ;\)
\(s[k]:=h 3 \times b[j, k]+h 1 \times b[i, k]\)
end;
for \(k:=1\) step 1 until \(n\) do
for \(l:=1\) step 1 until \(k\) do
\(a[k, l]:=a[l, k]:=b[k, l]-b[k, i] \times r[l]-b[k, j] \times s[l]\)
end INVSYM 2

ALGORITHM 326
ROOTS OF LOW-ORDER POLYNOMIAL EQUATIONS [C2]
Terence R. F. Nonweiler (Recd. 14 Apr. 1967)
James Watt Engineering Laboratories, The University, Glasgow W2, Scotland

KEY WORDS AND PHRASES: rootfinders, polynomial equation roots, quadratic equation roots, cubic equation roots, biquadratic equation roots, polynomial zeros
\(C R\) CATEGORIES: 5.15

\section*{ROOTFINDERS:}

\section*{begin}
comment suite of procedures finding the (complex) roots of the lower order polynomial equations by the familiar algebraic methods;
procedure \(B I Q U A D R O O T S(p, r)\); value \(p\); array \(p, r\);
comment finds the roots \(x=r[1, k]+\operatorname{sqrt}(-1) \times r[2, k]\) of the biquadratic equation \(p[0] \times x \uparrow 4+\cdots+p[4]=0\);
comment array \(r\) defined for subscript bounds \([1: 2,1: 4]\) and \(p\) for [0:4]. Failure occurs (in overflow) if \(p[0]=0\) and in other cases. Uses nonlocal procedures \(Q U A D R O O^{\prime} S\) and \(C U B I C\) ROOTS;
begin real \(e, b, d, c, a\);
integer \(k, j\);
if \(p[0] \neq 1.0\) then
begin
for \(k:=1\) step 1 until 4 do \(p[k]:=p[k] / p[0] ; \quad p[0]:=1.0\) end;
\(e:=0.25 \times p[1] ; b:=e+e ; c:=b \times b ; d:=0.75 \times c ;\)
\(b:=p[3]+b \times(c-p[2]) ; \quad a:=p[2]-d\);
\(c:=p[4]+e \times(e \times a-p[3]) ; \quad a:=a-d ; \quad p[1]:=0.5 \times a ;\)
\(p[2]:=(p[1] \times p[1]-c) / 4.0 ; \quad p[3]:=b \times b /(-64.0)\);
if \(p[3]<0\) then
begin
CUBICROOTS \((p, r)\);
for \(k:=1\) step 1 until 3 do if \(r[2, k]=0\) and \(r[1, k]>0\) then
begin
\(d:=r[1, k] \times 4.0 ; a:=a+d ;\)
\(p[1]:=\) if \(a \geq 0 \equiv b \geq 0\) then \(\operatorname{sqrt}(d)\) else \(-\operatorname{sqrt}(d)\); \(b:=0.5 \times(a+b / p[1]) ;\) go to \(Q U A D\)
end the general case jumping to \(Q U A D\);
end nonzero \(p[3]\);
if \(p[2]<0\) then
begin
\(b:=\operatorname{sqr} t(c) ; \quad d:=b+b-a ;\)
\(p[1]:=\) if \(d \leq 0\) then 0 else \(\operatorname{sqrt}(d)\)
end
else
begin
\(b:=\operatorname{sqrt}(p[2]) \times(\) if \(p[1]>0\) then +2.0 else -2.0\()+p[1]\);
if \(b \neq 0\) then \(p[1]:=0\) else

\section*{begin}
for \(k:=1\) step 1 until 4 do
```

        begin
        r[1,k]:= - e; r[2,k]:=0
        end;
        go to END
        end
    end;
    QUAD: p[2]:=c/b; QUADROOTS (p,r);
for }k:=1,2 d
for }j:=1,2 do r[j,k+2]:=r[j,k]
p[1]:=-p[1]; p[2]:=b; QUADROOTS (p,r);
for }k:=1 step 1 until 4 do r[1,k]:=r[1,k] - e
END:
end BIQU ADROOTS;
procedure CUBICROOTS (p,r); value p; array p,r;
comment finds the roots }x=r[1,k]+\operatorname{sqrt(-1)}\timesr[2,k], ar
ranged in order ( }k=1,2,3)\mathrm{ of increasing modulus, of cubic equa-
tion p[0]\timesx\uparrow3+\cdots+p[3]=0;
comment array r defined for subscript bounds [1:2,1:3] and p
for [0:3]. Failure occurs (in overflow) if p[0]=0 and in other
cases. Assumes 0<arctan(x)<pi/2 for x>0;
begin real s,t,b,c,d;
integer }k\mathrm{ ;
if p[0]}\not=1.0\mathrm{ then
for }k:=1\mathrm{ step 1 until 3 do }p[k]:=p[k]/p[0]
s:=p[1]/3.0; t:= s 昂 [1];
b:=0.5\times(s\times(t/1.5-p[2])+p[3]); t:= (t-p[2])/3.0;
c:=t\uparrow 3; d:=b\timesb-c;
if d}\geq0\mathrm{ then
begin
d:= (sqrt(d)+abs(b))\uparrow(1.0/3.0);
if }d\not=0\mathrm{ then
begin
b:= if b>0 then - d else d; c:= t/b;
end;
d:=r[2, 2] :='sqrt(0.75) }\times(b-c); b:=b+c
c:=r[1,2]:= - 0.5 < b - s;
if b>0\equivs\leq0 then
begin
r[1,1]:=c; r[2,1]:=-d; r[1,3]:=b-s;
r[2,3]:= 0
end
else
begin
r[1,1]:=b-s; r[2,1]:= 0; r[1,3]:=c;
r[2,3]:= -d
end
end the case of two equal or complex roots
else
begin
d:= if b=0 then }\operatorname{arctan}(1.0)/1.5 else arctan (sqrt(-d)/
abs(b))/3.0;
b:= sqrt(t)\times (if b<0 then 2.0 else - 2.0);
c:= cos(d)\timesb; t:= - sqrt(0.75) }\times\operatorname{sin}(d)\timesb-0.5\timesc
d:= -t - c-s; c:=c-s; t:=t - s;
if abs(c)>abs(t) then r[1,3]:=c
else
begin
r[1,3]:= t; t:=c

```
```

    end;
    if abs(d).>abs(t) then r[1, 2]:= d else
    begin
        r[1,2]:= t; t:=d
    end;
    r[1, 1]:= t;
    for k:= 1 step 1 until 3 do r[2,k]:= 0;
    end the irreducible case;
    end CUBICROOTS;
procedure QUADROOTS (p,r); array p,r;
comment finds the roots x=r[1,k]+sqrt(-1)\timesr[2,k]
arranged in order ( }k=1,2)\mathrm{ of ascending modulus, of the quadra-
tic equation p[0] }\timesx\uparrow2+p[1]\timesx+p[2]=0
comment array p defined for subscript limits [0:2] and r for
[1:2,1:2]. The entry values of the array p are preserved. Fails
(in overflow) if p[0] = 0 and in other cases;
begin real b, c, d;
b:=-p[1]/p[0]/2.0; c:=p[2]/p[0]; d:=b\timesb-c;
if d>0 then
begin
b:=r[1,2]:= if b > 0 then sqrt(d) + b else b - sqrt(d);
r[1,1]:=c/b; r[2,1]:=r[2,2]:=0
end
else
begin
d := r[2, 1]:= sqrt(-d); r[2, 2]:= --d;
r[1, 1]:=r[1,2]:=b
end
end QU ADROOTS;
end

```

\section*{ALGORITHM 327 \\ DILOGARITHM [S22]}
K. S. Kölbig (Recd. 10 Oct. 1967)

Applied Mathematics Group, Data Handling Division, European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

KEY WORDS AND PHRASES: dilogarithm function, special functions
\(C R\) CATEGORIES: 5.12
real procedure \(\operatorname{dilog}(x) ;\) value \(x ;\) real \(x\);
comment This procedure evaluates the dilogarithm function
\[
d(x)=-\int_{0}^{x}(\ln |1-y| / y) d y
\]
for real arguments \(x .13\) to 14 significant digits are correct, except for values of \(x\) near to the zero of \(d(x)\) on the positive axis (\(x \approx 12.6\)). This function appears in several fields of theoretical physics. The method of computation is described by Mitchell [1]. For \(0<x \leq 0.5\), a Chebyshev approximation is used, which was obtained by economizing the power series \(\sum_{n=1}^{\infty} x^{n} / n^{2}\) with a multiprecision CERN library program [2].

References:
1. Mitchell, K. Tables of the function \(\int_{0}^{z}(-\log |1-y| / y) d y\), with an account of some properties of this and related functions. Phil. Mag. 40 (1949), 351-368.
2. Carlson, J. R. TCHEbY-telescoping of a polynomial. CERN 6600 Computer Program Library E203 (1966), unpublished;
begin real \(f, u, y, z\);
comment \(3.289868 \cdots=\pi^{2} / 3,1.644934 \cdots=\pi^{2} / 6\);
if \(x \geq 2\) then
begin
\(z:=1 / x ; \quad u:=-0.5 \times \ln (x) \uparrow 2+3.289868133696453 ;\)
\(f:=-1\)
end
else if \(x>1\) then
begin
\(z:=(x-1) / x ;\)
\(u:=-0.5 \times \ln (x) \times \ln (z \times x-z)+1.644934066848226 ;\)
\(f:=1\)
end
else if \(x=1\) then
begin
dilog \(:=1.644934066848226 ;\) go to \(L 1\)
end
else if \(x>0.5\) then
begin \(z:=1-x ; u:=-\ln (x) \times \ln (z)+1.644934066848226 ;\)
\(f:=-1\)
end
else if \(x>0\) then
begin
\(z:=x ; u:=0 ; f:=1\)
end
else if \(x=0\) then
begin
\[
\begin{aligned}
& \text { dilog }:=0 \text {; go to } L 1 \\
& \text { end } \\
& \text { else if } x \geq-1 \text { then } \\
& \text { begin } \\
& z:=x /(x-1) ; \quad u:=-0.5 \times \ln (1-x) \uparrow 2 ; f:=-1 \\
& \text { end }
\end{aligned}
\]
comment The procedure dilog was tested on a CDC 3800 computer, using an Algol compiler. It was translated into Fortran and run on a CDC 6600 computer. The tests included the following:
(i) Calculation of \(d(x)\) for \(x=-1(0.01) 1\). A comparison with the 9 -figure table given in [1] revealed in few cases a discrepancy of 1 unit in the last figure.
(ii) Calculation of \(d(x)\) for \(x= \pm 10^{i}, i=0(10) 100\),
\(x=-3(0.1) 15, x= \pm 10^{i}, i=-20(1) 0\).
(iii) Calculation of \(d(x)\) for \(x=1+i \times 10^{-m}, i=-10(1) 10\), \(m=10\) in the case of the CDC \(3800, m=14\) for the CDC 6600.

In all three cases the results have been compared with those obtained by summing the power series directly. Agreement to 13 or 14 significant digits was found, with the exception mentioned in the comment above;

ALGORITHM 328
CHEBYSHEV SOLUTION TO AN
OVERDETERMINED LINEAR SYSTEM [F4]
Richard H. Bartels and Gene H. Golub
(Recd. 8 June 1967 and 22 Nov. 1967)
Computer Science Dept., Stanford University, Stanford, Calif. 94305

KEY WORDS AND PHRASES: Chebyshev solutions, overdetermined linear systems, linear equations, exchange algorithm
CR CATEGORIES: 5.13, 5.14, 5.41
procedure Chebyshev (\(A, d, h, m, n\), refset, epz, insufficientrank, zerolambda);
value \(m, n\); integer \(m, n\); real array \(A, d, h\);
integer array refset; real epz; label insufficientrank, zerolambda;
comment Chebyshev computes a solution in the Chebyshev sense to an overdetermined system of linear equations, \(A x=d\). Details and notation are given in a paper by Bartels and Golub [Comm. ACM 11 (June 1968), 403-408].
The parameters to procedure Chebyshev are:
\begin{tabular}{lll}
\multicolumn{1}{c}{ identifier } & \multicolumn{1}{c}{ cype comments } \\
\(m\) & integer & Number of equations \\
\(n\) & integer & Number of unknowns \\
\(A\) & real array & \begin{tabular}{l}
Matrix of coefficients \\
Arraybounds- \([0: m-1,0: n-1]\)
\end{tabular} \\
\(d\) & real array & \begin{tabular}{l}
Right-hand-sidevector \\
Array bounds- \([0: m-1]\)
\end{tabular} \\
\(h\) & real array & \begin{tabular}{l}
Solution vector \\
Array bounds- \([0: n-1]\)
\end{tabular} \\
refset & integer & \begin{tabular}{l}
Final reference equation numbers
\end{tabular} \\
& array & Arraybounds-[0:n] \\
epz & real & Final reference deviation \\
zerolambda & label & Exit for condition 1 failure \\
insufficientrank & label & Exit for condition 2 failure, or \\
& & in case rank \((A)<n\)
\end{tabular}

The parameters \(m, n, A\) and \(d\) are not changed by Chebyshev. We direct the user's attention to the identifier eta appearing in the procedure and to the comment explaining its value and purpose.;
begin
real procedure \(i p(i i, l l, u u, a a, b b, c c\));
value \(l l, u u, c c\); real \(a a, b b, c c\); integer \(i i, l l, u u\);
comment single-precision inner-product routine;
begin
real sum;
sum \(:=c c\);
for \(i i:=l l\) step 1 until \(u u\) do sum \(:=s u m+a a \times b b\);
\(i p:=\) sum
end \(i p\);
real procedure \(i p 2(i i, l l, u u, a a, b b, c c)\);
comment \(i p 2\) is a version of \(i p\) which accunnulates the products \(a a \times b b\) in a double-precision sum, whose final value, rounded to single-precision, is taken as the value of \(i p 2\);

Boolean finished; switch decompbranch \(:=\) return, itr;
switch failures \(:=\) insufficientrank, zerolambda;
integer \(m 1, n 1, n p 1, i, j, k, l, b, a l, a 1, l s t, k m a x, c n t\);
real lasteps, preveps, ref, \(s, t\), eps, eta, cnorm, snorm;
real array \(P[0: n, 0: n]\), lam, \(r v, s v, x, w, x r[0: n]\);
integer array \(r[0: n], i x[0: m-1]\);
comment The subsystem of \(n+1\) equations currently being investigated is listed in \(i x[0], \cdots, i x[n]\). The other equations are listed in the remainder of \(i x . r\) contains row indices. Row interchanges during the Gauss decomposition of \(P\) are carried out by permuting the elements of \(r\).;
\(m 1:=m-1 ; \quad n 1:=n-1 ; n p 1:=n+1\);
lasteps \(:=0 ;\) preveps \(:=-1\);
for \(i:=0\) step 1 until \(n\) do \(r[i]:=i x[i]:=i\);
for \(i:=n p 1\) step 1 until \(m 1\) do \(i x[i]:=i\);
comment The initial reference subsystem is chosen by making a copy of the transpose of \(A\) bordered with \(d\) and carrying out a Gaussian reduction upon it with row and column interchanges used to select the largest possible pivot at each stage.;

\section*{begin}
real array \(T A B[0: n, 0: m 1]\);
for \(j:=0\) step 1 until \(m 1\) do
begin
\(T A B[n, j]:=d[j] ;\)
for \(i:=0\) step 1 until \(n 1\) do \(T A B[i, j]:=A[j, i]\)
end;
for \(i:=0\) step 1 until \(n\) do
begin
\(t:=0\);
for \(j:=i\) step 1 until \(n\) do
begin
\(k:=r[j] ;\)
for \(l:=i\) step 1 until \(m 1\) do
begin
\(r e f:=T A B[k, i x[l]] ;\)
if \(a b s(r e f)>t\) then
begin
\[
s:=r e f ; \quad t:=a b s(r e f) ; \quad a l:=j ; \quad b:=l
\]
end
end

\section*{end;}
if \(t=0\) then begin \(j:=1\); go to singular end;
\(k:=r[a l] ; \quad r[a l]:=r[i] ; \quad l s t:=r[i]:=k\);
\(k:=i x[b] ; \quad i x[b]:=i x[i] ; \quad a 1:=i x[i]:=k\);
for \(j:=i+1\) step 1 until \(m 1\) do
begin
\(l:=i x[j] ;\)
\(r e f:=T A B[l s t, l] / s ;\)
for \(k:=i+1\) step 1 until \(n\) do
begin
al \(:=r[k] ;\)
\(T A B \mid a l, l]:=T A B[a l, l]-T A B[a l, a 1] \times r e f\) end
end
end
end;
\(b:=0 ; \quad a 1:=1\);
comment The following segment of the program performs a column-by-column Gaussian reduction of the matrix associated with the reference equations, forming an upper and a lower triangular matrix into the array \(P\). (Each diagonal
element of the lower triangular matrix is one.) Interchanges of rows take place so that the largest pivot in each column is employed. It is assumed that \(b-1\) columns have already been decomposed. If the matrix is not of full rank, the exit insufficientrank is taken, and it is left up to the user to determine if the given overdetermined system can be solved exactly.;
body:
for \(i:=b\) step 1 until \(n\) do
begin
\[
l:=i x[i]
\]
for \(j:=\) if \(i=b\) then 0 else \(b\) step 1 until \(n\) do
begin
\(k \max :=\) if \(j<i\) then \(j-\mathbf{1}\) else \(i-1\);
\(P[i, r[j]]:=-i p(k, 0, k \max , P[i, r[k]], P[k, r[j]]\),
\(-(\) if \(r[j]=n\) then \(d[l]\) else \(A[l, r[j]]))\)
end;
ref :=0;
for \(j:=i\) step 1 until \(n\) do
begin
\(t:=P[i, r[j]] ;\)
if \(r e f<a b s(t)\) then
begin \(r e f:=a b s(t) ; \quad s:=t ; k:=j\) end
end;
if ref \(=0\) then begin \(j:=1\); go to singular end;
if \(i=n\) then go to decompbranch[a1];
\(j:=r[k] ; \quad r[k]:=r[i] ; \quad r[i]:=j\);
for \(j:=i+1\) step 1 until \(n\) do
\(P[i, r[j]]:=P[i, r[j]] / s\)
end;
singular:
for \(i:=0\) step 1 until \(n\) do refset \([i]:=i x[i]\);
go to failures[j];
comment Solve for the lambdas.;
return:
for \(j:=b\) step 1 until \(n\) do
\(s v[j]:=-i p(k, 0, j-1, s v[k], P[k, r[j]]\),
\(-(\) if \(r[j]=n\) then -1 else 0\()\));
for \(j:=n\) step -1 until 0 do
\(\operatorname{lam}[j]:=-i p(k, j+1, n, \operatorname{lam}[k], P[k, r[j]],-s v[j]) / P[j, r[j]] ;\)
comment Compute epsilon for the reference subsystem of equations.;
\(t:=0\);
for \(i:=0\) step 1 until \(n\) do \(t:=t+\operatorname{abs}(\operatorname{lam}[i])\);
eps \(:=1 / t\);
comment Each new value of eps must be greater than the previous one. If this is not so, the solution may have been "overshot".;
if eps < lasteps then go to ed;
lasteps :=eps;
comment Solve for the vector \(x\), the Chebyshev solution of the reference subsystem of equations.;
for \(i:=0\) step 1 until \(n\) do \(x r[i]:=\operatorname{sign}(\operatorname{lam}[i]) \times e p s\);
for \(i:=0\) step 1 until \(n\) do
\(w[i]:=-i p(j, 0, i-1, w[j], P[i, r[j]],-x r[i]) / P[i, r[i]] ;\)
for \(i:=n\) step -1 until 0 do
\(x[r[i]]:=-i p(j, i+1, n, x[r[j]], P[i, r[j]],-w[i]) ;\)
comment \(x[n]\) should be -1 . It can be used to purify eps and the other components of \(x\).;
\(r e f:=-x[n]\);
for \(i:=0\) step 1 until \(n \mathbf{1}\) do \(x[i]:=x[i] / r e f\);
eps \(:=e p s / r e f ;\)
comment For each index \(i x[n+1], \cdots, i x[m-1]\) compute the residual \(A[i x[j], 0] \times x[0]+\cdots+A[i x[j], n-1] \times x[n-1]-\) \(d[i x[j]]\). If the largest of these in magnitude is not greater than eps, go to itr to refine the vector \(x\), for it may be the Chebyshev solution of the full system.;
ref : \(=-1\);
for \(j:=n p 1\) step 1 until \(m 1\) do
begin
\(i:=i x[j] ;\)
\(t:=i \boldsymbol{p}(k, 0, n 1, x[k], A[i, k]-d[i]) ;\)
if \(a b s(t)>r e f\) then
begin \(r e f:=a b s(t) ; a l:=j ; \quad s:=\operatorname{sign}(t)\) end
end;
if ref \(\leq e p s\) then go to \(i t r\);
ovr:
\(k:=i x[a l] ;\)
comment The following linear-system solution is computed in order to determine which equation is to be dropped from the reference set of equations.;
for \(i:=0\) step 1 until \(n\) do \(w[i]:=-i p(j, 0, i-1, w[j], P[j, r[i]]\),
\(-(\) if \(r[i]=n\) then \(d[k]\) else \(A[k, r[i]]))\);
for \(i:=n\) step -1 until 0 do \(w[i]:=-i p(j, i+1, n, w[j], P[j, r[i]],-w[i]) / P[i, r[i]] ;\)
comment \(s\) is the sign of the residual with greatest magnitude. Find the largest of the ratios \((w[k] / l a m[k]) \times s\). If any component of lam is zero, the exit zerolambda is taken.;
ref \(:=\operatorname{lam}[n] ; \quad b:=n\);
if ref \(=0\) then begin \(j:=2\); go to singular end;
ref \(:=(w[n] / r e f) \times s\);
for \(j:=0\) step 1 until \(n \mathbf{1}\) do
begin
\(t:=\operatorname{lam}[j] ;\)
if \(t=0\) then begin \(j:=2\); go to singular end; \(t:=(w[j] / t) \times s ;\)
if \(t>\) ref then begin \(b:=j ; \quad\) ef \(:=t\) end
end;
comment Form a new reference subsystem by exchanging the \(i x[a l]\)-th and \(i x[b]-\) th equations.;
\(i x[a l]:=i x[b] ; \quad i x[b]:=k ; \quad a 1:=1 ;\) go to body; ed:
comment Restore the previous reference substystem.;
eps \(:=\) lasteps \(; a 1:=2\);
\(j:=i x[a l] ; \quad i x[a l]:=i x[b] ; \quad i x[b]:=j ;\) go to body;
itr:
lasteps \(:=0 ;\) cnt \(:=0\);
comment Iteratively refine the vector \(x\).;
\(i l p\) :
\(c n t:=c n t+1 ;\) if cnt \(>10\) then go to insufficientrank;
cnorm := snorm \(:=0\);
for \(i:=0\) step 1 until \(n\) do
begin
\(k:=i x[i] ;\)
\(t:=a b s(x[i]) ;\)
if snorm \(<t\) then snorm := \(t\);
\(r v[i]:=-i p 2(j, 0, n, x[j]\), if \(j=n\) then \(d[k]\) else \(A[k, j],-x r[i])\)
end;
for \(i:=0\) step 1 until \(n\) do \(r v[i]:=-i p(j, 0, i-1, r v[j], P[i, r[j]],-r v[i]) / P[i, r[i]] ;\)
for \(i:=n\) step -1 until 0 do
\(w[r i[i]:=-i p(j, i+1, n, w[r[j]], P[i, r[j]],-r v[i]) ;\)
for \(i:=0\) step 1 until \(n\) do
begin
\(s:=w[i] ;\)
\(x[i]:=x[i]+s ;\)
\(s:=a b s(s)\);
if cnorm \(<s\) then cnorm :=s
end;
if \(\mathrm{cnorm} /\) snorm \(>\) eta then go to \(i l p\);
comment eta is to be preset with a small positive multiple of the largest positive single-precision machine number \(\omega\)
having the property that \(1+\omega=1-\omega=1\) in a single-precision arithmetic. The small multiple will depend upon the peculiarities of the machine's rounding process and will have to be empirically determined.;
\(r e f:=-x[n]\);
for \(i:=0\) step 1 until \(n 1\) do \(x[i]:=x[i] / r e f\);
eps \(:=e p s / r e f ;\)
comment Determine whether a Chebyshev solution has been found. If any residual is greater in magnitude than eps while \(e p s\) is smaller than a value produced from an earlier refinement, give up, print a warning, and return the best \(x\) computed thus far.;
ref \(:=-1\);
for \(j:=n p 1\) step 1 until \(m 1\) do
begin
\(i:=i x[j] ;\)
\(t:=i p 2(k, 0, n 1, x[k], A[i, k],-d[i]) ;\)
if \(a b s(t)>r e f\) then
begin ref \(:=a b s(t) ;\) al \(:=j ; \quad s:=\operatorname{sign}(t)\) end
end;
if ref \(\leq e p s\) then finished \(:=\) true
else if eps \(>\) preveps then finished \(:=\) false
else
begin outstring (1, 'DOUBTFUL SOLUTION'); go to skip
end;
preveps \(:=\) eps; refset \([n]:=i x[n] ;\)
for \(i:=0\) step 1 until \(n 1\) do
begin
refset \([i]:=i x[i] ;\)
\(h[i]:=x[i]\)
end;
if \(\neg\) finished then go to ovr;
skip:
epz \(:=\) preveps;
end Chebyshev

\section*{CERTIFICATION OF ALGORITHM 328 [F4]}

CHEBYSHEV SOLUTION TO AN OVERDETERMINED LINEAR SYSTEM [Richard H. Bartels and Gene H. Golub, Comm. ACM 11 (June 1968), 428]
Norman L. Schryer (Recd. 14 Nov. 1968, 2 Dec. 1968 and 27 Jan. 1969)
University of Michigan, Ann Arbor, Michigan
KEY WORDS AND PHRASES: Chebyshev solutions, overdetermined linear systems, linear equations, exchange algorithm CR CATEGORIES: 5.13, 5.14,5.41

Two modified versions of the procedure Chebyshev have been written, one with and one without iterative improvement. The algorithms were compiled in Fortran IV on an IBM System/360 model 67 in double-quadruple and double-precision, respectively. When run on the following test system
\[
\left[\begin{array}{rrr}
11 & -8 & 6 \\
0 & -15 & -12 \\
-13 & -3 & 10 \\
7 & 8 & 2 \\
10 & -7 & 9 \\
0 & -5 & 5 \\
7 & 10 & 9 \\
-15 & 0 & 15 \\
-15 & 3 & -15 \\
2 & 5 & 14
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-68 \\
-54 \\
11 \\
3 \\
-64 \\
-19 \\
13 \\
30 \\
72 \\
-5
\end{array}\right]
\]
both versions gave the correct answer, \(x=(-3,4,-1)\), to full double-precision accuracy (16 digits). The above versions of the procedure Chebyshev differ from the published ones in two ways. Without these changes the routines have gone into an "infinite loop" in certain circumstances.

On page 429, first column, the 14th line following the label return should be changed from

\section*{if eps < lasteps then go to ed;}
to
if eps \(\leq\) lasteps then go to \(e d\);
The above change eliminates the problem of "infinite loops."
When using the version without iterative improvement, one additional change is necessary. Change the code following the label \(i t r\) as indicated on page 405, column 2. Then replace the code between labels \(e d\) and itr on page 429, column 2, by the following:
comment Restore the previous reference subsystem;
eps \(:=\) lasteps;
\(j:=i x[a 1] ; \quad i x[a 1]:=i x[b] ; \quad i x[b]:=j ;\)
ref \(:=-1\);
for \(j:=n p 1\) step 1 until \(m 1\) do
begin
\(i:=i x[j]\);
\(t:=i p 2(k, 0, n 1, x[k], A[i, k],-d[i]) ;\)
if \(a b s(t)>\) ref then ref \(:=a b s(t)\)
end;
This change is necessary in order to give the real variable ref the proper value for determining if the vector \(x\) is a solution or a "doubtful solution." That is, the above value of ref will be used in the code following the label itr to determine if we have a "doubtful solution."

\section*{ALGORITHMI 329}

DISTRIBUTION OF INDISTINGUISHABLE
OBJECTS INTO DISTINGUISHABLE SLOTS [G6]
Robert R. Fenichel
(Recd. 24 Aug. 1967 and 8 Dec. 1967)
Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, Mass. 02139
KEY WORIDS AND PHRASES: object distributions, combinations, distribution numbers
\(C R\) CATEGORIES: 5.39
procedure dist (\(k, m\), done, \(q\), FirstCall);
value \(k, m\); integer \(k, m\); label done; integer array \(q\); Boolean FirstCall;
comment Successive calls to this procedure compute the \(\binom{m+k-1}{m}\) distinguishable distributions of \(m\) indistinguishable objects into \(k\) distinguishable slots. Upon the first call to dist, FirstCall must have the value true. This value is changed to false during the processing of the first call.

Upon return from a call to dist, a new distribution has been noted in \(q[1: k]\), an integer array. In particular, the number of objects to be distributed to the \(i\) th slot has been left as the value of \(q[i]\).
The call following the \(\binom{m+k-1}{m}\)-th will cause transfer to the label done.

The values of \(q\) must not be altered between calls to dist.
The method is best introduced by means of an example. Suppose that 9 objects must be distributed among 3 slots. Each distribution might be denoted by a three-digit décimal number whose digits sum to 9 . By the Rule of Nine, each such "distribution number" is divisible by 9 . Conversely, many multiples of 9 are distribution numbers, although some (e.g. 189 and 198) are not.

Now the method is as follows:
1. Treat \(q[1] \cdots q[k]\) as a \(k\)-place number in a number system based on (\(m+1\)). Usually, return from dist after adding \(m\) to this number.
2. If \(q[i-1] \neq q[i]=q[i+1]=\cdots=q[k]=0\), adding \(m\) will not result in a distribution number: the sum of the digits will be too large. Find the next distribution number by
a. Setting \(q[k]:=q[i-1]-1\).
b. Setting \(q[i-1]:=0\).
c. Adding 1 to \(q[i-2]\).

The author is indebted to the anonymous referee who, at one point in this algorithm's development, had evidently given it more thought than had the author;
begin integer \(i\); own integer LeftmostZero;
if FirstCall then
begin
for \(i:=1\) step 1 until \(k-1\) do
\(q[i]:=0 ;\)
LeftmostZero \(:=k+1\);
\(q[k]:=m\);
FirstCall := false
```

end
else if $q[1]=m$ then go to done
else if LeftmostZero $<k+1$ then
begin
LeftmostZero := LeftmostZero - 1;
$q[k]:=q[$ LeftmostZero $]-1$;
$q[$ LeftmostZero $]:=0$;
$q[$ LeftmostZero - 1] := q[LeftmostZero -1] +1
end skip $99,189,198$, etc.
else
begin
if $q[k]=1$ then LeftmostZero $:=k$;
$q[k]:=q[k]-1$;
$q[k-1]:=q[k-1]+1$
end add $m$ to units place
end of dist

```

\section*{REMARK ON ALGORITHM 329 [G6]}

DISTRIBUTION OF INDISTINGUISHABLE OBJECTS INTO DISTINGUISHABLE SLOTS [Robert
R. Fenichel, Comm. ACM 11 (June 1968), 430]
M. Gray (Recd. 20 Sept. 1968)

Computing Science Department, University of Adelaide, South Australia
As the procedure stands it is incorrect. Preceding end skip \(99,189,198\), etc.
the following statement should be inserted:
if \(q[k] \neq 0\) then LeftmostZero \(:=k+1\)
Thus the compound statement becomes:
```

begin
LeftmostZero := LeftmostZero -1;
$q[k]:=q[$ LeftmostZero $]-1$;
$q[$ LeftmostZero] :=0;
$q[$ LeftmostZero -1$]:=q[$ LeftmostZero-1 $]+1$;
if $q[k] \neq 0$ then LeftmostZero $:=k+1$
end skip $99,189,198$, etc.

```

\section*{ALGORITHM 330}

FACTORIAL ANALYSIS OF VARIANCE [G1]
Ian Oliver (Recd. 21 Sept. 1967 and 12 Jan. 1968)
Computer Center, The Ohio State University, 1314 Kinnear Rd., Columbus, Ohio 43212
(Now at Computer Centre, University of Queensland, St. Lucia, Brisbane, Australia 4067)

KEY WORDS AND PHRASES: factorial variance analysis, variance, statistical analysis
\(C R\) CATEGORIES: 5.5
procedure factorial ANOVA (\(X\), \(n\), levels, \(T\));
value \(n\); integer \(n\); integer array levels; real array \(X, T\);
comment This procedure carries out an analysis of variance on the data from a balanced complete factiorial experiment. The experimental observations are assumed to be stored in the array \(X\). The elements of the array levels are assumed to contain the number of levels in each of the \(n\) factors. The procedure produces the sum of squares for the analysis of variance table in the array \(T\). A method of orthogonal transformations [1] is used.
The levels of the \(j\)-th factor are numbered \(1,2, \cdots\), levels \([j]\). The observations are conveniently stored in a multidimensional array. For example, for \(n=3, X[1,3,2]\) is the observation taken at levels 1, 3, and 2 of the first, second and third factors respectively. factorial ANOVA actually uses the procedure index to compute the multidimensional subscript and uses \(X\) as a one dimensional array so that \(n\) may have any value. Thus, if factorial ANOVA is called with a multidimensional array as the first argument, then index may have to be rewritten for a given compiler to correctly compute any multiple subscript. As written, index assumes that \(X\) has been declared in a statement such as real array \(X[1:\) levels \([1], \cdots, 1:\) levels \([n]]\) and that the compiler arranges storage so that the first subscript varies most rapidly.

Alternatively the data may be transmitted in a linear array so that the factor levels associated with each observation are ordered so that the levels of the first factor vary most rapidly. The procedure index will then require no modification.

The array \(T\) may also be considered a linear array, or an \(n\)-dimensional array declared in a statement of the form real array \(T[1: 2,1: 2, \cdots, 1: 2]\). Element \(T[2,1, \cdots, 1]\) is the sum of squares for the main effect of the first factor. \(T[1,2,1, \cdots, 1]\) is the main effect for the second factor. \(T[2,2,1, \cdots, 1]\) is the interaction between the first two factors, and so on. If \(T\) is considered as a linear array, an element may be interpreted by examining the bit pattern in the binary value of the subscript minus one. For example, \(T[6]=T[5+1]\) is the interaction between the first and third factors.

On return from factorial \(A N O V A\) the data array \(X\) will contain orthogonal components of the sums of squares in the array \(T\). As written, the components are the squares of values obtained by performing an Helmert transformation [2] for each factor. The procedure orthog may be modified, if the components are required per se, to produce any desired orthogonal contrasts.

The advantages and limitations claimed for factorial ANOVA are as follows. The procedure is very conservative of storage provided no factor has a large number of levels. The amount of
temporary array storage required is \(3 n+m(m+2)\) where \(m\) is the maximum number of levels in any factor. The procedure body is also very short. The routine should therefore be useful for small computers or for inclusion as a subroutine in programs whose primary purpose is not the statistical analysis. No comparison of running time has been made with other methods but this routine requires \(\prod_{i}\) levels \(_{i}\left(\sum_{i}\right.\) levels \(\left._{i}+1\right)\) floating multiplications and may therefore be comparable in speed with the method described in [3].

This procedure is intended to present an algorithm rather than an optimal program for an algorithm and so the coding can be considerably improved in efficiency which was somewhat sacrificed for clarity.

Acknowledgment. The author wishes to thank the referee and the editor for their valuable comments and suggestions.
References:
1. Oliver, I. Analysis of factorial experiments using generalized matrix operations. J. ACM 14 (July 1967), 508-519.
2. Kendall, M. G., and Stuart, A. The Advanced Theory of Statistics, Vol. 1. Hafner, New York, 1958, pp. 250-251.
3. Hartley, H. O. Analysis of variance. In Mathematical Methods for Digital Computers, A. Ralston and H. S. Wilf (eds.), Wiley, New York, 1960, pp. 221-230;
begin integer factor, \(k 1, k 2, j\); integer array \(i, T i\), Tlimit \([1: n]\);
integer procedure index (subscript, limit); integer array subscript, limit;
begin integer \(j\), temp; temp \(:=0\);
for \(j:=n\) step -1 until 1 do
temp \(:=\) temp \(\times \operatorname{limit}[j]+\) subscript \([j]-1 ;\)
index \(:=\) temp +1 ;
end index procedure;
procedure orthog (\(Q\), size);
value size; integer size; real array \(Q\);
begin integer \(i, j\);
for \(i:=1\) step 1 until size do \(Q[i, 1]:=1.0 / \operatorname{sqr} t(\) size \()\);
for \(j:=2\) step 1 until size do
begin
for \(i:=1\) step 1 until \(j-1\) do
\(Q[i, j]:=-1.0 / \operatorname{sqrt}(j \times(j-1))\); \(Q[j, j]:=\operatorname{sqrt}(j-1) / j)\);
for \(i:=j+1\) step 1 until size do \(Q[i, j]:=0\)
end
end orthog procedure;
comment Carry out orthogonal transformation;
for factor \(:=1\) step 1 until \(n\) do
begin
real array \(A, B[1:\) levels \([\) factor \(]], Q[1:\) levels \([\) factor \(]\), 1:levels[factor]];
orthog (\(Q\), levels[factor]);
for \(j:=1\) step 1 until \(n\) do \(i[j]:=1\);
loop 1: for \(i[f\) factor \(]:=1\) step 1 until levels \([\) factor \(]\) do \(A[i[\) factor \(]]:=X[\) index \((i\), levels \()]\);
for \(k 1:=1\) step 1 until levels[factor] do
begin \(B[k 1]:=0\); for \(k 2:=1\) step 1 until levels[factor] do \(B[k 1]:=B[k 1]+Q[k 2, k 1] \times A[k 2]\)
end;
for \(i[\) factor \(]:=1\) step 1 until levels \([\) factor \(]\) do \(X[\) index \((i\), levels \()]:=B[i[\) factor \(]] ;\)
```

    for j:= 1 step 1 until n do
        if j\not= factor then
        begin
            i[j]:= i[j]+1;
            if i[j]\leqlevels [j] then go to loop 1 else i[j]:=1
    end
    end;
    comment Form mean squares and sums of squares;
    for j:= 1 step 1 until n do
        begin Ti[j]:= 1; Tlimit[j]:= 2 end;
    loop2: for j:= 1 step 1 until n do }i[j]:= Ti[j]
k1:= index (Ti,Tlimit); T[k1]:= 0;
loop3: k2 := index(i, levels);
X[k2]:=X[k2] \uparrow 2; T[k1]:=T[k1]+X[k2];
for j:= 1 step 1 until }n\mathrm{ do
if Ti[j] \not=1 then
begin
i[j]:= i[j]+1;
if i[j] \leqlevels[j] then go to loop3 else i[j]:= 2
end;
for j:= 1 step 1 until }n\mathrm{ do
begin
Ti[j]:= Ti[j]+1;
if Ti[j] \leq 2 then go to loop2 else Ti[j]:= 1
end
end factorial ANOVA

```

\section*{ALGORITHM 331 \\ GAUSSIAN QUADRATURE FORMULAS [D1]}

Walter Gautschi (Recd. 26 Aug. 1967 and 8 Feb. 1968)
Purdue University, Lafayette, Ind., and Argonne National Laboratory, \({ }^{*}\) Argonne, Ill. 60439
*Work performed under the auspices of the US Atomic Energy Commission

KEY WORDS AND PHRASES: quadrature, Gaussian quadrature, numerical integration, weight function, orthogonal polynomials
CR CATEGORIES: 5.16

\section*{begin}
comment The procedure Gauss below obtains Gaussian quadrature formulas relative to any weight function whose singularities, if any, are monotonic and located at the endpoints of the (finite or infinite) interval of integration. The procedure is most useful for (but not restricted to) "nonclassical" weight functions, i.e. weight functions for which the associated orthogonal polynomials are not known explicitly;
real procedure Fourier \((c, n)\); value \(c, n\); integer \(n\); real \(c\); comment This is a subroutine computing
\[
1-2 \sum_{m=1}^{n} \frac{\cos (2 m \theta)}{4 m^{2}-1}, \quad c==\cos \theta
\]
the truncated Fourier series of \((\pi / 2) \sin \theta\);
begin integer \(m\); real \(c 0, c 1, c 2, t\), sum;
\(c 1:=1 ; c 0:=2 \times c \times c-1 ; \quad t:=2 \times c 0 ;\)
sum \(:=c 0 / 3\);
for \(m:=2\) step 1 until \(n\) do
begin
\(c 2:=c 1 ; \quad c 1:=c 0 ; \quad c 0:=t \times c 1-c 2 ;\)
sum \(:=\) sum \(+c 0 /(4 \times m \times m-1)\)
end;
Fourier := \(1-2 \times\) sum
end Fourier;
procedure transform (\(t, p h i, p h i 1\)); value \(t\); real \(t, p h i, p h i 1\);
begin real \(t 1\);
\(t 1:=a b s(t) ;\)
\(p h i:=t /(1-t 1) ; \quad p h i 1:=1 /((1-t 1) \times(1-t 1))\)
end transform;
procedure symm tran.s \((t, p h i, p h i 1)\); value \(t\); real \(t, p h i, p h i 1\);
begin real \(t 2\);
\(t 2:=t \times t ;\)
\(p h i:=t /(1-t 2) ; \quad p h i 1:=(1+t 2) /((1-t 2) \times(1-t 2))\)
end symm transf;
procedure Gauss (sequential, finite lefl, finite right, left, right, eps, wf, capn, \(n\), results);
value sequential, finite left, finite right, left, right, eps, capn, \(n\);
integer capn, \(n\); real left, right, eps;
Boolean sequential, finite left, finite right;
real procedure \(w f\);
array results;
comment This procedure generates approximate values for the abscissas and weights of Gaussian quadrature formulas with weight function wf. If the Boolean variable sequential has the value true, then \(k\)-point formulas
\[
\begin{aligned}
\int_{a}^{b} g(x) w f(x) d x \cong & \sum_{r=1}^{k} w_{r}^{(k)} g\left(x_{r}^{(k)}\right), \\
& -\infty \leqq a<x_{1}^{(k)}<x_{2}^{(k)}<\cdots<x_{k}^{(k)}<b \leqq \infty,
\end{aligned}
\]
are generated for \(k=1,2, \cdots, n\), the abscissa \(x_{r}^{(k)}\) being stored in results \([k, r]\), the weight \(w_{r}{ }^{(k)}\) in results \([n+1-k, n+2-r]\). The array results, in this case, should be declared to have dimensions \([1: n, 1: n+1]\). If the value of sequential is false, then a single \(n\)-point formula is produced with the abscissa \(x_{r}{ }^{(n)}\) being stored in results [\(1, r\)], the weight \(w_{r}{ }^{(n)}\) in results. [2, \(r\)]. In this case, the array results need only have dimensions \([1: 2,1: n]\). The Boolean variable finite left must be assigned the value true, if the lower limit of integration, \(a\), is a finite number, otherwise the value false. Similarly for the upper limit \(b\) and the associated Boolean variable finite right. The parameter left is to be set equal to \(a\), if \(a\) is finite, and may be assigned an arbitrary value, if \(a=-\infty\). Similarly for the parameter right, which should be equal to \(b\), if \(b\) is finite, and may be arbitrary, if \(b=\infty\). The parameter eps is a tolerance used to control termination of Newton's iteration for the calculation of the abscissas \(x_{r}{ }^{(k)}\). If \(d\) significant digits are desired one may set eps \(=.5 \times 10^{-d}\). Some leeway should be allowed to accommodate moderate accumulation of rounding errors.

The method of computation is based on a suitable discretization of the inner product \((f, g)=\int_{a}^{b} f(x) g(x) w f(x) d x\), the number of points used in the discretization being given by capn. The desired abscissas and weights are approximated by the zeros and weight factors of the resulting orthogonal polynomials of a discrete variable. The process converges as capn \(\rightarrow \infty\), provided the singularities of the weight function \(w f\), if any are present, are located at the endpoints \(a, b\) and are monotonic. The traditional approach via moments is deliberately avoided because of its ill-conditioned character (when \(n\) is large). Further details of the method are to appear elsewhere [4].
No general rules can be given for the appropriate value of capn, the choice depending both on the desired accuracy and the rate of convergence of our process. A reasonable approach is to try, say, capn \(=10 \times n\), and to repeat with a larger value of capn (say twice as large). If the results agree to within the desired accuracy, those of the second trial may be accepted as final. Otherwise, capn might be further incremented.

The nonsequential version of the procedure is preferable if quadrature formulas for only one, or a few, selected values of \(n\) are desired.
The procedure Gauss calls on the procedures transform, symm transf, and the real procedures Fourier, wf, all of which (except the last) are declared above. The real procedure \(w f\) has to be supplied by the user;
begin
integer \(k, m, r, k \max\), count, \(i t\);
real eps1, sum, phi, phi1, t0, t1, pol0, pol1, \(q, c 0, c 1, c 2\), lower bound, upper bound;
array \(w, x[1: c a p n], a[0: n-1], b[0: n], p 0, p 1, p 2[-1: c a p n]\), \(p[-1: n]\), list \([0: n]\);
procedure \(p\) and \(p 1\) (bool, \(m, n, t, p 0, p, p 1)\);
value \(m, n, t\); integer \(m, n\); real \(t\); Boolean bool;
array \(p 0, p, p 1\);
comment This procedure evaluates the \(m\)-times deflated (discrete) orthonormal polynomials \(p_{r}(x)(r=m, m+1, \cdots, n)\), as well as their first derivatives (if bool is true), for given argument \(t\). The array \(p 0\) is assumed to hold the values of the (\(m-1\))-times deflated polynomials evaluated at the \(m\)-th zero of \(p_{n}\). When \(m=0\) these are the valuess \(1,0,0, \cdots, 0\);
begin integer \(r\);
\(p[m]:=p 0[m-1] / b[m] ; \quad p[m-1]:=0 ;\)
for \(r:=m\) step 1 until \(n-1\) do
\(p[r+1]:=(p 0[r]+(t-a[r]) \times p[r]-b[r] \times p[r-1]) / b[r+1] ;\)
if bool then
begin
\[
\begin{aligned}
& p 1[m]:=p 1[m-1]:=0 \\
& \text { for } r:=m \text { step } 1 \text { until } n-1 \text { do }
\end{aligned}
\]
\[
p 1[r+1]:=(p[r]+(t-a[r]) \times p 1[r]-b[r] \times p 1[r-1]) / b[r+1]
\] end
end \(p\) and \(p 1\);
lower bound \(:=\) left; upper bound \(:=\) right;
comment The piece of program extending from this point to the second following comment sets up the abscissas \(x_{k}\) and weight factors \(w_{k}\) to be used in the inner product of the discrete orthogonal polynomials. It is here (and only here) where explicit use is made of the given weight function \(w f\);
kmax \(:=\) entier (capn/2);
for \(k:=1\) step 1 until \(k \max\) do
begin
\(x[\operatorname{capn}+1-k]:=\cos (1.5707963268 \times(2 \times k-1) / c a p n)\);
\(x[k]:=-x[\) capn \(+1-k]\);
\(w[k]:=w[\) capn \(+1-k]:=\) Fourier \((x[k], k m a x)\)
end;
comment In the preceding for-statement the values of the cosine could have been generated recursively with considerable saving of time, but some loss of accuracy, if capn is very
large. It was decided to sacrifice efficiency in favor of accuracy.

If the weight function contains a square root singularity, typified by \(x^{-1 / 2}\) at \(x=0\), rather improved accuracy may result from modifying the last preceding statement to read
\(w[k]:=w[c a p n+1-k]:=1.5707963268 \times \operatorname{sqrt}(1-x[k] \times x[k])\),
and the second following statement to read
\(w[k \max +1]:=1.5707963268\).
This is especially so if the square root singularity occurs at both endpoints;
if \(\operatorname{capn} / 2 \neq k m a x\) then
begin
\(x[k \max +1]:=0 ; \quad w[k \max +1]:=\) Fourier \((0, k \max)\)
end;
if finite lefi then
begin
if finite right then go to \(L 1\) else go to \(L 2\)
end
else
begin
if finite right then go to \(L 3\) else go to \(L 4\) end;
\(L 1\) : for \(k:=1\) step 1 until capn do begin
\(x[k]:=((\) right-left \() \times x[k]+r i g h t+l e f t) / 2 ;\)
\(w[k]:=(\) right-left \() \times w[k] \times w f(x[k]) / c a p n\)
end;
go to continue;
\(L 2\) : for \(k:=1\) step 1 until capn do
begin
transform \((.5 \times(1+x[k]), p h i, p h i 1)\);
\(x[k]:=\) left \(+p h i\);
\(w[k]:=w[k] \times w f(x[k]) \times p h i 1 / c a p n\)
end;
go to continue;
\(L 3:\) for \(k:=1\) step 1 until capn do

\section*{begin}
transform \((.5 \times(-1+x[k])\), phi, phi1);
\(x[k]:=\) right \(+p h i\);
\(w[k]!=w[k] \times w f(x[k]) \times p h i 1 / c a p n\)
end;
go to continue;
L4: for \(k:=1\) step 1 until capn do

\section*{begin}
symm transf (\(x[k], p h i, p h i 1\));
\(x[k]:=p h i\);
\(w[k]:=2 \times w[k] \times w f(p h i) \times p h i 1 / c a p n\)
end;
comment The piece of program extending from this point to the second following comment generates the coefficients \(a_{r}\), \(b_{r+1}(r=0,1, \cdots, n-1)\) in the recurrence relation
\[
p_{r+1}(x)=\left(\left(x-a_{r}\right) p_{r}(x)-b_{r} p_{r-1}(x)\right) / b_{r+1}
\]
for the (discrete) orthononormal polynomials \(p_{r}\) associated with the inner product
\[
[f, g]=\sum_{k=1}^{c a p n} w_{k} f\left(x_{k}\right) g\left(x_{k}\right) .
\]

The content of \(b[0]\) is set equal to \(1 / p_{0}\);
continue: sum :=0;
for \(k:=1\) step 1 until capn do sum \(:=\) sum \(+w[k]\);
\(b[0]:=\operatorname{sqrt}(\) sum \()\);
for \(k:=1\) step 1 until \(\operatorname{capn}\) do
begin
\(p 1[k]:=0 ; \quad p 2[k]:=1 / b[0]\)
end;
for \(r:=0\) step 1 until \(n-1\) do
begin
sum \(:=0\);
comment If \(a=-\infty\), or \(b=\infty\), overflow conditions may arise in the following two for-statements, which, if ignored, should normally be of no consequence;
for \(k:=1\) step 1 until capn do
begin
\(p 0[k]:=p 1[k] ; \quad p 1[k]:=p 2[k] ;\)
sum \(:=\operatorname{sum}+w[k] \times x[k] \times p 1[k] \times p 1[k]\)
end;
\(a[r]:=\) sum; sum \(:=0\);
for \(k:=1\) step 1 until capn do
begin
\(p 2[k]:=(x[k]-a[r]) \times p 1[k]-b[r] \times p 0[k] ;\)
sum \(:=s u m+w[k] \times p 2[k] \times p 2[k]\)
end;
\(b[r+1]:=\operatorname{sqrt}(\) sum \()\);
for \(k:=1\) step 1 until \(\operatorname{capn}\) do \(p 2[k]:=p 2[k] / b[r+1]\)
end;
comment Using the values of \(a_{i}, b_{r+1}\) just obtained, the procedure now produces upper and lower bounds for the zeros of \(p_{n}(x)\) when \(b=\infty\), or \(a=-\infty\), respectively. The bounds are derived by applying the Gershgorin circle theorem to the Jacobi matrix associated with the polynomials \(p_{1}\);
if \(\neg\) finite right then
begin
upper bound \(:=a[0]+b[1]\);
for \(r:=1\) step 1 until \(n-2\) do
begin
\(t 0:=a[r]+b[r]+b[r+1] ;\)
if \(t 0>\) upper bound then upper bound \(:=10\)
end;
\(t 0:=a[n-1]+b[n-1]\);
if \(t 0>\) upper bound then upper bound \(:=t 0\)
end;
if \(\neg\) finite left then
begin
lower bound \(:=a[0]-b[1]\);
for \(r:=1\) step 1 until \(n-2\) do
begin \(t 0:=a[r]-b[r]-b[r+1] ;\) if \(t 0<\) lower bound then lower bound \(:=t 0\)
end;
\(t 0:=a[n-1]-b[n-1]\);
if \(t 0<\) lower bound then lower bound \(:=t 0\)
end;
comment The remaining section of this procedure determines approximations of the desired abscissas and weights. If sequential is true, the zeros of the (discrete) orthonormal polynomials \(p_{r}(r=1,2, \cdots, n)\) are determined sequentially using Newton's method. Suitable initial approximations are found on the basis of the interlacing property of the zeros. Each Newton approximation is checked on whether or not it satisfies this property. If not, the appropriate subinterval is searched more thoroughly for possible zeros. If none is detected the message "search for zeros unsuccessful" is printed out. Otherwise, Newton's iteration is repeated with a revised initial approximation. If again the interlacing property turns out to be violated the message "interlacing property of the zeros is violated" is printed out. The message "Newton iteration diverges' is printed if, for any reason, Newton's iteration fails to converge within 30 iterations. In either of these abortive situations the procedure exits, leaving the current quadrature formula, and all subsequent formulas, uncompleted.
In the nonsequential case, the zeros of \(p_{n}\) are obtained by Newton's method and successive deflation. Each deflation (except the first) is preceded by a refinement of the respective zero using Newton's iteration based on the original (undeflated) polynomial \(p_{n}\). If this iteration fails to converge within 15 iterations the message "Newton iteration in refinement diverges" is printed out. If Newton's method for the deflated polynomials fails to converge within 30 iterations, it is checked whether this may be due to the tolerance eps being too stringent, considering the presence of subtraction errors in the generation of the polynomials and their derivatives. If this is the case, the procedure goes on to refine the particular zero. Otherwise, it prints out the message "Newton iteration diverges." In either of the two abortive situations the procedure exits, leaving the quadrature formula unfinished.
The weights are computed by the formula
\[
\left[w_{r}^{(k)}\right]^{-1}=\sum_{s=0}^{k-1}\left[p_{s}\left(x_{r}^{(k)}\right)\right]^{2}
\]
\(p 2[-1]:=1\); for \(k:=0\) step 1 until \(n-1\) do \(p 2[k]:=0\); if sequential then
begin
list \([0]:=\) lower bound;
results \([1,1]:=a[0] ;\) results \([n, n+1]:=b[0] \times b[0]\);
for \(k:=2\) step 1 until \(n\) do
begin
for \(m:=1\) step 1 until \(k-1\) do
\(\operatorname{list}[m]:=\operatorname{results}[k-1, m] ;\)
list \([k]:=\) upper bound;
for \(m:=1\) step 1 until \(k\) do
begin
\(t 0:=(\) list \([m]+l i s t[m-1]) / 2 ;\) count \(:=\) it \(:=0 ;\)
Newton: \(t 1:=t 0 ; \quad\) it \(:=i t+\mathbf{1}\);
\(p\) and \(p 1(\) true \(, 0, k, t 1, p 2, p, p 1)\);
\(t 0:=t 1-p[k] / p 1[k] ;\)
```

    if }00\leqqlist[m-1]\t0\geqqlist[m] the
    begin
        if count = 0 then
        begin
            t0 := list[m-1];
            pand p1 (false, 0, k,t0, p2, p, p1);
            pol0:=p[k]; q:=.2 }\times(list[m]-list[m-1])
    search: }\quadt1:=t0+q
p and p1 (false, 0, k,t1, p2, p, p1);
pol1 := p[k];
if pol0 }\times\mathrm{ pol1 > 0 then
begin
t0:= t1;
if t0<list[m] then go to search else
begin
outstring (1, 'search for zeros unsuccessful');
outinteger (1, k); outinteger (1,m);
go to exit
end
end
else
begin
t0:= (t0+t1)/2; count := count + 1;
go to Newton
end
end
else
begin
outstring (1, 'interlacing property of zeros is vio-
lated');
outinteger (1,k); outinteger (1,m);
go to exit
end
end;
if it > 30 then
begin
outstring (1, 'Newton iteration diverges');
outinteger (1,k); outinteger (1,m);
go to exit
end;
if abs(t1-t0) >eps × abs(t0) ^abs(t1-t0)>eps
\abs(t0)>eps then
go to Newton;
results [k,m]:= t0;
p and p1 (false, 0,k-1,t0, p2, p,p1);
sum := 0;
for }r:=0\mathrm{ step 1 until }k-1\mathrm{ do
sum:= sum + p[r]\timesp[r];
results [n+1-k,n+2-m]:= 1/sum
end
end
end
else
begin
p[-1]:= 1;
for }k:=0\mathrm{ step 1 until n-1 do p[k]:= 0;
t0 := lower bound;
for m:= 0 step 1 until n-2 do
begin
for }k:=m-1 step 1 until n-1 do p0[k]:= p[k]
it:= 0;
Newton 1: t1:= t0;
it:= it + 1;
p and p1 (true, m, n, t1, p0, p, p1);
t0:=t1 - p[n]/p1[n];
if it > 30 then
begin

```
```

    \(c 0:=a b s(p 0[n-1]) ;\)
    \(c 1:=a b s((t 1-a[n-1]) \times p[n-1])\);
        \(c 2:=a b s(b[n-1] \times p[n-2]) ;\)
    \(p h i:=\) if \(c 0 \leqq c 1\) then
        (if \(c 1 \leqq c 2\) then \(c 2\) else \(c 1\) )
        else
        (if \(c 0 \leqq c 2\) then \(c 2\) else \(c 0\) );
    \(p h i:=p h i / b[n] ;\)
    \(c 0:=a b s(p[n-1])\);
    \(c 1:=a b s((t 1-a[n-1]) \times p 1[n-1])\);
    \(c 2:=a b s(b[n-1] \times p 1[n-2]) ;\)
    \(p h i 1:=\) if \(c 0 \leqq c 1\) then
        (if \(c 1 \leqq c 2\) then \(c 2\) else \(c 1\) )
        else
        (if \(c 0 \leqq c 2\) then \(c 2\) else \(c 0\) );
    \(p h i 1:=a b s(p h i 1 /(b[n] \times p 1[n]))\);
    \(p h i:=\) if \(p h i<p h i 1\) then \(p h i 1\) else \(p h i\);
    \(e p s 1:=\) if \(p h i>1\) then \(10 \times p h i \times e p s\) else \(10 \times e p s\);
    if \(: a b s(t 1-t 0)>e p s 1 \times a b s(t 0) \wedge a b s(t 0)>e p s 1 \quad\) then
    begin
        outstring (1, 'Newton iteration diverges');
        outinteger \((1, m+1)\);
        go to exit
    end
    end
    else
    begin
    if \(a b s(t 1-t 0)>e p s \times a b s(t 0) \wedge a b s(t 1-t 0)>e p s\)
        \(\wedge a b s(t 0)>e p s\) then
        go to Newton 1
    end;
    if \(m>0\) then
    begin
        it \(:=0\);
    refine: $t 1:=t 0$;
it $:=i t+1$;
$p$ and $p 1($ true, $0, n, t 1, p 2, p, p 1)$;
$t 0:=t 1-p[n] / p 1[n]$;
if $i t>15$ then

```
 begin
 outstring (1, 'Newton iteration in refinement diverges');
 outinteger \((1, m+1)\);
 go to exit
 end;
 if \(a b s(t 1-t 0)>e p s \times a b s(t 0) \wedge a b s(t 1-t 0)>e p s\)
 \(\wedge a b s(t 0)>e p s\) then
 go to refine
 end;
 results \([1, m+1]:=t 0\);
 \(p\) and \(p 1(\mathbf{f a l s e}, m, n-1, t 0, p 0, p, p 1)\)
 end;
 results \([1, n]:=a[n-1]-b[n-1] \times p[n-1] / p[n-2]\);
 for \(k:=1\) step 1 until \(n\) do
 begin
 \(p\) and \(p 1(\mathbf{f a l s e}, 0, n-1\), results \([1, k], p 2, p, p 1)\);
 sum \(:=0\);
 for \(r:=0\) step 1 until \(n-1\) do
 sum \(:=\operatorname{sum}+p[r] \times p[r] ;\)
 \(\operatorname{results}[2, k]:=1 /\) sum
 end
 end;
exit: end Gauss;
comment The procedure Gauss, in both the sequential and non-
 sequential form, was tested on the CDC 3600 computer for a
 number of weight functions. The tolerance eps \(=.5_{10}-9\) was used
 throughout. The following surveys the results obtained in a
 few representative cases.
(i) \(w f(x)=x^{\alpha} \ln (e / x), 0<x<1, \alpha=0(1) 3, .5,-.5, \quad n=5\), \(\operatorname{capn}=100\). The maximum absolute error (rounded to 3 significant figures) in the abscissas and weights is shown below together with the values of \(k\) and \(r\) at which the maximum occurs (\(1 \leq k \leq n, \quad 1 \leq r \leq k\)). For comparison we used the \(7-11 \mathrm{~S}\) values published by V. I. Krylov and A. A. Pal'cev [5].
\begin{tabular}{rcccccc}
\(\boldsymbol{\alpha}\) & \begin{tabular}{c}
maximum error \\
in abscissas
\end{tabular} & \(k\) & \(r\) & \begin{tabular}{c}
maximum error \\
in weights
\end{tabular} & \(k\) & \(r\) \\
0 & \(1.10_{10}-6\) & 2 & 1 & \(5.63_{10}-6\) & 1 & 1 \\
1 & \(2.54_{10}-7\) & 5 & 4 & \(3.90_{10}-7\) & 5 & 3 \\
2 & \(7.58_{10}-7\) & 5 & 4 & \(9.53_{10}-7\) & 5 & 3 \\
3 & \(3.88_{10}-7\) & 4 & 3 & \(2.87_{10}-7\) & 4 & 3 \\
.5 & \(6.76_{10}-7\) & 4 & 1 & \(5.46_{10}-7\) & 5 & 2 \\
-.5 & \(1.86_{10}-3\) & 1 & 1 & \(5.97_{10}-2\) & 1 & 1
\end{tabular}

Note the relatively large errors for \(\alpha=-\frac{1}{2}\); using the modification mentioned in the sixth comment, these errors are slightly reduced to \(6.77_{10}-4\) and \(2.17_{10^{-}}-2\) respectively.
(ii) \(w f(x)=\ln (e /(1-x)) \ln (e / x), \quad 0<x<1, n=5\), capn \(=\) \(100,200,400\). Comparing the results with 11S values given by V. I. Krylov and A. A. Pal'cev [5] the following absolute errors were observed.
\begin{tabular}{lcllcll}
capn & \begin{tabular}{c}
maximum error \\
in abscissas
\end{tabular} & \(k\) & \(r\) & \begin{tabular}{c}
maximum error \\
in weights
\end{tabular} & \(k\) & \(r\) \\
100 & \(9.33_{10}-7\) & 3 & 1 & \(1.13_{10}-5\) & 1 & 1 \\
200 & \(2.32_{10}-7\) & 3 & 1 & \(2.81_{10}-6\) & 1 & 1 \\
400 & \(5.80_{10}-8\) & 3 & 3 & \(7.04_{10}-7\) & 1 & 1
\end{tabular}
(iii) \(w f(x)=\left[\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)\right]^{-\frac{1}{2}}, \quad-1<x<1, \quad k=.1(.2) .9\), \(.99, n=10, \operatorname{capn}=100\). The weight factors (and, indirectly, the abscissas) were checked by comparing the sum \(\sum_{r=1}^{n} w_{r}^{(n)}\) with the zero-order moment
\[
m_{0}=\int_{-1}^{1}\left[\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)\right]^{-1 / 2} d x=2 K(k)
\]

The moments \(m_{0}\), and the observed discrepancies, are shown below, for the versions with and without the modification mentioned in the sixth comment.
\begin{tabular}{lccc}
\(k\) & \(m_{0}\) & error (with mod.) & \begin{tabular}{c}
error (without \\
mod.)
\end{tabular} \\
.1 & 3.1494911230 & \(1.16_{10}-10\) & \(6.93_{10}-3\) \\
.3 & 3.2160972399 & \(1.75_{10}-10\) & \(7.23_{10}-3\) \\
.5 & 3.3715007097 & \(5.82_{10}-11\) & \(7.96_{10}-3\) \\
.7 & 3.6913879968 & \(4.07_{10}-10\) & \(9.66_{10}-3\) \\
.9 & 4.5610982769 & \(4.66_{10}-10\) & \(1.58_{10}-2\) \\
.99 & 6.7132010474 & \(1.16_{10}-10\) & \(4.88_{10}-2\)
\end{tabular}
(The elliptic integral \(K(k)\) was computed from a 6 th-degree polynomial approximation due to W. J. Cody [2].) The rather dramatic improvement due to the modification is well worth noting. The positive abscissas and corresponding weights for \(k=.5\), as obtained by the modified procedure, are given below.
\begin{tabular}{rcc}
\(r\) & \(x_{f}^{(10)}\) & \(w_{r}^{(10)}\) \\
6 & .1574664996 & .3171765527 \\
7 & .4564798649 & .3240760350 \\
8 & .7096375175 & .3361778803 \\
9 & .8923718385 & .3496183201 \\
10 & .9878725254 & .3587015666
\end{tabular}

By symmetry, \(x_{r}^{(n)}=-x_{n+1-r}^{(n)}, \quad w_{r}^{(n)}=w_{n+1-r}^{(n)} \quad(r=1,2\), \(\cdots, n)\).
(iv) \(w f(x)=1 /\left(\left(x+\mu^{2}\right) \sqrt{x}\right), \quad 0<x \leq 1, \quad \mu=1, .1, .01, \quad n=10\),
\(20, \operatorname{capn}=800\). (The abscissas are the squares of the ab-
scissas of the \(2 n\)-point formula corresponding to \(w f(x)=\) \(1 /\left(x^{2}+\mu^{2}\right),-1 \leq x \leq 1\), while the weights are twice those of the \(2 n\)-point formula.) The momentis \(m_{k}\) satisfy
\[
\begin{aligned}
m_{0} & =\frac{2}{\mu} \arctan \left(\frac{1}{\mu}\right) \\
m_{k} & =\frac{2}{2 k-1}-\mu^{2} m_{k-1} \quad(k=1,2, \cdots, 2 n-1)
\end{aligned}
\]

Shown below are the maximum relative errors in the moments \(m_{k}\), i.e.
\[
r_{n}=\max _{0 \leqq k \leqq 2 n-1}\left|\left(\sum_{r=1}^{n} w_{r}^{(n)}\left[x_{r}^{(n)}\right]^{k}-m_{k}\right) / m_{k}\right| .
\]

Invariably, the maximum was attained for \(k=2 n-1\). Again, the modification mentioned in the sixth comment was used.
\begin{tabular}{clcccc}
\(\mu\) & \(n\) & \(r_{n}\) & \(\mu\) & \(n\) & \(r_{n}\) \\
1.0 & 10 & \(6.11_{10}-6\) & 1.0 & 20 & \(1.25_{10}-5\) \\
.1 & & \(5.95_{10}-6\) & .1 & & \(1.24_{10}-5\) \\
.01 & & \(5.94_{10}-6\) & .01 & & \(1.24_{10}-5\)
\end{tabular}
(v) \(w f(x)=E_{1}(x)=\int_{1}^{\infty} e^{-x t} d t / t, 0<x<\infty, n=20\), capn \(=\) \(160,320,640\). The moments in this case are given by \(m_{k}=\) \(k!/(k+1)\). Shown below are the maximum relative errors \(r_{n}\) in these moments. The maximum invariably occurred at \(k=0\).
\begin{tabular}{cc}
capn & \(r_{20}\) \\
160 & \(2.20_{10}-6\) \\
320 & \(5.50_{10}-7\) \\
640 & \(1.37_{10}-7\)
\end{tabular}

Because of the intrinsic interest of this quadrature formula in transfer problems [1] we list below the abscissas and weights obtained with \(\operatorname{capn}=640\), but rounded to 8 significant digits.
\begin{tabular}{rcclcc}
\(r\) & \(x_{r}^{(20}\) & \(w_{r}^{(20}\) & \(r\) & \(x_{r}^{(20}\) & \(w_{r}^{(20)}\) \\
1 & .041573069 & .33006847 & 11 & 13.919556 & \(1.7373646_{10}-7\) \\
2 & .27423961 & .33501883 & 12 & 16.969573 & \(7.7197014_{10}-9\) \\
3 & .73521299 & .20272710 & 13 & 20.415565 & \(2.3285653_{10}-10\) \\
4 & 1.4364648 & .090679419 & 14 & 24.304884 & \(4.5495507_{10}-12\) \\
5 & 2.3868423 & .031192649 & 15 & 28.701954 & \(5.4035520_{10}-14\) \\
6 & 3.5949493 & \(8.3968173_{10}-3\) & 16 & 33.698290 & \(3.5673003_{10}-16\) \\
7 & 5.0704204 & \(1.7051956_{10}-3\) & 17 & 39.431367 & \(1.1447950_{10}-18\) \\
8 & 6.8247452 & \(2.6719239_{10}-4\) & 18 & 46.128447 & \(1.4341583_{10}-21\) \\
9 & 8.8719945 & \(3.1522527_{10}-5\) & 19 & 54.222968 & \(4.6337407_{10}-25\) \\
10 & 11.229631 & \(2.7511645_{10}-6\) & 20 & 64.825944 & \(1.3623986_{10}-29\)
\end{tabular}
(The exponential integral \(E_{1}(x)\) was evaluated by the series expansion \(\quad E_{1}(x)=-\gamma-\ln x-\sum_{n-1}^{\infty}(-1)^{n} x^{n} /(n n!)\), if \(0<x<2\), and from a rational approximation due to Hastings [3, formula 5.1.56], if \(x \geq 2\).)
(vi) \(w f(x)=|x|^{\alpha} e^{-x},-\infty<x<\infty, \alpha=1,2,3, n=20\), capn \(=200,400,800\). Shown below are the maximum relative errors of the abscissas and weights as compared with values tabulated by A. H. Stroud and Don Secrest [6].
\begin{tabular}{cccc}
\(a\) & capn & \begin{tabular}{c}
maximum errors \\
in abscissas
\end{tabular} & \begin{tabular}{c}
ma ximum errors \\
in weights
\end{tabular} \\
1 & 200 & \(6.31_{10}-3\) & \(2.11_{10}-1\) \\
& 400 & \(2.73_{10}-6\) & \(6.89_{10}-5\) \\
& 800 & \(6.59_{10}-7\) & \(7.40_{10}-7\) \\
2 & 200 & \(1.19_{10}-2\) & \(4.30_{10}-1\) \\
& 400 & \(1.12_{10}-6\) & \(3.44_{10}-5\) \\
& 800 & \(4.66_{10}-10\) & \(2.27_{10}-8\) \\
3 & 200 & \(1.67_{10}-2\) & \(6.59_{10}-1\) \\
& 400 & \(2.69_{10}-6\) & \(7.93_{10}-5\) \\
& 800 & \(4.53_{10}-10\) & \(2.12_{10}-8\)
\end{tabular}
end
References:
1. Chandrasekhar, S. Radiative Transfer. Oxford U. Press, New York, 1950, Ch. 2.
2. Cody, W. J. Chebyshev approximations for the complete elliptic integrals \(K\) and \(E\). Math. Comput. 19 (1965), 105-112.
3. Gautschi, W. and Cahill, W. F. Exponential integral and related functions. In Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, Eds.), NBS Appl. Math. Ser. 55, 1964, U.S. Govt. Printing Office, Washington D.C., Ch. 5.
4. Gautchi, W. Construction of Gauss-Christoffel quadrature formulas. Math. Comput. 22 (1968), 251-270.
5. Krylov, V. I., and Pal'cev, A. A. Approximate integration of functions having logarithmic singularities. (Russian) Vesci Akad. Navuk BSSR, Ser. Fiz.-Teh. Navuk (1962), No. 1, 13-18.
6. Stroud, A. II., and Secrest, Don. Gaussian Quadrature Formulas. Prentice-Hall, Englewood Cliffs, N. J., 1966.

\section*{REMARK ON ALGORITHM 331}

GAUSSIAN QUADRATURE FORMULAS [D1] [Walter Gautschi, Comm. ACM 11 (June 1968), 432]
I. D. Hill (Reed. 12 Sept. 1968)

Medical Research Council, Computer Unit (London), London, N.1, England
KEY WORDS AND PHRASES: quadrature, Gaussian quadrature, numerical integration, weight function, orthogonal polynomials
\(C R\) CATEGORIES: 5.16
1. On pages 434 and 435 there are five strings, all of which have identical opening and closing string quotes.' and' should be replaced by 'and' in each case.
2. No space symbols appear in these strings. \(u\) should be inserted in each space. Otherwise, no spaces will appear in the printed messages.
3. In the second string, the hyphen in the word "violated" should be deleted.
4. In the first column of page 433 there appear:
kmax := entier(capn/2);
and
if \(\operatorname{capn} / 2 \neq k m a x\) then
Both these are critically dependent upon rounding error in the real division. Presumably,
\(k \max :=c a p n \div 2 ;\)
and
if capn \(\neq 2 \times\) kmax then

\section*{are intended.}
5. A semicolon is necessary before the final end (on page 436). As things stand, this end is part of the comment, and the algorithm never finishes.

Alternatively, the semicolon after end Gauss, two columns earlier, could be deleted (in which case the symbol comment could also be deleted if desired, but need not be). If this were done, the final end would terminate the comment without the need for a preceding semicolon.

REMARK ON ALGORITHM 331 [D1]
GAUSSIAN QUADRATURE FORMULAS [Walter
Gautschi, Comm. ACM 11 (June 1968), 432-436]
William R. Wise, Jr.* (Recd. 28 Jan. 1970 and 2 Mar. 1970)

Box 35343, Georgia Institute of Technology, Atlanta, GA 30332
*Work performed at Danish Atomic Energy Commission, Research Establishment Riso, Reactor Physics Department, Computer Group

KEY WORDS AND PHRASES: quadrature, Gaussian quadrature, numerical integration, weight function, orthogonal polynomials, Newton's method, successive deflation
CR CATEGORIES: 5.16

The last Gaussian point calculated in the nonsequential method, being the root of a linear equation, is calculated directly rather than by Newton's method. In doing so it misses out on the refinement process.

If the \(m\)-loop is extended to include this last point also (and of course the direct calculation deleted), the results agree more closely with those given by Stroud and Secrest [1]. The following corrections will achieve this:

On the 4 th line before the line labeled Newton 1 replace:
for \(m:=0\) step 1 until \(n-2\) do
by:
for \(m:=0\) step 1 until \(n-1\) do
Delete the 17 th line following the line labeled refine, which now reads:
results \([1, n]:=a[n-1]-b[n-1] \times p[n-1] / p[n-2] ;\)
The following change may be made but is not necessary:
After the 14 th line following the line labeled refine insert the line:
if \(m<n-1\) then
Since this only deletes the call for \(m=n-1\), which is almost degenerate, it usually proves to be a bigger waste of time to include the comparisons rather than to have the unnecessary procedure call.

Table I shows test examples indicating the difference between the last Gaussian point computed directly and by including the last Gaussian point in the \(m\)-loop.
table I. Gauss Points
\begin{tabular}{lrrrrrr}
\hline Weight function & \multicolumn{3}{c}{\(\begin{array}{c}\text { Limits } \\
\text { Lower }\end{array}\)} & \(n\) (a) & \(\begin{array}{c}\text { Comper } \\
\text { with chanded }\end{array}\) & \(\begin{array}{c}\text { Stroud and } \\
\text { Secrest }[1]\end{array}\)
\end{tabular} \(\left.\begin{array}{c}\text { Computed } \\
\text { without change }\end{array}\right]\)
(a) A capn of 70 was used excepted for \(n=10\) in which capn \(=90\) was used, eps \(=\) \(1.00_{10}-9\) throughout.
(b) The change for square root singularities suggested in comment 6 was used.

\section*{Reference:}
1. Stroud, A. H., and Secrest, Don. Gaussian Quadrature Formulas. Prentice-Hall, Englewood Cliffs, N.J., 1966.

\section*{ALGORITHM 332}

JACOBI POLYNOMIALS [S22]
Bruno F. W. Witte (Recd. 2 Aug. 1967, 11 Oct. 1967, 8 Dec. 1967, 18 Jan. 1968)
U.S. Navy Electronics Laboratory Center, San Diego, California 92152

KEY WORDS AND PHRASES: Jacobi polynomials, orthogonal polynomials, three-term recurrences, spegial functions
CR CATEGORIES: 5.12
comments JACOBI evaluates in double-precision the Jacobi polynomial \(F=P_{n}(x)\), defined by Rodrigues' formula
\[
2^{n} \cdot n!\cdot P_{n}(x)=(-1)^{n}(1-x)^{-\alpha}(1+x)^{-\beta} \cdot D^{n}\left[(1-x)^{\alpha+n}(1+x)^{\beta+n}\right]
\]
for degrees \(n\) from 0 through 25 , and for the given values of the double-precision arguments \(\alpha, \beta\), and \(x\). The subroutine uses the three-term recurrence relation (see, for example, \([1, \mathrm{p} .169]\)):
\[
\begin{equation*}
P_{j}(x)=\left(U_{j}+V_{j} \cdot x\right) \cdot P_{j-1}(x)-W_{j} \cdot P_{j-2}(x) . \tag{1}
\end{equation*}
\]

Also calculated are the derivative \(F D=d F / d x\) and estimates of the relative errors \(E\) and \(E D\) of \(F\) and \(F D . \quad U_{j}, V_{j}\), and \(W_{j}\) are computed only once when \(J A C O B I\) is called repeatedly with the same values of \(\alpha\) and \(\beta\).

To explain the method for finding \(E\) and \(E D\), we refer to the two recursions (2) and (3) below:
\[
\begin{align*}
& P_{j}=G \cdot P_{j-1}-W_{j} \cdot P_{j-2}, \tag{2}\\
& Q_{j}=H \cdot Q_{j-1}-W_{j} \cdot Q_{j-2}+s . \tag{3}
\end{align*}
\]

Relation (2) is an abbreviated form of (1) ; relation (3) describes a parallel recursion for a sequence of error-perturbed polynomial values \(Q_{j}\) which does two things: (a) it propagates previous errors of the polynomial values \(P_{j-1}\) or \(Q_{j-1}\), and \(P_{j-2}\) or \(Q_{j-2}\) into \(Q_{j}\); and (b) it includes the effects of two errors generated "locally" at the \(j^{\text {th }}\) step: the error of \(G\) which is included in \(H\), and the error \(s\) which arises when forming the difference itself in (2). The error \(s\) is estimated from \(s=\max \left(E_{1}, E_{2}\right)\), where \(E_{1}\) and \(E_{2}\) are the magnitudes of the errors of the two terms on the right side of (2), i.e. \(E_{1}=\left|E_{0} \cdot P_{j-1}\right|\) and \(E_{2}=\left|E_{w} \cdot P_{j-2}\right|\). Here \(E_{g}\) is the error of \(G\), and \(E_{w}\) is the error of \(W_{j} . \quad E_{g}\) and \(E_{w}\) are estimated from \(E_{g}=\max \left(\left|y \cdot U_{j}\right|, y \cdot V_{j} \cdot x \mid\right)\) and \(E_{w}=\) \(\left|y \cdot W_{j}\right|\). The value \(3 \mathrm{E}-26\) given to \(y\) in the DATA statement reflects the accuracy of the CDC-1604. \(H\) in (3) is given as \(H=\) \(G+E_{g}\). Finally, the relative error \(E\) of \(P_{n}\) is obtained from \(E=\) \(\left|1-Q_{n} / P_{n}\right|\).
One might argue that the use of (3) could have been avoided if the error of \(P_{j-1}\) had been taken into account in the evaluation of \(E_{1}\), and the error of \(P_{j-2}\) in the evaluation of \(E_{2}\). However, in numerical tests this led to serious instability in the vicinity of the zeros of \(P_{n}\) because of correlations between the errors.

Algorithm 332 is the first algorithm written in FORTRAN to be published in the Algorithms department of Communications of the ACM. The department policy was extended to allow for algorithms in FORTRAN in August 1966. (For details see September 1966 issue, page 383.)

\section*{References:}
1. Bateman Manuscript Project, Calif. Inst. of Tech. Higher Transcendental Functions, vol. 2. McGraw-Hill, New York, 1953, pp. 168-174.
2. Szeqö, G. Orthogonal Polynomials. Colloq. Publ., vol. 23. American Mathematical Society, New York, 1939, pp. 136138.
3. Stroud, A. H., and Secrest, D. Gaussian Quadrature Formulas. Prentice-Hall, Englewood Cliffs, N. J., 1966, pp. 17-31.

* (DEGREE,ALFA,BETA,X,F,FD,E,ED)

THE RECURRENCE RELATION \(P(J)=\)
\(P(J-1) *(U(J)+V(J) * x)-P(J-2) * W(J) \quad\)..
\(A L F=A L F A\)
\(B E T=B E T A\)
\(A=A L F+B E T\)
ALF-BE
\(V(1)=1 \bullet+A / 2\).
\(W(1)=000\)
IF (DEGREE.EQ.1) GO TO 5
\(U(2)=A * B *(A+3 \cdot) /(4 * *(A+2 \cdot) * * 2)\)
\((2)=(A+3 \cdot) *(A+4 \cdot) /(4 \cdot *(A+2 *)\)
\(W(2)=(1 .+A L F) *(1 \bullet+B E T) *(A+4 *)\)
\(W(2)=W(2) /(2 \cdot *(A+2 \cdot) * * 2)\)
\(\mathrm{I}=2\)

3 IF ((DEGREE.EQ.2)
*.OR. I I.GT•K i) GO TO 5
\(=1, K\)
\(=A L F+B E T\)
\(=A+D\)
\(=D *(A-1 \cdot) *(A L F-B E T)\)
\(=2 \cdot * C *(A-2 \cdot) *(C+D)\)
\(U(J+1)=B / C\)
\(D \quad=A *(A-1 \cdot) *(A-2 \cdot)\)
\(D=3\)
\(=2 \cdot *(D+A L F) *(D+B E T) * A\)
CONTINUE
SUBROUTINE JACOBI
\(C\)
\(C\)
AND JI2 FOR USE IN THE RECURSION
\(5 \mathrm{Tl}=\mathrm{V}(1) * x\)
\(P(1)=U(1)+T 1\)
* \(\quad=\) Y*DMAXI(DABS(U(1)).
\(Q(1)=P(1)+s\)
\(P D(1)=V(1)\)
\(O D(1)=V(1)\)
IF (DEGREE.EQ.1) GO TO 7
T1 \(=V(2) * X\)
\(G=U(2)+T 1\)
EG \(=Y * \operatorname{DMAXI}(\operatorname{DABS}(U(2))\),
* DABS(Tl))
\(H=G+E G\)
\(\mathrm{T} 1=\mathrm{G*P}(1)\)
\(E 1=\operatorname{DABS}(E G * P(1))\)
\(P(2)=T 1-W(2)\)
\(S=Y * D A B S(W(2))\)
\(S=\) AMAXI(El,S)
\(Q(2)=H * Q(1)-W(2)+S\)
\(P D(2)=G * P D(1)+V(2) * P(1)\)
\(Q D(2)=H * Q D(1)+V(2) * Q(1)\)
IF (DEGREE.EQ.2) GO TO 7

C USE THE RECURSION •. DO \(6 \mathrm{~J}=3\), DEGREE
\(T 2=V(J) * X\)
\(G=U(J)+T 2\)
* EG \(=\) Y*DMAXI(DABS(U(J)),

DABS(T2))
\(H=G+E G\)
\(T 1=G * P(J-1)\)
\(T 2=W(J) * P(J-2)\)

\author{
REMARKS ON: \\ ALGORITHM 332 [S22] \\ JACOBI POLYNOMIALS [Bruno F. W. Witte, Comm. \\ ACM 11 (June 1968), 436] \\ ALGORITHM 344 [S14] \\ STUDENT'S \(t\)-DISTRIBUTION [David A. Levine, \\ Comm. ACM 12 (Jan. 1969), 37] \\ ALGORITHM 351 [D1] \\ MODIFIED ROMBERG QUADRATURE [Graeme \\ Fairweather, Comm. 12 (June 1969), 324] \\ ALGORITHM 359 [G1] \\ FACTORIAL ANALYSIS OF VARIANCE [John R. Howell, Comm. ACM 12 (Nov. 1969), 631] \\ Arthur H. J. Sale (Recd. 16 Feb. 1970) \\ Basser Computing Department, University of Sydney, Sydney, Australia \\ KEY WORDS AND PHRASES: Fortran stiandards \\ \(C R\) CATEGORIES: 4.0, 4.22
}

An unfortunate precedent has been set in several recent algorithms of using an illegal FORTRAN construction. This consists of separating an initial line from its continuation line by a comment line, and is forbidden by the standard (see sections 3.2.1, 3.2.3 and 3.2.4 of [1,2]). The offending algorithms are to date: 332, 344, 351 and 359.

While this is perhaps a debatable decision by the compilers of the standard, and trivial to correct, it seems a pity to break the rules just for a pretty layout as has been done.

References:
1. ANSI Standard FORTRAN (ANSI X3.9-1966), American National Standards Institute, New York, 1966.
2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964), 591-625.

\section*{Remark on Algorithm 332 [S22]}

Jacobi Polynomials [Bruno F.W. Witte, Comm. ACM 11 (June 1968), 436]

Ove Skovgaard (Recd 23 April 1974 and 22 July 1974) Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, DK-2800 Lyngby/ Denmark

In the last section of Algorithm 332, there are the following statements:
\(\mathbf{E}=\mathbf{Y}+\operatorname{DABS}(\mathbf{P D}(\mathbf{N})-\mathbf{Q}(\mathbf{N})) / \operatorname{DABS}(\mathbf{F})\)
where \(E\) should be an estimate of the relative error of the computed value \(F\) (Jacobi polynomial);
\[
\mathrm{ED}=\mathrm{Y}+\operatorname{DABS}(\mathrm{PD}(\mathrm{~N})-\mathrm{QD}(\mathrm{~N})) / \mathrm{DAES}(\mathrm{FD})
\]
where \(E D\) should be an estimate of the relative error of the computed value \(F D\) (derivative of the polynomial).

The value of \(F\) or \(F D\) can be zero, but they are not checked in the program. In addition the above statements are not in accordance with the formulas for the relative errors, which are given by Witte in the comments which precede the program.

A reasonable modification of Algorithm 332 is: (i) calculate absolute errors (instead of relative errors) if \(F\) or \(F D\) is close to zero (here is used \(|F|<y\) or \(|F D|<y\)); (ii) otherwise assign the relative errors \(E\) and \(E D\) in accordance with the formulas \(E=\) \(\left|1-Q_{n} / P_{n}\right|\) and \(E D=\left|1-Q D_{n} / P D_{n}\right|\); and (iii) add two flag variables FLAGF and FLAGFD indicating what kind of error (absolute, relative, or no error) is estimated. The variable FLAGF corresponds to the error \(E\) of \(F\). The variable FLAGFD corresponds to the error \(E D\) of \(F D\).

The two flag variables FLAGF and FLAGFD are assigned the values 0,1 or 2 :

If a relative estimate of the error is used, the flag is assigned the value 0 . If an absolute estimate of the error is used, the flag is assigned the value 1. If \(D E G R E E \equiv 0\), both the errors are equal to zero, and the flags are assigned the value 2.
The following corrections should be made in the program:
The first statement in the subroutine should read:

\section*{SUBROUTINE JACOBI}
* (DEGREE,ALFA,BETA,X,F,FD,E,ED,FLAGF,FLAGFD)

The declaration of the integer variables:

\section*{INTEGER I,J,K,M,N,DEGREE}
should read
INTEGER I,J,K,M,N,DEGREE,FLAGF,FLAGFD
The first \(I F\) in the program:
IF (DEGREE.EQ.0) GO TO 8
should read
IF (DEGREE.EQ.0) GO TO 10
The last section ('Prepare the output") should read:
```

C PREPARE THE OUTPUT . .
N N = DEGREE
IF (DABS(F).LT.Y) GO TO B
FLAGF=0 DABS(1.-Q(N)/F)
GO TO = 'DABS(F-O(N))
FDMF}=
IF (DABS(FD).LT-Y) GO TO II
FLAGFD=0
10 GO TO F 12, 100
E FD = O.O
ED=0.*
FLAGFD=2
GO TO 12
11 ED =UABS(FO-OD(N))
12 RETURN
RETURN

```

The value \(3 E-26\) given to \(y\) in the DATA statement reflects, according to the author, the accuracy of the CDC-1604. The author gives no information how one can calculate this constant from the given computer parameters (radix, number of digits in the mantissa and information whether the machine is doing the chopping or rounding). The constant \(y\) must be some sort of "machine epsilon," e.g. the smallest number (provided by the implementation and the chosen precision) for which
\(1+y>1\).
According to e.g. [4 pp. 7-9], we have
\(y=\left\{\begin{array}{l}\beta^{1-t} \text { chopping, } \\ . \beta^{1-t} / 2 \text { rounding, }\end{array}\right.\)
where \(\beta\) is the radix or base for the floating point numbers and \(t\) is the number of digits (with radix \(\beta\)) in the mantissa of the floating numbers. In [2] algorithms and corresponding programs (in Fortran) are published which for any "reasonable" floating point computer compute the radix, number of digits of used floating-point
numbers, and determine whether rounding or chopping is done by the machine, see also [5]. The CDC-1604 has according to e.g. [3] binary base, i.e. \(\beta=2\) with a normal word-length of 48 bit. The word is divided into an exponent with 12 bit and a mantissa or fraction with 36 bit. For the double-precision calculations the rounding CDC-1604 has therefore \(t=36+48=84\), i.e. \(y=1 / 2 \times 2^{1-84}=5.2 \times 10^{-26}\).

With these modifications Algorithm 332 ran successfully on an IBM \(370 / 165\) with operating system 21.6 , and with the IBM Fortran IV G compiler. For double-precision calculations on this chopping computer we have: \(\beta=16, t=14\), i.e. \(y=16^{-13}=2.2 \times\) \(10^{-16}\), see [1 p. 163].

\section*{References}
1. International Business Machines. IBM System/370 Principles of Operation. IBM Syst. Order No. GA22-7000-3, IBM, White Plains, N.Y., 1973, xii +318.
2. Malcolm, M.A. Algorithms to reveal properties of floatingpoint arithmetic. Comm. ACM 15 (Nov. 1972), 949-951.
3. Stroud, A.H., and Secrest, D. A multiple-precision floatingpoint interpretive program for the Control Data 1604. Computer J. 6 (1963), 62-66.
4. Wilkinson, J.H. Rounding Errors in Algebraic Processes.

Her Majesty's Stationery Office, London, and Prentice-Hall, Englewood Cliffs, N.J., 1963, vi+161.
5. Gentleman, W.M., and Marovich, S.B. More on algorithms that reveal properties of floating point arithmetic units. Comm. ACM 17, 5 (May 1974), 276-277.

\author{
ALGORITHM 333 \\ MINIT ALGORITHM FOR LINEAR \\ PROGRAMMING [H] \\ Rodolfo C. Salazar and Subrata K. Sen \\ (Recd. 26 June 1967 and 25 Jan. 1968) \\ Graduate School of Industrial Administration, Carnegie- \\ Mellon University, Pittsburgh, Penna. 15213
}

KEY WORDS AND PHRASES: linear programming, dual simplex method, primal problem, dual problem
CR CATEGORIES: 5.41
real procedure \(\operatorname{MINIT}(m, n, p, e, t d)\);
integer \(m, n, p\); array \(e\); real \(t d\);
comment MINIT(MINimum ITerations) is designed to solve a
linear programming problem of \(n\) variables and \(m\) constraints of which the last \(p\) are equality constraints. The problem can be stated as follows:
\[
\begin{aligned}
\text { Maximize } z & =c X \\
\text { subject to } A X & \leqq b \\
X & \geqq 0
\end{aligned}
\]
\(c\) is a \((1 \times n)\) row vector, \(X\) is a (\(n \times 1\)) column vector, \(A\) is a (\(m \times n\)) matrix, and \(b\) is a (\(m \times 1\)) column vector. \(e\) is a matrix with (\(m+1\)) rows and lcol columns (where lcol \(=m+n-p+1\)) and forms the initial tableau of the algorithm:

\(t d\) is read into the procedure and should be a very small number, e.g. \(10^{-8}\). The condition of optimality is the nonnegativity of \(e[1, j]\) for \(j=1, \cdots, l c o l-1\) and of \(e[i, l c o l]\) for \(i=2, \cdots\), \(m+1\). If the \(e[i, j]\) values are greater than or equal to \(-t d\) they are considered to be nonnegative. The value of \(t d\) should reflect the relative magnitude of the coefficient matrix.
It should be noted that when equality constraints are present, the dual solution vector is not complete, i.e. the procedure does not compute the values of the dual variables corresponding to the equality constraints. However, knowing the optimal solution to the primal problem and the values of the dual variables corresponding to the inequality constraints, it is a simple matter to compute the values of the remaining dual variables. In the initial tableau, the elements of the vector \(b\) must be nonnegative for the equality constraints.
MINIT is based upon a technique suggested by Llewellyn [1] and is a specialized algorithm based on the principle of the dual simplex method. Llewellyn states that he has found the MINIT algorithm to be more efficient than any other method
he has used. MINIT's efficiency is based upon the fact that the solution method confines the iterations to those constraints which are defining (equality constraints and those inequality constraints whose slack variables are zero in the optimal solution). The algorithm starts with an infeasible solution as in the dual simplex method. When "greater than or equal to" constraints are involved, it also starts with an incomplete solution since it avoids the use of artificial variables. This feature of the algorithm considerably reduces the number of iterations required to obtain the optimal solution. Both the primal and dual problems are solved simultaneously and the pivotal element at each iteration is so chosen that there is a maximum increase in the functional value of the primal or a maximum decrease in the functional value of the dual. The details of the algorithm and a discussion of the theoretical reasons for its computational efficiency may be obtained from the reference cited below.
The experience of the authors with the MINIT algorithm has been very satisfactory. For example, on a CDC G- 21 computer, the Simplex code available in the Carnegie Tech. program library took 4 minutes 56 seconds to solve a \(51 \times 72\) linear programming problem (consisting only of inequality constraints) while the same problem was solved in 2 minutes 58 seconds by the MINIT algorithm. For problems with mixed constraints, i.e. equality and inequality constraints, the advantage of the MINIT algorithm is even more pronounced.
Reference:
1. Llewellyn, R. W. Linear Programming. Holt, Rinehart and Winston, New York, 1964, pp. 207-220;
 integer array ind \([1: l c o l]\), ind \(1[1: m+1]\), chk[\(2: m+1]\); procedure results;
comment prints out the output. The value of the functional is given by \(z\). The optimal values of the variables are given by \(x[i]\) for \(i=1, \cdots, n\) and the values of the dual variables are given by \(w[j]\) for \(j=1, \cdots, m\);
begin real \(z\); array \(x[1: n], w[1: m]\);
\(z:=e[1: l c o l] ;\)
for \(i:=1\) step 1 until \(n\) do \(x[i]:=0\);
for \(j:=1\) step 1 until \(m\) do \(w[j]:=0\);
for \(i:=2\) step 1 until \(m+1\) do
begin
if \(\operatorname{chk}[i]>n\) then \(\operatorname{chk}[i]:=0\);
if \(\operatorname{chk}[i]>0\) then \(x[\operatorname{chk}[i]]:=e[i, l c o l]\)
end;
for \(j:=n+1\) step 1 until lcol- 1 do \(w[j-n]:=e[1, j]\);
comment Insert output statements to print out \(z, x[i]\), and \(w[j]\), for example, the following six statements separated by semicolons: (1) outstring (1 , 'value of the functional'), (2) outreal (\(1, z\)), (3) outstring (1 , 'optimal values of the variables'), (4) outarray (\(1, x\)), (5) outstring (1 , 'values of the dual variables'), (6) outarray (\(1, w\));
go to \(L A S T\)
end results;
procedure rowtrans (im, jmin);
integer \(\mathrm{im}, \mathrm{jmin}\);
comment performs the usual tableau transformations in a linear programming problem, (\(\mathrm{im}, \mathrm{jmin}\)) being the pivotal element;
begin real dummy;
if \(i m=0\) then
begin
comment Insert an output statement to print "no solution'", for example, the statement, outstring (1, 'no solution');
go to \(L A S T\)
end;
if jmin \(=0\) then
begin
comment Insert an output statement to print "no solution', for example, the statement, outstring (1, 'no solution');
go to \(L A S T\)
end;
dummy :=e e[im, jmin \(]\);
for \(j:=1\) step 1 until lcol do \(e[i m, j]:=e[i m, j] / d u m m y\);
for \(i:=1\) step 1 until \(m+1\) do
begin
if \(i \neq i m\) then
begin
if \(e[i, j \min] \neq 0\) then
begin

\section*{dummy \(:=e[i, j m i n] ;\)}
for \(j:=1\) step 1 until lcol do
\(e[i, j]:=e[i, j]-e[i m, j] \times d u m m y\)
end
end
end;
\(c h k[i m]:=j \min\)
end rowtrans;
procedure progamma;
comment performs calculations over columns to determine the pivot element;
begin integer \(i, L 1\); real theta, gamma; array thmin [1:lcol];
integer array \(\operatorname{imin}[1: l c o l]\);
gmin \(:=10^{6} ; \quad\) min \(:=0\);
comment \(g m i n\) is set equal to a large number for initialization purposes;
for \(L 1:=1\) step 1 until \(L-1\) do
begin
\(\operatorname{imin}[\operatorname{ind}[L 1]]:=0 ; \operatorname{thmin}[\operatorname{ind}[L 1]]:=10^{6} ;\)
for \(i:=2\) step 1 until \(m+1\) do
begin
if \(e[i, i n d[L 1]]>t d \wedge e[i, l c o l] \geq-t d\) then
begin theta \(:=e[i\), lcol \(] / e[i\), ind \([L 1]]\);
if theta \(<\operatorname{thmin}[\) ind \([L 1]]\) then begin
thmin \([\) ind \([L 1]]:=\) theta; \(\quad\) imin \([\) ind \([L 1]]:=i\) end end
end;
if thmin \([\) ind \([L 1]]=10^{6}\) then gamma \(:=10^{8}\)
else gamma \(:=\operatorname{thmin}[\) ind \([L 1]] \times e[1\), ind \([L 1]]\);
if gamma < gmin then
begin
gmin \(:=\) gamma \(; \quad j m i n:=\operatorname{ind}[L 1]\)
end
end;
if \(j \min >0\) then \(i m:=\operatorname{imin}[j \min]\)
end progamma;
procedure prophi;
comment performs calculations over rows to determine the pivot element;
begin integer \(j, k 1\); real delta, phi; array delmax \([1: m+1]\);
integer array jmax \([1: m+1]\);
phimax \(:=-10^{6} ; \quad\) imax \(:=0 ;\)
comment phimax is set equal to a small number for initialization purposes;
for \(k 1:=1\) step 1 until \(k-1\) do
begin
\(j \max [\) ind \(1[k 1]]:=0\); delmax[ind \(1[k 1]]:=-10^{6}\);
for \(j:=1\) step 1 until lcol -1 do
begin
if \(e[i n d 1[k 1], j]<-t d \wedge e[1, j] \geqslant-t d\) then
begin
delta \(:=e[1, j] / e[i n d 1[k 1], j] ;\)
if delta \(>\) delmax[ind \(1[k 1]]\) then

\section*{begin} delmax[ind1[k1]] :=delta; \(\quad j \max [\) ind \(1[k 1]]:=j\) end
end
end;
if delmax[ind \(1[k 1]]=-10^{6}\) then \(p h i:=-10^{8}\)
else \(p h i:=\) delmax \([\) ind \(1[k 1]] \times e[\) ind \(1[k 1], l c o l] ;\)
if \(p h i>p h i m a x\) then
begin
phimax \(:=\) phi; imax \(:=\) ind1 \([k 1]\)
end
end;
if imax \(>0\) then \(j m:=j \max [i m a x]\)
end prophi;
procedure phasel;
comment applied only to equality constraints if any;
begin integer \(r\); real theta, gamma; array thmin \([1: l c o l]\);
integer array \(\operatorname{imin}[1: l c o l]\);
for \(r:=1\) step 1 until \(p\) do
begin
\(g \min :=10^{6} ; L:=1\);
comment \(g m i n\) is set equal to a large number for initialization purposes;
for \(j:=1\) step 1 until \(n\) do
begin
thmin \([j]:=10^{6} ;\) if \(e[1, j]<0\) then
begin
\[
\operatorname{ind}[L]:=j ; \quad L:=L+1
\]
end
end;
if \(L=1\) then
begin
for \(j:=1\) step 1 until \(n\) do \(\operatorname{ind}[j]:=j ; \quad L:=n+1\)
end;
for \(k:=1\) step 1 until \(L-1\) do
begin
for \(i:=m-p+2\) step 1 until \(m+1\) do
begin
if \(\operatorname{chk}[i]=0\) then
begin
if \(e \mid i\), ind \([k]]>0\) then
begin
theta \(:=e[i, l c o l] / e[i\), ind \([k]] ;\)
if theta < thmin \([\) ind \([k]]\) then
begin
\(\operatorname{thmin}[\) ind \([k]]:=\) theta; \(\operatorname{imin}[\operatorname{ind}[k]]:=i\) end
end
end
end;
gamma \(:=\operatorname{thmin}[\) ind \([k]] \times e[1, \operatorname{ind}[k]] ;\)
if gamma \(<\) gmin then
begin
gmin \(:=\) gamma \(; \quad j \min :=\operatorname{ind}[k]\)
end
end;
im \(:=\) imin[jmin]; rowtrans(im, jmin)
end
end phase1;
for \(i:=2\) step 1 until \(m+1\) do chki|i] \(:=0\);
if \(p=0\) then go to \(R(S\) else phasel;
comment If there are any equality constraints in the prohlem the program first goes w phasel, wherwise it goes directly to RCS;
RCS: \(L:=1 ; k:=1\);
for \(j:=1\) step 1 until tcol -1 do
begin
if \(e[1\). il \(<-\|\) then
beqin
ind| \(L, \mid:=j ; \quad L:=L+1\);
comment ind \([L \mid\) keeps track of the columns in whiche[1, i! is negative;
end
end;
for \(i:=2\) step 1 until \(m+1\) do
begin
if \(e[i, l c o l]<-l d\) then
begin
ind \(1 \mid k]:=i ; k:=k+1 ;\)
comment ind \(\mid k]\) keeps track of the rows in whichefi.lcol! is negative;
end

\section*{end;}
if \(L=1\) then
begin
if \(k=1\) then results else
begin
if \(k=2\) then
begin
for \(j:=1\) step 1 until lcol -1 do
begin
if \(\boldsymbol{c}[\) ind \(1[1], j]<0\) then go to \(R\)
end;
comment Insert an output statement to print "primal problem has no feasible solutions, dual objective func-
tion is unbounded'", for example, the statement out-
string (1, 'primal problem has uo feasible solutions, dual
objective function is unbounded');
go to \(L . A S T\)
end else go to \(R\)
end
end
else
begin
if \(L=2\) then
hegin
if \(k=1\) then
begin
for \(i:=2\) step 1 until \(m+1\) do
hegin
if \(e \mid i\), ind \(|1| \mid>0\) thengoto \(C^{r}\)
end;
comment Insert an output statement to print "primal objective function is unbounded, dual problem has no feasible solutions', for example, the statement outstring (1. 'primal nbjective function is unbounded, dual problem has no feasible solutions');
go to \(L . A S T\)
end else go to \(S\)
end;
if \(k=1\) then go to \(C\) else go to \(S\)
end;
R: prophi; routrans(imax, jm); yo to R(S' ;
(': progamma; rowtrans(im.,jmin); goto R('s;
S: progamma; prophi;
if \(g\) min \(=10^{6}\) then
begin
rowtrans(imax, jm); gotor('S
end;
if phimax \(=-10^{6}\) then
begin
rowtrans(im, jmin); go to R(S;
end;
if absi(phimax) >abs(gmin) then ioutianss(imax, jm)
else roultans(im.jmin);
go to Res;
L.LST: end WMIT

\section*{REMARK ON ALGORITHAE 333 [H]}

MINIT ALGORITHME FOR LINEAR PROGRAM-
MINC [Rodolfo C. Salazar and Subrata K. Sen, Comm. ACM 11 (June 1968), 437]
D. K. Messham (Recd. 27 Nov. 1968 and 28 Feb. 1969)

Nelson Research Laboratories, The English Electric Co. Ltd., Stafford, England
KEY WORDS AND PHRASES: linear programming, dual simplex method, primal problem, dual problem
CR CATEGORIES: 5.41
The procedure has been tested with Marconi Myriad Algol, and it ran successfully when the following changes had been made (the first is merely a misprint):
1. The first statement in procedure results was changed
from \(z:=e[1\) : lcol \(]\);
to \(\quad z:=e[1, l c o l]\);
2. To satisfy an Algol 60 restriction that a type procedure should contain an assignment to its procedure identifier, the real on the first line of the procedure was removed.
3. It is possible for the published algorithm to give incorrect results when it reaches a state in phasel where there are no possible pivotal elements in one column of the tableau. (For example, maximize \(-x_{1}-x_{2}-x_{3}\), with \(2 x_{1}+x_{2}=3\) and \(x_{3}=1\), reaches this state.) To correct this the line in procedure phasel
if gamma < gmin then
was changed to
if gamma \(<\operatorname{gmin} \wedge\) thmin \([\) ind \([k]]<106\) then
All the appearances of \(10^{6}\) in this algorithm should be written as 106.

The following improvements are also suggested:
4. It is assumed that lcol is a global integer with the correct value. This was made unnecessary by adding lcol to the list of integers declared on the line immediately following the initial comment; the bounds of the array ind, declared on the next line, were changed
from \([1:\) lcol \(]\)
to \([1: m+n-p+1] ;\)
and \(\quad\) lcol \(:=m+n-p+1\);
was inserted as the first executable statement of the procedure MINTT (after end phasel;).
5. It is assumed that equality constraints will be given with positive right-hand sides. This restriction was overcome by inserting in the procedure phasel after the line integer array imin [1 : lcol]; the following:
for \(i:=m-p+2\) step 1 until \(m+1\) do
if \(e[i\), lcol \(]<0\) then
for \(j:=1\) step 1 until \(l c o l\) do \(e[i, j]:=-e[i, j] ;\)

REMARK ON ALGORITHM 333 [H]
MINIT ALGORITHM FOR LINEAR PROGRAMMING [Rodolfo C. Salazar and Subrata K. Sen, Comm. ACM 11 (June 1968), 437-440]
Å. Kolm and T. Dahlstrand (Recd. 15 Sept. 1969)
Information Processing Department, ASEA. S-721 83 Västerås, Sweden

KEY WORDS AND PHRASES: linear programming, dual simplex method, primal problem, dual problem
\(C R\) CATEGORIES: 5.41
When we tried to run the program on a GE-625 computer it became apparent that the following, rather obvious changes in the procedure phasel of the original program are necessary:
1. The statement after the statement thmini \([j]:=10^{6}\); should begin with
\[
\text { if } e[1, j]<-t d \text { then } \cdots
\]
2. The beginning of the statement following the statement if \(c h k[i]=0\) then should be replaced by
\[
\begin{aligned}
& \text { begin } \\
& \text { if } e[i, i n d[k]]>t d \text { then }
\end{aligned}
\]
3. The statement gamma \(:=\operatorname{thmin}[\) ind \([k]] \times e[1\), ind \([k]] ;\) should be preceded by
if \(\operatorname{thmin}[\) ind \([k]]=10^{6}\) then gamma \(:=10^{8}\) else
We also suggest that the parameters \(m, n, p, t d\) of the procedure should be value-specified.

After these corrections the procedure has been successfully tested in several problems. For problems of moderate size, which without further modifications can be solved by the procedure, the algorithm turned out to be most efficient. The numerical accuracy was also good.

\section*{Remark on Algorithm 333 [H]}

Minit Algorithm for Linear Programming [Rodolfo
C. Salazar and Subrata K. Sen, Comm. ACM 11
(June 1968), 437-440]
D. Obradović*

Boris Kidrič Institute of Nuclear Sciences, 11001 Beograd, Yugoslavia
* Present address: Institute of Investment Research, 1100 Beograd, Yugoslavia.

The procedure has been tested with CDC 3600 Algol, and it ran successfully when the following changes had been made in the procedure phase 1:
1. After the line
comment applied only to equality constraints if any; instead
begin integer \(r\);
one has to introduce
begin integer \(r\), im1, jmin 1 ;
2. After the line
integer array imin \([1: l c o l]\);
one has to introduce a new line
\(\operatorname{im} 1:=\operatorname{jmin} 1:=0 ;\)
3. The line
if \(L=1\) then
should read
\(L 1\) : if \(L=1\) then
4. Last nine lines of the procedure phase 1 should be changed to read
if \(\operatorname{thmin}[i n d[k]]<10^{6}\) then
begin
gamma \(:=\) thmin \([\) ind \([k]] \times e[1\), ind \([k]] ;\)
if gamma < gmin then
begin
gmin \(:=\) gamma; jmin \(:=\) ind \([k] ;\)
end
end;
end;
\(\operatorname{im}:=\operatorname{imin}[j m i n] ;\)
if \(i m=i m 1 \wedge j m i n=j m i n 1\) then
begin
\(L:=1 ;\) go to \(L 1\)
end;
rowtrans(im, jmint);
im1 \(:=i m ; j m i n 1:=j m i n ;\)
end
end phase 1;
These changes are necessary to avoid incorrect results in the case if after application of the procedure rowtrans all \(e[i\), ind \([k]]\) are negative as in the following example
\[
\begin{gathered}
z=-0.9 x_{1}-1.255632 x_{2}+0.925 x_{3}+0.375 x_{4} \\
x_{i}<2, \quad i=1,2,3,4 \\
2.19069 x_{1}-0.925 x_{2}-0.325 x_{3}-0.1875 x_{4}=0.76569 \\
x_{1}
\end{gathered} \quad-0.1 \quad x_{3}+0.740896 x_{4}=1.640896 .
\]
when the published algorithm ignores some of the equality constraints.

Remark on Algorithm 333 [H] Minit Algorithm for Linear Programming [Rodolfo C. Salazar and Subrata K. Sen, Comm. ACM 11 (June 1968), 437-440]
B. Holmgren, * D. Obradović,\(\dagger\) and \(\AA\). Kolm*
[Recd. 13 May 1971]
* Information Processing Department, ASEA

S-721 83 Västerås Sweden
\(\dagger\) Boris Kidrič Institute of Nuclear Sciences, 11001 Beograd, Yugoslavia

\footnotetext{
In addition to previously given remarks on the algorithm, the following changes in the procedure phase 1 are necessary in order to avoid incorrect results for some types of problems with equality constraints:
1. Introduce into phase 1 the variable first by the declaration

\section*{Boolean first;}
2. After the statement \(L:=1\); one has to set
jmin \(:=0\); first \(:=\) true;
3. The statement if \(L=1\) then ... should be replaced by
\(L I\) : if \(L=1\) then..
}
4. The statement \(\operatorname{im}:=\operatorname{imin}[j m i n]\); should be preceded by
if jmin \(=0\) then
begin
if first then
begin
first \(:=\) false; \(L:=1 ;\) go to \(L 1\)
end else \(i m:=0\)
end else
After these changes MINIT can handle problems, for which equality constraints cause all the current values of \(e[i\), ind \([k]]\) to be negative at some stage in phase 1 . For such cases the variables im and \(j \min\) in the old version either were left undefined or remained unchanged before entering the procedure rowtrans. An example of this is the trivial problem
\(\max x_{1}\), when
\(x_{1}, x_{2} \geq 0\),
\(x_{1} \leq 1\),
\(x_{2}=1\),
where the original procedure completely failect.

\section*{ALGORITHM 334}

\section*{NORMAL RANDOM DEVIATES [G5]}

James R. Bell (Recd. 13 Dec. 1965, 29 Nov. 1967, and 23 Jan. 1968)
Stanford Research Institute, Menlo Park, Calif.
KEY WORDS AND PHRASES: normal deviates, normal distribution, random number, random number generator, simulation, probability distribution, frequency distribution, random
CR CATEGORIES: 5.5,5.13
procedure norm (D1, D2);
real \(D 1, D 2\);
comment This procedure generates pairs of independent normal random deviates with mean zero and standard deviation one. The output parameters \(D 1\) and \(D 2\) are normally distributed on the interval \((-\infty,+\infty)\). The method is exact even in the tails.

This algorithm is one of a class of normal deviate generators, which we shall call "chi-squared projections" [1, 2]. An algorithm of this class has two stages. The first stage selects a random number \(L\) from a \(\chi_{2}{ }^{2}\)-distribution. The second stage calculates the sine and cosine of a random angle \(\theta\). The generated normal deviates are given by \(L \sin (\theta)\) and \(L \cos (\theta)\).
The two stages can be altered independently. In particular, as better \(\chi_{2}{ }^{2}\) random generators are developed, they can replace the first stage. (The negative exponential distribution is the same as that of \(\chi_{2}{ }^{2}\).)

The fastest exact method previously published is Algorithm 267 [4], which includes a comparison with earlier algorithms. It is a straight chi-squared projection. Qur algorithm differs from it by using von Neumann rejection to generate \(\sin (\phi)\) and \(\cos (\phi),[\phi=2 \theta]\), without generating \(\phi\) explicitly [3]. This significantly enhances speed by eliminating the calls to the sin and cos functions.

The author wishes to express his gratitude to Professor George Forsythe for his help in developing the algorithm. References
1. Box, G., and Muller, M. A note on the generation of normal deviates. Ann. Math. Stat. 28, (1958), 610.
2. Muller, M. E. A comparison of methods for generating normal deviates on digital computers. \(J . A C M, 6\) (July 1959), 376-383.
3. von Neumann, J. Various techniques used in connection with random digits. In Nat. Bur. of Standards Appl. Math. Ser. 12, 1959, p. 36.
4. Pike, M. C. Algorithm 267, Randorn Normal Deviate. Comm. ACM, 8 (Oct. 1965), 606.;
comment \(R\) is any parameterless procedure returning a random number uniformly distributed on the interval from zero to one. A suitable procedure is given by Algorithm 266, Pseudo-Random Numbers [Comm. ACM, 8 (Oct. 1965), 605] if one chooses \(a=0, \quad b=1\), and initializes \(y\) to some large odd number, such as \(y=13421773 . ;\)
begin
real \(X, Y, X X, Y Y, S, L\);
comment von Neumann rejection for choosing a random angle \(\phi=2 \theta, \theta=\tan ^{-1}(Y / X)\);
\(A: \quad X:=R ; \quad Y:=2 \times R-1\);
\(X X:=X \uparrow 2 ; \quad Y Y:=Y \uparrow 2 ;\)
\(S:=X X+Y Y\);
if \(S>1\) then go to \(A\);
comment chooses \(L\) randomly from a \(x_{2}{ }^{2}\)-distribution and normalizes with \(S\);
\(L:=\operatorname{sqrt}(-2 \times \ln (R)) / S\);
comment computes deviates as \(L \times \sin (\phi)\) and \(L \times \cos (\phi)\);
\(D 1:=(X X-Y Y) \times L\);
\(D 2:=2 \times X \times Y \times L\);
end norm;

\section*{REMARK ON ALGORITHM 334 [G5]}

NORMAL RANDOM DEVIATES [James R. Bell, Comm. ACM 11 (July 1968), 498]
R. Knop* (Recd. 5 Aug. 1968 and 8 Nov. 1968)

Physics Dept., University of Maryland, College Park, MD 20742

This work was supported in part by an Atomic Energy Commission contract.
* Present address: Physics Dept., Rutgers University, New Brunswick, NJ 08903

KEY WORDS AND PHRASES: normal deviates, normal distribution, random number, random number generator, simulation, probability distribution, frequency distribution, random \(C R\) CATEGORIES: 5.13,5.5

Algorithm 334 produces pairs of normally distributed random deviates with zero mean and unit variance by the method of Box and Muller [1]. The sine and cosine required by the Box-Muller method are calculated by the von Neumann rejection technique [2]. This technique allows the calculation of the sine and cosine of an angle uniformly distributed over the interval (\(0,2 \pi\)) without referencing the sine, cosine, or square root functions. We note however, that Algorithm 334 require as square root calculation in inverting the distribution function of the radius (equal to \(L \times S\) in the notation of the algorithm).

We suggest that since the square root calculation seems unavoidable, it can be used to obtain the required sine and cosine by more conventional means. Thus we propose sampling points from a density uniform over the unit disk in the \(X, Y\)-plane and calculating the sine and cosine from their definition in terms of the legs and hypotenuse of a right triangle. The following changes in Algorithm 334 are then necessary:
a. Replace \(X:=R\) by \(X:=2 \times R-1\)
b. Replace \(L:=\operatorname{sqrt}(-2 \times \ln (R)) / S\) by \(L:=\operatorname{sqrt}(-2 \times \ln (R) / S)\)
c. Replace \(D 1:=(X X-Y Y) \times L\) by \(D 1:=X \times L\)
d. Replace \(D 2:=2 \times X \times Y \times L\) by \(D 2:=Y \times L\)

Acknowledgment. The author thanks \(B\). Kehoe for comments concerning this algorithm.

References:
1. Box, G., and Muller, M. A note on the generation of normal deviates. Ann. Math. Stat. 28 (1958), 610.
2. Von Neumann, J. Various techniques used in connection with random digits. In Nat. Bur. Standards Appl. Math. Ser. 12, US Govt. Printing Off., Washington, D. C., 1959, p. 36.

\section*{REMARK ON ALGORITHM 334}

Normal Random Deviates
[James R. Bell (with modifications due to R. Knop), Commun. ACM 12, 5 (May 1969), 281.]

Allen E. Tracht [Received 12 December 1981; revised 16 December 1981; accepted 16 December 1981]
Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106.

As modified by Knop, Algorithm 334 produces pairs of normally distributed random deviates with zero mean and unit variance by a modification of the "polar" method due to Box, Muller, and Marsaglia [2]. The following change converts Algorithm 334, as modified by Knop, to the "polar" method:
\[
\begin{aligned}
\text { Replace: } \quad L & :=\operatorname{sqrt}(-2 \times \ln (R) / S) \\
\text { by } L & :=\operatorname{sqrt}(-2 \times \ln (S) / S) .
\end{aligned}
\]

Note that this modification eliminates one invocation of the uniform random number generator \(R\). Using timing information given by Brent [1] in Algorithm 488, the "polar" method would be expected to take \((83+1.27 U)\) microseconds rather than \((83+1.77 U)\) microseconds per call. This is faster than the \((91+\) 1.38 U) microseconds given by Brent for Algorithm 488.

\section*{REFERENCES}
1. BRENT, R.P. Algorithm 488. A Gaussian pseudorandom number generator, Collected Algorithms of the ACM., Vol. 2, ACM, New York, 1978.
2. Knuth, D.E. The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 1981, pp. 117-118 or 1969, pp. 104-105.

\section*{ALGORITHM 334}

\section*{NORMAL RANDOM DEVIATES [G5]}

James R. Bell (Recd. 13 Dec. 1965, 29 Nov. 1967, and 23 Jan. 1968)
Stanford Research Institute, Menlo Park, Calif.
KEY WORDS AND PHRASES: normal deviates, normal distribution, random number, random number generator, simulation, probability distribution, frequency distribution, random
CR CATEGORIES: \(\quad 5.5,5.13\)
procedure norm (\(D 1, D 2\));
real \(D 1, D 2\);
comment This procedure generates pairs of independent normal random deviates with mean zero and standard deviation one. The output parameters \(D 1\) and \(D 2\) are normally distributed on the interval \((-\infty,+\infty)\). The method is exact even in the tails.

This algorithm is one of a class of normal deviate generators, which we shall call "chi-squared projections" [1, 2]. An algorithm of this class has two stages. The first stage selects a random number \(L\) from a \(\chi_{2}{ }^{2}\)-distribution. The second stage calculates the sine and cosine of a random angle \(\theta\). The generated normal deviates are given by \(L \sin (\theta)\) and \(L \cos (\theta)\).
The two stages can be altered independently. In particular, as better \(\chi_{2}{ }^{2}\) random generators are developed, they can replace the first stage. (The negative exponential distribution is the same as that of \(\chi_{2}{ }^{2}\).)

The fastest exact method previously published is Algorithm 267 [4], which includes a comparison with earlier algorithms. It is a straight chi-squared projection. Our algorithm differs from it by using von Neumann rejection to generate \(\sin (\phi)\) and \(\cos (\phi),[\phi=2 \theta]\), without generating \(\phi\) explicitly [3]. This significantly enhances speed by eliminating the calls to the \(\sin\) and \(\cos\) functions.
The author wishes to express his gratitude to Professor George Forsythe for his help in developing the algorithm. References
1. Box, G., and Muller, M. A note on the generation of normal deviates. Ann. Math. Stat. 28, (1958), 610.
2. Muller, M. E. A comparison of methods for generating normal deviates on digital computers. \(J\). \(A C M, 6\) (July 1959), 376-383.
3. von Neumann, J. Various techniques used in connection with random digits. In Nat. Bur. of Standards Appl. Math. Ser. 12, 1959, p. 36.
4. Pike, M. C. Algorithm 267, Random Normal Deviate. Comm. ACM, 8 (Oct. 1965), 606.;
comment \(R\) is any parameterless procedure returning a random number uniformly distributed on the interval from zero to one. A suitable procedure is given by Algorithm 266, Pseudo-Random Numbers [Comm. ACM, 8 (Oct. 1965), 605] if one chooses \(a=0, \quad b=1\), and initializes \(y\) to some large odd number, such as \(y=13421773\).;
begin
real \(X, Y, X X, Y Y, S, L\);
comment von Neumann rejection for choosing a random angle \(\phi=2 \theta, \theta=\tan ^{-1}(Y / X) ;\)
\(A: \quad X:=R ; \quad Y:=2 \times R-1\);
\(X X:=X \uparrow 2 ; \quad Y Y:=Y \uparrow 2 ;\)
```

$S:=X X+Y Y$;
if $S>1$ then go to $A$;
comment chooses $L$ randomly from a $\chi_{2}{ }^{2}$-distribution and
normalizes with $S$;
$L:=\operatorname{sqrt}(-2 \times \ln (R)) / S$;
comment computes deviates as $L \times \sin (\phi)$ and $L \times \cos (\phi)$;
$D 1:=(X X-Y Y) \times L$;
$D 2:=2 \times X \times Y \times L$;
end norm;

```

\section*{REMARK ON ALGORITHM 334 [G5]}

NORMAL RANDOM DEVIATES [James R. Bell, Comm. ACM 11 (July 1968), 498]
R. Knop* (Recd. 5 Aug. 1968 and 8 Nov. 1968)

Physics Dept., University of Maryland, College Park, MD 20742

This work was supported in part by an Atomic Energy Commission contract.
* Present address: Physics Dept., Rutgers University, New Brunswick, NJ 08903

KEY WORDS AND PHRASES: normal deviates, normal distribution, random number, random number generator, simulation, probability distribution, frequency distribution, random CR CATEGORIES: 5.13, 5.5

Algorithm 334 produces pairs of normally distributed random deviates with zero mean and unit variance by the method of Box and Muller [1]. The sine and cosine required by the Box-Muller method are calculated by the von Neumann rejection technique [2]. This technique allows the calculation of the sine and cosine of an angle uniformly distributed over the interval (\(0,2 \pi\)) without referencing the sine, cosine, or square root functions. We note however, that Algorithm 334 require as square root calculation in inverting the distribution function of the radius (equal to \(L \times S\) in the notation of the algorithm).

We suggest that since the square root calculation seems unavoidable, it can be used to obtain the required sine and cosine by more conventional means. Thus we propose sampling points from a density uniform over the unit disk in the \(X, Y\)-plane and calculating the sine and cosine from their definition in terms of the legs and hypotenuse of a right triangle. The following changes in Algorithm 334 are then necessary:
a. Replace \(X:=R\) by \(X:=2 \times R-1\)
b. Replace \(L:=\operatorname{sqrt}(-2 \times \ln (R)) / \mathrm{S}\) by \(L:=\operatorname{sqrt}(-2 \times \ln (R) / S)\)
c. Replace \(D 1:=(X X-Y Y) \times L\) by \(D 1:=X \times L\)
d. Replace \(D 2:=2 \times X \times Y \times L\) by \(D 2:=Y \times L\)

Acknowledgment. The author thanks B. Kehoe for comments concerning this algorithm.

References:
1. Box, G., and Muller, M. A note on the generation of normal deviates. Ann. Math. Stat. 28 (1958), 610.
2. Von Neumann, J. Various techniques used in connection with random digits. In Nat. Bur. Standards Appl. Math. Ser. 12, US Govt. Printing Off., Washington, D. C., 1959, p. 36.

\section*{ALGORITHM 335}

A SET OF BASIC INPUT-OUTPUT PROCEDURES [I5]
R. De Vogelaere (Recd. 8 Sept. 1966 and 18 Nov. 1966; description revised 2 Nov. 1967)
Department of Mathematics and Computer Center, University of California, Berkeley, CA. 94720

By means of the primitives insymbol, outsymbol and length, as requested by this journal's Algorithms Policy [Comm. ACM 10 (Nov. 67), 729] a basic set of input-output procedures is defined aiming at quality and flexibility. outreal, for instance, is written as a derived procedure; it outputs using the fixed point or the floating point representation, and rounds properly. Variants can easily be written because of the explicit call of the procedures decompose integer and decompose real. The highly recommended practice of echoing input is made easy with one subset of derived procedures (ioi, ior, iob, ioa). The documentation of output in the form of equivalent ALGOL statements is also provided when use is made of the subset oti, otr, otb, ota. The Berkeley style of providing information on the form of output using prior calls of procedures such as real format is defined. A use of the parameter outchannel to provide information for simultaneous output to several channels is suggested. Interrelationship between the declared procedures is furnished in tabular form.

KEY WORDS AND PHRASES: input output, transput, input output procedures, input echo, quality output, decompose integer, decompose real, style, Berkeley style, procedures relationship, output documentation, equivalent ALGOL statements, ALGOL, ALGOL 60, integer format, real format, out integer, read real, input output Boolean, input output array, fixed point representation, floating point representation, output channel interpretation
CR CATEGORIES: 4.0, 4.41

\section*{1. Introduction}

The reader will find below a set of basic input-output procedures. Let me state first some of the purposes for writing this set and give a general description and specific information about the procedures and their interrelationship.

In the October 1964 issue of the Communications of the ACM [1], a report on input-output procedures for Algol 60 was published. This report was prepared by a working group (WG 2.1) of the International Federation for Information Processing (IFLD/TC2) and approved by its Council.

The approved primitives were:
insymbol, outsymbol, length, inreal, outreal, inarray, outarray
In the examples the following derived procedures were defined:

\footnotetext{
outboolean, outstring, inivteger.
}

It is stated therein that "one needs, in practice, a fuller set of input-output procedures" and it is observed also that "different scheme of I/O procedures can be defined in it, largely by means of these primitives."

Since then, a few procedures have been published (see for instance [2, 3]) and the Algorithms Policy of this journal has requested [6] the use of the primitives of [1] and the use of outboolean, outstring, ininteger and outinteger for input-output.

The purpose of this algorithm is to present part of a consistent scheme of input-output procedures. The set uses as primitives, insymbol, outsymbol, and outstring (or equivalently length).

First in integer, out integer, in real, out real, in Boolean, out Boolean are derived. in real is related to [2]; out integer and out real call the more basic procedures decompose integer and decompose real. out real allows not only for floating point representation [3] but also for fixed point representation and for correct rounding.

Several sets of procedures, which point in several directions and which call the more basic ones, are then introduced. One set consists of parameterless input function designators akin to the procedure read of the Amsterdam Mathematisch Centrum. One set provides for echo of input to insure that the correct numbers have been read in-a practice which I recommend highly; it also provides for easy documentation of the output in the form of equivalent Algol statements. Another set with the same documentation feature is for output only; the last set outputs numbers, but no text.

It is not suggested that the set of procedures of this algorithm be used for quantity output. Its main purpose is for quality output.

\section*{2. General Description}
2.1. The only primitives used are insymbol, outsymbol, and length (through outstring). insymbol and outsymbol assume that the value -1 is associated with the symbol carriage return-line feed (or new card), which is not a basic symbol of Algol 60. This is done in accordance with the convention of [1, Sec. 3]. outstring could have been avoided with some loss of clarity in the description of the procedures. insymbol, outsymbol, and outstring are defined in [1].
inreal and outreal are defined as in [2,3] in terms of insymbol, outsymbol, and outstring. I do not believe that inreal and outreal should be primitives, firstly, because these procedures can be defined in terms of other primitives, and secondly, because many definitions will satisfy the requirements of [1]. On the other hand, the requirements set forth in [1] are most desirable.
in channel and out channel must be declared as integers and assigned a value in accordance with the requirements of insymbol and outsymbol [1].

I would like to observe in passing that the integer out channel cannot only be interpreted as identifying a single channel, but can also be interpreted as identifying a set of channels to all of which the output is to be sent. (If the binary representation of out channel is \(\sum a[i] \times 2 \uparrow i\), the output is sent to channel \(i\) if \(a[i]=1\) and is not sent if \(a[i]=0\).) Although this is not yet implemented at Berkeley in this fashion, all output going to a terminal is now also sent to the printer. When time-sharing becomes widespread this interpretation will, I hope, be increasingly popular.
2.2. The more basic input-output procedures are in integer, in real, and in Boolean; the first two use in symbol only through the integer procedure symbol.
symbol recognizes only the following basic symbols:
\[
0|1| 2|3| 4|5| 6|7| 8|9| \cdot|-|+|10|,| u
\]
and carriage return-line feed (or new card).
in integer associates to the second parameter, which is of type integer, the next integer read from channel (the first parameter). Any number of consecutive spaces are ignored kefore the first digit; after the first digit, termination occurs wit 1 two consecutive spaces, a comma, or a carriage return-line feed. A comma before the first digit or sign, a period, \(\langle 10\rangle\), or any other illegal symbol will call the procedure error.
in real associates to the second parameter, which is of type real, the next real number read from channel (the first parameter). Any number of consecutive spaces are ignored before the first digit, period, or \(\langle 10\rangle\); after that, termination occurs with two consecutive spaces, a comma, or a carriage return-line feed. A comma before the first digit, sign, period, or \(\langle 10\rangle\), or any other illegal symbol will call the procedure error. Communication between in integer, in real, and in symbol to take care of separation between integers or reals requires the nonlocals \(z 8100 b\) and \(z 8100 b c\).
in Boolean associates to the second parameter, which is of type Boolean the next Boolean read from channel (the first parameter); any number of leading spaces or carriage returns-line feed are ignored; any illegal symbol will call the procedure error.

The procedure error has one parameter of type integer. It can be written according to the wishes of a user or of a group of users. An example with diagnostics in full is given below.
2.3. The more basic output procedures are out integer, out real, and out Boolean. The information on the form of the output can be given in various ways; the style used for these output procedures is what I will call the Berkeley style by contrast with the style used for output procedures at, for instance, the Amsterdam's Mathematisch Centrum or at Copenhagen's Regnecentralen. Call of these output procedures must be preceded by a call of corresponding procedures integer format, real format and Boolean format.

The only parameter of integer format determines the field width of any integer sent to the output channel. The parameters of real format are a Boolean, which determines when the value is true that fixed point representation is desired for the output of real numbers and when the value is false that floating point representation is desired. The second parameter determines the field width, the third parameter determines the nuriber of decimal places and affects also the rounding of the number. The only parameter of Boolean format determines the field width.

The following decisions were made for out integer, out real, and out Boolean: If the field parameter is less than required, it is replaced by 20 . The sign is outputed before the most significant digit if the number is negative. In floating point form, the first significant digit is immediately to the left of the decimal point. The exponent is replaced by four spaces if it is zero; otherwise the sign of the exponent is always outputed and the exponent is restricted to the interval -99 to 99.

If the user wishes to write variants of the Berkeley style, for instance if he wishes always to print the sign, or if he wishes to output it as the first character of the field, or if he wishes to output a space between every third or fifth digit, his task will be greatly eased by the introduction of the procedures decompose integer and decompose real which provide the basic information about an integer (its sign, the number of significant decimal digits, and the digits) or about a real (its sign, its size, the scale factor such that the scaled number has its first significant digit immediately to the left of the decimal point and the digits).

In decompose real, the size information determines if the number is too small; an integer declaration has been chosen instead of a Boolean to provide for the possibility of another test, which would determine if the number is too large. The rounding for reals is taken care of in decompose real.

Correct rounding is essential for a set of input-output procedures of quality. Although the point may be argued, I consider incorrect the output of 2 to two decimals as 1.99 unless computer or computations have only that precision. Examples:
```

real format (true, 5, 3); out real (1, 0.99099);
real format (false, 10, 2); out real (1, -0.99099);

```
will output
\[
0.991-9.91_{10}-1
\]
2.4. Four more sets of input-output procedures follow; these procedures do not require explicit calls of the format procedures:
read \(i\), read \(r\), read \(b\) are function designators without parameters which can be used to input respectively an integer, a real or a Boolean.
\(i o i, i o r, i o b\) are function designators and \(i o a\) is a procedure to input respectively an integer, a real, a Boolean or a real array and to output an equivalent Algol statement.

This style, which I have introduced to give the output in the form of parts of an Algol program in connection with the generation of the nonlinear equations satisfied by Runge-Kutta type methods (to be published elsewhere), can also be used to describe input and output within the conventions of the Algol language.

For ioi, ior, iob, the second parameter gives the string to be outputted; the others give the parameters corresponding to those of the format procedures. For ioa, the second and third parameters are the first and last subscript of the element of the one dimensional array to be read and the last parameters give the string to be outputted as well as the format information. Examples:
ior (r, 'time uinuminutes', true, 5, 2);
ioa (a, 1, 3, 'hippopotamus', true, 4, 1)
would output with appropriate input:
time in minutes \(:=21.05\);
\(i:=1\); for hippopotamus \([i]:=15.1,6.2,7.0\) do \(i:=i+1\);
The next four procedures oti, otr, otb, and ota are for output only; the form of output is identical to that of ioi, ior, iob, and ioa.

The last four procedures outi, outr, outb, and outa are for output only. They output an integer, a real, a Boolean, or a sequence of reals, the format information being provided by the parameters of these procedures.

\section*{3. Specific Information About Procedures, Their \\ Relationship, and the Nonlocal Parameters}

To ease the local exchange of procedures and nonlocal identifiers of procedures between people at Berkeley, conventions have been introduced which are examplified in the procedures of this algorithm. All appropriate nonlocal identifiers are formed using as first symbols the letter \(z\) followed by a digit associated to the writer (I use 8) followed by 3 digits corresponding to the number of the procedure in which the nonlocal identifier is first used (my procedure symbol is number 100, in integer is number 101, etc.) followed by an ordinary identifier.

The following declarations must be made in the same block as that of this algorithm or in an outer block:
integer in channel, out channel, z8106n, \(z 8107 n, z 8107 d, 28108 n\); Boolean \(z 8100 b, z 8100 b c, z 8107 B\);
procedure in symbol (channel, string, destination); (see Comm. \(A C M 7\) (Oct. 1964), 628-630)
procedure out symbol (channel, string, destination); (Idem) procedure out string (channel, string); (Idem)
in channel and out channel must be assigned an appropriate value before a call of many of the input-output procedures (see Table I).

Table I indicates the relationship between the procedures and the nonlocal variables. Moreover, an explicit call of out integer, out real, and out Boolean requires a preceding call of the corresponding format procedure integer formal, real format, and Boolean format.
table I. Relationship Between Procedures and Nonlocal Variables

In Table I，each of the procedures is identified by a number． An \(\times\) indicates that the procedure corresponding to the number in the same column or the nonlocal identifier on top of the same column is used explicitly（and perhaps also implicitly）；+ in－ dicates that the corresponding procedure or identifier is used implicitly； 0 is placed in the column corresponding to the number of the procedure．Related procedures are grouped together in a file whose name appears in the first column．This information will be used in further publications．
The following declaration can be used for the procedure error：
```

procedure error (i); value i; integer i;
begin procedure nlcr; outsymbol (channel, '', -1);
nlcr;

```

```

        -U+ }\mp@subsup{山}{10}{\primeL
    If i==810100 then out string (1,'whileLreadingLanLfinteger,\anLillegalLsymbolU
    | isLreadUbefore\the UfirstL|digit') else
    If i=810101 then out string (1,'while\readingLanLinteger,UanLfllegalUsymbol-
        isLreadLafterLthe\sqcupfirstLdigit') else
    If i=810200 then out string (1,'while\readingUa山real,HanLrillegal山symbolu
        isLread\amalgwhile\sqcupreadingLtheLdecimalUfraction') else
    If i=810201 then out string (1,'while山readingLa|real,\Psian\illegal\amalgsymbolLhisU
        read\\amalgbeforeLuthel|frstLdigit 
    If i=810202 then out string (1,'while|readingLaLreal,\ar\LillegalLsymbolLisL
        read பwhile\readingLtheLlexponent\part') else
    If i = 810203 then out string (1,'aЦreal\amalgnumberLisLimproperlyLterminated')
        else
    ```

```

        isLread山beforeutermination');
    nler
    end error

```

Acknowledgment．The implementation of the procedures in this paper has been made possible by the existence of an Algol interpreter，which is the responsibility of many（see［4］）．The editor，Q．E．D．，used to prepare the program on the SDS 930， has been planned and implemented by Peter Deutsch and Butler Lampson．I especially thank Mr．Deutsch for the inclusion of requested features to copy part of a line until a given character noninclusive and to delete part of a line until a given character noninclusive．I thank my colleague R．S．Lehman for the use of his syntax checker and transliterator to BC－Algol．
Machine time for the preparation and implementation of the procedures and their tests was furnished by Project Genie of the Computer Center operating under Contract SD－ 185 with the Advanced Research Project Agency and by the Berkeley Campus Committee on Research．

\section*{References}

1．Report on input－output procedures for ALGOL 60．Comm． \(A C M 7\)（Oct．1964），628－630．
2．McKeeman，W．M．Algorithm 239，Free Field Read．Comm． ACM 7 （Aug．1964）， 481.
3．Wirth，N．E．Algorithm 249，Outreal n．Comm．ACM 8 （Feb． 1965）， 104.
4．BC ALGOL Manual．U．of California，Computer Center， Berkeley，Oct． 1966 （Third Ed．）．
5．Angluin，D．C．，Deutsch，L．P．Reference manual，Q．E．D．， time－sharing editor．Doc．30．60．30，Jan．26，1967，Contract SD－185，Office of the Secretary of Defense，ARPA，Wash－ ington，D．C．
6．Revised Algorithms Policy．Comm．ACM 7 （Oat．1964）， 586.

\section*{integer procedure symbol（s）；integer \(s\) ；}
comment symbol \(:=s:=\) the integer representation of the next symbol read， 0 to 9 for the integers， 10 for＇．＇， 11 for ＇- ＇， 12 for＇+ ＇， 13 for＇ 10 ＇，and 14 for＇，＇or for carriage return（or new card）represented by -1 when processed by in symbol or for two consecutive spaces when the nonlocal Boolean \(z 8100 b\) is false．When \(z 8100 b\) is true any number of consecutive spaces are ignored．Any other symbol will call a nonlocal procedure error with parameter equal to 8100；
begin
read：in symbol（in channel，＇0123456789．－＋104，＇，s）；
if \(s=-1 \wedge z 8100 b c\) then go to read；
if \(s=15\) then
begin
if \(z 8100 b\) then go to read
else in symbol（in channel，＇0123456789．－＋10L，＇，s）
end：
if \(s=-1 \vee s=16\) then symbol \(:=s:=14\)
else
begin if \(s \leqq 0\) then \(\operatorname{error}(8100)\) ；symbol \(:=s:=s-1\) end
end symbol；
procedure in integer（channel，i）；value channel； integer channel，\(i\) ；
comment \(i:=\) the next integer read from channel，any number of consecutive spaces are ignored before the first digit，after the digit termination occurs with two consecutive spaces，a comma or a carriage return，any illegal symbol will call a nonlocal procedure error with parameter equal to 8100 or 810100 or 810101；
begin
integer \(s\) ；Boolean negative；
negative \(:=\) false；\(z 8100 b:=z 8100 b c:=\) true；
in channel \(:=\) channel；
symbol \((i)\) ；\(z 8100 b c:=\) false；
if \(i=\mathbf{1 2}\) then \(\operatorname{symbol}(i)\)
else if \(i=11\) then begin negative \(:=\) true；symbol \((i)\) end； if \(i \geqq 10\) then \(\operatorname{error}(810100)\) ；
\(z 8100 b:=\) false；
\(L 1\) ：if symbol（s）＜10 then begin \(i:=1^{\wedge} \times i+s\) ；go to \(L 1\) end； if \(s \neq 14\) then \(\operatorname{error}(810101)\) ；
if negative then \(i:=-i\)
end in integer；
procedure in real（channel，\(r\) ）；value channel；
integer channel；real \(r\) ；
comment \(r:=\) the next real number read from channel，any num－ ber of consecutive spaces are ignored before the first digit． After the first digit termination occurs with two consecutive spaces，a comma or a carriage return．Any illegal symbol will call a non local procedure error with paramater equal to 8100 or 810200 or 810201 or 810202 or 810203 ．The main differences with ALGORITHM 239 of W．M．McKeeman［2］are the substi－ tution of his integer procedure \(C H A R\) by symbol，the introduc－ tion of the Boolean \(z 8100 b\) ，the introduction of a parameter in the nonlocal procedure error and the change of type of a few declarations；
begin
real \(s i g, f p, d, e p, i p ;\) integer \(e s i g, c h\) ；
real procedure unsigned integer；
begin
real \(u\) ；
\(u:=c h ;\)
\(K\) ：if symbol \((c h)<10\) then begin \(u:=u \times 10+c h\) ；go to \(K\) end； unsigned integer \(:=u\)
end unsigned integer；
\(\operatorname{sig}:=1.0 ; \quad e p:=f p:=0 ; \quad z 8100 b:=z 8100 b c:=\) true；
in channel \(:=\) channel；
symbol（ch）；\(z 8100 b c:=\) false；
if \(c h=12\) then symbol（ch）
else if \(c h=11\) then begin \(\operatorname{sig}:=-1.0 ;\) symbol（ch）end； \(z 8100 b:=\) false；
if \(c h \leqq 10\) then
begin
ip ：＝if \(c h<10\) then unsigned integer else 0 ；
if \(c h=10\) then
begin
if symbol（ch）\(\geqq 10\) then \(\operatorname{error}(810200)\) ；
\(f p:=0 ; d:=0.1\) ；
```

M: $\quad f p:=f p+c h \times d ; \quad d:=d \times 0.1 ;$
if symbol(ch) < $\mathbf{1 0}$ then go to $M$
end decimal fraction
end decimal number
else if $c h=13$ then $i p:=1$
else begin $\operatorname{error}(810201)$; ip $:=1$ end;
if $c h=13$ then
begin esig := 1 ;
if symbol(ch) $=12$ then symbol(ch)
else if $c h=11$ then begin esig $:=-1$; symbol(ch) end;
if $c h<\mathbf{1 0}$ then $e p:=$ unsigned integer $\times$ esig
else begin error(810202); $e p:=0$ end
end exponent part;
if $c h \neq 14$ then error (810203);
$r:=\operatorname{sig} \times(i p+f p) \times 10.0 \uparrow e p$
end in real;
procedure in Boolean(channel, b); value channel;
integer channel; Boolean b;
comment $b:=$ the next Boolean read from channel, any number
of spaces or carriage returns are ignored, any other symbol will
call a nonlocal procedure error with parameter equal to 8103 ;
begin
integer $i$;
$L$ :in symbol(channel, 'true falseu', $i$ );
if $i=3 \vee i=-1$ then go to $L$;
if $i \leqq 0$ then $\operatorname{error}(8103)$;
$b:=i=1$
end in Boolean;
procedure decompose integer( $i$, negative, $n$ of digits, digit);
value $i$; integer $i, n$ of digits; Boolean negative;
integer array digit;
comment negative $:=i<0, n$ of digits $:=$ the number of decimal
digits of $i$ (if $i=0$ then $n$ of digits $:=0$ ), digit $[0: n$ of digits -1$]$
$:=$ the decimal digits of $i$ starting from the right;
begin
integer $j$;
if $i<0$ then begin negative $:=$ true; $i:=-i$ end
else negative $:=$ false;
$n$ of digits :=0;
L:
if $i>0$ then
begin
$j:=i \div 10 ; \operatorname{digit}[n$ of digits] $:=i-j \times 10 ;$
$n$ of digits $:=n$ of digits $+1 ; \quad i:=j$; go to $L$
end
end decompose integer;
procedure decompose real(r, $\max n$ of digits, negative, size, exponent,
digit);
value $r$; integer max $n$ of digits, size, exponent; real $r$;
Boolean negative; integer array digit;
comment negative $:=r<0$, size $:=-1$ if $r$ is too small, i.e. is
such that when $a b s(r)$ is multiplied repeatedly by 10 it does
not become eventually larger than one, size $:=0$ otherwise,
exponent $:=$ the power of 10 by which $r$ is to be divided to ob-
tain a number whose first significant digit is immediately to
the left of the decimal point, digit $[0$ : mux $n$ of digits -1$]:=$
the decimal digits of $r$ starting with the first significant digit
to the left;
begin
integer $i, k, m$;
Boolean procedure too small( $r$ ); real $r$;
too small $:=a b s(r)<2 \uparrow(-127)$;
comment this procedure should be replaced appropriately;
negative := false;
if too small ( $r$ ) then
begin size $:=1$; go to end decompose end
clse size := 0 ;

```
if \(r<0\) then begin negative \(:=\) true; \(r:=-r\) end;
if \(r<1\) then
begin
 exponent \(:=-1\);
scale up: \(r:=r \times 10\);
if \(r<1\) then
begin exponent \(:=\) exponent -1 ; go to scale \(u p\) end
end
else
begin
```

        exponent := 0;
    ```
test:
 if \(r \geqq 10\) then
 begin exponent \(:=\) exponent \(+1 ; \quad r:=r \times 0.1 ;\)
 go to test end
 end;
 \(m:=\max n\) of digits;
 \(r:=r+5 \times 0.1 \uparrow m ;\)
 \(i:=\) entier \((r)\);
 if \(i=10\) then
 begin
 \(i:=1 ;\) exponent \(:=\) exponent \(+1 ; \quad m:=m+1 ; r:=r / 10\)
 end
 else if \(i=0\) then \(i:=1\);
 \(\operatorname{digit}[0]:=i\);
 for \(k:=1\) step 1 until \(m-1\) do
 begin
 \(r:=(r-i) \times 10 ; i:=\) entier \((r)\);
 \(i:=\operatorname{digit} t[k]:=\) if \(i \leqq 0\) then 0 else if \(i=10\) then 9 else \(i\)
 end;
end decompose:
end decompose real;
procedure integer format \((n)\); integer \(n ; z 8106 n:=n\);
procedure real format \((B, n, d)\); integer \(n, d\); Boolean \(B\);
begin
 \(z 8107 B:=B ; z 8107 n:=n ; z 8107 d:=d\)
end real format;
procedure Boolean format \((n)\); integer \(n\); \(z 8108 n:=n\);
procedure out integer(channel, \(i\)); value channel, \(i\);
integer channel, \(i\);
comment the style of this procedure and of the out real and out
 Boolean procedures given below is what I will call the Berkeley
 style by contrast with that used for output procedures at the
 Amsterdam Mathematisch Centrum or at the Copenhagen
 Regnecentralen, for instance. It is characterized by the use of
 a field width parameter \(n\) and for real numbers, by the use of a
 parameter \(B\) which decides if the fixed point (value true)
 or the floating point representation (value false) is requested
 and by the number of digits \(d\) after the decimal point. The
 sign is outputed just before the most significant digit, if the
 number is negative. In floating point form the first significant
 digit is immediately to the left of the decimal point. If the
 field parameter is less than required, it is replaced by 20 . These
 procedures pair with the corresponding input procedures if the
 field width is at least two units greater than required;
begin
 integer \(n\) of digits, \(j, k\); Boolean negative;
 integer array digit[0: 19];
 decompose integer \((i\), negative, \(n\) of digits, digit);
 if \(n\) of digits \(=0\) then
 begin \(n\) of digits \(:=1\); digit \([0]:=0\) end;
 \(j:=n\) of digits + (if negative then 1 else 0);
 for \(k:=(\) if \(j>z 8106 n\) then 19 else \(z 8106 n-1)\)
 step -1 until \(j\) do out string(channel, ' \(u\) ');
 if negative then out string(channel, '一');
 for \(k:=n\) of digits -1 step -1 until 0 do
 out symbol(channel, '0123456789', digit \([k]+1\))
end out integer;
procedure out real（channel，r）；value channel，\(r\) ； integer channel；real \(r\) ；
comment this procedure outputs \(r\) properly rounded to channel using the Berkeley style．In this variant，the exponent part in the floating point form is replaced by 4 spaces if the exponent is zero．The sign of the exponent is always outputed，for com－ patibility with in real．The exponent is restricted to the interval -99 to 99 ；
begin
integer \(j, k\) ，size，exponent；Boolean negative；
integer array \(\operatorname{digit}[0: z 8107 d+1+\)（if \(z 8107 B\) then entier \((\ln (a b s(r)+1) \times 0.4343)\) else 0\()]\) ；
procedure out digit（d）；integer \(d\) ；
begin
out symbol（channel，＇0123456789＇，\(d+1\) ）
end out digit；
if \(z 8107 B\) then
begin
decompose \(\operatorname{real}(r\) ，if \(z 8107 d+\) exponent \(\leqq 0\) then 1 else \(1+\) \(z 8107 d+\) exponent，negative，size，exponent，digit）；
if size \(=-1\) then
begin
exponent \(:=\) if \(z 8107 d=0\) then 0 else \(-z 8107 d-1\) ；
\(\operatorname{digit}[0]:=0\)
end
else if \(z 8107 d=0 \wedge\) exponent \(<0\) then
begin exponent \(:=0\) ；digit［0］：＝end；
\(j:=\)（if negative then 3 else 2）+
（if \(z 8107 d=0\) then -1 else \(z 8107 d\) ）+ （if exponent \(\geqq 0\) then exponent else -1 ）；
for \(k:=\)（if \(j>z 8107 n\) then 19 else \(z 8107 n-1\) ）step -1
until \(j\) do out string（channel，＇\(u\)＇）；
if negative then out string（channel，＇- ＇）；
for \(k:=0\) step 1 until exponent do out digit（digit \([k])\) ；
if \(z 8107 d>0\) then
begin
out string（channel，＇•＇）；
for \(k:=\) exponent +1 step 1 until exponent \(+z 8107 d\) do if \(k<0\) then out string（channel，＇ 0 ＇）else out digit（digit \([k]\) ） end
end fixed point representation
else
begin
decompose real \((r, z 8107 d+1\) ，negative，size，exponent，digit）；
if size \(=-1\) then
begin
exponent \(:=0\) ；
for \(k:=0\) step 1 until \(z 8107 d\) do \(\operatorname{digit}[k]:=0\)
end；
\(j:=6+(\) if \(z 8107 d=0\) then -1 else \(z 8107 d)+\)
（if negative then 1 else 0 ）；
for \(k:=\)（if \(j>z 8107 n\) then 19 else \(z 8107 n-1\) ） step -1 until \(j\) do out string（channel，＇ \(\mathbf{u}\)＇）；
if negative then out string（channel，＇－＇）；
out digit（digit［0］）；
if \(z 8107 d \neq 0\) then out string（channel，＇．＇）；
for \(k:=1\) step 1 until \(z 8107 d\) do out \(\operatorname{digit}\left(\alpha_{i j g i t}^{j}[k]\right)\) ；
if exponent \(=0\) then out string（channel，＇טالـا山＇）
else
begin out string（channel，＇ 10 ＇）；
comment This procedure assumes that 10 takes one space，
if not，the preceding statement should be modified；
if exponent \(\geqq 0\) then out string（channel，＇十＇）
else
begin out string（channel，＇－＇）； exponent \(:=-\) exponent
end；
\(j:=\) exponent \(\div 10\) ；
if \(j=0\) then out string（channel，＇ \(\mathbf{~}\)＇）
else out digit（ \(j\) ）；
out digit（exponent \(-j \times 10\) ）
end
end floating point representation
end out real；
procedure out Boolean（channel，b）；value channel；
integer channel；Boolean \(b\) ；
begin
integer \(k, j\) ；
\(j:=\) if \(b\) then 4 else 5 ；
comment this procedure assumes that true and false take respectively 4 and 5 spaces，if not the preceding statement should be modified；
for \(k:=(\) if \(j>z 8108 n\) then 19 else \(z 8108 n-1\) ）step -1 until \(j\) do out string（channel，＇\(u\)＇）；
out symbol（channel，＇true false＇， \(\boldsymbol{j}-3\) ）
end out Boolean；
integer procedure read \(i\) ；
begin
integer \(i\) ；
in integer（in channel，\(i\) ）；read \(i:=i\)
end read \(i\) ；
real procedure read \(r\) ；
begin
real \(r\) ；
in real（in channel，\(r\) ）；read \(r:=r\)
end read \(r\) ；
Boolean procedure read b；
begin
Boolean b；
in Boolean（in channel，b）；read \(b:=b\)
end read \(b\) ；
integer procedure \(i o i(i, s, n)\) ；string \(s\) ；integer \(i, n\) ；
comment this and the next 3 procedures input respectively an integer，a real number，a Boolean or a one dimensional array， they output an equivalent Algol statement；
begin
out string（out channel，s）；out string（out channel，＇山 ：＝山＇）；
in integer \((\) in channel，\(i) ;\) ioi \(:=i\) ；
integer format \((n)\) ；out integer（out channel，\(i\) ）；
out string（out channel，＇； \(\mathbf{~} \mathbf{\prime}\) ）
end \(i o i\) ；
real procedure \(\operatorname{ior}(r, s, B, n, d)\) ；
real \(r\) ；string \(s\) ；Boolean \(B\) ；integer \(n\) ，\(d\) ；
begin
out string（out channel，s）；
out string（out channel，＇ \(\mathbf{v}:=\mathrm{u}\)＇）；
in real（in channel，\(r\) ）；ior \(:=r\) ；
real format \((B, n, d)\) ；out real（out channel，\(r\) ）；
out siring（out channel，＇；U＇）
end ior；
Boolean procedure \(\operatorname{iob}(B, s, n)\) ；Boolean \(b\) ；string \(s\) ； integer \(n\) ；
begin
out string（out channel，s）；
out string（out channel，＇ \(\mathbf{u}:=\mathbf{u}\)＇）；
in Boolean（in channel，B）；iob \(:=B\) ；
Boolean format（n）；out Boolean（out channel，B）；
out string（out channel，＇；\({ }^{\prime}\) ’）
end \(i o b\) ；
procedure \(i o a(a, l, u, s, B, n, d)\) ；
integer \(l, u, n, d\) ；array \(a\) ；string \(s\) ；Boolean \(B\) ；
```

begin
integer }i\mathrm{ ;
if l>u then go to end ioa;
real format( (B,n,d); oti(l, ' }i,3)
out string(out channel, 'uforu');
out string(out channel, s);
out string(out channel, '[i]u := u');
for }i:=l\mathrm{ step 1 until }u\mathrm{ do
begin
in real(in channel, a[i];- out real(out channel, a[i]);
if i<u then out string(out channel, ',u')
else out string (out channel, 'udouiu := uiu+ul;u')
end;
end ioa:
end ioa;
procedure oti(i,s,n); value i,n; integer i,n; string s;
comment this and the following 3 procedures output Algol
statements compatible with those of the input output procedures
ioi, ior, iob, ioa;
begin
out string(out channel, s);
out string(out channel, 'u:= u');
integer format(n); out integer(out channel, i);
out string(out channel, '; 'u')
end oti;
procedure otr(r,s,B,n,d);
real r; string s; Boolcan B; integer n, d;
begin
out string(out channel, s);
out string(out channel, ' }\mathbf{v}:== u')
real format( }B,n,d)\mathrm{ ; out real(out channel, r);
out string(out channel, ';}\mathbf{\prime\prime}
end otr;
procedure otb (B,s,n); Boolean B; string s; integer n;
begin
out string(out channel, s);
out string(out channel, 'u:= 山');
Boolean.format(n); out Boolean(out channel, B);
out string (out channel, '; U')
end otb;
procedure ota(a,l,u,s,B,n,d);
integer l, u,n,d; array a; string s; Boolean B;
begin
integer i;
if l>u then go to end ota;
real format( }B,n,d); oti(l, ' i', 3)
out string(out channel, 'uforu');
out string(out channel, s);
out string(out channel, '[i]| := u');
for }i:=l\mathrm{ step 1 until }u\mathrm{ do
begin
out real(out channel, a[i]);
if i<u then out string(out channel, ',,।')
else out string (out channel, 'udo\nuiu:= = i山+山l; (\omega')
end;
end ota:
end ota;
procedure outi(i,n); integer i,n;
comment this and the following 3 procedures output integers,
real numbers, Booleans or one dimensional arrays using format
as indicated in out integer;
begin
integer format(n);
out integer(out channel, i)
end outi;
procedure outr(r,B,n,d); real r; Boolean B; integer n, d;

```
begin
real format \((B, n, d)\) ；
out real（out channel，\(r\) ）
end outr；
procedure \(\operatorname{outb}(B, n)\) ；Boolean \(b\) ；integer \(n\) ；
begin
Boolean format（ \(n\) ）；
out Boolean（out channel，B）
end outb；
procedure outa（ \(a, l, u, B, n, d)\) ；integer \(l, u, n, d\) ；array \(a\) ； Boolean B；
begin
integer \(i\) ；
if \(l>u\) then go to end outa；
real format \((B, n, d)\) ；
for \(i:=l\) step 1 until \(u\) do out real（out channel，a［i］）；
end outa：
end outa

\section*{ALGORITHM 336}

NETFLOW [H]
T. A. Bray and C. Witzgall
(Recd. 2 Oct. 1967 and 20 May 1968)
Boeing Scientific Research Laboratories, Seattle, WA 98124

KEY WORDS AND PHRASES: capacitated network, linear programming, minimum-cost flow, network flow, out-of-kilter
CR CATEGORIES: 5.32, 5.41
procedure NETFLOW (nodes, arcs, \(I, J\), cost, hi, lo, flow, pi, INFEAS);
value nodes, arcs; integer nodes, arcs;
integer array \(I, J\), cost, \(h i\), lo, flow, pi; label INFEAS;
comment This procedure determines the least-cost flow over an upper and lower bound capacitated flow network.

Each directed network arc \(a\) is defined by nodes \(I[a]\) and \(J[a]\), has upper and lower flow bounds \(h i[a]\) and \(l o[a]\), and cost per unit of flow cost \([a]\). Costs and flow bounds may be any positive or negative integers. An upper flow bound must be greater than or equal to its corresponding lower flow bound for a feasible solution to exist. There may be any number of parallel ares connecting any two nodes.
The procedure returns vectors fow and pi. fow \([a]\) is the computed optimal flow over network arc \(a . p i[n]\) is a number-the dual variable-which represents the relative value of injecting one unit of flow into the network of node \(n\). NETFLOW may be entered with any values in vectors flow and pi (such as those from a previous or a guessed solution) feasible or not. If the initial contents of flow do not conserve flow at any node, the solution values will also not conserve flow at that node, by the same amount.
This procedure is a revision (see remark by T. A. Bray and C. Witzgall [1]) of Algorithm 248 [2]. Like the original, it follows the out-of-kilter algorithm described by D. R. Fulkerson [3] and elsewhere. It follows the RAND code by R. \(J\) f Clasen (Fortran) in three instances, using a single set of labels \(n a\), which correspond to the \(n b\) of Algorithm 248, avoiding superfluous tests in the part following \(B A C K\) (for instance, \(c>0 \wedge\) fow \([a]<\) \(l o[a]\) is equivalent to \(c>0\) at this point of the program), and taking advantage of the fact that arcs remain in kilter and need not be rechecked again. In addition, the convention inf \(=\mathbf{- 1}\) is adopted in order to permit costs and bounds of value around 99999999 without their interfering with the initiation of minimum search.
References:
1. Bray, T. A., and Witzgall, C. Remark on Algorithm 248, NETFLOW. Comm. ACM 11 (Sept. 1968), 633.
2. Briggs, William A. Algorithm 248, NETFLOW. Comm. ACM 8 (Feb. 1965), 103.
3. Fulkerson, D. R. An out-of-kilte method for minimal-cost flow problems. J. Soc. Ind. Appl. Math. 9 (Mar. 1961), 18-27;
begin
integer \(a, a o k, c, c o k, d e l\), eps, inf, lab, \(m, n, s r c, s n k\);
integer array \(n a[1:\) nodes \(] ;\)
integer procedure \(\min p(x, y)\); value \(x, y\); integer \(x, y\);
begin
if \(x<y \wedge x \geqq 0\) then \(\min p:=x\) else \(\min p:=y\)
end \(\min p\);
comment check feasibility of formulation;
for \(a:=1\) step 1 until arcs do
if \(l o[a]>h i[a]\) then go to INFEAS;
inf \(:=-1\);
comment find out-of-kilter arc;
for \(a o k:=1\) step 1 until arcs do
begin
\(\operatorname{cok}:=\operatorname{cost}[a o k]+p i[I[a o k]]-p i[J[a o k]] ;\)
TEST: if \(f l o w[a o k]<l o[a o k] \vee(c o k<0 \wedge f l o w[a o k]<h i[a o k])\) then
begin
\(s r c:=J[a o k] ; \quad s n k:=I[a o k] ; n a[s r c]:=+a o k ;\)
go to \(L A B L\)
end;
if fow \([a o k]>h i[a o k] \vee(c o k>0 \wedge\) flow \([a o k]>l o[a o k])\) then
begin
\(s r c:=I[a o k] ; \quad s n k:=J[a o k] ; n a[s r c]:=-a o k ;\)
go to \(L A B L\)
end;
comment arc aok is in kilter;
go to \(N E X T\);
comment arc aok is out-of-kilter, clear all labels but source label, start new labeling;
\(L A B L\) : for \(n:=1\) step 1 until \(s r c-1\), src +1 step 1 until nodes do \(n a[n]:=0\);
LOOP: lab :=0;
comment switch set for determining whether a pass thru the list of arcs yields a new label;
for \(a:=1\) step 1 until arcs do
begin
if \((n a[I[a]]=0 \wedge n a[J[a]]=0) \vee(n a[I[a]] \neq 0 \wedge n a[J[a]] \neq 0)\) then go to \(X C\);
\(c:=\operatorname{cost}[a]+p i[I[a]]-p i[J[a]] ;\)
if \(n a[I[a]]=0\) then go to \(X A\);
if \(f l o w[a] \geqq h i[a] \vee(f l o w[a] \geqq l o[a] \wedge c>0)\) then go to \(X C\);
\(n a[J[a]]:=+a\); go to \(X B\);
\(X A\) : if flow \([a] \leqq l o[a] \vee(f l o w[a] \leq h i[a] \wedge c<0)\) then go to \(X C\);
\(n a[I[a]]:=-a ;\)
\(X B: l a b:=1 ;\)
comment node labeled, test for breakthru;
if \(n a[s n k] \neq 0\) then go to \(I N C R\);
\(X C\) : end no breakthru;
if \(l a b \neq 0\) then go to \(L O O P\);
comment nonbreakthru, determine change to \(p i\) vector;
del \(:=\) inf;
for \(a:=1\) step 1 until arcs do
begin
if \((n a[I[a]]=0 \wedge n a[J[a]]=0) \vee(n a[I[a]] \neq 0 \wedge n a[J[a]] \neq 0)\) then go to \(X D\);
\(c:=\cos t[a]+p i[T[a]]-p i[J[a]] ;\)
if \(n a[J[a]]=0 \wedge\) flow \([a]<h i[a]\) then
del \(:=\min p(d e l, c)\);
if \(n a[J[a]] \neq 0 \wedge\) flow \([a]>l o[a]\) then
del \(:=\operatorname{minp}(d e l,-c)\);
\(X D\) : end;
if \(d e l=\) inf then
begin
if \(f o w[a o k]=h i[a o k] \vee f o w[a o k]=l o[a o k]\) then
```

        del := abs(cok)
        else go to INFEAS
    end exit, no feasible flow;
    comment change pi vector by computed del;
    for n:= 1 step 1 until nodes do
    if na[n]=0 then pi[n]:= pi[n]+del;
    comment test whether aok is now in kilter;
    if del =abs(cok) ^flow[aok]\geqlo[aok] ^ flow[aok!
        \leqhi[aok] then
        go to NEXT;
    cok := cost[aok] + pi[I[aok]] - pi[J[aok]];
    go to LOOP;
    comment breakthru, compute incremental flow;
    INCR: eps:= inf; n := src;
BACK: a:= na[n];
if }a>0\mathrm{ then
begin
m:= I[a];
if cost[a]+pi[m] - pi[n]>0 then
eps := minp (eps, lo[a]-flow[a])
else eps := minp(eps, hi[a]-flow[a])
end
else
begin
m:= J[-a];
if cost[-a]+pi[n]-pi |m]<0 then
eps := minp(eps,flow[-a|-hi[-a])
else cps:= minp (eps,flow [-a]-lo[-a])
end;
n:=m; if n\not= src then go to BACK;
comment change flow by eps;
B.1CK2: a := na[n];
if a>0 then
begin
m:= I|a|; flow [a]:\not= flowr[a]+eps
end
else
begin
m :=J[-a]; flow[-a]:= flow[-a] - eps
end;
n:=m; if n}\not=\operatorname{src}\mathrm{ then go to B.ACK2;
comment test whether aok is now in kilter;
qo to TEST;
NENT:
end find next out-of-kilter are
end I NTFLOW with a feasible, optimal flow

```

REMARK゙ ON ALGORITHM \(336[\mathrm{H}]\)
NETFLOW [T. A. Bray and C. Witzgall, Comm. ACM 11 (Sept. 1968), 631-632]
T. A. Bray and C. Witzgall (Recd. 20 Oct. 1969)

Boeing Scientific Research Laboratories, Seattle, WA 98124

KEY WORDS AND PHRASES: capacitated network, linear programming, minimum-cost flow, network flow, out-of-kilter CR CATEGORIES: 5.32,5.41

The algorithm as published contains an error on the 11th line
following the line labled \(X D\), which reads:
\[
\text { if } d e l=a b s(c o k) \wedge \ldots
\]

This line should read
if \(\mathrm{del} \geq a b s(c o k) \wedge \ldots\)
Fortunately, this error does not invalidate the algorithm but may in some cases lead to additional operations.

ALGORITHM 337
CALCULATION OF A POLYNOMIAL AND ITS DERIVATIVE VALUES BY HORNER SCHEME [C1]
W. Pankiewicz (Recd. 28 Mar. 1968 and 16 May 1968)

Warszawa - 1, Al. 3-go Maja 2/68, Poland
KEY WORDS AND PHRASES: function evaluation, polynomial evaluation, Algol procedure, Horner's scheme
CR CATEGORIES: 5.12, 4.22
procedure horner (\(n, a, k, r, x 0, b\)); value \(n, k, x 0, b\);
integer \(n, k\); real \(x 0\); Boolean \(b\); array \(a, r\);
comment If \(b\) is true the procedure calculates and stores in \(r[i]\) the value of
\[
d^{i}\left(\sum_{j=0}^{n} a[j] \times x \uparrow j\right) / d x^{i}
\]
and \(x=x 0\) for \(i=0,1, \cdots, k\). If \(b\) is false it calculates and stores in the array \(r\) the values of the first \(k+1\) coefficients of the expansion of the polynomial in a power series in the neighborhood of \(x 0\), i.e.
\[
\sum_{j=0}^{n} a[j] \times x \uparrow j=\sum_{i=0}^{n} r[i] \times(x-x 0) \uparrow i .
\]

Here \(n\) is the degree of the polynomial whose coefficients are given by \(a[0: n]\). It is assumed that \(0 \leq k \leq n\). If \(k=0\) only the value of the polynomial is calculated. If \(b\) is false the choice \(k=n\) would be most useful.
This algorithm is essentially equivalent to Algorithm 29 [Comm. ACM \(\$\) (Nov. 1960), 604] in terms of quantities computed, but the application of Horner's scheme significantly reduces the number of operations.
Example 1. For the polynomial of degree \(n=5: w(x)=\) \(x \uparrow 5+2 \times x \uparrow 4-3 \times x \uparrow 3+8 \times x \uparrow 2-7 \times x+11\), \(k=2, x 0=2\) and \(b=\) true, the following was obtained: \(r[0]=\) \(69, r[1]=133, \quad r[2]=236\), i.e. \(\quad w(2)=69, w^{\prime}(2)=133\) and \(w^{\prime \prime}(2)=236\).
Example 2. For the polynomial of degree \(n=7: w(x)=\) \(x \uparrow 7-7 \times x \uparrow 5+6 \times x \uparrow 4+4 \times x \uparrow 3-x \uparrow 2-\) \(2 \times x-9, k=7, x 0=2\) and \(b=\) false the following vector \(r\) was obtained: 15, 122, 279, 332, 216, 77, 14, 1, i.e., the given polynomial can be expressed in the form: \(w(x)=15+122 \times\) \((x-2)+279 \times(x-2) \uparrow 2+332 \times(x-2) \uparrow 3+216 \times(x-2)\) \(\uparrow 4+77 \times(x-2) \uparrow 5+14 \times(x-2) \uparrow 6+(x-2) \uparrow 7\); begin
integer \(i, j, l\); real \(r r\);
\(r r:=a[0] ;\)
for \(i:=0\) step 1 until \(k\) do
\(r[i]:=r r ;\)
for \(\boldsymbol{j}:=1\) step 1 until \(\boldsymbol{n}\) do
begin
\(r[0]:=r[0] \times x 0+a[j] ;\)
\(l:=\) if \(n-j>k\) then \(k\) else \(n-j\);
for \(i:=1\) step 1 until \(l\) do
\(r[i]:=r[i] \times x 0+r[i-1]\)
end;
if \(b\) then
begin
```

    l:= 1;
    for i:= 2 step 1 until k do
    begin
        l:= l }\timesi
        r[i]:=r[i]\timesl
    end
    end
    end horner

```

REMARK ON ALGORITHM 337 [C1]
CALCULATION OF A POLYNOMIAL AND ITS DERIVATIVE VALUES BY HORNER SCHEME [W. Pankiewicz, Comm. ACM 11 (Sept. 1968), 633]
Oliver K. Smith (Recd. 27 Sept. 1968)
Applied Mathematics Dept., Systems Group of TRW, Inc., 1 Space Park, Redondo Beach, CA 90278
KEY WORDS AND PHRASES: function evaluation, polynomial evaluation, Algol procedure, Horner's scheme
\(C R\) CATEGORIES: 4.22,5.12
The definition of the given polynomial is incorrect in the comment. In both the third line and the eighth line of the comment, \(a[j]\) should be replaced by \(a[n-j\)]. Also the first word "and" of the fourth line of the comment should be changed to "at".

\author{
ALGORITHM 338 \\ ALGOL PROCEDURES FOR THE FAST FOURIER TRANSFORM [C6] \\ Richard C. Singleton* \\ (Recd. 21 Nov. 1966, 2 Aug. 1967 and 18 July 1968) \\ Stanford Research Institute, Menlo Park, CA 94025
}

KEY WORDS AND PHRASES: fast Fourier transform, complex Fourier transform, multivariate Fourier transform, Fourier series, harmonic analysis, spectral analysis, orthogonal polynomials, orthogonal transformation, virtual core memory, permutation
CR CATEGORIES: \(3.15,3.83,5.12,5.14\)

The following procedures are based on the Cooley-Tukey algorithm [1] for computing the finite Fourier transform of a complex data vector; the dimension of the data vector is assumed here to be a power of two. Procedure COMPLEXTRANSFORM computes either the complex Fourier transform or its inverse. Procedure REALTRANSFORM computes either the Fourier coefficients of a sequence of real data points or evaluates a Fourier series with given cosine and sine coefficients. The number of arithmetic operations for either procedure is proportional to \(n \log _{2} n\), where \(n\) is the number of data points.

Procedures FFT2, REVFFT2, REORDER, and REALTRAN are building blocks, and are used in the two complete procedures mentioned above. The fast transform can be cornputed in a number of different ways, and these building block procedures were written so as to make practical the computing of large transforms on a system with virtual memory. Using a method proposed by Singleton [2], data is accessed in sub-sequences of consecutive array elements, and as much computing as possible is done in one section of the data before moving on to another. Procedure \(F F T 2\) computes the Fourier transform of data in norrnal order, giving a result in reverse binary order. Procedure REVFFT2 computes the Fourier transform of data in reverse binary order and leaves the result in normal binary order. Procedure \(R\) REORDER permutes a complex vector from binary to reverse binary order or from reverse binary to binary order; this procedure also permutes real data in preparation for efficient use of the complex Fourier transform. Procedures \(F F T 2, R E V F F T 2\), and \(R E O R D E R\) may also be used to compute multivariate Fourier transforms. The procedure \(K E A L T R A N\) is used to unscramble and combine the complex transforms of the even and odd numbered elements of a sequence of real data points. This procedure is not restricted to powers of two and can be used whenever the number of data points is even.

\section*{References:}
1. Cooley, J. W., and Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 90, (Apr. 1965), 297-301.
2. Singleton, R. C. On computing the fast Fourier transform. Comm. ACM 10 (Oct. 1967), 647-654;

\footnotetext{
* This work was supported by Stanford Research Institute out of Research and Development funds.
}
procedure COMPLEXTRANSFORM (\(A, B, m\), inverse); value \(m\), inverse; integer \(m\); Boolean inverse; array \(A, B\);
comment Computes the Fourier transform of \(2^{m}\) complex data values. The arrays \(A[0: n-1]\) and \(B[0: n-1]\), where \(n=2^{m}\), initially contain the real and imaginary components of the data, and on exit contain the corresponding Fourier coefficient values. If inverse is false, the Fourier transform
\[
\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1}\left(a_{k}+i b_{k}\right) \exp (i 2 \pi j k / n)
\]
is computed. The transform followed by the inverse transform (or the inverse transform followed by the transform) gives an identity transformation. Procedures FFT2 and REORDER are used by this procedure and must also be declared;
begin integer \(n, j\); real \(p, q\);
\(n:=2 \uparrow m ; p:=q:=1.0 / \operatorname{sqrt}(n) ;\)
if inverse then
begin
\(q:=-q ;\)
for \(j:=n-1\) step -1 until 0 do \(B[j]:=-B[j]\)
end;
FFT2 (\(A, B, n, m, n\)) ; REORDER(A, \(B, n, m, n\), false);
for \(j:=n-1\) step -1 until 0 do
\(\operatorname{begin} A[j]:=A[j] \times p ; \quad B[j]:=B[j] \times q\) end
end COMPLEXTRANSFORM;
procedure \(R E A L T R A N S F O R M(A, B, m\), inverse);
value \(m\), inverse; integer \(m\);
Boolean inverse; array \(A, B\);
comment Computes the finite Fourier transform of \(2^{m+1} \geqq 4\) real data points. If inverse is false, the arrays \(A[0: n]\) and \(B[0: n]\), where \(n=2^{m}\), initially contain the first \(2^{m}\) real data points \(x_{0}, x_{1}, \cdots, x_{n-1}\) as \(A[0], \cdots, A[n-1]\) and the remaining \(2^{m}\) real data points \(x_{n}, x_{n+1}, \cdots, x_{2 n-1}\) as \(B[0], B[1], \cdots, B[n-1]\). On completion of the transform the arrays \(A\) and \(B\) contain respectively the Fourier cosine and sine coefficients \(a_{k}\) and \(b_{k}\), computed according to the relations
\[
a_{k}=\frac{1}{n} \sum_{j=0}^{2 n-1} x_{j} \cos (\pi j k / n) \quad \text { for } \quad k=0,1, \cdots, n
\]
and
\[
b_{k}=\frac{1}{n} \sum_{k=0}^{2 n-1} x_{j} \sin (\pi j k / n) \text { for } k=0,1, \cdots, n
\]

If inverse is true, the arrays \(A\) and \(B\) initially contain \(n+1\) cosine coefficients \(a_{0}, a_{1}, \cdots, a_{n}\) and \(n+1\) sine coefficients \(b_{0}, b_{1}, \cdots, b_{n}\), where \(b_{0}=b_{n}=0\). The procedure evaluates the corresponding time series \(x_{0}, x_{1}, \cdots, x_{2 n-1}\), where
\[
x_{j}=\frac{a_{0}}{2}+\sum_{k=1}^{n-1}\left[a_{k} \cos (\pi j k / n)+b_{k} \sin (\pi j k / n)\right]+\frac{a_{n}}{2} \cos (\pi j)
\]
and leaves the first \(n\) values as \(A[0], A[1], \cdots, A[n-1]\) and the remaining \(n\) values as \(B[0], B[1], \cdots, B[n-1]\). The procedures \(F F T 2, R E V F F T 2, R E O R D E R\), and \(R E A L T R A N\) are used by this procedure, and must also be declared;
begin integer \(n, j\); real \(p\);
\(n:=2 \uparrow m ;\)
if inverse then
begin
REALTRAN (A, B, n, true);
for \(j:=n-1\) step -1 until 0 do \(B[j]:=-B[j]\);
FFT2(A, B, n, m, n);
for \(j:=n-1\) step -1 until 0 do
begin \(A[j]:=0.5 \times A[j] ; \quad B[j]:=-0.5 \times B[j]\) end; \(\operatorname{REORDER}(A, B, n, m, n\), true \()\)
end
else
begin
\(\operatorname{REORDER}(A, B, n, m, n\), true \()\);
\(\operatorname{REVFFT} 2(A, B, n, m, 1) ; \quad p:=0.5 / n\);
for \(j:=n-1\) step -1 until 0 do
begin \(A[j]:=p \times A[j] ; \quad B[j]:=p \times B[j]\) end; \(\operatorname{REALTRAN}(A, B, n\), false)
end
end REALTRANSFORM;
procedure \(F F T 2(A, B, n, m, k s)\); value \(n, m, k s\);
integer \(n, m, k s ;\) array \(A, B\);
comment Computes the fast Fourier transform for one variable of dimension \(2^{m}\) in a multivariate transform. \(n\) is the number of data points, i.e., \(n=n_{1} \times n_{2} \times \cdots \times n_{p}\) for a \(p\)-variate transform, and \(k s=n_{k} \times n_{k+1} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. Arrays \(A[0: n-1]\) and \(B[0: n-1]\) originally contain the real and imaginary components of the data in normal order. Multivariate data is stored according to the usual convention, e.g., \(a_{j k l}\) is in \(A\left[j \times n_{2} \times n_{3}+k \times n_{3}+l\right]\) for \(j=0,1, \cdots, n_{1}-1, k=0,1, \cdots, n_{2}-1\), and \(l=0\), \(1, \cdots, n_{3}-1\). On exit, the real and imaginary components of the resulting Fourier coefficients for the current variable are in reverse binary order. Continuing the above example, if the "column" variable \(n_{2}\) is the current one, column
\[
k=k_{m-1} 2^{m-1}+k_{m-2} 2^{m-2}+\cdots+k_{1} 2+k_{0}
\]
is permuted to position
\[
k_{0} 2^{m-1}+k_{1} 2^{m-2}+\cdots+k_{m-2} 2+k_{m-1} .
\]

A separate procedure may be used to permute the results to normal order between transform steps or all at once at the end. If \(n=k s=2^{m}\), the single-variate transform
\[
\left(x_{j}+i y_{j}\right)=\sum_{k=0}^{n-1}\left(a_{k}+i b_{k}\right) \exp (i 2 \pi j k / n)
\]
for \(j=0, \cdots, n-1\) is computed, where (\(a+i b\)) represent the initial values and \((x+i y)\) represent the transformed values;
begin integer \(k 0, k 1, k 2, k 3\), span, \(j, j j, k, k b, k n, m m, m k\);
real \(\mathrm{rad}, \mathrm{c} 1, c 2, c 3, s 1, s 2, s 3, c k, s k, s q\);
real \(A 0, A 1, A 2, A 3, B 0, B 1, B 2, B 3\);
integer array \(C[0: m]\);
\(s q:=0.707106781187\);
sk \(:=0.382683432366\);
ck \(:=0.92387953251\);
\(C[m]:=k s ; \quad m m:=(m \div 2) \times 2 ; \quad k n:=0 ;\)
for \(k:=m-1\) step -1 until 0 do \(C[k]:=C[k+1] \div 2\);
rad \(:=6.28318530718 /(C[0] \times k s) ; ~ m k:=m-5\);
\(L: k b:=k n ; k n:=k n+k s ;\)
if \(m m_{1} \neq m\) then
begin
\(k 2:=k n ; k 0:=C[\mathrm{~mm}]+k b ;\)
L2: \(k 2:=k 2-1 ; k 0:=k 0-1\);
\(A 0:=A[k 2] ; \quad B 0:=B[k 2] ;\)
\(A[k 2]:=A[k 0]-A 0 ; \quad A[k 0]:=A[k 0]+A 0\);
\(B[k 2]:=B[k 0]-B 0 ; \quad B[k 0]:=B[k 0]+B 0 ;\)
if \(k 0>k b\) then go to \(L 2\)
end;
\(c 1:=1.0 ; \quad s 1:=0\);
\(j j:=0 ; \quad k:=m m-2 ; \quad j:=3\);
if \(k \geqq 0\) then go to \(L 4\) else go to \(L 6\);
L3: if \(C[j] \leqq j j\) then
begin
\(j j:=j j-C[j] ; \quad j:=j-1 ;\)
if \(C[j] \leqq j j\) then
begin
\(j j:=j j-C[j] ; \quad j:=j-1 ; \quad k:=k+2 ;\)
go to \(L 3\)
end
end;
\(j j:=C[j]+j j ; \quad j:=3 ;\)
L4: span :=C[k];
if \(j j \neq 0\) then
begin
\(c 2:=j j \times \operatorname{span} \times \mathrm{rad} ; \quad c 1:=\cos (c 2) ; \quad s 1:=\sin (c 2) ;\)
L5: \(\quad c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; \quad s 2:=2.0 \times c 1 \times s 1\);
\(c 3:=c 2 \times c 1-s 2 \times s 1 ; \quad s 3:=c 2 \times s 1+s 2 \times c 1\)
end;
for \(k 0:=k b+\operatorname{span}-1\) step -1 until \(k b\) do
begin
\(k 1:=k 0+\) span ; \(k 2:=k 1+\) span; \(k 3:=k 2+\) span;
\(A 0:=A[k 0] ; \quad B 0:=B[k 0] ;\)
if \(s 1=0\) then
begin
\(A 1:=A[k 1] ; \quad B 1:=B[k 1] ;\)
\(A 2:=A[k 2] ; \quad B 2:=B[k 2] ;\)
\(A 3:=A[k 3] ; \quad B 3:=B[k 3]\)
end
else
begin
\(A 1:=A[k 1] \times c 1-B[k 1] \times s 1 ;\)
\(B 1:=A[k 1] \times s 1+B[k 1] \times c 1 ;\) \(A 2:=A[k 2] \times c 2-B[k 2] \times s 2\); \(B 2:=A[k 2] \times s 2+B[k 2] \times c 2 ;\) \(A 3:=A[k 3] \times c 3-B[k 3] \times s 3 ;\) \(B 3:=A[k 3] \times s 3+B[k 3] \times c 3\)
end;
\(A[k 0]:=A 0+A 2+A 1+A 3 ; \quad B[k 0]:=B 0+B 2+B 1+B 3 ;\)
\(A[k 1]:=A 0+A 2-A 1-A 3 ; \quad B[k 1]:=B 0+B 2-B 1-B 3 ;\)
\(A[k 2]:=A 0-A 2-B 1+B 3 ; \quad B[k 2]:=B 0-B 2+A 1-A 3 ;\)
\(A[k 3]:=A 0-A 2+B 1-B 3 ; \quad B[k 3]:=B 0-B 2-A 1+A 3\)
end;
if \(k .>0\) then begin \(k:=k-2\); go to \(L 4\) end;
\(k b:=k 3+s p a n ;\)
if \(k b<k n\) then
begin
if \(j=0\) then begin \(k:=2 ; j:=m k ;\) go to \(L 3\) end;
\(j:=j-1 ; \quad c 2:=c 1\);
if \(j=1\) then
begin \(c 1:=c 1 \times c k+s 1 \times s k ; \quad s 1:=s 1 \times c k-c 2 \times s k\) end else begin \(c 1:=(c 1-s 1) \times s q ; \quad s 1:=(c 2+s 1) \times s q\) end; go to \(L 5\)
end;
\(L 6:\) if \(k n<n\) then go to \(L\)
end FFT2;

integer \(n, m, k s\); array \(A, B\);
comment Computes the fast Fourier transform for one variable of dimension \(2^{n}\) in a multivariate transform. \(n\) is the number of data points, i.e., \(n=n_{1} \times n_{2} \times \cdots \times n_{p}\) for a \(p\)-variate transform, and \(k s=n_{k+1} \times n_{k+2} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. Arrays \(A[0: n-1]\) and \(B[0: n-1]\) originally contain the real and imaginary components of the data with the indices of each variable in reverse binary order, e.g., \(a_{j k l}\) is in \(A\left[j^{\prime} \times n_{2} \times n_{3}+k^{\prime} \times n_{3}+l^{\prime}\right]\) for \(j=0,1, \cdots\),
\(n_{1}-1, k=0,1, \cdots, n_{2}-1\), and \(l=0, \cdots, n_{3}-1\), where
\(j^{\prime}, k^{\prime}\), and \(l^{\prime}\) are the bit-reversed values of \(j, k\), and \(l\). On comple-
tion of the multivariate transform, the real and imaginary components of the resulting Fourier coefficients are in \(A\) and \(B\) in normal order. If \(n=2^{m}\) and \(k s=1\), a single-variate transform is computed;
begin
integer \(k 0, k 1, k 2, k 3, k 4\), span \(, n n, j, j j, k, k b, n t, k n, m k\);
real rad, \(c 1, c 2, c 3, s 1, s 2, s 3, c k, s k, s q\);
real \(A 0, A 1, A 2, A 3, B 0, B 1, B 2, B 3, r e, i m\);
integer array \(C[0: m]\);
\(s q:=0.707106781187\);
sk :=0.382683432366;
ck \(:=0.92387953251\);
\(C[0]:=k s ; \quad k n:=0 ; \quad k 4:=4 \times k s ; \quad m k:=m-4 ;\)
for \(k:=1\) step 1 until \(m\) do \(C[k]:=k s:=k s+k s\).
\(\mathrm{rad}:=3.14159265359 /(C[0] \times k s)\);
L: \(\quad k b:=k n+k 4 ; \quad k n:=k n+k s ;\)
if \(m=1\) then go to \(L 5\);
\(k:=j j:=0 ; j:=m k ; n t:=3\);
\(c 1:=1.0 ; \quad s 1:=0\);
L2: span :=C[k];
if \(j j \neq 0\) then
begin
\(c 2:=j j \times \operatorname{span} \times \mathrm{rad} ; \quad c 1:=\cos (c 2) ; \quad s 1:=\sin (c 2) ;\)
L3: \(c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; s 2:=2.0 \times c 1 \times s 1\);
\(c 3:=c 2 \times c 1-s 2 \times s 1 ; s 3:=c 2 \times s 1+s 2 \times c 1\)
end clse \(s 1:=0\);
\(k 3:=k b-\) span;
L4: \(k 2:=k 3-\) span; \(k 1:=k 2-\) span; \(k 0:=k 1-\) span;
\(A 0:=A[k 0] ; \quad B 0:=B[k 0] ;\)
\(A 1:=A[k 1] ; \quad B 1:=B[k 1]\);
\(A 2:=A[k 2] ; \quad B 2:=B[k 2] ;\)
\(A 3:=A[k 3] ; \quad B 3:=B[k 3] ;\)
\(A[k 0]:=A 0+A 1+A 2+A 3 ; \quad B[k 0]:=B 0+B 1+B 2+B 3 ;\)
if \(s 1=0\) then

\section*{begin}
\(A[k 1]:=A 0-A 1-B 2+B 3 ; \quad B[k 1]:=B 0-B 1+A 2-A 3 ;\)
\(A[k 2]:=A 0+A 1-A 2-A 3 ; \quad B[k 2]:=B 0+B 1-B 2-B 3\);
\(A[k 3]:=A 0-A 1+B 2-B 3 ; \quad B[k 3]:=B 0-B 1-A 2+A 3\)
end
else
begin
\[
r e:=A 0-A 1-B 2+B 3 ; \quad \text { im }:=B 0-B 1+A 2-A 3 ;
\]
\[
A[k 1]:=r e \times c 1-i m \times s 1 ; \quad B[k 1]:=r e \times s 1+i m \times c 1 ;
\]
\[
r e:=A 0+A 1-A 2-A 3 ; \quad \text { im }:=B 0+B 1-B 2-B 3 ;
\]
\[
A[k 2]:=r e \times c 2-i m \times s 2 ; \quad B[k 2]:=r e \times s 2+i m \times c 2 ;
\]
\[
r e:=A 0-A 1+B 2-B 3 ; \quad \text { im }:=B 0-B 1-A 2+A 3 ;
\]
\[
A[k 3]:=r e \times c 3-i m \times s 3 ; \quad B[k 3]:=r e \times s 3+i m \times c 3
\]
end;
\(k 3:=k 3+1\); if \(k 3<k b\) then go to \(L 4\);
\(n t:=n t-1\);
if \(n t \geqq 0\) then
begin
\(c 2:=c 1\);
if \(n t=1\) then
begin \(c 1:=c 1 \times c k+s 1 \times s k ; \quad s 1:=s 1 \times c k-c 2 \times s k\) end
else begin \(c 1:=(c 1-s 1) \times s q ; \quad s 1:=(c 2+s 1) \times s q\) end;
\(k b:=k b+k 4 ; \quad\) if \(k b \leqq k n\) then go to \(L 3\) else go to \(L 5\)
end;
if \(n t=-1\) then begin \(k:=2\); go to \(L 2\) end;
if \(C[j] \leqq j j\) then
begin
\(j i:=j j-C[j] ; \quad j:=j-1 ;\)
if \(C[j] \leqq j j\) then
begin \(j j:=j j-C[j] ; j:=j-1 ; k:=k+2\) end else begin \(j j:=C[j]+j j ; j:=m k\) end
end
else begin \(j j:=C[j]+j j ; j:=m k\) end \(;\)
if \(j<m k\) then go to \(L 2 ; k:=0 ; \quad n t:=3\);
\(k b:=k b+k 4\); if \(k b \leqq k n\) then go to \(L 2\);
\(L 5: k:=(m \div 2) \times 2\);

\section*{if \(k \neq m\) then}

\section*{begin}
\(k 2:=k n ; k 0:=j:=k n-C[k] ;\)
\(L 6: k 2:=k 2-1 ; \quad k 0:=k 0-1\);
\(A 0:=A[k 2] ; \quad B 0:=B[k 2] ;\)
\(A[k 2]:=A[k 0]-A 0 ; \quad A[k 0]:=A[k 0]+A 0 ;\)
\(B[k 2]:=B[k 0]-B 0 ; \quad B[k 0]:=B[k 0]+B 0 ;\)
if \(k 2>j\) then go to \(L 6\)
end;
if \(k n<n\) then go to \(L\)
end REVFFT2;
procedure \(\operatorname{REORDER}(A, B, n, m, k s\), reel \()\);
value \(n, m, k s\), reel; integer \(n, m, k s\);
Boolean reel; array \(A, B\);
comment Permutes data from normal to reverse binary order or from reverse binary to normai order. If reel is false, data for one variate of dimension \(2^{m}\) in a multivariate data set of size \(n\) is permuted. In a \(p\)-variate transform with \(n=n_{1} \times n_{2} \times\) \(\cdots \times n_{p}\), ks has the value \(k s=n_{k} \times n_{k+1} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. For a singlevariate transform, \(n=k s=2^{m}\). If reel is true, \(A[2 \times j+1]\) and \(B[2 \times j]\) are exchanged for \(j=0,1, \cdots,(n-2) / 2\), then adjacent pairs of entries in \(A\) and \(B\) are permuted to reverse-binary order. This option is used when transforming \(2 n\) real data values, with the first \(n\) stored in \(A\) and the second \(n\) in \(B\). After permutation, the even-numbered entries are in \(A\) and the odd-numberd entries are in \(B\), each in reverse-binary order.
Calling REORDER twice with the same parameter values gives an identity transformation;
begin integer \(i, j, j j, k, k k, k b, k 2, k u, \lim , p\);
real \(t\);
integer array \(C, L S T[0: m]\);
\(C[m]:=k s ;\)
for \(k:=m\) step -1 until 1 do \(C[k-1]:=C[k] \div 2\) :
\(p:=j:=m-1 ; \quad i:=k b:=0\);
if reel then
begin
\(k u:=n-2\);
for \(k:=0\) step 2 until \(k u\) do
\(\operatorname{begin} t:=A[k+1] ; \quad A[k+1]:=B[k] ; \quad B[k]:=t\) end
end else \(m:=m-1\);
\(\lim :=(m+2) \div 2 ;\) if \(p \leqq 0\) then go to \(L 4\);
\(L: k u:=k 2:=C[j]+k b ; \quad j j:=C[m-j] ; k k:=k b+j j ;\)
\(L 2: k:=k k+j j\);
\(L 3: \quad t:=A[k k] ; \quad A[k k]:=A[k 2] ; \quad A[k 2]:=t\);
\(t:=B[k k] ; \quad B[k k]:=B[k 2] ; \quad B[k 2]:=\ell ;\)
\(k k:=k k+1 ; \quad k 2:=k 2+1 ;\)
if \(k k<k\) then go to \(L 3\);
\(k k:=k k+j j ; \quad k 2:=k 2+j j ;\)
if \(k k<k u\) then go to \(L 2\);
if \(j>\lim\) then
begin
\(j:=j-1 ; \quad i:=i+1 ;\)
\(L S T[i]:=j ;\) go to \(L\)
end;
\(k b:=k 2\);
if \(i>0\) then
begin \(j:=L S T[i] ; \quad i:=i-1\); go to \(L\) end;
if \(k b<n\) then begin \(j:=p\); go to \(L\) end;
L4:
end REORDER;
procedure REALTRAN (\(A, B, n\), evaluate) ;
value \(n\), evaluate; integer \(n\);
Boolean evaluate; array \(A, B\);
comment If evaluate is false, this procedure unscrambles the single-variate complex transform of the \(n\) even-numbered and \(n\)-odd-numbered elements of a real sequence of length \(2 n\), where the even-numbered elements were originally in \(A\) and the oddnumbered elements in \(B\). Then it combines the two real transforms to give the Fourier cosine coefficients \(A[0], A[1], \cdots, A[n]\) and sine coefficients \(B[0], B[1], \cdots, B[n]\) for the full sequence of \(2 n\) elements. If evaluate is true, the process is reversed, and a set of Fourier cosine and sine coefficients is made ready for evaluation of the corresponding Fourier series by means of the inverse complex transform. Going in either direction, REALTRAN scales by a factor of two, which should be taken into account in determining the appropriate overall scaling;
begin integer \(k, n k, n h\);
real \(a a, a b, b a, b b, r e, i m, c k, s k, d c, d s, r\);
\(n h:=n \div 2 ; r:=3.14159265359 / n\);
\(d s:=\sin (r) ; \quad r:=-(2 \times \sin (0.5 \times r)) \uparrow 2\);
\(d c:=-0.5 \times r ; \quad c k:=1.0 ; \quad s k:=0\);
if evaluate then
begin \(c k:=-1.0 ; d c:=-d c\) end
else begin \(A[n]:=A[0] ; B[n]:=B[0]\) end;
for \(k:=0\) step 1 until \(n h\) do
begin
\(n k:=n-k ;\)
\(a a:=A[k]+A[n k] ; \quad a b:=A[k]-A[n k] ;\)
\(b a:=B[k]+B[n k] ; \quad b b:=B[k]-B[n k] ;\)
\(r e:=c k \times b a+s k \times a b ; \quad i m:=s k \times b a-c k \times a b ;\)
\(B[n k]:=i m-b b ; \quad B[k]:=i m+b b ;\)
\(A[n k]:=a a-r e ; \quad A[k]:=a a+r e ;\)
\(d c:=r \times c k+d c ; \quad c k:=c k+d c ;\)
\(d s:=r \times s k+d s ; \quad s k:=s k+d s\)
end
end REALTRAN

\section*{ALGORITHM 339}

AN ALGOL PROCEDURE FOR THE FAST FOURIER TRANSFORM WITH ARBITRARY FACTORS [C6] Richard C. Singleton*
(Recd. 2 Dec. 1966, 19 July 1967, 2 Aug. 1967 and 18 July 1968)
Stanford Research Institute, Menlo Park, CA 94025
KEY WORDS AND PHRASES: fast Fourier transform, complex Fourier transform, multivariate Fourier transform, Fourier series, harmonic analysis, spectral analysis, orthogonal polynomials, orthogonal transformation, virtual core memory, permutation CR CATEGORIES: 3.15, 3.83, 5.12, 5.14
procedure \(F F T(A, B, n, n v, k s)\); value \(n, n v, k s\);
integer \(n, n v, k s ; \quad\) array \(A, B\);
comment This procedure computes the finite Fourier transform for one variate of dimension \(n v\) within a multivariate transform of \(n\) complex data values. The real and imaginary components
*This research was supported by Stanford Research Institute out of Research and Development funds.
of the data are stored in arrays \(A[0: n-1]\) and \(B[0: n-1]\), following the usual arrangement for indexing multivariate data in a single-dimensional array, e.g., \(a_{j k l}\) is stored in location \(A\left[j \times n_{2} \times n_{3}+k \times n_{3}+l\right]\) for \(j=0,1, \cdots, n_{1}-1, k=0,1, \cdots\), \(n_{2}-1\), and \(l=0,1, \cdots, n_{3}-1\). The value of \(k s\) for the \(k\) th variate of a \(p\)-variate transform is
\[
k s=n_{k} \times n_{k+1} \times \cdots \times n_{p}
\]
where \(n v=n_{k}\) and \(n=n_{1} \times n_{2} \times \cdots \times n_{p}\). On completion of the transform, the real and imaginary components of the resulting Fourier coefficients are in \(A\) and \(B\) respectively. For a single variable, \(n=n v=k s\), and the transform
\[
\sum_{k=0}^{n-1}\left(a_{k}+i b_{k}\right) \exp (i 2 \pi j k / n)
\]
is computed for \(j=0,1, \cdots, n-1\).
For a single-variate transform of \(2 n\) real-valued points, the amount of computing can be reduced by approximately one-half by using procedure \(R E A L T R A N\) [3] together with \(F F T\). The even-numbered data points are stored initially in array \(A\), the odd-numbered data points in array \(B\), the transform is computed with
\[
F F T(A, B, n, n, n)
\]
and the result is unscrambled with
\[
R E A L T R A N(A, B, n, \text { false })
\]
and then scaled by \(1 / 2 n\) to give the cosine coefficients as \(A[0]\), \(A[1], \cdots, A[n]\) and the sine coefficients ass \(B[1], B[2], \cdots\), \(B[n-1]\), with \(B[0]=B[n]=0\). The inverse operation, evaluating the Fourier series with cosine coefficients \(A\) and sine coefficients \(B\), is computed by
\[
R E A L T R A N(A, B, n, \text { true })
\]
followed by
\[
F F T(A, B, n, n, n)
\]
then scaling by \(1 / 2\), yielding the even-numbered time domain values in array \(A\) and the odd-numbered values in array \(B\). Note that the upper bounds of array \(A\) and \(B\) must be increased to \(n\) when procedure \(R E A L T R A N\) is used.

The method is based on an algorithm due to Cooley and Tukey [1], with modifications proposed by Singleton [2], to allow computing of large transforms on a system with virtual memory. The dimension \(n v\) is first decomposed into its prime factors \(n v_{1}, n v_{2}, \cdots, n v_{m}\), and then \(n v / n v_{i}\) transforms of dimension \(n v_{i}\) are computed for \(i=1,2, \cdots, m\). The resulting transformed values are then permuted to normal order in a final step. Computing times, to a first approximation, should be proportional to \(n\left(n v_{1}+n v_{2}+\cdots+n v_{m}\right)\). The dimension of array \(F A C T O R\) must be increased if \(n v\) has more than 20 factors.

In factoring \(n v\) at the beginning of the procedure, factors that are squares of primes are first removed, then the square-free portion is factored. The two factors of each square are placed symmetrically about the square-free factors. For example, \(n v=72\) is factored as \(2 \times 3 \times 2 \times 3 \times 2\). This arrangement is used to simplify the final reordering in place. One symmetric permutation step is done for each square factor, and the reordering is completed by following the permutation cycles of the square-free portion.

In the transform phase of the procedure, special coding for factors of 2 and 3 is included for efficiency. Adjacent factors of 2 are also paired, and the results stored as for factors of 2 rather than 4. The remaining factors are handled by an odd-factor routine, using trigonometric function symmetries and smaller real transforms to reduce the number of multiplications by onehalf as compared with a straightforward complex transform of an odd factor. The approximate number of complex multiplications is \(n / 2\) for a factor of \(2,3 n / 4\) for a factor of 4 , and \((p-1)(p+3) n / 4 p\) for an odd factor \(p\).
In both the transform and reordering phases, data is accessed in subsequences of consecutive array elements, and as much computing as possible is done in one section of the data before moving on to another. This is done to reduce the number of memory overlay operations in a system with virtual memory. After the first transform or symmetric permutation step, the remaining steps can be performed independently on each of \(n v_{1}\) spans of data. We complete all remaining steps on the first span before beginning with the second. Similarly, after the second step the first span is subdivided in \(n v_{2}\) independent spans. This subdivision process is continued through the remaining steps.

A number of working storage arrays are declared within this procedure. For large \(n\), the total working storage is small in comparison with the \(2 n\) locations for data arrays \(A\) and \(B\), except in a couple of cases. In the transform phase, approximately \(6 q\) working storage locations are used, where \(q\) is the largest prime factor in the transform. This requirement is minor except in a single-variate transform with \(n\) a prime number. During the reordering phase, the worst case occurs when doing a singlevariate transform with \(n\) a product of two or more primes with no square factors. In this case, approximately \(n\) working storage locations are required.
This program was tested on the Burroughs B5500 computer and compared with another program computing a single \(n\)-by- \(n\)
complex Fourier transform. Whenever \(n\) had two or more prime factors, procedure FFT was much faster. The B5500 ALGOL system limits single-dimension arrays to 1023 words, but larger transforms can be computed by declaring
\[
\text { array } A, \mathcal{B}[0:(n-1) \div 512,0: 511]
\]
storing the data 512 entries per row, and using partial word indexing \(A[J .[30: 9], J .[39: 9]]\) instead of \(A[J]\) wherever \(A\) and \(B\) appear in procedure \(F F T\).

References:
1. Cooley, J. W., and Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 90 (Apr. 1965), 297-301.
2. Singleton, R. C. On computing the fast Fourier transform. Comm. ACM 10 (Oct. 1967), 647-654.
3. Singleton, R. C. Algorithm 338: ALGOL procedures for the fast Fourier transform. Comm. ACM 11 (Nov. 1968), 771-774;
begin integer array \(F A C T O R[0: 20]\); Boolean zero;
real \(A 0, A 1, A 2, A 3, B 0, B 1, B 2, B 3, \mathrm{~cm}, \mathrm{sm}\), \(c 1, c 2, c 3, s 1, s 2, s 3, c 30, r a d ;\)
integer \(k 0, k 1, k 2, k 3, j k, k f, k h, j f, m m\), \(i, j, j j, k, k b, m, s p a n, k t, k n\);
comment Determine the square factors of \(n v\);
\(k:=n v ; \quad m:=0 ; \quad j:=2 ; \quad j j:=4 ; \quad j f:=0 ;\)
FACTOR [0]: \(=1\);
\(L\) : for \(i:=k \div j j\) while \(i \times j j=k\) do
begin \(m:=m+1 ; \quad\) FACTOR \([m]:=j ; k:=i\) end;
if \(j=2\) then \(j:=3\) else \(j:=j+2\);
\(j j:=j \times j ;\) if \(j j \leqq k\) then go to \(L ; k t:=m\);
comment Determine the remaining factors of \(n v\);
for \(j:=2,3\) step 2 until \(k\) do
for \(i:=k \div j\) while \(i \times j=k\) do
begin \(m:=m+1 ;\) FACTOR \([m]:=j ; k:=i\) end;
if \(F A C T O R[k t]>F A C T O R[m]\) then \(k:=F A C T O R[k t]\)
else \(k:=F A C T O R[m]\);
for \(j:=k l\) step -1 until 1 do
begin \(m:=m+1 ; \quad\) FACTOR \([m]:=F A C T O R[j]\) end;
begin integer array \(C, D[0: m]\);
begin array \(C K, S K, C F, S F[0: k-1]\);
array \(A P, B P, A M, B M[0:(k-1) \div 2]\);
array \(R D, C C, S S[0: m]\);
Booiean array \(B B[0: m+1]\);
rad \(:=6.28318530718 ; \quad c 30:=0.866025403784\);
for \(j:=m\) step -1 until 2 do
begin
\(B B[j]:=(F A C T O R[j-1]+F A C T O R[j])=4 ;\)
if \(B B[j]\) then
begin \(j:=j-1 ; \quad B B[j]:=\) false end
end;
\(B B[m+1]:=B B[1]:=\) false;
\(C[0]:=k s \div n v ; k n:=0 ; D[0]:=k s ;\)
for \(j:=1\) step 1 until \(m\) do
begin
\(k:=F A C T O R[j] ; \quad C[j]:=C[j-1] \times k ;\)
\(D[j]:=D[j-1] \div k ; R D[j]:=r a d / C[j] ;\)
\(c 1:=\mathrm{rad} / \mathrm{k}\);
if \(k>2\) then
begin \(C C[j]:=\cos (c 1) ; \quad S S[j]:=\sin (c 1)\) end
end;
\(m m:=\) if \(B B[m]\) then \(m-1\) else \(m\);
if \(m m>1\) then
begin
\(s m:=C[m m-2] \times R D[m] ;\)
\(c m:=\cos (s m) ; \quad s m:=\sin (s m)\)
end;
\(L 1: k b:=k n ; k n:=k n+k s ; \quad j j:=0 ; \quad i:=1\);
c1 \(:=1.0 ;\) s1 \(:=0\); zero \(:=\) true;
\(L 2\) : if \(B B[i+1]\) then
begin kf \(:=4 ; \quad i:=i+1\) end
else \(k f:=\) FACTOR \([i]\);
span \(:=D[i]\);
if \(\neg\) zero then
begin
\[
s 1:=j j \times R D[i] ; \quad c 1:=\cos (s 1) ; \quad s 1:=\sin (s 1)
\]
end;
comment Factors of 2, 3, and 4 are handled
separately to gain efficiency;
L3: \(\quad\) if \(k f=4\) then
begin

\section*{if \(\neg\) zero then}
begin
\(c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; s 2:=2.0 \times c 1 \times s 1 ;\)
\(c 3:=c 2 \times c 1-s 2 \times s 1 ; s 3:=c 2 \times s 1+s 2 \times c 1\)
end;
for \(k 0:=k b+\) span -1 step -1 until \(k b\) do
begin
\(k 1:=k 0+\operatorname{span} ; k 2:=k 1+\) span; \(k 3:=k 2+\) span \(;\)
\(A 0:=A[k 0] ; \quad B 0:=B[k 0]\);
if zero then
begin
\(A 1:=A[k 1] ; \quad B 1:=B[k 1] ;\)
\(A 2:=A[k 2] ; \quad B 2:=B[k 2] ;\)
\(A 3:=A[k 3] ; B 3:=B[k 3]\)
end
else
begin
\(A 1:=A[k 1] \times c 1-B[k 1] \times s 1 ;\)
\(B 1:=A[k 1] \times s 1+B[k 1] \times c 1 ;\)
\(A 2:=A[k 2] \times c 2-B[k 2] \times s 2 ;\)
\(B 2:=A[k 2] \times s 2+B[k 2] \times c 2\);
\(A 3:=A[k 3] \times c 3-B[k 3] \times s 3 ;\)
\(B 3:=A[k 3] \times s 3+B[k 3] \times c 3\)
end;
\(A[k 0]:=A 0+A 2+A 1+A 3 ; B[k 0]:=B 0+B 2+\)
\(B 1+B 3\);
\(A[k 1]:=A 0+A 2-A 1-A 3 ; \quad B[k 1]:=B 0+B 2-\)
\(B 1-B 3 ;\)
\(A[k 2]:=A 0-A 2-B 1+B 3 ; \quad B[k 2]:=B 0-B 2+\)
\(A 1-A 3\);
\(A[k 3]:=A 0-A 2+B 1-B 3 ; \quad B[k 3]:=B 0-B 2-\)
\(A 1+A 3\)
end
end
else if \(k f=3\) then
begin
if \(\neg\) zero then
begin \(c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; s 2:=2.0 \times c 1 \times s 1\) end;
for \(k 0:=k b+\) span -1 step -1 until \(k b\) do
begin
\(k 1:=k 0+\operatorname{span} ; k 2:=k 1+\) span;
\(A 0:=A[k 0] ; \quad B 0:=B[k 0]\);
if zero then
begin
\(A 1:=A[k 1] ; \quad B 1:=B[k 1] ;\)
\(A 2:=A[k 2] ; \quad B 2:=B[k 2]\)
end
else
begin
\(A 1:=A[k 1] \times c 1-B[k 1] \times s 1 ;\)
\(B 1:=A[k 1] \times s 1+B[k 1] \times c 1\);
\(A 2:=A[k 2] \times c 2-B[k 2] \times s 2 ;\)
\(B 2:=A[k 2] \times s 2+B[k 2] \times c 2\)
end;
\(A[k 0]:=A 0+A 1+A 2 ; B[k 0]:=B 0+B 1+B 2 ;\)
\(A 0:=-0.5 \times(A 1+A 2)+A 0 ; \quad A 1:=(A 1-A 2) \times\) c30;
```

    \(B 0:=-0.5 \times(B 1+B 2)+B 0 ; \quad B 1:=(B 1-B 2) \times\)
        c30;
    \(A[k 1]:=A 0-B 1 ; \quad B[k 1]:=B 0+A 1\);
    \(A[k 2]:=A 0+B 1 ; \quad B[k 2]:=B 0-A 1\)
    end
    end
else if $k f=2$ then
begin
$k 0:=k b+$ span; $k 2:=k 0+$ span;
if zero then
begin
for $k 0:=k 0-1$ while $k 0 \geqq k b$ do
begin
$k 2:=k 2-1 ; \quad A 0:=A[k 2] ; \quad B 0:=B[k 2] ;$
$A[k 2]:=A[k 0]-A 0 ; A[k 0]:=A[k 0]+A 0$;
$B[k 2]:=B[k 0]-B 0 ; B[k 0]:=B[k 0]+B 0$
end
end
else
for $k 0:=k 0-1$ while $k 0 \geqq k b$ do
begin
$k 2:=k 2-1$;
$A 0:=A[k 2] \times c 1-B[k 2] \times s 1 ;$
$B 0:=A[k 2] \times s 1+B[k 2] \times c 1$;
$A[k 2]:=A[k 0]-A 0 ; \quad A[k 0]:=A[k 0]+A 0 ;$
$B[k 2]:=B[k 0]-B 0 ; B[k 0]:=B[k 0]+B 0$
end
end
else
begin
$j k:=k f-1 ; k h:=j k \div 2 ; \quad k 3:=D[i-1] ;$
$k 0:=k b+$ span;
if $\neg$ zero then
begin
$k:=j k-1 ; \quad C F[1]:=c 1 ; \quad S F[1]:=s 1 ;$
for $j:=1$ step 1 until $k$ do
begin
$C F[j+1]:=C F[j] \times c 1-S F[j] \times s 1 ;$
$S F[j+1]:=C F[j] \times s 1+S F[j] \times c 1$
end
end;
if $k f \neq j f$ then
begin
$C K[j k]:=C K[1]:=c 2:=C C[i] ; 1$
$S K[1]:=s 2:=S S[i] ; \quad S K[j k]:=-s 2$;
for $j:=1$ step 1 until $k h$ do
begin
$k:=j k-j ;$
$C K[k]:=C K[j+1]:=C K[j] \times c 2-S K[j] \times s 2$;
$S K[j+1]:=C K[j] \times s 2+S K[j] \times c 2$;
$S K[k]:=-S K[j+1]$
end
end;
L4: $\quad k 1:=k 0:=k 0-1 ; \quad k 2:=k 0+k 3$;
$A 3:=A 0:=A[k 0] ; \quad B 3:=B 0:=B[k 0]$;
for $j:=1$ step 1 until $k h$ do
begin
$k 1:=k 1+$ span; $k 2:=k 2-$ spon;
if zero then
begin
$A 1:=A[k 1] ; \quad B 1:=B[k 1] ;$
$A 2:=A[k 2] ; \quad B 2:=B[k 2]$
end
else
begin
$k:=k f-j$;
$A 1:=A[k 1] \times C F[j]-B[k 1] \times S F[j] ;$

```
```

    begin \(k 0:=k 0-D[j]+j j\); go to \(L 6\) end;
    $k 3:=D[j]+k 3$;
if $(k 3-k b)<D[j-1]$ then
begin
$k 2:=k 3+j k ; \quad j k:=j k+j j ;$
$k 0:=k 3-D[j]+j k ;$ go to $L 6$
end;
if $j<k t$ then
begin
$k:=$ FACTOR $[j]+i ; \quad j:=j+1 ;$
L8: $\quad i:=i+1 ; S[i]:=j ;$ if $i<k$ then go to $L 8$;
go to $L 5$
end;
$k b:=k 3$;
if $i>0$ then
begin $j:=S[i] ; \quad i:=i-1$; go to $L 5$ end;
if $k b<n$ then begin $j:=1$; go to $L 5$ end
end;
$j k:=C[k t] ; \quad$ span $:=D[k t] ; \quad m:=m-k t ;$
$k b:=s p a n \div j k-2$;
comment The following if statement completes the reorder-
ing if the square-free portion of $n$ has two or more prime
factors;
if $k t<m-\mathbf{1}$ then
begin integer array $R[0: k b]$;
array $T A, T B[0: j k-1]$;
for $j:=k t$ step 1 until $m$ do $D[j]:=D[j] \div j k$;
$j j:=0$;
for $j:=1$ step 1 until $k b$ do
begin
$k:=k t$;
for $j j:=D[k+1]+j j$ while $j j \geqq D[k]$ do
begin $j j:=j j-D[k] ; k:=k+1$ end;
if $j j=j$ then $R[j]:=-j$ else $R[j]:=j j$.
end;
comment Determine the permutation cycles of length
$\geqq 2 ;$
for $j:=1$ step 1 until $k b$ do if $R[j]>0$ then
begin
$k 2:=j$;
for $k 2:=a b s(R[k 2])$ while $k 2 \neq j$ do $R[k 2]:=-R[k 2]$
end;
comment Reorder $A$ and $B$ following the permutation
cycles;
$k n:=i:=j:=0 ;$
$L A: k b:=k n ; k n:=k n+k s$;
$L B: \quad j:=j+1 ; \quad$ if $R[j]<0$ then go to $L B ;$
$k:=R[j] ; \quad k 0:=j k \times k+k b ;$
$L C: T A[i]:=A[k 0+i] ; \quad T B[i]:=B[k 0+i] ;$
$i:=i+1 ;$ if $i<j k$ then go to $L C ; i:=0 ;$
$L D: \quad k:=-R[k] ; \quad j j:=k 0 ; k 0:=j k \times k+k b ;$
LE: $\quad A[j j+i]:=A[k 0+i] ; \quad B[j j+i]:=B[k 0+i] ;$
$i:=i+1$; if $i<j k$ then go to $L E ; \quad i:=0$;
if $k \neq j$ then go to $L D$;
$L F: \quad A[k 0+i]:=T A[i] ; \quad B[k 0+i]:=T B[i] ;$
$i:=i+1 ;$ if $i<j k$ then go to $L F ; \quad i:=0 ;$
if $j<k 2$ then go to $L B ; j:=0$;
$k b:=k b+\operatorname{span} ;$ if $k b<k n$ then go to $L B$;
if $k n<n$ then go to $L A$
end
end
end $F F T$

```

\section*{REMARK ON ALGORITH 339 [C6] \\ AN ALGOL PROCEDURE FOR THE FAST FOURIER TRANSFORM WITH ARBITRARY FACTORS}
[Richard C. Singleton, Comm. ACM 11 (Nov. 1968), 776]
Richard C. Singleton (Recd. 27 Nov. 1968)
Stanford Research Institute, Menlo Park, CA 94025
KEY WORDS AND PHRASES: fast Fourier transform, complex Fourier transform, multivariate Fourier transform, Fourier series, harmonic analysis, spectral analysis, orthogonal polynomials, orthogonal transformation, virtual core memory, permutation
\(C R\) CATEGORIES. 3.15, 3.83, 5.12, 5.14
On page 778, column 2, the 7th and 6th lines from the bottom should be corrected to read:
\(L J: j j:=C[i-2]+j j ;\) if \(j j \geqq C[i-1]\) then
begin \(i:=i-1 ; j j:=j j-C[i] ;\) go to \(L J\) end;
On page 779, column 1, the 9 th and 8th lines from the bottom should be corrected to read:
\(L X: \quad j j:=D[k+1]+j j ;\) if \(j j \geqq D[k]\) then
begin \(j j:=j j-D[k] ; k:=k+1\); go to \(L X\) end;
In both cases \(j j\) was originally used as the controlled variable of a for clause and thus was undefined after exit; the corrections preserve the value of \(j j\) for later use.

If the user prefers to compute constants with library functions, line 5 in column 2 on page 777 may be replaced by:
\(\operatorname{rad}:=8.0 \times \arctan (1.0) ; c 30:=\operatorname{sqrt}(0.75) ;\)
Algorithms 338 [Comm. ACM 11 (Nov. 1968), 773] and 339 were punched from the printed page and tested on the CDC 6400 Algol compiler. After changing a colon to a semicolon at the end of line 37 in column 2 on page 775, the test results agreed with those obtained earlier with this compiler.

When computing a single-variate Fourier transform of real data, procedure REALTRAN may be used with procedure FFT (Algorithm 339) to reduce computing time. Two versions of REALTRAN have been given (Algorithms 338 and 345 [Comm. ACM 12 (Mar. 1969), 179-184]); the first version is the faster of the two, but the second should be used if arithmetic results for real quantities are truncated rather than rounded.

In describing the evaluation of a real Fourier series, in the middle of column 2 on page 776, the necessary steps of reversing the signs of the \(B\) array values both before and after calling FFT were omitted. The correct steps, including scaling, are as follows:
REALTRAN (A B, n, true);
for \(j:=n-1\) step -1 until 0 do \(B[j]:=-B[j]\);
FFT \((A, B, n, n, n)\);
for \(j:=n-1\) step -1 until 0 do
\(\operatorname{begin} A[j]:=0.5 \times A[j] ; \quad B[j]:=-0.5 \times B[j]\) end;

\section*{ALGORITHM 340 \\ ROOTS OF POLYNOMIALS BY A ROOT-SQUARING AND RESULTANT ROUTINE [C2] \\ Albert Noltemeier \\ (Recd. 2 Nov. 1967, 25 Jan. 1968 and 16 July 1968) \\ Technische Universität Hannover, Rechenzentrum, \\ Hannover, Germany}

KEY WORDS AND PHRASES: rootfinders, roots of polynomial equations, polynomial zeros, root-squaring operations, Graeffe method, resultant procedure, subresultant procedure, testing of roots, acceptance criteria
CR CATEGORIES: 5.15
procedure \(A G 4(n, c, m m\), delta, epsilon, range) Result: (re, im, \(m u, r t, g c, m, i, t)\) Exit: (fail);
value \(n, m m\), delta, epsilon, range;
integer \(n, m, i, m m\); real delta, epsilon, range;
integer array \(m u\);
array \(c, r e, i m, r t, g c, t\);
label fail;
comment \(A G 4\) finds simultaneously zeros of a polynomial of degree \(n\) with real coefficients by a root-squaring and resultant routine.
This procedure supersedes Algorithm 59 [2]. The following changes were made:
(a) In the procedure heading, the meaning of the old formal parameter alpha is shared by the three new parameters mm , delta, and epsilon, and range, \(m, i, t\), fail are added to the formal parameter list.
(b) In the beginning of the procedure body the polynomial is tested for 0 as a zero (label ZROTEST). Although the modulus \(\rho=0\) can be found by squaring operations, the procedure usually will not find the root 0 without that test.
(c) In the program section labeled SQUARING OPERATION the iteratively squared coefficient is tested whether it will remain in the allowed range of numbers (fornal parameter range) for a particular machine after another squaring operation.
(d) If there is a complex zero with a real part of 0 , the resultant \(R(p)\) is a polynomial of degree \(n\) with the coefficients \(r_{n-1}=\) \(r_{n}=0\). Computing the moduli of the zeros of this polynomial in the program section labeled SQUARING OPERATION and testing for pivotal coefficients, one would have to divide by 0 . This case has been excluded by testing the divisor.
(e) If the acceptance criteria epsilon and delta are chosen too large, the sum of the multiplicities of the already found zeros may be greater than the degree \(n\) of the polynomial. In the program sections labeled \(I T\) and \(D\), the test for the degree of the residual polynomial, the number of zeros, and the sum of the multiplicities of zeros in order to end the procedure has been improved.
Tests: The procedure \(A G 4\) has been tested on the CDC 1604-A computer at the Rechenzentrum, Technische Universität Hannover. The following results were obtained in a few representative cases. The parameters of acceptance criteria are delta \(=0.2\), epsilon \(=10^{-7}\), and \(m m=10\).
(i) \(P_{1}(x)=x^{8}-30 x^{6}+273 x^{4}-820 x^{2}+576\)
\begin{tabular}{ll}
\(x_{1}=4.0000000010\) & \(x_{2}=-4.0000000010\) \\
\(x_{3}=2.9999999990\) & \(x_{4}=-2.9999999990\) \\
\(x_{5}=2.0000000000\) & \(x_{6}=-2.0000000000\)
\end{tabular}
\(x_{7}=1.0000000000 \quad x_{8}=-1.0000000000\)
(ii) \(\quad P_{2}(x)=x^{5}+7 x^{4}+5 x^{3}+6 x^{2}+3 x+2\)
\(x_{1}=-6.3509936102\)
\(x_{2,3}=1.3506884657 \times 10^{-1} \pm i \times 7.7014185283 \times 10^{-1}\)
\(x_{4,5}=-4.5957204142 \times 10^{-1} \pm i \times 5.5126354891 \times 10^{-1}\)
(iii) \(\quad P_{3}(x)=x^{6}-2 x^{5}+2 x^{4}+\dot{x}^{3}+6 x^{2}-6 x+8\)
\(x_{1,2}=-9.9999999974 \times 10^{-1} \pm i \times 1.0000000002\)
\(x_{3,4}=4.9999999999 \times 10^{-1} \pm i \times 8.6602540377 \times 10^{-1}\)
\(x_{5,6}=1.4999999997 \pm i \times 1.3228756548\)
(iv) \(\quad P_{4}(x)=x^{2}-4.01 x+4.02\)

The procedure fails to compute any zero in this case (parameter \(m=0\)). After changing the parameter epsilon to \(10^{-5}\), AG4 evaluates the zero \(x=2.0049937655\) with multiplicity 2 and remainder term \(2.5 \times 10^{-5}\);
Parameters: \(n\) degree of the polynomial \(c\) real coefficients of the polynomial \(c[j](j=0, \cdots, n)\), where \(c[n]\) is the constant term delta, epsilon parameters for acceptence criteria practical input delta \(=0.2\), epsilon \(=10 \uparrow(-7)\) range upper bound of the range of real constants (for the \(\mathrm{cDc} 1604-\mathrm{A}\) range \(=10 \uparrow 307\))
\(m m\) number of root-squaring iterations
practical input \(m m=10\)
re real part of each zero \(r e \mid j](j=1, \cdots, m)\)
\(i m\) imaginary part of each zero \(\operatorname{im}[j](j=1, \cdots, m)\)
\(m u\) corresponding multiplicity \(m u[j](j=1, \cdots, m)\) \(r t\) remainder term \(r t[j](j=1, \cdots, m)\)
\(g c\) coefficients of the polynomial generated from these zeros \(g c[j](j=0, \cdots, n-i)\)
\(m\) number of distinct zeros found by the routine \(i\) degree of the residual polynomial \(t\) coefficients of the residual polynomial
\(t[j](j=0, \cdots, i)\), where \(t[i]\) is the constant term
fail a zero with multiplicity greater than \(n\) found, change parameters for acceptance criteria.

References:
1. Bareiss, E. H. Resultant procedure and the mechanization of the Graeffe process, \(J . A C M 7\) (Oct, 1960), 346-386.
2. Bareiss, E. H. and Fisherkeller, M. A. Algorithm 59, Zeros of a real polynomial by resultant procedure, Comm. ACM 4 (May 1961), 236-237.
3. Thacher, H. C. Certification of algorithm 3, Comm. ACM 3 (June 1960), 354.
4. Grau, A. A. Algorithm 256, Modified Graeffe method, Comm. ACM 8 (June 1965), 379;
begin
integer d,numzro;
Boolean zero;
numzro \(:=0\); zero \(:=\) false; \(d:=n\);
ZROTEST:
if \(c[d]=0\) then
begin
zero \(:=\) true \(; d:=d-1 ;\) numzro \(:=\) numzro +1 ;
go to ZROTEST
end;
begin
integer \(c t, n u, n u c, b e t a, j, j c, k, p, e m, l, m m c, l l, m e, s m ;\)

Boolean root;
real \(x, y, g x, r p, h\);
array \(a, a c[0: d, 0: m m], r r, r c[0: d], s[-1: d]\),
\(a g[0: d+1,-1: d+1], r h, q, g, f[1: 2 \times d] ;\)
switch \(s s:=S 1, S 2\);
switch \(t t:=T 1, T 2\);
switch \(v v:=V 1, V 2\);
integer procedure \(\min (u, v)\); integer \(u, v\);
\(\min :=\) if \(u \leqq v\) then \(u\) else \(v\);
real procedure \(\operatorname{synd}(w w, q q, i i, t t)\);
integer \(i i\); real \(w w, q q\); array \(t t\);
SYNTHETICDIV:

\section*{begin}
\(s[-1]:=0 ; \quad s[0] \stackrel{\circ}{=} t[0] ;\)
for \(e m:=1\) step 1 until \(i i\) do
\(s[e m]:=t t[e m]-w w \times s[e m-1]-q q \times s[e m-2] ;\)
if \(q q=0\) then synd \(:=a b s(s[i i])\)
else \(\operatorname{synd}:=a b s(s[i i-1] \times \operatorname{sqrt}(a b s(q q)))+a b s(s[i i])\)
end synd;
\(c t:=\) beta \(:=1 ;\)
SQU ARING OPERATION:
\(m e:=m m ;\)
begin
for \(m:=1\) step 1 until mm do
begin
for \(j:=0\) step 1 until \(d\) do
begin \(h:=0\);
for \(l l:=1\) step 1 until \(\min (d-j, j)\) do
\[
h:=h+(-1) \uparrow l l \times a[j-l l, m-1] \times a[j+l l, m-1] ;
\]
\(a[j, m]:=(-1) \uparrow j \times(a[j, m-1] \uparrow 2+2 \times h)\)
end;
for \(l:=0\) step 1 until \(d\) do
begin
if \(a b s(a[l, m]) \geqq \operatorname{sqrt}(\) range \()\) then
begin \(m e:=m\); go to \(W 1\) end end
end
end;
\(W 1\) :
for \(j:=0\) step 1 until \(d\) do
\(r r[j]:=\) if \(a[j, m e]=0\) then 0 else
\((-1) \uparrow j \times a[j, m e-1] \uparrow 2 / a[j, m e] ;\)
\(l l:=0\);
for \(j:=d\) step -1 until 0 do
begin
if \(a[j, m e]=0\) then
begin \(l l:=l l+1 ; \quad r r[j]:=l l\) end
else go to \(W 2\)
end;
\(W 2\) :
\(j:=1 ; n u:=1 ;\)
\(R D\) :
if \((1-\) delta \(\leqq r r[j]) \wedge(r r[j] \leqq 1+\) delta \()\) then

\section*{begin} \(r p:=a b s(a[j, m e] / a[j-n u, m e]) \uparrow(1 /(2 \uparrow m e \times n u)) ;\) go to \(t t[\) beta \(]\)
end;
M1:
\(n u:=n u+1 ;\)
M2:
\(j:=j+1 ;\)
if \(j=d+1\) then go to \(s s[b e i a]\) else go to \(R D\);
M3:
\(n u:=1 ;\) go to \(M 2 ;\)
\(T 1: r h[c t]:=r p ; x:=r p+e p s i l o n \times r p ;\)
\(y:=x+e p s i l o n \times r p ;\)
for \(k:=0\) step 1 until \(d\) do \(t[k]:=a b s(c[k])\);
\(f[c t]:=\operatorname{synd}(-y, 0.0, d, t)-\operatorname{synd}(-x, 0.0, d, t)\);
\(g[c t]:=\operatorname{synd}(-r h[c t], 0.0, d, c)\);
if \(a b s(f[c t])>g[c t]\) then
begin
root \(:=\) true; \(q[c t]:=0\);
\(c t:=c t+1 ; f[c t]:=f[c t-1]\)
end;
\(r h[c t]:=-r p ;\)
\(g[c t]:=\operatorname{synd}(-r h[c t], 0.0, d, c)\);
if \(a b s(f[c t])>g[c t]\) then
begin
root \(:=\) true; \(q[c t]:=0 ;\)
\(c t:=c t+1 ; f[c t]:=f[c t-1]\)
end;
if \(n u=1\) then go to \(M 2\);
\(q[c t]:=r p \uparrow 2\); nuc \(:=n u ; j c:=j\);
\(m m c:=m e\);
for \(j:=0\) step 1 until \(d\) do
begin
\(r c[j]:=r r[j] ; a c[j, m e]:=a[j, m e]\)
end;
RESULTANT:
begin
array \(b[-1: d+1,-1: d+1]\), \(a a[0: d]\), \(r[0: d, 0: d], c b[-1: d+1] ;\)
\(c b[-1]:=c b[d+1]:=0\);
for \(j:=0\) step 1 until \(d\) do
\(c b[j]:=c[j] ;\)
\(b[0,0]:=1\);
for \(k:=0\) step 1 until \(d\) do
begin
\(b[k,-1]:=0 ; \quad b[k-1, k]:=0 ;\)
for \(j:=0\) step 1 until \(k\) do
\(b[k+1, j]:=b[k, j-1]-q[c t] \times b[k-1, j] ;\)
\(b[k+1, k+1]:=1 ; \quad h:=0\);
for \(j:=d-k\) step -1 until 0 do
\(h:=h+(c b[j] \times c b[k+j]-c b[j-1]\)
\(\times c b[k+j+1]) \times q[c t] \uparrow(d-k-j) ;\)
\(a a[k]:=(-1) \uparrow k \times h ;\)
for \(j:=0\) step 1 until \(k-1\) do
\(r[k, j]:=r[k-1, j]+a a[k] \times b[k, j] ;\) \(r[k, k]:=a a[k]\)
end;
beta \(:=2\);
for \(j:=0\) step 1 until \(d\) do
\(a[j, 0]:=r[d, d-j] / r[d, d]\)
end;
go to SQUARING OPERATION;
T2:
if \((r p / 2) \uparrow 2>q[c t]\) then go to \(M 3\);
\(r h[c t]:=r p\);
\(g[c t]:=\operatorname{synd}(-r h[c t], q[c t], d, c) ;\)
if \(a b s(f[c t])>g[c t]\) then
begin
\(c t:=c t+1 ; f[c t]:=f[c t-1] ;\)
\(q[c t]:=q[c t-1]\)
end;
\(r h[c t]:=-r p ;\)
\(g[c t]:=\operatorname{synd}(-r h[c t], q[c t], d, c)\);
if \(a b s(f[c t])>g[c t]\) then
begin
\(c t:=c t+1 ; f[c t]:=f[c t-1] ;\)
\(q[c t]:=q[c t-1]\)
end;
go to \(M 3\);
```

S2:
$m e:=m m c ;$
for $j:=0$ step 1 until $d$ do
begin
$a[j, m e]:=a c[j, m e] ; \quad r r[j]:=r c[j]$
end;
$j:=j c ;$ beta $:=1$;
if root then go to $M 3$ else $n u:=n u c$;
go to $M 1$;
$S 1$ :
for $j:=0$ step 1 until $d$ do $a g[j, 0]:=1$;
for $j:=-1,1$ step 1 until $d$ do
for $m:=0$ step 1 until $d$ do
$a g[m, j]:=0$;
$k:=1 ; \quad i:=d ; \quad m:=1 ; \quad l l:=0$;
for $j:=0$ step 1 until $d$ do $t[j]:=c[j] ;$
MULT:
$m u[m]:=0 ;$
$p:=$ if $q[k]=0$ then 1 else 2 ;
$I T:$
$g x:=\operatorname{synd}(-r h[k], q[k], i, t) ;$
if $\operatorname{abs}(f[k])>g x$ then
begin
$l l:=l l+p ;$
for $j:=1$ step 1 until $l l$ do
$a g[l l, j]:=a g[l l-p, j]-r h[k] \times a g[l l-p, j-1]+q[k] \times$
$a g[l l-p, j-2]$;
$m u[m]:=m u[m]+p ; \quad i:=i-p ;$
if $i<0$ then go to fail;
if $i=0$ then go to $E 1$;
for $j:=0$ step 1 until $i$ do $t[j]:=s[j]$;
go to $I T$
end
else if $m u[m] \neq 0$ then
$E 1$ :
begin
$r t[m]:=g[k] ;$ go to $v v[p] ;$
end
else go to $D 1$;
V1:
$r e[m]:=r h[k] ; \quad i m[m]:=0 ;$ go to $E ;$
V2:
$r e[m]:=r h[k] / 2 ;$
$\operatorname{im}[m]:=\operatorname{sqrt}(q[k]-r e[m] \uparrow 2) ;$
$E$ :
$m:=m+1 ;$
D1 :
$k:=k+1$;
$s m:=0$;
if $m \neq 1$ then
for $j:=1$ step 1 until $m-1$ do $s m:=s m+m u[j]$;
if $k \leqq c t \wedge s m \leqq d \wedge i>0$ then go to $M U L T$;
for $j:=0$ step 1 until $d$ do $g c[j]:=\alpha g[l l, j]$;
$m:=m-1$;
if zero then
begin
for $j:=d+1$ step 1 until $d+$ numzro do $g c[j]:=0$;
$m:=m+1$;
$r e[m]:=0 ; \quad$ im $[m]:=0 ; \quad m u[m]:=$ numzro $; \quad r t[m]:=0$
end
end
end $A G 4$

```

REMARK ON ALGORITHM 340 [C2]
ROOTS OF POLYNOMIALS BY A ROOT-SQUARING AND RESULTANT ROUTINE [Albert Noltemeier, Comm. ACM 11 (Nov. 1968), 779]
Albert Noltemeier (Recd. 6 Jan. 1969)
Technische Universität Hannover, Rechenzentrum, Hannover, Germany
KEY WORDS AND PHRASES: rootfinders, roots of polynomial equations, polynomial zeros, root-squaring operations, Graeffe method, resultant procedure, subresultant procedure, testing of roots, acceptance criteria
\(C R\) CATEGORIES: 5.15

The following misprints were found in the algorithm and should be corrected as indicated:
1. In the comment, in the first column on page 780 , the last line before the paragraph beginning with the word "Parameters" ends with a semicolon; it should end with a period.
2. In the seventh line following the word "Parameters" the abbreviation CDC should appear in capital letters.
3. In the procedure body, in the second column on page 780 , the line before the label \(S Q U A R I N G O P E R A T I O N\) is missing. It should read as follows:
for \(j:=0\) step 1 until \(d\) do \(a[j, 0]:=c[j]\);

\section*{ALGORITHM 341}

SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION [H]
J. L. Byrne and L. G. Proll
(Recd. 8 Nov. 1967 and 17 June 1968)
Department of Mathematics, University of Southampton, Hampshire, England

KEY WORDS AND PHRASES: linear programming, zero-one variables, partial enumeration
\(C R\) CATEGORIES: 5.41
procedure \(I M P L E N(m, n, A, x, a p i\), nosoln, count, inf); value \(m, n\), inf; integer \(m, n\), count; real inf;
Boolean api, nosoln; real array \(A\); integer array \(x\);
comment This procedure solves the integer linear program,
\(\operatorname{minimize} \quad A[0,1] \times x[1]+\cdots+A[0, n] \times x[n]\)
subject to \(A[i, 1] \times x[1]+\cdots+A[i, n] \times x:[n]\)
\[
+A[i, 0] \geqq 0 \quad(i=1,2, \cdots, m)
\]
and \(\quad x[j]=0\) or \(1 \quad(j=1,2, \cdots, n)\).
It is assumed that \(A[0, j] \geqq 0 \quad(j=1,2, \cdots, n)\). The algorithm used is that of Geoffrion (SIAM Rev. 9, No. 2). On entry, inf is the largest positive real number available and api is set to true if a priori information concerning the solution is supplied in the form of a binary vector \(x[1: n]\) and its associated cost \(A[0,0]\). On exit nosoln is true if no feasible solution to the constraints has been found, otherwise it is false and \(\mathbf{x}\) contains the optimal solution, \(A[0,0]\) contains the optimal value of the objective function and \(A[i, 0]\) contains the values of the slack variables. In either case count contains the fumber of iterations performed;
begin
integer \(i, j, k, i a, e, d ;\) real \(z, q\), max, \(r ;\) Boolean null;
integer array \(s, v[1: n]\);
comment \(s\) holds the current partial solution in order of assignment, \(v\) is a state vector associated with \(\ddagger\);
if api then
begin
for \(j:=1\) step 1 until \(n\) do if \(x[j]=0\) then begin \(s[j]:=-j ; \quad v[j]:=2\) end else
begin
\(s[j]:=j ; \quad v[j]:=3 ;\)
for \(i:=1\) step 1 until \(m\) do
\[
A[i, 0]:=A[i, 0]+A[i, j]
\]
end;
\(e:=n ; z:=A[0,0] ;\) go to \(L 0\)
end;
for \(j:=1\) step 1 until \(n\) do \(s[j]:=v[j]:=0\);
\(z:=0.0 ; \quad e:=0\);
L0: nosoln \(:=\) true; count \(:=0 ; A[0,0]:=\) inf;
comment all relevant variables are now initialized;
START: counl := count +1 ;
for \(i:=1\) step 1 until \(m\) do
if \(A[i, 0]<0.0\) then go to FORMT;
comment best completion of \(s\) is feasible;
go to INCUMBENT;
FORMT: null := true;
comment form set \(T\) of free variables to which 1 may be profitably assigned;
for \(j:=1\) step 1 until \(n\) do
begin
if \(\neg(v[j]=0 \wedge A[0, j]+z<A[0,0])\) then go to \(L 1\);
for \(k:=i\) step 1 until \(m\) do
if \(A[k, 0]<0.0 \wedge A[k, j]>0.0\) then
begin null \(:=\) false; \(v[j]:=1\); go to \(L 1\) end;
L1: end;
if null then go to \(N E W S\);
comment if \(T\) is empty then \(s\) is fathomed;
for \(k:=i\) step 1 until \(m\) do
begin
if \(A[k, 0] \geqq 0.0\) then go to \(L 2\);
\(q:=A[k, 0]\);
for \(j:=1\) step 1 until \(n\) do
if \(v[j]=1 \wedge A[k, j]>0.0\) then \(q:=q+A[k, j] ;\)
if \(q<0.0\) then go to \(N E W S\);
comment if \(q\) is negative \(s\) is fathomed;
L2: end;
\(\max :=-i n f ;\)
for \(j:=1\) step 1 until \(n\) do
begin
if \(v[j] \neq 1\) then go to \(L 3 ; \quad g:=0.0\);
for \(i:=1\) step 1 until \(m\) do
begin
\(r:=A[i, 0]+A[i, j] ;\)
if \(r<0.0\) then \(q:=q+r\)
end;
if \(\max \leqq q\) then
begin \(\max :=q ; \quad d:=j\) end;
\(L 3:\) end;
\(e:=e+1 ; \quad s[e]:=d ; \quad v[d]:=3 ; \quad i a:=1 ;\)
comment Augment \(s\) by assigning 1 to \(x[d]\);
\(R E S E T:\) for \(j:=1\) step 1 until \(n\) do if \(v[j]=1\) then \(v[j]:=0\);
comment clear \(T\);
for \(i:=1\) step 1 until \(m\) do
\(A[i, 0]:=A[i, 0]+i a \times A[i, d] ;\)
\(z:=z+i a \times A[0, d]\);
comment Recalculate slacks and objective function;
go to \(S T A R T\);
INCUMBENT: nosoln := false;
if \(z \geqq A[0,0]\) then go to \(N E W S\);
\(A[0,0]:=z\);
if \(a p i\) then begin \(a p i:=\) false; go to \(L 4\) end;
for \(j:=1\) step 1 until \(n\) do \(x[j]:=\) if \(v[j]=3\) then 1 else 0 ;
NEWS: if \(e=0\) then go to \(R E S U L T\);
\(L 4: d:=s[e]\);
if \(d>0\) then go to \(U N D E R L I N E\);
\(v[-d]:=0 ; \quad e:=e-1\); comment backtrack;
go to NEWS;
UNDERLINE: \(s[e]:=-d ; \quad v[d]:=2 ; \quad i a:=-1\);
comment Assign 0 to \(x[d]\);
go to RESET;
RESULT:
end

REMIARK ON ALGORITHM 341 [H]
SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION
[J. L. Byrne and L. G. Proll, Comm. ACM 11 (Nov. 1968), 782]
L. G. Proll (Reed. 5 Dec. 1968 and 18 Aug. 1969)

University of Southampton, Department of Mathematics, Hampshire, England
KEY WORDS AND PHRASES: linear programming, zcro-one variables, partial enumeration
\(C R\) CATEGORIES: 5.41
The published algorithm contains an error in the assembly of the initial partial solution, \(s\), if a priori information is given. In certain cases this can cause premature termination of the algorithm. The error may be corrected by replacing the following lines of the procedure body, from

\section*{begin}
for \(j:=1\) step 1 until \(n\) do
to
\(e:=n ; z:=A[0,0] ;\) go to \(L 0 ;\)
by
begin
\(e:=0\);
for \(j:=1\) step 1 until \(n\) do
if \(x[j]=0\) then \(v[j]:=0\)
else
begin
\(e:=e+1 ; \quad s[e]:=j ; \quad v[j \mid:=3 ;\)
for \(i:=1\) step 1 until \(m\) do \(A\{i, 0|:=A| i, 0\}+A[i, j\} ;\)
end;
\(z:=A[0,0] ;\) go to \(L 0 ;\)
and by deleting the line
if api then begin api := false; go to Lt end;

REMARK ON ALGORITHM 341 [H]
SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION
[J. L. Bryne and L. G. Proll Comm. ACM 11 (Nov. 1968), 782]
M. M. Guignard (Recd. 21 Mar. 1969 and 17 Nov. 1969)

Laboratoire de Calcul, 13 Place Philippe Lebon, Lille, France
KEY WORDS AND PHRASES: linear programming, zero-one variables, partial enumeration
\(C R\) CATEGORIES: 5.41
There is an error in the procedure; the slack variables are destroyed during computation. It is necessary then to declare an array slacks local to the procedure, and to return the final slacks in
\[
A[i, 0], \quad i=1,2, \cdots, m
\]

One could correct the program as follows. Add before second comment:
real array slacks [1:m];
add before \(N E W S\) :
for \(i:=1\) step 1 until \(m\) do slacks [i] \(:=A[i, 0] ;\)
add after RESULT:
if \(\neg\) nosoln then
for \(i:=1\) step 1 until \(m\) do
\(A[i, 0]:=\) slacks \([i] ;\)

\section*{ALGORITHM 342}

GENERATOR OF RANDOM NUMBERS SATIS-
FYING THE POISSON DISTRIBUTION [G5]
Richard H. Snow (Recd. 20 Dec. 1966, 24 Aug. 1967, 5 Feb. 1968, 26 Mar. 1968, 5 June 1968 and 9 Sept. 1968)
IIT Research Institute, Chicago, IIl. 60616
KEY WORDS AND PHRASES: Poisson distribution, random number generator, Monte Carlo
CR CATEGORIES: 5.12, 5.5
integer procedure poisson carlo (\(n p x, n p x 1\), random); value \(n p x\), random; real \(n p x, n p x 1\), random;
comment The Poisson distribution gives the probability that \(p x\) events will occur in a certain interval or volume, where the expected or mean value of events is \(n p x\). Applications are described by B. W. Lindgren and G. W. McElrath [1]. For a Monte Carlo calculation we wish to generate numbers \(p x\) that satisfy the Poisson distribution, that is to find the inverse of the Poisson function. To do this we generate a pseudo-random number in the interval 0,1 and find the number \(p x\) such that random \(\leq\) (probability that the number is \(p x\) or less) and random \(>\) (the probability that the number is \(p x-1\) or less).
poisson carlo returns the value -1 to signal that the procedure was called with a value of \(n p x<0\) or too large for the precision of the computer. It is the responsibility of the user to test the calculated value if there is any possibility of the occurrence of the error condition.

In order to save computing time, values of the Poisson distribution computed at a previous entry for the same value of \(n p x\) are stored in the own array \(p s o n\). The previous value of \(n p x\) is \(n p x 1\). The actual parameter corresponding to \(n p x 1\) must be a real identifier, not a constant or an expression. Before the first call of poisson carlo the calling program must set \(n p x 1\) to a value \(\neq n p x\). The number of pson elements that were previously computed and stored is computed. If it is desired to save storage space at the expense of computing time, the upper bound 84 of pson may be reduced, but then the limit of computed near the end of the procedure must also be decreased accordingly.

The procedure which generates random is prefenably algorithm 266 [3] or 294 [2]. It can be called as the actual parameter in the procedure call of poisson carlo.

The author thanks Mr. I. D. Hill for numerous suggestions and corrections which greatly improved the algorithm.
References:
1. Lindgren, B. W., and McElrath, G. W. Introduction to Probability and Statistics, 2 ed. Macmillan, New York, 1966, pp. 64-68.
2. Pike, M. C., and Hill, I. D. Algorithm 266, pseudo-random numbers. Comm. ACM 8 (Oct. 1965), 605.
3. Strome, W. M. Algorithm 294, uniform random. Comm. ACM 10 (Jan. 1967), 40;
begin
own integer computed; own real \(p n c\);
own real array \(p\) son \([0: 84]\);
integer \(n\); real \(p s\)
if \(n p x<0\) then go to error;
if \(n p x \neq n p x 1\) then
begin
computed \(:=0\);
\(p n c:=\operatorname{pson}[0]:=\exp (-n p x)\);
if \(p n c=0\) then go to error;
comment pson [0] is the probability that poisson carlo \(=0\).
It cannot be zero unless \(-n p x\) underflows the argument range of procedure exp. For most computers this sets an upper limit of 85 for \(n p x\);
\(n p x 1:=n p x\)
end new \(n p x\);
\(p s:=p s o n\) [computed];
if random \(\leqq p s\) then
begin
integer \(n \min , n \max\);
comment The probability term can be found by searching the stored values;
nmin \(:=0 ; \quad n \max :=\) computed +1 ;
for \(n:=(n \max +n \min -1) \div 2\) while \(n \max -n \min >1\) do if random \(>p \operatorname{son}[n]\) then \(n \min :=n+1\) else \(n \max :=n+1\); poisson carlo \(:=n \min\)
end search
else
begin
real \(p s c, p n ; p n:=p n c\);
comment Additional probability terms must be computed;
for \(n:=\) computed \(+1, n+1\) while random \(>p s\) do
begin
\(p n:=p n \times n p x / n ;\)
\(p s c:=p s ; p s:=p s+p n ;\)
comment \(p s=\) cumulative probability of terms up to \(n\), and \(p n=\) probability of \(n\)th term;
if \(p s=p s c\) then go to error;
if \(n \leqq 84\) then begin \(p s o n[n]:=p s\);
pnc \(:=p n\); computed \(:=n\) end;
poisson carlo \(:=n\)
end
end more;
go to fin ;
error: poisson carlo \(:=-1\);
fin:
end poisson carlo
comment The following is an example of a calling program for the case where poisson carlo is compiled within the calling program rather than separately. Instead of own variables, non-local variables may then be used. The program is within the IFIP subset if this change is made, and if the expression \((n \max +n \min -1) \div 2\) is replaced by the less efficient expression \(.501 \times(n \max +n \min -2)\)

\section*{begin}
integer \(x\), computed; real array \(p s o n[0: 84]\);
real \(p n c, n p x, n p x 1\);
real procedure random (\(x\));
comment Procedure body random is inserted here;
integer procedure poisson carlo (\(n p x, n p x 1\), random);
comment Procedure body of poisson carlo is inserted here after deleting declarations of own variables;
ininteger \((2, x) ; \quad n p x 1:=-1\);
in1: inreal (2, npx);
outinteger (1, poisson carlo (\(n p x, n p x 1\), random \((x))\));
go to in 1
end

\section*{ALGORITHM 343}

EIGENVALUES AND EIGENVECTORS OF A
REAL GENERAL MATRIX [F2]
J. Grad and M. A. Brebner
(Recd. 12 Oct. 1967, 1 July 1968 and 8 July 1968)
Computer Services, University of Birmingham, Birmingham 15, England
KEY WORDS AND PHRASES: eigenvalues, eigenvectors, latent roots, latent vectors, Householder's method, QR algorithm, inverse iteration
\(C R\) CATEGORIES: 5.14

\section*{Abstract:}

Purpose. This subroutine finds all the eigenvalues and eigenvectors of a real general matrix. The eigenvalues are computed by the QR double-step method and the eigenvectors by inverse iteration.

Method. Firstly the following preliminary modifications are carried out to improve the accuracy of the computed results. (i) The matrix is scaled by a sequence of similarity transformations so that the absolute sums of corresponding rows and columns are roughly equal. (ii) The scaled matrix is normalized so that the value of the Euclidean norm is equal to one.

The main part of the process commences with the reduction of the matrix to an upper-Hessenberg form by means of similarity transformations (Householder's method). 'Then the QR doublestep iterative process is performed on the Hessenberg matrix until all elements of the subdiagonal that converge to zero are in modulus less than \(2^{-t}\|H\|_{E}\), where \(t\) is the number of significant digits in the mantissa of a binary floating-point number. The eigenvalues are then extracted from this reduced form.

Inverse iteration is performed on the upper-Hessenberg matrix until the absolute value of the largest component of the righthand side vector is greater than the bound \(2^{t} /(100 N)\), where \(N\) is the order of the matrix. Normally after this bound is achieved, one step more is performed to obtain the computed eigenvector, but at each step the residuals are computed, and if the residuals of one particular step are greater in absolute value than the residuals of the previous step, then the vector of the previous step is accepted as the computed eigenvector.

Program. The subroutine EIGENP is completely self-contained (composed of five subroutines

EIGENP, SCALE, HESQR, REALVE, and COMPVE)
and communication to it is solely through the argument list. The entrance to the subroutine is achieved by
CALL EIGENP (N, NM, A, T, EVR, EVI, VECR, VECI, INDIC) The meaning of the parameters is described in the comments at the beginning of the subroutine EIGENP.

References:
1. Wilkinson, J. H. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965, pp. 347-353, 485-567, 619-633.
Test results. All tests have been performed on a KDF9 computer \((t=39)\). No breakdown of the method has cccurred and in general very accurate computed eigenvalues and eigenvectors have been obtained.

Some examples:
(i) The matrix
\[
\left[\begin{array}{rrrrr}
-.5 & -1 & -1 & -.5 & -1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\]
has all eigenvalues with modulus equal to one. The computed eigenvalues are
\(-1.000000000,-.2500000000 \pm i .9682458366, .5300000000 \pm\) \(i .8660254038\).

The computed eigenvectors are
\begin{tabular}{ccc}
\(x_{1}\) & \(x_{2}, x_{3}\) & \(x_{4}, x_{5}\) \\
.447213595 & 1.000000000 & \(-.500000000 \mp i .866025404\) \\
-.447213595 & \(-.250000000 \mp i .968245837\) & \(-1.000000000 \mp i .16 E-10\) \\
.447213595 & \(-.875000000 \pm i .484122918\) & \(-.500000000 \pm i .866025404\) \\
-.447213955 & \(.687500000 \pm i .726184377\) & \(.500000000 \pm i .866025404\) \\
.447213595 & \(.531250000 \mp i .847215107\) & 1.000000000
\end{tabular}
and the computed residuals are in modulus less than \(.3 E-10\).
(ii) The matrix
\[
\left[\begin{array}{rrrr}
-2 & 1 & 1 & 1 \\
-7 & -5 & -2 & -4 \\
0 & -1 & -3 & -2 \\
-1 & 0 & -1 & 0
\end{array}\right]
\]
has the eigenvalues
\(-4 \pm i 2\) and \(-1 \pm \sqrt{2}\).
The computed eigenvalues are
\(-4.000000000 \pm i 2.000000000,-2.414213562, .4142135624\).
The computed eigenvectors are
\begin{tabular}{ccr}
\(x_{1}, x_{2}\) & \(x_{3}\) & \multicolumn{1}{c}{\(x_{4}\)} \\
\(-.2000000000 \mp i .4000000000\) & \(.60 E-12\) & \(-.12 E-11\) \\
1.000000000 & -.7941044878 & .4759631495 \\
\(.2000000000 \pm i .4000000000\) & .5615166683 & .3365567706 \\
\(.14 \mathrm{E}-10 \pm i .63 E-11\) & .2325878195 & -.8125199201
\end{tabular}
and the computed residuals are in modulus less than \(.7 E-10\).
(iii) The matrix \(A\)
\[
A=\left[\begin{array}{ccc}
1 & 0 & 0.01 \\
0.1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
\]
is transformed by the process of scaling into the form \(B\)
\[
B=\left[\begin{array}{ccc}
.574423 & 0 & .066333 \\
.053454 & .574423 & 0 \\
0 & .053454 & .574423
\end{array}\right]
\]
with the elements given to six decimal places. The obtained matrix \(B\) is essentially invariant under the QR double-step process. This kind of trouble was overcome by introducing the statements
\[
\begin{aligned}
& \mathrm{R}=\mathrm{DABS}(\mathrm{X})+\mathrm{DABS}(\mathrm{Y}) \\
& \mathrm{IF}(\mathrm{R} . \mathrm{EQ} .0 .0) \mathrm{SHIFT}=\mathrm{A}(\mathrm{M}, \mathrm{M}-1) \\
& \mathrm{IF}(\mathrm{R} . \mathrm{EQ} .0 .0) \mathrm{GO} \text { TO } 21
\end{aligned}
\]
in the subroutine HESQR.
The exact eigenvalues of \(A\) are
\(1.1,0.95 \pm i 0.5 \sqrt{0.03}\).

The computed eigenvalues are
\(1.100000000,0.9500000000 \pm i 0.0866025404\).
Acknowledgments. The authors wish to thank Dr. K. A. Redish, the former director of Computer Services at the University of Birmingham, and Dr. S. H. Hollingdale, the present director of Computer Services, for their encouragement. Finally, the authors are indebted to Dr. J. H. Wilkinson, National Physical Laboratory, Teddington, for useful consultations and suggestions.
```

        SUBROUTINE EIGENP(N,NM,A,T,EVR,EVI,VECR,VECI,INDIC)
        DOUBLE PRECISION D1,D2,O3,PRFACT
        INTEGER I,IVEC,J,K,K1,KON,L,L1,M,N,NM
        REAL ENORM,EPS,E员R,R1,T
        DIMENSION A(NM,1),VECR(NM,1),VECI(NM,1),
        IEVR(NM),EVI(NM),INDIC(NM)
        DIMENSION IWORK(100),LOCAL(100),PRFFACT(100)
        1,SUBDIA(100),WORK1(100),WORK2(100),WORK(100)
    c this subroutine finds all the eigenvalues and the
EIGENVECTORS OF A REAL GENERAL MATRIX OF ORDER N.
C first in the subroutine scale the matrix is scaled so that

```
\(C\)
the corresponding rows and columns are approximately
balanced and then the matrix is normalised so that the
VALUE OF THE EUCLIDIAN NORM OF THE MATRIX IS EQUAL TO ONE.
C the eigenvalues are computed by the or double-step method
IN THE S'JBRCUTINE HESQR.
C IN THE S'JBRCUTINE HESQR.
THE SUBROUTINE REALVE,FOR THE REAL EIGENVALUES,OR IN THE
SUBROUTINE COMPVE,FOR THE COMPLEX EIGENVALUES.
C the elements of the matrix are to be stored in the first \(n\)
ROWS AND COLUMNS OF THE TWO DIMENSIONAL ARRAY A. THE
ORIGINAL MATRIX IS DESTROYED BY THE SUBROUTINE
\(C\) I IS THE ORDER OF THE MATRIX.
\(C\) NM DEFINES THE FIRST DIMENSION OF THE TWO DIMENSIONAL
ARRAYS A, VECR,VECI AND THE DIMENSION OF THE ONE
DIMENSIONAL ARRAYS EVR, EVI AND INDIC. THEREFORE THE
CALLING PROGRAM SHOULD CONTAIN THE FOLLOWING DECLARATION
 DIMENSION A(NM,NN),VECR(NM,NN), VECI(NM,NN),
 IEVR(NM), EVI(NM). INDIC(NM)
WHERE NM AND NN ARE ANY NUMBERS EQUAL TO OR GREATER THAN N
THE UPPER LIMIT FOR NM IS EQUAL TO 100 BUT MAY BE
Increaseo to the value max by replacing the dimension
C INCREASEO
 TATEMENT
DIMENSION IWORK (100), LOCAL(100).WORK(100)
 IN THE SUBROUTINE EIGENP WITH
 DIMENSION IWORK(MAX), LOCAL(MAX), ... , WORK(MAX)
 nm and nn are of course bounded by the size of the store.
C the real parameter \(T\) must be set equal to the number of
c binary digits in the mantissa of a single precision
C FLOATING-POINT NUMBER.
c
C THE REAL PARTS OF THE N COMPUTED EIGENVALUES WILL BE FOUND
C IN THE FIRST N PLACES OF THE ARRAY EVR AND THE IMAGINARY
C PARTS IN THE FIRST N PLACES OF THE ARRAY EVI.
C THE REAL COMPONENTS OF THE NORMALISED EIGENVECTOR I
C (Im1,2, \(\ldots, N\)) CORRESPONDING TO THE EIGENVALU甘 STORED IN
EVR(I) AND EVI(I) WILL BE FOUND IN THE FIRST N PLAGES OF
C THE COLUMN I OF THE TWO dimensional array vecr and the
C imaginary components in the first n places of the column i
C OF the two dimensional array veci.
\(\stackrel{c}{C}\)
C the real eigenvector is normalised so that the sum of the
C SQUARES OF THE COMPONENTS IS EQUAL TO ONE.
C THE COMPLEX EIGENVECTOR IS NORMALISED SO THAT THE
c Component with the largest value in modulus has its real
c Part equal to one and the imaginary part equal to zero.
\(\stackrel{c}{c}\)
the array indic indicates the success of the subroutine
EIGENP AS FOLLOWS
\begin{tabular}{ccc}
VALUE OF INDIC(I) & EIGENVALUE I & EIGENVECTOR I \\
0 & NOT FOUND & NOT FOUND \\
1 & FOUND & NOT FOUND \\
2 & FOUND & FOUND
\end{tabular}
 IF(N.NE.1)GO TO 1
 EVR(1) \(=A(1,1)\)
 EVI(1) \(=0.0\)
 \(\operatorname{VECR}(1,1)=1.0\)
 \(\operatorname{VECR}(1,1)=1.0\)
\(\operatorname{VECI}(1,1)=0.0\)
 \(\operatorname{VECI(1,1)=0.0}\)
INDIC(1) \(=2\)
 INDIC(1)
GO TO 25
\(c\)
 1 CALL SCALEIN,NM,A,VECI,PRFACT,ENORM)
C THE COMPUTATION OF THE EIGENVALUES OF THE NORMALISED
C MATRIX.
 \(E X=\operatorname{EXP}(-T * A L O G(2.0))\)
 CALL HESQR (N,NM,A,VECI, EVR,EVI, SUBDIA,INDIC,EPS,EX)

C THE POSSIBLE DECOMPOSITION OF THE UPPER-HESSENBERG MATRIX
C THE POSSIBLE DECOMPOSITION OF THE UPPER-HESSENBERG MAT
C INTO THE SUBMATRICES OF LOWER ORDER IS INDICATED IN THE
C ARRAY LOCAL. THE DECOMPOSITION OCCURS WHEN SOME
C ARRAY LOCAL. ELEMENTS ARE IN MODULUS LESS THAN A SMALL
C SUBDIAGONAL ELEMENTS ARE IND IN THE SUBROUTINE HESQR - THE
C AMOUNT OF WORK IN THE EIGENVECTOR PROBLEM MAY BE
C AMOUNT OF WORK IN THE E
C DIMINISHED IN THIS WAY.
\(J=N\)
\(I=1\)
LOCAL(1) \(=1\)
IF(J.EQ.1)GO TO 4
2 IF(ABS(SUBDIA(J-1)).GT.EPS)GO TO 3
\(I=1+1\)
LOCAL (I) \(=0\)
\(3 \mathrm{~J}=\mathrm{J}-1\)
LOCAL(I) \(=\) LOCAL(I) +1
IF(J.NE.1)GO TO 2
\(c\)
\(C\)
C THE EIGENVECTOR PROBLEM.
\(4 K=1\)
KON \(=0\) \(L=\) LOCAL(1) \(\mathrm{M}=\mathrm{N}\) DO \(10 \quad \mathrm{I}=1, \mathrm{~N}\)

IVEC \(=N-I+1\)
IFIICLE:L)GO TO 5
\(k=k+1\)
\(M=N-L\)
\(L=L+L O C A L(K)\)
5 IF(INDIC(IVEC).EQ.O)GO TO 10 IFIEVI(IVECI.NE.O.0)GO TO 8
C TRANSFER OF AN UPPER-HESSENBERG MATRIX OF THE ORDER M FROM
C the arrays veci and subdia into the array a. DO \(7 \mathrm{KI}=1\), M

DO \(6 \quad L 1=K 1, M\)
6 A \(6(K 1, L 1)=V E C I(K 1, L 1)\)
\(A(K 1, K 1-1)=\operatorname{SUBDIA}(K 1-1)\)
7 CONTINUE
C THE COMPUTATION OF THE REAL EIGENVECTOR IVEC OF THE UPPER-
C THE COMPUTATION OF THE REAL EIGENVECTOR IVEG OF THE UP
C HESSENBERG MATRIX CORRESPONDING TO THE REAL EIGENVALUE c EVR(IVEC). CALL REALVEIN,NM,M,IVEC, A, VECR,EVR,EVI, IWORK,
1 WORK,INDIC,EPS,EX)
GO TO 10
C
C THE COMPUTATION OF THE COMPLEX EIGENVECTOR IVEC OF THE
\(C\) UPPER-HESSENBERG MATRIX CORRESPONDING TO THE COMPLEX
C EIGENVALUE EVR(IVEC) + I*EVI (IVEC). IF THE VALUE OF KON IS
\(C\) NOT EQUAL TO ZERO THEN THIS COMPLEX EIGENVECTOR HAS
C ALREADY BEEN FOUND FROM ITS CONJUGATE.
8 IF(KON.NE.O)GO TO 9
\(K O N=1\)
CALL COMPVEIN,NM,M,IVEC,A,VECR,VECI,EVR,EVI, INDIC,
1 I WORK, SUBDIA, WORK 1 , WORK 2 , WORK, EPS,EX)
GO TO 10
\(K O N=0\)
10 CONTINUE
C
C THE RECONSTRUCTION OF THE MATRIX USED IN THE REDUCTION OF
C MATRIX A TO AN UPPER-HESSENBERG FORM BY HOUSEHOLDER METHOD DO \(12 \quad 1=1, N\)

DO \(11 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
\(A(I, J)=0.0\)
\(11 \quad A(J, 1)=0.0\)
\(12 A(I, I)=1.0\)
\(I F(N \cdot L E-2) G O\) TO 15
\(M=N-2\)
\(M=N-2\)
DO \(14 \mathrm{~K}=1\), M \(L=K+1\) DO \(14 \mathrm{~J}=2, \mathrm{~N}\)
\(D 1=0.0\)
DO 13 I \(=L, N\)
\(D 2^{13}=\operatorname{VECI}(1, K)\)
D2 \(=V E C I(1 ; K)\)
\(D 1=D 1+D 2 * A(J, I)\)
DO \(14 \mathrm{I}=\mathrm{L}, \mathrm{N}\)
\(14 \begin{array}{ll}\text { DO } 14 \mathrm{I}=\mathrm{L}, \mathrm{N} \\ \mathrm{A}(\mathrm{J}, \mathrm{I}) & =A(J, I)-V E C I(I, K) * D 1\end{array}\)
C THE COMPUTATION OF THE EIGENVECTORS OF THE ORIGINAL NON-
C SCALED MATRIX.
\(15 \mathrm{KON}=1\)
DO \(24 I=1, N\)
\(L=0\)
IF(EVI(I).EQ.0.0)GO TO 16
LFIKON.EQ.O)GO TO 16
\(K O N=0\)
GO TO 24
16 DO \(18 \mathrm{~J}=1, N\)
\(D 1=0.0\)
\(D 2=0.0\)
DO \(17 \mathrm{~K}=1, \mathrm{~N}\)
\(D 3=A(J, K)\)
D1 = D1+D3*VECR(K,I)
IFIL.EQ.O)GO TO 17
```

                D2 = D2+D3*VECR(K,I-1)
                CONTINUE
                WORK(J) = Dl/PRFACT(J)
                IF(L.EQ.O)GO TO 18
                IF(L.EQ.O)GO TO 18
    SUBDIA $J$ ) $=$ D2/PRFACT (J)
continue
c 18
C
C
C
C
O
C OF NORMALISATION OF THE EIGENVECTORS AND THE COMPUTATION
C OF THE EIGENVALUES OF THE ORIGINAL NON-NORMALISED MATRIX.
IF(L.EQ.1)GO TO 21
D1 $=0.0$
OO 19 Mmin N
19 D1 $=D 1+$ WORK $(M) * * 2$
D1 = OSQRT(D1)
DO $20 \mathrm{M}=1$, N
$\operatorname{VECI}(M \cdot I)=0.0$
$\operatorname{VECR}(M, I)=$ WORK(M)/D
EVR(I) = EVR(I)*ENORM
GO TO 24
C
$21 \underset{\operatorname{EVR}(1)^{1}=\operatorname{EVR}(1) * E N O R M}{\operatorname{EON}}$
EVR(I-1) = EVR(I)
EVR(I-1) EVVR(I)
EVI(I) $=$ EVI(I)*ENORM
EVI(I)=EVI(I)*EN
EVI(I-1)
$R=0.0$
DO $22 \mathrm{~J}=1, \mathrm{~N}$
R1 - WORK(J)**2 + SUBDIA(J)**2
IF(R.GE.RI)GO TO 22
$R=R 1$
LONTIN
22 CONTINUE
D3 = WORK(L)
R1 = SUBDIA(L)
DO $23 \mathrm{~J}=1, \mathrm{~N}$
D1 $=$ WORK(J)
D2 = SUBDIA(J)
VECR(J.I) $=(D 1 * D 3+D 2 * R 1) / R$
VECI(J,I) = (D2*D3-D1*R1)/R
VECR(J,I-1) $=\operatorname{VECR}(J, 1)$
VECI(J,I-1) =-VECI(J,I)
23 CONTINUE
C
25 RETURN
END
SUBROUTINE SCALE(N,NM,A,H,PRFACT,ENORM)
DOUBLE PRECISION COLUMN,FACTOR,FNORM,PRFACT,Q,ROW
INTEGER I,J,ITER,N,NCOUNT,NM
REAL BOUND1, BOUND2, ENORM
DIMENSION A(NM, 1),H(NM,1), PRFACT(NM)
$\stackrel{c}{C}$
C THIS SUBROUTINE STORES THE MATRIX OF THE ORDER N FROM THE
C ARRAY A INTO THE ARRAY H. AFTERWARD THE MATRIX IN THE
C array a is scaled so that the quotient of the absolute sum
C OF The off-Diagonal elements of column 1 and the absolute
C SUM OF THE OFF-DIAGONAL ELEMENTS OF ROW I LIES WITHIN THE
C VALUES OF GOUNDI AND BOUNDZ.
c the component i of the eigenvector obtained by using the
C SCALED MATRIX MUST BE DIVIDED BY THE VALUE FOUND IN THE
C PRFACTMI OF THE ARRAY PRFACT. IN THIS WAY THE EIGENVEGTOR
$C$ PRFACTI
$C$ OF THE NON-SCALED MATRIX IS OBTAINED.
$C$
$C$
C VALUE OF THE EUCLIDIAN NORM IS EQUAL TO ONE.
C if the process of scaling was not successful the original
C MATRIX FROM THE ARRAY H WOULD BE STORED BACK INTO A AND
C THE EIGENPROBLEM WOULD BE SOLVED BY USING THIS MATRIX.
C THE EIGENPROBLEM WOULD BE SOLVED BY USIING THIS MATRIX.
C NM DEFINES THE FIRST DIMENSION OF THE ARRAYS A AND H. NM
C NM DEFINES THE FIRST DIMENSION
C MUST BE GREATER OR EQUAL TO N.
C the eigenvalues of the normalised matrix must be
C MULTIPLIED BY THE SCALAR ENORM IN ORDER THAT THEY BECOME
C THE EIGENVALUES OF THE NON-NORMALISED MATRIX.
C
DO $21=1, N$
DO $1 \mathrm{~J}=1, \mathrm{~N}$
$H(I, J)=A(I, J)$
1
HII,J) = All.
2 PRFACT(I)=1.0
BOUNOI $=0.75$
BOUND2 $=1.33$
1 TER = 0
3 NCOUNT $=0$
DO $8 \quad I=1, N$
COLUMN $=0.0$
ROW $=0.0$
DO $4 \mathrm{~J}=1, \mathrm{~N}$
IFII.EQ.JIGO TO 4
COLUMN = COLUMN + ABS(A(J,I))
COLUMN = COLUMN + ABSIAIJ
ROW = ROW + ABS(AII:J))
CONTINUE
IFICOLUMN.EQ.O.0)GO TO 5
IFIROW.EQ.O.0)GO TO 5
a = COLUMN/ROW
IF(Q.LT.BOUNDIIGO TO 6
IFIQ.GT.BOUND2IGO TO 6

```
17

18

5 NCOUNT \(=\) NCOUNT +1
GO TO 8
6 FACTOR \(=\) DSQRT(Q)
DO \(7 \mathrm{~J}=1, \mathrm{~N}\)
IF(I.EQ.J)GO TO 7 \(A(1, J)=A(1, J) * F A C T O R\) A(J.I) = A(J,I)/FACTOR CONTINUE
PRFACT(I) = PRFACT(I)*FACTOR
CONTINUE
ITER = ITER+1
1FIITER.GT. 30 IGO TO 11
\(c\)
IFINCOUNT.LT.NIGO TO 3

\section*{FNORM \(=0.0\)}

DO 9 I=1,N DO 9 J=1,N
\(Q=A(I, J)\)
\(9 \quad\) FNORM - FNORM+Q*Q
FNORM \(=\) DSQRT (FNORM)
DO \(101=1, N\)
DO \(10 \mathrm{~J}=1, \mathrm{~N}\) \(A(I, J)=A(1, J) / F\) NORM
ENORM = FNORM
GO TO 13
\(c\)
11 DO \(121=1, N\) \(0012 \mathrm{~J}=1, \mathrm{~N}\) \(A(I, J)=H(I, J)\)
ENORM \(=1.0\)
c
13 RETURN
END
SUBROUTINE HESQR(N,NM,A,H,EVR,EVI,SUBDIA,INDIC,EPS,EX)
DOUBLE PRECISION S,SR,SR2,X,Y,Z
INTEGER I,J,K,L,M,MAXST,MI,N,NM,NS
REAL EPS,EX,R,SHIFT,T
DIMENSION A(NM,1),H(NM,1),EVR(NM),EVI(NM),SUBDIA(NM)
DIMENSION INDIC(NM)
C
C this subroutine finds all the eigenvalues of a real
C GENERAL MATRIX. THE ORIGINAL MATRIX A OF ORDER N IS
C REDUCED TO THE UPPER-HESSENBERG FORM H BY MEANS OF
C SIMILARITY TRANSFORMATIONS (HOUSEHOLDER METHOD). THE MATRIX \(C\) H IS PRESERVED IN THE UPPER HALF OF THE ARRAY H AND IN THE C ARRAY SUBDIA. THE SPECIAL VECTORS USED IN THE DEFINITION C OF THE HOUSEHOLDER TRANSFORMATION MATRICES ARE STORED IN C THE LOWER PART OF THE ARRAY H.
C THE LOWER PART OF THE ARRAY H. \({ }^{\text {THE }}\) ARRAYS A AND H. NM MUST C NM IS THE FE EQUAL. TO OR GREATER THAN N.
C THE REAL PARTS OF THE N EIGENVALUES WILL BE FOUND IN THE
\(C\) FIRST N PLACES OF THE ARRAY EVR,AND
C the imaginary parts in the first n places of the array evi C the array indic indicates the success of the routine as c FOLLOWS
value of INDIC(I)
EIGENVALUE I
NOT FOUND
FOUND
eps is a small positive number that numerically represents
C EPS IS A SMALL POSITIVE NUMBER THAT NUMERICALLY REPRESENTS C ZERO IN THE PROGRAM. EPS = (EUCLIDIAN NORM OF H) \#EX WHERE EX \(=2 * *(-T)\). T IS THE NUMBER OF BINARY DIGITS IN THE \(C\) MANTISSA OF A FLOATING POINT NUMBER.

REDUCTION OF THE MATRIX A TO AN UPPER-HESSENBERG FORM H.
THERE ARE N-2 STEPS.
IF (\(\mathrm{N}-2\)) \(14,1,2\)
1 SUBDIA(1) \(=A(2,1)\)
GO TO 14
\(2 \mathrm{M}=\mathrm{N}-2\)
DO \(12 \mathrm{~K}=1, \mathrm{M}\)
\(L=K+1\)
DO 3 I=

\(S=S+A B S(A(1, K))\)
IF(S.NE.ABS(A \((K+1, K))\))GO TO 4
\(\operatorname{SUBDIA}(K)=A(K+1, K)\)
\(H(K+1, K)=0.0\)
GO TO 12
4 SR2 \(=0.0\)
DO 5 I \(=L, N\)
\(S R=A(I, K)\)
\(S R=S R / S\)
\(A(I, K)=S R\)
\(5 \quad \begin{array}{ll}A(1, K) & =S R \\ S R 2 & =S R 2+S R * S R\end{array}\)
SR = DSQRT(SR2)
IF(AlL,K).LT.0.0)GO TO 6
\(S R=-S R\)
\(6 \quad S R 2=S R 2-S R * A(L, K)\)
\(A(L, K)=A(L, K)-S R\)
\(H(L, K)=H(L, K)-S R * S\)
SUBDIA(K) = SR*S \(x=S * D S Q R T(S R 2)\)


```

C

```



```

c

```



```

M,

```



```

    Z =0.0
    IF(I+2.GT.M)GO TO 22
    Z=A(I+2,I-1)
    22 SR2 = DABS(X)+DABS(Y)+DABS(Z)
    IF(SR2.EQ.O.O)GO TO 23
    X=X/SR2
    Y}=Y/SR
    Y=Y/SR2
    Z = Z/SR2
    23 S = DSQRT(X*X + Y*Y + Z*Z)
IF(X.LT.0.0)GOTO 24
S=-S
24 IF(I.EQ.K)GO TO 25
A(I,I-1) = S*SR2
IF(SR2.NE.O.0)GO TO 26
IF(I+3.GT.M)GO TO 33
GO TO 32
GO TO 32
S = X-S
X=Y/S
Y=Z/S
C PREMULTIPLICATION BY THE MATRIX PR.
DO 28 J=I,M
S=A(I,J)+A(I+I,J)*X
IF(I+2.GT*M)GO TO 27
S=S+A(I+2,J)*Y
S = S*SR
A(I,J)=A(I,J)-S
A(I+I,J)=A(I+1,J)-S*X
IF(I+2.GT.M)GO TO 28
A(I+2,J) = A(I+2,J)-S*Y
CONTINUE
C POSTMULTIPLICATION BY THE MATRIX PR.
LF=I+2
L =M
L = M M J=K,L
S=A(J,I)+A(J,I+1)*X
IF(I+2.GT.M)GO TO 30
S=S+A(J,I+2)*Y
S = S*SR
A(J,I) = A(J,I)-S
A(J,I+I)=A(J,I+1)-S*X
IF(I+2.GT.M)GO TO 31
A(J,I+2)=A(J,I+2)-S*Y
CONTINUE
IF(I+3.GT.M)GO TO 33
S= -A(I+3,I+2)*Y*SR
S = -A(I+3,I+2)*Y*SR
A(I+3,I)=S
A(I+3,I+1)=S*X
A(I+3,I+2)=S*Y +A(I+3,I+2)
33 CONTINUE
IF(NS.GT.MAXST)GO TO 37
GO TO 18
C COMPUTE THE LAST EIGENVALUE.
34 EVR(M) =A(M,M)
EVI(M)=0.0
INDIC(M)=1
M=K
GO TO 18
C
c compute the eigenvalues of the last 2X2 matrix obtained by
C THE DECOMPOSITION.
35R=0.5*(A(K,K)+A(M,M))
S=0.5*(A(M,M)-A(K,K))
S = S*S + A(K,M)*A(M,K)
INDIC(K) = 1
INDIC(M)=1
IF(S.LT.O.O)GO TO 36
T = DSQRT(S)
EVR(K)=R-T
EVR(M)=R+T
EVI(K)=0.0
EVI(M)=0.0
M =M-2
GO TO 18
36 T = DSQRT(-S)
EVR(K) = R
EVI(K)=T
EVR(M)=R
EVI(M)=-T
EVI(M)=-
M=M-2
C
GO TO 18
37 RETURN
END
SUBROUTINE REALVEIN,NM,M,IVEC,A,VECR,EVR,EVI,
IIWORK,WORK, INDIC,EPS,EXI
DOUBLE PRECISION S,SR
OOBLE PRECISION S:SR
INTEGER I, IVEC,ITER,J,K,L,M,N,NM,NS
REAL BOUND,EPS,EVALUE,EX,PREVIS,R,R1,T
REAL BOUND,EPS,EVALUE,EX,PREVIS,R,RI,T
DIMENSION A(NM,1),VECR(NM,1),EVR(NM)
DIMENSION EVI(NM),IWORK (NM),WORK (NM), INDIC(NM

```
\(c\)
C

C THIS SUBROUTINE FINDS THE REAL EIGENVECTOR OF THE REAL
\(C\) UPPER-HESSENBERG MATRIX IN THE ARRAY A, CORRESPONDING TO
C THE REAL EIGENVALUE STORED IN EVRIIVECI. THE INVERSE
C ITERATION METHOD IS USED.
C NOTE THE MATRIX IN A IS DESTROYED BY THE SUBROUTINE.
C \(N\) IS THE ORDER OF THE UPPER-HESSENBERG MATRIX.
C NM DEFINES THE FIRST DIMENSION OF THE TWO DIMENSIONAL
C ARRAYS A AND VECR. NM MUST EE EQUAL TO OR GREATER THAN N.
\(C\) M IS THE ORDER OF THE SUBMATRIX OBTAINED BY A SUITABLE
C DECOMPOSITION OF THE UPPER-HESSENBERG MATRIX IF SOME
C SUBDIAGONAL ELEMENTS ARE EQUAL TO ZERO. THE VALUE OF M IS
\(C\) CHOSEN SO THAT THE LAST N-M COMPONENTS OF THE EIGENVECTOR
C ARE ZERO.
C IVEC GIVES THE POSITION OF THE EIGENVALUE IN THE ARRAY EVR C FOR WHICH THE CORRESPONDING EIGENVECTOR IS COMPUTED.
\(C\) THE ARRAY EVI WOULD CONTAIN THE IMAGINARY PARTS OF THE N C EIGENVALUES IF THEY EXISTED.
\(C\)
C THE M COMPONENTS OF THE COMPUTED REAL EIGENVECTOR WILL BE C FOUND IN THE FIRST M PLACES OF THE COLUMN IVEC OF THE TWO \(C\) DIMENSIONAL ARRAY VECR.
\(\stackrel{C}{C}\)
\(C\) IWORK AND WORK ARE THE WORKING STORES USED DURING THE C GAUSSIAN ELIMINATION AND BACKSUBSTITUTION PROCESS. C THE ARRAY INDIC INDICATES THE SUCCESS CF THE ROUTINE AS c FOLLOWS
\(\begin{array}{rr}\text { VALUE OF INDIC(I) EIGENVECTOR I } \\ \frac{1}{2} & \text { NOT FOUND }\end{array}\) NOT FOUND
FOUND
\(C\) EPS IS A SMALL POSITIVE NUMBER THAT NUMERICALLY REPRESENTS \(C\) ZERO IN THE PROGRAM. EPS = (EUCLIDIAN NORM OF A)*EX, WHERE
\(C E X=2 * *(-T)\). T IS THE NUMBER OF BINARY DIGITS IN THE
C MANTISSA OF A FLOATING POINT NUMBER.
VECR(1,IVEC) \(=1.0\)
C SMALL PERTURBATION OF EQUAL EIGENVALUES TO OBTAIN A FULL
C SET OF EIGENVECTORS.
EVALUE \(=\) EVR (IVEC)
IFIIVEC.EQ.M)GO TO 2
\(K=I V E C+1\)
\(R=0.0\)
\(R=0.0\)
DO \(1 \quad 1=K, M\)
IFIEVALUE.NE.EVR(I))GO TO 1
IFIEVIII).NE.O.O)GOTO 1
\(R=R+3.0\)
CONTINUE
EVALUE \(=\) EVALUE+R*EX
2 DO \(3 \quad K=1\), M
C GAUSSIAN ELIMINATION OF THE UPPER-HESSENBERG MATRIX A. ALL
\(C\) ROW INTERCHANGES ARE INDICATED IN THE ARRAY IWORK.ALL THE
C ROW INTERCHANGES ARE INDICATED IN THE ARRAY IWORK.ALL THE
C MULTIPLIERS ARE STORED AS THE SUBDIAGONAL ELEMENTS OF A. \(K=M-1\)
DO \(8 \quad 1=1, K\)
\(L=I+1\)
IF (A(I+1,I).NE. 0.01 GO TO 4
IF(A(I,I).NE.O.O)GO TO 8
\(A(1, I)=E P S\)
\(A(1, I)=\)
\(G O\) TO 8
\(4 \quad I F(A B S(A(I, I)) \cdot G E \cdot A B S(A(I+1, I))) G O\) TO 6
IWORK(1) \(=1\)
DO \(5 \mathrm{~J}=I, M\)
\(R=A(I, J)\)
\(A(I, J)=A(I+1, J)\)
\(A(I+1, J)=R\)
\(6 R=-A(I+1, I) / A(I, I\)
\(A(I+1, I)=R\)
DO \(7 \mathrm{~J}=\mathrm{L}, \mathrm{M}\)
7 CO(I+I,J) \(\quad=A(I+1, J)+R * A(I, J)\)
\(I F(A(M, M)\). NE. 0.0\()\) GO TO 9
\(A(M, M)=E P S\)
C
C THE VECTOR (1,1,....1) IS STORED IN THE: PLACE OF THE RIGHT
C HAND SIDE COLUMN VECTOR.
9 DO 11 I=1,N
IFII.GT.M)GO TO 10
WORK(I) \(=1 . U\)
GO TO 11
10 WORKIII \(=0.0\)
CONTINUE
C THE INVERSE ITERATION IS PERFORMED ON THE MATRIX UNTIL THE
C INFINITE NORM OF THE RIGHT-HAND SIDE VECTOR IS GREATER
C THAN THE BOUND DEFINED AS 0.01/(N*EX).
BOUND \(=0.01 /(E X *\) FLOAT (N) \()\)
NS \(=0\)
\(C\)
\(C\)
C THE BACKSUBSTITUTION.
\(12 R=0.0\)
DO \(15 \quad I=1, M\) \(J=M-I+1\) \(S=W O R K(J)\) IF(J.EQ.M)GO TO 14
```

    \(L=J+1\)
    DO \(13 \mathrm{~K}=\mathrm{L}, \mathrm{M}\)
        \(S R=W O R K(K)\)
        \(S=S-S R * A(J, K)\)
        \(W \operatorname{ORK}(J)=S / A(J, J)\)
        \(T\) = ABS(WORK(J))
        IF(R.GE.TIGO TO 15
        \(R=T\)
    15 CONTINUE
    ```
\(C\)
\(C\)
\(C\)
\(C\)
THE COMPUTATION OF THE RIGHT-HAND SIDE VECTOR FOR THE NEW
ITERATION STEP.
 DO \(16 \quad 1=1, M\)
 16 WORK(I) \(=\) WORK(I)/R
\({ }_{C}^{C}\)
C THE COMPUTATION OF THE RESIDUALS AND COMPARISON OF THE
C RESIDUALS OF THE TWO SUCCESSIVE STEPS OF THE INVERSE
C ITERATION.IF THE INFINITE NORM OF THE RESIDUAL VECTOR IS
C GREATER THAN THE INFINITE NORM OF THE PREVIOUS RESIDUAL
C VECTOR THE COMPUTED EIGENVECTOR OF THE PREVIOUS STEP IS
C TAKEN AS THE FINAL EIGENVECTOR.
 R1 \(=0.0\)
 DO 18 I=1, M
 \(T=0.0\)
 DO \(17 \mathrm{~J}=1, \mathrm{M}\)
 \(17 T=T+A(I, J) * W O R K(J)\)
 \(T=A B S(T)\)
 IF(RI.GE.T)GO TO 18
 RI \(=T\)
 18 CONTINUE
 IF(ITER.EQ.1)GO TO 19
 IF(PREVIS.LE.R1)GO TO 24
 19 DO \(20 \quad \mathrm{I}=1 \mathrm{M}\)
 20 VECR(I,IVEC) = WORK(I)
 PREVIS = RI
 IF(NS.EQ.1)GO TO 24
 IFIITER.GT.6)GO TO 25
 ITER = ITER+1
 IF(R.LT.BOUND)GO TO 21
 NS \(=1\)
\(\stackrel{C}{C}\)
 GAUSSIAN ELIMINATION OF THE RIGHT-HAND SIDE VECTOR.
 \(21 K=M-1\)
 DO \(23 \mathrm{I}=1, \mathrm{~K}\)
 \(R=\operatorname{WORK}(I+1)\)
 IF(IWORK(I).EQ.O)GO TO 22
 WORK \((I+1)=\operatorname{WORK}(I)+W \operatorname{ORK}(1+1) * A(1+1, I)\)
 WORK(I) = R
 GO TO 23
 \(22 \quad \operatorname{WORK}(I+1)=\operatorname{WORK}(I+1)+\operatorname{WORK}(I) * A(I+1, I)\)
 GOTO 12
C
 24 INDIC(IVEC) \(=2\)
 25 IF (M.EQ.N)GO TO 27
 \(J=M+1\)
\(D O\)
\(26 \quad I=J, N\)
 26 VECR(I,IVEC) \(=0.0\)
 27 RETURN
 END
 SUBROUTINE COMPVE (N, NM, M, IVEC, A,VECR,H,EVR,EVI,INDIC,
 1 IWORK, SUBDIA, WORK 1 , WORK 2 , WORK, EPS, EX)
 DOUBLE PRECISION D,OI
 INTEGER I,II,I2,ITER,IVEC,J,K,L,M,N,NM,NS
 REAL B,BOUND, EPS, ETA,EX,FKSI, PREVIS,R,S,U,V
DIMENSION A (NM, 1),VECR(NM, 1 , H(NM, 1\(),\) EVR (NM), EVI (NM),
 IINDIC(NM), IWORK(NM),SUBDIA(NM),WORKI(NM), WORK2(NM),
 IINDIC(NM), IWORK(NM),SUBDIA(NM), WORKI (NM), WORK2(NM)
 2WORK (NM)
C
C THIS SUBROUTINE FINDS THE COMPLEX EIGENVECTOR OF THE REAL
C UPPER-HESSENBERG MATRIX OF ORDER \(N\) CORRESPONDING TO THE
C COMPLEX EIGENVALUE WITH THE REAL PART IN EVRIIVECI AND THE
C CORRESPONDING IMAGINARY PART IN EVI (IVEC) THE INVERSE
C ITERATION METHOD IS USED MODIFIED TO AVOID THE USE OF
C COMPLEX ARITHMETIC.
C THE MATRIX ON WHICH THE INVERSE ITERATION IS PERFORMED
C THE MATRIX ON WHICH THE INVERSE ITERATION IS PERFORMED
C BUILT UP IN THE ARRAY A BY USING THE UPPER-HESSENBERG
\(C\) BUILT UP IN THE ARRAY A BY USING THE UPPER-HESSENBERG
\(C\) MATRIX PRESERVED IN THE UPPER HALF OF THE ARRAY H AND IN
C MATRIX PRESERVED
C THE ARRAY SUBDIA.
C THE ARRAY SUBDIA.
\(C\) NM DEFINES THE FIRST DIMENSION OF THE TWO DIMENSIONAL
\(C\) ARRAYS A,VECR AND H. NM MUST BE EQUAL TO OR GREATER
C THAN N.
C M IS THE ORDER OF THE SUBMATRIX OBTAINED BY A SUITABLE
\(C\) DECOMPOSITION OF THE UPPER-HESSENBERG MATRIX IF SOME
\(C\) SUBDIAGONAL ELEMENTS ARE EQUAL TO ZERO. THE VALUE OF M IS
\(C\) SUBDIAGONAL ELEMENTS ARE EQUAL TO ZERO. THE VALUE OF M IS
CHOSEN SO THAT THE LAST N-M COMPONENTS OF THE COMPLEX
C EIGENVEGTOR ARE ZERO.
\(\stackrel{C}{C}\)
C THE REAL PARTS OF THE FIRST M COMPONENTS OF THE COMPUTED
C COMPLEX EIGENVECTOR WILL BE FOUND IN THE FIRST M PLACES OF
C THE COLUMN WHOSE TOP ELEMENT IS VECR(I,IVEC) AND THE
C THE COLUMN WHOSE TOP ELEMENT IS VECR(I, IVECI AND THE
C CORRESPONDING IMAGINARY PARTS OF THE FIRST M COMPONENTS OF
\(C\) THE COMPLEX EIGENVECTOR WILL BE FOUND IN THE FIRST M
\(C\) PLACES OF THE COLUMN WHOSE TOP ELEMENT IS VECR(I,IVEC-1).
```

C THE ARRAY INDIC INDICATES THE SUCCESS OF THE ROUTINE AS
C FOLLOWS VALUE OF INDIC(I)
C FOLLOWS VALUE OF INDIC(I)

```

```

        OF INDIC(I) EIGENVECTOR I
        OF INDIC(I) EIGENVECTOR
        OF INDIC(I) EIGENVECTOR
    C THE ARRAYS IWORK,WORKI,WORK2 AND WORK ARE THE WORKING
S STORES USED DURING THE INVERSE ITERATION PROCESS.
C EPS IS A SMALL POSITIVE NUMBER THAT NUMERICALLY REPRESENTS
C ZERO IN THE PROGRAM. EPS I (EUCLIDIAN NORM OF H)*EX, WHERE
C EX = 2**(-T). T IS THE NUMBER OF BINARY DIGITS IN THE
C MANTISSA OF A FLOATING POINT NUMBER.
FKSI = EVR(IVEC)
ETA = EVI(IVEC)
C THE MODIFICATION OF THE EIGENVALUE (FKSI + I*ETA) IF MORE
C EIGENVALUES ARE EQUAL.
IFIIVEC.EQ.MIGO TO 2
K=IVEC+1
R=0.0
DO 1 I=K,M
IF(FKSI.NE.EVR(I))GO TO 1
IF(ABS(ETA).NE.ABS(EVI(I)))GO TO 1
R=R+3.0
1 CONTINUE
R = R*EX
FKSI=FKSI+R
ETA =ETA +R
C
C THE MATRIX ((H-FKSI*I)*(H-FKSI*I) + (ETA*ETA)*I) IS
C STORED INTO THE ARRAY A.
2R=FKSI*FKSI + ETA*ETA
S=2.0*FKSI
L}=M-
DO }5\quad1=1,
DO 4 J=I,M
D=0.0
D=0.0
DO 3KK=I,J
D=D+H(I,K)*H(K,J)
3 remeD+H(I,K)*H(K,J
3 rremeD+H(I,K)*H
DO 9 I=1,L
R=SUBDIA(I)
R=SUBDIA(I)
I1=I+1
I1 = I+1
A(J,I)=A(J,I)+R*H(J,I+1)
IF(I.EQ.1)GO TO 7
A(1+1, (-1)=R*SUBDIA(I-1)
DO 8 J=I,M
A(I+I,J)=A(I+I,J)+R*H(I,J)
CONTINUE
C
C THE GAUSSIAN ELIMINATION OF THE MATRIX
C ((H-FKSI*I)*(H-FKSI*I) + (ETA*ETA)*I) IN THE ARRAY A. THE
C ROW INTERCHANGES THAT OCCUR ARE INOICATED IN THE ARRAY INE
C ROW INTERCHANGES THAT OCCUR ARE INDICATED IN THE ARRAY
C THE SECOND SUBDIAGONAL OF THE ARRAY A.
K=M-1
DO 18 I=I,K
II=1+1
I2=1+2
IWORK(I)=0
IF(I,EQ.K)GO TO 10
IF(A(I+2,I).NE,O.0)GO TO 11
M IF(A(I+2,I),NE,O.0)GO TO 11
IFIA(I,I).NE.O.O)GO TO 18
A(I,I) = EPS
GO TO 18
C
11 IF(I.EQ.K)GO TO 12
IF(ABS(A(I+1,I)).GE.ABS(A(I+2,I)))GO TO 12
IF(ABS(A(I,I)),GE.ABS(A(I+2,I)))GO TO 16
L=I+2
IWORK(I) = 2
GO TO 13
12 IF(ABS(A(I,I)),GE.ABS(A(I+1,I)))GO TO 15
L=I+1
IWORK(I)=1
C
DO 14 J=I,M
A(I,J)=A(L,J)
A(I;J)=A
14 A(L,J)=R
15 IF(I.NE.K)GO TO
15 IF(I.NE.K)GO TO
R=-A(L,I)/A(I,I)
A(L,I)=R
17 A(L,J)=A(L,J)+R*A(I;J)
18 CONTINUE
18 CONTINUE
IF(A(M,M):NE,
C
C THE VECTOR (1,I,···.., I) IS STORED INTO THE RIGHT-HAND SIDE
C THE VECTOR (1,I,···..,1) IS STORED INTO THE RIGHT-HAND SIDE
9 CONTINUE
11=1+1
!
~

```
C COMPLEX RIGHT-HAND SIDE VECTOR.
 19 DO 21 I=I.N
 IF(I.GT.M)GO TO 20
 VECR(I.IVEC)= 1.0
 \(\operatorname{VECR(I,IVEC)=1.0}\)
\(\operatorname{VECR}(I, I V E C-1)=1.0\)
 \(\operatorname{VECR}(I, I V E C-1)=2.0\)
GO TO 21
 GO TO 21
 \(20 \quad\) GECR(I,IVEC) \(=0.0\)
 VECR(I,IVEC-1) \(=0.0\)
CONTINUE
 21 VECRIINIV
 21
c the inverse iteration is performed on the matrix until th
C INFINITE NORM OF THE RIGHT-HAND SIDE VECTOR IS GREATER
C INFINITE NORM OF THE RIGHT-HAND SIDE V
C THAN THE BOUND DEFINED AS \(0.01 /(N * E X)\).
 AN THE BOUND DEFINED AS O.01)
BOUND \(=0.01 /(E X * F L O A T(N))\)
 BOUND \(=\)
NS \(=0\)
ITER \(=\)
 ITER = 1
 ITER \(=1\)
DO \(22 \quad I=1, M\)
 \(22 \begin{aligned} & \text { ITER }=1 \\ & \text { DO } 22 I=1, M \\ & \text { OORK }(1)=\end{aligned}\)
 \(22 \begin{aligned} & \text { DO } 22 I=1, M \\ & \text { WORK } 11)=H(1,1)-F K S I\end{aligned}\)
\(C\)
\(C\)
c
THE SEQUENCE OF THE COMPLEX VECTORS \(Z(S)=P(S)+1 * Q(S)\) AND
C \(W(S+1)=U(S+1)+I * V(S+1)\) IS GIVEN BY THE RELATIONS
C (A - (FKSI-I*ETA)*I)*W(S+1) = Z(S) AND
\(C(A-(F K S I-1 * E T A) * I) * W(S+1)\)
\(C 2(S+1)=W(S+1) / M A X(W(S+1))\).
\(C 2(S+1)=W(S+1) / M A X(W(S+1))\). \(2(S)\) AND
\(C \quad 2(S+1)=W(S+1) / M A X(W(S+1))\).
\(C\) THE FINAL \(W(S)\) IS TAKEN AS THE COMPUTED EIGENVECTOR.
\(C\)
\(C\)
\(C\)
C THE COMPUTATION OF THE RIGHT-HAND SIDE VECTOR
C (A-FKSI*I)*P(S)-ETA*Q(S). A IS AN UPPER-HESSENBERG MATRIX.
 23 DO 27 I = 1, M

 \(\mathrm{D}=\) WORK(I)*VECR(I,IVEC)
\(I F(I, E Q . I) G O\) TO 24
 IF (I.EQ.1)GO TO 24
 \(24 \quad D=D+S U B D I A(I-1) * V E C R(I-1\), IVEC)
 \(24 L=I+1\)
 IF \(=1+1 . G T . M) G O\) TO 26
 IF(L.GT.M)GO
DO \(25 K=L, M\)
 DO \(25 \mathrm{~K}=\mathrm{L}, \mathrm{M}\)
 \(\begin{array}{lc}25 & D O 25=K=L \text { M } \\ 26 & V E C R(I, I V E C-1)= \\ 26\end{array}\)
 \(\begin{array}{ll}25 & D=0+H(I, K) * V E C R(K, I V E C) \\ 26 & V E C R(I, I V E C-1)= \\ 27 & \text { CONTINUE }\end{array}\)
 27 CONTINUE
\(C\)
C gaussian elimination of the right-hand side vector.
 \(K=M-1\)
 \(K=M-1\)
DO \(28 \quad 1=1, K\)
 \(L=I+I\) WORK(I)
 \(L=I+I W O R K(I)\)
\(R=\operatorname{VECR}(L, I V E C-1)\)
 \(R=V E C R(L, I V E C-1)\)
\(V E C R(L, I V E C-1)=V E C R(I, I V E C-1)\)
 \(\operatorname{VECR(L,IVEC-1)}=\operatorname{VECR(I,IVEC-1)}\)
 VECR(L, IVEC-1) = V
VECR(I, IVEC-1) \(=R\)
VECR(I \(+1, I V E C-1)=\)
 \(V E C R(I, I V E C-1)=R\)
\(V E C R(I+1, I V E C-1)=\)
\(I F(I, E Q . K) G O\) TO 28
 \(\operatorname{VECR}(I+1, I \operatorname{VEC}-1)=\operatorname{VECR}(I+1, I V E C-1)+A(I+1, I) * R\)
 \(\operatorname{IF}(I, E Q, K) G O T O 28\)
\(V E C R(I+2, I V E(-1)=\operatorname{VECR}(I+2, I V E C-1)+A(I+2, I) * R\)
 28 CONTINUE
C THE COMPUTATION OF THE REAL PART U(S+1) OF THE COMPLEX
C THE COMPUTATION OF THE REAL PART U(S+1) OF THE COMPLEX
C VECTOR W(S+1). THE VECTOR U(S+1) IS OBTAINED AFTER THE
C BACKSUBSTITUTION.
 \(\begin{array}{rl}\text { DO } 31 & I=1, M \\ J & =M-I+1\end{array}\)
 \(31=M-1+1\)
\(0=M E C R 1\)
 \(\begin{aligned} J & =M-I+1 \\ D & =\operatorname{VECR}(J, I V E C-1)\end{aligned}\)
 IF(J.EQ.M)GO TO 30
 IFIJOEQ.
\(L=J+1\)
 DO \(\quad 29^{J+1} K=L\)
 DO \(29 K=L, M\)
 \(D 1=A(J, K)\)
 \(D 1=A(J, K)\)
\(D=D-D I\) "VECR(K,IVEC-1)
 \(29 \quad 0=D-D I * V E C R(K, I V E C-1)\)
\(30 \quad \operatorname{VECR}(J, I V E C-1) \equiv D / A(J, J)\)
 29 VECR(J,IVEC-1) = D/AIJ,J)
 \(\begin{array}{ll}30 & \text { VECRIJ,IV } \\ 31 & \text { CONTINUE }\end{array}\)
C 31
\(\stackrel{C}{C}\)
C THE COMPUTATION OF THE IMAGINARY PART V(S+1) OF THE VECTOR
C THE COMPUTATION OF THE IMAGINARY PARTV(S+1) OF THE VE
\(C\) W(S+1), WHERE \(V(S+1)=(P(S)-(A-F K S I * I) * U(S+1) /) / E T A\).
 DO 35 I=I,M
 DO 35 ImI,M \(\quad\) WORK(I)*VECR(I, IVEC-1)
 \(D=\) WORK (I)*VECR (I,
\(I F(I, E Q . I) G O\) TO 32
 \(I F(1, E Q \cdot 1) G O\) TO 32
\(D=D+S U B D I A(I-1) * V E C R(I-1\), IVEC-1)
\(1=1+1\)
 \(D=D+S U B D I A(I-1) * V\)
\(L=I+1\)
\(I F(L . G T . M) G O\) TO 34
 IF(L.GT.M)GO
DO \(33 \mathrm{~K}=\mathrm{L}, \mathrm{M}\)
 \(\begin{array}{rl}D O & 33 \quad K=L ; M \\ D & =D+H(I, K)\end{array}\)
 \(D=D+H\)
VECRII,IV
 33.
 33 (\(34+H(I, K) * V E C R(K, I V E C-1)\)
 \(\begin{array}{ll}33 & D=D+H(I ; K) * V E C R(K, I V E C-1) \\ 34 & V E C R(I, I V E C)=(V E C R(I, I V E C)-D) / E T A \\ 35 & C O N T I N U E\end{array}\)
 \(\begin{array}{ll}34 & \text { VECRII,IV } \\ 35 & \text { CONTINUE }\end{array}\)
\(C\)
\(C\)
\(\stackrel{C}{C} \mathrm{TH}\)
 COMPUTATION OF (INFIN. NORM OF W(S+1))**2.
 \(L=1\)
 \(L=1\)
\(S=0.0\)
 \(S=0 \cdot 0\)
\(D O \quad 36 \quad I=1, ~ M\)
 36
\(R=\operatorname{II}=1, M\)
\(V E C R(I, I V E C) * * 2+V E C R(I, I V E C-1) * * 2\)
 \(R=V E C R(I, I V E C) * * 2\)
\(I F(R . L E, S) G O T O 36\)
 \(R=I R \cdot L\)
\(S=R\)
\(L=I\)
 \(S=R\)
\(L=I\)
 LOAI
36 CONTINUE
THE COMPUTATION OF THE VECTOR \(Z(S+1)\), WHERE \(2(S+1)=W(S+1) /\)
C THE COMPUTATION OF THE VECTOR \(Z(S+1)\), WHERE \(Z(S+1)=W(S+1) /\)
\(C\) (COMPONENT OF W(S+1) WITH THE LARGEST ABSOLUTE VALUE)
C (COMPONENT OF W(S+1) WITH THE LARGEST ABSOLUTE VALUE) -
 \(U=\operatorname{VECR(L,IVEC-1)}\)
 \(V=V E C R(L, I V E C)\)
 DO 37 I=1,M
```

C THE COMPUTATION OF THE RESIDUALS AND COMPARISON OF THE
$C$ RESIDUALS OF THE TWO SUCCESSIVE STEPS OF THE INVERSE
C ITERATION. IF THE INFINITE NORM OF THE RESIDUAL VECTOR IS
C GREATER THAN THE INFINITE NORM OF THE PREVIOUS RESIDUAL
C VECTOR THE COMPUTED VECTOR OF THE PREVIOUS STEP IS TAKEN
C AS THE COMPUTED APPROXIMATION TO THE EIGENVECTOR.
$B=0.0$
0 41 1=1,M
$R$ = WORK(I)*VECR(I)IVEC-1) - ETA*VECR(I IVEC)
$\mathrm{U}=$ WORK(I)*VECR(I.IVEC) + ETA*VECR(I)IVEC-1)
IFII.EQ. 1 )GO TO 38
$R=R+S U B D I A(I-1) * V E C R(I-1$, IVEC-1)
$U=U+S U B D I A(I-1) * V E C R(I-1$, IVEC)
$38 \quad L=I+1$
IFIL.GT.MIGO TO 40
DO $39 \mathrm{~J}=\mathrm{L}, \mathrm{M}$
$R=R+H(I, J) * V E C R(J, I V E C-1)$
$U=U+H(I ; J) * V E C R(J, I V E C)$
$U=R * R+U * U$
IF(B.GE,U)GO TO 41
$B=U$
41 CONTINUE
F(ITER.EQ.I)GO TO 42
IF(PREVIS*LE•B)GO TO 44
42 DO 43 Ix 1 ; N
WORKI(I) $=\operatorname{VECR}(I, I V E C)$
WORK2(I) = VECR(I,IVEC-1)
43 PREVIS = B
IF(NS.EQ.I)GO TO 46
IF(ITER.GT.6)GO TO 47
ITER = ITER+1
IF(BOUND.GT.SQRT(S))GO TO 23
NS -1
GO TO 23
$C$
44 DO $45 \quad I=1, N$
VECR(I,IVEC) = WORKI(I)
45 VECR(I,IVEC-1) =WORK2 (I)
46 IND(C)(IVEC-1)=2
INDIC(IVEC) $=2$
47 RETURN
END

```

Added in Proof. A small alteration to the program is desirable. The four statements in the subroutine SCALE, page 822, lines \(3-6\), should be replaced by the four statements below. The alteration is necessary so that the program will also give correct eigenvectors for the case when no convergence of the process of scaling occurs.

12
\[
\text { PRFACT (I) }=1.0
\]

DO \(12 \mathrm{~J}=1, \mathrm{~N}\)
\(A(I, J)=H(I, J)\)
ENORM \(=1.0\)

\section*{CERTIFICATION OF ALGORITHIM 343 [F1] EIGENVALUES AND EIGENVECTORS OF A REAL GENERAL MATRIX [J. Grad and M. A. Brebner, Comm. ACM 11 (Dec. 1968), 820-826] H. D. Knoble (Recd. 2 July 1969 and 18 Sept. 1969) The Pennsylvania State University, Computation Center, University Park, PA 16802}

KEY WORDS AND PHRASES: norm, characteristic equation, degenerate eigensystem, diagonalizable matrix, defective matrix CR CATEGORIES: 5.14

The program used for this certification was copied directly from the printed Fortran algorithm [1]. In ad.dition to incorporating the suggested modification, the algorithm as used here was modified to operate completely in double precision arithmetic. The tests were run on an IBM System/360 model 67 using Fortran IV, double precision arithmetic (15 significant decimal digits; \(t=53\)). One criterion for measuring numerical precision of the results was a norm of a residual matrix. That is, given a coefficient matrix, \(A\) of order \(n\), pose the characteristic equation as \(A X_{k}=y_{k} X_{k}\) and define the norm of \(M\) as \(\|M\|_{1}=\max _{j}\left(\sum_{i}\left|m_{i, j}\right|\right)\), where
\(M=\left(M_{k}\right)=\left(A X_{k}-y_{k} X_{k}\right), X_{k}\) is the \(k\) th right-hand eigenvector of \(A\), and \(y_{k}\) is the \(k\) th eigenvalue for \(k=1,2, \cdots, n\).

The norm \(\|M\|_{1}\) essentially measures the worst eigenvalueeigenvector pair associated with the characteristic equation. In order to gain information concerning the other extreme, as well as an average measure of precision, the notations \(|M|_{\text {min }}=\) \(\min _{j}\left(\sum_{i}\left|m_{i, j}\right|\right)\) and \(\|M\|_{\text {ave }}=\sum_{j}\left(\sum_{i} \mid m_{i, j} \downarrow\right) / n\) will be used respectively, the former simply indicating the quantity is not a matrix norm.

The algorithm's performance was also analyzed by generating test matrices with certain known properties thereby permitting comparisons to be made between computational and theoretical results.

The objective was to study the algorithm's sensitivity to illconditioning and degeneracy by observing its behavior relative to the speed and precision, and accuracy where possible, with which a variety of eigensystems could be solved. Testing was carried out by entertaining four sets of matrices as follows:

Case 1. Small Matrices with Known Solutions. Several matrices from each of [1, 2, 3] varying in order from 3 to 8 yielded eigenvalues, and eigenvectors where documented, accurate to at least 7 decimal places. The largest 1 -norm was \(\|M\|_{1}<10^{-13}\); \(\|M\|_{\text {ave }}\) averaged \(10^{-14}\); and the largest value of \(|M|_{\min }\), was less than \(10^{-14}\). Maximum computation time for any of these matrices was less than a second.

Included in this test was a matrix, \(A\), belonging to a large class of test matrices discovered by Gear [3]. This matrix, \(A=\left(a_{i, j}\right)\) of order 8 is defined as:
\[
A=\left\{\begin{array}{l}
a_{i, i+1}=a_{i+1, i}=1, \text { for } i=1,2, \cdots, 7 \\
a_{1,6}=a_{8,3}=1, \\
a_{i, j}=0, \text { otherwise }
\end{array}\right.
\]

This nonsymmetric matrix has a zero trace and eigenvalue pairs: \(\pm 2, \pm 1, \pm 1, \pm 1\). The algorithm yielded four of the eigenvalues accurate to 15 decimal places and four values accurate to 7 places.

Deserving special note here is example (iii) presented with the original algorithm. As the authors [1] stated, although this matrix when transformed by scaling becomes invariant under the \(Q R\) process, the original, single precision algorithm yielded correct results. However, the double precision version failed completely regardless of the value of the hardware parameter \(t\). In addition, the algorithm may erroneously indicate success for this case; however, with the machine configuration noted earlier, failure was correctly indicated.

Case 2. Degenerate and Defective Matrices. Using an algorithm suggested by the work of Hall and Porsching [4], a degenerate, nonsymmetric matrix of order 30 with known positive eigenvalues was generated with eigenvalues: \(y_{1}=30 ; y_{i}=25\) for \(i=2,3, \cdots, 10 ; y_{i}=31-i\) for \(i=11,12, \cdots, 20 ;\) and \(y_{i}=1\) for \(i=21,22, \cdots, 30\). All eigenvalues were returned accurate to at least 14 decimal places; \(\|M\|_{1}<10^{-11},\|M\|_{\text {ave }}<\) \(10^{-12}\), and \(|M|_{\min }<10^{-13}\). Computation time was about 4 sec.

Gear [3] defines a class of matrices including a matrix \(B\) of order 25 such that
\[
B=\left(\begin{array}{lllll}
A & \mathrm{I} & 0 & \mathrm{I} & 0 \\
\mathrm{I} & A & \mathrm{I} & 0 & 0 \\
0 & \mathrm{I} & A & \mathrm{I} & 0 \\
0 & 0 & \mathrm{I} & A & \mathrm{I} \\
0 & \mathrm{I} & 0 & \mathrm{I} & A
\end{array}\right) \text { where } A=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right),
\]
and \(I\) is the identity matrix. Using the theory developed by Gear [3], it is easy to show the matrix \(B\) has 11 zeros, six pairs of eigenvalues equal to \(\pm 2\), and one pair of eigenvalues equal to \(\pm 4\). The algorithm yielded 14 eigenvalues accurate to 7 decimal places and 11 eigenvalues (not all the zero values) with at least 14 place accuracy; \(\|M\|_{1}<10^{-12},\|M\|_{\text {ave }}<10^{-14}\), and \(|M|_{\min }<\) \(10^{-14}\). Computation time was less than 3 seconds.
To gain a measure of the algorithm's ability to separate eigenvectors corresponding to the same eigenvalue, a degenerate symmetric matrix was generated using an algorithm of Ortega [5]. Briefly, a similarity transformation was used to generate a matrix
\(A\) of order 6. That is, using Ortega's notation, \(A=C D C\) where \(D=\operatorname{diag}(1,2,3,1,2,3), C=\left(\mathrm{I}-2 v v^{\prime}\right)\), and \(v\) is a column vector with each element in this case equal to \(1 / \sqrt{ } 6\). For this case \(\|M\|_{1}<\) \(10^{-13},\|M\|_{\text {ave }}<10^{-13}\), and \(|M|_{\min }<10^{-14}\). The eigenvectors corresponding to each eigenvalue pair are listed below to three decimal places.
\begin{tabular}{cc}
Transposed eigenvectors \\
Eigenvalue & \\
1 & \((+.480,-.438,-.438,-.042,-.438,-.438)\) \\
2 & \((+.449,-.447,-.447,-.002,-.447,-.447)\) \\
& \((-.254,+.723,-.254,-.254,-.469,-.254)\) \\
3 & \((-.151,+.745,-.151,-.151,-.595,-.151)\) \\
& \((-.328,-.328,+.672,-.328,-.328,-.344)\) \\
& \((-.328,-.328,+.671,-.329,-.329,-.342)\)
\end{tabular}

Even though the matrix \(A\) is obviously not defective, by inspection it can be seen that the algorithm did not yield well-separated eigenvectors. This fact is also evident by noting that if the algorithm extracts independent eigenvectors they will be returned orthogonal (in fact orthonormal), yet the determinant of the eigenvector matrix for this case is less then \(10^{-4}\) in absolute value.

Case 3. Ill-Conditioning. Two ill-conditioned matrices suggested by Wilkinson [6] were solved. One of these is a matrix \(A\) of the form:
\[
A=\left\{\begin{aligned}
a_{i, i} & =21-i \\
a_{i, i+1} & =20 \\
a_{i, j} & =0 \\
a_{20,1} & =6
\end{aligned}\right\}, \text { for } i, j=1,2, \cdots, 20 ; j \neq i, i+1
\]
whose eigenvalues are very sensitive to perturbations of \(\epsilon\). With \(\epsilon=0\), the matrix is triangular and the eigenvalues were returned accurate to 15 places with \(\|M\|_{1}<10^{-14},\|M\|_{\text {ave }}<10^{-14}\), and \(|M|_{\min }<10^{-15}\). As Wilkinson [6] points out, with \(\epsilon=10^{-10}\) the eigenvalues change drastically, having been computed in this case in complete agreement with this reference. For the perturbed case \(\|M\|_{1}>10^{-10},\|M\|_{\text {ave }}>10^{-11}\) and \(|M|_{\min }\) remained less than \(10^{-14}\).

The algorithm was tested under a combination of ill-conditioning and degeneracy by generating nonsymmetric matrices as in Case 2, but of order 20, conditioned such that max |eigenvalue \(\left|=10^{i} \times \min \right|\) eigenvalue \(\mid\) for \(j=2,3, \cdots, 20\); degeneracy was introduced by generating the matrices with only 10 distinct eigenvalues. The values of \(\|M\|_{1}\) for the matrices tested in this class were such that \(\|M\|_{1} \simeq 10^{j-11}\) for \(j=2,3, \cdots, 18\). \(\|M\|_{\text {sve }}\) followed a similar curve; \(|M|_{\min }<10^{-11}\) for \(j<14\) and never exceeded \(10^{-5}\). Although the algorithm indicated success, severe computational breakdown was evident during this test for values of \(j\) greater than 18. However, the largest eigenvalue in every case was returned accurate to 15 decimal places. Computation time for matrices of order 20 was consistently less than 2 seconds.

Case 4. Large Matrices. Several nonsymmetric matrices of order 50 with elements uniform on the interval \((0,50)\) were solved yielding the following average figures: \(\|M\|_{1}<10^{-9},\|M\|_{\text {ave }}<\) \(10^{-10}\), and \(|M|_{\min }<10^{-11}\). Computation time averaged 31 seconds.

A diagonal matrix \(A\) of order 50 with elements:
\[
A=\left\{\begin{array}{l}
a_{i, i}=1, \quad \text { for } i=1,10,20,30,40,50, \\
a_{i, j}=0, \quad \text { otherwise }
\end{array}\right\}
\]
was solved yielding \(\|M\|_{1}<10^{-16},\|M\|_{\text {ave }}<10^{-17}\), and
\(|M|_{\text {min }}<10^{-31}\).
Computation time was about 5 seconds and all eigenvalues were returned correct to 15 decimal places.

Conclusions. The algorithm is capable of successfully computing eigenvalues and eigenvectors of real general matrices even under conditions considered unstable. It has the advantage of being documented in ANSI (USASI) Fortran, being computationally fast, and has the capability of yielding results with as much precision as the hardware will permit. The algorithm does
not break down when presented with a matrix which is not diagonalizable; that is, a set of eigenvectors satisfying the eigenequation is computed regardless of the existence of linearly independent eigenvectors. However, when a matrix is diagonalizable and degenerate, the algorithm does not yield well separated eigenvectors corresponding to non-distinct eigenvalues. Another apparent disadvantage is the possible indication of completely successful computation (INDIC), even in clearly ill-conditioned situations where computational difficulties are inevitable. This latter property, however, is a common fault of other algorithms as well.
Acknowledgments. This author wishes to thank the editor and referee for their valuable critique and useful suggestions.
References:
1. Grad, J., and Brebner, M. A. Algorithm 343, Eigenvalues and eigenvectors of a real general matrix. Comm. ACM, 11 (Dec. 1968), 820-826.
2. Barlow, C. A. Jr., and Jones, E. L. A method for the solution of roots of a nonlinear equation and for solution of the general eigenvalue problem. J. ACM 18, 1 (Jan. 1966), 135142.
3. Gear, C. W. A simple set of test matrices for eigenvalue programs. Math. Comput. 23, 1 (Jan. 1969), 119-125.
4. Hall, C. A., and Porsching, T. A. Generation of positive test matrices with known positive spectra. Comm. ACM 11, 8 (Aug. 1968), 559-560.
5. Ortega, J. M. Generation of test matrices of similarity transformations. Comm. ACM 7, 6 (June 1964), 377-378.
6. Wilkinson, J. H. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965, pp. 86-93.

\section*{REMARK ON ALGORITHM 343 [F1] EIGENVALUES AND EIGENVECTORS OF A REAL GENERAL MATRIX [J. Grad and M. A. Brebner. Comm. ACM 11 (Dec. 1968), 820-826] \\ William Knight and William Mersereau (Recd. 7 Apr. 1970) \\ Computing Center, University of New Brunswick, Fredericton, New Brunswick, Canada}

KEY WORDS AND PHRASES: eigenvalues, eigenvectors, latent roots, Householder's method, QR algorithm, inverse iteration
\(C R\) CATEGORIES: 5.14

This remark reports certain failures of Algorithm 343 when applied to pathological matrices. The smallest example is a \(4 \times 4\) matrix for which 16 guard bits (\(5+\) digits) proved insufficient; all computed eigenvalues were incorrect in the most significant digit.

The algorithm was implemented on an IBM System/360 model 50 using Fortran IV-G. The program was not modified to operate completely in double precision as was done for Knoble's certification [2]. Satisfactory agreement was obtained for the three sample matrices given with the algorithm.

\section*{Example A}
\begin{tabular}{rrrr}
-50 & 53 & 52 & 51 \\
-52 & 1 & 53 & 52 \\
-53 & 0 & 1 & 53 \\
-51 & 53 & 52 & 52
\end{tabular}

The exact eigenvalues are all 1. The computed eigenvalues follow. (Computed eigenvalues are reported rounded to 2 places after the decimal point, any further figures being, rather obviously, pointless.)
\[
\begin{aligned}
& 2.35 \\
& 1.03 \\
&
\end{aligned}
\]

The maximum error in a computed eigenvalue exceeds 2 percent of the largest element of the matrix.
Example B
\begin{tabular}{rrrrrr}
-41 & 55 & 4 & 3 & 2 & 51 \\
-2 & 10 & 55 & 4 & 3 & 2 \\
-3 & 0 & 10 & 55 & 4 & 3 \\
-4 & 0 & 0 & 10 & 55 & 4 \\
-55 & 0 & 0 & 0 & 10 & 55 \\
-51 & 55 & 4 & 3 & 2 & 61
\end{tabular}

The exact eigenvalues are all 10 . The computed eigenvalues:
\[
\begin{aligned}
14.76 & \pm 2.92 i \\
9.70 & \pm 5.33 i \\
5.54 & \pm 2.39 i
\end{aligned}
\]

The maximum error in a computed eigenvalue exceeds \(9 \%\) of the largest element in the matrix.
\begin{tabular}{crrrrrrr}
Example C & & & & & & & \\
-91 & -94 & 0 & 0 & 0 & 0 & 0 & 0 \\
95 & 98 & 0 & 0 & 0 & 0 & 0 & 0 \\
90 & 99 & 5 & 0 & 0 & 0 & 0 & 0 \\
90 & 0 & 99 & 6 & 0 & 0 & 0 & 0 \\
90 & 0 & 0 & 99 & 7 & 0 & 0 & 0 \\
90 & 0 & 0 & 0 & 99 & 8 & 0 & 0 \\
90 & 0 & 0 & 0 & 0 & 99 & 9 & 0 \\
99 & 99 & 0 & 0 & 0 & 0 & 99 & 10
\end{tabular}

The exact eigenvalues are \(3,4,5,6,7,8,9,10\). The computed eigenvalues are:
\[
\begin{array}{r}
12.68 \\
10.96 \pm 3.73 i \\
6.47 \pm 5.38 i \\
2.09 \pm 3.73 i \\
0.27
\end{array}
\]

Although all eigenvalues are real, the imaginary part of one pair of computed eigenvalues exceeds 5 percent of the largest element of the matrix. This matrix, like the other two, was maliciously devised to take advantage of the program; it is indicative of this that the transpose, being already in lower Hessenberg form, fares much better, all computed eigenvalues being correct to within \(\pm 0.05\).

Although, in view of the known sensitivity of multiple eigenvalues to small changes of certain elements of certain matrices, such counter examples are to be expected, it is probably worth putting a few examples on record as the casual and unsophisticated user is more apt to take warning of the dangers of eigenvalue computations in single precision from a concrete case.

References:
[1] Grad, J., and M. A. Brebner. Algorithm 343, Eigenvalues and eigenvectors of a real general matrix. Comm. ACM 11 (Dec. 1968), 820-826.
[2] Knoble, H. D. Certification of Algorithm 343. Eigenvalues and eigenvectors of a real general matrix. Comm. ACM 13 (Feb. 1970), 122-124.

\section*{Remark on Algorithm 343 [F2]}

Eigenvalues and Eigenvectors of a Real General Matrix [J. Grad and M. A. Brebner, Comm. ACM 11
(Dec. 1968), 820-826]

Herbert Niessner (Recd. 26 Oct. 1970 and 18 Jan. 1971)

Brown, Boveri and Company, Baden, Switzerland

\begin{abstract}
Kcy Words and Phrases: eigenvalues, eigenvectors, QR-algorithm, nonsymmetric matrices, general matrices CR Categories: 5.14
\end{abstract}

We had at our disposal a double precision version (all real variables are declared to be of type double precision) for the IBM 360/50 of the algorithm 343 [1] with logical IF statements converted to arithmetical ones. In the following three modifications which we found to be of practical value are to be discussed.
a. Modification of the test of smallness of \(R\) in HESQR: 10 and 11 lines after statement 21 , a test is made on \(R\) whether it is zero or not. Because \(R\) is not of type integer such a test is almost inefficient. Let us call \(\alpha\) some value representing the order of the elements of the matrix \(A\) (for example the Euclidean norm of \(A\)), \(\epsilon_{A}\) a small positive number numerically representing zero elements of \(A\) and \(\epsilon_{m}\) the relative machine accuracy. In \(H E S Q R \epsilon_{A}\) is chosen to be \(\epsilon_{A} \sim \alpha \epsilon_{m}\). By inspection of the formulas it is seen that \(R\) is of the order of \(\alpha^{2}\); therefore \(R\) should be considered to be small if \(R<\) \(\alpha^{2} \epsilon_{m}=\epsilon_{A}{ }^{2} / \epsilon_{m}\). This is equivalent to \(R / \epsilon_{A}<\epsilon_{A} / \epsilon_{m}\), which does not have the risk of underflow.

Following these ideas we changed the statements
\(\operatorname{IF}(\) R.EQ.0.0) SHIFT \(=A(M, M-1)\)
IF(R.EQ.O.0) GO TO 21
\(Z=A(K+2, K+1) * A(K+1, K)\)
10,11 , and 12 lines after statement 21 to
\(I F(R / E P S-E P S / E X) 215,215,217\)
\(215 \operatorname{IF}(S H I F T-A(M, M-1)) 216,217,216\)
216 SHIFT \(=A(M, M-1)\)
GO TO 21
\(217 \quad Z=A(K+2, K+1)^{*} A(K+1, K)\)
(keeping in mind that \(\epsilon_{, 1}=E P S\) and \(\epsilon_{m}=E \dot{X}\)), and we were able to solve example (i) and (ii) as well as example (iii) of [1|.
b. Modifications in EIGENP: In order to suppress unnecessary and possibly impermissible computations in case of failure, the subroutine EIGENP was modified as follows. We changed the statement \(L=0\), two lines after statement 15 , to
```

    \(I S W=I N D I C(I)-1\)
    IF(ISW) 24,152,152
    $L=0$

```
152
statement
\begin{tabular}{ll}
16 & \(D O 18 J=1, N\) \\
to & \\
16 & \(I F(I S W) 24,161,162\) \\
161 & \(I F(L) 232,202,232\) \\
162 & \(D O 18 J=1, N\)
\end{tabular}
and statement
one line after statement 20 , to
\(202 \quad E V R(I)=E V R(I) * E N O R M\)
Statements
\(21 K O N=1\)
!
\(E V I(I-1)=-E V I(I)\)
have been removed and reinserted as
\(232 K O N=1\)
\(\vdots\)
\(E V I(I-1)=-E V I(I)\)
between statement 23 and 24 . Finally statement \(R=0.0\),
five lines after statement 21, has been changed to
\(21 R=0.0\)
c. Modifications in SCALE: It seems to be reasonable to change statement \(Q=A(I, J)\)
preceding statement 9 to
\[
I F(I-J) 88,89,88
\]
\(88 \quad A(I, J)=H(I, J) * \operatorname{PRFACT}(I) / \operatorname{PRFACT}(J)\)
\(89 Q=A(I, J)\)
so that even in case of many iterations being necessary to calculate PRFACT, the relation of similarity of the result matrix to the input matrix will almost not be changed by rounding errors.

\section*{References}
1. Grad, J., and Brebner, M.A. Algorithm 343, Eigenvalues and eigenvectors of a real general matrix. Comm. ACM II (Dec. 1968), 820-826.

\section*{ALGORITHM 344}

STUDENT'S \(t\)-DISTRIBUTION [S14]
David A. Levine (Recd. 26 Mar. 1968 and 2 Aug. 1968)
State University of New York at Stony Brook, Stony
Brook, NY 11790
KEY WORDS AND PHRASES: Student's \(t\)-Distribution, \(t\) test, small-sample statistics, distribution function
\(C R\) CATEGORIES: 5.12,5.5
Comment \(t\)-Test evaluates in single-precision the value of Student's [2] \(t\)-distribution for argument \(T\) and degrees of freedom \(D F\). The two-tailed Student's \(t\)-distribution, \(A\), is obtained as the indefinite integral:
\[
A(T, D F)=C \int_{T}^{\infty}\left(1+\frac{x^{2}}{D F}\right)^{-\frac{D F+1}{2}} d x
\]
where \(C\) is chosen so that \(A(0, D F)=1\).
The integration of \(A\) can be accomplished exactly by integrating by parts successively, obtaining:
for \(D F\) an odd integer,
\[
\begin{aligned}
& A(T, D F)=1-\frac{2}{\pi}\{\arctan a+a b\left[1+b\left(\frac{2}{3}\right)+b^{2}\left(\frac{2}{3} \cdot \frac{4}{5}\right)\right. \\
&\left.\left.+\cdots+b^{\frac{D F-3}{2}}\left(\frac{2}{3} \cdot \frac{4}{5} \cdots \frac{D F-3}{D F-2}\right)\right]\right\},
\end{aligned}
\]
and for \(D F\) an even integer,
\[
\begin{aligned}
A(T, D F)=1-a \sqrt{b}[1 & +b \cdot\left(\frac{1}{2}\right)+b^{2}\left(\frac{1}{2} \cdot \frac{3}{4}\right) \\
& \left.+\cdots+b^{\frac{D F-2}{2}}\left(\frac{1}{2} \cdot \frac{3}{4} \cdots \cdots \frac{D F-3}{D F-2}\right)\right]
\end{aligned}
\]
where \(a=\frac{T}{\sqrt{\overline{D F}}}, \quad b=\left(1+a^{2}\right)^{-1}\).
A Fortran program evaluating these series is given below, giving at least six correct significant figures after the decimalmore than enough accuracy for most statistical applications. The \(t\)-Test is usually applied in small-sample statistics [1] where \(D F \leq\) 30. The algorithm presented here is faster and simpler, with accuracy equal to previous algorithms for \(D F \leq 30\). In the range \(30 \leq D F \leq 100\), this algorithm is competitive in speed and accuracy with previous algorithms. For the range \(D F>100\), smallsample assumptions may be altered by replacing the integrand of the distribution by a Gaussian (normal) curve; hence much greater speed is obtained in this range by employing, for example, Algorithm 209 [3]. Instructive comments and bibliography are obtainable from Algorithm 321 [4], where an algorithm competitive for the range \(30 \leq D F \leq 100\) is presented and the use of Algorithm 209 is discussed.

Thanks to the referee for many helpful suggestions, which have been incorporated, and to Joan Warner, who has aided in the programming and testing of this algorithm.

\section*{References:}
1. Alder, H. L., and Roessler, E. B. Introduction to probability and statistics, 3rd ed. W. H. Freeman and Co., San Francisco, 1964, p. 125
2. Gosset, W. S. (Student). The probable error of a mean. BIOMETRIKA 6 (1908), 1.
3. Ibbetson, D. Algorithm 209, Gauss. Comm. ACM, 6 (Oct. 1963), 616.
4. Morris, J. Algorithm 321, \(t\)-test probabilities. Comm. ACM 11 (Feb. 1968), 115.
```

SUBROUTINE TTEST
****************
C ERROR RETURN IF DF NOT POSITIVE
1 T = ABS(T)
T1 = T/SGRT(FFLOAT(DF))
T2 = 1./(1.+T1*T1)
D2 = D1*T1*T2
ANS = ANS-D2
c
FI = 0.
2 N=(DF-2)/2
DO 3 I=1,N
F2 = 2.*FLOAT(I)-F1
D2 = D2*T2*F2/(F2+1.)
3 ANS = ANS-D2
c
COMMON RETURN AFTER COMPUTATION
4 IF(ANS.LT.O.) ANS = 0.
RETURN

```
C
C
\(c\)
c
\(C\)
\(C\)
C
 c
 C
 \(C\)
\(c\)
\(C\)
C
c
\(c\)
C
c
c
\(c\)
C
```

C DF IS AN EVEN INTEGER
C
$5 \mathrm{D} 2=T 1 * S Q R T \not(T 2)$
ANS $=1 .-D 2$
$C$
C
IF (DF.EQ.2) GO TO 4
F1 $=1$.
GO TO 2
E.ND

```

\section*{REMARKS ON}

\section*{ALGORITHM 321 [S14] \(t\)-TEST PROBABILITIES}
[John Morris, Comm. ACM 11 (Feb. 1968), 115-6]
ALGORITHM 344, STUDENT'S \(t\)-DISTRIBUTION
[David Levine, Comm. ACM 12 (Jan. 1969), 37-8]
G. W. Hill, and Mary Loughhead* (Recd. 16 Apr. 1969 and 29 Sept. 1969)
Commonwealth Scientific and Industrial Research Organization, Division of Mathematical Statistics, Glen Osmond, South Australia
* Present address: Monash University, Clayton, Victoria, Australia

KEY WORDS AND PHRASES: \(t\)-test, Student's \(t\)-statistic, distribution function, approximation
\(C R\) CATEGORIES: 5.12,5.5
Algorithm 321, as published, was coded in CSIRO 3200 Algol and run on a CDC 3200 with programmed floating point operations. A Fortran equivalent of Algorithm 321 was run for comparison with the Fortran Algorithm 344, which uses the same recurrence relation based on Student's cosine formula as that used in Algorithm 321 for df degrees of freedom less than maxn. Numerical results agreed with 6 -digit tabulated values [1] and double precision calculations indicate that accuracy is limited by truncation of intermediate results to the precision of the processor, with error in the final result increasing as the square root of \(d f\). Timing tests rated Algorithm 344 at approximately (\(\frac{3}{4} d f+1 \frac{1}{2}\)) msec; slightly faster than Algorithm 321, which required approximately (\(\frac{3}{4} d f+2 \frac{1}{2}\)) \(\mathrm{msec}^{\prime}\) for \(d f<\operatorname{maxn}\).
For \(d f \geq\) maxn Algorithm 321 uses Fisher's [2] fifth order approximation, whose accuracy is summarized in the diagram for \(d f=10(10) 50\) (see Figure 1). The shaded regions indicate values

of \(t\) for which the claimed accuracy of \(3 \times 10^{-7}\) for maxn \(=30\) is not attained. For \(t>6.0\) this algorithm returns zero values, giving errors up to \(1.39 \times 10^{-6}\). The following alterations avoid this error and, by "nesting" Fisher's polynomial approximation, reduced the time from about 25 msec to 20 msec and reduced the store requirement by \(27 \%\).

Replace the 19 lines beginning " \(g: t:=1.0-t\) " by
\(g: x:=1.0-t\)
end else
begin \(x:=2.0 \times\) gauss (\(-t\));
if \(d f<{ }_{10} 6\) then
begin real \(f, t 2\);
\(f:=0.25 / d f ; \quad t 2:=t \times t ;\)
\(x:=1\left(\left(()\left(\left({ }_{x}((((3.0 \times t 2-133.0) \times t 2\right.\right.\right.\right.\)
\(+1764.0) \times t 2-7516.0) \times t 2+5994.0) \times(2+2490.0) \times t 2\)
\(+1140.0) \times t 2+180.0) \times t 2+5355.0) \times t 2+17955.0) \times f\)
\(+(((()(15.0 \times t 2-375.0) \times t 2+2225.0) \times t 2-2141.0) \times t 2\)
\(-939.0) \times t 2-213.0) \times t 2-915.0) \times t 2+945.0) \times f / 60.0\)
\(+((((t 2-11.0) \times t 2+14.0) \times t 2+6.0) \times t 2-3.0) \times t 2-15.0) \times f\)
\(+((3.0 \times t 2-7.0) \times t 2-5.0) \times t 2-3.0) \times f / 6.0\)
\(+(t 2+1.0)) \times f \times t \times 0.7978845608 \times \exp (-0.5 \times t 2)+x\)
end;
ttest : \(=\) if \(x<0.0\) then 0.0 else \(x\)
The last statement, recommended by the referee, avoids negative results due to rounding errors when the answer is small.

In Algorithm 344 the three statements beginning " \(1 \mathrm{~T}=\) \(\operatorname{ABS}(\mathrm{T})\) " were replaced by:
\[
\begin{aligned}
1 \mathrm{~T} 2 & =\mathrm{T} * \mathrm{~T} / \mathrm{FLOAT}(\mathrm{DF}) \\
\mathrm{T} 1 & =\mathrm{SQRT}(\mathrm{~T} 2) \\
\mathrm{T} 2 & =1 . /(1 .+\mathrm{T} 2)
\end{aligned}
\]
to avoid changing the calling parameter T .
Although Algorithm 321 occupies about twice the store space needed for Algorithm 344, and is slightly slower for \(d f<\operatorname{maxn}=\) 30 , it is about three times faster for \(d f=100\).

Referenges:
1. Smirnov, N. V. Tables for the Distribution and Density Functions of \(t\)-distribution. Pergamon Press, New York, 1961.
2. Fisher, R. A. Expansion of "Student's" integral in powers of \(n^{-1}\). Metron. 5, 3 (1926), 109-112.

\section*{REMARKS ON:}

ALGORITHM 332 [S22]
JACOBI POLYNOMIALS [Bruno F. W. Witte, Comm. ACM 11 (June 1968), 436]
ALGORITHM 344 [S14]
STUDENT'S \(t\)-DISTRIBUTION [David A. Levine,
Comm. ACM 12 (Jan. 1969), 37]
ALGORITHM 351 [D1]
MODIFIED ROMBERG QUADRATURE [Graeme
Fairweather, Comm. 12 (June 1969), 324]
ALGORITHM 359 [G1]
FACTORIAL ANALYSIS OF VARIANCE [John R.
Howell, Comm. ACM 12 (Nov. 1969), 631]
Arthur H. J. Sale (Recd. 16 Feb. 1970)
Basser Computing Department, University of Sydney, Sydney, Australia
KEY WORDS AND PHRASES: Fortran standards
\(C R\) CATEGORIES: 4.0, 4.22
An unfortunate precedent has been set in several recent algorithms of using an illegal FORTRAN construction. This con-
sists of separating an initial line from its continuation line by a comment line, and is forbidden by the standard (see sections 3.2.1, 3.2.3 and 3.2.4 of \([1,2]\)). The offending algorithms are to date: 332, 344, 351 and 359.

While this is perhaps a debatable decision by the compilers of the standard, and trivial to correct, it seems a pity to break the rules just for a pretty layout as has been done.

References:
1. ANSI Standard FORTRAN (ANSI X3.9-1966), American National Standards Institute, New York, 1966.
2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964), 591-625.

\section*{ALGORITHM 345}

AN ALGOL CONVOLUTION PROCEDURE BASED ON THE FAST FOURIER TRANSFORM [C6]
Richard C. Singleton* (Recd. 30 Dec. 1966, 26 July 1967, 19 July 1968, and 8 Nov. 1968)
Stanford Research Institute, Menlo Park, CA 94025
* This work was supported by Stanford Research Institute out of Research and Development funds.

KEY WORDS AND PHRASES: fastFourier transform, complex Fourier transform, multivariate Fourier transform, Fourier series, harmonic analysis, spectral analysis, orthogonal polynomials, orthogonal transformation, convolution, autocovariance, autocorrelation, cross-correlation, digital filtering, permutation
\(C R\) CATEGORIES: \(3.15,3.83,5.12,5.14\)

Stockham [6] and Gentleman and Sande [3] have shown the practical advantages of computing the circular convolution
\[
C_{k}=\sum_{j=0}^{n-1} A_{j} B_{(j+k) \bmod n}, \quad k=0,1, \cdots, n-1,
\]
of two real vectors \(A\) and \(B\) of period \(n\) by the fast Fourier transform [2, 3, 4]. The Fourier transforms
\[
\alpha_{j}=\sum_{p=0}^{n-1} A_{p} \exp (i 2 \pi p j / n)
\]
and
\[
\beta_{j}=\sum_{q=0}^{n-1} B_{q} \exp (i 2 \pi q j / n)
\]
are first computed, then the convolution
\[
C_{k}=\frac{1}{n} \sum_{j=0}^{n-1} \alpha_{j} \beta_{j}^{*} \exp (i 2 \pi j k / n)
\]
where \(\beta_{j}{ }^{*}\) is the complex conjugate of \(\beta_{j}\). By this method the number of arithmetic operations increases by a factor slightly more than 2 when \(n\) is doubled, as compared with a factor of 4 for the direct method. Tests show a 16 to 1 time advantage for the transform method at \(n=256\).

The operation of convolution is used in computing autocorrelation and cross-correlation functions, in digital filtering of time series, and many other applications.

Procedure CONVOLUTION computes the convolution of two real vectors of dimension \(n=2^{m}\). The special features of this procedure are: (1) the usual reordering of the fast Fourier transform results is avoided, and (2) the return from frequency to time is made with a transform of dimension \(n / 2\) instead of \(n\). The two vectors \(A\) and \(B\) are first transformed with a single complex Fourier transform of dimension \(n\). The complex product \(\alpha \beta^{*}\) is then formed, leaving the result in reverse binary order. Since the convolution is real-valued, the real part \(x\) of the complex product is an even function and the imaginary part \(y\) is an odd function; thus the Fourier transform of \(x\) is real and that of \(y\) is imaginary. These properties lead to the identity
\[
\begin{aligned}
T(x+i y) & =\operatorname{Re}(T x)-\operatorname{Im}(T y) \\
& =\operatorname{Re}(T(x-y))+\operatorname{Im}(T(x-y))
\end{aligned}
\]
where \(T\) represents the Fourier transform and \(T(x+i y)\) is the desired convolution. We subtract \(y\) from \(x\), yielding a real vector of dimension \(n\), then transform using a complex transform of dimension \(n / 2\) and add the resulting cosine and sine coefficients to give the convolution. Thus with procedure CONVOLUTION we make maximum use of the complex Fourier transform in each direction and avoid any reverse binary to binary permutation. The Fourier transform
\[
T(A+i B)=\alpha+i \beta
\]
of the two original vectors is available in reverse binary order on exit from the procedure. We can permute this transform to normal order with procedure REVERSEBINARY and readily compute the power spectra and cross spectrum of the two data vectors.
Procedure CONVOLUTION uses procedure REALTRAN, given in Algorithm 338 [5], but repeated here with revisions to improve accuracy on computers using truncated floating-point arithmetic. Procedures FFT4 and REVFFT4 are also used and perform the same computation as procedures FFT2 and REVFFT2 given in Algorithm 338 for use on a system with virtual memory. The transform procedures given here are organized without regard to the problem of memory overlay. This change yields a 10 percent reduction in computing time on the Burroughs B5500 for transforms of dimension \(n=512\) or smaller. Procedure FFT4 is based on an organization of the fast Fourier transform due to Sande [3], and procedure REVFFT4 is similar to the method proposed by Cooley and Tukey [2], except that the data is in reverse binary order. In both cases, trigonometric functions are used in normal sequence, rather than reverse binary sequence, thus eliminating the need for a reverse binary counter. Another gain in efficiency comes from reducing the time for computing trigonometric function values. The following difference-equation method is used:
\[
\cos ((k+1) \theta)=\cos (k \theta)-(C \times \cos (k \theta)+S \times \sin (k \theta))
\]
and
\[
\sin ((k+1) \theta)=\sin (k \theta)+(S \times \cos (k \theta)-C \times \sin (k \theta))
\]
where the constant multipliers are \(C=2 \sin ^{2}(\theta / 2)\) and \(S=\sin (\theta)\), and the initial values are \(\cos (0)=1\) and \(\sin (0)=0\).
These initial values should be computed to full machine precision; if necessary, a stored table of \(\sin (\theta)\) for \(\theta=\pi / 2, \pi / 4, \pi / 8\), \(\cdots, \pi / n\) can be added to procedures FFT4 and REVFFT4. Using the standard sine function to compute initial values, the ratio of rms error to rms data is about \(2 \times 10^{-11}\) for the transform-inverse pair at \(n=512\) on the Burroughs B5500 computer; this error is about the same as that obtained when the sine and cosine functions are used for all trigonometric function values. On a computer using truncated, rather than rounded, arithmetic operations, the sequence of values for \(\cos (k \theta)+i \sin (k \theta)\) tends to spiral inward from the unit circle. Since the error is primarily one of magnitude, rather than angle, rescaling to the unit circle at each step gives a satisfactory correction. This correction is included in procedures FFT4 and REVFFT4 but may be removed to improve running speed if rounded arithmetic is used.
Procedures FFT8 and REVFFT8 are included as possible substitutes for FFT4 and REVFFT4. These procedures use radix 8
arithmetic [1], rather than radix 4, and run about 20 percent faster on the Burroughs B5500 computer; however, the compiled code is twice as long. The code could be shortened by use of subscripted variables and FOR statements, but this change would probably eliminate most of the time-saving.
The permutation procedure REVERSEBINARY is based on a modified dual counter, one in normal sequence and the other in reverse binary sequence. In permuting a vector of dimension \(n\), the normal sequence counter goes from 1 to \(n / 2-1\), and the elements indexed \(1,3, \cdots, n / 2-1\) are exchanged with their reversebinary counterparts (indexed greater than or equal to \(n / 2\)) without need of a test. The reverse binary counter is incremented only \(n / 4\) times, and exchanges of pairs of elements below \(n / 2\) are done jointly with pair exchanges in the upper half of the array; i.e. if \(x_{j}\) and \(x_{k}\) are exchanged, where \(j, k<n / 2\), then \(x_{n-1-j}\) and \(x_{n-1-k}\) are also exchanged. This procedure is twice as fast on the Burroughs B5500 as REORDER given in Algorithm 338 [5] and is the better choice when the additional features of REORDER are not needed. For a single-variate, complex Fourier transform of dimension \(n=2^{m}\),
```

REVERSEBINARY(A,B,m);
REVFFT8(A, B, n, m, 1)

```
was found to be the best combination for \(n \leqq 512\) on the B5500 computer, giving a time of 0.79 sec . for \(n=512\).

References:
1. Bergland, G. D. A fast Fourier transform algorithm using base 8 iterations. Math. Comput. 22, 102 (Apr. 1968), 275-279.
2. Cooley, J. W., and Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 90 (Apr. 1965), 297-301.
3. Gentleman, W. G., and Sande, G. Fast Fourier trans-forms-for fun and profit. Proc. AFIPS 1966 Fall Joint Comput. Conf., Vol. 29, Spartan Books, New York, 1966, pp. 563-578.
4. Singleton, R. C. On computing the fast Fourier transform. Comm. ACM 10 (Oct. 1967), 647-654.
5. Singleton, R. C. Algorithm 338, Algol procedures for the fast Fourier transform. Comm. ACM 11 (Nov. 1968), 773-776.
6. Stоскнам, T. G. High-speed convolution and correlation. Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan Books, New York, 1966, pp. 229-233;
procedure CONVOLUTION (\(A, B, C, D, m\), scale);
value \(m\), scale; integer \(m\); real scale; array \(A, B, C, D\); comment This procedure computes the circular convolution
\[
C_{k}=\text { scale } \sum_{j=0}^{n-1} A_{j} B_{(j+k) \bmod n}, \quad k=0,1, \cdots, n-1,
\]
where \(n=2^{m}\) and \(p\) mod \(n\) represents the remainder after division of \(p\) by \(n\). (It is assumed that \(m \geqq 1\).) Arrays \(A, B[0: n-1]\) originally contain the two data vectors to be convoluted, and on exit, contain the Fourier transform of \(A+i B\) arranged in reverse binary order. \(A\) and \(B\) must not be the same array. On exit, array \(C[0: n-1]\) contains the convolution multiplied by the factor scale. Array \(D\) is a scratch storage array with lower bound zero and upper bound at least \(n \div 2\). If the Fourier transform of the data is not needed, the procedure can be called with arrays \(A\) and \(B\) used for \(C\) and \(D\) in either order, for example, CONVOLUTION (\(A, B, A, B, m\), scale). If the Fourier transform is used, it should first be permuted to normal order by the call REVERSEBINARY(A,B,m). After doing this, the Fourier cosine coefficients of the \(A\) vector are
\[
\begin{array}{ll}
\left(A_{k}+A_{n-k}\right) / n, & k=1,2, \cdots, n / 2, \\
\left(2 A_{0}\right) / n, & k=0
\end{array}
\]
and the sine coefficients are
\[
\left(B_{k}-B_{n-k}\right) / n, \quad k=1,2, \cdots, n / 2-1 .
\]

The Fourier cosine coefficients of the \(B\) vector are
\[
\begin{array}{ll}
\left(B_{k}+B_{n-k}\right) / n, & k=1,2, \cdots, n / 2, \\
\left(2 B_{0}\right) / n, & k=0,
\end{array}
\]
and the sine coefficients are
\[
\left(A_{n-k}-A_{k}\right) / n, \quad k=1,2, \cdots, n / 2-1 .
\]

The procedures FFT4, REVFFT4, and REALTRAN are used by this procedure and must also be declared. If convolutions of large dimension are to be computed on a system with virtual memory, procedures FFT2 and REVFFT2 (Algorithm 338)
[5] should be substituted for procedures FFT'4 and REVFFT4;
begin integer \(j, k k, k s, n\); real \(a a, a b, b a, b b, i m\);
\(n:=2 \uparrow m ; j:=1 ;\)
FFT4(A, \(B, n, m, n\));
\(C[0]:=4 \times(A[0] \times B[0])\);
\(L: \quad k k:=j ; k s:=j:=j+j\);
\(L 2: k s:=k s-1\);
\(a a:=A[k k]+A[k s] ; a b:=A[k k]-A[k s] ;\)
\(b a:=B[k k]+B[k s] ; \quad b b:=B[k k]-B[k s] ;\)
\(i m:=b a \times b b+a a \times a b ; a a:=a a \times b a-a b \times b b ;\)
\(C[k k]:=a a-i m ; \quad C[k s]:=a a+i m ;\)
\(k k:=k k+1\); if \(k k<k s\) then go to \(L 2\);
if \(\boldsymbol{j}<\boldsymbol{n}\) then go to \(L\);
\(k k:=n \div 2 ; k s:=k k-1\); scale \(:=\) scale/(\(8 \times n\));
for \(j:=0\) step 1 until \(k s\) do \(D[j]:=C[j+k k]\);
REVFFT4(C, \(D, k k, m-1,1\));
REALTRAN (\(C, D, k k\), false);
\(C[0]:=\) scale \(\times C[0] ; \quad C[k k]:=\) scale \(\times C[k k] ;\)
for \(j:=1\) step 1 until \(k s\) do
begin \(C[n-j]:=\) scale \(\times(C[j]-D[j])\);
end
\(C[j]:=\) scale \(\times(C[j]+D[j])\)
end CONVOLUTION;
procedure \(\operatorname{FFT4}(A, B, n, m, k s)\); value \(n, m\), \(k s\);
integer \(n, m, k s\); array \(A, B\);
comment This procedure computes the fast Fourier transform for one variable of dimension \(2^{m}\) in a multivariate transform. \(n\) is the number of data points, i.e. \(n=n_{1} \times n_{2} \times \cdots \times n_{p}\) for a \(p\)-variate transform, and \(k s=n_{k} \times n_{k+1} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. Arrays \(A[0: n-1]\) and \(B[0: n-1]\) originally contain the real and imaginary components of the data in normal order. Multivariate data is stored according to the usual convention, e.g. \(a_{j k l}\) is in \(A\left[j \times n_{2} \times n_{3}+k \times n_{3}+l\right]\) for \(j=0,1, \cdots, n_{1}-1, k=0\), \(1, \cdots, n_{2}-1\), and \(l=0,1, \cdots, n_{3}-1\). On exit, the Fourier coefficients for the current variable are in reverse binary order. Continuing the above example, if the "column" variable \(n_{2}\) is the current one, column
\[
k=k_{m-1} 2^{m-1}+k_{m-2} 2^{m-2}+\cdots+k_{1} 2+k_{0}
\]
is permuted to position
\[
k_{0} 2^{m-1}+k_{1} 2^{m-2}+\cdots+k_{m-2} 2+k_{m-1} .
\]

A separate procedure may be used to permute the results to normal order between transform steps or all at once at the end. If \(n=k s=2^{m}\), the single-variate transform
\[
\left(x_{j}+i y_{j}\right)=\sum_{k=0}^{n-1}\left(a_{k}+i b_{k}\right) \exp (i 2 \pi j k / n)
\]
for \(j=0,1, \cdots, n-1\) is computed, where (\(a+i b\)) represent the initial values and \((x+i y)\) represent the transformed values;
```

begin integer $k 0, k 1, k 2, k 3, k$, span;
real $A 0, A 1, A 2, A 3, B 0, B 1, B 2, B 3$, re, im;
real rad, $d c, d s, c 1, c 2, c 3, s 1, s 2, s 3$;
span $:=k s ; k s:=2 \uparrow m ; r a d:=4.0 \times \arctan (1.0) / k s ;$
$k s:=s p a n \div k s ; n:=n-1 ; k:=m$;
for $m:=m-2$ while $m \geqq 0$ do
begin
$c 1:=1.0 ; ~ s 1:=0 ; k 0:=0 ; k:=k s ;$
$d c:=2.0 \times \sin (\mathrm{rad}) \uparrow 2 ; \mathrm{rad}:=\mathrm{rad}+\mathrm{rad} ;$
$d s:=\sin (\mathrm{rad}) ; \mathrm{rad}:=\mathrm{rad}+\mathrm{rad} ;$
span $:=$ span $\div 4 ;$
La: $k 1:=k 0+\operatorname{span} ; k 2:=k 1+$ span $; k 3:=k 2+$ span $;$
$A 0:=A[k 0] ; \quad B 0:=B[k 0] ;$
$A 1:=A[k 1] ; \quad B 1:=B[k 1] ;$
$A 2:=A[k 2] ; \quad B 2:=B[k 2] ;$
$A 3:=A[k 3] ; \quad B 3:=B[k 3]$;
$A[k 0]:=A 0+A 2+A 1+A 3$;
$B[k 0]:=B 0+B 2+B 1+B 3 ;$
if $s 1=0$ then
begin
$A[k 1]:=A 0+A 2-A 1-A 3 ;$
$B[k 1]:=B 0+B 2-B 1-B 3 ;$
$A[k 2]:=A 0-A 2-B 1+B 3$;
$B[k 2]:=B 0-B 2+A 1-A 3$;
$A[k 3]:=A 0-A 2+B 1-B 3$;
$B[k 3]:=B 0-B 2-A 1+A 3$
end
else
begin
$r e:=A 0+A 2-A 1-A 3 ; \quad i m:=B 0+B 2-B 1-B 3$;
$A[k 1]:=r e \times c 2-i m \times s 2 ;$
$B[k 1]:=r e \times s 2+i m \times c 2 ;$
$r e:=A 0-A 2-B 1+B 3 ; \quad i m:=B 0-B 2+A 1-A 3$;
$A[k 2]:=r e \times c 1-i m \times s 1$;
$B[k 2]:=r e \times s 1+i m \times c 1 ;$
$r e:=A 0-A 2+B 1-B 3 ; \quad i m:=B 0-B 2-A 1+A 3$;
$A[k 3]:=r e \times c 3-i m \times s 3 ;$
$B[k 3]:=r e \times s 3+i m \times c 3$
end;
$k 0:=k 3+\operatorname{span} ;$ if $k 0<n$ then go to $L a$;
$k 0:=k 0-n$; if $k 0 \neq k$ then go to $L a$;
comment If computing for the current factor of 4 is not
finished then increment the sine and cosine values;
if $k 0 \neq \operatorname{span}$ then
begin
$c 2:=c 1-(d c \times c 1+d s \times s 1) ;$
$s 1:=(d s \times c 1-d c \times s 1)+s 1$;
comment The following three statements compensate
for truncation error. If rounded arithmetic is used, sub-
stitute $c 1:=c 2$;
$c 1:=1.5-0.5 \times(c 2 \uparrow 2+s 1 \uparrow 2)$;
$s 1:=c 1 \times s 1 ; c 1:=c 1 \times c 2 ;$
$c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; s 2:=2.0 \times c 1 \times s 1$;
$c 3:=c 2 \times c 1-s 2 \times s 1 ; s 3:=c 2 \times s 1+s 2 \times c 1$;
$k:=k+k s ;$ go to $L a$
end;
$k:=m$
end,
comment lf $m$ is odd then compute for one factor of 2 ;
if $k \neq 0$ then
begin
span $:=\operatorname{span} \div 2 ; k 0:=0 ;$
$L b: k 2:=k 0+\operatorname{span} ; \quad A 0:=A[k 2] ; \quad B 0:=B[k 2]$;
$A[k 2]:=A[k 0]-A 0 ; \quad A[k 0]:=A[k 0]+A 0 ;$
$B[k 2]:=B[k 0]-B 0 ; B[k 0]:=B[k 0]+B 0 ;$
$k 0:=k 2+\operatorname{span} ;$ if $k 0<n$ then go to $L b$;
$k 0:=k 0-n$; if $k 0 \neq$ span then go to $L b$

```
end
end FFT4;
procedure \(\operatorname{REVFFT}(A, B, n, m, k s)\); value \(n, m, k s\);
integer \(n, m, k s ;\) array \(A, B\);
comment This procedure computes the fast Fourier transform for one variable of dimension \(2^{m}\) in a multivariate transform. \(n\) is the number of data points, i.e. \(n=n_{1} \times n_{2} \times \cdots \times n_{p}\) for a \(p\)-variate transform, and \(k s=n_{k+1} \times n_{k+2} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. Arrays \(A[0: n-1]\) and \(B[0: n-1]\) originally contain the real and imaginary components of the data with the indices of each variable in reverse binary order, e.g. \(a_{j k l}\) is in \(A\left[j^{\prime} \times n_{2} \times n_{3}+k^{\prime} \times n_{3}+l^{\prime}\right]\) for \(j=0,1, \cdots, n_{1}-1, k=0,1, \cdots n_{2}-1\), and \(l=0\), \(1, \cdots n_{3}-1\), where \(j^{\prime}, k^{\prime}\), and \(l^{\prime}\) are the bit-reversed values of \(j, k\), and \(l\). On completion of the multivariate transform, the real and imaginary components of the resulting Fourier coefficients are in \(A\) and \(B\) in normal order. If \(n=2^{m}\) and \(k s=1\), a single-variate transform is computed;
begin integer \(k 0, k 1, k 2, k 3, k\), span;
real \(A 0, A 1, A 2, A 3, B 0, B 1, B 2, B 3\);
real \(\mathrm{rad}, d c, d s, c 1, c 2, c 3, s 1, s 2, s 3\);
rad \(:=4.0 \times \arctan (1.0) ; n:=n-1\);
\(k 0:=0\); span \(:=k s ;\)
comment If \(m\) is odd then compute for one factor of 2 ;
if \((m \div 2) \times 2 \neq m\) then
begin
\(L a: k 2:=k 0+\operatorname{span} ; \quad A 0:=A[k 2] ; \quad B 0:=B[k 2] ;\)
\(A[k 2]:=A[k 0]-A 0 ; A[k 0]:=A[k 0]+A 0 ;\)
\(B[k 2]:=B[k 0]-B 0 ; \quad B[k 0]:=B[k 0]+B 0 ;\)
\(k 0:=k 2+\) span; if \(\mathbf{k} 0<n\) then go to \(L a ;\)
\(k 0:=k 0-n\); if \(k 0 \neq \operatorname{span}\) then go to \(L a\);
span \(:=\) span + span; rad \(:=0.5 \times \mathrm{rad}\)
end;
for \(m:=m-2\) while \(m \geqq 0\) do
begin
\(c 1:=1.0 ; ~ s 1:=0 ; k 0:=0 ; ~ r a d:=0.25 \times r a d ;\)
\(d c:=2.0 \times \sin (r a d) \uparrow 2 ;\)
\(d s:=\sin (r a d+r a d) ; k:=k s ;\)
\(L b: k 1:=k 0+\) span; \(k 2:=k 1+\) span; \(k 3:=k 2+\) span;
\(A 0:=A[k 0] ; \quad B 0:=B[k 0]\);
if \(s 1=0\) then
begin \(A 2:=A[k 1] ; \quad B 2:=B[k 1] ;\) \(A 1:=A[k 2] ; \quad B 1:=B[k 2] ;\) \(A 3:=A[k 3] ; \quad B 3:=B[k 3]\)
end
else
begin \(A 2:=A[k 1] \times c 2-B[k 1] \times s 2 ;\) \(B 2:=A[k 1] \times s 2+B[k 1] \times c 2\); \(A 1:=A[k 2] \times c 1-B[k 2] \times s 1 ;\) \(B 1:=A[k 2] \times s 1+B[k 2] \times c 1 ;\) \(A 3:=A[k 3] \times c 3-B[k 3] \times s 3\); \(B 3:=A[k 3] \times s 3+B[k 3] \times c 3\)
end;
\(A[k 0]:=A 0+A 2+A 1+A 3\);
\(B[k 0]:=B 0+B 2+B 1+B 3 ;\)
\(A[k 1]:=A 0-A 2-B 1+B 3\);
\(B[k 1]:=B 0-B 2+A 1-A 3\);
\(A[k 2]:=A 0+A 2-A 1-A 3\);
\(B[k 2]:=B 0+B 2-B 1-B 3 ;\)
\(A[k 3]:=A 0-A 2+B 1-B 3\);
\(B[k 3]:=B 0-B 2-A 1+A 3\);
\(k 0:=k 3+\operatorname{span}\); if \(k 0<n\) then go to \(L b\);
\(k 0:=k 0-n\); if \(k 0 \neq k\) then go to \(L b\);
comment If computing for the current factor of 4 is not finished then increment the sine and cosine values;
```

    if k0 \not= span then
    begin
    c2:= c1-(dc\timesc1+ds\timess1);
    s1:= (ds\timesc1-dc\timess1) + s1;
    ```
 comment The following three statements compensate
 for truncation error. If rounded arithmetic is used, sub-
 stitute \(c 1:=c 2\);
 \(c 1:=1.5-0.5 \times(c 2 \uparrow 2+s 1 \uparrow 2)\);
 \(s 1:=c 1 \times s 1 ; c 1:=c 1 \times c 2\);
 \(c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; s 2:=2.0 \times c 1 \times s 1\);
 \(c 3:=c 2 \times c 1-s 2 \times s 1 ; s 3:=c 2 \times s 1+s 2 \times c 1\);
 \(k:=k+k s ;\) go to \(L b\)
 end;
 span \(:=4 \times\) span
 end
end REVFFT4;
procedure \(\operatorname{REALTRAN}(A, B, n\), evaluate);
 value \(n\), evaluate; integer \(n\);
 Boolean evaluate; array \(A, B\);
comment If evaluate is false, this procedure unscrambles the
 single-variate complex transform of the \(n\) even-numbered and
 \(n\) odd-numbered elements of a real sequence of length \(2 n\), where
 the even-numbered elements were originally in \(A\) and the odd-
 numbered elements in \(B\). Then it combines the two real trans-
 forms to give the Fourier cosine coefficients \(A[0], A[1], \cdots\),
 \(A[n]\) and sine coefficients \(B[0], B[1], \cdots, B[n]\) for the full
 sequence of \(2 n\) elements. If evaluate is true, the process is
 reversed, and a set of Fourier cosine and sine coefficients is
 made ready for evaluation of the corresponding Fourier series
 by means of the inverse complex transform. Going in either
 direction, REALTRAN scales by a factor of two, which should
 be taken into account in determining the appropriate overall
 scaling;
begin integer \(k, n k, n h\);
 real \(a a, a b, b a, b b, r e, i m, c k, s k, d c, d s\);
 \(n h:=n \div 2 ; \quad d_{s}:=2.0 \times \arctan (1.0) / n ;\)
 \(d c:=2.0 \times \sin (d s) \uparrow 2 ; \quad d s:=\sin (d s+d s) ;\)
 \(s k:=0\);
 if evaluate then
 begin \(c k:=-1.0 ; d s:=-d s\) end
 else begin \(c k:=1.0 ; A[n]:=A[0] ; B[n]:=B[0]\) end;
 for \(k:=0\) step 1 until \(n h\) do
 begin
 \(n k:=n-k ;\)
 \(a a:=A[k]+A[n k] ; a b:=A[k]-A[n k] ;\)
 \(b a:=B[k]+B[n k] ; \quad b b:=B[k]-B[n k] ;\)
 \(r e:=c k \times b a+s k \times a b ; \quad i m:=s k \times b a-c k \times a b ;\)
 \(B[n k]:=i m-b b ; B[k]:=i m+b b ;\)
 \(A[n k]:=a a-r e ; \quad A[k]:=a a+r e ;\)
 \(a a:=c k-(d c \times c k+d s \times s k)\);
 \(s k:=(d s \times c k-d c \times s k)+s k ;\)
 comment The following three statements compensate for
 truncation error. If rounded arithmetic is used, substitute
 \(c k:=a a ;\)
 \(c k:=1.5-0.5 \times(a a \uparrow 2+s k \uparrow 2) ;\)
 \(s k:=c k \times s k ; c k:=c k \times a a\)
 end
end REALTRAN;
procedure REVERSEBINARY(A,B,m); value \(m\);
 integer \(m\); array \(A, B\);
comment This procedure permutes the elements \(A[j]\) and \(B[j]\)
 of arrays \(A\) and \(B\), for \(j=0,1, \cdots, 2 \uparrow m-1\), according to
 the reverse binary transformation. Element
\[
k=k_{m-1} 2^{m-1}+k_{m-2} 2^{m-2}+\cdots+k_{1} 2+k_{0}
\]
is moved to location
\[
k_{0} 2^{m-1}+k_{1} 2^{m-2}+\cdots+k_{m-2} 2+k_{m-1}
\]

Two successive calls of this procedure give an identity transformation;
begin integer \(j, j j, k, l i m, j k, n 2, n 4, n 8, n n\);
real \(t\);
integer array \(C[0: m]\);
\(C[0]:=n n:=1 ; \quad j j:=0\);
for \(j:=1\) step 1 until \(m\) do \(C[j]:=n n:=n n+n n\);
if \(m>1\) then \(n 4:=C[m-2] ;\) if \(m>2\) then \(n 8:=C[m-3]\);
\(n 2:=C[m-1] ; \quad \lim :=n 2-1 ; \quad n n:=n n-1 ; \quad m:=m-4 ;\)
for \(j:=1\) step 1 until \(\lim\) do
begin
\(j k:=j j+n 2 ;\)
\(t:=A[j] ; \quad A[j]:=A[j k] ; \quad A[j k]:=t ;\)
\(t:=B[j] ; \quad B[j]:=B[j k] ; \quad B[j k]:=t ;\)
\(j:=j+1\);
if \(j j \geqq n 4\) then
begin
\(j j:=j j-n 4\);
if \(j j \geqq n 8\) then
begin
\[
j j:=j j-n 8 ; k:=m ;
\]
\(L\) : if \(C[k] \leqq j j\) then
begin \(j j:=j j-C[k] ; k:=k-1\); go to \(L\) end;
\(j j:=C[k]+j j\)
end
else \(j j:=j j+n 8\)
end
\[
\text { else } j j:=j j+n 4 ;
\]
if \(j j>j\) then
begin
\(k:=n n-j ; \quad j k:=n n-j j ;\)
\(t:=A[j] ; \quad A[j]:=A[j j] ; \quad A[j j]:=t ;\)
\(t:=B[j] ; \quad B[j]:=B[j j] ; \quad B[j j]:=t ;\)
\(t:=A[k] ; \quad A[k]:=A[j k] ; A[j k]:=t ;\)
\(t:=B[k] ; \quad B[k]:=B[j k] ; B[j k]:=t\)
end
end
end REVERSEBINARY;
procedure \(\operatorname{FFT8}(A, B, n, m, k s)\); value \(n, m, k s\);
integer \(n, m, k s\); array \(A, B\);
comment This procedure computes the fast Fourier transform for one variable of dimension \(2^{m}\) in a multivariate transform. \(n\) is the number of data points, i.e. \(n=n_{1} \times n_{2} \times \cdots \times n_{0}\) for a \(p\)-variate transform, \(k s=n_{k} \times n_{k+1} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. Arrays \(A[0: n-\) \(1]\) and \(B[0: n-1]\) originally contain the real and imaginary components of the data in normal order. Multivariate data is stored according to the usual convention, e.g. \(a_{j k l}\) is in \(A\left[j \times n_{2} \times n_{3}+\right.\) \(\left.k \times n_{3}+l\right]\) for \(j=0,1, \cdots, n_{1}-1, k=0,1, \cdots, n_{2}-1\), and \(l=0,1, \cdots, n_{3}-1\). On exit, the Fourier coefficients for the current variable are in reverse binary order. Continuing the above example, if the "column" variable \(n_{2}\) is the current one, column
\[
k=k_{m-1} 2^{m-1}+k_{m-2} 2^{m-2}+\cdots+k_{1} 2+k_{0}
\]
is permuted to position
\[
k_{0} 2^{m-1}+k_{1} 2^{m-2}+\cdots+k_{m-2} 2+k_{m-1} .
\]

A separate procedure may be used to permute the results to normal order between transform steps or all at once at the end. If \(n=k s=2^{m}\), the single variate transform
\[
\left(x_{j}+i y_{j}\right)=\sum_{k=0}^{n-1}\left(a_{k}+i b_{k}\right) \exp (i 2 \pi j k / n)
\]
for \(j=0,1, \cdots, n-1\) is computed, where (\(a+i b\)) represent the initial values and \((x+i y)\) represent the transformed values; begin integer \(k 0, k 1, k 2, k 3, k 4, k 5, k 6, k 7, k\), span;
real \(A 0, A 1, A 2, A 3, A 4, A 5, A 6, A 7, B 0, B 1, B 2, B 3, B 4, B 5\), \(B 6, B 7, x 0, x 1, x 2, x 3, x 4, x 5, x 6, x 7, y 0, y 1, y 2, y 3, y 4, y 5, y 6, y 7\), \(c 1, c 2, c 3, c 4, c 5, c 6, c 7, s 1, s 2, s 3, s 4, s 5, s 6, s 7, c 45, d c, d s, r a d\);
span \(:=k s ; k s:=2 \uparrow m ; r a d:=4.0 \times \arctan (1.0) / k s ;\)
\(k s:=\operatorname{span} \div k s ; \quad n:=n-1 ; \quad c 45:=\operatorname{sqrt}(0.5) ; k:=m ;\)
comment Radix 8 transform;
for \(m:=m-3\) while \(m \geqq 0\) do
begin
\(c 1:=1.0 ; \quad s 1:=0 ; k 0:=0 ; k:=k s ;\)
\(d c:=2.0 \times \sin (\mathrm{rad}) \uparrow 2 ; \mathrm{rad}:=\mathrm{rad}+\mathrm{rad} ;\)
\(d s:=\sin (\mathrm{rad}) ; \mathrm{rad}:=4 \times \mathrm{rad}\);
span \(:=\) span \(\div 8\);
La: \(k 1:=k 0+\) span; \(k 2:=k 1+\) span; \(k 3:=k 2+\) span;
\(k 4:=k 3+\operatorname{span} ; k 5:=k 4+\operatorname{span} ; k 6:=k 5+\) span ;
\(k 7:=k 6+\operatorname{span} ; \quad A 0:=A[k 0] ; \quad B 0:=B[k 0] ;\)
\(A 1:=A[k 1] ; \quad B 1:=B[k 1] ;\)
\(A 2:=A[k 2] ; \quad B 2:=B[k 2] ;\)
\(A 3:=A[k 3] ; \quad B 3:=B[k 3]\);
\(A 4:=A[k 4] ; \quad B 4:=B[k 4] ;\)
\(A 5:=A[k 5] ; \quad B 5:=B[k 5] ;\)
\(A 6:=A[k 6] ; \quad B 6:=B[k 6] ;\)
\(A 7:=A[k 7] ; \quad B 7:=B[k 7] ;\)
\(x 0:=A 0+A 4 ; y 0:=B 0+B 4\);
\(x 4:=A 0-A 4 ; \quad y 4:=B 0-B 4\);
\(x 1:=A 1+A 5 ; \quad y 1:=B 1+B 5\);
\(x 5:=(A 1-A 5-B 1+B 5) \times c 45\);
\(y 5:=(A 1-A 5+B 1-B 5) \times c 45\);
\(x 2:=A 2+A 6 ; y 2:=B 2+B 6\);
\(x 6:=B 6-B 2 ; \quad y 6:=A 2-A 6\);
\(x 3:=A 3+A 7 ; y 3:=B 3+B 7\);
\(x 7:=(A 7-A 3-B 3+B 7) \times c 45\);
\(y 7:=(A 3-A 7-B 3+B 7) \times c 45\);
\(A 1:=x 0+x 2-x 1-x 3 ; \quad B 1:=y 0+y 2-y 1-y 3\);
\(A 2:=x 0-x 2-y 1+y 3 ; \quad B 2:=y 0-y 2+x 1-x 3\);
\(A 3:=x 0-x 2+y 1-y 3 ; \quad B 3:=y 0-y 2-x 1+x 3\);
\(A 4:=x 4+x 6+x 5+x 7 ; \quad B 4:=y 4+y 6+y 5+y 7\);
\(A 5:=x 4+x 6-x 5-x 7 ; \quad B 5:=y 4+y 6-y 5-y 7\);
\(A 6:=x 4-x 6-y 5+y 7 ; \quad B 6:=y 4-y 6+x 5-x 7\);
\(A 7:=x 4-x 6+y 5-y 7 ; \quad B 7:=y 4-y 6-x 5+x 7\);
\(A[k 0]:=x 0+x 2+x 1+x 3 ; \quad B[k 0]:=y 0+y 2+y 1+y 3\);
if \(s 1=0\) then
begin
\(A[k 1]:=A 1 ; \quad B[k 1]:=B 1 ;\)
\(A[k 2]:=A 2 ; \quad B[k 2]:=B 2\);
\(A[k 3]:=A 3 ; \quad B[k 3]:=B 3 ;\)
\(A[k 4]:=A 4 ; \quad B[k 4]:=B 4 ;\)
\(A[k 5]:=A 5 ; \quad B[k 5]:=B 5\);
\(A[k 6]:=A 6 ; \quad B[k 6]:=B 6\);
\(A[k 7]:=A 7 ; \quad B[k 7]:=B 7\)
end
else
begin
\(A[k 1]:=c 4 \times A 1-s 4 \times B 1 ;\)
\(B[k 1]:=s 4 \times A 1+c 4 \times B 1\);
\(A[k 2]:=c 2 \times A 2-s 2 \times B 2\);
\(B[k 2]:=s 2 \times A 2+c 2 \times B 2\);
\(A[k 3]:=c 6 \times A 3-s 6 \times B 3\);
\(B[k 3]:=s 6 \times A 3+c 6 \times B 3\);
\(A[k 4]:=c 1 \times A 4-s 1 \times B 4 ;\)
\(B[k 4]:=s 1 \times A 4+c 1 \times B 4 ;\)
\(A[k 5]:=c 5 \times A 5-s 5 \times B 5\);
\(B[k 5]:=s 5 \times A 5+c 5 \times B 5 ;\)
\(A[k 6]:=c 3 \times A 6-s 3 \times B 6\);
\(B[k 6]:=s 3 \times A 6+c 3 \times B 6 ;\)
\(A[k 7]:=c 7 \times A 7-s 7 \times B 7\);
\(B[k 7]:=s 7 \times A 7+c 7 \times B 7\)
end;
\(k 0:=k 7+\operatorname{span} ;\) if \(k 0<n\) then go to \(L a ;\)
\(k 0:=k 0-n\); if \(k 0 \neq k\) then go to \(L a\);
comment Increment sine and cosine values;
if \(k 0 \neq \operatorname{span}\) then
begin
\(c 2:=c 1-(d c \times c 1+d s \times s 1) ;\)
\(s 1:=(d s \times c 1-d c \times s 1)+s 1 ;\)
comment The following three statements compensate for truncation error. If rounded arithmetic is used, substitute \(c 1:=c 2\);
\(c 1:=1.5-0.5 \times(c 2 \uparrow 2+s 1 \uparrow 2) ;\)
\(s 1:=c 1 \times s 1 ; c 1:=c 1 \times c 2 ;\)
\(c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; \quad s 2:=2.0 \times c 1 \times s 1 ;\)
\(c 3:=c 2 \times c 1-s 2 \times s 1 ; \quad s 3:=c 2 \times s 1+s 2 \times c 1 ;\)
\(c 4:=c 2 \uparrow 2-s 2 \uparrow 2 ; \quad s 4:=2.0 \times c 2 \times s 2 ;\)
\(c 5:=c 1 \times c 4-s 1 \times s 4 ; \quad s 5:=s 1 \times c 4+c 1 \times s 4\);
\(c 6:=c 3 \uparrow 2-s 3 \uparrow 2 ; \quad s 6:=2.0 \times c 3 \times s 3\);
\(c 7:=c 1 \times c 6-s 1 \times s 6 ; \quad s 7:=s 1 \times c 6+c 1 \times s 6 ;\)
\(k:=k+k s ;\) go to \(L a\)
end;
\(k 3:=m\)
end;
comment If \(m\) is not a multiple of 3 , then complete the transform with radix 2 steps;
for \(k 3:=k 3-1\) while \(k 3 \geqq 0\) do
begin
\(k 0:=0 ;\) span \(:=\) span \(\div 2 ;\)
\(L b: k 2:=k 0+\) span;
\(A 2:=A[k 2] ; \quad B 2:=B[k 2] ;\)
\(A[k 2]:=A[k 0]-A 2 ; \quad B[k 2]:=B[k 0]-B 2 ;\)
\(A[k 0]:=A[k 0]+A 2 ; B[k 0]:=B[k 0]+B 2 ;\)
\(k 0:=k 2+\operatorname{span} ;\) if \(k 0<n\) then go to \(L b ;\)
\(k 0:=k 0-n\); if \(k 0<k s\) then go to \(L b\);
if \(k s=\) span then go to \(L d\);
\(L c: k 2:=k 0+\) span ;
\(A 2:=A[k 0]-A[k 2] ; \quad B 2:=B[k 0]-B[k 2] ;\)
\(A[k 0]:=A[k 0]+A[k 2] ; \quad B[k 0]:=B[k 0]+B[k 2] ;\)
\(A[k 2]:=-B 2 ; \quad B[k 2]:=A 2\);
\(k 0:=k 2+\operatorname{span} ;\) if \(k 0<n\) then go to \(L c\);
\(k 0:=k 0-n\); if \(k 0<\operatorname{span}\) then go to \(L c\);
\(L d\) : end
end FFT8;
procedure \(\operatorname{REVFFT8}(A, B, n, m, k s)\); value \(n, m, k s\);
integer \(n, m, k s\); array \(A, B\);
comment This procedure computes the fast Fourier transform for one variable of dimension \(2^{m}\) in a multivariate transform. \(n\) is the number of data points, i.e., \(n=n_{1} \times n_{2} \times \cdots \times n_{p}\) for a \(p\)-variate transform, and \(k s=n_{k+1} \times n_{k+2} \times \cdots \times n_{p}\), where \(n_{k}=2^{m}\) is the dimension of the current variable. Arrays \(A[0: n-1]\) and \(B[0: n-1]\) originally contain the real and imaginary components of the data with the indices of each variable in reverse binary order, e.g. \(a_{j k l}\) is in \(A\left[j^{\prime} \times n_{2} \times n_{3}+k^{\prime} \times n_{3}+l^{\prime}\right]\) for \(j=0,1, \cdots, n_{1}-1, k=0,1, \cdots, n_{2}-1\), and \(l=\) \(0,1, \cdots, n_{3}-1\), where \(j^{\prime}, k^{\prime}\), and \(l^{\prime}\) are the bit-reversed values of \(j, k\), and \(l\). On completion of the multivariate transform, the real and imaginary components of the resulting Fourier coefficients are in \(A\) and \(B\) in normal order. If \(n=2^{m}\) and \(k s=1\), a single-variate transform is computed;
begin integer \(k 0, k 1, k 2, k 3, k 4, k 5, k 6, k 7, k\), span;
real \(A 0, A 1, A 2, A 3, A 4, A 5, A 6, A 7, B 0, B 1, B 2, B 3, B 4, B 5\), \(B 6, B 7, x 0, x 1, x 2, x 3, x 4, x 5, x 6, x 7, y 0, y 1, y 2, y 3, y 4, y 5, y 6, y 7\), \(c 1, c 2, c 3, c 4, c 5, c 6, c 7, s 1, s 2, s 3, s 4, s 5, s 6, s 7, c 45, d c, d s, r a d\);
\(r a d:=4.0 \times \arctan (1.0) ; \quad n:=n-1\);
\(c 45:=\operatorname{sqrt}(0.5) ; \quad\) span \(:=k s ;\)
comment Compute radix 2 steps if \(m\) is not a multiple of 3 ;
\(k 3:=(m \div 3) \times 3 ;\)
for \(k 3:=k 3+1\) while \(k 3 \leqq m\) do
begin
```

    k0:= 0;
    La: k2:= k0 + span;
A2:=A[k2]; B2:= B[k2];
A[k2]:=A[k0] - A2; B[k2]:= B[k0] - B2;
A[k0]:=A[k0] + A2; B[k0]:=B[k0]+B2;
k0:= k2 + span; if k0<n then go to La;
k0:= k0-n; if k0<ks then go to La;
if ks=span then go to Lc;
Lb: k2:= k0 + span;
A2:= A[k2]; B2:= B[k2];
A[k2]:=A[k0]+B2; B[k2]:= B[k0]-A2;
A[k0]:=A[k0] - B2; B[k0]:=B[k0]+A2;
k0:= k2 + span; if k0<n then go to Lb;
k0:= k0-n; if k0< span then go to Lb;
Lc: span := span + span; rad := 0.5 }\times\textrm{rad
end;
comment Radix }8\mathrm{ transform;
for m:= m-3 while m}\geqq0\mathrm{ do
begin
c1:=1.0; s1 := 0; k0:= 0; k:= ks;
rad := 0.125 }\times\textrm{rad}; dc:=2.0\times < sin(rad) \uparrow2;
ds := sin(rad}+\textrm{rad})
Ld: k1:= k0 + span; k2:= k1 + span; k3:= k2 + span;
k4:= k3 + span; k5:= k4 + span; k6 := k5 + span;
k7 := k6 + span; A0:=A[k0]; B0:= B[k0];
if s1=0 then
begin
A1:= A[k1]; B1:= B[k1];
A2 := A{k2]; B2 := B[k2];
A3:=A[k3]; B3:= B[k3];
A4:=A[k4]; B4:= B[k4];
A5:=A[k5]; B5:= B[k5];
A6 := A[k6]; B6:= B[k6];
A7:= A[k7]; B7 := B[k7]
end
else
begin
A1:= A[k1]\timesc4-B[k1]\times s4;
B1:=A[k1] X s4 + B[k1] }\timesc4
A2:=A[k2]\timesc2-B[k2]\timess2;
B2 := A[k2]\timess2+B[k2]\timesc2;
A3:=A[k3]\timesc6-B[k3]\timess6;
B3:=A[k3]\timess6+B[k3]\timesc6;
A4:=A[k4]\timesc1-B[k4]\timess1;
B4:=A[k4]\timess1 + B[k4]\timesc1;
A5:=A[k5]\timesc5-B[k5]\timess5;
B5:=A[k5]\timess5+B[k5]\timesc5;
A6:=A[k6]\timesc3-B[k6]\timess3;
B6:=A[k6]\timess3+B[k6]\timesc3;
A7:=A[k7]\timesc7-B[k7]\timess7;
B7:=A[k7]\timess7+B[k7]\timesc7
end;
x0:= A0 + A1 + A2 + A3; y0:= B0 + B1 + B2 + B3;
x1:=A0-A1-B2+B3; y1:= B0-B1+A2-A3;
x2:=A0+A1-A2-A3; y2:= B0 + B1-B2-B3;
x3:=A0-A1+B2-B3; y3:= B0-B1-A2+A3;
x4:=A4+A5+A6+A7; y4:= B4+B5+B6+B7;
x5:= (A4-A5-B6+B7)\timesc45;
y5:= (B4-B5+A6-A7)\timesc45;
x6:=A4+A5-A6-A7; y6 := B4 + B5-B6-B7;
x7:= (A4-A5+B6-B7)\timesc45;
y7 := (B4-B5-A6+A7) × c45;
A[k0]:= x0 + x4; B[k0]:= y0+y4;
A[k1]:= x1+x5-y5; B[k1]:= y1 + x5 + y5;
A[k2]:= x2 -- y6; B[k2] := y2 + x6;
A[k3]:= x3-x7-y7; B[k3]:= y3+x7-y7;
A[k4]:= x0-x4; B[k4]:= y0-y4;
A[k5]:=x1-x5+y5; B[k5]:= y1-x5 - y5;

```
\(A[k 6]:=x 2+y 6 ; \quad B[k 6]:=y 2-x 6 ;\)
\(A[k 7]:=x 3+x 7+y 7 ; B[k 7]:=y 3-x 7+y 7\);
\(k 0:=k 7+\operatorname{span} ;\) if \(k 0<n\) then go to \(L d ;\)
\(k 0:=k 0-n\); if \(k 0<k\) then go to \(L d\);
comment Increment the sine and cosine values;
if \(k 0 \neq \operatorname{span}\) then
begin
\(c 2:=c 1-(d c \times c 1+d s \times s 1) ;\)
\(s 1:=(d s \times c 1-d c \times s 1)+s 1 ;\)
comment The following three statements compensate for truncation error. If rounded arithmetic is used, substitute \(c 1:=c 2\);
\(c 1:=1.5-0.5 \times(c 2 \uparrow 2+s 1 \uparrow 2)\);
\(s 1:=c 1 \times s 1\); c1 := c1 \(\times c 2\);
\(c 2:=c 1 \uparrow 2-s 1 \uparrow 2 ; s 2:=2.0 \times c 1 \times s 1\);
\(c 3:=c 1 \times c 2-s 1 \times s 2 ; s 3:=s 1 \times c 2+c 1 \times s 2\);
\(c 4:=c 2 \uparrow 2-s 2 \uparrow 2 ; \quad s 4:=2.0 \times c 2 \times s 2 ;\)
\(c 5:=c 1 \times c 4-s 1 \times s 4 ; s 5:=s 1 \times c 4+c 1 \times s 4 ;\)
\(c 6:=c 3 \uparrow 2-s 3 \uparrow 2 ; \quad s 6:=2.0 \times c 3 \times s 3\);
\(c 7:=c 1 \times c 6-s 1 \times s 6 ; s 7:=s 1 \times c 6+c 1 \times s 6 ;\)
\(k:=k+k s ;\) go to \(L d\)
end;
span \(:=8 \times\) span
end
end REVFFT8

\section*{REMARK ON ALGORITHM 345 [C6] \\ AN ALGOL CONVOLUTION PROCEDURE BASED \\ ON THE FAST FOURIER TRANSFORM [Richard C.}

Singleton, Comm. ACM 12 (Mar. 1969), 179]
Richard C. Singleton (Recd. 15 May 1969)
Stanford Research Institute, Menlo Park, CA 94025
KEY WORDS AND PHRASES: fast Fourier transform, complex Fourier transform, multivariate Fourier transform, Fourier series, harmonic analysis, spectral analysis, orthogonal polynomials, orthogonal transformation, convolution, autocovariance, autocorrelation, cross-correlation, digital filtering, permutation
CR CATEGORIES: 3.15, 3.83, 5.12, 5.14
On page 180, column 2, the 3rd and 2nd lines from the end of procedure CONVOLUTION must be interchanged, i.e. the final four lines should read:
begin \(C[n-j]:=\) scale \(\times(C[j]-D[j]) ;\)
\(C[j]:=\) scale \(\times(C[j]+D[j])\)
end
end CONVOLUTION;
The procedures included in Algorithm 345 were punched from the printed page and tested on the CDC 6400 Algol compiler. After making the one correction the test results agreed with those obtained earlier with this compiler.

\section*{ALGORITHM 346}

F-TEST PROBABILITIES [S14]
John Morris (Recd. 10 Apr. 1968, 12 Sept. 1968, and 6 Nov. 1968)
Computer Institute for Social Science Research, Michigan State University, East Lansing, MI 48823

KEY WORDS AND PHRASES: F-test, Snedecor F-statistic, Fisher test, distribution function
CR CATEGORIES: 5.5
procedure Ftest (\(f, d f 1\), df2, maxn, prob, gauss, error);
value \(f, d f 1, d f 2\), maxn; real \(f\), prob; integer \(d f 1, d f 2\), maxn: real procedure gauss; label error;
comment This procedure gives the probability that \(F\) will be greater than the value of \(f\) where
\[
f=\sigma_{1}{ }^{2} / \sigma_{2}{ }^{2},
\]
\(\sigma_{1}{ }^{2}\) is the variance of the sample with size \(N_{1}, \quad \sigma_{2}{ }^{2}\) is the variance of the sample with size \(N_{2}, d f 1=N_{1}-1, d f 2=N_{2}-1\), and \(F\) is the Snedecor-Fisher statistic as defined and tabled by Snedecor [4].
The present algorithm computes a value which is directly related to that of Algorithm 322, such that prob \(=1-\) Fisher. A number of test runs on various computers suggest that Ftest may be considerably faster than Fisher.
An approximation is included to limit execution time when sample size is large. It should be used when register overflow would otherwise result, and the appropriate value for maxn will therefore depend upon the specific implementation. When \(\operatorname{maxn}=500\) the approximation appears to give three-digit accuracy. The real procedure gauss computes the area under the left-hand portion of the normal curve. Algorithm 209 [3] may be used for this purpose. If \(f<0\) or if \(d f 1<1\) or if \(d f 2<1\) then exit to the label error occurs.
National Bureau of Standards formulas 26.6.4, 26.6.5, and 26.6.8 are used for computation of the statistic, and 26.6.15 is used for the approximation [2].
Thanks to Mary E. Rafter for extensive testing of this procedure and to the referee for a number of suggestions.
References:
1. Dorrer, Egon. Algorithm 322, F-Distribution. Comm. ACM 11 (Feb. 1968), 116-117.
2. Handbook of Mathematical Functions. National Bureau of Standards, Appl. Math. Ser. Vol., 55, Washington, D.C., 1965, pp. 946-947.
3. Ibbetson, D. Algorithm 209, Gauss. Comm. ACM 6 (Oct. 1963), 616.
4. Snedecor, George W. Statistical Methods. Iowa State U. Press, Ames, Iowa, 1956, pp. 244-250;

\section*{begin}
if \(d f 1<1 \vee d f 2<1 \vee f<0.0\) then go to error;
if \(f=0.0\) then \(p r o b:=1.0\)
else
begin
real \(f 1, f 2, x, f t, v p\);
\(f 1:=d f 1 ; f 2:=d f 2 ; f t:=0.0 ;\)
\(x:=f 2 /(f 2+f 1 \times f) ; \quad v p:=f 1+f 2-2.0\);
if \(2 \times(d f 1 \div 2)=d f 1 \wedge d f 1 \leqq \operatorname{maxn}\) then
begin
```

    real \(x x ; x x:=1.0-x\);
    for \(f 1:=f 1-2.0\) step - 2.0 until 1.0 do
    begin
        \(v p:=v p-2.0 ;\)
        \(f t:=x x \times v p / f 1 \times(1.0+f t)\)
        end;
        \(f t:=x \uparrow(0.5 \times f 2) \times(1.0+f t)\)
    end
    else if \(2 \times(d f 2 \div 2)=d f 2 \wedge d f 2 \leqq \operatorname{maxn}\) then
    begin
        for \(f 2:=f 2-2.0\) step - 2.0 until 1.0 do
        begin
        \(v p:=v p-2.0 ;\)
        \(f t:=x \times v p / f 2 \times(1.0+f t)\)
        end;
        \(f t:=1.0-(1.0-x) \uparrow(0.5 \times f 1) \times(1.0+f t)\)
    end
    else if \(d f 1+d f 2 \leqq\) maxn then
    begin
        real theta, sth, cth, sts, cts, \(a, b, x i\), gamma;
        theta := \(\arctan (\operatorname{sqrt}(f 1 \times f / f 2))\);
        sth \(:=\sin (\) theta \() ; \quad c t h:=\cos (\) theta \() ;\)
        sts := sth \(\uparrow 2\); cts: \(=c t h \uparrow 2\);
        \(a:=b:=0.0\);
        if \(d f 2>1\) then
        begin
            for \(f 2:=f 2-2.0\) step -2.0 until 2.0 do
            \(a:=c t s \times(f 2-1.0) / f 2 \times(1.0+a) ;\)
            \(a:=\operatorname{sth} \times \operatorname{cth} \times(1.0+a)\)
        end;
        \(a:=\) theta \(+a\);
        if \(d f 1>1\) then
        begin
            for \(f 1:=f 1-2.0\) step -2.0 until 2.0 do
            begin
                \(v p:=v p-2.0 ;\)
            \(b:=s t s \times v p / f 1 \times(1.0+b)\)
        end;
        gamma \(:=1.0 ; \quad f 2:=0.5 \times d f 2 ;\)
        for \(x i:=1.0\) step 1.0 until \(f 2\) do
            gamma \(:=x i \times\) gamma/(xi-0.5);
            \(b:=\) gamma \(\times\) sth \(\times\) cth \(\uparrow d f 2 \times(1.0+b)\)
        end;
        \(f t:=1.0+0.636619772368 \times(b-a)\);
        comment \(0.6366197723675813430755351 \cdots=2.0 / \pi\);
    end
    else
    begin
        real cbrf;
        \(f 1:=2.0 /(9.0 \times f 1) ; f 2:=2.0 /(9.0 \times f 2) ;\)
        cbrf \(:=f \uparrow 0.333333333333\);
        \(f t:=\) gauss \((-((1.0-f 2) \times c b r f+f 1-1.0) /\)
            sqrt(f2×cbrf \(\uparrow 2+f 1))\)
        end;
        prob := if \(f t<0.0\) then 0.0 else \(f t\)
    end
    end Ftest

```

\section*{ALGORITHM 347 \\ AN EFFICIENT ALGORITHM FOR SORTING WITH MINIMAL STORAGE [M1] \\ Richard C. Singleton* (Recd. 17 Sept. 1968) \\ Mathematical Statistics and Operations Research Department, Stanford Research Institute, Menlo Park, CA 94025 \\ * This work was supported by Stanford Research Institute with Research and Development funds.}

KEY WORDS AND PHRASES: sorting, minimal storage sorting, digital computer sorting
\(C R\) CATEGORIES: 5.31
procedure \(\operatorname{SORT}(A, i, j)\);
value \(i, j\); integer \(i, j\);
array \(A\);
comment This procedure sorts the elements of array \(A\) into ascending order, so that
\[
A[k] \leq A[k+1], \quad k=i, i+1, \cdots, j-1 .
\]

The method used is similar to QUICKERSORT by R.S. Scowen [5], which in turn is similar to an algorithm given by Hibbard [2,3] and to Hoare's QUICKSORT [4]. QUICKERSORT is used as a standard, as it was shown in a recent comparison to be the fastest among four ACM algorithms tested [1]. On the Burroughs B5500 computer, the present algorithm is about 25 percent faster than QUICKERSORT when tested on random uniform numbers (see Table I) and about 40 percent faster on numbers in natural order (\(1,2, \cdots, n\)), in reverse order (\(n, n-1, \cdots, 1\)), and sorted by halves (\(2,4, \cdots, n, 1,3, \cdots, n-1\)). QUICKERSORT is slow in sorting data with numerous "tied" observations, a problem that can be corrected by changing the code to exchange elements \(a[k] \geq t\) in the lower segment with elements \(a[q] \leq t\) in the upper segment. This change gives a better split of the original segment, which more than compensates for the additional interchanges.

In the earlier algorithms, an element with value \(t\) was selected from the array. Then the array was split into a lower segment with all values less than or equal to \(t\) and an upper segment with all values greater than or equal to \(t\), separated by a third segment of length one and value \(t\). The method was then applied

TABLE I. Sorting Times in Seconds for SORT and Quickersort, on the Burroughs B5500

Computer-Average of Five Trials
Algorithm
\begin{tabular}{ccc}
\begin{tabular}{c}
Original order and number of items \\
Random uniform:
\end{tabular} & SORT & QUICKERSORT \\
500 & & \\
1000 & 0.48 & 0.63 \\
Natural order: & 1.02 & 1.40 \\
500 & 0.29 & 0.48 \\
1000 & 0.62 & 1.00 \\
Reverse order: & & \\
500 & 0.30 & 0.51 \\
1000 & 0.63 & 1.08 \\
Sorted by halves: & & \\
500 & 0.73 & 1.15 \\
1000 & 1.72 & 2.89 \\
Constant value: & & \\
500 & 0.43 & 10.60 \\
1000 & 0.97 & 41.65 \\
& &
\end{tabular}
recursively to the lower and upper segments, continuing until all segments were of length one and the data were sorted. The present method differs slightly-the middle segment is usually missing-since the comparison element with value \(t\) is not removed from the array while splitting. A more important difference is that the median of the values of \(A[i], A[(i+j) \div 2]\), and \(A[j]\) is used for \(t\), yielding a better estimate of the median value for the segment than the single element used in the earlier algorithms. Then while searching for a pair of elements to exchange, the previously sorted data (initially, \(A[i] \leq t \leq A[j])\) are used to bound the search, and the index values are compared only when an exchange is about to be made. This leads to a small amount of overshoot in the search, adding to the fixed cost of splitting a segment but lowering the variable cost. The longest segment remaining after splitting a segment o \(n\) has length less than or equal to \(n-2\), rather than \(n-1\) as in QUICKERSORT.

For efficiency, the upper and lower segments after splitting should be of nearly equal length. Thus \(t\) should be close to the median of the data in the segment to be split. For good statistical properties, the median estimate should be based on an odd number of observations. Three gives an improvement over one and the extra effort involved in using five or more observations may be worthwhile on long segments, particularly in the early stages of a sort.

Hibbard [3] suggests using an alternative method, such as Shell's [6], to complete the sort on short sequences. An experimental investigation of this idea using the splitting algorithm adopted here showed no improvement in going beyond the final stage of Shell's algorithm, i.e. the familiar "sinking" method of sorting by interchange of adjacent pairs. The minimum time was obtained by sorting sequences of 11 or fewer items by this method. Again the number of comparisons is reduced by using the data themselves to bound the downward search. This requires
\[
A[i-1] \leq A[k], \quad i \leq k \leq j .
\]

Thus the initial segment cannot be sorted in this way. The initial segment is treated as a special case and sorted by the splitting algorithm. Because of this feature, the present algorithm lacks the pure recursive structure of the earlier algorithms.
For \(n\) elements to be sorted, where \(2^{k} \leq n<2^{k+1}\), a maximum of \(k\) elements each are needed in arrays \(I L\) and \(I U\). On the B5500 computer, single-dimensional arrays have a maximum length of 1023 . Thus the array bounds \([0: 8]\) suffice.
This algorithm was developed as a Fortran subroutine, then translated to Algol. The original Fortran version follows:

SUBROUTINE SORT(A,II,JJ)
SORTS ARRAY A INTO INCREASING ORDER, FROM A(II) TO A(JJ)
ORDERING IS AY INTEGER SUBTRACTION, THUS FLOATING POINT
NUMBERS MUST BF IN NORMALIZED FORM.
ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO \(2 * *(K+1)-1\) ELEMENTS DIMENSION A(1),IU(16),IL(16)
INTEGER A,T,TT
\(M=1\)
\(I=I I\)
\(J=J J\)
5 IF(I .GE. J) GO TO 70
\(10 \mathrm{~K}=\mathrm{I}\)
\(I J=(J+I) / 2\)
\(\mathrm{r}=\mathrm{A}(\mathrm{IJ})\)
IF(A(I).LE. T) GO TO 20
\(A(I J)=A(I)\)
\(A(I)=T\)
\(T=A(I J)\)
\(20 \mathrm{~L}=\mathrm{J}\)
IF(A(J).GE. T) GOTO 40
A(IJ)=A(J)
\(A(J)=T\)
T=A!1J)
IF(AII). LE. T) GO TO 40
A(IJ)=A(I)
\(A(I)=T\)
\(\mathrm{T}=\mathrm{A}(\mathrm{IJ})\)
GO TO 40
\(30 A(L)=A(K)\)
\(A(K)=T T\)
\(40 \mathrm{~L}=\mathrm{L}-1\)
IF(A(L) GT. T) GO TO 40
\(T T=A(L)\)
\(K=K+1\)
\(50 \mathrm{~K}=\mathrm{K}+1\)
IF(A(K) -LT. T) GO TO 50
IF(K -LE. L) GO TO 30
\(\operatorname{IF}(L-I, L E \cdot J-K) G 0\) TO 60
\(\begin{array}{ll}I L(M) & =1 \\ I U(M)=1\end{array}\)
\(\operatorname{IU}_{\mathrm{I}=\mathrm{K}}(M)=L\)
\(I=K\)
\(M=M+1\)
\(M=M+1\)
GO 1080
60 IL \((M) \neq K\)
\(\operatorname{IU}(M)=J\)
\(J=L\)
\(M=M+1\)
\(G O\) TO 80
\(70 \quad M=M-1\)
IF(M.EQ. O) RETURN
\(\mathrm{I}=\mathrm{IL}(\mathrm{M})\)
\(\mathrm{J}=\mathrm{IU}(\mathrm{M})\)
\(J=I \cup(M)\)
80 IF(J-I.(GE. 11) GO TO 10
IFII.EQ. II) GO TO 5
\(I=I-1\)
o \(I=T+1\)
IF(I .EQ. J) GO TO 70
\(T=A(I+1)\)
IF(AlI). LE. T) GO TO 90
\(K=1\)
\(100 \mathrm{~A}(K+1)=A(K)\)
\(K=K-1\)
IF(T.-LT. A(K)) GO TO 100
\(A(K+1)=T\)
GO TO 90
END
This Fortran subroutine was tested on a CDC 6400 computer. For random uniform numbers, sorting times divided by \(n \log _{2} n\) were nearly constant at \(20.2 \times 10^{-6}\) for \(100 \leq n \leq 10,000\), with a time of 0.202 seconds for 1000 items. This subroutine was also hand-compiled for the same computer to produce a more efficient machine code. In this version the constant of proportionality was \(5.2 \times 10^{-6}\), with a time of 0.052 seconds for 1000 items. In both cases, integer comparisons were used to order normalized floating-point numbers.
References:
1. Blatr, Charles R. Certification of algorithm 271. Comm. ACM 9 (May 1966), 354.
2. Hibbard, Thomas N. Some combinatorial properties of certain trees with applications to searching and sorting. \(J\). ACM 9 (Jan. 1962), 13-28.
3. Hibbard, Thomas N. An empirical study of minimal storage sorting. Comm. ACM 6 (May 1963), 206-213.
4. Hoare, C. A. R. Algorithms 63, Partition, and 64, Quicksort. Comm. ACM 4 (July 1961), 321.
5. Scowen, R. S. Algorithm 271, Quickersort. Comm. ACM 8 (Nov. 1965), 669.
6. Shell, D. L. A high speed sorting procedure. Comm. ACM 2 (July 1959), 30-32;
begin
real \(t, t\);
integer \(i i, i j, k, L, m\);
integer array \(I L, I U[0: 8]\);
\(m:=0\); \(i i:=i\); go to \(L 4\);
\(L 1: i j:=(i+j) \div 2 ; t:=A[i j] ; k:=i ; L:=j\);
if \(A[i]>t\) then
begin \(A[i j]:=A[i] ; \quad A[i]:=t ; \quad t:=A[i j]\) end;
if \(A[j]<t\) then
begin
\(A[i j]:=A[j] ; \quad A[j]:=t ; \quad t:=A[i j] ;\)
if \(A[i]>t\) then
begin \(A[i j]:=A[i] ; A[i]:=t ; \quad t:=A[i j]\) end
end;
L2: \(L:=L-1\);
if \(A[L]>t\) then go to \(L 2\);
\(t t:=A[L] ;\)
L3: \(k:=k+1\);
if \(A[k]<t\) then go to \(L 3\);
if \(k \leq L\) then
begin \(A[L]:=A[k] ; \quad A[k]:=t t\); go to \(L 2\) end;
if \(L-i>j-k\) then
begin \(I L[m]:=i ; \quad I U[m]:=L ; \quad i:=k\) end
else
begin \(I L[m]:=k ; \quad I U[m]:=j ; \quad j:=L\) end;
\(m:=m+1\);
\(L 4:\) if \(j-i>10\) then go to \(L 1\);
if \(i=i i\) then
begin if \(i<j\) then go to \(L 1\) end;
for \(i:=i+1\) step 1 until \(j\) do
begin
\(t:=A[i] ; k:=i-1\);
if \(A[k]>t\) then

\section*{begin}

L5: \(A[k+1]:=A[k] ; k:=k-1\); if \(A[k]>t\) then go to \(L 5\);
\(A[k+1]:=t\)
end
end;
\(m:=m-1\); if \(m \geq 0\) then
begin \(i:=I L[m] ; j:=I U[m] ;\) go to \(L 4\) end
end SORT

REMARK ON ALGORITHM 347 [M1]
AN EFFICIENT ALGORITHM FOR SORTING WITH MINIMAL STORAGE
[Richard C. Singleton, Comm. ACM 12 (Mar. 1969), 185]
Robin Griffin and K. A. Redish (Recd. 14 Apr. 1969 and 11 Aug. 1969)
McMaster University, Hamilton, Ontario, Canada
KEY WORDS AND PHRASES: sorting, minimal storage sort-
ing, digital computer sorting
\(C R\) CATEGORIES: 5.31
The algorithm was tested on the CDC 6400 Algol compiler (version 1.1, running under the SCOPE operating system, version 3.1.4). One trial was made using an array of 5000 pseudorandom numbers; the results were correct.

The central processor time was about 6.9 seconds corresponding to a value for K (defined below) of about 110 microseconds.

It would be more in the spirit of Algol to follow QUICKERSORT [1] and give arrays \(I L\) and \(I U\) dynamic bounds. This involves changing line 4 on page 187 from
integer array \(I L, I U[0: 8]\); to
```

integer array $I L, I U[0: \ln (j-i+1) / \ln (2)-0.9]$;

```

The Fortran subroutine given in the comments to the algorithm was tested on a CDC Fortran compiler (the RUN compiler version 2.3, running under the SCOPE operating system, version 3.1.4). Tests were made with each of the five initial orderings described with the algorithm for a variety of array lengths from 500 to 40,000 . For integer arrays, the results were correct; but when the actual argument corresponding to the dummy argument A was a real array containing large positive and negative numbers, errors occurred. This does not invalidate the subroutine, but the comments should be changed to
C SORTS INTEGER ARRAY A INTO INCREASING ORDER, FROM A(II) TO A(IJ)
C ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO 2**(K+1) - 1 ELEMENTS
C THE USER SHOULD CONSIDER THE POSSIBILITY OF INTEGER OVERFLOW
C THE ONLY ARITHMETIC OPERATION ON THE ARRAY ELEMENTS IS SUBTRACTION
This gives enough information (and a hint) but leaves the responsibility for any abuse of American National Standards Institute (formerly USASI) Fortran where it belongs-with the user.

The subroutine was also tested on the IBM 7040 Fortran compiler (the IBFTC compiler running under the IBSYS operating system, version 9 level 10). The results were correct. The statement

\section*{INTEGER A, T, TT}
was removed and the amended subroutine tested using similar, but real, arrays. The results were again correct; running times increased by up to 5 percent on the CDC 6400 and were unchanged on the IBM 7040.
Tables I and II summarize the information on running times in terms of \(K\), where
\[
\text { time }=K n \log _{2} n
\]
(runs of other lengths are omitted for brevity).

\begin{tabular}{cccccc}
\hline \multicolumn{6}{c}{ TABLE II. } \\
Values of \(n \log _{2} n\) \\
\hline\(n\) & 500 & 1000 & 5000 & 10000 & 40000 \\
\hline \(10^{-6} n \log _{2} n\) & 0.00448 & 0.00996 & 0.0614 & 0.1329 & 0.6115 \\
\hline
\end{tabular}

For use as a library routine one slight change is recommended: JJ-II should be tested on entry and a suitable error message produced if negative. It would be possible to transfer "work" arrays to replace IU and IL thus allowing the user more control of storage allocation, but the additional instructions needed to handle the extra arguments reduce the saving and this is hardly worthwhile.

The authors would like to thank the referee for his helpful comments.
Reference:
1. Scowen, R. S. Algorithm 271, Quickersort. Comm. ACM 8 (Nov. 1965), 669-670.

REMARK ON ALGORITHM 347 [M1]
AN EFFICITNT ALGORITHM FOR SORTING WITH MINIMAL STORAGE [Richard C. Singleton, Comm. ACM 12 (Mar. 1969), 185]
Richard Peio (Recd. 18 Feb. 1970)
Medical Research Council, 115 Gower Street, London
W. C. 1

KEY WORDS AND PHRASES: sorting, ranking, minimal storage sorting, digital computer sorting
CR CATEGORIES: 5.31
If the values of \(i j\), instead of always being \((i+j) \div 2\), are at varying positions between \(i\) and \(j\), then there is less likelihood of peculiar initial structure causing failure of the algorithm to perform rapidly. The position of \(i j\) can be made to vary by replacing the statements
\[
m:=0 ; \quad i i:=i ; \text { go to } L 4 ; L 1: i j:=(i+j) \div 2 ;
\]
by
real \(r ; r:=0.375 ; \quad m:=0 ; i i:=i\); go to \(L 4\);
\(L 1: r:=\) if \(r>0.58984375\) then \(r-0.21875\) else \(r+0.0390625\); \(i j:=i+(j-i) \times r\);
comment These four decimal constants, which are respectively \(48 / 128,75.5 / 128,28 / 128\), and \(5 / 128\), are rather arbitrary. On most compilers their binary representations will be exact, and the use of them in the statement \(L 1\) causes \(r\) to vary cyclically over the 33 values \(48 / 128 \cdots 80 / 128\). Therefore \(i j\) takes a variable position somewhere within the middle quarter of the segment to be sorted. Wider variation of \(i j\) would be undesirable in the special case of a partially presorted array;

In sorting an array of \(N\) elements which are initially in random order this will waste (on ICL Atlas) less than \(N / 10^{5}\) seconds, but if the array is, for example, composed initially of two equal presorted halves, then the use of the original rather than the modified version would more than double the sorting time required if \(N>10^{4}\).

As the author points out, the published version could fail if used to sort arrays of 1024 or more elements because the upper bounds of \(I U\) and \(I L\) might be inadequate. For a standard procedure the declaration \(1 L, I U[0: 8]\) should be replaced by the declaration \(I L, I U[0: 20]\). This permits the sorting of arrays of up to 4 million elements, which is, with present core store sizes, sufficient.

The statement \(t t:=a[L]\) which precedes \(L 3:\) will be executed less frequently if it is transferred into the next conditional statement, which then reads
if \(k \leq L\) then begin \(t t:=a[L] ; a[L]:=a[k] ; a[k]:=t t ;\) go to \(L 2\) end

\section*{ALGORITHM 348 \\ MATRIX SCALING BY INTEGER PROGRAMMING [F1]}
R. R. Klimpel (Recd. 4 Mar. 1968, 13 June 1968, 16 Oct. 1968 and 21 Nov. 1968)
Computation Research Laboratory, The Dow Chemical Co., Midland, MI 48640
KEY WORDS AND PHRASES: integer programming, linear algebra, mathematical programming, matrix condition, matrix scaling
\(C R\) CATEGORIES: 5.14, 5.41
procedure scale (\(a, m, n, g, u, v\));
value \(m, n, g\); integer \(m, n\); real \(g\);
real array \(a\); integer array \(u\), \(v\);
comment The use of scaling to precondition matrices so as to improve subsequent computational characteristics is of considerable importance. To measure the scaling condition of a matrix, \(a_{i j}(i=1, \cdots, m\) and \(j=1, \cdots, n)\), Fulkerson and Wolfe [1] suggested the ratio of the matrix entry of largest absolute value to that of the smallest nonzero absolute value. This procedure implements the method of [1], i.e. finding multiplicative row factors, \(r_{i}\), and column factors, \(s_{j}\), which, when applied, minimize the above condition number. The minimization problem can be expressed as an equivalent additive discrete problem by taking logarithms and defining:
\[
r_{i}=g^{u_{i}}, \quad s_{j}=g^{v_{j}}, \quad b_{i j}=\log _{i}\left(a b s\left(a_{i j}\right)\right)
\]
and taking \(c_{i j}\) to be the least integer greater than or equal to \(b_{i j}\). Thus the formulation becomes: minimize an integer \(w\) subject to the constraints \(0 \leq u_{i}+v_{j}+c_{i j} \leq w\) where \(u_{i}\) and \(v_{j}\) are unrestricted and integral in value. The effect of decreasing the value of the base \(g\) would be to more accurately approximate the continuous scaling problem by the discrete form. Reference:
1. Fulkerson, D. R., and Wolfe, P. An algorithm for scaling matrices. SIAM Rev. 4 (1962), 142-146;
begin
integer array \(c[1: m, 1: n], r i[1: m], s i[1: n]\);
real val;
integer max, store, markr, markc, num, nopt, \(i, j\);
nopt \(:=0\);
comment Create initial integer matrix \(c\). Due to machine round-off errors, it may be desirable for some problems to insert a tolerance when checking for zero values of the input matrix and for matrix entries which are exact integral powers of the base \(g\);
for \(i:=1\) step 1 until \(m\) do
for \(j:=1\) step 1 until \(n\) do
begin
if \((a[i, j]=0)\) then
begin
\(c[i, j]:=0 ;\)
go to intf
end;
val \(:=\ln (a b s(a[i, j])) / \ln (g) ;\)
\(c[i, j]:=\) entier (val) +1 ;
if \(((c[i, j]-1)=v a l)\) then \(c[i, j]:=c[i, j]-1 ;\)
intf:
end;
comment Select initial values of \(u_{i}\) and \(v_{j}\) that satisfy constraints of discrete formulation;
for \(i:=1\) step 1 until \(m\) do
begin
\(u[i]:=c[i, 1] ;\)
for \(j:=2\) step 1 until \(n\) do
if (\(c[i, j]<u[i])\) then \(u[i]:=c[i, j]\);
\(u[i]:=-u[i]\)
end;
for \(\boldsymbol{j}:=1\) step 1 until \(n\) do
begin
\(v[j]:=c[1, j]+u[1] ;\)
for \(i:=2\) step 1 until \(m\) do
begin
store \(:=c[i, j]+u[i] ;\)
if (store \(<v[j]\)) then \(v[j]:=\) store;
end;
\(v[j]:=-v[j] ;\)
end;
comment Step one. Initialize row and column markers with unmarked rows and columns denoted by a 1 in \(r i[i]\) and \(s i[j]\), respectively. Locate and mark maximum entry of current working array;
ramax: \(\max :=0\);
for \(i:=1\) step 1 until \(m\) do
begin
\(r i[i]:=1\);
for \(j:=1\) step 1 until \(n\) do
begin
if \((i=1)\) then \(s i[j]:=\mathbf{1}\);
if (nopt \(=0\)) then \(c[i, j]:=u[i]+v[j]+c[i, j]\);
if (\(c[i, j] \geq \max\)) then
begin
markr \(:=i\);
markc : \(=j\);
\(\max :=c[i, j]\)
end
end
end;
nopt \(:=1\);
ri[markr] :=-1;
comment Repeat steps two and three in succession until there are either no freshly marked rows or no freshly marked columns. Any row or column marked in the immediately preceding application of step one, two, or three is called freshly marked and denoted by -1 in the appropriate indicator vector. Previously marked rows and columns that are not freshly marked are denoted by zero values;
comment Step two;
rmarks: num :=0;
for \(i:=1\) step 1 until \(m\) do
begin
if (\(r i[i]>-1\)) then go to rmarkf;
```

    ri[i] := 0;
    num := num + 1;
    for j:= 1 step 1 until n do
        if (si[j]=1) \(c[i,j]=0) then si[j]:= -1;
    rmarkf:
end;
if (num=0) then go to change;
comment Step three;
num := 0;
for j:= 1 step 1 until n do
begin
if (si[j]>-1) then go to cmarkf;
si[j]:= 0;
num:= num + 1;
for }i:=1\mathrm{ step 1 until m do
if (ri[i]=1)}
((c[i,j]=max) \vee(c[i,j]=(max-1))) then
ri[i]:=-1;
cmarkf:
end;
if (num}\not=0)\mathrm{ then go to rmarks;
comment Step four. Modify integer scaling factors }u\mathrm{ and v
and adjust current working matrix ( }\mp@subsup{c}{ij}{}+\mp@subsup{u}{i}{}+\mp@subsup{v}{j}{\prime}\mathrm{ );
change: if (si[markc]<1) then go to fnis;
for }i:=1\mathrm{ step 1 until m do
if (ri[i]<1) then
begin
u[i]:=u[i]-1;
for }j:=1\mathrm{ step 1 until }n\mathrm{ do
c[i,j]:=c[i,j]-1
end;
for j:= 1 step 1 until n do
if (si[j]<1) then
legin
v[j]:= v[j] + 1;
for i:= 1 step 1 until m do
c[i,j]:=c[i,j]+1
end;
go to rcmax;
finis:
end

```

ALGORITHM 349
POLYGAMMA FUNCTIONS WITH ARBITRARY PRECISION* [S14]
Adilson Tadeu de Medeiros and
Georges Schwacheeim (Recd. 15 Mar. 1968, 1 July 1968, 28 Oct. 1968 and 3 Dec. 1968)
Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, ZC 82, Brasil
* This work was supported by the Conselho Nacional de Pesquisas and the Banco Nacional do Desenvolvimento Economico of Brasil.
KEY WORDS AND PHRASES: polygamma function, psi function, digamma function, trigamma function, tetragamma function, pentagamma function, special functions
\(C R\) CATEGORIES: 5.12
procedure polygamma (\(n, z, n d\), polygam, error);
value \(n, z, n d\); real \(z\), polygam; integer \(n, n d\); label error; comment This procedure assigns to polygam the value of the polygamma function of order \(n\) for any real argument \(z\). For \(n=0\), we have the psi or digamma function, for \(n=1\) the trigamma function, for \(n=2\) the tetragamma function, and so on. For arguments that are poles of the function (nonpositive integer values), an exit is made through the label error. The parameter \(n d\) gives the requested relative precision expressed in number of decimal digits.

It computes the polygamma function through the asymptotic series
\(\psi^{(n)}(z) \sim(-1)^{n-1}\left[\frac{(n-1)!}{z^{n}}+\frac{n!}{2 z^{n+1}}+\sum_{k=1}^{\infty} B_{2 k} \frac{(2 k+n-1)!}{(2 k)!z^{2 k+n}}\right]\)
except for \(n=0\), when the first term is \(-\ln (z)\).
If the simple empirical relationship
\[
2 z>n+n d
\]
is true, as well as \(z>n\), one enters directly into the asymptotic series with the original argument. Otherwise, the computation of small arguments is reduced to that of sufficiently large arguments, applying repeatedly the recurrence relation:
\[
\psi^{(n)}(z+1)=\psi^{(n)}(z)+(-1)^{n} n!z^{-n-1}
\]

To save computation time, the argument, once larger than \(n\), is increased just to the point when the minimum term of the asymptotic expansion is sufficiently small so as not to alter the value of the result within the chosen precision.
The order of the minimum term is estimated by the first order approximation
\[
\pi z-n / 2
\]
and the corresponding absolute value by the approximation formula
\[
(2 \pi)^{n} \exp (-2 \pi z) .
\]

Negative arguments are related to positive ones through the reflection formula:
\[
(-1)^{n} \psi^{(n)}(1-z)=\psi^{(n)}(z)+\pi \frac{d^{n}}{d z^{n}} \cot \pi z
\]

The \(n\) th-order derivative of the cotangent is computed by term by term differentiation of the tangent or cotangent series after the convenient trigonometric reductions of the argument's value.
This procedure is not recursive and uses no own variable;

\section*{begin}
real \(p i, p f\), soma, \(z q, t 1, f a c, p r e c, w, s a b, p v\);
integer \(p r, n 1, k 1, m 1\);
real procedure fat (\(n\));
value \(n\); integer \(n\);
begin
real \(f\); integer \(i\);
\(f:=1\);
for \(i:=n\) step -1 until 2 do \(f:=f \times i\);
fat \(:=f\)
end of fat;
procedure inc (\(s, x 1, L\));
real \(s, x 1\); label \(L\);
begin
real sant;
sant \(:=s ; s:=s+x 1 ;\)
if abs (\(s-\) sant) \(\leq\) abs (prec \(\times s\)) then go to \(L\)
end of inc;
comment The procedure polygamma uses a table of coefflcients \(s b\) for its series with the value
\[
s b(i)=\frac{\left|B_{2 i}\right|}{(2 i)!}=\frac{\sum_{k=1}^{\infty}(-1)^{k-1} / k^{2 i}}{\pi^{2 i}\left(2^{2 i-1}-1\right)} \cong \frac{2}{(2 \pi)^{2 i}},
\]
the last being an asymptotic value for large \(i\). The computation of these coefficients need not to be repeated at each procedure call; so it is convenient to transfer the declaration and block below to the main program and execute it just once.

One should replace fund by the smallest positive real number within the machine representation, and \(m s\) by the number of decimal digits of the mantissa;
array \(s b[1:\) entier \((.272 \times \ln (2 / f l u n d))]\);
begin
real \(p i q, s m, p i p o, p t w o, d p i, s a\);
integer \(s g\), in, \(k 2\), imax;
array \(t r, q[2:\) entier \((10 \uparrow(m s / 22))+1]\);
imax \(:=\) entier \((.272 \times \ln (2 /\) flund \())\);
\(p i q:=9.86960440108935861883449099987615113531369940724079\);
pipo \(:=p i q \uparrow 11 ; ~ p t w o:=2097152 ; \quad d p i:=4 \times p i q\);
\(s b[1]:=1 / 12\);
sb [2] := 1/720;
sb [3] := 1/30240;
\(s b[4]:=1 / 1209600 ;\)
\(s b[5]:=1 / 47900160 ;\)
sb \([6]:=691 / 1307674368_{10} 3\);
\(s b[7]:=1 / 74724249600\);
\(s b[8]:=3617 / 1067062284288104 ;\)
sb [9] := 43867/5109094217170944ı3;
\(s b[10]:=174611 / 8028576626982912105\);
\(s m:=1 ; s g:=-1\);
for in \(:=2\), in +1 while \(s m ~ \equiv s a\) do begin
```

        q[in]:=1/(in X in);
        tr[in]:= sg }\timesq[in] \uparrow 11;sa:= sm
        sm}:=sm+tr[in]; sg:= -s
    end;
    sb[11]:= sm/(pipo }\times(ptwo-1))
    for k2:= 12 step 1 until imax do
    begin
        sm := 1; in := 1;
    B: in := in + 1; tr[in]:= tr[in] }\{q[in]; sa:= sm
sm:=sm+tr[in]; if sa}\not=sm\mathrm{ then go to }B\mathrm{ ;
pipo := pipo }\times\mathrm{ piq; ptwo := ptwo }\times4\mathrm{ ;
sb[k2]:= sm/(pipo }\times(ptwo-1))
if in =2 then go to }
end;
go to A;
L: for k2:= k2 + 1 step 1 until imax do
sb[k2]:= sb[k2-1]/dpi;
A: end of sb coefficients computation;
pi:= 3.14159265358979323846264338327950288419716939937510;
prec := 10 \uparrow (-nd); fac :=fat (n);
pr:= if n \div2 < 2 = n then 1 else - 1;
pf := pr }\times\mathrm{ fac; n1 := n+1;
if z\leq0 then
begin
if z entier(z) then go to error
else
begin
real }x,y;\mathrm{ integer }d,l;\mathrm{ Boolean C;
k1 := pr; d :=z; x := d - z;
if }x>0\mathrm{ then }l:=
else
begin }x:=-x;\quadl:=-pr end
C:=x> .25; y := pi X (if C then (.5-x) else x);
if }n=0\mathrm{ then
soma := l }\timespi\times\mathrm{ (if C then }\operatorname{sin}(y)/\operatorname{cos}(y)\mathrm{ else }\operatorname{cos}(y)
sin(y))
else
begin
integer m, np, i, i; integer array ft [1:4];
real }y2,p,f,t,s,v
m:=n\div2; np:=m\times2;
ft[1]:= np+1; ft[2] := np; ft[3]:= pr;
ft[4] := 0; y2:=y×y; j:=m+1;
f:= fat (np+1); p:=4 \uparrow (m+1);
t:= if pr = -1 then 1 else }y\mathrm{ ;
s:= if C then 0 else pf/y \uparrow n1;

```
```

```
\(E: \quad v:=\) if \(C\) then \(p \times(1-p)\) else \(p ;\)
```

```
\(E: \quad v:=\) if \(C\) then \(p \times(1-p)\) else \(p ;\)
 \(\operatorname{inc}(s,-s b[j] \times f \times t \times v, D)\);
 \(\operatorname{inc}(s,-s b[j] \times f \times t \times v, D)\);
 for \(i:=1\) step 1 until 4 do
 for \(i:=1\) step 1 until 4 do
 \(f t[i]:=f t[i]+2\);
 \(f t[i]:=f t[i]+2\);
 \(f:=f \times f t[1] \times f t[2] \times y 2 /(f t[3] \times f t[4]) ;\)
 \(f:=f \times f t[1] \times f t[2] \times y 2 /(f t[3] \times f t[4]) ;\)
 \(p:=4 \times p ; \quad j:=j+1\);
 \(p:=4 \times p ; \quad j:=j+1\);
 go to \(E\);
 go to \(E\);
\(D: \quad\) soma \(:=l \times p i \uparrow n 1 \times\) (if \(C\) then \(s \times p r\) else \(s\))
\(D: \quad\) soma \(:=l \times p i \uparrow n 1 \times\) (if \(C\) then \(s \times p r\) else \(s\))
 end
 end
 end;
 end;
 \(z:=1-z ; w:=z \uparrow n\);
 \(z:=1-z ; w:=z \uparrow n\);
 \(p v:=\) if \(n=0\) then \(\ln (z)\) else \(f a c /(n \times w)\);
 \(p v:=\) if \(n=0\) then \(\ln (z)\) else \(f a c /(n \times w)\);
 \(s a b:=a b s(s o m a) ;\)
 \(s a b:=a b s(s o m a) ;\)
 if \(p v<s a b\) then \(n d:=n d-.434 \times \ln (s a b / p v)\)
 if \(p v<s a b\) then \(n d:=n d-.434 \times \ln (s a b / p v)\)
 end
 end
 else
 else
 begin soma \(:=0 ; k 1:=1 ; \quad w:=z \uparrow n\) end;
 begin soma \(:=0 ; k 1:=1 ; \quad w:=z \uparrow n\) end;
 if \(n d \leq 0\) then go to \(L\);
 if \(n d \leq 0\) then go to \(L\);
 if \(2 \times z<n+n d \vee z<n\) then
 if \(2 \times z<n+n d \vee z<n\) then
begin
begin
 real term, cond;
 real term, cond;
 term \(:=-p f /(z \times w)\);
 term \(:=-p f /(z \times w)\);
 inc (soma, term, \(L\));
 inc (soma, term, \(L\));
 cond \(:=(n \times 1.8378-\ln (a b s(\) term \())+2.3025 \times n d) \times .1591 ;\)
 cond \(:=(n \times 1.8378-\ln (a b s(\) term \())+2.3025 \times n d) \times .1591 ;\)
 if cond \(<n\) then cond \(:=n\);
 if cond \(<n\) then cond \(:=n\);
 if cond \(\leq z\) then \(z:=z+1\)
 if cond \(\leq z\) then \(z:=z+1\)
 else
 else
 begin
 begin
 integer \(i p, k\);
 integer \(i p, k\);
 \(i p:=\) cond \(-z+1\);
 \(i p:=\) cond \(-z+1\);
 if \(i p<1\) then go to \(L\);
 if \(i p<1\) then go to \(L\);
 for \(k:=1\) step 1 until \(i p\) do
 for \(k:=1\) step 1 until \(i p\) do
 inc (soma, \(-p f /(z+k) \uparrow n 1, L)\);
 inc (soma, \(-p f /(z+k) \uparrow n 1, L)\);
 \(z:=z+i p+1\)
 \(z:=z+i p+1\)
 end
 end
 \(w:=z \uparrow n\)
 \(w:=z \uparrow n\)
end;
end;
inc (soma, if \(n=0\) then \(\ln (z)\) else \(-p f /(n \times w), L)\);
inc (soma, if \(n=0\) then \(\ln (z)\) else \(-p f /(n \times w), L)\);
inc (soma, \(-p f \times .5 /(z \times w), L)\);
inc (soma, \(-p f \times .5 /(z \times w), L)\);
\(z q:=z \times z ; \quad t 1:=p f \times n 1 /(w \times z q)\);
\(z q:=z \times z ; \quad t 1:=p f \times n 1 /(w \times z q)\);
for \(m 1:=2\) step 2 until \(6.283 \times z+n\) do
for \(m 1:=2\) step 2 until \(6.283 \times z+n\) do
begin
begin
 inc (soma, \(-t 1 \times \operatorname{sb}[m 1 \div 2], L)\);
 inc (soma, \(-t 1 \times \operatorname{sb}[m 1 \div 2], L)\);
 \(t 1:=-t 1 \times(n 1+m 1) \times(n+m 1) / z q\)
 \(t 1:=-t 1 \times(n 1+m 1) \times(n+m 1) / z q\)
 end;
 end;
\(L\) : polygam := soma \(\times k 1\)
\(L\) : polygam := soma \(\times k 1\)
end of polygamma
```

```
end of polygamma
```

```

ACM Transactions on Mathematical Software, Vol. 1, No. 4, December 1975, Pages 380-381
CERTIFICATION OF ALGORITHM 349
Polygamma Functions with Arbitrary Precision [S14]
[Adilson Tadeu de Medeiros and Georges Schwachheim, Comm. ACM 12, 4 (April 1969), 213-214]

John Gregg Lewis [Recd 30 May 1974]
Computer Science Department, Stanford Cniversity, Stanford, CA 94305
This work was supported by a fellowship from the IBM Corp. and by the Stanford Center for Information Processing.

A casual user should not be misled by the title of this algorithm. Algorithm 349 does not offer arbitrarily precise values of the polygamma functions. It does offer results with precision adjustable downward from something somewhat less than the

Table I. Consistency Checks
Order of Magnitude of Relative Error, machine precision \(\cong 10^{-16}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Requested precision (decimal digits)} & \multirow[b]{3}{*}{Positive arguments (digammapentagamma} & \multicolumn{5}{|c|}{Negative arguments} \\
\hline & & Digamma & Trigamma & Tetragamm & ntagamma & Hexagamma \\
\hline & & \multicolumn{2}{|r|}{\(-10(+.005) 0\)} & \multicolumn{2}{|c|}{\(-10(+.01) 0\)} & -10(.1)0 \\
\hline 6 & \((-6)\) & \((-7)\) & (-5) & \((-5)\) & \((-5)\) & (--5) \\
\hline 9 & \((-9)\) & \((-10)\) & \((-10)\) & \((-8)\) & (-8) & (--8) \\
\hline 10 & \((-11)\) & \((-11)\) & \((-11)\) & \((-11)\) & (-9) & (--9) \\
\hline 11 & \((-12)\) & \((-12)\) & \((-12)\) & \((-12)\) & \((-10)\) & \((-11)\) \\
\hline 12 & \((-13)\) & \((-13)\) & \((-13)\) & \((-12)\) & (-11) & \((-11)\) \\
\hline 15 & \((-15)\) & \((-13)\) & (-13) & \((-13)\) & \((-12)\) & \((-11)\) \\
\hline 17 & (-15) & (-13) & (-13) & \((-13)\) & \((-12)\) & (-11) \\
\hline
\end{tabular}
floating-point precision of the computer on which it is run. Further, unlike the highly tuned functions to which we have become accustomed, this routine is not accurate to the last bit. In general, the last several decimal digits of the results of this procedure are in doubt. This procedure does not use rational function approximations. Instead, it computes the polygamma functions as limits of asymptotic series. Hence it is relatively slow. It is on numerically shaky grounds since some values are the result of three separate summation processes where no efforts are made to rearrange the terms to preserve accuracy. Despite this, if used carefully within its limitations, the procedure performs as advertised.
Algorithm 349 was translated into Fortran and tested in long precision on StanFord University's ibm \(360 / 67\) computer using both the Waterloo watfiv compiler and ibm's Fortran compilers. Since no other software to compute these functions is available at Stanford, the routine was checked by comparison with published tables of values and by several crude, but revealing consistency checks. For the digamma, trigamma, tetragamma, and pentagamma functions we checked directly against the tables in Abramowitz and Stegun [1], which give at least 10 and at most 11 significant digits in the range \(1(.005) 2 .{ }^{1}\) These were checked, requesting in turn \(6,9,10,11,12,15\), and 17 decimal digits of precision. In this range the procedure either provided the number of digits requested or agreed completely with the published tables, except that for the trigamma function, even with full machine precision requested, the numerical results (correctly rounded or truncated) for most arguments of the form 1.xx5 disagreed with the last digit of the published value, an error on the order of \(1 \times 10^{-10}\). The trigamma, tetragamma, pentagamma, and hexagamma functions were also compared with tables provided by the authors [2] for negative arguments \(-9.9(.1)(-.1)\). The results of these tests are recorded in Table I.
The following internal checks were made. For positive arguments in the range \((0,1)\) and \((2,11)\), we checked the translation properties of the procedure by computing the shifts in reverse order (to full machine precision) and compared results. For negative arguments the procedure computes derivatives of the cotangent function as limits of a series. We computed the needed low order derivatives analytically and evaluated them using standard trigonometric functions instead. For the functions in the first test we compared results in the range \((-10(.005) 0)\), skipping the poles at the negative integers. All of the values in the second test, were checked similarly. In the latter case, where published tables for negative arguments were available, this internal check proved sharp-whenever the internal check indicated an error larger than the precision of the tables, the error was found to be of the expected order.

Note on translation. In the Fortran program, the first block of the Algol procedure was made a separate initializing subroutine. The unnecessary procedures

\footnotetext{
\({ }^{1} 1(.01) 2\) for tetragamma and pentagamma.
}

FAC and INC were replaced by in-line code. To enhance portability, all constants are computed at run time. (The dimension of the arrays \(S B, T R\), and \(Q\) are machine dependent.) The routine is available from the Numerical Analysis Program Librarian, Stanford Center for Information Processing, Stanford, CA 94305. It should not be implemented in single precision on short word-length machines.

\section*{REFERENCES}
1. Abramowitz, M., and Stegun, I.A., Eds. Handbook of Mathematical Functions. Nat. Bur. Standards Appl. Math. Series 55, U.S. Govt. Printing Office, Washington, D.C., 1964, pp. 267-273.
2. Davis, H.T. Tables of Mathematical Functions, Vol. II, revised. Principia Press, Trinity U., San Antonio, Tex., 1963.

\section*{ALGORITHM 350 \\ SIMPLEX METHOD PROCEDURE EMPLOYING LU DECOMPOSITION* [H] \\ Richard H. Bartels and Gene H. Golub (Recd. 2 Aug. 1967 and 5 June 1968) \\ Computer Science Department, Stanford University, Stanford, CA 94305 \\ * This project was supported in part by contracts NSF GP948 and ONR NR 044211.}

KEY WORDS AND PHRASES: simplex method, linear programming, LU decomposition, round-off errors, computational stability
\(C R\) CATEGORIES: 5.41
procedure linprog (\(m, n\), kappa, \(G, b, d, x, z\), ind, infeasible, unbounded, singular);
value \(m, n\); integer \(m, n\), kappa; real \(z\);
array \(G, b, d, x\); integer array ind; label infeasible, unbounded, singular;
comment linprog attacks the linear programming problem:

\section*{maximize \(d^{T} x\)}
subject to \(G x=b\) and \(x \geq 0\)
Details about the methods used are given in a paper by Bartels and Golub [Comm. ACM 12 (May 1969), 266-268].

The array \(G[0: m-1,0: n-1]\) contains the constraint coefficients. Array \(b[0: m-1]\) contains the constraint vector, and \(d[0: n-1]\) contains the objective function coefficients (cost vector). The computed solution will be stored in \(x[0: n-1]\), and \(z\) will have the maximum value of the objective function if linprog terminates successfully. Error exit singular will be taken if a singular basis matrix is encountered. Error exit infeasible will be taken if the given problem has no basic feasible solution, and exit unbounded will be taken if the objective function is unbounded. If kappa \(=0\), problem (2) of the referenced paper will be set up and phase 1 entered. If \(1 \leq k a p p a \leq m-1\), problem (4) of the paper will be set up and phase 1 entered. The last lappa columns of \(G\) will be preceded by the first \(m\) - kappa columns of the identity matrix to form the initial basis matrix. If kappa \(=m\), phase 2 computation will begin on problem (1) with variables numbered ind \([0], \cdots, \operatorname{ind}[m-1]\) as the initial basic variables and variables numbered ind \([m], \cdots, \operatorname{ind}[n-1]\) as the initial nonbasic variables. Hence each component of ind must hold an integer between 0 and \(n-1\) specified by the user. Finally, if kappa \(>m\), problem (3) will be set up, and phase 2 computation will begin with variables numbered ind \([0], \cdots\), \(i n d[m]\) as the initial basic variables and variables numbered \(\operatorname{ind}[m+1], \cdots\), ind \([n+k a p p a-m-1]\) as the initial nonbasic variables. This option is of interest only because linprog, upon successful termination, leaves all variable numbers recorded in ind in their final order and provides kappa with an appropriate value. This permits linprog to be reentered at the phase 2 point after modifications have been made to \(G, b\), or \(d\). An understanding of the simplex method and the accompanying paper by Bartels and Golub will make clear what modifications can be permitted. If phase 1 is to be executed, ind must have array bounds \([0: m+n-\) kappa \(]\) to allow for artificial variables. Otherwise, ind must have bounds \([0: n+k a p p a-m-1]\). The values in array \(b\) must be nonnegative if phase 1 is to be executed. The contents of \(m, n, G, b\), and \(d\) are left unchanged by linprog;
begin
real procedure \(i p 2(i i, l l, u u, a a, b b, c c)\); value \(u u\); integer \(i i, l l, u u\); real \(a a, b b, c c\); begin
comment \(i p 2\) must produce a double-precision, accumulated inner product. Jensen's device is used. The main statement in \(i p 2\) is
for \(i i:=l l\) step 1 until \(u u\) do sum \(:=s u m+a a \times b b\) where the local variable sum has been initialized by cc. However, the multiplication \(a a \times b b\) must produce a double-precision result, so sum represents a double-precision accumulated sum. After all products have been summed together, sum is to be rounded to single-precision and used as the value of \(i p 2\);
end \(i p 2\);
procedure \(\operatorname{trisolv(fis,~fid,~fie,~sis,~sie,~fi,~si,~sol,~rhs,~mat,~piv);~}\) value \(f i d, f i e ;\) integer \(f i s, f i d, f i e, s i s, s i e, f i, s i\); real sol, rhs, mat, piv;
comment trisolv solves a triangular system of linear equations. The off-diagonal part of the system's coefficient matrix is given by mat, the diagonal part by \(p i v\), and the right-hand side of the system by rhs. The solution is developed in sol. By appropriately setting the first five parameters, either an upper or a lower triangular system can be treated. Column by column \(L U\) decomposition of a matrix can be compactly expressed using trisolv;
begin real \(t t, p v\);
for \(f i:=f i s\) step \(f i d\) until fie do
begin \(t t:=-i p 2(s i\), sis, sie, sol, mat, -rhs); \(s i:=f i ; p v:=p i v ;\) \(s o l:=\) if \(p v=1.0\) then \(t\) else \(t t / p v\)
end
end trisolv;
array \(q, h, w, y, v[0: m], P[0: m, 0: m]\);
integer array \(i x[0: m+n]\), ro \([0: m]\);
integer \(m u\), nu, alpha, beta, gamma, gm1, im1, \(i, j, k, l\);
real \(t 1, t 2\), infinity, prevz, eta;
real procedure Gmat (ri, ci);
value \(r i, c i\); integer \(r i, c i\);
Gmat := if \(r i=m\) then (if \(c i<n\) then 0 else 1.0)
else if \(c i<n\) then \(G[r i, c i]\)
else if \(c i-n=r i\) then 1.0 else 0 ;
real procedure \(d v e c(i i)\); value \(i i\); integer \(i i\); \(d v e c:=\) if \(i i<n\) then \(d[i i]\) else 0 ;
procedure decompose (mat, bottom, top);
value bottom, top; integer bottom, top; real mat;
comment This procedure performs a column-by-column reduction of the matrix given by mat, forming an upper and a lower triangular matrix into the array \(P\). (Each diagonal element of the lower triangular matrix is 1.) Interchanges of rows take place so that the largest pivot in each column is employed. If \(P\) already contains the \(L U\) decomposition of a matrix differing from mat in only the (beta)-th column, advantage is taken of this. The parameters bottom and top enable decompose to concentrate on a lower right-hand submatrix of mat. This feature saves computation during phase 1. If mat is singular, exit singular is taken;
begin
```

    for \(i:=b e t a\) step 1 until \(m u\) do
    begin
    \(\operatorname{im} 1:=i-1 ; \quad l:=i x[i] ;\)
    trisolv(if \(i=\) beta then bottom else top, 1 , im1, bottom, \(j-1\),
        \(j, k, P[r o[k], i], m a t, P[r o[j], k], 1.0)\);
    trisolv(i, 1, mu, bottom, im1, \(j, k, P[r o[k], i], m a t\),
        \(P[r o[j], k], 1.0)\);
    l1 \(:=0\);
    for \(j:=i\) step 1 until \(m u\) do
    begin
        \(t 2:=P[r o[j], i] ;\)
        if \(a b s(t 1)<a b s(t 2)\) then begin \(t 1:=t 2 ; k:=j\) end
    end;
    if \(t \mathbf{1}=0\) then go to singular;
    if \(i=m u\) then go to decompover;
    \(j:=r o[i] ; \quad r o[i]:=r o[k] ; \quad r o[k]:=j\);
    for \(j:=i+1\) step 1 until \(m u\) do \(P[r o[j], i]:=\)
        \(P[r o[j], i] / t 1\)
        end;
    decompover:
end decompose;
procedure findbeta;
comment This procedure determines which of the basic
variables is to become nonbasic;
begin
$t 1:=$ infinity;
for $i:=0$ step 1 until $m u$ do
begin
if $y[i]>0$ then
begin
$t 2:=h[i] / y[i] ;$
if $t 2<t 1$ then begin $t 1:=t 2 ;$ beta $:=i$ end
end
end
end findbeta;
procedure findalpha (mat, vec); real mat, vec;
comment This procedure determines which of the nonbasic
variables is to be made basic;
begin
$t 1:=$ infinity;
for $i:=m u+1$ step 1 until $n u$ do
begin
$k:=i x[i] ;$
$t 2:=i p 2(j, 0, m u$, mat $, w[j], v e c) ;$
if $t 2<t 1$ then begin alpha $:=i ; \quad t 1:=t 2$ end
end
end findalpha;
procedure refine (mat, rhs, $o d, l p, u p$, vec, $f i$, si, $c r d$, $i l l$ ); value
ord; integer ord, $f, s i$; real mat, $r h s, o d, l p, u p$, vec; label
ill;
comment This procedure makes an iterative refinement of
$v e c$, which is the solution of the matrix equation mat $\times v e c=$
rhs. The matrix mat has order ord. The $L U$ decomposition of
$m a t$ is specified by $o \vec{a}, l p$, and $u p$. Exit $i l l$ is taken if mat is too
ill-conditioned for the refinement process to be successful.
Note the global identifier eta, whose value and purpose are
given in the next comment;
begin
array cor[0:ord]; real cnorm, snorm, eps, tt; integer cnt;
$c n t:=0 ; e p s:=5 \times e t a ;$
loop:
cnorm $:=$ snorm $:=0 ;$ cnt $:=$ cnt +1 ;
for $f:=0$ step 1 until ord do
begin
$\operatorname{cor}[f i]:=-i p 2(s i, 0$, ord, mat, vec, $-r h s) ;$
$s i:=f i ; \quad t t:=a b s(v e c)$;
if $t t>$ snorm then snorm $:=t t$

```
end;
\(\boldsymbol{t r i s o l v}(0,1\), ord, \(0, f i-1, f i, s i, \operatorname{cor}[s i], \operatorname{cor}[f i], o d, l p)\);
trisolv(ord, \(-1,0, f i+1\), ord, \(f i, s i, \operatorname{cor}[s i], \operatorname{cor}[f i], o d, u p) ;\)
for \(s i:=0\) step 1 until ord do
begin
\(t t:=\operatorname{cor}[s i] ;\)
vec \(:=v e c+t t\);
if \(a b s(t t)>\) cnorm then cnorm \(:=a b s(t t)\)
end;
if \(c n t>15\) then go to \(i l l\);
if snorm \(\neq 0\) then
begin if cnorm/snorm \(>\) eps then go to loop end
end refine;
comment At this point, infinity and eta are set to special values. Set infinity to the largest positive single-precision floating-point number. Set eta to the largest positive floatingpoint number such that \(1.0+\) eta \(=1.0-\) eta \(=1.0\) in singleprecision arithmetic. The convergence of the iterative refinement process which is applied in refine is determined using eta;
prevz:= -infinity;
for \(i:=0\) step 1 until \(m\) do ro \([i]:=i\);
comment Determine from kappa whether phase 1 is to be skipped;
if \(k a p p a \geq m\) then
begin
\(n u:=n+k a p p a-m-1 ; \quad l:=0 ;\)
for \(i:=0\) step 1 until \(n u\) do
begin
\(j:=\operatorname{ind}[i] ; \quad\) if \(j \geq n\) then \(l:=1 ; \quad i x[i]:=j\)
end;
\(m u:=\) if \(l=0\) then \(m-1\) else \(m\);
go to phase 2
end;
\(m u:=m-1 ;\) gamma \(:=m-k a p p a ;\) gm1 \(:=g a m m a-1 ;\)
\(n u:=n+g m 1 ; \quad l:=n-m\);
comment Set up the appropriate phase 1 problem;
for \(i:=0\) step 1 until gm1 do
begin
\(i x[i]:=n+i\);
\(P[i, i]:=1.0\);
for \(j:=i+1\) step 1 until \(g m 1\) do \(P[i, j]:=P[j, i]:=0\);
for \(j:=\) gamma +1 step 1 until \(m u\) do \(P[i, j]:=G[i, l+j]\)
end;
for \(i\) := gamma step 1 until \(m u\) do
begin
\(i x[i]:=l+i\);
for \(j:=0\) step 1 until \(g m 1\) do \(P[i, j]:=0\)
end;
for \(i:=m\) step 1 until \(n u\) do \(i x[i]:=i-m\);
beta \(=\) gamma;
go to no removal;
new phase 1 cycle:;
comment Begin a new simplex step on the phase 1 problem. Check the phase 1 problem objective function;
if \(i p 2(i, 0, m u, w[i], b[i], 0)=0\) then go to phase 2 ;
comment Determine which nonbasic variable is to become basic;
findalpha \((G[j, k], 0)\);
if \(t 1 \geq 0\) then go to infeasible;
\(j:=i x[a l p h a]\);
comment Solve a linear system for a vector \(y\);
trisolv \((g a m m a, ~ 1, ~ m u, ~ g a m m a, ~ l-1, l, k, v[k], G[r o[l], j]\),
\(P[r o[l], k], 1.0) ;\)
\(\operatorname{trisolv}(m u,-1\), gamma, \(l+1, m u, l, k, y[k], v[l]\),
\(P[r o[l], k], P[r o[l], l])\);
for \(i:=0\) step 1 until \(g m 1\) do
```

begin
$l:=r o[i]$;
$y[i]:=-i p 2(k, g a m m a, m u, y[k], P[l, k],-G[l, j])$

```
 end;
 comment Use the vector \(y\) to determine which basic variable
 becomes nonbasic. If the variable which has become non-
 basic is an artificial variable, remove it entirely from the
 problem and make an appropriate row and column inter-
 change upon the basis matrix \(P\);
 findbeta;
 if beta \(\geq\) gamma then
 begin
 \(k:=i x[a l p h a] ; i x[a l p h a]:=i x[b e t a] ; i x[b e t a]:=k ;\)
 go to no removal
 end;
 \(k:=r o[g m 1] ; i:=r o[g m 1]:=r o[b e t a] ; r o[b e t a]:=k\);
 \(P[k\), beta \(]:=1.0 ; P[i\), beta \(]:=0\);
 \(i x[\) beta \(]:=i x[g m 1] ; i x[g m 1]:=i x\left[a l_{\text {pha }}\right] ;\) beta \(:=g m 1\);
 for \(i:=\) alpha +1 step 1 until \(n u\) do \(i x[i-1]:=i x[i]\);
 gamma \(:=g m 1 ; g m 1:=g m 1-1 ; n u:=n u-1\);
no removal:;
 comment Produce the \(L U\) decomposition of the new basis
 matrix;
 \(k:=i x[b e t a] ;\)
 for \(i:=0\) step 1 until \(g m 1\) do \(P[r o[i], b e t a]:=G[r o[i], k]\);
 decompose (G[ro[j],l], gamma, gamma);
 comment Find the basic solution \(h\);
 trisolv(gamma, 1, mu, gamma, \(j-1, j, k, v[k]\),
 \(b[r o[j]], P[r o[j], k], 1.0)\);
 trisolv(mu, -1, gamma, \(j+1, m u, j, k, h[k], v[j]\),
 \(P[r o[j], k], P[r o[j], j])\);
 for \(i:=0\) step 1 until gm1 do
 begin
 \(k:=r o[i]\);
 \(h[i]:=-i p 2(j\), gamma \(, m u, h[j], P[k, j],-b[k]) ;\)
 \(w[k]:=-1.0\)
 end;
 comment Solve a linear system for the vector, \(w\), of simplex
 multipliers;
 for \(i\) := gamma step 1 until \(m u\) do
 begin
 \(t 1:=0 ;\)
 for \(j:=0\) step 1 until \(g m 1\) do \(t \mathbf{l}:=t 1+P[r o[j], i] ;\)
 \(v[i]:=t 1\)
 end;
 trisolv(gamma, 1, mu, gamma, \(i-1, i, j, v[j], v[i]\),
 \(P[r o[j], i] P[r o[i], i]) ;\)
 trisolv (mu, - 1, gamma, \(i+1, m u, i, j, w[r o[j]], v i]], P[r o[j], i]\),
 1.0);
 go to new phase 1 cycle;
phase 2:;
 comment Set up the appropriate phase 2 problem and make
 an initial \(L U\) decomposition if necessary ;
 beta: \(=0\);
 if kappa \(<m\) then
 begin
 if gamma \(>0\) then
 begin
 kappa \(:=m ; n u:=n u+1 ; m u:=m ;\)
 \(i x[n u \mid:=i x[m u] ; i x[m u]:=n+m\)
 end
 end;
 if kappa \(\geq m\) then go to decomp
 else \(\operatorname{trisolv}(0,1, m u, 0, j-1, j, k, q[k]\), if \(r o[j]=m\) then 0 else
 b[ro[j]], P[ro[j],k], 1.0);
new phase 2 cycle: ;
comment Begin a new simplex step on the phase 1 problem.
Solve a linear system for the vector, \(w\), of simplex multipliers; \(\operatorname{trisolv}(0,1, m u, 0, i-1, i, j, v[j], \operatorname{dvec}(i x[i]), P[r o[j], i], P[r o[i], i])\); \(\operatorname{trisolv}(m u,-1,0, i+1, m u, i, j, w[r o[j]], v[i], P[r o[j], i], 1.0)\);
comment Determine which nonbasic variable is to become basic;
findalpha (Gmat \((j, k),-\operatorname{dvec}(k))\);
comment Check whether the solution has been found;
if \(t 1 \geq 0\) then go to finished;
not done yet:
\(i:=i x[a l p h a] ;\)
comment Solve a linear system for a vector \(y\);
\(\operatorname{trisolv}(0,1, m u, 0, j-1, j, k, v[k], \operatorname{Gmat}(r o[j], i), P[r o[j], k], 1.0)\);
\(\operatorname{trisolv}(m u,-1,0, j+1, m u, j, k, y[k], v[j], P[r o[j], k], P[r o[j], j]) ;\)
comment Use \(y\) to determine which basic variable is to become nonbasic;
findbeta;
if \(t 1=\) infinity then go to unbounded;
\(k:=i x[b e t a] ; i x[b e t a]:=i x[a l p h a] ; i x[a l p h a]:=k ;\)
decomp:;
comment Produce the \(L U\) decomposition of the new basis matrix;
decompose \((G m a t(r o[j], l), 0\), beta \()\);
comment Compute the basic solution \(h\);
\(\operatorname{trisolv}(b e t a, 1, m u, 0, j-1, j, k, q[k]\), if \(r o[j]=m\) then 0 else \(b[r o[j]], P[r o[j], k], 1.0)\);
\(\operatorname{trisolv}(m u,-1,0, j+1, m u, j, k, h[k], q[j], P[r o[j], k], P[r o[j], j])\);
go to new phase 2 cycle;
finished: ;
comment Refine \(w\) and the basic solution \(h\). Compute the objective function. Check the refined results to determine whether the optimum has been reached. If the check indicates nonoptimality but the objective function is less than any value previously computed for it, return the best basic solution obtained so far and print a warning that the solution has doubtful validity;
\(\operatorname{refine}(\operatorname{Gmat}(r o[j], i x[i])\), \(\operatorname{dvec}(i x[i]), P[r o[j], i], P[r o[i], i], 1.0\), \(w[r o[j]], i, j, m u\), singular);
\(z:=i p 2(i, 0, m-1, w[i], b[i], 0) ;\)
if \(z<p r e v z\) then
begin comment Print out "doubtful solution"; end
else
begin prevz: \(=z\);
\(\operatorname{refine(Gmat(ro[j],} i x[k])\), if \(r o[j]=m\) then 0 else \(b[r o[j]]\),
\(P[r o[j], k], 1.0, P[r o[j], j], h[k], j, k, m u\), singular); \(l:=n-1\); kappa \(:=n u+1\);
for \(i:=0\) step 1 until \(l\) do \(x[i]:=0\);
for \(i:=0\) step 1 until \(n u\) do ind \([i]:=i x[i]\);
for \(i:=0\) step 1 until \(m u\) do begin
\(j:=i x[i] ;\)
if \(j<n\) then \(x[j]:=h[i]\)
end;
findalpha(Gmat \((j, k),-\operatorname{dvec}(k))\);
if \(t 1<0\) then go to not done yet
end
end linprog

\section*{ALGORITHM 351}

\section*{MODIFIED ROMBERG QUADRATURE* [D1]}

Graeme Fairweather (Recd. 18 Sept. 1968 and 19 Feb. 1969)
Department of Applied Mathematics, University of St. Andrews, Fife, Scotland
* This work was based in part on work done at U.K.A.E.A., Culham Laboratory, Abingdon, England.
KEY WORDS AND PHRASES: numerical integration, Romberg quadrature, trapezoid values, rectangle values, error bound
\(C R\) CATEGORIES: 5.16

Comments. ROMINT calculates the approximate value, \(V A L\), of the definite integral
\[
I=\int_{A}^{B} F(X) d X
\]
and an error bound \(E R R\) for \(V A L\), i.e. \(|V A L-I| \leq E R R\). The integrand \(F(X)\) must be given as a function subprogram with the heading FUNCTION \(F(X) . \quad V A L\) is obtained from a modified form of Romberg quadrature which is less sensitive to the accumulation of rounding errors than the customary one. In this procedure, which was devised by Krasun and Prager [1], the following "skeleton" Romberg table is constructed:

where \(m \leq M A X E, M A X E\) being on entry the maximum number of extrapolations wanted. In this subroutine \(M A X E \leq 15\). The quantities \(R_{0}{ }^{k}(k=0,1, \cdots, m)\) are the rectangle values,
\[
R_{0^{k}}=\frac{B-A}{2^{k}} \sum_{j=1}^{2^{k}} F\left(A+\left(j-\frac{1}{2}\right) \frac{B-A}{2^{k}}\right),
\]
which are calculated using a procedure proposed by Rutishauser [2] to reduce the effect of rounding errors. The quantities \(R_{j}{ }^{\text {b }}\) (\(j>0\)) are computed using the usual extrapolation formula:
\[
R_{j}^{k}=R_{j-1}^{k+1}+\frac{R_{i-1}^{k+1}-R_{j-1}^{k}}{4^{i}-1}, \quad k=0,1, \cdots, m-j .
\]

The formula (see [1])
\[
T_{j}^{0}=R_{j-1}^{0}+\frac{2 \cdot 4^{i-1}-1}{4^{i}-1}\left(T_{j-1}^{0}-R_{j-1}^{0}\right), \quad j=1, \cdots, m,
\]
enables one to determine the extrapolated trapezoid values
\(T_{1}{ }^{0}, T_{2}{ }^{0}, \cdots, T_{m}{ }^{0}\) in the skeleton table from the trapezoid value
\[
T_{0}{ }^{0}=\frac{B-A}{2}[F(A)+F(B)]
\]
and the rectangle values \(R_{0}{ }^{0}, R_{1}{ }^{0}, \cdots, R_{m-1}^{0}\). In this subroutine only one linear array for storing the quantities \(R_{j}^{m-j}, j=0, \cdots\), \(m(\leq M A X E)\) is required.

The subroutine is left when (see [3])
\[
E R R=\frac{\left|T_{m}{ }^{0}-R_{m}{ }^{0}\right|}{2} \leqq E P S,
\]
where EPS specifies the desired accuracy, or when MAXE extrapolations have been performed. On exit, \(V A L=\left(T_{m}{ }^{0}+R_{m}{ }^{0}\right) / 2\) (\(m \leq M A X E\)) and \(N=2^{(m+1)}+1\) is the number of function evaluations. The exit value of MAXE is \(m\) unless the maximum number of \({ }^{\text {d }}\) extrapolations wanted has been performed without the desired accuracy being obtained, in which case the exit value of \(M A X E\) is zero.

This subroutine can be used to estimate the definite integral \(I\) provided \(F(X)\) is at least three or four times differentiable and is not periodic with period \(B-A\).

Test cases. Two test cases were carried out on the IBM 1620 of the Computing Laboratory, University of St. Andrews, to compare ROMINT with a Fortran II-D version of hagieintegrator [4]. The calculations were carried through in single-precision, i.e. working to 8 significant decimal digits. The results are summarized in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Integrand & \(A\) & \(\boldsymbol{B}\) & EPS & True value & havieintegrator & ROMINT & Number of extrapolations \\
\hline \(\cos x\) & 0.0 & \(\pi / 2\) & 10-4 & 1.0 & 0.99999985 & 0.99989995 & 3 \\
\hline \(e^{-x^{2}}\) & 0.0 & 4.3 & \(10^{-6}\) & 0.88622692 & 0.88622665 & 0.88622675 & 5 \\
\hline
\end{tabular}

\section*{References:}
1. Krasun, A. M., and Prager, W. Remark on Romberg quadrature. Comm. ACM 8 (Apr. 1965), 236-237.
2. Rutishauser, H. Description of Algol 60. In Handbook for Automatic Computation, Vol. 1, Springer-Verlag, Berlin, 1968, Part a.
3. Havie, T. On a modification of Romberg's elgorithm. BIT 6 (1966), 24-30.
4. Kubik, R. N. Algorithm 257, Havie integrator. Comm. ACM 8 (June 1965), 381.
```

        SUBROUTINE ROMINT
        #########*************
        * (VAL,ERR,EPS,A,B,N,MAXE)
            DIMENSION RM(16)
        INITIAL TRAPEZOID VALUE ..
        T=(B-A)* (F (A)+F(B))*0.5
    C
C INITIAL RECTANGLE VALUE ..
RM(1)=(B-A)*F((A+B)*0.5)

```
c
```

    \(N=2\)
    \(R=4\)
    DO \(11 K=1, M A X E\)
    \(B B=(R * 0.5-1) /.(R-1\).
    IMPROVED TRAPEZOID VALUE $i ;$
$T=R M(1)+B B *(T-R M(1) i)$
DOUBLE NUMBER OF SUBDIVISIONS
OF ( $A, B$ ) $\ldots$
$N=2 * N$
$S=0$
$H=(B-A) / F L O A T(N)$
Calculate rectangle value ..
IF ( $\mathrm{N}-32$ ) $1,1,2$
$\mathrm{NO}=\mathrm{N}$
GO TO 3
NO $=32$
$\operatorname{IF}(N-512) 4,4,5$
$\mathrm{Nl}=\mathrm{N}$
GO TO 6
N1 $=512$
DO $9 \mathrm{K2}=1, N, 512$
S1 $=0$
$K K=K 2+N 1-1$
DO 8 K1 $=K 2, K K, 32$
$S O=0$
$K K K=K 1+N O-1$
DO 7 KO $=K 1, K K K, 2$
$S 0=S O+F(A+F L O A T(K O) * H)$
7 CONTINUE
S1 $=$ SO S 1
CONTINUE
$S=S+S 1$
CONTINUE
$R M(K+1)=2 . * H * S$
end calculation of rectangle value.
$R=4$
FORM ROMBERG TABLE FROM RECTANGLE
VALUES ..
DO $10 \quad J=1, K$
$L=K+1-J$
$R M(L)=R M(L+1)+(R M(L+1)-R M(L))$
* $R=4 . * R \quad /(R-1$.
10 CONTINUE
$E R R=A B S(T-R M(1)) * 0.5$

```
C CONVERGENCE TEST ..
 IF(ERR-EPS) 12,12,11
\(c\)
 11 CONT INUE
 \(12 \mathrm{VAL}=(T+R M(1)) * 0.5\)
 \(N=N+1\)
 IF(K-MAXE) \(14,13,13\)
 MAXE \(=0\)
 GO TO 15
 MAXE \(=K\)
 15 RETURN
 END

REMARK ON ALGORITHM 351 [Di]
MODIFIED ROMBERG QJADRATURE [Graeme
Fairweather, Comm. ACM 12 (June 1969), 324]
N. D. Cook (Reed. 11 Sept. 1969)

Bettis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122

KEY WORDS AND PHRASES: numerical integration, Romberg quadrature, trapezoid values, rectangle values, error bound CR CATEGORIES: 5.16

There is an error in calculating the output value MAXE in the algorithm in the case where the desired accuracy is obtained by the last requested extrapolation. Statement 11 (the end of the DO loop on K) should be followed by:
\[
\begin{aligned}
& \mathrm{K}=0 \\
& 12 \mathrm{VAL}=(\mathrm{T}+\mathrm{RM}(1)) * 0.5 \\
& \mathrm{~N}=\mathrm{N}+1 \\
& \text { MAXE }=\mathrm{K} \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
\]

When the two test cases were repeated in single precision on the CDC-6600, the 14-digit arithmetic yielded results accurate to 10 digits with the same number of extrapolations as used to get 6digit results on the 8-digit IBM-1620. The time spent in ROMINT was 0.7 and 2.0 msec for the cosine and \(e^{-x^{2}}\) integrals respectively, with a total time of 1.1 and 3.8 msec when the time spent evaluating the functions is included.

\section*{REMARK ON ALGORITHM 351 [D1] \\ MODIFIED ROMBERG QUADRATURE}
[G. Fairweather, Comm. ACM 12 (June 1969), 324]
George C. Wallick
Mobil Research and Development Corporation, Field
Research Laboratory, P. O. Box 900, Dallas, TX 75221
KEY WORDS AND PHRASES: numerical integration, Romberg quadrature, modified Romberg quadrature, trapezoid values, rectangle values
\(C R\) CATEGORIES: 5.16

Algorithm 351 was compiled and run successfully in Fortran IV on a CDC 6400 computer. Computation times for equivalent orders were essentially the same ass for a Fortran version of Algorithm 60 Romberg Integration [1]; storage requirements were approximately 20 percent greater.

Algorithm 351 incorporates two modifications to the standard Romberg algorithm, each designed to reduce roundoff: (1) the Krasun and Prager [3] replacement of the table of trapezoidal values \(T_{j}{ }^{k}\) with a table of rectangular values \(R_{j}{ }^{k}\); (2) the method proposed by Rutishauser [6] for the evaluation of the rectangular sums \(R_{0}{ }^{k}\). Since neither of these modifications has been properly evaluated we have chosen to compare integral values returned by five variants of the Romberg algorithm:
1. Conventional Romberg integration as described by Algorithm 60
2. A Krasun and Prager modification of Algorithm 60 (\(T_{j}{ }^{k}\) table replaced by \(R_{j}{ }^{\boldsymbol{k}}\) table)
3. A Rutishauser modification of Algorithm 60 (\(T_{j}{ }^{\boldsymbol{k}}\) table extrapolation with improved evaluation of the \(R_{0}{ }^{k}\))
4. Modified Romberg integration as described by Algorithm 351 (\(R_{f}^{k}\) table; improved \(R_{0}{ }^{k}\) evaluation)
5. Algorithm 351 with the Rutishauser procedure replaced by the standard evaluation of the \(R_{0}{ }^{k}\) (\(R_{j}{ }^{k}\) table extrapolation)

The following test integrals were investigated.
A. \(\int_{.01}^{1.1} x^{-\alpha} d x, \quad \alpha=3.0,4.0,5.0\)
B. \(\int_{0}^{1}\left(1+x^{(}\right)^{-1} d x, \quad \alpha=1.0,4.0\)
C. \(\int_{1}^{10} \ln x d x\)
D. \(\int_{0}^{5} e^{-x^{2}} d x\)

Integral A was suggested by Thacher [7], Integral B by Rabinowitz [5], Integral C by Hillstrom [2], and Integral D by Hillstrom and by Kubik [4]. All computation was carried out in CDC 6400 single-precision floating-point arithmetic. Results were recorded to 14 decimal digits. (CDC 6400 word length corresponds to \(14+\) decimal digits.) The data obtained in this manner are summarized in Tables I-IV.

For a specified order of extrapolation \(m\), Algorithm 60 variants require \(2^{m}+1\) function evaluations and return \(T_{m}{ }^{0}\). Algorithm 351 requires \(2^{(m+1)}+1\) function evaluations and returns \(T_{m^{1}}\). Thus one cannot meaningfully compare integral values returned by the two algorithms for the same specified order. We have therefore chosen to compare integral values resulting from the same number of function evaluations and have tabulated these data in terms of the Algorithm 60 order \(m\). The corresponding specified order for Algorithm 351 variants is \(m-1\).

In each example considered, Algorithm 351 returns integral values for the optimum extrapolation order that are more accurate than the Algorithm 60 solutions by from one to two significant figures. There is, of course, no increase in the rate of convergence and little difference in solution accuracy for approximation orders less than that corresponding to the maximum attainable. accuracy. If one were interested in, e.g. six or eight significant figure accuracy, either algorithm would be satisfactory. If accuracy requirements are not severe and one is satisfied with integral values correct to a number of significant figures less than half the computer word length, either algorithm may be used. If one seeks the maximum achievable accuracy, Algorithm 351 is clearly the proper choice.

Tables I-IV include data recorded when the order was overspecified, i.e. when \(m\) was greater than that required for optimum accuracy. For both algorithms the accuracy at first increases with increasing order. This continues until an optimum accuracy obtains. With Algorithm 60 a further increase in \(m\) results in a decline, at times rather rapid, in evaluation accuracy. With Algorithm 351 there is little loss in accuracy with increasing order. The accuracy decline rate is strongly retarded and in many cases practically eliminated. This is a very significant result.

In routine use of the algorithms, the unwary may overestimate the order required for optimum convergence (Algorithm 60 terminates only when a specified order has been obtained) or may specify an accuracy criterion for termination that cannot be satisfied. With Algorithm 351 the only loss is that of computer time; with Algorithm 60 solution accuracy may be impaired.

From the data presented in Tables I-IV we may determine the extent to which each of the procedural modifications contributes to the overall superiority of Algorithm 351. It is immediately evident that the Krasun and Prager modification has little effect either on the accuracy of the algorithms or on the loss of accuracy as the optimum order is exceeded. Results obtained using this modification differ from those returned by Algorithm 60 by at most 2 in the 14th figure. When the Rutishauser procedure is subtracted from Algorithm 351, the algorithm becomes, for all practical purposes, equivalent in accuracy to Algorithm 60. This conclusion has been further supported by results obtained in the
evaluation of eight additional test integrals selected from the literature.

If, on the other hand, the Rutishauser procedure is added to Algorithm 60, the results obtained are essentially the same as those recorded for Algorithm 351. Clearly the Rutishauser modification is the dominant factor determining the superiority of Algorithm 351.

The success of the Rutishauser modification tempts one to expand the procedure to include an additional summation level. Experiments with such expansions indicate that they may be of value where slow Romberg convergence requires the use of orders \(m>13\).

The following changes are suggested as possible improvements in the algorithm. The integration interval (\(B-A\)) is now computed \(K+2\) times where \(K\) is the order of approximation on exit from the routine. We suggest an initial definition of a variable, e.g. \(S H=(B-A)\) and the replacement of \((B-A)\) by \(S H\) in these statements where \((B-A)\) appears. Initialization should also include a test to insure that the maximum extrapolation order \(M A X E\) permitted is less than or equal to 15 with a possible replacement. \(M A X E=15\) if this condition is violated. Alternatively, one could replace the statement DO \(11 K=1\), MAXE with DO \(11 K=1,15\) and test for \(K<M A X E\) prior to executing statement no. 11. The GO TO 3 statement following statement no. 1 should read GO TO 4. If \(N \leq 32, N\) is also \(\leq 512\).

Upon exit, the input parameter MAXE is assigned either the value \(M A X E=K\), where \(K\) is the approximation order, or \(M A X E=0\) if the accuracy criterion has not been satisfied. We believe that it is poor programming practice to have a subroutine alter the value of an input parameter. We suggest the addition of an output parameter, e.g. \(M F I N=K\) which returns the order on exit. Where we now set \(M A X E=0\), we could set \(M F I N=16\). One can test as easily for MFIN \(\leq 15\) as for \(M A X E=0\). This would eliminate the necessity for resetting MAXE each time the subroutine is entered. It is also useful to return the final value of the accuracy \(E R R\). In the event that \(M A X E=0\), one could test \(E R R\) to determine whether or not the returned integral value falls within acceptable limits.

In practical applications we prefer to express the procedure as a function subprogram and to add the name of the generating function \(F\) to the argument list. We also consider a test for relative error rather than absolute error to be more useful in routine use of the algorithm.

The author wishes to thank the Mobil Research and Development Corporation for permission to publish this information.

References:
1. Bauer, F. L. Algorithm 60, Romberg integration. Comm. ACM 4 (June 1961), 255.
2. Hillstrom, K. Certification of Algorithm 257, Havie integrator. Comm. ACM 9 (Nov. 1966), 795.
3. Krasun, A. M., and Prager, W. Remark on Romberg quadrature. Comm. ACM 8 (Apr. 1965), 236-237.
4. Kubik, R. N. Algorithm 257, Havie integrator. Comm. ACM 8 (June 1965), 381.
5. Rabinowitz, P. Automatic integration of a function with a parameter. Comm. ACM 9 (Nov. 1966), 804-806.
6. Rutishauser, H. Description of Algol 60. In Handbook for Automatic Computation, Vol. 1, Springer-Verlag, New York, 1967, Part a, 105-106.
7. Thacher, H. C., Jr. Certification of Algorithm 60, Romberg integration. Comm. ACM 5 (Mar. 1962), 168.

TABLeS. Comparisons of Romberg Method Variations
(KP \(=\) Krasun-Prager Modification; RUT \(=\) Rutishauser Modification; NSF \(=\) Number of Significant Figures)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\(\boldsymbol{\alpha}\)} & \multirow{3}{*}{\[
\left.\begin{gathered}
\text { Rom- } \\
\text { berg } \\
\text { Order } \\
m
\end{gathered} \right\rvert\,
\]} & \multicolumn{6}{|c|}{Variations Returning \(T_{m}{ }^{0}\)} & \multicolumn{4}{|l|}{Variations Returning \(T_{m}{ }^{2}\)} \\
\hline & & \multicolumn{2}{|l|}{Algorithm 60} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Algorilhm } \\
60 \\
+K P
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Algorilhm } \\
+60 \\
+R U T
\end{gathered}
\]} & \multicolumn{2}{|l|}{Algorithm 351
\[
(K P+R U T)
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Algorithm } \\
& 351 \\
& (K P \text { only })
\end{aligned}
\]} \\
\hline & & Digits 1-14 & \(N S F\) & - & NSF & \(\frac{4}{4}\) & NSF & \[
\underset{6-14}{\text { Digits }}
\] & \(N S F\) & - & \(N S F\) \\
\hline
\end{tabular}
I. In the Evaluation of \(I(\alpha)=\int_{0}^{1}\left(1+x^{\alpha}\right)^{-1} d x\) \(I(1)=0.693147180559945 ; \quad I(4)=0.86697298733991\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1.0 & 3 & |69314 \(747764482 \mid\) & 6 & 4482 & 6 & |4482 & 6 & 790148123 & 5 & 8123 & 5 \\
\hline & 4 & 69314718191673 & 8 & 1673 & 8 & 1673 & 8 & 718307192 & 8 & 7192 & 8 \\
\hline & 5 & 69314718056227 & 11 & 6228 & 11 & 6227 & 11 & 718056360 & 11 & 6360 & 11 \\
\hline & 6 & 69314718055991 & 13 & 5992 & 13 & 5992 & 13 & 718055993 & 13 & 5992 & 13 \\
\hline & 7 & 69314718055987 & 12 & 5988 & 12 & 5991 & 13 & 718055992 & 13 & 5988 & 12 \\
\hline & 8 & 69314718055984 & 12 & 5984 & 12 & 5990 & 13 & 718055992 & 13 & 5984 & 12 \\
\hline & 9 & 69314718055971 & 12 & 5972 & 12 & 5988 & 12 & 718055990 & 13 & 5972 & 12 \\
\hline & 10 & 69314718055951 & 12 & 5951 & 12 & 5988 & 12 & 718055989 & 12 & 5951 & 12 \\
\hline & 11 & 69314718055906 & 11 & 5906 & 11 & 5991 & 13 & 718055990 & 13 & 5906 & 11 \\
\hline & 12 & 69314718055822 & 11 & 5822 & 11 & 5987 & 12 & 718055989 & 12 & 5822 & 11 \\
\hline 4.0 & 4 & 86697297368070 & 7 & 8070 & 7 & 8070 & 7 & 300463711 & 7 & 3711 & 7 \\
\hline & 5 & 86697298722539 & 9 & 2539 & 9 & 2539 & 9 & 298721216 & 9 & 1216 & 9 \\
\hline & 6 & 88697298734006 & 12 & 4006 & 12 & 4007 & 12 & 298734005 & 12 & 4003 & 12 \\
\hline & 7 & 86697298733983 & 12 & 3984 & 12 & 3987 & 13 & 298733988 & 13 & 3984 & 12 \\
\hline & 8 & 866997298733977 & 12 & 3978 & 12 & 3986 & 13 & 298733987 & 13 & 3979 & 12 \\
\hline & 9 & 88697298733963 & 12 & 3964 & 12 & 3985 & 12 & 298733986 & 13 & 3964 & 12 \\
\hline & 10 & 88697298733939 & 11 & 3940 & 11 & 3985 & 12 & 298733985 & 12 & 3940 & 11 \\
\hline & 11 & 86697298733890 & 11 & 3890 & 11 & 3984 & 12 & 298733986 & 13 & 3890 & 11 \\
\hline & 12 & |88697 29873 3787| & 11 & 3788 & 11 & 3983 & 12 & 29873 3985 & 12 & 3788 & 11 \\
\hline
\end{tabular}
II. In the Evaluation of \(I(\alpha)=\int_{.01}^{1.1} x^{-\alpha} d x\) \(I(3)=0.499958677685950 \times 10^{4} ; I(4)=0.333333082895066 \times 10^{8}\); \(I(5)=0.24999999829247 \times 10^{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3.0 & 8 & \(\mid 50289\) & 45604 & 1249 & 2 & | 1249 & 2 & \({ }^{1255}\) & 2 & |49952 9475 & 2 & \({ }^{94691}\) & 2 \\
\hline & 9 & 50007 & 88217 & 4010 & 3 & 4010 & 3 & 4037 & 3 & 883248156 & 3 & 8128 & 3 \\
\hline & 10 & 49996 & 05996 & 3754 & 5 & 3755 & 5 & 3813 & 5 & 059975088 & 5 & 5029 & 5 \\
\hline & 11 & 49995 & 86888 & 2917 & 7 & 2917 & 7 & 3041 & 7 & 868883087 & 7 & 2962 & 7 \\
\hline & 12 & 49995 & 86777 & 0553 & 10 & 0553 & 10 & 0814 & 10 & 867770815 & 10 & 0553 & 10 \\
\hline & 13 & 49995 & 86776 & 8069 & 10 & 8070 & 10 & 8588 & 12 & 867768590 & 12 & 8070 & 10 \\
\hline & 14 & 49995 & 86776 & 7547 & 10 & 7549 & 10 & 8585 & 12 & 867768587 & 12 & 7549 & 10 \\
\hline & 15 & 49995 & 86776 & 6495 & 10 & 6496 & 10 & 8581 & 12 & 867768583 & 12 & 6496 & 10 \\
\hline 4.0 & 8 & 33918 & 7638 & 3713 & 1 & 3713 & 1 & 3717 & 1 & 833218573 & 1 & 8568 & 1 \\
\hline & 9 & 33362 & 891 & 0012 & 3 & 0011 & 3 & 0028 & 3 & 411032353 & 3 & 2337 & 3 \\
\hline & 10 & 33333 & 86458 & 8643 & 4 & 8642 & 4 & 8682 & 4 & 864615904 & 4 & 5865 & 4 \\
\hline & 11 & 33333 & 31207 & 4466 & 7 & 4466 & 7 & 4547 & 7 & 312074679 & 7 & 4598 & 7 \\
\hline & 12 & 33333 & 3082 & 8056 & 9 & 8055 & 9 & 8220 & 9 & 308298220 & 9 & 8056 & 9 \\
\hline & 13 & 33333 & 30828 & 9178 & 11 & 9178 & 11 & 9508 & 13 & 308289509 & 13 & 9178 & 11 \\
\hline & 14 & 33333 & 30828 & 8842 & 10 & 8843 & 10 & 9500 & 12 & 308289501 & 12 & 8843 & 10 \\
\hline & 15 & 33333 & 30828 & 8163 & 10 & 8163 & 10 & 9497 & 12 & 308289499 & 12 & 8163 & 10 \\
\hline 5.0 & 8 & 25979 & 73076 & 7608 & 1 & 7608 & 1 & 7611 & 1 & 825772026 & 1 & 2023 & 1 \\
\hline & 9 & 25058 & 17539 & 3846 & 2 & 3846 & 2 & 3857 & 2 & 178009312 & 2 & 9300 & 2 \\
\hline & 10 & 25001 & 31264 & 6257 & 4 & 6257 & 4 & 8282 & 4 & 312700511 & 4 & 0488 & 4 \\
\hline & 11 & 25000 & 01021 & 0524 & 6 & 0524 & 6 & 0576 & 6 & 010210887 & 6 & 0835 & 6 \\
\hline & 12 & 24999 & 99985 & 6515 & 9 & 6515 & 9 & 6621 & 9 & 999856622 & 9 & 6516 & 9 \\
\hline & 13 & 24999 & 99982 & 9053 & 11 & 9053 & 11 & 9267 & 12 & 999829268 & 12 & 9054 & 11 \\
\hline & 14 & 24999 & 99982 & 8817 & 11 & 8818 & 11 & 9242 & 13 & 999829243 & 13 & 8818 & 11 \\
\hline & 15 & 24999 & 99982 & 8379 & 10 & 8380 & 10 & 9241 & 12 & |99982 9242 | & 13 & 8380 & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\(\boldsymbol{\alpha}\)} & \multirow{3}{*}{Romberg Order m} & \multicolumn{6}{|c|}{Variations Returning \(T_{m}{ }^{0}\)} & \multicolumn{4}{|l|}{Variations Returning \(T_{m}{ }^{1}\)} \\
\hline & & \multicolumn{2}{|l|}{Algorithm 60} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Algorithn } \\
60 \\
+K P
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Algorithm } \\
+\quad 60 \\
+U T
\end{gathered}
\]} & \multicolumn{2}{|l|}{
\[
(K P+R U T)
\]} & \multicolumn{2}{|l|}{\[
\left\lvert\, \begin{aligned}
& \text { Algorithm } \\
& 351 \\
& (K P \text { only })
\end{aligned}\right.
\]} \\
\hline & & Digits 1-14 & NSF & - & NSF & \(\stackrel{3}{\square}\) & NSF & \[
\underset{6-14}{\text { Digits }^{2}}
\] & & & NSF \\
\hline
\end{tabular}
III. In the Evaluation of \(I=\int_{1}^{10} \ln x d x=\) 14.02585092994046
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & |14025 \(602347275 \mid\) & 5 & \({ }^{7275} \mid\) & 5 & |7275 & 5 & \(\mid 604983885\) & 5 & [3885] & 5 \\
\hline 5 & 14025844554627 & 6 & 4627 & 6 & 4627 & 6 & 844335675 & 6 & 5675 & 6 \\
\hline 6 & 14025850852042 & 8 & 2043 & 8 & 2043 & 8 & 850850505 & 8 & 0505 & 8 \\
\hline 7 & 14025850929556 & 11 & 9556 & 11 & 9556 & 11 & 850929552 & 11 & 9551 & 11 \\
\hline 8 & 14025850929938 & 13 & 9938 & 13 & 9939 & 13 & 850929939 & 13 & 9938 & 13 \\
\hline 9 & 14025850929937 & 13 & 9937 & 13 & 9940 & 14 & 850929940 & 14 & 9937 & 13 \\
\hline 10 & 14025850929934 & 12 & 9934 & 12 & 9939 & 13 & 850929840 & 14 & 9934 & 12 \\
\hline 11 & 14025850929928 & 12 & 9929 & 12 & 9939 & 13 & 850929840 & 14 & 9929 & 12 \\
\hline 12 & 14025850929916 & 12 & 9916 & 12 & 9940 & 14 & 850929939 & 13 & 9916 & 12 \\
\hline \multicolumn{11}{|c|}{\multirow[t]{2}{*}{IV. In the Evaluation of \(I=\int_{0}^{5} e^{-u^{2}} d x=\)
\(0.88622 \quad 6925451396\)}} \\
\hline & & & & & & & & & & \\
\hline 5 & |88622 \(599709402 \mid\) & 5 & \({ }^{9043}\) & 5 & \({ }^{9042} \mid\) & 5 & [59296 9073] & 5 & 9073 \({ }^{\text {a }}\) & 5 \\
\hline 6 & 88622693108538 & 7 & 8539 & 7 & 8541 & 7 & 693085739 & 7 & 5736 & 7 \\
\hline 7 & 88622692544529 & 10 & 4529 & 10 & 4535 & 10 & 692544570 & 10 & 4564 & 10 \\
\hline 8 & 88622692545117 & 12 & 5117 & 12 & 5134 & 12 & 692545135 & 13 & 5117 & 12 \\
\hline 8 & 88622692545093 & 12 & 5094 & 12 & 5131 & 12 & 692545134 & 12 & 5095 & 12 \\
\hline 10 & 88622692545053 & 11 & 5054 & 11 & 5135 & 13 & 692545134 & 12 & 5054 & 11 \\
\hline 11 & 88622692544974 & 11 & 4975 & 11 & 5130 & 12 & 692545133 & 12 & 4976 & 11 \\
\hline 12 & 88622692544801 & 11 & 4802 & 11 & 5129 & 12 & 692545131 & 12 & 4803 & 11 \\
\hline 13 & 88622692544463 & 10 & 4463 & 10 & 5128 & 12 & 692545129 & 12 & 4464 & 10 \\
\hline 14 & 88622692543801 & 10 & 3802 . & 10 & 5125 & 12 & 692545127 & 12 & 3803 & 10 \\
\hline
\end{tabular}

\author{
REMARKS ON: \\ ALGORITHM 332 [S22] \\ JACOBI POLYNOMIIALS (Bruno F. W. Witte, Comm. AC.I 11 (June 1968), 436] \\ ALGORITHM 344 [S14] \\ STUDENT'S \(t\)-DISTRIBUTION [David A. Levine, Comm. ACM 12 (Jan. 1969), 37] \\ ALGORITHM 351 [D1] \\ MODIFIED ROMBERG QUADRATURE [Graeme \\ Fairweather, Comm. 12 (June 1969), 324] \\ ALGORITHM 359 [G1] \\ FACTORIAL ANALYSIS OF VARIANCE [John R. \\ Howell, Comm. ACM 12 (Nov. 1969), 631] \\ Arthur H. J. Sale (Recd. 16 Feb. 1970) \\ Basser Computing Department, University of Sydney, Sydney, Australia
}

\section*{KEY WORDS AND PHRASES: Fortran standards CR CATEGORIES: 4.0, 4.22}

An unfortunate precedent has been set in several recent algorithms of using an illegal FORTRAN construction. This consists of separating an initial line from its continuation line by a comment line, and is forbidden by the standard (see sections 3.2.1, 3.2.3 and 3.2.4 of [1, 2]). The offending algorithms are to date: 332, 344, 351 and 359.

While this is perhaps a debatable decision by the compilers of the standard, and trivial to correct, it seems a pity to break the rules just for a pretty layout as has been done.

\section*{References:}
1. ANSI Standard FORTRAN (ANSI X3.9-1966), American National Standards Institute, New York, 1966.
2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964) 591-625.

\author{
ALGORITHM 352 \\ ('HARACTERISTIC VALUES AND ASSOCIATED SOLUTIONS OF MATHIEC'S DIFFERENTIAL EQUATION [S22] \\ Donald S. Clemm (Recd. 2 June 1967, 1S Apr. 1968, 6 Jan. 1969 and 10 Mar. 1969) \\ Aerospace Research Laboratories \\ Wright-Patterson Air Force Base OH 45433
}

KEY WORDS AND PHRASES: Mathieu's differential equation, Mathieu function, characteristic value, periodic solution, radial solution
CR CATEGORIES: 5.12
Comments Algorithm 352 is a package of double-precision Fortran routines which consists of the following primary routines:
MFCVAL- referred to as Algorithm 352 (Part A)
MATH referred to as Algorithm 352
(Part B)
BESSEL -referred to as Algorithm 352 (Part C)
MFCVAL computes characteristic values of Mathieu's differential equation. MATH computes the associated solutions of this equation, using BESSEL as an auxiliary rout ine to evaluate Bessel functions. This latter routine may be used independently.

There are other, secondary routines included in the package, and the numbering system (e.g. Algorithm 352 (Part A.1)) indicates somewhat the mutual relation between them, as well as their relation to the primary routines. The functioning of the routines and the link ages between them are explained in the comments prefacing each one. All literature citations refer to the following list.

\section*{References:}
1. Abramowitz, M., and Stegin, I. A. (Eds.). Handbook of Mathematical Functions. NBS Appl. Math. Ser. 55, US Govt. Print. Off., Washington, 1). (., 1964.
2. Blanch, (i. Numerical evaluation of continued fractions. SLAM Rev. 6, 4 (1964), 383-421.
3. Blanch, (i. Numerical aspects of Mathien eigenvalues. Rend. Circ. Mat. Palermo (2) 15 (1966), 51-97.
4. Blanch, G., and Clemm, D. S. Tables

Relating to the Radial Mathieu Functions, Vol. 1, Functions of the First Kind. US Govt. Print. Off., Washington, D.C., 1962.
5. Blanch, G., and Clemm, D. S. Tab/es Relating to the Radial Mathieu Functions, Vol. 2, Functions of the Second Kind. US Govt. Print. Off., Washington, I).C., 1965.
6. Ince, E. L. Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh 52 (1932), 355-423; also Zeros and turning points. Proc. Roy. Soc. Edinburgh 5 ? (1932), 424-433.
7. National Bureau of Standards. Tables Relating to Mathieu Functions. Appl. Math. Ser. 59, US Govt. Print. Off., Washington, D.C., 1967. (second ed.)
8. Stratton, J. A., Morse, P. M., Che, L. J., and Hutner, R. A. Elliptic Cylinder and Spheroidal Wave Functions. Wiley, New York, 1941.

\section*{Algorithm 352 (Part A)}

MFCVAL (Characteristic Values)
Comments The subrountine MFCVAL computes the first N characteristic values, \(a\), together with upper and lower hounds, of Mathieu's differential equation for nomegative values of the real parameter, \(q\). The equation can be written in the form
\[
\begin{equation*}
y^{\prime \prime}+(a-2 q \cos 2 x) y=0 \tag{1}
\end{equation*}
\]
where \(a=a_{r}\left(a=b_{r}\right)\) indicates a characteristic value associated with the even (odd) periodic solutions.

The method consists of three steps: (1) calculate a rough approximation based on coefficients obtained from curve-fitting of available tabulations, (2) determine crude upper and lower bounds, and (3) iterate, using a variation of Newton's method. For a justification of this method, see [3].

Explanation of the arguments:
N the given number of characteristic values desired
\(R\) given as \(\mathrm{N}-1\) or N according as the characteristic values are to be associated with the even or odd solutions, respectively
\(Q Q\) the given nonnegative parameter \(q\)
CV the computed 6 by N array of characteristic values and bounds
\(J\) the number of characteristic values successfully computed. \(\mathrm{J} \neq \mathrm{N}\) indicates that \(J\) values were computed
with an error vccurring on the \(J+1\) value. A printed message will accompany such an error condition.
The output array, (V, must be appropriately dimensioned in the calling program and upon return will contain the following data:

For the \(K\) th characteristic value, \(K=1\), 2, \(\cdots\), , J,
CV (\(1, \mathrm{~K}\)) the characteristic value \(a\)
CV (\(2, \mathrm{~K}\)) the function \(D(a)=-T_{m}(a)\) \(T_{m}{ }^{\prime}(a)\)
(V (3, K) \(a_{L}\), a lower bound of \(a\) CV (t, K) the function \(D\left(a_{L}\right)\) \(C V(5, K) \quad a_{r}\), an upper bound of \(a\) (V) \((6, \mathrm{~K})\) the function 1\()\left(a_{6}\right)^{\circ}\).

Reference is again made to \(\langle 3]\), where the function \(T_{m}^{\prime}(a)\) is defined and it is proved that \(T_{m}(a)=0\) if and only if \(a\) is a characterist ic value. From this, it can be said that the function \(D\) is an indication of the accuracy of its argument, since \(a+D(a)\) would be the value of the next iteration.

The first executable statement in MFCVAL sets a tolerance of \(10^{-13}\). This may be changed by the user, but the following comments should be heeded if it is attempted.

If it is desired to reduce the tolerance in order to achieve the greatest possible accuracy, care should be taken that the tolerance is not less than \(10^{-(n-2)}\) when executing the routines on a machine which uses \(n\)-digit arithmetic. In other words, if the user's computer employs 24 -digit arithmetic, this tolerance should be no less than \(10^{-22}\). A too small tolerance will impose an unat tainable accuracy requirement and overflow may occur. \({ }^{1}\)

On the other hand, some time-saving may be achieved, at the expense of accuracy, by making the tolerance less stringent. A tolerance of \(10^{-d}\) will produce results good to at least \(d\) digits. This is a conservative estimate, since one additional iteration is performed after the tolerance is met and, normally, the convergence of successive iterations is quadratic.

Perhaps it should be noted again that the accuracy of any characteristic value, \(a\), can be determined from the size of it relative to the function \(D(a)\). See the description of the contents of the output array CV. MFCV.MI, calls on the subroutines:
BOUNDS--referred to as Algorithm 3.2 (Part A.1)
MFITR8-referred to as Nlgorithm \(3 \overline{2} 2\) (Part A.2)
TMOFA-referred to as Algorithm 352 (Part A.3)
\({ }^{1}\) The constant in statement numbers 425 and 445 is intro.duced to avoid the possibility of a zero tolerance. This should not be altered unless the routines are being run on a machine which uses arithmetic of more than 16 digits, and then it must not he less than \(10^{-(n-2)}\), with \(n\) defined as almoue.
\[
c
\]
```

        SUGROUTINE MFCVAL (N,R,WG:CV,J)
    ```
\(10 \mathrm{~L}=1\)
\(20 \mathrm{~L}=2\)
 \(300=Q Q\)
 \(\begin{aligned} \text { DO } 50 \mathrm{~K} & =1, N \\ & ={ }_{K}\end{aligned}\)
 IF (Q) \(960,490,40\)
 \(40 \mathrm{KK}=\) MINO \((K, 4)\)
 TYPE \(=2 * M O O(L, 2)+M O O(K-L+1,2)\)
C FIRST APPROXIMATION
 GO TO (100,200,300,400), KK
 100 IF (\(0-1.00\)) \(110,140,140\)
 110 GO TO \((120,130), ~ L\)
 \(\begin{aligned} & 120 \text { A }=1 . D O-Q-12500 * Q * Q \\ & \text { CO TO } 420\end{aligned}\)
 \(130 \begin{aligned} A & =0 * O \\ A & =A *(-.500+.054687500 * A)\end{aligned}\)
 60 TO 420
140 IF (0-2.DO) \(150,180,18 \mathrm{C}\)
\(\begin{array}{lll}150 & \text { GO TO } & (160,170) \mathrm{L} \\ 160 & \mathrm{~A} & =1.03300-1.07\end{array}\)
\(\begin{aligned} 160 \mathrm{~A}= & 1.03300-1.074600 * 0- \\ & .068800 * 0 * 0 \\ & \quad .00 \text { TO } 420\end{aligned}\)
\(170 \mathrm{~A}=.2300-.49500 * \mathrm{Q}-\)
 \(.2300-.49500 * Q-\)
\(.19100 * 0 * 0\)

\(200 \mathrm{DL}=\mathrm{L}\)
 1F (Q*OL-6.D0) \(210,350,350\)

 \(.01500+.066785,700 * Q 1\)
1.04600 TO 420
\(230 \mathrm{~A}=1.00+1.0500700+0-10\)
 .18014300*Q*
 GO TO 420
300 1F (Q-8.00) \(310,350,350\)
310 GO TO \((320,330), \mathrm{L}\)
320 A \(\quad=8.9386700+.17815600 * 0-\)
 \(.025213200 * 0 * Q\)
 60 10 420
\(\begin{aligned} 330 \mathrm{~A} \quad= & 3.7001700+.95348500 * 0- \\ & .047506500 *(* 0\end{aligned}\)
 GO 10420
 \(D R=K-1\)
 \(D R=K-1\)
\(A=C V(1, K-1)-D R+\)
 4.00*DSQRT(Q)
 60 TO 420
\(400 \quad A \quad=C V(1, K-1)-C V(1, K-2)\)
 \(A=3 . D O * A+C V(1, K-3)\)
420 IF (Q.GE.1.DO) GO TO 440
 IF (K.NE.1) GO TO 430

Algorithm 352 (Part B)
MATH (Mathieu Functions)
Comments The subroutine MATI com putes various solutions (and their derivatives), of either Mathim's differential equation or Mathien's modified equation, which are associated with the characteristic values.

The even periodic solution of equation (1) is
\[
\begin{equation*}
c e_{r}(x, q)=\sum_{k=0}^{\infty} 1_{2 k+p} \cos (2 k+p) x \tag{2}
\end{equation*}
\]
associated with \(a_{r}(q)\), and the odd periorlic. solution is
\[
\begin{equation*}
s e_{r}(x, q)=\sum_{k=0}^{\infty} B_{v k-p} \sin (2 k+p) x \tag{3}
\end{equation*}
\]
associated with \(b_{r}(q)\). The order, \(r\), is of the form \(2 n+p\). The \(n\) is a nomegative integer while \(p=0\) or 1 indicates the solution is of period \(\pi\) or \(2 \pi\). Calculation of the periodic solutions allows the following three options of normalization:
(a) Neutral. We define neutral coefficients such that \(\bar{X}_{2 k+p}=A_{2 k+p} / \Lambda_{2 s+p}\), where \(s\) is chosen so that \(A_{2_{s+p}}\) is the numerically largest one of the set. The \(\bar{B}_{2 k+p}\) are similarly defined. This has the computationally convenient effect of making the largest coefficient equal to unity, hence all calculations are carried out with them. If a normalization other than neutral is selected, it is effected on the output array F only, the coefficients themselves remaining unchanged.
(b) Ince. The normalization adopted in [6] is defined so that if \(y(x, q)\) represents either function (2) or (3) then
\[
\int_{0}^{2 \pi} y^{2}(x, q) d x=\pi
\]
(c) Stratton. As defined in [8], and in the notation of [7], this normalization is effected so that
\[
S e_{r}(q, 0)=\left[\frac{d}{d x} \operatorname{So}_{r}(q, x)\right]_{x=0}=1
\]
where \(S e\) is the even solution and So the odd. If we replace \(x\) by \(i x\) in (1), we get
\[
\begin{equation*}
y^{\prime \prime}-(a-2 q \cosh 2 x) y=0 \tag{4}
\end{equation*}
\]
known as Mathieu's modified equation. The solutions of (4) have been termed radial in [8] and, for characteristic values, can be put, in the following form, using the notation of [4] and [5]:
\[
\begin{align*}
& M c_{r}^{(j)}(x, q)= \\
& \sum_{k=0}^{\infty}(-1)^{n+k} A_{2 k+p}\left[F_{k}+G_{k}\right] / A_{v_{s+p} \epsilon_{2 s+p}} \tag{5}
\end{align*}
\]
associated with \(a_{r}(q)\), and
\[
\begin{align*}
& M s_{r}^{(j)}(x, q)= \\
& \quad \sum_{k=0}^{\infty}(-1)^{n+k} B_{2 k \div p}\left[F_{k}-{ }_{k}\right] / B_{2 s-p}, \tag{6}
\end{align*}
\]
associated with \(b_{r}(q)\). The order \(r\) equals \(2 n+p\), as in (2) and (3), and \(\epsilon_{n}=1\) if \(m \neq 0\), but \(\epsilon_{0}=2\). The choice of \(s\) is arbitrary here, but for numerical purposes we choose it in the manner described previously for neutral normalization. The coefficients are the same as defined in (2) and (3), while \(F_{k}\) and \(G_{k}\) involve the Bessel functions as follows:
\[
\begin{align*}
& F_{k}=J_{k-s}\left(u_{1}\right) Z_{k+p+s}^{(j)}\left(u_{2}\right) \tag{7}\\
& G_{k}=J_{k+p+s}\left(u_{1}\right) Z_{k-s}^{(j)}\left(u_{2}\right) \tag{8}\\
& u_{1}=q^{b} e^{-x}, \quad u_{2}=q^{\frac{1}{x}} e^{x} \\
& Z_{m}^{(1)}(u)=J_{m}(u), Z_{m}^{(2)}(u)=Y_{m}(u)
\end{align*}
\]

The solutions (5)-(6) are said to be of the first or second kind depending on whether \(j=1\) or 2 in (5)-(8).

Explanation of the arguments:
XX the given independent variable \(x\)
QQ the given positive parameter \(q\)
\(R \quad\) the given order \(r\)
CV the given characteristic value, \(a_{r}(q)\) or \(b_{T}(q)\)
SOL given as 1,2 , or 3 according as the desired solution is (1) radial of the first kind, (2) radial of the secon'd kind, or (3) periodic
FNC given as \(1,2,3\), or 4 according as the desired solution is (1) associated with \(b_{p}\), (2) associated with \(a_{r}\), (3) the derivative of solution (1), or (4) the derivative of solution (2)
NORM given as 1,2 , or 3 according as the desired normalization is (1) defined as neutral, (2) defined by Ince, or (3) defined by Stratton. (This argument is decoded only if \(\mathrm{SOL}=3\).)
F the computed three-element array, containing: (1) the solution value, (2) the series term of largest magnitude, and (3) the last term included in the summation
K the computed two-element array, containing: (1) the index, \(k\), of the term in \(F(2)\), and (2) the index of the term in \(F(3)\)

M the error indicator cell: \(\mathrm{M}=0\) indicates successful execution of subprogram, \(M=1\) signifies an error condition explained by an accompanying printed message.
The accuracy of results (within limits) and the speed of convergence may be altered by the user. See SUM (Algorithm 35: (Part 13.2)) for details.

MATH calls on the subroutines:
COEF-referred to as Algorithm 352 (Part B.1)

SUM-referred to as Algorithm 352 (Part B.2)

BESSEL—referred to as Algorithm 352 (Part C)
```

        CUEROHJTINE MATH (XX,ON,FF,CV,SOL:
    c
        #NTEGER 
        DOUBLE PRECISION
        * A,AB,CV,LLAFT,LMMAX,F(3),O.
        EXTCRNAL
        ** PC,OUC,UUS.US,DPGC,jPS.
        *OMMMON J(25O),Y(25,O),U1,UZ,N,P,j,
        * J(250),Y(25,O),J1,UZ,N,P,',
        KPAX,KLAST.SUMM157E),A,
        OUMZ(G),MM,ML,AE(2CO)
        COMMON /MF1/
        * Q,TOL,TYPE,M1,:MO,M2SD:MF
        M=0
        IF ISOL.LT.1 .OR.
        * SOL.GT.3 .OR.
        * FNC.LT.1 .OR.
        * FNC.GT.4) GO TO 4OC
        A =CV
        TOL = I.C-13
        TYPL = 2*MOD(FNC,2)+MCD(R.2)
        CALL COEF (:a)
        IF (M) 410,10,420
    10 N = R/2
        =MOD(R,2)
        = MM/2
        = ML/2
        = xX
        = 1.00
        IF (SOL.EQ.3)
        * GO TO (150,160,170,180), FNC
        UI= DSORT(U)*DEXP.(-X)
        U2= Q/U1
    C COMPUTE BESSEL FUNCTIONS
CALL BESSEL (1,U1,J,LL)
CALL BESSEL (SOL,U2,Y,LL)
C Evaluate selected function
GO TO (50,60,70,80), FNC
50 CALL SUM (DS)
G0 TO 300
60 CALL SUM (DC) GO 10 300
70 CALL SU:4 (DDS) 5O TO 300
80 (ALL SUM (DDC) GO TO 300
150 (ALL SUM (PS) GO TO 200
160 CALL SUM (PC) GO TO 200
170 CALL SUM (DPS) GO TO 200
180 CALL SUM (DPC)
200 IF (NORM-2) 300,210,250
C _INCE NORMALIZATION
IF (TYPE.[Q.O)T=T+T
DO2201 = 1,L
= T+AB(1+1)**2
220 CONTINUE
T = DSORT(T)
T= = MO/2
CONTINUE

```


Algorithm 352 (Part A.2)
MFITR8 (Improves Characteristic Value)
(Called by MFCVAL)
romments Given \(a_{0}<a<a_{1}\), where \(a_{0}\) is a lower and \(a_{1}\) an upper bound, the subroutine MFITRS iterates to the characteristic value, replacing one of the bounds with a better approximation at each step. The process terminates after 40 iterations unless one of the following conditions occurs first:
(1) \(a-a_{0} \leqq\) TOLA, (2) \(a_{1}-a \leqq\) TOLA, or (3) \(|D(a)|<\) TOLA. See Appendix 3, method 2, of [3] for a detailed description of this process.

Explanation of output:
CV the characteristic value, \(a\)
DCV the function \(D(a)\)
MM an indicator cell used to communicate an error condition to subroutine MFCVAL.
MFITR8 calls on the subroutine:
TMOFA-referred to as Algorithm 352 (Part A.3)
```

                SUBROUTINE MFITRB (TOLA,CV,DCV,MM)
    c
SUBROUHINE MFITR
* INTEGER M,MM,N
DOUBLE PRECISION
* ( A,AO,A1,AZ, CV,D,DCV,DTM.
LOGICAL
* logical last
* COMMON /MF2/
N}=
LAST = FFALSE.
50N = N+1
CALL TMOFA (A,TM,DTM,M)
IF (M.GT.O) GO TO 400
D = -TM/OTM
C IS tolerance met
* IF IN A-AO OLQ. 40.OR.
* A-AO -LE.TOLA OOR.
* DABS(D).LT.TOLA) LAST = .TRLE.
IF (D) 110,100,120
100 CV = A
DCV = 0.00
GO TO 320
C REPLACE UPPER DOUND BY A
110 Al = A
GO TO 200
C REPLACE LOWEP BOUND by A
120 AO = A
120 AO = A
IF (LAST) GO TO 300
IF (AZ.GT.AO.AND.AZ.LT.A1)
* GF GO TO 250
A =.5DO*(AO+A1)
250 A GO TO 50
250 A GO TO 50
GO TO 50
300 IF (AZ.LE.AO.OR.AZ.GE.A1)
GO TO 350

```

CALL TMOFA (AZ,TM,DTM,M)

Algorithm 352 (Part A.3)
TMOFA (Accuracy Indicator)
(Called by MFCVAL, BOUNDS, MFITR8 and COEF)

Comments The subroutine TMOFA evaluates the function \(T_{m}(a)\) and its derivative \(d T_{m}(a) / d a\). See [3] for the definitions, theorems, and numerical methods relating to the computation of these quantities.

Explanation of the arguments:
ALFA the given argument, \(a\)
TM \(\quad T_{m}(a)\)
DTM \(d T_{m}(a) / d a\)
ND internal error indicator cell
TMOFA calls no other subprograms.
```

SUBROUTINE TMOFA (ALFA,TM,DTM,ND)
C ****************
** INTEGER K,KK,KT,L,MF,MO,MI,M2S.
dOUBLE PRECISION
* A,AA,ALFA,B,DG,DTM,OTYPE,
* F,FL,G,H(200),HP,O,QINV,
Q1,Q2,T,TM,TOL,TT,V
COMMON
* G(200,2),DG(200,2),AA,
COMMON /MFI/
* Q,TOL,TYPE,M1,MO,M2S,MF
equivalence
* (H(1),G(1,1)),(Q1,HP).
DATA FL /1.D+30/
C STATEMENT FUNCTION
v(K) = (AA-DBLE(FLOAT(K))**2)/Q
ND = =0
KT = = {
AA = = ALFPE
QINV = 1.DO/O
OO 10 5 L = = , % 2
5(K,L) K=1,200
G(K,L)=0.00
continue
10 CONTINUE

```

```

C EVALUATION OF the tail OF a
C CONTINUED FRACTION
A(1) = 1.DO
A(1) = = .DD
A(2) = V(M2S+2)
B(2) =A(2)*B(1)-1.00
Q1 =A(2)/B(2)
DO 50 K = 1,200
MF = M2S+2+2*K
T}=V(MF
A(3) = T*A(2)-A(1)
B(3) = T*B(2)-B(1)
Q2 = A(3)/B(3)
IF (DABSIOL-Q2).LT.TOL)
Q1 = Q2
A(1) = A(2)
A(2) =A(3)
B(1) = B(2)
B(2)=B(3)
50 CONTINUE
KT =1
70 T
TT = -T*T*OINV
L = MF-M2S
DO 80 K = 2.L.2
T = 1.D0/(V(MF-K)-T)
TT = T*T*(TT-QINV)
80 CONTINUE
KK =M2S/2+1
IF (KT.EQ.1) Q2 = T
G(KK,2) = .500*(Q2+T)
DG(KK,2)= TT

- stage l
G(2.1) = 1.D0
DO 14O K}=\mp@code{MO,M2S.2
IF (K.LT.5)
IF (K-3) 100,110,120
G(KK,1) = V(K-2)-1.DO/G(KK-1,1)
DG(KK,1)= QINV+DG(KK-1,1)
G(KK-1,1)**2
GO TO 130
G(2,1) = v(0)
OG(2,1) = QINV
GO TO 130
110 G(2,1)=V(1)+DTYPE-2.DO
DG(2,1) = QINV
GO TO 130
120 G(3,1)=V(2)+(DTYPE-2.DO)/
G(2,1)
OG(3,1)=}\begin{array}{rl}{\mathrm{ G(2,1) }}<br>{\mathrm{ OINV+(2,DO-DTYPE)*}}<br>{}\&{DG(2,1)/G(2,1)**2}
OG(3,1)=}\begin{array}{rl}{\mathrm{ OINV (2,DO-DTYPE)*}}<br>{}\&{DG(2,1)/G(2,1)**2}
IF (TYPE.EQ.2)G(2,1) = 0.DO
130. IF (DABS(G(KK,1))!LT:1•00)
140 CONTINUE

BACKTRACK	
TM	$=G(K K, 2)-G(K K, 1)$
DIM	$=D G(K K, 2)-D G(K K, 1)$
M 1	$=\mathrm{M} 2 \mathrm{~S}$
KT	= M2S-MO
DO	$\begin{aligned} r_{K}^{180} & =2, K T 0^{2} \\ & =M 2 S-L \end{aligned}$
	Kk $=\mathrm{K} / 2+1$
	G(KK,2) $=1 . D 0 /(V(K)-G(K K+1,2))$
	DG(KK,2) $=-G(K K, 2) * * 2 *$
	(QINV-DG(KK+1.2))
	If (k-2) 150,150,160
150	G(2,2) $=2$. DO*G(2,2)
	DG(2,2) $=2 . D 0 *$ OG(2,2)
160	$\mathrm{T}=\mathrm{G}(\mathrm{KK}, 2)-\mathrm{G}(\mathrm{KK}, 1)$
	IF (DABS(T)-DABS(TM))
	170,180,180
170	$T M=T$
	DTM $=$ DG(KK,2)-DG(KK,1)
	MI $=\mathrm{K}$
180 CONTINUE	

```
C STAGE 2 = %
 OOC Ml
 K
 210 IF (K.EQ.M1)
 IF (K-2) 300,300,310
 K
 T = V(K)-G(KK+1,2)
 IF (DABS(T)-1.DO) 250.220.220
 220G(KK,2)=1.DO/T
 DG(KK,2)=(DG(KK+1,2)-QINV)/T**2
 GO TO 210
C STAGE 3
 250 IF (K.EQ.M1) IF (T) 220.290,220
 HP = DG(KK+1,2)-GINV
 260G(KK,2)=FL
 H(KK)}=
 K
 F = V(K)*T-1.D0
 IF (K.EQ.M1) IF (F) 280,290,280
 IF (DABS(F)-DABS(T)) 270.280,280
 27C HP HP = HP/T**2-QINV
 GO TO 260
 DG(KK,2)=(HP-U!NV*T*T)/F**2
 290 ND GO TO 210
C CHAINING M EQUALS 2
 300G(2,2)=2.00*G(2,2)
 DG(2,2)=2.DO*DG(2.2)
 310 TM = G(KK,2)-G(KK,1)
 DTM = DG(KK,2)-DG(KK,1)
 ENC
```

Algorithm 352 (Part B.1)
COEF (Coefficients)
(Called by MATH)

Comments The subroutine COEr computes the neutral coefficients, as defined in the ('omments of Algorithm 352 (Part B), and returns them via common array AB . Argument $M$ is an internal error indicator cell. For details of the method used, see Appendix 6 of [3]. COLF calls on the subroutine: TMOFA-referred to as Algorithm 352 (Part A.3)
$c$
CUBROUTINE COEF (M)

INTEGER	
*	$K, K A, K B, K K, M, M F, M L, M M$,
*	MO,M1,M2S,TYPE
DOUBLE	PRECISION
*	$A, A B, F L, G, H(200), 0, T$,
*	TOL, V,V2
COMMON	
*	G(200,2), DUM1 (800), A, T, K,
*	$K A, K B, K K, M M, M L, A B(200)$
COMMON	/MF1/
*	Q,TOL,TYPE,M1,MO,M2S,MF
EQUIVALENCE	
*	(H(1),G(1,1)
DATA	$F L, V 2 / 1 . D+30,1 . D-15 /$

```
C STATEMENT FUNCTION
 V(K)=(A-DBLE(FLOAT(K))**2)/0
 CALL TMOFA (A,T,T,M)
 IF (M.NE.O) GO TO 300
 0060 K=1.200
 AB(K) = 0.DO
 60 CONTINUE
 KA =M1-MO+2
 DO 90 K=2,KA,2
 =(M1-K)/2+1
 IF (K-2) 70,70,80
 70 AB(KK)=1.DC
 B0 AB(KK) = AB(KK+1)/G(KK+1,1)
 9 0 ~ C O N T I N U E ~
```



```
 KK
 IF (G(KK,2).EQ.FL) GO TO 100
 AB(KK)=AB(KK-1)*G(KK,2)
 100 T =AB(KK-2) GO TO 110
 IF (K.EO.4.AND.MI.EO.2)T=T+T
 AB(KK)=T/(V(K-2)*H(KK)-1.DO)
 110. IF (DABS(AB(KK)).GE.1.D-17)
 IF (KA.EQ.5) GO TO 260
 KA =KA+1
 130 CONTINUE
 * = DLOG(DABS(AB(KKK))/V2)/
 DLOG(1.DO/DABS(G(KK,2))
 = 2*IDINT(T)
 = KA+2+M2S
 IF. (ML.GT.399) GO TO 400
 KB =KA+2+MF
 KK }=1.D0/V(KB
 = MF-M2S
 OO 150 K=2,KK,2
 150 CONTINUE
 KK =ML/2+1
 G(KK,2)=T
 00200 K=2,KA,2
 KK = = ML-K)/2+1
 G(KK,2)=1.DO/(V(ML-K)-
 * G(KK+1,2))
 200 CONTINUE
 KA =M2S+2
 DO250 K=KA,ML,2
 KK =KB(KK)}={2+
 AB(KK)=AB(KK-1)*G(KK,2)
25.0 CONTINUE
C NEUTRAL NORMALIZATION
 260 T = AB(1)
 MM
 KA 280 = MM+2
 O 280 K
 IF (DABS(T)-DABS(AB(KK)))
 *
 270.280.280
 270
 T
 280 CONTINUE
 DO 290 K = 1,KK
 AB(K)=AB(K)/T
 29: CONTINUE
 300
 400 M = -1
 RETURN
 GO TO 300
```

Algorithm 352 (Part B.2)
sUM (Series Evaluation)
(Called by MATH)
C'omments The subroutine SUM performs the summation, truncating the series when the magnitude of two successive terms, relative to the magnitude of the largest term, is less than or equal to $10^{-13}$.

If the user is willing to accept reduced accuracy, he may save some computing time by making this tolerance larger. On the other hand, however, a smaller tolerance will not necessarily increase the accuracy, since on a machine using 16-digit arithmetic the sum will be, at best, good to 16 digits.

The particular series being evaluated is determined by the arguments SOL and FNC within subroutine MATH and communicated to this subroutine via argument DCM.

Output is returned via common: variables F, DMAX, DLAST, KMAX, and KLAST.

SDM calls on one of the functions of Algorithm 352 (Part B.2.1).

c	SUBROUTINE SUM (DUM)	
INTEGER		
	* K,KLAST,KMAX,L,S	
	DOUBLE PRECISION DLAST,DMAX,DUM,F,T	
	$\begin{aligned} & \text { COMMON DUMI(1006),S,L,DUM2(6),F } \\ & \text { *MAX,DLAST,KMAX,KLAST,T } \end{aligned}$	
	$k=0$	
	$F=\operatorname{DUM}(0)$	
	DMAX $=F$	
	$\boldsymbol{T}=$ DABS (F)	
	$K$ MAX $=0$	
DO 30 KLAST $=1, L$ DLAST $=$ DUM(KLAST)		
IF (T-DABS(DLAST) 10.10 .20		
10		
$\begin{aligned} & T \\ & =\text { DABS } \\ & \text { KMAX }=\text { KLAST } \end{aligned}$		
20	$\begin{aligned} & \text { IF (KLAST•LE.S) GO TO } 30 \\ & \text { IF (DABSIDLAST)/T•GT•1•D-13) } \\ & K=0 \end{aligned}$	
$x=k+1$		
IF (K.EQ.3) GO TO 40		
32 CONTINUE KLAST $=\mathrm{L}$		
40	RETURN	
	END	
Algorithm 352 (Part C)		
BESSEL (Bessel Functions) ${ }^{2}$ (Called by MATH)		

Comments The subroutine BESSEL evaluates Bessel functions of the first or second kind, according as the argument $\$ O L=1$ or 2 , of orders $0,1, \cdots, n$ and argument $u$, both
of which must be nonnegative. Functions of order zero and one are always evaluated, regardless of the value of $n$. Results are returned via array JY, with element $J Y(K)$ containing the function of order K-1.

It should be noted that for SOL $=2$ and $u=0$, a large negative constant $\left(-10^{37}\right)$ is returned as the function value for all orders and no warning is given.

Different methods of computation are used for $J_{0}(u), J_{1}(u), Y_{0}(u)$, and $Y_{1}(u)$, depending upon whether $u<8$, or not. (See subroutines J0J1, Y0Y1, and LUKE for details.) The $J_{n}(u), n=2,3, \cdots, m$, are computed by means of a continued fraction (see subroutine JNS), whereas the $Y_{n}(u)$ for corresponding orders are calculated directly from the recurrence relation:

$$
Y_{n+1}(u)=\frac{2 n}{u} Y_{n}(u)-Y_{n-1}(u)
$$

BESSEL calls on the subroutines:
J0J1-referred to as Algorithm 352 (Part C.1)

Y0Y1-referred to as Algorithm 352 (Part C.2)

LUKE-referred to as Algorithm 352 (Part C.3)

JNS-referred to as Algorithm 352 (Part C.4)
$c$

## SUBROUTINE BESSEL (SOL:U,JY,N)



C RECURRENCE FORMULA 60 DO $70 \times K=2, N N$

* DBLE(FLOAT(K-1))*

70 continue
JY(K)/U-JY(K-1)
GO TO 100
80 NN = $\mathrm{NN}+1$
DO $90^{N N+1}=1, N N$
$J Y(K)=-1 \cdot D+37$
90 CONTINUE
100
END
: This subroutine (together with its subsidiary routines) may be removed in toto, with no changes, and used independently as a Bessel function algorithm. The results are good to 14 significant digits or decimal places, whichever is least accurate, with an error of no more than one unit in the last digit or place.

```
Algorithm 352 (Part C.1)
J0J1 (First Kind)
 (Called by BESSEL)
```

Comments The subroutine J0J1 computes the Bessel functions of the first kind, $J_{0}(x)$ and $J_{1}(x)$, for $x<8$. This is done by evaluating formula 9.1 .10 of [1]. The results are returned via array $J$.

J0J1 calls no other subprograms.

```
C *U**************)
 DOUBLE PRECISION.
 * J(2),T(5),x
 COMMON
 T (I) = x / 2 . 0 0 ~
 J(1)=1.00
 J(2) = T(1)
 T(2)=-T(1)**2
 T(3) = 1.00
 T(4) = 1.00
10 T(4) = T(4)*T(2)/T(3)**2
 J(1) = J(1)+T(4)
 T(5)=T(4)*T(1)/(T(3)+1.DO)
 J(2)=J(2)+T(5)
 IF (DMAXI(DABS(T(4)),DABS(T(5)))
 * .LT.1.D-15) RETURN
 T(3) = r(3)+1.00
 END GO TO 10
```

Algorithm 352 (Part C.2)
Y0Y1 (Second Kind)
(Called by BESSEL)
Comments The subroutine Y0Y1 computes the Bessel functions of the second kind, $Y_{0}(x)$ and $Y_{1}(x)$, for $x<8$. This is done by evaluating formulas 9.1.13 and 9.1.11 of [1]. The results are returned via array Y .

Y0Y1 calls no other subprograms.

```
c
 SUBROUTINE YOYI (X,Y)

 DOUBLE PRECISION
 T(10),X,Y(2)
 COMMON
 * DUM(1014),T
 T(1) = X/2.00
 T(2)=-T(1)**2
 Y(1) = 1.00
 Y(2) = T(1)
 T(7) = 0.00
 T(10)= -T(1)
 T(10)=-T(1)
 T(3) = 0.00
 T (4) = 0 . 0 0
 T (5) = 1 . 0 0
10T(3)=T(3)+1.00
 T(4)=T(4)+1.00/T(3)
 T(5) =T(5)*T(2)/T(3)**2
 Y(1) = Y(1)+T(5)
 T(6) = -T(5)*T(4)
 T(7)=T(7)+T(6)
 T(7)=T(7)+T(6)
 T(8) =T(5)*T(1)/(T(3)+1.00)
 Y(2) = Y(2)+T(8)
 T(9) = -T(8)*(2.00*T(4)+
 * 1.00/(T(3)+1.00))
 T(10)=T(10)+T(9)
```

IF (DMAXIIDABSIT(6)), DARS(T(9)))
-GE.1.0-15) GO TO 1 C
$T(2)=.5772156649015326600+$

* DLOG(T(1))
$Y(1)=.6366197723675813400 *$
* (Y(1)*T(2)+T(7))
$Y(2)=.6360197723675813400 *$
* $\quad$ (Y(2)*T(2)-1.00/X)+T(10)/
$\begin{array}{ll}* & (Y(2) * T(2)-1.00 / X)+T \\ * & 3.1415926535897932 D 0\end{array}$
END


## Algorithm 352 (Part C.3)

LUKE
(Called by BESSEL)
('omments The subroutine LUKE evaluates Bessel functions of order zero and one, of the first or second kind, according as the argument $\mathrm{KIND}=1$ or 2 , for $u \geqq 8$. The results are returned via the 2 -element array JY.

The Bessel function of the third kind (Hankel function), $H_{\nu}^{(1)}(u)=J_{\nu}(u)+$ $i Y_{\nu}(u)$, can be expressed in terms of the Chebyshev polynomials, $T_{n}{ }^{*}(x)$, as follows:

$$
\begin{align*}
H_{\nu}^{(1)}(u)= & \left(\frac{2}{\pi u}\right)^{\frac{1}{2}} e^{i\left(u-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)}  \tag{9}\\
& \cdot \sum_{k=0}^{\infty}\left(\alpha_{k}^{(\nu)}+i \beta_{k}^{(\nu)}\right) T_{k}^{*}(R / u)
\end{align*}
$$

We now define $\alpha_{k}^{(0)}=A_{k+1}, \beta_{\nu}^{(0)}=B_{k+1}$, $\alpha_{k}^{(1)}=C_{k+1}, \beta_{k}^{(1)}=D_{k+1}, x=R / u$, and $T_{k}{ }^{*}(x)=G_{k+1}(x)$. The recurrence relations for the $G_{k}(x)$ are as follows:

$$
\begin{aligned}
& G_{1}(x)=1, \quad G_{2}(x)=2 x-1 \\
& G_{k}(x)=(4 x-2) G_{k-1}(x)-G_{k-2}(x), \\
& \quad k \geq 3 .
\end{aligned}
$$

If we let $\nu=0$ and make other appropriate substitutions in ( 9 ), while remembering that $e^{i \theta}=\cos \theta+i \sin \theta$, we can separate the real and imaginary parts and get the following relations:

$$
\begin{aligned}
& J_{0}(u)=\left(\frac{2}{\pi u}\right)^{\frac{t}{2}} \\
& \cdot\left[\cos \theta \sum_{k=1}^{\infty} A_{k} G_{k}(x)-\sin \theta \sum_{k=1}^{\infty} B_{k} G_{k}(x)\right], \\
& Y_{0}(u)=\left(\frac{2}{\pi u}\right)^{\frac{1}{2}} \\
& \cdot\left[\cos \theta \sum_{k=1}^{\infty} B_{k} G_{h}(x)+\sin \theta \sum_{k=1}^{\infty} A_{k} G_{k}(x)\right],
\end{aligned}
$$

where $\theta=u-\pi / 4$.
Notice that if $\nu=1$ in (9), then $\theta$ is replaced by $\theta-\pi / 2$. Also, $\cos (\theta-\pi / 2)=$ $\sin \theta$ and $\sin (\theta-\pi / 2)=-\cos \theta$. Therefore, proceeding as before, we get
$J_{1}(u)=\left(\frac{2}{\pi u}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& {\left[\sin \theta \sum_{k=1}^{\infty} C_{k} G_{k}(x)+\cos \theta \sum_{k=1}^{\infty} D_{k} G_{k}(x)\right]} \\
& Y_{1}(u)=\left(\frac{2}{\pi u}\right)^{\frac{1}{2}} \\
& \cdot\left[\sin \theta \sum_{k=1}^{\infty} D_{k} G_{k}(x)-\cos \theta \sum_{k=1}^{\infty} C_{k} G_{k}(x)\right]
\end{aligned}
$$

The coefficients $A, B, C$, and $D$ have been computed for $R=8$ in eq. (9) and are guaranteed to the number of digits given.

LUKE calls no other subprograms.

```
 CUBROUTINE LUKE (U,KIND,NY)
C ***************
 * INTEGER K.KIND
 DOUBLE PRECISION
 * A(19),B(19),CS,C(19),
 S(2),SN,T,U.X
 C OMMON
 DUM(1014),R,S,G,N,T,SN,CS
c. WARNING - THE FOLLOWING DATA
WARNING - THE FOLLOWING DA
STANDARD FORTRAN
```

DATA A	1
*	. 999595064768672874.1600 *
*	-. 538079561396069130-3,
*	-.131796771233615704-3,
*	. $1514224970486440-5$,
*	. $158468617920630-6$ \%
*	-. $856069553946 \mathrm{D}-8$.
*	-. $29572343355 \mathrm{D}-9$.
*	. $6573556254 \mathrm{D}-10$.
*	-. $223749703 \mathrm{D}-11$.
*	-. $44821140 \mathrm{D}-12$,
*	.6954827D-13,
*	-. $1513400-14$,
*	-.924220-15.
*	-155580-15,
*	-. $4760-17$.
*	-.274D-17,
*	.610-18.
*	-.4D-19,
*	-.1D-191
DATA B	1
*	-. $7769355694205321360-2$,
*	-. $774803230965447670 \mathrm{D}-2$,
*	. 25365411654307960.4 ,
*	. $3942735983997110-5$.
*	-. 10723498299129D-6.
*	-. $7213897993280-8$.
*	. $737646028930-0$,
*	. $1506878110-11$.
*	-.574589537D-11,
*	. $459965740-12$.
*	. $22703230-13$,
*	-.887890D-14.
*	. $74497 \mathrm{D}-15$.
*	. $58470-16$,
*	-. 24100-16.
*	. 2650-17.
*	-130-18.
*	-. 100-18.
*	.20-19/


$T=.797884560802865400 / D S Q R T(U)$
$S N=$ DSIN(U-. 7853981633974483001
$C S=D C O S(U-.785398163397448300)$
GO TO $(20,30)$, KIND
$20 \mathrm{JY}(1)=T *(R(1) * C S-S(1) * S N)$
$J Y(2)=T *(R(2) * S N+S(2) *(S)$
GO TO 40
$30 \mathrm{JY}(1)=T *(S(1) * C S+R(1) * S N)$
$J Y(2)=T *(S 12) * S N-R(2) * C S$
40
END

Algorithm 352 (Part C.4)
JNS
(Called by BESSEL)
Comments The subroutine JNS evaluates Bessel functions of the first kind, of orders $n=2,3, \cdots, m$, for argument $u$, given $J_{0}(u)$ and $J_{1}(u)$. From the definition $G_{n}=J_{n}(u) / J_{n-1}(u)$ and the recurrence relation,

$$
J_{n+1}(u)=(2 n / u) J_{n}(u)-J_{n-1}(u)
$$

we can derive the following equation:

$$
\begin{equation*}
G_{n}=\frac{1}{\frac{2 n}{u}-G_{n+1}} \tag{10}
\end{equation*}
$$

Since $G_{n+1}$ is of the same form as $G_{n}$, we can continue the process and obtain the continued fraction,

$$
\begin{gather*}
G_{n}=\frac{1}{\frac{2 n}{u}-\frac{1}{\frac{2(n+1)}{u}-\cdots-}} \\
\frac{1}{\frac{2(n+k)}{u}-G_{n+k+1}} \tag{11}
\end{gather*}
$$

$G_{m}$ is evaluated using (11), then the other $G_{n}$ are computed from (10) for $n=m-1$, $m-2, \cdots, 2$. Finally, the $J_{n}$ are evaluated in a forward direction from $J_{n}=G_{n} J_{n-1}$ and returned via argument array $J J$. See [2] for a more detailed treatment of this process.

JNS calls no other subprograms.

```
c
 cUBROUTINE JNS (JJ,U,M)
 * INTEGER K,KA,KK,M
 DOUBLE PRECISION
 * A,B,D(2),DM,G(249),
 JJ(250),P(3),Q(3):U
 EQUIVALENCE
 * (A,G),(D,G(2)),
 * (DM,G(10)):(B,G(11))
 COMMON
 DM = 2*M
 P(1)=0.00
 Q(1)=1.00
 P(2) = 1.DO
 Q(2)=DM/U
 D(1)}=P(2)/Q(2
```



```
10B = (DM+A)/U
 P(3)=B*P(2)-P(1)
 Q(3) = B*Q(2)-Q(1)
 D(2)=P(3)/Q(3)
 IF (DABS(D(1)-D(2))
 * -LT.1.D-15) GO TO 20
 P(1) =P(2)
 P(2)}=P(3
 Q(1) = Q(2)
 Q(2)=Q(3)
 D(1)=D(2)
 A=A+2.DO
20G(M)=D(2)
 KA =M-2
 DO 30 K=1,KA
 KK K}=1,K
 A = 2*KK
 G(KK)=U/(A-U*G(KK+1)
 IF (G(KK).EQ.O.DO)
 G(KK)}=1.0-3
30 CONTINUE
 DO 40 K=2,M
 JJ(K+1)=G(K)*JJ(K)
40 CONTINUE
 END

Algorithm 352 （Part B．2．1）
DS，DC，DDS，DDC，PS，PC，DPS，DPC
（Called by MATH via SUN）
C＇omments The following collection of func－ tion subprograms is utilized by SUM to eval－ uate the \(k\) th term \((k=0,1, \cdots)\) of one of the following：eq．（2），（3），（5），（6），or their derivatives．

DS and DC call on functions FJ and FY．
DDS and DDC call on functions FJ，FY ， 1）J and DY．

PS，PC，DPS，and I）PC＇call no other sub－ programs．
```

c

```
DOUBLE PRECISION FUNCTION USIKK)
* INTEGER K.KK,N.NI,N2,F,S
double precision
 * AB,FJ,FY
 COMMON
 * OUM111004, N, F,S,DUM2(17),
 evaluates one term of the radial
 SOLUTION, ASSUCIATED WITH B(Q)
 \(k=k K\)
 \(N_{1}=k-S\)
 \(N 2=k+S+P\)
 \(D S=A 8(K+1) *(F J(N 1) * F Y(N 2)-\)
 IF (MOD(K+N, 2),NE.O) US \(=-D S\)
 ENT
 DOUBLE PRECISION FUNETION OC(KK)
 * integer K,KK,N,N1,N2,F,S
 DOUSLE PRECISION
 COMMON
 * D(M11(1004),N,F,S.DJMZ(17),
 * K,N1,N2, DUM3(5.83),AB(200)
© EVALJATES ONE TERM OF THE PADIAL
 SOLUTION, ASSUCIATEO WITH A(N)
 \(k=k K\)
 \(v_{1}=k-5\)
 \(v z=k+j+r\)
 \(O=A B(K+1) *(F J(N 1) * F Y(N Z)+\)
 FJ(NZ)*FY(NI))
 IF (MOC(K+N, \(\operatorname{I}\)).NE.C) \(D C=-D C\)
 If (S+D.EC.0) DC = .5DC*DC
 \(i\)
 END
 DOLBLE PRECISION FJNCTIOH DDS(KK)
- ***********************
 INTEUER
 K,KK,Ni,N1, Miz,f,S
 COURLE PRECISION
 * aj,Dj,dy,rjery,ule.z
 COMMON

 つU:136831, ABしくOに)
E ejaluatls one term of the derivative
\(=\) OF THE RADIAL SOLJT:ON,
- ASEOCIATE~W:TH ヨ(心)
```

    K= =KK
    Ni=K-S
    N2=
    2US = AB(K+1)*(UZ*(FJ(N\)*CY(N2)-
    * FJ(N2)*DY(N1))-1:1*(F\because(N2)*
    (DJ(NI)-FY(N1)*DJ(NZ)!)
    IF(YO)(K+N,こ).NE.こ) ROS = -DOS
                                    gETURN
    END
    DOUBLE PRFCISION FUNCT:OR. DDC(KK)
    ```

```

    INTEGER
    i OUELF PRECISION
    * AB,DJ,DY,FJ,FY,U1"UZ
    *OMMON JUM1(1000),U1,U2,N,P,S.
    # JUM1(1000),U1,U2,N
                        DUM3(583),AB(2OC)
    ```
E EVALUATES ONE TERM OF THE DERIVATIVE
\(\therefore\) OF THE RADIAL SOLUTION,
 ASSOCIATES WITHA(G)
 \(K=K K\)
 \(N 1=K-5\)
 \(\begin{array}{ll}N 1=K-S \\ N & =K+S+P\end{array}\)
 \(N=K+S+P\)
\(\partial D C=A E(K+1) *(U 2 *(F J(N i) * D Y(N 2)+\)
 \(\begin{aligned} \text { * } & \text { NDC }= \\ & A E(K+1) *(U 2 *(F J(N 1) * D Y(N 2)+ \\ & F J(N 2) * D Y(N 1))-U 1 *(F Y(N 2) *\end{aligned}\)
 * \(\quad\) FJ(N2)*DY(N1))-U1*(FY(N2)
\(* \quad\) JJ(N1) + FY(N1)*OJ(N2!))
 IF (MOC \((K+N, 2)\).NE. \(\because) ~ D D C:-D D C\)
 IF \((S+P . E Q . O) D D C=.5 D C * O D C\)
 ENC
 JOURLE PRECISION FUNCT:ON PS(K)

 livteger
 * k,p
 GCUELE RRECISION
 * \(A B, X\)
 * COMMON DUM1(1005), P, OUM,2(2), X,

c EVALUATES ONE TERM OF THE ODD
 PEPIOCIC SOLUTION
 \(P S=A B(K+1) *\)
 DSIN(DBLE(FLOAT \((2 * K+P)) * X)\)
 EETURN
 END
 CCUBLE PRECISIONFUNCTIUN PC(K)
\(* *\)
 I INTEGER K, \(\quad\),
 DOUBLE PRECISION
 * AB, \(X\)
 ᄃOMMON
 * DUMI (1005), P, DUM2 \(\operatorname{DUV}(2), x\),
- evaluates one terli of the even
 PERIOUIC SOLUTION
 \(P C=A B(K+1)^{*}\)
 \(=\quad \operatorname{DCOS}(2 B L E(F L O A T(2 * K+P)) * X)\)
 EN)
 DOUDLE PRECIS:ON FUNCT:ON UPSIK)
- \(\quad * x * * *\)
 I inTrC.fR
 \(\Rightarrow \quad K, E\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { DOUBLE PRECISION } \\
& A B, T, X
\end{aligned}
\]} \\
\hline \multicolumn{2}{|r|}{COIMON} \\
\hline & DUM1(1005), P, DU:42(2), X , \\
\hline & * DUN3(14), T, DUP4 (584). \\
\hline & AS(200) \\
\hline \(c\) & EVALUATES ONE TERM OF ThE derivative \\
\hline \(\bigcirc\) & OF THE OOU PERIODIC SOLUTION \\
\hline \multicolumn{2}{|r|}{\(T=2 * K+P\)} \\
\hline \multicolumn{2}{|r|}{OPS \(=A L(K+1) * T * D C C S(T * X)\)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{-ND RETURN}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- OUULE PPECISION FUNCTION UPC(K)
\(=\quad * ~\)}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{1 :TEGEP} \\
\hline & * K, P \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\because O \text { OELE PIEGISION } \\
\text { AB,T,X }
\end{array}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\(\because \cup A M C N\)} \\
\hline & \\
\hline & \\
\hline & * AB(200) \\
\hline & fValiatat onf term of the derivative \\
\hline \multirow[t]{5}{*}{S} & OF THE EVEN PI.RIOUIC SOLUTICN \\
\hline & \(T=2 * K+P\) \\
\hline & \(J P G=-A G(K+1) * T\) OSIN(T*X) \\
\hline & RETURN \\
\hline & END \\
\hline
\end{tabular}

Algorithm 352 (Part B.2.2)
FJ, FY, DJ, DY (Bessel Functions and Derivatives)
(Called by DS, DC, DDS, J)DC)
Comments The following collection of functionsubprograms produces Bessel functions or their derivatives for integer order \(n, n\) being positive or negative. This is accomplished by using the already computed functions of nonnegative order (Algorithm 352 (Part ()) and substituting them in one of the following formulas:
\[
\begin{aligned}
J_{-n}(u) & =(-1)^{n} J_{n}(u) \\
Y_{-n}(u) & =(-1)^{n} Y_{n}(u), \\
J_{n}^{\prime}(u) & =\frac{n}{u} J_{n}(u)-J_{n+1}(u), \\
Y_{n}^{\prime}(u) & =Y_{n-1}(u)-\frac{n}{u} Y_{n}(u)
\end{aligned}
\]
whichever is appropriate.
1)J calls on function FJ .
I) Y calls on function FY.

FJ and FY call no other subprograms.
```

            DOUBLE PRECISION FUNCTION FJ(N)
            **********幺***********:%***
            INTEGER
            * K,N
            DOURLE PRECISION
            * J
            COMMON
            * J(250).DUM(527),K
    C PRODUCES BESSEL FUNCTIONS
C OF THE FIRST KIND
K=IABS(N)

```
```

    IF (K.G[.250) GO TO 20
    FJ=J(K+1)
    IF (MOD(N,2).LT.O) FJ= =FJ
    1 0
            RETURN
    20 FJ = 0.00
    WRITE (6.99) N
    9 9 \text { FORMAT(2HOJ13,7H NEEUED)}
        END
    DOUBLE PRECISION FUNCTION FY(N)
    C *************************
INTEGER
DOUBLE PRECISION
C OMMMON
* DUM1(500),Y(250),DUM2(27),K
C PRODUCES BESSEL FUNCTIONS
C OF THE SI:COND KIND
K=IABS(N)
Ir (K.GE. 250) GO TO 20
FY = Y(K+1)
IF (MOD(N,2).LT.O) FY = -FY
10
RETURN
20 FY = 0.00
WRITE (6.99) N
99 FORMAT(2HOY:3,7H NEEDED)
GO TO 10
END
DOUBLE PRECISION FUNCTION DJ(N)
c *************************
* INTEGER N
DOUBLE PRECISION
COMMON
DUM1(1000),U1,DUM2(26),FN
c. NERIVATIVES OF BESSEL FUNCTIONS
C OF THE FIRST KIND
FN=N
IF (N-249),10,20,40
10 DJ=FN*FJ(N)/U1-FJ(N+1)
20 DJ=FJ(N-I)-FN*FJ(N)/U:GO TO 30
30
RETURN
4ODJ=C.DC
WRITE (5.90) N
99 FORMAT(3HOJCI3,7H NEEDED)
END GO TO 30
DOUBLE PRECISION FUNCTION DY(N)
C
*************************
INTEGER
* N
DOUBLE PRECISION
FN,FY,U2
COMMON
* DUM1(1002),U2,DUM2(24),FN
C DERIVATIVES OF BESSEL FUNCTIONS
G OF THE SECONC KIND
IF (N.GE.250) GO TO 20

```

\author{
\(\begin{aligned} F N & =N\end{aligned}\) \\ \(D Y=\)
0 \\ 20 DY \(=0.00\) \\ WRITE \((6.99) \mathrm{N}\) \\ 99 FORMAT(3HOYC13,7H NEEDED) \\ END
}

REMARK ON ALGORITHM 352 [S22]
CHARACTERISTIC VALUES AND ASSOCIATED SOLUTIONS OF MATHIEU'S DIFFERENTIAL EQUATION [D. S. Clemm, Comm. ACM 12 (July 1969), 399-407]

Arthur H. J. Sale (Recd. 4 May 1970 and 28 May 1970)
University of Sydney, Sydney, NSW, Australia
KEY WORDS AND PHRASES: Mathieu's differential equation, Mathieu function, characteristic value, periodic solution, radial solution
\(C R\) CATEGORIES: 5.12
This algorithm contains a number of syntactically incorrect FORMAT statements: labeled 901, 911, 921,941 , and 951 in subroutine MFCVAL, and 99 in the functions \(F J, F Y, D J\), and \(D Y\). The error consists of omitting a comma separating the Hollerith field descriptor and the integer field descriptor, as required by Sections 7.2.3 and 7.2.3.2 of the Fortran standard [1, 2]. In all cases this may be corrected by inserting a comma immediately preceding the field descriptor \(I 3\) in these statements.

It has also been pointed out by the referee and the Algorithms Editor that the two FORMAT statements in functions DJ and DY contain a character not in the standard Fortran character set. The standard is somewhat ambiguous on this point: any representable character is permitted in a Hollerith constant in a \(C A L L\) or a DATA statement, and also in data to be read in with an \(A w\) field descriptor (Sections 4.2.6, 5.1.1.6), but since Hollerith field descriptors are not Hollerith constants, it must be presumed that the prohibition of Section 3.1 applies. The "at" symbol (@) in these two statements should therefore be replaced by a blank or some other character in the standard set.

There is another, more serious, error: subroutines BOUNDS and MFITR8 both reference a named common block which is not referenced by the routine that calls them (MFCV AL). According to Section 10.2.5 of the standard, the contents of this block will therefore become undefined at the moment either of these two routines executes a RETURN, unless this common block is referenced by a routine which is directly or indirectly calling MFCVAL. This undefinition permits named common blocks to be overlaid, and since it is not the author's intention to allow this block to become undefined, the following two statements should be added to MFCVAL immediately following the existing DOUBLE PRECISION and COMMON statements respectively:

DOUBLE PRECISION FILL(3)
COMMON /MF2/ FILL

\section*{References:}
1. ANSI Standard Fortran ANSI (USASI) X3.9-1966. American National Standards Institute, New York, 1966.
2. FORTRAN vs Basic FORTRAN. Comm. ACM 7 (Oct. 1964), 591-625.

\section*{Remark on:}

Algorithm 352 [S22]
Characteristic Values and Associated Solutions of Mathieu's Differential Equation
[Donald S. Clemm, Comm. ACM 12 (July 1969), 399-407]

Michael J. Frisch [Recd. 27 Jan. 1971]
University Computer Center, University of Minnesota, Minneapolis, MN 55455

\section*{Key Words and Phrases: ANSI Fortran standard CR Categories: 4.0, 4.22}

The following items were found during compilation of the algorithms written in Fortran published to date in Communications. The MNF compiler written at the University of Minnesota for CDC 6000 Series machines by Lawrence A. Liddiard and E. James Mundstock was used to check the validity of the algorithms.

Algorithm 352 does not conform to the standard in subroutine MATH which calls subroutine SUM with arguments that were in an EXTERNAL statement but not in a type statement. The dummy argument in subroutine SUM has type DOUBLE PRECISION so a statement DOUBLE PRECISION DS, DC, DDS, DDC, PS, PC, DPS, DPC should be inserted before the EXTERNAL statement in subroutine MATH (Section 8.4.2).

In subroutine \(J N S\), the dummy argument \(M\) is also in blank common, contrary to 7.2.1.3. In the same subroutine, arrays \(D, G\), \(P\), and \(Q\) are referenced by array name instead of array element name as required in Section 7.2.1.4. The statement should be:

EQUIVALENCE \((A, G(1)),(D(1), G(2)),(P(1), G(4)),(Q(1)\), \(G(7)),(D M, G(10)),(B, G(11))\).

\section*{ALGORITHM 353}

FILON QUADRATURE [D1]
Stephen M. Chase and Lloyd D. Fosdick (Recd. 7 July 1967 and 6 Jan. 1969)
Department of Computer Science, University of Illinois, Urbana, IL 61820

KEY WORDS AND PHRASES: quadrature, Filon quadrature, integration, Filon integration, Fourier coefficients, Fourier series
CR CATEGORIES: 5.16
comment FSER1 evaluates the integrals
\[
C=\int_{0}^{1} F(X) \cos (M \pi X) d X, \quad S=\int_{0}^{1} F(X) \sin (M \pi X) d X
\]
using the Filon quadrature algorithm. The user may request an evaluation of \(C\) only, \(S\) only, or both \(C\) and S. FSER1 contains an automatic error-control feature which selects an integration step size on the basis of an error parameter supplied by the user. The Filon quadrature formulas, truncation error, rounding error, and automatic error control are described in a companion paper [1] by the authors.

The calling parameters for this subroutine are defined as follows. F is the name of a FUNCTION subprogram \(\mathrm{F}(\mathrm{X})\), supplied by the user, which evaluates \(F(X)\) appearing in the integrand. EPS is the name for \(\epsilon\) appearing in inequalities (45) and (46) of [1]. It is used in the error control portion of the algorithm. The error in the computed values of \(C\) and \(S\) is related to \(\epsilon\) by the inequality (76) given in [1]. The user must assign a value to EPS before calling FSER1. MAX specifies the maximum number of halvings of the step size that are allowed. The minimum step size, \(h\) in equation (16) of [1], is \(2^{-\mathrm{max}}\). The user must assign a value to MAX before calling FSER1. M is the parameter appearing in the argument \(M_{\pi} X\) of the cosine and sine functions. The user must assign a value to M before calling FSER1. C is the value of the cosine integral determined by FSER1. S is the value of the sine integral determined by FSER1. LC is used on entry as a signal that the user does want C evaluated \((\mathrm{LC}=1)\) or does not want C evaluated \((\mathrm{LC}=0)\). It is used on exit to report the value of \(h\) used by the subroutine to evaluate C , this value being \(2^{-\mathrm{LC}}\). The user must assign a value of 1 or 0 to LC before calling FSER1, and if \(L C=1\) on entry, then the subroutine will assign a new value to LC related to the step size by \(2^{-\mathrm{LC}}\). LS is used on entry as a signal that the user does want \(S\) evaluated (\(\mathrm{LS}=1\)) or does not want \(S\) evaluated (\(L S=0\)). It is used on exit to report the value of \(h\) used by the subroutine to evaluate S , this value being \(2^{-\mathrm{Ls}}\). The user must assign a value of 1 or 0 to LS before calling FSER1, and if LS \(=1\) on entry, then the subroutine will assign a new value to LS related to the step size by \(2^{-\mathrm{Ls}}\).

FSER1 calls a subroutine ENDT1 which is also listed below. The purpose of ENDT1 is to perform the end test described by inequalities (45) and (46) of [1].

References:
1. Fosdick, Lloyd D., and Chase, Stephen M. An algorithm for Filon quadrature. Comm. ACM 12 (Aug. 1969), 453-457.

SUBROUTINE FSERI(F,EPS,MAX,M, C, S, LC, LS)
\(P \mathrm{PI}=3.1415926535898\)
C \(\quad X M=M\)
C F1 \(=\) COS(M*PI) TEMPORARY.
\(F 1=1-2 *(M-(M / 2) * 2)\)
\(F 0=F(0.0)\)
\(F 1=F(1.0)\)
C 'CIR' WILL BE USED THROUGHOUT THESE COMMENTS TO STANO FOR 'SIN' OR
C 'COS' WHEREVER THOSE TWO SYMBOLS MAY OCCUR.
C NOW DEFINE SUMCIR OF THE ENDPOINTS.
SUMCOS \(=\left(F_{1}+F O\right) * 5\)
SUMSIN \(=0.0\)
\(81=2\).
\(81=2 . / 3\).
c. tmax is the switch-oiver point iv the angle .

C OUR ANALYSIS INDICATES THAT TMAX \(=1 / 6\) IS THE BEST FOR THE ILLIAC II
C WHICH HAS A 44 BIT FLOATING POINT MANTISSA.
TMAX \(=0.166\)
C N is the number df the iteration. note that we start at the
C FOURTH ITERATION STEP.
C ACTUALLY, THE FIRST EVALUATIUN OF AN INTEGRAL IS AT \(N=5\), AND
C THEREFORE, THE FIRST COMPARISUN OF VALUES IS AT \(N=6\).
\(N=4\)
C both tmax and n may be changed if the machine for which this C ROUTINE IS INTENDED HAS GREATER OR LESS ACCURACY THAN ILLIAC II.
C If N IS Changed, then the Corresponding changes must be made C IN THE ASSIGNMENTS OF H AND NSTOP.
\(H=1 . / 16\).
C \(H=2 * *-N\).
NSTOP \(=15\)
C NSTOP \(=2 * * N-1\)
\(T P=T * P I\)
NST \(=1\)
SSIIGN 67 TO MSWTCH
C LLC AND LLS ARE USED by the routine in Cumputed-go-to statements.
C AS SUON AS LLS AND LLC HAVE BEEN DEFINEU, WE CAN USE LS AND LC
c as return parameters (SEE above).
IF (LS) 1, 1, 2
\(\mathrm{LLS}=2\)
GO TO
LLS \(=1\)
\(L S=\) MAX
IF (LC) 4, 4, 5
\(\mathrm{LLC}=2\)
GO TO 7
LLC \(=1\)
\(L C=M A X\)
\(L N=1\)
LIL \(\begin{aligned} & \mathrm{LN} \\ & \text { OF THE }\end{aligned}\)
C ALL OF THE ABOVE is executeo only once per call.
C NOW THE ITERATION BEGINS.
OOCIN \(=0\).
C BEGIN SUMMATION FUR OUCOS AND OOSIN.
DO \(65 I=1\), NSTOP, NST
\(X_{I}=I\)
THA \(=X I\)
C Tha*pi is the angle used in this ith term.
C CIR(I*T*PI) IS CALCULATED HERE USING THE IDENTITY
C CIR I INTEGER MULTIPLE OF PI + FRACTIONAL MULT OF PII)
\(C=C O S(I N T E G E R * P I) * C I R(F R A C * P I)\)
\(C=(+\) OR - \() *\) CIR(FRAC*PI).
FRAC \(=\) THA
IN \(=\) THA
THA \(=\) THA
FRAC \(=(\) FRAC - THA \() ~ * P I\)
C tha is a floating point integer, frac is the fractional part api. \(\operatorname{COSIP}=1-2 *(1 N-2 *(I N / 2))\)
TEMPI \(=\operatorname{COSIP} * F(X I * H)\)
C TEMPI \(=\operatorname{COS}(I N T E G E R ~ P A R T) * F(I * H)\). GO TO (50 , 55), LLS
50 ODSIN = TEMP 14 SIN(FRAC) + ODSIN
\(55 \quad G O T O 160,651\), LLC
\(60 \quad O D C O S=\) TEMP \(1 * \operatorname{COS}(F R A C)+\operatorname{ODCOS}\) CONTINUE
GO TO MSWTCH, \((67,70)\)
NST \(=2\)
c now have made up for the first 4 iteratiun steps, so reset these
C TWO NUMBERS TO LOOK LIKE THE GENERAL CASE.
WO NUMBERS TO
NSTOP \(=16\)
C NSTOP \(=2 * * N\) (IN CASE YOU Change STARTING VALUE OF N.).
ASSIGN 70 TO MSWTCH
GO TO 92
70 TSO = TP\#TP
IF (T -TMAX) 74, 74, 75
c. 74 IS THE POWER SERIES FOR SMALL T, 75 IS THE CLOSED FORM USED WITH

C larger values of T.
C THE PIUWER SERIES ARE (WITH CTN' = TP**N)
\(\mathrm{C} A=(2.145) * T 3-.(2.1315) * T 5+.(2.14725) * T\).
\(\mathrm{C} B=(2.13)+.(2.115) * T 2-.(4.1105) * T 4+.(2.1567) * T\).
\(C=-(4.122275 .1 * T 8\)
\(\mathrm{C} G=(4.13 .1)-(2.115) * T 2+.11.1210 .1 * T 4-(1.111340) * T\).
C THE NEXT TERM IN G IS TOD SMALL. IT IS (1.1997920.1*T8
\(74 \quad A=T P * T S O *(1 .-T S O *(1 .-T S Q / 15) / 7.) /\).22.5
\(A=T P * T S O * 11 *\)
\(B 2=B 1 * T S O * * 2\)
\(B 3=B 2 * T S O * 2.17\)
\(B 4=83 * T S O\)
\(B 4=83 * T S O / 10.8\)
\(B 5=B 4 * T S O * 14.1275\).
\(B=B 1+B 2-B 3+B 4-B 5\)
\(G=2 \cdot * B 1-B 2+B 3 / B\). \(-B 4 / 40\).
\(C G=2 . * B 1-B 2+B 3 / 8 .-B 4 / 40+5 . * B 5 / 896\). IF YOU WANT THE T8
```

C TERM INCLUNED IN G.
TO RO
C CLOSED FORM OF THE CGEFFICIENTS, WHFRE AGAIN ITN MEANS TP**N
CA = 1./TP + COS(TP)*SINITPI/T2 - 2.*(SIN(TP))**2/T3
C R = 2.*((11+(COS(TP))**2)/T2-2.*SIN(TH)*COS(TP)/T3)
CGG=4.*(SIN(TP)/T3-\operatorname{COS(TP)/T2)}
IN=T
EMP1 = 1-2*(IN - 2* (IN / 2)
TFMP2 = IN
C TFMP1 IS COS ( INTFGER PART OF TP), TEMP2 IS FRACTIONAL PART OF TP.
=(T - TFMP) +
SIN (TEMP?)
Cl = TEMP1 * COS (TEMP2)
CCl}=\operatorname{cos(TP)
P}=S1*C
150 = S1 * S
A = ((1-2.*SISO/TP) + P)/TP + l. )/ TP
B=2.*((-2.*P/TP)+2.-SISO)/TSO
G=4.* (Sl / TP - Cl\)TSO
80 GO TO (81, 85). LLS
c have calculated the coefficients, now ready for the integration
C FORMULAS. T2 = H* (A * (FO - FI) + B* SUMSIN + G* UDSIN)
C ENDTI IS A SUBROUTINE WHICH CHECKS FOR THE CONVERGENCE OF THE
C Iterations. enOtl reouires the present value to abree with the
C previous value to WITHIN EPS2, WhERE
C EPS2 = (1.0 + ABSF(PRESENT VALUE) )*EPS
C EPS IS SUPPLIED BY THE USER.
CALLENOT1 (PVI2, T2, EPS, S, LLS, LN)
GO TO ( 85, 84 ), LLS
84 LS =N
85 GO TO (86,90).LLC
C THIS IS THE COSINE INTEGRAL.
86 Tl = H* ( B * SUMCOS + G * ODCOS)
CALL ENOTI (HVII, T1, EPS, C, LLC, LN)
G0 T0 (90, 89 ), LLC
89 LC = N
C NOW TEST TO SEE If DONE.
IF (LLC + LLS - 3) 92, 92, 100
42 N=N+1
C this is the begining of the iteration.
IF (N-max) 95, 95,100
H=.5* H
TP =.5 * TP
NSTOP = 2 * NSTOP
SUMSIN = SUMSIN + ODSIN
SUMCOS = SUMCOS + OUCOS
go Io 10
100 S = T2
RETURN
ENO
SIIBROUTINE ENDTl IPREVQT, QUANT,EPS, VALUE, Ll, L2)
GOBTO (29, 20), L2
20 REPS = EPS * (1.0 + ABS(OUANT))
23 IF (ABS(PREVOT - QUANT) - REPS) 25, 25, 29
VALUE = OUANT

```

```

    9 PREVOT = QUANT
    30 RETURN
        END
    ```

\section*{REMARK ON ALGORITHM 353 [D1]}

FILON QUADRATURE [Stephen M. Chase and Lloyd D. Fosdick, Comm. ACM 12 (Aug. 1969), 457-458]
Bo Einarsson (Recd. 8 Dec. 1969)
Research Institute of National Defense, Box 98, S-147 00 Tumba, Sweden
KEY WORDS AND PHRASES: quadrature, Filon quadrature, integration, Filon integration, Fourier coefficients, Fourier series CR CATEGORIES: 5.16

The algorithm has been tested in double precision on an IBM 360/75 with great success. An improvement to the algorithm to take care of heavily oscillating functions can easily be made. The starting value of the number \(N\) of iterations is chosen to give at least four quadrature nodes for each full period of the trigonometric function. The following changes are therefore suggested:
```

line 22: $\mathrm{N}=\mathrm{ALOG}(2 . * \mathrm{XM}) / 0.693$
line 27: $\dot{H}=1.0 /$ FLOAT $(2 * * N)$
line 29: $\mathrm{NSTOP}=2 * * \mathrm{~N}-1$
line 79: $\mathrm{NSTOP}=2 * * \mathrm{~N}$

```

The following example shows the importance of this change at the computation of the sine integral for \(m=64\) with the function \(f(x)=x^{2}(1-x)\), which is zero at both endpoints. Entry variables were in both cases MAX \(=20, \mathrm{M}=64, \mathrm{LC}=1, \mathrm{LS}=1\), and EPS \(=1.0 \mathrm{E}-10\). The computation in double precision gave the results:
\[
\begin{aligned}
& \text { original version } L C=L S=6 \quad C=-0.2473661710 \mathrm{D}-04 \\
& \\
& \text { improved version } L C=L S=9 \quad \begin{array}{l}
\mathrm{C}=0.0
\end{array} \quad \begin{array}{l}
\mathrm{S}=-0.2473661709 \mathrm{D}-04 \\
\end{array}
\end{aligned}
\]

The exact values are
\[
\begin{aligned}
& \mathrm{C}=-1 /(64 \pi)^{2}=-0.2473661710 \cdot 10^{-4} \\
& \mathrm{~S}=-6 /(64 \pi)^{3}=-0.7381790413 \cdot 10^{-6} .
\end{aligned}
\]
and
The failure of the original computation is due to the fact that all the inner nodes of the sine integral are multiples of \(\pi\), and the boundary contribution is zero. The connection with the sampling theorem is obvious.

The original version of the algorithm is not valid for negative values of M. The use of \(\operatorname{ALOG}(2 . * \mathrm{XM})\) is therefore no essential restriction, since the algorithm is rather slow for computing an ordinary quadrature (with \(\mathrm{M}=0\)).

It is important to observe that the present version will give correct values only if the maximum number MAX is larger than the computed value N .

\section*{ALGORITHM 354}

GENERATOR OF SPANNING TREES [H]
M. Douglas McIlroy (Recd. 29 Apr. 1966, 9 Sept. 1968 and 6 Mar. 1969)
Bell Telephone Laboratories, Murray Hill, NJ 07971, and Oxford University Computing Laboratory, Oxford, England
KEY WORDS AND PHRASES: spanning trees, trees, graphs CR CATEGORIES: 5.32
/* This procedure finds all trees that span a nondirected graph on \(n\) nodes. The essential step of this procedure partitions the set \(T(G)\) of trees which span graph \(G\) into two classes. Trees of one class contain a branch connecting a selected pair of nodes, \(i\) and \(j\); trees of the other class exclude such branches. To formalize the effect of partitioning with respect to nodes \(i\) and \(j\), we let \(A_{i j}\) be the "attachment set" of branches between them, and \(G_{i j}\) be the graph derived from \(\boldsymbol{G}\) by combining \(i\) and \(j\) into a single node. Then
\[
T(G)=T\left(G_{i j}\right) \times A_{i j} \cup T\left(G-A_{i j}\right) .
\]

The algorithm generates \(T(G)\) by a particular combination of recursive and iterative applications of this partition. A set \(S\) of combined nodes is "grown" by incorporating one node at each level of recursion. The attachment set for node \(i\) is the set of branches radiating from \(i\) to members of \(S\). The recursion bottoms whenever \(S\) contains all nodes, and a "family" of trees is then produced, where a family is the Cartesian product of the attachment sets from each level.

The basic method would work for any graph, but to simplify data representation, this algorithm requires that \(G\) be free of paralleled branches and self-loops. All computations are done in terms of the original graph to save actually having to combine nodes and, incidentally, to avoid parallels arising from combination. A set of nodes is represented by a string of \(n\) bits, with 1's for nodes present and 0 's for nodes absent. The original graph is represented by an array of \(n\) strings, where the \(i\) th string indicates the set of nodes neighboring node \(i\). An attachment set for node \(i\) is a suitable subset of its neighborhood.

The algorithm maintains the graph \(G\), the set of combined nodes \(S\), and a boundary set \(B\) of nodes neighboring members of \(S . B\) is disjoint from \(S\). Initially \(S\) contains only node \(1 ; B\) is the neighborhood of node 1. The key recursive routine "grow" iterates over the nodes of \(B\). For each node \(i\) in \(B\) it finds the attachment set (necessarily nonempty) connecting \(i\) to \(S\). It then removes the attachment set from \(G\) and node \(i\) from \(B\), and calls "grow" recursively with \(S\) augmented by node \(i\) and \(B\) augmented by neighbors of \(i\) (except those in \(S\)). The recursive call thus yields trees which include branches from node \(i\) to \(S\), while the iteration over succeeding nodes in \(B\) yields trees which exclude such branches.

As an example, for the graph
\[
1(2,3,4) \quad 2(1,3) \quad 3(1,2,4) \quad 4(1,3)
\]
the algorithm generates eight trees in four families:
\begin{tabular}{llll}
1() & \(2(1)\) & \(3(1,2)\) & \(4(1,3)\) \\
1() & \(2(1)\) & \(3(4)\) & \(4(1)\) \\
1() & \(2(3)\) & \(3(1)\) & \(4(1,3)\) \\
1() & \(2(3)\) & \(3(4)\) & \(4(1)\)
\end{tabular}

In these lists a set is represented by its index together with a parenthesized list of contained nodes.

Unlike other algorithms in the literature [1, 2, 3], this produces unique trees and hence does not require storage for a checklist of trees already produced. An algorithm of Burstall [4] generalizes this strategy to a wide class of problems; however, a direct particularization of Burstall's algorithm for spanning trees would be less efficient.

Acknowledgment is due S. C. Johnson, A. J. Goldstein, J. B. Kruskal, and D. M. R. Park for discussion and help, also P. Seaman and IBM U. K. Laboratories for testing.

\section*{References}
1. Hakimi, S. L., and Green, D. G. Generation and realization of trees and \(k\)-trees. IEEE Trans. CT-11 (1964), 247-255.
2. Watanabe, H. A computational method for network topology. IRE Trans. CT-7 (1960), 296-302.
3. MacWilliams, F. J. Topological network analysis as a computer program. IRE Trans. CT'-5 (1958), 228-229.
4. Burstall, R. M. Tree-searching methods with an application to a network design problem. In Machine Intelligence 1, N. L. Collins and D. Michie (Eds.), Oliver and Boyd, Edinburgh, 1967.*/
/* Nomenclature
\(G=\) the graph, or modified graph,
\(S=\) set of nodes covered by growing family,
\(B=\) "boundary" set of uncovered nodes neighboring to members of \(S\),
\(A=\) array of attachment sets,
\(f(A)=\) routine for processing each family once it has been generated.*/
trees:
procedure \((G, f)\); declare \(G\left({ }^{*}\right)\) bit \(\left(^{*}\right), f\) entry, \(n\) fixed binary; \(n=\) hbound (G, 1); begin; declare \(A(n) \operatorname{bit}(n)\), unit entry (fixed binary) returns (bit (\(n\))); /*Start at node 1. Arguments by value.*/ call \(\operatorname{grow}((G)\), unit(1), (G(1))); grow:
procedure (\(G, S, B\)) recursive;
declare \((G(n), S, B)\) bit \((n), i\) fixed binary; if \(\neg S={ }^{\prime} 0\) ' b then call \(f(A)\);
else
do \(i=1\) to \(n\);
if \(\operatorname{substr}(B, i, 1)\) then
do;
\(\operatorname{substr}(B, i, 1)={ }^{\prime} 0^{\prime} \mathbf{b}\);
\(A(i)=G(i) \& S\)
\(G(i)=G(i) \& \neg S ;\)
call \(\operatorname{grow}((G) . S|u n i t(i), B| G(i))\); if \(G(i)={ }^{\prime} 0\) ' b then return;
end;
```

        end;
        end grow;
    unit:
        procedure(i) bit(n);
        declare i fixed binary, u bit(n) initial (''b);
        substr(u,i,1) = '1'\mathbf{b}
        return(u);
    end unit;
    end;
    end trees

```

ALGORITHM 355

\section*{AN ALGORITHM FOR GENERATING ISING CONFIGURATIONS [Z]}
J. M. S. Simões Pereira (Recd. 20 Dec. 1967 and 10 Mar. 1969)
University of Coimbra, Coimbra, Portugal
KEY WORDS AND PHRASES: Ising problem, zero-one sequences
CR CATEGORIES: 5.39
procedure \(I \operatorname{sing}(n, x, t, S\)); integer \(n, x, t\); integer array \(S\); comment Ising generates \(n\)-sequences (\(S_{1}, \cdots, S_{n}\)) of zeros and ones where \(x=\sum_{i=1}^{n} S_{i}\) and \(t=\sum_{i=1}^{n-1}\left|S_{i+1}-S_{i}\right|\) are given. The main idea is to interleave compositions of \(x\) and \(n-x\) objects and resort to a lexicographic generation of compositions. We call these sequences Ising configurations since we believe they first appeared in the study of the so-called Ising problem (See Hill [1], Ising [2]). The number \(R(n, x, t)\) of distinct configurations with fixed \(n, x, t\) is well known [1, 2]:
\[
R(n, x, t=2 m+1)=2\binom{x-1}{m}\binom{n-x-1}{m}
\]
\(R(n, x, t=2 m)=\binom{x-1}{m}\binom{n-x-1}{m-1}+\binom{x-1}{m-1}\binom{n-x-1}{m}\)
Now define a block of 1's (or zeros) in the sequence as a set of a maximum number of consecutive 1's (or zeros) eventually consisting of a single element. For given \(n, x, t\), the number \(p\) of blocks of 1 's may easily be deduced from \(t\), as well as the number \(q\) of blocks of zeros. In fact, a block of 1's including either \(S_{1}\) or \(S_{n}\) yields one variation and each one of the others yields two variations; hence we get \(p=q=m+1\) when \(t=2 m+1\) (\(t\) odd requires \(S_{1} \neq S_{n}\)) and either \(p=m+1, q=m\left(S_{1}=\right.\) \(\left.S_{n}=1\right)\), or \(p=m, q=m+1\left(S_{1}=S_{n}=0\right)\) when \(t=2 m\). Clearly, there is a 1-1 correspondence between the compositions of \(x\) with \(p\) parts and the distributions of the \(x\) 1's into \(p\) blocks. And for each distribution of 1 's, distinct distributions of the \(n-x\) zeros into \(g\) blocks correspond to distinct configurations.
The main body of the algorithm is compose, which generates compositions of an integer \(x\) with \(k\) parts and stores them in the array \(L\). The role of sort and bisort is to form the final sequence (\(S_{1}, \cdots, S_{n}\)) from the structure of one-blocks \(L_{i}\) and zeroblocks \(M_{i}\).

The Ising problem was brought to my attention by Dr. B. Dejon during an informal visit to the IBM Research Laboratory in Zurich. Thanks are also due to Prof. Paul Erdös for pointing out to me reference [1] and to Prof. A. A. Zykov for correspondence. The procedure was tested on the NCR 4130 of the Laboratório de Cálculo Automático, Universidade do Porto. Thanks are also due to the Director and his Staff.

\section*{References}
1. Hrll, T. L. Statistical Mechanics. McGraw Hill, New York, 1956, p. 318.
2. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Physik 31 (1925), 253-258;

\section*{begin}
integer \(k\); integer array \(L, M[1: t \div 2+1]\);
procedure sort (\(L, M, z\)); integer array \(L, M\); integer \(z\);
begin
integer \(r, i, j, m, z b\);
for \(m:=1\) step 1 until \(n\) do \(S[m]:=z\);
\(r:=i:=1 ; \quad z b:=1-z ;\)
\(A A: j:=r+L[i]-1\);
for \(m:=r\) step 1 until \(j\) do \(S[m]:=z b\);
if \(i+1 \leq k\) then
begin \(r:=j+M[i]+1 ; \quad i:=i+1\); go to \(A A\) end;
comment Insert here an output procedure such as out-
array (\(1, S\));
end sort;
procedure bisort (\(L, M\)); integer array \(L, M\);
begin sort (\(L, M, 0\)); sort (\(M, L, 1\)) end bisort;
procedure compose (\(x, k, L, p\)); value \(x\); integer \(x, k\);
integer array \(L\); procedure \(p\);
begin
integer \(i, a\);
if \(x<k\) then go to \(C C\);
\(L[1]:=x-k+1\);
for \(i:=2\) step 1 until \(k\) do \(L[i]:=1\);
\(p\);
if \(k \leq 1\) then go to \(C C\);
\(a:=1\);
\(B B:\) if \(L[a]>1\) then
begin
\(L[a]:=L[a]-1 ; \quad L[a+1]:=L[a+1]+1 ; \quad p ;\)
if \(a \neq k-1\) then \(a:=a+1\); go to \(B B\)
end;
\(L[a]:=L[a+1] ; \quad L[a+1]:=1 ; \quad a:=a-1\);
if \(a \geq 1\) then go to \(B B\);
\(C C\).
end compose;
\(k:=t \div 2+1\);
if \(t \neq(t \div 2) \times 2\) then
begin
procedure \(p 1\); bisort (\(L, M\));
procedure \(p 2\); compose (\(n-x, k, M, p 1\));
compose (\(x, k, L, p 2\))
end
else
begin
procedure \(p 3\); sort (\(L, M, 0\));
procedure \(p 4\); compose (\(n-x, k-1, M, p 3\));
procedure \(p 5\); sort (\(M, L, 1\));
procedure \(p 6\); compose (\(n-x, k, M, p 5\));
compose (\(x, k, L, p 4\));
compose (\(x, k-1, L, p 6\))
end
end Ising

\section*{ALGORITHM 356}

\section*{A PRIME NUMBER GENERATOR USING THE} TREESORT PRINCIPLE [A1]
Richard C. Singleton* (Recd. 28 Jan. 1969 and 11 June 1969)

Stanford Research Institute, Menlo Park, CA 94025
* This research was supported by the Stanford Research Institute out of Research and Development funds.
KEY WORDS AND PHRASES: prime numbers, number theory, sorting
CR CATEGORIES: 3.15, 5.30, 5.31
procedure \(\operatorname{PRIME}(I P, m)\); value \(m\); integer \(m\); integer array \(I P\);
comment This procedure finds the first \(m \geq 4\) elements of the infinite sequence \(2,3,5,7,11, \cdots\) of prime numbers and stores them in \(I P[1], I P[2], \cdots, I P[m]\). The method of distinguishing primes from composite numbers is similar to that used by B. A. Chartres [1]. A counter value \(n\) is compared with the smallest value in a list \(I Q\) of odd multiples of primes less than or equal to \(\sqrt{n}\). If unequal, \(n\) is a prime and is added to the output list \(I P\). Otherwise, the matching elements of \(I Q\) are incremented, based on the corresponding entries in the list \(J Q\). Both \(n\) and the composite numbers in \(I Q\) are incremented so as to omit multiples of 2 and 3 .
This procedure differs from Algorithm 311 in the method of finding the smallest entry in \(I Q\). Here the list \(I Q\) is kept partially ordered as a tree, i.e.
\[
I Q[i] \geq I Q[i \div 2] \text { for } 2 \leq i \leq j
\]
thus the base element \(I Q[1]\) is always smallest. The variable \(i q i\) holds the current value of \(I Q[1]\), and \(j q i\) the negative of \(J Q[1]\). If \(n=i q i\), then \(i q i\) is incremented by \(j q i+j q i\) if \(j q i>0\) or by \(-j q i\) if \(j q i<0\). Then \(I Q\) is reordered to bring the next smallest element to the base and to return the new value of \(i q i\) to the tree, using a method similar to Williams' procedure SWOPHEAP [3]. The tag list \(J Q\) is permuted along with \(I Q\). The treesort principle, used in SWOPHEAP, is well suited to the present task of finding the smallest element of a changing list.
In Algorithm 311, five working-storage arrays serve the function of the two used here, and the information is totally ordered each time a prime is found. Between primes the unordered segment of the information is searched to locate the smallest element. The method used here is both simpler and more efficient.
On the Burroughs B5500 computer, this procedure finds the first 10,000 primes in 53 sec . For other values of \(m\), time is proportional to \(m^{1.24}\). Corresponding times for Algorithm 311 were 91 sec for \(m=10,000\), with time proportional to \(m^{1.85}\) for other values of \(m\). However, another algorithm [2] finds the first 10,000 primes in 14 sec on the B5500 and has times proportional to \(m^{1.14}\) for other values of \(m\).
References:
1. Chartres, B. A. Algorithm 311: Prime number generator 2. Comm. ACM 10 (Sept. 1967), 570.
2. Singleton, R. C. Algorithm 357: An efficient prime number generator. Comm. ACM 12 (Oct. 1969), 563-564.
3. Williams, J. W. J. Algorithm 232: Heapsort. Comm. ACM 7 (June 1964), 347;

\section*{begin}
integer array \(I Q, J Q[0: \operatorname{sqrt}(m)]\);
integer \(i, i j, i n c, i q i, j, j j, j q i, k, n\);
\(1 P[1]:=j:=2\);
\(I P[2]:=k:=3 ;\)
\(I P[3]:=n:=5\);
\(j j:=i q i:=25 ; j q i:=-10 ;\)
\(I Q[2]:=49 ; J Q[2]:=-14 ;\)
inc :=4;
go to \(L \mathbf{L c}\);
\(L a: i q i:=\) if \(j q i>0\) then \(i q i+j q i+j q i\) else \(i q i-j q i\);
\(i:=1\);
comment Reorder the tree, bringing the smallest element to the bottom;
for \(i j:=i+i\) while \(i j<j\) do
begin
if \(I Q[i j]>I Q[i j+1]\) then \(i j:=i j+1\);
if \(I Q[i j] \geq i q i\) then go to \(L b\);
\(I Q[i]:=I Q[i j] ; J Q[i]:=J Q[i j] ; i:=i j\)
end;
if \(i q i<j j\) then go to \(L b ; j j:=I Q[j]\);
comment Add a new entry to the top of the tree;
\(j:=j+1 ; \quad i j:=I P[j+2]\);
\(I Q[j]:=i j \uparrow 2 ; J Q[j]:=i j+i j\);
if \((i j-(i j \div 3) \times 3)=1\) then \(J Q[j]:=-J Q[j]\);
comment Return \(i q i\) and \(j q i\) to the tree and fetch a new pair from the bottom;
\(L b: I Q[i]:=i q i ; \quad i q i:=I Q[1] ;\)
\(J Q[i]:=j q i ; j q i:=-J Q[1] ;\)
if \(n=i q i\) then go to \(L a\);
comment Increment \(n\) and compare with the next smallest composite number;
Lc: inc \(:=6-i n c ; n:=n+i n c ;\)
if \(n=i q i\) then go to \(L a\);
\(k:=k+1 ; \quad I P[k]:=n ;\)
if \(k \neq m\) then go to \(L c\);
end PRIME

\section*{ALGORITHM 357}

AN EFFICIENT PRIME NUMBER GENERATOR [A1]
Richard C. Singleton* (Recd. 28 Jan. 1969 and 11 June 1969)

Stanford Research Institute, Menlo Park, CA 94025
* This research was supported by the Stanford Research Institute out of Research and Development funds.

KEY WORDS AND PHRASES: prime numbers, factoring, number theory
CR CATEGORIES: 3.15,5.30
integer procedure \(N P R I M E(I P, m, j l i m)\); value \(m, j l i m\); integer \(m\), jlim; integer array \(I P\);
comment This procedure finds the next \(m\) primes and stores them in \(I P[1], I P[2], \cdots, I P[m] . I P[m+1], I P[m+2], \cdots\), \(I P[j l i m]\) are used for working storage, where \(j\) lim \(>m\). On the first entry, \(I P[1]\) must have a value less than 0 as a flag to set initial conditions. Also, \(m\) must be greater than or equal to 2 on first entry and greater than or equal to 1 on subsequent entries. The arrays \(I Q\) and \(J Q\) must be large enough to hold all primes less than or equal to the square root of the maximum number scanned in looking for primes. To generate the first million primes, approximately 550 entries are needed in each of these two lists. The lists are extended as needed, using a secondary prime number generator similar to Wood's [3], and the current upper index is returned as the value of NPRIME.

The method used is the familiar sieve of Eratosthenes. The elements of the upper portion of array \(I P\) are set to zero, and correspond to a sequence of consecutive odd integers. The composite numbers are crossed off by entering the smallest prime factor in the corresponding cell, leaving zeros for primes. (At this point, the array \(I P\) contains the equivalent of a factor table, i.e. the smallest factor for each composite odd integer.) The list of primes is then constructed by storing the consecutive prime numbers in the lower portion of \(I P\). Whenever the information in the upper portion of \(I P\) is exhausted, a new sequence of odd numbers is scanned as described above. On exit, the unused portion is left for use in the next call.

As compared with another algorithm [2] based on comparing a counter value with the next smallest composite number, and not working ahead in a scratch storage, the present algorithm was found to be faster, even for \(j l i m=m+1\). Efficiency improves with added working storage. The improvement is substantial at first but is slight beyond \(j l i m=2 \mathrm{~m}\). For \(\mathrm{jlim}=2 \mathrm{~m}\), time to find the first \(n\) primes on the Burroughs B5500 or the CDC 6400 computer was proportional to \(n^{1.14}\). On the B5500 computer, it took 13.5 sec to find the first 10,000 primes, generating them 500 at a time in an array length of 1022 . On the CDC 6400 computer, with the algorithm coded in machine language, it took less than 98 sec to find the first million primes, generating them 1000 at a time in an array of length 10,000 . Timing within this run, with jlim \(=10 \mathrm{~m}\), was proportional to \(\boldsymbol{n}^{1.094}\). It is interesting to note that Chartres estimated a time of \(\mathbf{1 2}\) hours on the B5500 for this task, using Algorithm 311 [1].

This algorithm can be expressed in either Algol or Fortran, and gains no special advantage from machine language coding. However, if we plan to produce very large tables of primes for
future use, machine language shift operations may be useful in compressing the data for storage. One method of compression is to use a single bit to indicate that an integer is a prime, e.g. \(0=\) composite and \(1=\) prime. By omitting multiples of 2,3 , and 5 from the corresponding sequence of integers, 8 bits suffice to identify the primes in each 30 consecutive integers.

References:
1. Chartres, B. A. Algorithm 311: Prime number generator 2. Comm. ACM 10 (Sept. 1967), 570.
2. Singleton, R. C. Algorithm 356: A prime number generator using the treesort principle. Comm. ACM 12 (Oct. 1969), 563.
3. Wood, T. C. Algorithm 35: Sieve. Comm. ACM 4 (Mar. 1961), 151;
begin
own integer array \(I Q, J Q[0: 600]\)
own integer \(i j, i k, i n c, j, n j\);
integer \(i, j q i, k, n i\);
\(k:=0\); if \(I P[1] \geq 0\) then go to \(L f\);
comment Set initial conditions;
\(I P[1]:=J Q[1]:=i k:=i n c:=2\);
\(I Q[2]:=9 ; J Q[2]:=I Q[1]:=i j:=3\);
\(I Q[3]:=25 ; J Q[3]:=n j:=5 ; \quad k:=1\);
comment Prepare to delete a sequence of composite numbers;
\(L a: j:=k+1 ; n i:=I Q[1]-j-j ;\)
\(I Q[1]:=j l i m+j l i m+n i ;\)
for \(i:=j\) step 1 until jlim do \(I P[i]:=0\);
\(L b: \quad i:=i j ;\) if \(I Q[i j] \geq I Q[1]\) then go to \(L e ;\)
comment Extend the list of primes in array \(J Q\) counting so as to omit multiples of 2 and 3;
\(L c: n j:=n j+i n c\); \(\quad i n c:=6-i n c\);
if \(J Q[i k+1] \uparrow 2 \leq n j\) then \(i k:=i k+1\);
for \(j:=3\) step 1 until \(i k\) do
if \((n j \div J Q[j]) \times J Q[j]=n j\) then go to \(L c\);
\(i j:=i j+1 ; \quad J Q[i j]:=n j ; \quad I Q[i j]:=n j \uparrow 2\);
go to \(L b\);
comment If \(j+j+n i\) is composite, enter its smallest prime
factor in \(I P[j]\). If \(j+j+n i\) is prime, then \(I P[j]=0\);
\(L d: \quad I P[j]:=j q i ; \quad j:=j+j q i ;\)
if \(j<j l i m\) then go to \(L d\);
\(I Q[i]:=j+j+n i\);
\(L e: \quad i:=i-1 ; j q i:=J Q[i] ; j:=(I Q[i]-n i) \div 2\);
if \(j<j l i m\) then go to \(L d\);
if \(i \neq 1\) then go to \(L e ; j:=k\);
comment Pack the next \(m\) primes in \(I P[1], \cdots, I P[m]\);
\(L f: j:=j+1\); if \(I P[j] \neq 0\) then go to \(L f ;\)
if \(j=j\) lim then go to \(L a\);
\(k:=k+1 ; \quad I P[k]:=j+j+n i ;\)
if \(k \neq m\) then go to \(L f\);
comment The current length of the tables in arrays \(I Q\) and \(J Q\) is returned;
NPRIME : \(=i j\)
end NPRIME

Remark on Algorithm 357 [A1]
An Efficient Prime Number Generator [Richard C. Singleton, Comm. ACM 10 (October, 1969), 563]

Richard M. De Morgan [Recd 8 August 1972], Digital Equipment Co. Ltd., Reading, England

On some Algol 60 implementations, the value of \(n i\) is destroyed between subsequent calls to the procedure. The second and third lines of the algorithm should be changed to make \(n i\) an own integer:
own integer \(i j, i k, i n c, j, n i, n j\);
integer \(i, j q i, k\);

\author{
ALGORITHM 358 \\ SINGULAR VALUE DECOMPOSITION \\ OF A COMPLEX MATRIX [F1, 4, 5] \\ Peter A. Businger and Gene H. Golub (Recd. 31 Jan. 1969 and 18 June 1969) \\ Bell Telephone Laboratories, Inc., Murray Hill, NJ 07974 \\ Stanford University, Stanford, CA 94305 \\ KEY WORDS AND PHRASES: singular values, matrix decomposition, least squares solution, pseudoinverse \\ \(C R\) CATEGORIES: 5.14
}

CSVD finds the singular values \(\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{N}\) of the complex \(M\) by \(N\) matrix (\(M \geq N\)) which is given in the first \(N\) columns of the array A. The computed singular values are stored in the array \(S\). CSVD also finds the first \(N U\) columns of an \(M\) by \(M\) unitary matrix \(U\) and the first \(N V\) columns of an \(N\) by \(N\) unitary matrix \(V\) such that \(\left\|A-U \Sigma V^{*}\right\|\) is negligible relative to \(\|A\|\), where \(\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{i}\right)\). (The only values permitted for NU are 0 , N , or M ; those for NV are 0 or N). Moreover, the transformation \(\mathrm{U}^{*}\) is applied to the P vectors given in columns \(\mathrm{N}+1, \mathrm{~N}+2, \cdots\), \(\mathrm{N}+\mathrm{P}\) of the array A. This feature can be used as follows to find the least squares solution of minimal Euclidean length (the pseudoinverse solution) of an overdetermined system \(A x \approx b\) : Call CSVD with \(N V=N\) and with columns \(N+1, N+2, \cdots, N+P\) of A containing \(P\) right-hand sides \(b\). From the computed singular values determine the rank \(r\) of \(\Sigma\) and define \(\Sigma^{+}=\operatorname{diag}\left(\sigma_{1}{ }^{-1}\right.\), \(\left.\sigma_{2}{ }^{-1}, \cdots, \sigma_{r}^{-1}, 0, \cdots, 0\right)\). Now \(x=\mathrm{V} \Sigma^{+} \tilde{b}\), where \(\tilde{b}=\mathrm{U}^{*} b\) is furnished by CSVD in place of each right-hand side \(b\).

CSVD can also be used to solve a homogeneous system of linear equations. To find an orthonormal basis for all solutions of the system \(A x=0\) call CSVD with NV \(=\mathrm{N}\). The desired basis consists of those columns of \(V\) which correspond to negligible singular values. Further applications are mentioned in the references.

The constants used in the program for ETA and TOL are ma-chine-dependent. ETA is the relative machine precision, TOL the smallest normalized positive number divided by ETA. The assignments made are valid for a GE635 computer (a two's complement binary machine with a signed 27 -bit mantissa and a signed 7-bit exponent). For this machine, ETA \(=2^{-26} \doteq 1.5 \mathrm{E}-8\) and \(\mathrm{TOL}=2^{-129} / 2^{-26} \doteq 1\).E-31.

The arrays \(\mathrm{B}, \mathrm{C}\), and T are dimensioned under the assumption that \(\mathrm{N} \leq 100\).

The authors wish to thank Dr. C. Reinsch for his helpful suggestions.

\section*{References}
1. Golub, G. Least squares, singular values, and matrix approximations. Aplikace Matematiky 13 (1968), 44-51.
2. Golub, G., and Kahan, W. Calculating the singular values and pseudoinverse of a matrix. J. SlAM Numer. Anal. 2 (1965), 205-224.
3. Golub, G., and Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. (to appear)
```

    SUBROUTINE C S V D
    1 IA. MMAX, NMAX, M,N. P, NU, NV,
    2 COMPLEX A(MMAX,1),U(MMAX,1),V(NMAX,1)
    INTEGER MON,P.NU,NV
    REAL S(1)
    COMPLEX O,R
    REAL B(100),C(100),T(100)
    DATA ETA,TOL/1.5E-8.1.E-31/
    NP=N+P
    N1=N+1
    C
HOUSEHOLDER REDUCTION
C(1)=0.EO
k=1
10 k1=k+1
C ELIMINATION OF A(I,K), I=K+1,···.,M
z=0.EO
0020 I=K.M
20 2= 2+REAL(A(I,K))**2+AIMAG(A(I,K))**2
B(K)=0.EO
IFIZ:LE.TOLIGOTO 70
Z=SORT(Z)
B(K)=Z
W=CABS(A(K,K))
O=(1.EO,O.EO)
IF(W.NE.O.EO)O=A(K,K)/W
A(k,k)=Q*(Z+W)
IF(K.EG.NP)GOTO 70
00 50 J=k1,NP
OO 30 I=K,MO)
00 30 I=K,M
Q=Q/(Z*(Z+W))
0040 I =K,M
A(I,J)=A(I,N)-0*A(I,K)
40 CONTINUE
C
QA SE TRANSFORMATION
DO 60 J=K1,NP
*O A (K,J)=Q*A(K,J)
C
ELIMINATION OF A\&K,J], J=K+2.....N
70 IF(K.EG.N)GOTO 140
z=0.E0
00 80 J=K1,N
Z=2*REAL(A(K,J))**2*AIMAG(A(K,J))**2
c(K1)=0.EO
IFIZ.LE.TOLIGOTO 130
z=SORT(Z)
W=CABS(A(K.K1)
O=(1.EO.0.EO)
IF(W.NE.O.EO)Q=A(K,K1)/W
A(K+K1)=0*(2+W)
DO 110 I=K1,M
Q (O.EO:O.EO)
OO 90 J=K1.N
90 0=0+CONJG(A(K,J))*A(I,J)
Q=0/(z*(z+W))
DO 100 J=KI,N
100 A(I,J)=A(I,J)-Q*A(K,J)
110 CONTINUE
C FHASE TRANSFORMATION
Q=-CONJG(A(K,K1)I/CABS(A(K,K1))
Q=-CONJGIAIK.K
120 A(I,K1)=A(I,K1)*Q
130 K=K1
C
TOLERANCE FOR NEGLIGIBLE ELEMENTS
140 EPS =0.EO
DO 150 K=1,N
S(k)=B(k)
T(K)=C(K)
150 EPS=AMAXI(EPS,S(K)+T(K))
EPS=EPS*ETA
C
C INITIALIZATION OF U ANO V
IF{NU.EQ.OIGOTO 180
IFINU.EG.OIGOT
00 160 I=1,M
U(I,J)=(O.EO.O.EO)
160 U(J.J)=(1.EOOO.EO)
180 IFINV.EQ.OIGOTO 210
DO 200 J=1,NV

```
```

-00 190.J=1,N
200 v(J.J)=(1.EO,O.EO)
C OR DIAGONALIZATION
210 DO \$ 380 KK=1,N
C C TEST FOR SPLIT
220 DO 230 LL=1*K
L:K+1-LL
IF(ABS(SIL-1)).LE.EPS)GOYO 240
C 230 CANCELLATICN OF E(L.)
40 CS=O.EO
SN=1.E O
DO 280 I=L,K
F=SN\#T(I)
IF(ABS(F).LE.EPS)GOTO 290
H=S(I)
W=SQRT(F*F+H*H)
S(I):W
SN二-F/W
IF(NU.EQ.O)GOTO 260
00 250 J=1,N
x=REAL(U(J.LI))
Y=REAL(U(J.I))
U(J,LI)=CMPPLX(X*CS*Y*SN,O,EO)
U(J,I)=CMPLX(Y*CS-X*SN,O.EO)
IF(NP-EG.N)GOTO 280
DO 27G J=N1.N
Q=A(Ll,J
A(LI,J)=Q*CS*R*SN
A(I,J)=R*CS-
270 シAAIIJI
c
C 290 TEST FOR CONVERGENCE
IF(L.EQ.K)GOTO 360
C
ORIGIN SHIFT
x=S(L)
Y=S(k-1)
G=T(k-1)
H=T(k)
F=((Y-W)*(Y*W)*(G-H)*(G*H))/(2.EO*H*Y)
IF(F
F=((X-W)*(X+W)+(Y/(F+G)-H)*H)/X
C
QR STEP
CS=1.EO
SN=1.EO
00 350 IEL1.K
G=T(T)
H=SN*G
=CS*G
SSQRT(H*H*F*F)
T(II-I)=W
S=F/W
N=H/W
F}=\textrm{X}*\textrm{CS}+G*S
G=G*CS-X*SN
H=Y*SN
IFINV.EQ.OIGOTO 310
00 300 J=1.N
x=REALIV(J.I-1)
W=REAL(V(J,I))
V(J.I-1)=CMPLX(X*CS*W*SN,O.EO)
VIJ.I) =CMPLX(H*CS-X*SN;O.EO)
300 VV(J,T)=CMPLX
S(I-1)=W
C=F/W
SN=H/W
F=CS*G+SN*Y
X=CS*Y-SN*G
IFINU.EO.OIGOTO 330
00 320 J=1,N
Y=REALIU(J.I-1))
W=REAL(U(J,I))
U(J.I)=CMPLXIW*CS-Y*SN,O.EO)
F(N.EQ.NP)GOTO 350
O 340 J=N1.NP
G=A(I-1.J)
R=A(IT-1;J)
A(I-1,J)=0*CSS*R*SN
A(I*J)=R*CS-Q*SN
CONTINLE
T(L)=0.EO
T(k)=F
S(k)=x
GOTO 220
c
IF(W.GE.O.EOSGOTO 380
S(K)=-W
F(NV.EO.O)GOTO 380
DO 370 J=1,N
V(J,k)=-V(J,K)
380 CONTINUE
c

```
C SORT SINGULAR VALUES
DO \(450 \mathrm{~K}=1, \mathrm{~N}\)
 \(G=-1 . E 0\)
 450
\(G=-1\)
\(J=K\)
\(D 0 \quad 3\)
 J=K \(390 \quad I=K, N\)
 390 IIK,N
IF(SII).LE.G)GOTO 390
 \(G=5 I I\)
 jai
CONTINUE
 F(J.EO.K)GOTO 450
 IF(J.EO.K)GOT
 \(S(J)=S(k)\)
\(S(k)=G\)
 IFINV.EQ.O)GCTO 410
 0 \(400 \mathrm{I}=1\).N
 \(Q=v(I \cdot J)\)
 \(V(I, J)=V(I, K)\)
 \(400 \quad V(I, k)=0\)
 IF(NU.EQ.O)GOTO 430
 IFINU.EQ.OIGOTO 430
 \(00420 I=1\), \(N\)
 \(\theta=U(I, J)\)
 G=U(I,J
\(U(I, J)=U(I, K)\)
\(U(I, K)=0\)
 \(420 \quad\) U(I,K) \(=0\)
\(430 \quad\) IF (N.EQ.NP)GOTO 450
 IF (N.EQ.NP)GOT
DO 440 I \(=N 1\),NP
 0440 I=N1. N
 \(0=A(J, I)\)
\(A(J, I)=A(K, I)\)
 440 CONTINUE
 450 CONTINUE
\(\stackrel{C}{C}\)
BACK TRANSFORMATION
 IFINU.EQ.OIGOTO 510
 DO \(500 \mathrm{KK}=1, \mathrm{~N}\)
 \(500 \mathrm{KK}=\)
\(K=N 1-K K\)
 IF \(\begin{aligned} & K=N(K) \text {.EO. O. EOIGOTO } 500\end{aligned}\)
 \(\theta=-A(K, K) / C A B S(A(K, K))\)
 \(0=-A(K, K) / C A B\)
\(00460 J=1, N U\)
 \(460 \quad\) U(K.J) \(=0 * U(K, J)\)
 DO 490 J=1.NU
 \(0 \begin{aligned} & 490 J=1, N U \\ & 0=10 . E O, O . E O)\end{aligned}\)
 \(00470 \mathrm{I}=\mathrm{K} \cdot \mathrm{M}\)
 00470 I=K.M
\(\theta=0+C\) CNJG(A(I,K))*L(I,J)
 \(\theta=0 /(C A B S(A(K, K)) * B(K))\)
 DO \(480 \mathrm{I}=\mathrm{K}, \mathrm{M}\)
 \(480 I=K, M\)
\(U(I, J)=U(I, J)-0 * A(I, K)\)
 CONTINUF:
 CONTINU
 CNV.EQ.OIGOTO 570
 IF (N.LT. \(21 G O T O 57.0\)
 DO 560 KK=2, N
 \(K=N 1-K K\)
 \(K 1=K+1\)
 K1こK+1
IFIC(K1).EQ.O.EOIGOTO 560
 \(Q=-C O N J G(A(K, K 1)) / C A B S(A(K, K 1))\)
 \(Q=-C O N J G I A!K . K\)
\(D O 520 \mathrm{~J}=1: N V\)
 V(K1, J) \(=0 * V(K 1, J)\)
 \(00550 \mathrm{~J}=1, \mathrm{NV}\)
 \(\theta=(0 . E O \geqslant O . E O)\)
 \(Q=(O . E O, O . E O)\)
\(D O \quad 530 \quad I=K 1, N\)
 \(00530 \mathrm{I}=\mathrm{K} 1\), N
 \(0=0+A(K, I) * V(I, j)\)
 \(0=0+A(K, I) * V(I ; J)\)
\(Q=Q /(C A B S(A(K, K 1)) * C(K 1))\)
 O \(540 \mathrm{I}=\mathrm{KI}, \mathrm{N}\)
 DO 540 I=K1, N
 V(I,J)=V(I,J)-Q*CONJG(A(K,I))
 CONTINUE
 CONTINUE
 CONTINUE
 RETURN
END

\author{
ALGORITHM 359 \\ FACTORIAL ANALYSIS OF VARIANCE* [G1] \\ John R. Howell (Recd. 2 Aug. 1969 and 12 May 1969) \\ Department of Biometry, Medical Center, Virginia Commonwealth University, Richmond, VA 23219 \\ *This investigation was supported in part by Public Health Service Research Grant FR 00016-05, from the National Institutes of Health.
}

KEY WORDS AND PHRASES: factorial variance analysis, variance, statistical analysis
\(C R\) CATEGORIES: 5.5

Comments. This subroutine transforms a vectory \(\mathbf{y}\), observed in a balanced complete \(t_{1} \times t_{2} \times \cdots \times t_{n}\) factorial experiment, into an interaction vector \(\mathbf{z}\), whose elements include mean and main effects.

The experimental observations \(y\), , \(\left(\boldsymbol{s}=\left(s_{1}, s_{2}, \cdots, s_{n}\right) ; s_{i}=0\right.\), \(\left.1, \cdots, t_{i}-1 ; i=1,2, \cdots, n\right)\) are assumed to be stored in the array \(Y\) in increasing order by the composite base integer \(\mathbf{s}\). After the transformation, the array \(Z\) will contain the interactions in natural order.

The method used is Good's [1, 2] modification of Yates's [5] interaction algorithm. In [1, p. 367], the interactions are expressed in the form \(\mathbf{z}=\left(M_{1} \otimes M_{2} \otimes \cdots \otimes M_{n}\right) \mathbf{y}\), where \(M_{i}\) is a \(t_{i} \times t_{i}\) matrix of normalized orthogonal contrasts and where \(\otimes\) denotes a direct (Kronecker, tensor) product. The interactions can also be written \(\mathbf{z}=\left(C_{1} C_{2} \cdots C_{n}\right) \mathbf{y}\), where
\[
\begin{aligned}
& C_{1}=M_{1} \otimes I_{t_{2}} \otimes \cdots \otimes I_{t_{n}} \\
& C_{2}=I_{t_{1}} \otimes M_{2} \otimes \cdots \otimes I_{t_{n}} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& C_{n}=I_{t_{1}} \otimes I_{t_{2}} \otimes \cdots \otimes M_{n}
\end{aligned}
\]
and where \(I_{t_{i}}\) is the \(t_{i} \times t_{i}\) identity matrix.
By performing elementary operations (row and column interchanges) on the \(C_{i}\) we get \(\mathrm{z}=\left(D_{1} D_{2} \cdots D_{n}\right) \mathbf{y}\), where
\[
D_{i}=\left(\begin{array}{l}
M_{i 1} \oplus \cdots \oplus M_{i 1} \\
\overline{M_{i 2} \oplus \cdots \oplus M_{i 2}} \\
\hdashline M_{i t_{i}} \oplus \cdots \oplus M_{i t_{i}}
\end{array}\right)
\]
and where \(M_{i j}\) is row \(j\) of \(M_{i}\). The symbol \(\oplus\) denotes a direct sum. For an example of this for an unnormalized matrix, see Good [1, p. 362].

Since each row of \(D_{i}\) consists of a row of \(M_{i}\) and zeros, we only need \(M_{i}\) for forming z. The subroutine forms first \(D_{n y} y\), then this result is premultiplied by \(D_{n-1}\), and so on until we obtain z. The elements of \(\mathbf{z}\) are the required interactions.

This method can be mechanized for hand computation in the following way. (The subroutine was written from this point of view.) Write the observations in the order specified above. Write row one of \(M_{n}\) down the right edge of a strip of paper using the same spacing as for the observations. Now place this movable
strip alongside the observation vector so that the top element on the paper strip is opposite the top element of the observation vector. Multiply adjacent elements and write the sum of these products at the top of a new column. Now slide the paper strip down \(t_{n}\) spaces. Form the indicated inner product as before and write the result in the new column below the previous entry. Continue in this manner until all the observations have been used. Now write row two of \(M_{n}\) on a strip of paper and proceed as before. If we continue this process with all the rows of \(M_{n}\) we will get a new vector \(z_{n}\) whose elements are linear transformations of the observation vector \(\mathbf{y}\). The dimension of \(z_{n}\) is the same as that of y. Similarly form \(\mathbf{z}_{n_{-1}}\) from \(\mathbf{z}_{n}\) and \(M_{n-1}\). Continuing this process we finally obtain \(\mathbf{z}_{1}=\mathbf{z}\) which is the desired interaction vector.

In all the foregoing we used the normalized contrast matrices; thus the sums of squares are the squares of the elements of \(\mathbf{z}\). For hand computation, one might prefer using the unnormalized contrast matrices, since their elements are integers. But then we need a vector of divisors; it is obtained by performing the same operations on a column of ones as on \(y\), except that we use the squares of the elements of the contrast matrices. Then the \(i\) th sum of squares equals \(z_{i}{ }^{2}\) divided by the corresponding divisor.

This method might be called a "paper strip method" for analysis of variance and is similar to paper strip methods used for operations with polynomials. For examples of this, see Lanczos [3] and Prager [4].

We require \(2 t_{1} t_{2} \cdots t_{n}\) locations for storing \(y\) and \(z\) plus \(\sup \left(t_{1}\right.\), \(t_{2}, \cdots, t_{n}\)) locations for storing a row of \(M_{i}\). The number of multiplications required is \(\left(\prod t_{i}\right)\left(\sum t_{i}+1\right)\).

Acknowledgments: The author wishes to thank Dr. A. E. Brandt for initiating his interest in programming analysis of variance. He wishes to thank Dr. W. H. Carter, Jr., and the referee, for helpful comments.

References:
1. Good, I. J. The interaction algorithm and practical Fourier analysis. J. Roy. Statist. Soc. (B) 20, 2 (1958), 361-372.
2. Good, I. J. The interaction algorithm and practical Fourier analysis: An addendum. J. Roy. Statist. Soc. \{B\} 22, 2 (1960). 372-375.
3. Lanczos, C. Applied Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1956.
4. Prager, W. Introduction to Basic Fortran Programming and Numerical Methods. Blaisdell, Waltham, Mass., 1965.
5. Yates, F. The design and analysis of factorial experiments. Imperial Bureau of Soil Science, Harpenden, England, 1937.
 SUBROUTNEENNVA
 SUBROUTNEENNVA
 * (Y.z,rcimmsize.ncls.nf(tr)
 * (Y.z,rcimmsize.ncls.nf(tr)
 OIMENSION Y(1),2(1),
 OIMENSION Y(1),2(1),
 * ROW(1):MSIZE(1)
 * ROW(1):MSIZE(1)
 LOOP FOR NFCTR CONTRAST MATRICES
 LOOP FOR NFCTR CONTRAST MATRICES
 OO NF = 1,NFCTR
 OO NF = 1,NFCTR
 GET SIZE OF THE MATRIX
 GET SIZE OF THE MATRIX
 K = NFCTR-NF+I
 K = NFCTR-NF+I
 NRNC =MSI2E(K)
 NRNC =MSI2E(K)
 DO 3 % \ = I NNRNC
 DO 3 % \ = I NNRNC
 CALL AROW (ROW,NRNC,S)
 CALL AROW (ROW,NRNC,S)
 OERFORM THE 'PAFER STRIP'
 OERFORM THE 'PAFER STRIP'
 OPERATION FOR A MATRIX ROW
 OPERATION FOR A MATRIX ROW
 D 2 K }=1\mathrm{ 1.NCLS,NRNC
 D 2 K }=1\mathrm{ 1.NCLS,NRNC
 DO 1 L = 1,NRN
 DO 1 L = 1,NRN
 KL(I) = = Z+L-1 (I)+ROK(L)*Y(KLI)
 KL(I) = = Z+L-1 (I)+ROK(L)*Y(KLI)
 1 2- 2(I) = 2 = (I)
 1 2- 2(I) = 2 = (I)
 3 CONTINUE
 3 CONTINUE
 DO 4 & J = 1,NCLS
 DO 4 & J = 1,NCLS
 5 CONTINUE
 5 CONTINUE
 DO 6 J = 1,NCLS
 DO 6 J = 1,NCLS
 6 Y(J) = Y(J)#Y(J)
 6 Y(J) = Y(J)#Y(J)
 RE TURN
 RE TURN
 END
 END

REMARKS ON:
ALGORITHM 332 [S22]
JACOBI POLYNOMIIALS [Bruno F. W. Witte, Comm.
AC.M 11 (June 1968), 436]
ALGORITHMI 344 [S14]
STUDENT'S \(t\)-DISTRIBUTION [David A. Levine, Comm. ACM 12 (Jan. 1969), 37]
ALGORITHM 351 [D1]
MODIFIED ROMBERG QUADRATURE [Graeme
Fairweather, Comm. 12 (June 1969), 324]
ALGORITHM 359 [G1]
FACTORIAL ANALYSIS OF VARIANCE [John R. Howell, Comm. ACM 12 (Nov. 1969), 631]
Arthur H. J. Sale (Recd. 16 Feb. 1970)
Basser Computing Department, University of Sydney, Sydney, Australia
KEY WORDS AND PHRASES: Fortran standards
\(C R\) CATEGORIES: 4.0,4.22

An unfortunate precedent has been set in several recent algorithms of using an illegal FORTRAN construction. This consists of separating an initial line from its continuation line by a comment line, and is forbidden by the standard (see sections 3.2.1, 3.2.3 and 3.2 .4 of \([1,2]\)). The offending algorithms are to date: \(332,344,351\) and 359.

While this is perhaps a debatable decision by the compilers of the standard, and trivial to correct, it seems a pity to break the rules just for a pretty layout as has been done.

References:
1. ANSI Standard FORTRAN (ANSI X3.9-1966), American National Standards Institute, New York, 1966.
2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964), 591-625.

\author{
ALGORITHM 360 \\ SHORTEST-PATH FOREST WITH TOPOLOGICAL ORDERING [H] \\ Robert B. Dial (Recd. 21 Nov. 1968, 27 Nov. 1968 and 30 Apr. 1969) \\ Alan M. Voorhees and Associates, Inc., McLean, VA 22101, and Department of Civil Engineering, University of Washington, Seattle, WA 98105 \\ KEY WORDS AND PHRASES: shortest path, tree, network, directed graph \\ \(C R\) CATEGORIES: 5.32,5.42
}
procedure MOORE (INDEX, J, D, maxd, n, DIST, I, NEXT LAST, maxdist, ROOT, m); value maxd, \(n\), maxdist, \(m\); integer array \(I N D E X, J, D, D I S T, I, N E X T, L A S T, R O O T\); integer maxd, \(n\), maxdist, \(m\);
comment Given a subset (called "roots") of the nodes (numbered from 1 to \(n\)) spanned by a directed graph composed of ares of known length, MOORE finds for each node in the network the shortest path connecting it to its closest root node. The result is a disjoint set of shortest-path trees, referred to here as a "shortest-path forest." MOORE's output describes all the paths in the forest and gives their lengths. It also provides two lists which sequence the nodes spanned by the forest in forward and backward topological order. In the algorithm's terminology, "forward topological order" is a sequence in which any given node is listed after any other node which lies on the path between it and its root node. Conversely, the "backward topological order" has the nodes arranged in decreasing distance from their nearest root node.
The procedure below implements a well-known, widely-used algorithm by E. F. Moore [1] and is particularly suited for a large, sparse network whose arc lengths are short and which have a small variance, e.g. an urban highway system. As an indication of its efficiency, an Assembly Language routine patterned after MOORE for the IBM 360 model 65 found all shortest paths from a single root node to the remaining 12,000 nodes of a 36,000 -arc network (i.e. built a minimum-path tree) in one (1) second. In general, for a connected graph, MOORE's 'running time" is directly proportional to the number of arcs in the network and is independent of the number of roots. The mechanics of the algorithm are summarized in the following three steps:
0. Mark each root node \(r\) "reached but not scanned" and associate with it a distance of zero (DIST[\([\mathrm{r}]=0\)). Mark each nonroot node \(i\) "not reached" and associate with it a distance of infinity (i.e. DIST \([i]=\) maxdist). Go to Step 1.
1. From among the nodes marked "reached but not scanned," select the node \(i\) whose distance is smallest. If there is no node so marked, the forest is complete. Otherwise go to Step 2.
2. For each arc (\(i, j\)) in the network (i.e. all arcs exiting the selected node \(i\)), compare DIST[j] with the sum of DIST \(\{i]\) and the arc length of \((i, j)\). Whenever this latter sum is less than the former quantity, set \(\operatorname{DIST}[j]\) equal to it, mark node \(j\) "reached but not scanned," and put the arc \((i, j)\) in the forest, removing any other are whose final node is \(j\). When all arcs exiting node \(i\) have been so examined mark node \(i\) "reached and scanned" and go to Step 1.
While Moore's algorithm possesses the important attribute of examining each arc in the network only once, the speed achieved in its implementation depends primarily on its efficiency in Step 1. To facilitate this node selection, the procedure below uses a topological ordering of the final nodes of the arcs in the partial forest. It effects Step 1 by referring to a forward-ordering list, \(N E \mathrm{X} T\), to determine which node should be selected next from the "reached but not scanned" category. A backwardordering list, \(L A S T\), aids updating the ordering when a previously found path to a node is superseded by a newly found, shorter one. Also used in this updating process are two short local vectors, \(H E A D\) and TAIL. \(H E A D[d]\) and \(T A I L[d]\) contain the first and last node of a sublist of nodes, whose associated distance is not less than the distance of the node selected in Step 1 and is congruent to \(d\) modulo the net's maximum arc length. The use of these latter two arrays becomes clear while studying the Algol below.
Besides the \(m\) root nodes stored in ROOT [1], \(\cdots, \operatorname{ROOT}[m]\), input to MOORE consists of a network description in three vectors, \(J, D\), and \(I N D E X\), together with the scalar parameters \(n\), maxd, and maxdist. The array \(J\) contains the final node numbers of all arcs in the network stored in ascending sequence with respect to their initial node number. The second vector, \(D\), is parallel to the array \(J\) and holds the corresponding arc lengths-against which paths are to be minimized. INDEX \([i]\) points to the first element of \(J\) representing an arc exiting node \(i\). INDEX is dimensioned from 1 to \(n+1\), where the parameter \(n\) is the highest node number in the network, and INDEX[n+1] contains one plus the total number of arcs in the network. The arc lengths stored in the array \(D\) must be positive integers strictly less than the parameter maxd. Similarly, as maxd exclusively limits the length of an arc, so does the other input scalar parameter maxdist limit the length of a path. MOORE only considers paths which are shorter than maxdist.
The algorithm's output describes the minimum-path forest in two vectors, \(I\) and DIST. \(I[j]\) contains the initial node of the forest's unique are whose final node is \(j\). Thus the sequence of nodes representing the shortest path from the nearest root to \(j\) is found in reverse order by looking at \(I[j], I[I[j]]\), etc., until a root node is encountered. DIST[j] returns the minimized distance from the closest root node to \(j\). If \(j\) is not reachable from any root node via a path shorter than maxdist, MOORE returns with \(\operatorname{DIST}[j]=\) maxdist and \(I[j]=0\). The forest's topological orderings are returned in list form in the pointer vectors NEXT and LAST. NEXT is a circular successor list. The number of the node closest to its root node is stored in NEXT[ROOT[1]]. The next closest node is contained in NEXT[\(N E X T[R O O T[1]]\), etc., until ROOT[1] is encountered in some NEXT[j], where \(j\) is the number of the node farthest from its root node. Similarly, \(L A S T\) is a circular predecessor list. The backward topological order is obtained by starting at \(\operatorname{LAST}[R O O T[1]]\), which contains the number of the most distant node. LAST[LAST[ROOT[1]]]
has the next most distant, etc., until LAST[j] \(=\operatorname{ROOT}[1], j\) being the closest node to its root. When no path shorter than maxdist exists between a root node and \(j\), then \(j\) appears in neither the \(N E X T\) nor the \(L A S T\) list.

Reference:
1. Moore, E.F. The shortest path through a maze. In International Symposium on the Theory of Switching Proceedings. Harvard U. Press, Cambridge, Mass., Apr. 1957, pp. 285-292;
begin
integer procedure \(\bmod (d, \max d)\); value \(d\), maxd; integer \(d\), maxd; \(\bmod :=d-\operatorname{maxd} \times \operatorname{entier}(d \div \operatorname{maxd})\);
integer array \(H E A D[0: \operatorname{maxd}-1], T A I L[0: \operatorname{maxd}-1]\); integer \(i, p t, k, v, j, q, c t ;\)
for \(i:=1\) step 1 until \(\operatorname{maxd}-1\) do \(\operatorname{HEAD}[i]:=\operatorname{TAIL}[i]:=0\);
for \(i:=1\) step 1 until \(n\) do
begin DIST \([i]:=\) maxdist; \(\quad I[i]:=0\) end;
for \(i:=2\) step 1 until \(m\) do
begin
NEXT \([R O O T[i-1]]:=R O O T[i] ; \operatorname{LAST}[R O O T[i]]:=\) ROOT [i-1];
\(\operatorname{DIST}[R O O T[i]]:=0\)
end;
\(\operatorname{LAST}\left[\operatorname{ROOT}^{\prime}[1]\right]:=\operatorname{NEXT}[R O O T[m]]:=\operatorname{DIST}[R O O T[1]]:=\) \(p t:=0 ;\)
\(i:=H E A D[0]:=\) ROOT \([1] ; \operatorname{TAIL}[0]:=\operatorname{ROOT}[m]\);
comment Examine all exits from selected node (Step 2 above);
\(r\) : for \(k:=I N D E X[i]\) step 1 until INDEX \([i+1]-1\) do
begin
\(v:=\operatorname{DIST}[i]+D[k] ; \quad j:=J[k] ;\)
if \(v<D I S T[j]\) then
begin
comment Path to \(j\) via \(i\) is shortest so far-put arc (\(i, j\)) in forest;

\section*{if \(\operatorname{DIST}[j] \neq\) ma.dist then}

\section*{begin}
comment Delete node \(j\) from its prior sublist;
\(q:=\bmod (D I S T[j], \operatorname{maxd}) ;\)
if \(H E A D[q]=j\) then \(H E A D[q]:=N E X T[j]\)
else
begin
if \(\operatorname{TAIL}[q]=j\) then
begin \(\operatorname{TAIL}[q]:=\operatorname{LAST}[j] ; \operatorname{NEXT}[L A S T[j]]:=0\) end
else
begin LAST \([\) NEXT \([j]]:=\operatorname{LAST}[j] ; \quad\) NEXT \([L A S T\) \([j]]:=N E X T[j]\) end
end
end;
comment Hook \(j\) to its new sublist, and put arc (\(i, j\)) in forest; \(q:=\bmod (v, \operatorname{maxd})\);
if \(H E A D[q]=0\) then
begin \(H E A D[q]:=j ; L A S T[j]:=0\) end
else
begin \(L A S T[j]:=T A I L[q] ; \quad N E X T[T A I L[q]]:=j\) end; comment Update forest and forward ordering; \(I[j]:=i ; \operatorname{DIST}[j]:=v ; \quad \operatorname{TAIL}[q]:=j ;\) NEXT \([j]:=0\) end
end;
comment Select next node \(i\) whose exit arcs are to be examined (Step 1 above);
if \(N E X T[i] \neq 0\) then
begin
comment Sublist containing \(i\) not empty-use successor of \(i ; i:=N E X T[i] ;\) go to \(r\)
end;
comment Sublist containing \(i\) empty-use first node in next nonempty sublist;
HEAD \([p t]:=0\);
for \(c t:=1\) step 1 until maxd -1 do
begin
\(p t:=\bmod (p t+1, \operatorname{maxd})\);
if \(H E A D[p t] \neq 0\) then
begin
comment Found a nonempty sublist-hook it to lists;
\(\operatorname{LAST}[H E A D[p t]]:=i ; \quad i:=N E X T[i]:=H E A D[p t] ;\)
go to \(r\)
end;
end;
comment All sublists empty, forest built-circularize lists and quit;
\(\operatorname{LAST}[R O O T[1]]:=i ; \quad N E X T[i]:=R O O T[1]\)
end MOORE

\section*{ALGORITHM 361 \\ PERMANENT FUNCTION OF A SQUARE MATRIX I AND II [G6] \\ Bruce Shriver, P. J. Eberlein, and R. D. Dixon (Recd. \\ 19 Feb. 1969, 7 Mar. 1969 and 9 July 1969) \\ State University of New York at Buffalo, Amherst, NY 14226 \\ KEY WORDS AND PHRASES: matrix, permanent, determinant \\ \(C R\) CATEGORIES: 5.30}
real procedure \(\operatorname{per} 1(A, n)\);
integer \(n\); array \(A\);
comment Let \(A\) be an \(n \times n\) real matrix, \(\mathrm{n}>1\). The permanent function of \(A\), denoted \(\operatorname{per}(A)\), is computed by H. J. Ryser's [1] expansion formula:
\[
\operatorname{per}(A)=\sum_{r=0}^{n-1}(-1)^{r} \sum_{x \in T_{n-r}} \prod_{i=1}^{r} x_{i}
\]
where \(T j, j=n, n-1, \cdots, 2,1\), is the set of vectors \(\mathbf{x}=\left(x_{i}\right)\), \(i=1,2, \cdots, n\) which are obtained by adding \(j\) columns of \(A\) together in all \(\binom{n}{j}\) possible ways. To effect the sum over vectors
in \(T_{j}, n-1\) sums are computed. The natural 1.1 map from the binary integers to all \(r\)-combinations, \(r=1,2, \cdots, n-1\), is used to increment the sums over the sets \(T_{j}\).

Reference:
1. Ryser, H. J. Combinatorial Mathematics, Carus Monograph * 14. Wiley, New York, 1963, p. 27;

\section*{begin}
real sig, pera, prod, rowsum;
integer number, limit, mod, gen, \(g, i, j, r\);
array \(\operatorname{sum}[0: n-1]\);
integer array \(d[1: n]\);
sig \(:=-1 ;\) pera \(:=0 ;\) limit \(:=(2 \uparrow n)-1\);
for \(r:=0\) step 1 until \(n-1\) do \(\operatorname{sum}[r]:=0\);
for number \(:=1\) step 1 until limit do
begin
\(r:=0\); gen \(:=\) number;
for mod \(:=1\) step 1 until \(n\) do
begin
\(g:=g e n \div 2\); if \((g e n-g \times 2)=1\) then
begin \(r:=r+1 ; d[r]:=\bmod\) end;
gen \(:=g\)
end;
prod := 1;
for \(i:=1\) step 1 until \(n\) do
begin
rowsum :=0;
for \(j:=1\) step 1 until \(r\) do
rowsum \(:=\) rowsum \(+A[i, d[j]] ;\)
prod \(:=\) prod \(\times\) rowsum
end;
\(\operatorname{sum}[n-r]:=\operatorname{sum}[n-r]+\operatorname{prod}\)
end;
for \(r:=0\) step 1 until \(n-1\) do
begin \(\operatorname{sig}:=-\operatorname{sig} ; \quad\) pira \(:=\) pera \(+\operatorname{sig} \times \operatorname{sum}[r]\) end;
per \(:=\) pera
end of real procedure per 1 ;
real procedure \(\operatorname{per} 2(A, n)\);
integer \(n\); array \(A\);
comment Let \(A\) be an \(n \times n\) real matrix, \(n>1\). The permanent function of \(A\), denoted by \(\operatorname{per}(A)\) is computed by Jurkat and Ryser's [1] method of inductively generating the vectors \(p_{1}, \cdots, p_{n}\) where \(p_{r}\) is the vector of permanents of \(r\) by \(r\) submatrices of the first \(r\) rows of \(A\). This vector has \(\binom{n}{r}\) components indexed by the \(r\)-combinations of \(\{1, \cdots, n\}\). The natural 1-1 map from the binary integers \(\{1, \cdots, 2 \uparrow n-1\}\) to the \(r\)-combinations of \(\{1, \cdots, n\}\) for \(r=1, \cdots, n\) is used to index the \(p\) 's and thus they are generated in an order somewhat different from that of Jurkat and Ryser.

Reference:
1. Jurkat, W. B. and Ryser, H. J. Matrix factorizations of determinants and permanents. J. Algebra \& (1966), 1-27;

\section*{begin}
integer number, limit, mod, gen, \(g, r, d i g, s u b, j\);
array list \([1: 2 \uparrow n-1]\);
limit \(:=2 \uparrow n-1\);
comment Initialize list as accumulators;
for \(j:=1\) step 1 until limit do list \([j]:=0\);
for \(j:=1\) step 1 until \(n\) do list \([2 \uparrow(j-1)]:=A[1, j]\);
for number \(:=1\) step 1 until limit do
begin
if list \([\) number \(] \neq 0\) then
begin
\(r:=1\); gen \(:=\) number \(;\)
for \(\bmod :=1\) step 1 until \(n\) do
begin
\(g:=g e n \div 2\);
if \(g e n-2 \times g=1\) then \(r:=r+1\);
gen \(:=g\)
end count of 1 's in number;
\(\operatorname{dig}:=1\); gen \(:=\) number;
for \(\bmod :=1\) step 1 until \(n\) do
begin
\(g:=\) gen \(\div 2\);
if \(g e n-2 \times g=0\) then
begin
sub := number + dig;
\(l i s t[s u b]:=l i s t[s u b]+l i s t[n u m b e r] \times A[r, \bmod]\)
end;
gen \(:=g ; \operatorname{dig}:=2 \times \operatorname{dig}\)
end computations with list [number]; end
end;
per := list [limit]
end of real procedure per2;
Note. On the Permanent Function of a Square Matrix I and II: Program I is slower than Program II. However Program II uses approximately \(2^{n}\) more locations of store. The running times for both programs double when \(n\) is incremented by 1 .

REMARK ON ALGORITHM 361 [G6]
PERMANENT FUNCTION OF A SQUARE MATRIX
I AND II [Bruce Shriver, P. J. Eberlein, and R. D. Dixon, Comm. ACM 12 (Nov. 1969), 634]
Bruce Shriver, P. J. Eberlein, and R. D. Dixon (Recd. 22 Jan. 1970)
State University of New York at Buffalo, Amherst, NY 14226

KEY WORDS AND PHRASES: matrix, permanent, determinant
CR CATEGORIES: 5.30
The authors would like to cite the following misprints in the above two algorithms:
(A) In procedure \(\operatorname{per} 1(A, n)\)
(1) in line 43 , the variable name pira should be pera
(2) in line 44, the variable name per should be per1.
(B) In procedure \(\operatorname{per} 2(A, n)\)
(1) in line 47 , the variable name per should be per 2 .
```

ALGORITHM 362
GENERATION OF RANDOM PERMUTATIONS [G6]
J. M. Robson (Recd. 1 Apr. 1969)
Programming Research Croup, 45 Banbury Road, Oxford,
England
KEY WORDS AND PHRASES: permutation, random permu-
tation, transposition
CR CATEGORIES: 5.5
procedure perm(n,r,A); value n,r; integer n,r; integer
array A;
comment This procedure produces in the vector A a permuta-
tion on the integers 1,2,\cdots,n, each of the n! permutations
being given by one value of r between 1 and n! inclusive. It is
thus similar in effect to the procedure given in [1] but it is con-
siderably faster, especially for large values of n, since it uses a
single loop rather than a double one.
A permutation is generated as the product of n-1 transpo-
sitions of which the jth transposes }A[n+1-j] and A[x] for
some }x\leqn+1-j\mathrm{ .
If the line
for }i:=1\mathrm{ step 1 until }n\mathrm{ do }A[i]:=
is omitted the procedure will permute the original values
A[1],\cdots,A[n] in the same manner.
Reference:

1. Robinson, C. L. Algorithm 317, Permutation. Comm. ACM }1
(Nov. 1967), 729;
begin
integer }i,x,y\mathrm{ ;
for }i:=1\mathrm{ step 1 until }n\mathrm{ do }A[i]:= i\mathrm{ ;
for }i:=n\mathrm{ step -1 until 2 do
begin
x:=r-(r\divi)\timesi+1; r:=r\divi;
y:=A[x]; A[x]:=A[i]; A[i]:=y
end
end
```
```

ALGORITHM 363
COMPLEX ERROR FUNCTION* [S15]
Walter Gautschi (Recd. 11 June 1969)
Computer Sciences Department, Purdue University, Iaa-
fayette, IN 47907
* Work supported, in part, by the National Aeronautics and
Space Administration (NASA) under grant NGR 15-005-039
and, in part, by Argonne National Laboratory.
KEY WORDS AND PHRASES: error function for complex argument, Voigt function, Laplace continued fraction, GaussHermite quadrature, recursive computation
$C R$ CATEGORIES: 5.12
procedure $\operatorname{wofz}(x, y, r e, i m)$; value $x, y$; real $x, y, r e, i m$;
comment This procedure evaluates the real and imaginary part of the function $w(z)=\exp \left(-z^{2}\right) \operatorname{erfc}(-i z)$ for arguments $z=x+i y$ in the first quadrant of the complex plane. The accu racy is 10 decimal places after the decimal point, or better. For the underlying analysis, see W. Gautschi, "Efficient computation of the complex error function," to appear in SIAM J. Math. Anal.;

```

\section*{begin}
```

integer capn, $n u, n, n p 1$;
real $h, h 2$, lambda, $r 1, r 2, s, s 1, s 2, t 1, t 2, c$;
Boolean $b$;
if $y<4.29 \wedge x<5.33$ then
begin
$s:=(1-y / 4.29) \times \operatorname{sqrt}(1-x \times x / 28.41)$;
$h:=1.6 \times s ; h 2:=2 \times h$;
capn $:=6+23 \times s ; n u:=9+21 \times s$
end
else
begin $h:=0 ; \quad$ capn $:=0 ; n u:=8$ end;
if $h>0$ then lambda $:=h 2 \uparrow$ capn;
$b:=h=0 \bigvee$ lambda $=0$;
$r 1:=r 2:=s 1:=s 2:=0$;
for $n:=n u$ step -1 until 0 do
begin
$n p 1:=n+1 ;$
$t 1:=y+h+n p 1 \times r 1 ; \quad t 2:=x-n p 1 \times r 2 ;$
$c:=.5 /(t 1 \times t 1+t 2 \times t 2)$;
$r 1:=c \times t 1 ; r 2:=c \times t 2$
if $h>0 \wedge n \leqq$ capn then begin
$t 1:=l a m b d a+s 1 ; \quad s 1:=r 1 \times t 1-r 2 \times s 2 ;$
$s 2:=r 2 \times t 1+r 1 \times s 2$;
lambda $:=$ lambda/h 2
end
end;
re $:=$ if $y=0$ then $\exp (-x \times x)$ else
$1.12837916709551 \times$ (if $b$ then $r 1$ else $s 1$ );
$i m:=1.12837916709551 \times($ if $b$ then $r 2$ else $s 2)$
end wofz

```

\author{
Certification of Algorithm 363 [S15] \\ Complex Error Function [Walter Gautschi, Comm. \\ ACM 12 (Nov. 1969), 635]
}
K.S. Kölbig* (Recd. 8 Oct. 1970)

Data Handling Division, European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland.

Key Words and Phrases: error function for complex argument, Voigt function, special functions, function evaluation

CR Categories: \(\mathbf{5 . 1 2}\)

As a result of an exchange of letters with W . Gautschi it became apparent that the following alterations simplify somewhat the procedure wofz:
(i) insert the statement
lambda \(:=h 2 \uparrow c a p n ;\)
between the statements
capn \(:=6+23 \times s ; n u:=9+21 \times s\)
(ii) delete the statement
if \(h>0\) then lambda \(:=h 2 \uparrow\) capn;
Furthermore, for clarification, a cornment could be inserted before the statement \(b:=h=0 \vee\) lambda \(=0\); namely
comment In the following statement, lambda \(=0\) covers the under-
flow case when \(h>0\) is very small;
After these slight modifications, the procedure wofz was translated into Fortran and extended to the whole \(z\)-plane \((z=x+i y)\) by means of [1, No. 7.1.11, 12]
\(w(-z)=2 e^{-z^{2}}-w(z), \quad w(\bar{z})=\overline{w(-z)}\).
It was then tested on a CDC 6500 computer at CERN. The tests included the following:
(i) Calculation of the seven examples No. 12-18 for \(w(z)\), erf \((z)\), and the Fresnel integral \(S_{1}(z)\) given in [1, No. 7.5]. At least 11 significant digits agreed with the values obtained by
\(w(z)=e^{-z^{2}}[1-e r f(-i z)]=e^{-z^{2}} \operatorname{erfc}(-i z)\).
The error function erf(z) for complex \(z\) in (1) was calculated using Salzer's formula, which is reproduced in the NBS Handbook [1, No. 7.1.29]. This formula requires the computation of \(\operatorname{erf}(x)\) for real \(x\), which was done with the help of a library program based on the approximation given by Cody \(\{2 \mid\). (Note that the correct value of \(\operatorname{Im} S_{1}[(1 / 2+i) \sqrt{ } 2]\) in example 18 is -0.681620 instead of -0.681619 .)
(ii) Calculation of \(w(z)\) for
\(z=4.29+10^{-10} p+i\left(5.33+10^{-10} q\right)\)
with \(p, q=-1,0,1\). These values of \(z\) lie near the line which separates two branches in the procedure wofz. Eight to nine significant digits, corresponding to nine to ten figures after the decimal point, agreed with the values obtained from (1).
(iii) Calculation of \(w(z)\) along the diagonal \(z=(1+i) u\) for \(u=\) \(-27(1) 100,1000,10000\). For \(u<10\), the formula [1, No. 7.9]
\(w[(1+i) u]=\)
\[
\begin{equation*}
e^{-2 i u^{2}}\left\{1+(i-1)\left[C\left(\frac{2 u}{\sqrt{ } \pi}\right)+i S\left(\frac{2 u}{\sqrt{ } \pi}\right)\right]\right\} \tag{2}
\end{equation*}
\]
was used for comparison. The Fresnel integrals \(C(x)\) and \(S(x)\) were computed with a library program based on the Algol procedure Fresnel written by Bulirsch [3]. Twelve to fourteen significant digits agreed. For \({ }^{\prime}>10\), the results of wofz were checked against the asymptotic expansion [1, No. 7.1.23]
\[
\begin{align*}
& w(z) \sim \frac{i}{\sqrt{ } \pi z}\left(1+\sum_{n=1}^{\infty} \frac{1.3 \cdots(2 n-1)}{\left(2 z^{2}\right)^{n}}\right) \tag{3}\\
&\left(z \rightarrow \infty,-\frac{\pi}{4}<\arg (z)<\frac{5 \pi}{4}\right) .
\end{align*}
\]

Thirteen to fourteen significant digits agreed.
(iv) Calculation of \(w(z)\) along the imaginary axis \(x=0\) for \(y=\) -27 (1) 100, 1000, 10000. For \(y<25\), the formula
\(w(i y)=e^{y^{2}} \operatorname{erfc}(y)\)
was used for comparison. The complementary errov function \(\operatorname{erfc}(x)\) was computed by means of a library program based on [2]. For \(-27 \leq y \leq-2\) and for \(10 \leq y<25,12\) to 14 significant digits agreed, whereas for \(-2<y<10\), ten to thirteen significant digits were found to be in agreement. For \(y \geq 25\), the results were checked against the asymptotic expansion (3). Thirteen to fourteen significant digits agreed.
(v) Calculation of \(w(x)-e^{-x^{2}}\) along the real axis \(y=0\) for \(x=0(1) 100,1000,10000\) using the formula [1, No. 7.9]
\(w(x)-e^{-x^{2}}=\frac{2 i}{\sqrt{ } \pi} e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t=\frac{2 i}{\sqrt{ } \pi} F(x)\)
for comparison. The Dawson integral \(F(x)\) was computed with the help of the rational approximations given by Cody et al. [4]. For \(x \leq 7,10\) to 12 significant digits agreed, whereas for \(x>7,13\) to 14 significant digits were found to be in agreement.
(vi) Calculation of \(w(z)\) for \(z=(1+i / \sqrt{3}) u\) and \(z=(1+i \sqrt{3}) u\) for \(\|=10^{k}, k=-10(1) 4\). For \(k \leq 0\), the results were compared with the values obtained from the power series
\(w(z)=\sum_{n=0}^{\infty} \frac{(i z)^{n}}{\Gamma\left(\frac{n}{2}+1\right)}\).
Ten significant digits agreed. For \(k>0,13\) to 14 significant digits agreed with the values obtained from the asymptotic expansion (3). (vii) Calculation of \(w(z)\) for \(z=x+10^{-8} i\) for \(x=1(1) 100,1000\), 10000. For \(x<5\), the results were compared with the values obtained from formula (1). Six to eight significant digits, corresponding to at least nine to ten decimals, agreed for the real part. However, the accuracy of wofz may be higher, since the values from formula (1) are possibly inaccurate. The imaginary part agreed to ten to twelve significant digits. For \(x>5\), the asymptotic expansion (3) was used for comparison. For \(6 \leq x \leq 8\), ten to twelve significant digits, and for \(x>8\), thirteen to fourteen significant digits agreed in both the real and imaginary part. For \(x=5\), it was not possible to calculate accurate values for the real part of \(w(z)\) either by means of formula (1) or from the asymptotic expansion (3).

\section*{References}
1. Gautschi, W. Error function and Fresnel integrals. Chap. 7 in Handbook of Mathematical Functions, M. Abramowitz and J.A. Stegun, Eds. NBS Appl. Math. Ser. 55, U.S. Govt. Printing Office, Washington, D.C., 1965.
2. Cody, W.J. Rational Chebyshev approximations for the error function. Math. Comp. 22 (1968), 631-637.
3. Bulirsch, R. Numerical calculation of the sine, cosine and Fresnel integrals, Handbook Series Special Functions. Numer. Math. 9 (1967), 380-385.
4. Cody, W.J., Paciorek, K.A., and Thacher, H.C. Jr. Chebyshev approximations for Dawson's integral. Math. Comp. 24 (1970), 171-178.

\section*{ALGORITHM 364}

COLORING POLYGONAL REGIONS [Z]
Robert G. Herriot (Recd. 30 Jan. 1967, 31 Oct. 1968 and 2 July 1969)
University of Wisconsin, Computer Science Department, Madison, WI 53706
KEY WORDS AND PHRASES: coloring polygonal regions, coloring planar surfaces, drawing pictures, shading enclosed regions
CR CATEGORIES: 4.9
procedure drawarea (\(x, y\), firstpoint, lastpoint, section, numrows, numseats, regcolor, paintflag, paintcolor, sgn, dir, edge);
value firstpoint, lastpoint, numrows, numseats, regcolor, paintfag, paintcolor, sgn, dir, edge;
integer firstpoint, lastpoint, numrows, numseats, regcolor, paintcolor, sgn;
real edge;
Boolean paintfag, dir;
real array \(x, y\);
integer array section;
comment This procedure is a part of a large program which produces the card stunts for the Stanford University football game half-times. The initial development was done by L. Breed, L. Tesler, and J. Sauter. The author (a Stanford student at the time) made many further developments on this program which included producing an algorithm for coloring in polygonal regions. Prior to the development of this algorithm, there were many cases which did not work. The larger program takes as input an English description of the stunts and produces as output an image of each flip (similar to a frame in a movie film), as a rectangle that has 45 rows with 77 seats in each row. The main program, which will be considered the driver program for the purpose of the procedure drawarea, does all of the handling of the definition of regions and also the printing of the images. It should be mentioned that the procedure drawarea in the actual program is just part of a larger procedure and that all of the parameters are global in order to increase efficiency. The purpose of drawarea is to take the current regions and draw them in the two-dimensional array section, which is to be declared as section [1 : numrows, 1 : numseats] (the array is 45 by 77 for Stanford). Each completed picture in section is then printed and also written out on tape. Another program later takes this tape and processes it to produce an instruction card for each student holding a set of colored cards in the rooters section.
The larger program allows objects of any shape to be defined by a series of \(x, y\)-coordinates. It will accept a series of points which are given an identifying name by the user and which can then be used as (1) a group of points, (2) a series of connected line segments, (3) a polygonal region enclosed by the points (with the first and last point connected by a straight line). It also allows ellipses to be defined. Once an object is defined, it can be expanded and contracted in size, rotated about any fixed point, or moved anywhere, including all or partially out of sight. As soon as all objects are in place, the user can ask that an image of the picture be made. Except for polygonal regions, producing the image of these objects is trivial. The procedure
drawarea is the routine which places the polygonal regions in the array section.

The array section is presumed to have a background color associated with it. All objects, which also have an associated color, are then drawn into the array in a specified order so that the objects which are to be superimposed over other objects are drawn last. The procedure drawarea takes the coordinates of the point (which may not be integral) from arrays \(x\) and \(y\) with subscript values ranging from firstpoint to lastpoint and decides which seats in array section will form the left and right boundaries of this new region. After the boundary is determined, the interior must be colored in. The algorithm colors the region by taking each row and then examining each seat from left to right. For optimization, only the area of a minimal circumscribing rectangle is examined. At the beginning of each row the variable count is set to leftcount [row, 0]-rightcount [row, 0], which will be zero unless the object is partially out of sight on the left. Then as long as count remains zero, the seat is on the exterior and is not colored. As each seat is encountered, leftcount [row, seat] is added to count. When count is positive, the seat is in the interior or on a boundary and is colored. After each seat is processed, rightcount [row, seat] is subtracted from count. When count returns to zero, the seat is an exterior seat and is not colored. In any row it is possible to have the color turned on and off several times. Arrays leftcount and rightcount contain twice the number of left and right boundaries which pass through each individual seat. These two arrays solve the problem created by having several boundaries passing through one seat.

A further complication to the routine is added by allowing a region to be gradually changing color. Thus each region always has a color (regcolor) associated with it, and if the region is being swept with a new color, then paintflag is true and paintcolor, sgn, dir, and edge are used to determine the section of the region which is to be of the new color (paintcolor). The roles of the parameters for painting are: sgn and dir indicate the direction in which the imaginary paintbrush is moving. dir \(=\) true means the direction is horizontal and dir \(=\) false means vertical. \(\operatorname{sgn}=-1\) means the direction is left or down and \(\operatorname{sgn}=1\) means the direction is right or up. edge is the row or seat (column) where the new color (paintcolor) ends and the old color (regcolor) begins. The driver program is expected to change edge with each new image so that the region looks as if it is being swept by a new color.

A related algorithm which determines whether a point is inside a polygon is presented in Algorithm 112 [1, 2].

References:
1. Hacker, Richard. Certification of Algorithm 112, Position of point relative to polygon. Comm. ACM 5 (Dec. 1962), 606.
2. Shimrat, M. Algorithm 112, Position of point relative to polygon. Comm. ACM 5 (Aug. 1962), 434;
begin
integer row, seat, toprow, rightseat, rit, lef, top, bot, iox, ioy, inx, iny, sdx, sdy, j, ix, iy, count;
real ox, oy, \(n x, n y, d x, d y, d x d y\), const;
integer array leftcount, rightcount \([0\) : numrows +1 , 0 : numseats +1];
integer procedure \(\max (x, y)\); value \(x, y\); integer \(x, y\); \(\max :=\) if \(x \geq y\) then \(x\) else \(y\);
integer procedure \(\min (x, y)\); value \(x, y\); integer \(x, y\); \(\min :=\) if \(x \leq y\) then \(x\) else \(y\);
```

toprow $:=$ numrows +1 ;
rightseat $:=$ numseats +1 ;
for row : = 0 step 1 until toprow do
for seat $:=0$ step 1 until rightseat do
leftcount [row, seat] $:=$ rightcount [row, seat] $:=0$;
$o x:=x[l a s t p o i n t] ;$ rit $:=$ left $:=i o x:=o x ;$
oy $:=y[$ lastpoint ]; top $:=$ bot $:=i o y:=o y ;$
comment Draw the boundary by iterating through the points;
for $j:=$ firstpoint step 1 until lastpoint do
begin
$n x:=x\lfloor j] ; \quad i n x:=n x ;$
$n y:=y[j] ; \quad i n y:=n y ;$
$d x:=n x-o x ;$
$d y:=n y-o y ;$
$s d x:=$ if $d x<0$ then -1 else 1 ;
sdy $:=$ if $d y<0$ then -1 else 1 ;
if $i o y=i n y$ then
begin
comment The line is horizontal, or almost so;
comment $\min$ and max keep the point in the section;
row $:=\max (\min ($ ioy, toprow), 0);
seat $:=\max (\min (\max (i o x, i n x)$, rightseat $), 0)$;
rightcount $[$ row, seat $]:=$ rightcount $[$ row, seat $]+1$;
seat $:=\max (\min (\min (i o x, i n x)$, rightseat $), 0)$;
leftcount $[$ row, seat $]:=$ leftcount $[$ row, seat $]+1$;
end horizontal line
else
begin
comment The line is not horizontal;
$d x d y:=d x / d y$;
const $:=$ if $a b s(d x) \leq a b s(d y)$
then $o x-d x d y \times o y$
else $o x-d x d y \times(o y-s d x / 2)-s d y / 2$;
comment Draw line between two points by stepping
through each row and determining which seat should be
marked as the boundary;
for $i y:=i o y$ step $s d y$ until iny do
begin
$i x:=d x d y \times i y+$ const $;$
row $:=\max (\min (i y$, toprow $), 0)$;
seat $:=\max (\min (i x$, rightseat $), 0)$;
comment Because end points are each processed twice,
we add only 1 to them instead of the usual 2 ;
if $d y>0$ then
begin
comment Boundary on right side of area;
rightcount [row,seat $]:=$ rightcount $[$ row, seat $]$
$+($ if $i y=i o y \bigvee i y=i n y$ then 1 else 2)
end
else
begin
comment Boundary on left side of area;
leftcoun $[$ row,seat $]:=$ leftcount $[$ row, seat $]$
$+($ if $i y=i o y \bigvee i y=i n y$ then 1 else 2)
end
end drawing of line;
end sloping line;
comment Move on to next line segment;
$o x:=n x ; \quad$ iox $:=o x$;
oy $:=n y ; \quad$ ioy $:=o y ;$
comment Find rectangle which circumscribes the area;
if rit < iox then rit $:=i o x$
else if lef $>$ iox then lef $:=i o x$;
if $t o p<i o y$ then $t o p:=i o y$
else if bot $>$ ioy then bot $:=$ ioy;
end bordering area;

```
lef \(:=\max (1\), lef \() ;\) rit \(:=\min (r i t\), numseats \()\);
bot \(:=\max (1, b o t) ; \quad t o p:=\min (t o p, n u m r o w s)\);
comment Color the area. It is only necessary to look within
 the circumscribing rectangle;
for row := bot step 1 until top do
begin
 count \(:=\) leftcount \([r o w, 0]-\) rightcount \([r o w, 0] ;\)
 for seat \(:=\) lef step 1 until rit do
 begin
 count \(:=\) count + leftcount [row, seat];
 if count \(>\mathbf{0}\) then
 section \([\) row, seat \(]:=\) if paintflag then
 (if \(\operatorname{sgn} \times(\) (if dir then seat else row \()-\) edge \()>0\)
 then
 regcolor
 else paintcolor)
 else regcolor;
 count \(:=\) count - rightcount \([\) row, seat \(]\);
 end coloring of une seat;
 end coloring of one row;
end drawarea;

\section*{ALGORITHM 365}

\section*{COMPLEX ROOT FLNDING [C5]}
H. Bach (Recd. 18 Apr. 1968 and 15 July 1969)

Laboratory of Electromagnetic Theory, Technical University of Denmark, Lyngby, Denmark
KEY WORDS AND PHRASES: downhill method, complex relaxation method, complex iteration, complex equation, transcendental complex equation, algebraic complex equation
CR CATEGORIES: 5.15
Comment. The present subroutine determines, within a certain region, a root of a complex transcendental equation \(f(z)=0\), on which the only restriction is that the function \(w=f(z)\) must be analytic in the region considered. The iterative method used, the downhill method, was originally described in [2] and is discussed and modified in [1].

The program uses a complex function subprogram FUNC(Z) for the computation of \(f(z)\). From a given complex starting point ZS, the iteration is performed in steps of initial length HS. The iterations stop at the root approximation ZE when either the function value DE at the end point is less than the prescribed minimum deviation DM or when the step length HE has become less than the prescribed minimum step length HM. For reference, the subroutine also returns DS, the function value at the starting point ZS, and N , the number of iterations used. There are thus four input parameters, namely the starting point ZS, the initial step length HS, the minimum step length HM, and the minimum deviation DM.

Acknowledgment. Thanks are due to Mr. Frank Jensen, M.Sc., who helped in the testing of this algorithm.

References:
1. Васн, H. On the downhill method. Comm. ACM 12 (Dec. 1969) 675-677.
2. Ward, J. A. The downhill method of solving \(f(z)=0\). J. ACM 4 (Mar. 1957), 148-150.
```

SUBROUTINE CRFIZS,HS,HM,DM,FUNC,OS,ZE,HE,DE,N
C
THE SUBROUTINE DETERMINES A ROOT OF A TRANSCEN-
DENTAL COMPLEX EQUATION F(Z)=0 BY STEP-WISE ITE-
RATION.(THE DOWN HILL METHODI
I NPUT-PARAMETERS.
ZS = START VALUE OF ZO(COMPLEX)
HM = MINIMUM LENGTM OF STEP
HM = MINIMUM LENGTHOF S
SURPROGRAM.
FUNC(Z), A COMPLEX FUNCTION SUBPROGRAM FOR THE
CALCULATION OF THE VALUE OF F(Z) for a COMPLEX
CALGUMENT 2.
OUTPUT-PARAMETERS.
DS = CABSIFUNC(ZSS)I=DEVIATION AT START.
ZE = END VALUE OF Z.(COMPLEX)
HE = LENGTH OF STEP AT END.
c OE = CABSIFUNC(ZE)I=DEVIATION AT END.
C N = NUMBER OF ITERATIONS.

```

RESTRICTIONS.
THE FUNCTION \(W=F(Z)\) MUST BE ANALYTICAL IN THE REGION WHERE ROOTS ARE SOUGHT.

REAL W(3)
COMPLEX \(20, Z S, Z E, Z D, Z Z, Z(3), C W, A, V, U(7), F U N C\)
\(U(1)=(1 . .0\).
\(U(2)=(0.8660254,0.5000000)\)
\(U(3)=(0.0000000,1.0000000)\)
\(U(4)=(0.9659258 .0 .2588190)\)
\(U(5)=(0.7071068,0.7071068\)
\(U(6)=(0.2588190,0.9659258)\)
\(U(7)=(-0.2588190,0.9659258)\)
\(\mathrm{H}=\mathrm{HS}\)
\(20=25\)
\(N=0\)
alculation of ds.
\(W=F U N C(20)\)
\(W O=A A\)
\(D S=W 0\)
IF(WO-DM) 18,18.1
\(1 K=1\)
\(2 \mathrm{v}=(-1, \cdot 0.1\)
\(\stackrel{c}{c}\) equilateral triangular walk pattern.
\(3 A=(-0.5,0.866)\)
C CALCULATION OF DEVIATIONS W IN THE NEW TEST POINTS.
\(4 \mathrm{Z}(1)=20+\mathrm{H} * \mathrm{~V} * \mathrm{~A}\)
CW=FUNC(Z11))
\(W(1)=A B S(R E A L(C W))+A B S(A T M A G(C W))\)
\(Z(2)=20+H * V\)
CWIFUNC(Z 2 (2)
\(W(2)=A B S(R E A L(C W))+A B S(A I M A G(C W))\)
\(Z(3)=20+H * C O N J G(A) * V\)
CW=FUNC(Z(3))
\(W(3)=A B S(\operatorname{REAL}(C W))+A B S(A I M A G(C W))\)
\(N=N+1\)
\(\mathrm{N}=\mathrm{N}+1\)
C DETERMINATION OF W(NR), THE SMALLEST OF W(I)
(F(W(1)-W(3)) 5,5,6
5 IF(W(1)-W(2)) \(7,8,8\)
6 [F(W(2)-W(3)) 8,8,9
GOTO 10
GOTO
\(\mathrm{NQ}=2\)
GOTO 10
\(\mathrm{GO}=3\)
\(\mathrm{NR}=3\)
10 IF(WO-W(NR)) \(11,12,12\)
10 GOTO \((13,14,15), K\)
\(12 \begin{aligned} & k=1 \\ & 1=0\end{aligned}\)
\(\begin{array}{ll}\mathrm{C} \\ \mathrm{C} & \\ \mathrm{C} & \\ & \\ \end{array}\)
FORWARD DIRECTED WALK PATTERN.
\(A=(0.707,0.707)\)
\(V=(2(N R)-20) / H\)
\(W O=W(N R)\)
\(20=Z(N R)\)
\(20=2\) (NR)
\(I F(\) WO-DM \(18,18,4\)
\(13 k=2\)
C REDUCTION OF STEP LENGTH.
IF(H.LT.HM) GOTO 18 \(\mathrm{H}=\mathrm{H}=0.25\)
GOTO 3
\(c^{14 k}\)
\({ }_{C}^{C}\) RESTORATION OF STEP LENGTH.
\(\mathrm{H}=\mathrm{H} \# 4\).
\(151=1+1\)
\(C\)
\(C\)
ROTATION OF WALK PATTERN.
1F(I-7) 16,16,17
\(16 \mathrm{~V}=\mathrm{U}(1)\)
GOTO 3
C REDUCTION OF STEP LENGTH.
17 IF(H.LT.HM) GOTO 18 \(\mathrm{H}=\mathrm{H} * \mathrm{O}\)
\(1 \times 0\)
\(1 \times 0\)
GOTO 2
\(2=20\)
\(18 \mathrm{ZE}=20\)
\(\mathrm{HE}=\mathrm{H}\)
\(\mathrm{DE}=\mathrm{WO}\)
RETURN
END

\section*{ALGORITHM 366}

\section*{REGRESSION USING CERTAIN DIRECT} PRODUCT MATRICES [G2]
P. J. Claringbold (Recd. 10 May 1968 and 8 July 1969) Division of Animal Genetics, C.S.I.R.O., P.O. Box 90, Epping, N.S.W., Australia, 2121
KEY WORDS AND PHRASES: analysis of veriance, analysis of covariance, regression analysis, experimental design, matrix direct product, projection operator, orthogonal matrix
CR CATEGORIES: 5.14, 5.5
procedure regressor (vec, kobs, levs, code, kfac, nfac, ndf); value \(n f a c\);
integer kobs, levs, code, kfac, nfac, ndf;
real vec;
comment The mathematical basis of the algorithm which forms the kernel of a very general analysis of variance and covariance procedure (Algorithm 367) is set out in [5, 6]. An overwhelming majority of the experimental designs in [2] may be analyzed in this way. Statistical nomenclature is given in parentheses.
A vector vec, of nobs elements (observations) traced by kobs, is replaced by \(n d f \leqq n o b s\) elements (regression coefficients) obtained by the matrix product \(C^{T} \cdot v e c\), since the matrix is semiorthogonal. The number of initial elements is implied as the product of the nfac values of the variable levs which are traced by kfac. Values of code, similarly traced, specify matrices which enter a direct product [4] to form the transforming matrix \(C^{T}\) (independent variates transposed). As code takes the values 0 , 1 , or 2 , the matrices selected are \(I, j\), or \(V\), i.e. the unit matrix of order levs, the unit vector of levs equal elements, or a matrix made up of levs - 1 mutually orthogonal unit vectors which are also orthogonal to the previous vector (\(V^{T} \cdot j=0\) and \(V^{T} \cdot V=I\)). A direct product of the transposes of the selected matrices forms the transforming matrix. An example of an actual call is shown to illustrate tracing: example: regressor (vec[kobs], kobs, levs[kfac], code[kfac], kfac, nfac, ndf).
The squared length of the resultant vector (sum of squares on ndf degrees of freedom) is equal to the squared length of the projection of the original vector in the subspace spanned by an idempotent symmetric matrix (idix) \(P\). Eigenvectors associated with unit eigenvalues of this projection operator [1] comprise the rows of the transforming matrix.
\[
\begin{equation*}
l^{2}=v e c^{T} \cdot P \cdot v e c=v e c^{T} \cdot C \cdot C^{T} \cdot v e c \tag{1}
\end{equation*}
\]

The cosine of the angle between two similarly transformed vectors (correlation coefficient) is obtained in an analogous manner from a scalar product (sum of cross products).
\[
\begin{equation*}
l_{v e c} l_{w e c} \cos (\theta)=v e c^{T} \cdot P \cdot w e c . \tag{2}
\end{equation*}
\]

Prior evaluation of direct products is very wasteful of operations [3], and use is made of an identity which involves ordinary \((\cdot)\) and direct (\(X\)) products:
\[
\begin{equation*}
(A \times B \times C) \cdot y=(A \times I \times I) \cdot(I \times B \times I) \cdot(I \times I \times C) \cdot y \tag{3}
\end{equation*}
\]

Although shown for a triple product the identity obviously holds for any number of factors. The identity, however, is only valid for square matrices and the rectangular \(j\) or \(V\) factors
must therefore be bordered by zeros to satisfy. In the algorithm multiplication by these zeros is bypassed, and after each transformation the vector is packed ready for the next.

Another identity:
\[
\begin{equation*}
(A \times B) \cdot(C \times D)=(A \cdot C) \times(B \cdot D) \tag{4}
\end{equation*}
\]
implies that the ordinary products in (3) may be taken in any order, since the direct product factors commute. The transformations should therefore be taken in the order which achieves the largest reduction in the number of elements. Since \(j\)-factors achieve a reduction in the ratio levs:1, while \(V\)-factors merely achieve levs:levs - 1, the transformations are arranged in descending order of levels for \(j\)-factors followed by an ascending order of levels for \(V\)-factors. Transformations requiring the unit matrix are, of course, skipped.

References:
1. Banerjee, K. S. A note on idempotent matrices. Ann. Math. Statist. 85 (1964), 880-882.
2. Cochran, W. G. and Cox, Gertrude M. Experimental Designs (2 Ed.) Wiley, New York, 1957.
3. Good, I. J. The interaction algorithm and practical Fourier analysis. J. Roy. Statist. Soc. \(\{\mathrm{B}\} 20\) (1958), 361-373.
4. Marcus, M. Basic theorems in matrix theory. Nat. Bur. Standards Appl. Mathl Ser. 57 (1960), Washington, D.C.
5. Nelder, J. A. The analysis of randomised experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proc. Roy. Soc. \{A\} 289 (1965), 147-162.
6. Nelder, J. A. The analysis of randomised experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proc. Roy. Soc. \{A\} 288 (1965), 163-178;

\section*{begin}
integer ifac, jgo, nlft, nrgt, jfac, jump, ilft, irgt, jumphold, ilev, jumpo, jumper, iup, idown, nlev, maxp;
real \(x, v\);
integer array ranks[1:nfac];
\(\operatorname{maxp}:=n d f:=1\);
for \(k f a c:=1\) step 1 until nfac do
begin
comment Transmit levels and determine largest factor;
ranks \([k f a c]:=n l e v:=\) levs; \(n d f:=n d f \times n l e v ;\)
if nlev \(>\operatorname{maxp}\) then \(\operatorname{maxp}:=\) nlev
end with degrees of freedom set in null case;
\(\operatorname{maxp}:=-(\operatorname{maxp}+1)\);
for \(j g o:=1,2\) do
begin
comment Averaging before differencing transformations; mfac:

\section*{begin}
comment Search for best remaining factor;
nlev \(:=\operatorname{maxp} ;\) ifac \(:=0\);
for \(k f a c:=1\) step 1 until nfac do
begin
ilev \(:=(3-2 \times j g o) \times \operatorname{ranks}[k f a c]\);
if code \(=j g o \wedge\) ranks \([k f a c]=\) levs \(\wedge\) ilev \(>\) nlev then
begin
\(n l e v:=\) ilev; ifac \(:=k f a c\)
end if a better factor
end search;
if \(i f a c>0\) then
```

begin
comment Process a factor;
kfac := ifac; nlev := levs; nlft := nrgt := 1;
for ffac:= 1 step 1. until nfac do
if ifac}\not=jfac the
begin
comment Determine orders of unit matrices to left
and right;
if jfac<ifac then nlft:= nlft }\times\mathrm{ ranks[jfac]
else nrgt := nrgt }\times\mathrm{ ranks[jfac]
end products;
begin
comment Evaluate normalization constants;
array root[jgo : if jgo=1 then 1 else nlev];
if jgo = 1 then root[1]:= sqrt(1/nlev)
else
for ilev:= 2 step 1 until nlev do
root[ilev]:= sqrt(1/(ilev }\times(\mathrm{ ilev-1)));
comment Begin transformation of vector;
jump:=0;
comment Loop over all combinations to the left;
for ilft:= 1 step 1 until nlft do
begin
jump := jump + 1;
comment Loop over all combinations to the right;
for irgt := 1 step 1 until nrgt do
begin
jumphold := jump; jump := jump-nrgt; x := 0;
comment Loop over active factor;
for ilev:= 1 step 1 until nlev do
begin
comment Form sum;
jumpo := jump; kobs := jump := jump + nrgt;
if jgo =2^ilev > 1 then
begin
comment Form difference when appropriate;
v:= vec; kobs:= jumpo;
vec := (x-(ilev -1)\timesv)\timesroot[ilev]
end now do sum;
kobs := jump; x := x+ vec
end sum and difference loop;
if jgo = 1 then
begin
comment Insert normalized average;
kobs := jumphold; vec := x }\times\mathrm{ root[1]
end insertion;
jumper := jump; jump := jumphold +1
end loop over all combinations to the right;
jump := jumper;
end loop over all combinations to the left
end block;
iup := nrgt }\times\mathrm{ nlev; idown := if jgo = 1 then nrgl else
iup - nrgt;
for ilft:= 2 step 1 until nlft do
begin
comment Compact vector;
for irgt := 1 step 1 until nrgt do
for ilev:= 2 step 1 until nlev do
if ilev< 3 \ jgo = 2 then
begin
kobs := iup := iup + 1; v := vec;
kobs := idown := idown + 1; vec := v
end within block moves;
iup := if jgo = 1 then iup + (nlev-1) }\times\mathrm{ nrgt else
iup + nrgt
end block moves;

```

\section*{begin}
comment Process a factor；
ifac；nlev \(:=\) levs；nlft \(:=\) nrgt \(:=1\) ； if \(i f a c \neq j f a c\) then begin
comment Determine orders of unit matrices to left and right；
if jfac \(<\) ifac then nlft \(:=n l f t \times r a n k s[j f a c]\)
else \(n r g t:=n r g t \times r a n k s[j f a c]\) end products；
begin
comment Evaluate normalization constants； array \(\operatorname{root}[j g o\) ：if \(j g o=1\) then 1 else nlev］；解 \(=1\) then \(\operatorname{root}[1]:=\operatorname{sqrt}(1 / n e v)\)
else
or \(i l e v:=2\) step 1 until nlev do
root \([\) ilev \(]:=\operatorname{sqrt}(1 /(i l e v \times(i l e v-1)))\) ；
comment Begin transformation of vector； jump \(:=0\)
for ilft \(:=1\) step 1 until nlft do begin
jum \(p:=\) jump \(p+1\) ；
tions to the right；
begin
jumphold \(:=\) jump \(;\) jump \(:=\) jump - nrgt \(; \quad x:=0 ;\)
comment Loop over active factor；
for ilev：＝ 1 step 1 until nlev do
begin
comment Form sum；
jumpo \(:=\) jump；kobs \(:=\) jump \(:=\) jump + nrgt； jgo \(=2 \wedge\) lev \(>1\) then
begin
comment Form difference when appropriate；
\(v:=\) vec；kobs \(:=\) jumpo；
vec \(:=(x-(\) ilev -1\() \times v) \times\) root \([\) ilev \(]\)
kobs \(:=\) jump \(; \quad x:=x+\) vec
end sum and difference loop；
if \(j g o=1\) then
begin
kobs \(:=\) jumphold；vec \(:=x \times \operatorname{root}[1]\)
end insertion；
jumper \(:=\) jump \(;\) jump \(:=\) jumphold +1
end loop over all combinations to the right；
jump \(:=\) jumper；
end block；
iup \(:=n r g t \times n l e v ; \quad\) idown \(:=\) if \(j g o=1\) then \(n r g l\) else iup－nrgl；
for ilft ：＝ 2 step 1 until nlft do
begin
保
for ilev：＝ 2 step 1 until nlev do
if ilev \(<3 \vee j g o=2\) then
begin
kobs \(:=i u p:=i u p+1 ; v:=v e c ;\)
kobs \(:=\) idown \(:=\) idown +1 ；vec \(:=v\)
end within block moves；
iup \(+n r g t\)
end block moves；
comment Adjust dimensions of pseudoarray；
ranks \([i f a c]:=\) if \(j g o=1\) then 1 else nlev -1 ；
\(n d f:=i d o w n\) ；
go to mfac
end
else go to end jgo
end labeled compound statement；
end jgo：
end loop over factor types
end regressor

\section*{ALGORITHM 367}

ANALYSIS OF VARIANCE FOR BALANCED
EXPERIMENTS [G2]
P. J. Claringbold (Recd. 27 May 1968 and 8 July 1969)

Division of Animal Genetics, C.S.I.R.O., P.O. Box 90, Epping, N.S.W., Australia, 2121
KEY WORDS AND PHRASES: analysis of variance, analysis of covariance, regression analysis, experimental design, balanced experiment, missing data, interblock estimate, intrablock estimate
\(C R\) CATEGORIES: 5.14, 5.5
integer procedure balanced anova (\(y\), missing \(y\), \(x\), fixed effect, estimate, error level, error code, all \(y\), all \(x\), length \(y\), length \(x\), pooled beta, se beta, normalized beta, error, df total, df error, tolcor, tolength, tolmpss, ispace, nspace, ires, jres, nres, itrt, ntrt, iobs, nobs, ifac, nfac, max cycle, check diagonality, projector, putpy, getpy, putpx, getpx);
value tolcor, tolength, tolmpss, nspace, nres, ntrt, nobs, nfac, max cycle, check diagonality;
real \(y, x\), all \(y\), all \(x\), length \(y\), length \(x\), pooled beta, se beta, normalized beta, error, tolcor, tolength, tolmpss;
integer error level, error code, df total, df error, ispace, nspace, ires, jres, nres, itrt, ntrt, iobs, nobs, ifac, nfac, max cycle;
Boolean missing \(y\), fixed effect, estimate, check diagonality;
procedure projector, putpy, getpy, putpx, getpx;
comment The algorithm provides analyses of variance, covariance, and regression for data collected according to a wide variety of experimental designs. The vector of elements comprising either a response (\(y\) or dependent) or a treatment (\(x\) or independent) variate forms a conceptual complete array of nfac dimensions. The implied subscripts are a set of discrete variables which define an error classification. Designs of this type include the fully randomized, randomized block, incomplete block, split (to any order) plot, Latin (and higher) squares, lattices, et cetera, and make up the overwhelming majority in use [3]. By means of an appropriate transformation the frequency data of contingency tables may be processed to provide partitions of chi-square [1]. A comprehensive account of the mathematical basis is given in [4, 5].

In this implementation extensive use is made of the call-byname facility so that generators and routines involving auxiliary store may freely be used for all input variables. Usually data sets are quite small and storage of intermediate quantities within the immediate access store is possible. In the following notes on the formal parameters relevant tracer variables are shown in brackets. An arrow \((\rightarrow)\) indicates that the variable is used only as a source of information.
balanced anova: If the projection of \(x\)-variale numbered jtrt has a correlation coefficient exceeding tolcor with the projection of \(x\)-variate numbered ktrt in subspace ispace of the design, then abnormal termination is forced with balanced anova \(=10^{6} \times\) ispace \(+10^{3} \times j\) trt \(+k\) trt. Zero is returned as the value of the procedure in the case of normal termination. Note that this time-consuming check of the balance of the treatment model with respect to the error model is only performed if check diagonality is set true.
\(y\), missing \(y\) (ires, iobs) \(\rightarrow\) : The \(y\)-variate generator or array must provide trial values, e.g. the average of present elements for the variate, for any missing data. These elements are flagged by true in the Boolean missing \(y\) which may take the form of an expression in terms of ires, iobs, and integer constants.
\(x\) (itrt, iobs) \(\rightarrow\) : A complete specification of the orthogonal decomposition of the total sum of squares (and products) using polynomials or some other form of contrast representation is required. In the case of treatment classifications (for example factorial experiment) the \(x\)-variate values may be generated as a direct product (or as a selection of elements from such a matrix) of a number of small contrast matrices, i.e. orthogonal matrices with first column having elements greater than zero (usually constant).
fixed effect (itrt, ispace) \(\rightarrow\) : By setting this variable true the flagged regression coefficients, i.e. beta number itrt in estimation subspace number \(i s p a c e\), are declared to be error free or invariants. In most practical cases this facility is only relevant to the constant term of the regression model.
estimate (itrt, ispace) \(\rightarrow:\) By setting this variable false the flagged regression coefficients are declared to be zero and are not estimated in the indicated subspaces. Usually this facility is not required, and the constant true is used as actual parame-
ter.
error level (ifac) \(\rightarrow\) : The variable sets the number of levels of the error classifications. If it is assumed that the conceptual subscripts have unit lower bounds, then the upper bounds are set. Variates (traced by iobs) must be in lexical order by the implied subscripts, and use of a permutation array or function may be required to achieve this end.
error code (ifac, ispace) \(\rightarrow\) : Error sources of variation (estimation or error subspaces) are specified by integer codes 0,1 , or 2 . The codes could be generated by means of a procedure which interpreted a string of input characters denoting the error structure of the experimental design, see [4,5]. A set of nfac integers specifies a projection operator which spans a subspace. The operator is formed as the direct product of (0) identity matrix \(I\), (1) averaging matrix \(J\), or (2) differencing matrix \(K=\) \(I-J\). Every element of the averaging matrix is equal to the reciprocal of the order,
e.g.: \(2,0,1,2,1 \leftrightarrow K_{1} \times I_{2} \times J_{3} \times K_{4} \times J_{5}=P_{i}, \quad\) say.

It is required that the error subspaces be mutually orthogonal, \(P_{i} P_{j}=\delta_{i j} P_{i}\).

Code Sets for Some Common Designs

sis. Usually it is convenient to pool the subspaces defined by \(J \times J \times \cdots \times J\) and \(K \times J \times \cdots \times J\) yielding (by addition) \(I \times J \times \cdots \times J\), and if this is required the first two columns of the table are replaced by the rightmost auxiliary column.
all \(y[\) ires \(]\), all \(x[\) itrt \(]\), length \(y[\) ires, ispace \(]\), length \(x[\) itrt, ispace \(]\) : The lengths of the \(y, x\), projected \(y\), and projected \(x\) vectors are returned. Null variates (which have zero length) should be indicated in, or excluded from, analysis of variance tables (et cetera) derived from an activation of the procedure.
pooled beta, se beta [ires, itrt]: The weighted mean regression coefficient relating \(y\)-variate number ires to \(x\)-variate number itrt is returned in pooled beta, and the standard error of the estimate in se beta.
normalized beta [ires, itrt, ispace]: Within each subspace the regression coefficients are scaled so that it may be assumed that the sum of squares of each (nonnull) projected \(x\)-variate is unity. The dyad obtained by forming all pairwise products over the tracer ires (fixing the other tracers) is a single degree of freedom contribution due to treatment (\(x\)-variate) number itrt to subspace number ispace of the analysis of variance (and covariance if \(n\) res \(>1\)).
error [ires, jres, ispace]: For each subspace an error covariance matrix is computed. This is the only variable bearing the tracer jres which is constrained so that jres \(\leqq\) ires. The calling program may make provision to pack the matrices in triangular form using a subscript function: pack[ires] + jres, where pack \([\) ires \(]=(\) ires \(\times(\) ires -1\()) \div 2\).
df total, df error [ispace]: The variables return the total and error degrees of freedom for each subspace.
tolcor: If the activation calls for a check of the orthogonality of projected \(x\)-variates, then this constant sets the value of the correlation coefficient, which should not be exceeded in the test.
tolength: A projected vector is assigned zero length if the ratio of the computed length to that of the unprojected vector, multiplied by the square root of the ratio of the number of observations to degrees of freedom of the subspace, fails to exceed this criterion.
tolmpss: As a single measure of all missing data a sum of squares is computed. If the ratio of the absolute value of the difference between this sum and that of the previous iteration (or 0), to the current sum, fails to exceed this constant, no further iterations are made.
ispace, nspace, ires, jres, nres, itrt, ntrt, iobs, nobs, ifac, nfac: The identifiers with initial letter \(i\) or \(j\) are tracers mnemonically related to the remaining identifiers which define the number of subspaces, \(y\)-variates, \(x\)-variates, observations and error factors, respectively.
max cycle: An upper limit to the number of iterations required for the convergence of estimates of missing data is provided by this parameter.
check diagonality: If this parameter is true then the projected \(x\)-variates are checked for orthogonality. While computing time is saved by the opposite setting, incorrect results are computed if an invalid assumption of orthogonality is made.
projector: In order to compute the consequences of projection of variates, a choice between at least two procedures is made: \(P \cdot x=C \cdot C^{T} \cdot x\) or \(C^{T} \cdot x\). The idempotent symmetric projection operator \(P\) (see \([4,5]\)), or the rectangular matrix made up of the eigenvectors corresponding with unit eigenvalues (see [2]) is used. The second alternative is preferred since the transforming matrix is then thin, and Algorithm 366 is an implementation of this approach.
putpy, getpy, putpx, getpx: These procedures are concerned with the transmission of transformed variates between arrays internal to the algorithm and auxiliary store. While immediate access store may be used as auxiliary store with small problems, backing media such as magnetic drum, disk, or tape are required for large problems. The procedure putpy transmits all nelm ele-
ments of a transformed \(y\)-variate to auxiliary store, while getpy performs the reverse transmission. Similar actions on the \(x\)-variates are carried out by the other two procedures. All four routines have similar calling sequences: (vec[ielm], ielm, nelm, ivar, ispace), where vec identifies the vector to be moved, ielm traces the elements of the vector, nelm (returned by projector) specifies the number of elements to be moved, ivar gives the variate number, and ispace gives the subspace number. The elements to be moved are in the loading position in vec, and an appropriate instruction begins for \(\mathrm{ielm}:=1\) step 1 until nelm do. The last two formal parameters may be used to index an array listing the starting positions of the vectors in auxiliary storage.

References:
1. Claringbold, P. J. The use of orthogonal polynomials in the partition of chi-square. Austral. J. Statist. 3 (1961), 4863.
2. Claringbold, P.J. Algorithm 366. Regression using certain direct product matrices. Comm. ACM 12 (Dec. 1969), 687688.
3. Cochran, W. G., and Cox, Gertrude M. Experimental Designs (Ed. 2). Wiley, New York, 1957.
4. Nelder, J. A. The analysis of randomised experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proc. Roy. Soc. \(\{A\} 283\) (1965), 147-162.
5. Nelder, J. A. The analysis of randomised experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proc. Roy. Soc. \(\{A\} 288\) (1965), 163-178;
begin
array \(y y, x x[1: n o b s]\); real \(s, t, v, s s m p\);
integer \(i\) cycle, \(n d f, j t t t\), ktrt, kres, nelm, nmis;
real procedure sigma (\(x, i, n\));
value \(n\);
real \(x\); integer \(i, n\);
begin
real \(x x ; x x:=0\);
for \(i:=1\) step 1 until \(n\) do \(x x:=x x+x\);
sigma \(:=x x\)
end sigma;
comment Count missing data items;
\(n m i s:=0 ;\) ssmp \(:=0\);
for \(i\) res := 1 step 1 until nres do
for \(i o b s:=1\) step 1 until nobs do
if missing \(y\) then \(n m i s:=n m i s+1\);
begin
comment Get space for estimates of missing data;
array \(y\) missing [1 : if \(n m i s=0\) then 1 else \(n m i s]\);
comment Set up loop for missing data iteration;
for \(i\) cycle \(:=1\) step 1 until max cycle do
begin
comment Analyze data in various error subspaces;
for ispace := 1 step 1 until nspace do
begin
comment Determine subspace degrees of freedom; if \(i\) cycle \(=1\) then
begin
comment Only compute degrees of freedom once;
\(n d f:=1\);
for ifac := 1 step 1 until nfac do
\(n d f:=n d f \times\) (if error code \(=0\) then error level
else if error code \(=1\) then 1 else error level-1); df total \(:=n d f\)
end
else \(n d f:=d f\) total;
comment Project response vectors;
\(n m i s:=0\);
```

for ires := 1 step 1 until nres do
begin
comment Fetch a vector, and possibly fit missing
data;
for $i o b s:=1$ step 1 until nobs do
if missing $y$ then
begin
$n m i s:=n m i s+1$;
if ispace $=1$ then $y$ missing[nmis] $:=$ if $i$ cycle $=1$
then $y$
else sigma (pooled beta $\times x$, itrt, ntrt);
$y y[i o b s]:=y$ missing[nmis]
end
else $y y[i o b s]:=y$;
if ispace $=1$ then all $y:=\operatorname{sqrt}(\operatorname{sigma}(y y[i o b s] \uparrow 2$, iobs,
nobs));
projector (yy[iobs], iobs, error level, error code, ifac, nfac,
nelm);
jres := ires;
error $:=\operatorname{sigma}(y y[i o b s] \uparrow 2$, iobs, nelm $)$;
length $y:=$ if $\operatorname{sqrt}(($ error $\times$ nobs $) / n d f) /$ all $y>$ tolength
then sqrt(error) else 0 ;
putpy (yy[iobs], iobs, nelm, jres, ispace);
for $j r e s:=1$ step 1 until ires -1 do
begin
comment Determine sums of cross products;
getpy (xx[iobs], iobs, nelm, jres, ispace);
error $:=\operatorname{sigma}(y y[i o b s] \times x x[i o b s], i o b s, n e l m)$
end cross products
end dependent variates;
comment In the first cycle project treatment vectors;
if $i$ cycle $=1$ then
for $j t r t:=1$ step 1 until ntrt do
if estimate then
begin
comment Only work on variates included in regres-
sion;
itrt := jtrt;
for $i o b s:=1$ step 1 until nobs do $x x[i o b s]:=x$;
if ispace $=1$ then all $x:=\operatorname{sqrt}(\operatorname{sigma}(x x[i o b s] \uparrow 2$,
iobs, nobs));
projector (xx[iobs], iobs, error level, error code, ifac, nfac,
nelm);
$t:=\operatorname{sigma}(x x[i o b s] \uparrow 2$, iobs, nelm $)$;
$s:=$ length $x:=$ if $\operatorname{sqrt}((t \times$ nobs $) / n d f) /$ all $x>$ tolength
then $\operatorname{sqrt}(t)$ else 0 ;
if $3>0$ then
begin
comment Null variates are skipped;
putpx(xx[iobs], iobs, nelm, itrt, ispace);
if check diagonality then
for $k t r t:=1$ step 1 until $j$ trt -1 do
if estimate then
begin
comment Orthogonality checked for variates
in regression;
itrt $:=k t r t ; \quad v:=$ length $x$;
if $v>0$ then
begin
comment Null variates are skipped;
getpx (yy[iobs], iobs, nelm, itrt, ispace);
if abs(sigma (xx[iobs]×yy[iobs], iobs, nelm))/
$(s \times v)>$ tolcor then
begin
comment Force termination since ex-

```
```

                    cessive correlation;
                    balanced anova \(:=1000 \times(1000 \times\) ispace +
                        \(j t r t)+k t r t ;\)
                    go to exit
                    end large correlation
                end if secondary variate has projection
                end secondary variate loop
        end if primary variate has projection
    end primary variate loop;
    comment Compute normalized regression coefficients;
    for itrt \(:=1\) step 1 until ntrt do
    if length \(x>0 \wedge\) estimate then
    begin
        comment Skip null or not in regression independent
            variates;
        \(n d f:=n d f-1 ;\)
        getpx(xx[iobs], iobs, nelm, itrt, ispace);
        for ires := 1 step 1 until nres do
            if length \(y>0\) then
            begin
            comment Skip null dependent variates;
            getpy (yy[iobs], iobs, nelm, ires, ispace);
            normalized beta \(:=\operatorname{sigma}(x x[i o b s] \times y y[i o b s], i o b s\),
                    nelm)/length \(x\)
            end
            else normalized beta \(:=0\)
    end
    else for ires \(:=1\) step 1 until nres do normalized beta
        \(:=0 ;\)
    $d f$ error $:=n d f$;
comment Reduce sums of squares and products for
regression;
for $i t r t:=1$ step 1 until $n$ trt do
if length $x>0 \wedge$ estimate then
begin
for $k$ res := 1 step 1 until nres do
for jres := 1 step 1 until kres do
begin
ires $:=$ jres; $s:=$ normalized beta;
ires $:=$ kres; error $:=$ error $-s \times$ normalized beta
end dyad reduction loops
end normalized regression coefficient computation;
comment Determine true regressions and information;
for ires := 1 step 1 until nres do
begin
for jres := 1 step 1 until ires do
error := if length $y=0 \vee n d f=0$ then 0 else error/ndf;
jres := ires;
for $\operatorname{itrt}:=1$ step 1 until ntrt do
begin
comment Clear areas at start;
if ispace $=1$ then pooled beta $:=$ se beta $:=0$;
if estimate then
begin
comment Set information as unity for fixed
effects;
$t:=$ if fixed effect $\wedge$ length $x>0$ then 1 else
if $n d f=0$ then 0 else length $x \uparrow 2 /$ (if error $=0$
then 1 else error);
se beta := se beta $+t$;
pooled beta $:=$ pooled beta $+t \times$ (if length $x=0$
then 0 else normalized beta/length $x$ )
end of addition to pools
end independent variate loop
end dependent variate loop
end error subspace loop;
for ires := 1 step 1 until nres do
for itrt:= 1 step 1 until ntrt do

```
```

            if se beta>0 then
            begin
                comment Compute weighted means and standard
                errors;
            pooled beta := pooled beta/se beta;
            se beta := sqrt(1/se beta)
            end average;
        if nmis > 0 then
        begin
            comment Check convergence of missing items;
            s:= sigma(y missing[iobs]\uparrow 2, iobs, nmis);
            if abs(s-ssmp)/s > tolmpss then ssmp := s
            else go to finish
            end missing data convergence test
        end cycle;
    finish: balanced anova := 0;
exit:
end block
end balanced anova

```

\section*{ALGORITHM 368 \\ NUMERICAL INVERSION OF LAPLACE \\ TRANSFORMS [D5]}

Harald Stehfest* (Recd. 29 July 1968, 14 Jan. 1969 and 24 July 1969)
Institut f. angew. Physik, J. W. Goethe Universität, 6000 Frankfurt am Main, W. Germany
* The work forms part of a research program supported by the Bundesministerium für wissenschaftliche Forschung and the Fritz ter Meer-Stiftung.
KEY WORDS AND PHRASES: Laplace transform inversion, integral transformations, integral equations
CR CATEGORIES: 5.15, 5.18
procedure \(\operatorname{Linv}(P, N, T, F a, V, M)\);
value \(N, T\);
integer \(M, N\); real \(T, F a\); array \(V\); real procedure \(P\); comment If a Laplace transform \(P(s)\) is given in the form of a real procedure, Linv produces an approximate value Fa of the inverse \(F(t)\) at \(T . F a\) is evaluated according to
\[
F a=\frac{\ln 2}{T} \sum_{i=1}^{N} V_{i} P\left(\frac{\ln 2}{T} i\right)
\]
\(N\) must be even. Since the \(V_{i}\) depend on \(N\) only, in case of repeated procedure calls with the same \(N\) the array \(V\) is to be evaluated only once. That is why the formal parameter \(M\) has been introduced: that part of the algorithm which computes the \(V_{i}\) is run through only if \(M \neq N\), and after every call of Linv \(M\) equals \(N\). At the first call \(M\) may be any integer different from \(N\).

The calculation method originates from Gaver [2], who considered the expectation of \(F(t)\) with respect to the probability density
\[
f_{n}(a, t)=a \frac{(2 n)!}{n!(n-1)!}\left(1-e^{-a t)^{n} e^{-n a t}, \quad a>0: ~}\right.
\]
\[
\begin{equation*}
F_{n}=\int_{0}^{\infty} F(t) f_{n}(a, t) d t \tag{1}
\end{equation*}
\]
\[
=a \frac{(2 n)!}{n!(n-1)!} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} P((n+i) a)
\]
\(f_{n}(a, t)\) has the following properties:
1. \(\int_{0}{ }^{\infty} f_{n}(a, t) d t=1\),
2. modal value of \(f_{n}(a, t)=\ln 2 / a\)
3. \(\operatorname{var}(t)=1 / \mathrm{a}^{2} \sum_{t=0}^{n} 1 /(n+i)^{2}\).

They imply that \(F_{n}\) converges to \(F(\ln 2 / a)\) for \(n \rightarrow \infty . F_{n}\) has the asymptotic expansion [2]
\[
F_{n} \sim F\left(\frac{\ln 2}{a}\right)+\frac{\alpha_{1}}{n}+\frac{\alpha_{2}}{n^{2}}+\frac{\alpha_{3}}{n^{3}}+\cdots
\]

For a given number \(N\) of \(P\)-values a much better approximation to \(F(\ln 2 / a)\) than \(\overline{\mathrm{F}}_{N-1}\) is attainable, and that by linear combination of \(F_{1}, F_{3}, \cdots, F_{N / 2}\) : requiring
\[
\begin{aligned}
\sum_{i=1}^{K} x_{i}(K) \frac{1}{(N / 2+1-i)^{h}} & =\delta_{k 0}, \\
k & =0,1, \cdots, K-1, K \leq N / 2,
\end{aligned}
\]
we find
\[
x_{i}(K)=\frac{(-1)^{i-1}}{K!}\binom{K}{i} i(N / 2+1-i)^{K-1}
\]
and thus
\[
\begin{aligned}
& \sum_{i=1}^{K} x_{i}(K) F_{N / 2+1-i}=F\left(\frac{\ln 2}{a}\right)+(-1)^{k+1} \alpha \frac{(N / 2-K)!}{(N / 2)!} \\
&+o\left(\frac{(N / 2-K)!}{(N / 2)!}\right)
\end{aligned}
\]

Setting \(K=N / 2, a=\ln (2) / T\), and using (1) we get the expression the procedure evaluates:
\[
F a=\sum_{i=1}^{N / 2} x_{i}(N / 2) F_{N / 2+1-i}=\frac{\ln 2}{T} \sum_{i=1}^{N} V_{i} P\left(\frac{\ln 2}{T} i\right)
\]
with
\(V_{i}=(-1)^{N / 2+i} \sum_{k=\left[\frac{i+1}{2}\right]}^{M i n(i, N / 2)} \frac{k^{N / 2+1}(2 k)!}{(N / 2-k)!k!(k-1)!(i-k)!(2 k-i)!}\).
(The method of "extrapolation to the limit," which Gaver [2] used, leads to less accurate results for the same \(N\), because not so many powers of \(n\) cancel out. Moreover, with this method \(N\) must be a power of 2 , so that in general one cannot make the best use of the available computer precision.)

Theoretically \(F a\) becomes the more accurate the greater \(N\). Practically, however, rounding errors worsen the results if \(N\) becomes too large, because \(V_{i}\) with greater and greater absolute values occurs. (This reflects the unboundedness of the inverse Laplace operator.) For given \(P(s)\) and \(T\) the \(N\) at which the accuracy is maximal increases with the number of significant figures used. For fixed computer precision the optimum value of \(N\) is the smaller, i.e. the maximum accuracy is the greater, the faster \(\bar{F}_{n}\) (see eq. (1)) converges to \(F(T)\). In the following the term "smooth" is used to express that the rate of convergence is sufficiently great. An oscillating \(F(t)\) certainly is not smooth enough unless the wavelength of the oscillations is large compared with the half-width of the peak which \(f_{N / 2}(\ln 2 / T, t)\) has at \(T\). No accurate results are to be expected, too, if \(F(t)\) has discontinuities near \(T\). If \(F(t)\) behaves equally in the neighborhood of two different \(T\)-values the result at the smaller \(T\)-value will be the better one, because the peak of \(f_{n}(\ln 2 / T, t)\) broadens as \(T\) increases.
The only way to sharpen these qualitative statements is to apply Linv to many Laplace transforms the inverses of which are known. This was done with 50 transforms. The numbers of significant figures used ranged from 8 to 17 (IBM 7094, single and double precision, CDC 3300). The \(T\)-values lay between 0 and 50 . It was found that with increasing \(N\) the number of correct figures first increases nearly linearly and then, owing to the rounding errors, decreases linearly. The optimum \(N\) is approximately proportional to the number of digits the machine is working with. Table I was calculated using 8 -digit arithmetic and \(N=10\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE I} \\
\hline \(T\) & \(\boldsymbol{F}(\boldsymbol{T})\) & Pa & \(F(T)\) & Fa \\
\hline & \multicolumn{2}{|l|}{\[
F(t)=\frac{1}{\sqrt{\pi} t}, P(s)=\frac{1}{\sqrt{s}}
\]} & \multicolumn{2}{|l|}{\[
F(t)=-C-\ln (t),
\]} \\
\hline 1.0 & 0.56419 & 0.56555 & -0.57722 & -0.57782 \\
\hline 2.0 & 0.39894 & 0.39912 & -1.27036 & -1.27084 \\
\hline 3.0 & 0.32574 & 0.32655 & -1.67583 & -1.67544 \\
\hline 4.0 & 0.28209 & 0.28278 & -1.96351 & -1.96392 \\
\hline 5.0 & 0.25231 & 0.25174 & -2.18665 & -2.18727 \\
\hline 6.0 & 0.23333 & 0.22989 & -2.36898 & -2.36870 \\
\hline 7.0 & 0.21324 & 0.21322 & -2.52313 & -2.52270 \\
\hline 8.0 & 0.19947 & 0.19956 & -2.65666 & -2.65740 \\
\hline 9.0 & 0.18806 & 0.18814 & -2.77444 & -2.77390 \\
\hline 10.0 & 0.17841 & 0.17796 & -2.87980 & -2.88091 \\
\hline & \multicolumn{2}{|l|}{\(F(t)=p / 6, P(s)=1 / s^{\text {d }}\)} & \multicolumn{2}{|l|}{\(F(t)=\sigma^{-t}, P(s)=1 /(s+1)\)} \\
\hline 1.0 & 0.16667 & 0.16568 & 0.36788 & 0.36798 \\
\hline 2.0 & 1.33333 & 1.32543 & 0.13534 & 0.13557 \\
\hline 3.0 & 4.50000 & 4.47354 & 0.04979 & 0.05043 \\
\hline 4.0 & 10.66667 & 10.60342 & 0.01832 & 0.01849 \\
\hline 5.0 & 20.83333 & 20.70845 & 0.00674 & 0.00640 \\
\hline 6.0 & 36.00000 & 35.78832 & 0.00248 & 0.00195 \\
\hline 7.0 & 57.16667 & 56.82535 & 0.00091 & 0.00036 \\
\hline 8.0 & 85.33333 & 84.82735 & 0.00034 & -0.00006 \\
\hline 9.0 & 121.50000 & 120.78473 & 0.00012 & -0.00047 \\
\hline 10.0 & 166.66667 & 165.66759 & 0.00005 & -0.00020 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\(F(t)=\sin (\sqrt{2 t}), P(s)=\sqrt{\frac{\pi}{2 s}}{ }^{3} e^{-1 /(\mu)}\)} & \multicolumn{2}{|l|}{\[
F(t)=L_{s}(t), P(s)=\frac{(s-1)^{s}}{s^{t}}
\]} \\
\hline 1.0 & 0.98777 & 0.98775 & -0.66667 & -0.66533 \\
\hline 2.0 & 0.90930 & 0.91001 & -0.33333 & -0.32531 \\
\hline 3.0 & 0.63816 & 0.63826 & 1.00000 & 1.02575 \\
\hline 4.0 & 0.30807 & 0.30968 & 2.33333 & 2.39533 \\
\hline 5.0 & -0.02068 & -0.02119 & 2.66667 & 2.78844 \\
\hline 6.0 & -0.31695 & -0.31927 & 1.00000 & 1.21092 \\
\hline 7.0 & -0.56470 & -0.57254 & -3.66667 & -3.32956 \\
\hline 8.0 & -0.75680 & -0.76869 & -12.33333 & -11.82953 \\
\hline 9.0 & -0.89168 & -0.91049 & -26.00000 & -25.28393 \\
\hline 10.0 & -0.97128 & -0.98949 & -45.66667 & -44.88511 \\
\hline
\end{tabular}

With double precision arithmetic and \(N=18\) the number of correct figures doubles. The chosen \(N\)-values are about the optimum \(N\) for all functions of the table. Evaluating an unknown function from its Laplace transform, one should, nevertheless, compare the results for different \(N\), to see whether the function is smooth enough, what accuracy can be reached, and what the optimum \(N\) is. Even then it is risky to rely solely on the results of Linv. One ought to be sure a priori that the unknown function \(F(t)\) has not any discontinuities, salient points, sharp peaks, or rapid oscillations. Moreover, the accuracy should be checked by employing other inversion techniques.
The inverses of the 50 test functions were also evaluated according to the inversion technique of Bellman et al. [1], which is based on the approximation of \(F(t)\) by a polynomial in \(e^{-t}\). It appeared that the algorithm Linv generally produces better results, i.e. the condition " \(F(t)\) is everywhere smooth (in the sense described above)" is less restrictive than the condition " \(F(-\ln (r))\) can be well approximated by a polynomial in \(r=e^{-t}\) for \(0 \leqq r \leqq 1^{\prime \prime}\). The evaluation of the function \(F(t)=t^{2} / 2\) from its Laplace transform \(P(8)=1 / s^{8}\) illustrates the difference between the two conditions: using Linv the inverse is correct within 0.1 percent, using the inversion technique described in [1] errors of hundreds of percents occur (\(N=10,0.1<T<10\)).
The algorithm was successfully applied to renewal equations, differential-difference equations, and systems of partial differ-
ential equations. Reference [1] includes many other problems to which the algorithm can be a,pplied.

References:
1. Bellman, R. E., Kalaba, R. E., and Lockett, J. Numerical Inversion of the Laplace Transform. American Elsevier, New York, 1966.
2. Gaver, D. P. Observing stochastic processes, and approximate transform inversion. Oper. Res. 14, 3 (1966), 444459;
begin
integer \(i, i h, k, N h, s n\); real \(a\); array \(G[0: N], H[1: N / 2]\);
if \(M=N\) then go to \(C\);
\(G[0]:=1 ; \quad N h:=N / 2\);
for \(i:=1\) step 1 until \(N\) do \(G[i]:=G[i-1] \times i\);
\(H[1]:=2 / G[N h-1]\);
for \(i:=2\) step 1 until \(N h\) do
\(H[i]:=i \uparrow N h \times G[2 \times i] /(G[N h-i] \times G[i] \times G[i-1]) ;\)
\(s n:=2 \times \operatorname{sign}(N h-N h \div 2 \times 2)-1\);
for \(i:=1\) step 1 until \(N\) do
begin
\(V[i]:=0 ;\)
for \(k:=(i+1) \div 2\) step 1 untill if \(i<N h\) then \(i\) else \(N h\) do
\(V[i]:=V[i]+H[k] /(G[i-k] \times G[2 \times k-i]) ;\)
\(V[i]:=s n \times V[i] ;\)
\(s n:=-s n\)
end;
\(M:=N ;\)
\(C: F a:=0 ; a:=\ln (2) / T\);
comment \(\ln (2)\) should be replaced by its actual value 0.69314...;
for \(i:=1\) step 1 until \(N\) do
\(F a:=F a+V[i] \times P(i \times a) ;\)
\(F a:=a \times F a\)
end

REMARK ON ALGORITHM 368 [D5] NUMERICAL INVERSION OF LAPLACE

TRANSFORMS [Harald Stehfest, Comm. ACM 13
(Jan. 1970),47]
Harald Stehfest (Recd. 6 May 1970)
Institut f. angew. Physik, J. W. Goethe-Universität
6000 Frankfurt a.M., W. Germany
KEY WORDS AND PHRASES: Laplace transform inversion, integral transformations, integral equations
CR CATEGORIES: 5.15, 5.18

Some errors have crept into the comment of the procedure after proof-reading:
The formula following "and thus" should read
\[
\begin{aligned}
\sum_{i=1}^{\boldsymbol{K}} x_{i}(K) \mathcal{F}_{N / 2+1-i}=F\left(\frac{\ln 2}{\alpha}\right)+(-1)^{K+1} \alpha_{K} & \frac{(N / 2-K)!}{(N / 2)!} \\
& +o\left(\frac{(N / 2-K)!}{(N / 2)!}\right)
\end{aligned}
\]

The formula following "with" should read
\[
V_{i}=(-1)^{N / 2+i} \sum_{k-\left[\frac{i+1}{2}\right]}^{M i n(i, N / 2)} \frac{k^{N / 2}(2 k)!}{(N / 2-k)!k!(k-1)!(i-k)!(2 k-i)!} .
\]

\section*{ALGORITHM 369}

GENERATOR OF RANDOM NUMBERS
SATISFYING THE POISSON DISTRIBUTION [G5]
Henry E. Schaffer* (Recd. 27 Jan. 1969 and 16 July 1969)
North Carolina State University, Genetics Department, Raleigh, NC 27607
* This work was supported by Grants PR-00011 and GM-11546 of the National Institutes of Health.
KEY WORDS AND PHRASES: Poisson distribution, random number generator
CR CATEGORTES: 5.5
integer procedure poissrn (lambda);
value lambda; real lambda;
comment At each call this procedure returns an observation from a Poisson distribution with parameter lambda. The rejection method discussed by Kahn [1] is used. It requires an average of lambda +1 (pseudo) random numbers (uniformly distributed on the 0,1 interval) per call. For efficiency the random number generator should be coded in-line.

This procedure is especially suitable when a small number of random numbers are needed from each of a large number of different Poisson distributions. This can occur when the Poisson parameter used in each call is itself chosen according to some probability distribution. Algorithm 342 [2] is more efficient for repeated use of the same value of the Poisson parameter.

A value of -1 is returned to signal a value of lambda which is not positive. A value of -2 is returned to signal a value of lambda which is too large for the significance of the computer. I thank the referee for his suggestions and comments. References:
1. Kahn, H. Applications of Monte Carlo. RM-1237-AEC, Rand Corp. 1956 (revised version).
2. Snow, R. H. Algorithm 342, Generator of random numbers satisfying the Poisson distribution. Comm. ACM 11 (Dec. 1968), 819;
if lambda \(\leq 0.0\) then poissrn \(:=-1\)
else
begin
real \(z\);
\(z:=\exp\) (-laamdb);
if \(z=0.0\) then poissrn :=-2
else
begin
real \(t\); integer \(k\);
real procedure random;
begin
comment The body of this procedure must be provided by the user to generate the uniformly distributed random numbers required by poissrn. The random number generator is placed here rather than called as a global procedure to decrease the time taken to obtain each random number. For the same reason a fast generator should be chosen. It is also important that this generator should have negligible serial correlation;
<procedure body);
end random;
\(k:=0 ; \quad t:=1.0\);
for \(t:=t \times\) random while \(t>z\) do \(k:=k+1\);
\[
\begin{aligned}
& \text { poissrn }:=k \\
& \text { end } \\
& \text { end } p o i s s r n
\end{aligned}
\]

\section*{ALGORITHM 370}

GENERAL RANDOM NUMBER GENERATOR [G5]
Edgar L Butler (Recd. 20 June 1969 and 11 Aug. 1969) Texas A \& M University, College Station, TX 77840
KEY WORDS AND PHRASES: random number generator, probability density function, transformation, cumulative density function
CR CATEGORIES: 5.13,5.5

Introduction. The algorithm below will generate random numbers from any probability density function, whether it be analytical, hypothetical, or experimentally acquired. Although there are in existence some fast and some general routines, the fast ones are for specific densities whereas the general algorithms are slow. As an example of a general algorithm, IBM's GPSS [7] uses the transformation theory of random deviates [4] to generate random numbers from any density function which can be described by data points. The GPSS algorithm is simple, and its precision is dependent upon the degree of interpolation and the number of points used for estimating the transformation function.
The program below has made the transformation method more accurate than the GPSS routine by using 257 points and linear approximation to the probability density function. Speed was acquired by appropriate organization of necessary tables. A time estimate for the performance of an assembly language program of the algorithm RANDG on an IBM \(360 / 65\) is about \(33 \mu \mathrm{sec}\) for each generation.

Initialization. The operation of RANDG is based on vectors \(Q\) and \(R\) which can be derived by RANDGI as indicated below. An explanation of the routine RANDGI will give the reader some insight into the theory of RANDG.
1. Let \(\left(x_{i}, y_{i}\right), i=1,2, \cdots, n\) be coordinates describing the probability density function, \(y=f(x)\).
2. Using the trapezoidal rule, find \(p_{i}=\int_{x_{1}}^{x_{i}} f(x) d x\) so that \(p(x)\) approximates the cumulative density function of \(f(x)\).
3. Let \(x=p^{-1}(v)\), the inverse cumulative density function.
4. Find \(q_{j}=p^{-1}\left(v_{j}\right)\) by using Lagrange's quadratic interpolation formula on \(p^{-1}(v)\) for values of \(v_{j}=j / 256\) and \(j=0,1,2, \cdots\) 256 [5].
5. Compute \(f\left(q_{j}\right)\) and let \(r_{j}=\left(f\left(q_{j+1}\right)-f\left(q_{j}\right)\right) /\left(f\left(q_{j+1}\right)+f\left(q_{j}\right)\right)\) for \(j=0,1,2, \cdots, 255\). The \(\left|r_{j}\right|\) is the ratio of the triangular area to the total area of a trapezoid approximating the probability density function between \(x=q_{j}\) and \(x=q_{j+1}\) (Figure 1) and the sign of \(r_{j}\) is the sign of the derivative. If the vectors \(Q\) and \(R\) are available to the experimenter, it is not necessary to use RANDGI. It should also be noted that RANDGI need be used only once for a given density function and, therefore, does not usually affect the speed of generation.

Program. The routine RANDG then uses \(Q\) and \(R\) to generate the random ordinates in the following manner:
1. Select the \(j\) th interval with probability \(1 / 256\).
2. Let \(L_{1}\) and \(L_{2}\) be uniform random numbers on the interval (0 , 1). It follows that \(Y_{1}=Q_{j}+\left(Q_{j+1}-Q_{j}\right) * L_{1}\) is uniformly random over the interval \(\left(Q_{j}, Q_{j+1}\right)\) and \(Y_{2}=Q_{j}+\left(Q_{j+1}-Q_{j}\right) * \max \left(L_{1}\right.\), \(L_{2}\)) is triangularly distributed on the same interval and is skewed left.
3. Let \(P\left[\mathrm{Y}=\mathrm{Y}_{1}\right]=\mid R_{j} \quad\) and \(P\left[Y=Y_{2}\right]=1-\mid R_{j}\). Then \(Y\) is trapezoidally distributed with

Fig. 1. Trapezoid approximating area under the probability density function from \(Q_{\mathrm{J}}\) to \(Q_{\mathrm{J}+1}\)
\(f(Y)=\left\{\begin{aligned} 2 R_{j}\left(Y-Q_{j}\right) /\left(Q_{j+1}-Q_{j}\right)^{2} & \\ +\left(1-R_{j}\right) /\left(Q_{j+1}-Q_{j}\right), & Q_{j}<Y<Q_{j+1}, \\ 0, & \text { otherwise. }\end{aligned}\right.\)
4. If \(R_{j}<0\) then use \(Y_{2}=Q_{j}+\left(Q_{j+1}-Q_{j}\right) * \min \left(L_{1}, L_{2}\right)\). The use of 256 intervals was arbitrary. For speed in assembly language on a binary machine a power of 2 should be used. It is possible that 128 or 64 values are adequate and the use of fewer than 256 would certainly save storage. (Note: Any good uniform random number generator may be used for selecting the interval and finding \(L_{1}\) and \(L_{2}[1,2,3,6]\).)

References
1. Hull, T. E., and Dobell, A. R. Random number generators. SIAM Rev. 4 (July 1962), 230-254.
2. Lewis, P. A. W., Goodman, A. S., and Miller, J. M. A pseudo-random number generator for the System/360. IBM Syst. J. 8, 2 (1969), 136.
3. Marsaglia, G., and Bray, T. A. One-line random number generators and their use in combinations. Comm. ACM 11 (Nov. 1968), 757-759.
4. Mood, A. M. Introduction to the Theory of Statistics. McGrawHill, New York, 1950, pp. 107-108.
5. Salvadori, M. G., and Baron, M. L. Numerical Methods in Engineering (2nd ed.). Prentice-Hall, Englewood Cliffs, N. J., 1964, pp. 88-91.
6. Whittlesey, J. RB. A comprarison of the correlational behavior of random number generators for the IBM 360 . Comm. ACM 11 (Sept. 1968), 641-644.
7. General purpose simulation System/360 user's manual. No. H20-0326-3 (1968), IBM, White Plains, N. Y., pp. 26-35.

C DESCRIPTION OF PARAMETERS
```

        INPUT
    ```
 L -A NON ZERO ODD RANDOM INTEGER
 X -VECTOR OF LENGTH 257 CONTAINING ORDINATE POINTS SEPERATED BY EQUAL PROBABILITY ON DESIRED DISTRIBUTION. (CAN BE CALCULATED IN RANDGI).
R -VECTOR OF LENGTH 256 CONTAINING RATIOS OF DERIVATIVE*DX TO AREA/DX FOR EACH ORDINATE POINT IN X. (CAN BE CALCULATED IN RANDGI). output
 Y -RANDOM NUMBER
REMARKS
QUADRATIC APPROXIMATION OF CDF (CUMULATIVE DENSITY FUNCTION)
WHICH IMPLIES LINEAR APPROXIMATION OF PDF (PROBABILITY DENSITY
FUNCTION) .
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 NONE DIRECTLY. RANDGI MAY BE USED FOR INITIALIZATION.
METHOD
 TABLE LOOK UP PLUS UNIFORM AND TRIANGULAR DISTRIBUTION
 VARIABLES ARE USED.
c
c *
C GENERATE TWO JNIFORM RANDOM NUMBERS ON INTERVAL (1 - 2**31)
C ANY GOOD GENERATOR MAY BE SUBSTITUTED.
 \(\mathrm{L} 1=\mathrm{IABS}\left(65539 * \mathrm{~L}_{\mathrm{L}}\right)\)
 L=IABS (65539*L1)
 \(L 2=\mathrm{L}\)
\(c\)
C CALCULATE TWO UNIFORM RANDOM NUMBERS
K1 INTEGER ON INTERVAL (1 - 256)
AK2 REAL ON INTERVAL (\(0-1.0\))
 \(\mathrm{K} 1=\mathrm{L} 1 / 8388608+1\)
 AK2 \(=\) FLOAT \((M O D(L 1,8388608)) * 1.192093 E-7\)
 IF (AK2-ABS (\(\mathrm{R}(\mathrm{Kl}))) 8,8,30\)
 \(8 \operatorname{IF}(R(K I)) 20,10,10\)
C
C CALCULATE TRIANGULAR RANDOM SKEWED LEFT
C
 \(10 \mathrm{Y}=\mathrm{X}(\mathrm{KI})+(\mathrm{X}(\mathrm{KI}+1)-\mathrm{X}(\mathrm{KI}))\) *AMAXO(L1,L2)*4.656613E1-10
 RETURN
c
c calculate triangular random skewed right
c
 \(20 \mathrm{Y}=\mathrm{X}(\mathrm{K} 1)+(\mathrm{X}(\mathrm{K} 1+1)-\mathrm{X}(\mathrm{K} 1)) *\) AMINO (L1, L2 \() * 4.656613 \mathrm{E}-10\)
 RETURN
c
c calculate uniform random
c

```

c
5 IER=2
RETURN
10 P(1)=0.0
DO }15\textrm{I}=2,\textrm{N
IF(Y(I)) 5,11,11
11 IF(X(I)-X(I-1)) 6,12,12
c
c ERROR 3
c
ITER:3
RETURN
12 P(I)=(Y(I)+Y(I-1))* (X(I)-X(I-1))*0.5+P(I-1)
15 continue
IF (P(N)-0.996094) 7,7,16
16 IF (P(N)-1.003906) 3,7,7
c
ERROR 1
c
7 IER=1
3 F=1.0/P(N)
DO 4I=2,N
4 P(I)=P(I)*F
c
c CALCULATE X POINTS FOR EQuAL-DISTANT CumulativE probABILItIES
c
v=0.0
Q(1)=x(1)
Tl=Y(1)
J1=2
100 DO 150 I=2,257
IF(I-257) 102,103,103
102 V = v+3.90625E-3
c
C LOCATE beSt point for interpolation
c
DO 101 J=J1,N
IF(P(J)-v) 101,104,105
101 continue
c
ERROR 4
c
103 J=N
104 Q(I) =x (J)
T2=Y(J)
GO TO }12
105 IF(J-3) 113,108,107
107 IF (J-N) 108,111,111
108 IF((P(J) -V)-(V-P(J-1))) 110,110,111
110 J1=J-1
GO TO 120
111 J1=J-2.
GO то 120
113 J1=1
c

```
```

C QUADRATIC INTERPOLATION OF P INVERSE FOR Q
c
120 XT2=P(J1+2)-P (J1)
XT3=P (Jl+2) -P (Jl+1)
XT1=P(J1+1)-P(J1)
xV1=V-P (J1)
xv2=V-P (JI+1)
xv3=V-P(J1+2)
Q(I)=(XV3*XV2*X(J1))/(XT1*XT2) - (XV3*XV1*X(Jl +1))/(XT1*XT3) +
1 (XV2*XVI*x(J1+2))/(XT2*XT3)
c
C LINEAR INTERPOLATION OF Y FOR T2 ANLI R
c
T2=(Y(J)-Y(J-1))* (Q(I) -X(J-1))/'(X (J)-X (J-1)) +Y(J-1)
125 R(I-1)=(T2-T1)/(T2+T1)
Tl=T2
J1=J
150 continue
RETURN
END

```

\section*{Remark on Algorithm 370 [G5]}

General Random Number Generator [Edgar L. Butler, Comm. ACM 13 (Jan. 1970), 49-52]
L.G. Proll* (Recd. Nov. 1970)

Department of Mathematics, University of Southampton, U.K.

Key Words and Phrases: random number generator, probability density function, transformation, cumulative distribution function

CR Categories: 5.13, 5.5

\footnotetext{
Algorithm 370 was translated into Algol and run on an ICL 1907 computer. Tests revealed that, in several instances, the subroutine RANDGI generated incorrect values for the vector \(Q\) and, consequently, for \(R\). In particular, RANDGI does not guarantee that \(Q(I)\) increases with \(I\) as clearly should be the case. For example, a selection of the results for \(Q\) and \(R\), rounded to four decimal places, obtained by RANDGI with
\(N=4\)
\(X=(0.0,0.5,1.0,2.0)\)
\(Y=(0.0,0.5,1.0,0.0)\)
corresponding to a symmetric triangular distribution [1] on [0, 2], is as follows:
\begin{tabular}{llr}
\(I\) & \(Q(I)\) & \multicolumn{1}{r}{\(R(I)\)} \\
78 & 0.9211 & 0.0031 \\
79 & 0.9268 & 0.0030 \\
80 & 0.9322 & 0.0029 \\
81 & 0.7232 & -0.1262 \\
82 & 0.7284 & 0.0036
\end{tabular}
}

Similar results were obtained for several other distributions.
The error lies in changing the interpolating quadratic between two interpolation points and will always arise when, for some \(J\),
(i) interpolation takes place at points between \(P(J)\) and \(P(J+1)\),
(ii) the interpolating quadratic on the points \(P(J-1), P(J)\) and \(\boldsymbol{P}(J+1)\) is convex,
(iii) the interpolating quadratic on the points \(P(J), P(J+1)\) and \(P(J+2)\) is concave.

Alteration of the interpolating quadratic only at an interpolation point will avoid this error; an appropriate alteration to the algorithm is given later.

In addition, the following remarks can be made about the algorithm:
(i) The statements labeled 105,110 , and 120 in the subroutine RANDGI imply that \(N \geq 4\). However only three points are needed for quadratic interpolation, and moreover, it is meaningful to specify a probability distribution by only three points, e.g. any triangular distribution.
(ii) A trivial alteration would allow the subroutine RANDGI to trap the condition \(X(I)=X(I-1)\) which would otherwise cause an overflow in calculating an element of \(Q\).
(iii) The usefulness of Algorithm 370 can be enhanced by allowing the vector \(Y\) to represent either a probability density function or a cumulative distribution function as required. The experimenter may, for instance, have directly available the cumulative polygon [2] of an empirical distribution.

The following alterations to the subroutine RANDGI incorporate the above correction and remarks:
(i) In the opening comment,
(a) replace line 9 by

C CALL RANDGI (N,X,Y,P,Q,R,K,IER)
(b) replace line 14 by

C (PROBABILITY DENSITY FUNCTION) OR CDF
C (CUMULATIVE DISTRIBUTION FUNCTION), N.GE.3.
(c) add the words OR CDF to lines 15 and 16
(d) insert after line 16,

C K - K SHOULD BE SET TO 1 IF Y REPRESENTS C A CDF, OTHERWISE Y WILL BE INTERC PRETED AS A PDF
(e) replace line 28 by

C 3-NOT IN SORT, I.E. SOME X(I) LE X(I-1).ABORT
(ii) Change the subroutine statement to

SUBROUTINE RANDGI (N,X,Y,P,Q,R,K,IER)
(iii) Change the statement labeled 11 to
\[
11 \text { IF }(X(I)-X(I-1)) 6,6,12
\]
(iv) Delete the statement labeled 12 and insert

12 IF (K.EQ.1) GO TO 13
\(\mathrm{P}(\mathrm{I})=(\mathrm{Y}(\mathrm{I})+\mathrm{Y}(\mathrm{I}-1)) *(\mathrm{X}(\mathrm{I})-\mathrm{X}(\mathrm{I}-1)) * 0.5+\)
\(1 \quad \mathrm{P}(\mathrm{I}-1)\)
C Y IS A PDF
GO TO 15
\(13 \quad \mathbf{P}(\mathrm{I})=\mathbf{Y}(\mathrm{I})\)
C Y IS A CDF
(v) Delete the five statements commencing at label 105 and insert

105 IF (J.LE.3) GO TO 113
With these alterations to the subroutine RANDGI and with the incorporation of locally available routines for generating uniform and triangular deviates [3] into RANDG, satisfactory results were obtained for the first two moments of several distributions including the beta, symmetric triangular, nonsymmetric triangular, and various empirical distributions. Table I contains a selection of the results
obtained for various values of \(N\) for samples of size 1000 from a beta \((4,3)\) distribution. In each case, the distribution was specified at the points
\(X(I)=(I-1) /(N-1), \quad I=1,2--N\).
With the exception of the case when \(N=5\), the true mean and variance lie within the appropriate 95 percent confidence intervals obtained from the samples.

In addition to tests on the first two moments, the samples were also subjected to \(Q-Q\) plots [4]; i.e t.he ordered observations were plotted against the quantiles of the parent distribution. The procedure indicates a perfect match by a straight line of slope 1 passing through the origin and is especially sensitive to differences in the tails of the distributions. The quantiles of the beta distribution were calculated by interpolation in values of the beta c.d.f. obtained by the method of Hill and Pike [5]. Serious departures from the desired shape were observed for \(N=5,10\) in both the cases \(K=1\) and

Table I.
\begin{tabular}{lclll}
& \multicolumn{2}{c}{\(K \neq 1\)} & \multicolumn{2}{c}{\(K=1\)} \\
\(N\) & Mean & Variance & Mean & Variance \\
5 & 0.605 & 0.037 & 0.663 & 0.026 \\
10 & 0.576 & 0.031 & 0.580 & 0.028 \\
20 & 0.578 & 0.029 & 0.580 & 0.029 \\
50 & 0.571 & 0.030 & 0.574 & 0.030 \\
100 & 0.565 & 0.029 & 0.573 & 0.029 \\
True value & 0.571 & 0.030 & 0.571 & 0.030 \\
\hline
\end{tabular}
\(K \neq 1\). The results obtained for \(N \geq 20\) were satisfactory for both cases.

\section*{References}
1. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1968.
2. Guttman, I., and Wilks, S.S. Introducing Engineering Statistics. Wiley, New York, 1965.
3. Proll, L.G. A subroutine package for the generation of random deviates on an ICL 1900 computer. Mathematics Depart. Tech.
Rep. 70/1, U. of Southampton, U.K. July 1970.
4. Wilk, M.B., and Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55 (Mar. 1968), 1-17.
5. Pike, M.C., and Hill, I.D. Remark on Algorithm 179:

Incomplete beta ratio. Comm. ACM 10 (June 1967), 375.
```

ALGORITHM }37
PARTITIONS IN NATURAL ORDER [A1]
J. K. S. McKay (Recd. 28 Apr. 1967)
California Institute of Technology, Mathematics Division,
Pasadena, CA 91109.
KEY WORDS AND PHRASES: partitions, number theory
CR CATEGORIES: 5.39
procedure partition ( }p,k,last); integer n, k
integer array p; Boolean last;
comment Partition may be used to generate partitions in their
natural (reverse lexicographical) order. On entry the first k
elements of the global integer array p[1:n] should contain a parti-
tion, p[1] \geqp[2]\geq\cdots\geqp[k],of n into k parts. In order to ini-
tialize m, the first entry must be made with last set true: this will
result in p[1], p[2],\cdots,p[k] and k remaining unaltered and last
set false on exit. On all subsequent entries with last false, }k\mathrm{ is
updated and p[1], p[2],\cdots,p[k] will be found to contain the
next partition of n}\mathrm{ with parts in descending order. On returning
with the last partition, p[1] =p[2]=\cdots=p[n], last is set
true. To generate all partitions of n, p[1], k, last should be set
to n, 1, true, respectively for the initial call: these variables
must not be altered between successive calls for partition;
begin
own integer m; integer t;
if last then
begin
last := false;
for m:= 1 step 1 until k do
if p[m]=1 then go to c;
m:=k; go to c
end;
t:=k-m;
k:=m;
p[m]:= p[m]-1;
a: if p[k]>t then go to b;
t:=t-p[k];
k:=k+1;
p[k]:= p[k-1];
go to a;
b:k:=k+1;
p[k]:=t+1;
if p[m] }>=1\mathrm{ then }m:=k
c: if p[m]=1 then m:=m-1;
if m=0 then last:= true;
end partition

```

\section*{ALGORITHM 372 \\ AN ALGORITHM TO PRODUCE COMPLEX PRIMES, CSIEVE [A1]}
K. B. Dunham (Recd. 29 July 1968 and 7 Oct. 1968)

Georgia Institute of Technology, School of Information Service, Atlanta, GA 30332

KEY WORDS AND PHRASES: primes, complex numbers \(C R\) CATEGORIES: 5.39
procedure CSIEVE (\(m, P R, P I\));
value \(m\); integer \(m\); integer array \(P R, P I\);
comment Primes can be defined in the complex domain, \(a+b i\), where \(a\) and \(b\) are integers. A unity is \(\pm 1\) or \(\pm i\). A unity times a prime is its associate. Primes are not unique among associates; but except for that ambiguity, all the ordinary rules of real primes, such as the unique factorization law, apply to complex primes.
It can be shown that a complex integer is prime if and only if its conjugate is prime. Therefore it is sufficient to search for primes in the one-eighth plane area with a closed bound along \(y=0\) and an open bound along \(x=y\), where \(x\) is positive and \(y\) is less than \(x\) but nonnegative. Any prime found in that area has seven more associated primes: \(-x+y i, \pm x-y i, \pm y+x i\), \(\pm y-x i\). A discussion of complex primes can be found in [1]. It should be pointed out that numbers prime in the real domain are not necessarily prime in the complex domain, e.g. \(2=\) \(2+0 i=(1+i)(1-i)\).
Algorithms 35 [2], 310 [3], and 311 [4] generate real primes. The simplistic technique used by Algorithm 35 applies equally well to generating complex primes. Unfortunately the more efficient techniques of Algorithms 310 and 311 cannot easily be translated into complex prime sifters. This algorithm, CSIEVE, uses the result that a complex integer is prime if the square of its modulus is relatively prime to the square of the moduli of all previous primes. The procedure is called with a value \(m\), the number of complex primes to generate, \(P R\) and \(P I\), the real and imaginary parts of the prime list generated where \(P R>P I \geq 0\) for each prime. The seven other associated primes must be generated externally to CSIEVE.
References:
1. Hardy, G. H., and Wright, E. M. An Introduction to the Theory of Numbers. Clarendon Press, Oxford, 1954, Ch. 12.
2. Wood, T. C. Algorithm 35, Sieve. Comm. ACM 4 (Mar. 1961), 151.
3. Chartres, B. A. Algorithm 310, Prime number generator 1. Comm. ACM 10 (Sept. 1967), 569.
4. Chartres, B. A. Algorithm 311, Prime number generator 2. Comm. ACM 10 (Sept. 1967), 570;

\section*{begin}
integer \(d n, n r, n i, s q\), root, \(i, j, k\);
integer array \(P M[2: m]\);
\(d n:=P R[1]:=P I[1]:=P I[2]:=1 ; \quad P M[2]:=5 ;\) \(j:=P R[2]:=2 ;\)
for \(n r:=3\) step 1 until \(m\) do
begin
\(d n:=1-d n ;\)
for \(n i:=d n\) step 2 until \(n r-1\) do
begin
\(s q:=n r \times n r+n i \times n i ;\)
root \(:=\) entier \((1.5 \times n r)\);
```

        for \(i:=2\) step 1 until \(\boldsymbol{j}\) do
        begin
        if \(((s q \div P M[i]) \times P M[i])=s q\) then go to \(C\);
        if root \(<P M[i]\) then go to \(A\);
        end;
    A: for $i:=2$ step 1 until $\boldsymbol{j}$ do
begin
if $P M[i]>s q$ then
begin
for $k:=j$ step -1 until $i$ do
$P M[k+1]:=P M[k] ;$
go to $B$;
end
end;
B: $\quad P M[i]:=s q ; \quad j:=j+1 ; \quad P R[j]:=n r ; \quad P I[j]:=n i ;$
if $j=m$ then go to $D$;
$C$ : end
end;
D:

```
end CSIEVE

\section*{REMARKS ON}

ALGORITHM 372 [A1]
AN ALGORITHM TO PRODUCE COMPLEX PRIMES, CSIEVE [K. B. Dunham. Comm. ACM 13 (Jan. 1970), 52-53]

\section*{ALGORITHM 401 [A1]}

AN IMPROVED ALGORITHM TO PRODUCE COMPLEX PRIMES [P. Bratley. Comm. ACM 19 (Nov. 1970), 693]

Paul Bratley (Recd. 25 Feb. 1970)
Département d'informatiqué, Universite de Montréal, C.P. 6128, Montréal 101, Quebec, Canada

KEY WORDS AND PHRASES: number theory, prime numbers, complex numbers
\(C R\) CATEGORIES: 5.39

\footnotetext{
Algorithm 372 was run on the CDC 6400 at the University of Montreal. The variable \(i\) is undefined if the for-loop at label \(A\) is completed. The statement
\[
i:=j+\mathbf{1} ;
\]
should be added immediately before label \(B\). Algol purists may also care to remove redundant semicolons after go to \(A\) and go to \(B\), and the redundant parentheses in one if-statement. With these changes the algorithm produced correct results for several values of \(m\).

The comment in Algorithm 372 is slightly inaccurate. The first prime generated by the algorithm is \(1+i\), which does not have. \(P R>P I\), and which has not seven but three associated primes.

It is not possible to compare the speeds of Algorithm 372 and Algorithm 401 directly since they generate primes in a different order. However, the following test was run. A value of \(m\) was chosen, and Algorithm 401 was used to list all the complex primes with modulus less than \(m\). The time taken and the number of primes produced were noted. Then Algorithm 372 was used to
}
produce an equal number of primes, the time taken again being noted. Times observed are shown in Table I.

TABLE I
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Limit on \\
modulus
\end{tabular} & \begin{tabular}{c}
Algorithm 401 \\
produced this \\
number of primes
\end{tabular} & \begin{tabular}{c}
Time taken \\
(secs)
\end{tabular} & \begin{tabular}{c}
Time taken by Algorithm \\
372 to produce the same \\
number of primes (secs)
\end{tabular} & \begin{tabular}{c}
Ratio of \\
times taken
\end{tabular} \\
\hline 25 & 60 & 0.278 & 0.331 & 1.2 \\
50 & 189 & 1.577 & 2.140 & 1.4 \\
75 & 373 & 4.217 & 7.602 & 1.8 \\
100 & 623 & 8.618 & 20.214 & 2.4 \\
150 & 1266 & 23.732 & 79.481 & 3.4 \\
\hline
\end{tabular}

The conclusion from the figures in Table I is that if the speed with which the complex primes are generated is of paramount importance then Algorithm 401 should be preferred to Algorithm 372.

As written Algorithm 401 will use more memory than Algorithm 372 since it is convenient and perspicuous to use sieve 2 in an unmodified form, which makes it necessary to store temporarily all the rational primes less than \(m^{2}\). However, if space is tight then sieve 2 can easily be modified so as to generate rational primes one at a time on successive calls, and in this way the use of the long array P2 can be avoided. If this modification is made Algorithm 401 will in fact use less store than Algorithm 372, which wastefully stores many useless values in \(P M\). It is also to be noticed that the factors 0.7 and 1.4 occurring in the declarations of \(P 2\) and \(P 3\) may be diminished for large \(m\) : all that is necessary is that \(P 2\) should be long enough to hold the rational primes less than \(m^{2}\), and that \(P 3\) should be long enough to hold the rational primes which are not greater than \(m\) and which are of the form \(4 n+3\). Some space may be saved similarly in sieve2, which is called from Algorithm 401.

ALGORITHM 373
NUMBER OF DOUBLY RESTRICTED
PARTITIONS [A1]
John S. White (Recd. 4 Mar. 1969)
University of Minnesota, Department of Mechanical Engineering, Minneapolis, MN 55455
KEY WORDS AND PHRASES: partitions, restricted partitions, sums of integers, restricted sums
CR CATEGORIES: 5.39
procedure setk (\(P, N, K\)); value \(N, K\);
integer \(N, K\); integer array \(P\);
comment The number of partitions of \(L\) with parts greater than or equal to \(K\) and less than or equal to \(M\) is set in \(P[L, M]\) for all \(L, M\) such that \(N \geq L \geq M \geq 0\). This algorithm is a generalization of [1] which treats the case \(K=1\). Reference:
1. McKay, J. K. S. Algorithm 262, Number of restricted partitions on \(N\). Comm. ACM 8 (Aug. 1965), 493;
begin integer \(L, M\);
for \(L:=0\) step 1 until \(N\) do
for \(M:=0\) step 1 until \(L\) do \(P[L, M]:=0\);
\(P[0,0]:=1\);
for \(L:=K\) step 1 until \(N\) do for \(M:=K\) step 1 until \(L\) do
\(P[L, M]:=P[L, M-1]+P[L-M\), if \(L-M<M\) then \(L-M\) else \(M\)]
end
```

ALGORITHM 374
RESTRICTED PARTITION GENERATOR [A1]
John S. White (Recd. 4 Mar. 1969)
University of Minnesota, Department of Mechanical
Engineering, Minneapolis, MN 55455
KEY WORDS AND PHRASES: partitions, restricted parti-
tions, sums of integers, restricted sums
CR CATEGORIES: 5.39
procedure gen ( $P, N, K$, position, ptn, len);
value $N, K$, position;
integer $N, K$, position, len; integer array $P$, ptn;
comment The partitions of $N$ with smallest part greater than
or equal to $K$ are mapped in their natural order, one-one, onto
the consecutive integers from 0 to $P[N, N]-1$, where $P[N, N]$
is the number of partitions of $N$ with smallest part greater than
or equal to $K$. The array $P$ is set by the procedure setk. On entry,
position contains the integer onto which the partition is mapped.
On exit, len contains the number of parts of the partition and
$p t n[1: l e n]$ contains the parts of the partition in descending order.
This algorithm is a generalization of [1] which considers the
case $K=1$.
Referfnge:
1. McKay, J. K. S. Algorithm 263, Partition generator. Comm.
ACM 8, (Aug. 1965), 493;
begin integer $L, M, p s n$;
$L:=N ; \quad$ ss $:=$ position; len $:=0$;
$A$ :
len $:=l e n+1 ; \quad M:=K ;$
$B$ :
if $P[L, M]<p s n$ then
begin
$M:=M+1 ;$ go to $B$
end
else if $P[L, M]>p s n$ then
$C$ :
begin
$p t n[l e n]:=M ; \quad p s n:=p s n-P[L, M-1] ;$
$L:=L-M$; if $L<K$ then go to $D$; go to $A$
end
else $M:=M+1$;
if $M=L$ then go to $C$ else go to $B$;
D:
end;
begin integer $N, I, J, K$, len, position;
integer array $P[0: 20,0: 20]$, $p \operatorname{tn}[0: 20]$;
comment driver for setk and gen;
Next:
outstring ( 1, " "); outstring (1, " "');
outstring ( 1, "partitions of $N, N=$ "); ininteger ( $2, N$ );
outstring ( 1 , "with parts $\geq K, K=$ "); ininteger ( $2, K$ );
for $I:=0$ step 1 until $N$ do
for $J:=0$ step 1 until $N$ do $P[I, J]:=0$;
setk ( $P, N, K$ );
outstring ( 1, " $P$ array");
for $I:=0$ step 1 until $N$ do
begin
for $J:=0$ step 1 until $N$ do outinteger ( $1, P[I, J]$ );
outstring ( $1,{ }^{\prime \prime \prime}$ )
end;

```

\section*{ALGORITHM 375}

FITTING DATA TO ONE EXPONENTIAL [E2]
H. Sрїтн (Recd. 23 Oct. 1967)

Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe, Germany
KEY WORDS AND PHRASES: nonlinear least squares fit CR CATEGORIES: 5.15
procedure \(a b f t(x, y, p, n, e p s, a, b, a b, e b, b o o l, e x i t)\);
value \(n\), eps; integer \(n\); real eps, \(a, b, a b, e b\);
label exit; array \(x, y, p\); Boolean bool;
comment If you want to fit data points \(\left(x_{i}, y_{i}\right)(i=1, \cdots, n)\) with associated weights \(p_{i}\) to \(f(x)=a e^{-b x}\) the usual approach is to do a linear fit in the sense of least squares with \(\ln (f(x))=\) \(\ln (a)-b x\) to the data \(\left(x_{i}, \ln \left(y_{i}\right)\right)\) that is to minimize
\[
\begin{equation*}
S^{*}=\sum_{i=1}^{n} g_{i}\left(\ln \left(y_{i}\right)-\ln (a)+b x_{i}\right)^{2} \tag{1}
\end{equation*}
\]

In [1] it is shown that this approach for finding; \(a\) and \(b\) that are minimizing
\[
\begin{equation*}
S(a, b)=\sum_{i=1}^{n} p_{i}\left(y_{i}-a e^{-b x_{i}}\right)^{2} \tag{2}
\end{equation*}
\]
is in general bad if you do not choose
\[
\begin{equation*}
g_{i}=p_{i} y_{i}{ }^{2} \quad(i=1, \cdots, n) \tag{3}
\end{equation*}
\]

Proceeding similarly as in [2] from the necessary conditions for \(S\) having a minimum
\[
\begin{equation*}
\frac{\partial S}{\partial a}=\frac{\partial S}{\partial b}=0, \tag{4}
\end{equation*}
\]
we eliminate \(a=a(b)\) from the first equation of (4) and put this into the second one. We result in an equation
\[
\begin{equation*}
F(b)=0 . \tag{5}
\end{equation*}
\]

If we have found a zero \(b\) of (5) then (\(a(b), b\)) is a solution of (4). The procedure abfit has two possibilities to do this. For bool = false we use the result \(b^{*}\) from minimizing (1) with weights (3) to set up the intervals
\(\left[b^{*}\left(1-\frac{j}{20}\right), b^{*}\left(1-\frac{j+1}{20}\right)\right](j=0, \pm 1, \pm 2, \cdots, \pm 19)\)
and to look if \(F\) has opposite signs at the endpoints of one of these intervals [ab,eb]. Experience has shown that for realistic data this method is a good one. If we do not find such an interval, \(a b f i t\) is left through exit and we can deliver \(a b\) and \(e b\) as input parameters to abfit with bool \(=\) true.

In both cases a global procedure Rootfinder must be made available to find an existing zero \(b\) with relative accuracy eps in the calculated or given interval otherwise leaving to the label exit.
The label exit would further be used if for bool = false the condition \(y_{i}>0\) for \(i=1, \cdots, n\) is not fulfilled.

\section*{References:}
1. Böttagr, H. Uber Gewichtsverteilung beim Fit mit Exponentialfunktionen. ZfK-TPh 22 (1966).
2. Spätr, H. Algorithm 295, Exponential curve fit. Comm. ACM 10 (Feb. 1967), 87;
begin integer \(k\);
real \(h 1, h 2, h 3, h 4, h 5, h 6, h 7, h 8, b 1, b 2, F 1, F 2, F 3, F 4, h\);
procedure \(F b(b, F)\); value \(b\); real \(b, F\);
comment For given \(b\) this procedure calculates \(F=F(b)\);
```

    begin
    h1:=h2:= h3:= h4:= 0;
    for }k:=1\mathrm{ step 1 until n do
    begin
        h5:= exp(-b\timesx[k]); h6 := p[k]\timesy[k];
    ```

```

        h1:=h1+h8; h2:= h2 + h7;
        h3:=h3+x[k]\timesh8; h4:=h4 + x[k]\timesh7
    end;
    a:=h1/h2; F:=h3\timesh2-h1\timesh4
    end Fb;
    if bool then go to ROOT;
    h1:= h2:= h3 := h4:= h5:= 0;
    comment The linear fit is done to get the estimate b}\mp@subsup{b}{}{*}
    for }k:=1\mathrm{ step 1 until }n\mathrm{ do
    begin
        if y[k] \leq 0 then go to exit;
        h8:= ln(y[k]); h6:= p[k]\timesy[k]\timesy[k]; h7 := h6 }\timesx[k]
        h1:=h1+h6; h2:= h2 +h7 X x[k]; h3:=h3 +h7;
        h4:=h4+h7\timesh8; h5:=h5+h6\timesh8
    end;
    h8:= 1.0/(h1\timesh2-h3\timesh3); b:= - h8 > (h1\timesh4-h3\timesh5);
    b1:=b2:=b; k:= 0; h:= 0; Fb(b,F1); F2:= F1;
    SEARCH: k:=k+1; if k>20 then go to exit;
h:=h+.05; ab:=b1\times(1.0-h); Fb(ab,F3);
if F1\timesF3<0 then begin eb := b1; go to ROOT end;
eb := b2 × (1.0+h); Fb(eb, F4);
if F2\timesF4<0 then begin }ab:=b2\mathrm{ ; go to ROOT end;
b1:=ab; b2:=eb; F1:=F3; F2:=F4; go to SEARCH;
ROOT: Rootfinder (Fb, ab, eb, eps, b, exit)
end abft

```

\section*{ALGORITHM 376}

LEAST SQUARES FIT BY \(f(x)=A \cos (B x+C)\)［E2］
H．Späth（Recd． 26 June 1967 and 28 Oct．1968）
Institut für Neutronenphysik und Reaktortechnik，Kern－ forschungszentrum Karlsruhe，Germany
KEY WORDS AND PHRASES：nonlinear least squares fit CR CATEGORIES： 5.15
procedure cosft \(f(x, y, p, n\), beginB，endB，eps，\(A, B, C, f B, s, f x\) ， exit）；
value \(n\) ；begin \(B\) ，endB，eps；integer \(n\) ；
real beginB，endB，eps，\(A, B, C, f B, s\) ；
array \(x, y, p, f x\) ；label exit；
comment Let \(\left(x_{k}, y_{k}\right)\) be \(n\) given data points with associated weights \(p_{k}\) ．We want to find the three parameters \(A, B\) ，and \(C\) of a curve \(f(x)=\operatorname{Acos}(B x+C)\) such that \(f\) fits the data in the least squares sense．Introducing the parameters \(\alpha=-A \sin (C)\) ， \(\beta=A \cos (C), \gamma=B\) ，we have \(f(x)=\alpha \sin (\gamma x)+\beta \cos (\gamma x)\) and thus only one nonlinear parameter \(\gamma\) ．Now we can use the same method as in［1］．From the necessary conditions for
\[
s(\alpha, \beta, \gamma)=\sum_{k=1}^{n} p_{k}\left(x_{k}-f\left(x_{k}\right)\right)^{2}
\]
having a minimum we eliminate \(\alpha\) and \(\beta\) getting one equation in one nonlinear parameter \(\gamma, F(\gamma)=0\) ．If we obtain a root \(\gamma^{*}\) of \(F\) then the triple \(\left(\alpha\left(\gamma^{*}\right), \beta\left(\gamma^{*}\right), \gamma^{*}\right)\) is a stationary point of \(s\) and we finally get the desired parameters by
\[
\begin{aligned}
& B=\gamma, \\
& C=\arctan (\alpha / \beta), \\
& A=-\operatorname{sign}(a) \times \operatorname{sign}(\sin (C)) \times\left(\alpha^{2}+\beta^{2}\right)^{\frac{1}{2}} .
\end{aligned}
\]

A global procedure named Rootfinder must be made available to cosft which is able to get a zero \(\gamma=B\) of a function \(F(\gamma)\) in a given interval［beginB，end \(B\) ］with relative accuracy eps，if \(\operatorname{sign}(F(b e g i n B)) \neq \operatorname{sign}(F(e n d B))\) otherwise leaving to the global label exit．A bisection routine is possible，but an interpo－ lation method like that in［2］is to be preferred．
By setting beginB equal to endB，the procedure cosfit can be used to tabulate the functions \(f B=F(B)=F(\) begin \(B), s=\) \(s(b e g i n B), A=A(\) begin \(B)\) ，and \(C=C(b e g i n B)\) and thus allows to get all minima in a given range．Often，the tabulation is made superfluous by proceeding as follows．In a rough graph we gather two intervals（ \(x_{1}{ }^{*}, x_{1}{ }^{* * *}\) ）and（ \(x_{2}{ }^{*}, x_{2}{ }^{* *}\) ）including two successive zeros \(x_{1}\) and \(x_{2}\) of the desired function \(f\) ．Then the two values begin \(B=2 \pi /\left(x_{2}{ }^{*}-x_{1}{ }^{* *}\right)\) ， \(\operatorname{endB}=2 \pi /\left(x_{2}{ }^{* *}-x_{1}{ }^{*}\right)\) in general form an interval that contains the value \(B\) for which \(s\) has the absolute minimum．As \(s\) has in general infinitely many minima，our method is superior to general purpose minimizing methods．If the found zero of \(F\) is not a minimum of \(s\) in the sense that the Jacobian \(s^{\prime \prime}\) is numerically not positive definite， the program puts \(s\) equal to \(-s\) ．As rounding errors may cause here a wrong decision it is recommended to look also at the magnitude of \(s\) ．
The label exit is further used if，during the zero locating process，it would happen that the elimination of \(\alpha\) and \(\beta\) were not possible．Variables \(f B\) and \(s\) finally have the values \(F(B)\) and \(s(B)\) at the found zero．The array \(f x\) will contain the fitted values \(f x[k]=A \times \cos (B \times x[k]+C)\) ．
References：
1．Spätr，H．Algorithm 295，Exponential curve fit．Comm． ACM 10 （Feb．1967）， 87.
2．Kristiansen，G．K．Contribution No．6，Zero of arbitrary function．BIT 3 （1963），205－207；
```

begin
integer k; real }h1,h2,h3,h4,h5,h6,h7,h8,h9,h11,h12,h13
h14, hh, alpha, beta, gamm, t,u,v,w,z,q,r,h,d,e,f;
procedure Fgamma(gamm, Fgamm);
value gamm; real.gamm, Fgamm;
begin
if gamm = 0 then go to exit;
h1:=h2:=h3 := h4 := h5 := h6 := h\grave{7}:=h8:= h9:= 0;
for }k:=1\mathrm{ step 1 until n do
begin
t:= x[k]; u := gamm }\timest;v:= sin(u); u:= cos(u)
w:=v\timesv;z:=u\timesu; q:= p[k]; r:=v\timesu;
h:=y[k]; d :=q\timesh; e ::= q\timest; f:=e 苃;
h1:=h1+q\timesw; h2:=h2 + q 人 z; h3 := h3 + q 人 r;
h4:=h4+d\timesv; h5:=h5+d\timesu; h6:= h6 +e e r r;
h7:=h7+e\times(z-w); h8:=: h8+f\timesu; h9:=h9+f\timesv
end;
hh:= h1 < h2 - h3 > h3;
if }hh=0\mathrm{ then go to exit; h=1/hh;
alpha:=h\times(h4\timesh2-h3\timesh5); beta:= }=\textrm{h}\times(h1\timesh5-h3\timesh4)
Fgamm := fB := h6 \times (alpha+beta)}\times(\mathrm{ (alpha-beta)
+ alpha }\times\mathrm{ beta }\timesh7-alpha \timesh8 + beta \timesh
end Fgamma;
if beginB = endB then begin Fgamma (B,fB); go to CC end
Rootfinder (Fgamma, beginB, endB, eps, gamm, exit);
B := gamm;
CC : if beta =0 then C := - 1.5707963 else C := - arctan
(alpha/beta);
A:= -sign(alpha) }\times\operatorname{sign}(\operatorname{sin}(\mp@subsup{C}{}{\prime}))\timessqrt(alpha\timesalpha +beta X
beta); h:= 0;
for k:= 1 step 1 until n do
begin
v:= fx[k] := A }\times\operatorname{cos}(B\timesx[k]+C)
v:=v-y[k]; h:=h+p[k]\timesv\timesv
end;
s:=h; if begin}B=endB\mathrm{ then go to END;
if }h1\leq0\veehh<0 then begin s:= -s; go to END end
h11:=h12:=h13:=h14:= 0;
for }k:=1\mathrm{ step 1 until n do
begin
u:= B X x[k]; v := sin(u); u:= cos(u);
e:=x[k]\timesx[k]; r:= p[k]\timese; f:=r\timesy[k];
h11:=h11+r\times(u\timesu-v\timesv); h12:=h12+r\timesu\timesv;
h13:=h13+f\timesv; h14:=h14+f\timesu
end;
h11:= h11 }\times(alpha+beta)\times(alpha-beta
-4\times alpha }\times\mathrm{ beta }\timesh12+\mathrm{ alpha }\timesh13+\mathrm{ beta }\timesh14
h12:= 2 人 alpha }\timesh6+\mathrm{ beta }\timesh7-h8; h13:= alpha ×h7
-2\times beta }\timesh6+h9
if h11 }\timeshh-h13\times(h1\timesh13-h3\timesh12
+h12\times(h3\timesh13-h2\timesh1:2)\leq0 then s:= -s;
END: end

```

\author{
ALGORITHM 377 \\ SYMBOLIC EXPANSION OF ALGEBRAIC EXPRESSIONS［R2］ \\ Michael J．Levine＊ \\ Department of Physics，Carnegie－Mellon University， Pittsburgh，PA 15213 \\ and Stanley M．Swanson \(\dagger\)（Recd． 27 Jan．1969） \\ 89 Mid Oaks Lane，St．Paul，MN 55113
}
＊This work was done in part at the Division of Theory， CERN，Geneva，Switzerland．
\(\dagger\) This work was donein part at the Institute of Theoretical Phy－ sics，Stanford University，Stanford，California．
KEY WORDS AND PHRASES：algebra，symbolic algebra， symbolic multiplication，algebraic distribution，algebraic multi－ plication，distribution algorithm，multiplication algorithm，prod－ uct algorithm，polynomial distribution，polynomial expansion \(C R\) CATEGORIES：3．10，3．17，3．20，4．13， 4.90
procedure \(E X P A N D(M)\) ；integer \(M\) ；
comment This algorithm algebraically expands arbitrarily parenthesized expressions into monomials．Distribution is direct， without intermediate expansion of lower level expressions．The algorithm has been used as a part of algebra programs in the－ oretical physics［2，3］．It was devised by H．J．Kaiser［1］and re－ constructed by M．J．Levine．Expansion proceeds in two steps： First，parsing an input expression into a sequence of variable－ operator pairs with associated parenthesis－level information， and then picking out the variables which belong together as factors of monomial terms．\(E X P A N D\) accepts an abbreviated Algol－like syntax：
（variable）：：＝A｜B｜C｜D｜E｜F｜G
〈primary）\(::=\) 〈variable〉 \(\mid\)（ expression〉）
\(\langle\) term \(::=\langle\) primary \(\rangle|\langle\) term \(\rangle \times\langle\) primary \(\rangle\)
\(\langle\) expression \(\rangle:=\langle\) term \(\rangle \mid\)（expression \(\rangle+\langle\) term \(\rangle\)
References：
1．Karser，H．J．Trace calculation on electronic computer． Nu － clear Physics 48 （1963）， 620.
2．Levine，M．J．Dirac matrix and tensor algebras on a compu－ ter．J．Computat．Phys． 1 （1967）， 454.
3．Swanson，S．M．Computer algorithms for Dirac algebra． J．Computat．Phys．4， 1 （1969），171；
begin
integer \(L V L, N, T, U\) ；Boolean array \(\operatorname{MUL} T[0: M]\) ；
integer array \(V, V L, O P L\), INDEX \([0: M]\) ；
integer procedure \(C H A R\) ；
begin
integer \(C\) ；
\(A:\) insymbol \((2\), ＇\(\times)+(A B C D E F G u ; ', C) ;\) if \(C=12\) then go to \(A\) ； \(C H A R:=C\)
end \(C H A R\) ；
procedure \(\operatorname{DISTRIBUTE}(N)\) ；integer \(N\) ；
comment There are two problems in distribution：first，to se－ lect the variables in an expression which belong together as factors of the current monomial，and then to alter the reference marks in USED to indicate the next monomial．A Boolean value in USED is associated with each variable－operator pair． The expression is scanned from the left to select the first un－ used variable，and then any variables in an additive relation
to the selected variable are skipped before continuing the scanning for other factors．For the next monomial，the first selected variable followed by a＂+ ＂is marked used，and the marks on all the variables to the left are altered，depending on their operator type and level relation to the＂+ ＂．Distribu－ tion is from left to right（initial factors change most often）；

\section*{begin}
integer \(I, J, K, L, L E V E L\) ；
Boolean ALTER，PRODUCT，TERM；
Boolean array USED［0：N］；
for \(K:=0\) step 1 until \(N\) do \(U S E D[K]:=\) false；
NEXT：ALTER ：＝true；\(J:=I:=-1\) ；
FACTOR：\(I:=I+1\) ；if USED［I］then go to FACTOR；
\(J:=J+1 ;\) INDEX［J］：＝I；
SKIP：if MULT［ [] then go to \(F A C T O R ; ~ L E V E L:=O P L[I]\) ； if \(L E V E L>0\) then
begin
if \(A L T E R\) then
begin
\[
L:=L E V E L ; \quad L E V E L:=V L[I]+1 ;
\]
```

                USED[I]:= PRODUCT := TERM := true;
    ```
 \(A L T E R:=\) false;
 for \(K:=I-1\) step -1 until 0 do
 begin
 if \(O P L[K]<L E V E L\) then
 begin
 LEVVEL \(:=\) OPL[K]; PRODUCT \(:=\operatorname{MULT}[K \mid ;\)
 if PRODUCT then \(L E V E L:=L E V E L+1\);
 if \(L E V E L \leqq L\) then \(T E R M:=\) false
 end;
 if \(P R O D U C T\) then \(U S E D[K]:=T E R M\)
 end
 end
 else
 begin
\(R: \quad I:=I+1 ;\) if \(L E V E L \leqq O P L[I]\) then go to \(R\)
 end;
 go to SKIP
 end;
 \(\operatorname{PROCESS}(J)\); if \(\neg A L T E R\) then go to \(N E X T\);
end DISTRIBUTE;
procedure \(\operatorname{PROCESS}(J)\); integer \(J\);
comment A skeletal output routine (normally, monomials are
 further manipulated, sorted, and accumulated);
begin
 integer \(I\); outstring (1, ' + ');
 for \(I:=0\) step 1 until \(J\) do
 begin
 outsymbol (1, "X) \(+(A B C D E F G ", V[I N D E X[I]])\);
 if \(I \neq J\) then outstring (1 , " \(\times\) ")
 end
end PROCESS;
comment The following statements parse the input．A full－ fledged input routine would extend＜primary〉 to include num－ bers and would class both＂- ＂and＂+ ＂together as＜adding operators）．DISTRIBUTE still works with only＂+ ＂and＂\(\times\)＂ since a＂- ＂is either absorbed into a following unsigned num－ ber or replaced by the string＂\(-1 \times\)＂．Only a single subexpres－ sion，followed by an unparenthesized＂+ ＂，is expanded at a time．\(M\) limits the size of this subexpression．A syntax error or a semicolon terminates the processing of input；
\(L V L:=N:=0 ; \quad U:=C H A R ;\) if \(U<4\) then go to \(E R R ;\)
A: \(T:=U\); if \(U=13\) then \(T:=3\) else \(U:=\) CHAR;
if \(U \geqq 4\) then
begin
 if \(T=1\) then
 hegin
 \(\operatorname{MULT}[N]:=\operatorname{true} ; \quad O P L[N]:=L V L ; \quad N:=N+1\)
 end
 else if \(T=3\) then
 begin
 \(\operatorname{MULT}[N]:=\) false; \(O P L[N]:=L V L ;\)
 if \(L V L=0\) then legin \(\operatorname{DISTRIBUTE}(N) ; N:=0\) end
 else \(N:=N+1\)
 end
 else if \(T=4\) then \(L V L:=L V L+1\)
 else go to \(E R R\)
 end
 else
 begin
 if \(T=2 \wedge L V L>0\) then \(L V L:=L V L-1\) else
 if \(T \geqq 5\) then begin \(V[N]:=T ; \quad V L[N]:=L V L\) end
 else go to \(E R R\);
 end;
 if \(U \neq 13\) then go to \(A\) else if \(L V L=0\) then go to \(B\);
ERR: outstring (1, 'syntax error');
\(B\) : end EXPAND

ALGORITHM 378
DISCRETIZED NEWTON-LIKE METHOD FOR SOLVING A SYSTEM OF SIMULTANEOUS NONLINEAR EQUATIONS [C5]
W. Pankiewicz (Recd. 24 May 1967, 13 July 1967 and 2 Oct. 1968)
Warszawa-90, Wyszatycka 28, Poland
KEY WORDS AND PHRASES: Newton's method, nonlinear equations, interpolating polynomials
CR CATEGORIES: 5.15, 5.13
integer procedure nielin (\(n, h, w, e p s, p s i, y, z\));
value \(n, h, w\), eps, \(p s i\);
integer \(n\); real \(h, w, e p s, p s i\); array \(y, z\);
comment Functional procedure nielin, of the integer type, solves a system of simultaneous nonlinear algebraic or transcendental equations.

Let us consider a given system of \(n\) equations with \(n\) variables:
\[
\begin{equation*}
f_{i}\left(y_{1}, y_{2}, \cdots, y_{n}\right)=0, \quad i=1,2, \cdots, n \tag{1}
\end{equation*}
\]

A \(k\) th approximation of the solution of the system (1) is supposed to be given:
\[
\begin{equation*}
Y_{0}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}, \cdots, y_{n}^{(k)}\right) . \tag{2}
\end{equation*}
\]

If for every \(i\),
\[
\begin{equation*}
\left|f_{i}\left(Y_{0}^{(k)}\right)\right|<\epsilon, \tag{3}
\end{equation*}
\]
where \(\epsilon>0\) is a given number, then the approximation (2) is considered as a solution of the system (1), otherwise a further approximation is calculated.

Let \(h^{(k)}>0\) be given and construct the \(n\) new points:
\(Y_{i}^{(k)}=\left(y_{1}^{(k)}, \cdots, y_{i-1}^{(k)}, y_{i}^{(k)}+h^{(k)}, y_{i+1}^{(k)}, \cdots, y_{n}^{(k)}\right), i=1,2, \cdots, n\).
For every function of the system (1) a new interpolating polynomial of the first order is constructed on the points (2) and (4) such that:
\[
\begin{equation*}
w_{i}\left(Y_{j}^{(k)}\right)=f_{i}\left(Y_{j}^{(k)}\right), j=0,1, \cdots, n, i=1,2, \cdots, n \tag{5}
\end{equation*}
\]

A solution of the linear system:
\[
\begin{equation*}
w_{i}\left(y_{1}, y_{2}, \cdots, y_{n}\right)=0, \quad i=1,2, \cdots, n \tag{6}
\end{equation*}
\]
is used as the \((k+1)\)-th successive approximation.
The special choice of the interpolation points (2) and (4) assures existence and uniqueness of the interpolating polynomials \(w_{i}(5)\). Namely, the \(k\) th approximation has for the \(i\) th function the form:
\[
\begin{equation*}
w_{i}^{(k)}(Y)=f_{i}\left(Y_{0}^{(k)}\right)+\sum_{j=1}^{n} g_{i j}^{(k)}\left(y_{j}-y_{j}^{(k)}\right) \tag{7}
\end{equation*}
\]
where
\[
\begin{equation*}
g_{i j}^{(k)}=\left(f_{i}\left(Y_{j}^{(k)}\right)-f_{i}\left(Y_{0}^{(k)}\right) / h^{(k)}\right. \tag{8}
\end{equation*}
\]

The solution of the system (6) where \(w_{i}\) is given by (7) can be written in the form (see [2]):
\[
\begin{equation*}
y^{(k+1)}=y_{i}^{(k)}-\left(1 / \alpha^{(k)}\right) z_{i}^{(k)} \times h^{(k)}, i=1,2, \cdots, n \tag{9}
\end{equation*}
\]
where \(z^{(k)}=\left(z_{1}^{(k)}, z_{2}^{(k)}, \cdots, z_{n}^{(k)}\right)\) is a solution of the following
linear system:
\[
\begin{equation*}
\sum_{j=1}^{n} f_{i}\left(Y^{(k)}\right) \times z_{j}=f_{i}\left(Y_{0}^{(k)}\right), \quad i=1,2, \cdots, n \tag{10}
\end{equation*}
\]
and
\[
\begin{equation*}
\alpha^{(k)} \rightleftharpoons 1-\sum_{m=1}^{n} z_{m}^{(k)} \tag{11}
\end{equation*}
\]

If the sequence \(\left\{Y^{(k)}\right\}\) is convergent when \(k \rightarrow \infty\) and, \(\left\{h^{(k)}\right\} \rightarrow 0\) then the solution of the system (1) is the limit of the sequence.
The algorithm described above is realized by means of the procedure nielin, which in turn uses the following two additional procedures:
(1) nonlocal procedure \(f(y, z)\), which calculates for a given vector \(y\) values of the left-hand sides of the system (1), and (2) local procedure gauss (\(u, a, y\)), see [1].

Input parameters:
\(n\) number of equations in the system (1),
\(h \quad\) number which is used for the construction of auxiliary points (4),
\(w \quad\) factor multiplying the number \(h\) in every iteration, eps number used in the checking of condition (2),
\(p s i\) maximal admissible absolute value of the left-hand sides of the system (1).
Input/output parameters:
\(y\) vector of dimension [1:n]. Initially this vector must contain the starting approximation; subsequently \(y\) will contain the successive approximations to the solution.
Output parameters:
\(z\) vector of dimension \([1: n]\) which contains the values of the equations in (1) evaluated at \(y\),
nielin assigned one of the following values:
-1 if any left-hand side exceeds the given value \(p s i\),
-2 if the linear system (10) is singular,
-3 if the sum of the roots of the system equals 1 , i.e. if alpha \(=0\) (11),
\(m\) number of iterations, if the required accuracy eps is attained.
Example. To solve the system
\[
\begin{aligned}
& y_{1}^{2}+y_{2}^{2}-1=0 \\
& 0.75 y_{1}^{3}-y_{2}+0.9=0
\end{aligned}
\]
the procedure (see footnote*) was applied.
For eps \(=10-7, p s i=103\) and \(w=.1\) the following results were obtained:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline y0 & \(h\) & \(k\) & \(y\) & \(z\) & \(k\) & \(y\) & 8 \\
\hline \(-.4\) & . 1 & 7 & \(-.9817026\) & \(-4_{10}-9\) & & & \\
\hline -. 1 & & & . 1904203 & \(9{ }_{10}-9\) & & & \\
\hline \(-.7\) & . 1 & 6 & -. 9817026 & 0 & & & \\
\hline \(-.2\) & & & . 1904203 & 0 & & & \\
\hline \(-.7\) & & -2 & . 3581622 & \(-7{ }_{10}-1\) & 4 & . 3569699 & \(-4{ }_{10}-8\) \\
\hline \(-.2\) & & & . 9366243 & \(5{ }_{10}-1\) & & . 9341159 & \(-4_{10}-8\) \\
\hline \multicolumn{8}{|l|}{\multirow[t]{4}{*}{* The procedure applied was: procedure \(f(y, z)\); array \(y, z\); begin}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|c|}{\(z[1]:=y[1] \uparrow 2+y[2] \uparrow 2-1 ;\)} \\
\hline \multicolumn{8}{|c|}{\(z[2]:=.75 \times y[1] \uparrow 3-y[2]+.9\)} \\
\hline \multicolumn{8}{|c|}{end} \\
\hline
\end{tabular}

The second result of the third set was obtained from a repeated call as indicated below.
Procedure nielin was tested on many \(2 \times 2\) and \(3 \times 3\) systems. If, from a given starting guess the process was divergent, the divergence was apparent after two or three iterations.
In the case when the auxiliary linear system (10) was singular or \(\alpha=0\) (11), the obtained approximation was close to the required approximation. Then the repeated call of the procedure with the obtained approximation and the starting value \(h\) gave the desired result after \(3-4\) iterations. The last remark suggests the following construction of the call of procedure nielin:

REPEAT: \(k:=\operatorname{nielin}(n, h, w, e p s, p s i, y, z)\)
...........
if \(k=-2 \vee k=-3\) then go to \(R E P E A T\)

\section*{References:}
1. Counts, J. W. Algorithm 126, Gauss' method. Comm. ACM 5 (Oct. 1962), 511.
2. Pankiewicz, W. About some method for solving a system of simultaneous nonlinear equations. Proc. of the Symposium: Systems of the Computers, Novosibirsk, USSR, 1967, pp. 102-105 (in Russian);
begin
integer \(m, i, k\); real alpha, \(r\);
Boolean \(b 1, b 2\); array \(A[1: n, 1: n+1], v[1: n]\);
procedure gauss (\(u, a, y\));
integer \(u\); array \(a, y\);
begin
comment At this point the body of a procedure named Gauss (see [1]) must be supplied by the user to solve a \(u \times u\) linear system whose coefficient matrix is stored in the first \(u\) rows and \(u\) columns of \(a\), whose vector of constants (right-hand side) is stored in the \((u+1)\)-th column of \(a\), and whose solution is given as \(y\). If the system is singular it should execute go to error;
end gauss;
\(m:=0\);
POCZATEK:
\(b 1:=\) true; \(b 2:=\) false; \(f(y, z) ;\)
for \(i:=1\) step 1 until \(n\) do
begin
\(A[i, n+1]:=r:=z[i] ;\)
\(r:=a b s(r) ;\)
\(b 1:=b 1 \wedge r<e p s ;\)
\(b 2:=b 2 \vee r>p s i\)
end:
if \(b 1\) then go to \(K O N I E C\);
if \(b 2\) then go to \(A L A R M\);
for \(i:=1\) step 1 until \(n\) do
begin
\(r:=y[i] ; \quad y[i]:=r+h ; \quad f(y, z) ;\)
for \(k:=1\) step 1 until \(n\) do
\(A[k, i]:=z[k] ;\)
\(y[i]:=r\)
end;
gauss (\(n, A, v\));
alpha \(:=1\);
for \(i:=1\) step 1 until \(n\) do
alpha \(:=\) alph \(a-v[i]\);
if \(a l p h a=0\) then go to \(A L P H A\);
alpha \(:=h / a l p h a\);
for \(i:=1\) step 1 until \(\boldsymbol{n}\) do
\(y[i]:=y[i]-v[i] \times\) alpha;
\(h:=h \times w ; m:=m+1\);
go to \(P O C Z A T E K\);
KONIEC:
nielin : \(=m\); go to \(E N D\);

ALARM:
niclin \(:=-1 ;\) go to \(E N D\); error: nielin \(:=-2 ;\) go to \(E V D\); ALPHA:
nielin := \(=3\);
\(E N D\) : end nielin

\section*{ALGORITHM 379}

SQUANK (SIMPSON QUADRATURE USED
ADAPTIVELY-NOISE KILLED)* [D1]
J. N. Lyness (Recd. 21 Apr. 1969 and 25 Nov. 1969)

Applied Mathematics Division, Argonne National Laboratory, Argonne, IL 60439
* Work performed under the auspices of the US Atomic Energy Commission.

KEY WORDS AND PHRASES: numerical integration, integration rule, adaptive integration, automatic integration, Simpson's rule, numerical quadrature, quadrature rule, adaptive quadrature, automatic quadrature, round-off error control
\(C R\) CATEGORIES: 5.16

\section*{Description:}

Purpose. SQUANK is an automatic numerical quadrature routine. The user provides \(a=\mathrm{A}\), and \(b=\mathrm{BIG}\), the lower and upper limits of integration, the tolerance \(\epsilon_{\text {tol }}=\) ERROR he requires, and a function subprogram \(\operatorname{FUN}(\mathrm{X})\) for the integrand \(f(x)\). The routine returns \(R f=\) SQUANK, where \(R f\) is an expression of the form \(R f=\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)\) which is an approximation to the integral \(I f=\int_{a}^{b} f(x) d x\).

Hopefully, this approximation is within the claimed accuracy \(\epsilon_{t o l}^{\prime}\), i.e. \(|R f-I f|=\left|\epsilon_{a c t}\right| \leq \epsilon_{t o l}^{\prime}\).

The routine returns three other quantities, as arguments. These are

FIFTH-the fifth-order adjustment term. This may be used as an error estimate in cases in which round-off error is not significant.
NO \(=N\)-the number of calls to the function subprogram.
RUM \(=\epsilon_{t o l}^{\prime}\)-the claimed accuracy. This is normally the same as \(\epsilon_{\text {tol }}\), the required tolerance, except in cases in which roundoff error is significant, when it is higher than \(\epsilon_{t o l}\).
Like many other routines, SQUANK is a special purpose routine. It is designed to treat efficiently integrands \(f(x)\) having both the following properties:
(a) \(f(x)\) and its first four derivatives are continuous in the open interval \((a, b)\).
(b) \(f(x)\) does not have high frequency oscillations.

By experiment the routine has been found efficient for the wider class of functions
(c) \(g(x)=f(x)\left|x-x_{0}\right|^{\alpha}, \alpha \geq 0\), where \(x_{0}=a\) or \(x_{0}=b\) or \(x_{0}=\) (\(a+b\))/2 and \(f(x)\) satisfies both (a) and (b) above.

Construction. The construction of this routine is described in detail in [3]. Briefly, it is based on the ideas of the Adaptive Simpson Quadrature routine [5-8], referred to below as ASQ, but embodies four major modifications:
(1) a different assignment of allowed error to interval and a different interval convergence criterion;
(2) interval bisection in place of trisection;
(3) inclusion of an adjustment term to give a result of polynomial degree 5 in place of degree 3;
(4) a round-off error guard (which guards against the effects of excessive round-off error in function values).
The first three modifications are of a standard nature. Their effect is described below under Comparisons. The fourth modification is somewhat unusual and is described by means of an example below.

Round-off Error Guard. The accuracy attainable by any quadrature routine is clearly limited by the accuracy to which the func-
tion is evaluated. The effect in an automatic routine of requesting an accuracy in excess of the accuracy of the function evaluation is described elsewhere [4] and can be catastrophic. SQUANK contains a "round-off error guard" which is Modification 4 of [3]. Thus the user may request any tolerance \(\epsilon_{t o l}\), even \(\epsilon_{t o l}=0\). The routine provides a result which may reflect different accuracies over different ranges of \(x\), the local tolerance level being constrained to remain above the level of the apparent local round-off error. The overall estimated accuracy \(\epsilon_{t o l}^{\prime}\) is returned as argument RUM.

As an example, the same problem was treated using SQUANK on two different computers. These have machine accuracy parameters \(\epsilon_{M}=10^{-11}\) and \(\epsilon_{M}=10^{-7}\), respectively. The problem was to evaluate
\[
I f=\int_{-1}^{1}\left(x^{2}+10^{-6}\right)^{-1} d x \simeq 3 \times 10^{3}
\]
with various tolerances \(\epsilon_{t o l}\). A selection of the results is tabulated below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{\(\epsilon_{M}=10^{-11}\)} & \multicolumn{3}{|c|}{\(\epsilon_{M}=10^{-7}\)} \\
\hline \(\epsilon_{t o l}\) & \(\epsilon_{\text {tol }}\) & \(\epsilon_{a c t}\) & \(N\) & ciol & \(\epsilon_{a c t}\) & \(N\) \\
\hline \(10^{-3}\) & \(10^{-3}\) & \(-2.4 \times 10^{-5}\) & 1081 & \(2.4 \times 10^{-3} 9\) & \(9.1 \times 10^{-4}\) & 889 \\
\hline \(10^{-9}\) & \(9.9 \times 10^{-8}\) & \(-3.2 \times 10^{-10}\) & 12057 & \(1.5 \times 10^{-3} 9\) & \(9.1 \times 10^{-4}\) & 2513 \\
\hline 0 & \(9.9 \times 10^{-8}\) & \(-3.2 \times 10^{-10}\) & 14809 & \(1.5 \times 10^{-3}\) & \(9.1 \times 10^{-4}\) & 2513 \\
\hline
\end{tabular}

Here \(\epsilon_{a c t}\) is the difference between \(R f\) and \(I f\).
It should be borne in mind that the peak of the integrand is of magnitude \(10^{6}\). Thus the accuracy in function evaluation near the peak is about \(10^{-5}\) or \(10^{-1}\), respectively. Naturally, the machine with smaller word length produced a less accurate result, but at a lower cost in function evaluation. No intervention by the user was necessary. For a further comparison, the round-off error guard was disabled. For \(\epsilon_{t 0 l} \leq 10^{-7}\), the routine then required 577,197 function values, but the resulting value \(R f\) was about the same. Thus in this example, the round-off error guard cut the computation time by a factor of 40 .
The inclusion of this round-off error guard has one serious drawback. If the routine is used with an integrand which is discontinuous, or has a low order discontinuous derivative, SQUANK may take this to be evidence of round-off error and may adjust the tolerance. In these cases, the result may have a much lower accuracy than requested. However, this value of the accuracy is estimated and returned in argument RUM. The number of function values required for such a less accurate result is correspondingly lower.

Comparisons. Besides the testing carried out by the author, SQUANK has been subjected to two independent sets of extensive tests in comparison with other quadrature routines [1, 2]. The respective authors have kindly made some of their results available to me. These tests involve a set of routines, a set of functions, and eight different tolerances, all large enough so that round-off error is not significant.

Restricting attention only to functions of type (c) and to the two routines SQUANK and ASQ, the following information is reported. Of a set of 47 functions, both routines are equally reliable; ASQ is more economic than SQUANK for only one of these. For the other 46, SQUANK is more economic, generally by factors of about two [1]. Of a set of 14 functions, in all cases SQUANK is
more economic, by factors ranging from 1.4 (at high accuracies) to 3 or 4 (at low accuracies) [2].

Turning to a general comparison with other routines, certain trends are apparent, although there are no clear simple conclusions. In some cases SQUANK is more economic than other routines; in other cases it is obviously much worse.

\section*{References:}
1. Casaletto, J., Picket, M., and Rice, J. A comparison of some numerical integration programs. CSD TR 37, Purdue U., Lafayette, Ind., June 1969, and "SIGNUM Newsletter" 4, 3 (Oct. 1969), 30-40.
2. Kahaner, D. K. Private communication. See also Comparison of numerical quadrature formulas, LA-4137, Los Alamos Sci. Lab., Los Alamos, N.M., June 1969.
3. Lyness, J. N. Notes on the adaptive Simpson quadrature routine. J. ACM 16 (July 1969), 483-495.
4. Lyness, J. N. The effect of inadequate convergence criteria in automatic routines. Comput. J. 12 (1969), 279-281.
5. McKeeman, W. M. Algorithm 145, Adaptive numerical integration by Simpson's rule. Comm. ACM 5 (Dec. 1962), 604.
6. -. Certification of algorithm 145, Adaptive numerical integration by Simpson's rule. Comm. AC.M 6 (Apr. 1963), 167-168.
7. - and Tesler, L. Algorithm 182, Nonrecursive adaptive integration. Comm. ACM 6 (June 1963), 315.
8. -. Algorithm 198, Adaptive integration and multiple integration. Comm. ACM 6 (Aug. 1963), 443.

Algorithm:

> FUNCTION SQUANK (A,BIG, ERROR,FIFIH,RUM,NO,FUN)

SUOUUA*N:K STANOS FOR * SIMPSON QUADRATURE USED ADAPTIVELY. NOISE KILLED.*
```

    Calling program requires
    EXTERNAL FUN
    IHIS IS FUNCTION TO BE INTEGRATED
    A GIG THE LOWER LIMIT OF INTEGRATION
    GIG THE UPPER LIMIT
    OUTPUT
SOUANK THE FIFTH ORDER RESULT = THIRO + FIFTH
FRITH THE FIFTH ORDER ADJUSTMENT TERM FOM FOR ROUNDOFF ERRORI

```
NCTES ON USE. (1) DISCONTINUOUS FUNCTIONS
 THIS ROUTINE IS GASED ON DEGREE 3 AND DEGREE 5 LOCAL POLYNOMIAL APPROX-
 IMATION. CONSEQUENTLY IT SHOULD NOT BE USED WITH FUNCTIONS WHICH HAVE
DISCONTINUITIES IN THE FOURTH OR LOWER DERIVATIVES WITHIN THE INTERVAL OF
 INTEGRATION. IF THERE ARE SUCH DISCONTINUITIES, THIS ROUTINE WILL TAKE
 THIS TO BE EVIOENCE OF ROUND OFF ERROR IN FUNCTION VALUES AND WILL ADJUST
 the tolerance.
 IF THE LOCATIONS OF SUCH DISCONTINUITIES ARE KNOHN, THE ROUTINE MAY
 WHILE, LIKE ALL SUCOR EACH INTERVAL BETWEEN CONSECUTIVE DISCONTINUITIES.
 WHILE, LIKE ALL SUCH ROUTINES, IT DISLIKES DISCONTINUITIES, IT CAN HANDLE
THEM IF THEY ARE LOCATEO AT THE END POINTS OF THE INTEGRATION INTERVAL.
nctes on use. (2) functions with high-frequency oscillations.
 THE ROUTINE WILL RETURN UNRELIABLE RESULTS FOR FUNCTIONS LIKE G(X)
 TIMES COS(100*X). IF THE HIGHEST PERIOD LIKELY TO BE ENCOUNTERED IS
 KNOWN, THE INTERVAL SHOULO BE SUB-DIVIDED IN SUCH A HAY THAT,
IONE, THERE ARE NOT MORE THAN THREE PERIOOS PER INTERVAL, AND
 (ONE) THERE ARE NOT MORE THAN THREE PERIODS PER INTERVAL, AND
 A SIMPLE FRACTION N/M* WITH N OR MLESS THAN 9.
nCTES ON USE. (3) interval SUB-division
 THE FAILURES DESCRIBED ABOVE ARE GENERALLY WORSE FOR ©S OUANK THAN FOR
 OTHER RCUTINES BECAUSE SQUANK* TAKES THE INCONVENIENT BEHAVIOR AS AN
INOICATION OF ROUND OFF ERROR. IN GENERAL SUB-DIVISION OF THE INTERVAL IS
 INDICATION OF ROUND OFF ERROR. IN GENERAL SUB-DIVISION OF THE INTERVAL IS
 ADVOCATED. ESSENTIALLY THE USER CARRIES OUT, UNDER DRIVING PRRGRAM
CONTROL. A SEOUENCE OF CALCULATIONS WHICH SHOULD HAVE BEEN CARRIED OUT
 CONTROL A SEOUENCE OF CALCULATIONS WHICH SHOULD HAVE BEEN CARRIED OUT
IN THE SUBROUTINE IN ANY CASE. IN THIS WAY HE PREVENTS CHANCE LOW ORDER
 FALSE CCNVERGENCE AT VIRTUALLY NO ADDITIONAL CIST. NOTE THAT THE SUM OF
THE PARAMETERS EERROR FOR THE SUB-INTERVALS SHOULO CORRESPOND TO THE
 THE PARAMETERS eERROR FOR THE SUB-INTERVALS SHOULO CORRESPOND TO THE
VALUE REQUIRED FOR THE WHOLE INTERVAL.
NIM numbering system and logic
 the interval \((A, b)\) is defined nim \(=1\), level \(=0\).
 THE INTERVAL NIM = N, LEVEL = L IS BISECTED, IF NECESSARY, INTO

 IS NIM \(=\) M(R) +1 LEVEL \(=\) L-R \(:\) WHERE M(R) IS THE FIRST
EVEN MEMEER OF THE SEQUENCE M(O) \(=N\) M \(M(S+1)=\) (M(S)-1)/2. IF THIS
 GIVES LEVEL \(=0\), THE CALCULATION IS COMPLEIE.
SCALING TC AVOIO EXCESSIVE OIVISION By TWO.

THE INTERVAL(X1, \(\times 5\) I IS OF LENGTH \(H=\times 5-\times 1\) THE POINTS \(\times 1, \times 2, \times 3, \times 4, \times 5\) FXS ARE THE CORRESPONOING FUNCTIOIY VALUES.
EST IS APPROXIMATION TO (\(6.0 / H\)) INTEGRAL (X1, X5).

storage
X3ST(L) \(=0.50(\times 5 S T(L)+\times 1)\) THUS X3STIL) COULD BE RECALCULATED
ATEACH STAGE TO AVOID STORAGE. ESTSTILIS IS SAME IN THIS RESPECT. the results of above recalculation are identical machine numbers. X5STLL \(=X 1+(B-A)=(2 *-1-L))\) THIS COLLD ALSO BE RECALCULATED. BUT IN THIS CASE CALCULATION IS EXCESSIVE AND THERE IS A POSSIBILITY OF ROUNC OFF ERROR ARISING BECAUSE THE SAME POINT IS BEING CALCULATED
IN TWO OR MORE DIFFERENT WAYS.
avoldance of round off error trduble
IF INTERVAL OOES NOT CONVERGE, FOLLIJING INTERVAL SHOULD HAVE ADIFF VALUE APPROXIMATELY EQUAL TO \(11 / 16\) I TIMES PREVIOUS ADIFF VALUE, CALLED
ADIFFI IN THE CDOE. THERE IS A THEDREM WHICH STATES THAT, UNLESS THE ADIFFI IN THE CDOE. THERE : S A THEDREM WHICH STATES THAT, UNLESS THE
FOURTH DERIVATIVE OF FUNIX) VANISHES IN THE PREVIOUS INTERVAL, ADIFF IS LESS THAN OR EQUAL TO ADIFFI. IF THIS DOES NOT HAPPEN. IT IS TAKEN TO BE AN INDICATION OF POSSIBLE ROUIVD OFF LEVEL. IN THIS CASE, UNLESS LEV IS LEESS THAN FIVE, THE CURRENT TOLERANCE LEVEL, CEPS,
IS APPROPRIATELY ADJUSTED. HOWEVER CEPS IS RESET AS AND WHEN IS APPROPRIATELY ADJUSTED. HOWEVER CEPS IS RESET AS AND HHEN
APPEARS THAT IT SHOULD BE ADJUSTED EITHER UP OR DOHN. IT IS REDUCE APPEARS THAT IT SHOULD BE ADJUSTED EITHER UP OR DOHN. IT IS REDUCED
IF CONVERGENCE OCCURS WITH A NON-LERO ADIFF STRICTLY LESS THAN 0.25 *CEPS. AN INVOLVED SECTION OF GODING GUARDS TO SOME EXTENT AGAINST an unrealistic value arising as a result of a zero in the fourth DERIVATIVE. AFACTOR EFACT IS CALCULATED WHICH AOJUSTS THE CLAIMED TOLERANCE TO TAKE INTO ACCOUNT THESE ALTERATIONS IN THE TOLERANCE LEVEL THE ROUTINE ENTERS THESE INVOLVED SECTIONS OF CODING ONLY IF ROUNO
OFF ERRCR APPEARS TO BE PRESENT. IIN A NORMAL IROUNO OFF ERROR FREEI RUN, THESE SECTIONS ARE SKIPPED AT A COST OF A SINGLE COMPARISON PER iteraticn (tho function evaluations).

ARBITRARY CONSTANTS
the following constants have been assigned in the l.ight of experience WITH NC theoretical justification.
(1) NO CONVERGENCE IS ALLOWED AT LEVEL = *nzero.e. This means that the 12) NO UPWARD ADJUSTMENT OF THE TOLERANCE LEVEL IS CONSI GEREDCTION VALUES.
 (3) PHYSICAL LIMIT. HIGHEST'LEVEL AILLOWED IS LEVEL * OHTHIRTY**. HERE convergence is assigneo hhether or not the interval. has converged. the
 A FACTOR *02.0"* OR LESS.
(5) DOWNAACO ADJUSTMENT OF TOLERANCE LEVEL IS INHIBITEO IN GENERAL UNLESS

\section*{some notation}

SUM ANC SIM ARE RUNNING SUMS, inCREASED AT STAGE EIGHT. THEY are AND EC AEPSF IS THE REQUIREO (SCALED) TOLERANCE. THE INTEGRALI.
CEPSS IS THE RUNNING VALUE OF SHE ADJUSTED TOLERANCE.
CESES
QCEPS \(=0.25\). CEPS

CURRENTLY ADJUSTED. ' ' SEE CDMMENT I'N STAGE SEVEN.'
FACERR \(=15.0\) OR I.C DEPENDING ON WHETHER TOLERANCE IS OR IS NOT CURRENTLY ADJUSTED. IF IT IS. THERE IS NO JUSIIFICATION FOR THE FIFTH ORCER ADJUSIMENT AND ACCURACY IS NOT EXPECTED TO BE TI/15I TIMES
OIFFERENCE OF APPROXIMATICNS. FACERR \(=15.0\) REHOVES THE BUILT IN 15.0 OIFFERENCE OF APPROXIMATICNS. FACERR \(=\mathbf{1 5 . 0}\) REHOVES THE BUILT IN 15.0
FACTCR FOR CALCULATION OF EFACT.
EPMACH THE MACHINE ACCURACY PARAMETER. THE ROUND OFF ERROR GUARD DOES NOT REOUIRE THIS NUMBER. IT IS MACHINE INDEPENDENT. THIS IS ONLY
USED TO HELP IN AN INITIAL GUESS IN STAGE TWO IF THE VALUE OF ERROR USED TO HELP IN AN INITIAL GUESS IN STAGE TWO IF THE VALUE OF ERROR
HAPPENS TO BE ZERO. ANY NON-ZERO NUMBER MAY BE USED INSTEAD, WITH A HERY SMALL PENALTY IN NUMBER OF FUNCTION EVALUATIONS IF A COMPLETELY VERY SMALL PENALTY

DIMENSICN FX3SI(30), X3ST(30),ESTST(30),FX5ST(30),X5ST(30)
DIMENSICN PREOIF(3C)
DOUBLE PRECISION SUM, SIM
EPMACH \(=0.0000000000075\)
initialise all quantities re"equreo for central cal.culation istage 3).
SUM \(=0.0\)
SIM \(=0.0\)
CEPSF \(=180.0\)-ERROR/(BIG - A)
CEPS \(=\) CEPSF
CEIFF \(=0.0\)
LEVTAG \(=-1\) C
FACERR
\(\times Z E R O=1 . C\)
\(\begin{aligned} & \text { XLERO } \\ & \text { EFACT }\end{aligned}=\mathbf{C . 0}\)
NIM \(=1\)
LEV \(=0\)
c LEV \(\quad\) FIRS \({ }^{\text {INTERVAL }}\)
\(X_{1}=A\)
\(\times 5=B I G\)
\(\times 3=0.5=(A+B 1 G)\)
\(\begin{aligned} & \text { FX1 }=\text { FUN(} \\ & \text { FX3 }\end{aligned}=\) FUN \(\left(x_{3}\right)\)
FX5 \(=\) FUN(X5)
NO \(=3\)

IF(CEPSF) 295,205,295
205
FACERR \(=15.0\)
CEPS \(=\) EPMACH:ABS (FX1)
IF(FXI)
\(210 \stackrel{1}{C}\)
CEPS \(=\) EPMACHEABS (FX3
LEVTAG
LEVTAG \(=\) 3
IF(FX3) 295,215,295
215 CEPS = EPMACHAABS (FX5)
220 CEFS \(=295,220\)
295 OCEPS \(=\) C. 25 -CEPS
INITIALISING COMP
c
C
C
```

C
c
C
300 CONTINUE
$x_{2}=0.5=(x 1+x 3)$
$x_{4}=0.5=\left(x_{3}+x^{2}\right)$
$x_{4}=0$.
FX4
FUNT
FX4: FUN( $\times 4$ )
NO $=$ NO +2
$E S T 1=F \times 1{ }^{2}+4.00 F \times 2+F \times 3$

```

```

        DIFF = EST + EST - ESTI - ESTL
        IFILEV - 30) 305,800,800
    305
        CRIT \(=\) ABS (OIFF)
    - CEPS
CRIT = ACIFF-CEPS
IFICRIT) 700,700,400
C ENO OF CENTRAL LOOP
NEXT STAGE IS STAGE FOUR IN CASE OF NO NATURAL CONUERGENCE
NEXT STAGE IS STAGE SEVEN IN CASE OF NATURAL CONVERGENCE
*a.. stage four
NO NATURAL CONVERGENCE A COMPLEX SEQUENCE OF INSTRUCTIONS
LEvEl in uphard oirection if there are indications of round off
400 CONTINUE
F(ADIFFI - ADIFF) 410, 410, 500
IN A NORMAL RUN WITH NO ROUNO OFF ERRGR PROBLEM, ADIFFI IS GREATER THAN
aciff and the rest of stage four is omitted.
410 IF(LEV - 5) 500,415,415
EFACT = EFACT + CEPS *(XI - XZERO) -FACER
$\begin{aligned} & \text { XZERO } \\ & \text { FACERR }\end{aligned}=15$
THE REST OF STAGE fOUR DEALS WITH UPYARD ADJUSTMENT OF TOLERANCE (CEPS)
BECAUSE OF SUSPECTED ROUNO OFF ERROR TROUBLE.
SMADIFF-2.0.CEPS) 420,420,425
SMALL JUMP IN CEPS. ASSIGN CONVERGENC
420
LEVTAG $=0$
IFI AOIFFI - ADIFF) 435,43C,435
LARGE JUMP IN CEPS
c 425
430 CEPS $=$ ADIFF
FACTOR THO JUMP IN CEPS
C 435 CEACTOR THO JUMP IN CEPS
IFILEVTAG - $31440,445,445$
440 LEVTAG $=2$
445 OCEPS $=0.25-C E P S$
$\begin{array}{ll}C \\ C & \text { C... STAGE FIVE }\end{array}$
NO ACTUAL CONVERGENCE.
500 continue
NIM $=2$ NNIM
ESTST(LEV) = EST

```

```

        FX3ST(LEV)=FX4
        FXSST(LEV)=FX5
    LEV) = ADIFF
    SET UP GUANTITIES FIX CENTRAL CALCulation.
    ready to go ahead at level leher hith left hand elements
    XI AND fXI ARE THE SAME AS BEFDRE
    \(x 5=x 3\)
    $x 3=x 2$
$x_{3}=x_{5}=$
$x_{5}=x_{3}$
$x_{3}=$
FX3 $=F \times 2$
$E S T=E S T 1$
EST = EST
GO TO 30 C

```

```

    NATURAL CONVERGENCE IN PREVIOUS INTERVAL. THE FOLLOHING COMPLEX SEQUENCE
    CHECKS PRIMARILY THAT TOLERANCE LEVEL IS NOT TOO HIGH. UNDER CERTAIN
        is re-set. non convergence is assigneo and / or tolerance level
        IS RE-SET.
    700 CONTINUE
Check that it was not level zero interval.if so assign non convergence
IFI LEV $1400,400,705$
LEVTAG $=-1$ CEPS = CEPSF, itS ORIGINAL VALUE
LEVTAG $=2$ CEPS IS GREATER THANCEPSF. REGULAR SIUUAY ASKEO FOR A BIG
LEVTAG $=3$ CEPS IS GREAJER THANCEPSF.CEPS PREVIOUSLY HAD A BIG JUMP.
705
in a ncrmal run with no rouno off error problem, levtag $=-1$ and the
.
est of stage seven is omitted.
710
CEPST HERE IS FACERR CURRENT VALUE OF CEPS
IF(CRIT) 715,800,800
715 IFILEVTAG - 2) 720,740,750
C 720 IFVIADIFF) $=0$
725 IF (ADIFF - OCEPS) 730,800,800
730 IF(ADIFF - CEPSS) 730,800,800
135 LEVTAG $=0$
EFACT $=$ EFACT + CEPST*(XI - XZERO)
$\times$ LERO $=\mathrm{XI}_{1}$
GO TO 445
C 740 LEVTAG $=2$
IF(AOIFF) 765,765,725
LEVTAG $=3$
750 LEVTAG $=0^{3}$
IF(AOIFF) 775,775,730
765 CEPS $=A C I F F$
GO TO 775
GO TO 775
LEVTAG $=-1$
FACERR $=1.0$
CEPS $=$ CEPSF
CEPS $=$ CEPSF
EFACT $=$ EFACT + CEPST*1X1 $-\times 2 E R O$
EFACT $=$ EFACT + CEPST•IXI - XLERO
XLERO
XI
XLERO $=x$
CONTINUE
OCEPS = C. 25 -CEPS
**** STAGE EIGHT ....
actual convergence in previous interval. increments adoed into
RUNNING SUMS
adC INTC SUM AND SIM
$c$
$c$
$c$
central calculation.
300 CONTIN
$x_{2}=0.5=\left(x_{1}+x_{3}\right)$
$x_{4}=0.5=\left(x_{3}+x_{5}\right)$
fx2 = funt $\times 2$ )
FX4:
NO
fuN
NO
EST1 $=$ FX1 $+4 \cdot \mathbf{C O F X 2}+\mathrm{FX3}$
EST2 $=\mathrm{FX3}+4.0 . F \times 4+F \times 5$
ADIFFI EADIFF
DIFF $=$ EST + EST - ESTI - EST2
IFILEV - 30) 305,800,800
305
IFICRIT: 700, 700,400
END OF CENTRAI
C END OF CENTRAL LOOP
C NEXY STAGE IS STAGE FOUR IN CASE OF NO NATURAL CONVERGENCE
C NEXT STAGE IS STAGE SEVEN IN CASE OF NATURAL CONVERGENCE
NO NATURAL STAGE FOUR *...e.
NO NATURAL CONVERGENCE A COMPLEX SEQUENCE OF INSTRUCTIONS
level in uphard oirection if there are indications of round off
error.
00 continue
IF(ADIFFI-ADIFF) $410,410,500$
ACIFF AND THE REST NF RTAGE FQUR ERRGR PROBLEM, ADIFFI IS GREATER THAN
5 EFACT = EFACT + CEPS + $1 \times 1$ - XZERO)-FACERR
$\begin{aligned} & \text { XZERO } \\ & \text { FACERR }\end{aligned}=15.0$
the rest of stage four deals with upmard adjustment of tolerance (ceps) IF(ADIFF-2.0.CEPS) $420,420,425$
CEPS $=$ SUAD CIFF CEPS. ASSIGN CONVERGENCE

```

```

LEVTAG $=0$
GO TO 78 BC
425 IFI ADIFFI-ADIFF) $435,43 \mathrm{C}, 435$
C 430 CEPS $\operatorname{CARGE}$ JUMP IN CEP
GO TO 445
FACTOR THO JUMP IN CEPS
CEPS 7 2.0 CEPS
IFILEVTAG $-3140,445,445$

```

```

NO ACTUAL CONVERGENCE. ***
CTAGE STORE RIGHT HAND ELEMENTS
500
CONTINUE
NIM $=2$ ONIM
LEV $=1 E V+1$
ESTSTLEEV) = ESTR
XSST(LEV) $=\times 4$
$\times 54$
FX3ST(LEV)=FX4
FX5ST(LEV) $=$ FX5
PREDIF(LEV) = ADIFF

```

```

ready to go ahead at level l.Cher with left hano elements
$\times 1$ AND FXI ARE THE SAME AS BEFORE
$x 1$
$\times 5=\times 3$
$x 3=x 2$
$F \times 5=F \times 3$
$F \times 3=F \times 2$
EST $=$ EST1
GO TO

```

``` IS RE-SET.
700 CONTINUE
CHECK THAT IT WAS NOT LEVEL ZERO INTERVAL. IF SO ASSIGN NON CONVERGENCE
IFI LEV \(1400,400,705\) IFI LEV \(1400,400,705\)
LEVTAG \(=-1\) CEPS = CEPSF, ITS ORIGINAL VALUE
LEVTAG = 2 CEPS IS GREATER THANCEPSF.CEPS PREVIOUSLY ASKEO FOR A BIG
LEVTAG \(=3\) CEPS is GREAJER THANCEPSF.CEPS PREVIOUSLY HAD A big JUMP.
IN A NCRMAL RUN WITH NO ROUNO OFF ERROR PROBLEM, LEVTAG \(=-1\) and the
CEPST \(=15, C=C E P S\)
CEPST HERE IS FACERR CURRENT VALUE OF CEPS
IFICRIT) 715,800,800
LEVTAG \(=0\) 2) \(720,740,750\)
IF(ADIFF) 8CO, 800,725
IF (ADIFF - OCEPS) 730
725 IF (ADIFF - OCEPS) 730,800,80C
730 IFADIFF - CEPSF) \(770,770,735\)
730 IFIADIFF - CEPSFI 770.770,735
CEPS \(=\) ADIFF
EFACT \(=\) EFACT + CEPST:(XI - XZERO)
GO TO 445
\(740 \begin{aligned} & \text { LEVTAG }=0 \\ & \text { LEVTA }\end{aligned}\)
LEVTAG \(=3\)
LEVTAG \(=0^{3}\)
IF(AOIFF) 775,775,730
765 CEPS \(=A C I F F L\)
770
75 EEPS \(=\) CEPS
\(780 \begin{aligned} & \text { XLERO } \\ & \text { CONTINUE }\end{aligned}\)
QCEPS = C. 25 -CEPS
aCtual Convergence in previous interval. increments adoed into
adC intc sum and sim
```

```
800 CONTINUE
    SUM \(=\) SUM + 1 EST \(1+E S T 2) \cdot(\times 5-\times 1)\)
    IF(LEVTAG) BC5, B10,810
C 805 SI WED ADD INTO SIM ONLY IF WE ARE CLEAR OF ROUND OFF LEVEL.
    \(805 \operatorname{SIM}=\operatorname{SIM}+\) OIFF*(x5-xi)
    gio CONTINUE
        SORT OUT WHICH LEVEL TO GO TO. THIS INVOLVES NIM NUMBERING SYSTEM
        SORT OLT WHICH LEVEL TO GO TO
OESCRIBED BEFORE STAGE ONE.
    905 NUM \(=\) NIM/2
        NOM = NIM 2 -NUM
    10 N(M) NOM) 910,
        \(L E V=\mathrm{LEV}-1\)
        GO TO 9C5
```



```
    IFI LEV, \(1100,1100,1000\)
C \(C\)..." STAGE TEN
c
c
c SET UP GUANTITIES FEN CENTRAL CALCULATION.
1000 continue
    \(\mathrm{X}_{1}=\mathrm{XF}_{1}\)
\(\mathrm{~F}_{1}=\mathrm{Fx}\)
    FX1 \(=\) FX5
\(\times 3=\times 3 S(L E V)\)
\(\times 5=\times 5 S T(L E V)\)
    X
\(5 \times 3=\)
\(\times 5 S T\)
EXSTEV
```



```
    EXSE \(=\) FXSSTMLEV)
EST= ESTST(LEV)
    ADIFF = PREDIF(LEV)
GO TO 300
    GO to 300
C HTAGE ELEVEN **...
c 1100 continue
    EFACT = EFACT + CEPS -(BIG-XZERO) FACERR
    RUM \(=\) EFACT/180.0
    THIRD = SUM/12.0
    SQUANK \(=\) THIRD + FIFTH
    RETURN = THIRD
c \(\underset{\substack{\text { RETURN } \\ \text { ENO } \\ \text { ENC }}}{ }\)
```

Certification of Algorithm 379 [D1]
Squank (Simpson Quadrature Used AdaptivelyNoise Killed) [J.N. Lyness, Comm. ACM 13 (Apr. 1970), 260 -263]
P. Hallet and E. Mund [Recd. 18 Jan. 1971 and 27 Apr. 1971]
Service de Métrologie Nucléaire, Université Libre de Bruxelles, Brussels, Belgium

Work supported by the Belgian Fonds National de la Recherche Scientifique.

Key Words and Phrases: numerical integration, integration rule, adaptive integration, automatic integration, Simpson's rule, numerical quadrature, quadrature rule, adaptive quadrature, automatic quadrature, round-off error control

CR Categories: 5.16

The algorithm was compiled and run without corrections on a CDC-6400 with a machine accuracy parameter of 0.7×10^{-14}. Our purpose was to test SQUANK's ability to integrate a function blurred by random noise, and so the function $F U N(X)$ is the result of applying a random perturbation R to some regular function $f(x)$, either by adding R to x before computing f, hereafter referred to as " x-noise", or by adding R to f after having computed it, " y-noise". R is taken as

$$
R=C *(2 . * R A N F(X)-1 .)
$$

where C is the noise amplitude and $R A N F$ is a system function generating pseudorandom numbers ($0 . \leq R A N F(X) \leq 1$.)

Our test program called SQUANK 100 times in situations involving all combinations of noise amplitude $C=10^{-2}, 10^{-4}, 10^{-6}$, $10^{-8}, 10^{-10}$, required tolerance $\epsilon_{1}=10^{-4}, 10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$, both noise types and the two functions $f_{1}(x)=k_{1} \exp (x)$ and $f_{2}(x)=k_{2}\left(1+10^{4} x^{2}\right)^{-1}$ integrated on $[0,1]$. The constants k_{1} and k_{2} were chosen to normalize unblurred integrals to unity so
that errors and tolerances may be seen as absolute or relative.
A rough calculation shows that y-noise causes in both integrals a deviation D that shouldn't exceed C. For x-noise, with $f(x+R) \simeq$ $f(x)+R f^{\prime}(x), D$ shouldn't exceed respectively C and $k_{2} C$ (meaning that the second function is oversensitive to x-noise by a factor $k_{2} \simeq 200 / \pi$).

The test program was run five times, yielding different results because the random perturbations were irreproducible. The following quantities were kept and averaged over the five runs.
$\left|\epsilon_{2}\right|$ actual error (specifically, ϵ_{2} is the difference $\operatorname{SQUANK}(\cdots)$ - 1.0).
ϵ_{3} error estimate (specifically, ϵ_{3} is the value of parameter $R U M$ as returned by SQUANK).
N number of function evaluations.
A sample of these averaged results is given in Table I.

Table I

C	${ }^{1}$	$f_{1}(x), x$-noise			$f_{1}(x), y$-noise		
		\boldsymbol{E}_{2} \|		N	$\mid \epsilon_{2}$ \|	ϵ_{3}	N
10^{-8}	10-12	$6.3{ }^{10^{-10}}$	5.510^{-9}	11278	8.4 10-10	5.910^{-9}	8416
10^{-8}	10^{-4}	7.910^{-9}	$1.0{ }^{10^{-4}}$	9	9.210^{-9}	1.010^{-4}	9
10^{-2}	10^{-12}	7.6 10-4	4.6 10-3	6986	8.910^{-4}	5.310^{-3}	8747
10^{-2}	10^{-4}	$1.6{ }^{10^{-8}}$	1.510^{-3}	106	1.310^{-3}	$1.6{ }^{10-3}$	59
C	ϵ_{1}	$f_{2}(x), x$-noise			$f_{2}(x), y$-noise		
		ϵ_{2} \|	ϵ^{3}	N	$\mid \epsilon_{2}$ \|	${ }_{6}$	N
10^{-8}	10^{-12}	2.910^{-9}	4.410^{-7}	35956	$1.8{ }^{10-10}$	5.510^{-9}	63254
10^{-8}	10^{-4}	5.810^{-6}	$1.0{ }^{10^{-4}}$	77	5.8 10-6	$1.0{ }^{10-4}$	77
10^{-2}	10^{-12}	6.310^{-2}	$3.5{ }^{10-1}$	9127	1.310^{-3}	5.210^{-3}	8496
10^{-2}	10^{-4}	6.910^{-2}	$4.2{ }^{10-1}$	3896	7.210^{-4}	2.510^{-3}	205

In 487 of the 500 calls it was found that $S Q U A N K$'s accuracy estimate of its own result was reliable, i.e. that $\epsilon_{3}>\left|\epsilon_{2}\right|$. For the remaining 13 calls, the ratio $\left|\epsilon_{2}\right| / \epsilon_{3}$ ranged from 1 to 20 (in the worst cases, $\epsilon_{3} \simeq \epsilon_{1}<C$, just as if SQUANK had failed to notice the presence of the noise).

In 473 of the 500 calls it was found that SQUANK's estimation was as good as could be reasonably expected, i.e., that $\epsilon_{3}<\max \left(D, \epsilon_{1}\right)=\epsilon_{4}$. For the remaining 27 calls (all of them for f_{2}) the ratio $\epsilon_{3} / \epsilon_{4}$ never exceeded 1.15 (note that the test was made on ϵ_{3}, not on the actual error $\left|\epsilon_{2}\right|$).

ALGORITHM 380
 IN-SITU TRANSPOSITION OF A RECTANGULAR MATRIX [F1]

Susan Laflin and M. A. Brebner* (Recd. 21
July 1969 and 31 Oct. 1969)
Computer Centre, University of Birmingham, Birmingham 15, England

* Present address: Department of Mathematics, Statistics, and Computing Science, The University of Calgary, Calgary 44, Alberta, Canada.

KEY WORDS AND PHRASES: rectangular matrix, transpose

 CR CATEGORIES: 5.14
Description:

The matrix ($n \times m$) is assumed to be stored, column by column, in the one-dimensional array A, of length $m \times n$. Then the position J1 of the element $a_{i j}$ is $\mathrm{A}(\mathrm{J} 1)$ where $\mathrm{J} 1=n \times(j-1)+i$. This element must be moved to the position J 2 of the element $a_{j i}$ which is given by $\mathrm{J} 2=m \times(i-1)+j$ and these two locations are related by the expression

$$
(\mathrm{J} 2-1)=m \times(\mathrm{J} 1-1)-(m \times n-1) \times[(\mathrm{J} 1-1) / n]
$$

where [e] indicates integer part of e.
It is more convenient to work in terms of index I1, taking values from 0 to $\mathrm{K}=m \times n-1$, which gives the expression $\mathrm{I} 2=m \times$ I1 $-\mathrm{K} \times[\mathrm{I} 1 / n]$ and the value in $\mathrm{A}(\mathrm{I} 1+1)$ must be moved to $\mathrm{A}(\mathrm{I} 2+1)$. By repeating this formula we find that the transposition consists of a series of "loops", $\mathrm{I} 1 \rightarrow \mathrm{I} 2 \rightarrow \mathrm{I} 3 \rightarrow \cdots \rightarrow \mathrm{I} 1$.

We also note that this process is symmetric. For example, if I is the smallest value in a loop then $K-I$ is the largest value of a loop, although both these values may in fact belong to the same loop.

This is a special case of a more general result, which may be stated as follows:

Theorem. If $\mathrm{I} 1 \rightarrow I 2 \rightarrow I 3 \cdots \rightarrow I 1$ is a loop, then $(K-I 1) \rightarrow$ $(K-I 2) \rightarrow(K-I 3) \cdots \rightarrow(K-I 1)$ is also a loop.

Comments on Theorem. This may be two representations of the same loop or it may describe a "symmetric" pair of loops. For a 2×8 matrix the process generates the following loops, where $K=2 \times 8-1=15$.
(a)

$$
\mathrm{K}-\mathrm{I} \quad 14 \rightarrow 7 \rightarrow 11 \rightarrow 13 \rightarrow 14
$$

(b) I $\begin{array}{lrl}\mathrm{I} \\ \mathrm{K} & \mathrm{I} & \rightarrow 10\end{array} \quad \rightarrow 5$
(c) I $\quad 3 \rightarrow 6 \rightarrow 12 \rightarrow 9 \rightarrow 3$
$\mathrm{K}-\mathrm{I} \quad 12 \rightarrow 9 \rightarrow 3 \rightarrow 6 \rightarrow 12$
Case (a) is an example of a "symmetric" pair of loops. Cases (b) and (c) are both examples of a duplicated loop. An idealized picture of the circuits for this example is given in Figure 1, where the closed curves only indicate the range of the circuits, since the actual directed paths will be intertwined in a more complex manner.

Proof of Theorem. It is sufficient to show that

$$
\begin{equation*}
(\mathrm{K}-\mathrm{I} 2)=m \times(\mathrm{K}-\mathrm{I} 1)-\mathrm{K} \times[(\mathrm{K}-\mathrm{I} 1) / n] \cdots \tag{1}
\end{equation*}
$$

where I 2 is generated from I1 by the expression given in the first paragraph.

Now

$$
(\mathrm{K}-\mathrm{I} 2)=\mathbf{K}-m \times \mathrm{I} 1+\mathrm{K} \times[\mathrm{I} 1 / n] .
$$

Let

$$
[\mathrm{I} 1 / n]=L_{1}, \quad[(\mathrm{~K}-\mathrm{I} 1) / n]=L_{2} .
$$

Hence it is required to prove that
or

$$
\begin{aligned}
\mathrm{K}-m \times \mathrm{I} 1+\mathrm{K} \times L_{1} & =m \times(\mathbf{K}-\mathrm{I} 1)-\mathrm{K} \times L_{2}, \\
\mathrm{~K} \times L_{2} & =\mathrm{K} \times\left(m-1-L_{1}\right), \\
\mathrm{K} \times L_{2} & =\mathrm{K} \times L_{3}, \\
L_{3} & =m-\mathbf{1}-L_{1} .
\end{aligned}
$$

or
where

Note L_{1}, L_{2} and L_{3} are integer.
Let

$$
(\mathrm{I} 1 / n)-L_{1}=\epsilon_{1}, \quad((\mathrm{~K}-\mathrm{I} 1) / n)-L_{2}=\epsilon_{2} .
$$

From the definition of [] in paragraph one, it is obvious that ϵ_{1} and ϵ_{2} satisfy the inequalities

$$
0 \leq \epsilon_{1} \leq 1-1 / n, \quad 0 \leq \epsilon_{2} \leq 1-1 / n
$$

Now

$$
\begin{aligned}
\mathrm{K} \times((\mathrm{K}-\mathrm{I} 1) / n) & =\mathbf{K} \times((m \times n-1-\mathrm{I} 1) / n) \\
& =\mathbf{K} \times(m-1 / n-\mathrm{I} 1 / n) \\
& =\mathbf{K} \times(m-1-\mathrm{I} 1 / n+(1-1 / n)) \\
& =\mathbf{K} \times\left(L_{3}-\epsilon_{1}+(1-1 / n)\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
& \mathrm{K} \times((\mathrm{K}-\mathrm{I} 1) / n)=\mathrm{K} \times\left(L_{2}+\epsilon_{2}\right), \\
& \mathrm{K} \times\left(L_{3}-\epsilon_{1}+(1-1 / n)\right)=\mathrm{K} \times\left(L_{2}+\epsilon_{2}\right),
\end{aligned}
$$

or

$$
L_{3}-\epsilon_{1}+(1-1 / n)=L_{2}+\epsilon_{2},
$$

or

$$
L_{3}-L_{2}=\epsilon_{1}+\epsilon_{2}-(1-1 / n) .
$$

Therefore

$$
0+0-(1-1 / n) \leq L_{3}-L_{2} \leq 2 \times(1-1 / n)-(1-1 / n),
$$

or

$$
\left|L_{8}-L_{2}\right| \leq 1-\frac{1}{n}
$$

Since L_{2} and L_{3} are integer and differ by less than unity, L_{2} must equal L_{3}, hence $\mathrm{K} \times L_{2}=\mathrm{K} \times L_{3}$, which implies that (1) is true.

Method. Each matrix will contain two or more "single elements," that is, loops consisting of only one point. The condition

for this is

$$
\mathrm{I}=m \times \mathrm{I}-\mathrm{K} \times[\mathrm{I} / n] .
$$

Writing $\mathrm{I}=a \times n+b$ and inserting $\mathrm{K}=m \times n-1$, this condition becomes

$$
a(n-1)=b(m-1)
$$

We shall always have the two pairs of integers $(0,0)$ and ($m-1$, $n-1$) giving $\mathrm{I}=0$ and $\mathrm{I}=\mathrm{K}$ as single elements.

The method used in the subroutine is as follows. First the number of "single elements" in the array is calculated and NCOUNT is set equal to this value; then, starting with variables $\mathrm{I}=1$ and $\mathrm{MAX}=\mathrm{K}+1$, we search through the array, moving the elements in each loop once until all the elements have been moved. The variable NCOUNT is used to record how many elemerts have been moved and the process is terminated when NCOUNT $\geq m n$. For each value of I, the loop generated by I is examined, and if it contains any values less than 1 or greater than MAX, then we know that this loop has already been moved and so go on to examine the next value of I. If, however, I is the smallest value, the elements in this loop are moved round and at the same time a test is made to see if $\mathrm{K}-\mathrm{I}$ also belongs to this loop. Each time a loop is completed NCOUNT is tested against $m n$. If K - I has been included in the loop for which I was smallest value, MAX is set equal to $\mathrm{K}-\mathrm{I}$ and we return to statement number 20 to examine the next value of I. If K - I does not belong to the same loop as I, then the elements in the loop generated by $\mathrm{K}-\mathrm{I}$ are also moved before returning to label 20.

The process is further speeded up by use of an array MOVE, dimension IWRK. Initially all elements of MOVE are set equal to 0 and whenever element I is moved, $\operatorname{MOVE}(\mathrm{I})$ is set equal to 2. Hence, so long as I \leq IWRK, it is possible to detect whether or not the loop generated by I has been moved without calculating values around the loop. The value of IWRK to give the shortest possible time depends only on m and n, but so far it has not been possible to give a theoretical expression for this value. In 93 percent of the cases examined, the value of IWRK $=\left|\frac{1}{2}(m+n)\right|$ was large enough for the transposition to be completed before I exceeded IWRK. Since this condition gives the minimum execu-

TABLE I					
Size M \times N	Alg. 302	$\begin{aligned} & \text { Trans } \\ & \text { IWRK }= \\ & (\mathrm{M}+\mathrm{N}) / 2 \end{aligned}$	$2 \times(\mathrm{T} 1-\mathrm{T} 2)$	Trans No Move	$2 \times(\mathrm{T} 1-\mathrm{T} 3)$
			(T1+T2)		(T1+T3)
$\mathrm{M} \times \mathrm{N}$	T1 (sec.)	T2 (sec .)		T3 (sec.)	
7×60	0.56	0.29	0.640	0.37	0.426
7×70	0.96	0.32	1.012	0.37	0.897
7×80	0.68**	0.57	0.180	0.63	0.078
7×90	1.24	0.43	0.978	0.71	0.547
7×100	1.49	0.46	1.057	0.56	0.911
8×60	0.97	0.31	1.045	0.25	1.192
8×70	0.83	0.61	0.300	0.75	0.105
8×80	1.08**	0.78	0.319	1.02	0.061
8×90	1.50	0.46	1.065	0.37	1.216
8×100	1.60	0.71	0.766	1.05	0.419
9×60	0.91	0.47	0.649	0.63	0.365
9×70	1.11	0.57	0.641	0.82	0.298
9×80	1.53	0.46	1.082	0.37	1.223
9×90	1.92	0.51	1.156	0.62	1.028
9×100	1.88	0.63	0.997	1.10	0.528
45×50	4.89	2.09	0.804	2.89	0.515
45×60	6.10	1.59	1.173	1.38	1.261
46×50	4.57	2.69	0.519	3.76	0.195
46×60	5.99	2.88	0.701	4.16	0.361
47×50	4.92	3.22	0.416	3.96	0.216
47×60	6.59	1.66	1.195	1.45	1.279

TABLE II

Range of values of $(\mathrm{T} 1-\mathrm{T} 2) / \hbar(\mathrm{T} 1+\mathrm{T} 2)$	Percentage of results lying within this range
-0.5 to 0.0	6.4%
0.0 to 0.5	29.5%
0.5 to 1.2	64.1%

tion time, we suggest the value $\left|\frac{1}{2}(m+n)\right|$ for the length of the array MOVE.

This routine has been compared with a Fortran version of Algorithm 302 [2]. In the cases where the transpose is effected in a few loops each containing a large number of elements, our routine is very efficient, in many cases halving the time needed by Algorithm 302. It is less efficient for cases with a large number of loops, but in the cases where Algorithm 302 is faster, the difference in time is small.

Our method for the rectangular arrays is similar to that attributed to J. G. Gower in the paper by P. F. Windley [1] but using our concept of "symmetry" greatly improves the efficiency of the process. The case of a square array is detected and treated separately, exchanging pairs $a_{i j}$ and $a_{j i}$ instead of testing for loops.

Results. The execution times T1, for the Fortran version of Algorithm 302, and T2, for our routine TRANS with IWRK $=$ $\left|\frac{1}{2}(m+n)\right|$, are given in Table I for a selection of matrices. The column T3 gives execution times for a version of TRANS from which all references to the array MOVE have been deleted. On the basis of more than 150 tests of this type, in which the relative difference between T1 and T2 was determined, only 6.4 percent gave a result favorable to Algorithm 302. A summary of the results of these tests is given in Table II.

The stars by the values of T1 indicate the condition T4 \leq $\mathrm{T} 1 \leq \mathrm{T} 5$ where T4 and T5 are execution times for TRANS with IWRK $=\left|\frac{1}{2}(m \times n)\right|$ and IWRK $=1$ respectively. In these cases, the length of IWRK determines whether Algorithm 302 or TRANS is the quicker.

All the execution times refer to the ICL KDF9 computer.
Acknowledgments. The authors wish to thank Dr. S. H. Hollingdale, director of the Computer Centre, for his support and encouragement.

References:

1. Windley, P. F. Transposing matrices in a digital computer. Comput. J. 2 (Apr. 1959), 47-48.
2. Boothroyd, J. Algorithm 302, Transpose vector stored array. Comm. ACM 10 (May 1967), 292-293.

Algorithm:


```
CONLAINS THE MXN MATRIX TO BE TRANSOSED (STORED 
USED TO STORE IMFORMATION TO SPEED UP THE PROCESS. THE
VALUE IWRK = (M+N)/2 IS RECOMMENDED. IOK INDICATES THE
SUCCESS OR FAILURE OF THE ROUTINE.
NORMAL RETURN IOK =0
ERRORS IOK=-1 ,MN NOT EQUAL TO M*N.
IOK=-2,IWRK NEGATIVE OR ZERC. IN THIS CASE
WE SET IOK EQual to the final value of I WHEN THE SEARCH
    COMPLETED But SOME LOOPS have not been moved.
        OIMENSION A(MN),MOVE(IWRK)
C check arguments and initialis
        IFMM.LT.2.OR.N.LT.2IGO TO 60
        IF(MN.NE.M*N) GO TO 92
        IFIIWRK.LT.1/GO TO 93
        IF(M.EQNN) GO TO 70
        NCOUNT=2
        M2=M-2
        DO 10 I=1,IWRK
    10 MOVE(I)=0
IF(M2.LT.1)GO to 12
c count number,ncount,of single points.
```

```
C
```

C C TEST FOR SYMMETRIC PAIR OF LOOPS.
41 A(11+1)=B
IF(NCOUNT.GE.MN) GO TO 60
IF(12.EQ.MAX.OR.MAX.EQ.KMI) GO TO 20
MAX = KMI
I ll= MAX
C NORMAL RETURN.
601OK=U
RETURN
C C IF MATRIX IS SQUARE,EXCHANGE ELËMENTS A(I,J) AND A(J,I).
7\cupNl=N-1
U NL=N-1
J1=1+1
DO }71\textrm{J}=\textrm{JI,N
I 1=1+(J-1)*N
l
O=A!Il)
A(11)=A(12)
A(12)=B
71 CONTINU
C C ERROR RETURNS.
ERROR RETURN
90 IOK=1
GO TO 91
93 10K=-2 (01
c
END
I 1=1+(j-1)*N
go to 60
92 10K=-1

```
    DO \(11 I A=1, M 2\)
    DO \(11 I A=1, M 2\)
        \(1 B=I A *(N-1) /(M-1)\)
        \(1 B=I A *(N-1) /(M-1)\)
        IF(IA*(N-1),NE.IB*(M-1))GO TO 11
        IF(IA*(N-1),NE.IB*(M-1))GO TO 11
        NCOUNT \(=\) NCOUNT +1
        NCOUNT \(=\) NCOUNT +1
        I=I \(A * N+I B\)
        I=I \(A * N+I B\)
        IF(I.GT.IWRKIGO TO 11
        IF(I.GT.IWRKIGO TO 11
    MOVE(I)=
    MOVE(I)=
C 11
C 11
    CONTINUE
    CONTINUE
C SET INTITAL VALUES FOR SEARCH.
C SET INTITAL VALUES FOR SEARCH.
    \(12 K=M N-1\)
    \(12 K=M N-1\)
        \(K M I=K-1\)
\(M A X=M N\)
        \(K M I=K-1\)
\(M A X=M N\)
        \(1=1\)
        \(1=1\)
\(\begin{array}{lll}\text { C } & \text { at } \\ \text { C } & \text { least one } \\ \text { C } & \text { GO TO } & 30\end{array}\)
\(\begin{array}{lll}\text { C } & \text { at } \\ \text { C } & \text { least one } \\ \text { C } & \text { GO TO } & 30\end{array}\)
C SEARCH FOR LOOPS TO REARRANGE.
C SEARCH FOR LOOPS TO REARRANGE.
C 20
C 20
    \(20 \quad\) MAX \(=k-I\)
    \(20 \quad\) MAX \(=k-I\)
        \(I=1+1\)
        \(I=1+1\)
        KM 1 \(=K-\)
        KM 1 \(=K-\)
            IF(I.GT.MAX) GO TO 90
            IF(I.GT.MAX) GO TO 90
            IF (MOVE.IWRKIGO TO 21
            IF (MOVE.IWRKIGO TO 21
            IF (MOVE(I).LT.1)GO TO 30
            IF (MOVE(I).LT.1)GO TO 30
            GO TO 20
            GO TO 20
            IF(I.EG.M*I-K*(I/N) GO TO 20
            IF(I.EG.M*I-K*(I/N) GO TO 20
            11 \(=1\)
            11 \(=1\)
            I \(2=M * I 1-K *(I 1 / N)\)
            I \(2=M * I 1-K *(I 1 / N)\)
            IF (I2.LE.I .OR. I2.GE.MAX) GO TO 23
            IF (I2.LE.I .OR. I2.GE.MAX) GO TO 23
            GO TO 22
            GO TO 22
    \(\begin{array}{lc}C & 23 \\ C & \text { IFIIL.NE.I)GO TO } 20 \\ C & \text { REARANGE ELEMENTS OF A LUOP. }\end{array}\)
```

 \(\begin{array}{lc}C & 23 \\ C & \text { IFIIL.NE.I)GO TO } 20 \\ C & \text { REARANGE ELEMENTS OF A LUOP. }\end{array}\)
    ```



REMARK ON ALGORITHM 380
SUBROUTINE TO PERFORM IN-SITU
TRANSPOSITION OF A RECTANGULAR MATRIX
[Susan Laflin and M. A. Brebner, Comm. ACM 13 (May 1970), 324-326]
Ralph Lachenmaier
University of Colorado Graduate School Computing
Center, Boulder, CO 80302
KEY WORDS AND PHRASES: rectangular matrix, transpose \(C R\) CATEGORIES: 5.14

Laflin and Brebner compared the execution times of their transposition algorithm (Algorithm 380) and Algorithm 302 [1] when run on an ICL KDF 9 computer. This comparison showed Algorithm 380 to be faster than Algorithm 302, in most cases. In order to generalize this comparison, the same matrix transpositions were run on the CU CDC 6400 computer. Table I shows the

results from the KDF 9 computer and Table II, the results from the 6400 . It should be noted that Algorithm 380 did not enjoy as great an advantage on the 6400 as on the KDF 9.

References:
1. Boothroyd, J. Algorithm 302, Transpose vector stored array. Comm. ACM 10 (May 1967), 292-293.

Certification of Algorithm 380 [F1]
In-Situ Transposition of a Rectangular Matrix [Susan Laflin and M.A. Brebner, Comm. ACM 13 (May 1970), 324-326]
I.D.G. Macleod [Recd. 25 Aug. 1970]

Department of Engineering Physics, Research School
of Physical Sciences, The Australian National
University, Canberra, Australia, 2600
Key Words and Phrases: rectangular matrix, transpose
CR Categories: 5.14
Algorithm 380 (i.e. subroutine \(T R A N S\) ) has been extensively tested using FORTRAN IV (level G) on the A.N.U's IBM System 360 model 50 ; the test matrices were correctly transposed in every case. It should be pointed out that the FORTRAN convention of column-major storage of the input matrix is assumed in TRANS. Implementations which assume row-major matrix storage will have to be appropriately modified.

Some unnecessary computation can be avoided by changing:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{12}{*}{}} \\
\hline & \\
\hline
\end{tabular}

As an extension of the timing tests reported by Laftin and Brebner, and Lachenmaier [1], four versions of TRANS were timed against TRANSPOSE [2] and PERMUTE [3], using FORTRAN IV G for all routines. As in the case of TRANS, the method employed in PERMUTE is similar to that attributed by Windley [4] to J.G. Gower, but PERMUTE is intended for general permutations and hence does not take advantage of the symmetry present in in-situ transpositions. Execution times on the A.N.U's IBM System 360 model 50 for the test set of 21 matrices given by Laflin and Brebner are summarized in Table I; further tests on this machine have confirmed the relative efficiencies indicated.

Table I
\begin{tabular}{lc} 
Routine & \begin{tabular}{c} 
Execution \\
time (sec)
\end{tabular} \\
& \\
Original version of TRANS & \\
(i) IWRK \(=(M+N) / 2\) & 9.0 \\
(ii) No MOVE & 12.6 \\
TRANS modified as & \\
recommended above & \\
(i) IWRK \(=(M+N) / 2\) & 8.2 \\
(ii) No MOVE & 10.8 \\
TRANSPOSE & 18.9 \\
PERMUTE & 13.7 \\
\hline
\end{tabular}

\section*{References}
1. Lachenmaier, R. Remark on Algorithm 380. Comm. ACM

13 (May 1970), 327.
2. Boothroyd, J. Algorithm 302, Transpose vector stored array.

Comm. ACM 10 (May 1967), 292-293.
3. Macleod, I.D.G. An algorithm for in-situ permutation. Austral.

Comput. J. 2 (Feb. 1970), 16-19: (May 1970), 92 (Errata).
4. Windley, P. F. Transposing matrices in a digital computer.

Comput. J. 2 (Apr. 1959), 47-48.

\section*{ALGORITHM 381 \\ RANDOM VECTORS UNIFORM IN \\ SOLID ANGLE [G5]}

Robert E. Knop* (Recd 20 Nov. 1969 and 20 Jan. 1970)
Department of Physics, Rutgers University, New Brunswick, NJ 08903
* This work was supported in part by the National Science Foundation.

KEY WORDS AND PHRASES: random number, random vector, random number generator, probability distribution, frequency distribution, simulation, Monte Carlo
\(C R\) CATEGORIES: 5.5
procedure unisph ( \(X, Y, Z\) );
real \(X, Y, Z\);
comment This procedure generates the components of random unit vectors distributed uniformly in solid angle. Let \(Z\) be the polar axis, \(\theta\) the polar angle, and \(\phi\) the azimuthal angle. The arguments returned may then be written as:
\(X=\sin (\theta) \times \cos (\phi) \quad Y,=\sin (\theta) \times \sin (\phi), \quad Z=\cos (\theta)\)
In this algorithm, R11 represents a procedure which returns random numbers which are distributed uniformly over the interval \((-1,1)[1]\). The algorithm operates by the method of rejection [2]. The variables \(X\) and \(Y\) are first sampled from the uniform distribution over the interval ( \(-1,1\) ). After rejecting points outside of the unit disk, we may transform variables from \(X, Y\) to \(\phi, S\) by use of the formulas \(X=s q r t(S) \times \cos (\phi)\) and \(Y=\operatorname{sqrt}(S) \times \sin (\phi)\). It can be demonstrated that \(S\) is a random variable uniformly distributed over the interval ( 0,1 ). The distribution of the cosine of the polar angle must be uniform over the interval ( \(-1,1\) ). Thus \(Z\) is determined from \(S\) by the formula \(Z=2 \times S-1\) [3]. Finally, the \(X\) and \(Y\) components of the vector are normalized using the constraint that the vector be of unit length [3, 4].
A modification of this algorithm could be used to generate vectors which were azimuthally uniform but have a specified nonuniform distribution in the cosine of the polar angle. This would be achieved by replacing the statement \(Z:=2 \times S-1\) with \(Z:=F(S)\), where \(F\) is a procedure to calculate the inverse distribution function of \(Z\).
The author wishes to express his gratitude to B. Kehoe for comments concerning this algorithm, and to R. Nelson for doing much of the programming involved in testing it.
References:
1. Van Gelder, A. Some new results in pseudo-random number generation. J. ACM 14 (Oct. 1967), 785-792.
2. Von Neumann, J. Various techniques used in connection with random digits. Nat. Bur. of Standards Appl. Math. Ser. 12, 1959, p. 36.
3. Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 1968, p. 34.
4. Knop, R. Remark on algorithm 334. Comm. ACM 12 (May 1969), 281.;
begin
real \(X, Y, Z, S\);
comment Rejection method yields two independent random variables, the azimuthal angle \(\phi\), and the square of the radius S.;

A:
\(X:=R 11 ; \quad Y:=R 11 ;\)
\(S:=X \uparrow 2+Y \uparrow 2 ;\)
if \(S>1\) then go to \(A\);
comment \(Z\) must be uniform over the interval ( \(-1,1\) ). It can be demonstrated that \(S\) is uniform over the interval ( 0,1 ).; \(Z:=2 \times S-1\);
comment Given \(Z, X\) and \(Y\) are normalized by the constraint that the vector be of unit length.;
\(S:=\operatorname{sqrt} \cdot((1-Z \uparrow 2) / S)\);
\(X:=X \times S ; \quad Y:=Y \times S ;\)
end unisph

\section*{Remark on Algorithm 381 [G5]}

Random Vectors Uniform in Solid Angle [Robert E.
Knop, Comm. ACM 13 (May 1970), 326]
Günther F. Schrack [Recd. 1 Aug. 1970, 7 June 1971, and 4 Oct. 1971]
The University of British Columbia, Departments of Electrical Engineering and Computer Science, Vancouver 8, B.C., Canada

Key Words and Phrases: random vector generator, points uniform on sphere, spherically symmetric probability distribution

CR Categories: 5.5

Syntax corrections: The type declaration of the procedure body should be
real \(S\);
and not
real \(X, Y, Z, S\);
The sequential operator if in the conditional statement should be boldface and not in italic. The semicolon following the last assignment statement should be deleted. Also, in reference [3], p. 34 should be replaced by paragraph 3.4.

The following three cases are considered in this remark.
Case 1: the original algorithm, Algorithm 381.
Case 2: the modification of case 1 obtained by replacing the third last arithmetic assignment statement by
\(S:=2 \times \operatorname{sqrt}(1-S)\);
Case 3: an alternative modification of case 1 obtained by replacing the assignment statement for \(Z\) by
\(Z:=R 11 ;\)
possible because \(Z\) is uniformly distributed in [ \(-1,1]\).
The three cases were translated into Fortran IV and tested on a \(/ 360-67\) running under the Michigan Terminal System. The generated vectors were all normalized. Two statistical tests were conducted in order to investigate some characteristics of these versions.

For these tests, \(R 11\) was replaced by \(2 * F R A N D-1\), where \(\operatorname{FRAND}\) is the fast random number generator in [4] with the multiplier replaced with 78125005 . Each of the following two tests were repeated six times, initializing the random number generator once only with 0.461000 . The sample size used for all tests was 1000 .
(i) Chi-square test for goodness of fit for each variable. The number of categories used was 20 . For case 1 the null hypothesis \(\boldsymbol{H}_{0}\) that each variable \(X, Y\), and \(Z\) is uniformly distributed was rejected at the 1 percent significance level for variable \(X\) once out of the six tests; for variable \(Y, H_{0}\) was rejected once at the 5 percent significance level for too good a fit; and was not rejected for variable \(Z\). For case 3, no rejection of \(H_{0}\) occurred.
(ii) Linear correlation coefficient between pairs of the variables. As the correlation coefficient \(\rho\) of the population has the theoretical value zero, two-tailed tests of the null hyposesis \(H_{0}: \rho=0\) were conducted. For case 1, all sample correlation coefficients were sufficiently small as not to reject \(H_{0}\) at the 5 percent level of significance. For case \(3, H_{0}\) was rejected at the 1 percent significance level but not rejected at the 5 percent level for one out of the 18 sample correlation coefficients.

Case 2 saves one division compared to case 1 but otherwise does not change the behavior of the algorithm as tested above. Case 3 was slightly slower (less than 7 percent) than case 1 in execution time.

Finally, a comparison in execution time of case 1 with three other methods published previously [1, 2, 3] was carried out. Algorithm 381 showed a considerable advantage in speed, the three algorithms in [1,2, and 3] were between 30 and 100 percent slower.

\section*{References}
1. Cook, J.M. Rational formulae for the production of a spherically symmetric probability distribution. Math. Tables Other Aids Comp. 11 (1957), 81-82.
2. Hicks, J.S., and Wheeling, R.F. An efficient method for generating uniformly distributed points on the surface of an \(n\)-dimensional sphere. Comm. ACM 2 (Apr. 1959), 17-19.
3. Muller, M.E. A note on a method for generating points uniformly on \(n\)-dimensional spheres. Comm. ACM 2 (Apr. 1959), 19-20.
4. Seraphin, D.S. A fast random number generator for IBM 360.

Comm. ACM 12 (Dec. 1969), 695.

\author{
ALGORITHM 382 \\ COMBINATIONS OF \(M\) OUT OF \(N\) OBJECTS [G6] \\ Phillip J. Chase (Recd. 18 Mar. 1969 and 31 Oct. 1969) Department of Defense, Fort Meade, MD 20755 \\ KEY WORDS AND PHRASES: permutations and combinations, permutations \\ CR CATEGORIES: 5.39
}
procedure TWIDDLE ( \(x, y, z\), done, \(p\) ); integer \(x, y, z\); Boolean done; integer array \(p\);
comment \(T W I D D L E\) can be used (1) in generating all combinations of \(m\) out of \(n\) objects, or (2) in generating all \(n\)-length sequences containing \(m\) 1's and ( \(n-m\) ) 0 's.

In the case (1), suppose the \(n\) objects are given by an array \(a[1: n]\), and let us successively store combinations in another array, say, \(c[1: m]\). For the first combination, \(c[1]\) through \(c[m]\) are equated, respectively, to \(a[n-m+1]\) through \(a[n]\). TWIDDLE \((x, y, z\), done, \(p\) ) is called. If done \(=\) true, then all combinations have been processed and we therefore stop. If not, a new combination is made available by setting \(c[z]\) equal to \(a[x]\). TWIDDLE is called, and we continue on this loop until done \(=\) true.

In the case (2), let the sequences of \(m 1\) 's and \((n-m) 0\) 's be stored successively in an integer array, say, \(b[1: n]\). The first sequence is obtained by setting \(b[1]\) through \(b[n-m]\) equal to 0 , and \(b[n-m+1]\) through \(b[n]\) equal to 1 . TWIDDLE \((x, y, z\), done, \(p\) ) is called. If done \(=\) true, then all required sequences have been processed, and we therefore stop. If not, a new sequence is made available by setting \(b[x]\) equal to 1 , and \(b[y]\) equal to \(0 . T W I D D L E\) is again called, and we continue on this loop until done \(=\) true.
\(m\) and \(n\) are used only in the initialization of the auxiliary integer array \(p[0: n+1]\), which is done in the raain program as follows. (It is assumed that \(0 \leq m \leq n\) and \(1 \leq n\).) \(p[0]\) is set equal to \(n+1\), and \(p[n+1]\) is set equal to -2 . \(p[1]\) through \(p[n-m]\) are set equal to \(0 . p[n-m+1]\) through \(p[n]\) are set equal, respectively, to 1 through \(m\). If \(m=0\), then set \(p[1]\) equal to 1 . done is set equal to false.

The algorithm has several features which deserve mention. When used in generating combinations: (a) at each stage, only one combination number, namely \(c[z]\), is changed, ( \(b\) ) \(T W I D D L E\) is order preserving in the sense that at each stage \(c[1]\) through \(c[m]\) will equal, respectively, some \(a\left[i_{1}\right]\) through \(a\left[i_{m}\right]\) where \(i_{1}\) through \(i_{m}\) are strictly increasing. When used in generating fixed-density \(0-1\) sequences: (c) at each stage, it is only necessary to change two numbers of the sequence, \(b[x]\) and \(b[y]\), and these are changed in a specific manner.
The algorithm underlying this procedure was discovered by Leo W. Lathroum in 1965. Another algorithm which accomplishes combinations by transpositions was discovered by Donald E. Knuth in 1964. The author has knowledge of the work of Lathroum and Knuth from private communications. He will include further detail in a mathematical paper, which will include justification of this procedure, to be published elsewhere;
begin integer \(i, j, k ; j:=0\);
L1:
\(j:=j+1 ;\) if \(p[j] \leq 0\) then go to \(L 1\);
if \(p[j-1]=0\) then
begin
\[
\text { for } i:=j-1 \text { step }-1 \text { until } 2 \text { do } p[i]:=-1 ; p[j]=0 \text {; }
\]
```

 \(p[1]:=x:=z:=1 ; y:=j ;\) go to \(L 4\)
 end;
if $j>1$ then $p[j-1]:=0$;
L2:
$j:=j+1$; if $p[j]>0$ then go to $L 2$;
$i:=k:=j-1$;
L3:
$i:=i+1$; if $p[i]=0$ then
begin $p[i]:=-1$; go to $L 3$ end;
if $p[i]=-1$ then
begin
$p[i]:=z:=p[k] ; x:=i ; y:=k ;$
$p[k]:=-1$; go to $L 4$
end;
if $i=p[0]$ then begin done ${ }_{\mathrm{a}}:=$ true; go to $L 4$ end;
$z:=p[j]:=p[i] ; p[i]:=0 ; x:=j ; y:=i$;
L4:
end of TWIDDLE

```

\section*{REMARK ON ALGORITHM 382 [G6]}

COMBINATIONS OF \(M\) OUT OF \(N\) OBJECTS
[Phillip J. Chase, Comm. ACM 18 (June 1970), 368]
Phillip J. Chase (Recd. 18 Mar. 1969 and 31 Oct. 1969)

Department of Defense, Fort Meade, MD 20755
KEY WORDS AND PHRASES: permutations and combinations, permutations
\(C R\) CATEGORIES: 5.39

The following driver program illustrates the use of Algorithm 382.
begin integer \(m, n, i, x, y, z, q, r\); Boolean done;
integer array \(a, b, c[1: 30], \quad p[0: 31]\);
procedure TWIDDLE ( \(x, y, z\), done, \(p\) );
comment Body of TWIDDLE is to be inserted here;
comment TWIDDLE is here used to generate: (1) all combinations \(c[1: m]\) of \(a[1: n]\). Here we take \(a[i]\) equal to \(i\), each \(i\).
(2) all sequences \(b[1: n]\) consisting of \(m 1\) 's and ( \(n-m\) ) 0 's. The user must supply \(m\) and \(n\) such that \(0 \leq m \leq n\) and \(1 \leq n\). (Our declarations here require \(n \leq 30\).);
ininteger \((2, m)\); ininteger \((2, n)\);
for \(i:=n\) step -1 until 1 do \(a[i]:=i\);
comment We initialize the parameters \(p\) and done of TWIDDLE as follows;
\(r:=n-m\);
for \(i:=r\) step -1 until 1 do \(p[i]:=0\);
for \(i:=m\) step -1 until 1 do \(p[r+i]:=i\);
\(p[0]:=n+1 ; p[n+1]:=-2\); done \(:=\) false;
if \(m=0\) then \(p[1]:=1\);
comment We initialize \(c[1: m\) ];
for \(i:=m\) step -1 until 1 do \(c[i]:=a[r+i]\);
comment Next we initialize \(b[1: n]\);
for \(i:=m\) step -1 until 1 do \(b[r+i]:=1\);
for \(i:=r\) step -1 until 1 do \(b[i]:=0\);
comment Now we generate and output our successive combinations and sequences;
\(q:=0\);
```

L:
q:=q+1;
outinteger (1,q);
for i:=m-1 step -1 until 0 do outinteger (1, c[m-i]);
for }i:=n-1\mathrm{ step -1 until 0 do outinteger (1,b[n-i]);
TWIDDLE (x,y, z, done, p);
if }\neg\mathrm{ done then
begin
c[z]:=a[x]; b[x]:=1; b[y]:= 0; go to L
end
end of driver program

```

\section*{ALGORITHM 383 \\ PERMUTATIONS OF A SET WITH REPETITIONS [G6]}

Phillip J. Cease (Recd. 4 Aug. 1969 and 13 Feb. 1970) Department of Defense, Fort Meade, MD 20755
KEY WORDS AND PHRASES: permutations and combinations, permutations CR CATEGORIES: 5.39
procedure EXTENDED TWIDDLE ( \(x, y, k, u\), clone, \(p\) ); value \(k, u\); integer \(x, y, k, u\); Boolean done; integer array \(p\);
comment EXTENDED TWIDDLE is a generalization both of TWIDDLE [2], which is used in generating combinations by transpositions, and of the Trotter-Johnson adjacent-transposition permutation algorithms [5, 3].
In the main program, to successively store all distinct permutations of \(C[I]\) numbers equal to \(N[I](I=1\) to \(J)\) in an array \(A\), take, as the first permutation, that obtained by dividing \(A[1: C[1]+\cdots+C[J]]\) into \(J\) intervals and setting the \(C[I]\) numbers of interval \(I\) equal to \(N[I]\) ( \(I=1\) to \(J\) ). (We assume that \(J \geq 2\) and that each \(C[I] \geq 1\). For distinct permutations, we need \(N\left[I^{\prime}\right] \neq N\left[I^{\prime \prime}\right]\) whenever \(I^{\prime} \neq I^{\prime \prime}\). For somewhat better efficiency, it is desirable, but not necessary, that the sequence \(C[I]\) be non-increasing.)
EXTENDED TWIDDLE ( \(x, y, k, u\), done, \(p\) ) is called. If done \(=\) true, then all permutations have been processed and we therefore stop. If not, a new permutation is made available by transposing \(A[x]\) and \(A[y]\), EXTENDED TWIDDLE is called, and we continue on this loop until done \(:=\) true.
EXTENDED TWIDDLE is initialized in the main program. \(k\) is equated to \(J, u\) is equated to \(C[1]+\cdots+C[J]+1\), done is equated to false, and \(p[0]\) and \(p[u]\) are equated to \(J+1\). \(p[1: u-1]\) is initialized by setting the members of the \(I\) th interval, of length \(C[I]\), equal to \(J-I+1(I=1\) to \(J)\);
That the procedure proceeds by transpositions (not necessarily adjacent, this being impossible in general) will introduce a special economy in some cases. If this feature is of no value in a particular application, then the algorithm of Bratley [1] or of Sagg [4] might be appropriate. For \(J=2\), TWIDDLE [2], which also has the transposition feature, will be more efficient than EXTENDED T'WIDDLE. If each \(C[I]=1\), then Trotter's algorithm [5] for generating permutations by transpositions, is appropriate.

\section*{References:}
1. Bratley, P. Algorithm 306, Permutations with repetitions. Comm. ACM 10 (July 1967), 450-451.
2. Chase, P. J. Algorithm 382, Combinations of \(M\) out of \(N\) objects. Comm. ACM 15 (June 1970), 368.
3. Johnson, S. M. Generation of permutations by adjacent transpositions. Math. Comp. 17 (1963), 282-285.
4. Saga, T. W. Algorithm 242, Permutations of a set with repetitions. Comm. ACM 7 (Oct. 1964), 585.
5. Trotter, H. F. Algorithm 115, PERM. Comm. ACM 5 (Aug. 1962), 434-435.;
begin integer \(s, i, j, b\);
\(j:=b:=s:=0 ;\)
L1:
\(j:=j+1\); if abs \((p[j])=k\) then
begin if \(p[j]<0\) then \(s:=j\); go to \(L 1\) end;
```

 if \(p[j-1]=k\) then
 begin
 for \(i:=j-s-1\) step -1 until 2 do \(p[s+i]:=-k\);
 if \(s>b\) then \(p[s]:=k\);
 \(p[s+1]:=p[j] ; p[j]:=k ; x:=s+1 ; y:=j ;\) go to \(L 4\)
 end;
 if \(s>b\) then \(p[s]:=k\);
 L2:
$j:=j+1$; if $a b s(p[j])<k$ then go to $L 2$;
if $j=u$ then
begin
if $k=2$ then begin done $:=$ true; go to $L 4$ end;
$j:=b:=s ; k:=k-1$; go to $L 1$
end;
$i:=b:=j-1 ;$
L3:
$i:=i+1$; if $p[i]=k$ then
begin $p[i]:=-k$; go to $L 3$ end;
if $p[i]=-k$ then
begin
$p[i]:=p[b] ; p[b]:=-k ; x:=b ; y:=i$; go to $L 4$
end;
if $i=u$ then
begin
if $k=2$ then begin done $:=$ true; go to $L 4$ end;
$u:=j ; j:=b:=s ; k:=k-1$; go to $L 1$
end;
$x:=j ; \quad y:=i ; p[j]:=p[i] ; p[i]:=k ;$
L4:
end EXTENDED TWIDDLE

```

\section*{REMARK ON ALGORITHM 383 [G6] \\ PERMUTATIONS OF A SET WITH \\ REPETITIONS [Phillip J. Chase, Comm. ACM 13 \\ (June 1970), 368]}

Philif J. Chase (Recd. 4 Aug. 1969 and 13 Feb. 1970) Department of Defense, Fort Meade, MD 20755
KEY WORDS AND PHRASES: permutations and combinations, permutations
CR CATEGORIES: 5.39
The following driver program illustrates the use of Algorithm 383.
begin integer \(x, y, k, u, J, Q, I, L\); Boolean done; integer array \(p[0: 31], A, C, N[1: 30]\);
procedure EXTENDED TWIDDLE ( \(x, y, k, u\), done, \(p\) );
comment Body of EXTENDED TWIDDLE is to be inserted here;
comment Program uses EXTENDED TWIDDLE in generating all permutations of \(C[I]\) numbers equal to \(N[I](I=1\) to \(J)\). They are successively stored in \(A\) and output. The user must supply: 1. \(J\) (indexing above requires \(J \leq 30) ; 2 . C[I](I=1\) to \(J\) ), each \(\geq 1\) (indexing above requires \(C[1]+\cdots+C[J] \leq 30)\); 3. \(N[I]\) ( \(I=1\) to \(J\) ), distinct numbers (declarations above requires integer type);
ininteger ( \(2, J\) );
for \(I:=1\) step 1 until \(J\) do
begin ininteger ( \(2, C[I]\) ); ininteger ( \(2, N[I]\) ) end;
comment The array \(A\) is initialized;
```

 L:= 1;
 for I:= 1 step 1 until J do
 for Q:=C[I] step -1 until 1 do
 begin }A[L]:=N[I]; L:=L+1 end
 comment EXTENDED TWIDDLE is initialized;
 L:= 1;
 for }I:=1\mathrm{ step 1 until }J\mathrm{ do
 for Q := C[I] step -1 until 1 do
 begin p[L]:=J-I+1; L}:=L+1\mathrm{ end;
 p[0]:= p[L]:=J + 1;
 done := false;
 k:=J; u:=L;
 comment Permutations are successively generated and
 output;
 Q := 0; L:=u-1;
 L1:
Q:=Q +1;
outinteger (1,Q);
for I :=u-2 step -1 intil 0 do outinteger (1, A[L-I]);
EXTENDED TWIDDLE (x, y, k,u, done, p);
I:=A[x]; A[x]:=A[y]; A[y]:= I;
if }\neg\mathrm{ done then go to L1
end of driver program

```

The following algorithm by G. W. Stewart relates to the papor by the same author in the Numerical Mathematics department of this issue on pages 565367. This concurrent publication in Communications follows a policy announced by the Editors of the two departments in the March 1967 issue.

\section*{ALGORITHM 384}

\section*{EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX [F2] \\ G. W. Stewart (Recd. 7 Nov. 1969) \\ Department of Computer Sciences, The University of Texas at Austin, *Austin, TX 78712}
* Work on this algorithm was supported in part by the National Science Foundation under grant GP-8442 and by the US Army Research Office (Durham) under grant DA-ARO(D)-31-124G1050 at the University of Texas at Austin.
KEY WORDS AND PHRASES: real symmetric matrix, eigenvalues, eigenvectors, \(Q R\) algorithm

\section*{\(C R\) CATEGORIES: 5.14}

\section*{Description:}

SYMQR finds the eigenvalues and, at the users option, the eigenvectors of a real symetric matrix. If the matrix is not initially tridiagonal, it is reduced to tridiagonal form by Householder's method [2, p. 290]. The eigenvalues of the tridiagonal matrix are calculated by a variant of the QR algorithm with origin shifts [1]. Eigenvectors are calculated by accumulating the products of the transformations used in the Householder transformations and the QR steps, a procedure which guarantees a nearly orthonormal set of approximate eigenvectors.

At each QR step the eigenvalues of the \(2 \times 2\) submatrix in the lower right-hand corner are computed, and the one nearest the last diagonal element is distinguished. When these numbers settle down they are used as origin shifts.

The user may choose between absolute and relative convergence criteria. The former accepts the last diagonal element as an approximate eigenvalue when the last off-diagonal element is a small multiple (EPS) of the infinity norm of the matrix. The latter requires that the last off-diagonal be small compared to the last two diagonal elements. To avoid an excessive number of QR steps, an important consideration when eigenvectors are computed, the following guidelines should be followed. The convergence tolerance should not be smaller than the data warrants [2, p. 102]. The relative convergence criterion should be used only when there are eigenvalues, small compared to the elements of the matrix, that are nonetheless determined to high relative accuracy. Finally, when there is a wide disparity in the sizes of the elements of the matrix, the matrix should be arranged so that the smaller elements appear in the lower right hand corner.

The program will work with matrices whose elements very nearly underflow or overflow the range of a floating-point word. Some accuracy may be gained by accumulating inner products. The places where this should be done are signaled by the appearance of the variables SUM and SUM1.

References:
1. Stewart, G. W. Incorporating origin shifts into the symmetric QR algorithm for symmetric tridiagonal matrices. Comm. ACM 13 (June 1970), 365-367.
2. Wilkinson, J. H. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

\section*{Algorithm:}

SUBROUTINE SYMQR(A,D,E,KO,N,NA,EPS,ABSCNV,VEC,TRD,FAIL)
explanation of the parameters in the calling sequence.
A A DOUBLE DIMENSIONED ARRAY. IF THE MATRIX IS NOT INITIALLY TRIDIAGONAL, IT IS CONTAINED IN THE LOWER TRIANGLE OF A. IF EIGENVECTORS ARE NOT REQUES
THE LOWER TRIANGLF OF A IS DESTROYED WHILE THE THE LOWER TRIANGLF OF A IS DESTROYED WHILE THE
ELEMENTS ABOVE THF DIAGONAL ARE LEFY UNDISTURBED. IF EIGENVECTORS ARE REQUESTED, THEY ARE RETURNED IN THE COLUMNS OF A.

D A SINGLY SUBSCRIPTED ARRAY. IF THE MATRIX IS INITIALLY TRIDIAGONAL, D CONTAINS ITS DIAGONAL ELEMENTS. ON RETURN D CONTAINS THE EIGENVALUES OF THE MATRIX.
E A SINGLY SUBSCRIPTED ARRAY. IF THE MATRIX IS INITIALLY TRIDIAGONAL, E CONTAINS ITS OFF-DIAGONAL ELEMENTS. UPON RETURN E(I) CONTAINS THE NUMBER OF ITERATIONS REQUIRED TO COMPUTE THE APPROXIMATE EIGENVALUE D(I).
KO A REAL VARIABLE CONTAINING AN INITIAL ORIGIN SHIFT TO BE USED UNTIL THE COMPUTED SHIFTS SETTLE DOWN.
n an integer variable containing the order of the MATRIX.
NA AN INTEGER VARIABLE CONTAINING THE FIRST DIMENSION OF THE ARRAY A.

EPS A REAL VARIABLE CONTAINING A CONVERGENCE TOLERANCE.
ABSCNV A LOGICAL VARIABLF CONTAINING THE VALUE -TRUE. IF THE ARSOLUTE CONVERGENCE CRITERION IS TO BE USED or the value . False. If the relative criterion IS TO BE USED.

VEC A LOGICAL VARIABLE CONTAINING THE VALUE TRUE. IF EIGENVECTORS ARE TO BE COMPUTED AND RETURNED IN the array a and otherwise containing the value - FALSE..
trd a logical variablf containing thf value etrue. If thF MATRIX IS tRIDIAGONAL AND LOCATED IN THE ARRAYS D AND E AND OTHERWISE CONTAINING THE VALUE •FALSE..

FAIL AN INTEGER VARIABLE CONTAINING AN ERROR SIGNAL.
 accurate.

REAL
1A(NA, 1), D(1), E \(111, K O, D 1, D 2, X, E P S, S 2, C O N, N I N F, T E S T, C B, C C, C D\),
2C,S,TEMP,P,PP,Q,QQ,NORM,R,TITTER,SUM,SUMI,MAX
INTEGFR
IN,NM1,NM2,NA,FAIL,1,11,J,L,L1,LL,LLI,NL,NU,NUM1,SINCOS,RETURN
LOGICAL
1 ABSCNV, VEC.TRD,SHFT
TITTER \(=50\).
\(\begin{array}{ll}\text { NM1 } & =N-1 \\ \text { NM2 }\end{array}\)
NM2 \(=N-2\)
NINF \(=0\).
NINF \(=0\).
ASSIGN 500 TO SINCOS
SIGNAL ERROR IF N IS NOT POSITIVE.
IF(N.GT.O) GO TO I
FAIL \(=-1\)
RETURN

1 IF (N.GT.I) GO TO 5
IF(.NOT-TRD) \(D(1)=A(1,1)\)
IF(VEC) \(A(1,1)=1\).
FAIL \(=0\)
RETURN
if the matrix is tridiagonal, skip the reduction.
5 IF(TRD) GO TO 100
IF(N.EQ.2) GO TO 80
\(C\)
\(C\)
\(C\)
REDUCE THE MATRIX TO TRIDIAGONAL FORM BY HOUSEHCLDERS METHOD.
DO \(70 \mathrm{~L}=1\), NM2
\(L 1=L+1\)
MAX \(=0\) (L,L)
MAX \(10 \quad 1=1\)
0 MAX \(=\) AMAXI(MAX,ABS(A(I,L)))
IF(MAX.NE:O.) GO TO 13
IFIMAX•NE.
\(E(L)=0\).
\(A(L, L)=1\).
GO TO 70
```

 13 SUM = 0.
 no 17 I=Ll,N
 A(I,L) = A(I,LI/MAX
 17SIMM=SUM + A(IOL)**2
 52 = SUM
 S2 = SQRT(S2)
 IF(A,LIML) OLT}\cdot0.1S2=-S
 E(L) = -S2#MAX
 A(LI,L)=A(L1,L) + S2
 A(L.L)=S2*A(LI,L)
 SUM1 = 0.
 OO 5n l=Ll,N
 SUM =0.
 DO 20 J=LI,I
 20 SUM = SUM + A(1,J)*A(J,L)
 1F(I.EQ.NI GO TO 40
 11 = 1+1
 DO 30 J=II,N
 30 SUM = SUM + A(J,L)#A(N,I)
 40 E(I) = SUM/AIL,L)
 O SUM1 = SUM1 + A(I,L)*E(I)
 L!L
 DO 60 I=LI,N
 OO
 SO A(I,J)=A(I,J) - A(IOL)*E(J) - A(J,L)*E(I)
 70 CONTINUE
 O D(NM1) = A(NMI,NM1)
 D(N)=A(N,N)
 F(NM1)}=A(N,NM1
 C IF EIGENvECTORS ARE REQUIRED, INITIALIZE A.
C 100 IFI.NOT.VECI GO TO 180
C C IF THE MATRIX WAS tRIDIAGONAL, SEt A EQUAL TO tME IDENTITY MATRIX.
IFI.NOT.TRD.AND. N.NE.2) GO TO 130
DO 120 I=1,N
D0 1100J=1,N
110 AlI,J)=0.
AlI,I)=1
GO TO 180
C
C IF THE MATRIX WAS NOT TRIDIAGONAL, MULTIPLY OUT THE
C TRANSFORMATIONS OBTAINED IN THE HOUSEHOLDER REOUCTION.
130 A(N,N) = 1.
A(NMM),NM1)=10
A(NM1,N)}=0
DO 170 L=1,NM2
DO 170 L=1,NMZ
LL1=LL+1
OO 140 I=LLIN
DOM}=0
DO 135 J=LLINN
135 SUM = SUM + A(J.LL)*A(J,1)
140 A(LL,1)= SUM/A(LL,LL)
DO 150 J=LLIN
150 A(I,J) =A(I,J) - A(I,LL)*A(LL,J)
DO 160 I=LLI,N
A(I,LL)}=00
A(1,LL)}=0.0
170 A(LL,LL) = 1.
IF AN ABSOLUTE CONVERGENCE CRITERION IS REQUESTED
(ABSCNV=.TRUE.), COMPUTE THE INFINITY NORM OF THE MATRIX.
180 1F(.NOT.ABSCNV) GO TO 200
NINF=AMAXI(ABS(D(1))+ABS(E(1)),ABS(D(N))+ABS(E(NM1)))
IF(N.EQ.2) GO TO 200
NO 190 I=2,NMI
190 NINF = AMAXI(NINF,ABS(D(I))+ABS(F(I))+ABS(E(I-1)))
C
START THE QR ITERATION.
200 NU =N
NUMM1=N-1
SHFT= =FALSE.
K1 = KO
TEST =NINF*EPS
E(N)=0.
C CHECK FOR CONVERGENCE ANO LOCATE THE SUBMATRIX IN WHICH THE
CHECK FOR CONVERGENCE ANO LOC
210 DO 220 NNL=1,NUM1
IF(.NOT.ABSCNV) TEST = EPS*AMIN1(ABS(D(NL)),ABS(D(NL++1)))
JF(ABSIE(NLI) .LE. TEST) GO TO 230
220 CONTINUE
GO TO 240
230 E(NL)=0.
NL (NL NL+1. NE. NU) GO TO 240
IFINUMI -EQ. 1) RETURN
IF(E(200).NE.O.) PRINT 2000,(D(1),E(1),I=1,NU)
2OOO FORMATE1HOIOE12.4/(1H 10E12.4))
NUI = NUM1
NUM1 = NU-1
GO TO 210
240 E(NU) EE(NU)+FLOAT(NUM1-NL)
IF(1. EQ. 1.) GO TO 250
IFIO. EQ. 1.1 GO TO 250
FAIL = NU
RFTURN
c calculate the shift.
DO 60 I=LI,N
110
120 A(I,I)=1
c
NL = NUMI-NNL+1
NL}=NL+

```
```

 750 CB = (D(NUM1)-D(N())1/2.
 MAX = AMAXI(ABS(CB),ABS(E(NUM1)))
 CB}= CB/MA
 CC = (E(NUM1)/MAX)**2
 CC = (E(NUM1)/MAX)**2
 IFICB.NE. O.1 CD = SIGNICD,CEI)
 K2 = D(NU) - MAX*CC//CB+CD)
 IFISHFT) GO TO 270
 IF(SHFT) GO TO 270 .5*ABS(K2)) GO TO 260
 k1 = k2
 k=kO
 GO TO 300
 26O SHFT = TRUE.
 270 K=K2
 c
PERFORM ONE QR STEP WITH SHIFT K ON ROWS AND COLUMNS
NL THROUGH NU
300 IF(E(200).NE.O. .AND. K.LE.1.E-14*ABSID(NL))) K=0.
P=D(NL) - K
P=D(NL)
O=E(NL)
ASSIGN 310 TO RETURN
ASSIGN 310 TO RETURN
GO TO SINCOS.(500)
310 DO 380 I=NL,NUM1
C
If requIrED, ROTATE THE EIGENVECTORS.
IF(.NOT.VEC) GO TO 330
DO 320 J=1,N (JMP = FAlJ,I) + S*A(J,1+1)
A(J,I+1)= =-S*A(J,I) + (*A(J,I+1)
320 A(J,I) = TEMP
~ロ○
PERFORM THE SIMILARITY TRANSFORMATION AND CALCULATE THE NEXT
ROTATION.
330 D(1) = C*D(I) + S*E(1)
TEMP=C\#E(I) +S*D(I+1)
D(I+1)= -S*E(I) +CND(I+1)
F(1)=-S*K
D(I) = CND(I) + S*TEMP
F(1) = C*D(I) + S*TEMP
[F(I .EQ. NUM1) GO TO 380
IF(ABS(S).GT. ABS(C)) GO TO 350
IF(ABS(S) GGT. ABS(C)I GO T
R=S/C
P=D(1+1)-K
A=(\#F(I+1)
ASSIGN 340 TO RETURN
GO TO SINCOS. RETURN
GO TO SINCOS. (500)
40 E(1) = R*NORM
E(1)=R*NO
F(I+1) = 0
350PP=C*E(I) + S*D(I+1)
O=S*E(1+1)
M
E(I+1)=C*P/S +K
E(I+1)=(*E(I+1)
ASSIGN 360 TO RETURN
M, RETURN
GO TO SINCOS,(50N)
36O EIII = NORM
360 EIII = NO
TEMP \& C*E(NUMI) + S*D(NU)
TEMP * C*E(NUM1) + S*D(NU)
D(NU)=-S*E(NUM1) + C*D(NU)
D(NU)=-S*EINU
EINUM1)=T
C
*
C
INTERNAL PROCEDURE TO CALCULATE THE ROTATION CORRESPONDING TC
INTERNAL PROCEDURE
C 500 PP = ABS(P)
500 PP = ABS(P)
OQ =ABS(D)
ON =ABS(O) PP) GO TO 510
NORM = PP*SORT(1. + (QQ/PP)**2)
NORM = PP\#SORTI1. + (QO/P
GO TO 520
IF(QQ -EQ. OP) GN TO 530
520 NORM = OQ*S/NORM
S = O/NORM
SO O/NORM (O RETURN, (310,340,360)
530C
NORM=O.
GO TO RETURN, (31n,340,360)
END

```

REMARK ON ALGORITHM 384 [F2]
EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX [G. W. Stewart, Comm. ACM 6 (June 1970), 369-371]
G. W. Stewart

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712
KEY WORDS AND PHRASES: real symmetric matrix, eigenvalues, eigenvectors, \(Q R\) algorithm
CR CATEGORIES: 5.14

The following changes should be made in the subroutine \(S Y M Q R\). Change the statement:

REAL
1A(NA,1),D(1),E(1),K0,D1,D2, ...
to:
REAL
1 A (NA,1), D(1), E(1),K0,K1,K2,...
After statement number 230 delete the statements:
IF (E (200) . NE.0.) PRINT 2000, (D (I) , E (I) ,I = 1,NU)
2000 FORMAT (1H010E12.4/(1H 10E12.4))
Replace the statements:
\(240 \mathrm{E}(\mathrm{NU})=\mathrm{E}(\mathrm{NU})+\mathrm{FLOAT}(\mathrm{NUM} 1-\mathrm{NL})\)
IF (1. .EQ. 1.) GO TO 250
IF (0. .EQ. 1.) GO TO 250
by:
\(240 \mathrm{E}(\mathrm{NU})=\mathrm{E}(\mathrm{NU})+1\).
IF (E(NU) .LE. TITTER) GO TO 250
Replace the statements:
300 IF (E (200) .NE.0. .AND. K.LE.1.E-14*ABS(D (NL)))K = 0 . \(\mathbf{P}=\mathbf{D}(\mathrm{NL})-K\)
by:
\(300 \mathbf{P}=\mathrm{D}(\mathrm{NL})-K\)

\section*{ALGORITHM 385}

EXPONENTIAL INTEGRAL \(E_{i}(x)\) [S13]
Kathleen A. Paciorek* [Recd. 16 May 1969 and 11 March 1970]
Argonne National Laboratory, Argonne, IL 60439
* Work performed under the auspices of the US Atomic Energy Commission.

KEY WORDS AND PHRASES: exponential integral, special functions, rational Chebyshev approximation
\(C R_{\mathbf{A}}\) CATEGORIES: 5.12

\section*{Description:}

The classical exponential integral is defined by
\[
E_{i}(x) \equiv \int_{-\infty}^{x} \frac{e^{t}}{t} d t=-\int_{-x}^{\infty} \frac{e^{-t}}{t} d t, \quad x>0
\]
where the integral is to be interpreted as the Cauchy principal value. Except for the sign, it represents the natural extension of the function
\[
E_{1}(z) \equiv \int_{z}^{\infty} \frac{e^{-t}}{t} d t=-E_{i}(-z), \quad|\arg z|<\pi
\]
to the negative real axis.
The rational approximations and corresponding intervals used in this routine are:
\[
\begin{aligned}
E_{l m}(x) & =\frac{e^{x}}{x}\left[1-\frac{1}{x} R_{l m}(-1 / x)\right], & & x \leq-4 \\
& =-e^{x} R_{l m}(-1 / x), & & -4 \leq x \leq-1 \\
& =\ln (-x)-R_{l m}(-x), & & -1 \leq x<0 \\
& =\ln \left(x / x_{0}\right)+\left(x-x_{0}\right) R_{l m}(x), & & 0<x \leq 6 \\
& =\frac{e^{x}}{x} R_{l m}(1 / x), & & 6 \leq x \leq 12,12 \leq x \leq 24 \\
& =\frac{e^{x}}{x}\left[1+\frac{1}{x} R_{l m}(1 / x)\right], & & 24 \leq x
\end{aligned}
\]
where the \(R_{l m}(t)\) are rational functions of degree \(l\) in the numerator and \(m\) in the denominator, and
\[
x_{0}=.372507410781366634461991866580
\]
is the zero of \(E_{i}(x)\). See [2,3] for the derivation of these approximations.

In several of the ranges, it was necessary to express the rational functions either as \(J\)-fractions or as ratios of finite sums of Chebyshev polynomials, since the original forms were found to be poorly conditioned, i.e. subject to cancellation errors (subtraction of nearly equal quantities), large roundoff errors, etc. The approximations chosen for this routine have the following maximum relative errors.
\begin{tabular}{lc}
\multicolumn{1}{c}{ Range } & \begin{tabular}{c} 
Maximum \\
Relative Error
\end{tabular} \\
\(x\) less than -4 & \(1.32 \mathrm{D}-19\) \\
\((-4,-1)\) & \(6.33 \mathrm{D}-20\) \\
\((-1,0)\) & \(1.12 \mathrm{D}-21\) \\
\((0,6)\) & \(1.24 \mathrm{D}-18\) \\
\((6,12)\) & \(2.35 \mathrm{D}-18\) \\
\((12,24)\) & \(6.0 \mathrm{D}-20\) \\
\(x\) greater than 24 & \(7.85 \mathrm{D}-19\)
\end{tabular}

Different approximations would naturally be required for use on computers with different word lengths. See [2, 3].

Test results. This routine was tested on an IBM System 360 model 75 , where truncation is approximately \(7.0 \mathrm{D}-18\), usual for long normalization form. However, since this is a base 16 machine, truncation may be 1.1D-16, maximum for short normalization. The testing procedure is described in [1]. The maximum relative errors (MRE) and root mean square relative errors (RMS) follow. (Note-Argonne National Laboratory versions of DEXP and DLOG, rather than the IBM subroutine library routines, were used in these tests.)
\begin{tabular}{lcc}
\multicolumn{1}{c}{ Range } & \(M R E\) & \(R M S\) \\
\((-150,-4)\) & \(4.44 \mathrm{D}-16\) & \(1.52 \mathrm{D}-16\) \\
\((-4,-1)\) & \(6.02 \mathrm{D}-16\) & \(2.50 \mathrm{D}-16\) \\
\((-1,0)\) & \(4.41 \mathrm{D}-16\) & \(1.08 \mathrm{D}-16\) \\
\((0,6)\) & \(6.68 \mathrm{D}-16\) & \(2.71 \mathrm{D}-16\) \\
\((6,12)\) & \(7.45 \mathrm{D}-16\) & \(3.58 \mathrm{D}-16\) \\
\((12,24)\) & \(8.18 \mathrm{D}-16\) & \(2.56 \mathrm{D}-16\) \\
\((24,100)\) & \(3.88 \mathrm{D}-16\) & \(1.36 \mathrm{D}-16\)
\end{tabular}

On the IBM System 360 model 75 the average time per call, excluding the jump from the calling program, was 245 microseconds. Using small perturbations of the constant coefficients in the numerators of the rational functions, in order to compensate for the biased arithmetic on the IBM System 360, it is possible to reduce the MRE by an average of 25 percent and the RMS by an average of 45 percent.

Machine dependent features. Since \(E_{i}(0)=-\infty\), an argument of zero results in a function value which is the smallest negative floating point number on the IBM. System 360. Both the Argonne version of DEXP and that of the IBM System 360 Subroutine Library treat an argument greater than 174.673 as an error and return the largest possible floating point number. Since DEXP(X) is used for \(X\) greater than 24 , this exponential integral routine returns the largest possible floating point number on the IBM System 360 whenever the argument is greater than 174.673, eliminating the call to the DEXP routine. In order to maintain good relative accuracy in the vicinity of \(x_{0}\), the quantity \(\left(x-x_{0}\right)\) should be computed to higher than machine precision to preserve the low order bits of \(x_{0}\). This can be readily accomplished by breaking \(x_{0}\) into two parts, \(x_{1}\) and \(x_{2}\), such that, to the precision desired, \(x_{0}=x_{1}+x_{2}\) and the floating point exponent on \(x_{2}\) is much less than that of \(x_{1}\). See [2]. Examining the hexadecimal representation \(x_{0}=\).5F5CA54AD2D7F0F264C3 (base 16), we see that for the IBM System 360 we might, and in fact this routine does, use \(x_{1}=.5 \mathrm{~F} 5 \mathrm{CA} 54 \mathrm{AD} 2\) (base 16) and \(x_{2}=.0000000000 \mathrm{D} 7 \mathrm{~F} 0 \mathrm{~F} 264 \mathrm{C} 3\) (base 16) or, \(x_{1}=409576229586 . / 2^{* *} 40\) (base 10 ), in a form which will avoid decimal to hexadecimal conversion errors and \(x_{2}=\) \(.7671772501993940 \mathrm{D}-12\) (base 10 ). Then, \(\left(x-x_{0}\right)\) is computed as \(\left(x-x_{0}\right)=\left(x-x_{1}\right)-x_{2}\). Additional precautions will have to be taken to compute \(\ln \left(x / x_{0}\right)\) for \(x\) near \(x_{0}\). We use a low order rational approximation to \(\ln \left(x / x_{0}\right)=\log (1+y)\), for \(|y|<.1\), where \(y=\left(x-x_{0}\right) / x_{0}\). However, a few terms in the Taylor series for \(\ln (1+y)\) will usually suffice.

\section*{References:}
1. Clark, N. A., Cody, W. J., Hillstrom, K. E., and Thieleker, E. A. Performance statistics of the FORTRAN IV(H) library for the IBM System/360. Argonne National Laboratory Rep. ANL-7321, May 1967.
2. Cody, W. J., and Thacher, Henry C., Jr. Chebyshev approximations for the exponential integral \(E_{i}(x)\). Math. Comp. 23 (Apr. 1969), 289-303.
3. Cody, W. J., and Thacher, Hienry C., Jr. Rational Cheby-
shev approximations for the exponential integral \(E_{1}(x)\). Math. Comp. 22 (July 1968), 641-649.
4. Rice, J. R. On the conditioning of polynomial and rational forms. Numer. Math. 7 (1965), 426-435.

\section*{Algorithm:}

FUNCTION DE: ( \((x 1)\)
C AN EXPONENTIAL INTEGRAL ROUTINE
C FOR X GREATER THAN O, THE EXPONENTIAL INTEGRAL, EI, IS DEFINED BY
C EI \((X)=\) INTEGRAL (EXP \((T) / T\) DT), FROM \(T=-I N F I N I T Y\) TO \(T=X\)
C WHERE THE INTEGRAL IS TO BE INTERPRETED AS THE CAUCHY PRINCIPAL
C VALUE. FOR \(X\) LESS THAN O, EI \((x)=-E 1(-x)\), WHERE
\(C\) EI(Z)=INTEGRAL (EXP (-T)/T OT) FROM \(T=Z\) TO \(T=I N F I N I T Y\).
DOUBLE PRECISION DEI,XI, X,XO,XMXO,Y,R,DENM,FRAC,W,A,B,C,D,E,
\(X F, P O, P_{1}, P_{2}, P_{3}, P_{4}, Q 0, Q 1, Q 2,03, Q 4, P X, O X, T\), SUMP, SUMO
DIMENSION P1(9),Q1(9),P2(9),Q2(8),P3(10),03(9),PX(10), QX(10), XP4(10), Q4(9), PO(6), Q0(6)
DATA PO/1.DO,2.23069937666899751DO, 1.7027705960680929500', \(\times 5.104992796232194000-1 ; \quad 4.890892537892791540-2\),
\(\times 3.654622241323684290-41\)
DATA \(0011.00,2.7306993766689975100,2.7347869510692583600\), \(\mathrm{x} 1.2176596296015153200, \quad 2.28817933990526412 \mathrm{D}-1\),
X1.31114151194977706D-21
DATA P1/5.99569946892370010D9, -2.5038999488635,1362D8,
\(\begin{array}{ll}\times 7.0592160959005674708, & -3.3689956420159190106, \\ \times 8.9868329164375831306, & 7.3714779018465744304,\end{array}\)
\(\times 8.9868329164375831306,7.3714779018465744304, \quad 2.8544688181364701\)
\(\begin{array}{ccc}\text { X504, } 4.1262666724891193902, ~ & 1.1063954724163958001 / \prime \\ \text { DATA } 01 / 2.5592649760761635009, & -2.7967335112298459109\end{array}\)
\(\begin{aligned} \text { XB.0282778294695650708, } & -1.4498071439302388308, \quad 1.771583080107998\end{aligned}\)
\(\times 8407,-1.4957545720255921806,8.5377100018074909704,-3.0252368\) \(\times 223822741003\), 5.1257812501/
DATA P2/9.98957666516551704D-1, 5.7311670574450801800,
\(\times 4.1810242256285662200\), \(5.8865824075328111100,-1.941329675144307\) X02D1, 7.8947220929445722100 , \(2.3273023383903914101, ~-3.67783113\) \(\times 47831145801, \quad-2.46940983448361265001\)
DATA D2/1.1462525324901619100, -1.99149600231235164 D2,
\(\times 3.4136521252437553902, \quad 5.2316556873455861401, \quad 3.1 .727948925436932\) X802, \(\quad-8.3876708418964070700,9.6540521742928030302, \quad 2.639830073\) \(\times 1802459300 /\)
DATA P3/9.999933106160568740-1, -1.8450862323912786700 , \(\begin{array}{ll}\times 2.6525758184527998201, & 2.4954877304020594401, \\ x-3.3236125793439622801, & -9.13483569999874255 D\end{array}\)
\(\begin{array}{ll}x-3.32361257934396228 \mathrm{DI}, & -9.13483569999874255 \mathrm{D}-1, \\ \mathrm{x}-2.10574079954804045 \mathrm{Dl}, & -1.00064191398928483 \mathrm{D},\end{array}\)
\(x-1.8600921217264375801, \quad-1.64772117246346314001\)
\(X-1.8600921211264375801\),
DATA Q3/1.0015338520453427000, \(\quad-1.09355619539109124 D 1, ~\)
\(\times 1.9910044708177424702, \quad 1.1928324239686010103\),
\(\times 4.42941317833792840 \mathrm{D1}, \quad 2.53881931563070803 \mathrm{D} 2\),
\(\times 5.9949323256674073601, \quad 6.4038004053524155501\),
\(\times 5.9949323256617073601\),
DATA P4/1.0000000000000048600, -3.0000000032098126600 , \(x-5.0000664041313100200, \quad-7.0681097789502935900\) \(x-1.5285662363692963701, \quad-7.6314770162025363100\), \(\begin{array}{ll}x-2.7979852862430538901, & -1.81949664929868906 \mathrm{D} 1, \\ x-2.2312767077763241002, & 1.75338801265465972021\end{array}\)
\(\begin{array}{ll}X-2.2312767077763241002, & 1.7533880126546597202 / \\ \text { DATA Q4/1.9999999999904810400, } & -2.9999989404032496000\end{array}\) \(x-7.9924359577633974100,-1.2018776354715474301\), X7.0483184718042467601, \(\quad 1.1717922050208645502\), \(\times 1.3779039023574799902, \quad 3.9727710910041451800\),
 \(\begin{array}{ll}\text { X } 1.298492329273732340-1, & 2.406813556839774130-2, \\ \times 1 . & 320843092096093710-3, \\ 6.577393997532645010-5 ;\end{array}\)
DATA B/1.000,4.25899193811589822D-1, \(7.9779471841022822 \mathrm{D}-2\), \(\times 8.30208476098771677 \mathrm{D}-3, \quad 4.86427138393016416 \mathrm{D}-4\), \(\times 8.30208476098771677 \mathrm{D}-3\),
\(\times 1.30655195822848878 \mathrm{D}-5\);
XI.306 C/8.67745954838443744D-8, \(9.99995519301390302 \mathrm{D}-1\),

X1.18483105554945844D1, 4.55930644253389823D1,
\(\times 6.9927945129100302301,4.25202034768840779\) D1, 8.836718088038439390 \(\times 0,4.013776649406647200-1 /\)
DATA D/1.DO, 1.2848193537915665001, 5.64433569561803199D1,
X1.0664518376991388302, 8.97311097125289802D1, 3.149718491704407500
x1, 3.7955900376212224300, \(9.088045691888692190-2 /\)
DATA E/-9.999999999999734140-1, \(-\mathbf{- 3 . 4 4 0 6 1 9 9 5 0 0 6 6 8 4 8 9 5 D 1 , ~}\)
\(x-4.2753267120198853902,-2.3960194324749054003\),
\(x-6.16885210055476351 D 3,-6.5760969874802117903\),
\(x-2.1060773714263328903,-1.4899084997294816901 /\)
DATA F/1.OO, 3.64061995006459804D1,4.943450702099903645D2,
\(\times 3.1902723748954330403,1.0337075308584097704\)
\(\times 1.6324145355778350304,1.1149775287109662004\)
x2.3781389102160221031
㢄
\(x=x 1\)
\(1 F i x\)
1 IF \(1 \times\).LE. O.ODO) GO TO 100
IF(X.GE..6.DO) GO TO 40
\(C X I N \quad(0,6)\)
\(\mathrm{T}=\mathrm{T} / 3.000-2.000\)
\(\operatorname{P\times (10)}=0.000\)
\(Q \times(10)=0.000\)
\(\mathrm{Px}(9)=\mathrm{Pl}(9)\)
\(0 \times(9)=Q 1(9)\)
THE RATIONAL FUNCTION IS EXPRESSED AS A RATIO OF FINITE SUMS OF
SHIFTED CHEBYSHEV POLYNOMIALS AND IS EVALUATED BY NOTING THA
C \(T(X)=T(2 x-1)\) AND USING THE CLENSHAW-RICE ALGORITHM FOUND IN
C REFERENCE (4).
DO 10
\(1=10-L\)
\(\mathrm{P} \times(1)=\)
P(I+1)-PX(I+2)+P1(I)
\(0 \quad \operatorname{QX(1)}=T * Q \times(1+1)-Q \times(I+2)+Q 1(1)\)
\(R=(.5 D 0 * T * P \times(2)-P X(3)+P 1(1)) /(.500 * T * Q \times(2)-Q \times(3)+Q 1(1))\)
c \((x-x 0)=\left(x-x_{1}\right)-x_{2}, \quad\) WHERE \(x_{1}=409576229586 . / 2 * * 40\) AND
C \(\mathrm{X} 2=-.76717725019939400-12\).
XMXO \(=(X-409576229586 . D 0 / 1099511627776.00)-.7671772501993940 D-12\)
IF(DABS \((X M \times O)\)-LT. .O37DO) GO TO 15
DEI \(=D L O G(X / X O)+X M \times O * R\)
RETURN
\(15 \mathrm{Y}=\mathrm{XMXO} / \mathrm{XO}\)

C A RATIONAL APPROXIMATION TO LOG \((x / X 0)=\operatorname{LOG}(1+Y)\), WHERE \(Y=(x-x 0) / x 0\)
\(C\) AND DABS (Y) IS LESS THAN - 1, THAT IS FOR DABS (X-X0) LESS THAN . 037 SUMP \(=((((P O(6) * Y+P O(5)) * Y+P O(4)) * Y+P O(3)) * Y+P O(2)) * Y+P O(1)\) SUMQ \(=((((Q O(6) * Y+Q O(5)) * Y+Q O(4)) * Y+Q 0(3)) * Y+Q O(2)) * Y+Q 0(1)\) DEI \(=(\) SUMP \(/(\) SUMQ \(\# X 0)+R) * X M \times 0\) RETURN
\(C \times I N(6,12)\)
40 DENM=P2(9)+X
FRAC \(=\) Q2 \((8) /\) DENM
C THE RATIONAL FUNCTION IS EXPRESSED AS A J-FRACTION. Do \(25 \quad J=2\), 8 \(1=9-J\)
DENM \(=P 2(I+1)+X+F R A C\)
25 FRAC \(=Q 2(1) / D E N M\) \(D E I=D E X P(x) *((P 2(1)+F R A C) / X)\) RETURN
\({ }^{60}\) IF (X.GE. 24. DO \()\) GO TO 80
C \(X\) IN \((12,24)\) FRAC=Q319) DENM
C THE RATIONAL FUNCTION IS EXPRESSED AS A J-FRACTION. DO \(26 \mathrm{~J}=2,9\) \(1=10-\mathrm{J}\)
OENM \(=P 3(I+1)+X+F R A C\)
\(26 \mathrm{FRAC}=Q 3(1) / D E N M\) OEI \(=\) DEX
RETURN
C \(X\) GREATER THAN 24
80 IF(X.LE. 174.67300\()\) GO TO 90
C \(X\) IS GREATER THAN 174.673 AND DEI IS SET TO INFINITY ON IBM S/360 DEI = 7.2D75
RETURN
\(90 \begin{aligned} & Y=1.0 D 0 / X \\ & \text { OENM }=P 4(10)+\end{aligned}\) OENM \(=P 4(10)+X\)
FRAC \(=04(9) / D E N M\)
C THE RATIONAL FUNCTION IS EXPRESSED AS A J-FRACTION. DO \(28 \mathrm{~J}=2,9\) DO 28
\(I=10-J\) DENM \(=P 4(1+1)+X+F\)
28 FRAC=Q4(I)/DENM
DEI \(=\operatorname{DEXP}(X) *(Y+Y * Y *(P 4(1)+F R A C))\) RETURN
100 IF(X.NE. O.DO) GO TO 101
\(C \mathrm{X}=0\) AND DEI IS SET TO -INFINITY ON IBM S/360 DEI \(=-7.2075\) PRINT 500
500 FORMAT(57HODEI CALLED WITH A ZERO ARGUMENT, RESULT SET TO -INFINIT \(X Y)\)
\(01 \begin{aligned} & \text { RETURN } \\ & Y=-x\end{aligned}\)
\(101 \quad \mathrm{Y}=-\mathrm{X}\)
\(10 \mathrm{~W}=1.000 / \mathrm{Y}\) IF(Y.GT.4.000) GO TO 300 IF(Y.GT.1.ODO) GO TO 200
C \(X\) IN
\(X((()(B(6) * Y+B(5)) * Y+B(4)) * Y+B(3)) * Y+B(2)) * Y+B(1))\)
RETURN
200 DEI \(=-\operatorname{DEXP}(-Y) *((()(()(C(8) * W+C(7)) * W+C(6)) * W+C(5)) * W+C(4)) * W+C(3))\)
C \(X \operatorname{IN}(-4,-1)\)
\(X * W+C(2)) * W+C(1)) /((1(1(0(8) * W+D(7)) * W+D(6)) * W+D(5)) * W+D(4)) * W+\) XD(3))*W+D(2))*W+D(1)) RETURN
C \(X\) LESS THAN -4
300 DEI \(=-\operatorname{DEXP}(-Y) *(W *(1: 000+W *(()((1(E(8) * W+E(7)) * W+E(6)) * W+E(5)) * W+\) \(X E(4)) * W+E(3)) * W+E(2)) * W+E(1)) /(1((((F(8) * W+F(7)) * W+F(6)) * W+F(5))\) \(X * W+F(4)) * W+F(3)) * W+F(2)) * W+F(1))\) RETURN END

CERTIFICATION OF ALGORITHM 385 [S13]
EXPONENTIAL INTEGRAL \(E i(x)\) (Kathleen A.
Paciorek, Comm. ACM 13 (July 1970) 444-445)
Edward W. NG* (Recd. 2 Jan. 1970)
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91103
* This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract NAS7-100, sponsored by the National Aeronautics and Space Administration.

KEY WORDS AND PHRASES: exponential integral, special functions, rational Chebyshev approximation
\(C R\) CATEGORIES: 5.12

General discussion. This algorithm computes, for \(x \geq 0\), \(E i(x)=f_{-\infty}^{x} \frac{e^{t}}{t} d t\) and \(-E_{1}(x)=E i(-x)\). It is a straightforward implementation of approximations produced by Cody and Thacher, the references as given in the algorithm. It fills a gap left by previously published algorithms, e.g. Clenshaw et al. [1] and IBMSSP [2], in that it computes \(E i(x)\) for all values of real \(x\) within computer restrictions and that it is done with comparably high precision. Moreover, it is based on more efficient approximations than those used in the algorithms mentioned above. However, it is inferior in one aspect to Clenshaw et al. in that the type of approximations used makes it difficult for implementing an algorithm of variable precision, a feature included in Clenshaw et al.

The documentation and design of this algorithm are very good with clear reference to the method used, the amount and result of testing, the machine dependent features, etc. A minor defect is that the data are not identified by comments, probably because they can be recognized readily in the main body of the code.

Testing. This algorithm was compiled and executed without any modification on a UNIVAC 1108 computer. It was tested against a reference subprogram QE1EI which computes \(E i(x)\) in extended precision using a package of subroutines in 70-bit (about 21 decimal) arithmetic, written by Dr. C. L. Lawson and associates at the Jet Propulsion Laboratory. The subprogram QE1EI, written by the present author, computes \(E i(x)\) from truncated Chebyshev series for negative \(x\) [3], and from Taylor and asymptotic expansions for positive \(x\) [4, eqs. (2.1), (2.2), (2.3)]. QE1EI itself has been tested for some overlap ranges of values of \(x\) where more than one computational method is applicable and is believed to be correct to at least 19 significant decimal digits (except when \(x\) is very close to the zero of \(E i, x \approx 0.3725\) where relative accuracy is poor).

For the seven intervals of \(x\) as indicated in this algorithm, tests were made of the algorithm against QE1EI which was considered as producing the "correct" function values. Each interval was partitioned into 1000 subintervals of equal length and in each subinterval one test value of \(x\) was selected using a uniform pseudorandom number generator. The results of the tests are as follows:
\begin{tabular}{lcc}
\(\quad\) Interval of \(x\) & \begin{tabular}{c} 
Maximum \\
Relative Error
\end{tabular} & \begin{tabular}{c} 
RMS Relative \\
Error
\end{tabular} \\
{\([-150,-4]\)} & \(2.2 \mathrm{D}-16\) & \(5.1 \mathrm{D}-17\) \\
{\([-4,-1]\)} & \(7.5 \mathrm{D}-17\) & \(1.2 \mathrm{D}-17\) \\
{\([-1,0]\)} & \(8.7 \mathrm{D}-18\) & \(1.4 \mathrm{D}-18\) \\
{\([0,0.5]\)} & \(1.8 \mathrm{D}-16 *\) & \(3.2 \mathrm{D}-17 *\) \\
{\([0.5,6]\)} & \(5.5 \mathrm{D}-17\) & \(1.0 \mathrm{D}-17\) \\
{\([6,12]\)} & \(1.6 \mathrm{D}-17\) & \(3.0 \mathrm{D}-18\) \\
{\([12,24]\)} & \(2.9 \mathrm{D}-17\) & \(7.1 \mathrm{D}-18\) \\
{\([24,100]\)} & \(8.9 \mathrm{D}-17\) & \(1.9 \mathrm{D}-17\)
\end{tabular}

The errors marked by * are adjusted to exclude the subinterval [ \(0.37245,0.37255\) ] in which QE1EI does not have sufficient relative accuracy to give meaningful comparison with this algorithm, which is coded in such a way as to retain good relative accuracy near \(x_{0} \approx 0.3725 \cdots\). In fact, \(x_{0}\) is given in the data as two constants with a total accuracy of 79 bits, so that on the computer with an \(N\)-bit mantissa, this algorithm produces good relative accuracy for \(\left|x-x_{0}\right|>2^{N-79}\). However, the additional relative accuracy thus obtained is based on the assumption that \(x\) is exactly zero in the \((N+1)\) th through 79th bits-an assumption not too realistic in most applications.

We observe that the errors found are smaller than those obtained by the author of the algorithm. This is due to smaller
truncation error for long precision on the UNIVAC computer (~1.D-18).

In the range \(\left|x-x_{0}\right|<0.37\), the author supplied an approximation for \(\log \left(x / x_{0}\right)\). Such approximation is in the form of a 5-5 rational function (i.e. a fifth degree polynomial divided by another fifth degree polynomial). It should be noted that there exists in the literature a 2-2 rational approximation suitable for the same purpose. (See [5, p. 111, Index 2720].)

The two error exits occur for \(\operatorname{Ei}(0)=-\infty\), and \(\operatorname{Ei}(x>\) \(174.673) \approx \infty\). These were tested and return \(\pm 7.2 \mathrm{D} 75\) which are approximately the smallest negative or largest positive floating numbers for the IBM 360 . No timing test was performed owing to the apparent lack of reliability of time accounting on the UNIVAC 1108 EXEC-8 system used here.

I am indebted to C. L. Lawson and W. J. Cody for helpful discussions.
References:
1. Clenshaw, C. W., Miller, G. F., and Woodger, M. Algorithms for special functions I. Numer. Math. 4 (1963), 403-419.
2. IBM System/ 360 Scientific Subroutine Package (360A-CM03X) Version III Programmer's Manual. 1968, pp. 368-369.
3. Clenshaw, C. W. Chebyshev series for mathematical functions. NPL Math. Tables, Vol. 5, Dept. of Scien. and Indus. Res., H.M.S.O., London, 1962.
4. Cody, W. J., and Thacher, H. C., Jr. Chebyshev approximations for the exponential integral Ei(x). Math. Comp. 23 (Apr. 1969), 289-303.
5. Hart, et al. Computer Approximations. Wiley, New York, 1968.

\section*{REMARK ON ALGORITHM 385 [S13]}

EXPONENTIAL INTEGRAL \(E i(x)\) [Kathleen A. Paciorek, Comm. ACM 13 (July 1970), 446-447]
K. A. Redish (Recd. 3 Aug. 1970)

Department of Applied Mathematics, Hamilton, McMaster University, Ontario, Canada
KEYWORDS AND PHRASES: ANSI Fortran standard
\(C R\) CATEGORIES: 4.0, 4.22
(a) This algorithm does not conform to the standard in that the DATA statements contain array names. Section 7.2.2 of ANSI Fortran standard [Comm. ACM 7 (Oct. 1964), 590-625] (1) states that the list(s) of a data statement contain "names of variables and array elements." It is therefore necessary to list the elements singly. (A more readable layout can be obtained in one of the following ways:

\section*{DATA}
\(1 \mathrm{~A}(1) /-5.77215664901532863 \mathrm{D}-1 / \mathrm{A}(2) / 7.54164313663016620 \mathrm{D}-1 /\),
\(2 \mathrm{~A}(3) / 1.29849232927373234 \mathrm{D}-1 /, \mathrm{A}(4) / 2.40681355683977413 \mathrm{D}-2 /\),
\(3 \mathrm{~A}(5) / 1.32084309209609371 \mathrm{D}-3 /, \mathrm{A}(6) / 6.57739399753264501 \mathrm{D}-5 /\)
or
\begin{tabular}{|c|c|c|c|}
\hline & DATA & A A(1) & A (2) \\
\hline 1 & & \(-5.77215664901532863 \mathrm{D}-1\) & 7.54164313663016620D-1/, \\
\hline 2 & & A (3) & A (4) \\
\hline 3 & 7 & \(1.29849232927373234 \mathrm{D}-1\) & 2.40681355683977413D-2/, \\
\hline 4 & & A(5) & A (6) \\
\hline 5 & / & \(1.32084309209609371 \mathrm{D}-3\) & 8.57739399753264501D-5/ \\
\hline
\end{tabular}

The latter example might well be broken into three separate data statements.)
(b) In the discussion of Machine dependent features it is noted, in particular, that references are made to the largest positive real number and (in effect) its natural logarithm. These references are buried in the code, at the statement numbered 80,2 lines later, and 2 lines after the statement numbered 100 . I feel that these should, at least, be defined by DATA statements at the head of the program. In fact, perhaps the time is now ripe for standard names and definitions of these and other environmental entities.

Remark on Algorithm 385 [S13]
Exponential Integral \(E i(x)\)
[Kathleen Paciorek, Comm. ACM 13 (July 1970), 446-447]

Michael J. Frisch [Recd. 27 Jan. 1971]
University Computer Center, University of Minnesota, Minneapolis, MN 55455

\section*{Key Words and Phrases: ANSI Fortran staindard} CR Categories: 4.0, 4.22

The following items were found during compilation of the algorithms written in Fortran published to date in Communications. The MNF compiler written at the University of Minnesota for CDC 6000 Series machines by Lawrence A. Liddiard and E. James Mundstock was used to check the validity of the algorithms.

Algorithm 385 does not conform to the standard in that the function name \(D E I\) appears in a type statement (Section 8.3.1). It should not appear there, and the function statement should be DOUBLE PRECISION FUNCTION DEI (X1). The third statement (PRINT 500) after the statement numbered 100 is not among the statements allowed in standard Fortran. A comment card separates the initial line from the continuation line in the statement numbered 200 contrary to Section 3.2.1.

\section*{ALGORITHM 386}

GREATEST COMMON DIVISOR OF \(n\) INTEGERS AND MULTIPLIERS* [A1]
Gordon H. Bradley (Recd. 14 Oct. 1969, 28 Nov. 1969, and 26 Feb. 1970)
Administrative Sciences Department, Yale University, New Haven, CT 06520
* This research supported in part by funds from the Yale Computer Center.

KEY WORDS AND PHRASES: greatest common divisor, Euclidean algorithm, number theory, diophantine equations \(C R\) CATEGORIES: 3.15,5.10

\section*{Description:}

The algorithm calculates the greatest common divisor, IGCD, of \(n\) integers \(\mathrm{A}(i)\). Multipliers \(\mathrm{Z}(i)\) are constructed so that
\[
\mathrm{IGCD}=\mathrm{A}(1) \times \mathrm{Z}(1)+\cdots+\mathrm{A}(n) \times \mathrm{Z}(n)
\]

Details of the method and comparisons to other algorithms are given in [1].
The algorithm is a new version of the Euclidean algorithm for \(n\) integers. The algorithm first calculates \(\operatorname{gcd}(\mathrm{A}(1), \mathrm{A}(2))\), then \(\operatorname{gcd}(\operatorname{gcd}(\mathrm{A}(1), \mathrm{A}(2)), \mathrm{A}(3))\), etc. The \(n-1\) calculations of the greatest common divisor of two integers is accomplished by means of a modified version of the Blankinship algorithm which is described in [1]. The \(n-1\) sets of multipliers are then used to calculate the multipliers for the \(\mathrm{A}(i)\).

If the \(n-1\) applications of the \(g c d\) algorithm for two integers requires a total of \(k\) iterations, then the algorithm requires \(2(n-1)+2 k\) multiplications, \(k+n-1\) divisions, and \(2 k\) additions. The number of arithmetic operations is less than indicated in [1] due to a modification noted below. In [1] the following bound on \(k\) is given.
Theorem. \(k\) is never greater than \(n-2\) plus five times the number of digits in \(A(1)\).

Corollary. \(k\) is less than \(n-1\) plus the logarithm of \(A(1)\) to the base 1.6 .

This bound can be achieved. The bound on \(k\) can be reduced by having \(\mathrm{A}(1)\) be the smallest number (in absolute value) among the \(\mathrm{A}(i)\).

If at some step of the algorithm the gcd becomes one, then the gcd calculations are terminated. There is a reduction in the number of arithmetic operations in this case.

If all input integers are zero, then output is zero gcd and all multipliers zero.

The multipliers constructed by the algorithm are, in general, not small numbers. A minimal set of multipliers described in [1] can be constructed by a slight modification of the FORTRAN program.

\section*{References:}
1. Bradley, G. H. Algorithm and bound for the greatest common divisor of \(n\) integers. Comm. ACM 13 (July 1970), 433-436.

\section*{AlGORITHM:}

\section*{SUBROUTINE GCDN}
* ( \(N, A, Z\), IGCD)

N NUMBER OF INTEGERS
A(I) INPUT ARRAY OF N INTEGERS, A(I) IS USED AS WORKING STORAGE,
(II INPUT IS DESTROYED.
IGCO OUTPUT, GREATEST COMMON DIVISOR OF THE A(I) INTEGERS
DIMENS ION A(50), Z(50)
INTEGER \(A, Z, C 1, C 2, Y 1, Y 2,0\)
c FIND FIRST NON-ZERD INTEGER
DO \(1 \mathrm{M}=1, \mathrm{~N}\)
IF(A(M).NE.0) GO TO 3
\(1 Z(M)=0\)
C ALL ZERO INPUT RESULTS IN ZERO GCO AND ALL ZERO MULTIPLIERS IGCD \(=0\)
RETURN
C If LAST NUMBER IS THE ONLY NON-ZERCI NUMBER, EXIT IMMEDIATELY.
3 IF(M.NE.N) GO TO 4
- IGCD \(=A(M)\)
\(Z(M)=1\)
RETURN
\(\begin{aligned} 4 \text { MP1 } & =M+1 \\ \text { MP2 } & =M+2\end{aligned}\)
C CHECK THE SIGN OF A(M)
ISIGN \(=0\)
IF(A(M).GE.O) GO-TO 5
ISIGN \(=1\)
\(A(M)=-A(M)\)
C CALCULATE GCD VIA N-1 APPLICATIONS OF THE GCD ALGORITHM FOR TWO
C INTEGERS. SAVE THE MULTIPLIERS.
\(5 C 1=A(M)\)
IF(A)II.NE.O) GO 107
\(A(I)=1\)
\(2(1)=0\)
GO \(10{ }^{25}=1\)
\(\begin{aligned} 7 Y_{1} & =1 \\ Y_{2} & =0\end{aligned}\) \(C 2=I A B S(A(I))\)
\(10 Q=C 2 / C 1\)
C2 \(=C 2-0 * C 1\)
C TESTING BEFORE COMPUTING Y2 AND BEFORE COMPUTING YI BELOW SAVES N - 1
C ADDITIONS AND N - 1 MULTIPLICATIÓNS.
IF(C2.EO.0) GO TO 20
\(Y_{2}=Y 2-0 * Y 1\)
\(0=C 1 / C 2\)
\(C_{1}=C_{1}-0 * C_{2}\)
IFICl.EQ.O) GO TO 15
\(Y 1=Y 1\) \(Y 1=Y 1-Q * Y 2\)
\(15 \mathrm{Cl}=\mathrm{C}^{2}\)
\(15 \mathrm{Cl}=\mathrm{CL}_{2}\)
\(20 Z(I)=(C l-Y l * A(M)) / A(I)\)
\(Y(I)=Y 1\)
\(A(I)=Y 1\)
\(A(M)=C 1\)
C TERMINATE GCD CALCULATIONS IF GCD EQUALS ONE.
25 IF(C1.EQ.1) GO TO 60
30 CONT INUE
c CALCULATE MULTIPLIERS
\(0050 \mathrm{~J}=\mathrm{MP2}, 1\)
\(0050 \mathrm{~J}=\mathrm{MPR}\),
\(\mathrm{K}=\mathrm{I}-\mathrm{J}+2\)
\(K K=K^{-}+1+\)
\(Z(K)=Z(K) \neq A(K K)\)
\(50 A(K)=A(K) \neq A(K K\)
\(Z(M)=A(M P 1)\)
IF(ISIGN.EQ.O) GO TO 100
\(Z(M)=-Z(M)\)
100 RETURN
C GCD FOUND, SET REMAINDER OF THE MULTIPLIERS EQUAL TO ZERO.
\(60 I P_{1}=1+1\)
\(65 \mathrm{ZO} 65 \mathrm{~J}=\mathrm{J}=\mathrm{IP} 1, N\)
\(65 \mathrm{Z}(\mathrm{J})=0\)
GO T
ENO

\title{
Certification of Algorithm 386 [A1]
}

Greatest Common Divisor of \(n\) Integers and Multipliers
[Gordon H. Bradley, Comm. ACM 13 (July 1970), 447]
Larry C. Ragland and Donald I. Good [Recd. 18
June 1971, 22 August 1972, and 6 November 1972]
Department of Computer Sciences, The University of
Texas at Austin, Austin, TX 78712

Key Words and Phrases: proof of algorithms, greatest common divisor, Euclidean algorithm, inductive assertion method

CR Categories: 3.15, 4.42, 5.10, 5.24

Subroutine GCDN, Algorithm 386 as described in [1, 2], computes the greatest common divisor, IGCD, of \(n\) integers \(A(1), \ldots\), \(A(n)\) by using the Euclidean algorithm to compute first \(\operatorname{gcd}(A(1)\), \(A(2))\), then \(\operatorname{gcd}(\operatorname{gcd}(A(1), A(2)), A(3))\), etc. It also computes integer multipliers \(Z(1), \ldots, Z(n)\) such that \(I G C D=\sum_{i=1}^{n} A(i) Z(i)\).

A formal proof that a modified version of GCDN performs these two tasks has been constructed and is available from the authors. The proof employs a slight variation of one of the inductive assertion method techniques described in [3, 4]. Eight points in the program were tagged with assertions and the verification conditions for the 20 resulting paths were constructed automatically and proved manually. The initial assertion used in the proof is
\(1 \leq N_{0} \leq \operatorname{dimension}(A)=\) dimension \((Z)\)
and the final assertion is
\(I G C D=\operatorname{gcd}\left(A_{0}(1), \ldots, A_{0}\left(N_{0}\right)\right) \quad\) and
\(I G C D=\sum_{i=1}^{N_{0}} A_{0}(i) Z(i)\).
A variable with a zero subscript denotes the value of that variable at the time the subroutine is entered, and a variable without the zero subscript denotes the value of the variable when the subroutine terminates. A proof of termination is not included, but termination can be deduced from the bounds Bradley describes for the algorithm in [2].

Three modifications of the program were necessitated by errors in the original algorithm.
(a) The two statements following statement 3
\(I G C D=A(M)\)
\(Z(M)=1\)
should be replaced by
\(I G C D=I A B S(A(M))\)
\(Z(M)=A(M) / I G C D\)
so that a positive greatest common divisor will result when all elements of array \(A\) are zero except the last, and it is negative.
(b) The second statement after statement 40
\(K=I-J+2\)
should be replaced by
\(K=I-J+M P 1\).
The statement replaced is correct only if the first element of array \(A\) is nonzero, in which case \(M P 1=2\).
(c) Statement 60
\(60 I P 1=I+1\)
should be replaced by
60 IF(I.EQ.N)GO TO 40
\(I P 1=I+1\).

This is necessary when the greatest common divisor becomes one on the last element of array \(A\). If \(N_{0}\) is strictly less than dimension \((Z)\) then this last change may be omitted; however, this leads to the possibility of the value of the initial parameter of a \(D O\) statement being greater than the value of the terminal parameter. This problem is discussed below.

The proof of GCDN assumes that DO statements consist of the following four steps.

Step 1.
Assign the control variable the value of the initial parameter.
Step 2.
Execute the body of the \(D O\) statement.
Step 3.
If control reaches the terminal statement, execute the terminal statement and increment the control variable by the incrementation parameter.
Step 4.
If the value of the control variable is less than or equal to the value of the terminal parameter, go back to 2 ; otherwise the \(D O\) is satisfied and execution continues out of the statement.
This interpretation of the \(D O\) statement makes it necessary to insert the statement
\(I=N\)
following statement 30 .
For implementations in which \(D O\) statements are not handled as described above, other program modifications may be necessary. For example, according to the Fortran standard [5], at Step 1 the value of the initial parameter must be less than or equal to the value of the terminal parameter and in Step 4, if the \(D O\) is satisfied, the control variable becomes undefined. In subroutine \(G C D N\), the only \(D O\) statement in which the value of the initial parameter may be greater than the value of the terminal parameter is DO \(50 \mathrm{~J}=\) \(M P 2, I\). The program will give the correct result whether this loop is executed once (as in the proof) or is bypassed; however, if a fatal error will result, then the statement

\section*{IF (MP2.GT.I)GO TO 51}
should be inserted before the statement
DO \(50 \mathrm{~J}=\mathrm{MP} 2, I\)
and the statement following statement 50 should be labeled 51. In many implementations the control variable remains defined at the last value used in execution when the \(D O\) is satisfied. In this case the statement \(I=N\), which was inserted earlier, may be omitted. This statement is necessary if the control variable becomes undefined, or if the control variable remains defined at its last value used in execution plus the incrementation parameter (as in this proof).

\section*{References}
1. Bradley, G.H. Algorithm 386, Greatest common divisor of \(\boldsymbol{n}\) integers and multipliers. Comm. ACM 13, 7 (July 1970), 447-448. 2. Bradley, G.H. Algorithm and bound for the greatest common divisor of \(n\) integers. Comm. ACM 13, 7 (July 1970), 433-436.
3. Good, D.I. Toward a man-machine system for proving program correctness. Ph.D. Th., U. of Wisconsin, June 1970.
4. Elspas, B., Levitt, K.N., Waldinger, R. J., and Waksman, A. An assessment of techniques for proving program correctness Computing Surveys 4, 2 (June 1972), 97-147.
5. USA Standard X3.9-1966 Fortran. United States of America Standards Institute, New York, 1966.

\author{
ALGORITHM 387 \\ FUNCTION MINIMIZATION AND LINEAR SEARCH [E4] \\ K. Fielding (Recd. 23 Sept. 1969) \\ Computing Centre, University of Essex, Wivenhoe Park, Colchester, Essex, England
}

KEY WORDS AND PHRASES: function minimization, relative minimum, quasi-Newton method
CR CATEGORIES: 5.15
[Editor's note. According to tests made by the referee this algorithm is slower than FLEPOMIN, Algorithm 251, Comm. ACM 8 (Mar. 1965), 169-170. However, in two out of six tests FLEPOMIN failed and BROMIN did not fail to find a mini-mum.-L.D.F.]
procedure Bromin ( \(n\), iterations, number, maxiters, toliter, tolerance, \(x, f, g, h\), compute \(f\), compute \(g\), converged);
value \(n\), iterations, toliter, tolerance, maxiters;
integer \(n\), iterations, number, maxiters;
real toliter, tolerance, \(f\);
array \(x, g, h\); Boolean converged; procedure compute \(f\), compute \(g\);
comment This procedure minimizes a function using the method of Broyden [1]. The parameters are described as follows. \(n\) is the number of independent variables. iterations is an upper limit on the number of iterations allowed. On exit number is the actual number of iterations taken. maxiters is the maximum number of function evaluations allowed on each linear search. toliter is the convergence limit for Linmin 2. tolerance is used as the convergence limit. A solution is assumed to have been reached if \(g(x) g^{\prime}(x)<\) tolerance. \(x[1: n]\) is an estimate of the solution. On exit it is the best estimate of the solution found. \(f\) is the current function value \(f(x) . g[1: n]\) is the current gradient vector of \(f(x)\). \(h[1: n, 1: n]\) is the inverse Jacobian at the solution if number \(\geqq n\) and if converged \(=\) true on exit. compute \(f(x, f)\) is a procedure provided by the user to evaluate the function at any point. compute \(g(x, g)\) is a procedure provided by the user to evaluate the gradient vector at any point. converged is a Boolean variable used as follows:

On entry converged \(=\) true implies that \(x, f, g\), and \(h\) all have been assigned values, if converged \(=\) false however it is assumed that just \(x\) has been assigned a value and \(h\) will be set to a unit diagonal matrix.

On exit converged = true means that a solution has been found, converged \(=\) false means that no solution has been found. However \(x\) is set to the best point found so far while the function value, gradient vector, and estimated inverse Jacobian corresponding to \(x\) are in \(f, g\), and \(h\).
The procedure Linmin 2 ( \(n\), maxiters, toliter, \(x, f\), compute \(f\), \(t, p)\) is used to find a linear minimum on each iteration.

\section*{Reference:}
1. Broyden, C. G. The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. (to appear); begin
integer \(i, j ;\) real norm, \(t, y t h y, p t y, \operatorname{tem} p\);
array \(p, y, h y[1: n]\);
if \(\overline{7}\) converged then
begin
comment Initialize \(g, f, h\) and converged;
compute \(f(x, f)\); compute \(g(x, g)\);
converged \(:=\) true;
for \(i:=1\) step 1 until \(n\) do
begin \(h[i, i]:=1.0\); for \(j:=i+1\) step 1 until \(n\) do \(h[i, j]:=h(j, i):=0.0\)
end of loop on \(i\) to set up \(h\)
end of initial set up
start of main loop on number;
for number \(:=1\) step 1 until iterations do
begin
for \(i:=1\) step 1 until \(n\) do
begin
comment Evaluate the search vector \(p\);
\(p[i]:=0.0\);
for \(j:=1\) step 1 until \(n\) do
\(p[i]:=p[i]-h[i, j] \times g[j]\)
end of loop on \(i\) to evaluate \(p\);
Linmin 2 ( \(n\), maxiters, toliter, \(x, f\), compute \(f, t, p\) );
comment Finds the optimum value of \(t\) and the values of \(x\) and \(f\) associated with it;
for \(i:=1\) step 1 until \(n\) do \(y[i]:=g[i] ;\)
comment Use \(y\) as a temporary storage location for the old gradient before evaluating the new one as \(y=g\) new - \(g\) old;
compute \(g(x, g)\);
norm \(:=0.0\);
for \(i:=1\) step 1 until \(n\) do
begin
norm \(:=\) norm \(+g[i] \uparrow 2\); \(y[i]:=g[i]-y[i]\)
end of loop to calculate \(g^{\prime} g\) and \(y\);
\(y\) thy \(:=p t y:=0\);
for \(i:=1\) step 1 until \(n\) do
begin
\[
h y[i]:=0
\]
for \(j:=1\) step 1 until \(\boldsymbol{n}\) do
\(h y[i]:=h y[i]+h[i, j] \times y[j] ;\)
\(y \operatorname{lh} y:=y t h y+y[i] \times h y[i]\);
\(p t y:=p t y+p[i] \times y[i]\)
end of loop to evaluate \(h y, p^{\prime} y\) and \(y^{\prime} h y\);
temp \(:=y t h y / p t y+t ;\)
for \(i:=1\) step 1 until \(n\) do
begin
\(h[i, i]:=h[i, i]+((p[i] \times \operatorname{temp}-2.0 \times h y[i]) \times p[i]) / p t y ;\)
for \(j:=i+1\) step 1 until \(n\) do
\(h[i, j]:=h[j, i]:=h[i, j]+((p[i] \times \operatorname{temp}-h y[i])\)
\[
\times p[j]-h y[j] \times p[i]) / p t y
\]
end of loop to update the matrix \(h\);
if norm \(<\) tolerance then go to successful
end of main loop on number;
number := iterations;
converged \(:=\) false;
successful:
end of procedure Bromin;
procedure Linmin 2 ( \(n\), maxiters, toliter, \(x, f\), compute \(f, t, p\) );
value \(n\), maxiters, toliter;
integer \(n\), maxiters; real toliter, \(f, t\); array \(x, p\); procedure compute f;
comment This procedure carries out a linear search over \(t\). It considers \(f(x+p \times t)\) as a function of \(t\) alone. \(f\) is evaluated for three points. It is now assumed that \(f(t)\) can be approximated by a quadratic. If this quadratic has a minimum, then this is taken as a better estimate of the minimum of \(f(t)\). If, however, the quadratic is concave, a step is taken in the direction of the best point so far. If the four points obtained form an increasing
or decreasing sequence with respect to \(t\) then the largest is rejected. If they do not, then they must bracket a local linear minimum and the three points retained are those that most closely enclose this minimum. This process is repeated until it is felt that a good estimate of \(t\) is available (see parameter toliter), or until some limit on the number of function evaluations is violated (see parameter maxiters). The parameters are described as follows. \(n\) is the number of variables. maxiters is the maximum number of function evaluations allowed in the linear search. toliter is the tolerance for minimization, exit if \(a b s((t-\) last \(t) / t)<\) toliter. \(x[1: n]\) is the array of independent variables. \(f\) contains the function value \(f(x)\). compute \(f(x, f)\) is the user provided routine to evaluate the function values at any point. \(t\) contains the best value of the scalar used for the step length. \(p[1: n]\) is the vector which gives the direction of the step. If \(t f\) is the final value of \(t\) then the actual step taken is \(p \times t f\). This routine is based on the procedure quadmin by Broyden [2].

\section*{Reference:}
2. Broyden, C. G. A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19 (1965), 577-593;

\section*{begin}
integer \(i\), left, center, right, count;
real alpha, beta, gamma, last t, ptp;
array \(v t\), phi [1:3];
procedure reject ( \(j\) );
value \(j\); integer \(j\);
comment This procedure replaces one of the old values of \(t\) and then sorts the remaining three in ascending order of \(t\) in the array \(v t\);
begin
procedure interchange ( \(i, j\) );
integer \(i, j\);
comment if \(v t[i]>v t[j]\) interchange \(i\) and \(j\);
begin
integer \(k\);
if \(v t(i)>v t[j]\) then
begin \(k:=i ; \quad i:=j ; \quad j:=k\) end
end of interchange
start of reject;
\(v t[j]:=t ; \quad p h i[j]:=f ;\)
interchange (center, right);
interchange (left, center);
interchange (center, right)
end of reject;
procedure basic
comment This procedure evaluates a new value for \(x\) and the corresponding value of \(f\);

\section*{begin}
for \(i \cdot=1\) step 1 until \(n\) do
\(x[i]:=x[i]+(t-\) last \(t) \times p[i] ;\)
last \(t:=t\); compute \(f(x, f)\)
end of basic
start of Linmin 2 itself;
comment Initialize phi, vt, left, center and right;
\(p h i[1]:=f\);
left \(:=1\); center \(:=2\); right \(:=3\);
last \(t:=v t[1]:=p t p:=0.0\);
for \(i:=1\) step 1 until \(n\) do
\(p t p:=p t p+p[i] \uparrow 2 ;\)
\(p t p:=1.0 / s q r t(p t p)\);
comment \(p t p\) is now used to limit the initial step;
\(v t[2]:=t:=\) if \(p t p<1.0\) then \(p t p\) else 1.0;
basic;
\(p h i[2]:=f ; v t[3]:=t:=t \times 2.0 ;\)
basic;
\(p h i[3]:=f\);
comment Sets up first three values before entering main loop;
for count \(:=3\) step 1 until maxiters do

\section*{begin}
alpha \(:=v t[2]-v t[3] ;\)
beta \(:=v t[3]-v t[1]\);
gamma \(:=v t[1]-v t[2] ;\)
alpha \(:=-(p h i[1] \times a l p h a+p h i[2] \times b e t a+p h i[3]\) \(\times\) gamma)/(alpha \(\times\) beta \(\times\) gamma);
beta \(:=(p h i[1]-p h i[2]) / g a m m a-a l p h a \times(v t[1]+v t[2]) ;\)
comment If the quadratic through the three points is convex, \(t\) is chosen as the minimum of it. If it is concave, however, \(t\) is chosen as a step in the direction of steepest descent;
\(t:=\) if alpha \(>0.0\) then - beta \(/(2.0 \times\) alpha \()\)
else if \(p h i[\) right \(]>\) phi \([l e f t]\)
then \(3.0 \times v t[l e f t]-2.0 \times v t\) [center]
else \(3.0 \times v t[r i g h t]-2.0 \times v t[\) center \(]\);
if abs \(((t-\) last \(t) / t)<\) toliter then
begin
\(t:=\) last \(t\); go to exit
end of exit where minimum has been found;
basic;
if \(t>v t[r i g h t]\)
\(\vee(t>v t[\) center \(] \wedge f<p h i[\) center \(])\) \(\vee(t>v t[l e f t] \wedge t<v t[\) center \(] \wedge f>p h i[\) center] \()\) then reject (left) else reject (right);
comment Choose which point to reject;
end of main loop which used count as an index;
exit:
end of Linmin 2

\section*{ALGORITHM 388}

\section*{RADEMACHER FUNCTION [S22]}

\section*{H. Hübner}

Forschungsinstitut des FTZ der Deutschen Bundespost, Darmstadt
H. Kremer, K. O. Linn, and W. Schwering (Recd. 16 Jan. 1970)
Institut für Allgemeine Nachrichtentechnik der Technischen Hochschule Darmstadt, Germany
KEY WORDS AND PHRASES: Rademacher function
CR CATEGORIES: 5.12, 5.13
integer procedure radfun \((k, x)\);
value \(k, x\); integer \(k\); real \(x\);
comment The procedure radfun computes the Rademacher function \(r_{k}(x)\) as defined in \([1,2,3]\). This definition is used in recent papers and differs from the original definition [4] by an opposite sign. The Rademacher functions \(r_{k}(x)\) form an incomplete set of orthogonal, normalized, periodic square wave functions with period equal to one. They assume only the values +1 and -1 . The Rademacher function \(r_{k}(x)\) may be defined either by the formula
\[
\begin{equation*}
r_{k}(x)=\operatorname{sgn}\left[\sin \left(2 \pi 2^{k} x\right)\right] \tag{1}
\end{equation*}
\]
or by the following algorithm:
Let \(x\) be in the interval \(\frac{m}{2^{k+1}} \leq x<\frac{m+1}{2^{k+1}}, m=0, \pm 1, \cdots\)
then
\[
r_{k}(x)= \begin{cases}+1 & \text { for } m \text { even }  \tag{2}\\ -1 & \text { for } m \text { odd }\end{cases}
\]

The index \(k\) must be a nonnegative integer and the argument \(x\) can be any real number in the range \(-\infty \leq x \leq \infty\).
Equations (1) and (2) show that \(r_{k}(x)\) is piecewise constant and has \(2^{k+1}\) jump discontinuities in the interval \(0 \leq x<1\). The procedure radfun uses eq. (2) for computation.

\section*{References:}
1. Paley, R. E. A remarkable series of orthogonal functions. Proc. London Math. Soc. Ser. 2, 34 (1932), 241-279.
2. Fine, N. J. On the Walsh functions. Trans. Amer. Math. Soc. 65 (1949), 372-414.
3. Morgenthaler, G. W. On Walsh-Fourier series. Trans. Amer. Math. Soc. 84 (1957), 472-507.
4. Rademacher, H. Einige Sätze von allgemeinen Orthogonalfunktionen. Math. Ann. 87 (1922), 112-138;

\section*{begin}
integer \(r\);
\(x:=x-\operatorname{entier}(x) ;\)
\(r:=\operatorname{entier}(x \times 2 \uparrow(k+1))\);
radfun \(:=\) if \(r / 2=r \div 2\) then 1 else -1
end

\section*{ALGORITHM 389}

\section*{BINARY ORDERED WALSH FUNCTIONS [S22]}

\section*{H. Hübner}

Forschungsinstitut des FTZ der Deutschen Bundespost, Darmstadt
H. Kremer, K. O. Linn, and W. Schwering (Recd. 16 Jan. 1970)
Institut für Allgemeine Nachrichtentechnik der Technischen Hochschule Darmstadt, Germany

KEY WORDS AND PHRASES: Walsh functions, binary ordered Walsh functions
CR CATEGORIES: 5.12, 5.13
integer procedure binwal ( \(k, x\) );
value \(k, x\); integer \(k\); real \(x\);
comment The procedure binwal computes the binary ordered Walsh function \(w_{k}(x)\) as defined in \([1,2,3,4]\). These functions form a complete set of orthogonal, normalized rectangular functions which are periodic with period equal to one. They assume only the values +1 and -1 . Using the Rademacher functions \(r_{k}(x)\) [5], the function \(w_{k}(x)\) may be defined in the following way: Write \(k\) as a binary number
\[
k=\sum_{i=0}^{m} a_{i} 2^{i}, \quad a_{i} \in(0,1),
\]
then
\[
w_{k}(x)=\prod_{i=0}^{m}\left[r_{i}(x)\right]^{a_{i}} .
\]

The functions are defined for \(k\) a nonnegative integer in the range \(-\infty \leq x \leq \infty\).
In binwal the procedure radfun [5] is used.
References:
1. Paley, R. E. A remarkable series of orthogonal functions. Proc. London Math. Soc. Ser. 2, 34 (1932), 241-279.
2. Fine, N. J. On the Walsh functions. Trans. Amer. Math. Soc. 65 (1949), 372-414.
3. Morgenthaler, G. W. On Walsh-Fourier series. Trans. Amer. Math. Soc. 84 (1957), 472-507.
4. Hammond, J. L., and Johnson, R. S. A review of orthogonal square-wave functions and their applications to linear networks. J. Franklin Inst. 273 (1962), 211-225.
5. Hübner, H., Kremer, H., Linn, K. O., and Schwering, W. Algorithm 388, Rademacher function. Comm ACM 13 (Aug. 1970), 510;
begin
integer \(i, l, m, w w\);
\(l:=k ; \quad m:=w w:=1 ;\)
\(i:=-1\);
for \(i:=i+1\) while \(m \leq l\) do
begin
if \(k /(m+m) \neq k \div(m+m)\) then
begin \(w w:=w w \times \operatorname{radfun}(i, x) ; k:=k-m\) end;
\(m:=m+m\)
end;
binwal := ww
end

\footnotetext{
ALGORITHM 390
SEQUENCY ORDERED WALSH FUNCTIONS [S22]
H. Hübner

Forschungsinstitut des F'TZ der Deutschen Bundespost, Darmstadt
H. Kremer, K. O. Linn, and W. Schwering (Recd. 16 Jan. 1970)
Institut für Allgemeine Nachrichtentechnik der Technischen Hochschule Darmstadt, Germany
KEY WORDS AND PHRASES: Walsh functions, sequency ordered Walsh functions
CR CATEGORIES: 5.12, 5.13
integer procedure \(\operatorname{seqwal}(k, x)\); value \(k, x\); integer \(k\); real \(x\);
comment The procedure seqwal computes the sequency ordered Walsh function wal \(_{k}(x)\) as defined in [1, 2]. These functions form a complete set of orthogonal, normalized, periodic rectangular functions with period equal to one. They are closely related to the binary ordered Walsh functions \(w_{k}(x)\) [3]. The set of \(w a l_{k}(x)\) consists of the same functions as the set of \(w_{k}(x)\) but in another scheme of ordering. The set of \(w_{k}(x)\) is ordered with regard to the binary decomposition of the index \(k\), whereas the set wal \(_{k}(x)\) is ordered according to the number of jump discontinuities in the open basic interval \(0<x<1\) in the sense that wal \(l_{k}(x)\) has exactly \(k\) jumps. The relation between wal \(_{k}(x)\) and \(w_{k}(x)\) is given by wal \(_{k}(x)=w_{n}(x)\) with \(n=k \oplus(k \div 2)\), where \(\oplus\) means the addition modulo 2 (binary addition without carry). The functions are defined for \(k\) a nonnegative integer in the range \(-\infty \leq x \leq \infty\). In seqwal the procedure binwal [3] is used.

\section*{References:}
1. Walsh, J. L. A closed set of normal orthogonal functions. Amer. J. Math., Vol. 45 (1923), 5-24.
2. Harmuth, H. F. Transmission of Information by Orthogonal Functions. Springer-Verlag, New York, 1969.
3. Hübner, H., Kremer, H., Linn, K. O., and Schwering, W. Algorithm 389, Binary ordered Walsh functions. Comm. ACM 19 (Aug. 1970), 511;

\section*{begin}
integer \(i, k 2, l, m, m 2, n, v 1, v 2\);
\(k 2:=k \div 2 ; l:=k ; m:=1 ; n:=0\);
\(i:=0\);
for \(i:=i+1\) while \(m \leq l\) do
begin
\(v 1:=v 2:=0 ; \quad m 2:=m+m ;\)
if \(k / m 2 \neq k \div m 2\) then
begin \(k:=k-m ; \quad v 1:=1\) end;
if \(k 2 / m 2 \neq k 2 \div m 2\) then
begin \(k 2:=k 2-m ; v 2:=1\) end;
if \(v 1 \neq v 2\) then \(n:=n+m\);
\(m:=m+m\)
end;
seqwal \(:=\operatorname{binwal}(n, x)\)
end
}

\section*{ALGORITHM 391}

UNITARY SYMMETRIC POLYNOMIALS [Z]
John McKay (Recd. 9 Mar. 1970)
Department of Mathematics, California Institute of Technology, Pasadena, CA 91109

KEY WORDS AND PHRASES: symmetric polynomials, unitary symmetric polynomials
\(C R\) CATEGORIES: 5.11, 5.30,5.5
procedure unitary ( \(a, x, n\) );
array \(a, x\); integer \(n\);
comment With \(x_{i}\) in \(x[i], i=1,2, \cdots, n\), on entry, the unitary symmetric polynomials \(a_{r}=\sum x_{i 1} x_{i_{2}} \cdots x_{i_{r}}\) will be found in \(a[r], r=1,2, \cdots, n\) on exit.

It is suggested that this algorithm replace Algorithm 156 which is an \(O\left(2^{n}\right)\) procedure for computing \(\sum_{r=1}^{n}(-1)^{r-1} a_{r}\).
It is optimal in storage and requires \(n(n-1)\) additions and \(\frac{1}{2} n(n-1)\) multiplications. It has uses in the theory of symmetric functions since the unitary symmetric polynomials form a basis for the symmetric polynomials. These polynomials arise, too, in probability theory. In numerical analysis it may be of interest to compute the coefficients \((-1)^{r} a_{r}\) of the monic. polynomial with roots \(x_{1}, x_{2}, \cdots, x_{n}\) which is best done by altering the two lines
\[
\begin{aligned}
& a[k]:=a[k]+t \times a[k-1] ; \\
& a[1]:=a[1]+t \\
& a[k]:=a[k]-t \times a[k-1] ; \\
& a[1]:=a[1]-t ;
\end{aligned}
\]
to
begin
integer \(i, k\); real \(t\);
for \(i:=1\) step 1 until \(n\) do
begin
\(a[i]:=0 ; \quad t:=x[i] ;\)
for \(k:=i\) step -1 until 2 do
\(a[k]:=a[k]+t \times a[k-1] ;\)
\(a[1]:=a[1]+t\)
end
end unitary

\section*{Remark on Algorithm 391 [Z]}

Unitary Symmetric Polynomials [John McKay, Comm.
ACM 13 (Aug. 1970, 512]
Günther F. Schrack (Recd. 9 Nov. 1970 and 11 Jan. 1971)

Departments of Electrical Engineering and Computer Science, University of British Columbia, Vancouver 8, B.C., Canada

Key Words and Phrases: symmetric polynomials, elementary symmetric polynomials, unitary symmetric polynomials, polynomial synthesis, reverse Horner scheme, reverse synthetic division, binomial coefficients

CR Categories: 5.11, 5.30, 5.5

To avoid using semicolons in the body of the comment, re-
place:
the two lines ...; begin
by
the plus signs to minus throughout; begin
Algorithm 391 has been tested on the IBM \(360-67\) with the OS Algol F compiler running under the Michigan Terminal System. A number of sets of real \(x_{i}, i=1,2, \ldots, n\) with \(n=1,2\), \(\ldots, 10\) with various positive, negative, and zero elements were used, drawn from a collection of test polynomials. Both versions of the algorithm produced correct results.

\section*{Remarks.}
1. The modified version produces the coefficients of the monic polynomial
\(f(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}\),
i.e. as the leading coefficient \(a_{0}=1\) is implied it must be supplied by the calling program. Alternatively, the insertion of
\(a[0]:=1\);
immediately preceding the first for statement will supply that coefficient. In this case line 3 of the comment should be replaced by
\(a[r], \quad r=0,1, \ldots, n\) on exit.
2. unitary may be used for the generation of complex elementary symmetric functions or complex polynomials from complex \(x_{i}\), provided all real parameters in the procedure are declared complex. 3. The number of additions is \(\frac{1}{2} n(n+1)\), i.e. for \(n>3\) it is less than the number claimed.
4. Consider a polynomial with real zeros \(x_{i}\) only, and consider a deflation of that polynomial by Horner's scheme (i.e. synthetic division) by the linear factor \(\left(x-x_{1}\right)\). Again using Horner's scheme, deflate the quotient by \(\left(x-x_{2}\right)\). Repeat this procedure for all zeros and call the resulting table the repeated Horner scheme. unitary is in effect the repeated Horner scheme carried out in reverse order. Since the Horner scheme is optimal in the number of operations [1], so is unitary.
5. The second version of unitary with the modification suggested in Remark 1 may be used to calculate all binomial coefficients \(\binom{n}{m}, m=0,1, \ldots, n\) by setting \(x_{i}=1, i=1,2, \ldots, n\). The algorithm then represents an in situ generation of Pascal's triangle with \(a_{i}=\binom{k}{i}, k=1,2, \ldots, n, i=0,1, \ldots, k\). Because all \(x_{i}\) are unity, this can be programmed using additions as the only arithmetic operations. Then the accuracy of the binomial coefficients is limited only by the word length of the computer.

\section*{References}
1. Pan, V.Ya. Methods of computing values of polynomials. Russian Math. Surveys 21 (1966), 105-136.

\section*{ALGORITHM 392}

SYSTEMS OF HYPERBOLIC P.D.E. [D3]
Robert R. Smith and Dennis McCall (Recd. 7 Jan. 1969 and 17 June 1969)
US Naval Electronics Laboratory Center, San Diego, CA 92152

KEY WORDS AND PHRASES: hyperbolic p.d.e., characteristic, extrapolation, second order p.d.e., quasilinear p.d.e.
CR CATEGORIES: 5.17

\section*{Description:}
\(C H A R A C\) solves the initial value problem for the quasilinear hyperbolic system of equations
\[
\begin{align*}
A_{1} U_{x}+A_{2} U_{y}+A_{3} V_{x}+A_{4} V_{y} & =H_{1} \\
B_{1} U_{x}+B_{2} U_{y}+B_{3} V_{x}+B_{4} V_{y} & =H_{2} \tag{1}
\end{align*}
\]
in two independent variables \(X, Y\) and two unknown functions \(U(X, Y), V(X, Y)\), where \(A_{1}=A_{1}(X, Y, U, V), \cdots, H_{2}=H_{2}(X\), \(Y, U, V)\). Specified data \(X_{i}, Y_{i}, U_{i}, V_{i}(i=1, \cdots, M)\) given along a noncharacteristic curve \(\Gamma\) are used to find \(U\) and \(V\) at characteristic grid points in the entire characteristic cone associated with the initial curve. Values in the opposite characteristic cone can be computed by specifying the initial data points \(X_{i}, Y_{i}, U_{i}, V_{i}\) in the opposite order ( \(X_{1}, Y_{1}, U_{1}, V_{1}\) becomes \(X_{M}, Y_{M}, U_{M}, V_{M}\), etc.).

If the system (1) is hyperbolic, it can be reduced to a normal form containing directional derivatives along two characteristic directions. The derivation of this normal form is given in Forsythe and Wasow [1, p. 38].

For (1) the normal form is
\[
\begin{gather*}
\left(\frac{d Y}{d X}\right)_{i}=\sigma_{i} \\
R_{i}=\left(\frac{\delta U}{\delta X}\right)_{i}+S_{i}\left(\frac{\delta V}{\delta X}\right)_{i}=T_{i} \tag{2}
\end{gather*}
\]
where \((\delta / \delta X)_{i}\) is the directional derivative along the characteristic with slope \(\sigma_{i}\). Let \(A=A_{1} B_{3}-A_{3} B_{1}, C=A_{2} B_{4}-A_{4} B_{2}, B=\) \(\frac{1}{2}\left(A_{1} B_{4}-A_{4} B_{1}-A_{3} B_{2}+A_{2} B_{3}\right)\). Then the coefficients in (2) are given by
\[
\begin{aligned}
\sigma_{i}(X, Y, U, V) & =\frac{B-(-1)^{i}\left(B^{2}-A C\right)^{\frac{1}{2}}}{A} \\
R_{i}(X, Y, U, V) & =A_{1}\left(B_{1} \sigma_{i}-B_{2}\right)-B_{1}\left(A_{1} \sigma_{i}-A_{2}\right), \\
S_{i}(X, Y, U, V) & =A_{3}\left(B_{1} \sigma_{i}-B_{2}\right)-B_{3}\left(A_{1} \sigma_{i}-A_{2}\right), \\
T_{i}(X, Y, U, V) & =H_{1}\left(B_{1} \sigma_{i}-B_{2}\right)-H_{2}\left(A_{1} \sigma_{i}-A_{2}\right) .
\end{aligned}
\]

The system (1) is called hyperbolic if \(B^{2}-A C>0\) and if \(R_{1} S_{2}-\) \(R_{2} S_{1} \neq 0\).

The subroutine \(C H V A R\) ( \(X Y U V, V A R\) ) computes the values \(\sigma_{1}, \sigma_{2}, R_{1}, R_{2}, S_{1}, S_{2}, T_{1}, T_{2}\) from \(A_{i}, B_{i}, H_{i}\) evaluated at the values \(X, Y, U, V\) given in the array \(X Y U V\). (The subroutine \(C H C O E F\) giving \(A_{i}, B_{i}, H_{i}\) must be provided by the user, see Examples.) The computed values are returned in the array VAR of length 8. If \(\sigma_{i}, R_{i}, S_{i}, T_{i}\) are known to the user, he may provide his own routine \(C H V A R\).

The system (2) is discretized by Massau's method, which is described in Forsythe and Wasow [1]. Given two adjacent points
on the initial curve \(\Gamma\), the nonparallel characteristics through the points intersect at a third point adjacent to the curve \(\Gamma\). The values \(X, Y, U, V\) at the third point are estimated by replacing the differential equations in (2) by simple clifference equations. The subroutine \(C H\) STEP performs this discretization. By repeating this process for each pair of adjacent points on \(\Gamma\), datum points are computed on a curve \(\Gamma^{\prime}\) adjacent to \(\Gamma^{\prime}\) and inside the characteristic cone. If the initial curve has characteristic slope somewhere, the curve \(\Gamma^{\prime}\) will not be adjacent to \(\Gamma^{\prime}\) but will cross it. The routine does not recognize this, but it is obvious from the output. Successively calling CHARAC generates a sequence of adjacent curves until the entire characteristic cone is filled in.

Extrapolation to the limit is applied to this discretization as follows: Compute the data on \(\Gamma^{\prime}\) by using only every fourth initial datum point on \(\Gamma\). Then use every other initial datum point to estimate the data on an intermediate curve and then on \(\Gamma^{\prime}\). Finally use every datum point. Thus three estimates are found with different step sizes \(h_{0}, h_{0} / 2\), and \(h_{0} / 4\). One can then extrapolate these estimates to \(h=0\) in an attempt to obtain a better estimate. Nu merical results have indicated that extrapolation does indeed significantly improve the estimates. In fact the method with extrapolation has an error of \(o\left(h^{3}\right)\) while Massau's method alone has an error of \(o(h)\). The theoretical considerations of extrapolation are given by Bulirsch and Stoer [2], and applications to integration and ordinary differential equations are discussed. In general, extrapolation improves calculated results only if the exact solution is sufficiently differentiable. CHARAC can thus be expected to be an improvement over Massau's method only when the coefficients of the system (1) and the initial data are sufficiently differentiable. Note that the extrapolation requires \(\mathrm{M}=4 \times N+1\) for some integer N .

\section*{CHARAC is defined by}

\section*{SUBROUTINE CHARAC (DATA, M, IFAIL).}

In the parameter list of \(C H A R A C^{\prime}, M\) is the number of datum points on the initial curve. DATA is dimensioned DATA (4, M) (where \(M=4 \times N+1\) for some \(N\) ) and the column DATA \((*, J)\) contains the four datum values \(X_{j}, Y_{j}, U_{j}, V_{j}\) of the \(J\) th datum point. Upon calling CHARAC, the data on an adjacent curve \(\Gamma^{\prime}\) are computed and restored in DATA and \(M=4 \times N+1\) is replaced by \(M-4=4 \times(N-1)+1\). Hence CHARAC can immediately be called again with \(\Gamma^{\prime}\) the initial curve. Continuing until \(M=1\) will yield the single datum point at the apex of the characteristic cone. (See TEST CH used to solve example.) IFAIL is a flag which is 0 if the call to \(C H A R A C\) was successful. If \(I F A I L=1\) upon returning, then \(C H V A R\) detected that \(B^{2}--A C \leq 0\), so (1) was not hyperbolic. If \(I F A I L=2\) upon returning, then \(C H S T E P\) detected that \(\sigma_{1}=\sigma_{2}\) or \(R_{1} S_{2}=R_{2} S_{1}\) within a relative tolerance of \(10^{-5}\); this tolerance parameter is represented by EPS in CH STEP. This indicates that (1) was not hyperbolic or that the characteristics are so close to parallel that the method fails.

The user must provide a routine

\section*{SUBROUTINE CH COEF (COEFF, XYUV)}
which computes the coefficients of the system (1) for the values \(X, Y, U, V\) given sequentially in the list \(X Y U V\) of length 4 . The computed coefficients must be returned in the list COEFF of length 8 in the order \(A_{1}, A_{2}, A_{3}, A_{4}, H_{1}, B_{1}, B_{2}, B_{3}, B_{4}, H_{2}\).

Example (I). Unsteady, one-dimensional Isentropic Flow. (See Jeffrey and Taniuti [3, p. 71].) The system of equations for the flow velocity \(u(x, t)\) and the density \(\rho(x, t)\) in terms of the space

Algorithm:

SUBROUTINE TEST CH DIMENSION DATA \((4,81)\) \(N=20\)
C GENERATE INITIAL DATA
\(M=4 * N+1\)
\(F M=4.0 *\) FLOAT (N)
FM \(=4.0\) * FLOAT
DO \(100 \quad I=1, M\)
DO 100 I \(=1, M\)
DATA \((1,1)=\) FLOAT \((I-1) / F M\)
\(\operatorname{DATA}(2, I)=0.0\)
DATA 4,1\()=2.0 * \operatorname{EXP}\) (DATA(1,I)
100 CONTINUE
IFAIL \(=0\)
WRITE.
(51, 900\()\)
00 FORMAT ( 1 HI )
200 DO 250 I \(=1, M\)
WRITE \((51,910)\) DATA(1, I), *DATA \((2,1)\), DATA(3,1), DATA \((4,1)\)
910 FORMAT \((4 \mathrm{H} \mathrm{X}=, E 20.9,5 \mathrm{X}, 4 \mathrm{H} \mathrm{Y}=\) *E20.9,5X,4H U =, E2O.9, \(* 5 \mathrm{X}, 4 \mathrm{HV}=, \mathrm{E} 20.9\) )
250 CONTINUE
IF (M.LE.1) GO TO 300
IF(IFAIL.NE. O) GO TO 300
CALL CHARAC (DOATA, M, IFAIL) WRITE (51, 900
300 CONTINUE
WRITE (51, 920) M, IFAIL
920 FDRMAT \((X, 3 H M=12,8 H\) IFAIL \(=, I 2)\) RETURN
END
SUBROUTINE CH COEF (COEFF, XYUV) DIMENSIDN COEFF(10), XYUV(4)
C COMPUTES COEFFICIENTS A1, A2, A3
C \(\mathrm{A} 4, \mathrm{Hl}, \mathrm{Bl}, \mathrm{B} 2, \mathrm{B3}, \mathrm{B4}, \mathrm{H} 2 \mathrm{AND}\)
C STORES THEM SEQUENTIALLY IN COEFFF. \(\operatorname{COEFF}(1)=1.0-X Y U V(3) * * 2\) \(\operatorname{COEFF}(2)=-\operatorname{XYUV}(3) * \operatorname{XYUV}(4)\)
\(\operatorname{COEFF}(3)=-\operatorname{XYUV}(3) * X Y U V(4)\) \(\operatorname{COEFF}(3)=-X Y U V(3) * X Y U N(4)\) COEFF \((5)=-4.0\) * XYUV(3)
*EXP (XYUV(1))**2
\(\operatorname{COEFF}(6)=0.0\)
\(\operatorname{COEFF}(7)=1.0\)
\(\operatorname{COEFF}(8)=-1.0\)
\(\operatorname{COEFF}(9)=-1.0\)
\(=0.0\)
\(\operatorname{COEFF}(10)=0.0\)
RETURN
END

SUBROUTINE CHARAC (DATA, M, IFAIL) DIMENSIDN DATAI4, M), DO(4), DI(4), *D2(4), D3(4), D4(4)
TT4(4), T5(4), T6(4), T7(4), Vi(8)
*V2(8), V3(8), V4(8), V5(8), V6(8),
*V7(8), V8(8), V9(8), V10(8)
DIMENSION S1(4), S2(4), S3(4) INTEGER FAIL, FLAG
COMMON/CHFAIL/FAIL, FLAG
C THIS ROUTINE ADVANCES ONE GRID STEP
C THE SOLUTION DF THE SYSTEM
C A1 \(\% u(x)+A 2 * u(y)\)
\(C+A 3 * V(X)+A^{4} * * V(Y)=H 1\)
\(C B 1 * U(X)+B 2 * *(Y)\)
\(C B 1 * U(X)+B 2 * U(Y)\)
\(C+B 3 \geqslant V(X)+B 4 * V(Y\)
CHERE (X) MEAN
\(C\) WHERE U(X) MEANS PARTIAL OERIV. OF


MATRIX DATA, FACH COLUMN OF FOUR
c ELEMENTS CONTAINING a VALUE
\(c \quad X, Y, U, V\).
C M IS THE NUMBER DF DATA POINTS
C ON THE INITIAL CIURVE.
FAIL \(=0\)
\(M=M-4\)
IF (M.LE.O) RETURN
DO \(145 \mathrm{~J}=1,4\)
D1 (J) = DATA(J,
D2 (J) \(=\) DATA \((J, 2)\)
145 D4(J) \(=\) DATA \(\mathrm{J}, 3)\)
CALL CH VAR (D1, V2)
CAI IF FAIL.NE.01 GO TO 250
CALL IF (FAIL.NE.O) GO TO 250
CALL CH VAR (D3, V4)
CALL CH VAR (D4, V5) GO TO 250
\(F L A G=0\)
\(D Y=D 2(2)-D 1(2)\)
\(D X=\) D2(1) - D1(1)
148 IF (DY) \(148,149,150\)
\(148 \mathrm{DY}=-\mathrm{DY}\)
DY \(=\) GO TO 150
\(\begin{aligned} 149 \mathrm{DY} & =1.0 \\ 0 X & =1.0 \mathrm{E} 30\end{aligned}\)
\(150 \mathrm{DXL}=\mathrm{DY} / \mathrm{Va(1)}\)
IF ( \((D \times 1 \cdot 1,-D X) \cdot A N D \cdot(D \times 2 \cdot G E \cdot D X))\)
*GO TO 170 (D) AND (Dx1 GE DX)
IF ( (DX2.LT.OX).AND.(DXI.GE.DX))
*GO TO 175
IF (DX2.GE.DX1) GO TO 175

170 FLAG \(=\)
175 CONTINUE
CALL CH STEP (D1, \(1 / 2\),
*03, V4, T1)
CALL CH VAR (T) 250
IF (FAIL.NE.O) GO TO 250
*D4, V5, T6)
IF (FAIL.NE.O) GO TO 250
CALL CH VAR (TG, VLO)
CALL CH STEP (D3, V4.
*04, V5, T2I
CALL AF (FAIL.NE.O) GO TO 250
IF (FAIL.NE.O) GO TO 250
CALL CH STEP (D2, V3,
*D3, V4, T4)
IF (FAIL.NE.O) GO TO 250
CALL CH VAR (T4, V9)
IF (FAIL.NE.O) GO TO 250
CALL CH STEP (T4, VG,
*T2, V7, T3)
CALL CH VAR (T3., VB) GO TO 250
CALL IF (FAIL.NE.O) GO TO 250
CALL CH STEP ID1, V2,
*D2, V3, T5) \(\begin{aligned} \text { IF (FAIL.NE.0) GO TO } 250\end{aligned}\)
CALL CH VAR (T5, VI)
IF (FAIL.NE.O) GO TO 250
CALL CH STEP (T5, VI,
* \(\times 4\), V9, T4)

IF (FAIL.NE.O) GO TO 250
CALL CH VAR (T4, VI)
IF (FAIL.NE.O) GO TO 250
CALL CH STEP (T4, VI,
*T3, V8, T4)
IF (FAIL.NE.O) GO TO 250
IF (FAIL.NE.O) GO TO 250
DO \(100 \mathrm{I}=1, \mathrm{M}\)
\(00200 \mathrm{~J}=1,8\)
\(V_{2}(J)=V_{3}(J)\)
\(V_{3}(J)=V_{4}(J)\)
200 CONTINUE
DO \(201 \mathrm{~J}=1,4\)
DO (J) \(=\) D1 (J)
D1 \((\mathrm{J})=02(\mathrm{~J})\)
\(D 2(J)=D 3(J)\)
D3(J) \(=\) D4 (J)
201 D4(J) \(=\operatorname{DATA}(\mathrm{J}, 1+4)\)
CH VAR (D4, V5)
IF (FAIL.NE.O) GO TO 250
CALL CH STEP IDO, VI,
*D4, V5, S1)
IF (FAIL.NE.O) GO TO 250
CALL CH STEP (D2, V3,
*O4, V5, T5)
IF (FAIL.NE.O) GO TO 250
CALL CH VAR (T5, V1)
CALL IF (FAIL.NE,O) GO TO 250
CALL CH STEP (TI, VG,
*T5, V1, S2)
CALL CH (FAIL.NE.O) GO TO 250
*D4, V5, T1)
IF (FAIL.NE.O) GO TO 250
CALL CH VAR (T1, V6)
CALL CH STEP (T2, V7,
*T1, V6, T7)
DO \(21 F\) (FAIL.NE.0) GO TO 250
\(\begin{aligned} & 210 \\ & T 2(J)=14 \\ & \text { V }\end{aligned}\)
V7(J) \(=\) V6(J)
\(\begin{aligned} V 7(J+4) & =V 6(J+4) \\ T 1(J) & =T 6(J)\end{aligned}\)
\(T 1(J)=T \sigma(J)\)
\(\begin{aligned} V 6(J) & =V 10(J) \\ V 6(J+4) & =V 10(J+4)\end{aligned}\)
\(\begin{aligned} V 6(J+4) & =V 10(J+4) \\ T 6(J) & =T 5(J)\end{aligned}\)
\(\mathrm{V} 10(\mathrm{~J})=\mathrm{V} 1(\mathrm{~J})\)
210 CONTINUE
CALL CH VAR (T7, V1)
IF (FAIL.NE.O) GO TO 250
CALL CH STEP (T3, V8.
*T7, V1, T5)
(FAIL.NE.O) GO TO 250
\(\begin{aligned} 220 J & =1,4 \\ T 3(J) & =T 7(\mathrm{~J})\end{aligned}\)
V8(J) = V1(J)
\(V 8(J+4)=V 1(J+4)\)
220 CONTINUE
CALL CH VAR (T5, V1)
CAL IF (FAIL.NE.0) GO TO 250
CALL CH STEP (T4, V9,
IF (FAIL.NE.O) GO TO 250
DO \(230 \mathrm{~J}=1,4\)
\(T 4(\mathrm{~J})=T 5(\mathrm{~J})\)
\(\mathrm{V} 9(\mathrm{~J})=\mathrm{Vl}(\mathrm{J})\)
\(V_{9}(J+4)=V_{1}(J+4)\)
230 CONTINUE
c EXTRAPDLATE 'THE THREE
C SUCCESSIVE APPRDXIMATIONS
DO \(300 \mathrm{~J}=1,4\)
300 DATA \((J, I)=0.3333333333 *\)
* 8.0 *S3(J) - 6.0 * S2(J) +S1(J))

100 CONTINUE
\(\underset{\text { RETURN }}{\text { IFAIL }}=0\)
C ERROR EXIT.
250 IFAIL = FAIL
RETURN
RETU
ENO
SUBR
SUBROUTINE CH VAR (XYUV, VAR)
DIMENSION XYUV(4), VAR(8), T(10)
INTEGER FAIL, FLAG
COMMON/CHFAIL/FAIL, FLAG
C COMPUTES THE VALUES SIGMAI,SIGMAZ,
C R1, R2, S1, S2, T1, T2
C ISTORED IN THE CISNT FUNCTIONS
C FROM THE COEFFICIENT FUNCTIONS
\(C\) AND THE VALUES \(X, Y, U, V\)
(IN THE LIST XYOV).
FALCIENTS OF SYSTEM ARE STORED
C COEFFICLIST (T)
\(A=T(1) * T(8)-T(3) * T(6)\)
\(B=0.5 *(T(1) * T(9)-T(4) * *\)
\(T(6)-T(3) * T(7)+T(2) * T(8)\)
\(C=T(2) * T(9)-T(4) * T(7)\)
IF (A.NE.O.O) GO TO 150
IF (B.EQ.0.0) GO To 500
\(\operatorname{VAR}(1)=1.0 \mathrm{EL} 5\)
\(\operatorname{VAR}(2)=0.5 * C / B\)
\(\operatorname{IF}(R, G T .0 .0)\) GO TO 400
\(\operatorname{VAR}(1)=\operatorname{VAR}(2)\)
\(\operatorname{VAR}(2)=1.0 E 15\)
\(150 D=B * B-A \geqslant C\)
IF (O.LE.O.0) GO TO 500
IF (B.LT.O.0) GO TO 300
\(\operatorname{VAR}(1)=(B+D) / A\)
\(\operatorname{VAR}(2)=C /(A \nmid \operatorname{VAR}(1))\)
\(\operatorname{VAR}(2)=(B-0)\),
\(\operatorname{VAR}(1)=C /(A * \operatorname{VAR}(2))\)
400 DO \(100 \quad I=1,2\)
\(T(4)=T(1) * \operatorname{VAR}(1)-T(2)\)
\(T(9)=T(6) * \operatorname{VAR}(1)-T(7)\)
\(\operatorname{VAR}(I+2)=T(1) * T(9)-T(6) * T(4)\) \(\operatorname{VAR}(1+4)=T(3) * T(9)-T(8) * T(4)\) \(\operatorname{VAR}(I+6)=T(5) * T(9)-T(10) * T(4)\)
100 CONTINUE
RETURN
C ERROR EXIT. \(\quad 1\)
0 FAIL \(=\)
END
SUBROUTINE CH STEP
*(DI, V1, D2, V2, D3)
*V1(8), V2(8)
INTEGER FAIL, FLAG
COMMON/CHFAIL/FAIL, FLAG
C this routine computes the values
C OF X 3 , Y3, U3, V3 AT THE POINT
C DETERMINED BY THE INTERSECTION OF
C THE CHARACTERISYICS THROUGH
C \(\times 1, Y 1\) AND \(\times 2 . Y 2\).
IF (FLAG.NE.O) GO TO 150
100 SIG \(=V_{1}(2)\)
\(R 1=V_{1}(4)\)
\(S_{1}=V_{1}(6)\)
\(\begin{aligned} & \mathrm{T} 1=\mathrm{V}(\mathrm{B}) \\ & \mathrm{GO} \text { ro } 180\end{aligned}\)
150 SIG \(=\) V1(1)
\(R_{1}=V_{1}(3)\)
\(S_{1}=V_{1}(5)\)
\(T_{1}=V_{1}(7)\)
180 CONTINUE IF (FLAG.NE.O) GO TO 250
200 RHO \(=\) V2(1)
\(R 2=V 2(3)\)
\(S 2=V 2(5)\)
S2 \(=\mathrm{V} 2(5)\)
\(\mathrm{T} 2=\mathrm{V} 2(7)\)
TOTO 280
RHO \(=V 2(2)\)
\(R 2=V 2(4)\)
\(S 2=V 2(6)\)
280 CONTINUE
C COMPUTE X3, Y3, U3, V3
DEM1 = SIG-RHO
* IF (ABSIDEMI) GO TO 900
\(A A=D 1(2)-S I G * D 1(1)\)
\(B B=D 2(2)-R H O * D 2(1)\)
D32 \(=(S I G * B B-R H O * A A) / D E M 1\)
\(D 31=|B B-A A| / D E M 1\)
TA = T1**(D31-D1(1) \({ }^{\prime}\)
\(*+R 1 *(1)\)
\(T B=T 2 *(D 31-D 2(1))\)
* + R2 * \(\mathrm{D} 2(3)+\mathrm{S} 2\) * \(\mathrm{D} 2(4)\)
\(T C=R 1 * S 2\)
\(T D=R 2 * S 1\)
DFM2 \(=T C-T D\)
TC \(={ }^{=}\)AMAXI \(^{-}(A B S(T C), A B S(T D))\)
IF (ABS (DEM2).LE.EPS*TC)
\({ }^{*} \mathrm{DB}_{3}(3)=(T A * S 2-T B * S 1) /\) DEM2
D3 \(3(4)=(T B * R 1-T A * R 2) / D E M 2\)
D3 \((2)=032\)
RETURN
900 FAIL \(=2\)
RETU
variable \(x\) and time \(t\) are
\[
\begin{align*}
\rho u_{x}+u \rho_{x}+\rho_{t} & =0 \\
\rho u u_{x}+\rho u_{t}+a^{2} \rho_{z} & =0 . \tag{3}
\end{align*}
\]

Assume the sound speed \(a=1\). Let the initial data given along the curve \(t=0,0 \leq x \leq 1\) be \(u(x, 0)=0\) and \(\rho(x, 0)=1+c x\) for some constant \(c\).

Setting \(t=y, u=U\), and \(\rho=V\), (3) has the form of (1) with \(A_{1}=V, A_{2}=0, A_{3}=U, A_{4}=1, H_{1}=0, B_{1}=U V, B_{2}=V\), \(B_{3}=1, B_{4}=0, H_{2}=0\).

For \(c=1\) the problem is well conditioned. Solving this problem on a 10-digit machine using the 21 initial datum points \(X_{j}=(j-1)\) / 20; \(Y_{j}=0 ; U_{j}=0 ; V_{j}=1+X_{j} ; j=1, \cdots, 21\), the following values were computed for the apex of the characteristic cone (by calling CHARAC 5 times):
\[
\begin{array}{ll}
X=.4107503 ; & Y=.5099940 \\
U=-.3465748 ; & V=1.4142185
\end{array}
\]

The correct values for the apex are
\[
\begin{array}{ll}
X=.4107581 ; & Y=.5099899 \\
U=-.3465736 ; & V=1.4142136
\end{array}
\]

The maximum relative error is \(1.9 \times 10^{-5}\). Using 41 initial datum points and calling CHARAC 10 times, the computed values for the apex were
\[
\begin{array}{ll}
X=.4107572 ; & Y=.5099904 \\
U=-.3465737 ; & V=1.4142142
\end{array}
\]

The maximum relative error is \(2.2 \times 10^{-6}\). Thus doubling the number of points decreases the error by a factor of about 8 , as would be expected for a third order method.

The above problem was also solved for \(c=10\) using 21 initial datum points \(X_{j}=(j-1) / 20 ; Y_{j}=0 ; U_{j}=0 ; V_{j}=1+10 X_{j} ;\) \(j=1, \cdots, 21\). The computed values at the apex were
\[
\begin{array}{ll}
X=.0905 ; & Y=.6190 \\
U=-1.2028 ; & V=3.3100
\end{array}
\]
while the correct values are
\[
\begin{array}{ll}
X= & .0936 ; \\
U=-1.1990 ; & V=3.3165
\end{array}
\]

Using 41 initial datum points the computed values are
\[
\begin{array}{ll}
X= & .0930 ; \\
U=-1.1996 ; & V=3.3158
\end{array}
\]

Doubling the number of points decreases the error by a factor of only 5 . The high order of the truncation error is partially obscured by the rounding error, which is larger for \(c=10\) than for \(c=1\).

Example (II). Steady Two-dimensional Supersonic Flow. (See Jeffrey and Taniuti [3, p. 76].) The single second-order equation
\[
\begin{equation*}
\left(c^{2}-\varphi_{x}^{2}\right) \varphi_{x x}-2 \varphi_{x} \varphi_{y} \varphi_{x y}+\left(c^{2}-\varphi_{y}^{2}\right) \varphi_{y y}=H \tag{4}
\end{equation*}
\]
is hyperbolic if \(\varphi_{x}{ }^{2}+\varphi_{y}{ }^{2}>c^{2}\). Set \(H=-4 \varphi_{x} \exp (2 x)\), so that \(\varphi(X, Y)=2 \exp (X) \sin (Y)\) is a solution of (4). Then (4) is hyperbolic for \(c=1\) if \(X>\ln (0.5)\).

Letting \(U=\varphi_{x}, V=\varphi_{y}\), (4) becomes
\[
\begin{align*}
\left(1-U^{2}\right) U_{x}-U V\left(U_{y}+V_{x}\right)+\left(1-V^{2}\right) V_{y} & =-4 U \exp (2 X) \\
U_{y}-V_{x} & =0 . \tag{5}
\end{align*}
\]

Let the initial data given along \(Y=0,0 \leq X \leq 1\) be \(U(X, 0)=0\), \(V(X, 0)=2 \exp (X)\). Then throughout the cone the exact solution is \(U(X, Y)=2 \exp (X) \sin (Y), V(X, Y)=2 \exp (X) \cos (Y)\).

This problem was solved using 81 datum points on the initial curve \(X_{j}=(j-1) / 80 ; Y_{j}=0 ; U_{j}=0 ; V_{j}=2 \exp \left(U_{j}\right) ; j=1, \cdots\), 81. By calling CHARAC 20 times, the following values were computed for the apex of the characteristic cone:
\[
\begin{array}{ll}
X=1.6130 ; & Y=1.1576 \\
U=9.1980 ; & V=4.0184 .
\end{array}
\]

The correct values for the apex are
\[
\begin{array}{ll}
X=1.6144 ; & Y=1.1580 \\
U=9.2057 ; & V=4.0312
\end{array}
\]

Using 81 datum points on the initial curve but not applying extrapolation, the computed values were
\[
\begin{array}{ll}
X=1.5889 ; & Y=1.1418 \\
U=9.0441 ; & V=3.7319
\end{array}
\]

Thus extrapolation significantly improved the results.
By plotting the characteristic grid points in the \(X-Y\) plane, one sees that the characteristics become more parallel near the apex. Thus the above problem is ill conditioned. If the initial curve is chosen as \(Y=0,1 \leq X \leq 2\), the problem becomes so ill conditioned that the method fails for 81 datum points on the initial curve.

Example of use. In the following listing TEST CH sets up the initial data and makes the necessary calls to CHARAC to solve Example (II) for 81 initial datum points. CH COEF computes the coefficients \(A_{1}=1-U^{2}, A_{2}=-U V, A_{3}=-U V, A_{1}=1-V^{2}\), \(H_{1}=-4 U \exp (2 X), B_{1}=0, B_{2}=1, B_{3}=-1, B_{4}=0, H_{2}=0\) as determined from (5).

\section*{References:}
1. Forsythe, G. E., and W. R. Wasow. Finite-Difference Methods for Partial Differential Equations. Wiley, New York, 1960, p. 64.
2. Bulirsch, R., and J. Stoer. Fehlerabschätzungen und Extrapolation mit Rationalen Funktionen bei Verfahren vom Richardson-Typus. Num. Math. 6 (1964), 413-427.
3. Jeffrey, A., and T. Taniuti. Non-Linear Wave Propagation. Academic Press, New York, 1964.

\section*{Remark on Algorithm 392 [D3]}

Systems of Hyperbolic P.D.E.
[Robert R. Smith and Dennis McCall, Comm. ACM 13
(Sept. 1970), 567-570]
Michael J. Frisch [Recd. 27 Jan. 1971]
University Computer Center, University of Minnesota, Minneapolis, MN 55455

\section*{Key Words and Phrases: ANSI Fortran standard CR Categories: 4.0, 4.22}

The following items were found during compilation of the algorithms written in Fortran published to date in Communications. The MNF compiler written at the University of Minnesota for CDC 6000 Series machines by Lawrence A. Liddiard and E. James Mundstock was used to check the validity of the algorithms.

Algorithm 392 does not conform to the standard in subroutine CHARAC in which at six statements before the statement numbered 145, the variable dimension \(M\) of the array DATA is redefined during execution contrary to Section 7.2.1.1.2.

ALGORITHM 393
SPECIAL SERIES SUMMATION WITH ARBITRARY PRECISION [C6]
S. Kamal Abdali* (Recd. 23 June 1969 and 9 Mar. 1970)

University of Wisconsin, Department of Computer Sciences, Madison, WI 35706
* This work was done while the author was at the University of Montreal, Montreal, Canada.

KEY WORDS AND PHRASES: function evaluation, series summation, approximation
CR CATEGORIES: 5.12,5.13
procedure series (places, terms, base, digit, sgn, numerator, denominator, num0, denom0); value places, terms, base; integer places, terms, base, sgn, num0, denom0; integer array digit; integer procedure numerator, denominator;
comment Programs for very precise summation of series are conventionally written in machine language and employ multiprecision routines to perform arithmetic on especially defined multiword registers. The present algorithm requires only integer arithmetic and can be implemented in any algebraic language. It is applicable to series in which the ratios of successive terms can be expressed as quotients of given integers or integer functions of term positions.

The sum of a given series is computed to a given number of places, places, in a specified base for representation, base. The number of terms needed, terms, should be calculated outside the procedure. Procedures numerator and denominator are to be obtained from the fraction \(i\) th term \(/(i-1)\)-th term, expressed as a ratio of two integer functions of \(i\). (That fraction should preferably be reduced to its lowest terms.) num 0 and denom 0 are the integer numerator and denominator of the 0 th term. The outputs of the procedure are the sign of the result, sgn , the integer part, digit [ 0 ], and the digits of the fractional part, digit [1], \(\cdots\), digit [places].

For example, one way to compute \(\sin 0.6=.6-.6^{3} / 3!+.6^{5} / 5\) ! - ... correct to 1000 decimal places is to call series with the parameter values: terms \(=226\), num \(0=3\), denom \(0=5\), (and since \(i\) th term \(/(i-1)\) th term \(\left.=-.6^{2} / 2 i(2 i+1)\right)\) numerator \((i)=\) -9 and denominator \((i)=50 i(2 i+1)\). By taking base \(=100000\) and places \(=200\), five decimal digits of the result will be obtained per word of the array digit.

The use of a large base (and, consequently, smaller places) results in faster computation, as the number of operations is proportional to (places \(\times\) terms) for large values of terms and places. However, the intermediate products (base \(\times n u m[i] \times\) coef[i]) (and coef[i] can almost equal denom[i]) should not exceed the largest number representable by an integer variable. Also within this limit should be the product of base and the integer portion of the result;
begin
integer \(i, j, k, l\); integer array num[-1:terms], denom, coef[0:terms];
comment Express the series by the expression
\[
\begin{equation*}
\frac{n_{0}}{d_{0}}\left(c_{0}+\frac{n_{1}}{d_{1}}\left(c_{1}+\cdots+\frac{n_{t}}{d_{t}}\left(c_{t}\right) \cdots\right)\right) \tag{1}
\end{equation*}
\]
where \(n_{i}\) and \(d_{i}\) are positive and \(c_{i}\) are \(\pm 1\). (For short, \(n, d, c\)
and \(t\) in (1) stand for num, denom, coef and terms, respectively); num \([-1]:=1\); num \([0]:=a b s(\) num 0\()\); denom \([0]:=a b s-\) (denom 0 ); coef \([0]:=\operatorname{sign}(\) num 0\() \times \operatorname{sign}(\) denom 0\()\);
for \(j:=1\) step 1 until terms do
begin
\(k:=\) numerator \((j) ; \quad l:=\) denominator \((j) ;\) num \([j]:=a b s(k) ;\)
\(\operatorname{denom}[j]:=a b s(l) ;\) coef \([j]:=\operatorname{coef}[j-1] \times \operatorname{sign}(k) \times \operatorname{sign}(l)\) end;
comment Calculate digits one at a step by extracting the in-
teger part of base \(\times\) (1) and restoring the fractional part in form (1);
for \(i:=1\) step 1 until places do
begin
\(l:=0\);
for \(j:=\) terms step \(-\mathbf{1}\) until 0 do
begin
\(k:=n u m[j] \times(\) coef \([j] \times b a s e+l) ; l:=k \div \operatorname{denom}[j] ;\) \(\operatorname{coef}[j]:=k-l \times \operatorname{denom}[j] ;\) num \([j]:=n u m[j-1]\)
end \(j\);
\(\operatorname{digit}[i]:=l\)
end \(i\);
comment Some digits may be negative or larger than base in absolute value. Process the array digit to obtain true base representation;
\(l:=0\);
for \(i:=\) places step -1 until 1 do
begin
\(k:=\operatorname{digit}[i]+l ; l:=k \div\) base \(; \operatorname{digit}[i]:=k-b a s e \times l ;\)
if \(\operatorname{digit}[i]<0\) then
begin \(\operatorname{digit}[i]:=\operatorname{digit}[i]+b a s e ; \quad l:=l-1\) end
end;
\(\operatorname{digit}[0]:=l ; \quad \operatorname{sgn}:=\operatorname{sign}(l)\);
if \(l<0\) then
begin
\(\operatorname{digit}[0]:=-l-1 ;\) digit[places \(]:=\operatorname{digit[places}]-1\);
for \(i:=1\) step 1 until places do digit \([i]:=b a s e-1-\operatorname{digit}[i]\) end
end series

\section*{Remark on Algorithm 393}

Special Series Summation with Arbitrary Precision [C6]
[S. Kamal Abdali, Comm. ACM 13 (Sept. 1970), 570]
Arthur H.J. Sale
Basser Department of Computer Science, University of Sydney, NSW 2006, Australia

Key Words and Phrases: function evaluation, series summation, approximation

CR Categories: 5.12, 5.13

Algorithm 393 has been tested on a number of different series, including those for \(e^{x}\) and \(\sin (x)\) and the harmonic series, and in all cases it gave the expected results. Some remarks should however be made concerning this algorithm.

This algorithm is a slight generalization of a method first described in the reference given here in which it was used to produce an accurate approximation to the transcendental number \(e\). As noted in that reference the digits computed when expanding the \(e\)-series are correct as produced, and need no subsequent processing. This technique is very well suited to this application.

As the author correctly states some types of series will allow negative digits to be computed, or digits which exceed the value of the chosen base. The series for \(\sin (x)\) can give rise to the first case, for it contains negative as well as positive terms; the second case can arise if the remnant series is not always fractional (and will always occur if the value of the original series has an integer part). To illustrate this the first few terms of the harmonic series may be summed:
\(1 / 2+1 / 3+1 / 4+1 / 5+1 / 6=1.45000 \ldots\)
which using a base of 10 produces the digits \(14,4,10\). This means that the answer returned by the algorithm is not necessarily correct to the number of places requested either in a truncated or rounded sense. This is particularly important if it is possible that the \((i+1)\)-th term is greater in magnitude than the \(i\) th term, for then the final remnant series (which is of course the truncation error) may have a large value.

The author too has not sufficiently emphasized the problem of integer overflow. Intermediate results produced can be quite large, and for example the evaluation of the above mentioned few terms of the harmonic series generated an intermediate value of 100 (with a base of 10 ). Reversing the order of the terms gave a worse result: a value of 378 was generated, which even exceeds the bound given by the author of the algorithm. The implications of this are that considerable care must be taken to choose a base that is not too large, and that the technique may be restricted in application by the size of common computer words. For example to evaluate \(\sin (0.999)\) (given to three decimal places), using 100 terms and a base of 10 , would appear to require an integer range of about \(10^{17}\) by the author's bound, which is certainly beyond the capacity of a 32 bit machine.

To summarize, this technique is fairly specialized; it is not suitable for summing series whose values have large integer parts, and care must be taken in applying it to an arbitrary series.

\section*{References}
1. Sale, A.H.J. The calculation of \(e\) to many significant digits. Comput. J. 11 (Aug. 1968), 229-230.

\section*{ALGORITHM 394}

\section*{DECISION TABLE TRANSLATION [H]}

Robert B. Dial (Recd. 31 Oct 1969 and 8 May 1970) Alan M. Voorhees and Associates, Inc., McLean, Virginia, and Department of Civil Engineering, University of Washington, Seattle, WA. 98105

KEY WORDS AND PHRASES: Decision table, decision table translation
\(C R\) CATEGORIES: 4.19
integer procedure decitable (t, \(m\), \(n\), test, yes, no); value \(m, n\); comment This algorithm converts the limited-entry decision table stored in the \(m\) by \(n\) matrix \(t\) into a machine processable test-and-branch code matrix returned in the column vectors test, yes, and no. The input decision table's format and terminology generally agree with that introduced in Pollack [1]. The rows of \(t\) represent the decision table's conditions, its columns, its rules. Each of its entries represents a Y (truth), or an N (falsity), or a - (indifference). The output code matrix tabulates a decision tree, which can be traced to ascertain efficiently which rule any given transaction satisfies. Intended for use by a computer, this code matrix can readily drive an interpretive routine, or it can easily be transformed into code in some specified language. An example of a test-and-branch code matrix appears below in Figure 2. Figure 1 is the input decision table which generates it, and Figure 3 is the decision tree it represents.
\begin{tabular}{c|c|cccc|}
\hline \multirow{5}{*}{} & \multicolumn{4}{c|}{ Rule } \\
\cline { 3 - 6 } & & R1 & R2 & R3 & R4 \\
\hline Condition & C1 & Y & N & - & - \\
& C2 & N & - & Y & N \\
& C3 & Y & - & - & N \\
& C4 & - & N & Y & Y \\
\hline
\end{tabular}

Fig. 1. Decision Table
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Test-and-Branch} \\
\hline \({ }^{i}\) & \[
\begin{aligned}
& t \text { test } \\
& {[i]}
\end{aligned}
\] & \(y e s[i]\) & noli] \\
\hline 1 & 4 & 2 & 5 \\
\hline 2 & 2 & -3 & 3 \\
\hline 3 & 3 & 4 & -4 \\
\hline 4 & 1 & -1 & 0 \\
\hline 5 & 1 & 6 & -2 \\
\hline 6 & 3 & 7 & 0 \\
\hline 7 & 2 & 0 & \(-1\) \\
\hline
\end{tabular}

Fig. 2. Code Matrix

Each row of the code matrix in Figure 2 corresponds to a nonterminal, decision node in the tree in Figure 3. These row numbers have been posted alongside the nodes in Figure 3. The root node corresponds to row 1, and the first condition to be tested is C 4 , indicated by the 4 in test \([1]\). In general test \([i]\) contains the condition (decision table row) number to be tested at node \(i\). \(y e s[i]\) and \(n o[i]\) specify subsequent alternative actions selected on the basis of the result of testing condition test \([i]\). yes \([i]\) is an integer telling what to do if condition test \([i]\) is true. Its interpretation depends on its relationship to zero:
1. If \(y e s[i]\) is positive, then the next thing to do is perform the test-and-branch given in row yes[ \(i]\) of the code matrix. This is equivalent to moving down one ply in the decision tree via the "true arc" to enter another decision node.
2. If \(y e s[i]\) is negative, no more testing is necessary; Rule \(a b s(y e s[i])\) has been satisfied. This is equivalent to encountering terminal rule node in the decision tree. In typical applications, a procedure would be invoked to perform the actions corresponding to Rule abs(yes \([i]\) ).
3. If yes \([i]\) is zero, then testing is complete; no rule can be satisfied. In this case a terminal node is reached which indicates
that none of the decision table's rules is satisfied. The action(s) corresponding to the "Else-rule" would be invoked here.
The interpretation of \(n o[i]\) is identical to that of yes[i], applying to the case where the result of testing Condition test \([i]\) is false.
The algorithm's technique is due to Pollack, who explains it in fine tutorial manner [2]. Another excellent discussion is given by Press, who provides additional insights and refinements [3]. In brief, the procedure selects a row of the decision table and bifurcates the table into two decision subtables from which the selected row is excluded. One subtable contains only rules (columns) for which the selected row's condition may be true ( Y or -). The other subtable contains only rules for which the condition may be false ( N or - ). This splitting is recursively applied to each subtable (which is at least one row smaller than the parent table) until a "degenerate" subtable results. If the de-


Fig. 3
generate subtable has no rows or is composed of only dashes, then a rule is satisfied and noted. If the degenerate subtable has no columns, then the Else-rule is in effect.
In the Algol below, the author attempts to provide code which would allow a flexible and practical implementation. Computational efficiency is traded off for storage conservation and ease of modification. No local arrays are declared in recursive routines. The decision table's manipulation and subtable "creation" are effected by sorting the global row and column index arrays, row and col. The algorithm never modifies or reproduces any part of the original copy of the input decision table.
To facilitate user control of the desired attributes of the output decision tree, the routine which selects the condition row on which to split the table is made a separate procedure. To impose his own criterion for row selection, the user can easily modify or substitute code in the procedure select. His procedure generally depends on the kind of code matrix he wants. For example, if storage were a problem, he would want the shortest code matrix, i.e. a tree with fewest decision nodes. On the other hand, if execution time of the code matrix were of prime importance, he would want to minimize the expected number of exe-
cuted decision nodes．In general，each of these criteria does not yield the same select procedure．The procedure below uses a criterion given in［2］．Others may be found in［2 and 3］．

The syntax of Algol 60 does not allow strings such as＂ Y ＂， ＂\(N\)＂，and＂一＂to be elements of an array such as the decision table matrix \(t\) ．Thus in the code below，the local variables \(\mathrm{N}, \mathrm{D}\) ， and \(Y\) contain the integers \(-1,0\) and 1 to represent respectively the characters＂ N ＂，＂一＂，and＂ Y ＂．Accordingly，the input decision table must also follow these conventions，or the user must appropriately modify the three assignment statements which establish the value of these local variables．
The author thanks the referee and the editor for their valuable observations．

\section*{References：}

1．Pollack，S．L．How to build and analyze decision tables． P－2829，Nov．1963，RAND Corp．，Santa Monica，Calif．
2．Pollack，S．I．．Conversion of limited entry decision tables to computer programs．RM－4030－PR，May 1964，RAND Corp．， Santa．Monica，Calif．
3．Press，Laturence I．Conversion of decision tables to computer programs．Comm．ACM 8 （June 1965），385－390．

\section*{begin}
own integer array \(r o w[1: m], \operatorname{col}[1: n]\) ；
own real array cc［1：\(u\) ；own integer \(N, D, Y\) ，line；
integer \(i\) ；
integer procedure select（t，rows，first，last）；
comment This procedure picks a row of the decision（sub）－ table detined by the row indices row［1］，row［2］，\(\cdots\) ，row［rows］ and the coluinn iodices col［first］，col［first +1\(], \cdots\) ，col［last \(]\) ． The critanion is a mintmal＂dash count＂，with the difference between the sumber of Y＇s and the N＇s to be minimized in case of a tie．\(\lambda\) short code matrix should result［2］；
value rows，first，last；
begin
integer \(i, j\), imin，delta，deltamin；real dash，dmin；
dmin \(:==(\) last - first +1\() \times(2 \uparrow\) rows \() ;\) imin \(:=0\) ；
for \(j:=f_{i r s t}\) step 1 until last do
begin
comment Calculate column count；
\(c c[c o l j]]:=1\) ；for \(i:=1\) step 1 until rows do if \(:[r o w[i], c o l[i!]=D\) then \(c c[c o l[j]]:=2 \times c c[\operatorname{col}[j]]\) else imin \(:=1\)
end：
if \(\operatorname{imin} \neq 0\) then for \(i:=1\) step 1 until rows do
begin
comment Calculate dash count； dash \(:=\) delta \(:=0 ;\) for \(j:=\) first step 1 until last do if \(t[\) row \([i], \operatorname{col}[j]]=D\) then dash \(:=\) dash \(+c c[\operatorname{col}[j]]\) else delta ：＝
delta + （if \(t[r o w[i], c o l[j]]=Y\) then 1 else -1 ）； if dash \(<d \min \vee(d a s h=d \min \wedge a b s(\) delta \()<\) deltamin \()\) then begin
comment Row \(i\) has the smallest dash count so far；
imin \(:=i ; d \min :=d a s h ; d e l t a m i n:=a b s(d e l t a)\)
end
end；
seiect \(:=\) imin
end select；
procedure left（ \(t\) ，row，first，last，key，lyp，ldp）；
comment This procedure creates the two subtables described above with respect to condition row by rearranging the column indices \(\operatorname{col}[f i r s t]\) ，col［first +1\(], \cdots\) ，col［last \(t\) based on the con－ tents of \(t[r o w\), col \([\) first \(t], \cdots, t[r o w\), col \([\) last \(t]\) ．Upon return， col［first］up to col［lyp－1］contain all the column indices \(j\) such that \(t[r o w, j]=Y . \operatorname{col}[l y p]\) up to \(\operatorname{col}[l d p-1]\) return the indices \(j\) such that \(t[r o w, j]=D\) ；and \(c o l[l d p]\) up to col \([\) last \(]\) have the indices such that \(t[r o w, j]=N\) ．Thus the two subtables are
defined by the indices \(\operatorname{col}[f i r s t], \cdots, \operatorname{col}[l d p]\) and \(\operatorname{col}[l y p], \cdots\) ： col［last］．left is executed twice for each external reference， First it places all the＂\(Y\)＂columns at the far left．Second it calls itself to push all the＂－－．＂columns to the right of the last ＂Y＂column．The parameter key contains the code for＂Y＂ or＂一＂to indicate which character is being matched；
value row，first，last，key；
begin
integer \(i, j\) ，tem \(p\) ；
\(i:=\) first；\(j:=\) last；
for \(i:=i\) while \(i \leq j\) do if \(t[r o w\), col \([i]]=k e y\) then \(i:=i+1\) else
begin
for \(j:=j\) while \(t[r o w\), col \([j]] \neq\) key \(\wedge i<j\) do \(j:=j-1\) ；
\(\operatorname{temp}:=\operatorname{col}[i] ; \operatorname{col}[i]:=\operatorname{col}[j] ; \operatorname{col}[j]:=\operatorname{temp} ; j:=j-1\)
end；
lyp \(:=i\) ；if key \(\neq D\) then left（ \(t\), row，\(i\), last，\(D, l d p, l y p\) ）
end left；
integer procedure split（ \(t\) ，rows，first，last，test，yes，no）
comment This procedure recursively bifurcates the nonde－ generate decision subtable defined by the row indices row［1］， \(\cdots\) ，row［rows］and the column indices col［first］，\(\cdots\) ，col［last \(]\) ． The global parameter line determines the position of the code matrix into which split enters test－and－branch data． The procedure＂creates＂subtables from which the selected condition row is deleted by swapping the selected condition row index with the last row index，reducing the rows counter by 1 ，and having procedure left rearrange the column indices． If the input table has no rows，then split returns zero indicat－ ing the Else－rule．If the table is entirely dashes or has no columns，then split returns the value－col［first］，indicating a terminal，rule node．Otherwise split places the next condi－ tion to be tested as a decision node into test［line +1\(]\) and calls itself for the corresponding subtables；
value rows，first，last；
begin
integer mine， \(\operatorname{imin}, l y p, l d p\) ；
mine \(:=0\) ；if first \(\leq\) last then
begin
imin \(:=\) select（ \(t\), rows，first，last）；
if imin \(=0\) then
begin
mine \(:=-\operatorname{col}[\) first \(] ;\) if first \(\neq\) last then
begin
outstring（ 1, ＇Following rules are redundant \(:\)＇）；
for \(i:=\) first step 1 until last do outinteger（ 1, col［i］）
end；
end else
begin
mine \(:=\) line \(:=\) line \(+1 ;\) test \([\) mine \(]:=\) row \([\) imin \(] ;\)
row［imin］：＝row［rows］；
left（t，test［mine］，first，last，\(Y\) ，lyp，ldp）；
yes［mine］：＝split（ \(t\) ，rows -1 ，first，ldp－1，test，yes，no）；
comment Restore column indices rearranged in recursion；
left \((t\), test［mine］，first，lel \(p-1, Y, l y p, l d p)\) ；
no［mine］：＝split（t，rows－1，lyp，last，test，yes，no）；
row［imin］\(:=\) test［mine］
end
end；
split \(:=\) mine
end split；
for \(i:=1\) step 1 until \(m\) do row \([i]:=i\) ；
for \(i:=1\) step 1 until \(n\) do， \(\operatorname{col}[i]:=i\) ；
\(N:=-1 ; D:=0 ; Y:=1\) ；line \(:=0\) ；
\(i:=\operatorname{split}(t, m, l, n\), test，yes，no \()\) ；
decitable \(:=\) line；
comment The value of decitable is the length of code matrix； end decitable

Remark on Algorithm 394 [H]
Decision Table Translation [R.B. Dial, Comm. ACM 13 (Sept. 1970), 570]
D.R.T. Marshall [Recd. 3 Mar. 1971]

Data Processing Department, University of Waterloo Waterloo, Ontario, Canada

Key Words and Phrases: decision table, decision table translation CR Categories: 4.19

The first comment of procedure split has the words "columns" and "row" transposed in sentences four/five. It should read "If the input tables has no columns, then split returns zero,.... If the table is entirely dashes or has no rows, then split, . . . .

The statement in the main procedure invoking the procedure split uses a variable " \(l\) ", which is not defined.

This variable should be initialized to establish the "first" column in the array to be processed. This would, of course, normally be set to one.

The writer has programmed and executed the algorithm successfully in PL/I with the above noted changes.

\section*{ALGORITHM 395}

STUDENT'S \(t\)-DISTRIBUTION [S14]
G. W. Hill (Recd. 17 Nov. 1969 and 23 Mar. 1970)
C.S.I.R.O., Division of Mathematical Statistics, Glen Osmond, South Australia

KEY WORDS AND PHRASES: Student's \(t\)-statistic, distribution function, approximation, asymptotic expansion \(C R\) CATEGORIES: 5.12, 5.5
real procedure student ( \(t, n\), normal, error); value \(t, n\); real \(t, n\); real procedure normal, error;
comment student evaluates the two-tail probability \(P(t \mid n)\) that \(t\) is exceeded in magnitude for Student's [1] \(t\)-distribution with \(n\) degrees of freedom. The procedure provides results accurate to 11 decimal places and 8 significant digits for integer values of \(n\), with approximate continuation of the function through noninteger values of \(n\) (over 6 decimal places for \(n>4.3\) ).

The procedure normal \((\alpha)\) returns the area under the standard normal frequency curve to the left of \(\chi\), so that a negative argument yields the lower-tail area. The user-supplied procedure, \(\operatorname{error}(n)\), should produce a diagnostic warning and may go to a label, terminate, or return a distinctive value (zero or -1.0 ) as a signal of error to the calling program.
Student's series expansion of the probability integral is supplemented by a faster asymptotic approximation for large values of \(n\) and by a more precise "tail" series expansion for large values of \(t\).

The value of \(\chi\), defined as the normal deviate at the same probability level as \(t\), may be approximated by an asymptotic normalizing expansion of Cornish-Fisher type [2].
\(x=z+\left(z^{3}+3 z\right) / b-\left(4 z^{7}+33 z^{5}+240 z^{8}+855 z\right) / 10 b^{2}\)
\(+\left(64 z^{11}+788 z^{9}+9801 z^{7}+89775 z^{8}+543375 z^{3}+1788885 z\right) / 210 b^{8}-\cdots\)
where \(z=\left(a \times \ln \left(1+t^{2} / n\right)\right)^{4}, a=n-\frac{1}{2}\) and \(b=48 a^{2}[3]\).
This is well approximated by the first three terms with the third term's divisor replaced by
\[
10 b\left(b+0.8 z^{4}+100\right) .
\]

The student probability is double the normal single-tail area, corresponding to the deviate \(x\).
The maximum error in the probability result for all values of \(t\) is displayed as a function of \(n\) in Figure 1, for this approximation, for the first few terms of the asymptotic expansion and for Fisher's [4] fifth-order approximation used in Algorithm 321 [5] for \(n \geq 30\).
For small \(n\) and moderate \(t\) the result is calculated as \(P(t \mid n)=\) \(1-A(t \mid n)\) using Student's cosine series for \(A(t \mid n)\), rearranging formulas 26.7.3 and 26.7.4 of the NBS Handbook [6] in nested form
\(A(t \mid n\) odd \()=\frac{2}{\pi}\left[\arctan (y)+\frac{y}{b}\left\{1+\frac{2}{3 b}\left\{\cdots \frac{(n-5)}{(n-4) b}\right.\right.\right.\)
\[
\left.\left.\left.\cdot\left\{1+\frac{(n-3)}{(n-2) b}\right\} \cdots\right\}\right\}\right]
\]
\(A(t \mid n\) even \()=\frac{y}{\sqrt{ }(b)}\left\{1+\frac{1}{2 b}\left\{\cdots \frac{(n-5)}{(n-4) b}\left\{1+\frac{(n-3)}{(n-2) b}\right\}^{\prime} \cdots\right\}\right\}\),
where \(y=\sqrt{ }\left(t^{2} / n\right)\) and \(b=1+t^{2} / n\). In the nested form, terms
are treated in reverse order to the summation in Algorithm 321 and Algorithm 344 [7], reducing the number of operations required and reducing build up of roundoff error. Explicit decrementing of the "loop" parameter ensures that its final value remains defined on exit from the loop for use in an odd/even test.

Execution times for Fortran versions run on a CDC 3200 with programmed floating point are displayed in Figure 2, which indicates that nesting decreases the time for the cosine series method by about 30 percent and that it is appropriate to change over to the asymptotic method (using Algorithm 209 [8] for normal) when \(n \geq 20\). Although this approximation would be accurate to more than 11 decimal places, the use of Algorithm 209 limits accuracy to about 9 decimals. This accuracy may be sufficient for many applications, in which case student may be abbreviated by deleting lines 15 and 27 through 35 , removing


Fig. 1. Maximum error of approximations for "Student's" \(t\)-probability: 1, 2, and 3 term expansion, approximation with adjusted divisor, and Fisher's 5th order approximation


Fig. 2. Execution times (CDC3200 with programmed floating point). Broken lines: "tail" series for selected values of \(t\) (upper left); asymptotic method using precise normal (right)
the declaration and assignment of \(z\) from line 3, replacing line 5 by
\[
\text { if } n>\operatorname{entier}(n) \vee n \geq 20 \text { then }
\]
and replacing line 25 by
\[
\text { student }:=\text { if } a>1.0 \text { then } 0.0 \text { else } 1.0-a
\]

The latter avoids spurious negative results due to roundoff error when \(a\) is near 1 for large values of \(t\). The storage required for this abbreviated version was a little less than for Algorithm 344 and less than half that for Algorithm 321.
Applications such as production of tables or function inversion to obtain extreme quantiles may require greater precision at extreme probability levels than these methods provide. For the cosine series and the asymptotic approximation using a high precision procedure for normal, such as Algorithm 304 [9], the relative error in the result increases in magnitude as the result decreases to extremely small values, as illustrated in Figure 3.


Fig. 3. Relative error, \(\left|P-P^{*}\right| / P\), of approximation \(P^{*}\); shaded region for restricted \(t\) values

For small \(P\) more precise results are obtained using a series expansion of \(P(t \mid n)\) in terms of \(w=1 / \operatorname{sqrt}\left(1+t^{2} / n\right)\),
\[
P(t \mid n)=C(n) \times w^{n}\left\{\frac{1}{n}+\frac{1 \times w^{2}}{2(n+2)}+\frac{1 \times 3 \times w^{4}}{2 \times 4(n+4)}+\cdots\right\}
\]
where \(C(n)=\Gamma((n+1) / 2) /(\sqrt{ } \pi \times \Gamma(n / 2))\). The series is summed till a negligible term occurs and then the factor \(C(n) \times w^{n}\) is applied using the same repeated loop as the cosine series. Except for \(w\) near 1 when \(t\) is small, the truncation error is small, and accumulation of error in the repeated loop is moderate unless \(n\) is very large.
The cosine series method loses precision mainly in the subtraction \(1-A(t \mid n)\) as well as from the sqrt procedure and arctan when \(n\) is odd. In the worst case, \(n=19\), the error is kept below 3 decimals by changing to the tail series if \(t>2\), which ensures 8 significant digits in the result for the 36 -bit (about 11 decimal) precision real variables for the processor used. As shown in Figure 3, change over from the asymptotic method to the tail series when \(t^{2}>n\) maintains about 8 significant digits in the result. For a machine of greater precision the use of more terms in the asymptotic series may be warranted, and the change over criteria would need adjustment to balance speeds and precision between the three methods.
Execution times for the tail series are shown as broken lines in Figure 2 for selected values of \(t\) : with bounds \(t \geq 2\) for \(n<20\), \(t^{2} \leq n\) for \(n \geq 20\) and with the limit \(n<200\) preventing excessive
time for large \(t\) beyond a probability level near \(10^{-40}\). For the asymptotic method, using for normal a higher precision procedure based on Algorithm 304, the execution times for different values of the argument approach those shown at the right of Figure 2. Averaged over a range of arguments arising in practice, the provision for higher precision more than doubles the time required. In the case of Smirnov's [10] 6D tables of \(S(t \mid n)=\) \(1-0.5 \times P(t \mid n)\), retabulation to 10 D , using the more precise procedure for normal, increased the time from about 7 minutes to 12 minutes, while introducing the tail series method to tabulate \(P(t \mid n)\) over the same range to 8 significant digits increased the time further to about 16 minutes. Use of the asymptotic approximation enabled Smirnov's 6D tables of \(\psi(t \mid 1000 / \xi)\), which is an approximate continuation of \(S(t \mid n)\) over noninteger values of \(n=1000 / \xi\), to be extended to 10D for \(\xi=0(2) 30\) in 5 minutes, and permits continuation to \(\xi=200\) with over 6D accuracy as indicated in Figure 1.
The preparation of diagrams by Murray C. Childs is gratefully acknowledged.
References:
1. Gosset, W. S. (Student). On the probable error of a mean. Biometrika 6 (1908), 1.
2. Hill, G. W., and Davis, A. W. Generalized asymptotic expansions of Cornish-Fisher type. Ann. Math. Statist. 39, 4(1968), 1264.
3. Hill, G. W. Progress results on asymptotic approximations for Student's \(t\). Unpublished manuscript, Oct. 1969.
4. Fisher, R. A. Expansion of "Student's" integral in powers of \(n^{-1}\). Metron, 5 (1926), 109-112.
5. Morris, J. Algorithm 321, \(t\)-test. Comm. ACM 11 (Feb. 1968), 115.
6. Abramowitz, M., and Stegun, I. A. (Eds.) Handbook of Mathematical Functions. Appl. Math. Ser. Vol. 55, Nat. Bur. Stand., US Govt. Printing Off. Washington, D.C., 1965, p. 948.
7. Levine, D. A. Algorithm 344, Student's \(t\)-distribution. Comm. ACM 12 (Jan. 1969), 37.
8. Ibbetson, D. Algorithm 209, Gauss. Comm. ACM 6 (Oct. 1963), 616.
9. Hill, I. D., and Joyce, S. A. Algorithm 304, Normal. Comm. ACM 10 (June 1967), 374.
10. Smirnov, N. V. Tables for the Distribution and Density Functions of \(t\)-Distribution. Pergamon Press, New York, 1961;
if \(n<1\) then student \(:=\operatorname{error}(n)\) else
begin
real \(a, b, y, z ; z:=1.0\);
\(t:=t \uparrow 2 ; \quad y:=t / n ; \quad b:=1.0+y ;\)
if \(n>\operatorname{entier}(n) \vee n \geq 20 \wedge t<n \bigvee n>200\) then
begin
comment Asymptotic series for large or noninteger \(n\); if \(y>{ }_{10}-6\) then \(y:=\ln (b)\);
\(a:=n-0.5 ; \quad b:=48.0 \times a \uparrow 2 ; \quad y:=a \times y\);
\(y:=((((-0.4 \times y-3.3) \times y-24.0) \times y-85.5) /\) \((0.8 \times y \uparrow 2+100.0+b)+y+3.0) / b+1.0) \times s q r t(y) ;\)
student \(:=2.0 \times\) normal \((-y)\);
end
else
if \(n<20 \wedge t<4.0\) then
begin
comment Nested summation of "cosine" series;
\(a:=y:=\operatorname{sqrt}(y)\); if \(n=1\) then \(a:=0.0\);
loop:
\(n:=n-2\); if \(n>1\) then
begin \(a:=(n-1) /(b \times n) \times a+y\); go to loop end;
\(a:=\) if \(n=0\) then \(a / \operatorname{sqrt}(b)\)
else \((\arctan (y)+a / b) \times 0.63661977236\);
comment \(2 / \pi=0.6366197723675813430755351 \cdots\);
student \(:=z-a\)
```

end
else
begin
comment "tail" series expansion for large t-values;
integer j; a:= sqrt(b); y:=a\timesn; j:=0;
for j:= j+2 while }a\not=z\mathrm{ do

```
```

 begin
 z:=a; y:= y 人 (j-1)/(b><j); a:=a+y/(n+j)
 end;
 n:=n+2; z:=y:=0.0; a := -a; go to loop
 end
 end

```

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 238-239.
REMARK ON ALGORITHM 395
Student's \(t\)-distribution [S14]
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 617-619]
and
REMARK ON ALGORITHM 396
Student's Quantiles [S14]
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 619-620]
Mohamed el Lozy [Recd 9 June 1978]
Department of Nutrition, Harvard School of Public Health, 665 Huntington
Ave., Boston, MA 02115
Both of these algorithms incorporate very accurate mathematical methods, but contain a source of loss of precision which is severe for the many processors with precision less than or not sufficiently greater than that claimed for the algorithms.

In Algorithm 395 the use of the asymptotic series involves the evaluation of \(\ln \left(1+t^{2} / n\right)\). For small \(y=t^{2} / n\) and \(b=1+y, \ln (b)\) is of the order of magnitude of \(y\), so that the statement
if \(y>10^{-6}\) then \(y:=\ln (b)\)
admits a loss of precision of up to 6 decimal digits. This loss will be especially marked on a machine with hexadecimal number representation, since the leading byte in \(1+y\) will be hexadecimal 1 , or binary 0001 , with a loss of a further 3 bits, in addition to the loss inherent in the addition. Where the processor's implementation of \(\ln (b)\) for \(b\) near 1 effectively involves the Taylor series \((b-1)-(b-\) \(1)^{2} / 2+\ldots\), the replacement statement
if \(b \neq 1\) then \(y:=y \times(\ln (b) /(b-1))\);
as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating the logarithm as evidenced by column 3 of Table I. However, in the general case there are two solutions, the simplest of which is to evaluate \(Y=\) DLOG (1.0D0 \(+\operatorname{DBLE}(Y)\) ), using the variable \(Y\) (single precision) for \(t^{2} / n\), as in the algorithm under discussion. An alternative method might be based on the use of single precision LOG \((1.0+Y)\) for "sufficiently large" \(Y\), and a suitable number of terms of the Taylor expansion otherwise. In this case the optimal crossover point between the two methods of evaluation would be machine dependent and the coding would be longer, as exemplified for an analogous case in Algorithm 465 [2].

In Algorithm 396 the expression \(\exp \left(x^{2} / n\right)-1\) occurs, and here again substantial loss of precision can occur for small \(y\), to use the algorithm's notation. Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts to a Taylor series expansion of \(\exp (y)-1\) for \(y<0.002\), but this choice is machine dependent and unsuitable for 32 -bit machines. Here again I would opt for double precision evaluation of that one expression (storing the result in single precision) over the alternative Taylor series approach.

\footnotetext{
The Remark on Algorithm 396 was supported by the Fund for Research and Teaching, Department of Nutrition, Harvard School of Public Health.
}
```

end
else
begin
comment "tail" series expansion for large t-values;
integer j; a:= sqrt(b); y:=a\timesn; j:= 0;
for }j:=j+2\mathrm{ while }a\not=z\mathrm{ do

```
        begin
        \(z:=a ; \quad y:=y \times(j-1) /(b \times j) ; \quad a:=a+y /(n+j)\)
        end;
        \(n:=n+2 ; z:=y:=0.0 ; a:=-a ;\) go to loop
    end
end

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 238-239.
REMARK ON ALGORITHM 395
Student's \(\boldsymbol{t}\)-distribution [S14]
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 617-619]
and
REMARK ON ALGORITHM 396
Student's Quantiles [S14]
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 619-620]
Mohamed el Lozy [Recd 9 June 1978]
Department of Nutrition, Harvard School of Public Health, 665 Huntington
Ave., Boston, MA 02115
Both of these algorithms incorporate very accurate mathematical methods, but contain a source of loss of precision which is severe for the many processors with precision less than or not sufficiently greater than that claimed for the algorithms.
In Algorithm 395 the use of the asymptotic series involves the evaluation of \(\ln \left(1+t^{2} / n\right)\). For small \(y=t^{2} / n\) and \(b=1+y, \ln (b)\) is of the order of magnitude of \(y\), so that the statement
if \(y>10^{-6}\) then \(y:=\ln (b)\)
admits a loss of precision of up to 6 decimal digits. This loss will be especially marked on a machine with hexadecimal number representation, since the leading byte in \(1+y\) will be hexadecimal 1 , or binary 0001 , with a loss of a further 3 bits, in addition to the loss inherent in the addition. Where the processor's implementation of \(\ln (b)\) for \(b\) near 1 effectively involves the Taylor series \((b-1)-(b-\) \(1)^{2} / 2+\ldots\), the replacement statement
if \(b \neq 1\) then \(y:=y \times(\ln (b) /(b-1))\);
as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating the logarithm as evidenced by column 3 of Table I. However, in the general case there are two solutions, the simplest of which is to evaluate \(Y=\operatorname{DLOG}(1.0 \mathrm{D} 0\) \(+\mathrm{DBLE}(Y)\) ), using the variable \(Y\) (single precision) for \(t^{2} / n\), as in the algorithm under discussion. An alternative method might be based on the use of single precision LOG (1.0 + Y) for "sufficiently large" \(Y\), and a suitable number of terms of the Taylor expansion otherwise. In this case the optimal crossover point between the two methods of evaluation would be machine dependent and the coding would be longer, as exemplified for an analogous case in Algorithm 465 [2].

In Algorithm 396 the expression \(\exp \left(x^{2} / n\right)-1\) occurs, and here again substantial loss of precision can occur for small \(y\), to use the algorithm's notation. Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts to a Taylor series expansion of \(\exp (y)-1\) for \(y<0.002\), but this choice is machine dependent and unsuitable for 32 -bit machines. Here again I would opt for double precision evaluation of that one expression (storing the result in single precision) over the alternative Taylor series approach.

\footnotetext{
The Remark on Algorithm 396 was supported by the Fund for Research and Teaching, Department of Nutrition, Harvard School of Public Health.
}

Table I. Relative Errors in the Calculation of \(\ln \left(1+t^{2} / n\right)\) and \(\exp \left(x^{2} / n\right)-1\) by the Methods of Algorithms 395 and 396, for \(x=t=2\) and Various Values of \(n\)
\begin{tabular}{rccccccc}
\hline & \multicolumn{4}{c}{\(\ln \left(1+t^{2} / n\right)\)} & & \multicolumn{2}{c}{\(\exp \left(x^{2} / n\right)-1\)} \\
\cline { 2 - 4 } \cline { 6 - 7 }\(n\) & PDP & \multicolumn{2}{c}{ IBM } & IMSL/IBM & & \multicolumn{2}{c}{ PDP } \\
\hline 20 & \(0.245 \mathrm{E}-6\) & \(0.654 \mathrm{E}-6\) & 0.0 & & \(0.538 \mathrm{E}-6\) & \(0.242 \mathrm{E}-5\) \\
40 & \(0.313 \mathrm{E}-6\) & \(0.500 \mathrm{E}-5\) & 0.0 & & \(0.708 \mathrm{E}-6\) & \(0.567 \mathrm{E}-5\) \\
80 & \(0.137 \mathrm{E}-5\) & \(0.149 \mathrm{E}-4\) & \(0.299 \mathrm{E}-6\) & & \(0.203 \mathrm{E}-5\) & \(0.118 \mathrm{E}-4\) \\
160 & \(0.754 \mathrm{E}-6\) & \(0.151 \mathrm{E}-4\) & 0.0 & & \(0.177 \mathrm{E}-5\) & \(0.311 \mathrm{E}-4\) \\
320 & \(0.817 \mathrm{E}-5\) & \(0.150 \mathrm{E}-4\) & 0.0 & & \(0.281 \mathrm{E}-5\) & \(0.349 \mathrm{E}-4\) \\
640 & \(0.688 \mathrm{E}-5\) & \(0.909 \mathrm{E}-4\) & 0.0 & & \(0.187 \mathrm{E}-4\) & \(0.178 \mathrm{E}-4\) \\
1280 & \(0.201 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & \(0.298 \mathrm{E}-6\) & & \(0.153 \mathrm{E}-4\) & \(0.282 \mathrm{E}-3\) \\
2560 & \(0.224 \mathrm{E}-5\) & \(0.244 \mathrm{E}-3\) & \(0.149 \mathrm{E}-6\) & & \(0.372 \mathrm{E}-6\) & \(0.447 \mathrm{E}-6\) \\
5120 & \(0.700 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & 0.0 & & \(0.745 \mathrm{E}-7\) & \(0.298 \mathrm{E}-6\) \\
10240 & \(0.104 \mathrm{E}-3\) & \(0.164 \mathrm{E}-2\) & 0.0 & & \(0.745 \mathrm{E}-7\) & 0.0 \\
\hline
\end{tabular}

Table I shows the relative errors of single precision evaluation of these two expressions for \(t\) (or \(x\) ) equal to 2 and for various values of \(n\), using the first two terms of the Taylor series for the exponential for \(y<0.002\) as in the algorithm, as well as the IMSL "fix." The computations were done on an IBM 370/168 running under OS/MVT and on a PDP 11/70 running under UNIX. Though both machines have a mantissa of 24 bits, the results on the PDP are far better than those on the 370, presumably due to the hexadecimal normalization of the latter machine.

\section*{REFERENCES}
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973.
2. Hill, G.W. Algorithm 465. Student's \(t\) frequency. Comm. ACM 16, 11 (Nov. 1973), 690.

\section*{REMARK ON ALGORITHM 395}

Student's \(t\)-Distribution [S14]
[G. W. Hill, Commun. ACM 13, 10 (Oct. 1970), 617-618.]
G. W. Hill [Received 6 December 1978; revised 7 July 1979; accepted 6 August 1979]
Division of Mineral Chemistry, CSIRO, Port Melbourne, Australia 3207.
The precision loss noted in [1], in the evaluation of \(\ln \left(1+t^{2} / n\right)\) for Algorithm 395 , exceeds the margin of precision of the 36 -bit processor over the eight significant decimal digits target mentioned in the algorithm. A suitable correction for this case is the replacement (recall that \(y=t^{2} / n\) and \(b=1+t^{2} / n\) ) of line 8 of the procedure body by
if \(y>0.01\) then \(y:=\ln (b)\)
else \(y:=((-y \times 0.75+1.0) \times y / 3.0-0.5) \times y \times y+y\);
However, when extended precision is required [2, 4], a number of details of the algorithm must be changed. A more generally applicable replacement of line 8 imitates a technique in Algorithm 465 [3].
```

$z:=t:=y$; if $y>c \max$ then $y:=\ln (b)$
else
for $a:=2.0, a+1.0$ while $y \neq b$ do
begin $z:=-z \times t ; b=y ; y:=z / a+y$ end;

```

For small \(y\) (<cmax say) the precision lost in evaluating \(\ln (1+y)\) corresponds to a relative error about \(\epsilon / y\), where \(\epsilon\) denotes the relative magnitude of processor roundoff. The alternative summation of the logarithmic series until the \(R\) th term
is negligible, \(\left(y^{R} /(R+1)<\epsilon\right)\), accumulates roundoff error resulting in an average relative error of about \(\epsilon \sqrt{R}\). The maximum of these relative errors is minimized, as in Algorithm 465, by choosing \(\mathrm{cmax}=R^{-1 / 2}\), where \(R\) is determined for a \(p\)-bit precision processor by an approximate criterion for neglecting the \(R\) th term; \(c m a x / R \approx \epsilon=2^{-p}\), or equivalently, \(R / 2+1 \approx 2^{p}\). For \(p=36\) the solutions \(R=16\) and cmax \(=0.25\) imply an approximate relative error about \(4 \epsilon\) in the result. For precision as extended as \(p=96\), cmax \(\doteq 0.168\) holds this precision loss to about one decimal digit.

For each combination of actual parameter values, Algorithm 395 applies criteria to select whether to use Student's cosine series, the asymptotic normal approximation, or the "tail" series, in order to achieve \(8 S\) (significant decimal digits) without excessive loss of speed for the \(10.8 S\) processor used. For an extended precision version the criteria must be changed to balance precision against speed characteristics of the processor used. In the case of double precision to about 29 S of a CDC 6000-7000 series processor; a target precision of \(25 S\) allows for precision loss up to four decimal digits, such as occurs in the subtraction of almost equal quantities, \(P(t / n)=1-A(t / n)\), to obtain small tail probabilities using Student's cosine series for \(A(t / n)\). The effect of this and other causes of precision loss is illustrated in Figure 3 of Algorithm 395.

Greater precision is achieved in the case of extreme probability levels and large \(n\) values by the use of the asymptotic normal approximation. To improve precision for larger \(n\), it is efficient to extend the normal approximation up to the sixth term of the series [2] in terms of \(z=\left[\left(n-\frac{1}{2}\right) \ln \left(1+t^{2} / n\right)\right]^{1 / 2}\) and \(b=48\left(n-\frac{1}{2}\right)^{2}\).
\[
\begin{aligned}
\chi= & z+\left(z^{3}+3 z\right) / b-\left(4 z^{7}+33 z^{5}+240 z^{3}+855 z\right) / 10 b^{2} \\
& +\left(64 z^{11}+788 z^{9}+9801 z^{7}+89775 z^{5}+543375 z^{3}+1788885 z\right) / 210 b^{3} \\
& -\left(1152 z^{15}+18896 z^{13}+329496 z^{11}+4698585 z^{9}+52027920 z^{7}\right. \\
& \left.+424303110 z^{5}+2349874800 z^{3}+7412830425 z\right) / 4200 b^{4} \\
& +\left(12288 z^{19}+251776 z^{17}+5645776 z^{15}+108788520 z^{13}\right. \\
& +1738275417 z^{11}+22499221635 z^{9}+229192224030 z^{7} \\
& \left.+1754611114410 z^{5}+9309549058425 z^{3}+28756631378475 z\right) / 46200 b^{5}-\cdots
\end{aligned}
\]

To achieve at least \(25 S\) for \(n>100\), the sixth term's divisor is replaced by
\[
46200 b^{4}\left(b+0.43595 z^{4}+2 z^{2}+537\right)
\]
which accounts for a substantial portion of the omitted next terms, in a fashion similar to the effect displayed in Figure 1 of Algorithm 395, which also illustrates "diminishing returns" in precision gain from additional terms of the series. However, the consequent increase in computing time is moderated by the fact that two-thirds of the arithmetic operations arise in evaluating the fifth and sixth terms, for which single-precision arithmetic and representation of coefficients prove sufficient.

For large enough values of \(z^{4} / b=\left[\ln \left(1+t^{2} / n\right)\right]^{2} / 48\), the asymptotic approximation becomes poor or even divergent, so that for such large values of \(1+t^{2} / n\) the tail series in powers of \(w^{2}=1 /\left(1+t^{2} / n\right)\) is used and converges rapidly with little accumulation of rounding error. The factor \(\Gamma((n+1) / 2) /(\sqrt{\pi} \times \Gamma(n / 2)) \times\) \(w^{n}\) may be evaluated using the same repeated loop as for the cosine series, or by using Algorithm 465 to evaluate the frequency function \(f(t \mid n)\) as a factor for the equivalent tail series expansion,
\[
P(t \mid n)=2 f(t \mid n) \times \frac{\sqrt{n}}{\sqrt{w}}\left[\frac{1}{n}+\frac{1 \times w^{2}}{2(n+2)}+\frac{1 \times 3 \times w^{4}}{2 \times 4(n+4)}+\cdots\right]
\]

This can improve speed for large \(n\) and, since Algorithm 465 is valid for noninteger \(n\), permits continuation of the probability integral over noninteger values of \(n\) down to \(n=1\) with considerable precision for \(t^{2}>n\); that is \(w^{2}<\frac{1}{2}\).

In neither form does the series converge well for \(w\) near 1 ; and for small \(t\) or large \(n\) the time required for evaluation, the accumulated roundoff error, and the truncation error can increase to unacceptable levels.

Where the domains of validity of the three methods overlap, correspondence between results of two methods can be used as a basis for determining the error level of the third. Where two methods achieve precision exceeding the target, counts of instructions or timing tests may be used to select the faster. Increase or decrease of the target precision is found to have a marked effect on computing time so that some compromise trade-off of precision against speed is required according to the particular processor used and the intended application. Reasonable speed of execution with precision at least to \(23 S\), but generally \(25 S\) or more, is achieved for the CDC 6000-7000 series processor by replacing line 5 by (recall that \(t\) represents \(\mathrm{t}^{2}\), the square of the actual parameter value)
if \(n>\operatorname{entier}(n) \vee n>1000 \vee n \geq 100 \wedge t<0.1 \times n-5\) then
to select evaluation by the six-term asymptotic approximation. Replacement of line 15 by
if \(n<100 \wedge t<16\) then
selects the cosine series method for smaller values of \(n\) and \(t<4\); the else clause evaluates the double-precision tail expansion to obtain a sufficiently precise result for smaller probability levels. For continuation extension as outlined in the preceding paragraph, the replacements of lines 5 and 15 are
if \(n>1000 \vee n \geq 100 \wedge t<0.1 \times n-5\) then
if \(n=\operatorname{entier}(n) \wedge n<100 \wedge t<16\) then
Some margin of precision loss from the full precision level of the processor is unavoidable due to accumulated roundoff error and is traded off further to achieve an acceptable speed of execution. With this reservation the methods of Algorithm 395 can be extended to provide higher precision results, as evidenced by their use in evaluating quantiles to 20 D [2].

\section*{REFERENCES}
1. El Lozy, M. Remark on Algorithm 395. Student's \(t\) distribution. ACM Trans. Math. Softw. 5, 2 (June 1979), 238-239.
2. Hill, G.W. Reference Table: "Student's" \(t\)-distribution quantiles to 20 D . Tech. Paper No. 35, Div. Math. Statist., CSIRO, Australia, 1972, 24pp.
3. Hill, G.W. Algorithm 465. Student's \(t\) frequency. Commun. ACM 16, 11 (Nov. 1973), 690.
4. Ling, R.F. A study of the accuracy of some approximations to \(t, \chi^{2}\) and \(F\) tail probabilities. \(J\). Amer. Statist. Assoc. 73, 362 (1978), 274-283.

Table I. Relative Errors in the Calculation of \(\ln \left(1+t^{2} / n\right)\) and \(\exp \left(x^{2} / n\right)-1\) by the Methods of Algorithms 395 and 396 , for \(x=t=2\) and Various Values of \(n\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(n\)} & \multicolumn{3}{|c|}{\(\ln \left(1+t^{2} / n\right)\)} & \multicolumn{2}{|r|}{\(\exp \left(x^{2} / n\right)-1\)} \\
\hline & PDP & IBM & IMSL/IBM & PDP & IBM \\
\hline 20 & \(0.245 \mathrm{E}-6\) & \(0.654 \mathrm{E}-6\) & 0.0 & \(0.538 \mathrm{E}-6\) & \(0.242 \mathrm{E}-5\) \\
\hline 40 & \(0.313 \mathrm{E}-6\) & \(0.500 \mathrm{E}-5\) & 0.0 & \(0.708 \mathrm{E}-6\) & \(0.567 \mathrm{E}-5\) \\
\hline 80 & \(0.137 \mathrm{E}-5\) & \(0.149 \mathrm{E}-4\) & \(0.299 \mathrm{E}-6\) & \(0.203 \mathrm{E}-5\) & \(0.118 \mathrm{E}-4\) \\
\hline 160 & \(0.754 \mathrm{E}-6\) & 0.151E-4 & 0.0 & \(0.177 \mathrm{E}-5\) & \(0.311 \mathrm{E}-4\) \\
\hline 320 & \(0.817 \mathrm{E}-5\) & \(0.150 \mathrm{E}-4\) & 0.0 & \(0.281 \mathrm{E}-5\) & 0.349E-4 \\
\hline 640 & \(0.688 \mathrm{E}-5\) & \(0.909 \mathrm{E}-4\) & 0.0 & \(0.187 \mathrm{E}-4\) & 0.178E-4 \\
\hline 1280 & \(0.201 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & \(0.298 \mathrm{E}-6\) & \(0.153 \mathrm{E}-4\) & \(0.282 \mathrm{E}-3\) \\
\hline 2560 & \(0.224 \mathrm{E}-5\) & \(0.244 \mathrm{E}-3\) & \(0.149 \mathrm{E}-6\) & 0.372E-6 & \(0.447 \mathrm{E}-6\) \\
\hline 5120 & 0.700E-4 & \(0.244 \mathrm{E}-3\) & 0.0 & \(0.745 \mathrm{E}-7\) & \(0.298 \mathrm{E}-6\) \\
\hline 10240 & \(0.104 \mathrm{E}-3\) & \(0.164 \mathrm{E}-2\) & 0.0 & \(0.745 \mathrm{E}-7\) & 0.0 \\
\hline
\end{tabular}

Table I shows the relative errors of single precision evaluation of these two expressions for \(t\) (or \(x\) ) equal to 2 and for various values of \(n\), using the first two terms of the Taylor series for the exponential for \(y<0.002\) as in the algorithm, as well as the IMSL."fix." The computations were done on an IBM 370/168 running under OS/MVT and on a PDP 11/70 running under UNIX. Though both machines have a mantissa of 24 bits, the results on the PDP are far better than those on the 370 , presumably due to the hexadecimal normalization of the latter machine.

\section*{REFERENCES}
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973.
2. Hill, G.W. Algorithm 465. Student's \(t\) frequency. Comm. ACM 16, 11 (Nov. 1973), 690.

\section*{ALGORITHM 396}

\section*{STUDENT'S \(t\)-QUANTILES [S14]}

\author{
G. W. Hill (Recd. 6 Jan. 1970 and 18 May 1970) \\ C.S.I.R.O., Division of Mathematical Statistics, Glen Osmond, South Australia
}

KEY WORDS AND PHRASES: Student's \(t\)-statistic, quantile, asymptotic approximation
\(C R\) CATEGORIES: 5.12,5.5
real procedure \(t\) quantile ( \(P, n\), normdev, error);
value \(P, n\); real \(P, n\); real procedure normdev, error;
comment This algorithm evaluates the positive quantile at the (two-tail) probability level \(P\), for Student's \(t\)-distribution with \(n\) degrees of freedom. The quantile function is an inverse of the two-tail
\[
P(t \mid n)=2 \frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{\sqrt{ }(\pi n) \Gamma\left(\frac{1}{2} n\right)} \int_{t}^{\infty} \frac{d u}{\left(1+u^{2} / n\right)^{\left(\frac{(1 n+1)}{}\right)}}
\]
which is approximated in Algorithm 395 [1] by series whose inverses are used in this algorithm for \(t\) quantiles. Test calculations to 36 -bit precision indicate that the result is correct to at least 6 significant digits, even for the analytic continuation through noninteger values of \(n>5\).
The procedure normdev( \(p\) ) is assumed to return a negative normal deviate at the lower tail probability level \(p\), e.g. \(\mathbf{- 2 . 3 2}\) for \(p=0.01\). The user-supplied procedure for \(\operatorname{error}(n)\) should give a diagnostic warning that the value of \(P\) or \(n\) is invalid and may go to a label, terminate, or return a distinctive value as an error signal to the calling program.
For \(n=1\) and \(n=2\) the exact result of integration is readily inverted to yield \(t=\cot (P \times \pi / 2)\) and \(t^{2}=2 /(P(2-P))-2\), respectively. For larger \(n\) an asymptotic inverse expansion about normal deviates is applicable, while for smaller values of \(P\) a second series expansion is used to achieve sufficient precision. Both approximations have been adjusted to enhance precision for \(n\) as low as 3 .
Both methods involve an expansion of the factor
\[
d / n=1 / 2 \sqrt{\pi} \Gamma(1 / 2 n) / \Gamma(1 / 2 n+1 / 2)
\]
in terms of \(a=1 /\left(n-\frac{1}{2}\right)\) and \(b=48 / a^{2}\)
\[
d / n=\sqrt{(a \pi / 2)}\left(1-3 / b+94.5 / b^{2}-9058.5 / b^{3}+\cdots\right)[2] .
\]

A three term approximation uses \(b(b+c)\) instead of \(b^{2}\) as a divisor, where the coefficients in
\[
c=96.36-16 a-98 a^{2}+20700 a^{3} / b
\]
have been fitted to ensure 8 significant digits in \(d\) for \(n\) as low as 3 .
The inverse asymptotic expansion of Cornish-Fisher type relates a function \(y(t)=\sqrt{\left[\left(n-\frac{1}{2}\right) \ln \left(1+t^{2} / n\right)\right]}\) to the normal deviate \(x\) at the corresponding probability level, \(P / 2\) :
\[
\begin{aligned}
& y=x-\left(x^{3}+3 x\right) / b+\left(4 \chi^{7}+63 \chi^{5}+360 \chi^{3}+945 x\right) / 10 b^{2} \\
& -\left(64 x^{11}+1628 x^{0}+19881 \chi^{7}+145719 \chi^{5}+694575 x^{8}\right. \\
& +1902285 \chi) / 210 b^{3}+\cdots[2],
\end{aligned}
\]
whence \(t=\sqrt{\left[n \times\left(\exp \left(a \times y^{2}\right)-1\right)\right]}\). For a three term approxi-
mation the third term's divisor is replaced by
\[
10 b \times\left(b+c-2 \chi-7 \chi^{2}-5 \chi^{3}+0.05 \times d \times \chi^{4}\right),
\]
whose coefficients have been fitted to reduce the error for small \(n\) and for larger \(n\) and \(\chi\). For \(n<5, c\) is increased by \(0.3(n-4.5)\) \((x+0.6)\) to further reduce error in an interval of \(P\) not well covered by the following approximation.
For small \(P\), where \(t^{2} / n\) is large, the iniegrand may be expanded in terms of \(w^{2}=1 /\left(1+t^{2} / n\right)\) and integrated term by term to yield
\[
P=\frac{n w^{n}}{d}\left\{\frac{1}{n}+\frac{w^{2}}{2(n+2)}+\frac{1 \times 3 w^{4}}{2 \times 4(n+4)}+\cdots\right\}
\]
which may be inverted to express \(t^{2} / n\) in terms of \(y=(P \times d)^{2 / n}\)
\[
\begin{aligned}
\frac{e^{2}}{n}=\frac{1}{y}+\frac{n+1}{n+2}\left\{-1+\frac{y}{2(n+4)}\right. & +\frac{n \times y^{2}}{3(n+2)(n+6)} \\
& \left.+\frac{n(n+3)\left(2 n^{2}+9 n-2\right) y^{8}}{8(n+2)^{2}(n+4)^{2}(n+8)}+\cdots\right\} .
\end{aligned}
\]

Since the ratio of successive terms is nearly \(n \times y /(n+6)\) for small \(n\), replacement of the term in \(y^{2}\) by \(y /[3(n+2)\{(n+6) /\) ( \(n \times y\) ) -1.0\}] provides an approximate allowance for subsequent terms in the series, which is empirically improved by replacing the -1.0 by \(-0.822-0.089 \times d\).
As \(n\) and \(P\) increase, the errors for the asymptotic approximation decrease, whereas errors for the second series increase, so that for each value of \(n\) the error curves intersect at a value of \(P\) above which the asymptotic approximation is better and below which the second series should be used. By adjusting the two approximations the error level at these intersections has been balanced at about the seventh significant digit for \(n \geq 3\) and \(P>10^{-24}\). The value of \(y\) at these points is about \(a+0.05\) and this fact provides a convenient criterion for selecting which approximation to use: the asymptotic series if \(y\) exceeds \(a+\) 0.05 , otherwise the second series.

Although better approximations could be obtained by use of more terms in each series, greater precision can be achieved by using the result of this algorithm as a starting value for iterative inversion of \(P(t \mid n)\), whose value and derivative can be computed with considerable precision using recurrence relations as in Algorithm 395.
A comparison of results from this algorithm against values obtained by inverting the function provided by Algorithm 395 indicates a precision of over 6 significant digits for \(10^{-24} \leq\) \(P \leq 0.9, n \geq 1\). At the conventional tabulation points in \(0.001 \leq\) \(P \leq 0.9\) results for \(n=1, n=2\), and \(n>10\) checked to 8 significant digits.
Previously published tables [3,4,5] provide 3 or 4 decimal place check values, some of which are found to be slightly in error. Thus for \(n=2, P=0.001, t\) is given as 31.598 by Fisher and Yates and by Federighi, 31.5991 by Smirnov, and 31.5990546 by this procedure, while for \(n=1, P=0.001\) the value 636.6096 given by Smirnov conflicts with Fisher and Yates, Federighi (636.619) and this procedure ( 636.61925 ). Other errors in the last few digits in Smirnov's table for low values of \(n\) and \(P\) include 10.2129 for \(n=3, P=0.002\), which should be 10.2145 , and 4.7812 for \(n=9, P=0.001\), which should be 4.7809 .
\(t\) quantile may be used to obtain percentiles at values of \(P\) and
\(n\) not provided in existing tables or for extending their accuracy. Such tables are customarily used for assessing the significance of a sample value for \(t\), but for automatic computation the probability level is more effectively determined as \(P(t \mid n)\) using a direct procedure such as Algorithm 395.

Pseudorandom \(t\)-values may be generated for sampling applications by using uniformly distributed pseudorandom numbers for \(P\), and in this case normdev may be a real procedure returning pseudorandom normal deviates which are independent of \(P\).

\section*{References:}
1. Hill, G. W. Algorithm 395, Student's t-distribution Comm. ACM 19 (Oct. 1970), 617-618.
2. Hill, G. W. Progress results on asymptotic approximations for Student's \(t\). Unpublished manuscript, Oct. 1969.
3. Fisher, R. A., and Yates, F. Statistical Tables for Biological Agricultural and Medical Research. Oliver and Boyd, London, 1963.
4. Smirnov, N. V. Tables for the Distribution and Density Functions of \(\mathfrak{i}\)-Distribution. Pergamon Press, New York, 1961.
5. Federighi, E. T. Extended tables of the percentage points of Student's t-distribution. J. Amer. Stat. Assoc. 54 (1959), 683-688;
if \(n<1 \vee P>1.0 \vee P \leq 0.0\) then \(t\) quantile \(:=\operatorname{error}(n)\)
else if \(n=2\) then \(t\) quantile \(:=s q r t(2.0 /(P \times(2.0-P))-2.0)\)
else
```

begin
real half $p i$; half $p i:=1.5707963268$;
if $n=1$ then
begin $P:=P \times$ half $p i ; \quad t$ quantile $:=\cos (P) / \sin (P)$ end
else
begin
real a, b, c, d, x, y;
$a:=1.0 /(n-0.5) ; b:=48.0 / a \uparrow 2 ;$
$c:=((20700 \times a / b-98) \times a-16) \times a+96.36$;
$d:=((94.5 /(b+c)-3.0) / b+1.0) \times s q r t(a \times h a l f p i) \times n$;
$x:=d \times P ; \quad y:=x \uparrow(2.0 / n)$;
if $y>0.05+a$ then
begin
comment Asymptotic inverse expansion about normal;
$x:=$ normdev $(P \times 0.5) ; \quad y:=x \uparrow 2$;
if $n<5$ then $c:=c+0.3 \times(n-4.5) \times(x+0.6)$;
$c:=(((0.05 \times d \times x-5.0) \times x-7.0) \times x-2.0) \times x+b+c$;
$y:=((((0.4 \times y+6.3) \times y+36.0) \times y+94.5) / c-y-3.0) / b+$
1.0) $\times x$;
$y:=a \times y \uparrow 2$;
$y:=$ if $y>0.002$ then $\exp (y)-1.0$ else $0.5 \times y \uparrow 2+y$
end
else $y:=((1.0 /(((n+6.0) /(n \times y)-0.089 \times d-0.822) \times$
$(n+2.0) \times 3.0)+0.5 /(n+4.0)) \times y-1.0) \times$
$(n+1.0) /(n+2.0)+1.0 / y ;$
t quantile $:=\operatorname{sqrt}(n \times y)$
end
end Student's t-quantile

```

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 238-239.

\section*{REMARK ON ALGORITHM 395}

Student's \(t\)-distribution [S14]
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 617-619]
and
REMARK ON ALGORITHM 396
Student's Quantiles [S14]
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 619-620]
Mohamed el Lozy [Recd 9 June 1978]
Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115

Both of these algorithms incorporate very accurate mathematical methods, but contain a source of loss of precision which is severe for the many processors with precision less than or not sufficiently greater than that claimed for the algorithms.

In Algorithm 395 the use of the asymptotic series involves the evaluation of \(\ln \left(1+t^{2} / n\right)\). For small \(y=t^{2} / n\) and \(b=1+y, \ln (b)\) is of the order of magnitude of \(y\), so that the statement
\[
\text { if } y>10^{-6} \text { then } y:=\ln (b)
\]
admits a loss of precision of up to 6 decimal digits. This loss will be especially marked on a machine with hexadecimal number representation, since the leading byte in \(1+y\) will be hexadecimal 1 , or binary 0001 , with a loss of a further 3 bits, in addition to the loss inherent in the addition. Where the processor's implemen-

\footnotetext{
The Remark on Algorithm 396 was supported by the Fund for Research and Teaching, Department of Nutrition, Harvard School of Public Health.
}

Table I. Relative Errors in the Calculation of \(\ln \left(1+t^{2} / n\right)\) and \(\exp \left(x^{2} / n\right)-1\) by the Methods of Algorithms 395 and 396, for \(x=t=2\) and Various Values of \(n\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(n\)} & \multicolumn{3}{|c|}{\(\ln \left(1+t^{2} / n\right)\)} & \multicolumn{2}{|r|}{\(\exp \left(x^{2} / n\right)-1\)} \\
\hline & PDP & IBM & IMSL/IBM & PDP & IBM \\
\hline 20 & \(0.245 \mathrm{E}-6\) & \(0.654 \mathrm{E}-6\) & 0.0 & 0.538E-6 & \(0.242 \mathrm{E}-5\) \\
\hline 40 & \(0.313 \mathrm{E}-6\) & \(0.500 \mathrm{E}-5\) & 0.0 & \(0.708 \mathrm{E}-6\) & \(0.567 \mathrm{E}-5\) \\
\hline 80 & \(0.137 \mathrm{E}-5\) & \(0.149 \mathrm{E}-4\) & \(0.299 \mathrm{E}-6\) & \(0.203 \mathrm{E}-5\) & \(0.118 \mathrm{E}-4\) \\
\hline 160 & \(0.754 \mathrm{E}-6\) & \(0.151 \mathrm{E}-4\) & 0.0 & \(0.177 \mathrm{E}-5\) & \(0.311 \mathrm{E}-4\) \\
\hline 320 & \(0.817 \mathrm{E}-5\) & \(0.150 \mathrm{E}-4\) & 0.0 & 0.281E-5 & \(0.349 \mathrm{E}-4\) \\
\hline 640 & \(0.688 \mathrm{E}-5\) & \(0.909 \mathrm{E}-4\) & 0.0 & \(0.187 \mathrm{E}-4\) & \(0.178 \mathrm{E}-4\) \\
\hline 1280 & \(0.201 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & \(0.298 \mathrm{E}-6\) & \(0.153 \mathrm{E}-4\) & \(0.282 \mathrm{E}-3\) \\
\hline 2560 & \(0.224 \mathrm{E}-5\) & \(0.244 \mathrm{E}-3\) & \(0.149 \mathrm{E}-6\) & \(0.372 \mathrm{E}-6\) & \(0.447 \mathrm{E}-6\) \\
\hline 5120 & \(0.700 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & 0.0 & \(0.745 \mathrm{E}-7\) & \(0.298 \mathrm{E}-6\) \\
\hline 10240 & \(0.104 \mathrm{E}-3\) & \(0.164 \mathrm{E}-2\) & 0.0 & \(0.745 \mathrm{E}-7\) & 0.0 \\
\hline
\end{tabular}
tation of \(\ln (b)\) for \(b\) near 1 effectively involves the Taylor series \((b-1)-(b-\) \(1)^{2} / 2+\ldots\), the replacement statement
if \(b \neq 1\) then \(y:=y \times(\ln (b) /(b-1))\);
as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating the logarithm as evidenced by column 3 of Table I. However, in the general case there are two solutions, the simplest of which is to evaluate \(Y=\) DLOG(1.0D0 \(+\operatorname{DBLE}(Y)\) ), using the variable \(Y\) (single precision) for \(t^{2} / n\), as in the algorithm under discussion. An alternative method might be based on the use of single precision LOG \((1.0+Y)\) for "sufficiently large" \(Y\), and a suitable number of terms of the Taylor expansion otherwise. In this case the optimal crossover point between the two methods of evaluation would be machine dependent and the coding would be longer, as exemplified for an analogous case in Algorithm 465 [21.

In Algorithm 396 the expression \(\exp \left(x^{2} / n\right)-1\) occurs, and here again substantial loss of precision can occur for small \(y\), to use the algorithm's notation. Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts to a Taylor series expansion of \(\exp (y)-1\) for \(y<0.002\), but this choice is machine dependent and unsuitable for 32 -bit machines. Here again I would opt for double precision evaluation of that one expression (storing the result in single precision) over the alternative Taylor series approach.

Table I shows the relative errors of single precision evaluation of these two expressions for \(t\) (or \(x\) ) equal to 2 and for various values of \(n\), using the first two terms of the Taylor series for the exponential for \(y<0.002\) as in the algorithm, as well as the IMSL "fix." The computations were done on an IBM 370/168 running under OS/MVT and on a PDP 11/70 running under UNIX. Though both machines have a mantissa of 24 bits, the results on the PDP are far better than those on the 370 , presumably due to the hexadecimal normalization of the latter machine.

\section*{REFERENCES}
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973.
2. Hill, G.W. Algorithm 465. Student's \(t\) frequency. Comm. ACM 16, 11 (Nov. 1973), 690.

Table I. Relative Errors in the Calculation of \(\ln \left(1+t^{2} / n\right)\) and \(\exp \left(x^{2} / n\right)-1\) by the Methods of Algorithms 395 and 396, for \(x=t=2\) and Various Values of \(n\)
\begin{tabular}{rcccllll}
\hline & \multicolumn{4}{c}{\(\ln \left(1+t^{2} / n\right)\)} & & \multicolumn{2}{c}{\(\exp \left(x^{2} / n\right)-1\)} \\
\(n\) & & PDP & \multicolumn{2}{c}{ IBM } & IMSL/IBM & & \multicolumn{2}{c}{ PDP } & IBM \\
\hline 20 & \(0.245 \mathrm{E}-6\) & \(0.654 \mathrm{E}-6\) & 0.0 & & \(0.538 \mathrm{E}-6\) & \(0.242 \mathrm{E}-5\) \\
40 & \(0.313 \mathrm{E}-6\) & \(0.500 \mathrm{E}-5\) & 0.0 & & \(0.708 \mathrm{E}-6\) & \(0.567 \mathrm{E}-5\) \\
80 & \(0.137 \mathrm{E}-5\) & \(0.149 \mathrm{E}-4\) & \(0.299 \mathrm{E}-6\) & & \(0.203 \mathrm{E}-5\) & \(0.118 \mathrm{E}-4\) \\
160 & \(0.754 \mathrm{E}-6\) & \(0.151 \mathrm{E}-4\) & 0.0 & & \(0.177 \mathrm{E}-5\) & \(0.311 \mathrm{E}-4\) \\
320 & \(0.817 \mathrm{E}-5\) & \(0.150 \mathrm{E}-4\) & 0.0 & & \(0.281 \mathrm{E}-5\) & \(0.349 \mathrm{E}-4\) \\
640 & \(0.688 \mathrm{E}-5\) & \(0.909 \mathrm{E}-4\) & 0.0 & & \(0.187 \mathrm{E}-4\) & \(0.178 \mathrm{E}-4\) \\
1280 & \(0.201 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & \(0.298 \mathrm{E}-6\) & & \(0.153 \mathrm{E}-4\) & \(0.282 \mathrm{E}-3\) \\
2560 & \(0.224 \mathrm{E}-5\) & \(0.244 \mathrm{E}-3\) & \(0.149 \mathrm{E}-6\) & & \(0.372 \mathrm{E}-6\) & \(0.447 \mathrm{E}-6\) \\
5120 & \(0.700 \mathrm{E}-4\) & \(0.244 \mathrm{E}-3\) & 0.0 & & \(0.745 \mathrm{E}-7\) & \(0.298 \mathrm{E}-6\) \\
10240 & \(0.104 \mathrm{E}-3\) & \(0.164 \mathrm{E}-2\) & 0.0 & & \(0.745 \mathrm{E}-7\) & 0.0 \\
\hline
\end{tabular}
tation of \(\ln (b)\) for \(b\) near 1 effectively involves the Taylor series \((b-1)-(b-\) \(1)^{2} / 2+\ldots\), the replacement statement
if \(b \neq 1\) then \(y:=y \times(\ln (b) /(b-1))\);
as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating the logarithm as evidenced by column 3 of Table I. However, in the general case there are two solutions, the simplest of which is to evaluate \(Y=\operatorname{DLOG}(1.0 \mathrm{D} 0\) \(+\operatorname{DBLE}(Y)\) ), using the variable \(Y\) (single precision) for \(t^{2} / n\), as in the algorithm under discussion. An alternative method might be based on the use of single precision \(\operatorname{LOG}(1.0+Y)\) for "sufficiently large" \(Y\), and a suitable number of terms of the Taylor expansion otherwise. In this case the optimal crossover point between the two methods of evaluation would be machine dependent and the coding would be longer, as exemplified for an analogous case in Algorithm 465 [2].
In Algorithm 396 the expression \(\exp \left(x^{2} / n\right)-1\) occurs, and here again substantial loss of precision can occur for small \(y\), to use the algorithm's notation. Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts to a Taylor series expansion of \(\exp (y)-1\) for \(y<0.002\), but this choice is machine dependent and unsuitable for 32 -bit machines. Here again I would opt for double precision evaluation of that one expression (storing the result in single precision) over the alternative Taylor series approach.

Table I shows the relative errors of single precision evaluation of these two expressions for \(t\) (or \(x\) ) equal to 2 and for various values of \(n\), using the first two terms of the Taylor series for the exponential for \(y<0.002\) as in the algorithm, as well as the IMSL "fix." The computations were done on an IBM 370/168 running under OS/MVT and on a PDP 11/70 running under UNIX. Though both machines have a mantissa of 24 bits, the results on the PDP are far better than those on the 370 , presumably due to the hexadecimal normalization of the latter machine.

\section*{REFERENCES}
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973.
2. Hill, G.W. Algorithm 465. Student's \(t\) frequency. Comm. ACM 16, 11 (Nov. 1973), 690.

REMARK ON ALGORITHM 396
Student's \(t\)-Quantiles [S14]
[G. W. Hill, Commun. ACM 13, 10 (Oct. 1970), 619-620.]
G. W. Hill [Received 6 December 1978; revised 7 July 1979; accepted 6 August 1979]
Division of Mineral Chemistry, CSIRO, Port Melbourne, Australia 3207.
The precision in excess of six decimal digits, claimed for quantiles evaluated using Algorithm 396 on a 36 -bit precision processor, cannot be achieved for a processor precision of six hexadecimal digits. As noted in [1], the statement
\(y:=\) if \(y>0.002\) then \(\exp (y)-1.0\) else \(0.5 \times y \uparrow 2+y\)
should be replaced by its implied extension
\[
\begin{aligned}
y:= & \text { if } y>0.1 \text { then } \exp (y)-1.0 \\
& \text { else }((y+4.0) \times y+12.0) \times y \times y / 24.0+y
\end{aligned}
\]

The relative error of this truncated Taylor series is less than that recorded for \(\exp (y>0.1)-1\) in el Lozy's tests [1] on an IBM 370/168.

For extended precision quantiles an initial approximation by Algorithm 396, for example, \(t_{0}:=t\) quantile ( \(P, n\), normdev, error), may be used as argument in an extended precision version of Algorithm 395 [2] to evaluate the two-tail probability integral \(P\left(t_{0} \mid n\right)\). The difference of this result from the target probability level may be divided by twice the frequency \(f\left(t_{0} \mid n\right)\), evaluated using Algorithm 465 [3], to obtain the first-order correction for \(t_{0}\),
\[
z=\frac{\frac{1}{2}\left(P\left(t_{0} \mid n\right)-P\right)}{f\left(t_{0} \mid n\right)} .
\]

Rather than iterative inversion \(t_{r+1}=t_{r}+z\left(t_{r} \mid n\right)\), as suggested in the commentary of Algorithm 396, it is more efficient to avoid repeated evaluation of the probability integral and frequency function by using the Taylor series expansion [5]
\[
t=t_{0}+z+\frac{\psi z^{2}}{2!}+\frac{\left(2 \psi^{2}+\psi^{\prime}\right) z^{3}}{3!}+\cdots,
\]
where
\[
\begin{aligned}
\psi & =\frac{-\partial}{\partial t_{0}}\left[\ln f\left(t_{0} \mid n\right)\right]=\frac{(n+1) t_{0}}{n+t_{0}^{2}} \\
\psi^{\prime} & =\frac{\partial \psi}{\partial t_{0}}=\frac{(n+1)\left(n-t_{0}^{2}\right)}{\left(n+t_{0}^{2}\right)^{2}}
\end{aligned}
\]
and the coefficient \(c_{r}\) of \(z^{r} / r!\) is determined from
\[
c_{r+1}=\left(r \psi+\frac{\partial}{\partial t_{0}}\right) c_{r}, \quad c_{0} \equiv 1 .
\]

The relative error of the series, truncated to order \(z^{s}\), is approximately \(\psi^{s} t_{6}^{s}{ }^{s+1} /\) ( \(s+1\) ), where \(\epsilon=z / t_{0}\) is the relative error of the initial approximation. Using Algorithm 396, for which \(|\epsilon|<10^{-6}\), the first few terms of the series provide considerable precision in the result.

For processor "double precision" of 14 hexadecimal (16-17 decimal) digits, such as that of the IBM \(360 / 370\) series, the first three terms are sufficient:
\[
t:=(n+1) \times t_{0} \times z \times z \times \frac{0.5}{t_{0} \times t_{0}+n}+z+t_{0}
\]
provided that both the precision of \(P\left(t_{0} \mid n\right)\) and the sum of precisions of \(t_{0}\) and \(f\left(t_{0} \mid n\right)\) at least equal a level appropriate for 14 hexadecimal precision, such as 14 decimals to allow for precision loss in evaluating \(P\left(t_{0} \mid n\right)\). For 96 -bit double precision of the CDC 6000 series processor, allowing two or three decimal digit
precision loss in \(P\left(t_{0} \mid n\right)\), the series to \(z^{3}\) is sufficient for precision in excess of 25 decimal digits, except for extreme probability levels beyond \(10^{-20}\) and large \(n\) ( \(>50\) ), for which the term in \(z^{4}\) ensures \(25-26\) decimals.

It is faster to use single-precision rather than double-precision operations in evaluating higher order terms of the Taylor series, such as the first term in the statement displayed above and the terms in \(z^{3}\) and \(z^{4}\) in the fifth-order case. This approach has been validated by a FORTRAN implementation to double precision for the CDC 6400 and 7600 for tabulation of Student's \(t\)-quantiles rounded off to \(20 D\) [4].

REFERENCES
1. El Lozy, M. Remark on Algorithm 395. Student's \(t\) distribution. ACM Trans. Math. Softw. 5, 2 (June 1979), 238-239.
2. Hill, G.W. Algorithm 395. Student's \(t\) distribution. Commun. ACM 13, 10 (Oct. 1970), 617-619.
3. Hill, G.W. Algorithm 465. Student's \(t\) frequency. Commun. ACM 16, 11 (Nov. 1973), 690.
4. Hill, G.W. Reference Table: "Student's" \(t\)-distribution quantiles to 20D. Tech. Paper No. 35, Div. Math. Statist., CSIRO, Australia, 1972, 24pp.
5. Hill, G.W., and Davis, A.W. Generalized asymptotic expansions of Cornish-Fisher type. Ann. Math. Statist. 39 (1968), 1264-1273.

\section*{ALGORITHM 397}

AN INTEGER PROGRAMMING PROBLEM [H]
S. K. Chang and A. Gill (Recd. 16 Feb. 1970 and 11 May 1970)
Electronics Research Laboratory and Department of Electrical Engineering and Computer Sciences, University of California,* Berkeley, CA 94720
* Research sponsored by the Air Force Office of Scientific Research Office of Aerospace Research, United States Air Force, AFOSR Grant AF-AFOSR-639-67 and the National Science Foundation, Grant GK2277.
KEY WORDS AND PHRASES: integer programming, changemaking problem
\(C R\) CATEGORIES: 5.41
procedure MINDIST (C, M, SENSE, W, RESULT);
value \(\mathrm{C}, \mathrm{M}\); integer C, M; Boolean SENSE;
integer array W , RESULT;
comment This algorithm solves an integer programming problem described in [1]. Given is a fixed weight vector \(w=\left(w_{1}\right.\), \(w_{i}, \cdots, w_{m}\) ), where the \(w_{i}\) are nonnegative integers, where \(m\) is a positive integer, and where
\[
1=w_{1}<w_{2}<\cdots<w_{m}
\]

For any nonnegative integer \(c\) (representing cost), an \(m\)-distribution of \(c\) relative to \(w\) is an \(m\)-tuple ( \(a_{1}, a_{2}, \cdots, a_{m}\) ) such that the \(a_{i}\) are nonnegative integers, and such that \(\sum_{i=1}^{m} a_{i} w_{i}\) \(=c\). The \(m\)-distribution ( \(a_{1}, a_{2}, \cdots, a_{m}\) ) is minimal if, for any \(m\)-distribution ( \(b_{1}, b_{2}, \cdots, b_{m}\) ) of \(c\) relative to \(w\), we have \(\sum_{i=1}^{m} a_{i} \leq \sum_{i-1}^{m} b_{i}\). The \(m\)-distribution ( \(a_{1}, a_{2}, \cdots, a_{m}\) ) is standard if it is obtainable as follows:
\[
\begin{aligned}
c_{m} & =c & & \\
c_{i} & =c_{i+1}-a_{i+1} \times w_{i+1} & & (i=m-1, m-2, \cdots, 1) \\
a_{i} & =c_{i} / w_{i} & & (i=m, m-1, \cdots, 1)
\end{aligned}
\]
(where all divisions are integer divisions).
If MINDIST(C, M, SENSE,\(W\), RESULT \()\) is called with a nonnegative integer \(C\), a positive integer \(M\), and an array \(W=(W[1], W[2], \cdots, W[M])\), then the resulting array RESULT \(=(\) RESULT[1], RESULT[2], \(\cdots, \operatorname{RESULT}[M])\)
is a minimal \(M\)-distribution of \(C\) relative to \(W\). If, before calling MINDIST, SENSE is set to true, then MINDIST retains SENSE as true if and only if RESULT is also a standard Mdistribution of \(C\) relative to \(W\).

\section*{Reference:}
1. Ceang, S. K., and Gill, A. Algorithmic solution of the change-making problem. J. ACM 17 (Jan. 1970) 113-122;

\section*{begin}
integer \(I, J, R, Q, S U M, S U N\);
integer array \(A[1: M], B[1: M]\);
if \(M=1\) then
begin RESULT[1] := ;
EXIT1 :
go to EXIT
end
\(Q:=C / W[M] ;\)
if \((Q \times W[M])>C\) then \(Q:=Q-1\);
\(R:=C-W[M] \times Q\);
if \(M=2\) then
begin
\(R E S U L T[1]:=R ; \operatorname{RESULT}[2]:=Q ;\)
EXITR .
go to EXIT
end;
\(J:=0 ;\)
LOOP:
MINDIST ( \(R+J \times W[M], M-1, S E N S E, W, B)\);
if \(J \neq 0\) then go to NOT \(Z E R O\);
BETA:
for \(I:=1\) step 1 until \(M-1\) do \(A[I]:=B[I] ;\)
\(A[M]:=0 ;\)
GAMMA:
if \(J=Q\) then
begin
for \(I:=1\) step 1 until \(M\) do \(\operatorname{RESULT}[I]:=A[I] ;\)
EXITs:
go to \(E X I T\)
end;
SUM := 0;
for \(I:=1\) step 1 until \(M\) do \(S U M:=S U M+A[I]\);
if ( \(W[M] \times S U M-R-J \times W[M]) /(W[M]-W[M-1]) \leq 0\) then
begin
for \(I:=1\) step 1 until \(M-1\) do \(\operatorname{RESULT}[I]:=A[I]\);
\(R E S U L T[M]:=A[M]+Q-J ;\)
EXIT4:
go to EXIT
end;
\(J:=J+1\);
go to \(L O O P\);
NOT ZERO:
SUM :=0; SUN \(:=0\);
for \(I:=1\) step 1 until \(M\) do \(S U M:=S U M+A[I] ;\)
for \(I:=1\) step 1 until \(M-1\) do \(S U N:=S U N+B[I]\);
if \(S U M \leq S U N\) then
begin \(A[M]:=A[M]+1\); go to \(G A M M A\) end;
SENSE := false;
go to BETA;
EXIT:
end PROCEDURE MINDIST

\section*{Remark on Algorithm 397 [H]}

An Integer Programming Problem [S.K. Chang and A.
Gill, Comm. ACM 13 (Oct. 1970), 620-621]
Stephen C. Johnson and Brian W. Kernighan (Recd.
15 Sept. 1971)
Bell Laboratories, Murray Hill, NJ 07974
Editor's note: The first correction was also noted by K.W. Coull of the University of Alberta.-L.D.F.

Key Words and Phrases: integer programming, change-making problem

CR Categories: 5.41
The published algorithm contains two substantial errors.
1. Five lines after the label EXIT3, the line
if \((W[M] \times S U M-R-J \times W[M]) /(W[M]-W[M-1]) \leq 0\) then should be replaced by
if \((W[M-1] \times S U M-R-J \times W[M])<(W[M]-W[M-1])\) then
The use of \(W[M-1]\) instead of \(W[M]\) corrects an error which also appears in the J. ACM article |1| upon which Algorithm 397 is based.
2. Four lines after the label NOT \(Z E R O\), the line
if \(S U M \leq S U N\) then
must be replaced by
if \(S U M<S U N\) then
When this change is made, the algorithm correctly solves the test case described in [1], although producing a different answer than was published there.

The algorithm would be clarified if, three and four lines after the label EXIT1, the statements
\(Q:=C / W[M] ;\)
if \((Q \times W[M])>C\) then \(Q:=Q-1\);
were replaced by
\(Q:=C \div W|M| ;\)

\section*{References}
1. Chang, S.K., and Gill, A. Algorithmic solution of the changemaking problem. J. ACM 17 (Jan. 1970), 113-122.

\section*{ALGORITHM 398}

TABLELESS DATE CONVERSION* [Z]
Richard A. Stone (Recd. 2 Jan. 1970 and 6 April 1970)
Western Electric Company, P.O. Box 900,
Princeton, NJ 08540
* Patent applied for.

KEY WORDS AND PHRASES: date, calendar
CR CATEGORIES: 5.9
procedure calendar ( \(y, n, m, d\) );
value \(y, n\); integer \(y, n, m, d, t\);
comment calendar is called with the year in \(y\) and the day of the year in \(n\). The month number is returned in \(m\), and the day of the month is returned in \(d\). The first section of the procedure changes the dates so that February has 30 days. The second section uses the fact that \(30.55(m+2)-91\) passes through the number of days preceeding each month.
Error detection: \(m\) will be in the range 1-12 if and only if \(n\) is in the correct range;

\section*{begin}
\(t:=\) if \((y \div 4) * 4=y\) then 1 else 0 ;
comment The following statement is unnecessary if it is known that \(1900<y<2100\);
\(t:=\) if \((y \div 400) * 400=y \vee(y \div 100) * 100 \neq y\) then \(t\) else 0 ;
\(d:=n+(\) if \(n>(59+t)\) then \(2-t\) else 0\()\);
\(m:=((d+91) * 100) \div 3055\);
\(d:=(d+91)-(m * 3055) \div 100\);
\(m:=m-2\)
end calendar

\section*{Remark on Algorithm 398 [Z]}

Tableless Date Conversion [Richard A. Stone, Comm. ACM 13 (Oct. 1970), 621]
J. Douglas Robertson [Recd. 16 Dec. 1970 and 30 Mar. 1971]
200 Oakcrest Drive F-161, Lafayette, LA 70501

Key Words and Phrases: date, calendar, Fortran statement function, arithmetic statement function

CR Categories: 3.15, 4.9, 5.9

As a companion to Algorithm 398, I offer a relatively compact algorithm for calculating the day of the year on which a particular date falls given the year, month, and day of the month. The algorithm is written below as a Fortran arithmetic statement function, where \(I\) is the year; \(J\) is the month, \((1=\) Jan, \(\ldots, 12=\) Dec \()\); and \(K\) is the day of the month.
\[
\begin{aligned}
I D A Y(I, J, K)= & 3055 *(J+2) / 100-(J+10) / 13 * 2-91 \\
& +(1-(I-I / 4 * 4+3) / 4+(I-I / 100 * 100+99) / 100 \\
& -(I-I / 400 * 400+399) / 400) *(J+10) / 13+K
\end{aligned}
\]

The above, along with Stone's Algorithm 398, Robert G. Tantzen's Algorithm 199 [2], and the two algorithms by H.F. Fliegel and T.C. Van Flandern [1] constitute a comprehensive set of algorithms for processing calendar dates. A useful addition to this set would be an algorithm for Zeller's Congruence (calculates the day of the week on which a particular date falls) as described in [3]. It appears below as a Fortran arithmetic statement function, where \(I\) is the year; \(J\) is the month, \((1=\) Jan, \(\ldots, 12=\mathrm{Dec})\); and \(K\) is the day of the month.
\[
\begin{aligned}
I Z L R(I, J, K) & =M O D((13 *(J+10-(J+10) / 13 * 12)-1) / 5+K+77 \\
& +5 *(I+(J-14) / 12-(I+(J-14) / 12) / 100 * 100) / 4 \\
& +(I+(J-14) / 12) / 400-(I+(J-14) / 12) / 100 * 2,7)
\end{aligned}
\]

\section*{References}
1. Fliegel, H.F., and Van Flandern, T.C. A machine algorithm for processing calendar dates. Comm. ACM 11 (Oct. 1968), 657. 2. Tantzen, Robert G. Conversions between calendar date and Julian day number, Algorithm 199. Comm. ACM 6 (Aug. 1963), 444.
3. Uspensky, J.V., and Heaslet, M.A. Elementary Number Theory. McGraw-Hill, New York, 1939, p. 206.

\section*{ALGORITHM 399}

\section*{SPANNING TREE [H]}

Jouko J. Seppänen (Recd. 6 Jan. 1970 and 8 May 1970)
Computing Center, Helsinki University of Technology, Otaniemi, Finland

\section*{KEY WORDS AND PHRASES: graph, tree, spanning tree} CR CATEGORIES: 5.32
procedure spanning tree ( \(v, e, I, J, p, T)\);
value \(v, e ;\) integer \(v, e, p\); integer array \(I, J, T\);
comment This procedure grows a spanning tree \(T\) for a given undirected loop-free graph \(G=(N, E)\) of \(v\) vertices and \(e\) edges. If \(G\) is disconnected a spanning forest will be grown.
The edges \((I[k], J[k]) \in E\) for \(k=1,2, \cdots, e\) are assumed to be stored in the arrays \(I[1: e]\) and \(J[1: e]\). At each stage of the algorithm one edge is considered whereby one of four possible conditions will arise. If neither of the vertices is included in a tree, this edge is taken as a new tree and its vertices numbered by an incremented component number \(c\). If one vertex is in a tree, the edge will be grown to this tree. If the two vertices are in different trees, these will be grafted into a single tree by renumbering the vertices of the other component. Finally, if both vertices are in the same tree, the edge completes a fundamental cycle of the graph with respect to the spanning tree and consequently will not be considered further. At the end, the indices of the edges in the spanning tree are stored in the array \(T[1: v-p]\) where \(p\) is the number of trees in the forest. The procedure can also be used to find a minimal spanning tree by sorting the edges into ascending order before calling the procedure.
The main loop in the procedure is executed \(e\) times. For cases where the ratio \(e / v\) is high it could be worthwhile to introduce an additional variable, say \(d\), in the program, for keeping a count of the number of edges included in \(T\). When \(d\) has attained the value of \(v-1\) the algorithm could terminate.
References:
1. Berge, C., and Ghoulla-Houri, A. Programmes, Jeux et Reseaux de Transport. Dunod, Paris, 1962, pp. 179-182.
2. Berge, C., and Ghoulla-Houri, A. Programming, Games and Transportation Networks. Methuen, London, and Wiley, New York, 1965, pp. 177-180.
3. Kruskal, J. B., Jr. On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Amer. Math. Soc. 7 (1956) 48-50.
4. Obruca, A. Algorithm 1. Mintree. Computer Bull. (Sept. 1964) 67.
5. Knuth, D. E. The Art of Computer Programming, Vol I Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968. pp. 370-371;
begin
integer \(i, j, k, c, n, r\);
integer array \(V[1: v]\);
\(c:=n:=0\);
for \(k:=1\) step 1 until \(v\) do \(V[k]:=0\);
for \(k:=1\) step 1 until \(e\) do
begin
\(i:=I[k] ; j:=J[k] ;\)
if \(V[i]=0\) then
```

 begin
 \(T[k-n]:=k\);
 if \(V[j]=0\) then \(V[i]:=V[j]:=c:=c+1\)
 else
 \(V[i]:=V[j]\)
 end
 else if \(V[j]=0\) then
 begin
 \(T[k-n]:=k ; \quad V[j]:=V[i]\)
 end
 else if \(V[i] \neq V[j]\) then
 begin
 \(T[k-n]:=k ; \quad i:=V[i] ; \quad j:=V[j] ;\)
 for \(r:=1\) step 1 until \(v\) do
 if \(V[r]=j\) then \(V[r]:=i\)
 end graft
 else \(n:=n+1\)
 end edge;
$p:=v-e+n$
end spanning tree

```

\section*{ALGORITHM 400}

MODIFIED HAVIE INTEGRATION [D1]
George C. Wallick (Recd. 26 Jan. 1970 and 25 Apr. 1970)

Mobil Research and Development Corporation, Field Research Laboratory, P.O. Box 900, Dallas, TX 75221

KEY WORDS AND PHRASES: numerical integration, Havie integration, Romberg quadrature, modified Romberg-quadrature, trapozoid values, rectangle values
CR CATEGORIES: 5.16
Description:
The Havie integration method for the approximate evaluation of the definite integral
\[
\begin{equation*}
I=\int_{A}^{B} F(x) d x \tag{1}
\end{equation*}
\]
as implemented in ACM Algorithm 257 [4] is based upon the parallel generation of the Romberg table of trapezoidal \(T_{i}{ }^{k}\) values [1] and the table of rectangular \(R_{i}{ }^{k}\) values also used by Krasun and Prager [3]. At each step in the development of the tables the difference \(\left|T_{j}{ }^{k}-R_{i}{ }^{k}\right|\) is examined. If \(\left|T_{i}{ }^{k}-R_{i}{ }^{k}\right| \leq \epsilon\) the process is said to have converged and the algorithm returns a value of
\[
\begin{equation*}
T_{j}^{k+1}=\frac{1}{2}\left(T_{j}^{k}+R_{j}^{k}\right) . \tag{2}
\end{equation*}
\]

For some \(F(X)\), e.g. \(F(X)=e^{-X^{2}}\) and \(F(X)=2 /(2+\sin 10 \pi X)\), the \(R_{j}{ }^{k}, T_{j}{ }^{k}\) pairs converge more rapidly than the Romberg sequence of \(T_{j}{ }^{k}\) values. (This is the same class of \(F^{\prime}(X)\) for which a simple nonadaptive Simpsons Rule algorithm [5] is competitive with the Havie algorithm.) For other \(F(X)\), the Havie algorithm is slightly less efficient than the Romberg algorithm.
Like Romberg quadrature, Havie integration requires the evaluation of the rectangular values
\[
\begin{equation*}
R_{o}^{k}=\frac{B-A}{2^{k}} \sum_{j=1}^{2^{k}} F\left[A+\left(j-\frac{1}{2}\right) \frac{B-A}{2^{k}}\right] . \tag{3}
\end{equation*}
\]

Rutishauser [6] recognized that this repeated addition of small terms to a large partial sum can lead to serious roundoff error. He suggested a procedure for the evaluation of the \(R_{o}{ }^{k}\) which significantly reduces this error. The method, used by Fairweather [2] in a modified Romberg algorithm, leads to a significant improvement in accuracy for large orders of extrapolation.
In the modified Havie integration algorithm HRVINT the \(R_{o}{ }^{k}\) are evaluated using a 3 -level version of the Rutishauser procedure. The arguments \(X\) of the generating function \(F(X)\) are evaluated as in eq. (3) rather than by accumulative addition as in Algorithm 257.

In the argument list for HRVINT, \(F\) is the name of the generating function FUNCTION \(F(X)\) which returns a value of \(F(X)\) corresponding to a specified value of \(X, A\), and \(B\) represent the lower and upper limits of integration, and MAX is the maximum order of extrapolation to be permitted, MAX \(\leq 16\). Values of MAX \(>\mathbf{1 6}\) are interpreted as MAX \(=16\); the value of MAX is not changed by the subprogram. Computation is terminated when
\[
\left|T_{j}^{k}-R_{i}^{k}\right| \leq \mathrm{ACC} *\left|T_{j}{ }^{k}\right|
\]
or when the order of extrapolation MFIN = MAX. Here ACC is a measure of the desired relative accuracy, ACC \(>0\). Upon exit HRVINT is the approximate value of the integral, FAC is a meas-
ure of the final relative accuracy achieved
\[
\mathrm{FAC}=\left|T_{i}{ }^{k}-R_{i}{ }^{k}\right| /\left|\dot{T}_{i}{ }^{k}\right|
\]
and MFIN is the order of extrapolation.
Test case. HRVINT was tested in Fortran IV on a CDC 6400 computer using single-precision floating point arithmetic (14+
table i. A Comparison of the Havie and Modified Havie Algorithms
\(I=\int_{\Delta}^{B} F(X) d X\)
( \(m=\) Extrapolation Order, \(m \leq 16\); N.S.F. \(=\) Number of Significant Figures)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\(F(X)\)} & \multirow{3}{*}{\(\boldsymbol{A}\)} & \multirow{3}{*}{B} & \multirow{3}{*}{Correct value (digits
\(10-16)\)} & \multicolumn{7}{|c|}{Numerical Evaluation} \\
\hline & & & & \multirow[b]{2}{*}{Specified relative accuracy} & \multicolumn{3}{|c|}{Havie} & \multicolumn{3}{|l|}{Modified Havie} \\
\hline & & & & & \[
\begin{aligned}
& \frac{I}{(d i g i t s}\left(\begin{array}{l}
\text { dins }
\end{array}\right)
\end{aligned}
\] & \(m\) & \[
\begin{aligned}
& \text { B } \\
& K \\
& K
\end{aligned}
\] & \[
\begin{aligned}
& I \\
& (d i g i t s \\
& 10-14)
\end{aligned}
\] & \(m\) & 8
4
4 \\
\hline \multirow[t]{7}{*}{\(0^{-x^{2}}\)} & \multirow[t]{7}{*}{0.0} & \multirow[t]{7}{*}{5.0} & \multirow[t]{7}{*}{4513955} & \(10^{-1} 10^{-2}\) & 46726 & 3 & 10 & 46726 & 3 & 10 \\
\hline & & & & \(10^{-2}-10^{-10}\) & 45039 & 4 & 11 & 45039 & 4 & 11 \\
\hline & & & & \(10^{-11}\) & 45110 & 5 & 12 & 45111 & 5 & 12 \\
\hline & & & & \(10^{-12}\) & 45128 & 6 & 12 & 45131 & 6 & 12 \\
\hline & & & & \(10^{-12}\) & 45134 & 6 & 12 & 45137 & 6 & 13 \\
\hline & & & & \(10^{-14}\) & 39757 & 16 & 9 & 45137 & 7 & 13 \\
\hline & & & & \(10^{-16}\) & 39757 & 16 & 9 & 45136 & 10 & 13 \\
\hline \multirow[t]{5}{*}{\(\ln x\)} & \multirow[t]{5}{*}{1.0} & \multirow[t]{5}{*}{10.0} & \multirow[t]{5}{*}{2994046} & \(10^{-9}\) & 29845 & 8 & 11 & 20846 & 8 & 11 \\
\hline & & & & \(10^{-10}\) & 29937 & 8 & 13 & 29939. & 8 & 13 \\
\hline & & & & \(10^{-11-10^{-12}}\) & 29937 & 9 & 13 & 29940 & 9 & 14 \\
\hline & & & & \(10^{-13}\) & 29937 & 9 & 13 & 29940 & 10 & 14 \\
\hline & & & & \(10^{-14}\) & 29556 & 16 & 11 & 29940 & 10 & 14 \\
\hline \multirow[t]{6}{*}{\((1+x)^{-1}\)} & \multirow[t]{6}{*}{0.0} & \multirow[t]{6}{*}{1.0} & \multirow[t]{6}{*}{5599453} & \(10^{-9}\) & 56353 & & 11 & 56354 & 6 & 11 \\
\hline & & & & \(10^{-10}\) & 55998 & 6 & 13 & 55997 & 6 & 13 \\
\hline & & & & \(10^{-11}\) & 55990 & 6 & 13 & 55991 & 6 & 13 \\
\hline & & & & \(10^{-12}\) & 55988 & 7 & 12 & 55991 & 7 & 13 \\
\hline & & & & \(10^{-18}\) & 55987 & 8 & 12 & 55991 & 7 & 13 \\
\hline & & & & \(10^{-14-10^{-15}}\) & 53242 & 16 & 10 & 55991 & 9 & 13 \\
\hline \multirow[t]{5}{*}{\(\left(1+x^{4}\right)^{-1}\)} & \multirow[t]{5}{*}{0.0} & \multirow[t]{5}{*}{1.0} & \multirow[t]{5}{*}{3399110} & \(10^{-6-10^{-7}}\) & 35633 & 5 & 10 & 35634 & 5 & 10 \\
\hline & & & & \(10^{-8-10-10}\) & 33983 & 6 & 13 & 33995 & 6 & 13 \\
\hline & & & & \(10^{-11}-10^{-12}\) & 33984 & 7 & 12 & 33989 & 7 & 13 \\
\hline & & & & \(10^{-18}\) & 30854 & 16 & 10 & 33987 & 7 & 13 \\
\hline & & & & \(10^{-14-10^{-15}}\) & 30854 & 16 & 10 & 33988 & 9 & 13 \\
\hline \multirow[t]{6}{*}{\(x^{-3}\)} & \multirow[t]{6}{*}{0.01} & \multirow[t]{6}{*}{1.1} & \multirow[t]{6}{*}{6859504} & & 71022 & & 10 & 71529 & 13 & 10 \\
\hline & & & & \(10^{-9}\) & 68136 & 13 & 11 & 68647 & 13 & 11 \\
\hline & & & & \(10^{-10}\) & 68076 & 13 & 10 & 68589 & 13 & 12 \\
\hline & & & & \(10^{-11}\) & 64508 & 16 & 10 & 68590 & 14 & 12 \\
\hline & & & & \(10^{-12} 10^{-13}\) & 64508 & 16 & 10 & 68589 & 14 & 12 \\
\hline & & & & \(10^{-14}-10^{-16}\) & 64508 & 16 & 10 & 68584 & 16 & 12 \\
\hline \multirow[t]{6}{*}{\(x^{-4}\)} & \multirow[t]{6}{*}{0.01} & \multirow[t]{6}{*}{1.1} & \multirow[t]{6}{*}{8950664} & \(10^{-8}\) & 89368 & 13 & 11 & 89694 & 13 & 11 \\
\hline & & & & \(10^{-8}\) & 89199 & 13 & 11 & 89526 & 13 & 12 \\
\hline & & & & 10-10 & 88857 & 14 & 10 & 89503 & 14 & 13 \\
\hline & & & & 10-12-10-12 & 88878 & 18 & 10 & 89502 & 14 & 13 \\
\hline & & & & \(10^{-18}\) & 88878 & 16 & 10 & 89502 & 15 & 13 \\
\hline & & & & \(10^{-14-10^{-15}}\) & 86878 & 16 & 10 & 89499 & 16 & 12 \\
\hline \multirow[t]{6}{*}{\(x^{-8}\)} & \multirow[t]{6}{*}{0.01} & \multirow[t]{6}{*}{1.1} & \multirow[t]{6}{*}{2924664} & & & 13 & 11 & 29767 & 13 & 10 \\
\hline & & & & 10-9-10-10 & 28828 & 14 & 11 & 29247 & 13 & 14 \\
\hline & & & & \(10^{-11}\) & 27557 & 16 & 10 & 29245 & 14 & 13 \\
\hline & & & & \(10^{-12-10^{-13}}\) & 27557 & 16 & 10 & 29244 & 15 & 13 \\
\hline & & & & 10-14 & 27557 & 16 & 10 & 29244 & 16 & 13 \\
\hline & & & & \(10^{-18}\) & 27557 & 16 & 10 & 29242 & 16 & 13 \\
\hline
\end{tabular}
decimal digits). Corresponding integral values were also obtained using a Fortran version of the standard Havie Algorithm 257. The results of these tests are summarized in Table I.
For modest accuracy requirements, the two algorithms are seen to be equivalent. For both algorithms the maximum accuracy achievable is limited by truncation and roundoff error. Since the Rutishauser modification serves to reduce the magnitude of such errors, the modified Havie algorithm can, in many cases, return optimum integral values that are from 1 to 2 significant figures more accurate than those returned by Algorithm 257.
In the routine use of the algorithms it is possible to specify an accuracy requirement that cannot be satisfied. When this condition obtains, the algorithms are forced to proceed to the maximum permitted extrapolation order. With Algorithm 257 error accumulation accompanying such an overspecification can lead to a serious decline in evaluation accuracy. With the modified Havie algorithm HRVINT this loss is minimized and in most cases virtually eliminated.

Acknowledgment. The author wishes to thank Mobil Research and Development Corporation for permission to publish this information.

References:
1. Bauer, F. L. Algorithm 60, Romberg integration. Comm. ACM 4 (June 1961), 255.
2. Fairweather, G. Algorithm 351, Modified Romberg quadrature. Comm. ACM 12 (June 1969), 324-325.
3. Krasun, A. M., and Prager, W. Remark on Romberg quadrature. Comm. ACM 8 (Apr. 1965), 236-237.
4. Kubik, R. N. Algorithm 257, Havie integrator. Comm. ACM 8 (June 1965), 381.
5. Perlis, A. J., and Samelson, K. Preliminary report-international algebraic language. Comm. ACM 1 (Dec. 1958), 8-22.
6. Retishauser, II. Description of Algol 60. In Handbook for Automatic Computation, Vol. 1. Springer-Verlag, New York, 1967, Part a, pp. 105106.

\section*{Algorithm:}

FUNCTION HRVINT(F,A,B,MAX,ACC,FAC,MFIN)
HAVIF INTEGRATION WITH AN EXPANDED RUTISHAIISER-
TYPE SUMMATION PROCEDURE
OIMENSION T(17), U(17), TPREV(17), UPREV(17)
, TEST FDR MAX GREATER THAN 16
MX = Max
F(MAX-16) \(10.10,5\)
\(5 \quad\) MUX \(=16\)
c INITIALIZATIEN
\(10 \quad E N P T=0.5 *(F(A)+F(B))\) \(\operatorname{SUMT}=0.0\) MFI \(N=1\)
\(N=1\) \(\mathrm{N}=1\)
\(\mathrm{H}=\mathrm{B}-\mathrm{A}\) \(\mathrm{H}=\mathrm{B}-\mathrm{A}\)
\(\mathrm{SH}=\mathrm{H}\)
C BFGIN REPFTITIVF LOOQ FROM ORDER 1 TO ORDER MAX
\(15 \quad T(1)=\mathrm{H}=(\) FNP T + SUMI
UM = 0
\(\mathrm{N}=\mathrm{N}+\)
\(\mathrm{N}=\mathrm{N} \mathrm{N}\)
\(E M=5 H / F N\)
C bFGIN RUTISHAIJSER EVALUATIIIN Tf RECTANGULAR SUMS
C initialization
1F(NN-16)20,20,25
\(N Z=N N\)
IF (NN-256) 30, 30, 35
30 \(\quad N A=N N\)
\(\begin{array}{ll}G 0 \\ N A & =256\end{array} 0\)
IF(NN-4096)40,40.45
4) \(\quad \mathrm{NB}=\mathrm{NN}\) GO TO 50
45
C DFVELOPMENT OF RECTANGULAR SIIMS 50 DO \(70 \mathrm{KC}=1\), NN, 4096

SUMB \(=0\).
DO \(65 K B=K C, K K, 25\)
\(\operatorname{sumA}=0\).
\(K K K=K B+N A-1\)
On \(\operatorname{On}\) K \(A=K H, K K K, 1 A\)
\(S 1 J M Z=0\).
\(K F R=K A+N 7-1\)
On \(55 \mathrm{~K} Z=K A, K F R, 2\) \(\operatorname{SUMZ}=5 \cup M Z+F(\Delta+7 K 7 * E M)\) SUMA \(=\operatorname{SIIMZ}+\operatorname{SUMA}\)
\(\operatorname{SUMB}=\operatorname{SUMA}+\operatorname{SUMB}\)
\(S 11 M=S 11 M B+S 11 M\)
```

C END DF RUITISHAUSER PROCFDIRE
U(1)=H*SIM
k=1
C BEGIN EXTRAPOLATION LONP
F FAC=ABS(T(K)-u(k))
IF(T(K)। 80,85,80
C TEST FOR RELATIVE ACCURACY
80 1F(FAC-ARS(ACC*T(K)))90,90,300
C TEST FOR ABSOLITE ACCURACY WHEN T(K)=
85 IF(FAC-ABS(ACC))95,95,100
FO FAC=FAC/ABS(T(K))
C INTEGRAL EVALUATION BEFORE EXIT
95 HRVINT=0.5*(T(K)+U(K))
RETURN
100 IF(K-MFIN)105,115,115
105 AK =K+K
D=2.**AK
C BEGIN EXTRAPOLATION
T(K+1)=(D*T(K)-TPREV(K))/DMA
V(k)=T(k)
K+1)=(D*U(K)-UPREV(K))/DMA
END EXTRAPOLATIDN
K=k+1
IF(K-MUX)75,110,110
C END EXTRAPOLATION LOOP
110 FAC=ABS(T(K)-U(K))
IF(T(K))90,95,90
C ORDER IS INCRFASED BY ONE
115 H=0.5*H
SUMT = SUMT + SUM
TPREV(K)=T(K
UPREV(K)=U(K)
MFIN=MFIN+1
N=NN
C RETURN FOR NEXT ORDER EXTRAPOLATION
END

```

Remark on Algorithm 400 [D1]
Modified Håvie Integration
[George C. Wallick, Comm. ACM 13 (Oct. 1970), 622624]

Robert Piessens [Recd. 17 Apr. 1973]
Applied Mathematics and Programming Division, University of Leuven, B- 3030 Heverlee, Belgium

Recently, Casaletto et al. [1] tested a number of automatic integrators by calculating 50 test integrals with different specified tolerances. We shall refer to these integrals as \#1, \#2, ... \#50. (A list can be found in [1] or [2].) One of the aims of their tests was to give a summary of the number of failures (when the computed value was not within the requested tolerance) and overflows (when an upper bound on the number of integrand evaluations prevented the specified accuracy from being reached) of each integrator. We have examined some other recently published integrators in a similar way. Our study reveals that HRVINT fails more frequently than the other integrators. For example, for the specified relative accuracy \(A C C=\) \(10^{-3}, H V R I N T\) fails on \#26, \#31, \#34, \#45, and \#47, and for \(A C C=\) \(10^{-4}\), on \#20, \#26, \#31, \#32, \#34, \#45, and \#47. It is worth while to note that \#20 and \#32 are integrals with very smooth integrand.

Most failures can be avoided by changing the statement labeled 75 to
75 IF (MFIN-2) 100, 100, 76
\(76 \mathrm{FAC}=\mathrm{ABS}(\mathrm{T}(\mathrm{K})-\mathrm{U}(\mathrm{K}))\)
Indeed, with this alteration failures occur only on \#47 (for both accuracies \(A C C=10^{-3}\) and \(10^{-4}\) ).

\section*{References}
1. Casaletto, J., Pickett, M., and Rice, J. A comparison of some numerical integration programs. SIGNUM Newsletter 4, 3(1969), 30-40.
2. Gentleman, W.A. Implementing Clenshaw-Curtis quadrature, I. Methodology and experience. Comm. ACM 15 (May 1972), 337-342.

\author{
ALGORITHM 401 \\ AN IMPROVED ALGORITHM TO PRODUCE COMPLEX PRIMES [A1] \\ Paul Bratley (Recd. 25 Feb. 1970) \\ Département d'informatique, Université de Montréal, C.P. 6128, Montréal 101, Quebec, Canada
}

KEY WORDS AND PHRASES: number theory, prime numbers, complex numbers
\(C R\) CATEGORIES: 5.39
integer procedure \(\operatorname{cprimes}(m, P R, P I)\);
value \(m\); integer \(m\); integer array \(P R, P I\);
comment The procedure generates the complex prime numbers located in the one-eighth plane defined by \(0 \leq y<x\). Any prime found in that area has seven more associated primes: \(-x+y i\), \(\pm x-y i, \pm y \pm x i\). These associated primes must be generated externally to cprimes. The first complex prime generated by cprimes is \(1+i\), which exceptionally lies on \(x=y\) and has only three associated primes.

The algorithm generates a list of complex primes in order of increasing modulus: the parameter \(m\) of the call is the highest modulus to be included in the list and should satisfy \(m>2\). \(P R\) and \(P I\) will contain respectively the real and imaginary parts of the generated list, with \(P R \geq P I \geq 0\) for each prime. The value of the procedure is the number of primes generated.

Algorithm 311 [1], sieve 2, is used to generate the rational primes less than \(m^{2}\). Then it is known (see, for instance [2]) that a rational prime \(p\) of the form \(p=4 n+1\) can be expressed as \(p=a^{2}+b^{2}\), and factorized as \((a+b i)(a-b i)\) in the complex plane, where \(a+b i\) and \(a-b i\) are complex primes. For our present purpose we choose \(a>b\) and include only \(a+b i\) in the list. A rational prime \(p\) of the form \(p=4 n+3\) remains prime in the complex plane, so we include \(p+0 i\) in the list if \(p<m\). Finally, the complex prime \(1+i\) may be thqught of as one of the factors of the remaining rational prime \(2=(1+i)(1-i)\).

Although this algorithm and Algorithm 372 [3] are not directly comparable, since they produce the list of complex primes in a different order, the accompanying remark suggests that the present algorithm is of ten to be preferred.

References:
1. Chartres, B. A. Algorithm 311, Prime number generator 2. Comm. ACM 10 (Sept. 1967), 570.
2. Hardy, G. H., and E. M. Wright. An Introduction to the Theory of Numbers, 4 th ed. Clarendon Press, Oxford, 1965, Chs XII and XV.
3. Dunham, K. B. Algorithm 372, An Algorithm to produce complex primes, CSIEVE. Comm. ACM 19 (Jan. 1970), 52-53;
begin
integer \(a, b, c, d, e, i, j, p, q\);
integer array \(P 2[1: 0.7 \times m \uparrow 2 / \ln (m)]\),
P3[1:1.4×m/ln \((m)]\);
\(e:=\) sieve \(2(m \uparrow 2, P 2)\);
\(P R[1]:=P I[1]:=a:=c:=1 ;\)
\(b:=0\);
for \(d:=2\) step 1 until \(e\) do
begin
\(p:=P 2[d] ; q:=p-1 ;\)
if \((q \div 4) \times 4 \neq q\) then
```

 begin
 if p\leqm then
 begin b:= b + 1; P3[b]:= p end
 end
 else
 begin
 L1:
if a\leqb then
begin
if P3[a] \uparrow 2<p}\mathrm{ then
begin
c:=c+1; PR[c] := P3[a];
a:=a+1; PI[c]:=0;
go to L1
end
end;
q:= entier(sqrt(p/2)+1);
for }i:=q\mathrm{ step 1 until p do
begin
j:= sqrt(p-i\uparrow2);
if i}\uparrow2+j\uparrow2=p\mathrm{ then go to }L
end
comment Note that the jump to L2 is always made before
the cycle is terminated;
L2:
c:=c+1; PR[c]:= i; PI[c]:= j
end
end;
L3:
if a\leqb then
begin
c:=c+1; PR[c]:= P3[a];
a:=a+1; PI[c]:=0;
go to L3
end;
cprimes :=c
end cprimes

```

\section*{REMARKS ON}

ALGORITHM 372 [A1]
AN ALGORITHM TO PRODUCE COMPLEX PRIMES, CSIEVE [K. B. Dunham. Comm. ACM 13 (Jan. 1970), 52-53]
ALGORITHM 401 [A1]
AN IMPROVED ALGORITHM TO PRODUCE COMPLEX PRIMES [P. Bratley. Comm. ACM 13 (Nov. 1970), 693]

Paul Bratley (Recd. 25 Feb. 1970)
Département d'informatiqué, Universite de Montréal, C.P. 6128, Montréal 101, Quebec, Canada

KEY WORDS AND PHRASES: number theory, prime numbers, complex numbers
\(C R\) CATEGORIES: 5.39

\begin{abstract}
Algorithm 372 was run on the CDC 6400 at the University of Montreal. The variable \(i\) is undefined if the for loop at label \(A\) is completed. The statement
\end{abstract}
\[
i:=j+1 \text {; }
\]
should be added immediately before label \(B\). Algol purists may also care to remove redundant semicolons after go to \(A\) and go to \(B\), and the redundant parentheses in one if-statement. With these changes the algorithm produced correct results for several values of \(m\).

The comment in Algorithm 372 is slightly inaccurate. The first prime generated by the algorithm is \(1+i\), which does not have \(P R>P I\), and which has not seven but three associated primes.

It is not possible to compare the speeds of Algorithm 372 and Algorithm 401 directly since they generate primes in a different order. However, the following test was run. A value of \(m\) was chosen, and Algorithm 401 was used to list all the complex primes with modulus less than \(m\). The time taken and the number of primes produced were noted. Then Algorithm 372 was used to produce an equal number of primes, the time taken again being noted. Times observed are shown in Table I.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE I} \\
\hline \[
\underset{\text { modulus }}{\substack{\text { Limit on }}}
\] & \[
\begin{gathered}
\text { Algorithm } 401 \\
\text { produced this } \\
\text { number of primes }
\end{gathered}
\] & Time taken (secs) & Time taken by Algorithm 372 to produce the same number of primes (secs) & Ratio of
times taken times taken \\
\hline 25 & 60 & 0.278 & 0.331 & 1.2 \\
\hline 50 & 189 & 1.577 & 2.140 & 1.4 \\
\hline 75 & 373 & 4.217 & 7.602 & 1.8 \\
\hline 100 & 623 & 8.618 & 20.214 & 2.4 \\
\hline 150 & 1266 & 23.732 & 79.481 & 3.4 \\
\hline
\end{tabular}

The conclusion from the figures in Table I is that if the speed with which the complex primes are generated is of paramount importance then Algorithm 401 should be preferred to Algorithm 372.

As written Algorithm 401 will use more memory than Algorithm 372 since it is convenient and perspicuous to use sieve 2 in an unmodified form, which makes it necessary to store temporarily all the rational primes less than \(m^{2}\). However, if space is tight then sieve 2 can easily be modified so as to generate rational primes one at a time on successive calls, and in this way the use of the long array \(P 2\) can be avoided. If this modification is made Algorithm 401 will in fact use less store than Algorithm 372, which wastefully stores many useless values in \(P M\). It is also to be noticed that the factors 0.7 and 1.4 occurring in the declarations of \(P 2\) and \(P 3\) may be diminished for large \(m\) : all that is necessary is that \(P 2\) should be long enough to hold the rational primes less than \(m^{2}\), and that \(P 3\) should be long enough to hold the rational primes which are not greater than \(m\) and which are of the form \(4 n+3\). Some space may be saved similarly in sieve2, which is called from Algorithm 401.

\author{
ALGORITHM 402 \\ INCREASING THE EFFICIENCY OF QUICKSORT* [M1] \\ M. H. van Euden (Recd. 15 Dec. 1969 and 7 July 1970) \\ Mathematical Centre, Amsterdam, The Netherlands \\ * The algorithm is related to a paper with the same title and by the same author, which was published in Comm. ACM 13 (Sept. 1970), 563-567.
}

KEY WORDS AND PHRASES: sorting, quicksort \(C R\) CATEGORIES: 5.31, 3.73, 5.6, 4.49
procedure \(q \operatorname{sort}(a, l 1, u 1)\);
value \(l 1, u 1\); integer \(l 1, u 1\); array \(a\);
comment This procedure sorts the elements \(a[l 1], a[l 1+1], \cdots\), \(a[u 1]\) into nondescending order. It is based on the idea described in [1]. A comparison of this procedure with another procedure, called sortvec, obtained by combining C. A. R. Hoare's quicksort [2] and R. S. Scowen's quickersort [3], in such a way as to be optimal for the Algol 60 system in use on the Electrologica X-8 computer at the Mathematical Centre is shown below. Here "repetitions" denotes the number of times the sorting of a sequence of that "length" is repeated; "average time" is the time in seconds averaged over the repetitions; "gain" is the difference in time relative to time taken by sortijec.
\begin{tabular}{lrccr} 
procedure & length & repetitions average time & gain \\
sortvec & 30 & 23 & .09 & \\
qsort & 30 & 23 & .06 & +.37 \\
sortvec & 300 & 16 & 1.25 & \\
qsort & 300 & 16 & 1.03 & +.17 \\
sortvec & 3000 & 9 & 17.43 & \\
qsort & 3000 & 9 & 15.25 & +.13 \\
sortvec & 30000 & 2 & 232.46 & i- \\
qsort & 30000 & 2 & 197.96 & +.15
\end{tabular}

References:
1. van Emden, M. H. Increasing the efficiency of quicksort. Comm. ACM 13 (Sept. 1970), 563-567.
2. Hoare, C. A. R. Algorithm 64, quicksort. Comm. ACM 4 (July 1961), 321-322.
3. Scowen, R. S. Algorithm 271, quickersort. Comm. ACM 8 (Nov. 1965), 669;

\section*{begin}
integer \(p, q, i x, i z\);
real \(x, x x, y, z z, z\);
procedure sort;
begin
integer \(l, u\);
\(l:=l 1 ; \quad u:=u 1 ;\)
part:
\(p:=l ; \quad q:=u ; x:=a[p] ; z:=a[q] ;\)
if \(x>z\) then
begin \(y:=x ; \quad a[p]:=x:=z ; \quad a[q]:=z:==y\) end;
if \(u-l>1\) then
begin
\[
x x:=x ; \quad i x:=p ; \quad z z:=z ; \quad i z:=q ;
\]
left:
for \(p:=p+1\) while \(p<q\) do

\section*{begin} \(x:=a[p]\); if \(x \geq x x\) then go to right
end;
\(p:=q-1\); go to out;
right:
for \(q:=q-1\) while \(q>p\) do
begin
\(z:=a[q] ;\)
if \(z \leq z z\) then go to dist
end;
\(q:=p ; \quad p:=p-1 ; \quad z:=x ; x:=a[p] ;\)
dist:
if \(x>z\) then
begin
\(y:=x ; \quad a[p]:=x:=z ;\)
\(a[q]:=z:=y\)
end;
if \(x>x x\) then
begin \(x x:=x ; \quad i x:=p\) end;
if \(z<z z\) then
begin \(2 z:=z ; \quad i z:=q\) end;
go to left;
out:
if \(p \neq i x \wedge x \neq x x\) then
begin \(a[p]:=x x ; \quad a[i x]:=x\) end;
if \(q \neq i z \wedge z \neq z z\) then
begin \(a\{q]:=z z ; a[i z]:=z\) end;
if \(u-q>p-l\) then
begin \(l 1:=l ; u 1:=p-1 ; \quad l:=q+1\) end
else
begin \(u 1:=u ; \quad l 1:=q+1 ; \quad u:=p-1\) end;
if \(u 1>l 1\) then sort;
if \(u>l\) then go to part
end
end of sort;
if \(u 1>l 1\) then sort
end of qsort

\section*{Remark on Algorithm 402 [M1]}

Increasing the Efficiency of Quicksort [M.H. Van
Emden, Comm. ACM 13 (Nov. 1970), 693-694]
Robert E. Wheeler [Recd. 6 July 1971]
E.I. du Pont de Nemours and Company,

Wilmington, DE 19899

It will happen during execution of this algorithm that sequences will be encountered which are already in nondescending order and which should not be further sorted. Changes to the algorithm which accomplish this are indicated below. For a Fortran version of this algorithm running on a Univac 1108, these changes de-
creased running time by 1.25 percent when sorting random arrays of length 500 and by 2.7 percent when sorting random arrays of length 50.
Line Change to:
2 integer \(p, q, i x, i z, i, j\);
\(9 \quad p:=l ; \quad q:=u ; \quad x:=a \mid p\} ; z:=a \mid q\} ; \quad i:=0\); \(j:=q-p-1\);
begin \(x x:=x ; \quad i:=i+1 ; \quad i x:=p\) end; begin \(z z:=z ; \quad i:=i+1 ; \quad i z:=q\) end; if \(i \neq j\) begin
end;

\author{
ALGORITHM 403 \\ CIRCULAR INTEGER PARTITIONING [A1] \\ M. W. Coleman and M. S. Taylor (Recd. 30 June 1970) \\ Aberdeen Proving Ground, MD 21005
}

KEYWORDS AND PHRASES: partitions, combinatorics, statistical design of experiments \(C R\) CATEGORIES: 5.39, 5.5

Description:
The partition, when expressed as a \(K\)-tuple ( \(X_{1}, \cdots, X_{K}\) ), may be thought of as a \(K\)-digit number in the base \(V\) number system. The procedure CIRPI then functions as a counter which generates successive \(K\)-digit numbers in the base \(V\) number system. However, since all \(K\)-digit numbers do not correspond to circular partitions, it is possible to have the procedure generate only a subset of \(K\)-tuples for consideration, using the following criteria:
(a) The digits are constrained to sum to \(V\), consequently, the \(K\) digits are not independent. Thus the procedure need only operate on the \(K-1\) most significant digits, the least significant digit being an easily computable function of the other \(K-1\) digits.
(b) Since the numbers are sequentially increasing, a given number is a cyclic permutation of a previously generated number if a cyclic rotation of its digits produces a number with a smaller value. Thus the most significant digit, \(X_{1}\), provides an effective minimum value for any of the digits.
(c) Given that the digits must sum to \(V\) and the minimum value for any digit is \(X_{1}\), the value \(V-X_{1} *(K-1)\) provides an effective maximum for any digit.
(d) Since the maximum and minimum values depend on the most significant digit, \(X_{1}\), the procedure is finished when \(X_{1}\) has increased to the point where the minimum digit size exceeds the maximum digit size, i.e. when \(X_{1}>V-X_{1}{ }^{*}(K-1)\). This easily reduces to \(X_{1}>V / K\), providing an easy method for terminating the \(K\)-tuple generation as early as possible.

Therefore, the procedure efficiently generates the totality of circular partitions since it can greatly restrict the number of \(K\) tuples that must be considered.

\section*{References:}
1. David, H. A., and F. W. Wolock. Cyclic designs. Annals of Math. Stat. 36 (1965), 1526-1534.
2. Niven, I., Mathematics of Choice. Random House, New York, 1965, ch. 6.

\section*{Algorithm:}

SUBRDUTINE CIRPI \((V, K, X)\)
C THIS SUBROUTINE GENERATES ALL K-TUPLES SUCH THAT.....
C THIS SUBROUT INE GENERATES ALL K-TUPLES SUCH THA
\(C\) A) THE SUM OF THE K ELEMENTS OF THF K-TUPLE IS \(V\),
B) EACH OF THE ELEMENTS IS AN INTEGER GREATER THAN O, AND C) NO K-TUPLE IS A CYCLIN THE ARRAY \(X\) THE ANY OTHER K-TUPLE. THE K-TUPLE IS STORE IN THEARLE X SROSSSED ELEMENT PER ARRAY THE SUBROUT INE PPROCES') BEFORE THE NEXT K-TUPLE IS IUSING THE SUBROUGBROUTINE 1 PROCES, MUST NOT CHANGE THE \(C\) GENERATED. THE SUBROUTI
```

(NTEGER }X(K),V,V1,V2,C, SU
V1 = V-k+1
V1 = V/K
K1=k-1
SUM =: Kl

```
C
C
    Initialize the array \(x\) with the first k-tuple.
```

C
DO 100 I = 1, K1
100 CONTINUE:
GO TO }11
c
GENERATE THE NEXT K-TUPLE WHICH SATISFIES THE GIVEN
C CONOITIONS, A) - C).
110 C = 1
00 113 I = 1, K2
11 = K-I
(11) = x(II)+C
F(x(11) -LT, V1) GO To 111
M(11)= X\
111 C = =
112 SUM = SUM+X1111)
113 CONTINUE
IF IC, EQ. O) GO TO }11
X(1)=X(1)+1
DO 114 (x(1),GT. V2) RETURN
00 114 11 = 2; K1
114 CONTINUE
SUM = x(1)*K
115 SUM = V-SUM
IF (SUM IT, X(1)) GO TD 110
x(k) = SUM
C CHECK TO SEE IF THF K-TUPLE IS A CVCLIC PERMUTATION OF
aNY PREVIOUSLY GENERATED K-TUPLES. IF IT IS, GENERATE THE
NEXT CANDIDATE, DTHERWISE, CALL THE SUQROUTINE 'PROCES, TO
C PROCFSS THE K-TUPLE BEFORE GENERATING THE NEXT ONE.
C 120 00 122 1= =2,k
IF (x(1).GT. X(1)) GO TO 122
IF (x(I) .LT. X(I)) GO To 110
11 = 1+1
121 12 = 2, k
IF (II .GT. K) II = II-K
IF (x(ii).GT. X(12))GO Tó 122
IF (xIII),LT. x(I2)) Gu To 110
11=11+1
121 GONTINUE
130 CALL PROCES (}X\mathrm{ , K)
GO TO 110
END

```

\section*{ALGORITHM 404}

COMPLEX GAMMA FUNCTION [S14]
C. W. Lucas Jr. \({ }^{\text {a and C. W. Terrill (Reed. } 13 \text { Feb. } 1970}\) and 19 June 1970)
Physics Department, College of William and Mary in Virginia, Williamsburg, VA 23185
*William and Mary Predoctoral Fellow. This work was partly supported by the National Aeronautics and Space Agency, Contract NGL 47-006008.

KEY WORDS AND PHRASES: gamma function, poles of gamma function, Stirling's asymptotic series, recursion formula, reflection formula
CR CATEGORIES: 5.12

\section*{Description:}
\(C G A M M A\) evaluates in single precision the gamma function for complex arguments. The method of evaluation is similar to the one employed by A. M. S. Filho and G. Schwachheim in evaluating the gamma function with arbitrary precision for real arguments [1]. First the real part of the argument of the gamma function is increased by some integer \(M\), if necessary, so that Stirling's asymptotic series for the logarithm of the gamma function may be used with high precision and a small number of terms. Then the recursion formula for the gamma function
\[
\Gamma(Z)=\Gamma(Z+1) / Z
\]
is used to step down to the original gamma function.
The conditions on the value of \(T=Z+M\) used in Stirling's asymptotic series are:
1. \(\operatorname{Real}(T)>10\)
2. \(\operatorname{Arg}(T)=\arctan (\operatorname{Imaginary}(T) / \operatorname{Real}(T)) \leq \pi / 4\)

This second condition ensures that the error incurred in using Stirling's asymptotic series with a finite number of terms is less than the value of the next term in the series [2].

The only condition on the argument \(Z\) is that it must not be too close to a pole of the gamma function, i.e. \(Z=0,-1,-2, \cdots\). A rough empirical relation was found between the number of significant figures obtained by Stirling's asymptotic series and the distance \(\delta\) in the complex plane from \(Z\) to the nearest pole by approaching the poles at 0 and -1 from several directions. If \(\delta\) \(=10^{-n}\) ( \(n\) an integer \(\geq 3\) ) this relation is (minimum number of significant figures \()=7-n\). With \(\delta=10^{-4}\), for instance, Stirling's asymptotic series gives three or more significant figures depending on the direction of \(Z\) from the pole. The upper limit on the size of \(Z\) for which CGAMMA will work is a function of the computer system. For the IBM 360 system where the largest size number that can be handled is about \(10^{75}\) the upper limit for real \(Z\) is about \(\pm 57\), for \(Z\) on the line Imaginary \((Z)= \pm \operatorname{Real}(Z)\) it is \((63 \pm 63 i)\), for Real \((Z)>0\) and \((-32 \pm 32 i)\) for \(\operatorname{Real}(Z)<0\), and for \(Z\) on the imaginary axis it is \(\pm 107 i\).
\(C G A M M A\) has been tested in several ways. The reflection formula
\[
\Gamma(Z) \Gamma(1-Z)=\frac{\pi}{\sin (\pi Z)}
\]
and the relation
\[
\Gamma(n+1)=n!\quad(n \text { integer })
\]
have been employed as checks. Also \(\log (\operatorname{gamma}(Z))\) has been compared with tabulated valued in reference [2] for a number of values of \(Z\). These tests lead us to conclude that \(C G A M M A\) gives four to five significant figures for \(Z\) outside disks of radius \(\delta=\) \(10^{-3}\) centered on the poles. If the subroutine is written in double precision, we have found that about eight more significant figures will be obtained everywhere for an IBM 360 system, and near the poles
\[
(\text { minimum number of significant figures })=15-n
\]
where \(\delta=10^{-n}\). The range of the subroutine remains the same.
Acknowledgment. The authors wish to express their gratitude to Dr. Morton Eckhause of the William and Mary Physics Department for his continuing advice and to Shirley McCallum and Samuel Pettus Hoyle of the College of William and Mary Computer Center who frequently reduced the programming difficulties.

\section*{References:}
1. Filho, Antonina Machido Souza and Schwachheim, Georges. Algorithm 309, Gamma function of arbitrary precision. Comm. ACM 10 (Aug. 1967), 511.
2. US Dep. of Commerce, Amer. Nat. Stand. Inst. Table of the gamma function for complex arguments. Clearinghouse, Springfield, VA 22151 (1954), p. VIII.

\section*{Algorithm :}
[Warning. System dependent constants are used in assigning values to IOUT, PI, TOL, SUM-L.D.F.]

FUNCTION CGAMMA(Z)
COMPLEX Z,ZM,T,TT, SUM,TERM, DEN, CGAMMA,PI, A
IMENSION CCIZ
LOGICAL RFFLEK
C SET IOUT FOR PROPER OUTPUT CHANNFL. OF COMPUTER SYSTEM FOR
C ERROR MESSAGFS
IOUT \(={ }^{3}\)
\(\rho_{1}=(3.141593,0.0)\)
\(x=R F A L(Z)\)
\(y=A I M A G(Z)\)
C TOL = LIMIT OF PRECISION OF COMPUTER SYSTEM IN SINGLE PRECISION TOL \(=1.0 F-7\)
REFLFK = .TRUE.
C. DETERMINE WHETHER \(Z\) IS TON CLOSE TO A POLE

C CHECK WHETHER TON CLOSE TO ORIGIN
IF (X.GE.TOL) GO TO 20
C FIND THE NEAREST POLE AND COMPUTE DISTANCE TO IT
\(\mathrm{XOIST}=X-I N T(X-.5)\)
\(7 M=\) CMPLX(XDIST. Y)
IF (CABS (ZM).GE.TOL) GO TO 10
C IF \(Z\) IS TOO CLOSE IO A POLE, PRINT ERROR MESSAGE AND RETURN
C WITH CGAMMA = (1.ET, O.OFO)
WRITF (IOUT,900) Z
CGAMMA \(=(1 . E 7,0 . E O)\)
RETURN
C FOR REAL(Z) NEGATIVE EMPLDY THE REFLECTION FORMULA
GAMMA(Z) \(=\) PI/(SIN(PI\#Z)*GAMMA(1-2))
AND CIMPUTE GAMMA(I-Z). NOTE REFLEK IS A TAG TO INDICATE THAT
C this relation must be usef later.
10 IF (X.GE.O.0) GO TO 20
REFIEK \(=\). FALSE.
\(z=(1,0,0.0)-Z\)
\(x=1.0-x\)
\(y=-y\)
C IF 2 IS NOT TOO CLOSE TO A POLE, NAKE REAL(Z)>10 AND ARG(Z)<PI/4
\(20 \quad M=0\)
40 IF(X.GE.10.) GO TO 50
\(x=X+1.0\)
\(M=M+1\)
\(G O \quad \operatorname{TO} 40\)
\(50 \quad \mathrm{IF}(A B S(Y) \cdot L T . X)\) GO TO 60
\(x=x+1.0\)
\(M=M+1\)
\(M=M+1\)
\(G O T O 50\)
\(60 \quad \mathrm{~T}=\mathrm{CMPLX}(X, Y)\)
\(\mathrm{T} T=\mathrm{T} * \mathrm{~T}\)
DEN \(=\mathrm{T}\)
C COEFFICIENTS IN STIRLING'S APPROXIMATION FOR LN(GAMMA(T)
\(C(1)=1.112\).
\(C(2)=-1.1360\).
\(C(2)=-1.1360\).
\(C(3)=1.11260\).
\(C(4)=-1.11680^{\circ}\).
\(C(5)=1.11188\).
```

 C(6) = -891.1360360
 C(7) = 1.1156
 C(8) = -3617.1122400.
 C(9) = 43867.1244188.
 c(10) = -174611.1125400.
 (11) = 77683.15796.
 SUM = (T-{.5,0.0))*CLOG(T)-T+CMPL*(.5*ALOG(2.*3.14159),0.0)
 J=1
 70 TERM = C(J)/DEN
C TEST REAL ANO IMAGINARY PARTS DF LN(GAMMA(Z)) SEPARATFLY FOR
C CONVERGFNCE. IF I IS RFAL SKIP IMAGINARY PART OF CHECK.
F(ABS(REAL(TFRM)/RFAL(SUM)).GE.TOL) GO TO 80
IF(Y.FO.0.0) GO TO 100
IF(ABS(AIMAGG(TFRM)/AIMAG(SUM)).LT.TOL) GO TO 100
SUM = SUM + TFRM
J=J +1
DEN = DEN*TT
C TFST FOR NONCONVERGENCE
IF(J.FO.l2) GO TO 90
GO TO 70
C STIRLING'S SERIES DID NOT CONVERGE. PRINT ERRIIR MESSAGE AND
C PROCEDF.
90 WRITF(IDOT,910) Z
C RFCURSION RELATIGN USFO TO ORTAIN LN(GAMMA(Z))
C %NOM

```

```

 BC1 110 I = 1,M
 A=CMPLX(1:51.-1.,0.0
 110 SIMM = SIMM-CLOG(}2+\Delta
c. CHECK TO SEF IF REFLECTION FORMULA SHOULD HF IISFD
120 IF(RFFI.F) f, TO 130
SUM = CLOG(PI/CSIN(PI*Z))-SUM
z = (1.0.0.0) -z
CGAMMA = CFXP(SIMM)
RFTIIRN
FORMATIIX,2F14.7,10X,49HARGUMENT OF GAMMA FUNIGTION IS THON CLOSF IN
1 A POLFI
40 FIIRMAT(44H FRROR - STIRLING'S SEQIES HAS NOT CINVFRGFO/14X,4HZ = ,
1)F14.7)
fN()

```

Certification and Remark on Algorithm 404 [S14]
Complex Gamma Function [C.W. Lucas Jr. and C.W. Terril, Comm. ACM 14 (Jan. 1971), 48]

\section*{G. Andrejková and J. Vinař, Computing Center, Šafarik University, Košice, Czechoslovakia}

The following changes were made in the algorithm:
a. The function subroutine heading was changed to read

\section*{COMPLEX FUNCTION CGAMMA(Z)}
in accordance with the standard.
b. The convergence tests following statement number 70 involve the computation of the quantity \(\operatorname{REAL}(T E R M) / R E A L(S U M)\). This can lead to overflow if \(Z\) is real and near to a pole. For these reasons the two statements were replaced by
IF (ABS(REAL(TERM)) .GE. TOL*ABS(REAL(SUM))) GO TO 80
and
IF (ABS(AIMAG(TERM)).GE. TOL*ABS(AIMAG(SUM))) GO
TO 100
c. For similar reasons the statement
\(\operatorname{SUM}=\operatorname{CLOG}(P I / C S I N(P I * Z))-S U M\)
was replaced by
\(\operatorname{SUM}=\operatorname{CLOG}(P I)-\operatorname{CLOG}(\operatorname{CSIN}(P I * Z))-S U M\)
With these modifications the algorithm was translated on MINSK 22 M using the FEL Fortran compiler (with seven significant digits
in single precision and 15 in double precision) and ran satisfactorily. The following tests were performed:
a. The logarithms of \(\operatorname{CGAMMA}(Z)\) for \(z=x+i y\) with \(x=1.0\) (0.1) 10.0 and \(y=0.0(0.1) 3.0\) were checked against the values given in [1]. An overall accuracy of five to six digits was observed. The imaginary part frequently had one more accurate digit than the real part.
b. The behavior in the vicinity of poles was tested by computing the values of \(C G A M M A(Z)\) in eight evenly spaced points on circles of decreasing diameter. The value of \(1 . E-7\) for the minimum diameter was found adequate.
c. The values of \(\operatorname{CGAMMA}(Z)\) were computed for \(z=x+i y\) with
1. \(x=0.0(1.0) 23.0, y=0.0\)
2. \(x=0.0, y=0.0(1.0) 26.0\)
3. \(x=y=0.0(1.0) 25.0\)
4. \(x=-y=0.0(1.0) 25.0\)
5. \(-x=y=0.0(1.0) 12.0\)
6. \(-x=-y=0.0(1.0) 12.0\)
in all cases the final value is the last for which the program did not run into overflow or, in the last two cases, try to take a logarithm of too small a number.

\section*{References}
1. Table of gamma function for complex arguments. National Bureau of Standards, Applied Math. Series 34, August 1954.

\section*{Algorithm 405}

Roots of Matrix Pencils:
The Generalized Eigenvalue Problem [F2]
Alice M. Dell, Roman L. Weil, Gerald L. Thompson* (Recd. 25 May 1970 and 12 Oct. 1970)
Committee on Information Sciences, University of Chicago, Chicago, IL 60637, Graduate School of Business and Committee on Information Sciences, University of Chicago, Chicago, IL 60637, and Graduate School of Industrial Administration, CarnegieMellon University, Pittsburgh, PA 15213
* This work was supported by the US National Aeronautics and Space Administration, by the National Science Foundation under Grant GS-2703 to the University of Chicago, and by the US Office of Naval Research under Grant NONR 760(24) NR 047-048 to Carnegie-Mellon University. Computations were done on the University of Chicago's Maniac III computer and were supported by the US Atomic Energy Commission under grants AT (11-1)-614 and AT (11-1)-2094.
KEY WORDS AND PHRASES: eigenvalues, matrix roots, pen cil roots
\(C R\) CATEGORIES: 5.1, 5.3
procedure PENCIL(A, B, m, n, LAMDA, Sp, Par, Tol); value \(A, B\); realarray \(A, B, L A M D A\); integer \(m, n, S p\), Par; real Tol;
comment PENCIL finds the generalized eigenvalues LAMDA which solve \(x(A-\lambda B)=0\) and \((A-\lambda B) y=0\) and simultaneously reduce the rank of \((A-\lambda B)\), where \(A\) and \(B\) are \(m\) by \(n\) matrices, see [1, 3, 4]. PENCIL converts the \(m\) by \(n\) problem of finding the rank-reducing numbers of ( \(A-\lambda B\) ) into an ordinary \(r\) by \(r\) eigenvalue problem by a sequence of elementary transformations. The theory is developed in [3] and [4]. These techniques are to be thought of as a combinatorial solution to an unsolved general problem. Our techniques may be numerically unsound for ill-conditioned problems. There are at most \(k=\min (m, n)\) such generalized eigenvalues. \(S p\) is the number of generalized eigenvalues found. The real parts of the roots are stored in \(\operatorname{LAMDA}(1, j)\), and the imaginary parts in \(\operatorname{LAMDA}(2, j), j=\) 1...Sp. LAMDA is declared external to this procedure and should be dimensioned \([1: 2,1: k]\). The procedure sets the parameter Par: Par \(=0\) indicates there are no roots, otherwise \(\operatorname{Par}=\) +1 . The tolerance value Tol governs the accuracy of the pivoting routine used in the procedure \(R E D U C E\). REDUCE is a procedure applied to a matrix \(X\) of rank \(r\) to find matrices \(P 1\) and \(P 2\) so that
\[
P 1 \times X \times P 2=\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right]
\]

The input parameters of \(P E N C I L\) must be \(A, B, m, n\), and Tol. The following supplementary procedures are required: \(R E\) \(D U C E, S W A P\), Matmul, EIG. The purpose of each of these procedures is explained in the head comment of each. A routine for finding eigenvalues of a square matrix should be supplied by the user to be called from procedure \(E I G\);
comment Examples. We show several examples of the generalized eigenvalue problem and how the procedure PENCIL processed these examples for input into the user-supplied eigen-
value routine, here named EIGENVALUES, which is called in PENCIL by EIG. The format for the examples is (a) the original \(A\) and \(B\) matrices are shown, (b) the derived \(A\), matrix (to four digits) whose eigenvalues are the rank-reducing numbers of ( \(A-\lambda B\) ) which is input to \(E I G\) and then to \(E I G E N V A L U E S\) is shown, and (c) any pertinent comments about that example are made.
\[
\begin{gather*}
A=\left[\begin{array}{rrrrr}
10 & 2 & 3 & 1 & 1 \\
2 & 12 & 1 & 2 & 1 \\
3 & 1 & 11 & 1 & -1 \\
1 & 2 & 1 & 9 & 1 \\
1 & 1 & -1 & 1 & 15
\end{array}\right] \quad B=\left[\begin{array}{rrrrr}
12 & 1 & -1 & 2 & 1 \\
1 & 14 & 1 & -1 & 1 \\
-1 & 1 & 16 & -1 & 1 \\
2 & -1 & -1 & 12 & -1 \\
1 & 1 & 1 & -1 & 11
\end{array}\right] \\
A_{5}=\left[\begin{array}{rrrrr}
.7220 & .0248 & .0871 & .2358 & -.1426 \\
.0160 & .8663 & .1892 & .0636 & .0015 \\
.0781 & .2339 & .7967 & -.0357 & .2016 \\
.3107 & .0554 & -.0699 & .8551 & -.0791 \\
-.1792 & .0261 & .1447 & -.0173 & 1.4020
\end{array}\right] \tag{1}
\end{gather*}
\]

This example contains no complications since both \(A\) and \(B\) are square of full rank. \(A_{5}\) is effectively \(B^{-1} A\). The example is the first shown in [2, Sec. 7].
\[
A=\left[\begin{array}{lll}
2 & 3 & 1  \tag{2}\\
3 & 5 & 2 \\
3 & 4 & 2
\end{array}\right] \quad B=\left[\begin{array}{rrr}
2 & -1 & 1 \\
2 & 2 & 2 \\
2 & -1 & 1
\end{array}\right]
\]

This example, from unpublished notes by J. H. Wilkinson, calls \(P E N C I L\) recursively. \(A\) and \(B\) above are transformed to the one by one matrices
\[
A^{\prime}=[.23077] \quad B^{\prime}=[1.1538]
\]
for re-entry to PENCIL. The final output from PENCIL is the derived matrix \(A_{1}=[.2]\).
\[
A=\left[\begin{array}{lll}
2 & 3 & 2  \tag{3}\\
3 & 5 & 2 \\
2 & 2 & 2
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Here \(m-r-q=n-r-q=0\) so that there were no recursive calls of PENCIL. On exit from PENCIL \(A_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right]\).
\[
A=\left[\begin{array}{llll}
2 & 1 & 2 & 1  \tag{4}\\
2 & 1 & 2 & 1
\end{array}\right] \quad B=\left[\begin{array}{llll}
1 & -1 & 1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right]
\]

This system has no roots which reduce the rank \((A-\lambda B)\). The failure is an example of Theorem 2.3(a) of [4] when both E12 and \(E 21\) exist.
\[
A=\left[\begin{array}{ll}
2 & 2  \tag{5}\\
1 & 1 \\
2 & 2 \\
1 & 1
\end{array}\right] \quad B=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1 \\
1 & 1 \\
1 & 1
\end{array}\right]
\]

This system has no roots which reduce the rank \((A-\lambda B)\). The failure is an example of Theorem 2.3(b) of [4] where both E12 and E21 exist.
\[
A=\left[\begin{array}{rrrrrr}
-1 & 0 & 2 & 4 & 1 & -1  \tag{6}\\
-1 & 1 & 3 & 6 & 1 & -1 \\
0 & 1 & 1 & 6 & 0 & 0 \\
1 & 2 & 4 & 8 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{rrrrrr}
-1 & -1 & 0 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & -1 & 0 \\
1 & 0 & 1 & -1 & -1 & -1 \\
2 & -1 & 3 & -3 & 1 & -2
\end{array}\right]
\]

This system has no roots which reduce the rank of \((A-\lambda B)\), but that fact is not discovered by PENCIL until a recursive call is made on
\[
A^{\prime}=\left[\begin{array}{lll}
.2353 & .2353 & 0
\end{array}\right] \quad B^{\prime}=\left[\begin{array}{llll}
.4706 & 1 & -.3529
\end{array}\right]
\]

The failure is an example of Theorem 2.3(a) of [4] when \(E 21\) is degenerate.
\[
A=\left[\begin{array}{rrrr}
-1 & -1 & 0 & 1  \tag{7}\\
0 & 1 & 1 & 2 \\
2 & 3 & 1 & 4 \\
4 & 6 & 6 & 8 \\
1 & 1 & 0 & 1 \\
-1 & -1 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
-1 & 0 & 1 & 2 \\
-1 & 1 & 0 & -1 \\
0 & -1 & 1 & 3 \\
0 & 1 & -1 & -3 \\
1 & -1 & 0 & 1 \\
1 & 0 & -1 & -2
\end{array}\right]
\]

This system has no roots which reduce the rank of \((A-\lambda B)\), but that fact is not discovered by PENCIL until a recursive call is made on
\[
A^{\prime}=\left[\begin{array}{l}
.1176 \\
.2353
\end{array}\right] \quad B^{\prime}=\left[\begin{array}{c}
.2353 \\
1
\end{array}\right] .
\]

Except for the entry in the fifth row and third column of \(B\), this example is the transpose of example (6). The failure is an example of Theorem \(2.3(\mathrm{~b})\) of [4] when \(E 12\) is degenerate.
\[
\begin{gather*}
A=\left[\begin{array}{llll}
2 & 3 & 0 & 0 \\
3 & 5 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]  \tag{8}\\
A_{2}=\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]
\end{gather*}
\]

Examples (8), (9), and (10) all reduce to the same derived eigenproblem. Each, however, tests paths to different exits from PENCIL. Here \(s+t=0\).
\[
\begin{gather*}
A=\left[\begin{array}{llll}
2 & 3 & 0 & 0 \\
3 & 5 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]  \tag{9}\\
A_{2}=\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]
\end{gather*}
\]

See comment at example (8). Here \(s=0\), i.e. \(E 21\) is degenerate and \(t\) is found to be zero.
\[
\begin{gather*}
A=\left[\begin{array}{lll}
2 & 3 & 0 \\
3 & 5 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]  \tag{10}\\
A_{2}=\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]
\end{gather*}
\]

See comment at example (8). Here \(t=0\), i.e. \(E 12\) is degenerate and \(s\) is found to be zero.
\[
\begin{gather*}
A=\left[\begin{array}{rrr}
2 & -1 & 1 \\
2 & 2 & 2 \\
2 & -1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 5 & 2 \\
3 & 4 & 2
\end{array}\right] \\
A_{3}=\left[\begin{array}{rrr}
3 & 0 & 1 \\
-7 & 2 & -1 \\
4 & -2 & 0
\end{array}\right] \tag{11}
\end{gather*}
\]

In all other examples \(\operatorname{rank}(A)>\operatorname{rank}(B)\). Here \(\operatorname{rank}(A)<\) \(\operatorname{rank}(B)\). The derived eigenproblem has one nonzero root, 5 , and two zero roots. Note that this problem is the same as example (2) except that \(A\) and \(B\) are interchanged. Ordinarily interchanging the roles of \(A\) and \(B\) yields the reciprocals of the eigenvalues. When one problem has zero eigenvalues, the interchanged problem has no corresponding reciprocal eigenvalue. Thus in example (2) we find only one solution, the reciprocal of 5 ; comment Here we relate our work to that reported in the literature. Gantmacher [1, Chap. XII] has shown that every \(m \times n\) matrix of the form \((A-\lambda B)\) can be transformed by elementary row and column operations to a canonical form. (We call this form the Gantmacher Normal Form, G.N.F.) That is, there exist nonsingular \(m \times m\) matrix \(P\) and \(n \times n\) matrix \(Q\) so that \(P(A-\) \(\lambda B) Q\) has a quasi-diagonal form which is the direct sum of as
many as \((p+q+r+2)\) blocks as follows:
\(\{g\)
\(\left\{h[0], L_{\epsilon_{g+1}}, \cdots, L \epsilon_{g+p}\right.\),
\[
\left.L_{n_{h+1}}^{\boldsymbol{T}}, \cdots, L_{n_{h+q}}^{\boldsymbol{T}}, N_{\mu_{1}}, \cdots, N_{\mu_{r}},(J-\lambda \mathrm{I})\right\} .
\]

All other entries in the G.N.F. are zero. The block \(h[0]\) has \(h\) rows and \(g\) columns and all its elements are zero. The block \(L_{\epsilon_{g+i}}\) has \(\epsilon_{g+i}\) rows and ( \(\epsilon_{g_{+i}}+1\) ) columns with structure
\[
\epsilon+1
\]
\[
L_{\epsilon}=\left[\begin{array}{ccccccc}
\lambda & 1 & & & & & 0 \\
& \lambda & 1 & & & & \\
& & \cdot & \cdot & & & \\
& & & \cdot & \cdot & & \\
& & & & \cdot & \cdot & \\
0 & & & & & \lambda & 1
\end{array}\right] \epsilon
\]

The block \(L_{\eta_{h+j}}^{\boldsymbol{T}}\) has \(\left(\eta_{h+j}+1\right)\) rows and \(\eta_{h+j}\) columns with struc \({ }^{-}\) ture
\[
L_{\eta}{ }^{T}=\left[\begin{array}{cccccc}
\lambda & & & & & 0 \\
1 & \lambda & & & & \\
& 1 & \cdot & & & \\
& & \cdot & \cdot & & \\
& & & \cdot & \cdot & \\
& & & & \cdot & \lambda \\
0 & & & & & 1
\end{array}\right] \eta+1
\]

The square block \(N_{\mu_{k}}\) is \(\mu_{k}\) by \(\mu_{k}\) with structure
\[
N_{\mu}=\left[\begin{array}{cccccc}
1 & \lambda & & & & 0 \\
& 1 & . & & & \\
& & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
0 & & & & \cdot & \lambda \\
0 & & & & 1
\end{array}\right] \mu
\]

The final block \((J-\lambda I)\) is an ordinary square eigensystem in Jordan normal form.
For a given matrix \((A-\lambda B)\) let
\[
w=\max _{i}\left\{\epsilon_{i}, \eta_{i}, \text { entier }\left(\frac{\mu_{i}-1}{2}\right)\right\}
\]
where \(\epsilon_{i}, \eta_{i}, \mu_{i}\) are defined from the G.N.F. Then PENCIL applied to \((A-\lambda B)\) will require no more than \(w\) recursive calls to derive the reduced eigenproblem. We have run many examples with various combinations of \(L, L^{T}\), and \(N\) blocks to test our procedures. Since the \(L, L^{T}\), and \(N\) blocks contribute no solutions, these examples are uninteresting to reproduce here. If the G.N.F. of the original problem contains only \(L, L^{T}\), and \(N\) blocks, there are no solutions. If the G.N.F. contains \((J-\lambda I)\) as well, the output of our procedures for \(E I G\) is the matrix whose Jordan normal form is \(J\).
References:
1. Gantmacher, F. R. The Theory of Matrices, II. Chelsea Pub. Co., New York, 1959, pp. 35-40.
2. Martin, R. S., and Wilkinson, J. H. Reduction of the symmetric eigenproblem \(A x=\lambda B x\) and related problems to standard form. Num. Math. 11 (1968), 99-110.
3. Thompson, G. L., and Weil, R. L. Reducing the rank of \((A-\lambda B)\). Proc. \(A M S\) 26, 4 (Dec. 1970), 548-554.
4. Thompson, G. L., and Weil, R. L. The roots of matrix pencils ( \(A y=\lambda B y\) ): existence, calculations, and relations to game theory. Center for Mathematical Studies in Business and Economics, Rep. 6936, U. Chicago, Aug. 1969 [Linear Alg. Appl. (to appear)];
begin
integer \(q, r, s, t, i, j, k, l i m c, l i m r\);
begin
array \(P 1[1: m, 1: m], P 2[1: n, 1: n]\);
Par \(:=+1 ; \quad S p:=0\);
\(k:=\) if \(m<n\) then \(m\) else \(n\);
for \(i:=1\) step 1 until 2 do
for \(j:=1\) step 1 until \(k\) do \(L A M D A[i, j]:=0\);
\(\operatorname{REDUCE}(P 1, B, P 2, m, n, r, T o l)\);
if \(r=0\) then
begin Par \(:=0\); go to \(E n d p\); end;
\(\operatorname{Matmul}(P 1, A, A, m, m, n) ; \operatorname{Matmul}(A, P 2, A, m, n, n) ;\)
\(\operatorname{Matmul}(P 1, B, B, m, m, n) ; \operatorname{Matmul}(B, P 2, B, m, n, n)\);
comment NOTE:; The last two matrix multiplications together, by definition of \(P 1\) and \(P 2\), change \(B\) to
\[
\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] .
\]

To avoid the multiplications at this point, an \(r\) by \(r\) identity matrix \(B\) can be generated directly. Note that \(r\) is determined by the immediately preceding call of REDUCE;
end;
comment At this stage
\[
A:=P 1 \times A \times P 2, \quad B:=P 1 \times B \times P 2=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] .
\]
\(B\) is "reduced" and the corresponding operations have been performed on \(A\);
if \(((n-r)=0 \wedge(m-r)=0)\) then
begin
EIG(LAMDA, A, r); go to Endp;
comment Calculations for examples (1) and (11) exit here, and for example (2) cease here after one recursive call. See discussion in the "Examples" comment;
end;
lime \(:=\) if \((n-r)=0\) then 1 else \(n-r\);
limr \(:=\) if \((m-r)=0\) then 1 else \(m-r\);
begin
array \(C 12[1: r, 1: l i m c], C 21[1: \mathrm{limr}, 1: r], C 22[1:\) limr, \(1: \mathrm{limc}]\), P1 [1:limr, 1:limr], P2[1:limc, 1:limc];
if \((n-r) \neq 0\) then
begin
for \(i:=1\) step 1 until \(r\) do
for \(j:=r+1\) step 1 until \(n\) do
\(C 12[i, j-r]:=A[i, j] ;\)
end;
if \((m-r) \neq 0\) then
begin
for \(i:=r+1\) step 1 until \(m\) do
begin
for \(j:=1\) step 1 until \(r\) do \(C 21[i-r, j]:=A[i, j]\); if \((n-r) \neq 0\) then
begin
for \(j:=r+1\) step 1 until \(n\) do \(C 22[i-r, j-r]:=A[i, j] ;\) end
end
end;
comment \(A\) has now been partitioned and the parts are referred to below as
\[
\left[\begin{array}{ll}
r & n-r \\
A & C 12 \\
C 21 & C 22
\end{array}\right]_{n-r}^{r}
\]
if \(((n-r)=0 \vee(m-r)=0)\) then
begin \(q:=0\); go to \(M u l\); end;
REDUCE (P1, C22, P2, limr, limc, \(q\), Tol);
\(\operatorname{Matmul}(C 12, P 2, C 12, r, l i m c, l i m c) ; \operatorname{Matmul}(P 1, C 21, C 21\), limr, limr, \(r\) );

Matmul(P1, C22, C22, limr, limr, limc); Matmul(C22, P2, C22, limr, lime, lime);
comment See "Note" comment above to generate C22 directly without matrix multiplications;
comment \(C 22\) has been "reduced" and the requisite operations have been performed on C12 and C21. That is
\[
C 22:=P 1 \times C 22 \times P 2=\left[\begin{array}{ll}
I_{q} & 0 \\
0 & 0
\end{array}\right],
\]
\(C 12:=P 1 \times C 12\), and \(C 21:=C 21 \times P 2\). Thus \(A\) now looks like
\[
r\left[\begin{array}{ccccc}
r & & & n-r \\
A_{r} & \cdot & & C 12 & \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
& \cdot & I_{q} & & 0 \\
C 21 & \cdot & & & \\
& \cdot & 0 & & 0
\end{array}\right] m-r ;
\]
if \(q=0\) then go to \(M u l\);
begin

> array D21[1:r, 1:r];

Matmul (C12, C21, D21, r, q, r);
for \(i:=1\) step 1 until \(r\) do
for \(j:=1\) step 1 until \(r\) do
\(A[i, j]:=A[i, j]-D 21[i, j] ;\)
end;
Dstep:
if \(((m-r-q)=0 \wedge(n-r-q)=0)\) then
begin
\(\operatorname{EIG}(L A M D A, A, r)\); go to \(E n d p ;\)
comment Calculations for example (3) cease here. See discussion in the "Examples" comment;
end;
Mul:
limr \(:=\) if \((m-r-q)=0\) then 1 else \(m-r-q ;\)
limc \(:=\) if \((n-r-q)=0\) then 1 else \(n-r-q\);
begin
array \(E 12[1: r, 1:\) limc \(], E 21[1:\) limr, \(1: r]\);
if \((n-r-q) \neq 0\) then
begin
for \(i:=1\) step 1 until \(r\) do
for \(j:=q+1\) step 1 until \(n-r\) do
\(E 12[i, j-q]:=C 12[i, j] ;\)
end;
if \((m-r-q) \neq 0\) then
begin
for \(i:=q+1\) step 1 until \(m-r\) do
for \(j:=1\) step 1 until \(r\) do
\(E 21[i-q, j]:=C 21[i, j] ;\)
end;
comment The columns of \(C 12\) above \(I_{q}\) and the rows of \(C 21\) to the left of \(I_{q}\) are annihilated. The remaining submatrices are now called \(E 12\) and \(E 21\), respectively.
\[
A=\left[\begin{array}{lll}
A_{r} & 0 & E 12 \\
0 & I_{g} & 0 \\
E 21 & 0 & 0
\end{array}\right] ;
\]
begin
array \(P 1, P 4[1: r, 1: r], P 2[1:\) limc, \(1: l i m c]\), P3[1:limr, \(1:\) limr \(] ;\)
if \((n-r-q) \neq 0\) then \(\operatorname{REDUCE}(P 1, E 12, P 2, r\), limc, \(t\), Tol
else); \(t:=0\);
if \((m-r-q) \neq 0\)
then \(\operatorname{REDUCE}(P 3, E 21, P 4, \operatorname{limr}, r, s, T o l)\);
else \(s:=0\);
if \(((r=t) \vee(r=s))\) then
begin
comment Set parameter for no solutions;
```

 par:== 0; go to Endp;
 comment Calculations for examples (4-7) (after one
 recursive call for (6) and (7)) cease here. See discus-
 sion in the "Examples" comment;
 end;
 if (s+t)=0 then
 begin
 EIG(LAMDA,A,r); go to Endp;
 comment Calculations for examples (8-10) cease here.
 See discussion in 'Examples" comment;
 end;
 if (n-r-q) }=0\mathrm{ then
 begin
 Matmul(P1, A, A,r,r,r); Matmul(P1, B, B,r,r,r);
 end;
 if (m-r-q)\not=0}0\mathrm{ then
 begin
 Matmul(A, P4, A,r,r,r); Matmul(B,P4,B,r,r,r);
 comment E12 and E21 have been "reduced" and the
 requisite operations have been performed on B. That
 is
 E12:=P1\timesE12\timesP2=[\begin{array}{ll}{\mp@subsup{I}{t}{}}&{0}\\{0}&{0}\end{array}],
 and }\mp@subsup{B}{r}{}:=P1\times\mp@subsup{I}{r}{}\timesP4\mathrm{ . Thus A looks like
    ```

```

 and B looks like
 \(\left[\begin{array}{llll}B_{r} \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0\end{array}\right]\)| r |
| :--- |
| q |
| s |
| $(m-r-q-s)$ |

 end
 end
 end
 end;
comment The columns of A_{r} above I_{s} and the rows of A_{r} to the left of I_{t} are annihilated, and the remaining $(r-s) \times(r-t)$ submatrix is called G. The corresponding $r-s$ rows and $r-t$ columns of B are called H. The following statements build the matrices G and H;

```

\section*{begin}
```

array $G, H[1: r-t, 1: r-s]$;
for $i:=t+1$ step 1 until r do for $j:=s+1$ step 1 until r do begin
$G[i-t, j-s]:=A[i, j] ; \quad H[i-t, j-s]:=B[i, j]$ end;
$\operatorname{PENCIL}(G, H, r-t, r-s, L A M D A, S p, P a r, T o l) ;$ end
Endp:
end PENCIL;

```
procedure \(R E D U C E(I 1, X, I 2, m, n\), dex, Tol); value \(X\); real array \(X, I 1, I 2\); real Tol; integer \(m, n\), dex comment \(R E D U C E\) applied to an \(m\) by \(n\) matrix \(X\) of rank dex finds an \(m\) by \(m\) matrix \(I 1\) and an \(n\) by \(n\) matrix \(I 2\) such that
\[
I 1 \times X \times I 2=\left[\begin{array}{ll}
I_{d e x} & 0 \\
0 & 0
\end{array}\right]
\]

The rank is found by \(R E D U C E\) and returned in dex. Gaussian elimination with complete pivoting is used until the \((d e x+1)\) st pivot element would be less than Tol, a parameter to be supplied by the user to \(P E N C I L\). This procedure is supplied to make the \(P E N C I L\) routine complete. Users concerned with increased numerical accuracy should write their own routines paying attention to multiple precision, and ill-conditioning. Note that \(X\) is called by value and is not altered. When preserving \(X\) is not important, \(P E N C I L\) can be made to run faster by eliminating value \(X\) in \(R E D U C E\) and the matrix multiplications in \(P E N C I L\) that directly follow the calls to \(R E D U C E\);

\section*{begin}
integer \(i, j, k, l, l i m, p, q ;\) real div;
real array \(C V E C, T E M P[1: n, 1: n], I 3[1: m, 1: m]\);
integer array rvec \([1: m]\), mvec \([1: n]\);
if \(m>n\) then \(\lim :=n\) else \(\lim :=m\);
dex \(:=0\);
for \(i:=1\) step 1 until \(m\) do
begin
\(I 1[i, i]:=1 ; \quad\) rvec \([i]:=i ;\)
for \(j:=1\) step 1 until \(m\) do if \(i \neq j\) then \(I \mathbb{1}[i, j]:=0\);
end;
for \(i:=1\) step 1 until \(n\) do
begin mvec \([i]:=i\);
for \(j:=1\) step 1 until \(n\) do
begin
if \(i \neq j\) then \(Y 2[i, j]:=\operatorname{TEMP}[i, j]:=C V E 1 C[i, j]:=0\) else \(I 2[i, j]:=T E M P[i, j]:=C V E C[i, j]:=\) end
end;
Rowop:
for \(i:=1\) step 1 until \(m\) do
for \(j:=1\) step 1 until \(m\) do
if \(i=j\) then \(I 3[i, j]:=1\) else \(I 3[i, j]:=0\);
dex \(:=\operatorname{dex}+1\);
if \(d e x \leq \lim\) then
begin
\(S E A R C H(X, d e x, k, l, m, n, r v e c, m v e c) ;\)
comment \(X(k, l)\) is the pivot element;
\(I S W A P(r v e c[d e x]\), rvec \([k]) ; \quad I S W A P(m v e c[d e x], \operatorname{mvec}[l]) ;\),
for \(i:=1\) step 1 until \(n\) do \(S W A P(C V E C[i, d e x], C V E C[i l])\);
if \(\operatorname{abs}(X[r v e c[d e x]\), mvec[dex]]) < Tol then
begin dex \(:=0\); go to Endr end;
for \(i:=1\) step 1 until \(m\) do if \(i \neq d e x\) then
begin
\(d i v:=X[r v e c[i], \operatorname{mec}[\operatorname{dex}]] / X[r v e c[d e x], m v e c[d e x]) ;\)
\(I 3[i, k]:=-d i v ;\)
for \(j:=\) dex step 1 until \(n\) do
\(X[\) rvec \([i]\), mvec \([j]]\)
\(:=X[\operatorname{rvec}[i], \operatorname{mvec}[j]]-(\operatorname{div} \times X[\operatorname{rvec}[\operatorname{dex}], \operatorname{mvec}[j]]) ;\)
end;
\(I 3[\) dex, \(k]:=1.0 / X[r v e c[d e x], m v e c[d e x]] ;\)
for \(j:=d e x\) step 1 until \(n\) do
if \(j \neq\) dex then
\(X[r v e c[d e x], m v e c[j]]\)
\(:=X[r v e c[d e x]\), mvec \([j]] / X[\operatorname{rvec}[d e x]\), mvec \([d e x]] ;\)
\(X[r v e c[d e x], m v e c[d e x]]:=1.0\);
if \(k \neq \operatorname{dex}\) then \(\operatorname{SWAP}(I 3[d e x, \operatorname{dex}], I 3[k\), dex]);
\(\operatorname{Matmul}(I 3, I 1, I 1, m, m, m)\);
for \(i:=d e x+1\) step 1 until \(m\) do
for \(j:=d e x+1\) step 1 until \(n\) do
```

 if abs (X[rvec[i],mvec[j]])> Tol then go to Rowop;
 end;
 if m<n\veedex<lim then
 begin
 integer p,q; real mul;
 for }i:=1\mathrm{ step 1 until dex do
 for j:= dex + 1 step 1 until }n\mathrm{ do
 if abs(X[rvec[i],mvec[j]])}>\mathrm{ Tol then
 begin
 mul := TEMP[i,j]:= - X[rvec[i],mvec[j]];
 for p:= 1 step 1 until m do
 X[rvec[p],mvec[j]]
 := X[rvec[p],mvec[j]] +(mul\timesX[rvec[p],mvec[i]]);
 Matmul(I2,TEMP, I2,n,n,n);
 for }\boldsymbol{p}:=1\mathrm{ step 1 until }n\mathrm{ do
 for q:= 1 step 1 until }n\mathrm{ do
 if p\not=q then TEMP[p,q]:=0
 else TEMP[p,q]:=1;
 end
 end;
 Matmul(CVEC, I2, I2, n, n, n);
 Endr:
end REDUCE;
procedure SWAP(r,s); real r,s;
comment SWAP interchanges real variables r and s;
begin
real temp;
temp := r; r:= s; s:= temp;
end SWAP;
procedure ISWAP(r,s); integer r, s;
comment ISWAP inte rchanges integer variables r and s;
begin
integer temp;
temp := r; r:= s; s:= temp;
end ISWAP;
procedure Matmul(X,Y,Z,u,v,w);
real array }X,Y,Z; integer u,v,w
comment Matmul causes the matrix product }X\mathrm{ times }Y\mathrm{ to be
stored in matrix Z. X is u by v,Y is v by w, and Z is u by w.
For improved accuracy inner products should be accumulated
using double precision arithmetic;
begin
integer }i,j,k; real array TEMP[1:u,1:w]
for }i:=1\mathrm{ step 1 until }u\mathrm{ do
for j:= 1 step 1 until w do
begin
TEMP[i,j]:=0
for }k:=1 step 1 until v do
TEMP[i,j]:= TEMP[i,j]+X[i,k]\timesY[k,j];
end;
for }i:=1\mathrm{ step 1 until }u\mathrm{ do
for }j:=1\mathrm{ step 1 until w do Z[i,j]:= TEMP[i,j];
end Matmul;
procedure SEARCH(Y, Lim, k,l,m,n,veci,vecj);
array Y; integer Lim, k,l,m,n; integer array veci,vecj;
comment SEARCH finds the largest element in the m by n
array Y starting at Y[Lim, Lim], searching the remaining sub-
array.Vectors veci and vecj record the row and column swaps
which have occurred previous to the call of SEARCH. k and l
are the row and column indices, respectively, for the largest
element in the array searched.
begin integer i, j;
k:=l:= Lim;
for }i:=Lim step 1 until m do
for j:= Lim step 1 until n do
begin
if abs(Y[veci[i], vecj[j]])>abs(Y[veci[k], vecj[l]]) then
begin }k:=i;l:=j; end
end

```
end SEARCH;
procedure EIG(LAMDA, X,r);
real array \(L A M D A, X\); integer \(r\);
comment EIG calls a procedure which finds the eigenvalues of the \(r\) by \(r\) matrix \(X\) and stores them in the 2 by \(r\) matrix LAMDA, real parts in \(L A M D A[1, j]\), imaginary parts in \(L A M D A[2, j]\);
begin
EIGENVALUES (X,LAMDA,r);
\(\boldsymbol{S p}:=r ;\)
end \(E I G\);

\section*{Remark on Algorithm 405 [F2]}

Roots of Matrix Pencils: The Generalized Eigenvalue Problem [A.M. Dell, R.L. Weil, and G.L. Thompson, Comm. ACM 14, (Feb. 1971), 113-117]

Richard M. Heiberger [Recd. 19 May 1971, 29 July 1971, and 8 Sept. 1971]
Department of Statistics, Harvard University*

\section*{Key Words and Phrases: eigenvalues, matrix roots, pencil roots CR Categories: 5.1, 5.3}

\begin{abstract}
Algorithm 405 calculates rank-reducing numbers which are similar to, but not identical to, generalized eigenvalues. An eigenvalue of \(A\) with respect to \(B\), as defined in this Remark, satisfies
\end{abstract} the equations
\(x^{\mathrm{T}}(A-\lambda B)=0, \quad(A-\lambda B) y=0\)
for appropriately dimensioned vectors \(x\) and \(y\). A rank-reducing number \(\lambda_{0}\), as defined by Thompson and Weil [3], further satisfies
Rank \(\left(A-\lambda_{0} B\right)<\operatorname{Rank}(A-\lambda B)\)
for some value \(\lambda \neq \lambda_{0}\). The distinction is meaningful only if the matrices \(A\) and \(B\) are of less than full rank.

The definition (1) is the simplest generalization of the ordinary eigenvalue problem in that the only new concept is the replacement of an identity matrix with an arbitrary matrix \(B\). This form of the problem arises in many physical contexts, usually with \(A\) and \(B\) square symmetric, and \(B\) positive definite (see [4] for examples). Dell, Weil, and Thompson find that in their context the additional condition (2) is desirable since rank-reducing numbers are always discrete, finite in number, and related to a Jordan-like canonical form.

In order to insure that all eigenvalues, as defined here by (1), are discrete, one further condition than given in Algorithm 405 must be tested. It is necessary that
Rank \((A-\lambda B)=\min (m, n)\)
for at least one value of \(\lambda\). In the special case that \(m=n\) (square matrices) the condition (3) is equivalent to
\(\operatorname{det}(A-\lambda B) \neq 0\)
for at least one value of \(\lambda\). When this condition is violated, the spectrum of eigenvalues is continuous; that is, for every complex number \(\lambda\) there exist vectors \(x\) and \(y\) such that (1) is satisfied. Discrete rank-reducing numbers may exist even when the rank condition (3) is violated. Example 8 accompanying Algorithm 405 does not satisfy condition (3) and therefore does not have discrete eigenvalues although it does have discrete rank-reducing numbers.

The procedure PENCIL is similar to the algorithm developed by Fix and Heiberger [1] for the generalized eigenvalue problem when \(A\) and \(B\) are Hermitian matrices. We showed that the spectrum

\footnotetext{
* This work was supported by the Cambridge Project through the Department of Statistics, Harvard University. Author's current address; Department of Statistics, Iowa State University, Ames, IA 50010 .
}
of \(A x-\lambda B x=0\) consists of stable and unstable eigenvalues, which undergo, respectively, small and large changes in response to small changes in \(A\) and \(B\). We proved that our algorithm isolates and accurately computes the eigenspace associated with the stable eigenvalues. We did not attempt to extend our proof to non-Hermitian and rectangular matrices, for which Algorithm 405 may also be used. Our proof explicitly does not apply to rank-reducing numbers unless the rank condition (3) is satisfied. Instead it suggests that the computed solution may be inaccurate, as the first example in [1] shows. We programmed in APL [2] and Fortran (unpublished).

The following changes to Algorithm 405 will modify it to calculate either eigenvalues or rank-reducing numbers at the user's option. The user of rank-reducing numbers will be warned if the rank condition (3) is not satisfied, and there may be numerical inaccuracy in his solution.
Page 113 , column 1. Replace procedure heading with:
procedure PENCIL (A,B,m,n,LAMDA,Sp,Par,Tol,eigrrn);
Page 113, column 1, preceding first comment insert:
integer array eigrrn;
Page 113, column 1, first comment. Replace the sentence:
The input parameters of PENCIL must be \(A, B, m, n\), and Tol. with the following:

The input parameter eigrrn[1] is used to direct the program to calculate either eigenvalues or rank-reducing numbers. If eigrrn[1] \(=0\), then eigenvalues will be calculated. If eigrrn \([1]=1\), then rankreducing numbers will be calculated. The parameter eigrrn[2] must be set to 0 as an input parameter. As an output parameter eigrrn[2] indicates whether the rank condition (3) is satisfied. If eigrrn \([2]=0\), the condition is satisfied. If eigrrn \([2]=1\), the condition is violated. When the rank condition is violated and eigenvalues are being calculated, the parameter Par is set to 0 indicating no roots, and the procedure is terminated. When the rank condition is violated and rank-reducing numbers are being calculated, the procedure continues calculations as at present, but the user is warned that there may be numerical inaccuracy in the solution. The input parameters of PENCIL must be \(A, B, m, n, T o l\), eigrrn[1], and eigrrn[2].
Page 116 , column 1, preceding line -11 . Insert:
if \(((n-r-q-t \neq 0) \wedge(m-r-q-s \neq 0))\) then

\section*{begin}
comment Set parameter for continuous spectrum;
eigrrn[2] := 1;
if eigrrn[1] \(=0\) then
begin
comment Set parameter for no solution;
Par :=0; go to Endp;
end;
comment Beware of possible numerical inaccuracy;
end;
Page 116, column 1, line -4. Replace with:
PENCIL( \(G, H, r-t, r-s, L A M D A, S p, P a r, T o l, e i g r r n) ;\)
There are several typographical errors. The following lines should read as given below.
Page 115, column 2, lines -8 and-7:
Tol)
else \(t:=0\);
Page 115, column 2, line -5 :
REDUCE (P3,E21,P4,limr,r,s,Tol)
Page 116, column 1, line 1:
Par \(:=0\); go to Endp;
I would also suggest that the following value parts be added for more efficient execution.

Procedure PENCIL value \(A, B, m, n, T o l\);
Procedure REDUCE value \(X, m, n, T o l\);

Procedure Matmul value \(u, v, w\);
Procedure SEARCH value Lim,m,n,veci,vecj;

\section*{References}
1. Fix, G., and Heiberger, R.M. An algorithm for the IIIconditioned generalized eigenvalue problems. SIAM J. Numer. Anal. (Mar. 1972), 78-88.
2. Heiberger, R.M. APL functions for data analysis and statistics. Res. Rep. CP-5, Dep. of Statistics, Harvard U., 1971. 3. Thompson, G.L., and Weil, R.L. Reducing the rank of \((A-\lambda B)\). Proc. Amer. Math. Soc. 26, 4 (Dec. 1970), 548-54. 4. Wilkinson, J.H. The Algebraic Eigenvalue Problem. Oxford U. Press, Oxford, 1965.

\title{
Algorithm 406
}

\title{
Exact Solution of Linear Equations Using Residue Arithmetic [F4]
}

Jo Ann Howell (Recd. 23 Mar. 1970 and 2 July 1970)
The University of Texas at Austin, Center for Numerical Analysis, Austin, TX 78712

Key Words and Phrases: residue arithmetic, symmetric residue, modulus, mixed-radix representation, symmetric mixed-radix representation, mixed-radix conversion, prime number, linear equations, Gaussian elimination, matrix inversion, determinant, adjoint matrix, ill-condition

CR Categories: 3.15, 5.14

\section*{Description}

Purpose. The subroutine \(E X A C T\) solves the matrix equation \(A X=B\) for \(X\), where \(A\) is an \(N\) by \(N\) integer matrix, \(B\) is an \(N\) by \(M\) integer matrix, and \(X\) is an \(N\) by \(M\) real matrix. Residue arithmetic is used to obtain the exact solution, consisting of the rational components of \(X\), i.e. \(\operatorname{det}(A)\) and the elements of \(Y=A^{a d i} B\), and the rounded solution, computed as the quotient of the rational components and stored in the array \(X\). The subroutine can be used to solve systems of linear algebraic equations, to invert matrices, and to compute determinants and adjoint matrices.

Method. A methd similaor to the one described in [1, 2, and 3] is used to solve a system of linear algebraic equations \(A X=B\), using residue arithmetic. However, since there are differences we shall describe them here. In [1] the concept of residue modulo \(m\) refers to the least nonnegative remainder of the integer \(x\) after division by \(m\). The definition here, on the other hand, is preferable as a matter of computational convenience reflected by the definition of the \(F O R T R A N M O D\) function.

Definition. Given any integer \(x\) and any modulus \(m\), if
(i) \(r \equiv x(\bmod m)\),
(ii) \(|r|<m, \quad\) and
(iii) \(\operatorname{sgn}(r)=\operatorname{sgn}(x)\),
then we write
\(r=|x|_{m}\)
and say \(r\) is a residue of \(x\) modulo \(m\).
It is easily shown that this residue is also unique.
Since our definition of residue here differs from that in [1], we must point out that each of the theorems in [1], relative to the nonnegative residue system, has an analog in the residue system defined here. However, in some of the analogous theorems it may be necessary to use the congruence symbol \(\equiv\) in place of the equality symbol \(=\). Thus, Algorithm I in [1] and [2] and Algorithm II in [3] can be completely described using our definition of residue.

We should point out that there are related discussions in [5], [6], and [7].

The subroutine \(E X A C T\) uses Algorithm II to solve \(A X=B\) using the residue system described here. First, the following preliminary calculations are carried out by the program before solving the system of equations. (i) The number, \(I S\), of moduli required to obtain a solution is predicted by subroutine \(L O G B N D\), as described in [2]. The program computes
BOUND \(=\log \left(2\left[\prod_{i=1}^{N}\left(\sum_{j=1}^{N} a_{i j}^{2}\right)^{\frac{1}{2}} \prod_{l=1}^{M} \prod_{k=1}^{N}\left|b_{k l}\right|\right]\right), \quad\left(\left|b_{k l}\right| \neq 0\right)\)
and \(I S\) chosen so that
\(\begin{aligned} B O U N D & \leq S U M L O G \\ & =\log (M M(1))+\cdots+\log (M M(I S)) .\end{aligned}\)
where the \(M M(I)\) are the stored moduli. (ii) The elements of \(A\) and \(B\) are reduced modulo \(M M(I), I=1, \cdots, I S\).

The subroutine \(S O L V E\) solves the residue system
\(A X \equiv B(\bmod M M(I)), \quad I=1, \cdots, I S\)
for the residue representations (see [1]) of \(d\) and the elements of \(Y\),
\(d \sim\left\{|d|_{M M(1)},|d|_{M M(2)}, \cdots,|d|_{M M(I S)}\right\}\)
and
\(y_{i j} \sim\left\{\left|y_{i j}\right|_{M M(1)},\left|y_{i j}\right|_{M M(2)}, \cdots,\left|y_{i j}\right|_{M M(I S)}\right\}\),
where
\(d=\operatorname{det}(A)\)
and
\(Y=A^{a d i} B\).
The computation is performed by means of Gaussian elimination for residue arithmetic [1] using the residue system described here. Then, the residue representations for \(d\) and the elements of \(Y\) are converted to their symmetric residue representations (see [3]),
\(d \sim\left\{/ d /_{M M(1)}, / d /_{M(2)}, \cdots, / d /_{M M(I S)}\right\}\)
and
\(y_{i j} \sim\left\{/ y_{i j} / M_{M(1)}, / y_{i j} / M_{M(2)}, \cdots, / y_{i j} / M_{M(I S)}\right\}\).
Next, subroutine MXRADX converts the symmetric residue representations for \(d\) and the elements of \(Y\) to their corresponding symmetric mixed-radix representations [3],
\(d \sim\left\langle\beta_{1}, \beta_{2}, \cdots, \beta_{I S}\right\rangle\)
and
\(y_{i j} \sim\left\langle\alpha_{i j_{1}}, \alpha_{i j_{2}}, \cdots, \alpha_{i j I S}\right\rangle\).
The conversion is accomplished by means of a mixed-radix conversion process described in [3].

From their symmetric mixed-radix representations, \(d\) and the elements of \(Y\) are directly obtainable, as follows:
\[
\begin{aligned}
d=\beta_{1}+\beta_{2} M M(1)+\beta_{3} & \prod_{k=1}^{2} M M(k)+\cdots \\
& +\beta_{I S-1} \prod_{k=1}^{I S-2} M M(k)+\beta_{I} S \prod_{k=1}^{I S-1} M M(k)
\end{aligned}
\]
and
\[
\begin{aligned}
& y_{i j}=\alpha_{i j_{1}}+\alpha_{i j_{2}} M M(1)+\alpha_{i j_{3}} \prod_{k=1}^{2} M M(k)+\cdots \\
&+\alpha_{i j_{I S-1}} \prod_{k=1}^{I S-2} M M(k)+\alpha_{i j_{I S}} \prod_{k=1}^{I S-1} M M(k) .
\end{aligned}
\]

Since each of these quantities may overflow a fixed-point word, they are stored as "multilength" numbers. In other words, \(d\) and each of the elements of \(Y\) are stored in several words, with NDIGIT digits in each word. On return from EXACT, these multilength numbers are stored in MULTL, with the elements of \(Y\) (stored columnwise) in the first \(M^{*} N\) rows of \(M U L T L\), and \(d\) in the ( \(M^{*} N+1\) )th row of MULTL. The lowest order digits are in the first column, and the highest order digits are in column \(\operatorname{LCOUNT}\). Thus, the exact solution of \(A X=B\), consisting of the elements of \(Y\) (stored columnwise) and the determinant of \(A\), may be printed out as follows (assuming NDIGIT \(\leq 7\) ):

WRITE (1, 10)
10 FORMAT ( 24 H MULTILENGTH DIGITS OF Y/)
MTN \(=M^{*} N\)
\(\mathrm{MN} 1=\mathrm{MTN}+1\)
\(\mathrm{L} 1=\mathrm{LCOUNT}+1\)
DO \(20 \mathrm{I}=1\), MTN
20 WRITE (1, 30)(MULTL(I, L1-J), J=1, LCOUNT)
30 FORMAT (1X, 10I8)
WRITE (1, 40).
40 FORMAT (//17H DETERMINANT OF A/). WRITE (1, 30) (MULTL(MN1, L1 - J), \(\mathrm{J}=1\), LCOUNT)

Program Call. Subroutine EXACT is completely self-contained (composed of eight subroutines EXACT, SOLVE, MXRADX, MLTLTH, CHECK, INVERS, RESIDU, and LOGBND), and the calling sequence, which has 22 parameters, is
CALL EXACT (A, N, IN, B, M, IM, IMPIN, IMIN1, NDIGIT, KPRIME, NOPRIM, NO2, X, DET, IER, MULTL, LCOUNT, ATEMP, MM, RY, \(W, V\) )
Communication to EXACT is solely through the parameter list
which is described in comments at the beginning of the subroutine EXACT.

Cautions to User. 1. The user should test IER before attempting to print results. An error code of 1 may arise if
(a) \(|\operatorname{det}(A)|>\prod_{I=1}^{r} \operatorname{KPRIME}(I)\),
where \(r\) is the number of primes, \(\operatorname{KPRIME(J)}\), for which \(\operatorname{det}(A) \neq 0(\bmod (\operatorname{KPRIME}(J)))\),
(b) \(\max _{i, j}\left|y_{i j}\right|>\prod_{I=1}^{r} K \operatorname{RRIME}(I)\),
where \(r\) is defined as in (a),
(c) \(\operatorname{KPRIME}(I)\) is not a prime (for some \(I\) ),
(d) \(\operatorname{KPRIME}(I)=\operatorname{KPRIME}(J), \quad J \neq I\).
2. This algorithm is of limited use due to the fact that \(A\) and \(B\) must be integral, due to the limitations given in \(1(\mathrm{a})-1\) (d) above, and due to the algorithm's inherent slowness. It is not intended as a substitute for other well-established procedures for solving systems of linear algebraic equations. However, it may be useful in obtaining the exact solution of an ill-conditioned system of equations which has integral coefficients or a system which has rational coefficients which can be scaled to make it integral. In fact, as Knuth [8, p. 256] states, this method is "substantially faster than anv other known method for obtaining exact solutions."

Test Results. Subroutine EXACT was tested on a CDC 6600 computer on which the maximum size of integer variables which can be used in arithmetic operations is 48 bits ( \(\sim 14\) digits). The maximum size of real variables is 48 bits with an 11-bit exponent. The results are summarized below. The following parameters were used as input for both test cases:
\begin{tabular}{lll} 
IN & \(=10 \quad\) NDIGIT & \(=7\) \\
IM & \(=10 \quad\) NOPRIM & \(=10\) \\
IMPIN & \(=20 \quad\) NO2 & \(=20\) \\
IMINI & \(=101\) &
\end{tabular}

KPRIME \(=\left[\begin{array}{l}10000019 \\ 10000079 \\ 10000103 \\ 10000121 \\ 10000139 \\ 10000141 \\ 10000169 \\ 10000189 \\ 10000223 \\ 10000229\end{array}\right]\).
(i) Input to EXACT:
\(N=10 \quad M=1\)
\(A=\left[\begin{array}{rrrrrrrrrr}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 10^{7} \\ 9 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 8 & 8 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 7 & 7 & 7 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 6 & 6 & 6 & 6 & 6 & 5 & 4 & 3 & 2 & 1 \\ 5 & 5 & 5 & 5 & 5 & 5 & 4 & 3 & 2 & 1 \\ 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 2 & 1 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]\)
\(B=e_{10}\)
Output from EXACT:
```

$X=\left[\begin{array}{l}-1.9999998 \mathrm{E}+07 \\ 1.9999998 \mathrm{E}+07 \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ -1.0000000 \mathrm{E}+00 \\ 2.0000000 \mathrm{E}+00\end{array}\right]$

```
\(D E T=1.0000000 \mathrm{E}+00\)

MULTILENGTH DIGITS FOR Y
\begin{tabular}{rr}
-1 & -9999998 \\
1 & 9999998 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & -1 \\
0 & 2
\end{tabular}

\section*{MULTILENGTH DIGITS FOR DETERMINANT A 0 \\ 1}
(ii) Input to \(\operatorname{EXACT}[4]\) :
\[
N=5 \quad M=5
\]
\[
A=\left[\begin{array}{rrrrr}
5 & 300 & -2100 & 4200 & -2520 \\
-60 & -2400 & 18900 & -40320 & 25200 \\
210 & 6300 & -52920 & 117600 & -75600 \\
-280 & -6720 & 58800 & -134400 & 88200 \\
126 & 2520 & -22680 & 52920 & -35280
\end{array}\right]
\]
\(B=I_{5}\).
Output from EXACT:
\(X=\left[\begin{array}{rl}1.000000000000 \mathrm{E}+00 & \\ 5.000000000000 \mathrm{E}-01 & \\ 3.333333333333 \mathrm{E}-01 & \\ 2.50000000000 \mathrm{E}-01 & \\ 2.000000000000 \mathrm{E}-01 & \\ 1.000000000000 \mathrm{E}+00 & 1.000000000000 \mathrm{E}+00 \\ 3.333333333333 \mathrm{E}-01 & 2.500000000000 \mathrm{E}-01 \\ 2.500000000000 \mathrm{E}-01 & 2.000000000000 \mathrm{E}-01 \\ 2.000000000000 \mathrm{E}-01 & 1.66666666667 \mathrm{E}-01 \\ 1.666666666667 \mathrm{E}-01 & 1.428571428571 \mathrm{E}-01 \\ 1.000000000000 \mathrm{E}+00 & 1.000000000000 \mathrm{E}+00 \\ 2.000000000000 \mathrm{E}-01 & 1.66666666667 \mathrm{E}-01 \\ 1.666666666667 \mathrm{E}-01 & 1.428571428571 \mathrm{E}-01 \\ 1.428571428571 \mathrm{E}-01 & 1.250000000000 \mathrm{E}-01 \\ 1.25000000000 \mathrm{E}-01 & 1.11111111111 \mathrm{E}-01\end{array}\right]\)
\(D E T=5.3343360000 \mathrm{E}+10\)
MULTILENGTH DIGITS FOR \(Y\)
\begin{tabular}{rr}
5334 & 3360000 \\
2667 & 1680000 \\
1778 & 1120000 \\
1333 & 5840000 \\
1066 & 8672000 \\
5334 & 3360000 \\
1778 & 1120000 \\
1333 & 5840000 \\
1066 & 8672000 \\
889 & 560000 \\
5334 & 3360000 \\
1333 & 5840000 \\
1066 & 8672000 \\
889 & 560000 \\
762 & 480000 \\
5334 & 3360000 \\
1066 & 8672000 \\
889 & 560000 \\
762 & 480000 \\
666 & 7920000 \\
5334 & 3360000 \\
889 & 560000 \\
762 & 480000 \\
666 & 7920000 \\
592 & 7040000 \\
\hline
\end{tabular}

\section*{MULTILENGTH DIGITS FOR DETERMINANT A 5334 3360000}

Acknowledgments. The author wishes to thank Dr. Robert T. Gregory for his encouragement. This work was supported in part by grants from the Army Research Office (Durham) (Grant Da-aro(D)-31-124-G1050), and the National Science Foundation (nsf Grant GP8442), at the University of Texas at Austin.

\section*{References}
1. Howell, J. A. and Gregory, R. T. An algorithm for solving linear algebraic equations using residue arithmetic I. BIT 9, 3 (1969), 200-224.
2. Howell, J. A. and Gregory, R. T. An algorithm for solving linear algebraic equations using residue arithmetic II. BIT 9, 4 (1969), 324-337.
3. Howell, J. A. and Gregory, R. T. Solving linear equations using residue arithmetic-algorithm II. BIT 10, 1 (1970), 23-37.
4. Lotkin, M. A set of test matrices. MTAC 9 (1955), 153-161.
5. Borosh, I. and Fraenkel, A. S. Exact solutions of linear equations with rational coefficients by congruence techniques.
Math. Comp. 20 (1966), 107-112.
6. Newman, M. Solving equations exactly, J. Research NBS 17B, 4 (1967), 171-179.
7. Takahasi, H. and Ishibashi, Y. A new method for exact calculations by a digital computer. Information Processing in Japan 1, (1961), 28-42.
8. Knuth, D. E. The Art of Computer Frogramming, vol. 2. Addison-Wesley, Reading, Mass., 1969.

\footnotetext{
Algorithm
SUBROUTINE EXACTIA,N,IN,B,M,IM,IMPIN,IMINI,NDIGIT, IKPRIME, NOPRIM,NUZ, X, DET, IER, MULTL,LCOUNT, ATEMP,MM,
2RY, \(W, V\) )
DIMENSICN AI [N, \((N), B(I N, I M), X(I N, I N), A T E M P(I N, I M P I N)\). IMULTLIIMINI, NOPRIM), MM(NOPRIM), RY(IMINI),
2KPRIME (NOPRIM),W(NO2),V(NOZ)
INTEGER \(A, H, A\) TEMP, PP, \(H, V\)
COMMON/NLEN/IB,PP,NZ;IS,IFLAG,IQUIT, NORES
THIS SUBROUTINE SOLVES THE MATAIX EQUATION AX=B
FOR \(X\) AND FUR THE EXACT SOLUTICIN, \(Y=A(A D J) * B\)
AND DET A. KESIDUE ARITHMETIC IS USED TO OBTAIN the solution.

A IS THE \(N\) bY \(N\) COEFFICIENT MATRIX AND MUST BE EF TYPE INTEGER.
N IS THE ORDER OF THE MATRIX \(A_{1}\) IN GREATER THAN 1 I.
IN IS a UIMENSION PARAMETER WHICH DEFINES THE
CIMENSION OF A. IT MUST BE EQUAL TO OR GREATER
THAN N.
B IS THE \(N\) bY M MATRIX DF THE RIGHT-HAND SIDE AND
NUST BE OF TYPE INTEGER.
M IS THE NUMBER OF CULUMNS OF B and \(x\) im greater THAN O).
IM IS A DIMLNSION OARAMETER WHICH DEFINES THE SECOND DIMENSION OF THE 2-DIMENSIONAL ARRAYS A AND X. IT MUST BE EQUAL TO OR GREATER THAN M. IMPIN IS A DIMENSION PARAMETER WHICH IS IM + IN.
    IMINI IS A DIMENSION PARAMETER WHICH IS IM * IN + 1.
    NDIGIT IS THE NUMBER OF DIGITS STORED IN EACH WORD
            CURING MULTILENGTH ARITHMETIC OPERATIONS. IT IS
NACHINE DEPENDENT ANO MUST EIE CHOSEN SO THAT
IO ** I2 * NDIGIT) IS LESS THAN OR EQUAL TO THE
            CURING MULIILENGTH ARITHMETIC OPERATIONS. IT IS
NACHINE DEPENDENT AND MUST EIE CHOSEN SO THAT
IO ** 2 \# NDIGIT) IS LESS THAN OR EQUAL TO THE
            10 ** I2 * NOIGIT) IS LESS THAN OR EQUAL TO THE
LARGEST REPRESENTABLE INTEGER FOR THE COMPUTER
            LARGEST REPRESENTABLE INTEGER FOR THE COMPUTER
                EEING USED.
                IS THE LINEAR ARKAY OF NOPRIM MOOULI. THE
            MODULI MUST BE PRIMES, CHOSED AS LARGE AS
            POSSIBLE AND SO THAT KPRIME(I) * KPRIME(J) DOES
            IDT OVERFLOW AN INTEGER WORCI, FOR ALL I AND J.
    NOPRIM IS A DIMENSION PARAMETER WHICH DENOTES THE
                NUMBER OF PRIMES (MODULI) STORED IN KPRIME.
            NO2 IS A DIMENSIUN PARAMETER WHICH IS 2*NOPRIM.
\(X\) IS THE \(N\) BY M FLOAIING-POINT MATRIX WITH THE
                IS THE N BY M FLOAIING-POINT MATRIX WITH T
NOLUTION VECTORS AS COLUMNS. IT IS THE
                ROUNDED QUOTIENT OF THE RATIONAL COMPDNENTS
                CF X .

KPRIME IS THE LINEAR ARRAY OF NOPRIM MOOULI. THE POSSIBLE ANO SO THAT KPRIME(I) * KPRIME(J) DOES NOT OVERFLOW AN INTEGER WORCI, FOR ALL I AND J.
NOPRIM IS A DIMENSION PARAMETER WHICH DENOTES THE NO2 IS A DIMENSIUN PARAMETER WHICH IS 2*NOPRIM. IS SOLUTION VECTORS AS COLUMNS. IT IS THE CF X .
}

```

C RETURN ERROR CONE OF 3 FOR LINCONSISIENT
INPUT PARAMETERS
80 IER=3
END
SUBROUTINE SOLVEIATEMP,MULTL,N,IN,MM,M,IMPIN,IMINI,
INOPRIMI
DIMENSICN MM(NCPRIM),MULTLIIMINI,NOPRIM),"ATEMP(IN,IMPIVI
INTEGER ATEMP,PP,RESIDU
INTEGER ATEMP,PP,RESIDU
C THIS SUBROUTINE SOLVES THE RESIUUE SYSTEM
C AX=B (MOD PP) FOR Y (MOC PP) ANU DET (MOD PP!
C find a pivotal element relatively prime to pp
MPN=M+N
OO HO J=INN
_10I=J,N (MF(MOD(ATEMP(I,J),PPP) .NE. O) GC TO 20
IF(1 EQ. N) GO TO 100
lo conitNuE
c PFRMUTE ROWS I AND
20 IFII .EQ. JI GO TC 40
IUET=-IDET
DO 30 JJ=J,MPN
ITENP=ATEMP(J,JJ)
30 ATENP (I;JJ)=1 TEMP
C ACCUMULATE CETERMINANT
IOET=IDET*ATENP(J*J)
IDET=NOD(IDET,PP)
C FIND INVERSE OF PIVOTAL ELEMENT
X=[NVERS(ATEMP(J,J),PR)
C MULTIPLY RON J BY INVERSE OF PIVOTAL ELEMENT
DO 50 JJ=J,MPN
ITENP=ATEMP(J,JJ)*IX
50 ATENP(J,JJ)=MOD(ITEMP,PP)
C REPLACE LTH ROW BY LTH ROW-JTH ROW, (L NOT EQUAL J)
DO 70 L=1,N
IF(L.EG. J) GO TO 70
IK=ATEMP(L,J)
ITFMP=AREMP(J,JJ)*IK
IIEMP=MOD(ITEMP,PP)
{IEMP=ATEMP(L,JJ)-ITEMP
ITEMP=ATEMP(L,JJ)-ITEEMP
CCNTINUE

```

```

 continue
 C STORE SYMMEIRIC RESIDUE DIGITS IN MULTL,
C AND MODULUS IN MM
N1=N+1
DO Э0 J=N1,MPN
DO 90 I=1,N
INOEX=INDEEX+1
ITENP=ATEMP(I,J)*IDEI
MULTL(NCRES,IS)=RESIDU(IDET,PP)
MM(IS)=P
100 NZ=NZ+1
IFLAG=1
C teSt to see if all primes have failed
IFINZ.GT. NOPRIM-1) IQUIT=1
RETURN
END
SUBROUTINE MXRAOXIMULTL,MM,RY,LCOUNT,NDIGIT,IMINI,
INOPRIM,NE2,WI
DIMENSICN MM(NOHRIM),MULTLIIMINI,NOPRIMI,RYIIMINI).
1W(NO2)
NTEGER RESIDU,W,PP
OOUBLE PRECISSIOIN ACC,ACC1,ACC2,TEX
COMMON/NLEN/IB,PP,NZ,IS,IFLAG,IQUIT,NORES
C SUBROUTINE NXRADX COMPUTES THE SYMMETRIC
C SUBROUTINE NXRADX COMPUTES THE SYMMMETRIC
C THEIR SYMMETRIC RESIDUE DIGITS.
C COMPUTE SYMNETRIC MIXED-RADIX DIGITS
C AND STORE THEM IV MULTL
OO }10=1=2,I
DD 10 J=1, IS
IX=INVERS(MM(KK),MM(J))
DO 10 K=1,NURES
ITEMP=MULTL(K,J)-MULTL(K,1-1)
ITEMP = ITEMP*IX
10 MLLTL(K,J)=RESIDU(ITEMP,MM(J))
C COMPUTE Y AND D FROM
C THEIR SYMMETRIC MIXED-RIOIX CIGITS
C USING MULTILENGTH ARITHMETIC
LCOUNT=C
2000 140 I=1,NORES
W(1)=1
DO 30 K=2,IS
30 W(K)=0
COMPUTE Y(I)=(···(MULIL(I,IS)*MNI(IS-1) +
MULTL(I,IS-1))\#MH(IS-2)+···...NULTL(I,2)
C MM(1)+MULTL(I,1)
W(1)=h(1)*:MULTL(I,IS)*MM(IS-1)
CALL NLILTH(NO2,W)
J=IS
40 J=J-1
IFIJ .LE. 1) GO TO 60
W(L)=h(1)+MULTL(I,J)
WALL MLILTH(NU2,W)
CALL MLTLTH(NGL,W)
50 W(K)=W(K)*MM(J-1)
CALL NLTLTH(NLI2.W)
G0 TO 40
W(1)=n(1)+MULTL(I,J)
CALL NLTLTH(NOZ.W)
G STORE MULIILENGIH DIGITS OF YIII
C STORE MULTILENGTH DIGITS OF [ET A
C IN MULTL(NOHES,J),J=1,IS
LTL(NONES,J),J=1,IS
70 MOLTLI,J)=h(J)
C COMPUTE Y(I) IN FLOATINGG-PT. FROM MULTILENATH OIGITS
90 I=1,N
SUBROUMMINE NLENAD,PP,NZ,IS,IFLAG,IQUIT,NORES
ITEMP=1TEMP*IX (K)MULTL(K,1-1)
C IN MULTL(I,J),J=1,I
MULTL(1,J)=W(J)

```
```

 BO IF(W(K) .NE. O) G2 TO 90
 IF(WIK):NE: O) GO RO YO
 k=k-1
 k=k-1
 90 IFIK.LE. 11 1,0 IC 100
 ACC=W(K)*13+W(K-1)
 TEX=NCIGIT*(K-Z)
 G() TO 110
 RY(1)=W(1)
 GO TO 130
 {ICK -LE. 2) GG TO 120
 ACCI=h(K-2)
 ACC2=10.00**NOIGI
 ACC =ACC+ACCl/ACC2
 RY(1)=ACC*ACC!
 FIK=ACC*ACCI
 LCOUNII GO TU 140
 CONTINUE
 RETURN
 DO 160 I=I,NORES
 160 RY(1)=MULTLIL,1)
 END
 SUBROUTIVF. MLTLITH(NC2,W)
 DIMENSIC.V WINOZI
 INTEGER W,PP
 CCMMON/NLEN/IB,PP,NL,IS,IFLAG,IOUIT,NORES
 IFIIS.EO. I) RETURV
 L=1S-1
 c. cistribute the digits in w so that
C EACII ELEMENT OF W CUNTAINS NCIGIT DIGITS
O 10 k=1,L
10 w(k)=-w(k)/1B*IB+W(k)
k= IS
C all the elene'ts of w shoulo have the same sign.
20 1f(W(K))60,30,40
30 IF(K .EG. 1) RETURN
k=k-1
Go ro zc
40 DO 50 K=1,L
F(w(k) -GE. D) GO 10 50
W(K)=h(K)+IA
W(K+1)=W(K+1)-
50 CONTINUE
RE TURN
60 DO 10 K=1,1
IF(W(K).LE. D) GO ro 70
W(K)=h(k)-IB
+11+1
70 CONTIMuE
RETURA
END
SUBROUTINE CHEC
N,N,IN,B,M,IM,IFR,MULTL,IMINI,
NIMENSICN,W.V)
DIMENSICN V(NO2),MULILIIMINI,NOPRIMI,A(IN,IN),
[B(IN,IM),W(NO2)
COMMON/NLEN/IB,HP,NZ,IS,IFLAG,ICUIT,NORES
SUBKOUTINE CHECK CHECKS THE SOLUTION BY COMPUTING
C A*Y AND (OEI A)*B AND CUMPARING THE RESULTS.
Y Y IS STORED HY COLUMNS IN NULIL
DET IS STORED IN MULTLINORES,II,I=1,IS
LL=IS
KK=15*1
no 70 I= 1.N
INDEX=0
C MULTIPLY RON I OF A PY COLUMN L OF Y
10 DO 10 K=1,N
W(k)=0
DO 40 J=1,N
IACEX=INDEX+1
J=A(I,J)/IB
II=-JJ*IB*A(I,J)
IF(LL .FQ. 1) GO TC 30
DC 20 k=2,!L
W(K)=W(K)+MULTL(INDEX,K)*II+MULTLIINDEX;K-1)*JJ
CALL MLTLTH(NUZ,W)
CONITNUE
20
(1)=1!*MuLTL(INTEX,1)+W(1)
W(KK)=JJ*MULTL(INDEX,LL)+W(KK)
CALL MLILIH(NCZ,W)
f(IABS(WI:S)!.LT. 18) GO TO 40
IFIIS -GE. NO2I GO TO 40
IS= iS+1
w(IS)=w(IS-1)/18
40 CCNTINUE
STORE THE PROOUCTI IN
OO 50 K=1.is
MO V(KI=W(K)
JJ=E(I,LI/IE
I=-JJ*IB*BII,L
FILL EEQ. 1) GG TO }7
0% on k=2,LL
60 W(K)=NULIL(NORES*K)*II+MULTL(NORES,K-1)*JJ
W(1)=11*MULIL(NORES.1)
W(KK)=JJ*MULIL{NORES,LL)+W(KK
CALL MLILTH(HO2,W)
C TEST EQUALITY OF W AND V
DO \&O J=1,IS
IF(WIJ),NE. VIJI) 6O TO 100
HO

```
90 CONTINUE
C IF SOLUTIUN CHECKS, REIURN IER=C
C HLSE. RETURA IER=1.
        \(I E R=0\)
        \(I E R=0\)
\(I S=L L\)
        METURN
    100 IER=1
        RE TUKN
        END
    ENDC INVERS (K,M)
L INVERS COMPLTES AV INVERSE OF \(K\) IMOD M
I INVERS COMPLTES AV INVERSE
\(C\) HY THE EUCLICEAN ALGCRITHN
    \(1=K\)
\(1=M\)
    \(l=K\)
\(l=M\)
    \(J=1\)
INVERS \(=C\)
    \(10 \mathrm{KK}=1 / \mathrm{L}\)
        \(N N=M O D(1,1)\)
        IFINN.EQ. O) GU TO 20
        \(1=1\)
        \(N=-K K *\) INVERS \(+J\)
        \(J=I\) VVERS
        INVERS = N :
        GO TO 1 C
    20 IFIL.GE. O) GO TO 30
    INVERS=-1 NVERS
C KETURN A POSITIVE VALUE
    30 IFIINVERS.GE. G! RETURN
        INVERS = N + INVERS
        RETURN
            RETU
END
            END INTEGER FUNCIICN RESIDU(K,M
            INTEGER FUNCTIC
RESIDU \(=\) NGD(K, M)
C THE FUNCIIOR RESIDU COMPUTES THE SYMMEIRIC
C RESIDUE OF K (MCD M)
C L.E. -M/2 LFSS THAN RESIDU LESS THAN Ni/2
    IFIRESICU)10,20,30
    10 IFIZ*RESIDU + N.GE. O) RETURN
    RESIDU \(=R+S I D U+M\)
    RESIDU
RETURN
    30 IFI-2*RESIDU*M.GE. OI KETURV
        RESIDU=RESIDU-M
        RETURN
            ENO
            SUBROUTINE LCGBND(A,N,IN,B,M,IM, BOUNOI
            DIMENSICN A(IN,INI,R(IN,IM)
            INTEGER A.
C BOUND IS A LOWER BOUND FOR THE
\(C\) LOG OF THE PRODUCT UF THE MUCUL
    OF THE PR
\(B O U N D=0\).
        DO \(20 \mathrm{I}=1\), N
            \(\begin{aligned} & 20 \quad 1=1, ~ \\ & A L P H A=0 \text {. }\end{aligned}\)
            ALPHA \(=0\).
DO \(10 \quad J=1, V\)
            O \(10 \quad J=1, V\)
                TEMP \(=A(1, J)\)
                TEMP \(=\) TEMP + TEMP
\(A L P H A=A L P H A+T E M P\)
    \(10 \quad\) ALPFA \(=A L P H A+\) TEMP
\(20 \quad B O U N D=B O U N D+A L O G(A L P H A)\)
    \(20 \begin{array}{r}\text { BOUND }=\text { ?OUND }+A \\ \text { BOUND }=B C U N D / 2\end{array}\)
        BOUND \(=B C U N D / 2\)
            \(00 \quad J=1, M\)
\(00 \quad 1=1, N\)
                ALPHA \(=(A B S(B(I, J))\)
                    IF(ALPHA EQ. O.) GO TO 30
                    BOUAT = ROUVC + ALOC; (ALPHA)

    ROUND \(=3\)
RE TURN
    RE TUR
END

Remark on Algorithm 406 [F4]
Exact Solution of Linear Equations Using Residue Arithmetic [Jo Ann Howell, Comm. ACM 14
(Mar. 1971), 180-184]

Jo Ann Howell [Rec'd 6/10/71]
Department of Computer Science, Yale University, New Haven, CT 06520

The following statement should be added to subroutine MXRADX before the last RETURN statement (after statement 160) :

LCOUNT = 1
Without this statement, LCOUNT is undefined whenever \(I S=1\).

\section*{Algorithm 407}

\title{
DIFSUB for Solution of Ordinary Differential Equations [D2]
}

\author{
C.W. Gear [Recd. 29 Dec. 1969 and 10 April 1970] \\ Department of Computer Science, University of Illinois, Urbana, IL 61801
}

\section*{Key Words and Phrases: differential equations, stiff differential equations \\ CR Categories: 5.17}

\section*{Description}

This subroutine integrates a set of up to \(N\) ordinary differential equations one step of length \(H\), where \(H\) may be specified by the user, but is controlled by the subroutine to control the estimated error within a specified tolerance, if possible.

A multistep predictor corrector method is used whose order is automatically chosen by the subroutine as the integration proceeds. Either an Adams' method or methods suitable for stiff equations can be selected. The starting procedure is automatic and the information retained by the program about previous steps is stored in such a way as to make the interpolation to a nonmesh point straightforward. (See the description of the parameter \(Y\) in the subroutine.) The methods used are described from a mathematical point of view in the papers referenced in [1].

The programs may call on up to three subroutines. They are
```

DIFFUN(T, Y,DY)
PEDERV (T, Y, PW,M)
MATINV(PW,N,M,J)

```

The first, DIFFUN, must be provided always, and it must evaluate the derivatives of the dependent variables \(Y\) with respect to the independent variable \(T\) and place the results in \(D Y . Y\) is dimensioned 8 by \(N\), and the function values are in \(Y(1, I)\) for \(I=\) 1 to \(N\).

MATINV must be provided if stiff methods are requested. It should invert the matrix \(P W\) which is of size \(N\) by \(N\). The ( \(I, J\) ) element of \(P W\) is stored in position \(P W\left(\mathrm{I}+M^{*}(J-1)\right)\), that is, \(P W\) is dimensioned as an \(M\) by \(M\) array. (The value of \(M\) used by DIFSUB is equal to the value of \(N\) used on the first call to DIFSUB when the user supplied parameter JSTART is 0 .) If stiff methods are not used, MATINV is never called, so it is sufficient to provide a dummy subroutine to satisfy the loader if Adams' methods are used. The parameter \(J\) in MATINV should be set to \(a+1\) on return if the inversion is successful, -1 if the matrix is thought to be nearly singular.

If large systems of stiff equations are to be integrated, the inversion should be done in two stages. The call to MATINV after statement 300 should be replaced by a call of an \(L U\) factorization program; e.g. subroutine \(\operatorname{DECOMP}\) [2, p. 68].

The set of statements DO400 I \(=1, N\)
\(400 \quad \operatorname{SAVE}(9, \mathrm{I})=\mathrm{D}\)
should be replaced by a call to the second stage of a Gaussian elimination program; e.g. subroutine \(\operatorname{SOLVE}\) [2, p. 69]. The net result must be to solve the \(N\) by \(N\) linear system \(P W^{*} X=Y\) where the array \(Y\) is in \(\operatorname{SAVE}(I, 1), I=N 5+1\) to \(N 5+N\) and the unknown array \(X\) is to be returned to \(\operatorname{SAVE}(9, I), I=1\) to \(N\).

Tests have indicated that MATINV is called about ten times less frequently than the code represented by the above DO loop is executed. The cost of the change would be the overhead of the call to \(S O L V E\) which is independent of \(N\); the saving due to the change would be about \(5 N^{3} / 6\) multiplications and overhead operations each time that DECOMP is called instead of MATINV. The break point will depend on the computer and compiler used, but the change will lead to time saving on most computers when \(N\) exceeds about 5 .

PERDERV is another optional subroutine called only if the method flag MF is set to 1 . (See the description of the parameters.) If it is not used it can be replaced by a dummy subroutine to satisfy the loader. When used, it should compute the partial derivatives of the differential equations with respect to the dependent variables. The partial of the Ith equation with respect to the Jth variable should be stored in \(P W\left(I+M^{*}(J-1)\right)\). For example, if the two equations
\(y_{1}^{\prime}=y_{1} y_{2} t^{2}\)
\(y_{2}^{\prime}=-y_{2}^{2}+6 y_{1}\)
were being solved by method type 1, PEDERV should compute as follows:
\(P W(1)=Y(1,2) * T * * 2\)
\(P W(2)=6.0\)
\(P W(1+M)=Y(1,1) * T * * 2\)
\(P W(2+M)=-2.0 * Y(1,2)\)
If the first value of \(N\) used in a call to DIFSUB was 2 , then the left hand sides of the last two assignment statements could better be written \(P W(3)\) and \(P W(4)\) for speed.

The DOUBLE PRECISION statement may be removed if a single precision version is required. If it is left in, all variables beginning with the letters \(A\) to \(H\) and \(Q\) to \(Z\) are double-precision floating-point, those beginning with \(P\) are single-precision floatingpoint. (In particular the matrix \(P W\) is computed and inverted in

Table I
NETHOD TYPE \(O\)
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { ERROR RQ } \\
& 0.100 D-03
\end{aligned}
\] \\
\hline \(0.1000-03\) \\
\hline 0.1 COL-03 \\
\hline C.1000-0.4 \\
\hline \(0.1000-0.4\) \\
\hline 0.100.0-0.4 \\
\hline \(0.1000-05\) \\
\hline 0.1000-C5 \\
\hline 0.1000-0.5 \\
\hline 0.1000-06 \\
\hline \(0.1000-66\) \\
\hline 0.1000-06 \\
\hline \(0.1000-06\) \\
\hline 0.1000-07 \\
\hline \(0.1000-\mathrm{C} 7\) \\
\hline \(0.1000-07\) \\
\hline 0.1000-c7 \\
\hline 0.1000-cy \\
\hline 0.1000-C3 \\
\hline \(0.100 \mathrm{D}-0.8\) \\
\hline 0.1000-c8 \\
\hline 0.100v-09 \\
\hline 0.100v-09 \\
\hline 0.1000-09 \\
\hline 00 \\
\hline
\end{tabular}


CURPENT TIME 0.0105012848 ก.100112.15:3 0.8512205129 0.010n714571 0.1002143720 0.8434239890 0.0101889615 \(0.1004531!1.7\) 0.93010801 .21 0.0101451645 0.1002597074 1.0nn1159874
1.0686178261 0.0101462928 0.1001053613 1.000 .0850952
?. 1678642168 0.0100780205 0.1004798094 1.0011817994 1. 2618059881 0.0100975698 0.1008770725 1.0000863103
1.2731856392

Table II
NETHOD TYpE 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline ERROR RQ & PRESENT ERROR & MAXIMUM ERRPR NO. & STEPS & FN EVALS & MAT INVS \\
\hline 0.1000-03 & 0.35330-04 & 0.3533D-04 & 39 & 87 & 6 \\
\hline \(0.100 \mathrm{U}-03\) & 0.75520-04 & 0.75520-04 & 66 & 155 & 10 \\
\hline \(0.1000-03\) & c.79560-04 & \(0.79560-04\) & 98 & 231 & 13 \\
\hline \(0.1000-03\) & 0.90210-04 & \(0.90210-04\) & 126 & 303 & 16 \\
\hline 0.1COD-03 & \(0.11130-03\) & \(0.11130-03\) & 146 & 346 & 20 \\
\hline \(0.1000-63\) & 0.34470-04 & \(0.11130-03\) & 157 & 380 & 24 \\
\hline 0.1000-04 & 0.22020-06 & 0.22020-06 & 53 & 121 & 6 \\
\hline 0.1COD-04 & 0.13690-04 & 0.13690-04 & 103 & 243 & 12 \\
\hline \(0.1000-04\) & \(0.26490-05\) & \(0.13690-04\) & 155 & 366 & 17 \\
\hline \(0.1000-04\) & \(0.20960-04\) & 0.20960-04 & 192 & 453 & 21 \\
\hline \(0.1000-0.4\) & 0.12090-04 & \(0.20960-04\) & 220 & 518 & 24 \\
\hline \(0.1000-04\) & 0.16710-06 & \(0.20960-04\) & 242 & 564 & 27 \\
\hline \(0.1000-05\) & 0.91000-07 & \(0.91000-07\) & 70 & 179 & 7 \\
\hline \(0.1000-05\) & 0.26670-05 & \(0.26670-05\) & 110 & 262 & 12 \\
\hline \(0.1000-05\) & 0.22080-05 & \(0.26670-05\) & 163 & \(4 \mathrm{C5}\) & 15 \\
\hline \(0.1000-05\) & 0.29700-05 & \(0.28700-05\) & 216 & 523 & 20 \\
\hline 0.1000-05 & \(0.29840-05\) & \(0.29840-05\) & 252 & 616 & 2.5 \\
\hline \(0.1000-05\) & 0.11990-05 & 0.2984005 & 283 & 693 & 29 \\
\hline 0.1000-06 & 0.32610-07 & \(0.32610-07\) & 85 & 192 & 6 \\
\hline \(0.1000-66\) & \(0.30730-07\) & \(0.32610-07\) & 145 & 341 & 12 \\
\hline 0.2000-06 & 0.78330-07 & \(0.7833 \mathrm{D}-07\) & 219 & 530 & 17 \\
\hline \(0.1000-06\) & 0.58890-07 & \(0.78330-07\) & 281 & 672 & 22 \\
\hline 0.1 COD-06 & \(0.10960-07\) & \(0.78330-07\) & 333 & 792 & 27 \\
\hline \(0.100 \mathrm{v}-\mathrm{C6}\) & 0.25880-06 & \(0.25880-06\) & 393 & 930 & 32 \\
\hline \(0.1000-c 7\) & 0.45690-08 & 0.4569D-08 & 113 & 254 & 6 \\
\hline \(0.1000-67\) & 0.54680-08 & \(0.54690-08\) & 171 & 4 C9 & 11 \\
\hline \(0.1000-07\) & 0.14400-07 & 0.14400-07 & 269 & 654 & 17 \\
\hline \(0.1000-c 7\) & \(0.13310-07\) & \(0.14400-07\) & 350 & 837 & 23 \\
\hline \(0.1000-07\) & 0.13940-08 & \(0.14400-07\) & 413 & 978 & 29 \\
\hline 0.1COD-07 & 0.75890-09 & 0.14400-07 & 473 & 1114 & 34 \\
\hline \(0.1000-08\) & 0.64860-09 & \(0.64860-09\) & 148 & 327 & 6 \\
\hline 0.1000-08 & \(0.16180-08\) & \(0.16180-08\) & 218 & 5.29 & 10 \\
\hline 0.1000-68 & 0.51320-08 & 0.51320-08 & 345 & 849 & 13 \\
\hline \(0.1000-08\) & C.53250-08 & 0.53250-08 & 447 & 1101 & 19 \\
\hline \(0.1000-08\) & \(0.37160-08\) & 0.53250-08 & 528 & 1297 & 24 \\
\hline \(0.1000-08\) & 0.22000-08 & 0.532.50-08 & 593 & 1447 & 29 \\
\hline \(0.1000-09\) & 0.75020-10 & \(0.75020-10\) & 184 & 422 & 6 \\
\hline \(0.1000-09\) & 0.29770-09 & 0.29770-09 & 273 & 666 & 11 \\
\hline \(0.1000-09\) & 0.54160-09 & 0.54160-09 & 439 & 1094 & 12 \\
\hline \(0.1000-09\) & 0.90220-09 & 0.90220-09 & 575 & 1417 & 19 \\
\hline 0.1000-09 & 0.63310-09 & 0.90220-09 & 681 & 1657 & 25 \\
\hline 0.1 coo-09 & 0.35150-09 & 0.90220-09 & 765 & 1856 & 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AVERAGE STEP & CUPRENT TIME \\
\hline \(0.12370-03\) & 0.0107625419 \\
\hline 0.6548, 0-03 & 0.1014987087 \\
\hline C.44010-02 & 1.0166403388 \\
\hline \(0.35000-01\) & 10.6057160621 \\
\hline 0.3138 D 00 & 109.5682945165 \\
\hline C.27860 01 & 1058.6211483326 \\
\hline 0.85640-04 & 0.0103624070 \\
\hline \(0.41560-03\) & 0.1009973 .519 \\
\hline \(0.27480-02\) & 1. 0056549946 \\
\hline \(0.22750-01\) & 10. 3073364831 \\
\hline 0.1957000 & 101.3505658414 \\
\hline C. 1995001 & 1125.4277070076 \\
\hline C.57230-04 & \(0.01024367 C 1\) \\
\hline c.40030-03 & 0.10483'9068 \\
\hline C.24990-02. & 1.0122667324 \\
\hline C.29140-01 & 10.0110785857 \\
\hline 0.1664000 & 102.4771283917 \\
\hline 0.1480001 & 1025.7769259724 \\
\hline \(0.52450-04\) & 0.010071298 \\
\hline \(0.30490-03\) & 0.1039585812 \\
\hline C.1921D-02 & 1. 0178773065 \\
\hline \(0.15390-01\) & 10.34:3882439 \\
\hline c.12970 00 & 102. 7375071042 \\
\hline 0.1097001 & 1020.5688599969 \\
\hline 0.39950-04 & 0. 11.01467765 \\
\hline 0.24450-03 & 0. ! 00no 2034n \\
\hline \(0.15530-02\) & 1.0156394503 \\
\hline \(0.12110-01\) & 10.1342196229 \\
\hline 0.1030000 & 100.7578631819 \\
\hline 0.9005000 & 1003.1153401613 \\
\hline \(0.31150-04\) & 0.01018683 .33 \\
\hline \(0.19400-03\) & 0.1026173559 \\
\hline 0.11930-02 & 1. 0126228430 \\
\hline \(0.91670-02\) & 10.0934159548 \\
\hline \(0.77710-01\) & 100.7873655954 \\
\hline 0.7008000 & 1014.0734315269 \\
\hline \(0.23940-04\) & 0.0101011830 \\
\hline 0.15200-03 & 0.1012469806 \\
\hline 0.91560-03 & 1. 0016548361 \\
\hline c.71000-02 & 10.0607268383 \\
\hline \(0.61180-01\) & 101.3735674223 \\
\hline 0.5477000 & 1016.5477264277 \\
\hline
\end{tabular}
single-precision to save space and time. Its accuracy only affects the rate of convergence of the method slightly.) All variables beginning with letters \(I\) to \(N\) are integers.

Because this program computes its own indices in the temporary storage array \(S A V E\) provided by the user in the call sequence, use of an optimizing compiler will reduce execution time considerably. (A version in which several more arrays of temporary storage must be provided in the call sequence has been compared with this. It uses these arrays to avoid computing indices, and consequently runs about 10 percent faster than this version on an IBM 360/91 using Fortran H, OPT \(=2\). However it is not as convenient for the user.)

Generally the problem should be scaled so that the square of any values of the solution that are to be considered nonzero when multiplied by the test constant EPS discussed below remain within the range of numbers representable in floating-point.

The following test problem proposed by F. T. Krogh (private communication) was run. Let \(\boldsymbol{U}\) be the unitary matrix given by
\(U=\frac{1}{2}\left[\begin{array}{rrrr}-1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]\).

Let \(B\) be the diagonal matrix
\(B=\left[\begin{array}{cccc}\beta_{1} & 0 & 0 & 0 \\ 0 & \beta_{2} & 0 & 0 \\ 0 & 0 & \beta_{3} & 0 \\ 0 & 0 & 0 & \beta_{4}\end{array}\right]\).
The differential equation
\(\boldsymbol{y}^{\prime}=U z-U B U y\)
is integrated from \(t=0\) to \(t=10,000\) where
\(y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right], \quad z=\left[\begin{array}{l}w_{1}{ }^{2} \\ w_{2}{ }^{2} \\ w_{3}{ }^{2} \\ w_{4}{ }^{2}\end{array}\right], w=\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3} \\ w_{4}\end{array}\right]=U y\) with \(y(0)=\left[\begin{array}{l}-1 \\ -1 \\ -1 \\ -1\end{array}\right]\).
The solution is
\(y=U\left[\begin{array}{l}\beta_{1} /\left(1-\left(1+\beta_{3}\right) e^{\beta_{1} t}\right) \\ \beta_{2} /\left(1-\left(1+\beta_{2}\right) e^{\beta_{2} t}\right) \\ \beta_{3} /\left(1-\left(1+\beta_{3}\right) e^{\beta_{3} t}\right) \\ \beta_{4} /\left(1-\left(1+\beta_{4}\right) e^{\beta_{4} t}\right)\end{array}\right]\).

Table III
METHOD TYPE 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ERROR RQ & PRES ENT ERROR & MAXIMUM ERRPR NO. & STEPS & FN EVALS & MAT INVS & AVERAGE STEP & CURPENT TIME \\
\hline 0.1000-03 & \(0.35330-04\) & \(0.35330-04\) & 39 & 111 & 6 & C.9696D-04 & 0.0107625410 \\
\hline 0.1.000-03 & \(0.75520-04\) & 0.75520-04 & 66 & 195 & 10 & 0.52050-03 & 0.1014987087 \\
\hline 0.1000-03 & 0.79560-04 & \(0.79560-04\) & 98 & . 253 & 13 & 0.35920-02 & 1. 0156402801 \\
\hline 0.1000-03 & 0.90200-04 & 0.90200-04 & 126 & \(367^{\circ}\) & 16 & \(0.28900-01\) & 10.6050403654 \\
\hline 0.1000-03 & \(0.11130-03\) & 0.11130-03 & 146 & 426 & 20 & 0.2548000 & 108.5636816976 \\
\hline \(0.1000-03\) & 0.79010-04 & 0.11130-03 & 157 & 477 & 24 & 0.2391001 & 1140.4008035531 \\
\hline 0.1000-04 & 0.22020-06 & 0.22020-06 & 53 & 145 & 6 & 0.714,60-04 & 0.0103624070 \\
\hline \(0.1000-04\) & 0.13690-04 & \(0.13670-04\) & 103 & 291 & 12 & \(0.34710-03\) & 0.1009073518 \\
\hline \(0.1000-04\) & 0.26490-05 & \(0.13690-04\) & 155 & 434 & 17 & \(0.23170-02\) & 1.0056550430 \\
\hline \(0.100 \mathrm{D}-\mathrm{C4}\) & 0.20820-04 & \(0.20820-04\) & 192 & 537 & 21 & 0.19190-01 & 10.3073232637 \\
\hline \(0.1000-04\) & \(0.12070-04\) & \(0.20820-04\) & 220 & 614 & 24 & 0.16540 CO & 101.5463099866 \\
\hline \(0.1000-04\) & 0.16950-05 & 0.20820-04 & 242 & 677 & 23 & 0.16650 01 & 1127.401055726! \\
\hline \(0.1000-05\) & 0.91000-07 & \(0.91000-07\) & 70 & 207 & 7 & \(0.49490-04\) & 0.0102436751 \\
\hline \(0.1000-05\) & 0.26670-05 & \(0.26670-05\) & 120 & 310 & 12 & \(0.33830-03\) & 0.104 .886 ¢0ヶ6 \\
\hline \(0.1000-65\) & 0.22080-05 & \(0.2667 \mathrm{D}-05\) & 168 & 465 & 15 & C.21770-02 & 1.0122667324 \\
\hline \(0.1000-05\) & \(0.28701-05\) & \(0.28700-05\) & 210 & 603 & 20 & c.16600-01 & 10.011065568.n \\
\hline \(0.1000-05\) & 0.29840-05 & \(0.29840-05\) & 252 & 716 & 25 & 0.1431000 & 102.4764579909 \\
\hline \(0.1000-05\) & \(0.12010-05\) & 0.29840-05 & 283 & 809 & 29 & 0.1268001 & 1025.9894023479 \\
\hline \(0.1000-06\) & C.32610-07 & \(0.32610-07\) & 86 & 216 & 6 & 0.46630-04 & 0.71007129 Cl \\
\hline \(0.1000-06\) & 0.30730-07 & \(0.32610-07\) & 145 & 389 & 12 & c. 26720-03 & ก. in3958581? \\
\hline 0.1000-06 & \(0.78330-07\) & \(0.78330-07\) & 219 & 598 & 17 & \(0.17020-02\) & 1.0:7878083.3 \\
\hline \(0.100 \mathrm{U}-06\) & 0.58880-07 & \(0.78330-07\) & 281 & 760 & 2.2 & 0.13610-01 & 10.3414927392 \\
\hline \(0.1000-\mathrm{cos}\) & \(0.10960-07\) & \(0.78330-07\) & 333 & 900 & 27 & C.11420 00 & 102.73877:5303 \\
\hline \(0.1000-06\) & 0.25960-06 & \(0.25860-06\) & 303 & 1057 & 32 & 0.9655000 & 1020.5539661127 \\
\hline \(0.100 \mathrm{U}-67\) & 0.45690-08 & \(0.45690-08\) & 113 & 278 & 6 & \(0.36500-04\) & 0.01 .01467707 \\
\hline \(0.100 \mathrm{U}-07\) & \(0.54680-08\) & \(0.54880-08\) & 171 & 453 & 11 & C.22C80-03 & C. 1000020357 \\
\hline \(0.1000-07\) & \(0.14400-07\) & \(0.14400-07\) & 269 & 722 & 17 & C. 14070-02 & 1.0156381221 \\
\hline \(0.1000-07\) & \(0.1318 \mathrm{D}-07\) & 0.1.4400-07 & 350 & 927 & 23 & 0.10930-01 & 10.1342171303 \\
\hline \(0.1000-07\) & \(0.32460-07\) & \(0.32460-07\) & 415 & 1092 & 30 & \(0.91900-01\) & \(100.35457265 \mathrm{C8}\) \\
\hline \(0.1000-67\) & \(0.37580-07\) & 0.37580-07 & 467 & 1232 & 35 & 0.8128000 & 1001.4240875968 \\
\hline 0.1000-08 & 0.64860-09 & \(0.6436 \mathrm{D}-09\) & 148 & 351 & 6 & 0.29020-04 & 0.0101868321 \\
\hline 0.1000-08 & \(0.16180-08\) & \(0.16180-08\) & 218 & 569 & 10 & 0.18030-03 & 0.1026174257 \\
\hline \(0.1000-08\) & \(0.51310-08\) & 0.51310-08 & 345 & 901 & 13 & 0.11240-02 & 1. 012.6198604 \\
\hline C. \(1000-08\) & \(0.53240-08\) & \(0.53240-08\) & 447 & 1177 & 19 & \(0.8575 \mathrm{D}-02\) & 10.0927076064 \\
\hline 0.1.000-08 & 0.37160-08 & \(0.53240-08\) & 528 & 1393 & 24 & C.72350-01 & 100.7810184380 \\
\hline 0.1000-08 & \(0.21950-08\) & 0.53240-08 & 593 & 1563 & 29 & 0.6485000 & 1013.5805314175 \\
\hline 0.1000-09 & 0.75020-10 & 0.75020-10 & 184 & 446 & 6 & \(0.22650-04\) & 0.0101011813 \\
\hline \(0.1000-09\) & \(0.2977 \mathrm{D}-09\) & \(0.29770-09\) & 273 & 710 & 11 & 0.1426D-03 & 0.1012478756 \\
\hline \(0.1000-09\) & \(0.54680-09\) & 0.54680-09 & 439 & 1140 & 12 & \(0.87920-03\) & 1.0n223546¢8 \\
\hline 0.1000-09 & 0.8977D-09 & 0.89770-09 & 575 & 1499 & 19 & \(0.67450-02\) & 10.1108046311 \\
\hline \(0.1000-09\) & 0.62930-09 & \(0.89770-09\) & 681 & 1798 & 27 & C. \(5688 \mathrm{C}-01\) & 101.6984171224 \\
\hline 0.1000-09 & \(0.35370-09\) & 0.89770-09 & 765 & 2005 & 33 & C. 5102000 & 1023.0377820492 \\
\hline
\end{tabular}

Tables I-III show the results for \(\beta_{1}=1000, \beta_{2}=800, \beta_{3}=-10\), \(\beta_{4}=.001\). The columns show the requested error (EPS), the error at the time of printing in the least accurate component, the maximum such error to date, the number of steps, number of calls to DIFFUN (i.e. function evaluations), number of calls to MATINV, average step size and the current value of \(T\). The initial step was set to \(10^{-4}\) and printing occurred at the first step to pass \(10^{i}\) for \(i=-2\), \(-1,0,1,2\), and 3 . The three different methods were used ( \(M F=0\), 1 , and 2), but the integration was stopped if the number of function evaluations exceeded 5000, as it did with Adams' methods for this stiff problem. The problem was run for \(E P S=10^{-i}\) for \(i=4,5, \cdots\), 10. (Warning; this problem is critically stable. If an error in excess of about \(10^{-3}\) occurs, the solution of the perturbed problem may have a pole.) It should be noted that the results will depend slightly on the precision of the machine and the characteristics of the library program used for MATINV.

\section*{References}
1. Gear, C. W. The automatic integration of ordinary differential equations. Comm. ACM 14 (Mar. 1971), 176-179.
2. Forsythe, G. and Moler, C. Computer Solution of Linear

Algebraic Systems. Prentice Hall, Englewood Cliffs, N. J., 1967.

```

KFLAG A COMPLETION CODE WITH THE FOLLOWING MEANINGS..
-1 THE STEP WAS TAKEN WITH H = HMIN, BUTT TH
REQUESTED ERROR WAS NOT ACHIEVED:
-2 THE MAXIMUM DR|ER SPECIFIED WAS FOUND TO
BE TOO LARGE.
-3 CORRECTOR CONVERGENCE COULD NOT BE
ACHIEVEO FOR H .GT. HMIN
-4 THE REQUESTED ERROR IS SMALLER T AN CAN
BE HANDLED FOR THIS PROBLEM.
JSTART AN INPUT INDICATOR WITH THE FOLLOWING MEANINGS..
-1 REPEORM THE FIEST STEP. THE FIRST STEP
MUST OE DONE WITH THIS VALUE OF STEP

```

```

 TSELF.
 +1 TAKE A NEW STEP CONTINUING FROM THE LAST.
 JSTART IS SET TO NQ, THE CURRENT ORDER OF THE METHOD
 AT EXIT. NQ IS ALSO the order of the maxImum
 dERIVATIVE AVAILABLE.
 maxder the maximum derivative that should be used in the
 METHOD. SINCE THE ORDER IS EQUAL TO THE HIGHEST
 DERIVATIVE USED, THIS RESTRICTS THE ORDER. IT MUST
 BE LESS THAN 8 OR 7 FOR ADAMS OR STIFF METHODS
 PW A BLOCK OF AT LEAST N**2 flDIATING POINT lOCATIONS.
 OIMENSION Y(8,N),YMAX(N),SAVE{1O,N),ERROR(N),PW(N),
 1
 A(8),PERTST(7,2,3)
 the coefficients in pertst are used in selecting the step and
ORDER, THEREFORE ONLY ABOUT ONE PERCENT ACCURACY IS NEEDED.
DATA PERTST 12.0.4.5,7.333,10.42,13.7,17.15,1.0,
OATA PERTST / 2.0,4.5,7.333,10.42,13.7,17.15,1.0, (2.0,12.0,24.0,37.89,53.33,70.08,87.97.
12.0,24.0,37.89,53.33,70.08,87.97,1.0,
1.,1.,0.5,0.1667,0.04133,0.008267,1.0,
1.0,1.0,2.0.1.0,.3157,.07407,.01391
\#ATA A(2) / -1.0)
IRET = 1
IF (JSTART.LE.O) GO TO 140
H BY THE FACTOR R IF THE CALLER HAS
E IS A COMPARISON FOR ERRORS OF THE CURRENT ORDER NQ. EUP IS
TO TEST FOR INGREASING THE ORDER, EDWN FOR DECREASING THE ORDER
HNEW IS THE STEP SIZE THAT WAS USED ON THF LAST CALL.
00 DO 110 1 = 1,N
SAVE(J,I) = KY(J.I)
HOLD = HNEW
IF (H.EQ.HOLD) GO TO }13
120 RACUM = H/HOLD
IRET1 = 1
GO TO 750
130 NQOLD = NQ
TOLD = T
RACUM = 1.0
F (JSTART.GT.0) GO TO 250
GO TO 170
140 IF (JSTART.EQ.-1) GO TO 160
C ON the first call. the order is SEt to 1 and the initial
ON THE FIRST CALL. THE ORDE
NQ = 1
N3=N
N1 = N*10
N2=N1 +
5}=
N5=N1+N

```
```

 CALLL DIFFUN(T,Y,SAVE(N2,1))
 OO 150 1 = 1,N
 Y(2,I) = SAVE(N11,1)*H
 HNEW = H
 GO TO 100
 C C REPEAT LAST STEP BY RESTORING SAVED INFORMATION.
T = TOLD
NQ = NOOLO
K= NQ + 1
C
SET THE COEFFICIENTS that detERMINE THE ORDER AND THE METHOD
TYPE. CHECK FOR EXCESSIVE ORDER. THE LAST TWN STATEMENTS OF
THIS SECTION SET IWEVAL.GT.O IF PW IS TO BE RE-EVALUATED
BECAUSE OF THE ORDER CHANGE, AND THEN REPEAT THE INTEGRATION
SCAIING BEFORE EXIT IF BEENAS OEN COMPLETEDR SNIP TD A FINAL
C
170 IF (MF.EQ.O) GO TO 180
IF (NQ.GT.6) GO IN 190
GO TO (221,222,223,224,225,226),NQ
80 1F (NO.GT.7)GO TO 190
GO TO (211,212,213,214,215,216,217),NQ
190 KFLAG = -2
C the following coefficients should be defined to the maximum
THE FOLLOWING COEFFICIENTS SHOULD BE DEFINED TO THE MAXIMUM
-1
-1/2,-1/2
-5/12,-3/4,-1/6
-3/8,-11/12,-1/3,-1/24
-251/720,-25/24,-35/72,-5/48,-1/120
-95/288,-137/120,-5/8,-17/96,-1/40,-1/720
-19087/60480,-49/40,-203/270,-49/192,-7/144,-7/1440,-1/5040
-1
-2/3,-1/3
-6/11,-6/11,-1/11
-12/25,-7/10,-1/5,-1/50
-120/274,-225/274,-85/274,-15/274,-1/274
c -180/441,-58/63,-15/36,-25/252,-3/252,-1/1764
211 A(1) = -1.0
GO TO 230
212 A(1) = -0.5000000000
A(1) = -0.500000000
GO TO 230
213 A(1) = -0.4166666666666667
A(3)= =0.750000000
A(4) = -0.1666666666666667
GO TO 230
214
(1) = -0.375000000
A(3) = -0.91666666666666667
A(4) = -0.3333333333333333
A (5) = - 0 . 0 4 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 ~
GO TO 230
(1) = -0.34861111111111111
(4) = -0.48611111111111111
(5) = -0.1041066666666667
A(6)=-0.008333333333333333
GO TO 230
A(1) = =-0.32986111111111111
A(3)}=-1.141666666666666
A (4) = - 0 . 6 2 5 0 0 0 0 0 0
A(5) = -0.1770833333333333
A(6) = -0.0250000000
A(7)=-0.001388888888888889
A(7) = -0.0013888888888888889
\-2,

```
c
\(217 \mathrm{~A}(1)=-0.3155919312169312\)
    \(A(3)=-1.235000000\)
    \(A(4)=0.7518518518518519\)
    \(A(5)=-0.2552083333333333\)
    \(A(6)=-0.04861111111111111\)
    \(A(7)=-0.004861111111111111\)
    \(A(7)=-0.004861111111111111\)
\(A(8)=-0.0001984126984126984\)
    \(A(8)=0.000198412698412698\)
    GO TO 230
\(221 \mathrm{~A}(1)=-1,000000000\)
    GO TO 230
    GO TO 230
\(222 \mathrm{~A}(1)=-0.6666666666666667\)
    \(A(3)=-0.3333333333333333\)
    GO TO 230
\(223 \mathrm{~A}(1)=-\)
    \(A(1)=-0.5454545454545455\)
\(A(3)=A(1)\)
    \(A(4)=-0.09090909090909091\)
    GO TO 230
\(224 \mathrm{~A}(1)=-0.480000000\)
    \(A(3)=-0.700000000\)
    \(A(4)=-0.200000000\)
    \(A(5)=-0.020000000\)
    GO TO 230
    \(A(3)=0.437956204379562\)
    \(A(3)=-0.821167883211678\)
    \(A(4)=-0.3102189781021898\)
    \(A(6)=-0.0036496350364963504\)
        GO TO 230
\(A(1)=-0\)
    \(A(1)=-0.4081632653061225\)
    \(A(3)=-0.9206349206349206\)
    \(A(4)=-0.4166666666666667\)
    \(A(5)=-0.0992063492063492\)
\(A(6)=-0.0119047619047619\)
    \(A(7)=-0.000566893424036282\)
\(230 \mathrm{~K}=\mathrm{NQ}+1\)
    \(\operatorname{IDOUB}=K\)
    MTYP \(=(4-\) MF \() / 2\)
    ENQ2 \(=.5 /\) FLOAT(NQ +11
    \(E N Q 3=.5 / F L O A T(N Q+2)\)
        ENO1 \(=0.5 / F L D A T(N Q)\)
        PEPSH = EPS
        EUP \(=(P E R T S T(N Q, M T Y P, 2) * P E P S H) * * 2\)
        \(E=(P E R T S T(N O, M T Y P, 1) * P E P S H) * * 2\)
        EDWN \(=(P E R T S T(N O, M T Y P, 3) * P F P S H) * * 2\)
        IF (EDWN.EQ.O) GO TO 780
    40 IWEVAL \(=\) MF
    GO TO 1250 , 680 ), IRET
THIS SECTION COMPUTES THF PREDICTED VALUFS BY EFFECTIVELY
MULTIPLYING THE SAVED INFORMATION BY THE PASCAL TRIANGLE
MATRIX.
\begin{tabular}{l}
C \\
C \\
C \\
C \\
\hline
\end{tabular}
250 T \(=T+H\)
    D0 \(260 \mathrm{~J}=2, \mathrm{~K}\)
        DO \(260 \mathrm{Jl}=\mathrm{J}, \mathrm{K}\)
            \(J 2=k-J 1+J-1\)
            \(J 2=K-J 1+J\)
\(D C 260 I=1, N\)
260
                \(\begin{aligned} & 260 I=1, N \\ & Y(J 2, I)\end{aligned}=Y(J 2, I)+Y(J 2+1, I)\)
    UP TO 3 CORRECTOR ITERATIONS ARE TAKEN. CONVFRGFNCE IS TESTFI
    UP TO 3 CORRECTOR ITERATIONS ARE TAKEN. CGNVFRGFNCE IS TESTFI
BY REQUIRING CHANGES TO BE LESS THAN BND WHICH IS DEPENDENT ON
    THE ERROR TEST. CDNSTANT.
THE SUM OF THE CORRECTIONS IS ACCUMULATED IN THE ARRAY
    THE SUM OF THE CORRECTIONS IS ACCUMULATED IN THE ARRAY
ERROR(I). IT IS EQUAL TO THE K-TH DERIVATIVE OF Y MULTIPLIED
    BY H**K/(FACTORIAL \((K-1) * A(K))\), AND IS THEREFORE PROPORTIONAL
    BY H**K/(FACTORIAL(K-1)*A(K)), AND IS THEREFORE PROPORTIONAL
TO THE ACTUAL ERRORS TO THE LOWEST POWER OF H PRESENT. (H**K)
        DO \(270 \mathrm{I}=1, \mathrm{~N}\)
ERROR(I) \(=0.0\)
            ERROR(I) \(=0.0\)
DO \(430 L=1,3\)
            430 L
CALL DIFFUN (T, Y, SAVE(N2,
DI)
C IF THERE HAS BEEN A CHANGE OF ORDER OR THERE HAS BEEN TROUBL
C
C TH CONVERGENCE, PW IS RE-EVALUATED PRIOR TO STARTING THE
C CORRECTOR ITERATION IN THE CASE OF STIFF METHOOS. IWEVAL IS
    WITH CONVERGENCE, PW IS RE-EVALUATED PRIOR TO STARTING THE
CORRECTOR ITERATION IN THE CASE DF STIFF METHOOS. IWFVAL IS
```

C THEN SET TO -1 AS AN INDICATOR THAT IT HAS BEEN DONE.
IF (IWEVAL.LT.I) GO TO 350
IF (MF.EQ.2) GO TO 310
CALL PEOERV(T,Y,PW,N3)
R=A(I)*H
DO 280 I = 1,N4
280
PW(I) = PW(I)*R
N11 =N3+1
N12 = N*N11 - N3
OD 300I=1,N12,N111
IWEVAL = - -1
IF (J1.GT.0) GON,N3,J1)
IF (J1.GT.0) GO TO 350
GO T0 440
310 DO 320 1 = = 1,N
DO 340 J=1,N
R= EPS*DMAXI(EPS,DABS(SAVE(9,J)))
Y(1,J)=Y(1,J) + R
D = A(1)*H/R
CALL DIFFUN(T,Y,SAVE(NG,1))
DO 330 I = 1,N
N11 = 1 + (J-1)*N3
N12=N5 + I
PW(N11) = (SAVE(N12,1) - SAVE(NI3,1))*D
Y(1,J)= SAVE(9,J)
GO TO 290
IF (MF.NE.O) GO TD 370
(i) 360 I = 1,N
SAVE(9,1) = Y(2,1) - SAVE(N11,1)*H
GOTO 410
OO 380 1 = 1,N
N11 =N5 + I
N1l=N5 +
SAVE(N11,1)= Y(2,1) - SAVF(N12,1)*H
00 400 I = 1,N
D=0.0
[C)}390 J = 1,
N11 = 1 + (J-1)*N3
N12 = N5 + J
D= D + PW(N11)*SAVE(N12,1)
SAVE(9,I)= D
NT = N
V(1,I)=Y(1,I)+A(1)*SAVE(9,1)
Y(2,I)=Y(2,I) - SAVE(9,I)
FRROR(I) = ERROR(I) + SAVE(9,I)
IF (DABS(SAVE(9,I)).LE.(BND*YMAX(I))) NT = NT - 1
FONTTNUE
F (NT.LE.O) GO TO 490
430 CONTINUE
C THE CORRECTOR ITERATION FAILED TO CONVERGE IN 3 TRIES, VARIDUS
POSSIBILITIES ARE CHECKED FOR. IF H IS ALREADY HMIN AND
THIS IS EITHER AOAMS METHOD OR THE STIFF METHOD IN WHICH THE
MATRIX PW HAS ALREADY BEEN RE-EVALUATED, A NO CONVERGENCE EXI`
IS TAKEN. OTHERWISE THE MATRIX PW IS RE-EVALUATED AND/OR THE
STEP IS REDUCED TO TRY AND GET CONVERGENCE.
440 T = T - H
IF ((H.LE.(HMINF1.00001)).AND.(IIWEVAL - MTYP).LT.-1)) GO TO 460
IF ((MF.EQ.0).OR.(IWEVAL.NE.0)) RACUM = RACUM*0.2500
1WEVAL = MF
1RET1 = 2
GO TO 750
4.60 KFLAG = -3
70 DO 480 I = 1,N
Y(1,I) = SAVE(」,1)
H= HOLD
NQ = NQOLD
JSTART = NO
RETURN
C THE CORRECTOR CONVERGED AND CONTROL IS PASSED TO STATEMENT }52
IF THE ERROR TEST IS O.K., ANO TO 540 OTHERWISE.
IF THE STEP IS O.K. IT IS ACCEPTED. IF IOOUB HAS BEEN REDUCED
TO ONE, A TEST IS mADE TO SEE IF THE STEP CAN bE INCREASED
AT THE GURRENT ORDER OR BY GOING TO ONE HIGHER OR ONE LOWER,
LEAST 1.1. IF NO CHANGE IS POSSIBLE IDOUB IS SET TO 10 TO
PREVENT FUTHER TESTING FIRR 1O STEPS.
IF A CHANGE IS POSSIBLE, IT IS MADE AND IDOUB IS SET TO
NQ + 1 TO PREVENT FURTHER TESING FOR THAT NUMBER OF STEPS.
IF THE ERROR WAS TOO LARGE, THE OPTIMUM STEP SIZE FOR THIS OR
FAIL TWICE MORE IT IS AN INDICATION THAT THE DERIVATIVES THAT
HAVE ACCUMUMATFD IN THE Y ARRAY (HAVE ERRORS OF THF WRONG THAT
SO THE FIRST T
TO IHE FIRST DERIVATIVES ARE RECOMPUTED AND THE ORDER IS SET
|
DO 500 I = 1,N
500 D = D + (ERROR(I)/YMAX(I))**2
IWEVAL = 0
IF (D.GT.E) GO TO 540
F (K.LT.3) GO TO }52
5 510 J = 3,k
DO 510 I = 1,N

```
740 KFLAG \(=-1\)
\(\begin{aligned} & \text { KFLAG } \\ & \text { HNEW }\end{aligned}=\mathrm{H}\)
RETURN
TO THE ENTERING SECTION.
750 RACUM \(=\) DMAXI (DABS(HMIN/HOLD), RACUM)
    RACUM \(=\) DMAXI(DABS(HMIN/HOLD) \(R\) RACUM)
RACUM \(=\) DMINI(RACUM, DABS (HMAX/HOLD) \()\)
R1 1.0
    \(R 1=1.0\)
    DO \(760 \mathrm{~J}=2, K\)
            \(R 1=R 1 * R A C U M\)
\(007601=1, N\)

    \(H=H O L D * R A C U M\)
\(D O 770 I=1, N\)
        r(1, I) \(=\) SAVE(1,I)
    IDOUB \(=K\)
    GO TO ( 130 , 250 , 640 ), IRETI
\(\begin{array}{ll}780 & \mathrm{KFLAG}\end{array}=-4\)
    END
    \(K F L A G=+1\)
    IF (IDOUB.LE.1) GO TO 550
    IDOUB \(=\) IDOUB - 1
    IF (IDOUB.GT.1) GO TO 700
    DO \(5301=1, N\)
    SAVE(10,1) = ERRDR(I)
    GO TO 700
KFLAG \(=\) KFLAG - 2
    KFLAG \(=\) KFLAG-2
IF (H.LE.(HMIN*1.00001)) GO TO 740
    \(T=T O L D\)
    IF (KFLAG.LE.-5) GO TO 720
    \(P R 2=(D / E) * * E N Q 2 * 1.2\)
    PR3 \(=1 . E+20\)
    PR3 \(=1 . E+20\)
IF (
(NQ.GE.MAXDER).OR.(KFLAG.LE.- ) ) GO TO 570
    \(D=0.0\). IF . MAX
    \(\begin{aligned} & D=0.0 \\ & D O \\ & 5601\end{aligned}=1, N\)

    \(\begin{aligned} D & =0+(1 E R R O R(1)- \\ \text { PR } 3 & =(D / E U P) * * E N B 3 * 1.4\end{aligned}\)
    \(P_{R} 3=(D / E U P) *\) ENR3*1.4
    \(P R 1=1 . E+20\)
\(I F\)
\((N Q . L E .1)\)
GO TO 590
    IF
\(D=0.0\)
    DO \(580 \mathrm{I}=1, N\)
    \(D=D+(Y(K, I) / Y M A X(I)) * * 2\)

    CONTINUE
    CONTINUE
IF (PR2.LE.PR3) GO TO 650
    IF (PR3.LT.PR1) GO TO 650
    \(R=1.0 /\) AMAX1 (PR1,1.E-4)
    \(N E W Q=N Q-1\)
    TDOUB \(=10^{-}\)
    IF ((KFLAG.EQ.1).AND.(R.LT. (1.1)) GO TO 700
    IF ( (KFLAG.EQ.1).AND. (R.LT
    IF (NEWQ.LE.NQ) GO TO 630
    0620 I = I,N
            Y(NEWQ+1,I) = ERROR(I)*A(K)/DFLOAT(K)
    \(K=N E W Q+1\)
\(I F(K F L A G . E Q .1)\) GO TO 670
    RACUM \(=\) RACUMA*R
    IRET1 \(=3\)
GO TO 750
    IF (NEWO.
    \(N Q=\) NEWQ
GO TO 170
    GO TO 170
    IF (PR2.GT.PR1) GO TO 600
    NEWO \(=\) NQ
    \(N E W O=N Q\)
\(R=1.0 / A M A X 1(P R 2,1 . E-4)\)
    \begin{tabular}{ll}
\(\mathrm{GD}=\mathrm{TO}\) \\
G \\
G \\
\hline 10
\end{tabular}
    NEW \(1.0 / A M A X 1(P R 3,1, E-4)\)
    \(N E W O=N O+1\)
    GO TO 610
    \(R=D M I N I(R, H M A X / O A B S(H))\)
    \(H=H * R\)
    HNEW \(=\mathrm{H}\)
    HNEW = H
IF (NQ.EQ. NEWQ) GO TO 680
    \(N Q=N E W Q\)
    GO TO 170
    R1 \(=1.0\)
DO \(690 \mathrm{~J}=2, \mathrm{~K}\)
        \(690 \mathrm{~J}=2\)
\(\mathrm{RI}=\mathrm{Rl} \mathrm{R}^{2}\)
        \(R 1=R 1 * R\)
        \(\begin{aligned} \text { DO } 6901 & =1, N \\ Y(J, I) & =Y(J, I) * R 1\end{aligned}\)
    1DOUB \(=K\)
    DO 710 I \(=1, N\)
    YMAXII) \(=\) DMAXI(YMAX(I),DABS(Y(1,I) )
    JSTART = NQ
    JSTART
    IF (NQ.EQ.1) GO TO 780
    CALL DIFFUN \((T, Y, S A V E(N 2,1))\)
    \(R=H / H O L D\)
    \(R=H / H O L D\)
\(D O 730 I=1, N\)
    DO \(730 \mathrm{I}=1, \mathrm{~N}\)
        \(Y(1, I)=\) SAVE \((1,1)\)
        N1I = N1 + I
        NII \(=N 1+I\)
SAVE \((2, I)=\) HOLD*SAVE(N11,1)
        SAVE(2,I) = HOLD*SAVE
\(Y(2, I)=\operatorname{SAVE}(2, I) * R\)
    \(\mathrm{Y}(2+1\)
\(\mathrm{NQ}=1\)
\(\mathrm{KFLAG}=\)
    \(\mathrm{KFLAG}=1\)
GO TO 170
JSTART = NQ

    EN
        10 470

Certification of Algorithm 407 [D2]
DIFSUB for Solution of Ordinary Differential Equations [C.W. Gear, Comm. ACM 14 (Mar. 1971), 185190]

Paul J. Nikolai [Recd. 1 Mar. 1972, 21 July 1972]
Aerospace Research Laboratories, Wright-Patterson AFB, OH 45433

The program used for this certification was keypunched directly from the printed Fortran algorithm [2]. The algorithm was implemented on a CDC 6600 computer using Fortran Extended, Version 3.0, Level 261A, OPT (Optimization Level) \(=1\). The DOUBLE PRECISION statement was deleted, and the built-in or intrinsic double precision function references were replaced by their single precision equivalents. Thus about 14 decimal digits (48 binary digits) were retained in the computations. An apparent bug in Fortran Extended required changing the statement
\(N 4=N * * 2\)
following statement 140 to the equivalent statement
\(N 4=N * N\).
The test problem given in [2] was coded, compiled, and executed to prepare three tables analogous to those given with the problem. The results are available from the present writer. In addition to the computed error [1, eq. (16)] returned by DIFSUB, the tables include the corresponding true error obtained by computing the Euclidean norm of the difference between the dependent variable vector returned by DIFSUB and that computed directly from the known solution of the test equation normalized by the infinity norm of the latter. The number of steps and average step size reflect these items over the appropriate printing interval and are not cumulative as the corresponding values apparently are in the tables with [2]. \(H\) was set initially to \(10^{-4}\), and MAXDER was set to 4 . The tables compare quite favorably for the larger values of the requested error, the discrepancies over the smaller values being attributable to the drop in precision from 16 decimal digits on the IBM 360/91 to roughly 14 on the CDC 6600 . The results from the stiff methods are truly impressive.

Several inconsistencies become apparent, unfortunately, if one should choose the value of \(H\), the current step size, to be negative. For negative values of \(H\) the \(I F\) statement following statement 440, the IF statement following 540, and the arithmetic expression for \(R\) following 670 do not work correctly. We recommend replacing \(H\) and HMIN by \(A B S(H)\) and \(A B S(H M I N)\) in the IF statements and \(H M A X / A B S(H)\) by \(A B S(H M A X / H)\) in the expression for \(R\).

DIFSUB with the above modifications has been incorporated into a general program for solving linear two-point boundary value problems for ordinary differential equations by the method of projections [3]. Past experience with the method of projections indicates that stiff equations arise often in applications. We currently feel that DIFSUB is our best hope for handling these problems.

\section*{References}
1. Gear, C.W. The automatic integration of ordinary differential equations. Comm. ACM 14 (Mar. 1971), 176-179.
2. Gear, C.W. Algorithm 407, DIFSUB for solution of ordinary differential equations. Comm. ACM 14 (Mar. 1971), 185-190.
3. Guderley, Karl G., and Nikolai, Paul J. Reduction of two-point boundary value problems in a vector space to initial value problems by projection, Numer. Math. 8 (1966), 270-289.

\title{
Algorithm 408 \\ A Sparse Matrix Package (Part I) [F4]
}

John Michael McNamee (Recd. 26 Nov. 1969 and 15 July 1970)
York University, Downsview, Ontario, Canada

Key Words and Phrases: matrix, sparse matrix, matrix manipulation

CR Categories: 5.14

\section*{Description}

It is frequently necessary to manipulate large sparse matrices, for example in electrical network problems. In such cases much time and memory space can be saved if only the nonzero elements are stored. A set of Fortran subroutines has been written for performing various operations on sparse matrices stored in compact form in core. Core storage requirement is reduced for any square matrix less than 66 percent dense. These subroutines have been tested on an IBM 360/50 using a "WATFOR" compiler.

Method of Storage. The nonzero elements are stored row-byrow (in one case column-by-column) in a single-dimensioned real array ( \(A\), say) while entries in an associated single-dimensioned integer array ( \(M\), say) contain the column indices of the corresponding elements. In addition the \(M\)-array contains certain control information.

The control information and column indices are packed into the \(M\)-array as indicated in Table I. By the "right half" of an integer word is meant the four least significant decimal digits, while the "left half" means the next four digits. Thus it is assumed that the computer word length is sufficient to contain at least an eight decimal digit integer (i.e. 28 bits including sign).

There should be no gaps in the \(M\)-array; thus, if the number of rows is odd, the first column index will appear in the right half of the word which contains "number of elements in last row" in its left half.

The total number of words needed in the \(M\)-array will be \(\{4+\) (number of rows) + (number of nonzero elements) +1\(\} / 2\) [rounded down to nearest integer].

Note that the number of rows or columns may be as high as 9999 , while the number of elements stored may be \(10^{8}-1\). (This is more than can fit into the core of any existing computer.)

As an example consider the matrix:
\(\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\)

The \(A\)-array would be as follows:
I: 1, 2, 3, 4, 5
\(A(I): 1 ., 2 ., 2 ., 3 ., 1\).
while the \(M\)-array would be:
I: \(\quad 1,2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7\)
\(M(I): 40003,5,20002,00001,10003,10002,20000\)
As a second example consider a \(100 \times 100\) matrix having an average of three nonzero elements per row (as might arise in an electrical network problem). The \(A\)-array requires 300 words and the \(M\)-array \((4+100+300+1) / 2=202\), for a total of 502 . This is just over 5 percent of the area required to store the matrix in full.

Thirdly, consider a \(100 \times 100\) matrix having an average of 66 nonzero elements per row. This requires a total of \(6600+(4+\) \(100+6600+1) / 2=9952\) words, just short of the 10000 needed for full storage. Thus it is economical touse the sparse method of storage for square matrices having up to 66 percent nonzero elements. Time is also saved up to a certain degree of "nonsparseness."

List of Subroutines. The subroutines described here are listed in Table II.

\section*{Notes on the Subroutines}
1. Using RDSPMX a sparse matrix may be input on cards as follows. The nonzero elements only are entered row-by-row in order of ascending column number with a sentinel (which may be any

「able I. Storage of Control Information and Column Indices
\begin{tabular}{|c|c|c|}
\hline Word & & \\
\hline Number & Left Half & Right Half \\
\hline \(M(1)\) & Number of rows & Number of columns \\
\hline \(M(2)\) & \(\leftarrow\) Number of eleme & \(\rightarrow\) \\
\hline \(M(3)\) & Number of nonzero elements in row 1 & Number of nonzero elements in row 2 \\
\hline \(M(4)\) & Number of nonzero elements in row 3 & \\
\hline \(M(I)\) & : & Number of nonzero elements in last row \\
\hline \(M(I+1)\) & Column index of first element stored & Column index of second element stored \\
\hline \(M(I+2)\) & Column index of third element stored & etc. . \\
\hline \(\boldsymbol{M}\left({ }^{\prime}\right)\) & ! & Column index of last element stored \\
\hline
\end{tabular}
number) after the end of each row. After each element, its column index is entered, the end-of-row sentinel having an index of the form \(90000+I\) where \(I\) is the row number. At the end of the whole matrix there is an additional sentinel (any number) with an index 99999.

The elements and column indices are entered four per card in the format 4 ( \(E 15.8\), I5); i.e.
Columns \(\quad 1-15\) first element in \(E 15.8\) format
16-20 first column index in 15 format
21-35 second element
36-40 second column index
41-55 third element
56-60 third column index
61-75 fourth element
76-80 fourth column index etc.
The elements are preceded by a control card containing in 15 format:
```

Columns 1-5 number of rows in }
6-10 number of columns in A
11-15 number of nonzero elements in A

```

For example the matrix
\(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 5 \\ 0 & 0 & 0\end{array}\right]\)
would be entered thus:


Note the third row must have an end-of-row sentinel.
The subroutine checks that this information agrees with the number of rows and elements actually entered, and that no column index exceeds the number of columns as stated. It also checks that column indices within a given row are entered in ascending order.

Table II. List of Sparse Matrix Subroutines. ( \(X, M X\) ) means "matrix with elements stored in \(X\) and control information and column indices stored in MX."
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Name and} & \multirow[t]{4}{*}{Result stored in ( \(A, M\) )} & \multirow[t]{4}{*}{See note number 1} \\
\hline Parameters & Function & & \\
\hline RDS PMX ( \(A, M\), & Read from & & \\
\hline \(N A, N M\) ) & cards in nonpacked form & & \\
\hline \multirow[t]{3}{*}{\(\operatorname{ADSPMX}(A\), \(M A, B, M B, C\), MC,NA,NM)} & Add ( \(A, M A\) ) & ( \(C, M C\) ) & 2 \\
\hline & and ( \(B, M B\) ) & & \\
\hline & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& M U S P M X(A, \\
& M A, B, M B, C, \\
& M C, N A, N M)
\end{aligned}
\]} & Postmultiply ( \(A\), & (C,MC) & 3 \\
\hline & \(M A)\) by the & & \\
\hline & transpose of ( \(B\), MB) & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
TRS PMX \((A, M\), \\
AT,MT,NA, \\
\(N M, I P, N P)\)
\end{tabular}} & Transpose ( \(A\), & ( \(A T, M T\) ) & 11 \\
\hline & M) & & \\
\hline \multirow[t]{3}{*}{PERROW \((A, M\), \(A P, M P, I P, N A\), \(N M, N P)\)} & Permute rows of & ( \(A P, M P\) ) & 4(a), 5 \\
\hline & ( \(A, M\) ) accord- & & \\
\hline & ing to permutation in \(I P\) & & \\
\hline \multirow[t]{4}{*}{PERCOL(A,M, \(A P, M P, I P, A T\), \(M T, N A, N M\), \(N P\) )} & Permute col- & ( \(A P, M P\) ) & 4(b), 5 \\
\hline & umns of ( \(A, M\) ) & & \\
\hline & according to & & \\
\hline & permutation in \(I P\) & & \\
\hline \multirow[t]{2}{*}{} & Add \(R\) times & ( \(A N, M N\) ) & \\
\hline & row IR of ( \(A\), & & \\
\hline \(A N, M N, R, I R\), IT,NA,NM) & M) to row \(1 T\) & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& A C S P M X(A, M, \\
& A N, M N, R, I R,
\end{aligned}
\]} & Add \(R\) times & ( \(A N, M N\) ) & \\
\hline & column \(I R\) of & & \\
\hline IT,NA,NM) & ( \(A, M\) ) to col- & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
\(\operatorname{MRSPMX}(A, M\), \\
\(A N, M N, R, I R\), \\
\(N A, N M\) )
\end{tabular}} & Multiply row 1 R & \((A N, M N)\) & \\
\hline & of ( \(A, M\) ) by the & & \\
\hline & scalar \(R\) & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& M C S P M X(A, M, \\
& A N, M N, R, I C,
\end{aligned}
\]} & Multiply col- & ( \(A N, M N\) ) & \\
\hline & umn IC of ( \(A\), & & \\
\hline \multirow[t]{2}{*}{\(N A, N M\) )} & M) by the sca- & & \\
\hline & lar \(R\) & & \\
\hline ERS PMX ( \(A, M\), & Exchange rows & ( \(A N, M N\) ) & 6 \\
\hline \multirow[t]{2}{*}{\(A N, M N, I R, J R\), \(J, N A, N M, N P\) )} & \(I R\) and \(J R\) of & & \\
\hline & ( \(A, M\) ) & & \\
\hline \multirow[t]{2}{*}{} & Exchange col- & ( \(A N, M N\) ) & 6 \\
\hline & umns \(I R\) and \(J R\) & & \\
\hline \[
\begin{aligned}
& A N, M N, I R, J R, \\
& J, N A, N M, N P)
\end{aligned}
\] & of ( \(A, M\) ) & & \\
\hline \(M V S P M X(A, M\), \(A N, M N, N A\), & Move ( \(A, M\) ) & ( \(A N, M N\) ) & \\
\hline \multicolumn{4}{|l|}{\(N M)\)} \\
\hline SMS PMX ( \(A, M\), & Multiply all ele- & ( \(A N, M N\) ) & \\
\hline \multirow[t]{2}{*}{\(A N, M N, S, N A\),
\(N M)\)} & ments of ( \(A, M\) ) & & \\
\hline & by the scalar \(S\) & & \\
\hline RVS PMX \((A, M\), & Extract row 1 R & \(V\) & 7 \\
\hline IR,V,N,NA, & of ( \(A, M\) ) & & \\
\hline \multicolumn{4}{|l|}{\(N M)\)} \\
\hline \(C V S P M X(A, M\), & Extract column & \(V\) & 7,11 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& I C, V, A T, M T, N, \\
& N A N M, I P)
\end{aligned}
\]} & IC of ( \(A, M A\) ) & & \\
\hline & & & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& I N S P M X(A, M, \\
& N, N A, N M)
\end{aligned}
\]} & Read from & ( \(A, M^{\prime}\) ) & 8 \\
\hline & back-up storage & & \\
\hline & (Fortran unit & & \\
\hline & \(N\) ) in packed & & \\
\hline & form & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { OTSPMX(A,M, } \\
& N, N A, N M)
\end{aligned}
\]} & Write ( \(A, M\) ) & Fortran & 8 \\
\hline & onto back-up & unit \(N\) & \\
\hline & storage in packed form & & \\
\hline \multirow[t]{6}{*}{WRSPMX \((A, M\), TIT,NA,NM)} & Print ( \(A, M\) ) in & Printer & 9 \\
\hline & edited form. & & \\
\hline & TIT (10) con- & & \\
\hline & tains 10 four- & & \\
\hline & letter words de- & & \\
\hline & scribing ( \(A, M\) ). & & \\
\hline
\end{tabular}

Reading is via unit \(I N\), which is set to 5 . This may be changed by the user if necessary.
2. A subroutine to subtract \((B, M B)\) from \((A, M A)\) may be obtained by making the following minor changes to \(A D S P M X\) :
(i) Replace first line by \(\operatorname{SUBROUTINE} \operatorname{SUSPMX}(A, M A, B, M B\), \(C, M C, N A, N M)\)
(ii) Replace statement number 9 by \(T=A(J A)-B(J B)\)
(iii) Replace 1st line after statement number 10 , and also 2nd line after statement number 12, by \(C(J A)=-B(J B)\)
(iv) In statements \(2,4,17\) \& 19 replace ". . ADSPMX . . " by ". . . SUSPMX . .."
3. MUSPMX requires \((B, M B)\) to be stored column-by-column. If it is not in this form the user must first call TRSPMX.

4(a). In PERROW old row IP(I) becomes new row I. NP is dimension of \(I P\) (equals number of rows in \(A\) ).

4(b). In PERCOL old column I becomes new column IP(I). \(N P\) is dimension of \(I P\) (equal number of columns). \(A T, M T\) are used internally.
5. The subroutine \(A N T I P\) (see ancillary subprograms below) may be used to invert the permutation \(I P\).
6. \(J\) is used internally. \(N P\) is number of rows (for ERSPMX) or number of columns (for \(E C S P M X\) ). It is the dimension of \(J\).
7. The row (or column) extracted from \((A, M)\) by RVSPMX (or \(C V S P M X\) ) is stored in full in \(V\); i.e. zero elements are included. \(N\) is dimension of \(V\) (equal number of columns or rows in \(A\) ).
8. It is often possible to write more efficient subroutines for cransfer to/from mass storage devices, using machine coding or special subroutines available on individual computer systems.
9. WRSPMX produces a printout of the nonzero elements of \((A, M)\), row-by-row, five elements per line. Each element is followed by its column index. Each row is preceded by the heading "row number \(I^{\prime \prime}\). TIT is printed at top of each page.
10. In all the subroutines \(N A, N M\) are the dimensions of \(A, M\), respectively. Checks are made that these limits are not exceeded.
11. The array \(I P(N P)\) in \(T R S P M X\) or \(I P(N)\) in CVSPMX is used internally.
12. All on-line writes are on unit \(L P\), set to six at start of each \(s^{u b r o u t i n e}\). The user may change this number.

\section*{Ancillary Subprograms}
(i) FUNCTION IND \((M, I, N M)\) is used to extract the Ith halfword from the array \(M\). All the subroutines listed in Table II use this except \(R D S P M X, I N S P M X\).
(ii) SUBROUTINE IPK \((K, M, I, N M)\) is used to pack \(K\) into the \(I\) th half-word of array \(M\). All the subroutines listed in Table II use this except MVSPMX, SMSPMX, RVSPMX, CVSPMX, INSPMX, OTSPMX, WRSPMX. NM is the dimension of \(M\).
(iii) \(\operatorname{ANTIP}(I P, A P, N)\) may be used to invert a permutation array \(I P\) of \(N\) elements, storing the result in \(A P\). For example suppose \(I P\) is \((3,1,2)\), then \(A P\) will be \((2,3,1)\). This may be useful in conjunction with PERROW and PERCOL. Note also that some subroutines call on others: namely, ERSPMX calls PERROW, ECSPMX calls PERCOL, CVSPMX calls TRSPMX, and RVSPMX.

\section*{Possible Alterations}
(i) On machines having word lengths of 36 bits or more (such as ibm 7000 series), an integer contains over ten decimal digits. Hence by a slight change to IND or IPK a five digit integer may be stored in each half-word of the \(M\)-array. (No change to the main subroutines is required.) Thus matrices with up to 99999 rows or columns can be stored. At the cost of extra storage and changes to the main subroutines a similar effect can be obtained on the івм 360 by using a full-word for each column index (then IND and IPK are not needed).
(ii) If the program does not have to handle matrices with more than 999 rows or columns, a further saving of space can be made by packing three (more on some machines) indices into each word of the \(M\)-array. This requires changes to most of the subroutines as well as to IND and IPK; e.g. in MRSPMX and MCSPMX second line before statement number 2 would be changed to \(I 1=(5+N R A+N E A) / 3\).
(iii) On the івм 360 the same effect as packing two column indices per word can be obtained more easily by declaring the \(M\)-array to be half-length (two bytes per word), and using one (half-length) word per index. Then subprograms \(I N D\) and IPK are no longer required. This requires considerable changes to all the subroutines, but may save time.
Further Extensions. It is hoped to present subroutines for solving sparse systems of linear equations, and (perhaps) for solving eigen-problems of sparse matrices at a future date.
```

Algorithm:
FUNCTION IND(M,I,NM)
C ***********************
C INOICES PER WORD, LUWER INDEX IN UPPER FOUR DIGITS.
C DIMENSICN M(NM)
C J*TH WORD OF M CONTAINS I*TH INDEX.
C J = (I+1)/2
CLIS O IF I EVEN, LIF I ODO.
C KT CONTAINS UPPER 4 DIGITS OF M(J).
KT =M(J)/10000
KT (L) i,1,2
1 IND = M(J)-KT*10000
2 RETURN IND N
RETURN
END
SUBROUTINE IPK(K,M,I,NM)
PACKS K (I*TH COLUMN INOEX) IN ARRAY M. WHICH WILL
C CONTAIN TWO 4-DIGIT INDICES PER WORD, LOWER INDEX
C UPPER 4 DIGITS.
C
DIMENSICN M(NM)
l ll
IF (L) 1,1,2
1 M(J)=M(J)+K
METJRN (J)}=M(J)+K*1000
RETURN
RETUR
C ***
SUBROUTINE ACSPMX(A,M,AN,MN,R,IR,IT,NA,NM)
c ************************************:*********
C ADDS R TIMES COL IR TO COL IT OF MATAIX STORED IN A,
C PLACING RESULT IN AN. M,MN CONTAIN CONTROL DATA AND COL
C INOICES FOR A,AN.
C NA IS DIMENSION OF A.AN. NM IS DIMENSION OF M,MN.
REAL A,AN,R,AR
INTEGER M,MN,IR,IT,NA,NM,I,NRA,NC:A,L,JF,NIR,NIRA,J2,K,
* K1.IFL,LP,J
DIMENSICN A(NA),M(NM),AN(NA),MN(NM)
C LP IS UNIT NUMBER OF LINE PRINTER.
IS UNIT NUMB
C CHECK THAT PARAMETEKS WITHIN RANGE.
IF (R.EG.O.O) WRITE (LP,14)
IF IIR.LE.O.OR.IT.LE.OS GO TO 15
C CLEAR MN.
DONII=1,NM
CHECK THAT AN DOES NOT OVER-WRITE A.
IF (M(1).EQ.O) GO TO 17
C UNPACK AND TRANSFER CONTROL DATA. NRA,NCA ARE NUMBERS DF
C ROWS.COLS IA A.
NRA =IND (M,1,NM)
NCA = IND(M,2,NM)
MN(1)=M(1)
C CHECK PARAMETERS WITHIN RANGE.
IF IIR.GT.NCA.OR.IT.GT.NCA) GO TO }1
C L COUNTS ELEMENTS OF AN.
L
C J COUNTS ELEMENTS TO ENO OF ROW (I-1).
c COUNTS ROLS OF A.
CO 13 I = 1,NRA
C NIR IS NUMBER IN NEW ROW.
C NIRA NIR =0
C NIRA IS NUMBER INROW I OF A.
NIRA = ND(M,4+I,NM)
IF (NIRA.EQ.O) GO TO 12

```

C J2 COUNTS ELEMENTS TO END OF CURRENT ROW
J2 \(=J+\) NIRA
C JI COUNTS ELEMENTS UP TO FIRST ONE IN CURRENT ROW.
c pick out element in column ir.
\(\begin{aligned} & \text { OUT ELEMENT } \\ &=0 . \\ & \text { OD } 2 \mathrm{~K}=J 1, J 2 \\ &=1 N D(M,\end{aligned}\)
K1
IF
IF
(KI.
NE.IR
\(A R=A(K)\)
PICK OUT ANC ALTER IF NECESSARY ELEMENT IN COL IT
C TRANSFER REST OF ROW TO AN,MN. IFL SET TO 1 hIHEN ELEMENT
C IN COL IT FCUND OR CREATED.
\(\begin{aligned} & \mathrm{IFL} \\ & \mathrm{K}\end{aligned}=0\)
\(3 \begin{array}{ll}k & =J 1-1 \\ K & =K+1 \\ K 1 & =1 N D(M, K+J F, N M)\end{array}\) \(=1 N D(M, K\)
\(=A(K)\)
IF (KI.GE.IT) GO TO 7
C CHECK IF ARRAYS FULL
4 IF (L.LE.NA.ANI.JF+L.LE.2*NM) GO TO 6
5 FORMATITIH
FORMA TXIH IN ACSPMX ARRAY FULL)
C COLUMN IT NCT
© AN(L) \(=\) YCT YET REACHED.
CALL IPK (KI,MN,JF+L,NM)
\(\begin{aligned} \text { CALL } & =L+1 \\ L & =L+1 \\ \text { NIR } & =N I R+1\end{aligned}\)
go TO 10
7 IF (K1.GT.IT) GOTO
C KI EQUALS IT, I.E. THERE IS A NON-ZERO ELEMENT IN COL. IT
C UF ROW I.
\(\begin{array}{ll}I F L & =1 \\ A 1 & =A R * R+A(K)\end{array}\)
IF (AI.NE.O.0) GO TO 4 GO 1010

NE. 01 GO TO
C KI GREATER THAN IT AND ELEMENT IN COL IT HAS NOT YET
\(C\) BEEN FOUND, THUS COL IT HAS A ZERO ELEMENT. IFL \(=1\) \(\begin{array}{ll}K & =K-1 \\ A 1 & =A R * R\end{array}\)
C A NEW ELEMENT IN COL IT IS CREATED IF AI NOT ZERO. IF (AI.NE.O.O) GO TO 4 GO TO 10
C K GREATER THAN IT AND ELEMENT IN COL IT ALREADY FOUND OR C CREATED, JUST TRANSFER TO NEW ARRAY.

A1 \(=A(K)\)
10 IF (K.LT.J2) GU TO 3
IF IIFL.NE.O.OR.AR.EQ.O.O) GO TO 12
IF (L.LE.NA.AND.JF+L.LE. \(2 * N M\) ) GO TO 11
WRITE (LP,5)
CALL EXIT
11 AN(L) \(=A R * R\)
CALL IPK \(\quad=1 T, M N, J F+L, N M\)
LIR \(=N+1\)
NIR
C END OF ROW.
12 CALL IPK(NIR,MN,4+1,NM)
12 CALL IPKINI
END OF LAST ROW.
RETURN
ERROR MESSAGES.
14 FORMATI2OH IN ACSPMX R IS ZERO
15 WRITE (LP,16)
16 FORMATI32H IN ACSPMX IR OR IT OUT OF RANGE) CALL EXIT
17 WRITE (LP,18)
18 FORMAT(35H IN ACSPMX OUTPUT OVER-WRITES INPUT, * 34H OR INPUT has NO ROWS AND COLUMNS.I CALL EXIT END \(\qquad\)
        SUBROUTINE ADSPMX (A, MA, B, MB, C, MC, NA, NM)
*************************************
C ADD THO SPARSE MATRICES.
C A, B, C CONTAIN ELEMENTS OF FIRST, SECOND AND SUM MATRICES.
C MA, MB, MC CENTAIN CONTROL DATA AND COL INDICES FOR A, B,
\(C\) NA IS DIMENSION OF A,B,C. NM IS DIMENSION OF MA,MB,MC.
            REAL A, B, C \(\quad\) INTEGER MA,MB,MC, LP,NRA,NCA,NRB,NCB, JC,KA,KB,JB,KF,
            * I, KA1,JA,J1,J2,NOLO,NA,NM
            DIMENSICN A(NA), MA(NM),B(NA), MB(NM),C(NA),MC(NM)
C. LP IS UNIT NUMBER OF LINE PRINTER.
CLEAR \(=6\)
            \(\operatorname{OOLL}_{1}=1\), NM
            MC(I) \(=0\)
C CHECK THAT C DOES NOT DVER-WRITE A OR B.
            IF (MA(1).EQ.O.OR.MB(1).EQ.O) GO TO 18
C UNPACK CONTROL DATA. NRA,NCA ARE NUMBER OF ROWS,CDLUMNS
C IN A. NRB, NCB ARE ROWS, COLUMNS IN B.
            NRA \(=\) INO (MA \(, 1, N M)\)
            \(\begin{aligned} \text { NCA } & =\text { IND }(M A, 2, N M) \\ \text { NRB } & =I N D(M B, 1, N M)\end{aligned}\)
            NCB \(=1 N D(M B, 2, N M)\)
C TEST FOR COMPATIBILITY.
        IF (NRA.EQ.NRB) GO TO 3
            WRITE (LP,2) NRA,NRB
            FORMATI32H IN ADSPMX NUMBER OF ROWS IN A 1,I4,
            * 37H) DCES NOT EQUAL NUMBER OF ROWS IN B(,14,2H).)
            CALL EXIT
            IF (NCA.EQ.NCB) GO TO 5
            HRITE (LP,4) NCA,NCB
            FORMATI3IH IN ADSPMX NUMBER OF COLS IN AI,I4,
            4 FORMAT(31H IN ADSPMX NUMBER OF COLS IN AI, 14,
\(* 36 H\) DOES NOT EOUAL NUM. OF COLS. IN BI, \(14,2 \mathrm{H}) .1\)
            CALL EXIT
C JC COUNTS ELEMENTS OF \(C\).
    5 JC E

    RETURN
```

```
c
```

 REAL A,AN,R
    ```
    REAL A,AN,R
    INTEGER M,MN,IR,IT,I,NRA,NCA,NEA,NIRA,JR,II,JT,J,JF,
    INTEGER M,MN,IR,IT,I,NRA,NCA,NEA,NIRA,JR,II,JT,J,JF,
    * J1,JT2,JN,J2,KR,KT,JT1,IT1,K,NA,NM,JTO,LP
    * J1,JT2,JN,J2,KR,KT,JT1,IT1,K,NA,NM,JTO,LP
    DIMENSICN A(NA),M(NM),AN(NA),MN(NM)
    DIMENSICN A(NA),M(NM),AN(NA),MN(NM)
C LP IS UNIT NUMBER OF LINE PRINTER.
C LP IS UNIT NUMBER OF LINE PRINTER.
LP = 6
LP = 6
C CHECK PARAMETERS WITHIN RANGE.
C CHECK PARAMETERS WITHIN RANGE.
    IF IIR.LE.O.OR.IT.LE.O) GO TO 23
    IF IIR.LE.O.OR.IT.LE.O) GO TO 23
    CLEAR MN. I = OO I NM
    CLEAR MN. I = OO I NM
    EAR MN. 
    EAR MN. 
    L MNIII = O
    L MNIII = O
C CHECK THAT AN DOES NOT DVER-WRITE A.
C CHECK THAT AN DOES NOT DVER-WRITE A.
C UNPACK (M(1).EQ.O) GO TO 25
C UNPACK (M(1).EQ.O) GO TO 25
    C UNPACK CONTROL DATA, STORE IN MN.
    C UNPACK CONTROL DATA, STORE IN MN.
    NRA 
    NRA 
    NEA =M(2)
    NEA =M(2)
    MN(1)=M(1)
    MN(1)=M(1)
    DO 2 I = 1,NRA
    DO 2 I = 1,NRA
        IFII-EQ.IT)GOTO2 (M)
        IFII-EQ.IT)GOTO2 (M)
        K = IND (M,4+I,NM)
        K = IND (M,4+I,NM)
        CALL IPK(K,MN,4+I,NM)
        CALL IPK(K,MN,4+I,NM)
c CHECK PARAMETERS WITHIN RANGE.
c CHECK PARAMETERS WITHIN RANGE.
    IF (IR.GT.NRA.OR.IT.GT.NRA) GO TO 23
    IF (IR.GT.NRA.OR.IT.GT.NRA) GO TO 23
C JR,JT ARE NLMBERS OF ELEMENTS BELOW ROWS IR,IT.
C JR,JT ARE NLMBERS OF ELEMENTS BELOW ROWS IR,IT.
    JR IR = 0
    JR IR = 0
    IF IIR.LE.I) GO TO 4
    IF IIR.LE.I) GO TO 4
    OO 3 I = I,IRI
    OO 3 I = I,IRI
    3 JR = JR+IND(M,4+1,NM)
    3 JR = JR+IND(M,4+1,NM)
    3 JR
    3 JR
        IF (IT.LE.1) GO TO 7
        IF (IT.LE.1) GO TO 7
        IT1, = IT-1
        IT1, = IT-1
    5 JT = JT+IND(M,4+I,NM)
    5 JT = JT+IND(M,4+I,NM)
C TRANSFER ELEMENTS BELOW ROW IT.
C TRANSFER ELEMENTS BELOW ROW IT.
    DO6 I = 1.JT
    DO6 I = 1.JT
    J = IND (M,JF+I,NM)
    J = IND (M,JF+I,NM)
    CALL IPK(J,MN,JF+I,NM)
    CALL IPK(J,MN,JF+I,NM)
    7 JTO: JTM
    7 JTO: JTM
C AUD R TIMES ROW IR TO ROW IT.
C AUD R TIMES ROW IR TO ROW IT.
    JT2 = JT+INO(M,4+IT,NM)
    JT2 = JT+INO(M,4+IT,NM)
    JT2 = JT+1
    JT2 = JT+1
C JN COUNTS ELEMENTS UF NEW MATRIX.
C JN COUNTS ELEMENTS UF NEW MATRIX.
C NIRR IS NUMBER OF ELEMENTS IN ROW IR OF A.
C NIRR IS NUMBER OF ELEMENTS IN ROW IR OF A.
    NIRR = IND(M,4+IR,NM)
    NIRR = IND(M,4+IR,NM)
    IF (NIRR.EQ.O) GO TO 14
    IF (NIRR.EQ.O) GO TO 14
    IN = JR+1
    IN = JR+1
        DO 13 I= J1,J2
        DO 13 I= J1,J2
C CHECK ARRAY LIMIT.
C CHECK ARRAY LIMIT.
            IF (JN.LE.NA.AND.(JN+JF).LE.2*NM) GO TO 8
            IF (JN.LE.NA.AND.(JN+JF).LE.2*NM) GO TO 8
        WRITE ILP,21)
        WRITE ILP,21)
        CALL EXIT
        CALL EXIT
    8 KR = IND(MM,JF+I,NM)
    8 KR = IND(MM,JF+I,NM)
        KT = IND(M,JF+JT,NM)
        KT = IND(M,JF+JT,NM)
        IF (KT.GE.KR) GO TO 10
        IF (KT.GE.KR) GO TO 10
        AN(JN)=A(JT)
        AN(JN)=A(JT)
        ANIJN)=A(JT)
        ANIJN)=A(JT)
        laN: = JN+1
        laN: = JN+1
        JT %O J
        JT %O J
    10 IF (KT,GT.KR) GO TO 12
    10 IF (KT,GT.KR) GO TO 12
        S = A(JT)+R*A(II)
        S = A(JT)+R*A(II)
        SF (S.EO.0.0) GO TO 11
        SF (S.EO.0.0) GO TO 11
        AN(IN)=
        AN(IN)=
        CALL IPKIKT,MN,JN+JF,NM)
        CALL IPKIKT,MN,JN+JF,NM)
    1 JN = JN+1
    1 JN = JN+1
    GO TO 13
    GO TO 13
    2 S = R*A(I)
    2 S = R*A(I)
        IF (S.EQ.O.O) GO TO 13
        IF (S.EQ.O.O) GO TO 13
        AN(JN)=S
        AN(JN)=S
        JN= JN+1
        JN= JN+1
    3 JNNINU'JN+1
    3 JNNINU'JN+1
C TRANSFER REST OF ROW IT.
C TRANSFER REST OF ROW IT.
    14 IF (JT.GT.JT2) GO TO 16
    14 IF (JT.GT.JT2) GO TO 16
        IF IJN.LE.NA.AND.(JN+JF).LE.2*NM) GO TO 15
        IF IJN.LE.NA.AND.(JN+JF).LE.2*NM) GO TO 15
        WRITE TLP,2IT
        WRITE TLP,2IT
    GALL EXIT
    GALL EXIT
    15 AN(JN) = A(JT)
    15 AN(JN) = A(JT)
        KT = IND(M,JF+JT,NM)
        KT = IND(M,JF+JT,NM)
        CALL IPK(KT,MN,JFF+JN;NM)
        CALL IPK(KT,MN,JFF+JN;NM)
    JN:=JN+1
    JN:=JN+1
    GO T0 14
    GO T0 14
C JTL IS NUMBER IN ROW IT OF AN.
C JTL IS NUMBER IN ROW IT OF AN.
    16 JTI. = JN-1-JTO
    16 JTI. = JN-1-JTO
    CALL IPK(JTI,MN,4+1T,NM)
    CALL IPK(JTI,MN,4+1T,NM)
C. STORE ROWS ABOVE IT.
C. STORE ROWS ABOVE IT.
    IF IIT.EQ.NRAI GO TO 20
    IF IIT.EQ.NRAI GO TO 20
    ITI = IT+1
    ITI = IT+1
C K IS NUMBER IN ROW 1.
C K IS NUMBER IN ROW 1.
    K =INO(M,4+I,NM)
    K =INO(M,4+I,NM)
        IF (K.EQ.O) GO TO 19
        IF (K.EQ.O) GO TO 19
    JFT = JT2 
    JFT = JT2 
        JT2 = JT+K
        JT2 = JT+K
        DO 18 J=JT1.JT2
        DO 18 J=JT1.JT2
        IF (JN.LE.NA;AND.(JN+JF).LE.2*NM) GO TO 17
        IF (JN.LE.NA;AND.(JN+JF).LE.2*NM) GO TO 17
        WRITE (LP,2L)
        WRITE (LP,2L)
        CALL EXIT
        CALL EXIT
        AN(JN) }==A(J
        AN(JN) }==A(J
        K = IND(M,J+JFFNM)
        K = IND(M,J+JFFNM)
        CALL IPK(K,MN,JN+JF,NM)
        CALL IPK(K,MN,JN+JF,NM)
    0 JN = JN+1
    0 JN = JN+1
    1 9 \text { CONT I NUE}
    1 9 \text { CONT I NUE}
    MN(2) = JN-1
    MN(2) = JN-1
```

 CALL IPK(K,MN,4+I,NM)
    ```
        CALL IPK(K,MN,4+I,NM)
    O I = 1,IRI
    O I = 1,IRI
    JF = 4+NRA
    JF = 4+NRA
        AN(I)=A(I)
        AN(I)=A(I)
    IF (JT.GT.JT2) GO TO 12
    IF (JT.GT.JT2) GO TO 12
    IF (S.EQ*AII)
    IF (S.EQ*AII)
    CALL IPK(KR,MN,JN+JF,NM)
    CALL IPK(KR,MN,JN+JF,NM)
    CONTINUE 
```

 CONTINUE
    ```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{ERRUR MESSAGES.} \\
\hline \multicolumn{2}{|r|}{21 FORMAT(21HOARRAY FULL IN ARSPMX)} \\
\hline & 22 FORMAT(20H in arspmx r is zerol \\
\hline \multicolumn{2}{|r|}{23 WRITE (LP,24)} \\
\hline \multicolumn{2}{|r|}{24 FORMATI33H IN ARSPMX IR OR IT OUT OF RANGE.)} \\
\hline & 25 WRITE (LP,26) \\
\hline & 26 FORMATI3SH IN AKSPMX OUTPUT OVER-WRITES INPUT, \\
\hline \multicolumn{2}{|r|}{* 34H or input has no rows ano columns.l} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\({ }_{\text {CNO }}^{\text {Call }}\) EXIT}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{*****************************************************} \\
\hline \multicolumn{2}{|r|}{SUBROUTINE CVSPMX(A, \(M, I C, V, A T, M T, N, N A, N M, I P)\) ********************************************} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C IN EXTENDED FORM, I.E. ALL ELEMENTS INCLUDING ZEROS ARE}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{REPRESENTEO.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{c at,mt are useo internally.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C N IS DIMENSION OF V. Na is dimension of arat.}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{C NM IS DIMENSION OF M.MT.}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{REAL \(A, A T, V\),}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{DIMENSICN A(NA) M M NM), \({ }^{\text {a }}\) (NA), MT(NM), V(N), IP(N)} \\
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{CALL RVSPMXIAT,MT,IC,V,N,NA,NM)}} \\
\hline RETURN & \\
\hline & END \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{C ********************************************************* SUBROUTINE ECSPMX(A,M,AN,MN,IR,JR,J,AT,MT,NA,NM,NP)} \\
\hline c & *************************************************** \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{RESULT IN An.}} \\
\hline & \\
\hline & EXCHANGE COLUMNS IR, JR of SParse matrix in a, storing \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{C AT,MT ARE USED BY PERCOL.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
C NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M:MN. \\
C NP IS DIMENSION OF J,AT,MT.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(C\) REAL A,AN,AT}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{INTEGER M, MN, IR, JR, J, NCA, NA, NM, NP, MT}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{DIMENSICN A(NA), M(NH), AN(NA),}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline C & SET UP PERMLTATION ARRAY J WITH IR,JR INTERCHANGED. NCA IS NUMBER OF COLUMNS IN A. \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{1 J(I) \(=1\)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{J(IR) \(=\) JR}} \\
\hline & \\
\hline & permute cols of a. \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{CALL PERCOL (A,M, AN, MN, J, At, Mt, NA, NM, NP )}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{END} \\
\hline \multirow[t]{2}{*}{} & ****************************************************** \\
\hline & SUBROUTINE ERSPMX (A, M, AN, MN, IR,JR,J,NA, NM, NP ) \\
\hline & ******************************************* \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{3}{*}{C EXChange rows ir,jr of sparse matrix in a, Storing result} \\
\hline & \\
\hline & \\
\hline & \multirow[t]{2}{*}{NA IS DIMENSION Of A,AN. NM IS DIMENSION Of
NP IS OIMENSION OF J,WHICH IS USED INTERNALIM} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[b]{3}{*}{\begin{tabular}{l}
REAL \(A, A N\) \\
INTEGER M,MN,IR,JR,NRA,NA,NM,J,NP
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|r|}{INTEGER \(M, M N, I R, J R, N R A, N A, N M \% J, N P\) DIMENSICN A(NA), M(NM),AN(NA), MN(NM),J(NP)} \\
\hline \multirow[t]{10}{*}{} & \multirow[t]{2}{*}{C SET UP Permutation array hith ir, jR interchanged and all
C OTHER INTEGERS in
NATURAL ORDER.} \\
\hline & \\
\hline & nRa is number of rows in a. \\
\hline & NRA \(=1\) NO ( \(M\), 1 , NM \()\) \\
\hline & DO \(11=1, N R A\) \\
\hline & \(1 \mathrm{~J}(\mathrm{I})=\mathrm{I}\) \\
\hline & J(IR) \(=\mathrm{JR}\) \\
\hline & \(J(J R)=1 R\) \\
\hline & PERMUTE ROWS OF A. \\
\hline & CALL PERROW(A, \(\mathrm{M}, \mathrm{AN}, \mathrm{MN}, \mathrm{J}, \mathrm{NA}, \mathrm{NM}, \mathrm{NP}\) ) \\
\hline & RETURN \\
\hline c & \\
\hline & END \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{****************************}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{5}{*}{} & \\
\hline & \\
\hline & C NA.NH ARE dimensions of a,m. \\
\hline & \\
\hline & \multirow[t]{2}{*}{REAL A \(\quad\) INTEGER M,N, NEA, NRA,NEM, NA, NM} \\
\hline & \\
\hline \multirow[t]{3}{*}{} & dimensicn alna), Minm) \\
\hline & \multirow[t]{2}{*}{NEA IS NUMBER OF \({ }_{\text {NEA }}=\)} \\
\hline & \\
\hline \multirow[t]{11}{*}{} & NRA IS NUMBER OF ROWS IN A. \\
\hline & NEM NRA \(=1\) INO \((M, 1\), NM \()\) A. \\
\hline & nem is number of hords in m. \\
\hline & NEM \(=(5+\) NRA + NEA \() / 2\) \\
\hline & WRITE (N) NEM \\
\hline & WRITE ( \(A\) ) (M(I), \(1=1\), NEM) \\
\hline & WRITE ( \(N\) ) (A(I), I=1,NEA) \\
\hline & REWIND \({ }^{\text {a }}\) \\
\hline & RETURN \\
\hline & END \\
\hline & ************************************************** \\
\hline & SUBROUTINE I INSPMX ( A, M, N, NA, NM ) \\
\hline \multirow[t]{7}{*}{c} & ***************************** \\
\hline & read sparse matrix from fortran unit n tmass storage \\
\hline & devicei. Store in a, hith column index array in m. \\
\hline & NA,NM ARE DIMENSIONS OF A,M. \\
\hline & \\
\hline & REAL A \({ }_{\text {a }}\), MEM, MEA \\
\hline & INTEGER M, N, NEM, NEA \\
\hline & DIMENSICN A(NA), M(NM) \\
\hline c & \\
\hline & \begin{tabular}{l}
NEM IS NUMBER OF HORDS IN M. READ (N) NEM \\
READ (N) (M(I),I=1,NEM)
\end{tabular} \\
\hline
\end{tabular}
```

C NEA IS Number of ElEmENTS IN A.
NEA = M(2)
READ (N) (A\&I),I=1,NEA)
REHIND ^
RETUR
SUBROUTINE MCSPMX (A,M,AN,MN,R,IC,NA,NM)
*************SPMX(A,M,NN,MN,R,1C,NA,NM)
C
C MULTIPLIES COL IC OF SPARSE MATRIX IN A BY R, STORING
C RESULT IN AN. M,MN CONTAIN COLUMN INDICES OF A,AN.
C NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M,MN.
INTEGER M,MN,IC,NRA,NCA,NEA,I1,I,J,JF,NIRA,J2,J1,K,IT,
* NA,NM,L,NC
DIMENSICN A(NA),M(NM),AN(NA),MN(NM)
REAL A,AN,R
C LP IS UNIT AUMbER OF LINE PRINTER.
C CLEAR MN =6
DO 1 I = 1,NM
MN(I) = 0
C CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT.
IF (M(1).EQ.O) 60 TO 9
C. UNPACK AND TRANSFER CONTROL DATA. NRA,NCA,NEA ARE NUMBERS
C OF ROWS, CCLS, ELEMENTS IN A.
NRA = IND (M, L,NM)
NCA = IND(M,2,NM)
NEA = M(2)
DO2 I = 1,2
C CHECK IC WITHIN RANGE
IF IIC.GT.NCA.OR.IC.LE.O) GO TO 7
C J COUNTS ELEMENTS TO END OF ROW (I-1) OF A.
J = 0
C l CUUNTS ElEmENTS OF NEW MATRIX.
c I COUNTS RON OF A
DO 5 I= 1,NRA
C NIRA IS NUMBER OF ELEMENTS IN ROW I OF A.
C NIRAN IS NUMBER OF ELEMENTS IN ROW OF AN.
NIRAN = NIRA
IF (NIRA.EQ.O) GO TO }
C J2 COUNTS ELEMENTS TO END OF ROW I OF A.
C JI COUNTS ELEMENTS UP TO FIRST ONE IN ROW I OF A.
C PROCESSS ROW I I OF A.
004K=J1,J2
IT (IT_EQ.ND(M,JF\&K,NM)
IF IIT.EQ.IC) GO TO 3
C TRANSFER COLUMNS OTHER THAN IC.
AN(L) = A(K)
II = IND(M,JF+K,NM)
CALL IPK(II,MN,JF+L,NM)
GO TO 4
C MULTIPLY COL IC BY R
3 IF IR.EQ.O.0) NIRAN= NIRA-1
IF (R.EQ.O.O) GO TO 4
AN(L) \# R*A(K)
II = = ND(M,JF+K,NM)
CALL IPK(II,MN,JF+L,NM)
L = L+1
C END OF RONIN
J = J2
CONITNUE
END OF LAST ROW.
IF (R.NE.O.O) GO TO
M(2) = L-1
6 RETURN
C ERROR MESSAGES.
7 WRITE (LP,8)
FORMAT(26H IN MCSPMX IC OUT OF RANGE)
CALL EXIT
10 FORMATI35H IN MCSPMX OUTPUT OVER-WRITES INPUT,
* 34H OR INPUT HAS NO ROWS AND COLUMNS.I
CALL EXIT
END
SUBROUT ************************************
*****)************************************
C
MULTIPLIES ROW IR OF SPARSE MATRIX A BY R, STORING
C RESULT IN AR. M,MN CONTAIN COLUMN INDICES OF A,AN.
C NA IS DIMENSION OF A,AN. NM ISIDIMENSION OF M,MN.
REAL A,AN,R
INTEGER M;MN,IR,NM,NRA,NEA,II,I,
* J,NIRA,J2,J1,K,NA,L,JF
DIMENSICN A(NA),M(NM),AN(NA),MN(NM)
C LP IS UNIT AUMBER OF LINE PRINTER.
C CIEAPMN =6
C CLEAR MN. _ = 1,NM
OON\=
C CHEGK THAT CUTPUT DOES NOT OVER-WRITE INPUT.
IF (MII).EQ.O) GO TO }

```
```

C UNPACK AND IRANSFER CONTROL DATA.
NRA =INO(M,I,NM)
NEA = M(2)
OO2 = = 1,2
2 MN(I) = M(I)
C CHECK THAT IR IS HITHIN RANGE.
IF {IR.GT.NRA.OR.IR.LT.1) GO TO 11'
c L COUNTS ELEMENTS OF NEW MATRIX.
L
C I COUNTS ROLS OF A.
DO 7 1 = 1,NRA.
C NIRA IS NUMBER IN ROW I OF A.
NIRA = IND{M,4+I,NM)
CALL IPK(NIRA,MN,4+1,NM)
C J2 COUNTS ELEMENTS TO END OF ROW I OF A.
C JI COUNTS ELEMENTS IO FIRST ONE IN ROW I OF A
Jl = J+1
IF (I.EQ.IR)GO TO 4
DO 3 K = J1,J2
II = IND(M,JF +K,NM)
CALL IPK(II,MN% JF+L,NM)
MAN(L)}=\mp@code{A(K)
GO TO 6 L+1
MULTIPLY ROW IR BY R.
4 OO 5 K = J1,J2
IF IR.EQ.O.O) GO TO 5
Il = IND(M,JF+K,NM)
CALL IPK(II,MN*JF+L,NM)
AN(L)=R*A(K)
5 CONTINUE
C ENO OF ROW 1. =
C ENO OF ROW I
Z CND OF LAST ROW.
IF (R.NE.O.O) GO TO }
M(2) = L-1
CALL IPK(O,MN,4+IR,NM)
8 RETURN
c error messages.
9 WRITE (LP,HIO) MRSPMX DUTPUT OVER-WRITES INPUT,
O FORMMT(36H IN MRSPMX OUTPUT OVER-WRITES
CALL EXIT
11 WRITE (LP,12)
12 FORMAT(26H IN MRSPMX IR OUT OF RANGE)
CALL EXIT
C ***
SUBROUTINE MUSPMX(A,MA,B,MB,C,MC,NA,NM)
**
C MULTIPLY TWC SPARSE MATRICES.
C B MUST BE STORED BY COLUMNS, I.E. HE FORM C =
A*(B TRANSPCSED).
A,B,C CONTAIN FIRST,SECOND AND PRODUCT MATRICES RESPECT-
IVELY.
C NA,MB,MC CONTAIN COLUMN INDICES OF FIRST SECOND AND
C PRODUCT MATRICES RESPECTIVELY. IS DIMENSION OF MA,MB,MC.
REAL A,B,C,S
INTEGER MA,MB,MC,NRA,NCA,NRB,NCB,LC,KA,KAF,KBF,KB,KAL,
* KBI,JB,JAM,JBM,JI,J2,LCM,NEC,K,IT,I,J,NA,NM,LP
C LP IS UNIT NUMBER OF LINE PRINTER.
IS UNIT NUMB
c clear m
DO 1 1 = 1,NM
1 MC(1) =0,
C CHECK THAT C DOES NOT OVER-WRITE A OR B.
C CHECK THAT C DOES NOT OVER-WRITE A OR B.
C UNPACK CONTROL INFORMATION. NRA IS NUMBER OF RDWS IN A.
C UNPACK CONTROL INFORMATION,
C NCA IS NUMBER OF COLS IN A.
C NCA IS NUMBER OF COLS IN A.
C NCB,NCB ARE NUMBER OF ROWS AND COLUMNS IN B.
NRB = IND(MB,1,NM)
NRB = IND(MB,1,NM)
C TEST FOR CONPATIBILITY.
IF (NCA.EQ.NRB) GO TO }
WRITE (LP,2)
2 FRITE (LLP,2)
CALL EXIT
C LC IS NUMBER OF ELEMENTS IN C.
3 LC =1
C KAF,KBF ARE NUMBERS OF CONTROL DATA IN MA,MB.
KAF
C KA,KB ARE NLMBERS OF ELEMENTS IN FIRST I ROWS OF A,B.
C NEC IS NUMBER OF ELEMENTS IN C.
NEC = 0
DO 15 I = 1,NRA
KB = 0
C NIRA IS NUMEER INROW I OF A.

```
```

C NIRC IS: NUMBER IN ROW I OF C.
NIRC = 0
IF (NIRA.EQ.O) GO TO 15
KA1 = KA+1
KA = KA+NIKA
DO 14 J=1,NCB
C NIRB IS NUMEER IN ROW I OF B.
NIRB = IND(MB;4+J,NM)
IF (NIRB.EQ.O) GO TO 14
KBl = KB+1
C S WILL CONTAIN I,J ELEMENT OF C
c JB COUNTS ELEMENTS IN B.
JB = KB1
OO JA=KAl,KA
SAM = JA+KAF
J1 = IND(MA,JAM,NM)
IF (J1-J2) 8,6,7
6 S IF = S+A(JA)*B(JB)
JB = J8+1
GO TC 8
IF (JB.EQ.KB) GO TO 9
JB TC = JB+1
GONTINUS
C IF ELEMENT IERO DO NOT STORE.
IF (S.EQ-O.0) GO TO 14
F ILC.LE.NA) GO TO 11
FORMATIITHOSILE OF PRODUCT
25HMATRIX EXCEEDED IN MUSPMX
c store element and index in c,mC.
11 C(LC) = S
F (LCM.LE.2*NM) GO TO 13
WRITE (LP,12)
2 FORMAT(4OH SILE OF INOEX MATRIX EXCEEDED IN MUSPMXI
CALL EXIT
3 CALL IPKIJ,MC,LCM,NM
LC= LC+1
CONTINLE = NIRC+1
4 CONTINLE
CALL IFKINIRC,MC,4+I,NMI
15 CONTINUE
C STORE CONTRCL DATA IN MC.
ALL IPK(NRA,MC,1,NM
CALL IPK(NCB,MC,2,NM)
M(2) = NEC
RETURN
16 WRITE ILP,I
7 FORMATI3GH IN MUSPMX PRODUGT OVER-WRITES INPUT,
* 34H OR INPUT HAS NO ROWS AND COLUMNS.)
ENO
C***
SUBROUTINE MVSPMX(A,M,AN,MN,NA,NM)

MOVE SPARSE MATRIX IN A TO AN.
M,MN CONTAIN COLUMN INDICES FOR A,AN.
C NA IS DIMENSIION OF A,AN. NM IS DIMENSION OF M,MN.
REAL A,AN
NTEGER M,MN,NEA,I,NRA,N,NA,NM
DIMENSICN A(NA),M(NM),AN(NA),MN(NM)
C NEA IS NUMBER OF ELEMENTS. IN A.
NEA = M(2)
MOVE AO- I 1 = 1,NEA
1 AN(I) = A(I)
G NRA IS NUMBER OF ROWS IN A.
NRA = INO(M,I,NM)
CN IS NUMBER OF WORDS IN M.
\& move M.
DO 2 1 = 1,N
2 MN(I) = M(I)
RETURN
END
C *************************************
SUBROUTINE PERCOL (A,M,AP,MP,IP,AT,MT,NA,NM,NP)
C PERMUTE COLGMNS OF A SPARSE MATRIX STORED IN A.
C M CONTAINS COLUMN INDICES OF A.
C AP.MP WILL CONTAIN ELEMENTS ANO COLUMN INDICES OF RESULT.
C COLUMN IPGII.
C AT,MT WILL CONTAIN ROW OF A,M.
C NA IS DIMENSION OF A,AP. NM IS DIMENSION OF M,MP.
C NP IS DIMENSION OF AT,MT,IP.
REAL A,AP,AT,A1
INTEGER M,MP,IP,NR,NC,I,II,NIR,K,
L,N,J,J1,LJ,N1,IFL,M1,NA,NM,NP,LP
DIMENSICN A(NA),M(NMI,AP(NA),
DIMENSICN A(NA),M(NM),AP(NA),
C
C LP IS UNIT NUMBER OF LINE PRINTER.

```
        DO1 \(1=1 . N M\)
C CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT.
        IF (H(1).EQ.O) GO TO 15
C UNPACK CONTROL INFORMATION.
        \(\begin{array}{ll}\text { NR } & =1 N D(M, 1, N M) \\ \text { NC } & = \\ & =1 N D(M)\end{array}\)
    NC
\(=\) CHECK THAT
\(=1\) IND \((K)\) IS WITHIN RANGE
        OK THAT IP(K)
OK
        IF (IP(K).LE.O.OR.IP(K).GT.NC) iGO TO 13
    2 CONTINUE
C TRANSFER COATROL DATA TO MP.
        \(\begin{array}{ll}12 & =4+N R \\ 0031 & =1,12\end{array}\)
        \(\begin{aligned} 0031 & =1,12 \\ & =1 N^{3}(M, I, N M)\end{aligned}\)
    3 CALL IPK \(=\) IND \((M, M, I, N M)\)
c l counts elements already permuted.
c I IS ROW COLNTER
    DO \(121=1\).
        \(N=I N D(M, 4+1, N M)\)
        IF (N.EQ.O) GO TO 12
C Store row i in at with column indices in mt.
        00 \(4 \mathrm{~J}=1, \mathrm{~N}\)
        \(J 1=4+N R+L+J\)
        \(\begin{array}{ll}K & =I N D(M, J L, N M)\end{array}\)
        \(M T(J)=I P(K)\)
    \(4 \begin{aligned} \text { LJ } & =L+J \\ \text { AT(J) } & =A(L J)\end{aligned}\)
        IF (N.EQ. 1 ) GO TO 10
C IFL WILL REMAIN O WHEN SORTING OF ROW I COMPLETE.
C SORT ELEMENTS OF ROW I IN ORDER OF INCREASING COLUMN INOEX
        \(009 J=1, N 1\)
C ERROR MESSAGE.
    6 WRITE (LP,7)
    7 FORMAT(26H IN PERCOL 2 INDICES EQUAL)
    8 CALL EXIT \(=M(J)\)
        MT(J) \(=M r(J+1)\)
        \(M T(J+1)=M 1\)
        Al \(=A T(J)\)
        AT(J) \(=A T(J+1)\)
        \(A T(J+1)=A 1\)
        \(\xrightarrow[\text { CONTINLE }]{\text { IFL }}=\)
    9 CONTINLE
        IF IIFL.EQ. 11 GO TO 5
    TKANSFER ROL 1.
    \(100011 \mathrm{~J}=1, \mathrm{~N}\)
        \(\begin{aligned} \text { LJ } & =L+J \\ A P(L J) & =A T(J)\end{aligned}\)
        \(\begin{array}{ll}J 1 & =L J+4+N R\end{array}\)
    11 CALL \(1 P K(K, M P, J 1, N M)\)
        \(L\) RETURN \(=L+N\)
    ERRDR MESSAGES.
    13 WRITE (LP,14) 14 FORMAT(43H IN PERCOL PERM CONTAINS INDEX OUT OF RANGE)
        CALL EXIT
    15 WRITE (LP,16) PERCOL OUTPUT OVER-WRITES INPUT,
        * 34h or input has no rows and cclumns.)
        CALL EXIT
        END
C **********************************************************
        SURROUTINE PERROW(A, M, AP, MP, IP, NiA, NM, NP)
C PERMUTE ROWS OF A SPARSE MATRIX STORED IN A.
PERMUTE ROWS OF A SPARSE MATRIX STORED IN A.
M CONTAINS COLUMN INOICES OF INPUT MATRIX A.
AP CONTAINS ELEMENTS OF OUTPUT MATRIX.
MP CONTAINS COLUMN INDICES OF DUTPUI MATRIX.
IP CONTAINS PERMUTAIION--1.E. OLD RCIW IP(I) BECOMES NEW
\(C\) IP CONTAINS PERMUTAIION--1.E. OLD RCIW IPIII BECOMES
\(C\) ROW I.
\(C\) NA IS DIMENSION OF A.AP. NM IS DIMENSION OF M.MP.
C NP IS DIMENSIINN OF IP.
        REAL A,AP
        INTEGER M,MP,IP,NR,NC,I,I1,NIR,I2,
        K,LA,IM,N1,J,JI, I3,N2,NM,NA,NP,L.P
        DIMENSICN A(NA), M(NM),AP(NA), MP(NM),IP(NP)
\(C\) LP IS UNIT NUMBER OF LINE PRINTER.
CLEAR MP \(=6\)
C CLEARMP. \(=6\)
        DO \(11=1, N \mathrm{NM}\)
    1
MP(II
O
CHECK THAT
0
C CHECK THAT CUTPUT DOES NOT OVER-WRIIE INPUT.
            IF (MOLI).EQ.O) GO TO 10
C UNPACK CONTROL INFORMATION.
            \(\begin{aligned} N R & =\operatorname{IND}(M, 1, N M) \\ N C & =I N O(M, 2, N M)\end{aligned}\)
C RECORD Numbers of rows columns and elements in mp.
        DO \(21=1,2\)
\(M P(I)=M(I)\)
LA,LM COUNT ELEMENTS IN AP.MP.
        \(\begin{array}{ll}\text { LA } & =1 \\ L M & =5+N R\end{array}\)
C PERMUTE ROWS.
    \(\begin{aligned} & \text { OO } \\ & \text { N1 } \quad I=1, ~ N R ~\end{aligned}\)
```

C J IS OLD NUNBER OF NEW ROW I.
J = IP(I)
CALL IPK(K,MP,4+J,NM)
IF (J.GT.NR.OR.J.LE.O) GO TO 3
IF (J.GT.NR.OR.J.LE.O) GO TO
C J OUT OF RANGE--GIVE ERROR MESSAGE
4 WRITE {LP,4)I PERROW PERM CONTAINS INDEX OUT OF
* ITHRANGE IN POSITION,I3)
CALL EXIT
C PICK OUT START AND END OF ROW J
5 IF (J.EQ.1) GO TO }
J1
6 NI =NI+INO(M,4+13,NM
C NIRJ IS NUMBER IN ROW J OF A.
NIRJ = IND(M,4*J,NM)
IF INIRJ.EQ.O) GO TO 9
N2 = NI+NIRJ
C TRANSFER ROW J OF A,M TO ROW I OF AP,MP
OO 8 13= N1,N2
K = IND(M,4+NR+I3,NM)
CALL IPK(K,MP,LM,NM)
LA =LA+1
C END OF LOOP ON I(ROW NUMBER).
CONTINUE
C ERROR MESSAGE
10 WRITE {LP,11)
I1 FORMATI35H IN PERROW OUTPUT DVER-WRITES |NPUT,
* 34H OR INPUT HAS NO ROWS AND COLUMNS.)
CALL EXIT
ENO
C**
C SUBROUTINE RDSPMX(A,M,NA,NM)
C READS A SPARSE MATRIX FROM CAROS INTO ARRAY A,STORING
COLUMN INDICES ANO CONTROL DATA IN M
C NA IS OIMENSION OF A, NM IS DIMENSION OF M.
REAL A
INTEGER NR,NC,NE,JE,JR,JF,K,MIN,M.
* I,NIR,J.JI,JZ,LI,L2,NA,NM,LIMF,IN,LP
DIMENSICN A(NA),M(NM),A(N(4),MIN(4)
C IN IS UNIT number of Card reader.
C LP IS UNIT AUMBER OF LINE PRINTER.
LP = 6
C NR,NC,NE ARE NUMBERS OF ROWS,COLS,AND ELEMENTS IN A.
READ (IN,l) NR,NC,NE
C JE,JR COUNT NUMBER OF ELEMENTS,ROWS.
JE =1
DO 2 1 = 1,NM
2)M(1)}=
IERR = 0
IS NUMBER OF CONTROL DATA.
C K COUNTS ELEMENTS WITHIN ROW.
C AIN,MIN ARE ELEMENTS ANO INDICES AS REAC FROM CARD.
3 READ (IN,4) (AIN(I),MIN(I),I=1,4)
FFORMAT(4(E15.8,15))
OO 10 I = 1,4
C. CHECK FOR RCW-SENTINEL
TF (MIN(I).GE.90000) GO TO
FF (MIN(I).LE.NC) GO TO 6
WRITE (LP,5) MINIII,JE
FORMAT(15H COLUMN INOEX (,15,2OH)GREATER THAN NUMBER,
* 24H OF COL IN ELEMENT NUM. .15)
IERR =1
C STORE ELEMEAT
6 IF (JE.LE.NA.AND.(JE+JF).LE.2*NM) GO TO 8
IF ILIMF.EQ.1) GO TO 10
LIMF = 1
FGORMAT(2IHOARRAY FULL (N RDSPMX)
GGRMAT10
8 A(JE) = AIN(I)
CALL IPK(MIN(I),M,JE+JF,NM)
JE = JE+1
GO T0 = K+
C CHECK FOR END-DF-MATRIX SENTINEL.
9 IF (MINII).EQ.99999) GO TO II
C RECORD NUMBER OF ELEMENTS IN ROW JR DF A.
CALL IPK (K,M+4+JR,NM)

```

```

 10 CONTINUE
 C KEAD NEW CARD.
GOTO 3
C at END OF MATRIX CHECK Number of rows is as stated.
11 JR = JR-1
IF (JR.EQ.NR) GO TO 13
IF (JR.EQ.NR) GOTO

```
    12 FORMAT(17H NUMBER OF ROWS \(1,[5,17 \mathrm{H})\) DOES NOT EQUAL
        * 15HSTATED NUMBER (.I5,1HI)
        IERR =
C CHECK NUMBER OF ELEMENTS
    \(13 \mathrm{JE}=\mathrm{JE}\)-1

    14 FORMAT 121 H NUMBER OF ELEMENTS \(1,15,11 \mathrm{H}\) ) DOES NOT
        * 21HEQUAL STATEO NUMBER \(1,15,1 \mathrm{HI})\)
C CHECK ASCENCING ORDER OF INDICES.
    \(15 \mathrm{~J}=\mathrm{JF}\)
    DO \(19 \mathrm{I}=\mathrm{JF}\), JR
C NIR IS NUMBER IN ROW I DF A.
            NIR \(=\) IND (M,4+I,NM)
            \(\begin{aligned} \text { NIR } & =\text { INDIM } \\ J 2 & =\text { NIR } \mathrm{J}\end{aligned}\)
            \(J=J+2\)
            IF (NIR.LE.1) GO TO 18
            DO \(17 \mathrm{~K}=\mathrm{J}, \mathrm{J} 2\)
            \(11=I N D(M, K-1, N M)\)
            \(=I N D\left(M_{0} K, N M\right)\)
(F (LI.LT.L2) GO TO 17
                F (LI.LT.L2) GO TO 17
            KI \(=K-J I+2\)
    16 FORMAT 9 ELEMENT ,15,8H IN ROW, 15,11H HAS WRONG
        I2HCCLUMN (NUEX)
    17 CONTINLE \(=1\)
    17 J JIN =
19 CONTINUE
d data.
        CALL IPK (NR, M,I,NM)
        CALL IPK \((N R, M, 1, N M)\)
CALL \(1 P K(N C, M, 2, N M)\)
        \(M(2)=N E\)
        IF (IERR.GE.I) CALL EXIT
C
        RETURN
        END
        ********************************
        SUBROUTINE RVSPMX(A,M,IR,V,N,NA,NM)
    EXTRACTS ROW IR OF SPARSE MATRIX IN A,STORING RESULT IN
C EXTRACTS ROM IR VETOR IN EXTENDED FORM. I.E. INCLUDING ZERO ELEMENTS
C MECORTAINS COLUMN INDICES OF A.
C \(N\), NA, NM ARE DIMENSIONS OF OF \(V, A, M\).
        REAL \(A, V\)
        INTEGER M,IR,N,NRA,I,NIRS,IRI,JM,K,J,NIRA,NA,NM,LP
        DIMENSICN AINA), M(NM),V(N)
C LP IS UNIT NUMBER OF LINE PRINTER.
C NRA IS NUMBER OF ROWS IN A.
        NRA \(=(N D(M, 1, N M)\)
C N IS NUMBER OF COLS IN A (EQUALS NUMBER OF ELEMENTS IN V).
C \(\quad=\operatorname{IND}(M, 2, N M)\)
c CLEAR
    \(\begin{aligned} \mathrm{DO} 11 & =1, N \\ \mathrm{~V}(1) & =0.0\end{aligned}\)
C NIRS WILL BE NUMBER OF ELEMENTS IN KOWS PRIOR TO IR.
        NIRS \(=0\)
        IF (IR-1) 2,6,4
    3 WRFTE (LP,3)
        FORMATI34H IN RVSPMX ROW NUMBER OUT OF RANGE
        CALL EXIT
    4 IRI \(=I R-1\)
        \(\begin{aligned} \text { DO } 5 \text { I } & =1, \text { IRI } \\ \text { NIRS } & =\text { NIRS }+ \text { IND }(M, 4+I, N M)\end{aligned}\)
    5 NIRS \(=\) NIRS+INDIM,
6 JM
    6 JM \(=4+N R A+N\) NRS
NIRA IS NUMEER IN ROW IR.
        NIRA \(=\) IND (M,4+IR, NM)
        NIRA \(=\) IND (M, \(4+\) IR, NM
IF (NIRA.LE.OI) GO TG 8
C TRANSFER ELEMENTS OF ROW IR.
            \(\begin{aligned} \text { DO } 71 & =1, N \text { IRA } \\ K & \\ J & \\ & =\text { NIRS }\left(M_{p} J M+I, N M\right)\end{aligned}\)
    7 \(\begin{aligned} J & =N(K) \\ V(K) & =A(J)\end{aligned}\)
    8 RETURN
        END
        END
        SU********************************
SUBROUT INE SMSPMX \((A, M, A N, M N, S, N A, N M)\)
    MULTIPLY SPARSE MATRIX IN A BY SCALAR S, STORING RESULT IN
    MUL
    AN.
c momn contarn column indices for aran.
C NA IS DIMENSIION OF A.AN. NM IS DIMENSION OF M.MN
        REAL \(A, A N, S\)
        INTEGER M,MN,NEA,I, NRA,N,NA,NM,LP
        DIMENSICN A(NA), M(NM), AN(NA), MN(NM)
\(C\)
\(C\)
\(L P\)
IS UNIT NUMBE:
I LINE PRINTER.
C CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT.
            \(M N(1)=0\)
            IF (M(1).EQ.O) GO TO 5
            IF (M(1).EQ.O) GO TO 5
F (S.EG.O.0) GO TO 3
C NEA IF IS.EG.O.OI GOMBER OF ELEMENTS IN A.
NULA \(=\) M(2)
C MULTIPLY A BY \(S\).
            \(\begin{aligned} & \\ & \text { DO } 1 \text { I }=1 \text {, NEA } \\ & \text { ANII }=A(I) * S\end{aligned}\)
C NRA IS NUMBER OF ROWS IN A.

```

C MOVE M*
DO 2 1 = 1,N
2 MN(I) = M(II
RETURN
3M(I) = M(L)
NRA! = IND(M, 1;NM)
OO 4 I= =2,KRA)/2
4 MN(I) = 2,K
RETURN
c ERROR MESSAGE.
5 WRITE ILP,6
6 FORMATI35H IN SMSPMX OUTPUT OVER-HRITES INPUT,
* 34H OR INPUT HAS NO ROWS ANO COLUMNS.I
CALL EXIT
C **
SUBROUTINE TRSPMX(A,M,AT,MT,NA,NM,IP,NPI)

C TRANSPOSE A SPARSE MATRIX IN A, STORING THE RESULT IN AT.
M,MT CONTAIN COLUMN INDICES OF A,AT
S DIMENSION OF M,MT
ELEMENTS IN COLUMN I OF A, ALSO
C IPIII WILL RE POINTER TO FIRST ELEMENT IN ROW I OF AT.
C NP IS DIMENSION OF IP.
INTEGER I,IC,IFC,IFR,IT,JI,IP
REAL A,AT
DIMENSICN A(NA),M(NM),AT(NA),MT(NM),IP(NP)
G LP IS UNIT NUMBER OF LINE PRINTER.
C CLEAR =6
DO 1 1 = 1,NM
1 MT(I) = 0
C CHECK that at dOES NOT OVER-WRITE A.
IF (M(1).EQ.O) GO TO 8
C UNPACK CONTROL INFORMATION. NR,NC,NE ARE NUMBERS OF ROWS
C COLUMNS ANC ELEMENTS INA.
NR = IND(M,I,NM)
NE = MNO\
C CHECK FOR PCSSIblE OVERFLOW Of MT
L = +NC+NE
NUMBER OF ROWS (NCIO 10 UMNS(NR) AND ELEMENTS OF AT
CPACK NUMBER OF ROWS (NC).
CALL IPKINC,MT,I,NM
MT(2)=M(2)
C IFR,IFC ARE NUMBER OF CONTROL DATA IN A,AT
IFR = 4+NR
C CLEAR IP. (DO 2 = 1,NC
2 1P(I) = = 0
c. COUNT NUMBER OF ELEMENTS IN EAGH COLUMN OF AIROW OF ATI.
DO 31=1,NE
3 IP(K)}=1ND(M,IFR+I,NM
C PACK NUMBERS OF ELEMENTS IN ROWS OF AT.
DO 4 J=1,NC
CALL IPK(K,MT,4+J,NM)
SET UP POINIER TO FIRST ELEMENT IN ROH I OF AT
NICAI = IP(1)
MICAL = IPI
OO 5 = 2,NC
NICA = IP(I)
IP(I) = IP(I-I)+NICAI
5 NICAL = NICA
PROCESS ROWS OF A. JI IS POSITION OF FIRST ELEMENT OF
CURRENT ROW OF A
I COUNTS ROLSS OF A
DO 7 I = 1,NR
C NIRA IS NUMEER OF ELEMENTS IN CURRENT ROW OF A
NIRA = IND(M,4+I,NM)
IF (NIRA.EO.O) GO TO }
DO 6 = JI+NIRA-
C K IS COLUMN NUMBER OF J*TH ELEMENI IN A, I.F..ROW NUMBER
C IN AT.
K = |NO(M,IFR+J,NM)
C IT IS POSITION OF CURRENT ELEMENT IN AT.
IT = IP(K)
CALL IPKII,MT,IT+IFC,NMM
7 IP(K)=1P(K)+1
RETURN}=J2+
C ERROR MESSAGES.
8 WRITE (LP,9)
9 FORMATI27H IN TRSPMX AT CVER-HRITES A,
* 34H OR INPUT HAS NC ROWS AND COLUMNS.I
CALL EXIT
10 WRITE (LP,11)
11 FORMAT(27H IN TKSPMX MT WILL OVERFLOW)
CALL EXIT
END
C**
SUBROUTINE WRSPMX(A,M+TIT,NA,NM)
C WRITE SPARSE MATRIXA*
C M CONTAINS COLUMN INDICES OF A.

```
```

C TIT CONTAINS DESCRIPTION OF A
C NA, NM ARE DIMENSIONS OF A,M.
REAL A, AOUT,TIT
NTEGER $M, P, I=L$, NRA, JF,NINA,J,J2,K2,K,KJ,MOUT,NA,NM,LP
DIMENSICN A(NA), M(NM), TIT(1O), AOUT(5),MOUT(5)
C LP IS UNIT NUMBER OF LINE PRINTER.
LP $=6$
c P IS PAGE CCUNTER.
C HEADING AND DESCRIPTION.
WRITE (LP, I) (TITII),I=1,10),P
1 FORMATI $23 H I P R I N T O U T$ OF SPARSE MAT,
* 4HRIX.,13X,10A4,10X,5HPAGE, 15/1)
C L IS LINE CCUNTER.
C NRA IS NUMBER ${ }^{2}$ OF ROWS IN A.
$\begin{aligned} & \text { IS NUMBER OF ROHS IN } \\ & \text { NRA }=1 N D(M+1, N M) \\ & \text { JF }=4+N R A\end{aligned}$
C NIRS IS NUMBER IN RUWS ALREADY WRITTEN.
C NIRS $=0$
C I IS ROW COLNTER.
DO 8 I =1,NRA
C NIRA IS NUMEER IN ROW OF A.
NIRA $=1$ NO $\left(H_{2} 4+1\right.$, NM $)$
C 3 COUNTS (NIRA.EQ.O) GO TO 8
JNTS ELEMENTS WRITTEN
at end of page write new heading on next page, updating
C PAGE NUMBER
$2 P=P+1$
WRITE (LP, 1) (TIT(K), K=1,10), P
$L=2$
3 WRITE (LP,4) I
4. FORMATI 12 HOROW NUMBER . $15 / 1$
* $1 x, 5(4 X, 7 H E L E M E N T$. $3 X, 3 H C O L, 5 x))$

```

```

C EXTRACT NEXT LINE OF OUTPUT
$5 \mathrm{JZ}=\mathrm{MINO}(N I R A, J+5)$
$5 \mathrm{JZ}=$ MINO(NIRA, $J+5$)
$006 \mathrm{k}=\mathrm{J2-J}$
$\begin{array}{ll}006 & =1, K 2 \\ K J & =1 \\ K+J+N 1 R S\end{array}$
MOUT (K) $=I N D\left(M_{1} K J+J F, N M\right)$
MOUT K) $=$ ND (M, KJ+JF,NM)
AOUT $(K)=A(K J)$
WRITE (LP,7) (AOUT(K), MOUT(K),K=1,K2)
FORHAT(IX.5(E15.7.15.4X))
$=L+1$
$=\mathrm{J}+5$
(F (J.GE.NIRA) GO TO 8
IF (L-55) $5.2,2$
- NIRS = NIRS+NIRA
C LAST ROW WRITTEN.
RETURN
END

```

Remark on Algorithm 408 [F4]
A Sparse Matrix Package (Part I) [J.M. McNamee, Comm. ACM 14 (Apr. 1971), 265-273]

Arthur H.J. Sale [Recd. 6 Aug. 1971]
Basser Compuking Department, University of Sydney, Sydney, Australia

Key Words and Phrases: matrix, sparse matrix, matrix manipulation, Fortran standards

CR Categories: 514
There are a number of minor flaws in the presentation of Algorithm 408. The first concerns the liberal use of a subroutine EXIT not described in the Algorithm, nor to be found in the Fortran standard as an intrinsic procedure. Probably the use of this particular routine is self-evident (especially to IBM users), but it is difficult to justify using it when the STOP statement is available. The safest way to correct this flaw is to write a short program that scans the algorithm text replacing occurrences of CALL EXIT by STOP; by my count there are 25 of these. The alternative, of supplying a subroutine named EXIT has a trap: a subprogram
must contain a RETURN (see [1, Sec. 8.4.1.1(5) of the standard]), so the routine must be (a) in nonstandard Fortran or machine code, or (b) something like:

\section*{SUBROUTINE EXIT}
\(J=0\)
IF (J.EQ.O) STOP
RETURN
END
The other flaw occurs in the very last line of the algorithm: an END statement delimits a program (see [1, Sec. 3.2.2]), so that the comment following it must belong to another program segment (which does not have an END and is in error). The cure is simple: remove the comment.

There is also a minor criticism one might make of the efficiency of the subprograms \(I N D\) and \(I P K\), which are frequently called. In practice the advantage of using available Fortran versions will often outweigh the gain in speed possible by lapsing into assembly language, and therefore the following versions are offered as probably compiling to a more efficient code. They utilize the intrinsic function MOD (often compiled in-line) and remove needless computations and assignments.
```

FUNCTION IND(M, I, NM)
DIMENSION M(NM)
J=(I+1)/2
IF (MOD(I, 2))1, 1, 2
1IND = MOD(M(J),10000)
RETURN
2IND = M(J)/10000
RETURN
END
SUBROUTINE IPK(K,M,I, NM)
DIMENSION M(NM)
J=(I+1)/2
IF (MOD(I, 2)) 1, 1, 2
1M(J)=M(J)+K
RETURN
2M(J)=K*10000 + M(J)
RETURN
END

```

\section*{References}
1. Fortran vs Basic Fortran. Comm. ACM 7 (Oct. 1964), 590-625.

\section*{Remark on Algorithm 408 [F4]}

A Sparse Matrix Package (Part I)
[John Michael McNamee, Comm. ACM 14 (Apr. 1971), 265-273]
E.E. Lawrence [Recd. 1 February 1972, 12 March 1973] Central Application Laboratory, Mullard Limited, New Road, Mitcham, Surrey CR4 4XY, England

The subroutines constituting Algorithm 408 were, with the exception of MVSPMX and WRSPMX, tested on an IBM \(360 / 65\) using CALL \(/ 360-0\) S. The author's alteration (iii) was introduced, i.e. declaration of the \(M\)-array to be half length. Other changes were introduced in order: (a) to make the algorithm more conversational in a time shared environment; and (b) to improve the speed of the sorting procedure in PERCOL.

The following deficiencies in the algorithm were noted 1. The dimensional parameters of \(\operatorname{ACSPMX}, \operatorname{ADSPMX}\), and MUSPMX are incomplete. As an illustration of this consider the two matrices
\(A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]\)
\(B=\left[\begin{array}{llll}0 & 0 & 0 & 4 \\ 0 & 0 & 3 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\)
each of which has four nonzero elements.
Then the sum matrix has eight such elements, and in general, for two matrices with \(n_{1}\) and \(n_{2}\) nonzero elements, the number of nonzero elements, \(n_{3}\), in the sum matrix is in the range \(0 \leq n_{3} \leq\) \(n_{1}+n_{2}\).

However in \(A D S P M X\) the condition used is \(n_{1}=n_{2}=n_{3}\).
Similar arguments apply to \(A C S P M X\) and \(M U S P M X\).
To correct this requires extensions to the parameter lists and dimension statements, and also it changes the conditional statements within the subroutines concerned.

This shows up with the CALL/ 360 -0S system since the compiler performs subscript checking. It would not be evident on most compilers including the IBM Fortran IV G compiler. It is, however, bad practice to rely on default effects of compilers.
2. There are three, probably copying, errors in :MUSPMX (page 270).
(i) Line 33 should be: IF(NCA.EQ.NCB) GO TO 3
(ii) Line 55 should be: DO \(14 \mathrm{~J}=1\), NRB
(iii) Line 102 should be: CALL IPK(NRB,MC,2,NM)

REMARK ON ALGORITHM 408
A Sparse Matrix Package (Part I) [F4]
[J.M. McNamee, Comm. ACM 14, 4 (1971), 265-273]
Paolo Sipala [Recd 10 October 1976]
Istituto di Elettrotecnica, University of Trieste, Trieste, Italy
The subroutines RDSPMX, ADSPMX, MUSPMX, TRSPMX, MVSPMX, and WRSPMX of ACM Algorithm 408 were tested after conversion to Basic Fortran,
and the following corrections appear to be needed:
(1) In ADSPMX, the line after statement number 9 should be changed to IF (T.EQ.0.0) GO TO 911
and before statement number 11 the following line should be inserted:
\(911 \quad \mathrm{JB}=\mathrm{JB}+1\)
(2) In TRSPMX, after statement number 5 the following line should be inserted:
\[
\mathrm{J} 2=0
\]

The error in ADSPMX showed up when adding two matrices containing elements with opposite values in corresponding positions, which should cancel; the error in TRSPMX was noted when transposing a matrix having a null first line.

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Pages 295.
REMARK ON ALGORITHM 408
A Sparse Matrix Package (Part 1) [F4]
[J.M. McNamee, Comm. ACM 14, 4 (April 1971), 265-273]
Fred Gustavson [Recd 25 January 1978]
T.J. Watson Research Center, IBM, Yorktown Heights, NY 10598

The subroutine TRSPMX of ACM Algorithm 408 was compared with Algorithm HALFP [1] and the following corrections appear to be needed:
(1) Before statement DO \(5 \ldots\), insert the line

IF (NC.LE.1) GO TO 100
(2) After label 5 insert the line
\(100 \mathrm{~J} 2=0\)
The need for correction (1) is required when the matrix is a column vector ( \(\mathrm{NC}=1\) ). The need for correction (2) was noted in [2] as TRSPMX fails when transposing a matrix with an empty first row.

\section*{REFERENCES}
1. Gustavson, F.G. Two fast algorithms for sparse matrices: Multiplication and permuted transposition. ACM Trans. Math. Software 4, 3 (Sept. 1978), 250-269.
2. Sipala, P., Remark on Algorithm 408. ACM Trans. Math. Software 3, 3 (Sept. 1977), 308.
and the following corrections appear to be needed:
(1) In ADSPMX, the line after statement number 9 should be changed to IF (T.EQ.0.0) GO TO 911
and before statement number 11 the following line should be inserted:
\(911 \quad \mathrm{JB}=\mathrm{JB}+1\)
(2) In TRSPMX, after statement number 5 the following line should be inserted:
\(\mathrm{J} 2=0\)
The error in ADSPMX showed up when adding two matrices containing clements with opposite values in corresponding positions, which should cancel; the error in TRSPMX was noted when transposing a matrix having a null first line.

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Pages 295.

\section*{REMARK ON ALGORITHM 408}

A Sparse Matrix Package (Part 1) [F4]
[J.M. McNamee, Comm. ACM 14, 4 (April 1971), 265-273]
Fred Gustavson [Recd 25 January 1978]
T.J. Watson Research Center, IBM, Yorktown Heights, NY 10598

The subroutine TRSPMX of ACM Algorithm 408 was compared with Algorithm HALFP [1] and the following corrections appear to be needed:
(1) Before statement DO \(5 \ldots\), insert the line

IF (NC.LE.1) GO TO 100
(2) After label 5 insert the line
\(100 \mathrm{~J} 2=0\)
The need for correction (1) is required when the matrix is a column vector ( \(\mathrm{NC}=1\) ). The need for correction (2) was noted in [2] as TRSPMX fails when transposing a matrix with an empty first row.

\section*{REFERENCES}
1. Gustavson, F.G. Two fast algorithms for sparse matrices: Multiplication and permuted transposition. ACM Trans. Math. Software 4, 3 (Sept. 1978), 250-269.
2. Sipala, P., Remark on Algorithm 408. ACM Trans. Math. Software 3, 3 (Sept. 1977), 303.

ACM Transactions on Mathematical Software, Vol. 6, No. 3, September 1980, Pages 456-457.
REMARK ON ALGORITHM 408
A Sparse Matrix Package (Part 1) [F4]
[J.M. McNamee, Commun. ACM 14, 4 (April 1971), 265-273]
U. Harms, H. Kollakowski, and G. Möller [Received 15 May 1978 and 15 August 1978; accepted 12 December 1979]
Regionales Rechenzentrum für Niedersachsen, Technische Universität Hannover, Wunstorfer Straße, D-3000 Hannover, West Germany

When implementing Algorithm 408 on a CDC Cyber 76-12 and a Cyber 73-16, the errors noted by Lawrence [2] are corrected. In ARSPMX the dimensional parameters were incomplete and have been completed. Thus it is possible to add, for example, two sparse matrices having different numbers of nonzero elements.

There is another severe error in ADSPMX, as pointed out by Sipala [3]: when adding two elements whose sum is zero, ADSPMX gives an incorrect result. For example, when
\[
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 3 & 0 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{rrr}
-1 & 0 & 2 \\
-2 & 3 & 0 \\
0 & 1 & 0
\end{array}\right],
\]
then the result of \(A+B\) by ADSPMX is
\[
C=\left[\begin{array}{rrr}
-1 & 0 & 4 \\
-2 & 6 & 0 \\
0 & 2 & 0
\end{array}\right],
\]
not the correct sum.
The necessary changes in ADSPMX are
(1) line 73: IF (T.EQ.0.0) GO TO 30
(2) before line 86: 30 CONTINUE
\[
\mathrm{JB}=\mathrm{JB}+1
\]

Then the zero sum is ignored. For better definition, all elements of \(C\) are set to zero. If all elements of \(C\) are zero, then a message is printed later in the code.

There are some minor changes in some other subroutines; for example, in ARSPMX, MCSPMX, and MRSPMX the variable NEA is set but never used. The same thing happens to the variable NC in PERROW. For this reason NEA and NC are eliminated in the subroutines presented here.

In MCSPMX the statement \(\mathrm{M}(2)=\mathrm{L}-1\) (1 line before statement 6 ) should be changed to \(\mathrm{MN}(2)=\mathrm{L}-1\), and in MRSPMX the statement \(\mathrm{M}(2)=\mathrm{L}-1\) (2 lines before statement 8 ) should be changed to \(\mathrm{MN}(2)=\mathrm{L}-1\).

Moreover, some errors in TRSPMX, pointed out by Sipala [3] and Gustafson [1], have been corrected.

\section*{REFERENCES}
1. Gustafson, F. Remark on Algorithm 408. ACM Trans. Math. Softev. 4, 3 (Sept. 1978), 295.
2. Lawrence, E.E. Remark on Algorithm 408, A sparse matrix package (part I). Commun. ACM 16, 9 (Sept. 1973), 578.
3. Sipala, P. Remark on Algorithm 408, A sparse matrix package (part I). ACM Trans. Math. Softw. 3, 3 (Sept. 1977), 303.

\section*{ALGORITHM}
[Code for Algorithm 408 with all the corrections given here is available from the ACM Algorithms Distribution Service (see inside back cover for order form) or may be found in microfiche form in "Collected Algorithms from ACM."]
\(\operatorname{NAME}(n)\) : indicates a Fortran module with \(n\) records NAME \({ }^{\text {T }}(n)\) : indicates "NAME" is included for testing purposes
Contents: IND(18), IPK(14), ANTIP(39), RDSPMX(121), WRSPMX(62), ANDPMX(152), SUSPMX(148), MVSPMX(24), SMSPMX(52), CVSPMX(30), ERSPMX(29), ECSPMX (28), INSPMX(19), OTSPMX(21), PERCOL(101), PERROW(84), RVSPMX(50), MUSPMX(134), TRSPMX(95), MCSPMX(89), MRSPMX(83), \(\operatorname{TEST}^{\mathrm{T}}(536), \operatorname{CHECK}^{\mathrm{T}}(37), \operatorname{MAIN}^{\mathrm{T}}(56), \operatorname{RANDO}^{\mathrm{T}}(13)\), \(\operatorname{RANDU}^{\mathrm{T}}(8)\), ACSPMX(142), ARSPMX(163)

\title{
ALGORITHM 409 Discrete Chebychev Curve Fit [E2]
}

\author{
H. Schmitt [Recd. 23 June 1970 and 12 Oct 1970] \\ Rechenzentrum der Technischen Hochschule Darmstadt, West Germany
}

\section*{Key Words and Phrases: approximation, polynomial approximation, exchange algorithm, Chebychev approximation, Remez algorithm}

CR Categories: 5.11, 5.13
procedure approx ( \(m, n, k, x, y, e p s h\) ) transients: (maxit, ref) results: (hmax, h, a) exits: (exparameter, exmaxit, exsign); value \(m, n, k\), epsh; integer \(m, n, k\), maxit; real epsh, hmax; array \(x, y, h, a\); integer array ref;
label exparameter, exmaxit, exsign;
comment This procedure computes the best approximation polynomial in the sense of Chebychev of required degree \(m\) to a set of \(n\) distinct points given by their abscissas and ordinates (array \(x, y[1: n])\). The abscissas must be arranged in increasing order \(x[1]<x[2]<\cdots<x[n]\). The desired polynomial is even, odd, or mixed for \(k=2, k=1\), or \(k=0\), respectively. It is expected that \(x[1] \geq 0\) in case of \(k=2\) and \(x[1]>0\) in case of \(k=1\). Leveling according to the exchange method described by Stiefel [1] is done up to a tolerance of abs(epsh). The sign of epsh decides whether ref is expected to supply entry data (cf. parameter \(r e f\) ).
maxit enters an upper limit for the number of exchange steps allowed and returns the number of steps actually performed. The parameter ref is used to carry entry data only if epsh \(<0\). It is an integer array containing the subscripts of the points to be used as initial reference. The lower array bound is 1 , the upper bound (say \(p\) ) is \(m+2\) in the case of mixed ( \(k=0\) ) polynomials, entier \(((m+3) / 2)\) in the case of odd \((k=1)\), and entier \(((m+4) / 2)\) in the case of even \((k=2)\) polynomials. It is expected that \(1 \leq \operatorname{ref}[1]<\operatorname{ref}[2]<\cdots<\operatorname{ref}[p] \leq n\). Unless an initial reference is not explicitly given by means of the array ref and indicated by a value epsh \(<0\), the points lying next to the socalled Chebychev abscissas (with regard to the interval \([x[1]\), \(x[n]])\) are determined to start off the algorithm. As output, this parameter returns the reference belonging to the approximation polynomial.
The output parameters are hmax to return the maximum deviation, an array \(h[1: n]\) to return the approximation errors at all given points, and an array \(a[0: m]\) to carry the polynomial coefficients. The array \(h\) containing the approximation errors is introduced as a formal parameter to allow a drawing of the error function to be made outside the procedure. This provides a means to look at the quality of the computed approximation and is recommended to the user. A totally leveled approximation
polynomial should have an error function with well charac terized extrema of equal height.
Three emergency exits are provided for extraordinary events. exparameter is an exit to be used when entry data are entered incorrectly, exmaxit is used when the best fit is not found within the maximum number of exchange steps allowed. In this case, the parameter ref denotes a new reference which may be used as entry data for a further call of approx. The exit exsign is used when the approximation errors at the points of reference do not alternate in sign. In this case, accuracy of the computer is insufficient to generate an approximation polynomial of the required degree.
Acknowledgment. The author wishes to express his appreciation to Prof. Dr. W. Barth for many valuable discussions on the subject of Chebychev approximation.

\section*{Reference}
1. Stiefel, E. L. Numerical methods of Chebychev approximation. In On Numerical Approximation, R. Langer, (Ed.), U. Wisconsin Press, 1958, pp. 217-232;

\section*{begin}
integer \(i, j, p, q 1, q 2, r ; \quad\) Boolean \(k 0, k 1\);
\(k 0:=k=0 ; \quad k 1:=k=1\);
\(q 1:=\) if \(k 1\) then 1 else 0 ;
\(q 2:=\) if \(k 0\) then 1 else 2 ;
for \(i:=0\) step 1 until \(m\) do \(a[i]:=0\);
if \(\neg k 0\) then \(m:=\) entier \(((m-q 1) \times 0.5+0.1)\);
\(p:=m+2\);
comment Check for properly given parameters;
if \(n<p \vee m<0 \vee \neg k 0 \wedge(\neg k 1 \vee x[1] \leq 0)\)
\(\wedge(k \neq 2 \vee x[1]<0)\) then go to exparameter;
for \(i:=2\) step 1 until \(n\) do
if \(x[i] \leqq x[i-1]\) then go to exparameter;
begin
procedure exchange ( \(n, p, h\), epsh, \(z\), equal) ;
value \(n, p\), epsh;
real epsh; integer \(n, p\); label equal;
array \(h\); integer array \(z\);
comment This procedure performs the exchange technique. The number of points and the number of reference points are entered by \(n\) and \(p\). The approximation errors at different points are compared relative to epsh. The subscripts of the points of reference are carried by \(z[1] \cdots z[p]\) of the integer array \(z[0: p+1]\), a parameter which serves to enter the former and return the new reference. \(z[0]\) and \(z[p+1]\) are for internal use only and are expected to have the values 0 and \(n+1\). If both the old and new references are equal to each other, a jump to the label equal occurs. No global quantities are contained within this procedure;
begin
integer \(i, j, l\), index, indl, indr, sig, ze;
real \(h z 1, h z p\), max, maxl, maxr;
\(l:=0 ; \quad \operatorname{sig}:=-\operatorname{sign}(h[z[1]])\);
if \(\operatorname{sig}=0\) then \(\operatorname{sig}:=1\);
for \(i:=1\) step 1 until \(p\) do
begin
\(\max :=0 ; \quad\) sig \(:=-s i g ; \quad z e:=z[i+1]-1 ;\)
for \(j:=z[i-1]+1\) step 1 until \(z e\) do
if \((h[j]-m a x) \times s i g>0\) then
begin \(\max :=h[j] ; \quad\) index \(:=j\) end; if \(\operatorname{abs}(\max -h[z[i]])>a b s(\max ) \times \operatorname{epsh}\) then
begin \(z[i]:=\) index; \(\quad l:=1\) end
end;
maxl \(:=\) maxr \(:=0\);
for \(j:=z[p]+1\) step 1 until \(n\) do
if (maxr \(-h[j]) \times s i g>0\) then
begin maxr \(:=h[j] ; \quad\) indr \(:=j\) end;
\(h z 1:=h[z[1]] ; \quad\) sig \(:=\operatorname{sign}(h z 1)\);
for \(j:=1\) step 1 until \(z[1]-1\) do
If ( maxl-h[j]) \(\times\) sig \(>0\) then
begin maxl \(:=h[j] ; \quad\) indl \(:=j\) end;
maxl \(:=a b s(\) maxl \() ; \quad \operatorname{maxr}:=a b s(\) maxr \() ;\)
\(h z 1:=a b s(h z 1) ; \quad h z p:=a b s(h[z[p]]) ;\)
if \(l=0\) then
begin
if \(\operatorname{maxl}-h z p \leqq \operatorname{maxl} \times\) epsh \(\wedge\)
\(\operatorname{maxr}-h z 1 \leqq \operatorname{maxr} \times\) epsh then go to equal
end;
if maxl \(=0 \wedge\) maxr \(=\mathbf{0}\) then go to end;
if maxl \(>\) maxr then
begin
if maxl \(>h z p\) then to go shl
else if maxr \(\geqq h z 1\) then to go \(s h r\)
end
else
begin
if maxr \(>h z 1\) then go to \(s h r\)
else if maxl \(\geqq h z p\) then go to \(s h l\)
end;
go to end;
shr:
index \(:=z[1] ;\)
for \(i:=1\) step 1 until \(p-1\) do \(z[i]:=z[i+1]\);
\(z[p]:=\) indr;
if maxl \(>0\) then
for \(i:=1\) step 1 until \(p-1\) do
begin
if abs \((h[\) indl \(]) \geqq\) abs \((h[z[i]])\) then
begin \(j:=z[i] ; z[i]:=\) indl; indl \(:=\) index; index \(:=j\) end
else go to end
end;
go to end;
shl:
index \(:=z[p] ;\)
for \(i:=p\) step -1 until 2 do \(z[i]:=z[i-1] ;\)
\(z[1]:=\) indl;
if maxr \(>0\) then
for \(i:=p\) step -1 until 2 do
begin
if abs \((h[\) indr \(]) \geqq a b s(h[z[i]])\) then
begin \(j:=z[i] ; z[i]:=\) indr; indr \(:=\) index;
index \(:=j\) end
else go to end
end;
end:
end procedure exchange;
real \(\arg , \max , p i, q, s, t, d t, x 1, x a, x e\); Boolean \(b 1, b 2\);
array \(x x[1: n]\), aa, daa \([0: m], c, d[1: p]\);
integer array \(z[0: p+1]\);
comment Set up of initial reference;
\(z[0]:=0 ; \quad z[p+1]:=n+1 ;\)
if epsh \(<0\) then
begin
\(j:=0 ;\)
for \(i:=1\) step 1 until \(p\) do
begin
\(r:=z[i]:=\operatorname{ref}[i] ;\)
if \(j<r\) then \(j:=r\) else go to exparameter end;
if \(j>n\) then go to exparameier;
epsh :=abs (epsh); go to \(m 1\)
end;
\(p i:=3.14159265 ; \quad x 1:=x[1] ; \quad x e:=x[n] ;\)
if \(k 0\) then
begin \(x a:=x e+x 1 ; \quad x e:=x e-x 1\);
\(\arg :=p i /(m+1)\) end
else
begin \(x a:=0 ; \quad x e:=x e+x e ;\)
arg \(:=p i /(2 \times(m+1)+q 1)\) end;
for \(j:=p\) step -1 until 1 do
begin
\(x 1:=x a+x e \times \cos (\arg \times(p-j)) ; r:=z[j+1] ;\)
for \(i:=r-1\) step -1 until 2 do
if \(x[i]+x[i-1] \leqq x 1\) then go to \(m 0\);
\(i:=1\);
\(m 0\) :
\(z[j]:=\) if \(r>i\) then \(i\) else \(r-1\)
end;
if \(z[1] \geqq 1\) then go to \(m 1\);
for \(j:=1, j+1\) while \(z[j]<j\) do \(z[j]:=j\);
\(m 1\) :
for \(i:=0\) step 1 until \(m\) do \(a a[i]:=0\);
for \(i:=1\) step 1 until \(n\) do
begin \(h[i]:=y[i] ; \quad q:=x[i]\);
\(x x[i]:=\) if \(k 0\) then \(q\) else \(q \times q\)
end;
\(b 1:=b 2:=\) false; \(\quad r:=-1 ; \quad t:=0 ;\)
iterat:
\(r:=r+1 ; s:=1.0 ;\)
comment Computation of the divided difference schemes;
if \(k 1\) then
begin
for \(i:=1\) step 1 until \(p\) do
begin
        \(s:=-s ; \quad j:=z[i] ; \quad q:=x[j] ;\)
        \(c[i]:=(h[j]+s \times t) / q ; \quad d[i]:=s / q\)
end
end
else
for \(i:=1\) step 1 until \(p\) do
begin \(s:=-s ; \quad c[i]:=h[z[i]]+s \times t ; \quad d[i]:=s\) end;
for \(i:=2\) step 1 until \(p\) do
for \(j:=p\) step -1 until \(i\) do
begin
\(q:=x x[z[j]]-x x[z[1+j-i]] ;\)
\(c[j]:=(c[j]-c[j-1]) / q ;\)
\(d[j]:=(d[j]-d[j-1]) / q\)
end;
\(d t:=-c[p] / d[p] ; \quad t:=t+d t ;\)
comment Computation of the polynomial coefficients;
for \(i:=m\) step -1 until 0 do
begin
\(d a a[i]:=c[i+1]+d t \times d[i+1] ; \quad q:=x x[z[i+1]] ;\)
for \(j:=i\) step 1 until \(m-1\) do
\(d a a[j]:=d a a[j]-q \times d a a[j+1]\)
end;
for \(i:=0\) step 1 until \(m\) do \(a a[i]:=a a[i]+d a a[i] ;\)
comment Evaluation of the polynomial to get the approxima-
tion errors;
max : = 0;
for \(i:=1\) step 1 until \(n\) do
begin
\(s:=a a[m] ; \quad q:=x x[i] ;\)
for \(j:=m-1\) step -1 untill 0 do \(s:=s \times q+a a[j] ;\)
if \(k 1\) then \(s:=s \times x[i]\);
\(q:=h[i]:=y[i]-s\);
if abs \((q)>\) max then \(\max :=a b s(q)\)
```

 end;
 comment Test for alternating signs;
 j:= - sign (h[z[1]]);
 for i:= 2 step 1 until p do
 if sign (h[z[i]]) = j then j:= -j else
 begin b1:= true; go to m2 end;
 comment Search for another reference;
 exchange (}n,p,h, epsh, z, m2)
 if r< maxit then go to iterat else b2:= true;
 comment Results to output parameters;
 m2:
for }i:=0\mathrm{ step 1 until m do a[q1+i>q2]:= aa[i];
for }i:=1\mathrm{ step 1 until p do ref[i]:= z[i];
hmax := max; maxit := r;
if b1 then go to exsign;
if b2 then go to exmaxit
end
end procedure approx

```

\title{
ALGORITHM 410 Partial Sorting [M1]
}

\author{
J. M. Chambers [Recd. 15 July 1970] \\ Bell Telephone Laboratories, Murray Hill, NJ 07974
}

\author{
Key Words and Phrases: sorting, partial sorting, order statistics \\ CR Categories: 5.31
}

\section*{Description}

We introduce the notion of partial sorting as follows. Given an array \(A\) of \(N\) elements the result of sorting the array (in place) is to arrange the elements of \(A\) so that
\(A(1) \leq A(2) \leq \cdots \leq A(N)\).
An equivalent statement is that, for \(J=1,2, \cdots, N, A(J)\) is a value such that for \(1 \leq I<J<K \leq N\)
\(A(I) \leq A(J) \leq A(K)\)
This property is also equivalent to the statement that \(A(J)\) is the \(J\) th order statistic [4] of \(A\), for all \(J\).
Partial sorting is a procedure which rearranges \(A\) so that (1) holds for some selected values of \(J\), but not necessarily for all \(J\). The advantage of using partial sorting, where possible, is that the cost is substantially less than for sorting, when the number of order statistics required is small compared to \(N\).
Such will frequently be the case, for example, in statistical applications, when the sample is to be summarized using some of the order statistics. For large \(N\) only a portion of the sample would be needed, even for displays such as the empirical distribution function.

Specifically, in the algozithm PSORT below, the user supplies the array \(A\) of size \(N\) and a set of indices \(I N D\) of size NI. On return, \(A\) will have been rearranged so that relation (1) holds, i.e. \(A(J)\) has the value it would have if \(A\) were sorted, for \(J=I N D(1), I N D(2)\), ... , IND (NI).

For example, suppose \(A\) is the vector (10., 8., 3., 5., 7., 2.) and \(I N D\) is the vector \((2,5)\). Then after a partial sort of \(A\) with \(I N D\), \(A(2)=3\). and \(A(5)=8\).

The method used is based on Hoare's method [1, 2] as developed by Singleton [3]. Hoare's method consists of choosing an element \(A(m)\) and splitting the array into three portions which are respectively smaller than, equal to, and larger than this element. The method is then applied recursively to the first and third portions, until the data is completely sorted. Successive versions leading to [2] alter the method in four important respects. (i) instead of choosing \(A(m)\) arbitrarily, the median of the first, last and middle element are chosen; (ii) the recursion is simulated, rather than explicit; (iii) short sequences (less than 10 in [3]) are sorted by a "sinking" sort; (iv) a different treatment of "tied" observations is introduced.

Hoare's method is very well suited to handle the partial sorting problem. The algorithm is modified simply by passing over the portion of \(A\) in which none of the indices in IND are found. Once we have established a segment of \(A\) which is known not to contain any of the desired order statistics, there is no need to sort it further. The special case of \(N I=1\) was treated in procedure FIND of [1].

For a fixed number of indices, the cost of applying PSORT is very nearly proportional to \(N\), as opposed to the full sort, with cost of the order of \(N \log (N)\). Because of the simplicity of the modified algorithm, the cost of PSORT will almost always be significantly less than the cost of the full sort, providing \(N I\) is substantially less than \(N\). Notice, however, that a full sort will be carried out unless some adjacent elements of \(I N D\) differ by more than 10 .

The following restrictions are to be noted: it is assumed that \(I N D\) is initially sorted into ascending order; \(A\) is of type REAL; if \(N\) is the dimension of the \(A\) array then the arrays \(I N D U, I N D L\), \(I U, I L\) must have dimension \(K\) where \(N<2^{K+1}\), (see [3]);

Examples. Table I gives some examples of the performance of PSORT on various size arrays with various initial orderings. The examples were constructed as follows. Samples of \(N\) were simulated with a standard normal marginal distribution, and a correlation \(\rho\) with an ordered normal sample. (Specifically we generated \(a_{i}, b_{i}\) for \(i=1, \cdots, N\) as independent standard normal variates, then formed \(y_{i}=\rho a_{i}+\left(1-\rho^{2}\right)^{\frac{1}{2}} b_{i}\) and sorted the \(y_{i}\), carrying along the \(a_{i}\). The resulting \(a_{i}\) are the desired input to PSORT.)

Computations were carried out in two ways. By replacing the comparisons of elements in \(A\) by special functions, the number of comparisons required was counted, and is shown in the columns of Table I headed \(C\). This gives a machine independent result, but does not include the costs of transposition, logic, etc. Therefore, we also give timings for the original algorithm, on a GE 635 computer, in the columns headed \(T\). The unit of time is one millisecond.

The results of Table I suggest, as one would expect, that the most expensive case, for given value of \(N I\), is for the desired order statistics to be evenly spaced; i.e. \(j N /(N I+1)\) for \(j=1, \cdots, N I\). For this worst case, the cost does grow proportionately to \(N\) (a little less than that, in the table).

A comparison with the full sort, using Singleton's algorithm, is included for sample size 500 .

Table I. Examples of PSORT. \(C=\) number of comparisons, \(T=\) time in \(10^{-3}\) sec.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\(N\)} & \multirow[b]{3}{*}{NI} & & & & \multicolumn{10}{|c|}{Correlation with ordered data} \\
\hline & & & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{IND}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{lr} 
\\
C & -1.0 \\
T
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lr} \\ C \quad & -0.5\end{array}\)}} & \multicolumn{2}{|c|}{0.0} & \multicolumn{2}{|r|}{+0.5} & \multicolumn{2}{|c|}{+1.0} \\
\hline & & & & & & & & & C & \(T\) & C & \(T\) & C & \(T\) \\
\hline 100 & 2 & 33 & 67 & & 303 & 11.0 & 384 & 14.2 & 392 & 14.2 & 386 & 13.6 & 291 & 9.0 \\
\hline 100 & 3 & 25 & 50 & 75 & 323 & 11.8 & 468 & 17.5 & 429 & 15.9 & 470 & 16.7 & 329 & 10.2 \\
\hline 500 & 2 & 33 & 67 & & 1122 & 36.0 & 1356 & 43.7 & 1169 & 36.7 & 1362 & 41.3 & 1121 & 27.8 \\
\hline 500 & 3 & 25 & 50 & 75 & 1182 & 37.9 & 1414 & 46.3 & 1307 & 41.5 & 1406 & 43.1 & 1181 & 29.9 \\
\hline 500 & 3 & 125 & 250 & 375 & 1628 & 49.3 & 2213 & 70.1 & 2184 & 71.3 & 2205 & 67.2 & 1748 & 43.9 \\
\hline 500 & & & to \(S\) & & & 151.3 & & 151.2 & & 150.2 & & 150.4 & & 150.9 \\
\hline 1000 & 3 & 250 & 500 & 750 & 3258 & 96.9 & 4870 & 145.1 & 4438 & 137.27 & 4725 & 140.4 & 3503 & 85.6 \\
\hline
\end{tabular}

\section*{References}
1. Hoare, C. A. R. Algorithms 63, Partition; 64, Quicksort; and

65, Find. Comm ACM 4 (July 1961), 321-322.
2. Hoare, C. A. R. Quicksort. Comput. J. 5 (1962), 10-15.
3. Singleton, R. S. Algorithm 347 Sort. Comm. ACM 12 (1969), 185-186.
4. Wilks, S. S. Mathematical Statistics. Wiley, New York, 1962, p. 234.

\section*{Algorithm}
```

 SUBROUTINE PSORIIA,NPNTOONI)
 C PARAMETERS TO PSORT HAVE, THE FOLLOWING MEANING
 ARRAY TO BE SORTEO
 nUMBER OF ELEmENTS IN A
 ARRAY CF INDICES IN ASCENOING ORDER
 NUMBER OF ELEMENTS IN IND
 IMENSICN A(N), INC{NII
 DIMENSICN INOU(16),INDL(16)
 DIMENSICN IU(16),IL(16)
 INTEGER P
 INYEG
 INOL(1)=1
 C ARRAYS INDL, INCU KEEP ACCOUNT OF THE PCRTION OF IND RELATED TO the
C current segnent of data being orderec.
I=1
J=N
IF(I.GE.J) GO TU 70
CFIRST ORDER A(I),A(J),A(II+J)/2), ANE USE MEDIAN TO SPLIT THE DATA
10 K=I
IJ=(I+J)/2
T=A(IJ)
IF(A(I).LE.T) GU TO 20
A(IJ)=A(I)
A(IJ)=A
T=A(IJ)
L=J
IF(A(J).GE.J) GO ro 40
A(IJ)=A(J)
T=A(IJ)
IF(A!I).LE.T) GU TO 40
A(IJ)=A(I)
A(I)=T
T=A(IJ)
G0 T0 4C
A(L)=A(K)
A(K)=TT
IFIA(L)
IF(AALL).GT.T) GU ro 40
C SPLIT THE DAIA INTC AII TO LI.LT.T. A(K TO J).GT.T
C0 K=K+1
IFIA(K).LT.T) GO TO 50
IF(K.LE:L) GO TC 30
[NDL (M)=JL
INDU(M)= JU
M=M
C SPLIT THE LARGER OF THE SEGMENTS
IF(L-I.LE.J-K) GC TC 60
lil
IL(P)=1
I=k
5) IF(JL.GT.JU) GO TO 70
IF(IND(JL).GE.I) GO TO
JL=JL+1
G0 TO 55
>H INOU(P)=JL-1
OC IL(P)=K
Oc \quad IL(P)=K
J=L
6) IF(JL.GI.JU) GC TO 70
IFIIND(JUI.LE.J) GO TO 68
JU= JU-1
68 INOLO (P)=JU+1
GO TO \&C
IFIM.EQ.O) RETURN
I=IL(M)
JL=INDL(M
JU=INOU(M)
IF(JL.GT.JU) GO TO 10
80: IF(J-I.CT.10) GO TO 10
IFII.EQ.1i GO IO 5
l=1-1
MC I=1+1
(F(I.EQ.J) GO TC 70
IF(A(I).LE.T) GU TO 90
IFIA
1\cupC A(K+1)=A(K)
K=K-1
IF(T-LT.A(K)) GL TO 100
A(K+1)=1
G0 TO 9C
END

```

\title{
Algorithm 411 \\ Three Procedures for the Stable Marriage Problem [H]
}
D.G. McVitie* and L.B. Wilson (Recd. 12 Aug. 1968 and 15 July 1969)
Computing Laboratory, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, England

\footnotetext{
Key Words and Phrases: assignment problems, assignment pro cedures, combinatorics, discrete mathematics, operations research, stable marriage problem, university entrance

CR Categories: 5.30
}

Part 1
procedure GS (malechoice, femalechoice, marriage, count, \(n\) ); value \(n\); integer count, \(n\);
integer array malechoice, femalechoice, marriage;
comment This procedure finds the male optimal stable marriage solution using the Gale and Shapley algorithm. The result is left in the integer array marriage. Thus marriage \([i]\) is the man whom the \(i\) th woman marries. \(n\) is the size of the problem, count is the number of proposals made before the stable marriage is found. malechoice and femalechoice are the choice matrices for the men and women respectively, i.e. femalechoice \([i, j]\) is the \(j\) th choice of the \(i\) th woman. The femalechoice array is changed to the integer array \(f c\), where \(f c[i, j]\) is the choice number (first, second, third, ...) of the \(j\) th man to woman \(i\). This new arrangement is adopted for convenience when the women compare proposals. All the women keep a dummy man 0 in suspense initially. This dummy man is given a choice number \(n+1\) so that he will be given up as soon as any other offer is made;
begin
integer \(i, m, j ; \quad\) Boolean array refuse [0:n];
integer array \(f c[1: n, 0: n]\), proposal, malecounter [1:n];
for \(i:=1\) step 1 until \(n\) do
begin
for \(j:=1\) step 1 until \(\boldsymbol{n}\) do \(f c[i\), femalechoice \([i, j]]:=j\);
comment The femalechoice array is rearranged for convenience in the marriage part of the procedure;
refuse \([i]:=\) true; marriage \([i]:=0\);
malecounter \([i]:=1 ; f c[i, 0]:=n+1\)
end;
count \(:=0\);
PROPOSE:
\(m:=0 ;\)
comment Now the rejected men propose to the next woman in their choice lists. Initially all the men propose to their first choices;
*Now at Software Science, Ltd., Wilmslow, Cheshire, England.
```

for $i:=1$ step 1 until n do
if refuse $[i]$ then
begin
proposal $[i]:=$ malechoice $[i$, malecounter $[i]]$;
malecounter $[i]:=$ malecounter $[i]+1$;
$m:=m+1$; refuse $[i]:=$ false
end
else proposal $[i]:=-1$;
if $m=0$ then go to FINISH;
comment The procedure terminates if at any stage no proposals
are made by the men;
count $:=$ count $+m$;
comment In the next part of the procedure all the in who
have had a proposal decide whether to reject it c. the one
they are keeping in suspense;
for $i:=1$ step 1 until n do
if proposal $[i]>0$ then
begin
$j:=$ proposal $[i] ;$
if $f c[j, i]>f c[j$, marriage $[j]]$ then refuse $[i]:=$ true
else
begin refuse [marriage $[j]]:=$ true; marriage $[j]:=i$ end
end;
go to $P R O P O S E$
FINISH:
end of procedure $G S$

```
Part 2
procedure \(M W\) (malechoice, femalechoice, marriage, count, \(n\) );
    value \(n\); integer count, \(n\);
    integer array malechoice, femalechoice, marriage;
comment The heading is the same as for the GS procedure and
    the formal parameters have the same meaning. Also the female-
    choice array has been rearranged in the array \(f c\) as before, and
    the women given initially a dummy man 0 with choice number
    \(n+1\);
begin
    integer \(i, j\);
    integer array \(f c[1: n, 0: n]\), malecounter \([1: n]\);
    procedure \(\operatorname{PROPOSAL}(i)\); value \(i\); integer \(i\);
    comment This procedure makes the next proposal for man \(i\)
        and calls the procedure \(R E F U S A L\) to see what effect this
        proposal will have. The procedure does nothing if man \(i\) is
        the dummy man 0 ;
    if \(i \neq 0\) then
    begin
        integer \(j ;\) count \(:=\) count +1 ;
        \(j:=\) malecounter \([i] ;\) malecounter \([i]:=j+1\);
        REFUSAL( \(i\), malechoice \([i, j]\) )
    end;
    procedure \(R E F U S A L(i, j)\); value \(i, j\); integer \(i, j\);
    comment This procedure decides whether woman \(j\) should keep
        the man she is holding in suspense in marriage[ \(j\) ] or man \(i\)
        who has just proposed to her. Whichever she rejects goes
        back to the procedure \(\operatorname{PROPOSAL}\) to make his next proposal;
    if \(f c[j\), marriage \([j]]>f c[j, i]\) then
    begin
        integer \(k\);
        \(k:=\) marriage[j]; marriage[j] \(:=i\);
        PROPOSAL(k)
    end
```

else $\operatorname{PROPOSAL(i);~}$
for $i:=1$ step 1 until n do
begin
for $j:=1$ step 1 until n do
$f c[i$, femalechoice $[i, j]]:=j ;$
marriage $[i]:=0 ;$ malecounter $[i]:=1 ; f c[i, 0]:=n+1$
end;
count $:=0$;
for i :=: 1 step 1 until n do $P R O P O S A L(i)$;
comment This for statement operates the algorithm and after
the i th cycle a set of stable marriages exists for the men 1 to i
and i of the women;
end of procedure $M W$

```

Part 3
procedure ALL STABLE MARRIAGES (malechoice, femalechoice, \(n\), STABLE MARRIAGE);
value \(n\);
integer array malechoice, femalechoice;
integer \(n\); procedure STABLE MARRIAGE;
comment malechoice and femalechoice are the same arrays as were used in \(G S\) and \(M W, n\) is size of problem. STABLE MARRIAGE (marriage, \(n\), count) is a procedure (with three parameters) written by the user which is entered when a new stable marriage is formed after count proposals. The marriage is stored such that marriage \([i]\) contains the number of the man married to woman \(i\). The locally declared Boolean array unchanged is used to make sure Rule (2) is not violated; i.e. during a breakmarriage operation started on man \(i\) only men \(\geq i\) may propose. The locally declared Boolean success is set true if breakmarriage to man \(i\) leads to a new stable marriage, otherwise it is set false;
begin
integer array marriage, malecounter \([0: n], f c[1: n, 0: n]\);
Boolean array unchanged \([0: n]\);
integer \(i, j, k\); Boolean success;
procedure breakmarriage(malecounter,marriage,i,n,count); value malecounter, marriage, \(i, n\), count;
integer \(i, n\), count; integer array malecounter, marriage;
comment This procedure breaks the marriage of man \(i\);
begin
integer \(\mathbf{j}\);
marriage \([\) malechoice \([i\), malecounter \([i]-1]]:=-i\);
proposal (i,malecounter,marriage,count);
if \(\neg\) success then go to EXIT;
STABLE MARRIAGE (marriage,n,count); for \(j:=i\) step 1 until \(n-1\) do
breakmarriage (malecounter,marriage, \(j, n\), count);
comment The lower limit \(i\) in the above for statement is the application of Rule(1) which after a successful breakmarriage operation on man \(i\) restricts further breakmarriages to men \(\geq i\);
for \(j:=i+1\) step 1 until \(n-1\) do
unchanged \([j]:=\) true;
EXIT:
unchanged \([i]:=\) false;
end of breakmarriage;
procedure proposal (i, malec, marriage, c); value \(i\);
integer \(i, c\); integer array malec, marriage;
comment In this procedure man \(i\) proposes to the next woman in his choice list, and calls the procedure refusal for this woman. If \(i\) is negative on entry then a successful breakmarriage operation has been completed and a new stable marriage found. If the Boolean success is made false during a breakmarriage operation then it means that this breakmarriage has failed;
if \(i<0\) then success := true
else if \(i=0 \vee\) malec \([i]=n+1 \vee \neg\) unchanged \([i]\)
then success \(:=\) false
else
begin
\(c:=c+1 ; j:=\) malec \([i] ;\) malec \([i]:=j+1 ;\) refusal (i,malechoice \([i, j]\), malec, marriage, \(c\) )
end of proposal;
procedure refusal ( \(i, j\), malec,marriage,c); value \(i, j\);
integer \(i, j, c\); integer array malec, marriage;
comment This procedure decides whether woman \(j\) prefers man \(i\) or the man in marriage \([j]\). Whichever she rejects goes back to the procedure proposal to make his next choice;
if \(f c[j, a b s\) (marriage \([j])]>f c[j, i]\) then
begin
\(k:=\) marriage \([j] ;\) marriage \([j]:=i\);
proposal ( \(k\), malec,marriage, \(c\) )
end
else proposal (i,malec,marriage,c);
for \(i:=1\) step 1 until \(n\) do
begin
for \(j:=1\) step 1 until \(n\) do
\(f_{c}[i\), femalechoice \([i, j]]:=j\);
marriage \([i]:=0 ;\) malecounter \([i]:=1\);
\(f c[i, 0]:=n+1 ;\) unchanged \([i]:=\) true;
end;
count \(:=0\);
for \(i:=1\) step 1 until \(n\) do
proposal (i,malecounter,marriage,count);
comment Male optimal stable solution found;
STABLE MARRIAGE (marriage,n,count);
for \(i:=1\) step 1 until \(n-1\) do
breakmarriage (malecounter, marriage, \(i, n, c o u n t\) );
end of procedure \(A L L S T A B L E\) MARRIAGES

\title{
Algorithm 412 \\ Graph Plotter [J6]
}

Josef Čermák (Recd. 19 Mar. 1970 and 12 Nov. 1970) Department of Physics, University of Chemical Technology, Pardubice, CSSR.

\footnotetext{
Key Words and Phrases: plot, graph, lineprinter plot CR Categories: 4.41
procedure graphplotter ( \(N, x, y, m, n\), xerror, yerror, \(g, L, S, E M\), C0, C1, C2, C3, C4, label);
value \(N, m, n\), xerror, yerror, \(g, L, S\);
array \(x, y\); integer \(N, g, m, n, L, S\); real xerror, yerror; string \(E M, C 0, C 1, C 2, C 3, C 4\); label label;
comment This procedure is functionally identical with Algorithm 278. It needs, however, a significantly smaller array than Algorithm 278 for storage of the graph before it is printed. The procedure is intended to be used to give an approximate graphical display of a multivalued function \(y[i, j]\) of \(x[i]\), on a line printer. Output channel \(N\) is used for all output. The graph is plotted for those points such that \(1 \leq i \leq m\) and \(1 \leq j \leq n\) where \(2 \leq n \leq 4\). If \(n==1\), then \(y\) must be a one-dimensional array \(y[i]\) and the graph is plotted for \(x[i]\) and \(y[i]\) for \(1 \leq i \leq\) \(m\). The format of the output is arranged so that a margin of \(g\) spaces appears on the left-hand edge of the graph. \(L\) and \(S\) specify the number of lines down the page and the number of spaces across the page which the graph is to occupy, respectively. The graph is printed so that lines 1 and \(L\) correspond tc the minimum and maximum values of \(x\), and character positions 1 and \(S\) correspond to the minimum and maximum values of \(y\). That is to say, \(y\) is plotted across the page and \(x\) is plotted down the page. After the entire graph has been plotted, the minimum and maximum values for \(x\) and \(y\) are printed out in order xmin, xmax, ymin, ymax. The argument \(E M\) represents the character which is printed on the perimeter of the display. The argument \(C 0\) represents the character printed at empty positions. The arguments, \(C 1, C 2, C 3, C 4\), represent the characters printed for \(y[i, 1], y[i, 2], y[i, 3]\), and \(y[i, 4]\), respectively. At those points at which more than one character would appear, the order of preference is \(C 1, C 2, C 3, C 4\). Control is passed from graph-plotter to the point whose label appears as the parameter label if the range of \(x[i]\) is less than xerror, or if the range of \(y[i, j]\) is less than yerror, for all \(j\). If the values of \(x[i]\) occur at equal intervals, choosing \(L=m\) will make one line of printout equivalent to one interval of \(x\). The graph may look somewhat out of true proportion since this algorithm assumes that spacing along both axes is the same, but most line printers do not have the same spacing between adjacent lines as between adjacent characters on a line;

\section*{begin}
real \(p, q, x \max , x \min , y \max , y \min\);
integer \(i, j\);
integer array plot \(L\), ind \([1: L]\), plot \(S[1: S]\);
\(x \max :=x \min :=x[1]\);
for \(i:=2\) step 1 until \(m\) do
begin
if \(x[i]>x \max\) then \(x \max :=x[i]\) else
}
if \(x[i]<x \min\) then \(x \min :=x[i]\)
end of hunt for maximum and minimum values of \(x\);
if \(n=1\) then go to \(N 1 A\);
\(y \max :=y \min :=y[1,1]:\)
for \(i:=1\) step 1 until \(m\) do
for \(j\) := step 1 until \(n\) do
begin
if \(y[i, j]>y\) max then \(y\) max \(:=y[i, j]\) else
if \(y[i, j]<y\) min then \(y\) min \(:=y[i, j]\)
end of hunt for maximum and minimum values of \(\boldsymbol{y}\); escape:
if abs(xmax-xmin) < xerror \(\vee\) abs(ymax-ymin) < yerror then go to label;
\(p:=(L-1) /(x \max -x \min ) ; \quad q:=(S-1) /(y \max -y \min ) ;\)
for \(i:=1\) step 1 until \(L\) do plot \(L[i]:=1\);
for \(i:=m\) step -1 until 1 do
begin
integer r ;
\(r:=1+\) entier \(((x[i]-x \min ) \times p+0.5) ;\)
plot \(L[r]:=0 ; \quad\) ind \([r]:=i\)
end;
NEWLINE \((N, 1) ; \quad \operatorname{SPACE}(N, g)\);
comment NEWLINE and SPACE must be declared globally to graphplotter, NEWLINE ( \(N, p\) ) outputs \(p\) carriage returns and \(p\) line feeds on channel \(N, \operatorname{SPACE}(N, p)\) outputs \(p\) blank character positions on channel \(N\);
for \(j:=1\) step 1 until \(S\) do outstring ( \(N, E M\) );
for \(i:=1\) step 1 until \(L\) do
begin
plot \(S[1]:=\operatorname{plot} S[S]:=1\);
for \(j:=2\) step 1 until \(S-1\) do plot \(S[j]:=2\);
if plot \(L[i]=0\) then
begin
if \(n=1\) then
plot \(S[1+\) entier \((0.5+q \times(y[\) ind \([i]]-y m i n))]:=3\)
else
for \(j:=n\) step -1 until 1 do
plot \(S[1+\) entier \((0.5+q \times(y[\) ind \([i], j]-y\) min \())]:=j+2\)
end;
NEWLINE \((N, 1) ; \operatorname{SPACE}(N, g)\);
for \(j:=1\) step 1 until \(S\) do
begin
switch \(S W:=S W 1, S W 2, S W 3, S W 4, S W 5, S W 6\);
go to \(S W\) [plot \(s[j]\) ];
SW1:
outstring ( \(N, E M\) ); go to fin;
SW2:
outstring ( \(N, C 0\) ); go to fin;
SW3:
outstring ( \(N, C 1\) ); go to fin;
SW4:
outstring ( \(N, C 2\) ); go to fin;
SW5:
outstring [ \(N, C 3\) ); go to fin;
SW6:
outstring ( \(N, C 4\) );
fin:
end;
end;
NEWLINE ( \(N, 2\) ); \(\operatorname{SPACE}(N, g)\);
for \(j:=1\) step 1 until \(S\) do outstring ( \(N, E M\) );
NEWLINE \((N, 2) ; \quad \operatorname{SPACE}(N, g)\); outreal \((N, x m i n) ;\)
```

outreal (N, xmax);
outreal (N, ymin); outreal (N, ymax);
go to end;
N1A:
ymax := ymin := y[1];
for }i:=2\mathrm{ step 1 until m do
begin
if y[i]>ymax then ymax := y[i] else
if }y[i]<ymin then ymin := y[i
end of hunt for maximum and minimum values of }y\mathrm{ when
n=1;
go to escape;
end:
end of graphplotter

```

\section*{Remark on Algorithm 412 [J6]}

Graph Plotter [Joseph Cermak, Comm. ACM 14 (July 1971), 492-493]

Richard P. Watkins [Recd. 31 Jan. 1972], Mathematics Department, Royal Melbourne Institute of Technology, Melbourne, Australia 3000

This algorithm is not functionally identical to Algorithm 278 as claimed. If the \(x[i]\) values are not uniformly spaced or if \(m>L\), it is possible for two or more of them to correspond to the same printer line. In this case, the array ind will contain only the largest of the values of \(i\) and only one set of \(y[i, j]\) values, corresponding to that value of \(i\), will be plotted.

The array ind is redundant. The following changes enable plot \(L\) to take over the functions of ind (where all line numbers refer to lines relative to the label escape):
a. Line 4. Replace
for \(i:=1\) step 1 until \(L\) do plotL[i]:=1
by
for \(i:=1\) step 1 until \(L\) do plotL[i]:=0
b. Line 9. Replace
plot \(L[r]:=0 ; i n d[r]:=i\)
by
plotL[r]:= \(i\)
c. Line 21. Replace
if plot \(L[i]=0\) then
by
if plotL[i]>0 then
d. Line 24. Replace
plot \(S\{1+\operatorname{entier}(0.5+q \times(y[i n d[i]\}-y m i n))\}:=3\)
by
plotS \(\{1+e n t i e r(0.5+q \times(y \mid p l o t L[i]]-y m i n))]:=3\)
e. Line 27. Replace
plotS \([1+\operatorname{entier}(0.5+q \times(y[i n d[i], j]-y m i n))]:=j+2\)
by
plot \(S\{1+e m i e r(0.5+q \times(y \mid p l o t L\{i], j\}-y m i n))\}:=j+2\)
(The referee has noted that there is a typographical error on the fifth line before the line labeled escape. Replace
for \(j:=\) step 1 until \(n\) do
by
for \(j:=1\) step 1 until \(/ /\) do
He has also noted that the array declaration for ind should be deleted if the above changes are made.-L.D.F.)

\begin{abstract}
Editor's note: The algorithm described here is available on magnetic tape. The text plus the listing of the algorithm will be printed in the Collected Algorithms from CACM. The charge for the taped algorithm is \(\$ 16.00\) (U.S. and Canada) or \(\$ 18.00\) (elsewhere). If the user sends us a small tape (wt. less than 1 lb.) we will copy the algorithm on it and return it to him at a charge of \(\$ 10.00\) (U.S. only). All orders are to be prepaid with checks payable to "ACM Algorithms." The algorithm is recorded as one file of BCD 80-character card images at 556 B.P.I., even parity, on seven-track tape. If requested, the algorithm is supplied at a density of 800 B.P.I. The cards for the algorithm are sequenced starting at 10 and incremented by 10. The sequence number is right-justified in column 80. Although every attempt is made to insure that the algorithm conforms to the printed description, no guarantee is made, nor is there a guarantee that the algorithm is correct.-L.D.F.
\end{abstract}

\footnotetext{
* Work performed under the auspices of the U.S. Atomic Energy Commission. \(\dagger\) This research was supported in part by National Science Foundation research grant number NSF-GP-16071 from the Division of Mathematical and Physical Sciences.

Copyright © 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.
}

\section*{Algorithm 413}

\section*{ENTCAF and ENTCRE: Evaluation of Normalized Taylor Coefficients of an Analytic Function [C5]}

\author{
J.N. Lyness,* Argonne National Laboratory, Argonne, IL 60439, and G. Sande, \(\dagger\) Department of Statistics, The University of Chicago, Chicago, IL 60637 (Recd. 17 June 1968, 12 Feb 1970, and 20 July 1970)
}

Key Words and Phrases: Taylor coefficients, Taylor series, Cauchy integral, numerical integration, numerical differentiation, interpolation, complex variable, complex arithmetic, fast Fourier transform

CR Categories: 5.12, 5.13, 5.16

\section*{Description}

Introduction. Two subroutines, ENTCAF and ENTCRE, coded in ANSI FORTRAN are described here. ENTCAF may be used to calculate approximations \(r^{s} a_{a}^{(m)}\) to a set of normalized Taylor coefficients
\(r^{s} a_{s}=r^{s f(s)}(\zeta) / s!\quad s=0,1,2, \ldots\).
The values of \(r\) and \(\zeta\), a complex number, are provided by the user together with a function subprogram that represents \(f(z)\) as a complex-valued function of a complex variable. The user also provides a value of \(\epsilon_{r e q}\), the required absolute accuracy. The routine returns an accuracy estimate \(\epsilon_{s s}\) together with approximations \(r^{s} a_{s}^{(m)}\) and a number \(m\). These are supposed to satisfy
\(\left|\begin{array}{ll}r^{s} a_{s}^{(m)}-r^{s} a_{s} \\ r^{s} a_{s}\end{array}\right|<\epsilon_{\text {est }} \quad s=0,1,2, \ldots, m-1\),
\(\left|r^{s} a_{s}\right|<\epsilon_{s t} \quad s=m, m+1, \ldots\).
A result status indicator \(N C O D E\) is output. If \(\epsilon_{e s t}>\epsilon_{r e q}\) this gives a brief indication of why the required accuracy was not achieved.

ENTCRE carries out the same task as ENTCAF in the case that \(\zeta\) is real and also that \(f(z)\) is real when \(z\) is real. In this special and common case, ENTCRE is about twice as economic as ENTCAF.

Outline of method. The Taylor coefficients \(a_{s}\) occur in the Taylor series
\(f(z)=\sum_{s=0}^{\infty} a_{s}(z-\zeta)^{s}, \quad|z-\zeta|<K_{c}\),
where \(R_{c}\) is the radius of convergence of the Taylor series. Cauchy's theorem provides a set of integral representations. One of these is
\(r^{s} a_{s}=\frac{r^{s}}{2 \pi i} \int_{C_{r}} \frac{f(z)}{(z-\zeta)^{s+1}} d z, \quad r<R_{c}\),
where \(C_{r}\) is the circle \(|z-\zeta|=r\). The approximation \(r^{3} a_{s}^{(m)}\) is obtained by replacing the integral in (2.2) by an approximation based on an \(m\)-point trapezoidal rule approximation. Specifically,
\[
\begin{gather*}
r^{s} a_{s} \simeq r^{s} a_{s}^{(m)}=m^{-1} \sum_{j=0}^{m-1} \exp (-2 \pi i j s / m) f(\zeta+r \exp (2 \pi i j / m))  \tag{2.3}\\
s=0,1, \ldots, m-1
\end{gather*}
\]

The calculation is in two parts. The first part (stages 1, 2, and 3) is iterative in nature. Using (2.3) the approximations \(a_{0}^{(m)}\) with \(m=1,2,4,8, \cdots\) are calculated. The function values are retained. The convergence criterion is based on the circumstance that the true value
\(a_{0}=f(\zeta)\)
of one of the approximations \(a_{0}^{(m)}\) may be determined by a single function evaluation. A rather involved convergence criterion based on the orderly approach of the sequence \(a_{0}^{(m)}, m=1,2,4, \ldots\), to its limiting value \(a_{0}\) is used. This is described in some detail by Lyness [8].

When the convergence of \(a_{0}^{(m)}\) to \(a_{0}\) has been achieved the routine carries out the second part (stage 4). This consists of evaluating \(r^{8} a_{\theta}^{(m)}\) from (2.3) for \(s=0,1, \cdots, m-1\) using the function values calculated and retained during the first part. A fast Fourier transform technique is used for this calculation. This is particularly appropriate since \(m\) is a power of two. The derivation and implementation of this technique is described in Gentleman and Sande [ 5 , pp. 566-7]. The specialized version used in ENTCRE is described in Sande [9].

Restrictions: theoretical. There are two restrictions of a theoretical nature.
1. The value of \(r\) must be less than the radius of convergence, \(R_{c}\), of the Taylor series. So long as this condition is satisfied, it can be shown (see [5] and [8]) that
\(\left|r^{s} a_{s}\right|<K p^{s}\),
\(\left|r^{s} a_{s}^{(m)}-r^{s} a_{s}\right|<K \rho^{m+s} /\left(1-\rho^{m}\right)\),
where \(\rho\) is any number greater than \(r / R_{c}\) and \(K\) depends on \(\rho\). Thus the approximations approach their limiting values and there are only a finite number of normalized Taylor coefficients whose magnitude exceeds \(\epsilon_{\text {req }}\). If this restriction is violated, that is, a value of \(r \geq R_{c}\) is chosen, then in general the sequence \(r^{s} a_{s}^{(m)}\) converges, but not to \(r^{a} a_{s}\). Instead it converges to the integral on the right in (2.2), but (2.2) is not generally vailid if \(r \geq R_{c}\). Thus the routine itself fails to converge since \(a_{0}^{(m)}\) does not approach \(f(\zeta)\) in the limit of increasing \(m\).
2. The function \(f(z)\) must not be an odd function of \((z-\zeta)\). While the convergence criterion based on (2.4) has much to recommend it, it does have one serious drawback. If it happens (as it does in the case \(f(z)=\sin (z) ; \zeta=0\) ) that
\(f(z-\zeta)=-f(\zeta-z)\),
then every approximation \(a_{0}^{(m)}\) is zero, as is the true value \(a_{0}\). The routine then finds that it converges immediately. In this case the problem should be reformulated. One defines \(g(z)=f(z) /(z-\zeta)\) or \(g(z)=(z-\zeta) f(z)\). The Taylor coefficients \(A_{s}\) of \(g(z)=\zeta\) are then calculated using ENTCAF. \(A_{s}\) is the same as \(a_{s+1}\) or \(a_{s-1}\) as the case may be.

Restrictions: practical. There are two principal practical restrictions. These arise because (1) the computer uses finite length floating-point arithmetic; (2) execution cannot be allowed to continue indefinitely; at some stage it has to terminate whether or not the calculation is complete.

An output status parameter \(N C O D E\) indicates to the user whether the results have been significantly affected by either of these restrictions.
1. Roundoff error. The routine requires as an input parameter the machine accuracy parameter \(\epsilon_{M}\). The approximations \(r^{s} a_{s}^{(m)}\) giyen by (2.3) are of such a form that an estimate of the roundoff error level is
\(\left.\epsilon_{r, o}^{(m)}=\epsilon_{M} \max _{j=0}, \ldots, m-1\right)|f(\zeta+r \exp (2 \pi i j / m))|\).
If, at any stage it appears that
\(\epsilon_{\text {req }}<10 \kappa_{\epsilon_{r .0}^{(m)}}^{(m)}\)
the routine internally replaces \(\epsilon_{r e q}\) by \(10 \epsilon_{r, o}^{(m)}\) and either terminates
(input \(N C O D E\) negative) or continues with the calculation (input NCODE nonnegative).
2. Physical upper limit. This is defined by an input parameter \(N M A X\). Iterations in the first part to calculate \(a_{0}^{(m)}, m=1,2,4,8, \ldots\), with \(m<N M A X\) are possible. If convergence has not been achieved by this stage, the calculation is completed.

The output status parameter \(N C O D E\) is +1 if all went well. In general \(N C O D E=0\) if the calculation was terminated; is positive if it converged and negative if it did not converge; has magnitude 1 if roundoff error was not observed; and has magnitude 2 if roundoff error was observed.

If \(N C O D E \neq 0\), the returned value \(\epsilon_{\text {est }}\) corresponds to the estimated accuracy of \(\operatorname{TCOF}(J)\) whether or not convergence or roundoff error occurred. If \(N C O D E=0\), the quantity \(10 \epsilon_{F}^{(m)}\) is returned in place of \(\epsilon_{e s t}\).

Comments. The algorithms described here deliver approximations to a set of normalized Taylor coefficients \(r^{s} a_{s}\). It is natural to ask why this choice of output was made, rather than perhaps a set of Taylor coefficients \(a_{s}\) or a set of derivatives \(f^{(s)}(\zeta)\). The most immediate reason is that the algorithm naturally provides a set or normalized Taylor coefficients to a uniform absolute accuracy. The user specifies \(r\) and \(\epsilon_{\text {req }}\) only. If, for example, one is interested in a set of derivatives, the specification of the accuracy requirements becomes very much more complicated. However, if one looks ahead to the use to which the Taylor coefficients are to be put, one finds in many cases that uniform accuracy in normalized Taylor coefficients corresponds to the sort of accuracy requirement which is most convenient.

As an illustration we conside." a very trivial problem. We wish to represent \(f^{\prime \prime}(x)\) as a polynomial in the interval \((-l, l)\) to an accuracy \(E\). Clearly
\[
\begin{equation*}
f^{\prime \prime}(x)=\sum_{s=2}^{\infty} s(s-1) a_{s} x^{s-2}=\frac{1}{r^{2}} \sum_{s=2}^{\infty} s(s-1) a_{s} r^{\circ}\left(\frac{x}{r}\right)^{n-2} . \tag{4.1}
\end{equation*}
\]

A very crude approach might be to take \(r=l\) and \(\epsilon=r^{2} E / 6\). In this case the error in the \(s\) th term is less than \(s(s-1) E(x / l)^{a-2} / 6\). One cannot be assured that for \(x \simeq l\) these errors may not cooperate in such a way as to lose the required accuracy. However, if \(r\) is chosen to be greater than \(l\) and \(\epsilon=r^{2}(1-l / r)^{3} E / 2\) then it follows at once that if the allowed error in \(a_{s}, r^{s}\) is less thah \(\epsilon\), the error in \(f^{\prime \prime}(x)\) is less than \(E\). These two approaches represent extremes. Neither take into account that the sequence \(a_{s} r^{8}\) itself approaches zero and for high values of \(s\) it is unnecessary to bound the error in omitting such a term by \(\epsilon\). A more complicated formula based on (3.1) is derived by Lyness and Delves [5], eq. (2.9). But the underlying feature of any of these approaches to approximating (4.1) is that a uniform absolute accuracy for \(a_{s} r^{0}, s=0,1,2, \ldots\), is very convenient for this problem. If the algorithm instead calculated \(f^{(s)}(0)\) to a specified relative accuracy, the determination of the accuracy to use in this problem would be very much more involved.

Possible modifications. The general approach to a numerical calculation by means of the numerical evaluation of contour integrals is at present an open field for investigation. The algorithms described here may be used in several problems known to the authors. These are: (a) determination of zeros of analytic function [7, 1, and 5]; (b) numerical differentiation [7, 6]; (c) numerical quadrature [8].

In particular applications, modifications of ENTCAF or \(E N T C R E\) can lead to more efficient calculations. Possible modifications include: (a) Provision for calculation of only some of the Taylor coefficients, for example, \(s\) even or \(s \leq 12\); (b) Provision for a "subsequent return option" which allows the same calculation to be taken up at a later stage if it is found subsequently that higher accuracy is required; (c) Provision for an "early exit." Used in conjunction with (b) this would enable the program to consider intermediate results to determine whether to continue with the current values of \(r\) and \(\epsilon\), before a high investment of computer time has been made.

In fact, ENTCRE is a special modification of ENTCAF designed for a particular application, \(\zeta\) real, \(f(x)\) real. The output
status parameter NCODE is of particular use in these applications since it allows appropriate remedial action to be taken under pro－ gram control．

Algorithms which include modifications（b）and（c）above have been used by the first author．However，these involve complicated logic and are strongly connected with the particular application． The algorithms listed here may be modified by the user in par－ ticular applications for any large scale use．However，in pilot runs or small scale calculations they are adequate as they stand．

Comparisons and examples．In［6］and［8］，several numerical examples are given，and comparisons with other methods are made． So far as the determination of zeros of an analytic function is con－ cerned，the method described in［6］has some advantages in a global situation，but should not be used locally．For numerical quadrature，the method described［8］is definitely superior to standard methods if there is a nearby pole or singularity of a special type．In these cases a proper evaluation depends on the details of the problem under consideration．

It is in problems involving numerical differentiation that the method on which these algorithms are based show up to great advantage．This is simply because，once the use of complex function values is allowed，the numerical instability associated with numeri－ cal differentiation may be avoided．

In［6］，a different but related method for numerical differentia－ tion is described．The remarks about the roundoff error given there apply to these routines also．There as an example，the calcula－ tion of \(\boldsymbol{f}^{(6)}(0)\) was considered for
\(f(x)=e^{x} /\left(\sin ^{3}(x)+\cos ^{3}(x)\right)\).
The actual value of this derivative is an integer，namely
\(f^{(5)}(0)=-164\) ．
In order to provide some sort of comparison，a special algo－ rithm for numerical differentiation based on polynomial interpola－ tion was written using only function values at real abscissas．A set of several dozen numerical experiments were carried out on a machine for which \(\epsilon_{M}=3 \times 10^{-11}\) ．The closest result was in error by \(10^{-2}\) ；the worst result had the wrong sign．

ENTCRE was then used for the same problem in an attempt to obtain seven－digit accuracy，i．e．an absolute accuracy of \(E=10^{-4}\) ． A sequence of values of \(r\) was used，with in each case \(\epsilon_{\text {req }}=r^{5} \times\) \(10^{-4} / 5\) ！and input parameter \(N C O D E=-1\) to secure immediate termination if roundoff error prevented a sufficiently accurate result from being attained．With \(r=0.1\) and \(r=0.2\) ，execution terminated using in each case one complex and three real function values．With \(r=0.4\) ，the result
\(f^{(5)}(0)=-164.00000013\)
was obtained at a cost of 15 complex and three real function values （ \(m=32\) ）；the accuracy estimate given by the algorithm was
\(E_{\text {est }}=\epsilon_{\text {est }} 5!/ r^{s}=6 \times 10^{-6}\).
Incidentally，an absolute accuracy of less than \(10^{-4}\) was estimated and a better accuracy obtained for \(r=0.3,0.4,0.5,0.6,0.7\) with \(m=32,32,64,64,128\) ，respectively．For \(r=0.8\) and \(r=0.9\) the routine failed to converge with \(m=128\) giving absurd results and estimates．These latter values of \(r\) are greater than the radius of convergence \(R_{c}=\pi / 4\) ．

The role played by the output status parameter NCODE is illustrated in this example．With \(r=0.1\) and \(r=0.2\) ，the value of \(N C O D E\) indicated immediately that the results were not to be taken seriously because of roundoff error．With \(r=0.8\) and \(r=0.9\) ， the value of \(N C O D E\) indicated that the results were not to be taken seriously because of lack of convergence．Thus the calculation could have been carried out completely under program control， with a driver program finding for itself an appropriate value of \(r\) ． An efficient program for this application would require modifi－ cations（a），（b），and（c）of the previous section．

The testing of the algorithm included the calculation of high－
order derivatives．In general，it frequently happens that even when analytic closed expressions are known for such derivatives，these expressions are difficult to evaluate because of excessive subtraction error．Cases in point include the functions \(e^{x} / x\) and \(\sin (x) / x\) ． Programs were written to evaluate the first 80 derivatives of these functions at \(x=5,10,20,40\) ，and 80 ．It turned out that meaningful results could be obtained．For example，for \(f(x)=e^{x} / x\) ，using \(r=32\) and \(\epsilon_{\text {req }}=10^{-10}\) ，ENTCRE gives
\(f^{(25)}(40)=3.6560469 \times 10^{16}\)
with an estimated relative accuracy of \(2.5 \times 10^{-9}\) ．These results were compared with those obtained using an algorithm due to Gautschi and Klein［2，3］．In all cases examined corresponding results agreed to within the calculated error estimate．

\section*{References}

1．Delves，L．M．，and Lyness，J．N．A numerical method for locating the zeros of an analytic function．Math．Comput． 21 （1967），543－560．
2．Gautschi，W．，and Klein，B．J．Recursive computation of certain derivatives－A study of error propagation，Comm．ACM 13 （Jan． 1970），7－9．
3．Gautschi，W．，and Klein，B．J．R282 Derivatives of \(e^{x} / x\) ， \(\cos (x)\) and \(\sin (x) / x\) ．Comm．ACM 13 （Jan．1970），53－54． 4．Gentleman，W．M．，and Sande，G．Fast Fourier transforms－ for fun and profit．Proc．AFIPS 1966 FJCC，Vol．29，Spartan Books， New York，pp．563－578．
5．Lyness，J．N．，and Delves，L．M．On numerical contour integration round a closed contour．Math．Comput． 21 （1967）， 561－577．
6．Lyness，J．N．，and Moler，C．B．，Numerical differentiation of analytic functions．SIAM J．Numer．Anal． 4 （1967），202－210． 7．Lyness，J．N．Numerical algorithms based on the theory of complex variables．Proc．Acm 22nd Nat．Conf．1967，pp．125－134． 8．Lyness，J．N．Quadrature methods based on complex function values．Math．Comput． 23 （1969），601－（620．
9．Sande，G．，Fast Fourier transform－A globaly complex algorithm with locally real implementation．Proc．4th Ann． Princeton Symp．on Information Sciences and Systems，1970，pp． 136－142．

\section*{Algorithm}
```

```
        gIMROUTINF, fNTCRE & CFIIN. ZEIA, hCIRC, EPREO. FPMACH, NMAX, NCODE,
```

```
        gIMROUTINF, fNTCRE & CFIIN. ZEIA, hCIRC, EPREO. FPMACH, NMAX, NCODE,
```

```
        gIMROUTINF, fNTCRE & CFIIN. ZEIA, hCIRC, EPREO. FPMACH, NMAX, NCODE,
        GIDROUTINF, FNTCRE ( CFIN, ZEIA, RCIRC, EPRE
        GIDROUTINF, FNTCRE ( CFIN, ZEIA, RCIRC, EPRE
        GIDROUTINF, FNTCRE ( CFIN, ZEIA, RCIRC, EPRE
C % fvaluatiun of normaliged taylok COEFFICIENTS##
C % fvaluatiun of normaliged taylok COEFFICIENTS##
C % fvaluatiun of normaliged taylok COEFFICIENTS##
** (OF a REAL. ANALYTIC FUNCTION **
** (OF a REAL. ANALYTIC FUNCTION **
** (OF a REAL. ANALYTIC FUNCTION **
    "% GENERAI PIIROSF, "## OF NORMALIZED TAYLOR COEFFICIENTS
    "% GENERAI PIIROSF, "## OF NORMALIZED TAYLOR COEFFICIENTS
    "% GENERAI PIIROSF, "## OF NORMALIZED TAYLOR COEFFICIENTS
    #"% GENGRA\ PUIRPUSF,"#
    #"% GENGRA\ PUIRPUSF,"#
    #"% GENGRA\ PUIRPUSF,"#
    TCISF(I+1)= (RCIRC**SH: (J-TH DHNTVATIVE OF CFUN(フ) AT Z=ZETA)
    TCISF(I+1)= (RCIRC**SH: (J-TH DHNTVATIVE OF CFUN(フ) AT Z=ZETA)
    TCISF(I+1)= (RCIRC**SH: (J-TH DHNTVATIVE OF CFUN(フ) AT Z=ZETA)
    DIVIDFO HY +ACTINIALI.N...3, = 0.1.2.3...NMAX-1.
    DIVIDFO HY +ACTINIALI.N...3, = 0.1.2.3...NMAX-1.
    DIVIDFO HY +ACTINIALI.N...3, = 0.1.2.3...NMAX-1.
    TO A IIMIFORM ABSOLUTE ACCUHACY *&FPESTA& USING FUNCTION
    TO A IIMIFORM ABSOLUTE ACCUHACY *&FPESTA& USING FUNCTION
    TO A IIMIFORM ABSOLUTE ACCUHACY *&FPESTA& USING FUNCTION
    VALUFG OF CHUN(Z) AT HOINTS IN THE COMFLEX PLANE LYING ON
    VALUFG OF CHUN(Z) AT HOINTS IN THE COMFLEX PLANE LYING ON
    VALUFG OF CHUN(Z) AT HOINTS IN THE COMFLEX PLANE LYING ON
    THE C.IRCLE UF RAOIUS #*RCIRC## WITH CENTER AT Z = ZETA.
    THE C.IRCLE UF RAOIUS #*RCIRC## WITH CENTER AT Z = ZETA.
    THE C.IRCLE UF RAOIUS #*RCIRC## WITH CENTER AT Z = ZETA.
    THE C.IRCLE UF RADIUS #*RCIRCH# WITH CENTER AT 2 = RETAA. 
    THE C.IRCLE UF RADIUS #*RCIRCH# WITH CENTER AT 2 = RETAA. 
    THE C.IRCLE UF RADIUS #*RCIRCH# WITH CENTER AT 2 = RETAA. 
    TETA IS REAL. AND MLSO CFUNIZI IS HFAL WHEN Z IS REAL.
    TETA IS REAL. AND MLSO CFUNIZI IS HFAL WHEN Z IS REAL.
    TETA IS REAL. AND MLSO CFUNIZI IS HFAL WHEN Z IS REAL.
    "# THEONETICAL RESTRICTIONS #*
    "# THEONETICAL RESTRICTIONS #*
    "# THEONETICAL RESTRICTIONS #*
    RCIRC MUST BF SMALLEL THAN THF RANIUS OF CONVERGEMCF OF
```

```
    RCIRC MUST BF SMALLEL THAN THF RANIUS OF CONVERGEMCF OF
```

```
    RCIRC MUST BF SMALLEL THAN THF RANIUS OF CONVERGEMCF OF
```

```



```

```
SHOUTO CFUN(Z) HAPPEN TO HE AN OUD FUNCTION
```

```
SHOUTO CFUN(Z) HAPPEN TO HE AN OUD FUNCTION
```

```
SHOUTO CFUN(Z) HAPPEN TO HE AN OUD FUNCTION
C* -CF(INI-(<-ZETA))=CFUN(Z-/FIA) ** IS AN IDENIITY.
C* -CF(INI-(<-ZETA))=CFUN(Z-/FIA) ** IS AN IDENIITY.
C* -CF(INI-(<-ZETA))=CFUN(Z-/FIA) ** IS AN IDENIITY.
        *: RFOUIREMENTS FOH CALI-ING HROIGAM **
        *: RFOUIREMENTS FOH CALI-ING HROIGAM **
        *: RFOUIREMENTS FOH CALI-ING HROIGAM **
CALLING, HOOGRAM MUST CONIAIN CONTROL STATEMENTS DESCRIHED
CALLING, HOOGRAM MUST CONIAIN CONTROL STATEMENTS DESCRIHED
CALLING, HOOGRAM MUST CONIAIN CONTROL STATEMENTS DESCRIHED
NOTES (1) AINI) (4) HELOW. IT MIIST ALSO ASSIGN VALJESS TO
```

```
NOTES (1) AINI) (4) HELOW. IT MIIST ALSO ASSIGN VALJESS TO
```

```
NOTES (1) AINI) (4) HELOW. IT MIIST ALSO ASSIGN VALJESS TO
```

```



```

```
    (1) CFINNOUT PANAMETEHG:##
```

```
    (1) CFINNOUT PANAMETEHG:##
```

```
    (1) CFINNOUT PANAMETEHG:##
    (1) CFIN NAMF. OFOINMMLEOGUNICH TAYLOR EXPANSION IS REQUIRE:\
    (1) CFIN NAMF. OFOINMMLEOGUNICH TAYLOR EXPANSION IS REQUIRE:\
    (1) CFIN NAMF. OFOINMMLEOGUNICH TAYLOR EXPANSION IS REQUIRE:\
    (3) RCIRC HADIUS (REAI.
    (3) RCIRC HADIUS (REAI.
    (3) RCIRC HADIUS (REAI.
    (3) RCIRC THE AHGOLUTE ACCURACYY (HEAL) TO WHICH THE
    (3) RCIRC THE AHGOLUTE ACCURACYY (HEAL) TO WHICH THE
    (3) RCIRC THE AHGOLUTE ACCURACYY (HEAL) TO WHICH THE
    (5) FORMAIIZEO IAYLOH COHFFICENTS, ICOF(J). ARF REOUIRED
    (5) FORMAIIZEO IAYLOH COHFFICENTS, ICOF(J). ARF REOUIRED
    (5) FORMAIIZEO IAYLOH COHFFICENTS, ICOF(J). ARF REOUIRED
    (5) fUMACH IHE NACHINF ACCl|PACY HARAMFIFR (REAL)
    (5) fUMACH IHE NACHINF ACCl|PACY HARAMFIFR (REAL)
    (5) fUMACH IHE NACHINF ACCl|PACY HARAMFIFR (REAL)
        COR AIV ISNHEN BOUNGI ON IHE QELATIVE ACCIJRACY OF
        COR AIV ISNHEN BOUNGI ON IHE QELATIVE ACCIJRACY OF
        COR AIV ISNHEN BOUNGI ON IHE QELATIVE ACCIJRACY OF
        MANTIIFS LIKELY IO HF FiNCOUMSENED).
        MANTIIFS LIKELY IO HF FiNCOUMSENED).
        MANTIIFS LIKELY IO HF FiNCOUMSENED).
    (G) NMAX PWYGICAL UPPFR IIMIT ON THE SIIEE AND LENGTH
    (G) NMAX PWYGICAL UPPFR IIMIT ON THE SIIEE AND LENGTH
    (G) NMAX PWYGICAL UPPFR IIMIT ON THE SIIEE AND LENGTH
        WHYGICAL UPPFR IIMIT ON THE SIZE ANDOLEAIGTH
```

```
        WHYGICAL UPPFR IIMIT ON THE SIZE ANDOLEAIGTH
```

```
        WHYGICAL UPPFR IIMIT ON THE SIZE ANDOLEAIGTH
```

```



```

```
        COEFFICIENTS CALCOIATEDIWILL GE THAT POWER OF TWO
```

```
        COEFFICIENTS CALCOIATEDIWILL GE THAT POWER OF TWO
```

```
        COEFFICIENTS CALCOIATEDIWILL GE THAT POWER OF TWO
    (7) NCODE .GEE.0 THE MOUTINF WILL DU AS WELL AS IT CAN.
    (7) NCODE .GEE.0 THE MOUTINF WILL DU AS WELL AS IT CAN.
    (7) NCODE .GEE.0 THE MOUTINF WILL DU AS WELL AS IT CAN.
(7) NCODE OGE.0 THE WNUTINF WIIL DU ASG WELL AS IT CAN. 
(7) NCODE OGE.0 THE WNUTINF WIIL DU ASG WELL AS IT CAN. 
(7) NCODE OGE.0 THE WNUTINF WIIL DU ASG WELL AS IT CAN. 
(7) NCODE OGE.0 THE WNUTINF WIIL DUUSG WELL AS I' CAN. 
(7) NCODE OGE.0 THE WNUTINF WIIL DUUSG WELL AS I' CAN. 
(7) NCODE OGE.0 THE WNUTINF WIIL DUUSG WELL AS I' CAN. 
        IF THE RFOUIRHOD ACCUKACY CANAC
```

 IF THE RFOUIRHOD ACCUKACY CANAC
    ```
        IF THE RFOUIRHOD ACCUKACY CANAC
```

```
        gIIRROUTINFFNTCRE/ CFIIN. ZEIA, LCIRC, EPREO. FPMACH, NMAX. NCODE,
```

 gIIRROUTINFFNTCRE/ CFIIN. ZEIA, LCIRC, EPREO. FPMACH, NMAX. NCODE,
    ```
        gIIRROUTINFFNTCRE/ CFIIN. ZEIA, LCIRC, EPREO. FPMACH, NMAX. NCODE,
    . fofSt, NTCOF, TCOF, wORk, NTAB, SinTAM,
    . fofSt, NTCOF, TCOF, wORk, NTAB, SinTAM,
    . fofSt, NTCOF, TCOF, wORk, NTAB, SinTAM,
o f.valuation or normalized taylor coffficients **
o f.valuation or normalized taylor coffficients **
o f.valuation or normalized taylor coffficients **
                                    *
```

 *
    ```
                                    *
```



```
C (3) IISES NMAX TO CHEEK PHYSICAL LIMIT IF THIS HAS BEEN
C REACHFD, II GOES TO STAGE FOUR (A) SETTING NCODE \(=-1\) OR -2.
\(C\) (4) OTHEPWISE CONTINIEGS NFXTITERATION BY GOING TO STAGE THREE
    ou calculalion of first ntcof tayiour coefficients in
    gtage fiunt (a)
    A VERSION OF THE. FAST FUIJIER TRANSFORH USING A WORK ARRAY
    IS VSFIO THE ALRAY
    IS USFO. THE ARRAY WWWORK"\# IS USED ONLY DUKING THIS STAGGE
THF WORK ARHAY ALIOWS THE PEHMUTING OF INUICES ASSOCIATED
    WITH IN-PLACE FFTS TO HE SUPPRESSED. THE FFI CALCILATES
THF NECCESSARY SUMMAIIONS EXCEPT FOH DIVIUING GY NTCOF.
C * SETTING UF REMAINING TAYLOH COFFFICIENTS IN STAGE FOUR(B) **
    THF CONVERGENCE CRITERION ALI OWS US TO INFER THAT THE
NORMAITZED IAYIUR COEFFICIFNTS OF URIEN GREATER THAN NTCOF
    C ARF ZFRO TO ACCURACY fPEST. THEY ARE EVALUATED AS BEING
    EXACTI.Y ZERI).
        PFAL ZFIA.HCIHC, EPRFFI, F.PMACH, EPEST
        INTEGER NMAX. NCODE, NICAF, NIAH
    RFAL TCUF (1), WOKK (1). SINTAB (1)
    INTEEER NAHORT, NCONV, NUISP. NUOLIM, NPREV, NROUND, NSPACE
    I: MTEGER J.JCONJ. JCOS, JF KOM, JRCONJ, JREFL, JSIN, JTO
    RFAL ERRORI, ERRORZ, ERROR 3 , ERRUK 4 , EXACT, FMAX,FVALIM
    RFAL FVALRE,RCOS•RSIN.SAFETY,SCALE,SUPPER,TWOPI
    PIMPLEX FVAL,ZVAI.
    CIMPLEX CMPLX
*** sTAGE OVE ***
C INITIAIISE HOOKKEFHING, PARAMETERS ANU EXACT VALUE OF TCOF(1).
    ASOUND \(=1\)
AARORT \(=0\)
    If (NCODE.LT.0) NAHORT =
    EPCOF = EPRET
    SAFETY \(=10.0\)
    ZVAL \(=\) CHPIX(7F:(A,0.0)
    VVAL = CFIIN(ZVAL)
    FVAL.RF = RFAL(FVAI \()\)
c \#** STASAK Tw
C FIRST THREE ITtMATIONS ( THOSF WIIH NTCOF \(=1.2 .4\) ).
    7VAL = CMPLX(/ETA+HCIRC,0.0)
    FVAL = CFIN(/VVAL)
    VVALRE \(=\) RFAL (FVAL
    APDR()X = FVAI.PE
    MAX \(=A B G(F V A L D R F)\)
    \(\operatorname{TCOF}(1)=\) FVALRE
\(\operatorname{FRDROR} 3=\) ARS (APPKOX \(-E X A C T)\)
    TVAL \(=\) CMPI X (ZETA-RCIRC,0.0)
    FVAL \(=\) CFIIN(ZVAL)
    FVILRE \(=\) REAL(FVAL
    APPROX \(=1.5 *\left(A P P_{R O X}+\right.\) FVALPF
    FMAX = AMAXI(FMAX.ABS (FVAI.RE)
    COF (T) \(=\) FVALEKK
    VVAL \(=\) CMP \(\times(\angle E T A . H C I R C)\)
    VAL \(=\) CFHM(ZVAI)
    VALRE = NEAL(FVAI)
    VALIM = AIMAri(FVAL.
    APPROX \(=0.5 *(A P P R I) X+F V A I R E)\)
    FIAX \(=\) AMAXI (FMAX.CAHS (FVAI.)
    \(\operatorname{COF}(2)=\) FVALHE
    FRRORI \(=\) ABS(APPKOX-EXACT)
    NTCOF \(=4\)
    FPOO = FMAX*SAFETY*FPMACH
    IF (EPR(I.LI.EPCOF) GO TO 300
        \(\mathrm{FPCOF}=\mathrm{E} \cdot \mathrm{PKO}\)
        MROUNI \(=\) ?
        IF (NABORT.EO.O) GO TO 300
        MCODE \(=0\)
FPEST \(=\) F
        FPEST = FPRO
C "H\# GTAGE THREE \#\#
C COMMENCE ITEAATION NUMBER NICOF
    300 CONTINIIT
        NDTEE \(=\) NTCOF
NTCOF \(=\) 2HNITCOF
    *** GTAGE THDEE (A) ***
C llpoaty sintab table if necessafy.
    IF ( 4 NNIAh.OE. NTCOF) GO TO 340
    IF (NTAH.GE.E) GO IO 310
        SINTAG(1) \(=0.0\)
        SNTAH(2) \(=\operatorname{SoHT}(6.5)\)
```



```
    310 comitinut
    NDOLIM \(=\) NTAH-
        nn \(320 \mathrm{~J}=1\).NDOLIM
            FFROM \(=\) NTAB-J
            TO \(=2^{*} .5 \mathrm{FFOM}\)
            ITO
SINTAK (JTO
    3 20 COMTINJT.
    WTAH
    MPI \(=\) H.U"AATAVI 0
    COSDIF \(=\operatorname{COS}(T\) MOPT/FLOAT (4*NTAB) \()\)
    (i) OLIM \(=\) NTAH-3
    On 330 1 = 1•NIOLIM.
    (NTAR(J) \(=(1) \cdot 5 * S I N T A B(J) * 0.5 * S(N T A H(J+2)) / C O S D I\)
    330 COMTIMALE
        STNTAB(NTAB) \(=\operatorname{COSDIF}\)
```



```
C "\#\# GTAGF THREE (B) ***
c. UPDATF I IST OF FISNCIION VALUFS IN TCOF,
C CALCIHATE FmAX ANI) APPR(IX.
    N.OMLIM \(=\) NPREV-1
        (1) 350 J \(=1\) NDOLIM
        IFROM \(=\) NPRFV-J
```



```
        \(\operatorname{TCOF}(J T O+1)=\operatorname{TCOF}(J F H O M+1)\)
    350 COMTINUE \(\begin{gathered}\text { C.IPPth } \\ \text { R. }\end{gathered}\)
    WIOLIM \(=(\) INPRE.V/Z)
    WHOLIM \(=\) (NFREV/Z)-1
WGPACE \(=(4\) \#NTAB)/NTCOF
    in \(360.1=1\) NiOLIM. 2
        ISIN = JHNSPACE
        JCOS \(=\) MTAB-JSIN
RSIN \(=\) RCIRCMSTATAB(JSIN+ I)
        SIN \(=\) RCIPCNSTATAB(JSIN+
ROS \(=\) RCIRC.
        RCS \(=\) RCIRCOSTNTAB(JCOS + 1 )
```



```
        FVAL \(=\) CFUN(TVAL.)
        FVALRE \(=\) FFEAL (FVAL)
```

```
    FVALIM = AIMAG(FVAL)
    SUPPE.K = SUPPER+FVAL.RE (FVAL))
    rCOF (J+1) = FVALHE
    TCOF(JCONJ & ) = FVALIM
    JREFL = NPREV-J
    TVAL = CMPLX(ZETA-RCOS,RSIN)
    FVAL = CFUN(ZVAL)
    FVALRE = NEAL(FVAL)
    FVALIM = AIMAG(FVAL)
    GUPPER = SUPPER +FVNIRE
    MAX = AMAXI(FMAX,CABS(FVAL))
        TCOF(.JREFL+1)= = FVALPE 
    350 COMTINUE
APPROX = 0.S*APPROX+SUPPER/FLOAT(NPREV)
C *as STAGE THPEE(C) ***
C CONVFOGENCE AND TERMINATION CHECK.
    FRROR4 = FRHOR3
    FRNORS = EHPOR
    FRROR1 = AHS(APPROX-EXACT)
    EPRO = +MAX#SAFETY#EPMACH
    IF (EPRO.LT.EPCOF) GO TO 370
        FPCOF = FPRO
        IF (NAHOHI.ER.O) GO TO 370
        NCOOE = O
        EPEST = EPR 
        CONTINUL
    70 CONTINUL
    MROOR4 = AM4XI (ERHOR4.EPRO)
    FO4R = RRROR2*(1ERHORZ/ERROR4)*R(4.0/3.0))
    ER32 = ERFOH2*((ERFORR/ERHOR3)##Z)
    FPMIN = AMINITERROR2,FP32,FP4ZI
    FPFST = AMAXI(FRRORI.EPMIN.FPPRO
        F (TPFST.(GT.EPCOF) GO TO 380
        MICONV = 1
    380 rONTINUE
    IF (ZNNICOF.LF.NMAX) GO TO 300
### STAGE FOUR(A) #**
C CAICULATION OF FIHST NICOF TAYLUR COEFFICIENTS USING F.F.T.
    400 COINTINHF
        Nrode = nconvanircund
    N(1)ISP = NTCOF
    410 COMTINUE
        CALL HFCOF (NICOF,NIOISN,TCOF,WOHK,NIAR,SINTAB,
        F (NDISP.GT.1) GO TO 430
        On 420,J=1.NTCOF
        CONTINUL
    3) rontinut
        NOISN = NoISP/R
        CALL HFCOF (NTCOF,NOISP,WORK,TCOF,NTAB,SINTAB)
        IF (NDISP.GT.1) (;O TO 410
    4 4 0
    CONTINUL
    SCALF = 1.0/FLOAT(NTCOF)
            450J=1.NTCOF
                TCOF(J) = 1COF(J)*SCALF
C 450. CINTINUE GTAGF FOUR(H) ONA
C SETTING OF HEMAINING; TAYIOR COEFFICIENTS.
    IF (NTCOF.GL.NMAX) GO 10470
    NO 4GG1= NUOL
        mm.nmax
        COFk(.,)}=0.
    4 6 0 \text { CONTINU/}
    470 ranitime
    RFTURIN
C END OF ENTCRE
    GIMRROUTINE MFCOF I NTCOF, NOIGP, ICOF, WORK. NTAB. SINTAB ,
C *O HENMITIAN FOURIER COEFFICIFNTS **
C ** GENERAI PHRPOOSE ***
C THIS ROUTINE DOLS ONE PASS UF A FAST FOURIER TRANSFORM.
C THE INHEXIMG; IS APHARIGEO SO TMAT THE COEFFICIENTS ARE IN
C OPDEF AT THIE ENNO OF THE LAST PASS. THIS INOLXING REOUIRES
C PARTIAI RHSUITS. THIS ROUTINE IS CALLFU ONCE. FOR FACH PASS.
C ## INPUT PARAMEIERS ##
C (1) MICUF NUMHER OF COEFFICIENTS TO HE PROCESSEO.
    (3) MNISP MAXIMUM VALUE OF IIISPLACEMENT INDE.X
    (3) TCOF (REAL) INPUT ARRAYY.
    (5) MTAH NUMMEH OF ENTRIES IN SINTAH.
    (f) SINTAH (HFAL) TAHLE OF VAL.BES OF SINE.
SINTAN(J+1)=SIN(HIOJ/2#NTAH), J=0,1,2...NTAH-1
```

```
    C (4) WORKTPUT PARAMETERS (REAL) UUTPUT"ARRAY.
THE TN() POINT FUURIEN
C OF TCOF WITH INUICES AND JOISP&NPREV + IREPL * NHALF
C THE RESULTS ARE MOUJFIEI HY THE APPROPPRIITIE TWIDDLF FACTOR
C AND RESULTS ARE MODIFIED HY THE A
    INISP*NNEXT & IHEPL. ANO JOISP#NNEXT *IREPL +NPREV
    WHFDF
    NIDISP PROOUCT OF KENAINING FACIOKS.
    MNPOEV PROOUCT OF REMAINING FACTORS.
    MPDNEV PHONUCT OF PREVIOUS FACTOHS.
    MPNFXT PPODDUCT OF PREVIOUS ANO CURRENT FACTORS:
    NHAIFR PROIUCT OF PREVIOUS ANO REMAINNING
    MRFPL
        THLEE CAGES.
        INMEE CAGES. FOINT - JDISP::O. INPUT POINTS
        PIJNELY HEAL.
        ?) MIDULE POINT - JHISP=NHISP/Z - NOT
        OUTPUT POINTS ARE PURELY REAL.
        3) INTERMEIIIATE. YOINTS - JUISP=1,2,\ldots(ND)ISP/2-1)
        - NOT ALWAYS PRESENT. INPUI POINTS AREE
ON INPUT, THE HERMITIAN SYMMETRY IS IN A BLOCK OF IENGTH
ON INPUT, THE HERMPISNT CONJUGATE TO JDISH IS ZथNUISH-JOISP.
Z*NOISP, I,T. THE POINT CONJUGATE TO JDISP IS 2"NUISH-JDISP.
NDISP. F. THE POINI CONJUGATE TO IDISP IS NDISP-IDISP.
C NO HERMITIAN SYMMETHIC HLOCK HAS REAL PARTS AT THE FRONT
C A HERMITIAN SYMMETRIC HLOCK RAS REAL PARIS AI THE F
C POSITIONS AT THE HACK.
C THE TMIDOLF FACTOR CEXD(-PI#FYE#J/NI)ISH), J=1.2\ldots(NDISP/2-1)
C IS OHTAINED AS SEPAHATE REAL AND IMAGINAIRY PARIS FROM
IHF SINTAB IABLF. THE IMAGINARY PART SIN(PI*J/NOISP) IS
C FOUNO AT A SPACINGGOF NSPACE=2*NTAR/NOISP IN SINIAH.
C the rfal part is foung ar a conjugate position in the table.
C T
    INTEGGRR NTCOF,NISISN,NTAG
    QFAL CS,IS,IU,IN,II,RS.RU.RUOHI,SN
    TM,
    THTEGEN KTZ.KT3
    NODEV = NTCOF/(?*NI)ISP)
    NVFXT = NTCOF/NUISH
    NHTDL = (NNISN-1)/2
    HIPACE = (2NNTA,A)/NO1SP
C INTTIAL POINTS OF BLOCKS.
    D0) }100\textrm{JPEPL}=1.NPRT
        KTO = JRENL
        KT1 = KTA+NHALF
        KWO = JKEPL
        KW1 = KWAF*NPREV
        KWL = KWA*NPREV
        R1 = TCOF (KTI)
        NORK(KWOO) = KO*HI
100 CONTINUT
C IOOTEONTINUHE
    IF (NMIM..II.I) GO TO 400
    In 300.015P = 1.NMIOL
        .JCON.I = NUISP-.JIISP
        ISIN = JOISP#NSHACE
        ICOS = NTASTSSIN
        SN=SINTAH(.SSIN+1)
        CS = SIMTAH (.JCOS+1)
        TIC= JCON J#NPHFV
        .JW=,NIISP*NNEXT
        JWC= JCOMJW+NNEXT
        MO POU JREPL = 1,NHHEV
            KTO = JT+JRFPL
            KT1 = KTO+NHAL_H
            KT? = JTC+JPENL
            KWC= KlCPNHHALT
            KWCN= Jw, JREPPt
            KWz = JWC + JRFNL
            KW3 = KWZ2+NPREVV
            RO = TTOL NPIO:
            IO =TCOF(KT3)
            OL=TCOF(KTZ)
            IL=-TCOF(KT1)
            RC= RO+R1
            1S = 10+11
            RU=RO-HI
            WOPK (KW(1) = K
            WOLK(KWLD) = IS
                WOKn(KW1)= RUNCS+10*SN
            WORK (KW1) = RUNCS+11FESN
    CONTIN
    300 CONTINUH:
C MIDDLF POINIS DF WEOCKC.
    IF (NIISP.LF.1) GO TO 600
    IT = (NJISP/C)ONPREV
    I. = (NIISP/Z)
    i.* = (NIISP/D)*NNEXT
        KTO = JT*JRFPL
        KII = KIO+NHALF
        KWO = WW+JREML
        KW1 x KW(1+NPNEV
        LO= COF(KTO)
        WOHK(KWO) = 2.0*H1)
        #NORK(KW0)}=2.0*40
    500 CONTINUE
    G00 CONTINUE:
C FND OF HFCOF
    Frin
    GIJMROUTINE, fintCAF , CFIN, ZEIA, RCIRC, EPREQ, FPMACH, NMAX, NCQDE,
    - FDEST, NTCOF. TCOF. NORK, NIAR, EXHTAB),
** EVALUATION OF NORMALIZED TAYLOR COEFFICIENTS **
\#F AN ANAIYTIC FUNCTION
    IS ROUTINERAL EVALURAESS A SET OF NORMALIZED TAYLOR COEFFICIENTS
TCOF \((, j+1)=(\) RCIRCaH \()\) (JーTH OERIVATIVE OF CFUN(7) AT Z=ZETA
\(\ldots J=0\)
TO A INMIFORM ABSOLUTE ACCURACY *HEPEST\#\# USING FUNCTION
VAIIJFS OF CFUN(L) AT POINTS IN THE COMPLEX PLANE LYING ON
THE. CIPCLE OF RADIUS \#HCIHC* WITH CENTER AT \(Z=\angle E T A\).
    ** THEOHETICAI HFSTRICTIONS **
KCIRC MUSY HE SMALLER THAN THE RAOIUS OF CONVERGENCE OF
THE TAYLOH SERTES. THE PROULEM HAS TO BE REFORMULATED
SHOUL C CFUNIZ) HAPPEN TO BE AN OOD FUNCIION OF (Z - ZETA),
THAT IS IF THE RELATIUN \(\# \#-C F(U N(-(2-Z E T A))=C F U N(Z-T E T A) * *\)
is an ioemtity.
    ©* REOUIREMENTS FOR CAL.LING PROGRAM
CAILI ING, PROGKAM MUST CINTAIN CONTRDL STATEMENTS DESCRIBED
IN NOTHS (3) ANO (4) HELOW. IT MISST ALSO ASSIGN VALUES 10
IN NOTFS (3) ANO (4) HELOW. IT MISST ALSO ASSIGN VALUES 10
INPUT PARAMETERS. THE ROUTINE REOUIRES TWO SUBPROGRAMS,
INPUT PARAMETERS THE ROUTINE RE(JUIRES TWO SUGPROGRAMS,
    **INPUT PARAMETERS**
    (1) CFUN NAME OF COMPLEX FUNCTION SUBPROGRAM.
(2) THTA COMPLEX POINT ABOUT WHICH TAYLOR EXPANGION
    (3) RC,IRC PADIUS (REAL.)
    (4) FPREO THE ABSOI.UTE \(\triangle C C U R A C Y\) (REAL.) TO WHICH THE
    5) NORMALIZED TAYIOR COEFFICIENTS, TCOF (,J) ARE REQUIREO
    (5) FPMACH THE MACHINE ACCURACY PARAMETER (REAL.) (OR
    UPHEK HOUMI) ON THE RELATIVE ACCURACY OF
OIONTITIEG LIKELY TO RE EINLOUNIEKEO).
    (6) NMAX PHYSICAL UPPEK LIMIT ON THE SIZE AND LENGTH OF
    PhYSICAL UPPER LIMIT ON THE SIZE AND LE
THF CALCUI ATIOI. THE MAXIMUM NUMBER OF
    THE CALCUI ATIOL. THE MAXIMUM NUMBER OF
    COEFFICIENTS CALCUIATED WILL BE THAT POWER
    COEFFICIENTS CALCUILIED WILL BE THAT POWER OF
TNO LESA THAN OR FOUAL TO NMAX. NMAX IS
ASSUMES TO HE AT LEAST 4 . (SEE NOTE (3) BELOW.
    (7) NCODF GF. 0 THE HOUTINF WILL \(0 O\) AS WELL AS IT CAN.
    (7) NCODF
    LTAO THF HOUTINE WILL ABORT AT AN EARLY Y
GTAGE IF THE RFOUIREU ACCURACY CANNOT RE

    HEFORF THE FIRLT CALL TO ENTCAF, HUT LFFT ALONE
    AFTER THAT. (FOR MOKE SOPHISTICATED USF. SEE
    AFTER THAT. (FOR MORE SOPHISTICATED USF, SEE
OHTPUT PARAMETEKS (I2) AND (13) AND NOTE (2)
    Hf LOw.)
    "* OUTPIJT PAKAMETFRS \#A
    (1), (2) \((3),(4),(5),(6)\) INENTICAL WITH INRUT VALUES
(T) NCODE RESULT STATIIS INGTCATOR. TARES ONE OF FIVE
    VALUES AS FOEI OWS.
    \(=+1\). COHVERGE. 1 ) NORMALLY.
    \(=+1\). CONVERGE. NORMALLY
\(=-1\). UTO NOT CONVERGE, NO ROUND OFF ERROR TROUBLE
    =+?. CONVEHGEI), HUT WITH a higher tolerance se
    AY THE ROUNH OFF LEVEL (EPEST.GI. EPREO)
\(=-2\). DID NOT COHVEPGE IN SPIEE OF HIGHER
    \(=-\) ? DiD NOT COHVERGE IN SPIIE OF HIGHPR
    TOIFRANCE SLT AY DOUND OFF LEVEL.
    OI.FRANCE SET AY POUNO OFF LEVEL.
O. HJIG WAS ABORTEO HECAUSE. EPREG IS
    = ?. FJIG WAS ABORTEO RECAUSE ERREO IS
    unaItainabi.e dut ro mound orf Level aini inpu
    UNATTAINABIE DUE TO mOUND OFF LEVEL ANI) INPUT
(9) FODES IS MEGATIVE.
FSTIMATE OF ACIUAL UNIFORM ABSOLUTE ACCURACY
(R) FPFST
    FSTIMATE OF ACIUAL UNIFORM ABSOLUTE ACCURACY
        IN ALI TCOF . FXCEPT IF NCOOE .FQ.0 ESTIMATE OF
    (9) NTCOF NUMBER OF NONTRIVIAL VALUES OF ICOF ACTUALLY
    CALCHLATEN. THEY ARE HASED ON NTCOF + 1 CALLS
(10) TCOF COMPLEX DIMENSION (OIM). ARPROXIMATIONS TO
        COMPLEX DIMENSION (OIM) ARPROXIMATIONS FO
THE NORMALIZEI IAYEOR COEFFICIENTS, EXCEPT WHEN
OUTPUT NCOOE \(=0\) (SEF NOTE(3) BELOW.)
THE NORMALIZEI) IAYLOR COEFFICIENTS, EXCEPT WHEN
OUTPUT NCOUE \(=0\). (SEF NOTE (3) BELOW.)
(11) WRKK OUTPUT NCOUE \(=\) INTEPNAL WORK ING AREA OF CUMPLEX DIMENSION (OIM).
(11) WORK INTERNAL WORKING AREA OF CUMPLEX IIMENSION
(12) FXPTAB COAPLFX DTMENSION (HIM/L) (SEE NOTES (2) AND


    \(J=" \cdot 1,2, \ldots\) NIAR-1
OTHE. POCATIONS ARE EMPTY.
    \#n NOTFS ON INPUI/OUTPUT PARALAETERS **
NOTE (1)* NCOUE IS USEO BOTH AS INPIJT AND UUTPUT PARAMETER.
NOTE (1)** NCODE IS USEO BOTH AS INPIST AND OUTPUT PARAMETER
NORMAILY II DETAINS THE. VALUE I ANII NEED NOT BE KESET
NORMAILY NGRMEIAINS
BETWEFN NGIMAS.
NOTE (つ)NE THE APPEARANCF OF NTAB ANO EXPIAIS IN THF CALLING

    THEGF NUMRF.RS IN ANOTHF H HART OF THE PROGGAM SHOUIN HE
SO DEGITEE. NTAH MIGT BE A POWEK OF TWO OR O.

NOTEIFING THE APPEAHANCF OF NMAX. ICOF, WORK. AND FXPTAB
IN THF CALII ING SFANANCE. ALLOWS THE SCOPE UF THE SUBPRUGRAM
NOTE (T)WE THE APPEAHANCF OF NMAX THE SCOPE OF THE SIIBPRUGRAM

PROGRAM, VIFICH SH
FOLLOMING EFFECI
COMPI_F TCOF (1)LM) , WOKK (1)IM) , EXPTAB(DIM/ट)

EDUAI TO DIM. HUT MAY UE IESS THAN DMM.
NOTE (4) CH CHUH (Z) IS A USEK PROVIDED COMPLEX VALOFN
FIJNCTION SUHPROGRAM WITH A CCMPLEX VALUED ARGUMENT. THE
FUNCTION GUHPROGRAM HITH A COMPLEX VALUED AHGUMENT. THE
CALL TNG PHOGRAM AUST CONTAIN CONTROL SFATEMENTS AG FOLLOWS
external crue
COMPIFX CFIN
    B HOCKKEFHTM, PARAMEIFRS FOK STAGE ONE ©
NCONV 1 CONVERGENCF ACHIEVEO.

NABORT is UPNATE TOLERANCE ARHSF CONTINUE ON APPEARANCE OF


FXACT THE EXACT VAIUE UF TCOF (I) WHICH IS CFUN(TETA).
SAFETY THIS IS A SAFTTY FACTOR AY WHICH THE ROUTYNE AVOIDS


    COMPLFEEIY. THE USFR NEFD ONLY AIJJUST THE INPUT
    COMPLFIEIY THE USFR NEFD ONLY AUR
PARAMFIER EPMACH APHQOPDIATELY.
(12) NTAB IN NORMAL RUNININT, NTAB SHOULD BE SUT LFFT ALONE
    - hatow.)
(T) NCODE RESULT STATIS INGICATOR. TARES ONE OF FIVE
    -1. UTO NO CDNERO NO ROUNGEH TOLEANCE SET
    acobe is negative.
    ROUAD OFF LFVEL
    -
```

\#* QUANIITIES CALCULATEU IN STAGE THKEE (A) **
PRESENTLY
C \#\# IS THEE FIRST PARTT OF ITERAAIION NUMBEH NTCOF,
AVAILABLE ARE EXPTA
J = n,1,2*...NTAH-1. THE SEOUENCE CEXP(PI*EYE*J/NTCOF/Z)).
J= 1,3,5....(NTCOF/2-1). SE NUMHERS ARE ALREAOY AVAILABLE
IF (NTCOF,LE, PWNTAB) THESE NUMHERS ARE ALREAOY AVAILABLE
IN THF EXPTAB TAHIE SPACED AI AN INTERVAL 2*NSPACE = 4*NT
T,
CALCIHLATING ANG STORING NTAH NEW VALUES AND UPDATING
NTAH TO ?*NTAH.
\#** OUANIITIES CAL.CULATED IN STAGE THREE (B) \#*
ITERATIONG ARE, NUHFERED 4,8,16.... AT THE ENI) OF
ITERATION NUMBER NTCOF, THE NTCOF COMPILEX FUNCTIDN SIORED
VALGFC AT ABCISSAS RFGULAPLYY S
IN THF TCNF VECNON(Z(J)) JN=0,1,2,···..NTCUF-1
WHERE
WHERE = ZEIA + RCIRC4CFXP(Z*PI*EYE*J/NTCOF)
THIS INVIOVES A REAKRANGEMENT OF THE NTCOF/Z FUNCTION
VALUFS AVAILABLE AT THE SIAPT OF THE ITERATION AND THE
VALCULATION OF A FIJRTIER NTCOF/2 FUNCTION VALUES. IN
ADDITION FMAX AND APPROX ARE CALCULATED. THESE ARE
APPROX ANCOUNTEPED.
FUNCTION VAI.UES.
** OUANIITIES CAI_CULATED AT STAGE. ThNEL(C)**
FRRORI CURRENT VALIUE OF THE ERROK = CABS (APPROX-EXACT).

```

```

MPREVIOUS ITFRATIONS.
EPRREO RE(OUIRED ACCIRACY. (INPUT PAKAMEIER)

C (=10.0\#EPMACH\#FMAX)

```

```

 ESTIMAIE OF CURRFNT ACCURACY. (THE MAXIMUM OF EPRO AND (OUTPUT PARAMETER)
 ** CONVERGENCE ANI) TERMINATION CHECKS IN STAGE THREE(C) **
 (1) IISFS FMAX TO RAISE EPCOF ABOVL ROUNID OHF LEVEL.0
 IF THIS NFCESSALY AND THE INPUT VALUE OF NCODE IS NEGATIVE,
(2) LISFS APYROX TO EVALIAIF CONNERGEINCE OF TCOF(1) TOWAROS

```

```

SEITING NCODE=+1 ORT +?
FOUR OH FEWFH POINTS).
REACHED, IT GOES TO STAGE FOUR(A) SETTING NCODE=-1 OR --2.
(4) OTHELEWISE COHTINIES NEXT ITEHATION BY GOING TO SIAGE
THRFF.
**CALCILATIUN DF FInST NTCOF TAYLON COEFFICIENTS IN STAGE FOUR(A)
M,
**CALCILANON THE, FAST FOUNIER TRANSFNRM USING A WNRK ARRAY

```

```

THF WIORK ARHAY ALLOWS THE PERHUTING OF INDICES ASSOCIATE

```

```

C "\#SETTING OR RFMAININGG TAYIOH COEFFICIENTS IN STAGE FOUR(B)
C THE CONVERGENCE CRITERION ALLOWS US TO INFER THAT THE
C NORMALIZE TO ACCURACYY FPEST. . FXACTI.Y ZERO.
C ARF ZFRO TO ACCURACY FPEST. FXACTI.Y ZERO.
COMPIEX CFIN
COMPLEX ZFIA
COMPLEX REIRC,H:HREQ,EPMMACHOFPEST
MNTEGEL NMAX,HCONE,NTCOF.NTAB
COMPLEX TCOF (1), WINK (1). EXPTAAB (1)
TNTEGER NABORT•NCONVONNISP,NUNLIM,NPP4Z.ERRUKIOFRRORZ
REAL. FRKOKZ,ERHORL,FMAX,SAFETY,SCALE,TWOPI

```

```

 INTEGFR J.JCONJ.JFROM, JTAR.JTO
 COMPLEX CMPLX.CONJG
 C *an GTAGE ONE
C INITIAIISE BOOKKEFPING PARAMETERS AND EXACI VALUE OF TCOF(I).
NMOUNO =1
IF (NCOUE.IT.O) NABORI = 1
FPCOF = EPREG
GPAFETY = 10.U
SAFETY= 1N.0
\VAL = LFTA
F\ACT = FVAL
C FIRST TWO IIERMIIONS (THOSE WITH NICOF = 1.2).
C FIRSTTWOR IIERNII
FRROR = O.O CMPLX(RCIRC00.0)
FVALL = CF MNN(\angleVAL)
\MPRROX=FVAL
FMAX = CAHG(FV
TCGF(1) = FVAL
FRNORO = CARS(APPROX-EXACT)

```

```

 NNL = (FMM(ZVAL)
 APHROX= = \'SA(APHRUXXFVVAL)
 FMAX = AHAXI(FMAX.CAHS(FVAL
 TCOF(?) = FVAl.
 RRORL= CABSS(APPROX-EXACT)
 C *H* GTAGE THPEE \#\#*
C COMMFNCE TTEOATION NUMHER NTCOF.
300 CONTINUH.
NNPNEV = NTCOF
C Wa* STAGF THILEE(A) ,\#\#
c updatf explab tamle if Nf.ctssagy.

```

```

 IF (NTAS.GF.己) i人) 10 310
 F%NTAS.GF.C) (0, (1.0,n.0)
 Fxprtas(?)}=(0.0),1.0
 NMTAB=?
 pREVIOUS ITFRATIONS.
(i0) }103
*** GTAGE ONE -CON*
FRH\capQP = CARSIAPPL
MTCOF= ?

```

\(\square\)

```

 in CONTINUE
 HONLIM = NTAB-
 OO 320 J = 1,NDOLIM
 IFROM=NIAB-J
 FXPIAB(.JTO+1) = FXPIAR(.JFROM+1)
 320 r
 CONTINDIE
 NAB = C#NTAM
 WOPI = K.0#ATAN(1.0)
 COCOIF= COS(IWO)!/FLLOAT(?*NTAH))
 MIONLIM = NTAB-3
 \GammaXPTAH(J+1)=(0.4*FXPTAR(J)+0.5*EXPTAB(J+2))/COSOIF
 330 CONTINUE
 FXDTAH(NIAB)=(0.ל#EXHTAH(NTAB-1)-(0.5,0.0))/COSOIF
 340 CONTINUE
C** STAGF IHREE(H) ***
c UPINATF LIST OF FUNCTION VAI UES IN TCOF.
C. CALCIILATE FMAX ANI APPROX.
NHOLIM = NPREV-1
OI) 350 J = L NUODLIM
JFROM = NPRFV-
.JTO =2\#JFROM (COF(JFROM+1)
350 CONTINUL
SOM = (0.0.0.0)
NSPACE = (z*NTAH)/NTCO
On 360 J = 1,NOOLIM.L
MTAB = JONSPACE
MFXP = RCIRCMEXPTAH(ITAH+1)
NVAL = IETA+REXP
FVAL = CFUN(/VAL
GUM = SUM FFVAL
MAX = AMAXI(FMAX.CABS(FVAL))
TCONJ = NTCOF-J
TVAL = TF.IA +CONJG(RFXP)
FVAL = CFUN(IVAL)
SUM = SIMN+FVAL
FMAX = AMAXI(FMAX.CABS(FVAL))
TCOF (JCOMJ+1) = FVAL
3 6 0 comitnut
APPROX = 1.'J*AMPLOX*SUM/FLOAI(NTCOF)
C ** STAGE THNEL (C) *\#*
CONNEKGENCE AND TERMINATION CHfCK.
FRPOR4 = FRROR
FNORS = ERKOR
GONRE = FRROR
FRPOHI = CAHS (APPROX-HACT)
PLOO = FNAX4SAFETY4FFMACH
IF (EPNO.1T.EPCNF) Gि T0 3%0
FPCOF = EMRO
NROUNIS = ?
IF (NAHORT.tg.0) GO TO 310
NCODF=?
FPEST = F'(H')
OO TO 4%%
370 rontimutut
IF (NTCOF.l.E.4) (in TO 3BN

```



```

 FOMIN = AMINI (ERKORZ, EHSZ,EP4P)
 FWFST = AMAXI(FHRORI EPMIN.EPKU)
 IF (FPEムT.'gT.EPCOF) GO IN 3.0
 NCONLV =
 380 contimute
 IF (2*N(COF.LE.NMAX) (%) 10 300
 MCONV = -1
 C *\#\# STAGE FGUQ(A) य***
C CAICUIATION OF FIRST NTCOF IAYLOK CUEFFICIENTS USING F.F.T.
400 CONTIN.UG NCONVENHOUNI)
NOISP = MTCOF
410 CONTINUE:

```

```

 IF (NOISH.GT.1) GO TO 430
 O) 420, 1= loNTC, (J)
 40% romilmutu
 ran TO 440
 MITSD = N|ISt/
 CALL CFLOF (NTCOF.NOISN,WOHK,ICOF,NTAH,EXPTAB)
 IF (NI)ILP.G1.1) GO TO 410
 4 4 0 ~ C O N T I N U H
 Scale = 1.0/rgoatuNICOF)
 GO 450J=1,NTCOF
    ```

```

 450) Contidut
    ```

```

SFTtING; OF wt.MAIMING TAYLOTH COFFFICIENTS
IF (NTCUF.Gt. DMAX) (GS FO) 470
IF (NTCUF.Gt.mont
On 400,J= NOOLIMH.NMAX
TC(1t (.1) = (0.0.0.0)
अ(%)स(.1)=(0.0.0.0)
460 ratitNMH
ROW!1N:M
C END OF FMMICAF
FIN
C O. COMPLEX r OIOIEN COEFFICIENTS \#*
C "% GENALAI. PIJRONEE. *i*
C THIG zOUTIDE DOES ONE PASS OF A FAST FOURIEK THANSFORM.
C THE INIEXINGGS ILRHANGFOU SO THAI THE COFFFICIENTS APE IN
CORDFH AT THE FIN: OF THF, IAST PASS. THIS INIEXING RFQUIRE
C PABHIAI LE SUIIG. IMIS RGUINNT IS CAI.IFO) ONCE FOR
C PAMYIAL NE

```


\section*{Algorithm 414}

\title{
Chebyshev Approximation of Continuous Functions by a Chebyshev System of Functions [E2]
}
G.H. Golub and L.B. Smith* (Recd. Oct. 11, 1967, Jan. 27, 1969, and Apr. 11, 1970) Dept. of Computer Science, Stanford University, Stanford CA 94305

\section*{Key Words and Phrases: approximation, Chebyshev approximation, Remez algorithm \\ CR Categories: 5.13}

The second algorithm of Remez can be used to compute the minimax approximation to a function, \(f(x)\), by a linear combination of functions, \(\left\{Q_{i}(x)\right\}_{0}^{n}\), which form a Chebyshev system. The only restriction on the function to be approximated is that it be continuous on a finite interval \([a, b]\). An Algol 60 procedure is given, which will accomplish the approximation. This implementation of the second algorithm of Remez is quite general in that the continuity of \(f(x)\) is all that is required whereas previous implementations have required differentialility, that the end points of the interval be "critical points," and that the number of "critical points" be exactly \(n+2\). Discussion of the method used and of its numerical properties is given as well as some computational examples of the use of the algorithm. The use of orthogonal polynomials (which change at each iteration) as the Chebyshev system is also discussed.

\section*{Description}
1. Introduction. Given a Chebyshev system, \(\varphi_{0}(x), \varphi_{1}(x), \ldots\), \(\varphi_{n}(x)\), we define the Chebyshev or minimax approximation to a continuous function \(f(x)\) over an interval \([a, b]\) to be the function
\(P_{n}(x)=c_{0} \varphi_{0}(x)+\cdots+c_{n} \varphi_{n}(x)\),
such that \(\epsilon\) is minimized, where
\(\epsilon=\max _{a \leq x \leq b}\left|f(x)-P_{n}(x)\right|\).
If \(\varphi_{i}(x)=x^{i}\), we have the minimax polynomial approximation of degree \(n\) to \(f(x)\). If \(\varphi_{i}(x)=T_{i}(x)\), where \(T_{i}(x)\) denotes the Chebyshev polynomial of the first kind of order \(i\), we have the minimax approximation as a sum of Chebyshev polynomials. For the definition of a Chebyshev system, see Achieser [3, p. 73].

\footnotetext{
Copyright (C) 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.
* Now at Computing Center, University of Colorado, Boulder, CO 80302
}

The algorithm presented here computes the coefficients \(c_{2}\), \(i=0,1, \ldots, n\), in (1.1) for any given Chebyshev system \(\varphi_{i}(x)\), \(i=0,1, \ldots, n\). The algorithm is based on the second algorithm of Remez [1], and also makes use of the exchange method described by Stiefel [2].

The characterization of the error curve, given by
\(\epsilon(x)=\sum_{i=0}^{n} c_{i} \varphi_{i}(x)-f(x)\),
is the basis for the second algorithm of Remez It is shown, for example, by Rice [11, p. 56] that \(p_{n}{ }^{*}(x)=\sum_{i=0}^{n} c_{i} \varphi_{i}(x)\) is the Chebyshev approximation to \(f(x)\) on \([a, b]\) if and only if there exists a set of points \(a \leq x_{0}<x_{1}<x_{2}<\cdots<x_{n+1} \leq b\) such that
(a) \(\epsilon\left(x_{i+1}\right)=-\epsilon\left(x_{i}\right)\),
(b) \(\left|\epsilon\left(x_{i}\right)\right|=\epsilon^{*}\), and
(c) \(\max |\epsilon(x)|=\epsilon^{*}\).
\(a \leq x \leq b\)
Thus, when the computed error curve attains this "equal ripple' character with at least \(n+1\) sign changes in \([a, b]\) we know we have the desired minimax approximation.

The second algorithm of Remez, based on the characterization, can be outlined in three steps.
(i) Choose an initial set of points, the reference set, \(a \leq x_{10}<\) \(x_{1}<\cdots<x_{n+1} \leq b\).
(ii) Compute the discrete Chebyshev approximation to \(f(x)\) on the reference set.
(iii) Adjust the points of the reference set to be the extrema of the error curve (1.3).
Steps (ii) and (iii) are repeated until convergence is obtained.
Proof of the existence of the minimax polynomial (given by (1.1) and (1.2) with \(\left\{\varphi_{i}\right\}_{0}^{n}\), a Chebyshev system) is given by Achieser [3, p. 74].

Proof that the second algorithm of Remez converges for any starting values for the critical points is given by Novodvorskii and Pinsker [4]. If \(f(x)\) is differentiable, Veidinger [12] proves that the convergence is quadratic. That is
\(\epsilon^{*}-\epsilon^{(k)}=O\left(\epsilon^{*}-\epsilon^{(k-1)}\right)^{2}\), as \(k \rightarrow \infty\),
where \(\epsilon^{*}\) is the maximum error for the Chebyshev approximation and \(\epsilon^{(k)}\) is the maximum error at the \(k\) th iteration. A survey article concerned with minimax approximations is given by Fraser [8].
2. Applicability. The algorithm presented herein has wide applicability in that it can be used to approximate any continuous function given on an arbitrary closed interval. In addition, the
approximating function is not restricted to polynomials or Chebyshev polynomials, but is allowed to be any linear Chebyshev system to be supplied by the user. Three simplifying assumptions often made in an implementation of the second algorithm of Remez are:
(a) Differentiability of \(f(x)\), the function to be approximated. (see [6], for example)
(b) The end points of the interval are critical points (see [8, p. 299]).
(c) The existence of exactly \(n+2\) points of extreme value on the error curve (see [8, p. 299]).
None of these three assumptions is made for this algorithm.
3a. Formal parameter list: input to the procedure
\(n\) integer degree of the Chebyshev system of functions to be used in the fit \(\left\{\varphi_{0}(x), \varphi_{1}(x), \cdots, \varphi_{n}(x)\right\}\).
a lower end point of the interval of approximation, of type real.
\(b\) upper end point of the interval of approximation, of type real.
kstart integer controlling the number of points
( \(k\) start \(\times(n+2)\) ) used in the initial approximation. See (i) in Section 5.
\(k m a x\) integer allowing control of the number of times \(k\) is increased above kstart.
loops integer allowing control over the number of iterations taken by Remez's second algorithm if convergence is not yet attained.
\(f\) a real procedure to compute the function \(f(x)\) to be approximated; procedure heading required:
real procedure \(f(x)\);
value \(x\);
real \(x\);
the argument is the untransformed variable \(x . f(x)\) must be continuous in the interval \([a, b]\).
chebyshev a procedure to evaluate the Chebyshev system of functions being used at some point, \(x\), in the interval \([a, b]\); procedure heading required:
procedure \(\operatorname{chebyshev}(n, x, t)\);
value \(n, x\);
integer \(n\);
real \(x\);
real array \(t\);
\(n\) is the degree of the system, \(x\) is the point in \([a, b]\), and \(t\) is an array that will contain the values \(t[i]=\varphi_{i}(x), i=0,1, \ldots, n\).
eps a real procedure to compute the error curve given by (5.1); procedure heading required:
real procedure eps \((x, c, n)\);
value \(x, n\);
real \(x\);
integer \(n\);
real array \(c\);
\(x\) is a point in \([a, b], n\) is the degree of the system, and \(c\) is an array containing the coefficients of the approximation, \(c[i]=c_{i}\) in (5.1).
exchange a procedure, [10] for example, to locate the \(n+2\) subset of \(m+1\) given points which determine the minimax polynomial on those \(m+1\) points; procedure heading required:
procedure exchange (a,d,c,m,n,refset,emax,singular,r);
value \(m, n\); integer \(m, n\); real emax;
real array \(a, d, c, r\);
integer array refset;
label singular;
\(a\) is a real \(m+1\) by \(n+1\) array, \(d\) is a \(m+1\) component vector, \(c\) is a \(n+2\) component vector, \(m+1\) is the integer number of points \(\left(x_{0}, \ldots, x_{m}\right), n\) is the degree of the system, refset is a \(n+2\) component integer vector, emax is a real number and singular is a label. \(r\) is a vector containing the \(m+1\) values of the residual at the \(m+1\) points under consideration. On entry the components
of \(a\) and \(d\) are
\(a[i, j]=\varphi_{j}\left(x_{i}\right)\) and
\(d[i]=f\left(x_{i}\right), \quad i=0(1) m, \quad j=0(1) n\).
Upon exit from exchange, the array \(c\) contains the coefficients of the minimax function found, refset contains the subscripts identifying the points used to compute the minimax function, i.e. the reference set, and emax contains the value of the maximum deviation of the minimax function from \(f(x)\) on the points \(x_{i}, i=0(1) m\).

3b. Formal parameter list: output from the procedure
\(c\) the array of coefficients \(c_{i}\) of eq. (5.1).
emax the maximum modulus of the error curve (5.1) for the final approximation function, of type real.
trouble a label to which control is transferred if remez does not converge properly.
why an integer whose value on exit will be set to one of the following:
why \(=-1\) if number of added points is greater than \(n\). (See step
(ii) in Section 5.)
why \(=1\) if trouble occurs in procedure quadraticmax.
\(w h y=2\) if trouble occurs in procedure exchange.
why \(=3\) if no convergence after iterating loops times.
\(w h y=4\) converged according to the maximum and minimum residual comparison.
\(w h y=5\) converged according to \(w h y=4\) and the critical point test.
\(w h y=6\) converged according to \(w h y=4\) and the coefficient test.
\(w h y=7\) converged according to \(w h y:=4\) and both the critical point and the coefficient tests.
why \(=8\) converged according to critical point test only.
why \(=9\) converged according to coefficient test only.
why \(=10\) converged according to critical point and cof ficient tests.
4. Organization and notational details. The algorithm calls for three procedures, in addition to the function \(f(x)\) to be approximated, as indicated by the formal parameter list.
exchange Based on Stiefel's Exchange algorithm, which finds the \(n+2\) subset of \(m+1\) given points which determine the minimax polynomial. Use [10], for example.
eps To be supplied by user: eps computes the error curve
\(\epsilon(x)=\sum_{i=0}^{n} c_{i \varphi_{i}}(x)-f[x]\)
where the \(c_{i}, i=0, \ldots, n\), are parameters and the \(\varphi_{i}(x), i=0\), \(1, \ldots, n\), are the Chebyshev system of functions being used to fit the function \(f(x)\). For best results \(\epsilon(x)\) should be computed in double precision and then rounded to single precision accuracy. If \(f(x)\) cannot be calculated easily or efficiently in double precision at least the sum, \(\sum_{i=0}^{n} c_{i} \varphi_{i}(x)\), should be accumulated in double precision and rounded to single.
chebyshev To be supplied by user: chebyshev evaluates the Chebyshev system \(\varphi_{i}(x), i=0,1, \ldots, n\) for a given argument \(x\). chebyshev is called by eps.

The functions \(\epsilon(x)\) and \(\varphi_{i}(x)\) (computed by eps and chebyshev) can often be computed by simple recursive procedures. For example, if the Chebyshev system used is the set of Chebyshev polynomials, there is a well-known recurrence relation \(\left(\varphi_{i+1}(x)=\right.\) \(\left.2 x \varphi_{i}(x)-\varphi_{i-1}\right)\) that can be used to efficiently evaluate the required functions.

An outline of the organization of the algorithm is given in the following steps:
(i) Let \(m=k \times(n+2)\), take \(m+1\) points in the interval \([a, b]\) and use exchange to determine the "best" polynomial (i.e. the
\(c_{i} \ni \max _{0 \leq j \leq n}\left|\sum_{i=0}^{n} c_{i \varphi_{i}}\left(x_{j}\right)-f\left(x_{j}\right)\right|=\) minimum \()\)
on those points. Exchange will pick \(n+2\) of the original points as
critical points. The \(m+1\) points are chosen equally spaced or as the zeros of \(T_{m-1}(x)-T_{m-3}(x)\) with \(k \geq 1\).
(ii) Use the \(n+2\) points chosen by exchange in step (i) and \(\nu\) other local extrema (subject to the conditions discussed under Example 2, Section 6) as input to the procedure quadraticmax ( \(\nu \geq 0\) ).
(iii) Procedure quadraticmax adjusts the \(n+\nu+2\) critical points to be the abscissas of the extrema of the error curve given by (4.1). Section 5 b gives a discussion of how the adjustments are computed. After adjustment the new points are tested for alternation of sign, and if the property has been lost, we increase \(k\) and go back to step (i).
(iv) The adjusted critical points are then input to exchange which finds the new coefficients \(c_{i}, i=0,1, \cdots, n\) for the "best" polynomial on the adjusted \(n+\nu+2\) points.
(v) Now convergence tests can be applied to the coefficients \(c_{i}\), found in step (iv), to the critical points \(x_{i}, i=0,1, \cdots, n\) and to the extreme values of (4.1). If not converged, go back to step (iii) since the previous critical points will not be the exact extreme points after the approximating polynomial is changed in step (iv).

5a. Discussion of numerical properties and methods: accuracy and convergence. The accuracy of the approximations generated by this procedure is limited by the precision of the arithmetic used and the accuracy of the subsidiary procedures \(f\), exchange, eps, and chebyshev. The use of double precision in eps, for example, can improve the results of remez since it will then have a"smoother" error curve to work on. This use of double precision in eps is strongly recommended by the authors. The maximum absolute error of the approximation is output from remez and depends, of course, on \(n\), the degree of approximation.

The procedure is deemed to have converged when the coefficients of the approximating function or the critical points have satisfied certain relative criteria between successive iterations. We use the notation \(c_{i}^{(n)}\) to represent the \(i\) th coefficient at the \(n\)th iteration and similarly, \(x_{i}^{(n)}\) represents the \(i\) th critical point at the \(n\)th iteration.

When
\(\max _{i}\left|c_{i}^{(n)}-c_{i}^{(n-1)}\right| \leq e p s c\left|c_{i}^{(n)}\right|\)
or
\(\max _{i}\left|x_{i}^{(n)}-x_{i}^{(n-1)}\right| \leq e p s x\left|x_{i}^{(n)}\right|\)
we consider the procedure to have converged. If \(\left|c_{i}^{(n)}\right|\) or \(\left|x_{i}^{(n)}\right|\) is very small the relative test is not appropriate. In that case we test \(\left|c_{i}^{(n)}-c_{i}^{(n-1)}\right|\) and \(\left|x_{i}^{(n)}-x_{i}^{(n-1)}\right|\) against allowed absolute errors, absepsc and absepsx. Typical values for the constants (for an 11-decimal place machine) could be
\(e p s c=10^{-8}\)
\(e p s x=10^{-4}\)
absepsc \(=10^{-8}\)
abseps \(x=10^{-4}\)
A third convergence criterion is the comparison of the maximum and minimum magnitudes of the error curve at the critical points. Let
\(\operatorname{maxr}=\max _{i}\left|\epsilon\left(x_{i}^{(n)}\right)\right|\)
and
\(\operatorname{minr}=\min _{i}\left|\epsilon\left(x_{i}^{(n)}\right)\right|\)
where \(\left\{x_{i}^{(n)}\right\}\) are the critical points chosen at the \(n\)th iteration, and then make the following test. If maxr \(\leq\) rcompare \(\times\) minr then claim convergence. A typical value for the constant rcompare could be 1.0000005 .

When the maximum absolute error approaches \(10^{-s}\left(f_{m}\right)\),
where \(s\) is the number of places available in the machine, and \(f_{m}\) is max \(x_{a \leq x \leq b}|f(x)|\), we are approaching the limit of obtainable accuracy. We are working with
\(\epsilon(x)=P_{n}(x)-f(x)\)
so when \(\epsilon(x)\) is nearly equal to \(10^{-s} f(x)\), we are losing about \(s\) places in the subtraction in (5.4). This is where judicious use of double precision can be made to increase accuracy if necessary. \(P_{n}(x)\) can be computed in double precision and a single precision difference formed, or for even further accuracy \(f(x)\), if possible, could be computed in double precision and the double precision difference taken.

A comparison of the discrete approximation on a finite number of points in an interval, and the continuous approximation which this algorithm finds, is studied by Rivlin and Cheney in [9]. Rice [11, pp. 66-70] discusses the question of convergence (and rate of convergence) of the discrete approximation to the continuous approximation. This relates to the question of how large to choose \(k\) in step (i), Section 4. We have found that for well-behaved functions like \(e^{x}\) on \([-1,1]\) a value for \(k\) of about 3 gives good starting values. On the other hand a function like \(1 /(x-\lambda)\) on \([-1,1 \mid\) with \(\lambda>1\) and \(\lambda\) near 1 requires \(k\) to be about 15 to obtain good starting values. The choice of \(k\) should be large enough so that the initial approximation chosen by the procedure exchange is close enough to the final approximation to insure that the "alternation of sign" property is never lost during the iterations. There is no known method of choosing such a \(k\) a priori. This is why the algorithm tests for "alternation of signs" at each iteration and increases \(k\) if the property is lost.

5b. Discussion of numerical properties and methods: Locating the extrema of \(\epsilon(x)\). Most of the programming effort is involved in locating the extrema of the error function \(\epsilon(x)\). The programming is similar to that done by C.L. Lawson in a Fortran program to compute the best minimax approximation [7]. \(\epsilon(x)\) is given by
\(\epsilon(x)=\sum_{i=0}^{n} c_{i} \varphi_{i}(x)-f(x)\).
The procedure exchange then is used to compute the coefficie th of the minimax function. That is, given \(n+\nu+2\) points, \(\nu \geq 0\), exchange computes the coefficients of the function \(\sum_{i=0}^{n} c_{i} \varphi_{i}(x)\) such that on the discrete set of points \(\epsilon\left(x_{j}\right), j=0,1, \cdots, n+\nu+1\) has at least \(n+2\) extreme values (at the given points) equal in magnitude and of alternating signs. The satisfaction of this condition when the points are indeed the extrema of the continuous \(\epsilon(x)\) guarantees that \(\sum_{i=0}^{n} c_{i} \varphi_{i}(x)\) is the unique minimax approximating function that we seek.

5b. 1 Discussion of numerical properties and methods: Parabolic approximation to locate extremum. Given the initial guesses \(x_{i}\), \(i=0,1, \cdots, n+\nu+1\) (at each iteration) for the abcissas of the extrema of the error curve, we must locate these critical points more precisely. We consider two cases. First the interior points, and secondly the least and greatest of the initial guesses which may be equal to the respective end points of the interval on which the function is to be approximated.

For interior points we do the following. Take
\(u=x_{i}\)
\(v=x_{i}+\alpha\left(x_{i+1}-x_{i}\right)\)
\(w=x_{i}+\alpha\left(x_{i-1}-x_{i}\right)\)
where \(\alpha\) is a parameter \(0<\alpha<1\) (e.g. \(\alpha=0.1\) ). We then determine the parabola through the three points \(\epsilon(u), \epsilon(v)\), and \(\epsilon(w)\). The abscissa, \(x^{*}\), corresponding to the vertex of this parabola is then taken as the next guess for the \(i\) th "critical point." The point \(x^{*}\) is given by
\(x^{*}=\frac{1}{2} \frac{\left[\left(u^{2}-v^{2}\right) \epsilon(w)+\left(v^{2}-w^{2}\right) \epsilon(u)+\left(w^{2}-u^{2}\right) \epsilon(v)\right]}{\left[(u-v)_{\epsilon}(w)+(v-w) \epsilon(u)+(w-u) \epsilon(v)\right]}\).
For computational purposes \(x^{*}\) is not computed directly by (5.6)
since for \(u, v\), and \(w\) very close, the denominator will be quite small. Therefore, the denominator of (5.6) is computed
\(d=[(u-v) \epsilon(w)+(v-w) \epsilon(u)+(w-u) \epsilon(v)]\),
and then by dividing out (5.6), we express \(x^{*}\) as
\(x^{*}= \begin{cases}\frac{1}{2}(u+v) \quad \text { if } d=0 \\ \frac{1}{2}(u+v)+\frac{1}{2} \frac{(v-u)(u-w)[\epsilon(\nu)-\epsilon(w)]}{d} & \text { if } d \neq 0 .\end{cases}\)
Once \(x^{*}\) is computed, it is then tested to insure acceptability since for \(u, v\), and \(w\) very close, machine roundoff may introduce spurious results. Also, the value of \(\alpha\) or the nature of the function \(f(x)\) and therefore of \(\epsilon(x)\) may introduce an unacceptable value for \(x^{*}\) in which case \(u, v\), or \(w\), whichever has highest ordinate value, is used for \(x^{*}\). If \(x^{*}\) is acceptable it can replace \(u, v\), or \(w\), whichever has the lowest (in abolute value) ordinate value on the error curve \(\epsilon(x)\), and a second \(x^{*}\) is computed. This iteration will converge to the abcissa of the extremum near \(x_{i}\) if roundoff is ignored and \(u, v\), and \(w\) are sufficiently close to that point. (Compare convergence to Muller's method for solving algebraic equations [5].) However, this iteration need not be carried out excessively ( \(2-4\) iterations should be sufficient) since during each iteration of the overall process we recompute the approximating function and thereby obtain a new error curve whose extrema will not necessarily have the same abscissas.

For the end points (5.5) cannot apply since \(x_{i+1}\) and \(x_{i-1}\) do not exist at the right and left ends respectively. Therefore we take, at the left end for example,
\(u=x_{i}\)
\(v=x_{i}+\alpha\left(x_{i+1}-x_{i}\right)\)
\(w=\left\{\begin{array}{l}x_{i}+\beta\left(x_{i+1}-x_{i}\right) \text { if } x_{i}=a \\ x_{i}+\alpha\left(a-x_{i}\right) \text { if } a<x_{i},\end{array}\right.\)
with the requirement that \(\alpha \neq \beta\). The right end is handled similarly. Again the parabola through the three points \(\epsilon(u), \epsilon(\nu)\), and \(\epsilon(w)\) is used to determine \(x^{*}\). The tests for acceptability and iterations are performed as they were for the interior points.

5b. 2 Discussion of numerical properties and methods: Crude search to locate extremum. In case approximation by parabola does not yield an acceptable value for the abscissa of an extremum, the following rather crude method works effectively. We simply divide the interval under consideration into \(l\) equal intervals (e.g. \(l=10\) ) and examine the ordinate of the error curve at the end points of the intervals. The points to the left and right of the point with maximum ordinate (in absolute value) then define a new interval upon which the process is repeated. This subdivision continues until the subintervals become smaller than some specified value (e.g. \(10^{-5}\) ). The method causes the function to be evaluated more often than the parabolic approximation, but works successfully at a point where the error curve has a sharp cusp-like extremum.

The choice of \(l=10\) in this crude search procedure is arbitrary. In fact, for an initial interval of length \(I\), a smaller value, say \(l=4\), would reduce the subinterval size to \(10^{-5}\).I with a minimum of 21 function evaluations, whereas using \(l=10\) would require at least 51 function evaluations. However, small values of \(l\) increase the chances of missing the true extremum.

To decide whether to use this crude search or not we employ a relative test. Let the parabolic choice be \(x^{*}\) and the three points used to compute \(x^{*}\) be \(u, v\), and \(w\). Then one would expect (hope) that \(\left|\epsilon\left(x^{*}\right)\right| \geq|\epsilon(u)|,|\epsilon(v)|\), and \(|\epsilon(w)|\), in which case \(x^{*}\) has the desired properties. However, if \(\epsilon_{m}=\max _{x=u, v, w}|\epsilon(x)|\), and \(\left|\epsilon\left(x^{*}\right)\right|<\epsilon_{m}\), then we must doubt the acceptability of \(x^{*}\) and perhaps use the crude method to determine \(x^{*}\). We found a successful way to make this decision was to use the crude method if \(\| \epsilon\left(x^{*}\right)\left|-\epsilon_{m}\right|>C \cdot \epsilon_{m}\), where \(C\) is an arbitrary constant (e.g. \(10^{-4}\) ).

Fig. 1


Table I. Coefficients \(c_{i}\) of "best" polynomial \(P_{4}(x)=\sum_{i=0}^{4} c_{i} T_{i}(x)\) (to 6 D )
\begin{tabular}{lllll}
\(i\) & Start & Iteration 1 & Iteration 2 & Iteration 3 \\
0 & 1.266063 & 1.266066 & 1.266066 & 1.266066 \\
1 & 1.130321 & 1.130318 & 1.130318 & 1.130318 \\
2 & 0.271495 & 0.271495 & 0.271495 & 0.271495 \\
3 & 0.044337 & 0.044336 & 0.044336 & 0.044336 \\
4 & \(0.0055 \underline{523}\) & 0.005519 & 0.005519 & 0.005519
\end{tabular}

Table II. Critical points, \(x_{j}\), of best polynomial (to 6D)
\begin{tabular}{|c|c|c|c|c|}
\hline \(j\) & Start & Iteration 1 & Iteration 2 & Iteration 3 \\
\hline 0 & \(-1.000000\) & \(-1.000000\) & -1.000 000 & \(-1.000000\) \\
\hline 1 & \(-0.771429\) & \(-0.797573\) & \(-0.797682\) & -0.797 682 \\
\hline 2 & -0.257 143 & \(-0.278 \underline{189}\) & \(-0.279152\) & \(-0.279152\) \\
\hline 3 & \(0.3 \overline{14} \overline{286}\) & \(0.33 \overline{9} \overline{805}\) & 0.339061 & 0.339061 \\
\hline 4 & \(0.828 \underline{571}\) & \(0.820 \underline{978}\) & 0.820536 & 0.820536 \\
\hline 5 & \(1.000 \bigcirc\) & \(1.000 \overline{000}\) & 1.000000 & 1.000000 \\
\hline
\end{tabular}

Table III. Comparison of starting values \(x_{j}\) for \(f(x)=e^{x}, n=4\) (to 3D)
\begin{tabular}{lllll}
\(j\) & \begin{tabular}{lll}
\(T_{5}(x)-T_{3}(x)\) \\
\(=0\) or \(\left|T_{5}(x)\right|\)
\end{tabular} & \begin{tabular}{l} 
exchange on \\
\(6(N+2)\) \\
points
\end{tabular} & \begin{tabular}{l} 
exchange on \\
201 points \\
equally
\end{tabular} & \begin{tabular}{l} 
TRUE \\
(computed)
\end{tabular} \\
& & & \begin{tabular}{llll} 
equally \\
spaced
\end{tabular} & \begin{tabular}{l} 
spaced
\end{tabular} \\
& & -1.000 & -1.000 & -1.000 \\
0 & -1.00 & -1.000 \\
1 & -0.809 & -0.771 & -0.800 & -0.798 \\
2 & -0.309 & -0.257 & --0.280 & -0.279 \\
3 & 0.309 & 0.314 & 0.340 & 0.339 \\
4 & 0.809 & 0.829 & 0.820 & 0.821 \\
5 & 1.000 & 1.000 & 1.000 & 1.000 \\
\(D_{\max }\) & 0.030 & 0.027 & 0.002 & -
\end{tabular}

Table IV. Critical points chosen at each iteration.
Iteration The \(n+2\) points used (see Figure 3)
\begin{tabular}{lllllllllll} 
1st & 1 & 2 & 3 & 4 & 7 & 8 & 9 & 10 & 11 & 12 \\
2nd & 1 & 2 & 3 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
3rd & 1 & 2 & 3 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{tabular}
6. Examples. The procedure was tested on the Burroughs B5500 at the Stanford Computation Center using Burroughs Extended Algol.

We have chosen two examples to illustrate the use of the algorithm. The first is the function
\(f_{1}(x)=e^{x}\) on \([-1,1]\)
and the second is
\[
\begin{align*}
f_{2}(x) & =1+x, & & -1.0 \leq x<-0.5 \\
& =-x, & & -0.5 \leq x<0.0  \tag{6.2}\\
& =x, & & 0.0 \leq x \leq 1.0 .
\end{align*}
\]

The first example, \(f_{1}(x)\), is an infinitely differentiable function so that the error curve (4.1) is also differentiable, whereas \(f_{2}(x)\) (see Figure 1) is continuous, but its derivative, \(f_{2}{ }^{\prime}(x)\), has discontinuities at \(x=-0.5\) and at \(x=0.0\), which cause the error curve to have a discontinuous derivative. We examine \(f_{2}(x)\) as it provides an interesting example of approximating a function which is only continuous. In both cases we used Chebyshev polynomials as the Chebyshev system of functions.

Example 1. \(\left[f_{1}(x)=e^{x}\right]\). Tables I and II show how the critical points and the coefficients of the approximating polynomial converge as we approximate \(f_{1}(x)=e^{x}\) by a 4th-degree sum of Chebyshev polynomials. Figures differing from the final result are underlined at each step.

Table I shows that the coefficients of the "best" polynomial have converged to 6D after only one iteration; however, the critical points don't converge until the second iteration as shown by Table II. In other words, the polynomial does not change coefficients very much with a small change in the critical points. The starting points shown in Table II are chosen by exchange from \(6 \times(n+2)=\) 36 (for \(n=4\) ) equally spaced points in the interval \([-1,1]\).

Various methods for choosing the starting values for the critical points have been proposed. These include the zeros of \(T_{n+1}(x)-T_{n-1}(x)\), which are also the extrema of \(T_{n+1}(x)\), and what we propose here is to let exchange choose \(n+2\) points from some original set of \(k(n+2)\) points where \(k \geq 1\). The original \(k(n+2)\) points may be equally spaced, or they may be the zeros of \(T_{k(n+2)+1}(x)-T_{k(n+2)-1}(x)\).

Table III compares various starting values for this example, \(f_{1}(x)=e^{x}(n=4) . D_{\max }\) represents the maximum deviation from the "TRUE" values.

Example 2. \(\left[f_{2}(x)\right]\). Approximation of \(f_{2}(x)\) by an 8 th degree sum of Chebyshev polynomials ( \(n=8\) ) poses the problem of having an error curve with more than \(N+2\) local extrema. This problem also arises when approximating an even or odd function (see [6]). We resolve the problem by including all the local extrema of the error function, \(\epsilon(x)\), which have the alternation of sign property, in the search for \(n+2\) critical points. That is, if the abcissas of the extrema are ordered algebraically, the signs of the corresponding ordinates must alternate. We obtain starting guesses for local extrema by having exchange pick \(n+2\) starting points from some original set of points, together with the corresponding first approximating polynomial, and then examining the resultant residuals. If the table of residuals indicates an extremum not already chosen by exchange, which has the correct alternating sign, then the corresponding abcissa is included as a critical point for later iterations. \(k\) must be chosen greater than 1 in order for this method to work.

Figure 2 shows the error curve, \(\epsilon(x)\), for the first and third iterations of approximating \(f_{2}(x)\) by an 8th-degree linear combination of Chebyshev polynomials.

Table IV indicates how the choice of critical points can change from one iteration to the next. If we had not included the additional extrema at points 5 and 6 at the first iteration, we would have arrived at the approximation whose error curve is illustrated by Figure 3. That is \(n+2\) extrema of the error curve have equal magnitude and alternating signs, but another extremum exists with larger modulus.


Fig. 3

Error curve with points 5 and 6 not used.


Table V. Comparison of starting values \(x_{j}\) for \(f(x)=f_{2}(x)\), \(n=8\) (to 4D)
\begin{tabular}{lllll}
\(j\) & \begin{tabular}{l}
\(T_{9}(x)-\) \\
\(=0\)
\end{tabular} & \begin{tabular}{l}
\(T_{7}(x)\) \\
O
\end{tabular} \begin{tabular}{l} 
exchange on \\
33 points \\
spaced
\end{tabular} & \begin{tabular}{l} 
exchange on \\
equal points \\
equally \\
spaced
\end{tabular} & \begin{tabular}{l} 
TRUE \\
(computed)
\end{tabular} \\
0 & -1.0000 & -1.0000 & -1.00 & -1.0000 \\
1 & -0.9397 & -0.8750 & -0.86 & -0.8565 \\
2 & -0.7660 & -0.6250 & -0.62 & -0.6248 \\
3 & -0.5000 & -0.1250 & -0.14 & -0.1424 \\
4 & -0.1736 & 0.0 & 0.0 & 0.0 \\
5 & 0.1736 & 0.1250 & 0.15 & 0.1456 \\
6 & 0.5000 & 0.4375 & 0.44 & 0.4413 \\
7 & 0.7660 & 0.7500 & 0.73 & 0.7290 \\
8 & 0.9397 & 0.9375 & 0.93 & 0.9289 \\
9 & 1.0000 & 1.0000 & 1.000 & 1.0000 \\
\hline\(D_{\max }\) & 0.3750 & 0.0210 & 0.0048 & -
\end{tabular}

As an interesting comparison to Table III we give a similar table for \(f(x)=f_{2}(x) . D_{\text {max }}\) represents the maximum deviation from the "TRUE" values in Table V.
7. Use of orrhogonal polynomials. Consider the polynomials \(p_{0}(x), p_{1}(x), \cdots, p_{n}(x)\) orthogonal on the set of points \(x_{n}<x_{1}<\) \(\cdots<x_{m}\). Such polynomials are described by Forsythe [13], and they form a Chebyshev system. This is easily seen since any licear combination,
\(P(x)=\sum_{i=0}^{n} c_{i} p_{i}(x)\),
is a polynomial of degree \(n\) which has exactly \(n\) zeros. Hence on any interval, \(P(x)\) has no more than \(n\) zeros. This satisfies the definition of a Chebyshev system.

It is known, see Forsythe [13], that orthogonal polynomials have advantages over standard polynomials in least squares datafitting. In the Remez algorithm, if a new set of polynomials, orthogonal on the critical points, is computed each time the critical points are adjusted, convergence is assured. This can be proved by nothing that at each iteration the best orthogonal polynomial fit is equivalent to the best fit that would be obtained if the Chebyshev system were held constant as standard polynomials. Perhaps this use of orthogonal polynomials will have computational advantages over, say, standard polynomials on the interval \([0,1]\).

The use of orthogonal polynomials for the Chebyshev system has been implemented and tried successfully on a Burroughs B5500 but as yet we have no illustrations of any dramatic advantages over any other Chebyshev system.

\section*{References}
1. Remez, E.Y. General computational methods of Chebyshev approximation. In The Problems with Linear Real Parameters, aEC-tr-4491, Books 1 and 2, English translation by US AEC. 2. Stiefel, E.L. Numerical methods of Chebyshev approximation. In On Numerical Approximation, R.E. Langer (Ed.) U. of Wisconsin Press, Madison, 1959.
3. Achieser, N.I. Theory of Approximation. (Trans. by C.J. Hyman), Frederick Ungar Publ. Co., New York, 1956.
4. Novodvorskii, E.N., and Pinsker, I.S. On a process of equalization of maxima. Uspehi Mat. Nauk. 6 (1951), 174-181. (Trans. by A. Shenitzer, available from New York U. Library.) 5. Muller, D.E. A method for solving algebraic equations using an automatic computer. Math Tables Aids Comp. 10 (1956), 208-215.
6. Murnaghan, E.D., and Wrench, J.W. Rep. No. 1175, David Taylor Model Basin, Md., 1960.
7. Lawson, C.L. Private communication.
8. Fraser, W. A survey of methods of computing minimax and
near minimax polynomial approximations for functions of a single independent variable. J. ACM 12 (July 1965), 295-314.
9. Rivlin, T.J., and Cheney, E.W. A cornparison of uniform approximations on an interval and a finite subset thereof. SIAM J. on Numer. Anal. 3 (June 1966).
10. Bartels, R.H., and Golub, G.H. Computational considerations regarding the calculation of Chebyshev solutions for overdetermined linear equation systems by the exchange rnethod. Tech. Rep. No. CS67, Comput. Sci. Dep., Stanford U. (June 1967). Also Algorithm 328 Comm. ACM 11 (June 1968), 401-406, 428-430.
11. Rice, J.R. The Approximation of Functions, Vol. 1, Reading Mass. Addison-Wesley, 1964.
12. Veidinger, L. On the numerical determination of the best approximations in the Chebyshev sense. Numer. Math. 2 (1960), 95-105.
13. Forsythe, G.E. Generation and use of orthogonal polynomials for data-fitting with a digital computer. J. SIAM 5 (June 1957), 74-88.

\section*{Algorithm}
procedure remez ( \(n\), \(a, b\), kstart, kmax, loops, \(f\), chebyshev, eps, exchange, c, emax, trouble, why);
value \(n, a, b, k s t a r t\), kmax, loops;
real array \(c\); real \(a, b\), emax; label trouble;
integer \(n\), kstart, kmax, loops, why;
real procedure \(f\), eps; procedure chebyshev, exchange;
comment Procedure remez finds the best fit (in the minimax sense) to a function \(f\) using a linear combination of functions which form a Chebyshev system. The exchange algorithm of E.L. Stiefel is used to obtain starting values for the critical points and the Remez algorithm is then used to find the best fit;
begin
procedure quadraticmax ( \(n, x\), niter, alfa, beta, ok, \(a, b, c\), nadded, eps);
value \(n\), niter, alfa, beta, nadded; array \(x, c\);
integer \(n\), niter, nadded; real alfa, beta, \(a, b\);
Boolean ok; real procedure eps;
comment Procedure quadraticmax is called to adjust the values of the critical points in each iteration of the Remez algorithm. The points are adjusted by fitting a parabola to the error curve in a neighborhood, or if that proves unsetisfactory a brute force determination of the extrema is used;
begin
integer \(i\), count 1 , count 2 , nhalf, signepsxstar, signu, signv, signw, jmax, ncrude, \(j, n n\);
real \(u, v, w\), denom, epsu, epsv, epsw, xstar, epsxstar, \(x x x\), misse, missx, dx, emax, etmp;
integer array signepsx \([0: n+1]\); array epsx \([0: n+1]\); \(n n:=n-\) nadded;
comment On arbitrary parameters...
ncrude The number of divisions used in the brute force search for extrema.
nhalf The parameter (alpha) which determines the size of interval to be examined for an extremum is reduced by half if a bad value for xstar is computed, however this reduction may occur only nhalf times.
misse If the value of the error curve at a new critical point differs from the previous value by a relative difference of more than misse then the brute force method is brought in.
missx The brute force method keeps searching until it is within missx of an extremum;
comment Set values of the constants;
ncrude \(:=10\); nhalf \(:=4\); misse \(:=1.0_{10}-2\); missx \(:=\) \(1.0_{10}-5\);
comment Compare missx with absepsx. They should be equal;
for \(i:=0\) step 1 until \(n+1\) do
begin
\(e p s x[i]:=\operatorname{eps}(x[i], c, n n) ;\)
signepsx[i]:= sign(epsx[i]);
end;
for \(i:=\operatorname{step} 1\) until \(n+1\) do
begin comment If the starting values for the critical points do not alternate the sign of eps(x), then we go to the label trouble; if signepsx \([i] \times\) signepss \([i-1] \neq-1\) then go to trouble; end;
comment First find all the interior extrema. Then we will find the end extrema, which may occur at the ends of the interval;
for \(i:=1\) step 1 until \(n\) do
begin
count \(1:=0 ;\) cownt \(2:=0 ;\)
L1:
\(u:=x[i] ;\)
\(v:=u+\) alfa \(\times(x[i+1]-u) ; w:=u+\) alfa \(\times\) ( \(x[i-1]-u\) );
epsu \(:=\) epsx[i]; signu \(:=\) signepsx[i];
\(e p s v:=e p s(v, c, n n) ; \quad \operatorname{signv}:=\operatorname{sign}(e p s v) ;\)
\(e p s w:=e p s(w, c, n n) ; \quad \operatorname{signw}:=\operatorname{sign}(e p s w) ;\)
if \(\neg\) signu \(=\operatorname{signv} \vee \neg \operatorname{signv}=\) signw then go to \(L 3\);
comment If the sign of \(\operatorname{eps}(x)\) at the three points is not the same, we go to \(L 3\) where alfa is reduced to make the points closer together;
\(e p s u:=a b s(e p s u) ; \quad e p s v:=a b s(e p s v) ; \quad e p s w:=a b s(e p s w) ;\)
L2:
denom \(:=2.0 \times((e p s v-e p s u) \times(w-u)+(e p s w-\) epsu) \(\times(u-v))\);
if denom \(=0.0\) then \(x\) star \(:=0.5 \times(v+w)\) else \(x\) star \(:=\) \(0.5 \times(v+w)+(v-u) \times(u-w) \times(e p s v-e p s w) /\) denom;
count \(1:=\) count \(1+1\);
comment Test xstar to be sure it is what we want. Is it between \(x[i-1]\) and \(x[i+1]\) ? Is eps (xstar) \(\geq e p s(u, v, w)\) ? If \(x s t a r\) is too bad, go to \(L 3\) and reduce alfa unless alfa has been reduced nhalf times. Otherwise if ok, go to savexstar;
if \(x\) star \(=u \bigvee\) xstar \(=v \bigvee\) xstar \(=w\) then
begin
epsxstar \(:=\) eps(xstar, \(c, n n) ;\) signepsxstar \(:=\) sign (epsxstar);
epsxstar :=abs(epsxstar); go to savexstar
end;
if \(x\) star \(\leq x[i-1] \vee x \operatorname{star} \geq x[i+1]\) then go to \(L 3\);
epsxstar :=eps(xstar, c, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);
if signepsxstar \(\neq\) signu \(\vee\) epsxstar \(<\) epsu \(\bigvee\) epsxstar \(<\) epsv \(\vee\) epsxstar \(<\) epsw then
begin
if epsu \(\geq e p s v \wedge e p s u \geq e p s w\) then
begin
if abs \((e p s x s t a r-e p s u)>\) misse \(\times\) epsu then go to LBL2;
xstar \(:=u ;\) epsxstar \(:=e p s u ;\) signepsxstar \(:=\) signu. go to savexstar;
end;
if epsv \(\geq e p s u \wedge e p s v \geq e p s w\) then
begin
if abs(epsxstar - epsv) \(>\) misse \(\times\) epsv then go to LBL2;
xstar \(:=\nu ;\) epsxstar \(:=e\) eps \(;\); signepsxstar \(:=\) signv: go to savexstar.
end;
if abs(epsxstar - epsw) \(>\) misse \(\times\) epsw then go to LBL2;
xstar \(:=w ;\) epsxstar \(:=\) epsw; signepsxstar \(:=\) signw; go to savexstar;
LBL2:
jmax : = 0;
LBL1:
\[
\begin{aligned}
& d x:=(\nu-w) / n c r u d e ; \quad \text { emax }:=0.0 ; \quad x x x:=w-d x ; \\
& \text { for } j:=0 \text { step } 1 \text { until ncrude do } \\
& \text { begin } \\
& \quad x x x:=x x x+d x ; \quad \text { jmax }:=j \max +1 ;
\end{aligned}
\]
etmp :=eps(xxx,c,nn);
if \(\operatorname{abs}(\) etmp \()>\) emax then
begin
emax \(:=\) epsxstar \(:=\) abs(etmp);
signepsxstar \(:=\operatorname{sign}(\) etmp \()\);
\(u:=x\) star \(:=x x x\);
\(v:=u+d x ; \quad w=u-d x ;\)
end
end;
if \(d x>\) miss \(x\) then go to \(L B L 1\);
comment Make sure \(v\) and \(w\) are within bounds;
if \(v \geq x[i+1]\) then go to \(L 3\);
if \(w \leq x[i-1]\) then go to \(L 3\);
go to savexstar
end;
if count \(1>\) niter then go to savexstar;
if epsu \(\leq e p s w\) then
begin
if \(e p s v<e p s u\) then
L4:
begin
comment \(v\) is minimum;
if xstar \(>u\) then
begin
\(v:=\) xstar; epsv \(:=\) epsxstar; go to \(L 2 ;\)
end;
if xstar \(>w\) then
begin
\(e p s v:=e p s u ; \quad v:=u ;\) epsu :=epsxstar; u:=xstar;
go to \(L 2\);
end
else
begin
\(v:=u ; \quad e p s v:=e p s u ;\)
\(u:=w ; \quad e p s u:=e p s w ;\) \(w:=\) xstar; epsw \(:=\) epsxstar;
go to \(L 2\);
end;
end
else
begin
comment \(u\) is minimum;
if \(x\) star \(\geq v\) then
begin
\(u:=v ;\) epsu \(:=e p s v ;\)
\(v:=\) xstar; epsv \(:=\) epsxstar;
go to \(L 2\);
end;
if \(x\) star \(\geq w\) then
begin
\(u:=\) xstar; epsu \(:=\) epsxstar;
go to \(L 2\);
end
else
begin \(u:=w ; ~ e p s u:=e p s w ;\)
\(w:=\) xstar; epsw \(:=\) epsxstar;
go to \(L 2\);
end;
end;
end
else
begin
if \(e p s v<e p s w\) then
begin
comment \(v\) is minimum; go to \(L 4\);
end
else
begin
comment \(w\) is minimum; if \(x\) star \(\geq v\) then

\section*{begin}

\section*{\(w:=u ; \quad e p s w:=e p s u ;\)}
\(u:=v ; \quad\) epsu \(:=e p s v ;\)
\(v:=\) xstar; epsv \(:=\) epsxstar; go to \(L 2\);

\section*{end;}
if \(x\) star \(\geq u\) then
begin
\(w:=u ;\) epsw \(:=\) epsu;
\(u:=\) xstar; epsu \(:=\) epsxstar;
go to \(L 2\);
end
else
begin \(w:=\) xstar \(;\) epsw \(:=\) epsxstar \(;\) go to \(L 2\);
end;
end;
end;
L3:
count \(2:=\) count \(2+1\);
if count \(2>\) nhal \(f\) then go to trouble;
alfa \(:=0.5 \times\) alfa;
comment The factor 0.5 used in reducing alpha is arbitrarily chosen;
go to \(L 1\);
comment Replace \(x[i]\) by xstar after checking alternation of signs;
savexstar:
if \(i>1 \wedge\) signepsxstar \(\times\) signeps \(x[i-1] \neq-1\) then go to trouble;
signepsx[i]:= signepsxstar;
\(x[i]:=\) xstar;
end;
comment This is the end of the loop on \(i\) which finds all interior extrema. Now we proceed to locate the extrema at or near the two endpoints (left end, then right end);
comment We assume beta \(>\) alfa;
for \(i:=0, n+1\) do
begin
count \(1:=0 ;\) count \(2:=0 ;\)
L8:
\(u:=x[i] ; \quad\) if \(i=0\) then
begin
if \(a<u\) then \(w:=u+\) alfa \(\times(a-u)\) else \(w:=u+\) beta \(\times(x[1]-u)\);
\(v:=u+a l f a \times(x[1]-u) ;\)
end
else
begin
if \(b>u\) then \(w:=u+\) alfa \(\times(b-u)\) else \(w:=u+\) beta \(\times(x[n]-u)\); \(v:=u+a l f a \times(x[n]-u) ;\)
end;
epsu \(:=\) epsx \([i] ;\) signu \(:=\) signepsx \([i] ;\)
\(e p s v:=\operatorname{eps}(v, c, n n) ; \quad \operatorname{signv}:=\operatorname{sign}(e p s v) ;\)
\(e p s w:=e p s(w, c, n n) ;\) signw \(:=\operatorname{sign}(e p s w) ;\)
if signv \(\neq \operatorname{signu} \bigvee \operatorname{signv} \neq \operatorname{signw}\) then go to \(L 7\);
\(e p s u:=a b s(e p s u) ; \quad e p s v:=a b s(e p s v) ; \quad e p s w:=a b s(e p s w) ;\)
L5:
denom \(:=2.0 \times(e p s u \times(\nu-w)+e p s v \times(w-u)+e p s w \times\) ( \(\boldsymbol{u}-\boldsymbol{v})\) );
if denom \(=0.0\) then xstar \(:=0.5 \times(w+v)\) else \(x\) star \(:=\) \(0.5 \times(v+w)+(v-u) \times(u-w) \times(e p s v-e p s w) /\) denom;
if \(i=0 \wedge(x s t a r<a \vee x s t a r \geq x[1])\) then
begin
xstar \(:=a ; \quad\) epsxstar \(:=e p s(a, c, n n) ;\)
signepsxstar \(:=\operatorname{sign}(e p s x s t a r) ;\) epsxstar \(:=a b s\) (epsxstar); end
else
if \(i=n+1 \wedge(x s t a r>b \wedge x \operatorname{star} \leq x[n])\) then
begin
xstar \(:=b ; \quad\) epsxstar \(:=e \rho s(b, c, n n)\);
signepsxstar \(:=\operatorname{sign}(e p s x s t a r) ;\) epsxstar \(:=a b s(e p s x s t a r) ;\)
end
else
begin
epsxstar \(:=\operatorname{eps}(x s t a r, c, n n)\);
signepsxstar := sign(epsxstar);
epsxstar \(:=a b s(e p s x s t a r) ;\)
end;
count \(1:=\) count \(1+1\);
if \(i=0 \wedge x \operatorname{star} \geq x[1]\) then go to \(L 7\);
if \(i=n+1 \wedge\) xstar \(\leq x[n]\) then go to \(L 7\);
if \(x\) star \(=u \vee x\) star \(=v \vee x\) star \(=w\) then go to \(L 6\);
if signepsxstar \(\neq\) signu \(\vee\) epsxstar \(<\) epsu \(\vee\) epsxstar \(<\) epsv \(\vee\) epsxstar < epsw then
begin if epsu \(\geq e p s v \wedge e p s u \geq e p s w\) then
begin
xstar \(:=u ;\) epsxstar \(:=\) epsu;
signepsxstar := signu; go to L6;
end;
if \(e p s v \geq e p s u \wedge e p s v \geq e p s w\) then
begin
xstar \(:=v ; \quad\) epsxstar \(:=e p s v ;\)
signepsxstar \(:=\operatorname{signv} ;\) go to \(L 6\);
end;
xstar \(:=w ; ~ e p s x s t a r:=e p s w ;\)
signepsxstar \(:=\operatorname{signw}\); go to \(L 6\);
end;
if count \(1>\) niter then go to \(L 6\);
if epsu<epsw then
begin
if epsv<epsu then
begin
comment \(v\) is minimum;
\(v:=\) xstar; epsv \(:=\) epsxstar;
go to \(L 5\);
end
else
begin
comment \(u\) is minimum;
\(u:=\) xstar; epsu \(:=\) epsxstar;
go to \(L 5\);
end;
end
else
begin
if epsv <epsw then
begin
comment \(v\) is minimum;
\(v:=\) xstar; epsv \(:=\) epsxsiar;
go to \(L 5\);
end
else
begin
comment \(w\) is minimum; \(w:=\) xstar \(;\) epsw \(:=\) epsxstar; go to \(L 5\);
end
end;
L7:
count \(2:=\) count \(2+1\);
if count \(2>\) nhalf then go to trouble;
alfa \(:=0.5 \times\) alfa; beta \(:=0.5 \times\) beta;
go to \(L 8\);
comment Replace \(x[i]\) by \(x\) star after checking its sign;
```

L6:
if $i=0 \wedge$ signepsxstar \times signepsx $[1] \neq-1$ then go to trouble;
if $i \neq 0 \wedge$ signepsxstar \times signepsx $[n] \neq-1$ then go to
trouble;
signeps $x[i]:=$ signepsxstar; $\quad x[i]:=x s t a r ;$
end;
go to done;
trouble:
$o k:=$ false; go to $L 9$;
done:
$o k:=$ true;
$L 9$:
end quadraticmax;
comment Procedure start computes the arrays which are then in-
put to exchange to find the best approximation on the points at
hand;
procedure start ($m, n, a, d, x i$, chebyshev, f);
value m, n; integer m, n;
array $a, d, x i$;
procedure chebyshev; real procedure f;
begin
integer $i, j ;$ real array $t[0: n]$;
for $i:=0$ step 1 until m do
begin
chebyshev ($n, x i[i], t)$;
for $j:=0$ step 1 until n do $a[i, j]:=t[j]$;
$d[i]:=f(x i[i])$;
end
end start;
comment Now the procedure remez;
real epsc, alfa, beta, epsx, absepsc, absepsx, rcompare, dx, maxr,
minr, tempr, minsep;
integer m, i, itemp, j, niter, nloop, k, nadded, isub, maxri, ilast,
signnow, jj;
integer signnew; integer array refset $[0: n+1+n]$;
comment Assume number of points added $\leq n$;
integer array ptsadd $[0: n]$;
array clast $[0: n+1]$, xq, xqlast $[0: n+1+n]$;
Boolean firsttime, ok, convx, convc, addit;
why $:=0 ; k:=k s t a r t$;
comment Come here if k gets changed:
newk:
$m:=n+1+(k-1) \times(n+2) ;$
begin
array $r, x i, d[0: m], a a[0: m, 0: n+1]$;
firstime $:=$ true; convx $:=$ false; convc $:=$ false;
nloop := 0;
comment This makes the initial points spaced according to the
extrema of the Chebyshev polynomial of degree $m-1$;
for $i:=0$ step 1 until m do
$x i[i]:=(a+b) / 2.0-(b-a) \times \cos ((3.14159265359 \times i) / m) /$
2.0;
comment $3.14159 \ldots$ is π;
$d x:=(b-a) / m$;
comment To use equally spaced points a statement such as the
following could be used. for $i:=0$ step 1 until m do $x i|i|:=$
$a+i \times d x$;
start ($m, n, a a, d, x i$, chebyshev, f),
comment The following constants are used in testing for conver-
gence
epsc used in relative test on coefficients
absepsc used in absolute test on coefficients
epsx used in relative test on critical points
absepsx used in absolute test on critical points
rompare used to compare relative magnitudes of max and
\min values of residual on the critical points;
epsc $:=1.0_{10}-7 ;$ absepsc $:=1.0_{10}-7 ; \quad$ eps $x:=1.0_{10}-$.
absepsx $:=1.0_{10}-5$;
rcompare $:=1.0000005$;
$L 6$:
A signepsxstar \times signepsx $[n] \neq-1$ then go to
signepsx $[i]:=$ signepsxstar; $\quad x[i]:=x s t a r ;$
end;
go to done;
trouble:
ok $:=$ false; go to $L 9$;
done:
ok $:=$ true;
L9:
end quadraticmax;
comment Procedure start computes the arrays which are then input to exchange to find the best approximation on the points at hand;
procedure start ($m, n, a, d, x i$, chebyshev, f);
value m, n; integer m, n;
$\operatorname{array} a, d, x i$;
procedure chebyshev; real procedure f;

```

\section*{In}
```

for $i:=0$ step 1 until m do
begin
for $j:=0$ step 1 until n do $a[i, j]:=t[j]$;
$d[i]:=f(x i[i])$;
end
art
comment Now the procedure remez;
ceal epsc, alfa, beta, epsx, absepsc, absepsx, rcompare, dx, maxr, minr, tempr, minsep;
integer m, i, itemp, j, niter, nloop, k, nadded, isub, maxri, ilast, signnow, jj;
integer signnew; integer array refset $[0: n+1+n]$;
ment Assume number of points added $\leq n$
integer array ptsadd $[0: n]$;
aray clast $[0: n+1]$, xq, xqlast $[0: n+1+n]$;
why $:=0 ; k:=k s t a r t$;
comment Come here if k gets changed:
newk:
$m:=n+1+(k-1) \times(n+2) ;$
begin array $r, x i, d[0: m], a a[0: m, 0: n+1]$;
: true, convx := false, convc.$=$ false
loop $:=0$;
and makes the initial points spaced according to the
for $i:=0$ step 1 until m do
$x i \mid i]:=(a+b) / 2.0-(b-a) \times \cos ((3.14159265359 \times i) / m) /$ 2.0;
comment $3.14159 \ldots$ is π;
$d x:=(b-a) / m ;$
following could be used. for $i:=0$ step 1 until m do $x i|i|:=$ $a+i \times d x$;
start ($m, n, a a, d, x i$, chebyshev, f),
comment The following constants are used in testing for convergence
epsc used in relative test on coefficients
absepsx used in absolute test on critical points
rompare used to compare relative magnitudes of max and min values of residual on the critical points;
absepsx $:=1.0_{10}-5$;
rcompare $:=1.0000005$;

```
comment epsx and absepsx should be the same as missx in procedure quadraticmax. epsc and absepsc should be adjusted according to knowledge of the expected magnitudes of the coefficients (if known). It is best to depend on the critical points and/of the max and min of the residuals for convergence criteria;
comment Now call on exchange to find the first approximation to the best approximating function;
exchange (aa, d, c, m, n, refset, emax, singular, \(r\) );
comment The subscripts of the points chosen are in array ref\(\operatorname{set}[0: n+1]\), the coefficients of the best approximating function on the \(m\) points are in \(c[0: n]\), the residuals in \(r\);
comment The reference set, the coefficients at this step, and/or the residuals may be written at this point;
for \(i:=0\) step 1 until \(n\) do clast \([i]:=c[i]\);
comment Now we are going to look for any extrema not given by the points chosen by exchange;
comment Make sure critical points are algebraically ordered;
for \(i:=0\) step 1 until \(n\) do for \(j:=i+1\) step 1 until \(n+1\) do
begin
if \(\operatorname{refset}[j]<\operatorname{refset}[i]\) then
begin
\(\operatorname{itemp}:=\operatorname{refset}[j] ; \quad \operatorname{refset}[j]:=\operatorname{refset}[i] ;\)
refset \([i]:=\) itemp;
end
end;
nadded \(:=0 ;\) maxr \(:=0 ;\) maxri \(:=0 ;\) ilast \(:=0 ;\)
signnow : \(=\operatorname{sign}(r[0])\);
for \(i:=0\) step 1 until \(m+1\) do
begin
if \(i=m+1\) then go to \(L B L\);
if \(\operatorname{sign}(r[i]) \neq 0 \wedge \operatorname{sign}(r[i])=\operatorname{signnow}\) then
begin
if \(\operatorname{abs}(r[i])>\) maxr then
begin maxri \(:=i\); maxr \(:=a b s(r[i])\); end
end
else
\(L B L\) :
begin
if \(i<m+1\) then signnow \(:=\operatorname{sign}(r[i])\);
addit \(:=\) true;
for \(j:=0\) step 1 until \(n+1\) do
begin
for \(j j:=\) ilast step 1 until \(i-1\) do
begin
if \(j j=\operatorname{refset}[j]\) then addit \(:=\) false; end
end;
if addit then
begin
nadded \(:=\) nadded \(+1 ;\) if nadded \(>n\) then
begin
comment We assume nadded is always \(\leq n\). If nadded is \(>n, w h y\) is set to -1 and we go to the label trouble. This can be modified by changing this test and changing the declarations for ptsadd, refset, \(x q\), and xqlast above;
why := - 1 ;
go to trouble
end;
ptsadd[nadded] := maxri;
refset \([n+1+\) nadded \(]:=\) maxri;
end;
if \(i<m+1\) then
begin
ilast \(:=i ; \quad \operatorname{maxr}:=\operatorname{abs}(r[i]) ; \quad\) maxri \(:=i ;\)
end
end
end;
comment We now have \(n+2+\) nadded points to send to quadraticmax for adjustment;
\(m:=n+\) nadded;
comment Make sure critical points are algebraically ordered; for \(i:=0\) step 1 until \(m\) do for \(j:=i+1\) step 1 until \(m+1\)

\section*{do}
begin
if refset \([j]<\operatorname{refset}[i]\) then
begin
itemp \(:=\operatorname{refset}[j] ; \quad \operatorname{refset}[j]:=\operatorname{refset}[i] ;\)
refset \([i]:=\) item \(p ;\)
end
end;
for \(i:=0\) step 1 until \(m+1\) do \(x q[i]:=x i[\) refset \([i]]\);
niter \(:=2\);
comment This is the number of times to iterate in quadraticmax;
alfa \(:=0.15 ;\) beta \(:=0.2\);
comment alfa and beta are used to determine the points used in quadraticmax to fit a parabola. They are arbitrary subject to: \(0<\) alfa \(<\) beta \(<1\). Also beta should be fairly small to keep the points on one side of zero;
comment This is the beginning of the loop that calls on quadraticmax, exchange, etc.;
loop:
nloop \(:=\) nloop +1 ;
quadraticmax ( \(m, x q\), niter, alfa, beta, ok, \(a, b, c\), nadded, eps);
if \(\neg\) ok then
begin
\(k:=k+1 ;\) if \(k>k \max\) then
begin why:=1; go to trouble; end;
go to newk;
end;
if \(\neg\) firsttime then
begin
comment Compare the largest and smallest of the residuals at the critical points (after adjustment);
comment Set minr to a large number;
maxr \(:=0.0 ;\) minr \(:=1.0_{10} 50\);
for \(i:=0\) step 1 until \(n+1\) do
begin
addit := true;
for \(j:=1\) step 1 until nadded do if refset \([i]=\operatorname{ptsadd}[j]\)
then addit \(:=\) false;
if addit then
begin
tempr : = abs(eps (xq [refset [i]], c, \(n\) ) );
if tempr \(>\) maxr then maxr \(:=\) tempr else if tempr \(<\) \(\operatorname{minr}\) then minr \(:=\) tempr;

\section*{end}
end;
if maxr \(\leq\) rcompare \(\times\) minr then why :=4;
end;
comment Compare xq to xqlast;
if \(\neg\) firstime then
begin
convx := true;
for \(i:=0\) step 1 until \(m+1\) do
begin
\[
\text { if } a b s(x q[i]-x q \operatorname{last}[i])>a b s e p s x \text { then }
\]
begin
\[
\text { if } a b s(x q[i]-x q l a s t[i]) \geq e p s x \times a b s(x q[i]) \wedge
\]
\[
x q[i] \neq 0.0 \text { then convx }:=\text { false; }
\]
if \(x q[i]=0.0 \wedge a b s(x q[i]-x q l a s t[i])>a b s e p s x\) then convx \(:=\) false;
end;
\[
x q \operatorname{last}[i]:=x q[i] ;
\]
end

\section*{end}
else

\section*{begin}
firstime : = false;
for \(i:=0\) step 1 until \(m+1\) do \(x q l a s t ~[i]:=x q[i]\);
for \(i:=0\) step 1 until \(n\) do clast \(\mid i]:=c[i]\);
end;
comment Get ready to call exchange again;
start ( \(m+1, n, a a, d, x q\), chebyshev, \(f\) );
exchange(aa, \(d, c, m+1, n\), refset, emax, singular, \(r\) );
comment Now compare the new coefficients to the last set of coefficients;
if \(\neg\) firsttime then
begin
convc := true;
for \(i:=0\) step 1 until \(n\) do
begin
if \(a b s(c[i]-\operatorname{clast}[i]) \geq \operatorname{epsc} \times a b s(c[i]) \wedge c[i] \neq 0.0\) then convc := false;
if \(c[i]=0.0 \wedge\) abs \((c[i]-\) clast \([i])>\) absepsc then convc \(:=\) false; clast \([i]:=c[i] ;\)
end
end;
comment Set the parameter why to the proper value according to the following:
why \(=4\) if maxr \(\leq\) rcompare \(\times\) minr .
\(w h y=5\) if " 4 " and convx = true.
\(w h y=6\) if " 4 " and convc \(=\) true.
\(w h y=7\) if " 4 " and convx \(=\) convc \(=\) true.
\(w h y=8\) if convx \(=\) true.
\(w h y=9\) if convc \(=\) true.
\(w h y=10\) if \(\operatorname{conv} x=\operatorname{convc}==\) true. Any value of \(w h y \geq\)
4 indicates convergence;
if \(w h y=4 \wedge\) convx then why \(:=5\);
if \(w h y=4 \wedge\) convc then \(w h y:=6\);
if \(w h y=5 \wedge\) convc then why \(:=7\);
if \(w h y=0 \wedge \operatorname{convx}\) then why \(:=8\);
if \(w h y=0 \wedge\) convc then why \(:=9\);
if why \(=8 \wedge\) convc then why \(:=10\);
if \(w h y \geq 4\) then go to converged;
if nloop \(\geq\) loops then
begin \(w h y:=3\); go to trouble end;
comment We go to label trouble in calling program if no convergence after a number of iterations equal to loops;
go to loop;
singular:
why :=2; go to trouble;
comment We come to singular if exchange gets into trouble; converged:
end;
comment End of block using \(m\) in array declarations;
comment There are four exits to the label trouble...
(why=1) if \(k\) gets \(>k \max\)
( \(w h y=2\) ) if exchange gets into trouble
( \(w h y=3\) ) if no convergence after iterating loops number of times
(why=-1) if number of added points is greater than \(n\);
end remez

\section*{Algorithm 415 \\ Algorithm for the Assignment Problem (Rectangular Matrices) [H]}
F. Bourgeois, and J.C. Lassalle [Recd. 21 Sept. 1970 and 20 May 1971] CERN, Geneva, Switzerland

Key Words and Phrases: operations research, optimization theory, assignment problem, rectangular matrices

CR Categories: 5.39, 5.40

\section*{Description}

This algorithm is a companion to [3] where the theoretical background is described.

\section*{References}
1. Silver, R. An Algorithm for the assignment problem. Comm. ACM 3 (Nov. 1960), 605-606.
2. Munkres, J. Algorithms for the assignment and transportation problems. J. SIAM 5 (Mar. 1957), 32-38.
3. Bourgeois, F. and Lassalle, J. C. An extension of the Munkres algorithm for the assignment problem to rectangular matrices.
Comm. ACM 15 (Dec. 1971), 802-804.

\section*{Algorithm}
procedure assignment ( \(a, n, m, x\), total) ;
value \(a, n, m\); integer \(n, m\);
real total; array \(a\); integer array \(x\);
comment: \(a[i, j]\) is an \(n \times m\) matrix, \(x[1], x[2], \ldots, x[n]\) are assigned integer values which minimize total \(:=\operatorname{sum}(i:=1(1) n)\) of the elements \(a[i, x[i]]\). If \(m>n\) the \(x[i]\) are distinct and are a subset of the integers \(1,2, \ldots, m\). If \(m=n\) the \(x[i]\) are a permutation of the integers \(1,2, \ldots, n\). If \(m<n\) the set of \(x[i]\) consists of some permutation of the integers \(1,2, \ldots, m\) interspersed with \(n-m\) zeros. The permutation and the positions of the zeros are chosen in such a way as to minimize the above sum with the convention that \(a[i, o]\) is to be taken equal to zero. \(\operatorname{imin}=\) \(\min (n, m)\) and \(\operatorname{imax}=\max (n, m)\) must be such that: \(\operatorname{imin}>0\), \(\operatorname{imax}>1\).
This procedure is based on that of Silver [1] which uses the assignment algorithm of Munkres [2]. Silver's procedure has been extended to handle the case \(n \neq m\);

\footnotetext{
Copyright (C) 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.
}
begin
switch switch := NEXT, L1, NEXT 1, MARK;
real min;
integer array \(c[1: n], c b[1: m]\), lambda \([1: m], m u[1: n], r[1: n]\), \(y[1: m]\);
integer \(c b l, c l, c l 0, i, j, k, l, r l, r s, s w\), imin, imax, flag;
total \(:=0 ;\) imin \(:=m ;\) imax \(:=n\);
if \(n>m\) then go to \(J A\);
imin \(:=n\); imax \(:=m\);
for \(\boldsymbol{i}:=1\) step 1 until \(\boldsymbol{n}\) do
begin
min \(:=a[i, 1] ;\)
for \(j:=2\) step 1 until \(m\) do if \(a[i, j]<\min\) then \(\min :=a[i, j]\);
for \(j:=1\) step 1 until \(m\) do \(a[i, j]:=a[i, j]-\min\);
total \(:=\) total \(+\min ;\)
end;
if \(m>n\) then go to \(J B\);
\(J A\) :
for \(j:=1\) step 1 until \(m\) do
begin
\(\min :=a[1, j] ;\)
for \(i:=2\) step 1 until \(n\) do if \(a[i, j]<\min\) then \(\min :=a[i, j]\);
for \(i:=1\) step 1 until \(n\) do \(a[i, j]:=a[i, j]-\min\);
total \(:=\) total + min;
end;
\(J B\) :
for \(i:=1\) step 1 until \(n\) do \(x[i]:=0\);
for \(j:=1\) step 1 until \(m\) do \(y[j]:=0\);
for \(i:=1\) step 1 until \(n\) do
begin
for \(j:=1\) step 1 until \(m\) do
begin
if \(a[i, j] \neq 0 \vee x[i] \neq 0 \vee y[j] \neq 0\) then go to \(J 1\);
\(x[i]:=j ; y[j]:=i ;\)
\(J 1\) :
end;
end;
comment Start labeling;
START:
flag \(:=n ; r l:=c l:=0 ; r s:=1 ;\)
for \(i:=1\) step 1 until \(n\) do
begin
\(m u[i]:=0 ;\)
if \(x[i] \neq 0\) then go to \(I 1\);
\(r l:=r l+1 ; r[r l]:=i ; m u[i]:=-1\);
flag \(:=\) flag \(-1 ;\)
I1:
end;
if flag \(=\) imin then go to FINI;
for \(j:=1\) step 1 until \(m\) do lambda[j]:=0;
comment Label and scan;
LABEL:
\(i:=r[r s] ; r s:=r s+1 ;\)
for \(j:=1\) step 1 until \(m\) do
begin
if \(a[i, j] \neq 0 \vee\) lambda \(j] \neq 0\) then go to \(J 2\);
lambda \([j]:=i ; c l:=c l+1 ; c[c l]:=j\);
if \(y[j]=0\) then go to MARK;
\(r l:=r l+1 ; r[r l]:=y[j] ; m u[y[j]]:=i ;\)
J2:
end;
if \(r s \leqq r l\) then go to \(L A B E L\);
comment Renormalize;
\(s w:=1 ; c l 0:=c l ; c b l:=0 ;\)
for \(j:=1\) step 1 until \(m\) do
begin
if lambda \([j] \neq 0\) then go to \(J 3\);
\(c b l:=c b l+1 ; c b[c b l]:=j ;\)

J3:

\section*{end;}
\(\min :=a[r[1], c b[1]] ;\)
for \(k:=1\) step 1 until \(r l\) do
begin
for \(l:=1\) step 1 until \(c b l\) do
if \(a[r[k], c b[l]]<\min\) then \(\min :=a[r[k], c b[l]] ;\)
end;
total \(:=\) total \(+\min \times(r l+c b l-\) imax \() ;\)
for \(i:=1\) step 1 until \(n\) do
begin
if \(m u[i] \neq 0\) then go to \(I 2\);
if \(c l 0<1\) then go to \(I 3\);
for \(l:=1\) step 1 until \(c l 0\) do \(a[i, c[l]]:=a[i, c[l]]+\min ;\) go to 13 ;
12:
for \(l:=1\) step 1 until \(c b l\) do begin
\(a[i, c b[l]]:=a[i, c b[l]]-\min ;\)
go to switch[sw];
NEXT:
if \(a[i, c b[l]] \neq 0 \vee\) lambda \([c b[l]] \neq 0\) then go to \(L 1\); lambda \([c b[l]]:=i\);
```

 if \(y[c b[l]]=0\) then
 begin
 \(j:=c b[l] ; \quad s w:=2 ;\) go to \(L 1\);
 end;
 \(c l:=c l+1 ; \quad c[c l]:=c b[l] ; \quad r l:=r l+1 ;\)
 \(r[r l]:=y[c b[l]] ;\)
    ```
    L1:
        end;
13:
    end;
    go to switch \([s w+2]\);
NEXT 1:
if \(c l 0=c l\) then go to \(L A B E L\);
    for \(i:=c l 0+1\) step 1 until \(c l\) do \(m u[y[c[i]]]:=c[i] ;\)
    go to LABEL;
    comment Mark new column and permute;
MARK:
    \(y[j]:=i:=\operatorname{lambda}[j] ;\)
    if \(x[i]=0\) then begin \(x[i]:=j ;\) go to START;
    end;
    \(k:=j ; \quad j:=x[i] ; \quad x[i]:=k ; \quad\) go to MARK;
FINI:
end

\section*{Algorithm 416}

\section*{Rapid Computation of Coefficients of Interpolation Formulas [E1]}

\author{
Sven-Åke Gustafson* [Recd. 21 Aug. 1969]
}

Computer Science Department, Stanford University, Stanford, CA 94305

Key Words and Phrases: divided differences, Newton's interpolation formula

CR Category: 5.13

\section*{Description}

This algorithm is a companion to [1] where the theoretical background is described

\section*{References}
1. Gustafson, Sven-Åe. Rapid computation of interpolation formulae and mechanical quadrature rules. Comm. ACM 14
(Dec. 1971), 797-801.
```

Algorithm
procedure INTP (dx, f, c, ord, n);
value n; real array dx,f,c;
integer array ord; integer n;
begin
comment INTP determines the coefficients of the polynomial of de-
gree less than n}\mathrm{ which reproduces given function values and
divided differences. The parameters of INTP are:

```
\begin{tabular}{lll} 
idenlifier & type & comment \\
\(n\) & integer & \\
ord & integer array & Array bounds \([1: n]\) \\
\(d x, f, c\) & real array & Array bounds \([1: n]\)
\end{tabular}
\(n\) is the number of coefficients of the interpolating polynomial. ord gives the character of the input data: if \(\operatorname{ord}[i]=1\) then \(x[i]\) should be an argument and \(f[i]\) the corresponding function value. But if \(\operatorname{ord}[i]>1\) then \(f[i]\) should contain a divided difference with a number of arguments equal to ord[i]. In this case \(d x[i]\) should contain the difference between the argument of highest index of \(f[i]\) and that of \(f[i-1]\).

Upon execution of INTP the coefficients of the desired polynomial are stored in \(c\) in such a manner that the coefficient in front of the power \(t^{i-1}\) is contained in \(c[i]\). Other parameters are not changed. Caution: The given data must be such that it is possible to construct Newton's interpolation formula with divided differences from them. We must also have ord \([1]=1\).

Observe that if derivatives of \(f\) are given the corresponding divided differences with confluent arguments must be evaluated and given as input data.
Examples of use of INTP:
Example 1. Determine the polynomial of degree less than \(n\) which interpolates a function \(f\) at \(n\) distinct points \(x_{i}, i=1,2, \ldots, n\). Input data: \(d x[i]=x_{i}, f[i]=f_{i}, \operatorname{ord}[i]=1, i=1,2, \ldots, n\). Example 2. Let \(x_{1}, x_{2}, x_{3}, x_{4}\) be four given points. We know \(f_{1}, f_{1,2}, f_{2,3}\), and \(f_{4}\). Determine the polynomial of degree 3 which reproduces these quantities. Input data: \(n=4\),
\begin{tabular}{lll}
\(d x[1]=x_{1}\) & \(\operatorname{ord}[1]=1\) & \(f[1]=f_{1}\) \\
\(d x[2]=x_{2}-x_{1}\) & \(\operatorname{ord}[2]=2\) & \(f[2]=f_{1,2}\) \\
\(d x[3]=x_{3}-x_{2}\) & \(\operatorname{ord}[3]=2\) & \(f[3]=f_{2,3}\) \\
\(d x[4]=x_{4}\) & \(\operatorname{ord}[4]=1\) & \(f[4]=f_{4}\)
\end{tabular}

Example 3. The same problem when we are given \(f(-1), f^{\prime}(-1)\), \(f^{\prime \prime}(-1)\), and \(f(1)\). Input data: \(n=4\),
\[
\begin{aligned}
& d x[1]=-1 \quad \operatorname{ord}[1]=1 \quad f[1]=f(-1) \\
& d x[2]=0 \quad \operatorname{ord}[2]=2 \quad f[2]=f^{\prime}(-1) \\
& d x[3]=0 \quad \operatorname{ord}[3]=3 \quad f[3]=0.5 \cdot f^{\prime \prime}(-1) \\
& d x[4]=1 \quad \operatorname{ord}[4]=1 \quad f[4]=f(1)
\end{aligned}
\]

For further details see [1];
integer \(i, j, k\); real \(a i, h, d, x x\);
real array arg \([1: n]\);
comment Initiate phase DI;
for \(i:=1\) step 1 until \(n\) do
\(\arg [i]:=\) if \(\operatorname{ord}[i]=1\) then \(d x[i]\) else \(d x[i]+\arg [i-1] ;\)
comment Phase DI;
for \(i:=2\) step 1 until \(n\) do
begin
\(j:=\operatorname{ord}[i]\);
if \(j=1\) then go to divde;
\(d:=f(i] ;\)
for \(k:=i\) step -1 until \(i-j+2\) do \(f[k]:=f[k-1]\);
\(f[i-j+1]:=d\);
\(h:=d x[i] ; \quad a i:=\arg [i] ;\)
for \(k:=i-j+2\) step 1 until \(i-1\) do
\(f[k]:=f[k]+f[k-1] \times(a i-\arg [k-1]) ;\)
\(f[i]:=f[i]+f[i-1] \times h ;\)
\(\arg [i]:=a i ;\)
divde:
for \(k:=\boldsymbol{i}-\boldsymbol{j}\) step -1 until 1 do \(f[k]:=(f[k+1]-f[k]) /(\arg [i]-\arg [k]) ;\)
end i-loop;
comment phase DII;
\(c[1]:=f[1]\); if \(n=1\) then go to ready;
for \(i:=2\) step 1 until \(n\) do
begin
\(x x:=\arg [i] ; \quad c[i]:=c[i-1] ;\)
for \(k:=i-1\) step -1 until 2 do
\(c[k]:=-x x \times c[k]+c[k-1] ;\)
\(c[1]:=f[i]-x x \times c[1]\)
end second i-loop;
ready:
end INTP
* Present Address: Inst. F. Informations Behandling (Numeisk analys), KTH, 10044 Stockholm, Sweden.

\section*{Algorithm 417 \\ Rapid Computation of Weights of Interpolatory Quadrature Rules [D1]}

Sven-Åke Gustafson* [Recd. 21 Aug. 1969]
Computer Science Department, Stanford University, Stanford, CA 94305

Key Words and Phrases: divided differences
CR Categories: 5.16

\section*{Description}

This algorithm is a companion to [1] where the theoretical background is described

\section*{Reference}
1. Gustafson, Sven-Åke. Rapid computation of interpolation formulae and mechanical quadrature rules. Comm. ACM 14 (Dec. 1971), 797-801.

\section*{Algorithm \\ procedure \(\operatorname{INTG}(y, d x, m, o r d, n)\); \\ value \(n\); real array \(y, d x, m\); \\ integer array ord; integer \(n\); \\ begin \\ \(\int_{a}^{b} f(t) d \alpha(t)=\sum_{i=1}^{n} m_{i} f_{i}^{o r d(i)}\)}
comment INTG determines weights in quadrature rules of the form

Here \(f_{i}^{o r d(i)}\) can be a function value or derivative or divided dfference of order 1 . The weights \(m_{i}\) are determined such as to render the rule exact when the integrand \(f\) is a polynomial of degree less than \(n\). The parameters of \(I N T G\) are:
\begin{tabular}{lll} 
identifier & type & comment \\
\(n\) & integer & \\
ord & integer array & Array bounds [1:n] \\
\(y, d x, m\) & real array & Array bounds [1:n]
\end{tabular} Array bounds [1:n]
\(n\) is the number of abscissae in formula (1). ord gives the character of the quantities \(f_{i}^{\text {ord }(i)}\) : if \(\operatorname{ord}[i]=1\) then \(f_{i}^{\text {ord }(i)}\) is the function value \(f_{i}\), if \(\operatorname{ord}[i]=2\), then \(f_{i}^{o r d(i)}\) is a divided difference with two arguments. (The procedure does not handle cases where \(\operatorname{ord}[i]>\) 2.)

If \(\operatorname{ord}[i]=1\), then \(d x[i]\) should contain the argument corresponding to \(f_{i}^{o r d(i)}\), else \(d x[i]\) should contain the difference between the arguments of highest index in \(f_{i}^{\text {ord(i) }}\) and that of \(f_{i-1}^{\text {ord(i-1) }}\).
\(y\) should contain the moments, that is in \(y[r]\) must be stored the number
\(\int_{a}^{b} t^{r-1} d \alpha(t)\)
* Present address: Inst. F. Informations Behandling (numerisk analys), KTH, 10044 Stockholm, Sweden.

Upon execution of \(I N T G\) the weight \(m_{i}\) is stored in \(m[i]\). Other parameters are not changed. Example of use of INTG: Determine the coefficients \(m_{1}, m_{2}, m_{3}\), and \(m_{4}\) in the rule
\(\int_{-1}^{+1} f(x) d x=m_{1} f(-1)+m_{2} f^{\prime}(-1)+m_{3} f(1)+m_{4} f^{\prime}(1)\)
Input data: \(n=4\)
\begin{tabular}{lrll}
\(d x[1]=-1\) & \(\operatorname{ord}[1]=1\) & \(y[1]=2\) \\
\(d x[2]=\) & 0 & \(\operatorname{ord}[2]=2\) & \(y[2]=0\) \\
\(d x[3]=\) & 1 & \(\operatorname{ord}[3]=1\) & \(y[3]=2 / 3\) \\
\(d x[4]=\) & 0 & \(\operatorname{ord}[4]=2\) & \(y[4]=0\)
\end{tabular}

Restriction: We can only have \(\operatorname{ord}[i]=1\) or \(\operatorname{ord}[i]=2\). Furthermore the given data must be such that it is possible to construct Newton's interpolation formula with clivided differences from the set \(x_{i} f_{i}^{o r d(i)} i=1,2, \ldots, n\). We must also have \(\operatorname{ord}[1]=1\).
For further details, see [1];
integer \(i, j, k\); real \(t\);
real array \(x[1: n]\);
comment Initiate phase PI;
for \(i:=1\) step 1 until \(n\) do
begin
\(m[i]:=y[i] ;\)
\(x[i]:=\) if ord \([i]=1\) then \(d x[i]\) else \(d x[i]+x[i-1]\)
end;
comment Phase PI;
for \(j:=2\) step 1 until \(n\) do
begin
\(t:=x[j-1] ;\)
for \(i:=n\) step -1 until \(j\) do \(m[i]:=m[i]-t \times m[i-1]\)
end;
comment Phase PII;
for \(k:=1\) step 1 until \(n-1\) do
begin
comment transform from descending diagonal \(k\) to descending diagonal \(k+1\);
if \(k=n-1 \wedge \operatorname{ord}[n]=2\) then go to ready; \(t:=x[k] ; \quad m[n]:=m[n] /(x[n]-t)\);
for \(i:=n-1\) step -1 until \(k+2\) do \(m[i]:=(m[i]-m[i+1]) /\) \((x[i]-t)\); if \(\operatorname{ord}[k+1]=2\) then
begin
\(m[k+1]:=m[k+1]-m[k+2] ;\) go to on; end;
if \(k+1<n\) then
\(m[k+1]:=(m[k+1]-m[k+2]) /(\) if \(\operatorname{ord}[k+1]=2\) then \(d x[k+1]\) else \(x[k+1]-t)\);
if \(\operatorname{ord}[k]=1 \wedge \operatorname{ord}[k+1]=1\) then
begin
\(m[k]:=m[k]-m[k+1] ;\) go to on
end;
for \(i:=k-1\) step -1 untill 1 do
if \(\operatorname{ord}[i]=\mathbf{1}\) then
begin
\(j:=i ; \quad\) go to next
end;
next:
\(t:=m[k+1] ;\)
for \(i:=k\) step -1 until \(j+1\) do \(m[i]:=m[i]-t \times d x[i] ;\) \(m[j]:=m[j]-t ;\)
on:
end;
ready:
end INTG;

\section*{Algorithm 418}

\section*{Calculation of Fourier \\ Integrals [D1]}

Bo Einarsson [Recd. 25 Aug. 1970, 30 Oct. 1970, and 25 Jan. 1971]
Research Institute of National Defense, Box 98, S-147 00 Tumba, Sweden

\footnotetext{
Key Words and Phrases: quadrature, Filon quadrature, integration, Filon integration, Fourier coefficients, Fourier integrals, Fourier series, spline, spline approximation, spline quadrature, extrapolation, Richardson extrapolation

CR Categories: 5.16
}

\section*{Description}

The most commonly used formula for calculating Fourier integrals is Filon's formula, which is based on the approximation of the function by a quadratic in each double interval. In order to obtain a better approximation the cubic spline fit is used in [1]. The obtained formulas do not need the explicit calculation of the spline fit, but in addition to the function values at all intermediate points, the values of the first and second derivatives at the boundary points are required. However, these values are often obtained from symmetry conditions. If the derivatives at the end-points are unknown, they may be calculated from a cubic spline fit, for example by using some exterior points or by using two extra interior conditions for the spline fit. It can also be noted that in certain periodic cases the terms containing the derivatives will cancel, and their values will be superfluous. The use of Algorithm 353 [2] is recommended if the frequency \(\omega / \pi\) is a positive integer and the interval is \([0,1]\). Test computations reported in [1] indicate that the spline formula is more accurate than Filon's formula. Both are of the fourth order. The expansion of the error term in powers of the step length contains only even powers, and therefore the use of Richardson extrapolation is very efficient.

The algorithm presented here is similar to Algorithm 353 by Chase and Fosdick [2], but in the present routine, Richardson extrapolation is included in order to obtain faster convergence.

The routine FSPL2 evaluates the integrals
\(C=\int_{2}^{12} e^{-x} \cos (\omega x) d x\) and \(S=\int_{2}^{12} e^{-x} \sin (\omega x) d x\).
Copyright (C) 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.
using the algorithm described in [1]. FSPL2 contains a feature which selects an initial integration step size such that at least two quadrature nodes are within each full period of the trigonometric function, cf. [3]. This step size is reduced by halving until the specified accuracy is obtained or the maximum number of interval halvings of the original interval is reached. Two evaluations are always performed. If the interval \([a, b]\) is long, it is advised to take special precautions.

The use of Richardson extrapolation, which is performed in the subroutine ENDT2, decreases the number of function evaluations by a factor 4 in several of the test examples. It is possible to introduce the fast Fourier transform in order to obtain faster computation of the inner loop of the algorithm. Another extension is to calculate the central part of the integral with the spline algorithm and the tails with the method in [4], which gives accurate results even when the function \(f(x)\) is slowly decreasing if the frequency \(\omega\) is large.

Finally we give some test examples for both single and double precision computation of
\[
C=\int_{a}^{b} f(x) \cos (\omega x) d x \text { and } S=\int_{a}^{b} f(x) \sin (\omega x) d x
\]


\section*{References}
1. Einarsson, Bo. Numerical calculation of Fourier integrals with cubic splines. BIT 8 (1968), 279-286.
2. Chase, Stephen M., and Fosdick, Lloyd D. Algorithm 353, Filon quadrature. Comm. ACM 12 (Aug. 1969), 457-458.
3. Einarsson, Bo. Remark on algorithm 353, Filon quadrature. Comm. ACM 13 (Apr. 1970), 263.
4. Gustafson, Sven-Åke, and Dahlquist, Germund. On the computation of slowly convergent Fourier integrals. Presented at Nov. 1970 meeting in Oberwolfach and to appear in Methoden und Verfahren der Mathematischen Physik.
5. Einarsson, Bo. On the calculation of Fourier integrals. Preprints of the IFIP Congress 71, Booklet TA-1, North-Holland Pub. Co., Amsterdam, 1971, pp. 99-103. To appear in Information Processing 71, same publication.
```

Algorithm
SUBROUTINE FSPL2
* (F,A,B,FPA,FPB,FBA,FBB,W,EPS,MAX,C,S,LC,LS)
C
C THIS ROUTINE COMPUTES THE FOURIER INTEGRALS
C C=INTEGRAL F(X) COS WX OX FROM X=A TO X=B
C S=INTEGRAL F(X) SIN WX DX FROM }X=
C WITH THE SPLINE PROCEDURE IN B , EINARSSON, NUMERICAL
C CALCULATION OF FOURIER INTEGRALS WITH CUBIC SPLINES,
C BIT, VOL. 8, PP. 279-286, 1968.
C REPEATED RICHARDSON EXTRAPOLATION IS USED.
THIS SUBROUTINE HAS ADAPTED SEVERAL IDEAS FROM
ALGORITHM 353, FILON QUADRATURE BY CHASE AND FOSOICK,
C COMM. ACM, VOL. 12, PP. 457-458, 1969.
C F(X)=THE FUNCTION TO BE INTEGRATED, SUPPLIED BY THE USER
C AND DECLARED 'EXTERNAL' IN THE CALLING PROGRAM.
DATA PI / 3.141592653589793 /
A=LOWER OUADRATURE LIMIT ANO B=UPPER QUADRATURE LIMIT
IF A.GE.B THE COMPUTATION IS BYPASSEO AND THE SIGNS OF
LC, LS, AND EPS ARE CHANGED.
FPA AND FPB ARE THE VALUES OF THE DERIVATIVE OF F(X).
FBA AND FBB ARE THE CORRESPONDING VALUES OF THE SECOND
DERIVATIVE AT THE POINTS A AND B.
W=THE ANGULAR FREQUENCY
EPS = REQUIRED ACCURACY, DEFINED BY
|ERROR| \leq EPS*(1*+|C|)
AND
|ERROR| < EPS*(1.+iS|)
IF CONVERGENCE IS NOT OBTAINED, THE VALUE
OF EPS IS RETURNED WITH NEGATIVE SIGN.
MAX=THE MAXIMUM NUMBER OF PARTITIONS (INTERVAL HALVINGS)
IN THIS ROUTINE THE INTERNAL VARIABLE MXN DEFINED BELO
IS USED INSTEAD OF MAX.
LC POSITIVE ON ENTRY INDICATES THAT C IS WANTED.
C LS POSITIVE ON ENTRY INOICATES THAT S IS WANTED.
C ON EXIT LC AND LS GIVE THE NUMBER OF PARTITIONS USED
FOR THE COMPUTATION OF C AND S.
THIS ROUTINE CALLS THE SUBROUTINE ENDT2.
DIMENSION PVTC(7),PVTS(7)
IF(EPS.LT.O.) GOTO 5
F(A.LT.B) GOTO 10
EPS=-EPS
LC=-LC
RETURN
N=1
Wl=ABS(W)
TEMP=2.0*(B-A)*W1/PI
F(TEMP.GT.2.0) N=AL.OG(TEMP)/0.693
C 0.693=ALOG(2.) ROUNDED DOWNWARDS.
MXN=MAXO(MAX,N+1)
FA=F(A)
FB=F(B)
COSA= COS (W1*A)
SOSB = COS(HI*B)
COSB=COS(WI**)
SINB=SIN(W1*B)
H=(B-A)/FLOAT (2**N)
NSTOP=2**N-1
NST=1
C TMAX IS THE SWITCH-OVER POINT FOR TETA.
C ANALYSIS SHOWS THAT WITH A 56 BIT FLOATING POINT MANTISSA
TMAX=0.2
C IS SUITABLE, WHILE WITH A 24 BIT MANTISSA WE PREFER
TMAX=1.
C TMAXB IS THE SWITCH-OVER POINT IN BETA, WHERE THE
C. CANCELLATION IS STRONGEST.
TMAXB=5.*TMAX
CLC AND LLS ARE USED BY THE ROUTINE IN COMPUTED-GO-TO
STATEMENTS. AS SOON AS LLS AND LLC HAVE BEEN DEFINED,
C WE CAN USE LS AND LC AS RETURN PARAMETERS ISEE ABOVEI.
IF(LS)11,11,12
11 LLS=2
GOTO 13
12 LLS=1
13 1F(LC)14,14,15
14 LLC=2
GOTO 17
15 LLC=1
17 CONT INUE
SUMCOS=0.5*(FA*COSA+FB*COSB)
SUMSIN=0.5*(FA*SINA+FB*SINB)
C ALL OF THE ABOVE IS EXECUTED ONLY ONCE PER CALL.
C NOW THE ITERATION BEGINS.
C THE CONSTANT 'M' IS USED IN THE RICHARDSON EXTRAPOLATION.
C M-1 IS THE NUMBER OF TIMES THE ORIGINAL STEP LENGTH 'H'
C HAS BEEN DIVIDED BY TWD.
M=1
20 CONTINUE
H2=H*H
TETA=H1*H
DO 65 1=1,NSTOP,NST
X=A+H*FLOAT(I)
WX=W1*X

```

GOTO (50,55),LLS
50 SUMSIN=SUMSIN+F(X)*SIN(WX)
55 GOTO \((60,65)\),LLC
60 SUMCOS \(=\operatorname{SUMCOS}+F(x) * \operatorname{Cos}(w x)\)
65 CONTINUE
TEMP
TEMP =1.0-SIN(0.5*TETA)**2/1.
IF (TETA-TMAX) 70,70,75
C 70 IS THE POWER SERIES FOR SMALL TETA, 75 IS THE CLOSED
C FORM USED WITH LARGER VALUES OF TETA.
C THE COEFFICIENTS OF THE DIFFERENT POWER SERIES BELOW ARE
GIVEN IN EXACT FORM, COMPARE WITH THE REFERENCE ABOVE.
70 ALFA=TETA* (1.0-T2*12.0/15.0-T2*119.0/1680.0-
-T2*(13.0/25200.0-T2*(293.0/199518400.0-
-T2*181.0/619164000.011) \(1 / 12.0\)
OELTA \(=-1.0 / 12.0+\) T \(2 *(1.0 / 90\). 1 -T2* (5.0/12096.0-
-T2*(1.0/129600.0-T2/11404800.01) )
EPSIL \(=1.0-T 2 *(1.0 / 6.0-T 2 *(0.0125-1\)
EPSIL=1.0-T2*(1.0/6.0-T2*(0.0125-T2*(17.0/30240.0--T2*(31.0/1814400.0-T2/2661120.01)1)
T3=T2 T3=T2
72 BETA=TETA*H2*(1.0-T2/21.0*(1.0-T2*11.0/48.0--T2*(1.0/3960.0-T3/494208.0) 11\() / 180.0\) GOTO 80
C CLOSED FORM OF THE COEFFICIENTS.
75 TEMPl \(=(0.5 *\) TETA \() * * 2\)
TEMP2=SIN(0.5*TETA)**2/TEMP1
TEMP3=SIN(TETA)/TETA
ALFA \(=(\) TEMP-TEMP \(2 * T E M P 3) / T E T A\)
DELTA \(=(\) TEMP-TEMP2) \(/\) T2
EPSIL=TEMP2*TEMP2
1F (TETA-TMAXB) 76,76,78
76.T3=T2*(1.-T2*(1.1175.-T2*(1./40800.-T2/12209400.) )) GOTO 72
78 BETA=(TEMP-TEMP3)/(TETA*W1*W1)
C HAVE CALCULATED THE COEFFICIENTS, NOW READY FOR THE
C INTEGRATION FORMULAS.
80 GOTO ( 81,85 ),LLS
81 TS \(=H *((B E T A * F B B-A L F A * F B) * C O S B+(A L F A * F A-B E T A * F B A) * \operatorname{COSA}+\) +DELTA*H*(FPB*SINB-FPA*SINA) *EPSIL*SUMSIN)/TEMP CALL ENOT2(PVIS,TS,EPS,S,LLS,M) \(\mathrm{LA}=\mathrm{N}\)
85 GOTO ( 86,90 ), LLC
\(86 \mathrm{TC}=\mathrm{H} *((\mathrm{ALFA} * \mathrm{FB}-\mathrm{BETA} * F B B) * S I N B+(B E T A * F B A-A L F A * F A) * S I N A+\) +DELTA*H* (FPB*COSB-FPA*COSA) \&EPSIL*SUMCOS)/TEMP CALL ENOT2 (PVTC,TC,EPS,C,LLC,M) CALL
LC=N
90 CONTINUE
C NOW TEST TO SEE IF DONE .
IF(LLC+LLS-3) \(92,92,100\)
\(92 \mathrm{~N}=\mathrm{N}+1\)
C THIS IS THE BEGINNING OF THE ITE:RATION. IF (N-MXN) \(95,95,99\)
\(95 \mathrm{H}=0.5 * \mathrm{H}\)
NSTOP \(=2 * * N\)
\(\mathrm{M}=\mathrm{M}+1\)
MㅍM+1
GOTO 20
99 EPS=-EPS
100 CONT INUE
IF(LS.GT.O.AND.W.LT.O.O) \(\mathrm{S}=-\mathrm{S}\)
RETU
END

\section*{SUBROUTINE ENDT 2 (PREVOT, QUAINT, EPSS,VALUE,L,M)}

C ENDT 2 IS A SUBROUTINE THAT PERFIDRMS RICHAROSON EXTRAC POLATION OF THE VALUES 'QUANT' WHICH ARE INTRODUCED INTO
C THE ROUTINE EACH TIME IT IS CALLEO, EACH TIME WITH
C THE ROUTINE EACH TIME IT IS CALLED, EACH TIME WITH
C INCREASING VALUE OF IM', STARTING WITH M \(=1\). THE CURRENT
C VALUES ARE STORED IN THE ARRAY 'PREVOT', WHERE 'PREVOT (I), C AT EXIT IS EQUAL TO 'QUANT'. THE BEST VALUE FOR THE MOMENT C IS GIVEN IN 'VALUE'. ENOT 2 REQUIRES THE PRESENT VALUE TO C AGREE WITH THE PREVIOUS VALUE TD WITHIN EPSZ, WHERE C AGREE WITH THE PREVIOUS VALUE TD WITHIN
C EPS2 \(=\) EPS* \((1.0\) + ABS (PRESENT VALUE)).
\(C\) EPS2 \(=\) EPS* 11.0 + ABSIPRESEN
\(C\) EPS IS SUPPLIED BY THE USER.
C EPS IS SUPPLIED BY THE USER.
C THE ERROR EXPANSION IS OF THE FORM
C THE ERROR EXPANSION IS OF THE FORM
C ERRDR \(=C 4 * H * * 4+C 6 * H * * 6+C 8 * H * * 8\)
C ERRDR \(=\mathrm{C} 4 * \mathrm{H} * * 4+\mathrm{C} 6 * \mathrm{H} * * 6+\mathrm{C} 8 * \mathrm{H} * * 8+\ldots+\mathrm{CN} * \mathrm{H} * * \mathrm{~N}+\ldots\)
DIMENSION PREVOT (7),RICH(7)


\(\begin{array}{ll}* & \text { RICH (5) / 1023.0\% , RICH(6)/4095.0/, } \\ * & \text { RICH(7) } 116383.0 /\end{array}\)
C RICH(1) \(=0\) IS NOT USED
C RICH \((K)=2 * *(2 * K)-1, K=2,3,4,5,6,7\)
PREVOT (1) = QUANT
PREVOT (1) = QUAN
TEMP I =QUANT
IF MM.EQ. \(^{\prime}\) ) GOTO 30
20 REPS \(=E P S *(1,0+A B S\) (QUANT) )
\(0023 K=2, M\)
DIFF=TEMP1-TEMP2
IF(ABS (D.IFF)-REPS) \(25,25,22\)
IF(K.EQ. 8 ) GOTO 30
22 IF(K.EQ.8) GOTO 30
TEMPI=TEMP \(1+D I F F / R I C H(K)\)
TEMP2=PREVOT (K)
PREVOT \((K)=\) TEMP 1
23 CONTINUE
GO TO 30
\(25 \mathrm{~L}=2\)
30 VALUE = TEMP 1
RETURN
RETURN
ENO

\author{
Remark on Algorithm 418 [D1] \\ Calculation of Fourier Integrals [Bo Einarsson, Comm. ACM 15 (Jan. 1972), 47-48]
}

Bo Einarsson [Recd. 31 Jan. 1972]
Research Institute of National Defense, Box 98, S-14700 Tumba, Sweden

Key Words and Phrases: quadrature, Filon quadrature, integration, Filon integration, Fourier coefficients, Fourier integrals, Fourier series, spline, spline approximation, spline quadrature, extrapolation, Richardson extrapolation

CR Categories: 5.16

\begin{abstract}
Algorithm 418 looks confusing since the first 12 lines of the Fortran listing have been lost at the printing. Another error is that the two formula lines in the description are interchanged; the routine of course evaluates the general Fourier cosine and sine integrals. Finally, in the last line of the references, for "publication," read "publisher." The beginning of the algorithm is
```

 * SUBROUTINE FSPLZ
    ```

```

 this routine computes the fourier integrals
 C`}C=INTEGRAL F(X) COS WX DX FROM X=A TO X=
C S=INTEGRAL f(X) SIN WX OX FROM X=A TO X=B
c with the spline procedure in b. einarsson, numerical
calculation of fourier integrals with cubic splines,
C BIT, vOL. 8, PP. 279-286, 1968.
C repeated richardson extrapolation is useo.

```
\end{abstract}

\section*{Remark on Algorithm 418 [D1]}

Calculation of Fourier Integrals [Bo Einarsson, Comm. ACM 15 (Jan. 1972), 47-48]

Robert Piessens [Recd. 1 June 1973]
Applied Mathematics and Programming Division, University of Leuven, B- 3030 Heverlee, Belgium

The algorithm has been tested in double precision on an IBM 370155 with success. However, in the case that the Fourier cosine integral \(C\) and the Fourier sine integral \(S\) of the function \(F(x)\) are wanted simultaneously ( \(L C\) and \(L S\) positive on entry), the efficiency can be improved, since each value of \(F(x)\) is then computed twice. This causes a considerable waste of computing time, which can easily be avoided by the following alterations:
(i) insert statement
\(\mathrm{FX}=\mathrm{F}(\mathrm{X})\)
5 lines after statement 20.
(ii) replace statement 50 by

50 SUMSIN \(=\) SUMSIN + FX* \(^{*} \operatorname{SIN}(W X)\)
and statement 60 by
60 SUMCOS \(=\mathrm{SUMCOS}+\mathrm{FX}^{*} \operatorname{COS}(\mathrm{WX})\)

\section*{Algorithm 419}

\title{
Zeros of a Complex Polynomial [C2]
}

\author{
M.A. Jenkins \\ Queen's University, Kingston, Ontario, Canada and \\ J.F. Traub* [Recd. 10 Aug. 1970] \\ Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213
}

Key Words and Phrases : roots, roots of a polynomial, zeros of a polynomial

CR Categories: 5.15

\section*{Description}

The subroutine \(C P O L Y\) is a Fortran program to find all the zeros of a complex polynomial by the three-stage complex algorithm described in Jenkins and Traub [4]. (An algorithm for real polynomials is given in [5].) The algorithm is similar in spirit to the two-stage algorithms studied by Traub [1, 2]. The program finds the zeros one at a time in roughly increasing order of modulus and deflates the polynomial to one of lower degree. The program is extremely fast and the timing is quite insensitive to the distribution of zeros. Extensive testing of an Algol version of the program, reported in Jenkins [3], has shown the program to be very reliable.

The program is written in a portable subset of ANSI Fortran. It has been successfully used on the IBM 360/65, the GE 635 and the CDC 6600 . The program is a translation of the Algol 60 procedure cpolyzerofinder appearing in [3].
\(M C O N\), the final subroutine of the program, sets four variables which describe the precision and range of the floating point arithmetic being used. Instructions for setting MCON variables are given in the MCON comments. The algorithm will accept polynomials of maximal degree 49.

The authors would like to thank K. Paciorek and M.T. Dolan for their assistance in preparing the Fortran version of the program and \(P\). Businger and \(C\). Lawson for suggesting improvements to the program.

Copyright (C) 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.
* This work was done while J.F. Traub was at Bell Telephone Laboratories.

\section*{References}
1. Traub, J.F. A class of globally convergent iteration functions for the solution of polynomial equations. Math. Comp. 20 (1966), 113-138.
2. Traub, J.F. The calculation of zeros of polynomials and analytic functions. In Mathematical Aspects of Computer Science, Proceedings Symposium Applied Mathematics, Vol. 19, Amer. Math. Soc., Providence, R.I., 1967, pp. 138-152.
3. Jenkins, M.A. Three-stage variable-shift iterations for the solution of polynomial equations with a posteriori error bounds for the zeros. Diss., Rep. CS 138, Comput. Sci. Dep., Stanford U., Stanford, Cal., 1969.
4. Jenkins, M.A., and Traub, J.F. A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math. 14 (1970), 252-263.
5. Jenkins, M.A., and Traub, J.F. A three-stage algorithm for real polynomials using quadratic iteration. SIAM J. Numer. Anal. 7 (1970), 545-566.
```

Algorithm
SUBROUTINE CPOLYIOPR,OPI,OEGREE,ZEROR,ZEROI,FAIL)
FINDS THE ZERDS OF A COMPLEX POLYNOMIAL.
OPR, OPI - DOUBLE PRECISION VECTORS OF REAL ANO
IMAGINARY PARTS OF THE COEFFICIENTS IN
C ORDER OF DECREASING POWERS.
DEGREE - INTEGER OEGREE OF POLYNONIAL.
CEROR. ZEROI - DUTPUT DOUBLE PRECISION VECTORS OF
REAL AND IMAGINARY PARTS OF THE ZEROS

- DUTPUT LOGICAL PARAMETER TRUE ONLY IF
LEADING COEFFICIENT IS ZERD OR IF CPOI.Y
HAS FOUND FEWER THAN DEGREE ZEROS
C HAS FOUND FEWER THAN DEGREE 2EROS.
C OCCURRING. IF IT DOES OCCUR, THERE IS STILL. A POSSIBILITYY THAT
C THE ZEROFINDER WILL WORK PROVIDED THE OVERFLOWED QUANTITY IS
C REPLACED BY A LARGE. NUMBER.
COMMON AREA
COMMON/GLOBAL/PR,PI,HR,HI,QPR,QPI,QHR,OHI,SHR,SHI,
SR,SI,TR,TI,PVR,PVI, AKE,MRE,E|A, INFIN,NN
DOUBLE PRECISION SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA,INFIN,
* PR(50),PI(50),HR(50),H1(50),QPR(50),QPI(50),QHR(50),
* QHI(50.),SHR(50),SHI(50)
C TO CHANGE THE SILE OF POLYNOMIALS WHICH CAN BE SOLVED, REPLACE
C THE DIMENSION OF THE ARRAYS IN THE COMMON AREA.
DOUBLE PRECISION XX,YY,COSR,SINR,SMALNO,BASE,XKX,ZR,ZI,BND,
* OPR(1),OPI(1),ZEROR(1),ZEROIII).
* CMOD, SCALE,CAUCHY,DSORT
LOGICAL FAIL,CONY
INTEGER DEGREE,CNTI,CNT2
c INITIALIZATION DF CONSTANTS
CALL MCONIETA,INFIN,SMALNO,BASE
CALL MCON
MRE = 2.0DO*OSQRT(2.000)*ETA
XX =.70710678
MX = -70
COSR =-.060756474
SINR =.9975640!
FAIL =.FALSE.
NN = DEGREE+1
C ALGORITHM FAILS IF HHE LEADING COEFFIIIIENT IS ZERD.
IF (OPR(I) .NT. O.OOO .OR. OPI(I) .NE. O.ODO) GO TO 10
FAIL = -T%UR.
RETURN
C remove the zeros at the origin if any.
10 IF (OPR(NN).NE. O.ODO .OR. OPI(NIV) .NE. O.ODO) GO TO 20
1DNN2 = DEGREE-NN+2
IEROI(IDNN2)=0.000
NN = NN-1
C MAKE A COPY OF THE COEFFICIENTS.
20 DO 30 1 = 1,NN
PRII)=OPR(I)
SHR(I) = CMOD(PR(I),PIIII)

```

30 CONTINUE
C SCALE THE PCLYNOMIAL
BNO \(=\) SCALE (NN, SHR,ETA,INFIN,SMALNO,BASE)
IF IBND.EQ. 1.ODO) GO TO 40
DO \(35 I=1, N N\)
PR(I) = BND*PR(I)
35 CONTINUE
C START THE ALGORITHM FOR ONE LERO.
40 IF (NN.GT. 2) GO TO 50
C CALCULATE THE FINAL ZERO ANO RETURN.
CALL COIVID(-PR(2),-PI(2), PR
* ZEROI(DEGREE)!

RETURN
C CALCULATE BND, A LOWER BOUND ON THE MODULUS OF THE ZEROS.
\(500060 \mathrm{I}=1, \mathrm{NN}\)
SHR(I) = CMOD(PRII),PI(I))
60 CONTINUE
BNO = CAUCHY (NN, SHR,SHI
C OUTER LOOP TO CONTROL 2 MAJOR PASSES WITH DIFFERENT SEQUENEES
OF SHIFTS.
00100 CNT1 \(=1,2\)
FIRST STAGE CALCULATION. NO SHIFT.
C INNER LOOP TO SELEET A SHIFT.
SHIFT IS CHOSEN WITH MODULUS BND AND AMPLITUDE ROTATED BY
C 94 DEGREES FROM THE PREVIOUS SHIFT.
\(X X X=\operatorname{COSR} * X X-S I N R * Y Y\)
\(Y Y=S I N R * X X+\operatorname{COSR} * Y Y\)
\(X X=X X X\)
SR \(=\) BNO*XX
SI \(=\) BND*YY
C SECOND STAGE CALCULATION, FIXED SHIFT.
CALL FXSHFT (10*CNT2,ZR,21,CONV)
IF I-NOT CONY GO TO BO
CHE SECOND STAGE JUMPS DIRECTLY TO THE THIRID STAGE ITERATIJY.
C IF SUCCESSFUL THE ZERO IS STORED AND THE POLYNOMIAL DEFLATED.
\[
1 \text { ONN2 }=\text { DEGREE-NN }+2
\]
\[
\begin{aligned}
& \text { ZEROR(IDNN2) }=2 R \\
& 7 E R O I I D N N D)
\end{aligned}
\]
\[
\begin{aligned}
& \text { 2EROI IIDNN } \\
& \text { NN } \mathrm{z} \text { NN-1 }
\end{aligned}
\]
\(\mathrm{NN}=\mathrm{NN}-1\)
\(\mathrm{DO} 70 \mathrm{I}=1, \mathrm{NN}\)
\(P R(I)=Q P R(I)\)
\(P I(I)=O P I(1)\)
CONTINUE
GO TO
C IF THE ITERATION IS UNSUCCESSFUL ANOTHER SHIFT IS CHOSEN. 90 CONTINUE
C IF 9 SHIFTS FAIL, THE OUTER LOOP IS REPEATED WITH ANOTHER
C SEQUENCE OF SHIFTS.
100 CONTINUE
C THE ZEROFINDER HAS FAILED ON TWO MAJOR PASSES.
C RETURN EMPTY HANOED.
FAIL =.TRUE.
RETURN
END
END SURROUTINE NOSHFTILI
6 computes the derivative polynomial as the initial h
C POLYNOMIAL AND COMPUTES LI NO-SHIFT H POLYNOMIALS.
COMMON AREA
COMMON/GLOBAL/PK,PI,HR,HI, QPR,OPI, QHR,OHI,SHR,SHI,
DOUBLE PRECISION SR,SI, TR, TI,PVR,PVI, ARE,MRE,ETA,INFIN
* PR(50), PI(50),HR(50),HI(50), QPR(50), QPI(50), QHR(50), * OHI(50), SHR(50),SHI(50)

DOUBLE PRECISION XNI,T1,T2,CMOD
\(\mathrm{N}=\mathrm{NN}-1\)
NM1 \(=\mathrm{N}-1\)
DO \(\begin{aligned} 10 \mathrm{I} & =1, N \\ \mathrm{XNI} & =\mathrm{NN}-\mathrm{I}\end{aligned}\)
HR(I) \(=\) XNI*PR(I)/FLOAT(N)
HI(I) = XNI*PI(I)/FLOAT(N)
10 CONTINUE
DO \(50 \mathrm{JJ}=1, \mathrm{Ll}\)
- GO TO 30

CALL CDIVID(-PR(NN),-PI(NN), HR (N),HI(N),TR,TI
DO \(20 I=1\), NM
\(J=N N-I\)
\(T 1=H R(J-1)\)
T2 \(=\) HITJ-1)
HR(J) \(=\) TR*T1-TI*T2*PR(J)

CONTINUE
HR(1) \(=\) PR(1)
HI(1) \(=\) PI
GO TO 50
IF the constant term is essentially zero, shift h coefficievts. DO \(40 \mathrm{I}=1\), NM

HR(J) \(=H R(J-1)\)
\(H I(J)=H I(J-1)\)
CONIINUE
HR(1) \(=0.000\)
HIII) \(=0.000\)
50 CONTINUE
RETURN
END
END
SUBRO
C COMPUTES L2 FIXED-SHIFT H POLYNOMIALS AND TESTS FOR
C CONVERGENCE
G initiates a variable-shift iteration and returns hith the
\(C\) APPROXIMATE ZERD IF SUCCESSFUL.
C LR,ZI - APPROXIMATE ZERO IF CONV IS .TRUE
C CONV - LOGICAL INDICATING CONVERGENCE OF STAGE 3 ITERATIOY
C COMMON AREA
COMMON/GL OBAL/PR,PI,HR,HI, QPR,QPI, OHR, QHI,SHR,SHI,
* SR,SI,TR,TI,PVR,PVI, ARE,MRE, ETA, INFIN,NN

DOUBLE PRECISION SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA,INFIN,
* PR(50), PI(50), HR(50), HI(50), QPR(50), QPI(50), QHR(50).

DOUBLE PRECISION LR,ZI,OTR,OTI,SVSR,SVSI, CMOD
LOGICAL CONV,TEST,PASD,BOOL
```

N N=NN-1
CALL POLYEVINN,SR;SI,PPR,PI,OPR,QPI,PVR,PVI)
TALL POLYEVE
PASD =.FFALSE
C CALCULATE FIRSTT = -P(S)/H(S).
MAIN LOOP FCR ONE SECONO STAGE STEP.
DO 50 J = 1,L2
OTR=TR
C COMPUTE NEXt h POLYNOMIAL ANO NEW T.
CALL NEXTH(BOOL)
CALL CALCT(BOOL)
ZR=SR+TR
C TESY FOR CONVERGENCE UNLESS STAGE 3 HAS FAILED ONCE DR THIS
IS THE LAST H POLYNOMIAL.
IF BNOL OOR. NOT. TEST .OR. J.EQ. L2I GO TO 50
IF (CMOD(TR-OTR,TI-OTI) .GE. .5DO*CMODIZR,ZII) GJ IJ 40
IF (.NOT. PASO) GO TO 30
C the weak convergence test has beEN pasSEd thice, Start the
C THIRD STAGE ITERATIUN, AFTER SAVING THE CURRENT H POLYNOMIAL
C AND SHIFT.

$0010 \mathrm{I}=1, \mathrm{~N}$	
SHR(I)	$=$ HR(I)
SHIII)	$=$ HIII

CONTINUE
SVSR = SR
CALL VRSHFT(10,ZR,2I,CONV)
IF (CONV) RETURN
THE ITERATION FAILED TO CONVERGE. TURN OFF TESTING AND RESTORE
C H,S,PV AND T.
TEST = FALSE.
HR(I)= SHR(1)
HI\II = SHIIII
20
CONTINUE
SR = SVSR
SI = SVSI
CALL POLYEVINN,SR,SI,PR,PI,QPR,QPI,PVR,PVII
CALL CALCT(BOOL)
PASO = -TRUE.
GO TO 50
40 PASD
C ATTEMPT AN ITERATION HITH FINAL H POLYNOMIAL FROM SECOND STAGE.
CALL VRSHFTIIO,ZR,ZI,CONVI
RETURN
RETU
SUBROUTINE VRSHFT(L3,ZR,ZI,CONV)
C CARRIES OUT THE THIRO STAGE ITERATION.
C L3 - LIMIT OF STEPS IN STAGE 3.
C 2R,ZI - ON ENTRY CONTAINS THE INITIAL ITERAIE, IF THE
C ITERATION CONVERGES IT CONTAINS THE FINAL ITERATE
C ON EXIT.
C ON EXIT. _._TRUE. IF ITERATION CONVERGES
COMMON/GLOBAL/PK,PI,HR,HI,OPR,QPI,QHR,QHI,SHK,SHI,
* SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA,INFIN,NN
DOUBLE PRECISION SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA,INFIN,
* PR(50),PI(50),HR(50),HI(50),QPR(50),OPI(50),OHR(50),
DOUBLE PRECISION ZR, II MPO
DOUBLE PRECISION ZR,ZI,MP,MS,OMP,RELSTP,RI,RZ,CMOD,DSQRT,ERREV,TP
LOGICAL CONV,B,BOOL
CONV =.FALSE
B=.FALSE.
SR=2R
C MAIN LOOP FOR STAGE THREE.
DO 60 1 = 1.L3
C EVALUATE P AT S ANO TEST FOR CONVERGENCE.
CALL POLYEVINN,SR,SI,PR,PI,QPR,QPI,PVR,PVII
MP = CMOD(PVR,PVI)
MS = CMODISR,SII
IF (MP.GT. 20.0DO*ERREV(NN,QPR,QPI,MS,MP,ARE,MRE))
* if go tolio
C POLYNOMIAL VALUE IS SMALLER IN VALUE THAN A BDUND ON THE ERQDR
C IN EVALUATING P, TERMINATE THE ITERATION.
CONV = -TRUE.
2R=SR
LI=SI
10 IF II FEQ. 1) GO TO 40
* IF IB OOR. MP -LT.OMP .OR. RELSTP .GE. .05DOI
ITERATION HAS STALLED. PROBABLY A CLUSTER OF ZEROS. DO 5 fIXED
C SHIFT STEPS INTO THE CLUSTER TO FORCE ONE ZERO TO DOMINATE.
TP
B =.TRUE.

```

```

 R2 = SR&IT(TP)
 R2=SR*{1.000+R1)-SI*R1
 SI=SR*RI+SI*(1.000*RI)
 SI=SR*
 SK = R2
 CALL POLYEVINN,SR,SI,PR,PI,QPR,OPI,PVR,PVII
 00 20 J=1,5
 CALL CALCT(BOOLI
 20 aMP CONTINUE
 C EXIT IF POLYNOMIAL VALUE INCREASES SIGNIFICANTLY
30 IF (MP*.100 .GT. OMP) RETURN
\# OMP = MP
co calcate NEXT ITERATE.
CALL NEXTH(BOOL)
CALL CALCT(BOOL)
IF (BOOL) GO TO 60
RELSTP = CMOD(TR,TI)/CMOD(SR,SI)
SR=SR+TR

```
```

 60 CONTINUE
 RETURN
 RETU
 SUBROUTINE CALCT(BOOLI
 COMPUTES T = -P(S)/H(S).
BOOL - LOGICAL. SET TRUE IF H(S) IS ESSENTIALLY ZERO.
COMMON AREA
COMMON/GLOBAL/PR,P1,HR,HI,QPR,OPI,QHR,OHI,SHR,SHI,
SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA, INFIN,NN
DOUBLE PRECISION SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA,INFIN,
* PR(50),PI(50),HR(50),HI(50),QPR(50),QPI(50),QHR(50;,
DOUBLE SRECISIONO),SHI(5O)
DOGICE PRECISION HVR,HVI,CMOD
LOGICAL BOOL
NATE H(S)
CALL POLYEVIN,SR,SI,HR,HI,QHR,OHI,HVR,HVI)
BOOL = CMOD(HVR,HVI) .LE.ARE*10.ODO*CMOD(HR(N),HI(N))
IF (BOOL) GO TO 10
CALL CDIVIDI-PVR,-PVI,HVR,HVI,TR,TII
10 TR = 0.000
TI =0.00DO
TI =O.ODDO
RETU
SUBROUTINE NEXTHIBOOL
C CALCULATES THE NEXT SHIFTED H POLYNOMIAL.
BOOL - LOGICAL, IF .TRUE. H(S) IS ESSENTIALLY ZERO
COMMON AREA
COMMON/GLOBAL/PR,PI,HR,HI,QPR,OP1,OHR,OHI,SHR,SHI,
SR,SI,TR,TI,PVR,PV1,ARE,MRE,ETA,INFIN,NN
DOUBLE PRECISION SR,SI,TR,TI,PVR,PVI,ARE,MRE,ETA,INFIN
* PR(50),PI(50),HR(50),HI(50),QPR(50),OPI(50),OHR(50),
OHI(50),SHR(50),SHI(50)
dOUBLE PRECISION TI;TZ
LOGICAL B00L
N=NN-1
NM1 = N-1
IF (BOOL) GO TO 2O
DO 10 J = 2,N
T1 = QHR\J-1
HR(J) = TR*T1-TI*T2+QPR(J)
10
CONTINU
HR(1)= QPR(1
HI(1)= QPRI(I)
RETURN
C IF H(S) IS LERO REPLACE H WITH QH
20 DO 30 J = 2,N
HIJ) OHIJJ-1
30 continue
HR(1) = 0.000
HI(1) = 0.000
RETURN
SUBROUTINE POLYEV(NN,SR,SI,PR,PI,OR,OI,PVR,PVII)
. EVALUATES A POLYYOMIAL P AT S BY THE HORNER RECURRENCE
DOUBLE PRECISION PR(NN),PIINNI,QR(NN),QI(NN).
SR,SI,PVR,PVI,T
UR(1) = PR(1)
QIII) = PIII
PVR = QR(I)
PVI = QI(I)
DO 10 1 = 2,NN
= PVR*SR-PVI*SI+PR(I)
PVI = PVR*SI+PVI*SR*PIIII
PVR = T
QR(I) = PVR
O CONTINUE
RETURN
REND
DOUBLE
BOUNDS THE ERROR IN EVALUATING THE POLYNDMIAL BY THE HORYER
KECURRENCE.
QR,OI - THE PARTIAL SUMS
MP -MODULUS OF PGLYNOMIAL VALUE
ARE, MRE -ERROR BOUNOS ON COMPLEX ADDITION AND MULTIPLICATIJN
ODUBLE PRECISION QR(NN),QI(NN),MS,MP,ARE,MRE,E,CMOD
E = CMOC(QR(I),NI(I)I*MRE/(ARE+MRE)
DO 10 1 = 1,NN
E = E*MS+CMOD(OR(II,QI(II)
10 CONTINUE
ERREV = E*(ARE+MRE)-MP*MRE
RETURN
END
CAUCHY COMPUTES A LUWER BOUND ON THE MODULI OF THE ZEROS DF A
CAUCHY COMPUTES A LUWER BOUND ON THE MODULI OF THE
DOUBLE PRECISION OINNI,PT(NNI,X,XM,F,DX,DF,
DABS,DEXP,DLOG
PT(VN) = -PT(NN)
N=NN-1
N=NN-1
IF (PT(N).EQ.O.CDO) GO TO 20
If NEWTON STEP AT THE ORIGIN IS BETTER, USE IT.
XM = -PT(NN)/PT(N)
CHOP THE INTERVAL (0,x) UNITL F\& =0.
20 XM = X*.1DO
F=PTMil
DO 30 I = 2,NN
30 CONTINUE
IF (F.LE. 0.000) GO TO 40
X ** XM
40 DX = X
C DO NEWTON ITERATION UNTIL X CONVERGES TO TWO DECIMAL PLACES.

```

50 IF (DABS(DX/X) .LE. . OOSDO) GO TO 70
    Q(1) \(=\) PTII)
        \(0060 I=2, \mathrm{NN}\)
        Q(I) \(=2, N N\)
\(=Q(I-1) * X+P T(I)\)
    60
        CONTINUE
        \(F=Q(N N)\)
        \(\mathrm{FF}=\mathrm{Q}=\mathrm{Q} 1 \mathrm{l}\)
        \(\begin{aligned} \text { DO } 65 \mathrm{I} & =2, N \\ \text { DF } & =\mathrm{DF} * \mathrm{X}\end{aligned}\)
        CONTIF \(=D F * X+Q(I)\)
        CONTINUE
        \(D_{x}=F / D F\)
        \(x=x-D X\)
        GO TO 50
    10 CAUCHY \(=\)
    RETURN
    END
    DOUBLE PRECISION FUNCTION SCALEINN, PT,ETA, INFIN,SMAL VO, BASE
C RETURNS A SCALE FACTOR TO MULTIPLY THE COEFFICIENTS OF THE
C RETURNS A SCALE FACTOR TO MULTIPLY THE COEFFICIENTS OF THE
C POLYNOMIAL. THE SCALING IS DDNE TO AVOID OVERFLOW AND
C UNDETECTED UNDERFLOW INTERFERING WITH THE CONVERGENCE
C CRITERION. THE FACTOR IS A POWER OF THE BASE.
\(C\) CRITERION. THE FACTOR IS A POWER
C PT - MQOULUS OF COEFFICIENTS OF \(P\)
C ETA,INFIN,SMALNO,BASE - CONSTANTS DESCRIBING THE
C FLOATING POINT ARITHMETIC.
    DOUBLE PRECISION PT(NN), ETA,INFIN, SMALNO,BASE,HI,LO,
    * MAX,MIN,X,SC,DSQURT,DLOG
C FIND LARGEST and SMALLEST MODULI OF COEFFICIENTS.
    HI \(=\) OSORTIINFIN
    LO = SMALNO/ETA
    MAX \(=0.000\)
    MIN \(=\) INFIN
    \(00101=1, N N\)
        \(x=p r i)\)
            IF \((X\).GT. MAX) MAX \(=x\)
    10 CONTINUE
0.0DO AND X.LT.MINI MIN \(=x\)
C SCALE ONLY If there are very large or very small components.
    SCALE \(=1.000\)
    SCALE = 1.000 IFIN. GE. LO. ANO. MAX .LE. HI) RETURN
    IF IMIN -GE
\(x=\) LOININ
    IF (X.GT. 1.000) GO TO 20
        \({ }_{S C}{ }^{\bullet}=1.000 /(\) OSQRT(MAX)*OSQRT(MIN)
            GO TO 30
    SC \(=X\)
IF (INFIN/SC .GT. MAX) \(S C=1.000\)
    \(L=D L O G(S C) / D L O G(B A S E)+.500\)
    SCALE = BASE**
    RETURN
    END
    SUBROUTINE COIVIDIAR,AI,BR,BI,CR,CI
SUBROUTINE COIVIDIAR,AI, BR,BI,CR,CI)
\(C\) COMPLEX DIVISION \(C=A / B\), AVOIDING OVERFLOW .
    DOUBLE PRECISION AR,AI, BR,BI,CR,CI,R,D,T,INFIN,DABS
    OOUBLE PRECISION AR,AI, BR,BI,CR,CI,R,D,T, INFIN, D
IF IBR . NE. O.ODO OR. BI .NE. O., ODOI GO TO 10
\(C\) DIVISION BY ZERO, \(C=\) INFINITY.
            GALL MCON (T,INFIN,T,T)
            CR \(=\) INF IN
            CI = IN
RETURN
    10 IF RDABSIR
            DABS(BR). GE. DABS(BI)) GO TO 20
            \(R=B R / B I\)
\(D=B I+R \# B R\)
            \(C R=(A R * R+A 1) / D\)
            \(C R=(A R * R+A I) / D\)
            \(C I=(A I * R-A R) / D\)
    \(R=B I / R R\)
\(D=B R+R * B\)
    \(C R=(A R+A I * R) / D\)
    \(C R=(A R+A(* R) / D\)
\(C I=(A I-A R * R) / D\)
    CI \(=\) IAR
END
    END
    DOUBLE PRECISION FUNCTION CMOD(R,I)
C MODULUS OF A COMPLEX NUMBER AVOIDING OVERFLON.
    ULUS OF A COMPLEX NUMBER AVOIDING OVERFL
DOUBLE PRECISION R,I,AR,AI,DABS, DSQURT
    \(A R=D A B S(R)\)
    \(A I=\) DABS(I)
    IF (AR.GE. AI) GO YO 10
                CMOC = AI*DSQRT(1.000+(AR/A1)汭2)
                CMOC \(=A I * D S Q R T 1.000\)
RETURN
    10 IF (AR -LE. AI) GO TO 20
                CMOD = AR*DSORTII.ODO*(AI/AR)**2)
                CMET = AR*OSORTIT
    0 CMOD \(=A R *\)
    RETURN
    RETUR
END
    SUBROUTINE MCONIETA,INFINY,SMALNO,BASE
C MCON PROVIDES MACHINE CONSTANTS USED IN VARIOUS PARTS OF THE
C MCON PROVIDES MACHINE CONSTANTS USED IN VARIOUS PARTS OF
PROGRAM. THE USER MAY EITHER SET THEM DIRECTLY OR USE TH
STATEMENTS BELOW TO COMPUTE THEM. THE MEANING OF THE FOUR
CONSTANTS ARE -
C ETA THE MAXIMUM RELATIVE REPRESENTATION ERROR
C ETA THE MAXIMUM RELATIVE REPRESENTATION ER
C WHICH CAN BE DESCRIBED AS THE SMALLEST POSITIVF
C FHICH CAN BE DESCRIBEO AS THE SMALLEST POSITIVE
C FLOATING-POINT NUMBER SUCH THAT \(1.000+\) ETA IS
C GREATER THAN \(1.0 D O\).
C GREATER THAN L.ODO.
\(C\) INFINY THE LARGEST FLOATING-POINT NUMBER
C SMALNO THE SMALLEST POSITIVE FLDATING-POINT NUMBER
C SMALNO THE SMALLEST POSITIVE FLDATING-POINT NUMBER
C BASE
THE BASE OF THE FLOATING-POINT NUMBER SYSTEM USED
C LET T BE THE NUMBER OF BASE-DIGITS IN EACH FLOATING-POINT
C LET T BE THE NUMBER OF BASE-DIGITS IN EACH FLOATING-POIN
C NUMBERIOOUBLE PRECISIONI. THEN ETA IS EITHER -5*B**
C NUMBER(OOUBLE PRECISION). THEN ETA IS EITHER -5*B**(I-T)
C OR B**(I-T) DEPENDING ON WHETHER ROUNDING OR TRUNCATION
C IS USED. THE LARGEST EXPONENT AND N THE SMALLEST EXPONENT
LET M RE THE LARGEST EXPONENT ANO N THE SMALLEST EXPONENT
IN THE NUMBER SYSTEM. THEN INFINY IS 11 -BASE**(-T))*BASE**M
IN THE NUMBER SYSTEM.
\(C\) AND SMALNO IS BASE**N.
C THE VALUES FOR BASE,T,M,N BELOH CORRESPOND TO THE XBM/360.
    OOUBLE PRECISION ETA, INFINY, SMALNO, BASE
    INTEGER M.N.T
    INTEGER M.N.T
BASE \(=16.000\)
    \(T=14\)
\(M=63\)
    \(\mathrm{T}=14\)
\(M=63\)
    \(M=63\)
\(N=-65\)
    \(\mathrm{N}=-65\)
\(\mathrm{ETA}=\mathrm{BASE*}(11-T)\)
    INFINY = BASE*(1-ODO-BASE**(-T)) \#BASE**(M-2)
    SMALNO \(=(B A S E * *(N+3)) / B A S E * * 3\)
    RETURN
    END

\section*{Remark on Algorithm 419 [C2]}

Zeros of a Complex Polynomial [M.A. Jenkins and J.F. Traub, Comm. ACM 15 (Feb. 1972), 97-99]

David H. Withers [Rec. 9 Oct. 1972 and 14 May 1973] IBM, Essex Junction, VT 04352

The published algorithm has performed satisfactorily for all except one (degenerate) case. When removing zeros at the origin, the algorithm does not stop if all roots have been located. An error will occur if the polynomials, \(X^{N}=0\) or \(a_{N}=0\) are given to the algorithm. The difficulty may be avoided by inserting after statement 40 the statement

IF (NN.EQ. 1)RETURN
The referee pointed out the second type of degenerate case above and two typographical errors:
1. In the initialization of constants section \(\operatorname{COSR}\) should be initialized by \(C O S R=-i 069756474\).
2. In the FUNCTIONS SCALE and CMOD, the declaration of \(D S Q R T\) as DOUBLE PRECISION was accidentally typed as DSQURT.

\title{
Algorithm 420 \\ Hidden-Line Plotting \\ Program [J6]
}

\author{
Hugh Williamson [Recd. 4 March 1970 and 4 Feb. 1971] \\ Tracor Computing Corporation, Austin, Texas
}

\section*{Key Words and Phrases: hidden-line plot, surface plot CR Categories: 4.9}

\section*{Description}

HIDE produces a two-dimensional representation of a surface or figure by plotting segments of a succession of curves; each curve is plotted where it is not hidden by any of the curves previously plotted (that is, where it does not fall below any of them as they appear in the two-dimensional representation).

The calling sequence is described in some detail in the comment cards at the first of the subroutine.

The following are options:
(1) Translate the arrays before plotting to simulate stepping in the depth dimension.
(2) Draw any of the following: an \(8 \frac{1}{2}\) by 11 inch border, axes, and a title. (Whether this option is exercised or not, labeling may be added by the calling program.)
(3) Draw the unhidden part of the underside of a figure. In this case, the lines are assumed to be hidden where they fall above those previously plotted. This option together with the program's capability to plot the visible maximum can be used to represent the unhidden areas of both the top and the underside of a surface. This can be done by plotting all visible segments of each successive curve, beginning with the farthest in the foreground, as in the exemplary driver routine that produces the graph titled Test for plotting routine HIDE. Or all the segments to represent the top of the surface can be drawn first, and then all the segments to represent the underside. The method used in the driver routine listed is advantageous in that only one of the curves to be plotted must be stored at a time, but it is disadvantageous in that two sets of working arrays are required.

Explicit provisions are not made in HIDE for perspective plots or for rotations. If, however, the arrays to be plotted are properly transformed before HIDE is called, such effects can be achieved.

The arrays \(X G, G, X H\), and \(H\) must be dimensioned in the calling program. \(G\) vs. \(X G\) is the visual maximum function; that is, after the first \(n-1\) curves have been plotted, \(G\) vs. \(X G\) is the function such that the \(n\)th curve falls below one or more of the first \(n-1\) curves (as they appear in the two-dimensional graph) at exactly the same points where it falls below \(G\) vs. \(X G\). (Thus the intersections of the \(n\)th curve with \(G\) vs. \(X G\) are endpoints of intervals within which the \(n\)th curve is entirely hidden or entirely visible.)

The number of points used in arrays \(G\) and \(X G\) after \(n\) curves have been plotted is the sum of:
(1) the number of original data points of any of the first \(n\) curves
that lie on the curve \(G\) vs. \(X G\),
(2) the number of intersections of different curves that lie on \(G\) vs. \(X G\) (if the \(k\) th curve coincides with the maximum function of the first \(k-1\) curves over an interval, every data point of the \(k\) th curve with an abcissa within that interval is considered an intersection), and
(3) the number of points needed to simulate discontinuities in the maximum function; this number is no greater than four times the number of curves to be plotted for the graph.

An adequate dimension for \(X G\) and \(G\) and for the working arrays \(X H\) and \(H\) is an upper bound for the number of points that will be needed for the visual maximum function.

Developed on Tracor Computing Corporation's UNIVAC 1108 system, HIDE calls several basic systems plotting routines. In the listing, these calls are preceded by comment cards with asterisks across the lines. If HIDE were to be used on a different computer system, calls could be substituted to the corresponding routines of that system, or, if more flexibility were desired, to user-supplied routines.

Although partially explained in comment cards, the calling sequences of systems routines called by HIDE will be described more fully here. On TCC's system, these routines write pen codes on magnetic tapes, which are used to drive offline drum plotters.

\section*{PDATA ( \(X, Y, N, J, L, X M I N, D X, Y M I N, D Y, H T)\)}

This routine plots curves.
\(X\) is the abcissa array.
\(Y\) is the ordinate array.
\(N\) is the number of points ( \(X(I), Y(I)\) ) to be plotted.
\(|J|\) is the number of data points from plotted symbol to plotted symbol. If \(J=0\), a line plot will be produced. If \(J\) is negative, only the symbols will be plotted. If \(J\) is positive, both the line and the symbols will be plotted.
\(L\) specifies the symbol to be plotted (the table correlating values of \(L\) with symbols would be of interest only to users of TCC's system).
\(X M I N\) is the \(x\) value at the plotting reference point, which is the origin for plotting pen movements (but not necessarily the data origin).
\(D X\) is the \(x\) increment per inch for the plot.
YMIN is the \(y\) value at the plotting reference point.
\(D Y\) is the \(y\) increment per inch.
\(H T\) is the height in inches of the syrnbols.

\section*{\(\operatorname{MOVPEN}(X, Y, I)\)}
\((X, Y)\) is the point in inches relative to the reference point to which the plotting pen is to be moved.
\(|I|=1\) if the pen is to be left as it was prior to this call (up or down).
\([I]=2\) if the pen is to be placed down before movement.
\(|I|=3\) if the pen is to be picked up before movement.
If \(I\) is negative, \((X, Y)\) will become the new reference point. Other options exist which are not used by HIDE.

\section*{\(\operatorname{PSYMB}(X, Y, H T, T, T H, N)\)}

This routine plots alphanumeric information.
\((X, Y)\) is the position in inches relative to the reference point of the lower left-hand corner of the first symbol.
\(H T\) is the height of the symbols.
\(T\) is the starting location in core for the information to be plotted.
\(T H\) is the angle in degrees counter-clockwise relative to horizontal at which the symbols are to be plotted.
\(N\) is the number of symbols to be plotted.

\section*{\(\operatorname{PAXIS}(X, Y, T, N, S, T H, F M I N, D F)\)}

This routine draws and labels a linear axis.
( \(X, Y\) ) is the point in inches relative to the plotting reference point of the beginning of the axis.
\(T\) is the starting location in core for a title for the axis.
\(|N|\) is the number of characters in the title. If \(N\) is negative, the labeling will be on the clockwise side of the axis; otherwise, on the counter-clockwise side.
\(S\) is the length in inches of the axis.
\(T H\) is the counter-clockwise angle in degrees relative to horizontal at which the axis is to be drawn.

FMIN is the data value at the start of the axis.
\(D F\) is the data increment per inch. FMIN and \(D F\) are necessary for labeling the axis.

PLTOFF, which is not called by HIDE but is called by driver routines, writes the remaining information in the buffer on the plot tape and writes an end-of-file mark.

If \(H I D E\) were to be used on a computer system with word length different from 36 bits, it is possible that EPS1, the relative abscissa increment used to simulate discontinuities in the visual maximum function, should be changed. EPS1, which is defined in a data statement near the beginning of the program, should be one or two orders of magnitude larger than the smallest recognizable relative difference in single precision floating point arithmetic.

The helpful suggestions made by the referees for improving the capabilities of HIDE are greatly appreciated by the author.
```

Algorithm
C this driver røutine for hide produces the graph titled
c test for plotting rqutine hide.
DIMENSIGN X(150),Y(150),Y(150),XG(500),G(500),XH(500)
I DATA NG,NG1,N(SOO), XG1(500),G1(500),TI(14)
XLNTH,YN,NT,NFNS,MAXDIM,XMIN,DELTAX,YMIN, DELTAY,
2 XLTH,XLNTH,XX0,-3,150,-150,26,500,0.,1.05,-1.
EQUIVALENCE (XH(1),TI(1))
READ I,TI
| FGRMAT (13A6,A2)
STEP =3.141592654/74.5
X(1) = 0.
Y1(1) = 0.
D0 2 I = 2,N
X(I) = X(I-1)+STEP
2 YI(I) = .2*SIN(X(I))
STEP = 3.141592654/12.5
C THE CALLS TO HIDE NECESSARY TO PLOT THE TOP AND BOTTOM
C (UNDERSIDE) OF A SURFACE ARE MADE IN THE FOLL\emptysetWING LO\emptysetP.
D0 3 I = 1,NFNS
DD 4 J=1,N
4. Y(J)=Y1(J)*CZ-(EXP(-(X(J)-XX)**2-(Z-XX)**2)*
C PLOT THE PART OF THE ITH CURVE THAT LIES ON THE UNHIDDEN
C PART OF THE TOP OF THE SURFACE.
CALL HIDE(X,Y,XG,G,XH,H,NG,MAXDIM,N,NFNS,TI,XLNTH,
YLNTH,XMIN,DEL,TAX,YMIN,DELTAY)
C
C PLOT THE PART OF THE ITH CURVE THAT LIES ON THE UNHIDDEN
C PART OF THE UNDERSIDE OF THE SURFACE.
C CNOTE. IF PART OF THE UNDERSIDE FALLS BELOW YMIN, BUT
C STAYS WITHIN THE DESIRED AREA ON THE PLOT, HIDE WILL STILL
C PERFORM THE PLOTTING CORRECTLY.)
C
CALL HIDE(X,Y,XG1,G1,XH,H,NG1,MAXDIM,NI,O, 6HNOTTLE,
3 z = Z+STEP
C
C CALL SYSTEMS ROUTINES TO MOVE THE PEN OFF THE GRAPH TO THE
C RIGHT AND TO TERMINATE THE PL\emptysetT.
CALL MOUPEN(10.,-2,,-3)
CALL PLTOFF
END
SUBROUTINE HIDEIX,Y,XG,G,XH,H,NG,MAXDIM,NL,NFNS,TITLEE,
1
C
XLNTH,YLNTH,XMIN, DELTAX,YMIN,DELTAYI
THIS SUBROUIINE PROOUCES A 2-DIMENSIONAL REPRESENTATION DF
C A 3-DIMENSICNAL FIGURE OR SURFACE.
C THE FIRST CALL TO HIDE IS FOR INITIALIZATION AND PLOTTING
C THE CURVE FARTHEST IN THE FOREGROUND. ON EACH SUBSEQUENT
C CALL, A CURVE FARTHER IN THE BACKGROUND IS PLOTTED.

```

C X IS THE ABCISSA ARRAY FOR THE CURVE TO BE PLOTTED BY
C HIDE ON THIS CALL. THE X VALUES MUST BE INCREASING. IF X(I) GE X(I+1) FOR SOME I, MAXDIM WILL BE SET TO ZERO. AND A RETURA WILL BE EXECUTED.
\(Y\) IS THE ORCINATE ARRAY.
G VS. XG IS THE CURKENT VISUAL MAXIMUM FUNCTION ON EACH RETURN FROM HIDE.
XH AND H ARE WORKING ARRAYS.
ON EACH RETURN FROM HIDE, NG IS THE NUMBER OF POINTS IN
THE CURRENT MAXIMUM FUNCTION.
ON THE FIRST CALL, NG IS A NONPOSITIVE INTEGER WHICH
SPECIFIES CERTAIN OPTIONS.
C -1 DO NOY DRAW THE \& \(1 / 2\) BY 11 INCH BORDER.
\(\rightarrow\) PLOT UNHIDDEN MINIMUM RATHER THAN MAXIMUM. IN THIS CASE, G VS. XG WILL BE THE NEGATIVE OF THE VISUAL MINIMUM FUNCTION.
-3 DO NOT PLOT BORDER, PLOT MINIMUM RATHER THAN MAXIMUM. O PLOT BORDER, PLOT MAXIMUM
IF THE BORDER IS DRAWN, ITS LEFT, BOTTOM CORNER WILL BE
WHERE, THE PLOTTING REFERENCE POINT WAS JUST BEFORE THE
FIRST CALL TO HIDE, AND THE REFERENCE POINT WILL BE MOVED
IHE REFERENCE POINT HILI NOT BE MOVED BY HIDE
THE REFERENCE POINT WILL NOT BE MOVED BY HIDE.
MAXDIM IS THE DIMENSION IN THE CALLING PROGRAM OF THE
HAVE BEEN OVERFLOWED, MAXDIM IS SET EQUAL TO ITS NEGATIVE,
AND A RETURN IS EXECUTED.
NI IS THE NUMBER DF POINTS (X(I),Y(I)) TO BE PLOTTED IN
A GIVEN CALL TO HIDE.
IF NI IS LESS THAN O, Y VS. X WILL NOT BE PLOTTED, BUT ON
SUBSEQUENT CALLS, PLOTTING WILL BE DONE AS IF
( \((X(I), Y(I)), I=1,-N I)\) HAD BEEN PLOTTEO (WHERE UNHIDDEN).
NI WILL BE RETURNED AS ITS ABSOLUTE VALUE.
NFNS IS THE TOTAL NO. OF CURVES TO BE PLOTTED FOR THIS GRAPH IF TRANSLATING THE ARRAYS TO SIMULATE STEPPING IN
THE DEPTH DIMENSION IS DESIRED. IF NO TRANSLATION IS
DESIRED, NFNS SHOULD BE NEGATIVE. IF THE SAME TRANSLATION
AS IN THE PREVIOUS CALL TO HIDE IS DESIRED. NFNS SHOULD BE
ZERO. THE NFNS=O OPTION MAY BE SPECIFIED FOR INDIVIDUAL
CURVES AFTER THE FIRST FOR A GIVEN GRAPH. ALL
TRANSLATIONS WHICH ARE PERFORMEO WILL HAVE EQUAL STEP SIZE
DETERMINEO BY THE VALUES IN THE INITIAL CALL FOR XLNTH, YLNTH, AND NFNS.
TITLE IS AN 8O-CHARACTER TITLE
IF TITLE(I)=6HNOTTLE, THE TITLE WILL NOT BE PLOTTED.
TITLE(1) ANC XH(1) OR H(1) MAY BE THE SAME LOCATION IF THE ITLE IS NOI NEEDED AFTER IT IS PLOTTED.
XLNTH IS THE LENGTH IN INCHES OF THE HORIZONTAL AXIS.
IF XLNTH IS LESS THAN O, THE X-AXIS AND THE DEPTH AXIS
SUPPRESSED THROUGH NFNS, THE ITH CURVE WILL BE TRANSLATED
(I-1)*(9.-ABS(XINTH) (INFNS-1) INCHES TO THE LEFI THIS PIUS A SIMILAR VERTICAL TRANSIATION IS DONE TO SIMULATE STEPPING IN THE DEPTH DIMENSION

ME PITING REFERENCE POINT THE PLOTIING REFERENCE POINT (WHICH IS WHERE THE
HORIZONTAL ANO VERTICAL AXES WOULD INTERSECT IF ORAWNI.
YLNTH IS THE LENGTH OF THE VERTICAL AXIS IN INCHES.
IF YLNTH. IS LESS THAN O, THE VERTICAL AND DEPTH AXES WILL-
NOT BE DRAWA. BUT IN ANY CASE, UNLESS THIS OPTION IS
SUPPRESSED THROUGH INFNS, THE ITH CURVE WILL BE TRANSLA
(I-1)*(6.-ABS(YLNTH))/(NFNS-1) INCHES UP TO SIMULATE
STEPPING. IN THE OEPTH DIMENSION. YMIN-(6.-ABS(YLNTH))*
DELTAY WILL BE THE ORDINATE VALUE AT THE PLOTTING
REFERENCE PCINT.
If TRANSLATIONS ARE PERFORMED, \(X\) AND \(Y\) will BE RESTORED TO
their original values before the return to the calling
PROGRAM.
NOTE THAT IF ABS \((X L N T H)=9\), AND ABS (YLNTH)=6, THERE WILL BE NO TRANSLATION, AND, IF BORDER AND AXES ARE NOT DRAWN. THE OIMENSIONS CF THE PLOT ARE UNSPECIFIED.
IF THE AXES AND BOROER ARE DRAWN. THE TOP OF THE VERTICAL
AXIS AND THE RIGHT END OF THE HORIZONTAL AXIS ARE FIXED
RELATIVE TO THE BORDER, AND THE DEPTH AXIS JOINS THE LEFT
END OF THE HORIZONTAL AXIS AND THE BOTTOM OF THE VERTICAL AXIS.
XMIN IS A LCWER BOUND FOR \(X\).
OELTAX IS THE X DATA INCREMENT PER INCH FOR THE PLOT.
XMIN AND DELTAX DETERMINE THE PLOTTING SCALE FOR \(X\).
(SEE ABOVE.)
YMIN ANO DELTAY, SIMILARLY, DETERMINE THE SCALE FOR Y.
IF AN ERROR RETURN IS MADE FROM HIDE, ALL FURTHER CALL
WILL RESULT ONLY IN THE EXECUTION OF A RETURN UNLESS
maxdim is reset to a positive value.
DIMENSICN X(1), Y(1), XG(1), G(1), H(1), XH(1), TITLE(1)
INTEGER TITLE
C the only purpose of the following equivalence statement is
C THE ONLY PURPOSE
C TO SAVE STORAGE
EQUIVALENCE (K1, (WHICH), (K2,SLOPE), (FNSM1,21),
1 (IGGP1,K1), (K1,N2)
C epsi is the relative abcissa increment used to simulate
C DISCONTINUITIES IN THE MAXIMUM FUNCTION.
DATA. EPS1/:000001/
DATA NOTTLE/GHNOTTL
C THE FOLLOWIAG STATEMENT FUNCTION COMPUTES THE ORDINATE ON
C THE LINE JOINING (XI,YI) AND (XIPI,YIPII CORRESPONDING TO
C THE ABCISSA. \(X X_{\text {. }}\)
F(XX,XI,YI,XIPI,YIPI) \(=\mathrm{YI}+(X X-X I) *(Y I P I-Y I) /(X X I P I-X I)\)
IF(MAXDIM.LE-O) RETURN IFIMAXDIM.LE-O) RETURN
DO \(711=2, \mathrm{~N} 1\)

MAXDIM \(=0\)
GO TC 75
71 CONTINUE
IFPLOT \(=1\)
IF(NI.GI.O) GO TO 76
\(\begin{aligned} & \mathrm{NL}=-\mathrm{N} 1 \\ & \text { IFPLOT }\end{aligned}=0\)

76 IFING.GT.0) GO TO 5000
IFINI+4.LE.MAXDIM) GO TO 74 MAXOIM \(=\)-MAXDIM
75 return
\(\stackrel{c}{c}\)
c we hant sign \(=1\) if we are plotiting maximum, \(=-1\) if MINIMUM.:
74 SIGN \(=1\).
IF(NG.LT:-1) SIGN =-1.
\(c\)
\(c\)
\(c\)
C TRANSLATED BY THE VECTOR (-DXIN, DYIN)*(K-1) TO SIMULATE
C STEPPING IN THE DEPTH DIMENSION.
IFINFNS.LE.O) GO TO 46
FNSM1 \(=\) NFNS -1
DXIN \(=19 .-\) ABS \((X L N T H)\) )wDELTAX/FNSMI DYIN \(=(6 .-A B S(Y L N T H))=D E L T A Y / F N S M I\)
c systems routine movpen moves the pen to a point hhose C coordinates are specified in inches by the first two c parameters. the pen is picked up if the absolute value df THE THIKD PARAMETER IS 3, IS PUT DOWN IF 2, ANO IS LEFT AS c after last call if i. if the third parameter is negative. A NEW REFERENCE POINT WILL BE ESTABLISHED.
46 IFING.EC. \(-1.0 R . N G . E O .-31\) GO TO 41
\(\stackrel{c}{c}\)
DRAK \(81 / 2\) BY 11 INCH BORDER.
CALL MOVPEN(11.,0.,21
CALL MOVPEN(11.,8.5,1)
CALL MOVPNNO.,8.5,1)
CALL MOVPEN(O.,0.,1)

CALL MOVPEN(0..0.,1)
c
call systems routine to plot the bo-character title. THE FIRST THO ARGUMENTS ARE THE COOROINATES IN INCHES C RELATIVE TO THE REF ERENCE POINT OF THE LOWER LEFT-HAND
C Corner of the first character. the third argument
c determines the height in inches of the characters. the c fifth argument gives the angle relative to horizontal of C THE PLOTTED CHARACTERS.

41 IF(TITLE(1). NE.NOTTLE) CALL PSYMB \(-.28,-1 \ldots 14\),
\({ }^{1}\) IFIXLNTH.LT.O.) GO TO 42 TITLE,O.8BO)
c
Call systems routine to drah the horizontal axis. the LEFT END IS SPECIFIED iN INCHES RELATIVE TO THE REFERENCE COINT BY THE FIRST TWO ARGUMENTS.
**********************************************************
CALL PAXIS(9.-XLNTH, O., IH, -1,XLNTH, O.,XMIN,DELTAX) IF(YLNTH-LT.O.) GO TO 43
\({ }_{c}\)
ORAW THE DEPTH AXIS.
CALL MOVPENTT.-XLNTH.O..31
CALL MOVPENIO.:O.-YLNTH,
C drah the vertical axis. the bottom point is specified in INCHES RELATIVE TO THE REFERENCE POINT BY THE FIRST THO ARGUMENTS.

CALL PAXISIO.,6.-YLNTH, 1 , , 1 ,YLNTH, 90 ., YMIN, DELTAY)
c curves successively farther in the background will be
PLOTTED WHERE THEY ARE NOT HIDDEN BY G VS. XG. G VS XG
HILL BE UPDATED EACH TIME A NEN CURVE IS DRAHN AND WILL BE the visual raximum ior minimumi function of the curves
ALREAOY PLOTTED.
43 INDEXT \(=3\)
oo \(3 \mathrm{~J}=1, \mathrm{Ni}\)
XG(INDEXT) \(=X(J)\)
G(INCEXT) \(=\) SIGN*Y(J)
3 INDEXT \(=\) INDEXT +1
c
the following precautionary step is used in place of a
TEST IN SUBROUTINE LOOKUP TO SEE IF THE VALUE FOR WHICH we WANT AN INDEX IS OUTSIDE THE TABLE.
THE LAST XG VALUE WILL BE SET EQUAL TO THE LAST ABCISSA
C OF THE CURVE TO BE PLOTTED IN THE NEXT CALL TO HIDE.
EPS = EPSI*(ABS (XMIN) +ABS(DELTAX))
\(\mathrm{NG}=\mathrm{NI}+4\)
XG(1) \(=-\) FNSMI*DXIN+XMIN-ABS(XMIN)-ABS(XG(3))-1.
\(X G(2)=X G(3)-E P S\)
XG(N1+3) \(=X G(N 1+2)+E P S\)
IFISIGN
IFISIGN.LT.0.) \(2 Z=-\) YMIN-50.*DELTAY
\(G(1)=22\)
\(G(2)=22\)
\(G(N l+3)=2 L\)
\(G(N G)=Z Z\)
c call systems routine to produce a line plot of
(X(I),Y(I),I=I,NI) - this is the CURVE farthest in the c foreground.
c xstart is the \(x\) value at the reference point. xSTART \(=\) XMIN-(9.-ABS(XLNTH))*DELTAX
c
IFIIFPLCT.EQ. 11 CALL PDATAIX,Y,NL,O, \(1, X S T A R T, D E L T A X\),
DXKK \(=\mathrm{C}\).
DYKK = C.
RELINC = DELTAX/DELTAY
\(\underset{\substack{\text { XG(NG) } \\ \text { RETURN }}}{\underset{\text { RE }}{ }}\)
KETURN
C STATEMEVT SCOO IS REACHED IF ANY EXCEPT THE CURVE FARTHEST
IN THE FOREGROUND IS TO BE PLOTIED.
5000 SIGV \(=X G(N G)\)
C translate the arirays before plotting to simulate stepping
\(C\) IN THE DEPTH DIMENSION
IF(NFNS) \(52,48,49\)
49 DXKK = CXKK+OXIN
DYKK \(=\) CYKK+OYIN
48 00 \(4 \mathrm{~J}=1\), N1
\(Y(J)=\) SIGN* (Y(J) + DYKK)
\(X(J)=X(J)-D X K K\)
52 CALL LOCKUP (X(1),XG(1),JJ)
IF(JJ.GE.MAXOIM) GO TO 700
DO \(31 \mathrm{~J}=1, J J\)
\(31 \quad H(J)=G(J)\)
\(16=J J+1\)
\(X H(I G)=X(1)\)
\(H(I G)=F(X(1), X G(J J), G(J J), X G(I G), G(I G))\)
C WE WILL be naking table lookups for an increasing sequence
C WE WILL
C FIRST OF THE (XG ANO \(x\) ) TABLES EACH TIME. HENCE ZNDEXG
C AND INDEXT.
INDEXG \(=J J\)
INDEXG \(=1\)
\(21=X(1)\)
\(F 1=H(I G)-Y(1)\)
IT \(=2\)
I
\(I f=2\)
\(J J=1 G\)
IF(H(IG).GE.Y(1)) GO TO 32
IF(JJ.GE.MAXOIM) GO TO 700
JJ = IG +1
\(H(J J)=Y(1)\)
\(\mathrm{XH}(J J)=11+E P S\)
\(32 \begin{aligned} & \text { LAST } \\ & \mathrm{XI}\end{aligned}=\mathrm{Z1}\)
\(\begin{array}{ll}\text { C } & \\ C & \text { FINO } \\ C & \text { OF } 21 .\end{array}\)
(F)XG(IG).LT.X(IT)) GO TO 1001

C do not jump if we aike to look for a zern between xa and C \(\times(I)\).

IWHICH \(=0\)
\(X 2=X(I T)\)
\(F 2=F(X 2, X G(I G-1), G(I G-1), X G(I G I D G(I G))-Y(I T)\)
It \(=I T+1\)
- Go ro 1 C02

C COME TO 1001 IF WE ARE TO LOOK for a zero between XI and C XGiIGI.
\(1001 \times 2=X G 11 G 1\)
IWHICH \(=1\)
\(F 2=G(1 G)-F(X 2, X(I T-1), Y(I T-1), X(I T), Y(I T))\)
\(I G=I G+1\)
C the function (g-v) has a zero 22 such that \(x 1\) le 22 le \(x 2\)
THE FUNCTIOA (G-Y) HAS A \(2 E R O\) Z2 SUCH THAT XI
IF ANO ONLY IF (G-Y AT X1) \(*(G-Y\) AT X2) LE O.
IG-Y IS ASSLMED, FOR PLOTTING PURPOSES. TO BE LINEAR ON
C (G-Y IS ASSLMED, FOR PL
\(C\) EACH INTERVAL \((X 1, X 21\).
1002 IF(FI*F2.GT.O.) GO 101005
SLOPE \(=(F 2-F 1) /(\times 2-\times 1)\)
IGG \(=1 \mathrm{G}-1-1 \mathrm{IWHICH}\)
IF(ABS(SLOPE*RELINC).GT. L.E-6) GO TO 1007
C
IF G AND Y CIFFER IMPERCEPTIBLY IFOR PLOTTING PURPOSESI ON THE INTERVAL \((\times 1, \times 2)\), SET \(22=\times 2\). THIS STEP PREVENTS DIVISION BY ZERO.
\(22=x 2\)
GO 101006
C OTHERWISE, COMPUTE THE ZERO ZZ. \(100722=\times 1-F 1 / S L O P E\)

G0 101006
C If No Zero has found between \(x 1\) and \(\times 2\), CONTINUE the
C SEARCH FOR LERTES.
\(\begin{aligned} 1005 \times 1 & =\times 2 \\ F 1 & =F 2\end{aligned}\)
IF(IT.LE.NI) GO TO 1100
C if the end cf the \(x\) rable has been heached, consider the
C INTERVAL FRCM THE LAST ZERO FOUND TO THE END OF THE \(x\)
C TABLE (PLOT, UPDATE MAXIMUM FUNCTION AS INDICATED).
1008 LAST \(=1\)
\(22=x(N 1)\)
CALL LOCKUP(22, XG(INDEXGI, IGG)
IGG \(=\) INDEXG \(+I G G-1\)
ITT \(=\) NI-1
C IT IS NECESSARY TO PLOT Y VS. X ON THE INTERVAL 121,221
\(C\) ONLYIFY IS UNHIDDEN AT EACH ZZ SUCH THAT Z1LLT 22 LT 22. \(C\) WE CHODSE \(2 Z\) NEAR THE LEFT END OF THE INTERVAL FOK C WE CHOOSE
\(C\) EFICIEVGY IN THE TABLE LOOKUP.
C. NOTE THAT IT IS MORE EFFICIENT TO CHOOSE THIS VALUE FOR \(2 Z\)

C THAIV, SAY, \(99 * X(I N D E X T)+.01 * X(I N D E X T+1)\), WHICH WOUED
C ELIMINATE OIE OF THE THO TABLE LOOKUPS, BUT WOULU
C NECESSITATE A TEST IO DETERMINE IF \(2 L\) WAS BETWEEN 21 AND C 22.
\(1006 \mathrm{Z2}=.99 * 21+.01 * 22\)
CALL LOCKUP (ZZ,X(TNOEXT),K1)
CALL LOCKUP(ZL, XG(INDEXGI,K2)
\(K 1=K 1+1\) NDEXT- 1
\(K 2=K 2+1\) NDEXG -1
IFIF(ZZ, X(K1),Y(K1), X(KI+1),Y(K1+1)).GT.
\(1 \mathrm{~F}(2 Z, X G(K 2), G(K 2), X G(K 2+i), G(K) 2+1) 1)\) Go ro 7
\(\begin{array}{ll}C \\ C & \\ \text { C }\end{array}\)
If \(Y\) IS hidCen betheev \(Z 1\) and 22 , update the maximum FUNCTION

C FOR GENERALITY, THE MAXIMUM FUNCTION IS UPOATED EVEN IF
C THIS IS THE INFNSITH CURVE.
F(JJ+IGG-INDEXG-GE.MAXDIM) GO TO 700
IF(INDEXG:EQ.IGG) GO TO 712
JO \(121=1\) CEXG+1
\(121=J J, 1 G G\)
\(X H(J J)=X G(I)\)
\(12 \underset{~ H(J J)}{ } 712\) JJ \(=G(I)\)
XH(JJ) \(=22\)
\(H(J J)=F(22, X G(I G G), G(I G G), X G(I G G+1), G(I G G+1))\)
INDEXG =IGG
GO TO 6 C
C
C FUNCTION ANC PLOT
7 NGRAPH = ITT-INDEXT + 2
(FIJJ+NGRAPH-1.GT.MAXDIM) GO TO 700
N2: \(=\) JJ
IF(NGRAPH.EQ.2) GO TO 9
J1 \(=\) INCEXT +1
DO 11 I \(=\mathrm{Jl}, \mathrm{IT} \mathrm{T}\)
\(J J=J J+1\)
\(X H(J J)=X(I)\)
\(11 H(J J)=Y(I)\)
\(9 \mathrm{JJ}=J J+1\)
\(\mathrm{XH}(J J)=22\)
\(H(J J)=F(Z 2, X(I T), Y(I T T), X(I T T+1), Y(I T T+1))\)
C CALL SYSTEMS ROUTINE TO PRODUCE LINE PLOT OF
(XH(I), H (I), I =N2,N2 +NGRAPH-1).
 1
2

XSTART, OELTAX,SIGN*YMIN
INDEXT \(=\) ITT
INDEXG \(=\) IGG
60 IFILAST.EO.1) GO TO 61
\(\mathrm{FL}_{1}=F 2\)
L1: 22
C after photting andour updating the maximum function on the
C INTERVAL (Z1, 22 ), SEARCH FOR THE NEXT ZERO IF THE END OF
C THE ABCISSA TABLE Xf HAS NOT BEEN REACHEO.
IFIIT.LE.NII GO TO 1100
GO TO 1C08
\({ }^{C}\) C AFter \(Y\) VS. \(x\) has been plotted, finish updativg and store
c. THE NEH MAXINUM FUNCTION.

C allow fur tre pussibility that the previous maximum
C FUNCTION EXTENOS TO THE RIGHT OF THE FUNCTION JUST
C PLOTTED.
61 IF(XG(NG).LE.XG(NG-1)) NG = NG-1
IFIXG(NG).LE.X(NI)) GO TO 33
IF(JJ+3*NG-IGG.GT.MAXDIM) GO TO 700
\(X H(J J+1)=X H(J J)+E P S\)
JJ: \(=\) JJ +1
\(H(J J)=F(X(N 1), X G(I G G), G(I G G), X G(I G G+1), G I I G G+1))\)
IGGPI \(=\mathbf{I G G + 1}\)
DO \(34 J=1 G G P 1, N G\)
JJ \(=\mathbf{J J + 1}\)

\(34 \mathrm{NG}:=\mathrm{H}(J J)=G(J)\)
33 NG \(=\mathrm{JJ}+2\)
IF(NG.GI.MAXDIM) GO TO 700
DO \(131=1, J J\)
13 XG(I) = XH(I)
C
the following precautionary step is used in place of a
TEST IN SUBROUTINE LOOKUP TO SEE IF THE VALUE FOR WHICH WE WANT AN INDEX IS OUTSIDE THE TABLE.
C OF THE NEXT CURVE TG BE PLOTTEOUAL TO THE LAST ABCISSA
\(X G(J J+1)=X G(J J)+E P S\)
IF(SIGN.LT.0.) G(JJ+1) = -YMIN-50.*DELTAY+DYKK
\(G(N G)=G(J J+1)\)
C
GSGRE ARRAYS X ANC Y BEFORE RETURNING.
66 IFINFNS.LT.O) GU TO 53
\(0082 \mathrm{I}=1, \mathrm{NI}\)
\(x(I)=X(I)+\) CXKK
82 Y(1) \(=\) SIGN*Y(I)-DYKK
53 XG(NG) \(=\mathrm{SIGN}\)
RETURN
\(\stackrel{C}{C}\)
C IF STATEMENT 700 IS REACHED, DIMENSIONS WOULD HAVE BEEN
C EXCEEDED. SEE COMMENTS ON CALLING SEQUENCE FOR HIDE. 700 MAXDIM \(=-\) MAXDIM

GO ro 6 E
END
SUBR
SUBROUTINE LOOKUP(X,XTBL,JI
\(\begin{array}{ll}\mathrm{C} & \\ \mathrm{C} \\ \mathrm{C} & \mathbf{1} \\ \mathrm{C} & \mathbf{S}\end{array}\)
THIS SUBROUTINE IS CALLED BY HIDE TO PERFORM A TABLE
C LOOKUP. BECAUSE OF PRECAUTIONS TAKEN IN HIDE, A TEST TO C SEE IF \(x\) IS OUTSIDE THE TABLE IS UNNECESSARY.

DIMENSICN XTBL(1)
\(J=2\)
4 IF (xTBL (J)-X) \(1,2,3\)
\(\mathrm{J}=\mathrm{J}=1\)
GO
RE
2 RETURN
2 RETURN
\(3 \mathrm{~J}=\mathrm{J}-1\)
RETURN
END

\section*{Driver}
(a) Test for plotting routine HIDE.

(b) Test case for HIDE.

(c) Geometrical test case.


\section*{Remark on Algorithm 420 [J6]}

Hidden-Line Plotting Program [H. Williamson, Comm. ACM 15 (Feb. 1972), 100-103]
I.D.G. Macleod and A.M. Collins [Recd. 19 June 1972] Department of Engineering Physics, Research School of Physical Sciences, Australian National University, Canberra, A.C.T. 2600, Australia

The number of point pairs to be plotted in subroutine \(H I D E\) is indicated by the magnitude of parameter \(N 1\). If \(N 1\) is less than zero, the visual maximum function is updated but no plotting is carried out. In this case, however, the construction

DO \(71 \mathrm{I}=2, \mathrm{~N} 1\)
IF (X(I-1).LT. X(I)) GO TO 71
MAXDIM \(=0\)
GO TO 75
71 CONTINUE
is nonstandard and may lead to undesirable results. If the check for increasing \(X\) values is to be retained when \(N 1\) is negative, its absolute value should be used as the terminal value of the \(D O\) loop.

In sections 8.3.2 and 10.1.3, ANSI Fortran [1] indicates that where \(X\) is an array there should be no distinction between the use of \(X\) and the use of \(X[1]\) as parameters in a procedure reference. Nevertheless, some Fortran implementations (and languages such as Algol and PL/I) make such a distinction, in which case subroutine LOOKUP and the calls to it would have to be appropriately modified.

\section*{References}
1. American National Standards Institute: Fortran. Publication X3.9-1966.

Remark on Algorithm 420 [J6]
Hidden-Line Plotting Program
[Hugh Williamson, Comm. ACM 15 (Feb. 1972), 100-103|

Hugh Williamson [Recd. 9 Oct. 1972]
National Con-Serv, Incorporated, Austin, Texas

The input quantities to subroutine \(H I D E\) referred to in the following paragraphs (e.g. \(N 1, N F N S\), "input curve to be plotted") are described in the block of comment statements at the beginning of HIDE as originally published.

If \(N 1<0, D O\) loop 71 is not executed properly, since the upper limit, \(N 1\), is less than the lower limit, 2 . This affects only checking for monotonicity in the input abscissa array; otherwise, if the inputs are correct, the performance of the program is not affected.

The error is corrected if the first 11 executable statements are replaced by the following (the first executable statement of the original program, which is not changed, is listed for clarity):
```

IF(MAXDIM.LE.0) RETURN
IFPLOT = 1
IF(NI.GT.0) GO TO 76
N1 = - N1
IFPLOT =0

```

Fig. 1. Without verticals.


Fig. 2. With verticals to aid visualization.


76 DO 7II - 2,NI
IF (X(I-I).LT.X(I)) GO TO 71
MAXDIM \(=0\)
GO TO 75
71 CONTINUE
IF(NG.GT.0) GO TO 5000
On computers in which all variables are not automatically set to zero before execution, FNSM1 is not properly initialized if \(N F N S \leq 0\). To correct this, simply insert the statement
\(F N S M 1=0\).
before the statement
IF (NFNS.LE.0) GO TO 46
The latter is the sixth statement after Fortran statement number 74.
\(F N S M 1\) will still be improperly defined if \(N F N S=1\). If only one curve is to be plotted, however, translating to simulate stepping in the depth dimension will not be done, so set \(N F N S=\) -1 for only one curve to be plotted.

In some cases, the three-dimensional surface is easier to visualize if (nearly) vertical lines are drawn at the left edge of each curve; this effect is illustrated by Figures 1 and 2. The verticals are added by inserting ( \(X M I N-\epsilon, Y M I N\) ) as the first point in each input curve to be plotted, where \(\epsilon\) is a small positive number ( \(10^{-4} \times D E L T A X\) would be appropriate).

The author appreciates very much the comments received from readers of Communications regarding implementation of HIDE on different computers.

Remark on Algorithm 420 [J6]
Hidden-Line Plotting Program [Hugh Williamson, Comm. ACM 15 (Feb. 1972), 100-103].

Blaine Gaither [Recd. 3 Apr. 1973]
New Mexico Institute of Mining and Technology (TERA), Socorro, iNM 87801

The algorithm was compiled and run without corrections on an IBM 360 G44. It has been in use for a year now with no problems. However, there is danger of division by zero if NFNS equals 1 . To eliminate this danger the statement:
IF(NFNS.EQ.1) NFNS \(=-1\)
should be inserted between the statements:
\(\operatorname{IF}(\mathrm{NG} . \mathrm{LT} .-1) \mathrm{SIGN}=-1\)
IF(NFNS.LE.0) GO TO 46
Depth axis may be added by the following changes. Where \(Z M I N\) and \(Z M A X\) are the values for the nearest and farthest curves respectively, replace the continuation card of HIDE's subroutine statement with:
```

1 XLNTH,YLNTH,XMIN,DELTAX,YMIN,DELTAY, ZMIN,ZMAX)

```

In place of the statement labeled 42 insert:
42 DELZ \(=\) ZMAX - ZMIN
IF (DELZ) 9601, 9602, 9601
\(9601 \mathrm{XSC}=\mathrm{XLNTH}-9\).
\(\mathrm{YSC}=6 .-\mathrm{YLNTH}\)
IF (XSC) 9604, 9603, 9604
\(9603 \mathrm{ANGZ}=90\).
GO TO 9605
9604 ANGZ \(=\) ATAN(YSC \(/ \mathrm{XSC}) * 57.29578\)
9605 ZLEN \(=\) SQRT(XSC*XSC + YSC*YSC)
IF (ZLEN - 1.) 9602, 9602, 9606
9606 CALL PAXIS ( \(0 .\), YSC, \(1 \mathrm{H},-1\), ZLEN,ANGZ,ZMAX, -DELZ:ZLEN)
9602 IF (YLNTH.LT.0.) GO TO 43
If \(Z M I N\) equals \(Z M A X\) or if the length of the depth axis would be less than or equal to 1 ., these changes will have no effect. The max and min numbers on the depth axis may overlap with those of the horizontal and vertical axis.

\section*{Remark on Algorithm 420 [J6]}

Hidden-Line Plotting Program [Hugh Williamson, Comm. ACM 15 (Feb. 1972) 100-103.]
T.M.R. Ellis [Recd. 26 Mar. 1973 and 30 July 1973] Computing Services, University of Sheffield, England

Algorithm 420 has been implemented on an ICL 1907 computer and used to plot the surface entitled "Test for Plotting Routine Hide" as well as a number of other surfaces. The system plotting routines for the ICL 1900 series computers more or less duplicate those used by Williamson, except in the case of PDATA for which no equivalent routine exists. There is however a system routine which draws a smooth curve through a set of points, and only slight modifications were required to reproduce the exact effect of PDATA.

The implementation was checked by the satisfactory reproduction of the "Test for Plotting Roatine Hide," and subsequently it produced good representations of other surfaces. However, when attempting to plot a square-based pyramid, the program failed due to an error in HIDE.

When \(H I D E\) is searching for points at which the current line appears and disappears, it searches for the zeros of a function ( \(G-Y\) ) where \(G\) is the current visual maximum (i.e. as already drawn) and \(Y\) is the current ordinate (as to be drawn). This search

Fig. 1.


Fig. 2.


Fig. 3.

\(\left(F_{1}=F_{2}=0\right)\)

Fig. 4.

is carried out by comparing the values of the function \((G-Y)\) at adjacent points in the current line \((Y)\) and or the current visual maximum ( \(G\) ), as shown in Figure 1.

Due to the fact that each line drawn is shifted upward and to the left, in order to simulate perspective, data points on successive lines which in the actual surface would have the same abscissa will have different abscissa in the drawing. Thus \(X 0\) and \(X 1\) might represent the same value of the abscissa in the surface. At \(X 0\) and \(X 1\) in the above drawing the function \((G-Y)\) has a negative value, while at \(X 2\) and \(X 3\) it is positive. Clearly if \(F 1\) and \(F 2\) are the values of \((G-Y)\) at \(X 1\) and \(X 2\) there is a zero between \(X 1\) and \(X 2\) if and only if \(F 1\) and \(F 2\) have opposite signs. This is tested for by the statement: 1002 IF(F1*F2.GT.0.) GO TO 1005

If a zero is found to exist, its abscissa is calculated by linear interpolation, the slope of the line being determined by the next statement:
SLOPE \(=(\mathrm{F} 2-\mathrm{F} 1):(\mathrm{X} 2-\mathrm{X} 1)\)
A check is subsequently made to avoid dividing by zero if SLOPE is too small.

In the case of the square based pyramid referred to above, the projection used was such that it was viewed down its rear face. and therefore all lines traversing the far face of the pyramid were both parallel to one another and passed through the same point on the
graph (the peak of the pyramid). Thus for a part of their length all the lines after that which goes over the peak are drawn on top of each other, as shown in Figure 2. When plotting the second of these coincident lines the respective \(G\) and \(Y\) functions are therefore as shown in the exploded form in Figure 3.

This clearly means that for a number of consecutive abscissa values both \(F 1\) and \(F 2\) are zero. Due to the way in which HIDE keeps track of its path along the two functions \(G\) and \(Y\), the effect of both \(F 1\) and \(F 2\) being zero is for the abscissa ( \(X 1\) ) corresponding to the first of the two "zeros" to be entered in the visual maximum array for a second time. During the plotting of the next line therefore, the visual maximum function \(G\) vs. \(X G\) has two identical entries. and thus the stage comes when \(X 1\) corresponds to the first, and \(X 2\) to the second (see Figure 4).

If. as in this case, this (third) line would be coincident with the second (and the first) at this point, then \(F 1=F 2=0\) and the test at 1002 (above) will lead to the calculation of SLOPE , and hence failure due to the division by zero ( \(X_{2}-X_{1}\) ).

The problem can, however, be very easily corrected by inserting the following statement immediately after the statement with label 1002:
IF(FI.EQ.FZ) GO TO 1005
Since this statement can only be reached if \(F 1 * F 2\) is less than or equal to zero, then clearly the jump will be made if and only if \(F_{1}=F 2=0\). In this case the second "zero" is ignored. and the program proceeds satisfactorily.

Remark on Algorithm 420 [J6]
Hidden-Line Plotting Program [Hugh Williamson, Comm. ACM 15 (Feb. 1972) 100-103] and Remark on Algorithm 420 [T.M.R. Ellis, Comm. ACM 17 (June 1974), 324-325]
T.M.R. Ellis [Recd. 8 July 1974] Computing Services, University of Sheffield, England

There was an unfortunate printing error in my Remark on Algorithm 420 which made nonsense of the whole thing. The statement which should be inserted to correct the error discussed should, of course, be:
IF(F1.EQ.F2) GO TO 1005
and not: IF(F1.EQ.FZ) GO TO 1005 as printed.

\section*{Algorithm 421}

\section*{Complex Gamma Function with Error Control [S14]}

\author{
Hirondo Kuki* (Recd. 17 Aug. 1970 and 21 June 1971) \\ Computation Center, The University of Chicago, Chicago, Illinois
}

\section*{Key words and phrases: complex gamma function, gamma} function, complex loggamma function, loggamma function, round-off error control, inherent error control, run-time error estimates, error estimates, special functions

CR Categories: 4.9, 5.11, 5.12

\section*{Description}

This Fortran program computes either the gamma function or the loggamma function of a complex variable in double precision. In addition, it provides an error estimate of the computed answer. The calling sequences are:
\(C A L L C D L G A M(Z, W, E, 0)\) for the loggamma, and
CALL CDLGAM ( \(Z, W, E, 1\) ) for the gamma,
where \(Z\) is the double precision complex argument, \(W\) is the answer of the same type, and \(E\) is a single precision real variable. Before the call, the value of \(E\) is an estimate of the error in \(Z\), and after the call, it is an estimate of the error in \(W\).

For details of the characteristics of the program, an analysis of the algorithm, and the nature of the error estimate, see [1].

This program was tested on an IBM System 360 Model 65. A slightly modified version was used for this purpose to take advantage of the availability of such facilities as the ENTRY statement and functions of the type double precision complex. Compiled by OS/FORTRAN-H, opt. 2, it required 3188 bytes of storage. Per-
formance statistics on samples of 500 arguments each, from seven disjoint regions within the square
\(\left\{z=z_{1}+i z_{2} ;\left|z_{1}\right|,\left|z_{2}\right|<30\right\}\),
were as follows
\begin{tabular}{ll} 
Region I & \(0 \leq z_{1}\) and \(|z|<3\) \\
Region II & \(0 \leq z_{1}\) and \(3 \leq|z|<10\) \\
Region III & \(0 \leq z_{1}<10,-30<z_{2}<30\), and \(10 \leq|z|\) \\
Region IV & \(10 \leq z_{1}<30,-10<z_{2}<10\) \\
Region V & \(10 \leq z_{1}<30,10 \leq\left|z_{2}\right|<30\) \\
Region VI & \(-30<z_{1}<0,-1<z_{2}<1\) \\
Region VII & \(-30<z_{1}<0,1 \leq\left|z_{2}\right|<30\)
\end{tabular}
\begin{tabular}{lrlll} 
& \multicolumn{2}{c}{ time \(^{*}\)} \\
Region & \(\log \mathrm{\Gamma}\) & \(\Gamma\) & Max error & \\
I* & RMS error** \\
I & 2100 & 2470 & \(2.3 \times 10^{-15}\) & \(8.7 \times 10^{-16}\) \\
II & 1800 & 2230 & \(7.6 \times 10^{-15}\) & \(2.8 \times 10^{-15}\) \\
III & 1700 & 1930 & \(1.6 \times 10^{-14}\) & \(7.8 \times 10^{-15}\) \\
IV & 920 & 1500 & \(1.4 \times 10^{-14}\) & \(7.1 \times 10^{-15}\) \\
V & 1000 & 1500 & \(1.6 \times 10^{-14}\) & \(7.9 \times 10^{-15}\) \\
VI & 2130 & 2330 & \(2.6 \times 10^{-14}\) & \(7.9 \times 10^{-15}\) \\
VII & 1900 & 2050 & \(2.4 \times 10^{-14}\) & \(9.5 \times 10^{-15}\)
\end{tabular}
* Average time in \(\mu \mathrm{s}\).
** Generated absolute errors for computation of the loggamma function.

Essentially the same statistics were obtained as generated relative errors for computation of gamma function. Statistics on the effectiveness of the error estimate are found in [1].

\section*{References}
1. Kuki, H. Complex gamma function with error control. Comm. ACM 15 (Apr. 1972), 262-267.
```

Algorithm
SUBROUTINE CDLGAM(CARG,CANS,ERROR,LFO
COMPLEX GAMMA AND L\emptysetGGAMMA FUNCTIONS WITH ERR@R ESTIMATE
GARg a cOMpLEX ARGUMENT, GIVEN AS A VECTOR OF 2 DØUBLE
PRECISION ELEMENTS CONSISTING OF THE REAL. COMPONENT
FOLLØWED BY THE IMAGINARY COMPONENT
CANS = THE COMPLEX ANSWER, OF THE SAME TYPE AS CARG
ERROR = A REAL VARIABLE. IT STANDS FOR AN ESTIMATE OF THE
ABSOLUTE ERROR OF THE ARGUMENT AS INPUT. AS OUTPUT

```

```

 OR THE RELATIVE (FOR GAMMA)
 LFO = FLAG. SET IT TO O FOR LOGGAMMA, AND I FOR GAMMA
 DØUBLE PRECISIDN CARG(2),CANS(2),COEF(7),FO,F1,GO,G1,
 P 1,DP , HL2P,AL2P, DEL TA,DEO, DE1, Z1,Z2,ZZ1,W1,W2,Y1,
 H,H1,H2,AL1,ALL, DN, EPS, OMEGA
 DATA COEF(1)/+0.641025641025641026D-2/
 DATA C0EF(2)/-0.191752691752691753D-2/
 DATA CDEF (3)/+0.841750841750841751D-3/
 DATA COEF(4)/-0.595238095238095238D-3/
 DATA COEF(5)/+0.793650793650793651D-3/
 DATA GQEF(6)%-0.277777777777777778D-2/
 DATA C@EF(7)/+0.833333333333333333D-1/
    ```

```

 DATA G0/1680.1477059210524DO/,G1/180.01477047052042DO/
 DATA PI/3.14159265358979324DO/
 DATA HL2P/O.918938533204672742DO
 DATA AL2P/1.83787706640934548DO/
 C CONSTANTS EPS AND ØMEGA ARE MACHINE DEPENDENT.
C EPS IS THE BASIC ROUND-GFF UNIT. FOR S/360 MACHINES,
C IT IS CHOSEN TO BE 16**-13. FOR BINARY MACHINE OF N-
C BIT ACCURACY SET IT TO 2**(-N+1), AND INITIALIZE DEG
C AS 5.0 RATHER THAN AS 2.0
OMEGA IS THE LARGEST NUMBER REPRESENTABLE BY THE FLOAT
C POINT REFRESENTAT IS SLIGHTLY LESS THAN IGS*360
MACHINES, IT IS SLIGHTLY LESS THAN 16**63.
DATA EPS/2.2D-16/
DATA ØMEGA/7.23700538D75/
Z1 = CARG(1)
Z2 = CARG(2)
DELTA = ABS(ERROR)
DEO = 2.ODO
DEI = 0.0

```
```

C FORCE SIGN OF IMAGINARY PART OF ARG TO NON-NEGATIVE
LF1 = 0. .GE, 0.0) Gø T0 20
LF1=1
20 LF2=0
IF(Z1 .GE. 0.0) GO T0 100
C CASE WHEN REAL PART OF ARG IS NEGATIVE
LF2 = 1
LFI=LF1-1
T1 = AL2P - PI*Z2
T2 = PI*(0.SDO - Z1)
IF CU-DPI*Z2
FF (U.GE. -0.1054DO) GO T0 40
A = 0.0DO
C IF E**U -LT. 10**(-17), IGNGRE IT T\emptyset SAVE TIME AND TO AVOID
LLEANT UNDERFLOW
IF (U .LE. -39.15DO) Gø T0 30
A 质 = DEXP(U)
G0 To 50
40 U2 = U*U
A = -U*(F1*U2 + FO)
HI = (A + A)/(CUU +G1)*U2 + GO + A)
A = 1.ODO - H1
C DINT IS THE DQUBLE PRECISION VERSION OF AINT, INTEGER EX-
TRACTION. THIS FUNCTION IS NOT INCLUDED IN ANSI FORTRAN
EITHER SUPPLY IT AS AN EXTERNAL SUBROUTINE CAND TYPE
NAME DINT AS DQUBLE PRECISIOND OR MODIFY THE NEXT THE
STATEMENT AS THE EXAMPLE FOR S/360 INDICATES, FOR S/360
REPLACE IT WITH
DOUBLE PRECISION SCALE
DATA SCALE/Z4FOOO00000000000)
50 B = Z1-(<Z1-0.5DO) + SCALE)
50 B = Z1-DINT(Z1-0.5DO)
H2 =A*DSIN(DPI*B)
B = DSIN(PI*B)
HI=H1 + (B+B)*B*A
H = DABS(H2) + H1 - DPI*A*DELTA
FEO = DEO + DABS(T1) + T0
DE1 = PI + DPI*A/H
Z1 = PI + + DPI*A/H
CASE WHEN NEITHER REAL. PART NOR IMAGINARY PART OF ARG IS
C NEGATIVE, DEFINE THRESHOLD CURVE TO BE THE BR\emptysetKEN LINES
C CONNECTING POINTS 1OFO*I, 1OF4.142*I, 0.1F14.042*I,AND
c 0.1FOMEGA*I
100 LF3 = 0
Y1 = 21-0.5DO
W1 = 0.0
W2 = 0.0
K}=
B = DMAXI(0.1DO, DMINI(10.0DO, 14.142DO-22)) - 21
IF (B .LE. O.O) GO TO 200
C CASE WHEN REAL PART OF ARG IS BETWEEN O AND THRESHOLD
LF3 = 1
N}=\textrm{B}+1.00
DN=N
Z1}=21+D
Z1 = Z1*Z1+DN+Z2*Z2
v1 = Z1/A
C INITIALIZE UI+UZ*I AS THE RIGHTMOST FACTOR 1-1/(2+N)
U1 = 1.0DO - VI
U2 = - v2
F=6.000-22*0.600-zZ
IF (K .LE. O) GO TO 120
C FORWARD ASSEMELY OF FACTORS (Z+J-1)/(Z+N)
N}=N-
UU1 = (ZZ1*Z1 + Z2*ZZ)/A
UU2 = DN*Z2/
VV1 = 0.0
D0 110 J=1,k
B=U1*(UU1+VV1) - U2*(UUZ+VV2)
U2 = U1*(UU2+VV2) + U2*(UU1 +VV1)
UI = B
VV1 = VV1 + V1
110 VV2 = VV2 + V2
C BACKWARD ASSEMBLY OF FACTORS 1-J/(Z+N)
VV1 = V1
V2 = V2
D 130 J=2.N
VV1 = VV1 + V1
B = U1*(1.0DO - VV1) + U2*VVZ
|2 = -Ul*VV2 + U2*(1.0D0 - VV1)
U2 = -UI*VV2 + U2*(1.ODO - VV1)
130
= U1*U1 + U2*UZ
IF (U.EQ. O.O) GO T0 500
FF (LFO .EQ. O) G® T0 150
IF (K .LE.O) GO T0 200
50 AL1 = DLQG(U)*O.5DO
IF (LFO.NE. O) G\varnothing T0 160
WI = AL1
W2 = DATAN2(U2,U:)
IF (W2 LLT. 0.0) W2 = W2 + DPI
A = zZ1 + Z2 GO TO 200
160 A = 221 + Z2 - DELTA
DEO = DEO - ALI
DE1 = DE1 + 2.ODO + 1.0DO/A
C CASE WHEN REAL PART OF ARG IS GREATER THAN THRESH\oslashLD
200A= Z1*Z1 + Z2*Z2
AL1 = DLOG(A)*0.500
AL2 = DATAN2(Z2,Z1)
V1 = Y1*AL1 - 22*ALL2
V2 = Y1*AL2 + Z2*AL1
C EVALUATE ASYMPTOTIC TERMS. IGNORE THIS TERM, IF ABS VAL(ARG) .GT.

```

C 10**9, Tø SAVE TIME AND TO AVOID IRRELEVANT UNDERFLOW \(V V_{1}=0.0\)
vV2 \(=0.0\)
IF (A .GT. 1.0D18) Gø Tø 220
UU1 \(=\mathrm{Z}_{1} / \mathrm{A}\)
UUZ \(=-22 / A\)
UUU1 \(=\) UU1*UUI - UU2*UU2
UUU2 \(=\) UU1*UU2*2.0DO
\(V V 1=\operatorname{CDEF}(1)\)
DQ 210
De \(210 \mathrm{~J}=2,7\)
VV2 \(=\) VVI*UUU1 - VV2*UUUZ
210 VV1 \(=8+C\) CEF (J)
\(B=\) VVI*UUI - VVE*UU2
VV2 \(=\) VVI*UU2 + VV2*UU1
\(V_{V 1}=B\)
\(220 W_{1}=\left(\left(\left(V V_{1}+H L 2 P\right)-W 1\right)-21\right)+V 1\)
W2 \(=(\) (VV2 \(-\mathrm{W} 2)-\mathrm{Z2})+\mathrm{V} 2\)
\(D E O=D E O+D A B S(V 1)+D A B S(V 2)\)
\(1 F(K\).LE. 0\() \quad D E 1=D E 1+A L 1\)
C FINAL ASSEMBLY
IF (LF2. NE. O) GO T0 310
IF (LFO.EQ. O) GO TQ 400
\(A=\operatorname{DEXP}\left(W_{1}\right)\)
\(W_{1}=A * D C O S(W 2)\)
\(W_{2}=A * D S S\)
IF (LF3.EQ. O) GO T0 400
\(B=(W 1 * U 1+W 2 * U 2), U\)
\(\mathrm{B} 2=(W 2 * U 1-W 1 * U 2)\) ) U
\(W_{1}=B\)
Gø T0 400
\(310 \mathrm{H}=\mathrm{H} 1 * \mathrm{HI}+\mathrm{H} 2 * \mathrm{H} 2\)

IF (H.GT. 1.OD-2) G0 T0 330
\(320 \mathrm{~A}=\mathrm{DLOG}(\mathrm{H}) * 0.5 \mathrm{DO}\)
\(1 F\) (H -LE. \(1 \cdot O D-2) \quad D E O=D E O-A\)
IF (LFO .NE. O) G0 T0 330
\(W_{1}=(T 1-A)-W_{1}\)
\(\mathrm{W} 2=\left(\mathrm{T} 2-\operatorname{DATAN2}\left(\mathrm{H} 2, \mathrm{H}_{1}\right)\right)-\mathrm{W} 2\)
330 T
\(=T 1-W_{1}\)
\(\begin{aligned} T 2 & =T 2-W 2 \\ A & =\operatorname{DEXP}(T 1)\end{aligned}\)
\(T 1=A * D C\) DS \((T 2)\)
\(T 2=A * D S I N(T 2)\)
\(W_{1}=\left(\mathrm{T} 1 * \mathrm{H}_{1}+\mathrm{T} 2 * \mathrm{H}_{2}\right) / \mathrm{H}\)
\(W_{2}=(T 2 * H 1-T 1 * H 2) / H\)
IF (LF3 .EQ. 0) G0 T0 400
\(B=W 1 * U 1-W 2 * U 2\)
\(\mathrm{W}_{2}=\mathrm{W}_{1} * \mathrm{U}_{2}+\mathrm{W}_{2} * \mathrm{U}_{1}\)
\(W_{1}=B\)
400 IF (LF1 -NE 0) WE \(=-W 2\)
C TRUNCATIØN ERR@R ØF STIRLINGS FORMULA IS UP TØ \(3 * 10 * *-17\).
\(D E 1=D E O * E P S+3.0 D-17+D E 1 * D E L T A\)
C CASE WHEN ARGUMENT IS TOO CLøSE TO A SINGULARITY
\(500 W_{1}=\) DMEGA
\(W_{2}=\) QMEGA
\(D_{1}=\) OMEGA
C
\(600 \operatorname{CANS}(1)=W\)
\(\operatorname{CANS}(2)=W 12\)
ERRØR = DE1
RETURN
END.

\title{
Algorithm 422 \\ Minimal Spanning Tree [H]
}
V. Kevin M. Whitney (Recd. 4 May 1970, 13 Oct. 1970, and 3 Aug. 1971)
Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48104

\footnotetext{
Key Words and Phrases: spanning tree, minimal spanning tree, maximal spanning tree

CR Category: 5.32
}

\section*{Description}

This algorithm generates a spanning tree of minimal total edge length for an undirected graph specified by an array of inter-node edge lengths using a technique suggested by Dijkstra [1]. Execution time is proportional to the square of the number of nodes of the graph; a minimal spanning tree for a graph of 50 nodes is generated in 0.1 seconds on an IBM System 360/67. Previous algorithms [2, 3, \(4,5]\) require an amount of computation which depends on the graph topology and edge lengths and are best suited to graphs with few edges.

The nodes of the graph are assumed to be numbered from 1 to \(N\). The length of an edge from node \(I\) to node \(J\) is given by array element \(D M(I, J)\). If there is no edge from node \(I\) to node \(J\), \(D M(I, J)\) is given a value larger than the length of the longest edge of the graph, say \(10^{10}\). The diagonal elements of array \(D M\) are not used and may have any value. After execution of the algorithm, the edges of a minimal spanning tree are specified by pairs of nodes in array MST and the total edge length is given by CST .

The Dijkstra algorithm grows a minimal spanning tree by successively adjoining the nearest remaining node to a partially formed tree until all nodes of the graph are included in the tree. At each iterative step the nodes not yet included in the tree are stored in array NIT. The node of the partially completed tree nearest to node \(N I T(I)\) is stored in \(J I(I)\), and the length of edge from NIT(I) to \(J I(I)\) is stored in \(U I(I)\). Hence the node not yet in the tree which is nearest to a node of the tree may be found by searching for the minimal element of array \(U I\). That node, \(K P\), is added to the tree and removed from array NIT. For each node remaining in array NIT, the distance from the nearest node of the tree (stored in array \(U I\) ) is compared to the distance from \(K P\), the new node of the tree, and arrays \(U I\) and \(J I\) are updated if the new distance is shorter. The nearest node selection and list updating are performed \(N-1\) times until all nodes are in the tree. A proof that this algorithm finds a minimal spanning tree and a discussion of the related shortest path tree algorithm will be found in either of references [1] or [6].

Most of the execution time for this algorithm is spent in the search and updating statements between statements labeled 200 and 500 which are executed \(N-1\) times. Since on the \(K\) th execution a
list of \(N-K\) items is searched and updated, the total execution time is proportional to \(N^{2}\).

If the graph represented by the inter-node edge length array \(D M\) is not connected, the procedure will generate a minimal spanning forest containing the minimal spanning trees of the disjoint components joined together by edges of length \(10^{10}\). A disconnected graph is indicated by a value of \(10^{10}\) for variable \(U K\) at step 500 during execution of the algorithm.

The algorithm may be simply modified to find a spanning tree of maximal total length by changing the loop between statements 300 and 400 to search for the most distant rather than for the nearest remaining node to be adjoined to the partially completed tree.

The data storage required for the algorithm may be reduced from \(N(N+5)\) locations to \(5 N\) locations by replacing array \(D M\) with an edge length function which calculates the required inter-node edge lengths as they are needed. Such a function will be called \(N(N-1) / 2\) times and may extend considerably the size of problem which can be solved by this algorithm on a machine with limited core storage.

Acknowledgment is due E.L. Lawler for bringing reference [1] to my attention. This work was supported in part by Rome Air Development Center Contract F30602-69-C-0214 with the Systems Engineering Laboratory of the University of Michigan.

\section*{References}
1. Dijkstra, E.W. A note on two problems in connection with graphs. Numer. Math. 1, 5 (Oct. 1959), 269-271.
2. Kruskal, J.B. Jr. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48-50.
3. Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 (Nov. 1957), 1389-1401.
4. Obruca, A. Algorithm 1. MINTREE. Comput. Bull. (Sept. 1964), 67.
5. Loberman, H., and Weinberger, A. Formal procedures for connecting terminals with a minimum total wire length. J. ACM 4, 4 (Oct. 1957), 428-437.
6. Lawler, E.L. An Introduction to Combinatorial Optimization Theory and Its Applications, 2 vols. Holt, Rinehart \& Winston, New York, 1971.

\section*{Algorithm}

SUBROUTINE DMTØMS(DM,N,MST,IMST,CST)


THIS SUBROUTINE FINDS A SET OF EUGES OF A LINEAR GRAPH COMPRISING A TREE WITH MINIMAL TOTAL EDGE LENGTH. THE GKAPH IS SPECIFIED AS AN ARKAY OF INTER-NODE EDGE LENGTHS.
THE EDGES OF THE MINIMAL SPANNING TKEE OF THE GRAPH ARE PLACED IN ARRAY mST. EXECUTION TIME IS PKEPGKTIDNAL TO THE SQUARE OF THE NUMBEK OF MODES.
CALLING SEQUENCE VARIABLES ARE:
dM AKRAY OF INTER-NQDE EDGE LENGTHS. DM(I,J) ( 1 -LE. I, J -LE. IN) IS THE LENGTH OF AN EDGE FROM NODE I TO NODE J. IF THENE IS NO EDGE FROM NODE I TO NODE J, SET DM (I, J)=10.**10 \(N\) NODES ARE NUMBERED \(1,2, \ldots, N\).

MST ARKAY IN WHICH EDGE LIST QF MST IS PLACED. MST(I,I) IS THE ORIGINAL NEDE AND MST(2,I) IS THE TEKMINAL NODE OF EDGE I FOR I LLE. I .LE. IMST.
IMST NUMBER OF EDGES IN ARKAY MST.
CST SUM OF EDGE LENGTHS OF EDGES OF TKEE.
PROGRAM VAKIABLES :
NIT ARRAY EF NODES NOT YET IN TKEE
NITP NUMBER OF NQDES IN AKKAY NIT.
JI (I) NDDE ØF PARTIAL MST CLOSEST TO NØDE NIT(I).
UI (I) LENGTH OF EDGE FRODED TO ARPAY
```

C
DIMENSION DM(50,50),MST(2,50)
DIMENSIQN UI(SO),JI(SO),NIT(50)
C INITIALIZE NODE LABEL AKKAYS
CST=0.
NITP=N-1
KP=N
IMST*0
De 100 I=1,NITP
NIT(I)=1
UI(I)=DM(1,KP)
JI(I)=KP
C
200 DO 300 I=1,NITP
NI = NIT(I)
D=DM(NISKP)
II(1)(I).LE.D) G0 T0 300
II(I)=D
JI(I):KP
300
C
Find ndde gutside tree neakest tg tree.
UK=UI(1)
D0 400 I=1,NITP
IF(UI(I)-GT.UK) G0 T0 400
UK=UI(I)
K=I
400 CONTINUE
C
IMST=IMST+1
MST(1,IMST)=NIT(K)
MST(2,IMST)=JI(K)
CST=CST+UK
C
dElete new tree ngde frgm ariray it.
UI(K)=UI(NITP)
NIT(K)=NIT(NITP)
JI(K)=JI(NITP)
NITP=NITP-1
S00 IF (NITP.NE.O) GO TD 200
C
WHEN ALL NODES ARE IN TREE, QUIT.
RETURN
END

```

Remark on Algorithm 422 [H]
Minimal Spanning Tree [V.K.M. Whitney, Comm. ACM 15 (Apr. 1972), 273-4]
B.W. Kernighan [Recd. 23 June 1972] Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey

An integer-arithmetic version of Algorithm 422 has been tested on the Honeywell 6070 using the Fortran A compiler, on several graphs. The algorithm produced correct results in all cases.

Algorithm 422 computes the minimal spanning tree by successively adding the nearest remaining node to a partially formed tree until all nodes of the graph are included in the tree. This procedure, which the author attributes to Dijkstra [1], was in fact independently developed by R.C. Prim [2], two years earlier.

\section*{References}
1. Dijkstra, E.W. A note on two problems in connection with graphs. Numerische Math. 1, 5 (Oct. 1959), 269-271.
2. Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 (Nov. 1957), 1389-1401.

\title{
Algorithm 423 \\ Linear Equation Solver [F4]
}

Cleve B. Moler (Recd. 1 July 1970 and 1 Dec. 1970)
Department of Mathematics, The University of Michigan, Ann Arbor, MI 48104
(This work was supported by the Office of Naval Research under contract NR 044-377.)

Key Words and Phrases: matrix algorithms, linear equations, Fortran, paged memory, virtual memory, array processing

CR Categories : 4.22, 4.32, 5.14

\section*{Description}

These routines are modifications of, and intended as replacements for, the corresponding routines in [1]. The modifications increase efficiency while retaining accuracy and ease of use. Consideration is made of the effect of Fortran array storage conventions and paged dynamic memory allocation schemes. When translated by a good Fortran compiler, the routines should be competitive with programs written directly in machine language. For more details, see [2].

Both routines must be used to solve a system of linear equations, \(A x=b . D E C O M P\) carries out that part of the computation which depends only on the matrix \(A\). SOLVE uses these results to obtain the solution for any right hand side \(b\).

\section*{References}
1. Forsythe, G.E., and Moler, C.B. Computer Solution of Linear Algebraic Systems. Prentice-Hall, Englewood Cliffs, N.J., 1967.
2. Moler, Cleve B. Matrix computations with Fortran and paging. Comm. ACM 15 (Apr. 1972), 268-270.

\section*{Algorithm}
        SUBROUTINE UECOMP(H, NUTH, A, IP)
REAL A(NDIM, NUIM1), T,
INTEGER IP(NDI:1)
        INTEGER IP(NDI:1)
```

C iHATRIX TRIANGULARIZATION OY GAUSSIAN ELIMINATION.
IMATRIX TRIANGULARIZAT
N = ORUER OF IIATRIX.
NDIH = OECLARED DIMENSNGULARIZARRAY
OUTPUT..
A(I,J), I.LE.J = UPPEiS TRIANGULAR FACTOR, U .
A(I,J), I.GT.J = IULTIPLIERS = LOINER TRIANGULAR
A(I,J), H.GT.J = FACTOR, I-L
P(K), K.LT.N = INDEX OF K=TH PIVOT RON.
IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O ' OV,
C USE 'SOLVE' TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C DETERII(A) = IP(N)*A(1,1)*A(2,2)*...*A(H,N).
C IF IP(N)=0, A IS SINGULAR, SOLVE GILL DIVIDE CY ZERO.
C INTERCHANGES FINIGHED INU, ONLY PARTLY INL.

```
```

IP(N)=1

```
IP(N)=1
DO 6K =1,N
DO 6K =1,N
            IF(K.EQ.M) GO TO 5
            IF(K.EQ.M) GO TO 5
            KP1=K+1
            KP1=K+1
            OO1 I = KP1,N
```

 OO1 I = KP1,N
    ```
```

 IF(ABS(A(I,K)),GT.ABS(A(ii,K))) |=1
 1 CONTINUE
 IP(K)=!
 F(11.NE.K) IP(N) = -IP(N)
 T A A(H,K)
 A(i:1,K) = A(K,K)
 IF(T.EQ.O.) GO T
 OO 2, = KP1 NTO
 A(I,K) = -A(I,K)/T
 DO 4 J = KP1,N
 A(i,j) = A(K,J)
 A(K,J)=T
 IF(T.EO.O.) GO TO }
 DO 31= KP1,N
 A(I,J)=A(I,J)+A(I,K)*T
 CONTINUE
 IF(A(K,K).EQ.O.) IP(H)=0
 6 CONTINUE
RETURN
RET

```
    SUBROLTINE SOLVE(N, NJIM, \(A, B, I P\) )
    REAL A (NU|i1, HU1:i), ن (HOI:i), T
INTEGER IP(NO|H:)
C SOLUTIOR OF LINEAR SYGTEII, \(A * X=\dot{C}\).
INPUT..
    \(N=\) ORUER UF IIATRIX.
    HDIH = UECLAREU UIIIENSION JF ARIRAY A
    \(A=\) TRIANGULAKIZEU MATRIX OBTAINEU FRU: ' \(D E C U I I P '\).
    A \(=\) RIGHT HAND SIUE VECTHH.
    IP = PIVOT VECTOR OBTAINED FROM 'DEC
JO NUT USE IF UECUIIP HASS SET IP \((N)=0\).
UUTPUT..
B \(=\) SOLUTION VECTOR, \(X\).
    IF (N.ER.1) GO TO 9
    NH11 \(=\mathrm{N}-1\)
    DO \(7 \mathrm{~K}=1\), Nill
        \(K P 1=K+1\)
        \({ }_{11}=1 P(K)\)
        \(T=B(11)\)
        \(B(1.1)=U(K)\)
\(B(K)=T\)
        \(B(K)=T\)
            (1) \(71=K \mathrm{Pl}, \mathrm{N}\)
    \(7 B(1)=\dot{U}(1)+A(1, K) * T\)
    008 KB = 1, 11111
        \(K H 1=N-K B\)
        \(K=k \geqslant 1+1\)
        \(B(K)=S(K) / A(K, K)\)
        \(T=-B(K)\)
        \(0081=1\), Kinl
\(83(1)=B(1)+A(1, K) * T\)
\(B(1)=B(1)+A(1, K)\)
\(9 B(1)=B(1) / A(1,1)\)
    iRETURN
    END

\section*{Algorithm 424}

Clenshaw-Curtis Quadrature [D-1]

\author{
W. Morven Gentleman (Recd. 5 Oct. 1970 and \\ 13 Aug. 1971) \\ University of Waterloo, Waterloo, Ontario, Canada
}

\section*{Key Words and Phrases: quadrature, Chebyshev series, cosine transform, fast Fourier transform \\ CR Categories: 5.1}

\section*{Description}

Clenshaw-Curtis quadrature is one of the most effective automatic quadrature schemes available, particularly for integrands with some continuous derivatives. It can also be used for any piecewise continuous integrand, although it is not recommended for integrands with discontinuities.

The automatic scheme [1] consists of evaluating the \(N+1\) point Clenshaw-Curtis quadrature formula, together with some error estimate, for a sequence of \(N\) 's until the estimated absolute error ESTERR is less than the product of the tolerated relative error TOLERR and the absolute value of the current estimate of the integral, or until the permitted number of function evaluations would be exceeded. The function subprogram CCQUAD uses the sequence \(N=6,18, \ldots, 2 * 3 * * M\). The error estimate used is the absolute difference between the integral estimates for the current and preceding choices of \(N\). Other error estimates exist [1] although they are not as reliable, and the cosine transform \(\operatorname{CSXFRM}(1), \ldots\), CSXFRM (USED) is returned so they can be computed if desired. The \(N+1\) point Clenshaw-Curtis quadrature formula shifts the interval \((A, B)\) to the interval \((-1,1)\), then integrates the polynomial which interpolates the integrand \(F\) at the Chebyshev points \(\cos (\pi s / N), s=0,1, \ldots, N\). Because the cosine transform is an explicit representation of this polynomial, an approximation to the indefinite integral of the integrand in the interval can be obtained from the indefinite integral of this polynomial, which is another reason why the cosine transform is returned.

Earlier implementations of this quadrature scheme [e.g. 4] computed the cosine transform by a recursive method which was slow and suffered from rounding error, but \(C C Q U A D\) uses a variant
of the fast Fourier transform [2,3] and is very fast and very resistant to rounding errors. Timings on several machines indicate that the total cost of the quadrature can be well described as the cost of computing two sines and two cosines for each integrand value used, plus, of course, the cost of computing the integrand values themselves. The variant of the FFT used obtains all sines and cosines as required, and does not build tables or march recurrance relations. Using a separate subroutine (R3PASS) to perform the passes of the FFT on interleaved subsequences of the original sequence is a device introduced by G. Sande to force compilers for many machines to generate optimal code for the FFT.

There is no requirement in the subprogram CCQUAD that \(A\) be less than \(B\). There is also no requirement that TOLERR be positive: if it is not, the maximum permitted number of integrand values will be used. The stopping rule always depends on relative error: if this is meaningless because the true integral vanishes, the maximum permitted number of integrand values will be used. Because the number of nested \(D O\) loops used togenerate integrand values in digit reversed order is fixed at eight, the maximum number of integrand values permitted is the smaller of LIMIT and \(2 * 3 * * 9+1=39367\). This should be ample but the restriction is easily changed.

Throughout the subprogram \(C C Q U A D\) various statements appear with a \(C\) in column 1 . If these comments are replaced by the statements themselves, intermediate results are written on unit number 6, enabling one to follow the decision process of the scheme. This can be very instructive in understanding the way the scheme works.

\section*{References}
1. Gentleman, W.M. Implementing Clenshaw-Curtis quadrature, I Methodology and experience. Comm. ACM 15 (May 1972), 337-342.
2. Gentleman, W.M. Implementing Clenshaw-Curtis quadrature, II Computing the cosine transformation Comm. ACM 15
(May 1972) 343-346.
3. Gentleman, W.M., and Sande, G. Fast Fourier transforms-for fun and profit. Proc. AFIPS 1966 FJCC, Vol. 29, Spartan Books, New York, pp. 563-578.
4. Hopgood, F.R.A., and Litherland, C. Algorithm 279, Chebyshev quadrature. Comm. ACM 9 (1966), 270.

\footnotetext{
Algorithm
REAL FUNCTION CCQIAC (F, A, B, TCLERR, LIMIT, ESTFRR, USED, C
C INPUT ARGUMENTSREAL F,A,B,TOLERR INTEGER LIMIT
C OUTPUT ARGUMFNTSREAL FSTERR, CSXFRM (IIMIT) REAL RSTERER USED
C USING Clenshaw-curtis ouadrature, this function subC PROGRAM ATTEMPTS TO INTEGRATE THE FUNCTION P PROM A TO B C TO AT LEAST THE RYQUESTEE RELATIVE ACCURACY TOLPRP, WHILE C USING NO MCRE THAN LIMIT FUNCTTON EVALUATTONS, IF THIS C CAN EE DONE, CCQUAD RETURNS THE VALUE OF THE INTEGRAI, C ESTERR RETURNS AN ESTIMATE OF THE ABSOLUTE FRROR ACTUALLY C COMMITTED, USED RFTURNS THE NUMBEP OF FUNCTION VALOES
C ACTUALLY USFL, AVU CSXFRM(1) .....CSXFRM(USFD) CCNTAINS
C N=USRD-1 TIMES THE DISCRETE COSTNE TRANSPORM, AS USUALLY
C DRFINED, OF THE INTEGRAND IN THE INTERVAL, IF THF
C RFQUESTED ACCIPACY CANNOT EE ATTATNED WITH THE NUMBER OF C FUNCTION EVALUATIONS PFRMTTIEL, THE LAST (AND PRESIMABLY C BEST) ANSWER OBTAINFD IS RETORNED.

REAL CLDINT,NEWINT
REAL T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12
}
```

C INSERT THE FCLLONING STATEMENT TO TRACE PROGRAM FLOW
REAL SCLINT,SCLERR
INTEGFR N,N2,V3,N LESS 1,N LFSS 3,MAX,M MAX,J,STEP
INTEGER L (8),L1,I2,L3,L4,L5,16,L7,IB
INTEGER J1,J2,J3,N4,J5,J6,J7,J8,J REV
FOUTVALENCE (L (1),L1),(L(2),L2),(L (3),L3), (L (4),L4),
(L(5),L5),(L(G),L6),(L (7),L7),(L(B),L8),(J8,J REV)
DATA PI,RT3/ 3.141502653589E0, 1.732050807568E0,
DATA MMAX/ 3/
C
ENTRE=(A+B)* SFO INITTALIZATION
MIDTH=(B-A)*.5EC
MAX=HTNO(LTMIT,2*3**(M MAX+1))
DO 10 J=1,M MAX
I (J)=1
10 CCNTINUE
C
C CCMPURE ROUBLF THZ COSINE COSINR TRANSPORM
N=6
C SAMPLF FUNCTION
CSXFRM(1)=F(1)
CSXFRM(7) =F(1)
SHIFT=WIDTH*RT3*.5EO
CSXFRM(2)=F(CPNTRE-SHITFT)
CSXPRM (6) =F (CENTRE+SHIFT)
SHIFT=WIDTH*.SEO
CSXFRM(3)=F(CENTRE-SHIFT)
CSXPRM(5) =F(CENIAT+SHIFT)
CSXFRM(4) = F(CENTRE)
C EVALUATE THE FACTORFD N=6 COSINE TRANSFORM
T1=CSXFRM(1)+CSXFRM(7)
T2=CSXFRM (1)-CSXFRM(7)
T3=2. EO*CSXFPM (4)
T4=CSXFRM(2)+CSXFRM(6)
T5=(CSXFRM(2)-CSXF2M(5)) *RT }
T6=CSXFRM (3) +CSXFRM(5)
T6=CSXFRM(3)+CSXFRM(5)
T
T9=2, 50*T4+T3
T10=T2+T7
T11=T1-T6
T12=T4-T3
CSXFRM(1)=T8+7.9
CSXFRM (2) =T 10+T5
CSXPRM(3)=T11+T12
CSXFRM(4)=T2-2.En*T7
CSXFRM(5)=T11-T12
CSXFRM(f)=T10-T5
CSXFRM (7) =TA-T3
USED=7
C GO TO INTEGRAL COMPUTATION, BUT FIRST COMPUTE INTEGRAL FOR
C N=2
go To 2:?
C
C COMPUTE REFINED APPROXIMATION
C SAMPLE FUNCTION AT TNTERMEDIATE PCINTS IN DIGIT REVERSPD
C ORDER. AS THE SEOIJENCE IS GENERATED, CONPIJTE THE FIRST
C (RADIX POUR TRANSFORM) PASS OF THE FAST FOURIER TRANSFORM
(RADIX POUR TRANSFORM) PASS OF THE FAST FOURIER TRANSFORM
100 DO 11. J=2,M MAX
L (J-1)=L (J)
110 CONTINUE
L(MMAX) = 3*L(M MAX-1)
J=USED
FUND=PI/FLOAT (3*N)
DO 120 J1=1,L1,1
DO 120 J2=J1,L2,L1
DO 120,J3=J2,L3,L2
DO 120 J4=J3,L4,13
DO 120 J5=J4,L5,I4
no 120 J6=J5,L6,L5
DD 120 J J=J5,L7, L6
DO 120 JB=J7,L8,L7
ANGLE=FUND*FLOAT (3*J REV-2)
SHTFT=WIDTH*COS (ANGLE)
T1=F(CENTRE-SHIFT)
TM=F(CENTRE-SHIFT)
SHIFT=WIDTH*SIN(ANGLE)
T2=F(CENTRE+SHIFT)
T2=F(CENTRE+SHIFT)
4=F(CENTRE-SHIFT)
T5=T1+T
CSXFRM (J+1)=T5+T6
CSXFRM(J+1)=TS+T6
CSXPRM(J+2)=T1-T3
CSXFRM(J+3)=T5-T6
CSXPRM(J+4)=T2-T4
J=J+4
120 CONTINUE
C DO RADIX 3 PASSES OF FAST FOURIFR TRANSFORM
N2=2*N
STEP:=4
150 J1=USED+STEP
J2=USED+2*STEP
CALL R3PASS (N2,SIEP,N2-2*STEP,CSXFRM(USED+1),
- CSXPRM(J1+1), CSXPRM(J2+1))
STEP== 3*STEP
IF (STEP.LT. N) GO TO 150
C
combINE RESULTS

```
```

C CHOOSE S2=2.-M+S1*C1

```
C CHOOSE S2=2.-M+S1*C1
```

C CHOOSE S2=2.-M+S1*C1
C CHOOSE THF REPLICATTCN
C CHOOSE THF REPLICATTCN
C CHOOSE THF REPLICATTCN
TO ZO KO=JO,N2,M3
TO ZO KO=JO,N2,M3
TO ZO KO=JO,N2,M3
DO 30 KO=JO,N2,M
DO 30 KO=JO,N2,M
DO 30 KO=JO,N2,M
C OBTAIN THIEDLED VALUES
C OBTAIN THIEDLED VALUES
C OBTAIN THIEDLED VALUES
ICDLED VALU
ICDLED VALU
ICDLED VALU
RO}=\textrm{xO}(\textrm{K}{
RO}=\textrm{xO}(\textrm{K}{
RO}=\textrm{xO}(\textrm{K}{
R1=C1*x\(KC)-51* X { (K1)
R1=C1*x\(KC)-51* X { (K1)
R1=C1*x\(KC)-51* X { (K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
R1=C1*X1(KC)-S1*X1(K1)
I2=S2*X2(Kr) +C2*X2(K1)
I2=S2*X2(Kr) +C2*X2(K1)
I2=S2*X2(Kr) +C2*X2(K1)
RSBM=? 1+P2
RSBM=? 1+P2
RSBM=? 1+P2
ROIFF=(R1-:2)*HAFRT3
ROIFF=(R1-:2)*HAFRT3
ROIFF=(R1-:2)*HAFRT3
RSUM2=?)-.5Eう*RSUM
RSUM2=?)-.5Eう*RSUM
RSUM2=?)-.5Eう*RSUM
ISUM=I1+I2
ISUM=I1+I2
ISUM=I1+I2
IDIFF=(11-12)*HAFRT
IDIFF=(11-12)*HAFRT
IDIFF=(11-12)*HAFRT
IDIFF2=Iी-.5Fr*ISUM
IDIFF2=Iी-.5Fr*ISUM
IDIFF2=Iी-.5Fr*ISUM
IDIFF2=In-.5Fr*ISUM
IDIFF2=In-.5Fr*ISUM
IDIFF2=In-.5Fr*ISUM
X\cap (K?) = Kn+RSUMM
X\cap (K?) = Kn+RSUMM
X\cap (K?) = Kn+RSUMM
M\cap(Ki)=RSTMM2+IDIFF
M\cap(Ki)=RSTMM2+IDIFF
M\cap(Ki)=RSTMM2+IDIFF
X1(K.))=RSUM2-IEIFF
X1(K.))=RSUM2-IEIFF
X1(K.))=RSUM2-IEIFF
X1(K.))=RSUM2-ICIFF
X1(K.))=RSUM2-ICIFF
X1(K.))=RSUM2-ICIFF
X1(K1)=2DTFF+IDIFF2
X1(K1)=2DTFF+IDIFF2
X1(K1)=2DTFF+IDIFF2
X2(KO)=RDIFF-ICIFF2
X2(KO)=RDIFF-ICIFF2
X2(KO)=RDIFF-ICIFF2
X2(K1)=IO+TSUM
X2(K1)=IO+TSUM
X2(K1)=IO+TSUM
contINu:
contINu:
contINu:
30 CGNTIN
30 CGNTIN
30 CGNTIN
CONTINU
CONTINU
CONTINU
RETD

```
    RETD
```

 RETD
    ```
```

 S2=2.En*S1*C1
    ```
    S2=2.En*S1*C1
```

 S2=2.En*S1*C1
 DO GO KO=JO,N2,M

```
DO GO KO=JO,N2,M
```

DO GO KO=JO,N2,M

```
RDIFF=(R1-82)*HAFRT3
RDIFF=(R1-82)*HAFRT3
RDIFF=(R1-82)*HAFRT3
c comfute tra
c comfute tra
c comfute tra
            E
            E
            E
        MTINUE
        MTINUE
        MTINUE
        *
```

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY
C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```

C DO ALL TRANSFORMS FOR C HAT=O, I.E. TWIDDLE FACTOR UNITY

```
```

```
```



```
```

```
```

\

```
```

```
```

```
```

```
```

\

```
```

```
```

```
```

```
```

\

```
```

```
```

```
```

```
```

\

```
```

```
```



```
```

```
```

 X2(K)=PDIFF
 XC(K)=XC(K)+FSUM
 XC(K)=XC(K)+FSUM
 XC(K)=XC(K)+FSUM
 XC(K)=XC(K)+FSUM
 10 CONTINIJE
 10 CONTINIJE
 10 CONTINIJE
 10 CONTINIJE
 C DO ALL TBANSFORMS FOP C HAT=CAP C/2, I.E. TMIDDLE FACTOR
C DO ALL TBANSFORMS FOP C HAT=CAP C/2, I.E. TMIDDLE FACTOR
C DO ALL TBANSFORMS FOP C HAT=CAP C/2, I.E. TMIDDLE FACTOR
C DO ALL TBANSFORMS FOP C HAT=CAP C/2, I.E. TMIDDLE FACTOR
C E(B/G)
C E(B/G)
C E(B/G)
C E(B/G)
J=H/2+1
J=H/2+1
J=H/2+1
J=H/2+1
DO 20 K=J,N2, 13
DO 20 K=J,N2, 13
DO 20 K=J,N2, 13
DO 20 K=J,N2, 13
RSUM=(X1(K)+X2(K))*HAFRT3
RSUM=(X1(K)+X2(K))*HAFRT3
RSUM=(X1(K)+X2(K))*HAFRT3
RSUM=(X1(K)+X2(K))*HAFRT3
RDIPF=(X1(K)-X2(K))
RDIPF=(X1(K)-X2(K))
RDIPF=(X1(K)-X2(K))
RDIPF=(X1(K)-X2(K))
RDIPF=(X1(K)-X2(K)
RDIPF=(X1(K)-X2(K)
RDIPF=(X1(K)-X2(K)
RDIPF=(X1(K)-X2(K)
X1(K)=XO(K)-RDIFF
X1(K)=XO(K)-RDIFF
X1(K)=XO(K)-RDIFF
X1(K)=XO(K)-RDIFF
X2(K) =FSUM
X2(K) =FSUM
X2(K) =FSUM
X2(K) =FSUM
XO(K)=XO(K) +HDIPF*.5EO
XO(K)=XO(K) +HDIPF*.5EO
XO(K)=XO(K) +HDIPF*.5EO
XO(K)=XO(K) +HDIPF*.5EO
20 CONTINUF
20 CONTINUF
20 CONTINUF
20 CONTINUF
C DO ALL TRANSFORMG FOE REMAINING YALIJES OP C HAT, ORSERVE
C DO ALL TRANSFORMG FOE REMAINING YALIJES OP C HAT, ORSERVE
C DO ALL TRANSFORMG FOE REMAINING YALIJES OP C HAT, ORSERVE
C DO ALL TRANSFORMG FOE REMAINING YALIJES OP C HAT, ORSERVE
C DO ALL TRANSFORMG FOG REMAINING YALIES OP
C THAT C HAT AND CAP C-C HA
DO 40 J=1,HALF M
DO 40 J=1,HALF M
DO 40 J=1,HALF M
DO 40 J=1,HALF M
J0=J+1
J0=J+1
J0=J+1
J0=J+1
lol
lol
lol
lol
C compute the twirdle facte\overline{c}
AN:SLF=FUND*FLCAT (J)
AN:SLF=FUND*FLCAT (J)
AN:SLF=FUND*FLCAT (J)
AN:SLF=FUND*FLCAT (J)
C1=cos(ANGLE)
C1=cos(ANGLE)
C1=cos(ANGLE)
C1=cos(ANGLE)
S1=STN(ANGL?)
S1=STN(ANGL?)
S1=STN(ANGL?)
S1=STN(ANGL?)
C2=C1**2-S1**2

```
```

```
    C2=C1**2-S1**2
```

```
```

 C2=C1**2-S1**2
    ```
```

```
    C2=C1**2-S1**2
```

```
```



```
```

C E(B/5)

```
```

C E(B/5)

```
```

C E(B/5)

```
```

C E(B/5)

```
ORSERVE
```

```
ORSERVE
```

```
ORSERVE
```

```
ORSERVE
```

As published，this algorithm will not execute correctly under some compilers（e．g．Fortran V in the Univac 1108）．One minor change is sufficient for proper operation：replace the variable J REV by the index $J 8$ inside the $D O 120$ loop．

The appearance of $J R E V$ and $J 8$ in àn EQUIV ALENCE state－ ment is not meaningful since the memory location associated with a $D O$ loop index does not always contain the current value of the index（this depends on the compiler）．

Remark on Algorithm 424 ［D 1］
Clenshaw－Curtis Quadrature［W．M．Gentleman，Comm． ACM 15 （May 1972），353－355．］

Albert J．Good 〔Recd． 19 December 1972〕 Systems， Science and Software，La Jolla，CA 92037
ACM 15 (May 1972), 353-355.]
Science and Software, La Jolla, CA 92037
艮

Change the eighth and ninth executable statements

```
CSXFRM(1) =F(A) to CSXFRM(1) = F(B)
CSXFRM(7) =F(B) to CSXFRM(7) =F(A)
```

Change the statements one and four lines below this

```
SHIFT = WIDTH *RT3*.5EO to SHIFT = -WIDTH*RT3*.5EO
```

SHIFT $=$ WIDTH $* .5 E O$ to SHIFT $=-$ WIDTH $* .5 E O$

Change the second and fifth statements following the eight nested "DO 120" statements

```
SHIFT = WIDTH*COS(ANGLE) to SHIFT = -WIDTH*COS(ANGLE)
```

SHIFT $=$ WIDTH $*$ SIN(ANGLE) to SHIFT $=-$ WIDTH $*$ SIN(ANGLE)

REFERENCES

1. Geddes, K.O. Near-minimax polynomial approximation in an elliptical region. SIAM J. Numer. Anal. 15 (1978), 1225-1233.

Algorithm 425

Generation of Random Correlated Normal Variables [G5]

Rex L. Hurst
Applied Statistics-Computer Science, Utah State
University, Logan, UT 84321
and
Robert E. Knop* $\{$ Recd. 12 March 1970, 23 March 1971, and 9 Nov. 1971]
Department of Physics, Florida State University, Tallahassee, FL 32306

Key Words and Phrases : random number, normal density, normal distribution, Gaussian density, Gaussian distribution, simulation, Monte Carlo
CR Categories: 5.5

Description

We have programmed and made timing comparisons for two algorithms which sample the multivariate normal density
$N(\mu, V)=\left|V^{-1}\right| /(2 \pi)^{n / 2} \cdot \exp \left(-1 / 2(Y-\mu)^{T} V^{-1}(Y-\mu)\right)$
where V is an $n \times n$ covariance matrix, μ is an n component vector of means, and Y is an n component random vector [1].

The first algorithm proceeds by rotating coordinates to a system in which the covariance matrix is diagonal. In this system the multivariate normal density becomes equal to the product of its marginal densities, and each marginal density can be sampled independently of the others. After obtaining a sample vector in this rotated system, the coordinates are rotated back to the original system. In the following discussion this will be referred to as the matrix diagonalization algorithm [1].

The second algorithm proceeds by decomposing the multivariate normal density into the product of the marginal density of the first variate times the joint density of the remaining variates, conditional upon the value sampled for the first. This joint density is determined once the first variate has been sampled from its marginal density. The procedure is then applied to the second variate and iterated until values have been assigned to all components of the sample vector. In the following discussion this will be referred to as the conditional decomposition algorithm [1].

Both algorithms require that the covariance matrix be positive definite, and that it modify the argument $I E N T$ to indicate if this condition was not satisfied. Both algorithms perform extensive calculations on the covariance matrix the first time it is used. Subsequent sample vectors with the same covariance matrix bypass these calculations with considerable savings in execution time. Tests with eight variables produced the following execution times on an IBM 360/44:

[^1]| | 1 Matrix | 1 Matrix | 200 Matrices |
| :--- | :--- | :--- | :--- |
| | 500 | 1000 | 1 |
| | Observations | Observations | Observation |
| | 37 sec | 72 sec | 143 sec |
| Matrix
 diagonalization | 68 sec | 14 sec | |
| Conditional
 decomposition | 35 sec | | |

We note that the conditional decomposition algorithm executes more rapidly in all cases.

Matrix Diagonalization. Suppose we define A to be the desired correlation structure; A can always be represented as $B I B^{T}$. We know the characteristic values λ_{i} of A are defined as the roots of the characteristic equation
$\left|A-\lambda_{i} I\right|=0$.
The characteristic vector is a vector not identically zero satisfying, for characteristic value λ_{i}
$\left(A-\lambda_{i} I\right) X_{i}=0$.
If A is symmetric, all roots different, and X_{i} are normalized, then
$X_{i}{ }^{T} X_{j}=\delta_{i j}$
where $\delta_{i j}$ is the Kronecker delta. Let C be the matrix of characteristic vectors and D be a diagonal matrix of the characteristic roots:
$C=\left[X_{1}, X_{2} \cdots\right]$
$D=\left[\begin{array}{lll}\lambda_{1} & 0 & \cdots \\ 0 & \lambda_{2} & \\ \vdots & & \end{array}\right]$
Then
$C^{T} C=I$ and $C C^{T}=I$.
The matrix C is thus orthogonal [2].
For an orthogonal matrix C and a symmetrix matrix A
$C^{T} A C=D$ and $A=C D C^{T}$,
therefore
$A=C D^{\frac{1}{2}} I D^{\frac{1}{2}} C^{T}$,
and we see that the matrix required to transform a set of independent normal variates to a new set with correlation matrix A is $B=C D^{\frac{1}{2}}$.

If A is distributed according to $N(0, A)(c f .(1))$ and we define:
$S=\left[\begin{array}{lll}\sigma_{1} & 0 & \cdots \\ 0 & \sigma_{2} & \\ \vdots & & \end{array}\right] \quad$ and $\mu=\left[\begin{array}{c}\mu_{1} \\ \mu_{2} \\ \vdots\end{array}\right]$
then $(S Z+\mu)$ is distributed according to $N(\mu, \Sigma)$ where Σ is the variance-covariance matrix. To save computational time the matrix B may be defined
$B=S C D^{4}$
Subroutine $R A N V R$ receives a correlation matrix A, a vector of desired standard deviations $S D$, a positive definite test variable $I E N T$, an argument for a random number generator $I A R G$, variables for defining the order of $A(N V)$ and the order of the arrays used $N I$, and work arrays X, Y, and $Z . Z$ is the return array. Upon return the diagonal of A contains the roots and the columns of X the vectors.

It requires a subroutine for computing characteristic values and vectors for real symmetric matrices [3-7], a subroutine for generat-
ing random normal deviates [8-12] which in turn requires a subroutine for generating random uniform numbers [13, 14]. We use a modification of Seraphin [14], which allows the generation of different sequences by modifying an entry argument.
Calling sequence ($B Z$ desired means)

$$
I E N T=-1
$$

CALL RANVR(A, X, Y,Z, SD, NV, NI, IENT, IARG)
IF (IENT.LE.0) GO TO 5
DO $4 I=1, N V$
$4 \quad Z(I)=Z(I)+B Z(I)$

5 Error handling if not positive definite.
Conditional Decomposition. To achieve the conditional decomposition of the multivariate normal density $N(0, V)$, we begin by partitioning the covariance matrix into the scalar v_{11}, the $1 \times(n-1)$ and $(n-1) \times 1$ vectors V_{12} and V_{21}, and the $(n-$ 1) $\times(n-1)$ matrix V_{22} :
$V=\left(\begin{array}{ll}v_{11} & V_{12} \\ V_{21} & V_{22}\end{array}\right)$
The inverse covariance matrix we represent as:

$$
V^{-1}=\left(\begin{array}{rr}
r_{11} & R_{12} \tag{12}\\
R_{21} & R_{22}
\end{array}\right)
$$

From $V V^{-1}=I$ we obtain the following relations:

$$
\begin{align*}
& 1 / v_{11}=r_{11}+R_{12} R_{22}^{-1} R_{21}, \tag{13}\\
& R_{22}=\left(V_{22}-V_{12} V_{21} / v_{11}\right)^{-1} .
\end{align*}
$$

The quadratic form of the multivariate normal density $N(0, V)$ can be written as:
$Y^{T} V^{-1} Y=\left(y_{1} Y_{2}^{T}\right)\left(\begin{array}{ll}r_{11} & R_{12} \\ R_{21} & R_{22}\end{array}\right)\binom{y_{1}}{Y_{2}}$
Multiplying this out results in

$$
\begin{equation*}
Y^{T} V^{-1} Y=y_{1} r_{11} y_{1}+\left(Y_{2}{ }^{T} R_{22} Y_{2}+Y_{2}^{T} R_{21} y_{1}+y_{1} R_{12} Y_{2}\right) \tag{15}
\end{equation*}
$$

Performing the matrix analog of completing the square on the term involving X_{2} allows this to be written as

$$
\left.\begin{array}{rl}
Y^{T} V^{-1} Y= & y_{1}\left(r_{11}\right.
\end{array} \quad-R_{12} R_{22}^{-1} R_{21}\right) y_{1} .
$$

Substituting from (13) we obtain

$$
\begin{align*}
Y^{T} V^{-1} Y=y_{1}^{2} / v_{11}+\left(Y_{2}-V_{21} y_{1} / v_{11}\right)^{T} & \left(V_{22}-V_{21} V_{12} / v_{11}\right)^{-1} \tag{17}\\
& \left(Y_{2}-V_{21} y_{1} / v_{11}\right)
\end{align*}
$$

Thus the multivariate normal density $N(0, V)$ can be separated into the marginal density $N\left(0, v_{11}\right)$ of the variate y, times the joint density
$N\left(V_{21} y_{1} / v_{11}, V_{22}-V_{21} V_{12} / v_{11}\right)$
of the vector Y_{2} conditional upon y_{1}. This procedure is then repeated until every component of the random vector Y has been assigned a value.

Subroutine $R N V R$ receives a covariance matrix A, a positive definite test variable IENT, an argument for a random number generator IARG, variables defining the order of $A(N V)$ and the order of the arrays used $N I$, and work arrays $X, B, C . X$ is the return array.

It requires a subroutine for generating random normal deviates which requires a subroutine for generating random uniform numbers.

Calling Sequence ($B Z$ desired means)
$I E N T=-1$
.
CALL RNVR (Z, A, Y, C, NV, NI, IENT, IARG)
IF (IENT.LE.0) GO TO 5
DO $4 I=1, N V$
$4 \quad Z(I)=Z(I)+B Z(I)$
5 Error handling if not positive definite.

References

1. Anderson, T.W. An Introduction to Multivariate Statistical Analysis. Wiley, New York, 1958, p. 26.
2. Searle, S.R. Matrix Algebra for the Biological Sciences. Wiley, New York, 1966, p. 188.
3. Evans, Thomas G. Algorithm 85, Jacobi. Comm. ACM 5
(Apr. 1962), 208.
4. Hillmore, J.S. Certification of Algorithm 85, Jacobi.

Comm. ACM 5 (Aug. 1962), 440.
5. Naur, P. Certification of Algorithm 85, Jacobi. Comm. ACM 6 (Aug. 1963), 447-448.
6. Greenstadt, John. The determination of the characteristic roots of a matrix by the Jacobi method. In Mathematical Methods for Digital Computers, A. Ralston and H.S. Wilf (Eds.), Wiley,
New York, 1967, pp. 84-91.
7. Stewart, G.W. Algorithm 384, Eigenvalues and eigenvectors of a real symmetric matrix. Comm. ACM 13 (June 1970), 369-371.
8. Box, G., and Muller, M. A note on the generation of normal deviates. Ann. Math. Stat. 28 (1958), 610.
9. Marsaglia, G. Expressing a random variable in terms of uniform random variables. Ana. Math. Stat. 32 (1961), 894-898.
10. Knuth, Donald E. The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 1968.
11. Bell, James R. Algorithm 334, Random normal deviates. Comm. ACM 11 (July 1968), 498.
12. Knop, R. Remark on Algorithm 334, Random normal deviates. Comm. ACM 12 (May 1969), 281.
13. Strome, W. Murray. Algorithm 294, Uniform random. Comm. ACM 10 (Jan. 1967), 40.
14. Seraphin, Dominic S. A fast random number generator for IBM 360. Comm. ACM 12 (Dec. 1969), 695.

Algorithm

SUBROUTINE RNVR(X,A,B,C,NV,NI,IENT,IARG)
generates a random normal vector (m, S)
C GENERATES A RANDOM NERMAL MATRIX, CONDITIONAL MOMENTS KETURN
Z, Y, C, WORK ARKAYS. RETURN VECIOR OF KANDOM NOKMAL VAKIABLES IN L
NV,NI GKDEK OF COVARIANCE MATKIX. ORDEK OF AKKAY
IENT -I= INITIAL ENTRY
$0=$ RETURN IF NOT POSITIVE DEFINITE
1 = RETURN IF POSITIVE DEFINITE
IARG ARGUMENT FOK KANDGM NUMBER
DIMENSION $X(N I), A(N I, N I), B(N I), C(N I)$
IF(IENT) $1,9,6$
C *** CEMPUTE CENDITIONAL MOMENTS
1 NA=NV-1
De $4 K=1, N A$
$T=A(K, K)$
$2 \quad N B=K+10,10,2$
$\mathrm{NB}=\mathrm{K}+1$
$\mathrm{C}(\mathrm{K})=\mathrm{S}$
De $31=\mathrm{NB}, \mathrm{N}$
$3 \quad A(I, K)=A(K, 1) / T$
De $4 \quad 1=N B, N V$
De $4, J=1, N V$
4 $A(1, J)=A(I, J)-A(1, K) * A(K, J)$
5 IENT=1 NV) 10,10,5
5 IENT*
C *** COMPUTE A RANDOM VECTOK
6 De 8.I=I.NV
B(I):RNOR(IARG)*C(I)
$\mathrm{X}(1)=\mathrm{B}(\mathrm{I})$
IF(I.EQ.1) GO TO 8
$\mathrm{NB}=1-1$
$x(1)=x(1)+A(1, J) * B(J)$
8 Centinue
9 RETURN
10 1ENT=0 RETURN END FUNCTIION KNOR(IK)
C GENERATES A RANDOM NQRMAL NUMBEK (0,1) IARG IS A LARGE ODD INTEGER FOK A BEGINNING ARGUMENT

C REQUIRES FUNCTIGN RN which generates a Uniform kandom number o-i DATA $1 / 0 /$
IF(I.GT.O)GO T0 30
$10 \begin{aligned} & X=2.0 * R N(I K)-1.0 \\ & Y=2.0 * P N(I R)-1.0\end{aligned}$
$Y=2.0 * R N(I K)-1.0$
IF $=X * X+Y * Y$ (I.0) $)$ GO T0 10
S. $=\operatorname{SORT}(-2.0 * A L \varrho G(S) / S)$

RNGK=X*S
$\mathrm{G} 日 2=\mathrm{Y} * \mathrm{~S}$
I:1
30 RNOR GOE
RNOR
$\mathrm{l}=0$
and
40 RETURN END

Remark on Algorithm 425 [G5]
Generation of Random Correlated Normal Variables [Rex L. Hurst and Robert E. Knop, Comm. ACM 15 (May 1972), 355-357\}
R.L. Page [Recd. 3 Oct. 1973]

Computer Science Program, Colorado State University, Fort Collins, CO 80521

The work array parameters B and C of SUBROUTINE RNVR, which may prove cumbersome for some users, may be removed by making some minor changes. The removal of C is simple: simply change references to $C(I)$ to $A(I, I)$. (The diagonal of A is presently unused once the conditional moments are computed.)

The vector X can be used in place of B provided its components are computed in reverse order. Thus, $D O$ loop 8 (starting at statement 6) becomes two separate loops as shown below.

```
6 DO \(7 \mathrm{I}=1\), NV
\(7 \quad \mathrm{X}(\mathrm{I})=\mathrm{RNOR}(\mathrm{IARG}) * \mathrm{~A}(\mathrm{I}, \mathrm{I})\)
    DO \(81=2 . N V\)
    \(\mathrm{NB}=\mathrm{NV}-\mathrm{I}+\mathrm{I}\)
    DO \(8 \mathrm{~J}=1\), NB
        \(\mathrm{X}(\mathrm{NB}+1)=\mathrm{X}(\mathrm{NB}+1)+\mathrm{A}(\mathrm{NB}+1, \mathrm{~J}) * \mathrm{X}(\mathrm{J})\)
```

The revised algorithm was tested on covariance matrices of orders two through six. Assuming the algorithm generates sample vectors from the zero mean normal distribution with the given covariance, the difference between the sample covariance and the given covariance, divided by the standard error of the covariance estimator, would give samples from a standard normal distribution. Our test did not contradict this assumption since 37 of 55 of these numbers, 67 percent, were in the range -1 to 1 (one would expect about 68 percent) and 54 of 55,98 percent, were in the range -2 to 2 (one would expect about 95 percent).

Algorithm 426

Merge Sort Algorithm [M1]

C. Bron (Recd. 4 Feb. 1970 and 10 May 1971)
Technological University, Eindhoven, The Netherlands

Key Words and Phrases: sort, merge
 CR Categories: 5.31

Description

Sorting by means of a two-way merge has a reputation of requiring a clerically complicated and cumbersome program. This ALGOL 60 procedure demonstrates that, using recursion, an elegant and efficient algorithm can be designed, the correctness of which is easily proved [2]. Sorting n objects gives rise to a maximum recursion depth of $\left[\log _{2}(n-1)+2\right]$. This procedure is particularly suitable for sorting when it is not desirable to move the n objects physically in store and the sorting criterion is not simple. In that case it is reasonable to take the number of compare operations as a measure for the speed of the algorithm. When n is an integral power of 2 , this number will be comprised between $\left(n \times \log _{2} n\right) / 2$ when the objects are sorted to begin with and $\left(n \times \log _{2} n-n+1\right)$ as an upper limit. When n is not an integral power of 2 , the above formulas are approximate.

It is assumed that each object can in some way be uniquely identified by one of the integers from 1 to n. This correspondence has to be supplied in the call by replacing $h i$ and $l o$ by two integer variables and the Jensen parameter loafterhi by a Boolean expression that yields the value true if the object identified by $l o$ has to follow the object identified by $h i$ in the ordered sequences, and false otherwise. Let e_{i} be the identifying integer of the i th object in the ordered sequence. Upon return from the procedure sort delivers the value of e_{1} and the pointer array pnt will be filled in such a way that $p n t\left[e_{i}\right]=e_{i+1}, 1 \leq i<n$, and pnt $\left[e_{n}\right]=0$. Therefore the bounds of the actual array supplied for pit will have to include the range $[1: n]$. Sorted subsequences that arise during the sorting process will have a similar chain structure.

The essence of the algorithm is to be found in the procedure head. It has the duty to form an ordered chain of desired length (deslen) from the objects identified by count +1 through count + deslen. It does so by introducing a chain of length 1 , consisting of object count +1 , and then repeatedly doubling the length of that chain by merging it with a chain of equal length the creation of which is left to a recursive call on head. If deslen is not an integral power of 2 , a chain of length deslen can not be built by repeatedly doubling. In that case, before the last merge operation, a chain of length (desired length - present length) is created and merged with the present chain to produce the required result.

As an example of a call on the sorting procedure we supply $\operatorname{sort}(10000$, chain, $i, j, A[i]>A[j])$ although it should be stressed that the present version of the algorithm is not efficient when the sorting criterion is as simple as a comparison of two array elements. In such a case one does not only gain by replacing the calls on the formal parameter loafterhi by $A[l o]>A[h i]$ and declaring $l o$ and $h i$ as local variables of the procedure sort, but also one might resort to
in situ sorting techniques like [1] that do not need the auxiliary array pnt. A comparison of this algorithm with QUICKERSORT [1] conducted under equivalent circumstances on the ALGOL system for the EL X8 showed no significant difference in speed when sorting arrays containing random numbers.

Acknowledgment. The author is grateful to Prof. E.W. Dijkstra for his contributions to this version of the algorithm, and to the referee for his careful analysis and valuable suggestions.

References

1. Scowen, R.S. Quickersort, Comm. ACM 8 (Oct. 1965), 669-670.
2. Bron, C., Proof of a merge sort algorithm, May 1971
(unpublished).
```
Algorithm
integer procedure \(\operatorname{sort}(n, p n t, l o, h i\), loafterhi \()\);
    value \(n\); integer \(n, l o, h i\); integer array pnt;
    Boolean loafterhi;
begin
    integer count, link;
    comment link is a working location for merging;
    integer procedure head (deslen);
        value deslen; integer deslen;
    comment The value of head will be the identifying integer of the
        object leading the sorted chain;
    begin
        integer beg, len, nextlen;
INTRODUCE NEW CHAIN OF LENGTH 1:
SUPPLY WITH END MARKER:
MAKE beg POINT TO ITS HEAD:
        beg \(:=\) count \(:=\) count \(+1 ;\) pnt \([\) beg \(]:=0\); len \(:=1\);
TEST: TO SEE WHETHER DESIRED LENGTH HAS BEEN
REACHED:
        if len < deslen then
        begin
            nextlen := if len \(<\) deslen - len then len
            else deslen - len;
INTRODUCE NEW CHAIN:
            hi:= head(nextlen);
AND START MERGING:
FIND LEADING OBJECT OF MERGED CHAIN:
            \(l o:=\) beg;
            if loafterhi then
            begin beg \(:=h i ; h i:=l o ; l o:=b e g\) end;
INITIALIZE CHAIN ON MECHANISM:
            link \(:=10\);
CHAIN ON:
        \(l o:=p n t[\operatorname{link}] ;\)
TEST FOR END OF lo CHAIN:
        if \(l o \neq 0\) then
        begin
ADD LINK TO CHAIN:
        if loafterhi then
        begin
SWITCH LINK TO hi CHAIN:
                pnt \([\operatorname{link}]:=\operatorname{link}:=h i ; h i:=l o\)
            end
            else
STEP DOWN IN lo CHAIN:
        link \(:=10\);
        go to CHAIN ON
        end;
```

```
APPEND REMAINING TAIL:
    pnt\\ink]:= hi;
        len:= len + nextlen;
        go to TEST
        end;
        head:= beg
    end head;
    count := 0; sort := head(n)
end sort;
```

Remark on Algorithm 426
Merge Sort Algorithm [M1]
[C. Bron, Comm. ACM 15 (May 1972), 357-358]
C. Bron [Recd. 5 Nov. 1973]

Technological University of Twente, P.O. Box 217, Enschede, The Netherlands

A remark in [3 p. 158] suggested to the author that Algorithm 426 needs only very minor modifications in order to handle the sorting of records that are chained to begin with. The algorithm then rearranges the chain and needs no additional array to store chaining information. Furthermore, the assumption that we should be able to associate each of the integers from 1 to n with each of the n records to be sorted is no longer necessary [2].

References

1. Bron, C. Algorithm 426, Merge Sort Algorithm. Comm. ACM 15 (May 1972), 358.
2. Bron, C. An "In Situ" Merge Sort Algorithm. Tech. Note CB 64, Technological University of Twente, Enschede. The Netherlands.
3. Martin, W.A. Sorting. Comp. Surv. 3 (1971), 147-174.

Algorithm 427

Fourier Cosine Integral [D1]

Peter Linz (8 June 1970, 3 Dec. 1970, and 11 Feb. 1971) Department of Mathematics, University of California, Davis, CA 95616

Key Words and Phrases: numerical integration, quadrature, adaptive quadrature, Filon quadrature, Fourier coefficients, Fourier integrals

CR Categories: 5.16

Description

The function $F R C O S$ approximates
$C(f, \omega)=\int_{0}^{\infty} f(t) \cos (\omega t) d t$
by numerical evaluation of

$$
C_{T}(f, \omega)=\int_{0}^{T} f(t) \cos (\omega t) d t .
$$

The calling parameters for the function are:

1. $F C$ is the name of the function subprogram, supplied by the user which computes $f(t)$. It is assumed that $f(t)$ is bounded in $[0, \infty)$ and is such that $\lim _{T \rightarrow \infty} C_{T}(f, \omega)=C(f, \omega)$.
2. W represents ω. It will normally be positive, although $\omega=0$ will be handled correctly. In the latter case the algorithm reduces to an adaptive Simpson's rule. There is, however, some inefficiency in this because the cosine routine is used to compute $\cos (0.0)$ and some additional bookkeeping is done. The inefficiency may become significant if the time taken by the cosine routine is comparable to the time required to evaluate $f(t)$. The program will not work correctly for negative ω.
3. T should be chosen such that
$C_{T}(f, \omega)=C(f, \omega)$
within the required accuracy. The program actually evaluates $C_{T_{A}}(f, \omega)$ where $T A$ is chosen as follows:
(a) if $2^{n} 2 \pi<\omega T \leq 2^{n+1} 2 \pi$, for $n \geq-9$,
then $T A=2^{n+1} 2 \pi / \omega$,
(b) if $\omega T \leq 2 \pi / 512$, then $T A=T$.

If an upper limit $2^{n} 2 \pi$ is desired without adjustment, the T specified should be slightly smaller than this number (to avoid round-off error problems).
4. $E T$ specifies the required (absolute) accuracy. The routine attempts to compute an answer which differs from $C_{T A}(f, \omega)$ by less than $E T$.
5. $H L$ represents an upper limit on the stepsize; the integral over an interval is not considered to have converged unless the size of the interval is less than $H L$. Normally, $H L$ can be chosen quite large, say $T / 10$. However, when the integrand has a sharp peak, the choice of $H L$ may be difficult. If it is chosen too large the peak may be missed altogether; if it is chosen small the computations become inefficient, since the limit is enforced everywhere. In such cases it might be
preferable to use a variable $H L$, computed by means of a subprogram. $F R C O S$ can be modified easily to do this.

The computations are done by means of an adaptive quadrature method described in detail in [1]. In summary, the approximate value of the integral over an interval $[a, b]$, denoted by $\{$, is computed as follows:
(1) If $b-a \leq \pi / 256 \omega$, Simpson's rule is used.
(2) If $\pi / 256 \omega<b-a<2 \pi / \omega$, Filon's method (referred to as FILON 2 below) is used. Here \hat{l} is computed by

$$
\hat{I}=h\left\{w_{1} \cos (\omega a)+w_{2} \sin (\omega a)\right\} f(a)
$$

$$
\begin{aligned}
& +h w_{3} \cos \left(\frac{\omega(a+b)}{2}\right) f\left(\frac{a+b}{2}\right) \\
& +h\left\{w_{1} \cos (\omega b)-w_{2} \sin (\omega b)\right\} f(b)
\end{aligned}
$$

where

$$
\begin{aligned}
& h=(b-a) / 2 \\
& w_{1}(\omega h)=\frac{1}{2 h^{2} \omega^{2}}\left\{\cos (2 \omega h)-\frac{4}{h \omega} \cos (\omega h) \sin (\omega h)+3\right\} \\
& w_{2}(\omega h)=\frac{1}{2 h^{2} \omega^{2}}\left\{-\sin (2 \omega h)+\frac{4}{h \omega} \sin ^{2}(\omega h)-2 h \omega\right\} \\
& w_{3}(\omega h)=\frac{4}{h^{2} \omega^{2}}\left\{\frac{1}{h \omega} \sin (\omega h)-\cos (\omega h)\right\}
\end{aligned}
$$

In the routine weights are needed only for $\omega h=\pi / 2^{p}, p=1,2, \ldots$, 9. They have been precomputed to 14 significant digits and are stored in the arrays $W 1 C, W 2 C, W 3 C$, such that $W 1 C(1)$ contains $w_{1}(\pi / 2), W 1 C(2)$ contains $w_{1}(\pi / 4), W 2 C(1)$ contains $w_{2}(\pi / 2)$, etc. If higher accuracy is required the computation of the w 's from the above formulas must be done with some care, since for small ω / l large cancellation errors may occur. The use of multiple precision is recommended. Alternatively one may use the series expansions

$$
\begin{aligned}
& w_{1}(\omega h)=\sum_{i=1}^{\infty}(-1)^{i} \frac{2^{2 i-1}(2 i-3)}{(2 i+1)!}(\omega h)^{2 i-2}, \\
& w_{2}(\omega h)=\sum_{i=1}^{\infty}(-1)^{i} \frac{2^{2 i+3} i}{(2 i+4)!}(\omega h)^{2 i+1}, \\
& w_{3}(\omega h)=-\sum_{i=1}^{\infty}(-1)^{i} \frac{8 i}{(2 i+1)!}(\omega h)^{2 i-2} .
\end{aligned}
$$

(3) If $b-a=2 n \pi / \omega$, a special case of Filon's rule (called FILON 1) is used. Here

$$
\hat{I}=\frac{4}{\omega^{2}(b-a)}\left\{f(a)-2 f\left(\frac{a+b}{2}\right)+f(b)\right\}
$$

The error is estimated by halving each interval and comparing the two estimates thus obtained. We denote by I the integral over $[a, b]$, by I_{0} and I_{1} the approximations with stepsize $(b-a) / 2$ and $(b-a) / 4$, respectively and write
$I_{0}=I+\epsilon_{0}$,
$I_{1}=I+\epsilon_{1}$.
If we know α such that
$\epsilon_{1} \simeq \alpha \epsilon_{0}$,
then
$\epsilon_{1} \simeq \alpha\left(I_{0}-I_{1}\right) /(1-\alpha)$.
A given interval is split into parts until the estimated error is below a certain bound; once this is accomplished its contribution is added
to the total integral and the next interval is considered．The error ＂allotted＂to each interval depends on the size of the interval as well as on an estimate of the errors of all previously converged intervals．

The ratios α used in the error estimation are derived in［1］．
The final expressions are：
（1）for Simpson＇s rule $\alpha=1 / 16$ ，
（2）for FILON 1

$$
\alpha=\frac{(b-a)^{2} / 32-6 / \omega^{2}}{(b-a)^{2} / 8-6 / \omega^{2}},
$$

（3）for FILON 2

$$
\begin{aligned}
& \alpha(\rho)=\frac{12 \sin (\rho)-\rho^{2} \sin (\rho)-6 \rho-6 \rho \cos (\rho)}{12 \sin (\rho)-4 \rho^{2} \sin (\rho)-12 \rho \cos (\rho)} \\
& \text { where } \rho=\omega(b-a) / 2
\end{aligned}
$$

For FILON 2 the α＇s are needed for $\rho=\pi / 2^{p}, p=1,2, \ldots, 9$ ． They were precomputed and stored in the array $E R$ ，with $E R(1)$ containing $\alpha(\pi / 2)$ ，etc．

Computed values of $F C$ are saved for later use，and it is possi－ ble that the space assigned for this purpose is exhausted before the computations are completed．In this case the routine returns with an error indication．（In the present implementation the value of $F R C O S$ is set to 1.0×10^{30} ，although this may be changed to suit the user．） Usually this occurs only if the routine is used improperly（e．g．$E T$ has been specified so small that，due to round－off errors，the accu－ racy criterion cannot be met）．While the assigned space appears to be adequate for most purposes，the user can easily change this by， say，doubling the sizes of the arrays $F S, P V A L$ ，and $A S$ ，and chang－ ing the overflow test．

The user should keep in mind that such an adaptive approach does not guarantee that the final answer has an error less than $E T$ ； accidental（false）convergence is always a possibility．While empiri－ cal evidence suggests that $F R C O S$ is relatively immune to this，some examples of false convergence were encountered during the test of the algorithm．The user should always try to safeguard against this possibility，for example by making $E T$ smaller than required，or by doing the computations twice with different values of $E T$ and $H L$ ．

References

1．Linz，P．An adaptive quadrature algorithm for Fourier cosine integrals．（Unpublished manuscript available from author．）

Algorithm

```
        FUNCIION FRCOSIFC,W.T.ET.HLI
    IHIS ROUTINE COMPIITES IME FOUNIEA COSINE INTEGRAL FMOM
    ZERO TO INFINIIV OF FCIIIECOSIWETI OV AN ADAPIIVE
    OUADRATURE METMOD USING A COMUINAIION OF FILON ANO
    SIMPSON RULES
        parametens
    FC -mUST BE DECLAREO EXIERMAL IN CALLING PROGRAM
    W-VALUE MUSI DE NON-NEGATIVE
    I -UPPER LIMIT FOR CUADRAPURE-SHOULO NORMALLY BE CHOSEN
    SUCN TMAT REST OF INTEGRAL IS NEGLIGIBLE. THE ACTUUL
    LIMIT USED EY THE PROGRAM MAY BE SONEWHAT LARGER THAN
    THE GIVEN TISEE INTRODUCTORY COMMENTSI.
    ET -REOUESTEO ACCURACYIABSOLUTEI
    HL -LIMIT ON STEP SIZE-CONVERGENCE IN ANY SUHINIERVAL IS
    MOT RECOGNIZED UNLESS SUBINIERVAL IS SMALLER THAN HL
        OIMENSION WIC(9),W2C(91,W3C(9),ER(9)
    ARRAYS ER,WIC.W2C.W3C CONTAIM PRECOMPUIEO CONSTANTS
C MEEDED TO COMPUTE APPROXIMATE VALUES ANO EHROR
C ESTIMATES FOR FILONZISEE COMNENTSI.
    DATA ER(1), ER(2),ER(3),ER(4),ER(5), ER(6), ER(7),ER(B),
    sER(91/ 0.00SO61,005969..06181.006233.0062460
    s.06249.0.06249.006231
    DATA WICIII,WICI2IOWICI3I.WICI4IOWIC(SI.WICI6).WICIT).
    DATA WICIIH,WICI2IOW,
        4.0528473456934E-01.3.6761020369133E-01.
        344316760755741E-01.3.3567533234962E-01.
        3.3397411782348E-01.3.3349386085934E-01.
        3.3337348594489E-01.3.3334337274212E-01.
        3.3337348594489E-01;3
        OATA ¥2C(1),W2C(2),W2C(3),:#2C(4),*2C(5),#2C(6),*2C(7).
            *2C18),42C191,
                            1.2059522143639E-01 . 1.9710810149097E-02.
        2.6328277852505E-03, 3.3459141708323E-04.
        4.1997086077777E-05.5.255060030657OE-060
        6.5705211443498E-07.8.2136815416350E-08.
```

s $1.0267267595664 E-081$
DATA W3C（1）．W3C（2）：W3C（3）．W3C（14）．W3C（5）．W9C（6）．W3C（7）．
s w3Ci8），W3C（9）1，
s 1.0320491018624 .1 .25287 0015490．1．3128845799752。
8 1．3281999871537．1．3320486700792．1．3330180847949．
E 1．333253016n191，1．3331132536798．1．3333283133091／
DIMEMSION FSI6II，PVAL 301, AS 301
C ARRAYS FSIPVAL，AS ARE STORAGE FOR SAVEO VALUES OF F
C AMD BOOK－KEEPING
DATA PI2，PI256／6．2831853071796．．01227184631
C PI2＝20PI，P1256＝PI／256
DATA ALN2，ERC．ROC／．69314718．1．E＋30．1．E－5／
C ALN2－NATURAL LOG OF 2，ERC＝ERROR VALUE RETURNED
C BY FRCOS，ROG＝CONSTANT USED TO ELIMINATE ROUNOOFF
C PROQLEMS IN COMPUTIMG INTERVAL LIMITS
EPS：ET
Mo 1
NSilion。
FSIII＝FC（0．）
PVALIIJERC
C TEST IF UPPER LIMIT ADJUSTMENT IS NECESSARY WTーWer
IFIWT－PI256＋ROC ，100．100．101
C MOTE－CONSTANT ROC $=1 . E-5$ USED THROUGHOUT PROGRAM TO
C ELIMIMATE EFFECT OF FLOATING POINT ROUNOOFF ERROR
SET UP FIRST ITATHVAL FUR SIMRSON KULE
100 FST2）＝F（1．5＊T）（CSST．50WT）
FST3）＝F（T）COSTWけ）
$\mathrm{R}=\mathrm{T}$
GO TO 10 s
C ADJUST UPPER LIMIT
101 NP＝IFIXIALORTWT／DI／56）／ALNZI＊
TA $=7 a$
$A=T A$
C SET UP FIRST INTERVAI FOR FILON RULE
FS（T）＝FCT．SCTA）
FSI3）$=F(1,5$
$F(3)$
TAKE LAST INTERVAL FROM LIST
109 A＝AS（N）
HI＝B－A
WHI＝W＊HI
Fi＝FSINZ－：
FI＝FS（N2－I
$F 2=F G(N 2)$
F3＝FSIN2＋1

$\mathrm{XO}=\mathrm{B}-\mathrm{F} 5 \mathrm{HI}$
$\mathrm{XO}=\mathrm{B}=-25 \mathrm{HI}$
C YEST TO DETERMINE WHICH QUADRAIURE RULE IS APPLICABLE
IFI WHI－PI256－ROC， $110.110,111$
110 IFI WHI＝PI256＋ROC， 200.200 .201
I11IFI WHI－PI2－ROC， 220.220 .230
C ESTIMATE BY SIMPSON RULE
$70 \cap$ FQ＝F（ $1 \times 0)=C O S(W=X O)$
$F 0_{3}=F((x 03)=\cos (w * x 03)$
VNEWI＝H1＊（F1＋4．＊FQ＋F2）／12。
VNEW2＝HI＊（F2＋4＊＊FQ3＋F3）／12．
VNEW＝VNEWI＋VNEW2
ERRE（PVAL（NI－VNEWI／15． GO 10300
SWITCH FROM FILON TO SIMPSON RULE
201 F1＝Fl＊（OS（W＊A）
$F 2=F 2 \cdot \cos \left(w=1 B-5+\operatorname{Ha}_{1}\right)$
F3＝F3＊ $\cos (w+B)$
PVAL（N）$=$ HI＊（F $1+4$ ．＊F $2+F_{3} 1 / 6$ ．
GO 10200
C ESTIMATE BY FILON2
220 Hz 25 HH
FO：FC（XO）
F OR $=F(1 \times O T)$
NH： $\operatorname{IFIXIALOG,IPI2/WHI)/ALN2+ROCI+1}$
WI＝WIC（NH）
$W 7=-W 2(N H)$
$W 3=W 3(1 N H$
$W A=W * A$
WAl＝W＊（B－．SHH！）
$W R=W$ © B
$C O I=C O G \mid W A)$
$S I I=\{I N(W A))$
SII＝SIN（WAI）

\＆ SNEW2 \quad KO＋1W1＊CO1－W2＊SIII＊F21

VNEW＝VAEW L＋VNEW 2
FRT＝FR（NH）
FRR＝ERT：IFVAL（N）－VNFWI／II－－ERT）
C SKIP CONVERGENCE IEST IF INTEKVAL＝ONE PERIOD
IFIWHI－P12＋ROC，300．300．400
C ESTIMATE BY FILONI
230 FO＝FC（XO）
FQ3 $=\mathrm{FC}(\times 03$ ：
W2－W＊W
CONST＊B．（（W2＊HI）
VNEW1：CONST－（F1－2．AFQ＋F2）
VNEW2＝CONST－（F2－2＊＊FO3＋F3）
VNEW＝VNEWI＋VNEW2
W2＝6．／W2
W3－HIAHI
ERT＝（w3／32．－W2）／（w3／8．－w2）
ERR＝ERT＊（PVAL（NI－VNEW）／11．－ERT）
C CONVERGENCE TEST
SKIP CONVERGENCE TEST IF HI．GT．HI．
300 IF（HI－HLI 301．301，400
301 IF（ABS（ERR）－EPS HI／B） $500,500,400$
CONVERGENCE NOT OBTAINED
C CONVERGENCE NOT OBTAINED－SPLIT INTERVAL ANO AOD TO LISY

C TEST FOR POSSIBLE LIST OVERFLOW
TEST FOR POSSIBLE LIST O
400 IF $N-30) 401.600 .600$
$401 \mathrm{FS}(\mathrm{N} 2+3)=F ?$
$\mathrm{FS}(\mathrm{N} 2+2)=F Q 3$
$\mathrm{FS}(\mathrm{N} 2+1)=F 2$
FS(N2+1)=F2
FS(N2)=FO
AS(N+II=A+.SEH
AS (N+1)=A+.5日H
PVAC(N)=VNEWI
PVAL(N)=VNEWI
PVAL(N+I)OVNEW2
$\mathrm{N}=\mathrm{N}+1$
$6010 \quad 105$
C CONVERGENCE OBTAINED - ADD EXYRAPOLATEO PARTIAL SUM TO
TOTAL--ADJUST ERROR AND INTERVAL
500 VAL $=$ VAL $\because V N E W-E R R$
$E P S=E P S-A B S(E R R)$
$\mathrm{N}=\mathrm{N}-\mathrm{l}$
$\mathrm{B}=\mathrm{A}$
IFIN
(
IFIN) 700.700.105
C CONVERGENCE FAILURE -ROUTINE RETURNS ERC=1.E + 30
C OPTIONAL ERROR MESSAGE MAY BE INSERTED HERE
600 FRCOS=ERC
600 FRCOS*ERC
RETURN
C COMPUTATIONS COMPLETED SUCCESSFULLY
700 FRCOS: VAL
RETURN
END

Algorithm 428

Hu-Tucker Minimum Redundancy Alphabetic Coding Method [Z]

J.M. Yohe* [Recd. 2 January 1970, 12 February 1971, and 21 June 1971]
Mathematics Research Center, University of Wisconsin, Madison, WI 53706

[^2]
Description

This algorithm implements the Hu-Tucker method of variable length, minimum redundancy alphabetic binary encoding [1]. The symbols of the alphabet are considered to be an ordered forest of n terminal nodes. Two nodes in an ordered forest are said to be tentative-connecting if the sequence of nodes between the two given nodes is either empty or consists entirely of nonterminal nodes.

An interval of nodes each pair of which is a tentative-connecting pair is called a tentative connecting string.

Given an ordered forest, we create a new ordered forest with one less tree by combining a pair of tentative-connecting nodes i_{1}, i_{2} such that $Q\left[i_{1}\right]+Q\left[i_{2}\right]$ is minimal. Such a pair is said to have minimal weight sum. The old nodes i_{1} and i_{2} are eliminated, and the new node replaces the first of the former nodes in the ordering. Its weight is the sum of the weights of the former nodes.

The original forest will, after a finite number of steps, be connected into a single tree. This tree will not, in general, satisfy the order-preserving requirement. However, it is shown in [1] that the path lengths are feasible for the construction of a tree which does satisfy this requirement and is, moreover, minimal in cost.

The present procedure finds a minimal cost tree whose longest path length and total path length are minimal. This was done for the nonalphabetic case by Schwartz [3], and his work carries over directly to the alphabetic case by virtue of the fact that any optimal alphabetic encoding can be constructed by the Hu-Tucker method, simply by modifying the choice of which tentative-connecting nodes are combined. This procedure therefore represents a modification of the Hu -Tucker algorithm to incorporate these ideas of Schwartz.

During the procedure, the array L is used to determine which roots are tentative-connecting. If L is initially filled with 1 's instead of 0 's, any pair of nodes will be considered tentative-connecting, and the procedure will implement Huffman's method [2], giving the same results as the "bottom merging" method of Schwartz and

[^3] DA-31-124-ARO-D-462.

Kallick [4]. This is because this procedure picks, among those pairs with minimal weight sum, the first pair having minimal length sum.

Mcdifying the procedure to pick the first pair having maximal length sum would be equivalent to the "top merging" method of Schwartz and Kallick, and would maximize the total number of digits and the maximal length of the code in alphabetic case (and in the nonalphabetic case, if the L-array is initially filled with 1 's).

The decision tree may be obtained from the branch lengths by combining the first node of maximal path length with the second node of maximal path length to form a new node with path length one less than that of the original nodes, iterating the procedure until only one node (the root) remains. The code can then be constructed by assigning the value 0 to the first node on the next level from the root and 1 to the second node, appending 0 or respectively 1 to the i th level encoding of a node to obtain the encoding for the first or second son on the $(i+1)$-th level.

References

1. Hu, T.C., and Tucker, A.C. Optimal computer search trees and variable-length alphabetical codes. SIAM J. Appl. Math. (to appear).
2. Huffman, David A. A method for the construction of minimum-redundancy codes. Proc. I.R.E. 40 (1952), 1098-1101.
3. Schwartz, Eugene S. An optimum encoding with minimum longest code and total number of digits. Inform. Contr. 7 (1964), 37-44.
4. Schwartz, Eugene S., and Kallick, Bruce. Generating a
canonical prefix encoding. Comm. ACM 7 (1964), 166-169.

Algorithm

procedure Hutree (n, Q, L);
value n; integer n; integer array Q, L;
comment n is the number of symbols in the alphabet, and Q is a vector of length $n . Q[i]$ is the weight to be attached to the i th symbol in the alphabet.

The output of the procedure is the vector L of length $n . L[i]$ is the length of the path to the i th symbol of the alphabet in a tree of minimal cost (i.e. the sum of the $Q[i] \times L[i]$ is minimal) which has the further property that, subject to minimality of cost, the sum of the $L[i]$ and max $L[i]$ are minimal;
begin
integer maxn, m, i;
integer array $P[1: n], s[1: n-1], d[1: n-1]$;
comment P is used to hold the weights of the trees in the ordered forest, beginning with the alphabet at the start of the procedure and ending with the tree at the conclusion of the procedure. L is used during the procedure to hold information relating to the length sums. At the conclusion of the procedure, L is used to return the path lengths.
If $i 1<i 2$ and nodes $i 1$ and $i 2$ are connected on the m th pass through the body of the algorithm, then $P[i 1]$ will be set equal to $P[i 1]+P[i 2]$, which is the weight of the new node, and $P[i 2]$ will be set to zero to indicate that node $i 2$ is no longer a participating node. $L[i 1]$ is set equal to $L[i 1]+L[i 2]+1$, which is one less than the number of terminal nodes which are descended from the new node. This number is also one less than the increment to the total path length which would result from connecting the new node $i 1$ in a subsequent pass through the body of the algorithm. The value of $L[i 2]$ is irrelevant during the remainder of the procedure. The s and d vectors are used to record connections of tentative-connecting nodes. $s[m]$ is set to $i 1$, which is both the ordered position of the leftmost node and
the ordered position of the new node, and $d[m]$ is set to $i 2$, which is the ordered position of the rightmost node.
The variable maxn is set to a number which is larger than the sum of the elements of Q.
The following simple example should be of some assistance in understanding the procedure. Assume the procedure is called with $n=5$ and $Q=(3,1,1,1,3)$. The evolution of the vectors P, L, s, and d is shown in the following table. Values which are not relevant are indicated by dashes.

| m | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $P[1]$ | 3 | 3 | 3 | 6 | 9 |
| $P[2]$ | 1 | 2 | 3 | 3 | 0 |
| $P[3]$ | 1 | 0 | 0 | 0 | 0 |
| $P[4]$ | 1 | 1 | 0 | 0 | 0 |
| $P[5]$ | 3 | 3 | 3 | 0 | 0 |
| $L[1]$ | 0 | 0 | 0 | 1 | 4 |
| $L[2]$ | 0 | 1 | 2 | 2 | - |
| $L[3]$ | 0 | - | - | - | - |
| $L[4]$ | 0 | 0 | - | - | - |
| $L[5]$ | 0 | 0 | 0 | - | - |
| $s[m]$ | 2 | 2 | 1 | 1 | |
| $d[m]$ | 3 | 4 | 5 | $2 ;$ | |

maxn $:=1$;
for $i:=1$ step 1 until n do
begin
$L[i]:=0 ; P[i]:=Q[i] ;$
maxn $:=$ maxn $+Q[i] ;$
end
comment Since there are n terminal nodes in the original forest, we must make exactly $n-1$ connections. On each pass through the body of this procedure we will determine the next optimal connection. We initialize by setting the minimum weight to a large value to insure that any valid connection chosen will replace the bogus connection initially indicated;
for $m:=1$ step 1 until $n-1$ do
begin
integer $j, j 1, \min 1, \min L 1, j 2, \min 2, \min L 2, p t, p m i n, s u m L t$, sumL, i1, i2;
$i:=0$;
pmin := maxn;
B1:
$i:=i+1$;
comment At $B 2$ we begin our scan of the next tentative-connecting string to find the most desirable pair in the string. If necessary, we skip over any previously absorbed nodes. We initialize the most desirable node to the first in the tentativeconnecting string, and the record of the second most desirable node is initialized to reflect a very large minimum. This insures that any participating node will be more desirable and that valid information will replace the bogus information as soon as the next participating node is encountered. If the first participating node is the last node in the forest, or if no further nodes are participating nodes, then we have completed our scan for the next tentative-connecting pair and we go to $E 1$ to make the optimal connection;
$B 2$:
if $i 1 \geq n$ then go to $E 1$ else
if $P[i]=0$ then go to $B 1$;
$\min 2:=$ maxn;
$j 1:=i$;
$\min L 1:=L[i] ; \min 1:=P[i] ;$
comment We now begin our scan of all remaining nodes in the current tentative-connecting string. The string will end as soon as we have examined a participating node which has not previously been combined. The purpose of this scan is to locate the optimal tentative-connecting pair in the tentativeconnecting string. The optimal pair is defined to be that pair
with minimal weight and minimal length sum which occurs first in the tentative-connecting string;
for $j:=i+1$ step 1 until n do

begin

comment We check for $P[j]>0$ to see whether the j th node is a participating node. If $P[j]=0$, the node has previously been absorbed and we pass over the empty space;
if $P[j]>0$ then
begin
if $P[j]<\min 1 \vee(P[j]=\min 1 \wedge L[j]<\min L 1)$ then
begin
comment If the j th node is "more desirable" than either of the previously most desirable tentative-connecting nodes, we record the previous most desirable node as the second most desirable node and record the j th node as being most desirable;
$\min 2:=\min 1 ; j 2:=j 1 ; \min L 2:=\min L 1 ;$
$\min 1:=P[j] ; j 1:=j ; \min L 1:=L[j] ;$
end
else if $P[j]<\min 2 \vee(P[j]=\min 2 \wedge L[j]<\min L 2)$ then
begin
comment If the j th node was not more desirable than the
previous most desirable node, but is more desirable
than the previous second most desirable node, we record
the j th node as being second most desirable;
$\min 2:=P[j] ; j 2:=j ; \min L 2:=L[j] ;$
end;
if $L[j]=0$ then go to $E 2$;
comment If $L[j]=0$ then we have reached the end of the
current tentative-connecting string, and we have found
the most desirable pair in that string. We now go to
compare it with the previous most desirable pair in the
forest;
end
end;
$E 2$:
$p t:=P[j 1]+P[j 2] ;$
sumLt $:=L[j 1]+L[j 2]$;
comment We have now found the next tentative-connecting
pair, namely the $j 1$ and $j 2$ nodes. Here, we test this new pair
against the previous minimal pair to see whether the new pair
is more desirable. The new pair is more desirable if its weight is
less than that of the previous pair, or if its weight is equal to
that of the previous pair and its length sum is smaller;
if $p t<p \min \bigvee(p t=p \min \wedge \operatorname{sumL} t<\operatorname{sumL})$ then
begin
pmin := pt;
$i 1:=j 1 ; i 2:=j 2$;
sumL := sumLt;
end;
comment The next tentative-connecting string begins with the last participating node in the current tentative-connecting string. Hence we replace i by j and return to $B 2$ to begin processing the next tentative-connecting string;
$i:=j$;
go to $B 2$;
comment Upon reaching $E 1$ the procedure has scanned all tentative-connecting pairs and the decision has been made to connect nodes in order positions $i 1$ and $i 2$. We switch il and $i 2$ if necessary to insure that $i 1<i 2$. We record the connection by setting $s[m]:=i 1$ and $d[m]:=i 2$. The weight of the new node is placed in the weight table in position il (the order position of the new node). The weight in the order position of the second combined node is set to zero to indicate that the node has now been absorbed and no longer participates in the scan. $L[i 1]$ is set to one less than the increment to the path length sum which would result from connecting the new node;

E1

$$
\begin{aligned}
& \text { if } i 1>i 2 \text { then } \\
& \text { begin } \\
& \quad j 1:=i 1 ; i 1:=i 2 ; i 2:=j 1 ; \\
& \text { end; } \\
& s[m]:=i 1 ; d[m]:=i 2 ; \\
& P[i 1]:=\operatorname{pmin} ; P[i 2]:=0 ; \\
& L[i 1]:=\operatorname{sumL}+1 ; \\
& \text { end; }
\end{aligned}
$$

comment $s[n-1]$ gives the ordered location of the root of the tentative tree. We now generate the path lengths as follows: the path length to the root is zero, and if the path length to any node is i, then the path length to each of its sons is $i+1$. The two sons of the node whose order position is given in $s[m]$ lie in the order positions given in $s|m|$ and $d[m]$. Moreover, if an order position is given in $s[m]$ for $m<n-1$ then that order position must be listed in $s[j]$ or $d[j]$ for some $j>m$, so the path lengths obtained by this algorithm are well defined.
Returning to our example, we now trace the construction of the vector of path lengths. This is shown in the following table. For the sake of clarity, the vectors s and d are now shown in reverse order.

| m | | 4 | 3 | 2 | 1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $L[1]$ | 0 | 1 | 2 | 2 | 2 |
| $L[2]$ | - | 1 | 1 | 2 | 3 |
| $L[3]$ | - | - | - | - | 3 |
| $L[4]$ | - | - | 2 | 2 | |
| $L[5]$ | - | - | 2 | 2 | 2 |
| $s[m]$ | 1 | 1 | 2 | 2 | |
| $d[m]$ | 2 | 5 | 4 | 3 | |

Thus the final value of the vector L is $(2,3,3,2,2)$;
$L[s[n-1]]:=0$;
for $m:=n-1$ step -1 until 1 do
$L[s[m]]:=L[d[m]]:=L[s[m]]+1 ;$
end;

Remark on Algorithm 428 [Z]

Hu-Tucker Minimum Redundancy Alphabetic Coding Method [J.M. Yohe, Comm. ACM 15 (May 1972), 360-362]
J.G. Byrne [Recd. 26 June 1972] Department of Computer Science, Trinity College, Dublin 2, Ireland

Algorithm 428 was translated into Basic Fortran IV and run on IBM System 360/44 running under $R A X$. When the line just after the label $B 2$:
if $i 1>n$ then go to $E l$ else
was changed to

if $i>n$ then go to $E 1$ else

the algorithm gave correct results for the example given and for the example in Gilbert and Moore [1]. In the latter case the cost defined as

$$
\begin{gathered}
\sum_{i=1}^{N} Q(I) * L(I) \\
\sum_{i=1}^{N} Q(I)
\end{gathered}
$$

and code lengths were correct.
When the L array was set to l's on entry, the optimum (Huffman) codes were obtained, and they were the same as those given by the Schwartz and Kallick [2] method as claimed in the author's description.

Table 1.

| Size of alphabet | 10 | 27 | 60 |
| :--- | :---: | :---: | :---: |
| Time to find optimum alphabetic codes | 0.02 | 0.14 | 0.62 |
| (secs)
 Time to find optimum codes (secs) 0.02 0.08 | 0.34 | | |

Table I, which gives the cpu time required, shows that the algorithm is very fast for small alphabets and that the time is approximately proportional to n^{2}, as expected.

References

1. Gilbert, E.N., and Moore, E.F. Variable length binary encodings. Bell Systems Tech. J. 38 (1959), 933-968.
2. Schwartz, E.S., and Kallick, B. Generating a canonical prefix encoding. Comm. ACM 7 (Mar. 1964), 166-169.

Algorithm 429

Localization of the Roots of a Polynomial［C2］

W．Squire（Recd． 16 Mar．1970， 2 June 1971，and 4 Oct．1971）
College of Engineering，Dept．of Aerospace
Engineering，West Virginia University，Morgantown， WV 26506

Key Words and Phrases：polynomials，roots of polynonials， theory of equations，Routh－Hurwitz criterion

CR Categories： 5.15
Language：Fortran

Description

This algorithm provides information about the roots of the polynomial
$x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n}$.
The theorem［1］that the roots of（1）are all inside a ring of radius
$1+\max _{1 \leq i \leq n}\left|C_{i}\right|$
is embodied in the Fortran function RADIUS．By applying this to the original polynomial and to the polynomial
$y^{n}+\frac{c_{n-1}}{c_{n}} y^{n-1}+\frac{c_{n-2}}{c_{n}} y^{n-2}+\cdots+\frac{1}{c_{n}}$
the inner and outer radii of an annulus containing all the roots are determined．

The theorem［1］that the positive real roots of（1）are less than $1+\left[\max _{1 \leq i \leq n}\left|C_{i}\right|\right]^{1 / m}$
where m is the subscript of the first negative coefficient is embodied in RADIUS．If there are no negative coefficients there cannot be any positive roots and RADIUS returns zero in this case．By applying RADIUS to both（1）and（2）upper and lower bounds are obtained for the positive roots．In some cases（all coefficients positive）it is possible to say that there are no real positive roots，but the converse does not hold so that the determination of bounds does not guaran－ tee the existence of a real root between those bounds．RADIUS is also applied to the equations whose roots are the negatives and nega－ tive reciprocal of the roots of（1）to obtain similar results for the negative real roots．

The Fortran function $H R W T Z R$ employs a modification of the Routh－Hurwitz criterion［2］to determine whether（1）and the equa－ tion whose roots are the negatives of those of（1）have any roots with positive real parts．Unfortunately a zero real part is considered
positive so that this test will not determine if an equation nas purely imaginary roots．

The subroutine POLYAN，which computes the coefficients for the modified polynomials，calls the functions，and prints out suit－ able messages，has for its arguments：
1．An N element array C which contains the coefficients of the polynomial except for the leading 1.
2．An auxiliary \mathbf{N} element array CM in which the coefficients of the modified polynomials are stored as needed．
3． N is equal to the degree of the polynomial．
If desired the argument list can be extended to include the various bounds so that they can be transmitted back to the main program for use．

References

1．Berezin，I．S．，and Zhidkov，N．P．Computing Methods．Vol． II，Ch．7．Pergamon Press，New York， 1965.
2．Sherman，S．，Di Paola，J．，and Frissel，H．F．The simplification of flutter calculation by the use of an extended form of the Routh discriminant．J．Aeronaut．Sci． 12 （1945），385－392．

```
Algorithm
SUBROUTINE PGLYAN(C,CIM,N)
```

PGLYAN OBTAINS INFORMATIGN ABOUT THE LOCATION

```
PGLYAN OBTAINS INFORMATIGN ABOUT THE LOCATION
OF THE RDOTS GF A POLYNEMIAL BY USING
OF THE RDOTS GF A POLYNEMIAL BY USING
BOUND,RADIUS,AND HENWTLK
BOUND,RADIUS,AND HENWTLK
G IS A N ELEMENT ARKAY CONTAIVING THE CGEFICIENTS
G IS A N ELEMENT ARKAY CONTAIVING THE CGEFICIENTS
NOIRMALIZED S\emptyset THAT THE LEADING COEFFICIENT(H.HICH
NOIRMALIZED S\emptyset THAT THE LEADING COEFFICIENT(H.HICH
IS NOT INCLUDED IN C) IS +1.0
IS NOT INCLUDED IN C) IS +1.0
CM IS A WGSKING ARRAM THF SAME SIZE. AS C
CM IS A WGSKING ARRAM THF SAME SIZE. AS C
N=DEGREE EF PGL.YNOMIAL
N=DEGREE EF PGL.YNOMIAL
    LgGICAL HRWTZK
    LgGICAL HRWTZK
        IEST FEK \angleERO KOOI
        IEST FEK \angleERO KOOI
        CØEFFICIENTS FER IECIPKGCAL PGLYNGMIAL AKE PUT IN CM
        CØEFFICIENTS FER IECIPKGCAL PGLYNGMIAL AKE PUT IN CM
        CM(N)=1./C(N)
        CM(N)=1./C(N)
        NM1=N-1
        NM1=N-1
        DO S I=1,NM
        DO S I=1,NM
        NI=N-I
        NI=N-I
    5 CM(I)=CM(N)*C(NI)
    5 CM(I)=CM(N)*C(NI)
        ROUT=RADIUS(C,N)
        ROUT=RADIUS(C,N)
        KIN=1, /KADI US(CM,N)
        KIN=1, /KADI US(CM,N)
        WIRITE(6,201) RIN, ROU
        WIRITE(6,201) RIN, ROU
    201 FORMAT(4OH ROOTS ANE IN AN ANNULUS GF LNNERI KADIUS,
    201 FORMAT(4OH ROOTS ANE IN AN ANNULUS GF LNNERI KADIUS,
        E10.3.17H AND OUTER KADIUS,EIO.3
        E10.3.17H AND OUTER KADIUS,EIO.3
        PPU=BGUND(C,N
        PPU=BGUND(C,N
        IF(RPU.NE.O.0) GO TO 10
        IF(RPU.NE.O.0) GO TO 10
        URITE(6,202)
        URITE(6,202)
        FORMAT(33H THERE ARE NG nEAL POSITIVE <DOTS)
        FORMAT(33H THERE ARE NG nEAL POSITIVE <DOTS)
        G0 TO 20
        G0 TO 20
        *RITE(6.203) RPL, KPU
        *RITE(6.203) RPL, KPU
        FOKMAT
        FOKMAT
            l(40H THE PCSITIVE ROOTS(IF ANY) AKE RETIEEN,
            l(40H THE PCSITIVE ROOTS(IF ANY) AKE RETIEEN,
            2E1O.3,4H AND,E1O.3)
            2E1O.3,4H AND,E1O.3)
        COEFFICIENTS FOR NEGATIVE rECIPROCAL. ARE PUT IN CM
        COEFFICIENTS FOR NEGATIVE rECIPROCAL. ARE PUT IN CM
20 00 25 I=1,N,2
20 00 25 I=1,N,2
    CM(I) =-CM(I)
    CM(I) =-CM(I)
        RNU=80UND(CM,N)
        RNU=80UND(CM,N)
        IF(KNU.NE.O.0)GO TE 30
        IF(KNU.NE.O.0)GO TE 30
        WRITE (6,204)
        WRITE (6,204)
    204 FORMAT
    204 FORMAT
        1633H THERE ARE NO NEGATIVE rEAL ROOTS
        1633H THERE ARE NO NEGATIVE rEAL ROOTS
        G0 T0 40
        G0 T0 40
COEFFICIENTS FEK NEGATIVE NOOTS ARE HUT IN CM
COEFFICIENTS FEK NEGATIVE NOOTS ARE HUT IN CM
        05
        05
        DC 35 I=1,N
        DC 35 I=1,N
    5 x=-x
    5 x=-x
        RNU=-1./RNU
        RNU=-1./RNU
        RNL =-BOUND(CM,N)
        RNL =-BOUND(CM,N)
        virite(6,205) KNU, KNL
        virite(6,205) KNU, KNL
    2OS FDKMAT
    2OS FDKMAT
        (44H THE REAL NEGATIVE ROOTS(IF ANY)AKE BETWEEN,
        (44H THE REAL NEGATIVE ROOTS(IF ANY)AKE BETWEEN,
        2E1O.3.4H AND,E1O.3)
        2E1O.3.4H AND,E1O.3)
    40 IF(HKWTLK (C,N)) WKITE(6,206)
    40 IF(HKWTLK (C,N)) WKITE(6,206)
    206 FORMAT
    206 FORMAT
        I(44H THERE ARE ING rODTS WITH POSITIVE REAL PAKTS)
        I(44H THERE ARE ING rODTS WITH POSITIVE REAL PAKTS)
        IF(HKWTZK (CWi,N)) W/人ITE(6.207)
        IF(HKWTZK (CWi,N)) W/人ITE(6.207)
    207 FGRMAT
    207 FGRMAT
        I (44H there are ng roots with negative keal parts)
        I (44H there are ng roots with negative keal parts)
50 WRITE (6,208)
```

50 WRITE (6,208)

```
```

ดのロのロロ\Omega

```
```

ดのロのロロ\Omega

```
```

20S FORMAT (41H POLYNOMIAL HAS A ZENO ROET.REDUCE DEGKEE)
RETURN
END:
FUNCTION RADIUS(C,N)
KADIUS RETUNNS AN UPPEK LIMIT Fgi: THE MGDULUS
c GF THE RGOTS OF AN N DEGREE POLYNOMIAL.
DIMENSION C(N)
KADIUS=ABSCC(1)
D0 10 I=2,N
10 IF(ABS(C(I)).GT.KADIUS) RADIUS=ABS(C(I))
RADIUS=1.+RADIUS
RETURN
FUNCTION BQUND(C,N)
OUUND RETURNS AN NP
BOUND RETURNS AN UPPER LIMIT FQER THE
POSITIVE, KEAL KOOTS OF AN N DEGREE POLYNOMIAL
M=0
BOUND=0.0
OO 10 I=1,N
IF(M.GT.O) GO TO 10
1F(C(I).LT.O.0) M=1
10 IF(C(I).LT.BQUND) BGUND=C(I)
IF(II.EO.0) RETUNN
BGUND=1.+(-BDUND)**(1./FLCAT(M))
RETURN
END
GGICAL FUNCTION HNWITZRCC,N
HRWTZ\ddot{R NETURNS -TRUE. IF ALL THE NODTS HAVE}
NEGATIVE REAL PARTS,OTHERWISE.FALSE.IS RETUKNED.
IF A REAL PAIRT IS ZEKG,THEN . FALSE. IS RETUKNED.
DIAENSION C(N)
HKWTZK=.FALSE.
C1=C(1)
F(CI.LE.O.0)RETURNN
OO I=1,M
KM=N-1
D0 20 K=1, KM
C(K)=C1*C(K+1)
IF(K.EQ.KM.GR.2*(K/2).E0.K) GG T0 20.
C(K)=C(K)-C(K+2)
C(K)=C(K)/C Cl
Cl=c(1)
F(C1.LE.O.O) \ETUKN
O CONTINUE
HKWTZK=.TRUE
\&ETUKiN
RETL

```

\section*{Remark on Algorithm 429 [C2]}

Localization of the Roots of a Polynomial [W. Squire, Comm. ACM 15 (Aug. 1972), 776]

Edward J. Williams \Recd. 15 Sept. 1972〕Computer Science Department, Ford Motor Company, P.O. Box 2053, Dearborn, MI 48121

Corrections are needed in the third paragraph. The theorem that the positive real roots of (1) are less than
\(1+\left[\max _{1 \leq i \leq n}|C i|\right]^{1 / m} \ldots\) should read
\(1+\left[\max _{1 \leq i \leq n C i<0|C i|}\right]^{1 / m}\)
Further, the four words " RADIUS" in this paragraph should be replaced by "BOUND".

\section*{References}
1. Zaguskin, O.O. Solution of Algebraic and Transcendental Equations, Pergamon Press, New York, 1961, p. 21.

\section*{Remark on Algorithm 429 [C2]}

Localization of the Roots of a Polynomial [C2] [W. Squire, Comm. ACM 15 (Aug. 1972), 776-777]
H.B. Driessen and E.W. LeM. Hunt [Recd. 13 Oct. 1972, 29 Jan. 1973]

Supreme Headquarters Allied Powers of Europe, Technical Center, P.O. Box 174, The Hague, The Netherlands

There seems to be an error in this algorithm. If we take the polynomial:
\(z^{4}+a_{2} z^{2}+a_{3} z^{3}+a_{4} z+a_{5}=0\),
then after the second pass through the \(K\)-loop of the logical function \(\operatorname{HRWTZR}(C, N)\), the term \(\left(a_{2} a_{3}-a_{4}\right) a_{4}-a_{5} a_{2}\) is tested for a minus sign. However, the term which should be tested according to the Routh-Hurwitz criterion is \(\left(a_{2} a_{3}-a_{4}\right) a_{4}-a_{5} a_{2}{ }^{2}\). If this term is negative then there are no roots with positive real parts.

As an example, if the polynomial
\(z^{4}+5.6562 z^{3}+5.8854 z^{2}+7.3646 z+6.1354=0\)
is studied with the help of Algorithm 429 one will find as output:
Roots are in an annulus of inner radius \(.454 E+00\) and outer radius \(.836 E+01\);

There are no real positive roots;
The negative roots (if any) are between -. \(454 E+00\) and \(-.836 E+01\);

There are no roots with positive real parts.
However, if one calculates the roots of this equation, one will find approximately:
\(z_{1}=-1.0001\)
\(z_{2}=-4.7741\)
\(z_{3.4}=+0.0089 \pm 1.1457 i\)
Statement \(20+1\) in the logical function \(\operatorname{HRWTZR}(C, N)\), which was originally " \(C 1=C(1)\) ", should be amended to read " \(C 1=C(1) / C 1\) ".

As a by-product of our investigation, it turns out that the structure of the logical function \(H R W T Z R\) can be simplified by abandoning the logically redundant steps \(C(K)=C(K+1)\).

The following listing incorporates both the correction and the simplifications. The function has been parameter tested on a CDC-6400.

\section*{LOGICAL FUNCTION HRWTZR (C,N)}

DIMENSION C(N)
HRWTZR = .FALSE.
IF (C(1) .LE.0..OR.C(N).LE.0.) RETURN
\(\mathrm{Cl}=\mathrm{C}(1)\)
\(\mathrm{M}=\mathrm{N}-1\)
DO \(30 \mathrm{I}=2\), M
DO \(20 \mathrm{~K}=\mathrm{I}, \mathrm{M}, 2\)
\(20 \mathrm{C}(\mathrm{K})=\mathrm{C}(\mathrm{K})-\mathrm{C}(\mathrm{K}+1) / \mathrm{Cl}\)
\(\mathrm{C} 1=\mathrm{C}(\mathrm{I}) / \mathrm{C} 1\)
IF (C1.LE.0.) RETURN
30 CONTINUE
HRWTZR = .TRUE.
RETURN
END

\section*{Algorithm 430}

\title{
Immediate Predominators in a Directed Graph [H]
}

\author{
Paul W. Purdom Jr.* and Edward F. Moore [Recd. 14 Aug. 1970 and 13 July 1971] \\ Computer Sciences Department, University of Wisconsin, Madison, WI 53706
}

Key Words and Phrases: predominator, immediate predominator, graph theory, directed graph, shortest path, articulation, connectivity, program optimization, optimizing compiler

CR Categories: 4.12, 5.32
Langulage: Algol

\section*{Description}

We assume a directed graph whose nodes are labeled by integers between 1 and \(n\). The arcs of this graph correspond to the flow of control between blocks of a computer program. The initial node of this graph (corresponding to the entry point of the program) is labeled by the integer 1 . For optimizing the object code generated by a compiler, the relationship of immediate predominator has been used by Lowry and Medlock [3]. We say that node \(i\) predominates node \(k\) if every path from node 1 to node \(k\) passes through (i.e. both into and out of) node \(i\). Node \(j\) is an immediate predominator of node \(k\) if node \(j\) predominates node \(k\) and if every other node \(i\) which predominates node \(k\) also predominates node \(j\). It can easily be proved that if \(k \neq 1\) and node \(k\) is reachable from node 1 t hen node \(k\) has exactly one immediate predominator. In case \(k=1\), or node \(k\) is not reachable from node 1 , the immediate predominator of node \(k\) is undefined, and the value 0 will be given by the procedure PREDOMINATOR.

The input to this procedure is described for clarity of exposition as the adjacency matrix \(M\) of the directed graph.

It is assumed that there is a known bound \(a\) such that the number \(q\) of arcs in the directed graph satisfies \(q \leq a\).

Both the machine time and the memory required to perform this procedure are related in a simple way to the number \(n\) of nodes and the number \(q\) of arcs of the given graph. If \(T\) is the length of time required to perform the procedure \(P R E D O M I N A T O R\), then \(T\) is bounded by
\[
T \leq k_{1} n^{2}+k_{2} n q+k_{3} n+k_{4} q+k_{5}
\]
where the \(k_{i}\) are constants depending on the machine used for the procedure. If \(S\) is the memory required to perform the procedure \(P R E D O M I N A T O R\), then \(S\) is given exactly by
\[
S=k_{6} n^{2}+k_{7} a+k_{8} n+k_{9} .
\]

The \(k_{6} n^{2}\) term is merely the memory required to store the adjacency matrix \(M\) which is used to give the input description of the graph. The description of the graph is first transformed into a linked list, and no further use is made of the Boolean array \(M\). If this procedure were incorporated into an optimizing compiler, the adjacency matrix should be eliminated, going directly from the

\footnotetext{
* Present address: University of Indiana, Department of Computer Science, Bloomington, IN 47401.
}
source program into the list form, saving the memory used to store the adjacency matrix \(M\), which would remove the \(k_{6} n^{2}\) term from the memory required, as well as decreasing the computing time required. The precise details of the list representation can be expressed in a more brief and unambiguous manner by a few lines of Algol than by an English description. The predominators of any given node can be computed as in [3] from the immediate predominators, and the articulation points of a graph are the predominators of the exit node.

In an article on program optimization, Allen [1] gives an algorithm for computing articulation points (which are the predominators of the exit node). To test if node \(i\) is an articulation point, he removes node \(i\), from the graph, and computes the transitive closure to see if the exit node is connected to the entry node. By successively considering each node as an exit node, his algorithm can be adopted to computing the predominators (from which immediate predominators can be quickly computed) in a time proportional to \(n^{2}\) times the time required to compute the transitive closure. Since the transitive closure takes between \(n^{2}\) and \(n^{3}\) operations to compute [4, 5, and 6], Allen's algorithm would be slower than the one presented here by at least a factor of \(n\) for large problems.

The procedure PREDOMINATOR depends for its speed on the use of an algorithm first proposed by Dijkstra [2] for finding the shortest path between two points in a graph. The basic idea of the method is that a tree is found which is rooted on the entry node and which includes each node in the graph which can be reached from the entry node. Any node which cannot be reached from the entry node does not have an immediate predominator. Each node which can be reached from the entry node has the entry node as a predominator. It is the immediate predominator unless the node has a predominator which is closer to it along the path which was used to reach it. To test if a node \(i\), other than the entry node, is a predominator of some nodes, a test is made to see which nodes below (further from the root) \(i\) cannot be reached from the remaining nodes in the tree without going through \(i\). The nodes which cannot be reached without going through \(i\) have \(i\) as a predominator. Using this method the entry Immediate \([i]\) is set to the various predominators of node \(j\). The calculation is, however, organized to start at the root of the tree and proceed to the leaves, so that the last value of Immediate \([j]\) contains the immediate predominator of \(j\).

The program was tested on 38 graphs including one with 36 nodes and 49 ares which represents the flowchart of the algorithm and one with 82 nodes and 125 arcs which represents the flowchart of a Fortran program. The running time of the program on a Burroughs \(B 5500\) was 0.6 sec for the 36 node graph and 3.8 sec for the 82 node graph. The longest time for the remaining graphs was 0.5 sec for a graph with 18 nodes and 48 arcs. The shortest time was 0.07 sec for graphs with two nodes and one arc, five nodes and 25 arcs, and five nodes and 21 arcs. While these numbers are useful for estimating the average running time of the program, they are of limited use in calculating the constants in the formula for the running time, because the formula gives only an upper limit on the running time.

\section*{References}
1. Allen, F.E. Program optimization. Annual Rev. in Automatic Programming 5 (1969), 239-307.
2. Dijkstra, E.W. A note on two problems in connexion with graphs, Numerische Mathematik I, 5 (Oct. 1959), 269-271.
3. Lowry,. Edward S. and Medlock, C. W. Object code optimization, Comm. ACM 12, 1 (Jan. 1969), 13-22.
4. Munro, Jan. Efficient determination of the transitive closure of a directed graph. To be published.
5. Purdom, Paul Jr. A transitive closure algorithm, BIT 10, 1 (1970), 76-95.
6. Warshall, S. A theorem on Boolean matrices. J.ACM 9
(Jan. 1962), 11-12.

\section*{Algorithm}
procedure PREDOMINATOR( Immediate, M, \(n, a\) );
value \(n, a\); integer \(n, a\);
integer array Immediate; Boolean array \(M\);
comment The procedure sets Immediate \([i]\) to theimmediate predominator of \(i\) or to 0 if \(i\) has no immediate predominator. The incidence matrix of the graph is given by \(M\), where \(M[i, j]\) is true if there is an arc from node \(i\) to node \(j\). The number of nodes in the graph, which must be at least 1 , is \(n\), and \(a\) is (an upper limit on) the number of arcs in the graph. The start node is assumed to be node 1;

\section*{begin}
integer node, \(j\), avail, \(k\), stp, new, oldnode, down;
integer array First, Last, St \([1: n], \operatorname{Next}[1: n+a], \operatorname{Suc}[n+1: n+a]\);
Boolean array Mark[1:n];
comment This section initializes various variables and forms a linked list representation of the graph. The head of the list of arcs out of node \(i\) is \(N e x t[i]\) (for \(1 \leq i \leq n\) ). The arcs are put on a list linked by the array Next where the corresponding entry in the array Suc gives the node to which the arc goes. In the array Next 0 indicates the end of the list. For most uses of the procedure the graph will already be available as a linked list and in such cases the procedure should be modified so that it starts from the list and does not use the array \(M\).;
avail \(:=n\);
for \(j:=1\) step 1 until \(n\) do
begin
\(\operatorname{Mark}[j \mathrm{j}:=\) false; Next \([i]:=\operatorname{Immediate}[j]:=0 ;\)
for \(k:=\) step 1 until \(n\) do if \(M[j, k]\) then
begin
avail \(:=\) avail \(+1 ;\) Suc[avail] \(:=k ;\)
Next \([\) avail \(]:=\) Next \([j] ; \operatorname{Next} \mid j]:=\) avail; end;
end;
down \(:=\operatorname{Last}[1]:=0 ; \operatorname{St}[1]:=\) stp.\(=\) oldnode \(:=1\);
Mark \(\left.{ }^{1} 1\right]:=\) true; new \(:=\operatorname{Next[1];~}\)
comment newpl is the start of Dijkstra's[2] algorithm for the shortest path, modified for the case where all distances are 0 or infinity. In addition the array First is set to link the nodes in the order they are traversed by Dijkstra's algorithm. Last \(|i|\) is set to the next node after node \(i\) on the list First which cannot be reached from node \(i\) by those arcs of the graph which are traversed by Dijkstra's algorithm. Node 1 is set as the tentative immediate predominator of each node that can be reached from node 1 ;
newpl:
if new \(\neq 0\) then
begin
node := Suc[new];
if \(\neg\) Mark[node]then
begin
for \(j:=1\) step 1 until down do Last \([S u c[S t \mid s t p+j]]]:=\) node; down \(:=0 ; s t p:=s t p+1 ;\) St \(|s t p|:=\) new;
Mark[node] := true;
Immediate[node] \(:=1 ;\) First[oldnode] \(:=\) node; oldnode \(:=\) node; new \(:=\) Next[node];
go to newp 1 ;
end;
new \(:=\) Next[new];
go to newpl;
end;
down \(:=\) down \(+1 ;\) new \(:=\operatorname{Next}[S t \mid s t p] \mid\); stp \(:=\) stp-1;
if \(s t p \neq 0\) then go to new \(p 1\);
for \(j:=2\) step 1 until down do \(\operatorname{Last}\left[\operatorname{Suc}\left[S_{t}[j] \mid\right]:=0\right.\);
First \([\) oldnode \(]:=0 ; j:=1\);
if First \([1]=0\) then go to exit;
nextdom:
oldnode \(:=j ; j:=\) First \([j] ; k:=\operatorname{First}[j]\);
if \(k=0\) then go to exit;
comment The nodes that the above version of Dijkstra's algorithm
reached by going through node \(j\) will now be unmarked;
unmark:
if \(k \neq\) Last \([j]\) then
begin Mark \([k]:=\) false; \(k:=\) First \([k]\); go to unmark; end;
First[oldnode] := Last \([j] ; k:=1 ;\)
trace:
if \(k \neq 0\) then
begin
new \(:=\operatorname{Next}[k] ;\) stp \(:=1\);
comment newp 2 starts a second modification of Dijkstra's algorithm to find which unmarked nodes can be reached from the marked nodes without using node \(j\);
newp 2 :
if new \(\neq 0\) then
begin
node \(:=\) Suc[new];
if \(\neg\) Mark[node] then
begin
stp \(:=s t p+1 ; S t \cdot s t p]:=\) new \(;\) Mark[node \(]:=\) true;
new := Next[node];
go to newp 2 ;
end;
new \(:=\) Next \([\) new \(]\);
go to newp2;
end;
new \(:=\operatorname{Next}[S t[s t p]] ; s t p:=s t p-1\);
if \(s t p \neq 0\) then go to new \(p\);
\(k:=\) First \([k]\);
go to trace;
end;
\(k:=\) First \([j] ;\) First[oldnode] \(:=j\);
comment Each unmarked node will now be remarked and have \(j\) set to be its tentative immediate predominator. The last tentative immediate predominator is the actual one;

\section*{marker:}
if \(k \neq\) Last \([j]\) then
begin
if \(\neg\) Mark \([k]\) then
begin Immediate \([k]:=j\); Mark \([k]:=\) true; end;
\(k:=\) First \([k]\);
go to marker;
end;
go to nextdom;
exit:
end of PREDOMINATOR;

\section*{Algorithm 431}

\title{
A Computer Routine for Quadratic and Linear Programming Problems [H]
}

\author{
Arunachalam Ravindran [Recd. 24 Aug. 1970, 11 June 1971, and 1 Nov. 1971] \\ School of Industrial Engineering, Purdue University, Lafayette, IN 47907
}

\footnotetext{
Abstract. A computer program based on Lemke's complementary pivot algorithm is presented. This can be used to solve linear and quadratic programming problems. The program has been extensively tested on a wide range of problems and the results have been extremely satisfactory.

Key Words and Phrases: linear program, quadratic program, complementary problem, Lemke's algorithm, simplex method

CR Categories: 5.41
Language: Fortran
}

\section*{Description}

Introduction. The computer routine given below is based on Lemke's complementary pivot algorithm [2] to solve the complementary problem of the form:

Find \(w, z \geqq 0\)
such that \(w=M z+q\)
where \(M\) is an \((N \times N)\) square matrix; \(w, z\) and \(q\) are \((N \times 1)\) column vectors. ("Prime" denotes the transpose of a vector or matrix.)

A solution to the above problem will be called a complementary solution, and Lemke's algorithm is guaranteed to find a complementary solution to system (1) only if the matrix \(M\) satisfies one of the following:
1. \(M\) has all positive elements.
2. \(\quad M\) is a positive semidefinite matrix or \(x^{\prime} M x \geqq 0\) for all \(x\).
3. \(M\) has positive principal determinants.

Applications. The two important applications of the complementary problem (1) are to solve linear and quadratic programming problems by converting them to an equivalent complementary problem.

Quadratic Programming. Consider the quadratic program:
```

Minimize $Z=c^{\prime} x+x^{\prime} Q x$
subject to $A x \geqq b$
$x \geqq 0$

```
where \(A\) is an ( \(m \times n\) ) matrix, \(Q\) is an \((n \times n\) ) matrix of the quadratic form, \(c\) and \(x\) are \((n \times 1)\) column vectors, and \(b\) is an \((m \times 1)\) column vector.

An optimum solution to the above problem may be obtained by solving a complementary problem of the form:
\(\binom{v}{u}=\left(\begin{array}{cc}Q+Q^{\prime}-A^{\prime} \\ A & 0\end{array}\right)\binom{x}{y}+\binom{c}{-b}\)
\(u, v, x, y \geqq 0\)
\(v^{\prime} x+u^{\prime} y=0\)
where \(u\) denotes the slack variables of the given quadratic program and ( \(y, v\) ) denotes the variables of the dual problem. Comparing the above system (2) with the original complementary problem (1), we note that
\(w=\binom{v}{u}, z=\binom{x}{y}, M=\left(\begin{array}{cc}Q+Q^{\prime} & A^{\prime} \\ A & 0\end{array}\right)\) and \(q=\binom{c}{-b}\).
System (2) can be solved by the given computer routine and then an optimum solution to the given quadratic program may be obtained by reading off the values of \(\left(z_{1}, z_{2}, \ldots, z_{n}, w_{n+1}, \ldots\right.\), \(w_{n+m}\) ) from the complementary solution. It should be remarked here that the matrix \(M\) in this case is positive semidefinite if and only if the matrix \(Q\) is positive semidefinite. Hence, the computer routine is guaranteed to find an optimum solution to the given quadratic program only if the objective function \(Z\) is a convex function.

Linear Programming. Consider the linear program:
Minimize \(Z=c^{\prime} x\)
subject to \(A x \geqq b\)
\[
x \geqq 0
\]

The only difference between a linear program and a quadratic program is in the objective function. Hence, by setting \(Q=0\) in system (2), we get the equivalent complementary problem for a linear program.

Program. A detailed description of Lemke's algorithm to solve the complementary problem, on which the computer routine is based, is given in [3]. The program consists of six subroutines and a main program which calls these subroutines in proper order. The various input data to the program are the number of problems to be solved in succession, the size of the problem and the elements of matrix \(M\) and vector \(q\). The original Lemke's algorithm [2] was modified by the author along the lines of the revised simplex method [1] for a linear program to take advantage of the fact that for solving linear and quadratic programs, the \(M\) matrix in system (1) has many zero entries. This led to a greater efficiency of the computer routine.

In an experimental study conducted by the author [4], this computer routine was extensively used to compare the relative efficiencies of the simplex method [1] and Lemke's algorithm to solve linear programs. The study revealed the superiority of Lemke's algorithm over the simplex method in a number of problems both with regard to the number of iterations and computation time. Also in [3], another modification of Lemke's algorithm for solving linear programs has been proposed which may save a considerable storage and computation time.

\section*{References}
1. Dantzig, G.B. Linear Programming and Extensions. Princeton U. Press, Princeton, N.J. 1963.
2. Lemke, C.E. Bimatrix equilibrium points and mathematical programming. Management Sci. 11 (1965), 681-689.
3. Ravindran, A. Computational aspects of Lemke's complementary algorithm applied to linear programs. Opsearch 7 (1970), 241-262.

4．Ravindran，A．A comparison of the primal－simplex and complementary pivot methods for linear programming．Rep． No．70－9（July 1970），School of Industrial Engineering，Purdue U．，Lafayette，Ind．

\section*{Algorithm}
```

C M̈EMANKS SHINCE IHIS PKCGRAM IS COMPLETE IN ALL RESPECTS, IT CAN BE
C ruN AS IT IS wITHOUT ANY AUDITIONAL MGDIFICATIg:N 3r
C INSTRUCTION.IN SUCH CASE FOLLEL THE INPUT FC.MAT AS GIVEN
C FKOGKAM FON SOLVING LINEAK AND OUAUKATIC PKCGI:AMMING
C PNOBLEMS IN THE FORM W=M*Z+U, W.Z=0,W AND Z NONNEGATIVE
C BY LEMKESS ALGENITHM.
C MAIN PREGKAM WHICH CALLS THE SIX SUBrOUTINES-MATRIIX,
C INITIA,NEWBAS,SOIT,PIVOT AND PPKINT IN PROPEK ORDEK.
COMMON AM,W,LI,B,NLI,NL2,A,NEI,NER,IK,MBASIS,W,L
DIMENSION AM(50,SO), O(SO), B(SO,SO), A(SO)
DIMENSION h(50), Z(50), MBASIS(100)
C DESCKIPTION OF HAKAMETEKS IN COMMEN
AM A TWO LIMENSIONAL AKrAY CONTAINING THE
O ELEmENTS OF MATrIX M. A SINGLY SUBSCrIPTED Arkay CONTAINING the
ELEMENTS OF VECTOK Q.
LI AN INTEGEN VARIABLE INDICATING THE NUMBEK OF
B ITERATIONS SAKEN FOK EACH PKOBLEM.
B A TWO DIMENSIGNAL AKKAY CONTAINING THF
w A SINGLY SUBSCNIPTED AKNAY CENTAINING THE VALUES
Z:OF W VAKIABLES IN EACH SOLUTION.
Z A SINGLY SUBSCKIPTED ArKAY CONTAINING THE VALUES
NLI CF L VAMIIABLES IN EACH SOLUTION.

```

```

 NEI SIMILAR TO NLI BUT INDICATES VARIABLE ENTERING
 NLZ AN INTEGEIS VARIABLE INDICATING WHAT COMPCIVENT
 AN INTEGEIK VAKIABLE INDICATING WHAI.
 NE2 SIMILAK TO NLS EUT INDICATES VANIABLE ENTENING
 A A SINGLY SUBSCKIPTED ARKAY CONTAINING THE
 A SINGLY SUBSCKIPTED ARKAY CONTAINING THE
 ELEMENTS OF THE TKANSFQKMEU COLUMN THAT IS
 IN AN INTEGEIS VAKIABLE DENOTING THE RIVOT KOW AT
 EACH IIENATION. ALSO USED TO INDICATE TEIKMINA-
 MBASIS A SINGLY SUBSCKIPTEB ARKAY-INUICATOK FOK THE:
 EACH BASIC VAKIABLE-DNE INDICATING WHETHER
 IT IS A W OR Z AND ANOTHEK INDICAIING WHAT
 COMPONENT ZF W Oर́z.
 KEAD IN THE VALUE OF VAKIABLE IP INDICAIING THE
 NUMBEK OF PKRRLEMS TO BF. SOLVED.
 KEAD(5,3) IP
 VAKIABLE Ng INDICATES the CUKrENT PKOBLEM being solved
 NE=0
 NO=NO +
 IF (NO.GT.IP) GO TO 5
 FONMAT (1HI,10X,11HPK(BLEEM NO..12)
 C READ IN THE SIZE OF THE MATRIX M
READ(5,3) N
3 FøN゙MAT (I2)
C PROGRAM CALLING SEQUENCE
GALL MATRIX (N)
pakameter N INDICATES THE pkgblem SILE
CALL HNITIA (N)
C SINGE FOR ANY PKOBLEM TEKMINATIGN CAN DCCUK IN INITIA,
C NEWBAS OR SORT SUBKQUTINE,THE VALUE OF IK IS MAATCHED WITM
C 1000 TO CHECK WHETHEK TQ CONTINUE OK GO TO NEXT PRQBLEM.
IF (IN.EQ.1000) GO TO I
4 CALL NEWBAS (N)
IF (IK.EQ.1000) GO TO I
CALE SORT. (N)
IF (1R.EQ.1000) GO TO I
GE TO 4 (N)
GE TO 4
S STOP
SUBRGUTINE MATKIX (N)
C PURPOSE - TO INITIALIZE AND NEAD IN THE VAKIOUS INPUT DATA
CGMMON AM,O,LI,B,NLI,NL2,A,NE1,NE2,IR,MBASIS,W,Z
DIMENSIGN AM(50,50), O(50), B(SO,50)
C kead the Elements gF m matrix column by column
D0 I J=1,N
READ(5,2) (AM(1,J),I=1,N
2. FORMAT (TFIO.5)
CEAD THE FLEMENTS OF VECTOK
KEAD(S,2) (O(1),I=1,N)
C IN ITERATIGN I,BASIS INVEKSE IS AN IDENTITY MATRIK.
D0 5 J=1,N
v0 4 I=1,N NF (1.EQ.J) G0 T0 3
B(1,J)=0.0
GO T0 4
B(1,j)=1.0
4 CONTINUE
5 CONTINUE
RETUKN
END
SUBIOUTINE INITIA (N)
C PURPOSE-TO FIND THE INITIAL ALMOST CGMPLEMENTAKY SOLUTION
C BYRPGSE-T0 ADDING AN ARTIFICIAL VAKIABLE ZO.
COMMON AM,Q,L1,B,NLI,NL2,A,NE1,NE2,IR,MBASIS,W,Z
DIMENSION AM(50,50), Q(50), B(50,50), A(50)
DIMENSION W(SO), Z(SO), MBASIS(100)

```

C SET lo EQUAL to the most negative ól）
        \(1=1\)
\(J=2\)
    1 IF (Q(I),LE.Q(J)) GOT0 2
    \(1=\mathrm{J}\)
    \(1=J\)
\(\mathrm{~J}=\mathrm{J}+1\)
        JFJ+1
IF (J.LE.N) GOTO 1
C UPDATE Q VECTOH
        \(1 K=1\)
\(T 1=-Q(I N)\)
        IF (II.LE.O.0) GO 10 y
        DQ \(3 \quad 1=1, N\)
            \(U(I)=0 \cdot(I)+T I\)
        continue
    \(Q(1 K)=T 1\)
C UPDATE BASIS INVEKSE AND INDICATOK VECTOK
C OF BASIC VAKIABLES.
            DO \(4 J=1\), \(N\)
            R(J,IK) \(=-1.0\)
            \(W(J)=0(J)\)
\(Z(J)=0.0\)
            \(z(J)=0.0\)
            \(M B A S I S(J)=1\)
            \(L=N+J\)
MRASIS
            MBASIS(L) \(=\mathrm{J}\)
    4 CONTINUE
        \(N L 1=1\)
        \(\mathrm{L}=\mathrm{N}+1 \kappa\)
\(\mathrm{NL} 2=1 \mathrm{~K}\)
        MBASIS \((I K)=3\)
        MBASIS \((I K)=3\)
MBASIS(L) \(=0\)
        \(h(I K)=0.0\)
        KO \(=0(I K)\)
        \(20=1\)
\(L_{1}=1\)
C PKint the initial almest ccmplementakiy solution
        WrITE 6,5 )
    S FEIMMAT \((3(1), 5 x, 29\) HINITIAL ALMOST CCMPLEMENTAKY,
        1 8HSOLUTION)
            De \(71=1\), \(N\)
            WRITE 6,6 ) 1 , W(I)
    6 FCIMAT \((10 \mathrm{X}, 2 \mathrm{HW}(, 14,2 \mathrm{H})=, \mathrm{F} 15.3\) )
        continue
    WKITE 6,8\() 20\)
8 FCKMAT \((10 x, 3 H \angle 0=, F 15.5)\)
    FGKMAT (1OX.
KETURN
    WETURN \((6,10)\)
    10 FOKMAT ( \(5 X, 36\) HPROBLEM HAS A IKIVIAL COMPLEMENTARY,
    \(\begin{aligned} & 10 \text { FOKMAT (SX, } 36 \text { HPNOBLEM HAS A Ir } \\ & 1 \quad 23 H S O L U T I O N \text { WITH } ~\end{aligned}=G, L=0\). )
        \(1 R=1000\)
        RETUKN
        RETUK
        SUBNCUTINE NEWBAS (IN)
C PUKPODE - TO FIND THE NEW BASIS CGLUMN TO ENTEN IN
C PUKPOSE - TO FIND THE NEW BASIS CCLUMM,
C TEKMS OF THE CURKENT BASIS.
        CGMMEN AM, O,LI,B,NLI,NLE, A,NEI,NEC,IK,MBASIS,W,L
        DIMENSI ON AM (50, 50), Q(50), \(B(50,50), A(50)\)
        DIMENSION W(SO), Z(SO), MBASIS(100)
C IF NLI IS NEITHEル 1 NOK 2 THEN THE VAKIABLE 20 LEAVES THE
c BASIS INDICATING TERMINATION WITH A COMPLEMENTAKY SELUTION
            IF (NLI.EO.1) GO TC 2
            IF (NLI.E日.2) GO TE 5
            WKITE 6,1 )
    1 FORMAT (5X, ZZHCOMFLEMENTAKY SOLUIION)
        FORMAT (5X. \(22 H C\)
CALL PFRINT (N)
        \(K=1000\)
KETURN
        RETURN
NE \(1=2\)
    2 NE1=2
C UPDATE NEW BASIC COLUMN BY MULTIPLYING BY BASIS INVEKSE.
    DO \(4 \quad I=1, \mathrm{~N}\)
            \(4=1\),
\(T 1=0.0\)
            DO \(3 \mathrm{~J}=1, \mathrm{~N}\)
    \(3 \quad T I=T I-B(I, J) * A M(J, N E 2)\)
        \(A(I)=T 1\)
        CONTINUE
        IETUKN
    勺 \(\mathrm{NE} \mathrm{C}=1\)
        NER \(=\) NLI2
        DO \(6 \quad 1=1, N\)
            \(A(I)=B(1, N E 2)\)
    6 CONTINUE
        KETURN
        EivD
            SURNOUTINE SEKT (N)
C PURPQSE - TC FIND THE PIVOT KOK FOK INEXT ITENAIICN BY THE
C PURPESE - USE OF (SIMPLEX-TYPE) MINIMUM KATID KULE.
            COMMON AM, \(0, L 1, B, N L 1, N L 2, A, N E 1, N E 2, I K, M B A S I S, W, L\)
            OIMENSION \(A M(50,50)\), \(\mathrm{C}(50)\), \(\mathrm{B}(50,50), A(50)\)
            DIMENSION W(50), \(2(50)\), MHASIS(100)
            \(1=1\)
    1 IF (ACI).GT.0.0) GO TO 2
            \(\mathrm{I}=\mathrm{I}+1\)
            (F (I.GT.N) GOT0 6
            GQT0 1
    \(2 T 1=0(I) / A(I)\)
        \(\mathrm{I} k=1\)
    \(3 \begin{aligned} & \mathrm{I}=\mathrm{I}+\mathrm{I}\end{aligned}\)
            \(I=I+1\)
\(I F(I . G T . N) G O T O\)
            \(I F(I . G T \cdot N) G O T O S\)
IF (ACI).GT.O.O) GO TE
            GO TO 3
    \(4 \mathrm{~T}=0(1) / A(1)\)
\(\mathrm{IF}(\mathrm{T} 2 \cdot G E \cdot T 1)\) GE TE 3
            \(1 K=1\)
\(T 1=T 2\)
            GO TO
    S GETURN
C FAILUKE GF THE KATIE KULE INDICATES TERMINATION WITH
C FAILURE GF THE: KATIO KULE.
    6 WKITE \((6,7)\)
7 FOKMAT \((5 X, 37 H P K O H L E M\) HAS NO COMPLEMENTAKY SELUTICN)
        7 FOKMAT ( \(5 X, 37\) H
WKITE 6,8\() ~ L 1\)
    8 FORMAT (IOX,13HITERATION NO..I 4)
        LRE 1000
KETUKN
        KETURN
            KETUK
END

SUBíQUTINE PIVOT (N)
C PURPOSE - TO FEKFORM THE PIVOI OREIKATION BY UFDATING THE C INVEKSE OF THE BASIS AND O VECTOK.

CEMMON AM,O,LI,B,NLI,NL2,A,NET,NES, KK,MEASIS,W,L
DIMENSION AM(SO,SO), U(SO), B(SO,SI), A(SO)
DIMENSION W(SO), L(SO). MBASIS(IOO)
DO 1 \(I=1, N\)
\(1 \quad B(I R, I)=B(I R, I) / A(I R)\)
\(Q(I K)=Q(I R) / A(I K)\)
Do \(31=1, N\)
IF (I.EQ.IR) GO TO 3
\(\theta(I)=Q(I)-Q(I K) * A(I)\)
DO \(2 \mathrm{~J}=1, \mathrm{~N}\)
\(B(I, J)=B(I, J)-B(I K, J) * A(I)\) CONTINUE
ONTINUE
C UPDATE THE INDICATOK VECTOK OF BASIC VARIABLES
NL. \(1=\) MBASIS \((1 K)\)
\(L=N+I R\)
NL2 \(=\) MBASIS
MBASIS \((I R)=N E\),
MBASIS(1R)=NE1
Li=LI+1
RETURN
SUBKOUTINE PPRINT (N)
C PUKPOSE - TO PRINT THE CURRENT SOLUTION TO COMPLEMENTARY C Problem and the iteration number.
 DIMENSION \(A M(50,50), Q(50), B(50,50), A(50)\) DIMENSION W(50), Z(50), MBASIS(100)
WRITE \((6,1)\) LI
1 FgRMAT ( \(10 \mathrm{I}, 13 \mathrm{HITERATION}\) NQ..I 4 ) \(\mathrm{I}=\mathrm{N}+1\)
2 KI=MBASIS(I)
\(K 2=\) MBASIS \((J)\)
IF ( \(Q(J) . G E .0 .0)\) G0 T0 3 \(Q(J)=0.0\)
3 IF (K2.EQ.1) Go T0 5
WRITE (6, 4) K1,O(J)
4 FORMAT \((10 \mathrm{X}, 2 \mathrm{HZ}(, 14,2 H)=, F(15.5)\)
G0 T0 7
5 WRITE 6,6 ) KI,O(J)
\(7 \quad \mathrm{I}=\mathrm{I}+1\)
IF (J.LE.N) GO TO 2
RETURN
END

> Editor's note: Algorithm 432 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is \(\$ 16.00\) (U.S. and Canada) or \(\$ 18.00\) (elsewhere). If the user sends a small tape (wt. less than 1 lb.) the algorithm will be copied on it and returned to him at a charge of \(\$ 10.00\) (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is re corded as one file of BCD 80 character card images at 556 B.P.I', even parity, on seven track tape. We will supply the algorithm at a density of 800 B.P.I. if requested. The cards for the algorithm are sequenced starting at 10 and incremented by 10 . The sequence number is right justified in colums 80 . Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F.

\author{
Remark on Algorithm 431 [H] \\ A Computer Routine for Quadratic and Linear Programming Problems [H] [Arunachalam Ravindran, Comm. ACM 15 (Sept., 1972), 818] \\ Arunachalam Ravindran [Recd. 12 Mar. 1973] \\ School of Industrial Engineering, Purdue University, West Lafayette, IN 47907
}

A srnall error has been brought to my notice in this algorithm. The error is in defining the matrix M . It should read as
\(M=\left(\begin{array}{rr}Q+Q^{\prime} & -A^{\prime} \\ A & 0\end{array}\right)\).

\author{
Remark on Algorithm 431 [H] \\ A Computer Routine for Quadratic and Linear Programming Problems [A. Ravindran, Comm. ACM 15 (Sept. 1972), 818-820] \\ L.G. Proll (Recd. 13 Aug. 1973) \\ Centre for Computer Studies, University of Leeds, Leeds LS2 9JT, England
}

\begin{abstract}
Algorithm 431 is a Fortran implementation of Lemke's complementary pivot algorithm [1]. This algorithm has recently received a considerable amount of attention in the literature; in particular, there is some evidence that the algorithm is an attractive means of solving linear programs [2,3] and can readily be modified to find stationary points of nonconvex quadratic programs [4].

Eaves [5] has shown that, in principle, degeneracy causes no problems in Lemke's algorithm and that it will always be possible to pivot the artificial variable out of the basis. In the presence of rounding error, however, this may no longer be true, and further pivoting may not be possible despite the presence of the artificial variable with a value close to zero. In such a case Algorithm 431 may incorrectly arrive at the conclusion that the problem has no complementary solution because it only recognizes a complementary solution when the artificial variable leaves the basis.

The difficulty can be avoided by: (a) testing whether the value assumed by the artificial variable is acceptably "small" if no further pivoting is possible; and (b) not pivoting on "small" elements. The problem of deciding what is meant by "small" in this context is one for which there is no adequate theory. Clasen [6] has, however, proposed some empirical rules for dealing with similar problems in the revised simplex algorithm, and an adaptation of these has proved satisfactory. The modifications of Algorithm 431 given below incorporate Clasen's pivot tolerance to deal with point (b) above and also use this value as the upper limit on the acceptable value of the artificial variable.
\end{abstract}
(i) In the subroutine INITIA, add \(I Z R\) to the end of the COMMON list and insert after the statement labeled 4 , the statement
\(\mathbf{I Z R}=\mathbf{I R}\)
(ii) In the subroutine SORT, add IZR to the end of the COMMON
list and
(a) after the second DIMENSION statement, insert

AMAX \(=\mathbf{A B S}(\mathbf{A}(1))\)
DO \(10 \mathrm{I}=\mathbf{2}, \mathrm{N}\) IF (AMAX.GE.ABS(A(1))) GOTO 10 AMAX \(=\mathbf{A B S}(\mathbf{A}(\mathrm{I}))\)
CONTINUE
TOL \(=\) AMAX* 2.0** ( -NB )
C IN ANY ACTUAL IMPLEMENTATION NB SHOULD BE RE-
C PLACED BY B-11 WHERE B IS THE NUMBER OF BITS IN
C THE FLOATING POINT MANTISSA AS CLASEN SUGGESTS
(b) Replace 0.0 by TOL in the statement labeled 1 and in the statement two lines before that labeled 4.
(c) Replace the label 6, occurring two lines before the statement labeled 2, by 9 .
(d) Immediately after RETURN, insert the statements,

9 IF(Q(IZR).GT.TOL) GOTO 6
WRITE(6,11)
FORMAT(5X,22HCOMPLEMENTARY SOLUTION)
CALL PPRINT(N)
\(\mathrm{IR}=1000\)
RETURN

\section*{References}
1. Lemke, C.E. Bimatrix equilibrium points and mathematical programming. Management Sci. 11 (1965), 681-689.
2. Ravindran, A. Computational aspects of Lemke's complementary algorithm applied to linear programs. Opsearch 7 (1970), 241-262.
3. Ravindran, A. A comparison of the primal simplex and complementary pivot methods for linear programming. Naval Res. Log. Q. 20 (1972), 95-100.
4. Eaves, B.C. On quadratic programming. Management Sci.

17 (1971), 698-711.
5. Eaves, B.C. The linear complementarity problem. Management Sci. 17 (1971), 612-634.
6. Clasen, R.J. Techniques for automatic tolerance control in linear programming. Comm. ACM 9 (1966), 802-803.

\section*{Algorithm 432}

\section*{Solution of the Matrix Equation AX + XB = C [F4]}

\author{
R.H. Bartels and G.W. Stewart [Recd. 21 Oct. 1970 and 7 March 1971] \\ Center for Numerical Analysis, The University of Texas at Austin, Austin, TX 78712
}

\footnotetext{
Key Words and Phrases: linear algebra, matrices, linear equations

CR Categories: 5.14
Language: Fortran
}

\section*{Description}

The following programs are a collection of Fortran IV subroutines to solve the matrix equation
\(A X+X B=C\)
where \(A, B\), and \(C\) are real matrices of dimensions \(m \times m, n \times n\), and \(m \times n\), respectively. Additional subroutines permit the efficient solution of the equation
\(A^{T} X+X A=C\),
where \(C\) is symmetric. Equation (1) has applications to the direct solution of discrete Poisson equations [2].

It is well known that (1) has a unique solution if and only if the eigenvalues \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\) of \(A\) and \(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\) of \(B\) satisfy
\(\alpha_{i}+\beta_{j} \neq 0 \quad(i=1,2, \ldots, m ; j=1,2, . ., n)\).
One proof of the result amounts to constructing the solution from complete systems of eigenvalues and eigenvectors of \(A\) and \(B\), when they exist. This technique has been proposed as a computational method (e.g. see [1]) ; however, it is unstable when the eigensystem is ill conditioned. The method proposed here is based on the Schur reduction to triangular form by orthogonal similarity transformations.

Equation (1) is solved as follows. The matrix \(A\) is reduced to lower real Schur form \(A^{\prime}\) by an orthogonal similarity transformation \(U\); that is \(A\) is reduced to the real, block lower triangular form.
\(A^{\prime}=U^{T} A U=\left[\begin{array}{ccccc}A_{11}^{\prime} & & & & \bigcirc \\ A_{21}^{\prime} & A_{22}^{\prime} & & & \\ \cdot & \cdot & \cdot & & \\ \cdot & \cdot & & & \\ \cdot & \cdot & & \cdot & \\ A_{p 1}^{\prime} & A_{p 2}^{\prime} & \cdot & \cdot & A_{p p}^{\prime}\end{array}\right]\),
where each matrix \(A_{i i}^{\prime}\) is of order at most two. Similarly \(B\) is reduced
This research was supported in part by Grant DA-ARO(D)-31-124-G721, Army Research Office, Durham, and by National Science Foundation Grant GP-5253 awarded to The University of Texas at Austin.
to upper real Schur form by the orthogonal matrix \(V\) :
\(B^{\prime}=V^{T} B V=\left[\begin{array}{ccccc}B_{11}^{\prime} & B_{12}^{\prime} & \cdots & \cdot & B_{1,}^{\prime} \\ & B_{22}^{\prime} & \cdots & \cdots & B_{2 q}^{\prime} \\ & & \cdot & & \cdot \\ & & & \cdot & \cdot \\ & \bigcirc & & \cdot & \cdot \\ & & & & B_{q q}^{\prime}\end{array}\right]\),
where again each \(B_{i i}^{\prime}\) is of order at most two. If

and
\[
X^{\prime}=U^{T} X V=\left[\begin{array}{cccc}
X_{11}^{\prime} & \cdot & \cdot & X_{1 q}^{\prime} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
X_{p 1}^{\prime} & \cdot & \cdot & X_{p q}^{\prime}
\end{array}\right]
\]
then eq. (1) is equivalent to
\(A^{\prime} X^{\prime}+X^{\prime} B^{\prime}=C^{\prime}\).
If the partitions of \(A^{\prime}, B^{\prime}, C^{\prime}\), and \(X^{\prime}\) are conformal, then
\[
\begin{align*}
A_{k k}^{\prime} X_{k l}^{\prime}+X_{k l}^{\prime} B_{l l}^{\prime} & =C_{k l}^{\prime}-\sum_{j=1}^{k-1} A_{k j}^{\prime} X_{j l}^{\prime}-\sum_{i=1}^{l-1} X_{k i}^{\prime} B_{i l}^{\prime} \\
& (k=1,2, \cdots, p ; \quad l=1,2, \cdots, q) \tag{3}
\end{align*}
\]

These equations may be solved successively for \(X_{11}^{\prime}, X_{21}^{\prime}, \ldots, X_{p 1}^{\prime}\), \(X_{12}^{\prime}, X_{22}^{\prime}, \ldots\) The solution of (1) is then given by \(X=U X^{\prime} V^{T}\).

The reduction of \(A\) and \(B\) to real Schur form is accomplished by standard techniques. The matrix \(B\) is reduced to upper Hessenberg form by Householder's method [4, p. 34], and the upper Hessenberg matrix is in turn reduced to real Schur form by the \(Q R\) algorithm [3]. The product of the transformations used in the reductions is accumulated to form the matrix \(V\). The reduction of \(A\) to lower real Schur form is accomplished by reducing the transpose of \(A\) to upper real Schur form and transposing back.

Since the \(Q R\) algorithm is an iterative method that, as used here, reduces the subdiagonal elements of an upper Hessenberg matrix to zero, some criterion must be adopted for determining when an ele ment is negligible. In these programs an element of \(H\) is considered negligible if it is less than or equal to \(\epsilon_{H}\|H\|_{\infty}\) where \(\epsilon_{H}\) is a constant supplied by the user. This criterion is appropriate if the ele ments of \(H\) are all of roughly the same size. A different criterion may be required if the elements vary widely and the small elements are significant, as when the elements decrease greatly in size as one passes from the upper left to the lower right corners of \(A\) (see, for example, the criterion in [3]).

The solution for \(X_{k l}^{\prime}\) in (3) still requires the solution of a matrix equation of the form (1). However, in this case the matrices \(A_{k k}^{\prime}\) and \(B_{l l}^{\prime}\) are of order at most two; hence the solution of (3) can be obtained by solving a linear system of order at most four. For example, if \(A_{k k}^{\prime}\) and \(B_{l l}^{\prime}\) are both of order two, then

where \(a_{i j}^{\prime}, b_{i j}^{\prime}\), and \(x_{i j}^{\prime}\) denote the elements of \(A_{k k}^{\prime}, B_{l l}^{\prime}\), and \(X_{l k}^{\prime}\) and \(d_{i j}\) denotes the elements of the right-hand side of (3). The systems arising from (3) are solved using the Crout reduction. Once calculated, the solution \(X_{k l}^{\prime}\) may be stored in the locations occupied by \(C_{k l}\), which is no longer needed.

The programs contain provisions for skipping the reduction of \(A\) to real Schur form, so that once \(A^{\prime}\) and \(U\) have been calculated they may be used to solve new systems with different matrices \(B\) and \(C\). Likewise, the reduction of \(B\) may be skipped. These provisions may be used to advantage in the iterative refinement of the computed solution \(X_{1}\) of (1). Namely, let the residual matrix \(R_{1}=C-\) \(A X_{1}-X_{1} B\) be computed in double precision and rounded to single precision (on many computers this may be done with single-precision multiplications and double-precision additions). Use the programs to solve the system \(A Y_{1}+Y_{1} B=R_{1}\). Then \(X_{2}=X_{1}+Y_{1}\) will in general be a more accurate approximate solution. This process may be iterated, no step after the computation of \(X_{1}\) requiring reductions of \(A\) and \(B\). This iteration is perfectly analogous to the iterative refinement of approximate solutions of linear systems described by Wilkinson [4, p. 255].

The following trick enables one to use an upper rather than a lower real Schur form of \(A\) in the solution of (1). Let \(D\) be the matrix with ones on the secondary diagonal and zeros elsewhere. Then
\[
\begin{equation*}
(D A D) D X+D X B=D C \tag{4}
\end{equation*}
\]

Moreover, if \(A^{\prime}=U^{T} A U\) is an upper real Schur form for \(A\), then \(D A^{\prime} D=(D U D)^{T}(D A D)(D U D)\) is a lower real Schur form for \(D A D\). Hence to calculate \(D X\), which is \(X\) with its rows written in reverse order, one may use the above algorithm with \(D A^{\prime} D\) and \(D U D\) to solve (4). A similar trick enables one to use a lower real Schur form for \(B\).

In principle, the algorithm described abcve can be used to solve the symmetric problem (2). However, it is pcssible to take advantage of the symmetry. Let \(U\) be orthogonal and \(A^{\prime}=U^{T} A U\) be in upper real Schur form. Partition \(A^{\prime}, C^{\prime}=U^{T} C U\), and \(X^{\prime}=U^{T} X U\) in the form
\(A^{\prime}=\left[\begin{array}{cc}A_{11}^{\prime} & A_{12}^{\prime} \\ 0 & A_{22}^{\prime}\end{array}\right]\),
\(X^{\prime}=\left[\begin{array}{ll}X_{11}^{\prime} & X_{21}^{\prime T} \\ X_{21}^{\prime} & X_{22}^{\prime}\end{array}\right]\),
\(C^{\prime}=\left[\begin{array}{ll}C_{11}^{\prime} & C_{21}^{\prime T} \\ C_{21}^{\prime} & C_{22}^{\prime}\end{array}\right]\),
where \(A_{11}^{\prime}, X_{11}^{\prime}\), and \(C_{11}^{\prime}\) are at most of order 2 . Then from the equation \(A^{\prime}{ }^{T} X^{\prime}+X^{\prime} A^{\prime}=C^{\prime}\), it follows that
\(A_{22}^{\prime T} X_{22}^{\prime}+X_{22}^{\prime} A_{22}^{\prime}=C_{22}^{\prime}-X_{21}^{\prime} A_{12}^{\prime}-A_{12}^{\prime T} X_{21}^{\prime}\).
Hence, once \(X_{11}^{\prime}\) and \(X_{21}^{\prime}\) have been calculated, the size of the problem can be reduced.

The matrix \(X_{21}^{\prime}\) is computed as described above for the general case. The matrix \(X_{11}^{\prime}\) satisfies the symmetric equation
\(A_{11}^{\prime T} X_{11}^{\prime}+X_{11}^{\prime} A_{11}^{\prime}=C_{11}^{\prime}\),
whose solution is trivial when \(A_{11}^{\prime}\) is of order unity. When \(A_{11}^{\prime}\) is of order two, equation (5) gives a new linear system of order three for the three distinct elements of \(X_{11}^{\prime}\).

A mild saving in operations may be realized in the computation of \(C^{\prime}=U^{T} C U\) and \(X=U X^{\prime} U^{T}\). Let \(C=T+T^{T}\), where \(T\) is upper triangular. Then
\(C^{\prime}=U^{T} C U=U^{T} T U+\left(U^{T} T U\right)^{T}\).
Thus one need calculate only \(U^{T} T U\), and, since \(T\) is upper triangular, the product \(T U\) can be computed with about half the operations required for the computation of \(C U\).

The number of multiplications required for the solution of (1) is probably overestimated by
\((2+4 \sigma)\left(m^{3}+n^{3}\right)+\frac{5}{2}\left(m n^{2}+n m^{2}\right)\)
where \(\sigma\) is the average number of \(Q R\) steps required to make a subdiagonal element negligible. The first term is due to the reduction of \(A\) and \(B\) to real Schur form. A like estimate for the solution of (2) is given by
\((2+4 \sigma) n^{3}+\frac{7}{2} n^{3} ;\)
the first term is again due to the reduction of \(A\) to real Schur form.
To solve the nonsymmetric problern, the user must furnish \(2 m^{2}+2 n^{2}+m n\) storage locations to hold the matrices \(A, U, B, V\), and \(C\). If \(A, B\), and \(C\) are required for later use, they must be stored elsewhere, since the programs overwrite \(A\) and \(B\) with their real Schur forms and \(C\) with the solution. The symmetric problem requires \(3 n^{2}\) locations to hold \(A, U\), and \(C\).

In assessing the effects of rounding error on the algorithm, we should consider the algorithm stable if the computed solution were near a matrix \(\bar{X}\) that satisfied
\((A+E) \bar{X}+\bar{X}(B+F)=\mathbf{C}+\boldsymbol{G}\)
for some small \(E, F\), and \(G\). We are unable to establish such a result. However, an elementary rounding error analysis, combined with the known properties of the other algorithms used in the method, shows that the residual matrix is small compared with the larger of \(\|A\|\|X\|\) and \(\|B\|\|X\|\).

Here follows a brief description of the programs listed below. Detailed information on their use will be found in the program listings themselves. The casual user need only familiarize himself with the programs \(A X P X B\) and \(A T X P X A\), which coordinate the other programs for the solutions of (1) and (2), respectively.
\(A X P X B\). The coordinating prograrn for the solution of (1). Given \(A, B\) and \(C\) the program overwrites \(C\) with the solution \(X\). The lower real Schur form of \(A\) overwrites \(A\), and the upper real Schur form of \(B\) overwrites \(B\). The user may furnish the real Schur forms and skip the reductions. The subroutine requires the subroutines HSHLDR, BCKMLT, SCHUR, SHRSLV, and SYSSLV.
\(A T X P X A\). The coordinating program for the solution of (2). Given \(A\) and \(C\) the program overwrites \(C\) with the solution \(X\). The upper real Schur form of \(A\) overwrites \(A\). The user may furnish the real Schur form and skip the reduction. The subroutine requires the subroutines \(H S H L D R, B C K M L T, S C H U R, S Y M S L V\), and SYSSLV.
\(H S H L D R\). Reduces a matrix \(A\) to upper Hessenberg form. The upper Hessenberg form and a history of the transformations overwrite \(A\).
\(B C K M L T\). Takes the output \(A\) of \(H S H L D R\) and computes the orthogonal matrix \(U\) that reduces the original matrix \(A\) to upper Hessenberg form. At the user's option the elements of \(U\) can overwrite \(A\).
\(S C H U R\). Computes an upper real Schur form of an upper Hessenberg matrix \(A . S C H U R\) is an adaptation of thel Agol procedure hqr by Martin, Peters, and Wilkinson [1]. The product of the transformations used in the reduction is accumulated. \(S C H U R\) leaves undisturbed the elements below the third subdiagonal of the array containing \(A\). (N.b. The modifications made in hqr to find a real Schur form make \(S C H U R\) an ineflicient program for calculating the eigenvalues of an upper Hessenberg matrix.)
\(S H R S L V\). Solves an equation of the form (1), where \(A\) is in lower real Schur form and \(B\) is in upper real Schur form.
\(S Y M S L V\). Solves an equation of the form (2), where \(A\) is in upper real Schur form.
\(S Y S S L V\). Solves a system of linear equations.
When \(m \geq n, A X P X B\) can be modified so that the real Schur forms of \(A\) and \(B\) share the storage originally allocated to \(A\) and the matrix \(V\) occupies the locations occupied by \(B\). The modifications are as follows. Replace the section labeled 'IF REQUIRED, REDUCE B TO UPPER REAL SCHIUR FORM', with
35 IF (EPSB .LT. 0.) GO TO 45
CALL HSHLDR (B,N,NB)
```

 DO \(40 I=1, N\)
 \(I F(I . N E .1) A(I, I+4)=B(I-1, N l)\)
 DO \(40 J=I, N\)
 \(A(I, J+5)=B(I, J)\)
 40 CONTINUE
CALL BCKMLT(B,B,N,NB,NB)
CALL SCHURA (1,6), B,N,NA,NB,EPSB,FAIL)
FAIL $=-$ FAIL
IF(FAIL .NE. 0) RETURN

```
In the sections labeled "TRANSFORM \(C\) " and "TRANSFORM C BACK TO THE SOLUTION" replace all occurrences of the variable \(V\) with \(B\) and all references to \(A(I, M 1)\) with \(A(M 1, I)\). Change the call to SHRSLV to

\section*{CALL SHRSLV \((A, A(1,6), C, M, N, N A, N A, N C)\).}

Note that in this modification the reduction of \(B\) to real Schur form cannot be skipped without also skipping the reduction of \(A\). When \(m \leq n\) a similar modification can be made to store the Schur form of \(A\) and \(B\) together in \(B\).

\section*{References}
1. Bickley, W.G. and McNamee, J. Matrix and other direct methods for the solution of systems of linear difference equations. Philos. Trans. Roy. Soc. (London) Ser. A, 252 (1960), 69-131. 2. Dorr, Fred W. The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev. 12 (1970), 248-263. 3. Martin, R.S., Peters, G., and Wilkinson, J.H. The QR algorithm for real Hessenberg matrices. (Handbook series linear algebra.) Numer. Math. 14 (1970), 219-231.
4. Wilkinson, J.H. The Algebraic Eigenvalue Problem. Clarendon, Oxford, 1965.
```

Algorithm
SUBROUTINE AXPXB(A,U,M,NA,NU,B,V,N,NB,NV,C,NC,EPSA,
1EPSB,FAIL)
C
AXPXB IS A FOKTRAN IV SUBROUTINE TO SOLVE THE REAL MATRIX
EQUATION AX + XB - C. THE MATKICES A AND B ARE TKANS-
FGRMED INTO REAL SCHUR FGRM; AND THE TRANSFGRMED SYSTEM IS
AUXILIARY SUBRDUTINES HSHLDK, BCKMLT, SCHUR, AND SHRSLV.
THE PARAMETERS IN THE ARGUMENT LIST ARE
A A DEUBLY SUBSCRIPTED AKRAY CONTAINING THE
MATRIX A, ON RETURN, THE LQWER TRIANGLE
AND SUPERDIAGQNAL OF THE ARRAY A CONTAIN
A MUST BE DIMENSIONED AT LEAST M +1 BY
M+1.
U A DQUBLY SUBSCRIPTED AKRAY THAT, DN
RETURN, CONTAINS THE OKTHØGONAL MATRIX
THAT REDUCES A TO REAL SCHUR FERM.
M THE GRDEN OF THE MATKIX A.
NA THE FIRST DIMENSION OF THE ARRAY A.
NU THE FIRST DIMENSION OF THE ARRAY U.
B A D@UBLY SUBSCRIPTED ARKAY CONTAINING THE
MATRIX B, ON RETURN, THE UPPEK TRIANGLE
AND SUBDIAGONAL OF THE ARRAY B CONTAIN AN
MUST BE DLMENSIGNED AT LEAST M+1 ARRAY B
A DOUBLY SUBSCRIPTED AREAY THAT BY M+1.
RETURN, CONTAINS THE GRTHOGQNAL MATRIX
THAT REDUCES B TO REAL SCHUN FORM
THE ORDER OF THE MATRIX B. FORM.
N THE ORDER OF THE MATRIX B.
NB THE FIRST DIMENSION OF THE ARRAY B.
C A DQUBLY SUBSCKIPTED ARKAY CONTAINING THE
MATRIX C. ON RETUKN, C CONTAINS THE
SOLUTION MATRIXX.
NC THE FIRST DIMENSION OF THE ARRAY C.
EPSA A CONVERGENCE CRITERION FOR THE REDUCTION
OF A TO SCHUK FORM. EPSA SHOLLD BE SET
SLIGHTLY SMALLER THAN 10.**(-N), WHEKE N
IS THE NUMBER OF SIGNIFICANT DIGITS IN
THE ELEMENTS OF THE MATKIX A.
A convergence Criterign fok the reduction
OF B TO REAL SCHUR FORM. GN RETUNN
CONTAINS AN ERROR SIGNAL. IF FAILN,
POSITIVE (NEGATIVE) THEN THE PROGKAM WAS
UNABLE TO REDUCE A (B) TO REAL SCHUH WAS
FQRM. IF FAIL IS ZEKO, THE KEDUCTION
PROCEEDED WITHOUT MISHAP.
WHEN EPSA IS NEGATIVE THE REDUCTION OF A TO REAL SCHUK
FØRM IS SKIPPED AND THE ARRAYS A AND U ARE ASSUMED TO

```

C CONTAIN THE SCHUR FORM AND ACCOMPANYING ORTHOGONAL MATHIX.
C CONTAIN THE SCHUR FORM AND ACCOMPANYING ORTHOGONAL MATKIX
C THIS PERMITS THE EFFICIENT SELUTIGN OF SEVEKAL EQUATIONS
C THIS PERMITS THE EFFICIENT SOLUTION OF SEVERAL EQUATIONS
C OF THE FORM AX \(+B X=C\) WHEN A DOES NOT CHANGE. LIKEWISE,
C OF THE FORM AX + BX \(=C\) WHEN A DOES NOT CHANGE. LIKEWISE,
\(C\) IF EPSB IS NEGATIVE, THE REDUCTION OF B TO REAL SCHUR FORM
C IS SKIPPED.
KEAL
INTEGER
\(1 M, N A, N U, N, N B, N V, N C, F A I L, M 1, M M 1, N 1, N M I, L, J, K\)
\(M 1=M+1\)
\(M M 1=M-1\)
MM1 \(=M-1\)
\(N_{1}=N+1\)
\(N M 1=N-1\)
C
C
C
IF REQUIRED, REDUCE A TO UPPER REAL SCHUR FERM.

\(D 010 \quad I=1, M\)
\(D O \quad 10 \quad J=1, M\)
\(\begin{aligned} \text { DD } 10 \mathrm{~J} & =1, \mathrm{M} \\ \text { TEMP } & =A(1, J)\end{aligned}\)
TEMP \(=A(1, J)\)
\(A(I, J)=A(J, I\)
\(A(J, J)=\) TEMP
10 CONTINUE
CALL HSHLDR (A, M, NA)
CALL BCKMLT(A, U, NA \(N\) NA, NU)
IF(MMI -EQ. O) GO TO 25
De \(20 I=1\), MMI
20 CONTINUE
CALL \(\operatorname{SCHUR}(A, U, M, N A, N U, E P S A, F A I L)\)
IF(FAIL . NE. 0) RETURN
25 DO \(301=1, M\)
D0 \(30 \mathrm{~J}=\mathrm{I}, \mathrm{M}\)
TEMP \(=A(I, J)\)
\(A(I, J)=A(J, I)\)
\(A(J, I)=\) TEMP
30 CONTINUE
\(\begin{array}{ll}\mathrm{C} & \\ \mathrm{C} & \mathrm{I} \\ \mathrm{C} & \\ & \end{array}\)
35 IF (EPSB .LT. O.) GO TO 45
CALL HSHLDR (B,N,NB)
CALLNM EQ. O) GO NB,NV
De \(40 \quad 1=1\), NM 1
\(B(I+1, I)=\)
40 CONTINUE
CALL SCHUR(B, V,N,NB,NV,EPSB,FAIL)
FAIL \(=-\) FAIL
IF(FAIL •NE. O) RETURN
C TRANSFORM C.
\(45 \mathrm{D} 日 60 \mathrm{JFI} \mathrm{N}\)
D0 \(50 \quad I=1, M\)
\(A(I, M 1)=0\).
\(D 050 K=1, M\)
De \(50 K=1, M\)
\(A(I, M 1)=A(I, M 1)+U(K, I) * C(K, J)\)
50 CONTINUE
D0 60 I=1,M
60 CONTINUE
DO \(80 \quad I=1, M\)
\(D 0, J=1, N\)
\(B(N 1, J)=\) De \(70 \mathrm{~K}=1, \mathrm{~N}\)
                \(B(N 1, J)=B(N 1, J)+C(I, K) * V(K, J)\)

70 CONTINUE
De \(80 \mathrm{~J}=1, \mathrm{~N}\)
\(C(I, J)=B(N I, J)\)
80 CENTINUE
C
C
C
SOLVE THE TRANSFOKMED SYSTEM.
CALL SHRSLV(A,B,C,M,N,NA,NB,NC)
transform c back to the solution.
D0 \(100 \mathrm{~J}=1, \mathrm{~N}\)
\(D 090 \quad I=1, M\) \(A(I, M 1)=0\).
\(D Q 90 K=1, M\) D0 \(90 K=1, M\)
\(A(I, M 1)=A(I, M I)+U(I, K) * C(K, J)\)
90 CONTINUE CONTINUE \(100 \quad 1=1 . M\) \(C(I, J)=A(1, M 1)\)
100 CONTINUE
DO \(120 I=1, M\)
De \(110 \mathrm{~J}=1\),
\(B(N 1, J)=0\).
De \(110 \mathrm{~K}=1, \mathrm{~N}\)
\(B(N 1, J)=B(N 1, J)+C(I, K) * V(J, K)\)
110 CONTINUE
De \(120 \mathrm{~J}=1, \mathrm{~N}\)
\(C(I, J)=B(N 1, J)\)
120 CONTINUE
RETURN
END
SUBRGUTINE SHRSLU(A,B,C,M,N,NA,NB,NC)
C SHRSLV IS A FQRTRAN IV SUBRQUTINE TO SOLVE THE REAL MATRIX
C EQATION AX + XB = C, WHERE A IS IN LOWER REAL SCHUR FORM
C AND B IS IN UPPER REAL SCHUR FORM. SHRSLV USES THE AUX-
C ILIARY SUBRQUTINE SYSSLV, WHICH IT CGMMUNICATES WITH
C THROUGH THE COMMON BLOCK SLVBLK. THE PARAMETERS IN THE
A DQUBLY SUBSCKIPTED ARRAY CONTAINING THE MATRIX A IN LOWER REAL SCHUR FORM.
A DOUBLY SUBSCRIPTED ARRAY CONTAINING THE MATRIX B IN UPPER REAL SCHUR FERM* MATRIX C.
THE ORDER OF THE MATRIX A.
```

l:
REAL:
INTEGER
IM,N,NA,NB,NC,K,KMI,DK,KK,L,LMI,DL,LL,I,IB,J,JA,NSYS
COMM@N/SLVBLK/T(5,5),P(5),NSYS
L=1
LMI=L-
IF(L. EQ. N) GO TO 1S
IF(B(L+1,L) .NE. O.) DL = 2
15 LL = L+DL-1
IFCL.EQ. 1) GO T0 30
D0 20 J=L,LL
| 20 1=1,M
D0 20 18=1,LM1
continue
K=1
KMI =K-1
DK =
IF(K .EQ. M) GO TO 45
IF(A(K,K+1) .NE. O.) DK = 2
Kk = K+DK-1
IF(K .EQ. 1) GO T0 60
D0 50 I = K, kK
00 J=L,LL
D0 50 JA=1,KMI (I,J) - A(I,JA)*C(JA,J)
ContinuE
IFCDL EQ. 2) G0 T0 }8
1F(DK .EQ. 2) GO TG 70
T(1,1) = A(K,K) + E(L,L)
IF(T(1,1) .EQ. O.) STDP
C(K,L) = C(K,L)/T(1,1)
GO TO 100
70 T(1,1) = A(K,K) + E(L,L)
T(1,2)=A(K,KK)
T(2,2) = A(KK,KK)
T(2,2) = A(KK,KK) * B(L,L
P(2) = C(KK,L)
NSYS = 2
CALL SYSSLV
C(K,L) = P(1)
G0 TO 100
IF(DK.EQ. 2) GO T0 90
T(1,1)=A(K,K)+E(L,L)
T(1,2)=B(LL,L)
T(2,1)=B(L,LL)
T(2,2) = A(K,K) + B(LL,LL)
P(1) = C(K,L)
P(2) = C(K,LL)
NSYS = 2
CALL SYSSLV
C(K,L) = P(1)
C(K,LL) = P(2)
G0 T0 100
T(1,1) = A(K,K) + B(L,L)
T(1,2)=A(K,KK)
T(1;3)=B(LL,L)
T(1,4)}=\mp@code{O.
T(2,2)=A(KK,KK) + B(L,L)
T(2,3) = 0
T(2,4)=T(1,3)
T(3,1) = B(L,LL
T}(3,2)=0
T(3,3) = A(K,K) + B(LL,LL
T(3,4)=T(1,2)
T(4,1) = 0.
T (A , 2) = T (3 , 1)
T(4,3) =T(2,1)
T(4,4) = A(KK,KK) + B(LL,LL)
P(1) =C(K,L)
P(2) =C(KK,L)
P(3) = C(K.LL)
P(4) = C(KK,LL)
NSYS = 4
C(K,L) = P(D
C(KK,L) =P(O)
C(K,LL) = P(3)
C(KK,LL) = P(4)
= K + DK
IF(K.LE. M) GO TO 40
=L + DL N) GO T0 10
RETURN
END
SUBROUTINE ATXPXA(A,U,C,N,NA,NU,NC,EPS,FAIL)
C
C ATXPXA IS A FORTKAN IV SUBKOUTINE TO SOLVE THE REAL MATRIX
EQUATION TRANS(A)*X + X*A % C, WHERE C IS SYMMETRIC AND
TRANSFORMED SO THAT A IS IN UPPER REAL SCHUR FOKM, AND THE
TRANSFgRMED EQUATIEN IS SOLVED bY A RECURSIVE PrgCEDURE.
THE PKøGRAM REQUIRES THE AUXILIARY SUBROUTINES HSHLDR.
BCKMLT, SCHUR, AND SYMSLV. THE PARAMETERS IN THE AKGUMENT
LIST ARE
A
A DQUBLY SUBSCRIPTED ARRAY CQNTAINING THE
MATRIX A. ON RETURN, THE UPPEK TIFIANGLE
AND THE FIRST SUBDIAGQNAL OF THE AKRIAY A
CGNTAIN AN UPPER REAL SCHUR FQRM GF A.
THE ARKAYY A MUST BE DIMENSIENED AT LEAST
N+1 BY N+1.
U A DOUBLY SUBSCRIPTED ARKAY THAT, ON
A DOUBLY SUBSCRIPTED ARRAY THAT, ON INIX

```
```

C

```
C
    THAT REDUCES A TO UPPER REAL SCHUR FORM.
    THAT REDUCES A TO UPPER REAL SCHUR FORM.
        A DUBLY SUBSCRIPTED ARRAY CONTAINING THE
        A DUBLY SUBSCRIPTED ARRAY CONTAINING THE
        MATRIX C. ON RETUKN, C CONTAINS THE
        MATRIX C. ON RETUKN, C CONTAINS THE
        SOLUTION MATRIX X
        SOLUTION MATRIX X
        THE ORDEN OF THE MATRIX A
        THE ORDEN OF THE MATRIX A
NA THE FIKST DIMENSION OIF THE ARKAY A.
NA THE FIKST DIMENSION OIF THE ARKAY A.
NU THE FIRST DIMENSION OF THE ARKAY.U.
NU THE FIRST DIMENSION OF THE ARKAY.U.
THE FIRST DIMENSION OF THE ARRAY C. 
THE FIRST DIMENSION OF THE ARRAY C. 
        OF A TO REAL SCHUR FOIRM. EPS SHOULD BE
        OF A TO REAL SCHUR FOIRM. EPS SHOULD BE
        SET SLIGHTLY SMALLER THAN 1O***(-N),
        SET SLIGHTLY SMALLER THAN 1O***(-N),
        WHERE N IS THE NUMBEF OF SIGNIFICANT
        WHERE N IS THE NUMBEF OF SIGNIFICANT
        DIGITS IN THE ELEMENTS OF THE MATRIX A.
        DIGITS IN THE ELEMENTS OF THE MATRIX A.
AN INTEGER VARIABLE THAT, ON RETUKN
AN INTEGER VARIABLE THAT, ON RETUKN
        CONTAINS AN ERROR SIGINAL. IF FAIL IS
        CONTAINS AN ERROR SIGINAL. IF FAIL IS
        NONZERQ, THEN THE PROGRAM WAS UNABLE TO
        NONZERQ, THEN THE PROGRAM WAS UNABLE TO
        REDUCE A TO REAL SCHUK FORM. IF FAIL IS
        REDUCE A TO REAL SCHUK FORM. IF FAIL IS
        ZER\emptyset, THE REDUCTION PROCEEDED WITHOUT
        ZER\emptyset, THE REDUCTION PROCEEDED WITHOUT
        MISHAP.
        MISHAP.
    WHEN EPS IS NEGATIVE, THE REDUCTION OF A TO REAL SCHUR
    WHEN EPS IS NEGATIVE, THE REDUCTION OF A TO REAL SCHUR
    FORM IS SKIPPED AND THE ARFAYS A AND U AKE ASSUMED TO
    FORM IS SKIPPED AND THE ARFAYS A AND U AKE ASSUMED TO
    CONTAIN THE SCHUR FORM AND ACCOMPANYING ORTHOGONAL MATRIX.
    CONTAIN THE SCHUR FORM AND ACCOMPANYING ORTHOGONAL MATRIX.
THIS PERMITS THE EFFICIENT SOLUTION OF SEVENAL EOUATIONS
THIS PERMITS THE EFFICIENT SOLUTION OF SEVENAL EOUATIONS
C WITH DIFFERENT RIGHT HAND SIDES.
C WITH DIFFERENT RIGHT HAND SIDES.
    REAL
    REAL
    A(NA,1),U(NU,1),C(NC,1),EPS
    A(NA,1),U(NU,1),C(NC,1),EPS
    INTEGER
    INTEGER
    N,NA,NU,NC,FAIL,NI,NMI,I,J,K
    N,NA,NU,NC,FAIL,NI,NMI,I,J,K
    N1=N+1
    N1=N+1
    NM1 = N-1
    NM1 = N-1
C
C
    IF REQUIRED, REDUCE A TO LOWEK REAL SCHUK FORM.
    IF REQUIRED, REDUCE A TO LOWEK REAL SCHUK FORM.
        IF(EPS .LT. O.) GO TO 15
        IF(EPS .LT. O.) GO TO 15
        CALL HSHLDR(A,N,NA)
        CALL HSHLDR(A,N,NA)
        CALL BCKMLT(A,U,N,NA,NU)
        CALL BCKMLT(A,U,N,NA,NU)
        DO 10 I=1,NM1
        DO 10 I=1,NM1
        A(I+1,I) = A(I,NI)
        A(I+1,I) = A(I,NI)
    10 CONTINUE
    10 CONTINUE
        CALL SCHUK(A,U,N,NA,NU,EPS,FAIL)
        CALL SCHUK(A,U,N,NA,NU,EPS,FAIL)
            IF(FAIL .NE. O) RETUFN
            IF(FAIL .NE. O) RETUFN
C
C
    TRANSFgRM C
    TRANSFgRM C
    15 D0 20 I=1,N
    15 D0 20 I=1,N
        C(I,I)=C(I,I)/2.
        C(I,I)=C(I,I)/2.
    2O COntinuE
    2O COntinuE
            DE 40 I=1,N
            DE 40 I=1,N
            D0 30 J=1,N
            D0 30 J=1,N
                A(NI,J) = 0.
                A(NI,J) = 0.
                D0 30 K=I,N
                D0 30 K=I,N
                A(N1,J)=A(N1,J)+C(I,K)*IJ(K,J)
                A(N1,J)=A(N1,J)+C(I,K)*IJ(K,J)
    30 CONTINUE
    30 CONTINUE
            DE 40 J=1,N
            DE 40 J=1,N
                C(I,J)=A(NI,J)
                C(I,J)=A(NI,J)
    40 CONTINUE
    40 CONTINUE
        D0 60 J=1,N
        D0 60 J=1,N
            SO I=1,N
            SO I=1,N
            A(1,N1) = O.
            A(1,N1) = O.
                A(I,N1) = A(I,N1) + U(K,I)*C(K,J)
                A(I,N1) = A(I,N1) + U(K,I)*C(K,J)
    SO CONTINUE
    SO CONTINUE
        D@ 60 I=1,N
        D@ 60 I=1,N
            C(I,J)=A(I,N1)
            C(I,J)=A(I,N1)
    60 CONTINUE
    60 CONTINUE
        D0 70 I= I,N
        D0 70 I= I,N
            DO 70 J=1,N
            DO 70 J=1,N
            C(1,J)=C(I,J) + C(J,I)
            C(1,J)=C(I,J) + C(J,I)
            C(J,I)=C(I,J)
            C(J,I)=C(I,J)
    7O CONTINUE
    7O CONTINUE
C
C
SOLVE THE TRANSFORMED SYSTEM.
SOLVE THE TRANSFORMED SYSTEM.
    CALL SYMSLV(A,C,N,NA,NC)
    CALL SYMSLV(A,C,N,NA,NC)
TRANSFgRM C back to the solutign.
TRANSFgRM C back to the solutign.
        D0 80 1=1,N
        D0 80 1=1,N
            C(I,I)=C(I,I)/2.
            C(I,I)=C(I,I)/2.
    8O CONTINUE
    8O CONTINUE
        De 100 I= I,N
        De 100 I= I,N
            DO 90 J=1,N
            DO 90 J=1,N
            A(N1,J)=0
            A(N1,J)=0
            D0 90 K=I,N
            D0 90 K=I,N
            A(N1,J) = A(NI,J) + C(I,K)MU(J,K)
            A(N1,J) = A(NI,J) + C(I,K)MU(J,K)
    9O CONTINUE
    9O CONTINUE
            Dg 100 J=1,N
            Dg 100 J=1,N
            C(I,J)=A(N1,J)
            C(I,J)=A(N1,J)
    100 CONTINUE
    100 CONTINUE
        00 120 J=1,N
        00 120 J=1,N
            D0 110 I=1,N
            D0 110 I=1,N
            A(I,NI)=0.
            A(I,NI)=0.
            DO 110 K=1,N
            DO 110 K=1,N
                A(I,NI)=A(I,NI)+U(I,K),KC(K,J)
                A(I,NI)=A(I,NI)+U(I,K),KC(K,J)
    110 CONTINUE
    110 CONTINUE
            0 120 1=1,N
            0 120 1=1,N
    A(1,N1)
    A(1,N1)
    120 CONTINUE
    120 CONTINUE
        D0 130 I=1,N
        D0 130 I=1,N
            DE 130 J=I,N
            DE 130 J=I,N
            C(I,J)=C(1,J)+C(J,I)
            C(I,J)=C(1,J)+C(J,I)
                C(I,J)=C(1,J)
                C(I,J)=C(1,J)
    130 CONTINUE
    130 CONTINUE
        RETURN
        RETURN
        RETURN
        RETURN
        SUBRQUTINE SYMSLV(A,C,N,NA,NC)
        SUBRQUTINE SYMSLV(A,C,N,NA,NC)
C SYMSLV IS A F\emptysetRTRAN IV SUBR\emptysetUTINE TQ SØLVE THE REAL,MATRIX
C SYMSLV IS A F\emptysetRTRAN IV SUBR\emptysetUTINE TQ SØLVE THE REAL,MATRIX
C EQUATION TRANS(A)*X + X*A =C, WHERE C IS SYMMETRIC, A IS
C EQUATION TRANS(A)*X + X*A =C, WHERE C IS SYMMETRIC, A IS
C EQUUTIQN TRANS(A)*X + X*A = C, WHERE C IS SYMMETRIC, A IS
C EQUUTIQN TRANS(A)*X + X*A = C, WHERE C IS SYMMETRIC, A IS
POSE OF A. SYMSLV USES THE AUXILIARY SUBROUTINE SYSSLV,
POSE OF A. SYMSLV USES THE AUXILIARY SUBROUTINE SYSSLV,
WHICH IT COMMUNICATES WITH THR\emptysetUGH THE COMMON BLOCK
```

WHICH IT COMMUNICATES WITH THR\emptysetUGH THE COMMON BLOCK

```

```

 Sum = 0.
 0 10 I=L1
 SUM = SUM + A(I,L)*U(I,J)
 1 0
 continue
 P=SLM/A<N1,L
 De 20 I=LI,N
 U(I,J)=U(I,J)-A(I,L)*P
 20
 Continue
 De 30 I=LI,N
 U(1,L) =0
 continue
 U(L;L) = 1.
    ```

```

 UNT,L) = 1.
 RETURN
 RETU
 SUBRCUTINE SCHUR(H,U,NN,NH,NU,EPS,FAIL)
 c
SChur is a fertran iv subrQutine to keduce an upper
HESSENBERG MATRIX TO REAL SGHUR FQRM BY THE OR METHØD WITH
IMPLICIT QRIGIN SHIFTS. THE PRøDUCT OF THE TRANSFGRMA-
TIONS USED IN THE REDUCTION IS ACCUMULATED. SCHUR IS AN
ADAPTATION OF THE ALGQL PROGRAM HOR BY MARTIN, PETERS, AND
WILKINSEN (NUMER. MATH. 14 (1970) 219-231). THE PARA-
METERS IN THE ARGUMENT LIST ARE
A DDUBLY SUSCRIPTED ARRAY CONTAINING THE
UPPER HESSENBERG MATRIX H. ON RETURN, H
CONTAINS AN UPPER REAL SCHUR FORM GF H
THIRD SUBDIAGONAL ARE NODASTUROED
U A DOUBLY SUBSCRIPTED ARRAY CONTAINING ANY
MATRIX. ON RETUEN, U CONTAINS THE MATRIX
FORMTIONS USED IN THE REDUCTION OF H.
ORE RDER OF THE MATMIES H AND OF
NN THE QRDER OF THE MATRICES H ANDU.
NU THE FIRST DIMENSION OF THE ARRAY UO
A NUMBER USED IN DETERMINING WHEN AN
ELEMENT OF H IS NEGLIGIBLE. H(I,J) IS
NEGLIGIBLE IF ABS(H(1,J)) IS LESS THAN bK
equal to epS times the infinity nerm ef
FAIL
an integer variable that, on return,
CONTAINS AN ERROR SIGNAL. IF FAIL IS
positive, then the program falled to make
THE FAIL-1 gR FAIL-2 SUBDIAGONAL ELEMENT
NEGLigible aftek 30 iterations.
REAL
H(NH: 1), U(NU, 1), EPS,HN,RSUM, TEST,P,O,R,S,W,X,Y,Z
INTEGER
NN,NA,NH,FAIL,I,ITS,J,JL,K,L,LL,M,MM,M2,M3,N,NA
LOGICAL
NAST
HN=0.
D0 20 I=1,N
JL = MAXO(1,I-1)
KSUM = = .
De. 10 J=JL.N
kSUM = KSUM + ABS(H(I,J))
centinue
HN = AMAXI(HN,KSUM)
20 centinue
TEST = EPS*HN
IF(HN EO. O.) G0 T0 2.30
30 IFNN.LE. 1) G0 T0 230
ITS = 0
NA =N-1
40 D| 50 LL=2,N
L N-LL+2
(-1)) .LE. TEST) G(T0 60
50. CONTINUE
L=1
H(L,L-1)=0
70 IF(LL .LT. NA) GO TO 7a
N=L-1
G0 T0 30
72 X = H(N,N)/HN
Y=H(NA,NA)/HN
Y ((H(N,NA)/HN)*(H(NA,N)/HN)
FF(ITS .LT. 30) G0 T0 75
FAILG=N
7S IF(ITS.EQ.10 .0R. ITS.EQ.20) G0 T0 80

```

```

 60 T0 90
 80Y = (ABS(H(N,NA)) + ABS(H(NA,NM2)))/HN
S = 1.5\#Y
HTS = ITS
90 ITS = ITS + 1
M:=NM2-MM+L
x=NM2-MM+L
K =H(M+1,M)/HN
z=H(M+1,M+1)/HN
P= X*(X-S) +Y + R*(H(M,M+1)/HN)
\vartheta = R*(X+Z-S)
R. = R*(H(M+2,M+1)/HN)
W=ABS(P) + ABS(0) + ABS(R)
P=P/W
Q: = Q/W
N R R/R/W
IF(M .EO. L) G0 T0 110
1F(ABS(H(M;M-1))*(ABS(Q)+ABS(R)) .LE. ABS(P)*TEST)
1G0 T0 110
100 CONTINUE
110 M2 = M+2
00 120 I=M2,N
H(1,1-2)=0.
120 Continue
IF(M3 .GT. N) G0 T0 140
De 130 I=M3,N
H(I,I-3)=0
130 CONTINUE
14O DO 22O K=M,NA
LAST = K.EQ.NA
1F(K EQO.M) GO T0 150
P = H(K,K-1)
Q = H(K+1,K-1)
R=0
1F(.NGT-LAST) R=H(K+2,K-1)
X=ABS(P) R N (O)
X=ABS(P) + ABS(O) + ABS
IF(X -EO. O.) G@ T0 220
P=P/X
O = 0/x
50 S = SQRT(P**2 + Q**2 + R**2)
IF(P .LT. O.) S = -S
IF(K ,NE.M) H(K,K-1) = -S*X
IF(K.EQ.M .AND.L.NE.M) H(K,K-1) = -H(K,K-1)
P}=\textrm{P}+\textrm{S
P=P++
M=P/S
Y = Q/S
Y = R/S
R=R/P
D0 170 J=K,NN
P}=H(K,J)+Q*H(K+1,J
IF(LAST) GO Tब 160
H(k+2,J)=H(K+2,J) - P*Z
H(K+1,J) =H(K+1,J) - P*Y
H(K,J) = H(K,J) - P*X
continue
J= M1NO(K+3,N
D0 190 I=1,J
P= X*H(I,K) + Y*H(1,K+1
1F(LAST) G® T0 180
P = P + Z*H(I,K+2)
H(I,K+2) = H(I,K+2) - P*R
H(I,K+1)=H(I,K+1)-P*O
H(I,K) = H(I;K) - P
190 CONTINUE
D0 210 I 1,N
P=X*U(I,K) + Y*U(1,k+1
IF(LAST) GO TO 200
P=P+Z*U(I,K+2)
U(1,k+2)=U(1,k+2) - P*R
U(I,k+1)=U(I,K+1)-P*R
U(I,K+1)=U(I,K+1) - P*Q
200 U(I,K+1)=U(I,K+1)
20 CONTINUE
220 CONTINUE
G0 T0 40
230 FAIL =0
RETU
SUBR0UTINE SYSSLV
c
c sysslv is a fortran iv subrdutine that sqlves the linear
SYSTEM AX = B GF ORDER N LESS THAN 5 BY CROUT REDUCTION
B, AND THE ORDER N ARE CONTAINED IN THE ARRAYS A,B, ANDD
B, AND THE ORDER N ARE CONTAINED IN THE ARRAYS A,B, ANDD
THE VARIABLE N OF THE COMMON (
C@MMON/SLVBLK/A(5,5),B(5),N
REAL MAX
NM1 = N-1
N1 = N+1
c
COMPUTE THE LU FACTORIZATION OF A.
D0 80 K=1,N
IF(K.EQ.I) Gø T0 20
D\emptyset 10 I=K,N
D| 10 J=1,KM
A(I,K)=A(I,K)-A(I,J)*A(J,K)
10 CONTINUE
20 IF(K.EE.N) G0 T0 100
KP1 = K+1
MAX = ABS (A(K,k))
INTR = K
DO 30 I=KPI,N
AA = ABS(A(I,K))
IF(AA LE. MAX) GO TO }3
MAX = AA
MAXTK=I
INTR = I
30 CONTINUE
IF(MAX.EQ. O.) STबP
A(N1,K) = INTR
IF(INTR - EO. K) Gø Tø 50
40 J=1,N
TEMP = A(K,J)
A(K,J) = A(INTR,J)
A(INTR,J) = TEMP
CONTINUE
So CONTINUE
1F(K.EQ.1) G0 T0 70
I=1,KM1
A(K,J)=A(K,J) - A(K,I)*A(I,J)
60 CONTINUE
70 A(K,J) = A(K,J)/A(K,K)
80 CENTINUE
c
100 D0 110 J=1,NM1
INTR = A(N1,J)
F(INTR EEQ.
TEMP = B(J)
GEMP =B(JNTR
B(J) = B(INTR)
110 Continue

```
\(\mathbf{C}\)
\(\mathbf{C}\)
SDLVE LX B.
\(200 B(1)=B(1) / A(1,1)\)
De \(2 \mathrm{ClO}=I-2, N\)
D0 \(210 \mathrm{~J}=1\), IM1
\(\begin{aligned} & B(I)=B(I)-A(I, J) * B(J) \\ & C O N T I N U E\end{aligned}\)
CONTINUE
\(B(X)=B(I) / A(I, I)\)
CONTXNUE
220 CONTINUE
c selve ux \(=\mathrm{B}\)
300.DØ 310 II=1,NMI
\(1=N M I-I I+\)
\(I 1=I+1\)
\(11=1+1\)
D \(0310 \quad J=11 . N\)
\(D\binom{310 J=I 1, N}{B(I)}=B(I)-A(I, J) * B(J)\)
310 CONTINUE RETURN
END

Editor's note: Algorithm 433 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is \(\$ 16.00\) (U.S. and Canada) of \(\$ 18.00\) (elsewhere). If the user sends a small tape (wt. less than 1 lb .) the algorithm will be copied on it and returned to him at a charge of \(\$ 10.00\) (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply the algorithm at a density of 800 B.P.I. if requested. The cards for the algorithm are sequenced starting at 10 and incremented by 10 . The sequence number is right justified in columns 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F.

\section*{Algorithm 433}

\title{
Interpolation and Smooth Curve Fitting Based on Local Procedures [E2]
}

Hiroshi Akima [3 Nov. 1970, 9 Apr. 1971, and 1 Mar. 1972]
U.S. Department of Commerce, Office of Telecommunications, Institute for Telecommunication Sciences, Boulder, CO 80302

Key Words and Phrases: interpolation, polynomial, slope of curve, smooth curve fitting

CR Categories: 5.13
Language: Fortran

\section*{Description}

Introduction. User information and Fortran listings are given on two subroutines, INTRPL and CRVFIT. Each subroutine implements the method of interpolation and smooth curve fitting based on local procedures [1]. These subroutines are written in ANSI Standard Fortran [2].

Outline of the Method. The method is devised in such a way that the resulting curve will pass through all the given data points and appear smooth and natural. It is based on a piecewise function; a portion of the curve between a pair of given points is represented by a third-degree polynomial for a single-valued function and by two third-degree polynomials for a multiple-valued function. In this method, the slope of the curve is determined at each given data point locally by the coordinates of five data points, with the data point in question as a center point and two data points on each side of it. Each piece of the function representing a portion
of the curve between a pair of given data points is determined by the coordinates of and the slopes at the points.

When interpolation is made near the end points of the curve, two more points estimated at each end point are used to determine the slope of the curve. In this method, this estimation is based on three data points, the end point in question and two adjacent given data points.

The resulting curve of this method for a single-valued function is invariant under a linear-scale transformation of the coordinate system; different scalings of the coordinates result in equivalent curves. The resulting curve of this method for a multiple-valued function, on the other hand, is variant under a linear-scale transformation of the coordinate system; both the abscissa and the ordinate should be scaled with their respective units having an equal length on the graph.

This method requires only straightforward procedures, not iterative solutions of equations with preassigned error tolerances, which are required by some methods. No problem concerning computational stability or convergence exists in application of this method.

The INTRPL Subroutine. This subroutine interpolates, from values of the function given as ordinates of input data points in an \(x-y\) plane and for a given set of \(x\) values (abscissas of desired points), the values of a single-valued function \(y=y(x)\).

The entrance to this subroutine is achieved by

\section*{CALL INTRPL(IU,L,X,Y,N,U,V)}
where the input parameters are
\(I U=\) logical unit number of standard output unit,
\(L=\) number of input data points (must be two or greater),
\(X=\) array of dimension \(L\) storing the \(x\) values (abscissas) of input data points in ascending order,
\(Y=\) array of dimension \(L\) storing the \(y\) values (ordinates) of input data points,
\(N=\) number of points at which interpolation of the \(y\) value (ordinate) is desired (must be one or greater),
\(U=\) array of dimension \(N\) storing the \(x\) values (abscissas) of desired points,
and the output parameter is
\(V=\) array of dimension \(N\) where the interpolated \(y\) values (ordinates) are to be displayed.
This subroutine occupies 515 locations on the CDC-3800 computer. Computation time required for this subroutine on the same computer is approximately equal to
\(1+0.2 N \mathrm{msec}\) for \(L=10\),
\(3+0.5 N \mathrm{msec}\) for \(L=100\),
when the elements of the \(U\) array are given in ascending order; and
\(1+0.5 \mathrm{Nmsec}\) for \(L=10\),
\(3+0.7 N \mathrm{msec}\) for \(L=100\),
when they are given in random order.
When the function to be interpolated represents a periodic function and a set of \(L_{p}\) data points covers a whole period, two additional data points should be added at each end and a set of \(L_{p}+4\) data points should be given as the input data points to this subroutine.

The CRVFIT Subroutine. This subroutine fits a smooth curve to a given set of input data points in an \(x-y\) plane. It interpolates points in each interval between a pair of data points and generates a set of output points consisting of the input data points and the

Fig. 1. Curve fitted to the input data points given in Table I (a). (Encircled points are given data points.)


Table I. An Example of CRVFIT (MD = 1)
(a) Input data points
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(I\) & \(X(I)\) & \(Y(I)\) & \(I\) & \(X(I)\) & \(\boldsymbol{Y}(\mathrm{I})\) & \(I\) & \(\boldsymbol{X}(1)\) & \(\boldsymbol{Y}(\underline{)}\) \\
\hline 1 & 0.000 & 0.000 & 4 & 3.000 & 0.000 & 7 & 6.000 & 10.000 \\
\hline 2 & 1.000 & 0.000 & 5 & 4.000 & 0.000 & 8 & 7.000 & 80.000 \\
\hline 3 & 2.000 & 0.000 & 6 & 5.000 & 1.000 & 9 & 8.000 & 100.000 \\
\hline 4 & 3.000 & 0.000 & 7 & 6.000 & 10.000 & 10 & 9.000 & 150.000 \\
\hline
\end{tabular}
(b) Output points
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{K}\) & \(U(K)\) & \(V(K)\) & \(\boldsymbol{K}\) & \(\boldsymbol{U}(\boldsymbol{K})\) & \(V(K)\) & \(\boldsymbol{K}\) & \(\boldsymbol{U}(\boldsymbol{K})\) & \(V(K)\) \\
\hline 1 & 0.000 & 0.000 & 16 & 3.000 & 0.000 & 31 & 6.000 & 10.000 \\
\hline 2 & 0.200 & 0.000 & 17 & 3.200 & 0.000 & 32 & 6.200 & 18.341 \\
\hline 3 & 0.400 & 0.000 & 18 & 3.400 & 0.000 & 33 & 6.400 & 33.645 \\
\hline 4 & 0.600 & 0.000 & 19 & 3.600 & 0.000 & 34 & 6.600 & 51.778 \\
\hline 5 & 0.800 & 0.000 & 20 & 3.800 & 0.000 & 35 & 6.800 & 68.607 \\
\hline 6 & 1.000 & 0.000 & 21 & 4.000 & 0.000 & 36 & 7.000 & 80.000 \\
\hline 7 & 1.200 & 0.000 & 22 & 4.200 & 0.068 & 37 & 7.200 & 85.510 \\
\hline 8 & 1.400 & 0.000 & 23 & 4.400 & 0.244 & 38 & 7.400 & 88.574 \\
\hline 9 & 1.600 & 0.000 & 24 & 4.600 & 0.485 & 39 & 7.600 & 90.882 \\
\hline 10 & 1.800 & 0.000 & 25 & 4.800 & 0.751 & 40 & 7.800 & 94.127 \\
\hline 11 & 2.000 & 0.000 & 26 & 5.000 & 1.000 & 41 & 8.000 & 100.000 \\
\hline 12 & 2.200 & 0.000 & 27 & 5.200 & 1.523 & 42 & 8.200 & 108.080 \\
\hline 13 & 2.400 & 0.000 & 28 & 5.400 & 2.659 & 43 & 8.400 & 116.940 \\
\hline 14 & 2.600 & 0.000 & 29 & 5.600 & 4.433 & 44 & 8.600 & 126.760 \\
\hline 15 & 2.800 & 0.000 & 30 & 5.800 & 6.871 & 45 & 8.800 & 137.720 \\
\hline 16 & 3.000 & 0.000 & 31 & 6.000 & 10.000 & 46 & 9.000 & 150.000 \\
\hline
\end{tabular}

Fig. 2. Curve fitted to the input data points given in Table II (a). (Encircled points are given data points.)


Table II. An Example of CRVFIT ( \(M D=2\) )
(a) Input data points
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(I\) & \(\boldsymbol{X}(\underline{I})\) & \(Y(I)\) & I & \(X(I)\) & \(\boldsymbol{Y}(\boldsymbol{I})\) & I & \(\boldsymbol{X}(I)\) & \(\boldsymbol{Y}(\mathrm{I})\) \\
\hline 1 & -30.000 & 70.000 & 4 & \(-18.000\) & 4.000 & 7 & 30.000 & 20.000 \\
\hline 2 & \(-30.000\) & 40.000 & 5 & 0.000 & 0.000 & 8 & 30.000 & 40.000 \\
\hline 3 & -30.000 & 20.000 & 6 & 18.000 & 4.000 & 9 & 30.000 & 50.000 \\
\hline 4 & \(-18.000\) & 4.000 & 7 & 30.000 & 20.000 & 10 & 30.000 & 70.000 \\
\hline
\end{tabular}
(b) Output points
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline K & \(\boldsymbol{U}(\boldsymbol{K})\) & \(V(K)\) & \(\boldsymbol{K}\) & \(\boldsymbol{U}(\boldsymbol{K})\) & \(V(K)\) & \(\boldsymbol{K}\) & \(\boldsymbol{U}(\boldsymbol{K})\) & \(V(K)\) \\
\hline 1 & -30.000 & 70.000 & 16 & -18.000 & 4.000 & 31 & 30.000 & 20.000 \\
\hline 2 & -30.000 & 64.000 & 17 & -14.641 & 2.463 & 32 & 30.000 & 24.000 \\
\hline 3 & -30.000 & 58.000 & 18 & -11.097 & 1.331 & 33 & 30.000 & 28.000 \\
\hline 4 & -30.000 & 52.000 & 19 & -7.433 & 0.567 & 34 & 30.000 & 32.000 \\
\hline 5 & -30.000 & 46.000 & 20 & -3.713 & 0.136 & 35 & 30.000 & 36.000 \\
\hline 6 & -30.000 & 40.000 & 21 & 0.000 & 0.000 & 36 & 30.000 & 40.000 \\
\hline 7 & -30.000 & 36.000 & 22 & 3.713 & 0.136 & 37 & 30.000 & 42.000 \\
\hline 8 & -30.000 & 32.000 & 23 & 7.433 & 0.567 & 38 & 30.000 & 44.000 \\
\hline 9 & -30.000 & 28.000 & 24 & 11.097 & 1.331 & 39 & 30.000 & 46.000 \\
\hline 10 & -30.000 & 24.000 & 25 & 14.641 & 2.463 & 40 & 30.000 & 48.000 \\
\hline 11 & -30.000 & 20.000 & 26 & 18.000 & 4.000 & 41 & 30.000 & 50.000 \\
\hline 12 & -29.315 & 16.080 & 27 & 21.501 & 6.240 & 42 & 30.000 & 54.000 \\
\hline 13 & -27.466 & 12.400 & 28 & 24.758 & 9.080 & 43 & 30.000 & 58.000 \\
\hline 14 & -24.758 & 9.080 & 29 & 27.466 & 12.400 & 44 & 30.000 & 62.000 \\
\hline 15 & -21.501 & 6.240 & 30 & 29.315 & 16.080 & 45 & 30.000 & 66.000 \\
\hline 16 & -18.000 & 4.000 & 31 & 30.000 & 20.000 & 46 & 30.000 & 70.000 \\
\hline
\end{tabular}
interpolated points. It can handle either a single-valued function or a multiple-valued function.

The entrance to this subroutine is achieved by
CALL CRVFIT(IU,MD,L,X,Y,M,N,U,V)
where the input parameters are
\(I U=\) logical unit number of standard output unit,
\(M D=\) mode of the curve (must be 1 or 2)
\(=1\) for a single-valued function
\(=2\) for a multiple-valued function,
\(L \quad=\) number of input data points (must be two or greater),
\(X=\) array of dimension \(L\) storing the abscissas of input data points (in ascending or descending order for \(M D=1\) ),
\(Y=\) array of dimension \(L\) storing the ordinates of input data points,
\(M=\) number of subintervals between each pair of input data points (must be two or greater),
\(N=\) number of output points
\(=(L-1) M+1\),
and the output parameters are
\(\boldsymbol{U}=\) array of dimension \(N\) where the abscissas of output points are to be displayed,
\(V=\) array of dimension \(N\) where the ordinates of output points are to be displayed.
This subroutine may also be entered by

\section*{CALL CRVFIT(IU,MD,L,X,Y,M,N,X,Y)}
but the input data \(X\) and \(Y\) are not preserved in this case.
This subroutine occupies 711 locations on the CDC-3800 computer. Computation time required for this subroutine on the same computer is approximately
\(500+300 L+50(L-1)(M-1) \mu \mathrm{sec}\) for \(M D=1\),
\(500+600 L+75(L-1)(M-1) \mu \mathrm{sec}\) for \(M D=2\).
When the curve exhibits periodicity (that includes a closed curve) and a set of \(L_{p}\) data points covers a whole period, two additional data points should be added at each end, a set of \(L_{p}+\) 4 data points be given as the input data points to this subroutine, and two intervals on each side be discarded from the set of output points.

Test Results. All tests were performed on a CDC-3800 computer. An example of smooth curve fitting by the CRVFIT subroutine for a single-valued function ( \(M D=1\) ) is shown in Table I , and for a multiple-valued function ( \(M D=2\) ) in Table II. In each table, input data shown in (a) were given to CRVFIT with \(L=10\), \(M=5\), and \(N=46\), and values shown in (b) wcre obtained. Also, the data in Table I (a) together with the \(U\) values in Table I (b) were given to the \(I N T R P L\) subroutine with \(L=10\) and \(N=\) 46, and the \(V\) values in Table I (b) were obtained. Figure 1 depicts the curve fitted to the input data points given in Table I (a) by the CRVFIT subroutine with \(M D=1\), and Figure 2, Table II (a) with \(M D=2\); both curves are fitted with \(L=10, M=20\), and \(N=181\). These examples demonstrate one of the properties of this method, that the resulting curves are free from unnatural wiggles.

Acknowledgments. The author expresses his deep appreciation to Rayner K. Rosich of Office of Telecommunications and Jeanne M. Tucker of National Oceanic and Atmospheric Administration, both in Boulder, Colorado, for their critical review of this paper.

\section*{References}
1. Akima, Hiroshi. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17, 4 (Oct. 1970), 589-602.
2. ANSI Standard Fortran, Pub. X3.9-1966. American National Standards Institute, New York, N.Y. Also reproduced in Heising, W.P. History and summary of FORTR AN standardization development for the ASA. Comm. ACM 7 (Oct. 1964), 590-625.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{gorithm} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SUBRQUTINE INTRPL(IU,L, \(X, Y, N, U, V)\) C INTERPOLATION OF A SINGLE-VALUED FUNCTION}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C THIS SUBRØUTINE INTERPQLATES, FRøM VALUES OF THE FUNCTION C given as grdinates of input data points in an x-y plane}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C and for a given set of \(x\) values (abscissas). the values gf c a Single-valued function \(Y=Y(X)\).}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{C the input parameters are} \\
\hline \multicolumn{2}{|l|}{C IU \(=\) LøGICAL UNIT NUMBER OF STANDARD ØUTPUT UNIT} \\
\hline \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\(L=\) NUMBER OF INPUT DATA POINT}} \\
\hline c & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|c|}{(ABSCISSAS) of input data figint} \\
\hline c & \\
\hline \multicolumn{2}{|l|}{C \(\quad Y=\) ARRAY 0 F dimension L Storing the y values} \\
\hline \multicolumn{2}{|c|}{( QRDINATES) OF INPUT DATA F'gINTS} \\
\hline c & \(N\) \\
\hline \multicolumn{2}{|l|}{C Y Value (ordinate) is desired} \\
\hline c & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{c} \quad u=\) ARRAY OF dimension \(n\) Storing the \(x\) values} \\
\hline \multicolumn{2}{|c|}{(ABSCISSAS) OF DESIRED POINT} \\
\hline \multicolumn{2}{|l|}{C the gutput parameter is} \\
\hline c & \(v=\) ARRAY OF DIMENSION \(N\) Where the interpglated y \\
\hline c & \\
\hline \multicolumn{2}{|l|}{C DECLARATION STATEMENTS} \\
\hline \multicolumn{2}{|c|}{DIMENSION \(X(L), Y(L), U(N), V(N)\)} \\
\hline \multicolumn{2}{|c|}{EQUIVALENCE (PO, X 3 ), ( \(00, Y 3\) ), (Q1, T3} \\
\hline \multicolumn{2}{|c|}{\multirow[t]{2}{*}{REAL \({ }^{\text {M1,M2,M3,M4, M5 }}\)}} \\
\hline EQUIVALENCE (UK,DX),(IMN, \({ }^{\text {a }}\), A1,M1), (IMX,X5,A5,M5) & \\
\hline & \\
\hline \multicolumn{2}{|l|}{c Preliminary processing} \\
\hline \multicolumn{2}{|r|}{10 LOL} \\
\hline \multicolumn{2}{|c|}{LM1 \(=\) LO-1} \\
\hline \multicolumn{2}{|c|}{L.M2 \(=\) LM \(1-1\)} \\
\hline \multicolumn{2}{|c|}{LPI \(=\) L \(0+1\)} \\
\hline \multicolumn{2}{|c|}{\(\mathrm{NO}=\mathrm{N}\)} \\
\hline & \\
\hline & IF(NO.LE.0) G® T® 91 \\
\hline \multicolumn{2}{|c|}{D0 \(11 \quad \mathrm{I}=2 . \mathrm{LO}\)} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(11 \underset{\text { IPV }=0}{\text { Continue }}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{C MAIN DO-LODP} \\
\hline \multicolumn{2}{|c|}{D0 \(80 \mathrm{~K}=1\), NO} \\
\hline \multicolumn{2}{|c|}{\[
U K=U(K)
\]} \\
\hline \multicolumn{2}{|l|}{C routine to løcate the desired point:} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{5}{*}{20}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{21}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{22}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{23
24}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline & G0 T0 30 \\
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|r|}{27 I=2} \\
\hline & C CHECK IF I = IPV \\
\hline & 30 \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C Routines to pick up necessary \(X\) and y values and C Tø ESTIMATE THEM IF NECESSARY}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\(40 \quad \mathrm{~J}=1\)} \\
\hline & \\
\hline \multicolumn{2}{|c|}{IF (J.EQ.LP1) J=LO} \\
\hline \multicolumn{2}{|c|}{\[
x 3=x(J-1)
\]} \\
\hline \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Y \(3=Y(J-1)\)
\(\times 4=X(J)\)}} \\
\hline & \\
\hline \multicolumn{2}{|c|}{\(Y 4=Y(J)\)} \\
\hline \multicolumn{2}{|c|}{A \(3=\times 4\) - \(\times 3\)} \\
\hline \multicolumn{2}{|c|}{M3 \(=(\mathrm{Y} 4\)-Y3)/A3} \\
\hline & \\
\hline \multicolumn{2}{|c|}{IF (J.EQ.2) G® T® 41} \\
\hline & \multirow[t]{2}{*}{X \(2=x(J-2)\)
\(Y 2=Y(J-2)\)} \\
\hline \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\(Y 2=Y(J-2)\)
\(A R=X 3-X 2\)}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\(41 \quad x 5=x(J+1)\)
\(X 5=X(J+1)\)
\(Y 5=Y(J+1)\)
\(Y 5=Y(J+1)\)
\(A 4=X 5-X 4\)
\(A 4=X 5-X 4\)
\(M 4=(Y 5-Y 4) / A 4\)
\(1 F(J . E Q .2) \quad M 2=M 3+M 3-M 4\)
G0 T0 45
\(M 4=M 3+M 3-M 2\)
G0 T0 45
\(M 2=M 3\)
M4 \(4=\) M3
\(45 \quad \mathrm{FF}(\mathrm{J} \cdot \mathrm{LE} .3) \quad\) G0 T0 46
\(A 1=X 2-X(J-3)\)
\(M 1=(Y 2-Y(J-3)) / A 1\)
G0 T0 47
\(\begin{array}{ll}46 & M 1=M 2+M 2-M 3 \\ 47 & 1 F(J . G E \cdot L M 1)\end{array} \quad\) Gg T0 48
\(A S=X(J+2)-X S\)
\(N S=(Y(J+2)-Y S) / A S\)
Ge T0 50
48
\(\mathrm{H} 5=\mathrm{M} 4+\mathrm{M} 4-\mathrm{M} 3\)
C NUMERICAL DIFFERENTIATION
50 LF（I．EQ．LP1）GO TO 52
\(W 2=A B S(M 4-M 3)\)
\(W 3=A B S(M 2-M 1)\)
\(S W=W 2+W 3\)
\(F\)
\(F\)
IF（SW．NE．O．0）GD TO 51
\(W 2=0.5\)
\(W 3=0.5\)
\(S W=1.0\)
51 T3＊（W2＊M2＋W3＊M3）／SW
IF（I．EQ．1）GO T0 54
\(\mathrm{H} 3=\mathrm{ABS}(\mathrm{M} 5-\mathrm{M4}\) ）
（ 4 4＝ABS（M3－M2）
\(S W=W 3+W 4\)
IF（SW．NE．O．0）G0 T0 53
\(W 3=0.5\)
\(W 4=0.5\)
\(T A=(W 3 * M 3+W 4 * M 4) / S W\)
IF（I．NE．LP1）GQ T0 60
T3 \(=14\)
\(S A=A 2+A 3\)
\(T 4=0.5 *(M 4+M 5-A 2 *(A 2-A 3) *(M 2-M 3) /(S A * S A))\)
\(x 3=\times 4\)
\(Y 3=Y 4\)
A3
\(M 3\)
\(=M 4\)
\(\mathrm{MO}=\mathrm{M4}\)
GO TO 60
54 T4T3
\(S A=A 3+A 4\)
\(T 3=0.5 *(M 1+M 2-A 4 *(A 3-A 4) *(M 3-M 4) /(S A * S A))\)
\(X 3=\times 3-A 4\)
\(Y 3=Y 3-M 2 * A 4\)
A3＝A4
\(\mathrm{N} 3=\mathrm{M} 2\)
C DETERMINATION OF THE COEFFICIENTS
60 日2 \(=(2.0 *(\) M3－T3 \()+\) M3－T4）／A3
© \(3=\left(-\mathrm{M}_{3}-\mathrm{M} 3+\mathrm{T} 3+\mathrm{T} 4\right) /(\mathrm{A} 3 * A 3)\)
C COMPUTATION OF THE POLYNOMIAL
\(70 \quad D X=U K-P O\)
\(80 \quad V(K)=Q O+D X *(Q 1+D X *(Q 2+D X * Q 3))\)
RETURN

C ERROR EXIT
90 WRITE（IU，2090）
GO TO 99
91 WRITE（IU．2091）
GE TO 99
95 WRITE（IU，2095）
Gø T0 97
96 WRITE（IU，2096）
97 WRITE（IU，2097）I，X（I）
99 WRITE（IU．2099）LO，NO RETURN

C FORMAT STATEMENTS
2090 FORMAT \(1 \times / 22 H\)
2091 FGRMAT（ \(1 \times / 22 H\)
2095 FORMAT（1X／27H
096 FQRMAT（IX／33H＊＊＊IDENTICAL X VAI＿UES．1）
2097 FDRMAT（ 6 H I \(=, 17,10 \mathrm{X}\) VALUES DUT OF SEQUENCE． 1\()\)
2097 FORMAT（ \(6 \mathrm{H} \quad I=, 17,10 \mathrm{X}, 6 \mathrm{HX}(I)=, \mathrm{E} 12.3)\)
2099 FORMAT（ \(6 \mathrm{H} \quad \mathrm{L}=, 17,10 \mathrm{X}, 3 \mathrm{HN}=, 171\)
\({ }^{1}\) END \(36 H\) ERRQR DETECTED IN ROUTINE INTRPL）

SUERGUTINE CRVFIT（IU，MD，L，X，Y，M，N，U，V）
C SMO日TH CURVE FITTING
C THIS SUBROUTINE FITS A SMO日TH CURVE TO A GIVEN SET OF IN－
C PUT DATA POINTS IN AN X－Y PLANE．IT INTERPOLATES POINTS
C IN EACH INTERVAL BETWEEN A PAIK OF DATA POINTS AND GENER－
C ATES A SET OF ØUTPUT POINTS CONSISTING DF THE INPUT DATA
C POINTS AND THE INTERPOLATED POINTS• IT CAN PROCESS EITH
\(C\) A SINGLE－VALUED FUNCTION OR A MULTIPLE－VALUED FUNCTION．

C THE INPUT PARAMETERS ARE
\(I U=\) LOGICAL UNIT NUMBEK OF STANDARD OUTPUT UNIT
\(M D=M O D E\) OF THE CURVE（MUST BE 1 OK 2）
\(=1\) FOR A SINGLE－VALUED FUNCTION
\(=2\) FOR A MULTIPLE－VALUED FUNCTION
\(=\) NUMBER OF
\(L=\) NUMBER OF INPUT DATA POINTS （MUST BE 2 OR GREATEK）
\(X=\) ARRAY GF DIMENSION L STORING THE ABSCISSAS OF INPUT DATA POINTS（IN ASCENDING OR DESCENDING ORDER FOR MD＝1）
\(Y=A R R A Y\) OF DIMENSION L STORING THE ORDINATES OF INPUT DATA PGINTS
\(M=\) NUMBER OF SUBINTERVALS BETWEEN EACH PAIR OF INPUT DATA POINTS（MUST BE 2 GR GREATER）
\(N=\) NUMBER OF OUTPUT POINTS
\(=(L-1) * M+1\)
THE GUTPUT PARAMETERS ARE
\(U=\) ARRAY OF DIMENSI ON N WHERE THE ABSCISSAS OF GUTPUT POINTS ARE TO BE DISPLAYED
\(V=\) ARRAY OF DIMENSI ØN N WHERE THE ORDINATES OF QUTPUT POINTS ARE TO BE DISPLAYED

C DECLARATION STATEMENTS
DIMENSION
EQUIVALENCE
1 REAL
1 EQUIVALENCE
\(X(L), Y(L), U(N), V(N)\)
\((M 1, B 1),(M 2,82),(M 3, B 3),(M 4,84)\) ， \((X 2, P O),(Y 2, Q 0),(T 2, Q 1)\) M1，M2，M3，M4
\((W 2,02),(W 3,03),(A 1, P 2),(B 1, P 3)\), （ \(\mathrm{A} 2, \mathrm{D} 2\) ）,\((\mathrm{SW}, R, Z)\)

C PRELIMINARY PROCESSING
10 MDO＝MD
MDM \(1=\) MDO－1
\(\mathrm{LO}=\mathrm{L}\)
LM1 \(=\) LO－1
\(M O=M\)
\(M M_{1}=M O-\)
\(\mathrm{NO}=\mathrm{N}\)
\(I F(M D O \cdot L E \cdot O) \quad G 0 T 090\)
IF（MDO．GE．3）
IF（LMI．LE．0）
IF（MMI．LE．O）GO T0 92
IF（NO．NE．\(M 1 * M O+1\) ）GQ TO 9
Gø TO（ 11,16 ），MDO
\(11 \mathrm{I}=2\)
\(I F(X(1)-X(2)) \quad 12.95,14\)
12 Dの \(13 \quad \mathrm{I}=3\) ，LO
\(1 F(X(1-1)-X(I)) \quad 13,95,96\)
CONTINUE
GØ T0 18
D0 \(15 \quad I=3, L 0\)
IF（X（I－1）－X（I）） \(96,95,15\)
CONTINUE
G0 T0 18
16 Dの \(17 \quad 1=2\) ，LO
IF（X（1－1）．NE．X（I））G0 T0 17
IF（Y（I－1）．EQ．Y（I））GE T0 97
17 CONTINUE
\(18 \mathrm{~K}=\mathrm{NO}+\mathrm{MO}\)
\(\mathrm{I}=\mathrm{L} 0+1\)
D0 \(19 \mathrm{~J}=1, \mathrm{~L} 0\)
\(K=K-M O\)
\(I=I-1\)
\(\mathrm{I}=\mathrm{I}-1\)
\(U(K)=X(I)\)
\(V(K)=Y(I)\)
\(V(K)=Y(I)\)
\(R M=M O\)
\(R M=1.0 / R M\)
C MAIN DO－LOOP
\(20 \mathrm{~K} 5=\mathrm{MO}+1\)
De \(80 \quad 1=1,10\)
C ROUTINES TO PICK UP NECESSARY X AND Y VALUES AND TO ESTIMATE THEM IF NECESSARY
\begin{tabular}{|c|c|}
\hline IF（I．GT．1） & G0 T0 40 \\
\hline \(\times 3=0(1)\) & \\
\hline \(Y 3=V(1)\) & \\
\hline X4＝U（M0＋1） & \\
\hline \(Y 4=V(M O+1)\) & \\
\hline A3 \(=\times 4-\times 3\) & \\
\hline \(B 3=Y 4-Y 3\) & \\
\hline IF（MDM1．EQ．0） & M3 \(=\) B3／A3 \\
\hline 1F（LO．NE．2） & G0 T0 41 \\
\hline A \(4=A 3\) & \\
\hline B4＝83 & \\
\hline G0 T0（33，32）． & \\
\hline \(A 2=A 3+A 3-A 4\) & \\
\hline \(A 1=A 2+A 2-A 3\) & \\
\hline \(B 2=B 3+B 3-B 4\) & \\
\hline \(B 1=B 2+B 2-83\) & \\
\hline G0 T0（51，56）， & \\
\hline
\end{tabular}

COLLECTED ALGORITHMS (cont.)
```

40 X2=X3
Y2=Y3
X3=X4
Y3=Y4
X4=X5
Y4=Y5
Y4=YS
A1=A2
A1=AR
A2=A3
B2=B3
A3=A44
B3=B4 (GE Te 42
41 K5=K55+MO
K5=U(K5)
Y5=V(KS)
AA=X5-X4
A4=YSS-Y4
IF(MDMI-EQ.O) M4=84/A4
G0 T0 43
42 IF(MDM1.NE.O) A4=A3 +A3-A2
B4=B3+B3-B2

```

```

43 IF(1.EQ.1) , MO T0 (50,55), MDO
C NUMERICAL DIFFERENTIATION
S0 T2=T3
5: W2=ABS(M4-M3)
W3=ABS (M2-M1)
W3=ABS (M2-M1)
SW=W2+W3
1F(SW.NE.O.O) GO TO 52
W2=0.5
W }=0.
SW=1.0
T3=(Wi2*M2 +W 3*M3)/SW
IF(I-1) 80,80,60
55 cos2=cos3
SIN2=SIN3
56 W2=ABS (A3*B4-A4*B3)
W3=ABS (A1*B2-A2*B1)
IF(W2+W3.NE.0.0) G0 T0 57
W2=SQRT(A3*A3+B3*B3)
W3=SQRT(A2*AR+B2*B2)
57 COS3=W2*A2 +W3*A3
SIN3=W2*B2 + W3*B3
R=CØS3*COS3*SIN3*SIN3
IF(R.EQ.O.O) G0 T0 58
R=SQRT(R)
COS3=cOS3/R
COS3=C0S3/R
IF(I-1) 80,80,65
C DETERMINATION OF THE COEFFICIENTS
60 Q2=(2.0*(M2-T2)+M2-T3)/A2
02=(2.0*(M2-T2)+M2-T3)/A2
Q3=(-M2-M2+T2+T3)/(A2*A2)
G0 T0 70

```

```

 SW=W2+W3 - O.O
 G0 T0 52
 65 R=S@RT(A2*A2+B2*B2)
P1=R*COS2
P1=R*C0S2

```
```

P3=A2-P1-P2
P3=A2-P1-
02=3.0*B2-R*(SIN2+SIN2+SIN3)
02=3.0*B2-R
G3=82-015
C COMPUTATIGN GF THE POLYNGMIALS
70 DZ=A2*RM
DZ=A2*
Z=0.0
K=K+1
K=K+1
Z=Z+DZ
U(K)=PO+Z
V(K)=PO+Z (K)

```

```

 Z=0.0
 DE 76 J=1,MM1
 K=K+1
 K=K+1
 U(K)=PO+Z*(P1+Z*(PZ+Z*P3))
 l
 79 K=K+1
89 K=K+1
RETURN
C ERROR EXIT
90 WRITE (IU,2090)
WRITE CIU
G0 T0 99
G0 T| 99
G0 T0 99
GO T| 99
93 WRITE (IU, 2093)
3 WRITE CIU.
95 WRITE (IU,2095)
GO TO 98
96 WRITE (IU,2096)
WRITE (IU
97 WRITE (IU,2097)
98 WRITE (IU;2098) I,X(I),Y(I)
RETURN
C FORMAT STATEMENTS

```

```

 END
 *** L L = 1 OR LESS.1)
 *** M = 1 OR LESS.1)
 *** IMPROPER N VALUE./)
 X VALUES GUT OF SEQUENCE. ()
 X VALUES OUT OF SEQUENCE./)
 IDENTICAL X AND Y VALUES./)
 10X,6HX(I) =,E12.3.
 D =, 14,8X,3HL}=15,8
    ```

Delete the statement numbered 14 and replace it with the following two statements:
```

14 IF (L0.EQ.2) GO TO 18 DO $15 \mathrm{I}=3$, L0

```

The subroutine, if tested for the case \(L=2\), would have performed correctly because of the implementation of DO statements in Fortran for the CDC-3800, which would not have executed the range if \(L<3\). However, for the IBM System/ 360 Fortran compilers, the subroutine produces the erroneous messages mentioned.

With the preceding corrections, the subroutine has been used with much success on a wide variety of problems.

\title{
Algorithm 434 \\ Exact Probabilities for \(\mathrm{R} \times \mathrm{C}\) Contingency Tables [G2]
}

\author{
David L. March [Recd. 24 Nov. 1970 and 7 Mar. 1971] School of Education, Lehigh University, Bethlehem, PA. 18015
}

\footnotetext{
Key Words and Phrases: probability, contingency table, test of significance

CR Categories: 3.5, 5.5
Language: Fortran
}

\section*{Description}

Freeman and Halton [1] derive a general method for computing exact probabilities for contingency tables that result if a sample is subjected to \(k\) different and independent classifications. The following algorithm is limited to the case where \(k=2\).

If a sample of size \(N\) is subjected to two different and independent classifications, \(A\) and \(B\), with \(R\) and \(C\) classes respectively, the probability \(P_{x}\) of obtaining the observed array of cell frequencies \(X\left(x_{i j}\right)\), under the conditions imposed by the arrays of marginal totals \(A\left(r_{i}\right)\) and \(B\left(c_{j}\right)\) is given by
\(P_{x}=\frac{\prod_{i=1}^{R}\left(r_{i}!\right) \prod_{j=1}^{c}\left(c_{j}!\right)}{N!\prod_{i=1}^{n} \prod_{j=1}^{C}\left(x_{i j}!\right)}\)
Expression (1) is exact and holds if (a) the parent population is infinite or the sampling is done with replacement of the sampled items, (b) the sampling is random, (c) the population is homogeneous, and (d) the marginal totals are considered fixed in repeated sampling.

To test the null hypothesis that \(A\) and \(B\) are independent against the indefinite two-sided alternative, the probability \(P_{s}\) of obtaining an array as probable as, or less probable than, the observed array is needed. \(\boldsymbol{P}_{s}\) is found as follows: (a) the probability \(\boldsymbol{P}_{t}\) of the observed array is computed; (b) the probabilities for all other possible arrays of cell frequencies, subject to the conditions imposed by the fixed marginal totals, are computed; and (c) \(P_{s}\) is then obtained by summing all of the probability values found in (b) that are less than, or equal to, the probability \(P_{t}\).

Method. The method of the subroutine uses the fact that expression (1) can be rewritten as
\(P_{x}=Q_{x} / R_{x}\)
where
\(Q_{x}=\frac{\prod_{i=1}^{R}\left(r_{i}!\right) \prod_{j=1}^{c}\left(c_{j}!\right)}{N!}\)
which is constant for the given set of marginal totals \(\left(r_{i}\right)\) and \(\left(c_{j}\right)\) and
\(R_{x}=\prod_{i=1}^{R} \prod_{j=1}^{c}\left(x_{i j}!\right)\)
which varies depending on the array of cell frequencies ( \(x_{i j}\) ). In order to avoid machine overflow and roundoff error, these computations are performed using logarithms.

The observed \(R \times C\) contingency table is specified by the \(N R \times N C\) matrix which is partitioned as follows:


After computing the constant term \(Q X L O G\) and the probability of the given table \(P T\), the subroutine assigns to each of the lower right \((R-1) \times(C-1)\) cells the minimum of its corresponding row and column totals which is the maximum possible number for the cell. These cells are then varied in all possible combinations with each cell varied between its maximum number and zero.

Starting with cell \((2,2)\), the variation is accomplished by subtraction of 1 . When the subtraction yields a zero or positive result the routine goes to compute the remainder of the cell frequencies. When a negative result is obtained, the cell in question, say cell ( \(i, j\) ), is reset to the minimum of the corresponding row and column totals, 1 is subtracted from cell \((i, j+1)\) or, if \(j+1\) is greater than \(C\), cell \((i+1,2)\), and the count down resumes at cell \((2,2)\). If none of the lower right \((R-1) \times(C-1)\) cells yield a zero or positive result, the computations are complete and the subroutine returns to the caller. For example, if the top line (below) is the cell maximum ordered left to right from the \((2,2)\) to the \((R, C)\) cell, the combinations generated will be
\begin{tabular}{llll}
2 & 1 & 1 & \(\cdots\) \\
1 & 1 & 1 & \(\cdots\) \\
0 & 1 & 1 & \(\cdots\) \\
2 & 0 & 1 & \(\cdots\) \\
1 & 0 & 1 & \(\cdots\) \\
0 & 0 & 1 & \(\cdots\) \\
2 & 1 & 0 & \(\cdots\) \\
& & \(\vdots\) & \\
0 & 0 & 0 & \(\cdots\)
\end{tabular}

The column 1 and row 1 cells are filled by subtraction of the generated cell numbers from the marginal totals. Since the method described above yields illegal as well as legal partitions, it is possible to obtain a negative result for one of these cells. When this occurs, the routine goes back to get a new set of cell frequencies. Otherwise RXLOG is computed. Then, the probability \(P X\) is computed and added to the cumulative sum \(P C\). If \(P_{X}\) is less than, equal to, or, to avoid missing one due to computational inaccuracy, slightly larger than \(P T, P X\) is also added to the significance probability \(P S\).

Since \(P C\) is the probability of obtaining some of the tables possible within the constraints of the marginal totals, PC should equal 1.0. . The accuracy of the result can be estimated from the amount of deviation of PC from 1.0. .

The floating point logarithms (base 10) of the integer factorials are obtained from function FACLOG. For arguments less than or equal to 100 , the result is obtained from a table that is computationally filled on the first reference to FACLOG. Stirling's approximation is used for arguments greater than 100

Results. The algorithm was tested on a CDC 6400 ( 60 bit word) using \(2 \times 3(N=30), 2 \times 4(N=7)\), and \(3 \times 3(N=7)\) contingency tables. Results for the \(2 \times 3\) tables were verified against values separately computed using programs developed by March [2], In several cases \(P C\) deviated from 1.0. by \(1.0 \times 10^{-12}\). Results for the \(2 \times 4\) and \(3 \times 3\) tests were verified by hand computation.

The author is indebted to the referees for their valuable comments and suggestions.

\section*{References}
1. Freeman, G.H., and Halton, J.H. Note on an exact treatment of contingency, goodness of fit, and other problems of significance. Biometrika 38 (1951), 141-149.
2. March, D.L. Accuracy of the chi-square approximation for \(2 \times 3\) contingency tables with small expectations. An unpublished D.Ed. Diss., School of Education, Lehigh U., Bethlehem, Pa., 1970.
```

 SUBRDUTINE CQNP(MATRIX,NR,NC,PT,PS,PC)
 INPUT ARGUMENTS.
 MATKIX = SPECIFICATI@N OF THE CONTINGENCY TABLE.
 THIS MATRIX IS PARTITIONED AS FOLLOWS
 | $x(11)$ | $\ldots \ldots \times(1 C)$ | $R(1)$ |
| :---: | :---: | :---: |
| \bullet | $\ldots \ldots$ | \vdots |
| $x(R 1)$ | $\ldots \ldots x(R C)$ | $R(R)$ |
| $C(1)$ | $\ldots \ldots$ | $C(C)$ |

 WHERE X(IJ) ARE THE gBSERVED CELL FREQUENCIES,
 R(I) ARE THE ROW TOTALS, C(J) ARE THE COLUMN
 TOTALS, AND N IS THE TOTAL SAMPLE SIZE.
 NOTE THAT THE BRIGINAL CELL FREQUENCIES ARE
 DESTROYED BY THIS SUBROUTINE.
 NR = THE NUMBER OF R@WS IN MATRIX (R=NR-1).
 NC = THE NUMBER OF COLUMNS IN MATRIX (C=NC-1).
 QUTPUT ARGUMENTS.
PT = THE PR\emptysetBABILITY ØF gBTAINING THE GIVEN TABLE.
PS = THE PRgBABILITY OF gBTAINING A TABLE AS PR\emptysetBABLE
AS, QR LESS PROBABLE THAN, THE GIVEN TABLE.
PC = THE PRGBABILITY OF ØBTAINING SOME OF THE
TABLES POSSIBLE WITHIN THE CONSTRAINTS OF THE
MARGINAL TOTALS. (THIS SHOULD BE 1.O. DEVIATIONS
FRQM 1.0 REFLECT THE ACCURACY OF THE COMPUTATION.)
EXTERNALS.
FACLOG(N) = FUNCTION TØ RETURN THE FL@ATING P@INT
VALUE ØF LOG BASE 10 0F N FACTORIAL.
DIMENSION MATRIX(NR,NC)
INTEGER R,C,TEMP
R=NR-1
C=NC-1
C
XL@G=-FACLӨG(MATRIX(NK,NC)
De 10 I=1,R
10 QXLOG=QXLOG+FACLOG(MATRIX(I,NC))
D0 20 J=1,C
20 QXL@G=QXL@G+FACL\emptysetG(MATRIX(NR,J))
C
C COMPUTE PROBABILITY OF GIVEN TABLE
RXL ©G=0.0
D0 50 I=1,R
So RXLDG=RXLOG+FACLDG(MATRIX(I,J)
PT=10.0**(0XLøG-RXLOG)
C
PS=0.0
P=0.0
C FILL LOWER KIGHT (R-1) }x(C-1) CELLS WIT
C MINIMUM OF ROW AND COLUMN TOTALS
06 100 1=2,R
MATRIX(I.
G0 TE 300
C
c lomin a NEW SET DF FREQUENCIES IN
C LOWER RIGHT (R-1) X (C-1) CELLS
C 200 D0 220 I=2,R
D0 220 J=2,C
MATRIX(I,J)=MATRIX(I,J)-1
MATRIX(I,J)=MATRIX(I,J)-1

```
```

 220 MATRIX(I,J)=MINO(MATRIX(I,NC),MATRIX(NR,J))
 RETURN
 FILL REMAINDER OF gBSERVED CELLS
.....cEmplete cglumN 1
300 D0 320 I=2,N
TEMP=MATRIX(I,NC)
DO 310 J=2,C
TEMP=TEMP-MATRIX(1,J)
M(TEMP.LT.O) GO TO 200
MATRIX(I,1)=TEMP
c
CCOMPLETE KOW I
DD 340 J=1,C
TEMP = MATKIX(NR,J)
0 330 I=2,R
TEMP=TEMP-MATRIX(I,J)
F(TEMP.LT.O) Gø Tø 200
340 MATRIX (1,J)=TEMP
C COMPUTE L\emptysetG ØF THE DENOMINATOR
RXL }\emptysetG=0.
RXLOG=0.0
D0 350 J=1,C
350 RXL\emptysetG=RXL0G+FACLØG(MATRIX(I,J))
c
COMPUTE PX. ADD TØ PS IF PX .LE. PT
(ALLOW FOR ROUND-DFF ERROR)
PX=10.0**(QXLصG-RXLøG
PC=PC+PX
IF((PT/PX).GT.0.99999) PS=PS+PX
G@ TO 200
END
FUNCTION FACLOG(N
INPUT ARGUMENT.
N = AN INTEGER GREATER THAN GR EQUAL TO ZERD.
FUNCTION RESULT.
FACLOG = THE LOG TO THE BASE 10 OF N FACTORIAL.
DIMENSION TABLE(101)
DATA TPILQG/O.39908 99342/
DATA EL\emptysetG /0.43429 44819/
DATA IFLAG/O/
USE STIRLINGS APPRGXIMATION IF N GT 100
IF(N.GT.100) G0 T0 50
LO@K UP ANSWER IF TABLE WAS GENERATED
IF(IFLAG.EQ.O) GO T0 100
0 FACL }0G=TABLE(N+1
RETURN
C
HERE FOR STIRLINGS APPROXIMATION
50 X=FLOAT(N)
FACL@G=(X+0.5)*AL@GIO(x) - X*EL\emptysetG + TPIL|G
1+EL\emptysetG/(12.0*X) - ELøG/(360.0*X*X*X)
* RETURN
C HERE Tø GENERATE LOG FACTORIAL TABLE
100 TABLE(1)=0.0
DO 120 I =2,101
X=FL@AT(I-1)
120 TABLE(I)=TABLE(I-1)+AL0G10(X)
IFLAG=1
GQ TO 10
END

```

Remark on Algorithm 434 [G2]
Exact Probabilities for \(\mathrm{R} \times \mathrm{C}\) Contingency Tables [D.L. March, Comm. ACM 15 (Nov. 1972), 991|
D.M. Boulton [Recd. 5 Mar. 1973 and 30 July 1973]

Department of Information Science, Monash University, Melbourne, Australia

Algorithm 434 calculates the exact probability of a two-dimensional contingency table by generating all possible cell frequency combinations which satisfy the marginal sum constraints, and summing the probabilities of all combinations as likely or less likely than the observed combination. The method used to generate all the cell frequency combinations is rather inefficient as it operates by generating all combinations which satisfy a weakened set of constraints and then rejecting those combinations which violate
the actual marginal sum constraints. As the number of combinations rejected very often far exceeds the actual number accepted, the process is very wasteful.

A more efficient combination generating algorithm is described in Boulton and Wallace [1]. It generates explicitly only those combinations which satisfy the marginal sum constraints. In addition, because the combinations are generated by a set of nested \(D O\) loops each with a different cell frequency as its controlled variable, the order of generation is such that one combination usually only differs from the next in the values of a few cell frequencies in the lower right corner of the table. This ordering can be used to reduce the time taken to obtain the logarithm of the probability of each combination. Instead of always summing over all cells, an array of partial sums of logarithms of cell frequencies is maintained, and for each new combination only that part of the logarithm which has changed is evaluated and then added to the relevant partial sum.

March's algorithm has been modified to use the combination generating algorithm of Boulton and Wallace and to take advantage of the order in which the combinations are generated. A series of comparison tests were run on a CDC 3200 , and the results of a few are shown in Table I. The modified algorithm was always faster, and as can be seen in Table II, the speed improvement can be quite large.


Finally, it is worth noting that the combination generating algorithm of Boulton and Wallace can be systematically extended for contingency tables of more than two dimensions. It can thus be used as the basis of a subroutine for calculating exact probabilities in more than two dimensions.

\section*{References}
1. Boulton, D.M., and Wallace, C.S. Occupancy of a rectangular array. Comp. J. 16, 1 (1973), 57-63.

Remark on Algorithm 434 [G2]
Exact Probabilities for \(R \times C\) Contingency Tables [D.L. March, Comm. ACM 15 (Nov. 1972), 991]
T.W. Hancock [Recd 16 Nov. 1973, 11 Feb 1974] Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, South Australia 5064.

The above algorithm was presented for computing exact probabilities of \(R \times C\) contingency tables by the method described by Freeman and Halton [1]. Clearly inefficient for small matrices, this algorithm becomes impracticable for \(4 \times 4\) matrices or larger. For this reason the subroutine presented below is suggested. Every effort has been made to minimize the number of coding changes so that (a) the original work of March can be recognized; and (b) the important differences are apparent to anyone wishing to compare the two approaches. Row and column dimensions have been added to the formal parameters, so that the elements of the contingency table do not have to be stored in a contiguous manner. (Both are included to ensure compatibility with any type of compiler.) Function \(F A C L O G(N)\) is exactly as presented by March.

Acknowledgment. I thank Dr. O. Mayo, Waite Agricultural Research Institute, University of Adelaide, for suggesting that I investigate March's algorithm.

Differences in Method Comment cards have been included in the listing to locate and describe the differences discussed below. These can be identified by an asterisk in column three. Also where appropriate this is followed by a number which relates to the order in the list below.
1. All cell frequencies are set to zero initially.
2. The jump indicator \(K E Y\) is equivalenced to 1 , and cell \((2,2)\) ( \(M A T R I X(2,2)\) in the subroutine) is set to -1 .
3. The generation process is accomplished by addition of 1 to the appropriate \((I, J)\) cell frequency (where \(I\) and \(J\) proceed from \(2, \ldots, R\) and \(2, \ldots, C\) respectively).
4. The value of row marginal \(I\) is checked against \(\sum_{K=J}^{C} M A T R I X\) \((I, K)\). Similarly column marginal \(J\) is checked. If either marginal is less than the appropriate sum, control returns via 8 below to 3 above.
5. If indicator \(K E Y\) equals 2 the cell frequencies preceding cell \((I, J)\) are set to zero and the addition sequence recommences from cell ( 2,2 ) (i.e. 2 above).
6. However, if \(K E Y\) equals 1 , subroutine \(I N I T\) is called to generate the "next" matrix of cell frequencies satisfying the marginals. INIT first adjusts the marginals for the cell values in MATRIX. Then beginning at the lower left hand corner matrix (i.e. cell \((R, 1)\) ), each cell in turn is increased to its maximum value and its marginals reduced. Once the row marginal is reduced to zero the sequence jumps to the first cell in the row above. Using this process it is possible to progress from one valid set of frequencies to the next, thus saving considerable time.
7. After the probability calculations have been computed, for the matrix returned from INIT, a sequence of matrices is generated if the frequencies of cells \((1,2)\) and \((2,1)\) are both greater than zero. (As explained by Freeman and Halton the probabilities of the members of this sequence of matrices are related and recognition of this simplifies their calculation.)
8. \(K E Y\) is equivalent to 2 , and control returns to 3 above via the loop terminator causing cell \((I, J)^{\prime}\) to be increased by 1 .

Results The two methods were compared on a Control Data Corporation CYBER 73 using contingency tables over a range of sizes and cell frequencies. Table I summarizes the CP times. Clearly the original method becomes unquestionably slow; in fact for a \(4 \times 4\) matrix, with all frequencies one, this method would attempt \(5^{9}=1,953,125\) matrices before it reached a result. For the same matrix the revised method calculates probabilities for 10147 matrices, all of which are compatible with the marginals. Obviously this improved method would be impracticable for contingency

Table I. Comparison of Subroutines
(CP time required in seconds to compute exact probabilities for RXC contingency tables; where all cell frequencies are chosen equal to one. These are presented to illustrate the relative improvement of \(R X C P R B\) over \(C O N P\). Obviously the actual times will depend on the machine used.)
\begin{tabular}{lll}
\(R \times C\) & \(C O N P\) (by March) & \(R X C P R B\) \\
\(2 \times 2\) & \(.019(3 \dagger)\) & \(.018(3 \dagger)\) \\
\(2 \times 3\) & \(.012(9)\) & \(.010(7)\) \\
\(3 \times 2\) & \(.018(9)\) & \(.016(7)\) \\
\(2 \times 5\) & \(.073(8)\) & \(.054(51)\) \\
\(5 \times 2\) & \(.093(81)\) & \(.055(51)\) \\
\(3 \times 3\) & \(.110(256)\) & \(.055(55)\) \\
\(3 \times 4\) & \(1.279(4096)\) & \(.509(415)\) \\
\(4 \times 3\) & \(1.344(4096)\) & \(.514(415)\) \\
\(4 \times 4\) & Unknown* & \(15.495(10147)\)
\end{tabular}
\(\dagger\) Number of matrices attempted in the calculation
* Computation was still incomplete after 500 seconds
tables with more degrees of freedom and/or larger total sample size, but grouping of classes and alternative statistical tests are available in this area (see Goodman [2] or Sugiura and Ôtake [3]). Further it is generally trivial to continue once the tail probability becomes large, so that insertion of a statement of the form, IF(PS. GT. 0.1. AND. PC. LT. 0.9) RETURN
in subroutine \(R X C P R O B\) prior to statement numbered 32 would increase efficiency.

In all cases, \(R X C P R O B\) and \(C O N P\) produced correct probabilities. (For smaller matrices, the computed probabilities were checked by hand; for the larger ones, agreement between the methods was taken to indicate the correctness of \(R X C P R O B\), since March had already tested his subroutine.) The maximum deviation of \(P C\) from 1.0 was \(1.0 \times 10^{-10}\). Although slightly larger than reported by March this is a direct result of the increased complexity of the tables solved, and in fact CONP gave a similar deviation.

\section*{References}
1. Freeman, G.H., and Halton, J.H. Note on an exact treatment of contingency, goodness of fit, and other problems of significance. Biometrika 38 (1951), 141-149.
2. Goodman, L.A. On methods for comparing contingency tables. Journal of Royal Statistical Society Series A 126 (1963), 94-105.
3. Sugiura, N., and Ôtake, M. Numerical comparison of Improved methods of testing in contingency tables with small frequencies. Annals of the Institute of Statistical Mathematics 20 (1968), 505-517.

\section*{Algorithm}

SUBRCUTINE RXCPRBCMATRIK, NRD, NCD, NR, NC, * PT, PS, PC)
```

*

```

THIS SUBROUTINE COMIPUTES EXACT
PROBABILITIES FOR R X C CONTINGENCY TABLES
* INPUT VIA FORMAL PARAMETERS
* NRD \(=\) THE RCIN DIMENSION

C \(*\) NCD \(=\) THE COLUMN DIMENSION
NR \(=\) THE NUMBER OF ROWS IN MATRIX (R=NR-1). NC = THE NUMBER OF COLUMNS IN MATRIX (C=NC-1). MATRIX = SPECIFICATION OF THE CONTINGENCY TABLE. THIS MATRIX IS PARTITIONEL AS FOLLOWS
\begin{tabular}{|c|c|c|}
\hline * & \(x(1,1), x(1,2), \ldots . . . . . . ., x(1, C)\) & X (1,ivC) \\
\hline * & - \(\quad\)............. & - \\
\hline C * & , & - \\
\hline C & \(X(R, 1), X(R, 2), \ldots . . . . . . . ., X(R, C)\) & \(x(R, N C)\) \\
\hline * & X(NR, 1), \(\mathrm{X}(\mathrm{NR}, 2), \ldots . . . . . ., X(N R, C)\) & \(X(N R, N C)\) \\
\hline C * & UHERE \(X(I, J)\) ARE THE OESERVED CELL & \\
\hline * & FREQUENCIES, X (I,NC) ARE THE ROW T & TALS, \\
\hline * & X(NR,J) ARE THE COLUNR TOTALS, ANE & X (NR,NC) \\
\hline * & IS THE TOTAL SAMPLE SIZE. & \\
\hline c & NOTE THAT THE ORIGINAL GELL FREQUE & CIES ARE \\
\hline C & DESTROYED EY THIS SUEROUTINE. & \\
\hline
\end{tabular}
```

OUTPUT ARGUMENTS.
PT = THE PROBABILITY OF OBTAINING THE GIVEN
TABLE.
PS = THE PEOBAEILITY OF OETAINING A TABLE AS
PROEABLE AS, OR LESS PROEAELE THAN, THE
GIUER: TAELE.

* PC = THE PROBABILITY OF OETAINING ALL OF THE
TABLES POSSIBLE WITHIN THE CONSTRAINTS OF
THE MARGIIVAL TOTALS. (THIS SHOULD) BE 1.0.
DEVIATIONS FROM 1.O REFLECT THE ACCURACY OE
THE COMPUTATION.)
EXTERNALS.
INIT(MATRIX,NRD,NCD,NR,NC) = SUEROUTINE WHICH
RETURNS THE *NEXT* MATRIX TO SATISFY
THE MARGINALS.
FACLCG(N) = FUNCTION TO RETURN THE FLOATING
POINT VALUE OF LOG EASE I| OF N FACTORIAL.
DIMENSICN MATRIX(NRD,NCD)
INTEGER R, C
R=NR-1
C COMPUTE LOG OF CONSTANT NUMERATOR
QXLOG =-FACLGG(MATRIX(NR,NC))
DO 10 I=1,R
QXLOG = QXLOG + FACLOG(MATRIX(I,NC))
10 CONTINUE
DO 20 J=1,C
QXLOG = QXLOG + FACLOG (MATRIX(NR,J))
20 continue
C COMPUTE PROBABILITY OF GIVEN TAELE
RXLCG = \&.\ell
DO 40 I= I,R
DC 30 J=1,C
RXLOG = RXLOG + FACLOG(NATRIX(I,J)
cONTINUE
40 CONTINUE
PT = 10.0**(QKLOG-RXLOG)
PS = 0.0
PC=0.0
C * 1. All cell values initially set to zero
DC ED I= I,R
DO 50 }J=1,
MATRIX(1,J)=0
CONTINUE
6 0 ~ C O N T I N U E ~
C * 2. EACH CYCLE STARTS HERE
70 KEY = 1
MATPIX(2,2) =-1
C * 3. GENERATING SET OF FREQUENCIES PROGRESSIVELY IN
C * LOWER RIGHT (R-1) * (C-1) CELLS.
DO I\inD I=2,R
DO 150 J=2,C
MATRIX(I,J) = MATRIX(I,J) + I
C * 4. CHECKING SUMMATIONS .LE. RESPECTIVE MARGINALS
C * 4. L.E. (SUM OF ELTS. J TO C IN ROW I) .LE.
I.E. (SUM OF ELTS. J TO C IN ROW I) ©LE. (SUM OF ELTS. I TO R IN COL.
J).LE. MATRIX(NR,J)
ISUM = Q
JSUM =
DO 80 M=J,C
ISUM = ISUM + MATRIX(I,M)
80 CONTINUE
IF (ISUM.GT.MATRIX(I,NC)) GO TO 130
DO SO K=1,R
JSUM = 'SUM + MATRIX(K,J)
continue
IF (JSUM.GT.MATRIX(NR,J)) GO TO 130
C * 5. JUMP TO STATEMENT 170 WHERE ALL CELLS PRIOR TO
C * MATRIX(I,J) ARE SET TO ZERO.
IF (KEY.EQ.2) GO TO 170
IP=I
C * \epsilon. CALL SUBROUTINE INIT TO FIND THE NEXT EALANCED
C * MATRIX
C COMPUTE LOG OF THE DENOMINATOR
RXLOG = E.\emptyset
DO 110 K=1,
LO 100 M=1,C
MXLOG = RYLLOG + FACLOG (MATPIX(K,Ni))
190 CONTINUE
118 con:TINUE
C * COMPUTE PX. ADD TO PC AND GLSO PS IF PX .LE. PT
(ALLO' FOR ROUND-OFF ERROR)
PX = 10.0** (QXLOG-RXLOG)
PC = PC + PY
IF ((PT/PX).GT.G.CSSSS) PS = PS + PX
C * 7. IF PCSSIELE A SEQUENCE OF MATRICES AND
C * ASSOCIATED PRCEABILITIES (PY,PC ANL PS) ARE
C * GENEPATED EY MANIPULATING CELLS (1,1), (1,2),
C * (2,1) AND (2,2) (SIMILAPLY ALLOWING
FOF ROUND-OFF EPPOR)
IF (MATRIX(1,2).LT.1 .OR.
MATRIX(2,1).LT.1) GC TC 14Z
MATRIX(1,1)=MATRIX(1,1) + 1
PX= PX*FLOAT(MATRIX(1,2))*FLOAT(MATRIX(2,1))
PX=PX*FLOAT(MATRIX(1,2))*FLOAT(MATRIX(2,1))
PC = FLCAT(NATRIX(1,1))/FLOAT(NATRIX(2,2))
C = PC + PX
IF (<PT/PX).GT.g.gGssq) PS = PS + PX
MATRIX(1,2)=MATRIX(1,2) - 1
MATRIX(2,1)=MATRIX(1,2) - M
GO TO 12e

```

```

C* 8. KEY SET TO E AS CYCLE COMPLETED
148 KEY = ?
148 KEY = ?
l49 CONTINUE
的TUQR
C * ALL CELLS OF MATRIY PRIOR TO THE (1,J)TH. ARE
C * SET TO TERO.
17E EO 18\& M=2,俋
MATRIX(IP,M)}=
1ge CCNTINUE
18E CCNTINUE
DO 2RE K=1.,1P
DC 1S\& N=2,C
DC ISQ N:=2,C
198 CONTINUE
2gQ CONTINUE
CONTINUE
END
SUBROUTINE INIT(MATRIX, NRD, NCD, NR, NC)
C * THIS SUBPOUTINE RETURNS THE *NEXT* MATRIX TO
C * SATISFY (1) THE MAPGINALS AND (2) THE SEQUENCE
C * OF GENERATION DEFINED IN SUEROUTINE RYCPRE.
DIMENSICN NATPIX(NRD,NCD), MROW(50), MCOL(5B)
IPTEGER R, C
D = NP - 1
D=NP-1
C * EOUIVALENCE MRON AND MCOL TO ROW ANL COLUMN
C * MARGINALS TESPECITVELY.
DO 1q K=1,R
MATRIX(K,I)=0
MROW(K)= MATRIX(K,NC)
IE CONTINUE
DG EQ N=1,C
MCCL(M) = MATRIX(NR,M)
2B CONTINUE
C % FOR EACH PON, SUETRACT ELEMENTS 2 TO C FROM MROW
C * FOR EACH RON, SUETRACT ELEMENTS 2 TO C FROM MROW
DO 30 M= 2,C
MRCV(K) = MROW(K) - MATRIX(K,M)
30 CONTINUE
30}\mathrm{ CONTINUE
C * FOR EACH COLUMN, SUETPACT ELEMENTS 2 TO R FRON
C * MCCL
DO $\in \mathbb{M}=2, C$
158
DO \&O M=2,C
DC }50\textrm{K}=2,\textrm{R

```
                \(\operatorname{MCOL}(M)=\operatorname{MCOL}(M)-\operatorname{MATRIX}(K, M)\)
        CCNTINUE
    GO CONTINUE
    ORMING *SEYT
DC \(98 \quad 1=1, \mathrm{P}\)
        \(1 R=N n-I\)
            DC \(80 \mathrm{~J}=1, \mathrm{C}\)
            NIN \(=\operatorname{MINE}(M R C W(I F i), M C O L(J))\)
            IF (MIN.EQ.E) GO 7070
            MATRIX(IR,J) \(=\) MATRIX(IR,J) + MIN

            MCOL(J) = MCOL(J) - MIN
IF (MROW(IR).EQ.E: GO TC \(9 \varnothing\)
    \(\begin{array}{lr}70 & \text { IF (MRO } \\ 80 & \text { CONTINUE }\end{array}\)
    - continue
        RETURN
    END
    FUNCTICN FACLOG(N)
C INPUT ARGUMENT.
C
N
\(=\) AN INTEGE
\(\begin{array}{ll}\text { C } & \text { N }=\text { AN INTEGE } \\ \text { C FUNCTICN RESULT. } \\ \text { C } & \text { FACLCG }=\text { THE }\end{array}\)
    FACLCG \(=\) THE LOG TO THE EASE 10 OF \(N\) FACTORIAL.
    DIMENSICN TAELE(1E1)
    DATA TPILOG 10.3950899342
    DATA ELOG \(10.4342944819 /\)
C USE STIPLINGS APPROXIMATION IFN GT IGQ
    IF (N.GT.1日Q) GO TG 20
    K UP ANSVER IF TABLE WAS
IF (IFLAG.EQ.0) 30 TO 30
    IF (IFLAG.EQ.0) 30
\(\mathrm{FACLGG}=\operatorname{TABLE(ia+1)}\)
    6 FACLGG
C HERE FCR STIPLINGS APPROXIMATION
    \(2 E x=\) FLOAT (N)
        \(X=F L O A T(N)\)
\(F A C L O G=(X+\varnothing .5) * A L O G 1 \theta(X)-X * E L O G+T P I L O G+\)
            *ELOG/(12.0*X)-ELOG/(36も.e* X*X*X)
    * ELTURN
C HERE TO GENERATE LOG FACTORIAL TAELE
    ERE TO GENERATE LO
30 TABLE \((1)=0.0\)
            DO \(40 I=2,181\)
\(x=F L O A T(1-1)\)
                \(X=F L O A T(1-1)\)
                \(X=F L O A T(1-1)\)
TABLE 1\()=\) TABLE(I-1) + ALOGI日(X)
    0 CONTINUE
    TFLAG =
    IFLAG \(=1\)
GOTO 18
            ACM Tratasctions on Mathematical Software, Vol. 2, No. h. Matcb 1976, Page 108

REMARK ON ALGORITHM 434
Exact Probabilities for \(\mathrm{R} \times \mathrm{C}\) Contingency Tables［G2］
［D．L．March，Comm．ACM 15， 11 （Nov．1972），991］
D．M．Boulton［Recd 25 June 1975］
Department of Computer Science，Monash University，Clayton，3168，Victoria， Australia

Two previous Remarks，by Boulton（1974）［1］and by Hancock（1975）［2］， have shown that Algorithm 434 by March（1972）is rather inefficient，especially for contingency tables with many degrees of freedom．The inefficiency lies in the method
\begin{tabular}{lll}
\begin{tabular}{l} 
Table I．Times in Seconds for the \\
Contingency Tables in Boulton［1］
\end{tabular} \\
\hline\(R\) & Hancock & Boulton \\
\hline & & \\
\hline \(2 \times 2\) & 0.024 & 0.018 \\
\(2 \times 4\) & 0.16 & 0.10 \\
\(3 \times 4\) & 1.37 & 0.68 \\
\(4 \times 4\) & 2.21 & 1.05 \\
\hline
\end{tabular}

Table II．Times in Seconds for the Contingency Tables in Hancock［2］
\begin{tabular}{ccc}
\hline\(R \times C\) & Hancock & Boulton \\
\hline \(2 \times 2\) & 0.008 & 0.007 \\
\(2 \times 3\) & 0.023 & 0.016 \\
\(3 \times 2\) & 0.023 & 0.016 \\
\(2 \times 5\) & 0.21 & 0.11 \\
\(5 \times 2\) & 0.21 & 0.10 \\
\(3 \times 3\) & 0.22 & 0.12 \\
\(3 \times 4\) & 2.08 & 0.98 \\
\(4 \times 3\) & 2.08 & 0.99 \\
\(4 \times 4\) & 63.5 & 25.5 \\
\hline
\end{tabular}
of generating all those cell frequency combinations that satisfy the marginal sum constraints.

The purpose of this remark is to compare directly the speeds of the above two more recent algorithms (in the Remarks). The comparisons were carried out on a Hewlett-Packard HP2100A computer with fully extended arithmetic and microprogrammed array referencing and subroutine entry. In Table I, times are given for the four examples originally used in Boulton. In Table II, times are given for the examples presented in Hancock.

The algorithm by Boulton is always faster, and for all but \(2 \times 2\) tables the improvement is quite significant, being more than a factor of 2 for contingency tables with several degrees of freedom.

The same set of tests were run again on the HP2100A with standard firmware, i.e. without microprogrammed array referencing and subroutine entry. The times were then found to be even more in favor of Boulton's algorithm. The speed ratio increased to 3 for Hancock's \(4 \times 4\) table.

\section*{REFERENCES}
[1] Boulton, D.M. Remark on Algorithm 434. Comm. ACM 17, 6(June 1974), 326.
[2] Hancock, T.W. Remark on Algorithm 434. Comm. ACM 18, 2(Feb. 1975), 117-119.

\title{
Algorithm 435 \\ Modified Incomplete Gamma Function [S 14]
}

Wayne Fullerton [Recd. 30 Dec. 1970 and 12 April 1971]
Department of Astronomy, University of Michigan, Ann Arbor, MI 48104

Key Words and Phrases: modified incomplete Gamma function, incomplete Gamma function, chi-square distribution function, Poisson distribution function

CR Categories: 5.13
Language: Fortran

\section*{Description}

The incomplete Gamma function is defined by
\(\gamma(a, x)=\int_{0}^{x} y^{a-1} \cdot e^{-y} d y, \quad x \geq 0\).
If \(x\) is allowed to assume negative values and if the absolute value of \(y\) is substituted for \(y\) in the term \(y^{a-1}\), then a modified incomplete Gamma function may be defined by
\(\gamma^{\prime}(a, x)=\int_{0}^{x}|y|^{a-1} \cdot e^{-y} d y, \quad-\infty<x \leq \infty\).
Note that if \(x\) is less than zero, the above is equivalent to
\(\gamma^{\prime}(a, x)=-\int_{0}^{|x|} y^{a-1} \cdot e^{+y} d y, \quad x \leq 0\).
The function subprogram GAMINC given below computes the more general function
\[
\begin{align*}
\operatorname{GAMINC}\left(a, x_{1}, x_{2}\right) & \cong e^{x_{1}} \int_{x_{1}}^{x_{2}}|y|^{a-1} e^{-v} d y  \tag{4}\\
& =e^{x_{1}}\left[\gamma^{\prime}\left(a, x_{2}\right)-\gamma^{\prime}\left(a, x_{1}\right)\right]
\end{align*}
\]

For \(x_{1}\) equal to zero, GAMINC is just a modified incomplete Gamma function. And if \(x_{2}\) is also greater than or equal to zero, then GAMINC is simply an incomplete Gamma function.

The need for the function GAMINC arises in the calculation of
\(I \equiv \int_{Z_{1}}^{Z_{2}} e^{a+b z} \exp \left\{-\int_{0}^{z} e^{\alpha+\beta Z^{\prime}} \frac{d Z^{\prime}}{-\sin (\vartheta)}\right\} \frac{d Z}{-\sin (\vartheta)}\),

The facilities of the University of Michigan Computing Center were used for this work and the research was supported by the National Science Foundation through a Traineeship granted to the author. Author's present address: Los Alamos Scientific Laboratory, Los Alamos, NM 87544.
where \(\vartheta\) is an angle between \(-\pi\) and \(+\pi\) not equal to zero. The two constants \(b\) and \(\beta\) are of the same sign. The integral in the exponent
can be done explicitly to yield
\(I=\frac{e^{a-\tau_{0}+x_{1}}}{-\sin (\vartheta)} \int_{Z_{1}}^{Z_{2}} e^{a+b z} \exp \left\{\frac{-e^{\alpha+\beta Z}}{-\sin (\vartheta)}\right\} d Z\),
where
\(X_{i}=\frac{e^{a+b z_{i}}}{-b \sin (\vartheta)}\)
and
\(\tau_{0}=\int_{0}^{Z_{1}} e^{\alpha+\beta Z^{\prime}} \frac{d Z^{\prime}}{-\sin (\vartheta)}\)
A change of variables finally reduces the above integral to
\(I=e^{\alpha-\tau_{0}}|b \sin (\vartheta)|^{\beta / b-1} \cdot e^{-a \beta / b}\left[e^{x_{1}} \int_{x_{1}}^{x_{2}}|y|^{\beta / b-1} \cdot e^{-y} d y\right]\)
The quantity in brackets is \(G A M I N C\left(\beta / b, X_{1}, X_{2}\right)\).
The approximations of \(\gamma^{\prime}(a, x)\) used in GAMINC are valid only for \(1 . \lesssim a \lesssim 2\). (See Table I.) The user may compute GAMINC for other values of \(a\) with the aid of the recurrence relation ( \(m\) is a positive integer such that \(1 . \lesssim a \lesssim 2\) ).
\[
\begin{align*}
& \text { GAMINC }\left(m+a, x_{1}, x_{2}\right) \\
& =(m+a-1) \text { GAMINC }\left(m+a-1, x_{1}, x_{2}\right)+\left[\left|x_{1}\right|^{m+a-1}\right.  \tag{8}\\
& \\
& \left.\quad-\left|x_{2}\right|^{m+a-1} e^{x_{1}-x_{2}}\right]
\end{align*}
\]

In general for \(x_{1} \geq 0\) and \(x_{2} \geq 0\),
GAMINC \(\left(m+a, x_{1}, x_{2}\right)\)
\(=(m+a-1) \cdot(m+a-2) \cdots(a) \cdot\) GAMINC \(\left(a, x_{1}, x_{2}\right)\)
\[
\begin{align*}
& +\left|x_{1}\right|^{a}\left[\left|x_{1}\right|^{m-1}+\sum_{i=1}^{m-1}(m+a-1)\right. \\
& \left.\quad \cdots(m+a-i)\left|x_{1}\right|^{m-1-i}\right]  \tag{9}\\
& -\left|x_{2}\right|^{a}\left[\left|x_{2}\right|^{m-1}+\sum_{i=1}^{m-1}(m+a-1)\right. \\
& \\
& \left.\cdots(m+a-i)\left|x_{2}\right|^{m-1-i}\right] e^{x_{1}-x_{2}}
\end{align*}
\]

The recurrence relation should be applied in the other direction if \(m+a\) is less than 1 .

For large values of \(a(a \geq 15\).\() in the incomplete Gamma\) function, the user is referred to the algorithm by Takenaga [5].

In all cases we use approximations which are functions of both \(a\) and \(x\), so that it is not necessary to compute and store an economized polynomial for each value of \(a\). The overhead in execution time for doing this is not significant since many-term expressions would result anyway. Also exponentiation and real numbers raised to a real power require 30 percent of the total computing time. Multiplying \(\gamma^{\prime}\left(a, x_{2}\right)-\gamma^{\prime}\left(a, x_{1}\right)\) by \(e^{x_{1}}\) saves two exponentiations and greatly extends the range over which the difference can be represented without over- or underflows occurring. Four separate approximations are used to compute \(\gamma^{\prime}(a, x)\).

Region 1. For \(x \geq 5.0\), the complimentary incomplete Gamma function is computed by using a continued fraction approximation [1]
\(\Gamma(a)-\gamma^{\prime}(a, x)=\frac{e^{-x} x^{a}}{x+T_{1}}\),
where
\(T_{i}=\frac{i+a}{1+i /\left(x+T_{i+1}\right)}\),
and where \(\Gamma(a)\) is the complete Gamma function of \(a\). Only terms through \(T_{3}\) are used explicitly. \(T_{4}\) is taken into account in an approximate way by setting \(T_{4}=1.7\), which is its approximate value when \(\boldsymbol{x} \sim 5.0\). If both argument values are greater than 5.0 , then significance is maintained by subtracting the complementary functions, not the functions themselves.

Region 2A. For \(-12 .<x<-1\). and \(1 .<x<5\)., the continued fraction approximation given by Luke [3] is valid. We rewrite the approximation in the form
\(\gamma^{\prime}(a, x)=\frac{x \cdot|x|^{a-1} \cdot e^{-x}}{a \cdot T_{1}}\),
where
\(T_{n}=1 .-\frac{(a+n-1) \cdot x}{(a+2 n-2) \cdot\left[a+2 n-1+(n \cdot x) /\left((a+2 n) \cdot T_{n+1}\right)\right]}\).
Only terms through \(T_{7}\) are used explicitly, and \(T_{8}\) is computed by using the approximate expression
\[
\begin{align*}
T_{8} \cong & 1.00150-8.95 \cdot 10^{-5} \cdot a+x  \tag{12}\\
& \cdot(-0.0337062+.0004182 \cdot a+x \\
& \cdot(.000999294-.000104103 \cdot a)) .
\end{align*}
\]

On a computer with 32 bit words, eq. (11) must be evaluated in double precision in order to maintain approximately six significant figures of accuracy. On an IBM 360 double precision evaluation can be forced by including more than seven digitsin a constant as is done in eq. (12). Of course, double precision evaluation is unnecessary if there are somewhat more than 32 bits per word. Because the calculation of the approximation of \(\gamma^{\prime}(a, x)\) is a relatively time consuming operation, a separate approximation is used when \(|x| \leq 1\).

Region \(2 B\). For \(-1.0 \leq x \leq 1.0\), a change of variables is made so that
\(\gamma^{\prime}(a, x)=|x|^{a-1} \cdot e^{-x} \int_{0}^{x}\left(\frac{y}{x}\right)^{a-1 .} e^{-y+x} d y\),
or
\(\gamma^{\prime}(a, x)=x \cdot|x|^{a-1} \cdot e^{-x} \int_{0}^{1}(1-p)^{a-1} \cdot e^{x p} d p\).
Because \(-1.0 \leq x p \leq 1.0, e^{x p}\) may be adequately approximated with a polynomial. A Chebyshev approximation of nine terms yields a maximum absolute error less than \(10^{-7}\), which is adequate to insure that the maximum relative error of the integral ordinarily be much less than about \(10^{-6}\). Since the relative error in the single precision evaluation of \(|x|^{a} e^{-x}\) is usually \(\sim 1 \cdot 10^{-6}\) for a machine with a 32 bit word length, the above error bound seems entirely reasonable. Write
\(e^{Z} \cong \sum_{i=0}^{M} b_{i} Z^{i}, \quad-1.0 \leq Z \leq 1.0\).
Then
\(\gamma^{\prime}(a, x) \cong x \cdot|x|^{a-1} \cdot e^{-x} \sum_{i=0}^{M} \frac{i!b_{i} x^{i}}{(i+a)(i+a-1) \cdots(a)}\).
Finally we may define \(b_{i}{ }^{\prime}=b_{i} \cdot i!\), and write
\[
\begin{equation*}
\gamma^{\prime}(a, x) \cong x \cdot|x|^{a-1} \cdot e^{-x} \sum_{i=0}^{M} \frac{b_{i}{ }^{\prime} x^{i}}{(i+a) \cdot(i+a-1) \cdots(a)} \tag{17}
\end{equation*}
\]

Note that if the series was not economized, all the \(b_{i}{ }^{\prime}\) would be unity. But because a finite Chebyshev economized series is employed, the \(b_{i}{ }^{\prime}\) are only approximately unity.

Of course, it would be possible to extend the Chebyshev approximation to include the entire range \(-12 .<x<5.0\); however the many-term result would have to be evaluated in double precision in order to insure a relative error \(<10^{-6}\). It would also be possible to decrease the range of validity of the ascending continued fraction approximation; however the other approximations would then have to be more complicated and would require an accordingly longer time to evaluate. Such a change was judged inadvisable since the function is used predominantly with arguments whose absolute

Table I. Relative Errors of \(\operatorname{GAMINC}(A, 0 ., X)\) in Units of the Sixth Decimal Place
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(\boldsymbol{X}\)} & \multicolumn{9}{|c|}{A} \\
\hline & 0.5 & 0.8 & 1.1 & 1.4 & 1.7 & 2.0 & 2.3 & 2.9 & 3.5 \\
\hline -14. & 16.57 & 3.37 & 0.27 & 0.79 & 1.11 & 0.81 & 1.87 & 1.35 & 1.03 \\
\hline -12. & 1.03 & 1.61 & 0.42 & 0.47 & 1.23 & 0.95 & 2.70 & 1.69 & 2.70 \\
\hline -8. & 0.09 & 1.04 & 0.34 & 0.69 & 1.69 & 1.07 & 2.01 & 2.11 & 2.24 \\
\hline - 4. & 0.38 & 0.82 & 0.15 & 0.79 & 0.67 & 0.19 & 0.51 & 1.59 & 0.75 \\
\hline - 2. & 1.22 & 0.78 & 0.50 & 0.11 & 0.07 & 0.01 & 0.09 & 0.11 & 0.51 \\
\hline \(-0.5\) & 0.65 & 0.43 & 0.21 & 0.32 & 0.23 & 0.15 & 0.18 & 0.65 & 0.78 \\
\hline + 0.5 & 1.03 & 0.42 & 0.66 & 1.19 & 1.25 & 0.77 & 0.29 & 0.06 & 0.35 \\
\hline 2. & 0.53 & 1.57 & 0.77 & 0.26 & 0.04 & 0.22 & 0.05 & 0.23 & 0.40 \\
\hline 6. & 0.44 & 0.38 & 0.06 & 0.01 & 0.06 & 0.06 & 1.21 & 0.36 & 2.21 \\
\hline 10. & 0.63 & 0.73 & 0.03 & 0.02 & 0.08 & 0.03 & 0.60 & 0.04 & 0.26 \\
\hline
\end{tabular}

Table II. Execution Times of \(\operatorname{GAMINC}\left(A, X_{1}, X_{2}\right)\) in Milliseconds
\begin{tabular}{l|l|l|l}
\hline & \\
\hline
\end{tabular}
* Only the modified incomplete Gamma function for \(X=X_{1}\) was calculated, because \(\left|X_{\mathbf{2}}-X_{1}\right|\) was greater than EXPLIM.
values are large. Also, the present choice of ranges and approximations provides for the accurate representation of \(\gamma^{\prime}(a, x)\) further beyond \(a=2\). than would many other choices.

Region 3. For \(x \leq-12\)., the asymptotic expansion
\(\begin{aligned} & \gamma^{\prime}(a, x) \approx \Gamma(a) \\ &-|x|^{a-1} \cdot e^{-x}\left[1+\frac{a-1}{x}+\frac{(a-1) \cdot(a-2)}{x^{2}}+\cdots\right]\end{aligned}\)
is used. Shank's \(e_{1}\) process [4] is applied once to the six-term series in order to accelerate convergence.

The function subprogram is invoked by a reference of the form

\section*{GAMINC( \(A, X 1, X 2, G A M)\),}
where \(G A M\) is the user-supplied value of the complete Gamma function of \(A . \Gamma(a)\) is now commonly a part of the standard Fortran library of functions. If it is not, one of the several algorithms described in this department may be used, or GAMMA given in IBM's Scientific Subroutine Package (cf. Hastings [2]) may be used.

Table I presents the absolute value of the relative errors (multiplied by \(10^{6}\) ) of \(\gamma^{\prime}(a, x)\) for selected values of \(a\) and \(x\). Because \(|x| a e^{-x}\) was not calculated in double precision, these errors are the total errors and not the errors in the approximations. The "exact" values were found by directly summing the series
\(\gamma^{\prime}(a, x) \cong|x|^{a} \sum_{i=0}^{N} \frac{(-x)^{i}}{(a+i) i!}\)
in double precision. \(N\) was chosen so that the contribution of the \(N\) th term was less than \(2 \cdot 10^{-9}\) times the sum of the previous \(N\) terms. Single precision approximations were used to represent \(a\) and \(x\) in order to insure that the series and the subprogram gave \(\gamma^{\prime}(a, x)\) for the same parameter values. The subroutine has been used extensively to compute a three-fold integral which includes numerous cases of eq. (5) as a part of the integral. Independent numerical integration results are in agreement with subroutine results to within three significant figures-the accuracy of the numerical integration. Table II gives the average execution times in milliseconds of the subroutine for various argument combinations. The times are for an IBM 360/67, which, for comparison, exponentiates in approximately 0.1 milliseconds.

Acknowledgments. It is a pleasure to thank Dr. Carl deBoor for commenting on a draft of this paper.

\section*{References}
1. Abromowitz, M., and Stegun, I.A. Iandbook of Mathematical Functions. National Bureau of Standards, U.S. Gov. Print. Off., Washington, D.C., 1967, p. 263.
2. Hastings, C. Approximations for Digital Computers. Princeton University Press, Princeton, N.J., 1955, p. 155.
3. Luke, Y.L. The Special Functions and Their Approximations Vol II. Academic Press, New York and London, 1969, p. 196.
4. Shanks, D. Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34 (1955), 1.
5. Takenaga, R. On the evaluation of the incomplete gamma function. Math. Computation 20 (Oct. 1966), 606.

\section*{Algorithm}

FUNCTION GAMINC ( \(\left.A, X_{1}, X 2, G A M\right)\)
C COMPUTE THE DIFFERENCE BETWEEN TWO MODIFIED INCOMPLETE

 C BE.LE. EXPLIM.
C EXPLIM CAN BE.A MACHINE DEPENDENT CONSTANT WHICH PREVENTS C EXPGNENTIATIGN QVER- AND UNDERFLQWS. IT IS USED HERE TO \(C\) SUPPRESS THE CALCULATION OF MIGAM(A, XZ, WHEN THE VALUE QF


Modified Incomplete Gamma Function [S14]
[Wayne Fullerton, Comm. ACM 15, 11 (Nov. 1972), 993-995]
Andrew Y. Schoene [Recd 18 May 1977 and 13 October 1977]
Research Laboratories, General Motors Technical Center, General Motors Corporation, Warren, MI 48090

The following changes were made to ACM Algorithm 435:
(1) .LE. in the line labeled 10 was changed to .LT. to conform with the algorithm presented in the text.
(2) LLE. in the line following the line labeled 20 was changed to .LT. This change is recommended because the continued fraction [eq. (11)] is more accurate than the asymptotic expansion [eq. (18)] at \(X=-12 .{ }^{1}\)

\footnotetext{
\({ }^{1}\) Equation numbers in this Remark refer to those in ACM Algorithm 435, referenced above.
}

Note, also, that the expression for \(T_{i}\) following eq. (10) contains a misprint: the numerator should read \(i-a\) rather than \(i+a\).
With changes (1) and (2) the algorithm was executed on an IBM 370/168 using the Fortran H extended ( \(\mathrm{Opt}=2\) ) compiler, and Table I of Algorithm 435 was approximately reproduced (see Table I of this Remark).
The proposed method for extending the range of applicability of GAMINC is, however, not entirely satisfactory. It is the purpose of this Remark to show how Fullerton's methods may be successfully employed to compute his modified incomplete Gamma function for an extended parameter range. A Fortran function. subprogram GAMDRV which accomplishes this is included here; it serves partly as a driver for GAMINC and should be a useful companion to it.
To compute \(\operatorname{GAMINC}(A, X 1, X 2)\) for \(2<a<15\), Fullerton suggests the use of forward recursion. However, satisfactory accuracy cannot be maintained for all values of the parameters due to numerical instability of the recursion. For simplicity we consider only the modified incomplete Gamma function defined by Fullerton as \(G(a, x)=\int_{0}^{x}|y|^{a-1} \exp (-y) d y\). Using the methods of Gautschi [1], forward recursion for \(G(a, x)\) can be shown to be numerically unstable for \(x>0\) and for \(x<0\) with \(a>|x|\). For example, computing \(G(12.5,2)\) by double-precision forward recursion starting from \(G(1.5,2)\) yields a value with the incorrect sign.
While recursion cannot be used indiscriminately, it is possible to extend \(G(a, x)\) to the range \(2<a<15\) while maintaining approximately six-significantdigit accuracy. This can be done most simply by dividing the \(x\)-axis into three regions and using a different extension in each region. This task can be appreciably simplified by evaluating the term \(|x|^{\mid-1}\) in eqs. (11) and (17) of Algorithm 435 in double precision. The Fortran function subprogram \(\operatorname{GAMDRV}(A, X)\), when used in conjunction with a version of GAMINC modified as suggested above, will compute \(G(a, x)\) for \(1 \leq a<15\) and -EXPLIM \(\leq x<\infty\) to an accuracy of approximately six significant digits. EXPLIM is a machine-dependent constant (with the value 20 . for the IBM \(360 / 370\) series) used in GAMINC to prevent exponent overflow. The extensions employed by \(G A M D R V\) are sketched by region as follows.
Region 1: \(x \geq 5\). GAMDRV also makes use of the complementary incomplete Gamma function denoted by \(C G(a, x)=\int_{x}^{\infty} y^{a-1} \exp (-y) d y\) and its continued fraction approximation [eq. (10)] from Algorithm 435. Since up to three digits of accuracy may be lost in the subtraction \(G(a, x)=\operatorname{Gamma}(x)-C G(a, x)\) for values of \(a\) near 15, it is necessary to use double precision exclusively in this region. Five terms of eq. (10) are used, with \(T_{5}\) represented by a linear function of \(a\), selected to fit for \(x=5,2 \leq a \leq 3\). After subtraction from Gamma \((x)\) this basic approximation yields six-digit accuracy in the region \(x \geq 5, a \leq .5(x+4)\) (this bound is slightly conservative to simplify the code). For larger \(a\), the recurrence relation \(C G(a+1, x)=a \cdot C G(a, x)+x^{a} \cdot \exp (-x)\) is employed after first reducing \(a\) to get a sufficiently accurate starting value.

Region 2: \(-12 \leq x<5\). If \(|x|^{a-1}\) in eqs. (11) and (17) of GAMINC is evaluated in double precision as suggested above, then GAMINC achieves approximately six-digit accuracy for \(2<a<15\). On the assumption that this has been done, \(G A M D R V\) calls \(G A M I N C\) to obtain the value, If GAMINC is not so modified, then as a very rough approximation the relative error increases linearly with \(a\), reaching levels of \(20 \times 10^{-6}\) for \(a>10\).
We consider further the evaluation of eqs. (11) and (12). On the IBM 370 series the double-precision constants in eq. (12) cause some subexpressions of eq. (11) to be evaluated in double precision while others involving only \(a\) and \(z\) are evaluated in single precision and the results subsequently extended to double precision. If double precision is used for the entire expression (including \(|x|^{a-1}\) ), then only six terms of the continued fraction are required to achieve six-digit accuracy throughout the entire range \(1 \leq a<15\). A slight complication in the coding is that different approximations to \(T_{6}\) must be used for \(x<0\) and \(x>0\). The following were obtained by a least squares fit to computed values of \(T_{6}\) for

Table I. Relative Errors of GAMDRV ( \(\times 10^{6}\) )
\begin{tabular}{cccccc}
\hline & & & \(a\) & \\
\cline { 2 - 6 }\(x\) & 1.50 & 5.50 & 8.00 & 11.00 & 14.50 \\
\hline-18.00 & 0.61 & 2.57 & 0.87 & 1.19 & 3.63 \\
-14.00 & 0.10 & 1.40 & 0.85 & 1.03 & 2.79 \\
-12.00 & 0.14 & 0.07 & 0.12 & 0.12 & 0.30 \\
-8.00 & 0.65 & 0.12 & 0.01 & 0.57 & 0.00 \\
-4.00 & 0.21 & 0.36 & 0.12 & 0.15 & 0.18 \\
-2.00 & 0.12 & 0.10 & 0.05 & 0.01 & 0.25 \\
-0.50 & 0.15 & 0.32 & 0.12 & 0.14 & 0.25 \\
0.50 & 0.84 & 0.75 & 0.59 & 0.29 & 0.63 \\
2.00 & 0.17 & 0.36 & 0.29 & 0.15 & 0.18 \\
5.00 & 0.03 & 0.62 & 0.18 & 0.00 & 0.33 \\
7.00 & 0.03 & 1.64 & 0.05 & 0.02 & 0.02 \\
\hline
\end{tabular}

Table II. Execution Times of GAMDRV in Milliseconds on the IBM 370/168. (The numbers in parentheses represent the original GAMINC values.)
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{\(a\)} \\
\cline { 2 - 5 } & \(x\) & 1.5 & 5. & 10. \\
\hline\(X<-12\). & \(.21(.20)\) & .23 & .36 & .39 \\
\((-12 . \leq X<-1.1 .<X\) & \(.27(.28)\) & .28 & .28 & .28 \\
\(<5)\). & & & & \\
\(|X| \leq 1\). & \(.20(.17)\) & .21 & .21 & .21 \\
\(X=5\). & \(.21(.20)\) & .27 & .34 & .38 \\
\(X=10\). & .21 & .25 & .33 & .37 \\
\(X=15\). & .21 & .25 & .31 & .34 \\
\hline
\end{tabular}
the critical regions \(-12 \leq x \leq-10,1 \leq a \leq 2\) and \(4 \leq x \leq 5,1 \leq a \leq 2\), respectively:
\[
\begin{array}{rlrl}
T_{6}= & .92391+x \cdot(-.065094+.00073933 \cdot x) & & \\
& +a \cdot(.020541+.0020402 \cdot a+.0060327 \cdot x), & x<0 \\
= & & \\
& +.96410-x \cdot(.029325+.0012057 \cdot a) & & \\
& +.0034758 \cdot a, & x>0 .
\end{array}
\]

This six-term double-precision approximation executes slightly faster than the original eight-term approximation on the \(370 / 168\). Double-precision arithmetic is only modestly slower than single precision on this computer.

Region 3: \(x<-12\). GAMINC yields approximately six-digit accuracy for \(2 \leq\) \(a \leq 6\) and is called by \(G A M D R V\) for such \(a\). Larger \(a\) are reduced to the range \(1<a \leq 2\) (it is necessary to start the recursion with as accurate an \(a\) value as possible) and the forward recursion relation \(G(a+1, x)=-x^{a} \cdot \exp (-x)-\) \(a \cdot G(a, x)\) employed. This recursion is essentially stable in the above range, although accuracy deteriorates slightly for \(a\) near 15 where the maximum observed relative error of \(5 \times 10^{-6}\) occurs.

Table I presents the absolute value of the relative errors (multiplied by \(10^{6}\) ) for selected values of \(a\) and \(x\) using \(G A M D R V\) in conjunction with the modified version of GAMINC described above. The exact values were found as described in Algorithm 435. For \(x>8\) the observed relative errors were always less than 1. Execution times of \(G A M D R V\) for various arguments are given in Table II.

\section*{REFERENCES}
1. Gautschi, W., and Klein, B.J. Recursive computation of certain derivatives-A study of error propagation. Comm. ACM 13, 1 (Jan. 1970), 7-9.

\section*{ALGORITHM}


```

C
23\emptyset NRECUR = \emptyset SCH\emptyset8\emptyset5\emptyset
23\emptyset NRECUR = \emptyset SCH\emptyset8\emptyset5\emptyset
RANGE = . 5* (X+4.)
C TEST TO SEE IF FORWARD RECURSION IS NECESSARY.
IF (A .LE. RANGE .OR. X .GE. 22.) GO TO 235
C
NRECUR = INT(A-RANGE) + 2
A = A-FLOAT (NRECUR)
235 DA = A
DX = X
DEXPXA = DEXP(-DX) * DABS (DX)**DA SCH\emptyset855\emptyset
DGAM1 = DEXPXA/(DX+(1.D\emptyset-DA)/ S- SCH\emptyset86\emptyset\emptyset
1 (I.D\emptyset + 1.D\emptyset/(DX+(2.D\emptyset-DA)/ SCH\emptyset865\emptyset
2 (1.D\emptyset + 2.D\emptyset/(DX+(3.D }-\textrm{DA})/~
3 (1.D\emptyset+3.D\emptyset/(DX+(4.D D-DA)/

```

```

 IF (NRECUR .EQ. \emptyset) GO TO 25\emptyset
 C
C DO FORWARD RECURSION FOR COMPLEMENTARY INCOMPLETE GAMMA SCH\emptyset895\emptyset
DO 24\emptyset K=1,NRECUR
DGAMI = DGAMI*DA + DEXPXA
DA = DA+1.D\emptyset
DEXPXA = DEXPXA*DX
24\emptyset CONTINUE
25\emptyset GAMDRV = DGAMMA(DA) - DGAM1
A = ASAVE
RETURN
C LAST CARD OF FUNCTION SUBPROGRAM GAMDRV
END
C
FUNCTION GAMINC (A,X1,X2) SCH\emptyset99\emptyset\emptyset
C
C MODIFIED VERSION OF ALGORITHM 435, MODIFIED INCOMPLETE GAMMA
FUNCTION, TO BE USED WITH FUNCTION SUBPROGRAM GAMDRV. THE
MODIFICATIONS ARE DESCRIBED IN THE ACCOMPANYING TEXT.
C
DOUBLE PRECISION DA,DZ,T6
DATA EXPLIM/2\emptyset./
DATA ZERO/\emptyset./,ONE/1./,FIVE/5./,TWELVE/12./
Z = X1
SGN = }\varnothing\mathrm{ .
TIM = -1.
EXPDIF = 1.
5 IF (Z .NE. ZERO) GO TO 1\emptyset SCH1\emptyset55\emptyset
GAM1 = }\varnothing\mathrm{ .
SGN = SGN + TIM SCH1\emptyset65\emptyset
GO TO 4\emptyset
1\emptyset IF (Z .LT. FIVE) GO TO 2\emptyset
C USE EQUATION 1\emptyset (SEE REFERENCE)
GAM1 = - EXPDIF * Z**A/ (Z+(1.-A)/(1.+1./(Z+(2.-A)/(1.+2. SCH1\emptyset85\emptyset
1 /(Z+(3.-A)/(1.+3./(Z+1.7)))))))
GO TO 4\emptyset
2\emptyset AZ = ABS (Z)
AZ = ABS (Z)
SGN = SGN + TIM SO TO SO SCH111\emptyset\emptyset
IF (AZ .GT. ONE) GO TO 25
C USE EQUATION 17
GAM1 = EXPDIF*Z/A* DBLE(AZ)**(A-1.) SCH1125\emptyset
*(1.\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset +Z/(A+1.) *(.9999999+Z/(A+2.) SCH113\emptyset\emptyset
2*(.9999999 +Z/(A+3.) *(1.\emptyset\emptyset\emptyset\emptyset\emptyset8+Z/(A+4.) SCH1135\emptyset
*(1.\emptyset\emptyset\emptyset\emptyset\emptyset5 +Z/(A+5.) *(.9994316+Z/(A+6.) SCH114\emptyset\emptyset
4*(.9995587 +Z/(A+7.) *(1.\emptyset31684+Z/(A+8.) SCH1145\emptyset
* * 1.\emptyset28125))))))))
GO TO 4\emptyset
C
C USE EQUATIONS 11 AND 12. EVALUATION IS DONE IN DOUBLE PRECISION.
C
SCH\emptyset8\emptyset\emptyset\emptyset
SCH\emptyset81\emptyset\emptyset
C
SCH\emptyset815\emptyset
SCH\emptyset82\emptyset\emptyset
SCH\varnothing830
SCH\emptyset835\emptyset
SCH\emptyset85\emptyset\emptyset
SCH\emptyset88\emptyset\emptyset
SCH\emptyset885\emptyset
SCH\emptyset895\emptyset
SCH\emptyset9\emptyset\emptyset\emptyset
SCH }99\emptyset5
SCH\emptyset91\emptyset\emptyset
SCH\varnothing91\emptyset\emptyset
SCH\emptyset92\emptyset\emptyset
SCH\emptyset925\emptyset
SCH\emptyset93\emptyset\emptyset
SCH\varnothing935\emptyset
SCH\emptyset94\emptyset\emptyset
SCH\emptyset945\emptyset
SCH\emptyset985\emptyset
SCHØ99øØ
SCH $\emptyset 995 \emptyset$
SCH1 $\varnothing \emptyset \emptyset ~$
SCH1 $\emptyset \emptyset \emptyset \emptyset$ SCH1 1 1 \emptyset SCH1 $15 \emptyset$
SCH1\emptyset2\emptyset\emptyset
SCH1\emptyset25\emptyset
SCH1\emptyset3\emptyset\emptyset
SCH1\emptyset35\emptyset
SCH1\emptyset4\emptyset\emptyset
SCH1\emptyset4\emptyset\emptyset
SCH1\emptyset45\emptyset
SCH1\emptyset5\emptyset\emptyset
SCH1\emptyset550
GAM1 = \emptyset.
SCH1\emptyset6\emptyset\emptyset
SCH1\emptyset65\emptyset
SCH1\emptyset7\emptyset\emptyset
SCH1\emptyset75\emptyset
SCH1\emptyset8\emptyset\emptyset
SCH1\emptyset85\emptyset
SCH1\emptyset9\emptyset\emptyset
SCH1\emptyset95\emptyset
SCH11\emptyset\emptyset\emptyset
IF (Z .LT. -TWELVE) GO TO 3\emptyset SCH11\emptyset5\emptyset
IF (AZ .GT. ONE) GO TO 25 SCH1115\emptyset
SCH11200
SCH111\emptyset\emptyset
SCH112\emptyset\emptyset
SCH1125\emptyset
SCH113\emptyset\emptyset
SCH1135\emptyset
SCH114\emptyset\emptyset
SCH1145\emptyset
SCH1145\emptyset
SCH115\emptyset\emptyset
SCH1155\emptyset
SCH116\emptyset\emptyset
SCH116\emptyset\emptyset
SCH117\emptyset\emptyset
25 DA = A
SCH1175\emptyset
DZ = Z SCH118\emptyset\emptyset
IF (Z .LT. \emptyset.) T6 = .92391D\emptyset + DZ*(-.65\emptyset94D-1 +..73933D-3*DZ) SCH1185\emptyset
1 + DA*(.2\emptyset541D-1 + .2\emptyset4\emptyset2D-2*DA + .6\emptyset327D-2*DZ)

```

```

SCH118\emptyset\emptyset
1. +.34758D-2*DA
GAM1 = EXPDIF*DZ/DA * DBLE (AZ)**(DA-1.D }\emptyset
SCH119\emptyset\emptyset
SCH1195\emptyset
SCH12\emptyset\emptyset\emptyset
SCH12\emptyset5\emptyset

```
```

 /(1.D \emptyset- DA *DZ/(DA * DA+ 1.D }\emptyset+1.D\emptyset*DZ/((DA+2.D\emptyset) SCH121\emptyset\emptyset
 *(1.D\emptyset-(DA+1.D\emptyset)*DZ/((DA+ 2.D\emptyset)*(DA+ 3.D\emptyset+2.D\emptyset*DZ/((DA+ 4.D\emptyset) SCE1215\emptyset
 3*(1.D }\emptyset-(DA+2.D\emptyset)*DZ/((DA+ 4.D\emptyset)*(DA+ 5.D\emptyset+3.D\emptyset*DZ/((DA+ 6.D\emptyset) SCH122\emptyset\emptyset
 * *(1.D }\emptyset-(DA+3.D\emptyset)*DZ/((DA+ 6.D ())*(DA+ 7.D D+4.D\emptyset*DZ/((DA+ 8.D\emptyset) SCH1225\emptyset
 5*(1.D\emptyset-(DA+4.D\emptyset)*DZ/((DA+ 8.D\emptyset)*(DA+ 9.D\emptyset+5.D\emptyset*DZ/((DA+1\emptyset.D\emptyset) SCH123\emptyset\emptyset
 6 * T6))))))))))))))))))))
 GO TO 40
 C USE EQUATION 18 AND SHANKS E1 PROCESS ONCE SCH1245\emptyset
3\emptyset GAM1 = -EXPDIF*AZ**(A-1.)*(1.+(A-1.)*(1.+(A-2.)* SCH125\emptyset\emptyset
1 (1.+(A-3.)*(1.+(A-4.)*(1.+(A-5.)/(Z-A+6.))/Z)/Z)/Z)/Z) SCH1255\emptyset
4\emptyset IF (TIM .GT. ZERO) GO TO 55 SCH126\emptyset\emptyset
GAMINC = GAM1
IF (ABS(X1-X2) .GT. EXPLIM) GO TO 5\emptyset SCH127\emptyset\emptyset
C
IF TRUE, CONTRIBUTION AT X2 IS .LT. 1.E-7 * CONTRIBUTION AT X1, SCH128\emptyset\emptyset
C PROVIDED X2 .GT. X1. SCH1285\emptyset
Z = X2
EXPDIF = EXP(X1-X2)
TMM = 1.
GO TO }
5\emptyset GAMI = \emptyset.
55 GAMINC = GAM1 - GAMINC
SCH1315\emptyset
IF (SGN .NE. ZERO) GAMINC = GAMINC - SIGN(GAMMA(A)*EXP(X1),SGN) SCH132\emptyset\emptyset
RETURN
C LAST CARD OF FUNCTION SUBPROGRAM GAMINC SCH133\emptyset\emptyset
END SCH1335\emptyset
C
DOUBLE PRECISION FUNCTION COMGAM(A,X) SCH138\emptyset\emptyset
C
C COMPUTES THE INCOMPLETE GAMMA FUNCTION BY SUBTRACTING A
CONTINUED FRACTION EXPANSION FOR THE COMPLEMENTARY INCOMPLETE SCH1395\emptyset
GAMMA FUNCTION FROM DGAMMA(X). SCH14\emptyset\emptyset\emptyset
REFERENCE: ABROMOWITZ, M.,AND STEGUN, I.A.. HANDBOOK OF MATHEMATICALSCH14\emptyset5\emptyset
C FUNCTIONS. NATIONAL BUREAU OF STANDARDS, U.S. GOV. PRINT. OFF., SOH141\emptyset\emptyset
C WASHINGTON D.C., 1967, P. 263, FORMULA 6.5.31 SCH1415\emptyset
C
DOUBLE PRECISION DA,DX,TK
DA =A SCH143\emptyset\emptyset
DX=X SCH1435\emptyset
TK=\emptyset.D\emptyset SCH144\emptyset\emptyset
LAST=2\emptyset SCH1445\emptyset
DO 1\emptyset K=1,LAST SCH145\emptyset\emptyset
FK = FLOAT (LAST+1-K) SCH1455\emptyset
TK = (DBLE (FK)-DA)/(1.D D+DBLE (FK)/(DX+TK)) SCH146\emptyset\emptyset
1\emptyset
CONTINUE
TK = DEXP (-DX)*DX**DA/(DX+TK) SCH147\emptyset\emptyset
COMGAM = DGAMMA(DA) - TK SCH1475\emptyset
RETURN SCH148\emptyset\emptyset
C LAS'T CARD OF FUNCTION SUBPROGRAM COMGAM SCH1485\emptyset
END SCH149\emptyset\emptyset
DOUBLE PRECISION FUNCTION SUMSER(A,X) SCH153\emptyset\emptyset
C SCH1535\emptyset
C COMPUTES THE INCOMPLETE GAMMA FUNCTION FOR -EXPLIM .LE. X .LT. 1 }\emptyset\mathrm{ . SCH154片
C THE SERIES IS TRUNCATED AS DESCRIBED BY FULLERTON. SCH1545\emptyset
C REFERENCE: ABROMOWITZ, M.,AND STEGUN, I.A.. HANDBOOK OF MATHEMATICALSCH155\emptyset\emptyset
C FUNCTIONS. NATIONAL BUREAU OF STANDARDS, U.S. GOV. PRINT. OFF., SCH1555\emptyset
C WASHINGTON D.C., 1967, P. 262, FORMULA 6.5.29 SCH156\emptyset\emptyset
C
DOUBLE PRECISION SUM,TERM,X2,ISIGN
SCH1565\emptyset
DOUBLE PRECISION SUM,TERM,X2,ISIGN SCH157\emptyset\emptyset
DOUBLE PRECISION XX,AA SOCH15750
IF (X .NE. \emptyset.) GO TO 5 SCH158\emptyset\emptyset
SUMSER = \emptyset.D\emptyset SCH1585\emptyset
RETURN SCH159\emptyset\emptyset
5 XX = X SCH1595\emptyset
AA = A SCH16\emptyset\emptyset\emptyset
TERM = 1.D\emptyset/AA SCH16\emptyset5\emptyset
SUM = TERM - XX/(AA+1.D\emptyset) SCH161\emptyset\emptyset
ISIGN=1.D\emptyset SCH1615\emptyset
X2 = XX*XX
DO 1\emptyset N=2,1\emptyset\emptyset
FN = FLOAT(N)
SCH162ф\emptyset
SCH1625\emptyset
SCH1630\emptyset
TERM = X2*ISIGN/(2.D\emptyset* (AA+DBLE (FN)))
SCH1635\emptyset

```


\title{
Algorithm 436 \\ Product Type Trapezoidal Integration [D1]
}

\author{
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May
} 1971]
Department of Mathematics, Clemson University, Clemson, SC 29631

Key Words and Phrases: numerical integration, product type quadrature, trapezoidal integration

CR Categories: 5.16
Language: Fortran

\section*{Description}

This subroutine uses the product type trapezoidal rule compounded \(n\) times to approximate the value of the integral
\(\int_{a}^{b} f(x) g(x) d x\).
The approximating sum is
\(\frac{h}{6} \sum_{j=1}^{n}(f(a+(j-1) h), f(a+j h))\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{g(a+(j-1) h)}{g(a+j h)}\),
where \(h=(b-a) / n\). Note that if \(g(x) \equiv 1\) (or \(f(x) \equiv 1\) ), the rule reduces to the regular trapezoidal rule. The procedure was proposed and discussed by Boland and Duris in [1].

The subroutine was written in Fortran using double precision arithmetic and was checked on an IBM 360 Model 50 . The calling parameters for the routine are as follows. \(A\) is the name for the lower limit of integration, and \(B\) is the name for the upper limit. \(N\) is the number of times the formula is to be compounded. The basic interval \([A, B]\) is subdivided into \(N\) subintervals each of length \((B-A) / N\) and the rule is applied to each subinterval. \(F N\) and GN are names of double precision FUNCTION subprograms which evaluate the functions \(f(x)\) and \(g(x)\), respectively. These are to be supplied by the user. The result is stored in VINT.

There are no machine dependent parameters.

\section*{References}
1. Boland, W.R., and Duris, C.S. Product type quadrature formulas. BIT 11, 2 (1971), 139-158.
```

Algorithm
SUBR\varnothingUTINE PTKAP(A, B, N, FN, GN, VINT)
C THIS SUBR\emptysetUTINE USES THE PRODUCT TYPE TKAPEZOIDAL RULE
COMP\emptysetUNDED N TIMES T| APPRØXIMATE THE INTEGRAL FROM A TO B
GF THE FUNCTION FN(X) * GN(X). FN AND GN ARE FUNCTION
C SUBPRGGRAMS WHICH MUST BE SUPPLIED BY THE USER. THE
C RESULT IS STORED IN VINT.
DथUBLE PRECISION A, AG, AM(2,2), B, F(2), FN,G(2),
* DATA AM(1,1), AM(2,2) H, VINT, X, DBLE
DATA AM(1,1), AM(2,2) /2 * 2.DO/, AM(1,2), AM(2,1)
* H}=(\mp@subsup{B}{}{\prime2}-A),DO
H=(B - A)/ DBLE(FLGAT(N))

```
```

VINT = 0.DO
X=A
F(2)=FN(A)
G(2)=GN(A)
DO 2 I = 1,N
F(1) = F(2)
G(1)=G(2)
X=X + H
F(2) = FN(x
00 % = 1,
AG = O.DO
D0 1 K = 1, 2
AG = AG + AM(J,K) * G(K)

```

```

VINT = H * VINT / G.DO
VINT =
RETURN

```

\section*{Algorithm 437}

\section*{Product Type Simpson's Integration [D1]}
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 1971]
Department of Mathematics, Clemson University, Clemson, SC 29631

Key Words and Phrases: numerical integration, product type quadrature, Simpson's rule

CR Categories: 5.16
Language: Fortran

\section*{Description}

This subroutine uses the product type Simpson's rule compounded \(n\) times to approximate the value of the integral
\(\int_{a}^{b} f(x) g(x) d x\).
The approximating sum is
\(\frac{h}{30} \sum_{j=1}^{n}\left(f(a+(j-1) h), f\left(a+\left(j-\frac{1}{2}\right) h\right), f(a+j h)\right)\)
\[
\left(\begin{array}{rrr}
4 & 2 & -1 \\
2 & 16 & 2 \\
-1 & 2 & 4
\end{array}\right)\left(\begin{array}{c}
g(a+(j-1) h) \\
g\left(a+\left(j-\frac{1}{2}\right) h\right) \\
g(a+j h)
\end{array}\right)
\]
where \(h==(b-a) / n\). Note that if \(g(x) \equiv 1\) (or \(f(x) \equiv 1\) ), the rule reduces to the regular Simpson's rule. The procedure was proposed and discussed by Boland and Duris in [1].

The subroutine was written in Fortran using double precision arithmetic and was checked on an IBM 360 Model 50 . The calling parameters for the routine are as follows. \(A\) is the name for the lower limit of integration and \(B\) is the name for the upper limit. \(N\) is the number of times the formula is to be compounded. The basic interval \([A, B]\) is subdivided into \(N\) subintervals each of length \((B-A) / N\) and the rule is applied to each subinterval. \(F N\) and \(G N\) are names of double precision FUNCTION subprograms which evaluate the functions \(f(x)\) and \(g(x)\), respectively. These are to be supplied by the user. The result is stored in VINT.

There are no machine dependent parameters.

\section*{References}
1. Boland, W.R., and Duris, C.S. Product type quadrature formulas. BIT 11, 2 (1971), 139-158.

\section*{Algorithm}

SUBROUTINE PSIMP(A,B,N,FN,GN,VINT)
C THIS SUBRøUTINE USES THE PRQDUCT TYPE SIMPSGIN RULE
C COMPGUNDED N TIMES TO APPROXIMATE THE INTEGHAL FRGM A TE B C SUBPRØGRAMS WHICH MUST BE SUPPLIED BY THE USEK. THE
C KESULT IS STORED IN VINT.
```

 DOUBLE PRECISION A, AG, AM(3,3), B, F(3), FN, G(3),
 * GN, H, VINT, X(2), DBLE
 DATA AM(1,1), AM(3,3) 12 * 4.DO/, AM(1,2), AM(2,1),
 *
 AM(2,3), AM(3,2) 14*2,DO%, AM(1,3), AM(3,1)
 * 12 *-1.DO/, AM(2,2) 116.D0/
 H=(B - A)/ DBLE(FLgAT(N))
 X(1) = A + H/2.DO
 X(2) = A + H
 VINT =0.DO
 F(3)=FN(A)
 G(3)=GN(A)
 D0 3 I = 1,N
 F(1) =F(3)
 G(1)=G(3)
 D 1 J = 1,2
 F(J+1)=FN(x(J))
 G(J+1)=GN(X(J))
 x(J)}=x(J)+
 AG = O.DO
 D0 2 K = 1, 3
 AG =AG + AM(J,K)*G(K)
 2
 3 VINT = VINT + F(J) * AG
 VINT = H * VINT / 30.DO
 RETURN
 END
    ```

\section*{Algorithm 438}

\title{
Product Type Two-point Gauss-Legendre-Simpson's Integration [D1]
}
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 1971]
Department of Mathematics, Clemson University, Clemson, SC 29631

Key Words and Phrases: numerical integration, product type quadrature, Gaussian quadrature, Simpson's rule

CR Categories: 5.16
Language: Fortran

\section*{Description}

This subroutine uses the product type two-point Gauss-Legendre-Simpson's rule compounded \(n\) times to approximate the value of the integral
\(\int_{a}^{b} f(x) g(x) d x\)
The approximating sum is
\[
\begin{array}{r}
\frac{h}{12} \sum_{i=1}^{n}\left(f\left(a+\left(j-\frac{1}{2}-3^{1 / 2} / 6\right) h\right), f\left(a+\left(j-\frac{1}{2}+3^{1 / 2} / 6\right) h\right)\right) \\
\\
\cdot\left(\begin{array}{ccc}
1+3^{1 / 2} & 4 & 1-3^{1 / 2} \\
1-3^{1 / 2} & 4 & 1+3^{1 / 2}
\end{array}\right)\left(\begin{array}{c}
g(a+(j-1) h) \\
g\left(a+\left(j-\frac{1}{2}\right) h\right) \\
g(a+j h)
\end{array}\right),
\end{array}
\]
where \(h=(b-a) / n\). Note that if \(g(x) \equiv 1\), the rule reduces to the regular two-point Gauss-Legendre rule, while if \(f(x) \equiv 1\), it reduces to the regular Simpson's rule. The procedure was proposed and discussed by Boland and Duris in [1].

The subroutine was written in Fortran using double precision arithmetic and was checked on an IBM 360 Model 50. The calling parameters for the routine are as follows. \(A\) is the name for the lower limit of integration and \(B\) is the name for the upper limit. \(N\) is the number of times the formula is to be compounded. The basic interval \([A, B]\) is subdivided into \(N\) subintervals each of length \((B-A) / N\) and the rule is applied to each subinterval. \(F N\) and \(G N\) are names of double precision \(F U N C T I O N\) subprograms which evaluate the functions \(f(x)\) and \(g(x)\), respectively. These are to be supplied by the user. The result is stored in VINT.

There are four machine dependent constants. These are:
(i) \(1+3^{1 / 2} \approx 2.732050807568877\),
(ii) \(1-3^{1 / 2} \approx-0.7320508075688773\),
(iii) \(\frac{1}{2}-3^{1 / 2} / 6 \approx 0.2113248654051871\), and
(iv) \(\frac{1}{2}+3^{1 / 2} / 6 \approx 0.7886751345948129\).

The first constant is assigned to \(A M(1,1)\) and \(A M(2,3)\), the second to \(A M(1,3)\) and \(A M(2,1)\), while the third and fourth are used in the calculation of \(X(1)\) and \(X(2)\), respectively.

\section*{References}
1. Boland, W.R., and Duris, C.S. Product type quadrature formulas. BIT 11, 2 (1971), 139-158.

\section*{Algorithm}

SUBRDUTINE PPPGS(A, B, N, FN, GN, VINT)
THE INTEGĨAL FROM A Te B bF THE FUNCTION FN(X) * GN(X).
FiN AND GN ARE FUNCTION SUBPR日GKAMS WHICH MUST BE SUPPLIED
C by the user. the result is stored in vint.
    DQUBLE PRECISION \(A, A G, A M(2,3), B, F(2), F N, G(3)\),
    * DATA AM (1, 1), AM(2,3) 12 , VINT, X(2), Y(2), DBLE
    DATA AM \((1,1)\), AM(2,3) \(12 * 2.732050807568877 D 0 /\),
    * \(A M(1,2), A M(2,2) 12 * 4 . D 0 \% A M(1,3)\), AM(2,1)
    * 12 * -.732050807568877300/
        \(H=(B-A) / \operatorname{DBLE}(F L Q A T(N))\)
        \(X(2)=A+788675134594812900\) * \(H\)
        \(X(2)=A+.788675134594812900 * H\)
    \(Y(1)=A+H / 2 . D 0\)
    \(Y(2)=A+H\)
    VINT \(=0\). DO
    \(\begin{array}{ll}G(3)=G N(A) \\ D 0 & \\ & =1\end{array}\)
    \(\begin{aligned} D 0^{3} 1 & =1, N \\ G(1) & =G(3)\end{aligned}\)
        D0 \(1 \mathrm{~J}=1,2\)
        \(F(J)=F N(X(J))\)
        \(\mathrm{G}(J+1)=\operatorname{GN}(Y(J))\)
        \(X(J)=X(J)+H\)
\(Y(J)=Y(J)+H\)
        ро \(3 \mathrm{~J}=1.2\)
            \(A G=0 . D O\)
            \(D \operatorname{lok}=1,3\)
    \(2 \quad A G=A G+A M(J, K) * G(K)\)
        \(\begin{array}{rl}\text { VINT } & =\text { VINT }+F(J) * A \\ \text { VINT }=H & * \text { VINT } 12 . D O\end{array}\)
        RETURN
    END

\section*{Algorithm 439}

\section*{Product Type Three-point Gauss-Legendre-Simpson's Integration [DI]}
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 1971]
Department of Mathematics, Clemson University, Clemson, SC 29631

Key Words and Phrases: numerical integration, product type quadrature, Gaussian quadrature, Simpson's rule

CR Categories: 5.16
Language: Fortran \({ }^{\text {' }}\)

\section*{Description}

This subroutine uses the product type three-point Gauss-Legendre-Simpson's rule compounded \(n\) times to approximate the value of the integral
\(\int_{a}^{b} f(x) g(x) d x\).
The approximating sum is
\[
\begin{array}{r}
\frac{h}{9} \sum_{j=1}^{n}\left(f\left(a+\left(j-\frac{1}{2}-\frac{1}{2}(3 / 5)^{1 / 2}\right) h\right), f\left(a+\left(j-\frac{1}{2}\right) h\right),\right. \\
\left.f\left(a+\left(j-\frac{1}{2}+\frac{1}{2}(3 / 5)^{1 / 2}\right) h\right)\right) \\
\cdot\left(\begin{array}{ccc}
\frac{3}{4}\left(1+(5 / 3)^{1 / 2}\right) & 1 & \frac{3}{4}\left(1-(5 / 3)^{1 / 2}\right) \\
0 & 4 & 0 \\
\frac{3}{4}\left(1-(5 / 3)^{1 / 2}\right) & 1 & \frac{3}{4}\left(1+(5 / 3)^{1 / 2}\right)
\end{array}\right)\left(\begin{array}{c}
g(a+(j-1) h) \\
g\left(a+\left(j-\frac{1}{2}\right) h\right) \\
g(a+j h)
\end{array}\right),
\end{array}
\]
where \(h=(b-a) / n\). Note that if \(g(x) \equiv 1\), the rule reduces to the regular three-point Gauss-Legendre rule, while if \(f(x) \equiv 1\), it reduces to the regular Simpson's rule. The procedure was proposed and discussed by Boland and Duris in [1].

The subroutine was written in Fortran using double precision arithmetic and was checked on a IBM 360 Model 50. The calling parameters for the routine are as follows. \(A\) is the name for the lower limit of integration and \(B\) is the name for the upper limit. \(N\) is the number of times the formula is to be compounded. The basic interval \([A, B]\) is subdivided into \(N\) subintervals each of length \((B-A) / N\) and the rule is applied to each subinterval. \(F N\) and \(G N\) are names of double precision \(F U N C T I O N\) subprograms which evaluate the functions \(f(x)\) and \(g(x)\), respectively. These are to be supplied by the user. The result is stored in VINT.

There are four machine dependent constants. These are:
(i) \(\frac{3}{4}\left(1+(5 / 3)^{1 / 2}\right) \approx 1.718245836551854\),
(ii) \(\frac{3}{4}\left(1-(5 / 3)^{1 / 2}\right) \approx-0.2182458365518542\),
(iii) \(\frac{1}{2}\left(1-(3 / 5)^{1 / 2}\right) \approx 0.1127016653792583\), and
(iv) \(\frac{1}{2}\left(1+(3 / 5)^{1 / 2}\right) \approx 0.8872983346207417\).

The first constant is assigned to \(A M(1,1)\) and \(A M(2,3)\), the second
to \(A M(1,3)\) and \(A M(2,1)\), while the third and fourth are used in the calculation of \(X(1)\) and \(X(2)\), respectively.

\section*{References}
1. Boland, W.R., and Duris, C.S. Product type quadrature formulas. BIT 11, 2 (1971), 139-158.

\section*{Algorithm}

SUBROUTINE P3PGS ( \(A, B, N, F N, G N, V I N T)\)
C THIS SUBKøUTINE USES THE PRQDUCT TYPE THREE-PQINT GAUSSC LEGENDRE-SIMPSON RULE COMPQUNDED N TIMES TO APPROXIMATE C THE INTEGRAL FROM A TE B GF THE FUNCTION FN(X) * GN(X). C FN AND GN ARE FUNCTIEN SUBPREGRAMS WHICH MUST BE SUPPLIED C BY THE USER. THE KESULT IS STGKED IN VINT.

DQUBLE PRECISION \(A, A G, A M(2,3), B, F(2), F N, G(3)\),
* \(\mathrm{GATA} A M(1,1), \mathrm{GN}, \mathrm{H}, \mathrm{VINT}, \mathrm{X}(2), \mathrm{Y}(2), \mathrm{DBLE}\)

DATA AM (1,1), AM(2,3) \(12 * 1.718245836551854 D 0 /\),
* AM (1,2), AM(2,2) 12* \(1, D 01, A M(1,3)\), AM(2,1)
\(*_{H}=12 *-.2182458365518542 \mathrm{DO}\)
\(H=(B-A) / \operatorname{DBLE}(F L \emptyset A T(N))\)
\(X(1)=A+.112701665379258300 * H\)
\(X(2)=A+.887298334620741700 * H\)
\(x(2)=A+.887298334620741700 * H\)
\(Y(1)=A+H / 2 \cdot D O\)
\(Y(2)=A+H\)
VINT \(=0 . D 0\)
\(G(3)=\) GN(A)
\(D 031=1, N\)
\(A G=F_{N}(Y(1))\)
\(G(1)=G(3)\)
\(001 \mathrm{~J}=1,2\)
\(F(J)=\operatorname{FiN}(X(J))\)
\(G(J+1)=G N(Y(J))\)
\(X(J)=X(J)+H\)
\(Y(J)=Y(J)+H\)
VINT \(=\) VINT + AG * 4.DO * G(2)
DO \(3 \mathrm{~J}=1,2\)
\(A G=0 . D O\)
DO \(2 \mathrm{~K}=1,3\)
2. \(A G=A G+A M(J, K) * G(K)\)

VINT \(=\) VINT \(+F(J)\)
VINT \(=H\) VINT \(9 . D 0\)
VINT \(=\)
RETURN
RETU
END

\section*{Algorithm 440}

\section*{A Multidimensional Monte Carlo Quadrature with Adaptive Stratified Sampling [D1]}
L.J. Gallaher (Recd. 10 Dec. 1970, 20 July 1971) Rich Electronic Computer Center, Georgia Institute of Technology, Atlanta, GA 30319

\author{
Key Words and Phrases: Monte Carlo quadrature, stratified sampling, adaptive quadrature, sequential stratification \\ CR Categories: 5.16, 5.5 \\ Language: Algol
}

\section*{Description}

This procedure evaluates the \(n\)-dimensional integral
\[
\int_{V(a, b)} v(\mathbf{x}) d \mathbf{x}=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} v\left(x_{1}, x_{2}, \cdots, x_{n}\right) d x_{n} \cdots d x_{2} d x_{1}
\]
by the Monte Carlo method. The variance reduction scheme used here is a form of stratified sampling.

The advantages of stratified sampling are well known [1], and the concept of optimum stratification is discussed in most text books on Monte Carlo methods [2, 3, 4]. The advantages of adaptive quadrature are also well known, and many such algorithms have been published in Communications and elsewhere [5, 6, 7]. Combining adaptive quadrature with stratified sampling is a straightforward process \([8,9]\).

The workings of this procedure are somewhat similar to Algorithm 303 [6]. Algorithm 303 is one-dimensional, and while it can be used for multidimension integrals by recursive calls, for more than approximately six dimensions the number of evaluations of the integrand becomes intolerable. The goal of the algorithm given here is to try to overcome this defect of Algorithm 303 and other algorithms like it.

The procedure works as follows:
1. A set of samples is taken, uniformly stratified throughout the entire volume being integrated.
2. Based on the variance in these samples, a decision is made as to whether more samples are needed.
3. If more samples are needed, the volume is cut in half and the entire procedure (but with fewer samples) is repeated on each half, recursively, the halvings being repeated as required. The choice of axis for the halving is based on samples of the gradient.

The result of this process is that the overall stratification is not uniform, but approaches optimum as more and more samples are taken, since more halvings (thus more samples) are taken in the regions of high variance.

A certain amount of caution must be used in the choice of the input parameter \(m\) ( \(m+n\) is the number of samples taken initially).

If the function being integrated is reasonably smooth, relatively low values of \(m\) (say 5 to 10 ) are satisfactory. If \(v(\mathbf{x})\) is known to have sharp peaks, ridges, valleys, or pits, then large values of \(m\) will be necessary in order to avoid missing these high and low spots. A rough rule is that \(m\) should be inversely proportional to the error tolerance and proportional to the logarithm of volume of anomalous regions. If \(V_{A}\) is the fractional volume of the anomalous regions and \(E_{r}\) is the relative error tolerance, then the empirical rule \(m \geq\left(-2 \ln \left(V_{A}\right)\right) / E_{r}\) has proved satisfactory. For this quadrature algorithm tc be useful, the results should be insensitive to the users choice of \(m\), and this has been observed provided \(m\) is not chosen too small. (This difficulty about the occasional need to choose \(m\) shrewdly is characteristic of all adaptive quadrature schemes, whether Monte Carlo or "exact" methods such as Romberg, Simpson, or others.)

As a test of this procedure, 100 evaluations were made of the volume of \(1 / 32\) of a hypersphere in five dimensions (in rectangular coordinates), i.e.
\(\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R}\left\{\begin{array}{l}\text { if } \sum_{1 \leq i \leq 4} x_{i}{ }^{2} \geq R^{2} \text { then } 0 \\ \text { else }\left(R^{2}-\sum_{1 \leq i \leq 4} x_{i}^{2}\right)^{1 / 2}\end{array}\right\} d x_{1} d x_{2} d x_{3} d x_{1}\),
with \(3 \%\) accuracy requested. A histogram is given below of the values obtained.

Number of
\begin{tabular}{lllllllllllll} 
occurrences & 4 & 0 & 8 & 14 & 18 & 16 & 20 & 14 & 5 & 1 \\
\hline\(I_{\text {lbx }} / I_{\text {exact }}\) & 0.94 & 0.95 & 0.96 & 0.97 & 0.98 & 0.99 & 1.00 & 1.01 & 1.02 & 1.03 & 1.04
\end{tabular}
Here \(I_{o b s}\) is the value observed, \(I_{\text {exact }}\) is the correct value. The initial value of \(m\) was 120 , and the average number of function evaluations per integral was 1427. The standard error for the 100 evaluations was approximately \(2 \%\). For corresponding accuracy, about 4.5 times as many samples would have been needed by unstratified uniform sampling.

Finally it should be pointed out that the results given by adaptive stratification are not entirely unbiased in the usual sense of the Monte Carlo method. There is, in fact, a biasing in favor of regions having low values of the magnitude of the gradient. However, this bias should normally be expected to be much smaller than the requested error tolerance.

Acceptable random number generators for this algorithm may be found in [10].

\section*{References}
1. Cochran, William G. Sampling Techniques. Wiley, New York, 1953 (2nd ed. 1963).
2. Kahn, Herman. Applications of Monte Carlo. RM-1237-AEC, Rand Corp., Santa Monica, Calif., Apr. 1954 (revised Apr. 1956).
3. Hammersley, J.M., and Handscomb, D.C. Monte Carlo Methods. J. Wiley, New York, 1964.
4. Spanier, Jerome, and Gedbard, Ely Mi. Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley, Reading, Mass., 1969.
5. McKeeman, William M. Algorithm 145: Adaptive numerical integration by Simpson's rule. Comm. ACM 5 (Dec. 1962), 604.
6. Gallaher, L.J. Algorithm 303: An adaptive quadrature procedure with random panel sizes. Comm. ACM 10 (June 1967), 373-374.
7. Lyness, J.N. Algorithm 379: SQUANK (Simpson quadrature used adaptively-noise killed). Comm. AC'M 13 (Apr. 1970),

260-263.
8. Halton, J.H., and Zeidman, E.A. Monte Carlo integration and sequential stratification. Comput. Sci. Tech. Rep. 13, U. of Wisconsin, Madison, Wis. 1968.
9. Zeidman, E.A. The Evaluation of multidimensional integrals by sequential stratification. (to be published).
10. Halton, John H. A retrospective and prospective survey of the Monte Carlo method. SIAM Rev. 12, 1 (Jan. 1970), 1-63.

Algorithm
real procedure quadmc ( \(n, a, x, b, v x, e s q, m, V a b, r n\) );
value \(n\), esq, \(m, V a b\);
integer \(n, m\); real \(v x\), esq, Vab, rn;
array \(a, x, b\);
comment The procedure parameters are:
\(n\) - number of dimensions, \(n \geq 1\)
\(a\) - array of \(n\) lower bounds
\(x\) - array of \(n\) position coordinates of which \(v\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) is a function, \(x\) is called by name
\(b\) - array of \(n\) upper bounds (it is not required that \(b_{i}>a_{i}\) )
\(v x-\) function to be integrated, \(v x\) must be a function of the array \(x\) (Jensen's device) and be called by name
esq-square of the absolute error tolerance for the quadrature
\(m\) - the number of samples to be taken at the first level is \(m+n\), \(m \geq n\)
\(V a b-\) volume being integrated, i.e. \(V a b=\prod_{1 \leq i \leq n}\left|\left(b_{i}-a_{i}\right)\right|\)
\(r n\) - procedure to give a new random number uniform on the open interval zero to one ( \(0<r n<1\) ) each time referenced, called by name.
All of these parameters are input parameters to be supplied by the user.
Some of the local variables of this procedure are:
\(v b a r-\) average value of \(v(\mathbf{x})\) for \(m+n\) samples, i.e.
\(\bar{v} \equiv \frac{1}{m+n} \sum_{1 \leq i \leq m+n} v\left(\mathbf{x}_{i}\right)\)
\(v s q b a r-\) average value of \(v(\mathbf{x})^{2}\) for \(m+n\) samples, i.e.
\(\overline{v^{2}} \equiv \frac{1}{m+n} \sum_{1 \leq i \leq m+n} v\left(\mathbf{x}_{i}\right)^{2}\)
\(s s q\) - the square of the standard error of the mean (of the integral) for \(m+n\) samples, i.e.
\(\boldsymbol{\sigma}^{2}=\frac{\left(\overline{\nu^{2}}-\bar{\nu}^{2}\right)}{(m+n-1)} V_{a b}^{2}\)
\(v i-\) value of \(v(\mathbf{x})\) at \(i\) th sample, i.e. \(v\left(\mathbf{x}_{i}\right)\)
\(v i p-a\) value of \(v(\mathbf{x})\) such that \(2|v i p-v i|\) is a sample of the magnitude of the \(i\) th component of the average normalized gradient, \(1 \leq i \leq n\)
it - vector of shuffled integers 1 to \(m\)
\(j\) - array of \(n\) different vectors of shuffled integers 1 to \(m\) used in constructing the (uniform) stratification
\(c l\) - point on the \(l\) th axis that divides the volume of integration in half for the next recursive level, i.e. \(c l=(b[l]-a[l]) / 2\),
\(l\) - index of the axis having the largest in magnitude sample of the component of the average normalized gradient.
end of comment;

\section*{begin}
integer \(l\); real \(v b a r, s s q\);
if \(m<n\) then \(m:=n\);
begin
real \(g m, v i, v i p, v s q b a r ;\)
integer itemp, ir, \(k, i\);
array \(h[1: n]\);
integer array \(j[1: n, 1: m]\), \(i t[1: m]\);
for \(i:=1\) step 1 until \(m\) do \(i t[i]:=i\);
```

 for \(k:=1\) step 1 until \(n\) do
 begin
 \(h[k]:=(b[k]-a[k]) / m ;\)
 for \(i:=1\) step 1 until \(m\) do
 begin
 ir \(:=\) entier \((r n \times m)+1 ;\)
 comment \(0<r n<1\);
 itemp \(:=i t[i] ; i t[i]:=i t[i r] ; i t[i r]:=\) itemp;
 end;
 for \(i:=1\) step 1 until \(m\) do \(j[k, i]:=i t[i]\);
 end;
 \(l:=1\);
 vsqbar \(:=\) vbar \(:=g m:=0\);
 for \(i:=1\) step 1 until \(m\) do
 begin
 for \(k:=1\) step 1 until \(\boldsymbol{n}\) do
 \(x[k]:=a[k]+(j[k, i]-r n) \times h \mid k] ;\)
 \(v i:=v x\);
 \(v b a r:=v b a r+v i ;\)
 vsqbar \(:=v s q b a r+v i \uparrow 2\);
 if \(i \leq n\) then
 begin
 comment Sample the gradients;
 \(x[i]:=x[i]+a b s(b[i]-a[i]) / 2 \times\)
 (if \(x[i]<(b[i]+a[i]) / 2\) then 1 else -1);
 \(v i p:=v x\);
 \(v b a r:=v b a r+v i p ;\)
 vsqbar \(:=v\) vqbar + vip \(\uparrow 2\);
 if \(g m<a b s(v i p-v i)\) then
 begin
 \(l:=i ; g m:=a b s(v i p-v i) ;\)
 end;
 end;
 end;
 \(\operatorname{vbar}:=\operatorname{vbar} /(m+n)\);
 vsqbar \(:=\) vsqbar/(\(m+n\));
 ssq \(:=\operatorname{Vab} \uparrow 2 \times(v s q b a r-v b a r \uparrow 2) /(m+n-1) ;\)
 end;
if $s s q \leq 2 \times$ esq then quadmc $:=v b a r \times V a b$ else
begin
real temp, cl, al, bl;
$m:=m \times 0.707$;
if $m<s s q / e s q$ then $m:=s s q / e s q$;
comment The author is indebted to the referee's
discussions pointing out the significance of maintaining
$m \gtrsim s s q / e s q ;$
$e s q:=e s q \times s s q /(s s q-e s q) ;$
$a l:=a[l] ; \quad b l:=b[l]$;
$b[l]:=c l:=(b l+a l) / \mathbf{2} ;$
temp $:=\operatorname{quadmc}(n, a, x, b, v x$, esq $/ 2, m, V a b / 2, r n)$;
$b[l]:=b l ; \quad a[l]:=c l ;$
temp $:=\operatorname{quadmc}(n, a, x, b, v x, e s q / 2, m, V a b / 2, r n)+$ temp;
$a[l]:=a l ;$
quadmc $:=($ temp $\times s s q+e s q \times v b a r \times V a b) /(s s q+e s q) ;$
end;
end of quadmc

```

\section*{Algorithm 441}

\title{
Random Deviates from the Dipole Distribution [G5]
}

Robert E. Knop [Recd. 12 Jan. 1971, 7 May 1971, 23 Aug. 1971, and 8 Mar. 1972]
Department of Physics, The Florida State University, Tallahassee, FL 32306

\section*{Key Words and Phrases: random number, probability density, probability distribution, Dipole distribution, Cauchy distribution, simulation, Monte Carlo \\ CR Categories: 3.17, 5.5 \\ Language: Fortran}

\section*{Description}

The function subprogram \(D I P O L E\) returns a random deviate \(-\infty<z<\infty\) sampled from the two parameter ( \(R^{2}<1, \alpha\) arbitrary) family of density functions:
\[
\begin{aligned}
f(z)= & 1 /\left(\pi\left(1+z^{2}\right)\right) \\
& +R^{2} \times\left(\left(1-z^{2}\right) \times \cos (2 \alpha)+2 \times z \times \sin (2 \alpha)\right) /\left(\pi \times\left(1+z^{2}\right)^{2}\right)
\end{aligned}
\]

The cumulative distribution function is:
\[
\begin{aligned}
F(z)= & (1 / 2)+(1 / \pi) \times \tan ^{-1}(z) \\
& +R^{2} \times\left(z \times \cos \left(s(2 \alpha-\sin (2 \alpha)) /\left(\pi \times\left(1+z^{2}\right)\right)\right.\right.
\end{aligned}
\]

Densities of this type commonly occur in the analysis of resonant scattering of elementary particles. We note that when \(R=0\) we have the Cauchy [1] or Breit-Wigner [2] density. When \(R=1\) and \(\alpha=0\) we have the single channel dipole density. \({ }^{1}\) The dipole density with free parameters has been proposed to describe multichannel resonant scattering [3].

The algorithm begins by sampling the random vector \((x, y)\) from a density uniform over the unit disk. The center of the unit disk is then displaced from the origin by the transformations \(u=x+R \times \cos (\alpha)\) and \(v=y+R \times \sin (\alpha)\). Letting \(u=r \times \cos (\theta)\) and \(v=r \times \sin (\theta)\) we can find the marginal density of \(\theta\) :
\(f(\theta)=1 /(2 \pi) \times\left(\int_{0}^{r_{+}^{2}} d s+\int_{0}^{r_{-}^{2}} d s\right)\)
where the limits of integration for \(r\) are given by:
\(r_{ \pm}(\theta)=R \times \cos (\theta-\alpha) \pm\left(1-R^{2} \times \sin ^{2}(\theta-\alpha)\right)^{\frac{1}{2}}\).
The marginal density of \(\theta\) is thus:
\(f(\theta)=\left(1+R^{2} \cos (2 \times(\theta-\alpha))\right) / \pi\)
for \(-\pi / 2<\theta<\pi / 2\). The transformation \(z=\tan (\theta)=v / u\) then yields the dipole density function. Other densities which could be

This work was supported in part by the U.S. Atomic Energy Commission.
\({ }^{1}\) The density is named after the analytic property of having poles of order 2 in the complex plane. See [2].
easily sampled by computing rational functions of \(u\) and \(v\) are suggested by transformations such as \(z=\tan ^{2}(\theta), \sin ^{2}(\theta), \sin (2 \times \theta)\), or \(1 /|\sin (2 \times \theta)|-1\).

Function DIPOLE has two arguments which must be calculated by the calling program, \(A=R \times \cos (\alpha)\) and \(B=R \times \sin (\alpha)\). DIPOLE calls the function \(R 11(D)\) which must return a random deviate from the uniform distribution over the interval ( \(-1,1\) ). \(D\) represents a dummy argument.

The author wishes to express his gratitude to Prof. R.G. Glasser of the University of Maryland for comments concerning this algorithm.

\section*{References}
1. von Neumann, J. Various techniques used in connection with random digits. In Nat. Bur. Standards Appl. Math. Ser. 12, U.S. Gov. Print. Off., Washington, D.C., 1951, p. 36.
2. Goldberger, M.L., and Watson, K.M. Collision Theory. J Wiley, New York, 1964, Chap. 8.
3. Rebbi, C., and Slansky, R. Doubled resonances and unitarity. Phys. Rev. 185, 1838 (1969).

\section*{Algorithm}

FUNCTIEN DIPGLE(A,B)
\(10 \quad x=R 11(D)\)
\(Y=R 11(D)\)
\(I F(1.0-X * X-Y * Y) \quad 10,10,20\)
20 DIPOLE \(=(Y+B) /(X+A)\)
DIPGLE
RETURN
END

\title{
Algorithm 442 \\ Normal Deviate [S14]
}

\author{
G.W. Hill and A.W. Davis [Recd. 20 Jan. 1971 and 2 Aug. 1971] \\ C.S.I.R.O. Division of Mathematical Statistics, Glen Osmond, Sth. Australia
}

\section*{Key Words and Phrases: normal distribution inverse, probit transform, Taylor series approximation \\ CR Categories: 5.12, 5.5 \\ Language: Algol}

\section*{Description}

This procedure evaluates the inverse of the cumulative normal distribution, i.e. the normal deviate \(u(p)\), corresponding to the probability level \(p\), where
\(p=P(u)=\int_{-\infty}^{u} \phi(t) d t, \quad \phi(t)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \exp \left(-t^{2} / 2\right)\).
An initial approximation to \(u(p)\), such as \(x(p)\), may be improved by using an expansion of \(u(z)\), defined as the inverse of
\(z=p-P(x)=\int_{x}^{u} \phi(t) d t\).
\(u(z)\) may be developed in a Taylor series about \(z=0\), where \(u(0)=x\), see ref. [1],
\(u_{n}=x+\sum_{r=1}^{n} c_{r}(x)\left(\frac{z}{\phi(x)}\right)^{r} / r!\),
and
\[
\begin{aligned}
c_{1}(x)=1, c_{2}(x)=x, c_{3}(x)=2 x^{2}+1, c_{4}(x)= & 6 x^{3}+7 x \\
& c_{r+1}(x)=(r x+d / d x) c_{r}(x)
\end{aligned}
\]

An error \(\epsilon(x)\) in the initial approximation, \(u_{0}=x(p)\), entails an error \(\epsilon_{n}(x)\) in \(u_{n}\) of the order of \(\epsilon^{n+1} c_{n+1}(x) /(n+1)\) ! In order to minimize the maximum relative error \(R_{n}=\max \left|\epsilon_{n} / u_{n}\right|\) in the result obtained from \(n\) terms of the Taylor series, several sets of coefficients in an initial rational approximation styled after Hastings [2]
\(x(p)=s-\frac{a+b s+c s^{2}}{d+e s+f s^{2}+s^{3}}, \quad s=(-2 \ln (p))^{\frac{1}{2}}, \quad 0<p<0.5\), have been obtained such that \(\left|[\epsilon(x)]^{n+1} c_{n+1}(x) / x\right|\) is minimax for \(|x|<40\). For odd \(n\) the minimized expression is an even function of \(\epsilon\) and \(x\), so that the relative error level may be halved when \(n\) is odd by adding \(\frac{1}{2} x R_{n}\). The resulting precision is shown below as \(S_{n}\), i.e.
\(10^{-s_{n}}=\max \left|\frac{\text { error(result) }}{\text { result }}\right|\)
\begin{tabular}{lllllllll}
\(a\) & \(b\) & \(c\) & \(d\) & \(e\) & \(f\) & \(R_{n}\) & \(S_{n}\)
\end{tabular}
\(\begin{array}{llllllllll}u_{1} & 1271.059 & 450.636 & 7.45551 & 500.756 & 750.365 & 110.4212 & 0.622_{10}-7 & 7.50\end{array}\) \(\begin{array}{llllllllll}u_{2} & 1484.397 & 494.327 & 7.61067 & 589.557 & 855.441 & 119.4733 & 0.644_{10}-10 & 10.19\end{array}\) \(\begin{array}{lllllllllll}u_{3} & 1251.789 & 444.751 & 7.51005 & 493.187 & 739.156 & 109.3967 & 0.743_{10} & -13 & 13.43\end{array}\) \(u_{4} 1637.720494 .8777 .47395659 .935908 .401 \quad 117.94070 .111_{10}-1515.95\) \(\begin{array}{lllllllllll}u_{5} & 1488.369 & 460.200 & 7.38458 & 598.957 & 831.379 & 110.7527 & 0.940_{10}-19 & 19.37\end{array}\) \(\begin{array}{llllllllllllll}u_{6} & 1269.225 & 448.718 & 7.49755 & 499.171 & 749.275 & 110.0194 & 0.759_{10} & -21 & 21.12\end{array}\) ит \(1266.846448 .0477 .49101498 .003748 .189109 .8371 \quad 0.166_{10}-2324.07\)

According to the precision required, one set of coefficients and the corresponding labeled statement, selected from the following list, should be incorporated in the procedure body as illustrated for the case of \(u_{7}\).
\[
\begin{aligned}
& u 1: ~ n o r m d e v:= z+x \times 1.0000000311 \\
& u 2: \text { normdev }:=(x \times z \times 0.5+1.0) \times z+x \\
& u 3: \text { normdev }:=(((s+0.5) \times z / 3.0+x \times 0.5) \times z+1.0) \times z+x \\
&+0.3713_{10}-13 \\
& u 4: \text { normdev }:=(((((s \times 0.75+0.875) \times z+x) \times x+0.5) \times z / 3.0 \\
&+x \times 0.5) \times z+1.0) \times z+x \\
& u 5: \text { normdev }:=((((((s \times 0.6+1.15) \times s+0.175) \times z \\
&+(s \times 0.75+0.875) \times x) \times z+s+0.5) \times z / 3.0 \\
&+x \times 0.5) \times z+1.0) \times z+x \\
&+0.42_{10}-19 \times x \\
&+((((((120 \times s+326) \times s+127) \times x \times z / 6 \\
&+(24 \times s+46) \times s+7) \times z / 40+(0.75 \times s \\
&+0.875) \times x) \times z \\
&+s+0.5) \times z / 3.0+x \times 0.5) \times z+1.0) \times z+x \\
& u 6: \text { normdev }:= \\
&((((((((720 \times s+2556) \times s+1740) \times s \\
&+127) \times z / 7 \\
&+((120 \times s+326) \times s+127) \times x) \times z / 6 \\
&+(24 \times s+46) \times s+7) \times z / 40+(0.75 \times s \\
&+0.875) \times x) \times z \\
&+s+0.5) \times z / 3.0+x \times 0.5) \times z+1.0) \times z+x \\
&+0.832_{10}-24 \times x
\end{aligned}
\]

Coefficients in a similar Taylor series in powers of \(\ln (P(x) / p)\), used in AS Algorithm 24 [3], require more computation than the \(c_{n}(x)\) in these approximations.

The real procedure supplied by the user for normal \((x, y)\) should return the value of the tail area to the left of \(x\) and, via the second parameter, \(y\), should return the value of \(\phi(x)\), which is often available in the process of computing the tail area. A procedure based on Algorithm 304 [4] is recommended since other algorithms such as Algorithm 209 [5] and \(C D F N\) [6] lose precision as \(p\) approaches their error levels (about \(10^{-7}, 10^{-10}\) respectively), whereas Algorithm 304 maintains precision until calculations involving \(\phi(x)\) exceed the capacity of floating point representation. The similar CJ Algorithm 39 [7] matches the precision of \(u_{2}\) and may be readily modified to return also the value of \(\phi(x)\).

The user-supplied real procedure extreme ( \(p\) ) should cater for the cases \(p=0, p=1\), by returning suitable extreme values dependent on the floating point representation for the processor used, e.g. extreme \((0)=-37\) where binary exponents are ten bits, since \(\phi(-37)\) is approximately \(2^{-2^{10}}\) and ext:eme \((1)=+7\) for 36 -bit precision, since \(P(x>7)\) is approximately \(1-2^{-36}\). If \(p\) lies outside \((0,1)\) the procedure should provide a diagnostic warning and may terminate or return an extreme value such as +37 as an indication of error to the calling program.

Precision may be extended by using the \(D\) decimal digit result
from one application of normal and the \(n\)-term Taylor series as an initial approximation for a second application, thus increasing precision to at least \((n+1)\left(D-\log _{10}\left(x^{2}+1\right)\right)\) decimal digits (as noted by the referee) or at most the precision of normal, e.g. \(u_{1}\left(u_{1}\right)\) as in CDFNI [6] would have a relative error \(O\left(10^{-14}\left(x^{2}+1\right)\right)\), if not limited by the use of the lower precision CDFN for normal. For double precision calculations the more elaborate higher order terms of the Taylor series may be evaluated using single precision operations, enabling achievement of extended precision with relatively little increase in processor time. Calculations to 25 decimal digit precision and independently calculated check values to 18 significant digits [8] confirmed achievement of at least 10 significant decimal digits for Algorithm AS 24 and \(S_{n}\) significant digits for this procedure, except for limitations of representation of \(p\) near 1.0.

\section*{References}
1. Hill, G.W., and Davis, A.W. Generalized asymptotic expansions of Cornish-Fisher type. Ann. Math. Statist. 39, 4 (Aug. 1968), 1264-1273.
2. Hastings, C. Jr. Approximations for Digital Computers.

Princeton U. Press, Princeton, New Jersey, 1955, pp. 191-192.
3. Cunningham, S.W. Algorithm AS 24, From normal integral to deviate. J.R. Statist. Soc. C. 18, 3 (1969), 290-293.
4. Hill, I.D., and Joyce, S.A. Algorithm 304, Normal. Comm.

ACM 10, 6 (June 1967), 374.
5. Ibbetson, D. Algorithm 209, Gauss. Comm. ACM 6, 10 (Oct.
1963), 616.
6. Milton, R.C., and Hotchkiss, R. Computer evaluation of the normal and inverse normal distribution functions. Technometrics
11, 4 (Nov. 1969), 817-822.
7. Adams, A.G. Algorithm 39. Areas under the normal curve.

Comp. J. 12, 2 (May 1969), 197-198.
8. Strecok, A.J. The inverse of the error function. Math. Comp.

22, 101 (Jan. 1968), 144-158.
```

Algorithm
real procedure normdev(p, normal, extreme);
value p; real p; real procedure normal, extreme;
comment Input parameter p}\mathrm{ is the cumulative normal probability
defined by
p=\mp@subsup{\int}{-\infty}{u}\phi(t)dt,\quad\phi(t)=\frac{1}{(2\pi\mp@subsup{)}{}{4}}\operatorname{exp}(-\mp@subsup{t}{}{2}/2),
normal (}x,y\mathrm{) is a procedure for evaluating the above integral
for }u=x\mathrm{ and which returns }y=\phi(x),\mathrm{ extreme(}p\mathrm{) is a procedure
designed to handle extreme values of p. On completion of ex-
ecution of this procedure normdev is an approximation for }u\mathrm{ ;
begin
real s, x, z;
x:= if p>0.5 then 1.0 - p else p;
if }x<0.0\mathrm{ then normdev := extreme (p)
else
begin
comment Initial rational approximation;
s:= sqrt(-2.0\times\operatorname{ln}(x));
x :=((-7.49101\timess-448.047)\timess-1266.846)/
(((s+109.8371) }\timess+748.189)\timess+498.003)+s
if p<0.5 then x:= - x;
z:=p-\operatorname{normal}(x,s);z:=z/s;s:=x\uparrow 2;
u7:
normdev := ((()(()((720) \timess+2556) }\timess+1740)\times
+127) }\timesz/
+((120\timess+326) }\timess+127)\timesx)\timesz/
+(24\timess+46)}\timess+7)\timesz/40+(0.75\timess+0.875
X)}\times
+s+0.5) }\timesz/3.0+x\times0.5)\timesz+1.0)\timesz+
+0.83210-24\timesx

```
    end seven term Taylor series for 24 decimal precision
end normal deviate

\title{
Algorithm 443 \\ Solution of the Transcendental Equation wew \(=\chi\) [C5]
}

\author{
F.N. Fritsch, R.E. Shafer, and W.P. Crowley [Recd. 11 Dec. 1970, and 15 Sept. 1971] \\ University of California, Lawrence Livermore \\ Laboratory, Livermore, CA 94550
}

\section*{Key Words and Phrases: transcendental function evaluation, solution of transcendental equation \\ CR Categories: 5.12, 5.15 \\ Language: Fortran}

\section*{Description}

Purpose. WEW solves the transcendental equation wew \(=x\) for \(w\), given \(x>0\), by an iteration that converges much more rapidly than either Newton's method or fixed-point iteration. The user provides \(x=X\). The routine returns \(w=W E W\) and the last relative correction \(e_{n}=E N\). Two versions are described here. Version A produces CDC 6600 machine accuracy ( 48 bits), and the relative error should be approximately \(e_{n}{ }^{3}\). Version B produces at least six significant figures, and the relative error should be approximately \(e_{n}{ }^{4}\).

Iteration. Assuming \(x>0\), we may rewrite the equation defining \(w\) as
\(w+\log (w)=\log (x)\).
For a given approximation \(w_{n}\) to \(w\), let \(w_{n+1}=w_{n}+\delta_{n}\) be a much better approximation. Substitution into (1) yields
\(\delta_{n}+\log \left(1+\delta_{n} / w_{n}\right)=\log x-\log w_{n}-w_{n}\)
\[
=z_{n}, \text { say }
\]

Using the approximation [1] \(\log (1+\delta / w) \approx\left(\delta w+1 / 6 \delta^{2}\right) /\) ( \(w^{2}+2 / 3 \delta w\) ) and clearing fractions yields the following quadratic equation for \(\delta_{n}\) :
\[
\left(2 / 3 w_{n}+1 / 6\right) \delta_{n}^{2}+\left(w_{n}^{2}+w_{n}-2 / 3 z_{n} w_{n}\right) \delta_{n}-z_{n} w_{n}^{2}=0 .
\]

Solving for the root that tends to zero as \(z_{n} \rightarrow 0\) gives
\[
\delta_{n}=\frac{2 z_{n} w_{n}}{\left(1+w_{n}-2 / 3 z_{n}\right)+\left(\left(1+w_{n}+2 / 3 z_{n}\right)^{2}-2 z_{n}\right)^{\frac{1}{2}}} .
\]

This has a continued fraction expansion [3]
\[
\begin{array}{r}
\delta_{n}=\frac{2 w_{n} z_{n}}{2\left(1+w_{n}\right)-\frac{2 z_{n}}{2\left(1+w_{n}+2 / 3 z_{n}\right)}} \\
-\frac{2 z_{n}}{2\left(1+w_{n}+2 / 3 z_{n}\right)}
\end{array}
\]
for which the third convergent yields sufficient accuracy. If we ig-
Work performed under the auspices of the U.S. Atomic Energy Commission.
nore the quantity \(2 / 3 z_{n}\) in the third term, we obtain the iteration formula
\(w_{n+1}=w_{n}+\delta_{n}=w_{n}\left(1+e_{n}\right)\),
where
\(e_{n}=\frac{z_{n}}{1+w_{n}} \frac{2\left(1+w_{n}\right)\left(1+w_{n}+2 / 3 z_{n}\right)-z_{n}}{2\left(1+w_{n}\right)\left(1+w_{n}+2 / 3 z_{n}\right)-2 z_{n}}\),
and the error term is \(O\left(e_{n}{ }^{4}\right)\). An iteration which is \(O\left(e_{n}{ }^{3}\right)\) is obtained by truncating the continued fraction at the second convergent:
\(e_{n}=\frac{z_{n}\left(1+w_{n}+2 / 3 z_{n}\right)}{\left(1+w_{n}\right)\left(1+w_{n}+2 / 3 z_{n}\right)-1 / 2 z_{n}}\).
Initial guesses. For small values of \(x\), the given equation has a series solution due to L. Euler [2]. A Padé rational fraction approximation to this series is
\(w_{0}=\frac{x+4 / 3 x^{2}}{1+7 / 3 x+5 / 6 x^{2}}\).
As computed from (5), \(w_{0}(x)<w(x)\), good to within 5 percent if \(x=2.5\) and much better for smaller values of \(x\). For larger values of \(x\) we may use
\(w_{0}=\log (x)\),
which has a maximum relative error no greater than 37 percent for \(x \geq e\). Version A actually switches from (5) to (6) at \(x=6.46\), the approximate location of the intersection of the two relative error curves. With these initial guesses, one iteration of (2) with \(e_{n}\) computed from (3) produces a maximum relative error of about \(2.7 \times 10^{-5}\) (see Figure 1), so that a second iteration using (4) produces CDC 6600 machine accuracy.

A much better initial guess for \(x>0.7\) can be derived by sub stituting \(w_{0}=\log (x)+\delta\) into (1) to obtain
\(\delta+\log \left(1+\delta+\log \left(\frac{x}{e}\right)\right)=0\).
Exponentiation yields
\(e^{-\delta}-1-\delta=\log \left(\frac{x}{e}\right)\).
Using a Padé approximation to the series expansion of the left hand side, we have
\(e^{-\delta}-1-\delta \approx-\frac{2 \delta-1 / 2 \delta^{2}}{1-1 / 12 \delta^{2}}\),
so that (approximately)
\(\left(1 / 2+1 / 12 \log \left(\frac{x}{e}\right)\right) \delta^{2}-2 \delta-\log \left(\frac{x}{e}\right)=0\).
If this equation is solved approximately by the same procedure that was used to derive (3) and (4), the second convergent of the continued fraction yields the approximation
\(w_{0}=\log (x)-\frac{24\left(\log ^{2}(x)+2 \log (x)-3\right)}{7 \log ^{2}(x)+58 \log (x)+127}\).
Version B switches from (5) to (7) at \(x=0.7385\). With these initial guesses, a single iteration of (2) with \(e_{n}\) computed from (3) yields at least six-figure accuracy (see Figure 2).

Testing. \(W E W\) has been tested for \(x\) in the range \(0.01 \leq x \leq\) 1000 against an algorithm that uses Newton's method for small to moderate values of \(x\) and fixed-point iteration for large values of \(x\)
on both the CDC 6600 and 7600 computers. Measured computing times were about the same for small \(x(\leq 1\).\() , but the time required\) by \(W E W\) is better hy a factor of 1.5 to 3.4 (depending on the required relative error) for moderate to large \(x\). Some typical times (microseconds) obtained on the Livermore Time Sharing System are given in Table I.

Implementation Note. The section of coding preceding statement 20, labeled "set constants," provides a machine-independent means for setting the values of the constants \(C 1, C 2, C 3, C 4\) on the first execution of WEW. Since the object of these algorithms is speed, it is recommended that the user compute these constants to the accuracy required for his particular machine and set them initially by means of a DATA statement.

Fig. 1. Relative error \(\left|w-w_{1}\right| / w\) with \(w_{0}\) computed from (5) for \(x \leq 6.46\) and from (6) for \(x>6.46\). The apparent cusp is due to the fact that the error curve ( \(w-w_{1}\) ) has a zero near \(x=80.4\).


Fig. 2. Relative error \(\left|w-w_{1}\right| / w\) with \(w_{0}\) computed from (5) for \(x \leq 0.7385\) and from (7) for \(x>0.7385\). The strange appearance of the curve for small \(x\) is due to the fact that \(w_{0}=w\) for \(x=e\) and several values of \(x\) between 0.7 and 1.1.


Table I. Execution Times for WEW (microsec)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{CDC 6600} & \multicolumn{2}{|r|}{CDC 7600} \\
\hline & \begin{tabular}{l}
Version \\
A
\end{tabular} & \begin{tabular}{l}
Version \\
B
\end{tabular} & \begin{tabular}{l}
Version \\
A
\end{tabular} & \begin{tabular}{l}
Version \\
B
\end{tabular} \\
\hline \(X \leq X_{c}{ }^{*}\) & 118 & 88 & 25.8 & 17.8 \\
\hline \(X>X_{c}{ }^{*}\) & 105 & 87 & 23.0 & 18.1 \\
\hline
\end{tabular}

\footnotetext{
* \(X_{c}=6.46\) for Version A or \(\mathbf{0 . 7 3 8 5}\) for Version B
}

\section*{References}
1. Abramowitz, M., and Stegun, I.A. Handbook of Mathematical Functions. National Bureau of Standards (AMS-55), Washington, D.C., 1964, Formula 4.1.39, p. 68.
2. Polya, G., and Szego, G. Aufgaben und Lehrsätze aus der Analysis, Vol. 1. Springer-Verlag, Berlin, 1954, Problem 209, p. 125. 3. Wall, H. Analytic Theory of Continued Fractions. Van Nostrand, New York, 1948.

\section*{Algorithms}
function wew ( \(x\), en)
    ITERATIVE SOLUTION OF X=W*EXP(W) WHERE \(x\) IS GIVEN. (NOVEMBER 1970)
    VERSIGN A -- CDC 6600 MACHINE ACCURACY.
    INPUT PARAMETERJ
                        \(x\) argument of \(W(x)\).
    gutput pakameteksj
        WEW THE DESIRED SOLUTION.
EN THE LAST RELATIVE CØRKECTION TO W(X).
    SET CONSTANTS...
        DATA NEWE/1/
        IF (NEWE) \(10,20,10\)
    10
        NEWE \(=0\)
\(C 1=4.13\).
        \(\mathrm{C} 1=4.13\).
\(\mathrm{C} 2=7.13\).
        C3=5.16.
C COMPUTE INITIAL GUESS..
    20 FLoGX \(=A L O G(x)\)
        IF \((X-6.46) \quad 30,30,40\)
    30 WN \(=\mathrm{X} *(1,+\mathrm{C} 1 * \mathrm{X}) /(1,+\mathrm{X} *(\mathrm{C} 2+\mathrm{C} 3 * \mathrm{X}))\)
        \(\mathrm{ZN}=\mathrm{FL} \varnothing \mathrm{GX}-\mathrm{WN}-\mathrm{AL} \boldsymbol{\mathrm { G }}\) (WN)
        \(\begin{array}{ll}2 N \\ G 6 \\ & =50 \\ W N\end{array}\)
    40 \(\quad \begin{aligned} & \text { WN }=F L \theta G X \\ & Z N\end{aligned}\)
    so continue

    1 TERATION ONE...
        TEMP = 1. + WN
        WN \(=W N *(1 .+Z N * Y /(T E M P *(Y-Z N)))\)
C ITERATION TWO...
        ZN \(=\) FLOGX -WN - AL日G(WN)
        TEMP \(=1 .+\) WN
        TEMP2 \(=\) TEMP \(+C 4 *\) ZN
        EN = ZN*TEMP2/(TEMP*TEMP2-.5*ZN)
        \(W N=W N *(1 .+E N)\)
C RETURN...
        WEW = WN
RETURN
        RETU
            FUNCTICN WEW ( \(x\), \(E N\) )
C ITERATIVE SOLUTIDN OF \(X \rightarrow w * E X P(w)\) WHEKE X IS GIVEN. (NOVEMBEN 1970),
    VERSIOV - MAXIMUM RELATIVE ERROR 3.E-7 (REVISED - SEPTEMBER 1971)
    VERSION B -. MAXIMUM RELATIVE ERROR 3.E-7
    INPUT PARAMETERJ
\(x\) AKGUMENT of be \((x)\).
    gutpur fanametens
            WEN THE DESIRED SQLUTION. \(\quad\) THE LAST RELATIVE CONRECTIGN TE bi( \(x\) ).
    set constants...
        EGUIVALENCE (F, FLDGX)
        EOUIVALENCE
DATA NEWE/1/
            DATA NEWE/1'
IF (NEWE) \(10,20,10\)
            NEWE \(=0\)
\(C 1=4.13\).
            \(\mathrm{Cl}_{1}=4 . / 3\).
            C2 \(2=7.13\).
            \(\mathrm{C} 3=5.16\).
            \(C 3=5.16\).
\(C 4=2.13\).
C
    CG:MPUTE INITIAL GUESS...
        FLOGX \(=\) ALOG ( \(x\) )
IF \((x-.7385) 30,30,40\)
    30 win \(=x *(1 .+C 1 * x) /(1,+x *(C 2+C 3 * x))\)
    \(30 \quad \operatorname{lin}=x * 10\)
    \(50 \quad W N=F-24 . *((F+2) * F-3.) /.((.7 * F+5 E) * F+127.\).
\(c^{50}\)
C ITERATION ONE...
        ZN = FLeGX - WN - ALOG(WN)
        TEMP = 1. + WN
            \(Y=2\).*TEMP*(TEMP+C4*ZN) - ZN
            EN \(=\mathrm{ZN} * Y /(T E M P *(Y-Z N))\)
            EN \(=\) LN*Y/(TEMP
\(W N=W N *(1 .+E N)\)
C RETURN...
    RETURN... WI
            HEW = WN
RETURN
            REND

\section*{Remark on Algorithm 443 [C5]}

Solution of the Transcendental Equation we \(e^{e}=x\)
[F.N. Fritsch, R.E. Shafer, and W.P. Crowley, Comm. ACM 16 (Feb. 1973), 123-124]

Bo Einarsson [Recd. 5 Mar. 1973 and 4 June 1973]
Research Institute of National Defense, Box 98, S-14700 Tumba, Sweden

This algorithm contains a violation of the Fortran standard as defined in [1]. According to Section 10.2 .6 of the standard, certain variables in a subprogram will be undefined at the execution of the RETURN statement, if they are not in a common block. This applies to the section in Algorithm 443 labeled "set constants" and commented in the Implementation Note. The IBM FORTRAN IV H Extended Compiler (Program Product) makes use of the standard in such a way that the variable NEWE does not have the value zero at a reentry to the subprogram, so that the variable NEWE does not fill its purpose. On the other hand this compiler performs the divisions and stores the quotients, so that no divisions are needed at the execution of the subprogram. The IBM FORTRAN IV G Compiler performs as the authors of Algorithm 443 take for granted. Other optimizing compilers may have the value of NEWE as zero at reentry but have undefined values of \(C 1, C 2, C 3\), and \(C 4\). In that case the subprogram would produce erroneous results.

The remark above is similar to the third paragraph of Remark on Algorithm 352 [2], where the consequences of Section 10.2 .5 of the standard are discussed.

The problem with the local variables can be evaded without loss of computing efficiency by replacing statement 30 with
\(30 \quad \mathrm{WN}=\mathrm{X} *(3 .+4 . * \mathrm{X}) /(3 .+\mathrm{X} *(7 .+2.5 * \mathrm{X})\) ),
replacing \(\mathrm{C} 4 * \mathrm{ZN}\) wherever it appears with \(\mathrm{ZN} / 1.5\), and finally deleting the section "set constants" and the "Implementation Note". In version \(B\) the statement EQUIVALENCE (F, FLOGX) must be kept.

I have also certified the routine (version B) by testing it in single precision on an IBM 360/75 by performing some statistics on \(R(x)=\left(w^{\prime \prime}-x\right) / x\). The first test used \(x=0.01(0.01) 10.00\) and the second a thousand \(x\) values from a normal random distribution with mean value zero and variance 1 , but if the obtained random value \(x\) was nonpositive, a new value of \(x\) was computed. The values of \(R\) were calculated in double precision.

The following results were obtained:
\begin{tabular}{|c|c|c|c|}
\hline Test & Mean value of \(R\) & Standard deviation of \(R\) & Maximal value of \(|R|\) \\
\hline Linear & \(-1.7 \cdot 10^{-6}\) & \(1.2 \cdot 10^{-6}\) & \(4.2 \cdot 10^{-6}\) \\
\hline Random & \(-0.4 \cdot 10^{-6}\) & \(0.5 \cdot 10^{-6}\) & \(3.3 \cdot 10^{-6}\) \\
\hline
\end{tabular}

Since the relative error in a single precision value on IBM 360 may be as high as \(0.5 \cdot 10^{-6}\), the above results appear reasonable.

\section*{References}
1. American National Standard FORTRAN, ANSI X3.9-1966.

American National Standards Institute, New York, 1966.
2. Sale, A.H.J. Remark on Algorithm 352. Comm. ACM 13 (Dec. 1970), 750.

\section*{Algorithm 444}

\title{
An Algorithm for Extracting Phrases in a Space-Optimal Fashion [Z]
}
R.A. Wagner [Recd. 5 Mar. 1971 and 30 Aug. 1971] Department of Systems and Information Science, Vanderbilt University, Nashville, TN 37203

Key Words and Phrases: information retrieval, coding, text compression

CR Categories: 3.70, 5.6
Language: PL/I

\section*{Description}

Introduction. The algorithm PARSE computes and prints a minimum-space form of a textual message, \(M S\). The minimization is performed over all possible "parses" of MS into sequences of phrase references and character strings. Each phrase reference represents one of a finite collection, \(P\), of phrases. The collection, \(P\), must be selected before PARSE is applied.

Assumptions and requirements. PARSE assumes that the unit of storage is the byte, defined such that one byte can hold either a single character of text or an integer \(i\) in the range \(0 \leq i<W\). (For IBM 360 equipment, \(W=256=2^{* * 8}\) ). PARSE also assumes that the number of different phrases in the collection \(P\) is no larger than \(W^{* *} P H C\), and that each message to be parsed contains fewer than \(W^{* *} C H C\) characters of text. The parameter values \(C H C=P H C=1\) appear appropriate on IBM 360 equipment, when PARSE is applied to short messages, such as compiler error messages.

PARSE requires two arguments. The first is the message to be parsed; the second is the table of common phrases which may be used in the parse.

PARSE assumes that an external procedure \(H A S H\) is present; \(\operatorname{HASH}(M S, I, K)\) is defined as follows: Let \(H_{1}, H_{2}, \ldots\), \(H_{m}\) be a sequence of indices such that among them they exhaust all entries \(P\left(H_{i}\right)\) such that
\(\operatorname{SUBSTR}(M S, I, 3)=\operatorname{SUBSTR}\left(P\left(H_{i}\right), 1,3\right)\).
(That is, the \(H_{i}\) 's include indices for every phrase \(P\left(H_{i}\right)\) which agrees with characters \(I, I+1\), and \(I+2\) of the given message. Other indices may occur among the \(H_{i}\) 's, as well.) Then \(\operatorname{HASH}(M S, I, 0)=H_{1}, \operatorname{HASH}\left(M S, I, H_{j}\right)=H_{j+1}\), and \(H A S H\left(M S, I, H_{m}\right)=0\).

\begin{abstract}
A "hash table" procedure can easily be modified to yield this performance; an equally useable, although slower version returns \(M O D(K+1, M+1)\) on every call. A procedure HASH is included below.

Methods. The method used to determine which phrases to extract from the given message is described in [1]. The resulting parsed message requires least space, assuming that messages are storable only as described in [1]-that is, as sequences of
\end{abstract}
\(C\) (number) (character string)
| \(P\) (number)
representing a literal string of characters, and a reference to a common phrase, respectively.

During the course of the computation, arrays \(G\) and \(H\) are filled with values of functions \(g\) and \(h\), respectively, as defined in [1]. Just before label BUILD is reached,
\(H(I)=\) length of the best parse of \(\operatorname{SUBSTR}(M S, I)\), and \(G(I)=\) length of the best parse of \(\operatorname{SUBSTR}(M S, I)\) among those parses beginning with a character string,
both for \(I=1, \ldots, \operatorname{LENGTH}(M S)\).
Internally, PARSE uses a single array, \(Z\), paralleling the function arrays \(G\) and \(H\), to retain the information needed for re-constructing the parsed form of the message.
\[
\begin{aligned}
Z(I) & =K, \text { if } G(I)>H(I), \text { where } K \text { is the number of the "best" } \\
& \text { common phrase matching } M S \text { at } I \text {, or } \\
& =J, \text { if } G(I)=H(I) . \quad(G(I)<H(I) \text { is impossible. })
\end{aligned}
\]
\(J\) gives the index of the end (plus one) of the character string starting at \(I\). In this case, the best parse at \(I\) begins with this character string. \(J\) satisfies: \(G(J)>H(J)\) and for all \(k, I \leq k\) \(<J, G(k)=H(k)\).

Results: To make the printed form of the parsed message more intelligible, PARSE prints:
'C (number)' as ' \(\# d d d\) '
'P (number)' as '\%ddd'
where " \(d d d\) " is the 3 -digit decimal representation of <number) +1 . In practice, a number representing a character count or phrase index can be stored as an integer, in place of CHC or \(P H C\) characters respectively. Thus, the character string ' \(A B C\) ' would be stored as ' \(C \underline{2} A B C\) ', where \(\underline{2}\) is a \(C H C\)-byte integer whose value is 2 . The same string would be printed by the PARSE algorithm as ' \(\# 003 A B C\) '.

The program PARSE returns the number of bytes needed to store \(M S\), given the particular set of extractable phrases in \(P\).

A sample driver, two sample input streams and associated output follow the procedures PARSE and HASH.

\section*{References}
1. Wagner, R.A. Common phrases and minimum-space text storage. Comm. ACM 16, 3 (Mar. 1973), 148-152.
2. Bell, James R. The quadratic quotient method; a hash code eliminating secondary clustering. Comm. ACM 13, 2 (Feb. 1970), 107-109.

Algorithm (Figures 1-6 follow.)

Fig. 1. The PARSE Algorithm.
```

PARSE: PROC(MS,P) RETURNS (FIXED BINARY);
DCL (MS,P(*)) CHAR(*) VARYING;
DCL N; \quad HASH RETURNS (FIXED BINARY);
DCL (CHC, $/ *$ BYYES PER CHARACTER-COUNT */
STATIC EXTERNAL FIXED BINARY;
N=LENGTH (MS) ;
BEGIN;
DCL $(\mathrm{G}, \mathrm{H}, 2)(\mathrm{N}+1)$ FIXED BINARY
$\operatorname{DCL}(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{T})$ FIXED BINARY
$G(N+1)=3 ; H(N+1)=1 ; J, Z(N+1)=N+1 ;$
MSGP :
$D 0 I=N B Y-1$ TO 1
$K=H A S H(M S, I, O B)$;
$\mathrm{H}(\mathrm{I}), \mathrm{G}(\mathrm{I})=\mathrm{MIN}(\mathrm{G}(\mathrm{I}+1)+1, \mathrm{H}(\mathrm{I}+1)+\mathrm{CHC}+2)$;
H(1), G(
Z(I)=J;
/* J HOLDS INDEX OF END +1 OF NEXT CHAR-STRING */
M1: DO WHILE ($\mathrm{K}>0$) ;
$\mathrm{L}=\operatorname{LENGTH}(\mathrm{P}(\mathrm{K}))$;
IF $L 7>N-I+1$ THEN
F SUBSTR $M S$
UBSTR $(M S, I, L)=P(K)$ THEN $D O$;
$T=H(I+I)+P H C+1$
$T=H(I+L)+P H C+1 ;$
IF $H(I)>T$ THEN $D O$
$H(I)=T ; Z(I)=K ; J=I ;$
END;
END;
SH $(M S, I, K)$
$K=H A S H(M S, I, K)$
END MSGP;

```
        PUT SKIP EDIT \((H(1), N+3, ': \quad ')(2 F(4), A)\);
        \(\mathrm{I}=1\); GOTO B1;
BUILD:
    IF \(H(I)<G(I)\) THEN DO;
            PUT EDIT(' ' ' ', Z(I)) (A, P'999')
            \(\mathrm{I}=\mathrm{I}+\operatorname{LENGTH}(\mathrm{P}(\mathrm{Z}(\mathrm{I})))\);
        ELSE DO;
        ELSE \(\quad \begin{aligned} & \mathrm{DO}=\mathrm{Z}(\mathrm{I})-\mathrm{I} ;\end{aligned}\)
            PUT EDIT('\#',J,SUBSTR(MS,I,J))(A, P'999', A)
            \(\mathrm{I}=\mathrm{Z}(\mathrm{I})\);
        F I \(\neg>N\) THEN GOTO BUILD
        PUT EDIT (' \({ }^{1}\) ')(A);
END PARSE;

Fig. 2. An acceptable HASH procedure.
HASH: PROC(MS, I,K) RETURNS (FIXED BINARY) ;
MS CHAR \((*)\), J FIXED \(\operatorname{BINARY}(31,0)\),
( \(\mathrm{HT}(0: 200)\) INIT \(((201) 0)\), KJ, HP INIT (197),
HX,HY,HZ) FIXED BINARY STATIC;
DCL (CHC,
PHC)
/* BYTES PER CHARACTER PHC) \({ }^{\star}\) BYTES PER PHRASE-IN
STATIC EXTERNAL FIXED BINARY;

CALL \(\operatorname{HCMN}(K) ;\)
HCMN: \(\quad\) PROC ( \(K\) );
IF LENGTH(MS)-I < PHC+1 THEN HZ=-1 ELSE DO;

UNSPEC(J) =UNSPEC(SUBSTR(MS, I, PHC +2 ));
\(H Z=M O D(J, H P)\);
\(H X=O\)
\(=0\) ;
END;
ELSE DO; \(H X=M O D(H X+H Y, H P)\); \(\mathrm{HZ}=\mathrm{MOD}(\mathrm{HX}+\mathrm{HZ}, \mathrm{HP})\);
\(\underset{Z=H Z+1 ; ~}{\text { END; }}\)
\(\mathrm{HZ}=\mathrm{HZ}+1\);
END HCMN;
ENTER: ENTRY(MS, \(1, K\) )
IF LENGTH(MS) < PHC +2 THEN RETURN:
CALL \(\operatorname{HCMN}(\mathrm{KJ})\).
\(\mathrm{K}, \mathrm{J}=\mathrm{HT}(\mathrm{HZ})\);
IF KJ \(>0\) THEN GOTO EI;
\(\mathrm{HT}(\mathrm{HZ})=\mathrm{K}\);
RETUR:
END HASH;
Fig. 3. A driver for the PARSE procedure.
DRIVER: PROC OPTIONS(MAIN);
```

 PROC OPTIONS(MAIN);
 DCL NP,M;
 DCL NP,M;
 DCL PARSE RETURNS(FIXED BINARY);
 ENTRY(CHAR(256) VARYING, FIXED BINARY, FIXED BINARY);
 DCL (CHC, /* BYYES PER CHARACTER-COUNT */
 PHC) /** BYTES PER PHRASE-IND,
 CHC,PHC=1; /* COUNT/INDEX SIZE=1 BYTE */
CHC,PHC=1; /* COU
BEGIN;
BEGIN; PCL P(NP) CHAR(M) VARYING;
DCL NB,NA,I,J;
NB,NA=0;
00 I=1 TO NP;
GET SKIP LIST(P(I));
GALL ENTER(P(I),I,I);
END;

```

PUT PAGE LIST('PHRASES, AND THEIR PARSED FORMS');
DO \(I=1\) TO NP.

\(N A=\operatorname{NA}+\operatorname{PARSE}(P(I), P)\);
END;
PUT PAGE LIST('MESSAGES: ');
GET SKIP LIST(MSESAGES:');
PUT SKIP (2) LIST('...' || MS || 'い' );
IF MS =' THEN GOTO L2;
\(N A=N A+P\) ALLOW FOR STRING-OVERHEAD + END MARK */
GOTO L1;
L2: PUT SKIP EDIT('FINAL STATISTICS:',
'WITHOUT PHRASE EXTRACTION: ', NB,
'AFTER PHRASE EXTRACTION: ', NA,
'SAVING:' ,NB-NA,

RETURN;
END DRIVER;
Fig. 4. Sample input files.
(a) Two phrases, four messages. Illustrates heavily overlapping phrases.
(b) Five phrases, 23 messages. These messages are the first 23 numbered error messages from the syntactic analysis section of the PL/C compiler.


Fig. 5. Result of applying DRIVER to the cards listed in Figure 4(a). Note that phrase 2 is itself reduced in size by PARSE, while each of the messages are reduced to strings of phrase references alone.
phrases, and their parsed forms
1 'AAAAA'
8 8: \#005AAAAA.
2 'AAAAAAA'
10: \#O02AA 0001.

MESSAGES :
' \(A A A A A A A A A A{ }^{\prime}\)
5 13: \%001\%001.
' \(A A A A A A A A A A A A '\)
5 15: \%001\%002.
'AAAAAAAAAAAAAA
5 17: \%002\%002.
' \(A A A A A A A A A A A A A A A '\)
7 18: \%001\%001\%001.
FINAL STATISTICS:
WITHOUT PHRASE EXTRACTION: 63
AFTER PHRASE EXTRACTION: 37
SAVING: 26 ( \(41.3 \%\) )

Fig. 6. Result of applying DRIVER to the cards listed in Figure 4(b).
PHRASES, AND THEIR PARSED FORMS
1
9
9 'EXTRA \({ }^{\prime}\)
9: \#006EXTRA.
2 'MISSING '
11 11: \#OO8MISSING
3 'IMPROPER '
12 12: "O09IMPROPER.
4 'SEMI-COLON'
13 13: \#OLOSEMI-COLON.
5 'EXPRESSION'
13 13: \#O1OEXPRESSION.

MESSAGES:
EXTRA ('
6 10: \(2001 \# 001(\).
'missing ('
6 12: \%002\#001(.
(EXTRA)'
6 10: \%001 \#001).
'MISSING )'
\(6 \quad 12:\)
12: \%002\#001).
'EXTRA COMMA'
\(\begin{array}{ll}\text { EXTRA COMMA } \\ 10 & 14: \% 001 \# 005 C O M M A .\end{array}\)
'MISSING COMMA.'
10 16: \%002\#005COMMA.
'EXTRA SEMI-COLON'
5 19: \%001\%004.
'MISSING SEMI -COEON' 5 21: \% \(202 \% 004\).
MISSING:'
6 12: \%002\#001:.
'MISSING \(=\) ' 6 12: \%002\#001=.
'IMPROPER *'
6 13: \%003\#001*.
'MISSING *'
6 12: \%002\#001*.
'EXTRA END'
8 12: \%001\#003END.
'MISSING END'
8 14: \%002\#003END.
'MISSING KEYWORD'
12 18: \%002\#007KEYWORD.
'INCOMPLETE EXPRESSION'
16 24: \#011INCOMPLETE 2005.
'MISSING EXPRESSION'
\(5 \quad 21: \% 002 \% 005\).
MISSING VARIABLE'
13 19: \%002*008Variable.
'MISSING ARGUMENT, 1 SUPPLIED'
25 31: \(\% 002 \# 020 A R G U M E N T, 1\) SUPPLIED.
'EMPTY LIST'
13 13: \#010EMPTY LIST.
' IMPROPER NOT'
8 15: \%003\#003NOT
'IMPROPER ELEMENT'
12 19: \%003\#007ELEMENT.
UNTRANSLATABLE STATEMENT
27 27: \#024UNTRANSLATABLE STATEMENT.
"
FINAL STATISTICS:
WITHOUT PHRASE EXTRACTION: 376
AFTER PHRASE EXTRACTION:
SAVING: \(\quad 93\) ( \(24.6 \%\) )

\section*{Algorithm 445}

\title{
Binary Pattern Reconstruction from Projections [Z]
}

Shi-Kuo Chang [Recd. 4 Nov. 1970 and 12 May 1971] School of Electrical Engineering, Cornell University Ithaca, NY 14850.

Key Words and Phrases: pattern reconstruction, image reconstruction, data compression, picture processing

CR Categories: 3.63, 5.30
Language: Algol

\section*{Description}

This procedure reconstructs a binary pattern from its horizontal and vertical projections [1]. The parameters are described as follows. \(m, n\) are the dimensions of the binary pattern \(f\). switch is an integer variable. \(f x[1: n]\) is the projection of \(f\) on the horizontal axis. \(f y[1: m, 1]\) is initially set to \((1,2, \ldots, m) . f y[1: m, 2]\) is the projection of \(f\) on the vertical axis. \(f[1: n, 1: m]\) is the pattern to be reconstructed, initially set to 0 .

The projections \(f x\) and \(f y\) are inconsistent if there is no pattern \(f\) having such projections. The pattern \(f\) is unambiguous if there is no other pattern having the same projections as \(f\). Given the projections \(f x\) and \(f y\), there are three possibilities: (1) \(f x\) and \(f y\) are inconsistent; (2) they are consistent but the pattern \(f\) is ambiguous; or (3) they are consistent and the pattern \(f\) is unambiguous.
(1) Inconsistent Projections. This procedure sets switch to -1 and reconstructs a pattern \(f\) having the correct horizontal projection \(f x\). Its vertical projection will be different from \(f y\).
(2) Ambiguous Pattern. This procedure sets switch to 0 and reconstructs a pattern \(f\) having projections \(f x\) and \(f y\).
(3) Unambiguous Pattern. This procedure sets switch to 1 and reconstructs a pattern \(f\) having projections \(f x\) and \(f y\). In this case \(f\) is unique.

\section*{References}
1. Chang, S.-K. The reconstruction of binary patterns from their projections. Comm. ACM 14, 1 (Jan. 1971), 21-25.
2. Chang S.-K., and Shelton, G.L. Two algorithms for multipleview binary pattern reconstruction. IEEE Trans. Syst., Man, Cybern. (Jan. 1971), 90-94.

\footnotetext{
Algorithm
procedure Pattern Reconstruction (switch, \(m, n, f x, f y, f\) ); integer \(m, n\), switch; integer array \(f x, f y, f\); comment The parameters are defined as follows: switch is an output parameter with values \(-1,0\), or 1 according as the projections are inconsistent (switch \(=-1\) ), the pattern is ambiguous (switch \(=0\) ), the pattern is unambiguous (switch \(=\) 1). \(m\) is the column dimension of the binary pattern \(f\), and \(n\) is the row dimension of the binary pattern \(f . m\) and \(n\) are input

Author's present address: Institute of Mathematics, Academia Sinica, 910 Nankang, Taiwan, Republic of China.
}
parameters. The array \(f_{x}[1: n]\) is the projection of the binary pattern \(f\) on the \(x\) axis. \(f x\) is an input array. The array \(f y[1: m\), 1:2] contains \(1,2, \ldots, m\) in column 1 initially, and column 2 contains the projection of the binary pattern \(f\) on the \(y\) axis. \(f y\) is an input array, and it is modified by this procedure. The array \(f[1: n, 1: m]\) contains 0 initially and contains the reconstructed binary pattern finally;

\section*{begin}
integer \(i x, i y, j\), number;
procedure Sort;
begin
integer limit, ind, \(i\);
limit \(:=m-1 ;\)
S1:
ind \(:=0\);
for \(i:=1\) step 1 until limit do
if \(f y[i, 2]<f y[i+1,2]\) then
begin
integer \(t 1, t 2\);
ind \(:=1\);
\(t 1:=f y[i+1,1] ; \quad t 2:=f y[i+1,2] ;\)
\(f y[i+1,1]:=f y[i, 1]\);
\(f y[i+1,2]:=f y[i, 2]\);
\(f y[i, 1]:=t 1 ; f y[i, 2]:=t 2\)
end;
limit \(:=\) limit -1 ;
if \((\) limit \(>0) \wedge(\) ind \(=1)\) then go to \(S 1\)
end Sort;
procedure Merge;
if \(f y\) [number, 2] \(<f y\) [number \(+1,2]\) then
begin
integer \(n 1, n 2, t 1, t 2\);
\(n 1:=\) number;
S2:
if \(n 1>1\) then
begin
if \(f y[n 1,2]=f y[n 1-1,2]\) then
begin \(n 1:=n 1-1 ;\) go to \(S 2\) end
end;
\(n 2:=\) number \(+1 ;\)
S3:
if \(\boldsymbol{n} 2<m\) then
begin
if \(f y[n 2+1,2]=f y[n 2,2]\) then
begin \(n 2:=n 2+1 ;\) go to \(S 3\) end
end;
S4:
\(t 1:=f y[n 1,1] ; t 2:=f y[n 1,2] ;\)
\(f y[n 1,1]:=f y[n 2,1] ; f y[n 1,2]:=f y[n 2,2] ;\)
\(f y[n 2,1]:=t 1 ; f y[n 2,2]:=t 2\);
if ( \(n 1<\) number \() \wedge(\) number \(+1<n 2\) ) then
begin \(n 1:=n 1+1 ; n 2:=n 2-1 ;\) go to \(S 4\) end
end Merge;
comment The procedure Sort orders \(f y\), and the procedure Merge
reorders \(f y\). The main procedure now follows;
switch \(:=1\);
Sort;
for \(i x:=1\) step 1 until \(n\) do
begin
number: \(=f x[i x]\);
if number \(>0\) then
```

 begin
 for j:= 1 step 1 until number do
 begin
 iy :=fy [j,1];
 fy [j, 2]:= fy [j, 2] - 1;
 f[ix, iy]:=1
 end;
 comment One column of f}\mathrm{ is reconstructed;
 if number < m}\mathrm{ then
 begin
 if (switch=1) ^(fy[number, 2] < fy[number+1, 2])
 then switch:= 0;
 comment The above condition indicates that the
 pattern f}\mathrm{ is ambiguous, and the switch is set to 0;
 Merge;
 comment fy is reordered before we start to reconstruct
 the next column;
 end
 end
 end;
for j:=1 step 1 until m}\mathrm{ do
if fy [j, 2]}\not=0\mathrm{ then switch := - 1;
comment The above condition indicates that the projections are
inconsistent, and the switch is set to -1;
end Pattern Reconstruction

```

\section*{Remarks on Algorithm 445 [ \(\mathbf{Z}\) ]}

Binary Pattern Reconstruction from Projections [by
Shi-Kuo Chang, Comm. ACM 16 (Mar. 1973), 185-186]

John Lau [Recd. 22 July 1971]
Department of Computer Science, University of British Columbia, Vancouver 8, B.C., Canada

Key Words and Phrases: pattern reconstruction, image reconstruction, data compression, picture processing CR Categories: 3.63, 5.30
Language: Algol

The procedure works well for all consistent patterns, ambiguous or unambiguous. However, when \(f x\) and \(f y\) are inconsistent, the procedure can construct a pattern \(f[1: n, 1: m]\) with \(f x\) satisfied, only if all elements of \(f x\) have values between 0 and \(m\). If any of these elements is greater than \(m\), a program interrupt would usually be caused by "value of subscript outside declared bounds" when the program executes the lines
```

for $j:=1$ step 1 until number do
begin
$i y:=f y[j, 1]$;
$f y[j, 2]:=f y[j, 2]-1$;
$f(i x, i y]:=1$
erd;

```
and execution of program would then be terminated. Even if a pattern could be constructed in this case, it would not be able to satisfy \(f x\) entirely.

\title{
Algorithm 446 \\ Ten Subroutines for the Manipulation of Chebyshev Series [Cl]
}

\author{
R. Broucke [Recd. 17 May 1971 and 7 April 1972] \\ University of California, Los Angeles, CA 90024, and \\ Jet Propulsion Laboratory, Pasadena, Calif.
}

\author{
Key Words and Phrases: Chebyshev series, differentiation, integration, curve fitting, approximations, negative powers \\ CR Categories: 5.12, 5.13, 5.16 \\ Language: Fortran
}

\section*{Description}

Introduction. These subroutines deal with the manipulation of Chebyshev series. The operations performed are the construction of the Chebyshev approximation of functions, the evaluation of the series or their derivative, the integration or differentiation, and the construction of negative or fractional powers of such a series.

The subroutines are written in ANSI Fortran. They have been used without modification on such computers as the IBM-7094, IBM-360/91 (Fortran-IV-G compiler) and Univac 1108 (Fortran-V compiler).

The ten subroutines are considered as a single set, principally because they all use the same storage philosophy. All information is transmitted through the CALL-sequence rather than through the use of COMMON statements. Therefore, the user must provide storage for all the series in his main program, taking into account that all operations are performed in double precision. The coefficients of each series occupy a one-dimensional double-precision array according to the rules of ANSI Fortran. When several Chebyshev series are being manipulated, it is convenient to store all the series in a matrix. Each column of the matrix contains a single series, in order that the coefficients of each series occupy consecutive storage locations.

The first six subroutines contain no calls to other subroutines; in this sense they may be considered as independent. Each subroutine can be used separately.

In the present type of operations, it is extremely important to design and perform a large number of tests to certify all of the subroutines. We have tested the subroutines by generating some Chebyshev series which were published by Clenshaw [4], but we have also tested them with a number of additional methods; for instance:
a. The series for several elementary functions such as \(\sin (x)\), \(\cos (x), \sin (2 x)\), and \(\cos (2 x)\) have been constructed directly. These series have then been evaluated, and the values have been compared with the values of the functions.
b. The series for \(\cos (2 x)\) and \(\sin (2 x)\) have been derived from the series \(\sin (x)\) and \(\cos (x)\) by multiplication and addition of series. c. The series for \(\sin (x)\) and \(\cos (x)\) have been derived from each other by integration and differentiation.
d. Many tests have been made by multiplying a series \(f(x)\) by the series \(1 / f(x)\) or for instance by squaring the series for \(f(x)^{\frac{1}{2}}\), or other similar operations.

The generation, evaluation and multiplication subroutines. The methods for the generation of a Chebyshev series have been taken from C.W. Clenshaw's papers [3, 4, 5]. The rule for the multiplication of Chebyshev series is also described by Clenshaw [3, p. 137], but the flowchart of our subroutine is from \(L\). Carpenter [2].

We only consider the interval \((-1,+1)\) of the independent variable \(x\), and we represent a truncated Chebyshev series of order \(n\) in the form:
\(f(x)=\left(c_{0} / 2\right)+c_{1} T_{1}(x)+c_{2} T_{2}(x)+\cdots+c_{n} T_{n}(x)\).
We want to draw the user's attention to the fact that we use a factor \(\frac{1}{2}\) in the zero-order term but not in the last term of the series. Some authors have used different conventions in relation to this factor \(\frac{1}{2}\) for the first and last terms.

In the applications of the subroutines some caution is also necessary, because the independent variable \(x\) (the Chebyshev independent variable) is within the limits ( \(-1,+1\) ). If the user's variable \(t\) (the physical independent variable) is within the limits ( \(t_{1}, t_{2}\) ), the conversions between \(t\) and \(x\) should be made with the linear relations
\(t=\left(\left(t_{2}+t_{1}\right) / 2\right)+\left(\left(t_{2}-t_{1}\right) / 2\right) x ;\)
\[
\begin{equation*}
x=\left(\left(2 t-\left(t_{2}+t_{1}\right)\right) /\left(t_{2}-t_{1}\right)\right) \tag{2}
\end{equation*}
\]

The coefficients \(c_{i}\) in formula (1) are computed with the rule given by Clenshaw [4, p. 3]:
\(c_{i}=\left(2 / n \sum_{j=0}^{n} \prime \prime(\cos (\pi j / n)) \cos (\pi i j / n) ; \quad i=0,1, \ldots, n\right.\).
The double accent means that the first and last terms of the sum are divided by two. It is seen that \(n+1\) special values of the function \(f(x)\) are needed. In some applications, \(n\) has been as large as 1,500 .

A large number of applications have shown that in most instances the user desires to construct the Chebyshev series for not just one function but for several functions simultaneously. For instance, in the study of the motion of a particle there will always be three coordinates, \(x_{1}, x_{2}, x_{3}\), rather than just one. For this reason we programmed the subroutine CHEBY to efficiently construct several Chebyshev series simultaneously. In particular, the number of cosine calculations has been minimized. There will be only \(2 n\) cosine calculations, no matter how many functions are being analyzed simultaneously.

Besides the main program, the user will have to provide his own subroutine for the evaluation of the special values of the functions to be analyzed, as explained in the comments of the subroutine \(C H E B Y\). The user may choose any name for this subroutine; however, this name has to be transmitted through the CALL CHEBYstatement. This function subroutine will generally evaluate the function values either by using the appropriate formulas or by performing table lookup and interpolations if the data is only available in the form of a table with discrete points.

The subroutine ECHEB evaluates a Chebyshev series with the aid of Clenshaw's recurrence rule [4, p. 9]. The \(c_{i}\) 's being the coefficients of the given series, we compute the values \(b_{n+2}, b_{n+1}, b_{n}, \ldots\), \(b_{0}\) with:
\(b_{n+2}=b_{n+1}=0 ; \quad b_{i}=2 x b_{i+1}-b_{i+2}+c_{i}\),
where the subscript \(i\) runs from \(n\) to 0 . The number of arithmetic
operations involved is only \(3 n\), and the value of the function is then \(f(x)=\left(b_{0}-b_{2}\right) / 2\).

The subroutine \(E D C H B\) evaluates the derivative of a Chebyshev series (without storing the coefficients of the differentiated series). It implements a combination of the evaluation formula (4) and the differentiation formula (6) given below.

The differentiation and integration subroutines. Clenshaw's formulas [4, p. 11] have again been used for the differentiation and integration operations. The coefficients \(a_{i}\) of the integrated Chebyshev series are derived from the input coefficients \(c_{i}\) by:
\(a_{0}=0 ; \quad a_{n}=c_{n-1} / 2 n ; \quad a_{i}=\left(c_{i-1}-c_{i+1}\right) / 2 i ;\)
\[
\begin{equation*}
i=1,2, \ldots, n-1 \tag{5}
\end{equation*}
\]

The coefficients \(d_{i}\) of the differentiated series are obtained by a set of recurrence equations:
\(d_{n}=0 ; \quad d_{n-1}=2 n c_{n} ; \quad d_{i-1}=d_{i+1}+2 i c_{i} ;\)
\(i=n-1, n-2, \ldots, 1\).
When using the differentiation and integration subroutines, the user should remember the relation between the differentials of \(t\) and \(x\) :
\(d t=\left(\left(t_{2}-t_{1}\right) / 2\right) d x=(\Delta t / 2) d x\).
This should be considered whenever differentiation or integration of Chebyshev series is performed. For instance we have for any Chebyshev series \(f\) :
\(\int f d t=(\Delta t / 2) \int f d x\).
Negative and fractional powers. Our last four subroutines, dealing with expansion or iteration methods for the generation of noninteger powers of a Chebyshev series, are somewhat more sophisticated than the first six subroutines, but the theoretical basis of their operation has recently been described in detail [1]. For this reason, they will not be described in more detail here. All four subroutines use the multiplication subroutine \(M L T P L Y\) but are otherwise independent. The subroutines BINOM, XALFA2, and \(X A L F A 3\) all have the same purpose but operate with different methods and have different convergence properties. All three are given in order to allow the user to experiment and eventually select the one that is most efficient for his particular application.

Acknowledgments. I wish to thank Nancy Hamata at the Jet Propulsion Laboratory for her assistance in the programming and debugging of the present subroutines; also the two anonymous reviewers for their useful suggestions.

\section*{References}
1. Broucke, R. Construction of national and negative powers of a formal series. Comm. ACM 14, 1 (Jan. 1971), 32-35.
2. Carpenter, L. Planetary perturbations in Chebyshev series. NASA Tech. Note TN-D-3168, Goddard Space Flight Center, Greenbelt, Md., Jan. 1966.
3. Clenshaw, C. W. The numerical solution of linear differential equations in Chebyshev series. Proc. Cambr. Phil. Soc., 53 (1957), 134-149.
4. Clenshaw, C.W., Chebyshev series for mathematical functions. Nat. Phys. Lab. Math. Tables, 5 (1962) London, HMSO.
5. Clenshaw, C.W., and Norton, H.J. The solution of nonlinear ordinary differential equations in Chebyshev series. Computer J. 6 (1963), 88-92.
```

Algorithm
HGROUTINE CHEBY(NF, NPL, NPLMAX, N2, FUNCTN, X, FXJ, GC)
SIMULTANEOUS CHEBYSHEV ANALYSIS CF NF FUNCTIGNS
C SIMULTANEOUS COMPUTES A MATRIX, }X\mathrm{ , CONTAINING ONE CHEBYSHEV SERIES PEK

```

```

C COLUMN FOR A GIVEN NUMBEK OF FUNCTIONS, NF. INPUT N
C DIMENSION GF X IN THE CALLING PKOGKAM (MUST BE.GE.NPL),
C DIMENSION GF X IN THE CALLING PKOGKAM (MUST BE.GE.NPL),
C N2, DIMENSIEN QF GC (MUST BE.GE.2*(NPL-1)), AND FUNCTN,
C the name gF usek subrøutine which defines the nf
C FUNCTIENS. FXJ AND GC AKE v:Qrk SPACE.
C AN EXAMPLE OF SUCH A SUBR\emptysetUTINE IS AS F\emptysetLLØWS
C ANEEAMPLE OFNCTN(A,VAL)
c SUBRQUTINE FUNCIN(A,VAL)
c VAL(1)=DSIN(A)
C VAL(1)=DSINSA)
c keturn
c END

```

DEUBLE PKECISION X(NPLMAX,NF), FXJ(NF), GC(N2), EINN, XJ,
* FK, PEN, FAC

Do \(20 \mathrm{~K}=1, \mathrm{NPL}\)
D0 \(10, J=1, N F\)
\(x(k, J)=0 . D 0\)
CONTINUE
20 CONTINUE
\(N=N P L=1\)
ENN \(=\mathrm{N}\)
EN 3.1415926535897932 DO/ENN
FK \(=K, 1\)
GC(K) \(=\operatorname{DCES}(F K * P E N)\)
30 Continue
D0 \(80 \mathrm{~J}=1, \mathrm{NPL}\)
\(X J=G C(J)\)
CALL FUNCTN(XJ, FXJ)
IF (J.NE. 1 .AND. J.NE.NPL) GO TC 50
DO \(40 \mathrm{~K}=1, \mathrm{NF}\) FXJ \((K)=\)-SDO*FXJ(K)
40 CDNTINUE
bo \(D E 70 \mathrm{~L}=1\), NPL
\(L M=\operatorname{MOD}((L-1) *(J-1), N 2)+1\)
D0 \(60 \mathrm{~K}=1\), NF
                \(X(L, K)=X(L, K)+F X J(K) * G C(L M)\)
                CONTINUE
    70 CONTINUE
80 CONTINUE

FAC \(=2.0 \mathrm{DO} / \mathrm{ENN}\)
DO \(100 \mathrm{~K}=1\), NPL DO \(90 \mathrm{~J}=1, \mathrm{NF}\) \(x(K, J)=F A C * x(K, J)\)
90 CENTINUE
100 Cgntinue
RETURN
E.VD

SUBNDUTINE MLTPLY(XX, \(x 2\), NPL, X3)
C MULTIPLIES TWQ GIVEN CHEBYSHEV SERIES, \(X x\) AND \(x 2\), WITH
C NPL TERMS TO PKOUUCE AN CUTPUT CHEBYSHEV SERIES, X3.
DOUBLE PRECISICN \(X X(N P L), X 2(N P L), X 3(N P L), E X\)
D0 \(10 \mathrm{~K}=1\), NPL
\(\times 3(k)=0.000\)
10 CONTINUE
DO \(30 \mathrm{~K}=1\), NPL
\(E X=0.0 D O\)
\(M M=N P L-K+1\)
\(\mathrm{MM}=\mathrm{NPL}-K+\)
\(\mathrm{DO} 20 \mathrm{M}=1, \mathrm{MM}\)
 \(L=M+k-1\) \(E X=E X+X X(M) * X 2(L)+X X(L) * X 2(M)\) Continue
\(\times 3(K)=0.500 * E X\)
30 CONTINUE
\(\times 3(1)=x 3(1)-0.500 * x \times(1) * \times 2(1)\)
D0 \(50 \mathrm{~K}=3\).NPL \(\begin{array}{ll}E X & =0.0 D O \\ M M & =K-1\end{array}\) \(M M=K-1\)
D0 \(\begin{array}{rl}40 & M=2, M M \\ L & =K\end{array}\) \(E X=E X+X X(M) * X 2(L\) CONTINUE \(x 3(k)=0.5 D 0 * E X+X 3(k)\)
so Continue
RETURN
END

SUBROUTINE ECHEB (X, COEF, NPL, FX)
c evaluates the value \(F X(x)\) DF a given Chebyshev series,
C COEF, WITH NPL TEKMS AT A GIVEN VALUE: OF \(X\) BETWEEN
C - 1. AND 1 .
DDUBLE PRE
\(\begin{array}{ll}8 K \\ B R P P & =0.000\end{array}\)
DO \(10^{2} \mathrm{~K}=1\), NPL
\(J=N P L-K+1\)
BRP2 \(=\) BRPP \(B R=2.0 D 0 * X * B R P P-B K P 2+C O E F(J)\)
10 CONTINUE
\(F X=0.5 D O *(B R-B K P 2)\)
RETURN
END

SUBRØUTINE EDCHEB (X, COEF, NPL, FX)
C EVALUATES THE VALUE \(F X(x)\) OF THE DERIVATIVE OF \(A\)
C CHEBYSHEV SERIES, COEF, WITK NPL TEKMS AT A GIVEN
C VALUE \(O F \times\) BETWEEN -1 . AND 1
DøUBLE PKECISION COEF(NPL), \(X, F X, X J P 2, X J P L, X J, B J P Z\),
* BJPL, BJ, BF, DJ
\(X J F 2=0.000\)
XJPL \(=0.000\)
BJPZ \(=0.000\)
BJPL \(=0.000\)
DO \(10 \mathrm{~K}=1, \mathrm{~N}\)
\(J=N P L-K\)
DJ \(=\mathrm{J}\)
\(x J=2.00 * \operatorname{CoEF}(J+1) * D J+x J P 2\)
\(B J=2 \cdot D 0 * X * B J P L-8 J P 2+X J\)
\(B F=B J P 2\)
BJP2 \(=\) BJPL
\(8 \mathrm{JPL}=\mathrm{BJ}\)
XJP2 \(=X J P L\)
XJPL \(=X J\)
10 CONTINUE
\(F X=\cdot S D O *(B J-B F)\)
RETURN
END

SUBROUTINE DFRNT（XX，NPL，X2）
C COMPUTES THE DERIVATIVE CHEBYSHEV SERIES，X2．QF A GIVEN
C CHEBYSHEV SEKIES，XX，WITH NPL TEKMS．
C TO REPLACE A SERIES X BY ITS DERIVATIVE，USE
C CALL DFKNT（X，NPL，\(X\) ）
DOUBLE PRECISION XX（NPL），XXN，XXL，DN，DL，X2（NPL）
\(D N=N P L-1\)
XXN \(=X X(N P L-1)\)
\(X 2(N P L-1)=2 \cdot D 0 * X X(N P L) * D N\)
\(\times 2(N P L)=0 . D 0\)
DO \(10 \mathrm{~K}=3\) ，NPL
\(L=N P L-K+1\)
\(D L=L\)
\(X X L=X X(L)\)
\(X 2(L)=X 2(L+2)+2 \cdot D 0 * X X N * D L\)
\(X X N=X X L\)
10 CONTINUE
RETUKN
END

SUBRIDUTINE NTGRT（XX，NPL，XC）
C COMPUTES THE INTEGKAL CHEBYSHEV SEKIES，X2，OF A GIVEN C CHEBYSHEV SEKIES．XX，WITH NPL TEKMS．
C TO KEPLACE A SERIES \(X\) BY ITS INTEGKAL，USE
CALL NTGRT（X．NPL，X）
DUUBL．E PRECISIQN \(X X(N P L)\) ，XPK，TEFM，DK，X2（NPL）
\(x\) PK \(=x \times(1)\)
\(N=N P L \quad 10\)
Do \(10 \mathrm{k}=2, \mathrm{~N}\)
\(D K=K\)－
TERM \(=(\times P R-x \times(K+1)) /(2 \cdot D 0 * D K)\)
\(X P R=X X(K)\)
X2（K）\(=\) TEKM
10 CONTINUE
\(D K=N\)
\(x 2(N P L)=X P R /(2 \cdot D O * D K)\)
KETURN

SU日ROUTINE INVEKT \(X, X X\) ，NPL，NET，XNVSE，WVI，WR）
C COMPUTES THE INVEKSE CHEBYSHEV SEKIES，XNVSE，GIVEN A
C CHEBYSHEV SEKIES，\(X\) ，A FIKST APPKGXIMATION CHERYSHEV
C SERIES，\(X X\) ，VITH NPL TEKMS，AND THE NUMBEK OF
C ITERATIONS，NET．THE SUBROUTINE USES THE EULEK METHOU
C AND COMPUTES ALL POWEKS EPS＊＊K UP TC \(K=2 * *(N E T+1)\) ，
C WHERE EPS＝1－X＊（XX INVEKSE）．WW AND W2 AKE WORK bPACE．
C SUBKøUTINES USED－MLTPLY
DOUBLE PKECISI \(\emptyset N X(N P L), X X(N P L), X N V S E(N P L), k W(N P L)\),
＊w2（NPL）
CALL MLTPLY（X，\(x x, N P L, w w)\)
\(W W(1)=2 . D O-W V_{i}(1)\)
D0 \(10 \mathrm{~K}=2\) ，NPL
\(W h(K)=-w w(k)\)
10 CONTINUE
CALL MLTPLY（wh，WW，NPL，W2）
WW（1）\(=2 \cdot D 0+W W(1)\)
D0 \(40 \mathrm{~K}=1\) ， NET
CALL ML．TPLY（WW，W2，NPL，XNVSE）
D0 \(20 \mathrm{~J}=1\) ，NPL
WW（J）\(=\) ww（J）＋xNvSE（J）
CONTINUE
CALL MLTPLY（WZ，W2．NPL．XNVSE）
D0 \(30 \mathrm{~J}=1\) ，NPL
w2（J）\(=\) XNVSE（J）
CONTINUE
40 Continue
CALL MLTPLY（WV，\(X X\) ，NPL，XNVSE）
KETUKN
END

SUBRGUTINE BINOM（X，\(x x\) ，NPL，\(M\) ，NT，\(x A, 4 W\), w2，w3）
C COMPUTES THE BINOMIAL EXPANSIGN SEKIES，XA，FOK（ \(-1 / \mathrm{M}\) ）
C PQUER OF THE GIVEN CHERYSHEV SERIES，X．WITH
C WHERE M IS A POSITIVE INTEGER．XX IS A GIVEN INITIAL
C APPROXIMATION TO X＊＊\(-1 / M\) ）．NT IS A GIVEN NUMBER OF
C TERMS IN BINQMIAL SERIES．WW，W2，AND W3 ARE WORK SPACE
C SUBROUTINES USED－MLTPLY
DØUBLE PKECISIøN X（NPL），XX（NPL），XA（NPL），WW（NPL），
＊W2（NPL），W3（NPL），ALFA，COEF，DM，DKMM，DKM2
\(D M=M\)
ALFA \(=-1 \cdot D 0 / D M\)
Dの \(10 J=1, N P L\)
10 Continue
De \(30 \mathrm{~K}=\mathrm{I}, \mathrm{M}\)
CALL MLTPLY（WW，\(x x\) ，NPL，W2）
DO \(20 \mathrm{~J}=1\) ，NPL
\(W W(J)=W 2(J)\) continue
30 CONTINUE
\(\operatorname{WW}(1)=\operatorname{WW}(1)-2 \cdot D O\)
\(X A(1)=2 \cdot D 0\)
DO \(40 \mathrm{~J}=2, \mathrm{NPL}\)
\(X A(J)=0.000\) \(\mathrm{k}: 3(\mathrm{~J})=0 . \mathrm{DO}\)
40 CONTINUE
W3（1）\(=2 \cdot\) ．DO
D0 \(60 \mathrm{k}=2\) ，NT
DKMM \(=K-1\)
DKMC \(=K-2\)
COEF \(=\)（ALFA－DKM2）／DKMM
CALL．MLTPLY（W3，WW，NPL，W2
D0 \(50 \mathrm{~J}=1\) ，NPL
W3（J）\(=\) W2（J）＊COEF
\(X A(J)=X A(J)+W 3(J)\)
50 continue

60 CONTINUE
CALL MLTPLY（XA，\(X X\) ，NPL，w2）
DO \(70 \mathrm{~J}=1, \mathrm{NPL}\)
KA（J）\(=\) W2（J）
70 CONTINUE
KETUKN
END

SUBROUTINE XALFAC（X，XX．NHL，M，MAXET，EPSLN，NET，WW， ＊W2）
REPLACES A GIVEN INITIAL APPKOXIMATION CHEBYSHEV SEKIES，
C \(X X\) ，BY A GIVEN CHEBYSHEV SERIES，\(X\) ，WITH NPL TEKMS．
C RAISED TO THE（－I／M）POWEK，WHEKE M IS AN INTEGEK．
C INPUT MAXET，MAXIMUM ALLOWED NUMBER OF ITEKATIONS，AND
C INPUT MAXET，MAXIMUM ALLOWED NUMBER OF ITEKATIONS，AND
C EPSLN，REQUIRED PKECISIQN EPSILQN．OUTPUT AKGUMENT，
C NET，IS NUMBER OF ITERATIONS PKEFOKMED．IF MAXET＝NET，
C REOUIRED PKECISION MAY NOT HAVE BEEN KEACHEU AND THETRE
MAY BE DIVERGENCE．WW AND W2 AK＇E WEKK SPACE．
C CONVERGENCE IS QUADẼATIC
DOUBLE PKECISION X（NPL），XX（NPL），WU（NPL），WZ（NPL）
＊EPSLLN，DALFA，DM，\(S\) ，TDMM
\(D M=M\)
－DO／DM
TDMM \(=2 \cdot\) DO＊（DM \(+1 \cdot\) DO）
DD 60 JX＝1，MAXET
WD W（L）\(=1\) ，NPL
10 CONTINUE
DO \(30 \mathrm{~K}=1\) ． M
CALL MLTPLY（WW，\(x x\) ，NPL，W2）
De \(20 \mathrm{~L}=1\) ，NPL
WW（L）＝WC（L）
20
Continue
D0 \(40 \mathrm{~L}=1\) ，NPL
\(S=S+\) DABS（ViW（L））
bik（L）\(=-W W(L)\)
40 Continue
\(W W(1)=W W(1)+\) TDMM
CALL MLTPLY（wh，\(x x\) ，NPL，w2）
Dg \(50 \mathrm{~L}=1\) ，NPL
\(x X(L)=W 2(L) * D A L F A\)
CONTINUE
NET \(=\mathrm{JX}\)
IF（DABS（S）．LT．EPSLN）KETURN
60 CONTINUE
KETUKN
END

SUBRGUTINE XALFA3（ \(x, x X\) ，NPL，M，MAXET，EPSLN，NET，wh， ＊W2）
KEPLACES A GIVEN INITIAL APPKEXIMATION CHEBYSHEV SERIES．
XX，BY A GIVEN CHEBYSHEV SEKIES，X，KITH NPL TEKMS，
KAISED TO THE（ \(-1 / M\) ）POWEK，WHERE M IS AN INTEGEK．
INPUT MAXET，MAXIMUM ALLOWED NUMBEK OF ITERATI ONS，AND
EFSLN，REGUIKED PKECISION EFSILON．OUTPUI AHGUMENT，
C NET，IS NUMBER OF ITERATI ONS PKEFORMED．IF MAXET＝NET，
REQUIRED PKECISIQN MAY NGT HAVE BEEN KEACHED AND THEKE
MAY BE DIVERGENCE．WW AND W2 AKE WØRKK SPACE．
CgNVERGENCE IS GF GRDEr THisEE
DQUBLE PRECISION X（NPL
DQUBLE PRECTSI \(X(N P L), X X(N P L)\) ，Wiki（NPL），W2（NPL），
＊EPSLN，DALFA，DM，S，TDMM，PSDML．
DM \(=\) M
TDMM \(=1\). DO／DM
TDMM \(=2 \cdot D 0 *(D M+1 \cdot D O)\)
PSDML \(=.5 D O *(D M+1 \cdot D O)\)
Dの \(10 \mathrm{~L}=1\) ．NPL
WH（L）\(=X(L)\)
Cgntinue
DO \(30 \mathrm{~K}=1\) ， M
CALL MLTPLY（W＇W，\(X X\) ，NPL，W2）
\(0020 \mathrm{~L}=1, \mathrm{NPL}\)
CONTINUE W2CL
GNTINUE
Continue
\(=-2 . D O\)
\(D 0 \quad 40 \quad \mathrm{~L}=1\) ，NPL
\(S=S+D A B S(\) wh（L）\()\)
CONTINUE
\(w w_{1}(1)=w(w(1)-2 \cdot 00\)
DO \(50 \mathrm{~L}=1\) ，NPL
WW（L）\(=W h(L) * D A L F A\)
CONTINUE
CALL MLTPLY（WW，WW，NPL，W2）
DC \(60 \mathrm{~L}=1\) ，NPL
\(W W(L)=-W W(L)\)
W2（L）\(=W 2(L) * P\) 5DML
CONTINUE
Wh（1）\(=\) Wk（1）+2.00
D0 \(70 \mathrm{~L}=1\) ，NPL
W2（L）\(=\) W2（L）＋WW（L）
CONTINUE
CALL MLTPLY（W2，\(x x\) ，NPL，WW）
D \(80 \mathrm{~L}=1, \mathrm{NPL}\)
XX（L）
\(=\) Wh（L）
CONTINUE
\(N E T=J X\)
IF（DABS（S）．LT．EPSLN）RETUKiN
O CONTINUE
RETUÑN
END

\section*{Remark and Certification on Algorithm 446}

Ten Subroutines for the Manipulation of Chebyshev Series [C1] [R. Broucke, Comm. ACM 16 (Apr. 1973), 254-265]

Robert Piessens and Irene Mertens [Recd 11 Jan. 1974] Applied Mathematics and Programming Division, University of Leuven, B-3030, Heverlee (Belgium)
1. Two corrections are needed in the subroutine CHEBY:
(i) The statement after statement 50 must be changed into:
\(\mathrm{LM}=\operatorname{MOD}(\mathrm{L}-1) *(\mathrm{~J}-1), 2 * \mathrm{~N})+1\)
(ii) formulas (1) and (3) for the computation of Chebyshev series coefficients \(c_{1}\) do not agree with the exact formulas given by Fox and Parker [ 1, p. 66]. Indeed the last coefficient must be halved. This can be accomplished in the routine by replacing the five statement before RETURN by
```

 DO 100 J = 1, NF
 DO 90 K = 1, NPL
 90 CONTINUE
100 CONTINUE

```
```

 DO 30 K = 1, N2
    ```
            DO 30 K = 1, N2
                \vdots
                \vdots
30 CONTINUE
```

30 CONTINUE

```
            \(\mathrm{X}(\mathrm{K}, \mathrm{J})=\mathrm{FAC} * \mathrm{X}(\mathrm{K}, \mathrm{J})\)
        \(\mathrm{X}(\mathrm{NPL}, \mathrm{J})=0.5 \mathrm{DO} * \mathrm{X}(\mathrm{NPL}, \mathrm{J})\)
2. Moreover, the number of cosine-evaluations in CHEBY can be reduced by a factor 4 if the \(D O\)-loop:
is replaced by
\(\mathrm{NN}=(\mathrm{NPL}+1) / 2\)
DO \(30 \mathrm{~K}=1\), NN
\(\mathrm{FK}=\mathrm{K}-1\)
\(\mathrm{GC}(\mathrm{K})=\mathrm{DCOS}(\mathrm{FK} * \mathrm{PEN})\)
NPLK \(=\) NPL \(+1-\mathrm{K}\)
\(\mathrm{GC}(\mathrm{NPLK})=-\mathrm{GC}(\mathrm{K})\)
30 CONTINUE
DO \(35 \mathrm{~K}=1, \mathrm{~N}\)
NPLK \(=\) NPL \(+K\)
\(\mathrm{GC}(\) NPLK \()=-\mathrm{GC}(\mathrm{K}+1)\)
35 CONTINUE
3. In subroutine MLTPLY, the \(D O\)-loop

DO \(10 \mathrm{~K}=1\), NPL
10 CONTINUE
may be deleted.
We have tested INVERT and BINOM by calculating
\(\left[T_{0}(x)+a T_{1}(x)\right]^{-1}\),
and BINOM, XALFA2 and XALFA3 by calculating
\(\left[\left(1+\frac{a^{2}}{2}\right) T_{0}(x)+2 a T_{1}(x)+\frac{a^{2}}{2} T_{2}(x)\right]^{-1 / 2}\)
The results are compared with the exact Chebyshev series expansion
\((1+a x)^{-1}=\sum_{k=0}^{\infty}{ }^{\prime} a_{k} T_{k}(x)\)
where
\(a_{k}=\frac{2}{\left(1-a^{2}\right)^{\frac{1}{2}}}\left(\frac{\left(1-a^{2}\right)^{\frac{1}{2}}-1}{a}\right)^{k}, \quad|a|<1\).

The rate of convergence of this series depends strongly on the value of \(a\). For this reason, we have given \(a\) the values \(0.1,0.2\), ... , 0.9 .

We have noted that, especially in the case of slowly converging series, INVERT, XALFA2 and XALFA3 are more efficient than \(B I N O M\). Moreover, in order to have convergence, BINOM requires more accurate initial approximations than the other routines.

Reference
1. Fox, L., and Parker, I.B. Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London, 1968.

\section*{Algorithm 447}

\title{
Efficient Algorithms for Graph Manipulation [H]
}

John Hopcroft and Robert Tarjan [Recd. 24 March 1971 and 27 Sept. 1971]
Cornell University, Ithaca, NY 14850

\begin{abstract}
Efficient algorithms are presented for partitioning a graph into connected components, biconnected components and simple paths. The algorithm for partitioning of a graph into simple paths is iterative and each iteration produces a new path between two vertices already on paths. (The start vertex can be specified dynamically.) If \(V\) is the number of vertices and \(E\) is the number of edges, each algorithm requires time and space proportional to \(\max (V, E)\) when executed on a random access computer.
\end{abstract}

Key Words and Phrases: graphs, analysis of algorithms, graph manipulation

CR Categories: 5.32
Language: Algol

\section*{Description}

Graphs arise in many different contexts where it is necessary to represent interrelations between data elements. Consequently algorithms are being developed to manipulate graphs and test them for various properties. Certain basic tasks are common to many of these algorithms. For example, in order to test a graph for planarity, one first decomposes the graph into biconnected components and tests each component separately. If one is using an algorithm [4] with asymptotic growth of \(V \log (V)\) to test for planarity, it is imperative that one use an algorithm for partitioning the graph whose asymptotic growth is linear with the number of edges rather than quadratic in the number of vertices. In fact, representing a graph by a connection matrix in the above case would result in spending more time in constructing the matrix than in testing the graph for planarity if it were represented by a list of edges. It is with this in mind that we present a structure for representing graphs in a computer and several algorithms for simple operations on the graph. These include dividing a graph into connected components, dividing a graph into biconnected components, and partitioning a graph into simple paths. The algorithm for division into connected components is well known [7]. The description of an algorithm similar to the biconnected components algorithm has just appeared [6]. For a graph with \(V\) vertices and \(E\) edges, each algorithm requires time and space proportional to \(\max (V, E)\).

Standard graph terminology will be used throughout this discussion. See for instance [2]. We assume that the graph is initially

\section*{This research was carried out while the authors were at Stan-} ford University and was supported by the Hertz Foundation and by the Office of Naval Research under grant number N -00014-67-A-0112-0057 NR-44-402.

Fig. 1. Flowchart for connected components algorithm.

given as a list of pairs of vertices, each pair representing an edge of the graph. The order of the vertices is unimportant; that is, the graph is unordered. Labels may be attached to some or all of the vertices and edges.

Our model is that of a random-access computer with standard operations; accessing a number in storage requires unit time. We allow storage of numbers no larger than \(k \max (V, E)\) where \(k\) is some constant. (If the labels are large data items, we assume that they are numbered with small integer codes and referred to by their codes; there are no more than \(k \max (V, E)\) labels.) It is easy to see and may be proved rigorously that most interesting graph procedures require time at least proportional to \(E\) when implemented on any reasonable model of a computer, if the input is a list of edges. This follows the fact that each edge must be examined once.

It is very important to have an appropriate computer representation for graphs. Many researchers have described algorithms which use the matrix representation of a graph [1]. The time and space bounds for such algorithms generally are at least \(V^{2}\) [3] which is not as small as possible if \(E\) is small. (In planar graphs for instance, \(E \leq 3 V-3\).) We use a list structure representation of a graph. For each vertex, a list of vertices to which it is adjacent is made. Note that two entries occur for each edge, one for each of its end points. A cross-link between these two entries is often useful. Note also that a directed graph may be represented in this fashion;
if vertex \(v_{2}\) is on the list of vertices adjacent to \(v_{1}\), then \(\left(v_{1}, v_{2}\right)\) is a directed edge of the graph. Vertex \(\nu_{1}\) is called the tail, and vertex \(\nu_{2}\) is called the head of the edge.

A directed representation of an undirected graph is a representation of this form in which each edge appears only once; the edges are directed according to some criterion such as the direction in which they are transversed during a search. Some version of this structure representation is used in all the algorithms.

One technique has proved to be of great value. That is the notion of search, moving from vertex to adjacent vertex in the graph in such a way that all the edges are covered. In particular depth-first search is the basis of all the algorithms presented here. In this pattern of search, each time an edge to a new vertex is discovered, the search is continued from the new vertex and is not renewed at the old vertex until all edges from the new vertex are exhausted. The search process provides an orientation for each edge, in addition to generating information used in the particular algorithms.

\section*{Detailed Description of the Algorithms}

Algorithm for finding the connected components of a graph. This algorithm finds the connected components of a graph by performing depth-first search on each connected component. Each new vertex reached is marked. When no more vertices can be reached along edges from marked vertices, a connected component has been found. An unmarked vertex is then selected, and the process is repeated until the entire graph is explored.

The details of the algorithm appear in the flowchart (Figure 1). Since the algorithm is well known, and since it forms a part of the algorithm for finding biconnected components, we omit proofs of its correctness and time bound. These proofs may be found as part of the proofs for the biconnected components algorithm. The algorithm requires space proportional to \(\max (V, E)\) and time proportional to \(\max (V, E)\), where \(V\) is the number of vertices and \(E\) is the number of edges of the graph.

Algorithm for finding the biconnected components of a graph. This algorithm breaks a graph into its biconnected components by performing a depth-first search along the edges of the graph. Each new point reached is placed on a stack, and for each point a record is kept of the lowest point on the stack to which it is connected by a path of unstacked points. When a new point cannot be reached from the top of the stack, the top point is deleted, and the search is continued from the next point on the stack. If the top point does not connect to a point lower than the second point on the stack, then this second point is an articulation point of the graph. All edges examined during the search are placed on another stack, so that when an articulation point is found the edges of the corresponding biconnected component may be retrieved and placed in an output array.

When the stack is exhausted, a complete search of a connected component has been performed. If the graph is connected, the process is complete. Otherwise, an unreached node is selected as a new starting point and the process repeated until all of the graph has been exhausted. Isolated points are not listed as biconnected components, since they have no adjacent edges. They are merely skipped. The details of the algorithm are given in the flowchart (Figure 2). Note that this flowchart gives a nondeterministic algorithm, since any new edge may be selected in block \(A\). The actual program is deterministic: the choice of an edge depends on the particular representation of the graph.

We will prove that the nondeterministic algorithm terminates on all simple graphs without loops, and we also derive a bound on the execution time. We will then prove the correctness of the algorithm, by induction on the number of edges in the graph. Note that the algorithm requires storage space proportional to \(\max (V, E)\), where \(V\) is the number of vertices and \(E\) is the number of edges of the graph.

Let us consider applying the algorithm to a graph. Referring to the flowchart, every passage through the YES branch of block \(A\) causes an edge to be deleted from the graph. Each passage through
the \(N O\) branch of block \(B\) causes a point to be deleted from the stack. Once a point is deleted from the stack it is never added to the stack again, since all adjacent edges have been examined. Each edge is deleted from the stack of edges once in block \(C\). Thus the blocks directly below the \(Y E S\) branch of block \(A\) are executed at most \(E\) times, those below the \(N O\) branch of block \(B\) at most \(V\) times, and the total time spent in block \(C\) is proportional to \(E\). Therefore there is some \(k\) such that for all graphs the algorithm takes no more than \(k \max (V, E)\) steps. A more explicit time bound may be calculated by referring to the program.

Suppose the graph \(G\) contains no edges. By examining the flowchart we see that the algorithm, when applied to \(G\), will terminate after examining each point once and listing no components. Thus the algorithm operates correctly in this case. Suppose the algorithm works correcly on all graphs with \(E-1\) or fewer edges. Consider applying the algorithm to a graph \(G\) with \(E\) edges. Since the stack of points becomes empty at least once during the operation of the algorithm, and since the \(Y E S\) branch at block \(D\) must be taken when only two points are on the stack, every edge must not only be placed on the stack of edges but must be removed in block \(C\). Consider the first time block \(C\) is reached when the algorithm is applied to graph \(G\). Suppose not all the edges in the graph are removed from the stack of edges in this execution of block \(C\). Then \(p\), the second point on the stack, is an articulation point and separates the removed edges from the other edges in the graph.

Let \(E_{1}\) be the set of removed edges, let \(E_{2}\) be the set of edges still on the stack, and let \(E_{3}\) be the set of remaining edges of \(G\). Let \(G_{1}\) be the subgraph of \(G\) made up of the edges from \(E_{1}\), and let \(G_{2}=G-G_{1}\). Since \(G_{1}\) and \(G_{2}\) each have at most \(E-1\) edges, the induction hypothesis implies that the algorithm operates correctly on both \(G_{1}\) and \(G_{2}\).

Assume that the edges for each vertex in \(G_{1}\) and \(G_{2}\) are listed in the same order as for \(G\). Consider the sequence of steps taken when the algorithm is applied to \(G\). The sequence of steps taken on \(G_{2}\) can be divided into an initial sequence of steps which results in placing the edges \(E_{1}\) on the stack, followed by the remaining sequence \(S_{2}\). The sequence of steps taken on \(G\) consists of the sequence \(S_{1}\), followed by the steps taken on \(G_{2}\) with \(p\) as the start point, followed by \(S_{2}\).

The behavior of the algorithm on \(G\) is simply the composite of its behavior on \(G_{1}\) and \(G_{2}\); thus the algorithm must operate correctly on \(G\).

Now suppose that the first time block \(C\) is reached, all the edges of \(G\) are removed from the stack of edges. We want to show that in this case \(G\) is biconnected. Suppose that \(G\) is not biconnected. Then choose a biconnected component of \(G\) which may be separated by removing some one point \(p\) and which does not contain the start point of \(G\). Let the edges making up this component be subgraph \(G_{1}\) of \(G\); let the remainder of \(G\) be \(G_{2}\). The algorithm operates correctly on \(G_{1}\) and on \(G_{2}\) by assumption. The behavior of the algorithm on \(G\) is a composite of its behavior on \(G_{1}\) and on \(G_{2}\). Assume that the edges for each vertex in \(G_{1}\) and \(G_{2}\) are listed in the same order as for \(G\). The sequence of steps on \(G\) is identical to the sequence of steps on \(G_{1}\) until an edge of \(G_{2}\) out of vertex \(p\) is selected. Then the sequence of steps of \(G\) is identical to the sequence on \(G_{2}\) with start point \(p\). The remaining steps on \(G\) are the same as the remaining steps on \(G_{1}\). But the algorithm reaches block \(C\) once while processing \(G_{1}\) and at least once while processing \(G_{2}\). This contradicts the fact that the algorithm only reaches block \(C\) once while processing \(G\). Thus \(G\) must be biconnected. and the algorithm operates correctly on \(G\). By induction, the algorithm is correct for all simple graphs without loops.

Algorithm for finding simple paths in a graph. This algorithm may be used to partition a graph into simple paths, such that all the paths exhaust the edges of the graph. Each iteration of the algorithm produces a new path which contains no vertex twice, and which connects the chosen startpoint with some other vertex which already occurs in a path. Total running time is proportional to the number of edges in the graph. The starting point for each successive path may be selected arbitrarily. In fact, the initial edge of each

Fig. 2. Flowchart for biconnected components algorithm.

successive path may be selected arbitrarily from the set of unused edges.

The algorithm is highly dependent on the graph being biconnected. (The biconnected components of a graph are found using the previously described algorithm.) In order to find a new path, the initial edge is selected and the head of the edge is checked. If this point has never been reached before, a depth-first search is begun which must end in a path since the graph is biconnected. The search generates a tree-like structure: specifically, it is a tree with edges connecting some vertices with their (not necessarily immediate) ancestors. (We will visualize the tree drawn so that the root, which is an ancestor of all points, is at the bottom of the tree.) Enough information is saved from this tree so that if a point in it is reached when building another path, the path may be completed without any further search.

The flowchart (Figures 3 and 4) gives the details of the algorithm. It is divided into two parts; one for the depth-first search process and one for path construction using previously gathered information. We shall prove the correctness of the algorithm and give a time bound for its operation. To derive the time bound, we assume that one point is marked old initially, and a different point

Fig. 3. Flowchart for pathfinding algorithm (I).


Fig. 4. Flowchart for pathfinding algorithm (II).

is selected as the initial startpoint. The algorithm is then run repeatedly with arbitrary startpoints until all edges are used to form paths.

Let us consider path generation using depth-first search; that is, suppose the algorithm is applied and that the head of the first edge selected is previously unreached. Referring to the flowchart, we see that the search process is very similar to that used in the biconnectivity algorithm. A search tree is generated, and each edge examined is either part of the tree or connects a point to one of its predecessors in the tree. LOW POINT is exactly the same as in the biconnectivity algorithm; it gives the number of the lowest point in the tree reachable from a given point by continuing out along the tree and taking one edge back toward the root. The forward edges point along this path, while the backward edges point back along the tree branches. We have shown in the correctness proof of the biconnectivity algorithm that, if the graph is biconnected, LOWPOINT of a given point must point to a node which is an ancestor of the immediate predecessor of the given point. In particular, LOWPOINT of the second point in the search tree must indicate an old point which is not the startpoint. Therefore the algorithm will find a path containing the initial edge. Note that all points encountered during the search process must either be old or unreached, since every point reached in a previous search either has had all its edges examined or has been included in a path.

Let us now suppose that the head of the first edge has been reached previously but is not marked old. Then the forward and backward pointers, along with the LOW POINT values, allow the algorithm to construct a path without further search. First, if the number of the head of the edge is less than the number of the startpoint, then following backward pointers will certainly produce a simple path, since the root of a search tree must be old and each successive point along a backward path has a lower number and thus is distinct from the other points in the path. If the initial edge is part of a search tree and the startpoint is the predecessor of the second point, then LOWPOINT of the second point must be less than the number of the startpoint. Following forward edges until reaching a point numbered lower than the startpoint and then following backward edges will produce a simple path. This is true since the forward edges point through descendants of the tree, with the single exception of the edge whose head is a point below startpoint in the tree. The last case to consider occurs when the initial edge is not part of a search tree but points from a node to one of its descendants in a tree. In this case some node in the tree between the startpoint and the second point of the path must have a LOW POINT value less than the number of the startpoint. If we follow backward edges until the first such point is reached, then follow forward edges until a point numbered less than the startpoint is reached, and finally follow backward edges until an old point is reached, we will generate a simple path. Note that the first forward edge taken cannot lead to the previous point because, if it did, the \(L O W P O I N T\) value at the previous point would be less than the number of startpoint, and the forward edge from this point would have been chosen instead of the backward edge.

We thus see that each execution of the pathfinding algorithm produces a simple path, assuming that the algorithm is applied to a biconnected graph with at least one point which is not the first startpoint marked old initially. Since each edge is examined at most once in the search section of the algorithm, and since each edge is put into a path once, there is a constant \(k\) such that the time required to execute the algorithm until no edges are unused is less than \(k E\) steps, where \(E\) is the number of edges in the graph. (Note that the number of vertices, \(V\), is less than \(E\) if the graph is biconnected.) Detailed examination of the program will produce a more exact time bound.

Another algorithm for finding simple paths exists. Lempel, Even, and Cederbaum [5] have described an algorithm for numbering the vertices of a biconnected graph such that: (i) each number is an integer in the range 1 to \(V\), where \(V\) is the number of vertices on the graph; (ii) vertices 1 and \(V\) are jointed by an edge; (iii) for all \(1<i<V\), vertex \(i\) is joined to at least two vertices, one with a
higher number and one with a lower number. We may use this algorithm to partition a graph into simple paths.

Given a start point and an adjacent end point, number the vertices so that the startpoint is 1 , the endpoint is \(V\), and the numbering satisfies the conditions above. Take edge \((1, V)\) as the first path. Given an arbitrary startpoint, find an edge to a higher numbered vertex. Continue to find edges to successively higher numbered vertices until an old vertex is reached.

This algorithm is clearly correct and looks conceptually simple. However, Lempel, Even, and Cederbaum present no efficient implementation of their numbering algorithm, and the only efficient way we have found to implement it requires using the previously described pathfinding algorithm in a more complicated form. Thus the new algorithm requires time and space proportional to \(\max (V, E)\), but the constants of proportionality are larger than those for the implemented algorithm.

Implementation. The algorithms for finding connected components, biconnected components, and simple paths were originally implemented and tested in Algol W. The programs were then translated to Algol for publication and tested using the OS/360 Algol compiler. Auxiliary subroutines were also implemented. Brief descriptions of the procedures are provided below.
\(A D D 2(A, B, S T A C K, P T R)\) : This procedure adds value \(A\) followed by value \(B\) to the top of stack \(S T A C K\) and increments the pointer to the top of the stack (PTR). Stacks are represented as arrays; the top of the stack is the highest filled location.

NEXTLINK (POINT,VALUE): This procedure is used to build the structural representation of a graph. It adds \(V A L U E\) to the list of vertices adjacent to POINT. (POINT, VALUE) is an edge (possibly directed) of the graph.

CONNECT(V, E, EPTR, EDGELIST, COMPONENTS): This procedure, given a graph with \(V\) vertices and \(E\) edges, whose edges are listed in EDGELIST, computes the connected components of the graph and places the edges of the components in COMPONENTS. Each component is preceded by an entry containing the number of edges \(E^{\prime}\) of the component. The edges are oriented for output according to the direction in which they were searched (head first, tail second).

BICONNECT (V,E,EPTR,EDGELIST,COMPONENTS):This procedure, given a graph with \(V\) vertices and \(E\) edges, whose edges are listed in EDGELIST, computes the biconnected components of the graph and places them in BICOMPONENTS. Each component is preceded by an entry containing the number of edges \(E\) of the component. The edges are oriented for output according to the direction in which they were searched (head first, tail second).

PATHFINDER(STARTPT,PATHPT,CODEVALUE,PATH): This procedure, given a list structure representation of a biconnected graph with certain vertices marked as old, constructs a simple path from STARTPOINT to some old vertex, saving information to be used in constructing succeeding paths. The new path is stored in array PATH. Calling PATHFINDER repeatedly may be used to partition the graph into simple paths.

The procedure \(P A T H F I N D E R\) requires that the structural representation of the graph be stored as follows. Each edge is treated as a pair of directed edges each of which is represented by an integer between \(v+1\) and \(v+2 \times e\). If \(i_{1}, i_{2}, \ldots, i_{k}\) are the integers corresponding to the edges out of vertex \(i\), then initialize \(N E X T(i)\) to \(i_{1}, N E X T\left(i_{j}\right)\) to \(i_{j+1}, 1 \leq j<k\), and \(N E X T(k)\) to 0 . If the edge \(i_{j}\) terminates at vertex \(l\), initialize \(\operatorname{HEAD}\left(i_{j}\right)\) to \(l . \operatorname{LINK}\left(i_{j}\right)\) is the integer corresponding to the edge in the other direction. For \(1 \leq i \leq v, B A C K(i), F O R W A R D(i), P A T H O C D E(i)\) are initialized to \(0, L O W P O I N T(i)\) is initialized to \(v+1, N O D E(i)\) is initialized to \(N E X T(i)\) and \(O L D(i)\) is initialized to \(F A L S E\). For \(v+1 \leq i \leq\) \(v+2 \times e \operatorname{MARK}(i)\) is initialized to \(F A L S E\). Before the first call of PATHFINDER some nonnull set of vertices must be marked as \(O L D\) and assigned successive PATHCODE values. CODE\(V A L U E\) is set equal to the number of vertices marked as \(O L D\). If this is not done the first path cannot end at an \(O L D\) vertex.

Further comments may be found in the program listings below.

\section*{References}
1. Fisher, G.J. Computer recognition and extraction of planar graphs from the incidence matrix. IEEE Trans. in Circuit Theory CT-13, (June 1966), 154-163.
2. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969.
3. Holt, R., and Reingold, E. On the time required to detect cycles and connectivity in directed graphs. Comput. Sci. TR 70-33, Cornell U. Ithaca, N.Y.
4. Hopcroft, J., and Tarjan, R. Planarity testing in \(v \log v\) steps, extended abstract. Stanford U. CS 201, Mar. 1971.
5. Lempel, A., Even, S., and Cederbaum, I. An algorithm for planarity testing of graphs. Theory of Graphs: International Symposium: Rome, July 1966. P. Rosenstiehl (Ed.) Gordon and Breach, New York, 1967, pp. 215-232.
6. Paton, K. An algorithm for the blocks and cutnodes of agraph. Comm. ACM 14, 7(July 1971), 428-475.
7. Shirey, R.W. Implementation and analysis of efficient graph planarity testing. Ph.D. diss., Comput. Sci. Dep., U. of Wisconsin, Madison, Wis., 1969.

Algorithm
procedure \(a d d 2(a, b\), stack, ptr);
value \(a, b\); integer \(a, b\), ptr; integer array stack;
comment Procedure adds values \(a\) and \(b\) to stack stack and increases stack pointer ptr by 2 ;
begin
\(p t r:=p t r+2 ; \operatorname{stack}[p t r-1]:=a ; \operatorname{stack}[p t r]:=b\)
end of add2;
procedure nextlink (point, val);
value point, val; integer point, val;
comment Procedure adds directed edge (point, val) to structural representation of a graph. Global variables are described as follows. head \([v+1: v+2 \times e]\) and next \([1: v+2 \times e]\) contain the structural representation of the graph. freenext is the current last entry in next array;
begin
freenext \(:=\) freenext \(+1 ;\) next \([\) freenext \(]:=\) next \([\) point \(] ;\)
next[point] := freenext; head [freenext] \(:=\) val
end of nextlink;
integer procedure \(\min (a, b)\);
value \(a, b\); integer \(a, b\);
comment Procedure computes the minimum of two integers;
if \(a<b\) then \(\min :=a\) else \(\min :=b\);
procedure connect ( \(v, e\), cptr, edgelist, components);
value \(v, e\); integer \(v, e, c p t r\);
integer array edgelist, components;
comment Procedure finds the connected components of a graph. The parameters are described as follows. \(v\) and \(e\) are the number of vertices and edges of the graph. edgelist \([1: 2 \times e]\) is the initial list of edges of the graph. components \(\mid 1: 3 \times e]\) is the list of edges for each component. The list of edges for each component is preceded by an entry giving the number of edges of the component. cptr is a pointer to the last entry in components. The global variables are described as follows. head \([v+1: v+2 \times e]\) and next \([1: v+2 \times e]\) contain the structural representation of the graph. freenext is the last entry in the array next. The local variables are described as follows. number \([1: v+1]\) is used for numbering the vertices during the depth first search. code contains the current highest vertex number. point is the current vertex being examined during the search. \(v 2\) is the next vertex to be examined during the search. oldptr contains the position in components to place the value of the next component. The global procedures are add 2 and nextlink. A recursive depthfirst search procedure is used to examine connected components of the graph;
begin
integer array number \([1: v+1]\);
integer code, point, \(v 2\), oldptr, \(i\);
procedure connector (point, oldpı);
value point, oldpt; integer point, oldpt;
comment This recursive procedure finds a connected component using a depth-first search. The parameters are described as follows. point is the startpoint of search. oldpt is the previous startpoint. Global variables are the same as for connect. The global procedures are add2;
comment Examine each edge out of point;
for \(i=i\) while next \([\) point \(]>0\) do
begin
comment \(v 2\) is head of edge. Delete edge from structural representation;
\(v 2:=\) head \([\) next \([\) point \(]]\);
next[point] := next[next[point]];
comment Has this edge been searched in the other direction?
If so, look for another edge;
if (number \([v 2]<\) number \([\) point \(]) \wedge(v 2 \neq\) oldpt \()\) then
begin
comment Add edge to components;
add2(point, v2, components, cptr);
comment Determine if a new point has been found;
if number \([v 2]=0\) then
begin
comment New point found. Number it;
number[v2] \(:=\) code \(:=\) code +1 ;
comment Initiate a depth-first search from the new point;
connector ( \(\mathbf{v 2}\), point)
end
end
end;
comment Construct the structural representation of the graph;
freenext \(:=v\);
for \(i:=1\) step 1 until \(v\) do next \([i]:=0\);
for \(i:=1\) step 1 until \(e\) do
begin
comment Each edge occurs twice, once for each endpoint;
nextlink(edgelist \([2 \times i-1]\), edgelist \([2 \times i]\) );
nextlink(edgelist \([2 \times i]\), edgelist \([2 \times i-1])\)
end;
comment Initialize variables for search;
cptr \(:=0\); point \(:=1\);
for \(i:=1\) step 1 until \(v+1\) do number \([i]:=0\);
for \(i:=i\) while point \(\leq v\) do
begin
comment Each execution of connector searches a connected component. After each search, find an unnumbered vertex and search again. Repeat until all vertices are investigated;
number[point] \(:=\) code \(:=1\);
oldptr \(:=c p t r:=c p t r+1\);
connector (point, 0 );
comment Compute number of edges of components;
components \([\) oldptr \(]:=(\) cptr-oldptr \() \div 2\);
for \(i:=i\) while number[point] \(\neq 0\) do point \(:=\) point +1 end
end;
procedure biconnect ( \(v, e\), bptr, edgelist, bicomponents);
value \(v, e\); integer \(v, e\), bptr;
integer array edgelist, bicomponents;
begin
comment Procedure finds biconnected components of a graph. The parameters are described as follows. \(v\) and \(e\) are the number of vertices and edges of the graph. edgelist \([1: 2 \times e]\) is the initial list of edges of the graph. bicomponent \(s[1: 3 \times e]\) is the list of edges for each component found. Each component is preceded by an entry giving the number of edges of the component. bptr is a pointer to the last entry of bicomponents. The global variables are described as follows. head \(|v+1: v+2 \times e|\) and next \([1: v+2 \times e]\) contain the structural representation of the graph. freenext is the last entry in the array next. The local variables are described as follows. number \([1: v+1]\) is an array used for numbering the vertices during the depth-first search. code is the current highest vertex number. edgestack \(\{1: 2 \times e\}\)
is used for storage of edges examined during search. eptr is a pointer to last entry in edgestack. point is the current point being examined during search. \(v 2\) is the next point to be examined during search. newlowpt is the lowpoint for the biconnected part of graph above and including \(v 2\). oldptr is pointer to position in bicomponents to place a value of next component. The global procedures are min, add2, and nextlink. A recursive depth-first search procedure is used to divide the graph. The lowest point reachable from the current point without going through previously searched points is calculated. This information allows determination of the articulation points and division of the graph;
integer array number \([1: v+1]\), edgestack \([1: 2 \times e]\);
integer code, eptr, point, v2, newlowpt, oldptr, \(i\);
procedure biconnector (point, oldpt, lowpoint);
integer point, oldpt, lowpoint;
comment Recursive procedure to search a connected component and find its biconnected components using depth-first search. The parameters are described as follows. point is the startpoint of the search. oldpt is the previous startpoint. lowpoint is the lowest point reachable on a path found during search. The global variables are the same as for biconnect. The global procedures are min and add2;
comment Examine each edge out of point;
for \(i:=i\) while next \([\) point \(]>0\) do
begin
comment \(v 2\) is the head of the edge. Delete edge from structural representation;
integer \(\boldsymbol{v} 2\);
\(v 2:=\) head[next[point]];
next[point] : = next[next[point]];
comment If the edge has been searched in the other direction, then look for another edge;
if (number \([v 2]<\) number \([\) point \(]) \wedge(v 2 \neq o l d p t)\) then
begin
comment Add edge to edgestack;
add2 (point, v2, edgestack, eptr);
if number \([v 2]=0\) then
begin
comment New point found. Number it;
number[v2] \(:=\) code \(:=\) code +1 ;
comment Initiate a depth-first search from the new point; newlowpt \(:=v+1\); biconnector ( \(v 2\), point, newlowpt);
comment Note that although the global variable \(v 2\) is changed, its value is restored upon exit from this procedure. Recalculate lowpoint;
lowpoint \(:=\min\) (lowpoint, newlowpt); if newlowpt \(\geq\) number [point \(]\) then begin
comment point is an articulation point. Output edges of component from edgestack;
oldptr \(:=\) bptr \(:=\) bptr +1 ;
for \(i:=i\) while number[edgestack[eptr-1]] > number [point] do
begin
add2(edgestack[eptr-1], edgestack[eptr], bicomponents, bptr);
eptr \(:=\) eptr -2
end;
comment Add last edge;
add2(point, v2, bicomponents, bptr);
eptr \(:=\) eptr -2 ;
comment Compute number of edges of component; bicomponents[oldptr]:=(bptr-oldptr) \(\div 2\)

\section*{end}

\section*{end}
else
begin
```

 comment New point not found. Recalculate lowpoint;
 lowpoint := min(lowpoint, number[v2])
 end
    ```
        end
    end;
    comment Construct the structural representation of the graph;
    freenext \(:=\boldsymbol{v}\);
    for \(i:=1\) step 1 until \(v\) do next \([i]:=0\);
    for \(i:=1\) step 1 until \(e\) do
    begin
        comment Each edge occurs twice, once for each endpoint;
        nextlink(edgelist \([2 \times i-1]\), edgelist \([2 \times i]\) );
        nextlink(edgelist \([2 \times i]\), edgelist \([2 \times i-1])\)
    end;
    comment Initialize variables for search;
    eptr \(:=0 ;\) bptr \(:=0 ;\) point \(:=1 ; v 2:=0\);
    for \(i:=1\) step 1 until \(v+1\) do number \([i]:=0\);
    for \(i:=i\) while point \(\leq v\) do
    begin
        comment Each execution of biconnector searches a connected
        component of the graph. After each search, find an unnum-
        bered vertex and search again. Repeat until all vertices are
        examined;
    number[point] \(:=\) code \(:=1 ;\) newlowpt \(:=v+1\);
    biconnector(point, v2, newlowpt);
    for \(i:=i\) while number[point \(] \neg \neq 0\) do point \(:=\) point +1
    end
end;
procedure pathfinder (startpoint, pathpt, codevalue, path);
    integer startpoint, pathpt, codevalue;
    integer array path;
begin
    comment Procedure finds disjoint paths with arbitrary starting
        points in a biconnected graph. The points of each path are
        listed in the array path. The following variables are assumed
        global. next \([1: v+2 \times e]\), head \([v+1: v+2 \times e]\) and link
        \([\nu+1: \nu+2 \times e]\) define the graph using singly linked edge
        lists and a set of cross reference pointers. old \([1: v]\) and mark
        \([v+1: v+2 \times e]\) indicate used points and edges. pathcode \([1: v]\)
        is the consecutive numbering of the points. lowpoint \([1: v]\),
        forward \([1: v]\) and back \([1: v]\) give information saved from depth-
        first search, node \([1: v]\) gives the next unsearched edge from each
        point:
    integer point, pastedge, edge, pastpoint, \(v 2, i\);
    path[1] := startpoint;
    comment Choose initial edge;
    edge \(:=\) next[startpoint];
    for \(i:=i\) while (if edge \(=0\) then false else mark[edge \(]\) )
        do edge \(:=\) next \([\) edge \(]:\)
    begin
        comment No unused edge and thus no path exists:
        next[start point \(]:=0\); pathpt \(:=0\) :
        go to done
    end;
    next[startpoint] \(:=\) next[edge]; path[2] \(:=\) edge;
    point \(:=\) head[edge]; pathpt \(:=2\);
    if old[point] then go to pathfound;
    if forward \([\) point \(] \neq 0\) then
    begin
        comment Use previously found information to build a path.
        forward, back, lowpoint describe trees investigated using
        depth-first search;
    if pathcode \([\) startpoint \(]>\) pathcode \([\) point \(]\) then
        go to nextback;
nextmark:
    if pathcode[startpoint] \(>\) lowpoint \(\mid\) point \(]\) then
    begin
nextforward:
        edge \(:=\) forward[point]; point \(:=\) head[edge];
```

 pathpt := puthpt +1; path[pathpt]:= edge;
 if old[point] then go to pathfound;
 if pathcode[startpoint] > pathcode[point]
 then go to nextback;
 go to nextforward
 end;
 edge :== back[point]; point := head[edge];
 pathpt := pathpt + 1; path[pathpt] := edge;
 if old[point] then go to pathfound else
 go to nextmark;
 nextback:
edge := back[point]; point := head[edge];
pathpt:= pathpt + 1; path[pathpt]:= edge;
if old[point] then go to pathfound else
go to nextback
end;
comment Use depth-first search to find a path. Save information
describing search tree;
nextpoint:
codevalue := codevalue + 1; pathcode[point]:= codevalue;
nextedge:
edge := node[point];
for }i:=i\mathrm{ while edge = 0 do
begin
back[point] := link[path[pathpt]];
pastpoint := head[back[point]];
if (forward[pastpoint] = 0) V
(lowpoint[point] < lowpoint[pastpoint]) then
begin
forward[pastpoint] := path[pathpt];
lowpoint[pastpoint]:= lowpoint[point]
end;
point := pastpoint; pathpt := pathpt - 1;edge := node[point]
end;
node[point]:= next[edge]; v2 := head[edge];
if pathcode[v2] = 0 then
begin
point := v2; pathpt := pathpt + 1;
path[pathpt]:= edge; go to nextpoint
end;
if old [v2]^(v2\not= startpoint) then
begin
pathpt := pathpt + 1; path[pathpt]:= edge;
go to pathfound
end;
if (forward[point]=0)\vee (pathcode[v2] < lowpoint [point]) then
begin
forward[point]:= edge;lowpoint[point]:= pathcode
nu2]
end;
go to nextedge;
comment Path found. Convert stack of edges to list of points in
path. Mark all edges and points in path;
pathfound:
for i:= 2 step 1 until pathpt do
begin
edge := path [i]; point := head[edge];
forward[point]:= back[point]:= 0; old[point] := true;
mark[link[edge]]:= mark [edge] := true;
path [i]:= point
end;
done:
end

```

\title{
Algorithm 448 \\ Number of MultiplyRestricted Partitions [A1]
}

\author{
Terry Beyer* and D.F. Swinehart \(\dagger\) (Recd. 1 Jan. 1971 and 28 June 1971) \\ * Computer Science Department and Computing Center, University of Oregon, Eugene, OR 97403. \\ \(\dagger\) Department of Chemistry, University of Oregon, Eugene, OR 97403.
}

Key Words and Phrases: partitions, enumeration, change making, energy-level degeneracies, molecular vibrational energy-levels

CR Categories: 3.13, 5.30
Language: Fortran

\section*{Description}

Given a positive integer \(m\) and an ordered \(k\)-tuple \(c=\left(c_{1}\right.\), \(\cdots, c_{k}\) ) of not necessarily distinct positive integers, then any ordered \(k\)-tuple \(s=\left(s_{1}, \cdots, s_{k}\right)\) of nonnegative integers such that \(m=\sum_{i=1}^{k} s_{i} c_{i}\) is said to be a partition of \(m\) restricted to \(c\). Let \(P_{c}(m)\) denote the number of distinct partitions of \(m\) restricted to \(c\). The subroutine COUNT, when given a \(k\)-tuple \(c\) and an integer \(n\), computes an array of the values of \(P_{c}(m)\) for \(m=1\) to \(n\). Many combinatorial enumeration problems may be expressed in terms of the numbers \(P_{c}(m)\). We mention two below.

Applications: Change making. Letting \(c=(1,5,10)\) and \(n=100\), the subroutine computes the number of ways of making each amount of change from one cent to one dollar using pennies, nickels, and dimes. Letting \(c=(1,5,5,10)\) corresponds to using two distinct types of nickels.

Applications: Chemistry. This algorithm is of some importance to problems in chemistry. In the theory of unimolecular reactions \([2,6]\) a quantity appears, \(\sum_{e_{r=0}}^{e} P\left(e_{r}\right)\), in which \(P\left(e_{r}\right)\) is the number of ways a given amount of vibrational energy, \(e_{r}\), may be distributed among the quantized vibrational modes of a polyatomic molecule, assuming all of these modes to be harmonic. Setting \(m=e_{t}\) and \(c=\left(c_{1}, \cdots, c_{k}\right)\), where \(c_{i}\) is the energy corresponding to the fundamental frequency of the \(i\) th vibrational mode, then \(s_{i}\) becomes the corresponding vibrational quantum number and we have \(P\left(e_{v}\right)=P_{c}(m)\). The desired quantity \(\sum_{e_{e}=0}^{e} P\left(e_{r}\right)\) may thus be readily obtained from the output of the subroutine COUNT. No algorithm previously available has been sufficiently efficient for calculating these sums directly. Various functions have been proposed as approximations for this calculation [5]. The present algorithm allows calculation of \(\sum P\left(e_{v}\right)\) directly and efficiently.

Method. Input to COUNT is a positive integer \(N\) and an integer array \(C\) containing \(K\) entries. Output is the array \(P\) containing \(N\) integers where \(P(M)\) is the number of partitions of \(M\) restricted to \(C\) for \(M=1\) to \(N\). The following assumptions are made concerning the input; (1) \(K\) is positive: (2) \(C\) contains positive integers only; and (3) \(N\) is greater than the maximum value in \(C\). Restriction 3 is not inherent in the problem but is a restriction required by COUNT. The algorithm operates by initializing \(P\) to contain the number of partitions of an integer restricted to an empty sequence.

Each pass through the outer loop which follows, updates \(P\) to reflect an additional element of \(C\) by using the recursive relations
\(P_{\left(c_{1}, \cdots, c_{i}\right)}(m)= \begin{cases}\boldsymbol{P}_{\left(c_{1}, \cdots, c_{i-1}\right)}(m) & \text { if } m<c_{i}, \\ \boldsymbol{P}_{\left(c_{1}, \cdots, c_{i-1}\right)}(m)+1 & \text { if } m=c_{i}, \\ \boldsymbol{P}_{\left(c_{1}, \cdots, c_{i-1}\right)}(m)+\boldsymbol{P}_{\left(c_{1}, \ldots, c_{i}\right)}\left(m-c_{i}\right) & \text { if } m>c_{i} .\end{cases}\)
These equations are derived by counting additional partitions of \(m\) obtained by using \(c_{i}\). Thus if \(m<c_{i}\), no additional partitions are obtained. If \(m=c_{i}\), the single additional partition consisting of \(c_{i}\) is obtained. If \(m>c_{i}\), then any partition of \(m\) involving \(c_{i}\) comes from a partition of \(\left(m-c_{i}\right)\) which involves one less occurrence of \(c_{i}\). Readers may wish to refer to [3 and 4] which contain recurrence algorithms for more classical forms of the partition enumeration problem of which the problem presented here is a generalization.

Scaling. The time required by the algorithm is roughly proportional to \(k \times n\). If the integers \(c_{1}, \cdots, c_{k}\) have a common divisor \(d\), the results may be obtained approximately \(d\) times as quickly by making use of the relations
\(P_{c}(m)= \begin{cases}0 & \text { if } d \nmid m \\ P_{c / d}(m / d) & \text { if } d \mid m\end{cases}\)
where \(c / d=\left(c_{1} / d, \cdots, c_{k} / d\right)\). The computation of \(P_{c / d}(m / d)\) for \(m / d=1\) to \(n / d\) will require time proportional to \(k \times(n / d)\) and an array of dimension \(n / d\) rather than \(n\). COUNT does not automatically perform this scaling.

Accuracy. The algorithm itself is precise. However in typical applications to chemistry the numbers \(P(M)\) generated may exceed the magnitude limitation for Fortran integers. In this case one may simulate multiple precision integer arithmetic and continue to obtain precise results, or one may switch to floating point. In the latter case, roundoff errors will be introduced into the calculation. The authors have not investigated the accumulation of roundoff errors under these conditions.

Test cases. The subroutine COUNT has been tested on the following compiler/computer combinations.
IBM FORTRAN IV(G)
IBIM S/360 (Mod. 50)
University of Waterloo WATFOR IBM S/360 (Mod. 50)

Results for several change counting problems were compared with results from hand calculations. Results. for the special case of unrestricted partitions were compared to published table values [1].

Acknowledgment. The authors wish to thank the University of Oregon Computing Center for supporting the testing of this work.

\section*{References}
1. Hall, M. Jr. Combinatorial Theory. Blaisdell, Waltham, Mass., 1967, pp. 29-35.
2. Marcus, R.A., and Rice, O.K. The Kinetics of the recombination of methyl radicals and iodine atoms. J. Physical and Colloid Chem. 55 (June 1951), 894-908.
3. McKay, J.K.S. Algorithm 262, Number of restricted partitions of N. Comm. ACM 8 (Aug. 1965), 493.
4. White, J.S. Algorithm 373. Number of doubly restricted partitions. Comm. ACM 13 (Feb. 1970), 120.
5. Whitten, G.Z., and Rabinovitch, B.S. Accurate and facile approximation for vibrational energy-level sums. J. Chem. Phys. 38 (15 May 1963), 2466-2473.
6. Wieder, G.M., and Marcus, R.A. Dissociation and isomerization of vibrationally excited species. II. Unimolecular
reaction rate theory and its application. J. Chem. Phys. 37 (15 Oct.
1962), 1835-1852.

\section*{Algorithm}

SUBROUTINE COUNT(C, \(K, P, N\) )
INTEGER C, P
COUNT COMPUTES THE NUMBEK OF PAKTITIONS OF AN INTEGER
RESTRICTED TO C FOR INTEGERS IN THE KANGE 1 TO N.
C INPUT: K -- A POSITIVE INTEGER
C C -- AN ARKAY BF K POSITIVE INTEGERS
C DUTPUT: \(P\)-- AN AKRAY OF N INTEGERS, WHEKE P \((M)\) IS THE
C. NUMBER BF PARTITIONS OF M RESTRICTED TO C

CINITIALIZE \(P\) D0 \(\begin{aligned} & 10 \quad I=1, N \\ & P(I)=0\end{aligned}\)
10 CONTINUE
C EACH PASS THKQUGH THE OUTEK LGOP BELOW TRANSFORMS P FROM
C PARTITIONS RESTRICTED TO C(1),...,\(~ C(I-1) ~ T \varnothing\)
\(C\) PARTITI®NS RESTRICTED T® C(1),...,\(C(I)\).
De \(\begin{gathered}30 \quad I=1, k \\ J=C(I)\end{gathered}\)
\(J=C(I)\)
\(J P I=J+\)
\(P(J)=P(J)+\)
\(J P 1=J+1\)
DO \(20 \mathrm{M}=\mathrm{JP} 1, \mathrm{~N}\)
\(M M J=M-J\)
\(P(M)=P(M)+P(M M J)\)
0 Continue
CONTINU
KETURN
END

\title{
Algorithm 449 Solution of Linear Programming Problems in 0-1 Variables [H]
}

\author{
František Fiala [Recd. 5 Feb. 1971] \\ Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada*
}

Key Words and Phrases: linear programming, zero-one variable CR Categories: 5.41
Language: Fortran

\section*{Description}

This subroutine solves the linear zero-one programming problem of the following form.

Find the maximum and all maximizing points of the objective function
\(f=a_{11} x_{1}+\cdots+a_{1 n} x_{n}+a_{10}\)
subject to
\(a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \geq b_{i}, i=2, \ldots, m\),
where \(x_{j}=0\) or \(1 ; a_{i j}, b_{i}\) are integer coefficients.
The algorithm follows the procedure described in [1, 2].
First of all we add a supplementary constraint
\(a_{11} x_{1}+\cdots+a_{1 n} x_{n} \geq b_{1}\),
where \(b_{1}\) is equal either to the value of \(f-a_{10}\) for a solution to the system of constraints, or to a lower bound of \(f-a_{10}\). As soon as we find a feasible solution to the system of constraints, we replace \(b_{1}\) by the corresponding value of \(f-a_{10}\). Consequently, if a feasible solution is found, then the following procedure can lead only to solutions with the same or better value of the objective function. Using the formula \(x=1-\bar{x}\), we bring (2.1) into the form
\(a_{1_{1}}^{\prime}{\tilde{x_{1}}}^{\prime}+\cdots+a_{1 j_{n}}^{\prime} \tilde{x}_{j_{n}} \geq b_{1}{ }^{\prime}\),
with \(a_{1 j_{1}}^{\prime} \geq \cdots \geq a_{1 j_{n}}^{\prime} \geq 0\),
where \(\tilde{x}\) is either \(x\) or \(\bar{x}\). If there are coefficients with the same absolute value in (2.1), then their order in ( \(2^{\prime} .1\) ) corresponds with that in (2.1). The order of coefficients in (2'.1) indicates the order of branching points. Coefficients in ( \(2^{\prime} .1\) ) are used in the accelerating test.

At every stage of the procedure we have a partial solution and the corresponding (current) problem derived from the original one. In the partial solution, some variables are assigned fixed values ( 0 or 1) and the others remain free. The partial solution corresponding to the original problem has all variables free. A partial solution is completed if all variables are fixed.

Given a partial solution we try to complete it. If there is a completion, we change the supplementary constraint and backtrack. If there is no completion, we backtrack. In both cases we go back to

\footnotetext{
* This research was done while the author was a post-doctorate fellow with the Department. Present address: Department of Mathematics, Carleton University, Colonel By Drive, Ottawa, Ontario, Canada.
}
the last branching point and examine the new partial solution with the complementary value for the branching variable. We use the accelerating test if applicable. As a result we find either all maximizing points and maximum of \(f\) or the problem has no solutions.

Accelerating test. Suppose that at a certain step we have a partial solution with the fixed variables \(x_{j_{h}}, h \in H \subseteq\{1, \ldots, n\}\), and we have to branch. We take the first variable \(\tilde{x}_{j_{0}}\) still occurring in ( \(2^{\prime} .1\) )-branching variable-and put first \(\tilde{x}_{j_{0}}=1\) and then \(\tilde{x}_{j_{0}}=\) 0 . We examine the new partial solution with \(\tilde{x}_{j_{0}}=1\). If there is a feasible completion of the partial solution and if
\(a_{1 j_{0}}^{\prime}>\sum_{k \in K} a_{1 j_{k}}^{\prime}\),
where \(K\) is the set of all indices \(k \in\{1, \ldots, n\}-H\) such that \(\tilde{x}_{j_{k}}=0\) in the completion, then the branch with \(\tilde{x}_{j_{0}}=0\) can be dropped out.

The subroutine MAXL01 is self-contained, and communication to it is through the argument list. The calling statement is of the following form
CALL MAXL01 (MO, NO, NEST, M, N, AO, BO, A, B, B1, S1, C, X, S, BC, T, IND, INC, NESTEX, V, NOPT, OPTS, NI, NAT)
The meaning of the parameters is described in the comments at the beginning of the subroutine. Here the meaning of only two output parameters is explained. \(I N C=0\) or 1 means that the problem has feasible solutions or not, respectively. As we have to estimate the number NEST of all alternative optimal solutions in advance (as to define the array \(O P T S\) ), NESTEX \(=1\) or 0 indicates whether the estimated number is exceeded or not, respectively. Consequently, after return from the subroutine we have to examine first the values of INC and NESTEX in order to give the proper answer.

Test results. The subroutine has been tested on an IBM 360/67. No breakdown of the method has occurred. Further details about the computational experience are given in [1].

Two examples.
(i) The objective function:
\(f=2 x_{1}+5 x_{2}+4 x_{3}+x_{4}-3 x_{5}-x_{6}+3\).
The constraints;
\begin{tabular}{rl}
\(2 x_{1}-x_{2}+3 x_{3}+5 x_{5}-2 x_{6}\) & \(\geq 3\) \\
\(4 x_{2}-7 x_{3}+3 x_{4}+x_{5}-x_{6}\) & \(\geq-9\) \\
\(x_{1}+8 x_{2}+4 x_{4}+2 x_{5}+3 x_{6}\) & \(\geq 7\) \\
\(5 x_{1}-2 x_{2}+4 x_{3}+3 x_{4}-5 x_{6}\) & \(\geq-5\) \\
\(x_{1}-x_{2}\) & \(+x_{4} \quad+x_{6}\)
\end{tabular}

Maximum: 15. Maximizing point: \((1,1,1,1,0,0)\).
Iterations: 5. Accelerating test: 3 .
(ii) The objective function:
\(f=2 x_{1}-x_{2}+4 x_{3}+7 x_{4}-5 x_{5}+12 x_{6}+9 x_{7}-4 x_{8}-x_{9}+\) \(2 x_{10}+5\).
The constraints:
\(3 x_{1}-x_{2}+2 x_{3}+4 x_{6}-3 x_{7}+8 x_{8}+x_{9} \geq 5\)
\(4 x_{2}+7 x_{3}+x_{4}+2 x_{5}-5 x_{6}+3 x_{9}+9 x_{10} \geq 1\)
\(x_{1}-x_{2}+3 x_{4}+7 x_{5}+8 x_{6}+5 x_{7}-x_{8}-7 x_{9}+4 x_{10} \geq 12\)
\(2 x_{1}+4 x_{3}-x_{4}+4 x_{8}+5 x_{9}+3 x_{10} \geq 2\)
Maximum: 41. Maximizing point: \((1,0,1,1,0,1,1,0,0,1)\).
Iterations: 9. Accelerating test: 7.

\section*{References}
1. Fiala, F. Computational experience with a modification of an algorithm by Hammer and Rudeanu for linear 0-1 Frogramming. Proc. ACM 1971 Nat. Conf. ACM, New York, pp. 482-488.
2. Hammer, P.L., and Rudeanu, S. Boolean Methods in Operations Research and Related Areas. Springer-Verlag, New York, 1968.

\section*{Algorithm}

SUBRøUTINE MAXLOI（MO，NO，NEST，\(M, N, A 0, B 0, A, B, B 1\)
 ＊NI，NAT）
INTEGER AO（MO，NQ），\(A(M \theta, N \theta), B \theta(M \theta), B(M \theta), B I(M \theta)\) ，
＊S1（MQ），C（NQ），X（NO），S（NO），SO（NO），BC（NQ），T（NQ），
＊IND（MO），V，VNEG，ØPTS（NEST，N®）
C THIS SUBROUTINE FINDS THE MAXIMUM AND ALL MAXIMIZING
C LINEAR CONSTRAINTS（2．1）WITH N（GREATER（1）SUBJECT TO M－1 C LINEAR CONSTRAINTS（2．1）WITH N（GREATER THAN 1）ZERø－øNE \(C\) THE MEANING OF THE INPUT PARAMETERS．
C MO，NO，NEST ARE THE ADJUSTABLE DIMENSIONS SPECIFYING THE C UPPER BQUNDS FOR THE NUMBER OF ALL CONSTRAINTS，VARIABLES C AND ALTERNATIVE OPTIMAL SQLUTI ONS，RESPECTIVELY．
C M IS THE NUMBER OF CONSTRAINTS INCLUDING THE SUPPLEMENTARY C ONE．N IS THE NUMBER OF THE VARIABLES．AO IS THE TWO－ C COLUMNS THE CØEFFICIENTS OF ALL CONSTRAINTS．THE FIRST RøW CONTAINS THE COEFFICIENTS OF THE SUPPLEMENTARY CONSTRAINT． THE ØNE－DIMENSI ØNAL ARRAY Bø CONTAINS THE RIGHT－HAND SIDE TERMS OF THE CONSTRAINTS．BD（1）IS THE ABSOLUTE TERM OF THE OBJECTIVE FUNGTION．Aø，BO REMAIN UNGHANGED DURING THE WHOLE PROCEDURE．
THE MEANING OF THE AUXILIARY PARAMETERS．
THE TWQ－DIMENSI ØNAL ARRAY A OR THE ONE－DIMENSIONAL ARRAY B CONTAINS THE COEFFICIENTS QR THE RIGHT－HAND SIDE TERMS VNEG IS THE SUM \(\emptyset F\) ALL NEGATIVE COEFFICIENTS IN THE GBJECTIVE FUNCTION MINUS 1 ．
C ITEST＝1 OR O INDICATES IF THE WHQLE SYSTEM OF CONSTRAINTS C IS REDUNDANT QR NQT，RESPECTIVELY．SIMILARLY，THE I－TH COMPONENT OF THE ØNE－DIMENSI ØNAL ARRAY．IND INDI CATES WHETHER THE I－TH CONSTRAINT IS REDUNDANT OR NOT． THE ONE－DIMENSI GNAL ARRAY X CONTAINS THE CURRENT PARTIAL SQLUTION．A
EQUAL TO 2.
THE ONE－DIMENSI ONAL ARRAY S OR BC OR T INDICATES THE ORDER AND MANNER IN WHICH THE FIXED VARIABLES WERE ASSIGNED THEIR VALUES OR THE BRANCHING PQINTS OR THE BRANCHING C POINTS IN WHICH THE ACCELERATING TEST CAN BE APPLIED， C RESPECTIVELY．NS IS THE NUMBER OF COMPQNENTS IN S AND BC． C THE ONE－DIMENSIONAL ARRAYS BI，S1，S® AND C HAVE AN AUXILIARY CHARACTER．
THE MEANING OF THE QUTPUT PARAMETERS．
INC \(=0\) OR 1 MEANS THAT THE GIVEN PREBLEM IS CONSISTENT OR INCONSISTENT，RESPECTIVELY．
FEASIB FEASIBLE SOLUTIDNS WAS NOT OR WAS EXCEEDED，RESPECTIVELY． \(\checkmark\) IS THE MAXIMAL VALUE OF THE GBJECTIVE FUNCTION．
THE TWO－DIMENSI ØNAL ARRAY OPTS CONTAINS IN THE FIRST NOPT ROWS ALL MAXIMIZING PQINTS．A CGMPGNENT MAY BE EQUAL NOPT WHICH INDICATES THAT THE VALUE פF THE CØRRESPØNDING VARIABLE CAN BE ARBITRARY．NI OR NAT INDICATE THE NUMBER OF ITERATIONS OR THE NUMBER OF SUCCESSFUL APPLICATIONS OF THE ACCELERATING TEST，RESPECTIVELY．
the Calling prøgram shøuld Contain the following type－ STATEMENT
C INTEGER \(A \varnothing(M \theta, N \theta), A(M \theta, N \emptyset), B \emptyset(M \emptyset), B(M \theta), B 1(M \theta), S 1(M 0)\),
\(C\) XC（Nロ），\(X(N \sigma), S(N O), S O(N \sigma), B C(N 0), T(N \sigma), I N D(M O), V\) ，
C XGPTS（NEST，NO）
INC \(=0\)
NESTEX \(=0\)
NQPT \(=0\)
NS \(=0\)
NAT \(=0\)
DO \(10 \quad \mathrm{~J}=1, \mathrm{~N}\)
\(T(J)=0\)
10 CONTINUE
C CGPY THE ARRAYS AG，BG．
O \(30 \quad I=1\) ，M
\(B(I)=80(I)\)
\(D 020 \mathrm{~J}=1, \mathrm{~N}\)
\(A(I, J)=A \emptyset(I, J)\)

\section*{CoNTINUE}

20
30 ontinue
C ADD THE SUPPLEMENTARY CONSTKAINT，DETERMINE THE INITIAL C PARTIAL SOLUTION．

VNEG \(=-1\)
D0 40 J \(J=1, N\)
IF \((A(1, J) \cdot L T, O)\) VNEG \(=V N E G+A(1, J)\)
40 CONTINUE
\(B(1)=V N E G\)
\(50 \mathrm{DC}=60 \mathrm{NE}\)
\(\begin{aligned} 50 \mathrm{DO} 60 \\ \text { IND } I=1, M\end{aligned}=0\)
60 Continue
C EXAMINE THE CURRENT SYSTEM OF CONSTRAINTS．
70 De \(80 \quad \mathrm{I}=1 \mathrm{~m}\)
\(B 1(I)=B(I)\)
80 Cantinue
NI a NI＋
ITEST \(=1\)
SI（I）\(=1, M\)
IF（IND（I）．EQ．1）GのT0 110
D0 \(90 \mathrm{~J}=1, \mathrm{~N}\)
if \((A(I, J) \cdot L T, O) B 1(I)=B I(I)-A(I, J)\)
SI（I）\(=\mathrm{SI}(\mathrm{I})+\operatorname{IABS}(A(I, J))\)
90
IF（B1（I）．LE．O）GO T0 100
ITEST \(=0\)
Gø T0 110
00 IND（I）＝
10 CONTINUE
IF（ITEST．EQ．1）G® T0 420
C THE SYSTEM CGNTAINS AT LEAST ONE IRREDUNDANT INEQUALITY． D0 120 I＝1．M

IF（IND（I）．EQ．1）G0 T0 120
120 CONTINUE

C THE SYSTEM DOES NOT CøNTAIN ANY INC＠NSISTENT INEQUALITY．
C CONSIDER EACH INEQUALITY SEPARATELY．

IF（S1（I）－B1（I）．GT．0）G0 T0 200
C SgME of THE FREE VARIABLES ARE FgRCED TO CERTAIN FIXED
values．
140 D \(190 \mathrm{~J}=1, \mathrm{~N}\)
IF（ \(\mathrm{A}(1, \mathrm{~J}) . E Q .0)\) GO Tø 190
NS \(=N S+1\)
\(B C(N S)=1\)
IF（AC（I，J）．LT．O）GのT0 160
\(S(N S)=J\)
\(X(J)\)
\(D E\)
150
IJ
\(=1 . M\)
D（IJ）\(=B(I J)-A(I J, J)\)
CONTINUE
Gの TO 170
\(S(N S)=-J\)
\(\mathrm{X}(\mathrm{J})=0\)
Dø \(180 \mathrm{IJ}=1, \mathrm{M}\)
CONTINUE
90 CONTINUE
Gø T0 70
200 DD \(210 \mathrm{~J}=1, \mathrm{~N}\)
\(C(J)=\operatorname{IABS}(A(I, J))\)
210 CONTINUE
\(L 1=1\)
\(J=L i+1\)
\(220 \mathrm{~J}=\mathrm{LL}+1\)
IF（C（L．1）；GE．C（J））G0 T0 240
\(1 P=C(L 1)=C(J)\)
\(C(J)=I P\)

\section*{240 J}

IF（J．GT．N）GのT0 250
G0 T0 230
\(50 L 1=L 1+1\)
IF（LI•LT．N）Gø T0 220
60 IF（C（L1）．GT．0）G0 T0 270
\(\begin{array}{lll}\mathrm{L} \\ \mathrm{GO} & =11-1\end{array}\)
270 I
IF（S1（I）－C（LI）．LT．B1（I））G0 T0 140
C INE NS \(=\mathrm{NS}+\)
\(B C(N S)=1\)
280 DQ \(290 \mathrm{Jai}, \mathrm{N}\)
IF（IABS（AC1，小）．EE．C（1））Ge T0 300
290 CबNTINUE
300 IF（A（I，J）．LT．O）GOT0 330
\(310 \mathrm{~S}(\mathrm{NS})=J\)
\(x(J)=1\)
D＠ 320 IJ＝1，M
320 CONTINUE
Gの Tø 340
\(330 \mathrm{~S}(\mathrm{NS})=-\)
\(\begin{array}{ll} \\ D(J) & =150 \\ I J=1, M\end{array}\)
\(A(I J, J)=0\)
CONTINUE
GO TO 70
IF（I．LE．M）GのT® 130
IF（NS．EQ．N）GO T0 480
C FIND A NEW BRANCHING POINT．
De \(370 \mathrm{~J}=1 \mathrm{~N}\)
\(C(J)=\operatorname{IABS}(A(1, J))\)
370 CONTINUE
D＠ \(380 \mathrm{~J}=2, \mathrm{~N}\)

C（1）\(=\)
CONTINUE
80 CONTINUE
1F（C（1）．EQ．0）G0 T0 390
\(\mathrm{NS}=\mathrm{NS},+1\)
\(\mathrm{BC}(\mathrm{NS})\)
\(1=1\)

390 Dø \(410 \mathrm{~J}=1, \mathrm{~N}\)
DQ \(\begin{aligned} & 400 \mathrm{~J}=1, \mathrm{NS} \\ & \text { IF（J．EQ．IABS（S（J1）））Gの T0 } 410\end{aligned}\)
400 CONTINUE
\(\mathrm{NS}=\mathrm{NS}+1\)
\(\mathrm{BC}(\mathrm{NS})=0\)
Gø TE 310
AIO CONTINUE
C THE SYSTEM OF CONSTRAINTS IS REDUNDANT．SøLVE AN
C UNCONSTRAINED PRQBLEM．
\(420 \mathrm{D} 0470 \mathrm{~J}=1, \mathrm{~N}\)
IF（NS．EQ．N）GのT® 480
IF（ \((X(J) \cdot N E \cdot 2) \cdot \theta R \cdot(A(1, J) \cdot E Q .0)) G 0 T 0470\)
\(\mathrm{NS}=N S+1\)
\(B C(N S)=1\)
IF（A（1，J）．LT．O）Gø T0 440
\(1 F(A)=J\)
\(x(J)=1\)
D0 \(430 \mathrm{I}=1, \mathrm{M}\)
\(B(I)=B(I)-A(I, J)\)
430 CONTINUE
\(440 \quad\) Gの T0 450
\(x(J)=0\)
\(450 \quad \mathrm{D}(460 \mathrm{I}=1, \mathrm{M}\)
460 CONTINUE
470 CONTINUE
C FIND THE NEW VALUE OF THE GBJECTIVE FUNCTIGN．
C adJust the accelerating test sequence t．
48 Q NEWV \(=0\)
D® \(490 \quad J=1, N\)
NEWV＝NEWV＋\(x(J) * A \oslash(1, J)\)
490 CONTINUE
D0 \(500 \mathrm{~J}=1, \mathrm{NS}\)
IF（BC（K）．E日．0）\(T(K)=1\)
soo continue
IF（NEWV．GT．V）GO T0 510
\(\mathrm{NOPT}=\mathrm{NOPT}+1\)
IF（NOPT．LE．NEST）GO TO SAO
C THE ESTIMATED FIRST DIMENSION OF THE ARRAY ØPTS IS
C EXCEEDED．
NESTEX＝
THE NEW SOLUTIのN FQUND GIVES A BETTER VALUE Tø THE
C OBJECTIUE FUNCTION．CHANGE THE SUPPLEMENTARY CONSTRAINT．
\(510 \mathrm{NOPT}=1\)
\(V=N E W V\)
\(B(1)=V\)
De \(520 \quad J=1, N\)
IF（X（J）．NE．1）G0 T0 520
\(B(1)=B(1)-A Q(1, J)\)
520 CONTINUE
Do \(530 \mathrm{~J}=1, \mathrm{~N}\)
SQ（J）\(=\) S（J）
530 CONTINUE
C MQDIFY THE SET OPTS．
40 DO \(550 \mathrm{~J}=1, \mathrm{~N}\)
OPTS（NQPT，J）\(=X(J)\)
550 CONTINUE
S60 1F（NS．EQ．O）GO TO 580
C QUESTION IF A BACKTRACKING IS PESSIBLE． IS \(=0\)
D0 570
\(570 \mathrm{~J}=1, \mathrm{NS}\)
IS \(=\mathrm{IS}+\mathrm{BC}\)
s7o Continue
IF（IS．LT．NS）Gの T0 600
IF（V．GT．VNEG）G0 T0 590
C THE SYSTEM OF CONSTRAINTS IS INCONSISTENT．NQ SOLUTIONS．
580 INC \({ }^{2}{ }^{1}\)
C THE GIVEN PROBLEM HAS A SOLUTION．ALL SOLUTIONS HAVE BEEN
c Fgund．
\(590 V=V+B 0(1)\)
c THE RETURN
C THE BACKTRACKING IS POSSIBLE．
600 De \(610 \mathrm{~J} 1=1\) ，NS

610 CONTINUE
620 IF（T（K）．EQ．1）GO T0 750
630 D 740
Dの \(640 \mathrm{~J}=1, \mathrm{~N}\)
1F（J．EG．1ABS（S（JI）））G0 T0 650
640
650
IF（K．EQ．J1）Gø T0 700
IF（X（J）．EQ．1）G0 T0 670
D0 \(660 \quad I=1, M\)
\(A(1, J)=A B(1, J)\) CONTINUE
\(\begin{array}{lll}\text { G0 } & \text { Tg } & 690 \\ \text { D0 } & 680 & I=1,\end{array}\)
\(A(I, J)=A Q(I, J)\)
\(B(I)=B(I)+A(1, J)\)
CQNTINUE
\(X(J)=2\)
\(x(J)=2\)
\(G \theta T \theta=740\)
\(S(K)=-S(k)\)
\(B C(K)=1\)
IF（ \(x(1), E 0 \cdot 0)\)
IF（X（J）．EQ．O）G0 T0 720
\(710 \quad 1=1, M\)
\(B(1)=B(I)\)
\(B(I)=B(I)-A \emptyset(I, J)\)
Gの T0 740
De \(730 \quad I=1, M\)
\(B(I)=B(I)+A \varnothing(I, J)\)
730 CONTINU
40 CONTINUE
NS \(=K\)
GD TD
SO
C ThE accelerating test．
\(750 \mathrm{~T}(\mathrm{~K})=0\)
\(1 \mathrm{T1}=0\)
\(1 \mathrm{~T} 2=0\)
\(1 \mathrm{~T} 2=0\)
D0 \(790 \mathrm{JL}=\mathrm{K}, \mathrm{N}\)
De \(760 \mathrm{~J}=1, \mathrm{~N}\)
60 CONTINUE
760
770
CONTINUE
IF
IF EQ．JI）Gの TO \(7 R \cap\)
If（KXX（J）．EQ．O）．AND．（AD（1，J）．GT．0））•OR．
＊（ \((X(J) \cdot E Q .1)\) ．AND．（AD（1，J）．LT．0））\()\) IT2＝IT2＋
＊（ A （XSS（AD（1；J））
G® T0 790
780 IT1＝IABS（AB（1，J））
790 CONTINUE
IF（ITI－LE．IT2）GO T0 630
C THE APPLICATI®N GF THE ACCELERATING TEST WAS SUCCESSFUL． \(B C(K)=1\)
\(N A T=N A T\)
NAT \(=\) NAT +1
GQ TO 560
END

Editor＇s note：Algorithm 449 described here is available on magnetic tape from the Department of Computer Science，University of Colorado，Boulder，CO 80302．The cost for the tape is \(\$ 16.00\)（U．S． and Canada）or \(\$ 18.00\)（elsewhere）．If the user sends a small tape （wt．less than 1lb．）the algorithm will be copied on it and returned to him at a charge of \(\$ 10.00\)（U．S．only）．All orders are to be prepaid with checks payable to ACM Algorithms．The algorithm is recorded as one file of BCD 80 character card images at 556 B．P．I．，even parity，on seven track tape．We will supply algorithm at a density of 800 B．P．I．if requested．Cards for algorithms are sequenced starting at 10 and incremented by 10．The sequence number is right justified in column 80．Although we will make every attempt to insure that the algorithm conforms to the description printed here，we cannot guaran－ tee it，nor can we guarantee that the algorithm is correct．－L．D．F． and A．K．C．

\section*{Algorithm 450}

\title{
Rosenbrock Function Minimization [E4]
}

\author{
Marek Machura* and Andrzej Mulawa \(\dagger\) \\ [Recd. 22 March 1971] \\ * Institute of Automation and Measurements, Warsaw, Poland. \(\dagger\) Institute of Computing Machinery, Warsaw, Poland.
}

Key words and phrases : function minimization, Rosenbrock's method

CR Categories : 5.19
Language : Fortran

\section*{Description}

Purpose. This subroutine finds the local minimum of a function of \(n\) variables for an unconstrained problem. It uses the method for direct search minimization as described by Rosenbrock [1].

Method. The local minimum of a function is sought by conducting cyclic searches parallel to each of the \(n\) orthogonal unit vectors, the coordinate directions, in turn. It such searches constitute one stage of the iteration process. For the next stage a new set of \(n\) orthogonal unit vectors is generated, such that the first vector of this set lies along the direction of greatest advance for the previous stage. The Gram-Schmidt orthogonalization procedure is used to calculate the new unit vectors.

Program. The communication to the subroutine ROMIN is solely through the argument list. The user must supply two additional subroutines FUNCT and MONITOR. The entrance to the subroutine is achieved by

\section*{CALL ROMIN (N, X, FUNCT, STEP, MONITOR)}

The meaning of the parameters is as follows. \(N\) is the number of independent variables of the function to be minimized. \(X(N)\) is an estimate of the solution. On entry it is an initial estimate to be provided by the user; on exit it is the best estimate of the solution found. \(\operatorname{FUNCT}(N, X, F)\) is a subroutine calculating the value \(F\) of the minimized function at any point \(X\). STEP is an initial step length for all searches of the first stage. The subroutine MONITOR ( \(N, X, F, R, B, C O N, N R\) ) supplies printouts of any parameter from the argument list and contains convergence criteria chosen by the user. (Different kinds of convergence criteria and their use are discussed in [1] and [4].) \(R\) is the actual number of function evaluations. \(B\) is the value of the Euclidean norm of the vector representing the total progress made since the axes were last rotated, i.e. the total progress in one stage. CON is a logical variable. At the start of the subroutine ROMIN CON is set FALSE. If the convergence criteria are satisfied CON must be set .TRUE. in the subroutine MONITOR, which transfers control back to the main program. \(N R\) is the MONITOR index used as described in [3]. The CALL statement of the subroutine MONITOR with \(N R\) equal to 1 occurs once per function evaluation and with \(N R\) equal to 2 once per stage of the iteration process.

Test results. As a test example, the parabolic valley function \(f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}{ }^{2}\right)^{2}+\left(1-x_{1}\right)^{2}\)
was chosen. This function attains its minimum equal to 0 at the point \((1,1)\). Starting from the point \((-1.2,1.0)\) the best estimate of the solution after 200 function evaluations as found by the subroutine ROMIN was \(0.29774 \cdot 10^{-4}\) at the point ( \(0.99513,0.99053\) ). The initial step length STEP was set equal to 0.1 [2].

\section*{References}
1. Rosenbrock, H.H. An automatic method for finding the greatest or least value of a function. Computer J. 3 (1960), 175-184.
2. Rosenbrock, H.H., Storey, C. Computational Techniques for Chemical Engineers. Pergamon Press, New York, 1966.
3. Rutishauser, H. Interference with an ALGOL Procedure, in Annual Review in Altomatic Programming, Vol. 2. R. Goodman (Ed.), Pergamon Press, New York, 1961.
4. Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J. 6 (1964), 155-162.

\section*{Algorithm}

SUBROUTINE ROMIN(N, \(X\), FUNCT, STEP, MONITR)
INTEGER N, IP
REAL STEPSION X(N)
LOGICAL CON
LOGICAL CON
INTEGEK I, J, K, L, P, K
REAL FO, F1, B, BETY
DIMENSION A \((30)\), D
DIMENSION \(A(30), D(30), V(30,30), A L P H A(30,30), ~ B E T A(30)\),
* E(30). AV(30)

C THIS SUBROUTINE MINIMIZES A FUNCTION OF N VARIABLES
C USING THE METHOD OF ROSECNBR日CK. THE PARAMETEKS ARE
DESCRIBED AS FOLLOWS:
N IS THE NUMBER bF INDEPENDENT VARIABLES
X(N) IS AN ESTIMATE OF THE SOLUTION ( ON ENTKY -
an initial estimate, on exit - the best estimate
OF THE SOLUTION FOUND
FUNCT(N,X,F) IS A KOUTINE PROVIDED BY THE USEK Tø CALCULATE THE VALUE F OF THE MINIMIZED FUNCTI日N AT ANY POINT X
STEP IS AN INITIAL STEP LENGTH FOR ALL CDORDINATE DIRECTIONS AT THE START OF THE PROCESS
MONITR ( \(N, X, F, R, B, C Q N, N R\) ) IS A ROUTINE PROVIDED BY
THE USER FOK DIAGNGSTIC AND CONVEKGENCE PURPOSES
\(R\) IS THE ACTUAL NUMBER OF FUNCTION EVALUATIONS C FGR
STIMATE \(R=0\),
8 IS the value of the euclidean ngrm of the vegtor representing the total progkess made since the axes were last rotated
CON IS A LQGICAL VARIABLE. AT THE START OF THE SUBROUTINE ROMIN CON=.FALSE. IF THE CDNVERGENCE CRITERIA OF THE ROUTINE MONITOR ARE SATISFIED CON MUST BE SET. TRUE. TO STOP THE PROCESS NR IS THE MONITOR INDEX
INITIALIZE CON. ESI) AND R
E(I) IS A SET OF STEPS TØ BE TAKEN IN THE CORRESPONDING
COORDINATE DIRECTIONS
CON = .FALSE.
D \(010 \quad 1=1, N\)
\(E(I)=S T E P\)
10 CONTINUE
\(R=0\)
C V(I,J) IS AN NXN MATRIX DEFINING A SET OF N MUTUALLY
C ORTHOGONAL GOQRDINATE DIRECTIONS. V(I,J) IS THE UNIT
matrix at the start of the prøcess
DO \(30 \quad 1=1, N\)
De \(20, J=1, N\)
\(V(I, J)=0.0\)
IF \((I, J)=0.0\)
I.EQ.J) \(V(I, J)=1.0\)
20 continue
30 CONTINUE
CALL FUNCT(N, \(X, F O)\)
C START OF THE ITERATI ON LODP
40 DO \(50 \quad \mathrm{I}=1, \mathrm{~N}\)
\(A(1)=2.0\)
\(D(1)=0.0\)
50 CONTINUE
evaluate fat the new pgint \(x\)
60 D0 \(130 \quad 1=10 N\)
Do \(70 \mathrm{~J}=1, \mathrm{~N}\)
\(\begin{aligned} X(J) & =X(J)+F(1) * V(1, J)\end{aligned}\)
70 CONTINUE

CALL MONITR(N, \(X, F 1\),
CALL MONITR(N, \(X, F 1, R, O, C O N, 1)\)
IF ( \(\mathrm{FI}_{1-\mathrm{FO} \text { ) } 80,90,90}\)
```

c THE NEW value of the function is less than the old one
80 D(I) = D(I) +E E(I)
E(I)=3.0*F(I)
FO FI
IF (A(I).GT.1.5) A(I) = 1.0
G0 T\& 110
c THE NEW VALUE OF THE FUNCTION is GREATER thAN ØK EQual
c TO THE OLD ONE
T0 THE OLD QNE
Dx(J)= X(J)-F(I)*V(I,J)
CONTINUE
CONTINUE
IF (A(I).LT.1.5) A(I) = 0.0
DG 12O J=1,N
IF (A(J).GE.O.5) G0 T0 130
continue
G0 T0 140
CONTINUE
c gram-SChmidt Orth@gonalization process
140 DO 160 K=1,N
D0 150 L=1,N
ALPHA(K,L) = 0.0
150 CONTINUE
160 CONTINUE
D0 190 I=1,N
D0 180 J=1,N
D0 170 L=1,N
l
continue
180 CONTING
190 conitinue
8=0.0
B= 200 J=1,N
200 CONTINUE
B = SORT(B)
c calculate the Ne
CALCULATE THE NEW SET OF ORTHONORMAL COORDINATE
IRECTIONS \& TH
V(1,J)= ALPHA(1,J)/B
210 CONTINUE
D| 280 P=2,N
BETY = 0.0
MP=P-1
D0 220 M=1,N
BETA(M) = 0.0
22O CONTINUE
D0 250 J=1,N
D0 240 K=1,IP
AV(K) =0.0
D0 230 L=1,N
D(230 L=1,N (K) + ALPHA(P,L)*V(K,L)
Continue
BETA(J)= BETA(J)-AV(K)*V(K,J)
CONTINUE
CONTINUE
\a60 J=1,N
BETA(J) = BETA(J) + ALPMA(P,J)
BETY = BETY + RETA(J)**2
continue
BETY = SQRT(BETY)
BETY = SORT(BETY)
V(P,J) = BETA(J)/BETY
continue
280 CONTINUE
C END OF GRAM-SCHMIDT PROCESS
GALL MONITRCN, X, FO, R, B, CON, 2)
IF (CON) G0 T0 290
c go To THE NEXt itERATION
G0 T0 40
290 RETURN
O RETUR
gontinue
Dg 200 J=1,N
B = B + ALPHA(1,J)**2
\#280 P=2,N
230
O THE NEXT ITERATION

```

Remark on Algorithm 450 [E4]
Rosenbrock Function Minimization [Marek Machura and Andrzej Mulawa, Comm. ACM 16 (Aug. 1973), 482-483]

Adhemar Bultheel [Recd. 10 Oct. 1973]
Katholieke Universiteit Leuven, Faculty of Applied Sciences, Applied Math Division, Celestijnenlaan 200 B, B-3030 Heverlee, Belgium
1. Some misprints were found in the listing of the algorithm.
(a) An \(E\) has to replace the \(F\) printed in the following statements:

The one preceding the statement labeled 70.
The one following the statement labeled 80.
The one preceding the statement labeled 100.
The one following the statement labeled 100.
(b) The digit 1 should replace the character \(I\) as the first index of \(A L P H A\) in the statement preceding the statement labeled 200.
(c) RETA should be read BETA in the statement preceding the statement labeled 260.
2. Some compilers detect an error in the calling sequence of MONITR in the third line following the statement labeled 70 because the fifth argument of MONITR is an INTEGER-type constant, and in the subroutine MONITR the fifth argument stands for the norm \(B\) of a vector which is obviously a \(R E A L\)-type variable as is also assumed in the other calls of MONITR. One way to overcome this difficulty is to replace 0 by any \(R E A L\) constant, say 0 .
3. Since it is often useful to have the initial guess and the corresponding function value printed, an additional call to MONITR could be inserted just preceding the COMMENT

\section*{C START OF THE ITERATION LOOP}

This statement could be
CALL MONITR (N, X, FO, R, 1.E 10, CON, 0).
The last argument is the monitoring index \(N R\). The user of Romin should program MONITR to handle the initial guess when \(N R=0\) (printing or not, checking for convergence or not, ....). The fifth argument is chosen to be a large constant because it stands for the norm \(B\) of a vector. The routine MONITR will contain a test to see if \(B<\epsilon\) with \(\epsilon\) "small" and chosen by the user. If one wants to check the initial guess for convergence, then the routine would stop when \(B\) equals 0 . .
4. With these corrections and changes the algorithm was successfully used under a WATFIV compiler on the IBM 370-155 computer of the Computing Centre of the University of Leuven. For the example of the parabolic valley function given by the authors of the algorithm and with the same starting point the following results were obtained: in a single-precision version 202 function evaluations were needed to reach \(F=0.299986 .10^{-4}\), and in a double-precision version 194 function evaluations to reach \(F=0.297742 .10^{-4}\) and 290 function evaluations gave \(F=\) \(0.489134 .10^{-13}\).

Remark on Algorithm 450 [E4]
Rosenbrock Function Minimization [Marek Machura and Andrzej Mulawa, Comm. ACM 16 (Aug. 1973), 482-483]

Jiří Klemeš and Jaroslav Klemsa (Recd. 14 Nov. 1973) Applied Mathematics Department, Research Institute of Chemical Equipment, CHEPOS, Brno, Czechoslovakia

After correcting misprints [1] this algorithm runs successfully using an ODRA 1204 computer made by ELWRO, Poland. The results were the same as reported by authors. Some successful tests have been also made in optimization problems concerning the Wil-liams-Otto chemical plant [2]. It can be seen from the solution of some application problems [3] that it is very useful to select different step lengths in different coordinate directions.

Therefore, we recommend replacement of the third and fourth line in the subroutine ROMIN:
real step
DIMENSION X(N)
by
dimension X(N), STEP(N)
and the line before label 10
\(\mathrm{E}(\mathrm{I})=\mathrm{STEP}\)
by
\(\mathrm{E}(\mathrm{I})=\operatorname{STEP}(\mathrm{I})\)
In addition we recommend that the lines between labels 220 and 260
```

be replaced by the lines:
220 CONTINUE
DO $240 \mathrm{~K}=1$,IP
$\mathrm{AV}(\mathrm{K})=0.0$
DO $230 \mathrm{~L}=1, \mathrm{~N}$
$\mathbf{A V}(\mathbf{K})=\mathbf{A V}(\mathbf{K})+\operatorname{ALPHA}(\mathbf{P}, \mathrm{L}) * \mathbf{V}(\mathrm{~K}, \mathrm{~L})$
CONTINUE
240 CONTINUE
DO $260 \mathrm{~J}=1, \mathrm{~N}$
DO $250 \mathrm{~K}=1$, IP
$\operatorname{BETA}(\mathrm{J})=\operatorname{BETA}(\mathrm{J})-\mathbf{A V}(\mathrm{K}) * \mathbf{V}(\mathrm{~K}, \mathrm{~J})$
CONTINUE
$\operatorname{BETA}(\mathrm{J})=\operatorname{BETA}(\mathrm{J})+\operatorname{ALPHA}(\mathrm{P}, \mathrm{J})$
BETY $=$ BETY + BETA (J)**2
260
Although, this change does not reduce the number of function evaluations, in each Gram-Schmidt step some computer time may be saved. This is caused by the difference between the number of executions of the statement $A V(K)=A V(K)+\operatorname{ALPH} A(P, L) *$ $V(K, L)$ in the original program and the suggested modification which may be estimated as $N(N-1) \sum_{P-2}^{N}(P-1)$, whereas for the statement $A \dot{V}(K)=0.0$, this difference is $(N-1) \sum_{P-2}^{N}(P-1)$. (Note that N is the number of independent variables.)

```

\section*{References}
```

1. Bultheel, A. Remark on Algorithm 450. Comm. ACM 17, 8 (Aug. 1974), 470.
2. Williams, T.J., and Otto, R.E. A generalized chemical processing model for the investigation computer control. A.I.E.E. Trans. 79, P. 1, Communications and Electronics, (1960), 458-473 3. Klemeš, J., and Vasek, V. Methods for optimizing complex chemical processes. In Proc. 2nd Symp. on Use of Computers in Chemical Engineering, ČVTS, Ústínad Labem, Czechoslovakia, Sept. 1973, pp. O 84-O 102
```

ACM Transactions on Mathematical Software, Vol. 2, No. 3, September 1976. Pages 300-301
REMARK ON ALGORITHM 450
Rosenbrock Function Minimization [E4] [M. Machur and A. Mulawa, Comm. ACM. 16, 8 (Aug. 1973), 482-483]

Alan M. Davies [Recd 20 June 1975 and 3 Dec. 1975]
Institute of Oceanographic Sciences, Bidston Observatory, Birkenhead, Cheshire, L43 7RA, England.

The algorithm, incorporating the corrections given in [1], was compiled using the Fortran H compiler \(\mathrm{OPT}=2\), and run on an IBM 370/165 computer in single precision. The test problem given by the authors gave a function value of \(0.29923 \cdot 10^{-4}\) at ( \(0.99512,0.99051\) ), after 200 function evaluations, and a minimum of 0.38379 -\(10^{-8}\) was obtained at ( \(0.99994,0.99988\) ), after 240 evaluations.

In problems with a large number of variables, the Schmidt orthogonalization process can be affected by numerical errors, producing a set of vectors which are only approximately orthogonal, and this can increase the number of function evaluations required to reach a minimum.

The orthogonalization of the basis can be enhanced by using the improved GramSchmidt procedure, together with a few re-orthogonalizations. These changes are readily incorporated into \(R O M I N\) by replacing the coding following statement 210 through statement 280 with:
```

 DO 300 JCYC=1,NCYC
 DO 250 P=2,N
 IP=P-1
 DO 230 M = P,N
 BETY=0.0
 DO 220 K=1,N
 220 BETY = BETY - ALPHA(M,K)*V (IP,K)
DO 230 J=1,N
230 ALPHA(M,J) = ALPHA(M,J) + BETY *V(IP,J)
BETY=0.0
DO 240 K=1,N
240 BETY = BETY + ALPHA(P,K) **2
BETY = SQRT(BETY)
DO 250 K=1,N
250 V(P,K)=ALPHA}(\textrm{P},\textrm{K})/\textrm{BETY
IF(JCYC.EQ.NCYC) GO TO 300
DO 302 I=2,N
DO 302 J=1,N
302 ALPHA(I,J) = V(I,J)
300 CONTINUE

```

Since the arrays \(A V\) and \(B E T A\) are no longer required (a slight saving of core), the DIMENSION statement becomes

DIMENSION \(\mathrm{A}(30), \mathrm{D}(30), \mathrm{V}(30,30), \operatorname{ALPHA}(30,30), \mathrm{E}(30)\)
with the variable \(N C Y C\), which determines the number of re-orthogonalizations, being incorporated into the argument list of ROMIN.

In problems with four or less variables, this coding did not improve the result. However, in an extension of Rosenbrock's problem [2],
\[
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1,2}^{n-1} 100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}
\]
(where \(i=1,2\) indicates that \(i\) increases in increments of 2 ), for \(N=6\) starting at ( \(0.5,1.5,0.6,1.4,1.7,0.3\) ) using this improved Gram-Schmidt procedure, with two re-orthogonalizations, a function value of \(0.11241 \cdot 10^{-3}\) at (1.00150, 1.00308, \(1.00933,1.01877,0.99559,0.99136\) ) was obtained after 1000 function evaluations compared with \(0.11296 \cdot 10^{-2}\) produced by the original program plus corrections [1].

For \(N=12\), after 1300 evaluations the re-orthogonalized ( \(N C Y C=3\) ) calculation gave \(f=0.10871 \cdot 10^{-2}\) compared with \(0.17160 \cdot 10^{-2}\) ( \(N C Y C=1\), no re-orthogonalization), and after 2600 evaluations the results were \(0.57029 \cdot 10^{-4}(N C Y C=1)\) and \(0.75086 \cdot 10^{-5}(N C Y C=3)\). The original program gave \(0.15628 \cdot 10^{-3}\) compared with the above value of \(0.57029 \cdot 10^{-4}\) produced by using the improved Gram-Schmidt procedure alone. However, using the original program but incorporating just the code for re-orthogonalizing a value of \(0.73922 \cdot 10^{-5} \quad(N C Y C=3)\) was obtained, illustrating the improvement to be gained by just re-orthogonalization.

The method was also tested on an extension of Box's problem [3] using 18 variables. The original program calculated a minimum of \(0.40310 \cdot 10^{-3}\); however, by incorporating the changes given above a minimum of \(0.48176 \cdot 10^{-4}\) was obtained.

\section*{REFERENCES}
1. Bultheel, A. Remark on Algorithm 450. Comm. ACM 17, 8 (Aug. 1974), 470.
2. Rosenbrock, H.H. An automatic method for finding the greatest or least value of a function. Computer J. 3 (1960), 175-184.
3. Box, M.J. A comparison of several current optimization methods and the use of transformations in constrained problems. Computer J. 9 (1966), 67-77.

\section*{Algorithm 451}

\section*{Chi-Square Quantiles [G1]}

Richard B. Goldstein LRecd. 30 June 1971 and 20 March 1972]
Department of Mathematics, Providence College, Providence, R.I.

Key Words and Phrases: Chi-square statistic, asymptotic approximation, normal deviate, chi-square deviate, degrees of freedom

CR Categories: 5.12, 5.5
Language: Fortran

\section*{Description}

The algorithm evaluates the quantile at the probability level \(P\) for the Chi-square distribution with \(N\) degrees of freedom. The quantile function is an inverse of the function
\(\boldsymbol{P}(X \mid N)=\left(2^{N / 2} \Gamma(N / 2)\right)^{-1} \int_{X(P)}^{\infty} Z^{\frac{i}{N-1}} e^{-\frac{1}{2} Z} d Z \quad(x \geq 0, N \geq 1)\).
The function \(\operatorname{GAUSSD}(P)\) is assumed to return the normal deviate for the level \(P\), e.g. -1.95996 for \(P=.025\). The procedure found in Hastings [5] may be used, or for increased accuracy, the procedure found in Cunningham [3] may be used.

The Wilson-Hilferty cubic formula [7] which is
\(\chi^{2} \sim N\left\{1-2 / 9 N+X(2 / 9 N)^{\frac{1}{2}}\right\}^{3}\)
where \(X\) is the normal deviate can be extended to the 19 -term asymptotic approximation:
\[
\begin{aligned}
\chi^{2} & \sim N\left(1-2 / 9 N+\left(4 X^{4}+16 X^{2}-28\right) / 1215 N^{2}\right. \\
& +\left(8 X^{6}+720 X^{4}+3216 X^{2}+2904\right) / 229635 N^{3}+\cdots \\
& \left.+(2 / N)^{\frac{1}{2}} \right\rvert\, X / 3+\left(-X^{3}+3 X\right) / 162 N \\
& -\left(3 X^{3}+40 X^{3}+45 X\right) / 5832 N^{2} \\
& +\left(301 X^{i}-1519 X^{5}-32769 X^{3}-79349 X\right) / 7873200 N^{j}+\cdots l_{i}^{i j}
\end{aligned}
\]
where \(X\) is the normal deviate by taking the cube root of the polynomial expansion in Campbell [2]. For \(N=1\)
\(\chi^{2}=\left\{G A U S S D\left(\frac{1}{2} P\right)\right\}^{2}\)
and for \(N=2\)
\(\chi^{2}=-2 \ln (P)\).
For \(2<N<2+4|X|, \chi^{2}\) was fit with polynomials of the same form as the asymptotic approximation:
\[
\begin{aligned}
x^{2} & \cong N\left\{\left(1.0000886-.2237368 / N-.01513904 / N^{2}\right)\right. \\
& +N^{-1} X\left(.4713941+.02607083 / N-.008986007 / N^{2}\right) \\
& +N^{-1} X^{2}\left(.0001348028+.01128186 / N+.02277679 / N^{2}\right) \\
& +N^{-3 / 2} X^{3}\left(-.008553069-.01153761 / N-.01323293 / N^{2}\right) \\
& +N^{-2} X^{4}\left(.00312558+.005169654 / N-.006950356 / N^{2}\right) \\
& +N^{-5} / 2 X^{5}\left(-.0008426812+.00253001 / N+.001060438 / N^{2}\right) \\
& \left.+N^{-3} X^{6}\left(.00009780499-.001450117 / N+.001565326 / N^{2}\right)\right\}^{3}
\end{aligned}
\]
from Abramowitz and Stegun [1] for \(P=.0001, .0005, \ldots, .995\) and Hald and Sinkbaek \(\lfloor 4\rfloor\) for \(P=.999, .9995\). The deviates for \(N=3,4, \ldots\), 9 were made accurate within \(10^{-6}\) by using Algorithm 299 of Hill and Pike [6].

Fig. 1


Fig. 2


For \(N=1\) and \(N=2\) the \(\cdot \chi^{2}\) deviate is as accurate as the GAUSSD and ALOG procedure of the system. For . \(0001 \leq P \leq\) .9995 and \(N \geq 3\) the absolute error in \(\chi^{2}\) is less than .005 and the relative error is less than .0003 . This is some 100 to 1000 times as accurate as the Wilson-Hilferty formula even for large \(N\). Error curves for three approximations are shown in Figures 1 and 2.

The program was tested on an IBM/360 at Rhode Island College and resulted in the output of Table I.

Table I.
Table of Computed Values
\begin{tabular}{rlllll}
\begin{tabular}{rl} 
Deg. \\
Fr.
\end{tabular} & 0.9995 & 0.9950 & 0.5000 & 0.0010 & 0.0001 \\
1 & 0.000000 & 0.000039 & 0.454933 & 10.827576 & 15.135827 \\
2 & 0.001000 & 0.010025 & 1.386293 & 13.815512 & 18.420670 \\
3 & 0.015312 & 0.071641 & 2.365390 & 16.268982 & 21.106873 \\
4 & 0.063955 & 0.206904 & 3.356400 & 18.467987 & 23.510040 \\
5 & 0.158168 & 0.411690 & 4.351295 & 20.515503 & 25.744583 \\
10 & 1.264941 & 2.155869 & 9.341794 & 29.589081 & 35.565170 \\
15 & 3.107881 & 4.601008 & 14.338853 & 37.697662 & 44.267853 \\
20 & 5.398208 & 7.433892 & 19.337418 & 45.314896 & 52.387360 \\
50 & 23.460876 & 27.990784 & 49.334930 & 86.660767 & 95.969482 \\
100 & 59.895508 & 67.327621 & 99.334122 & 149.449051 & 161.319733
\end{tabular}

\section*{References}
1. Abramowitz, M., and Stegun, I. (Eds.) Handbook of Mathematical Functions, Appl. Math. Ser. Vol. 55. Nat. Bur. Stand., U.S. Govt. Printing Office, Washington, D.C., 1965, pp. 984-985.
2. Campbell, G.A., Probability curves showing Poisson's exponential summation. Bell Syst. J. 2 (1923), 95-113.
3. Cunningham, S.W. From normal integral to deviate. In Applied Statistics. Vol. 18, Royal Statis. Soc., 1969, pp. 290-293.
4. Hald, O.O., and Sinkbaek, O.O. Skandinavisk Akturarietidskrift (1950), 168-175.
5. Hastings, C. Jr. Approximations for Digital Computers. Princeton U. Press, Princeton, N.J., 1958, p. 192.
6. Hill, I.D., and Pike, M.C. Algorithm 299, Chi-squared integral. Comm. ACM, 10, 4 (Apr., 1967), 243-244.
7. Hilferty, M.M., and Wilson, E.B. Proc. Nat. Acad. Sci., 17 (1931), 684.
8. Riordan, J. Inversion formulas in normal variable mapping. Aninals of Math. Statist. 20 (1949), 417-425.

\section*{Algorithm}

\section*{FUNCTION CHISQD(P, N)}

DIMENSION C(21), A(19)
DATA C(1)/1.565326E-3/, C(2)/1.060438E-3/,
* \(\mathrm{C}(3) /-6.950356 \mathrm{E}-3 /, \mathrm{C}(4) /-1.323293 \mathrm{E}-2 /\),
* \(\mathrm{C}(5) / 2.277679 \mathrm{E}-2 /, \mathrm{C}(6) /-8.986007 \mathrm{E}-3 /\),
* \(\mathrm{C}(7) /-1.513904 \mathrm{E}-2 /, \mathrm{C}(8) / 2.530010 \mathrm{E}-3 /\),
* \(C(9) /-1.450117 \mathrm{E}-3 /, \mathrm{C}(10) / 5.169654 \mathrm{E}-3 /\),
* \(\mathrm{C}(11) /-1.153761 \mathrm{E}-2 / \mathrm{C}, \mathrm{C}(12) / 1.128186 \mathrm{E}-2 /\).
* C(13)/2.607083E-2/, C(14)/-0.2237368/.
* C(15)/9.780499E-5/, C(16)/-8.426812E-4/,
* C(17)/3.125580E-3/, C(18)/-8.553069E-3/,
* C(19)/1.348028E-4/, C(20)/0.4713941/, C(21)/1.0000886/ DATA \(A(1) / 1.264616 \mathrm{E}-2 /, A(2) /-1.425296 \mathrm{E}-2 /\),
* \(A(3) / 1.400483 E-2 /, A(4) /-5.886090 E-3 /\),
* \(A(5) /-1.091214 \mathrm{E}-2 /, A(6) /-2.304527 \mathrm{E}-2 /\)
* \(A(7) / 3.135411 E-3 /, A(8) /-2.728484 E-4 /\),
* \(A(9) /-9.699681 \mathrm{E}-3 /, A(10) / 1.316872 \mathrm{E}-2 /\).
* \(A(11) / 2.618914 \mathrm{E}-2 /, A(12) /-0.2222222 /\),
* \(A(13) / 5.406674 E-5 /\). \(A(14) / 3.483789 E-5 /\),
* \(A(15) /-7.274761 E-4 /, A(16) / 3.292181 E-3 /\),
* \(A(17) /-8.729713 E-3 /, A(18) / 0.4714045 /\). \(A(19) / 1 . /\)

IF (N-2) 10, 20, 30
\(10 \mathrm{CHISQD}=\) GAUSSD (. S*P)
CHISQD \(=\) CHISQD*CHISQD
RETURN
\(20 \mathrm{CHISQD}=-2 \cdot * \mathrm{AL}\) OG(P)
RETUKN
\(30 \mathrm{~F}=\mathrm{N}\)
\(F_{1}=1 . / F\)
\(T=G A U S S D(1 .-P)\)
\(F 2=\operatorname{SQRT}\left(\mathrm{F}_{1}\right) * T\)
IF (N.GE. (2+INT(4.*ABS(T)))) GD T0 40
CHISQD= ( ( ( ( ( ( C (1) *F2 +C(2)) *F2+C(3))*F2+C(4))*F2
* +C(5))*F2+C(6))*F2+C(7))*F1+((C( (C(8)+C(9)*F2)*F2
\(*+C(10)) * F 2+C(11)) * F 2+C(12)) * F 2+C(13)) * F 2+C(14))) * F 1+\)
* \(((C(C C(15) * F 2+C(16)) * F 2+C(17)) * F 2+C(18)) * F 2\)
\(*((()(C(15) * F 2+C(16)) * F 2+C(\)
\(\left.*+C(19)) *{ }^{*} 2+C(20)\right) * F 2+C(21)\)
* + C(19)
G0 T0 50
\(40 \mathrm{CHISQD}=(((\mathrm{A}(1)+\mathrm{A}(2) * F 2) * F 1+(((A(3)+A(4) * F 2) * F 2\)
\(*+A(5)) * F 2+A(6))) * F 1+(((((A(7)+A(8) * F 2) * F 2+A(9)) * F 2\)
\(*+A(10)) * F 2+A(11)) * F 2+A(12))) * F 1+(((((A(13) * F 2\)
* \(+A(14)) * F 2+A(15)) * F 2+A(16)) * F 2+A(17)) * F 2 * F 2\)
* \(+A(18)) * F 2+A(19)\)
\(50 \mathrm{CHISQD}=\mathrm{CHISQD} * \mathrm{CHISQD} * \mathrm{CHISQD} * F\)
RETURN
END

Certification of Algorithm 451 [G1]
Chi-Square Quantiles [Richard B. Goldstein, Comm.
ACM (Aug. 1973), 483-484]
William Knight [Recd 26 Nov. 1973]
Department of Computer Science
University of New Brunswick*

The algorithm was tested for degrees of freedom, \(N=3\) (1) 5 (5) 25 (25) 100, and tail probabilities, \(P\), of
\begin{tabular}{lllllll}
.00010 & .0010 & .010 & .10 & .80 & .980 & .9980 \\
.00015 & .0015 & .015 & .15 & .85 & .985 & .9985 \\
.00020 & .0020 & .020 & .20 & .90 & .990 & .9990 \\
.00030 & .0030 & .030 & .30 & .93 & .993 & .9993 \\
.00050 & .0050 & .050 & .50 & .95 & .995 & .9995 \\
.00070 & .0070 & .070 & .70 & .97 & .997 &
\end{tabular}

The descriptive text of the algorithm claimed absolute error no more than 0.005 and relative error no more than 0.0003 for \(0.0001 \leq P \leq 0.9995\); the values of \(P\) listed above were chosen to cover this domain.

The largest absolute error found on the above grid was 0.0059 at \(N=3, P=0.0003\); a finer scale search nearby uncovered an erros of 0.0062 at \(N=3, P=0.00031\). The largest relative error found on the grid was 0.0035 at \(N=3, P=0.9985\); this being an order of magnitude more than the figure claimed, I conjecture a typographical error, especially as the table of computed values accompanying the algorithm lists 0.071641 for \(N=3, P=0.9950\) which has a relative error exceeding 0.001 .

The remainder of this note describes computational details.
Testing was done using the Watfiv compiler on an IBM 370/ 165 at the University of Toronto.

The following changes were made in the data statements. (1) Since the Watfiv compiler will not accept a representation of a number consisting of more than seven digits (including, it seems, leading zeros) as a short real constant, \(C(14), C(20), C(21), A(12)\) and \(A(18)\) were rejected by the compiler. This was easily circumvented by changing these representations to " \(E\) " form. (2) The two long data statements were broken into several shorter data statements to simplify detection and correction of punching errors. (Moreover, some compilers will not accept nine continuation cards!)

For the inverse normal distribution function subroutine,
* On sabbatical leave to Mathematics Department, University of Toronto, 1973-74.

GAUSSD, formula 26.2.23 of Abramowitz and Stegun [1] was used, followed by two Newton-Raphson iterations in double precision, the normal distribution function needed being constructed from the \(D E R F C\) (complimentary error function) which is included in Watfiv. This should give accuracy to single precision; spot checks against tables in Abramowitz and Stegun [1] bore this out.

The actual testing procedure was this: From a given \(N\) and \(P\), CHISQD computed a chi-square value. To establish the correct value with which to compare this, it was refined by a single Newton Raphson iteration. A rather free Fortran translation of Algorithm 299 [2] was used to compute the chi-square integral. (Algorithm 299 should be accurate to the limit set by word length and the square root, exponential, logarithm and error function routines.) Where possible corrected chi-square values were checked against table 26.8 of Abramowitz and Stegun [1], agreement to at least three places after the decimal point or four significant figures, whichever was more stringent, being found in all cases.

\section*{References}
1. Abramowitz, M., and Stegun, I. (Eds) Handbook of Mathematical Functions. Appl. Math. Ser. Vol. 55. Nat. Bur. Stand., U.S. Gov. Print. Off., Washington, D.C., 1965.
2. Hill, I.D., and Pike, M.C., Algorithm 299, Chi-squared integral. Comm. ACM. 10, 4 (Apr., 1967), 234-244.

\title{
Algorithm 452 \\ Enumerating Combinations of \(m\) Out of \(n\) Objects [G 6]
}

\author{
C.N. Liu and D.T. Tang [Recd. 7 July 1971 and 1 May 1972] \\ IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
}

Key Words and Phrases: permutations, combinations CR categories: 5.30
Language: Fortran

\section*{Description}
\(N X C B N\) can be used to generate all combinations of \(m\) out of \(n\) objects. Let the binary \(n\)-vector of \(m 1\) 's and ( \(n-m\) ) 0 's representing a combination of \(m\) out of \(n\) objects be stored in an integer array, say \(I C(n)\). If \(N X C B N(n, m, I C)\) is called, a binary vector representing a new combination is made available in the array \(I C(n)\). If \(N X C B N(n, m, I C)\) is called \(\binom{n}{m}\) times successively, then all combinations will be generated.

The algorithm has the following features; (a) each output binary \(n\)-vector differs from the input at exactly two positionsconsequently each generated combination differs from the previous one by a single object: (b) the \(n\)-vectors generated by this subroutine form a closed loop of \(\binom{n}{m}\) elements-therefore the initial combination may be specified arbitrarily, and the enumeration of any subset of \(\binom{n}{m}\) combinations can be readily achieved. The second feature is not found in Chase's algorithm [1].

The algorithm underlying this procedure is based upon our study of properties of Gray codes. It can be shown that constant weight code vectors from a Gray code sequence are separated by a Hamming distance of 2 . The mathematical analysis is contained in |2] and |3|.

\section*{References}
1. Chase, P.J. Algorithm 382, Combinations of \(m\) out of \(n\) objects. Comm. ACM I3 (June 1970), 368.
2. Tang, D.T., and Liu, C.N. On enumerating \(m\) out of \(n\) combinations with minimal replacements. Proc. of Fifth Ann. Princeton Conf. on Info. Sci. and Sys., Mar. 1971. 3. Tang, D.T., and Liu, C.N. Distance-Two Cyclic Chaining of Constant-Weight Codes. IEEETC. C-22, 2 (Feb. 1973), 176-180.
```

Algorithm
SUBRøUTINE NXCBN(N, M, IC)
C EXPLANATION DF THE PARAMETERS IN THE CALLING SEQUENCE
C N THE TOTAL NUMBER OF OBJECTS
M THE NUMBER OF OBJECTS TO BE TAKEN FROM N
IF M=Q, QR M>=N, EXIT WITH ARGUMENTS UNCHANGED
IC AN INTEGER ARRAY. IC CONTAINS AN N-DIMEN-
SIONAL BINARY VECTOR WITH M ELEMENTS SET TO I
REPRESENTING THE M OBJECTS IN A COMBINATION
THIS ALGØRITHM IS PR\emptysetGRAMMED IN ANSI STANDARD FORTRAN
INTEGER IC(N)

```
```

C CHECK ENDING PATTERN OF VECTOR
IF (M.GE.N .OR. M.EQ.O) GO TO 140
N1 = N - 1
D0 10 J=1,NI
NJ = N - J
IF (IC(N).EQ.IC(NJ)) GD TO 10
Jl=J
G0 T0 20
10 CONTINUE
20 IF (MOD(M.2).EQ.1) G@ T0 90
C FOR M EVEN
IF (IC(N),EQ.1) GO TO 30
K1 = N - Jl
K2 = K1 + 1
GO TO 130
30 IF (MOD(J1,2).EQ.1) G0 T0 40
GO TO 120
C SCAN FROM RIGHT TO LEFT
40 JP = (N-J1) - 1
DO 50 I= 1,JP
I 1 = JP + 2-I
IF (IC(I1).EO.O) G0 T0 So
IF (IC(I1-1).EQ.1) G\emptyset T0 TO
G0 T0 80
5O CONTINUE
60 KI = 1
K2 = (N+1)-M
G0 T0 130
70 K1 = 11 - 1
K2 =N-N1
GO TO 130
80 K1 = II -
K2 =(N+1)-J1
G0 T0 130
C FOR M ODD
90 1F (IC(N).EQ.1) G0 TO 110
K2 = (N-J1)-1
IF (K2.EQ.0) GO T0 60
IF (IC(K2+1),EQ.1 .AND. IC(K2).EQ.1) GO TO 100
k1 = k2 + 1
G0 T0 130
100 K1 = N
G0 T0 130
110 IF (MOD(J1,2).EQ.1) GO T0 120
G0 T0 40
120 K1 = N - J1
K2 = MINO((K1+2),N)
C COMPLEMENTING TWØ BITS TØ ØBTAIN THE NEXT COMBINATION
130 IC(K1) = 1 - IC(K1)
IC(K2) = 1 - IC(K2)
140 RETURN
END

```

\section*{Algorithm 453}

\section*{Gaussian Quadrature Formulas for Bromwich＇s Integral［D1］}

Robert Piessens［Recd． 2 Aug． 1970 and 8 Feb．1972〕 Applied Mathematics Division，University of Leuven， Heverlee，Belgium

Key Words and Phrases：Gaussian quadrature，Bromwich＇s integral，complex integration，numerical inversion of the Laplace transform

CR Categories：5．16， 5.13
Language：Fortran

\section*{Description}

BROMIN calculates the abscissas \(x_{i}^{(s)}\) and weights \(w_{k}^{(s)}\) of the Gaussian quadrature formula
\((1 / 2 \pi j) \int_{c-j \infty}^{c+j \infty} e^{x} x^{-s} F(x) d x \simeq \sum_{k=1}^{N} w_{k}^{(s)} F\left(x_{k}^{(s)}\right)\)
where \(c\) is an arbitrary real positive number，\(s\) is a real nonnegative parameter，and \(F(x)\) must be analytic in the right－half plane of the complex plane．

Abscissas \(x_{k}^{(s)}\) and weights \(w_{k}^{(s)}\) are to be determined so that（1） is exact whenever \(F(x)\) is a polynomial in \(x^{-1}\) ，of degree \(\leq 2 N-1\) ．

The abscissas \(x_{k}^{(s)}\) are the zeros of \(P_{N, N}\left(x^{-1}\right)\) where
\[
\begin{equation*}
P_{N, s}(u)=(-1)^{N_{2}} F_{0}(-N, N+s-1 ; \quad-; \quad u) . \tag{2}
\end{equation*}
\]

Properties of \(P_{N, *}(u)\) are studied in \(\lfloor 1\rfloor\) ．
The quadrature formulas of even order have no real abscissas； those of odd order have exactly one real abscissa．All the abscissas have positive real parts and occur in complex conjugate pairs．

The zeros of（2）are calculated using Newton－Raphson＇s method．Finding an approximate zero as starting value for the iteration process is based on a certain regularity in the distribution of the zeros（see［1］and［2］）．The starting values，used by BROMIN were tested for \(s=0.1(0.1) 4.0\) and \(N=4(1) 12\) ．Each abscissa was found to at least eight significant figures in at most six iteration steps．

The weights are given by
\(A_{k}=(-1)^{N-1} \frac{(N-1)!}{\Gamma(N+s-1) N x_{k}^{2}}\left[\frac{2 N+s-2}{P_{N-1, s}\left(x_{k}^{-1}\right)}\right]^{2}\)
The polynomial（2）is evaluated by a threesterm recurrence rela－ tion（see［1］）．Due to roundoff errors，the accuracy of abscissas and weights decreases significantly for increasing \(N\) ．In Table I we give for some values of \(s\) and \(N\) the moduli of the relative errors in the abscissas and weights，calculated by BROMIN（with \(T O L=\) \(0.1 E-10\) ）on an IBM 370 computer in double precision（approxi－ mately 16 significant figures）．For comparison we used the \(16-S\) values given in［3］．

Note that the relative errors in the weights are larger than in the abscissas．

The use of complex arithmetic is avoided in BROMIN in order to facilitate the conversion to a double precision subroutine．

Table I．Maximum Relative Errors in Abscissas and Weights
\begin{tabular}{lccccc}
\hline & \multicolumn{3}{c}{\begin{tabular}{c} 
Maximum error in \\
abscissas
\end{tabular}} & \multicolumn{2}{c}{\begin{tabular}{c} 
Maximum error in \\
weights
\end{tabular}} \\
\hline\(s\) & \(N=6\) & \(N=12\) & \(N=6\) & \(N=12\) \\
\hdashline 0.1 & \(1.8 \times 10^{-13}\) & \(1.7 \times 10^{-9}\) & \(1.2 \times 10^{-13}\) & \(2.3 \times 10^{-8}\) \\
1.0 & \(1.9 \times 10^{-14}\) & \(5.3 \times 10^{-11}\) & \(1.5 \times 10^{-14}\) & \(6.4 \times 10^{-19}\) \\
4.0 & \(1.3 \times 10^{-15}\) & \(2.3 \times 10^{-12}\) & \(1.0 \times 10^{-14}\) & \(4.3 \times 10^{-11}\) \\
\hline
\end{tabular}

\section*{References}

1．Piessens，R．Gaussian quadrature formulas for the numerical integration of Bromwich＇s integral and the inversion of the Laplace transform．J．Eng．Math． 5 （Jan．1971），1－9．
2．Piessens，R．Some aspects of Gaussian quadrature formulas for the numerical inversion of the Laplace transform．Comput． J． 14 （Nov．1971），433－435．
3．Piessens，R．Gaussian quadrature formulas for the numerical integration of Bromwich＇s integral and the inversion of the Laplace transform．Rep．TWI，Appl．Math．Div．U．of Leuven， 1969.

\section*{Agorithm}

SUBRøUTINE BRøMIN（N，S，TOL，XR，XI，WR，WI，EPS，IER）
D®UBLE PRECISION AK，AN，ARG，CI，CR，D，DI，DR，E，EPS，
＊FAC，FACTI，FACTR，PI，PR，QI，QR，RI，RR，S，T1，T2，
＊TөL，U，V，WI，WR，XI，XR，YI，YR，\(Z\)
INTEGER IER，J，\(K\) ，\(L\) ，\(N, N 1\) ，NUM，NUP，IGNAL
DIMENSION XR（N），XI（N），WR（N），WI（N）
THIS SUBRDUTINE CALCULATES ABSCISSAS AND WEIGHTS gF THE GAUSSIAN QUADRATURE FGRMULA OF GRDER N FQR THE BRGMWICH INTEGRAL．ONLY THE ABSCISSAS OF THE FIRST QUADRANT OF THE CBMPLEX PLANE，THE REAL ABSCISSA（IF N IS QDD）AND THE CGRRESPGNDING WEIGHTS ARE CALCULATED．THE OTHER ABSCISSAS AND WEIGHTS ARE COMPLEX CONJUGATES．
INPUT PARAMETERS
\(N\) ORDER OF THE QUADRATURE FORMULA．
N MUST BE GREATER THAN 2.
TOL REQUESTED RELATIVE ACCURACY OF THE ABSCISSAS．
S PARAMETER GF THE WEIGHT FUNCTION
METERS
XR AND XI CONTAIN THE REAL AND IMAGINARY PARTS OF THE ABSCISSAS．IF \(N\) IS GDD，THE REAL．ABSCISSA IS XR（1）．
WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS OF THE CORRESPONDING WEIGHTS．
eps is a crude estimation of the gbtained relative ACCURACY OF THE ABSCISSAS．
IER IS AN ERROR CODE．
IF IER＝0 THE COMPUTATI日N IS CARRIED OUT TD
THE REQUESTED ACCURACY．
IF IER＝．
IF IER＝－1 THE COMPUTATIONS ARE CARRIED OUT，
BUT THE REQUESTED ACCURACY IS NOT
ACHIEVED．
IF IER \(=-2\) N IS LESS THAN 3.
FUNCTION PROGRAMS REQUIRED
FUNCTI日N GAMMA \((X)\) WHICH EVALUATES THE GAMMA FUNCTION FOR POSITIVE \(X\)
\(I E R=-2\)
IF（N．LT．3）RETURN
\(N 1=(N+1) / 2\)
\(\mathrm{L}=\mathrm{N}^{-}=\)
N
IER \(=0\)
IER \(=0\)
\(E P S=T O L\)
ARG \(=0.034 D 0 *(30 . D 0+A N+A N) /(A N-1.00)\)
FACTR \(=\) DCOS（ARG）
FACTI＝DSIN（ARG
\(F A C=1 . D O\)
\(\mathrm{AK}=0 . \mathrm{DO}\)
Do \(10 \mathrm{~K}=1.1\)
\(A K=A K+1 . D O\)
\(F A C=-F A C * A K\)
10 continue
\(F A C=F A C *(A N+A N+S-2 . D 0) * * 2 /(A N * D G A M M A(A N+5-1 . D O))\)
C CALCULATION OF AN APPROXIMATION OF THE FIRST ABSCISSA
\(Y R=1.333 D 0 * A N+S-1.5 D O\)
IF \(=0.000\)
YF（N－NI－N1）30．20， 20
\(20 \mathrm{YI}=\mathrm{YI}+1.6 \mathrm{DO}+0.07 \mathrm{DO} * \mathrm{~S}\)
START MAIN LOEP
30 DO \(140 \mathrm{~K}=1, \mathrm{~N}\)
\(E=T \theta L\)
NUM \(=0\)
NUM \(=0\)
NUP \(=0\)

C NEWTON-RAPHSON METHOD
\(D=Y R * Y R+Y I * Y I\)
\(Y R=Y R / D\)
\(Y I=-Y I / D\)
\(\begin{array}{ll}\mathrm{YI}=-\mathrm{YI} / \mathrm{D} \\ \mathrm{GO} & \mathrm{TO} \\ \mathrm{SO}\end{array}\)
IGNAL \(=1\)
\(50 \quad\) QR \(=S * Y R\)
\(P R=(S+1 \cdot D O) *((S+2 \cdot D 0) *(Y R * Y R-Y I * Y 1)-2 \cdot D 0 * Y R)+1 \cdot D 0\)
\(P I=2 . D 0 *(S+1 \cdot D 0) * Y I *((S+2 \cdot D 0) * Y R-1, D 0)\)
\(z=2 . D 0\)
De \(60 \quad J=3\), \(N\)
\(R R=Q R\)
\(R I=Q I\)
\(Q R=P R\)
\(Q I=P I\)
\(z=z+1.00\)
\(u=z+S-2.00\)
\(v=u+z\)
\(V=U+Z\)
\(D=(V * Y R+(2 \cdot D O-S) /(V-2 \cdot D O)) / U\)
\(D_{1}=(Z-1 \cdot D 0) * V /(U *(V-2 \cdot D O))\) \(D 2=V * Y I / U\)
\(P R=(V-1 \cdot D O) *(\theta R * D-Q I * D 2)+D 1 * R R\)
\(P I=(V-1 \cdot D O) *(Q I * D+Q R * D 2)+D 1 * R I\)
CONTINUE
IF (IGNAL.EQ.1) GO T® 100
\(D 1=((P R+Q K) * Y R+(P 1+Q I) * Y I) / D+P R\)
\(D 2=((P I+Q I) * Y R-(P R+Q R) * Y I) / D+P I\)
\(D=(D 1 * D 1+D 2 * D 2) * A N\)
T 1
\(\mathrm{~T} 2=P R * Y R-P I * Y I\)
\(I\)
\(\begin{array}{ll}T 2=P I * Y K+P R * Y I \\ C R & \\ \text { T1 }\end{array}\)
\(C R=(T 1 * D 1+T 2 * D 2) / D\)
\(C I=(T 2 * D 1-T 1 * D 2) / D\)
\(Y R=Y K-C R\)
\(Y I=Y I-C I\)
NUM \(=\) NUM +1
C TEST OF CQNVERGENCE OF ITERATIDN PROCESS
IF (GR*CR+CI*CI-E*E*(YR*YR+YI*YI)) 40, 40. 70
C TEST OF NUMBER GF ITERATION STEPS
70 IF (NUM-10) SO, 50, 80
\(80 \quad E=E * 10.00\)
IER \(\Rightarrow-1\)
NUP \(=\) NUP
NUP \(=\) NUP +1
IF (NUP-5) SO, SO, 90 IER \(=\mathrm{K}\)
C GALCULATIGN OF WEIGHTS
100 IF (EPS.GE.E) GO TO 110
\(I F(E P S . G E \cdot E) G \varnothing\) TO 110
\(E P S=E\)
110 D = CQR*
\(D 1=Y R * Q R+Y I * Q 1\)
\(D 2=Y I * 0 R-Y R * Q I\)
\(W R(K)=F A C *(D 1 * D 1-D 2 * D 2) / D\)
W1 (K) \(=2 \cdot 00 *\) FAC*D2*D1/D
\(D=Y R * Y R+Y I * Y I\)
\(X_{K}(K)=Y R / D\)
\(X I(K)=-Y I / D\)
IF (K+1-NI) 130, 120, 150
\(120 \quad \begin{aligned} & \text { FACTK }=\operatorname{DCOS}(1.5 D 0 * A R G) \\ & \text { FACTI }\end{aligned}\)
C CALCULATION OF AN APPRDXIMATION OF THE (K+1)-TH ABSCISSA
\(130 \quad Y R=(X R(K)+0.67 D 0 * A N) * F A C T R-X I(K) * F A C T I-0.67 D 0 * A N\)
YI \(=(X R(K)+0.67 D O * A N) * F A C T I+X I(K) * F A C T K\)
1.40 CONTINUE

150 RETURN
END

\section*{Algorithm 454}

\title{
The Complex Method for Constrained Optimization [E4]
}

\author{
Joel A. Richardson and J.L. Kuester* |Rec'd. Dec. 22, 1970 and May 5, 1971] \\ Arizona State University, Tempe, AZ 85281
}

Key Words and Phrases: optimization, constrained optimization, Box's algorithm

CR Categories: 5.41
Language: Fortran

\section*{Description}

Purpose. This program finds the maximum of a multivariable, nonlinear function subject to constraints:

Maximize \(F\left(X_{1}, X_{2}, \ldots, X_{N}\right)\)
Subject to \(\quad G_{k} \leq X_{k} \leq H_{k}, \quad k=1,2, \ldots, M\).
The implicit variables \(X_{N+1}, \ldots, X_{M}\) are dependent functions of the explicit independent variables \(X_{1}, X_{2}, \ldots, X_{N}\). The upper and lower constraints \(H_{k}\) and \(G_{k}\) are either constants or functions of the independent variables.

Method. The program is based on the "complex" method of M.J. Box [2]. This method is a sequential search technique, which has proven effective in solving problems with nonlinear objective functions subject to nonlinear inequality constraints. No derivatives are required. The procedure should tend to find the global maximum because the initial set of points is randomly scattered throughout the feasible region. If linear constraints are present or equality constraints are involved, other methods should prove to be more efficient [1]. The algorithm proceeds as follows:
(1) An original "complex" of \(K \geq N+1\) points is generated consisting of a feasible starting point and \(K-1\) additional points generated from random numbers and constraints for each of the independent variables: \(X_{i, j}=G_{i}+r_{i, j}\left(H_{i}-G_{i}\right), i=1,2, \ldots\), \(N\), and \(j=1,2, \ldots, K-1\), where \(r_{i, j}\) are random numbers between 0 and 1 .
(2) The selected points must satisfy both the explicit and implicit constraints. If at any time the explicit constraints are violated, the point is moved a small distance \(\delta\) inside the violated limit. If an implicit constraint is violated, the point is moved one half of the distance to the centroid of the remaining points: \(X_{i, j}\) (new) \(=\) \(\left(X_{i, j}(\right.\) old \(\left.)+\vec{X}_{i, c}\right) / 2, \quad i=1,2, \ldots, N\), where the coordinates of the centroid of the remaining points, \(\bar{X}_{i, c}\), are defined by
\(K_{i, c}=\frac{1}{K-1}\left[\sum_{j=1}^{K} X_{i, j}-X_{i, j}(\right.\) old \(\left.)\right], \quad i=1,2, \ldots, N\).
* The authors acknowledge financial support from a National Science Foundation summer fellowship and Arizona State University Grants Committee fellowship. Computer facilities were provided by the Arizona State University Computer Center and AiResearch Manufacturing Company.

This process is repeated as necessary until all the implicit constraints are satisfied.
(3) The objective function is evaluated at each point. The point having the lowest function value is replaced by a point which is located at a distance \(\alpha\) times as far from the centroid of the remaining points as the distance of the rejected point on the line joining the rejected point and the centroid:
\(X_{i, j}\) (new \()=\alpha\left(\bar{X}_{i, c}-X_{i, j}(\right.\) old \(\left.)\right)+\bar{X}_{i, c}, \quad i=2, \ldots, N\).
Box [2] recommends a value of \(\alpha=1.3\).
(4) If a point repeats in giving the lowest function value on consecutive trials, it is moved one half the distance to the centroid of the remaining points.
(5) The new point is checked against the constraints and is adjusted as before if the constraints are violated.
(6) Convergence is assumed when the objective function values at each point are within \(\beta\) units for \(\gamma\) consecutive iterations.

Program. The program consists of three general subroutines (JCONSX, JCEK1, JCENT) and two user supplied subroutines (JFUNC, JCNST1). The use of the program and the meaning of the parameters are described in the comments at the beginning of subroutine JCONSX. All communication between the main program and subroutines is achieved in the subroutine argument lists. An iteration is defined as the calculations required to select a new point which satisfies the constraints and does not repeat in yielding the lowest function value.

Test results. Several functions were chosen to test the program. The calculations were performed on a CDC 6400 computer. Some examples:
1. Box Problem [2]

Function: \(F=\left(9-\left(X_{1}-3\right)^{2}\right) X_{2}^{3} / 27 \sqrt{ } 3\)
Constraints: \(0 \leq X_{1} \leq 100\)
\(0 \leq X_{2} \leq X_{1} / \sqrt{ } 3\)
\(0 \leq\left(X_{3}=X_{1}+\sqrt{ } 3 X_{2}\right) \leq 6\)
Starting point: \(X_{1}=1.0, X_{2}=0.5\)
Parameters: \(K=4, \alpha=1.3, \beta=.001, \gamma=5, \delta=.0001\)
Computed results Correct results:
\(F=1.0000 \quad F=1.0000\)
\(X_{1}=3.0000\)
\(X_{1}=3.0000\)
\(X_{2}=1.7320\)
\(X_{2}=1.7321\)
Number of iterations: 68
Central processor time: 6 sec .
2. Post Office Problem [3]

Function: \(F=X_{1} X_{2} X_{3}\)
Constraints: \(0 \leq X_{i} \leq 42, \quad i=1,2,3\)
\(0 \leq\left(X_{4}=X_{1}+2 X_{2}+2 X_{3}\right) \leq 72\)
Starting point: \(X_{1}=1.0, X_{2}=1.0, X_{3}=1.0\)
Parameters: \(K=6, \alpha=1.3, \beta=.01, \gamma=5, \delta=.0001\)
Computed results: Correct results:
\(F=3456\)
\(F=3456\)
\(X_{1}=24.01\)
\(X_{1}=24.00\)
\(X_{2}=12.00\)
\(X_{0}=12.00\)
\(X_{3}=12.00\)
\(X_{3}=12.00\)

Number of iterations: 72
Central processor time: 6 sec .

3．Beveridge and Schechter IProblem［1］
Function：\(F=-\left(X_{1}-0.5\right)^{2}-\left(X_{2}-1.0\right)^{2}\)
Constraints：\(-2 \leq X_{1} \leq 2\)
\[
\begin{aligned}
& -\sqrt{2} \leq X_{2} \leq \sqrt{ } 2 \\
& -4 \leq\left(X_{3}=X_{1}^{2}+2 X_{3}^{2}-4\right) \leq 0
\end{aligned}
\]

Starting point：\(X_{1}=0 ., X_{2}=0\) ．
Parameters：\(K=4, \alpha=1.3, \beta=.00001, \gamma=5, \delta=.0001\)
Computed results：
Correct results：
\(F=.0000\)
\(X_{1}=.5035\)
\(X_{2}=.9990\)
\(F=.0000\)
\(X_{1}=.5000\)
\(X_{2}=1.0000\)
Number of iterations： 40
Central processor time \(=5 \mathrm{sec}\) ．

\section*{References}

1．Beveridge，G．S．，and Schechter，R．S．Optimization：Theory and Practice．McGraw－Hill，New York， 1970.
2．Box，M．J．A new method of constrained optimization and a comparison with other methods．Comp．J． 8 （1965），42－52．
3．Rosenbrock，H．H．An automatic method for finding the greatest or least value of a function．Comp．J． 3 （1960），175－184．
```

Algorithm
SUBROUTINE JCONSXCN, M, K, ITMAX, ALPHA, BETA, GAMMA,
* DELTA, X, R, F, IT, IEVZ, K\emptyset, G, H, XC, L)
C PURPOSE
TO FIND THE CONSTRAINED MAXIMUM OF A FUNCTION OF
SEVERAL VARIABLES BY THE COMPLEX METHOD OF M. J. BOX.
THIS IS THE PRIMARY SUBR\emptysetUTINE AND COQRDINATES THE
SPEGIAL PURPQSE SUBRDUTINES (JCEK1, JCENT, JFUNC,
JCNST1), INITIAL GUESSES OF THE INDEPENDENT VARIABLES
RANDGM NUMBERS, SOLUTIGN PARAMETERS, DIMENSION LIMITS
AND PRINTER CODE DESIGNATIDN ARE gBTAINED FROM THE MAIN
PRGGRAM, FINAL FUNCTION AND INDEPENDENT VAKIABLE
PRINTQUT. INTERMEDIATE PRINTQUTS ARE PRQUIDED IN THIS
SUBROUTINE. THE USER MUST PRQVIDE THE MAIN PROGRAM AND
THE SUBRQUTINES THAT SPECIFY THE FUNCTIION (JFUNC) AND
CONSTRAINTS (JCNSTI). FGRMAT CHANGES MAY BE REQUIRED
WITHIN THIS SUBROUTINE DEPENDING ON THE PARTICULAR
PROBLEM UNDER CONSIDERATION.
USAGE
CALL JCONSX\&N,M,K,ITMAX,ALPHA,BETA,GAMMA,DELTA,X,R,F,
H,MEV2,K0,G,H,XC,L)
UBRQUTINES REQUIRED
CHECKPM,K,X,G,H,I,KODE,XC,DELTA,L,KI)
CHES:S ALL POINTS AGAINST EXPLICIT AND IMPLICIT
CONSTRAINIS AND APPLYS CORRECTION IF VIOLATIONS ARE
FgUND
JCENT(N,M,K,1EV1,I,XC,X,L,K1)
CALCULATES THE CENTROID OF POINTS
FUNC (N,M,K,X,F,I,L)
SPECIFIES OBJECTIVE FUNCTION (USER SUPPLIED)
CPECIFIES EXPLICITL)
AND IMPLICIT CONSTRAINT LIMITS
GRDEH EXPLICIT CONSTRAINTS FIRST
DESCRIPTION OF PARAMETERS
N NUMBER OF EXPLICIT INDEPENDENT VARIABLES - DEFINE
IN MAIN PROGRAM
M NUMBER OF SETS OF CONSTRAINTS - DEFINE IN MAIN
K NUMBER OF POINTS IN THE COMPLEX - dEFINE IN MAIN
PRgGRAM
ITMAX MAXIMUM NUMBER OF ITERATIONS - DEFINE IN MAIN
BETA CONVERGENCE PARAMETER - DEFINE IN MAIN PROGRAM
gamma CONVERGENCE PARAMETER - DEFINE IN MAIN PROGRAM
DELTA EXPLICIT CONSTRAINT VIOLATION CORKECIION - DEFINE
IN MAIN PRDGRAM
X INDEPENDENT VARIABLES - DEFINE INITIAL VALUES IN
MAIN PROGRAM
R RANDGM NUMBERS BETWEEN O AND 1 - DEFINE IN MAIN
RANDGM
F gBJECTIVE FUNCTION - DEFINE IN SUBRQUTINE JFUNC
IT ITERATION INDEX - DEFINED IN SUBROUTINE JCONSX
IEVZ INDEX OF POINT WITH MAXIMUM FUNCTIGN VALUE -
DEFINED IN SUBRQUTINE JCONSX
IEVI INDEX GF PGINT WITH MINIMUM FUNCTIGN VALUE -
DEFINED IN SUBRGUTINE JCONSX AND JCEKI
Kg PRINTER UNIT NUMBER - DEFINE IN MAIN PROGRAM
G LQWER CONSTRAINT - DEFINE IN SUBRQUTINE JCNSTI
H UPPER CONSTRAINT - DEFINE IN SUBRØUTINE JCNSTI
XC CENTROID - DEFINED IN SUBROUTINE JCENT
L TØTAL NUMBER OF INDEPENDENT VARIABLES
IMPLICIT) - DEFINE IN MAIN PROGRAM
KgDE PGINT INDEX - DEFINED IN SUBRQUTINE JCONSK
PRQVIDED - DEFINED IN SUBRQUTINE JCONSX AND JCEKI
DO LODP LIMIT - DEFINED IN SUBROUTINE JCONSX
DIMENSIGN X(K,L), R(K,N), F(K),G(M), H(M), XC(N)
INTEGER GAMMA
IT=1
WRITE (K0,99995) IT
KGDE = 0
MF (M-N) 20, 20, 10

```
\(10 \mathrm{KODE}=1\)
20 Continue
De \(40 \quad 11=2, K\)
\(30 \mathrm{~J}=1, \mathrm{~N}\)
\(\mathrm{x}(\mathrm{II}, \mathrm{J})=0\). Cantinue
40 CONTINUE
C CALCURATE COMPLEX POINTS AND CHECK AGAINST CONSTRAINTS
Dの 60 II \(=2, \mathrm{~K}\)
De \(50 \begin{aligned} & \mathrm{J}=1 \mathrm{I} \\ & \mathrm{I} \\ & =1\end{aligned}\)
CALL JCNSTI（N，M，K，X，G，H，I，L） CALL
\(X(I I, J)=G(J)+R(I I, J) *(H(J)-G(J))\)
50 CONTINUE
CALL JCEKI（N，M，K，X，G，H，I，KøDE，XC，DELTA，L，KI） WRITE（K0，99999）II，（X（II，J），J＝1，N）
60 CENTINUE
\(\mathrm{K}_{1}=\mathrm{K}\)
De \(70 \quad \mathrm{I}=1, \mathrm{~K}\)
CALL JFUNC（N，\(M, K, X, F, I, L\) ）
70 CONTINUE
KOUNT \(=1\)
IA \(=0\)
C FIND POINT WITH LOWEST FUNCTION VALUE
WRITE（K0，99998）（F（I），I＝1，K）
80 IEVI＝ 1
De 100 ICM \(=2, k\)
IF（F（IEV1）－F（ICM））100，100，90
90 IEV1 \(=I C M\)
100 CONTINUE
C FIND POINT WITH HIGHEST FUNCTION VALUE
IEVZ \(=1\)
DD 120 ICM \(=2, \mathrm{~K}\)
110 IEVZ＝ICM
120 Continue
C CHECK CQNVERGENCE CRITERIA
IF（F（IEVZ）－（F（IEV1）＋BETA））140，130， 130
KOUNT \(=1\)
GO TQ 150
KOUNT \(=\) KOUNT +1
IF（KDUNT－GAMMA）150， 240,240
C REPLACE POINT WITH LOWEST FUNCTI日N VALUE
150 CALL JCENTSN，M，K，IEVI，I，XC，X，L，K1）
D0 \(160 \mathrm{~J}=1, \mathrm{~N}\)
（1．ALf ha\() *(X C(J))\) ALpha＊（X（IEVI，J））
I＝IEVI
CALL JCEK1（N，M，K，X，G，H， 1 ，KODE，XC，DELTA，L，K1）
CALL JFUNC（ \(N, M, K, X, F, I, L\) ）
C REPLACE NEW POINT IF IT REPEATS AS LOWEST FUNCTION VALUE
170 IEV2 \(=1\)
DD 190 ICM＝2，K IF（F（IEV2）－F（ICM））190，190， 180
180 IEV2 \(=1 \mathrm{CM}\)
IF（IEV2－IEVI）220，200， 220
D \(Q 210\) JJ＝1，N
\(x(I E V 1, J J)=(x(I E V I, J J)+x(J J)) / 2\).
210 CONTINUE
\(I=I E V 1\)
CALL JCEKI（N，M，K，X，G，H，I，KODE，XC，DELTA，L，K1）
CALL JFUNC（N，M，K，X，F， \(1, L)\)
220 CONTINUE
WRITE（KD，99997）（X（IEVI，JB），JB＝1，N）
WRITE（K0，99998）（F（I），I＝1，K）
WRITE（K0，99996）（XC（J），J＝1，N）
\(I T=I T+1\)
IF（IT－ITMAX）230，230， 240
230 CONTINUE
WRITE（K0．99995）IT
GØ TØ 80
G® T0 80
240 REIURN
99999 FgRMAT（1H， 15 X ，21HCOOKDINATES AT POINT，I4／8（F8．4，2X））
99998 FबRMAT（1H，20X， 16 H FUNCTION VALUES， \(18(F 10.4,2 x)\) ）
99996 FORMAT（1H，21H CENTROID COQRDINATES， \(2 X, 8(F B .4,2 X)\) ）
99995 FORMAT（IH，\(/ 110 \mathrm{H}\) ITEKATION， \(4 X\) ，I5）
END
SUBROUTINE JCEKI（N，M，\(K, X, G, H, I, K D D E, X C, ~ D E L A, L\) ，
＊K1）
C TO CHECK ALL POINTS AGAINST THE EXPLICIT AND IMPLICIT
CONSTKAINTS AND TO APPLY CORRECTIONS IF VI日LATIONS ARE
C FQUND
C USAGE
CALL JCEK \(1(N, M, K, X, G, H, I, K O D E, X C, D E L T A, L, K 1)\)
SUBROUTINES REQUIRED
JCENT（N，M，K，IEVI，I，XC，X，L，K1）
JCNSTI（N，M，K，X，G，H，I，L）
DESCRIPTION OF PARAMETERS
C DESCRIPTION OF PARAMETEKS
DIMENSION X
DIMENSION X（K，L），G（M），H（M），XC（N）
\(0 \mathrm{KT}=0\)
CHECK
De 50 INST EXPLICIT CONSTRAINTS
\(50 \quad J=1, N\)
（J））20，20， 30
\(x(1, J)\)
\(G O\)
O
IF（H（J）－X（I，J））40，40， 50
\(40 X(I, J)=H(J)-D E L T A\)
50 CONTINUE
IF（KQDE） \(110,110,60\)
C CHECK AGAINST THE IMPLICIT CONSTRAINTS
60 CONTINUE
\(N N=N+1\)
\(D C 100 \quad J=N N\),
De \(100 \mathrm{~J}=\mathrm{NN}, \mathrm{M}\)
CALL JCNSTI（N，M，K，X，G，K，I，L）
IF（X（I，J）－G（J））80，70， 70

70 IF \((H(J)-X(I, J)) 80,100,100\)
70
80
```

IEV1=I
KT = 1
CALL JCENT(N, M, K, IEV1, I, XC, X, L, K1)
D0 90 JJ=1,N

```
    \(x(I, J J)=(x(I, J J)+x C(J J)) / 2\).
    90 Cantinu
    100 CONTINUE
    IF (KT) \(110,110,10\)
110 RETURN
    END
        SUBROUTINE JCENT(N, M, K, IEVI, I, XC, \(X, L, K 1)\)
c PURPOSE
C TO CALCULATE THE CENTROID OF POINTS
C USAGE
CALL JCENT(N,M,K,IEV1,I,XC,X,L,K1)
C SUBRDUTINES REQUIRED
    NONE
C DESCRIPTIQN OF PARAMETERS
    PREVIQUSLY DEFINED IN SUBRøUTINE JCONSX
        DIMENSION X(K,L), XC(N)
        D® \(20 J=1, N\)
        Dの \(10 \mathrm{IL}=1, \mathrm{~K}\)
            De \(x C(J)=X C(J)+X(I L, J)\)
    10 CONTINUE
                CONTINUE
RK \(=\mathrm{K}_{1}\)
            \(x C(J)=(x C(J)-x(I E V 1, J)) /(R K-1\).
    20 CONTINUE
    RETURN
    END

\section*{Remark on Algorithm 454 [E4]}

The Complex Method for Constrained Optimization [Joel A. Richardson and J.L. Kuester, Comm. ACM 16 (Aug. 1973), 487-489]

Kenneth D. Shere [Recd. 8 Oct. 1973]
Mathematical Analysis Division, Naval Ordnance Laboratory, Silver Spring, MD 20910

This algorithm can result in an infinite loop. This happens whenever the "corrected point," the centroid of the remaining "complex" points, and every point on the line segment joining these two points all have functional values lower than the functional values at each of the remaining complex points. Two examples for which this algorithm fails are [1] and [2]:
1. maximize \(f(x)=-100\left(x_{2}-x_{1}^{2}\right)^{2}-\left(1-x_{1}\right)^{2}\)
\(-10 \leq x_{1}, x_{2} \leq 10\), initial value \(\left(x_{1}, x_{2}\right)=(-2.5,5.0)\)
and
2. maximize
\(f(\theta, \phi)=0.2\left(\sin \left(\theta_{0}\right) \cos \left(\phi_{0}\right) \sin (\theta) \cos (\phi)+\sin \left(\theta_{0}\right) \sin \left(\phi_{0}\right)\right.\) \(\left.\sin (\theta) \sin (\phi)+\cos \left(\theta_{0}\right) \cos (\theta)\right)-1.0\left(\sin ^{2}(\theta) \cos ^{2}(\theta)\right.\) \(\left.+\cos ^{2}(\phi) \sin ^{2}(\phi) \sin ^{4}(\theta)\right)\)
\(0 \leq \theta, \phi \leq \pi / 2,\left(\theta_{0}, \phi_{0}\right)=(.8726, .0873)\),
initial \((\theta, \phi)=(\pi / 4, \pi / 4)\)
Also, there is no difference in usage between \(M\) and \(L\).
A similar method is the "simplex method" [3]. A modification to the "complex method" which uses the ideas of [3] has been programmed. The modified JCONSX solves each of the above problems in under 5 CP sec on a CDC 6400. The modified routine is available to interested parties upon request.

It is also worth noting that the variable \(I A\), which appears in the second statement after 70 CONTINUE is not used elsewhere.

\section*{References}
1. Rosenbrock, H.H. An automatic method for finding the
greatest or least value of a function. Comput. J. 3 (1960), 175-184.
2. Ferguson, R.E. An electromagnetism problem. (Private communication.)
3. Parkinson, J.M., and Hutchinson, D. An investigation into the efficiency of variants on the simplex method. In Numerical Methods for Nonlinear Optimization, F.A. Lootsma, Ed., Academic Press,
New York, 1972.

\title{
Algorithm 455 \\ Analysis of Skew Representations of the Symmetric Group [Z]
}

\author{
D.B. Hunter* and Julia M. Williams \(\dagger\) [Recd. 5 Feb. 1971] \\ * Department of Mathematics, University of Bradford, Yorkshire, England \\ \(\dagger 12\) Peel Close, Heslington, York, England
}

Key Words and Phrases: symmetric group, skew representation, partition, Young diagram, lattice permutation, binary model, outer product

CR Categories: 5.30
Language: Algol

\section*{Description}

This algorithm analyzes the skew representation \([\lambda]-[\mu]\) of the symmetric group \(\sigma_{n}\) corresponding to a pair of partitions
\((\lambda)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)\) and \((\mu)=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right)\) where
\(r \geq s\)
\(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}\)
\(\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{s}\)
\(\lambda_{i} \geq \mu_{i} \quad(1 \leq i \leq s)\)
\(n=\sum_{i=1}^{r} \lambda_{i}-\sum_{i=1}^{s} \mu_{i}\)
(see Robinson [4, sec. 2.5]). The analysis takes the form
\([\lambda]-[\mu]=\sum_{(\nu)} c_{(\nu)}[\nu]\),
where the summation is over all partitions ( \(\nu\) ) of \(n\), the coefficients \(c_{(\nu)}\) being nonnegative integers.

The method used may be described as follows: construct all possible diagrams which can be built up in accordance with the following two rules.
(a) Replace \(\mu_{s}\) of the nodes in the Young diagram corresponding to ( \(\lambda\) ) by identical symbols \(\alpha_{s}\) in such a way that: (i) the unchanged nodes form a regular Young diagram; and (ii) no two identical symbols \(\alpha_{s}\) lie in the same column. Then replace \(\mu_{s-1}\) further nodes by identical symbols \(\alpha_{s-1}\) in accordance with the same rules, and so on, finally replacing \(\mu_{1}\) nodes by identical symbols \(\alpha_{1}\).
(b) In the final diagram the altered nodes should form a lattice permutation of \(\alpha_{1}^{\mu_{1}} \alpha_{2}^{\mu_{2}} \cdots \alpha_{s}^{\mu_{s}}\) (Robinson [4, sec. 2.4]) when read from right-to-left through successive rows.

Then the pattern of unchanged nodes in each diagram so constructed defines a term \([\nu]\) in the analysis.

This method appears not to have been explicitly stated in the above form before, but is an immediate consequence of Littlewood's method for analyzing the outer product \([\lambda] .[\mu]\) (see Littlewood [3, sec. 6.3, th. V], Robinson [4, sec. 3.3]), noting that \(c_{(\nu)}\) is also the coefficient of \([\lambda]\) in the analysis of \([\mu] .[\nu]\) (Littlewood [3, sec. 6.4, th. VIII]).

In the procedure, binary models of those partitions ( \(\nu\) ) in (2) for which \(c_{(\nu)} \neq 0\) are stored, in lexicographic order, in \(n u[1]\),
\(n u[2], \ldots, n u[p]\), the corresponding values \(c_{(\nu)}\) being stored in \(c[1], c[2], \ldots, c[p]\). The binary model used is due to Comét [1], a partition \((\nu)=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{t}\right)\) being represented by the number
\(2^{n-\nu_{1}}+2^{n-\nu_{1}-\nu_{2}}+\cdots+2^{\nu_{t}}+1\).
The techniques used are similar to those employed in [2]. In particular, two two-dimensional arrays lam and sigma are required. Corresponding to any particular diagram, lam \([i, j]\) specifies the number of nodes in row \(j\) which are still unchanged when all the symbols \(\alpha_{s}, \alpha_{s-1}, \ldots, \alpha_{i}\) have been inserted ( \(j=i, i+1, \ldots, r\) ), and sigma \([i, j]\) specifies the total number of symbols \(\alpha_{i}\) inserted in rows \(i, i+1, \ldots, i\). Thus the quantities \(\operatorname{lam}[i, j]\) are generated by the equation
\(\operatorname{lam}[i, j]=\operatorname{lam}[i+1, j]-\operatorname{sigma}[i, j]+\operatorname{sigma}[i, j-1]\).
The rules for constructing the diagrams impose the restrictions
\(\operatorname{sigma}[i-1, j-1] \geq \operatorname{sigma}[i-1, j]-\operatorname{lam}[i, j]+\operatorname{lam}[i, j+1]\)
and
\(\operatorname{sigma}[i-1, j-1] \geq \operatorname{sigma}[i, j]\).
Each time array lam is completed, a term
\((\nu)=(\operatorname{lam}[1,1], \operatorname{Iam}[1,2], \ldots, \operatorname{lam}[1, r])\)
is added to the analysis.
Note 1 . In view of the identity
\([\lambda] .[\mu]=\left[\lambda_{1}+\mu_{1}, \lambda_{1}+\mu_{2}, \ldots, \lambda_{1}+\mu_{s}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right]-\left[\lambda_{1}{ }^{s}\right]\), procedure skew may also be used to analyse the outer product \([\lambda]\). \([\mu]\). It is, however, less convenient for this purpose than procedure outer product of Hunter [2].

Note 2. Value of \(p\). It is difficult to predict the value of \(p\) in any example. Clearly, \(p \leq p(n)\), where \(p(n)\) denotes the number of partitions of \(n\). On the other hand, for any value of \(n\), there are partitions ( \(\lambda\) ) and \((\mu)\) for which \(p:=p(n)\), namely, \((\lambda)=\) \((n, n-1, \ldots, 1),(\mu)=(n-1, \ldots, 1)\).

\section*{References}
1. Comét, S. Notations for partitions. MTAC 9 (1955), 143-146.
2. Hunter, D.B. Outer product of symmetric group representations. BIT 10 (1970), 106-114.
3. Littlewood, D.E. Theory of Group Characters, 2nd ed. Oxford U. Press, England, 1950.
4. Robinson, Gilbert B. Representation Theory of the Symmetric Group. U. of Toronto Press, Toronto, Ont., Canada, 1961.

\footnotetext{
Algorithm
procedure skew ( \(r, s\), lambda, mu, p, c, nu);
value \(r, s\); integer \(r, s, p\); integer array lambda, mu, \(c, n u\); begin
comment Input parameters.
\(r: \quad\) the number of parts in partition ( \(\lambda\) ).
\(s: \quad\) the number of parts in partition \((\mu)\).
lambda: the part \(\lambda_{i}\) is stored in tambda[ \([i], i=1,2, \ldots, r\).
\(m u: \quad\) the part \(\mu_{i}\) is stored in \(m u[i], i=1,2, \ldots, s\).
Output parameters.
\(p\) : the number of terms on the right in (2) for which \(c_{(\nu)} \neq 0\).
\(n u: \quad\) Binary models (3) of the partitions ( \(\nu\) ) in (2) for which \(c_{(\nu)} \neq 0\) are placed in lexicographic order in \(n u[1]\), \(n u[2], \ldots, n u[p]\).
\(c: \quad c[i]\) contains the coefficient \(c_{(v)}\) of the partition whose binary model is in \(n u[i]\);
}
integer \(i, j, k, x, y\);
integer array lam \([1: s+1,1: r]\), sigma \([1: s+1,0: r]\);
\(p:=0\); for \(i:=1\) step 1 until \(s\) do lam \([i+1, i]:=\) lambda \([i]\);
for \(j:=s+1\) step 1 until \(r\) do
begin
\(\operatorname{lam}[s+1, j]:=\operatorname{lambda}[j] ;\) sigma \([s+1, j-1]:=0\)
end;
for \(i:=1\) step 1 until \(s\) do \(\operatorname{sigma}[i, r]:=m u[i] ;\)
\(k:=m u[s]-\operatorname{lambda}[r] ; \operatorname{sigma}[s, s-1]:=0\);
for \(j:=r-1\) step -1 until \(s\) do
begin
sigma \([s, j]:=\) if \(k \geq 0\) then \(k\) else 0 ;
\(k:==\operatorname{sigma}[s, j]-\operatorname{lambda}[j]+\operatorname{lambda}|j+1|\)
end;
\(i:=s ;\)
build:
for \(i:=i\) step -1 until 1 do
begin
for \(j:=i\) step 1 until \(r\) do
\(\operatorname{lam} \mid i, j]:=\operatorname{lam}[i+1, j]-\operatorname{sigma}[i, j]+\operatorname{sigma}\lfloor i, j-1]\);
if \(i \neq 1\) then
begin
\(k:=m u\lfloor i-1\rfloor-\operatorname{lam}\lfloor i, r] ;\) sigma \(\lfloor i-1, i-2 \mid:=0 ;\)
for \(j:=r\) step -1 until \(i\) do
begin
\(\operatorname{sigma}[i-1, j-1]:=\) if \(k \geq \operatorname{sigma}[i, j]\) then \(k\)
else sigma \([i, j]\);
\(k:=\operatorname{sigma}[i-1, j-1]-\operatorname{lam}[i, j-1]+\operatorname{lam}[i, j]\)
end
end
end;
\(x:=j:=1\);
for \(j:=j+1\) while (if \(j>r\) then false else \(\operatorname{lam}[i, j]>0\) ) do \(x:=x \times 2 \uparrow \operatorname{lam}[1, j]+1\);
if (if \(p=0\) then true else \(x>n u[p]\) ) then
begin
\(p:=p+1 ; n u \mid p]:=x ; c[p]:=1\)
end
else
if \(x=m u[p]\) then \(c[p]:=c[p]+1\)
else
begin
\[
j:=1 ; k:=p
\]
search:
\(y:=(j+k) \div 2\); if \(x=n u[y]\) then \(c[y]:=c[y]+1\)
else
if \(n u[y]<x \wedge x<n u[y+1]\) then
begin
for \(k:=p\) step -1 until \(y+1\) do
begin,
\(c[k+1]:=c[k] ; n u[k+1]:=n u[k]\)
end;
\(c[y+1]:=1 ; n u[y+1]:=x ; p:=p+1\)
end
else
begin
if \(x<n u[y]\) then \(k:=y\) else \(j:=y\); go to search
end
end;
for \(i:=1\) step 1 until \(s\) do
for \(y:=i\) step 1 until \(r-1\) do
if sigma \([i, y]<\operatorname{sigma}[i, y+1]\) then
begin
\(\operatorname{sigma}[i, y]:=\operatorname{sigma} a[i, y]+1 ;\)
for \(j:=y\) step -1 until \(i\) do
begin
\(k:=\operatorname{sigma}[i, j]-\operatorname{lam}[i+1, j]+\operatorname{lam}[i+1, j+1] ;\) \(\operatorname{sigma}[i, j-1]:=\) if \(k>\operatorname{sigma}[i+1, j]\) then \(k\)
else sigma \([i+1, j]\);
if sigma \([i, j-1]=0\) then

\section*{begin}
for \(x:=j-1\) step -1 until \(i\) do sigma \([i, x-1]:=0\);
go to build
end
end
end
end skew

\title{
Algorithm 456 \\ Routing Problem [H]
}

\author{
Zdeněk Fencl [Recd. 16 Nov. 1970, 4 Oct. 1971, and 28 Jan. 1972] \\ RCA, Computer Systems Division, 200 Forest Street, Marlborough, MA 01752
}

The algorithm was originally developed as a part of vector ordering procedures at the Design Automation Center, RCA, Marlborough, Massachusetts, and was extended to general use in the traveling salesman and nonsymmetric routing problem.

Key Words and Phrases : routing problem, shortest path, traveling salesman problem, Hamiltonian circuit

CR Categories: 5.40
Language: Fortran

\section*{Description}

The algorithm finds the shortest serial (branchless) connection between \(n\) nodes of a net beginning in the start node \(s n\) and terminating in the end node en or terminating in any node. Also given is the \(m \times m\) matrix \(d\) of distances (with zero diagonal and not necessarily symmetric) between all pairs of nodes, and the vector \(p\) containing \(n\) node numbers to be connected referring to appropriate entries in the matrix \(d\). The algorithm is constructed so that for one net (given by the matrix \(d\) ) various connections, not necessarily exhausting all of \(m\) nodes, may be created; hence \(n \leq m\). The case \(s n=e n\) is also permitted, which actually yields a Hamiltonian circuit-traveling-salesman problem. If, in input, en \(=0\), the start-to-any connection is assumed. Also as an input is the number of runs \(r\), which is discussed below. In the output, the original vector \(p\) is replaced by conjectured optimal sequence of \(n\) nodes, and \(l\) contains the connection length. The matrix \(d\) does not need to represent a Euclidean net nor be symmetric. Thus the algorithm may serve as a more general tool to solutions of related problems.

Since the method is heuristic, which implies it is approximate, guaranty of an optimal solution is based on empiric probability. The algorithm uses a tour-building method combined with tour-totour improvements.

In the first phase, the tour, or sequence of nodes, is built up by successively inserting not-yet-involved nodes into the tour. If, in the middle of tour building, the tour, for instance, consists of the nodes \(p_{1}, p_{2}, \ldots, p_{k}\), the next node among the nodes \(p_{k+1}, p_{k+2}, \ldots, p_{n}\), and the arc (to be split by the chosen inserted node) among the arcs \(p_{1} p_{2}, p_{2} p_{3}, \ldots, p_{k} p_{1}\), are chosen so that the tour increment will be minimum; i.e. \(i(1 \leq i \leq k)\) and \(j(k<j \leq n)\) are chosen in such a manner that \(d_{\left(p_{i}, p_{j}\right)}+d_{\left(p_{j}, p_{i+1}\right)}\) \(-d_{\left(p_{i}, p_{i+1}\right)}=\min\). Tour building starts with the arc \(p_{1} p_{1}\) and terminates when all \(n\) nodes have been included. The tour-building approach of this kind for the traveling-salesman problem was originated by Karg and Thompson [1] and further developed by Raymond [2]. This algorithm, however, handles an open con-nection-start-to-end or start-to-any node. The maintenance of this property is ensured in the algorithm by assigning to the end-to-start or each-to-start distance sufficiently large negative values ( \(\left.-n \times \max _{i j}\left[d_{i j}\right]\right)\) which, in some way, firmly attach the end or any
of \(n\) nodes to the start node permitting a circuit to form. In fact, the algorithm works on a net as if it were a closed circuit and keeps the node configuration by modifying the distance matrix. In output, the distance matrix is returned to its original form.

A tour thus built is hardly optimal and for larger nets it is probably far from optimum. The second phase improves the tour (for \(n \geq 3\) ) by the so-called 3-opt method proposed by Lin [3]. Improvements consist in exchanging three arcs, or links of the given connection by three other links. If there are no more 3 links to exchange for tour improvement, the tour is said to be 3 -optimal. In general, \(\lambda\)-optimality can be considered. The implication of the 3 -link exchange is essentially in reinsertions. Consecutive node chains of length \(k(1 \leq k<n)\) are successively tried to be reinserted (both as are and inverted) into remaining links for tour improvements, which actually represent 3 -link exchanges (and also 2 -link at the same time). A 3-opt tour shows a certain probability to be an optimal one in relation to \(n\). Different 3-opt tours can be achieved if different initial nodes are chosen, which allows us to increase the probability of obtaining an optimal solution.

The algorithm can run \(r\) trials (as specified in input) with different initial nodes ( \(p_{1}\), set automatically), thus obtaining different solutions while the best is saved and replaced in the vector \(p\) in output. For runs \(r>n(r \leq 2 n)\) there is little chance for further improvement, because initial nodes repeat and the tour development can be affected only by previous contents of the vector \(p\) on which the tour is built. Probability that the 3 -opt tour is optimal is somewhat higher in this algorithm, than in the one Lin suggests. In contrast to findirg a 3 -opt solution from a given random sequence of nodes, the fast building of an appropriate tour in the first phase considerably reduces the number of reinsertions in the second phase. The algorithm generalization to the noncyclic and nonsymmetric problems, in comparison to the traveling-salesman problem, increases computational time.

A considerable number of test examples have been run by the algorithm including the three problem types mentioned and the non-Euclidean and nonsymmetric problems. To outline the capability and how the "cost-approximation" factor \(r\) should be set for various \(n\) 's, a survey of tested problems is presented, most of which problems have been solved and published before. The algorithm in Fortran was run on the RCA's SPECTRA 70/45 (fixedpoint add time equals \(8.88 \mu \mathrm{sec}\) ), and is recommended for a high probability (over 95 percent) of obtaining an optimum if \(r=2\) to 5 for \(n \leq 10\) and \(r=5\) to 15 for \(n \leq 30\). For higher \(n\) 's, unless cost is out of consideration and \(r\) can be set up to \(2 n\), the checking of successive results is advisable to see how improvements are developing ( \(p\) and \(l_{1}\) should be checked after the tour-length calculation). These checks can also serve for getting suboptimal solutions.

In the program, the distance matrix \(d\) is in fixed-point mode, which makes computation faster and does not seem to be a serious restriction. Decimal order range of distances is expected to be small enough to be represented in fixed point, and calculations (additions and subtractions) will, most likely, not face overflow problem.

The arrays \(I D\) and \(Q\) should have the maximum subscript set at least to \(n\).

The algorithm is believed to be applicable also to problems in which all connections do not necessarily exist. In terms of graph theory a graph representing the net to be routed need not be complete; i.e. every pair of vertices may be connected only in one of the two possible directions. The graph, however, must be strongly connected; i.e. there must be a path joining any pair of arbitrary distinct vertices. Nonexisting arcs might be expressed by assigning

\section*{Survey of tested problems}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ref. & \(n\) & \(s n\) & en & \multicolumn{2}{|l|}{Conjectured optimum} & \(r_{\text {opt }}\) & \[
\begin{aligned}
& t_{1} \\
& {[\mathrm{sec}]}
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Karg and Thompson [1]} & \multirow{3}{*}{5} & 1 & 2 & \multirow{3}{*}{\(e n=5\)} & 118 & 1 & \multirow{3}{*}{\(<1\)} \\
\hline & & 1 & 0 & & 108 & 1 & \\
\hline & & 1 & 1 & & 148 & 1 & \\
\hline \multirow[t]{3}{*}{Raymond [2]} & \multirow{3}{*}{7} & 1 & 5 & \multirow{3}{*}{\(e n=4\)} & 165 & 1 & \multirow{3}{*}{<1} \\
\hline & & 1 & 0 & & 140 & 1 & \\
\hline & & 1 & 1 & & 179 & 1 & \\
\hline \multirow[t]{6}{*}{Barachet [4]} & \multirow{3}{*}{10} & 1 & 2 & \multirow{3}{*}{\(e n=7\)} & 350 & 1 & \multirow{6}{*}{1.4} \\
\hline & & 1 & 0 & & 298 & 1 & \\
\hline & & 1 & 1 & & 378 & 2 & \\
\hline & \multirow{3}{*}{10*} & 1 & 2 & \multirow{3}{*}{\(e n=7\)} & 308 & 1 & \\
\hline & & 1 & 0 & & 257 & 2 & \\
\hline & & 1 & 1 & & 336 & 2 & \\
\hline \multirow[t]{3}{*}{Author} & \multirow{3}{*}{12} & 1 & 2 & \multirow{3}{*}{\(e n=12\)} & 102 & 1 & \multirow{3}{*}{3.0} \\
\hline & & 1 & 0 & & 95 & 1 & \\
\hline & & 1 & 1 & & 114 & 1 & \\
\hline \multirow[t]{3}{*}{Author} & \multirow{3}{*}{13} & 1 & 6 & \multirow{3}{*}{\(e n=12\)} & 117 & 1 & \multirow{3}{*}{3.0} \\
\hline & & 1 & 0 & & 102 & 1 & \\
\hline & & 1 & 1 & & 130 & 1 & \\
\hline \multirow[t]{3}{*}{Held and Karp [5]} & \multirow{3}{*}{25} & 1 & 25 & ** & 1517 & 10 & 21.8 \\
\hline & & 1 & 0 & \(\stackrel{* *}{e n}{ }_{n}=25\) & 1517 & 2 & 22.3 \\
\hline & & 1 & 1 & ** & 17.11 & 1 & 29.7 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Karg and Thomp- \\
son [1]
\end{tabular}} & \multirow{3}{*}{33} & 1 & 33 & ** & 10655 & 2 & 53.6 \\
\hline & & 1 & 0 & \(\stackrel{* *}{e}=14\) & 10585 & 10 & 53.4 \\
\hline & & 1 & 1 & ** & 10861 & 6 & 53.7 \\
\hline
\end{tabular}
*Nonsymmetric problem (two distances changed: \((6,5)=1\), and \((8,3)=1\) ).
** Results obtained from 10 runs
to the appropriate distances \(d_{k l}\) sufficiently large positive values, for instance \(n \times \max _{i j}\left[d_{i j}\right]\).

\section*{Symbol summary}
\(n \quad\) number of nodes to be connected ( \(2 \leq n \leq m\) )
\(p \quad\) vector containing \(n\) node numbers (in output, it contains node number sequence of conjectured shortest path).
\(s n \quad\) start node number \((1 \leq s n \leq m\); no check is provided whether \(s n\) is contained in \(p\) ).
en end node number ( \(1 \leq e n \leq m\); if \(e n:=0\), start-to-any connection is assumed; en \(=s n\) is allowed, which is travelingsalesman problem; no check is provided whether \(s n\) is contained in \(p\) )
\(m \quad\) order of distance matrix \(d(m \geq n \geq 2)\).
\(d \quad m \times m\) matrix of distances of all node pairs (zero diagonal, not necessarily symmetric).
\(l\) length of conjectured shortest path (output).
\(r\) number of runs (trials; \(r \leq 2 n\) ).
\(r_{o p t}\) serial run number during which optimum has been achieved.
\(t_{1}\) average computational time of one run in seconds.

\section*{References}
1. Karg, R.L., and Thompson, G.L. A heuristic approach to solving traveling salesman problem. Mgmt. Sci. 10, 2 (1964), 225-248.
2. Raymond, T.C. Heuristic algorithm for the traveling-salesman problem. IBM J. Res. Develop. 13, 4 (1969), 400-407.
3. Lin, S. Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44 (Dec. 1965), 2245-2269.
4. Barachet, L.L. Graphic solution of the traveling salesman problem. Oper. Res. 5 (1957), 841-845.
5. Held, M., and Karp, R.M. A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 1C, 1 (1962), 196-210.
6. Saksena, J.P., and Kumar S. The routing problem with ' \(k\) ' specified nodes. Oper. Res. 14 (1969), 909-913.
7. Bellmore, M., and Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 16 (1968), 538-558.
8. Berge, C. The Theory of Graphs and Its Applications. Wiley, New York, 1962.
9. Berge, C., and Ghouila-Houri, A. Prograntming, Games and Transportation Networks. Wiley, New York, 1965.
```

Algorithm
SUBFQUTINE ROUTNG(N, P, SN, EN, M, D, L, K)
C N - NUMBER OF NODES TQ BE CONNECTED
P - NODE NUMBER VECTOR (IN OUTPUT, OPTIMAL CONNECTION)
SN- START NODE NUMBER
C EN- END N@DE NUMBER
c M - DISTANCE MATRIX ORDER
D - DISTANCE MATRIX OR
C L - SH@RTEST CONNECTION LENGTH (OUTPUT)
C R - NUMBER OF RUNS
GET LARGE NUMBER (
LA\overline{RGE = 0}
D0 20 I= 1,M
D0 10 J=1,M
IF (D(I,J).GT.LARGE) LAKGE = D(I,J)
10 CONTINUE
CONTINUE
LARGE = LARGE*N
C DEFINE NON-EXISTING ARCS BY ASSIGNING
THEIR DISTANCES LARGE NEGATIVE VALUES
IF (EN.NE.O) GO T0 40
D0 30 I= 1,M
D(I) = D(I,SN)
D(1,SN) = -LARGE
D(SN,SN) = 0
3O CONTINUE
4O IF (SN.EQ.EN .OR. EN.EQ.O) GO TD 50
ID(1) = D(EN,SN)
D(EN,SN) = -LARGE
RUN R TRIALS
50 L = LARGE
D| 280 IRS=1,R
BUILD TOUR BY SUCCESSIVE INSERTING
NØT-YET-INUOLVED NØDES
C INITIATE TOUR IS CONSIDERED AS
ARC P(1) T0 P(I)
D0 90 JS=2,N
MININC = LARGE
TRACE ALL NOT-YET-INVOLVED NøDES
T@ CHOQSE THE ONE WITH MINIMUM INCREMENT
0 70 J=JS,N
JP=P(J)
C FOR EACH NOT-YET-INVOLVED NODE TRACE ALREADY
C BUILT-UP TOUR TØ CHØ日SE THE MINIMUM INCREMENT AKC
D6 60 I=1,JE
IP = P(I)
F (I,EQ.JE)
NC = D(IP, IP1 = P(1)
INC = D(IP,JP) + D(JP,IPI) - D(IP,IPI)
IF (INC.GE.MININC) GO T0 60
J1=J
MININC = INC
CONTINUE
70 CONTINUE
STRETCH TØUR BY INSERTING THE CHØSEN NODE P(JI
BETWEEN THE NODES P(II) AND P(I1+1)
1 = J1 - 1
IF (J1.EQ.II) G0 T0 90
IP = P(J1)
P(J1) = P(JI+1
(J1+1) = IP
G0 T0 80
90 CONTINUE
C CORRECT TOUR BY 3-DPT METHOD
C CORRECT TGUR BY 3-DPT METHOD
NL =N-1
IF (N.LT.3) G0 T0 210
D0 200 K=1,N1
SHIFT CO.vSECUTIVE CHAIN
THRØUGHØUT SEQUENCE OF N NODES
100 ICOR = 0
D8 190 J=1,N
CALCULATE CHAIN LENGTH IN FORWARD
C AND BACKWARD DIRECTION
L1 = 0
IF (K.EQ.1) GO TO 120
I=J
K1 = =
10 IF(I.GT.N I = I - N
IF (I.GT.N) I=I = N
P=P(I)
IPI (IPI + + I NT.N IPI = I
IF(IPI.GT.N) IPI=1 =
L = LI + D(IP,IPI)
LR=LR + D(IPI,IP)
I= I + !
IF (K1-LT.K) G0 T0 110
FgR EACH PøSITIONED CHAIN (AS IS AND INVERTED)
C CHECK ALL ARCS IF INSERTION IMPROVES TØUR
120 MININC = LARGE
= J + K -
F (JI.GT.N) Jl = J1 - N
D0 150 I=1,N
IF (J.LE.J1 .AND. (I.GE.J .AND. I.LE.J1)) G0 T0

```
*
IF (J.GT.JI .AND. (I.LE.JI .OR. I.GE.J)) GQ T0 150 \(I P=P(I)\)
\(J \dot{P}=P(J)\)
\(J P 1=P(J I)\)
\(I P 1=I+1\)
IF (IPI.GT.N) IPI =
\(J E=I P I\)
\(I F(I P I \cdot E Q \cdot J) I P I=J 1+1\)
IF (IPI.GT.N) IPI = 1
\(1 P 1=P(I P 1)\)
\(\mathrm{LN}=\mathrm{LI}\)
\(\mathrm{IR}=0\)
\(\mathrm{IR}=0\)
\(1 N C=D(I P, J P)+L N+D(J P 1, I P 1)-D(I P, I P 1)\)
(JE.NE.J.OR. JE.EO.J.AND. IR.EQ.1)), G0 T0 140
TJE.NE.J
II
MININC \(=\) INC
IF (IR.EQ.1) GO T0 150
\(I R=1\)
\(\begin{aligned} I N & =L R \\ L N & =J P\end{aligned}\)
\(J \mathrm{JS}=\mathrm{JP}\)
\(J P_{1}=J S\)
G0 T0 130
CONTINUE
\(1=I 1+1\)
F (I.GT.N) \(1=1\)
IF (I.EO.J AND. IR1.EO.0) GO TO 190
C REINSERT CHAIN OF LENGTH K STAKTING IN J
C BETWEEN NGDES P(11) AND P(II+1)
\(I C O R=1\)
\(J S=J\)
\(J E=0\)
\(\mathrm{JE}=0\)
IF CIR1
IF (IR1.EQ.O) G0 TO 160
\(J S=J 1\)
\(J E=-1\)
\(\mathrm{JE}=-1\)
\(\mathrm{~K}_{1}=0\)
\(k_{1}=0\)
\(k_{1}=k_{1}+1\)
IF (K1.GT.K) GのT0 190
\(I=J S\)
\(J S=J S+J E\)
IF (JS.LT.1) JS \(=\mathrm{N}\)
\(1 P=1+1\)
IF (IP.GT.N) IP \(=1\)
\(J P=P(I)\)
\(P(I)=P(I P)\)
\(P(I P)=J P\)
\(I=I+1\)
IF (I.GT.N) \(I=1\)
IF (IP-I1) 180, 170, 180 cgintinue
IF (ICOR.EQ.O) GO TE 200
ICOUNT \(=\) ICDUNT +1
If (ICDUNT.LT.N) GE TD 100
ONTINUE
C ORIENT TGUR bITH SN IN P(I)
210 DC \(230 \mathrm{I}=1\), N
IF (P(1).EQ.SN) Gø Tø 240
\(J S=P(1)\)
\(250 J=1, N 1\)
\(P(J)=P(J+1)\)
CONTINUE.
\(P(N)=J S\)
continue
calculate touk length
\(240 \mathrm{Li}=0\)
D) \(250 \quad \mathrm{I}=1, \mathrm{Ni}\)
\(I P=r(I)\)
\(I r_{1}=r(I+1)\)
\(L_{1}=L_{1}+D\left(I P, I H_{1}\right)\)
250 continue
\(I P=P(1)\)
\(I_{F}\left(S N\right.\).EO.EN) \(L I=L_{1}+D\left(1 H_{1}, I r\right)\)
C SAVE SQLUTIGN, IF BFTTFK, AND SET NEV INITIATE NODE
IF (LI.GE.L) GO TG 270
Do 260
DO \(260 \quad \mathrm{I}=\mathrm{I}, \mathrm{N}\)
265 Cevtinue

IF (J.eT.N) J=J-N
\(J s=(1)\)
\(\mu(1)=\mu(J)\)
\(P(1)=P(J)=J 5\)
230 CEVilltr
C :BESTC. AND

290 Conitinth
If (E:- - .i) br: 1 C 31.
DE \(30, \mathrm{i}=1,1\)
i) \((1, S V)=I D(I)\)

30J comilinite

U(ENSDS \()=I D(1)\)
32.) het: \(\begin{gathered}\text { tivu }\end{gathered}\)

Remark on Algorithm 456 [H]

\section*{Routing Problem}
[Zdenĕk Fencl, Comm. ACM 16 (Sept. 1973), 572]
Gerhard Tesch [Recd. 15 Oct. 1973] VFW Vereinigte Flugtechnische Werke GMBH, 28 Bremen 1, Hunefeldstrasse 1-5, Germany and Zdenĕk Fencl, M.I.T., Department of Urban Studies, R. 9-643, Cambridge, Mass.

Some confusion arose from the description of the algorithm capability. It should have been stated that the generated tour must pass through each of the n nodes once and only once, although this is the base for the definition of the traveling salesman problem. This algorithm solves an extended traveling salesman problem in which the end node does not have to be the start node. Such connections may be sought in the design automation of serial printed circuits as well as in transportation problems. The traveling salesman problem is discussed in [3, p. 232] and methods of solution are surveyed in [1].

The users who seek the shortest paths in electric networks (the shortest connection between the two specified nodes in a net without regard to the number of nodes to be connected) are referred to Ford's shortest path algorithm [2, p. 69] and Dantzig's shortest path algorithm [3, p. 175]. There is a set of three efficient Algol algorithms by J. Boothroyd [4] handling the shortest path problem as defined in [2, p. 69] and [3, p. 175]. These Algol algorithms can be modified so that even the number of nodes may be minimized or a restriction of some nodes may be imposed, etc.

Another type of shortest path algorithm is Lee's algorithm [5 and 6]. This algorithm is applicable for the orthogonal routing of printed circuit boards.

\section*{References}
1. Bellmore, M., and Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 16 (1968), 538-558.
2. Berge, C. The Theory of Graphs and Its Applications.

Wiley, New York, 1962.
3. Berge, C., and Ghouila-Houri, A. Programming, Games
and Transportation Networks. Wiley, New York, 1965.
4. Boothroyd, J. Algorithms 22, 23, 24. Shortest path. Comp. J.

10 (1967), 306-308.
5. Lee, C.J. An algorithm for path connections and its applications.

IEEE Trans. Elect. Comput. EC-10 (Sept. 1961), 346-365.
6. Akers, S.B. A modification of Lee's path connection algorithm.

IEEE Trans. Elect. Comput. (Feb. 1967), 97-98.

\section*{Algorithm 457}

\title{
Finding All Cliques of an Undirected Graph [H]
}

\author{
Coen Bron* and Joep Kerbosch \(\dagger\) [Recd. 27 April 1971 and 23 August 1971] \\ * Department of Mathematics \(\dagger\) Department of Industrial Engineering, Technological University Eindhoven, P.O. Box 513, Eindhoven, The Netherlands \\ Present address of C. Bron: Department of Electrical Engineering, Twente University of Technology, P.O. Box 217, Enschade, The Netherlands.
}

Key Words and Phrases: cliques, maximal complete subgraphs, clusters, backtracking algorithm, branch and bound technique, recursion

CR Categories: 3.71, 5.32
Language: Algol

\section*{Description}

Introduction. A maximal complete subgraph (clique) is a complete subgraph that is not contained in any other complete subgraph.

A recent paper [1] describes a number of techniques to find maximal complete subgraphs of a given undirected graph. In this paper, we present two backtracking algorithms, using a branch-and-bound technique [4] to cut off branches that cannot lead to a clique.

The first version is a straightforward implementation of the basic algorithm. It is mainly presented to illustrate the method used. This version generates cliques in alphabetic (lexicographic) order.

The second version is derived from the first and generates cliques in a rather unpredictable order in an attempt to minimize the number of branches to be traversed. This version tends to produce the larger cliques first and to generate sequentially cliques having a large common intersection. The detailed algorithm for version 2 is presented here.

Description of the algorithm-Version 1. Three sets play an important role in the algorithm. (1) The set compsub is the set to be extended by a new point or shrunk by one point on traveling along a branch of the backtracking tree. The points that are eligible to extend compsub, i.e. that are connected to all points in compsub, are collected recursively in the remaining two sets. (2) The set candidates is the set of all points that will in due time serve as an extension to the present configuration of compsub. (3) The set not is the set of all points that have at an earlier stage already served as an extension of the present configuration of compsub and are now explicitly excluded. The reason for maintaining this set not will soon be made clear.

The core of the algorithm consists of a recursively defined extension operator that will be applied to the three sets just described. It has the duty to generate all extensions of the given configuration of compsub that it can make with the given set of
candidates and that do not contain any of the points in not. To put it differently: all extensions of compsub containing any point in not have already been generated. The basic mechanism now consists of the following five steps:

Step 1. Selection of a candidate.
Step 2. Adding the selected candidate to compsub.
Step 3. Creating new sets candidates and not from the old sets by removing all points not connected to the selected candidate (to remain consistent with the definition), keeping the old sets in tact.
Step 4. Calling the extension operator to operate on the sets just formed.
Step 5. Upon return, removal of the selected candidate from compsub and its addition to the old set not.
We will now motivate the extra labor involved in maintaining the sets not. A necessary condition for having created a clique is that the set candidates be empty; otherwise compsub could still be extended. This condition, however, is not sufficient, because if now not is nonempty, we know from the definition of not that the present configuration of compsub has already been contained in another configuration and is therefore not maximal. We may now state that compsub is a clique as soon as both not and candidates are empty.

If at some stage not contains a point connected to all points in candidates, we can predict that further extensions (further selection of candidates) will never lead to the removal (in Step 3) of that particular point from subsequent configurations of not and, therefore, not to a clique. This is the branch and bound method which enables us to detect in an early stage branches of the backtracking tree that do not lead to successful endpoints.

A few more remarks about the implementation of the algorithm seem in place. The set compsub behaves like a stack and can be maintained and updated in the form of a global array. The sets candidates and not are handed to the extensions operator as a parameter. The operator then declares a local array, in which the new sets are built up, that will be handed to the inner call. Both sets are stored in a single one-dimensional array with the following layout:
\[
\mid \text { not } \mid \text { candidates }
\]
index values: 1.....ne...............ce....
The following properties obviously hold:
1. ne \(\leq c e\)
2. \(n e=c e\) :empty (candidates)
3. ne \(=0\) :empty (not)
4. \(c e=0\) :empty (not) and empty (candidates)
\(=\) clique found
If the selected candidate is in array position \(n e+1\), then the second part of Step 5 is implemented as \(n e:=n e+1\).

In version 1 we use element \(n e+1\) as selected candidate. This strategy never gives rise to internal shuffling, and thus all cliques are generated in a lexicographic ordering according to the initial ordering of the candidates (all points) in the outer call.

For an implementation of version 1 we refer to [3].
Description of the algorithm-Version 2. This version does not select the candidate in position \(n e+1\), but a well-chosen candidate from position, say \(s\). In order to be able to complete Step 5 as simply as described above, elements \(s\) and \(n e+1\) will be interchanged as soon as selection has taken place. This interchange does not affect the set candidates since there is not implicit ordering.

Fig. 1. Random graphs show the computing time per clique (in ms ) versus dimension of the graph (in brackets: total number of cliques in the test sample).


The selection does affect, however, the order in which the cliques are eventually generated.

Now what do we mean by "well chosen"? The object we have in mind is to minimize the number of repetitions of Steps \(1-5\) inside the extension operator. The repetitions terminate as soon as the bound condition is reached. We recall that this condition is formulated as: there exists a point in not connected to all points in candidates. We would like the existence of such a point to come about at the earliest possible stage.

Let us assume that with every point in not is associated a counter, counting the number of candidates that this point is not connected to (number of disconnections). Moving a selected candidate into not (this occurs after extension) decreases by one all counters of the points in not to which it is disconnected and introduces a new counter of its own. Note that no counter is ever decreased by more than one at any one instant. Whenever a counter goes to zero the bound condition has been reached.

Now let us fix one particular point in not. If we keep selecting candidates disconnected to this fixed point, the counter of the fixed point will be decreased by one at every repetition. No other counter can go down more rapidly. If, to begin with, the fixed point has the lowest counter, no other counter can reach zero sooner, as long as the counters for points newly added to not cannot be smaller. We see to this requirement upon entry into the extension operator, where the fixed point is taken either from not or from the original candidates, whichever point yields the lowest counter value after the first addition to not. From that moment on we only keep track of this one counter, decreasing it for every next selection, since we will only select disconnected points.

The Algol 60 implementation of this version is given below.
Discussion of comparative tests. Augustson and Minker [1] have evaluated a number of clique finding techniques and report an algorithm by Bierstone [2] as being the most efficient one.

\footnotetext{
\({ }^{1}\) Bierstone's algorithm as reported in [1] contained an error. In our implementation the error was corrected. The error was independently found by Mulligan and Corneil at the University of Toronto, and reported in [6].
}

Fig. 2. Moon-Moser graphs show the computing time (in ms ) versus \(k\). Dimension of the graph \(=3 k\). Plotted on logarithmic scale.


In order to evaluate the performance of the new algorithms, we implemented the Bierstone algorithm \({ }^{1}\) and ran the three algorithms on two rather different testcases under the Algol system for the EL-X8.

For our first testcase we considered random graphs ranging in dimension from 10 to 50 nodes. For each dimension we generated a collection of graphs where the percentage of edges took on the following values: \(10,30,50,70,90,95\). The cpu time per clique for each dimension was averaged over such a collection. The results are graphically represented in Figure 1.

The detailed figures [3] showed the Bierstone algorithm to be of slight advantage in the case of small graphs containing a small number of relatively large cliques. The most striking feature, however, appears to be that the time/clique for version 2 is hardly dependent on the size of the graph.

The difference between version 1 and "Bierstone" is not so striking and may be due to the particular Algol implementation. It should be borne in mind that the sets of nodes as they appear in the Bierstone algorithm were coded as one-word binary vectors, and that a sudden increase in processing time will take place when the input graph is too large for "one-word representation" of its subgraphs.

The second testcase was suggested by the referee and consisted of regular graphs of dimensions \(3 \times k\). These graphs are constructed as the complement of \(k\) disjoint 3 -cliques. Such graphs contain \(3^{k}\) cliques and are proved by Moon and Moser [5] to contain the largest number of cliques per node.

In Figure 2 a logarithmic plot of computing time versus \(k\) is presented. We see that both version 1 and version 2 perform sig. nificartly better than Bierstone's algorithm. The processing time for version 1 is proportional to \(4^{k}\), and for version 2 it is proportional to \((3.14)^{k}\) where \(3^{k}\) is the theoretical limit.

Another aspect to be taken into account when comparing algorithms is their storage requirements. The new algorithms presented in this paper will need at most \(\frac{1}{3} M(M+3)\) storage locations to contain arrays of (small) integers where \(M\) is the size of largest connected component in the input graph. In practice this limit will only be approached if the input graph is an almost com-
plete graph. The Bierstone algorithm requires a rather unpredictable amount of store, dependent on the number of cliques that will be generated. This number may be quite large, even for moderate dimensions, as the Moon-Moser graphs show.

Finally it should be pointed out that Bierstone's algorithm does not report isolated points as cliques, whereas the new algorithm does. Either algorithm can, however, be modified to produce results equivalent to the other. Suppression of 1 -cliques in the new algorithm is the simplest adaption.

Acknowledgments. The authors are indebted to H.J. Schell for preparation of the test programs and collection of performance statistics. Acknowledgments are also due to the referees for their valuable suggestions.

\section*{References}
1. Augustson, J.G., and Minker, J. An analysis of some graph theoretical cluster techniques, J. ACM 17 (1970), 571-588.
2. Bierstone, E. Unpublished report. \(U\) of Toronto.
3. Bron, C., Kerbosch, J.A.G.M., and Schell, H.J. Finding cliques in an undirected graph. Tech. Rep. Technological U. of Eindhoven, The Netherlands.
4. Little, John D.C., et al. An algorithm for the traveling salesman problem. Oper. Res. 11 (1963), 972-989.
5. Moon, J.W., and Moser, L. On cliques in graphs. Israel J. Math. 3 (1965), 23-28.
6. Mulligan, G.D., and Corneil, D.G. Corrections to Bierstone's algorithm for generating cliques. J. ACM 19 (Apr. 1972), 244-247.

\section*{Algorithm}
procedure output maximal complete subgraphs 2(comnected, \(N\) ); value \(N\); integer \(N\);
Boolean array connected;
comment The input graph is expected in the form of a symmetrical Boolean matrix connected. \(N\) is the number of nodes in the graph. The values of the diagonal elements should be true;

\section*{begin}
integer array \(A L L\), compsub \([1: N]\);
integer \(c\);
procedure extend version 2(old, ne, ce);
value ne, ce; integer ne, ce;
integer array old;
begin
integer array new \([1: c e]\);
integer nod, fixp;
integer newne, newce, \(i\), \(j\), count, pos, p, s, sel, minnod;
comment The latter set of integers is local in scope but need not be declared recursively;
\[
\operatorname{minnod}:=c e ; \quad i:=\text { nod }:=0
\]

DETERMINE EACH COUNTER VALUE AND LOOK FOR MINIMUM:
for \(i:=i+1\) while \(i \leq c e \wedge\) minnod \(\neq 0\) do begin
\(p:=\) old \([i] ;\) count \(:=0 ; \quad j:=n e ;\)
COUNT DISCONNECTIONS:
for \(j:=j+1\) while \(j \leq c e \wedge\) count \(<\operatorname{minnod}\) do
if \(\urcorner\) connected \([p\), old \([j]]\) then
begin
count \(:=\) count +1 ;
SAVE POSITION OF POTENTIAL CANDIDATE:
\[
\text { pos }:=j
\]
end;
TEST NEW MINIMUM:
if count < minnod then
begin
\[
\text { fixp }:=p ; \text { minnod }:=\text { count } ;
\]
if \(i \leq n e\) then \(s:=\) pos
else
begin \(s:=i ;\) PREINCR: nod \(:=1\) end end NEW MINIMUM;
end \(i\);
comment If fixed point initially chosen from candidates then number of disconnections will be preincreased by one;

\section*{BACKTRACKCYCLE:}
for nod \(:=\) minnod + nod step -1 until 1 do
begin
INTERCHANGE:
\(p:=\) old \([s] ;\) old \([s]:=\) old \([n e+1] ;\)
sel \(:=\) old \([n e+1]:=p ;\)
FILL NEW SET not:
newne \(:=i:=0\);
for \(i:=i+1\) while \(i \leq n e\) do
if connected \([\) sel, old \([i]]\) then
begin newne \(:=\) newne +1 ; new[newne \(]:=\) old \([i]\) end;
FILL NEW SET cand:
newce \(:=\) newne; \(\quad i:=\) ne +1 ;
for \(i:=i+1\) while \(i \leq c e\) do
if connected[sel, old[i]] then
begin newce \(:=\) newce +1 ; new \([\) newce \(]:=\) old \([i]\) end;
ADD TO compsub:
\(c:=c+1 ;\) compsub \([c]:=\mathrm{sel} ;\)
if newce \(=0\) then
begin
integer loc;
outstring (1, 'clique \(=\) ');
for \(l o c:=1\) step 1 until \(c\) do
outinteger (1, compsub[loc])
end output of clique
else
if newne < newce then extend version 2(new, newne, newce);
REMOVE FROM compsub:
\(c:=c-1 ;\)
ADD TO not:
ne : \(=n e+1 ;\)
if nod \(>1\) then
begin
SELECT A CANDIDATE DISCONNECTED TO THE FIXED POINT:
\(s:=n e ;\)
LOOK: FOR CANDIDATE:
\(s:=s+1\);
if connected \([\) fixp, old \([s]]\) then go to LOOK
end selection
end BACKTRACKCYCLE
end extend version 2;
for \(c:=1\) step 1 until \(N\) do \(A L L[c]:=c\);
\(c:=0 ;\) extend version \(2(A L L, 0, N)\)
end output maximal complete subgraphs 2 ;

\title{
Algorithm 458 \\ Discrete Linear \(\mathrm{L}_{1}\) Approximation by Interval Linear Programming [E2]
}

\author{
P.D: Robers* and S.S. Robers \(\dagger\) \\ [Recd. 26 Feb. 1971 and 6 Oct. 1971] \\ * Ernst \& Ernst, 1225 Connecticut Ave., NW, Washington, D.C. 26636. \\ \(\dagger 2308\) Riviera Drive, Vienna, VA 22180
}

\author{
Key Words and Phrases: discrete approximation, L, approximation \\ CR Categories: 5.13, 5.41 \\ Language: Fortran
}

\section*{Description}

Purpose. This subroutine finds the discrete linear \(L_{1}\) approximation using the suboptimization method of interval linear programming.

Problem. The problem is stated as:
\(\operatorname{minimize} \sum_{i=1}^{n}\left|\epsilon_{i}\right|\)
subject to
\(F x+\epsilon=t\)
where the matrix \(F=\left(f_{i j}\right)\) and the vector \(t=\left(t_{i}\right)\) are given; the vectors \(\epsilon=\left(\epsilon_{i}\right)\) and \(x=\left(x_{j}\right)\) are to be found ( \(i=1, \ldots, n ; j=1\), ... , \(m\) ).

Such problems arise, for instance, if a given set of data \(\left\{\left(s_{i}, t_{i}\right)\right.\) : \(i=1, \ldots, n\}\) is to be approximated, in the sense of the \(L_{1}\) norm, by a linear combination of given functions \(\left\{g_{j}(s) ; j=1, \ldots, m\right\}\).

Work on this algorithm was done while P.D. Robers and S.S. Robers were employed by The Research Analysis Corporation, McLean, Va., and the Mitre Corporation, McLean, Va., respectively.
The problem is then:
\(\operatorname{minimize} \sum_{i=1}^{n}\left|\epsilon_{i}\right|\)
subject to
\(\sum_{j=1}^{m} g_{j}\left(s_{i}\right) x_{j}+\epsilon_{i}=t_{i}, i=1, \ldots, n\),
which has the form of problem ((1), (2)) if we let \(f_{i j}=g_{j}\left(s_{i}\right)\) for all \(i\) and \(j\).

Method. The algorithm works with the dual problem of ((1), (2)), which may be written:
maximize \(t^{\mathrm{T}} \boldsymbol{y}\)
subject to
\(F^{\mathbf{T}} y=0, \quad-e \leq y \leq e\),
where \(e^{\mathbf{T}}=(1,1, \ldots, 1)\). This problem could be solved by any linear programming algorithm. The suboptimization method of interval linear programming, however, is specially suited to solve the dual problem because of its structure. It is an iterative method which solves a subproblem at each stage.

The details of applying the suboptimization method to the \(L_{1}\) approximation problem are contained in [1] and will not be presented here. A general discussion and development of the suboptimization method is contained in [2].

Program. Subroutine \(A P P R O X\) is completely self-contained and communication to it is solely through the argument list. It can be used in two modes: (1) to solve a problem from scratch; and (2) to solve a problem using an advanced start from a previous run. The advanced start mode is useful if the optimal value of the objective function is too large on a given problem (i.e. the approximation is too poor) and the problem is to be rerun after adding additional columns to the \(F\) matrix (i.e. increasing the order of the approximation). In some applications the user may wish to construct the calling program in such a way that the advanced start mode for APPROX is easily utilized. For example, the program might punch out information about an optimal problem solution, on request, which could automatically be read in at a later time for use as an advanced start if the problem was resolved. The main program might also contain a step-wise option which provides the capability for increasing the order of approximation iteratively until either the program runs out of data or a desired approximation accuracy is reached. The Fortran listing for a general purpose calling program which has both of the above features is available on request from the authors. Entrance to the subroutine \(\operatorname{APPROX}\) is achieved by using the statement
CALL APPROX (MD, M, N, T, FT, INBASE, AINV, Y, XOPT, ZOPT, IER).
The meanings of the parameters in \(A P P R O X\) are as follows:
\(M D\), the mode of operation indicator. Note that if \(M D=1\), the problem is to be solved from the beginning. If \(M D=2\), the problem is to be solved from an advanced start from a previous run.
\(M\), the number of columns in the \(F\) matrix (if \(M D=2, M\) must be the modified value).
\(N\), the number of rows in the \(F\) matrix.
\(T\), the right hand side vector for the problem (dimension \(N\) ).
\(F T\), the transpose of the \(F\) matrix (dimension \(M \times N\) ).
INBASE, a vector which contains indices of basic columns in the optimal solution to the linear program when \(A P P R O X\) returns control (dimension \(N\) ).
\(A I N V\), a matrix which contains the inverse of the matrix of
optimal basic columns when APPROX returns control (dimension \(N \times N\) ).
\(Y\), a vector containing the optimal dual sollution when \(A P P R O X\) returns control (dimension \(N\) ). Note that no initial values are required for INBASE, AINV, and \(Y\) when \(A P P R O X\) is called with \(M D=1\). However, when \(M D=2\), these parameters should contain the saved values that were contained in the respective positions when \(A P P R O X\) returned control on the previous run which is now to be used as the advanced start.
\(X O P T\), a vector containing the optimal \(x\)-values when \(A P P R O X\) returns control.

ZOPT, the optimal value of the objective function when APPROX returns control.
\(I E R\), error indicator. Note that \(I E R=0\) at return is normal. If \(I E R=1\) at return, a singular matrix was generated. If \(I E R=2\), APPROX exceeded the iteration limit \((10 \times(m+1))\). The latter two conditions are abnormal returns, and the contents of INBASE, AINV, Y, XOPT, and ZOPT are unpredictable.

As presently dimensioned, the size limitations for APPROX are \(M \leq 15\) and \(N \leq 50\). The dimension statements could clearly be changed to accommodate larger problem or ones with different proportions. Core storage and running time requirements for \(A P P R O X\) are modest. Since \(L_{1}\) approximation will typically be "moderate" in size, the authors' experience indicates that APPROX should adequately solve all problems of practical interest, although specific tests directed at determining size limitations have not been performed. The ultimate size limitation will probably depend on the conditioning of the particular coefficient matrix, which is indeed an interesting area of study in itself.

Test Results. All tests have been performed on a CDC 6400 computer. No breakdown in the method has occurred, and in general very accurate results have been obtained.

Some examples:
(i) \(t^{\mathbf{T}}=(0.5,1.0,2.0,3.0)\)
\(\boldsymbol{F}^{\mathbf{T}}=\left(\begin{array}{llll}1.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & 1.0 & 2.0 & 3.0 \\ 0.0 & 1.0 & 4.0 & 9.0\end{array}\right)\)
The optimal solution found by \(A P P R O X\) in three iterations is
\(x^{\mathbf{T}}=(0.5000000,0.6666667,-0.1666667)\),
and the minimum value of (1) is
\(z^{*}=0.8333333\).
(ii) \(t^{\mathrm{T}}=(1.52,1.025,0.475,0.0100,-0.475,-1.005)\)
\(\boldsymbol{F}^{\mathbf{T}}=\left(\begin{array}{llllll}1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0\end{array}\right)\).
The optimal solution found by \(A P P R O X\) in two iterations is \(x^{\mathbf{T}}=(1.520000,-0.5033333)\),
and the minimum value of the objective function is
\(z^{*}=0.07333333\).
(iii) \(t^{\mathbf{T}}=(0.0,1.5,4.0,3.0,4.5,5.0,3.0,7.0,10.0)\)
\(\boldsymbol{F}^{\mathbf{T}}=\left(\begin{array}{rrrrrrrrr}1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 \\ 0.0 & 1.0 & 4.0 & 9.0 & 16.0 & 25.0 & 36.0 & 49.0 & 64.0 \\ 0.0 & 1.0 & 8.0 & 27.0 & 64.0 & 125.0 & 216.0 & 343.0 & 512.0\end{array}\right)\)

The optimal solution found by \(A P P R O X\) after eight iterations is \(x^{\mathbf{T}}=\left(.7771561 \times 10^{-14}, .3333333 \times 10^{1}\right.\),
\[
\left.-.8437500, .7291667 \times 10^{-1}\right)
\]
and the minimum objective function value is

\section*{\(z^{*}=5.250000\).}

The above set of three problems was solved on the CDC 6400 using \(A P P R O X\) in less than four seconds of central processor time. This estimate is the complete running time including Fortran compilation time of a main program and APPROX.

\section*{References}
1. Robers, P.D., and Ben-Israel, A. An interval programming algorithm for discrete linear \(L_{1}\) approximation problems. \(J\). Approximation Theory, 2(1969), 323-336.
2. Robers, P.D., and Ben-Israel, A. A suboptimization method for interval linear programming: A new method for linear programming. Linear Algebra and Its Applications, 3 (1970), 383-405.
```

Algorithm
SUBR\emptysetUTINE APPR@X (MD,M,N,T,FT, INBASE,AINV,Y,XOPT,
* ZOPT,IER)
C
THIS SUBR\emptysetUTINE SOLVES THE DISCRETE LINEAR LI
APPROXIMATIGN PROBLEM USING THE SUBOPTIMIZATIGN METHOD OF
INTERVAL LINEAR PROGRAMMING. THE PROBLEM TO BE SOLVED IS
MINIMIZE Z = ABS(E(1)) + ... + ABS(E(N))
UBJECT T0
WHERE F IS A GIVEN N BY M MATRIX, T IS A GIVEN N VECTOR,
X AND E ARE VECTORS OF VARIABLES HAVING DIMENSION M AND N
RESPECTIVELY.
SUBRøUTINE APPRøX IS DESIGNED T0 BE USED IN TWO MGDES-
(1) T0 SOLVE A PROBLEM FRGM SCRATCH, AND
(2) To S@lVE A PROBLEM USING AN ADVANCED START FROM A
PREVIOUS RUN.
THE ADVANCED START MODE IS USEFUL IF THE OPTIMAL VALUE OF
Z IS TØO LARGE ON A GIVEN PROBLEM CI.E. THE APPROXIMATION
IS TO@ POOR) AND THE PROBLEM IS TO,BE RERUN AFTER ADDING
ADDITIGNAL COLUMNS T® THE F MATRIX (I.E. INCREASING
THE QRDER QF THE APPROXIMATION).
SUBRQUTINE APPRGX IS COMPLETELY SELF-CONTAINED AND
COMMUNICATIGN IS ACHIEVED SOLELY THRQUGH THE ARGUMEN
LIST. THE MEANING OF THE PARAMETERS ARE AS FQLLOWS
MD = THE MODE OF OPERATION INDICATOR
IF MD = 1. THE PRgBLEM IS SOLVED FRgM THE BEGINNING.
IF MD = 2, THE PRGBLEM IS TO BE SQLVED USING AN
ADVANCED START FRGM A PREVIOUS RUN.
M = THE NUMBER OF COLUMNS IN THE F MATRIX <IF MD = 2,
M MUST BE THE MODIFIED VALUE.)
N = THE NUMBER OF ROWS IN MATRIX F.
T = THE RIGHT HAND SIDE VECT\emptysetR FOR THE PROBLEM.
FT = THE TRANSPOSE OF MATRIX F.
INBASE = A VECTOR WHICH CONTAINS INDICES OF BASIC COLUMNS
IN THE OPTIMAL SOLUTION TO THE LINEAR PRGGRAM WHEN
APPROX RETURNS CONTRQL.
AINV = A MATRIX WHICH CONTAINS THE INVERSE OF THE MATRIX
OF BASIC COLUMNS WHEN APPROX RETURNS CONTROL.
Y = A VECTOR CONTAINING THE GPTIMAL DUAL SOLUTION WHEN
APPROX RETURNS CONTREL.
XGPT = A VECTOR CONTAINING THE OPTIMAL X-VALUES WHEN
APPROX RETURNS CONTROL.
ZOPT = THE OPTIMAL VALUE OF THE OBJECTIVE FUNCTION
WHERR@R INDICATOR WHEN APPRROX RETURNS CONTROL. IER=O
= ERR\emptysetR INDICATOR WHENNAPP
NO INITIAL VALUES ARE REQUIRED FOR INBASE, AINV, AND
WHEN APPROX IS CALLED WITH MD = 1. WHEN MD =2% AN
ADVANCED START IS INDICATED. THESE VARIABLES MUST THEN
CONTAIN THEIR FINAL VALUES FRØM THE PREVIOUS RUN. THE
USER WILL THUS WANT TO MAKE PROVISIOUS FQR SAVING THESE
VALUES IN THE CALLING PRøGRAM Sø THAT THEY CAN BE REUSED
IF NEEDED.
tHE calling prggram and approx Sh@uld contain the
FOLLOWING DIMENSION STATEMENT
DIMENSION T(N),FT(M,N),INBASE(N),AINV(N,N),Y(N),XOPT(M)
APPR\emptysetX MUST ALSø CONTAIN THE FQLLOWING DIMENSI\emptysetN
STATEMENT-
IMMENSION BP(N),BM(N),AR(N),ARAINV(N),Q(N),GAMMA(N),DEL(N)
C,TEMP(N) T(50),FT(15,50),INBASE(50),AINV(50,50),Y(50)
DIMENSION
DIMENSION BP(50), BM(50),AR(50),ARAINU(50),Q(50),
GAMMA(50),DEL(50),TEMP(50)
INTEGER ENT,QQ,ADBASE,Q,P
EQUIVALENCE (GAMMA, DEL)
EPSI IS THE SINGULAR MATRIX ERRøR MESSAGE CRITERIGN.
THE VALUE OF EPSI CAN BE REDUCED FOR ILL CONDITIONED
PROBLEMS.
EPSI =.0000001
IF (MD.EQ.2) G0 T0 70
PR0BLEM T0 BE SØLVED FROM THE BEGINNING
DEFINE INITIAL SUBPRGBLEM.
IT =1
ADBASE = N+
D0 20 I=1,N
BM(I) = 1.0
AR(I)= = FT(1,I)
INBASE(I) = I
INITIALIZE AINV AS THE IDENTITY MATRIX.
DE 10 J=1,N
AINV(I,J) =0.0
10 AINV(I,J) = 0.0
C FIND THE INITIAL Y VECTOR
D0 60 I=I,N
DF(T(I)) 30,40,50
30 Y(I) = -1.0
G0 T0 60
40 Y(I) =0.

```
```

 G@ T0 60
 50 Y(T) =1.0
 Gg Tg 100
 PRGELEM TO BE SQLVED FRgM AN ADVANCED START.
70 ADBASE =M+N
DE 90 I=ION
BP(I) =0.0
BM(I) =0.0
G®: T0 90
BP(I) =1.0
AR(I) = FT(M,I
IT = IT+1
BRP=0.0
C BEGIN GENERAL ITERATION.
C DETERMINE DEL (THE AMQUNT OF INFEASIBILITY IN THE BETTGM
C CONSTRAINT OF THE CURRENT SUBPROBLEM).
l1O CENTINUE
S =0.0
DO 120 I=1,N
120 S =S S AR(I)*Y(I)
D = S-BRP
IF (D.GT.O.) G® T0 130
D=S - BRM
GE.O.) G0 T0 430
130 CONTINUE
D0 140 I=1,N
ARAINV(I) =0.0
A0. 140 J=1.N
140 ARAINV(1) = ARAINV(I)+AR(J)*AINV(J,I)
CALCULATE GAMMA VECTGR (THE VECTOR GF MARGINAL COSTS FOR
ING TOWARD FEASIBILITY).
D0 170 I=1.N
TEMP(1) = 0.0
De 150 J=1,N
150 TEMP(I) = TEMP(I)+T(J)*AINV(J.I)
IF (ARAINV(I).NE.O.O)GG TO 160
GAMMA(I)=-1.0
G0 T0 170
IF (D.LT.O.O) GAMMA(I)=-GAMMAA(I)
170 CGN(D.LLT.O.0) GAMMACI)=-GAMMA(I)
C FIND Q VECTOR (THE VECTOR OF INDICES WHICH INDICATE THE
C VARIABLES WHICH CAN BE CHANGED TO MOVE TOWARD FEASIBILITY).
Q日=0
DE 210 L=1,N
D 180 I=1,N
IF (GAMMA(I).LT.0.0) G8 T0 180
S = GAMMA(I)
J=1
G0 TO 190
TO 215
G8 T0 21S
IF (GAMMA(I).LT.O. .0R. GAMMA(I).GE.S)G0 T0 200
S = GAMMA(I)
J=1
CEnTINUE
QQ=QQ+1
Q(L) =
210 GAMMA(J)=-1.0
C CALCULATE DELTA VECTOR (THE VECTOR INDICATING THE MAXIMUM
C CALCULATE DELTA VECTOR (THE VECTOR INDIN
215 DO 260 1=1,00
K=0(I)
S=0.0
II = INBASE(K)
IF (II|LE.N) G0 T0 230
Dg 220 J=1,
Dg 220 J=1,N
GS SO S + +
G0 T0 240
IF(D*ARAINU(K).LE.O,) GO T0 250
DEL(K) = 8M(K)-S
GE TO 260
250 DEL(K) = BP(K)-S
260 CONTINUE
C DETERMINE P (THE NUMBER OF VARIABLES CHANGED
C THIS ITERATION).
D0 280 I = 1,00
P=I
S =0.0
Dg 270 J=1,1
K=O(J)
S = S+DEL (K)*ARAINV(K)
IF (ABS(S).GE.ABS(D)) G0 T0 290
280 CONTINUE
C CALCULATE THETA (THE AMgUNT WHICH THE PTH VECTOR IS
C CALCULATE
290L = P-1
S=0.0
D0 300 J=1.L
k=Q(J)
K=Q(J)
310 K=Q(P)
THETA =-(D+S)/ARAINV (K)
C UPDATE Y VECTOR (THE GPTIMAL SOLUTION TO THE CURRENT
SUBPRGBLEM).
DE 320 1=1,N
320 TEMP(I)=0.0
IF (L -LT. 1) GO T0 3.40
D0 330 I=1,L
K=Q(I)
330 TEMP(K) =
300 K=O(P) = THETA
De 360 I=1,N
De 360 I=1,
DO 350 J=1.N
350 S =S+AINV(I,J)*TEMP(J)

```

360
\(Y(I)=Y(I)+S\)
\(K=\theta(P)\)
\(B P(K)=B R P\)
\(B M(K)=B R M\)
INBASE \((K)=\) ADBASE
C CALCULATE NEW AINV MATRIX．
De \(370 \mathrm{I}=1, \mathrm{~N}\)
\(\operatorname{TEMP}(I)=0.0\)
De \(370 \mathrm{~L}=1, \mathrm{~N}\)
370 TEMP（I）＊TEMP（I）＋AR（L）＊AINV（L，I）
C IF（ABS（TEMP（K））．GT．EPSI ）Ge TE 380
C SINGULAR MATRIX INDICATED．SET ERR＠R TAG AND TERMINATE．
IER \(=1\)
RETURN
RETURN
380 D0 \(390 \quad 1=1, N\)
390 AINV \((1, K)=\) AINV \((1, K) /\) TEMP \((K)\)
Dø \(\begin{gathered}420 \mathrm{~J}=1, \mathrm{~N} \\ 1 F(\mathrm{~J}, \mathrm{EQ} . \mathrm{K})\end{gathered}\)
\(\begin{array}{ll}1 F(J . E Q \cdot K) \\ D 0 & \text { G0 } \\ 410\end{array}\)
AINV（I，J）＝AINV（I，J）－AINV（I，K）＊TEMP（J）
400 CONTINUE
410 CQNTINUE
C FIND S（THE LARGEST INFEASIBILITY），PND ENT（THE INDEX OF
C THE CORRESP＠NDING CONSTRAINT）．
430 TEMP（1）\(=0\) ．
\(\mathrm{L}=\mathrm{M}+\mathrm{N}\)
De \(440 \mathrm{~J}=1, \mathrm{~N}\)
IF（INBASE（J）．EQ．I）G0 T0 510
CONTINUE
IF（I．LE．N）Gの T0 470
\(\mathbf{S}=0\) ．
II \(=1-N\)
De \(450 \mathrm{~J}=1, \mathrm{~N}\)
\(S=S+F T(I I, J) * Y(J)\)
\(I F(S . E Q \cdot 0\).\() G0 T0 510\)
IF（S．EQ．0．）GO T0 510
IF（ABS（S）－LE．TEMP（1））G0 T0 510
\(\operatorname{TEMP}(1)=\operatorname{ABS}(S)\)
ENT \(=1\)
\(S=Y(I)\)
\(\mathrm{S}=\mathrm{Y}(\mathrm{I})\)
\(\mathrm{IF}(\mathrm{S}-1) 490,490,\),480
\(S=S-1\) ．
Ge TO 460
IF \((S+10) 500,510,510\)
\(S=S+1\).
\(G 0 \quad T 0 \quad 460\)
CONTINUE
\(\mathrm{S}=\mathrm{TEMP}(1)\)
IF （S．EQ．0．
IF（S．E日．0．）GのT0 560
C PRESENT SØLUTI ©N INFEASIBLE．START THE NEXT ITERATION．
C define the next subprgblem．
IF（ENT．LE．N）GO TO 530
BRP \(=0.0\)
BRM \(=0.0\)
\(L=E N T-N\)
\(D C=520 \quad J=1, N\)
520
\(30 \mathrm{BRP}=10\)
\(B R M=-1.0\)
DC \(540 \mathrm{~J}=1, \mathrm{~N}\)

\(A R(E N T)=1.0\)
550 ADBASE \(=\) ENT
C ITERATION LIMIT EXCEEDED．SET ERR＠R TAG AND TERMINATE．
IER \(=2\)
RETURN
C OPTIMAL DUAL SOLUTION FQUND．CALCULATE PRIMAL SOLUTIGN．
560 D0 \(600 \mathrm{~J}=1, \mathrm{M}\)
\(\mathrm{L}=\mathrm{J}+\mathrm{N}\)
D0 \(570 \quad I=1, N\)
IF（INBASE（I）．EQ．L）GO Tø 580
CONTINUE
\(\mathrm{XePT}(J)=0\).
\(\mathrm{G} 日 \mathrm{TQ} 600\)
\(\operatorname{GE} \operatorname{TEMP}(I)\)
\(\operatorname{TE})\)
\(=0\).
TE \(590 \mathrm{~L}=1, \mathrm{~N}\)
TEMP（I）\(=\operatorname{TEMP}(1)+\) T（L）＊AINV（L．，I）
\(\operatorname{xQPT}(J)=\operatorname{TEMP}(I)\)
600
CONTINUE

6102 ZOPT \(=20 \mathrm{PT}+Y(I) * T(I)\)
RETURN
END

\section*{Algorithm 459}

\section*{The Elementary Circuits of a Graph [H]}

Maciej M. Syslo [Recd. 30 Apr. 1971 and 15 Aug. 1972] Department of Numerical Methods, University of Wroclaw, Wroclaw, pl. Grunwaldzki 2/4, Poland

Key Words and Phrases: algorithm, graph theory, circuit search algorithm, path search algorithm, searching

CR Categories: 3.74, 4.22, 5.32
Language: Algol

\section*{Description}

This algorithm investigates the existence of elementary circuits of a directed graph \(G\).

Data: \(n\) is the number of vertices; \(\operatorname{arc}(i, j)\) is the Boolean procedure with two parameters \(i, j\) of type integer, which is equal to true if \((i, j) \in \boldsymbol{G}\), and false otherwise.

Results:
(a) If the graph has no circuits, then the following sequence of symbols will be printed:

Graph without elementary circuits.
Ordered numeration of vertices \(i_{1} i_{4} i_{3} \ldots i_{n}\)
where \(\left(i_{1}, i_{2}, \ldots, i_{n}\right)\) is the permutation of numbers ( \(1,2, \ldots\),
n), and a new numeration of vertices such that if \((j, i) \in G\), then \(j<i\).
(b) In the other case the following sequence of symbols will be printed:

Graph contains the circuits:
Circuit \(i_{1} i_{2} \cdots i_{r} i_{1}\)
Circuit \(j_{1} j_{2} \cdots j_{s} j_{1}\)
Every elementary circuit will be printed once and only once.
Method. This Algol program is based on the well-known method used while searching for cycles (circuits) in oriented graphs ( \([1,2]\) ). However, before the beginning of this method, vertices which do not belong to any circuits are labeled \((s[i]=n 2)\). The process uses only two arrays: nodes [ \(1: n\) ], which contains either the ordered numeration of vertices or the vertices of the elementary path of the move; and \(s[1: n]\), the \(i\) th element of which denotes the investigation phase of vertex \(i\).

If the incidence matrix is stored one bit per entry, the process needs \(n[n / w]+2 n\) machine words, where \(w\) is the number of bits in a machine word.

The program has been run on the ODRA-1204 computer and numerous examples were tested, including complete graphs.

\section*{References}
1. Tiernan, J.C. An efficient search algorithm to find the elementary circuits of a graph. Comm. ACM 13 (Dec. 1970), 722-726.
2. Vantrusov, Ju.I. About the Analysis of Finite Graph, in Mathematical Programming (in Russian). Moscow, 1966, pp. 68-77.
```

Algorithm
begin
integer n;
ininteger (2, n);
begin
integer array s, nodes $[1: n]$;
integer $i, j, k, k 1, k 2, k 3, k 4, n 1, n 2, s j$;
Boolean f;
comment The body of procedure arc and all other declara-
tions connected with it should be inserted here;
$n 1:=-n-1 ; \quad n 2:=-n-2$;
$f:=$ true;
for $i:=1$ step 1 until n do $s[i]:=0$;
for $k:=1, k+1$ while $k \leq n \wedge f$ do
begin
for $\boldsymbol{i}:=1$ step 1 until n do
if $s[i]=0$ then
begin
for $j:=1$ step 1 until n do
if $s[j]=0$ then
begin
if $\operatorname{arc}(j, i)$ then go to nexti;
end $s[j]=0, j$;
nodes $[k]:=i ; s[i]:=n 2$;
go to nextk;
nexti:
end $s[i]=0, i$;
$f:=$ false;
nextk:
end k;
if f then
begin
outstring (1, 'Graph without elementary circuils.');
outstring (1, 'Ordered numeration of vertices');
outarray (1, nodes)
end f
else
begin
rep:
for $j:=1$ step 1 until n do
if $s[j]=0$ then
begin
for $i:=1$ step 1 until n do
if $s[i]=0$ then
begin
if $\operatorname{arc}(j, i)$ then go to next j
end $s[i]=0, i$;
$s[j]:=n 2$;
go to rep;
nextj:
end $s[j]=0, j$;
outstring(1, 'Graph contains the circuits:');
$k 2:=1$;
scan:
for $k 3:=s[k 2]$ while $(k 3=n 2 \vee k 3=n 1) \wedge k 2<n$ do
begin
if $k 3=n 1$ then $s[k 2]:=n 2$;
$k 2:=k 2+1$
end $k 3$;
for $k:=k 2+1$ step 1 until n do
if $s[k]=n 1$ then $s[k]:=n 2$;

```
```

 if k3 = 0 then
 begin
 i:= 1; k1 := nodes[1]:= k2;
 cd:
cdl:
for j:= abs(s|k2|) + 1 step 1 until /| do
begin
sj:= s[j];
if sj\not=n2 then
begin
if arc(j, k2) ^(k3=0\vee (kj=n1\veesj\geq0) then
begin
s[k2]:= if k3 = 0 then j else -j;
if sj=n1 then
begin
if k3=0 then k3:= k2;
s[j]:= 0
end sj=n1;
if }s[j]>0\mathrm{ then
begin
outstring(1, 'Circuit');
k4:= 0; k:= i;
outinteger(1,j);
for }k:=k-1 while k4\not=j\mathrm{ do
begin
k4 := nodes[k];
outinteger(1,k4)
end k;
go to cdl
end }s[j]>
else
begin
k2 := nodes[i]:= j;
go to cd
end sj \leq0
end arc(j,k2)\cdots
end sj\not=n2
end j;
s{k2} := n1;
if k2\not=k1 then
begin
i:=i-1;
if }k3=i-1 then k3:= 0
k2 := nodes[i - 1];
go to cdl
end k2 f= k1;
go to scan
end k3 = 0
end \negf
end
end

```

\section*{Algorithm 460}

\title{
Calculation of Optimum Parameters for Alternating Direction Implicit Procedures [D3]
}

\author{
Paul E. Saylor \\ Department of Computer Science, University of Illinois, Urbana, IL 61801 \\ and \\ James D. Sebastian \\ Boeing Computer Services, Seattle, WA 98124 \\ [Recd. 26 May 1971 and 12 Nov. 1971]
}

Key Words and Phrases : elliptic difference equations, PeacemanRachford, Douglas-Rachford, W. B. Jordan, optimum parameters, alternating-direction-implicit, ADI

CR Categories: 5.14, 5.17
Language: Fortran

\section*{Description}

Purpose. Let \(G z=s\) be a system of simultaneous equations, where \(G\) is a positive-definite matrix, \(s\) is a known vector, and \(z\) an unknown vector. Such systems arise, for example, as the result of the discretization of an elliptic boundary value problem. Beginning with an initial approximation \(z_{0}\), one version of the Alternating Direction Implicit (ADI) method [2] determines successive approximations to the true solution, \(z\), from two iterative formulas,
\(z_{k+1 / 2}=\left(H+\omega_{k H} I\right)^{-1} s-\left(H+\omega_{k H} I\right)^{-1}\left(V-\omega_{k H} I\right) z_{k}\)
and
\(z_{k+1}=\left(V+\omega_{k} I\right)^{-1} s-\left(V+\omega_{k V} I\right)^{-1}\left(H-\omega_{k V} I\right) z_{k+1 / 2}\),
\(k=0,1, \ldots, m-1\), where \(H\) and \(V\) are symmetric matrices such that \(G=H+V, I\) is the identity matrix, \(\omega_{k H}\) and \(\omega_{k V}\) are parameters chosen to accelerate convergence, and \(m\) is the number of iterations. When \(H\) and \(V\) commute, i.e. \(H V=V H\), the parameters that yield fastest convergence for fixed \(m\), the optimum parameters, are the solution to a min-max problem that has been completely solved by W.B. Jordan using techniques of elliptic function theory [1, App. and 2].

An algorithm for computing optimum parameters based on

Jordan's solution does not appear to be generally available, and it is our aim to provide one here.

Method. The formulas used in the subroutines are taken from the solution of Jordan as presented in [2]. We refer to [2] for their derivation, and observe here only that, given either \(m\) or \(\mu_{m s}\), but not both, where \(\mu_{m}\) is the spectral norm of the \(m\)-step error propagation matrix
\[
T_{m}=\prod_{k=0}^{m-1}\left(V+\omega_{k} V\right)^{-1}\left(H-\omega_{k} V I\right)\left(H+\omega_{k H} I\right)^{-1}\left(V-\omega_{k H} I\right),
\]
the subroutine computes the parameters \(\omega_{k} v\) and \(\omega_{k H}\) that minimize the value of \(m\) or \(\mu_{m}\), which is not given, while satisfying the inequality
\(\left\|z-z_{m}\right\|_{2} \leq \mu_{m}\left\|z-z_{0}\right\|_{2}\).
This makes the Jordan algorithm more flexible than alternative methods of computing parameters, due to Peaceman and Rachford [4] and Douglas and Rachford [5]. These methods compute an integer \(m\) and a satisfactory but not optimal sequence of \(m\) parameters such that (1) is satisfied, given \(\mu_{m}\). Unlike the Jordan algorithm, it is impractical to specify the number \(m\) of iterations then compute a sequence of \(m\) parameters and an estimate of \(\mu_{m}\).

For \(m=2^{k}\), where \(k\) is a nonnegative integer, another algorithm for computing an optimum sequence of \(m\) parameters and an estimate of \(\mu_{m}\) is due to Wachspress [2]. Again, the greater flexibility of the Jordan algorithm is apparent. However, it employs truncated infinite series, whereas, for \(m=2^{k}\), the Wachspress algorithm only requires the approximation of square roots.

Program. The number of iterations, \(m\), and the spectral radius, \(\mu_{m}\), are represented in the argument list by ITNS and DMU respectively. Iteration parameters \(\omega_{k H}\) and \(\omega_{k} V\) are the \(k\) th entries of the arrays \(O M E H\) and \(O M E V\) respectively. The dimension of each array is the value of \(N\). The program parameter IOPT, specified on entry, determines one of two options:
(i) If IOPT has the value 1, then ITNS must be specified on entry. Optimum parameters \(O M E H(1), O M E V(1), \ldots, O M E H(I T N S)\), \(O M E V(I T N S)\) are computed together with the value of \(D M U\).
(ii) If IOPT has the value 2 , then \(D M U\) must be specified on entry. A value of ITNS is then computed with optimum parameters \(\operatorname{OMEH}(1), \operatorname{OMEV}(1), \ldots, \operatorname{OMEH}(\) ITNS \(), \operatorname{OMEV}(I T N S)\) such that \(I T N S\) is the minimum number of iterations for which \(\mu_{m}\) is less than or equal to the value of \(D M U\).

In option (ii), if ITNS.GT.N is satisfied, then ITNS is set equal o \(N\), corresponding optimum parameters are computed, and the error flag IER is set to 2 . Other possibie values of IER are 0 and 1 . These indicate that computation was normal or that some input parameter was improper.

Estimates of the minimum and maximum eigenvalues of \(H\) are assigned on entry to parameters \(A\) and \(B\) respectively. Estimates of the minimum and maximum eigenvalues of \(V\) are assigned to \(C\) and \(D\). Gerschgorin's theorem yields satisfactory estimates of \(B\) and \(D\), whereas estimates of \(A\) and \(C\) may be computed from an algorithm suggested by Wachspress [3].

Machine dependent constants. The constants \(-90,-10,10\), and 30 in the three \(I F\) statements following the last comment card in the program are machine dependent. At the point where this comment occurs, \(D M U\) is to be computed from the formula

\section*{\(D M U=(2 . D 0 * D E X P(T E M P) /\)}
\((1 . D 0+2 . D 0 * D E X P(T E M P) * * 4)) * * 2\)
but for greater efficiency and to avoid underflow, overflow, or argument out of range conditions on the IBM 360, the formula actually used to compute \(D M U\) is chosen according to the value of \(T E M P\). These constants are used as follows: If TEMP \(\leq-90\) or \(T E M P \geq 30\), then \(D M U<10 * *-77\), as may be verified from the above formula, and the program simply sets \(D M U=0\). Let \(d f(X)\) denote the IBM 360 Fortran internal double precision floating point representation of \(X\). It is easily verified that if TEMP \(\leq-\mathbf{1 0}\) then
\(d f(1 . D 0+2 . D 0 * D E X P(T E M P) * * 4)=d f(1 . D 0)\),
and if TEMP \(\geq 10\), then
\(d f(2 \cdot D 0+D E X P(T E M P) * *-4)=d f(2 \cdot D 0)\).
Thus \(D M U\) is computed to full machine precision from \(D M U=4 . D 0 * D E X P(2 . D 0 * T E M P)\) when \(T E M P \leq-10\), and from \(D M U=D E X P(-6 . D 0 * T E M P)\) when \(T E M P \geq 10\). Finally, \(D M U\) is computed from the formula given at the beginning of this section when \(-10<T E M P<10\).

Tests. The program has been tested on the 360/75 by applying the parameters to the solution by \(A D I\) of \(G z=s\), with \(z=s=0\). In each test, \(G\) is a 900 by 900 matrix obtained from discretizing \(\alpha \partial^{2} / \partial x^{2}+\beta \partial^{2} / \partial y^{2}, \alpha\) and \(\beta\) constants. Therefore, \(G=\alpha H+\beta V\), where \(H\) and \(V\) are discrete analogs of \(\partial^{2} / \partial x^{2}\) and \(\partial^{2} / \partial y^{2}\) respectively. The initial vector, \(z_{0}\), was chosen to have a nonzero component in the direction of each of the eigenvectors of \(H\) or \(V\).

To test option (i), two pairs of values of \(\alpha\) and \(\beta\) were used. For \(\alpha=\frac{1}{2}, \beta=2\), called the model problem ITNS was assigned the values \(I T N S=1,2, \ldots, 20\). For \(\alpha=\frac{1}{2}, \beta=200\), called the generalized model problem, and considered a more difficult problem for \(A D I, I T N S\) was assigned \(I T N S=15, \ldots, 20\). In each case \(z_{1}, \ldots, z_{I T N S}\) were computed and the validity of E.LT.DMU was tested where \(E\) is the \(l_{2}\) relative error defined by
\(E=\left\|z-z_{I T N S}\right\|_{2} /\left\|z-z_{0}\right\|_{2}\).
With \(\alpha=\frac{1}{2}, \beta=2\), the comparison E.LT.DMU was satisfied for \(I T N S=1, \ldots, 29\), whereas for \(I T N S=30\), it failed. Performance of the program may nevertheless be considered satisfactory since for \(I T N S=30, D M U\) was less than \(.9 D-17\), a value beyond practical interest and sufficiently small that one may expect to observe roundoff. In the second case for \(\alpha=\frac{1}{2}, \beta=200\), E.LT.DMU was satisfied for ITNS \(=15, \ldots, 18\), whereas for 19 and 20 the comparison fails. For each failure, \(D M U\) was less than \(.2 D-25\).

To test option (ii), parameter \(D M U\) was assigned the values \(D M U=10^{-i}\) for \(i=-1,-3, \ldots,-15\), then \(I T N S\) and the optimum parameters for ITNS iterations were computed and the validity of E.LT.DMU checked. For each value of ITNS, E.LT.DMU was satisfied for both problems.

Observe that tests of this kind are not in fact objective and do not test whether the iteration parameters are optimal; they verify that values of \(D M U\) or \(I T N S\), depending on the option, are consistent with the results obtained by solving actual problems with the computed iteration parameters. To evaluate the accuracy of the program more objectively, we compared \(A D I P\) as follows to a FORTRAN version of the Wachspress algorithm for computing exact parameters when the number of iterations is a power of 2 . Values of the optimum parameters and the spectral radius of the iteration matrix were computed from each program for \(2,4,8,16\), and 32 iterations, with other input data taken from the model problem and generalized model problem described above. In addition each set of optimum parameters was applied to the solution of the model problem and generalized model problem.

Comparisons between the output of each program were made by
computing the relative difference of the spectral radii and each pair of optimal parameters. (The relative difference of \(a_{j}\) and \(a_{w}\) is defined to be \(\left|a_{j}-a_{w}\right| / a_{j}\) where \(a_{j}\) is computed from ADIP and \(a_{w}\) is computed from the Wachspress algorithm.)

For the model problem the relative difference of each quantity was bounded by \(10^{-6}\) for \(2,4,8\), and 16 iterations. For each number of iterations, the \(l_{2}\) relative errors (2) of each pair of computed solutions were in agreement to five significant digits. In each case the relative error of the computed solution as computed from \(A D I P\) parameters was larger (in the sixth decimal place or higher) than the relative error computed from the Wachspress exact parameter program. This confirms the expectation that the Wachspress algorithm is more accurate, although the difference is slight, since this is a comparison of relative error.

For 32 iterations in the solution of the model problem, the differences between the two algorithms were somewhat greater, but with the performance of \(A D I P\) superior. The \(l_{2}\) relative error in the solutions as computed by ADIP and the Wachspress program were respectively \(.71 D-18\) and \(.75 D-18\). The difference in these values is not significant. For, 32 is an unrealistic number of iterations. Also, any difference in relative error does not imply the same difference in accuracy of the computed solutions. Here, each approximation agrees with the exact solution to 18 significant figures in the \(l_{2}\) sense. Rather than this, the significant feature of the comparison is that \(A D I P\) is more reliable when input parameters are nontypical. This is also evident in testing with the generalized model problem.

In runs of the generalized model problem for 2,4 , and 8 iterations, the differences between corresponding \(l_{2}\), relative errors of the approximate solution were greater than for the model problem but still insignificant. For 2 and 4 iterations, the \(l_{2}\) relative error obtained by ADIP parameters was smaller than that obtained by parameters from the Wachspress exact parameter program. Parameters from the Wachspress program yielded more accurate results only for 8 iterations. For 16 and 32 iterations, the response of the Wachspress exact parameter program was bizarre. Certain parameter values returned were negative whereas exact parameters are positive. In each case, the spectral radius was assigned the value zero. Of course the conditions of the runs are extreme. They represent an attempt to reduce the \(l_{2}\) relative error to unrealistically small values. The results again indicate that \(A D I P\) performs more reliably under adverse conditions. In fact, ADIP is self-consistent for 16 iterations in reducing the relative error to less than the computed value of the spectral radius, although for 32 iterations, the self consistency test fails.

In conclusion, these tests indicate that the Wachspress exact parameter program yields more accurate values under ideal conditions, but that the difference is of no practical significance. When the requirements of the problem are severe or fanciful, \(A D I P\) is more reliable than the Wachspress exact parameter program.

\section*{References}
1. Wachspress, E.L. Extended application of alternating direction implicit model problem theory. SIAM J. Appl. Math. 11 (1963).
2. Wachspress, E.L. Iterative Solution of Elliptic Systems.

Prentice-Hall, Englewood Cliffs, N. J., 1966.
3. Wachspress, E.L. Numerical solution of neutron diffusion problems. In Numerical Solution of Field Problems in Continuum Physics. SIAM-AMS Proc. Vol. 2, AMS, Providence, R. I., 1970. 4. Peaceman, D.W., and Rachford, H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3 (1955), 28-41.
5. Douglas, J., and Rachford, H.H. On the numerical solution of heat conduction problems in two and three space variables. Trans. A MS 82 (1956), 421-439.
```

Algorithm
SUBRØUTINE ADIP(A, B, C, D, IGPT, N, ITNS, DMU, ØMEH,
* ØMEV, IER)
DQUBLE PRECISION A, ALFA, B, BETA, BMD, BPD, G, CMA, CPA,
* D, DEL, DEXP, DKPR, DLOG, DM, DMU, DRJ, DSQRT, QJ,
* बMEH(N), gMEV(N), PISQ, TEMP, TEMPA, TEMPB, TEMPC
DATA PISQ/9.869604401089359DO/
C GIVEN A MATRIX EQUATION GZ=S, WHERE G IS A REAL POSITIVE
C DEFINITE MATRIX, S IS A KNOWN, AND Z THE UNKNOWN, VECTOR.
C LET H AND GE SYMMETRIC CDMMUTING MATRICES SUCH THAT
C G=H+V. BEGINNING WITH AN INITIAL APPROXIMATION 2(O). LET
c Z(K+1/2)=(H)OMEH(K)*I)**(I)*(S-(V-GMEH(K)*I)*Z(K))
C Z(K+1) =(V+OMEV(K)*I)**(-1)*(S-(H-OMEV(K)*I)*Z(K+1/2))
C WHERE I IS THE IDENTITY MATRIX. FINALLY, LET ONE OF ITNS
C AND DMU BE GIVEN. THEN THIS SURROUTINE CQMPUTES THE PAR-
C AMD DMES BE GIVEN. THEN THIS SUBR@UTINE COMPUTES THE PAR
C AMETERS OMEH(K), OMEV(K) THAT MINIMIZE THE VALUE OF
DMU AND ITNS WHICH IS NGT GIVEN WHILE SATISFYING THE
THE EUCLIDEAN NORM.
THE SUBROUTINE ARGUMENTS HAVE THE FOLLOWING MEANING
A AND B ARE LØWER AND UPPER BØUNDS, RESPECTIVELY, ON THE
EIGENVALUES OF H. C AND D ARE LOWER AND UPPER BOUNDS,
RESPECTIVELY, ON THE EIGENVALUES OF V. THE VALUES OF A,B,
C, AND D MUST SATISFY THE INEQUALITIES O.LT.A.LE.B, AND
O.LT.C.LE.D.
IOPT DENGTES THE INPUT OPTION. IF I\emptysetPT=1 THEN THE VALUE OF
ITNS MUST BE SPECIFIED ON ENTRY AND DMU WILL BE COMPUTED.
IF IOPT=2 THEN THE VALUE OF DMU MUST BE SPECIFIED ØN ENTRY
AND ITNS WILL BE COMPUTED.
IF IGPT=1 THEN THE INEQUALITY 1.LE.ITNS.LE.N MUST BE
SATISFIED, WHILE IF IQPT=2 THEN THE INEQUALITIES N.GE.1
AND DMU.GT.O MUST BE SATISFIED.
NTNS THE DIMENSION OF THE ARRAYS OMEV AND OMEH.
C ITNS IS THE NUMBER OF ITERATIONS TØ BE PERFORMED.
MATRIX TO THE INS POWER.CFIOPTEA THLELTERA
R DMU MUS
C BE SPECIFIED ON ENTRY, AND THIS VALUE MAY BE CHANGED BY
C ADIP (SEE IER, BELOW).
C tHE values gF the required parameters are cgntained in the
C LDCATKØNS @MEV(K), ØMEH(K), K=1,....ITNS DN EXIT FR@M
C LQCAT
C IER IS A VARIABLE WH\emptysetSE VALUE ON EXIT FROM ADIP HAS THE
C FOLLOWING MEANING
C IER=0 SIGNIFIES COMPUTATION OF THE PARAMETERS HAS BEEN
C PERFGRMED WITH N@ CHANGE OF THE VALUES SPECIFIED ON ENTRY.
C IER=1 SIGNIFIES THAT SOME INPUT VALUE VIOL.ATES THE
C CONSTRAINTS GIVEN AB\emptysetVE, AND HENGE THE PARAmETERS HAVE NØT
C bEEN COMPUTED.
C IER=2 (POSSIBLE ONLY IH IOPT=2) SIGNIFIES THAT FOR THE
C GIVEN VALUE OF DMU, THE COMPUTED VALUE DF ITNS WDULD BE
C GREATER THAN N, SO THAT ITNS HAS BEEN SET EQUAL TO N AND
C DMU HAS BEEN RECOMPUTED AS FOR IOPT=1.
C TEST INPUT VALUES FOR RANGE
IER = 1
IF C.NOT. (A.GT.O.DO .AND. A.LE.B .AND. C.GT.O.DO .AND.
* C.LE.D)) GO TO }9
IF (.NOT. (IOPT,EQ.1 .OR. IOPT.EQ.2)) G0 T0 90
F (IOPT.EQ.2) Gg TO 10
IF (.NOT. (ITNS.GE.1 .AND. ITNS.LE.N:) G0 T0 90
G@ T0 20
IF (.NOT. (N.GE.1 .AND. DMU.GT.O.DO)) GO T0 90
C STAGE 1 - PRELIMINARY CØMPUTATIØNS CØMMON TØ BØTH OPTIØNS
2O IER = 0
BPD=B+D
BMD = B - D
CPA = C + A
CMA =C - A
DM = 2.DO*((D-C)*(B-A))/(BPD*CPA)
DKPR = 1.DO/(1.DO+DM+DSQRT(DM*(DM+2.DO)))
DEL = O.DO
IF (BMD.EQ.O.DO .AND. CMA.EQ.O.DO) GO T0 30
TEMP = BPD*DKPR
DEL =2.DO*(TEMP-CPA)/(CPA*BMD TEMP*(MA)
30 AL,FA = DKPR*(CMA+2.DO*DEL*A*C)/CPA
BETA = (2.DO+DEL*BMD)/BPD
TEMP = DKPR/4.DO
C END OF STAGE 1 - COMPUTE ITNS FOR OPTION 2
IF (IOPT.EQ.1) GO TO 40
TNS = (DLQG(DMU/4.DO)*DLOG(TEMP))/PISQ + 1.DO
IF (ITNS.LE.N) G\emptyset T0 40
ITNS = N
C STAGE 2 - Cømputatign @F THE @PTIMAL PARAMETERS
40 TEMPA = 2*ITNS
TEMPB = TEMP*TEMP
TEMPB = TEMP*TE
MRJ J=1,ITNS
DRJ = DRJ/TEMPA
TEMPC = TEMP**DRJ
0J = 2.DO*(TEMPC+TEMPB/TEMPC)/(1.DO+TEMPC*TEMPC)
TEMPC = DEL*QJ
@MEV(J) =(\emptysetJ-ALFA)/(BETA-TEMPC)
50 CONTINUE
IF (I\emptysetPT.EQ.2 .AND. IER.EQ.0) GO T0 90
C END OF STAGE 2- COMPUTE DMU FOR OPTION 1
TEMPA = ITNS
TEMP = PISQ*TEMPA/DLDG(TEMPB*(1.DO+8.DO*TEMPB))
C CHOQSE. PKOPER FØRMULA T\emptyset AVOID UNDERFLOW OR OVERFLOW
IF (TEMP.LE.-90.DO.OR. TEMP.GE.30.DO% GØ T0 60
IF (TEMP.LE.-90.DO -OR. TEMP
IF (TEMP.LT.10.DO) G0 TO }8
DMU = DEXP(-6.DO*TEMP)
DMU = DEXP(-6.DO*TEMP)
GQ T0 90
DMU = 0.DO
DMU = 4.DO*DEXP(2.DO*TEMP)
G@ TO 90
TEMP = DEXP(TEMP)
DMU = ((2.DO*TEMP)/(1.DO+2.DO*TEMP**4:)**2
RETURN
END

```

\title{
Algorithm 461 \\ Cubic Spline Solutions to a Class of Functional Differential Equations [D2]
}

\author{
F.J. Burkowski and W.D. Hoskins [Recd. 3 June 1971 and 27 Apr. 1972] \\ Department of Computer Science, University of Manitoba, Winnepeg, 19, Manitoba, Canada
}

Key Words and Phrases: differential equation, spline approximation

CR Categories: 5.17
Language: Fortran

\section*{Description}

Purpose. The subroutine \(S P N B V P\) calculates a piecewise continuous approximation to the solution of the boundary value problem
\(X^{\prime \prime}(t)=P(t) X(t)+Q(t) X(G(t))+R(t)\)
on the interval \([A, B]\). The existence of such a solution has been demonstrated by Grimm and Schmitt [5], and it should be noted that the boundary values take the form of two continuous functions \(U(t)\) and \(V(t)\) specified on the two intervals \([\alpha, A]\) and \([B, \Omega]\) respectively where
\[
\alpha=\min _{t \in[\mathrm{~A}, \mathrm{~B}]}\{G(t), A\} \quad \text { and } \Omega=\max _{t \in[\mathrm{~A}, \mathrm{~B}]}\{G(t), B\} .
\]

Boundary value problems of this type can arise in the study of variational problems in control theory where the problem is complicated by the effect of time delays in signal transmission. For example, one may wish to determine extrema of the functional
\(\int_{a}{ }^{b} F(t, x(t), x(g(t))) d t\)
under the conditions
\(x(t)=\psi(t), t \leq a, x(b)=B\).
Under suitable hypotheses on \(F\), this problem leads to a boundary value problem of the above type. Such problems have been treated by El'sgol'ts [3]. Other related works are the survey papers [6, 7, 8, 9].

Method. \(S P N B V P\) utilizes an iterative scheme where each iterate is a cubic spline \([4\), p. 1] serving as an approximation to the true solution. Burkowski and Cowan [2] have demonstrated that such an iterative procedure will converge to an approximation of the solution if the condition
\[
\max _{A \leq t \leq B}\{|P(t)|+\bar{g}(t)|Q(t)|\} \leq 8 /\left((B-A)^{2}+6 H^{2}\right)
\]
is satisfied where \(H\) is defined below and
\(\bar{g}(t)=1\) if \(G(t) \in[A, B]\),
\(=0\) if \(G(t)_{₫}[A, B]\).
The interval \([A, B]\) is partitioned into \(N\) equal subintervals of length \(H=(B-A) / N\). That is we have a sequence of "knots"
\(A=t_{0}<t_{1}<\cdots<t_{N}=B\)
such that \(t_{j}-t_{j-1}=H\) for \(j=1,2, \ldots, N\). For our purpose the equation of the cubic polynomial in the interval \(\left[t_{j-1}, t_{j}\right]\) may be written as
\[
\begin{align*}
S(t)= & x_{j-1}^{\prime \prime}\left(\left(t_{j}-t\right)^{3} / 6 H\right)+x_{j}^{\prime \prime}\left(\left(t-t_{j-1}\right)^{3} / 6 H\right) \\
& +\left(x_{j-1}-\left(H^{2} / 6\right) x_{j-1}^{\prime \prime}\right)\left(\left(t_{j}-t\right) / H\right) \\
& +\left(x_{j}-\left(H^{2} / 6\right) x_{j}^{\prime \prime}\right)\left(\left(t-t_{j-1}\right) / H\right) \tag{2}
\end{align*}
\]
where \(x_{i}=X\left(t_{i}\right)\) and \(x_{i}^{\prime \prime}=X^{\prime \prime}\left(t_{i}\right)\).
In order to ensure that the spline has the necessary continuity conditions at the knots, the \(x_{i}\) and \(x_{i}{ }^{\prime \prime}\) values are subject to the following "continuity equations"
\(x_{j+1}-2 x_{j}+x_{j-1}=\left(H^{2} / 6\right)\left[x_{j+1}^{\prime \prime}+4 x_{j}^{\prime \prime}+x_{j-1}^{\prime \prime}\right]\)
valid for \(j=1,2,3, \ldots, N-1\). Using the central difference operator \(\delta\) this can be rewritten as
\(\delta^{2} x_{j}=H^{2}\left(\left(\delta^{2} / 6\right)+1\right) x_{j}{ }^{\prime \prime} \quad j=1,2,3, \ldots, N-1\)
In [2], it is also demonstrated that the accuracy of the spline approximation is proportional to \(H^{2}\).

The difficulty in constructing solutions to such equations as (1) arises in having to evaluate terms such as \(X\left(G\left(t_{i}\right)\right)\) in order to calculate the value of \(X^{\prime \prime}(t)\) at a point \(t_{i}\). By using splines a continuous rather than discrete approximation to the solution is generated and hence a value for \(X\left(G\left(t_{i}\right)\right)\) can be determined even if \(G\left(t_{i}\right)\) does not correspond to a value \(t_{j}\) for some \(j\). Since a cubic spline is used, the method is superior to any algorithm which simply evaluates \(X\left(G\left(t_{i}\right)\right)\) by using a linear interpolation.

The basic strategy used in \(S P N B V P\) is to calculate a sequence of successive splines or essentially a sequence of vectors each containing the values \(x_{i}, i=1,2, \ldots, N-1\). Once a set of \(x_{i}\) values is calculated, we may use the continuity equations and boundary values to evaluate the \(x_{1}{ }^{\prime \prime}\) values and hence determine the corresponding spline.

The \(x_{i}, i=1,2, \ldots, N-1\) are treated as unknowns in the system of equations
\(\delta^{2} x_{j}=H^{2}\left(\left(\delta^{2} / 6\right)+1\right)\left\{P\left(t_{j}\right) x_{j}+Q\left(t_{j}\right) X\left(G\left(t_{j}\right)\right)+R\left(t_{j}\right)\right\}\)
\[
\begin{equation*}
j=1,2, \ldots, N-1 \tag{5}
\end{equation*}
\]
derived from (1) and (4). The solution of (5) is obtained by setting up the matrix equation
\((M A T)(X)=(V M)\)
where the vector \((X)\) contains the unknowns \(x_{j}, j=1,2, \cdots, N-\) 1 and the matrix ( \(M A T\) ) contains the coefficients of the \(x_{j}\) unknowns. The vector ( \(V M\) ) contains values arising from the function \(R(t)\) and also other quantities discussed below. In the calculation of a spline, the iterative character of the algorithm arises from the fact that the values \(X\left(G\left(t_{j}\right)\right)\) are calculated from the previous spline or from the current spline depending upon the nature of \(G\left(t_{j}\right)\). More precisely, if for a certain \(t_{j}\) we have \(G\left(t_{j}\right) \notin[A, B]\), then
\(\begin{aligned} X\left(G\left(t_{j}\right)\right) & =U\left(G\left(t_{j}\right)\right) & & \text { if } G\left(t_{j}\right) \leq A \\ & =V\left(G\left(t_{j}\right)\right) & & \text { if } G\left(t_{j}\right) \geqq B .\end{aligned}\)
Since the value of this term is indepenclent of any \(x_{i}\), an appropriate entry is made in the vector \((V M)\). If \(G\left(t_{j}\right)=t_{k}\) for some \(t_{k}\), then \(X\left(G\left(t_{j}\right)\right)=x_{k}\), and in this case (MAT) is accordingly modified. If neither of these last two conditions prevails, we set \(X\left(G\left(t_{j}\right)\right)=S\left(G\left(t_{j}\right)\right)\) in eq. (2), and hence \(X\left(G\left(t_{j}\right)\right)\) is expressed in terms of two unknowns \(x_{k}\) and \(x_{k-1}\) (for some \(k\) ) and also in terms of \(x_{k}{ }^{\prime \prime}\) and \(x /_{k-1}^{\prime \prime}\), two values which are taken from the previous spline. Thus we use only the \(x_{j}^{\prime \prime}\) values of any spline when we calculate the next successive spline. To start the iteration we assume an initial spline with \(x_{j}{ }^{\prime \prime}=0, j=0,1,2, \ldots, N\).

Program Call. Parameters in the call statement for SPNBVP include the following:
\(A, B\) are the endpoints of the inverval under consideration.
\(N P\) is the number of knots in \([A, B]\), and hence \(N P=N+1\).
\(N K\) is the number of interior knots in \([A, B]\), and so \(N K=\) \(N-1\).
\(X\) will contain the values of \(x_{j}, j=1,2,3, \ldots, N-1\) on return to the calling program.
\(X D P\) will contain the values \(\left(H^{2} / 6\right) x_{j}^{\prime \prime}, j=0,1,2, \ldots N\).
\(E P S P N B V P\) returns to the calling program when convergence has progressed so far that
\(\sum_{i=1}^{N-1}\left|x_{i}-\bar{x}_{i}\right| \leq E P \sum_{i=1}^{N-1}\left|x_{i}\right|\).
Thus, if \(E P\) is set to the value \(10^{-(m+1)}\), convergence of the iteration to the approximation has been attained if the \(x_{i}\) have \(m\) persistent figures in successive iterates. Hence this may be considered as a machine dependent constant. The term \(\bar{x}\), denotes the value of \(x_{i}\) in the previous spline.

The remaining eight variable names have been included in the parameter list in order to achieve execution-time dimensioning of arrays. The user need only concern himself with the dimension and type of each of these arrays as explained in the comment cards.
\(S P N B V P\) requires six function subprograms defining the functions \(U(t), V(t), P(t), Q(t), R(t)\), and \(G(t)\) as defined above. Four other subroutines are required. \(G A G B\) is used when \(x_{0}\) and \(x_{N}\) are calculated. These quantities require rather special treatment since the continuity equations apply only to the internal knots \(t_{j}, j=\) \(1,2, \ldots, N-1\). SOLVE is simply a special routine which when given \(x_{j}\) values quickly calculates \(x_{j}{ }^{\prime \prime}, j=1,2, \ldots, N-1\) by using the continuity equations. Finally, the user is responsible for the provision of routines which compute the solution of the matrix system (6). In this case the routine \(L U D C M P\) replaces (MAT) by its \(L U\) decomposition. The routine \(L U S U B\) uses this new matrix and the vector \((V M)\) to compute the next iterate \((X)\). The description and analysis of such routines are given in [1, pp. 93-110].

\section*{References}
1. Bowdler, H.J., Martin, R.S., Peters, G., and Wilkiuson, J.H. Solution of real and complex systems of linear equations. In Handbook for Automatic Computation, Vol. II, Springer Verlag, 2. Burkowski, F.J., and Cowan, D.D. The numerical solution of a boundary value problem involving differential-difference equations. SIAM J. Numer Anal. 10 (1973), 489-495.
3. El'sgol'ts, L.E. Qualitative Methods in Mathematical Analysis. Trans. Math. Mono. 12, AMS, Providence, R.I., 1964.
4. Greville, L.J. Theory and Application of Spline Functions. Academic Press, New York, 1969.
5. Grimm, L.J., and Schmitt, K. Boundary value problems for differential equations with deviating arguments. Aequationes Mathematicae 3 (1969), 24-38.
6. Kamenskii, G.A., Norkin, S.B., and El'sgol'ts, L.E. Some directions of investigation in the theory of differential equations with deviating arguments, Trudy Sem. Teor. Differential. Uravnenii s Otklon. Argumenton Univ. Druzhby Narodov Patrisa Lumumba 6 (1968), 3-36.
7. Kamenskii, G.A. On existence and uniqueness of solutions of differential equations with deviating arguments. Ibid. 5 (1967), 107-108.
8. Myshkis, A.D., and El'sgol'ts, L.E. Some results and problems in the theory of differential equations. Uspehi Mat. Nauk, 22 (1967), 21-57.
9. Žerkin, A.M., Kamenskii, G.A., Norkin, S.B., and El'sgol'ts, L.E. Differential equations with a perturbed argument. Ibid. 17 (1962), 77-164.

\section*{Algorithm}

\footnotetext{
SUBRøUTINE SPNBVP(A, B, NP, NK, X, XDP, EP, GT, KG, VP, * VQ, VR, VG, MAT, VM)

C THIS ALGORITHM CGMPUTES ITERATIVELY A CUBIC SPLINE
C APPRØXIMATION TO THE SOLUTION OF THE DIFFERENTIAL EQUATION C \(X * *(T)=P(T) X(T)+Q(T) X(G(T))+R(T)\) QN THE INTERVAL ( \(A, B\) ) C WITH BøUNDARY CONDITIONS GIVEN BY U(T) IF T.LE.A AND C V(T) IF T.GE.B.
}
```

C A AND B ARE TW\emptyset REAL VARIABLES DEFINED AS ABQVE.
C ON THE INTERVAL (A,B). STIFING THE NUMBER OF KNOTS ING THE NUMBER OF INTERIOR
KNOTS. THUS NK=NP-2. IT IS USED TO ESTABLISH. THE
DIMENSION OF CERTAIN ARRAYS MENTIONED BELOW.
x ON RETURN TØ THE CALLING PROGRAM X WILL CONTAIN THE
VALUES OF THE APPROXIMATION TO THE SOLUTION AT THE
NK INTERIOR KNOTS. THIS IS AN A
NK AND TYPE REAL
XDP
ON RETURN, XDP CONTAINS THE QUANTITIIES H*H/6.0 ALL THE
KNOTS. XDP IS A REAL ARRAY OF DIMENSION NP.
THIS REAL VARIABLE IS SET TO THE VALUE I.OE-M IF WE
AN UNTEGER IRRAY OF F FGTH NP INHICH ASSIGNS TO EACH
KNQT T SUB J AN INTEGER VALUE BETWEEN I AND G THIS
VALUE SESIGNATES RESPECTIVELY THE CASES WHEN
G(T SUB 1) IS 1).LE. A 2).GE.B, 3) WIT
GKY SUB J IS. 1) :LE.A, 2).GE.B, 3) WITHIN EP OF
5) IN THE LAST SUBINTERVAL, AND 6) IN ANY INT,'
5) IN THE LAST SUBINTERVAL, AND 6) IN ANY OTHER
AN INTEGER ARRAY OF LENGTH NP WHICH ASSIGNS TØ EACH
KN@T AN INTEGER BETWEEN 2 AND NP-1. IF GT(I+1)=3
THEN kG(I+1) C@NTAINS THE SUBSCKIPT OF THE KNOT
AT THE POINT G(T SUB I). IF GT(I+1)=6 THEN KG(I+1)
CONTAINS THE SUBSCRIPT OF THE KNDT AT THE RIGHT HAND
ENDPDINT OF THE SUBINTERVAL IN WHICH G(T SUB I) LIES.
, VQ, VR. AND VG ARE ALL REAL AKRAYS OF DIMENSION NP AND
CONTAIN THE VALUES OF THE FUNCTIONS P, O,R AND G
RESPECTIVELY EACH EVALUATED AT THE NP KNOTS.
MAT IS A REAL NK BY NK ARRAY USED IN THE MATRIX EQUATION
(MAT)(X)=(VM) SET UP TQ SØLVE FØK THE X SUB J VALUES
STORED IN ARKAY X.
VM AN ARRAY OF LENGTH NK AND TYPE REAL USED AS
DESCRIBED ABOVE.
THE USER MUST SUPPLY REAL FUNCTION SUBPROGRAMS TO COMPUTE
THE FUNCTIONS U(T),V(T),P(T),Q(T),R(T) AND G(T) DEFINED AS
ABOVE. HE MUST ALSO SUPPLY SUBPROGRAMS WHICH SOLVE THE
SYSTEM (MAT)(X)=(VM). THE ROUTINE LUDCMP(MAT,NK) IS IO
REPLACE MAT BY ITS LU DECRMPOSITIQN. THE KOUTINE
LUSUB(UM,MAT,X,NK) IS TE C@MPUTE }X\mathrm{ WHEN VM AND THE LU
FORM OF MAT IS GIVEN.
NTEGER GTYP, GTE, GT(NP), KG(NP), GT1, GTNP
REAL XDP(NP), VP(NP), VQ(NP), VR(NP), VG(NP)
REAL MAT(NK,NK), VM(NK), X(NK)
C KPR IS PRINTER DEVICE NUMBER
DATA KPK/6/
C(T) = T*(T*T-1.)
C INITIALIZATIEN
N = NP - 1
RN = N
NK=N-1
D0 20 K=1,NK
DO 10 J=1,NK
MAT(K,J) = 0.0
1 0
CgntinuE
20
CONTINUE
XA}=|(A
C INITIALIZE XDP T0 ZER\emptyset (INITIAL SPLINE)
Dว 30 K=1,NP
XDP(K) = 0.0
30 CONTINUE
C SET UP P,Q,R,G VECTORS
H=(B-A)/RN
HS = H*H/6.0
HR = 1./H
D0 40 K=1,NP
TM=A + RK*H
VP(K) = P(TM)
VQ(K) = Q(TM)
VK(K) = K(TM)
VG(K)=G(TM)
40 CONTINUE
C SET UP *TYPE OF G VALUE* ARRAY AND KG ARRAY
APLSE =A + EP*ABS(A)
BMINE =B - EP*ABS(B)
D0 70 K=1,NP
GTE = 6
VGE = VG(K)
IF (VGE.LT.A+H) GTE = 4
IF (VGE.GT.B-H) GTE = 5
IF (VGE.LE.APLSE) GTE = 1
IF (VGE.GE.BMINE) GTE = 2
VDH = (VGE-A)/H
RKNOT = = KNOT
IF ((KNOT.LT.1) .OR. (KNOT.GT.NK)) GO T0 50
IF (ABS(VDH-RKNQT).GT.EP) G\emptyset T| 50
GTE = 3
KG(K) = KNOT
G\emptyset T0 60
50 KG(K) = KNOT +
60 GT(K) = GT
70 CONTINUE
C PUT XSUBJ COEFFICIENTS INTO (MAT) AND INITIALIZE X TO ZERQ
DO 90 J=1,NK
IF (J.EQ.1) G0 T0 }8
MAT(J,J-1) = 1. - HS*VP(J)
80 MAT(J,J) = -2.*(1.+2.*HS*VP(J+1))
IF (J.EQ.NK) GO T0 90
MAT(J,J+1)=1.-HS*VP(J+2)
90 Continue
C ADD INT\emptyset (MAT) X SUB G SUB T COEFFICIENTS
OO 150 J=1,NK
D@ 140 JJ=1,3
JZ = JJ - 1
JJZ = J + JZ
COEF = HS*VQ(JJZ)
IF (JZ.EQ.1) COEF = COEF*4.
GTYP = GT(JJZ)

```
```

 G0 T0 (140,140,100,110,120,130), GTYP
 KNGT = KG(JJZ)
 MAT(J,KNQT) = MAT(J,KNQT) - COEF
 G0 T0 140
 MAT(J,1)= MAT(J,1) - CDEF*(VG(JJZ)-A)*HR
 G® T0 140
 MAT(J,NK)= MAT(J,NK) - CEEF*(B-VG(JJZ))*HR
 G0 T0 140
 KNOT = KGCJJZ
 RKNOT = KNOT
 CCC = RKNOT + (A-VG(JJZ))*HR
 MAT(J.KNQT-1) = MAT(J,KNQT-1) - COEF*CCC
 CCC = (VG(JJZ)-A)*HK - KKNOT + 1.
 MAT(J.KNOT) = MAT(J,KNOT) - COEF*CCC
 CONTINUE
 140
 C REPLACE (MAT) BY ITS LU DECOMPOSITION.
CALL LUDCMP(MAT, NK)
C A SEQUENCE OF SPLINES (UP TO 20) IS NOW GENERATED
VPA = VP(1)
VPB = VP(NP)
C vEcTOR VM IS NOW SET UP
D0 200 J=1,NK
VM(J) = (VR(J)+4.*VR(J+1)+VR(J+2))*HS
DO 190 JJ=1,3
JZ = JJ-1
JJZ = J + + JZ
COEF = HS*VQ(JJZ
IF (JZ.EQ.1) COEF = COEF**.
IF (GTYP.EQ.1)VM(J) = VM(J) + COEF*U(VG(JJZ)),
IF (GTYP.EQ.2) VM(J) = VM(J) + COEF*VVVG(JJZJ)
G\emptyset T0 (190,190,190,160,170,180), GTYP
TM = (VG(JJZ)-A)*HR
TJ = 1.-TM
CCC = TJ*XA + C(TM)* XDP(2) + C(TJ)*XDP(1)
VM(J) = VM(J) + COEF*CCC
GOT0 190
TJ=(B-VG(JJZ))*HR
CCC = TM**BB+C(TM)*XDP(NK+Z)+C(TJ)*XDPP(NK+1)
VM(J) = VM(J) + CDEF*CCC
GQ TO 190
KNQT = KG(JJZ)
RKNOT = KNQT
TM = 10-TJ
CCC = C(TM)*XDP(KNQT+1) +C(TJ)*XDP(KNQT)
VM(J)=VM(J) + COEFFCCC
CONTINUE
190
CONTINUE
VM(1) = VM(1)- (1.-HS*VPA)*U(A)
VM(NK) = VM(NK) - (1*-HS*VPB)*V(B)
C THE NEW X ARRAY IS NOW COMPUTED.
C THE ARRAY VP SERVES AS A WQRK AREA.
D0 210 JF=1,NK
D0 210 JF=1:NK
210 CONTINUE
CALL LUSUB(VM, MAT, X, NK)
TSTVL1 =0.0
0 220 JF=1,N
TSTVL1 = TSTVL1 + ABS(VP(JF)-X(JF))
TSTVL2 = TSTVL2 + ABS(X(JF))
220 CONTINUE
c CALCULATION QF XDP AT A AND B
GTi=GT(1)
IF(GT1.EQ.1) XGAA = U(VG(1))
1F (GT1.EQ.2) XGAA = V(VG(1))
IF (GGNP.EQ.1) XGAB = U(VG(NP))
CALL GAGB(GT1, XGAA, KG(1), VG(1), X, XDP, A, B, NP, NK)
CALL GAGB(GTNP, XGAB, KG(NP), VG(NP), X, XDP, A, B, NP,
* NK)
XDPA = (VPA*XA +VO(1)*XGAA +VR(1))*HS
XDPB = (VPB*XB+VQ(NP)*XGAB+VR(NP))*HS
C SØLVE FOR XDP VALUES OF CURRENT SPLINE USING CONTINUITY
C SOLVE FOR XDP VALUES OF CURRENT SPLINE USING CON
MM(1) = XA +X(2)-2.*X(1) - XDPA
NK1 = NK-1
VM(NK) = XB + X(NK1) - 2.*X(NK) - XDPB
DO 230 J=2,NK1
VM(J)=x(J-1) + x(J+1) - 2,*x(J)
CONTINUE
CALL SOLVVE(VM, NK, VF,NP)
XDP(1) = XDPA
XDD(NP) = XDPB
XDP(J+1)=VM(J)
continue
IF (TSTVLI.LE.TSTVL2*EP) RETURN
F(NNN.EQ.20) WRITE(KPR,1000)
l000 F@RMATC32H NO CONVERGENCE IN 2O ITEKATIONS,
250 CONTINUE
RETURN
SUBROUTINE GAGB(GTYP, ANS, K, GV, X, XDP, A, B, NP, NK)
SUBROUTINE GAGB(GTYP,
REAL X(NK),
INTEGER GTYP
RNKD = NK + 1
RK=k
XA =U(A)
XA =U(A)
H=(B-A)/RNKD
G0 T0 (10,20,30,40,50,60), GTYP
10 RETURN
20 RETUUN
30 ANS = X(K)
RETURN
RKNOT = KNOT
150 ContINUE
DO 250 NNN=1,20
COEF = HS*VO(JJZ)
220 JF=1,NK
F(GTNP.EQ.1) XGAB = U(VG(NP))
VM(1) = XA +
CONTINUE
XDP(1) = XDPA

```
\(40 \mathrm{TM}=(\mathrm{GV}-\mathrm{A}) / \mathrm{H}\)
\(T M=(G V-A) / H\)
ANS \(=T M * X(1)+T J * X A+C(T M) * X D P(2)+C(T J) * X D P(1)\)
RETURN
\(50 \begin{aligned} \mathrm{TJ} & =(\mathrm{B}-\mathrm{GV}) / \mathrm{H}\end{aligned}\)
    \(T M=1 .-T J\)
    \(A N S=T M * X B+T J * X(N K)+C(T M) * X D P(N K+2)+C(T J) * X D P(N K+1)\)
    RETUKN
\(60 \mathrm{TJ}=(\mathrm{A}-\mathrm{GV}) / \mathrm{H}+\mathrm{RK}\)
    \(T M=1 \cdot-T J\)
    TM \(=1 \cdot-T J=T M * X(K)+T J * X(K-1)+C(T M) * X D P(K+1)+C(T J) * X D P(K)\)
    RETURN \({ }^{\text {T }}\)
    END
    SUBRøUTINE SөLVE(D, NK, M, NP)
    SUBROUTINE SQLVE(D
REAL D(NK), M(NP)
NK1 \(=N K-1\)
    NK1 \(=N K-1\)
\(M(N K)=1\)
    \(M(N K)=.25\)
    DO \(10 \quad 1=1, N K I\)
        \(J=N K-1\)
\(M(J)=1.1(4 .-M(J+1))\)
        \(M(J)=1 \cdot /(4 .-M(J+1))\)
\(D(J)=D(J)-D(J+1) * M(J+1)\)
10 CONTINUE
0 CONTINUE
    \(D(1)=D(1) * M(1)\)
    \(D(1)=D(1) * M(1)\)
\(D \varnothing 20 I=2, N K\)
        \(\begin{aligned} D \emptyset 20 I & =2, N K \\ D(I) & =(D(I)-D(I-1)) * M(I)\end{aligned}\)
        \(D(I)=(D(I)-D(I-1)) * M(I)\)
20 CONTINUE
RETURN
RETU
END

\section*{Algorithm 462}

\title{
Bivariate Normal Distribution [S15]
}

\author{
Thomas G. Donnelly [Recd. 9 July 1971] \\ Department of Biostatistics and Center for Urban and Regional Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
}

Key Words and Phrases : bivariate, normal Gaussian, frequency distribution

CR Categories: 5.5
Language: Fortran

\section*{Description}

Purpose. Tables of the bivariate normal distribution are available [1] for \(H, K=0(.1) 4\) and \(R= \pm .0(.05) 0.95(.01) 1\) to six decimal places for positive \(R\) and to seven decimal places for negative \(R\). A valuable section in the preface to \(|1|\) by D. B. Owen describes a wide variety of problem areas in which the tables can be applied.

The advantages of being able to access these data in a computer are many. Frequently the values of \((H, K, R)\) in which one is interested will have been produced through computer calculations, and it is much more convenient if the user can produce the corresponding probability immediately and continue his calculations. Secondly, use of tables ordinarily involves the user in three-dimensional hand calculated interpolation, and the risk of errors here can be eliminated by use of a functional subprogram. Finally, a functional subprogram is a starting point for additional refinements, such as confidence regions and tetrachoric correlations.

Method. The methods employed in the program were basically those described in [2, eqs. \(3.5,3.8,3.9\) ], and comments in the program have been reduced to a minimum because the relations between the program and the equations should be self-evident. Because the expression used [2, eq. 3.9] in evaluating \(T(h, a)\) is an alternating convergent series, it was possible to provide controlled precision in the algorithm. As written, it provides accuracy to 15 decimal places, but the parameter controlling this, \(I D I G\), may be adjusted to suit the computer environment in which the algorithm is to be used. Of course, the value selected must conform to the precision obtainable from the univariate error function used, such as Algorithm 304, [3] and the other standard subroutines used, as well as to the computer characteristics.

The lower-left tail values of the distribution, if desired, are obtained by reversing the signs of \(H\) and \(K\).

\section*{References}
1. National Bureau of Standards, Tables of the Bivariate Normal Distribution and Related Functions, N.B.S., Applied Math. Series, No. 50, 1959.
2. Owen, D.B. Tables for computing bivariate normal probabilities. Ann. Math. Stat. 27 (1956), 1075-1090.
3. Hill, I.D., and Joyce, S.A. Algorithm 304. Normal curve Integral. Comm. ACM 10 (June 1967), 374.

This work was supported in part by NASA Grant No. NGR 34-003-040 and by OWRR Project No. B-012-NC, Matching Grant Agreement No. 14-01-0001-1935.
```

Algorithm
D@UBLE PRECISION FUNCTION BIVNQR(AH, AK, K)
C BIVNOR IS A CONTROLLED PRECISION
C FORTRAN FUNCTION TO CALCULATE THE
C BIVARIATE NORMAL UPPER RIGHT AKEA, VIZ.
C THE PROBABILITY FOR TWO NORMAL
C VARIATES X AND Y WHOSE CORRELATION
C IS R, THAT X.GT. AH AND Y .GT. AK.
DGUBLE PRECISION TWQPI, B, AH, AK, K, GH, GK, RK, GAUSS,
* DERF, H2, A2, H4, DEXP, EX, W2, AP, S2, SP, S1, SN, SQR,
* DESQRT, CON, DATAN, WH, WK, GW, SGN, T, DABS, G2, CONEX,
* CN
GAUSS(T) = (1.0DO+DERF(T/DSQRT(2.ODO)))/2.ODO
C GAUSS IS A UNIVARIATE LOWER NORMAL
C TAIL AREA CALCULATED HERE FROM THE
C CENTKAL ERROR FUNCTION DERF.
C IT MAY BE REPLACED BY THE ALGORITHM IN
C HILL,I.D. AND JOYCE,S.A. ALGORITHM 304,
C NØRMAL CURVE INTEGRAL(SIS), COMM.A.C.M.(10)
C (JUNE,1967),P.374.
C SOURCE: OWEN, D.B. ANN.MATH.STAT.
C VOL. 27(1956), P.1075.
c TW@PI = 2.*PI
TWEPI = 6.283185307179587DO
B = 0.000
IDIG=15
C THE PARAMETER 'IDIG' GIVES THE
C NUMBER OF SIGNIFICANT DIGITS
C TO THE RIGHT OF THE DECIMAL POINT
C DESIRED IN THE ANSWER, IF
C IT IS WITHIN THE COMPUTER'S
C CAPACITY DF COURSE.
H=GAUSS(-AH)/2.ODO
KK GAUSS(-AK)/2.ODO
RK = 1.0DO - K*R
IF (RK) 20, 40, 100
WRITE (3,99999) R
20 WRITE (3.99999) R
C ERROR EXIT FOR ABS(R) .GT. 1.000
99999 FORMAT(12H BIVNGR R IS, D26.16)
ST0P
G0 T0 350
40 IF (R) SO, 70, 70
50 IF (AH+AK) 60, 350, 350
60 B = 2.0DO*(GH+GK) - 1.0DO
G0 TO 350
70 IF (AH-AK) 80, 90, 90
80 B = 2.ODO*GK
G0 T0 350
O B = 2.0DO*GH
G0 T0 350
100 SQR = DSQRT(RR)
IF (IDIG-15) 120, 110, 120
10 CON = TWOPI*I.D-15/2.ODO
G0 T0 140
20 CON = TWQPI/2.ODO
D0 130 I=1,IDIG
CON = CON/10.ODO
130 CONTINUE
40 IF (AH) 170, 150, 170
50 IF (AK) 190, 160, 190
160 B = DATAN(R/SQR)/TWQPI + 0.2SDO
G0 T0 350
170 B = GH
IF (AH*AK) 180, 200, 190
80B=B - 0. SDO
B0B=B + GK
IF (AH) 200, 340, 200
200 WH = -AH
WK = (AK/AK-R)/SQR
GW = 2.000*GH
IS = -1
210 SGN = -1.0D0
T = 0.0DO
IF (WK) 220, 320, 220
220 IF (DABS(WK)-1.ODO) 270, 230, 240
230 T = WK*GW*(1.ODO-GW)/2.0DO
G0 T0 310
240 SGN = -SGN
WH = WH*WK
G2 = GAUSS(WH)
WK = 1.0DO/WK
IF (WK) 250, 260, 260
0.5DO
60 B = B - (GW+G2)/2.0DO + GW*G2
270 H2 = WH*WH
A2 = WK*WK
H4 = H2/2.ODO
EX = DEXP(-H4
W2 = H4*EX
AP = 1.0DO
S2 = AP - EX
SP}=A
S1 = 0.0DO
SN = S1
CONEX = DABS(CON/WK)
G0 T0 290
280 SN = SP
SP = SP + 1.0DO
S2 = S2 - W2
W2 = W2*H4/SP

```
```

 \(A P=-A P * A Z\)
 $290 \mathrm{CN}=\mathrm{AP}=\mathrm{AP} 2 /(S N+\mathrm{SP})$
$S 1=S 1+C N$
IF (DABS (CN)-CONEX) 300, 300, 280
$300 \mathrm{~T}=$ (DATAN(WK)-WK*SI)/TW@PI
$300 \mathrm{~T}=$ (DATAN(WK)
$310 \mathrm{~B}=\mathrm{B}+\mathrm{SGN} * \mathrm{~T}$
320 IF (IS) 330, 350, 350
330 IF (AK) 340, 350, 340
$340 \mathrm{WH}=-\mathrm{AK}$
$W K=(A H / A K-K) / S Q R$
$W=2 . O D O * G K$
IS $=1$
G0 T0 210
350 IF (8) 360, 370, 370
$360 \mathrm{~B}=0.000$
$370 \mathrm{IF}(\mathrm{B}-1.0 \mathrm{DO}) 390,390,380$
$380 \mathrm{~B}=1.000$
390 BIVNOK = B
RETURN
RETD

```

\section*{Algorithm 463}

\section*{Algorithms SCALE1, SCALE2, and SCALE3 for Determination of Scales on Computer Generated Plots [J6]}

\author{
C.R. Lewart (Recd. 6 Aug. 1971 and 28 Jan. 1972) \\ Bell Telephone Laboratories, Incorporated, Holmdel, NJ 07733
}

\author{
Key Words and Phrases: plotting, scaling for plotting CR Categories: 4.41 \\ Language: Fortran
}

\section*{Description}

Introduction. It is often desirable to plot computer generated output or obtain discrete distribution functions such as histograms automatically. In general the raw data does not lend itself directly to an easily readable presentation. The three related algorithms as presented here obtain readable linear or logarithmic scales with uniform interval sizes for users of various plot routines.

Readability. A readable linear scale is defined here as a scale with interval size a product of an integer power of 10 and 1,2 or 5 , and scale values integer multiples of the interval size.

A readable logarithmic scale on a display with uniform plotting intervals is defined here such that the ratio of adjoining scale values DIST \(=10^{(1 / L+K)}\), where \(K\) and \(L\) are integers, with \(1 \leq L \leq 10\); scale values are equal to \(D I S T^{M}\), where \(M\) is a set of successive integers.

The definition of readability used for SCALE 1 and SCALE 2 permits scale values such as:
\(-0.5,0.0,0.5,1.0, \ldots\)
1.24, 1.26, 1.28, ...
\(100.0,200.0,300.0, \ldots\), etc.
It prohibits the following examples:
\(-1.0,4.0,9.0, \ldots\)
1.2, 1.31, 1.42, ...
\(0.0,4.0,8.0,12.0, \ldots\), etc.
The definition of readability for logarithmic plots would permit scale values of \(1, \sqrt[3]{ } 10,(\sqrt[3]{ } 10)^{2}, 10, \ldots\), but disallow \(1, \sqrt{ } 5,5\), \(5 \sqrt{ } 5,25, \ldots\)

Usage. A call of the form

\section*{CALL SCALE1 (XMIN, XMAX, N, XMINP, XMAXP, DIST)}
where \(X M I N\) and \(X M A X\) are the minimum and maximum, respectively, of a given array and \(N\) a requested number of grid intervals will return a new minimum and maximum \(X M I N P\) and \(X M A X P\) such that the range [ \(X M I N P, X M A X P\) ] is the smallest range which will embrace the range \([X M I N, X M A X]\) and simultaneously result in approximately \(N\) grid intervals, each of the length DIST. Interval DIST is selected by SCALE1 as the product of an integer power of 10 and 1,2, or 5. XMINP and XMAXP are integer multiples of DIST.

In certain cases the number of plot intervals \(N\) has to be fixed. In particular, for plots generated by devices with relatively large pen increments, e.g. line printers or teletypewriters, \(N\) is restricted. For such cases SCALE 2 for linear plots and SCALE 3 for logarithmic plots have to be used.

SCALE2 with the same arguments as SCALE1 differs from SCALE1 in that XMINP and XMAXP are determined such that exactly \(N\) grid intervals will result; as a consequence the range \([X M I N P, X M A X P]\) will in general be less economical than that obtained by SCALEI. Parameters DIST, XMINP, and XMAXP will still satisfy requirements specified for SCALE1, namely DIST will be an integer power of 10 times 1,2 , or 5 ; and \(X M I N P\) and \(X M A X P\) will be integer multiples of DIST.

SCALE3 with the same arguments as SCALE1 will set XMINP and \(X M A X P\) such that \(N\) logarithmic uniformly spaced grid intervals will cover the range [XMIN, XMAX]. DIST will be the ratio of adjacent grid line values.

SCALE 3 selects DIST as \(10^{(1 / L+K)}\), where \(K\) and \(L\) are integers and \(1 \leq L \leq 10 . X M I N P\) and \(X M A X P\) are selected so that \(X M I N P=D I S T^{j}\), and \(X M A X P=D I S T^{l}\) where \(j\) and \(l\) are integers.

Calling SCALE1, SCALE2, or SCALE3 will approximately center the range \([X M I N, X M A X]\) between \(X M I N P\) and XMAXP. SCALE1, having determined DIST, selects the most economical limits, i.e. \((X M I N-D I S T)<X M I N P \leq X M I N\) and \(X M A X \leq\) \(X M A X P<(X M A X+D I S T) . S C A L E 2\) and SCALE3 select limits to minimize ( \(X M A X P-X M A X)\) and (XMIN - XMINP) without necessarily satisfying the previous inequalities, but subject to the constraints of a fixed number of intervals.

The actual number of intervals \(N_{a}\), determined from the out puts returned by SCALE1 is as follows:
\(N_{a}=(X M A X P-X M I N P) / D I S T\).
\(N_{a}\) may be slightly larger or smaller than \(N\) as shown by the following inequality:
\((N / \sqrt{ } 2.5)<N_{a}<(N \times \sqrt{ } 2.5+2)\).
\(N_{a}\) will always equal \(N\) if SCALE 2 or \(S C A L E 3\) is called.
Round-off considerations. The three algorithms compensate for the computer round-off to assure that XMIN and XMAX are within the range \([X M I N P, X M A X P]\). A normalized parameter \(D E L\) is introduced to serve as a narrow gate around the minimum \(X M I N\) and the maximum \(X M A X\) to avoid an unnecessarily large range \([X M I N P, X M A X P]\) caused by computer round-off. For example, if \(D E L=0.0001, N=3\) and SCALE1 or SCALE 2 is called, XMINP of 1.0 and XMAXP of 4.0 will result for \(0.9999<\) \(X M I N \leq 1.0001\) and \(3.9999 \leq X M A X<4.0001\). \(D E L\) is normalized to the interval size and should satisfy the following inequality:
\(A<D E L<(B \times N) / C\),
where \(A\) is the round-off expected from a division and float operation, \(B\) is the minimum increment of the plotting device in inches, \(N\) is the number of intervals on the plot, and \(C\) is the plot size in inches. For example, using single precision REAL*4 variables (IBM 360): \(A \sim 0.0000002\); for a precision flat bed plotter: \(B=\) \(0.002, C=50.0\). Assuming \(N=10\) the following inequality is obtained:
\(0.0000002<D E L<0.0004\).
It is obvious from this inequality that in practical cases the range of permissible values of \(D E L\) is so large that \(D E L\) is quite insensitive to the type of plotter and the type of computer used.


\section*{Algorithm}

SUBROUTINE SCALEI(XMIN, XMAX, N, XMINP, XMAXP, DIST)
C ANSI FØKTRAN
C GIVEN XMIN, XMAX AND N SCALEI FINDS A NEW NANGE XMINP AND
C XMAXP DIVISIBLE INTO APPIROXIMATELY N LINEAK INTERVALS
C OF SIZE DIST
C VINT IS AN ARRAY OF ACCEPTABLE VALUES FOR DIST ©TIMES
C AN INTEGER POWEK OF 101
C SOR IS AN ARRAY OF GEOMETRIC MEANS OF ADJACENT VALUES
C WHICH VINT IS USED AS BKEAK POINTS TO DETERMINE
DIMENSION VINT (4), SOR(3)
DATA VIVT(1), VINT(2), VIN
DATA VINT(1),
C CHECK WHETHEK PKOPEK INPUT VAL/A.414214, 3.162278. 7.071068
IF (XMIN.LT.XMAX. AND. N.GT.O) GO TO 10
WRITE ( 6,99999 )
99999 FORMAF(34H IMPRGPER INPUT SUPPLIED TO SCALEI)
RETUNN

C DEL ACCOUNTS FOR COMPUTER ROUND-OFF
C DEL SHOLLD \(8 E\) GREATER THAN THE KGUND-gFF EXPECTED FROM
C A DIVISION AKD FLQAT GPERATION, IT SHOULD BE LESS THAN
C THE GINIMUM INCREMENT eF THE PLETTING DEVICE USED BY
C THE MAIN PKOGKAM (IN.) DIVIDED BY THE PLGT SIZE (IN.)
C TIMES NUMBER OF INTERVALS N
\(10 \mathrm{DEL}=.00002\)
\(\mathrm{FN}=\mathrm{N}\)
C FIND APPROXIMATE INTERVAL SIZE A
\(A=(X M A X-X M I N) / F N\)
\(A L=A L O G 10(A)\)
IF \(A L A \cdot L T\)
C A IS SCALED INTO VAKIABLE NAMED B BETVEEN 1 AND 10
C THE CLOSE
OLSES PEKMISSIBLE VALUE FGn \(B\) is FOUND \(20 \quad I=1,3\)

SUk(I)) G0 T0 30
\(\mathrm{I}=4\)
C THE INTERVAL SIZE is computed
30 DIST \(=\) VINT(I)*10.**NAL
\(M 1=F M 1\)
F (FM1.LT.O.) M. \(=\) M1 - 1
IF (ABS(FLGAT (M1) + \(1,-\) FM1). \(L\) LT.DEL \() M 1=.11+\)
C THE NEG MINIMLÍ AND MAXIMUM LIMITS AKE FOUND
XMINP \(=\) DIST*FLOATSMI).
FME \(=\) XMAX/DIST
M2 \(=\) FM2 +1.
(F (Fin2.LT. (-1.)) M2 \(=\mathrm{M}\) M -
IF (ABS (FM2+1,-FLGAT(M2)).LT.DEL) M2 = M2 - 1
XMAXP \(=\) DIST*FLOAT(M2)
G ADJUST LIMITS TO ACCOUNT FBK ROUND-GFF IF NECESSARY
F (XMINr•GT.XMIN) XMINP \(=\) XMIN
RETUK̃N
END
SUBRøUTINE SCALEZ XXIMIN, XMAX, N, XMINF, XMAXP, DIST
C ANSI FORTKAN
C GIVEN XMIN, XMAX AND in SCALEE FINDS A NEK RANGE XMINP AND
C XMAXP DIVISIBLE INTO EXACTLY N LINEAF INTERVALS GF SIZE
C DIST, WHERE \(N\) IS GiKEATEK THAN 1
DIMENSIQN VINT(5)
DATA VINT(1), VINT(2). VIVT(3), VINT(4), VINT(5)/1., 2.
* 5., 10., 20.1
```

C CHECK WHETHER PR@PEK INPUT VALUES WERE SUPPLIED
F (XMIN.LT.XMAX .AND. N.GT.1),GE TO 10
WKITE (6,99999)
99999 FORMAT(34H IMPKOPER INPUT SUPPLIED TO SCALEC)
RETUKN
10 DEL = .00002
C FIND APPROXIMATE INTERVAL SIZE A
A = (XMAX-XMIN)/FN
AL = ALOG1O(A)
NAL = AL
C A IS SCALED INTO VARIABLE NAMED B BETVEEN 1 AND 10
B = A/10.**NAL
C THE CLQSEST PERMISSIBLE VALUE FGR B IS FOUND
DG 20 I=1,3
IF (B.LT.(VINT(I)+DEL)) GO T0 30
20 Continue
I=4
c THE INTERVAL SIZE IS COMPUTED
OOIST = VINT(I)*10***NAL
M1 = XMIN/DIST
M1 =FM1
.0.) M1 = M1 - 1
IF (ABS(FIL@AT(M1)+1.-FM1).LT.DEL) M1 = M1 + 1
C THE NEV: MINIMUM AND MAXIMUM LIMITS ARE FOUND
XMINP = DIST*FL@AT(M1)
FM2 = XMAX/DIST
M2 = FMM? + 1.
IF (FM2.LT.(-1.)) M2 = M2 - 1
IF (ABS(FM2+1.-FLOAT(M2)).LT.DEL) M2 = M2 - 1
XMAXP = DIST*FLDAT(M2)
C CHECK WHETHER A SECOND PASS IS REQULIED
NP = M2 - M1
F(NP.LE.N) GO T0 40
I= I + I'
40 NK = (N-NP)/2
XMINP = XMINP - FLØAT(NX)*DIST
XMAXP = XMINP + FLØAT(N)*DIST
C ADJUST LIMITS TO ACCOUNT FOR KOUND-OFF IF NECESSAKY
IF (XMINP.GT. XMIN) XMINP = XMIN
F (XMAXP.LT.XMAX) XMAXP = XMAX
RETURN
END
SUBROUTINE SCALEJ(XMIN, XMAX, N, XMINP, XMAXP, DIST)
C ANSI FORTRAN
C GIVEN XMIN, XMAX AND N, WHENE N IS GREATEK THAN 1, SCALE3
C FINDS A NEW RANGE XMINP AND XMAXP DIVISIBLE INTO EXACTLY
N LgGAKITHMIC INTERVALS, WHERE THE HATIO OF ADJACENT
C UNIFORMLY SPACED SCALE VALUES IS DIST
DIMENSION VINT(11)
DATA VINT(1), VINT(2), VINT(3), VINT(4), VINT(5), VINT(6),
* VINT(7), VINT(8), VINT(9), VINT(10), VINT(11)/10., 9.,

* 8., 7., 6., 5., 4., 3., 2., 1., .5/
CK WHETHER PK\emptysetPER INPUT VALUES WERE SUPPLIED
IF (XMIN.LT.XMAX .AND. N.GT.1 .AND. XMIN.GT.O.) G0 T0 10
\#RITE (6,99999)
99999 FORMAT(34H IMPROPER INPUT SUPPLIED T0 SCALE3)
RETURN
10 DEL =.00002
C VALUES ARE TRANSLATED FRGM THE LINEAN INTO LQGAKI THMIC
C REGION
KMINL = ALOGIO(XMIN)
XMAXL = ALGG1O(XMAX)
FN = N
C FIND APPROXIMATE INTERVAL SIZE A
A = (XMAXL -XMINL)/FN
AL = AL0G1O(A)
NAL = AL
IF (A.LT.1.) NAL = NAL - 1
C A IS SCALED INTO VARIABLE NAMED B BETWEEN 1 AND 10
O.**NAL
C the Closest permissible value fok b as found
D0 20 I=1,9
IF (B.LT.(10./VINT(I)+DEL)) GO T0 30
20 CONTINUE
C THE INTERVAL SIZE IS COMPUTED
30 DISTL = 10.**(NAL+1)/VINT(I)
FM1 = XMINL/DISTL
MI = FM1
IF (FM1.LT.O.) MI = M1 - 1
IF (ABS(FLOAT(M1)+1.-FM1).LT.DEL.) M1 = M1 + 1
C THE NEV! MINIMUM AND MAXIMUM LIMITS AKEE FOUND
XMINP = OISTL*FLOAT(M1)
FM2 = XMAXL/DISTL
M2 = FM2 + 1.
F (FM2.LT.(-1.)) ML = M2 - 1
IF(ABS(FM2+1.-FLOAT(VM)).LT.DEL) MZ = M2 - 1
XMAXP = DISTL*FLDAT(MZ)
NP = M2 - M1
C CHECK wHETHER ANOTHER PASS IS NECESSAKY
IF (NP.LE.N) GO T0 40
I= = +
40 NX = (N-NP)/2
XMINP = XMINP - FLOAT(NX)*DISTL
C VALUES ARE TRANSLATED FROM THE L\emptysetGARITHMIC INT\emptyset THE LINEAR
c VALUES
DIST = 10.**DISTL
XMINP = 10.**XMIN
XMAXP = 10.***MMAXP
C ADJUST LIMITS TO ACCGUNT FOR ROUND-DFF IF NECESSARY
IF (XMINP.GT.XMIN) XMINP = XMIN
F (XMAXP.LT.XMAX) XMAXP = XMAX
RETUKN
REND

```

\section*{Algorithm 464}

\title{
Eigenvalues of a Real, Symmetric, Tridiagonal Matrix [F2]
}

\author{
Christian H. Reinsch [Recd. 11 Mar. 1971] \\ Mathematisches Institut der Technischen Universität, 8000 München 2, Arcisstra 21, Germany
}

\section*{Key Words and Phrases: eigenvalues, QR Algorithm}

CR Categories: 5.14
Language: Algol

\section*{Description}

This algorithm uses a rational variant of the QR transformation with explicit shift for the computation of all of the eigenvalues of a real, symmetric, and tridiagonal matrix. Details are described in [1]. Procedures tred 1 or tred 3 published in [2] may be used to reduce any real, symmetric matrix to tridiagonal form. Turn the matrix end-for-end if necessary to bring very large entries to the bottom right-hand corner.

\section*{References}
1. Reinsch, C.H. A stable, rational QR algorithm for the computation of the eigenvalues of an Hermitian, tridiagonal matrix. Math. Comp. 25 (1971), 591-597.
2. Martin, R.S., Reinsch, C.H., Wilkinson, J. H. Householder's tridiagonalization of a symmetric matrix. Numer. Math. 11 (1968), 181-195.
```

Algorithm
procedure tqlrat (n,macheps) trans: (d,e2);
value n, macheps;
integer n; real macheps; array d,e2;
comment
Input:
n order of the matrix,
macheps the machine precision, i.e. minimum of all }x\mathrm{ such that
1+x>1 on the computer,
d[1:n] represents the diagonal of the matrix,
e2[1:n] represents the squares of the sub-diagonal entries,
(e2[l] is arbitrary).
Output:
d[1:n] the computed eigenvalues are stored in this array in
ascending sequence,
e2[1:n] is used as working storage and the original informa-
tion stored in this array is lost;

```
begin
    integer \(i, k, m\); real \(b, b 2, f, g, h, p 2, r 2, s 2\);
    for \(i:=2\) step 1 until \(n\) do \(e 2[i-1]:=e 2[i]\);
\[
e 2[n]:=b:=b 2:=f:=0.0 ;
\]
\[
\text { for } k:=1 \text { step } 1 \text { until } n \text { do }
\]
begin
\[
h:=\text { macheps } \times \text { macheps } \times(d \mid k] \uparrow 2+e 2[k]) ;
\]
\[
\text { if } b 2<h \text { then }
\]
\[
\operatorname{begin} b:=\operatorname{sqrt}(h) ; b 2:=h \text { end; }
\]
comment Test for splitting;
for \(m:=k\) step 1 until \(n\) do
\[
\text { if } e 2[\mathrm{~m}] \leq b 2 \text { then go to cont } 1
\]
cont1:
if \(m=k\) then go to root;
comment Form the shift from leading \(2 \times 2\) block; nextit:
\(g:=d[k] ; p 2:=\operatorname{sqrt}(e 2[k]) ;\)
\(h:=(d[k+1]-g) /(2.0 \times p 2) ; r 2:=\operatorname{sqrt}(h \times h+1.0) ;\)
\(d[k]:=h:=p 2 /(\) if \(h<0.0\) then \(h-r 2\) else \(h+r 2)\);
\(h:=g-h ; f:=f+h ;\)
for \(i:=k+1\) step 1 until \(n\) do \(d[i]:=d[i]-h\);
comment Rational QL transformation, rows \(k\) through \(m\);
\(g:=d[m]\); if \(g=0.0\) then \(g:=b\);
\(h:=g ; s 2:=0.0\);
for \(i:=m-1\) step -1 until \(k\) do
begin
\(p 2:=g \times h ; r 2:=p 2+e 2[i] ;\)
\(e 2[i+1]:=s 2 \times r 2 ; s 2:=e 2[i] / r 2 ;\)
\(d[i+1]:=h+s 2 \times(h+d[i]) ;\)
\(g:=d[i]-e 2[i] / g\); if \(g=0.0\) then \(g:=b\);
\(h:=g \times p 2 / r 2\)
end \(i\);
\(e 2[k]:=s 2 \times g \times h ; d[k]:=h ;\)
if \(e 2[k]>b 2\) then go to nextit;
root:
\(h:=d[k]+f ;\)
comment One eigenvalue found, sort eigenvalues;
for \(i:=k\) step -1 until 2 do
if \(h<d[i-1]\) then \(d[i]:=d[i-1]\) else go to cont2;
\(i:=1\);
cont2:
\(d[i]:=h\)
end \(k\)
end tqlat;

\section*{Algorithm 465}

Student's \(t\) Frequency [S14]
G.W. Hill [Recd. 24 Aug. 1971, 23 Feb. 1972, 10 July 1972]
C.S.I.R.O., Division of Mathematical Statistics, Glen Osmond, South Australia

Key Words and Phrases: Student's \(\mathbf{t}\) statistic, density function, series approximation

CR Categories: 5.12, 5.5
Language: Algol

\section*{Description}

The frequency function for Student's \(t\) distribution,
\(f(t \mid n)=\frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{(\pi n)^{\frac{1}{2}} \Gamma\left(\frac{1}{2} n\right)}\left(1+t^{2} / n\right)^{-\left(\frac{1}{2} n+\frac{1}{2}\right)}\),
is evaluated for real \(t\) and real \(n>0\) to a precision near that of the processor, even for large values of \(n\).

The factor involving \(t\) is evaluated as \(\exp (-1 / 2 b)\) where \(b\) is computed as \((n+1) \ln \left(1+t^{2} / n\right)\) if \(t^{2} / n=c\) is large (>cmax, say) or, to avoid loss of precision for smaller \(c\), by summing the series for \(b=\left(t^{2}+c\right)\left(1-c / 2+c^{2} / 3-c^{3} / 4+\cdots\right)\) until negligible terms occur, i.e. \(c^{r} /(r+1)<\epsilon\), where \(\epsilon\) is the relative magnitude of processor round-off. The relative error up to \(\epsilon /\) cmax in evaluating \(\ln (1+c)\) and the accumulated round-off error of order \(\epsilon \sqrt{ } R\) in summing a maximum of \(R\) terms of the series can be limited to about the same low level by choosing cmax \(=R^{-\frac{1}{2}}\) where \(R^{-\frac{1}{2} R} / R \approx \epsilon\). Thus for \(R=12,16,23\), or 32 , values of \(c_{\text {max }} \approx 0.2887,0.25,0.2085\), or 0.1762 , respectively, correspond to processor precision where \(\epsilon=2^{-24}, 2^{-36}, 2^{-56}\), or \(2^{-84}\), respectively.

Evaluation of the ratio of gamma functions by exponentiating the difference of almost equal values of their logarithms would involve considerable loss of precision for large \(n\). This is avoided by use of the asymptotic series obtained by differencing the Stirling approximations, changing the variable to \(a=n-\frac{1}{2}\), and exponentiating the result (see also [1]):
\(\frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} n\right)}=\left(\frac{1}{2} a\right)^{\frac{1}{2}} \sum_{r=0} C_{r}(4 a)^{-2 r}\),
where \(C_{0}=C_{1}=1, C_{2}=-19 / 2, C_{3}=631 / 2, C_{4}=-174317 / 8\), \(C_{\dot{5}}=20491783 / 8, C_{6}=-7334801895 / 16, C_{7}=18585901\) \(54455 / 16, C_{8}=-5067741081768765 / 128, C_{9}=223625929\) \(8166788235 / 128, C_{10}=-2480926531578576370237 / 256\).

The relative error of the sum of the first \(s\) terms is negligible for \(n>n \min\) where \(\left|C_{s}\right| \times\left[4\left(n \min -\frac{1}{2}\right)\right]^{-2 s} \approx \epsilon\), e.g. for \(s=5\) and \(\epsilon=2^{-24}\) or \(2^{-36}\), nmin \(\approx 6.271\) or 13.76, respectively, and for \(s=10\) and \(\epsilon=2^{-56}\) or \(2^{-84}\), nmin \(\approx 15.5\) or 40.89 , respectively. For smaller \(n\) the ratio of gamma functions is obtained from the ratio for some \(N \geq n \min\) by the relation:
\(\frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} n\right)}=\frac{n}{(n+1)} \frac{(n+2)}{(n+3)} \cdots \frac{(N-2)}{(N-1)} \frac{\Gamma\left(\frac{1}{2} N+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} N\right)}\).

For large \(n\), processor underflow at line 21 is avoided by use of the normal approximation, which is adequate for values of \(n>1 / \epsilon\), whose representation is unaffected by subtraction of 0.5 . Protection against negative or zero \(n\) is provided by returning the distinctive value, -1.0 , which may be supplemented by an error diagnostic process, if required.

For double precision calculations speed is improved by evaluating higher order terms of the gamma ratio series using single precision operations. Comparison of double precision \(\left(\epsilon=2^{-84}\right)\) results with single precision results \(\left(\epsilon=2^{-36}, n \min =13.76, \mathrm{cmax}=\right.\) 0.25 ) for a Control Data 3200 indicated achievement generally of about ten significant decimal digits, dropping to about eight significant decimals for arguments beyond the \(10^{-20}\) probability level.

Valuable comments from the referee are gratefully acknowledged.

\section*{Reference}
1. Fields, J.L. A note on the asymptotic expansion of a ratio of Gamma functions. Proc. Edinburgh Math. Soc. Ser. 215 (1966), 43-45.
```

Algorithm
real procedure t frequency (t, n);
value t, n; real t, n;
if $n \leq 0.0$ then t frequency $:=-1.0$
else
begin
real a, b, c, d, e, nmin, cmax;
comment for 36 -bit precision processor;
$n \min :=13.76 ;$ cmax $:=0.25$;
$b:=t \times t ; c:=b / n ; a:=d:=b+c$;
if $c>c$ max then $b:=(n+1.0) \times \ln (1.0+c)$
else
for $e:=2.0, e+1.0$ while $b \neq d$ do
$\operatorname{begin} a:=-a \times c ; b:=d ; d:=a / e+d$ end;
$a:=n ; c:=0.3989422804$;
comment $1 / \operatorname{sqrt}(2 \pi)=0.3989422804014326779399461 \ldots$;
for $e:=a$ while $e<n \min$ do
begin $c:=c \times a /(a+1.0) ; a:=a+2.0$ end;
$a:=a-0.5$;
if $a \neq n$ then
begin
$c:=\operatorname{sqrt}(a / n) \times c ; a:=0.25 / a ; a:=a \times a ;$
$c:=((((-21789.625 \times a+315.5) \times a-9.5) \times a+1.0) \times a+1.0)$
$\times c$
end;
t frequency $:=\exp (-0.5 \times b) \times c$
end Student's t-frequency

```

\section*{Algorithm 466}

\section*{Four Combinatorial Algorithms [G6]}

Gideon Ehrlich [Recd. 25 Aug. 1971, 4 Jan. 1972, and 12 Dec. 1972]
Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

\section*{Key Words and Phrases: permutations and combinations \\ CR Categories: 5.39 \\ Language: PL/I}

\section*{Description}

Each of the following algorithms produce, by successive calls, a sequence of all combinatorial configurations, belonging to the appropriate type.
PERMU Permutations of \(N \geq 3\) objects: \(X(1), X(2), \ldots, X(N)\).
COMBI Combinations of \(M\) natural numbers out of the first \(N\).
COMPOMIN Compositions of an integer \(P\) to \(M+1\) ordered terms, INDEX \((k)\), each of which is not less than a given minimum \(\operatorname{MIN}(k)\).
COMPOMAX The same as COMPOMIN but each term has its own maximum MAX (k).
The four algorithms have in common the important property that they use neither loops nor recursion; thus the time needed for producing a new configuration is unaffected by the "size" ( \(N, N\) and \(M, P\) and \(M\) respectively) of that configuration.

Each algorithm,uses a single simple operation for producing a new configuration from the old one, that is:
PERMU A single transposition of two adjacent elements.
COMBI Replacing a single element \(x\) by a \(y\) having the property that there is no element between \(x\) and \(y\) belonging to the combination.
COMPOMIN(MAX) Changing the values of two adjacent terms (usually only by 1 ).
The algorithms are written in \(P L 1(F)\).
Special instructions for the user and notes.
PERMU (1) The mean work-time is actually a decreasing function of \(N\) since, on \((N-1) / N\) of the calls, it returns by the first RETURN. (2) The procedure operates directly on any object vector \(x[1: N]\). (3) For the first permutation one must call FIRSTPER; for other permutations PERMU must be used. (4) Together with the last permutation, which is the original one, we will get \(D O N E=\) ' 1 ' \(B\). If we continue to call PERMU, the entire sequence will repeat indefinitely. If at any stage we set \(D O N E={ }^{\prime} 0^{\prime} B\), then at the end of the appropriate sequence it will become ' 1 ' \(B\). (5) The entire resulting sequence is the same as that of Johnson [1] and Trotter [2].
COMBI Every combination is represented in two forms: (1) As a bit array of \(M^{\prime} 1\) 's and \(N-M^{\prime} 0\) 's which is identical to \(A(1)\), \(A(2), \ldots, A(N)\). (2) As an array \(C\) of \(M\) different integers not greater than \(N\). The \(M\) elements are ordered according to their magnitude. If the second representation is not needed one can omit \(Z, H\) and \(C\) together with the last line of the procedure. For the first combination we can use the following initialization (for other initializations see [3]):

DECLARE \(A(0: N) B I T(1),(X, Y, T(N), F(0: N)\),
I, L, \(Z, H(N), C(M))\) FIXED;
\(D O K=0 T O N-M ; A(K)={ }^{\prime} 0^{\prime} B ; E N D ;\)
DO \(K=N-M+1\) TO \(N ; A(K)='^{\prime} 1\) B; END;
DO \(K=1\) TO \(M ; C(K)=N-M+K ; H(N-M+K)=K\); END;
\(T(N-M)=-1 ; T(1)=0 ; F(N)=N-M+1 ; I=N-M ;\) \(L=N ;\)
(The initialization was not done in the body of the procedure COMBI only in order to simplify the procedures COMPOMINMAX:.)

Instead of using such a large number of parameters it is possible to retain only \(A, I, L\) as parameters of the procedure and declare and initialize the other present parameters in the body of the procedure (as is done in PERMU). In such a case \(N, T, F, L, H\) must be declared as STATIC or CONTROLLED ('own' in ALGOL).
COMPOMIN Each of the \(M+1 \operatorname{MIN}(k)\), as well as \(P\), can be any integer (positive, negative, or zero), but the sum \(S\) of all those minima cannot be greater than \(P\).
For the first composition set \(\operatorname{INDEX}(1)=P-S+\operatorname{MIN}(1)\) \(\operatorname{INDEX}(k)=\operatorname{MIN}(k)\), for \(k>1\).

Set \(N=P-S+M\), and declare and initialize all variables that also appear in COMBI in the same way as was done for COMBI.

Together with the last composition, we will get \(I=0\) as a signal to halt.
COMPOMAX The instructions for COMPOMIN are valid for
COMPOMAX provided: (1) MIN is replaced by MAX ( \(S\)
\(\geq P\); and (2) \(N\) is initialized to \(N=S-P+M\).
The vector \(C\) (but not \(H\) !) has no use in COMPOMIN(MAX), so one can omit all statements in which it appears. A justification for the four algorithms and for some others can be found in [3].

Acknowledgment. I would like to thank Professor Shimon Even for guidance and encouragement.

\section*{References}
1. Johnson, S.N. Generation of permutations by adjacent transformations. Math. Comp. 17 (1963), 282-285.
2. Trotter, H.F. Algorithm 115, Perm. Comm ACM 5 (Aug. 1962), pp. 434-435.
3. Ehrlich, G., Loopless algorithms for generation permutations combinations and other combinatorial configurations. J. ACM 20 (July 1973), 500-513.

\footnotetext{
Algorithm
FIRSTPER: PROCEDURE (X,DONE);
DECLARE ( \(\mathrm{x}(*)\), ( \(\mathrm{xN}, \mathrm{xx}\) ) STATIC) DECIMAL, DONE BIT(1)
( \(\mathrm{N}, \mathrm{S}, \mathrm{V}, \mathrm{M}, \mathrm{L}, \mathrm{I}, \mathrm{DI}, \mathrm{IPI}\) ) BINARY STATIC,
( \(\mathrm{P}(0: \mathrm{N}), \mathrm{IP}(\mathrm{N}-1), \mathrm{D}(\mathrm{N}-1), \mathrm{T}(\mathrm{N})\) ) BINARY CONTROLLED;
N=DIM(X,1);
if allocation (P) then free P, IP, D,T; allocate P, IP, D, T;
DO \(M=1\) TO \(N-1 ; P(M), I P(M)=M ; D(M)=-1\); END;
\(X N=X(N) ; V=-1 ; S, P(0), P(N)=N ; M, L=1\);
\(T(N)=N-1 ; T(N-1)=-2 ; T(2)=2 ;\)
DONE= '0'B;
PERMU: ENTRY ( \(\mathrm{X}, \mathrm{DONE}\) );
IF \(S_{7}=M\) THEN \(D 0 ; x(S)=X(S+V) ; S=S+V ; x(S)=X N ;\) RETURN; END;
}
```

I=T(N); DI=D(I);
IP(I),IPI=IP(I)+DI; M=P(IPI); IP(M)=IPI-DI;
P(IPI-DI)=M; P(IPI)=I; M=IPI+L;
XX=X(M); X(M)=X(M-DI); X(M-DI)=XX;
L=T-L; }\quadV=-V;\quadM=N+1-S
IF P(IPI+DI) < I THEN
DO; IF I=N-1 THEN RETURN;
T(N)=N-1; T(N-1) = -I; RETURN;
END;
D(I)=-DI;
IF T(I) < 0 THEN
DD; IF T(I)न=1-1 THEN T(I-1)=T(I); T(I)=I-1; END;
IF I ᄀ=N-1 THEN DO; T(N)=N-1; T(N-1)=-I-1; END;
T(I+1)=T(I):
IF I=2 \& P(2)=2 THFN DONE='1'B;
END;
COMBI PROCEDURE (A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*)BIT(1), (N,X,Y,T(*),F(*),I,L,Z,H(*),C(*)) FIXED;
IF T(I) < 0 THEN
DO; IF -T(I) - =I-1 THEN T(I-1)=T(I); T(I)=I-1; END;
IF नA(I) THEN
DO; X=I; Y=F(L);
IF A(I-1) THEN F(I)=F(I-1); ELSE F(I)=I; IF F(L)=L THEN
DO; L=I; I=T(I); GOTO CHANGE; END;
IF L=N THEN
D0; T(F(N))=-I-1; T(I+1)=T(I); I=F(N);
F(N)=F(N)+1; GOTO CHANGE;
END;
T(L)=-I-1; T(I+1)=T(I);
F(L)=F(L)+1; I=L; GOTO CHANGE
END;
Y=I;
IF IT=L THEN
DO;
F(L),X=F(L)-1; F(I-T)=F(I);
IF L=N THEN
DO; IF I=F(N) -1 THEN DO; I=T(I); GOTO CHANGE; END;
T(F(N)-1)=-1-1;T(I+1)=T(I);
I=F(N)-1; GOTO CHANGE;
END;
T(L)=-I-1;T(I+T)=T(I); I=L; GOTO CHANGE;
END;
X=N; F(L-1)=F(L);F(N)=N;L=N;
IF I=N-1 THEN DO; I=T(N-1); GOTO CHANGE; END;
T(N-1)=-I-1; T(I+1)=T(I); I=N-1;
CHANGE;
A(X)='1'B; A(Y)='0'B;
H(X),Z=H(Y);C(Z)=X;
END COMBI;
COMPOMIN: PROCEDURE (INDEX,A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*) BIT(1),
(INDEX(*),N,X,Y,T (*),F(*),I,L,Z,H(*),C(*)) FIXED;
CALL COMBI (A,N,X,Y,T,F,I,L,Z,H,C);
INDEX (Z)=INDEX (Z)+X-Y; }\quad\operatorname{INDEX}(Z+1)=\operatorname{INDEX}(Z+1)+Y-X
END COMPOMIN;
COMPOMAX: PROCEDURE (INDEX,A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*) BIT(1),
(INDEX(*),N,X,Y,T(*),F(*),I,L,Z,H(*),C(*)) FIXED;
CALL COMBI (A,N,X,Y,T,F,I,L,Z,H,C);
INDEX(Z)=INDEX(Z)-X+Y; INDEX(Z+1)=INDEX(Z+1)-Y+X;
END COMPOMAX;

```

\section*{Algorithm 467}

\title{
Matrix Transposition in Place [F1]
}

Norman Brenner [Recd. 14 Feb. 1972, 2 Aug. 1972] M.I.T., Department of Earth and Planetary Sciences, Cambridge, MA 02139

Key Words and Phrases: transposition, matrix operations, permutations, primitive roots, number theory

CR Categories: 3.15, 5.14, 5.39
Language: Fortran

\section*{Description}

Introduction. Since the problem of transposing a rectangular matrix in place was first proposed by Windley in 1959 [1], several algorithms have been used for its solution [2, 3, 7]. A significantly faster algorithm, based on a number theoretical analysis, is described and compared experimentally with existing algorithms.

Theory. A matrix \(a\), of \(n_{1}\) rows and \(n_{2}\) columns, may be stored in a vector \(v\) in one of two ways. Element \(a_{i j}\) (0-origin subscripts) may be placed rowwise at \(v_{k}, k=i n_{2}+j\), or columnwise at \(v_{k^{\prime}}\), \(k^{\prime}=i+j n_{1}\). Clearly, letting \(n=n_{1}\) and \(m=n_{1} n_{2}-1\), \(k^{\prime} \equiv n k(\bmod m)\).

Transposition of the matrix is its conversion from one mode or storage to the other, by performing the permutation (1). This permutation may be done with a minimum of working storage in a minimum number of exchanges by breaking it into its subcycles. For example, for a \(4 \times 9\) matrix, one subcycle representation is
(0) ( \(\begin{aligned} & 1 \\ & 4\end{aligned} 16\)
(22 \(18 \quad 2 \quad 8 \quad 32\) 23) ( \(\left.\begin{array}{llllllll}13 & 17 & 33 & 27 & 3 & 12\end{array}\right)\)
\(\left(\begin{array}{lll}5 & 20 & 10\end{array}\right)\left(\begin{array}{lll}30 & 15 & 25\end{array}\right)(728)(1421)(35)\).
The notation for the sixth subcycle, for example, means that \(\nu_{5} \leftarrow \nu_{20} \leftarrow v_{10} \leftarrow v_{5}\).

For a subcycle starting with element \(s\), the elements of the subcycle are \(s n^{r}(\bmod m)\), for \(r=0,1, \ldots\) The following theorems are easily established.

Theorem 1. All the elements of the subcycle beginning with \(s\) are divisible by \(d=(s, m)\), the largest common factor of both \(s\) and \(m\). They are divisible by no larger divisor of \(m\).

Proof. Both \(m\) and \(s\) are divisible by \(d\), and therefore so is any subcycle element \(s n^{r}(\bmod m)\). But \(n\) and \(m\) have no common factors (since \(m=n n_{2}-1\) ), so no divisor of \(m\) larger than \(d\) can divide \(s n^{r}\).

ThEOREM 2. For every subcycle beginning with \(s\), there is another (possibly the same) subcycle beginning with \(m-s\).

Proof. The elements of the second subsycle are just \(-s n^{r}\) \((\bmod m)\). It is the same subcycle if for some \(r, n^{r} \cong-1\left(\bmod m^{\prime}\right)\), for \(m^{\prime}=m /(s, m)\). \(\square\)

The next theorem gives the group representation of the integers modulo \(m\).

THEOREM 3. Factor \(m\) into powers of primes, \(m=p_{1}^{\alpha_{1}} \cdots p_{l}^{\alpha_{l}}\). Let \(r_{i}\) be a primitive root of \(p_{i}\); that is, the powers \(r_{i}^{k}\left(\bmod p_{i}\right)\) for \(k=0,1, \ldots, p-2\), comprise every positive integer less than \(p_{i}\).

Define the generator \(g_{i}=1+R m / p_{i}^{\alpha_{i}}\), where \(R \equiv\left(r_{i}-1\right)\) \(\left(m / p_{i}^{\alpha_{i}}\right)^{-1}\left(\bmod p_{i}^{\alpha_{i}}\right)\). Define the Euler totient function \(\phi(1)=1\); otherwise \(\phi(k)=\) the number of integers less than \(k\) having no common factor with it. Then, for any integer \(x\) less than \(m\), there exist unique indices \(j_{i}\) for which \(0 \leq j_{i}<\phi\left(p_{i}^{\alpha_{i}} /\left(x, p_{i}^{\alpha_{i}}\right)\right)\) and \(x \equiv(x, m) g_{1}^{j_{1}} \cdots g_{l}^{j_{l}}(\bmod m)\).

Proof. In [4]; if any \(p_{i}=2\), replace \(g_{i}^{j_{i}}\) by \(\pm 5^{j_{i}}\), where \(0 \leq\) \(j_{i}<\phi\left(2^{\alpha_{i}-2} /\left(x, 2^{\alpha_{1}-2}\right)\right)\). \(\square\)

For example, for \(m=35\), as in our example above, \(x \equiv\) \(22^{j_{1}} 31^{j_{2}}(\bmod 35)\) for \((x, 35)=1\) and for \(0 \leq j_{1}<4\) and \(0 \leq j_{2}<6\).

Index notation is analogous to logarithmic notation in that multiplication modulo \(m\) becomes merely addition of indices.

The following theorem solves the problem of the subcycle starting points. It is similar to the algorithm in [6].

THEOREM 4. Let \(n\) and \(m\) be defined as for (1). Then, for any integer \(x\) less than \(m\), upper bounds \(J_{i}\) may be found so that unique indices \(j_{i}\) exist in the range \(0 \leq j_{i}<J_{i}\) and \(x \equiv \pm(x, m)\) \(n^{j_{0}} g_{1}^{j_{1}} \cdots g_{l}^{j_{l}}(\bmod m)\).

Proof. Express \(n\) and -1 in index notation. Then, compute from the indices of \(n\) the smallest \(e\) such that \(n^{e} \equiv 1(\bmod m)\). Initially, set each \(J_{i}=\phi\left(p_{i}^{\alpha_{i}} /\left(x, p_{i}^{\alpha_{i}}\right)\right)\). Next, doing only index arithmetic, examine each power \(\pm n^{j}\) for nontrivial relations of the form \(g_{i}^{j_{i}} \equiv \pm n^{j} g_{1}^{j_{1}} \cdots g_{l}^{j_{l}}(\bmod m /(x, m))\) where \(0 \leq j_{k}<J_{k}\) for each \(k\). Then set \(J_{i}=j_{i}\). Stop when the product of the \(J_{i}\) and \(e\) equals \(\phi(m /(x, m))\), which is the number of integers in subcycles divisible only by \((x, m)\).

Notice that the choice of \(J_{i}\) by this method is not unique. For example, continuing from above, for \((x, m)=7, n=4\), \(x \equiv 7 \cdot 4^{j_{0}} 22^{j_{1}}(\bmod 35)\), for \(0 \leq j_{0}<2\) and \(0 \leq j_{1}<2\). The relations found were \((-1)^{1} \equiv 4^{1}(\bmod 5), 22^{2} \equiv 4^{1}(\bmod 5)\) and \(31^{1} \equiv 4^{0}\) \((\bmod 5)\).

Theorem 4 is more important in theory than in practice. The tremendous labor in finding primitive roots for large primes (since a table of roots is very bulky) and in finding the index representation of \(n\) is not compensated for by time savings afterward; see the timing tests below. The same practical objection holds against the algorithm in [6].

Algorithm. An efficient program breaks naturally into two parts. First determine starting points for the subcycles and then move the data. In each part, the program below is significantly faster than Algorithm 380 in [3].

For each divisor \(d\) of \(m\), the subcycles beginning with \(d\) and with \(m-d\) are done. If the number of data moved is still less than \(\phi(m / d)\), further subcycle starting points of the form \(s d\) are tried, for \(s=2,3, \ldots\) The most general test is that \(s d\) is acceptable if no element in its subcycle is less than \(s d\) or greater than \(m-s d\). Since this test requires much time-consuming computation, it is much faster to look for \(s d\) in a table where marks are made to indicate that an element has been moved. In some applications, a bit within each datum may be used. For example, if the data are all biased positive, the sign bit may be used; or, for normalized, nonzero, binary floating point data, the high bit of the fraction is always one and so may be used. In general, a special table of length NWORK is used. As in [3], NWORK \(=\left(n_{1}+n_{2}\right) / 2\) was found to be sufficient for most cases. However, when \(m\) has many divisors, Algorithm 380 must perform the time-consuming general test for many possible starting points when the new algorithm need not.

The inner loop of the algorithm computes (1), moves data, marks in the table, and checks for loop closure. Since the major part of the time of the inner loop is calculating (1), time is saved over Algorithm 380 by moving elements \(v_{k}\) and \(v_{m-k}\) simultaneously.

Timing Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(n_{1}\) & \(n_{2}\) & \(m\) & \begin{tabular}{l}
(all tim \\
Alg. 302 \\
\(T_{1}\)
\end{tabular} & \begin{tabular}{l}
in msec) \\
Alg. 380 \\
\(I W R K=0\) \\
\(T_{2}\)
\end{tabular} & \begin{tabular}{l}
Alg. 380 \\
IW RK= \\
\(\left(n_{1}+n_{2}\right) / 2\) \\
\(T_{3}\)
\end{tabular} & \[
\begin{aligned}
& X P O S \\
& \text { NWORK }=0 \\
& T_{4}
\end{aligned}
\] & \[
\begin{aligned}
& X P O S \\
& N W O R K= \\
& \left(n_{1}+n_{2}\right) / 2 \\
& T_{5}
\end{aligned}
\] & \(T_{1} / T_{4}\) & \(T_{2} / T_{4}\) & \(T_{3} / T_{5}\) \\
\hline 45 & 50 & \(13 \cdot 173\) & 350 & 317 & 167 & 133 & 67 & 2,62 & 2,38 & 2,50 \\
\hline 45 & 60 & 2699 & 558 & 123 & 117 & 90 & 100 & 6,20 & 1,37 & 1,17 \\
\hline 46 & 50 & \(11^{2} \cdot 19\) & 367 & 339 & 217 & 106 & 83 & 3,46 & 3,21 & 2,60 \\
\hline 46 & 60 & 31.89 & 425 & 350 & 250 & 133 & 83 & 3,19 & 2,63 & 3,00 \\
\hline 47 & 50 & 34.29 & 383 & 378 & 267 & 72 & 67 & 5,18 & 5,23 & 4,00 \\
\hline 47 & 60 & 2819 & 483 & 127 & 133 & 90 & 100 & 5,36 & 1,41 & 1,33 \\
\hline 45 & 180 & 7-13.89 & 1200 & 1050 & 816 & 517 & 300 & 2,25 & 2,03 & 2,72 \\
\hline 45 & 200 & 8999 & 1767 & 408 & 416 & 283 & 300 & 6,25 & 1,44 & 1,39 \\
\hline 46 & 180 & 17.487 & 1816 & 1233 & 583 & 267 & 267 & 6,41 & 4,63 & 2,19 \\
\hline 46 & 200 & 9199 & 1700 & 508 & 417 & 383 & 317 & 4,44 & 1,33 & 1,32 \\
\hline 47 & 180 & 11.769 & 1450 & 1133 & 667 & 383 & 267 & 3,78 & 2,96 & 2,50 \\
\hline 47 & 200 & 3.13.241 & 983 & 1150 & 1067 & 550 & 467 & 1,69 & 2,09 & 2,29 \\
\hline
\end{tabular}

In special cases, further savings may be made. For example, \(m\) is divisible by 2 only when both \(n_{1}\) and \(n_{2}\) are odd. Then the subcycles beginning at \(m / 2-s\) and \(m / 2+s\) may be done simultaneously with the subcycles from \(s\) and \(m-s\), thus reducing the number of times (1) is computed.

Timing tests. A set of test matrices were transposed on the \(360 / 65\) with all programs written in Fortran H, OPT \(=2\). The new algorithm was always faster than both Algorithm 380 [3] and Algorithm 302 [2] when \(N W O R K=\left(n_{1}+n_{2}\right) / 2\). When \(N W O R K=0\), it was slower than Algorithm 380 (for \(I W R K=0\) ) and Algorithm 302 only for a few cases when \(n_{1} n_{2}<100\). It was especially faster than Algorithm 380 when \(m=n_{1} n_{2}-1\) had many factors and there were hence many subcycles.

An experiment was made for cases when \(m\) was prime. A known primitive root of \(m\) was then taken from a table [5] and was used to generate subcycle starting points. Since no time was wasted in finding the primitive root or in finding subcycle starting points, this test showed the maximum time savable by implementing Theorem 4. For NWORK \(=\left(n_{1}+n_{2}\right) / 2\) and \(m>200\), no improvement was found over the normal algorithm. For \(N W O R K=0\), the gain in speed was never more than 25 percent.

\section*{References}
1. Windley, P.F. Transposing matrices in a digital computer. Comp. J. 2 (Apr. 1959), 47-48.
2. Boothroyd, J. Algorithm 302, Transpose vector stored array. Comm. ACM 10 (May 1967), 292-293.
3. Laflin, S., and Brebner, M.A. Algorithm 380: In-situ transposition of a rectangular matrix. Comm. ACM 13 (May 1970), 324-326.
4. Bolker, E. An Introduction to Number Theory: An Algebraic Approach. Benjamin, New York, 1970.
5. Abramowitz, M., and Stegun, I. Handbook of Mathematical Functions, Table 24.8. Nat. Bur. of Standards, Washington, D.C., 1964.
6. Pall, G., and Seiden, E. A problem in Abelian Groups, with application to the transposition of a matrix on an electronic computer. Math. Comp. 14 (1960), 189-192.
7. Knuth, D., The Art of Computer Programming, Vol. I. Addison-Wesley, Reading, Mass., 1967, p. 180, prob. 12, and p. 517, solution to prob. 12.

\section*{Algorithm}

SUBRØUTINE XPOSE(A, N1, N2, N12, MOVED, NWØIKK) C TRANSPOSITION OF A K̃ECTANGULAR MATKIX IN SITU.
C BY NERMAN BRENNER, MIT, 1/72. CF. ALG. 380, CACM, 5/70. C TKANSPOSITIQN OF THE NI BY NZ MATKIX A AMOUNTS TO C REPLACING THE FI FMFNT \(\triangle T\) VFITTGA POEITIGN I (O-GKIGIN)

C WITH THE ELEMENT AT POSITION N1*I (MOD N1*N2-1).
C EACH SUBCYCLE OF THIS PEKMUTATION IS COMPLETED IN OKDEK.
C MOVED IS A LOGICAL WORK AKRAY OF LENGTH NWOKK.
LOGICAL MOVED
C DIMENSIGN A(N12), MOVED(NWOKK)
C KEALLY \(A(N 1, N 2), B U T\) N12 \(=N 1 * N 2\)
DIMENSI ON IFACT(3), IPØWER(8), NEXP(8), IEXP(8)
IF (N1.LT.2 - ØR. N2.LT.2) RETURN
\(N=N 1\)
\(M=N 1 * N 2-1\)
IF (N1-NE.NZ) GO TO 30
C SQUARE MATRICES ARE DONE SEPARATELY FOK SPEED
IIMIN \(=2\)
Do 20 IIMAX \(=N, M, N\)
\(12=I 1 M I N+N-1\) DO 10 II =FIMIN, I IMAX ATEMP \(=A(I 1)\) \(A(I 1)=A(I 2)\) \(A(12)=\) ATEMP \(A(12)=A T E M\)
\(12=12+N\) CONTINUE IIMIN \(=\) IIMIN \(+N+1\)
20 CONTINUE RETURN
C MODULUS M IS FACTORED INTO PRIME POWERS. EIGHT FACTORS
C SUFFICE UP TO M = 2*3*5*7*11*13*17*19 = 9,767,520.
30 CALL FACTDR(M, IFACT, IPOWER, NEXP, NPØWER) DØ \(40 I P=1\), NP \(\cap W E R\) \(I \operatorname{EXP}(I P)=0\)
40 CONTINUE
C GENERATE EVERY DIVISOR OF M LESS THAN M/2 IDIV \(=1\)
50 IF (IDIV.GE.M/2) G0 T0 190
C THE NUMBER OF ELEMENTS WHOSE INDEX IS DIVISIBLE BY IDIV
C AND BY NO OTHEK DIVISOR OF M IS THE EULEK TOTIENT
C FUNCTION, PHI (M/IDIV).
NCOUNT \(=M / I D I V\)
DO 60 IP=1, NPOWER
IF (IEXP (IP).EQ.NEXP(IP)) G0 TØ 60
NCØUNT \(=(N C O U N T / I F A C T(I P)) *(I F A C T(I P)-1)\)
60 CONTINUE
Dの \(70 \mathrm{I}=1\), NWEKK \(\operatorname{MOVED}(I)=\). FALSE.
70 CONTINUE
C THE STARTING POINT OF A SUBCYCLE IS DIVISIBLE ONLY BY IDIV
C AND MUST NØT APPEAR IN ANY OTHER SUBCYCLE. ISTART = IDIV
80 MMIST \(=M\) - ISTART
IF (ISTART.EQ.IDIV) G0 T0 120
IF (ISTART.GT.NW®K̄K) G0 T0 90
IF (MOVED(ISTAKT)) G \(T 0160\)
90 ISOID = ISTART/IDIV
D0 100 IP=1, NPOWER IF (IEXP(IP).EQ.NEXP(IP)) GB T0 100 IF (MOD(ISOID,IFACT(IP)).EQ.O) GO TO 160
100 CONTINUE
IF (ISTART.LE.NWORK) Gø T0 \(1: 20\)
ITEST = ISTART
110 ITEST \(=\) MOD \((N * I T E S T, M)\)
IF (ITEST.LT.ISTAKT - OR. ITEST.GT.MMIST) GO TO 160
IF (ITEST.GT.ISTART .AND. ITEST.LT.MMIST) Gの TO 110
120 ATEMP \(=\) A(ISTART+1)
BTEMP \(=A(M M I S T+1)\)
\(\mid A I=I S T A R T\)
130 IA2 \(=M O D(N * I A 1, M)\)
\(M M I A I=M-I A I\)
MMIAZ \(=M-I A 2\)
IF (IAI.LE.NWORK) MOVED (IAI) = -TRUE.
IF (MMIAI•LE.NWORK) MOVED (MMIAI) =.TKUE.
NCOUNT \(=\) NCOUNT - 2

C move two elements. the second frgm the negative
C SUBCYCLE. CHECK FIRST FøR SUBCYCLE CLOSURE.
IF (IA2.EQ.ISTART) G \(\emptyset\) T 0140
IF (MMIA2.EQ.ISTART) GO TO 150
\(A(I A I+1)=A(I A 2+1)\)
\(A(M M I A I+1)=A(M M I A Z+1)\)
\(I A I=I A 2\)
G0 T0 130
\(140 \mathrm{~A}(\mathrm{IA} 1+1)=\) ATEMP
\(A(\) MMIA1+1) \(=8\) TEMP
G0 T0 160
\(150 \mathrm{~A}(\mathrm{IA} 1+1)=\mathrm{BTEMP}\)
A(MMIAl+1) = ATEMP
160 ISTART = ISTART + IDIV
IF (NCOUNT.GT.0) GO T0 80
DO 180 IP=1, NPOWER
IF (IEXP(IP).EQ.NEXP(IP)) G TD TD 170
\(\operatorname{IEXP}(I P)=\operatorname{IEXP}(I P)+1\)
IDIV = IDIV*IFACT(IP)
GO TO SO
\(\operatorname{IEXP}(I P)=0\)
IDIV = IDIV/IPOWER(IP)
180 CONTINUE
190 RETURN
END
SUBROUTINE FACTOR(N, IFACT, IPOWER, NEXP, NPØWEK)
C FACTOR N INTO ITS PRIME POWEKS, NPOWER IN NUMBER.
E E.G., FOR \(N=1960=2 * * 3 * 5 * 7 * * 2\), \(\mathrm{NPOWER}=3\), IFACT \(=3,5,7\),
C IPOWER \(=8,5,49\), AND NEXP \(=3,1,2\).
DIMENSI ON IFACT(8), IPQWER(8), NEXP(8)
\(I P=0\)
\(I F C U R=0\)
NPART \(=N\)
IDIV \(=2\)
10 IQUOT = NPART/IDIV
IF (NPART-IDIV*IQUOT) 60, 20. 60
20 IF (IDIV-IFCUR) 40, 40, 30
\(30 \mathrm{IP}=I P+1\)
\(I F A C T(I P)=I D I V\)
IPOWER (IP) \(=\) IDIV
IFCUR = IDIV
\(\operatorname{NEXP}(I P)=1\)
GのT0 50
40 IPOWER(IP) = IDIV*IPOWER(IP)
\(\operatorname{NEXP}(I P)=\operatorname{NEXP}(I P)+1\)
50 NPART \(=I Q U \varnothing T\)
GOTO 10
60 IF (IQU®T-IDIV) \(100,100,70\)
70 IF (IDIV-2) 80, 80, 90
80 IDIV \(=3\)
GO Tø 10
90 IDIV \(=1 D I V+2\) GO TO 10
100 IF (NPART-1) \(140,140,110\)
110 IF (NPART-IFCUR) \(130,130,120\)
\(120 \mathrm{IP}=I P+1\)
IFACT \((I P)=\) NPART
IPOWER(IP) = NPART
\(\operatorname{NEXP}(I P)=1\)
GO TO 140
\(130 \operatorname{IPOWER}(I P)=\operatorname{NPART*IPOWER}(I P)\) \(\operatorname{NEXP}(I P)=N E X P(I P)+1\)
140 NPOWER \(=I P\)
RETURN
END

\section*{Algorithm 468}

\title{
Algorithm for Automatic Numerical Integration Over a Finite Interval [D1]
}
T.N.L. Patterson [Recd. 20 Jan. 1971, 27 Nov. 1972, 12 Dec. 1972, 26 Mar. 1973]
Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, Belfast BT7 1NN Northern Ireland

Key Words and Phrases: automatic integration, numerical integration, automatic quadrature, numerical quadrature

CR Categories: 5.16
Language: Fortran

Editor's note: Algorithm 468 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is \(\$ 16.00\) (U.S. and Canada) or \(\$ 18.00\) (elsewhere). If the user sends a small tape (wt. less than I lb.) the algorithm will be copied on it and returned to him at a charge of \(\$ 10.00\) (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithm at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10 . The sequence number is right justified in column 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.--L.D.F. and A.K.C.

\section*{Description}

Purpose. The algorithm attempts to calculate automatically the integral of \(F(x)\) over the finite interval \([A, B]\) with relative error not exceeding a specified value \(\epsilon\).

Method. The method uses a basic integration algorithm applied under the control of algorithms which invoke, if necessary, adaptive or nonadaptive subdivision of the range of integration. The basic algorithm is sufficiently powerful that the subdivision processes will normally only be required on very difficult integrals and might be regarded as a rescue operation.

The Basic Algorithm. The basic algorithm, \(Q U A D\), uses a family of interlacing whole-interval, common-point, quadrature formulas. The construction of the family is described in detail in [1]. Beginning with the 3-point Gauss rule, a new 7-point rule is derived, with three of the abscissae coinciding with the original Gauss abscissae; the remaining four are chosen so as to give the greatest possible increase in polynomial integrating degree; the resulting 7-point rule has degree 11 . The procedure is repeated, adding eight new abscissae to the 7 -point rule to produce a 15 -point rule of degree 23 .

Continuing, rules using 31, 63, 127, and 255 points of respective degree \(47,95,191\), and 383 are derived. The 255 -point rule has not previously been published. In addition, a 1-point rule (abscissa at the mid-point of the interval of integration) is included in the family to make eight members in all. The 3-point Gauss rule is in fact formally the extension of this 1 -point rule. The successive application of these rules, until the two most recent results differ relatively by \(\epsilon\) or better, is the basis of the method. Due to their interlacing form, no integral evaluations need to be wasted in passing from one rule to the next.

The algorithm has been used for some time on practical problems and has been found to generally perform reliably and efficiently. Its domain of applicability generally coincides with that of the Gauss formula, which is much wider than commonly supposed [2]. It will perform best on "smooth" functions, but the degree of deterioration of performance when applied to functions with various types of eccentricities depends more on the harshness of these eccentricities than on their presence as such. Integrands with large peaks or even singularities at the ends of the interval of integration are handled reasonably well. It may be noted that none of the rules actually uses the end points of the interval as abscissae. Peaks in the integrand at the center of the interval and discontinuities in the integrand are less easily dealt with. Although it is recommended that the algorithm be applied using the control algorithms described later, if desired it can be used directly as follows.

The algorithm is entered by the statement:

\section*{CALL QUAD (A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)}

The user supplies:
\(A\) lower limit of integration.
\(B\) upper limit of integration.
EPSIL required relative error.
\(F \quad F(X)\) is a user written function to calculate the integrand. The algorithm returns:
RESULT an array whose successive elements RESULT(1), \(\operatorname{RESULT}(2)\), etc., contain the results of applying the successive members of the family of rules. The number of rules actually applied depends on EPSIL. The array should be declared by the calling program to have at least eight elements.
\(K\) element, \(\operatorname{RESULT}(K)\), of array RESULT contains the value of the integral to the required relative accuracy. \(K\) is determined from the convergence criterion:
\[
|\operatorname{RESULT}(K)-\operatorname{RESULT}(K-1)| \quad\left|\quad \leq \operatorname{EPSIL}^{*}\right| \operatorname{RESULT}(K) \mid
\]

NPTS number of integrand evaluations.
ICHECK this flag will normally be 0 on exiting from the subroutine. However, if the convergence criterion above is not satisfied after exhausting all members of the family of rules, then the flag is set to 1 .
The control algorithms. Two control algorithms are provided, \(Q S U B A\) and \(Q S U B\), which if necessary invoke subdivision respectively in either an adaptive or a nonadaptive manner. \(Q S U B A\) is generally more efficient than \(Q S U B\), but since there are reasons for believing [2] that adaptive subdivision is intrinsically less reliable than the nonadaptive form, an alternative is provided.

Table I. Test Integrals and Their Values
1. \(\int_{0}^{1} \sqrt{ } x d x=\frac{2}{3}\)
2. \(\int_{-1}^{1}[0.92 \cosh (x)-\cos (x)] d x \doteq 0.4794282267\)
3. \(\int_{-1}^{1} d x /\left(x^{4}+x^{2}+0.9\right) \doteq 1.582232964\)
4. \(\int_{0}^{1} x^{\frac{2}{2}} d x=\frac{2}{5}\)
5. \(\int_{0}^{1} d x /\left(1+x^{4}\right) \doteq 0.8669729873\)
6. \(\int_{0}^{1} d x /(1+0.5 \sin (31.4159 x)) \doteq 1.154700669\)
7. \(\int_{0}^{1} x d x /\left(e^{x}-1\right) \doteq 0.7775046341\)
8. \(\int_{0.1}^{1} \sin (314.159 x) /(3.14159 x) d x \doteq 0.009098645256\)
9. \(\int_{0}^{10} 50 d x /\left(2500 x^{2}+1\right) / 3.14159 \doteq 0.4993638029\)
10. \(\int_{0}^{3.1415927} \cos (\cos (x)+3 \sin (x)+2 \cos (2 x)\) \(+3 \cos (3 x)+3 \sin (2 x)) d x \doteq 0.8386763234\)
11. \(\int_{0}^{1} \ln (x) d x=-1.0\)
12. \(\int_{0}^{1} 4 \pi^{2} x \sin (20 \pi x) \cos (2 \pi x) d x \doteq-0.6346651825\)
13. \(\int_{0}^{1} d x /\left(1+(230 x-30)^{2}\right) \doteq 0.0013492485650\)

The adaptive algorithm QSUBA. QUAD is first applied to the whole interval. If a converged result is not obtained (that is, the convergence criterion is not satisfied), the following adaptive subdivision strategy is invoked. At each stage of the process an interval is presented for subdivision (initially the whole interval ( \(A, B\) )). The interval is halved, and \(Q U A D\) applied to each subinterval. If \(Q U A D\) fails to converge on the first subinterval, the subinterval is stacked for future subdivision and the second subinterval immediately examined. If \(Q U A D\) fails to converge on the second subinterval, it is immediately subdivided and the whole process repeated. Each time a converged result is obtained it is accumulated as the partial value of the integral. When QUAD converges on both subintervals the interval last stacked is chosen next for subdivision and the process repeated. A subinterval is not examined again once a converged result is obtained for it, so that a spurious convergence is more likely to slip through than for the nonadaptive algorithm QSUB.

The convergence criterion is slightly relaxed in that a panel is deemed to have been successfully integrated if either \(Q U A D\) converges or the estimated absolute error committed on this panel does not exceed \(\epsilon\) times the estimated absolute value of the integral over \((A, B)\). This relaxation is to try to take account of a common situation where one particular panel causes special difficulty, perhaps due to a singularity of some type. In this case, QUAD could obtain nearly exact answers on all other panels, and so the relative error for the total integration would be almost entirely due to the delinquent panel. Without this condition the computation might
continue despite the requested relative error being achieved. The risk of underestimating the relative error is increased by this procedure and a warning is provided when it is used.

The algorithm is written as a function with value that of the integral. The call takes the form:

\section*{QSUBA(A, B, EPSIL, NPTS, ICHECK, RELERR, F)}
and causes \(F(x)\) to be integrated over \((A, B)\) with relative error hopefully not exceeding EPSIL. RELERR gives a crude estimate of the actual relative error obtained by summing the absolute values of the errors produced by \(Q U A D\) on each panel (estimated as the differences of the last two iterates of \(Q U A D\) ) and dividing by the calculated value of the integral. The reliability of the algorithm will decrease for large EPSIL. It is recommended that EPSIL should generally be less than about 0.001 . F should be declared EXTERNAL in the calling program. \(N P T S\) is the number of integrand evaluations used. The outcome of the integration is indicated by ICHECK:
\(I C H E C K=0\). Convergence obtained without invoking subdivision. This corresponds to the direct use of QUAD.
\(I C H E C K=1\). Subdivision invoked and a converged result obtained.
ICHECK \(=2\). Subdivision invoked and a converged result obtained but at some point the relaxed convergence criterion was used. If confidence in the result needs bolstering, EPSIL and RELERR may be checked for a serious discrepancy.
ICHECK negative. If during the subdivision process the stack of delinquent intervals becomes full a result is obtained, which may be unreliable, by continuing the integration and ignoring convergence failures of QUAD which cannot be accommodated on the stack. This occurrence is noted by returning ICHECK with negative sign.
The nonadaptive algorithm QSUB. QUAD is first applied to the whole interval. If a converged result is not obtained the following nonadaptive subdivision strategy is invoked.

Let the interval \((A, B)\) be divided into \(2^{N}\) panels at step \(N\) of the subdivision process. QUAD is first applied to the subdivided interval on which it last failed to converge, and if convergence is now achieved, the remaining panels are integrated. Should a convergence failure occur on any panel, the integration at that point is terminated and the procedure repeated with \(N\) increased by one. The strategy insures that possibly delinquent intervals are examined before work, which later might have to be discarded, is invested on well behaved panels. The process is complete when no convergence failure occurs on any panel, and the sum of the results obtained by \(Q U A D\) on each panel is taken as the value of the integral.

The process is very cautious in that the subdivision of the interval \((A, B)\) is uniform the fineness of which is controlled by the success of \(Q U A D\). In this way it is much more difficult for a spurious convergence to slip through than for QSUBA. The convergence criterion is relaxed as described for QSUBA.

The algorithm is used in the same way as QSUBA and is called with the same arguments as \(Q S U B A\). One of the possible values of ICHECK has a different interpretation:
ICHECK negative. If during the subdivision process the upper limit on the number of panels which may be generated is reached, a result is obtained, which may be unreliable, by continuing the integration ignoring convergence failures of \(Q U A D\). This occurrence is noted by returning ICHECK with negative sign.
Tests. The algorithms have been found to perform reliably on a large number of practical problems. To give a feeling for the performance, results for a number of contrived examples are given using the adaptive control algorithm, QSUBA. It would be difficult to justify these examples as acid tests of any method, but they have the advantage of having being quoted at various times in the literature.

For comparison a number of automatic procedures were used, which include SQUANK [3] (adaptive Simpson), as well as the
\begin{tabular}{cccl}
\hline \multicolumn{4}{c}{ Table II. Relative Error Requested, \(10^{-3}\)} \\
Integral & \(N_{C A D R E}\) & \(N_{Q S U B A}\) & \(T_{C A D R E} / T_{Q S U B A}\) \\
1 & 17 & 15 & 1.8 \\
2 & 17 & 7 & 2.9 \\
3 & 33 & 15 & 4.4 \\
4 & 9 & 7 & 1.9 \\
5 & 9 & 7 & 2.2 \\
6 & 175 & 127 & 3.2 \\
7 & 9 & 7 & 1.8 \\
8 & 1137 & 255 & 8.5 \\
9 & 97 & 127 & 2.4 \\
10 & 107 & 63 & 2.2 \\
11 & 137 & 31 & 9.9 \\
12 & 252 & 63 & 6.3 \\
13 & 129 & 787 & .52
\end{tabular}
\(N\) and \(T\) with appropriate subscripts give respectively the number of integrand evaluations and the time taken for the computation.

Table III. Relative Error Requested, \(10^{-6}\)
\begin{tabular}{rrrc}
1 & 33 & 63 & .75 \\
2 & 33 & 15 & 2.6 \\
3 & 49 & 31 & 3.0 \\
4 & 129 & 31 & 5.0 \\
5 & 17 & 15 & 2.0 \\
6 & 401 & 255 & 2.9 \\
7 & 9 & 7 & 1.8 \\
8 & 2633 & 255 & 18. \\
9 & 281 & 255 & 2.4 \\
10 & 193 & 63 & 3.8 \\
11 & 233 & 795 & .74 \\
12 & 532 & 127 & 6.4 \\
13 & 305 & 1001 & .90
\end{tabular}

Table IV. Relative Error Requested, \(10^{-8}\)
\begin{tabular}{rrrc}
1 & 65 & 255 & .36 \\
2 & 33 & 15 & 2.7 \\
3 & 97 & 31 & 4.9 \\
4 & 545 & 31 & 20. \\
5 & 65 & 31 & 3.6 \\
6 & 569 & 255 & 3.8 \\
7 & 17 & 15 & 1.6 \\
8 & 4001 & 255 & 24. \\
9 & 337 & 255 & 2.8 \\
10 & 305 & 127 & 2.8 \\
11 & 297 & 2415 & .28 \\
12 & 932 & 127 & 10. \\
13 & 481 & 1017 & 1.1
\end{tabular}
modified Havie integrator [4] and CADRE [5] (both based on the Romberg scheme). The latter algorithm, which attempts to detect certain types of singularities using the Romberg table, was found, on the examples tried, to be the best overall competitor to QSUBA, and only this comparison is quoted. The Havie algorithm was particularly poor and had the disturbing feature of converging spuriously on periodic integrands. Thacher [6] has described the shortcomings of Romberg integration, and Algorithm 400 appears to exhibit them. SQUANK was found to be quite good when used at low accuracy, but the performance deteriorated as the demand for accuracy increased. It also gave trouble on some of the more awkward integrals such as 8 and 11. SQUANK also computes the integral in the context of absolute error, and since this is meaningless unless an estimate of the order of magnitude of the integral is known, the algorithm can hardly be described as automatic. CADRE allows a choice of absolute or relative error. A criticism sometimes levied at relative error is that should the integral turn
out to be zero a difficulty will arise. The only advice that can be offered in this respect is that, should a user suspect that this is likely to happen, a constant should be added to the integrand reflecting some appropriate quantity such as the maximum of the integrand. The constant which will be integrated exactly can be removed after the algorithm has done its work.

The test integrals are listed in Table I, and the results obtained for various required relative accuracies in Tables II, III, and IV. Generally \(Q S U B A\) is superior by a substantial margin. The methods are compared in terms of the number of integrand evaluations needed to obtain the required accuracy and also in terms of the times required. For simple integrands the bookkeeping time of some methods can be significant, and QUAD can obtain a considerable advantage by its relative simplicity. Integrals 11 and 13 are interesting examples of this. The number of integrand evaluations exceeding 255 indicates that QSUBA invoked subdivision to obtain the result. In Tables III and IV QSUBA returned ICHECK = 2 on integral 11, but the requested tolerance was achieved.

Integral 8 caused special difficulty to CADRE, and for Tables III and IV a converged result could be obtained only after a relatively large investment of computer time. The feature of CADRE to detect certain singularities should show up in integrals 1 and 11, but the gain does not emerge until high accuracy is requested as in Table IV. For harsher singularities the gain would likely become apparent earlier.

\section*{References}
1. Patterson, T.N.L. The optimum addition of points to quadrature formulae. Math. Comp. 22 (1968), 847-856.
2. Cranley, R., and Patterson, T.N.L. On the automatic numerical evaluation of definite integrals. Comp. J., 14 (1971), 189-198. 3. Lyness, J.N. Algorithm 379, SQUANK. Comm. ACM 13 (Apr. 1970), 260-263.
4. Wallick, G.C. Algorithm 400, Modified Havie integration.

Comm. ACM 13 (Oct. 1970), 622-624.
5. de Boor, Carl. CADRE: An algorithrn for numerical quadrature. Mathematical Software. J.R. Rice (Ed.) Academic Press, New York, 1971, pp. 417-449.
6. Thacher, H.C. Jr. Remark on Algorithm 60, Comm. ACM (July, 1964), 420-421.

\section*{Algorithm}
SUBROUTINE QUAD(A, B, KESULT, K, EPSIL, NPTS, ICHECK, F)
DIMENSI ON FUNCT(127), P(381), RESULT(8)

C THIS SUBRØUTINE ATTEMPTS TE CALCULATE THE INTEGRAL OF F(x) C ØUER THE INTERVAL *A* T \(\varnothing\) *B* WITH RELATIVE EKROK NOT
C EXCEEDING *EPSIL*.
C THE RESULT IS OBTAINED USING A SEQUENCE OF 1,3,7,15,31,63, 127, AND 255 PQINT INTEKLACING FORMLLAECNO INTEGRAND
EVALUATIONS AKE WASTED) OF KESPECTIVE DEGREE \(1,5,11,23\)
47,95,191 AND 383. THE FORMULAE AKE BASED ON THE OPTIMAL
EXTENSION OF THE 3-POINT GAUSS FØKMMULA. DETAILS OF
THE FDRMLLLAE ARE GIVEN IN THE OPTIMUM ADDITI ØN OF POINTS TO QUADRATURE F ORMULAE' BY T.N.L. PATTERSON,MATHS.COMP. C VOL 22,847-856,1968.
C
\begin{tabular}{ll} 
C & A \\
C & \(B\) \\
\hline
\end{tabular}
LOWER LIMIT OF INTEGRATION
UPPER LIMIT OF INTEGRATION.
EPSIL KELATIVE ACCURACY KEQUIKED. WHEN THE KELATIVE DIFFERENCE OF TWØ SUCCESSIVE FØRMULAE DOES NOT EXCEED *EPSIL* THE LAST FORNILA CGMPUTED IS TAKEN AS THE KESULT
\(F \quad F(X)\) IS THE INTEGRAND.
RESULT THIS ARRAY, WHICH SHDULD BE IIECLAKED Tø HAVE AT LEAST 8 ELEMENTS, HOLDS THE KESULTS OBTAINED BY LEAST 8 ELEMENTS, HOLDS THE RESULTS OBTAINED BY FOKMULAE COMPUTED DEPENDS ON *EPSIL*.
\(K\) RESULT(K) HOLDS THE VALUE OF THE INTEGRAL TØ THE SPECIFIED RELATIVE ACCURACY.
NPTS NUMBER INTEGRAND EVALUATIONS
ICHECK ON EXIT NORMALLY ICHECK=0. HQWEVER IF CENVERGENCE Tø THE ACCURACY REQUESTED IS NOT ACHIEVED ICHECK=1 ON EXIT.
ABSCISSAE AND WEIGHTS OF QUADRATURE RULES AKE STACKED IN C ARKAY *P* IN THE OKDER IN WHICH THEY AKE NEEDED. DATA
* \(P(1), P(2), P(3), P(4), P(5), P(6), P(7)\),
* \(P(8), P(9), P(10), P(11), P(12), F(13), P(14)\),
* \(P(15), P(16), P(17), P(18), P(19), P(20), P(21)\),
* \(P(22), P(23), P(24), P(25), P(26), P(27), P(28)\)
* \(0.77459666924148337704 \mathrm{E} 00,0.55555555555555555556 \mathrm{E} 00\), * \(0.88888888888888888889 \mathrm{E} 00,0.26848808986833344073 \mathrm{E} 00\) * \(0.96049126870802028342 \mathrm{E} 00,0.10465622602646726519 \mathrm{E}\) OO
* \(0.43424374934680255800 \mathrm{E} 00,0.40139741477596222291 \mathrm{E} 00\).
\(* \quad 0.45091653865847414235 \mathrm{E} 00,0.13441525524378422036 \mathrm{E}\) 00,
\(* \quad 0.51603282997079739697 \mathrm{E}-01,0.20062852937698902103 \mathrm{E} 00\), 0.99383196321275502221 E 00,0.17001719629940260339E-01, \(0.88845923287225699889 \mathrm{E} 00,0.92927195315124537686 \mathrm{E}-01\), 0.62110294673722640294 E 00.0 .17151190913639138079 E OO., \(0.22338668642896688163 \mathrm{E} 00,0.21915685840158749640 \mathrm{E}\) OO, \(0.22551049979820668739 \mathrm{E} 00,0.67207754295990703540 \mathrm{E}-01\), \(0.25807598096176653565 \mathrm{E}-01,0.10031427861179557877 \mathrm{E} 00\), * 0.84345657393211062463E-02,0.46462893261757986541E-01。 * \(0.8434559049990351154 \mathrm{E}-01,0.10957842105592463824 \mathrm{E} 00\) DATA
* \(P(29), P(30), P(31), P(32), P(33), P(34), P(35)\),
* \(P(36), P(37), P(38), P(39), P(40), P(41), P(42)\),
* \(P(43), P(44), P(45), P(46), P(47), P(48), P(49)\),
* \(0.99909812496766759766 \mathrm{E} 00.0 .25447807915618744154 \mathrm{E}-02\). * \(0.98153114955374010687 \mathrm{E} 00,0.16446049854387810934 \mathrm{E}-01\), * \(0.92965485742974005667 \mathrm{E} 00,0.35957103307129322097 \mathrm{E}-01\), \(0.83672593816886873550 \mathrm{E} 00,0.56979509494123357412 \mathrm{E}-01\), \(0.70249620649152707861 \mathrm{E} 00,0.76879620499003531043 \mathrm{E}-01\), \(0.53131974364437562397 \mathrm{E} 00,0.93627109981264473617 \mathrm{E}-01\), \(0.33113539325797683309 \mathrm{E} \quad 00,0.10566989358023480974 \mathrm{E} \quad 00\), \(0.11248894313318662575 \mathrm{E} 00,0.11195687302095345688 \mathrm{E} 00\), \(0.11275525672076869161 \mathrm{E} 00,0.33603877148207730542 \mathrm{E}-01\), \(0.12903800100351265626 \mathrm{E}-01,0.50157139305899537414 \mathrm{E}-01\), \(0.42176304415588548391 \mathrm{E}-02,0.23231446639910269443 \mathrm{E}-01\), \(0.42877960025007734493 \mathrm{E}-01,0.54789210527962865032 \mathrm{E}-01\), \(0.12651565562300680114 \mathrm{E}-02,0.82230079572359296693 \mathrm{E}-02\), \(0.17978551568128270333 \mathrm{E}-01,0.28489754745833548613 \mathrm{E}-01 /\) DATA
* \(P(57), P(58), P(59), P(60), P(61), P(62), P(63)\)
* \(P(64), P(65), P(66), P(67), P(68), P(69), P(70)\).
* \(P(71), P(72), P(73), P(74), P(75), P(76), P(77)\)
* \(P(78), P(79), P(80), P(81), P(82), P(83), P(84)\)
* \(\quad 0.38439810249455532039 \mathrm{E}-01,0.46813554990628012403 \mathrm{E}-01\). \(0.52834946790116519862 \mathrm{E}-01,0.55978436510476319408 \mathrm{E}-01\),
\(0.99987288812035761194 \mathrm{E} 00,0.36322148184553065969 \mathrm{E}-03\), \(0.99720625937222195908 \mathrm{E} \quad 00,0.25790497946856882724 \mathrm{E}-02\), \(0.98868475754742947994 \mathrm{E} \quad 00,0.61155068221172463397 \mathrm{E}-02\), \(0.98868475754742947994 \mathrm{E} \quad 00.0 .6114548218621321898 \mathrm{E}-01\) 0.9721828747485179658 E 00.0. \(10498246909621321898 \mathrm{E}-01\) \(0.94634285837340290515 \mathrm{E} \quad 00,0.15406750466559497802 \mathrm{E}-01\), \(0.91037115695700429250 \mathrm{E} 00,0.20594233915912711149 \mathrm{E}-01\), \(0.86390793819369047715 \mathrm{E} \quad 00,0.25869679327214746911 \mathrm{E}-01\) 0.80694053195021761186 E 00.0.31073551111687964880E-01. \(0.73975604435269475868 \mathrm{E} \quad 00,0.36064432780782572640 \mathrm{E}-01\). \(0.66290966002478059546 \mathrm{E} \quad 00,0.40715510116944318934 \mathrm{E}-01\) \(0.48361802694584102756 \mathrm{E} 00,0.48564330406673198716 \mathrm{E}-01 /\) dATA
* \(P(85), P(86), P(87), P(88), P(89), P(90), P(91)\), * \(P(92), P(93), P(94), P(95), P(96), P(97), P(98)\), * \(P(99), P(100), P(101), P(102), P(103), P(104), P(105)\), * \(P(106), P(107), P(108), P(109), P(110), P(111), P(112)\)
* \(0.38335932419873034692 \mathrm{E} 00,0.51583253952048458777 \mathrm{E}-01\). \(0.27774982202182431507 \mathrm{E} 00,0.53905499335266063927 \mathrm{E}-01\) \(0.16823525155220746498 \mathrm{E} \quad 00,0.55481404356559363988 \mathrm{E}-01\) \(0.56344313046592789972 \mathrm{E}-01,0.56277699831254301273 \mathrm{E}-01\) \(0.56377628360384717388 \mathrm{E}-01,0.16801938574103865271 \mathrm{E}-01\) \(0.64519000501757369228 \mathrm{E}-02,0.25078569652949768707 \mathrm{E}-01\) \(0.21088152457266328793 \mathrm{E}-02,0.11615723319955134727 \mathrm{E}-01\) \(0.21438980012503867246 \mathrm{E}-01,0.27394605263981432516 \mathrm{E}-01\) \(0.63260731936263354422 \mathrm{E}-03,0.41115039786546930472 \mathrm{E}-02\) \(0.89892757840641357233 \mathrm{E}-02,0.14244877372916774306 \mathrm{E}-01\) \(0.19219905124727766019 \mathrm{E}-01,0.23406777495314006201 \mathrm{E}-01\) \(0.26417473395058259931 \mathrm{E}-01,0.27989218255238159704 \mathrm{E}-01\) \(0.18073956444538835782 \mathrm{E}-03,0.12895240826104173921 \mathrm{E}-02\), \(0.30577534101755311361 \mathrm{E}-02,0.52491234548088591251 \mathrm{E}-02 /\) DATA
* \(P(113), P(1 \mid 4), P(115), P(116), P(117), P(118), P(119)\),
* \(P(120), P(121), P(122), P(123), P(124), P(125), P(126)\),
* \(P(127), P(128), P(129), P(130), P(131), P(132), P(133)\),
* \(P(134), P(135), P(136), P(137), P(138), P(139), P(140)\)
* \(0.77033752332797418482 \mathrm{E}-02 ; 0.10297116957956355524 \mathrm{E}-01\),
* \(0.12934839663607373455 \mathrm{E}-01,0.15536775555843982440 \mathrm{E}-01\),
* \(0.18032216390391286320 \mathrm{E}-01,0.20357755058472159467 \mathrm{E}-01\)
* 0.22457265826816098707E-01,0.24282165203336599358E-01
* 0.22475 * \(0.25791626976024229388 \mathrm{E}-01,0.26952749667633031963 \mathrm{E}-01\) * \(0.27740702178279681994 \mathrm{E}-01,0.28138849915627150636 \mathrm{E}-01\) * 0.99998243035489159858E 00, 0.50536095207862517625E-04. \(0.99959879967191068325 E \quad 00,0.37774664632698466027 \mathrm{E}-03\), \(0.99831663531840739253 \mathrm{E} \quad 00,0.93836984854238150079 \mathrm{E}-03\). \(0.99572410469840718851 \mathrm{E} 00,0.16811428654214699063 \mathrm{E}-02\) 0.99149572117810613240 E 00, \(0.25687649437940203731 \mathrm{E}-02\), \(0.98537149959852037111 \mathrm{E} 00,0.35728927835172996494 \mathrm{E}-02\) \(0.97714151463970571416 \mathrm{E} 00,0.46710503721143217474 \mathrm{E}-02\),
\(0.96663785155841656709 \mathrm{E} 00,0.58434498758356395076 \mathrm{E}-02\), O. DATA
* \(P(141), P(149)-P(150), P(151), P(152) P(153), P(147)\),
* \(P(148), P(149), P(150), P(151), P(152), P(153), P(154)\),
* \(P(155), P(156), P(157), P(158), P(159), P(160), P(161)\),
* \(P(162), P(163), P(164), P(165), P(166), P(167), P(168) /\)
* 0.95373000642576113641E 00,0.7072.4899954335554680E-02, * \(0.93832039777959288365 \mathrm{E} 00,0.83428387539681577056 \mathrm{E}-02\) * \(0.92034002547001242073 \mathrm{E} 00,0.96411777297025366953 \mathrm{E}-02\) * 0.89974489977694003664 E 00,0.10955733387837901648E-01 \(0.87651341448470526974 \mathrm{E} \quad 00,0 \cdot 12275830560082770087 \mathrm{E}-01\), \(0.85064449476835027976 \mathrm{E} 00,0.13591571009765546790 \mathrm{E}-01\) \(0.82215625436498040737 \mathrm{E} 00,0.14893641664815182035 \mathrm{E}-01\), \(0.79108493379984836143 \mathrm{E} \quad 00,0.16173218729577719942 \mathrm{E}-01\), \(0.75748396638051363793 \mathrm{E} \quad 00,0.17421930159464173747 \mathrm{E}-01\) \(0.72142308537009891548 \mathrm{E} 00,0.18631848256138790186 \mathrm{E}-01\), \(0.68298743109107922809 \mathrm{E} 00,0.19795495048097499488 \mathrm{E}-01\), \(0.64227664250975951377 \mathrm{E} 00,0.20905851445812023852 \mathrm{E}-01\), \(0.59940393024224289297 \mathrm{E} \quad 00,0.21956366305317824939 \mathrm{E}-01\). \(0.55449513263193254887 \mathrm{E} 00,0.22940964229387748761 \mathrm{E}-01 /\)

\section*{DATA}
* \(P(169), P(170), P(171), P(172), P(173), P(174), P(175)\)
* \(P(176), P(177), P(178), P(179), P(180), P(181), P(182)\),
* \(P(183), P(184), P(185), P(186), P(187), P(188), P(189)\)
* \(0.50768775753371660215 \mathrm{E} 00,0.23854052106038540080 E-01\),
* 0.45913001198983233287E 00,0.24690524744487676909E-01.
* 0.4S913001198983233287E 00,0.24690524744487676909E-01, 0.40897982122988867241 E
0.35740383783153215238 E
0
\(0.0 .0 .25445769965464765813 \mathrm{E}-01\), \(0.35740383783153215238 \mathrm{E} \quad 00,0.26115673376706097680 \mathrm{E}-01\),
0.30457644155671404334 E
\(0,0,0.26696629927450359906 \mathrm{E}-01\), \(\begin{aligned} & 0.30457644155671404334 \mathrm{E} \\ & 0.25067873030348317661 \mathrm{E} \\ & 0\end{aligned} 0,0.26696622927450359906 \mathrm{E}-01\), \(0.25067873030348317661 \mathrm{E} 00,0.27185513229624791819 \mathrm{E}-01\), 0.19589750271110015392 E 00,0.27579749566481873035E-01, \(0.14042423315256017459 \mathrm{E} 00,0.27877251476613701609 \mathrm{E}-01\) \(0.84454040083710883710 \mathrm{E}-01,0.28076455793817246607 \mathrm{E}-01\), \(0.28184648949745694339 \mathrm{E}-01,0.28176319033016602131 \mathrm{E}-01\), \(0.28188814180192358694 \mathrm{E}-01,0.84009692870519326354 \mathrm{E}-02\), \(0.32259500250878684614 \mathrm{E}-02,0.12539284826474884353 \mathrm{E}-01\), \(0.10544076228633167722 \mathrm{E}-02,0.58078616599775673635 \mathrm{E}-02\), 0.10719490006251933623E-01,0.13697302631990716258E-01/, DATA
* \(P(197), P(198), P(199), P(200), P(201), P(202), P(203)\),
* \(P(204), P(205), P(206), P(207), P(208), P(209), P(210)\)
* \(P(211), P(212), P(213), P(214), P(215), P(216), P(217)\)
* \(P(218), P(219), P(220), P(221), P(222), P(223), P(224)\)
* \(0.31630366082226447689 \mathrm{E}-03,0.20557519893273465236 \mathrm{E}-02\).
* \(0.44946378920320678616 \mathrm{E}-02,0.71224386864583871532 \mathrm{E}-02\),
* 0.96099525623638830097E-02,0.11703388747657003101E-01,
* 0.13208736697529129966E-01,0.13994609127619079852E-01,
* \(0.90372734658751149261 \mathrm{E}-04,0.64476204130572477933 \mathrm{E}-03\),
* 0.1 \(15288767050877655684 \mathrm{E}-02,0.26245617274044295626 \mathrm{E}-02\), * \(0.38516876166398709241 \mathrm{E}-02,0.51485584789781777618 \mathrm{E}-02\), * \(0.64674198318036867274 \mathrm{E}-02,0.77683877779219912200 \mathrm{E}-02\), * \(0.90161081951956431600 \mathrm{E}-02,0.10178877529236079733 \mathrm{E}-01\), * \(0.11228632913408049354 \mathrm{E}-01,0.12141082601668299679 \mathrm{E}-01\), * \(0.12895813488012114694 \mathrm{E}-01,0.13476374833816515982 \mathrm{E}-01\), \(0.13870351089139840997 \mathrm{E}-01,0.14069424957813575318 \mathrm{E}-01\), \(0.25157870384280661489 \mathrm{E}-04,0.18887326450650491366 \mathrm{E}-03\), \(0.46918492424785040975 \mathrm{E}-03,0.84057143271072246365 \mathrm{E}-03\), DATA
* \(P(225), P(226), P(227), P(228), P(229), P(230), P(231)\),
* \(P(232), P(233), P(234), P(235), P(236), P(237), P(238)\),
* \(P(239), P(240), P(241), P(242), P(243), P(244), P(245)\),
* \(0.12843824718970101768 \mathrm{E}-02,0.17864463917586498247 \mathrm{E}-02\), * 0.23355251860571608737E-02,0.29217249379178197538E-02, * \(0.23355251860571608737 \mathrm{E}-02,0.29217249379178197538 \mathrm{E}-02\), * \(\quad 0.35362449977167777340 \mathrm{E}-02,0.41714193769840788528 \mathrm{E}-02\), * \(0.48205888648512683476 \mathrm{E}-02,0.54778666939189508240 \mathrm{E}-02\), * \(\quad 0.61379152800413850435 \mathrm{E}-02,0.67957855048827733948 \mathrm{E}-02\), * \(0.74468208324075910174 \mathrm{E}-02,0.80866093647888599710 \mathrm{E}-02\), * \(0.87109650797320868736 \mathrm{E}-02,0.93159241280693950932 \mathrm{E}-02\), * \(\quad 0.98977475240487497440 \mathrm{E}-02,0.10452925722906011926 \mathrm{E}-01\), * \(\quad 0.10978183152658912470 \mathrm{E}-01,0.11470482114693874380 \mathrm{E}-01\), * \(0.11927026053019270040 \mathrm{E}-01,0.12345262372243838455 \mathrm{E}-01\), * \(0.12722884982732382906 \mathrm{E}-01,0.13057836688353048840 \mathrm{E}-01\), * \(0.13348311463725179953 \mathrm{E}-01,0.13592756614812395910 \mathrm{E}-01\), * 0.14038227896908623303E-01,0.14088159516508301065E-01/ DATA
* \(P(253), P(254), P(255), P(256), P(257), P(258), P(259)\),
* \(P(260), P(261), P(262), P(263), P(264), P(265), P(266)\),
* \(P(267), P(268), P(269), P(270), P(271), P(272), P(273)\),
* \(P(274), P(275), P(276), P(277), P(278), P(279), P(280)\),
* \(0.99999759637974846462 \mathrm{E} 00.0 .69379364324108267170 \mathrm{E}-05\). * 0.99994399620705437576E 00,0.53275293669780613125E-04, * \(0.99976049092443204733 E\) 0.99938033802502358193 E 0.99874561446809511470 E 0.99780535449595727456 E \(.99651414591489027385 E\) .99483150280062100052 E .99272134428278861533E .99015137040077015918 E .98709252795403406719 E 0.97940628167086268381 E 0.97940628167086268381 E
0.97473445975240266776 E \(0,0.13575491094922871973 \mathrm{E}-03\) \(0,0.24921240048299729402 \mathrm{E}-03\) \(0.0 .38974528447328229322 \varepsilon-03\) \(00,0.55429531493037471492 E-03\) \(00,0.74028280424450333046 \mathrm{E}-03\) \(00,0.94536151685852538246 \mathrm{E}-03\) \(00,0.11674841174299594077 \mathrm{E}-02\) \(00,0.14049079956551446427 \mathrm{E}-02\) \(00,0.16561127281544526052 \mathrm{E}-02\) 00,0.16561127281544526052E-02 \(00,0.19197129710138724125 E-02\) DATA
* \(P(281), P(282), P(283), P(284), P(285), P(286), P(287)\), * \(P(288), P(289), P(290), P(291), P(292), P(293), P(294)\),
* \(P(302), P(303), P(304), P(305), P(306), P(307), P(308)\),
* \(0.96948465950245923177 \mathrm{E} 00,0.27721957645934509940 \mathrm{E}-02\) * \(0.96364062156981213252 \mathrm{E} 00,0.30730184347025783234 \mathrm{E}-02\),
* \(0.96364062156981213252 \mathrm{E} 00,0.30730184347025783234 \mathrm{E}-02\),
* \(\quad 0.95718821610986096274 \mathrm{E}\) 0.95011529752129487656 E 0.94241156519108305981 E .93406843615772578800 0.92507893290707565236 E 0.91543758715576504064 E 0.90514035881326159519 E 0.89418456833555902286 E 0.88256884024734190684 E \(0.87029305554811390585 E\) 0.85735831088623215653 E 0.84376688267270860104 DATA
* \(P(309), P(310), P(311), P(312), P(313), P(314), P(315)\),
* \(P(316), P(317), P(318), P(319), P(320), P(321), P(322)\),
* \(P(323), P(324), P(325), P(326), P(327), P(328), P(329)\),
* \(P(330), P(331), P(332), P(333), P(334), P(335), P(336) /\)
* \(0.82952219463740140018 \mathrm{E} 00,0.72849479805538070639 \mathrm{E}-02\). * \(0.81462878765513741344 \mathrm{E} 00,0.76079896657190565832 \mathrm{E}-02\). * \(0.79909229096084140180 \mathrm{E} 00,0.79279493342948491103 \mathrm{E}-02\).
* \(0.78291939411828301639 \mathrm{E} 00,0.82443037630328680306 \mathrm{E}-02\)
* \(0.74869629361693660282 \mathrm{E} 00.0 .88641732094824942641 \mathrm{E}-02\) * \(0.73066452124218126133 \mathrm{E} 00,0.91667111635607884067 \mathrm{E}-02\)
* 0.71203315536225203459E 00,0.94636899938300652.943E-02,
* \(0.69281376977911470289 \mathrm{E} 00,0.97546565363174114611 \mathrm{E}-\mathrm{UR}\),
* 0.67301883023041847920E 00,0.10039172044056840798E-01, * \(0.65266166541001749610 \mathrm{E} 00,0.10316812330947621682 \mathrm{E}-01\),
* \(0.63175643771119423041 \mathrm{E} 00,0.10587167904885197931 \mathrm{E}-01\),
* \(0.61031811371518640016 \mathrm{E} 00,0.10849844089337314099 \mathrm{E}-01\),
* \(0.58836243444766254143 \mathrm{E} 00,0.11104461134006926537 \mathrm{E}-01 /\) DATA
* \(P(337), P(338), P(339), P(340), P(341), P(342), P(343)\),
* \(P(344), P(345), P(346), P(347), P(348), P(349), P(350)\),
* \(P(351), P(352), P(353), P(354), P(355), P(356), P(357)\),
* \(P(35 B), P(359), P(360), P(361), P(362), P(363), P(364)\),
* \(0.56590588542365442262 \mathrm{E} 00,0.11350654315980596602 \mathrm{E}-01\).
* \(0.54296566649831149049 \mathrm{E} 00,0.11588074033043952568 \mathrm{E}-01\)
* \(0.51955966153745702199 \mathrm{E} 00,0.11816385890830235763 \mathrm{E}-01\)
* 0.49570640791876146017 E 00,0.12035270785279562630E-01,
* \(0.47142506587165887693 \mathrm{E} 00,0.12244424981611985899 \mathrm{E}-01\),
* \(0.44673538766202847374 \mathrm{E} 00,0.12443560190714035263 \mathrm{E}-01\),
- \(0.42165768662616330006 \mathrm{E} 00,0.12632403643542078765 \mathrm{E}-01\),
- \(0.39621280605761593918 \mathrm{E} 00,0.12810698163877361967 \mathrm{E}-01\).
* \(0.39621280605761593918 \mathrm{E} 0,0.12810698163877361967 \mathrm{E}-01\)
* \(0.37042208795007823014 \mathrm{E} 00,0.12978202239537399286 \mathrm{E}-01\)
* \(0.34430734159943802278 \mathrm{E} 00,0.13134690091960152836 \mathrm{E}-01\)
* \(0.31789081206847668318 \mathrm{E} 00,0.13279951743930530650 \mathrm{E}-01\)
* \(0.29119514851824668196 \mathrm{E} 00,0.13413793085110098513 \mathrm{E}-01\)
* \(0.26424337241092676194 \mathrm{E} 00,0.13536035934956213614 \mathrm{E}-01\),
* \(0.23705884558982972721 \mathrm{E} 00,0.13646518102571291428 \mathrm{E}-01 /\) DATA
* \(P(365), P(366), P(367), P(368), P(369), P(370), P(371)\),
* \(P(372), P(373), P(374), P(375), P(376), P(377), P(378)\),
* \(P(379), P(380), P(381)\),
* \(0.20966523824318119477 \mathrm{E} 00,0.13745093443001896632 \mathrm{E}-01\),
* 0.18208649675925219825E 00,0.13831631909S06428676E-01,
* \(0.15434681148137810869 \mathrm{E} 00,0.13906019601325461264 \mathrm{E}-01\).
* \(0.12647058437230196685 \mathrm{E} 00,0.13968158806516938516 \mathrm{E}-01\).
* \(0.98482396598119202090 \mathrm{E}-01,0.14017968039456608810 \mathrm{E}-01\).
* \(0.70406976042855179063 \mathrm{E}-01,0.14055382072649964277 \mathrm{E}-01\),
* 0.42269164765363603212E-01,0.14080351962553661325E-01,
* 0.14093886410782462614E-01,0.14092845069160408355E-01,
* 0.14094407090096179347E-01/

ICHECK \(=0\)
C CHECK FQR TRIVIAL CASE.
IF (A.EQ.B) Gの T0 70
C SCALE FACTORS.
UMM \(=(B+A) / 2.0\)
C-POINT GAUSS
FZERC \(=F(S U M)\)
RESULT(1) \(=2 \cdot 0 * F Z E R 0 * D I F F\)
\(1=0\)
INEW \(=1\)
\(K=2\)
ACUM \(=0.0\)
GO T0 30
10 IF (K.EQ.8) GO T0 50
\(K=K+1\)
CONTRIBUTION FROM FUNCTIDN VALUES ALEEADY COMPUTED.
D0 \(20 \mathrm{~J}=1\), I อLD
\(I=I+1\)
\(A C U M=A C U M+P(I) * F U N C T(J)\)
20 CONTINUE
C CONTRIBUTION FRGM NEW FUNCTION VALUES.
301 ØLD \(=10 L D+I N E W\)
DØ \(40 \mathrm{~J}=\mathrm{INEW}, \mathrm{I} 0 \mathrm{~L} D\)
\(I=1+1\)
\(X=P(I) * D I F F\)
\(F U N C T(J)=F(S U M+X)+F(S U M-X)\)
\(I=I+1\)
ACUM \(=A C L I M+P(I) * F U N C T(J)\)
o Continue
\(I N E W=I\) GLD +1
\(1=I+1\)
RESULT \(T\) K \()=(A C U M+P(I) * F Z E R \varnothing) * D I F F\)
C CHECK FOR CONVERGENCE.
IF (ABS(RESULT(K)-RESULT(K-1))-EPSIL*ABS(RESULT(K))) 60, * 60, 10

C CONVERGENCE NOT ACHIEVED.
SO ICHECK = 1
C NORMAL TERMINATION.
60 NPTS = INEW + I OLD
RETURN
C TRIVIAL CASE
\(70 \mathrm{~K}=2\)
KESULT \((1)=0.0\)
RESULT(2) \(=0.0\)
NPTS = 0
END
FUNCTIGN QSUB(A, B, EPSIL, NPTS, ICHECK, KELERK, F)
C THIS FUNCTIØN ROUTINE PERFORMS AUTOMATIC INTEGKATION C GUER A FINITE INTERVAL USING THE BASIC INTEGKATI DN ALGøRITHM QUAD, TOGETHER WITH, IF NECESSANY, A NONADAPTIVE SUBDIVISION PROCESS.

THE CALL TAKES THE FGKM
QSUB (A,B,EPSIL,NPTS, ICHECK,RELERR,F)
AND CAUSES \(F(X)\) T \(\emptyset\) BE INTEGKATED OVER (A,B) WITH KELATIVE
C ERROR HQPEFULLY NGT EXCEEDING EPSIL. SHDULD QUAD CONVERGE C (ICHECK=O) THEN QSUB WILL RETURN THE VALUE GBTAINED BY IT C (ICHECK=O) THEN OSUB WILL RETURN THE VALUE OBTAIN
C OTHERWISE SUADIVISION WILL BE INVOKED AS A RESCUE
C OPERATI ØN IN A NON-ADAPTIVE MANNER. THE ARGUMENT RELERR
C GIVES A GRUDE ESTIMATE OF THE ACTUAL KELATIVE ERROR GIVES A CRTAINED.

THE SUBDIVISI ON STRATEGY IS AS FOLLOWS
LET THE INTERVAL (A,B) BE DIVIDED INTO 2**N PANELS , C N OF THE SUBDIVISI ON PROCESS. QUAD IS APPLIED FIRSI C THE SUBDIVIDED INTERVAL ON WHICH QUAD LAST FAILED TD C CONVERGE AND IF CONVERGENCE IS NOW ACHIEVED THE REMA C PANELS ARE INTEGRATED. SHDULD A CØNVERGENCE FAILURE C ON ANY PANEL THE INTEGRATI ON AT THAT POINT IS TERMINATED C AND THE PROCEDURE REPEATED WITH N INCREASED BY 1. THE C STKATEGY INSURES THAT POSSIBLY DELINQUENT INTEKVALS ARE C EXAMINED BEFQRE WORK, WHICH LATER MIGHT HAVE TG BE C DISCARDED, IS INVESTED ON WELL BEHAVED PANELS. THE C PROCESS IS COMPLETE WHEN NO CONVERGENCE FAILURE פCCURS ON ANY PAINEL AND THE SUM OF THE RESULTS GBTAINED BY QUAD ON C EACH PANEL IS TAKEN AS THE VALUE OF THE INTEGRAL.

THE PROCESS IS VERY CAUTIQUS IN THAT THE SUBDIVISION QF THE INTERVAL (A,B) IS UNIFQKM, THE FINENESS OF WHICH IS CONTRØLLED BY THE SUCCESS QF QUAD. IN THIS WAY IT IS KATHER DIFFICULT FOR A SPUKIOUS CQNVERGENCE TO SLIP THROUGH.

THE CONVERGENCE CRITERION OF QUAD IS SLIGHTLY RELAXED IN THAT A PANEL IS DEEMED TO HAVE BEEN SUCCESSFULLY INTEGRATED IF EITHER QUAD CØNVERGES IOR THE ESTIMATED ABSOLUTE ERKOR COMMITTED ON THIS PANEL DEES NØT EXCEED EPSIL TIMES THE ESTIMATED ABSøLUTE VALUE ØF THE INTEGRAL OVER (A,B). THIS RELAXATION IS TD TKY TO TAKE ACCOUNT OF A COMMON SITUATION WHERE ONE PAKTICULAR PANEL CAUSES SPECIAL DIFFICULTY, PERHAPS DUE TO A SINGULARITY OF SפME TYPE. IN THIS CASE QUAD COULD OBTAIIN NEAKLY EXACT TYPE. IN THIS CASE QUAD COULD OBTAIN NEAKLY EXACT
ANSWEKS ON ALL OTHER PANELS AND S® THE RELATIVE ERROR FOR THE TOTAL INTEGKATION WOULD BE ALMOST ENTIRELY DUE TO THE DELINQUENT PANEL. WITHQUT THIS CONDITIDN THE CQMPUTATI ON MIGHT CONTINUE DESPITE THE REQUESTED RELATIVE ERROR BEING ACHIEVED.

THE QUTCOME OF THE INTEGRATI日N IS INDICATED BY ICHECK.
ICHECK=0 - CONVERGENCE QBTAINED WITHØUT INVOKING SUBDIVISION. THIS CORRESPONDS TO THE DIRECT USE OF QUAD.
ICHECK=1 - RESULT ØBTAINED AFTER INVQKING SUBDIVISION.
ICHECK=2 - AS FOR ICHECK=1 BUT AT SDME PGINT THE RELAXED CONVERGENCE CRITERION WAS USED. THE RISK of UNDERESTIMATING THE KELATIVE ERROR WILL BE INCREASED. IF NECESSARY, CONFIDENCE MAY BE RESTORED BY CHECKING EPSIL AND RELERR FGR A SERIOUS DISCREPANCY.
ICHECK NEGATIVE
IF DURING THE SUBDIVISIDN PKOCESS THE ALLOWED UPPER LIMIT ON THE NUMBEK OF PANELS THAT MAY BE GENERATED (PRESENTL.Y 4096) IS REACHED A RESULT IS GEITAINED WHICH MAY BE UNRELIABLE BY CONTINUING THE INTEGRATION WITHOUT FURTHER SUBDIVISION I GNORING CONVERGENCE FAILURES. THIS OCCURRENCE IS FLAGGED BY RETURNING ICHECK WITH NEGATIVE SIGN.
THE RELIABILITY OF THE ALGORITHM WIL.L DECKEASE FOR LARGE VALUES OF EPSIL. IT IS RECØMMENDED THAT EPSIL SHØULD GENERALLY BE LESS THAN ABDUT 0.001 .

DIMENSIGN RESULT(8)
INTEGER BAD, DUT
LOGICAL RHS
EXTERNAL \(F\)
DATA NMAX/4096/
CALL QUAD(A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)
QSUB \(=\) RESULT(K)
RELERR \(=0.0\)
IF (QSUB.NE.0.0) RELERR =
* ABS( (KESULT(K)-RESULT(K-1))/QSUE1)

C CHECK IF SUBDIVISION IS NEEDED.
IF (ICHECK.EQ.O) RETURN
c SUBDIVIDE
ESTIM \(=\mathrm{ABS}(Q S U B * E P S I L)\)
IC \(=1\)
RHS \(=\).FALSE.
\(\mathrm{N}=1\)
\(H=B-A\)
\(B A D=1\)
10 QSUB \(=0.0\)
RELERR \(=0.0\)
\(H=H * 0.5\)
\(N=N+N\)
C INTERVAL (A,B) DIVIDED INTO N EQUAL SUBINTERVALS.
C INTEGRATE OVER SUBINTERVALS BAD Tø (EIAD+1) WHERE TRøUBLE
C HAS OCCURRED.
\(M 1=B A D\)
\(M 2=B A D\)
OUT \(=1\)
GØ TO 50
C INTEGRATE ØVER SUBINTERVALS 1 T \(\emptyset\) (BAD-1)
\(20 \mathrm{M1}=1\)
M2 \(=\) BAD -1
\(\begin{array}{ll}\text { RUT } & =2 \\ \text { OU }\end{array}\)
C INTEGRATE QVER SUBINTERVALS (BAD+2) TO N.
\(30 \mathrm{MI}=\mathrm{BAD}+2\)
\(M 2=N\)
\(\theta U T=3\)
C SUBDIVISION RESULT
40 ICHECK = IC
RELERR \(=\) RELERR/ABS (QSUB)
RETURN
C INTEGRATE QUER SUBINTERVALS MI TO M2.
50 IF (M1.GT.M2) GD T0 90
D0 \(80 \mathrm{JJ}=\mathrm{M} 1, \mathrm{M} 2\)
*
\(0.45091653865847414235 \mathrm{E} \quad 00,0.13441525524378422036 \mathrm{E} 00\) \(0.51603282997079739697 \mathrm{E}-01,0.20062852937698902103 \mathrm{E} 00\), \(0.99383196321275502221 \mathrm{E} 00,0.17001719629940260339 \mathrm{E}-01\), \(0.88845923287225699889 \mathrm{E} \quad 00,0.92927195315124537686 \mathrm{E}-01\), 0.62110294673722640294 E 0.22338668642896688163 E 0.22551049979820668739 E \(00,0.21915685840158749640 \mathrm{E}\) \(00,0 \cdot 21915685840158749640 \mathrm{E} 00\) \(0.25807598096176653565 \mathrm{E}-01,0.10031427861179557877 \mathrm{E} 00\), \(0.84345657393211062463 \mathrm{E}-02,0.46462893261757986541 \mathrm{E}-01\) \(0.85755920049990351154 \mathrm{E}-01,0.10957842105592463824 \mathrm{E} 00 /\) DATA
* \(P(29), P(30), P(31), P(32), P(33), P(34), P(35)\),
* \(P(36), P(37), P(38), P(39), P(40), P(41), P(42)\),
\(* P(43), P(44), P(45), P(46), P(47), P(48), P(49)\),
* \(P(43), P(44), P(45), P(46), P(47), P(48), P(49)\),
* \(P(50), P(51), P(52), P(53), P(54), P(55), P(56)\)
* \(0.99909812496766759766 \mathrm{E} 00,0.25447807915618744154 \mathrm{E}-02\), * \(0.98153114955374010687 \mathrm{E} 00,0.16446049854387810934 \mathrm{E}-01\),
* \(P(57), P(58), P(59), P(60), P(61), P(62), P(63)\),
* \(P(64), P(65), P(66), P(67), P(68), P(69), P(70)\),
* \(P(71), P(72), P(73), P(74), P(75), P(76), P(77)\),
* \(0.38439810249455532039 \mathrm{~F}-01.0 .468135549906\)
* \(0.52834946790116519862 \mathrm{E}-01.0 .55978436510476312403 \mathrm{E}-01\) * \(0.52834946790116519862 \mathrm{E}-01,0.55978436510476319408 \mathrm{E}-01\)
* \(P(85), P(86), P(87), P(88), P(89), P(90), P(91)\)
* \(P(92), P(93), P(94), P(95), P(96), P(97), P(98)\)
* \(P(99), P(100), P(101), P(102), P(103), P(104), P(105)\)
* \(P(106), P(107), P(108), P(109), P(110), P(111), P(112)\)
* \(0.38335932419873034692 \mathrm{E} 00,0.51583253952048458777 \mathrm{E}-01\), * 0.27774982202182431507E 00.0.53905.499335266063927E-01, \(0.16823525155220746498 \mathrm{E} 00,0.55481404356559363988 \mathrm{E}-01\),
* \(P(113), P(114), P(115), P(116), P(117), P(118), P(119)\),
* \(P(120), P(121), P(122), P(123), P(124), P(125), P(126)\),
* \(P(127), P(128), P(129), P(130), P(131), P(132), P(133)\),
*
* \(0.12934839663607373455 \mathrm{E}-01,0.15536775555843982440 \mathrm{E}-01\)
* 0.99959879967191068325 E 0.99831663531840739253 E 0.99572410469840718851E 0.99149572117810613240 E 0.98537149959852037111 E 0.97714151463970571416 E dATA
* \(P(141), P(142), P(143), P(144), P(145), P(146), P(147)\),
* \(P(148), P(149), P(150), P(151), P(152), P(153), P(154)\)
* \(P(155), P(156), P(157), P(158), P(159), P(160), P(161)\),
* \(P(162), P(163), P(164), P(165), P(166), P(167), P(168)\)
* \(0.95373000642576113641 \mathrm{E} 00,0.70724899954335554680 \mathrm{E}-02\), * 0.938320397779S9288365E 00,0.83428387539681577056E-02,
* 0.92034002547001242073 E
\(\qquad\) 0.89974489977694003664 E
0.87651341448470526974 E 0.85064449476835027976 E 0.82215625436498040737 E 0.79108493379984836143 E 0.75748396638051363793 E 0.7214230853700989154 E 0.68298743109107922809 E 0.68298743109107922809 E 0.59940393024224289297 E 0.55449513263193254887 E
\(00,0.96411777297025366953 \mathrm{E}-02\), \(00,0.10955733387837901648 \mathrm{E}-01\), \(00,0.12275830560082770087 \mathrm{E}-01\), 00, 0.13591571009765546790E-01, 00,0.14893641664815182035E-01, \(00=0.16173218729577719942 \mathrm{E}-01\), \(00,0.17421930159464173747 \mathrm{E}-01\). \(00,0.18631848256138790186 \mathrm{E}-01\). \(00,0.19795495048097499488 \mathrm{E}-01\), \(00,0.20905851445812023852 \mathrm{E}-01\), \(00,0.21956366305317824939 \mathrm{E}-01\). \(00,0.21956366305317824939 \mathrm{E}-01\),
\(00,0.22940964229387748761 \mathrm{E}-01 /\) \(00,0.938369848354238150079 \mathrm{E}-03\), \(0,0.93836984854238150079 \mathrm{E}-03\) \(00,0.16811428654214699063 \mathrm{E}-02\) \(00,0 \cdot 25687649437940203731 \mathrm{E}-02\), \(00,0.35728927835172996494 \mathrm{E}-02\) \(00,0.46710503721143217474 \mathrm{E}-02\) \(00,0.58434498758356395076 \mathrm{E}-02\)

DATA
* \(P(169), P(170), P(171), P(172), P(173), P(174), P(175)\),
* \(P(176), P(177), P(178), P(179), P(180), P(181), P(182)\),
* \(P(176), P(187), P(178), P(179), P(180), P(181), P(182)\),
* \(P(190), P(191), P(192), P(193), P(194), P(195), P(196)\)
* \(0.50768775753371660215 \mathrm{E} 00,0 \cdot 23854052106038540080 \mathrm{E}-01\), * 0.45913001198983233287E 00,0.24690524744487676909E-01, * 0.40897982122988867241E 00,0.25445769965464765813E-01, \(0.35740383783153215238 \mathrm{E} 00.0 .26115673376706097680 \mathrm{E}-01\), * \(0.30457644155671404334 \mathrm{E} 00,0.26696622927450359906 \mathrm{E}-01\), * \(0.25067873030348317661 \mathrm{E} 00,0.27185513229624791819 \mathrm{E}-01\), * 0.19589750271110015392E 00.0.27579749566481873035E-01, * 0.14042423315256017459 E 00,0.27877251476613701609E-01, * 0.84454040083710883710E-01,0.28076455793817246607E-01, * \(\quad 0.28184648949745694339 \mathrm{E}-01,0.28176319033016602131 \mathrm{E}-01\), * \(\quad 0.28188814180192358694 \mathrm{E}-01,0.84009692870519326354 \mathrm{E}-02\),
* \(\quad 0.32259500250878684614 \mathrm{E}-02,0.12539284826474884353 \mathrm{E}-01\), * 0.10544076228633167722E-02,0.58078616599775673635E-02, dATA
* \(P(197), P(198), P(199), P(200), P(201), P(202), P(203)\),
* \(P(204), P(205), P(206), P(207), P(208), P(209), P(210)\),
* \(P(211), P(212), P(213), P(214), P(215), P(216), P(217)\),
* \(\quad \mathrm{P}(218), P(219), P(220), P(2216366082226447689 \mathrm{E}-03,0.20557519893273465236 \mathrm{E}-02\).
* \(0.44946378920320678616 \mathrm{E}-02,0.71224386864583871532 \mathrm{E}-02\), * \(0.96099525623638830097 \mathrm{E}-02,0.11703388747657003101 \mathrm{E}-01\), * 0.13208736697529129966E-01,0.13994609127619079852E-01, * \(0.90372734658751149261 \mathrm{E}-04,0.64476204130572477933 \mathrm{E}-03\), * \(0.15288767050877655684 \mathrm{E}-02,0.26245617274044295626 \mathrm{E}-02\), * \(0.38516876166398709241 \mathrm{E}-02,0.51485584789781777618 \mathrm{E}-02\), * \(0.64674198318036867274 \mathrm{E}-02,0.77683877779219912200 \mathrm{E}-02\), * \(\quad 0.90161081951956431600 \mathrm{E}-02,0.10178877529236079733 \mathrm{E}-01\), * \(0.11228632913408049354 \mathrm{E}-01,0.12141082601668299679 \mathrm{E}-01\), * \(0.12895813488012114694 \mathrm{E}-01,0.1347637483381651 \mathrm{S9} 82 \mathrm{E}-01\),
* \(0.13870351089139840997 \mathrm{E}-01,0.14069424957813575318 \mathrm{E}-01\), * \(\quad 0.25157870384280661489 \mathrm{E}-04,0.18887326450650491366 \mathrm{E}-03\), * DATA
* \(P(225), P(226), P(227), P(228), P(229), P(230), P(231)\),
* \(P(232), P(233), P(234), P(235), P(236), P(237), P(238)\),
* \(P(239), P(240), P(241), P(242), P(243), P(244), P(245)\),
* \(P(246), P(247), P(248), P(249), P(250), P(251), P(252)\),
* \(0.12843824718970101768 \mathrm{E}-02,0.17864463917586498247 \mathrm{E}-02\), \(* \quad 0.23355251860571608737 \mathrm{E}-02,0.29217249379178197538 \mathrm{E}-02\),
\(* \quad 0.35362449977167777340 \mathrm{E}-02,0.41714193769840788528 \mathrm{E}-02\), * \(\quad 0.35362449977167777340 \mathrm{E}-02,0.41714193769840788528 \mathrm{E}-02\), * \(\quad 0.48205888648512683476 \mathrm{E}-02,0.54778666939189508240 \mathrm{E}-02\), * \(\quad 0.61379152800413850435 \mathrm{E}-02,0.67957855048827733948 \mathrm{E}-02\), * \(\quad 0.74468208324075910174 \mathrm{E}-02,0.80866093647888599710 \mathrm{E}-02\), * \(\quad 0.87109650797320868736 \mathrm{E}-02,0.93159241280693950932 \mathrm{E}-02\), * 0.10978183152658912470E-01,0.11470482114693874380E-01, * 0.11927026053019270040E-01,0.12345262372243838455E-01, * \(0.12722884982732382906 \mathrm{E}-01,0.13057836688353048840 \mathrm{E}-01\),
* \(0.13348311463725179953 \mathrm{E}-01,0.13592756614812395910 \mathrm{E}-01\),
* \(0.13789874783240936517 \mathrm{E}-01,0.13938625738306850804 \mathrm{E}-01\), * 0.14038227896908623303E-01,0.14088159516508301065E-01 DATA
* \(P(253), P(254), P(255), P(256), P(257), P(258), P(259)\),
* \(P(260), P(261), P(262), P(263), P(264), P(265), P(266)\),
* \(P(267), P(268), P(269), P(270), P(271), P(272), P(273)\),
* \(0.99999759637974846462 \mathrm{E} 00,0.69379364324108267170 \mathrm{E}-05\), * 0.99994399620705437576E 00,0.53275293669780613125E-04, * \(0.99976049092443204733 \mathrm{E} 00,0.13575491094922871973 \mathrm{E}-03\), * \(0.99938033802502358193 \mathrm{E} 00,0.24921240048299729402 \mathrm{E}-03\), * \(0.99938033802502358193 \mathrm{E} 00,0.24921240048299729402 \mathrm{E}-03\), * \(0.99780535449595727456 \mathrm{E} 00,0.55429531493037471492 \mathrm{E}-03\), * \(0.99651414591489027385 \mathrm{E} 00,0.74028280 .424450333046 \mathrm{E}-03\). * \(0.99651414591489027385 \mathrm{E} 00,0.74028280 .424450333046 \mathrm{E}-03\), * \(\quad 0.99483150280062100052 \mathrm{E} 00,0.94536151685852538246 \mathrm{E}-03\), * \(0.99272134428278861533 \mathrm{E} 00,0,11674841174299594077 \mathrm{E}-02\), * \(0.99015137040077015918 \mathrm{E} 00,0.14049079956551446427 \mathrm{E}-02\), * \(0.98709252795403406719 \mathrm{E} 0,0.16561127281544526052 \mathrm{E}-02\), * \(0.98351865757863272876 \mathrm{E} 00,0.1919712971013872412 \mathrm{EE}-02\), * \(0.97940628167086268381 \mathrm{E} 00,0.21944069253638388388 \mathrm{E}-02 \prime\), - DATA
* \(P(281), P(282), P(283), P(284), P(285), P(286), P(287)\),
* \(P(288), P(289), P(290), P(291), P(292), P(293), P(294)\),
* \(P(295), P(296), P(297), P(298), P(299), P(300), P(301)\),
* \(P(302), P(303), P(304), P(305), P(306), P(307), P(308)\),
\(* P(302), P(303), P(304), P(305), P(306), P(307), P(308) /\)
\(* \quad 0.96948465950245923177 E 00,0.27721957645934509940 \mathrm{E}-02\), * 0.96364062156981213252E 00,0.30730184347025783234E-02, * 0.95718821610986096274E 00,0.33803979910869203823E-02 * \(0.95011529752129487656 \mathrm{E} 00,0.36933779170256508183 \mathrm{E}-02\), * \(0.94241156519108305981 \mathrm{E} 00,0.40110687240750233989 \mathrm{E}-02\), * \(0.93406843615772578800 \mathrm{E} 00,0.43326409680929828545 \mathrm{E}-02\), * \(\quad 0.92507893290707565236 \mathrm{E} 00,0.46573172997568547773 \mathrm{E}-02\), * \(0.91543758715576504064 \mathrm{E} 00,0.49843645647655386012 \mathrm{E}-02\), * \(\quad 0.90514035881326159519 \mathrm{E} 00,0.53130866051870565663 \mathrm{E}-02\), * \(0.89418 .456833555902286 \mathrm{E} 00,0.56428181013844441585 \mathrm{E}-02\), * \(0.87029305554811390585 \mathrm{E} 00,0.63027734490857587172 \mathrm{E}-02\). * \(0.85735831088623215653 \mathrm{E} 00,0.66317812429018878941 \mathrm{E}-02\). * \(0.84376688267270860104 \mathrm{E} 00,0.69593614093904229394 \mathrm{E}-02\), DATA
* \(P(309), P(310), P(311), P(312), P(313), P(314), P(315)\),
* \(P(316), P(317), P(318), P(319), P(320), P(321), P(322)\),
* \(P(323), P(324), P(325), P(326), P(327), P(328), P(329)\),
* \(P(330), P(331), P(332), P(333), P(334), P(335), P(336)\),
* \(0.82952219463740140018 \mathrm{E} 00,0.72849479805538070639 \mathrm{E}-02\),
* \(0.81462878765513741344 \mathrm{E} 00,0.76079896657190565832 \mathrm{E}-02\) 0.79909229096084140180E 00,0.79279493342948491103E-02 \(0.78291939411828301639 \mathrm{E} \quad 00,0.82443037630328680306 \mathrm{E}-\mathrm{O}\)
* 0.76611781930376009072E 00.0.85565435613076896192E-02.
* \(0.74869629361693660282 \mathrm{E} 00,0.88641732094824942641 \mathrm{E}-02\), \(0.73066452124218126133 \mathrm{E} 00,0.91667111635607884067 \mathrm{E}-02\), \(0.71203315536225203459 \mathrm{E} 00,0.94636899938300652943 \mathrm{E}-02\), \(0.69281376977911470289 \mathrm{E} 00,0.97546565363174114611 \mathrm{E}-02\), \(0.67301883023041847920 \mathrm{E} 00.0 .10039172044056840798 \mathrm{E}-01\), 0.65266166541001749610 E 00,0.1031681233094762168EE-01, \(0.65266166541001749610 \mathrm{E} 00,0.10316812330947621682 \mathrm{E}-01\), \(0.61031811371518640016 \mathrm{E} 00,0.10849844089337314099 \mathrm{E}-01\), \(0.58836243444766254143 \mathrm{E} 00,0.11104461134006926537 \mathrm{E}-01\), DATA
* \(P(337), P(338), P(339), P(340), P(341), P(342), P(343)\),
* \(P(344), P(345) P(346) P(347) P(341), P(342), P(343)\),
* \(P(344), P(345), P(346), P(347), P(348), P(349), P(350)\),
* \(P(351), P(352), P(353), P(354), P(355), P(356), P(357)\),
* \(P(358), P(35), P(360), P(361), P(362), P(363), P(364) /\)
* \(0.56590588542365442262 \mathrm{E} 00,0.11350654315980596602 \mathrm{E}-01\),
* \(\quad 0.54296566649831149049 \mathrm{E} 00,0.11588074033043952568 \mathrm{E}-01\),
* \(\quad 0.51955966153745702199 \mathrm{E} 00,0.11816385890830235763 \mathrm{E}-01\),
* 0.49570640791876146017E 00,0.12035270785279562630E-01,
* \(0.47142506587165887693 \mathrm{E} 00,0.12244424981611985899 \mathrm{E}-01\),
* 0.44673538766202847374E 00,0.12443560190714035263E-01,
* \(0.42165768662616330006 \mathrm{E} 00,0.12632403643542078765 \mathrm{E}-01\),
* \(0.39621280605761593918 \mathrm{E} 00,0.12810698163877361967 \mathrm{E}-01\),
* \(0.37042208795007823014 \mathrm{E} 00,0.12978202239537399286 \mathrm{E}-01\),
* 0.34430734159943802278E 00,0.13134690091960152836E-01,
* 0.31789081206847668318E 00,0.13279951743930530650E-01,
* \(0.29119514851824668196 \mathrm{E} 00,0.13413793085110098513 \mathrm{E}-01\),
* \(0.26424337241092676194 \mathrm{E} 00,0.13536035934956213614 \mathrm{E}-01\),
* 0.23705884558982972721E 00,0.13646518102571291428E-01/

DATA
* \(P(365), P(366), P(367), P(368), P(369), P(370), P(371)\),
* \(P(372), P(373), P(374), P(375), P(376), P(377), P(378)\),
* \(P(379), P(380), P(381) /\)
* \(0.20966523824318119477 \mathrm{E} 00,0.13745093443001896632 \mathrm{E}-01\),
* \(0.18208649675925219825 \mathrm{E} 00,0.13831631909506428676 \mathrm{E}-01\),
* \(0.15434681148137810869 \mathrm{E} 00.0 .13906019601325461264 \mathrm{E}-01\).
* 0.12647058437230196685E 00,0.13968158806516938516E-01,
* \(0.98482396598119202090 \mathrm{E}-01,0.14017968039456608810 \mathrm{E}-01\),
* 0.70406976042855179063E-01.0.14055382072649964277E-01,
* 0.42269164765363603212E-01,0.14080351962553661325E-01,
* 0.14093886410782462614E-01,0.14092845069160408355E-01,
* 0.14094407090096179347E-01/

C CHECK FOR TRIVIAL CASE.
IF (A.EQ.B) GO TO 70
C SCALE FACTORS
SUM \(=(B+A) / 2.0\)
C 1-PGINT GAUSS
FZERE \(=F(\) SUM \()\)
RESULT(1) \(=2 \cdot 0 *\) FZERO*DIFF
\(I=0\)
\(I O L D=0\)
INEW \(=1\)
INEW \(=1\)
\(K=2\)
ACUM \(=0.0\)
G0 T0 30
\(10 \mathrm{IF}(\mathrm{K} \cdot \mathrm{EQ} .8) \mathrm{GO} \mathrm{TO} 50\)
\(K=K+1\)
\(A C U M=0.0\)
C CONTRIBUTION FROM FUNCTION VALUES ALKEADY COMPUTED.
DO \(20 \mathrm{~J}=1\). I ØLD
\(I=I+1\)
20 CONTINUE
C CONTRIBUTION FROM NEW FUNCTION VALUES.
30 IOLD \(=10 L D+I N E W\)
DO \(40 \mathrm{~J}=I N E W\), IOLD
\(I=I+1\)
\(x=P(I) * D I F F\)
FUNCT(J) \(=F(S U M+X)+F(S U M-X)\)
\(I=I+1\)
40 Continue
INEW \(=1\) DLD +1
\(I=I+1\)
RESULT(K) \(=(A C U M+P(I) * F Z E R D) * D I F F\)
C CHECK FOR CONVERGENCE.
1F (ABS(RESULT(K)-RESULT(K-1))-EPSIL*ABS(RESULT(K))) 60, * 60, 10

CONVERGENCE NOT ACHIEVED.
SO I CHECK \(=1\)
C NDRMAL TERMINATION.
60 NPTS \(=\) INEW + I ØLD
RETURN
C TRIVIAL CASE
\(K=2\)
KESULT(1) \(=0.0\)
RESULT(2) \(=0.0\)
NPTS = 0
END
FUNCTI日N QSUB(A, B, EPSIL, NPTS, ICHECK, KELEKK, F)
C THIS FUNCTION ROUTINE PERFORMS AUTOMATIC INTEGKATION QVER A FINITE INTERVAL USING THE BASIC INTEGKATIDN ALGORITHM QUAD, TQGETHER WITH, IF NECESSAKY, A NON ADAPTIVE SUBDIVISIGN PKøCESS.

THE CALL TAKES THE FQKM
QSUB (A, B, EPSIL,NPTS, ICHECK,RELERR,F)
AND CAUSES \(F(X)\) TØ BE INTEGKAATED QVEN (A,B) WITH RELATIVE ERROR HOPEFULLY NOT EXCEEDING EPSIL. SHOULD QUAD CONVERGE (ICHECK=0) THEN QSUB WILL RETUKN THE VALUE OBTAINED BY IT OTHERWISE SUBDIVISION WILL BE INVOKED AS A RESCUE C OPERATION IN A NQN-ADAPTIVE MANNER. THE ARGUMENT RELERR GIVES A CRUDE ESTIMATE OF THE ACTUAL RELATIVE ERROR gbTAINED.

C
C LET THE INTERVAL (A,B) BE DIVIDED INTD \(2 * * N\) PANELS AT STEP
C N OF THE SUBDIVISI ON PRØCESS. QUAD IS APPLIED FIRST TO
THE SUBDIVIDED INTERVAL ON WHICH QUAD LAST FAILED TO
CONVERGE AND IF CONVERGENCE IS NOW ACHIEVED THE REMAINING
PANELS ARE INTEGRATED. SHØULD A CONVERGENCE FAILURE OCCUR
ON ANY PANEL THE INTEGRATI ON AT THAT POINT IS TERMINATED
AND THE PROCEDURE REPEATED WITH N INCREASED BY 1. THE
STKATEGY INSURES THAT POSSIBLY DELINQUENT INTEKVALS ARE
EXAMINED BEFQRE WORK, WHICH LATER MIGHT HAVE TO BE
DISCARDED, IS INVESTED ON WELL BEHAVED PANELS. THE
PRØCESS IS COMPLETE WHEN NØ CØNVERGENCE FAILURE DCCURS ON PRØGESS IS CØMPLETE WHEN NØ CONVERGENCE FAILURE QCCURS ON
ANY PANEL AND THE SUM OF THE RESULTS ØBTAINED BY QUAD ON EACH PANEL IS TAKEN AS THE VALUE OF THE INTEGRAL.

THE PROCESS IS VERY CAUTI THE INTERVAL (A,B) IS UNIFDRM, THE FINENESS OF WHICH IS CØNTRØLLED BY THE SUCCESS GF QUAD. IN THIS WAY IT IS RATHER DIFFICULT FOR A SPURIIOUS CONVERGENCE TO SLIP THROUGH.

THE CONVERGENCE CRITERION OF QUAD IS SLIGHTLY RELAXED
IN THAT A PANEL IS DEEMED TO HAVE BEEN SUCCESSFULLY
INTEGRATED IF EITHER QUAD CONVERGES OR THE ESTIMATED
ABSOLUTE ERROR CØMMITTED ON THIS PANEL DOES NOT EXCEED
EPSIL TIMES THE ESTIMATED ABSOLUTE VALUE OF THE INTEGRAL QVER (A,B). THIS RELAXATION IS TO TKY TO TAKE ACCOUNT OF A COMMON SITUATION WHERE ONE PARTICULAR PANEL CAUSES SPECIAL DIFFICULTY, PERHAPS DUE TO A SINGULARITY OF SOME TYPE. IN THIS CASE QUAD CQULD ØBTAIN NEARLY EXACT
ANSWERS ON ALL OTHER PANELS AND SØ THE RELATIVE ERROR FOK THE TOTAL INTEGRATION WOULD BE ALMOST ENTIRELY DUE TD THE DELINQUENT PANEL. WITHOUT THIS CONDITION THE COMPUTATION MIGHT CONTINUE DESPITE THE REQUESTED RELATIVE ERROR BEING ACHIEVED.

THE ØUTCOME OF THE INTEGRATION IS INDICATED BY ICHECK. ICHECK \(=0\) - CONVERGENCE OBTAINED WITHGUT INVOKING SUBDIVISION. THIS CeRRESPONDS TO THE DIRECT USE OF QUAD.
ICHECK=1 - RESULT ØBTAINED AFTEK INVOKING SUBDIVISION.
ICHECK=2 - AS FOR ICHECK=1 BUT AT SOME PGINT THE RELAXED CONVERGENCE CRITEKION WAS USED. THE RISK ©F UNDERESTIMATING THE RELATIVE ERROR WILL BE INCREASED. IF NECESSARY, CONFIDENCE MAY BE RESTORED BY CHECKING EPSIL AND RELERR FOR A SERI øUS DISCREPANCY.
ICHECK NEGATIVE
IF DURING THE SUBDIVISION PROCESS THE ALLOWED UPPER LIMIT EIN THE NUMBEK OF PANELS THAT MAY BE GENERATED (PRESENTLY 4096) IS REACELED R WITHOUT FURTHER SUBDIVISIGN IGNORING CONVERGENCE FAILURES. THIS OCCURRENCE IS FLAGGED BY KETURNING ICHECK WITH NEGATIVE FLAGGED
SIGN.
THE RELIABILITY OF THE ALGORITHM WILL DECKEASE FOR LARGE VALUES OF EPSIL. IT IS RECOMMENDED THAT EPSIL SHOLAD GENERALLY BE LESS THAN ABØUT 0.001 .

DIMENSI GN RESULT(B)
INTEGER BAD, DUT
LOGICAL RHS
EXTERNAL \(F\)
DATA NMAX/4096/
CALL OUAD(A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)
QSUB = RESULT(K)
RELERR \(=0.0\)
IF (QSUB.NE.O.O) RELERR =
* ABS ( (RESULT(K)-RESULT(K-1))/QSiJB)

C CHECK IF SUBDIVISION IS NEEDED.
IF (ICHECK.EQ.O) RETURN
C SUBDIVIDE
ESTIM \(=\) ABS (QSUB*EPSIL)
IC \(=1\)
RHS \(=\).FALSE.
\(N=1\)
\(H=B-A\)
\(H=B=1\)
\(B A D=1\)
10 QSUB \(=0.0\)
RELERR \(=0.0\)
\(\mathrm{H}=\mathrm{H} * 0.5\)
\(\mathrm{~N}=\mathrm{N}+\mathrm{N}\)
C INTERVAL (A,B) DIVIDED INT0 N EQUAL SUBINTERVALS.
C INTEGRATE OVER SUBINTERVALS BAD TQ (BAD+1) WHEKE TRQUBLE
C HAS gCCURRED.
\(M 1=B A D\)
\(M 2=B A D+1\)
GUT = 1
C INTEGRATE QVER SUBINTERVALS 1 T0 (BAD-1)
\(20 \mathrm{ML}=1\)
M2 \(=B A D-1\)
RHS \(=\). FALSE.
OUT \(=2\)
G \(\boldsymbol{T O} 50\)
GØ T0 50
C INTEGRATE QVER SUBINTERVALS (BAD+2) T0 N
\(30 \mathrm{M1}=\mathrm{BAD}+2\)
\(M 2=N\)
QUT \(=3\)
GO TO 50
C SUBDIVISIDN RESULT
40 ICHECK = IC
RELERR \(=\) RELERR/ABS (QSUB)
RETURN
C INTEGRATE QVER SUBINTERVALS MI TO NR.
50 IF (M1.GT.M2) GO TO 90
Dの \(80 \mathrm{JJ=M1,M2}\)
\(J=\mathrm{JJ}\)

\title{
Algorithm 469 \\ Arithmetic Over a Finite Field [A1]
}
C. Lam* and J. McKay \(\dagger\) [Recd. 8 Oct. 1971]
* Department of Mathematics, Caltech University, Pasadena, CA \(91101 \dagger\) School of Computer Science, McGill University, P.O. Box 6070, Montreal 101, P.Q. Canada

Key Words and Phrases: algebra; CR Categories: 5.19
Language: Algol

\section*{Description}

The rational operations of arithmetic over the finite field \(F_{q}\), of \(q=p^{n}(n \geq 1)\) elements, may be performed with this algorithm.

On entry \(a[i]\) contains \(a_{i} \in F_{p}\) with \(0 \leq a_{i}<p, i=0, \ldots\), \(n-1\), and \(x \in F_{q}\) satisfies the primitive irreducible polynomial \(P(x)=x^{n}+\sum_{k=0}^{n-1} a_{k} x^{k}\). fq produces \(e_{i}\) in \(e[i], i=-1, \ldots, q-2\), where \(1+x^{i}=x^{e}{ }^{i}\) with the convention that -1 represents \(*\) and \(x^{*}=0\). During execution the range of the \(a_{i}\) is altered to \(-p<\) \(a_{i} \leq 0, i=0 \ldots n-1\). The storage used is \(2 q+n+6\) locations including the final array \(e\).

With appropriate conventions for \(*\), multiplication and division are trivial, and addition and subtraction are given by \(x^{a}+x^{b}=\) \(x^{a}\left(1+x^{b-a}\right)\) for \(a \leq b\) and \(x^{a}-x^{b}=x^{a}+x^{k(r-1)} x^{b}\) when \(p \neq 2\). For small values of \(q\), it is suggested that addition and multiplication tables be generated by this algorithm. A description of the method and its generalization to a multi-step process when \(n\) is composite is in [2]. A list of primitive irreducible polynomials is given in [1]. Further useful information (especially for \(p=2\) ) is to be found in [3].

\section*{References}
1. Alanen, A.J., and Knuth, D.E. Tables of finite fields. Sankhyā(A) 26 (1964), 305-328.
2. Cannon, J.J. Ph.D. Th., 1967 U. of Sydney, Sydney, Australia. 3. Conway, J.H., and Guy, M.J.T. Information on finite fields. In Computers in Mathematical Research. North-Holland Pub. Co., Amsterdam, 1967.
```

Algorithm
procedure $f q(p, n, a, e)$;
integer p, n; integer array a, e
begin
integer array $c[0: n-1], f[0: p \uparrow n-1]$; integer q, i, j, d, s, w;
$q:=p \uparrow n ;$
for $i:=0$ step 1 until $n-1$ do if $a[i] \neq 0$ then $a[i]:=a[i]-p$;
for $i:=1$ step 1 until $n-1$ do $c[i]:=0$;
$c[0]:=1 ; \quad f[1]:=0 ; \quad f[0]:=-1:$
for $i:=1$ step 1 until $q-2$ do
begin
$d:=e[n-1] ; \quad s:=0 ;$
for $j:=n-1$ step -1 until 1 do
begin
$w:=c[i-1]-d \times a[j] ; \quad w:=w-w \div p \times p ;$
$c \mid j]:=w ; \quad s:=p \times s+w$
end;

```
```

 \(w:=-d \times a[0] ; \quad w:=w-w \div p \times p ; \quad c[0]:=w ;\)
 \(f[p \times s+w]:=i\)
 end;
 for $i:=q$ step $-p$ until p do
begin
$e[f[i-1]]:=f[i-p] ;$
for $j:=i-p$ step 1 until $i-2$ do $e[f[j]]:=f[j+1]$
end
end

```
```

C EXAMINE FIRST THE LEFT OR RIGHT RALF OF THE SUBDIVIDED
C TR@UBLES@ME INTERVAL DEPENDING ON THE OBSERVED TREND.
IF (RHS) J = M2 +M1 - JJ
ALPHA =A + H*(J-1)
BETA = ALPHA + H
CALL QUAD(ALPHA, BETA, RESULT, M, EPSIL, NF, ICHECK, F)
COMP = ABS(RESULT(M)-RESULT(M-1))
NPTS = NPTS + NF
IF (ICHECK.NE.1) G0 T0 70
IF (COMP.LE.ESTIM) GO T0 100
C SUBINTERVAL J HAS CAUSED TROUBLE.
C CHECK IF FURTHER SUBDIVISION SHøULD BE CARKIED OUT.
IF (N.EQ.NMAX) G® T0 60
BAD = 2*J - 1
IF ((J-2*(J/2)).EQ.0) RHS = .TKUE.
G0 T0 10
60 IC = -IABS(IC)
80 CONTINUE
RELERR = RELERK + COMP
90 G0 T0 (20,30,40), GUT
C relaxed convergence
100 IC = ISIGN(2,IC)
G0 T0 70
END
FUNGTION QSUBA(A, B, EPSIL, NPTS, ICHECK, RELERR, F)
THIS FUNCTION ROUTINE PERFORMS ALJTOMATIC INTEGKATION
OVER A FINITE INTERVAL USING THE BASIC INTEGRATION
ALGORITHM QUAD TOGETHER WITH, IF NECESSARY AN ADAPTIVE
SUBDIVISIØN PRDCESS. IT IS GENERALLY MOKE EFFICIENT THAN
THE NON-ADAPTIVE ALGORITHM QSUB BUT IS LIKELY TO BE LESS
RELIABLE(SEE CDMP.J.,14,189,1971).
THE CALL TAKES THE FGRM
QSUBA(A,B, EPSIL,NPTS, ICHECK, RELERK,F)
AND CAUSES F(X) T@ BE INTEGRATED QVER (A,B) WITH RELATIVE
ERRØR HØPEFULLY NOT EXCEEDING EPSIL. SHØULD QUAD CONVERGE
(ICHECK=0) THEN QSUBA WILL RETUKN THE VALUE OBIAINED BY IT
OTHERWISE SUBDIVISION WILL BE INVOKED AS A RESCUE
OPERATION IN AN ADAPTIVE MANNEK. THE ARGUMENT RELERR GIVES
A CRUDE ESTIMATE OF THE ACTUAL RELATIVE EROROR OBTAINED.
THE SUBDIVISI ON STRATEGY IS AS FOLL|WWS
AT EACH STAGE OF THE PROCESS AN INTERVAL IS PRESENTED FOK
SUBDIVISION CINITIALLY THIS WILL BE THE WHOLE INTERVAL
(A,B)). THE INTERVAL IS HALVED AND QUAD APPLIED T0 EACH
SUBINTERVAL. SHOULD QUAD FAIL DN THE FIRST SUBINTEKVAL
THE SUBINTERVAL IS STACKED FOR FUTURE SUBDIVISIDN AND THE
SECOND SUBINTERVAL IMMEDIATELY EXAMINED. SHOULD QUAD FAIL
ON THE. SECIOND SUBINTERVAL THE SUBINTERVAL IS
IMMEDIATELY SUBDIVIDED AND THE WHOLE PROCESS rEPEATED.
EACH TIME A CONVERGED RESULT IS OBTAINED IT IS
ACCUMULATED AS THE PARTIAL VALUE OF THE INTEGRAL. WHEN
QUAD CDNVERGES ON BOTH SUBINTERVALS THE INTEKVAL LAST
STACKED IS CHOSEN NEXT FOR SUBDIVISION AND THE PROCESS
REPEATED. A SUBINTERVAL IS NOT EXAMINED AGAIN ONCE A
CONVERGED RESULT IS ØBTAINED FOR IT SD THAT A SPURI\emptysetUS
C\emptysetNVERGENCE IS MORE LIKELY T\emptyset SLIP THROUGH THAN FOR THE
NON-ADAPTIVE ALGORITHM QSUB.
THE CONVERGENCE CRITERIGN OF QUAD IS SLIGHTLY RELAXED
IN THAT A PANEL IS DEEMED T\emptyset HAVE BEEN SUCCESSFULLY
INTEGRATED IF EITHER QUAD CONVERGES OR THE ESTIMATED
ABSOLUTE ERROR COMMITTED ON THIS PANEL DOES NOT EXCEED
EPSIL TIMES THE ESTIMATED ABSOLUTE VALUE OF THE INTEGRAL
OVER (A,B). THIS RELAXATION IS TO TRY T\emptyset TAKE ACCOUNT OF
A COMMON SITUATION WHERE GNE PARTICULAR PANEL CAUSES
SPECIAL DIFFICULTY, PERHAPS DUE TD A SINGULARITY OF SDME
TYPE. IN THIS CASE QUAD COULD OBTAIN NEAKLY EXACT
ANSWERS ON ALL OTHER PANELS AND SO THE RELATIVE ERROR FOR
THE TOTAL INTEGRATION WOULD BE ALMOST ENTIRELY DUE TO THE
DELINQUENT PANEL. WITHOUT THIS CONDITION THE COMPUTATION
MIGHT CONTINUE DESPITE THE REQUESTED RELATIVE ERROR BEING
ACHIEVED.
THE ØUTCOME OF THE INTEGRATION IS INDICATED BY ICHECK.
ICHECK=0 - CONVERGENCE ØBTAINED WITHØUT INVOKING SUB-
CONVERGENCE OBTAINED WITHQUT INVOKING SUB
DIRECT USE GF QUAD.
ICHECK=1 - RESULT OBTAINED AFTER INVOKING SUBDIVISION.
ICHECK=2 - AS FOR ICHECKBI BUT AT SOME POINT THE
RELAKED CONVERGENCE CRITERION WAS USED.
THE RISK OF UNDERESTIMATING THE RELATIVE
ERRDR WILL BE INCREASED. IF NECESSARY,
CONFIDENCE MAY BE RESTORED BY CHECKING
EPSIL AND RELERFi FOR A SENiIØUS DISCKEPANCY.
ICHECK NEGATIVE
IF DURING THE SUBDIVISIDN PROCESS THE STACK
OF DELINQUENT INTERVALS BECOMES FULL (IT IS
PRESENTLY SET TO HOLD AT MOST 100 NUMBERS)
A RESULT IS gBTAINED BY CONTINUING THE
INTEGRATION IGNGRING CØNVERGENCE FAILURES
WHICH CANNOT BE ACCOMMODATED ON THE STACK.
THIS ØCCURKENCE IS FLAGGED BY RETUKNING
ICHECK WITH NEGATIVE SIGN.
THE RELIABILITY \emptysetF THE ALGØRITHM WILL DECREASE FOR LARGE
VALUES OF EPSIL. IT IS RECOMMENDED THAT EPSIL SHOULD
GENERALLY BE LESS THAN ABØUT 0.001.
DIMENSION RESULT(8), STACK(100)
EXTERNAL F
DATA ISMAX/100/
CALL QUAD(A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)
QSUBA = RESULT(K)
QSUBA = RESU
RELERR = 0.0
* RELERR = ABS((RESULT(K)-RESULT(K-1))/QSUBA)

```
c CHECK IF SUBDIVISION IS NEEDED
    IF (ICHECK.EQ.O) RETURN
c Subdivide
    ESTIM \(=\) ABS (QSUBA*EPSIL)
    RELERR \(=0.0\)
    QSUBA \(=0.0\)
    \(1 S=1\)
    \(1 S=1\)
\(I C=1\)
    UB1 \(=A\)
    SUB1 \(=A\)
SUB3 \(=B\)
    10 SUB2 \(=(\) SUB \(1+\) SUB3 \() * 0.5\)
        CALL QUAD(SUB1, SUB2, RESULT, K, EPSIL, NF, ICHECK, F)
            NPTS \(=\mathrm{NPTS}+\mathrm{NF}\)
            ØMP \(=\mathrm{ABS}(\) RESULT(K)-RESULT(K-1))
            IF (ICHECK.EQ.O) Gの T0 30
            IF (COMP.LE.ESTIM) Gø T0 70
            IF (IS.GE.ISMAX) GØ TD 20
C STACK SUBINTERVAL (SUB1,SUB2) FOR FUTURE EXAMINATION
            STACK (IS) \(=\) SUB 1
            STACK (IS) \(=1\)
IS \(=1 S+1\)
            IS \(=\) IS + 1
STACK (IS) \(=\) SUB2
            STACK (IS) \(=\)
IS \(=1 S+1\)
            IS = IS
    20 IC \(=1040\)
    20 IC \(=-\) IABS(IC)
    30 QSUBA \(=\) QSUBA + RESULT(K)
    RELERR = RELERR + CGMP
    40 CALL QUAD(SUB2, SUB3, KESULT, \(K\), EPSIL, NF, ICHECK, F)
    40 CALL QUADCSUB2,
NPTS \(=\) NPTS + NF
    GMP \(=\) ABS(RESULT(K)-RESULT(K-1))
    IF (ICHECK.EQ.O) Gø TO SO
    IF (ICHECK.EQ.0) GO T0 50
IF (COMP.LE.ESTIM) GO T0 80
C SUBDIVIDE INTERVAL (SUB2,SUB3)
    SUB \(1=\) SUB2
        50 Gの TO 10
    50 QSUBA \(=\) QSUBA + RESULT(K
RELERR \(=\) RELERK + CDMP
        RELERR = RELERR + COMP
IF (IS.EQ.1) G T0 60
C SUBDIVIDE THE DELINQUENT INTERVAL. LAST STACKED
    DIVIDE THE D
IS \(=1 S-1\)
            SUB3 \(=\) STACK (IS)
            \(I S=I S-1\)
            SUB: \(=\) STACK (IS)
            GO T0 10
C SUBDIVISION RESULT
    60 ICHECK \(=1 \mathrm{C}\)
        RELERR = RELERR/ABS(QSUBA)
        RETURN
C REIAXED CQNVERGENCE
    70 IC \(=\) ISIGN(2,IC)
        GO TO 30
    80 IC \(=\operatorname{ISIGN(2,1C)}\)
        GO TO 50
        END

\section*{Algorithm 470}

\section*{Linear Systems with Almost Tridiagonal Matrix［F4］}

Milan Kubicek［Recd． 6 Dec．1971， 8 May 1972， 12 Oct． 1972， 12 Dec．1972］
Department of Chemical Engineering，Technical Uni－ versity，Technicka＇1905，Praha 6，Dejvice，Czecho－ slovakia

Key Words and Phrases：system of linear equations，almost tridiagonal matrix，sparse matrix

CR Categories： 514
Language：Fortran

\section*{Description}

The program \(F A K U B\) is based on the method of modified matrices．In fact，\(F A K U B\) solves \(\tilde{T} x=b\) where \(\tilde{T}=T+R, T\) is tridiagonal \((n \times n)\) and \(R\) is a matrix of low rank．Let us write \(R=R_{1} R_{2}{ }^{T}\) where \(R_{1}, R_{2}\) are \(n \times m\) matrices．\(R_{1}\) contains columns \(j_{1}, j_{2}, \ldots, j_{m}\) of \(\tilde{T}-T\) ，and \(R_{2}\) is matrix of unit vectors \(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{m}}\) ．

Subroutine \(F A K U B\) performs the following steps：
Step 1．Determine \(n\) by \(m\) matrix \(V\) and vector \(y\) satisfying \(T V=R_{1}\) and \(T y=b\) ．（The Thomas algorithm［1］is used to split \(T=L U\) and \(V\) and \(y\) are obtained by back solving \(m+1\) times．This algorithm is in principle the standard \(L U\) factorization of a tridiagonal matrix，see e．g．［2］．Note that we normalize \(L\) ， while in［2］\(U\) is normalized．）
Step 2．Form \(m\) by \(m\) matrix \(A=I+R_{2}{ }^{T} V\) and vector \(w=R_{2}{ }^{T} y\) ．
Step 3．Solve \(A z=w\) for \(z\) ．
Step 4．Calculate the solution \(x=y-V z\) ．
The rnethod described here will be particularly useful if \(m \ll n\) ， however，it can be used advantageously also if \(m<n\) ．

Let us now define the matrix \(B, n \times(m+1)\) ，in the following way：（1）the first column of the matrix \(B\) is the vector \(b ;(2)(k+1)\)－st column of the matrix \(B\) is equal to the \(k\) th column of the matrix \(R_{1}\) ，i．e．to the \(j_{k}\) th column of the matrix \(\tilde{T}-T\) ．This holds for \(\dot{k}=1,2, \ldots, m\) ．

The description of the formal parameters of the subroutine \(F A K U B\) is given in the comments at the beginning．In accordance with the symbols used above we have
\[
\begin{array}{ll}
N \sim n, & M \sim m+1 \\
S(I) \sim t_{i, i-1}, & i=2,3, \ldots, n \\
D(I) \sim t_{i, i}, & i=1,2, \ldots, n \\
H(I) \sim t_{i, i+1}, & i=1,2, \ldots, n-1 \\
B(I, J) \sim b_{i, j}, & J P R O M(K) \sim j_{k}
\end{array}
\]
where \(T=\left\{t_{i, j}\right\}\) and \(B=\left\{b_{i, j}\right\}\) ．
Two parameters deserve to be discussed in detail．The param－ eter EPS tests zero on the diagonal in the course of the Thomas algorithm．If \(|D(I)|<E P S\) ，then the value of \(A L F A\) is added to \(D(I)\) and the RHS of \(B\) is modified so that the solution of the system remains the same；at the same time the statement in the form

\section*{FAKUB INFORMATION ON ZERO ON LINE I}
is printed．During this modification the matrix \(B\) can be expanded in one column，which has to be considered when declaring \(M M\) ． If during the modification the space assigned for array \(B\) is ex－ ceeded，the statement

\section*{FAKUB MANY REARRANGEMENTS，END OF FAKUB}
is printed，and after return the value of \(M\) is equal to -1 ．For practical problems this occurrence is a very rare event．The dimen－ sion specifications \(A(20,20), P S(20)\) can be changed if 20 is low； however，we must have \(M \leq 20\) ，and \(M\) can always increase by one during the above mentioned modifications．If the dimension specification was low（see statement number 49）the statement

\section*{FAKUB LOW DIMENSION，END OF FAKUB}
is printed，and after return \(M=-2\) ．This can be corrected，e．g． by increasing the parameter \(A L F A\) ．

If the matrix \(\tilde{T}\) is singular（see the comment under statement label 5 in subroutine GAUSD，which has to be modified specifically with respect to the type of computer）the statement

\section*{FAKUB SINGULAR MATRIX OF SYSTEM，END OF FAKUB} is printed，and after return \(M=0\) ．

After regular return \((M>0)\) ，the results are in the first column of the matrix \(B\) ．

If \(m=0\) ，the given algorithm is equivalent to the Thomas algorithm with the exception that it insures against zeros occurring on the diagonal．Subroutine GAUSD plays the role of a standard linear equation solver．Any other standard routine can be used， e．g．see［2］．

The program was successfully run for calculations of distilla－ tion columns（ \(n=100, m=3\) ）．It can also be applied in linear multipoint boundary value problems．

Acknowledgment．The author would like to thank to Dr．Fred Gustavson of IBM Thomas J．Watson Research Center for his very valuable comment．

\section*{References}

1．Thomas，L．H．Dept．of Watson Scientific computing Laboratory，New York， 1949.
2．Forsythe，G．E．，and Moler，C．B．Computer Solution of Linear Algebraic Systems；Prentice Hall，Englewood Cliffs，N．J．， pp． 115 and 68.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Algorithm} \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{DIMENSI \(0 N S(N), ~ D(N), H(N), ~ B(N N, M M)\) ，JPROM（20），\(A(20,20)\) ，}} \\
\hline & \\
\hline & W（20） \\
\hline \multicolumn{2}{|l|}{C SOLUTİN OF SYSTEM OF LINEAR EQUATI®NS WITH MATRIX OF SPECIAL} \\
\hline \multicolumn{2}{|l|}{C（ALMOST TRIDIAG日NAL）TY} \\
\hline \multicolumn{2}{|l|}{C NaNUMBER OF EQUATIONS} \\
\hline \multicolumn{2}{|l|}{C S（2），S（3），．．．＝LOWER DIAGONAL ELEMENTS} \\
\hline \multicolumn{2}{|l|}{C D（1），D（2），．．．mMAIN DIAGQNAL．ELEMENTS} \\
\hline \multicolumn{2}{|l|}{C H（1），H（2），．．．＝UPPER DIAG®NAL ELEMENTS} \\
\hline \multicolumn{2}{|l|}{C \(B(1,1), B(2,1), \ldots=\) RIGHT HAND SIDES} \\
\hline \[
\mathrm{c}
\] & JPRøM（1），JPRøM（2），．．．，JPRøM（M－1）＝INDICES ØF UNKNQWNS FOR WHICH \\
\hline & NON－ZERQ NONDIAGONAL COEFFICIENTS EXIST \\
\hline \multicolumn{2}{|l|}{C（ \(B(1, J+1), I=1, N)=C Q L\) UMA OF COEFFICIENTS} \\
\hline \multicolumn{2}{|l|}{C（WITHQUT DIAG＠NAL ELEMENTS），Which correspends} \\
\hline \multicolumn{2}{|l|}{C T0 UNKOWN WITH INDEX JPRgm（J）} \\
\hline \multicolumn{2}{|l|}{C M－I＝NUMBER OF TRANSFERRED UNKNOWNS} \\
\hline \multicolumn{2}{|l|}{C ALFA \(=\) NGN ZERØ PARAMETER USED FgR REARRANGEMENTS} \\
\hline \multicolumn{2}{|l|}{C EPS＝SCALE OF ZERØ DIAGgNal Element，dependent on the computer} \\
\hline & TYPE \\
\hline \multicolumn{2}{|l|}{C M．EQ．O AFTER RETURN：MATRIX WAS SINGULAR} \\
\hline \multicolumn{2}{|l|}{C M．E日．－1 AFTER RETURN：MANY REARRANGEMENTS，SMALL VALUE OF MM} \\
\hline \multicolumn{2}{|l|}{C M．EQ．－2 AFTER RETURN：LOW dimension Specificatign in fakub} \\
\hline \multicolumn{2}{|l|}{C WE WISH To SOLVE G＊X＝C Where g is a \(n\) by \(N\) MATRIX AND C IS A} \\
\hline \multicolumn{2}{|l|}{C VECTOR．} \\
\hline & G \(=\) T＋R．R＝R1＊R2T．R1 AND R2 ARE \(N\) BY MI MATRICES OF RANK \\
\hline & M1． \\
\hline & （R2T－－－R2 tRANSPQSE）THE METHøD Of Modified matrices is used． \\
\hline
\end{tabular}
```

C T IS A TRIDIAGONAL MATRIX GIVEN BY INPUT VECTORS S, D AND H.
C E = (C,RI) IS A N BY M MATKIX. RI IS A SET OF MI COLUMNS OF G -
C T
R2 IS A SET OF MI UNIT VECTORS SPECIFIED BY JPRgM
C FOR EFFICIENCY RANK MI IS MUCH LESS THAN N.
C KPR IS PRINTER DEVICE NUMBER
DATA KPR/6/
99999 FORMATS//45H FAKUB SINGULAR MATRIX OF SYSTEM, END OF FAKUB//)
99998 FORMAT(//34H FAKUB INFGRMATION ON ZERD ON LINE,I5//)
99997 FORMAT(//39H FAKUB MANY REARRANGEMENTS, END OF FAKUB//)
99996 FORMAT(//33H FAKUB LOW DIMENSION,END OF FAKUB//)
N1=N-1
JUMP = 1
C FORM L.U AND L**(-1)*B, NOTE L*U = T.
IO}=
10 P = D(I)
IF (ABS(P).LE.EPS) G0 T0 40
20 H(I) = H(I)/P
PI =S(I+1)
D0 30, J=1,M
F(B(I,J).EQ.O.0) G0 T0 30
B(I;J) = B(I,J)/P
B(I+1,J)=B(I+1,J) - P1*B(I,J)
30 CONTINUE
D(I+1)=D(I+1) - PI*H(I)
L=I* 1
C MATRICES L,U AND L**(-1)*B ARE DETERMINED HERE
Gø TV 100
40 WRITE (KPR,99998) I
C PIVOT D(I) NEARLY ZERQ. ADJUST MATRICES T AND RI SO THAT
C G REMAINS EQUAL TO T + R. NEW T HAS PIVOT D(I) NEAR TO ALFA.
IF (M1.EQ.O) G0 T0 60
D0 50 J=1,M1
IF (JPROM(J).EQ.1) G0 T0 80
So CONTINUE
60M=M+1
MI =M1 + 1
IF (M.GT.MM) GO T0 200
D0 70: J=1,N
B(J,M)=0.0
70 CENTINUE
B(I,M) = -ALFA
JPR@M(M1) =
GO TO 90
80 B(I,J+1) = B(1,J+1) - ALFA
ODD(I)=D(I) + ALFA
P=D(I)
G0 T0 (20,110), JUMP
100 IF (ABS(D(N)),GT,EPS
I = N
JUMP = 2
O D0 120 J=1,M
B(N,J) = B(N,J)/D(N)
120 CONTINUE
C FORM U**(-1)*L***(-1)*B=T**(-1)*B. T**(-1)*B = (Y,V)
DD 140 11=1,N1
I=N-II
D| 130 J=1,M
B(I,J)=B(I,J)-H(I)*B(I+1,J)
130
CGNTINUE
CONTINUE
IF (M1.EQ.O) RETURN
C THE NEXT STATEMENT NECESSARY AS A AND W HAVE DIMENSION ØF 20.
IF (MI.GT.20) GO TO 210
C FORM M1 BY MI MATRIX A = I + R2T*V AND MI VECTOR W = R2T*Y.
De 160 I= 1,M1
I1 = JPROM(I)
D0 150 J=1,M1
A(I,J) = B(I1,J+1)
150
CONTINUE
W(I) = B(II,I)
A(I,I)=A(I,I) + 1.0
160 CONTINUE
C SOLVE A*Z = W FOR Z USING SUBROUTINE GAUSD.
CALL GAUSD(M1, A\& W, M2, 20)
IF (M2.EQ.O) Gø T\varnothing 190
C FORM SOLUTION VECTOR X=Y - V*Z.
D0 180 I=1,N
B(170,J=2,M
170 CONTINUE
CONTINU
RETURN
190 WRITE (KPR,99999)
M=O
O0 WRITE (KPR,99997)
M=-1
210 WRITE (KPR,99996)
M=-2
ND
SUBRDUTINE GAUSD(N, A, B, M, NN)
SIMRNSION A(NN,NN), B(NN), IRR(20), X(20)
C SOLUTION OF SYSTEM OF LINEAR EQUATIONS
C SGLUTI\emptysetN OF SYSTEM OF LINEAR EQ)
C N=NUMBER OF EQUATIG
C A=MATRIX OF SYSTEM
C B=RIGHT HAND SIDES
M = 1,
DQ 10 I=I,N
IRR(I) = 0
10 CONTINUE

```
\(201 R=1\)
IS =1
AMAX \(=0.0\)
IF (IRR(I)) 60, 30, 60
D0 \(50 \mathrm{~J}=1, \mathrm{~N}\)
\(P=A B S(A(I, J))\)
IF ( P -AMAX) 50, 50, 40
\(I R=I\)
\(I S=J\)
AMAX \(=P\)
CONTINUE
50 CONTINUE
IF (AMAX.NE.O.0) GO T0 70
C THIS CONDITION MUST BE SPECIFIED MORE EXACTLY
C THIS CONDITION MUST BE SPECIFIED MORE
\(M=0\)
G0 T0 120
70 IRR(IR) \(=\) IS
IF (I.EQ.IR . ©R. A (I, IS).EQ.O.0) G® TD 90
\(P=A(I, I S) / A(I R, I S)\)
De \(80 \mathrm{~J}=1, \mathrm{~N}\)
IF \((A(I R, J) \cdot N E .0 .0) A(I, J)=A(I, J)-P * A(I R, J)\)
CONTINUE
\(A(I, I S)=0.0\)
\(A(I)=B(I)-P * B(I R)\)
90 CONTINUE
\(I D=I D+1\)
ID \(=1 D+1\)
\(I F\)
(ID.LE.N) Ge T0 20
De \(100 \quad I=1, N\)
\(I R=I R R(I)\)
\(X(I R)=B(I) / A(I, I R)\)
100 CONTINUE
\(\begin{array}{rl}D Q & 110 I=1, N \\ B(I) & =X(1)\end{array}\)
\(\mathrm{B}(\mathrm{I})=\mathrm{X}(\mathrm{I})\)
110 CENTINU
RETUR
END

\section*{Algorithm 471}

\section*{Exponential Integrals [S13]}

Walter Gautschi [Recd. 21 Jan. 1972 and 9 Oct. 1972] Department of Computer Sciences, Purdue University, Lafayette, IN 47907

Key Words and Phrases: exponential integral, recurrence relations, recursive computation, continued fractions

CR Categories: 5.12
Language:Algol
Work supported in part by a Fulbright research grant, and in part by the U.S. Atomic Energy Commission.

\section*{Description}
1. Introduction. The functions
\(E_{n}(x)=\int_{1}^{\infty} e^{-x t} t^{-n} d t, \quad x>0, \quad n\) an integer,
are referred to as exponential integrals. The special case \(n=0\) gives \(E_{0}(. x)=e^{-x} / x\), and for \(n\) negative we have
\[
E_{n}(x)=(-1)^{n}(d / d x)^{|n|} E_{0}(x), \quad n<0
\]
for which an algorithm was published previously [3]. Our concern here is with the case of positive integers \(n\). We present an algorithm which evaluates
\(f_{n}(x)=e^{x} E_{n}(x), \quad x>0, \quad n=1,2, \ldots, N\)
to an accuracy of \(d\) significant decimal digits.
2. Method of Calculation. The basic tool of computation is the well-known recurrence relation
\(f_{n+1}(x)=\left(1-x f_{n}(x)\right) / n\).
We use it in two different ways, depending on whether \(0<x \leq 1\) or \(x>1\).

On the first interval, we apply (2.1) for \(n=1,2, \ldots, N-1\), assuming a real procedure \(f 1\) to supply the starting value \(f_{1}(x)\). The real procedure \(f 1\) furnished below obtains \(f_{1}(x)\) accurately to \(d\) significant digits. It is based on the power series expansion
\(f_{1}(x)=e^{x}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{k}}{k \times k!}-\gamma-\ln (x)\right)\),
where \(\gamma=.5772156649 \ldots\) is Euler's constant. Since the terms in the infinite series of (2.2) are alternating in sign and strictly decreasing in modulus (if \(0<x \leq 1\) ), the partial sums of even order, \(s_{2 k}\), converge monotonically increasing to the limit value \(s_{\infty}\), while those of odd order, \(s_{2 k+1}\), converge monotonically decreasing to \(s_{\infty}\). Consequently, if \(s_{k}=\left(s_{2 k}+s_{2 k+1}\right) / 2\), we have \(\left|\bar{s}_{k}-s_{\infty}\right| \leq\) \(\frac{1}{2} \epsilon\left|\bar{S}_{k}\right|\) as soon as \(s_{2 k+1}-s_{2 k} \leq \epsilon s_{k}\). The last inequality, with \(\epsilon=10^{-d}\), is used as a termination criterion for the summation of the infinite series in (2.2). In order to prevent infinite loops in cases where \(d\) is specified unreasonably large for a particular computer, we use Rutishauser's device [8, \(\S 36.3\) ] of terminating the summation process also if the machine representations of \(s_{2 k}\), or \(s_{2 k+1}\), cease to exhibit monotonic behavior.

The subtraction of \(\gamma+\ln (x)\) from the infinite series in (2.2) does not cause any appreciable loss of significance if \(x\) is restricted to the interval \(0<x \leq 1\). This consideration was partly responsible for choosing \(x=1\) as the transition point.

On the remaining interval, \(x>1\), we let \(n 1=\langle x\rangle\), the integer closest to \(x\), and compute \(f_{n}(x)\) by backward recurrence for \(1 \leq n<n 1\), and by forward recurrence for \(n 1<n \leq N\) (if \(N>n 1\) ), thereby maintaining optimal error propagation characteristics 12 , Ex. 5.4]. The starting value \(f_{n_{1}}(x)\) for both recursions is obtained from Legendre's continued fraction [7, p. 103]
\(e^{x} E_{n}(x)=\frac{1}{x+} \frac{n}{1+} \frac{1}{x+} \frac{n+1}{1+} \frac{2}{x+} \frac{n+2}{1+} \frac{3}{x+} \cdots\)
Noting that the partial numerators and denominators are all positive, it follows that the convergents of even and odd order approach the common limit value monotonically increasing and decreasing, respectively. Therefore, devices similar to those described above for \(f_{1}(x)\) can be used to terminate the continued fraction evaluation. The convergents of even order are obtained as the successive convergents of the even contraction
\(e^{x} E_{n}(x)=\frac{a_{1}}{b_{1}-} \frac{a_{2}}{b_{2}-} \frac{a_{3}}{b_{3}-} \cdots\),
where
\(a_{1}=1, \quad b_{1}=x+n\),
\(\left.\begin{array}{l}a_{k}=(k-1)(n+k-2) \\ b_{k}=x+n+2 k-2\end{array}\right\} k=2,3,4, \ldots\),
while those of odd order are obtained as the successive convergents of the odd contraction
\(\boldsymbol{e}^{x} E_{n}(x)=\frac{1}{x}\left(1-\frac{a_{1}}{b_{1}-} \frac{a_{2}}{b_{2}-} \frac{a_{3}}{b_{3}-} \cdots\right)\),
where
\(a_{1}=n, b_{1}=x+n+1\),
\(\left.a_{k}=(k-1)(n+k-1)\right\} k=2,3,4, \ldots\)
\(\left.b_{k}=x+n+2 k-1\right\}\)
In either case, the successive convergents are evaluated directly by the third method described in [1, p. 29]. Overflow problems associated with the more common method based on the three-term recurrence relation for the numerators and denominators are thus avoided.

The number of convergents required in (2.3e) and (2.3o), to meet a particular accuracy requirement, was observed to be a nonincreasing function of \(x\) on \(x \geq 1\), if we take \(n=\langle x\rangle\). In contrast, the number of terms required in the infinite series of (2.2) increases with \(x\). Some relevant information is collected in Table I. For values of \(x\) between 0 and 1 , the numbers listed represent the number of even (and odd) partial sums required in (2.2) to obtain \(f_{1}(x)\) ac. curately to \(d\) significant digits. Similarly, for \(x>1\), we list the number of even (and odd) convergents of the Legendre continued fraction required to obtain \(e^{x} E_{n}(x)\) for \(n=\langle x\rangle\) to the same accuracy.

It will be noted that near the transition point \(x=1\) the con tinued fraction evaluation is considerably more time-consuming than the series evaluation. The imbalance could easily be corrected by moving up the transition point. In so doing, however, the evaluation of \(f_{1}(x)\) from (2.2) involves progressively more loss of significant accuracy. In our algorithm, we have decided to leave the

Table I. Number of Partial Sums in (2.2), and Convergents in (2.3), To Meet Specific Accuracy Requirements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\bar{x}
\] & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 \\
\hline . 01 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 6 & 6 \\
\hline . 20 & 2 & 3 & 4 & 4 & 5 & 3 & 6 & 7 & 7 & 8 & 8 & 9 & 9 \\
\hline . 40 & 2 & 3 & 4 & 5 & 6 & 6 & 7 & 8 & 8 & 9 & 9 & 10 & 11 \\
\hline . 60 & 3 & 4 & 5 & 5 & 6 & 7 & 8 & 8 & 9 & 10 & 10 & 11 & 12 \\
\hline . 80 & 3 & 4 & 5 & 6 & 7 & 8 & 8 & 9 & 10 & 10 & 11 & 12 & 13 \\
\hline 1.00 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 13 \\
\hline 1.01 & 4 & 11 & 20 & 31 & 45 & 62 & 81 & 103 & 128 & 155 & 185 & 218 & 251 \\
\hline 1.20 & 4 & 9 & 17 & 27 & 39 & 53 & 70 & 88 & 109 & 132 & 157 & 185 & 214 \\
\hline 1.50 & 4 & 9 & 15 & 23 & 34 & 45 & 59 & 74 & 92 & 110 & 131 & 154 & 177 \\
\hline 2.00 & 3 & 7 & 12 & 19 & 27 & 36 & 46 & 58 & 71 & 86 & 101 & 119 & 137 \\
\hline 5.00 & 2 & 3 & 7 & 11 & 15 & 19 & 24 & 29 & 35 & 42 & 49 & 57 & 65 \\
\hline 10.00 & 2 & 4 & 6 & 8 & 10 & 13 & 16 & 19 & 23 & 27 & 31 & 35 & 40 \\
\hline 20.00 & 2 & 3 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 19 & 22 & 24 & 27 \\
\hline 40.00 & 2 & 3 & 4 & 5 & 6 & 8 & 9 & 11 & 13 & 14 & 16 & 18 & 20 \\
\hline 80.00 & 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10 & 12 & 13 & 14 & 16 \\
\hline
\end{tabular}
transition point at \(x=1\), thus sacrificing efficiency in favor of accuracy.

Alternatively, instead of the continued fraction (2.3) we could use a Taylor expansion about \(x=n\), when \(n\) is moderately large, and asymptotic formulas, when \(x\) and \(n\) are large. This would result in a more efficient, but larger, program. It would also become necessary to store key values of \(E_{n}(n)\) and thus to fix the precision \(d\).

No provisions are made to test for overflow or underflow conditions which may arise near the singularities \(x=0\) and \(x=\infty\) of \(f_{n}(x)\). As for the first, overflow occurs only for extremely small values of \(x\) and is likely to be caught by the library subroutine for the logarithm. At the singularity at infinity underflow occurs only for extremely large values of \(x\) or \(n\), or both.
3. Tests. Exponential integrals are tabulated by G.F. Miller [5], who gives \((x+n) e^{x} E_{n}(x)\) to nine significant digits in the range \(0 \leq x \leq 20\) and \(0 \leq x^{-1} \leq .05\), generally for \(n=1(1) 24\). We tested our algorithm (with nmax \(=24, d=9\) ) against these tables for selected \(x\)-values in the interval \((0,20]\), and for \(x^{-1}=.001\), \(x^{-1}=.005(.005) .05\). No discrepancies were detected, other than occasional end figure errors of one unit. We also found ourselves in agreement with the initial portion ( \(x \leq 6\) ) of the 7-10S table in Kourganoff and Busbridge [4], but observed many end figure discrepancies (of up to 12 units) in the remaining portion of the table. A double check with Miller's table indicates that these discrepancies are due to small errors in the Kourganoff-Busbridge table. John W. Wrench Jr. has kindly supplied the author with \(25 S\) values of \(E_{n}(10), n=1(1) 25\), which he computed in \(40 S\) arithmetic on a desk calculator. A double precision Fortran version of our algorithm (run, with nmax \(=25, d=25\) ) reproduced these values correctly to all 25 significant digits. The same Fortran version of the algorithm was used with nmax \(=1, d=16\), to compare against the \(16 S\) table of \(e^{x} E_{1}(x)\) given by Miller and Hurst [6]. For the test values \(x=.2(.05) 1.0, x=1.05, x=1.5, x=2^{k}\), \(k=1(1) 6\), no discrepancies were observed, except for \(x=.95\), where the last digit was in error by one unit. All tests were performed on a CDC 6500 computer.

\section*{4. Formal parameter list.}
\(x \quad\) the argument in \(f_{n}(x)\); type real;
\(n\) max the maximum value \(N\) of \(n\); type integer;
\(d\) the desired number of significant decimal digits; type integer;
\(f \quad\) an array of dimension [1:nmax] holding the result \(f_{n}(x)\) in \(f^{\prime}[n]\).

Acknowledgment. The author is pleased to acknowledge valuable suggestions of the referee, which resulted in a simpler and more flexible algorithm.

\section*{References}
1. Gautschi, W. Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967), 24-82.
2. Gautschi, W. Zur Numerik rekurrenter Relationen, Computing 9 (1972), 107-126.
3. Gautschi, W., and Klein, B.J. Remark on Algorithm 282, Derivatives of \(e^{x} / x, \cos (x) / x\), and \(\sin (x)\) /x. Comm. ACM 13,1 (Jan. 1970), 53.
4. Kourganoff, V., and Busbridge, I.W. Basic Methods in

Transfer Problems. Clarendon Press, Oxford, 1952.
5. Miller, G.F. Tables of generalized exponential integrals.

National Physical Lab. Math. Tables, Vol. 3, H.M. Stationery Office, London, 1960.
6. Miller, J., and Hurst, R.P. Simplified calculation of the exponential integral. Math. Tables Other Aids Comp. 12 (1958), 187-193.
7. Perron, O. Die Lehre von den Kettenbriichen, Vol. II. B.G. Teubner, Stuttgart, Germany, 1957.
8. Rutishauser, H. Description of ALGOL 60, Handbook for

Automatic Computation, Vol. I, Pt. a. Springer, New York, 1967.
9. Wrench, J.W., Jr. A new calculation of Euler's constant.

Math. Tables Other Aids Comp. 6 (1952), 255.

\section*{Algorithm}
procedure \(f \operatorname{subn}(x, n \max , d, f)\);
value \(x\), nmax, \(d\);
integer \(n\) max,\(d\); real \(x\); array \(f\); comment \(f[1: n m a x]\);
comment This procedure evaluates \(f_{n}(x)=e^{x} E_{n}(x)\) for \(x>0\), \(n=1,2, \ldots\), nmax, to an accuracy of \(d\) significant decimal digits. The results are stored in the array \(f\). If \(x \leq 0\), or nmax \(\leq 0\), the procedure immediately sends control to a procedure recovery and exits from the procedure \(f\) subn. A call is made to a real procedure \(f 1\) which is to return \(f_{1}(x)\) for \(0<x \leq 1\), with an accuracy of \(d\) significant digits. A possible version of such a procedure is declared below;
```

begin
integer n, n1, k, k1;

```
    real eps, ue, ve, we, we1, uo, vo, wo, wo1, \(w, r, s\);
    real procedure \(f 1(x, d)\); value \(x, d\); integer \(d\); real \(x\);
    begin
        integer \(k, k 1, k 2\); real eps, gamma, se, se1, so, so1, \(s, t e, t o\);
        eps \(:=10 \uparrow(-d)\);
        comment The constant gamma in the following statement
                should be supplied to at least \(a^{\prime}\) significant decimal digits.
                For the first 328 digits see [9];
        gamma \(:=.577215664901532860606512\);
        se \(:=0\); se \(1:=-1.0 ;\) so \(:=\) to \(:=x\); so1 \(:=2 \times x ; s:=x / 2\);
        \(k 1:=1\);
        for \(k:=k 1\) while so-se >eps \(\times s \wedge\) se \(>\) se \(1 \wedge\) so \(<\) sol do
        begin
            se \(1:=\) se; sol \(:=\) so; \(k 2:=2 \times k\);
            \(t e:=(k 2-1) \times x \times t o /(k 2 \times k 2) ; s e:=s e+t o-t e ;\)
            \(t o:=k 2 \times x \times t e /((k 2+1) \times(k 2+1)) ;\) so \(:=\) so \(-t e+\)
                to;
            \(s:=(s e+s o) / 2 ; k 1:=k 1+1\)
        end;
        \(f 1:=(s-\operatorname{gamma}-\ln (x)) \times \exp (x)\)
    end \(f 1\);
    if \(x \leq 0 \vee\) nmax \(\leq 0\) then begin recovery; go to exit end;
    comment recovery is a procedure which the user has to supply
        and in which he may wish to print appropriate error messages;
    if \(x \leq 1\) then
    begin
        \(f[1]:=f 1(x, d) ;\)
        for \(n:=1\) step 1 until \(n \max -1\) do
        \(f(n+1]:=(1-x \times f[n]) / n ;\)
        go to exit
    end;
    eps \(:=10 \uparrow(-d)\);
    \(n 1:=\) entier \((x+.5)\);
    ue \(:=1.0 ;\) ve \(:=w e:=1 /(x+n 1) ;\) we \(1:=0 ;\)
    иo \(:=1.0\); vo \(:=-n 1 /(x \times(x+n 1+1))\); wol \(:=1 / x\); wo \(:=\)
        vo + wol;
```

 w:=(we+wo)/2;
 k1:= 1;
 for k:= k1 while wo-we >eps }\timesw\wedgewe>we1^wo<wol d
 begin
 we1 := we; wol := wo;
 r:== n1 +k;s:=r+x+k;
 ue:= 1/(1-k\times(r-1)\timesue/((s-2)\timess));
 uo:= 1/(1-k\timesr\timesuo/(s\timess-1));
 ve:=ve }\times(ue-1);vo:=vo \ (uo-1)
 we:=we +ve;wo:=wo + vo;
 w:=(we+wo)/2; kl:= k1+1
 end;
 if n1 \leqnmax then f[n1]:=w;
 for }n:=n1-1 step - 1 until 1 do
 begin
 w:= (1-n\timesw)/x;
 if n<nmax then }f[n]:=
 end;
 for n:= n1 step 1 until nmax-1 do
f[n+1]:=(1-x\timesf[n])/n;
exit: end fsubn

```

\section*{Algorithm 472}

\title{
Procedures for Natural \\ Spline Interpolation [E1]
}

\author{
John G Herriot* \\ Computer Science Department, Stanford University, Stanford, CA 94305 \\ and Christian H. Reinsch \\ Mathematisches Institut der Technischen Universität, 8 München 2, Germany \\ [Recd. 6 Mar. 1972]
}
* The work of this author was supported in part by the Na-
tional Science Foundation under Grant Number GJ-408.

Key Words and Phrases: approximation, interpolation, spline, natural spline, spline approximation, cubic natural spline

CR Categories: 5.13
Language: Algol

\section*{Description}
1. Introduction

The purpose of the procedures presented here is to determine the interpolating natural spline function \(S(x)\) of degree \(2 m-1\) for the set of data points \(\left(x_{i}, y_{i}\right), i=N 1, N 1+1, \ldots, N 2\) where it is assumed that \(x_{N 1}<x_{N_{1+1}}<\cdots<x_{N 2}\). The interpolating natural spline function \(S(x)\) with the knots \(x_{N_{1}}, \ldots, x_{N 2}\) has the properties: (i) \(S(x)\) is a polynomial of degree \(2 m-1\) in each interval \(\left(x_{i}, x_{i+1}\right) i=N 1, \ldots, N 2-1\). (ii) \(S(x)\) and its derivatives \(D^{i} S(x)\), \(j=1,2, \ldots, 2 m-2\) are continuous in \(\left(x_{N_{1}}, x_{N 2}\right)\). (If \(m=1\) the conditions on the derivatives are not applicable.) (iii) \(D^{j} S\left(x_{N 1}\right)=\) \(D^{i} S\left(x_{N 2}\right)=0, j=m, m+1, \ldots, 2 m-2\) if \(m>1\). (iv) \(S\left(x_{i}\right)=\) \(y_{i}\). If \(N 2-N 1+1 \geq m\) then there is a unique natural spline function which has the properties (i)-(iv). (See, e.g. Greville[3, 4].) This spline function can be represented in the form
\(S(x)=A_{i 0}+A_{i 1} t^{2}+A_{i 2} t^{2}+\cdots+A_{i, 2 m-1} t^{2 m-1}\)
with \(t=x-x_{i}\) for \(x_{i} \leq x<x_{i+1}, i=N 1, \ldots, N 2-1\). Evidently \(A_{i 0}=y_{i}\). Three of the procedures calculate the other elements \(A_{i j}\) of the matrix of the coefficients of (1).

The procedure NATSPLINE computes the coefficients of the natural spline in the general case described above. Because the computation requires the calculation of \(m\) th order divided differences of the data and these are subject to serious roundoff errors when \(m\) is large, it is recommended that this procedure not be used for large values of \(m\), say, greater than seven. Moreover, the condition of the matrix which occurs in the system of equations which must be solved in the computation deteriorates rapidly with increasing \(m\).

Procedure NATSPLINEEQ treats the case of equidistan t knots \(x_{i}\). If the knots are known to be equidistant, the use of this procedure results in considerable economy of computational effort. The time required for the calculation of the coefficients using NATSPLINEEQ is less than half that required if \(N A T S P L I N E\) is used. Note that in the case of equidistant knots it is not necessary to specify the values
of \(x_{i}\). The representation (1) is still used, but now \(t=\left(x-x_{i}\right) / h\) where \(h=x_{i+1}-x_{i}\), the constant spacing of the knots.

Since the case of a cubic natural spline is of frequent occurrence, we give also a procedure, \(C U B N A T S P L I N E\), which computes the coefficients in this special case. This procedure is very much faster than either of the other procedures when used with \(m=2\) to produce the same results.

In some applications of cubic natural splines it is more efficient to evaluate the spline approximation by means of the formula
\(S(x)=y_{i}(1-t)+y_{i+1} t\)
\[
\begin{equation*}
+V\left(-2 t+3 t^{2}-t^{3}\right) / 6+W\left(t^{3}-t\right) / 6 \tag{2}
\end{equation*}
\]
with \(t=\left(x-x_{i}\right) / h_{i}\) for \(x_{i} \leq x<x_{i+1}, h_{i}=x_{i+1}-x_{i}, V=\) \(h_{i}{ }^{2} S^{\prime \prime}\left(x_{i}\right), W=h_{i}{ }^{2} S^{\prime \prime}\left(x_{i+1}\right)\), instead of using (1). The procedure CUBNATSPLINE \(2 D\) calculates the second derivatives \(S^{\prime \prime}\left(x_{i}\right)\) and the values of \(h_{i}\) which are the quantities needed to use (2). Since this procedure uses one less array than does CUBNATSPLINE, the saving of storage may be significant if the number of data points is arge. It is also slightly faster than CUBNATSPLINE.

\section*{2. Method of Calculation}
(a) General case. The calculation of the coefficients is carried out in a numerically stable manner following a method described by Anselone and Laurent [1] specialized to the case of the interpolating natural spline as described above. The method is based on the use of minimum support \(B\)-splines [2,4] to form a basis for the class of \(m\) th derivatives of the natural splines. For convenience of calculation we use a normalizing factor different from that of Greville [4]. For a fixed \(m\), our \(B\)-splines are defined by
\(M_{k}(x)=M\left(x ; x_{k}, x_{k+1}, \ldots, x_{k+m}\right)\)
where
\(M(x ; t)=\left((-1)^{m} /(m-1)!\right)(t-x)_{+}^{m-1}\).
Here \(x_{+}{ }^{r}=x^{r}\) if \(x>0\) and 0 otherwise. \(M\left(x ; x_{k}, x_{k+1}, \ldots, x_{k+m}\right)\) denotes the \(m\) th divided difference of \(M(x ; t)\) with respect to \(t\) based on the arguments \(x_{k}, x_{k+1}, \ldots, x_{k+m} . M_{k}(x)\) is of constant sign in ( \(x_{k}, x_{k+m}\) ) and vanishes outside this interval. It is known that a natural spline function \(S(x)\) may be extended uniquely over the whole real line by imposing the continuity conditions (ii) at all points. Then outside \(\left(x_{\mathrm{N}_{1}}, x_{\mathrm{N} 2}\right), S(x)\) is a polynomial of degree \(m-1\), and consequently \(D^{m} S(x)\) vanishes outside ( \(x_{N_{1}}, x_{N 2}\) ). It follows that \(D^{n n} S(x)\) has a unique representation of the form
\(D^{m} S(x)=\sum_{k=N_{1}}^{N{ }^{2-m}} d_{k}(2 m-1)!M_{k}(x)\).
The constants \(d_{k}\) are found by solving the well-conditioned system of equations
\(\sum_{k=N \mathrm{I}}^{N 2-m} N_{i k} d_{k}=y_{i, i+1}, \ldots, i+m, i=N 1, \ldots, N 2-m\)
where
\(N_{i k}=N\left(x_{i}, x_{i+1}, \ldots, x_{i+m} ; x_{k}, x_{k+1}, \ldots, x_{k+m}\right)\)
with
\(N(s, t)=(s-t)_{+}^{2 m-1}\).
Here \(N_{i k}\) are the elements of a positive definite band matrix with \(N_{i k}=0\) if \(|i-k| \geq m\). The solution of this system is obtained by Gaussian elimination without pivoting.

In order to determine \(S(x)\), eq. (5) has to be integrated \(m\) times. We introduce two \(m\)-fold integrals of \((2 m-1)!M_{k}(x)\) :
\(E_{k}(x)=(2 m-1)!\int_{-\infty}^{x} d x \ldots \int_{-\infty}^{x} d x M_{k}(x)\),
and
\(F_{k}(x)=(2 m-1)!\int_{+\infty}^{x} d x \ldots \int_{+\infty}^{x} d x M_{k}(x)\).
If we use the well-known form of the \(m\) th divided difference (see, e.g. Greville [4]) we can use (3) to obtain two alternative explicit formulas for \(M_{k}(x)\). When we substitute these in eqs. (9) and (10), we obtain
\(E_{k}(x)=\sum_{i=0}^{m}\left(x-x_{k+i}\right)_{+}^{2 m-1} / w_{k}^{\prime}\left(x_{k+i}\right)\)
and
\(F_{k}(x)=\sum_{i=0}^{m}\left(x_{k+i}-x\right)_{+}^{2 m-1} / w_{k}{ }^{\prime}\left(x_{k+i}\right)\)
where
\(w_{k}{ }^{\prime}(x)=D_{x}\left[\left(x-x_{k}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{k+m}\right)\right]\).
Equation (11) shows that \(E_{k}(x)=0\), if \(x<x_{k}\), and
\(E_{k}(x)=\left(x-x_{k}\right)^{2 m-1} / w_{k}{ }^{\prime}\left(x_{k}\right)\), if \(x_{k} \leq x<x_{k+1}\).
Each time we pass a knot \(x_{k+i}\) from left to right, there enters a term \(\left(x-x_{k+i}\right)^{2 m-1} / w_{k}{ }^{\prime}\left(x_{k+1}\right)\) which is added to the current polynomial. We can therefore write \(E_{k}(x)\) in the form
\(E_{k}(x)=\sum_{j=0}^{2 m-1} e_{k, i, j}\left(x-x_{k+i}\right)^{i}\) in \(x_{k+i} \leq x<x_{k+i+1}\).
From eq. (14) it is clear that
\[
\begin{aligned}
e_{k, 0, j} & =0 & & j=0,1, \ldots, 2 m-2, \\
& =1 / w_{k}^{\prime}\left(x_{k}\right) & & j=2 m-1 .
\end{aligned}
\]

The other \(e_{k, i, j}\) are determined recursively. When \(e_{k, i-1, j}\) have been calculated so that \(E_{k}(x)\) is determined by (15) in \(x_{k+i-1} \leq x<\) \(x_{k+i}\), we use the complete Horner scheme to expand the polynomial in powers of \(x-x_{k+i}\) and then add the appropriate term required to pass to the interval \(\left[x_{k+i}, x_{k+i+1}\right)\). In the same way \(F_{k}(x)\) may be written in the form
\(F_{k}(x)=\sum_{j=0}^{2 m-1} e_{k,-i, j}\left(x-x_{k+m-i}\right)^{i}, \quad x_{k+m-i}<x \leq x_{k+m-i+1}\).
Again the \(e_{k,-i, j}\) are determined recursively. It suffices to generate \(e_{k, i, j}\) and \(e_{k,-i, j}\) for only a very limited set of values of \(k\) and \(i\) as we see below.

By integrating eq. (5) \(m\) times, using (9) and (10), and noting that \(E_{j}(x)=0\) for \(x \leq x_{j}\), and \(F_{j}(x)=0\) for \(x \geq x_{j+m}\), we find that
\(S(x)=T(x)+P(x)\)
where
\(T(x)=\sum_{x_{j+m}>x}^{k-1} d_{j} F_{j}(x)+\sum_{k=1}^{x_{j}<x} d_{j} E_{j}(x)\)
with \(k\) arbitrary and \(P(x)\) a polynomial of degree \(m-1\) depending on \(k\).

We now let \(k\) assume the set of values best described by the Algol 60 for-clause
for \(k:=N 1\) step \(m-1\) until \(N 2-m, N 2-m+1\) do.
For each such value of \(k\) we calculate \(T(x)\) in the interval \(\left[x_{k}, x_{k+m-1}\right)\). Then \(P(x)\) is uniquely determined by the interpolation conditions
\(y_{k+l}=T\left(x_{k+l}\right)+P\left(x_{k+l}\right), \quad l=0,1, \ldots, m-1\).
Newton's divided difference formula is used in obtaining \(P(x)\). For each value of \(k\) it is necessary to calculate the values of \(e_{p, i, j}\) only for \(p=k, k+1, \ldots, k+m-2, i=0,1, \ldots, k+m-p-2\), \(j=0,1, \ldots, 2 m-1\), and for \(p=k-m+1, k-m+2, \ldots\), \(k-1, i=-1,-2, \ldots, k-m-p, j=0,1, \ldots, 2 m-1\). Furthermore, \(p\) is restricted to lie between \(N 1\) and \(N 2-m\). More details on the organization of the calculations are given in [5].
(b) Equidistant knots. The calculation of the coefficients in NATSPLINEEQ for the case of equidistant knots is carried out in the same manner as in NATSPLINE for the general case. However, there are a number of simplifications which result in considerable

Table I. Cubic Natural Spline.
Five nonequidistant knots. Coefficients calculated by NATS PLINE
\begin{tabular}{ccccc}
\(x\) & \(S(x)\) & \(S^{\prime}(x)\) & \(S^{\prime \prime}(x) / 2\) & \(S^{\prime \prime \prime}(x) / 3:\) \\
\hline-3.000000 & 7.000000 & -1.999998 & 0 & 0.9999998 \\
& 11.00000 & 9.999996 & 5.999997 & 0.9999998 \\
-1.000000 & 11.00000 & 10.00000 & 5.999999 & -1.000000 \\
& 25.99998 & 18.99998 & 2.999999 & -1.000000 \\
0 & 26.00000 & 18.99997 & 2.999995 & -1.999996 \\
& 55.99995 & -16.99994 & -14.99997 & -1.999996 \\
3.000000 & 56.00000 & -16.99998 & -14.99999 & 4.999996 \\
& 29.00003 & -31.99995 & 0 & 4.999996 \\
4.000000 & 29.00000 & & & \\
\hline
\end{tabular}
economy of computational effort. It is not necessary to specify the \(x_{i}\). Hence we can assume that \(x_{i}=i\). It is convenient to modify eq. (6) slightly. First of all the right-hand sides reduce to \(\Delta^{m} y_{i} / m!\) where \(\Delta^{m} y_{i}\) are ordinary \(m\) th differences and require no divisions in their calculation. In the second place it can be shown that \(N_{i k}\) is the \(2 m\) th ordinary difference of \(s-t_{+}^{2 m-1} /\left((-1)^{m}(m!)^{2}\right)\) based on the values \(s-t=i-k-m, \ldots, i-k+m\). We rescale \(M(x ; t), M_{k}(x), E_{k}(x), F_{k}(x)\) by multiplying their representations in eqs. (4), (11), and (12) by ( -1\()^{m} m\) !. Thus \(d_{k}\) is rescaled by dividing it by \((-1)^{m} m\) !. We denote the rescaled coefficients by \(d_{k}{ }^{*}\). If we let \(N_{i k}^{*}\) be the \(2 m\) th difference of \(j_{+}^{2 m-1}\) based on the values \(j=i-k-m, \ldots, i-k+m\), then \(N_{i k}^{*}=N_{i k}(-1)^{m}(m!)^{2}\) and eq. (6) becomes
\(\sum_{k=N 1}^{N 2-m} N_{i k}^{*} d_{k}^{*}=\Delta^{m} y_{i}, \quad i=N 1, \ldots, N 2-m\).
For large values of \(m\), the calculation of \(N_{i k}^{*}\) by the obvious differencing technique involves serious cancellation and may introduce errors in the computed values of \(N_{i k}^{*}\). It can be shown that these differences satisfy the recurrence relation
\(\Delta^{n}\left(j_{+}^{n-1}\right)=(n+j) \Delta^{n-1}\left((j+1)_{+}^{n-1}\right)-j \Delta^{n-1}\left(j_{+}^{n-2}\right)\).
We need to calculate these quantities only for \(n=2 m\) at \(j=i-k-m\) for \(i-k=-m+1, \ldots, 0,1, \ldots, m-1\), i.e., for \(j=-2 m+1, \ldots,-2,-1\). In this range, the two weight factors \(2 m+j\) and \(-j\) are both positive, one ranging from 1 to \(2 m-1\) and the other from \(2 m-1\) to 1 . Thus no cancellation can occur when formula (20) is used for calculating \(N_{i k}^{*}\).

A further simplification occurs because the coefficients of \(E_{k}(x)\) and \(F_{k}(x)\) are independent of \(k\). It therefore suffices to compute the coefficients of \(E_{0}(x)\) and \(F_{0}(x)\). Moreover \(F_{0}(x)=\) \((-1)^{m} E_{0}(m-x)\). Thus we have only to calculate the values of an array \(e_{i j}\) for \(i=-m+1, \ldots,-1,0,1, \ldots, m-1\) and \(j=\) \(0,1, \ldots, 2 m-1\). This is a major saving over the calculations for the general case. The rest of the calculations are carried out as in the general case.
(c) Cubic spline. Much computational labor is saved by treating this as a special case instead of using the general program with \(m=2\). We start with eq. (1) setting \(m=2\). By imposing the conditions (ii), (iii) and (iv) at the knots, we get relations between the coefficients, which yield a tridiagonal system of equations for \(A_{i 2}\left(=S^{\prime \prime}\left(x_{i}\right) / 2\right.\), the coefficients of \(t^{2}\). This tridiagonal system is solved by Gaussian elimination. In the procedure CUBNATSPLINE. \(2 D\) the values of \(S^{\prime \prime}\left(x_{i}\right)\) and \(h_{i}=x_{i+1}-x_{i}\) are output. In the procedure CUBNATSPLINE the values of \(A_{i 1}, A_{i 2}\) and \(A_{i 3}\) are output.

\section*{3. Tests}

These procedures have been tested in Alcor Algol on the Telefunken TR-4 at the Rechenzentrum of the Technischen Universität München and in Algol W on the IBM 360/67 at the Stanford Computation Center. The latter tests included timing tests of the procedures over a range of values of \(m\) up to 7 and number of knots \(N=\) \(N 2-N 1+1\) up to 100 . The time was found to be approximately
proportional to the number \(N\) of knots and to the square of \(m\). The time \(T\) in seconds for the execution of the procedure NATSPLINE was found to be approximately
\(T=N / 60\left(0.117 m^{2}-0.296 m+0.512\right)\).
For NATSPLINEEQ the time was approximately
\(T=N / 60\left(0.014 m^{2}+0.023 m+0.029\right)\).
For CUBNATSPLINE the time was approximately
\(T=.045 N / 60=.00075 N\).
For CUBNATSPLINE2D the time was approximately
\(T=.03 N / 60=.0005 N\).
In order to check the accuracy of the coefficients calculated for the spline approximation \(S(x)\), the values of \(D^{k} S(x) / k!, k=\) \(1,2, \ldots, 2 m-2\) were calculated at the right-hand endpoint of each subinterval \(\left(x_{i}, x_{i+1}\right)\) and compared with their values (the coefficients in eq. (1)) at the left-hand endpoint of the next subinterval. It was found that the accuracy deteriorated somewhat for larger values of \(m\), although for \(m=7\), with the data used, the largest relative differences were observed to be approximately 0.0018 . Table I shows the results of a typical run using NATSPLINE for five nonequidistant knots with \(m=2\). The first line of each box gives the tabulated quantities at the given value of \(x\), which is the left-hand endpoint of the subinterval, and the second line of the box gives the tabulated quantities at the right-hand endpoint of the same subinterval. The close agreement of these quantities \(D^{k} S(x) / k!\), \(k=1,2, \ldots, 2 m-2\) shows that the spline function and its derivatives satisfy the specified continuity conditions. This is a good indication of the correctness of the results.

\section*{References}
1. Anselone, P.M., and Laurent, P.J. A general method for the construction of interpolating and smoothing spline functions. Numer. Math. 12 (1968), 66-82.
2. Curry, H.B., and Schoenberg, I.J. On Pólya frequency functions. IV. The fundamental spline functions and their limits. \(J\). Analyse Math. 17 (1966), 71-107.
3. Greville, T.N.E. Spline functions, interpolation and numerical quadrature. In Mathematical Methods for Digital Computers, Vol. II. A. Ralston and H.S. Wilf (Eds.) Wiley, New York, 1967.
4. Greville, T.N.E. Introduction to spline functions. In Theory and Applications of Spline Functions. T.N.E. Greville (Ed.) Academic Press, New York, 1969, pp. 1-35. (Pub. No. 22 Mathematics Research Center, U.S. Army, U. of Wisconsin.)
5. Herriot, John G., and Reinsch, Christian H. Algol 60 procedures for the calculation of interpolating natural spline functions. Tech. Rep. STAN-CS-71-200, Comput. Sci. Dep., Stanford U. 1971.

\section*{Algorithm}
procedure \(N A T S P L I N E(N 1, N 2, m, x, A)\);
value \(N 1, N 2, m\); integer \(N 1, N 2, m\);
array \(x, A\);
comment NATSPLINE computes the coefficients of a natural spline \(S(x)\) of degree ( \(2 \times m-1\) ), interpolating the ordinates \(y[i]\) at points \(x[i], i=N 1\) through \(N 2\). For \(x x\) in \([x[i], x[i+1]): S(x x)=\) \(A[i, 0]+A[i, 1] \times t+\ldots+A[i, 2 \times m-1] \times t \uparrow(2 \times m-1)\) with \(t=x x-x[i]\),
Input:
\(N 1, N 2\) subscript of first and last data point \(m 2 \times m-1\) is the degree of the natural spline, admissible values range from 1 to \(N 2-N 1+1\), recommended values are not greater than seven (say)
\(x[N 1: N 2]\) contains the given abscissas \(x[i]\) which must be strictly monotone increasing
\(A[N 1: N 2,0: 2 \times m-1]\) contains the given ordinates as zero-th column, i.e. \(A[i, 0]\) represents \(y[i]\),
Output:
\(A[N 1: N 2,0: 2 \times m-1]\) the coefficients of the natural spline as described above (the zero-th column is unchanged and no values are assigned to the last row of \(A\) );
if \(m>0 \wedge m \leq N 2-N 1+1\) then
begin
integer \(i, j, k, l, l 1, m 1, m 2, m m, n, m k, k 1, j j, k k, j 1 ;\)
real \(f, z, w\);
array \(C[0: 2 \times m], D[N 1: N 2], E[0: m-1,1-m: m-1,0: 2 \times m-1]\), \(P[0: m], Q[0: m, N 1: N 2] ;\)
comment \(i\) - \(j\)-entry of band-matrix stored in \(A[i, j-i+1]\), righthand stored in vector \(D\);
\(m 1:=m-1 ; m 2:=m-2 ; \quad m m:=2 \times m-1 ; \quad n:=N 2-m ;\)
for \(j:=N 1\) step 1 until \(N 2\) do
begin
\(l:=j+m ; \quad\) if \(l>N 2\) then \(l:=N 2\);
for \(i:=j\) step 1 until \(l\) do \(Q[i-j, j]:=(x[i]-x[j]) \uparrow m m\)
end;
for \(i:=N 1+1\) step 1 until \(N 2\) do
begin
\(l:=i-N 1 ; \quad\) if \(l>m\) then \(l:=m ;\)
for \(j:=0\) step 1 until \(l\) do \(P[j]:=Q[j, i-j]\);
for \(k:=1\) step 1 until \(m\) do
begin
\(l 1:=i+k-N 2 ;\) if \(l 1<1\) then \(l 1:=1\);
for \(j:=/\) step -1 until \(l 1\) do
\(P[j]:=(P[j-1]-P[j]) /(x[i-j+k]-x[i-j])\)
end;
for \(j:=l 1\) step 1 until \(l\) do \(Q[j, i-j]:=P[j]\)
end;
for \(j:=N 1\) step 1 until \(n\) do
begin
for \(i:=0\) step 1 until \(m\) do \(P[i]:=Q[i, j] ;\)
for \(k:=1\) step 1 until \(m\) do
begin
\(l 1:=N 1-j+k ;\) if \(l 1<1\) then \(l 1:=1\);
for \(i:=m\) step -1 until \(/ 1\) do
\(P[i]:=(P[i]-P[i-1]) /(x[i+j]-x[i+j-k])\)
end;
for \(i:=l 1\) step 1 until \(m\) do \(Q[i, j]:==P[i]\)
end;
for \(j:=1\) step 1 until \(m\) do
begin
\(l:=n-j+1 ;\)
for \(i:=N 1\) step 1 until \(l\) do \(A[i, j]:=Q[m-j+1, i+j-1]\)
end;
for \(i:=N 1\) step 1 until \(N 2\) do \(D[i]:=A[i, 0]\);
for \(k:=1\) step 1 until \(m\) do
begin
\(l:=N 2-k\);
for \(i:=N 1\) step 1 until \(/\) do
\(D[i]:=(D[i+1]-D[i]) /(x[i+k]-x[i])\)
end;
comment Gaussian elimination without pivoting, rational Cholesky;
for \(\boldsymbol{i}:=N 1\) step 1 until \(\boldsymbol{n}\) do
begin
\(l:=i+m 1 ; \quad\) if \(l>n\) then \(l:=n ;\)
for \(j:=i+1\) step 1 until \(/\) do
begin
comment \(f:=j\) - \(i\)-entry/i-i-entry, symmetry;
\(f:=A[i, j-i+1] / A[i, 1]\);
\(D[j]:=D[j]-f \times D[i] ;\)
for \(k:=j\) step 1 until \(/\) do
\(A[j, k-j+1]:=A[j, k-j+1]-f \times A[i, k-i+1]\)
end \(j\)
end \(i\);
comment Back substitution;
for \(i:=n\) step -1 until \(N 1\) do
begin
\(l:=n-i ; \quad\) if \(l \geq m\) then \(l:=m 1 ;\)
\(f:=D[i]\);
for \(j:=1\) step 1 until \(/\) do \(f:=f-A[i, j+1] \times D[i+j] ;\)
\(D[i]:=f / A[i, 1]\)
end \(i\);
comment Now compute the coefficients of the natural spline;
if \(m 1=0\) then
begin
for \(k:=N 1\) step 1 until \(n\) do
\[
A[k, 1]:=-D[k] /(x[k+1]-x[k])
\]
end
else
for \(k:=N 1\) step \(m 1\) until \(n, N 2-m 1\) do
begin
comment Now compute coefficients of the two sets of \(m\)-fold integrals of the minimum support splines scaled with ( \(2 \times m-1\) ) factorial;
\(l:=m 2\); if \(l>n-k\) then \(l:=n-k\);
for \(k k:=0\) step 1 until \(l\) do
begin
\[
m k:=m 1-k k ;
\]
for \(j:=0\) step 1 until \(m m\) do \(C[j]:=0\);
for \(i:=1\) step 1 until \(m k\) do begin
\(k 1:=k+k k ;\)
\(w:=1\);
for \(j:=0\) step 1 until \(m\) do if \(j \neq i-1\) then
\(w:=w \times(x[k 1+i-1]-x[k 1+j]) ;\)
\(C[m m]:=C[m m]+1 / w ;\)
for \(j:=0\) step 1 until mm do
\(E[k k, i-1, j]:=C[j] ;\)
if \(i<m k\) then
begin
\[
z:=x[k 1+i]-x[k 1+i-1] ;
\]
for \(j:=1\) step 1 until \(m m\) do for \(j 1:=m m\) step -1 until \(j\) do \(C[j 1-1]:=C[j 1] \times z+C[j 1-1]\)
end
end
end;
\(l:=m 1 ;\) if \(l>k-N 1\) then \(l:=k-N 1\);
for \(k k:=1\) step 1 until \(l\) do
begin
\[
m k:=m-k k ;
\]
for \(j:=0\) step 1 until \(m m\) do \(C[j]:=0\);
for \(i:=1\) step 1 until \(m k\) do begin
\(k 1:=k-k k ;\)
\(w:=1\);
for \(j:=0\) step 1 until \(m\) do if \(j \neq m-i+1\) then
\(w:=w \times(x[k 1+m-i+1]-x[k 1+j]) ;\)
\(C[m m]:=C[m m]-1 / w ;\)
\(z:=x[k 1+m-i]-x[k 1+m-i+1]\);
for \(j:=1\) step 1 until mm do
for \(j 1:=m m\) step -1 until \(j\) do
\(C[j 1-1]:=C[j 1] \times z+C[j 1-1] ;\)
for \(j:=0\) step 1 until \(m m\) do \(E[k k-1,-i, j]:=C[j]\) end
end;
for \(l:=0\) step 1 until \(m 2\) do
begin
comment Coefficients of the spline \(T(x)\) of degree \((2 \times m-1)\) in the interval \([x[k+l], x[k+l+1])\) stored as \((k+l)\)-th row of \(A, P(x)=y(x)-T(x)\) at the points \(x=x[k]\) through \(x[k+m-1]\) stored in \(P\);
for \(j:=0\) step 1 until mm do \(C[j]:=0\);
for \(i:=l-m 1\) step 1 until \(l\) do
begin
\(j j:=l-i ; \quad j:=k+j j ;\)
if \(i<0\) then begin \(j:=j-m ; j j:=m 1-j j\) end;
if \(j \geq N 1 \wedge j \leq n\) then
begin \(f:=D[j] ;\) for \(j 1:=0\) step 1 until mm do
\(C[j 1]:=C[j 1]+f \times E[j j, i, j 1]\)
end \(j\)
end \(i\);
for \(j:=1\) step 1 until \(m m\) do \(A[k+l, j]:=C[j]\);
\(P[l]:=A[k+l, 0]-C[0]\)
end \(l\);
\(f:=0 ; \quad z:=x[k+m 1]-x[k+m 1-1] ;\)
for \(j:=m m\) step -1 until 0 do \(f:=f \times z+C[j]\);
\(P[m 1]:=A[k+m 1,0]-f ;\)
comment Compute \(P(x)\) from its ordinates at the points \(x=x[k]\) through \(x[k+m-1]\) using Newton's divided difference scheme for interpolation;
for \(i:=1\) step 1 until \(m 1\) do
for \(j:=m 1\) step -1 until \(i\) do
\(P[j]:=(P[j]-P[j-1]) /(x[k+j]-x[k+j-i]) ;\)
for \(l:=0\) step 1 until \(m 2\) do
begin
comment Add coefficients of \(P(x)\) in interval
\([x[k+l], x[k+l+1])\) to those of \(T(x)\) stored in \((k+l)\) th row of \(A\);
for \(j:=0\) step 1 until \(m 1\) do \(C[j]:=P[j]\);
for \(i:=m 2\) step -1 until 0 do
for \(j:=i\) step 1 until \(m 2\) do
\[
C[j]:=C[j]+(x[k+l]-x[k+i]) \times C[j+1] ;
\]
for \(j:=1\) step 1 until \(m 1\) do
\(A[k+l, j]:=A[k+l, j]+C[j]\)
end \(l\)
end \(k\)
end NATSPLINE;
procedure \(N A T S P L I N E E Q(N 1, N 2, m, A)\);
value \(N 1, N 2, m\); integer \(N 1, N 2, m\);
array \(A\);
comment NATSPLINEEQ computes the coefficients of a natural spline \(S(x)\) of degree ( \(2 \times m-1\) ), interpolating the ordinates \(\boldsymbol{y}[j]\) at equidistant points \(x[i], i=N 1\) through \(N 2\). For \(x x\) in
\([x[i], x[i+1]): S(x x)=A[i, 0]+A[i, 1] \times t+\ldots\)
\(+A(i, 2 \times m-1] \times t \uparrow(2 \times m-1)\) with
\(t=(x x-x[i]) /(x[i+1]-x[i])\) from \([0,1)\),
Input:
\(N 1, N 2\) subscript of first and last data point
\(m 2 \times m-1\) is the degree of the natural spline, admissible values range from 1 to \(N 2-N 1+1\), recommended values are not greater than seven (say)
\(A[N 1: N 2,0: 2 \times m-1]\) contains the given ordinates as zero-th column, i.e. \(A[i, 0]\) represents \(y(i]\),
Output:
\(A[N 1: N 2,0: 2 \times m-1]\) the coefficients of the natural spline as described above, (the zero-th column is unchanged and no values are assigned to the last row of \(A\) );
if \(m>0 \wedge m \leq N 2-N 1+1\) then
begin
integer \(i, j, j 1, k, l, m 1, m 2, m m, n\); real \(f\);
array \(C[0: 2 \times m], D[N 1: N 2], E[1-m: m-1,0: 2 \times m-1], P[0: m]\);
comment \(i-j\)-entry of band-matrix stored in \(A[i, j-i+1]\),
right-hand stored in vector \(D\);
\(m 1:=m-1 ; m 2:=m-2 ; \quad m m:=2 \times m-1\);
\(n:=N 2-m ;\)
for \(i:=1\) step 1 until \(m m\) do
```

begin
$C[i]:=1$
for $j:=i-1$ step -1 until 2 do
$C[j]:=(i+1-j) \times C[j-1]+j \times C[j]$
end i;
for $i:=N 1$ step 1 until $N 2$ do $D[i]:=A[i, 0]$;
for $j:=1$ step 1 until m do
begin
$f:=C[m+1-j] ; \quad l:=N 2-j ;$
for $i:=N 1$ step 1 until n do $A[i, j]:=f$;
for $i:=N 1$ step 1 until l do $D[i]:=D[i+1]-D[i]$
end j;
comment Gaussian elimination without pivoting, rational
Cholesky;
for $i:=N 1$ step 1 until n do
begin
$l:=i+m 1 ; \quad$ if $l>n$ then $l:=n ;$
for $j:=i+1$ step 1 until $/$ do
begin
comment $f:=j-i$-entry/i-i-entry, symmetry;
$f:=A[i, j-i+1] / A[i, 1]$;
$D[j]:=D[j]-f \times D[i] ;$
for $k:=j$ step 1 until l do
$A[j, k-j+1]:=A[j, k-j+1]-f \times A[i, k-i+1]$
end j
end i;
comment Back substitution;
for $i:=n$ step -1 until $N 1$ do
begin
$l:=n-i$; if $l \geq m$ then $l:=m 1 ;$
$f:=D[i]$;
for $j:=1$ step 1 until l do $f:=f-A[i, j+1] \times D[i+j]$;
$D[i]:=f / A[i, 1]$
end i;
comment Now compute coefficients of the two m-fold integrals
of the minimum support spline scaled with $(2 \times m-1)$
factorial;
$l:=1$;
for $j:=0$ step 1 until mm do $C[j]:=0$;
for $i:=1$ step 1 until $m 1$ do
begin
$C[m m]:=C[m m]+l ;$
$l:=l \times(i-1-m) / i$;
for $j:=0$ step 1 until $m m$ do $E[i-1, j]:=C[j]$;
for $j:=1$ step 1 until mm do
for $k:=m m$ step -1 until j do $C[k-1]:=C[k-1]+C[k]$;
for $j:=0$ step 1 until $m m$ do $E[-i, j]:=C[j]$
end i;
comment Change sign;
for $j:=m 1$ step -2 until $0, m+1$ step 2 until $m m$ do
for $i:=-m 1$ step 1 until -1 do $E[i, j]:=-E[i, j]$;
comment Now compute coefficients of the natural spline;
if $m 1=0$ then
begin
for $k:=N 1$ step 1 until n do $A[k, 1]:=D[k]$
end
else
for $k:=N 1$ step $m 1$ until $n, N 2-m 1$ do
begin
for $l:=0$ step 1 until $m 2$ do
begin
comment Coefficients of the spline $T(x)$ of degree $(2 \times m-1)$
in the interval $[k+l, k+l+1)$ stored as $(k+l)$-th row of
$A, P(x)=y(x)-T(x)$ at the points $x=k$ through
$k+m-1$ stored in P;
for $j:=0$ step 1 until mm do $C[j]:=0$;
for $i:=l-m 1$ step 1 until $/$ do

```
begin
        \(j:=k+l-i ; \quad\) if \(i<0\) then \(j:=j-m\);
        if \(j \geq N 1 \wedge j \leq n\) then
        begin
            \(f:=D[j] ;\)
            for \(j 1:=0\) step 1 until mm do
            \(C[j 1]:=C[j 1]+f \times E[i, j 1]\)
        end \(j\)
    end \(i\);
    for \(j:=1\) step 1 until mm do \(A[k+-l, j]:=C[j]\);
    \(P[l]:=A[k+l, 0]-C[0]\)
    end \(l\);
    \(f:=0\);
    for \(j:=m m\) step -1 until 0 do \(f:=f+C \mid j]\);
    \(P[m 1]:=A[k+m 1,0]-f ;\)
    comment Compute \(P(x)\) from its ordinates at the points \(x=k\)
        through \(k+m-1\) using Newton's divided difference
        scheme for interpolation;
    for \(i:=1\) step 1 until \(m 1\) do
    for \(j:=m\) l step -1 until \(i\) do \(P[j]:=P[j]-P|j-1|\);
    \(f:=1\);
    for \(j:=2\) step 1 until \(m 1\) do
    begin
        \(f:=f \times j ; P[j]:=P[j] / f\)
    end \(j\);
    for \(l:=0\) step 1 until \(m 2\) do
    begin
        comment Add coefficients of \(P(x)\) in interval \(\mid k+1, k+1+1)\)
            to those of \(T(x)\) stored in \((k+l)\)-th row of \(A\);
            for \(j:=0\) step 1 until \(m 1\) do \(C[j]:=P[j]\);
            for \(i:=m 2\) step -1 until 0 do
            for \(j:=i\) step 1 until \(m 2\) do \(C[j]:=C[j]+C \mid j+1] \times(l-i)\);
            for \(j:=1\) step 1 unfil \(m 1\) do \(A[k+l, j]:=A[k+l, j]+C \mid j]\)
    end \(l\)
end \(k\)
end NATSPLINEEQ;
procedure CUBNATSPLINE(N1,N2,x,y,B,C,D);
    value \(N 1, N 2\); integer \(N 1, N 2\);
    array \(x, y, B, C, D\);
comment CUBNATSPLINE computes the coefficients of a cubic
    natural spline \(S(x)\) interpolating the ordinates \(y[i]\) at points \(x[i]\),
    \(i=N 1\) through \(N 2\). For \(x x\) in \([x[i], x[i+1])\) :
    \(S(x x)=((D[i] \times t+C[i]) \times t+B[i]) \times t+y[i]\) with \(t=x x-x[i]\),
    Input:
            \(N 1, N 2\) subscript of first and last data point
            \(x, y[N 1: N 2]\) arrays with \(x[i]\) asabscissa and \(y[i]\) as ordinate of
            \(i\)-th data point. The elements of the array \(x\) must be strictly
            monotone increasing,
    Output:
            \(B, C, D[N 1: N 2]\) arrays collecting the coefficients of the
                cubic natural spline \(S(x x) . C[N 2]=0\) while \(B[N 2]\) and
                \(D[N 2]\) are left undefined;
begin
    integer \(i, M 1, M 2\); real \(R, S\);
    \(M 1:=N 1+1 ; \quad M 2:=N 2-1 ; \quad S:=0 ;\)
    for \(i:=N 1\) step 1 until \(M 2\) do
        begin
            \(D[i]:=x[i+1]-x[i] ;\)
            \(R:=(y[i+1]-y[i]) / D[i] ;\)
            \(C[i]:=R-S ; \quad S:=R\)
        end \(i\);
        \(R:=S:=C[N 1]:=C[N 2]:=0\);
        for \(i:=M 1\) step 1 until \(M 2\) do
        begin
            \(C[i]:=C[i]+R \times C[i-1] ;\)
            \(B[i]:=(x[i-1]-x \mid i+1]) \times 2-R \times S\);
            \(S:=D[i] ; \quad R:=S / B[i]\)
```

end i;
for $i:=M 2$ step -1 until $M 1$ do
$C[i|:=(D|i| \times C \mid i+1]-C| i]) / B[i] ;$
for $i:=N 1$ step 1 until $M 2$ do
begin
$B \mid i]:=(y \mid i+1]-y[i]) / D[i \mid-(2 \times C[i]+C \mid i+1]) \times D \mid i] ;$
$D \mid i]:=(C \mid i+1]-C[i]), D|i|$
$C[i]:=3 \times C[i]$
end i
end CUBNATSPLINE;
procedure CUBNATSPLINE $2 D(N 1, N 2, x, y, D, h)$;
value $N 1, N 2$; integer $N 1, N 2$;
$\operatorname{array} x, y, D, h$;
comment Construction of a cubic natural spline $S(x)$ interpolating
the ordinates $y \mid i]$ at points $x \mid i], i=N 1$ through $N 2$. For $x x$ in
$|x| i], x|i+1|)$:
$S(x . x)=y|i| \times(1-t)+y|i+1| \times t+V$
$\times(-2 \times t+3 \times t \times t-t \times t \times t) / 6+W \times(t \times t \times t-t) 6$
with $t=(x x-x|i|)$ 'hin,$h|i|=x \mid i+1]-x \mid i]$,
$V=h \mid i\} \times h|i| \times D|i|, W=h \mid i\} \times h \mid i] \times D \mid i+1]$. This form
is especially suited for the evaluation of $S(x)$ and its second
derivative at points corresponding to $t=1 / 2,1 / 4,3 / 4,1 / 8$,
3'8, ...,
Input:
$N 1, N 2$ subscript of first and last data point
$x, y \mid N 1: N 2]$ arrays with $x[i]$ as abscissa and $y \mid i]$ as ordinate
of i-th data point. The elements of the array x must be
strictly monotone increasing,
Output:
$D|N 1: N 2| \quad D|i|$ is the second derivative of $S(x)$ at $x=x|i|$,
$i=N 1$ through $N 2$
$h|N 1: N 2| \quad h[i]=x|i+1|-x[i], i=N 1$ through $N 2-1 ;$
begin
integer $i, M 1, M 2 ;$ real U, V, W;
$M 1:=N 1+1 ; \quad M 2:=N 2-1 ; \quad U::=y[N 1] ;$
for $i:=N 1$ step 1 until $M 2$ do
begin
$V:=y \mid i+1] ; \quad h[i]:=x[i+1]-x[i] ;$
$D \mid i+1]:=(V-U) / h \mid i] ; \quad U:=V$
end i;
$W:=h \mid N 1] ; \quad D[N 1]:=U:=0 ;$
for $i:=M 1$ step 1 until $M 2$ do
begin
comment $U=h[i-1] / P[i-1], V=h[i-1], W=h[i], P[i]$
stored in $h \mid i]$, where $P[i]$ denotes diagonal coefficient in the
Gaussian elimination;
$V:=W ; \quad W:=h[i] ; \quad h[i]:=(V+W) \times 2-U \times V$;
$D[i]:=D[i+1]-D[i]-U \times D[i-1] ; \quad U:=W / h[i]$
end i;
$D[N 2]:=0$;
for $i:=M 2$ step -1 until $M 1$ do
begin
comment Back substitution and restore $h[i]$;
$W:=x[i+1]-x[i] ;$
$D[i]:=(6 \times D[i]-W \times D[i+1]) / h[i] ;$
$h[i]:=W$
end i
end CUBNATSPLINE2D

```

\section*{Algorithm 473}

\section*{Computation of Legendre Series Coefficients [C6]}

Robert Piessens [Recd. 13 Mar. 1972 and 5 Sept. 1972]
Applied Mathematics Division, University of Leuven, Heverlee, Belgium

This work was supported by the Nationaal Fonds voor Wetenschappelijk Onderzoek (Belgium) under Grant No. 10.174.

\section*{Key Words and Phrases: Legendre series, Chebyshev series CR Categories: 5.13 \\ Language: Fortran}

\section*{Description}
\(L E G S E R\) approximates the first \(N+1\) coefficients \(B_{n}\) of the Legendre series expansion of a function \(f(x)\) having known Chebyshev series coefficients \(A_{n}\). Several algorithms are available for the computation of coefficients \(A_{n}\) of the truncated Chebyshev series expansion on \([-1,1]\)
\(f(x) \simeq \sum_{n=0}^{N}, A_{n} T_{n}(x)\),
where \(\sum^{\prime}\) denotes a sum whose first term is halved. The commonly used algorithms are based on the orthogonal property of summation of the Chebyshev polynomials [1]. The application of the analogous property of the Legendre polynomials for the calculation of the coefficients \(B_{n}\) of the expansion
\(f(x) \simeq \sum_{n=0}^{N} B_{n} P_{n}(x)\)
is less suitable for practical use since it requires the abscissas and weights of the Gauss-Legendre quadrature formulas [2].

We present here a simple method for the calculation of the coefficients \(B_{n}\), when the coefficients \(A_{n}\) are given. Since
\(B_{n}=(n+1 / 2) \int_{-1}^{+1} P_{n}(x) f(x) d x\)
we have
\(B_{n} \simeq(n+1 / 2) \sum_{k=0}^{N} A_{k} I_{n, k}\),
where
\(I_{n, k}=\int_{-1}^{+1} P_{n}(x) T_{k}(x) d x\).
The integrals \(I_{n, k}\) can be calculated using the recurrence formula
\(I_{n, k+2}=\frac{[(k-1) k-n(n+1)](k+2)}{[(k+3)(k+2)-n(n+1)] k} I_{n, k}\),
where \(I_{n, k}=0\) if \(k<n, I_{n, n}=2^{2 n}(n!)^{2} /(2 n+1)!\) if \(n>0, I_{0,0}=2\).
Example. The Chebyshev series coefficients of the function \(f(x)=1 /(2-x)\) are \(A_{n}=2^{n}(1-\sqrt{ } 0.75)^{n} / \sqrt{ } 0.75\).

Table I. Coefficients of the Legendre Series Expansion of \(f(x)=1 /(2-x)\)
\begin{tabular}{rlll}
\(n\) & \multicolumn{1}{c}{ Exact \(B_{n}\)} & \begin{tabular}{c} 
Errors in computed \(B_{n}\) \\
Absolute \\
errors
\end{tabular} & \begin{tabular}{c} 
errors \\
entative
\end{tabular} \\
\hline 0 & 0.549294 E 0 & \(0.12 \mathrm{E}-4\) & \(0.22 \mathrm{E}-4\) \\
1 & 0.295830 E 0 & \(0.59 \mathrm{E}-5\) & \(0.20 \mathrm{E}-4\) \\
2 & 0.105917 E 0 & \(0.20 \mathrm{E}-5\) & \(0.19 \mathrm{E}-4\) \\
3 & \(0.340972 \mathrm{E}-1\) & \(0.56 \mathrm{E}-6\) & \(0.16 \mathrm{E}-4\) \\
4 & \(0.104495 \mathrm{E}-1\) & \(0.17 \mathrm{E}-6\) & \(0.16 \mathrm{E}-4\) \\
5 & \(0.311269 \mathrm{E}-2\) & \(0.42 \mathrm{E}-7\) & \(0.13 \mathrm{E}-4\) \\
10 & \(0.601250 \mathrm{E}-5\) & \(0.41 \mathrm{E}-10\) & \(0.68 \mathrm{E}-5\) \\
15 & \(0.101339 \mathrm{E}-7\) & \(0.29 \mathrm{E}-12\) & \(0.29 \mathrm{E}-4\) \\
20 & \(0.161332 \mathrm{E}-10\) & \(0.63 \mathrm{E}-12\) & \(0.39 \mathrm{E}-1\)
\end{tabular}

In Table I, the exact Legendre series coefficients of this function are compared with the computed values \((N=20)\). The computations are carried out in single precision on an IBM 370 computer.

In this example, the Chebyshev coefficients are known exactly. In most cases, they must be calculated using an algorithm as in [1].

\section*{References}
1. Smith, L.B. Algorithm 277, Computation of Chebyshev series coefficients. Comm. ACM . 9 (Feb. 1966), 86-87.
2. Bakhvalov, N.S., and Vasileva, L.G. Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures. Z. Vycisl. mat. i mat. Fiz. 8 (1968), 175-181.
```

Algorithm
SIJBrOUTINE LEGSEN(A, B, N)
C THIS SURROUTINE CALCLILATFS THE CGEFFIGIENTS CF THE
C LEGENDRE SERIE:G EXPAANSION Or A FGINCTIDN HAvING
C KNOLN CHFRYSHEV SERIES EXPA.NSICN
C INFUT PAKAMETENS
N DEGMEE OF THE TKUNCATED CHEBYSHEV bEirIES
A VECTOR OF UIMENSION N+1 !-ICH CONTAINS IHE
CHEMYSHEV COEFFICIENTS
GUTPUT FAKAMETEK
VECTER GF DIMENSIGN N+1 UHICH CONTAINS THE
LEGENDKE COEFFICIENTS
KEAL A, AK, AL, B, BB, C, D
INTEGEN K, L, LL, N, VI
DIMENSION A(N), B(N)
NI =N + I
AK = D.OED
C CALCULATION OF THE FIKST LEGENDNE CCEFFICIENT
B(1)=0.bEO*A(1)
IF (N-1) 70, 30, 10
10 4O 20 .
AK = AK + 2.OEO
R(1) = A(1) - A(K)/(AK*AK-1.0EO)
2O CONTINUE
30 C = 2.OEO/3.0EO
AL =0.0EO
C STAKT MAIN LCOT
I)O कO L=?, VI
C CALCULATICN OF THE \&-TH LFGENDIE: CCEFFILIENI
LL =L + ?
AL = AL + 1.OEO
BFB = C*A(L)
If (LL.GI.NI) GO TC bo
D = C
AK = AL
DC 40 K=LL,N1,S
U = ((AK-1,! FU)*AK-AL*(AL.+1.UEUU))*(AK+C.ULU)*D/
* (((AK+3.OEO)*(AK+コ.ULO)-AL*(AL+1.!)\&O))*AK)
BR = QR + A(K)*D
AK = AiS + \&.OE.U
uO CovilivuF:
SO C = 4.0EO*C*(AL+1.OEO)**(AL+1.OEU)/((AL +AL+3.0KO)
*(AL+AL+C\cdotURO))
B(L) = (AL+U.SEO)*ES
60 CONTINUE
70 אFTU\&N
FND

```

\section*{Algorithm 474}

\title{
Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures [E2]
}

Hiroshi Akima (Recd. 30 Mar. 1972 and 3 Nov. 1972) U.S. Department of Commerce, Office of Telecommunications, Institute for Telecommunication Sciences, Boulder, CO 80302

Key Words and Phrases: bivariate interpolation, interpolation, partial derivative, polynomial, smooth surface fitting

CR Categories: 5.13
Language: Fortran

\section*{Description}

Introduction. User information and Fortran listings are given on two subroutines, ITPLBV and SFCFIT. Each subroutine implements the method of smooth bivariate interpolation based on local procedures [3]. These subroutines are written in ANSI Standard Fortran [4].

Outline of the method. This method interpolates values of a single-valued smooth bivariate function \(z=z(x, y)\) and fits a smooth surface to a set of values of the function given at grid points in an \(x-y\) plane. These grid points may be unevenly spaced.

The method is an extension of the method of univariate interpolation developed earlier by the author \([1,2]\) and is likewise based on local procedures. It is designed to avoid excessive undulations between grid points.

This method is based on a piecewise function composed of a set of bicubic polynomials in \(x\) and \(y\); a bicubic polynomial in \(x\) and \(y\) is a polynomial that has terms \(x^{\alpha} y^{\beta}\), where \(\alpha=0,1,2,3\) and \(\beta=0,1,2,3\). Each polynomial is applicable to a rectangle in the \(x-y\) plane. In this method, three partial derivatives \(\partial z / \partial x, \partial z / \partial y\), and \(\partial^{2 z} / \partial x \partial y\) are determined at each data point locally by the coordinates of 13 data points, with the data point in question as the center, two data points on each side of it in the \(x\) and \(y\) directions, and one data point in each diagonal direction. Each bicubic polynomial corresponding to a rectangle in the \(x-y\) plane is deter-

\footnotetext{
Editor's note: Algorithm 474 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is \(\$ 16.00\) (U.S. and Canada) or \(\$ 18.00\) (elsewhere). If the user sends a small tape (wt. less than I lb.) the algorithm will be copied on it and returned to him at a charge of \(\$ 10.00\) (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithm at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10. The sequence number is right justified in column 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F. and A.K.C.
}

Table I. An Example Set of Input Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{IX} & \multirow[b]{3}{*}{\(X(I X)\)} & \multicolumn{9}{|c|}{\(\boldsymbol{Z}(\mathbf{I X}, I Y)\)} \\
\hline & & \[
\begin{gathered}
I Y= \\
1
\end{gathered}
\] & & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & \[
\begin{gathered}
Y(I Y) \\
0.0
\end{gathered}
\] & \[
=
\] & 10.0 & 15.0 & 20.0 & 25.0 & 30.0 & 35.0 & 40.0 \\
\hline 1 & 0.0 & 58.2 & 61.5 & 47.9 & 62.3 & 34.6 & 45.5 & 38.2 & 41.2 & 41.7 \\
\hline 2 & 5.0 & 37.2 & 40.0 & 27.0 & 41.3 & 14.1 & 24.5 & 17.3 & 20.2 & 20.8 \\
\hline 3 & 10.0 & 22.4 & 22.5 & 14.6 & 22.5 & 4.7 & 7.2 & 1.8 & 2.1 & 2.1 \\
\hline 4 & 15.0 & 21.8 & 20.5 & 12.8 & 17.6 & 5.8 & 7.6 & 0.8 & 0.6 & 0.6 \\
\hline 5 & 20.0 & 16.8 & 14.4 & 8.1 & 6.9 & 6.2 & 0.6 & 0.1 & -0.0 & 0.0 \\
\hline 6 & 25.0 & 12.0 & 8.0 & 5.3 & 2.9 & 0.6 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7 & 30.0 & 7.4 & 4.8 & 1.4 & 0.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 8 & 35.0 & 3.2 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 9 & 40.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 10 & 45.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11 & 50.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
mined by the values of the function and its three partial derivatives at four corner points of the rectangle.

When interpolation is made near or on the boundary of the defined range of \(z\), the \(z\) values estimated at several grid points outside the range are used to determine the partial derivatives. In this method, this estimation is based on three data points in the \(x\) or \(y\) direction, the boundary point and two adjacent given data points.

The resulting surface of this method is invariant under a linearscale transformation of the coordinate system; different scalings of the coordinates result in equivalent surfaces.

This method requires only straightforward procedures, not iterative solutions of equations with preassigned error tolerances, which are required by some methods. No problem concerning computational stability or convergence exists in application of this method.

The ITPLBV subroutine. This subroutine interpolates, from values of the function given at input grid points in an \(x-y\) plane and for a given set of points in the plane, the values of a single-valued bivariate function \(z=z(x, y)\).

The entrance to this subroutine is achieved by
CALL ITPLBV (IU, LX, LY, X, Y, \(Z, N, U, V, W\) )
where the input parameters are
\(I U=\) logical unit number of standard output unit,
\(L X=\) number of input grid points in the \(x\) coordinate (must be two or greater),
\(L Y=\) number of input grid points in the \(y\) coordinate (must be two or greater),
\(X=\) array of dimension \(L X\) storing the \(x\) coordinates of input grid points (in ascending order),
\(Y=\) array of dimension \(L Y\) storing the \(y\) coordinates of input grid points (in ascending order),
\(Z=\) doubly-dimensioned array of dimension \((L X, L Y)\) storing the values of the function ( \(z\) values) at input grid points,
\(N=\) number of points at which interpolation of the \(z\) value is desired (must be one or greater),
\(U=\) array of dimension \(N\) storing the \(x\) coordinates of desired points,
\(V=\) array of dimension \(N\) storing the \(y\) coordinates of desired points,
and the output parameter is

Table II. Output Data Obtained from the Input Data Given in Table I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\(\boldsymbol{K} \boldsymbol{X}\)} & \multirow[b]{3}{*}{\(\boldsymbol{U}(\mathbf{K} \boldsymbol{X})\)} & \multicolumn{9}{|c|}{\(\boldsymbol{W}(\boldsymbol{K} \boldsymbol{X}, \boldsymbol{K} \boldsymbol{Y})\)} \\
\hline & & \[
\underset{1}{K Y}=
\] & \[
2
\] & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & \[
\left\{\begin{array}{l}
V(K Y)= \\
0.0
\end{array}\right.
\] &  & 5.0 & 7.5 & 10.0 & 12.5 & 15.0 & 17.5 & 20.0 \\
\hline 1 & 0.0 & 58.20 & 61.70 & 61.50 & 55.01 & 47.90 & 54.82 & 62.30 & 48.13 & 34.60 \\
\hline 2 & 2.5 & 47.08 & 50.59 & 50.40 & 43.75 & 36.45 & 43.73 & 51.62 & 36.94 & 22.94 \\
\hline 3 & 5.0 & 37.20 & 40.31 & 40.00 & 33.81 & 27.00 & 33.86 & 41.30 & 27.41 & 14.10 \\
\hline 4 & 7.5 & 28.22 & 30.35 & 29.90 & 24.80 & 19.22 & 25.03 & 31.18 & 19.15 & 7.49 \\
\hline 5 & 10.0 & 22.40 & 23.29 & 22.50 & 18.75 & 14.60 & 18.45 & 22.50 & 13.47 & 4.70 \\
\hline 6 & 12.5 & 21.91 & 22.19 & 21.02 & 17.47 & 13.67 & 16.39 & 19.28 & 12.14 & 5.23 \\
\hline 7 & 15.0 & 21.80 & 21.82 & 20.50 & 16.74 & 12.80 & 15.07 & 17.60 & 11.66 & 5.80 \\
\hline 8 & 17.5 & 19.28 & 18.98 & 17.48 & 13.78 & 10.33 & 10.92 & 11.79 & 9.12 & 6.12 \\
\hline 9 & 20.0 & 16.80 & 16.05 & 14.40 & 10.96 & 8.10 & 7.40 & 6.90 & 6.57 & 6.20 \\
\hline 10 & 22.5 & 14.39 & 12.86 & 11.12 & 8.73 & 6.69 & 5.61 & 4.65 & 3.94 & 3.49 \\
\hline 11 & 25.0 & 12.00 & 9.79 & 8.00 & 6.58 & 5.30 & 4.10 & 2.90 & 1.71 & 0.60 \\
\hline 12 & 27.5 & 9.68 & 7.77 & 6.15 & 4.71 & 3.29 & 2.05 & 1.15 & 0.60 & 0.17 \\
\hline 13 & 30.0 & 7.40 & 6.18 & 4.80 & 3.07 & 1.40 & 0.45 & 0.10 & 0.03 & 0.00 \\
\hline 14 & 32.5 & 5.24 & 3.86 & 2.57 & 1.34 & 0.35 & 0.04 & 0.01 & 0.00 & 0.00 \\
\hline 15 & 35.0 & 3.20 & 1.68 & 0.70 & 0.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 16 & 37.5 & 1.09 & 0.41 & 0.08 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 17 & 40.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 18 & 42.5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 19 & 45.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 20 & 47.5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multirow[t]{3}{*}{21} & \multirow[t]{3}{*}{50.0} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & & \[
\left\lvert\, \begin{gathered}
K Y= \\
9
\end{gathered}\right.
\] & \[
10
\] & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline & & \[
\begin{aligned}
& V(K Y) \\
& 20.0
\end{aligned}
\] & \[
22.5
\] & 25.0 & 27.5 & 30.0 & 32.5 & 35.0 & 37.5 & 40.0 \\
\hline 1 & 0.0 & 34.60 & 40.39 & 45.50 & 41.20 & 38.20 & 39.80 & 41.20 & 41.67 & 41.70 \\
\hline 2 & 2.5 & 22.94 & 29.19 & 34.69 & 30.29 & 27.23 & 28.95 & 30.46 & 30.99 & 31.08 \\
\hline 3 & 5.0 & 14.10 & 19.63 & 24.50 & 20.25 & 17.30 & 18.84 & 20.20 & 20.70 & 20.80 \\
\hline 4 & 7.5 & 7.49 & 11.32 & 14.73 & 10.48 & 7.34 & 8.35 & 9.26 & 9.58 & 9.68 \\
\hline 5 & 10.0 & 4.70 & 6.12 & 7.20 & 4.03 & 1.80 & 1.96 & 2.10 & 2.12 & 2.10 \\
\hline 6 & 12.5 & 5.23 & 6.11 & 6.60 & 3.41 & 1.17 & 0.93 & 0.75 & 0.68 & 0.62 \\
\hline 7 & 15.0 & 5.80 & 6.84 & 7.60 & 3.74 & 0.80 & 0.66 & 0.60 & 0.59 & 0.60 \\
\hline 8 & 17.5 & 6.12 & 4.79 & 3.61 & 1.72 & 0.39 & 0.28 & 0.22 & 0.21 & 0.22 \\
\hline 9 & 20.0 & 6.20 & 3.37 & 0.60 & 0.25 & 0.10 & 0.04 & 0.00 & -0.01 & 0.00 \\
\hline 10 & 22.5 & 3.49 & 1.77 & 0.16 & 0.06 & 0.02 & 0.01 & 0.00 & -0.00 & -0.00 \\
\hline 11 & 25.0 & 0.60 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 12 & 27.5 & 0.17 & -0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 13 & 30.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 14 & 32.5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 15 & 35.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 16 & 37.5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 17 & 40.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 18 & 42.5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & . 0.00 \\
\hline 19 & 45.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 20 & 47.5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 21 & 50.0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

Fig. 1. Perspective representation of (a) the original data points given in Table I and of (b) the surface fitted by the SFCFIT subroutine with \(L X=11, L Y=9, M X=5, M Y=5, N U=51\), and \(N V=41\).
(a)
(b)

\(W=\) array of dimension \(N\) where the interpolated \(z\) values at desired points are to be displayed.
This subroutine occupies 1577 locations on the CDC-3800 computer. Computation time required for this subroutine on the same computer is approximately equal to: \(1+3.0 * N \mathrm{msec}\) for \(L X=L Y=10 ; 10+4.0 * N \mathrm{msec}\) for \(L X=L Y=100\).

When the function to be interpolated represents a periodic function of \(x\) and/or \(y\), the input data to this subroutine should consist of the data that cover a whole period and two additional grid lines on each side of them.

The SFCFIT subroutine. This subroutine fits a smooth surface of a single-valued bivariate function \(z=z(x, y)\) to a set of input data points given at input grid points in an \(x-y\) plane. It generates a set of output grid points by equally dividing the \(x\) and \(y\) coordinates in each interval between a pair of input grid points, interpolates the \(z\) value for the \(x\) and \(y\) values of each output grid points, and generates a set of output points consisting of input data points and the interpolated points.

The entrance to this subroutine is achieved by
CALL SFCFIT (IU, LX, LY, X, Y, Z, MX, MY, NU, NV, U, \(V, W\) )
where the input parameters are
\(I U=\) logical unit number of standard output unit,
\(L X=\) number of input grid points in the \(x\) coordinate (must be two or greater),
\(L Y=\) number of input grid points in the \(\boldsymbol{y}\) coordinate (must be two or greater),
\(X=\) array of dimension \(L X\) storing the \(x\) coordinates of input grid points (in ascending or descending order),
\(Y=\) array of dimension \(L Y\) storing the \(y\) coordinates of input grid points (in ascending or descending order),
\(Z=\) doubly-dimensioned array of dimension ( \(L X, L Y\) ) storing the values of the function at input grid points,
\(M X=\) number of subintervals between each pair of input grid points in the \(x\) coordinate (must be two or greater),
\(M Y=\) number of subintervals between each pair of input grid points in the \(y\) coordinate (must be two or greater),
\(N U=\) number of output grid points in the \(x\) coordinate \(=(L X-1) *\) \(M X+1\),
\(N V=\) number of output grid points in the \(y\) coordinate \(=(L Y-1) *\) \(M Y+1\),
and the output parameters are
\(U=\) array of dimension \(N U\) where the \(x\) coordinates of output points are to be displayed,
\(V=\) array of dimension \(N V\) where the \(y\) coordinates of output points are to be displayed,
\(W=\) doubly-dimensioned array of dimension ( \(N U, N V\) ) where the \(z\) coordinates of output points are to be displayed,
This subroutine occupies 1333 locations on the CDC-3800 computer. Computation time required for this subroutine on the same computer is approximately

\section*{\((1.5+(0.15+0.1 * M X) * M Y) * L X * L Y \mathrm{msec}\).}

When the surface exhibits periodicity with respect to \(x\) and/or \(Y\), the input data to this subroutine should consist of the data that cover a whole period and two additional grid lines on each side of them, and two intervals on each side be discarded from the set of output points.

Test results. All tests were performed on a CDC-3800 computer. An example is shown in Tables I and II. The \(X, Y\), and \(Z\) values shown in Table I were given to the SFCFIT subroutine as input data with \(L X=11, L Y=9, M X:=2, M Y=2, N U=21\), and \(N V=17\), and the \(U, V\), and \(W\) values shown in Table II were obtained. Also, the data in Table I, together with each combination of the \(U\) and \(V\) values in Table II, were given to the ITPLBV subroutine with \(L X=11, L Y=9\), and \(N==1\), and the respective \(W\) value in Table II was obtained each time. Figure 1(a) depicts the original data points given in Table I, and Figure 1(b) the surface
fitted by the \(S F C F I T\) subroutine with \(L X=11, L Y=9, M X=5\), \(M Y=5, N U=51\), and \(N V=41\). This example demonstrates one of the properties of this method, that the resulting surface is free frorn excessive undulations.

Acknowledgments. The author expresses his deep appreciation to L. David Lewis, Rayner K. Rosich, and Jeanne M. Tucker of the U.S. Department of Commerce Boulder Laboratories for their critical review of this paper.

\section*{References}
1. Akima, Hiroshi. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17, 4 (Oct. 1970), 589-602.
2. Akima, Hiroshi. Algorithm 433, Interpolation and smooth curve fitting based on local procedures. Comm. ACM 15, 10 (Oct. 1972), 914-918.
3. Akima, Hiroshi. A method of bivariate interpolation and smooth surface fitting based on local procedures. Comm. ACM 17, 1 (Jan. 1974), 18-20.
4. ANSI Standard Fortran, Publication X3.9-1966. Amer.

Nat. Standards Inst., New York. Also reproduced in W.P. Heising, History and summary of FORTRAN standardization development for the ASA. Comm. ACM 7,10 (Oct. 1964), 590-625.

\section*{Algorithm}

SUBROUTINE ITPLBU(IU, LX, LY, X, Y, Z, N, U, V, W) C BIUARIATE INTERPOLATION
THIS SUBROUTINE INTERPOLATES, FPOM VALUES OF THE FUNCTION GIVEN AT INPUT GRID POINTS IN AN X-Y PLANE AND FOR A GIVEN SET OF POINTS IN THE PLANE, THE
BIVARIATE FUNCTION \(Z Z(X, Y)\).
The method is based on a piece-wise function composed of C A SET OF BICUBIC POLYNOMIALS IN \(X\) AND Y. EACH POLYNOMIAL IS APPLICABLE TO A RECTANGLE OF THE INPUT GRID IN THE \(X-Y\) PLANE, EACH POLYNOMIAL IS DETERMINED LOCAL.LY. C THE INPUT PARAMETERS ARE
IU \(=\) LOGICAL UNIT NUMBER OF STANDARD OUTPUT UNIT
LX \(=\) NUMBER OF INPUT GRID POINTS IN THE \(X\) COORDINATE (MUST BE 2 OR GREATER)
LY = NUMBER OF INPUT GRID POINTS IN THE Y COORDINATE (MUST BE 2 OR GREATER)
- ARRAY OF DIMENSION LX STORING THE X COORDINATES

ARRAY OF GRID POINTS (IN ASCENDING ORDEP)
= ARRAY OF DIMENNINTY SINRING THE Y COORDINATES
DOUELY DIMENS IONED ARRAY ASCENDING ORDER
- DOUELY-DIMENSIONED ARTYE FUNCTION (Z VALUES) AT INPUT GRID POINTS
\(=\) NUMBER OF POINTS AT WHICH INTERPOLATION OF THE \(z\) Value is desired (must be 1 OR GREATER)
\(=\) ARRAY OF DIMENSION \(N\) STORING THE \(X\) COORDINATES of desired points
\(=\) ARRAY OF DIMENSION N STORING THE Y COORDINATES OF DESIRED POINTS

\section*{the output parameter IS}
\(=\) ARRAY OF DIMENSION N WHERE THE INTERPOLATED \(Z\) ALUES AT DESIRED POINTS ARE TO BE DISPLAYED SOME VARIABLES INTERNALLY USED ARE
\(Z A=\) DIVIDED DIFFERENCE OF 2 WITH RESPECT TO \(X\)
ZB = DIVIDED DIFFERENCE OF Z WITH PESPECT TO Y
ZAB = SECOND ORDER DIVIDED DIFFERENCE OF \(Z \mathrm{WITH}\) RESPECT TO X AND Y
\(2 X=\) PARTIAL DERIVATIVE OF 2 WITH RESPECT TO \(X\)
ZXY = SECOND ORDER PARTIAL DERIVATIVE OF Z WTH SECOND ORDER PARTIAL DERIVATIVE OF \(Z\) WITH
RESPECT TO \(X\) AND \(Y\) RECION STATEMENTS
DIMENSION \(X(L X), Y(L Y), Z(L X, L Y), U(N), U(N), W(N)\)
DIMENSION ZA(5,2), ZB(2,5), ZAB(3,3), \(Z X(4,4), Z Y(4,4)\),
- ZXY(4,4)

EQUIVALENCE (Z3A1,2A(1)), (Z3A2,2A(2)), (Z3A3,ZA(3)),
(Z3A4,ZA(4)), (Z3A5,ZA(5)), (Z4A1,ZA(6))), (Z4A2,ZA(7)),
* (Z3B2,ZB(3)), (Z3B3,ZB(5)), (Z3B4,2B(7)), (Z3B5,2B(9)),
* (Z4B1,2B(2)), (Z4B2,ZB(4)), (Z4B3,2B(6)), (Z4B4,2B(8))
* (Z4B5,ZB(10)), (ZA2B2,ZAB(1)), (ZA3B2,ZAB(2)),
( (ZA4B2,ZAB(3)), (ZA2B3,ZAB(4)), (ZA3B3,ZAB(5)),
( (ZA4B3,2AB(6)), (ZA2B4,2AB(7)), (2A3B4,2AB(8))
* (2A4B4,2AB(9)), (2×33,2x(6)), (2X43,2X(7))
( \((2 \times 34,2 \times(10)),(2 \times 44,2 \times(11)),(2 Y 33, Z Y(6))\)
* (ZY43,ZY(7)), (ZY34,ZY(10)), (ZY44,ZY(11))',
* (ZXY33,ZXY(6)), (ZXY43,ZXY(7)), (ZXY34, ZXY(10)),
* (ZXY33,ZXY(6)), (ZXY43,ZXY(7)), (ZXY34, ZXY(10)),
* (ZXY44, ZXY(11)), (P@0,Z33), (PQ1,ZY33), (P10,ZX33), * (ZXY44,2XY(

EQUIVALENCE (LX0, \(2 \times(1))\), (LXM1, \(2 \times(4)),(L X M 2,2 \times(13))\),
* (LXP1,ZX(16)), (LYQ,ZY(1)), (LYMI,ZY(4)), (LYM2,ZY(13)),
* (LYPI,ZY(16)), (IX,ZXY(1)), (IY,ZXY(4)), (IXPV,ZXY(13)).
* (IYPV,ZXY(16)), (IMN,JX), (IMX, JY), (JXM2,JX1),
* (JYMZ,JY1), (UK, DX), (VK,DY), (A1,A5, E1, B5, ZX(2),
( \(A 2, Z X(5), B, Q 1),(A 4, Z X(8), C, Q 2),(B 2, Z Y(2), D, Q 3),(12))\)
\((B 4, Z Y(14), E),(X 2, Z X(3), A 3 S Q),(X 4, Z X(9), P(Y)\),
\((Y 2, Z X(14)),(Y 4, Z Y(3), B 3 S Q),(Y 5, Z X(15), P Q 2)\),
* (Z23,ZY(5),P(3), (Z24,ZY(8),P12), (Z32,ZY(9),P13),
* (Z34,ZY(12),P20), (Z35,ZY(15),P21). (242,ZXY(2),P22).
* (Z43,ZXY(5),P23), (Z44,ZXY(3),P30), (Z45,ZXY(8),P31).
* (Z53,ZXY(9),P32), (Z54,ZXY(12),P33). (W2,WY2,W4),
* (W3,WY3,W1,W5), (WX2, \(2 X Y(14)\) ), (WX3, ZXXY(15))

C PRELIMINARY PROCESSING
C SETting of some input parameters to local variables \(I U Q=I U\)
\(1 \times 0=1 X\)
    XM1 \(=\mathrm{LXD}-1\)
    XM2 \(=\) LXM1 - 1
    XPP \(=L X 0+1\)
    LYQ = LY
    LYMI \(=\) LYO - 1
    YM2 \(=\) LYMI -1
        YP1 \(=L Y \emptyset+\)
        \(\mathrm{NO}=\mathrm{N}\)
C ERROR CHECK
        F (LXM2.LT.D) GO TO 710
        IF (LYM2.LT.E) GO TO 720
        F (NE.LT.1) GO TO 730

    10 CONTINUE
        IF (Y(IY-1)-Y(IY)) 20, 770, 780
    20 CONTINUE
C INITIAL SETTING OF PREVIOUS VALUES OF IX aND iy
        \(1 \mathrm{XPV}=0\)
\(1 \mathrm{YPV}=0\)
C MAIN DO-LOOP
        DO \(780 \mathrm{~K}=1, \mathrm{~N} 8\)
            \(U K=V(K)\)
ROUT NES TO
TO FIND OUT THE IX VALUE FOR WHICH
C (U(K) GE, X( \((X-1)\) ). AND. \((U(K) \cdot L T \cdot X(I X))\)

                IF (LXM2.EQ.
IF
(UK.GE. \(X(L X O)\) ) GO TO 70
                IF (UK.LT.X(1)) GO TO 60
                IMN \(=2\)
                IMX \(=(I M E\)
\(I X\)
\(=(I M X) / 2\)
                IF (UK. GE.X(IX)) GO TO 40
            \(I M X=I X\)
            IMN \(=1 X+\)
    50 IMN =IMX.GT.IMN) GO TO 30
        IX \(=1 M X\)
    GO TO 90
    \(60 \quad 1 x=1\)
    GO TO 98
IX \(=\) LXPI
        GO TO 98
            \(I x=2\)
    TO FIND OUT THE IY VALUE FOR WHICH
\(C(V(K) \cdot G E, Y(I Y-I))\). AND. \((V(K) \cdot L T \cdot Y(I Y)\)
    90 IF (LYMZ.EQ.0) GO TO 150
        IF (VK. GE,Y(LYQ)) GO TO 140
        IF (VK.LT.Y(1)) GO TO 130
        \(I M N=2\)
        \(1 M X=L Y 0\)
    \(100 \quad 1 Y=(I M N+I M X) / 2\)
        IF (VK.GE.Y(IY)) GO TO 118
        \(1 M X=1 Y\)
        GO TO 120
    \(10 \quad\) IMN \(=1 Y+1\) GO TO 190
        \(I Y=I M X\)
        GO TO 168
    \(130 \quad I Y=1\)
        GO TO 160
        \(1 Y=\mathrm{LYPI}\)
        IY \(=\) LYPI
GO TO 160
    \(150 \quad 1 Y=2\)
C TO CHECK IF THE DESIRED POINT IS IN THE SAME RECTANGLE
C AS THE PREVIOUS POINT. IF YES, SKIP TO THE COMPUTATION
OF THE POLYNOMIAL
    168 IF (IX.EQ.IXPV .AND. IY.EQ.IYPV) GO TO 690
        \(I X P V=I X\)
\(I Y P V=I Y\)
            IYPV \(=1 Y\)
ROUTINES TO PICK UP NECESSARY \(X, Y\), AND \(Z\) VALUES, TO
C ROUTINES THE PICK ZB, AND ZAB VALUES, AND TO ESTIMATE THEM
C WHEN NECESSARY
            \(J X=I X\)
            \(I F(J X \cdot E Q \cdot 1) J X=2\)
\(I F(J X \cdot E Q \cdot L X P I)\)
I
            IF (JX.EQ.LXP1) \(J X=L X\)
            IY \(=I Y\) (JY.EQ.I) \(J Y=2\)
            IF (JY.EQ.LYPI) JY \(=L Y Q\)
            IF
JXM \(=J X-2\)
            JXML \(=J X-L X Q\)
            JYM2 \(=J Y-2\)
            JYM2 \(=\) JY - 2
In The core area, l.E., in the rectangle that contains
C THE DESIRED POINT
            \(x_{3}=x(J x-1\)
            \(X_{4}=X(J X)\)
        A3 \(=1.0 /\left(X_{4}-\times 3\right)\)
        \(Y 3=Y(J Y-1)\)
        \(Y_{4}=Y(J Y)\)
        \(B 3=1.01(Y 4-Y 3)\)
        \(Z 33=Z(J X-1, J Y-1)\)
\(243=Z(J X, J Y-1)\)
        \(243=Z(J X, J Y-1)\)
\(Z 34=Z(J X-1, J Y)\)
        \(234=2(J X-1, J Y)\)
        13 = (JX,JY)
        \(23 A 3=(243-233) * A 3\)
\(Z 4 A 3=(244-234) * A 3\)
        \(24 A 3=(244-234) * A 3\)
\(23 B 3=(234-233) * B 3\)
        \(23 B 3=(234-233) * B 3\)
\(24 B 3=(244-243) * B 3\)
        ZA3B3 \(=(\) Z4B3-23B3) \(* A\)
C IN THE \(X\) DIRECTION
        \(\begin{array}{lllll}\text { IF (LXM2.EQ.0) GO TO } 230 \\ \text { IF (JXM2.EQ.日) GO TO } & 170\end{array}\)
        \(\mathrm{x} 2=\mathrm{x}(\mathrm{JX}-2)\)
        \(A 2=1.8 /\left(X_{3}-x_{2}\right)\)
        \(223=Z(J X-2, J Y-1)\)
        \(Z 23=Z(J X-2, J Y-1)\)
\(Z 24=Z(J X-2, J Y)\)
```

 Z3AZ = (Z33-223)*A2
 Z4A2 = (234-224)*A2
 IF (JXML.EQ.0) GO TO 180
 X5 = X (JX+1)
 Z53=Z(JX+1,JY-1)
 254=Z(JX+1,JY)
 23A4 = (253-243)*A4
 4A4 = (254-244)*A4
 IF (JXM2.NE.0) GO TO 190
 3A2 =23A3 + 23A3 - 23A4
 4A2 = 24A3 + 24A3 - 24A4
 GO TO 190
 23A4=23A3 + 23A3 - 23A2
 4A4 = 24A3 + 24A3-24A2
 ZA2B3 =(24AR2-23A2)*B3
 ZA4B3 = (24A4-23A4)*E3
 A1 = 1.01(x2-x(NX-3))
 23A1 = (223-2(JX-3)\Y
)}=(2, (24-2(JX-3,JY-1))
 40 TO 21年-2(JX-3.JY))*A!
 GO TO 210
 ZAA1=24A2+23A2-23A
 IF (JX.GE.LXM1) GO TO 22B
 A5 = 1.0/(x(JX+2)-X5)
 Z3A5 = (Z(JX+2,JY-1)-253)*A5
 4A5 = (Z(JX+2,JY)-254)*AS
 GO TO 240
 #3A5 = 23A4 + 23A4-23A3
 4AS =24A4 + 24A4-24A3
 GO TO 240
 230 23A2=23A3
24A2 = 24A3
GO TO 180
IN THE Y DIRECTION
240 IF \LYMM.EQ.0) GO TO 310
IF (JYM2.EQ.B) GO TO 250
Y2 = Y(JY-2)
B2=1.0/(Y3-Y2)
Z32=Z(JX-1,JY-2
Z42=Z(JX,JY-2)
Z3日2=(Z33-232)*B2
Z4B2 =(243-242)*B2
Y5=Y(JY+1)
235=Z(NX-1,UY+1)
255=2(JX-1,JY+1
245=2(JX,JY+1)
Z4B4 = (Z45-244)*B4
1F (JYMZ.NE.0) GO TO 270
23B2 = 23B3 + 23B3-2384
2482=24B3 + 2483-2484
GO TO 270
2384=23B3 * 23B3 - 23B2
24B4=24B3+24B3-2482
ZA3B2 = (24B2-23B2)*A3
ZA3B4 = (24B4-23B4)*A3
1F (JY.LE.3) GO TO 280
B1 = 1.ब/(Y2-Y(JY-3))
Z3B1=(Z32-2(JX-1,JY-3))*B1
24B1=(Z42-2(JX,JY-3))*B1
G0 TO 290
2381=23B2 * 23B2-23B3
24B1 = 24B2 * 24B2-24B3
B5 = 1.Q(V(Y(JY+2)-Y5)
305 = (Z(JX-1 JY+2)
(Y+2)-Z35)*B5
Z4B5 = (Z(JX,JY+2)-Z45)*B5
G0 TO 328
2385 = 23B4 + 23B4-2383
G0 TO 320
G382=23B
Z4B2= 24B3
GO TO 260
C IN THE DIAGONAL DIRECTIONS
320 IF (LXM2.EQ.0) GO TO 400
IF (LYM2.EQ.0) GO TO 410
F (JXML.EQ.8) GO TO 358
IF (JYM2.EQ.0) GO TO 330
A4B2 = ((253-2(JX+1,JY-2))*B2-24B2)*A4
IF (JYML.EQ.0) GO TO 340
ZA4B4=((Z(JX+1,JY+1)-254)*B4-2AB4)*A4
IF (JYMZ.NE.O) GO TO 380
ZA4B2 = 2A4B3 + ZA4B3 - 2A4B4
GO TO 388
340 ZA4B4 = ZA4B3 + ZA4B3- ZA4B2

```

```

 IF (JYM2.EQ.0) GO TO 360
 ZA2B2 = (z3B2-(z23-z(JX-2,JY-2))*B2)*A2
 IF (JYML.EQ.D) GO TO 370
 ZA2B4 = <23B4-(Z(JX-2,JY+
 (1)-224)*B4)*A2
 A2B2 = ZA2B3 + 2A2B3 - ZA2B4
 GO TO 390
 2A2B4 = ZA2B3 + ZA2B3 - ZA2B2
 GO TO 390
 IF (JXM2.NE.0) GO TO 350
 ZA2B2 = ZA3B2 + ZA3B2 - ZA4B2
 ZA2B4 = 2A3B4 + 2A3B4 - 2A4B4
 GO TO 420
 IF (JXML.NE.0) GO TO 420
 ZA4B2 = 2A3B2 + ZA3B2 - ZA2BB2
 AA4B4 = 2A3B4 + ZA3B4-2A2B4
 T0 420
 406 ZA2B2 = ZA3B2
ZA4B2 = 2A3B2
A2B4 = ZA3B4
= ZA3B4
GO TO 420

```
\(Z 3 A 2=(233-223) * A 2\)
F（JXML．EQ．0）GO TO 180

\(z 53=Z(J X+1, J Y-1)\)
\(254=2(J X+1, J Y)\)
24A4 \(=(254-244) * A 4\)
3A2
\(Z 4 A 2=24 A 3+24 A 3-24 A 4\)
G0 TO 190
\(Z A 4 B 3=(Z 4 A 4-23 A 4) * E 3\)
\(A_{1}=1.01(x 2-x(J x-3))\)
\(24 A \cdot 1=(224-2(J X-3, J Y)) * A 1\)
GO TO \(23 A 1=23\)
\(24 A 1=24 A 2+24 A 2-24 A 3\)
A5 \(=1 \cdot 8 /(X(J X+2)-X 5)\)
\(Z 3 A 5=(Z(J X+2, J Y-1)-253) * A 5\)
\(Z 4 A 5=(Z(J X+2, J Y)-Z 54) * A 5\)
GO TO 240
\(Z 4 A 5=24 A 4+24 A 4-24 A 3\)
23A2 23 1
\(24 \mathrm{AR}=24 \mathrm{~A} 3\)
Y DIRECTION
240 IF（LYMZ．EQ．g）GO TO 310
IF（JYM2．EQ．0）GO TO 250
B2＝1． \(8 /\left(Y_{3} 3-Y 2\right)\)
2.2
\(Z 20\)
\(Z(J X, J Y-2)\)
\(Z 3 \mathrm{BR}=(233-Z 32) * \mathrm{BR}\)
\(Z 4 \mathrm{B2}=(243-242) * \mathrm{BR}\)
IF（JYML．EQ．B）GO TO 260
B4 \(=1.01\left(Y_{5-Y 4)}\right.\)
\(235=2(J X-1, J Y+1)\)
\(245=2(J X, J Y+1)\)
\(2384=(235-234) *{ }^{2}\)
24B4＊（245－244）＊B4
\(1 F\)（JYM2．NE．©）GO TO 278
\(Z 3 B 2=23 B 3+23 B 3-2384\)
\(24 \mathrm{BR}=24 \mathrm{B3}+2483-2484\)
\(2384=2383+23 B 3-23 B 2\)
\(24 \mathrm{B4}=24 \mathrm{B3}+24 \mathrm{~B} 3-2482\)
ZA3B2 \(=(24 B 2-23 B 2) * A 3\)
ZA3B4 \(=(24 B 4-23 B 4) * A 3\)
\(1 F(J Y . L E \cdot 3)\) GO TO 280
\(B 1=1 . \operatorname{Or}(Y 2-Y(J Y-3))\)
\(Z 3 B 1=(Z 32-2(J X-1, J Y-3)) * B 1\)
\(Z 4 B 1=(Z 42-2(J X, J Y-3)) * B 1\)
GO TO 290
\(280 \begin{aligned} & 2381=2382+2382-2383 \\ & 24 B 1=2482+2482-2483\end{aligned}\)
1F（JY．GE．LYMI）GO TO 300
\(Z 3 B 5=(Z(J X-1, J Y+2)-235) * B\)
\(Z 4 B 5=(Z(J X, J Y+2)-245) * B 5\)
G0 TO 328
\(2485=2484+2484-2483\)
GO TO
23820
238
\(24 \mathrm{B2}=24 \mathrm{B3}\)
－
IN THE DIAGONAL DIRECTIONS
IF（LYMZ．EQ．D）GO TO 410
\(\begin{array}{llll}\text { IF（JXML．EQQ．8）GO TO } & 350 \\ \text { IF（JYM2．EQ．D）GO TO } & 330\end{array}\)
ZA4B2 \(=((253-2(J X+1, J Y-2)) * B 2-24 B 2) * A 4\)
\(1 F(J Y M L, E Q . \theta)\) GO TO \(34 \theta\)
ZA4B4 \(=((Z(J X+1, J Y+1)-254) * B 4-Z 4 B 4) * A 4\)
IF（JYM2．NE．0）GO TO 380
GO TO 388
GO TO 380
\(Z A 2 B 2=(23 B 2-(Z 23-Z(J X-2, J Y-2)) * B 2) * A 2\)
FF（JYML．EQ．日）GO TO 370
IF（JYMZ．NE．0）GO TO 390
ZA2B2 \(\mathrm{TO} 39 \mathrm{ZA} \mathrm{ZB3}+2 \mathrm{~A} 2 \mathrm{~B} 3-2 \mathrm{~A} 2 \mathrm{B4}\)
2A2B4＝ZA2B3＋ZA2B3－2A2B2
If（JXMR．NE．©）GO TO 350
\(Z A 2 B 2=2 A 3 B 2+Z A 3 B 2-Z A 4 B 2\)
GAR TO \(42 \varnothing\)
ZA4B4 \(=2 A 3 B 4+2 A 3 B 4-2 A 2 B 4\)
GO TO 42ø

ZA2B4 \(=\) ZA3B4
GO TO 428
\(410 \quad\) ZA2B2 \(=2 A 2 B 3\)
\(Z A 2 B 4=2 A 2 B 3\)
ZA4B2 \(=\) 2A4B3
NUMERICAL DIFFERENTIATION－．－TO DETERMINE PARTIAL
C DERIVATIVES \(Z X, Z Y\) ，AND \(Z X Y\) AS WEIGHTED MEANS OF DIVIDED
C DIFFERENCES ZA，ZB，AND ZAB，RESPECTIVEL，Y
420 DO \(480 \quad J Y=2.3\)
DO \(470 \mathrm{JX}=2,3\)
\(W_{3}=A B S(Z A(J X+2, J Y-1)-Z A(J X+1, J Y-1))\)
\(W_{3}=A B S(Z A(J X, J Y-1)-Z A(J X-1, J Y-1))\)
\(S W=W 2+W 3\)
IF（SW．EQ．e．6）GO TO 430
\(W \times 2=W 2 / S W\)
\(W\)
\(W 0\) To 442
GO TO 446
\(W X 3=0.5\)
\(Z X(J X, J Y)=W X 2 * Z A(J X, J Y-1)+W \times 3 * Z A(J X+1, J Y-1)\)
\(W^{2} 2=A E S(2 B(J X-1, J Y+2)-Z B(J X-1, J Y+1))\)
\(W^{2} 2=A E S(Z B(J X-1, J Y+2)-2 B(J X-1, J Y+1)\)
\(W 3=A B S(Z B(J X-1, J Y)-2 B(J X-1, J Y-1))\)
\(S W=W 2+W 3\)
SW（SW．EO．C．0）GO TO 450
\(W_{W 2}=W 2 / S W\)
WY3＝W3／SW
\(G O\) TO 468
\(W Y 2=0.5\)
WY \(3=0.5\)
\(Z Y(J X, J Y)=W Y 2 * Z B(J X-1, J Y)\)＊WY \(3 * Z B(J X-1, J Y+1)\)
ZXY（JX，JY）＝
WY2＊（WX2＊ZAB（JX－1，JY－1）＋WX3＊2AB（JX，JY－1））＊
WY3＊（WX2＊ZAE（JX－1，JY）＋WX3＊ZAR（JX，JY））
CONTINUE
480 CONTINUE
C WHEN（U（K）．LT．X（1））．OR．（U（K）．GT．X（LX））
IF（IX．EQ．LXP1）GO TO 530
IF（IX．NE．1）GO TO 59
W2 \(=A 4 *(3.6 \# A 3+A 4)\)
\(W 1=2.0 * A 3 *(A 3-A 4)+W 2\)
WO \(500 \mathrm{JY}=2,3\)
\(Z X(1, J Y)=(W 1 * Z A(1, J Y-1)+W 2 * Z A(2, J Y-1)) /(W 1+W 2)\)
\(Z Y(1, J Y)=Z Y(2, J Y)+Z Y(2, J Y) \cdots Z Y(3, J Y)\)
ZXY（1，JY）\(=2 X Y(2, J Y)+Z X Y(2, J Y)-Z X Y(3, J Y)\)
D0 \(490 \mathrm{JXI}=2,3\)
\(Z X(J X, J Y)=2 X(J X-1, J Y)\)
\(Z Y(J X, J Y)\)
\(Z X Y(J X, J Y)\)
ZXY（JX，JY）\(=\operatorname{ZXY}(J X-1, J Y)\)
CONTINUE
CONTINUE
\(x_{3}=x_{3}-1.0 / A 4\)
\(233=233-23 A 2 / A 4\)
DO 510 JY＝1，5
\(Z B(2, J Y)=Z B(1, J Y)\)
510 CONTINUE
DO \(520, J Y=2,4\)
\(Z B(1, J Y)=2 B(1, J Y)-Z A B(1, J Y-1) / A 4\)
\(A 3=A 4\)
\(J X=1\)
GO TO 570
\(530 \quad W 4=A 2 *(3.0 * A 3+A 2)\)
\(W 5=2.8 * A 3 *(A 3-A 2)+W 4\)
DO 550 JY＝2，3
\(\begin{aligned} 2 X(4, J Y) & =(W 4 * Z A(4, J Y-1)+W 5 * Z A(5, J Y-1)) /(W 4+W 5) \\ Z Y(4, J Y) & =Z Y(3, J Y)+Z Y(3, J Y)-Z Y(2, J Y)\end{aligned}\)
ZXY（4，JY）\(=2 X Y(3, J Y)+Z X Y(3, J Y)-Z X Y(2, J Y)\)
DO \(540 \mathrm{JX}=2,3\)
ZX（JX，JY）\(=\sum X(J X+1, J Y)\)
\(Z Y(J X, J Y)=Z Y(J X+1, J Y)\)
\(Z X Y(J X, J Y)=Z X Y(J X+1, J Y)\)
CONTINUE
CONTINLE
\(x 3=x 4\)
\(233=z 43\)
© 560 JY＝1，5
\(28(1, J Y)=2 B(2, J Y)\)
\(A 3=A 2\)
\(J X=3\)
\(570 \quad Z A(3,1)=Z A(J X+1,1)\)
DO 589 JY＝1，3
\(Z A B(2, J Y)=Z A B(J X, J Y)\)
580 CONTINUE
C WHEN（V（K）．LT．Y（1））．OR．（U（K）．GT．Y（LY））
IF（IY．EQ．LYPI）GO TO 630
\(W 2=B 4 *(3.0 * B 3+B 4)\)
\(W 1=2.0 * B 3 *(B 3-B 4)+W 2\)
Do 62 J \(\mathrm{J}=2,3\)
IF（JX．EQ．3 ．AND．IX．EQ．LXPI）（ 0 TO 600
IF（JX．EQ．2 AND．IX．EQ．1）GO TO 600
\(Z Y(J X, 1)=(W 1 * Z B(J X-1,1)+W 2 * Z B(J X-1,2)) /(W 1+W 2)\)
\(2 X(J X, 1)=Z X(J X, 2)+Z X(J X, 2)-2 X(J X, 3)\)
\(Z_{Z X Y}(J X, 1)=Z X Y(J X, 2)+Z X Y(J X, 2)-Z X Y(J X, 3)\)
600
\(\begin{aligned} & \text { DO } 610 J Y 1=2,3 \\ & J Y=5-J Y 1\end{aligned}\)
\(Z Y(J X, J Y)=Z Y(J X, J Y-1)\)
\(\begin{aligned} & 2 X(J X, J Y)=2 X(J X, J Y-1) \\ & Z X Y(J X, J Y)\end{aligned}\) ZXY（JX，JY）\(=\) ZXY（JX，JY－1）
610
CONTINUE
CONTINUE
Y3 \(=Y 3\)
\(Y 3=Y 3-1.0184\)
\(Z 33=Z 33-2382184\)
\(23 A 3=23 A 3-2 A 3 B 2 / B 4\)
\(23 A 3=23 A 3\)
23 B 3
ZA3B3 \(=\) ZA3B2
\(\mathrm{B} 3=\mathrm{B4}\)
GO TO 678
630
\(W_{4}=B 2 *(3.0 * B 3+B 2)\)
\(W 5=2 \cdot 0 * B 3 *(B 3-B 2)+W 4\)
D0 \(66 \mathrm{JX}=2,3\)

IF（JX．EQ． 3 ．AND．IX．EQ．LXPI）GO TO 640
Y（ JX，4）\(=(W 4 * 2 B(1 x-1,4)+W 5 * 2 B(J X-1\)
ZY（JX，4）\(=(W 4 * 2 B(J X-1,4)+W 5 * Z B(J X-1,5)) /\left(W^{\prime} 4+W 5\right)\)
\(2 X Y(J X, 4)=2 X Y(J X, 3)+Z X Y(J X, 3)-Z X Y(J X, 2)\)
DO \(650 \quad J Y=2,3\)
\(Z Y(J X, J Y)=Z Y(J X, J Y+1)\)
\(Z X(J X, J Y)=Z X(J X, J Y+1)\)
\(Z X Y(J X, J Y)=Z X Y(J X, J Y+1)\)
CONTINUE
650
660
CONTINUE
\(Y 3=Y 4\)
\(233=233+23 B 3 / B 3\)
\(\begin{array}{ll}23 A 3 & =23 A 3+Z A 3 B 3 / B 3\end{array}\)
\(23 \mathrm{B3}=23 \mathrm{B4}\)
\(2 \mathrm{~A} 3 \mathrm{~B} 3=2 \mathrm{~A} 3 \mathrm{~B} 4\)
B 3
670 IF（IX．NE． 1 ．AND．IX．NE．LXPI）GO TO 680

\(J Y=I Y / L Y P 1+\)
\(J Y 1=5-J Y\)
ZX（JX，JY）\(=\)
\(Z X(J X, J Y)=Z X(J X 1, J Y)+Z X(J X, J Y 1)-Z X(J X 1, J Y 1)\)
\(Z Y(J X, J Y)\)
\(Z X Y(J X, J Y)=Z X Y(J X 1, J Y)+Z X Y(J X, J Y 1)-Z X Y(J X 1, J Y 1)\)
C DETERMINATION OF THE COEFFICIENTS OF THE POLYNOMIAL
\(680 \quad\) ZX3B3 \(=(Z \times 34-2 \times 33) * B 3\)
\(Z \times 4 B 3=(2 \times 44-2 \times 43) * B 3\)
\(Z Y 3 A 3=(2 Y 43-2 Y 33) * A 3\)
\(Z Y 4 A 3=(Z Y 44-Z Y 34) * A 3\)
\(A=\) ZA3B3－ZX3B3－ZY3A3＋ZXY33
\(B=2 \times 4 B 3-2 \times 3 B 3-2 X Y 43+2 X Y 33\)
\(C=\) ZY4A3－2Y3A3－2XY34＋2XY33
\(D=2 X Y 44-2 X Y 43-2 X Y 34+2 X Y 33\)
\(E=A+A-B-C\)
\(\begin{array}{ll}A 350 & =A 3 * A 3 \\ B 3 S Q & =B 3 * B 3\end{array}\)
B3SQ \(=83 * B 3\)
\(\mathrm{PQ} 2=(2.0 *(Z 3 B 3-Z Y 33)+Z 3 B 3-Z Y 34) * B 3\)
\(\mathrm{P} 03=(-2.0 * 23 B 3+Z Y 34+Z Y 3)\)
\(P 日 3=(-2.0 * Z 3 B 3+Z Y 34+Z Y 33) * B 35 Q\)
\(p 12=(2.0 *(Z \times 3 B 3-2 X Y 33)+Z \times 3 B 3-Z X Y\)
P12 \(=(2.0 *(2 \times 3 B 3-2 \times Y 33)+2 \times 3 B 3-2 \times Y 34) * B 3\)
\(p 13=(-2.0 * 2 \times 3 \mathrm{~B}+2 \times Y 34+2 \times Y 33) * B 350)\)
\(P 13=(-2.8 * 2 \times 3 B 3+Z X Y 34+2 \times Y 33) * B 3 S Q\)
\(P 20=(2.0 *(Z 3 A 3-Z X 33)+Z 3 A 3-Z X 43) * A 3\)
\(P 20=(2.0 *(Z 3 A 3-Z X 33)+Z 3 A 3-2 X 43) * A 3\)
\(P 21=(2.0 *(Z Y 3 A 3-Z X Y 33)+Z Y 3 A 3-Z X Y 43) * A 3\)
\(P 22=(3.0 *(A+E)+D) * A 3 * B 3\)
F3 \(30(-2.0 * Z 3 A 3+Z \times 43+Z \times 33) * A 3 S Q\)
F30 \(=(-2.0 * Z 3 A 3+2 \times 43+Z X 33) * A 3 S Q\)
F31 \(=(-2.0 * Z Y 3 A 3+2 X Y 43+2 X Y 33) * A 3 S Q\)
F32 \(=(-3 . \theta * E-C-D) * B 3 * A 3 S Q\)
COMPUTATION \((D+E+E) * A 3 S Q * B 3 S Q\)
\(690 \quad \mathrm{DY}=\mathrm{VK}-\mathrm{Y} 3\)
\(Q 0=P Q 日+D Y *(P \emptyset 1+D Y *(P \varnothing 2+D Y * P \emptyset 3))\)
\(Q 1=P 10+D Y *(P 11+D Y *(P 12+D Y * P 13))\)
\(Q 2=P 20+D Y *(P 21+D Y *(P 22+D Y * P 23))\)
\(Q 3=P 30+D Y *(P 31+D Y *(P 32+D Y * P 33))\)
\(\mathrm{DX}=\mathrm{UK}-\mathrm{X} 3\)
\(W(K)=Q D+D X *(Q 1+D X *(Q 2+D X * Q 3))\)
700 CONTINUE
C NORMAL EXIT
RETURN
ERROR EXIT
710 WRITE（IU0．99999）
GO TO 800
200 WRITE（IUQ．99998）
WRITE CIUQ
GO TO 800 99997
GO TO 800
GO TO 760 （99996
GO TO 768
760 WRITE（IUO．9995）
WR TO 8 （IU，99994） \(1 X, X(I X)\)
GO TO 808
GO TO 798
780 WRITE（IU0．99992）
790 WRITE（IU0，99991）IY，Y（IY）
800 WRITE（IU®，99998）LX®，LYG，NQ RETURN
C FORMAT STATEMENTS
99999 FORMAT（ \(1 \times / 23\) H
99998 FORMAT（ \(1 \mathrm{X} / 23 \mathrm{H}\)
99997 FORMAT（ \(1 \times 122 H\)
99996 FORMAT（ \(1 \times 127 \mathrm{H}\)

99994 FORMAT（7H IX＝， \(16,10 X, 7 \mathrm{HX}(\mathrm{IX})=\) E E：12．3）
99993 FORMAT \((1 X / 27 H \quad * * *\) IDENTICAL Y VALUES．\(/\) ）
99992 FORMAT（IX／33H＊＊＊Y VALUES OUT OF SEQUENCE．1）

＊ 36 H ERROR DETECTED IN ROUTINE ITPLEU
END

SUBROUTINE SFCFITCIU，LX，LY，\(X, Y, Z, M X, M Y, N U, N V, U\) ， ＊V，W）
C SMOOTH SURFACE FITTING
C SMOOTH SURFACE FITTING
C THIS SUBROUTINE FITS A SMOOTH SURFACE OF A SINGLE－VAL
C BIVARIATE FUNCTION \(Z=Z(X, Y)\) TO A SET OF INPUT DATA
C BIVARIATE FUNCTION \(2=Z(X, Y)\) TO A SET OF INPUT DATA
\(C\) POINTS GIVEN AT INPUT GRID POINTS IN AN X－Y PLANE．IT C GENERATES A SET OF OUTPUT GRID POINTS BY EQUALLY DIVIDING \(C\) THE \(X\) AND \(Y\) COORDINATES IN EACH INTERVAL BETWEEN A PAIR
\(C\) OF INPUT GRID POINTS，INTERPOLATES THE \(Z\) VALUE FOR THE \(C X\) and \(Y\) Values of each output grid point，and generates C A SET OF OUTPUT POINTS CONSISTING OF INPUT DATA POINTS C AND THE，INTERPOLATED POINTS．
C THE METHOD IS BASED ON A PIECE－WISE FUNCTION COMPOSED OF A SET OF BICUBIC POLYNOMIALS IN X AND Y．EACH POLYNOMIAL \(C\) IS APPLICABLE TO A RECTANGLE OF THE INPUT GRID IN THE X－Y C PLANE．EACH POLYNOMIAL IS DETERMINED LOCAL．LY． c THE INPUT PARAMETERS ARE
c IU \(=\) LOGICAL UNIT NUMBER OF STANDARD OUTPUT UNIT
\(\underset{C}{C} L X=\begin{aligned} & \text { NUMBER OF INPUT GRID POINTS IN THE } X \text { COORDINATE } \\ & \\ & \text {（MUST BE } 2 \text { OR GREATER）}\end{aligned}\)
```

LY $=$ NUMBER OF INPUT GRID POINTS IN THE Y COORDINATE
(MUST BE 2 OR GREATER)
$X=$ ARRAY OF DIMENSION LX STORING THE X COORDINATES
OF INPUT GRID POINTS (IN ASCENDING OR DESCENDING
ORDER)
$Y=$ ARRAY OF DIMENSION LY STORING THE Y COORDINATES
OF INPUT GRID POINTS (IN ASCENDING OR DESCENDING
ORDER)
DOUBLY-DIMENSIONED ARRAY OF DIMENSION (LX,LY
STORING THE VALUES OF THE FUNCTION AT INPUT
GRID POINTS
MX = NUMBER OF SUBINTERUALS BETWEEN EACH PAIR OF
INPUT GRID POINTS IN THE X COORDINATE
(MUST BE 2 OR GREATER)
MY $=$ NUMBER OF SUBINTERVALS BETWEEN EACH PAIR OF
INPUT GRID POINTS IN THE Y COORDINATE
(MUST BE 2 OR GREATER)
NU $=$ NUMBER OF OUTPUT GRID POINTS IN THE X COORDINATE
= (LX-1)*MX+1
NV $=$ NUMBER OF OUTPUT GRID POINTS IN THE Y COORDINATE
OUTPUT PARAMETERS ARE
$U \quad=$ ARRAY OF DIMENSION NU WHERE THE X COORDINATES OF
OUTPUT POINTS ARE TO BE DISPLAYED
$V=$ ARRAY OF DIMENSION NU WHERE THE Y COORDINATES OF
OUTPUT POINTS ARE TO BE DISPLAYED
$W=$ DOUBLY-DIMENSIONED ARRAY OF DIMENSION (NU,NV)
WHERE THE Z COORDINATES OF OUTPUT POINTS ARE TO
BE DISPLAYED
SOME VARIABLES INTERNALLY USED ARE
ZA = DIVIDED DIFFERENCE OF z WITH RESPECT TO x
ZB = DIVIDED DIFFERENCE OF Z WITH RESPECT TO Y
ZAB = SECOND ORDER DIVIDED DIFFERENCE OF Z WITH
RESPECT TO X AND Y
$Z X=$ PARTIAL DERIVATIVE OF Z WITH RESPECT TO X
$Z Y=$ PARTIAL DERIVATIVE OF Z WITH RESPECT TO y
ZXY = SECOND ORDER PARTIAL DERIVATIVE OF Z WITH
RESPECT TO X AND Y
DIMENSION X(LX), Y(LY), Z(LX,LY), U(NU), V(NV), W(NU,NV)
DIMENSION ZA(4,2), ZB(5), ZAB(2,3), ZX(2), ZY(2), ZXY(2)
EQUIVALENCE (Z3A2,ZA(1)), (Z3A3,ZA(2)), (Z3A4,ZA(3))
* (Z3A5,ZA(4)), (24AZ,ZA(5)), (Z4A3,ZA(6)), (Z4A4,2A(7)),
(Z4A5,ZA(8)), (Z4Bl,ZB(1)), (Z4B2,ZB(2)), (Z4B3,ZB(3)),
* (Z4B4,ZB(4)), (Z4B5,ZB(5)), (ZA3B2,ZAB(1)),
* (ZA4B2,ZAB(2)), (2A3B3,ZAB(3)), (ZA4B3,ZAB(4)),
- (ZA3B4,ZAB(5)), (2A4B4,ZAB(6)), (ZX43,ZX(1))
* (ZX44,ZX(2)), (ZY43,ZY(1)), (ZY44,ZY(2)),
* (ZXY43,ZXY(1)), (ZXY44,ZXY(2)), (PQ日,Z33), (Pø1,ZY33),
(P10,ZX33), (P11,ZXY33)
EQUIVALENCE (IXMI,JX), (IXML,JY), (DU,DV, DX,DY)
($F M X, R M X, F M Y, R M Y, S W, E)$, (W2,WY2,A, Q0), (W3,WY3, B, Q1),
(Z4B1
(Z4B1,P12), (Z4B2,P13), (Z4B4,P20), (Z4B5,P21),
* (ZA3B2,P22), (ZA3B4, P23)
C PRELTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES
$I U Q=I U$
LXML $=$ LXO -1
LXM2 $=$ LXM1 -
LYO $=$ LY
LYM1 $=$ LYQ - 1
LYM2 = LYMI -
$M X Q=M X$
$M X P I=M X O+1$
$M X M I=M X G-1$
MXMI $=M X D$
MY® $=$ MY
MYP1 $=$ MYO
MYMI $=1$
MYMI = MYO -
NU $=N U$
$N V O=N V$
C ERROR CHECK
IF (LXM2.LT. 日) GO TO 400
IF (LYMZ.LT.0) GO TO 410
$\begin{array}{llll}\text { IF (MXMI.LE. 日) GO TO } & 420 \\ \text { IF (MYMI.LE. O) GO TO } & 430\end{array}$
IF (NU0.NE.LXM1*MX0+1) GO TO 440
IF (NV®.NE.LXMI*MXQ+i) GO TO 440
If $=2$

```


```

 CONTINUE
 GO TO $5 \emptyset$
30 DO 40 IX=3, LX0
IF (X(IX-1)-X(IX)) 470, 460, 40
40 CONTINUE
$50 \mathrm{IY}=2$
IF $(Y(1)-Y(2)) 60,490,80$
DO 70 IY=3,LY®
$1 F(Y(I Y-1)-Y(I Y)) 70,490,500$
CONTINUE
GO TO 100
IF (Y(IY-I)-Y(IY)) 500. 490. 90
IF (YCI
CONTINUE
COMPUTATION OF THE U ARRAY
100 FMX $=\mathrm{MXD}$
RMX $=1.0 / F M X$
RMX $=1$
$K U=1$
$\mathrm{X}_{4}=\mathrm{X}(1)$
$U(1)=x_{4}$
DO $120 \quad 1 \times=2, L \times 0$
$\mathrm{x} 3=\mathrm{x}_{4}$
$x_{4}=X(1 x)$
DU $=(X 4-\times 3) * R M X$
DO $110 \mathrm{JX=1,MXM}$!
$K U=K U+1$
$U(K U)=$
$U(K U-1)+D U$
110 CONTINUE
$K U=K U+1$
$U(K U)=\times 4$
126 CONTINUE

```

```

C NORMAL EXIT
RETURN
400 WRITE (IU0,99999)
GO TO 528
418 WRITE (IU8,99998)
420 WRITE 520
400 WRITE 520 (IU0,99997)
430 WRITE 520
G0 TO 520
G0 TO 520
440 WRITE (IUQ,99995)
40 GO TO S20
GO TO S20
GO TO 520
460 WRITE (IU0,99993)
GO TO 480
470 WRITE (IU0,99992)
470 WRITE (IU0,99992)
GO TO 520 90991)
490 WRITE (IU0.99990)
G0 WRITE 520
GO TO 510
C NORMA
C ERROR EXIT
WRITE (IU0.99990)

```
500 WRITE ( 8 U0.99989)
    510 WRITE (IUQ,99988) IY, Y(IY)
520 WRITE (IU®,99987) LXQ, MXO.
520 WRITE (IUG,99987) LX0, MXO, NU日, LYO, MYO, NUO
        RETURN
    FORMAT STATEMENTS
99999 FORMAT ( \(1 \times / 23 \mathrm{H}\)
9998 FORMAT \((1 \times / 23 H\)
99998 FORMAT ( \(1 \times / 23 H\)
99997 FORMAT \((1 X / 23 H\)
99997 FORMAT ( \(1 \times / 23 H\)
99996 FORMAT \(1 X / 23 H\)
99995 FOPMAT \(1 X / 26 H\)
\(\begin{array}{ll}* * * & L X=1 \text { OR LESS. }) \\ \text { *** } & \text { LY }=1 \text { OR LESS. })\end{array}\)
    99996 FORMAT ( \(1 \times / 23 H\)
    99995 FORMAT ( \(1 \times / 26 \mathrm{H}\)
\(\begin{array}{llll}\text { FORMAT ( } 1 X / 23 H & * * * & \text { MX }=1 \text { OR LESS. } & \text { O* } \\ 5 \text { FORMAT }(1 X / 26 H & * * * & \text { MY }=1 \text { OR LESS. }\end{array}\)
\(\left.\begin{array}{llll}99996 & \text { FORMAT }(1 X / 26 \mathrm{H} & \text { *** } & \text { IMPROPER NU VALUE., }) \\ 99995 & \text { IM } \\ 99994 & \text { FORMAT }(1 X / 26 \mathrm{H} & \text { *** } & \text { IMPROPER NU VALUE., }\end{array}\right)\)
\(\begin{array}{lll} \\ 99993 \text { FORMAT }(1 X / 27 \mathrm{H} & \text { *** } & \text { IMPROPER NV VALUE, } \\ \text { IDENTICAL } & \text { ( }\end{array}\)
993 FORMAT (IX/27H *** IDENTICAL X VALUES. 1 )
99992 FORMAT (IX/33H *** XVALUES OUT OF SEBUENCE. 1


\(\begin{array}{llll}99996 & \text { FORMAT ( } 1 X / 27 \mathrm{H} & \text { *** IDENTICAL Y VALUES, } \\ 99989 \text { FORMAT } 1 X / 33 H & \text { *** Y VALUES OUT OF SEQUENCE. }\end{array}\)

99987 FORMAT( \(7 \mathrm{H} \quad \mathrm{LX}=, 16,10 \mathrm{E}, 4 \mathrm{HMX}=, 16,10 \mathrm{C}, 4 \mathrm{HNU}=161\)


    END

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 241.
REMARK ON ALGORITHM 474
Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures [E2]
[H. Akima, Comm. ACM 17, 1 (Jan. 1974), 26-31]
M.R. Anderson [Recd 14 February 1978 and 5 April 1978]

Department of Physics, University of Michigan, Physics-Astronomy Building, Ann Arbor, MI 48109

Subroutine SFCFIT contains a violation of the Fortran Standard [1] similar to that observed [2] in a previous contribution by the same author [3]. Section 7.1.2.8 states that the initial value of a DO statement must be less than or equal to the value represented by the terminal parameter. When \(L X\) or \(L Y\) are input as 2, DO statements labeled \(10,30,60\), and 80 violate this rule. Error conditions of
IDENTICAL X VALUES, X VALUES OUT OF SEQUENCE, IDENTICAL Y VALUES, Y VALUES OUT OF SEQUENCE
may improperly result from comparisons of array variables, subscripts for which are incorrectly generated, within these DO loops.

Subroutine SFCFIT may be corrected to avoid the above violation by changing the initial parameters in DO statements labeled 10, 30, 60, and 80 from 3 to 2.

As altered, these carefully written subroutines have been used extensively and successfully.

\section*{REFERENCES}
1. ANSI Standard Fortran, X3.9-1966. Amer. Nat. Stand. Inst., New York, 1966.
2. Anderson, M.R. Remark on Algorithm 433. ACM Trans. Math. Software 2, 2 (June 1976), 208.
3. Akima, H. Algorithm 433. Interpolation and smooth curve fitting based on local procedures. Comm. ACM 15, 10 (Oct. 1972), 914-918.

\section*{Algorithm 475}

\title{
Visible Surface Plotting Program [J6]
}

\author{
Thomas Wright [Recd. 18 Apr. 1972, 13 Oct. 1972] Computing Facility, National Center for Atmospheric Research, Boulder, CO 80302
}

National Center for Atmospheric Research is sponsored by the National Science Foundation

Key Words and Phrases: hidden line problem, computer graphics, contour surface

CR Categories: 3.65, 4.41, 8.2
Language: Fortran
[This program is not in ANSI Fortran. Nonstandard features are noted in the text. A demonstration driver is included to illustrate use of the subroutines. I/O unit 9 is used by this driver.-LDF.]

\section*{Description}

This package of three routines produces a perspective picture of an arbitrary object or group of objects with the hidden parts not drawn. The objects are assumed to be stored in the format described below, a format which was chosen to facilitate the display of functions of three variables (Figure 1) or output from three-dimensional computer simulations (Figure 2). The basic method is to contour cuts through the array, starting with a cut nearest the observer. The algorithm leaves out the hidden parts of the contours by suppressing lines enclosed within lines produced while processing preceding cuts. The technique is described in detail in [2].

The object is defined in a three-dimensional array by setting words to one where the object is, and to zero where it is not. That is, the position in the array corresponds to a position in three-space, and the value of the array tells whether any object is present at that position or not. Because a large array is needed to define objects with good resolution, only a part of the array is passed to the package with each call.

There are three subroutines in the package. INIT3D is called at the beginning of a picture. This call can be skipped sometimes if certain criteria are met and certain precautions are taken. See the comment lines for details. SETORG (which has an entry point PERSPC) does three-space to two-space perspective transformations. It is called by \(\operatorname{INIT} 3 D\) and need not be called by the user. The mathematical method for the three-space to two-space transformation is due to Kubert, Szabo, and Giulieri [1]. DANDR (draw and remember) is called successively to process different parts of the three-dimensional array. For example, in Figure 3, the nearer plane would be processed in the first call to \(\operatorname{DANDR}\), while the further plane would be processed in a subsequent call. A sample program is provided with the algorithm to illustrate this point.

Although this package was developed using NCAR's CDC machines with locally written systems and compilers, implementation on different machines or systems should not be too difficult regardless of the plotter. The algorithm has been tested on the

Fig. 1. Four contour surfaces of the wave function of a 3-P electron in a one electron atom: \(50 \times 50 \times 50\) object cube, \(100 \times\) 100 screen model.


Fig. 2. Output from a three-dimensional cloud model: \(100 \times\) \(100 \times 60\) object cube, \(200 \times 200\) screen model.


Fig. 3. Processing different parts of a three-dimensional array.


Minnesota Fortran compiler (MNF), and when the following items are taken care of, should be portable.

There is a \(P R O G R A M\) card in the demonstration program There is an ENTRY statement in SETORG. ENTRY statements are nonstandard, but are generally portable. It could be eliminated, but the package would run longer. There are two machine-dependent variables used and described in \(D A N D R\). There is one system routine, \(L I N E\), called once and described in \(D A N D R\), which must be implemented or simulated to use this package. In three statements (which are marked) in \(D A N D R, . O R\). and . \(A N D\). are used for masking operations. with integer variables. Some compilers may not produce the desired code, so references to machine language functions may have to be substituted. There is a nonstandard but common form of the DATA statement in \(D A N D R\). Functions which are assumed available are \(S Q R T\), \(A C O S\), and SIN.

Figures 4 and 5 are referred to in the listing as the first picture and the second picture.

Fig. 4. The first picture produced by the test program.


Fig. 5. The second picture produced by the test program.


\section*{References}
1. Kubert, B., Szabo, J., and Giulieri, S. The perspective representation of functions of two variables. J. ACM 15, 2 (Apr. 1968), 193-204.
2. Wright, T. A one-pass hidden-line remover for computer drawn three-space objects. Proc. 1972 Summer Comput. Simulation Conf., pp. 261-267.

\section*{Algorithm}
```

 PRGGKAM ACMTEST
 C DEMONSTKATION PROGKAM
DIMENSION EYE(3), S(4), STI(80,80,2), IS2(3,160)
DIMENSIDAN IOBJ(80,80)
C USE V:HOLE FRAME
S(1) = 0.
S(2) =1.
S(4)=1.
C SET EYE POSITICN
EYE(1) = 250.
EYE(2)=150
C INITIALIZE PACKAGE
CALL INIT3D(EYE, 80, 80, 80, ST1, 3, 160, IS2, 9, b)
TE AND PLOT TEST 0BJECT
D0 50 I=1,80
A=(1-50)**2
C= (J-25)**2
D=IABS(S-63)+IABS(I-25)
D0 30 K=1,80
C FLDER
IF (K.EU.l) 6G 16 10
c ball
IF (SOKT(A+C+(FL\emptysetAT(K)-2b.)**2).LE.2S.) G0 T0 10
c POINT
IF (D.GT.FLDAT(80-K)*.1875) GO T0 20
IOBJ(J,K)=1
Ge to 30
k) =0
ONTINU
CALL DANDm(80, 80, ST1, 3, 160, 160, IS2, 9, 5, 10BJ,
80)
50 CONTINLU
C ADVANCE TO THE NEXT FKAME.
CALLL FKAME
C A SECGND PICTURE WILL NOW BE CALLED USING THE SAME SILE
ABKAYS AND EYE POSITION. IHIS MEANS IHE CALL IO INIIBD,
THE BIGGEST TIME CONSUMEK: CAN BE sKIPPED IF THE FOLLQULING
C reur lines ake included.
NEWIND 9
DO 70 I = 1,3
00 60 J=1,160
Is2(I,J)=0
60 CENTINU
70 CONTINUE
C THIS PICTURE WILL BE THF. T=4 CONTCUKS SUKFACE OF
C T=1/SQNT(U*U+V*V+W*W)+(.5-V)**2/ふ心KT(U*U+V*V).
DO 120 I=1,80
U = (40.5-FLDAT(I))/79.
UU = U*U
DO 110 J=1,80
V = (FLCAT(J)-40.5)/79.
vv = v*v
A = 1./SOkT(UUU+VV
v0 100 K=1.80
C THE FQLLEWING CARD ADUS AXES.
IF (1*J.EO.1 .OK. 1*K.EU.1 •OK. J*K.EU.1) G0 TG 80
* (FLOAT(K)-40.b)/79.
F(1./SQRT(UU+Vv+h*h)+(.5-v)**2*A.LE.4.) 60 10 90
I0BJ(J,K) = 1
GO T0 100
IOBJ(J,K) = 0
90 IOBJ(J,K)
110 CONTINUE.
CALL DANDK(80, 80, STI, 3, 160, 160, 1b2, 9, 5, I0BJ,
* 80)
120 CONTINUE
C FLUSH PLgT BUFFER
CALL Fi'AME
STOP
SUBKQUTINE INITBUCEYE, NU, NV, Vh, STI, LX, NY, IS2, IU,
* S)
DIMENSIDN EYE(3), STI(NV,NW,2), ISZ(LX,NY), S(4)
BY THOMAS WRIGHT
C COMPUTING FACILITY
C THE NATIQNAL CENTER FOK ATMUSPHERIC KESEAKCH
C BOULDER, CQLDKADO 80302
C NCAR IS SPQNSOEEED BY THE NATIENAL SCIENCE FQUNDAIIGN
THE METHQD IS DESCNIBED IN DETAIL IN - A ONE-PASS HIDDEN-
LINE REMOVEK FOK COMPUTEK DKAWN THNEE-SPACE OBJECTS. PKOC

```

```

C THIS VERSION IS F0N USE ON CDC 6000 OK 7000 COMPUTEKS.
C THIS PACKAGE OF KOUTINES PLOTS 3-DIMENSIONAL OBJECTS WITH
C HIDDEN PARTS NOT SHOWN. OBJECTS AKE STORED IN AN AKNAY,
C HIDDEN PARTS NOT SHOWN. OBJECTS ARE STOKED IN AN AKKAY,
C WITH THE POSITION IN IHE AKKAY COK\kappaESPENDING TG A LOCATION
C IN 3-SPACE AND THE VALUE OF THE AKKAY ELI
C INITODIS AN INITIALIZATION ROUTINE FOK THIS PACKAGE. IT

```

```

PREDUCE a picture.
C EYE AN ARIAYY 3 LONG CONTAINING THE U, v, AND w COORDI-
C NATES OF THE EYE PGSITIQN. OBJECTS AKE CONSIDEKED

```
```

 (NU,NV,NW). THE EYE PESITIQN MUST HAVE POSITIVE
 COOKDINATES AWAY FKOM THE COOKDINATE PLANES \(U=0\),
 PACKAGE
 YYE(3) \(=3 *\) Nk.
 NU U DIKECTION LENGTH OF THE BOX CONTAINING THE OBJECTS
 diaction Levgth of the box containing The objects
 STI A SC
 A SCRATCR ARKAY AI LEASI NV*NW*2 WORDS L日NG.
 FIKST DIMENSION OF A SCKATCH AKKAY, ISR, USED BY THE
 PACKAGE FOK REMEMBERING WHEKE IT SHOULD NOT DKAK.
 LX \(=1+N X /\) NBPW. SEE DQINDK CGMMENTS FOK NX AND NBPK.
 NY SECOND DIMENSION OF ISZ. SEE DANDK COMMENTS.
IS2 A SCISATCH AKNAY AT LEAST LX*NY WOKDS LONG.
IU UNIT NUMBEK OF SCRATCH FILE FOK THE PACKAGE, STI
WILL BE WRITTEN NU TIMES ON THIS FILE.
AN ARRAY A LONG WHICH CONTAINS THE COORDINATES OF
THE AKEA WHEKE THE PICTUKE IS TE BE DRAKN. IHAT IS,
ALL PLOTTING COOKDINATES GENEKATED WILL BE BOUNDED
AS FOLLOVS-- X COONDINATES WILL BE BETWEEN S(1) AND
S(2), Y CQOKDINATES WILL BE BETWEEN S (3) AND S (4).
TO PKEVENT DISTORTIDN, HAVE $S(2)-S(1)=S(4)-S(3)$.
IF SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE
ARRAYS AND EYE POSITIGN AND THE USEK KEHINDS IU AND FILLS
IS2 WITH ZEriEES, INIT3D NEED NOT 日E CALLEd FOK OTHEк THAN
THE FIKST PICTUKE.
ErMATION m@UIINE FOK THIS LINE gF bIGHI.
$U=N U$
$v=N V$
$V=N V$
$W=N W$
CALL SETOKG(U*.b, V*.5, W*.5, EYE(1), EYE(2), EYE(3))
FIND EXTKEMES IN r IKANSFgRMED SPACE.
CALL PERSPC(1., $1 \ldots h, D, Y T, D)$
CALL PERSPC (U, V, $1 ., D, Y B, D)$
CALL PEKSPC(U, $1 ., 1 ., X L, ~ U, ~ D$
CALL PERSPC(1.., $V, 1 ., X, X R, D, D)$
ADJUST EXTKEMES TO PKEVENT DISTOKTION WHEN GØING FKOM
TKANSFOKMED SPACE TO PLOTTEK SPACE.
DIF $=\left(X_{R}-X L-Y T+Y B\right) * \cdot$
IF (DIF) 10, 30, 20
$\begin{aligned} 10 X_{L} & =X_{L}+D I F \\ X_{R} & =X_{R}-D I F\end{aligned}$
GO TE 30
$20 Y B=Y B-D I F$
$\begin{array}{ll}Y T & =Y I+D I F \\ \text { REWIND }\end{array}$
30 REWIND IU
C Find the plotien coondinates of the 3-space lattice polinis
$\begin{array}{cc}C_{1}=.9 *(S(2)-S(1)) /(X K-X L \\ C 2 & =.05 *(S(2)-S(1)) *\end{array}$
$\mathrm{C}_{3}=9 *(\mathrm{~S}(4)-\mathrm{S}(3))(\mathrm{YT}-\mathrm{YB})$
$\mathrm{C}_{4}=.05 *(5(4)-5(3))+\mathrm{S}(3)$
DO 60 I=1.NU
Dø $60 \quad I=1, N U$
DO SO J=1,NV
D0 $V=\mathrm{J}=\mathrm{J}$
vo $\Delta 0 K=1$, Nb
CALL PEKSPC (U, V, FLOAT(K), X, Y, D)
$\operatorname{sil}(J, K, 1)=C 1 *(X-X L)+C 2$
$\operatorname{ST1}(J, K, 2)=C 3 *(Y-Y B)+C 4$
continue
SO CONTINUE
C VIRITE THEM ON UNIT IU.
WRITE (IU) STI
Continue.
REWIND IU
C ZERG OUT ANRAY WHEKE VISIBILITY IS KEMEMBERED.
De $80 \mathrm{~J}=1, \mathrm{NY}$
De $70 \quad I=1, L X$
S2 $\operatorname{SI}, J)=0$
80 continue
RETURN
END
SUBROUTINE SETORG(X, Y, $Z, X T, Y T, \angle T$)
C THIS RDUTINE IMPLEMENTS THE 3-SPACE TD 2-SHACE TKANSFOR-
C MATIDN BY KUBER, SZABQ AND GIULIEKI, THE PEKSPECTIVE
MATION BY KUBER, SZABQ AND GIULIEKI, THE PEKSPECTIVE
KEPRESENTATION OF FUNCTIQNS DF TWO VANIABLES. J. ACM IS.
C KPRESENTATION OF
2, 193-204.1968.
SETORG ARGUMENTS
X,Y,Z ARE THE 3-SPACE COONDINATES OF THE INTEKSECTION
OF THE LINE OF SIGHT AND THE IMAGE PLANE. THIS
XT,YT,ZT ARE THE 3-SPACE COQRDINATES QF THE EYE PQSITION.
PEKSPC AKGUMENTS
X, Y, Z ARE THE 3-SPACE CDORDINATES OF A POINT TO BE
TKANSF OKMED
XT,yt THE RESULTS OF THE 3-SPACE TD 2-SPACE TKANSFgR-
CT MATIGN.
STOKE THE PAKAMETEHS OF THE SETQRG CALL FOK USE WHEN
c PErSPC IS CALLED.
$A X=x$
$A Y=\hat{y}$
$A Y=Y$
$A Z=Z$
$E X=X T$
$E Y=Y T$
$E L=Z T$
c: AS MUCH COMPUTATION AS POSSIBLE IS DONE DUNing EXECUTIEN
C ØF SETOKG SINCE PERSPC IS CALLED THOUSANDS OF TIMES FOK
C EACH CAEL to SEtORG.
$D X=A X-E X$
$D Y=A Y-E Y$
$D Z=A Z-E Z$
$D=S Q R T(D X * D X * D Y * D Y+D Z * D Z)$
COSAL $=D X / D$
COSRE $=D Y / D$
COSGA $=$ DZ 10
$A L=A C O S(C O S A L)$
$B E=A C O S(C 0 S B E)$
$G A=A C 0 S(C O S G A)$
SINGA $=\operatorname{SIN}(G A)$
C THE 3-SPACE POINT LOOKED AT IS TKANSFOKMEU INTO (0,0) DF

```

C THE 2-SPACE. THE 3-SPACE \(Z\) AXIS IS TRANSFORMED INTO THE
C 2-SPACE Y AXIS. IF THE LINE QF SIGHT IS CLQSE TO PAKALLEL
TO THE 3-SPACE \(Z\) AXIS, THE 3-SPACE Y AXIS IS CHOSEN (IN-
(
        IF (SINGA.L
        IF (SINGA.LT.0.0001) GO T0 10
        ASSIGN 20 TO
        RETURN
    \(10 \begin{gathered}\text { RETURN } \\ \text { SINBE }\end{gathered}=\)
    10 SINBE = SIN(BE)
        ASSIGN 30 TO JUMP
        RETUKN
C ******************** ENTRY PERSPC
        ENTKY PEKSPC
        \(=\mathrm{D} /((X-E X) * C\) COSAL \(+(Y-E Y) * C 0 S B E+(Z-E Z) * C O S G A)\)
        GO TO JUMP, \((20,30)\)
    \(20 X T=((E X+O *(X-E X)-A X) * C Q S B E-(E Y+O *(Y-E Y)-A Y) * C O S A L) * K\)
        \(Y T=(E Z+0 *(Z-E Z)-A Z) * 1\)
        RETURN
    \(30 \times T=((E Z+Q *(C-E Z)-A Z) * C\) CSAL \(-(E X+G 1 *(X-E X)-A X) * C O S G A) *_{K}\)
        \(Y T=(E Y+Q *(Y-E Y)-A Y) * K\)
\(R E T U K N\)
        RETUKN
        END

SUBROUTINE DANDK(NV, NK:, ST1, LX, NX, NY, ISZ, IU, S, * IøBJS, MV)

DIMENSION STI(NV,NW,2), ISZ(LX,NY:, S(4), I QBJS(MV,NW)
C THIS ROUTINE IS CALLED NU TIMES, EACH CALL PROCESSING THE
C PAKT OF THE PICTURE AT U=NU +1-I WHERE I IS THE NUMBE
C THE CALL TO DANDR. THAT IS, THE PANT OF THE PICTUKE AT
C U=NU IS PROCESSED DURING THE FIKSI CAI.L, THE PART OF THE
C U UNU IS PROCESSED DURING THE FIKSI CALLL, THE PART OF THE
C PICTURE AT U=NU-1 IS PKOCESSED DUKING THE SECOND CALL, AND
SO ON UNTIL THE PART OF THE PICTURE AT \(U=1\) IS PROCESSED
SO ON UNTIL THE PART.
C NV SEE INIT3D CQMMENTS.
C
C
NW
SEE INIT3D COMMENTS.
INIT3D COMMENTS.
C NW SEE INIT3D COMMENTS.
C LX THE NUMBER DF WOKDS NEEDED TO HALD NX BITS. ALSO,
    THE FIRST DIMENSION OF IS2.
    NUMBER OF CELLS IN THE \(X\) DIKECTION OF A MODEL OF THE
    IMAGE PLANE. A SILHQUETTE OF THE PAKTS OF THE PIC-
    TURE PROCESSED DO FAR IS STOKED IN IHIS MQDEL. LINES
    TO BE DRAWN AKE TESTED FOK VISIBILITY BY EXAMINING
    THE SILHOUETTE. LINES IN THE SILHQUETTE ARE HIDDEN.
    INES OUT OF THE SILHOUETTE ARE VISIBLE. THE SOLU-
    ION IS APPROXIMATE BECAUSE THE SILHOUETTE IS NET
    FORMED EXACTLY. SEE ISC COMMENT BELOW.
    NMMER OF CELY S THE Y OIKECTION OF THE MODEL OF
    HE IMAGE PLAVE. AL OF
    COND DIMENSION OF ISZ
    AKRAY TO HOLD THE IMAGE PLANE MODEL. IT IS
    DIMENSI QNED LX BY NY. THE MODEL IS NX BY NY AND
    PACKED DENSELY. IF HIDDEN LINES AKE DrAWiN, DECREASE
    NX AND NY (AND LX IF PGSSIBLE). IF VISIBLE LINES
    ARE LEFT OUT OF THE PICTUKE, INCKEASE NX AND NY GAND
    LX IF NEED, BE). AS A GUIDE, SDME EXAMPLES SHOWING
    SUCCESSFUL CHOICES ARE LISTED
        GIVEN NU iNV Nk: RESULTING NX NY FKOM TESTING
            \(\begin{array}{rrrrr}\text { NU } & \text { NV } & \text { NL } & \text { RESULTING NX } & \text { NY } \\ 100 & 100 & 60 & 200 & 200 \\ 60 & 60 & 60 & 110 & 110 \\ 40 & 40 & 40 & 75 & 75\end{array}\)
    10 SEE INIT3D COMMENTS.
    IøBJS A NV BY NW AKKAY ChITH ACTUAL FIKST DIMENSION MV IN
        THE CALLING PKGGKAM) DESCKIBING THE CBJECI. IF THIS
        IS CALL NUMBER I TO DANDR. THE PART OF IHE PICTUKE
        \(A T H=N U+1-I\) IS TO BE PIKOCESSED. IGBJS DEFINES THE
        OBJECTS TO BE DKAWN IN IHE FOLLOWIING MANNEIK --
        \(1 \emptyset B J S(J, K)=1\) IF ANY OBJECT CONTAINS THE POINT
        \((N U+I-I, J, K)\) AND IOBJS \((J, K)=0\) QTHEKWISE.
C \(\quad(N U+1-I, J, K)\) AND IDBJS \((J, K)=0\) QTHEKWISE.
\(C \quad M V \quad A C T U A L F I K S T\) DIMENSIDN OF IOBJS IN THE CALLING
        ACTUAL \(F\)
PRøGKAM.
C************** MACHINE DEPENDANT CDNSTANTS \(* * * * * * * * * * * * * * *\)
C NBPW NUMBER OF BITS PER WOKD
C MASK AN ARRAY NBPW LONG. MASK (I) \(=2 * *(I-1), I=1,2, \ldots\), NBPW
C CDC 6000 OR 7000 VERSION
        DIMENSION MASK(60)
        DAMENSI ON MASK
        DATA NBP:/60/ 1 MA MASK/1B,2B,4B,108,20B,408,100B,200B,400B,10008,
    * 2000B, 4000B, \(10000 \mathrm{~B}, 20000 \mathrm{~B}, 40000 \mathrm{E}, 100000 \mathrm{~B}, 200000 \mathrm{~B}\),
    * \(400000 \mathrm{~B}, 1000000 \mathrm{~B}, 2000000 \mathrm{~B}, 4000000 \mathrm{~B}, 10000000 \mathrm{~B}\),
    * \(400000 \mathrm{~B}, 1000000 \mathrm{~B}, 2000000 \mathrm{~B}, 4000000 \mathrm{~B}, 10000000 \mathrm{~B}, \mathrm{C}^{2} 20000000 \mathrm{~B}, 40000000 \mathrm{~B}, 100000000 \mathrm{~B}, 200000000 \mathrm{~B}, 40000000 \mathrm{~B}\),
    * \(20000000 \mathrm{~B}, 40000000 \mathrm{~B}, 100000000 \mathrm{~B}, 200000000 \mathrm{~B}, 4000000\),
    * 200000000008, 40000000000B, 100000000000B,
    * 200000000008, 40000000000B, 100000000000 B ,
    * \(2000000000000 \mathrm{~B}, 400000000000 \mathrm{~B}, 1000000000000 \mathrm{~B}\),
    * 20000000000000B, 400000000000008, 10000000000000B,
    * \(200000000000000 \mathrm{~B}, 400000000000000 \mathrm{~B}, 10000000000000008\),
    * \(200000000000000 \mathrm{~B}, 400000000000000 \mathrm{~B}, 1000\)
* \(200000000000000 \mathrm{~B}, 40000000000000008\),
* \(100000000000000008,20000000000000000 \mathrm{~B}\),
    * \(100000000000000008,20000000000000000 \mathrm{~B}\),
    * 40000000000000000B,100000000000000000B,
    * 200000000000000000B, 400000000000000000B,
    * 200000000000000000B, 400000000000000000B,
    * \(1000000000000000000 \mathrm{R}, 2000000000000000000 \mathrm{~B}\),
    * 40000000000000000008,10000000000000000000B.
    * \(20000000000000000000 \mathrm{~B}, 40000000000000000000 \mathrm{~B}\),
    ASSIGN 120 TO IRET
C RX AND RY ARE USED TO MAP PLOTTER COORDINATES INTO THE
\(C\) RX AND RY ARE USED
\(C\)
IMAGE PLANE MODEL.
    \(R X=(F L Q A T(N X)-1) /.(S(2)-S(1))\)
    \(R X=(F L Q A T(N X)-1 \cdot) /(S(2)-S(1))\)
\(R Y=(F L \emptyset A T(N Y)-1 \cdot) /(S(4)-S(3))\)
C read the relative plotter cogrdinates of the lattice
C POINTS FROM UNIT IU.
            READ (IU) ST
DX, DY AND DZ ARE USED TO FIND KEQUIRED COORDINATES OF
C NON-LATTICE POINTS.
    NVD2 \(=\mathrm{NV} / 2\)
NWD2 \(=\mathrm{NW} / 2\)
    NWD2 = NW/Z
    DX \(=(S T 1(N V, N W D 2,1)-S T 1(1, N W D 2,1)) *, 5 /(F L Q A T(N V)-1\).
    DY \(=(S T 1(1, N W D 2,2)-S T 1(N V, N W D 2, ?)) * \cdot 5 /(F L Q A T(N V)-1\).
    DY \(=(S T 1(1, N W D 2,2)-S T 1(N V, N W D 2,(2)) * \cdot 5 /(F L Q A T(N V)-1 \cdot)\)
\(D Z=(S T 1(N V D 2, N W, 2)-S T 1(N V D 2,1,2)) * \cdot 5 /(F L \emptyset A T(N W)-1\).
DZ \(=(S T I(N V D 2, N W, 2)-S T I(N V D 2,1,2)) * \cdot S /(F L \emptyset A T(N W)-\)
\(C\) SLDPE IS USED TO DEFDRM THE IMAGE PIANE MODEL SD THAT

C LINES OF CONSTANT Y GF THE IMAGE MODEL HAVE THE SAME
C SLGPE AS LINES OF CONSTANT \(U\) AND \(w\) IN THE FICTURE. THIS
C IMPROVES THE PICTURE.
SLQPE \(=\) DY/DX
C THE FQLLOWING LODPS THKOUGH STATEMENT 130 GENEKATE THE \(\cdot 5\)
C CONTOUR LINES IN 2-SPACE FOK THE ARRAY IOBJS (WHICH CON-
C TAINS ONLY ZEROES AND ONES), TESTS THE LINES FOK VISIBIL-
DO \(130 \quad I=2, N \mathrm{NV}\)
JUMP \(=\operatorname{IOBJS}(1-1,1) * 8+1\) OBJS(1,1)*4+1
De \(120 \mathrm{~J}=2, \mathrm{NW}\)
\(X=\operatorname{ST1}(1, J, 1)\)
\(Y=\operatorname{STI}(1, \mathrm{~J}, 2)\)
C decide which of the 16 possibilities this is .
JUMP \(=(\) JUMP-1)/4 + IOBJS(I-1, J) \(* 8+1\) OBJS \((1, J) * 4+1\)
G0 T0 ( \(120,20,40,50,70,80,30,100,100,10,80,70,50,40\), 20,120), JUMP
GOING TO 10 MEANS JUMP \(=10\) WHICH MEANS GNLY THE LOWER-KIGHT
C AND UPPER-LEFT ELEMENTS OF THIS CELL ANE DET TC 1.
C TWO LINES SHOULD BE DKAWN, A DIAGONAL CONNECTING THE
C MIDDLE OF THE BOTTOM TO THE MIDDLE OF THE RIGHT SIDE OF
C THE CELL (LOWER-RIGHT LINE), AND A DIAGONAL CONINECTING THE
C MIDDLE OF THE LEFT SIDE TO THE MIDDLE OF THE TOP (UPPER-
10 ASSIGN 90 TO InE
C LOWEK-KIGHT LINE
\(X 1=X\)
\(Y 1=Y-D C\)
\(X 1=Y-D C\)
\(X 2=X+D X\)
\(Y 1=Y+D X\)
\(Y 2=Y-D Y\)
\(\begin{array}{ll}\text { Y } \\ \text { GO } & =Y-10\end{array}\)
C LOWEN-LEFT AND UPPER-RIGHT
30 ASSIGN 60 TC IRET
C LowER-LEFT
\(\begin{aligned} & X 1=X \\ & Y \\ & Y\end{aligned}=Y-D Z\)
\(\begin{aligned} X_{2} & =X-D 2 \\ Y 2 & =Y\end{aligned}\)
\(Y 2=Y+D Y\)
GO T0 110
C HOKIZONTAL
\(50 \quad X_{1}=x+D x\)
\(Y_{1}=Y-D Y\)
\(X_{2}=X-D X\)
\(X_{2}=X-D X\)
\(Y 2=Y+D Y\)
\(Y 2=Y+D Y\)
C UPPEK-LEFT
60 ASSIGN 120
\(X 1=X+D X\)
\(Y I=Y-D Y\)
\(x_{1}=x\)
\(x_{2}=x\) \(Y 2=Y+D Z\)

C VERTICAL
80
\(X_{1}=X\)
\(Y_{1}=Y-D L\)
\(x 1=x\)
\(x_{2}=x\)
\(Y 2=Y+D Z\)
\(G 0\)
GO To 110
90 ASSIGN 120 T0 IKET
C UPPEK-LEFT
\(100 \quad \begin{array}{ll}X_{1}=X-D X \\ Y_{1} & =Y-D Y\end{array}\)
\(Y:=Y+D Y\)
\(x 2=x\)
C TEST VISIBILITY QF THIS LINE SEGMENT.
110 IX \(=\left(x_{1}-S(1)\right) * R X\)
\(Y=\operatorname{MOD}(1 F I X((Y I-S(3)) * K Y-S L O P E * F L \emptyset A T(I X))+N Y, N Y)+1\)
\(I X=I X / N B P W+1\)
C *********** . AND. USED AS A MASKING ØPERATE
IV \(V=I S 2(I X, I Y)\). AND.MASK (IBII)
C If. EITHER END OF THE LINE IS AT A MANKED SPCT EN THE IMAGE
\(C\) PLANE MODEL. THE LINE IS HIDDEN
IF (IV.NE.O) Ge To 1 NET, ( 60.90 .120 )

I \(Y=\) MOD(IFIX( \((Y 2-S(3)) * K Y-S L G P E * F L O A T(I X))+N Y, N Y)+1\)
IBIT \(=\) MOD(IX,NBPW) +1
\(1 \times=1 \times /\) NBPW +
```

*** . ANU. USED AS A MA.SKING DPEKATOR

```

IV=ISZ (IK,IY). AND.MASK (IBIT)
IF (IV.NE.D) GO TO IKET, ( \(60,90,120\) )
*************** UNDEFINED EXTEKNAL KEFERENCE
C SUBROUTINE LINE (X1, Y1, X2, Y2) IS ASSUMED TO
C FRQM (X1,Y1) TO (XL, YR)
            CALL LINE(X1, Y1, X2, YZ)
            GO TE IKET, \((60,90,120)\)
    120
        CovTINUE
    130 CONTINUE
C CODE THKOUGH STATEMENT 150 CKEATES AN APPNOXIMATION OF
C THE SILHQUETTE OF THE PART OF THE PICTUKE JUST DKAWN BY
C MARKING THE IMAGE PLANE MODEL WHEKE THE GBJECT OCCUIRS.
        De \(150 \quad 1=1, \mathrm{NV}\)
            De \(140 \mathrm{~J}=1, \mathrm{NW}\)
            If (I EBJS (I.J).EQ.0) GO T0 140
            \(x=(S T 1(1, J, 1)-S(1)) * H X+0.5\)
            TWK = SLOPE*FLOAT(IX) - 0.5
            IY=MOD(IFIX((STI(I, J, 2)-S(3))*KY-TWK) +iNY,NY) + I
            IBIT \(=\) MOD (IX,NBPW) +1

            IS2 (IX,IY) =IS2(IX,IY).0K.MASK (IBIT)
            CONTINUE
    150 CONTINUE
        RETUKN
        END

\section*{Remark on Algorithm 475 [J6]}

Visible Surface Plotting Program [Thomas Wright, Comm. ACM 17 (Mar. 1974), 152-155]
Lawrence W. Frederick [Recd 31 May 1974]
Emory University Computing Center, Uppergate
House, Emory University, Atlanta, GA 30322
In the initialization phase a significant savings in time may be obtained (as a function of the box dimensions, \(N U, N V, N W\) ) by integrating subroutine SETORG into subroutine INIT3D. The time consuming part of INIT3D is the 3 -space to 2 -space transformation done via the call to the PERSPC entry of SETORG. This transformation is performed in a regular fashion by triply nested DO loops ranging over the box dimensions. By algebraically separating the transformation, expressions not depending on inner loop indices may be floated to outer loops. This arrangement eliminates a large number of redundant operations and the nonstandard ENTRY statement.

Remark on Algorithm 475 [J6]
Visible Surface Plotting Program [Thomas Wright, Comm. ACM 17 (Mar. 1974), 152-155]
R.G. Mashburn [Recd 9 Dec. 1974] Computer Sciences Division at Oak Ridge National Laboratory Union Carbide Corporation, Nuclear Division* Oak Ridge, TN 37830
* Prime contractor for the U.S. Energy Research and Development Administration.

The Visible Surface Plotting Program, Algorithm 475, has been modified to run on IBM 360 hardware using the Fortran IV (level H) compiler. Using a modifid version of the demonstration program supplied with the algorithm, the two sample plots were successfully produced. The following documents the changes that were required to convert the programs from CDC 6000 or 7000 programs to IBM 360 programs. In addition to the changes listed below it was, of course, necessary to include a FRAME subroutine, a LINE subroutine, and other calls to plotting subroutines which support locally available plotting equipment. However, since plotting equipment and its software support vary from one installation to another, only those changes pertinent to the IBM 360 are listed here.
Demonstration program:
1. Remove the PROGRAM statement.
2. Change the first DIMENSION statement from:

DIMENSION EYE(3), S(4), ST1(80, 80, 2), IS2(3, 160)
to:
DIMENSION EYE(3), S(4), ST1(80, 80, 2), \(\operatorname{IS} 2(5,160)\)
Note. The comments in the program indicate the first extent \(L X\) of the array \(I S 2\) is calculated as follows:
\(\mathrm{LX}=1+\mathrm{NX} / \mathrm{NBPW}\)

This is true so long as \(N X\) is not an integral multiple of \(N B P W\). However, in this case \(N X\) is 160 and \(N B P W\) (the number of bits per word) is 32 for the IBM 360 . Thus \(N X\) is an integral multiple of \(N B P W\), and \(L X\) is calculated simply as \(N X / N B P W\) In general use
\(\mathbf{L X}=1+(\mathbf{N X}-1) /\) NBPW .
3. Change the call to the \(I N I T 3 D\) subroutine to:

CALL INIT3D (EYE, 80, 80, 80, ST1, 5, 160, IS2, 9, S)
4. Change the two calls to \(D A N D R\) (one after statement 40 , the other after statement 110) to:
CALL DANDR (80, 80, ST1, 5, 160, 160, IS2, 9, S, IOBJ *80)
5. Change the DO statement following the REWIND 9 statement from:

DO \(70 \mathrm{I}=1,3\) to: \(\quad\) DO \(70 \mathrm{I}=1,5\)
INIT3D subroutine: No changes required.
SETORG subroutine:
1. Because no standard exists for referencing arc cosine, the three statements containing references to the arc cosine subroutine were changed from:
```

AL}=\textrm{ACOS}(COSAL) to:AL=ARCOS(COSAL)
BE = ACOS(COSBE) BE = ARCOS(COSBE)
GA = ACOS(COSBA) GA = ARCOS(COSGA)

```
2. Because no standard exists for ENTRY statements and their syntax differs among compilers, it was necessary to change the ENTRY statement from:
ENTRY PERSPEC to:
ENTRY PERSPC(X, Y, Z, XT, YT, ZT)
\(D A N D R\) subroutine:
1. The DIMENSION statement should be changed from:

DIMENSION MASK (60) to: DIMENSION MASK (32)
2. The two DATA statements following the DIMENSION statement should be changed from:

\section*{DATA NBPW 60}

DATA MASK 1B, 2B, 4B, 10B, 20B, 40B, 100B, 200B, 400B, 1000B,
* 2000B, 4000B, 10000B, 20000B, etc.,
to:
DATA NBPW/32/
DATA MASK/Z1, Z2, Z4, Z8, Z10, Z20, Z40, Z80, Z100,
* Z200, Z400, Z800, Z1000, Z2000, Z4000, Z8000, Z10000,
* Z20000, Z40000, Z80000, Z100000, Z200000, Z400000,
* Z800000, Z1000000, Z2000000, Z4000000, Z8000000
* Z10000000, Z20000000, Z40000000, Z80000000 /
3. The two uses of the .AND. masking operation and the one use of the.\(O R\). masking operation were changed to call assembly language function subprograms \(I A N D\) and \(I O R\) (programs written locally for the ORNL computing center Fortran library) which return an INTEGER*4 value which is the logical \(A N D\) and logical \(O R\) respectively of the two arguments given them.
Change the two .AND. statements from:
\(\mathrm{IV}=\operatorname{IS} 2(\mathrm{IX}, \mathrm{IY}) \cdot \mathrm{AND} \cdot \mathrm{MASK}\) (IBIT) to:
\(\mathrm{IV}=\mathrm{IAND}(\mathrm{IS2}(\mathrm{IX}, \mathrm{IY})\), MASK (IBIT))
Change the.\(O R\). statement from:
IS2 (X, IY) \(=\) IS2(IX, IY).OR.MASK (IBIT) to:
IS2(IX, IY) \(=\) IOR(IS2(IX, IY), MASK (IBIT))
Note. In the original program listing of subroutine DANDR, the comment card immediately preceding statement 60 reads:

C UPPER-LEFT but should say: C UPPER-RIGHT.

\section*{Remark on Algorithm 475[J6]}

Visible Surface Plotting Program [Thomas Wright, Comm. ACM 17 (Mar. 1974), 152-155]
C.J. Doran [Recd 22 Oct. 1974], Physics Department, University of Nottingham, England

Algorithm 475 has been successfully implemented on a D.G. Nova 1220 minicomputer and an I.C.L. 1906A, making substitutions for the nonstandard features of the original algorithm.

ENTRY statements are permitted in 1900 Fortran but not by Data General. SETORG and PERSPC were therefore written as separate subroutines linked by a labelled common area declared as:
COMMON/CSETORG/JUMP, EX, EY, EZ, AX, AY, AZ, D, R, COSBE, COSAL, COSGA
JUMP being declared as a LOGICAL variable. The assigned GO TO statement in PERSPC then becomes

IF (JUMP) GO TO 30
with \(J U M P=. F A L S E\). replacing the first \(A S S I G N\) statement in SETORG, and JUMP \(=. T R U E\). replacing the second.

The DATA statement in DANDR may easily be standardized by writing decimal literals, but most compilers will not accept an integer \(2^{V B P W}\). \(N B P W\) should then be redefined as one less than the number of bits per word.

Logical operations between integers may be performed by portable Fortran functions \(I A N D\) and \(I O R\) as:
FUNCTION IAND(I, J)
LOGICAL BI, BJ
EQUIVALENCE (BI, II), (BJ, JJ)
II \(=\mathrm{I}\)
\(\mathbf{J} \mathbf{J}=\mathbf{J}\)
\(\mathrm{BI}=\mathrm{BI} . \mathrm{AND} . \mathrm{BJ}\)
IAND = II
RETURN
END
with equivalent coding for \(I O R\). The first two masking operations then become:
\(I V=I A N D(I S 2(I X, I Y), \operatorname{MASK}(I B I T))\)
and the third becomes:
\(\operatorname{IS} Z(I X, I Y)=\operatorname{IOR}(\operatorname{IS} 2(I X, I Y), \operatorname{MASK}(I B I T))\)

CERTIFICATION OF AI.GORITHM 475
Visible Surface Plotting Program [J6]
[T. Wright, Comm. ACM 17, 3 (March 1974), 152-157]
Gordon E. Bromage [Recd 6 May 1975 and 11 July 1975]
University of Bradford, West Yorkshire, U.K.
Author's present address: S.R.C. Astrophysics Research Division, Culham Laboratory, Abingdon, Oxon., U.K.

This package was modified to remove all the nonstandard features mentioned in the algorithm description, together with one that was not pointed out, namely, two calls in ACMTEST to the system-dependent graph-plotting routine FRAME.
The bit-manipulation (masking) operators .AND. and .OR. and the nonstandard DATA statement (all in DANDR) were dealt with in the following way. The masking operators were replaced by segments IAND and IOR written in an assembly language. Since the array MASK is only used in these bit manipulations, the data statement assigning values to the elements of MASK was removed from DANDR and a corresponding statement inserted into the assembly-language segments, so that only the bit number (IBIT) was referenced from DANDR. Thus, in DANDR, the statement
\[
I V=I S 2(I X, I Y) \cdot A N D \cdot \operatorname{MASK}(I B I T)
\]
was replaced twice by the line
CALL IAND (IS2 (IX,IY),IBIT,IV)
and the line
IS2(IX,IY) \(=\) IS2(IX,IY) .OR. MASK(IBIT)
was replaced once by
CALL IOR(IS2(IX,IY),IBIT,IS2(IX,IY)).
The package was then tested on an ICL 1904A machine (George 3 system), which uses a word length of 24 bits.
For the system-dependent graph-plotting routines, Calcomp routines were used in place of LINE and FRAMIE. In fact, to allow for duplication and editing of graphs without having to rerun the package, the plotting routines were separated from the main program. Thus the coordinates (X1,Y1,X2,Y2) of the lines to be plotted were written onto files in DANDR using the statement

\section*{WRITE (IUX) X1,Y1,X2,Y2 in place of CALL LINE (X1,Y1,X2,Y2)}
(where IUX is the I/O unit number assigned to a particular file), and the plotting was performed by a separate program.

It should be emphasized that the number of scratch files needed for assignment of I/O unit IU in INIT3D is also system dependent. For example, on the 1904A more than one file was needed for picture resolutions higher than that corresponding to a \(30 \times 30 \times 30\) object cube mesh; for \(60 \times 60 \times 60\) mesh, four files were needed, each one storing the information relating to 15 of the 60 image planes.

With the above changes implemented, the package ran successfully on the icL 1904 A for the processing of concave pictures (optimization objective-function surfaces) as well as for pictures of bounded objects and for a wide variety of eye positions. Successful processing was often obtained even when one of the eyeposition coordinates was negative (cf. comment lines relating to the array EYE in INIT3D). On this machine, less than 30 K 24 -bit words were needed at run time for a resolution corresponding to a \(60 \times 60 \times 60\) mesh; while 12 K words were sufficient for a \(30 \times 30 \times 30\) mesh resolution. The run time for the first test picture at the higher resolution was approximately 10 minutes.

REMARK ON ALGORITHM 475
Visible Surface Plotting Program [J6]
[T. Wright, Comm. ACM 17, 3(March 1974), 152-155]
Lucian D. Duta [Recd 5 Aug. 1975]
Academy of Economic Studies, Str. Dorobanti 15-17, Bucharest, Romania
Algorithm 475 has been modified for running on an IBM 370 computer and on a FELIX C-256 computer, using the Fortran IV compilers. The two sample plots were successfully produced on a BENSON 222 plotter.
The changes in the program are those described by Mashburn [1]. In addition to these changes, we suggest the following.
SETORG Subroutine
1. Because the parameter \(Z T\) is not used in the PERSPC entry, change the entry statement to

ENTRY PERSPC(X,Y,Z,XT,YT)
2. Remove the statements
```

AL=ACOS(COSAL)
BE = ACOS(COSBE)
GA=ACOS(COSGA)

```
3. Change the statement
\[
\operatorname{SINGA}=\operatorname{SIN}(\mathrm{GA})
\]
to
SINGA \(=\operatorname{SQRT}(1 .-\operatorname{COSGA} * \operatorname{COSGA})\)
4. Change statement 10 from

10 SINBE \(=\operatorname{SIN}(B E)\)
to
10 SINBE \(=\) SQRT(1. - COSBE*COSBE \()\)
INIT3D Subroutine
1. Modify all statements which call to PERSPC entry by removing the last argument:

CALL PERSPC(1., 1., W,D,YT)
CALL PERSPC(U,V,1.,D,YB)
CALL PERSPC(U, 1., 1., XL, D)
CALL PERSPC(1.,V,1., XR,D)
2. Include an \(E N T R Y\) statement after statement 60 :

ENTRY INIS2
A call to the INIS2 entry will produce the filling of the array \(I S 2\) with zeros and the rewinding of the \(I U\) unit. Because the call to the INIS2 entry is made only after the call to the \(\operatorname{INIT} 3 D\) subroutine, the INIS2 entry need not have parameters.
3. Change the comment cards from
```

C IF SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE
C ARRAYS AND EYE POSITION AND THE USER REWINDS IU AND FILLS
C IS2 WITH ZEROES, INIT3D NEED NOT BE CALLED FOR OTHER THAN
C THE FIRST PICTURE.
to
C IF SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE
C ARRAYS AND EYE POSITION, INIT3D NEED NOT BE CALLED FOR

```

C OTHER THAN THE FIRST PICTURE. IN THIS CASE, BEFORE EACH
C SUBSEQUENT PICTURE THE INIS2 ENTRY MUST BE CALLED FOR
C REWINDING IU AND FILLING THE ARRAY IS2 WITH ZEROES.
Demonstration Program
1. Change the following statements:

C FOUR LINES ARE INCLUDED.
REWIND 9
DO \(70 \mathrm{I}=1,3\)
DO \(60 \mathrm{~J}=1,160\)
IS2 \((\mathrm{I}, \mathrm{J})=0\)
60 CONTINUE
70 CONTINUE
to
C LINE IS INCLUDED.
CALL INIS2

REFERENCES
[1] Mashburn, R.G. Remark on Algorithm 475. Comm. ACM 18, 5(May 1975), 276-277.

REMARK ON ALGORITHM 475
Visible Surface Plotting Program [J6]
[T. Wright, Comm. ACM 17, 3 (March 1974), 152-155]
A.C.M. van Swieten [Recd 28 July 1976 and 12 Sept. 1978]

VSSG, P.O. Box 3032, Leyden, The Netherlands
and
J.Th.M. de Hosson

Department of Applied Physics, Rijksuniversiteit Groningen, Universiteitscomplex Paddepoel, Nijenborgh 18, 9747 AG Groningen, The Netherlands
This research was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O., The Hague).

This remark describes an extension of the visible surface plotting program, ACM Algorithm 475. This program turns out to result in a long plotting time when one is using CALCOMP plot routines. The long plotting time is mainly caused by numerous idle pen movements which are inherent to the structure of the algorithm. Essentially the algorithm does the following: the three-dimensional surface is cut in slices. The slices are separated and then searched in order to produce a perspective image of that slice and to remove the hidden lines; therefore, the algorithm generates a large number of small segments in the search direction. In general, however, the search direction does not coincide with the contour direction. When one is using CALCOMP subroutines there are a lot of idle pen movements due to the fact that the segments are not in an appropriate order. In Figure 1(a) it is shown that numerous idle pen movements are necessary to plot a disklike form. In the improved version only one idle pen movement is made (see Figure 1(b)).
The extension consists of two subroutines: SDLINE and PLTOUT. In the original subroutine DANDR we have to add five statements: Insert
COMMON/TOM1/NSEQ, SS; SS \(=0.04, \mathrm{NSEQ}=0\)
before the statement
SLOPE = DX/DY


Fig. 1. (a) The pen movements generated by the original version of the plotting program. The idle pen movements are dashed lines. (b) Output of the improved plotting program showing one idle pen movement (dashed line)
which initializes
SDLINE; CALL SDLINE(X1, Y1, X2, Y2)
instead of
LINE(X1, Y1, X2, Y2)
which builds up the sequences and

\section*{CALL PLTOUT}
after the statement

\section*{130 CONTINUE}
in DANDR which plots the sequences. The subroutine SDLINE(X1, Y1, X2, Y2) temporarily stores the segments in order to construct the sequences. This is done by comparing the last point of each sequence with the endpoints of a segnnent. The criterion for the continuation of a sequence is that one of the endpoints of the segment lies within a square with edges of 2 SS around the last point of a sequence. The value of SS depends on the plotter precision and it is taken to be equal to 0.04 . If there is no continuation point of any sequence a new sequence is started through the segment.

In the present version the length of the sequences is equal to 80 and the number is equal to 20 . If a sequence has been filled up completely a new sequence is created. If one needs more than 20 sequences intermediate plotting takes place by calling PLTOUT.

The subroutine PLTOUT plots the sequences taking into account the minimum distance between starting points and ends of sequences. This is done by ordering the sequences in an appropriate way and by indicating whether they should be processed in normal or reversed order.

Finally we give some test results of the revised program compared with the old version. The core size, execution time, and CALCOMP plotting time are compared in the case of the second example (Figure 5) in Algorithm 475. Although this type of surface is not the one that results in the greatest reduction, the saving of plotting time is significant (see Table I). In Table I the time spent in DANDR but not the time spent in PLTOUT is listed. The space of INIT3D \(+\mathrm{P}+\) DANDR (old version) and of INIT3D + P + DANDR + SDLINE + PLTOUT + TOM are also given in Table I.

Table I
\begin{tabular}{llllc}
\hline CYBER 74-16 & & Space & Time & \begin{tabular}{c} 
CALCOMP plotting \\
time (minutes)
\end{tabular} \\
\cline { 5 - 5 } Old version & & \(1277_{8}\) & 5.012 & 31 \\
Revised version & \(10544_{8}\) & 5.621 & 8 \\
\hline
\end{tabular}

\section*{REVISED ALGORITHM}
\begin{tabular}{|c|c|c|}
\hline C & PROGRAM CONES (INPUT, OUTPUT,PLOT, TAPE6=OUTPUT, TAPE5=INPUT, & \(1 \varnothing\) \\
\hline C 1 & 1TAPE99=PLOT, 'TAPE9) & \(2 \emptyset\) \\
\hline C & & 30 \\
\hline C & DEMONSTRATION PROGRAM & \(4 \emptyset\) \\
\hline C & BY THOMAS WRIGHT IN: & \(5 \emptyset\) \\
\hline C & ALGORITHM 475, VISIBLE PLOTTING PROGRAM (J6), & \(6 \emptyset\) \\
\hline C & COMMUNICATION OF THE ACM, MARCH 1974,VOL.17,NUMBER 3,P 152. & \(7 \emptyset\) \\
\hline C***** & ******* MACHINE DEPENDANT FUNCTIONS ************************** & \(8 \emptyset\) \\
\hline C & FIRST CARD IS THE PROGRAM CARD FOR CDC \(6 \emptyset \emptyset \emptyset\) AND CDC \(7 \emptyset \emptyset \emptyset\) SERIES. & \(9 \emptyset\) \\
\hline C & CALCOMP PACKAGE WHICH CONTAINS THE SUBROUTINES NAMPLT, ENDPLT, & \(1 \emptyset \emptyset\) \\
\hline C & NAMPLT = TO INITIALIZE THE SYSTEM. & \(11 \emptyset\) \\
\hline C & ENDPLT \(=\) TO TERMINATE PLOTTING ON A FILE. & \(12 \emptyset\) \\
\hline C & & \(13 \emptyset\) \\
\hline & DIMENSION EYE (3), S (4), ST1 \((8 \emptyset, 8 \emptyset, 2), \operatorname{IS} 2(3,16 \emptyset)\) & \(14 \emptyset\) \\
\hline & DIMENSION IOBJ ( \(8 \emptyset, 8 \emptyset\) ) & \(15 \emptyset\) \\
\hline & CALL NAMPLT & \(16 \emptyset\) \\
\hline C & USE WHOLE FRAME & 17ф \\
\hline & \(S(1)=\emptyset\). & \(18 \emptyset\) \\
\hline & \(\mathrm{S}(2)=28\). & \(19 \emptyset\) \\
\hline & \(S(3)=\emptyset\). & \(2 \emptyset \emptyset\) \\
\hline & \(S(4)=28\). & \(21 \emptyset\) \\
\hline C & SET EYE POSITION & \(22 \emptyset\) \\
\hline & \(\operatorname{EYE}(1)=2 \emptyset \emptyset\). & \(23 \emptyset\) \\
\hline & \(\operatorname{EYE}(2)=4 \emptyset \emptyset\). & \(24 \emptyset\) \\
\hline & \(\operatorname{EYE}(3)=3 \emptyset \emptyset\). & 25ø \\
\hline & \(N X=8 \emptyset\) & \(26 \emptyset\) \\
\hline & \(N Y=8 \emptyset\) & 27¢ \\
\hline & NZ=8¢ & \(28 \emptyset\) \\
\hline & NCELLS \(=2\) & 29ø \\
\hline & MX \(=\) NCELLS*NY & \(3 \emptyset \emptyset\) \\
\hline & \(L \mathrm{~L}=1+\mathrm{MX} / 6 \emptyset\) & \(31 \emptyset\) \\
\hline & \(\mathrm{MY}=\mathrm{MX}\) & \(32 \emptyset\) \\
\hline C THIS & 5 PICTURE WILL BE THE T=4 CONTOURSURFACE OF & \(33 \emptyset\) \\
\hline C \(\mathrm{T}=1\) / & /SQRT ( \(\mathrm{U} * \mathrm{U}+\mathrm{V} * \mathrm{~V}+\mathrm{W}\) *W) + (.5-V)**2/SQRT ( U *U+V*V) . & \(34 \emptyset\) \\
\hline C & THIS IS THE SECOND PICTURE (FIG.5) PRODUCED BY THE TEST PROGRAM & \(35 \emptyset\) \\
\hline C & OF THOMAS WRIGH'T. & \(36 \emptyset\) \\
\hline & CALL INIT3D (EYE,NX,NY,NZ,ST1,LX,MY,IS2,9,S) & 37ø \\
\hline & DO \(5 \emptyset \mathrm{I}=1\), NX & \(38 \emptyset\) \\
\hline & \(\mathrm{U}=(4 \emptyset .5-\mathrm{FLOAT}(\mathrm{I}) \mathrm{)} / 79\). & \(39 \emptyset\) \\
\hline & \(\mathrm{UU}=\mathrm{U} * \mathrm{U}\) & \(4 \emptyset \emptyset\) \\
\hline & DO \(4 \emptyset \mathrm{~J}=1, \mathrm{NY}\) & 41ф \\
\hline & \(\mathrm{V}=(\mathrm{FLOAT}(\mathrm{J})-4 \emptyset .5) / 79\). & \(42 \emptyset\) \\
\hline & \(\mathrm{VV}=\mathrm{V} * \mathrm{~V}\) & 43ø \\
\hline & \(\mathrm{A}=1 . / \mathrm{SQRT}\) (UU+VV) & \(44 \varnothing\) \\
\hline & DO \(3 \emptyset \mathrm{~K}=1\), NZ & \(45 \emptyset\) \\
\hline C THE & FOLLOWING CARD ADDS AXES. & \(46 \emptyset\) \\
\hline & IF (I*J.EQ. 1.0 O . I*K.EQ. 1 . OR, J*K.EQ.1) GO TO \(8 \emptyset\) & \(47 \emptyset\) \\
\hline & \(\mathrm{W}=\) (FLOAT (K) \(-4 \emptyset .5\) ) / 79. & \(48 \emptyset\) \\
\hline & IF (1./SQRT (UU+VV+W*W) + (.5-V)**2*A.LE.4.) GO TO \(9 \emptyset\) & \(49 \emptyset\) \\
\hline \(8 \emptyset\) & \(\operatorname{IOBJ}(\mathrm{J}, \mathrm{K})=1\) & \(5 \emptyset \emptyset\) \\
\hline & GO TO 3¢ & \(51 \varnothing\) \\
\hline \(9 \emptyset\) & \(\operatorname{IOBJ}(\mathrm{J}, \mathrm{K})=\emptyset\) & \(52 \emptyset\) \\
\hline & CONTINUE & 530 \\
\hline & CONTINUE & 54ø \\
\hline & CALL DANDR(NY,NZ,ST1,LX,MX,MY, IS2,9,S,IOBJ,NY) & \(55 \emptyset\) \\
\hline & CONTINUE & \(56 \emptyset\) \\
\hline & CALL ENDPLT & 57ø \\
\hline & STOP & \(58 \emptyset\) \\
\hline & END & \(59 \emptyset\) \\
\hline & SUBROUTINE INIT3D (EYE, NU, NV, NW, ST1,LX,NY,IS2,IU, S) & 600 \\
\hline C & BY THOMAS WRIGHT & \(61 \emptyset\) \\
\hline C THIS & S ROUTINE IMPLEMENTS THE 3-SPACE TO 2-SPACE TRANSFORMATION BY & \(62 \emptyset\) \\
\hline C KUBE & ER,SZABO AND GIULIERI, THE PERSPECTIVE REPRESENTATION OF & \(63 \emptyset\) \\
\hline C FUNC & CTIONS OF TWO VARIABLES. J. ACM 15,2, 193-2ø4,1968. & \(64 \emptyset\) \\
\hline C & & \(65 \emptyset\) \\
\hline & DIMENSION EYE (3), ST1 (NV,NW, 2), IS2 (LX,NY), S (4) & \(66 \emptyset\) \\
\hline C & THE METHOD IS DESCRIBED IN DETAIL IN - ONE-PASS HIDDEN- & \(67 \emptyset\) \\
\hline C & LINE REMOVER FOR COMPUTER DRAWN THREE-SPACE OBJECTS. PROC & \(68 \emptyset\) \\
\hline C & 1972 SUMMER COMPUTER SIMULATION CONFERENCE ,261-267,1972. & \(69 \emptyset\) \\
\hline C &  & \(7 \emptyset \emptyset\) \\
\hline C & THIS PACKAGE OF ROUTINES PLOTS 3-DIMENSIONAL OBJECTS WITH & 710 \\
\hline C & HIDDEN PARTS NOT SHOWN. & 72ø \\
\hline C & INIT3D IS AN INITIALIZATION ROUTINE FOR THIS PACKAGE. IT IS CALLED & 730 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C & ,THEN A SEQUENCE OF CALLS ARE MADE TO DANDR TO PRODUCE A PICTURE. & \(74 \emptyset\) \\
\hline C & & \(75 \emptyset\) \\
\hline C EYE & AN ARRAY 3 LONG CONTAINING THE U,V,W COORDINATES OF THE EYE & \(76 \emptyset\) \\
\hline C & POSITION. OBJECTS ARE CONSIDERED TO BE IN A BOX WITH 2 EXTREME & \(77 \emptyset\) \\
\hline C & CORNERS AT ( \(1,1,1\) ) AND (NU,NV,NW). THE EYE POSITION MUST HAVE POSI & \(78 \emptyset\) \\
\hline C & TIVE COORDINATES AWAY FROM THE COORDINATE PLANE \(\mathrm{U}=\emptyset, \mathrm{V}=\emptyset, \mathrm{W}=\emptyset\). & \(79 \emptyset\) \\
\hline C & WHILE GAINING EXPERIENCE WITH THE PACKAGE, USE EYE (1) = 5*NU, EYE (2)= & \(8 \emptyset \emptyset\) \\
\hline C & 4*NV, EYE (3) \(=3 *\) NW. & 810 \\
\hline C NU & U DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECTS & \(82 \emptyset\) \\
\hline C NV & V DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECTS & \(83 \emptyset\) \\
\hline C NW & W DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECTS & \(84 \emptyset\) \\
\hline C ST1 & A SCRATCH ARRAY AT LEAST NV*NW*2 WORDS LONG. & \(85 \emptyset\) \\
\hline C LX & FIRST DIMENSION OF A SCRATCH ARRAY, IS2, USED BY THE PACKAGE & \(86 \emptyset\) \\
\hline C & FOR REMEMBERING WHERE IT SHOULD NOT DRAW. & 87¢ \\
\hline C & LX \(=1+\mathrm{NX} / \mathrm{NBPW}\). & \(88 \emptyset\) \\
\hline C NY & SECOND DIMENSION OF IS2. & \(89 \emptyset\) \\
\hline C IS2 & A SCRATCH ARRAY AT LEAST LX*NY WORDS LONG. & \(9 \emptyset \emptyset\) \\
\hline C IU & UNIT NUMBER OF SCRATCH FILE FOR THE PACKAGE. ST1 & 910 \\
\hline C & WILL BE WRITTEN NU TIMES ON THIS FILE. & 92ø \\
\hline C S & AN ARRAY 4 LONG WHICH CONTAINS THE COORDINATES OF THE & 930 \\
\hline C & AREA WHERE THE PICTURE IS TO BE DRAWN, & \(94 \emptyset\) \\
\hline C & THAT IS, ALL PLOTTING COORDINATES GENERATED WILL BE BOUNDED AS & 95¢ \\
\hline C & FOLLOWS-- X COORDINATES WILL BE BETWEEN S (1) AND S (2), & \(96 \emptyset\) \\
\hline C & Y COORDINATE WILL BE BETWEEN S (3) AND S (4). & \(97 \emptyset\) \\
\hline C & TO PREVENT DISTORTION, HAVE S (2)-S (1) =S (4)-S (3) & \(98 \emptyset\) \\
\hline C IF S & SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE & 99ø \\
\hline C ARRA & AYS AND EYE POSITION AND THE USER REWINDS IU AND FILLS IS2 & \(1 \varnothing \emptyset \emptyset\) \\
\hline C WITH & ZEROES, INIT3D NEED NOT TE BE CALLED FOR OTHER THAN THE & \(101 \emptyset\) \\
\hline C FIRS & ST PICTURE. & 102ø \\
\hline C & & \(103 \emptyset\) \\
\hline C SET & UP TRANSFORMATION ROUTINE FOR THIS LINE OF SIGHT. & \(104 \emptyset\) \\
\hline & \(\mathrm{U}=\mathrm{NU}\) & \(105 \emptyset\) \\
\hline & \(\mathrm{V}=\mathrm{NV}\) & \(106 \emptyset\) \\
\hline & \(\mathrm{W}=\mathrm{NW}\) & \(1 \emptyset 7 \emptyset\) \\
\hline & \(A X=U * \emptyset .5\) & \(108 \emptyset\) \\
\hline & \(A Y=V * \emptyset .5\) & \(1 \emptyset 9 \emptyset\) \\
\hline & \(A Z=W * \emptyset .5\) & \(11 \emptyset \emptyset\) \\
\hline & EX=EYE (1) & 111ø \\
\hline & \(\mathrm{EY}=\mathrm{EYE}\) (2) & 112ø \\
\hline & EZ=EYE (3) & \(113 \emptyset\) \\
\hline & \(D \mathrm{X}=\mathrm{AX}-\mathrm{EX}\) & \(114 \emptyset\) \\
\hline & DY: AY-EY & 115ø \\
\hline & DZ=AZ-EZ & \(116 \emptyset\) \\
\hline & \(D=S Q R T\) ( \(D X * D X+D Y * D Y+D Z * D Z)\) & 117ø \\
\hline & \(\mathrm{CA}=\mathrm{DX} / \mathrm{D}\) & \(118 \emptyset\) \\
\hline & \(\mathrm{CB}=\mathrm{DY} / \mathrm{D}\) & \(119 \emptyset\) \\
\hline & CG \(=\) DZ/D & \(12 \emptyset \emptyset\) \\
\hline C***** & ******** MACHINE DEPENDANT FUNCTION ******** ACOS *************** & 1210 \\
\hline C & \(\mathrm{AL}=\mathrm{ACOS}\) (CA) & \(122 \emptyset\) \\
\hline C & \(\mathrm{BE}=\mathrm{ACOS}\) (CB) & 1230 \\
\hline C & \(\mathrm{GA}=\mathrm{ACOS}\) (CG) & \(124 \emptyset\) \\
\hline C & THE MACINE DEPENDANT FUNCTION ACOS CAN BE REPLACED BY ARCCOS & \(125 \emptyset\) \\
\hline & \(\mathrm{AL}=\mathrm{ARCCOS}\) (CA) & \(126 \phi\) \\
\hline & \(\mathrm{BE}=\mathrm{ARCCOS}\) (CB) & \(127 \emptyset\) \\
\hline & GA=ARCCOS (CG) & \(128 \emptyset\) \\
\hline & SINGA \(=\) SIN (GA) & \(129 \emptyset\) \\
\hline C THE & 3-SPACE POINT LOOKED AT IS TRANSFORMED INTO ( \(\emptyset, \phi\) ) OF & \(13 \emptyset \emptyset\) \\
\hline C THE & 2-SPACE. THE 3-SPACE Z-AXIS IS TRANSFORMED INTO THE & 1310 \\
\hline C 2-SP & PACE Y AXIS. & \(132 \emptyset\) \\
\hline & IF(SINGA.LT. \(\emptyset . \emptyset \emptyset \emptyset 1\) ) G0 TO 11 & \(133 \emptyset\) \\
\hline & R=1./SINGA & \(134 \emptyset\) \\
\hline C & FIND EXTREMES IN TRANSFORMED SPACE. & \(135 \emptyset\) \\
\hline & CALL P (1., 1., W, DUMMY, YT, AX, AY, AZ, EX, EY, EZ, CA, CB, CG, D, R) & 1360 \\
\hline & CALL P (U,V, 1. , DUMMY , YB, AX, AY , AZ, EX, EY, EZ, CA, CB, CG, D, R) & \(137 \emptyset\) \\
\hline & CALL P (U, 1., 1., XL, DUMMY, AX, AY, AZ, EX, EY, EZ, CA, CB, CG, \(\mathrm{D}, \mathrm{R})\) & \(138 \emptyset\) \\
\hline & CALL P (1.,V,1., XR, DUMMY, AX, AY, AZ, EX, EY, EZ, CA, CB, CG, D, R) & \(139 \emptyset\) \\
\hline C ADJU & UST EXTREMES TO PREVENT DISTORTION WHEN GOING FORM & \(14 \emptyset \emptyset\) \\
\hline C TRAN & SSFORMED SPACE TO PLOTTER SPACE. & 1410 \\
\hline & DIF \(=(\mathrm{XR}-\mathrm{XL}-\mathrm{YT}+\mathrm{YB}) * .5\) & \(142 \emptyset\) \\
\hline & IF (DIF) \(1 \emptyset, 3 \emptyset, 2 \emptyset\) & 1436 \\
\hline \(1 \emptyset\) & XL=XL+DIF & 1440 \\
\hline & \(\mathrm{XR}=\mathrm{XR}-\mathrm{DIF}\) & \(145 \emptyset\) \\
\hline & GO TO 3 \(\emptyset\) & \(146 \emptyset\) \\
\hline \(2 \emptyset\) & \(Y B=Y B-D I F\) & \(147 \emptyset\) \\
\hline & \(Y T=Y T+D I F\) & \(148 \emptyset\) \\
\hline & REWIND IU & \(149 \varnothing\) \\
\hline
\end{tabular}
C FIND THE PLOTTER COORDINATES OF THE 3-SPACE LATTICE POINTS. \(15 \emptyset \emptyset\)
    Cl=.9*(S(2)-S(1))/(XR-XL) \(151 \emptyset\)
    \(\mathrm{C} 2=. \phi 5 *(\mathrm{~S}(2)-\mathrm{S}(\mathrm{L}))+\mathrm{S}(1)\)
        \(152 \emptyset\)
        \(\mathrm{C} 3=.9 *(\mathrm{~S}(4)-\mathrm{S}(3)) /(\mathrm{YT}-\mathrm{YB}) \quad 153 \emptyset\)
        \(C 4=. \emptyset 5 *(S(4)-S(3))+S(3) \quad 1540\)
        DO \(6 \emptyset \mathrm{I}=1\),NU \(155 \emptyset\)
        \(\mathrm{U}=\mathrm{NU}+1-\mathrm{I} \quad 1560\)
        DO \(5 \emptyset \mathrm{~J}=1\),NV \(157 \emptyset\)
        \(\mathrm{V}=\mathrm{J} \quad 1580\)
        DO \(4 \emptyset \mathrm{~K}=1\),NW
        \(\mathrm{W}=\mathrm{K}\)
        \(159 \emptyset\)
        \(16 \emptyset \emptyset\)
        \(\mathrm{O}=\mathrm{D} /((\mathrm{U}-\mathrm{EX}) * \mathrm{CA}+(\mathrm{V}-\mathrm{EY}) * \mathrm{CB}+(\mathrm{W}-\mathrm{EZ}) * \mathrm{CG}) \quad 1610\)
        \(X=((E X+Q *(U-E X)-A X) * C B-(E Y+Q *(V-E Y)-A Y) * C A) * R \quad 162 \emptyset\)
        \(\mathrm{Y}=(E Z+Q *(\mathrm{~W}-E Z)-A Z) * R \quad 1630\)
        \(\operatorname{ST1}(\mathrm{J}, \mathrm{K}, 1)=\mathrm{C} 1 *(\mathrm{X}-\mathrm{XL})+\mathrm{C} 2 \quad 164 \emptyset\)
        \(\operatorname{ST1}(\mathrm{J}, \mathrm{K}, 2)=\mathrm{C} 3 *(\mathrm{Y}-\mathrm{YB})+\mathrm{C} 4 \quad 1650\)
    \(4 \emptyset\) CONTINUE \(166 \emptyset\)
    \(5 \emptyset\) CONTINUE \(167 \emptyset\)
C WRITE THEM ON UNIT IU. \(168 \emptyset\)
    WRITE(IU)ST1 1690
    \(6 \emptyset\) CONTINUE 1700
    REWIND IU 1710
C ZERO OUT ARRAY WHERE VISIBILITY IS REMEMBERED. :.. \(172 \emptyset\)
    DO \(8 \emptyset \mathrm{~J}=1\),NY 1730
    DO \(7 \emptyset \mathrm{I}=1, \mathrm{LX} \quad 174 \emptyset\)
    IS2 \((\mathrm{I}, \mathrm{J})=\emptyset\). \(175 \emptyset\)
    \(7 \emptyset\) CONTINUE \(176 \emptyset\)
    \(8 \emptyset\) CONTINUE \(\quad 177 \emptyset\)
    RETURN \(178 \emptyset\)
    11 CONTINUE \(179 \emptyset\)
    STOP
    END \(181 \emptyset\)
    SUBROUTINE P(X,Y,Z,XT,YT,AX,AY,AZ,EX,EY,EZ,CA,CB,CG,D,R) 182ф
C X,Y,Z ARE THE 3-SPACE COORDINATES OF A POINT TO BE TRANSFORMED. \(183 \emptyset\)
C XT,YT THE RESULTS OF THE 3-SPACE TO 2-SPACE TRANSFORMATION. \(184 \emptyset\)
C
    \(\mathrm{Q}=\mathrm{D} /((\mathrm{X}-\mathrm{EX}) * \mathrm{CA}+(\mathrm{Y}-\mathrm{EY}) * \mathrm{CB}+(\mathrm{Z}-\mathrm{EZ}) * \mathrm{CG}) \quad 186 \emptyset\)
    \(\mathrm{XT}=((\mathrm{EX}+\mathrm{Q} *(\mathrm{X}-\mathrm{EX})-\mathrm{AX}) * \mathrm{CB}-(\mathrm{EY}+\mathrm{Q} *(\mathrm{Y}-\mathrm{EY})-\mathrm{AY}) * \mathrm{CA}) * \mathrm{R}\)
    \(\mathrm{YT}=(\mathrm{EZ}+\mathrm{Q} *(\mathrm{Z}-\mathrm{EZ})-\mathrm{AZ}) * \mathrm{R} \quad 188 \emptyset\)
    RETURN 1890
    END 19めめ
    SUBROUTINE DANDR(NV,NW,ST1,LX,NX,NY,IS2,IU,S,IOBJS,MV) 191ф
C \(192 \emptyset\)
C THE PURPOSE OF THE SUBROUTINE AND THE INPUT AS WELL AS THE \(193 \emptyset\)
    OUTPUT PARAMETERS ARE THE SAME AS PUBLISHED BEFORE BY WRIGHT. 1940
    THEY ARE SUMMARIZED AND REPETED IN BEHALF OF THE USERS OF THIS \(195 \emptyset\)
    SUBROUTINE DANDR 1960
    THIS SUBROUTINE IS CALLED NU TIMES, EACH CALL PROCESSING THE \(198 \emptyset\)
    PART OF THE PICTURE AT U=NU-I+1 WHERE I IS THE NUMBER OF THE CALL \(199 \emptyset\)
    TO DANDR. THE PART OF THE PICTURE AT U=NU IS PROCESSED DURING \(2 \emptyset \emptyset \emptyset\)
    THE FIRST CALL, THE PART OF THE PICTURE AT U=NU-I+1 DURING 2ø1ф
    THE SECOND CALL, AND SO ON UNTIL THE PART OF THE PICTURE AT U=1 \(2 \emptyset 2 \emptyset\)
    IS PROCESSED DURING THE LAST CALL.
        PARAMETERS IN THE CALL \(2 \emptyset 4 \emptyset\)
        \(2 \emptyset 3 \varnothing\)
    NV V DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECT. \(2 \emptyset 5 \emptyset\)
    NW W DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECT. \(2 \emptyset 6 \emptyset\)
    ST1 A SCRATCH ARRAY AT LEAST NV*NW*2 WORDS LONG. \(2 \emptyset 7 \emptyset\)
    LX THE NUMBER OF WORDS NEEDED TO HOLD NX BITS. \(2 \emptyset 8 \emptyset\)
    NX NUMBER OF CELLS IN THE X DIRECTION OF A MODEL OF THE \(2 \emptyset 9 \emptyset\)
        IMAGE PLANE.
        210 0
    NY NUMBER OF CELLS IN THE Y DIRECTION OF THE MODEL OF THE \(211 \emptyset\)
        IMAGE PLANE. \(212 \emptyset\)
    IS2 AN ARRAY TO HOLD THE IMAGE PLANE MODEL. \(213 \varnothing\)
    IU UNIT NUMBER OF SCRATCH FILE FOR THE PACKAGE. \(214 \emptyset\)
        ST1 WILL BE WRITTEN NU TIMES ON THIS FILE. \(215 \emptyset\)
    IOBJS A NV BY NW ARRAY DESCRIBING THE OBJECT. \(216 \emptyset\)
        IF THIS LS CALL NUMBER I TO DANDR, THE PART OF THE PICTURE \(217 \emptyset\)
        AT U=NU-I+1 IS TO BE PROCESSED. IOBJS DEFINES THE OBJECTS \(218 \emptyset\)
        IOBJS ( \(\mathrm{J}, \mathrm{K}\) ) \(=1\) IF ANY OBJECT CONTAINS THE POINT (NU-I+1,J,K) \(219 \emptyset\)
        AND IOBJS \((J, K)=\emptyset\) OTHERWISE.
        2200
    MV THE ACTUAL FIRST DIMENION OF IOBJS IN THE CALLING PROGRAM. \(221 \emptyset\)
    S AN ARRAY WHICH CONTAINS THE COORDINATES OF THE AREA WHERE \(222 \emptyset\)
    THE PICTURE IS TO BE DRAWN. \(223 \emptyset\)
    THE PROGRAM IS TESTED USING A CDC76øØ (CYBER 76-16) COMPUTER \(224 \emptyset\)
    INSTALLATION, AND CDC 66øØ INSTALLATION AS WELL. \(225 \emptyset\)
C ..... 2260
C INLINE FUNCTION WHICH ARE ASSUMED TO BE AVAILABLE, ARE= ..... \(227 \emptyset\)
C ABS, FLOAT, IFIX, MOD. ..... 2286
C************ MACHINE DEPENDANT CONSTANTS ..... \(229 \emptyset\)
C NBPW NUMBER OF BITS PER WORD ..... \(236 \emptyset\)
C CDC SERIES (PRESENT CASE) NBPW=6ø. ..... \(231 \phi\)
C IBM SERIES, NBPW=32. ..... \(232 \emptyset\)
C UNIVAC \(11 \emptyset \emptyset\) SERIES, NBPW \(=36\). ..... \(233 \emptyset\)
C MASK AN ARRAY NBPW LONG ..... \(234 \emptyset\)
C
DIMENSION ST1(NV,NW, 2),IS2(LX,NY),S (4), IOBJS (MV,NW) ..... \(235 \emptyset\)
DIMENSION MASK (6 \(\emptyset\) ) ..... \(237 \emptyset\)
INTEGER AND,OR ..... \(238 \emptyset\)
COMMON/TOML/NSEQ,SS ..... \(239 \emptyset\)
C**************** NBPW ..... \(24 \emptyset \emptyset\)
DATA NBPW/6 \(\dagger\) / ..... 2410
DATA MASK/1B, 2В,4В,1ФВ,2ØВ,4ФВ,1ФФВ,2ФФВ,4ФФВ, ..... \(242 \emptyset\)
* \(1 \varnothing \emptyset \emptyset\) В, \(2 \emptyset \emptyset \emptyset \mathrm{~B}, 4 \emptyset \emptyset \emptyset\) В, \(1 \emptyset \emptyset \emptyset \emptyset \mathrm{~B}\), ..... \(243 \emptyset\)
*2ФФФФВ, 4ФФФФВ,1ФФФФФВ, 2ФФФФФВ, 4ФФФФФВ, 1ФФФФФФВ, 2ФФФФФФВ, 4ФФФФФФВ , ..... \(244 \emptyset\)
\(* 1 \varnothing \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{~B}, 2 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{~B}, 4 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{~B}, 1 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{~B}, 2 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{~B}, 4 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{~B}\), ..... \(245 \emptyset\)
 ..... \(246 \emptyset\)
* \(4 \emptyset \mathrm{~B}, 1 \emptyset \mathrm{~B}, 2 \emptyset \mathrm{~B}, 4 \emptyset \mathrm{~B}\), ..... \(247 \emptyset\)
 ..... \(248 \emptyset\)
*2ФФФФФФФФФФФФФВ,4ФФФФФФФФФФФФФВ,1ФФФФФФФФФФФФФФВ,2ФФФФФФФФФФФФФФВ, ..... \(249 \emptyset\)
 ..... \(25 \emptyset \emptyset\)
 ..... \(251 \emptyset\)
 ..... \(252 \emptyset\)
* \(4 \emptyset \mathrm{~B}, 1 \phi \emptyset \mathrm{~B}, 2 \emptyset \mathrm{~B}\), ..... 2530
\(* 4 \emptyset \mathrm{~B}, 1 \emptyset \mathrm{~B}, 2 \emptyset \mathrm{~B}\) ..... \(254 \emptyset\)
*4 \(\emptyset \emptyset \mathrm{B} /\) ..... \(255 \emptyset\)
ASSIGN \(12 \emptyset\) TO IRET ..... 2560
C INITIALIZATION ..... \(257 \emptyset\)
NSEQ= \(\emptyset\) ..... \(258 \emptyset\)
SS=ø. \(\varnothing 4\) ..... \(259 \emptyset\)
RX=(FLOAT (NX) -1.) /(S (2)-S (1)) ..... \(26 \emptyset \emptyset\)
RY= (FLOAT (NY)-1.)/(S (4)-S (3)) ..... \(261 \emptyset\)
READ(IU)ST1 ..... \(262 \emptyset\)
NVD2=NV/2 ..... 2630
NWD2=NW/2 ..... \(264 \emptyset\)
DX=(ST1 (NV,NWD2,1)-ST1 (1,NWD2,1))*.5/(FLOAT(NV)-1.) ..... \(265 \emptyset\)
DY \(=(\) ST1 (1,NWD2, 2) -ST1 (NV,NWD2, 2) ) *.5/(FLOAT (NV)-1.) ..... \(266 \emptyset\)
DZ=(ST1(NVD2,NW, 2)-ST1 (NVD2,1, 2))*.5/(FLOAT (NW)-1.) ..... \(267 \emptyset\)
SLOPE=DY/DX ..... \(268 \emptyset\)
DO \(13 \emptyset \mathrm{I}=2\), NV ..... 269ø
\(\mathrm{JUMP}=\mathrm{IOBJS}(\mathrm{I}-1,1) * 8+\) IOBJS \((\mathrm{I}, 1) * 4+1\) ..... \(27 \varnothing \emptyset\)
DO \(12 \emptyset \mathrm{~J}=2\), NW ..... \(271 \emptyset\)
\(\mathrm{X}=\mathrm{STl}(\mathrm{I}, \mathrm{J}, 1)\) ..... \(272 \emptyset\)
\(\mathrm{Y}=\mathrm{ST1}(\mathrm{I}, \mathrm{J}, 2)\) ..... \(273 \emptyset\)
JUMP \(=(\mathrm{JUMP}-1) / 4+\) IOBJS \((\mathrm{I}-1, \mathrm{~J}) * 8+\) IOBJS \((\mathrm{I}, \mathrm{J}) * 4+1\) ..... \(274 \emptyset\)
GO TO ( \(12 \emptyset, 2 \emptyset, 4 \emptyset, 5 \emptyset, 7 \emptyset, 8 \emptyset, 3 \emptyset, 1 \emptyset \emptyset, 1 \emptyset \emptyset, 1 \emptyset, 8 \emptyset, 7 \emptyset, 5 \emptyset, 4 \emptyset, 2 \emptyset, 12 \emptyset)\), JUMP ..... \(275 \emptyset\)
\(1 \emptyset\) ASSIGN \(9 \emptyset\) TO IRET ..... \(276 \emptyset\)
\(2 \emptyset \mathrm{XI}=\mathrm{X}\) ..... \(277 \emptyset\)
\(\mathrm{Y} 1=\mathrm{Y}-\mathrm{DZ}\) ..... \(278 \emptyset\)
X2 \(=\mathrm{X}+\mathrm{DX}\) ..... \(279 \emptyset\)
\(\mathrm{Y} 2=\mathrm{Y}-\mathrm{DY}\) ..... \(28 \emptyset \emptyset\)
GO TO 110 ..... \(281 \emptyset\)
\(3 \emptyset\) ASSIGN \(6 \emptyset\) TO IRET ..... \(282 \emptyset\)
\(4 \emptyset \mathrm{Xl}=\mathrm{X}\) ..... \(283 \emptyset\)
\(\mathrm{Y} 1=\mathrm{Y}-\mathrm{DZ}\) ..... \(284 \emptyset\)
X2: \(=\mathrm{X}-\mathrm{DX}\) ..... \(285 \emptyset\)
\(\mathrm{Y} 2=\mathrm{Y}+\mathrm{DY}\) ..... \(286 \emptyset\)
GO TO 11ø ..... 287ø
\(5 \emptyset \mathrm{Xl}=\mathrm{X}+\mathrm{DX}\) ..... \(288 \emptyset\)
\(\mathrm{Y} 1=\mathrm{Y}-\mathrm{DY}\) ..... \(289 \emptyset\)
\(\mathrm{X} 2=\mathrm{X}-\mathrm{DX}\) ..... 29øø
\(\mathrm{Y} 2=\mathrm{Y}+\mathrm{DY}\) ..... \(291 \emptyset\)
GO TO \(11 \emptyset\) ..... \(292 \emptyset\)
\(6 \emptyset\) ASSIGN \(12 \emptyset\) TO IRET ..... \(293 \emptyset\)
\(7 \emptyset \mathrm{XI}=\mathrm{X}+\mathrm{DX}\) ..... 294Ф
\(\mathrm{Yl}=\mathrm{Y}-\mathrm{DY}\) ..... \(295 \emptyset\)
\(\mathrm{X} 2=\mathrm{X}\) ..... 296ø
\(\mathrm{Y} 2=\mathrm{Y}+\mathrm{DZ}\) ..... 297ø
GO TO 11Ø ..... \(298 \emptyset\)
\(8 \emptyset \mathrm{X1}=\mathrm{X}\) ..... 299Ø
\(\mathrm{Y} 1=\mathrm{Y}-\mathrm{DZ}\) ..... 3ФФø

\begin{tabular}{|c|c|c|}
\hline C & FOLLOWING FIVE STATEMENTS & \(378 \emptyset\) \\
\hline C & 1)2) \(\mathrm{SS}=\emptyset . \emptyset 4, \mathrm{NSEQ}=\emptyset, \mathrm{BEFORE}\) SLOPE=DX/DY WHICH INITIALIZE SDLINE. & 379ø \\
\hline C & 3) ADD COMMON/TOMI/NSEQ,SS TO DANDR. & \(38 \emptyset \emptyset\) \\
\hline C & 4) CALL SDLINE ( \(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2, \mathrm{Y} 2) \mathrm{INSTEAD}\) OF LINE (X1,Y1, \(\mathrm{X} 2, \mathrm{Y} 2)\). & \(381 \emptyset\) \\
\hline C & 5) CALL PLTOUT AFTER STATEMENT \(13 \emptyset\) CONTINUE IN DANDR. & \(382 \emptyset\) \\
\hline C & & \(383 \emptyset\) \\
\hline C & THE SUBROUTINE SDLINE (X1,Y1, X2,Y2) TEMPERARILY STORES THE & \(384 \emptyset\) \\
\hline C & SEGMENTS IN ORDER TO BUILT UP THE SEQUENCES. THIS IS DONE BY & 385¢ \\
\hline C & COMPARING THE LAST POINT OF EACH SEQUENCE WITH THE ENDPOINTS & \(386 \emptyset\) \\
\hline C & OF A SEGMENT. SDLINE IS ASSUMED TO DRAW A LINE FROM (X1,Y1) & \(387 \emptyset\) \\
\hline C & TO THE POINT (X2,Y2) UTILIZING THE SUBROUTINES PLTOUT AND PLOT. & \(388 \emptyset\) \\
\hline C & & \(389 \emptyset\) \\
\hline C & LOGICAL OPERATIONS .AND. , .OR. & 39ØØ \\
\hline C***** &  & \(391 \emptyset\) \\
\hline C & CDC \(6 \emptyset \emptyset \emptyset\) AND CDC \(7 \emptyset \emptyset \emptyset\) SERIES. & 392Ø \\
\hline & DIMENSION XX \((8 \emptyset, 2 \emptyset)\), YY ( \(8 \emptyset, 2 \emptyset\) ) , NN (2ø) & 3930 \\
\hline & COMMON/TOM/NN, XX, YY & \(394 \emptyset\) \\
\hline & COMMON/TOM1/NSEQ,S & 395ø \\
\hline & IF (NSEQ.EQ. \(\dagger\) ) GOTO 2 \(\emptyset\) & \(396 \emptyset\) \\
\hline C & SEARCH FOR CONTINUATION POINT. & \(397 \emptyset\) \\
\hline & DO \(1 \emptyset\) ISEQ=1,NSEQ & \(398 \emptyset\) \\
\hline & \(\mathrm{INN}=\mathrm{NN}\) (ISEQ) & 399¢ \\
\hline & ISW \(=\emptyset\) & \(4 \emptyset \emptyset \emptyset\) \\
\hline 5 & XL=XX (INN, ISEQ) & \(\therefore \phi 1 \phi\) \\
\hline & YL=YY (INN, ISEQ) & \(4 \phi 2 \emptyset\) \\
\hline C & TRUE IN NEXT STATEMENT MEANS CONTINUATION POINT FOUND & \(4 \phi 3 \emptyset\) \\
\hline C & .AND. LOGICAL MULTIPLICATION. & \(4 \dagger 4 \emptyset\) \\
\hline & IF ( ABS (X1-XL).LE.S).AND. (ABS (Y1-YL).LE.S)) GOTO 5¢ & \(4 \dagger 5 \emptyset\) \\
\hline & IF ((ABS (X2-XL).LE.S).AND. (ABS (Y2-YL).LE.S)) GOTO \(4 \emptyset\) & \(4 \emptyset 6 \emptyset\) \\
\hline C & LOGICAL EXPRESSION = INCLUSIVE .OR. & \(4 \emptyset 7 \emptyset\) \\
\hline & IF ((INN.GT.2).OR. (ISW.NE. \(\emptyset\) ) ) GOTO \(1 \emptyset\) & \(4 \emptyset 8 \emptyset\) \\
\hline & XBL=XX (1,ISEQ) & \(4 \emptyset 9 \emptyset\) \\
\hline & YBL=YY (1, ISEQ) & \(41 \emptyset \emptyset\) \\
\hline & \(\mathrm{XX}(1, \mathrm{ISEQ})=\mathrm{XX}(2, \mathrm{ISEQ})\) & 4110 \\
\hline & YY \((1\), ISEQ \()=Y Y(2, I S E Q)\) & \(412 \emptyset\) \\
\hline & XX \((2, I S E Q)=\mathrm{XBL}\) & 4136 \\
\hline & YY ( \(2, \mathrm{ISEQ}\) ) \(=\) YBL & \(414 \emptyset\) \\
\hline & ISW=1 & \(415 \emptyset\) \\
\hline & GOTO 5 & \(416 \emptyset\) \\
\hline \(1 \emptyset\) & CONTINUE & \(417 \emptyset\) \\
\hline C & NEW SEQUENCE & \(418 \emptyset\) \\
\hline \(2 \emptyset\) & IF (NSEQ.EQ.2ø) CALL PLTOUT & \(419 \emptyset\) \\
\hline & NSEQ \(=\) NSEQ +1 & \(42 \emptyset \emptyset\) \\
\hline & XX \((1, N S E Q)=\mathrm{X} 1\) & \(421 \emptyset\) \\
\hline & XX \((2, N S E Q)=\mathrm{X} 2\) & \(4.22 \emptyset\) \\
\hline & \(Y Y(1, N S E Q)=Y 1\) & \(423 \emptyset\) \\
\hline & YY ( \(2, N S E Q\) ) \(=Y 2\) & \(424 \emptyset\) \\
\hline & NN (NSEQ) \(=2\) & 425ø \\
\hline & RETURN & \(4.26 \emptyset\) \\
\hline C & CONTINUE OLD SEQUENCE & \(427 \emptyset\) \\
\hline \(4 \emptyset\) & \(\mathrm{X} 2=\mathrm{X} 1\) & \(428 \emptyset\) \\
\hline & \(\mathrm{Y} 2=\mathrm{Y} 1\) & \(429 \emptyset\) \\
\hline \(5 \emptyset\) & INN \(=\) LNN +1 & \(43 \emptyset \emptyset\) \\
\hline & IF (INN.GT. \(8 \emptyset\) ) GOTO \(2 \emptyset\) & \(431 \emptyset\) \\
\hline & \(\mathrm{XX}(\mathrm{INN}, \mathrm{ISEQ})=\mathrm{X} 2\) & \(432 \emptyset\) \\
\hline & YY (INN, ISEQ \()=Y 2\) & \(433 \emptyset\) \\
\hline & NN (ISEQ) \(=\) INN & \(434 \emptyset\) \\
\hline & RETURN & \(435 \emptyset\) \\
\hline & END & \(436 \emptyset\) \\
\hline & SUBROUTINE PLTOUT & \(437 \emptyset\) \\
\hline C & & \(438 \emptyset\) \\
\hline C & INSERT CALL PLTOUT AFTER STATEMENT \(13 \emptyset\) CONTINUE IN & 439ø \\
\hline C & THE ORIGINAL DANDR SUBROUTINE. & \(440 \emptyset\) \\
\hline C & & 441ø \\
\hline C & THIS SUBROUTINE PLOTS THE SEQUENCES TAKING INTO ACCOUNT & 442ø \\
\hline C & THE MINIMUM DISTANCE BETWEEN BEGINNING AND ENDPOINTS OF THE & 443ø \\
\hline C & SEQUENCES. THIS IS DONE BY ORDERING THE SEQUENCES IN AN & \(444 \emptyset\) \\
\hline C & APROPRIATE WAY AND BY INDICATING WHETHER THEY SHOULD BE PROCESSED & 445ø \\
\hline C & IN THE NORMAL ORDER OR REVERSED. & 446ø \\
\hline C***** & * UNDEFINED EXTERNAL REFERENCES ********************************* & 447ø \\
\hline C & SUBROUTINE PLOT(X,Y,IND)IS AVAILABLE IN THE CALCOMP PACKAGE. & 448 \(\emptyset\) \\
\hline C & PLOT (X,Y,IND) \(=\) TO MOVE THE PEN FROM ITS CURRENT POSITION & 4496 \\
\hline C & TO A NEW POSITION. & \(45 \emptyset \emptyset\) \\
\hline C & \(\mathrm{X}=\mathrm{X}\)-COORDINATE, IN CM , OF NEW PEN POSITION RELATIVE TO ORIGIN. & 4.51中 \\
\hline C & \(Y=Y\) - COORDINATE, IN CM, OF NEW PEN POSITION RELATIVE TO ORIGIN. & \(4.52 \emptyset\) \\
\hline C & IND \(=\) IS USED TO CONTROL VERTICAL POSITION OF THE PEN, THE & 4.530 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C & ESTABLISHING OF NEW ORIGINS, DUMPING OF THE BUFFER, AND & \(454 \emptyset\) \\
\hline C & THE STARTING OF NEW BLOCKS. & 455 \({ }^{\text {d }}\) \\
\hline \multirow[t]{7}{*}{C} & & 4560 \\
\hline & DIMENSION XX \((8 \emptyset, 2 \emptyset), \mathrm{YY}(8 \emptyset, 2 \emptyset), \mathrm{NN}(2 \emptyset), \operatorname{IND}(2 \phi), \mathrm{IDR}(2 \emptyset)\) & 457¢ \\
\hline & COMMON/TOM/NN, XX, YY & \(458 \emptyset\) \\
\hline & COMMON/TOM1/NSEQ, S & 459 \(\emptyset\) \\
\hline & IF (NSEQ.EQ. \(\emptyset\) ) RETURN & 46øø \\
\hline & DO \(1 \emptyset \mathrm{I}=1\), NSEQ & 4610 \\
\hline & \(\mathrm{IND}(\mathrm{I})=\mathrm{I}\) & \(462 \emptyset\) \\
\hline \multirow[t]{16}{*}{\(1 \emptyset\)} & CONTINUE & 4630 \\
\hline & \(\operatorname{IDR}(1)=1\) & \(464 \emptyset\) \\
\hline & ITEMP=NN (1) & 465d \\
\hline & OLDX \(=\mathrm{XX}\) (ITEMP, 1) & 4660 \\
\hline & OLDY=YY (ITEMP, 1) & \(467 \emptyset\) \\
\hline & DO \(3 \emptyset \mathrm{I}=2\), NSEQ & 468 \(\emptyset\) \\
\hline & DMIN \(=1 \varnothing \emptyset \emptyset \emptyset \emptyset \emptyset\). & 469 \(\emptyset\) \\
\hline & DO \(2 \emptyset \mathrm{~J}=1\),NSEQ & 47ø \(\emptyset\) \\
\hline & \(\mathrm{K}=\mathrm{IND}(\mathrm{J})\) & 4710 \\
\hline & DX=XX (1,K) --OLDX & 4720 \\
\hline & \(D Y=Y Y(1, K)-O L D Y\) & \(473 \emptyset\) \\
\hline & D=SQRT ( \(D X * D X+D Y * D Y\) ) & \(474 \emptyset\) \\
\hline & IF (D. GE.DMIN) GOTO 15 & 4750 \\
\hline & DMIN \(=\) D & 4760 \\
\hline & MINJ \(=\mathrm{J}\) & 4770 \\
\hline & IDRT=1 & 4780 \\
\hline \multirow[t]{8}{*}{15} & ITEMP=NN (K) & 4790 \\
\hline & DX=XX (ITEMP, K) --OLDX & \(48 \emptyset \emptyset\) \\
\hline & DY=YY (ITEMP,K)-OLDY & 4810 \\
\hline & \(D=S Q R T(D X * D X+D Y * D Y)\) & 4820 \\
\hline & IF (D.GE.DMIN) GOTO \(2 \emptyset\) & 4830 \\
\hline & DMIN=D & 4840 \\
\hline & MINJ \(=\mathrm{J}\) & 485ø \\
\hline & IDRT=-1 & 486ø \\
\hline \multirow[t]{3}{*}{\(2 \emptyset\)} & CONTINUE & 487¢ \\
\hline & \(\mathrm{L}=\mathrm{IND}\) (MINJ) & \(488 \emptyset\) \\
\hline & IND (MINJ) \(=\) IND (I) & 489Ø \\
\hline \multirow[t]{6}{*}{} & \(\operatorname{IND}(\mathrm{I})=\mathrm{L}\) & \(49 \emptyset \emptyset\) \\
\hline & \(\operatorname{IDR}(\mathrm{I})=\) IDRT & \(491 \emptyset\) \\
\hline & \(1 \mathrm{~B}=1\) & 492ø \\
\hline & IF (IDRT.NE.1) \(\mathrm{IB}=\mathrm{NN}(\mathrm{K})\) & 4930 \\
\hline & OLDX=XX (IB,K) & \(494 \emptyset\) \\
\hline & OLDY \(=\mathrm{YY}(\mathrm{IB}, \mathrm{K})\) & \(495 \emptyset\) \\
\hline \multirow[t]{8}{*}{\(3 \emptyset\)} & CONTINUE & \(496 \emptyset\) \\
\hline & DO \(5 \emptyset \mathrm{I}=1\), NSEQ & 497¢ \\
\hline & \(\mathrm{K}=\mathrm{IND}(\mathrm{I})\) & 498ø \\
\hline & \(\mathrm{N}=\mathrm{NN}\) (K) & 499ø \\
\hline & \(\mathrm{IB}=1\) & \(5 \emptyset \emptyset \emptyset\) \\
\hline & \(\mathrm{M} 3=\mathrm{IDR}\) (I) & \(501 \emptyset\) \\
\hline & IF (M3.NE.1) IE=N & 5ø2ø \\
\hline & \(\mathrm{M} 1=1 \mathrm{~B}+\mathrm{M} 3\) & 5¢3¢ \\
\hline \multirow[t]{3}{*}{C*****} & U UNDEFINED EXTERNAL REFERENCE ** PLOT ************************ & 5040 \\
\hline & CALL PLOT (XX (IB,K), YY (IB,K) , 3) & 505ø \\
\hline & DO \(4 \emptyset \mathrm{~L}=2, \mathrm{~N}\) & 506ゆ \\
\hline \multirow[t]{3}{*}{C*****} & UNDEFINED EXTERNAL REFERENCE ** PLOT ************************* & 507ø \\
\hline & CALL PLOT (XX (M1, K) , YY (M1, K) , 2) & 5¢8¢ \\
\hline & M1=M1+M3 & 5¢9ø \\
\hline \multirow[t]{2}{*}{\(4 \emptyset\)} & CONTJNUE & \(51 \emptyset \emptyset\) \\
\hline & NN (K) = \(\dagger\) & 5110 \\
\hline \multirow[t]{5}{*}{\(5 \emptyset\)} & CONTINUE & 512ø \\
\hline & NSEQ= \(\varnothing\) & 513ø \\
\hline & RETURN & \(514 \emptyset\) \\
\hline & END & 515ø \\
\hline & FUNCTION ARCCOS (Y) & \(516 \emptyset\) \\
\hline C & BECAUSE ACOS IS NOT A STANDARD FORTRAN FUNCTION THE PRESENT & 517ø \\
\hline C & \(\cdots\) UNCTION ROUTINE IS AN APPROXIMATION FOR IT. & \(518 \emptyset\) \\
\hline & \(\mathrm{PI}=3.1415926\) & 519ø \\
\hline & \(\mathrm{X}=\mathrm{ABS}\) ( Y ) & \(52 \emptyset \emptyset\) \\
\hline & ARCCOS \(=(1.57 \emptyset 7288-\emptyset .2121144 * \mathrm{X}+\emptyset . \emptyset 74261 * \mathrm{X} * \mathrm{X}-\emptyset . \emptyset 187293 * \mathrm{X} * \mathrm{X} * \mathrm{X}) *\) SQRT (1 & 5210 \\
\hline & A. -X ) & \(522 \emptyset\) \\
\hline & IF (Y.LT. \(¢\).\() ARCCOS =\mathrm{PI}-\mathrm{ARCCOS}\) & \(523 \emptyset\) \\
\hline & RETURN & \(524 \emptyset\) \\
\hline & END & \(525 \emptyset\) \\
\hline
\end{tabular}

Editor's note: Algorithm 476 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is \(\$ 16.00\) (U.S. and Canada) or \(\$ 18.00\) (elsewhere). If the user sends a small tape (wt. less than I lb.) the algorithm will be copied on it and returned 10 him at a charge of \(\$ 10.00\) (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithm at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10 . The sequence number is right justified in column 80. Although we will make every attempt to insure that the al gorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F. and A.K.C.

\section*{Algorithm 476}

Six Subprograms for Curve Fitting Using Splines Under Tension [E2]

\author{
A.K. Cline \\ National Center for Atmospheric Research,* P.O. Box 1470, Boulder, CO 80302
}
[Recd. 21 Apr. 1972 and 13 June 1973]
* Sponsored by the National Science Foundation.

Author's present address: Institute for Computer Applications in Science and Engineering, Mail Stop 132-C, NASA-Langley Research Center, Hampton, VA 23365

Key Words and Phrases: interpolation, splines, contouring, curve fitting

CR Categories: 5.13, 8.2
Language: Fortran

\section*{Description}

The spline under tension package includes six subprograms: two in each of three problem areas. These implement the theory presented in [1]. The first pair, \(C U R V 1\) and \(C U R V 2\), solves the standard interpolation problem: determine a real-valued function that assumes values \(\left\{y_{i}\right\}_{i=1}^{\prime \prime}\) at abscissas \(\left\{x_{i}\right\}_{i=1}^{n}\). The second pair, \(K U R V 1\) and \(K U R V 2\), solves the more general problem of passing a curve through a sequence of pairs \(\left\{x_{i}, y_{i}\right\}_{i=1}^{n}\) in the plane. The third pair, KURVP1 and KURVP2, solves the same problem, but the solution curve is closed.
\(C U R V 1\) and \(K U R V 1\) require additional endpoint slope conditions to determine the solution. The user may omit the information in which case values are produced internally based upon the other input information. If three or more points are to be interpolated, these internal slope values are the slopes given by a quadratic
polynomial interpolating the first three values for the initial slope and last three values for the terminal slope. If only two points are to be interpolated and no slope information is given, the resulting curve is a straight line. The subprogram \(K U R V P 1\) determines periodic splines under tension, and thus no additional slope information is required.

In each pair of subprograms, the first is called only once, and sets up and solves the tridiagonal system to specify the spline. The second is used for the actual mapping of points. The function \(C U R V 2\) returns an image point for a given real value. The subroutines \(K U R V 2\) and \(K U R V P 2\) return the image pairs in their parameter sequences. Each of these subprograms, \(C U R V 2, K U R V 2\), and \(K U R V P 2\), first must determine which data points are adjacent to the input value. This search usually begins with the leftmost values and proceeds until the correct interval is found. However, if a sequence of input values is to be mapped, the search can be made more efficient by ordering these values left to right. The search can then proceed on one call from where it ended on the previous call. All three subprograms include an efficiency option which in effect says, "You may proceed from where you stopped."

All the subprograms included require a natural exponential function named EXP. KURV1, KURV2, KURVP1, and KURVP2 require a square root function \(S Q R T\). The subroutine \(K U R V 1\) requires the sine \((S I N)\) and cosine (COS) functions, in addition to the function \(A T A N 2\) of two arguments which when given \(x\) and \(y\) (not both zero) returns an angle \(\theta\) which satisfies \(x=y \times \tan (\theta)\). All of these are basic Fortran external functions

\section*{References}
1. Cline, A.K. Scalar- and planar-valued curve fitting using splines under tension. Comm. ACM 17, 4 (Apr. 1974), 218-220.

\footnotetext{
Algorithm

SUEROUTINE CUPVI(N, \(X, Y\), SLPI, SLPN, YP, TEMP, SIGMA
NTEGER N
REAL \(X(N), Y(N), ~ S L P 1, ~ S L P N, Y P(N), ~ T E M P(N), ~ S I G M A\)
C THIS SUBROUTINE DETERMINES THE PAFAMETERS NECESSARY TO
C COMPUTE AN INTERPOLATORY SPLINE UNDER TENSION THROUGH
C A SEQUENCE OF FLNCTIONAL VALCES. THE SLOPES AT THE TKO
C ENDS OF THE CLPVE MAY BE SPECIFIED OF OMITTED. FOR ACTUAL
C COMPITATION OF POINTS ON THE CUFVE IT IS NECESSAFY TO CALI
C THE FUNCTION CLRVE.
ON INPLTT
C \(N\) IS THE NUMBER OF VALLES TO BE INTERPOLATED (N.GE.2),
\(\mathrm{C} \times\) IS AN APRAY OF THE N INCFEASING ARSCISSAE OF THE
C FUNCTIONAL VALUES
Y IS AN ARFAY OF THE \(N\) ORDINATES OF THE VALUES, (I.E.Y(K)
IS THE FUNCTIONAL VaLUE CORRESPONDING TO \(X(K)\) ),
C SLPI AND SLPN CONTAIN THE DESIRED VALUES FOR THE FIPST
C DERIVATIVE OF THE CURVE AT X(I) AND X (N), RESPECTIVELY
C IF THE QCANTITY SIGMA IS NEGATIVE THESE VALUES WILL BE
C DETERMINED INTESNALLY AND THE USEF NEED ONLY FUFNISH
C PLACE-HOLDING PARAMETERS FOR SLFI AND SLPN. SUCH PLACE
C HOLDING PARAMETEFS VILL EE IGNORED ELT NOT DESTROYED
C YP IS AN ARPAY OF LENGTH AT LEAST N
C TEMP IS AN ARRAY OF LENGTH AT LEAST N WHICH IS USED FOR
C SCRATCH STORAGE,
AND
C SIGMA CONTAINS THE TENSION FACTOR, THIS IS NON-ZERO AND
C INDICATES THE CURVINESS DESIPED. IF ARS (SIGMA) IS NEARLY
ZERO (E OR1) THE RESULTING CUPUE S APPPOXIMATELY
C CUEIC SPLINE, IF AES(SIGMA) IS LARGE (E.G. 50.) THE
C RESULTING CUFVE IS NEARLY A POLYGONGL LINE. THE SIGN
OF SIGMA INDICATES KHETHER THE EEPIVATIVE INFOPMATION
C HAS BEEN INPUT OR NOT. I \(F\) SIGMA IS NEGATIVE THE ENDPOINT
C HAS BEEN INPUT OR NOT. IF SIGMA IS NEGA'TIVE THE ENDPOI
C DERIVATIVES WILL EE DETERMINED INTERNALI,Y. A STANDARD
c ValUe for sigma is approximately 1. in absolute valle.
C ON OUTPUT--
c Yp CONTAINS VALUES PROPOFTIONAL TO THE SECOND DERIVATIVE
C OF THE CURVE at ThE GIVEN NODES.
C \(N, X, Y, S L P I, S L P N\) AND SIGMA ARE UNALTERED.
NMI \(=N-1\)
\(N P 1=N+1\)
DELXI \(=\mathrm{X}(2)-\mathrm{X}(1\)
\(D X 1=(Y(2)-Y(1)) / D E L X 1\)
C DETERMINE SLOPES IF NECESSAPY
IF (SIGMA.LT. B.) GO TO 50
LPPI \(=\) SLP
SLPPN \(=\) SLPN
}
```

C DENORMALIZE TENSION FACTOP.
10 SIGMAP = ABS(SIGMA)*FLOAT(N-1)/(X(N)-X(1))
C SET UP RIGHT HAND SIDE AND TRIDIAGONAL SYSTEM FOF YP AND
C PERFORM FORWARD ELIMINATION
DELS = SIGMAP*DELXI
EXFS = EXP(DELS)
SINHS = 5*(EXPS-1./EXPS)
SINHIN = 1./(DELXI*SINHS)
DIAG1 = SINHIN*(DELS**5*(EXPS+1./EXPS)-SINHS)
DIAGIN = 1./DIAG!
YP(1)=DIAGIN*(DX1-SLPP1)
SPDIAG = SINHIN*(SINHS-DELS)
TEMP(N)NDIAGIN*SPDIAG
IF (N.EQ.2) GO TO 3E
20 I=2,NM
ELX2 = X(I+1)-X(I)
DELS = SIGMAP*DELXS DELX2
EXPS = EXP(DELS)
XPS = EXP(DELS
SINHS = 5*(EXPS-1./EXPS)
DIAG2 = SINHIN*(DELS*(.5*(EXPS+1./EXPS))-SINHS)
DIAGIN = 1./(DIAGI+DIAG2-SPDIAG*TEMP(I-1))
YP(I) = DIAGIN*(DX2-DXI-SPDIAG*YP(I-1))
SPDIAG = SINHIN*(SINHS-DELS)
TEMP(I) = DIAGIN*SPDIAG
DX: = DX2
LIAGI = DIAG2
0 continue
D DIAGIN = 1./(DIAGI-SPDIAG*TEMP(NM1))
YP(N) = DIAGIN*(SLPPN-DX2-SPDIAG*YP(NMI))
P PERFORN BACK SUBSTITUTION
DO 40 I=2,N
PP(IBAK) = YP(IBAK) - TEMP(IBAK)*YP(IBAK+1)
40 CONTINUE
RETURN
50 IF (N.EQ.2) GO TO 60
C IF NO DERIVATIVES ARE GIVEN USE SECOND ORDER POLYNOMIAL
C INTERPOLATION ON INPUT DATA FOR VALUES AT ENDPOINTS
DELX2 = X(3) - X(2)
C1 = -C(DELX12+DELX1)/DELX12/DELX
C2 = DELXI2/DELX1/DELX2
C3 = -DELX1/DELXI2/DELX2
SLPPPI = C1*Y(1) + C2*Y(2) + C3*Y(3)
DELN = X(N) - X(NM1)
DELNM1 = X(NM1)-X(N-2)
DELNN = X(N)-X(N-2)
C1 = (DELNN+DELN)/DELNN/DELN
C2 = -DELNN/DELN/DELNM1
S = DELN/DELNN/DELNM
SLPPN =C3*Y(N-2) +C2*Y(NM1) +C1*Y(N
C IF ONLY TWO
C IF ONLY TWO DOINTS AND NO DERIVATIUES ARE GIVEN, USE
MAIGHT LINE FOF CURVE
\& YP(1) =0.
RETURN
END
FUNCTION CURVZ(T, N, X,Y, YP, SIGMA, IT)
INTEGER N, IT
REAL T, X(N),Y(N), YP(N), SIGMA
C THIS FLNCTIN INTEFPOLITES A CUPVE AT A GIVEV POINT
C USING A SPLINE LNDER TENSION. THE SLBROUTINE CURVI SHOULL
C BE CALLED EARLIER TO DETEFMINE CERTAINOUTINE CURV
C PARAMETERS.
C PARAMETERS
C T CONTAINS A mEAL VALUE TO BE MAPPED ONTO THE INTERPO-
c LATING CURVE.
C N CONTAINS THE NUMBER OF POINTS WHICH WERE INTERPOLATED
C TO DETERMINE THE CURVE,
C X AND Y ARE ARRAYS CONTAINING THE ORDINATES AND AECISSAS
C OF THE INTERPOLATED POINTS,
C YP IS AN ARRAY WITH VALUES PROPORTIONAL TO THE SECOND
C DERIVATIVE OF THE CURVE AT THE NODES
C SIGMA CONTAINS THE TENSION FACTOR (ITS SIGN IS IGNORED
C IT IS AN INTEGER SWITCH. IF IT IS NOT I THIS INDICATES
C THAT THE FUNCTION HAS EEEN CALLED PREUIOUSLY (KITH N, X
Y,YP, AND SIGMA UNALTERED) AND THAT THIS VALUE OF T
C EXCEEDS THE PREVIOUS VALUE. WITH SUCH INFORMATION THE
C FUNCTION IS ARLE TO PERFORM THE INTERPOLATION MUCH MORE
C OF POINTS, EFFICIENCY IS GAINED BY ORDERING THE VALUES
C INCREASING AND SETTING IT TO THE INDEE OF THE CALL_UE
C IF IT IS I THE SEARCH FOP THE INTERVAL (}X(K)\mathrm{ C X K + I)
C CONTAINING T STARTS WITH K=1.
C THE PARAMETERS N,X,Y,YP AND SIGMA SHOULD BE INPUT
C UNALTERED FROM THE OUTPUT OF CURVI.
C ON OUTPUT-
C CURVZ CONTAINS THE INTERPOLATED VALUE. FOR T LESS THAN
X(l) CURVZ Y(1) FOR T GREATER THAN X(N) CURVZ = Y(N)
C NONE OF THE INPUT PARAMETERS ARE ALTERED
S = X(N)-X(1)
C DENORMALIZE SIGMA
SIGMAP = ABS(SIGMA)*FLOAT (N-1)/S
C IF IT.NE,I START SEARCH WHERE PREVIOUSLY TERMINATED,
OTHERWISE START FROM BEGINNING
IF (IT.EQ.I) It = 2
C SEARCH FOR INTERUAL
10 DO 2e I=I1,N
IF (X(I)-T) 20, 20, 30
2g continue
20 CONTIN
C CHECK TO INSURE CORRECT INTERVAL
30 IF (X(I-1).LE.T .OR. T.LE.X(1)) GO TO 40
C RESTART SEARCH AND RESET II ,
GO TO 10
C SET UP AND PERFORM INTERPOLATION
DEL1 =T-X(I-I)
DEL2 = X(I) - T
DELS = X(1)=X(1-1)

```
```

EXPS1 = EXP(SIGMAP*DELI)
SINHD1 = .5*(EXPS1-1./EXPS1
EXPS = EXP(SIGMAP*DEL2)
SINHD2 = 5*(EXPS-1./EXPS)
EXPS = EXPS1*EXPS
SINHS = .5*(EXPS-1./EXPS)
CURV2 = (YP(I)*SINHDI+YP(I-1)*SINHD2)/SINHS +

* ((Y(I)-YP(I)))*DELI+(Y(I-1)-YP(I-1))*DEL2)/DELS
II=1
END

```
SUBROUTINE KURVI(N, \(X, Y, S L P I, ~ S L P N, ~ X P, ~ Y P, ~ T E M P, ~ S, ~\)
THIS SUBROUTINE DETERMINES THE PARAMETERS NECESSAKY TO
C COMPUTE A SPLINE UNDER TENSION PASSING THROUGH A SEQUENCE
C OF PAIRS \((X(1), Y(1)), \ldots,(X(N), Y(N))\) IN THE PLANE. THE
SLOPES AT THE TWO ENDS OF THE CUFVE MAY BE SPECIFIED OP
C, OMITTED. FOR ACTUAL COMPUTATION OF POINTS ON THE CURVE IT
C IS NECESSARY TO CALL THE SUBPOUTINE KURVZ.
C ON INPUT--
C \(N\) IS THE NUMBER OF POINTS TO EE INTERPOLATED (N.GE.2),
C \(N\) IS THE NUMBER OF POINTS TO EE INTERPOLATED (N.GE. 2 )
C \(X\) IS AN ARRAY CONTAINING THE N X-COORDINATES OF THE
C POINTS.
C POINTS,
C Y IS AN ARRAY CONTAINING THE N Y-COORDINATES OF THE
C POINTS.
C SLP: AND SLPN CONTAIN THE DESIPED VALUES FOR THE SLOPE
C OF THE CURVE AT \((X(1), Y(1))\) AND \((X(N), Y(N))\), RESPEC-
C OF THE CURVE AT (X (1),Y(1)) AND (X(N),Y(N)), RESPEC
C TIVELY. THESE QUANTITIES ARE IN DEGREES AND MEASURED
C TOUNTERCLOCKWISE FROM THE POSITIVE X-AXIS. THE POSITIVE
COUNTERCLOCKWISE FROM THE POSITIVE X-AXIS. THE POSITIVE
SENSE OF THE CURVE IS ASSUMED TO EE THAT MOVING FROM THE
COINT I TO POINT N. IF THE QUANTITY SIGMA IS NEGATIVE
THESE SLOPES WILL EE DETERMINED INTERNALLY AND THE USER
C NEED ONLY FURNISH PLACE-HOLDING PARAMETERS FOR SLPI AND
SLPN. SUCH PLACE-HOLDING PAPAMETERS WILL BE IGNORED BUT
C NOT DESTROYED,
\(C\) XP,YP ARE ARRAYS OF LENGTH AT LEAST \(N\),
C XP, YP ARE ARRAYS OF LENGTH AT LEAST N,
C TEMP IS AN ARRAY OF LENGTH AT LEAST \(N\) WHICH IS USED FOR
C TEMP IS AN ARRAY
C SCRATCH STORAGE,
C SCRA
C SIGMA CONTAINS THE TENSION FACTOR. THIS IS NON-ZERO AND
C INDICATES THE CURUINESS DESIRED. IF AES (SIGMA) IS VEPY
C LARGE (E.G. 50.) THE PESULTING CURVE IS VERY NEARLY A
C POLYGONAL LINE. THE SIGN OF SIGMA INDICATES WHETHER
C SLOPE IN FORMATION HAS BEEN INPUTT OR NOT. IF SIGMA IS
C SLOPE IN FORMATION HAS BEEN INPUT OR NOT. IF SIGM
C NEGATIVE THE END-POINT SLOPES WILL BE DETERMINED
C NEGATIVE THE END-POINT SLOPES WILL BE DETERMINED
C INTERNALLY. A STANDARD VALUE FOR SIGMA IS APPROXIMATELY
C INTERNALLY. A STANDARD
C i. IN ABSOLUTE VALUE.
C I. IN ABSOL
C \(N, X, Y\), SLPI, SLPN, AND SIGMA ARE UNALTERED,
C XP AND YP CONTAIN INFORMATION ABOUT THE CURVATUPE OF THE
C CURVE AT THE GIVEN NODES.
C AND
C AND
C \(S\) CONTAINS the polygonal arclength of the curve.
    INTEGER N
    INTEGER \(N\)
REAL \(X(N), Y(N), ~ X P(N), Y P(N), ~ T E M P(N), S, S I G M A\)
    DEGRAD \(=3.141592653589793211 B 0\).
    \(\begin{array}{ll}\text { NMI }=N-1 \\ \text { NPI } & =N+1\end{array}\)
    \(N P 1=N+1\)
    DELX1 \(=X(2)-X(1\)
    DELY1 \(=Y(2)-Y(1)\)
    DELY1 \(=Y(2)-Y(1)\)
DELS \(=S Q R T(D E L X 1 * D E L X 1+\) DELY1 \(1 * D E L Y 1)\)
    DELS \(1=\) SQRT(DELX1*DELX1+DELY1*DELY1)
    DX1 \(=\) DELX1/DELSI
DYI \(=\) DELY1/DELS
C determine slopes if necessary
    IF (SIGMA.LT. Q.) GO TO 78
    IF (SIGMA.LT. Q.) GO
SLPPI \(=\) SLPI*DEGRAD
    SLPP \(=\) SLPI \(1 *\) DEGRAD
SLPPN \(=\) SLPN*DEGFAD
C SET UP RIGHT HAND SIDES OF TRIDIAGONAL LINEAR SYSTEM FOR XP
C SET UP
C AND YP
    \(10 \times P(1)=D X I-\operatorname{COS}(S L P P I)\)
        \(X P(1)=D X 1-\operatorname{COS}(S L P P 1)\)
\(Y P(1)=D Y 1-S I N(S L P P 1)\)
        \(\operatorname{TEMP}(1)=\operatorname{DELS} 1\)
        \(S=\) DELS 1
        \(S=\) DELS 1
\(I F(N . E Q .2)\) GO TO 30
            DO \(20 I=2\), NMI
            DELX2 \(=X(I+1)-X(I)\)
                DELX2 \(=X(I+1)-X(I)\)
DELY2 \(=Y(I+1)-Y(I)\)
DELS2 \(=S Q R T(D E L X 2 * D E L\)
                DELS2 \(=\) SQRT \((D E L X 2 *\) DELX2 + DELY2*DELY2 \()\)
                DK2 \(=\) DELXR/DELS\&
            DY2 \(=\) DELY2/DELS2
            \(\begin{aligned} & X P(I)=D X 2-D X 1 \\ & Y P(I)\end{aligned}\)
                YP(I) \(=\) DY2 - DY1
                YP(I) \(=\) DYZ
TEMP(I) \(=\) DELS
                DELXI = DELX2
                DELX: \(=\) DELX2
                DELY1 \(=\) DELY2
DELS1 \(=\) DEL
                DELSI = DELS2
                DX1 = DX2
C ACCUMULATE POLYGONAL ARCLENGTH
                \(S=5+\) DELS 1
    20 CONTINUE
    \(30 \operatorname{XP}(N)=\operatorname{COS}(S L P P N)-D X\)
        \(X P(N)=\operatorname{COS}(S L P P N)-D X\)
\(Y\) SN
c DENORMALIZE TENSION FACTOR
RMALIZE TENSION FACTOR
SIGMAP \(=\operatorname{ABS}(S I G M A) * F L O A T(N-1) / S\)
SIGMAP \(=\) ABS (SIGMA)*FLOAT (N-I)/S
c PERFORM FORWARD ELIMINATION ON TRIDIAGONAL SYSTEM
ORM FORWARD EL!MINATION
EXPS \(=\operatorname{EXP}(D E L S)\)
EXPS \(=\) EXP (DELS
SINHS \(=.5 *(E X P S-1 . / E X P S) ~\)
    SINHS \(=\) SINHIN \(=\) (EXPS-1./EXPS)
    SINHIN \(=1 . /(T E M P(1) * S I N H S)\)
    DIAGI = SINHIN* (CE
DIAGIN \(=1.1\) IAGI
    DIAGIN = 1./DIAGI
    DIAGIN \(=\) I./DIAGI
XP(1) \(=\) DIAGIN*XP(1)
    XP(1) \(=\) DIAGIN \({ }^{2} \times P(1)\)
YP(1) \(=\) DIAGIN*YP(1)
    YP(1) = DIAGIN*YP(1)
SPDIAG = SINHIN*(SINHS-DELS
    SPDIAG \(=\) SINHIN*(SINHS-DEL
TEMP (I) \(=\) DIAGIN*SPDIAG
    TEMP(1) \(=\) DIAGIN*SPDIA
IF (N.EQ.2) GO TO \(5 \mathbb{C}\)
    IF (N.EQ.2) GO TO \(5 \mathbb{E}\)
    DO \(461=2\), NMI
            DELS \(=\) SIGMAP*TEMP(I)
            DELS \(=\) SIGMAP*TEM
EXPS \(=\) EXP(DELS)
SINHS \(=.5 *(E X P S\)
            EXPS \(=\) EXP(DELS \()\)
SINHS \(=.5 *(E X P S-1.1\) EXPS \()\)
            SINHS \(=.5 *(\) EXPS \(-1 . / E X P S)\)
SINHIN \(=1.1(\) TEMP \((I) *\) SINHS \()\)
```

 DIAG2 = SINHIN*(DELS*(.5*(EXPS+1./EXPS))-SINHS)
 DIAGIN = 1./(DIAGI+DIAG2-SFEIAG*TEMP(I-1))
 XPAGIN = DIAGIN*(XP(I) SPDIAC*XP(I-1))
 YP(I) = DIAGIN*(YP(I)-SPDIAG*YPP(I-1)
 SPDIAG = SINHIN*(SINHS-DELS)
 TEMP(I) = DIAGIN*SPDIAG
 DIAGI = DIAG2
 50 DIAGIN = 1./(DIAG1-SPEIAG*TEMP(NM1))
 XP(N)= DIAGIN*(XP(N)-SPDIAG*XP(NM1))
 C. PERFOPM BACK SUBSTITUTION
DO 60 I= 2,N
1BAK = NPI - !
XP(IBAK) = XP(IBAK) - TEMP(IEAK)*XP(IBAK+1)
YP(IBAK) = YP(IBAK) - TEMP(IBAK)*YP(IBAK+1)
60 CONTINUE
RETURN
70 IF (N.EQ.2) GO TO 80
C IF NO SLOPES ARE GIVEN, USE SECOND OPDER INTERPOLATION ON
C INPUT DATA' FOP SLOPES AT ENDPOINTS
CELS2 = SORT((X(3)-X(2))**2*(Y(3)-Y(2))**2)
DELSI2 = DELS1 + DELSS
CI = -C(DELSI2+DELSI)/DELS12/DELSI
C2 = DELS12/DELSI/DELS2
3 = -DELS1/DELS12/DELS2
SX = C1*x(1) + C2*X(2) + C3*X(3)
SY = C1*Y(1) +C2*Y(2) + C 3*Y(3)
SLPP1 = ATAN2(SY,SX)
DELNM1: = SQRT((X(N-2)-X(NM1))**2*(Y(N-2)-Y(NM1))**2)
DELN = SORT((X(NMI)-X(N))**2*(Y(NMI)-Y(N))**2)
DELNN = DELNMI + DELN
=1 (DELNN+DELN)/DELNN/DEL:
C2 * -DELNN/DELN/DELNM1
C3= DELN/DELNN/DELNM1
SX=CB*X(N-2)+C2*X(NM1)+CI*X(N)
SY = CN*Y(N-2) +C2*Y(NMI) +CI*Y(N)
SLPPN = ATAN2(SY,SX)
GO TO 18
C IF ONLY TWD POINTS AND NO SLOPES GRE GIVEN, USE STPAIGHT
LINE SEGMENT FOR CUROUE
BQ XP(1)=0.
XP(2) = 0.
YP(1) = R.
YP(2)=
REND
SUBROLTINE KURVZ(T, XS, YS, N, X, Y, XP, YP, S, SIGMA)
INTEGEF N
INTEGEF N
THIS SUBROUTINE PERORS, Y(N), XP(N), YP(N), S, SIGMA
TMIS SUBROUTINE PERFORMS THE MAPPING OF POINTS IN THE
C INTERVAL (B.,1.) ONTO A CURVE IN THE PLANE. THE SUBROUTINE
KURVI SHOULD BE CALLED EARLIER TO DETEPMINE CERTAIN

```

```

C TENSION AND FUNCTIONS OF THE POLYYGONAL ARCLENGTH PARAIUETE
c ON INPUT-
t contains a peal value of absolute value less than or
EGYAL TO 1: TO BE MAPPED TO A POINT ON THE CURUE. THE
SIGN OF T IS IGNORED AND THE INTERVAL (Q.,1.) IS MAPPED
C onto the entipe curve. if t is negative this indicates
THAT THE SUBPOUTINE HAS BEEN CALLED PPEVIOUSLY (WITH ALL
OTHER INPUT VARIABLES UNALTE?ED) AND THAT THIS VALUE OF
T EXCEEDS THE PFEVIOUS VALUE IN ABSOLUTE VALUE. WITH
SLCH INFORMATION TME SUEPOUTINE IS ABLE TO MAP THE POINT
C MUCH MORE RAPIDLY. THUS IF THE USER SEEKS TO MAP A
C SEQUENCE OF POINTS ONTO THE SAME CURUE, EFFICIENCY IS
GAINED BY ORDERING THE VALUES INCREASING IN MAGNITUDE
C AND SETTING THE SIGNS OF ALL BUT THE FIRST, NEGATIVE,
C N CONTAINS THE NL'GBER OF POINTS WHICH WERE INTEPPOLATED
C TO DETERMINE THE CURUE,
X and Y are arrays containing tye }X\mathrm{ - and Y-Coopdinates
OF THE INTEPPOLATED POINTS
C XP AND YP ARE THE ARRAYS OUTPUT FROM KUPVZ CONTAINING
C CURVATURE INFOFMATION,
c S CONTAINS THE POLYGONAL ARCLENGTH OF THE CLRUE
C SIGMA CONTAINS THE TENSION FACTOR (ITS SIGN IS IGNORED).
SIGMA CONTAINS THE TENSION FACTOR (ITS SIGN IS IGNORED).
C UNALTERED FROM THE OUTPUT OF KURUI.
C ON output--
C XS and ys CONTAIN the X-ancy-COORDINATES of the lmage
c POINT ON THE cURVE.
C T,N,X,Y,XP,YP,S, AND SIGGMA ARE UNALTEPED
C DENORMALIZE SIGMA
SIGMAP = ABS(S1GMA)*FLOAT(N-1)/S
C STPETCH UNIT INTERVAL INTO ARCLENGTH DISTANGE
N = ABS(T*S
C FOR NEGATIVE T START SEARCH WHERE PPEUIOUSLY TERMINATED,
C OTHERWISE START FROM BEGINNING
IF (T.LT.0.) GO TO IO
IF(T.L
I1 =2
Y = Y(1)
SUM = 0.
F (T.LE.0.) RETURN
10 CONTINUE
C DETERMINE INTO WHICH SEGMENT TN IS MAPPED
DO 30 I=11,N
DELX = X(I) - X(I-1)
DELY =Y(I)-Y(I-I)
DEL.5 = SQRT(DELX*DELX + DELY*DELY)
IF (SUM+DELS-TN) 20,40,40
26 SUM E SUM + DELS
36 contINUE
C IF ABS(T) IS GREATER THAN 1.. RETUPN TERMINAL POINT ON
C Curve

DIAG2 $=$ SINHIN*(DELS*(.5*(EXPS + 1./EXPS))-SINHS DIAGIN $=1 . /($ DIAGI +DIAG2-SFEIAG*TEMP(I-1))
$Y P(I)=$ DIAGIN*(YP(I)-SPDIAG*XP(1-1) SPDIAG = SINHIN*(SINHS-DELS)
EMP(I) = DIAGIN*SPDIAG
continue
5 DIAGIN $=1 . /(D 1 A G 1-S P L I A G * T E M P(N M 1))$
$\operatorname{XP}(N)=\operatorname{DIAGIN*(XP(N)-SPDIAG*XP(NM1)}$
$Y P(N)=\operatorname{DIAGIN} *(Y P(N)-S P D I A G * Y P(N M 1)$
C. PERFORM BACK SUBSTITUTION
-60 l=2,N
$X P(I B A K)=X P(I B A K)-T E M P(I E A K) * X P(I B A K+1)$
ONTINUE
78 IF (N.EQ.2) GO TO 80
C IF NO SLOPES ARE GIVEN, U'SE SECOND OPDER INTERPOLATION ON
ELS2 $=\operatorname{SQRT}((X(3)-X(2)) * * 2+(Y(3)-Y(2)) * * 2)$
DELSI2 = DELS1 + DELS 2

C3 $=-$ DELSI/DELSI2/DELSZ
$S X=C 1 * X(1)+C 2 * X(2)+C 3 * X(3)$
$S Y=C 1 * Y(1)+C 2 * Y(2)+C 3 * Y(3)$
SLPPI $=$ ATAN2 (SY, SX)
DELNMI: $=\operatorname{SQRT}((X(N-2)-X(N M 1)) * * 2 *(Y(N-2)-Y(N M 1)) * * 2)$
DELN $=\operatorname{SORT}((X(N M I)-X(N)) * * 2+(Y(N M 1)-Y(N)) * * 2)$
DELNN $=$ DELNM $1+$ DELN
$=($ DELNN + DELN $) /$ DELNN/DEL.
C $3=$ DELN/DELNN/DELNM 1
$S=C 3 * X(N-2)+C 2 * X(N M 1)+C 1 * X(N)$
$Y Y=C 3 * Y(N-2)+C 2 * Y(N M 1)+C 1 * Y(N)$
SLPPN = ATAN2(SY,SX)
IF ONLY TWD POINTS AND
LINE SEGMENT FOR CUPVUE
$B 8 \times P(1)=0$.
$Y P(1)=R$.
FETURN
END

SUBROLTINE KURVZ(T, XS, YS, N, X, Y, XP, YP, S, SIGMA) EAL
this subroutine performs the mapping of points in the
C INTERVAL (B., 1.) ONTO A CURVE IN THE PLANE. THE SUBROUTINE
necessary parameters. the resulting cupue has a parametric
C TENSION AND FUNCT:ONS OF THE POLYGONAL ARCLENGTH PARAAETED
c ON INPUT-
T CONTAINS: A PEAL VALUE OF ABSOLUTE VALUE LESS THAN OR
SIGN OF T IS IGNORED AND THE INTERVAL THE CURVE. THE
C ONTO THE ENTIPE CURUE. IF T IS NEGATIVE THIS INDICATES
OTHER INPUT VARIABLES UNALTE?ED) AND THAT THIS VALUE OF
T EXCEEDS THE PFEVIOUS VALUE IN ABSOLUTE VALUE. VITH
S SUCH INFORMATION TME SUEPROUTINE IS ABLE TO MAP THE POINT
C MUCH MORE RAPIDLY. THUS IF THE USER SEEKS TO MAP A
GAINED by ORDERING THE VALUES INCREASING IN MAGNITUDE
AND SETTING THE SIGNS OF ALL BUT THE FIRST, NEGATIVE,
C CONTAINS THE NL'IBER OF POINTS WHICH WERE INTEPPOLATED
TO DETERMINE THE CURVE,
-
C XP AND YP ARE THE ARRAYS OUTPUT FROM KUPVZ CONTAINING C CURVATURE INFOPMATION,
C SIGMA CONTAINS THE TENSION FACTOR (ITS SIGN IS IGNORED).
C THE PARAMETERS $N, X, Y, X P, Y P, S$ AND SIGMA SHOULD EE INPUT
ON OUTPUT--
c POINT ON THE CURVE.
TNOX,Y,XP,YP,S, AND SIGMA ARE UNALTEPED
SIGMAP $=$ ABS(SIGMA)*FLOAT $(N-1) / S$
C FOR NEGATIUE T START SEARCH WHERE PPEUIOUSLY TERMINATED,
C OTHERWISE START FROM BEGINNING
IF (T.LT. O.) GO TO 10
$11=2$
$x 5=X(1)$
SUM $=0$.
F (T.LE. Ø.) RETURN
C DETERMINE INTO WRICH SEGMENT TN IS MAPPED
DO $301=11, N$
DELX $=X(I)-X(I-1)$
DELY $=Y(I)-Y(I-1)$
DEL. $5=$ SQRT (DELX*DELX + DELY*DELY)
SUM $=$ SUM + DELS
F ABS (T) IS GREATER THAN 1 .. RETUPN TERMINAL POINT ON
c CURVE

```
            XS = X(N)
```

 XS = X(N)
 YS =Y(N)
YS =Y(N)
RETURN
RETURN
C SET UP AND PERFORM INTERPOLATION
C SET UP AND PERFORM INTERPOLATION
4B DELI = TN - SUM

```
```

 4B DELI = TN - SUM
    ```
```

```
DEL2 = DELS - DELL
EXPSI = EXP(SIGMAP*DEL1)
SINHD1 = .5*(EXPS 1-1./EXPS1)
EXPS = EXP(SIGMAP*DEL2)
SINHD2 = .5*(EXPS-1./EXPS
EXPS = EXPS 1*EXPS
SINHS = 5*(EXPS-1./EXPS)
XS = (XP(I)*SINHDI+XP(I-1)*SINHD2)/SINHS +
* ((X(I)-XP(I))*DELI+(X(I-1)-XP(I-1))*DELC)/DELS
YS = (YP(!)*SINHDI+YP(I-1)*SINHD2)/SINHS +
(((Y(I)-YP(I))*DELI+(Y(I-1)-YP(1-1))**DEL,2)/DELS
    It=1
    RETUR
END
```

SUBROUTINE KURUPI(N, $X, Y, X P, Y P$, TEMP, $S, S I G M A)$
INTEGER N
REAL $X(N), Y(N), X P(N), Y P(N), \operatorname{TEMP}(1), S, S I G M A$
c THIS SUBROUTINE DETERMINES THE PARAMETERS NECESSARY TO
C THIS SUBROUTINE DETERMINES THE PARAMETERS NECESSARY TO
C COMPUTE A SPLINE UNDER TENSION FORMING A CLOSED CU
C THE PLANE AND PASSING THROUGH A SEQUENCE OF PAIRS
C THE PLANE AND PASSING THROUGH A SEQUENCE OF PAIRS
C $(X(1), Y(1)), \ldots,(X(N), Y(N))$. FOR ACTUAL COMPUTATION OF
C (X(1),Y(1)),....(X(N),Y(N)). FOR ACTUAL COMPUTATION OF
C POINTS ON THE CURVE IT IS NECESSARY TO CALL THE SUBPOUTINE
C KURUPZ.
C KURUP2.
C N IS THE NUMBER OF POINTS TO EE INTERPOLATED (N.GE.2)
$\mathrm{C} X$ IS an array containing the N X-COORDINATES OF The
C POINTS.
C
C Y IS AN ARRAY CONTAINING THE N-COORDINATES OF THE
C POINTS.
C
C XP, YP ARE APRAYS OF LENGTH AT LEAST V,
C XP, YP ARE ARRAYS OF LENGTH AT LEAST N,
C TEMP IS AN ARRAY OF LENGTH AT LEAST $2 * N$ VHICH IS USED
C TEMP IS AN ARRAY OF
C FOR SCRATCH STORAGE,
C FOR
C AND
C AND
C SIGMA CONTAINS THE TENSION FACTOR. THIS IS A NON-ZEPO
C QUANTITY (WHOSE SIGN IS IGNORED) WHICH INDICATES THE
C CURUINESS DESIRED. IF ABS (SIGMA) IS VERY LARGE (E.G. 50.
C) THE RESULTING CURVE IS VERY A POLYGON. A STANDARD
C VALUE FOR SIGMA IS APPROXIMATELY I. IN ABSOLUTE VALUE.
C VALUE FOR 5
C ON OUTPUT--
C ON OUTPUT-- $\operatorname{N}, \mathrm{Y}$, AND SIGA ARE UNALTERED
C N, X, Y, AND SIGMA ARE UNAL TERED,
XP AND YP CONTAIN INFORMA
CURUE AT THE GIVEN NODES,
C CURU
C AND
C s contains the polygonal arclength of the curve.
NMI $=N-1$
C SET UP RIGHT HAND SIDES OF TRIDIAGONAL (WITH CORNEP
C ELEMENTS) LINEAR SYSTEM FOP XP AND YP
DELXI $=X(2)-X(1)$
DELX1 $=X(2)-X(1)$
$D E L Y 1=Y(2)-Y(1)$
DELSI $=$ SQRT (DELX1*DELXI +DELY1*DELY1)
DX1 = DELX1/DELS
DY1 = DELY1/DELS
$\mathrm{XP}(1)=\mathrm{DXI}$
$Y P(1)=D Y 1$
TEMP(1) = DELSI
$\operatorname{TEMP}(1)=\operatorname{DELS}$
$\mathrm{S}=\mathrm{DELS}$
DO $101=2, N$
$101=2, N$
$1 \mathrm{PI}=1$.
$I P I=1+N(I \cdot E Q \cdot N) I P I=1$
$D E L X 2=X(I P I)-X(I)$
DELX2 $=X(I P 1)-X(I)$
DELY2 $=Y(1 P 1)=Y(1)$
DELY2 $=Y(1 P 1)=Y(I)$
DELS2 $=$ SORT(DELX2*DELX2 + DELY2*DEI.Y2)
DX2 $=$ DELX2/DELS2
DX2 $=$ DELX2/DELS2
XP(1) $=D \times L$ 2/DELS2
YP(1) $=D X 2$ - DXI
$Y P(1)=D Y 2-D Y 1$
$\operatorname{TEMP}(1)=\operatorname{DELS} 2$
TEMP(t) = DELS
DELXI - DELX2
DELY: = DELY
DELS: = DELS
DXI = EX2
C ACCUMULATE POLYGONAL ARCLENGTH
DATE POLYGONAL
$S=S+$ DELSI
16 CONTINUE
- continue
$X P(1)=X P P(1)=D X 1$
$Y P(1)=Y P(1)-D Y 1$
C DENORMALIZE TENSION FACTOR
SIGMAP $=$ TENSION FACTOR
SISIGMA)*FLOAT (N)/S
SIGMAP = ABS(SIGMA)*FLOAT(N)/S
C PERFORM FORWARD ELIMINATION ON TPIDIAGONAL SYSTEM
DELS $=$ SIGMAP*TEMP(N)
DELS $=$ SIGMAP*TE
EXPS $=\operatorname{EXP}(D E L S)$
EXPS $=$ EXP(DELS $)$
SINHS $=.5 *(E X P S-1, / E X P S) ~$
SINHS $=$ 5*(EXPS-1./EXPS)
SINHIN $=1 . /(T E M P(N) * S I N H S$
SINHIN $=$ I. (TEMP (N)*SINHS)
DIAGI = SINHIN* (D
DIAGIN $=1 . / D I A G I$
SPDIGI $=$ SINHIN*(SINHS-DELS $)$
SPDIAG $=0$.
D $2 \mathrm{C} I=1, \mathrm{~N}$
DO $26 I=1, N$
DELS = SIGMAP*TEMP(I)
EXPS = EXP(DELS)
SINHS $=.5$ (EXPS-1./EXPS
SINHS $=$. 5* (EXPS -1./EXPS)
SINHS)
DIAG2 $=$ SINHIN* (DELS*(.5*(EXPS $+1 . /$ EXPS)) - SINHS $)$
DIAGR $=$ SINHIN* (DELS*
IF (I.EQ.N) GO TO 30
IF (I.EQ.N) GO TO 30
DIAGIN $=1 . /(D I A G 1+D I A G 2-S P D I A G * T E M P(1-1)) ~$
IAGIN =1./(DIAG1+DIAG2-SPDIAG*TEMP(I-1)
XP(I) $=$ DIAGIN*(XP(I)-SPDIAG*XP(I-1))
$Y P(I)=D I A G I N *(Y P(1)-S P D I A G * Y P(I-1))$
$\operatorname{EMP}(N+I)=-D I A G I N * T E M P(N M I+I) * S P D I A G$
TEMP(N+I) $=-\operatorname{DIAGIN*TEMP(NMI+I)*SPDIAG~}$
$F(I . E Q .1) \operatorname{TEMP}(N P 1)=-D I A G I N * S F D I G I$
IF (I.EQ.1) TEMP(NP1) =-DIAGIN*SFIDIGI
SPDIAG = SINHIN*(SINHS-DELS)
$\operatorname{TEMP}(1)=$ DIAGIN*SPDIAG
DIAGI= DIAG2
20 CONTINUE
20 CONTINUE
30 TEMP $(N M 1)=T E M P(N+N M 1)-T E M P(N M 1)$
TEMP(NM1) $=$ TEMP(N+NM1) -TEMP(NM1)
(F (N.EQ.2) GO TO 50
C PERFORM FIRST STEP OF BACK SUBSTITUTION
FORM FIRST STEP 0
DO I $=3, N$
IBAK $=N P I-I$

YP(IBAK) - XP(IBAK) - TEMP(IBAK)*XP(IBAK+1)
YP(IBAK) $=Y P(1 B A K)-T E M P(I B A K) * Y P(I E A K+1)$
$\operatorname{TEMP(IBAK)}=T E M P(N+I B A K)-T E M P(I E A K) * T E M P(I B A K+1)$

```
    40 CONTINUE
    50 XP(N)=
    * (XP(N)-SPDIGI*XP(1)-SPDIAG*XP(NM1))/(DIAG1+DIAG2+SPDIG1*T
    * EMP(1)+SPDIAG*TEMP(NM1))
    YP(N)=
    * (YP(N)-SPDIGI*YP(1)-SPDIAG*YP(NMI))/(DIAGI+DIAG2+SPDIGI*T
    * EMP(1)+SPDIAG*TEMP(NMI))
PERFORM SECOND STEP OF BACK SUBSTITUTION
    DO 60 1=1,NMI
        XP(I)=XP(I) + TEMP(I)*XP(N
    6 0 \text { CONTINUE}
    RETURN
```

 SUEROUTINE KURUPZ(T, \(X S, Y S, N, X, Y, X P, Y P, S, S I G M A)\)
 INTEGER N
 REAL T, XS, YS, X(N), Y(N), XP(N), YP(N), S, SIGMA
 c THIS SUBROUTINE PERFORMS THE MAPPING OF POINTS IN THE
C INTERVAL ($0 ., 1$,) ONTO A CLOSED CURVE IN THE PLANE. THE
C SUBROUTINE KURUPI SHOULD BE CALLED EARLIEF TO DETERMINE
C CERTAIN NECESSARY PAPAMETERS. THE RESULTING CURVE MAS A
PARAMETRIC REPRESENTATIONBOTH OF WHOSE COMPONENTS APE
C PERIODIC SPLINES UNDER TENSION AND FUNCTIONS OF THE POLY-
C GONAL ARCLENGTH PARAMETER.
ON INPUT--
t Contains a real value of absolute value less than of
C EQUAL TO 1 . TO BE MAPPED TO A POINT ON THE CURVE. THE
SIGN OF T IS IGNORED AND THE INTERVAL ($0 ., 1$,) IS MAPPED
INDICATES ENTIRE CLOSED CLRVE. IF T IS NEGATIVE THIS OUSL
c (WITH ALL OTHER INPUT VARIABLES UNALTERED) AND THAT
C THIS VALUE OF T EXCEEDS THE PREVIOUS VALUE: IN ABSOLUTE
C VALUE, WITH SUCH INFORMATION THE SUBROUTINE IS ARLE TO
C MAP THE POINT MUCH MORE RAPIDLY. THUS IF THE USER SEEKS
C TO MAP a SEQUENCE OF POINTS ONTO THE SAME CURUE,
C EFFICIENCY IS GAINED BY ORDERING THE VALUES INCREASING
C IN MAGNITUDE AND SETTING THE SIGNS OF ALL BUT THE FIRST,
C NEGATIVE,
C NEGATIVE, N CONTAINS THE NUMBER OF POINTS WHICH WERE INTERPOLATED
c To determine the curve,
X and Y are arrays containing the X - and Y-COORDInates
OF THE INTERPOLATED POINTS
XP AND YP ARE THE ARRAYS OUTPUT FROM KURVPI CONTAINING
C XP AND YP ARE THE ARRA
c CURUATURE INFORMATION,
C S CONTAINS THE POLYGONAL ARCLENGTH OF THE CURVE,
SIGMA CONTAINS THE TENSION FACTOR (ITS SIGN IS IGNORED)
C UNALTERED FROM THE OUTPUT OF KURUPI.
C ON OUTPUT--
C XS AND YS CONTAIN THE X- and Y-COORDINATES of the image
C POINT ON THE CURVE.
C T,N,X,Y,XP,YP,S AND SIGMA ARE UNALTERED.
C DENORMALIZE SIGMA
SIGMAP \Rightarrow ABS (SIGMA)*FLOAT (N)/S
C STRETCH UNIT INTERVAL INTO ARCLENGTH DISTANCE
$T N=A B S(T * S)$
FOR NEGATIVE T START SEARCH WHERE PREVIOUSLY TERMINATED
C OTHERWISE START FROM BEGINNING
IF. (T.LT. 日.) GO TO 10
$11=2$
SUM $=0$.
IF (Il.EQ.1) GO TO 50
10IF (II.EQ.1) GO TO 50
DO $30 \quad 1=11, N$
DELX $=X(I)-X(I-1)$
$D E L Y=Y(I)-Y(1-1)$
DELS $=$ SQRT (DELX*DELX+DELY*DELY)
IF (SUM+DELS-TN) $20,40,40$
28 SUM $=$ SUM + DELS
30 CONTINUE
$I=1$
IMI $=$
DELS = $5-$ SUM
GO TO 50
$\begin{aligned} & 40 \text { IMI }=1-1 \\ & \text { SET UP AND PERFORM INTERPOLATION }\end{aligned}$
50 DELI = TN - SUM
DEL2 $=$ DELS - DEL 1
EXPS = EXP (SIGMAP*DEL1)
SINHD $=.5 *(E X P S 1-1 . /$ EXPS 1$)$
SINHD2 $=-5 *(E X P S-1$ EXPS $)$
SINHD2 E F $5 *(E X P S-1$
EXPS $=$ EXPS $1 *$ EXPS
SINHS $=$-5*(EXPS-1./EXPS)
SINHS $=$ (XP(I)*SINHDI + XP (IMI)*SINHD2)/SINHS +
($(X(1)-X P(1)) * D E L 1+(X(I M 1)-X P(I M 1)) * D E L 2) / D E L S$
YS $=(Y P(I) * S I N H D 1+Y P(I M 1) * S I N H D 2) / S I N H S ~+~$
* ($(Y(I)-Y P(I)) * D E L I+(Y(I M I)-Y P(I M 1)) * D E L 2) / D E L S$
II $=1$
RETURN
END

Algorithim 477
 Generator of Set-Partitions to Exactly R Subsets [G7]

Gideon Ehrlich |Recd. 11 Dec. 1972 and 26 Feb. 1973| Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Key Words and Phrases: partitions, subset generation, permutations

CR Categories: 5.39
Language: Algol

Description

Purpose. Procedure PARTEXACT produces, by successive calls, a sequence of all $S(n, r)$ partitions of a set of n distinct elements into exactly r mutually exclusive subsets. ($S(n, r)$ is the Stirling number of the second kind, see $[1]$.) We assume that $n \geq r>2$.

There is no distinction of order: neither within subsets nor among them. We assume the elements to be numbers $1,2, \ldots, n$. (If this is not the case, we just index the elements.) We also assume that we have a sequence of r numbered cells in which the subsets are located. The first cell contains the number 1 (together with the whole subset to which 1 belongs), then each cell contains the minimal element not contained in the preceding cells. Partitions are represented by an address-array, a, of n components. Every j is located in the cell numbered $a(j)$. It follows that:

1. $a(1)=1$,
2. $a(j) \leq \min \left(\max _{m<j} a(m)+1, r\right)$.

After each call to $P A R T E X A C T$ we receive a new address-array, a, which differs from the old one in, at most, two components. A new partition is received from the old one by transferring s from the os cell to the $n s$ cell, and if $u \neq 0$, then we have also to transfer u from the ou cell to the $n u$ cell. Together with the last a we will get $i=1$, and we must not call PARTEXACT again.

The variables. n, r, k, z are global integers; $p[2: n], t[1: n]$ are global integer arrays; $a[1: n]$ is an integer array. The space required by PARTEFACT is thus $3 n$ approximately.

Initialization. One can initiate PARTEXACT using the following block:

```
begin integer j;
    k:=n-r-1;
    for }j=1\mathrm{ step 1 until }k\mathrm{ do }a[j]:=p[j]:=1\mathrm{ ;
    for j:=k+1 step 1 until n do a[j]:= 1 + j - k;
    i:=k;t[k]:=k-1;t[k-1]:=0; z:=1
end
```

a defines the first partition. In the case $n=r$ we get $i=1$, and we stop immediately. The variables must not be changed between calls.

PARTEXACT has the important feature of being loopless, so the computation time of the new partitions is uniformly bounded. There is no dependence on n (or r). The computation time of the whole sequence is thus a linear function of its length $s(n, r)$. It is
to be noted that much computation time is saved, provided the main program deals not with the entire newly generated partition but with the changed element(s) only.

For $r=2$, GRAY2 [2] has to be used with " 0 " and " 1 "' specifying the first and the second cells, respectively. The initial address vector $[\mathrm{A}=(0,0, \ldots, 0)]$ must not be used. Together with the last partition $G R A Y 2$ will set $i=1$ (for the first time).

Algorithm details. z and k are the minimal numbers such that $a(k+1), a(k+2), \ldots, a(n)$ are $z+1, z+2, \ldots, r$, respectively, $a(1), a(2), \ldots, a(i-1)$ are not changed until $a(i)$ takes all available values: that is, if $i>k$ then no other value but its present one, else, all values between 1 and $\min \left(\max _{m}<i a(m)+1, r\right)$. All those values are ordered in a sequence starting at 1 and ending at 2 ("a 1-2 path") or vice versa ("a 2-1 path"). Each sequence can be illustrated as moving a route of i along all available cells each time visiting one new cell.

Each of the seven labels $O N E \ldots S E V E N$, appearing in PARTEXACT, deals with a special segment of one of the two paths. It moves i to the appropriate new cell. ONE deals with the first move of an element initially located in the first cell. The roles of the other labels are illustrated in Figures 1 and 2. Each of the arrows describes the effect of the appropriate label.

If i enters the cell $z+1$, we transfer $k+1$ from that cell to the first one (from which it starts a 1-2 path). On the other hand, if the move of i empties its old cell, we transfer k to that cell. For each $i, p(i)$ denotes the segment of the i 's path according to which i

Fig. 1. 1-2 path.

Fig. 2. 2-1 path.

is moved. After each move of $i, i+1$ moves a whole new route. After each move of $i+1, i+2$ moves a whole new route, and so on. Between two successive paths of i there will be a single move of some $j<i$.
t and i contain the information about the queue of elements to be moved. If i completes a path, then $N O G A$ updates t and i.

Otherwise, $O F R A$ does the job. Full explanations about t, its updating, and a description of the whole method are included in [3].

References

1. Even, S. Algorithmic Combinatorics. Macmillan, New York, 1973, Ch. 3.
2. Ehrlich, G. GRAY2-a binary reflected Gray Code Generator. (to be published).
3. Ehrlich, G. Loopless algorithm for generating permutations combinations and other combinatorial configurations. J. ACM 20 (July 1973), 500-513.

Algorithm

procedure PARTEXACT ($a, s, o s, n s, u, o u, n u, i$); integer array a;
integer $s, o s, n s, u, o u, n u, i$;
begin
switch $L:=$ ONE, TWO, THREE,FOUR, FIVE, SIX, SEVEN; $s:=i ;$ os $:=a[s] ; u:=0$; go to $L[p[i]]$;
ONE:
$n s:=a[i]:=z:=2 ; p[i]:=7 ;$
if $i=k$ then
begin $u:=k:=k+1 ;$ ou $:=a[u] ; n u:=a[u]:=1 ;$ $p[k]=6$
end;
go to $N O G A$;
TWO:
$n s:=a[i]:=z:=z-1$;
comment The old cell of i was emptied;
$u:=k ; o u:=a[u] ; \boldsymbol{\prime} u:=a[k]:=z+1 ; k:=k-1$;
if $z=2$ then
begin $p[i]:=7$; go to $N O G A$ end;
$p[i]:=3$; go to $O F R A$:
THREE:
$n s:=a[i]:=a(i)-1$;
if $n s \neq 2$ then go to $O F R A$;
$p[i]:=7$; go to $N O G A$;
FOUR:
$u:=k ; o u:=a[u] ; n u:=a[u]:=z ;$
$z:=z-1 ; k:=k-1$;
FIVE:
$n s:=a[i]:=1 ; p[i]:=6 ;$
NOGA:
if $i=k$ then begin $i=t[i]$; go to $E X I T$ end;
if $t \mid i]<1$ then
begin if $-t[i] \neq i-1$ then $t[i-1]:=t[i] ; t[i]:=i-1$ end;
if $i \not \boldsymbol{F}^{t} k-1$ then begin $t[k]:=k-1 ; \downarrow[k-1]:=-i-1$ end;
$t[i+1]:=t[i] ; i:=k$;
go to EXIT;
SIX:
if $z=r$ then
begin $n s:=a[i]:=r ; p[i]:=3$ end;
else
begin
$n s:=a[i]:=z:=z+1 ; p[i]:=2$;
$u:=k:=k+1 ;$ ou $:=a[u] ; n u:=a \mid k]:=1 ; p[k]:=6$
end;
go to $O F R A$;
SELEN:
$n s:=a[i]:=\bar{a}[i]+1$;
if $n s \geq z$ then
begin
if $z=r$ then $p[i]:=5$
else
if $a[i]=z+1$ then
begin
comment i enters the cell of $k+1$; $z:=z+1 ; p[i]:=4$; $u:=k:=k+1 ; o u:=a[u] ; n u:=a[k]:=1$; $p[k]:=6$
end
end;
$O F R A$:
if $i=k$ then go to $E X I T$;
$t|k|:=k-1$;
if $i \neq k-1$ then $t[k-1]=-i$;
$i:=k$;
EXIT:
end PARTEXACT

Algorithm 478

Solution of an Overdetermined System of Equations in the l_{1} Norm [F4]

I. Barrodale and F.D.K. Roberts, [Recd. 4 Aug. 1972 and 8 May 1973]
Department of Mathematics, University of Victoria, Victoria, B.C., Canada

Key Words and Phrases: l_{1} approximation, l_{1} norm, overdetermined system of equations, linear programming, simplex method CR Categories: 5.13, 5.41
Language: Fortran

Description

The algorithm calculates an l_{1} solution to an overdetermined system of m linear equations in n unknowns, i.e., given equations $\sum_{,=1}^{n} a_{i, j} x_{j}=b_{i}$ for $i=1,2, \ldots, m, m \geq n$,
the algorithm determines a vector $x=\left\{x_{\}}\right\}$which minimizes the sum of the absolute values of the residuals
$e(x)=\sum_{i=1}^{m}\left|b_{i}-\sum_{j=1}^{n} a_{i, j} x_{j}\right|$.
A typical application of the algorithm is that of solving the linear l_{1} data fitting problem. Suppose that data consisting of m points with co-ordinates (t_{i}, y_{i}) is to be approximated by a linear approximating function $\alpha_{1} \phi_{1}(t)+\alpha_{2} \phi_{2}(t)+\cdots+\alpha_{n} \phi_{n}(t)$ in the l_{1} norm. This is equivalent to finding an l_{1} solution to the system of linear equations

$$
\sum_{i=1}^{n} \phi_{j}\left(t_{i}\right) \alpha_{j}=y_{i} \text { for } i=1,2, \ldots, m .
$$

If the data contains some wild points (i.e. values of the dependent variable that are very inaccurate compared to the overall accuracy of the data), it is advisable to calculate an I_{1} approximation rather than an I_{2} (least-squares) approximation, or an I_{x} approximation.

The algorithm is a modification of the simplex method of linear programming applied to the primal formulation of the l_{1} problem. A feature of the routine is its ability to pass through several simplex vertices at each iteration. The algorithm does not require that the matrix $\left\{a_{i, j}\right\}$ satisfy the Haar condition, nor does it require that it be of full rank. Complete details of the method may be found in [1]. Computational experience with this and other algorithms indicates that it is the most efficient yet devised for solving the l_{1} problem.

The parameters M and N represent the number of equations and number of unknowns respectively. $M 2$ and $N 2$ shouk 1 be set to $M+2$ and $N+2$ respectively. The simplex iterations are carried out in the two dimensional array A of size ($M 2, N 2$). Initially the coefficients of the matrix $\left\{a_{i, j}\right\}$ should be stored in the first M rows and first N columns of A, and the right hand side vector $\left\{b_{i}\right\}$ should be stored in the array B. These values are destroyed by the routine. TOLER is a real variable which should be set to a small positive value. Essentially the routine regards any quantity as zero unless
its magnitude exceeds $T O L E R$. In particular, the routine will not pivot on any number whose magnitude is less than TOLER. Computational experience suggests that $T O L E R$ should be set to approximately $10^{-2 d / 3}$ where d represents the number of decimal digits of accuracy available (typically we run the routine on an IBM 370 using double precision (16 decimal digits) with TOLER set to 10^{-11}). On exit from the routine, the array X contains an I_{1} solution $\left\{x_{j}\right\}$ and the array E contains the residuals $\left\{b_{i}-\sum_{i=1}^{n} a_{i, j} x_{j}\right\}$. The array S is used for workspace. The following information is stored in the array A on exit from the routine:
$A(M+1, N+1)$, the minimum value of (1), i.e. the minimum sum of absolute values of the residuals.
$A(M+1, N+2)$-the rank of the matrix $\left\{a_{i, j}\right\}$.
$A(M+2, N+1)$-exit code with the value 1 if a solution has been calculated successfully, and 2 if the calculations are terminated prematurely. This latter condition occurs only when rounding errors cause a pivot to be encountered whose magnitude is less than $T O L E R$, and in this event all output information pertains to the last completed simplex iteration. This condition does not occur too frequently in practice, and then only with a large ill-conditioned problem. Since an l_{1} solution is not necessarily unique, the routine attempts to determine if other optimal solutions exist. An exit code of 1 indicates that the solution is unique, while an exit code of 0 indicates that the solution almost certainly is not unique (this uncertainty can only be resolved by a close examination of the final simplex tableau contained in A : we do not consider such an examination to be warranted in practice). A solution may be nonunique simply because the matrix $\left\{a_{i, j}\right\}$ is not of full rank.
$A(M+2, N+2)$-number of iterations required by the simplex method.

References

1. Barrodale, I., and Roberts, F.D.K. An improved algorithm for discrete / linear approximation. SIAM J. Numer. Anal. 10, 5 (1973), 839-848
```
Algorithm
            SUBROUTINE LI (M,N,M2,N2,A,B,TOLEP,X,E,S)
        C SUBROUTINE LI(M,N,M2,N2,A,B,TOLEP,X,E,S)
C THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX METHOD
C OF LINEAR PROGRAMMING TO CALCULATE AN LI SOL
C OVER-DETERMINED SYSTEM OF L
C DESCRIPTION OF PARAMETERS.
C M NUMBER OF EQUATIONS.
C M2 SET EQUAL TO M+2 FOR ADJUSTABLE DIMENSIONS.
CN2 SET EQUAL TO N+2 FOR ADJUSTABLE DIMENSIONS.
C N2 SET EQUAL TO N+2 FOR ADJUSTABLE DIMENSIONS.
C A TWO DIMENSIONAL REAL APRAY OF SIZE (M2,N2). 
C THESE VALUES ARE DESTROYED BY THE SUBROUTINE.,
C THESE VALUES ARE DESTROYYD BY THE SUBROUTINE, 
                    MUST CONTAIN THE RIGHT HAND SIDE OF THE EQUATIONS
TOLER THESE VALUES ARE DESTROYED BY THE SUBROUTINE.
    A SMALL POSITIVE TOLERANCE. EMPIRICAL EVIDENCE
            SUGGESTS TOLER=10**(-D*2/3) WHERE D REPRESENTS
            THE NUMBER OF DECIMAL DIGITS OF ACCURACY AVALABLE
    (SEE DESCRIPTION).
X ONE DIMENSIONAL REAL ARRAY OF SIZEN. ON EXIT, THIS
            ONE DIMENSIINNAL REAL ARRAY OF SIIZEN. ON EXIT, THIS
    ONE DIMENSIONAL REAL ARRAY OF SIZE M. ON EXIT, THIS
            ARRAY CONTAINS THE RESIDUALS IN THE EQUATIONS.
    ARRAY CONTAINS THE RESIDUALS IN THE EQUATIONS
S INTEGER ARRAY OF SIZE M USED FOR WORKSPACE.
ON EXIT FROM THE SUBROUTINE, THE ARRAY A CONTAINS THE
ON EXIT FROM THE SUBROUTINE, THE ARRAY A CONTAINS THE 
C TH(M+1,N+2) THE RESIDUALS.
C A(M+1,N+2) the raNk OF the matrix of COEfficients
C A(M+2,N+1) EXIT CODE WITH VALUES.
C A(M+2,N+1) EXIT CODE WITH VALUES.
C ( UNIOUE (SEE DESCRIPTION).
C ( UNIOUE (SEE DESCRIPTION)
C 2 - CALCULIATIONS TERMINATED PREMATURELY DUE TO
                ROUNDING ERRORS.
C A(M+2,N+2) NUMBER OF SIMPLEX ITERATIONS PERFOPMED.
    DOUBLE PRECISION SUM
    REAL MIN, MAX, A(M2,N2), X(N), E(M), B(M)
    INTEGER OUT, S(M)
    INTEGER OUT, S(M)
C ON ENTRY, THE COEFFICIENTS OF THE MATRIX MUST BE
C TOLER A SMALL POSITIVE TOLERANCE. EMPIRICAL EVIDENCE
```

```
C bIG MUST be SET EQUAL TO ANY VERY LARGE REAL CONSTANT.
C ITS VALUE HERE IS APPROPRIATE FOR THE IBM 370.
    DATA BIG/1.E75/
C INITIALIZATION.
    MI=M+1
    DO 10 J=1,N
        A(M2,J)=J
        x(J)=0.
    O CONTINUE
    DO 4e I=1,M
        A(I,N2)=N+I
        A(I,N1)=B(I)
        IF (B(1).GE.0.) GO T0 30
        DO 2G J=1,N2
            A(I,J)=-A(I,J)
        CONTINUE
        E(I) = b
    G CONTINU
C COMPUTE THE MARGINAL COSTS.
    DO 68 J=1,N1
        DO 50 I=1,M
            SUM = SUM + A(I,J)
            CONTINUE
            A(M1,J) = SUM
    CONTINUE
c stage I.
C determine the vector to enter the basis.
    STAGE = .TRUE.
    KOUNT = С
    KR = 1
    KL=1
    0 MAX = -1.
    DO 80 J=KR,N
        IF (ABS (A(M2,J)).GT.N) GO TO 80
        I)=ABS (A(M1,J))
        MF (D.LE.MAX) GO TO 80
        MAX = D
    CONTINUE
    IF (A(MI,IN).GE.0.) GO TO 100
    DO 90 I=1,M2
        A(I,IN) = -A(I,IN)
    CONTINUE
c determine the vector to leave the basis.
    106 K :% 0
    DO 110I=KL,M
        (F (D.LE.TOLER) GO TO 110
        K = K + 1
        B(K)=A(I,NI)/D
        S(K)=I
        TEST = .TRUE.
    110 CONTINUE
    128 IF (K.GT.0) GO TO 130
    TEST = FALSE.
    GO TO 150
    130 MIN = BIGG
        IF (B(I).GE.MIN) GO TO 140
        J*I
        OUT = S(I)
        OT = S(I)
    CONTINUE
    B(J) = E(K
    K=K-1
C CHECK FOR LINEAR DEPENDENCE IN STAGE 1.
    150 IF (TEST .OR. .NOT.STAGE) GO TO 170
        DO 160 I=1,M2
        A(I,KR)=A(I,IN)
        A(I,IN ) = D
    160 CONTINUE
    KR = KR +
    GO TO 260
    170 1F (TEST) GO TO 180
    A(M2,N1)=2
    G0 TO 350
    180 PIVOT = A(OUT,IN)
        IF (A(MI,IN)-PIVOT-PIVOT.LE.TOLER) GO TO 200
        DO 19\emptyset J=KR,N:
        A(MI,J)=A(M1,J) - D - D
        A(OUT,J) = - D
        CONTINUE
        A(OUT,N2) = -A(OUT,N2)
    GO TO 120
C PIVOT ON A(OUT,IN)
    208 DO 210 J=KR,N1
        IF (J.EO.IN) GO TO 210
        A(OUT,J) = A(OUT,J)/PIVOT
    210 CONTINUE
        DO 230 I=1,M1
        IF (I.EQ.OUT) GO TO 230
        D = A(I,IN)
            IF (J.EQ.IN) GO TO 220
            IF (J.EQ.IN) GO TO 220
    220
        CONTINUE
    CONTINUE
    DO 24日 I= 1,M1
        IF (I.EQ.OUT) GO TO 240
        A(I,IN) = -A(I,IN)/PIVOT
    240 CONTINUE ( A OUT,IN) =1./PIVOT
    D = A(OUT,N2)
    A(OUT,N2) = A(M2,IN)
    A(M2,IN) = D
    KOUNT = KOUNT + 1
    IF (.NOT.STAGE) GO TO 270
```

```
C INTERCHANGE ROWS IN STAGE I.
    KL = KL + 1
        DO 250 J=KR,N2
        D=A(OUT,J)
        A(KOUNT,J) = D
    50 CONTINUE
260 IF (KOUNT+KR.NE.NI) GO TO 70
C STAGE II.
C DETERMINE THE VECTOR TO ENTER THE BASI'S.
    270 MAX = -BIG
        DO 290 J=KR,N
            D = A(MI,J)
            IF (D.GE.B.) GO TO 280
            IF (D.GT.(-2.)) GO TO 290
            D=-D=2.
    280 IF (D.LE.MAX) GO TO 290
        MAX = D
    290 CONTINUE
        IF (MAX.LE.TOLER) GO TO 310
        IF (A(M1,IN).G
        A(I,IN)=-A(I,IN)
    300 CONTINUE
        A(MI,IN)=A(MI,IN) - 2.
        GO TO 108
PREPARE OUTPUT.
    310 L = KL - :
        DO 330 I=1,L
            IF (A(I,N1).GE.|.) GO TO 330
                DO 32\varnothing J=KR.N2
                A(!,J)=-A(I,J)
    320 CONTINUE
    30 CONTINUE
    A(M2,N1)=0.
    IF (KR.NE.1) GO TO 350
    DO 340 Jmi,N
        D = ABS(A(MI,J))
    340 CONTINUE
    A(M2,N1) = 1.
    A(M2,N1) = 1.
    DO 380 1=1,M
        K=A(1,N2)
        IF (K.GT.g) GO TO 360
        K=-K
    360 IF (!.GE.KL) GO TO 370
        X(K) = D
        GO TO 380
    370 K=K-N
        E(K)=D
    380 CONTINUE
        A(M2,N2) = KOUNT
        A(M2,N2)=KOUNT
        A(M1,N2) = NL - KR
        SUM = B.DQ
        DO 390 I=KL,M 
390 CONTINUE
    A(MI,NI) = SUM
    A(MI,N1,
    RETD
```


Footnote to Algorithm 478

The major portion of the computation performed by the above subroutine is transforming the two-dimensional array A at each iteration. We have experimented with a modified code which transforms the columns of A, one at a time, by passing each column to a second subroutine which involves only one-dimensional arrays. Savings in time of about 25 to 40 percent are normally achieved by this modification. This is because Fortran stores two-dimensional arrays columnwise.

To implement this modification in the above subroutine, the user should: (i) delete the eight lines immediately following statement number 20 up to and including statement number 22; (ii) replace these eight lines by

```
DO 22 J=KR,NI
    IF(J.EQ.IN) GO TO 22
    CALL COL (A (1,J),A(1,IN),A(OUT,J),M1,OUT)
    CONTINUE
and (iii) include the following subroutine
SUBROUTINE COL (V1,V2,MLT,M1,IOUT)
REAL V1(M1),V2(MI),MLT
DO \(1 \mathrm{I}=1, \mathrm{M} 1\)
IF (I.EQ.IOUT) GO TO 1
\(\mathrm{V} 1(\mathrm{I})=\mathrm{V} 1(\mathrm{I})-\mathrm{V} 2(\mathrm{I}) * \mathrm{MLT}\)
CONTINUE
RETURN
END
```


Remark on Algorithm 478[F4]

Solution of an Overdetermined System of Equations in the I_{1} Norm [I. Barrodale and F.D.K. Roberts, Comm. ACM 17 (June 1974), 319-320]
Fred N. Fritsch and Alan C. Hindmarsh [Recd 23 Sept. 1974], Numerical Mathematics Group, Lawrence Livermore Laboratory, University of California, Livermore, CA 94550

This note is to point out an error in the "Footnote to Algorithm 478." To correspond to the published listing, the statement numbers in (i) of the second paragraph of the footnote should be 210 and 230 , rather than 20 and 22 . To be consistent with the published statement numbering, we would also recommend that statement number 22 be changed to 220 in the three places it occurs in the replacement coding of (ii).

Algorithm 479

A Minimal Spanning Tree Clustering Method [Z]

R.L. Page [Reed. 18 Feb. 1972, 8 Feb. 1973, and 29 Mar. 1973|
Department of Mathematics and Computer Science, Colorado State University, Fort Collins, CO 80521

Key Words and Phrases: clustering, pattern recognition. feature selection, minimal spanning trees

CR Categories: 3.63, 5.39, 5.5
Language: Fortran

Description

Zahn [2] describes a method for automatically detecting clusters in sets of points in N-space. The method is based on the construction of the minimal spanning tree of the complete graph on the input set of points. The motivation for using the minimal spanning tree includes some evidence (cited in [2]) that it is related to human perception of dot pictures in two dimensions, but the method is applicable in any dimension.

Advantages of the method are that it requires little input other than the data points, it is relatively insensitive to permutations in the order of the data points, and the clusters it produces in two dimensions closely parallel clusters detected visually by humans when the data is displayed as a dot picture.

Storage requirements increase linearly with the n, the number of points. The minimal spanning tree is constructed using an algorithm due to Prim and Dijkstra as implemented by Whitney [1]. The time needed is approximately proportional to n^{2}. (Time also increases slowly with N.) Whitney's algorithm is repeated here because we need to keep some information about the tree structure which his algorithm does not retain in a convenient form.

The basic idea is to detect inherent separations in the data by deleting edges from the minimal spanning tree which are significantly longer than nearby edges. Such an edge is called inconsistent. Zahn suggests the following criterion: an edge is inconsistent if (1) its length is more than f times the average of the length of nearby edges, and (2) its length is more than s standard deviations larger than the average of the lengths of nearby edges (standard deviation computed on the lengths of nearby edges). The real numbers f and s may be adjusted by the user. The question of determining which edges are "nearby" is also answered by the user. We will say point P is nearby point Q if point P is connected to point Q by a path in the minimal spanning tree containing d or fewer edges (d is an integer determined by the user).

Deleting the inconsistent edges breaks up the tree into several connected subtrees. The points of each connected subtree are the members of a cluster.

Use of the program. There are two steps involved in clustering a point set using this Fortran implementation of Zahn's algorithm.

Step 1. Call the subroutine $G R O W$ to construct the minimal
Funds for computer time used in development of this algorithm were provided by National Science Foundation Grant GJ561.
spanning tree of the point set. GROW needs four parameters: (1) an array of real numbers specifying the point set; (2) an integer specifying the dimension of the space in which the points lie; (3) an integer specifying the number of points in the set; and (4) a logical value. true if the user would like a description of the minimal spanning tree to be printed on unit 6 , and false otherwise. The array of parameter (1) is treated as if it were a matrix (stored by columns) in which each column represents a point in the input point set. To be more specific, the array must be arranged so that its $(K-1) * D I M E N+$ I th value is the I th component of the K th vector in the point set. (DIMEN stands for the dimension of the space in which the points lie.)

Step 2. Call the subroutine CLUSTR to determine the clusters in the point set. CLUSTR needs six parameters: (1) the integer d defining the term "nearby"; (2) the real number f described above; (3) the real number s described above ; (4) an array to be used for output; (5) the declared length of the output array; and (6) a logical value, true if the user desires a description of the clusters determined to be printed on unit 6, and false otherwise. If parameter (5) is zero, the output array (parameter (4)) will not be used. Otherwise, the output array, which we call C here, will be filled with integers as follows: the first element will be the number of clusters detected; the remaining elements will be arranged in blocks of varying length, each block describing one cluster the first element in each block being the number of points in the cluster, and the remaining elements of the block being the labels of the points in the cluster (a point's label will be its relative position in the input point set; thus the first point in the input has label 1 , the second, label 2 , etc.).

Once step 1 has been completed for a particular point set, step 2 may be repeated with different parameters without repeating step 1.

Restrictions. (1) As written, the program will handle only 100 data points, but that can be easily changed by increasing the dimensions of three arrays in $G R O W$ and five arrays in CLUSTR (see program for directions). (2) The first parameter in CLUSTR must not be larger than 18. This too can be easily changed by increasing the dimension of two arrays in CLUSTR (see program). (3) Blank common is used to store the minimal spanning tree.

Tests. The program has been tested on a CDC 6400 with several different input point sets of varying size and dimension, both artificially generated and real data. The artificially generated data included three two dimensional point sets with two, four, and five clusters and one three-dimensional point set with eight clusters as well as some higher-dimensional, larger point sets used for timing analysis. Time to run $G R O W$ increases like n^{2}; time to run CLUSTR normally increases like n, but in the worst case increases like n^{2}.

References

1. Whitney, V.K.M. Algorithm 422 Minimal spanning tree. Comm. ACM 15, 4 (Apr. 1972), 273-274.
2. Zahn, C.T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. on Computers, C-20 (1971), 68-86.
[^4]C THE ARRAYS EDGE ST, EDGE PT, AVE, SO, AND NUMNEI AS C DIRECTED IN THE SUBROUTINE CLUSTR. . IN ADDITION, IF THE C PARAMETER D IN CLUSTP KILL BE LARGER THAN AS CHANGE TH DS DECTED.
SUBROLTINE GROW'(DATA, DIMEN, NUMPTS, PRINT)
INTEGER DIMEN, NUMPT
LOGICAL PRINT
this subroutine computes the minimal spanning tpee of the
C COMPLETE GFAPH ON THE NUM PTS POINTS IN APPAY DATA
C EACH POINT IS A VECTOR WITH DIMEN COMPONENTS STOPEL IN
C CONTIGUOUS LOCATIONS IN THE APRAY EATA. SPECIFICALLY,
C DATA((K-1)*DIMEN + 1) IS THE I-TH COMPONENT OF THE K-TH
C vector. the array data may contaln numeefs in eithef.
C INTEGER OR FLOATING POINT FORMAT AS LONG AS THE FOPMAT IS
C CONSISTENT KITH THE TYPE SPECIFICATION OF THE PAPAMETERS
C IN THE FUNCTION DIST.
C IF THE PARAMETER PRINT HAS THE VALUE. TRUE.; THEN A C A DESCRIPTION OF THE MINIMAL SPANNING TREE IS PFINTED ON C UNIT 6. EACH NODE IS LABELED HITH AN INTEGER INDICATING C ITS RELATIUE POSITION IN THE APRAY DATA.

INTEGER DIM, N, MST(800), LOC(1), NER(1), NXT(1)
REAL WT (I)
EQUIVALENCE (MST, LOC,NBR, KT,NXT)
COMMON DIM, N, MST
INTEGER LASTPT, FREE, PT (ALIAS LOC, NER, WT, NXT) IS A DESCRIPTION OF THE
C MINIMAL SPANNING TAEE. IT CONTAINS ONE LIST FOP EACH NODE.
C THE POINTERS TO THE HEADS OF THESE LISTS ARE STOPEL IN THE
C FIRST N=NUM PTS LOCATIONS OF MST AND GO BY THE NAME MST
C THE FIPST ELEMENT OF EACH LIST CONSISTS OF FOL'P FIELDS
C STORED IN CONTIGUOUS VOPDS OF MST. EACH EIELD IS CALLED EY C A NAME WHICH IS AN ALIAS OF MST.
C FIELD 1: LOCATION in DATA Of The NOLE (loc)
C FIELU 2: NAME OF NEIGHBOPING NODE (NBP)
C FIELD 3: h'EIGHT OF THIS ERANCH (VT)
C FIELD 4: POINTER TO NEXT NEIGHBOP OR END MAPK=0 (NXT)
C EACH ACDITIONAL ELEMENT OF THE LIST CONSISTS OF THFEE
C FIELDS. FIELD I AEOUE IS OMITTED.
C THE LENGTH OF THE APPAY MST MUST BE AT LEGST 8*N
C THE MINIMAL SPANNING TREE IS COMPITED USING THE ALGORITHM
C OF PRIM AND DIJKSTRA AS IMPLEMENTEL BY WHITNEY (CACM 15 ,
C APR 1972).
C EACH COLUMN OF NIT IS A PAIP (NIT(1, 1),NIT(2,I), $I=1, N I T P$)
C DENOTING A NODE NOT (YET) IN THE TREE ANC ITS NEAFEST
C NEIGHBOR IN THE CLRRENT TREE. UI (I) IS THE LENGTH OF THE
C THE NUMEEF OF COLUMNS OF NIT CANNOT EE LESS THAN N.
INTEGER NIT $(2,1 \theta 0)$
REAL UI (IDE)
DIM = DIMEN
C COMPUTE MINIMAL SPANNING TREE USING ALGOPITKM OF VHITNEY
C INITIALIZE NODE LABEL ARRAYS ANE SET UP LIST FOP NODE N=KP
NITP = N-I
$K P=N$
KPDATA $=(K P-1) *$ LIM +1
DO $181=1, N I T P$.
IDATA $=(I-1) * D I M+1$
NIT $(1,1)=1$
UI(1) = DIST(DATA(IDATA), DATA(KPDATA), DIM)
NIT $(2,1)=K P$
: B CONTINLE
FREE $=N+1$
$M S T(K P)=F P E E$
LOC (FPEE) $=6 K P$
FREE $=$ FREE +1
$N X T(F F E E+2)=8$
C UPDATE. LABEL Of NODES NOT YET in tPEE.
20 KPDATA $=(K P-1) * E I M+1$
DO 3 e $1=1, N$ ITP
D = DIST(DATA(IDATA), DATA(KPDATA), DIM)
IF (U: (I).LE.D) GO TO 30
$\operatorname{UI}(1)=D$
$\operatorname{NIT}(2,1)=$
3 CONTINE!E
C FIND NODE OUTSIDE TPEE NEAFEST TO TFEE
UK = Ul (1)
IF (1) 18 (i)TP
IF (VI(1).GT.UK) CO. TO 40
$\mathrm{L} \mathrm{K}=\mathrm{LI}(\mathrm{I})$
$\mathrm{K}=\mathrm{I}$
40 CONTINUE
C ADD NEW EDGE TO MST
C ADD NEW EDGE TO MST
C ADD NEIGMBOP TO LIST OF NODE NIT $(2, K)$
C CHANGE END OF LIST MAPK TO FOINT TO NEXT VEIGHEOF
PT $=$ LASTPT(NIT $(2, K)$)
C ENTERT(PT) = FFEE
NER (FREE) $=N 1 T(1, K)$
C ENTER lEIGHT OF THIS BRANCH (OFFSET PICKS ('P UT FIELD)
C PUT IN ENE OF LIST MARK (OFFSET PICKS ('P POINTER FIELD) NXT (FPEE+2) $=Q^{2}$
FPEE $=$ FREE +3
C NEL NODE-GREATE ITS NEIGHBOF LIST
C SET UP HEAD POINTEP.
NODE $=\operatorname{NIT}(1, K)$
MST (VODE) $=$ FPEE
C ENTER LOCFTION OF THIS NODE IN DATA
LOC (FPEE) = (NODE-1)*DIM +
C ENTER NAME OF NEIGHBOPING NODE (OFFSET PICKS LIP NET FIELD) NER(FREE+1) $=\operatorname{NIT}(2, K)$
C ENTER WEIGHT OF THIS ERANCH (OFFSET PICKS U'P UT FIELD)
C ENTER END OF LIST MARK (OFFSET PICKS UF POINTEP FIELD) $\mathrm{NXT}(F R E E+3)=e$
KREE $=$ FITEE +
c delete new tree node ffom arpay nit UI(K) $=$ UI (NITP)
$\operatorname{NIT}(1, K)=N I T(1, N I T P)$
NIT(2,K) $=$ NIT(2,NITP)
NITP = NITP - 1

C THE MST IS FINISHED WHEN $1 T$ CONTAINS ALL NOLES
IF (NITP.NE. B) GO TO 20
IF (NITP.NE. O) GO TO 20
IF (PRINT) CALL PRTREE
END

SUBROLTINE CLUSTR(D, FACTOR, SPREAD, C, CLEN, PRINT) INTEGER D, CLEN, C(CLEN)
REAL FACTOR, SPREAD
LOGICAL PRINT
C this subroutine finds the clusters of a point set using C Minimal spanning tree clustering method of zamn. the
C MINIMAL SPANNING TREE, COMPUTED BY SUBPOUTINE GPOW, IS
C STORED IN BLANK COMMON.
C THE ZAHN ALGORITHM FINDS CLLUSTERS EY DELETING INCONSISTENT C EDGES FROM THE MINIMAL SPANNING TREE, AIN INCONSISTENT EDGE beING ONE WHOSE WEIGHT IS SIGNIFICANTLY LAPGER THAN THE
C AVERAGE WEIGHT OF NEARBY EDGES.
C NEARBY MEANS CONNECTED TO THE EDGE IN OUESTION EY A
PATH CONTAINING D OR FEWER EDGES.
C WEIGHTICANTLY LARGER MEANS
C AND V'EIGMT .GT. AVEPAGE + SPREAD * STANDAPD DEVIATION
C WHERE THE AUERAGE AND STANCARD DEVIATION APE COMPUTED ON
C THE WEIGHTS OF NEARBY EDGES.
C THE OUTPUT VECTOR C DESCRIBES THE CUUSTERS DETERMINED.
C IT IS ARRANGED IN BLOCKS, EACH BLOCK DESCRIBING ONE
C CLUSTER. THE FIRST ELEMENT IN EACH BLOCK IS THE NUMBER
C OF NODES IN THE CLUSTER. THE REMAINING ELEMENTS ARE THE
C LABELS OF THE NODES IN THE CLUSTER, THE LABEL INDICATING
C THE RELATIVE POSITION OF THE NODE IN THE ARRAY DATA. THE
C FIRST BLOCK STARTS AT C(2).
C C(1) IS THE NUMBER OF CLUSTEPS FOUND BY THE ALGORITHM.
C THE VALUE OF C LEN SHOULD BE THE TRUE SIZE OF
C THE ARRAY C. IT IS USED TO PREVENT INVALID SUBSCRIPTS.
C IF C LEN IS ZERO, THE ARRAY C WILL NOT BE USED.
C IF THE PARAMETER PRINT HAS THE VALUE.TRUE., CLUSTERS
C ARE PRINTED OUT ON UNIT 6
INTEGER EDGEST(181), EDGELN, EDGEPT:(101)
REAL AVE (10日), SQ(10日), SUPPNT, W
INTEGER NUMNEI(180)
INTEGER NEIGST(20), NEIGLN, NEIGPT(20)
C THE ARRAY EDGE ST (EDGE STACK) IS A STACK OF NODES USED TO
DIRECT THE SEARCH THROUGH THE TREE FOR INCONSISTENT EDGES.
ITS LENGTH (EDGE LN) CAN GROW AS LARGE aS ONE MORE THAN
C THE NUMBER OF NODES IN THE TREE.
TRE ARRAY EDGE PT (EDGE POINTERS) IS A STACK OF POINTERS
TO THE NEXT UNEXAMINED NEIGHBORING NODE OF THE NODE IN THE
C ALWAYS THE SAME AS THAT OF EDGE ST.
C THE ARRAY NEIG ST (NEIGHBOR STACK) IS A STACK OF NODES
C USED TO DIRECT THE AVERAGING OF THE WEI GHTS OF NEAPBY
C EDGES. ITS LENGTH (NEIG LN) CAN GROW AS LARGE AS D+2.
C THE ARRAY NEIG PT IS USED IN CONJUNCTION WITH NEIG ST. ITS
C LENGTH CAN GROW AS LARGE A D+2.
C THE ARRAYS AVE AND SQ ARE USED TO EXPEDITE THE CALCULATION
C OF AVERAGE WEIGHTS. SPECIFICALLY, AVE(I) STORES THE SUM OF
C THE WEIGHTS OF EDGES EXTENDING FROM THE I-TH NODE AND
C SQ(I) STORES THE SUM OF THE SOUARES. SIMILAPLY, NUMNEI(I)
C OF THESE ARRAYS MUST BE AS LONG AS THE NUMBER OF NODES.
INTEGER FINDCN, A, B, DLESSI
INTEGER CLS, INCLS(1), PARENT(1), BAKURD, EEGCLS
EQUIVALENCE (INCLS, EDGEST). (PARENT, EDGEPT)
INTEGER CP, OTHEND
INTEGER DIM, N, MST(1), LOC(1), NBR(1), NXT(1)
REAL UT (1)
EQUIVALENCE (MST,LOC,NBR,WT,NXT)
COMMON DIM, N. MST
IF (PRINT) WRITE (6.99998) D, FACTOR, SPREAD
DLESSI $=$ D - 1
PUTATION SECTION
C SUM BRANCH WEIGHTS OFF EACH NODE (DEPTH i)
DO 20 NODE $=1, N$
NUMNE:(NODE) $=1$
$K=\operatorname{MST}(N O D E)$
$A V E(N O D E)=U T(K+2)$
SQ(NODE) $=\mathrm{KT}(K+2) * * 2$
$K=N X T(K+3)$
10 IF (K.EQ. 0) GO TO 20
$A \cup E(N O D E)=A V E(N O D E)+U T(K+1)$
SUMNE (NODE) N NUMNEI (NODE) + 1
$\mathrm{K}=\mathrm{NXT}(\mathrm{K}+2)$ GO TO 10
2ε CONTINUE
C INITIALIZE ELGE STACK WITH NODE I SURROUNDEL BY ITS FIRST C TWO NEIGHBORS. SINCE THE TOP TKO ELEMENTS OF THE STACK
C INDICATE THE DIRECTION OF TRAVEL ALONG A BRANCH, THE
C SEARCH WILL FIRST BE DIRECTED AWAY FROM NODE 1 IN THE
C DIRECTION OF ITS FIRST NEIGHBOR. VHEN, ALL THE TPEE IN THAT
C DIRECTION IS SEARCHED. THE SEARCH WILL PROCEDE AWAY FPOM
C ITS FIRST NEIGHBOR TO WARD NJDE 1 .
C THE EDGE PT STACK IS USED TO KEEP TRACK OF THE NEI GHBORS
C OF THE CORRESPONDING NODE IN EDGE ST WHICH HAVE ALREADY
C EEEN SEARCHED. EDGE PT(I) POINTS TO THE LOCATION OF
EDGE ST(I + I) IN THE LIST OF NEIGHBORS OF EDGE STCI
$\operatorname{EDGELN}=3$
$\mathrm{~K}=\operatorname{MST}(1)$
EDGEST(2) = LOC(K)/DIM + 1
$\operatorname{EDGEST}(1)=N \operatorname{RR}(K+1)$
$\operatorname{EDGEST}(3)=N \operatorname{RR}(K+1)$
$\operatorname{EDGEPT}(1)=$ FINDCN(EDGEST(1), EDGEST(2))
$\operatorname{EDGEPT}(2)=K+1$
EDGEPT (3) $=-1$
C CLIMB TREE TO NEXT UNTESTED BRANCH
30 CALL CLIMBCEDGEPT, EDGEST, EDGELN, N:
CHECK THE EDGE BETU'EEN NODE EDGE ST(EDGE LN -1) AND
C NODE EDGE ST(EDGE LN) FOR INCONSISTENCY.
$A=\operatorname{EDGEST}(E D G E L N-1)$
$B=$ EDGEST(EDGELN)

```
C SUM WEIGRTS OF ALL BRANCHES NEARBY BRANCH A=-b
    NEARBY = Q
    AV = 0.
    STDDEV = 0.
C INITIAL,ZE NEIG ST TO SUM WEIGHTS HEADING OFF NODE E
    NEIGLN = 2
    NEIGST(1) = A
    NE:GST(2)=B
    ASSIGN 50 TO OTHEND
C GO OUT TO DEPTH D-I ALONG EPANCHES NOT YET ADDED
    40 CALL CLIMB(NEIGPT, NEIGST, NEIGLN, DLESSI)
C ADD WERGHTS OF ERANCHES OFF THE TOP NODE LESS THE NEIGHT
OF THE BRANCH SUPPPORTING IT
    K = NEIGPT(NEIGLN-1)
    SUPPUT = K'T(K+1)
    AV = AU + AUE(K) - SUPPVT
    STDDEV = STDDEU + SQ(K) - SUPPUT**2
    NEARBY = NEAPBY + NUMNEI (K) -
C WHEN DEPTH OF STACK RETURNS TO 2, ALL BRANCH WEIGHTS OFF
C THIS END HAVE BEEN ADDED
    IF (NEIGLN.LE.2) GO TO OTHEND, (50,60
        NEIGLN = NEIGLN -
        GO TO 40
C INITIALZE NEIG ST TO SUM V'EIGHTS HEADING OFF NODE A
    50 NEIGLN = 2
        NEIGST(1) = B
        NEIGPT(1)= FINDCN(B,A)
        NEIGST(2) = A
        ASSIGN 60 TO OTHEND
        GO TO 40
    TEST BRANCH A--B FOR INCONSISTENCY
    60 AV = AV/FLOAT (NEARBY)
        STDDEV = SQRT(ABS(STDDEV/FLOAT(NEAREY)-AV**2))
        = EDGEFT(EDGELN-1)
        W = KT(K+1)
        IF (W.LE.AU +SPREAD*STDDEV .OR. W'LE.FACTOR*AV) GO TO 30
C BRANCH A--B IS INCONSISTENT. DELETE IT.
        NBR(K)=-1ABS(NBR(K))
        K = NEIGPT(1)
        NBR(K)=-IABS(NBR(K))
        GO TO 30
C OUTPLT SECTION
C WE COLLECT THE CLUSTERS AS FOLLOKS: 1. START WITH FIRST
C NODE. 2. THROW IN ITS NEIGHEORS. 3. THROY IN NEIGHBOPS
C TIME A DELETED BRANCH NE ENCOSTERED, PUT OTHER ENDAN
C LIST OF UNUSED NODES (AT TOP OF ARRAY IN CLS). 5. WHEN
C A FULL CIUSTER IS COLLECTED, OUTPUT IT. O. START AGAIN
C AT STEP 2 WITH A NODE FPOM THE LIST OF UNLSED NODESS
    70 NUMIN = 0
        CL.S = 0
        K=MST(1)
        NCLSS(NXTCLS) = LOC(K)/CIM + I
        PARENT(NXTCLS) = \emptyset
        BAKWPDD = 
C START CLUSTEEF WITH NEXT AVAILABLE UNUSED NODE
    8CLLS = CLS + 1
        NUMIN = NUMIN + 1
        BE:GCLS = NUMIN
        NODE = INCLS(NXTCLS)
        NLIST = PARENT(NXTCLS
        NXTCLS = NXTC NODE
    C LET K POINT TO FIPST NEIGHBOR OF NODE
C ADD NEIGHBOR TO CLUSTER AND RECORD IT ANCESTRY
    100 NXTNBR = NBR(K)
        IF (NXTNBR.LT.Q) GO TO 1:B
        IF (NXTNBR.EQ.BAKWRD) GO TO 120
        NUMIN = NUMIN + !
        INCLS(NUMIN) = NXTNBP
        PARENT(NUMN) a NODE
        GO TO 128
C THIS NEIGHBOR IS IN A DIFFERENT CLUSTER--ADD TO UNUSED
    110 NXTNER = -NXTNBR
        IF (NXTNBR.EQ.INLIST) GO TO 120
        NXTCLS = NXTCLS - 1
        PARENT(NXTCLS) NNODE
        PARENT(NXTCLS
C GET NEXT NEIGHBOR
    K=NXT(K+2)
        If (K.NE.0) GO TO 100
C ADD LIST OF NEIGHBORS OF NEXT ELEmENT OF THIS CLUSTER
            NXTCN = NXTCN + 
            FF (NXTCN.GT.NUMIN) GO TO 136
            NODE = INCLS(NXTCN)
            BAKWRD = PARENT(NXTCN)
            GO TO 9%
C END OF CLUSTER--DO OUTPUT
    130 CALL STORE(NUMIN-BEGCLS+1, C. CP, CLEN)
        IF (PRINT) WRITE (6,99999) CLS
        DO 140 1=BEGCLSNNUMIN
                IF (PRINT) WRITE (6,99997) INCLSSI
                CALL STORE(INCLS(I), C, CP, CLEN)
    140 CONTINUE
        IF (NUMIN.LT.N) GO TO B0
            CP = 0
            CALL STORE(CLS, C, CP, CLEN)
            CALL FIXMST
            RETURN
99999 FORMAT(1HE/BHECLUSTER, I5, I2H CONSISTS OF)
99998 FORMAT (44HITHE TREE HAS BEEN CLUSTERED SEARCHING TO A
    * 27M DETERMINED BY A FACTOR OF, GIt.4/1!X, 10HAND A SPRE,
    * GHAD OF, GII.4, 2IH STANDARD DEVIATIONS.)
99997 FORMAT(10X, 4HNODE, 15)
        END
    REAL FUNCTION DIST(A, B, N
    INTEGER N
    REAL A(N), B(N)
C THIS FUNCTION COMPUTES THE l'EIGHT OF THE BRANCH BETWEEN
C NODE A AND NODE B. IT SHOULE BE WRITTEN TO SUIT THE DATA
C THIS VERSION COMPUTES THE USUAL EUCLIDEAN DISTANCE.
    DIST = (A(1)-B(1))**2
    DO 10 :=2,N
        DIST=DIST + (A(I)-B(I))**2
    18 CONTINUE
    DIST = SORT(DIST)
    RETURN
    END
    SUEROUTINE CLIMBCPOINTR, STACK, LN, D)
    INTEGER POINTR(1), STACK(1), LN, D
    INTEGER SPACE(2), MST(1), NBR(1), NXT(1)
    EQUIVALENCE (MST,NBR,NXT)
    COMMON SPACE, MST
C STARTING FROM THE NODE ON TOP OF THE STACK, CLIMB OUT
C TO DEPTH D OR TO A TERMINAL NODE, WHICHEVER OCCURS FIRST
    10 IF (LN.EQ.D+2) RETURN
        K= POINTR(LN)
        IF (K) 20, 30,40
C SET POINTER TO FIRST NEIGHBOR OF TOP NODE
    SET POINTER TO FIRST N
    NODE = STACK(LN)
    PO1NTR(LN) = MST(NODE) + 1
    POINTR(LN) = MST(NODE) + 1
C BACK DOWN FROM TEPMINAL NODE
C CLIMB OUNT ON NEXT NEIGHBOR IF POSSIBLE
    L0 POINTR(LN) = NXT(K+2) RETURN
C CHECK DIRECTION
    50 K = POINTR(LN)
    NEIGHB = IABS(NBR(K))
        NE (NEIGHB.EQ.STACK(LN-1)) GO TO 40
C CLIME OUT ON NEIGHBORING NODE
    LN = LN + +
    STACK(LN) = NEIGHB
    POINTR(LN) = - - 
    GO TO 10
    END
    INTEGER FUNCTION LASTPT(NODE)
C the value of this function points to the end of the iIst
C THE VALUE OF THIS FUNCTION POINTS T
    INTEGER SPACE(2), MST(1), NXT(1)
    INTEGER SPACE(2), MST,
    EQUIVALENCE (MST,NXT
C OFFSET PICKS UP POINTER FIELD
COFFSET PICKS UP POINTER FIELD
    | IF (NXT(LASTPT).EQ.&) RETURN
    LASTPT = NXT(LASTPT) + 2
    GO TO 10
    END
    INTEGER FUNCTION FINDCN(A, B)
    INTEGER A, B
    INTEGER SPACE(2), MST(1), NER(1), NXT(1)
    EQUIUALENCE (MST,NER,NXT)
C THIS FUNCTION LOCATES NODE B IN THE LIST OF NEIGHBORS OF A
C OFFSET PICKS UP NEIGHBOR FIELD
    FINDCN = MST(A) + 1
    10 1F (IABS(NBR(FINDCN)).EQ.B) RETURN
    FINDCN = NXT(FINDCN+2)
        FINDCN = NXT(FINDCN+2)
        IF (FINDCN.NE.0) GO TO 18
99999 FORMAT(5HONODE, 13, 26H IS NOT A NE:GHBOP OF NODE, 13)
    RETURN
    END
    SUBROUTINE STORE(VALUE, ARRAY, LOC, N)
    INTEGER VALUE, ARRAY(N), LOC, N
C THIS SUBROUTINE IS USED TO STORE VALUES INTO THE ARRAY
C WHICH IS THE FOURTH PARAMETER OF CLUSTR.
    IF (N.EQ.O) RETURN
    LOC = LOC + 1
    IF (LOC.GT.N) GO TO 10
    ARRAY(LOC) = VALUE
    ARRAY(L
    10 WRITE (6,99999) VALUE
99999 FORMAT(4IH THE ARRAY USED TO STOPE A DESCPIPTION OF/3H TH
    * 30HE CLUSTERS IS NOT LONG ENOUGH /15H ITS NEXT VALUE,
    * 11H SHOUld be, 118)
    RETURN
    END
    SUBROLIINE PRTREE
C THE DESCRIPTION OF THE MINIMAL SPANNING TREE PRINTED HERE
C THE DESCRIPTION OF THE MINIMAL SPANNING TREE PRINTED H
    INTEGER DIM, N, MST(1), LOC(1), NBR(1), NXT(1)
    INTEGER D 
    EQUIVALENCE (MST,LOC,NBR,HT,NXT
    EQUIVALENCE (MST,LOC,NBR,WT,NXT)
    COMMON DIM, N, MST
    DO 2O NODE=1,N
        VRITE (E.99990) NO
        KRITE (6,99999) NODE
    | WRITE (6,99998) NBR(K), WT(K+1)
        K = NXT(K+2)
```



```
    20 CONTINUE
    RETURN
```

```
99099 FORMAT(SHONODE. \3/16H NE:GHBORS ARE)
99998 FORMAT&IOX. 4HNODE. 15. IUH AT DISTANCE, GIL.4)
    END
    SUBROUTINE FIXMST
    INTEGER DIM, N, MST(1), NBR(1), NXT(1)
    INTEGER DIM, N, MST(I), N
    EOUIVALENCE (MST.N
    COMMON DIM.
    NO20.MST(I) + I
10 NBR(K) IABS(NBR(K))
        K - NXT(K+2)
        IF (K.NE.e) GO TO :0
    20 CONTINUE
    CONTINUE
    RETT
```

Remark on Algorithm 479 [Z]
A Minimal Spanning Tree Clustering Method [R.L. Page, Comm. ACM 17 (June 1974), 321-323]
H.S. Magnuski [Recd 19 July 1974] Stanford Electronics Laboratories, Stanford University, Stanford CA 94305

The implementation of this algorithm assumes that both real and integer variables occupy the same amount of storage, which is not true of many Fortran systems. The algorithm assumes that real array $W T$ and integer array $M S T$ are exactly the same length, and intermixes floating point and integer variables in creating the linked lists contained in these arrays. The simplest (but not best) solution is to define array $W T$ in its own common block. The correct solution requires rewriting of the algorithm so that the linked lists tan properly handle floating point numbers.
(Prof. Page informs me that he has a revised version which follows the suggestion of the last sentence above..-L.D.F.]

ACM Transactions on Mathematical Software, Vol. 2, No. 1, March 1976, Pages 110-111
REMARK ON ALGORITHM 479
A Minimal Spanning Tree Clustering Method [Z]
[R.L. Page, Comm. ACM 17, 6(June 1974), 321-323]
G.M. White, S. Goudreau, and J.L. Legros [Recd 5 Aug. 1975]

Computer Science Department, University of Ottawa, Ottawa, Ont. Canada K1N 6N5

The algorithm as given generally yields a large number of clusters containing only one point. These are not likely to be of much use. Clusters not containing at least MINPTS points can be eliminated by making the following changes to the subroutine CLUTR.

1. The first statement should read

SUBROUTINE CLUTR(D,FACTOR,SPREAD, C, CLEN, PRINT, MINPTS)
2. The statement beginning IF(PRINT) following the COMMON statement

COMMON DIM, N, MST
should be removed.
3. The following statements should be inserted immediately after the COMMON statement:

IF(MINPTS.LE.N) GO TO 5
$C(1)=0$
RETURN
5 IF(PRINT) WRITE (6,99998)D, FACTOR,SPREAD
IF(PRINT) WRITE (6,99996)MINPTS
99996 FORMAT ($1 \mathrm{Hb}, 10 \mathrm{X}, 39$ HMINIMUMbNUMBERbOFbPOINTSbPERbCLUSTERb * IS, I9)
4. Statement number 130 should be replaced by the following:

```
130 IF((NUMIN - BEGCLS+1).LT.MINPTS) GO TO 150
    CALL STORE (NUMIN - BEGCLS + 1,C,CP,CLEN)
```

5. The statement following statement 140 should be replaced by

GO TO 160
150 CLS = CLS - 1
160 IF(NUMIN.LT.N) GO TO 80
With these changes, the program will produce the same results as the original program if MINPTS is set equal to 1 at the point of invocation.

The algorithm with the above modifications has been tested successfully using G and $\mathrm{H}(\mathrm{opt}=2)$ level Fortran compilers on an IBM $360 / 65$ under o.s. level 21.8. With this configuration, the qualifications mentioned by Magnuski [1] are not applicable.

The program has been used to detect artificially generated clusters superimposed upon a background of noise and to detect stars in nuclear emulsions. The algorithm seems particularly well suited for identifying nuclear events in three dimensions using data obtained automatically from emulsions by flying spot scanners.

REFERENCES
[1] Magndski, H.S. Remark on Algorithm 479. Comm. ACM 18, 2(Feb. 1975), 119.

Algorithm 480

Procedures for Computing Smoothing and Interpolating Natural Splines [E1]

Tom Lyche* and Larry L. Schumaker \dagger [Recd. 18 Oct. 1971 and 9 Apr. 1973]
Department of Mathematics, The University of Texas at Austin, Austin, TX 78712

* Supported in part by Grant DA-ARO(D)-31-124-61050, Army Research Office, Durham, and National Science Foundation Grant GP-23655.
\dagger Supported in part by Grant USAFOSR 69-1812B.

Key Words and Phrases: approximation, interpolation, spline, natural spline, spline smoothing
 CR Categories: 5.13
 Language: Algol

procedure SPLINECOEFF ($m, n, X, Y, W, C, q, S, e p s$, mach,maxit,fail); value m, n, maxit; integer m, n, q, maxit; real S, eps,mach; array X, Y, W, C; label fail;
comment 1 . The purpose of this procedure is to generate the coefficients $\left\{c_{i}\right\}_{1}{ }^{n}$ in the representation

$$
\begin{equation*}
s(x)=\sum_{i=1}^{n} c_{i} B_{i}(x) \tag{1}
\end{equation*}
$$

of a natural spline of degree $2 m-1$ (in terms of a local basis $\left.\left\{B_{i}(x)\right\}_{1}{ }^{n}\right)$ for the splines which solve certain data smoothing and interpolation problems. It is based on algorithms described in [2]. To describe the problems, let m and n be integers ($m, n \geq 1$) and suppose $\left\{x_{i}\right\}_{1}{ }^{n},\left\{y_{i}\right\}_{1}{ }^{n}$ and $\left\{w_{i}\right\}_{1}{ }^{n}$ are prescribed real numbers, with $x_{1}<x_{2}<\cdots<x_{n}$ and $w_{i}>0, i=1,2, \ldots, n$. Suppose $p>0$ and $\mathrm{S}>0$. For appropriately smooth f we define
$J(f)=\int_{-\infty}^{\infty}\left(f^{(m)}(x)\right)^{2} d x$
$E(f)=\sum_{i=1}^{n} w_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$.
The spline interpolation problem is
minimize $J(f)$ subject to $E(f)=0$.
We can solve either of two data smoothing problems:
minimize $[J(f)+p E(f)]$
or
minimize $J(f)$ subject to $E(f) \leq S$.
In all cases, the solutions are certain natural splines of degree
$2 m-1$ with knots $\left\{x_{i}\right\}_{1}{ }^{n}$ which can always be represented in the form (1). We assume that $n \geq 2 m$, in which case the solutions are unique, and there is a convenient basis $\left\{B_{i}(x)\right\}_{1}{ }^{n}$.

Determining the $\left\{c_{i}\right\}_{1}{ }^{n}$ in problem (4) involves setting up and solving a system of n equations with a $2 m-1$ banded matrix. Similarly (5) leads to a system with a $2 m+1$ banded matrix. Solving problem (6) depends on the fact that for small S there is a unique $p=p(S)$ such that the solution of (5) for this p is the solution of (6). The parameter $p(S)$ is the unique positive solution of
$f^{2}(p)=E\left(s_{p}\right)=S$,
where s_{p} is the solution of (5) corresponding to p. Equation (7) is solved by Newton's method applied to
$f^{-1}(p)=S^{-\frac{1}{2}}$.
Then (6) is solved approximately in the sense that a spline s is determined so that
$|E(s)-S|<e p s \sqrt{n}$;
comment 2. We describe the parameters of SPLINECOEFF. The integers m and n must satisfy $m \geq 1, n \geq 4 m-1$. The real arrays $X[1: n], Y[1: n]$, and $W[1: n]$ must satisfy $X[1]<\cdots<X[n]$ and $W[i]>0, i=1,2, \ldots, n$. The integer q has nonnegative values. In case $q=0$, the procedure solves (4)-i.e. produces the coefficients of the natural interpolating spline (1) of degree $2 m-1$ with knots at the $X[i]$'s. The coefficients are returned in the array of real numbers $C \mid 1: n]$.

If $q=1$, problem (5) is solved with smoothing parameter $p:=S$, a specified positive real number. Again the coefficients are returned in array C. Finally, if $q=2$ the iterative process described in comment 1 is carried out to determine a spline s satisfying (9). S and eps must be positive real numbers. The parameter maxit should be a positive integer specifying the maximum number of iterations desired in solving (8).

The parameter mach is to be the largest machine number such that $1+$ mach $=1$: It is machine dependent, of course. The label fail is for the purpose of exiting from SPLINECOEFF if certain situations arise (e.g. if maxit is exceeded). These are explained in detail in comments 7, 11, and 15;
comment 3. SPLINECOEFF calls on four other procedures called BANDET, and BANSOL, ENDBASIS, MIDBASIS. It is assumed these procedures are defined in the driver program-we describe their bodies later. The driver program should provide two arrays for workspace, namely, $X X R, X X[1: n, 1: 2 m]$;
begin
integer $k, k 1 ; k:=m+m ; k 1:=k-1$;
begin
integer $a, i, j, l, i 1, i 2, m 1, m 2, r, v, g, l 1, i 2$; real $F, F F, f 1, s 2, p, d, h, h 1$;
array $E, B, B W E[1: n,-m: m], L B[1: n, 1: m], N I K, T[0: n], Z, U[1: k] ;$ integer array $I N T[1: n]$;
$l:=n ; a:=k+k ; r:=$ if $n>a$ then a else n;
for $j:=1$ step 1 until k do
begin
$l:=l-1 ; r:=r-1 ;$
for $i:=1$ step 1 until l do
$X X[i, j]:=X[i+j]-X[i] ;$
for $i:=1$ step 1 until r do
$X X R[i, j]:=X X[n-i-j+1, j] ;$
end j;
for $i:=1$ step 1 until n do
for $j:=-m$ step 1 until m do
$B[i, j]:=0 ;$
comment 4. The array B is to contain the values of $B_{j}\left(x_{i}\right)$, where $B_{j}(x)$ are the local basis elements of (1). There are essentially three kinds of basis functions, namely (see [2|)

$$
B_{i}(x)=\left\{\begin{array}{l}
Q_{2 m, i}(x), \quad i=1,2, \ldots, m \\
N_{2 m, i}(x), \quad i=m+1, \ldots, n-m \\
\widetilde{Q}_{2 m, i}(x), \quad i=n-m+1, \ldots, n
\end{array}\right.
$$

Let $\widetilde{B}=\left(B_{j}\left(x_{i}\right)\right)$. Because of the support properties of the $B_{j}(x), \tilde{B}$ is $2 m-1$ banded and we may store it as follows:

Specifically, $B_{i, j}=B_{i+j}\left(x_{i}\right)=\widehat{B}_{i . i+j}$ for $j=\max (1-m$, $1-i), \ldots, \min (m-1, n-i), i=1,2, \ldots, n$;
for $l:=1$ step 1 until $k 1$ do

begin

for $j:=1$ step 1 until $l-1$ do
$T[j]:=X X[j, l-j] ;$
$T[l]:=0$;
$l 2:=$ if $l+k 1>n$ then n else $l+k l$;
for $j:=l+1$ step 1 until $/ 2$ do
$T[j]:=X X[l, j-l] ;$
END BASIS ($k, l, n, T, X X, N I K)$;
$l:=$ if $l>m$ then l else m;
for $j:=l 1$ step 1 until $/ 2$ do
$B[l, j-m-l+1]:=N I K[j] ;$
end leftpoints;
for $l:=k$ step 1 until $n-k$ do
begin
for $j:=l-k 1$ step 1 until $l-1$ do
$T[j]:=X X[j, l-j] ;$
$\mathbf{T}[l]:=0 ;$
for $j:=l+1$ step 1 until $l+k 1$ do
$T[j]:=X X[l, j-l] ;$
MID BASIS ($k, l, n, T, X X, N I K)$;
for $j:=l-k 1$ step 1 until $l-1$ do

$$
B[l, j+m-l]:=N I K[j]
$$

end midpoints;
for $l:=1$ step 1 until k do

begin

for $j:=1$ step 1 until $l-1$ do
$T[j]:=X X R[j, l-j] ;$
$T[l]:=0$;
$l 2:=$ if $l+k 1>n$ then n else $l+k 1$;
for $j:=l+1$ step 1 until $l 2$ do
$T[j]:=X X R[l, j-l] ;$
END BASIS (k,l,n,T,XXR,NIK);
$l 1:=$ if $l>m$ then l else m;
for $j:=l 1$ step 1 until $l 2$ do
$B[n-l+1, m+l-j-1]:=N I K[j]$
end rightpoints;
comment 5 . When $q=0$ or if q was changed from 2 to 3 in attempting to do smoothing (see comment 9), the coefficients $\left\{c_{i}\right\}_{1}{ }^{n}$ of the interpolating spline are computed from the linear system $\bar{B} C=Y$;
interpol:

$$
\text { if } q=0 \vee q=3 \text { then }
$$

begin
$m 1:=m-1 ;$
for $i:=1$ step 1 until n do
for $j:=-m 1$ step 1 until $m 1$ do
$B W E[i, j]:=B[i, j] ;$
goto linsol
end;
comment 6 . For $q=1,2$, or 4 (see comment 12) the C array is computed from the linear system
$\left(\tilde{B}+p^{-1} \tilde{E}\right) C=Y$,
where
$\tilde{E}_{l_{j}}=w_{l}^{-1} \beta_{l_{j}}$,
$\beta_{l j}=f 1_{j} \prod_{i=\max (1 . i-m)}^{\min (n, j+m)} 1 /\left(x_{l}-x_{i}\right), j=1, \ldots, n, l=\max (1, j-m) \ldots$,
$\min (n, j+m)$, and
$f 1_{j}=(-1)^{m}(2 m-1)! \begin{cases}1, & j=1,2, \ldots, m, \\ \left(x_{j+m}-x_{j-m}\right), & j=m+1, \ldots, n-m, \\ (-1)^{n+m-j}, & j=n-m+1, \ldots, n .\end{cases}$
The β 's are the coefficients of certain divided differences. The array \tilde{E} is $2 m+1$ banded and is stored in E in a form similar to B. The quantity d is an estimate for $\|\tilde{E}\|_{1}$;
$f 1:=-1 ; v:=k-1 ; i 1:=1 ; i 2:=m ; d:=0$;
for $i:=2$ step 1 until m do $f 1:=-f 1 \times i$;
for $i:=m+1$ step 1 until v do $f 1:=f 1 \times i$;
for $j:=1$ step 1 until n do
begin
if $j>n-m$ then begin $f 1:=-f 1 ; f:=f 1$ end
else if $j \leq m$ then $f:=f 1$
else $f:=f 1 \times X X[j-m, k]$;
if $j>m+1$ then $i 1:=i 1+1$;
if $i 2<n$ then $i 2:=i 2+1$;
for $l:=i 1$ step 1 until $i 2$ do
begin
$f f:=f ; v:=l-1 ;$
for $i:=i 1$ step 1 until v do
ff $:=f f / X X[i, l-i] ;$
for $i:=l+1$ step 1 until $i 2$ do
$f f:=-f f / X X[l, i-l] ;$
$E[l, j-l]:=f f / W[l] ;$
$d:=d+a b s(E[l, j-l])$
end l;
end E matrix;
$d:=d / n$;
$m 1:=m ; r:=-1 ; s 2:=\operatorname{sqrt}(S) ; m 2:=m-1$;
if $q=2$ then $p:=10 \times$ mach $\times d$
else if $S<10 \times d \times$ mach then
begin
$q:=7 ;$ goto fail
end
else $p:=S$;
comment 7. The matrix \tilde{E} is singular. Hence in the case $q=1$, if $p<10 \times$ mach $\times\|\tilde{E}\|_{1}$, the matrix (10) will be very close to singular since $\|\widetilde{B}\|_{1} \approx 1$. In this case we exit and set $q=7$;
comment 8 . If $q=2$ we need to carry out the iteration described in comment 1 . Since $f^{-1}(p)$ in (8) is concave (see [3, 4]), we want to choose the first guess p^{0} for Newton's method such that $f^{-1}\left(p^{0}\right)<S^{-4}$. We choose $p^{0}=10 \times \operatorname{mach} \times\|\tilde{E}\|_{1}$ (see comment 7);
nextit:
comment 9 . When $p>d / 10$ mach, the matrix $p^{-1} E$ is considered insignificant in (10) and the smoothing problem (5) is replaced by the interpolation problem. In this case we set $q=3$;
if $p>d / 10 / m a c h$ then

```
    begin
    q:= 3; goto interpol
    end;
    r:=r+1;
    if r> maxit then
    begin q:= 6; goto fail; end;
    for }i:=1\mathrm{ step 1 until }n\mathrm{ do
    for j:=- - m step 1 until m do
        BWE[i,j]:= B[i,j]+E[i,j]/p;
linsol:
    BANDET(BWE,LB,INT,n,m1);
    for i:= 1 step 1 until }n\mathrm{ do
        C[i]:=Y[i];
    BANSOL(BWE,LB,C,INT,n,m1);
    if q<2\veeq=3 then goto exit;
    comment 10. We now calculate F=f
    tion (9);
    F:= 0;l:= m2;i1 := 0;
    for i:= 1 step 1 until ndo
    begin
        if i>n-m2 then l:= l-1;
        if i1>-m2 then i1:= i1-1;FF:= - Y[i];
        for j:= il step 1 until / do
            FF:= FF+B[i,j]\timesC[i+j];
    F:=F+FF\timesFF\timesW[i];T[i]:=FF;
    end;
    if abs(F-S)<eps\times >qrt(n\timesabs(S) then
    begin S:=F; goto exit end;
    comment 11. It may happen that the choice of po (see comment
        8) leads to }\mp@subsup{s}{p}{}\mp@subsup{}{}{0}\mathrm{ with }\mp@subsup{f}{}{-1}(\mp@subsup{s}{p}{}\mp@subsup{}{}{0})>\mp@subsup{S}{}{-\frac{1}{2}}\mathrm{ . In this case we set }q=
        and exit.
    This means the initial choice of S is too large;
    comment 12. In some cases the iteration may lead to sp}\mathrm{ , with
        f-1}(\mp@subsup{S}{j}{\prime})>\mp@subsup{S}{}{-\frac{1}{2}}\mathrm{ . (Because of the concavity of f-1 this is theoreti-
        cally impossible.) We set q=4 and exit. Sec also comment
        15;
    if F<S then
    begin
        if r=0 then begin q=5;,goto fail end
        else begin q=4;S:== F; goto cxit end
    end;
    comment 13. We now compute }FF=f(p)\times\mp@subsup{f}{}{\prime}(p)\mathrm{ and carry out
        one step of the Newton process;
    for i:= 1 step 1 until ndo
        C[i]:=W[i]\timesT[i];
    BANSOL (BWE,LB,T,INT,n,m);
    FF:= 0; l:= m2; i1 := 0;
    for }i:=1\mathrm{ step 1 until }/\boldsymbol{d}\mathrm{ do
    begin
        if }i>n-m2\mathrm{ then }l:=l-1
        if il>-m2 then il := i1-1;f1:=0;
        for j:= il step 1 until l do
            f1:= f1+B[i,j]\timesT[i+j];
        FF:=FF-C[i]\timesf1;
    end;
    p:=p\times(1+F\times(s2-sqrt(F))/s2/FF);
    goto nextit;
exit:
    end;
    comment 14. Choice of parameters. It is known that the condition
        number of the system }\overline{B}C=Y\mathrm{ for spline interpolation in-
        creases at least exponentially with m (see de Boor [1]). It is also
        related to the spacing of the {\mp@subsup{x}{i}{}\mp@subsup{}}{1}{n}\mathrm{ . We have computed splines}
        to order 20 (m=10) with knot spacing
```

 \(\pi=\frac{\max _{i}\left(x_{i+1}-x_{i}\right)}{\min _{i}\left(x_{i+1}-x_{i}\right)}\)
 up to 1000 , without difficulty. For many problems a choice of
a small m is desirable e.g. $m=2,3$ lead to cubic and quintic splines, respectively. The size of the parameter n is naturally limited by the storage capability of the machine and the time available for computation-it seems to have little or no effect on conditioning.

The choice of $\left\{w_{i}\right\}_{1}{ }^{n}$ and S for smoothing depends on the confidence we have in the data $\left\{y_{i}\right\}_{1}{ }^{n}$. It has been suggested [3] that w_{i} should be chosen as δy_{i}^{-2}, where δy_{i} is an estimate of the standard deviation of the ordinate y_{i}. A practical upper bound for the choice of w_{i} is (mach $)^{-2}$, where mach is defined in comment 2. If we have more confidence than this in the data, then it is probably accurate to machine word length, and we should set $q=0$ and do interpolation rather than smoothing. When $q=1$, the choice of p (input through S) for problem (5) is problematical. There really is no dependable scheme for choosing it (see the remarks in [4]) unless more is known about the problem. For $q=2$, it is recommended [3] that S be chosen in the interval $n-(2 n)^{\frac{1}{2}} \leq S \leq n+(2 n)^{\frac{1}{2}}$. The param. eters eps and maxit influence each other. For most applications it would seem that eps should not be too small-we often used 10^{-1};
comment 15. Summary of output after execution. After the execution of SPLINECOEFF, the values of q, S provide information on the computation. If $q=0,1,2$, then computation proceeded normally, and the desired coefficients are stored in array C. If $q=3$ (see comment 9) interpolation instead of smoothing has been carried out (if the user insists on doing smoothing, S must be increased). If $q=4$ (see comment 12) the program delivered the solution of problem (6) with the S returned in the output. (If the user insists on a solution of (6) with the prescribed S, then the problem can be rerun with a write statement providing the values of p and f in each iteration. Then an appropriate p can be estimated by interpolation and the program reentered with $q=1$.) If $q=5$ (see comment 11), the user must either reduce S or consider doing a least squares fit. If $q=6$, maxit has been exceeded. If $q=7$ (see comment 7), then the initial value of p prescribed for problem (5), i.e. $q=1$ initially, is too small. The value of p can be increased or a least squares fit should be used;
end SPLINECOEFF;
real procedure SPLINEDER ($v, X, l, C, m, n, a r g)$;
value v, l, m, n, C, arg;
integer v, l, m, n; real arg; array X, C;
comment 16. Given a spline s of the form (1) with coefficients $\left\{c_{i}\right\}_{1}{ }^{n}$ SPLINEDER produces the value $\mathrm{s}^{(v)}(\mathrm{arg})$ of the v th derivative of s for the argument arg.
$\mathbf{s}^{(v)}(a r g)$ is computed by evaluating certain local basis splines corresponding to degree $2 m-v$. The procedures MIDBASIS and END BASIS are used here. Then $\mathrm{s}^{(v)}(\arg)$ is a linear combination of these quantities with coefficients $\left\{c_{i}^{(v)}\right\}_{1}^{n-\eta}$ (see [2, Lemmas 5.1 and 5.2]). The $c_{i}^{(v)}$ are computed from the c_{i} 's by certain recursions, carried out by procedure CV bclow;
comment 17. We note that $\mathbf{s}^{(2 m-1)}$ is piecewise continuous with possible discontinuities at the knots $\left\{x_{i}\right\}_{1^{n}}$. The procedure always returns $s^{(2 m-1)}\left(x_{i}+\right)$ if called with arg $=x_{i}$ a knot;
comment 18. We describe the parameters of SPLINEDER. The integers m and n and the array $X[1: n]$ are as in procedure SPLINECOEFF. The array $C[1: n]$ is the output of SPLINECOEFF. The integer v must satisfy $0 \leq v \leq 2 m-1$. The real number arg and the integer l satisfy $1 \leq l \leq n-1$ and $X[l] \leq \arg <X[l+1]$; begin
integer $k ; k:=m+m-v$;
begin
array T, NIK[0:n], $Z, Q I K$, PIK[0:k]; real s;
integer $i, j, i 1, i 2, p v l, q v l, r v l, m v, l u, l 1, l 2$;
procedure $C V(C, X, r, s, n, m, v)$; value r, s, n, m, v;
integer r, s, n, m, v; array C, X;
comment 19. $C V$ computes $\left\{c_{i}^{(v)}\right\}_{i-r}$. It should be noted that
$C V$ is a recursive procedure;

begin

integer $j, r 1, s 1$;
if $v:=0$ then goto exit else if $v \leq m$ then begin
$C V(C, X, r, s+1, n, m, v-1)$;
for $j:=r$ step 1 until s do
$C[j]:=$ if $j \leq m-v$ then $-C[j]$
else if $j \leq n-m$ then
$(C[j+1]-C[j]) /(X[m+j]-X[j-m+v])$
else $C[j+1]$
end
else
begin $r 1:=$ if $r>1$ then $r-1$ else 1 ; $s 1:=$ if $s<n+v-2 \times m$ then s else $s-1$; $C V(C, X, r 1, s 1, n, m, v-1)$;
if $s=n+v-2 \times m$ then $C[s]:=0$; for $j:=s$ step -1 until r do
$C[j]:=(C[j]-C[j-1]) /(X[j+2 \times m-v]-X[j \mid)$

end;

exit:
end $C V$;
comment 20. The numbers $p v /$ and $q v l$ give the range of $c^{(v)}$'s corresponding to nonzero basis elements in the expansion of $\mathrm{s}^{(v)}($ arg $)$;
if $v<m$ then
begin
$p v l:=$ if $l<m$ then 1 else $l-m+1$;
$q \nu l:=$ if $n<l+m$ then $n-v$ else $l+m-v$;
end
else
begin
$p v l:=$ if $l<k$ then 1 else $l-k+1$;
$q \nu l:=$ if $l<n-k$ then l else $n-k$;
end;
$C[0]:=0$;
$C V(C, X, p v l, q \nu l, n, m, v)$;
$s:=0$;
if $v<m$ then goto v / m;
for $j:=p \nu l$ step 1 until $q v l+k$ do
$T[j]:=a b s(\arg -X[j]) ;$
MIDBASIS ($k, l, n, T, X X$, NIK) ;
for $j:=p v l$ step 1 until $q v /$ do
$s:=s+C[j] \times N I K[j] ;$
goto exit;
v / m :
if $l<k$ then
begin
for $j:=1$ step 1 until $l+k$ do
$T[j]:=a b s(X[j]-a r g)$;
ENDBASIS ($k, l, n, T, X X, N I K)$;
for $j:=p v l$ step 1 until $q v l$ do $s:=s+C[j] \times N I K[j+m-1] ;$
end else
if $l>n-k$ then
begin
for $j:=1$ step 1 until $n-l+k+1$ do
$T[j]:=a b s(\arg -X[n-j+1])$;
$l 1:=$ if arg $>X[l]$ then $n-l$ else $n-l+1$;
ENDBASIS ($k, l 1, n, T, X X R$, NIK);
for $j:=p v l$ step 1 until $q v l$ do
$s:=s+C[j] \times N I K[n+m-v-j] ;$
end
else
begin
for $j:=l-k+1$ step 1 until $l+k$ do
$T[j]:=a b s(X[j]-\arg) ;$

MIDBASIS ($k, l, n, T, X X$, NIK $)$;
for $j:=p v l$ step 1 until $q v l$ do

$$
s:=s+C[j] \times N I K[i-k+m] ;
$$

end;
exit:
for $i:=1$ step 1 until \boldsymbol{v} do
$s:=s \times(m+m-i) ;$
splineder $:=s$
end inner block
end splineder;
procedure MIDBASIS ($k, l, n, T, X X, N I K$);
value k, l, n; integer k, l, n; array $T, X X$, NIK;
comment 21. This procedure implements case I of [2]. It computes the value of certain normalized B-splines $N_{i, k}^{k}(a r g)$ at an arg which enters indirectly through the array T via $T[j]=|x[j]-\arg |$.
After execution $N I K[j]$ contains $N_{j, k}^{k}(\arg), j=\max (1, l+1-k)$,
..., l;
begin
integer $i, j, i 1, i 2$;
$N I K[l]:=1 ; N I K[l+1]:=0$;
$i 1:=i 2:=l$;
for $i:=2$ step 1 until k do
begin
if $i \leq l$ then
begin
$i 1:=i 1-1 ; N I K[I 1]:=0 ;$
end;
if $n-i<l$ then $i 2:=i 2-1$;
for $j:=i 1$ step 1 until $i 2$ do
$N I K[j]:=T[j] \times N I K[j] / X X[j, i-1]+T[i+j] \times$
$N I K\{j+1] / X X[j+1, i-1] ;$
end;
end midbasis;
procedure $\operatorname{ENDBASIS}(k, l, n, T, X X, N I K)$;
value k, l, n; integer k, l, n; array $T, X X, N I K$;
comment 22. This procedure implements case II of [2] to compute the quantities (7.4) of [2] at an argument arg which enters through the array T as in comment 21;
begin
integer $i, j, k 1, l 1, l 2$; real temp 1, temp 2 ;
array $Q[0: k,-1: k+l]$;
$k 1:=k-1$;
for $i:=0$ step 1 until k do
for $j:=l-2$ step 1 until $l+i$ do
$Q[i, j]:=0 ;$
$Q[1, l]:=1 / X X \mid l, 1] ; Q[0,-1]:=T[2] / X X[1,1] ;$
for $i:=2$ step 1 until k do
begin
for $\mathrm{j}:=l$ step 1 until $i-2$ do
begin
temp $1:=T\lfloor j+1\rfloor$
$Q[i, j]:=Q[i-2, j-2]+(t e m p 1+T[j]) \times Q[i-2, j-1]+$ $t e m p 1 \times t e m p 1 \times Q[i-2, j] ;$
end;
if $i>l$ then
begin

$$
\text { temp1 }:=T[i] ; \text { temp } 2:=\text { tem } p 1 \times t e m p 1 / X X[1, i-1] ;
$$

$$
Q[i, i-1]:=Q[i-2, i-3]+(\text { temp } 1+T[i-1]-\text { temp } 2) \times
$$ $Q[i-2, i-2]+$ temp $2 \times Q[i-2, i-1] ;$

end;
$l 1:=$ if $i>l$ then i else l;
$l 2:=$ if $l+i-1>n-1$ then $n-1$ else $l+i-1$;
for $j:=11$ step 1 until $/ 2$ do
$Q[i, j]:=(T[j-i+1] \times Q[i-1, j-1]+T[j+1] \times Q[i-1, j]) /$
$X X[j-i+1, i]$;
end i;
if $l>1$ then $N I K[l-1]:=0$;
for $j:=l$ step 1 until $k 1$ do

NIK[j] := $Q[k, j] ;$
l2: $=$ if $k+l-1>n-1$ then $n-1$ else $k+l-1$;
for $j:=k$ step 1 until 12 do
$N I K[j]:=Q[k, j] \times X X[j-k+1, k] ;$
end ENDBASIS;
procedure BANDET ($A, B, I N T, n, m$);
value n, m; integer n, m; array A, B; integer array $I N T$;
comment 23. BANDET decomposes the $2 m+1$ banded $n \times n$ matrix A in an upper triangular matrix A and a lower triangular matrix B using Gaussian elimination with complete pivoting. Details of the interchanges are stored in the array $I N T$. The arrays are dimensioned as follows $A[1: n,-m: m], \quad B[1: n, 1: m], \quad \operatorname{INT}[1: n]$. For further details see [5];

begin

integer i, j, k, l; real x;
$l:=\mathrm{m}$;
for $i:=1$ step 1 until m do
begin
for $j:=1-i$ step 1 until m do
$A[i, j-l]:=A[i, j] ;$

$l:=l-1$;

for $j:=m-l$ step 1 until m do
$A[i, j]:=0$
end i;
$l:=m$;
for $k:=1$ step 1 until n do
begin
$x:=A[k,-m] ; i:=k ;$
if $l<n$ then $l:=l+1$;
for $j:=k+1$ step 1 until $/$ do if $a b s(A[j,-m])>a b s(x)$ then
begin $x:=A[j,-m] ; i:=j$ end;
$\operatorname{INT}[k]:=i$;
if $i \neq k$ then
for $j:=-m$ step 1 until m do
begin
$x:=A[k, j] ; A[k, j]:=A \mid i, j] ; A[i, j]:=x$
end j;
for $i:=k+1$ step 1 until l do
begin
$x:=A[i,-m] / A[k,-m] ; B[k, i-k]:=x ;$
for $j:=1-m$ step 1 until m do
$A[i, j-1]:=A[i, j]-x \times A[k, j] ;$ $A[i, m]:=0$
end i
end k
end BANDET;
procedure $\operatorname{BANSOL}(A, B, C, I N T, n, m)$;
value n, m; integer n, m; array A, B, C; integer array $I N T$;
comment 24. The parameters $A, B, I N T, n$, and m come from
BANDET. BANSOL solves the system decomposed by BANDET with right-hand side C. The solution is returned in $\{C \mid i\}\} 1^{n}$ (see [5]);
begin
integer i, j, k, l; real x;
$l:=m$;
for $k:=1$ step 1 until n do
begin
$i:=I N T[k] ;$
if $i \neq k$ then
begin $x:=C[k] ; C[k]:=C[i] ; C[i]:=x$ end;
if $l<n$ then $l:=l+1$;
for $\boldsymbol{i}:=k+1$ step 1 until l do
$C[i]:=C[i]-B[k, i-k] \times C[k]$
end k;
$l:=-m$;
for $i:=n$ step -1 until 1 do

```
    begin
    x:=C[i];j:= i+m;
    for }k:=1-m\mathrm{ step 1 until l do
        x:= x - A[i,k]\timesC[k+j];
    C[i]:=x/A[i,-m];
    if l<m then l:= l+1
    end i
end BANSOL;
```

Acknowledgment. We wish to thank Harold Eidson for useful suggestions and for checking the algorithm. The referees were also very helpful.

References

1. de Boor, C. On calculating with B-splines. J. Approx. Th. 6 (1972), 50-62.
2. Lyche, Tom, and Schumaker, Larry L. Computation of smoothing and interpolating natural splines via local bases.
SIAM J. Numer. Anal. 10 (1973), 1027-1038.
3. Reinsch, C.H. Smoot 'ng by spline functions. Numer. Math. 10 (1967), 177-183.
4. Reinsch, C.H. Smoothing by spline functions, II. Numer.

Math. I6 (1971), 451-454.
5. Martin, R.S., and Wilkinson, J.H. Solution of symmetric and unsymmetric band equations and the calculation of eigenvectors of band matrices. Numer. Math. 9 (1967), 279-301.
6. Woodford, C.H. An algorithm for data smoothing using spline functions. BIT 10 (1971), 501-510.

Algorithm 481

Arrow to Precedence Network Transformation [H]

Keith C. Crandall [Recd. 15 Jan. 1973]
Department of Civil Engineering, University of California, Berkeley, CA 94704

Key Words and Phrases: critical path, networks, precedence networks
CR Categories: 3.23, 5.40
Language: Fortran

Description

Purpose. Many of the recent application programs in the area of critical path scheduling and resource allocation are written for the precedence networking convention $[1,2,3]$. Since only a few of these programs accept networks defined by the arrow convention directly, a method of transforming arrow convention networks into precedence convention is required. This algorithnn generates the required transformation by producing a list of followers for each nondummy arrow activity. New labels are produced for each transformed activity and replace the ($i-j$) labels associated with arrow networks. (The new label is actually the activity input sequence value, but this can easily be modified to any desired notation by using the input sequence value as a subscript to any array containing the desired notation.)

The logic used in the transformation can also be utilized to produce a list of precedecessors if they are desirable. (This order is required by IBM [3] but is performed internally.) The role of arrays (II and $J J$) would be reversed and the array (ILOC) would refer to $(J J)$ vice (II).

Method. The values of the arrow $(i-j)$ labels are utilized to trace the followers of a particular activity. Activities which have an (i) label corresponding to the (j) label of the activity under evaluation are logical followers. The major problems rest with the arrow $D U M M Y$ activities. These activities are not really followers but indicate instead addition nodes that precede logical followers. The transformation routine recursively traces all possible following nodes and determines the input sequence number of all logic followers.

To perform this search with the minimum storage required the following procedure is utilized. First the arrays ($I I, J J, N L O C$) are filled by scanning the description of the arrow network and storing in input order the converted value of the (i) label into array ($I I$); the converted value of the (j) label into array $(J J)$; and finally the array ($N L O C$) contains the input sequence value. To aid in determining which activities were dummies, the last two arrays ($J J$, $N L O C$) have their values set negative when the corresponding activity was a dummy. Since the minimization of storage was a goal, all incoming $(i-j$) labels were converted into a numerical sequence starting with one. The algorithm indicates the required modification if this is undesirable. (The actual conversion method is described in the routine $H A S H$.) Once the arrays are filled, the transformation routine can be called.

Routine (TRNFRM) first sorts the array (II) into ascending
order, maintaining the same correspondence of each element in array ($N L O C$). A sequential scan is then performed on the sorted array (II), and the array is overlayed by an array, (ILOC), containing pointers to the beginning of each different (i) value in the sorted array. That is element (1) of the new array points to the start of the value (1) in the sorted array; element (10) to the start of (10), and so forth. Finally the array $(J J)$ is scanned sequentially and the nonnegative values become subscripts to the pointer array (ILOC). This yields the beginning location and number of activities that had an (i) label equal to the current (j) value. The values stored in ($N L O C$) are the input sequence numbers of the followers. If the follower was a $D U M M Y,(N L O C)$ negative, a recursive search is performed for additional followers.

Finally for each nonnegative entry in $(J J)$, the description is retrieved from the scratch tape and the activity and its followers are output.

Test Results. Testing was performed by two additional programs which are also included in the algorithm listing in case they are desired. Routine (TEST) reads the arrow network filling the arrays (II, JJ, NLOC) as described. Routine (HASH) performs the required conversion to the $(i-j)$ labels during this process.

Tests include networks with sequential dummies and other unusual conditions. In each case tried, the transformation was correct. The inefficiency of the bubble up sort could adversely affect very large networks and an alternative would be to pre-sort the arrow network and eliminate the sorting portion. The following table indicates execution time versus number of activities for tests run on a CDC 6400.

| Execution Times for Various Networks Tested | |
| :--- | :--- |
| Number of | Execution |
| activities | time in sec. |
| 16 | 0.42 |
| 44 | 1.68 |
| 177 | 2.08 |
| 461 | 5.81 |
| 677 | 10.76 |

The routine does not test for logical errors in the arrow network such as loops, so these would be transformed without change into the precedence notation.

References

1. Fondahl, John W. A non-computer approach to the critical path method. Tech. Rep. No. 9, Dep. of Civil Engineering, Stanford U., Stanford, Calif., 1962.
2. Baker, Wilson C. Spread and level CPM. Tech. Rep. No. 56, Dep. of Civil Engineering, Stanford U., Stanford, Calif., 1967. 3. IBM, Project Management System. Application description manual (H20-0210), 1968.

Algorithm

(Note: A sample driver is included to help clarify the use of this algorithm-L.D.F.)
C THIS IS THE TEST PROGRAM FOR THE TRANSFORMATION ALGORITHM. C IT READS THE ARRO: NETWORK DESCRIPTION AND ESTABLISHES C THE INPUT ARRAYS FOR THE ROUTINE (TPNFRM).
C IT IS LIMITED TO 7 DE ACTIVITIES IN ARROW NOTATION. C The routine (hash) IS UTILIZED TO CPEATE A SEQUENTIAL C NUMBERING.
C NUMBERING.
C THE ROUTINE (TRNFRM) CREATES THE ACTUAL TRANSFORMATION. C THE ROUTINE (TRNFRM) CREATES THE ACTUAL TRANSFORMATION.
C TAPE (2) -A BINARY SCRATCH TAPE (FILE) WITH ALL DATA TO C TAPE(2) -A BINARY SCRATCH TAPE (FILE) WITH ALL DATA TO
C BE INCLUDED WITH THE TRANSFORMED ACTIUITIES.NOTE- CHANGE C BE INCLUDED WITH THE TRANSFORMED ACTIUITIES.NOTE
C STMT 140 TO CORRESPOND WITH ACTUAL DATA STORED. C STMT 146 TO CORRESPOND WITH ACTUAL DATA STORED.
C TAPE (4) -A BINARY SCRATCH TAPE FOR TRANSFERING C TAPE(4) - A BINARY SCRATCH TAPE FOR TRANSFERING THE TRANS C FORMED DATA BACK TO THE MAIN PROGRAM FOR PRINT OUT, OR ANY C OTHER JSE. THE DATA IS IN THE FORM (I,M,FOL) WHERE I IS

C the new activity label and m is the number of follovers
c AND FOL is an array containing the labels of the m
C FOLLOWERS...
INTEGER II(700), JJ(700), NLOC(700), ACT(2), DUMMY,

* HASH, FOL(50)

DATA DUMMY/SHDUMMY/. IBLNK/1H /
c READ IN ARROU ACTIVITIES ACCORDING TO CURRENT FORMAT.
99999 FORMAT(1H1, 13H INPUT ORDEP, 6X, 5HLABEL, 5X, 4HDESC, * 7HRIPTION, 12X, 3HDUR)

99998 FOMMAT (2A4, 2A10, $13,3 \mathrm{X}, \mathrm{I} 6)$
99997 FORMAT (I14, $4 \mathrm{X}, \mathrm{A} 4,1 \mathrm{H}-, \mathrm{A}_{4}, 3 \mathrm{X}, 2 \mathrm{~A} 10,16$)
99996 FORMAT (IH1, $19 H T$ PANSFORMED NETWORK//I4H LABEL DESCR,

* 6HIPTION, 10x. 3HDUR, 3x, 9HFOLLOWERS)

99995 FORMAT (1H, 17, $2 \mathrm{X}, 2 \mathrm{~A} 16,14$)
99994 FORMAT (1H+, 36X, 1515/(37X, 1515))
WRITE (6.99999)
$\mathrm{NACT}=0$
NTAPE2 $=0$
18 READ (5,99998) $1, \mathrm{~J}, \mathrm{ACT}$, IDUR
C FORMAT (99998) WILL VARY FOR INDIVIDUAL NEEDS.
C The tist for end of data is a elank card.
If (I.EQ.IBLNK) GO TO 30
NACT $=$ NACT +1
c list the arrow data for reference.
GRITE (6,99997) NACT, i, J, ACT, IDUR
c CONVERT THE ALPHANJMERIC I-J LABELS INTO SEQUENTIAL
C NUMERIC. (ROUTINE HASH PERFORMS THIS TASK.)
c STORE THE CONVERTED LABELS IN THE ARRAYS (II AND JJ).
C NOTE. THE VALUE STORED IN ARPAY (JJ) IS ALSO SAVED AS
C VARIABLE J TO ALLOU IT TO BE USED AT STMT 20 UITHOUT AN
C ARRAY REFERENCE. II(NACT) $=\operatorname{HASH}(1)$
$J=\operatorname{HASH}(J)$
$\mathrm{JJ}($ NACT $)=J$
C Store the incoming injut sequence value in array (nloc) NLOC(NACT) $=$ NACT
C EXAMPLE OF USEP CREATED LABELING, SEE ALSO COMMENTS AFTER
c STMT 140 IN ROUTINE TRNFPM.
C LABLS (NACT) = CONCATENATION OF INPUT (I-J)
c the concatenation is performed in accordance vith valid
c fortran for the compiler in use.
C TEST FOR A DUMMY ACTIVITY AS it wILL NOT be transformed. IF (ACT(1).EQ.DUMMY) GO TO 20
c save dn tape (2) all information relating to the activity
C JUST READ THAT IS TO BE ASSOCIATED WITH THE TRANSFORMED
C ACTIVITY. (FOD THE EXAMPLES ONLY THE DESCRIDTION AND DUP.
C ARE SAVED, ACTUAL USERS VILL have individual requirements) NTAPE2 $=$ NTAPE2 +1 KRITE (2) ACT, IDUR GO TO 10
C If an activity was a dummy, so note by setting the
c location and Ju label vectors negative.
26 NLOC (NACT) $=-$ NACT
C RETURN FOR NEXT INPUT ACTIVITY. TRANSFER WILL BE MADE TO
C STMT 30 WHEN LAST INPUT IS RECOGNIZED. GO TO 10
30 REUIND 2
C CALL the transformation poutine., description of input
C ARRAYS IS FOUND IN THE (TRNFRM) ROUTINE. CALL TRNFRM(NACT, II, JJ, NLOC)
C PRINT OUT THE TRANSFORMED NETWORK.. WRITE (6,99996) DO $40 \mathrm{~N}=1$, NTAPE2
C recover the required data relating to the transformed
C ACTIVITY FROM TAPE(2) AND TAPE (4).
READ (2) ACT, IDUR
URITE (6,99995) I, ACT, IDUP
IF (M.LE. ©) GO TO 40
IF (M.LE. CR ITE $(6,99994)$ ($F O L(M M), M M=1, M)$
48 Conitinue STOP END INTEGER FUNCTION MASH(N)
C THIS ROUT INE CONVERTS THE ALPHANUMETIC ARROU LABELS INTO A C SEQUENTIAL NUMERIC EQUIVALENT. THE MAXIMUM NUMBER OF
c separate activity labels is 500 for this test package.
c THE ACTUAL INCOMING LABEL IS STORED IN ARRAY (HOLD) AND
C THE SEQUENTIAL NUMERIC EQUIVALENT IS STORED IN ARPAY (SAVE)
C Variable (num) provides the sequential numbers. INTEGER HOLD(500), SAVE(500)
DATA NUM/日/, HOLD/500*Q/
C USE A MODIFIED HASHING ROUTINE TO FIND AND store the c equivalent values.
C NN is a has hed value for the input variable n.
99999 FORMAT (34 H EXCEEDED THE EVENT TABLE CAPACITY) NN $=\operatorname{MOD}(1 A B S(N / 68719476736), 375)$
10 DO: 26 I=NN,500
c the array (hold) is examined starting with the hashed C value, if the array element contains the input yariable n, c TRANSFER IS MADE TO STMT 40 and The EQUIVALENT SEQUENTIAL C NUMBER IS RECALLED FROM ARRAY (SAVE). IF THE ARRAY ELEMENT C CONTAINS A ZERO, TRANSFER IS MADE TO STMT 30 AND A
c NUMERICAL
c EQUIVALENT is ASSIGNED. THE SEARCH OF (HOLD) CONTINUES

C UNTIL AN OPEN ELEMENT IS FOUND..
IF (HOLD(I).EQ.N) GO TO 4 G
IF (HOLD(1).EQ.0) GO TO 30
20 CONTINUE
c IF NO OPEN ELEMENT WAS FOUND AND NN $=1$ THERE ARE NO OPEN
c ELEMENTS IN THE ENTIRE ARRAY. IF NN IS NOT EQUAL TO 1 , SET
C IT TO 1 and SEARCH LOWER PART OF (HOLD)...
IF (NN.EQ.1) GO TO 60
NN $=1$
C FOUND A NEW LABEL-GIVE it AN EQUIVALENT SEQUENTIAL NUMBER
30 HOLD (I) $=\mathrm{N}$
NUM $=$ NUM +
IVAL
SAVE NUM
SAVE(I) = IVAL
C TRANSFER TO STMT 50 and SAVE A FEDU'NDANT BECALL FROM
c (SAVE)
GO TO 58
40 IVAL = SAVE(I)
50 HASH = IVAL
RETURN
C an error message is generated if the numbep of events
C EXCEEDS THE DIMENSION ALLOWED.
60 WRITE $(6,99999)$
STOP
END

SUBROUTINE TRNFPM(NACT, II, JJ, NLOC)
C ALL DATA WAS STORED IN THE ARRAYS (II-JJ-NLOC) BY THE
C CALLING ROUTINE AND COMFORMS TO THE FOLLOWING DESCFIPTION
C (NACT) -THE NUMBER OF ARPOW ACTIVITIES INCLUDING DUMMIES.
C (II) -AN ARRAY OF CONVERTED - I- LABELS STORED IN THE ARROW
C NETVORK INPUT ORDEP. REFER TO THE COMMENTS AFTER STMT 140
C IF USER GERERATED LABELS ARE DESIRED.SEE ALSO COMMENTS IN C MAIN ROUTINE.
C (JJ) -AN ARRAY LIKE (II) FOR - J- LABELS EXCEPT THAT THE C VALUE IS NEGATIUE FOR ALL DUMMY ACTIVITIES.
C (NLOC) -AN ARRAY INDICATING INDUT OPDER. (A SEQUENTIAL LIST C SUCH THAT THE ABSOLUTE VALUES WOULD RANGE FROM ONE TO NACT C , NOTE - THE VALUE STORED IN (NLOC) IS NEGATIVE 'HEN THE C NOTE-THE UALUE STORED IN (NLOC) IS NEGAT
C CORRESPONDING ARROK ACTIVITY WAS A -DUMMY - .
C COPRESPONDING ARROK ACTIVITY WAS A -DUMMY*
C TAPE (4) -A BINARY SCRATCH TAPE FOR TRANSFEPING THE TRANS
C TAPE (4) -A BINARY SCDATCH TAPE FOR TRANSFEPING THE TRANS-
C FOPMED DATA BACK TO THE MAIN PROGRAM FOP PRINT OUT, OP. ANY
C OTHER USE. THE DATA IS IN THE FOPM (I,M,FOL) VHEPE 1 IS
C THE NEW ACTIVITY LABEL AND M IS THE NUMBER OF FOLLOUEOS
C AND FOL IS AN ARRAY CONTAINING THE LABELS OF THE M
C FOLLOWERS...
C STORAGE FOR THE APRAYS IS ALSO SPECIFIED IN THE CALLING
C PROGPAM.

> INTEGER I I (1), JJ(1), NLOC(1)

THE DIMENSION STAMENTS FOR (II-JJ-NLOC) MUST BE MODIFIED
C FOR USE WITH SOME FORTRAN COMPILERS.
DIMENSIONS ON STACK AND FOL LIMIT THE NUMBEF OF FOLLOUING
DIMENSIONS ON STACK AND FOL LIMIT THE NUMBEF OF FOLLOUING
C ACTIVITIES TO 50
C STATEMENT FUNCTION TO PROVIDE OUERLAYING ARRAY (II) KITH
C ARRAY (ILOC). PEFER TO THE WARNING AFTE? STMT 30, IF A
C SEPERATE ARRAY (ILOC) IS UTILIZED THE STATEMENT FUNCTION
C WOULD BE DELETED.
99999 FORMAT (41H THE FOLLOWING ACTIVITY APPEARS TO HAVE M,

* 22hore than 50 followers)

99998 FORMAT (41H SUSPECT THE FOLLOWING ACTIVITY IS INVOLV.

* 4IHED IN A NETVORK LOOD - CHECK INPUT DATA. /I5)

ILOC(I) $=11(I)$
C REWIND TAPE 4 FOR TRANSFER OF TRANSFORMED DATA.
REWIND 4
C PLACE THE ARRAYS (II-NLOC) IN ASENDING ORDEQ USING (II)
C AS THE SORT UARIABLE. (THIS IS A BUBELE UP SORT.)
LIMIT = NACT - 1
DO $20 \mathrm{M}=1$, LIMIT
$L L=M+1$
$D O \quad 10 N=L L$
DO $10 \mathrm{~N}=\mathrm{LL}, \mathrm{NACT}$
1 HOLD $=I I(N)$
$I I(N)=1 I(M)$
$I I(M)=I H O L D$
IHOLD $=$ NLOC(N)
NLOC(N) $=$ NLOC(M)
NLOC $(M)=$ IHOLD
16 CONTINUE
20 CONTINUE
C REPLACE THE ARRAY (II) MITH AN INTEGER POINTER SUCH THAT
C THE (K TH) ELEMENT OF THE POINTE!? POINTS TO THE FIRST
C LOCATION IN THE SORTED ARRAY (II) WRICH CONTAINS THE VALUE
C LOCATION IN THE SORTED ARRAY (II) WFICH CONTAINS THE
C (K). THE POINTER ARRAY WILL BE CAILED (ILOC) SINCE IT
C INDICATES THE BEGINNING OF SORTED ARROW NODES (ARPAY II)
C INDICATES THE BEGINNING OF SORTED ARROW NODES (ARPAY I
C AND THESE NODES ARE NORMALLY REFERRED TO AS (I) NODES.
C THE VARIABLE (N) IS SET TO THE MINIMUM VALUE IN ARRAY (II)
C N IS ALSO A VARIABLE THAT INDICATES THE CURRENT VALUE
C UNDER INVESTIGATION IN ARRAY (II).
C L IS A POINTER TO THE ARRAY (ILOC), INDICATING THE LOCATION C OF THE NEXT ELEMENT. IN ADDITION :- ALSO INDICATES THE NEXT C SEQUENTIAL NUMBER, AND IS USED TO FIND THE END NODES. (NODES C WHERE THERE EXISTS NO -I - IN THE (I-U) PAIRS,AND THERE-
C FORE NO ENTRY IN THE SORTED (II) ARRAY..)
$N=1$
$L=2$
DO $50 \quad I=2$,NACT

```
    IF (II(I).EQ.N) GO TO 50
    N=II(I)
    30 IF (N.EQ.L) GO TO 40
C THIS TEST FINDS THE REFERENCES TO THE END NODE WHICH WILL
C NOT BE IN THE SORTED ARRAY OF (I) NODES.
C WARNING -- ALTHOUGH INPUT ORDER IS NOT NORMALLY IMPORTANT
C REFERENCE TO END NODES,THAT IS (I-J) PAIRS WITH -J- EQUUAL
C TO AN END NODE,SHOULD BE POSITIONED IN THE LATEP. PORTION
C OF THE INPUT DATA.THIS RESTPICTION CAN BE ELIMINATED BY
C UF THE INPUT DATA.THIS RESTRICTION 
C II(L) IS SET TO ZERO TO INDICATF. THAT NODE -L- IS AN END
C NODE IN THE ARROW INPUT NETWORK.
    II(L) = \emptyset
    L = = L + + l
C STORE THE SUBSCRIPT VALUE OF THE ARRAY (II) IN TO THE
C OVERLAYED ARRAY (:LOC).
    40 II(L) = 
                L}=L
    50 CONTINUE
C SET THE NEXT LOCATION OF THE POINTEP. TO CNE PAST THE LAST
C ACTIVITY NUMBER.
    MAXLST = L - l
C FOR ALL NON DUMMY ACTIVITIES,TRANSFORM THE ARROW LOGIC
C CONSTRAINTS INTO THE PRECEDENCE NOTATION BY GIUING THE
C ACTIVITY A LABEL EQUAL TO ITS INPUT ORDEF,THEN LIST ALL
C TRANSFORMED FOLLONEPS.
            DO 160 1=1,NACT
            L=0
C L INDICATES THE LENGTH OF THE STACK AND M IS THE NUMBER OF
C FOLLOWERS.THE STACK IS USED TO RECURSIVEL.Y TRACE ALL
C DUMMIES TO FIND LOGICAL FOLLOWERS.
            N = JU(I)
C IF N IS NEGATIVE THE ARROW ACTIVITY WAS A DUMMY.
                            IF (N.LE.8) GO TO 168
            LOC = N
            IF :LOC.GT.MAXLST) GO TO 110
C LOC HAS A VALTJE EQUAL TO THE -J- LABEL OF ACTIVITY I'NDER
C TRANSFORMATION. ILOCR POINTS TO THE BEGINNING OF THAT SAME
C TRANSFORMATION. ILOCR POINTS TO THE BEGINNING OF THAT
C VALUE OF (MAXLST) THE -J- LABEL ON THE AFROV NETVORK VAS
C UALUE OF (MAXLST) THE -J- LABEL ON THE AFRON N
            ILOCK = I LOC\LOC)
            IF (I_OCR.LE.Q) GO TO 110
C IF ILOCR IS NEG CR ZERO THE ACTIVITY HAS NO FOLLONERS.
    70 LOC = LOC + 1
            NN = ILOC(LOC) - ILOCR
C NN INDICATES THE NUMBEP. OF ELEMENTS IN ARPAY (II) WITH THE
C VALUE.
            IF (NN.LE.0) GO TO 70
            DO 100 LOOP=1,NN
                LOCS = NLOC (ILOCR)
                IF (LOCS.EQ.0) GO TO 90
                \F (LOCS.EQ.0) GO TO 90
C LOCS NEGATIVE INDICATES A DUMMY AND THESE ARE MELD IN THE
C STACK FOR LATER CONTINUED SEARCH OF FOLLOWEPS.
            L}=L+
            *(GT.50) GO TO 130
            SACK(L) = -LOCS
            MO TO 90
    80 M=M+1
C A FOLLOWER HAS BEEN FOUND.STORE IT IN THE APRAY (FOL).
                            IF (M.GT.50) GO TO 120
            FOL(M) = LOCS
C INCREASE THE POINTER TO NEXT POTENTIAL FOLLONER.
    90 ILOCR = ILOCR + 1
    100 CONTINUE
    1:0 IF (L.LE.0) GO TO 140
C IF (L) IS NON-ZERO,THERE ARE DUMMY LINKAGES TO BE CONSIDER
CED. (N) NILL INDICATE FIRST OF THESE AND THE SEARCH FOR
F FOLLOWERS WILL CONTINUE.
            K = STACK(L)
            N=1ABS(JJ(K)
            L}=L-
C ERROR MESSAGES IF DIMENSIONS EXCEEDED- LOOP ASSUMED
    120 WRITE (6,99999)
    130 WRITE (6,99998) I
    40 WRITE (4) I, M, FOL
C IF USER LABELS ARE USED THEY WOULD BE RETRIEUED THUSLY --
I = LABLS(I)
DO 150 LOOP=1,M
                    ISUB = FOL(LOOP)
                    FOL(LOOP) = LABLS(ISUB)
                ONTINUE
    WHERE LABLS WOULD BE AN ARRAY PASSED IN THE ARGUMENT LIST
    160 CONTINUE
        REWIND 4
        REWIND
        RETU
```


Algorithm 482

Transitivity Sets [G7]

John McKay and E. Regener* [Recd. 21 May 1973]
School of Computer Science, McGill University, Mon-
treal, Quebec, Canada

Key Words and Phrases: transitivity, sets
CR Categories: 5.39
Language: Algol
Let $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ be a set of k permutations on the set $\Omega=\{1,2, \ldots, n\}$. The transitivity set containing i (or orbit of i) under P is the set of images of i under the action of products of elements of P. This procedure computes these orbits.

On entry, $i m[i, j]$ is assumed to contain the image of i under P_{j}, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, k$. The procedure numbers the orbits consecutively starting at 1 . On exit ind $[i]$ contains the number of the orbit to which i belongs. The orbits appear in order in orb $[1: n]$. In orb the first element of each orbit is tagged negative. If only one permutation is input, the array orb contains it (tagged) in disjoint cycle form on exit.

The algorithm, which involves no searching, is related to one for finding a spanning tree of a graph [1]. The set P need not, in general, generate a group-it is sufficient that it generate a semigroup on Ω.

References

1. Cannon, J. Ph.D. Th., Sydney U., Sydney, N.S.W., Australia, 1969.
```
Algorithm
procedure orbits (ind, orb, im, \(n, k\) );
    value \(n, k\); integer \(n, k\);
    integer array ind, orb, im;
begin
    integer \(q, r, s, j, n t, n s, n o r b\);
    for \(j:=1\) step 1 until \(n\) do ind \([j]:=0\);
    norb \(:=0\); ns \(:=1\);
    for \(r:=1\) step 1 until \(n\) do if ind \([r]=0\) then
    begin
        norb \(:=\) norb +1 ; ind \([r]:=\) norb;
        \(n t:=n s ;\) orb \([n s]:=-r ; s:=r\);
\(a\) :
        \(n s:=n s+1\);
        for \(j:=1\) step 1 until \(k\) do
        begin
            \(q:=\operatorname{im}[s, j] ;\)
            if ind \([q]=0\) then
            begin
                \(n t:=n t+1 ;\) orb \([n t]:=q ;\) ind \([q]:=\) norb
            end
        end;
        if \(n s \leq n t\) then
        begin \(s:=\operatorname{orb}[n s] ;\) go to \(a\) end
    end
end
* Now at Faculté de Musique, University de Montréal, Montréal, P.Q., Canada.
```

Editors' note: Algorithm 483 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is $\$ 16.00$ (U.S. and Canada) or $\$ 18.00$ (elsewhere). If the user sends a small tape (wt. less than 1 lb .) the algorithm will be copiedon it and returned to him at a charge of $\$ 10.00$ (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithms at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10. The sequence member is right justified in column 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.L.D.F. and A.K.C.

Algorithm 483

Masked Three-Dimensional Plot Program with Rotations [J6]

Steven L. Watkins [Recd. 26 March 1973] Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78712

Key Words and Phrases: plotting, three-dimensional plotting CR Categories: 4.41
Language: Fortran

Description

PLOT3D will accept three-dimensional data in various forms, rotate it in three-space, and plot the projection of the resulting figure onto the $x-y$ plane. Those lines or portions of lines which should be hidden by previous lines are masked.

Each call to PLOT3D causes one line to be plotted. A line consists of a sequence of points in three-space which will be connected using linear interpolation between adjacent points. This sequence of points is specified by three sequences of real numbers, the x, y, and z components of each point. Each of these sequences of real numbers can be specified either as being equally spaced, and therefore denoted by an initial value and an increment, or as being contained in a real array. There is no restriction that any of the three component sequences be either increasing or decreasing, and the number of points may change between successive calls.

The masking technique used by PLOT3D is based on two premises: (1) lines in the foreground (positive z direction) are plotted before lines in the background; and (2) a line or portion of a line is masked (hidden) if it lies within the region bounded by previously plotted lines. Masking is then achieved by maintaining a visible maximum function and a visible minimum function. Those portions of each line falling within the region bounded by these functions are considered to be hidden. Any line which exceeds user

Fig. 1.

specified limits is truncated without the loss of the plotter origin. A call to PLOT3D before initiating a new figure can be used to simulate a line drawn at the bottom of the paper; therefore, only those portions of each line lying above all previous lines will be drawn.

The data are transformed by a three-dimensional rotation determined by two user specified angles. PLOT3D assumes a righthand coordinate system with x running the length of the paper, y running across the width, and z coming out of it. The figure is first rotated by an angle of θ degrees clockwise about the x-axis. The resultant figure is then rotated by an angle of \varnothing degrees about its y-axis. The plotted figure is the projection of this final figure onto the $x-y$ plane. Figure 1 demonstrates rotations about the vertical or y-axis, and Figure 2 demonstrates rotations about the horizontal or x-axis. Warning: Some rotations will alter the foreground/background relationships between the lines, and thus the order in which they should be plotted to avoid violating the first masking premise.

As an option, the coordinates of the vertices of the figure and
the projection of these vertices onto the $y=0$ plane of the figure will be returned in a user supplied array. This information can then be used to put a frame on the figure, as is done in the example program, or to connect the endpoints of each line, or to plot axes, etc.

Crosshatched figures are easily obtained as is demonstrated by the example program which generated Figure 3. Some perspective can be achieved by modifying the data scaling parameters between successive calls. PLOT3D attempts to minimize plotter movement by beginning at the alternate end of successive lines. A more detailed description of the parameters is contained in the comments at the beginning of the program listing.

This routine was developed at the Applied Research Laboratories on their Control Data Corporation 3200 computer system. The following system routines were utilized:
$\operatorname{IROUND}(X)$ returns the rounded integer value of its floating point argument.
$I P L O T(I X, I Y, J)$ moves the pen to the point ($I X, I Y$) where:
$I X$ is the number of plotter increments along the length of the paper from the origin
$I Y$ is the number of plotter increments across the width of the paper from the origin
J is the pen status
2 -lower pen before moving
3 -raise pen before moving
If J is negative, the origin will be reset at ($I X, I Y$).

Fig. 2.

Fig. 3.

2FOGSHAT! H: MG

Algorithm

(A sample driver has been included to illustrate the use of this algorithm L.D.F. and A.K.C.)

```
C THIS PFOGRAM GENERATES AN EXAMPLE OF A CFOSSHATCHED
C FIGL'RE, THAT IS, ONE FIGL'RE WHOSE LINES RUN PAPALLEL TO
G THE X-AXIS OVERLAYED BY ANOTHER FIGUPE WHOSE LINES IUN
C PARALLEL TO THE Z-AXIS. THE FINCTION IS A PRODUCT TO THO
C SINC (I.E. SINF(X)/X) FUNCTIONS.
    DIMENSION :1ASK(200(), VERTEX(16), OUTBUF(6!), z(61)
C FIRST FIGURE
C generate data flNNing parallel to x-axis
            DO 20 NLINE=1,EI
            BEAMU = SINC(15.\ell*SINF((3*NLINE-93)*\ell.&17453293))
            DO l& NPOINT=1,61
                OUTBUF(NPOINT)
    * BEAMU*SINC(7.5*SINF((3*NP , 3)*D.017453293)) +
    * 0.25
    10 CONTINUE
C PLOT EACH LINE AS IT IS COMPUTED
            CALL PLOT3D(10, 0.0, OUTEUF, 0.0, 0.1, 4.0. -0.1,
            * NLINE, 61, -45., -45., 5.8, 3.0, 10.0, MASK, 0)
    20* CONTINUE
C SECOND FIGL'PE
C GENERATE APRAY OF Z-COMPONENTS
            DO 30 NLINE=1,61
            #(NLINE)}=\mp@code{= - .1*(NLINE-1)
    30 CONTINNE
C GENERATE DATA RUNNING PARALLEL TO z-AXIS
            DO 5C NLINE=1,61
            x = 0.1*(NLINE-1)
            EEAMV = SINC(7.5*SINF((3*NLINE-93)*Q.017453293))
            DO 40 NPOINT=1,61
                OUTEL'F(NPOINT) =
            * BEAMU*SINC(15.0*SINF((3*NPOINT-93)*&.017453293)) +
            * 0.25
    48 CONTINUE
C PLOT EACH LINE AS IT IS COMPUTED
            CALL PLOT3D(10II, X, OUTBU'F, Z, 0.0, 4.0, 1.Q,
            * NLINE, 61, -45., -45., 5.0, 3.0, 10.0, MASK, UEPTEX
    50 CONTINUE
C DRAN A FRAME ON THE FIGUPE
            CALL FRAMER(3, VERTEX, MASK:
            STOP
            END
```

 SUBROUTINE PLOT3DCIUXYZ, XDATA, YDATA, ZDATA, XSCALE,
 * YSCALE, ZSCALE, NLINE, NPNTS, PHI, THETA, XPEF,
 * YREF, XLENTH, MASK, VERTEX)
 C MASKED 3-DIMENSIONAL PLOT PROGRAM WITH ROTATIONS
C THIS FOUTINE WILL ACCEPT 3-DIMENSIONAL DATA IN VARIOUS
C FORMS AS INPUT, ROTATE IT IN 3-SPACE TO ANY ANGLE,
C AND FLOT THE PPOJECTION OF THE FESULTING FIGUPE ONTO THE
C XY PLANE. LINEAR INTEFPOLATION IS USED BETNEEN DATA
C POINTS. THOSE LINES OF A FIGUPE UHICH SHOULD EE HIDDEN EY
A PREVIOUS LINE ARE MASKED.
C THE MASKING TECHNIQUE U'SED BY THIS ROUTINE IS EASED ON
TVO PPEMISES -
LINES IN THE FOREGROUND (POSITIVE 2 LIPECTION)
ARE PLOTTED BEFOPE LINES IN THE EACKGROUND
A LINE OR PORTION OF A LINE IS MASKER (HIDDEN) I
A LINE OR PORTION OF A LINE IS MASKEC (HIDDEN) IF
IT LIES WITHIN THE REGION EOUNDED EY PREVIOUSLY

C PLOTTED LINES.
CACH CALL TO PLOT3D CAU'SES ONE LINE OF A FIGT'PE TO EE
C TWO PARAMETERS OF THE PLOTTEF. ARE SET ON THE INITIAL CALL
C FOR EACH FIGIRE
C (PIPI) IS THE NUMBER OF PLOTTER INCREMENTS PER INCH.
C (NYPI) IS THE NUMEER OF INCPEMENTS AVAILARLE ACROSS THE
C WIDTH OF THE PAPER (Y-DIRECTION).
C WHEN A NEW FIGURE IS INITIATED, THE PLOTTEP OPIGIN IS SET
C AT THE BOTTOM OF THE PAPER EY PLOT $3 D$ AND SHOULE NOT EE
C MOVED UNTIL THE FIGUFE IS COMPLETED.
C INPUT PARAMETERS -
C (IUXYZ) IS A FOUR DIGIT DECI:AAL INTEGER WHICH IS USED TO
C SELECT VARIOUS INPUT/OITTPUT OPTIONS. THESE DIGITS, IN
C DECREASING ORDER OF MAGNITUDE, KILL BE PEFERFED TO AS V,
C X, Y, AND Z.
C IF V. NE. \quad, THE VERTICES OF THE CURPENT FIGURE ANE THEIP
C PROJECTION ONTO THE Y=0 PLANE, WILL EE STORED IN A 16
C ENTEY REAL AFRAY (VERTEX), AND KILL BE UPDATED AS EACH
C LINE IS PLOTTED. THESE COORDINATES AFE IN INCHES AND
C RELATIVE TO THE CUPRENT PLOTTER ORIGIN. THE X Y PAIPS
C ARE ORDERED SO THAT THE FIPST PAIR COORESPONDS TO THE
C FIRST POINT OF THE FIGURE, THE SECOND PAIP COOPESPONDS
C TO THE LAST POINT OF THE FIPST LINE, AND THE FOLLOWING
C PAIRS APE OPDEPED IN A CIPCULAF FASHION. THE PAIPS ON T
C PAIRS APE OPDEPED IN A CIPCULAF FASHION. THE PAIPS ON
$C Y=\emptyset$ PLANE OF THE FIGURE, THEN FOLLOW IN THE SAME ORDEF.
C $Y=\emptyset$ PLANE OF THE FIGURE, THEN FOLLOU IN THE SAME ORDEF.
C IF V=, , THE VERTEX PARAMETER IS IGNOPED, EUT SHOULD NOT
C BE DELETED
C IF $X=\varnothing$, THE X-COMPONENTS OF THIS LINE ARE ASSUMED TO RE C EQUALLY SFACED, AND ARE COMPUTED BY
C WHERE (XDATA) IS THE INITIAL VALIE IN INCHES AND (XSCALE) C IS THE SPACING BETVEEN POINTS IN INCHES. IF X . NE. D, THE
C X-COMPONENTS OF THIS LINE APE READ FROM AN AFPAY AND
C MODIFIED EY
$X(I)=X D A T A(I) * X S C A L E$
C WHERE (XSCALE) IS A SCALE FACTOR.
C THE SAME RELATIONS HOLD FOR THE Y-COMPONENTS, THAT IS, IF C $Y=0$
C AND IF Y . NE. $\left.\quad \begin{array}{l}\mathrm{g} \\ \mathrm{C} \\ \mathrm{C}\end{array} \mathrm{I}\right)=\mathrm{YDATA}+(\mathrm{I}-1) * Y S C A L E$
C AND IF Y. NE. \quad Y(I) =YDATA $I) * Y S C A L E$
C IF $Z=\varnothing$, THE Z-COMPONENTS OF THIS LINE ARE ALL:ASSL'MED TO C BE EQUAL, AND ARE COMPUTED BY
C WHERE (NLINE) IS SOME INTEGER ASSOCIATED VITH THIS LINE.
C IF Z.NE. $日, ~ A G A I N$ WE HAVE
C WHEN (NLINE) IS EQUAL TO ONE, IT INDICATES THE BEGINNING
C OF A NEW FIGURE. A CALL TO PLOT3D FITH (NLINE) EQUAL TO
C ZERO EEFORE INITIATING A NEG FIGUPE SIMULATES A LINE DRALN
C ZERO EEFORE INITIATING A NEG FIGUPE SIMULATES A LINE DRAR THE OF THE PAGE. THEREFOPE ONLY THOSE PORTIONS
C AT THE BOTTOM OF THE PAGE
C OF A LINE LYING ABOVE ALL PREVIOUS LINES VILL BE PLOTTED.
C OF A LINE LYING ABOVE ALL PREVIOUS LINES VILL BE
C ALL OTHER PARAMETERS ARE IGNORED ON SUCH A CALL.
C ALL OTHER PARAMETERS ARE IGNORED ON SUCH A CALL,
C (NPNTS) IS THE NUMBEF OF POINTS ON THIS LINE, AND MAY EE
C ALTERED FROM LINE TO LINE.
C (PHI) AND (THETA) APE THE TWO ANGLES (IN DEGREES) USED TO
C SPECIFY THE DESIRED 3-DIMENSIONAL ROTATION. THE FOLLOUING
C TWO DEFINIATIONS OF THESE ROTATIONS ARE EQUIVALENT -
C IN TERMS OF FOTATIONS OF AXES, THE INITIAL SYSTEM OF AXES,
C XYZ, IS ROTATED EY AN ANGLE (PHI) COUNTERCLOCKIISE ABOUT
C THE Y-AXIS, AND THE RESULTANT SYSTEM IS LAEELED THE TUV
C AXES. THE TUV AXES ARE THEN ROTATED BY AN ANGLE (THETA)
C COUNTEPCLOCKWISE ABOUT THE T-AXIS, AND THIS FINAL SYSTEM
C IS LABELED THE PQR AXES. THE PLOTTED FIGUPE IS THE
C IS LAEELED THE PQR AXES. THE PURTTED FIGURE IS THE
C PROJECTION OF THE ORIGINAL FIGURE ONTO THE PQ-PLANE.
C PROJECTION OF THE ORIGINAL FIGURE ONTO THE PQ-PLANE.
C IN TERMS OF ROTATIONS OF COOPDDINATES, THE FIGUPE IS FIPS
C ROTATED BY AN ANGLE (THETA) CLOCKVISE ABOUT THE X-AXIS.
C ROTATED BY AN ANGLE (THETA) CLOCKYISE ABOUT THE X-AXIS
C THE RESULTANT FIGURE IS THEN POTATED BY AN ANGLE (PHI)
C THE RESULTANT FIGURE IS THEN POTATED EY AN ANGLE (PHI)
C CLOCKWISE ABOUT ITS Y-AXIS. THE PLOTTED FIGURE IS THE
C CLOCKUISE ABOUT ITS Y-AXIS. THE PLOTTED FIGUPE IS
C PROJECTION OF THIS FINAL FIGU'PE ONTO THE XY-PLANE.
C WARNING. SOME ROTATIONS WILL ALTER THE FOPEGROUND
C BACKGROUND RELATIONSHIPS BETVEEN THE LINES, AND
C THUS THE ORDER IN VHICH THEY SHOULD BE PLOTTED.
C (XFEF) AND (YREF) ARE THE COORDINATES, IN INCHES,
C RELATIUE TO THE PLOTTEP ORIGIN, TO EE USED AS THE OPICIN C OF THE FIGURE.
C (XLENTH) IS THE LENGTH, IN INCHES, TO WHICH THE PLOT IS C RESTRICTED. ANY POINT VHICH EXCEEDS THIS LIMIT, OP THE C LIMITS OF THE PAPEF IN THE Y DIPECTION (NYPI), YILL BE C SET TO THAT LIMIT.
C (MASK) IS AN INTEGER ARPAY OF 2*XLENTH*PIPI ENTRIES W'HICH C (MASK) IS AN INTEGER ARPAY OF 2*XLENTH*PIPI ENTEIES LHI
C IS USED TO STOPE THE MASK. THE CONTENTS OF THIS APRAY C IS USED TO STORE THE MASK. THE CONTENTS OF THI S ARRAY C SHOULD
C FIGURE.
C ALL PAFAMETERS EXCEPT (MASK) AND (UEPTEX) AFE PETUFNED C UNCHANGED.
C BETWEEN ANY TYO CALLS FOP THE SAME FIGUFE, ANY PAPAMETEP C CAN EE MEANINGFULLY CHANGED EXCEPT (XLENTH), (MASK), AND C (VERTEX).

INTEGEP. HIGH, OLDHI, OLDLOK
DIMENSION XDATA(1), YDATA(1), ZDATA(1), MASK(1),

* VERTEX(1)

DATA INIT, JUXYZ, SPHI, STHETA/-1, -1, -1.8E99, * - 1.0E99/

C INITIALIZATION PROCEDURES
C INITIALIZATION PROCELURE FOR A NEW FIGUPE
C TEST FOF SPECIAL MASK MODIFYING CALL
IF (NLINE.EG. ℓ) GO TO 550
C DETERMINE IF INITIALIIATION IS EEQUIFED
IF (NLINE.NE. 1) GO TO 20
C SET PLOTTEF PARAMETERS
PIPI $=100.0$
NYPI $=1090$

C RESET PLOTTER ORIGIN TO BOTTOM OF PLOT PAGE

$1=\mathrm{NYPI}+100$
CALL IPLOT ($0,-\mathrm{I},-3$)
C COMPUTE LENGTH OF PLOT PAGE IN INCREMENTS
LIMITX = XLENTH*PIPI + 0.5
C INITIALIZE MASKING ARRAY OVER THE LENGTH OF THE pLOT PAGE DO $10 \mathrm{~K}=1,1$ MASK (K) $=$ INIT
10 CONTINUE
INIT $=-1$
C SET THE NECESSARY INDICATORS FOR THE FIRST LINE OF A NEN
C FIGURE
$\operatorname{INCI}=-1$
C INPUT TYPE AND VERTEX INITIALIZATION
C DETERMINE IF INITIALIZATION IS REQUIRED
20 IF (JUXYZ.EQ.IUXYZ) GO TO 70
C SET INDICATORS FOR TYPES OF INPUT DATA AND SAVING UERTICES
$J U X Y Z=I V X Y Z$
INDZ $=1$
INDY $=1$
INDX $=1$
INDV $=1$
IF (JVXYZ.LT•1000) GO TO 30
INDV $=2$
30 IF (JVXYZ.LT.100) GO TO 40
$I N D X=2$
JVXYZ $=$ JUXYZ - 100
40 IF (JUXYZ.LT.10) GO TO 50
INDY $=2$
$J V X Y Z=J V X Y Z-10$
50 IF (JVXYZ.LT.1) GO TO 60
INDZ $=2$
$60 \mathrm{JVXYZ}=I V X Y Z$
C ROTATION INITIALIZATION
DETERMINE IF INITIALIZATION IS REQUIRED
70 IF (PHI.EQ.SPHI AND. THETA.EQ.STHETA) GO TO 80
C COMPUTE ROTATION FACTORS
SPHI $=\operatorname{SINF}(0.0174532925 * P H I)$
$\mathrm{CPHI}=\mathrm{COSF}(0.0174532925 * \mathrm{PHI})$
STHETA $=$ SINF $0.0174532925 * T H E T A)$
CTHETA $=\operatorname{COSF}(0.0174532925 * T H E T A)$
A1I = CPHI
A13 $=-$ SPHI
A21 = STHETA*SPHI
A22 $=$ CTHETA
A23 $=$ STHETA*CPHI
SPHI = PHI
STHETA $=$ THETA
C PROCESSING PROCEDURES
C SET FLAG TO MOVE THROUGH THE DATA ARRAYS IN THE OPPOSITE C DIRECTION

8®INCI = -INCI
C SET INDICATOR TO THE FIRST POINT TO BE PROCESSED
IF (I.NE. θ) $I=$ NPNTS +1
C LOOP TO PROCESS EACH POINT IN THE DATA ARRAYS
DO $530 \mathrm{~K}=1$, NPNTS
C DATA CALCULATION
$I=I+I N C I$
$G O T O \quad(90,100)$, INDX
$90 \quad \mathrm{X}=\mathrm{XDATA}+(1-1) *$ XSCALE
GO TO 110
$100 \quad X=X D A T A(I) * X S C A L E$
110 GO TO (120.130), INDY
$120 \quad Y=Y$ YATA $+(I-1) * Y S C A L E$
GO TO 140 (I-1) +YSCALE
$Y=$ TO 140
$130 \quad Y=Y D A T A(I) * Y S C A L E$
140 GO TO (150,160), INDZ
$150 \quad z=Z D A T A+(N L I N E-1) * Z S C A L E$
GO TO 170
$160 \quad Z=Z D A T A(1) * Z S C A L E$
C DATA ROTATION
$170 \quad X X X=A 11 * X+A 13 * Z+X R E F$ $X X=X X X$
$I X=I R O U N D(X X * P I P I)$
$Y Y Y=A 21 * X+A 23 * Z+Y R E F$
$Y Y=Y Y Y+A 22 * Y$
C RESTRICT FIGURE TO PLOT PAGE
IF (IX.LE. D) IX $=1$
IF (IX.LE.D) IX $=1$
IF (IX.GT.LIMITX) IX = LIMITX
IF (IX.GT.LIMITX) IX = LIMITX
$I F(I Y \cdot L T \cdot 10) I Y=10$
$I F(I Y \cdot G T \cdot N Y P I) I Y=N Y P$
$I F(I Y \cdot G T . N Y P I) ~ I Y=$
$I F(K . N E, I) G O$ TO 250
C (LOC) IS THE POSITION OF THE PREVIOUS POINT WITH RESPECT
C TO THE MASK

```
\(C \quad-1\) ABOVE THE MASK
```

-1
C PELOW THE MASK
PROCEDURE FOR INITIAL POINT OF EACH LINE
C LOCATE INITIAL POINT WITH RESPECT TO THE MASK THEN
C UPDATE THE MASK
LO $W=I X+I X$
HIGH $=1 \mathrm{LOW}+1$
MLOW = MASK(LOW)
MHIGH $=$ MASK(HIGH)
$1 F(M H I G H-I Y) 200,210,180$
180 IF (MLOV-IY) 190, 230,220
190 LOCOLD $=0$
LOCOLD $=8$
GO TO 240
$200 \operatorname{MASK}(\mathrm{HIGH})=I Y$
IF (ML.OW.EQ.-1).MASK L LOW $)=I Y$

```
    212: LOCOLD = +1
    GO TO 240
    MAEK(LOW) = IY
    220:MASK(LOW)=
C MOVE THE RAISED PEN TO THIS INITIAL POINT
    240 CALL IPLOT(IX, IY, 3)
        JX = IX
        JY = IY
    IYREF=IY
C STORE VERTICES IF REQUESTED
    IF (INDV.EG.1) GO TO 530
    INDEX = INCI + 6
    UERTEX(INDEX) = XX
    VERTEX(INDEX) = XX
    VERTEX(INDEX+&) =YY
    VERTEX(INDEX+8) = XXX
    IF (NLINE.NE.1) GO TO 530
    VERTEX(1) = XX
    UEFTEX(2) = YY
    VERTEX(9) = XXX
    VERTEX(10) = YYY
    GO TO 530
C SPECIAL CASE KHEFE CHANGE IN X COOPDINATE IS ZERO
C A SPECIAL PROUISION IS MADE AT THIS POINT SO THAT A LINE
C WILL NOT MASK ITSELF AS LONG AS THE X COORDINATE REMAINS
C CONSTANT
    250 IF (IX.NE.JX) GO TO 26e
        JY = IY
C COMPUTE CONSTANTS FOR LINEAR INTERPOLATION
    200 YINC = FLOAT(IY-JY)/ABS(FLOAT(IX-JX))
            INCX = (IX-JX)/IABS(IX-JY)
            YJ=JY
C PREFORM LINEAR INTERPOLATION AT EACH INCREMENTAL STEP ON
C THE X AXIS
    270 JX = JX + INCX
            YJ = YU + YINC
            JY = IROUND(YJ)
C LOCATE THE CURRENT POINT VITH RESPECT TO THE MASK AT THAT
C POINT THEN PLOT THE INCREMENT AS A FUNCTION OF THE
C LOCATION OF THE PREVIDUS POINT WITH RESPECT TO ITS MASK
            LOW = JX + JX
            HIGH= LOW - 1
            MLOW = MASK(LOW')
            MHIGH = MASK(HIGH)
    280 IF (MHIGH-JY) 300, 300, 29e
    290 IF (MLOKI-JY) 310, 320, 320
C THE CURRENT POINT IS ABOUE THE MASK
    3QQ LOC = +1
            IF (LOCOLD) 360, 370, 430
C THE CURRENT POINT IS WITHIN THE MASK
            LOC = O
            IF (LOCOLD) 340, 350, 330
C THE CURRENT POINT IS BELOW THE MASK
    320 LOC = -l 
C PLOT FROM ABOVE THE MASK TO WITHIN THE MASK
            F (MHIGH.LE.IYPEF) CALL IPLOT(JX, MHIGH, 2)
            GO TO 350
C PLOT FROM BELOW THE MASK TO WITHIN THE MASK
    340 IF (MLOW.GE.IYREF) CALL IPLOT(JX, MLOW, 2)
C PLOT FROM WITHIN THE MASK TO WITHIN THE MASK
    350 CALL IPLOT (JX, JY, 3)
            GO TO 520
C PLOT FROM BELOW THE MASK TO ABOVE THE MASK
    360 IF (MLOW-IYREF) 370, 380, 380
C PLOT FROM KITHIN THE MASK TO ABOVE THE MASK
    370 IF (MHIGH-IYREF) 400, 390, 390
    380 CALL IPLOT(JX, MLOW, 2)
    CALL IPLOT(JX, MHIGH, 3)
    GO TO 430
    IF (MHIGH.EQ.-1) GO TO 43E
    OLDHI = HIGH - 2*INCX
    IF (MASK(OLDHI)-JY) 420, 420,410
```



```
    CALL IPLO
    GO TO 430
    420 CALL IPLOT(JX-INCX, MASK(OLDHI), 3)
    430 MASK(HIGH) = JY
            IF (MLOW.EQ.-1) MASK(LOW) = JY
            CALL IPLOT(JX, JY, 2)
            GO TO 520
C PLOT FROM ABOVE THE MASK TO BELOW THE MASK
    440 IF (MHIGH-IYREF) 460, 460,450
C PLOT FROM WITHIN THE MASK TO BELOW THE MASK
    450 IF (MLOW-IYREF) 470, 470,480
    460 CALL IPLOT(JX, MHIGH, 2)
    CALL IPLOT(JX, MHIGH, 2)
    GO TO 510
    GO TO 510
    LDLOW = LOW - 2*INCX
    IF (MASK(OLDLOW)-JY) 490, 500, 500
    CALL IPLOT(JX, JY, 3)
    GO TO 510
    500 CALL IPLOT(JX-INCX, MASK(OLDLOV), 3)
C PLOT FROM BELOW THE MASK TO BELOW THE MASK
    5IØ MASK(LOK) = JY
    CALL ICLOT(JX, JY, 2)
    S2Q IYREF = JY
    LOCOLD = LOC
    IF (JX.NE.IX) GO TO 270
    530 CONTINLE
C RAISE PEN
    CALL IPLOT(JX, JY, 3)
```

ACM Transactions on Mathematical Software, Vol. 1, No. 3, September 1975.
REMARK ON ALGORITHM 483
Masked Three-Dimensional Plot Program with Rotations [J6]
[S. L. Watkins, Comm. ACM 17, 9 (Sept. 1974), 520-523]
Robert Feinstein [Recd 28 April 1975]
The Marine Biomedical Institute, The University of Texas Medical Branch at Galveston, 200 University Boulevard, Galveston, TX 77550

In the sample main program of Algorithm 483, line 13 should read:

* BEAMV*SINC (7.5*SINF ($(3 *$ NPOINT-93)*0.017453293 $))+$

Further, the algorithm does not define subroutine PLOT, which is called by FRAMER. Whereas IFLOT accepts coordinates in increments, PLOT accepts coordinates in inches.

I have modified this algorithm to run on a PDP $11 / 45$-GOULD 5000 and would be happy to supply a listing to anyone who desires it.

Algorithm 484

Evaluation of the Modified Bessel Functions $\mathrm{K}_{0}(\mathrm{z})$ and $\mathrm{K}_{1}(\mathrm{z})$ for Complex Arguments [S17]

Keith H. Burrell [Recd. 30 Mar. 1972| California Institute of Technology, Pasadena, CA 91109

Work supported by the Atomic Energy Commission under contract AT(04-3)767.

Key Words and Phrases: Bessel functions, Hankel functions, modified Bessel functions, Gauss-Hermite quadrature

CR Categories: 5.12
Language: Fortran

Description

Introduction. This procedure evaluates the real and imaginary parts of the modified Bessel functions $K_{v}(z)$ and $K_{1}(z)$ for values of the complex argument $z=x+i y$ in the half plane $x \geq 0$. (The notation $K_{n}(z)$ is fairly standard; the exact definition of the function is given in [1]).

Methods for the published algorithm. Many previous methods of calculating these functions have simply used the series expansion for arguments z of small magnitude (i.e. $|z| \precsim 11$) and the asymptotic expansion for larger arguments. Rewriting eqs. 9.6.11 and 9.7.2 of [1] in a form more suitable for recursive computation, the series expansion may be expressed as

$$
\begin{align*}
K_{0}(z) & =\sum_{i=0}^{\infty} t_{0 j}(z)(z / 2)^{2 j} /(j!)^{2} \tag{1}\\
K_{1}(z) & =1 / z-z / 2 \sum_{j=0}^{\infty} t_{1 j}(z)(z / 2)^{2 j} /(j!)^{2}, \tag{2}\\
t_{00} & =-(\ln (z / 2)+\gamma), \\
t_{0 j} & =t_{0(i-1)}+1 / j, \quad j>0, \\
t_{1 j} & =\left[t_{0 j}+1 /(2 j+2)\right] /(j+1), \quad j \geq 0,
\end{align*}
$$

where $\gamma=0.577 \ldots$ is Euler's constant; the asymptotic expansion

[^5]may be written as
\[

$$
\begin{aligned}
& K_{n}(z) \sim\left(\frac{\pi}{2 z}\right) \\
& \cdot e^{-2}\left[a_{n 0}+a_{n 1} / 1!(8 z)+a_{n 2} / 2!(8 z)^{2}+a_{n 3} / 3!(8 z)^{3}+\cdots\right] \\
& k_{0}=-1, \quad k_{j}=k_{f-j}-8 j, \\
& a_{00}=1, \quad a_{0 j}=\left(k_{j}-4\right) a_{0(j-1)}, \\
& a_{10}=1, \quad a_{1 j}=k_{j} a_{1(j-1)} .
\end{aligned}
$$
\]

Methods based solely on these expansions tend to be inefficient because of the large number of terms in the series that must be evaluated when $|z|$ gets as large as 10 . Further, they are of limited accuracy due to the loss of significant digits in summing the series when $y \ll x$ and $x \gtrsim 5$. To overcome these difficulties, the integral representation developed by Hunter [2] can be used.
$K_{n}(z)=\sqrt{ } \pi e^{-z} /\left(\Gamma\left(n+\frac{1}{2}\right)(2 z)^{n}\right) \int_{-\infty}^{+\infty} e^{-t^{2}} t^{2 n}\left(2 z+t^{2}\right)^{n^{-\frac{1}{4}}} d t$,

$$
\begin{equation*}
|\arg z|<\pi \tag{3}
\end{equation*}
$$

Hunter suggests evaluation of this integral by means of the trapezoidal rule, which is well suited to integrands of this type, but one can achieve equivalent accuracy with fewer evaluations of the integrand by using Gauss-Hermite quadrature [3].

To have a fast, accurate algorithm, the functions must be evaluated by different methods in different regions of the complex plane. Owing to the singularity at the origin for $K_{n}(z)$, only the series expansions will be useful near $z=0$. For moderate values of $|z|$, the integral representations will be the most useful, while for $|z|$ large, calculation of the asymptotic expansions will be faster than that of the integral. To decide exactly where each method should be used and how good the resulting algorithm is, one must be able to assess the speed and accuracy of each method. This could be done from first principles; but since close estimates of the error tend to involve considerable mathematical labor, I thought it easier to write a test algorithm which, although very slow, would evaluate $K_{0}(z)$ and $K_{1}(z)$ quite accurately.

Test algorithm. For $|z|<3$, the test algorithm uses the series expansions; otherwise, the integral representation in eq. (3) is evaluated using the trapezoidal rule. To find the error in this algorithm, consider first the truncation error caused by stopping after n terms of the series in eqs. (1) and (2).

Using the integral representation (eq. 9.6.17 in [1])
$K_{0}(z)=-1 / \pi \int_{0}^{\pi} d \theta e^{z \cos \theta}\left\{\gamma+\ln \left(2 z \sin ^{2} \theta\right)\right]$
and the identities
$K_{0}{ }^{\prime}(z)=-K_{1}(z)$ and
$\boldsymbol{e}^{z}=\sum_{m=0}^{n-1} z^{m} / m!+z^{n} /(n-1)!\int_{0}^{1} d t(1--t)^{n-1} e^{t z}$
it is easy to show that

$$
\begin{aligned}
& K_{0}(z)=\sum_{j=0}^{n-1} t_{0 j}(z)(z / 2)^{2 j} /(j!)^{2}+T_{0 n}(z) \text { and } \\
& K_{1}(z)=1 / z-z / 2 \sum_{j=0}^{n-1} t_{1 j}(z)(z / 2)^{2 i} /(j!)^{2}+T_{1 n}(z) \text { where } \\
& T_{0 n}(z)=-z^{2 n} /(\pi(2 n-1)!) \int_{0}^{1} d t(1-t)^{2 n-1} \int_{0}^{\pi} d \theta e^{t z \cos \theta} \\
& \quad\left(\gamma+\ln \left(2 z \sin ^{2} \theta\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
T_{1 n}(z)=z^{2 n+1} /(\pi(2 n+1)!) & \int_{0}^{1} d t(1-t)^{2 n+1} \int_{0}^{\pi} d \theta e^{t z \cos \theta} \\
& \cdot\left(1+(2 n+2+z t \cos \theta)\left(\gamma+\ln \left(2 z \sin ^{2} \theta\right)\right) .\right.
\end{aligned}
$$

At least four terms in each sum are taken by the test algorithm, thus

$$
\begin{aligned}
& \left|T_{0 n}(z)\right| \leq \frac{\sqrt{ } \pi}{2} e^{x}\left|t_{0 n}(z) \frac{(z / 2)^{2 n}}{(n!)^{2}}\right| \frac{|\gamma+\ln (2 z)|+\ln 4}{\left|t_{0 n}(z)\right|} \\
& \left|T_{1 n}(z)\right| \leq \frac{\sqrt{\pi}}{2} e^{x}\left|t_{1 n}(z) \frac{(z / 2)^{2 n+1}}{(n!)^{2}}\right| \\
& \frac{(|z|+2 n+2)(|\gamma+\ln (2 z)|+\ln 4)+1}{2(n+1)\left|t_{0 n}(z)+1 /(2 n)\right|} .
\end{aligned}
$$

Evaluation continues in the test program until $\mid t_{0 n}(z)(z / 2)^{2 n}(n!)^{-2} /$ $K_{0}(z) \mid<10^{-17}$ and $\left|t_{1 n}(z)(z / 2)^{2 n+1}(n!)^{-2} / K_{1}(z)\right|<10^{-17}$. Thus, defining $\mathcal{E}_{0}(z)$ and $\mathcal{E}_{1}(z)$ to be the absolute values of the relative errors in the computation of $K_{0}(z)$ and $K_{1}(z)$, we obtain the limits $\mathcal{E}_{0}(z) \leq 1.115 \times 10^{-15}$ and $\mathcal{E}_{1}(z) \leq 1.278 \times 10^{-15}$.

The errors in evaluating eq. (3) by the trapezoidal rule have been analyzed by Hunter [2]. Expressing the trapezoidal rule as
$\int_{0}^{\infty} F(t) d t=h\left[\frac{1}{2} F(0)+\sum_{r=1}^{\infty} F(r h)\right]-\frac{1}{2} E(h)$
he obtains bounds for $E_{0}(z, h)$ and $E_{1}(z, h)$, the errors in $K_{v}(z)$ and $K_{1}(z)$, respectively. The test algorithm uses $h=0.25$. For this, Hunter's formulas yield $\left|E_{0}(z, h)\right| \leq 3.047 \times 10^{-18}$ and $\left|E_{1}(z, h)\right|$ $\leq 4.008 \times 10^{-18}$.

By taking 32 terms in the sum in eq. (4), the truncation error can be made much smaller than the $E_{n}(z, h)$, so that $\mathcal{E}_{0}(z) \leq 4.236 \times$ 10^{-18} and $\mathcal{E}_{1}(z) \leq 5.435 \times 10^{-17}$. (Round-off error is not a problem for the test algorithm. The series is not subject to it for $|z| \leq 3.0$, and all the terms in the sum in eq. (4) have the same sign.)

Results of testing. The goal was to make the published algorithm accurate to a few parts in 10^{10}. On this scale, the test algorithm can be viewed as exact, at least for purposes of computing the modulus of the relative errors. Using the test algorithm, the published algorithm was found to be most efficient if the series are used for $|z|<4.3$; the integrals in eq. (3), evaluated with 15 point Gauss-Hermite quadrature, are used for $4.3 \leq|z| \leq 14.0$; and the asymptotic expansions are used otherwise.

During the check runs to find these points of division, it was noticed that the number of terms needed in the series could be predicted approximately by two simple functions of $|z|$. With this in mind, the error expression for the asymptotic expansions (eq. 9.7 .2 in [1]) was used to generate a similar function for these expansions. By predicting the number of terms needed, instead of making convergence tests in the loops that sum the expansions, an appreciable reduction in the number of computations can be achieved. This amounts to a 30 percent saving, for example, for the series expansions.

The most extensive test runs were done for $z=\rho e^{i \phi}$ having the values $\phi=0^{\circ}\left(5^{\circ}\right) 90^{\circ}$ and $\rho=0.1,0.5(0.5)$ 120.0. Another test run with $\rho=0.1,0.5(0.5) 30.0$ verified that
$K_{n}\left(\rho e^{i \phi}\right)=K_{n}^{*}\left(\rho e^{-i \phi}\right)$
by checking the values $\phi=-90^{\circ}\left(5^{\circ}\right) 90^{\circ}$. All tests were made using double precision arithmetic on an IBM 370/155. They showed that
$\mathcal{E}_{0}(z) \leq 3.55 \times 10^{-10}$ and
$\mathcal{E}_{1}(z) \leq 3.93 \times 10^{-10}$.
Finally, it should be noted that the algorithm actually returns the values of $e^{x} K_{0}(z)$ and $e^{x} K_{1}(z)$. For $|z|$ large, $\left|K_{n}(z)\right|$ ~ $e^{-x}(\pi / 2|z|)^{4}$ so that such a return expands the range of $|z|$ over which this procedure may be used.

References

1. Abramowitz, M., and Stegun, I.A. (Eds.) Handbook of Mathematical Functions. Applied Math. Series 55, National Bureau of Standards, U.S. Gov. Print. Off., Washington, D.C., 1964.
2. Hunter, D.B. The calculation of certain Bessel functions. Math. Comp. 18 (1964), 123-128.
3. Salzer, H.E., Zucker, R., Capuano, R. Tables of the zeros and weight factors of the first twenty Hermite polynomials. J. Res. Nat. Bur. Standards 48 (1952), 111-116.

Algorithm

```
    SUBROUTINE KZEONE(X, Y, RE0, IM|, REI, IMl)
C THE VARIABLES X AND Y ARE THE REAL AND IMAGINARY PARTS OF
C THE ARGUMENT OF THE FIRST TMO MODIFIED BESSEL FUNCTIONS
C OF THE SECOND KIND,K\varnothing AND KI. RED,IMO,REI AND IMI GIVE
C THE REAL AND IMAGINARY PARTS OF EXP (X)*KØ AND EXP (X)*K!,
C RESPECTIVELY. ALTHOUGH THE REAL NOTATION USED IN THIS
C SUBROUTINE, MAY SEEM INELEGANT WHEN COMPARED WITH THE
C COMPLEX NOTATION THAT FORTRAN ALLOWS, THIS VERSION PINS
C ABOUT 3\varnothing PERCENT FASTER THAN ONE WRITTEN USING COMPLEX
C VARIABLES.
    DOUBLE PRECISION X,Y, X2, Y2, RE|, IMQ, REI, IMI,
    * R1, R2, T1, T2, P1, P2, RTERM, ITEPM, EXSQ(8), TSQ(8)
    DATA TSQ(1) /0.8D0/. TSQ(2) /3.19303633920635D-1/,
    * TSQ(3) /1.29075862295915D0/, TSQ(4)
    * 12.95837445869665DQ1, TSQ(5) 15.40903|59724444DD/
    * /2.95837445869665DQ/, TSQ(5) /5.409
    * TSQ(6) %8.80407957805676D0%, TSQ(7)
    .02499163658709D1/
    EXSQ(2)
    * 10.4120286874989D0/. EXSQ(3) 10.1584889157959D0/,
    * EXSQ(4) 10.3078003387255D-1/, EXSQ(5)
    * 10.2778068842913D-21, EXSQ(6) /0.1000044412325D-3/,
    * EXSQ(7) 10.1059115547711D-5/, EXSQ(8)
    * 10.1522475804254D-8/
C THE ARRAYS TSQ AND EXSQ CONTAIN THE SQUARE OF THE
C ABSCISSAS AND THE WEIGHT FACTORS USED IN THE GAUSS-
C HERMITE QUADRATURE.
        R2 = X*X + Y*Y
        1F (X.GT.0.0D0 .OR. R2.NE.0.0D0) GO TO 10
        WRITE (6.99999)
        RETURN
    10 1F (R2.GE.1.96D2) GO TO 50
        IF (R2.GE.1.849D1) GO TO 30
C THIS SECTION CALCULATES THE FUNCTIONS USING THE SERIES
C EXPANSIONS
            X2 = X/2.0D0
        Y2 = Y/2.0DQ
        P1= X2* K2
        P2 = Y2*Y2
        T1 = -(DLOG(P1+P2)/2.0DD + 0.5772156649015329D0)
C THE CONSTANT IN THE PRECEDING STATEMENT IS EULE?*S
C CONSTANT
        T2 = -DATAN2 (Y,X)
        X2 = P1 - P2
        Y2 = X*Y2
        RTERM = 1.0DD
        ITERM = 0.0D|
        REO = T1
        TM0 = T2 + T1 +0.5D0
        RE! = T1
        REI = T1
        IMI = T
        P2 = DSQRT(R2)
        L = 2.106DO*P2 + 4.4D0
        IF (P2.LT.8.OD-1) L = 2.129DO*P2 + 4.0D0
        DO 20 N=1,L
            PI = N
                P2 = N*N
                RI = RTERM
                RTERM = (R1* X2-ITERM*Y2)/P2
                ITERM = (R!*YZ+ITERM*X2)/P2
                T1 = T1 + 0.5D|/P1
                REQ = REO + TI*RTERM - T2*ITERM
                IM\varnothing = IMO + TI*ITERM + T2*RTERM
                PI = P1 + 1.OD\varnothing
                TI = T1 +0.5D0/P1
                RE! = RE! + (TI*RTERM-T2*ITERM)/P!
                IMI = IM! + (TI*ITERM +T2*ITERM)/PI
    20 CONTINUE
        R1 = X/R2 - 0.5D|*(X*REI-Y*IMI)
        R2 = -Y/R2-0.5D|*(X*IMI +Y*REI)
        P1 = DEXP(X)
        RE| = P1*RE|
        IMO = P1*IMO
        RE! = P!*R!
        IMI = PI*R2
        RETURN
    C THIS SECTION CALCULATES THE FUNCTIONS USING THE INTEGRAL
    C REPRESENTATION, EQN 3, EVALUATED WITH 15 POINT GAUSS-
C HERMITE QUADRATURE
    30 X2 = 2.0D0*X
        Y2 = 2.DDO*Y
        R1 = YZ*YZ
        R1 = Y2*Y2
        P1 = DSQRT (X2*X2 +R1
    P2 = DSQRT (P1+X2)
        T1 = EXSQ(1)/(2.|D0*P1)
```

```
    RED = T1*P2
    IMD = T1/P2
    RE1 = Ø.ODQ
    IM1 =0.0D0
    DO: 40 N=2,8
        T2 = X2 +TSQ(N)
        PI = DSQRT (T2*T2+R1)
        P2 = DSQRT(P1+T2)
        T1 = EXSQ(N)/P1
        REQ = REQ + T!*P2
        IMO = IMQ + TI/PZ
        T1 = EXSQ(N)*TSQ(N)
        RE1 = RE1 + T1*P2
        IMI = IMI +TI/PI
    0 CONTINUE
    T2 = - Y2*IMO
    REI = REI/R2
    R2 = Y2*IM1/R2
    RTERM = 1.41421356237309D0*DCOS(Y)
    ITERM = -1.41421356237309D0*DSIN(Y)
C THE CONSTANT IN THE PREVIOUS STATEMENTS IS,OF COURSE,
C SQRT(2:Q).
    IMB = REQ*ITERM + T2*RTERM
    RE@ = RE|*RTERM - T2*ITERM
    T1=REI*RTERM - RO*ITERM
    T1=REI*RTERM - R2*ITERM
    = REI*ITERM + R2*PTERM
    REI = TI*X +T2*Y
    IMI=
c: THIS SECTION CALCULATES THE FUNCTIONS USING THE
C. ASYMPTOTIC EXPANSIONS
    5% RTERM = 1.0DQ
        ITERM = Ø.OD\varnothing
        REO}=1.0D
        IMO = O.ODG
        RE1 = 1.0DQ
        IM1 = Ø. ØDO
        P1 = 8.0D0*R2
        2 = DSQRT (R2)
        L = 3.91D0+8.12D:/P2
        R1 = 1.0D0
        R2:= 1.0D0
        M=-B
        K}=
            DO 60 N=1,L
            M=M+8
            K = K - M
            R1 = FLOAT (K-4)*R1
            P2 = FLOAT (K)*R2
            T1 = FLOAT(N)*P1
            T2 = RTERM
            RTERM = (T2*X+ITERM*Y)/TI
            ITERM = (-T2*Y+ITERM*X)/T1
            RED = REJ + F1*RTERM
            IMO =IMO + RI*ITERM
            IMQ = IMD + RI*ITERM
            IMI=REI + R2*RTERM
    60 CONTINUE
        T1 = DSQRT(P2+X)
            T2= -Y/T1
            P1 = 8.86226925452758D-1/P2
C THIS CONSTANT IS SQRT (PI)/2.0, WITH PI=3.14159...
            RTERM = P1*DCOS(Y)
            TERM = -PI*DSIN(Y
            R1 = RE0*RTERM - IMO*ITERM
            R2 = RE0*ITERM + IM0*RTERM
            RED = T1*R1 - T2*R2
            IMB =T1*P2 +T2*R1
            RI = REl*RTERM - IMI*ITERM
            R2 = REI*ITERM + IMI*PTERM
            R2 = REL*ITEPM + IMM 
            REI=TI*RI -T2*R2
            RML = T
99999 FORMAT {42H ARGUMENT OF THE BESSEL FUNCTIONS IS ZEQO,
    * 35H OR LIES IN LEFT HALF COMPLEX PLANE)
            END
```


Algorithm 485

Computation of g-Splines via a Factorization Method [E2]

Harold D. Eidson and Larry L. Schumaker |Recd. 19 Oct. 1972| Department of Mathematics and Center for Numerical Analysis, University of Texas, Austin, TX 78712

This work was supported in part by AFOSR-69-1812-C.
Key Words and Phrases: approximation, spline approximation CR Categories: 5.13
Language: Fortran

Abstract

Fortran subroutines are presented for the purpose of computing and evaluating g-splines interpolating Hermite-Birkoff data. The subroutines are based on a factorization method for computing g-splines discussed by Munteanu and Schumaker (Math. Comp. 27 (1973), 317-325).

Description

1. Introduction. In the following we present subroutines for calculating polynomial spline functions solving Hermite-Birkhoff (HB) interpolation problems. The subroutines are based on algorithms described in [9].

We begin by reviewing the definition of an HB -interpolation problem. Let $N \geq 2$ and $x_{1}<x_{2}<\cdots<x_{N}$ be prescribed. Suppose for each $j, 1 \leq j \leq N$, that z_{j} is a positive integer, $I M_{1, j}<$ $I M_{2, j}<\cdots<I M_{z_{j}, j}$ are positive integers, and $y_{1, j}, y_{2, j}, \ldots, y_{z j, j}$ are prescribed real numbers. The HB-interpolation problem is to determine s such that
$s^{\left(I M_{i j}-1\right)}\left(x_{j}\right)=y_{i, j}, i=1,2, \ldots, z_{j}, j=1,2, \ldots, N$.
We see that z_{j} describes the number of derivatives prescribed at x_{j} while the vector ($I M_{1 . j}, \ldots, I M_{z_{j}, j}$) describes which derivatives. If $z_{j}=1, j=1, \ldots, N$, we have a simple interpolation problem:

We are concerned with solving HB-interpolation problems with polynomial splines. Let M be an integer, $M \geq I M_{z_{j}, j} j, j=$ $1,2, \ldots, N$. Then (cf. [4]) there exists a function s satisfying (1) and
$s^{(2 M)}(t)=0, x_{j}<t<x_{j+1}, j=1,2, \ldots, N-1 ;$
Editors' note: Algorithm 485 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is $\$ 16.00$ (U.S. and Canada) or $\$ 18.00$ (elsewhere). If the user sends a small tape (wt. less that I lb.) the algorithm will be copied on it and returned to him at a charge of $\$ 10.00$ (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithms at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10 . The sequence number is right justified in column 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F. and A.K.C.

$$
\begin{align*}
& s^{(M)}(t)=0, t<x_{1}, t>x_{N} ; \tag{3}\\
& s \in C^{(M-1)}(-x, \infty) ; \tag{4}\\
& s^{(2 M-l)}\left(x_{j}+\right)=s^{(2 . M-l)}\left(x_{j}-\right), \tag{5}\\
& \quad l \in\{1, \ldots, M\} \backslash\left\{I M_{1, j}, \ldots, I M_{z_{j}, j}\right\} \\
& \quad \quad j=1,2, \ldots, N .
\end{align*}
$$

The function s is called a g-spline. It is a polynomial spline of degree $2 M-1$; i.e. it is piecewise a polynomial of degree $2 M-1$. The way in which the pieces tie together is described by (4) and (5).

If the only polynomial of degree $M-1$ which solves the homogeneous HB-interpolation problem (i.e. satisfies (1) with zero right-hand side) is the identically zero polynomial, then we say the HB-problem is M-poised. In this case there is a unique g-spline of degree $2 M$-I solving the HB-problem (1). We consider constructing g-splines only for M-poised HB-problems.

Given an M-poised $H B$-interpolation problem, the unique g-spline interpolant s satisfying (1)-(5) can be represented as
$s(t)= \begin{cases}p_{1}(t), & t \leq x_{1} \\ p_{j}(t), & x_{j-1}<t \leq x_{j}, j-2,3, \ldots, N, \\ p_{N+1}(t), & t>x_{N},\end{cases}$
where for $j=1,2, \ldots, N, p_{j}(t)$ is a polynomial of the form
$p_{j}(t)=\sum_{l=1}^{2 M} C_{l, j}\left(t-x_{j}\right)^{l-1}$ and
$p_{N+1}(t)=\sum_{l=1}^{M} C_{l, N}\left(t-x_{N}\right)^{l-1}$.
For later use we introduce the notation $C_{j}=\left(C_{1, j}, \ldots, C_{2 M, j}\right)^{T}$. Several algorithms were discussed in $[9]$ for computing the coefficients $\left\{C_{l, j}\right\}_{l=1}^{2 M}{ }_{j=1}^{N}$ of s. We give a subroutine $G S F$ below which implements Method 3 of [9]. We also include a function $G V A L$ for evaluating s or its various derivatives (For a sketch of the organization of these algorithms, see Section 2 below.)
2. Organization of the algorithms. GSF consists of: (i) a forward march during which certain matrices U_{K}, V_{K}, and A_{K} are set up for $K=2,3, \ldots, N-1$; (ii) the solution of a $2 M$-system for C_{N}; and (iii) a backward march in which the $C_{N-1}, C_{N-2}, \ldots, C_{1}$ are computed recursively. This proceeds as follows. With appropriate $2 M \times$ $2 M$ Taylor matrices $T B_{K}$ and $Z_{K} \times 2 M$ matrices $I N T C O N_{K}$, the interpolating conditions (1) at $X(K)$ can be written as $I N T C O N_{K}$ $T B_{K+1} C_{K+1}=B_{K}$. Similarly with $2 M-Z_{K} \times 2 M$ matrices $S_{M O C O N}^{K}$ the smoothing conditions (5) at $X(K)$ can be written as $\operatorname{SMOCON} N_{K} C_{K}=S M O C O N_{K} T B_{K+1} C_{K+1}$. Finally, the end conditions (3) at $X(1)$ and $X(N)$ can be written as ENDCON $T B_{1} C_{2}=D_{1}$ and $E N D C O N_{N} C_{N}=D_{N}$. To compute U_{2}, V_{2}, and A_{2} the matrix
$\left[\begin{array}{cc}S M O C O N_{2} & -S M O C O N_{2} \\ I N T C O N_{1} T B_{1} & 0 \\ E N D C O N_{1} T B_{1} & 0\end{array}\right]\left[\begin{array}{c}C_{2} \\ T B_{2} C_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ B_{1} \\ D_{1}\end{array}\right]$
is triangularized by TRISYS to the form
$\left[\begin{array}{cc}U_{2} & V_{2} \\ 0 & W_{2}\end{array}\right]\left[\begin{array}{c}C_{2} \\ T B_{2} C_{3}\end{array}\right]=\left[\begin{array}{c}A_{2} \\ D_{2}\end{array}\right]$.
To get U_{3}, V_{3}, A_{3} we triangularize
$\left[\begin{array}{lc}\mathrm{SMOCON}_{3} & -\mathrm{SMOCON}_{3} \\ I N T C O N_{2} T B_{2} & 0 \\ W_{2} T B_{2} & 0\end{array}\right]\left[\begin{array}{c}C_{3} \\ T B_{3} C_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ B_{2} \\ D_{2}\end{array}\right]$
to the form
$\left[\begin{array}{cc}U_{3} & V_{3} \\ 0 & W_{3}\end{array}\right]\left[\begin{array}{c}C_{3} \\ T B_{3} C_{4}\end{array}\right]=\left[\begin{array}{l}A_{3} \\ D_{3}\end{array}\right]$
Continuing yields U_{K}, V_{K}, A_{K} for $K=2,3, \ldots, N-1$. Then the system
$\left[\begin{array}{l}I N T C O N_{N-1} T B_{N-1} \\ W_{N-1} T_{N-1} \\ I N T C O N_{N} \\ E N D C O N_{N}\end{array}\right]\left[C_{N}\right]=\left[\begin{array}{l}B_{N-1} \\ D_{N-1} \\ B_{N} \\ D_{N}\end{array}\right]$
is solved for C_{N} using TRISYS and back substitution. In the backward march $C_{N-1}, C_{N-2}, \ldots, C_{2}$ are obtained successively from the stored arrays U_{K}, V_{K}, A_{K} via the recursion $U_{K} C_{K}=-V_{K} T B_{K}$. $C_{K+1}+A_{K}$, where $T B_{K}$ is another $2 M$-Taylor matrix. Since U_{K} is upper triangular, to determine C_{K} we perform a matrix multiplication and a back substitution. Finally we set the first M components of C_{1} equal to the first M components of $T B_{1} C_{2}$, and the last M components to zero.

The organization of GVAL is very simple. First a simple search is performed to determine the integer $K N O T$ such that $X_{K N O T-1}<$ $T \leq X_{K N O T}$. Then Horner's scheme is used to evaluate the (ID-1)-th derivative of the polynomial $P_{K N O T}$.
3. Numerical Experience. Table 1 below shows the results of using GSF to compute a cubic spline interpolating simple data and of using GVAL to evaluate it (and its derivatives) at various points. The table should be of use in verifying that the subroutines are operating correctly on the reader's machine. The data in Table I is taken from Greville [3, p. 20].

Table II below shows the results of using GSF and GVAL on simple, Hermite, and Hermite-Birkhoff interpolation problems. For comparison, we give the maximum interpolation error,
$\max _{1<j<N} \max _{1<i \leq j^{2}}\left|Y_{i j}-s^{\left(I M_{i j}-1\right)}\left(x_{j}\right)\right|$,
$1 \leq j \leq N \quad 1 \leq i \leq z j$
the root mean square error
$\left(\sum_{i=1}^{N} \sum_{i=1}^{z_{j}}\left[Y_{i j}-s^{\left(I M_{i j-1)}\right.}\left(x_{j}\right)\right]^{2} / \sum_{j=1}^{N} z_{j}\right)^{i}$,
and the relative central processing times for each interpolation problem.

Tables I and II were computed on the CDC 6600 at The University of Texas, Austin. In addition to these examples, we tested the subroutines on a wide variety of simple, Hermite, and HB interpolation problems for $1 \leq M \leq 10,2 \leq N \leq 100$. We tested data from standard functions as well as random data with equally spaced and unequally spaced knots with knot mesh ratios ($\sigma=$ $\left.\max \left(x_{j+1}-x_{j}\right) / \min \left(x_{j+1}-x_{j}\right)\right)$ up to $\sigma=10^{4}$. The results were comparable in accuracy with the procedures in [8] for computing simple interpolating splines and the subroutines in [2] for computing g-splines. For small $M(M=2,3) G S F$ and $G V A L$ are as fast or faster than these other algorithms; for larger M the reverse is usually true.
4. Discussion. The subroutines presented below can be applied to compute g-splines interpolating HB-data whenever the HBinterpolation problem is M-poised. The question of when an HB problem is M-poised is a difficult one, and has been the subject of intensive research recently. For a survey of results, see Karlin/ Karon [6]. An obvious necessary condition for M-poisedness is that $\sum_{j=1}^{N} z_{j} \geq M$. For Hermite interpolation problems ($I M_{1, j}=$ $1, \ldots, I M_{z_{j, j}}=z_{j}-1$), this is also sufficient. For simple interpolation ($z_{j} \equiv 1$, all j), this reduces to $N \geq M$. For nonpoised HBinterpolation problems, the subroutines may or may not produce g-splines interpolating the data. Thus the algorithm cannot be used as a test for M-poisedness.

There are a large variety of algorithms in the literature for computing splines interpolating simple data (cr. [7, 10] and references therein). In this special case the subroutines given here can be simplified (see Eidson [1]). There are few practical schemes for

Table I. Cubic Spline Interpolating Simple Data

| $\overline{D A T A}$ | | Values of the spline | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(M=2, N=9)$ | | | | | |
| x_{j} | y_{j} | t | $s(t)$ | $s^{\prime}(t)$ | $s^{\prime \prime}(t)$ |
| 266.8 | 1250 | 273.16 | 1346.2 | 15.076 | -. 02575 |
| 283.5 | 1500 | 303.16 | 1782.9 | 14.614 | . 03996 |
| 300.9 | 1750 | 323.16 | 2073.1 | 13.992 | -. 06902 |
| 318.0 | 2000 | 373.16 | 2706.4 | 11.665 | -. 03218 |
| 355.9 | 2500 | 423.16 | 3254.7 | 10.357 | -. 02148 |
| 399.2 | 3000 | 473.16 | 3749.0 | 9.481 | -. 01359 |
| 500.1 | 4000 | 523.16 | 4209.3 | 8.998 | -. 00574 |
| 555.7 | 4500 | 573.16 | 4655.2 | 8.884 | -. 00047 |
| 612.0 | 5000 | | | | |

| Type of data | Input data | | | | | Results | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | N | $j=\begin{aligned} & x_{i} \\ & 1 \end{aligned}(1) N$ | $j=Z^{z}(1) N$ | $\begin{gathered} I M_{1 \prime} \\ j=1(1) N \end{gathered}$ | $Y_{1,} \quad M$ | Maximum interpolation error | RMS interpolation error | Time of computation (sec) |
| Simple | 50 | j/12 | 1 | $1,1=1$ | $\sin x, i=1 \begin{aligned} & 2 \\ & 3 \\ & 4\end{aligned}$ | $\begin{aligned} & \text { 7. } 1(-15) \\ & 7.1(-15) \\ & 1.1(-14) \end{aligned}$ | $\begin{aligned} & 2.7(-15) \\ & 4.5(-15) \\ & 6.0(-15) \end{aligned}$ | $\begin{array}{r} .260 \\ .608 \\ 1.198 \end{array}$ |
| Hermite | 10 | $\exp (\mathrm{j} / 5)$ | 2 | $\left\{\begin{array}{l} 1, i=1 \\ 2, i=2 \end{array}\right.$ | $\begin{gathered} \sin x_{,}, i=1 \\ \cos x_{j}, i=2 \end{gathered}$ | $\begin{aligned} & 2.0(-14) \\ & 1.1(-14) \\ & 1.4(-14) \end{aligned}$ | $\begin{aligned} & \text { 6. } 6(-15) \\ & 5.4(-15) \\ & 1.4(-09) \end{aligned}$ | $\begin{aligned} & .040 \\ & .095 \\ & .200 \end{aligned}$ |
| HermiteBirkholf | 40 | j/10 | 3 | $\left\{\begin{array}{l} 1, i=1 \\ 3, i=2 \\ 5, i=3 \end{array}\right.$ | $\begin{aligned} & e^{r}, \\ & i=1,2,3 \end{aligned}$ | 8.8(-09) | 1.4(-09) | 1.543 |

computing g-splines (see $[2,5]$ and references therein). The only other subroutines we know of for g-splines are those in [2] based on local support bases. The algorithms underlying the subroutines given here are valid also for $L g$-splines, see [9], and for $E H B$-data (see $[4,9]$). We hope to prepare subroutines for the more general case.

Acknowledgments. We wish to thank the referees for their extremely thorough consideration of our paper, and for several helpful suggestions.

References

1. Eidson, Harold D. Computation of interpolating splines via a factorization method. CNA report, to appear.
2. Eidson, Harold D., and Schumaker, L.L. Computation of g -splines via local bases. CNA report, Center for Numerical Analysis, U. of Texas, Austin, 1972, to appear.
3. Greville, T.N.E. Data fitting by spline functions. MRC report 893, U. of Wisconsin, 1968.
4. Jerome, J.W., and Schumaker, L.L. On Lg-splines, J. Approx. Th. 2 (1969), 29-49.
5. Jerome, J.W., and Schumaker, L.L. Local bases and computation of g-splines. Methoden und Verfahren der Mathematische Physik 5 (1971), 171-199.
6. Karlin, S., and Karon, J.M. On Hermite-Birkhoff interpolation. J. Approx. Th. 6 (1972), 90-115.
7. Lyche, T., and Schumaker, L.L. Computation of smoothing and interpolating natural splines via local bases. SIAM J. Numer. Anal. 10 (1937), 1027-1038.
8. Lyche, T., and Schumaker, L.L. ALGOL procedures for computing smoothing and interpolating natural splines. Comm. ACM 17, 8 (Aug. 1974), 465-469.
9. Munteanu, M.J., and Schumaker, L.L. On a method of Carasso and Laurent for constructing interpolating splines.
Math. Comp. 27 (1973), 317-325.
10. Schumaker, L.L. Some algorithms for the computation of
interpolating and approximating spline functions. In Theory and Application of Spline Functions, Academic Press, New York, 1968, pp. 87-102.

Algorithm

```
        SUBROUTINE GSF(N, M, X, Y, Z, IM, C, IDET)
C INPUT N,M,X,Z,IM,Y-
N IS A POSITIVE INTEGER GIVING THE NUMBER OF KNOTS
C M IS A POSITIVE INTEGER DETERMINING THE DEGREE
2*M-1 Of The Spline
C X IS aN ARRAY OF REAL NUMBERS WITH
C X(1).LT.x(2).LT.....LT.X(N)
Z IS AN ARRAY OF INTEGERS SUCH THAT
    IS AN INTEGER ARRAY WITH
    1.LE.M(1,J).LT.....LT.IM(Z(J),J).LE.M,
J=1,2,\ldots..,N. Y IS AN ARRAY OF REAL NUMBERS
OUTPUT C,IDET--
THE COLUMN VECTOR C(1,J),....C(2*M,J) CONTAINS THE
coefficients of the Spline in the interval x(J-1)
TO X(J). IDET IS SET TO ZERO IF A SING!ILAR SYSTEM
IS ENCOUNTERED OTHERUISE, IDET IS 1.
THE SUBROUTINE GSF(N,M,X,Y,Z,IM,C,IDET) COMPUTES
THE COEFFICIENTS OF THE INTERPOLATING G-SPLINE. THE
PARAMETERS N,M,X,Y,Z, AND IM ARE INPUT. N AND M
are the positive integers of Section 1 hhich give
THE NUMBER OF X S AND DETERMINE THE DEGREE OF THE
SPLINE PESPECTIVELY X X MUST BE AN ARRAY OF PEAL
SPLINE, RESPECTIVELY. X MUST BE AN ARRAY OF REAL
NUMBERS WITH XKI).LT.X(2).LT....LT.X(N) AND 2 IS
AN ARRAY OF POSITIVE INTEGERS NONE OF WHICH SHOULD
EXCEED M. X CONTAINS THE POINTS WHERE HB-DATA IS
PRESCRIBED AND Z DESCRIBES THE NUMBER OF PIECES OF
DATA AT EACH SUCH POINT. IM IS AN INTEGER APRAY
C WITH
    I.LE.IM(1,J).LT.IM(2,J).LT.....LT.IM(Z(J),L).LE.M,
        J=1,2,\ldots..N.
THE J TH COLUMN OF IM IS A LIST OF WHICH
DERIVATIVES (SHIFTED UP BY 1) ARE SPECIFIED AT
C X(J). THE DATA FOR THE HE-INTERPOLATION PROBLEM IS
ENTERED IN THE ARRAY Y. Y(I,J) SHOULD CONTAIN THE
C VALUE ASSIGNED TO THE IM(I,U)-1 ST DERIVATIVE OF
C AND IDET ARE OUTPUT OF GSF. AFTER EXECUTION, THE
C AND IDET ARE COUTPUT OF GSF. AFTER EXECUTION,
C ARRAY C WILL CONTAIN THE COEFFICIENTS OF
C C(1,J),....,C(2*M,J) CONTAINS THE COEFFICIENTS OF
C C(1,J),\ldots..C(2*M,J) CONTAINS THE COEFFICIENTS OF
C THE POLYNOMIALS P(J) DESCRIBED BY EQUATIONS (6),
C }J=1,2,\ldots\ldots,N+1. SUBROUTINE GSF CALLS ON SUBROUTINE
INTCON,SMOCON, AND TRISYS WHICH MUST EE LOADED WITH
C the main program.
    INTEGER Z, zK
    DIMENSION X(100); Y(4,100), Z(100), IM(4,100),
    * C(8,100)
    DIMENSION D(12,17), UV(8,17,100)
    DOUBLE PRECISION SUM
c INITIALIZE CONSTANTS
    IDET = 1
    M2 = 2*M
    M2!1 = M2 + 
    M2M1 = M2 -
    M4 = 4*M
    M4P1 = M4 +
    NMI =N - 1
C GENERATE FACTORIALS FOR TAYLOR MATRIX
    C(1,1) = 1.0
    DO 10 J=2,M
            JM1 = J-1
            C(1,J) = FLOAT(JM1)*C(1,JMI)
    10 CONTINUE
C BEGIN FORWARD MARCH
    zK = z(1)
        MMz = M - 2K
        M2MZ = M2 - ZK
C SET UP INTERPOLATION MATRIX AT X(I)
    CALL INTCON(1, ZK, M2, IM, D)
C SET END CONDITIONS AT X(1)
    IF (MMZ.NE.0) CALL SMOCON(-1, 2K, M, M2, MAP1,
    * IM, D)
C BEGIN K LOOP
    DO 250 k=2,N
            KMI =K-1
            L2K = 2K
            2K= Z(K)
            LMMZ = MMZ
            MMZ = M - ZK
            M2MZ = M2 - ZK
            :13MZ = M2MZ + M
            H}=X(KML) - X(K)
C taylor matrix right multiplication
            IROW = M2MZ
            IF (K.EQ.N IROV = M
            DO 2\emptyset I=1,M
            MU = IROU + I
                    D(MU,1)= D(1,1)
    CONTINUE
            CONTINUE (1,M2P1) = 1.0
            D0 90 I =2,M2,
```

```
        D 40 J=1,1M
            DO 30 II=1,M
                D(II,J) = D(III,J)*H
            CONTINIJE
            CONTINUE
            D(I,M2PI) = 1,0
            IF (2.GT.IM1) GO TO 60
            = D(1,M2P1)
            DO 5% II=2,I*
            v=D(II,M2PI)+T
            T=D(II,M2PI)
            D(II,M2PI) = V
            CONTINUE
            DO 80 J=1,M
            SUM = \varnothing. D
            DO 70 II =1,I
                SUM=SUM + D(J,II)*D(II,M2PI)
            CONTINUE
            MU = IROS + J
            D(MU,I) = SUM
            CONTINUE
    90 CONTINUE
C ON LAST STEP JUMP TO SET INTEPPOLATION CONDITIONS
    IF (K.EQ.N) GO TO 240
C SET UP SMOOTHING MATRIX AT X(K)
    CALL SMOCON(K, ZK, M, M2, M4PI, IM, D)
    DO 110 I=1,M
        DO 100 J=M2P1,M4
                MU = M2MZ + I
            CONTINJE
    COO
C ADJUST RHS OF SYSTEM TO CODRESPOND VIT& DIFFERENT
C Z(K)
            IF (LMMZ,EQ.0) GO TO 168
            IF (LZK-ZK) 130, 130, 120
    120 II = M2 + LMMZ + 1
            JJ = -1
            III = M3MZ + I
            GO TO 140
    130 11 = M2
            JJ = +1
            III = M2MZ + LZK
    140 DO 150 I=1,LMMZ
            MU = III + I*JJ
            NU=II +I*JJ
            D(MU,M4PI) = D(NU,M4PI)
    150 CONTINUE
C FILL IN INTERPOLATION DATA
            DO 170 I=1,L2K
            J=1M(1,KMI)
            MU = Y2MZ + I
            D(MU,M4P1) = Y(1,KM1)/C(1,J)
    170 CONTINUE
C TRIANGULARIZE SYSTEM AT Z(K
            CALL TRISYS(D, M4P1, M3MZ, M2, IDET)
            IF (IDET) 190, 180, 190
    180 RETURN
C FILL UV MATRIX
    190 DO 210 I=1,M2
            DO 200 J=1,M4P1
                UV}(I,J,K)=D(I,J
                    CONTINUE
    200 CONTINUE
    210 CONTINUE
    210 CONTINUE 
C COUPLE
    IF (MMZ.EQ.0) GO TO 24ठ
            DO 230 I=1,MMZ
            DO 22\emptyset J=1,M2
                LAMDA = 2K + I
                MU = M2 + 1
                NU = M2 + J
                D(LAMDA,J)=D(MU,NU
                CONT INUE
    220 CONTINU
    230 CONTINUE
C SET UP INTERPOLATION MATPIX AT X(K)
    40 CALL INTCON(K, ZK, M2, IM, D)
    250 CALL I
C END OF K LOOP
C SET END CONDITIONS AT X(N)
    IF (MMZ.NE, O) CALL SMOCON(-N, ZK, M, M2, M2PI,
            IF (MMZ
C FILL IM, IN INTERPOLATION DATA AT X(N-I)
    DO 260 I=1,LZK
            J=IM(I,NM1)
            MU = M + I
            D(MU,M2PI)=Y(I,NMI)/C(1,J)
    60 CONT INUE
C ADJUST RHS TO CORRESPOND WITH Z(N) DATA
    IF (L:MMZ.EQ.D) GO TO 280
    DO 270 I=1,LMMMZ
            MU = M + LZK +
            MU =M2+LZZK
            NU =M2 + + = (NU,M4P1)
    270 CONTINUE
FILL INTERDOLATION DATA AT X(II)
280 DO 290 I = 1, 2K
            J=IM(I,N)
            J =IM(I,N)
            D(I,M2PI)=Y(I,N)/C(1,U)
    298 CONTINUE
C TRIANGULARIZE MATRIX SYSTEM AT X(N)
```

```
    CALL TRISYS(D, M2PL, M2, M2, IDET)
    IF (IDET.EQ.D) RETUFN
C BACK SOLYE FOR C(N)
    I = MOPI
    DO 320 II=1,M2
        IPI=I
            I= 1-1
            IF (IPI.GT.M2) GO TO 3!g
            DO 300 J=I?1,M2
                S\, J=IP1,M
                SUM = SUM + D(I,J)*C(J,N)
    300 CONTINUE
    300 
        C(I,N) = V/D(I,I)
    320 CONTINUE
C END FORWARD MAP.CH
C BEGIN BACKWARD MARCH
    K = N
C BEGIN KB LOOP
    DO 430 KB=2,N
        KP! = K
        KK}=K(K
        H:= X(K) - X(KP1)
C TAYLOR MATRIX LEFT MULTIPLICATION
            DQ 330 I=1,M2
    333 CONTIN'T
        D(M2,M4?1)=C(M2,KP1)
        DO 37% I=1,M2M1
            IP1 = 1 + 1
            T = C(M2,NP1)*D(1,M2)
            M2MI = M2 - I
            DO 348 II=1,M2M
                J = M2 - II
                T = T*H + C(J,KP1)*D(1,J)
            CONTINUE
            D(I,M4P:) = ?
            F (IPI.GT.M2MI) GO TO 360
            DO 350 II=IPI,MEM!
                D(1,1)=D(1,11)
                D(1,1)=D(1
                T=D(1,1)+D(1,II)
    350 CONTINUE
    367 D(1,M2)=T
    37% CONTINUE
C IF K = I JUMP OITT TO DETERMINE C(1)
    IF (KB.EG.N) GO TO 440
    DO 390 I=1,M2
C SET U? RHS OF SYSTEM FOZ C(K)
            SUM = 0.
            O 380 J=1,M2
```



```
                    SNTINUE
                UV(I,M4P1,K)=-SUM + LV (I,M4P1,K)
    380 CONTINUE
                UNTINJE SI,K) = -SUM + UV(I,M4P1,K)
    39% CONTINUE
C BACK SOLUE FOQ COEFFS C(K) USING TPIANGULAD SAPT OF
c UV(K)
            I = M2PI
            DO 420 II =1,M2
            1P1=1
            I = I - I
            UM = 0.0
            IF (IPI.GT.M2) GO TO 410
            DO 400 J=[P1,M2
                Simm=SIMM + IV (I,J,K)*C(J,K)
                    CONTINUE
                V = -SUM + UV(I,M4PI,K)
                C(I,K)= V/UV(I,I,K)
            CONTINJE
    420 CONTINJ
430 CONTINJE
C END K3 LOOD
C SET COEFFICIENTS C(1)
    440 DO 45% I=1,M
            .10 = M + I
            C(MU,K)=0.e
        C(I,K) = D(I,M4P1)
    450 CONTINUE
C END BACKLIARD MAPCH
    BETURN
    END
    SUBIOUTINE INTCON(K, ZK, M2, III, D)
C FILLS INTERPOLATION MATRIX AT X(K) ITSING
C INFOPMATION OBTAINED FROM ARPAYS Z(K) AND IM(I,K)
            INTEGER ZK
            DIMENSION D(12,17), IM(4,100)
            DO 20 I=1,2K
        D0 10 J=1,M2
            D(I,J)=0.0
    10 CONTINUE
        II = IM(I,K)
        D(I,II) = 1.0
    20 CONTINUE
        RETURN
        SUBROUTINE SMOCON(KK, ZK, M, M2, ICOL, IM, D)
C FILLS SMOOTHING MATRIX AT KNOTS 2 THROUGH N-I
C AND THE END CONDITIONS AT K = 1,N
    INTEGER ZK
    DIMENSION D(12,17), IM(4,100)
C IF KK IS NEGATIVE THEN SET END CONDITIONS
    K = IABS (KK)
    IF (KK.LT.0) GO TO 140
C SMOOTHING FIRST M DERIVATIVES
    DO 20 I=!,M
        DO 10 J=1,M2
            DUM = 0.0
            IF (I.EQ.J) DUM = 1.0
            D(I,N)= DUM
    10
        CONTINUE
    20 CONTINUE
        ROW = M
        IDUP = 1
C SMOOTHING HIGHER DERIVATIVES
    30 IF (ZK.GE.M) GO TO 80
        J = M 
    IF (IM(I,K)-J) 60, 50, 60
    5{ J = J - 1
        I=I-1
        IF (I.LT.I) I = I
        IF (J) 80, 80, 40
    60 IROW = IROW + 1
        DO 70 II=1,M2
            D(IRON,II) = 0.0
    7 0 ~ C O N T I N U E
        J=J-1
    MU = M2 - J
    D(IROW,MU)=1.0
    IF (J) 80, 80, 40
    80 GO TO (90, 120), IDUP
    90 M2MZ = M2 - 2K
        DO 110 I=1,M2MZ
        D(I,ICOL) = 0.\emptyset
            DO 100 J=1,M2
                MU = M2 + J
                D(I,MU) = -D(I,J)
    100 CONTINUE
    110 CONTINUE
    CONTINUE
    RETURN
    120 MMZ = M - ZK
    DO 130 I=1,MMZ
        MU =MM + I
        D(MU,ICOL) = 0.0
    130 CONTINUE
    RETURN
C SET END CONDITIONS
    140 IROW = 2K
        IDUP = 2
    MM = 2K
    IF (K.EQ.1) MM = M2
    IF CK+EQ
    END
    ENDBROUTINE TRISYS(D,N, L, M2, IDET)
C TRIANGULARIZATION OF NON-SQUARE MATRIX USING LU
DECOMPOSITION WITH PIVOTING
    DIMENSION D(12,17)
    DOUBLE PRECISION SUM
    IDET = 1
    DO 150 K=1,M2
        KP1 = K+1
        KMI = K - 
        PIVOT = 0.0
        DO 40 I =K,L
            IF (KMI.EQ.0) GO TO 20
            SUM = 0.0
            DO 10 J=1,KM!
                SUM = SUM + D(I,J)*D(J,K)
            CONTINUE - SUM + D(I,K)
            D(I,K) = -SUM + D(I,K)
            T=ABS (D(I,K))
            IF (T-PIVOT) 40, 40, 30
            PIVOT = T
            IPIV = I
        CONTINUE
        IF (PIVOT) 60, 50,60
        IDET = 0
        RETURN
        IF (IPIV-K) 70, 98, 70
        DO 80 J=1,N
            T=D(K,N)
            D(K,J)=D(IPIV,J)
            D(K,J)= D(IP
        CONTINUE
        CONTINUE
        T = D (K,K)
        IF (KP1-L) 100, 100, 120
        DO 110 I=KP1,L
            D(I,K)=D(I,K)/T
        CONTINUE
        IF (KMI.EQ.O .OR. KPI.GT.N) GO TO 150
        DO 140 J=KP1,N
            SUM = Ø.\emptyset
            DO 130 I= 1, KMI
                SUM = SUM + D(K,I)*D(I,J)
                CONTINUE
                D(K,J)=-SUM + D(K,J)
        CONTINUE
    CONTINUE
    LAST = L - M2
    LAST = L - M2 
    K = M2
    M2PI = M2 +
```

```
    DO 180 I= 1,LAST
        K=K+1
        K=K + I
            DO 170 J=M2?1
            SUM = |.|
                SUM = SUM + D(K,II)*D(II,J)
            CONTINUE
            D(K,J)=-SUM + D(K,J)
            CONTINUE
    180 CONTINUE
    190 RETURN
    END
    FUNCTION GVAL(T, ID, N, M, X, C)
C INPUT T,ID,N,M,X,C
C THE PARAMETERS N,M,X,C ARE AS IN GSF AND
C THE PARAMETERS N,M,X,C ARE AS INE.
C COMPLETELY DESCRIBE THE G-SPLINE.
C GVAL PRODUCES THE ID-I ST DERIVATIVE OF THE SPLINE
C GVAL PRODUCES THE ID-I ST DERIVATIVE OF THE SPLINE
    DIMENSION X(100),C(8,100),S(8)
        IORD = 2*M
            IF (ID.GT.IORD) GO TO 130
C BINARY SEARCH FOR KNOT SUCH THAT
C X(KNOT-1).LT.T(KNOT)
    KNOT = 1
        IF (T-X(KNOT)) 70, 70, 10
        KNOT = N
        IF (T-X(KNOT)) 20, 60,60
    | KUP = N
        KLO = (KUP-KLO).EQ.1) GO TO 70
            KNOT = (KUP+KLO)/2
            KNOT = (KUP*KLO)/2 
    40 KLO = KNOT
        KNOT = KUP
        GO TO 30
    O KUP = KNOT
    GO TO 30
C EVALUATION OF THE SPLINE
    60 IORD = M
        IF (ID.GT.IOPD) GO TO 130
    70 Y = T - X(KNOT)
    IORDI = IORD + I
C SET UP SPLINE COEFFICIENTS
            DO 80 I= I, IORD
            MU = IORDI - I
            S(I) = C(MU,KNOT)
    80 CONTINUE
C HORNERS SCHEME
            DO 10Q K=1,ID
            IORD = IORDI - K
            DO 90 I =2,IORD
                S(I)}=S(I-1)*Y+S(I
            CONTINUE
    90 CONTINU
            FACT = 1.0
            IF (ID.EQ.1) GO TO 120
            IDM1 = ID - 1
            DO 110 I=1, IDM1
            FACT = FACT*FLOAT(I)
    110 CONTINUE
    110 CONTIN(IE
    | GUAL = S(1ORD)*FACT
        RETURN
    130 GVAL = 0.0
        RETURN
        END
```


Algorithm 486

Numerical Inversion of Laplace Transform [D5]

Francoise Veillon [Recd. 26 Sept. 1972]
Mathematiques Appliquees Informatique, Universite de Grenoble, B.P. 53, Cedex 53, 38 Grenoble-Gare, France

Key Words and Phrases: Laplace transform inversion CR Categories: 5.16
 Language: Algol

Description

This work forms part of a thesis presented in Grenoble in March 1972. Improvements made to the Dubner and Abate algorithm for numerical inversion of the Laplace transform [1]. have led to results which compare favorably with theirs and those of Bellmann [2], and Stehfest [3]. The Dubner method leads to the approximation formula:

$$
\begin{align*}
& f(t)=2 e^{a t} / T\left[\frac{1}{2} \operatorname{Re}\{F(a)\}\right. \\
&\left.+\sum_{k=1}^{\infty} \operatorname{Re}\{F(a+i k \pi / T)\} \cos (k \pi t / T)\right] \tag{1}
\end{align*}
$$

where $F(s)$ is the Laplace transform of $f(t)$ and a is positive and greater than the real parts of the singularities of $f(t)$,

Definition of the calling parameters. Assume that $f(t)$ is a function which has real values and that $F(s)$ is its Laplace transform. The procedure laplaceinverse calculates, for a programmer-chosen set of values of t, the corresponding values of $f(t)$. The parameters are as follows:
$r f 1 f$ is a real procedure with two parameters which are, respectively, real part of s and imaginary part of s. Its value is the real part of $F(s)$.
$n t f$ is the number of values of t for which we want to calculate $f(t)$.
$t f$ is a one-dimensional array, the bounds of which are 1 and $n t f$. It contains the values of t.
$n a f$ is the number of values taken by the parameter a (see eq. (1)). In the following examples, naf is equal to 5.
$a f$ is a one-dimensional array, the bounds of which are 0 and naf - 1. At the time of the call this array must contain the values of a. In the following examples, these values are, in order: 1.15, 1.20, $1.25,1.30,1.35$. These values have been experimentally chosen as the best over the whole set of functions that have been calculated (approximately 30 , as different as possible), but they are not the best for each particular function.
iterf is $1 / 8$ of the number of terms considered in the infinite sum of the approximation formula, eq. (1). In the example, iterf is equal to 8 .
resultatf is a one-dimensional array, the bounds of which are 1 and $n t f$. At the end of the procedure it contains the $n t f$ values of $f(t)$.
ecri is a procedure with one real parameter (time). It must print the value of the parameter, an error message (see later) and be written with local conventions.

A few examples of functions which have been calculated by means of this procedure, and then compared with other methods are given in Tables I and II.

Outline of the method. The program first evaluates $f(t)$ using eq. (1) for naf values of a. The sum in eq. (1) is evaluated in iterf groups of eight terms by the ϵ-algorithm (procedure epsalgor) which corresponds to an iteration of the Aitken Δ^{2} process. This accelerates the convergence of the sum. The grouping of terms by eight results in either using fewer calculations for the same results or, for the same volume of calculations, using more terms in the sequence of the partial sum, and consequently obtaining better precision. It also smooths this sequence. If iterf is equal to eight, this leads to the use of 64 terms in the sum. That is satisfactory to proceed with the ϵ-algorithm.

If naf is different from one (and greater than three, otherwise the spline approximation is meaningless), then the program fits to the naf estimates of $f(t)$ a cubic spline $S(a)$ whose second derivatives vanish at the endpoints. The spline representation employs second derivatives, and the system of linear equations satisfied by these derivatives is solved using the double-sweep method.

We want an a such that $f(t)$ is the least dependent on a. The program then attempts to find an a for which $S^{\prime}(a)=0$. If no such a exists, then the program attempts to find one for which $S^{\prime}(a)$ is

Table I.

| $f(t)=\frac{1}{\sqrt{i \pi}}$ | $f(t)$
 exact | $f(t)$
 Stehfest | $f(t)$
 Dubner* | Laplace-
 inverse |
| :---: | :---: | :---: | :---: | :---: |
| t | 0.56419 | 0.56555 | 0.73172 | 0.56419 |
| 1 | 0.39894 | 0.39912 | 0.40035 | 0.39894 |
| 2 | 0.32574 | 0.32655 | 0.26343 | 0.32573 |
| 3 | 0.28209 | 0.28278 | 0.28286 | 0.28209 |
| 4 | 0.25231 | 0.25174 | 0.29365 | 0.25231 |
| 5 | 0.23033 | 0.22989 | 0.22501 | 0.23033 |
| 6 | 0.21324 | 0.21322 | 0.18062 | 0.21324 |
| 7 | 0.1947 | 0.19956 | 0.20112 | 0.19947 |
| 8 | 0.18806 | 0.18814 | 0.21609 | 0.18806 |
| 9 | 0.17841 | 0.17796 | 0.17650 | 0.17841 |

* The Dubner method has been performed with $a T=10$ and 500 terms for the sum.

Table II.

| | $f(t)=e^{-t / 2}$
 exact | $f(t)$
 Bellmann | $f(t)$
 Laplace-
 inverse |
| :--- | :---: | :---: | :---: |
| t | 0.126174 | 0.120527 | 0.126174 |
| 4.140186 | 0.286329 | 0.288195 | 0.286329 |
| 2.501126 | 0.439675 | 0.439084 | 0.439695 |
| 1.643388 | 0.581269 | 0.581308 | 0.581269 |
| 1.085084 | 0.707107 | 0.707318 | 0.707107 |
| 0.693147 | 0.813712 | 0.813401 | 0.813712 |
| 0.412298 | 0.898157 | 0.898482 | 0.898158 |
| 0.21821 | 0.958131 | 0.957847 | 0.958135 |
| 0.085541 | 0.991008 | 0.992205 | 0.992015 |
| 0.016048 | | | |

minimum. Using this a, the program evaluates $f(t)$ from eq. (1) (unless the chosen a is among the original set of values of a) to obtain the final approximation. As it is not possible to calculate the best a for an unknown function, the values of a have been experimentally chosen so as to give the best global result over a set of about thirty known functions, as different as possible.

Although it is very rare, a zero divide may occur in procedure epsalgor because of the division between two terms which may become equal. Then the program calls the procedure ecri and jumps to the next value of t. The value of $f(t)$, which has not been evaluated because of this, will be zero.

It must be said that the algorithm can be applied only to functions whose inverses are expected to be reasonably smooth.

Implementation. This program has been run on an IBM/360 computer, using compiler F under Operating System, version 18.6. The computing time per t-value, irrespective of the time needed to evaluate $\operatorname{Re}(F(s))$, is 0.7 sec . The number of calls of procedure $r f 1 f$ is less than or equal to $\operatorname{ntf}(n a f-1)(8 \times \operatorname{iterf}+1)$. The object module size is about 15 K bytes. The effective memory occupied during the execution step is $66 K$ bytes.

References

1. Dubner, H., and Abate, J. Numerical inversion of Laplace transforms and the Finite Fourier Transform. J. ACM 15, 1 (Jan. 1968), 115-123.
2. Bellmann, R., Kalaba, R., and Lockett, J. Numerical Inversion of the Laplace Transform. American Elsevier, New York, 1966.
3. Stehfest, H. Algorithm 368. Numerical inversion of Laplace transform. Comm. ACM 13, 1 (Jan. 1970), 47-49.
4. Veillon, F. Quelques méthodes nouvelles pour le calcul numérique de la transformée inverse de Laplace. Th. U. de Grenoble, Mar. 1972.
```
Algorithm
procedure laplaceinverse (rf1f,tf,ntf,af,naf,iterf,resultatf,ecri);
    real procedure \(r f 1 f\); real array \(t f\),af,resultat \(f\); procedure ecri;
    integer iterf,ntf,naf;
begin
    procedure epsalgor (eps, neps, resuleps, teps);
    array eps, resuleps; integer neps; real teps; boolean bool;
    begin
        array epstamp \([1:\) neps - 1]; integer \(i, j, k\);
        for \(i:=1\) step 1 until neps \(\div 2\) do resuleps \([i]:=0.0\);
        for \(i:=1\) step 1 until neps -1 do
        begin
            if \(\operatorname{eps}[i+1]=\operatorname{eps}[i]\) then
            begin ecri(teps); bool \(:=\) true; go to fin; end;
            epstamp \([i]:=1.0 /(\) eps \([i+1]-\) eps \([i])\)
        end;
        resuleps[1]:= eps[neps];
        \(k:=2\);
        for \(j:=\) neps -2 step -1 until 1 do
        begin
            for \(i:=1\) step 1 until \(j\) do
            begin
                eps[i]:=epstamp[i];
                if epstamp \([i+1]=\operatorname{epstamp}[i]\) then
                begin ecri(tps); bool \(:=\) true; go to fin; end;
                epstamp \([i]:=\) eps \([i+1]+1.0 /(\) epstamp \([i+1]-\)
                epstamp \([i]\) );
            end;
            if \((k \div 2) \times 2=k\) then \(\operatorname{resuleps}[(k \div 2)+1]:=\operatorname{epstamp}[j]\);
            \(k:=k+1\)
        end;
fin:
    end epsalgor;
    procedure laplinv (rf1g,tg, iterg,ag,resultatg);
    real procedure \(r f 1 g\); real \(1 g\),resultatg,ag;
    integer iterg;
    begin
```

```
real somme; integer \(i, j\);
```

real somme; integer i, j;
real array ftab $[0: 8 \times$ iterg $]$, ep $[1:$ iterg], resulep $[1:$ iterg $\div 2$];
real array ftab $[0: 8 \times$ iterg $]$, ep $[1:$ iterg], resulep $[1:$ iterg $\div 2$];
for $i:=0$ step 1 until $8 \times$ iterg do
for $i:=0$ step 1 until $8 \times$ iterg do
ftab $[i]:=r f 1 g(a g, i \times 3.1415926536 /(8.0 \times t g))$;
ftab $[i]:=r f 1 g(a g, i \times 3.1415926536 /(8.0 \times t g))$;
somme $:=0.0$;
somme $:=0.0$;
for $i:=1$ step 1 until iterg do
for $i:=1$ step 1 until iterg do
begin
begin
for $j:=1$ step 1 until 8 do
for $j:=1$ step 1 until 8 do
somme : = somme + fiab $[j+8 \times(i-1)] \times \cos ((j+8 \times$
somme : = somme + fiab $[j+8 \times(i-1)] \times \cos ((j+8 \times$
$(i-1)) \times 3.1415926536 / 8.0) ;$
$(i-1)) \times 3.1415926536 / 8.0) ;$
ep $[i]:=$ somme
ep $[i]:=$ somme
end;
end;
epsalgor (ep,iterg,resulep,tg);
epsalgor (ep,iterg,resulep,tg);
if \neg bool then
if \neg bool then
resultatg : $=2.0 \times \exp (a g \times t g) /(8.0 \times t g) \times(r e s u l e p$
resultatg : $=2.0 \times \exp (a g \times t g) /(8.0 \times t g) \times(r e s u l e p$
$[$ iterg $\div 2]+0.5 \times$ ftab $[0]) ;$
$[$ iterg $\div 2]+0.5 \times$ ftab $[0]) ;$
end laplinv;
end laplinv;
procedure coefsplinetrois (n, x, y, m);
procedure coefsplinetrois (n, x, y, m);
value n, x, y; integer n; array x, y, m;
value n, x, y; integer n; array x, y, m;
begin
begin
integer i; array $d[1: n-1]$; real a, b, c, e;
integer i; array $d[1: n-1]$; real a, b, c, e;
for $i:=n-1$ step -1 until 1 do
for $i:=n-1$ step -1 until 1 do
begin
begin
$a:=x[i+1]-x[i] ; b:=x[i]-x[i-1] ;$
$a:=x[i+1]-x[i] ; b:=x[i]-x[i-1] ;$
$c:=y[i+1]-y[i] ; e:=y[i]-y[i-1] ;$
$c:=y[i+1]-y[i] ; e:=y[i]-y[i-1] ;$
if $i=n-1$ then
if $i=n-1$ then
begin
begin
$d[i]:=(x[i+1]-x[i-1]) / 3.0 ; m[i]:=c / a-e / b$
$d[i]:=(x[i+1]-x[i-1]) / 3.0 ; m[i]:=c / a-e / b$
end
end
else
else
begin
begin
$d[i]:=(12 \times d(i+1) \times(x[i+1]-x[i-1])-a \times a) /(36 \times$
$d[i]:=(12 \times d(i+1) \times(x[i+1]-x[i-1])-a \times a) /(36 \times$
$d[i+1])$;
$d[i+1])$;
$m[i]:=c / a-e / b-a \times m[i+1] /(6.0 \times d[i+1])$
$m[i]:=c / a-e / b-a \times m[i+1] /(6.0 \times d[i+1])$
end
end
end;
end;
$m[0]:=m[n]:=0.0 ;$
$m[0]:=m[n]:=0.0 ;$
for $i:=1$ step 1 until $n-1$ do
for $i:=1$ step 1 until $n-1$ do
if $i=1$ then $m[i]:=m[i] / d[i]$
if $i=1$ then $m[i]:=m[i] / d[i]$
else
else
$m[i]:=(6 \times m[i]-(x[i]-x[i-1]) \times m[i-1]) /(6 \times d[i])$
$m[i]:=(6 \times m[i]-(x[i]-x[i-1]) \times m[i-1]) /(6 \times d[i])$
end coefsplinetrois;
end coefsplinetrois;
boolean bool, bool1, bool2;
boolean bool, bool1, bool2;
real delta, a1, b1, c1, zero, x1, x2, dzero, v, u;
real delta, a1, b1, c1, zero, x1, x2, dzero, v, u;
integer i, j;
integer i, j;
real array $x, m, z[0: n a f-1]$;
real array $x, m, z[0: n a f-1]$;
real array $y[0: n a f]$;
real array $y[0: n a f]$;
for $i:=1$ step 1 until ntf do
for $i:=1$ step 1 until ntf do
begin
begin
bool := false; resultatf $[i]:=0.0$;
bool := false; resultatf $[i]:=0.0$;
for $j:=0$ step 1 until naf -1 do
for $j:=0$ step 1 until naf -1 do
begin
begin
$x[j]:=a f[j] / t f[i] ;$
$x[j]:=a f[j] / t f[i] ;$
laplinv (rf $1 f$, t $f[i]$, iterf, $x[j], y[j]$);
laplinv (rf $1 f$, t $f[i]$, iterf, $x[j], y[j]$);
if \neg bool then resultat $f[i]:=\boldsymbol{y}[j]$
if \neg bool then resultat $f[i]:=\boldsymbol{y}[j]$
else
else
go to e;
go to e;
end;
end;
if naf $\neq 1$ then
if naf $\neq 1$ then
begin
begin
coefsplinetrois (naf-1, x, y,m); $u:=0.0$;
coefsplinetrois (naf-1, x, y,m); $u:=0.0$;
for $j:=0$ step 1 until naf- 2 do
for $j:=0$ step 1 until naf- 2 do
begin
begin
$a 1:=(m[j+1]-m[j]) / 6.0 /(x[j+1]-x[j]) ;$
$a 1:=(m[j+1]-m[j]) / 6.0 /(x[j+1]-x[j]) ;$
$b 1:=(m[j]-6.0 \times a 1 \times x[j]) / 2.0 ;$
$b 1:=(m[j]-6.0 \times a 1 \times x[j]) / 2.0 ;$
$c 1:=(y[j+1]-y[j]) /(x[j+1]-x[j])-a 1 \times$
$c 1:=(y[j+1]-y[j]) /(x[j+1]-x[j])-a 1 \times$
$(x[j] \times x[j]+x[j+1] \times x[j+1]+x[j] \times$
$(x[j] \times x[j]+x[j+1] \times x[j+1]+x[j] \times$
$x[j+1])-b 1 \times(x[j]+x[j+1]) ;$
$x[j+1])-b 1 \times(x[j]+x[j+1]) ;$
delta $:=b 1 \times b 1-3.0 \times a 1 \times c 1$;
delta $:=b 1 \times b 1-3.0 \times a 1 \times c 1$;
bool $1:=$ false; bool $2:=$ false;

```
            bool \(1:=\) false; bool \(2:=\) false;
```

```
    if delta \geq0.0 then
    begin
        if a1 = 0.0 then
        begin
            if b1 \not=0.0 then
            begin x2:= -c1/2.0/b1; bool2 := true end;
        end
        else
        begin
                x1:=(-b1 + sqrt(b1\timesb1 - 3.0 }\timesa1\timesc1))
                a1/3.0;
        x2:=(-b1 - sqrt(b1 < b1 - 3.0 }\timesa1\timesc1))
            a1/3.0;
        bool1 := true; bool2 := true;
        end
    end;
    if bool1 then
    begin
        if (x[j] \leq x1^x1<x[j+1]) then }u:=x
    end
    else
    if bool2 then
    begin
        if (x[j]) \leq x2 ^ x2<x[j+1]) then }u:=x
    end
end;
if }\neg\mathrm{ bool1 ^ ᄀ bool2 }\veeu=0.0 then
for j:= 0 step 1 until naf-2 do
begin
    if }j=0\mathrm{ then z[j]:= abs ((3.0 }\timesa1\timesx[j]+2.0
        b1) }\timesx[j]+c1)
    z[j+1]:=abs ((3.0 }\timesa|\mp@code{x x[j+1] + 2.0 < b1) }
        x[j+1] + c1);
    if }j=0\mathrm{ then
```

```
    begin
            if \(z[j]<z[j+1]\) then
            begin \(u:=x[j] ; v:=z[j]\) end
            else
            begin \(u:=x[j+1] ; v:=z[j+1]\) end;
        end
        else
        if \(v>z[j+1]\) then
        begin \(v:=z[j+1] ; u:=x[j+1]\) end;
        zero \(:=-b 1 / 3.0 / a 1\);
        dzero \(:=a b s((3.0 \times a 1 \times\) zero \(+2.0 \times b 1) \times\)
            zero \(+c 1)\);
            if \((x[j] \leq\) zero \(\wedge\) zero \(<x[j+1] \wedge\) dzero \(<z[j])\) then
            begin \(u:=z e r o ; v:=d z e r o\) end
        end;
        \(j:=0 ;\)
        if \(u=x[j]\) then resultat \(f[i]:=y[i]\)
        else
        if \(u<x[j+1]\) then
        begin
            laplinv (rf1f,tf[i], iterf, \(u, y[n a f])\);
            if \(\neg\) bool then resultat \(f[i]:=y[\) naf \(]\)
            else
            resultat \(f[i]:=y[j] ;\)
        end
        else
        if \(j<n a f-2\) then
        begin \(j:=j+1\); go to \(l\) end
        else
        if \(u=x[j+1]\) then resultat \(f\{i]:=y[j+1]\)
        end;
\(e\) :
    end
end laplaceinverse;
```

ACM Transactions on Mathematical Software, Vol. 2, No. 4, December 1976, liakes 3!5 3!16.

REMARK ON ALGORITHM 486

Numerical Inversion of Laplace Transform [D5]
[F. Veillon, Comm. ACM 17, 10 (Oct. 1974), 587-589]
Henk Koppelaar and Peter Molenaar [Recd 12 Feb. 1976 and 11 May 1976]
Department of Psychology, Division MPS, State University of Utrecht, Oudenoord 6, Utrecht, The Netherlands.

The following changes were made in the algorithm:
(1) Within the body of the procedure epsalgor the last call of ecri was changed to read: ecri(teps).
(2) Within the body of the procedure coefsplinetrois the assignment to $d[i]$ was changed to read: $d[i]:=(12 \times d[i+1] \times$, etc.
(3) Tests show the increasing inaccuracy of the approximation by Laplaceinverse if t gets in the vicinity of zero. In fact if $t=0$, overflow occurs at various places. The first spot where it occurs is after declaration of coefsplinetrois in the inner do-loop:

```
for j:= 0 step 1 until naf-1 do begin
x[j]:=af[j]/tf[i]
```

if $t=t f[i]$ is zero for some i. In order to avoid this overflow, one may compute Laplaceinverse at $t \neq 0$ or insert in the algorithm the precaution: if $t f[i]=0$ then begin ecri ($t f[i]$); go to e end:

```
for j:= 0 step 1 until naf-1 do begin
if tf[i]=0 then begin ecri(tf[i]);
go to e end; x[j]:= af[j]/tf[i]
```

Though this precaution prevents overflow, it is appropriate to add a comment in the heading of Laplaceinverse concerning problems if $t=0$. Also, in the description of the algorithm a warning against $t=0$ is necessary.
(4) In the heading of the procedure epsalgor the declaration boolean bool; was erased.

With these modifications the algorithm Laplaceinverse was translated for the CDC-6500 using the Control Data Algol 3 compiler.

The program was used on the following five tests, computing the inverse of $F(s), s=a+i b$, which is $f(t)$, while the program is supplied with $\operatorname{Re}\{F(s)\}$:

| Test | $F(s)$ | $f(t)$ | $\operatorname{Re}\{F(s)\}$ |
| :--- | :--- | :--- | :--- |
| a | $1 / \sqrt{ } s$ | $1 / \sqrt{ }(t \pi)$ | $\sqrt{ }[(a+p) / 2] / p, p=\sqrt{ }\left[\left(a^{2}+b^{2}\right)\right]$ |
| b | $1 /(s+0.5)$ | $\exp (-t / 2)$ | $\left.(0.5+a) /(0.5+a)^{2}+b^{2}\right)$ |
| c | $s /\left(s^{2}+1\right)^{2}$ | $(t / 2) \sin (t)$ | $a\left(x^{2}+4 b^{2}\left(1-b^{2}\right)\right) /\left(x^{2}+4 b^{2}\left(a^{2}\right)\right)^{2}$, |
| | | | $x=a^{2}-b^{2}+1$ |
| d | $1 /\left(s^{2}+s+1\right)$ | $(2 / \sqrt{ } 3) \exp (-t / 2) \sin (t /(2 / \sqrt{ } 3))$ | $x /\left(x^{2}+y^{2}\right), x=a^{2}-b^{2}+a+1$, |
| | | | $y=b(2 a+1)$ |
| e | $s^{-1} \exp (-25 s)$ | $U(t-25)$ | $\exp (-25 a)(a \times \cos (25 b)-b \times \sin (25 b)) /$ |
| | | | $\left(a^{2}+b^{2}\right)$ |

Except for tests b and e the results were accurate to about four decimal places. For $t \approx 0.01$ the results for test b were accurate to about two decimal places, while test e showed accuracy to only one decimal place at $t \approx 25$.

ACM Transactions on Mathematical Software, Vol. 3, No. 1, March 1977. Page-111
REMARK ON ALGORITHM 486
Numerical Inversion of Laplace Transform [D5]
[Francoisc Veillon, Comm. ACM 17, 10 (Oct. 1974), 587-589]
Francoise Veillon [Recd 21 April and 30 July 1976]
Mathématiques Appliquées Informatique, U.S.M.G. B.P. 53, 38041 Grenoble, France

A significant improvement in efficiency can be obtained by using call by value rather than call by name where appropriate. Thus the following three changes are suggested:
(1) value $t f$, ntf, af, naf, iterf;
inserted between the heading of the procedure laplaceinverse and its specifications.
(2) value eps, neps, teps;
inserted between the heading of the procedure epsalgor and its specifications.
(3) value $t g$, iterg, $a g$;
inserted between the heading of the procedure laplinv and its specifications.
As the procedures needed to evaluate $\operatorname{Re}(F(s))$ and the true values of the results are the responsibility of the user, two kinds of tests have been performed:
(a) The modifications (1), (2), and (3) are included in the procedure laplaceinverse.
(b) Calls by value are also used in the user supplied function $r f 1 f$. (Call by value is used in only three of the seven true value functions because it is not worthwhile using it when the parameter is referred to only once.)

The computing times (in seconds) are given in Table I. They concern the calculation of ten t-values for seven functions; the last column, to the right, concerns the mean time for one t-value.

The programs were run on an IBM/360/67 computer, using an F compiler, under Operating System MVT, version 20.1/asp 2.6.

Table I
t1: Computing time needed to evaluate $\operatorname{Re}(F(s))$.
$t 2$: Computing time irrespective of the time needed to evaluate $\operatorname{Re}(F(s))$.
$t 3$: Computing time per t-value irrespective of the time needed to evaluate $\operatorname{Re}(F(s))$.

| | Full
 computing time | Computing
 time $t 1$ | Computing
 time $t 2$ | Computing
 time $t 3$ |
| :--- | :---: | :---: | :---: | :---: |
| No call by value | 61.99 | 28.18 | 33.81 | 0.48 |
| Call by value only in laplace-
 inverse
 Call by value in laplacein-
 verse and user supplied func-
 tion $r f 1 f$ | 48.42 | 28.18 | 20.24 | 0.29 |

Algorithm 487

Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for Small Samples [S14]

John Pomeranz [Recd. 13 Mar. 1973]
Computer Sciences Department, Mathematical Sciences
Building, Purdue University, West Lafayette, IN 47907*

Key Words and Phrases : Kolmogorov-Smirnov test, K-S statistic, goodness-of-fit testing
CR Categories: 8.1, 5.5
Language: Fortran

Description

The algorithm calculates the exact cumulative distribution of the two-sided Kolmogorov-Smirnov statistic for samples with few observations. The general problem for which the formula is needed is to assess the probability that a particular sample comes from a proposed distribution. The problem arises specifically in data sampling and in discrete system simulation. Typically, some finite number of observations are available, and some underlying distribution is being considered as characterizing the source of the observations.

The statistic used here simply measures the maximum deviation between the proposed distribution and the empirical distribution derived from the sample. Elementary rules for calculating this deviation can be found in, e.g. Knuth [4, p. 41], Brunk [2, p. 267], or Miller and Freund [5, p. 222]. Simply put, let $S_{N}(x)$ be the fraction of the N observations which are less than x. Let $F(x)$ be the proposed cumulative distribution of the source. Let
$K_{N}=\sqrt{ } N \times \max _{x}\left|S_{N}(x)-F(x)\right|$.
Usually K_{N} is called a two-sided Kolmogorov-Smirnov statistic. Omitting the absolute value signs gives a one-sided statistic. For computational ease we let $D_{N}=K_{N} / \sqrt{ } N$ be the observed deviation, unweighted by $\sqrt{ } N$.

The inputs to the function are the sample size N and a critical value D. The function value is the exact probability $\operatorname{Pr}\left\{D_{N}<D\right\}=$ $\operatorname{Pr}\left\{K_{N}<D \sqrt{ } N\right\}$.

The formulas used in the function are obtained directly from Durbin [3, formulas (23) and (24)]. To validate the function, another was coded using matrices determined by Pomeranz [7], and the two were identical to eight decimal places. Then the function was used to generate Birnbaum's Table $1[1$, pp. 428-30] for $D=1 / N$, $2 / N, \ldots, J / N, J=\min \{N, 15\}, 1 \leq N \leq 100$. Eight entries differed by 10^{-6}, apparently from roundoff error [1, p. 440]. The final test was of Miller's Table 1 [6, pp. 113-15] of critical values in the extreme tail for $1 \leq N \leq 100$. (Miller's approximation is based on the one-sided statistic with doubled tail probabilities, which is accurate

* Present address: A.T. Kearney, Inc., 100 South Wacker Drive, Chicago, IL 60606.
in the extreme tail.) Newton's method was used to determine the values of D, which yield cumulative probabilities of $.8, .9, .95, .98$ and .99 , for each N. Miller's entries agreed within one in the fifth decimal place for probabilities other than 8 and within four in the fifth decimal place for the .8 probability. This supports Miller's claim [6, p. 120] and further allows the use of the column $\alpha=.10$ ($P=.80$) in his Table 1 when an error in D of 4×10^{-5} is acceptable. However, the two-sided statistic and the one-sided statistic [4, p. 44] are significantly different outside the tail. For example, with a sample size of $10, \operatorname{Pr}\left\{K_{10}<.54\right\}$ is approximately .12 , but at the same critical value for the one-sided statistic, the cumulative probability is .50 .

Finally, using a CDC 6500 , values were computed up to $N=$ 140. The major limitation is the magnitude of the exponent required to represent N^{N}. Rearranging sums produced no changes.

References

1. Birnbatm, Z.W. Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size. J. Amer. Stat.
Assoc. 47, 259 (Sept. 1952), 425-4].
2. Brunk, H.D. An Introduction to Mathematical Statistics. Ginn and Company, Lexington, Mass., 1960.
3. Durbin, J. The probability that the sample distribution function lies between two parallel straight lines. Ann. Math. Statist. 39, 2 (Apr. 1968), 398-411.
4. Knuth, Donald E. The Art of Computer Programming Volume 2/Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 1969.
5. Miller, Irwin, and Freund, John E. Probability and Statistics for Engineers. Prentice-Hall, Englewood Cliffs, N.J., 1965.
6. Miller, Leslie H. Table of percentage points of Kolmogorov statistics. J. Amer. Stat. Assoc. 5, 273 (Mar. 1956), 111-21.
7. Pomeranz, John E. Exact values of the two-sided KolmogorovSmirnov cumulative distribution for finite sample size. Tech. Rep. 88, Computer Sciences Department, Purdue U., Feb. 1973.

Algorithm

```
            REAL FUNCTION PKSZ(N, D)
            INTEGEQ N
C N IS the Sample size used.
            REAL D
C D IS THE MAXIMUM MAGNITUDE COF THE DISCREPANCY
C BETVEEN THE EMPIRICAL AND PROPOSED DISTRIBUTIONS)
BETVEEN THE EMPIRICAL AND PROPOSED DISTRIBUTION
C IN EITHER THE POSITIVE OR NEGATIVE DIRECTION.
C PKS2 IS THE EXACT PROBABILITY OF OBTAINING A
C DEVIATION NO LARGER THAN D.
C THESE FORMULAS APPEAR AS (23) AND (24) IN
C J. DURBIN. THE PROBABILITY THAT THE SAMPLE
C J. DURBIN. THE PROBABILITY THAT THE SAMPLE 
C STRAIGHT LINES. ANNALS OF MATHEMATICAL STATISTICS
C 39. 2(APRIL 1968),358-411.
    DOUBLE PRECISION Q(141), FACT(14!), SUM, C1,
    * FT, FU, FV
        IF (N.EQ.1) GO TO 90
            FN=FLOAT(N)
            FND = FN*D
            NDT = IFIX(\varepsilon.*FND)
            IF (NDT.LT.1) GO TO 100
            ND = IFIX(FND)
            NED = MINE(2*ND,N)
            NDP = ND + I
            NDDP = NDD + 1
            FACT(1) = 1.
            CI = 1.
            DO 10 I=1,N
            FACT(I+1)= FACT(I)*CI
            CI = CI + 1.
            0 CONTINUE
                CONTINUE
                    IF (NDD.EQ.0) G* TO 50
                    C I = 1.
            DO 20 I=1,NDD
                Q(I+1)=CI**I/FACT(I+1)
                CI = CI + 1.
            0 CONTINUE
            IF (NDP.GT.N) GO TO 80
```

```
    FV = FLOAT(NDP) - FND
    MMAX = IDINT(FU) + 1
    MMAX = 1DINT(FU) + 1
        SUM = a.
        FT = FND
    K F I
    FU=FV
    DC 30 J=1,JMAX
        SUM = SUM + FT**(J-2)/FACT(J)*FU**K/
            FACT(K+1)
            FT=FT + 1.
            FU=FU - 1.
            K=K-1
    CONTINUE
    Q(I+1)=n(1+1)-2.*FND*SUM
    JMAX = JMAX + 1
    JMAK= JMAX
40 STNTINUE
IF (NDD.EQ.N) GO TO go
S| DO 70 I=NDDP,N
    SUM = e.
    SIGN:= 1.
    T # 2.*FND
    DO 60 J=1,NDT
        FT= FT-1.
        SUM=SUM + SIGN*FT**J/FACT(J+1)*Q(K)
        SIGN = -5IGN
OG CONTINUE
    Q(I+1)= SUM
7a CONTINUE
80 PKS2 = ? (N+1)*FACT(N+1)/FN**N
RETUPN
PKS2 = 2.*D - 1.
RETURN
O0 PYS2 = 0.
    RETURN:
    END
    SUBPOUTINE PRFAC
    DOUBLE:PNECISION PF(4,40)
    DOUBLE:PRECISION
    DINENSION DXA(4)
    COMLION DX, DXA, PF, J
    DATA I /I/
    DO 10 J=1,4
        It (DXA(J).EQ.DX) RETURN
Ia CONTINUE
    J=1
    I}=1+
    IF (I.EG.5) I= =
    DYA(J) = DX
    PF(J,1) = 1
    DO 20 K=2,38
        PF(J,K)=(PF(J,K-1)*DX)/FLOAT(K-1)
    continue
    RETURN
    RETD
    FURUTION CEIL(X)
    IF <X.GE.
    CEIL = -
    RETURN
10 1 = X + .959999999
    CEIL. = I
    RETURN
    ENS
```

 FUNCTION PKS(N, EPS)
 FUNCTION PKS(N, EPS)
 THL CUMULATIVE DISTRIBUTION OF THE
C CALCULATE THL CUMULATIVE DISTRIBUTION OF THE
C KOLMOGOFOU-SMIRNOU STATISTIC USING THE FORMULAS OF
C KOLMOGCFOU-SMIRNOU STATISTIC USING THE FORMUL
C JOHN PORERANZ. EXACT VALUES OF THE TWO-SIDED
C JOHN PORIERANZ. EXACT VALUES OF THE TWO-SIDED
C KOLMOGOROU- SMI FNOU CUNULATIUE DISTRIGUTION FOR
C FINITE SAMPLE SIZE. TECHIVICAL REPORT NUMEER 88,
C COMPUTER SCIENCES DEPARTMENT, PURDUL UNIVERSITY,
- february 1973.
DOUBLE PRECISION PF $(4,4 \pi), U(40), V(40)$
DOUBLE PRECISION SUA
DIMBLE SI ON DXA(4)
DIMENSION DXA(4)
COMMCN DX, DXA, PF, L
COMMCN DX, DXA
DATA MNP/4B/
DATA MNP
$F N=N$
$\mathrm{RN}=1 . / \mathrm{FN}$
$K=E P S * F N+.00000001$
$F_{K}=K$
$K=K$
$I F \leqslant A B S C F K$
$K=K-1$
$F K=r$
10 CONTINUE
DEL $=$ EPS - FK*RN
XUP $=$ RN - DEL
XLO $=\mathrm{DEL}$
IF (ABS (XUP-XLO).LT..日E日の日®日!) XUP $=X L O$
XPREV $=0$.
DC $201=1, M N P$
$U(1)=0$.
20 CONTINUE
$U(K+1)=1$
$I M I N=-K$
$30 X=$ AMINI (XUP, XLO)
If (X.GT..9ssssg) $x=1$.
DX $=x-X P R E V$
DX $=X$ - XPFEV
JMIN $=\operatorname{CEIL}((X-E P S) * F N-.0000000!)$
IF (ABS(FLOAT (JMIN)-(X-EPS)*FN).LT..00000001)
* JMIN $=$ JMIN + 1
* JMIN $=$ JMIN +
IF (ABS (FLOAT (JMAX)-(X+EFS)*FN).LT..U日D日ロ日日i)
- JMAY = JMAX - 1
* JMAY $=$ JMAX -1
IMAX $=$ JMAX
CALL PRFAC
CALL PRFAC
DO $60 J=1, M N P$
DO $60 \mathrm{~J}=1, \mathrm{MNP}$
$\begin{aligned} & \text { DO } 60 J=1, M \\ & \text { SUM }=0 .\end{aligned}$
SUM $=0$.
If (J.GT.JMAX) GO TO 50
$1=1$
$40 \quad I P=J=I+1+$ UMIN - IMIN
SUM $=$ SUM $+U(I) * P F(L, I P)$
$1=1+1$
IF ((IMIN+I),LE. (JMIN+J)) GO TO 40
$V(J)=$ SUM
5月 CONTINUE
DO $70 \quad 1=1$, MNF
$U(1)=U(1)$
70 CONTINUE
IMIN = JMIN
IMIN $=$ JMI
XPAEV $=X$
XPAEV $=X$
IF (X.EQ.XUP) XUP $=X U P+R N$
$I F(X \cdot E Q \cdot X L O) X L O=X L O+R N$
IF (X.EQ.XLO) XLO $=X L O+R N$
$1 F(X \cdot L T .1$.$) GO TO 30$
IF $(X \cdot L T .1$.
DO $B \emptyset \quad 1=1, N$
DO $80 \quad 1=1, N$
$U(K+1)=U(K+1) * F L O A T(1)$
80 CONTINUE
PKS $=U(K+1)$
PKS $=\mathrm{U}$
RETURN
RETURN
END

ACM Transactions on Mathematical Software，Vol．2，No．1，March 1970，Page 111

REMARK ON ALGORITHM 487

Exact Cumulative Distribution of the Kolmogorov－Smirnov Statistic for Small Samples［S14］
［J．Pomeranz，Comm．ACM 17， 12 （Dec．1974），703－704］
Subroutine PRFAC，function subprogram CEIL，and function subprogram PKS，which were published as a part of Algorithm 487，were test routines that were inadvertently printed along with the main algorithm．

Algorithm 488

A Gaussian Pseudo-Random Number Generator [G5]

Richard P. Brent [Recd. 9 Nov. 1973, and 19 Dec.1973]
Computer Centre, Australian National University, Canberra, Australia

Key Words and Phrases: random numbers, pseudo-random numbers, Gaussian distribution, normal distribution

CR Categories: 5.39, 5.5
Language: Fortran

Description

Introduction. Successive calls to the Fortran function GRAND return independent, normally distributed pseudo-random numbers with zero mean and unic standard deviation. It is assumed that a Fortran function RAND is available to generate pseudo-random numbers which are independent and uniformly distributed on $[0,1)$. Thus, GRAND may be regarded as a function which converts uniformly distributed numbers to normally distributed numbers.

Outline of the method. GRAND is based on the following algorithm (Algorithm A) for sampling from a distribution with density function $f(x)=K \exp (-G(x))$ on $[a, b)$, where
$0 \leq G(x) \leq 1$
on $[a, b)$, and the function $G(x)$ is easy to compute:
Step 1. If the first call, then take a sample u from the uniform distribution on $[0,1)$; otherwise u has been saved from a previous call.
Step 2. Set $x \leftarrow a+(b-a) u$ and $u_{0} \leftarrow G(x)$.
Step 3. Take independent samples u_{1}, u_{2}, \ldots from the uniform distribution on $[0,1)$ until, for some $k \geq 1, u_{k-1} \leq u_{k}$.
Step 4. Set $u \leftarrow\left(u_{k}-u_{k-1}\right) /\left(1-u_{k-1}\right)$.
Step 5. If k is even go to Step 2, otherwise return x.
The reason why Algorithm \mathbf{A} is correct is explained in Ahrens and Dieter [2], Forsythe [4], and Von Neumann [6]. The only point which needs explanation here is that, at Step 4, we can form a new uniform variate u from u_{k-1} and u_{k}, thus avoiding an extra call to the uniform random number generator. This is permissible since at Step 4 it is clear (from Step 3) that $\left(u_{k}-u_{k-1}\right) /(1-$ u_{k-1}) is distributed uniformly and independent of x and k. (The fact that it is dependent on u_{k} is irrelevant.)

Let a_{i} be defined by $(2 / \pi)^{\frac{1}{2}} \int_{a_{i}}^{\infty} \exp \left(-\frac{1}{2} t^{2}\right) d t=2^{-i}$ for $i=0,1, \ldots$ To sample from the positive normal distribution (Algorithm B), we may choose $i \geq 1$ with probability 2^{-i} (easily done by inspecting the leading bits in a uniformly distributed number) and then use Algorithm A to generate a sample from $\left[a_{i-1}, a_{i}\right)$, with $G(x)=\frac{1}{2}\left(x^{2}-a_{i-1}^{2}\right)$. It is easy to verify that condition (1) is satisfied, in fact
$\frac{1}{2}\left(a_{i}{ }^{2}-a_{i-1}^{2}\right)<\log (2)$.
Finally, to sample from the normal distribution (Algorithm C), we generate a sample from the positive normal distribution and then attach a random sign.

Comments on the method. The algorithm is exact, apart from the inevitable effect of computing with floating-point numbers
with a finite word-length. Thus, the method is preferable to methods which depend on the central limit theorem or use approximations to the inverse distribution function.

Let N be the expected number of calls to a uniform random number generator when Algorithm A is executed. If the expected value of k at Step 3 is E, and the probability that k is even is P, then $N=E+N P$, so $N=E /(1-P)$. From Forsythe [4, eq. (11)], $E=(b-a)^{-1} \int_{a}{ }^{b} \exp (G(x)) d x$ and
$1-P=\frac{1}{b-a} \int_{a}^{b} \exp (-G(x)) d x$, so
$N=\int_{a}^{b} \exp (G(x)) d x / \int_{a}^{b} \exp (-G(x)) d x$.
From (3) and the choice of a_{i}, the expected number of calls to a uniform random number generator when Algorithm C is executed is
$\sum_{i=1}^{\infty} 2^{-i} \int_{a_{i-1}}^{a_{i}} \exp \left(\frac{1}{2}\left(x^{2}-a_{1-1}^{2}\right)\right) d x / \int_{a_{i-1}}^{a_{i}} \exp \left(-\frac{1}{2}\left(x^{2}-a_{i-1}^{2}\right)\right) d x$ $\simeq 1.37446$.
This is lower than 4.03585 for the algorithm given in Forsythe [4], or 2.53947 for the improved version (FT) given in Ahrens and Dieter [2]. It is even slightly lower than 1.38009 for the algorithm $F L_{4}$ of [2], and $F L_{4}$ requires a larger table than Algorithm C. Thus, Algorithm C should be quite fast, and comparable to the best algorithms described by Ahrens and Dieter [1]. The number (4) could be reduced by increasing the table size (as in the algorithms $F L_{4}, F L_{5}$, and $F L_{6}$ of [2]), but this hardly seems worthwhile. Exact timing comparisons depend on the machine and uniform random number generator used. (If a very fast uniform generator is used, then Step 4 of Algorithm A may take longer than generating a new uniform deviate.)

The loss of accuracy caused by Step 4 of Algorithm A is not serious. We may say that $\log _{2}\left(1-u_{k-1}\right)^{-1}$ "bits of accuracy" are lost, and in our application we have, from (2) and Step 3 of Algorithm $\mathrm{A}, \log (2)>u_{0}>\cdots>u_{k-1}$, so the number of bits lost is less than $\log _{2}(1-\log (2))^{-1}<2$.

Test results. If x is normally distributed then $u=$ $(2 \pi)^{-\frac{1}{2}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} t^{2}\right) d t$ is uniformly distributed on (0,1). Hence, standard tests for uniformity may be applied to the transformed variate u. Several statistical tests were performed, using a Univac 1108 with both single-precision (27-bit fraction) and doubleprecision (60 -bit fraction). For example, we tested two-dimensional uniformity by taking 10^{6} pairs (u, u^{\prime}), plotting them in the unit square, and performing the Chi-squared test on the observed numbers falling within each of 100 by 100 smaller squares. This test should show up any lack of independence in pairs of successive uniform deviates. We tested one-dimensional uniformity similarly, taking 10^{6} trials and subdividing (0,1) into 1,000 smaller intervals. The values of χ^{2} obtained were not significant at the 5 percent level. It is worth noting that the method of summing 12 numbers distributed uniformly on ($-1 / 2,1 / 2$) failed the latter test, giving $\chi_{099}^{2}=1351$. (The probability of such a value being exceeded by chance is less than 10^{-11}.)

Naturally, test results depend on the particular uniform generator RAND which is used. GRAND will not produce independent normally distributed deviates unless RAND supplies it with independent uniformly distributed deviates! For our tests we used an additive uniform generator of the form $u_{n}=u_{n-1}+u_{n-127}\left(\bmod 2^{w}\right)$ with $w=27$ or 60 (see Brent [3] and Knuth [5]), but a good linear congruential generator should also be adequate for most applications.

Comparison with Algorithm 334．The fastest exact method previously published in Communications is Algorithm 334 ［7］． We timed function GRAND，subroutine $N O R M$（a Fortran transla－ tion of Algorithm 334），and function RAND（the uniform random number generator called by GRAND and NORM）．The mean execution times obtained from 500,000 trials on a Univac 1108 were 172， 376 and $59 \mu \mathrm{sec}$ respectively．Since NORM returns two normally distributed numbers，GRAND was effectively 9 percent faster than NORM．Based on comparisons in［2］，we estimate that the saving would be greater if both routines were coded in assembly language，for much of the execution time of $N O R M$ is taken up in evaluating a square－root and logarithm which are already coded in assembly language．

GRAND requires about 1.38 uniform deviates per normal de－ viate，and $N O R M$ requires $4 / \pi+1 / 2 \simeq 1.77$ ．Thus，we may es－ timate that if a uniform generator taking $U \mu \mathrm{sec}$ per call were used， the time per normal deviate would be $(91+1.38 U) \mu \mathrm{sec}$ for $G R A N D$ and $(83+1.77 U) \mu \mathrm{sec}$ for NORM．Hence，GRAND should be faster for $U \geq 20$ ．

References

1．Ahrens，J．H．，and Dieter，U．Computer methods for sampling from the exponential and normal distributions．Comm．ACM 15 ， 10 （Oct，1972），873－882．
2．Ahrens，J．H．，and Dieter，U．Pseudo－random Numbers （preliminary version）．Preprint of book to be published by Springer，Part 2，Chs．6－8．
3．Brent，R．P．Algorithms for Minimization Without Derivatives． Prentice－Hall，Englewood Cliffs，N．J．，1973，pp．163－164．
4．Forsythe，G．E．Von Neumann＇s comparison method for random sampling from the normal and other distributions．Math． Comp．26， 120 （Oct．1972），817－826．
5．Knuth，D．E．The Art of Computer Programming，Vol． 2.
Addison－Wesley，Reading，Mass．，1969，pp．26，34， 464.
6．Von Neumann，J．Various techniques used in connection with random digits．In Collected Works，Vol．5，Pergamon Press，New York，1963，pp．768－770．
7．Bell，J．R．Algorithm 334，Normal random deviates．Comm． ACM 11， 7 （July 1968）， 498.

Algorithm

FUNCTION GRAND（N）

C EXCEFT ON THE FIRST CALL GRAND RETURNS A C PSEUDO－RANDOM NUMBER HAVIMG A GAUSSIAN（I．E． C NCPMAL，DISTRIBUTION SITH ZERO MEAN AND UNIT C STANDAPD DEUIATION：THUS，THE DENSITY IS $F(X)=$ C EXP $-8.5 * X * * 2) / S O R T(2 . B * P I)$ ．THE FIRST CALL C EXP（－2．5＊X＊＊2）／SGRT（2．B＊PI）．THE FI
C INITIALIZES GRAND AND RETURNS ZERO．
C INITIALIZES GRAND AND RET
C THE PARAMETER N IS DUMMY．
C THE PARAMETER N IS DUMMY．
C CRANL CALLS A FUNCTION PAND，AND IT IS ASSUMED THAT
C SUCCESSIVE CALLS TO RAND（B）GIVE INDEPENDENT
C PSEUDO－RANDOM NUMBERS DI STRIBUTED UNIFGRIVLY ON（ B ，
C 1），PQSSISLY IVCLUDING G（BLT NOT 1）．
C THE METKCD USED UAS SUGGESTED BY VON NEUMANN，AND C IMPROVED EY FORSYTHE，AHRENS，DIETER ANL FRENT． C OR：THE AVEPAGE THERE ARE 1.37746 CALLS OF RAND FOR C EACH CALL OF GRAND．
C WARNING－DIMENSION AND DATA STATENENTS EELON ARE
C MACHINE－DEPENDENT．
C DIMENSION OF D NUST BE AT LEAST THE NUMBER OF BITS
C IN THE FPACTION OF A FLOATING－POINT NLMBER．
C THUS，ON MOST MACHINES THE DATA STATENENT BELOW
C CAN EE TRUIICATED．
C IF THE INTEGRAL OF SQRT（2．0／PI）＊EXP（－8．5＊X＊＊2）FROM C $A(I)$ TO INFINITY IS $2 * *(-I)$ ，THEN $D(I)=A(I)-$ C $A(I-1)$ ．

DIMENSION D（68）
DATA $D(1), D(2), D(3), D(4), D(5), D(6), D(7)$ ，
＊$D(8), D(9), D(16), D(11), D(12), D(13)$ ，
＊$D(14), D(15), D(16), D(17), D(18), D(19)$ ，
＊$D(20), D(21), D(22), D(23), D(24), D(25)$,
$* D(26), D(27), D(28), D(29), D(30), D(31)$,
$* D(32) 10.674489750,0.475859630,0.383771164$,
＊⿹．328611323．8．291142827．e．263684322．
$* \quad 0.328611323,8.291142827, \ell \cdot 263684322$,
$*$
$*$
$*$
＊\quad＊．199924267．0．189910758．0．181225181，
＊ロ．173601400，0．166841989．0．160796729．
＊0．173601460．0．166841989．0．160796725，
＊0．155345717．0．158405384．0．145982577，

＊日．141778833． 6.137963174 .0 .134441762,
$*$
$*$
$*$
＊0．131172158，0．128125965．0．125279696，
$*$ 0．122610883．0．120103560．0．117741707，
＊ 8.115511892 .0 .113402345 ， 0.111402720 ．
＊ 0.109563852 .0 .1076976171

DATA $D(33), D(34), D(35), D(36), D(37), D(38)$ ，
＊$D(39), D(40), D(41), D(42), D(43), D(44)$ ，
＊$D(45), D(46), D(47), D(48), D(45), D(50)$ ，
＊$D(51), D(52), D(53), D(54), D(55), D(56)$ ，
＊$D(57), D(58), D(59), D(60)$
＊ $10.105976772,8.10433484 \mathrm{~J}, 8.102766812$ ，
＊Q．181265052．0．099827234，0．098448282，
＊Ø．ØS71243『9，Ø． 095851778.0 .094627461 ，
＊Ø．日S 3448487．0．05231190c，民．051215482，

＊0． $050156838,0.089133867,0.088144619$,
＊ 8.087187293 ． $8.884450786 .8 .883645487,8.082824924$,

＊ $0.079766932,8$
＊ 0.0776818991
C END OF MACHINE－DEPENDENT STATEMENTS
C U MUST BE PRESERVED BETWEEN CALLS．
DATA U 10.81
C INITIALIZE DISPLACEMENT A AND COUITER I．
$A=0$.
$I=Z$
C INCREMENT COUNTER AND DISPLACEMENT IF LEADING BIT C OF U IS ONE．
$10 U=U+U$
IF（U．LT．J．\varnothing ）GO TO 20
$U=U-1.0$
$I=I+1$
$A=A-D(I)$
GO TO 10
C FORM W UNIFORM ON O ．LE．W ．LT．D $(I+1)$ FROM U ．
$20 W=D(I+1) * U$
C FOPM $V=2 \cdot 5 *((W-A) * * 2-A * * 2) \cdot$ NOTE THAT Ø •LE．V
－L．T．LOG（2）．
V＝（ $*(B \cdot 5 *-A)$
C GENERATE NEG UNIFORM U．
$30 \mathrm{U}=\mathrm{RAND}(\mathbb{E})$
C ACCEPT U AS A RANDOM SAMPLE IF V ．I．E．U．
IF（V．LE．U）GO TO 40
C GENERATE RANDOM V
$V=$ RAND（ B ）
C LOOP IF U．GT．V．
IF（U．GT．V）GO TO 30
C REJECT U AND FORTA A NEV UNIFORM U FFOM V AND U． $U=(V-U) /(1 \cdot \theta-U)$ GO TO 20
C FORM NEW U（TO BE USED ON NEXT CALL）FROM I AND V ．
$40 U=(U-V) /(1 \cdot \varepsilon-V)$
C USE FIRST EIT CF U FOR SIGN，RETURN NORMAL VARIATE． $U=U+U$
IF（U．LT．1．e）GO TO 5 B
$U=U-1 \cdot B$
GRAND $=W-A$
RETURN
5＠GRAND $=A-U$
RETURN
END

Algorithm 489

The Algorithm SELECT－for
 Finding the i th Smallest of n Elements［M1］

Robert W．Floyd［Recd 26 Sept．1974］
Computer Science Department，Stanford University， Stanford，CA 94305
and
Ronald L．Rivest，M．I．T．Project MAC， 545 Technology Square，Cambridge，MA 02139

Key Words and Phrases：selection，medians，quantiles
CR Categories： $5.30,5.39$
CR Categories：5．30， 5.39

Language：Algol（not strictly Algol 60）

Description

$S E L E C T$ will rearrange the values of array segment $X[L: R]$ so that $X[K]$（for some given $K ; L \leq K \leq R$ ）will contain the （ $K-L+1$ ）－th smallest value，$L \leq I \leq K$ will imply $X[I] \leq X[K]$ ， and $K \leq I \leq R$ will imply $X[I] \geq X[K]$ ．While $S E L E C T$ is thus functionally equivalent to Hoare＇s algorithm FIND［1］，it is sig－ nificantly faster on the average due to the effective use of sampling to determine the element T about which to partition X ．The average time over 25 trials required by $S E L E C T$ and $F I N D$ to determine the median of n elements was found experimentally to be：

| n | | | |
| :--- | :--- | :--- | :---: | :---: |
| $\overline{S E L E C T}$ | | | |
| FIND | 500 1000 | 5000 | 10000 |
| 89 ms. | 141 ms. | 493 ms. | 877 ms. |
| 104 ms. | 197 ms. | 1029 ms. | 1964 ms. |

The arbitrary constants $600, .5$ ，and .5 appearing in the algorithm minimize execution time on the particular machine used．SELECT has been shown to run in time asymptotically proportional to $N+\min (I, N-I)$ ，where $N=L-R+1$ and $I=K-L+1$ ． A lower bound on the running time within 9 percent of this value has also been proved［2］．Sites［3］has proved $S E L E C T$ terminates．

The neater Algol 68 construct：
while 〈boolean expression〉do 〈statement〉
is used here instead of the Algol 60 equivalent：
for dummy $:=1$ while 〈boolean expression〉do 〈statement〉

References

1．Hoare，C．A．R．Algorithm 63 （PARTITION）and Algorithm 65 （FIND），Comm．ACM 4 （July 1961； 321.

2．Floyd，Robert W．，and Ronald L．Rivest．Expected time bounds for selection．Stanford CSD Rep．No．349，Apr．，1973）． 3．Sites，Richard．Some thoughts on proving clean termination of programs．Stanford CSD Rep．417，May 1974.

```
Algorithm
procedure \(\operatorname{SELECT}\) ( \(X, L, R, K\) );
    value \(L, R, K\); integer \(L, R, K\); array \(X\);
begin
    integer \(N, I, J, S, S D, L L, R R\); real \(Z, T\);
    while \(R>L\) do
    begin
        if \(R-L>600\) then
        begin
            comment Use SELECT recursively on a sample of size \(S\)
                to get an estimate for the ( \(K-L+1\) )-th smallest element
                into \(X \mid K]\), biased slightly so that the \((K-L+1)\)-th
                element is expected to lie in the smaller set after partition-
                ing;
            \(N:=R-L+1\);
            \(I:=K-L+1\);
            \(Z:=\ln (N)\);
            \(S:=.5 \times \exp (2 \times Z / 3)\);
            \(S D:=.5 \times \operatorname{sqrt}(Z \times S \times(N-S) / N) \times \operatorname{sign}(I-N / 2) ;\)
            \(L L:=\max (L, K-I \times S / N+S D)\);
            \(R R:=\min (R, K+(N-I) \times S / N+S D) ;\)
            \(\operatorname{SELECT}(X, L L, R R, K)\)
        end;
        \(T:=X[K] ;\)
        comment The following code partitions \(X|L: R|\) about \(T\). It
            is similar to PARTITION but will run faster on most ma-
            chines since subscript range checking on \(I\) and \(J\) has been
            eliminated.
        \(I:=L\);
        \(J:=R\);
        exchange \((X|L|, X|K|)\);
        if \(X \mid R]>T\) then exchaige \((X|R|, X \mid L])\);
        while \(I<J\) do
        begin
            exchange \((X \mid I], X \mid J])\);
            \(I:=I+1 ; J:=J-1\);
            while \(X[I]<T\) do \(I:=I+1\);
            while \(X[J]>T\) do \(J:=J-1\);
        end;
        if \(X[L]=T\) then exchange \((X[L|, X| J])\)
            else begin \(J:=J+1\); exchange \((X|J|, X|R|)\) end;
        comment Now adjust \(L, R\) so they surround the subset con
            taining the \((K-L+1)\)-th smallest element;
        if \(J \leq K\) then \(L:=J+1\);
        if \(K \leq J\) then \(R:=J-1\);
    end
end \(\operatorname{SELECT}\)
```


REMARK ON ALGORITHM 489

The Algorithm SELECT--for Finding the i th Smallest of n Elements [M1]
[R.W. Floyd and R.L. Rivest, Comm. ACM 18, 3 (March 1975), 173.]
Theodore Brown [Recd 2, Oct. 1975|
Department of Computer Science, Queens College of the City of New York, Flushing, NY 11367

Algorithm 489, SELECT T, is an effective algorithm for finding the k th smallest of n elements. The authors, Floyd and Rivest, have analyzed its properties in a companion paper [1].
The description of the algorithm given here is different from that given by Floyd and Rivest [1] and is truer to the actual implementation. The description, furthermore, leads to a simple modification of the algorithm that, as is shown, improves its pcrformance for finding values near the median. It is also shown that a small constant multiplying the standard deviation term is beneficial. Finally, a basic error in Floyd and Rivest's analysis is pointed out.
$S E L E C T$ can be viewed as a descendant of FIND [3], an earlier algorithm for finding the k th smallest element. A major component of SELECT is an improved coding of the partitioning algorithm PARTITION [3] used by FIND. This also is the partitioning algorithm used by the familiar QUICKSORT [3]. The partitioning works by dividing the n elements into two parts: those greater than a chosen element and those less than it. (Equality is ignored here. The analyses are based on uniquely valued elements.) In FIND (and in SELECT) the partitioning is reapplied repeatedly to the partition that contains the required k th smallest element until this value is determined.

FIND chooses the partitioning element randomly from the available candidates. The improved performance of SELECT is based on the use of a sample of the available candidates to determine the partitioning element. As described in the following paragraphs, the j th smallest of the sample, say $\mathbf{S}_{(j)}$ (found by recursively calling $S E L E C T$), is chosen so as to reduce the subsequent size of the required partition.

Writing the k th smallest of the original n elements as $x_{(k)}$, for a sample of size $s(n) \equiv s$ the probability that the j th smallest sample value is the i th smallest of the original n is

$$
\begin{equation*}
\operatorname{Pr}\left\{\mathbf{S}_{(j)}=x_{(i)}\right\}=\binom{i-1}{j-1}\binom{n-i}{s-j} /\binom{n}{s}, \tag{1}
\end{equation*}
$$

as $j-1$ elements of the sample must be less than $x_{(i)}$ and $s-j$ greater. The mean and variance for this distribution are, respectively,

$$
\begin{align*}
\mu_{(j)} & =j(n+1) /(s+1) \tag{2}\\
\sigma_{(j)}{ }^{2} & =j(s-j+1)(n+1)(n-s) /(s+1)^{2}(s+2) \tag{3a}\\
& \leq \frac{1}{4}(n+1)(n-s) / s . \tag{3b}
\end{align*}
$$

Equation (2) can be interpreted as the mean sizc of the partition of the n elements which contains $\mathbf{S}_{(j)}$ and the values smaller than it.

Floyd and Rivest [1] suggest a value for j of $u=\mu_{(k)}-2 d(n) \sigma_{(k)}$ if $k>n / 2$ or $v=\mu_{(k)}+2 d(n) \sigma_{(k)}$ if $k \leq n / 2, d(n)$ a slowly increasing function of $n\left((\ln n)^{1 / 2}\right.$ is used). They suggest this value for j to make sure that the k th smallest falls in the partition cither greater than u (if u is used) or less than v (if v is used). A better criterion is to keep the partition that will contain the k-th as small as possible. Their stated criterion is contrary to this for very small k, values of k near n, and for values of k near the median; for intermediate values of k, their criterion is consistent with this one.

Notice that from cq. (1), $\operatorname{Pr}\left\{\mathbf{S}_{(j)} \geq x_{(k)}\right\}=1$ for $k \leq j$. So for very small values of k, it does not pay to choose $j>k$ (or for k near $n, j<k$). The coded version of

Table I. Times (in msec) To Find Median SELECT

| | Algorithm | | |
|---|---|---|---|
| 489 | |\quad| Our |
| :---: |
| Fortran |
| version |$~$ Difference

SELECT takes care of these conditions in the MIN and MAX functions. Notice too that when finding a median it pays to choose $j=\mu_{(k)}=s / 2$. Any other choice will cause k to be most likely in the larger partition.
In fact, for any j it never pays to choose a value of u less than $s / 2$ or a value of v greater than $s / 2$. It is proposed that the calculation of u and v be modificd to $\mu_{(k)}+$ $2 d(n) f(n) \sigma_{(k)}$ and $\mu_{(k)}-2 d(n) f(n) \sigma_{(k)}$, respectively, with $f(n)$ a function that monotonically goes to zero from each side of the median. We used a linear function, replacing the SIGN function in the coded calculation of SD by the factor $(2 \times I / N-$ 1).

A Fortran version of SELECT was written for an XDS Sigma 7. Table I compares the times published by Floyd and Rivest in Algorithm 489 with those obtained here. Unfortunately, Floyd and Rivest only give times for finding a median. Notice, however, that not only is our version faster but that it gives proportionately better results for larger n. Our Fortran program was run first with no modification, then with the proposed modification. Figure 1 shows the timing of our Fortran version of SELECT without the modification (labeled 1) and with the proposed modification (labeled 2). As expected, the most substantial improvement occurs at the median.
Additional improvement was obtained by reducing the size of $d(n)$. This is true for several reasons. For $n=5000, d(n)=2.9$. With a normal approximation, the probability that k is more than 5.8 standard deviations away from the mean is less than 10^{-6}. This is a much stricter bound than required, and can be substantially reduced without adverse effects. One does not need to be so careful that the k th smallest element does not end up in the smaller partition. Even if the k th smallest ends up in the larger partition but near the boundary, the reduced problem can be done efficiently. This can be seen in Figure 1. Furthermore, the algorithm's use of the bound (3b) in place of the true deviation overestimates the true standard deviation. Floyd and Rivest recognized this and used a 0.5 multiplier for the standard deviation in the coded version. It was found that a multiplier of 0.1 produced even better results. The modified standard deviation with a 0.1 multiplier gave the results labeled 3 in Figure 1.
Floyd and Rivest [1] assert that their choices of $s(n), u$, and v make the probability of $o(1 / n)$ that k will fall in the partition less than u if u is used or in the partition greater than v if v is used. This is incorrect. It is not possible for any u or v for their choice of $s(n)$. Even the choice of $v=\mathbf{S}_{(1)}$ or $u=\mathbf{S}_{(s)}$ is not adequate, for from eq. (1),

$$
\operatorname{Pr}\left\{\mathbf{S}_{(1)}>x_{(x)}\right\}=\binom{n-k}{s} /\binom{n}{s}=(n-s)_{k} /(n)_{k},
$$

where $(n)_{k}=n(n-1) \ldots(n-k+1)$, is clearly not $o(1 / n)$. The best choice of $s(n)$ is an open question. The sorting method of Frazier and McKellar [2] has similarities to SELECT-it uses sampling and the partitioning of PARTITION [2]. Frazier and McKellar suggest a sample of $0.1 n$ for their procedure. No appreciable change in the times resulted from using this sample size. The values differed by less than 10 percent. Further experiments showed that the modifications made here made the running time of SELECTT rather insensitive to changes in the parameters that Floyd and Rivest [1] suggest tuning for the particular computer: the sample size and the cutoff point below which the algorithm does not do sampling.

Fig. 1

ACKNO WLEDGMENT

The author acknowledges the help of Robert Pfeffer in writing the timing routine.

REFERENCES

1. Floyd, R.W., and Rivest, R.L. Expected time bounds for selection. Comm. ACM 18, 3 (March 1975), 165-172.
2. Frazier, W.D., and McKellar, A.C. Samplesort: A sampling approach to minimal storage tree sorting. J. ACM 17, 3 (July 1970), 496-507.
3. Hoare, C.A.R. Algorithm 63, PARTITION; Algorithm 64, QUICKSORT; and Algorithm 65, FIND. Comm. ACM 4, 7 (July 1961), 321-322.

Algorithm 490

The Dilogarithm Function
 of a Real Argument [S22]

Edward S. Ginsberg* [Recd 22 June 1973]
Department of Physics, University of Massachusetts at Boston, Boston, MA 02125
and
Dorothy Zaborowski \dagger
Information Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139

Key Words and Phrases: dilogarithm
CR Categories: 5.12
Language: Fortran

Description

The dilogarithm function [1-3], defined by
$L_{2}(x)=-\int_{0}^{x}(1 / z) \ln (1-z) d z$,
occurs in several different applications in physics and engineering, ranging from quantum electrodynamics, to network analysis, to the thermodynamics of ideal ferromagnets, to the structure of polymers. A new function subroutine is developed which computes the dilogarithm function of a real argument to an accuracy of a few parts in 10^{15}. This program was designed to be included in the usual package of library subprograms relied upon by most users. It employs an alternative computational approach to a previously published algorithm [4].

The dilogarithm function is real for real argument $x \leq 1$ and complex for $x>1$. However, the imaginary part of the dilogarithm is just an ordinary logarithm, $-i \pi \ln (x)$, when $x>1$, which does not require special means for computation. Therefore, the following algorithm and comments are concerned only with the computation of the real part of the dilogarithm function for real argument.

Briefly, the method consists of transforming the usual series definition
$L i_{2}(x)=\sum_{1}^{\infty}\left(x^{n} / n^{2}\right),|x| \leq 1$,
into a more highly convergent power series by means of partial fractions. The identity
$\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right)$

[^6]leads immediately to the relation
\[

$$
\begin{aligned}
\left(1+4 x+x^{2}\right) L i_{2}(x) & =4 x^{2} \sum_{1}^{\infty}\left(x^{n} /[n(n+1)(n+2)]^{2}\right) \\
+ & 4 x+\frac{23}{4} x^{2}+3\left(1-x^{2}\right) \ln (1-x)
\end{aligned}
$$
\]

$$
|x| \leq 1 .
$$

This equation permits the evaluation of $L i_{2}(x)$ for $|x| \leq 1$ using a series which converges like x^{n} / n^{6} instead of x^{n} / n^{2}. Of course, more partial fractions can be employed to increase the rate of convergence even further, but then the resulting equation for $L i_{2}(x)$ is not so simple. The "optimal" number of partial fractions is a question requiring further study.

By the use of well-known functional identities, it is possible to relate the real part of $L i_{2}(x)$, for any real argument, to values of the function in the restricted range $0<x \leq \frac{1}{2}$. With $x=\frac{1}{2}$, the maximum relative error in $L i_{2}\left(\frac{1}{2}\right)$ after only 25 terms from eq. (4) is roughly
$\frac{2}{3}\left(\frac{1}{2}\right)^{25}\left(\frac{1}{25}\right)^{6} \simeq 10^{-16}$.
In many cases, far fewer terms are actually needed to achieve this relative accuracy. The various ranges of argument and the corresponding identities used in the Fortran program listing below are: for $x \geq 2$

$$
\operatorname{Re}\left[\bar{L} i_{2}(x)\right]=\pi^{2} / 3-\frac{1}{2}(\ln x)^{2}-L i_{2}(1 / x),
$$

for $2>x>1$

$$
\begin{aligned}
\operatorname{Re}\left[L i_{2}(x)\right]=\pi^{2} / 6-(\ln x)\left(\ln (x-1)-\frac{1}{2} \ln x\right) & \\
& +L i_{2}(1-1 / x),
\end{aligned}
$$

for $1>x>\frac{1}{2}$

$$
L i_{2}(x)=\pi^{2} / 6-(\ln x) \ln (1-x)-L i_{2}(1-x),
$$

for $0>x \geq-1$

$$
L i_{2}(x)=-\frac{1}{2}[\ln (1-x)]^{2}-L i_{2}(x /(x-1))
$$

for $-1>x$

$$
\begin{aligned}
L i_{2}(x)=\pi^{2} / 6-\frac{1}{2} \ln (1-x)[2 \times \ln (-x)- & \ln (1-x)] \\
& +L i_{2}(1 /(1-x)) .
\end{aligned}
$$

The inherent limitations of floating point arithmetic forced certain modifications and are the only serious sources of error. For example, when $|x|$ is small, the argument of the natural logarithm in eq. (4) is close to unity. The error in $D L O G$ (the library subprogram) then determines the accuracy of DILOG. It was found that for $0<|x| \leq 10^{-2}$, the original series, eq. (2), with eight terms, provided 16 -place accuracy. Also excluded is a small region around $x_{0} \simeq 12.595 \ldots,{ }^{1}$ which is a zero for the real part of the dilogarithm. Here, a Taylor series is used for the calculation. The relative accuracy of DILOG suffers accordingly, because the closer x is to x_{0}, the more significant figures are lost in computing the difference $\left(x / x_{0}\right)-1$ used in the expansion. (In addition, the value of x_{0} probably cannot be expressed exactly in floating point or hexadecimal form.) It is possible to recoup some relative accuracy by computing $\left(x / x_{0}\right)-1$ to higher than machine precision [5]. However, this would require calculating x_{0} to more significant figures than presently known.

The most accurate tables [2] (nine decimal places) published thus far are not adequate to check the values computed by DILOG.
${ }^{1}$ The best value for x_{0} obtained by the authors so far is 12.5951703698450184. ...

Instead，the program was tested at a selection of arguments for separate ranges of x as follows：
（a）For certain special arguments，the dilogarithm function can be expressed entirely in terms of elementary functions．These are： $1,-1,2, \frac{1}{2}, 2+q, 1+q, q, 1-q,-q$ ，and $-1-q$ ，where $q=\frac{1}{2}\left((5)^{\frac{1}{2}}-1\right)$ ．For example，$L i_{2}(1)=\pi^{2} / 6$ ，and $L i_{2}(q)=-\ln ^{2} q+$ $\pi^{2} / 10$ ．
（b）For values of $|x|$ close to unity，DILOG can be checked against a Taylor series expansion．Most of the discrepancy for this class of argument is associated with the computation of $1-x$ when x is near unity．
（c）For very small values of x ，an exact calculation by hand is practical with eq．（2）．
（d）For very large values of x ，an exact hand calculation for the difference $L i_{2}(x)-L i_{2}(-x)$ is possible．In this case，of course， there is cancellation between the two terms so that fewer than 16 places of accuracy are to be expected in evaluating the difference． （Since $L i_{2}(x) \rightarrow-\frac{1}{2} \ln ^{2}|x|$ ，for $|x| \rightarrow \infty$ ，the values shown in the table below for $L i_{2}(x)-L i_{2}(-x)$ are consistent with 16－place accuracy for DILOG．）

It can be seen that the worst case in the table represents a rela－ tive error of only 2.4 parts in 10^{15} ．Thus， 15 to 16 significant figures are correct，representing a slight gain over Kölbig＇s algorithm ［4］．Moreover，a test on an IBM 370／165 of the time required for 1,000 calls to DILOG，for randomly generated arguments of abso－ lute value less than 100 ，revealed that the present algorithm is twice as fast as Kölbig＇s（ 0.21 vs． 0.43 sec ）．

| SELECTED VAlues of cilog flr varicus argumentsex expresible in elementary terms | | |
| :---: | :---: | :---: |
| | | |
| X 0000 | 16449340668482260＋01 | 449340668482260＋01 |
| －0．10000000000000000＋ | －0．82246703342411300＋0 | －0．8224670334241132 |
| $0.2000000000000000+01$ | $0.24674011002723370+01$ | $0.24674 C 11002723390+01$ |
| $0.50000000000000000+00$ | $0.58224052646501230+00$ | $0.58224 C 52646501250+00$ |
| $0.26180339887498950+01$ | $0.24003296863795660+01$ | 0.2400325686375967 |
| $0.16180339887498950+01$ | $0.24186901038761120+01$ | ＋ 01 |
| $0.6180339887498948 \mathrm{D}+00$ | ． $75539561953174130+0$ | ．75539561953174140＋0 |
| $0.38196601125010520+00$ | $0.4264 C 880616209610+$ | C8806162C9610＋00 |
| －0．61803398874989480＋00 | －0．54219121645069340＋00 | －0．5421912164506 |
| $1618033988749895 \mathrm{D}+01$ | －0．12185252606861280＋01 | －0．1218525260686130 |
| arguments close to unity | | |
| | | |
| 0.1000010000000 | 645659155502232 | ． 16450591955022 |
| $0.99999000000000000+00$ | $0.16448089369929260+01$ | $0.16448089369929260+01$ |
| $0.10000000001000000+01$ | $0.16449340692508070+01$ | 0.164493406925081 |
| $0.9999999999000000 \mathrm{D}+00$ | $0.16449340644456410+01$ | $0.16449340644456410+01$ |
| 0.1000000000000010 | $0.16449340668482580+01$ | $0.16449340668482620+01$ |
| ．99999999999999900＋00 | 16449340668481910＋01 | 0．16449340668481910＋01 |
| $999000000000000+00$ | －0．82246010194265020＋00 | 0．8224601019426 5020＋00 |
| －0．10000100000000000＋01 | －0．82247396488626100＋00 | －0．82247396488626150＋00 |
| －0．99999999990000000＋00 | －0．82246703335479830＋00 | －0．82246103335479850＋00 |
| －0．1000000000100000D＋01 | －0．82246703349342740＊00 | －0．82246703349342790＋00 |
| －0．9999999999999990D＋00 | －0．82246703342411240＋00 | －0．82246763342411250＋00 |
| －0．1000000000000001 | | |
| very small arguments | | |
| | | |
| 0000000 | 002511174013 | 025111740135100－01 |
| $9,9999999999900-02$ | $0.10025111740139080-01$ | ．10025111740135080－01 |
| 9999．999999999990D－02 | －0．99751104900835260－02 | －0．99751104900835260－02 |
| －0．1000．0000000000010－01 | －0．99751104900835450－02 | －0．99751104900835460－02 |
| 1000000000000 | 1 cooooz | ． 1000002500011111 |
| －0．10000000000000000－04 | －0．99999750001111100－05 | 95955750001111100－05 |
| 0.100000000000000 | 0．1000000000025C000－09 | 0．10000000000250000－09 |
| －0．1000000000000000D－09 | －0．99999999997500000－10 | 750000－10 |
| 0．10000000000000000－14 | 0．10000000000000000－14 | $0.1000000000000000 \mathrm{D}-14$ |
| －0 | ¢999999¢9999470 | |
| 0．10000000000000000－29 | 0.10000000000000000 | 0000000c0000000－29 |
| 0．1000000000000000－29－0．1000000000c00000－29－0．100000000000000－29 | | |
| | | |
| | DILOG（x）－DILCE | |
| 0.100000000 | $0.49148015783144580+$ | 148019783144570＊01 |
| $0.10000000000000000+06$ | $0.49347822005446640+01$ | 1 |
| $0.1000000000000000+11$ | $0.49348022003446200+01$ | $0.49348022003446790+01$ |
| 16 | 8022005445960＋01 | $0.45348022005446770+01$ |
| $0.10000000000000 v 0 D+31$ | $0.49348022005445390+0$ | 0.49348022005446 |

Author Ginsberg would like to acknowledge the hospitality of the Center for Theoretical Physics at M．I．T．Both authors are indebted to W．J．Cody of Argonne National Laboratory for sug－ gesting many improvements to the original program．

References

1．Lewin，L．Dilogarithms and Associated Functions．MacDonald， London， 1958.

2．Mitchell，K．Phil．Mag．40，（1949），35l－368．
3．Abramowitz，M．，and Stegun，I．A．，Eds．Handbook of
Mathematical Functions，etc．Nat．Bur．Stand．App．Math．Ser．
\＃55，Supt．of Documents，U．S．Gov．Print．Off． 1964.
4．Kölbig，K．S．Collected Algorithms from CACM，327－P 1－0．
5．Paciorek，K．A．Collected Algorithms from CACM，385－P 1－0．

Algorithm

DOUBLE PRECISION FUNCTION DILOG（X）
C REAL PART OF THE DILOGARITHM FUNCTION FOR A REAL C ARGUMENT．REF．NO．I＝L．LEWIN，＊DILOGARITHMS＋
C ASSOCIATED FUNCTIONS＊
C
（MAC－－DONALD，LONDON，1958） ANTS USED ARE C（N）＝（N（N＋1）（N＋2））S＊2
（PI＊＊2）$/ 6=1$ ，（PI＊＊2）$/ 3=3.289868 \ldots$
PO＊＊ TIVE REAL AXIS，X日＝12．59517．．．
DOUBLE PRECISION A，B，BY，C，C1，C2，C3，C4，
＊DX，DY，TEST，W，X，XG，Y，Z DIMENSION C（30）
DATA $C(1), C(2), C(3), C(4), C(5), C(6), C(7)$ ， ＊$C(8), C(9), C(10), C(11), C(12), C(13)$,
＊$C(14), C(15), C(16), C(17), C(18), C(19)$ ，
＊C（2Q），C（21），C（22），C（23），C（24），C（25），
＊$C(26), C(27), C(28), C(29), C(39)$
＊／36．D0，576．D0，36．D2，144．D2，441．D2，112896．D日，
＊ $254016 . \mathrm{DO}, 5184 . \mathrm{D} 2,9801 . \mathrm{D} 2,17424 . \mathrm{D} 2,2944656$ ：D 0
＊4769856．D8，74529．D2，112896．D2，166464．D2，
＊ $23978816 . \mathrm{D} 0,33802596 . \mathrm{D} 0,467856 . \mathrm{D} 2,636804 . \mathrm{D} 2$ ，
＊853776．D2，112911876．D6，147476736．D0，19644．D4，
＊24336．D4，308ø日25．D2，386358336．D日．480661776．D日．
＊5934096．D2，7273809．D2，8856576．D2
IF（X．GT．12．6D0）GO TO 10 IF（X．GE．12．59D0）GO TO 100 IF（X．GE．2．D日）GO TO 10 IF（X．GT．1．D日）GO TO 20 IF（X．EQ．1．DQ）GO TO 30 IF（X．GT．．SD（X．GT．I．D－2）GO TO TO 50
 IF（X．LT．－1．D $)$ GO TO 60
IF（X．LT．－1．D－2）GO TO 70
C DILOG COMPUTED FROM REF．NO．1，P．244，EQ（1） DILOG $=\mathrm{X} *<1 \cdot \mathrm{D} \emptyset+\mathrm{X} *<.25 \mathrm{D} \theta+\mathrm{X} *(1 . \mathrm{D} 日 / 9 \cdot \mathrm{D} \theta+\mathrm{X} *$ ＊（ $625 \cdot \mathrm{D}-4+\mathrm{X} *(4 \cdot \mathrm{D}-2+\mathrm{X} * \mathrm{C} 1 . \mathrm{D} 0 / 36 . \mathrm{DO}+\mathrm{X} *(1 . \mathrm{D})$
 RETURN
C DILOG COMPUTED FROM REF．NO，1，P．244，EQ（6），
C AND DESCRIPTION OF THIS ALGORITHM，EQ（4）．
$10 Y=1 . D 0 / X$ $B Y=-1 . D \varnothing-Y *(4 . D \emptyset+Y)$ DILOG $=3.28986813369645287 \mathrm{D} 0$
＊－5D日＊DLOG（X）＊＊2＋（Y＊K（4．D日＋5．75D日＊Y）＋3．D日＊
＊（ $1 . D \varnothing+Y) *(1 \cdot D \emptyset-Y) * D L 0 G(1 . D \emptyset-Y)) / 8 Y$ IF（DILOG＋4．D日＊Y．EQ．DILOG）RETURN GO TO 80
C DILOG COMPUTED FROM REF．NO．1，P．244，EQ（7）WITH
C $X=I / X+E Q(6)$ ，AND DESCRIPTION OF THIS ALGORITHM，
C EQ（4）．
$2 g Y=1 . D \emptyset-1 . D \emptyset / X$
$\mathrm{DX}=\mathrm{DLOG}(X)$
$B Y=1 \cdot D \emptyset+Y *(4 \cdot D \emptyset+Y)$
DILOG $=1.64493406684322643$ D \varnothing
＊DX＊（．5DD＊DX－DLOG（X－1．D0））＋
＊$(Y *(4 . D \varnothing+5 \cdot 75 D \varnothing * Y)-3 . D D *(1 . D \theta+Y) * D X / X) / B Y$ GO TO 80
C DILOG COMPUTED FROM REF．NO．1，P．244，EQ（2）．
30 DILOG $=1.64493466684822643 \mathrm{D} \varnothing$ RETURN
C DILOG COMPUTED FROM REF．NO．1，P．244，EQ（7），
C AND DESCRIPTION OF THIS ALGORITHM，EQ（4）．
4Ø $Y=1 . D \varnothing-X$
$D X=D L O G(X)$
$B Y=-1 \cdot D \varnothing-Y *(4 \cdot D \square+Y)$
DILOG $=1.64493406684822643 D \varnothing$－DX＊DLOG (Y)
GO TO 80
C DILOG COMPUTED FROM DESCRIPTION OF THIS ALGORITHM，
C EQ（4）
$5 \emptyset Y=X$
$Y=X$
$B Y=1 . D \emptyset+Y *(4 \cdot D \theta+Y)$
DILOG $=(Y *(4 . D \varnothing+5.75 D \theta * Y)+3 . D \theta *(1 . D \theta+Y) *$
＊（1．DD－Y）＊DLOG（1．D日－Y））／BY
GO TO $8 \emptyset$
C DILOG COMPUTED FROM REF．NO．1，P．245，EQ（12）WITH
C $X=-X$ ，AND DESCRIPTION OF THIS ALGORITHM，EQ（4）．
$6 \varnothing Y=1 . \mathrm{D} 日 /(1 . \mathrm{D} \varnothing-\mathrm{X})$
$D X=$ DLOG $(-X)$
$\mathrm{DY}=\mathrm{DLOG}(\mathrm{Y})$
$B Y=1 \cdot D \emptyset+Y *(4 \cdot D \emptyset+Y)$
DILOG $=-1.64493406684822643 D 0+$
＊ $.5 D D * D Y *(D Y+2 . D Q * D X)+(Y *(4 . D Q+5.75 D Q * Y)$
＊＋3．DO＊（1．D $D+Y) *(1 . D Q-Y) *(D X+D Y)) / B Y$
IF（DILOG＋4．Dの＊Y．EQ．DILOG）RETURN GO TO 80
C DILOG COMPUTED FROM REF．NO．1，P．244，EQ（8），
C AND DESCRIPTION OF THIS ALGORITHM，EQ（4）．
$7 \varnothing Y=X /(X-1 . D \varnothing)$
$D X=$ DLOG（I．DO－X）
$B Y=-1 \cdot D \varnothing-Y *(4 . D \emptyset \cdot Y)$

```
        DILOG = (Y*(4.D日+5.75D日*Y)-3.D日*(1.D日+Y)*
        * (1.D(0-Y)*DX)/BY - . 5DØ*DX*DX
    80 B = 4.DO*Y*Y/BY
    DO 90 N=1,30
        B=B*Y
            B=B*Y
            A=B/C(N)
            DILOG = DILOG + A
            DILOG # DILOG + A A RETURN
    9% CONTINUE
    CONTINU
C DILOG COMPUTED FROM TAYLOR SERIES ABOUT ZERO OF
C DILOG, XO.
    1ØD XJ = 12.5951703698450184D0
```

```
Y = X/X0 - 1.D|
z=1.D0/11.5951703698450184D0
Z = Y*Z
W = Y*Z D D = (3.DO*XO-2.DO)/6.DQ
C2 = ( (11. D0*X0-15.D日)*X0+6.D0)/24.DG
C3 = (c(5.D 1*X0-104.D0)*X0+84.D01)*X0-24.D0))
* 12.D1
C4=((c(274.D0*X0-77.D1)*X日+94.D1)*X0-54.D1)*
* X0+12.D1)/72.D1
* X0+12.D1)/72.D1 
    DILOG = Y*(1.DQ-Y*(.5DQ-Y*(1.DO/3.DV-Y*
*(.25D|-Y*(.2D|-Y/6.D|)))) )*DLOG(Z)-
    RETURN
    RETU
```

ACM Transactions on Mathematical Software，Vol．2，No．1，March 1976，Page 112
REMARK ON ALGORITHM 490
The Dilogarithm Function of a Real Argument［S22］
［E．S．Ginsberg and D．Zaborowski，Comm．ACM 18， 4 （April 1975），200－202］
Robert Morris［Recd 1.1 July 1975］
Bell Laboratories，Murray Hill，NJ 07974
The necessary value for the zero of the dilogarithm function is
12．5951703698450161286398965．．．
to 25 decimal places，all correct．The value given in Algorithm 490 is in error in the last two digits．

The identity stated for values of x less than -1 is incorrect and should read

$$
L i_{2}(x)=-\pi^{2} / 6-\frac{1}{2} \ln (1-x)[2 \times \ln (-x)-\ln (1-x)]+L i_{2}(1 /(1-x))
$$

Algorithm 491

Basic Cycle Generation [H]

Norman E. Gibbs [Recd 13 July 1971]
Department of Mathematics, College of William and Mary, Williamsburg, VA 23185

This work was partially supported by NASA under Grant NGL-47-006-058.

Key Words and Phrases: Graph, basic cycle, fundamental cycle, spanning tree, vertex adjacency matrix

CR Categories: 5.32, 3.24
Language: PL/I

Description

The PL/I procedure BASIC_GENERATOR is an implementation of Paton's algorithm [1] for finding a set of basic (fundamental) cycles of a finite undirected graph from its vertex adjacency matrix.

The input parameters to the procedure are:
(1) A modified form of the vertex adjacency matrix, called A (see assumption 3 below)
(2) The number of vertices of the graph, called N.
(3) The number of edges of the graph, called EDGES.

The output of the procedure is an array of bit strings, called B. The j th bit of B_{i} is 1 if and only if the i th basic cycle contains the edge labeled j.

The following assumptions are made by the procedure:
(1) The graph is finite, connected, undirected, and without loops or multiple edges.
(2) The vertices are labeled $1,2, \ldots, N$.
(3) The vertex adjacency matrix A has an edge table coded into its lower triangular part. The following PL/I code could be used to generate the table:

```
\(\mathrm{E}=0\);
DO I \(=2 \mathrm{TO} \mathrm{N}\);
    DO \(\mathrm{J}=1 \mathrm{TO} \mathrm{I}-1\);
        IF A(I, J) \(\urcorner=0\) THEN
            DO;
                \(\mathrm{E}=\mathrm{E}+1\);
                \(\mathrm{A}(\mathrm{I}, \mathrm{J})=\mathrm{E}\);
            END;
    END;
END;
```

(4) A is not the vertex adjacency matrix of a tree.

The algorithm is:
Step 1. Let vertex 1 be the root of the spanning tree. Start forming the spanning tree by placing all edges of the form $\{1, W\}$ into the tree. At the same time, place all vertices W into a pushdown list called STACK.
Step 2. Let Z be the last vertex added to STACK (i.e., the top of the stack). If STACK is empty, then stop. If STACK is not empty, then remove Z from $S T A C K$ and go to step 3.
Step 3. Consider all edges $\{Z, W\}$ which have not been examined.

If all edges have been examined, go to step 2. Otherwise, for each edge $\{Z, W\}$ do the following:
(a) If W is in the tree, generate the basic cycle formed by adding $\{Z, W\}$ to the tree and repeat step 3 .
(b) If W is not in the tree, add $\{Z, W\}$ to the tree, W to $S T A C K$, and repeat step 3 .

For details on the algorithm and the production of the basic cycles, Paton's original paper should be consulted. This paper also discusses two other algorithms for basic cycle generation and contains performance statistics.

BASIC_GENERATOR has been implemented using the IBM PL/I F-level compiler (version 5.1) and has been tested on approximately 200 graphs.

Reference

1. Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept. 1969), 514-518.
Algorithm

(* THE FDGE CONNECTING 2 and W GREATES A BASIC CYCle. */
```
            00;
                    BASIC=BASIC+1;
                    SUBSTR(B(RASIC), A(MAX(W,PREV(W)),
                    MIN(W,PRFV(W);),I)=:1:B;
                    YIN(W,PRFV(W)I), l)='1'B;
            SURSTR(B(BASIC.I,A(MAX(Z,W),MIN(Z,W)),
            A(MIN(Z,W),MAX(Z,W))=0;
            j=7;
            DO WHILE (Jन=PREV(W)):
            SUBSTR(A(RASIC),AlMAX(PREV(J),J),
            MIN(PREV(J),J)),1)='1'B;
                J=PREV(J):
            END:
                I.SE
1* the edge finnNECting }2\mathrm{ and w should be placeis in the
    TREE.
        Dก?;
            PREV(W)=Z;
            SUASTR(T,W,1)='1'B;
            ALLOCATE STACK;
            STACK=W:
            A(MIN(Z,W), MAX (Z,W))=0;
                ENO;
            END:
        END:
        GO rONEW_Z;
END:
END BASIC._GENERATMR;
```


Algorithm 492 Generation of All the Cycles of a Graph from a Set of Basic Cycles [H]

Norman E. Gibbs [Recd 13 July 1971]
Department of Mathematics, College of William and Mary, Williamsburg, VA 23185

This work was partially supported by NASA under Grant NGL-47-006-058.

Key Words and Phrases: basic cycle, cycle, graph CR Categories: 5.32, 3.24 Language: PL/I

Description

The PL / I procedure CYCLE_GENERATOR is an implementation of Gibbs' algorithm [1] for finding all the cycles in a graph from a set of basic cycles.

The input parameters are:
(1) An array of bit strings B, where the j th bit of B_{i} is 1 if and only if the i th basic cycle includes the edge labeled j.
(2) The number of basic cycles, called BASIC.
(3) The number of edges in the graph, called EDGES.

The output from the procedure consists of:
(1) An array of bit strings Q, where the j th bit of Q_{i} is 1 if and only if the i th cycle contains the edge labeled j.
(2) The number of cycles, called CYCLES.

The algorithm is:
Step 1. Set $C=\left\{B_{1}\right\}, Q=C, D=R=\emptyset, i=2$. If BASIC $=1$, stop.
Step 2. For all $T \in Q$, if $T \cap B_{i}=\emptyset$, then set $D=D \cup\left\{T \oplus B_{i}\right\}$, otherwise set $R=R \cup\left\{T \oplus B_{i}\right\} \cdot(A \oplus B=A \cup B-$ $A \cap B)$.
Step 3. For all $U, V \in R$, if $U \subset V$, set $D=D \cup\{V\}$ and $R=$ $R-\{V\}$.
Step 4. Set $C=C \cup R \cup\left\{B_{i}\right\}, Q=C \cup D, R=\emptyset, i=i+1$.
Step 5. If $i>B A S I C$, stop. C is the set of all cycles. If $i \leq$ BASIC, go to step 2.
In CYCLE_GENERATOR, $C=\left\{Q(I): Q F L A G(I)={ }^{\prime} 0^{\prime} B\right\}$, $D=Q-C$, and $R=\{Q(L O W E R), Q(L O W E R+1), \ldots$, $Q(U P P E R)\}$. The procedure assumes that BASIC >0 and that the dimension of Q is $2^{\text {BASIC }}-1$. CYCLE GENERATOR has been implemented using the IBM PL/I F-level compiler (version 5.1) and has been tested on approximately 200 graphs.

Reference

1. Gibbs, N.E. A cycle generation algorithm for finite undirected linear graphs. J. ACM 16, 4 (Oct. !969), 564-568.

Algorithm

CYCLE_GENERATOR

PROCEDURE (B,BASIC, Q,C YCLES,FDGES);

* CyCLE_GENERATOR GENERATES ALL THE CYCLES DF A GRAPH

FROM A SET DF RASIC (FUNOAMENTAL) CYCLES. THIS
PROCEDURE IS A PL/I IMPLEMENTATION OF NORM GIRBS'
ALGORITHM FITR GENERATING ALL. THE CYCLES TF A GRAPH
WHICH APPEARED IN JACM 16, 4 (UCTORER 19691, 564-568. */ DECLARE
(B(*),O(*)) BIT (EDCES),
(BASIC, CYCLES, EDGES) BINARY FIXED (15,0),
OFLAG(2**BASIC-1) AIT (1) INITIAL(12**BASIC-1)(11!0'B),
(QINDEX, I, J,K, UPPER,LOWER) BINARY FIXFD (15,0);

1* B IS THE SET OF BASIC CYCLES WHERE THE K TH BIT OF B(J) IS I IF AND ONIY IF EDGE K IS AN ELEMENT OF THE J TH BASIC CYCLE. (INPUT).
Q IS THE SET OF ALL CYCLES GENERATED. THE K TH HIT OF Q(J) IS 1 IF AND ONLY IF EDGE K IS AN ELFMENT OF THE J TH CYCLE. (OUTPUT).
BASIC IS THE NUMBER DF BASIC CYCLES IN B. (BASIC > O). (INPUT).
CYCLES IS THE NUMBER OF CYCLES GENERATED. (OUTPUT).
EDGES IS THE NUMBER OF EDGES IN THE GRAPH. (INPUTI.
OFLAG IS A LOGICAL ARRAY USED TO MARK EDGE-DISJJINT UNIONS OF CYCLES.
OTHER IDENTIFIERS ARE USEO AS COUNTERS OR POINTERS.
/* INITIALIZATION STEP. THF PROCEDURE ASSUMES THAT BASIC>0.
IF BASIC=1
DO;
CYCLES=BASIC:
RETURN;
END;
/* fORM ALL LINEAR COMBINATIONS OF THE BASIC CYCLES IN Q.*/
$001=2$ TO BASIC;
LOWER=2**(1-1)
UPPER $=2$ ** $1-1$;
1* IF B(I) INTERSECT Q(QINDEX) IS ENPTY, THEN THE SYMMETRIC
DIFFERENCE OF BIII AND Q(QINDEXI IS THE UNION OF DIS
JOINT CYCLES AND THE APPROPRIATE ELEMENT OF OFLAG IS
SET TO '1'B. OTHERWISE THE SYMMETRIC DIFFERENCE IS
PLACEO INTO A SET (INDEXEO BY LOWER ANO UPPER) FOR
FURTHER TESTING.
DO QINDEX=1 TO LOWER-1;
IF B(ll \& Q(QINDEX) THEN
DO;
Q(UPPER) $=(B(I)|Q(Q I N D E X)| \&(\neg B(I) \mid \neg Q(Q I N D E X))$ UPPER=UPPER-1;
END:
ELSE
Q(LOWER)=(B(I)|Q(QINDEX)IE(っB(I)| \rightarrow Q(QINDEX))
QFLAG(LOWER)= $1^{\prime} B$;
LOWER=LOWER+1;
END:
Q(LOWER) $=B(1)$:
END:
/* WE NOW TEST THE SET Q(LOWER), Q(LOWER+1),....Q(UPPER
TO SEE IF ANY ELEMENT OF THIS SET PROPERLY CONTAINS
ANY OTHER ELEMENT. IF SO, THE CONTAINING ELEMENT IS
MARKED AS THE EDGE-DISJOINT UNION OF CYCLES AND THE
APPROPRIATE ELEMENT OF QFLAG IS SET TO 'l'B.
DO J=LOWER+1 TO 2**1-2;
DO $K=J+1$ TO $2 * * 1-1$
IF QFLAG(J) THEN GO TO NEXT_J;
ELSE IF QFLAG(K) THEN GO TO NEXT_K;
IF (Q(J)|Q(K))=Q(J) THEN OFLAG(J)='1'B;
ELSE IF (Q(J) $\mid Q(K))=Q(K)$ THEN QFLAG(K)='1'B;
NEXT_K:
NEXT_J:
END;
1* BEFORE RETURNING, WE WANT TO MOVE ALL THE CYCLES ITHOSE ELEMENTS OF Q FOR WHICH QFLAG IS © O' O^{\prime} TO Q(1), Q(2), Q(CYCLES) ANO SET CYCLES EQUAL TO THE NUMBER OF
CYCLES IN Q.
YCLES=0;
HOUSEKEEPING:
DO $1=1$ TO 2**BASIC-1;
IF QFLAG(I) THEN GO TO NEXT_I:
ELSE
Q(CYCLES+1)=Q(I);
CYCLES $=$ CYCLES +1 ;

END;

NEXT_I:
ENO HOUSEKEEPING;
END CYCLE_GENERATOR;

[^0]: begin integer $i, j, k, f i, g i, d, q, r$; Boolean even; integer array $f, g[1: n]$;
 comment First we compute $F=\operatorname{diag}(f i)$;
 $f i:=f[1]:=n ; \quad j: \neq n \times n$;
 for $i:=1$ step 1 until $n-1$ do

[^1]: * This work was supported in part by the United States Atomic Energy Commission.

[^2]: Key Words and Phrases: information theory, coding theory, Hu-Tucker method, minimum redundancy coding CR Categories: 5.6

[^3]: * Sponsored by the United States Army under Contract No.:

[^4]: Algorithm
 C TO CLUSTER A POINT SET USING THIS ALGORITHM, TVO THINGS
 C NEED TO BE DONE. (1) BUILD THE MINIMAL SPANNING TPEE EY
 C CALLING GROW, AND (2) DELETE ITS INCONSISTENT BRANCHES BY
 C CALLING CLUSTR. ONCE STEP (1) HAS EEEN DONE, STEP (2) CAN
 C BE REPEATED OVEF AND OVER WITH DIFFEPENT PARAMETEFS.
 C SEE THE BEGINNINGS OF GROG AND CLUSTR FOP EXPLANATIONS OF
 C ThE PARAMETERS.
 C CURRENTLY, THE ARRAYS ARE DIMENSIONED TO HANDLE UP TO 100
 C POINTS. TO CHANGE THIS, SIMPLY CHANGE THE SIZE. OF THE
 C ARRAYS MST, NIT, ANE UI IN GPOV AS DIRECTED EELOV THEIP
 C DECLARATIONS. ALSO, CHANGE THE LENGTHS OF

[^5]: Editors' note: Algorithm 484 described here is available on magnetic tape from the Depariment of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is $\$ 16.00$ (U.S. and Canada) or $\$ 18.00$ (elsewhere). If the user sends a small tape (wt. less than 1 lb.) the algorithm will be copied on it and returned to him at a charge of $\$ 10.00$ (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithms at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10. The sequence number is right justified in column 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F. and A.K.C.

[^6]: * This work was supported by NSF grant GP 29705. \dagger Present address: 54 Dwight Street, Boston, MA 02118.

