
Collected ~lgorithms from ACM

Volume II
Algorithms 221-492

A collection of Alg1orithms 221-492 including Certifications,
Remarks, and Translations from the Algorithms Department

of Commuriications of the ACM, 1964-1974.

1980

A Publication of the Association for Computing Machinery, Inc.
1133 A venue of the Americas
New York, New York 10036

Submittal of an algorithm for publication in the Collected Algorithms From A CM
implies that unrestricted use of the algorithm within a computer is permissible.
General permission to copy the algorithm in fair use, but not for profit, is granted
provided ACM's copyright notice is given and reference is made to this publication,
its date of issue, and to the fact that copying is by permission of the Association for
Computing Machinery.

Price: ACM members $40, others $55. This price includes Algorithms 221-492 in this
volume, a looseleaf compilation of Algorithms 493 ff and two looseleaf binders, and
a one year free subscription of quarterly supplements to the Collected Algorithms.
Prices subject to change without notice. For latest prices refer to the current ACM
Publications Catalog available free of charge from ACM Order Department, P.O.
Box 64145, Baltimore, MD 21264.

ISBN: 0-89791-026-5

Copyright© 1980, Association for Computing Machinery, Inc.

The algorithms and other items in this compilation are all excerpted from copyrighted ACM publications
unless otherwise noted.

Preface

The Algorithms department of Communications of the
ACM (CACM) was established in February 1960, with J.
H. Wegstein as editor, for the purpose of publishing algo
rithms, consisting of procedures and programs, in the Algol
language. In 1975 the publication of ACM algorithms
material was transferred to ACM Transactions on Mathe
matical Software (TOMS). A wide variety of algorithms
have been published and many of them have been used
heavily-either in original form or as translated into other
languages. Recognizing the general acceptance of the al
gorithm material published in CACM and TOMS, the
Association for Computing Machinery (ACM) has collected
and reprinted the algorithms to make them more readily
accessible and more serviceable to a larger group of users.

This collection contains Algorithms 221-.-492; these ap
peared in the Algorithms department of CACM from 1964-
1974.

Algorithms 221-492 were originally published as re
ceived-without any refereeing whatever. Many of these
have since been certified and/or corrected by their authors
or by other contributors.

To facilitate the updating and to make this volume
convenient to use, an understanding of the page numbering
scheme for the algorithms is helpful. The page designation
is in a three-part format: the left part is the algorithm

number; the middle part is the page number within the
algorithm (the first page of each algorithm is PI); and the
right part is the number of the revision of that page. All
sheets in the original, or first, insertion of an algorithm have
"O" for the right part. The first revision of a page will have
a page number having the left and middle parts identical
with those on the page to be replaced, but the right part
will be "RI" instead of "O." The second revision of the
same page would read R2, and so on. For example, l 23-P2-
RI would mean the first revision of page 2 of Algorithm
123.

Information on submitting algorithms for publication
may be found in the introductory section located in the
front of the current loose-leaf collection. Included in this
material is a cumulative index to all the algorithms pub
lished since 1960 as well as the ACM Algorithms Policy,
which guides the publication of all algorithms submitted to
ACM.

Webb Miller
ACM Algorithms Editor

Department of Mathematics
University of California, Santa Barbara

Santa Barbara, CA 93106

COLLECTED ALGORITHM!S FROM CACM

ALGOIUTH:M 221
GAMMA FUNCTION
WALTEH GAUT8CHI (Recd 10 Aug. 63)
Oak Ridge National Laboratory,* Oak Ridge, Tenn.

*Now at Purdue University, Lafayette, Ind.

real procedure garnrna (z); value z; real z;
comment This is an auxiliary procedure which evaluates r(z)

for 0 < z ~ 3 to 10 significant digits. It is based on a polynomial
approximation given in H. Werner and R. Collinge, Math.
Cornput. 15 (1961), 195-197. This procedure must be replaced
by a more accurate one if more than 10 significant digits are de
sired in Algorithm 222 below. Approximations to the gamma
function, accurate up to 18 significant digits, :rnay be found in
the paper quoted above;

begin
integer k; real p, t; array A[O:IO];
A[O] : = 1.0; A[l] : = .4227843370; A[2] : = .4118402518;
A[3] : = .0815782188; A[4] : = .0742379076;
A[5] : = - .0002109075; A[6] : = .0109736958;
A[7] := - .0024667480;A[8] := .0015397681;
A[9] : = -.0003442342; A[IO] : = .0000677106;
t: = if z ~ 1 then z else if z ~ 2 then z-1 else z-2;

p : = A[lO];
fork : = 9 step -1 until 0 do p : = t X p + A[k];
gamma : ~ if z ~ 1 then p/(z X (z +1)) else if z ~ 2 then

p/z else p
end gamma

CERTIFICATION OF ALGORITHM 221 [Sl4]
GAMMA FUNCTION [Walter Gautschi, Comm. ACM 7

(Mar. 1964), 143]
VAN K. McCoMBS (Recd. 10 Apr. 1964 and 1 Jun. 1964)
General Electric Co., Huntsville, Ala.

The algorithm was translated into FORTRAN lV for the IBM
7094. Computations were performed in double precision to take
advantage of the ten significant digits given by :the polynomial
coefficients. The function r(z) was evaluated for the range 0 < z ~
10 with an increment of 0.1, and the results were checked with the
values published in Table of the Gamma Functi0n for Complex
Arguments, NBS Applied Mathematics Series 34 (l954). The algo
rithm gave ten-digit accuracy for the range indicated.

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION

[M. F. Lipp, Comm. ACM 4 (Feb. 1%1), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2

[John R. Herndon, Comm. ACM 4 (Ap;r. 1961), 180]
ALGOH!ITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

221-P 1-- RI

[William Holsten, Comm. ACM 5 (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION

[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 [814]
LOGARITHM OF GAMMA FUNCTION

[M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966),
684]

M. C. PIKE.AND I. D. HILL (Recd. 12 Jan. 1966)
Medical Research Council's Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and 54 both use the same Hastings approxima
tion, accurate to about 7 decimal places. Of these two,. Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines

if x = 0 then begin RGR : = 0; go to EXIT end
and

if x = 1 then begin RGR := 1; go to EXIT end
should each be followed either by a semicolon or preferably by an
else.
(3) The lines

if x = 1 then begin RGR : = 1/y; go to EXIT end
and

if x < - 1 then begin y : = y X x; go to CC end
should each be followed by a semicolon.
(4) The lines

BB: if x = -1 then begin RGR := O; go to EXIT end
and

if x > -1 then begin RGR := RGAM(x); go to EXIT end
should be separated either by else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer i and real array B[O: 13) in RGAM
are in the wrong place; they should come immediately after

begin reai z;

With these modifications (and the replacement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput
ing time, being twice as fast as 291 at x = 1, but this advantage
decreases steadily with increasing x so that at x = 7 the speeds are
about equal and then from this point on 291 is faster-taking only
about a third of the time at x = 25 and about a tenth of the time
at x = 78. These timings include taking the exponential of log
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 222
INCOMPLETE BETA FUNCTION RATIOS
WALTER GAUT8CHI (Recd 10 Aug. 63)
Oak Ridge National Labo.ratory, * Oak Ridge, Tenn.

*Now at Purdue· University, Lafayette hid.

comment Let .BxEp, q) = J~ tP-: 1 (1 - t)q-1 dt (p > O, q > O,
0 ~ x ~ 1) denote the incomplete beta function. The objective
of this algorithm is to evaluate a sequence of ratios Ix(p, q) =

Bx(P, q)/B1 (p, q), as one of the parameter:s p, q varies in steps of
unity while the other remains fixed. The procedure incomplete beta
q fixed evaluates I.,(p + n, q) for n = 0, 1, · · · , nmax, assum
ing 0 < P ~ 1, q > 0, whereas the procedure incomplete
beta p fixed evaluates l:z(p, q + n) for n == 0, l, · · · , nmax, as
suming 0 < q ~ 1, p > 0. The number d of significant digits
desired can be specified, but is only gmi,ranteed when x ~ !.
When x > !, the complements 1 - Ix will be accurate to d sig
nificant digits. In the region 0 < p ~ 1, 0 < q ~ 2, lx(p, q) is
calculated from a power series expansion. The sequences f(n)
= Ix(p + n, q) and g(n) = Ix(P, q + n), including initial values,
are generated recursively by means of the recurrence relations
f(n + 1) - (1 + (n + p + q - 1) x/(n + p)) f(n) + ((n + p + q
-1) x/(n + p)) f(n - 1) = O,g(n + 1) - (1 + (n+p+q - 1)·
(1 - x)/(n + q)) g(n) + ((n + p + q - 1) (1 - x)/(n + q))
· g (n - 1) = 0. Since the former is mildly unstable, a variant
of the backward recurrence algorithm of J. C. P. Miller is ap
plied to it. A ~lobal real procedure gamma (z1· must be avail
able (see Algorithm 221);

real procedure lsubx p and q small (x, p, q,. d);
value x, p, g, d;
integer d; real x, p, q;

comment This procedure evaluates lx(p, q) to d significant
digits when 0 < p ~ 1 and O < q ~ :2. It first calculates
Bx(P, q) by a series expansion in powers oi x, and then divides
the result by Bi(p, q) = r(p)r(q)/r(p + q), using the real
procedure gamma;

begin integer k; real epsilon, u, v, s;
epsilon : = .5 X 10 i (-d);
u:=xip; s:=u/p; k:=O;

LO: u : = (k-q+I) X (k+p) X x X u/(k+l);
v:=u/(k+p+I); s:=s+v; k:=k+I;
if abs(v)/s > epsilon then go to LO;
lsubx p and q small . - s X gamma(p+q)/(gamma(p) X

gamma(q))
end Isubx p and q small;
procedure forward (x, p~ q, IO, ll, nmax, I);.

value x, p, q, IO, ll, nmax;
integer nmax; real x, p, q, IO, ll; array I;

comment Given IO= I,.,(p, q), l1 = fr,(p, q+I), this procedure
generates lx(p, q+n) for n = 0, 1, 2,. · · , nmax, and stores the
results in the array I;

begin integer n;
l[O] : = 10; if nmax > 0 then l[l] : = 11;
for n : = 1 step 1 until nmax - 1 do

I[n+l] : = (l+(n+p+q-I) X (1-x)/(n+q)) X I[n]
- (n+p+q-1) X (1-x) X I[n-1]/(n+q)

end forward;
procedure backward (x, p, q, IO, nmax, d, I);

value x, p, q, IO, nmax, d;
integer nmax, d; real x, p, q, IO; array I;

222-P 1- 0

comment Given 10 = Ix(P, q), this procedure generates
lx(p+n, q) for n = 0, 1, 2, · · · , nmax to d significant digits,
using a variant of J. C. P. Miller's backward recurrence al
gorithm. The results are stored in the array I;

begin
integer n, nu, m; real epsilon, r; array I approx,
Rr [O :nmax];
I[O] : = IO; if nmax > 0 then
begin

epsilon : = .5 X 10 i (-d) ;
for n : = 1step1 until nmax do lapprox[n] : = 0;
nu:= 2 X nmax + 5;

LI: n : = nu; r : = 0;
L2: r := (n+p+q-1) X x/(n+p+(n+p+q-1) Xx

-(n+p)Xr);
if n ~ nmax then Rr[n-1] := r; n := n - 1;

if n ~ 1 then go to L2;
for n : = 0 step 1 until nmax 1 do

I[n+l] : = Rr[n] X I[n];
for n : = 1 step 1 until nmax do

end

if abs ((l[n] - lapprox[n])/I[n]) > epsilon then
begin

for m : = 1step1 until nmax do lapprox[m] : = I[m];
nu:= nu+ 5; go to Ll

end

end backward;
procedure lsubx qfixed(x, p, q, nrnax, d, I); value x, p, q, nmax, d;

integer nmax, d; real x, p, q; array I;
comment This procedure generates l:c(p+n,q), 0 < p ~ 1, for

n=O, 1, · · · , nmax to d significant digits, using the procedure
backward. In order to calculate the initial value IO=Ix(p,q), it
first reduces q modulo 1 to qo , where 0 < q0 ~ 1, then obtains
I~(p,qo) and Ix(p,qo+l) by the real procedure Isubx p and q small,
and finally uses these as initial values for the procedure for
ward, which connects with l,,(p,q) by the recurrence in q;

begin integer m, mmax; reals, qO, IqO, lql;
m:=entier(q); s:=•q-m;
qO := if s > 0 then s else s + l;
mmax : = if s > 0 then m else m - 1 ·
lqO : = Isubx p and q small(x, p, qO, d) ;

1

if mmax > 0 then lql : = lsubx p and q small(x, p, qO+I, d);
begin array lq[O:mmax];

forward (x, p, qO, IqO, lql, mmax, Iq);
backward(x, p, q, Iq[mmax], nmax, d, I)

end
end I subx q fixed;
procedure lsubx pfixed(x, p, q, nmax, d, I); value x, p, q, nmax, d;

integer nmax, d; real x, p, q; array I;
comment This procedure generates lx(P, q+n), 0 < q ~ 1, for

n=O, 1, · · · , nmax to d significant digits, using the procedure
forward. The initial values IO=lx(p,q), ll=lx(p,q+l) are ob
tained by twice applying the procedure backward. The initial
values for the latter are provided by the real procedure I subx p
and q small;

begin integer m, mmax; reals, pO, IO, II, lqO, lql;
m : = en tier (p) ; s : = p - m;
pO : = if s > 0 then s else s + 1 ;
mmax : = if s > 0 then m else m - 1 ·
IO : = Isubx p and q small(x, pO, q, d); '
II : = Isubx p and q sinall(x, pO, q+I, d);

COLLECTED ALGORITHMS (cont.)

begin array Ip[O:mmax];
backward(x, pO, q, IO, mmax, d, Ip); IqO : = lpfmmax];
backu·ard(x, pO, q+l, II, mmax, d, Ip); IqJ : = lp[mmax]

end;
forward(x, p, q, lqO, lql, nmax, I)

end I subx p fixed;
procedure incomplete beta qfixed(x,, p, q, nmax, d, I);

value x, p, q, nmax, d;
integer nmax, d; real x, p, q; array I;

comment This procedure obtains the final results lx(p+n,q),
0 < p ~ 1, n=O, 1, · · · , nmax, directly from the procedure
Isubx q fixed, if x ~ f, or via the relation l,,(p+n,q) =
1 - 11-x(q,p+n) and the procedure lsubx p fixed, if x > f. The
indicated substitution in the case x > t is made to ensure fast
convergence of both the power series used in the real procedure
Isubx p and q small, and the backward recurrence algorithm used
in the procedure backward. If the parameters :r, p, q, nmax are
not in the intended range, control is transferred to a nonlocal
label called alarm;

begin integer n;
if x < OVx > 1 Vp ~ OV p > 1 Vq ~ OV nmax < 0 then go to
alarm;
ifx=OVx= 1 then for n: = 0 step 1 until nmax do l[n]: = x else
begin.

ifx ~ .5 then Isubx qfixed(x, p, q, nmax, d, I) else
begin

Isubx pfixed(l--x, q, p, nmax, d, I);
for n :'= 0 step 1 until nm.ax do l[n]: = 1 - I[n]
end

end
end incomplete beta q fixed;
procedure incomplete beta pfixed(x, p, q, nmax, d, I);

valuex,p,q,nmax,d; integernmax,d; realx,p,q; array!;
comment This procedure, the exact analogue to the procedure

incomplete beta q fixed, generates the final results lx(p,q+n),
0 < q ~ 1, n=O, 1, · · · , nmax. For the setup of the procedure,
see the comment in incomplete beta qfixed;

begin integer n;

if x < 0 V x > 1 V q ~ 0 V q > 1 VP ~ OV nma.r < 0 then go to
alarm;
if x =OVx = 1 then for n: = 0step1 until nmax do l[n]: = x else
begin

ifx ~ .5 then lsubx pfixed(x, p, q, nmax, d, I) else
hegin

Isubx qfixed(l-.r, q, p, nmax, d, l);
for n : = 0 step 1 until nmax do l[n] : = 1 - l[n]

end
end

end incomplete beta p ft.red
REFERENCE: WALTER GACTSCHI, Recursive computation of

special functions. U. of Michigan, Eng. Summer Conf., Numerical
Analysis, 1963.

CERTIFICATIOX OF ALGORITHM 222
INCOMPLETE BETA FUNCTION RATIOS [Walter

Gautschi, Comm. ACM 7 (March 1964), 143]
WALTER GArTSCHI (Recd 2 Jan. 1964)
Purdue Univ., Lafayette, Ind.
begin integer n; array ll, 12, 13[0: 10];
comment This program calls the procedures Incomplete beta q

fixed and Incomplete beta p fixed to calculate test values of
L(.5+n, 7), L(5, l+n), l.R(5, l+n) for n = 0(1)10 to 6
significant digits. The following results were obtained on the
CDC 1604-A computer, using tha. Oak Ridge ALGOL compiler:

222-P 2 -

n /.4(.5 + n, 7) /.4(5, 1 + n) /.8 (5, 1 + n)

0 .99143646185 .010239999997 .32768000004
1 .93951533330 .040959999972 .65536000000
2 .83567307612 .096255999927 .85196799999
3 .69444760641 . 17367039987 .94371839999
4 .54111709640 .26656767980 .98041856000
5 .39800862042 .36689674211 .99363061758
6 .27831789503 .46722580441 .99803463679
7 .18624810627 .56182177742 . 99941875711
8 . 11995785836 .64695815314 .99983399319
9 .074724512738 .72074301208 .99995395031

10 .045203802963 .78272229360 .99998753828

All results are in agreement with those tabulated in [1);
Incomplete beta qfixed (.4, .5, 7, 10, 6, II);
Incomplete beta pfixed (.4, 5, 1, 10, 6, 12);
Incomplete beta pfixed (.8, 5, 1, 10, 6, 13);
for n ·: !-:: 0 siep 1 until 10 do

write (II [n], 12[n l, 13 [n])
end Driver incomplet~ beta functfon ratios

0

In the original publication of the algorithm, the following cor
rection of a printer's error is needed in the real procedu_re Isubx
p and q small. The statement labelled LO should read as follows:

it : = (k - q + 1) X x X u/(k + l);
(1] PEARSON, K. Tables of the Incomplete Beta-Function. Cam

bridge University Press, London, 1934.

COLLECTED ALGORITHIVIS FROM CACM

ALGORITHM 223
PRIME TWINS
M. SHIMRAT (Recd 7 June 1963; in final form 2 Jan. 1964)
University of Alb~rta, Calgary, Alberta, Canada

procedure Prime Twins (t, Twinl, Twin2, Stora~'e, Act):
value Storage; integer t, Twinl, Twin2, Storage;
procedure Act;

comment This procedure will generate successive "prime
twins,'' i.e. pairs of primes Twinl, Twin2 which differ by 2.
Storage is the maximum number of primes tha1; can be stored.
Act is any procedure for recording, examining, or utilizing each
pair of twins as it is generated. t is a serial number for the
twins. P[Storage] j 2 is the last number examined;

begin integer array P[l: Storage]; integer j, m, previous,
current;

comment P[j] is the jth prime;
P[l] := 2; P[2] := 3; j := 2; previous := 3; t := O;
for current := 5 step 2 until P[j] X P[j] do
begin m := l; for m := m + 1 while P[m] X P[rn] ;:;a cur

rent do
if current = (current + P(m]) X P[m] then f~o to NoPrime;
comment If this point is reached, current is :not divisible by

any prime up to sqrt(current) and so is a prime. We now
record the new prime, if storage permits, then check if it
is the second of twins;

if j < Storage then
begin j : = j + 1; P[j] : = current
end;

if current = previous + 2 then
begin t := t + 1; Twinl previous; Twin2 : = current;

Act (t, Twinl, Twin2)
end;

previous : = current;
NoPrime:

end;
end procedure Prime Twins

223-P 1- 0

COLLECTED ALGORITHMS FROM ~cACM

ALGORITHM 224
EVALUATION OF DETERMINANT
I ,EQ J. ROTENBERG

(Recd 7 Oct. 1963; in final form W Dec. 1963)
Box 2400, 362 Memorial Dr., Cambridge, Mass.

real procedure determinant (a, n);
value n; real array a; integer n;

comment This procedure evaluates a determinant by triangulari
zation. The matrix supplied by the calling procedure is modified
by this program. This procedure is. an extensive revision and
correction of Algorithm 41;

begin real product, factor, temp, div, piv, abpiv, :maxpiv;
integer ssign, i,j, r, imax;
ssign : = 1; product := 1.0;
for r := 1 step 1 until n-1 do
begin maxpiv := 0.0;

for i := r step 1 until n do
begin piv := a[i, r];

abpiv : = abs (p1:v) ;
if abpiv > maxpiv then
begin maxpiv : = abpiv;

div := piv;
imax := i

end
end;
if maxpiv ~ 0.0 then
hegin if imax = i then go to resume else

hegin for j : = r step 1 until n do
begin temp:= a[imax,j];

a[imax, j] : = a[r, j];
a[r, j] := temp

end;
ssign : = - ssign;
go to resume

end
end;
determinant := 0.0;
go to return;

resume: for i := r+l step 1 until n do
begin factor := a[i, r]/div;

for j := r+I step 1 until n do
a[i, j] := a[i, j] - factor X a[r, j]

end
end;
for i := 1step1 until n do
product := product X a[i, i];
comment Exponent overflow or underflow will most likely

occur here if at all. For large or small determinants the user
is cautioned to replace this with a call to a machine-language
product routine which will handle extremely large or small
real numbers;

determinant := ssign X product;
return:

end

224 p 1 0

CERTIFICATION OF ALGORITHM 224 [F3]
EVALUATION OF DETERMINANT

[Leo J. Rotenberg, Comm. ACM 7 (Apr. 1964), 243]
v IC HASSELBLAD AND JEFF R ULIFSON (Recd. 17 July 1964)
Computer Center, U. of Washington, Seattle, Wash.

The "Evaluation of Determinant" program was tested on an
ALGOL 60 compiler for an IBM 709 (SHARE distribution '//, 3032).
When the 10th line on page 244 was changed to read:

begin if imax = r then go to resume else
correct results were obtained. It was tested up through 4 X 4
matrices.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 225
GAMMA FUNCTION WITH CONTROLLED
ACCURACY
S. J. CYvIN AND B. N. CYvIN (Recd. 2.5 Oct. 1963)
Technical University of Norway, Trondheim, Norway

real procedure GAMMA (rn, x); value rn, x; integer rn;
real x;

comment r(x) is calculated ·with at leaBt rn significant figures
(disregarding the machine's roundoff). The range of x is reduced
by recursion to 5 ~ x ~ 6, for which r(x) is found (with m-2
significant decimals) according to

J'(x) = iT tx-le-t dt + loo (c--le-t dt.

Simpson's formula is applied to the former integral, which is
divided into 2n parts. Here n, as well as T, are chosen auto
matically to give a result with the required accuracy. For x
near zero or a negative integer, r(x) is put equal to a large value,
1060 • The procedure is slower than other algorithms for r (x)
[see Nos. 31, 34, 54, 801, but has the advantage of controlled
accuracy;

begin integer 1:,n,J,T; real y,h,S;
h : = 1; y : = x;

A.: if abs(y) < 10-60 then begin G11MM A : = 10(iO; go lo
E end else

ify > 6 then begin y: = y-I; h: = h><y; go to ,1 end else
if y < 5 then begin h : = h/y; y : = y-f- 1; go to .1 end else
begin real a;

T := 20;
lJ: if (T i 5 + 4 X T j 4 + 16 X 'I' j 3 + 48 X 'I' i 2 + 96 X T +

9G)Xexp(-T)>.25X10 i (2-m) then begin T: = '1'+5;
go lo U end;

E'· '·

n := 1 + entier(sqrt(sqrt(Tj5Xl0j (rn-2)/30)));
8: = O; f: = 4;
for i : = 1 step 1 until 2X n do
begin

a:= .5XiXT/n; S : = S + fXa i (y-I)Xexp(-a);
f : = ifi = 2Xn-· l then 1 else if f = 4 then 2 else 4

end
end;
GAMMA:= (SXT/(6Xn) + (.5X7' j 5 + 3X7' j 4 + 12XT i 3

-t- 36XTj2 + 72XT + 72)Xexp(-T))Xh;

tmd of GAMMA

CERTIFICATION OF ALGORITHM 225 [S14]
GAMMA FUNCTION WITH CONTROLLED AC

CURACY [S. J. Cyvin and B. N. Cyvin, Comm. ACM
7 (May 1964), 295]

T. A. BRAY (Recd. 25 May 1964 and 18 Jun. 1964)
Boeing Scientific Research Laboratrnries, Seattle, Wash.

Algorithm 225 was coded in FORTRAN II and run on the IBM
1620. No corrections were necessary and the following results were
obtained for rn = 2:

225-P 1- 0

x GAMMA (m, x) x GAMMA (m, x)

.01 99.44362100 3.50 3.32349920

.05 19 .47214000 4.00 6.00067550

.10 9.51444650 4.50 11.63224700

.50 1.77253280 5.00 24.00270200
1.00 1.00011250 5.50 52.34511500
1.50 .88626644 10.00 0 . 3628697 410 6
2.00 1.00011250 25.00 0. 620430661 0 24
2.50 1.32939960 50.00 0. 6082643410 63
3.00 2.00022510

These results are correct to at least two significant digits. The
following results and times were obtained for x = 0.5:

m GAMMA (m, x) TIME (in
seconds)

2 1.77253280 58
3 1.77254230 105
4 1.77245370 200
5 1.77244430 405
6 1.77244020 885

The correct result is 1.7724539. Note that the accuracy decreased
as m increased and the result for rn = 6 is incorrect in the sixth
significant digit.

This algorithm is extremely slow as compared to some others
available. Algorithm 31 was used for the above set of arguments
and gave seven-digit accuracy in 250 milliseconds per argument.

COLLECTED ALGORITHMS: FROM CACM

ALGORITHM 226
NORMAL DISTRIBUTION FUNCTION
S. J. CYVIN (Recd. 15 Oct. 1963)
Technical University of Norway, Trondheim, Norway

real procedure Fi(m,x); value m,x; integer m; real x;

comment <I>(x) = (l/y211'")f :_00 exp(-!u2) dn is found by com

puting f~ exp(-lu2) du with aid of Simpson's formula. The
latter integral is divided into 2n parts, where n automatically
is adjusted to give a result with at least m significant decimals
(disregarding the machine's roundoff). The error function is
obtainable as erf (x) =. 2<1> (x/ v2) - 1. The practical use of the
present method is not restricted to small or large ranges of x.
Probably the method has some advantages compared to Algo
rithms 123, 180, and 209;

begin integer i,n, f; 1·eal b,S;
b : = abs(x);
n : = 1 + entier(sqrt(sqrt(b j 5X 10 j m/

(480X sqrt (2X 3.14159265)))));
if n < 4 then n : = 4; S : = 1; f : = 4;
for i : = 1 step 1 until 2Xn do
begin

S := S + f X exp(-(iXb/n) j2/8);
f: = ifi = 2Xn-1then1 else ifj=4 then 2 else 4

end;
Fi : = .5 + sign(x)XSXb/(6XnXsqrt(2X3.14159265))

end Fi

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, ERF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION- ·
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS

[D. Ibbetson. C.omm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [815]
NORMAL CURVE INTEGRAL

226-P 1- RI

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. HILL AND S. A. JoYCE (Recd. 21 Nov. 1966)
Medical Research Council,
Statistical Research Unit, 115 Gower Street, London

W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found:

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < 10-10 was changed to Y - T = Y
both these amendments being as suggested in [l].

(iii) The labels 1 and 2 were changed to Ll and £2, the go to
statements bein.g similarly amended.

(iv) The constant was lengthened to 1.12837916710.
(v) The extra statement x := 0.707106781187 X x was made

the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := -0.56418958/x/exp(v) was changed to

T := -0.564189583548 X exp(-v)/x. This is faster and also
has the advantage, when vis very large, of merely giving 0
as the answer instead of causing overflow.

(ii) The extra statement x := 0.707106781187 X x was made
as in (v) of Algorithm 123.

(iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).

(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14).
The results were accurate to 9 significant figures for x < 8,

but to only 8 significant figures for x == 10 and x = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 j m/(480Xsqrt(2X3.14159265)) was changed to

10 j m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to

COLLECTED ALGORITHMS (cont.)

rn := 2 X n; for i := 1 step 1 until m do.
(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) i 2 X 0.125.
(iv) if i = 2 X n - 1 was changed to if i = m - 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to

b/(15.0397696478Xn).

Tests were made with m = 7 and m = 11 with the following
results:

Number of significant
figures correct

Number of decimal
places correct

x

-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-4.0
--(:). 0
--8.0

m=7

7
7
7
7
6
6
5
2
0

m = 11

11
10
10
9
9
7
7

0

m = 7

7
7
8
8
8
8

10
12
11

m = 11

11
10
10
10
11
9

11
10

9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig
nificant figures is stretching the machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal pfaces at x = 0.8.

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

abs(x)

0.5
1.0

. ________ J

l. 5
2.0
3.0

1LO
fi.O
8.0

10.0
20.0

x > 0 = upper x > 0 ¢upper

2

21"(5) 2
2.5''(0) 4
0 0

2
6

14

23
35

3
0
0

0
0

-----------·-··-·-··-·--··---

" Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2 32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas usini;i; the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

226-P 2- 0

abs(x) x > 0 =upper x > 0 ¢upper

1.0 2 3
2.0 7 1

4.0 2 0

8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely to be much the same on
other machines.

INSTRUCTION CoVNT FOR 100 EVALUATIONS

Algorithm number

ribs(x)
123 180

0.5 58
1.0 55c
1.5 1(34 128

181 209

8
8

127 9

226
m = 7

97
176
273

2.0 194 78 90 8 387
2.5 252 54 68 10 515
3.0 42 51 9 628

-------- ---
4.0 27 39 9 900d
6.0 15 30 6 1400d
8.0 9 28 7 2100d

----- --- ·--
I

10.0 10 25 I .5

!

2700d
I

20.0 9 22

I

5 6500d
:30.0 9 9 5 10900rl
-~---------------

" Readings refer to x > 0 = upper.
" Readings refer to x > 0 ¢ upper.

272

24
24
25

24
24
25
--

25
16
18

16
16
16

" Time to produce incorrect answer. A count of
smooth curve with surrnunding values.

100 times Instruction Count for 1 evaluation.

304"

25
29
35

39
131
97

67.
49
44

38
32
11

30!b

·-

24
29
35

39
4-!
50
--

44
23
11

·-- - --

11
11
11

120 would fit a

Opinion. There are advantages in having two algorithms
:wailable for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the firdt
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. THACHER, HENRY C. Jn. Certification of Algorithm 123 .•
Comm. ACM 6 (June 1963), 316.

COLLECTED ALGORITHMS (cont.)

2. IBBETSON, n. Remark Oil Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BARTON, STEPHEN P., AND WAGNER, JOHN F. Remark on
Algorithm 123. Comm. AC11J 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

226 ~P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 227
CHEBYSHEV POLYNOMIAL COEFFICIENTS
S. J. CYVIN (Recd. 15 Oct. 1963)
Technical University of Norway, Trondheim, Norway

procedure Tcheb(n,A); value n; integer n; integer array A;
comment This procedure finds (by recursion) the coefficients

of T n (x), rather than the value of the polynomial, which is the
subject of Algorithms lO and 36. The (n+2)+2 nonvanishing
coefficients are stored in one-dimensional integer array A in
the following way:

p

T2pfa;) = L A.[i+l] x2i (n even),

T2p+1(x) = t .A.[i+l]x2i+i (n odd);
i~O

begin integer i,j; integer array B[l: (n+2)+2]; Boolean
EVEN;
A[l]: = B[l]: = 1; EVEN:= n+2X2 = n; if n > 1 then
for i : = 2 step 1 unti] (n+2) + 2 do
for j: = i step -1until1 do
begin

A.[j] : = if i=i then 2XB(j-1] else if j=l then -A [1]
else 2 XB[j-1] - .A.(j];
B[j] : = if j=i then 2 X .A.[i] else 2 >< .A.[j] - B[j]

end i loop;
for i : = 1 step 1 until (n+2)+2 do

A [i] : = if EVEN then A [i] else B[i]
end Tcheb

227-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 228
Q-BESSEL FUNCTIONS ln(t)
J. M. S. SIMOES PEREIRA (Recd. 21 Sept. 63 and 6 Jan.
64)
Gulbenkian Scientific Computing Ctr, Lis~oa, Portugal

procedure qBesselbar (t,q,n,j,s); integer n, j; real t,q,s;
·~omment This procedure computes values of any q-Bessel

function l,,(t) for n integer (positive, negative or zero) by the
use of the expansion ln(t) = .'Ek°=o (tn+2k/((q~k(q)n-rk)) where
(q)n = (1-q)(l-q2)-··(1-q"), (q)o = 1 ~nd (1/(q)-n)=O (n=I,
2, ···).This series is convergent for t E (-co, +co) if I q I > 1
and for I t I < 1 if I q I < 1. j-t- 1 denotes the number of terms
(at least 2) retained in the summation and s stands for the sum
of these first terms. See L. Carlitz, The product of q-Bessel
functions, Portugaliae Mathematica, vol. 21;

hegin integer k,m,p; real c,u; ni : = abs(n); c : = 1;
if n = 0 then go to A.;
for p : = 1step1 until m doc : = cX(I-q i p);
if n < 0 then go to B;

A: u : = (ti n)/c; s : = u;
for k : = 1 step 1 until j do
begin u := uX(tj2)/((1-qjk)X(l-qj (n+k))); s .

s + u end;
go to C;

B: 11 := t j (n+2Xm)/c; s := u;
for k : = m + 1 step 1 until j do
begin u := uX(tj2)/((l-qjk)XO-qj(n+k))); s .

s + u end;
C: end

228-P I 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHl\I 229
ELEl\lENTARY FUXCTIONS BY COXTil\lJED
FRACTIONS
JAMES C. MonELOCK (Recd. 1 Oct. G3 and in final form
24 Jan. 64)
Computation Lab., Marshall Space Flight Ctr, NASA,
I I un ts ville, Ala.

procedure CONFRA.C (x, n, parm, answer);
integer parm, n; real x, answer;

comment This procedure utilizes a continued fraction which is
equivalent to the diagonal of the PaM table for exp z, with
error in the computed convergent less than x 2n; (2 X () 2 X (10) 2

X · · · X (4n - 2) 2 (4n + 2)). This fraction was developed by
J. C. Morelock, Note on Padc Table Approximation, Internal
Note MIN -COMP-62-9, Marshall Space Flight Center, Hunts
ville, Alabama, 1962. For source reference see Nathaniel Macon,
On the computation of exponential and hyperbolic functions
using continued fractions, J. ACM, 2(1%5), 2G2-26G. The argu
ment, x, is assumed to be less than 7r / 4. For sue h x any desired
level of accuracy is quickly computed for each function specified
as follows:

varm : = 1, answer : = s1:n .r J,arm : = 5, a11su·e1 : = sinh x

parm : = 2, answer : = cos x parm : = 6, ansu•er : = cash x

parm : = :l, answer : = tan x parm : = 7, answer : = lanh x
parm : = 4, answer : = exp x

The body of this procedure has been tested using extended
ALGOL for the B-5000 Computer. It gave the following results:

x = 0.50 n = 1 parm = 1 answer = 0.47938 801ti30
x = 0.50 n = 2 parm = 1 answer = 0.47942 547125
x = 0.50 rt = 3 parm = 1 answer = 0.479-12 55:rn54
x = 0.50 n = 4 parm = l answer = 0.479·12 553860
x = 0.50 n = 1 parm = 2 answer = 0.87760 305~192
x = 0.50 n = 2 parm = 2 answer = 0.87758 259869
x = 0.50 n = 3 parm = 2 answer = 0.87758 256193
x = 0.50 n = 4 parm = 2 answer = 0.87758 256189
x = 0.50 n = 1 parm = 3 answer = 0.54624 697<:37
x = 0.50 n = 2 parm = 3 answer = 0.54630 239019
x = 0.50 n = 3 parm = 3 answer = 0.546:30 248\174
x = 0.50 n = 4 parm = 3 answer = 0.54630 248\185
x = 0.50 n = I parm = 4 answer = l .6·1864 86rn65
x = 0.50 rt = 2 parm = 4 nnswer = 1.64872 13!Jfi73
x = 0.50 n = 3 parm = 4 answer = 1.64872 127057
x = 0.50 n = 4 parm = 4 answer = 1.64872 127070
:r = 0.50 n = 1 parm ~ 5 answer = 0.52104 5631i80
x = 0.50 n = 2 parm = 5 answer = 0.52109 539'.::74
x = 0.50 n = 3 parm = 5 answer = 0.52109 530Ml
x = 0.50 n = 4 parm = 5 answer = 0.52109 5301>49
x = 0.50 n = I parm = 6 answer = 1.12760 301'.:85
x = 0.50 rt = 2 parm = 6 answer = 1.12762 6001)98
x = 0.50 n = 3 parm = 6 answer = 1.12762 5961>16
x = 0.50 n = 4 parm = 6 answer = 1.12762 5961>21
x = Cl..50 n = I parm = 7 answer = 0.46208 251473
x = 0.50 n = 2 parm = 7 answer = 0.46211 721B81
x = 0.50 n = :i parm = 7 answer= 0.46211 715'.120
;r = 0.50 n = 4 i:;arm = 7 answer = 0.46211 715'.'26

229-P 1- Rl

The value of n selects the continued fraction convergent;
begin integer i, ndigt;

real r, f;
r : = if parrn ~ 3 then - x j 2 cl sc x i 2;
f: = 4 X n + 2;
for i : = n step -1 until 1 do f : = 4 X i - 2 + r/f;
ncligt : = if pann ~ 3 then parrn + 1 else parrn - 3;
answer : = if ndigt = 1 then (f +x)/(.f-x)

end

else if ndigt = 2 then 2 Xx X f /((f j 2) - r)
else ifndigt = 3 then ((Jj2)+r)/((Jj2)-r)
else if ncligt = 4 then 2 X x X f / ((.f i 2)-f-r)
else x;

CERTIFICATION OF ALGORITHM 229 [Bl]
ELEMENTARY FUNCTIONS BY CONTINUED
FRACTIONS [James C. Morelock, Comm. ACM 7 (l\1ay

1964), 296]
T. A. BRAY (Recd. 18 June 1964)
Boeing Scientific Research Laboratories, Seattle, WA 98124

KEY WORDS AND PHRASES: continued factions, Pade
table

CR CATEGORIES: 5.19

Algorithm 229 was coded in FORTRAN II and run on the IBM
1620 computer for x = 0.50 and 0.75, for n = 1, 2, 3, 4, and for
parm = 1, 2, 3, 4, 5, 6, 7.

For x = 0.50 my values agree with the author's up to ±10-11•

For x = 0.75 and n = 4, my values of sin x, cos x, tan x, and
exp x agree with tabulated values to within ±10-11 • For the same
x and n my values of sinh x, and cosh x, and tanh x agree with
tabulated values to within ±10-10 ; no tables were available to
check the 11th decimal.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 230
MATRIX PERMUTATION
J. BOOTHROYD (Recd 18 Nov. 1963)
English Electric-Leo Computers, Kidsgrove, Stoke-on

Trent, England

procedure matrixperm(a,b,j,k,s,d,n,p); value n; real a,b;
integer array s,d; integer j,k,n,p;

comment a procedure using Jensen's device which exchanges
rows or columns of a matrix to achieve a rearrangement specified
by the permutation vectors s,d[l :n]. Elements of s specify the
original source locations while elements of d sp~cify the desired
destination locations. Normally a and b will b~ called as sub
scripted variables of the same array. The parameters j,k nom
inate the subscripts of the dimension affected by the permuta
tion, pis the Jensen parameter. As an example of the use of this
procedure, suppose r,c[l :n] to contain the row and column sub
scripts of the successive matrix pivots used in a matrix inver
sion of an array a[l :n,1 :nJ; i.e. rfl], c[l] are the relative sub
scripts of the first pivot r[2], c[2] those of the second pivot and
so on. The two calls

matrixperm (a[j,p], afk,p], j,k,r,c,n,p)
and matrixperm (a[p,j], a[p,k], j,k,c,r,n,p)

will perform the required rearrangement of rows and columns
respectively;

begin integer array tag, loc[l :n]; integer i,t; real w;
comment set up initial vector tag number and address arrays;

for i := 1step1 until n do tag[i] := loc[i] := i;
comment start permutation;

for i := 1step1 until n do
begin t := s[i]; j := loc[t]; k := d[i];

if j~k then begin for p := 1step1 unti.l n do
begin w := a; a := b; b :=wend;

tag[j] : = tag[k]; tag[k] : == t;

end i loop
end matrixperm

loc[tJ : = loc[tagfjJ]; loc[tag[jJJ : = j
end jk conditional

230-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 231
MATRIX INVERSION
J. BOOTHROYD (Recd 18 Nov. 1963)
l~nglish Electric-Leo Computers, Kildsgrove, Stoke-on

'Trent, England

procedure matrix1:nvert (a,n,eps,singular); value n,eps; ar
ray a; integer n; real eps; label singular;

comment inverts a matrix in its own space using the Gauss
Jordan method with complete matrix pivoting. I.e., at each
stage the pivot has the largest absolute value of any element in
the remaining matrix. The coordinates of the successive matrix
pivots used at each stage of the reduction are recorded in the
successive element positions of the row and column index
vectors r and c. These are later called upon by the procedure
matrixperm which rearranges the rows and columns of the

matrix. If the matrix is singular the procedure exits to an appro
priate label in the main program;

begin integer 1'.,j,k,l,pivi,pivj,p; real pivot; integer array
r,c[l :n];

comment set row and column index vectors;
for i := 1step1 until n do r[i] := c[i] := i;

comment find initial pivot; pivi := piv:i := 1;
for i := 1 step 1 until n do for j := 1step1 until n do

if abs (a[i,j]) > abs (a[pivi,pivj]) tlb.en begin pivi := i;
pivj := j end;

comment start reduction;
for i := 1step1 until n do
begin l := rfi]; r[i] := rfpivi]; r[pivi] .- l; l .- c[i];

c[i] := cfpivj]; c[pivj] := l;
if eps > abs (a[r[i],c[i]]) then
begin comment here include an appropriate output pro

cedure to record i and the current values of r[l :n] and
cfl :n]; go to singular end;

for j := n step -1 until i+l, i-1 step -1until1 do a[r[i],c[j]]
:= a[r[i],dj]]/a[r[i],c[i]]; afrfi],c[i]] := 1/afr[i],c[i]];
pivot := O;

fork := 1step1 until i-1, i+l step 1 until n do
begin for j := n step -1 until i+l, i--1 step -·1until1 do

begin a[r[k),c!J]] := a[r[k],c[j]] - afr[i],c[j]] X a[r[k],c[i]J;
if k>i /\ j>i /\abs (a[r[k],c[j]]) > abs(pivot) then

begin pivi := k; pivj := j;
pivot := a[r[k),c[j]] end conditional

end jloop;
a[r[k],c[i]] := -a[rli],c[i]] X a[r[k],c[i]]

end kloop
end iloop and reduction;

comment rearrange rows; matrixperm (a[j,p],a[k,p],j,k,r,c,n,p);
con1ment rearrange columns;

matrixperm (a[p,j],a[p,k],j,k,c,r,n,p)
end matrixinvert

[En1ToR's NoTE. On many compilers matrixinvert would run much
faster if the subscripted variables r[i], c[i], r[k) were replaced by
simple integer variables ri, ci, rk, respectively, inside thej loop.
G.E.F.l

REMARK ON ALGORITHM 231 [Fl]
MATRIX INVERSION

231-P 1- 0

[J. Boothroyd, Comm. ACM 6 (June 1964), 347]
MATS FERRING (Recd. 23 Nov. 1964)
Flygmotor Aeroengine Company, Trollhattan, Sweden

The algorithm cannot accept the pivot element = 0 which re
duces the detection of singularities. We suggest the correction:

if k > i /\ j > i /\ abs(a[r[k], c(j]]) > abs(pivot) then

should be

if k > i /\ j > i /\ abs(a[r[k], c[j]]) G; abs(pivot) then

COLLECTED ALGORITHlVIS FROM CACM

ALGORITHM 232
HEAPSORT
J. W. J. WILLIAMS (Recd 1 Oct. 1963 and, revised, 15

Feb. 1964)
Elliott Bros. (London) Ltd., Borehamwood, Herts, Eng

land
comment The following procedures are related: to TREESORT

iR. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434, and
A. F. Kaupe, Jr., Alg. 143 and 144, Comm. ACM 5 (Dec. 1962),
()04] but avoid the use of pointers and so preser~e s~.orage space.
All the procedures operat~ on single word ~terns, stored as
elements 1 to n of the array A. The elements are normally so
arranged that Ali]~A[j] for 2~j~n, i=j+2. Such an arrang~
ment will be called a heap. A [1] is always the least element of
the heap.

The procedure SETHEAP arranges n elements as a heap,
INHEAP adds a new element to an existing heap, OUTHEAP
extracts the least element from a heap, and SWOPHEAP is
effectively the result of INHEAP followed by OUTHEAP. In
all cases the array A contains elements arranged as a heap. on
exit.

SWOPHEAP is essentially the same as the tournament sort
described by K. E. Iverson-A Programming Language, 1962,
pp. 223-226--which is a top to bottom method, but it uses an
improved storage allocation and initialisation. INHEAP re
sembles TREESORT in being a bottom to top method. HEAP
SORT can thus be considered as a marriage of these two
methods.

The procedures may be used for replacement-selection sort
ing, for sorting the elemen'ts of an array, or for choosing the
current minimum of any set of items to which new items are
added from time to time. The procedures are the more useful
because the active elements of the array are maintained densely
packed, as elements A [l] to A [n];

procedure SWOPIIEAP (A,n,in,out);
value in,n; integer n; real in,out; real airray A;
comment SWOPHEAP is given an array A, elements A[l]

to A[n] forming a heap, n~O. SWOPHEAP effectively adds
the element in to the heap, extracts and assigns to out
the value of the least member of the resulting set, and leaves
the remaining elements in a heap of the original size. In
this process elements 1 to (n+ 1) of the array A may be dis
turbed. The maximum number of repetitions of the cycle
labeled scan is log2n;

begin integer i,j; real temp, temp l;
if in~A[l] then out :=in else
begin i := 1;

A[n+ll := in; comment this last statement is only
necessary in casej=n at some stage, or n=O;

out:= A[l];
scan: j := i+i;

if j~n then
hegin temp := A[j];

temp 1 := A[j+ll;
if temp 1 <temp then
begin temp : = temp 1;

j := j+l
end;

if temp < in then
begin A[i] := temp;

i := j;
go to scan

end
end;
A[i] :=in

end
end SWOPHEAP;

procedure INHEAP (A, n, in);

232-P 1- 0

value in; integer n; real in; real array A;
comment INHEAP is given an array A, elements A[l] to

A[nJ forming a heap and n~O. INHEAP adds the element in
to the heap and adjusts n accordingly. The cycle labeled
Bcan may be repeated log2n times, but on average is repeated
twice only;

begin integer i,j;
i := n :=n+l;

scan: if i>l then
begin j := i+2;

if in< A [j] then
begin A[i] := A[j];

i := j;
go to scan

end
end;
A[i] := £n

·end INHEAP;
procedure OUT HEAP (A,n,out);

integer n; real out; real array A;
comment given array A, elements 1 ton of which form a heap,
n~l, OUTHEAP assigns to out the value of Alll, the least
member of the heap, and rearranges the remaining members
as elements 1 to n-1 of A. Also, n is adjusted accordingly;

begin SWOPHEAP (A,n-1, A[n],out);
n := n-1

end OUTHEAP;
procedure SETHEAP (A,n);

value n; integer n; real array A;
comment SETHEAP rearranges-the elements A[l] to A[n]

to form a heap;
begin integer j;

.i := 1;
L: INHEAP(A ,j,A[j+l]);

if j<n then go to L
end SETHEAP

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 233
SIMPSON'S RULE FOR MULTIPLE

INTEGRATION
FRANK 0LYNYK* (Recd 24 Dec. 1963)
Case Institute of Technology, Cleveland, Ohio

*Partially sponsored by the National Science Foundation under Grant GP-642.

real procedure Simps (X, xl, x2, delta, j);
value xl, x2, delta; real X, xl, x2, delta, f;

comment This procedure calculates a siingle integral by Simp
son's rule in such a way that it can be called recursively for the
evaluation of an iterat~d integral. xl and x2 are the lower and
upper limits, respectively, which may be any mathematically
meaningful expression~. Hence in using Simps for multiple
integration the region is not limited to rectangular boxes. The
algorithm terminates when two successive evaluations pass the
test involving delta. The formal parameter f stands for the
expression to be integrated.

As an example of the use of Simps,

,.1 [(l-x2)l
I d:r g(x, y) dy

Jo o

would be evaluated by
Simps(x, 0, 1, delta, Simps(y, 0, sqrt(l - x j 2), delta2, g(x, y))).

Simps has been written and run in ALGOL 60 on the Univac
1107 at Case Institute.

[EoI'l'OR's NoTE. Experience of W. McKeeman suggests the
wisdom of choosing delta2 < delta.-G.E.F.];

begin
Boolean luring; real zl, z2, z3, h, k;
turing : = false;
if xl = x2 then begin zl : = 0; go to box2 end;
if xl > x2 then begin h := xl; xl := x2; x2 := h;

luring := true end;
X := xl; zl := f; X := x2; z3 := zl := zl + f;
k := x2 - xl;

box:
z2 := O; h := k/2;
for X := xl + h step k until x2 do z2 := z2 + f;
zl : = zl + 4 X z2;
if h X abs((zl - 2 X z3)/(if zl = 0 then 1.0 else zl)) < delta

then go to box2
else z3 := zl;
zl := zl - 2 X z2;
k := h;
go to box;

box2:
if luring then h := -h;
Simps := h X zl/3

end Simps

233-P 1- RI

REMARK ON ALGORITHM 233 [DI]
SIMPSON'S RULE FOR MULTIPLE INTEGRATION

[Frank Olynyk, Comm. ACM 7 (June 1964), 348]
L. G. PROLL (Recd. 6 Apr. 1970)
Department of Mathematics, University of Southampton,

U.K.
KEY WORDS AND PHRASES: numerical integration, multiple
integration, Simpson's rule
CR CATEGORIES: 5.16

Algorithm 233 fails in the case xl = x2 since h and, thus, the
value of the function Simps are undefined. This situation can be
avoided by replacing the line

if xl = x2 then begin zl : = 0; go to box2 end;
by

if xl = x2 then begin Simps : = 0.0; go to box3 end;
and by replacing the last two lines of the procedure by

Simps := h X zl/3.0;
box3:
end Simps

The algorithm can be marginally improved by replacing each
integer constant by its equivalent decimal number.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 234
POISSON-CHARLIER POLYNOMIALS [S23]
J. M. S. SIMOES PEREIRA (Recd. 6 Jan. 1964)
Gulbenkian Scientific Computing Center, Lisboa, Portugal
real procedure PCpolynomial (x, n, a);

integer n; real x, a;
comment PCpolynomial computes values of the Poisson

Charlier polynomial Pn(x) defined by L. Carlitz, Characteriza
tion of certain sequences of orthogonal polynomials, Portugaliae
Mathematica 20 (1961), 43--46:

pn(x) = a"'2(n!)-1t2 to (-1)"-r (;) r! a-r (~).
In this algorithm u stands for the successive terms of the summa
tion, s stands for the sum of these terms and all other symbols
possess evident meanings. Clearly each term of the summation
is obtained from the preceding one by the indicated multipli
cation;

begin
integer j; real u, s, c;
u := (-1) in;
s := u;
c := 1;
for j := 1step1 until n doc_:= c X j;
for j : = 0 step 1 until n - 1 do

beginu:= -uX (n-j)X (x-j)/(aX (j+l)); s:=
s + u end;

PCpolynomial := sqrt(a j n/c) X s
end PCpo~ynomial

CERTIFICATION OF ALGORITHM 234 [S23]
POISSON-CHARLIER POLYNOMIALS [J. M. S.

Simoes-Pereira. Comm. ACM 7 (July 1964), 420]
P. A. SAMET (Recd. 17 Aug. 1964)
Computation Lab., The University, Southampton, Eng.

PC polynomial was compiled correctly by the Pegasus-ALGOL
compiler and ran without trouble. The procedure was tested for
n = 0(1)4, values of a in the range 0.2 to 2.0, and x in the range
0 to 1. The values produced were spotchecked by hand.

The procedure could be improved by
(i) putting x, n, a in the value part.

(ii) replacing u : = (-1) j n by
u : = if n = n+ 2 X 2 then 1 else -1

(iii) eliminating the separate evaluation of n ! by including
the evaluation of a"· (n !)-1 in the main loop. This gives a simpler
argument for sqrt in the final assignment statement.

The revised algorithm then reads
real procedure PCpolynomial (x, n, a);

value x, n, a; real x, a; integer n;
begin integer j; real u, s, c;

s : = u : = if n = n + 2 X 2 then 1 else -1;
c := 1;
for j : = 0 step 1 until n - 1 do
begin u := -u X (n-j) X (x-j)/(a X (j+l));

s := s + u;
c := c X a/(j+l)

end;
PCpolynomial := sqrt(c) X s

end PCpolynomial

234-P 1- 0

This version gave the same results as the original but was ap
preciably· faster~

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 235
RANDOM PERMUTATION [G6]
RICHARD DuRSTENFELD (Recd. 2 Jan. 64)
General Atomic, San Diego 12, Calif.

procedure SHUFFLE (a, n, random);
value n; integer n; real procedure random; integer

array a;
hegin

comment SHUFFLE applies a random permutation to the
sequence a[i] where i = 1, 2, ... , n. The procedure random is
supposed to supply a random element from a large population
of real numbers uniformly distributed over the open unit
interval 0 < r < 1. The array a is decl!il.red to be integer but
actually it suffices for its type to agree with that of the vari
able b (in the procedure body);

integer i, j; real b;
for i : = n step - 1 until 2 do

begin j : = entier (i X r"Lndom + 1);
b : = a[i]; a[i] : = a[j]; a[j) : == b

end loop i
end SHUFFLE

Note. Numbers in brackets following Algorithm titles indicate the subject
category for the algorithm, based on the Modified SHARE Classification listing
given in the March, 1964 issue of the Communications of the ACM.

REMARK ON ALGORITHM 235 [G6}
RANDOM PERMUTATION [Richard Durstenfeld,

Comm. ACM 7 (July 1964), 420]
M. C. PIKE (Recd. 11 Feb. 1965 and 5 Apr. 1965)
Statistical Research Unit of the Medical Research Council,

University College Hospital Medical School, London,
England
SHUFFLE applies a random permutation to the complete

sequence a[i] where i = 1, 2, · · ·, n. SHUFFLE does this in such a
way that after k calls of the real procedure random the elements
a[i] for i = n-k+l, n-k+2, · · ·, n are a random permutation of
the original n elements a[iJ where i = 1, 2, · .. ·, n taken k at a time.
In many applications this will be all that is required and by coming
out of the procedure at this point the remaining n - k - 1 calls
of random and the subsequent transfers will be avoided; this will
result in a considerable saving in time if k is much smaller than n.
The necessary modifications are:

(1) Amend the procedure heading by adding the variable k:
procedure SHUFFLE (a, n, k, random);
value n, k; integer n, k;

(2) Amend the line
for i := n step -1 until 2 do

to read:
k := n+I-k;
for i := n step -1 until k do

Note that at exit a[l:n] will still contain a:U the elements of the
original a[l:nJ, and that if k=n that these modifications will
make the procedure call random one more time than the original
SHUFFLE.

235-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 236
BESSEL FUNCTIONS OF THE FIRS']' KIND [SI 7]
WALTER GAUTSCHI (Recd. 10 Aug. 1963 and 10 Apr. 1964)
Oak Ridge National Laboratory, Oak Rid~e, Tenn.*

*Now at Purdue University, Lafayette, Ind:

real procedure t(y); value y; real y;
comment This is an auxiliary procedure whieh evaluates the

inverse function t = t(y) of y = t Int (t~l) tb an accuracy of
about 1 %. For ~he interval 0 ~ y ~ 10 a fifth degree approxi
mating polynomial was obtained by truncating a series expan
sion in Chebyshev polynomials. For y > 10 the approximation
t(y) - (y/ln(y/a))(1+ (lna-lnln(y/a))/ (1 +lri(y/a)))-1 where
ln a = .775t is used;

begin real p, z;
if y ~ 10 then

begin
p : = .000057941 x y - .00176148 i p : = y x p + .0208645;
p := y x p - .129013; p := y x p + .85777;
t : = y x p + 1.0125

end
else

begin
z := ln (y) - .775; p := (.775-ln (z))/(l+z);
p := 1/(l+p); t := y X p/z

end
end t;

proce4ure Japlusn (x, a, nmax, d, J); value x, a, nmax, d;
integer nmax, d; real x; a; array J;

comment This procedure evaluates to d signif.icant digits the
Bessel functions Ja+n(x) for fixed a, x and for n == 0, i, · · · , nmax.
The results are stored in the array J. It is assumed
that O ~a< 1, x > 0, and nmax ~ 0. If any of these variables is
not in the range specified, control is transferred to a nonlocal
label called alarm. The procedure makes use of the real procedure
.t. In addition, it calls for a nonlocal real proced4re gamma which
evaluates r(z) for 1 ~ z ~ 2. (See [2].) The method of computa
tion is a variant of the backward recurrence algorithm: of J. C.
P. Miller. (See [1].) The purported accura~y i~ obtained by a
judicious selection of the initial value v of the recursion index,
together with at least one repetition of the rec1.,1rsion with v re
placed by v + 5. Near a zero of one of the Bessel functions
generated, the accuracy of that particular Bessel function may
deteriorate to less than d significant digits". The algorithm is
most efficient when x is small or moderately large;

begin integer n, nu, m, limit; real epsilon; sum, dl, · r; s, L,
lambda; array Japprox, Rr[O:nmax];
if a < 0 V a ~ 1 V x ~ 0 V nmax < 0 then go to alarm;
epsilon : = .5 X 10 i (-d);
for n := 0 step 1 until nmax do Japprox[n] :=== O;

t In an earlier version of this procedure the author used a = 1.
The value In a = .775 was found empirically by H. C. Thacher, Jr.
to' yield somewhat better approximations.

sum := (x/2)ja/gamma (l+a);
dl := 2.3026 x d + 1.3863;

236-P 1- 0

if nmax > O then r := nmax X t(.5Xdl/nmax) else r := O;
s:= 1.3591 Xx X t(.73576Xdl/x);
nu : = 1 + entier (if r~s then s else r);

LO: m := O; L := 1; limit entier (nu/2);
Ll: m := m + 1;

L := L X (m+a)/(m+l);
if m < limit then go to Ll;
n := 2 X m; r := s := O;

L2: r := 1/(2X(a+n)/x-r);
comment Conceivably, but very unlikely, division by an

exact zero or overflow may take place here. The user may
wish to te~t the divisor

1

for zero, and, if necessary, enlarge it
slightly to avoid overflow, before this statement is carried out.
As such a test depends on the particular machine used, it was
not included here;

if entier (n/2) ~ n/2 then lambda : = 0 else
begin

L := L X (n+2)/(n+2Xa);
lambda := L X (n+a)

end·
s := r

1

X (lambda+s); if n ~ nmax then Rr[n-1] := r;
n : = n - 1; if n ~ 1 then go to L2;
J[O] := sum/(l+s);
for n := O step 1 until nmax - 1 do J[n+ll := Rr[n] X J[nJ;
for n : = 0 step 1 until nmax do

if abs((J[n] - Japprox[n])/J[n]) >epsilon then
begin

form := 0 step 1 until nmax do Japprox[m] := J[m];
nu :=nu+ 5; go to LO

end
end Japlusn;

procedure Iaplusn(x, a, nmax, d, I); value x, a, nmax, d;
integer nmax, d; real x, a; array I;

comment This procedure evaluates to d significant digits the
modified Bessel functions la+n(x) for fixed a, x, with 0 ~ a < 1,
x > O, and for n = O, 1, · · · , nmax. The results are stored in the
array I. For the setup of the procedure, and the method of com
putation used, see the comment in Japlusn;

begin integer n, nu, m; real epsilon, sum, dl, r, s, L, lambda;
array !approx, Rr[O:nmax];
if a < O V a ~ 1 V x ~ 0 V nmax < 0 then go to alarm;
epsilon : = .5 X 10 i (-d);
for n := 0 step 1 until nmax do lappro±[n] := O;
sum := exp(x) X (x/2) ja/gamma(l+a);
dl := 2.3026 x d + 1.3863; .
if nmax > O then r := nmax X t(.5Xdl/nmax) else r := O;
s := if x < dl then 1.3591 X x X t(.73576X (dl-x)/x) else

1.3591 · X ·x;
nu := 1 + entier (if r~s thens else r);

LO: n := O; L := 1;
Ll: n := n + 1;

L := L X (n+2Xa)/(n+l);
if n <nu th.en go to Ll;
r := s := O;

COLLECTED ALGORITHMS (cont.)

L2: r := 1/(2X (a+n)/x+r);
L := L X (n+l)/(n+2Xa);
lambda := 2 X (n+a) X L;
s := r X (lambda+s); if n ~ nmax then Rr[n-1] := r;
n, := n - 1; if n ~ 1 then go to L2;
/[OJ := sum/(l+s);
for n := 0 step 1 until nmax - 1 do J[n-tl] := Rr[n] X I[n];
for n : = 0 step 1 until nmax do

if abs((l[n]-Iapprox[n])/I[n]) > epsilon then
begin

for m := 0 step 1 until nmax do lapprox[m] .- I[m];
nu := nu + 5; go to LO

end
end Iaplusn;

procedure Jaminusn(x, a, nmax, d, J); value x, a, nmax, d;
integer nmax, d; real x, a; array J;

comment This procedure evaluates to d significant digits the
Bessel functions Ja-n(x) for fixed a, x, with 0 < a < 1, x > 0,
and for n = 0, 1, · · · , nmax. The results are stored in the array
J. The procedure makes use of the real procedure t, and the
procedure Japlusn. In addition, it calls for a nonlocal real pro
cedure gamma which evaluates r(z) for 1 ~; z ~ 2. (See [2).) The
accuracy may deteriorate to less than d significant digits if a is
close to 0 or 1;

begin integer n; array Jl[O:l];
if a = 0 then go to alarm;
Japlusn(x, a, 1, d, Jl);
J[O] := Jl[O];
J[l] := 2 X a X J[O]/x - Jl[l];
for n := 1step1 until nmax - 1 do

J[n+l] := 2 X "ca-n) X J[n]/x - J[n--1]
end Jaminusn;

procedure Iaminusn(x, a, nmax, d, I); vallue x, a, nmax, d;
integer nmax, d; real x, a; array I;

comment This procedure evaluates to d significant digits the
modified Bessel functions Ia-n(x) for fixed a, x, with 0 < a < 1,
x > 0, and for n = 0, 1, · · · , nmax. The results are stored in the
array I. The procedure makes use of the real procedure t, and
the procedure Iaplusn. In addition, it cans for a nonlocal real
procedure gamma which evaluates r(z) for 1 ~ z ~ 2. (See [2].)
The accuracy may deteriorate to less than d significant digits if
a is close to 0 or 1;

begin integer n; array Il[O:l];
:if a = 0 then go to alarm;
laplusn(x, a, 1, d, 11);
l[O] := Jl[O];
J[l] := 2 X a X I[O]/x + lt[l];
for n := 1 step l until nm.ax - 1 do
l[n+~] := 2 X (a-n) X I[n]/x + I[n-1]

endlaminusn;

procedure Complex Japlusn(x, y, a, nmax, d, u, v); value x, y, a,
nmax, d;
integer nmax, d; real x, y, a; array u, v;

~:omment This procedure evaluates to d significant digits the
Bessel functions Ja+n(z) = Un+ ivn for fixed real a, fixed complex
z = x + iy, and for n = 0, 1, · · · , nm~x. The real parts Uo,

u1, · · ·, Unmaz of the results are stored in the array u, the imagi
nary parts Vo, v1, · · · , V?tmaz in the array v. It is assumed that
0 ~ a < 1, nmax ~ 0, and that z is not on the negative real axis
x ~ 0, y = 0. Otherwise, control is transJerred to the nonlocal
label alarm upon entry of the procedure. The procedure makes
use of the real procedure t. In addition, it calls for a nonlocal
real procedure gamma which evaluates r(z) for 1 ~ z ~ 2. (See
[2].) The method of com.putatio:p is a complex extension of the
method used in the procedure Japlusn. The algorithm is most
efficient when I z I is small or moderately large;

begin integer n, nu, m; real epsilon, yl:, r02, rO, phi, c, cl, c2,

236-P 2- 0

suml, sum2, dl, r, s, lambdal, lambda2, L, rl, r2, sl, s2; array
uapprox, vapprox, Rrl, Rr2[0:nmax];
if a < 0 Va ~ 1 V (x~O/\y=O) V nrnax < 0 then go to alarm;
epsilon : = .5 X 10 i (-d);
for n := 0 step 1 until nmax do uapprox[n] := vapprox[n] := O;
yl := abs(y); r02 := x j 2 + y j 2; rO := sqrt(r02);
phi:= ifx = Othen 1.5707963268 elseifx > 0 then arctan(yl/x)

else 3.1415926536 + arctan(yl/x);
comment The two constants 7r/2 and 7r' in the preceding state

ment are to be supplied with the full accuracy desired in the
final results;
c := exp(yl) X (r0/2)ja/gamma (l+a);
suml := c X cos(aXphi-x); sum2 := c X sin(aXphi-x);
dl := 2.3026 x d + 1.3863;
if nmax > 0 then r := nmax X t(.5Xdl/nmax) else r := O;
s := if yl < dl then 1.3591 X rO X t(.73576X (dl-yl)/rO) else

1.3591 X rO;
nu := 1 + entier (if r~s then s else r);

LO: n : = 0; L : = 1; cl : = 1; c2 : = 0;
Ll: n := n + 1;

L := L X (n+2Xa)/(n+l);
c := -cl; cl := c2; c2 := c;
if n < nu then go to Ll;
rl := r2 := sl := s2 := O;

L2: c := (2X(a+n)-xXrl+y1Xr2) j2 + (xXr2+y1Xrl) j2;
rl := (2X (a+n)Xx-r02Xrl)/c;
r2 := (2X (a+n)Xyl+r02Xr2)/c;
L := L X (n+l)/(n+2Xa); c := 2 X (n+a) XL;
lambda! := c X cl; lambda2 := c X c2;
c := cl; cl := -c2; c2 := c;
s := rl X (larnbdal+s1) - r2 X (lambda2+s2);
s2 := rl X (lambda2+s2) + r2 X (lambdal+sl);
sl := s;
ifn ~ nmaxthenbeginRrl[n-1] := rl;Rr2[n-1] := r2end;
n := n - 1;
if n ~ 1 then go to L2;
c := (l+sl) i 2 + s2 i 2;
u[O] := (sumlX (l+sl)+sum2Xs2)/c;
v [O] := (sum2X (l+sl)-sum1Xs2)/c;
for n := 0 step 1 until nmax - 1 do

begin
u[n+ll := Rrl[n] X u[n] - Rr2[n] X v[n];
v[n+l] := Rrl[n] X v[n] + Rr2[n] X u[n]

end;
if y < 0 then for n := 0 step 1 until nmax do v[n] .- - v[n];
for n : = 0 step 1 until nmax do

if sqrt(((u[n]-uapprox[n]) i 2+(v[n]-vapprox[n]) i 2)
/(u[n] i2+v[n]j 2)) > epsilon

then
begin

for m : = 0 step 1 until nmax do
begin uapprox[m] := u[m]; vapprox[m] := v[m] end;

nu := nu + 5; go to LO
end

end Complex Japlusn

REFERENCES

1. GAUTSCHI, W. Recursive computation of special functions.
U. Mich. Engineering Summer Conferences, Numerical
Analysis, 1963.

2. --. Algorithm 221-Gamma function. Comm. ACM 7 (Mar.
1964)' 143.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 236 ,[Sl 7]
BESSEL FUNCTIONS OF THE FIRST KIND [Walter

Gautschi, Comm. ACM 7 (Aug. 1964), 479]
WALTER GAuTscm (Recd. 24 Aug. 1964 and 2 Nov. 1964)
Purdue University, Lafayette, Ind.

All procedures were tested on the CDC I604-A computer, using
the Oak Ridge ALGOL compiler.

1. The procedure Japlusn was submitted to the following tests:
(a) Values of Jn(2) andJ11+112(lO) were produced for n = O(I)lO,

calling for an accuracy of d = 6 significant digits. The values ob
tained for Jn(2) agreed with those of Table 9.4 in [l] to 10 signifi
cant digits (with occasional discrepancies of one uriit in the tenth
figure). The results for Jn+112(l0) were compared against those of
Jn+112(IO) = 2.523I3252I X jn(lO) obtained from Ta;ble 10.5 in [I].

The maximum discrepancy was found to be five units in the tenth
figure, occurring for n = 3.

(b) To observe the performance of the procedure near a zero
of a Bessel function, we generated Jn(x), n = O(I)lO, for
x = 2.40482556--the 8D value of the first zero io. 1 of J 0-calling
for d = 10 significant digits. The results are shown in the table
below.

n JnUo,1) n JnUo.1)

0 -I .193625277510-9 6 3.404818490210-3
1 5. I9I474968010-I 7 6.006883695510-4
2 4. 317548073810-I 8 9. 2I6578738510-5
3 I. 989999057810-I 9 I .25I727108210-5
4 6 .474666637110-2 10 I .5253656I8210-6
5 I .638924327610-2

The entry for n = I agrees to 9 figures with that of -Jo'(jo,1) given
in Table 9.5 of reference [I].

(c) We drove the procedure to calculate Jx+H(x) to 6 signifi
cant digits, for x = 4(4)20, v = O(.I)l.9. The results agreed with
those tabulated in [2].

2. The procedure laplusn was called to generate test values to
6 significant figures of ln(20), ! 11+112(10), ln+114(.I), for n = O(I)lO.
The first two sets of values were compared with those in [3] and
in Table 10.10 of [I], respectively, and found to be in error by at.
most 5 units in the tenth figure. The value for 1114(.I) agreed to 10
figures with that given in [5].

3. Further checks were made on the procedures Japlusn,
laplusn, as well as the procedures Jaminusn, laminusn, by having
them "verify" the relation

00

f2a+2(2x) = f!+1(x) + 2 L fa-n(x)fa+n1-2(x)
n-o

forx =I, a= .2(.2).8, wherefv(x) stands for eitherJv(x) or I.(x)
(cf. [4], p. IOO, formula (2I)). That is, we printed the relative errors
incurred when the infinite series is truncated after the (N + 1)
st term, N = 0(5)20. Selected results (rounded to four digits) are
shown in the table below.

" a~ 10 15 20

.2 1.16510-2 2.51910-4 -3.56810-5 1.04310--6 -4.234to-6

.8 -7 .94510-2 4.96810-5 -3.45910-6 6.51710--7 -1.92310-7

.4 -8.091io-2 1.24510-4 -1.45610-5 3.71410-6 -1.36lio-6

.6 -1.02310-l 7 .59010-5 -7.04ho-6 1.55310--6 -5.11510-7

The first two lines refer to f = J, the last two lines to f = I. The
driver program follows.

begin integer n; real a, sumJ, sum!, sJ, sf, errorJ, error!;
array JI, Il[0:3], J2, 12(0:22], J3, 13(0:20);
for a : = .2 step .2 until .9 do
begin

if 2 X a < I then
begin

236-P 3- 0

Japlusn (2.0, 2 X a, 2, 6, JI); Iaplusn (2.0, 2 X a, 2, 6, ll);
sumJ .- JI[2]; sum! := I1[2]

end
else

begin
Japlusn (2.0, 2 X a-I, 3, 6, JI);
laplusn (2.0, 2 X a-I, 3, 6, II);
sitmJ := JI[3]; suml := II[~]

end;
Japlusn (1.0, a, 22, 6, J2); Jaminusn (1.0, a, 20, 6, J3);
laplusn (1.0, a, 22, 6, 12); Iaminusn (1.0, a, 20, 6, 13);
sJ := sl := O;
for n : = 0 step I until 20 do
begin

sJ := sJ + J3[n] X J2[n+2J; sl := sl + I3[n] X l2[n+2J;
if entier (n/5) = n/5 then

end
end;

begin
errorJ := (J2[1] i 2 + 2 X sJ-sumJ)/sumJ;
error! := (12[1] j 2 + 2 X sl-suml)/suml;
outstring (I, 'a='); outreal (I, a);
outstring (I, 'N = '); ov.tinteger (I, n);
outstring (I, 'errorJ = '); outreal (I, errorJ);
outstring (I, 'error[='); outreal (I, error I)

end

go to skip;
alarm: outstring (1, 'parameters not in range');
skip: end

4. The procedure Complex Japl'llsn underwent the_ following
tests:

(a) Values of J 11 (rei4>) were produced for n = 0, I, cf> = (r-2)
X 30°, r = I(I)6, calling for an accuracy of 6 significant digits.
Comparison with [6] showed agreement to 9-10 significant figures.

(b) We asked the procedure to "verify" the identity (cf. [4],
p. 99, formula (2))

00 r(l - a)r(a + n)
(z/2)a Jo(z) = L ()2 () (a + 2n)Ja+2n(z),

n=O n! r I - a - n

by printing the moduli of the relative errors incurred when trun
cating the infinite series at n = O(I)5. We let a and z run through
values a= .2(.2).8, z = 2 exp (icf>), cf>= -I50° (30°) I50°, respec
tively. Selected results (rounded to three figures) are displayed
in the table below.

"' </>o a".. n 0

"· ---- ---------·

-120 .2 1-1710-l 5.5ho-3 1.3110-4 1.8510-6 1.7210-8 2.0210-10
-30 .4 3.1610-l 2.0210-2 5.6ho-4 8.7010-6 8 .6410-8 5.2710-10

60 .6 2.6010-l 1.6510-2 4 .6710·-4 7 .4ho-6 7 .51to-8 3.9310-10
150 .8 4.9510-l 4.0010-2 1.2910-3 2 .2310-5 2.41to-7 1.7510-9

The same pattern persists throughout the range of the variables.
The driver program follows.

begin integer m, n; real a, phi, c, s, x, y, suml, sum2,
q, sI, s2, p, error; array u, v[O:lO];
for a : = .2 step .2 until .9 do
form := -5 step I until 5 do
begin

phi := .52359877560 X m;
c := cos(aXphi); s := sin(aXphi);
x := 2 X cos(phi); y := 2 X sin(phi);
Complex Japlusn (x, y, 0, 0, 6, u, ·v);
sumI := c X u[O] - s X v[O]; sum2 := c X v[O] + s .><.. u[O];
Complex Japlusn (x, y, a, 10, 6, u, v);
q := gamma (I+a);
sI := q X u[O]; s2 := q X v[O]; p := q/a;

COLLECTED ALGORITHMS (cont.) 236-P 4- RI

n := O; go to skip;
L: error:= sqrt (((suml-sl)j2+(s·um2-s2)j2)/(sumlj2

+ sum2 i 2));
alarm: outstring (1, 'parameters not in range');
skip: end

O'utstring (1, 'a='); outreal (1, a);
REFERENCES: outstring (1, 'phi='); outinteger (1, aoxm);

outstring (1, 'n= '); outinteger (1, n);
outstring (1, 'error='); outreal (1, error);

1. ABRAMOWITZ, M., AND STEGUN, I. A, (Eos.) Handbook of Mathematical Func
tions. NBS Appl. Math. Ser. 55, U.S. Govt. Printing Off., Washington, D.C.,
1964.

n := n + l;
if n ~ 5 then
begin

2. ArnE·•, J. R. Bessel functions of nearly equal order and argument. Philo8. Mag.
(7) 19 (1935), 230-235.

3. BAAS. Be88el function8, part fl, Function8 of po8itive integer order. Mathematical
Tables, vol. X, Cambridge F. Presa, London, 1952.

p := -p X ((n+a-1)/n) i 2; q := (a+2Xn) X p;
sl := sl + q X u[2Xn]; s2 := s2 + q X v[2Xn];

4. ERDELYI, A. (ED.) Higher Transcendental Functions, vol. II. McGraw-Hill, New
York, 1953.

5. NATIONAL BUREAU OF STANDARDS. Tables of Bessel/unctions of fractional order,
vol. ll. , Columbia U. Press, New York, 1949.

go to L
end

end;
6. -. Table of the Bessel Functions Jo(z) and J1(z) for Complex Arguments. Co

lumbia U. Presa, New York, 1943.

ACM Transactions on Mathematical Software, Vol. I, No. 3, September 1975.

REMARK ON ALGORlTHM 236

Bessel Functions of the First Kind [Sl 7]
[W. Gautschi, Comm. ACM 7, 8 (Aug. 1964), 479-480]

Ove Skovgaard [Recd 6 Nov. 1973 and 3 Feb. 1975]
Institute of Hydrodynamics and Hydraulic Engineering, Technical University of
Denmark, DK-2800 Lyngby, Denmark

The procedures in Algorithm 2a6 were coded in PL/I and run on the IBM
370/165. The following error was discovered for a = 0, nmax large, and x small,
e.g. nmax = 50 and x = 0.5. In the last if statement in three of the procedures,
Japlusn, Iaplusn, and Complex Japlusn, division by zero took place. Not all com
pilers and computers would pose problems for the above values of the parameters;
whether or not they do depends on the permissible magnitude of the floating-point
numbers for the compiler and computer used. For the IBM 370/165 the smallest
positive floating-point number which the computer can hold is approximately
5.40 X 10-79 (see [10, p. 163]).

The following corrections should be made in the procedure J aplusn.
The last if statement should be replaced by

if abs(J[n] - Japp:rox[n]) > epsilon X abs(J[n]) then
comment Conceivably, but very unlikely, underflow, i.e. the exponent of the

floating-point number exceeds its lower bound, may take place here. In that case
the machine representation of "floating-point zero" must be produced if the
program is to work properly;

The same comment should be inserted after the statement

J[n + 1] : = Rr[n] X J[n];

The same corrections should be made in the procedures Iaplusn and Complex
J aplusn at the appropriate places.

The corrections of the defective if clauses proposed above are most elegant, but
not the most efficient for all compilers and computers. The following general correc
tions in the procedure J aplusn have only one call instead of two calls of the abs
junction and are therefore more efficient for some compilers.

Before the last if statement two new lines should be inserted:

if J[n] ~ 0 then
begin

and before the last end statement one new line should be inserted:

end

COLLECTED ALGORITHMS (cont.)

The two proposed comment statements are still necessary.
The numerical results are identical for the two methods.
The same efficient (in some cases) corrections can be made in the procedures

laplusn and Complex Japlusn at the appropriate places.
According to [5], all t:fu.e material relevant for the construction of Algorithm 236

is included in [4, especially Section 5]. This reference is used in the following
comments, since referenc~ [1] in Algorithm 236 is not easily available.

The last for statement (of which the delinquent if statement is a part) is included
for checking purposes only, in order to verify that the required accuracy has indeed
been attained. Accordingto [5], Gautschi says, "I believe, however, that my initial
choice of J1 is conservative enough to guarantee this accuracy. For all practical
reason, therefore, the whole for statement in question could be deleted." This has
not been checked by the present author.

Because a simplified PL/I version of Algorithm 443 [2, 3] had already been
implemented in the local university computer library, the call to the real procedure
t was replaced by an application of Algorithm 443 (version B). The solution of
w exp(w) = y, y > 0 (furnished by Algorithm 443) corresponds to w(y) = ln(t(y))
in terms of the procedure t, so that t(y) = exp(w(y)) or t(y) = y/w(y). Algorithm
443 is less efficient ·than procedure t. The former is more accurate, although this
accuracy is not necessary here.

In order to improve the documentation and thereby facilitate modifications
and/or translations of the procedures Japlusn, laplusn, and Complex Japlusn, the
mathematical constants 'corresponding to the four decimal constants in the three
procedures are given here: 2.3026 is ln 10, 1.3863 is ln 4, 1.3591 is e/2, . 73576
is 2/e.

The procedure J aplusn was coded using double precision floating-point calcula
tions. For implementation on the IBM 370/165 (chopping with 14 hexadecimal
digits) this gives approximately 15 significant decimal digits. The procedure was
used to calculate the Bessel function of the first kind for integer orders Jn (x), i.e.
a= 0. The procedure was programmed with d = 15 (the values of Jn(x) were
wanted with at least 15 significant digits). The values were checked using the tables
in [6, 7, 8] and Table III in [9]. It was discovered that the values often had an
error of 1 to 2 units in the fifteenth digit, where there was no zero of one of the
Bessel functions to deteriorate the accuracy to less than 15 digits. Tests were run
to determine whether the results were dependent on the selection of the initial JI;

it must be remembered that the estimate of JI is very conservative; see [4, pp.
50-51]. Systematic tests revealed that it was impossible to obtain the wanted
accuracy with any JI. To simplify testing, when a = 0, all even X = 2 were used
(according to [4, p. 49, line 1]), rather than the recursively generated even X
(according to [4, p. 48, last 11 lines]) . With this simplification the procedure
evaluated Jn(x) to 15 significant digits. Near a zero of one of the generated Bessel
functions, the accuracy of that particular function still deteriorated to less than 15
significant digits. This deterioration was generally of the same magnitude as
occurred when X was generated recursively.

If the procedures Japlusn, laplusn, and Complex Japlusn are contemplated for
use in the calculation of Bessel functions of integer order only, then they might be
rewritten directly employing the explicit values of X, rather than generating them
by an upward and downward recursion. This will make the procedures more effi
cient and slightly more accurate. In this connection it is relevant to refer to two
more recent algorithms, due to Sookne [11-14], dealing with Bessel functions of
integer order. Procedure Beslri in [12] was translated to PL/I, and tests disclosed
that the execution time for procedures J aplusn and I aplusn is of the order twice the
execution time for procedure Beslri. Therefore Sookne's procedures, and not the
procedures in Algorithms 21 and 236 (see [1] and the editorial comment in [15]),
should be used for the calculation of Bessel functions of integer order.

236-P 5- 0

COLLECTED ALGORITHMS (cont.)

REFERENCES

1. BoRscn-SuPAN, W. Bessel functions for a set of integer orders, Algorithm 21. Comm. ACM 3,
11 (Nov. 1960), 600.

2. ErNARssoN, B. Remark on Algorithm 443, Solution of the transcendental equation wew = x.
Comm. ACM 17, 4 (April 1974), 225.

3. FRITSCH, F.N., SHAFJm, R.E., AND CROWLEY, W.P. Solution of the transcendental equation
wew = x, Algorithm 443. Comm. ACM 16, 2 (Feb. 1973), 123-124.

4. GAUTSCHI, W. Computational aspects of three-term recurrence relations. SIAM Rev. 9
(1967), 24-82.

;). GAUTSCH!, W. Personal communication, Nov. 1973.
6. GRAY, A., MATHEWS, G.B., AND MAcRoBERT, T.M. A Treatise on Bessel Functions and Their

Applications to Physics, 2nd ed. Dover Publications, New York, 1966, pp. xiv and 327.
7. Annals of the Computation Lab., Harvard U. Tables of the Bessel Functions of the First Kind

of Orders 1'wo and Three, Vol. IV. Harvard U. Press, Cambridge, Mass., 1947, pp. v and 652.
8. Annals of the Computation Lab., Harvard U. Tables of the Bessel Functions of the First Kind

of Orders Zero and One, Vol. 11 I. Harvard U. Press, Cambridge, Mass., 1947, pp. xxxvii
and 652.

9. HAYASHI, K. Tafcln der Besselschen, Theta-, Kugel- und anderer Funktionen. Springer, Berlin,
1930, pp. v and 125.

10. I BM System/370 Principles of Operation. IBM Systems, Order No. GA22-7000-3, IBM,
White Phdns, N.Y., 1973, pp. xii and 318.

11. SooKNE, D.J. Bessel functions I and J of complex argument and integer order. J. Res. Nat.
Bur. Standards 77B (L973), 111-114.

12. SooKNE, D.J. Bessel functions of real argument and integer order. J. Res. Nat. Bur. Standards
77B (1973), 125-132.

13. SooKNE, D.J. Certification of an algorithm for Bessel functions of complex argument. J. Res.
Nat. Bur. Standards 7'7B (1973), 133-136.

14. SooKNE, D.J. Certifieat.ion of an algorithm for Bessel functions of real argument. J. Res.
Nat. Bur. Standards 77B (1973), 115-124.

15. STAFFORD, J. Certification of Algorithm 21, Bessel function for a set of integer orders. Comm.
ACM 8, 4 (April 196E1), 219.

236-P 6- 0

COLLECTED ALGORITHMS FROM TACM

ALGORITHM 237
GREATEST COMMON DIVISOR [Al]
J. E. L. PECK (Recd. 16 Dec. 1963)
University of Alberta, Calgary, Alberta, Canada

integer procedure Euclidean (a) dimension : (n) 'linear coeffi
cients : (x); value a; integer array a, x; integbr n;

comment This procedure finds the greatest comnion divisor of
the n nonnegative elements of the vector a, and produces values
for Xi in the expression (a1 , a2 , · · · , an) = a1X1 4- a2X2 + · · ·
+ llnXn;

begin integer array M[l:n, l:n];
integer i, j, min, max, imin~, imax, q, t;
comment We set up Mas an identity matrix;

INITIALISE:
for i := 1 step 1 until n do

for j := 1step1 until n do M[i, j] := O;
for i := 1 step 1 until n do M[i, i] := l; max := O;
comment We search for the least nonzero integer in the array

a. Note that this step need not be repeated at every iteration
(see statement labelled DIVIDES);

MINIMUM:
for i := 1 step 1 until n do

begin t : = a[i];
if t ~ 0 /\ (max=OVt<max) then

begin max := t; imax := i end
end of minimum search. If the use of the identifier max is
confusing, observe the two statements following the label
MAXIMUM, where the confusion is resolved;
if max = 0 then go to ERROR; comment ERROR is a global
label;

MAXIMUM: imin := imax; min :=max;
comment We search for the greatest element of a;
max := a[l]; imax := l;
for i : = 2 step 1 until n do if a[i] > max then

begin max := a[i]; imax := i end of maximum search;
if max ~ min then

REDUCTION:
begin comment Note that the identity ai = Li'.-1 mi;a;

holds at each stage of the reduction;
q := max + min; a[imax] := max := max - q X min;
for j := 1 step 1 until n do

M[imax, j] : = M[imax, j] - q X M[imin, j];
DIVIDES: go to if max= 0 then MINIMUM else MAXIMUM

end of the reduction. Note that if max ~ 0 then max now con
tains the new nonzero minimum.

If max = min then we ~re ready with the results;
for j := 1step1 until n do x[j] := M[imin, j];
Euclidean : = min
end of pro<'0 <lure Euclidean

REFERENCE

1. BLANKINSHIP, W. A. A new version of the Euclidean al
gorithm. Amer. Math. Mon. 70 (1963), 742-745.

237-P 1- 0

CERTIFICATION OF ALGORITHM 237 [Al]
GREATEST COMMON DIVISOR [J. E. L. Peck,

Comm. ACM 7 (Aug. 1964), 481]
T. A. BRAY (Recd. 8 Sept. 1964)
Boeing Scientific Research Laboratories, Seattle,

Washington
This procedure was translated into the FORTRAN IV language

and tested on the Univac 1107. No corrections were required and
the procedure gave correct results for all cases tested.

COLLECTED ALGORlTHMS FROM CACM

ALGORITHM 238
CONJUGATE GRADIENT METHOD [F4]
C. M. REEVES (Recd. 18 Nov. 1963)
:Electronic Computing Lab., Univ .. of Leeds, Eng1and

procedure conjugate gradients (x, r, n, matmult);
value n; real array x, r; integer n; procedure matmult;
comment The method of conjugate gradients [cf: BECKMAN,

F. S. Mathematical Metlwdsfor Digital Computers. Ch. 4, Ralston,
A., and Wilf, H. S., (EDs.), Wiley 1960.] is applied to solve the
equations Ax = b where A is a general nonsingular matrix of
order n, and x and b are vectors. At entry x contains an initial
approximation to the solution, and r contains b, the vector of
constants. Both x and r have bounds [l:n]. Up to n+l iterations
are carried out and at exit the solution is in x and the corre
sponding residuals r = b - Ax are in r.

The procedure matmult has the following heading, with semi
colons which must now be omitted:
procedure matmult (transpose, dat, res)
Boolean transpose real array dat, res
comment The datum vector dat is premultiplied by the

matrix B and the result formed in res where, denoting the
transpose of A by At,

B = if transpose then At else A

The body of matmult will depend upon whether A is stored on
magnetic tape, and whether all or only its nonzero elements
are stored. The products should be accumulated in double
precision, if possible.;

begin integer iterations; real alpha, beta, At r sq;
real array p, temp [l :n];
real procedure dot (u, v);
real array u, v;
comment dot is the scalar product of the vectors u and v;
begin integer i; real sum; sum := O;

for i := 1 step 1 until n do sum sum + u[i] X v[i];
dot := sum

end of dot;
procedure combine (j) plus: (c) times: (g) to form: (h);
value c;
real c; real array f, g, h;
comment f + cg is formed in h;
begin integer i;

for i : = 1 step 1 until n do h[i] : = f[i] + c X g[i]
end of combine;

Start:
for iterations : = 0 step 1 until n do
begin if iterations = 0

then begin matmult (false, x) in : (temp);
combine (r, -1, temp) in : (r);
matmult (true, r) in : (p);
At r sq:= dot (p, p);

end of forming r = b - Ax, p = A.tr, and At r sq
else begin matmult (true, r) giving A.t r in : (temp);

beta :=dot (temp, temp)/ At r sq;
combine (temp, beta, p) in : (p);
.1t r sq := beta X At r sq

eml;

if At r sq = 0 then go to finish;
matmult (false, p) giving Ap in (temp);
alpha:= dot (temp, temp);
if alpha = 0 then go to finish;
alpha := dot (r, temp)/alpha;
combine (x, alpha, p) in : (x);
combine (r, -alpha, temp) in (r)

end of iterative loop;
finish :
end of conjugate gradients;

238 P I 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 239
FREE FIELD READ [15]
W. M. McKEEMAN (Recd. 12 Dec. 63 and 1 May 1964)
Computation Center, Stanford University, S;tanford, Calif.

procedure inreal (channel, destination); value channel;
integer channel; real destination;

begin comment Each invocation of inreal will read one (number)
[Revised Report · · · ALGOJ, 60, section 2.5.l] from the input
medium designated by the parameter channel: and convert it
into the internal machine representation appropriate for real
numbers. Successive data values within the data string are
separated by the blank character u. Integer values from the
input medium are converted into values of type real. A nonlocal
procedure error is invoked whenever a non·-(number) is en
countered in the input string. The action of •error is left un
defined;
real sig, fp, d;
integer esig, ep, ip, ch;

integer procedure CHAR;
begin comment The value of CHAR is the integer repre

senting the next character from the input string. insymbol
is defined in the "Report on Input-Output Procedure for ALGOL
60," ALGOL Bull. No.16(May1964), 9-13; Comm. ACM, to ap
pear. Characters occurring in the second pl;\,rameter of in
symbol are mapped onto the integers corresponding to their
position, left-to-right, within the string. Other basic symbols
map onto the integer 0.

The present procedure inreal differs fron;i the inreal of
the referenced Report on Input-Output Procedures for
ALGOL 60 in the following ways:

(a) The report does not specify what values may be pre
sented in its inreal, only that whatever is presented will be
assigned to the second parameter of inreal. I demand that a
(number) be presented.

(b) No separator of values on the foreign medium is speci
fied. I demand an ALGOL string blank.;
real c;
insymbol (channel, '0123456789.-+rnu' , c);
if c ~ 0 then error; comment an illegal character;
CHAR:= c - 1

end CHAR;

integer procedure unsigned integer;
begin comment (unsigned integer)

integer) (digit);
integer u;
u := O;

K: u := 10 X u + ch;
ch:= CHAR;
if ch < 10 then go to K;
unsigned integer : = u

end unsigned integer;

sig := 1.0; ep := O; fp := O;
L: ch:= CHAR;

(digit) I (unsigned

if ch = 14 then go to L; comment suppress.initial blanks;
comment (number) .. - (unsigned numbel') I +(unsigned

number) I -(unsigned number);
if ch = 12 then ch := CHAR
else if ch = 11 then
begin comment 12 = "+" and 11 " ". -,

.~ig := -1.0;
ch:= CHAR

end;

239-P I 0

comment (unsigned number) : := (decimal number) J (ex
ponent part) I (decimal number)(exponent part);

if ch ~ 10 then
begin comment (decimal number) ::= (unsigned integer) I

(decimal fraction) I (unsigned integer)(decimal fraction);
if ch < 10 then ip := unsigned integer else ip := O;
if ch = 10 then
begin comment (decimal fraction) : : = .(unsigned integer);

ch:= CHAR;
if ch ~ 10 then error; comment a digit must follow the

" ". . '
fp := O; d := 0.1;

M: fp : = fp + ch X d;
d := d x 0.1;
comment a table ot reciprocal powers of ten is preferable

to the statement d : = d X 0.1;
ch:= CHAR;
if ch < 10 then go to M

end
end else if ch = 13 then ip : = 1 else error;
if ch = 13 then
begin comment (exponent part) : : = 1o(integer);

ch := CHAR; esig := 1;
comment (integer) . . (unsigned integer) I +(unsigned

integer) I -(unsigned integer);
if ch = 12 then ch := CHAR
else if ch = 11 then
begin comment negative exponent;

esig := -1;
ch:= CHAR

end;
if ch < 10 then ep : = unsigned integer X esig else error

end;
if ch ~ 14 then error; comment the required "u" separator;
destination sig X (ip+fp) X 10.0 i ep

end inreal

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 240
COORDINATES ON AN ELLIPSOID [Z]
EaoN DoRRER (Recd. 8 Jan. 1964 and~ rev., 19 May 1964)
Inst. f. Photogrammetrie, Techn. Hochschule, Munich,

Germany

1>rocedure GEODH 1 (L, B, AZ, S, EPS, l:im, A, F, FAIL);
value S, EPS, lim, A, F; real L, B, AZ, S, EPS, A, F;
integer lim; label FAIL;

comment GEODH 1 solves the problem of transferring of geo
graphical coordinates ou an arbitrary ellipsoid of rotation. A is
the radius of the equator, F is the flattening of the meridian
ellipse. Before executing GEODH 1, L and B are longitude and
latitude of a point P1 on the ellipsoid. AZ is the azimuth at P1 ,
measured from north, of the geodesic to another point P~, and
Sis the distance from P1 to P2 , measured in the same unit as A.
After execution of GEO})H 1, L and B represent the longitude
and latitude of P2, and AZ is the final azimuth of the geodesic
at P2. Here L, B, AZ, and EPS are measured in radians. Arbi
trarily long distances S can be used, even more than the circum
ference. However, the geodesic must not cross the poles or come
near to them. The problem has been solved by reiterated use of
the Runge-Kutta meth(>d to solve the system of the three first
order differential equations of the geodesic on a rotation ellip
soid. EPS is the convergence paramete:r, e.g. a small number
indicating the desired a;ccuracy, normally 10-s or lo-9. lim is the
upper limit on iterations, it depends on BPS, and should not be
chosen greater than 11 or 12. If lim is reached, computationR
stop, and the FAIL exit is used:

begin
real EP2, Lo, Bo, AZo, LL, BL, AZL, So,, SL, H, DL, DB, DAZ,

KL, KB, KAZ, BQ, AZQ, W, Hl, T, SINBQ;
integer i, n, j, z;
array D[1:4]; D[l] := D[4] := 1; D[21 := D[3] := 2;
EP2 := F X (2 - F); Lo:= L: Bo:= B; AZo := AZ;
n := 1; z := O;

ITERATION: if z = lim then go to FAlL;
So := O; LL := Lo; BL := Bo; AZL, := AZo;
for i := 1 step 1 until n do
begin

SL:= S X i/n; H := (SL - So)/A;
DL := DB := DAZ := KL := KB := KAZ := O;
for j := 1step1 until 4 do
begin

T := D[j];
BQ :=BL+ DB/T; AZQ := AZL + DAZ/T; SINBQ :==

sin(BQ);
W := 1 - EP2 X SINBQ X SINB(~; Hl := H X sqrt(W);
DL := HI X sin(AZQ)/cos(BQ);
DB := H1 X W X cos(AZQ)/(1 - EP2);
DAZ := DL X SINBQ;
KL := KL+ DL X T; KB :=KB+ DB X T; KAZ :=

KAZ+ DAZ X T
end j;
So := SL; LL := LL + KL/6; BL ·== BL + KB/6;

AZL := AZL + KAZ/6
end i;
DL := LL - L; DB := BL - B; DA.Z := AZL - AZ;
L := LL; B := BL; AZ := AZL;

240-P 1- 0

if abs(DAZ) < EPS/sin(S/A) /\ (abs(DL) < EPS/cos(B) V
abs(DB) < EPS) then go to END;

z := 1 + z; n := 2 X n;
go to ITERATION;
END:

end GEODH 1

COLLECTED ALGORITHMS : FROM CACM

ALGORITHM 241
ARCTANGENT [Bl]
K. W. MILLS (Recd. 21 Nov. 1963)
Computing Centre, University of Adelaide, So. Australia

real procedure arg(x, y) exit: (error); value x, y; real x, y;
label error;

comment This procedure calculates the argument of a complex
number x + iy, using a method which is substantially that of
E. G. Kogbetliantz, IBM J. Research Develop., Jan. 1958, pp.
43-53. The result lies in the interval [-?r, 1l"] and the exit error
is provided for the case when x = y = o". The procedure is es
sentially an ALGOL program for the calculation of the arctan
gent. arctan(y) is obtained most conveniently by calling the pro
cedure with x = 1;

begin
array ct, csc2[2:5], tn[1:4]; integer k; real w, v, pi, r, z;
pi := 3.1415926536; if x = 0 then
begin

if y = 0 then go to error;
Ll: arg := pi/2 X sign(y); go to exit

end;
w := y/x; v := abs(w);
if v > 1.34108 then go to Ll;
if v < 2.1310-22 then r := w else
begin

ct[2] := tn[4] := 2.7474774195;
ct[3] := tn[3] := 1.1917535926;
ct[4] := tn[2] := .57735026919;
ct[5] := tn[l] := .17632698071;
csc2[2] := 8.548632169;
csc2[3] := 2.420276626;
csc2[4] := 1.333333333;
csc2[5] := 1.031091204;
if v < tn[l] then
begin

k := 1; z := .16363636364 x v
-end
else
begin

fork := 2 step 1 until 4 do if v < tn[k] then go to L3;
k := 5;

L3: z := .16363636364 X (ct[k]-csc2[k]/(v+ct[kJ))
end;
r := (pi X (k-1)/9 + z/(z X z + .216649136 - .00270998425/

(z X z + .0511194591))) X sign(w)
-md;
arg : = if x > 0 then r else

exit:
end arg

if y = 0 then r + pi else
r + pi X sign(y);

241---P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 242
PERl\lUTATIOXS OF A SET WITH HEPETITIONS

[G6]

T. W. SAG (Heed. 10 Feb. 1964 and 19 .June In64)
Math. Dept., Manchester U., Manchester, England

procedure PERMUTATION (X, K,j, process);
al'l'ay X; integer array K; integer j; procedure process;

comment PERMUTATION generates all the distinct permuta
tions of an array of numbers consisting of K[l] numbers equal to
X[l], K[2] numbers equal to X[2], · · · , K[j] numbers equal to
Xfj]. The K(i]'s muHt be positive integers. Each permutation i&
stored in the array Y and processed according to the user's wish
by the procedure process before the next permutation is gen
erated.

l The procedure is more efficient if the sequence K[i l is mono
tone decreasing.-Hef. J;

begin

1·eal x; integer M, N, i; array B[l:K[j]];
procedure permutation (x, M, N, j, B, process);
real x; integer M, N,j; array B; procedure process;
begin

reaJ A; integer i, KK, Nl, N2, ,jl;
integer array J[l:N+lJ;

array Y[l:N+M]; N2: = N + M;
if M = 0 then go to 1;
for i : = N + 1 step 1 until N2 do Y[ij : = x;

1: for i := 1step1 until N do J[i] := i;
./[N-t-1] := N2 + 1; jl := j - l; KK := N;

2: for i : = 1 step 1 until KK do Y[J[i]] : = B[i];
if jl -;£. 1 then begin process (Y); go to 3 end;
A : = X[jl-1]; Nl : = K[jl--1];
permutation (11, Nl, N2, jl, Y, process);

:1: for i : = 1 step 1 until N do
hegin

Y[J[i]] : = x; J[i]: = J[i] + 1;
if J[i] -- J[i-t-1] + 1-;£ Othen go to 4 else go to 5;

4: KK : = i; go to 2;
5: J[·i] : = i

end
end of permutation;
if j = 1 then begin x : = X[l]; M : = O; go to 1 end;
x: = X[j-1]; M : = K[j-1];

l: for i : = 1 step 1 until K[j] clo B[i] : = X[j];
permutation (x, M, K[j], j, B, process);

end of PERMUTATlON

242-P 1- 0

COLLECTED ALGORITHMS1 FROM CACM

ALGORITHM 243
J~OGARITHM OF A COMPLEX NUMBER [B3]
REWRITE OF ALGORITHM 48 [Comm. ACM 4 (Apr.

1961), 179; 5 (Jun. 1962), 347; 5 (Jul. 1962), 891; 7 (Aug.
1964), 485]

DAVID s. COLLENS [Recd. 24 Jan. 1964 and 1 Jun. 196·4]
Computer Laboratory, The University, Liverpool, 3,

England

This procedure was tested using the DEUCE ALGOL Compiler
and a small sample of the test data and results are given below.
procedure WGC (a, b, c, d, FAIL); value a, b, FAIL; real

a, b, c, d; label FAIL;
<~ornment This procedure computes the number c + di which is

equal to the principal value of the natural logarithin of a + bi,
i'.e. such that -71" < d ~ +71". A nonlocal label must be supplied
as a parameter of the procedure, to be used as an e:i'Fit when the
real part of the result becomes - oo • Where required! in the body
of the procedure the numerical values for 71", 7r/2, and the log
arithm of the square root of 8 are provided;
if a = 0 /\ b = 0 then go to FAIL
else
begin

real e, f;
e := 0.5 X a; f := 0.5 X b;
if abs(e) < 0.5 /\ abs(f) < 0.5 then
begin

c := abs(2Xa) + abs(2Xb);
d := 8 X a/c X a+ 8 X b/c X b;
c := 0.5 X (ln(c)+ln(d)) -1.03972077084

end
else
begin

c := abs(0.5Xe) + abs(0.5Xf);
d := 0.5 X e/c X e + 0.5 X f /c X f;
c := 0.5 X (ln(c)+ln(d)) + 1.03972077084

end;
d := if a ~ 0 /\ abs(e) ~ abs(f) then arctan(b/a) +

(if sign (a)~ -1 then 0 else if sign (b) ~ -1 then
3.14159265359 else -3.14159265359) else -- arctan(a/b)
+ 1.57079632679 X sign (b)

end LOGC

TEST OF LOGC

a b c d
-2 -2 +1.039721 -2.356194
-2 +1 +0.804719 +2.677945
-1 -1 +0.346573 -2.356194
-1 +o +0.000000 +3.141593
+o -2 +0.693147 -1.570796
+o -1 +0.000000 -1.570796
+o +1 +0.000000 +1.570796
+o +2 +0.693147 +1.570796
+1 -1 +o.346573 -0.785398
+1 +o +0.000000 +0.000000
+2 -2 +1.039721 -0.785398
+2 +1 +0.804719 +0.463647

243~P l·~ 0

CERTIFICATION OF ALGORITHM 243 [B3]
LOGARITHM OF A COMPLEX NUMBER lDavid S.

Collens Comm. ACM 7(Nov. 1964), 660]
J. BOOTHROYD (Recd. 18 Jan. 1965)
Computing Centre, U. of Tasmania, Hobart, Tasmania

With the label parameter FAIL removed from the value list to
accommodate a restriction of Elliott 503 ALGOL, the algorithm was
successfully run on an Elliott 503, using the data test cases pub
lished with the algorithm. The constants in the algorithm were
rounded to nine significant decimal digits, and this probably ex
plains the two differences between the results obtained and those
published, namely:

a
-1

2

b
-1

1

c
0.346574

d

0.-163648

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 244
FRESNEL INTEGRALS lS20]
HELMUT LoTSCH* (Recd. 27 May 64 and 11 Jun. 64)
W. W. Hansen Laboratories, Stanford U., Stanford, Calif.
AND

MALCOLM GRAYt
Computation Center, Stanford U., Stanford, Calif.

(* now at Northrup Space Laboratories, Hawthorne, Calif.)
Ct now at The Boeing Company, Sea.ttle, Wash.)

procedure FRESNEL. (w, eps, C, S); value w, eps; real w,
eps, C, S;

comment This procedure computes the Fresnel sine and cosine

integrals C(w) = H .cos [(ir/2)t2] dt and S(w) = H sin [(7T'/2)t2]
dt. It is a modification of Algorithm 213 (Comm. ACM, 6 (Oct.
1963), 617) such that the accuracy, expressed by eps, is improved.
eps can arbitrarily be chosen up to ep;~ = 10 - 6 for a computer
with sufficient word length as, for example, the Burroughs
B5000 which has 11-12 significant digits. Referring to the formu
las of Algorithm 213: if I w I < v'(26.20/7T') the series expansions
C(w) and S(w) are terminated when the absolute value of the
relative change in two successive terms is ~eps. If I w I ~
v'(26.20/7T') the series Q(x) and P(x) are terminated when the
absolute value of the. terms is ~eps/2. However, this truncation
point is not necessarily valid for the range v'(26.20/7T') ;;a I w I
< v' (28.50/71") when eps = 10 - 6, since the asymptotic series
must be terminated before arriving at the minimum. In this
range the ignored terms of the series expansions are < 310 - 6,
and for larg;~r arguments < 10 - 6. This accuracy may be im
proved if desired: the switch-over point from the regular to
the asymptotic series expansions has to be displaced to larger
arguments;

begin
real x, x2, term; integer n;
if abs(w) ~ 10 - 12 then

begin C := S := O; go to aend end
else x := w X w/0.636619772368;
x2 := - x X x; if x ~ 13.10 then go to asympt;
begin

real f rs, f rsi;
frs := x/3; n := 5; term := x X x2/6;
f rsi : = frs + term/7;

loops: if abs((frs-frsi)/frs) ~ eps then go to send;
frs := frsi; term:= term X x2/(nXn-n);
frsi := frs + term/(2Xn+1);
n := n + 2; go to loops;

send: S := frsi X w
end;
begin

real frc, frci;
frc := 1; n := 4; term := x2/2;
frci := 1 + term/5;

loopc: if abs((frc-frci)/frc) ~ eps then go to cend;
frc := frci; term:= term X x2/(nXn-n);
frci := frc + term/(2Xn+l);
n := n + 2; go to loopc;

cend: C := frci X w
end;
go to aend;

244-P 1- 0

asympt:
begin

real sl, s2, half, temp; integer i;
x2 := 4 X x2; term := 3/x2; sl := 1 + term; n := 8;
for i := 1 step 1 until 6 do
begin

n := n + 4;
term := term X (n-7) X (n-5)/x2;
sl := sl + term;

if abs(term) ;;a eps/2 then go to next
end i;

next: term := s2 := 0.5/x; n := 4;
for i := 1 step 1 until 6 do
begin

n := n + 4;
term := term X (n-5) X (n-3)/x2;
s2 := s2 + term;
if abs(term) ;;a eps/2 then go to final

end i;
final: half := if w < 0 then -0.5 else 0.5;

term := cos(x); temp := sin(x); x2 := 3.14159265359 X w;
C := half+ (tempXsl-termXs2)/x2;
S := half - (termXsl+tempXs2)/x2

end;
aend:
end FRESNEL

COLLECTED ALGORITHMS. FROM CACM

ALGORITHM 245
TREESORT 3 [Ml]
ROBERT W. FLOYD (Recd. 22 June 1964 and l'l Aug. 1964)
Computer Associates, Inc., Wakefield, Mass.
Jprocedure TREESORT 3 (M, n);

value n; array M; integer n;
~wmment TREESOR1' 3 is a major rev1s10n of TREESORT

[R. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 19~2), 434] sug
gested by HEAPSORT [J. W. J. Williams, Alg. 232, Comm.
ACM 7 (June 1964), 347] from which it differs in being an in-place
sort. It is shorter and probably faster, requiring fewer compari
sons and only one division. It sorts the array M[l tn], requiring
no more than 2 X (2 j p-2) X (p-1), or approX}imately 2 X
n X (log2 (n) -1) comparisons and half as many exchanges in
the worst case to sort n = 2 j p - 1 items. The algorithm is
most easily followed if Mis thought of as a tree, with M[j+2]
the father of M[j] for 1 < j ;;:;; n;

]l:tegin
procedure exchange (x,y); real x,y;

begin real t; t := x; x := y; y := t
end exchange;

procedure siftup (i,n); value i, n; integer i, n;
comment M[i] is moved upward in the subtree of M[l :n] of

which it is the root;
begin real copy; integer j;

copy : = M[i];
loop: j : = 2 X i;
if j ;;:;; n then
begin if j < n then

begin if M[j+l] > M[j] then j := j + 1 end;
if M[j] > copy then

begin M[i] := M[j]; i := j; go to loop end
end;
M[i] :=copy

end siftup;
integer i;
for i := n+2 step -1 until 2 do siftup (i,n);
for i := n etep -1 until 2 do
begin siftup (1,i);

comment M[j+2] ~ M[j] for 1 < j ;;:;; i;
exchange (M[l], M[i]);
comment M[i :n] is fully sorted;

end
tmd TREESORT 3

CERTIFICATION OF ALGORITHM 245 [Ml]
TREESORT 3 [Robert W. Floyd, Comm. ACM 7 (Dec.

1964), 701]
PHILIP s. ABRAMS (Recd. 14 Jan. 1965)
Computation Center, Stanford University, Stanford,

California
The procedure TREESORT 3 was translated into B5000 Ex

tended ALGOL and tested on the Burroughs B5500. Tests were run
on arrays of length 50 to 1000 in steps of 50. For each ~rray size, 50
random arrays were generated, sorted, timed and checked for
sequencing. No corrections were required and the procedure gave

245-P 1- RI

correct results for all cases tested.
exchange is unnecessary as a separate procedure, since it is

used at only one place in TREESORT 3. Sorts were found to run
significantly faster when the body of exchange was inserted in
the appropriate place, than when run with the algorithm as
published.

CERTIFICATION OF ALGORITHM 245 [Ml]
TREESORT 3 [Robert W. Floyd, Comm. ACM 7 (Dec.

1964), 701]: PROOF OF ALGORITHMS-A NEW
KIND OF CERTIFICATION

RALPH L. LONDON* (Recd. 27 Feb. 1969 and 8 Jan. 1970)
Computer Sciences Department and Mathematics Re

search Center, University of Wisconsin, Madison, WI
53706

*This work was supported by NSF Grant GP-7069 and the
Mathematics Research Center, US Army under Contract
Number DA-31-124-ARO-D-462.

ABSTRACT: The certification of an algorithm can take the form
of a proof that the algorithm is correct. As an illustrative but
practical example, Algorithm 245, TREESORT 3 for sorting an
array, is proved correct.

KEY WORDS AND PHRASES: proof of algorithms, debugging,
certification, metatheory, sorting, in-place sorting
CR CATEGORIES: 4.42, 4.49, 5.24, '5.31

Certification of algorithms by proof. Since suitable techniques
now exist for proving the correctness of many algorithms [for
example, 3-7], it is possible and appropriate to certify algorithms
with a proof of correctness. This certification would be in addi
tion to, or in many cases instead of, the usual certification. Certi
fication by testing still is useful because it is easier and because it
also provides, for example, timing data. Nevertheless the existence
of a proof should be welcome additional certification of an algo·
rithm. The proof shows that an algorithm is debuggged by show
ing conclusively that no bugs exist.

It does not matter whether all users of an algorithm will wish
to, or be able to, verify a sometimes lengthy proof. One is not
required to accept a proof before using the algorithm any more
than one is expected to rerun the certification tests. In both
cases one could depend, in part at least, upon the author and the
referee.

As an example of a certification by proof, the algorithm
TREESORT 3 [2] is proved to perform properly its claimed task
of .sorting an array M[l:n] into ascending order. This algorithm
has been previously certified [1], but in that certification, for
example, no arrays of odd length were tested. Since TREESORT 3

COLLECTED ALGORITHMS (c(Jlnt.)

is a fast practical algorithm for in-place sorting and one with
sufficient complexity so that its correctness is not immediately
apparent, its use as the example is more than an abstract exercise.
It is an example of considerable practical importance.

Outline of TREESORT 3 and method of proof. The algorithm is
most easily followed if the array is viewed as a binary tree.
M[k+2] is the parent of M[k], 2 ~ k ::::; n. In other words the
children of M[j] are M[2j] and M[2j+ll provided one or both
of the children exist.

The first part of the algorithm permutes the M array so that
for a segment of the array, each parent is larger than both of the
children (one child if the second does not exist). Each call of the
auxiliary procedure siftup enlarges the segment by causing one
more parent to dominate its children. The second part of the
algorithm uses siftup to make the parents larger over the whole
array, exchanges M[l] with the last element and repeats on an
array one element shorter. The above statements are motivation
and not part of the formal proof.

That TREESORT 3 is correct is proved in three parts. First
the procedure siftup is shown to perform as it is formally defined
below. Then the body df TREESORT 3, which uses siftup in two
ways, is shown to sort the array into ascending order. (The proof
of the procedure exchange is omitted.) The proofs are by a method
described in [3, 4, 7]: ~ssertions concerning the progress of the
computation are made between lines of code, and the proof con
sists of demonstrating that each assertion is true each time con
trol reaches that assertion, under the assumption that the previ
ously encountered assertions are true. Finally termination of the
algorithm is shown separately.

The lines of the original algorithm have been numbered and the
assertions, in the form .of program comments, are numbered cor
respondingly. The numbers are used only to refer to code and to
assertions and have no other significance. One extra begin-end
pair has been inserted into the body of TREESORT 3 in order
that the control points (>f two assertions (3.1 and 4.1) could be dis
tinguished. In siftup the assertions 10.1 and 10.2 express the cor
rect result; in the body of TREESORT 3 the assertions 9.3 and
9.4 do likewise.

Definition of siftup and notation. We now define formally the
procedure siftup(i,n), where n is a formal parameter and not the
length of the array M~ Let A (s) denote the set of inequalities
M[k+2] ~ M[k] for 2s :'.f k ~ n. (Ifs> n+2, then A(s) is a vacu
ous statement.) If A (i+l) holds before the call of siftup(i,n)
and if 1 ~ i ~ n ~ array size, then after iliftup(i,n):

(l) A (i) holds;
(2) the segment of the array M[i] through M[n] is permuted;

and
(3) the segment outside M[i] through M[n] is unaltered.
In order to prove these properties of siftup, some notation is

required. The formal parameter i will be changed inside siftup.
Since i is called by value, that change will be invisible outside
siftup. Nevertheless it is necessary to use the initial value of i
as well as the current value of i in the proof of siftup. Let io denote
the value of i upon entry to siftup.

Similarly let Mo denote the M arra.y upon entry to siftup.
The notation "M = p(Mo) with M := copy" means "if M[i] :=
copy were done, M is some permutation of Mo as described in (2)
and (3) of the definitfon of siftup." "M = p(Mo)" means the
same without the reference to M[i] := copy being done.

Code and assertions for siftup.
0 procedure sijtup(i, n); value i, n; integer i, n;
1 begin real copy; integer j;

co1nment
1.1 : 1 S iG = i S n ~ array siz'e
1.2: A (io+ 1)
1.3: M = p(Mo);

2 cow :=-M[i];
3 loop: j : = 2 X i;

comment
3.1: i S n
3.2: 2i = j
3.3: i = iG or i ;?:: 2io
3.4: M = p(M0) with M[i] := copy
3.5: A(io) or (i = io and A(io+l))
3.6: M[i+ 2] > copy or i = io
3.7: M[i+2] ;?:: M[i] or i = io;

4 if j ~ n then
5 begin if j < n then
6a. begin if M[j+l] > M[j] then
6b j := j + 1 end;

comment
6.1: i = j + 2
6.2: 2i S j ~ n
6.3: i = io or i ;?:: 2io
6.4: M = p(Mo) with M[i] : = copy
6.5: A (io) or (i = io and A (io+l))
6.6: M[i+2] > copy or i = io
6.7: M[i+2] ~ M[i] or i = io

245-P 2- 0

6.8: (2i < n and M[j] = max(M[2i], M[2i+l])) or
(2i = n and M[j] = M[n])

6.9: M[i] ~ M[j] or i = io;
7 if M[J'] > copy then
Sa begin M[i] : = M[j];

comment
8.1: i = io or i ;?:: 2io
8.2: 2i S j Sn
8.3: M[j+2] = M[i] = M[j] > copy
8.4: M[i+ 2] ~ M[j] or i = io
8.5: M = p(Mo) with M[j] := copy
8.6: A (io);

Sb i := j;
comment

8.7: i ~ 2io
8.8: i = j Sn
8.9: M[i+2] > copy
8.10: M[i+2] ;?:: M[i]
8.11: M = p(Mo) with M[i] := copy
8.12: A (io);

Sc go to loop end
9 end;

comment
9.1: M[j] ~ copy if reached from 7 or

2i = j > n if reached from 4;
10 M[i] := copy;

comment
10.1: M = p(Mo)
10.2: A (io);

11 end sif tup;

Verification of the assertions of siftup. Reasons for the truth of
each assertion follow:
1.1-1.2: Assumptions for using siftup.
1.3: pis the identity permutation.
3.1-3.7: If reached from 2,

3.1: 1.1.
3.2: 3.
3.3, 3.5-3.7: i = ia by 1.1. 3.5 also requires 1.2.
3.4: 1.3 and 2.

If reached from 8, respectively, 8.8, 3, 8.7, 8.11, 8.12,
8.9 and 8.10.

6.1: At 3.2 j = 2i and by 6b, j might be 2i + 1. i = j+ 2 in either
case.

6.2: After 4, j s n. j is altered from 3.1 to 6.2 only at 6b. Before
6b, j < n by 5. Hencej ~ n at 6.2. 2i S j by 6.1.

6.3-6.7: 3.3-3.7, respectively.

COLLECTED ALGORITHMS (cont.)

6.S: If 4 is true and 5 is false, j = 2i = n (usini;¢ 3.2) so the
second clause of 6.S holds. If 4 is true and 5 iS true, then
at 6a, 2i = j < n (using 3.2) so M[j+l] =: M[2i+l] is
defined. Now at 6.S, j = 2i or j = 2i+l. In either case,
by 6a and 6b, the first clause of 6.S holds.

6.9: By 6.5 i ¢ io gives A (io). 2io s 2i s j s n by 6.3 and 6.2.
Hence A (io) and 6.1 give M[i] = M[j+2] 2 M[j].

8.1: 6.3.
8.2: 6.2.
8 .. 3: i = j+2 by 6.1, M[i] = M[j] by Sa and M[j] >copy by 7.
8.4: 6.7 and 6.9.
8.5: 6.4 requires that M[i] be replaced by copy. Since M[i]

M[j] by Sa, M[j] may equally well be replaced with copy.
S.1 and S.2 give io s i s n so that the change to Mat Sa
is in the segment M[io] through M[n].

8..6: By Sa and if 6.S (first clause) holds, M[i] 2 M[2iJ and M[i] 2
M[2i+l]. By Sa and if 6.S (second clause) holds, M[i] =
M[.i] = M[n] = M[2i] and M[2i+11 does not exist for this
call of siftup. A(io+l) holds at 6.5 since A(i1) implies
A (io+l). If i = io , A (io+l) and the relations above on
M[i] give A (io). If i ¢ io , then Sa, S.4, A (io) at 6.5 and
the relations above on M[i] give A (io) at S.6.

S .. 7: Sb, 8.1 and S.2.
8 .. 8: Sb and 8.2.
8 .. 9: Sb and 8.3.
8 .. 10: At S.6, 2io ::; j s n by S.l and 8.2. Hence by 8.6, M[j+2] 2

M[j]. Use Sb on M[j+ 2] 2 M[j].
8 .. 11: Sb and S.5.
8 .. 12: S.6.
9 .. 1: 9.1 is reached only if 7 is false or if 4 is false. 2i = j by 3.2.
10.1-10.2: If reached from 7,

10.1: 6.4 and 10. (6.2 and 6.3 give io sis n ensuring
the change to M at 10 is in the segment M[io]
through M[n].)

10.2: By 10, 9.1, 6.2 and 6.S, M[i] = copy 2 M[j] 2
M[2i] and, if M[2i+l] exists, M[j] 2:: M[2i+l]. If
i = io , 10.2 follows as in 8.6. If i :;z~ ia , 6.6 and
10 give M[i+2] > copy = M[i]. A (ii)) at 6.5 now
gives A (io) at 10.2.

If reached from 4,
10.1: 3.4 and 10. (3.1 and 3.3 give i11 s i s n.)
10.2: 2i > n means no relations in A (ie) of the

form M[i] 2 · · · . If i = io , 3.5 gives 10.2. If
i ¢ io • 3.6 and 10 give M[i+2] > copy = M[i].
A (io) at 3.5 now gives 10.2.

Code and assertions for the body of TREESORT 3.
0 integer i;

comment
0.1: A(n+2+1);

1 for i := n+2 step -1 until 2 do
2 begin

comment
2.1: A(i+l)
2.2: Assumptions of siftup satisfied;

3 siftup(i,n);
comment

3.1: A(i);
4 end;

comment
4.1: M[p] s M[p+lJ for n + 1 ::; p ::; n - 1
4.2: A (2), i.e. M[k+2] 2 M[k] for 4 s k s n;

5 for i := n step -1 until 2 do
6 begin

comment
6.1: M[p]::; M[p+lJ for i + 1 s p s n - 1
6.2: M[k+2] 2 M[k] for 4 s ks i
6.3: M[i+l] 2 M[r] for 1 s r ::; i
6.4: Assumptions of sijtup satisfied;

245-P 3- 0

7 siftup (1,i);
comment

7.1: M[p] s M[p+l] for i + 1 ::; p::; n - 1
7.2: M[k+2] 2 M[k] for 2 s k s i
7.3: M[l] 2 M[r] for 2 s r s i
7.4: M[i+l] 2 M[l];

8 exchange (M[l], M[i]);
comment

S.1: M[i] 2:: M[r] for 1 s r s i - 1
8.2: M[p] ::; M[p+l] for i s p ::; n - 1
8.3: M[k+2] 2 M[k] for 4 s ks i - 1;

9 end;
comment

9.1: M[p] s M[p+lJ for 2 s p s n - 1
9.2: M[2] 2:: M[l]
9.3: M[p] s M[p+lJ for 1 ::; p s n - 1, i.e. M is fully

ordered
9.4: Mis a permutation of Mo;

Verification of the assertions for the body of TREESORT S.
Reasons for the truth of each assertion follow:
0.1: Vacuous statement since 2(n+2+1) > n.
2.1: If reached from 0.1, by 1 substitute i = n+2 in 0.1.

If reached from 3.1, by 1 substitute i = i + 1 in 3.1 to ac-
count for the change in i from 3.1 to 2.1.

2.2: 2.1, the bound on i implied by 1 and the array size being n.
3.1: 2.1 and the definition of siftup(i, n).
4.1: Vacuous statement.
4.2: If n 2:: 4, 3 is executed; hence 3.1 with i 2. If n ::; 3,

vacuous statement.
6.1-6.3: If reached from 4.1,

6.1-6.2: By 5 substitute i = n in 4.1and4.2.
6.3: Vacuous statement for i = n.

If reached from S.1, by 5 substitute i = i + 1 in 8.2,
8.3 and S.l, respectively. ·

6.4: 5 and 6.2, i.e. A (2) for the sub array M[l: i].
7.1: 6.1 and (3) of siftup.
7.2: 6.2 and (1) of siftup.
7.3: 7.2 noting that M[l] = M[k+2] if k = 2 and using the transi

tivity of 2:.
7.4: Vacuous for i = n. Otherwise 6.3 for the appropriate r since

by (2) of siftup, M[l] at 7.3 is one of the M[r], 1 :::; r :::; i,
at 6.3.

S.1: 7.3 with the changes caused by S (only M[l] and M[i] are
altered by S).

S.2: By S substitute M[i] for M[l] in 7.4; then 7.1 also holds for
p = i.

S.3: 7 .2 excluding only the one or two relations M[l] 2:: · · · , and
the one relation · · · 2:: M[i].

9.1-9.3: If n 2: 2, 8 is executed;
9.1: 8.2 with i = 2.
9.2: S.1 with i = 2.
9.3: 9.1 and 9.2.

If n ::; 1, 9.1-9.3 are vacuous statements.
9.4: The only operations done to Mare sijtup and exchange all of

which leave M as a permutation of Mo .

Proof of termination of TREESORT 3. Provided siftup and ex
change terminate, it is clear that TREESORT 3 terminates. Note
that each parameter of sijtup is called by value so that i is not
changed in the body of the for loops.

The procedure exchange certainly terminates. In sif tup the only
possibility for an unending loop is from 3 to Sb and back to 3.
Note that all changes to i (only at 8b) and to j (only at 3 and 6b)
occur in this loop and that on each cycle of this loop both i and j
are changed. By the test at 4, it is sufficient to show that j strictly
increases in va]ue. i 2 1 means 2i > i. At Sb, j = i < 2i while at
3, j = 2i, i.e. j(at 3) = 2i > i = j(at Sb). Hence each setting to j

COLLECTED ALGORITHMS (cont.)

at 3 strictly increases the value of j. The only other setting to j
(at 6b), if made, similarly increases the value of j.

REFERENCES:
1. ABRAMS, P. S. Certification of Algorithm 245. Comm. ACM 8

(July 1965), 445.
2. FLOYD, R. W. Algorithm 245, TREESORT 3. Comm. ACM 7

(Dec. 1964), 701.
3. FLOYD, R. W. Assigning meanings to programs. Proc. of a

Symposium in Applied Mathematics, Vol. 19-Mathematical
Aspects of Computer Science, J. T. Schwartz (Ed.), American
Math. Society, Providence, R. I., 1967, pp. 19-32.

4. KNUTH, D. E. The Art of Computer Programming, Vol. 1-
Fundamental Algorithms. Addison-Wesley, Reading, Mass.,
1968, Sec. 1.2.1.

5. McCARTHY, J. A basis for a mathematical theory of computa
tion. In Computer Programming and Formal Systems, P. Braf
fort and D. Hirschberg (Eds.), North Holland, Amsterdam,
1963, pp. 33-70.

6. McCARTHY, J., AND PAINTER, J. A. Correctness of a compiler
for arithmetic expressions. Proc. of a Symposium in Applied
Mathematics, VoL 19-Mathematieal Aspects of Computer
Science, J. T. Schwartz (Ed.), American Math. Society,
Providence, R. I., 1967, pp. 33-41.

7. NAUR, Po Proof of algorithms by general snapshots. BIT 8
(1966)' 31~316.

245-P 4- 0

COLLECTED ALGORITHMS FROM CACM
246-P 1- RI

begin integer i,j; j := n + l; ALGORITHM 246
GRAYCODE [Z]
J. BOOTHROYD* (Recd. 18 Nov. 1963)

for i := n step -1 until 1 do if a[i] then begin s := -, s;
j := i end;

English Electric-Leo Computers, Kidsgrove, Stoke-on
Trent, England
* Now at University of Tasmania, Hobart, Tasmania, Aust.

procedure graycode (a) dimension: (n) parity: (s); value n,s;
Boolean array a; integer n; Boolean s;

conunent elements of the Boolean array a[l :n] maiy together be
considered as representing a logical vector value in the Gra)
cyclic binary-code. [See e.g. Phister, M., Jr., Logical Design of
Digital Computers, Wiley, New York, 1958. pp. 232, 399.] This
procedure changes one element of the array to form the next
code value in ascending sequence if the parity parameter s
= true or in descending sequence if s = false. The procedure
may also be applied to the classic "rings-o-seven" puzzle [see
K. E. Iverson, A Programming Language, p. 63, :Ex. 1.5];

ifs then a[l] := -, a[l] else if j < n then a[j+ll := -, a[j+l]
else a[n] -, a[n]

end graycode

CERTIFICATION OF ALGORITHM 246 [Z]
GRAYCODE [J. Boothroyd, Comm. ACM 7 (Dec. 1964),

701]
WILLIAM D .. ALLEN (Recd. 8 Feb. 1965 and 23 Feb. 1965)
Computing Ctr., U. of Kentucky, Lexington, Ky.

graycode was coded in FORTRAN IV and tested on the IBM 7040.
graycode code was generated from 0 to 10,000 in both ascending
and descending sequence. The procedure required no corrections
and gave correct results for all cases tested.

ACM Transactions on Mathematical Software, Vol. 1, No. 3, September 1975.

REMARK ON ALGORITHM 246

Graycode [Z]
[J. Boothroyd, Comm. ACM 7, 12 (Dec. 1964), 701]

Jayadev Misra [Recd 13 May 1974 and 28 April 1975]
Department of Computer Sciences, University of Texas at 'Austin, Austin, TX
78712

The following modifications to Algorithm 246 will generate Gray code for any N,
·with each code word being generated in a bounded amount of time. Let A be a
vector of zeros and ones of length N which will be the successive code words. N cw
code words are successively generated by reversing a single bit in A each time.
Routine OUTPUT, to be supplied by the user, is called on generation of every new
code word.

Initially A contains all zeros. At every odd-numbered step, A [NJ is reversed.
At every even-numbered step, A[J - 1] is reversed, where A[J] is the rightmost
one-bit in A. (In case J == 1, the algorithm terminates.) The positions of all the
one-bits are stored in an increasing order in a stack S, from bottom to top. This
helps in quickly locating J 1 the rightmost one-bit.

REFERENCES

1. EHRLICH, G. Loopless algorithms for generating permutations, combinations, and other com
binatorial configurations. J. ACM 20, 3 (July 19n), 500-513.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 247
RADICAL-INVERSE QUASI-RANDOM POINT
SEQUENCE [G5]
.J. FL HALTON AND G. B. SMITH (Recd. 24 Jan. 1964 and

21 July 1964)
Brookhaven National Laboratory, Upton, N. Y., and

University of Colorado, Boulder, Colo.

procedure QRPSH (K, N, P, Q, R, E);
integer K, N; real array P, Q; integer array R; real E;
comment This procedure computes a sequence of N quasi-

random points lying in the K-dimensional unit hypercube
given by 0 < Xi < 1, i = 1, 2, · · · , K. The ith component of
the mth point is stored in Q[m,i]. The sequence is initiated by a
"zero-th point" stored in P, and each component sequence is
iteratively generated with parameter R[i]. Eis a positive error
parameter. K, N, E, and the P[i] and R[i] for i = 1, 2, · · · , K,
are to be given.

The sequence is discussed by J. H. Halton in Num. Math. 2
(1960), 84-90. If any integer n is written in radix-R notation as

and reflected in the radical point, we obtain the R-inverse func
tion of n, lying between 0 and lj

</>R(n) = 0 . non1n2 · · · nm = noR-1 + n 1R-2

+ nzR-3 + · · · + nmR-m-1.

The problem solved by this algorithm is that of giving a com
pact procedure for the addition of R-1, in any radix R, to a frac
tion, with downward "carry".

If P[i] = </>Rfil (s), as will almost always be the case in practice,
withs a known integer, then Q[m,i) = <f>RliJ(s+m). For quasi
randomness (uniform limiting density), the integers R[i] must
be mutually prime.

For exact numbers, E would be infinitesimal positive. In prac
tice, round-off errors would then cause the "carry" to be in
correctly placed, in two circumstances. Suppose that the stored
number representing </>R(n) is actually </>R(n) + A. (a) If I A I
~ R-m-1, we see that the results of the algorithm become un-

predictable. It is necessary to stop before this event occurs. It
may be delayed by working in multiple-length arithmetic. (b)
If n = Rm+l - 1, so that <PR(n) = 1 - g-m-1, andA < 0, the com
puted successor of the .stored value can lbe seen to be about R-m,
instead of g--m-2 = cf>R(n+l). This error can be avoided, without
disturbing the rest of the computation, by adopting a value of
E greater than any I A I which may occur, but smaller than the
least (nR)-1 (which is smaller than the least g--m-1) to be en
countered.

Small errors in the P[i] will not affect the sequence. Any set
of P[i] in the computer may be considered as a set of cf>n1•1 (si:),
for generally large and unequal integers Si , with small round-off
errors. The arguments used in J. H. Halton's paper to establish
the uniformity of the sequence of points

[cf>n1(n), </>n 2(n), · · · , .PnK(n)], n = 1, 2, · · · , N

can be applied identically to the more general sequence

[cf>R1 (s1+n), cf>R2(s2+n), · · · , cf>Rx(sx+n)], n = 1, 2, · · · , N.

247-P 1- 0

Thus, theoretically, any "zero-th point" P will do. However,
the difficulty described in (a) above limits us to the use of P[i]
corresponding to relatively small integers Si • ;

begin integer i, m; real r, f, g, h;
for i := 1 step 1 until K do
begin r := 1.0/R[i];

form := 1 step 1 until N do
begin if m > 1 then f 1.0 - Q[m-1,il else

f := 1.0-P[i];
g := 1.0; h := r;

repeat: if f - h < E then
begin g := h; h := h X r; go to repeat end;

Q[m,i] := g + h - f
end

end
end QRPSH

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 248
NETFLOW [H]
WILLIAM A. BRIGGS (Recd. 18 Jan. 1964 ahd 17 Aug.

1964)
Mara th on Oil Company, Findlay, Ohio

procedure NETFLOW (nodes arcs I J cost, hi, lo, flow, pi,
INFEAS); ' ' ' '

value nodes, arcs; integer nodes, arcs;
integer array I, J, cost, hi, lo, flow, pi; label INFEAS;

comment This procedure determines the least-cost flow pat
tern over an upper and lower bound capacitated flow network.

Each directed network arc a is de.1ned by n0des /[a] ftnd
J[a], has upper and lower flow bounds hi[a] and lo[a], and cost
per unit of flow cost[a]. Costs and flow bounds may be any
positive or negative integers. An upper flow bound must be
greater than or equal to its corresponding lower flow bound for
a feasible solution to exist. There may be any number of parallel
arcs connecting any two nodes.

A multi-source, multi-demand, capacitated transportation or
transshipment problem may be stated as a network flow problem
as follows:

Append to the network (1) bounded arcs from the demand
node(s) to a "super sink," (2) bounded arcs from a "super
source" to the supply node (s), (3) an arc directed from the
"super sink" to the "super source" with zero lower bound a
large positive upper bound, and a negatively large cost. '

NET FLOW will maximize flow through the low-cost arc from
"supper sink" to "super source"-subject to the capacity
constraints of the network-fulfilling all demands optimally.

The procedure returns vectors flow and pi. /i'low[a] is the
computed optimal flow over network arc a. Pi[n] is a number
- -the dual variable--which repre&ents the relative value of
injecting one unit of flow into the network at node n. NET FLOW
may be entered with any values in vectors flow and pi (such as
those from a previous or a guessed solution) feasible or not. If
the initial contents of flow do not conserve flow at any node,
the solution values will also not conserve flow at that node, by
the same amount. This fact can be frequently used to advantage
m transportation problem definition. The closer .initial values
uf flow and pi are to solution values, the shorter the computa
tion.

Procedure NETFLOW is a mechanization of the out-of-kilter
network flow algorithm described by D. R. Fui:.;KERSON in J.
Soc. Indust. Appl. lliath. 9 \1961), 18-27, and elsewhere. Many
thanks are due the referee for noting some erroneous comments
and for suggesting ways to increase the efficiency and utility of
the procedure;

hegin integer a, aok, c, cok, del, e, eps, inf, lab, n, ni, nj, src, snk;
integer array na, nb[l: nodes];
integer procedure min (x, y); value x, y; integer x, y;

hcgi n if x < y then min : = x else min : = y end min;
comment check feasibility of formulation;
fora:= 1step1 untilarcsdoiflo[a]> hi[a] thengiotoINFEAS;

fof := 99999999; comment set inf to max available integer;

aok := O;
comment find an out-of-kilter arc;

Seek: for a:= 1 step 1 until arcs do
begin c := cost [a]+ pi [/[a]] - pi [J[a]];

248- p 1-- 0

if flow [a] < lo [a] V (c<O/\ flow[a] <hi[a]) then
begin src := J [a]; snk :=I [a]; e := +1; go to LABL
end;

if flow [a] > hi [a] V (c>O!\flow[a] >lo[a]) then
begin src .- l[a]; snk := J[a]; e := -1; go to LABL
end;

end;
comment no remaining out-of-kilter arcs;
go to FINI;
comment attempt to bring found out-of-kilter arc into kilter·

LABL: if a = aok !\ na[src] -:P 0 then go to SKIP; '
aok :=a;
for n := 1step1 until nodes do na[n] := nb[n] := O;
na[src] := abs (snk) X e; nb[src] := abs (aok) X e;

SKIP: cok := c;
LOOP: lab := O;

for a : = 1 step 1 until arcs do
begin if (na[l[a]]=Oj\na[J[a]]=O) V

(na[l[a]]-:PO!\na[J[a]]~O) then go to XC;
c : = cost[a] + pi[l[a]] - pi[J[a]];
if na[l[a]] = 0 then go to XA;
if flow[a] ?;; hi[a] V (fiow[a]?;;lo[a].!\c>O) then go to XC;
na[J[a]] := l[a]; nb[J[a]] := a; go to XB;

XA: if flow[a] ~ lo[a] V (flow[a]~hi[a]!\c<O) then go to XC;
na[l[a]] := -J[a]; nb[l[a]] := -a;

XB: lab := +1;
comment node labeled, test for breakthru;
if na[snk] ~ 0 then go to !NCR;

XC: end;
comment no breakthru ·
if lab ~ 0 then go to LOOP;
comment determine change to pi vector;
del := inf;
for a : = 1 step 1 until arcs do
begin if (na[l[a]] =01\na[J[a]] =0) V

(na[l[a]]~Oj\na[J[a]]~O) then go to XD;
c := cost[a] + pi[l[a]] - pi[J[a]];
ifna[J[a]] = 0 j\flow[a] < hi[a] then del :=min (del, c);
if na[J[a]] -:P 0 j\flow[a] > lo[a] then del := min (del, -c);

XD: end;
if del = inf!\ (flow[aok]=hi[aok]Vfiow[aok]=lo[aok]) then

del : = abs (cok);
if del = inf then go to INFEAS; comment exit, no feasible
flow pattern;
comment change pi vector by computed del;
for n : = 1 step 1 until nodes do if na[n] = 0 then pi[n]

pi[n] + del;
comment find another out-of-kilter arc;
go to SEEK;
comment breakthru, compute incremental flow;

!NCR: eps :=inf;
ni := src;

BACK: nj : = abs (na[ni]); a : = abs (nb[ni]);
c : = cost[a] - abs (pi[ni]-pi[nj]) X sign (nb[ni]);
if nb[ni] < 0 then go to XE;
if c > 0 !\flow fa] < lo[a] then eps : = min (eps, lo[a]-flow[a]);

COLLECTED ALGORITHMS (coint.)

if c ;;;· 0 ;\flow[a] < hi[a] then eps :=min (eps, hi[a]-jlow[a]);
go to XF;

XE: if c < 0 !\ fiow[a] > hi[a] then eps := min (eps,jlow[a]
-hi[a]);
if c ~ 0 ;\jlow[a] > lo[a] then eps :=min (eps, jlow[a]-lo[a]);

XF: ni := nj; if ni ~ src then go to BACK;
com1nent change flow vector by computed eps;

JL4CK2: nj :=abs (na[ni]); a :=abs (nb[ni]);
jlow[a] : = flow[a] + eps X sign (nb[ni]);
ni := nj; if ni ~ src then go to BACK2;
corr1ment find another out-of-kilter arc;
aok := O; go to SEEK;

Fl1\' I: end NETFLOW with a feasible, optimal flow pattern

REMARK ON ALGORITHM 248 [H]
NETFLOW [William A. Briggs, Comm. ACM 8 (Feb.

1965), 103]
J. H. HENDERSON, R. M. KNAPP, AND M. E. VoLBERDING

(Recd. 7 Apr. 1966)
Northern Natural Gas Company, Omaha, Neb.

KEY WORDS AND PHRASES: capacitated network, linear
programming, minimum-cost flow, network flow, out-of-kilter

CR CATEGORIES: 5.32, 5.41

Algorithm 248 was transcribed into Bur:roughs Extended ALGOL
for the Burroughs B5500. After modification it has been used suc
cessfully. Before modification it was found to give erroneous
values of pi for transportation problems and rionoptimal solutions
for networks representing multitime level trans-shipment prob
lems. This was caused by the method utilized within the procedure
for exiting with the best solution. The difficulty was circumvented
by inserting a statement just before label SKIP reading:

if nb [src] = arcs then go to FINI;

This statement enables the user to exit the procedure without a
pass through the pi incrementation block and a final pass through
the out-of-kilter arc-finding block, saving a significant amount of
time on sizeable problems. With the arcs arranged so that the arc
directed from the "super sink" to the "super source" is the last
one in the arc array, it must be the last arc remaining out-of
kilter. Therefore, by the time the search block discovers it as an
out-of-kilter arc, an optirnal solution has already been found.

[Algorithm 336 [Comm. ACM 11 (Sept. 1968), 631-632] is an
improved version of Algorithm 248, which by its very construction
bypasses this error.-J.G.H.J

REMARK ON ALGORITHM 248 [H]
NETFLOW [William A. Briggs, Comm. ACM 8 (Feb.

1965), 103]
T. A. BRAY AND c. WITZGALL

(Recd. 2 Oct. 1967 .. and 20 May 1968)
Boeing Scientific Research Laboratories, Seattle, WA

98124

KEY WORDS AND PHRASES: capacitated network, linear
programming, minimum-cost flow, network flow, out-of-kilter

CR CATEGORIES: 5.32, 5.41

We found that
1. in the statement

c := cost[a] - abs(pi[ni]-pi[nj]) X sign(nb[ni]);
on page 103, column 2, line 3 from below,
the "abs" should be deleted.

248-P 2~ RI

2. in the statement
LABL: if a = aok /\ na[src] ~ 0 then go to SKIP;

on page 103, column 2, line 13 from above,
the value of na[src] may be undefined.

The algorithm worked satisfactorily after the corresponding
changes had been made. We acknowledge a correspondence with
R. M. Van Slyke and R. D. Sanderson of the University of Cali
fornia, Berkeley, on the subject.

Algorithm 336 [Comm. ACM 11 (Sept. 1968), 631-632] is an im
proved version of Algorithm 248 incorporating these changes.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 249
OUTREAL N [15]
NrKLAUS E. WIRTH (Recd. 28 Aug. 1964 and 2 Nov. 1964)
Computer Science Div., Stanford U., Stanford, Calif.

procedure outreal n (ch,x,n);
value ch, x, n; real x; integer ch, n;

comment outreal n outputs to channel ch the real number x as
a sequence of characters with n significant decimal digits in the
form± d.d · · · d10 ± d · · d, where d stands for a digit. Like the
procedures outboolean, outstring, ininteger (cf. Report on Input
Output Procedures for ALGOL 60, [Comm. ACM 7, (Oct. 19()4),
628-629)) and inreal [Alg. 239, Comm.ACM 7 (Aug.1964), 481] it
constitutes an example of the use of the primitive procedure
pair insymbol-outsymbol defined in the referenced Report;

begin integer i, j, k, s; real f; integer array a[l:n];
procedure outchar(x) value x; integer x;

outsymbol (ch, '0123456789+- .1o', x+ 1);
s := k := O; f :=; l;
outchar (if x ~ 0 then 10 else 11) ; x : = abs (x) ;
if x = 0 then begin outchar(O); go to L4 end;
if x ~ 1 then

heginLl: f :=fX 10; s := s + 1; ifx ~f thengotoLl;
f := f x 0.1; s := s - 1

else
end

begin L2: f := f X 0.1; s
if x < f then go to L2

end;

s __; 1;

x := x/f; comment now 1 ~ x < 10;
for j : = 1 step 1 until n - 1 do
begin i := entier(x); a[j] := i; x .
a[n] := x;
for j := n - 1 step -1 until 1 do
begin if a[j+l] < 10 then go to L6;

a[j] := a[j] + 1
end;

(x-i) X 10 end;

a[j+l] O;

if a[l] = 10 then begin a[l] := 1; s := s + 1 end;
L6: outchar(a[l]); outchar(l2);

for j : = 2 step 1 until n do outchar(a[j]);
comment now process the scale factor s;
if s = 0 then go to L4;
outchar (13);

outchar (ifs~ 0 then 10 else 11); s := abs(s);
j := 10;

L3: ifs ~ j then begin j : = j X 10; k : = k + 1; go to L3 end;
L5: if k > 0 then

beginj:=j+lO; i:=s+j; outchar(i); s:=s-iXj;
k : = k - 1; go to L5

end;
outchar (s);

L4:
end

249-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 250
INVERSE PERMUTATION [G6]
B. H. BooNSTRA (Recd. 12 Oct. 1964)
Nationaal Kasregisters, NCR Holland, Amsterdam.

procedure inversepermutation (P) of natural numbers up to: (n);
value n; integer n; integer array P;

comment given a permutation P(i) of the numbers i = l(l)n,
the inverse permutation is computed £n situ. The process is
based on the lemma that any permutation can be written as a
product of mutually exclusive cycles. Pro<'edure inversepermuta
tion has been tested for several permutations including n = 1;

begin integer i, j, k, first;
switch sss : = tag, cycle, next, endcycle, finish;

tag: for i : = 1 step 1 until n do P[i] : == - P[i];
comment now P[i] contains a negative number if original and

a positive number if inverse;
first := 1;

cycle: k := first; i := -P[k];
next: j := -P[i]; P[i] := k;

if i = first then go to endcycle;
k := i; i := j; go to next;

endcycle: if first = n then go to finish;
first : = first + 1;
if P[first] < 0 then go to cycle else go to endcycle;

.finish: end inverRPnermutation

REMARK ON ALGORITHM 250 [G6]
INVERSE PERMUTATION

[B. H. Boonstra, Comm. ACM 8 (Feb. 1965), 104]
C. W. MEDLOCK (Recd. 12 Apr. 196.5 and 14 July 1965)
IBM Corp., Programming Systems, Poughkeepsie, N.Y.

Several simplifications may be made to the subject algorithm
to permit more efficient operation.

1. On many compilers, the procedure would be more efficient
if the outer loop were written as a for loop.

2. The initialization of the vector P to negative values may be
omitted by reversing the interpretation of positive and negative
values. As revised, P[i] contains a negative number if it contains
the inverse value and i is less than the current Talue of the pa
rameter n. P[i] contains a positive value in all other cases. This
allows the for loop labeled tag to be eliminated.

3. The variable first may be eliminated by declaring the pa
rameter n as a value parameter, and utilizing it as the controlled
variable of the outer loop.

The author wishes to thank the referee for valuable suggestions.
The revised algorithm then reads:

procedure inversepermutation (P) of natural numbers up to: (n);
value n; integer n; integer array P;

comment Given a permutation P(i) of the numbers i = L (l)n,
the inverse permutation is computed in situ;

begin integer i, j, k;
for n := n step -1 until 1 do
begini := P[n];

if i < 0 then P[n] .- -i
else if i ;;: n then
begin k := n;

loop: j := P[i]; P[i] := -k;
if j = n then P[n] :=

else
begin k

end
end

end

i; i := j;

end inversepermutation

250-P 1-- 0

go to loop

COLLECTED ALGORITHM:$ FROM CACM

ALGORITHM 251
FUNCTION MINIMISATION [E4]
M. WELLS (Recd. 13 July 1964 and 5 Oct. 1964)
Electronic Computing Lab., U. of Leeds, England
procedure FLEPOMIN (n, x, f, est, eps, funct, c~nv, limit, h,

loadh),·
value n, est, eps, loadh, limit;
real f, est, eps; integer n, limit,· Boolean conv, loadh;
array x, h; procedure funct;

comment function minimisation by the metho~ of Fletcher
and Powell [Comput. J. 6, 163-168 (1963)]. On ent:ry x[l:n] is an
estimate of the position of the minimum, est an e$timate of the
minimum value, eps a tolerance used in terminating the proce
dure when the first derivative of f nearly vanis~es, and loadh
indicates whether or not an approximation to the !inverse of the
matrix of second derivatives off is available. If/ loadh is true
the procedure supplies the unit matrix as this estimate, other
wise it is assumed that the upper triangle of a sy~metric posi
tive definite matrix is stored by rows in h[l:~ X (n+l)/2].
The statement funct (n, x, j, g) assigns to f the f!unction value
and to g[l:n] the gradient vector. :

A successful exit from FLEPOMIN, with conii true, occurs
if two successive values off are equal, or if a new value off
is larger than the previous value (due to round~ng errors), or
if after n or more iterations the lengths of the !vectors s and
sigma are less than eps. If the number of iter4tions exceeds
limit, then an exit occurs with conv false. In ei.~her case, the
final function value, estimated position of the Piinimum and
inverse mati:ix of second derivatives are inf, x ~nd h;

begin
real oldf, sg, ghg;
integer i, j, k, count;
array g, s, gamma, sigma [l:n];
real procedure dot (a, b);

array a, b;
comment inner product of a and b [In this procedure ana

in up dot greater accuracy would be obtained ,by accumulat
ing the inner products in double precision;-Ref .];

begin integer i; real s; s := O; .
for i := 1 step 1 until n do s := s -1- a['£] X b[i];
dot := s

end of dot;
real procedure up dot (a, b, i);

value i;
array a, b; integer i;
comment multiply b by the ith row of the symmetric

matrix a, whose upper triangle is stored by rows;
begin integer j, k; real s; k := i; s := O;

for j := 1 step 1 until i - 1 do
begin s := s + a[k] X b(J°]; k := k + n :- j end steps

to diagonal. Now go along row;
for j := i step 1 until n do s := s + a[k+j-i] X b[j];

up dot := s
end of up dot;

set initial h:
if loadh then

begin k := 1;
for i := 1 step 1 until n do

begin h[k] := 1;

251-P 1- 0

for j := 1 step 1 until n - i do h[k+j] := 0;
k := k + n - i + 1

end
end formation of unit matrix in h;

start of minimisation:
conv : = true;
funct (n, x, f, g);
for count := 1, count + 1 while oldf > f do
begin oldf : = f;

for i ·= 1 step 1 until n do
begin sigma[i] := x[i]; gamma[i] := g[i];

s[i] := -up dot(h, g, i)
end preservation of x, g and formation of s;

search along s :
begin real ya, yb, va, vb, vc, h, k, w, z, t, ss;

yb := f; vb := dot(g, s); ss := dot(s, s);
if vb ~ 0 then go to skip;
k := 2 X (est-f)/vb;

scale: h := if k > 0 and k j 2 X ss < 1 then k else 1/sqrt(ss);
k := O;

extrapolate: ya : = yb; va : = vb;
for i := 1 step 1 until n do x[i] := x[i] + h X s[i];
funct(n, x, f, g);
yb := f; vb := dot(g, s);
if vb < 0 and yb < ya then
begin h : = k : = h + k; go to extrapolate end;
t := O;

interpolate: z := 3 X (ya-yb)/h + va +vb;
w := sqrt(z j 2-vaXvb);
k := h X (vb+w-z)/(vb-va+2Xw);
for i '.= 1 step 1 until n do x[i] := x[i] + (t-k) X s[i];
funct(n, x, f, g);
if f > ya or f > yb then
begin vc := dot(g, s);

if vc < 0 then
begin ya := f; va := vc; t := h := k end

else
begin yb := f; vb := vc; t := O; h := h - k end;
go to interpolate

end;
skip: end of search along s;

for i := 1 step 1 until n do
begin sigma[i] : = x[i] - sigma[i];

gamma[i] := g[i] - gamma[i]
end;
sg := dot(sigma, yamma);
if count ~ n then

begin if sqrt(dot(s, s)) < eps and sqrt(dot(sigma, sigma)) <
eps then go to finish

end test for vanishing derivative;
for i := 1 step 1 until n do s[i] := up dot(h, gamma, i);
ghg := dot(s, gamma);
k :,,;. 1;
for i := 1 step 1 until n do for j := i step 1 until n do
begin h[k] := h[k] + sigma[i] X sigmaf.i]/sg - s[i] X s[j]/ghg;

k := k + 1
end updating of h;
if count > limit then go to exit;
end of loop controlled by rount; go tofinish;

exit: conv := false;
finish: end of FLEPOMIN

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 251 [E4]
FUNCTION MINIMISATION [M. Wells, Comm. ACM
8 (Mar. 1965), 169]
R. FLETCHER (Recd. 9 Aug. 1965 and 24 Mar. 1966)
Electronic Computing Lab., U. of Leeds, England

Two points need correcting concerning the procedure
FLEPOMIN.
(i) When the method has converged, either or both of the vec
tors s and g can become ·zero, hence also the scalars sg and ghg,
causing division by zero when updating the matrix h.
(ii) The part of the procedure connected with the linear search
alo-ng s does not make use of the fact that the identifier h (7'J in the
Appendix to the source paper Fletcher and Powell [1]) tends to 1
as the process converges. This knowledge must be included to
achieve the rapid convergence obtained by Fletcher and Powell.
However, the particular choice of 7'/ given there can also be in
sufficient when its optimum value would be much greater than 1
(as happens for example in the minimization of f(x) = [H(x-1)]2
where 1 is the vector (1, 1, · · ·, 1) and H iB a segment of the Hil
bert matrix, from an initial approximation x = (0, 0, · · ·, 0)).

An alternative approach is to estimate '? by using its value at
the previous iteration, increasing or decreasing its value by
some constant factor when appropriate (I have arbitrarily used
4). This approach removes the need for the estimate est of the
minimum value of f(x).

The appropriate changes to be made are thus:
(i) omit est as a formal parameter,
(ii) include amongst the real identifiers at the head of the

procedure body the following:
step, ita, fa, fb, ga, (lb, w, z, lambda

(iii) replace the statements from the label
start of minimisation

to the end of the program by the following;:

start of minimisation:
conv := true; step := l;
funct(n,x,f,g);
for count := 1, count +1 while oldf > f do
begin

for i := 1step1 until n do
begin sigma[i] := x[iJ; gamma[i] .- y[i];

s[i] := -up dot(h,g,i)
end preservation of x,g and

formation of s;
search along s:

fb := f; gb := dot (g,s);
if gb ;:::: 0 then go to exit;
oldf := f; ita := step;
comment a change of ita X s is made in x and the function

is examined. ita is determined from its value at the previous
iteration (step) and is increased or decreased by 4 where
necessary. It should tend to 1 at the minimum;

e:ctrapolate: fa : = fb; ga : = gb;
for i := 1step1 until n do x[i] := x[i] +ita X s[i];
funct (n,x,f,g);
fb := f; gb := dot(g,s);
if gb <0 /\ fb < fa then
begin iia : = 4 X ita; step : = 4 X step; go to extrapolate

end;
interpolate: z := 3 X (fa-fb)/ita + ga + gb;

w := sqrt (zj2-gaXgb);
lambda := ita X (gb+w-z)/(gb-ga+2><.w);
for i ;= 1 step 1 until n do x[i] .- x[i] - lambda X s[i];
funct (n,x,f,g);
if f > fa V f > fb then
begin step := step/4;

if fb < fa then

251-P 2- 0

begin for i := 1 step l until n do x[i] := x[i] +lambda X
s[i]; f := fb

end else
begin gb := dot(g,s);

if gb < O /\ count > n /\ step <io-6 then go to exit;
fb := f; ita := ita - lambda;
go to interpolate

end;
skip: end of search along s;

for i := 1 step 1 until n do
begin sigma [i] := x [i] - sigma [i];

gamma[i] := g[i] - gamma[i]
end;
sg := dot(sigma,gamma);
if count ~ n then
begin if sqrt (dot(s,s)) < eps /\ sqrt(dot(sigma,sigma)) <eps

then go to finish
end·
for i := 1 step 1 until n do s[i] := up dot (h,gamma,i);
ghg := dot(s, gamma);
k := 1;
if sg = 0 V ghg = 0 then go to test;
for i := 1 step 1 until n do for j := i step 1 until n do
begin h[k] := h[k] + sigma[i] X sigma[j]/sg - s[i] X s[j]/ghg;

k := k + 1
end updating of h;

test: if count > limit then go to exit;
end of loop controlled by count; go to finish;

exit:conv := false;
finish:
end of FLEPOMIN

With these changes the procedure was run successfully on a
KDF 9 computer on the first of the test functions used by Fletcher
and Powell, and the appropriate rate of convergence was achieved.
(The corresponding values in [1, Table 1, col. 4] being 24.200,
3.507, 2.466, 1.223, 0.043, 0.008, 4 X 10-5). It could well be, however,
that these changes may still not prove satisfactory on some
functions. In such cases it will most likely be the search for the
linear minimum along s which will be at fault, and not the method
of generating s. It should not be necessary to evaluate the func
tion and gradient more than 5 or 6 times per iteration in order to
estimate the minimum along s, except possibly at the first few
iterations.

I am indebted to William N. N awatani of Dynalectron Corpora
tion, Calif., for pointing out the discrepancies in the rates of con
vergence, and to the referee for his calculations and comments
with regard to the Hilbert Matrix function.

REFERENCE

1. FLETCHER, R., AND POWELL M. J. D. A rapidly convergent
descent method for minimization. Comput. J. 6 (July 1963),
163.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 251 [E4]
FUNCTION MINIMIZATION [M. Wells, Comm.

ACM 8 (Mar. 1965), 169]
P.A. HAMILTON AND J. BOOTHROYD (Recd. 17 Dec. 1968)
University of Tasmania, Hobart, Tasmania, Australia

KEY WORDS AND PHRASES: function minimization
CR CATEGORIES: 5.19

The changes proposed by Fletcher in his "Certification of Al
gorithm 251," Comm. ACM 9 (Sept.1966), 686, contain one mistake
and one unprotected possible source of error. O:n page 687, line 2,
the assignment statement! := fb should be replaced by the proce
dure statement funct(n,x,f,g) in order to reset the gradients in
g[l: n].

In theory, the conditions on z,ga,gb valid for interpolation im
ply z j 2-gaXgb:2:0. The statement w := sqrt(z j 2-gaXgb) should
therefore be safe. In practice, round-off errors may give rise to
small negative values of the argument, resulting in an error condi
tion which may be avoided with:

w := z j 2-gaXgb;

w :=if w<O then 0 else sqrt(w);

Numerous tests of this procedure indicate; that two other
changes are beneficial in reducing the number of function calls
required to yield a minimum to some prescribed accuracy. These
concern the method of calculating the minimum of the interpolat
ing cubic and a modification to the extrapolation strategy.

In the notation of Fletcher's identifiers, the position of the
minimum along s over the interval (a=O, b=ita) is a+r where r is
the root of a quadratic equation given by:

r = itaX(ga+z+w)/(ga+ub+2Xz) (1)

and, for ga+z;;::o, it may be shown that r is the root of larger mag
nitude; otherwise, it is the root of smaller magnitude. The distance
of the minimum from bis lambda=ita-r and Dn.:Vidon[l] seems to
have originated the proposal that lambda should be evaluated by:

lambda := itaX (gb+w-z)/(gb-ga-t-2Xw)

in order to avoid cancellation. In this respect it is only partly
successful, and our experience shows that to avoid cancellation
completely lambda should be calculated in the ma:re orthodox man
ner:

lambda := itaX (1-(if ga+z;;::o then (ga+z+w)/(ga+gb+2Xz)

else ga/(ga+z-w)));

Once the minimum along s has been bounded,: the use of cubic
interpolation is rewardingly accurate and it is niatural to inquire
whether cubic extrapolation can provide a better farther bound
than is afforded by an arbitrary search. It may be shown that, pro
vided z j 2-gaXgb:2:0 and r>O where r is given by eq. (1), cubic
extrapolation will yield the position of the pre,dicted minimum
along s as a+r, using a value for ita given by the step length of the
previous iteration. To bound the minimum we take the interval
(a,a+2Xr) if the above conditions are satisfied; otherwise, we
adopt Fletcher's strategy of using the interval of the previous
iteration scaled by a factor of 4.

REFERENCE:

1. DAVIDON, W. C. Variable metric method for minimization.
ANL-5990. US Atomic Energy Commission Res. Develop.
Rep., 1959.

251 P 3 RI

Remark on Algorithm 251 [E4]
Function Minimization [M. Wells, Comm. A CM 8
(Mar. 1965), 169.]

F. R. House [Recd. 25 Aug. 1970 and 1 Dec. 1970]
Department of Pharmacology, Guy's Hospital Medical
School, London, S.E. l. England

The above procedure, as modified by Fletcher [1], and Hamilton
and Boothroyd [2], may appear to fail if the process converges after
fewer than n iterations. In particular, if the starting point coincides
with the minimum, failure is certain. The trouble arises from the
statement

if gb ;;::o then go to exit;

which appears two lines after the label search along s.
The following modifications are proposed.

(i) After the first call of funct insert the statement

if sqrt(dot(g, g)) < eps then
begin
for i : = 1 step 1 until n do x[i] x[i] + 1; funct (n, x, J, g)
end;

(ii) Replace the statement

if gb 2 0 then go to exit;

by

if gb = 0 then go to skip;
if gb > 0 then go to exit;

The apparently perverse move away from the minimum implied
by modification (i) ensures that h is updated at least once.

(iii) The text from

if count :2: n then

to

end;

should occur after the label test. The relevant portion of the pro
gram reads

test: if count :2: n then
begin

if sqrt(dot(s, s)) < eps /\ sqrt(dot(sigma, sigma)) < eps
then go to finish

end;
if count > limit then go to exit;

Experience with the algorithm has shown that when the process
converges from a poor starting point on a nonquadratic surface
the final estimate of h is inclined to be somewhat erratic.

This modification causes h to be updated once more using the
very latest information, and will often effect a substantial improve
ment in accuracy. The estimated position of the minimum is, of
course, unaffected.
References:
1. Fletcher, R. Comm. ACM 9 (Sept. 1966), 686-687.
2. Hamilton, P.A., and Boothroyd, J. Comm. ACM 12 (Sept.
1969), 512-513.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 252 [Z]
VECTOR COUPLIKG OR CLEBSCII-GORDAN
COEFFICIENTS
J. H. GrNN

(Recd. 17 Aug. 1964, l3 Nov. 1964 and 21 Dec. 1964)
Nordisk Institut for Teoretisk Atomfysik, Copenhagen,

Denmark

real procedure VCC(Jl, J2, J, Ml, M2, ,"!J;f, factorial);
value Jl, J2, J, Ml, M2, ill;
integer Jl, J2, J, Ml, M2, M; array factorial;
comment VCC calculates _the vector coupling or Clebsch-Gor-

dan coefficients defined by the following formula

(}1 m1 }2 m2 U1 jd m)

- "(+)[~2j + l)(jl + .h - j) !(j1 - j2 -'-_J") !(-j1 + j2 + j) t]t
- ,, m1 m2, m (Ji + j

2
+ j + l) !

X 1(}1 + m1)!(j1 - m1)l(j2 + m2)!(}2 - m2)!(j + m)!(j - m)!]!

X .L (-l)'/[z!(}1 + }2 - j - z) !(j1 - m1 - z) !]

C,i2 + m2 - z) !(j - }2 + mi+ z) !(j - }1 - m2 + z) !]

where jl = Jl/2, j2 = J2/2, j = J/2, ml = Ml/2, m2 = M2/2,
ui = M /2. [Reference formula 3.6.11, p. 4b of EDMONDS, Alan
IL Angular momentum in quantum mechanics. In Investiga
tions in Physics, 4, Princeton U. Press, Hl57.]. The parameters
of the procedure, Jl, J2, J, Ml, M2 and M, are interpreted as
being twice their physical value, so that actual parameters may
be integers. Thus to call the procedure to calculate (t 0 ! 0 I t
! 0 0) the call would be l'CC(l, 1, 0, 0, 0, 0, factorial). The pro
cedure checks that the triangle conditions for the existence of a
coefficient are satisfied and that jl + j2 + j is integral. If the
conditions are not satisfied the value of the procedure is zero.
The parameter factorial is an array containing the factorials
from 0 up to jl + j2 + j + 1. Since in actual calculations the
procedure VCC will be called many times it is more economical
to have the factorials in a global array rnther than compute
them on every entry to the procedure;

begin integer z, zmin, zmax; real cc;
if Ml + M2 ;r. M V abs(Ml) > abs(Jl) V abs(M2) > abs(J2) V

abs(Jl) > abs(J) VJ > Jl + J2 VJ < abs(Jl-J2) V .fl
+ J'2 + J ;:C 2 X ((Jl-f-J2+J) +2) then VCC := 0 else

hegin zmin : = 0;
if .J - J2 + Ml < 0 then zmin : = -J + J2 - Ml;
if J - Jl - M2 + zmin < 0 then zmin · = -J + Jl + M2;
zmax·: =JI+ J2 - J;
if J2 + M2 - zmax < 0 then zmax := J2 + M2;
if JI - Ml - zmax < 0 Lhen zmax := Jl - Ml;
cc := O;
for z := zmin step 2 until zmax do
cc:= cc+ (ifz=4X(z+4) then 1 else -l)/(factorial[z+2J

X factorial[(Jl+J2-J-z) +2]
X factorial[(Jl-]lfl-z) +2]
X factorial[(J2+11J2-z) +2]
X factorial[(J-J2+Ml+z) +2]
X factorial[(J-Jl-M2+z)+2]);

252-P 1- 0

VCC := sqrt((J+l) X factorial[(Jl-f-J2-J) +2]
X factorial [(Jl -J2+J) + 2]
X factorial[(-Jl+J2+J)+2] X factorial[(Jl-f-Ml)+2]
X faclorial[(Jl-Ml) +2] X factorial[(J2+M2) +2]
X factorial[(J2-M2)+2] X factorial[(J+M)+2]
X factorial[(J-M) +2]/faclorial[(Jl-f-J2+J +2) +2])
x cc

end
end VCC

COLLECTED ALGORITl{MS FROM CACM

ALGORITHM 253 fF2]
EIGENVALUES OF A REAL SYMMETRIC MATRIX

BY THE QR METHOD
P.A. BusINGER*

(Recd. 17 Aug. 1964, 3 Nov. 1964 and 8 Dec. 1964)
University of Texas, Austin, Texas

*This work was supported in part by the National Science Foundation through
grant NSF GP-217 and the Army Research Office through grant DA-ARO(D) 31-124-
0388. Thanks are due the referee for suggesting several improvements.

procedure symmetric QR 1 (n, g); value n; integer n;
array g;

comment uses Householder's method and the QR algorithm to
find all n eigenvalues of the real symmetric matrix whose lower
triangular part is given in the array g[l:n, l:n]. The computed
eigenvalues are stored as the diagonal elements g[i, i]. The
original contents of the lower triangular part of g are lost during
the computation whereas the strictly upper triangular part of g
is left untouched.

REFERENCES:

FRANCIS, J. G. F. The QR transformation-Part 2. Comput . .!. 4 (1961), 332-345.
ORTEGA, J. M., AND KAISER, II. F. The LLT and QR methods for symmetric tri

diagonal matrices. Comput . .!. 6 (1963), 99-101.
PARLETT, B. The development and use of methods of LR type. New York U.,

1963.
WILKINSON, J. II. Householder's method for symmetric matrices. Numer. Math. 4,

(1962)' 354-361.

TEST RESULTS:

A version of this procedure acceptable to the Oak Ridge ALGOL

compiler was tested on a CDC 1604 computer (relative machine
precision 1.1510-ll). For a number of testmatrices of order up to
64 the dominant eigenvalue was found to at least 8 digits and
it was always among the most accurate values computed. In
some cases the accuracy of the nondominant eigenvalues varied
greatly, in one case the least accurate value had only 4 good
digits.

EXAMPLE:

For the 5X5 symmetric matrix whose lower triangular part is

5
4 6
3 0 7
2 4 6 8

3 5 7 9

this prodecure computed the eigenvalues 22.406875305,
7 .5137241530, 4.8489501197' -1.0965951813' 1.3270455994;

begin
real procedure sum (i, m, n, a); value m, n;

integer i, m, n; real a;
begin real s; s := O;

for i := m step 1 until n dos := s+a; sum := s
end sum;
real procedure max (a, b); value a, b; real a, b;

max := if a> b then a else b;
procedure Householder tridiagonalization 1 (n, g, a, bq, norm);

value n; integer n; array g, a, bq; real norm;
comment nonlocal real procedure sum, max;

253-P I 0

comment reduces the given real symmetric n by n matrix y

to tridiagonal form using n-2 elementary orthogonal trans
formations (l-2ww') = (I-gamma uu'). Only the lower tri
angular part of g need be given. The diagonal elements and
the squares of the subdiagonal elements of the reduced matrix
are stored in a[l:n] and bq[l:n-l] respectively. norm is set
equal to the infinity norm of the reduced matrix. The columns
of the strictly lower triangular part of g are replaced by tlw
nonzero portions of the vectors u;

begin integer i, j, k; real t, ab8b, alpha, beta, garnma, sigma;
array p[2:n];
norm := absb := O;
fork := 1step1 until n-2 do
begin a[k] := g[k, k];

sigma := bq[k] := sum(i, k+l, n, g[i, k] j 2);
t := absb+abs(a[k]); absb := sqrt(sigma);
norm := max(norm, t+absb);
if sigma ~ 0 then
begin alpha := g[k+l, k];

beta : = if alpha < 0 then absb else-absb;
gamma := l/(sigma-alphaXbeta); g[k+l, k] alpha-

beta;
for i := k+l step 1 until n do

p[i] := gammaX (sum(j, k+l, i, g[i, j]Xg[j, k])+
sum(j, i+l, n, g[j, i]Xg[j, k]));

t := 0.5XgammaXsum(i, k+l, n, g[i, k]Xp[ij);
for i := k+l step 1 until n do p[i] .- p[i]-tXg[i, kJ;
for i := k+l step 1 until n do

for j := k+l step 1 until i do

end
end k;

g[i, j] := g[i, j]-g[i, k]Xp[j]-p[i]Xg[j, kJ

a[n-lJ := g[n-I, n-l]; bq[n-l] := g[n, n-l] j 2;
a[n] := g[n, nJ; t := abs(g[n, n-l]);
norm:= max(norm, absb+abs(a[n-l])+t);
norm := max(norm, t+abs(a[n]))

end Householder tridiagonalization 1;
integer i, k, m, ml; real norm, epsq, lambda, mu, sql, sq'2, u,

pq, gamma, t; array a[l:n], bq[O:n-lJ;
Householder tridiagonalization 1 (n, g, a, bq, norm);
epsq := 2.2510-22Xnorm j 2; comment The tolerance used in

the QR iteration depends on the square of the relative ma
chine precision. Here 2.25 10-22 is used which is appropriate
for a machine with a 36-bit mantissa;

mu := 0; m := n;
inspect: if m=O then go to return else i := k :=ml

bq[O] := O;
if bq[k] ~ epsq then
begin g[m, m] := a[m]; mu O; m k;

go to inspect
end;
for i := i-1 while bq[iJ > epsq do k := i;
if k = ml then
begin comment treat 2 X 2 block separately;

mu := a[ml]Xa[m]-bq[ml]; sql := a[ml]+a[mJ;
sq2 := sqrt((a[ml]-a[m]) j 2+4Xbq[ml]);

m-l;

lambda := 0.5X (if sql ~ 0 then sql+sq2 else sql-sq2);
g[ml, ml] := lambda; g[m, m] :=mu/lambda;
mu := O; m := m-2; go to inspect

end;

COLLECTED ALGORITHMS (cont.)

lambda := if abs(a[rnj-rnu) < 0.5Xabs(a[m]) then a[m]+0.5X
sqrt(bq[ml]) else 0.0;

mu := a[m]; sql := sq2 := u := O;
for i := k step 1 until ml do
begin comment shortcut single QR iteration;

gamma := a[1:]-lambda-u;
pq := if sql~l then gamma j 2/(1-sq:l) else (l-sq2)X

bq[i-1];
t : = pq+bq[i]; bq[i-1] : = sql Xt; sq2 : = sql;

sql := lJq[i]/t; u := sqlX (gamma+a[i+l]-lambda);
a[i] := gamma+u+larnbda

end 'i;
garnrna := a[m]-lambda--1l;

bq[ml] sqlX (if sqL~l Lhen gamma j 2/(1-sql) else
(l-sq2)Xbq[ml]);

a[rn] := gamma+lamhda; go to insprct;
rctrlrn: end syrnmetric QR 1

CERTIFICATIO:\ OF ALGORITHM 253 (F2]
EIGE~VALUES OF A HEAL SYMMETRIC MATRIX

BY THE QR l\IETHOD [P. A. Busingcr, Comm.
AC.LU 8 (April 1965), 217]

.TonN H. WELSCH (Recd. 3 .June 1965, 1 Aug. 1966 and
1 l\far. 1967)

Stanford Linear Accelerator Center, S1Uanford, California

The procedme symrneln"<; QR 1 was transcribed into ALGOL for
the Burroughs B5500 (39-bi.t mantissa) and tested with no syntax
or logic changes (except to change the tolerance from 2.2510-22
lo :~.3510-24). The eigenvalqes of the matrix in the example given
in the procedure declaratiqn were found to 15 units in the 11th
significant place and in the order given.

Two defects of this algorithm have been found (personal com
n111nication from Prof. W. Kahan); 011e concerning the conver
gence, the other concerning the numerical stnbili ty.

The procedure symmetrfr, QR l was slow to converge on matrices
of large order with the fon:n

()

1 0

0

The trouble is caused by a poor choice of the shift, lambda,
for accelerating convergence. The fault was corrected ns described
in the Certification of Algorithm 254.

The second defect is not as easy to detect or correct. On matrices
of large order with pairs of eigenvalues of opposite sign, members
of the pairs were found to varying accurncy. Another indication
of an instability was a distinct jump in the computed values of
the eigenvalues of the matrix

at x = 10-5, as x was given the values 10-3, 10-4, • • • , 10-11 •

It appears that the sq1,iare-root-free QR Algorithm described
by Ortega and Kaiser ("The LL1' and QR methods for symmetric
tridiagonal matrices," Comput. J. 6 (1963), 99-101) is numerically
unstable; therefore Algorithm 253 should be avoided. [Hutis-

253-P 2- RI

ha user (Letter to the Edi tor, Com put. J. 6 (1963), 133) suggested a
modification which is also mentioned by Wilkinson (The Algebraic
Eigenvalue Problem, Clarendon Press, Oxford, 1965, p. 567). How
ever, even with this modification the Algorithm is numerically
unstable as was pointed out in a private communication from
Wilkinson to Kahan (1966)-REF.]

COLLECTED ALGORITJIMS FROM CACM

ALGORITHM 254 [F2]
EIGENVALUES AND EIGENVECTOHS OF A REAL

SYMMETRIC :MATRIX BY THE QR METHOD
P. A. BusINGER*

(Recd. 17 Aug. 19G4, 17 Nov. 1964 and 8 Dec. 1964)
University of Texas, Austin, Texas

*This work was supported in part by the National Science Foundation through
grant NSF GP-217 and the Army Research Office through grant DA-ARO(D) 31-124-
G388. Thanks are due the referee for suggesting several improvements.

procedure symmetric QR 2 (n, g, x); value n; integer n;
array g, x;

comment uses Householder's method and the QR algorithm to
find all n eigenvalues and eigenvectors of the real symmetric
matrix whose lower triangular part is given i~ the array g. The
computed eigenvalues are stored as the diagonal elements
g[i, i] and the eigenvectors as the corresponding columns of the
array x. The original contents of the lower triangular part of g
are lost during the computation whereas the strictly upper
triangular part of g is left untouched.

REFERENCES:

FRANCIS, J. G. F. The QR transformation-Part 2. Comput. J. 4 (1961), 332-345.
PARLETT, B. The development and use of methods of LR type. New York U.,

1963.
WILKINSON, J. H. Householder's method for symmetric matrices. Numer. Jiath.

4 (1962), 354-361.

TEST RESULTS:

A version of this procedure acceptable to the Qak Ridge ALGOL

compiler was tested on a CDC 1604 computer (relative machine
precision 1.510-ll). For a number of testmatrices of order up to
Ci4 the dom.inant eigenvalue was found to at least 9 digits. Eigen
values much smaller in magnitude than the dorainant eigenvalue
have fewer accurate digits. In some cases the components of the
eigenvectors were slightly less accurate than the eigenvalues.

EXAMPLE:

For the 5 X 5 symmetric matrix whose lower triangular part is

5
4 6
3 0 7
2 4 6 8
1 3 5 7 9

this procedure computed the eigenvalues >-1=22.406875306,
:X. 2 =7 .5137241547, >. 3 =4.8489501203, ;\4= -1.0965951820,
>.5 = 1.3270455995, and the corresponding eigenvectors
Xi = (0.24587793851, 0.30239603954, 0.45321452335,

0.57717715229t, 0.55638458400)'
X2 = (0.55096195546, 0. 70944033954, -0.3401791S315,

-0.083410953290, :-0.26543567685),
Xa = (0.54717279573, -0.31256992008, 0.61811207635,

. -0.11560659356, -0.45549374666)'
X4 = (-0.46935807220, 0.54221219466, 0.54445240360,

-0 .42586566248' -...; 0 .088988503134)'
X5 = (-0.34101304185, 0.11643462042, 0.019590612072,

0.68204303436, ~0.63607121400);
begin

real procedure sum (i, m, n, a); value m, n;
integer i, m, n; real a;

254~-P I 0

begin real s; s :.= O;
for i := rn step l until n dos := s+a; sum := s

end sum;
real procedure max (a, b); value a, b; real a, b;

max := if a > b then a else b;
procedure Householder tridiagonalizatiun 2 (n, g, a, b, x, norm);

value n; integer n; array g, a, b, x; real norm;
comment nonlocal real procedure sum, max;

conunent reduces the given real symmetric n by n matrix g
to tridiagonal form using n-2 elementary orthogonal tra11s
formations (I -2ww') = (I - gamma uu '). Only the lowN
triangular part of g need be given. The computed diagonal
and subdiagonal elements of the reduced matrix are stored in
a[l:n] and b[l:n-1] respectively. The transformationH on the
right are also applied to then by n matrix x. The columns of
the strictly lower triangular part of g are replaced by the
nonzero portion of the vectors u. norm is set equal to the in
finity norm of the reduced matrix;

begin integer i, j, k; real t, sigma, alpha, beta, gamrna, absb;
array p[2:n];
norm := absb := O;
fork := 1 step 1 until n-2 do
begin a[k] := g[k, kJ;

sigma := sum(i, k+l, n, g[i, k] j 2);
t := absb+abs(a[k]); absb := sqrt(sigma);
norm := max(norm, t+absb); alpha := g[k+l, k];
b[k] := beta := if alpha < 0 then absb else -absb;
if sigma ~ 0 then
begin gamma := l/(sigma-alphaXbeta);

g[k+l, k] := alpha-beta;
for i := k+l step 1 until n do

p[i] := gammaX (sum(j, k+l, i, g[i, j]Xg[j, k])
+sum(j, i+l, n, g[j, i]Xg[j, k]));

t := 0.5XgammaXsurn(i, k+l, n, g[i, k]Xp[i]);
for i := k+l step 1 until n do p[i] := p[i]-tXg[i, k];
for i := k+l step 1 until n do

for j := k+l step 1 until i do
g[i, j] := g[i, j]-g[i, k]Xp[j]-p[i]Xg[j, k];

for i := 2 step 1 until n do
p[i] := gammaXsum(j, k+l, n, x[i, j]Xg[j, k]);

for i := 2 step 1 until n do
for j := k+l step 1 until n do

x[i, j] := x[i, j]-p[i]Xg[J, k]
end

end k;
a[n-1] :=g[n-1,n-l]; a[n] :=g[n,nJ; b[n-1] := g[n, n-1];
t := abs(b[n-l]);
norm := max(norm, absb+abs(a[n-l])+t);
norm := max(norm, t+abs(a[n]))

end Householder tridiagonalization 2;
integer i, j, k, m, ml; i·eal t, norm, eps, sine, cosine, lambda,

mu, aO, al, bO, beta, xO, xl;
array a[l:n], b[O:n], c[O:n-1], cs, sn[l:n-1];

for i := 1step1 until n do
begin comment set x equal to the identity matrix;

x[i, i] := l;
for j := i+l step 1 until n do x[i, j] := x[j, i] := 0

end i;

COLLECTED ALGORITHMS (cont.)

Householder tridiagonalization 2 (n, g, a, b, x, norm);
eps : = norrn X 1.510-ll; comn1ent the tolerance used in the

QR iteration is set equal to the product nf the infinity norm
of the reduced matrix and the relative machine precision
(here assumed to be 1.510-11 which is appropriate for a machine
with a 36-bit mantissa);

b[O] := mn := O; m := n;
£nspect: if m=O then go to return else i

if abs (b [k]) ~ eps then
hegin

k ml

g[m, m] := a[m]; mu :== O; m := k; go to inspect

end;

for i := i-1 while abs(b[i]) > eps do k := i;

m-·1;

lambda := if abs(a[m]-mu) < 0.5Xabs(a[m]) V ml=k then
a[mJ+0.5Xb(ml] else 0.0;

n1.n := a[m]; a[k] := a[k]--lambda; beta : = b[k];
for j := k step 1 until ml do

lwgin eonuncnt transformation on the left·
aO := a[j]; al := a[j+ll-lambda; bO :== b{j];
t := sqrt(a0j2+betaj2);

cosine := cs[j] := aO/t; sine := sn[j] :=' beta/t;
rt[j] := cosineXaO+sincXbcla; a[j+l] :== -sineXbO+

r:osineXal;

bfj] := cosineXbO+sineXal; beta := b[J+lJ;
b[j+lJ := cosineXbeta; c[j] sineXbela

c:nd j;
b[k-1] := c[k-1] := O;
for j := k step 1 until ml do

hcgin comment transformation on the right;
sine := sn[j]; cosine := cs[j];
aO := a[j]; bO := b[j];

h[j-1] := b[j-l]XcosiJie+c[j-l]Xsinc;
a[j] := aOXcosine+bOXsine+lambda;
b[j] := -aOXsine+bOX(·osine; a[j+l] :'= alj+l]Xcosinc;
for i := 1 step 1 untiln do

hegin xO := x[i, j]; xl := x[i, j+lJ;
x[i, j] := xOXcosine+xlXsfoe; x[i, .i-Hl -xOXsine+

xl Xcosine
end i

end j;
a[m] := a[m]+Zambda; go to inspect;

return: end symmetric QR 2

CERTIFICATIOL\ OF ALGORITHJ\1 254 lF2]
EIGENVALUES AND .EIGENVECTORS OF A llEAL
SY~VIMETRIC MATRIX BY THE QR METHOD
[P. A. Businger, Comrn. ACM 8 (April 1965), 218]

.JoHN H. WELSCH (Recd. 3 June 1965, 1 Aug. 1966 and
1 Mar. 1967)

Stanford Linear Accelerator Center, S1Ganford, California

The procedure symmetric QR 2 was transcribed into ALGOL for
the Burroughs B5500 (39-bit mantissa) and tested with no syntax
or logic changes (except to change the tolerance from 1.510 - 11
to 1.8310 - 12). The eigenvalues of the matrix given in the initial
comment of the procedure declaration were found to 8 units in the
11th significant place and in the order given. The components of
the eigenvectors found by the procedure differed from those given
by at most 7 units in the 10th significant place and that occurred
in the smallest component of X2. The computed vectors X3 and
X4 were the negative of thQse given.

It was found (personal communication from Prof. W. Kahan,
University of Toronto) that symmetric QR 2 was slow to converge
on matrices of large order with the form

254-P 2- RI

0
0

()

1 0

The trouble observed seems to be caused by a poor choice of the
shift, lambda, for accelerating convergence. The following change
corrects this fault and did not change the results of these tests
except that the eigenvalues are found in a different order. Replace
the 8 lines following the line labeled inspect by:

if abs(b[k]) ~ ep8 then
begin g[m, rn] := a[rn]; m := k; go to inspect end;

for i := i - 1 whi]c abs(b[i]) > cps do k := i;
comn1ent find eigenvalues of lower 2 X 2;
bO := b[ml] j 2; al := sqrt((airnl]-a[m])j2+4Xb0);
t := alml] X a[m] - bO; aO := a[rnl] + a[m];
lambda:= 0.5 X (if aO~O. then aO+al else aO-al);
I := t/larnbda; comment compute the shift;
if abs(t-rnu) < 0.5 X abs(t) then mu := lambda :=
else if abs(lambda-rnu) < 0.5 X abs(lambda) then mu larnbda
else begin mu : = t; lambda : = 0 end;
a[k] := a[k] - lambda; beta := b[k];

The modified procedure (cn,llccl QR 2 below) was compared with
t.he procedures given by J. II. Wilkinson [Numer. Math. 4 (1962),
:~54-376] of the Householder tridiagonalization, Sturm sequence
bisection, and inverse iteration algorithms. Evaluation of the
Sturm sequence caused exponent underflows and overflows, so the
procedures were modified (referred to as HSI below) by scaling
and overflow detection.

To measure the effectiveness of the procedures, two quantities,
E 1 and E2 , were evaluated for each of eleven matrices used as
test data. These quantities are suggested by Prof. W. Kahan (in
"Inclw-:ion Theorems for Clusters of Eigenvalues of Hermitian
Matrices," University of Toronto, Feb. 1967) and are defined as
follows. Let A be a Hermitian matrix, A a diagonal matrix of its
approximate eigenvalues and V a matrix whose columns are ap
proximate eigenvectors ordered to correspond with A. Define
W = V*V - I and R = A. V - VA, then

E1 = II W 112 and E2 = II R lldl/ A 112,

where II X II~ = maximum eigenvalue of X*X. Then it is shown
that the maximum absolute error in an eigenvalue is less than or

equal to

!>.~
v'l -E1

The computation of Wand R was done with double-precision inner
products.

The results of the tests are summarized as follows:
(a) Both QR 2 and HSI found the dominant eigenvalues to

better relative accuracy, but the same or worse absolute accuracy
than the other eigenvalues.

(b) QR 2 was on the average 1.8 times faster than HSI (QR 2
required 2.5 seconds on a Hilbert segment of order 15).

(c) QR 2 always found orthogonal eigenvectors (E1 ,.._, 10-11);

(d) in most cases Ei ,.._, 10-11 for HSI also, but several times
HSI found two eigenvectors almost parallel (E1 ,.._, 1.0).

(e) E 2 ,.._, 10- 11 for both QR 2 and HSI with neither being con
sistently better than the other.

COLLECTED ALGORITHMS (cont.)

Conclusions. The orthonormalized eigenvectors, speed, and
comparable accuracy would recommend symmetric QR 2 over the
Wilkinson procedures for finding all of the eigenvalues and eigen
vectors of a real symmetric matrix. The latter procedures are good
for finding selected eigenvalues and eigenvectors.

254 p 3 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 255
COMPUTATION OF FOURIER COEFFICIENTS [C6]
LINDA TEIJELO (Recd. 18 Nov. 1964 and 25 Nov. 1964)
Stanford Computation Ctr., Stanford U., Calif.

procedure FOURIER(F, eps, subdivmax, m, cosine, sine, cint,
sint);
value eps, subdivmax, m, cosine, sine; real eps, cint, sint;
Boolean cosine, sine; integer subdivmax, m;

real procedure F;
comment FOURIER computes the Fourier coefficients cint

f~ F(x)cos(m7rx) dx (if cos1:ne is true) and/or sint = J5 F(x)
sin (mn) dx (if sine is true), where m > 0. The method is that
of Filon (for a brief exposition see [l] and for Filon's original work
see [2] or [3]). Computation is terminated when the number of
times the interval [O, l] has been halved (n) has exceeded sub
divmax (10 is suggested), or when n > 5 andl two successive ap
proximations of the integral agree to within eps (10-7 is sug
gested) times the value of the last approximation. In the former
case, cint or sint is assigned the value of the last approximation.
The condition n > 5 is imposed because of substantial cancella
tions which may take place during the early stages of sub
dividing;

begin real sumcos, sumsine, oddcos, oddsine, J)i, a, b, g, t, h, p, k,
cO, cl, sO, sl, intl, int2, previntl, prevint2, tnl, t3, temp;
integer n, i; Boolean bo.ol;
bool := false; pi := 3.14159265359; k := m X pi;
sumcos := (F(l.O) X cos(k)+F(O)) X .5;
sumsine := F(l.O) X sin(k) X .5;

LO: n := 1; h := 0.5; t := .5 X k; tnl ·== l;
Ll: cO := cos'(2.0Xt); cl:= cos(t);

sO := sin(2.0Xt); sl := sin(t);
t3 : = t i 3; p : = c 1 x s 1 ;
a := (ti 2-sl i 2X2.0+tXp)/t3;
b := (2.0X(tX(cl i2+1.0)-2.0Xp))/t3;
g := 4.0 X (-tXcl + sl)/t3;
if bool then go to L2;
if sine then

begin
oddsine := F(h) X sl;
for i : = 2 step 1 until tnl do
begin temp := cl X cO - sl X sO;

sl := sl X cO +cl X sO;
cl := temp;
oddsine := F((2Xi-l)Xh)Xsl + oddsine

end;
if n = 1 then

begin n := 2; h := .25; t := .25Xk; tnl := 2;
prevint2 := (aX(F(O)-F(l.O)Xcos(k))+

bXsumsine+gXoddsine) X .5;
~umsine : = sumsine + oddsine; go to Ll

end
else

begin int2 := h X (aX (F(O)-F(l.0) Xcos(k))+
bXsumsine+gXoddsine);
if abs(prevint2-int2) <epsXint2/\n>5 then

begin sint := int2; bool := true; go to LO end
else

begin n := n + l;
if n > subdivmax then

begin bool : = true;
sint := int2; go to LO

end;

255-P 1- 0

sumsine : = sumsine + oddsine; h : = .5 X h;
t : = .5 X t; tn 1 : = 2 X tn 1;

prevint2 : = int2; go to Ll
end

end
end of sine computations;

£2: if cosine then
begin

oddcos := F(h) X cl;
for 1: : = 2. step 1 until tnl do
begin temp := cl X cO - sl X sO;

sl := sl X cO +cl X sO;
cl := temp;
oddcos := F((2Xi-l)Xh) X cl + oddcos

end;
if n = 1 then

begin n := 2; h := .25; t := .25 X k; tnl := 2;
previntl := (aXF(l.O)Xsin(k)+bXsumcos+gXoddcos)

x .5;
sumcos : = sumcos + oddcos; bool : = true; go to Ll

end
else

begin intl := h X (aXF(l.O) Xsin(k) +bXsumcos+gX
oddcos);
if abs(previntl-intl) < eps X intl /\ n > 5 then

begin cint : = intl; go to exit end
else

end

begin n : = n + 1;
if n > subdivmax then begin cint : = intl;

go to exit end;
sumcos : = sumcos + oddcos; h : = .5 X h;

t := .5 X t; tnl := 2 X tnl;
previntl : = intl; go to Ll

end

end of cosine computations;
exit: end FOURIER

REFERENCES:

1. HAMMING, R. W. Numerical Methods for Scientists and Engi
neers. McGraw-Hill, 1962, pp. 319-321.

2. TRANTER, C. J. Integral Transforms in Mathematical Physics.
Methuen & Co., Ltd., 1951, pp. 67-72.

3. FILON, L. N. G. On a quadrature formula for trigonometric
integrals. Proc. Roy. Soc. Edinburgh 49, 1928-29, 38-47.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 255 [C6]
COMPUTATION OF FOURIER COEFFICIENTS

[Linda Teijelo, Comm. ACM 8 (May 1965), 279)
GILLIAN HALL* AND VALERIE A. RA Yt {Recd. 31 .Mar.

1969 and 1 July 1969)
National Physical Laboratory, Teddington, Middlesex,

England
* M.R.C. team, Division of Computer Scienc~ (formerly of Di
vision of Numerical and Applied Mathematics).
t Division of Numerical and Applied Mathe~atics.

KEY WORDS AND PHRASES: numerical in;tegration, Fourier
coefficients, Filon's method
CR CATEGORIES: 5.16

The algorithm was translated using the KDF9 Kidsgrove
ALGOL compiler, and needed the following corr~ction.

The tests for convergence on lines 51 and 83 should read re
spectively:

if abs(prevint2-int2) < eps X abs(int2) /\ n >. 5 then
if abs (previntl-intl) < eps X abs (intl) /\ n >i 5 then

With this alteration, the program was tested !successfully on a
series of functions F(x) using a range of value$ of m and eps for
each function. The parameter subdivmax was $et at the recom
mended value, 10. For F(x) = x 2 , for which tha method is exact,
results were obtained correct to machine accuracy, i.e. 10! deci
mal places.

Remarks. (i) It would be better to declare: the identifier tnl
as type integer, i.e. to replace lines 20 and 21 ot the text by:

cO, cl, sO, sl, intl, int2, previntl, prevint2, t3, temp;
integer n, i, tnl; Boolean bool; ,

(ii) There is no indication, after execution of the algorithm,
whether the computation was terminated because of apparent
convergence or because the number of times, n,· that the interval
was halved became greater than subdivmax. The following modifi
cation provides such an indication; it has the effect that cosine
and sine will retain their entry values except in the case where
cosine or sine has the value true on entry and n becomes greater
than subdivmax in the course of computation. In this case the value
on exit will be false.

Line 3 becomes:

value eps, subdivmax, m; real eps, cint, sint;

Line 57 becomes:

sint := int2; sine := false; go to LO

Line 88 becomes:

cosine := false; go to exit end;

(iii) To avoid the repeated evaluation of f'(O), F(l.O) the
following modification is suggested:

Declare a new variable terml of type real on line 20.
Replace lines 23 and 24 by: '

terml := F(l.0) X cos(k);
sumcos := (F(O)+terml) X 0.5;
sumsine := O;
terml := 2 X (sumcos-terml);

Replace lines 44, 45 and 49, 50 by:

prevint2 := (aXterml+bXsumsine+gXoddsine) X 0.5;
begin int2 := h X (aXterml+bXsumsine+gXoddsine);

Replace lines 76, 77 and 81, 82 by:

previntl := (bXsumcos+gXoddcos) X 0.5;
begin intl := h X (bXsumcos+gXoddcos);

255-P 2 0

The work described above has been carried out at the National
Physical Laboratory.

COLLECTED ALGORITH:MS FROM CACM

ALGORITHM 256
MODIFIED GRAEFFE METHOD [C2]
A. A. GRAU (Recd. 29 July 1964, 23 Oct. 1964 and 18

Jan. 1965)
Northwestern University, Evanston, Illinois

The algorithm given here mechanizes a modified form of the
Graeffe process designed to avoid an expanding number range.
This was discussed in [1]; the notation used below is the same as in
that article.

Let the given polynomial be

aox" + ... +an;

the degree n and the array of coefficients a are input parameters of
the procedure. An additional input parameter w is used to deter
mine the number of stages needed to obtain a desired order of
resolution; this may be considered to be roughly the number of
significant decimal places expected in the zeros of the polynomial.

The algorithm finds the moduli, d. (s = 1, · · · , n), of the zeros
of the polynomial and the number of stages used for this, p. If the
algorithm succeeds, the output parameter q is set equal to O;
otherwise, the value of q serves as the indicator for the reason of
failure: q = 1 if the polynomial has a zero-valued coefficient, and
q = 2 if a zero-valued divisor is encountered somewhere in the
process. In either case, the moduli of the zeros arc not found.
Apart from these two cases, the algorithm applies generally; this
includes the cases where some zeros have equal moduli or are
imaginary.

The algorithm has been tested with polynomials of degree up to
10, including ill-conditioned cases such as polynomials with one or
more sets of multiple or imaginary zeros. The algorithm has been
compiled as it stands using both the Oak Ridge ALGOL Translator
for the Control Data 1604 and the SHARE ALGOL Translator for the
IBM 709/7090. In the case of the latter, one change as noted in a
comment had to be made; this is presumably no longer necessary
in a revision of the translator.

Garwick's device [2] is used as convergence criterion in both
root extraction and the basic process. From w and the number of
stages determined from it, it is possible to conclude whether some
zeros may be considered to be of equal moduli; in such cases an
adjustment of their values is possible and is made.

The quantities used in the modified Graeffe process are related
to those occurring in the ordinary root-squaring process. This
implies that in general the limitations of the Graeffe process (see,
for example [3, pp. 67-69]) hold also in the modified process; the
most serious of these is that initially the condition of successive
polynomials may deteriorate.

An expanding number range is avoided by introducing at each
.,,tep arithmetic divisions. It follows that if Ci is near zero, over
ancl underflow can occur in computing subsequent quantities. In
the usual machine system, such a condition results in the auto
matic termination of computation; in this case this is not serious.
In an ALGOL system where this is not true, a very unsatisfactory
arrangement generally, machine-dependent facilities must be
added to the algorithm to obtain the same effect; the ALGOL lan
guage contains no way of doing this. Theoretically a bridging
mechanism is possible to work around near-zero divisors, but this
has not been attempted here.

256-P 1- 0

The modified process can be expected to perform somewhat
better than the standard process in the case of equal moduli.

procedure Modified Graeffe (w, n, a, d, p, q);
value w, n; integer w, n, p, q; array a, d;

he gin
real aa, eps, eps2, h, hl, h2, hh2, m, nh2;
integer i, k, kO, kOO, s, s3;
array c[O:n], dl, hh[l:n], e[l:n, l:n/2]; comment Using the

SHARE processor, the last subscript bound n/2 was replaced by
entier(n/2);

eps := eps2 := io-5;
kOO : = 40; comment This is the maximum number of stages

needed on the CDC 1604 where about 10 significant decimal
figures may be obtained. On the IBM machines it is less, but
the figure was not changed for such use;

for s : = 0 step 1 until n do
begin if a[s] = 0 then begin q .- 1; go to out end end;

Determine the number of stages:
kO : = entier (3.56 X w + 3.21);
if kO > kOO then kO : = kOO;

Initialization:
for s := 1step1 until n do
begin

ifs + s > n then s3 := n-s else s3 := s;
for i : = 1 step 1 until s3 do

e[s, i] := a[s+il X a[s-i]/(a[s+i-1] X a[s-i+l]);
dl[s] :=abs (a[s]/a[s-1])

end;
c[O] := c[n] .- 1;
m := 1;

Main loop:
for k : = 1 step 1 until kO do
hegin

m := m/2;
for s := 1step1 until n-1 do
hegin

ifs + s > n then s3 := n-s else s3 .- s;
h := O;
for i := s3 step -1until1 do

h := (1-h) X e[s, i]; .
c[s] := 1 - 2 X h;
if c[s] = 0 then
begin q := 2; go to out end

end;
for s := 1 step 1 until n do
he gin

if s + s > n then s3 : = n -s else s3 . - s;
for i : = 1 step 1 until s3 do
begin

h : = (c[s+iJ/c[s+i-1]) X e[s, i];
e[s, i] := (c[s-i]/c[s-i+l]) X e[s, i] X h;

end;
comment In the paper [1] on which the algorithm is based,

there is an error in equation (13) and results derived from
it. The equation should be

c (k-t:l) c (k+.1)
(k+l) - [(k)]2 s+i s-1 .

e si - esi (k+l) (k+l) '
Ca+i-1 Cs-i+l

COLLECTED ALGORITHMS (cont.)

Root extraction :
aa :=abs (c[s]/c[s-1]);
comment If the i operation is suitably implemented for

fractional exponent, the following 12 lfoes may be replaced
by

hh[s] :=hl :=aa j (1/2jk);
hl := h := 1 + (aa-1) X 10-2 X m; .
nh2 := 1;

AB: for i := 1step1 until k doh := h >< h;
h2 := (aa/h-1) X m;
h : = hl : = hl + hl x h2;
hh2 : = abs (h2);
if hh2 > eps then go to AB;
if hh2 < nh2 A hh2 ~ 0 then
begin

nh2 := hh2; go to AB
end;
hh[s] := hl;
dl[s] := dl[s] X hl

end;
h := O;
for s := 1 step 1 until n do
begin

hl := pbs (hh[s]-1);
if hl > eps then go to AC;
if hl > h then h : = hl

end;

if h < eps2 A h ~ 0 then
begin eps2 := h; go to AC end;
go to Root determination;

AC: end Main loop;
k := kO;

Root determination:
q := O; p := k; s := 1;

BA: for i := s step 1 until n do
begin

if abs (c[i]-1) < eps2 then
begin k := i; go to AE end

end;
k := n;

A E: if k = s then
begin

d[s] : = dl[s]; go to AG
end
else
begin

aa := 1;
for i := s step 1 until k do

aa := aa X dl[i];

comment If the i operation is suitably implemented for
fractional exponents, the following 13 lines may be replaced
by

hl := dl[s];
nh2 := 1;

AF: h := 1;

h := aa i (l/(k-s+l));

for i := s step 1 until k do
h := h x hl;
h2 := (aa/h-1)/(k-s+l);
hl := hl + hl x h2;
hh2 : = abs (h2) ;
if hh2 > eps then go to AF;
if hh2 < nh2 A hh2 ~ 0 then
begin

nh2 := hh2; go to AF
end;

for i .- s step 1 until k do d[i] := hl
end;

256-P 2- 0

TABLE 1

Coefficients (a8) I Actual Zeros I p I Computed Moduli (ds)

RESULTS FROM CDC 1604

3. 000000000
• 1. 000000000

1 -1 -5 -1 -6 / ±i -2 3 29

1 2 3 2 2 ±i -l±i 35 1. 414213563
1.000001068

1 4 6 4 1 -1 (four-fold) 35 1. 002108373
. 9999999400

1 -5 -15 125 -226 120 1 2 3 4 -5 5 . 000000000
2. 999999999
1. 000000000

15101051 -1 (five fold) 21 1.003023179
1. 000737942

. 9977555433

1 1 -45 35 524 -1236 720 1 2 3 4 -5 - 6 9 5. 999999999
3. 999999998
2. 000000000

1 6 15 20 15 6 1 -1 (six-fold) 22 1. 009739721
1. 00007 2156

. 9902827716

==================----------
RESULTS FROM IBM 709

1 6 15 20 15 6 1 -1 (six-fold)

10 1 10 45 120 210 252 210 120 -1 (ten-fold)
45 10 1

10 1 -55 1320 -18150 157773 12345678
-902055 3416930 -8409500 9 10
12753576 -10628640 3628800

AG: if k = n then go to out;
s := k + 1;
go to BA;

out:
end Modified Graejf e

22

23

10

1. 0442011
1. 0219216

.97855264

1.1896983
1.0977241
1. 0001204

. 91099190

. 84044056

10.001153
8.0090868
6.0027695
3.9999811
2.0000007

2. 000000000
1. 000000000

1. 414213563
. 9999989324

. 9999999404

. 9978961853

4.000000001
2. 000000000

1. 0007 37942
. 9977 5554;33

5. 000000001
3. 000000001
1. 000000000

1. 009739721
1. 000072156

. 9902827715

1.0219216
. 97855264
. 95767000

1.1896983
1.0977241
1.0001204

. 91099190

. 84044056

8. 9947183
6.9926022
4. 9996995
2. 9999883
1.0000000

Tests. Some of the tests (Table 1) were run on the CDC 1604
using an earlier version of the algorithm; minor improvements in
corporated afterwards should not affect the results substantially.
The results obtained using the SHARE ALGOL translator and the
IBM 709 suffer in comparison to those obtained on the 1604 for two
main reasons: (1) significance of floating-point numbers is 27 bits
vs. 35, and (2) input conversion routines introduce greater per
turbations into input numbers. The last cases given are very
poorly conditioned, so that the rather poor results should not be
especially surprising.

Thanks and acknowledgements are due to several members of
the Mathematics Division of Oak Ridge National Laboratory for
running tests on the Control Data 1604, and to Mrs. Virginia
Klema for running tests on the IBM 709 computer at Northwestern
University.

REFERENCES:

1. GRAU, A. A. On the reduction of number range in this use of the
Graeffe process. J. ACM 10 (1963), 538-544.

2. GARWICK, J. V. The limit of a converging sequence. Nord
Tidskr. Informationsbehandlung (BIT) 1 (1961), 64.

3. WILKINSON, J. H. Rounding Errors in Algebraic Procesess.
Prentice-Hall, New York, 1964.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 256 [C2]
MODIFIED GRAEFFE METHOD [A. A. Grau, Comm.
ACM 8 (June 1965), 379]
G. STERN (Recd. 8 Mar. 1965 and 24 Mar. 1965)
University of Bristol Computer Unit, Bristol 8, England

This procedure was tested on an Elliott 503 using the two
simplifications noted in the comments on page 380. When the 16th
line from the bottom of page 380, first column, was changed to read

hl := aa j (1/(k-s+l));
(as suggested in a private communication from the author) correct
results were obtained.

256--P 3- 0

COLLECTED ALGORITH1)1S FROM CACM

ALGORITHM 257
HAVIE INTEGRATOR [DI]
ROBERT N. KumK (Recd. 9 June 1964 and 2I Dec. 1964)
The Babcock & Wilcox Co. Lynchburg, Viriginia

real procedure havieintegrator (x, a, b, eps, integrand, m);
value a, b, eps, m; integer m;
real integrand, x, a, b, eps;

comment This algorithm performs numerical integration of defi
nite integrals using an equidistant sampling of the function and
repeated halving of the sampling interval. Each halving allows
the calculation of a trapezium and a tangent formula on a finer
grid, but also the calculation of several higher order formulas
which are defined implicitly. The two families of approximate
solutions will normally bracket the value of the integral and
from these convergence is tested on each of the several orders of
approximation. The algorithm is based on a private communica
tion from F. Havie of the Institutt for Atornenergi Kjeller Re
search Establishment, Norway. A FoRTRAN version of the al
gorithm is in use on the Philco-2000. A few test cases have been
run on the Burroughs B5000. In particular, a and bare the lower
and upper limits of integration, respectively, eps is the con
vergence criterion, integrand is the value of the function to be
integrated (sampled), and m is the maximum order approxima
tion to be considered in attempting to satisfy the eps conver
gence criterion. If convergence is not gained, then the value
returned is that of the nonlocal variable, mask. The parameter
integrand must be an expression involving the variable of in
tegration x. See the driver program of this algorithm for ex
amples of the procedure call;

begin real h, endpts, sumt, sumu, d;
integer i, j, k, n;
real array t, u, tprev, uprev[l :m];
x :=a; endpts :=integrand; x := b; endpts := 0.5 X

(integrand+endpts);
sumt := 0.0; i := n := 1; h := b - a;

estimate: t[l] := h X (endpts+sumt); sumu ::::;: 0.0;
comment t[l] = h X (0.5Xf[OJ+f[lJ+f[2J+ · · · +0.5Xf[2i-l]);
x := a - h/2.0;
for j := 1 step 1 until n do
begin

x := x + h; sumu := sumu +integrand
end;
u[l] := h X sumu; k := 1;
comment u[l] = h X (f[l/2J+f[3/2l+· · · +![(2'-1)/2]), k

corresponds to approximate solution with truncation error
term of order 2k;

test: if abs(t[k]-u[k]) s eps then
begin

havieintegrator := 0.5 X (t[k]+u[k]); go to exit
end;
if k ~ i then
begin

d:=2j(2Xk);
t[k+l] := (dXt[k]-tprev[k])/(d-1.0);
tprev[k] := t[k];
u[k+ll := (dXu[k]-uprev[k])/(d-1.0);
uprev[k] : = u[k];

257-P 1- I

comment This implicit formulation of the higher order m
tegration formulas is given in [ROMBERG, W. Vereinfachte
Numerische Integration. Det Kong. Norske Videnskabers
Selskabs Forhandl. 28, 7 (1955), Trondheim; and in STIEFEL,
E. Einfuhrung in der Numerische Mathematik. Teubner
Verlagsges., Stuttgart, 1961, pp. 131-136. (English transla
tion: An Introduction to Numerical Mathematics, Academic
Press, New York, 1963, pp. 149-155)]. See also Algorithm 60
where the same implicit relationship is used to calculate
tfk+ll only;

k := k + 1;
if k = m then
begin:

havieintegrator
end;
go to test

mask; go to exit

end;
h := h/2.0; sumt := sumt + sumu;
tprev[k] : = t[k]; uprev[k] : = u[k);
i := i + l; n := 2 X n;
go to estimate;

exit: end havieintegrator

Following is a driver program to test havieintegrator.
begin comment First test case, y = {"~ 2 cos x dx = 1.0

(0.9999999981 as executed on the B5000), is an example of the
higher order approximations yielding fast convergence as in
Algorithm 60; second test case, y = / 4

0
3 e-"' 2 dx = .8862269255

(.8862269739 as executed on the B5000), is an example where
this algorithm is superior to Algorithm 60 because the higher
order approximations converge more slowly than the linear
approximations; see also [THACHER, H. C., JR., Remark on
Algorithm 60. Comm. A.C.M. 7(July1964), 420];

real a, b, eps, mask, y, answer;
a := 0.0; b := 1.5707963; eps := 0.000001; mask := 9.99;
answer := havieintegrator (y, a, b, eps, cos(y), 12);
outreal (1, answer);
a := O.O; b := 4.3;
answer : = havieintegrator (y, a, b, eps, exp(-yXy), 12);
outreal (1, answer) ;

~nd

CERTIFICATION OF ALGORITHM 257 [DI]
HA VIE INTEGRATOR [Robert N. Kubik, Comm. ACM

8 (June 1965), 38I]
KEKNETH HILLSTROM (Recd. 28 Feb. 1966, 29 Apr. 1966

and 15 July 1966)
Applied Mathematics Division, Argonne National Labora

tory, Argonne, Illinois
Work performed under the auspices of the U.S. Atomic Energy Commission.

Havie Integrator was coded in CDC 3600 FORTRAN. This rou
tin~ and a FORTRAN-coded Romberg integration routine based
upon Algorithm 60, Romberg Integration [Comm. ACM 4 (June
1961), 255] were tested with five and four integrands, respectively.

The results of these tests are tabulated below. (The ALGOL
coded Havie routine was transcribed and tested for the two
integrands used by Kubik, with identi~R.l results in both cases.)

COLLECTED ALGORITHMS (cont.)

In the following ·table, A is the lower limit
0

of the interval ot
integration, Bis the upper limit, EPS the conv-ergence criterion,
VI the value of the integral and VA the value of the approxima
tion.

Number
of

Integrand Al B EPS VI Routine VA Fune-
lion

Evalu-
a lions

cos x 0 7f/2 10-6 1.0 Ha vie 0. 9999999981 17
Romberg 1. 000000()00 17

e-z' 4. 3 10-6 0. 886226924 Ha vie 0. 886226924 17
Romberg 0. 886336925 65

ln x 10 10-6 14.0258509 Ha vie 14. 02585084 65
Romberg 14. 02585085 65

(~~) 20 10-6 5. 7707276 Ha vie 5. 770724810 32, 76\J
ez-4+ 1

Romberg 5. 770724810 16,385

cos (4x) 11" 10-6 0.0 Ha vie 3.1415926536 3"'

"Since in the Havie procedure, the sample points of the interval, chosen for
function evaluation, are determined by halving the interval and are, therefore,
function-independent, there are functions for which the convergence criterion is
Batisfi.ed before the requisite accuracy is obtained. An example is the integrand
f(x) = cos (4x) integrated over the interval [0, 11"]. The value obtained from the
routine is = 11". The true value of the integral is O.

This inherent limitation applies to all integration algorithms that obtain sample
points in a fixed manner.

CERTIFICATION OF ALGORITHM 257 [Dl]
HAVIE INTEGRATOR [Robert N. Kubik, Comm.

ACM 8 (June 1965), 381]
I. FARKAS (Recd. 29 Apr. 1966 and 18 Aug. 1966)
Institute of Computer Science, University of Toronto,
Toronto 5, Ont., Canada

Ilavieintegrator was translated with some modifications into
FORTRAN IV and was run on the IBM 7094 II at the Institute of
Computer Science, University of Toronto. To reduce the effect of
roundoff, the calculations were carried through in double preci
sion internally and the result was rounded to single precision. The
main change made was that the parameters x and integrand in
havi:eintegrator were replaced by a single parameter of type FUNC
TION in FORTRAN IV. The other change was that mask was re
moved. The maximum order of approximation was kept less than
or equal to 25, and convergence was obtained in every case.

The results obtained for the two test cases were in agreement
with the author's result. Besides, 14 other successful tests were
made and those shown in: Table I are typical.

TABLE I

Integrand A B True value eps Error X 108 Order
required

------·---·~·----

e"' 0.0 1.0 1.7182818 10-6 0 3
10-4 240 2
10-2 3700 2

x12 0.01 1.1 .26555932 10-6 -2
10-4 59 3.
10-2 36041 2

vx 0.0 1.0 .66666667 io- 6 -27 3
10-4 -1982 2
10-2 -126848 2

I/vx 0.01 1.0 1.8000000 10-s 0 3
10-4 140 2
10-2 790 2

257-P 2- 0

Like other integration algorithms that determine sample points
in the interval in a deterministic manner, havieintegrator may fail
in certain instances. For example, any integrand with the property
thatf(a) = f\b) = f[(a + b)/2)] will lead to the value (b - a)f(a)
which will in general not be an acceptable approximation to
f ab J(x) dx. Thus J~11' sin2 x dx leads to 0. Moreover, f~0

xe-x dx leads
to "almost zero" (in fact, 5.7966 X 10-17

).

COLLECTED ALGORITI-JMS FROM CACM

ALGORITHM :l58
TRANSPORT [H]
G. BAYER (Recd. 4 May 1964 and 4 Mar. 1965);
Technische Hochschule, Braunschweig, Germany

procedure transport (c, x, a, b, m, n, inf, cost);
value m, n, inf; integer m, n, inf, cost;

integer array c, x, a, b;
comrnent The parameters are c[i,j] array of costs, the quantities

available a[i], the quantities required b[j], · i = 1, · · · , m, j =
1, · · · , n. Sum of a[i] = sum of b[j]. inf has to be the greatest
positive integer within machine capacity, all quantities have to
be integer. The flows x[i, jj are computed by the "primal-dual
algorithm,'' cited in [HADLEY, G. Linear Programming. Read
ing, London, 1962, pp. 351-367]. The procedure follows the de
scription given on p. 357. Multiple solutions are left out of
account;

begin integer i, j, p, h, k, y, t, l;
integer array v, xsj, s, r, listv[l :n], u, xis, d, g, listu[l :m];
Boolean array xb[l :m, 1 :n];
integer procedure sum(i, a, b, x); value a, b;

integer i, a, b, x;
he gin integer s;

s := O;
for i := a step 1 until b dos
sum := s

end;

s + x;

comment Array xb for notation of "circled cells,'' listu and
listv lists of labeled rows and columns. Other notations follow
Hadley;

for i 1 s.tep 1 until m do xis[i] : = a[i];
for j : = L step 1 until n do xsj[j] : = b[j];
for i := 1 step 1 until m do
begin h : = z'.nf; for j : = 1 step 1 until n do

hegin x[i, j] := O; p := c[i, j]; if p < h then h pend;
u[i] := h;
for j := 1 step 1 until n do

xb[i, j] := if c[i, j] = h then true else false
end u[i];
for j := 1 step 1 until n do
begin h := inf;

aa:

for i := 1 step 1 until m do
begin if xb[i, j] then

begin v[j] := O; go to aa end;
d[i] := p := c[i, il - u[i];
if p < h then h . - p

end;
v[j] := h;
for i := 1 step 1 until m do
begin if d[i] = h then xb[-i, i] .- true end;

end v[i];
for j := 1 step 1 until n do listv[j] := O;
for i := 1 step 1 until m do listu[i] := O;

s2: for i := 1 step 1 until m do
begin for j := 1 step 1 until n do

begin if xb[i, il then
begin h := x[i, il := if xsJ°[j] ~ xis[i]

then xsj[j] else xis[i];
xsj[i] : = xsj[j] - h;
xis[i] := xis[i] - h

end
end

end;
s03: if sum(j, 1, n, xsj[j]) = 0 then go to s6;

fOI' j := 1 step 1 until n do s[j] r[j] := O;
h := O; k := 1;

s3: fo1· i := 1sfep1 until m do
begin if xis[i] > 0 then

begin d[i] := xis[i]; g[i] := 2 X n;
for j := 1 step 1 until n do
begin if xb[i, j] /\ r[j] = 0 then

258-P I- 0

begin s[J"] := d[i]; r[j] := i; listv[k] := j; k := k -j 1;
if xsj[j] > h then
begin h := xsj[j]; p := j end

end
end

end
else d[i] : = g[i] : = 0

end;
s53: if k = 1 then go to s13;

l := 1;
fork := 1 step 1 until n do
begin j := listv[k]; listv[k] := 0; if j = 0 then go to s3~~;

for i := 1 step 1 until m do
begin if xb[i, j] /\ x[i, j] > 0 /\ g[i] = 0 then

begin d[i] := if x[i, j] ~ s[j]
then x[i, j] else s[jl;
g[i] := j; listu[l] := i; l := l + 1

end
end

end;
s33 : if l = 1 then go to s 13 ;

k := 1;
for l := 1 step 1 until m do
begin i : = listu [l]; listu [l] : = 0; if i = 0 then go to s43;

for j := 1 step 1 until n do
begin if xb[i, j] /\ r[j] = 0 then

begin s[j] := d[i]; r[j] := i; listv[k] := j; k .- k + 1;
if xsj [j] > h then
begin h := xsj[j]; p := j end

end
end

end;

s43: go to s53;
sl3 :; comment end of labeling process;

if h > 0 then go to s4 else
if sum(j, 1, n, xsj[j]) = 0 then go to s6 else go to s5;

s4: k := p;
h :=if s[k] < xsj[k] then s[k] else xsj[k];

s41: y := r[k]; x[y, k] := x[y, k] + h;
xis[y] := xis[y] - h; xsj[k] := xsj[k] - h;
t := g[y]; if t = 2 X n then go to s03; x[y, t] := x[y, t] - h;
xis[y] := xis[y] + h; xsj[t] := xsj[t] + h; k := t; go to s41;

s5: h := inf;
for i := 1 step 1 until m do
for j := 1 step 1 until n do
begin if g[i] -;t. 0 /\ r[j] = 0 then

begin p : = c[i, j] - u[i] - v[j];
if p < h then h : = p

end
end;

COLLECTED ALGORITHMS (cont.)

for i := 1 step 1 until m do
begin if g[i] ~ 0 then u[i] := u[i] + h end;
for j := 1 step 1 until n do
begin if r[j] ~ 0 then v[JJ := v[j] - h encl;
for i := 1 step 1 until m do
for j := 1 step 1 until n do
begin if c[i, j] = u[i] + v[j] then xb[i, j] : = true end;
go to s03;

s6: cost := sum(i, 1, m, a[i]Xu[i]) + sum(j, 1, n, b[j]Xv[j])
end;

REMARK ON ALGORITHM 258 fH]
TRANSPORT [G. Bayer, Comm. ACM 8 (June 1965), 381]
G. BAYER (Recd. 11 Jl'l.ne 1965)
Technische Hochschule, Braunschweig, Germany

The following correction should be made in the procedure.
Change the second line above the label s6 from

begin if c[i,j] = w[i]+v[j] then xb[i,j] : = true end;
to

xb[i,j] := c[i,j] = u[i] + v[j];

CERTIFICATION OF:

ALGORITHM 258 [H]
TRANSPORT

[G. Bayer, Comm. ACM 8 (June 1965), 381]
ALGORITHM 293 [H]
TRANSPORTATION PROBLEM

[G. Bayer, Comm. ACM 9 (Dec. 1966), 869]

LE1JJ S. S1Ms (Recd. 21 Feb. 1967 and 17 Mar. 1967)
Kates, Peat, Marwick & Co., Toronto, Ont., Canada

Both of these algorithms were coded in Extended ALGOL 60
and tested on a Burroughs B5500. Three problems were solved
correctly, one of them being of medium size (55 X 167). On this
larger problem transpl was found to be about twice as fast as
transport.

In coding and debugging transpl three a:pparent errors were
found. In the right-hand column on page 870, after line 27 which is

i := listu[u]; nlvi := nlv[i];
a line is missing. This line should read

for s := (i-1) X n + 1 step 1 until nlvi do
Also in the right-hand column, the line

s4: ;
should be inserted ahead of line -12, which begins

comment Step 4. A column j with b[j] has been labeled, b[j]
On page 871, in the left-hand column, line -2:2 which reads

for s := 1 step 1 until n do
should read

for s := l step 1 until n do

258-P 2- Rl

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 259
LEGENDRE FUNCTIONS FOR A,RGUMENTS

LARGER THAN ONE* [S16)
WALTER GAUTSCH! (Recd. 5 Mar. 1965)
Purdue University, Lafayette, Ind. and Argonne National

Laboratory, Argonne, Ill.
*Work performed in part under the auspices of the U.S. Atomic Energy

Commission.

begin
comment Control is transferred to a nonlocal label, called

alarm, whenever the input variables are not in the intended
range;

procedure integer Legendre 1 (x, a, nmax, P);
value x, a, nmax; integer a, nmax; real x; array P;

comment This procedure generates the asso~iated Legendre
functions of the first kind,

(x2 _ 1) n/2 da+n
p an(x) = -- (x2 - l)a,

2a a! dxa+n

for n = O(l)nmax, assuming a ;?:: 0 an integer, and x > 1. The
results are stored in the array P. The method of computation is
derived from the (finite) continued fraction

(n + a)Fn/Fn-i = (n + a) (a+ 1 - n) (n + a+ 1) (a - n)
nx1 + (n + l)x1 +

(n +a+ 2) (a - n - 1) ... 2a']

(n + 2)x1 + (1 ~ n ~ a),

where Fn Pan(x)/ (n+a) !, x1 = 2x(x2-n--', and the identity

a

Fo + 2 L Fn = [x+(x2-l)!Ja/a!.
n=l

If x is very close to 1, the computation of x1 is subject to can
cellation of significant digits. In such cases it would be better
to use y = x-1 as input variable, and to compute (x 2-l);
by [y(2+y)]! everywhere in the procedure bod;y;

begin integer n; real xl, c, sum, r, s;
.array RrlO :nmax-1];
if x < 1 V a < 0 V nmax < 0 then go to aln,.,.m;
if x = 1 V a = 0 then
begin

P[O] := 1; for n := 1 step 1 until nmax do P[n] := O;
go to L

end;
for n := a+l step 1 until nmax do P[n] := O;
xl := sqrt (xi2-1);
c := 1; for n := 2 step 1 until a doc := n X c;
sum := (x+xl)ia/c; xl := 2 X x/xl;
r := s := O;
for n := a step - 1 until 1 do
begin

r := (a+l-n)/(nXxl+(n+a+l)Xr); s := r X (2+s);
if n :::;; nmax then Rr[n-1] := r

end;
P[O] := c X sum/(l+s);

259-P ·1- 0

forn := 0step1 until ifnmax _:::;;a then nmax-1 elsea-1 do
P[n+l] := (n+a+l) X Rr[n] X P[n];

L: end integer Legendre 1;
procedure integer Legendre 2(x, m, nmax, d, Q);

value x, m,. nmax, d; integer m, nmax, d; real x; array Q;
comment This procedure generates to d significant digits the

associated Legendre functions of the second kind, Qnm(x), for
n = O(l)nmax, assuming m ;?:: 0 an integer, and x > 1. The
results are stored in the array Q. The procedure first generates
Qom(x) from the recurrence relation

r+l 2rx () () r-1 Qn + -(--)!. Qnr + r + n r - n - 1 Qn = 0
x2

- 1 2 (1)

(r = 1,2, · · · ,m -1)

with n = 0, and the initial values

1 x + 1
Qo0 (x) = - In -- ,

2 x - 1
Qo1(x) = -(x2 - 1)-t.

Then a variant of the backward recurrence algorithm of J. C.
P. Miller is a pp lied to the recursion

(n-m+l)Q'::+1 -- (2n+l)xQnm + (n+m)Q'::-1 = 0
(2)

(n=l, 2, 31 ..).

(For more details see [2]. See also [4] for a very similar al
gorithm.) If m > 1, the leading coefficient in (2) vanishes
for n = m - 1, which invalidates the theoretical justification
for the backward recurrence procedure. Nevertheless, it appears
that the procedure produces valid results for arbitrary m ;?:: 0.
Convergence of the backward recurrence algorithm is slow for
x near 1, but improves rapidly as x increases;

begin integer n, nu, p; real xl, QO, Ql, Q2, epsilon, r;
array Qapprox, Rr[O: nmax];
if x S 1 V nmax < 0 V m < 0 then go to alarm;
xl := sqrt (xi2-1);
Ql := .5 X Zn ((x+l)/(x-1));
if m = 0 then Q[O] := QI else
begin

Q2 := -1/xl; xl := 2 X x/xl;
for n := 1 step 1 until m - 1 do
begin

QO : = Q 1; Q 1 : = Q 2;
Q2 := -n X xl X QI - n X (n-1) X QO

end;
Q[O] := Q2

end;
for n := 0 step 1 until nmax do Qapprox[n] := O;
epsilon := .5 X lOi(-d);
nu := 20 + entier (1.25 X nmax);

LO: r := O;
for n := nu step - 1 until 1 do
begin

r := (n+m)/((2Xn+l)Xx-(n-m+l)Xr);
if n :::;; nmax then Rr[n-1] := r

end;
for n :=0 step 1 until nmax-1 do Q[n+ll :=Rr[n] X Q[n];
for n := 0 step 1 until nmax do
if abs(Q[n]-Qapprox[n]) > epsilon X abs(Q[n]) then
begin

COLLECTED ALGORITHMS (comt.)

for p := 0 step 1 until nmax do Qa.pprox[p] := Q[p];
nu : = nu + 10; go to LO

end
end integer Legendre 2;

procedure integer Legendre 3(x, n, mmax, d, Q);
value x, n, mmax, d; integer n, mmax, d; real x; array Q;

comment This procedure generates to d Bignificant digits, and
stores in the array Q, the Legendre functions of the second kind,
Q,,m(x), for m = O(l)mmax, assuming n ~ 0 an integer, and
:r > 1. The procedure integer Legendre 2 is used to obtain initial
values Qn°, Qn1 , and sub13equent values arc obtained fro.m the
recursion (1) of the preceding comment;

begin integer m; real xl; array Ql[O:n];
if n < 0 V mmax < 0 then go to alarm;
integer Legendre 2(x, 0, n, d, QI); Q[O] : = QHn];
xl := 2 X x/sqrt(xj2-I);
if mmax > 0 then
begin

integer Legendre 2(x, 1, n, d, QI); Q[l] := Ql[n]
end;
for m : = 1 step 1 until mmax-1 do

Q[rn+l] := -m X xl X Q[rn] - (m+n) X (rn-n-1) X Q[m-1]
end integer Legendre 3;
procedure Legendre l(x, alpha, nmax, d, Pl);

value x, alpha, nmax, d; integer nmax, d;
real x, alpha; array Pl;

comment This procedure evaluates to d significant digits the
Legendre functions

~ r(a+n+ 1) 111" .
1 an(x) = (- [x + (x2 - l)'l cos t]a cos nt dt

'Irr a+ 1) 0

for n = O(l)nmax, where x > 1 and a is real. The results are
stored in the array Pl. It is assumed that a nonlocal procedure
gamma be available which evaluates t(z) for O< z ~ 2. (See
[3).) The procedure first generates the quantities fn = Pa"(x)/
l'(a+n+l) from the recurrence relation

2nx n - c~ - 1
fn+i + -(n_+_a_+_1_)-(x2 - l)!fn + n + <~ + 1 fn-1= 0,

:'ind the identity

~ [x + (x2 - l)!]a
fo + 2 L-J f n = ,

n=I I'(a + 1)

applying a variant of the backward recurrence algorithm of
·!. C. P. Miller. (See [2] for more deta:ils.) Then Pan(x) =
r(a+n+l)f n is obtained recursively.If a<-!, we let a= -a-1
and compute Pa"(x) = Pa"(x). The substitution is made to
avoid loss of accuracy when x is large. The rate of convergence
of this procedure decreases as x increases. A general idea of the
speed of convergence may be obtained from the graphs in (2, §6].
Cf x is very close to 1, the same changes as mentioned in the
first procedure are recommended;

begin integer n, nu, m; real a, epsilon, xl, sum, c, r, s;
array Pappr-0x, Rr[O:nmax];
if x < 1 V nmax < 0 V entier(alpha) - alpha = 0 then
go to alarm; if x = 1 then
begin

Pl[OJ := l; for n := 1step1 until mnax do Pl[n] := O;
go to Ll

end;
a. := if alpha < - .5 then - alpha - 1 else alpha;
for n := 0 step 1 until nmax do Pappro.x[n] := O;
epsilon := .5 X lOj(-d);
if a ~ 1 then c := garnma(I+a) else
he gin

m := entier(a) - l; c := gamma(a-m);
for n 0 step 1 until m do c := (a-n) X c

end;

259-P 2- 0

xl := sqrt (xj2-l); sum := (x+xl)ja/c; xl := 2 X x/xl;
nu:= 20 + entier ((37.26+.1283X(a+38.26)Xx)Xnmax/

(37.26+.1283X (a+l) Xx));
LO: r : = s : = O;

for n := nu step - 1 until 1 do
begin

r := (a+I-n)/(nXxl+(n+a+I)Xr); s := r X (2+s);
if n ~ nmax then Rr[n-1] . - r

end;

Pl[O] := sum;ri+s);
for n : = 0 step 1 until nmax - 1 do

Pl[n+l] := Rr[n] X Pl[n];
for n := 0 step 1 until nmax do

if abs (Pl[n]-Papprox[n]) > epsilon X abs (Pl[n]) then
he gin

form := 0 step 1 until nmax do Papprox [m] Pl [m];
nu : = nu + 10; go to LO

end;
Pl[OJ := c X Pl[O];
for n := 1 step 1 until nrnax do
begin

c := (a+n) X c; Pl[n] := c X Pl[n]
end;

/,1: end Legendre 1;

procedure Legendre 2(x, a, m, nmax, d, P2);
value x, a, m, nmax, d; integer m, nmax, d; real x, a;
array P2;

wmment This procedure evaluates to d significant digits the
Legendre functions P'::+n(x) for fixed x > 1, a, m 2. 0, and for
n = O(l)nmax. The results are stored in the array P2. They are
obtained recursively from

m 2n + 2a + 1 m n + a + m m
Pa+n+l(x) = -+ -+

1
xPat-n(x) - -----Pa.;.n-1(x),

n a-m n+a-m+l

the init.ial values being calculated with the help of the proce
dure Legendre 1;

begin integer n; array Pl [O: m];

if m < 0 then go to alarm;
Legendre l(x, a, m, d, Pl); P2[0] := Pl[m];
if nmax > 0 then
begin
Legendre 1 (x, a+I, m, d, Pl); P2[1]
end;

Pl[m]

for n := 1 step 1 until nrnax-1 do
P2[n+ll := ((2Xn+2Xa+l)XxXP2[n]

-(n+a+m)XP2[n-l])/(n+a-m+l)
end Legendre 2;

procedure conical (x, tau, nmax, d, P);
valuex, tau,nmax,d; integernrnax,d; realx,tau; array P;

comm en l This is an adaption of the procedure Legendre 1 to the
case a = -! + ir, where r is real. The procedure thus generates
Mehler's conical functions P'::_!+ir(x) to d significant digits for
n = O(l)nrnax and x > 1. The results are stored in the array P.
To avoid excessively large and excessively small numbers, we
let fn = P~!+ir(x)/n! and first compute fn from the recurrence
relation

2nx (n - !)2 + 7 2
f n+t + (n + 1) (x2 _ l)! fn + n(n + l) f n-1 = 0,

and the identity

Jo+ L ">-nfn
n=I

where

Ir r(! + ir). r(! - ir) 1 hn = n. + _:_:_ __ _
_r(! + ir + n) r(! - ir + n) J

COLLECTED ALGORITHMS (cont.)

The A's are obtained recursively by

1
A ---

1 - t + r2'

3 - 4r2
A2=------

(l + .,-2) (~ + r2) '

1
1 +-

1'.H ~ (I + };;i+ (~)' (21',, -),,,_,)
(n = 2,3,. ..).

The procedure converges rather slowly if x and r are both large
(sec the graphs in §6 of [2]). If the accuracy requirement as
specified by dis too stringent the procedure may not converge
at all due to the accumulation of rounding errors;

begin integer n, nu, m; real epsilon, t, xl, x2, sum, lambda 1,
lambda 2, lambda, r, s; array Papprox, Rr[O:nr~ax];
if x < 1 V nmax < 0 then go to alarm;
if x = 1 then
begin

P[O]
go to L3
end;
t := tauj2;

1; for n .- 1 step 1 until nma.r do Plnl

for n := 0 step 1 until nmax do Papprox[n] := O;
epsilon : = .5 X lOj (-d);
xl := sqrt(xi2-l); x2 := x + xl;
sum:= cos(tauXln(x2))/sqrt(x2); xl := 2 X x/xl;

O;

nu:= 30 + entier ((l+(.140+.0246Xtau) X (:i:-l))Xnmax);
f_,O: n := 2;

lambda 1 : = 1/(.25+t);
lambda 2 := (3-4Xt)/((.25+t) X (2.25+t));

f.,1: lambda := (1+1/n) X (2Xlambda 2-lambda 1)/
CC1+.5/n)j2 + (tau/n)j2);
if n <nu then
begin
lambda 1 : = lambda 2, lambda 2 . - lambda;

n : = n + 1; go to LI
end;
r := s := O;

L2: r := -((1-.5/n)i2+(tau/n)j2)/(xl+(l-f-l/n)Xr);
s : = r X (lambda 2+s);
if n S nmax then Rr[n-1] := r;
lambda 1 := lambda 2;
lambda 2 := 2 X lambda 2 - ((1+.5/n)j2+(tau/n)j2)

X lambda/(1+1/n);
lambda : = "lambda 1 ;
n := n - 1; if n ~ 1 then go to L2;
P[O] := sum/(I+s);
for n := 0 step 1 until nmax - 1 do P[n+ll := Rr[n] X P[n];
for n : = 0 step 1 until nmax do

if abs (P[n]-Papprox[n]) > epsilon X abs(P[n]) then
begin

form := 0 step 1 until nmax do Pappro:i:[m] := Ptm];
nu := nu '. 60; comment To avoid an infinite loop in

case of divergence the user should provide for an upper
bound on nu, say 1000, and exit from the procedure when
nu exceeds this bound, printing an appropriate error
message;

go to LO
end;
:= l;

for n : = 1 step 1 until nmax do
begin

t := n X t; P[n] := t X P[n]
end;

259-P 3

J,3 : end conical;

procedure toroidal (x, m, nmax, d, Q);
value x, rn, nmax, d; integer m, nmax, d; real x; array Q;

comment This procedure generates to d significant digits the
toroidal functions of the second kind, Q'.'.'.~+n(x), for n = 0(1)
nmax, where x > 1, and m is an integer, positive, negative or
zero. The method of computation is based on the recurrence
relation

(n-m+!)Q:'.!+n+1(x) - 2nxQ".'!+n(x) + (n+m-!)Q".''1+11-1(x) = 0,

and the identity

Q".'!(x) + 2 :t Q::'.!tnCx) = C-l)m /~ r(m + t)(x -·1)-!(:r~±-!:)m 12 ,
n=l '\J 2 X - 1

to which a variant of J. C. P. Miller's backward recurrence
algorithm is applied. (See [2] for more details.) The convergence
of this procedure is slow for x near 1, and improves rapidly as x
increases;

begin integer n, nu, p; real epsilon, xl, c, sum, r, s;
array Qapprox, Rr[O:nmax];
if x S 1 V nmax < 0 theri go to alarm;
for n := 0 step 1 until nmax do Qapproxln] := 0:
epsilon := .. 5 X lOj(-d);
c : = 2.2214414691;
if m ~ 0 then

for n := 0 step 1 until m-1 doc := - (n+.5) X c
else

for n := 0 step -1 until m+l doc := -c/(n-.5);
sum:= c X ((x+l)/(x-l))j(m/2)/sqrt(x-1); xl := 2 Xx;
nu := 20 + entier ((l.15+(.0146+.00122Xm)/(x-l))Xnmax);

LO: r := s := O;
for n := nu step -1 until 1 do
begin

r := (n+m-.5)/(nXxl~(n-m+.5)Xr); s r X (2+s);
if n S nmax then Rr[n-1] := r

end;
Q[O] := sum/(l+s);
forn := Ostepluntilnmax - 1 doQ[n+ll := Rr[n] X Q[n];
for n := 0 step 1 until nmax do

if abs(Q[n]-Qapprox[n]) > epsilon X abs(Q[n]) then
begin

fo1· p := 0 step 1 until nmax do Qapprox[p] := Q[p];
nu := nu+ 10; go to LO

end
end toroidal;
comment All procedures were tested on the CDC 3600 computer.

Some of the tests that were run are described below;
comment The procedures integer Legendre 1-3 were driven to

print test values to 6 significant digits of Pnm(x), Qmn(x), Qnm(x),
m = 0(1)10, for x = 1.5, 3, 10, and n = 0(1)5. As far as pos
sible, the results were compared with values tabulated in [5],
and found to be in complete agreement. Similarly, test values of
P:'.t+n(x), m = 0(1)4, were obtained from the procedure Legendre
1, for x = 1.5, 3, 10, and n = 0(1)5. All agreed with values
tabulated in [5]. More extensive tests could be run by having
the procedure "verify" the addition theorem

Pa(xy-y(x2 - l)y(y2 - 1)) = Pa(x)Pa(y)

~ r(a -m+ 1)
+2L.t (-l)m ()Pam(x)P<xm(y), x>l,y>l;

m=l r a+m+ 1

comment The procedure conical (with d=6) was run to produce
test values of P".'!+fr(x), m = 0, 1, for x = 1.5, 5, 10, 20, and
r = 0(10)30. The results agreed to 6 significant digits with
those in [10], [11];

comment . The procedure toroi'dal was driven to generate test
values to 6 significant digits of Q".'!+n(x), Q:f+n(x), n = 0(1)5,

COLLECTED ALGORITHMS (cont.)

for x = 1.5, 3, 10, and m = 0(1)4. All values of Q~i+n(x) were
checked against those in [5]. There were no discrepancies. The
values of Q=T+n(x) were compared with those of [r(n-m+!)/
r(n+m+!)JQ~i+n(x). The largest relative error observed was
1.510 - 9, occurring at m = 4, n = 5, x = 1.5;

commel.it Integrals of the form

rw/2
fnCk2, a) = (-1)" Jo {1 - k2 sin2 ¢']a cos 2n¢' df, 0 < k < 1,

are repeatedly encountered in applied mathematics (see, e.g.,
[6]-[9], where a = -!, or a = -~).It is readily seen that

7r r(a + 1) (2 - k2
)

fnCk2,a) = (-1)"2 r(a+n+l) (1 - k2)at2pan 2y(l - k2) .

The program that follows generates (l-k2)f n (k2, a), n =

0(1)10, for a = -!. -i, and k2 = .1, .5, .9, calling for an ac

curacy of 6 significant digits. Selected results are shown below.

a k2 n (1 - k2) fn.(k2, a)

-1.5 .1 0 1.5307576an
5 5 .24564404:7210-8

10 9 .080164866710-16
.5 1 3 .437822884910- l

4 2. 829584442310 - 3
7 1.821595488010-5

.9 2 4 .861556123710- l
6 5.287840870810-2
9 8. 81077 4395410 -3

-2.5 .1 0 1.6169191877
5 2. 396902298410 - 7

10 7 .3394117106io-15
.5 l 8 .472130846310- l

4 1.494014960510-2
7 1.476430268410-4

.9 2 4.9389962376
6 9. 707320038310- l
9 2 .169517031710- l

Those for a = -! were compared with values tabulated in [6].
There was agreement in all four decimal places given;

begin integer n; real alpha, k2, c; array Pl[O:lO];
for alpha := -1.5, -2.5 do
for k2 :== .1, .5, .9 do

begin
c : = 1.570796327 X (1-k2) j (1 +alpha/2);
Legendre 1 (.5X(2-k2)/sqrt(l-k2), alpha, 10, 6, Pl);
for n := 0 step 1 until 10 do
begin

Pltn] := c X Pl[n]; c := -c/(n+alpha+l);
out real (1, Pl f n])

end
end;

go to skip;
alarm: ovtstring (1, 'parameters not in range');

259-P 4-R 1

skip: end;
comment The integrals

nj(k) = [" (1 - k2 cos q,)-h def>, 0 ~ k < 1, j = o, 1, 2,. ..

arose in recent radiation field studies ([1]). One has

fl;(k) = 7r(l-k4)-<HiJt2p_i+i((l-k4)-i).

The program below calculates Qi(k) to 8 significant digits for
k2 = .2(.2) .8, j = 0(1)9. The results agree to 8 figures with the
values tabulated in [1];

begin integer j; real k2, x, xl; array P2, omega [0:9];
for k2 := .2 step .2 until .9 do
begin

x := 1/sqrt(l-k2j2);
Legendre 2(x, - .5, 0, 9, 8, P2);
xl := 3.1415926536 X sqrt(x);
omega [O] := xl X P2[0];
for j := 1 step 1 until 9 do
begin

xl := x X xl; omega[j] := xl X P2[j]
end;
for j := 0 step 1 until 9 do outreal (1, omega[}])

end;
gd to skip;

alarm: outstring (1, 'parameters not in range');
skip: end
end

REFERENCES:
1. EPSTEIN, L. F., AND Ht:BBELL, J. H. Evaluation of a general

ized elliptic-type integral. J. Research NBS 67 B (1963), 1-17.

2. GAUTSCHI, W. Computational aspects of three-term recur
rence relations. Unpublished.

3. --. Algorithm 221-Gamma function. Comm. ACM 7
(Mar. 1964), 143.

4. HERNDON, J. R. Algorithm 62-A set of associate Legendre
polynomials of the second kind. Comm. ACM 4 (July 1961),
320-321; Remark on Algorithm 62. Comm. ACM 4 (Dec.
1961)' 544.

5. NBS Tables of Associated Legendre Functions. Columbia Uni
versity Press, New York, 1945.

6. RIEGELS, F. Formeln und Tabellen fi.ir ein in der raumlichen
Potentialtheorie auftretendes elliptisches Integral. A rchiv
der Mathematik 2 (1949/50), 117-125.

7. SIEKMANN, J. Concerning an integral occurring in airfoil
theory. SI AM Review 3 (1961), 243-246.

8. --. Analysis of ring aerofoils of elliptic cross section, Part
I: General theory. J. SIAM 11 (1963), 941-963.

9. --. Note on a Riegels-type integral. Z. Angew. Math. Phys.
15 (1964)' 79-83.

10. ZURIN A, M. I., AND KARMAZINA, L. N. Tablicy funkciI Le.Zan
dra P-i+fr(x), Vol. I. Akad. Nauk SSSR, Moscow, 1962.

11. --, AND --. Tablicy funkcii Le.Zandra P~!+ir(X). Akad.
Nauk SSSR, Moscow, 1903.

ACM Transactions on Mathematical Software, Vol. 3, No. 2, June 1977, Pages 204-205.

REMARK ON ALGORITHM 259

Legendre Functions for Arguments Larger than One [816]
[W. Gautschi, Comm. ACM 8, 8 (Aug. 1965), 488-492]

J.K.M. Jansen [Recd 24 May 1976 and 12 August 1976]
Technological University, Eindhoven, The Netherlands

The purpose of the changes presented here is to simplify the procedures developed
by Gautschi, in particular to remove the necessity of calling the gamma-function
routine in procedure Legendre 1.

COLLECTED ALGORITHMS (conti>

(i) procedure integer Legendre 1
(1) Replace F n = pan(x) I (n + a) !

by Fn = Pan(x)Xa!/(n +a)!
(2) Replace F0 + 2L~=l Fn = [x + (x2

- 1)112]a/a!
by Fo + :2L~=l Fn = [x + (x2

- 1)112]a
(3) Replace real xl, c, sum, r, s;

, by real xl, sum, r, s;
(4) Omit the statements

c := 1; for n i= 2 step 1 until a doc:= nXc;
(5) Replace sum :~ (x + xl) j a/c;

by sum : = (x + xl) j a;
(6) Replace P[O] := cXsum/(1 + s);

by P[O] :1= sum/(1 + s);

(ii) procedure Legendte 1
(1) Omit the sentEince of the comment

It is assumed that a nonlocal procedure gamma be available which evaluates
r(z) for 0 < z :::; 2. (See [3].)

(2) Replace fn = Pan(x)/r(a + n + 1)
by fn = Pan(x)Xr(a + 1)/r(a + n + 1)

(3) Replacefo + 2L::=ifn = [x +(x2 - l) 1
'

2t/r(a + 1)
by fo + ~L:=ifn = [x + (x2

- l)1
'
2t

(4) Replace Pan(x) = r(a + n + l)fn
by Pan(x) = [r(a + n + 1)/r(a + l)]fn

(5) Omit the statements
if a :::; 1 thel1l'c : = gamma(1 + a) else
begin :

m : =. entier(ia) - 1 ; c : = gamma(a - m) ;
for n := 0 :~tep 1 until m doc:= (a - n)Xc

end;
(6) Replace sum:= (x + xl) j a/c;

by sum :t= (x + xl) j a;
(7) Replace Pl[O] : = cXPl[O];

by c := 1;
(8) During computations it sometimes happens that entier(alpha) - alpha = 0

and consequently the process stops. We remark that if entier(alpha) -
alpha = 0 this algorithm accomplishes the same as the procedure integer
Legendre 1, although in an inefficient manner. To continue the computa
tions we propose to replace
if x < 1 V nmax < 0 V entier(alpha) - alpha = 0 then
by
if x < 1 V nmax < 0 then

The same tests as described by Gautschi were run on the Burroughs B6700 and
Philips P9200 digital computers of the Computer Center of the Technological Uni
versity at Eindhoven and were found to be in complete agreement.

259-P 5- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 260
6-.J SYMBOLS [Z]
J. H. GUNN (Recd. 13 Nov. 1964)
Nordisk Institut for Teoretisk Atomfysik, Copenhagen,

Denmark

real procedure SJS (Jl, J2, J3, Ll, L2, L3, factorial);
value Jl, J2, J3, Ll, L2, L3;
integer Jl, J2, J3, Ll, L2, L3;
array factorial;

comment SJS calculates the G-j symbols defined by the fol
lowing formula

{
jl j.2 j3} = A(jl, j2, j3)"1(jl, l2, l3)"1(ll, j2, l3)"1(ll, Z2, j3)
l1 Z2 l3 X Lz (-l)'(z+l) !/((z-jl-j2-j3) !(z-jl-l2-l3) !

(z-ll-j2-l3) !(z-ll-l2-j3) !(jl+J2+ll+l2-z) !
(j2+J3+Z2+l3-z) l(j3+jl+l3+ll-z) !)

where

[
(a + b - c) ! (a - b + c) ! (-a + b + c) I];

A(a, b, c) = (a + b + c + 1) !

and wherejl = Jl/2, j2 = J2/2, J3 = J3/2, ll = Ll/2, l2 = L2/2'
l3 = L3/2. [Reference formula 6.3.7 page 99 of EDMONDS, A. R.
Angular momentum in quantum mechanics. In Investigations
in Physics, 4, Princeton U. Press, 1957]. The parameters of the
procedure Jl, J2, J3, LI, L2, L3 are interpreted as being twice
their physical value, so that actual parameters may be inserted
as integers_. Thus to calculate the 6-j symbol

{
2 2 Ol
2 2 of

the call would be SJS (4, 4, 0, 4, 4, 0, factorial). The proce
dure checks that the triangle conditions for the existence of a
coefficient are satisfied and that jI + j~~ + j3, jI + l2 + l3,
l1 + j2 + l3 and lI + l2 + j3 are integral. If the conditions
are not satisfied the value of the procedure is zero. The parame
ter factorial is an array containing the factorials from 0 up to
at least 1 + largest of jl + j2 + j3, jI + Z2 + l3, ll + j2 + l3
and l1 + l2 + j3. Since in actual calculations the procedure
SJS will be called many times it is more economical to have the
factorials in a global arrav rather than compute them on every
entry to the procedure. The notation is consistent with that
used in the procedure for calculating Vector-coupling coeffi
cients. See Algorithm 252, Vector Coupling or Clebsch-Gordan
Coefficients [Comm. ACM 8 (Apr. 1965), 2I7];
he gin integer w, wmin, wmax;
real omega;
real procedure delta (a, b, c);

value a, b, c;
integer a, b, c;

begin delta : = sqrt (factorial [(a +b- c) + 21
X factorial [(a-b+c) +2]
X factorial [(-a+b+c)+2]/factorial [(a-t-b+c+2)+2])

end delta;
if Jl + J2 < J3 V abs (JI - J2) > J3 V JI + J2 + J3 ;.!

2 x ((JI+J2+J3)+2)
V JI+ L2 < L3 Vabs(Jl-L2) > L3 V Jl + L2 + L3 ~ 2 X

((JI+L2+L3)+2)

260-P 1- 0

V LI + J2 < L3 V abs (L1-J2) > L3 V Ll + J2 + L3 ~ 2 X
((L1+J2+L3) +2)

V Ll + L2 < J3 V abs(L1-L2) > J3 V Ll + L2 + J3 ~ 2 X
((Ll+L2+J3) +2)

then SJS := 0 else
begin

omega := O;
wmin := Jl + J2 + J3;
if wmin < Jl + L2 + L3 then wmin := Jl + L2 + L3;
if wmin < Ll + J2 + L3 then wmin := Ll + J2 + L3;
if wmin < Ll + L2 + J3 then wmin := Ll + L2 + J3;
wmax : = Jl + J2 + Ll + L2;
if wmax > J2 + J3 + L2 + L3 then wmax : = J2 + J3 +

L2 + L3;
· if wmax > J3 + Jl + L3 + Ll then wmax : = J3 + Jl +

L3 + Ll;
for w := wmin step 2 until wmax do
omega := omega + (if w=4X (w+4) then 1 else -1)

X factorial [w+2+1J/(factorial. [(w-J1-J2-J3)+2]
X factorial [(w-J1-L2-L3) +2]
X factorial [(w-L1-J2-L3)+2]
X factorial [(w-L1-L2-J3) +2]
X factorial [(J1+J2+L1+L2-w) +2]
X factorial [(J2+J3+L2+L3-w) +2]
X factorial [(J3+Jl+L3+Ll-w) +2]);

SJS := delta (Jl, J2, J3) X delta (Jl, L2, L3)
X delta (Ll, J2, L3) X delta (Ll, L2, J3) X omega;

end
endSJS

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 261
9-J SYMBOLS [Z]
J. H. GUNN (Recd. 13 Nov. 1964)
Nordisk Institut for Teoretisk Atomfysik, Copenhagen,

Denmark

real procedure NJS(Jll, Jl2, Jl3, J2l, J22, J23, J31, J32, J33,
factorial);

value JU, J12, Jl3, J2l, J22, J23, J31, J32, J33;
integer JU, Jl2, Jl3, J21, J22, J23, J3l, J32, J33;
array factorfol;

comment NJS calculates the 9-j symbols defined by the follow
ing formula

{

jU jl2 jl3 I { ·11 ·21 '311
121 j22 j23 (= Lk c-1) 2kc2k+l) 1. 1. . 1 l
j31 j32 j33 J 132 133 k r

{
j12 j22 j32\{j13 j23 j33}
j2l k j23(k jll jl2 .

where jU = JU/2, jl2 = Jl2/2, jl3 = Jrn/2, j21 = J21/2,

j22 = J22/2, j23 = J23/2, j31 = J31/2, j32 = J32/2, j33 =
J33/2 [Reference formula 6.4.3 page 101 of EDMONDS, A. R.
Angular momentum in quantum mechanics. In Investigations
in Physics, 4, Princeton U. Press, 1957]. The parameters of the
procedure JU, Jl2, Jl3, J2l, J22, J23, J3l, J32, J33 are inter
preted as being twice their physical value, so that actual param
eters may be inserted as integers. Thus to calculate the 9-j
symbol

{
2 2 o}
.2 2 0
0 0 0

the call would be NJS (4, 4, 0, 4, 4, 0, 0, 0, 0, factorial). The
procedure checks that the triangle conditions for the existence
of a coefficient are satisfied and that jll + j21 + j31, j21 +
j22 + j23, j31 + j32 + j33, jll + jl2 + jl3, jl2 + j22 +
j32, jl3 + j23 + j33 are integral. If the conditions are not
satisfied the value of the procedure is zero. The parameter fac
torial is an array containing the factorials from 0 up to at least
1 + largest of jll + j2l + j31, j21 + j22 + J23, j31 + j32 +
j33, jll + jl2 + jl3, jl2 + j22 + j32, jl3 + j23 + j33. The
procedure makes use of the procedure SJS [Algorithm 260,
6-j symbols, Comm. ACM 8 (Aug. 1965), 492], for calculating
6-j symbols;

begin integer k, kmin, kmax;
real NJ;
if JU + J2l < J3l V abs(Jll-J2l) > J3l V Jll + J2l +

J3l ¢ 2 x ((Jll +J21 +J31) + 2)
V J21 + J22 < J23 V abs(J2l-J22) > J23 V J21 + J22 +

J23 ¢ 2 X ((J2HJ22+J23)+2)
V J31 + J32 < J33 V abs(J3l-J32) > J33 V J31 + J32 +

J33 ¢ 2 X ((J3HJ32+J33)+2)
V Jll + Jl2 < Jl3 V abs (Jll-Jl2) > Jl3 V Jll + Jl2 +

J13 ~ 2 x ((Jll+J12+Jl3)+2)
V J12 + J22 < J32 V abs (Jl2-J22) > J32 V Jl2 + J22 +

J32 ¢ 2 x ((J12+J22+J32) +2)
V J13 + J23 < J33 V abs(Jl3-J23) > J33 V J13 + J23 +

J33 ¢ 2 x ((Jl3+J23+J33) +2)

then NJS := 0 else
begin NJ := O;

kmin := abs(J2l-J32);

261-P 1- 0

if kmin < abs(Jll-J33) then kmin := abs(Jll-J33);
if kmin < abs(J12-J23) then kmin := abs(J12-J23);

kmax := J21 + J32;
if kmax > Jll + J33 then kmax : = Jll + J33;
if kmax > J12 + J23 then kmax : = J12 + J23;

fork := kmin step 2 until kmax do
NJ := NJ + (if k=2X (k+2) then 1 else -1) X (k+l) X

SJS(Jll, J2l, J3l, J32, J33, k, factorial) X
SJS(J12, J22, J32, J2l, k, J23, factorial) X
SJS(Jl3, J23, J33, k, Jll, Jl2, factorial);

NJS :=NJ
end

end NJS

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 262
NUMBER OF RESTRICTED PARTITIONS OF N

[Al]
J. K. S. McKAY (Recd. 7,Dec. 1964 and~) Mar. 1965)
Computer Unit, University of Edinburgh. Scotland

procedure set (p, N); integer N; intege1r array p;
comment The number of partitions of n with parts less than

or equal to m is set in p[n, m] for all n, m such that N ;::: n ;:::
m;::: 0.

REFERENCES:

1. GUPTA, II., GwYTHER, C. E., AND MILLE:R, J.C. P. Tables of

partitions. In Royal Society Mathematical Tables, vol. 4,
Cambridge U. Press, 1958.

2. HARDY, G. H., AND WRIGHT, E. M. The Theory of Numbers.
Ch. 19, 4th ed., Clarendon Press, Oxford, 1960;

begin integer m, n;
p[O,O] := 1;
for n := 1 step 1 until N do
begin pfn, OJ := O;

form := 1 step 1 until n do
p[n, m] := p[n, m-11 +

p[n-m, if n-m<m then n-m else m]
end

end set

262-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 263
PARTITION GENERATOR (Al]
J. K. S. McKAY (Recd. 7 Dec. 1964 and 9 Mar. 1965)
Computer Unit, University of Edinburgh,. Scotland.

procedure generate (p, N, position, ptn, length);
integer array p, ptn; integer N, length, po~ition;

comment The partitions of N may be mapped in their natural
order, 1 - 1, onto the consecutive integers from 0 to P(N)-1
where P(N) (=p[N, NJ) is the number of unres~ricted partitions
of N. The array p is set by the procedure setl [Algorithm 262,
Number of Restricted Partitions of N, Comrh. ACM 8 (Aug.
1965), 493}. On entry position contains the integer into which
the partition is mapped. On exit length contains the number of
parts and ptn[l: length] contains the parts of the partition in
descending order.

REFERENCE:

1. LITTLEWOOD, D. E. The Theory of Group Characters. Ch. 5,
2nd ed., Clarendon Press, Oxford, 1958;.

begin integer m, n, psn;
n := N; psn := position; length := O;

A: length := length+ 1; m := 1;
B: ifp[n, m] < psn then begin m := m + 1; go to Bend else

if p[n, mJ > psn then
C: begin

ptn[length] := m; psn := psn - p[n, m-·1]; n ~= n - m;
if n ~ 0 then go to A ; go to D

~nd

else m := m + I; go to C;
D: end generate

263-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 263A
GOMORY 1 [HJ
II. LANGMAACK (Recd. 17 June 1964 and 13 May 1965)
Mathematisches Institut der Techni.schen Hochschule,

Munchen, Germany

When testing Algorithm 153 GOMORY [F. L. Bauer, Comm.
ACM 6 (Feb. 1963), 68] in ALGOL on the SIEMENS 2002 and
TELEFUNKEN TR4 computers and in PROSA (assembler
code) on the SIEMENS 2002 computer I found that some correc
tions were necessary. After discussions with Prof. Dr. Bauer I
wish to submit the following remarks on Algorithm 153 GOMORY
and on Certification of Algorithm 153 GOMORY [B. Lefkowitz and
D. A. D'Esopo, Comm. ACM 6 (Aug. 1963), 449]. The improved
algorithm GOMORY 1 is presented below.

1. The evaluation of the integer number t[j] in the algorithm
GOMORY or t in the revised form of the algorithm GOMORY is
not correct, since t[j] (or t) must be the la,rgest integer number
such that column j of the matrix a is not lexicographically less
than cofomn l multiplied by t[j] (or t), provided such a t[j] (or t)
exists. A suitable change is incorporated in the algorithm
GOMORY 1 given below.

2. The second remark deals with the fact that a theoretically
correct ALGOL program may not necessarily run correctly when
translated into a particular machine language and run on that
machine. In general real numbers are represented only approxi
mately and the mathematical division indicated by the A1,GOL
operator / is transformed into the approximate operation of ma
chine division. There are two possibilitie:3 that the algorithm
GOMORY might fail:

A. The lambda calculated by

abs (a[r, j]/t[j])

in the algorithm GOMORY (or by

--a[r, j]/t

in the revised form of the algorithm GOMORY) may be less than
the exact theoretical value of lambda. This may lead to columns
which are lexicographically negative, but this situation is not
allowed.

B. The quantities c[j] (or c) calculated by

entier (a[r, j]/lambda)

may be different from the exact values, a situation which may
lead to incorrect matrix transformations.

To avoid these unwanted effects the author suggests remedying
the problem in the following way:

a. Since lambda is only an intermediate result, it is proposed
to keep the numerators and denominators of the candidates for
lambda separate and to compare them by cross multiplication.

b. It is preferable to compute

A/lambda

by

(A X denominator of lambda)/numerator of lambda

where A is an integer type expression.

263A-P 1-- 0

c. In the algorithm GOMORY there are statements of the

form

C := entier (A/B)

where C is an integer variable, and A and B are integer type
expressions. In order to prevent roundoff errors the result C
should be checked to make sure that

CXB5,A<CXB+B

and corrected if these inequalities are not satisfied.
The corrections, a, b, c, lead to a program which cannot fail

unless the products developed should overflow. However, anyone
who wishes to use the algorithm may pref er to do some analysis
of the particular division his computer performs and seek an al
ternative which is not as time-consuming. Many machines have a
built-in Euclidean division instruction for integer numbers
which would be very useful for Gomory's algorithm. Unfortu
nately ALGOL translators are not likely to produce this instruction
in their object programs since an arithmetical expression A/Bis
a real type expression by definition.

procedure Gomory 1 (m, n) transient: (a) exit: (no solution);

value m, n;
integer m, n;
integer array a;
label no solution;

comment Gomory 1 algorithm for all~integer programming.
The objective of this procedure is to determine the integer solu
tion x[l], ... , x[n-1] of a linear programming problem with inte
ger coefficients only. In other words: The problem is to find
integer numbers

x[l], · · · , x[n-1]
minimizing the objective function

a[O, 1] X x[l] + · · · + a[O, n-1] X x[n-1]
under the constraints

x[l] ~ 0, · · · , x[n-1] ~ 0
and

a[i, 1] X x[l] + · · · + a[i, n--1] X x[n-1] 5, a[i, n]
for i = 1, · · · , m-n+l (2 5, n S m).

The tableau matrix a used by the procedure consists of m+l
rows and n columns. The components are a[i, j] for i = 0, 1,
· · · , m, j = 1, · · · , n.

The input values for the components are given partly by the
problem itself (see above). The remaining components must
have been previously assigned in the following manner:

a[O, n] := 0
and

a[i, j] := if i = j + m - n + 1 then -1 else 0
for i = m-n+2, .. · , m, j = 1, · · · , n. The tableau columns,
with the exception of the last column, have to be lexicographically
positive.

The algorithm is finished if all entries in the last column,
except the topmost entry, are non-negative. Then -a[O, n] is
the value of the objective function. The optimal solution
x[l], ... , x[n-1] is given by the n--=1 components a[m-n+2, n],
· · · , a[m, n] of the last column of a.

The exit no solution is used if a row is found which has a
negative entry in the last column, but otherwise only non
negative entries;

COLLECTED ALGORITHMS (cont.)

begin integer i, k, j, l, r, c, t, s, lamb® num, lambda denom;
integer procedure Euclid (u, v);

value u, v;
integer u, v;

begin integer w;
w := entier (u/v);

LS: if w X v > u then
begin w := w-1; go to LS end;

L9: if (w+l) X v ::; u then
begin w := w+l; go to L9 end;
Euclid:= w

end Euclid;
Ll: for i := 1 step 1 until m do if a [i, n] < O then

begin r := i; go to L2 end;
go to end;

L2: fork:= 1step1 until n-1 do if a[r, k] < 0 then go to L4;
go to no solution;

L4: l := k;
for j := k+l step 1 until n-1 do if a[r, j] < 0 then

begin i := O;
L3: if a[i, j] < a[i, l] then l := j else

if a[i, j] = a[i, l] then
begin i := i+l; go to L3 end

end;
s := O;

L5: if a[s, l] = 0 then
begins := s+l; go to L5 end;
lambda num := -a[r, l];
lambda denom : = 1;
for j := 1step1 until l-1, l+l step 1 until n-1 do

if a[r, j] < 0 then
begin
for i := 0 step 1 until s-1 do if a[i, j] ¢ 0 then go to L7;
t :=Euclid (a[s, j], a[s, l]);
if (tXa[s, l] = a[s, j]) /\ (t> 1) then
begin i := s;

L6: i := i+l;
if tXa[i, l] = a[i, j] then go to L6 else
if tXa[i, l] > a[i, j] then t : = t-1

end;
if -a[r, j] X lambda denom > t X lambda num then
begin lambda num := -a[r, j]; lambda denom := t,end;

L7: end;
for j := 1step1 until l-1, l+l step 1 until n do

begin c := Euclid (a[r, j] X lambda denom, lambda num);
if c ~ 0 then
for i := 0 step 1 until m do

a[i, j] := a[i, j} + c X a[i, l]
end;

go to Ll;
13nd:
•~nd

CERTIFICATION OF ALGORITHM 263A [H]
GOMORY 1 [H. Langmaack, Comm. ACM 8 (Oct.

1965), 601-602]
L. G. PRoLL (Recd. 15 Sept. 1969)
Department of Mathematics, University of

Southampton, U .K.
KEY WORDS AND PHRASES: linear programming, integer
variables, dual method
CR CATEGORIES: 5.41

Algorithm 263A was coded in ALGOL for an ICL 1907 computer
a.nd ran successfully without alteration. Execution times and

263A-P 2- RI

pivot counts for a sample of 12 published examples are given in
Table I.

Problem 1 is taken from Haley [1, ·p. 127]. Problems 2, 3, and 4
are Balas [2, ex. 2, 3, 4] in which the variables were not restricted
to be 0 or 1. Problems 5-10 are IBM [3, test problems 1-5 and 9].
Problems 11 and 12 are Pierce [4, ex. 1, 2].

Wilson [5]' has shown that it is possible to derive potentially
stronger cuts than those of Gomory with little extra computation.

TABLE I
-··---·--

Problem m n No. of pivots Time (sec.)

1 13 10 13 1
2 17 11 8 1
3 13 10 35 1
4 18 13 600t
5 14 8 9 1
6 14 8 16 1
7 10 8 16 1
8 30 16 17 2
9 30 16 2569 248

10 65 16 600t
11 41 32 5 2
12 31 27 5 2

t termination not reached

Wilson's cuts can be incorporated into GOMORY 1 by means of
the following alterations:

(a) in the declarations at the head of the procedure body, insert
Boolean null, nflag;

(b) in the line commencing L4: l := k; insert the stat ment
null := true;

(c) replace L7: end; by
L7: end

else null : = false;
c := Euclid (a[r, n]Xlambda denom, lambda num);
s := -(c+l); t := -a[r, n]; nflag :=true;
if null then go to LlO;
for j : = 1 step 1 until n - 1 do if a[r, j] > 0 then
begin c := Euclid (a[r, j]Xlambda denom, lambda num);

ifs X a[r, j] < t X c then
begin t := a[r, j]; s := c; nflag := false end

end;

LlO: if s X lambda num < t X lambda denom then
begin lambda num : = if nflag then 100 X t - 1 else t;

lambda denom : = if nflag then 100 X s else s
end;

(d) replace the line commencing
begin c := Euclid(a[r, j]Xlambda denom, lambda num);

by
begin c := if lambda denom ~ 0 then Euclid(a[r, j]X

lambda denom, lambda num)
else if a[r, j] < 0 then -1 else O;

Problem

7
9

TABLE II

No. of pivots

7
2238

Time (sec.)

1
235

COLLECTED ALGORITHMS (cont:.)

With these alterations some reduction in the number of pivots
needed to solve problems 7, 9 was observed. New pivot counts
and execution times for these problems are given in Table II.
Execution times for the problems not listed in Table II were
unaltered.

REFERENCES:
1. HALEY, K. B. Mathe1/'/,atical Programming for Business and

Industry. Macmillan, New York, 1968.
2. BALAS, E. An additive algorithm for solving linear programs

with zero-one variables. Oper. Res. 13 (1965), 517-545.
3. HALDI, J. 25 integer programming test problems. Working

Paper No. 43, Grad. Sch. of Bus., Stanford U., Stanford,
Calif., 1964.

4. PIERCE, J. F. Application of combinatorial programming to a
class of all zero-one integer programming problems. Man.
Sci. 15 (1968), 191-200.

5. WILSON, R. B. Stronger cuts in Gomory's all-integer integer
programming algorithm. Oper. Res. 15-(1967), 155-156.

263A-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 264
MAP OF PARTITIONS INTO INTEG~RS [Al]
J. K. S. McKAY (Recd. 7 Dec. 1964 and 9 Mar. 1965)
Computer Unit, University of Edinburgh, Scotland

integer procedure place(p, n, ptn) ~ value n;
integer array p, ptn; integer n;

comment place is the inverse of the procequre generate [Al
gorithm 263, Partition Generator, Comm. ACM 8 (Aug. 1965),
493]. The array p is set by the procedure se,l [Algorithm 262,
Number of Restricted Partitions of N, Comm. ACM 8 (Aug.
1965), 493]. The procedure produces the in~eger into which
the partition of n, stored in 'descending order: of parts in ptn[l]
onwards, is mapped;

begin integer j, d;
d := O;
if n = 0 then go to B;
j: = O;

A : j : = j + 1; d : = p[n,
if n ~ 0 then go to A ;

B: place := d
end place

'
ptn[j]-1] + d; n :~ n - ptn[}J;

264 p 1-- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 2o4A
INTERPOLATION IN A TABLE (Ell
J. STAFFORD (Recd. 16 Nov. 1964 and 7 June 196.5)
Westland Aircraft Ltd., Saunders-Roe Division, East

Cowes, Isle of Wight, England

real p1·ocedure INPOL(11, X, I, N, OUT, XOUT, EX POL);
value X, N; array T, X; integer I; integer array N;
real XOUT, EX POL; Boolean OUT;

comment Evaluation of a function by polynomial interpola
tion in a table of values.

The values may be specified at arbitra:ry intervals, at nodes
of a multidimensional rectangular grid. The interpolation is
by Neville's process, repeated in each dimension.

The given values are arranged in a one-dimensional real array
T, as follows. The first value in the table, T[O], is D, the number
of independent variables (or dimensions). It will normally be
integral (although of type real), but if not then its integral part
is taken. T[l], T[2], · · · , T[D] are the numbers of values of
Xl, X2, · · · , XD, and must be integral. These are followed by
T[l] values of Xl, T[2] values of X2, · · · T[D] values of XD.
The values of each of these independent variables must all be
distinct and must be arranged in monotonic order. Finally
come the 71 (1] X T[2] X · · · X T[D] value::; of the dependent
variable F(Xl, X2, · · · , XD), arranged M T[D] sets of T[D-1]
sets of · · · of T[2] sets of T[l] values of F'.

The table is represented by a one-dimensional array because
it is not feasible to use a general D-dimensiorral array.

The given values of the independent variables are X[I]
(l=l, 2, ···, D). N[I] of the tabulated values X[f] are used to
interpolate in the Ith dimension. IN POL is the required value
of the function. The actual parameter corresponding to the
formal parameter EX POL should be an expression which pro
vides the value of IN POL if any of the X[I] is outside the range
covered by the array T. If this occurs XOUT is the particular
value of X[I] concerned. The variables I, OUT and XOUT are
declared as formal parameters of IN POL so that they may be
used in the actual parameter corresponding to the formal pa
-rameter EX POL.

An example of a call of IN POL is Z := INPOL(A, X, K, N,
OUT, Y, if K=l then EXTRAPOLATE (A, 1, N, OUT, Y)
else if K=2 then LIMTAB (A, 2, OUT, Y) else Y-2). If
X[l] is outside the range covered by the array A this statement
will use the extrapolatory procedure EXTRAPOLATE (given
below) to provide a value for IN POL. If X[2] is out of range
the procedure LIMTAB (also given below) will be used to
replace the value of X[2] by its value at the nearer edge of the
table, before returning to IN POL to continue the interpolation.
If some other variable (X[3], say) is out of range the value of
IN POL is taken as X[3] - 2.

The procedures INPOL, EXTRAPOLATE and LIMTAB
were tested on an ICT Atlas computer. They were also tested
on a National-Elliott 803 computer, after being altered to
conform· to the restrictions of the 803 ALGOL compiler. The
tests were for D = 0, 1, 2 and 3, and included all special cases;

begin integer D, J, K, L, M, Q, XI;

procedu:re FORS3(N, P, V, UB);
value N; integer N; procedure P;
integer array V, UB;

264A-P l- 0

comment Nesting of for statements, adapted from procedure
Fors 1 [Algorithm 137, Comm. ACM 5 (Nov. 1962), 555];

begin integer J;
if N = 0 then P else for J : = 1 step 1 until U B[N] do

begin V[N] := J; FORS3(N-1, P, V, UB) end
end FORS3;

real procedure NEV(X, AX, SAX, A Y, SAY, N);
value X, SAX, SAY, N; real X; integer SAX, SAY, N;
array AX, AY;

comment One-dimensional interpolation by Neville's process.
N values of the independent variable are used in the inter
polation, namely, N consecutive elements of array AX start
ing at subscript SAX. The corresponding values of the de
pendent variable are the N consecutive elements of array
A Y starting at subscript SAY. X is the value of the inde
pendent variable for which the value of the dependent vari
able (namely, NEV) is to be interpolated;

begin integer I, J, NJ, KI; array F[O: N-1];
for J := 0 step 1 until N - 1 do F[J] .- AY[SAY + JJ;
for J := 1 step 1 until N - 1 do
begin

NJ:= N - J - 1;
for I := 0 step 1 until NJ do
begin

KI:= SAX+ I;
F[I] := (F[I+l]-F[I]) X (X-AX[Kl])/

(AX[KI +JJ-AX[KI]) + F[I]
end;

NEV:= F[O]
end NEV;

D := entier (T[O]);
comment D = number of dimensions. The special case D = 0

implies that the tabulated function Fis a constant, the value
of which is T[l]. The same value is taken if D < 0;

if D < 1 then INPOL := T[l] else
begin XI := 1;

for I := 1 step 1 until D do
begin

if N[I] < 2 then N[I] := 2;
if N[I] > T[l] then N[I] := T[I];
comment Adjustment of number of points used for inter

polation. Normally N[I] must be at least 2, and if N[I] < 2
it is set equal to 2. N[I] also may not exceed the number
of values of the independent variable in the correspond
ing dimension (namely, T[I]), and if it does so it is re
duced accordingly.

The combination of these two tests, in this order,
permits as a special case one-point interpolation in any
particular dimension (I, say), if T[I] = 1. This implies
that the dependent variable is independent of X[I]. If
this is intended then the actual parameter corresponding
to the formal parameter EX POL must be a function
designator which (if called for) replaces the value of
XOUT by the single value of the Ith variable from the
array T. (Procedure LIMTAB may be used for this
purpose.)

Since array N is called by value none of these adjust
ments affects the values of N[l] in the nonlocal array N;

XI := XI+ Nfl]

COLLECTED ALGORITHMS (con't.)

end I;
begin array F[l: XI-N[l]]; integer arr.ay V, XINIT,

YING [1: D];

procedure ON EWA Y;
comment Performs an interpolation in the first dimen

sion. If this is the last of a set of N[2] such interpola
tions, a further interpolation is performed in the second
dimension, and so on to as many higher levels as neces
sary;

begin F[V[l]] := NEV (X[l], T, XINIT[l], T, Q, L);
I:= 1; M := O;
for K : = 1 step 1 until D - 1 do
begin Q := Q + YINC[K];

if V[K] ~ N[K] then go to CONTINUE else
begin M := M + N[K];

F[M+V[K+l]] := NEV(X[K+ll, T, XINIT[K+lJ,
F, I, N[K]);

I:= I+ N[K]
end

end;
CONTINUE:
endONEWAY;

Q := XI := D + 1; M := 1;
for I := 1 step 1 until D do
begin K := XI+ T[I] - 1;

OUT:= (X[I] - T[XI]) X (X[I] - T[K]) > O;
if OUT then
begin

XOUT := X[I]; IN POL:= EX POL; X[IJ := XOUT;
if T[O] ~ 0

then begin K := K + T[O]; T[OJ :=== D end
end;

comment If X[I] is outside the range covered by the
table, the extrapolatory expression EX POL is evalu
ated. It is expected that it will often be or contain one
or inore function designators, together with criteria
for choosing between them, as in the example above.

EXPOL may incorporate, e.g., any of the following
alternatives. In the first and third of these the side
effects are the important ones, the value assigned to
EX POL being merely a dummy to conform with Section
5.4.4 of the Revised Report on Algol 60 [Comm. ACM 6
(Jan. 1963), 1-17].
1. EX POL may be a function designator which uses

the interpolatory formula to extrapolate by executing
the statement OUT:= false and returning to IN POL.
The last N[I] values of X[I] are used in the formula,
but EX POL may arrange to use the first N[I] values
instead (which will usually be preferable if X[I] lies
beyond the lower limit of the table) by executing the
statement T[O] : = N[I] - T[I] (in which the value of
the local N[I] is to be used if it differs from that of
the nonlocal N[I]). The procedure EXTRAPOLATE
(given below) may be used for this purpose.

2. EXPOL may use some other formula to extrapolate,
after which it must return to IN POL without altering
the value of the Boolean variable OUT. If this is all
that is required the actual parameter corresponding
to EX POL may be an ordinary arithmetic expression
containing no function designators.

3. EX POL may be a function designator which con
strains X[I] to lie within range by replacing it by the
value of the Ith variable at the near:er limit of the
table (or by some other value). In doing this it must
operate on the value of XOUT and not directly on

A:

264A--P 2 0

X[I]. The nonlocal array X will not be affected.
EXPOL must also execute the statement OUT :=

false before returning to IN POL. The procedure
LIMTAB (given below) may be used for this purpose.

4. EXPOL may do something else and continue the
program without returning to IN POL (e.g., by a go
to statement referring to a nonlocal label). This
should be considered an error exit as the value of
IN POL will be undefined (see Section 5.4.4 of the
Revised Report on Algol 60);

·if OUT then go to B;
comment If OUT = true on exit from INPOL then

extrapolation has occurred. The converse is not neces
sarily true, as it depends on the nature of the actual
parameter corresponding to the formal parameter
EX POL;

J :=XI;
L := (J+K) + 2;
if (X[I]-T[J]) X (X[I]-T[L]) > O then J := L else

K := L;
if K - J > l then go to A; comment Find X[l] in

table;
L := K - N[I] + 2;
if L ~XI then L := XI else
begin

K :=XI+ T[I] - N[I]; if L > KthenL := K
end Adjustment near edge of table;
Q := Q + T[I] + (L - XI) X M; XINIT[I] := L;
XI:= XI+ T[I];
YINC[I] := M X (T[I] - (if /=1 then O else N[I]));
M := M X T[I]

end I;
V[D] := 1; L := N[l];
for I:= 1step1 until D - 1 do N[I] := N[I+l];
FORS3(D-1, ONEWAY, V, N); INPOL := F[M+lJ

end scope of F
end D ~ 1;

B:
end IN POL;

real procedure EXTRAPOLATE(T, I, N, OUT, XOUT);
array T; integer I; integer array N; Boolean OUT;
real XOUT;

comment This function designator is intended for use in the
actual parameter corresponding to the formal parameter
EX POL in a call of procedure IN POL. The parameters have
the same significance as in IN POL.

EXTRA POLA TE arranges for the interpolatory formula to
be used to extrapolate for the Ith variable, and for the first
N[I] values of this variable to be used in the formula instead
of its last N[I] values if it lies beyond the lower limit of the
table;

begin integer J, K;
OUT := false; EXTRAPOLATE := O;
comment This statement assigns a dummy value to EXTRAP

OLATE to conform with Section 5.4.4 of the Revised Report
on Algol 60;

J := 1; for K := 0 step 1 until I - 1 do J := J + T[K];
if T[l] = 1 then XOUT := T[J] else

if abs(XOUT - T[J]) < abs(XOUT-T[J +T[/]-1]) then
begin K := N[I];

if K < 2 then K : = 2;
if K > T[I] then K .- T[J];
T[O] := K - T[/]

end
end EXTRAPOLATE;

COLLECTED ALGORITHMS (con't.)

real procedure LIMT AB(T, I, OUT, XOUT);
array T; integer/; Boolean OUT; real XOUT;

comment This function designator is intended for use in the
actual parameter corresponding to the formal parameter
EXPOL in a call of procedure INPOL. The parameters have
the same significance as in IN POL.

LIMTAB replaces the value of XOUT, which is outside the
range of the table, by the value of the Ith variable at the nearer
edge of the table;

begin integer J, K;
J := 1; for K := 0 step 1 until I - 1 doJ := J + T[K];
K := J + T[l] - 1;
UMT AB := XOUT :=. if abs(XOUT-T[J]) >

abs(XOUT-T{K]) then T[K] else T[J);
comment This statement assigns a dummy value to LIMT AB

to conform with Section 5.4.4 of the Revised Report on
Algol 60;

OUT := false
end LIMTAB

264A-P 3- 0

COLLECTED ALGORITHI\1]S FROM CACM

ALGORITHM 265
FIND PRECEDENCE FUNCTIONS [L2]
N1KLAUS WIRTH (Recd. 14 Dec. 1964 and 22 Dec. 1964)
Computer Science Dept., Stanford U., Stanford, Calif.

procedure Precedence (M, f, g, n, fail);
value n; integer n; integer array M, f, g; label fail;
comment Mis a given n X n matrix of integers designating one

of the four relations <, =, >, o. The identifiers ls, eq, gr des
ignate variables declared outside the procedure to which distinct
integers representing the relations <, =, > have been assigned.
This procedure then determines integers f(l] .. . f[n] and g(l]
.. . g[n] such that for all i, ;', f[i] M{i, j] g[j] is true and so that the
smallest of these integers is + 1. o designates the empty relation,
so that x o y is true for arbitrary x, y. If Mis such that no f and g
exist which satisfy all n 2 relations, then control is transferred to
the label parameter fail. This procedure has been used to deter
mine the precedence functions of symbols in a given precedence
grammar (see [FLOYD, R. Syntactic analysis and operator
precedence. J.ACM 10 (1963), 316-333]);

begin integer i, j, k, kl, fmin, gmin;
procedurefixrow (i, l, x); value i, l, x; integer i, l, x;
begin integer j; f[i] := g[Z] :+ x;

if k =kl then
begin if M(i, k] = ls/\ f[i] ~ g[k] then go to fail else

if M[i, k] = eq /\ f[i] ~ g[k] then go to fail
end;
for j := kl step -1until1 do
if M[i, j] = ls /\ f[i] ~ g{j] thenfixcol (i, j, 1) else
if M[i, j] = eq /\ f[i] ~ gU] thenfixcol (i, j, 0)

endfixrow;
procedurefixcol (l, j, x); value l, j, x; integer l, j, x;
begin integer i; g[j] := f[l] + x;

if k ~kl then
begin if M[k,j] = gr/\ f[k] S g[j] then go to fail else

if M[k,j] = eq /\ f[k] ~ g[j] then go to fail
end;
for i := k step -1until1 do
if M[i,j] =gr /\f[i] :=;; g[j] thenfixrow (i, j, 1) else
if M[i, j] = eq /\ f[i] ~ g[j] thenfixrow (i, j, O)

endfixcol;
kl:= O;
fork := 1step1 until n do
begin fmin : = 1;

for j := 1 step 1 until kl do
if M[k, j] = gr/\ fmin :=;; g[j] then fmin :=<= g[jJ+l else
if M[k, j] = eq /\ fmin < g[j] then fmin : == g[j];

f[k] := fmin;
for j := kl step -1 until 1 do

if M[k,j] = ls/\ fmin ~ g[j] thenfixcol (k, j, 1) else
if M[k, j]. = eq /\ fmin > g[j] then fixcol (le~ ;", O);

kl := kl+l; gmin := 1;
for i := 1 step 1 until k do

.if M[i, k] = ls/\ f[i] 2 gmin then gmin :~ f[i]+l else
if M[i, k] = eq /\ f[i] > gmin then gmin := f[i];

g[k] := gmin;
for i := k step -1until1 do

if M[i, k] = gr/\ f[i] :::; gmin thenfixrow (i, k, 1) else
if M[i, k] = eq /\J(i] < gmin thenfixrow (i, k, 0)

end k
end Precedence

265--P 1~ 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 266
PSEUDO-RANDOM NUMBERS [G5]
M. c. PIKE AND I. D. HILL

(Recd. 15 Feb. 1965 and 6 July 196~>)
:Medical Research Council, London, England

real procedure random (a, b, y);
real a, b; integer y;

comment random generates a pseudo-random number in the
open interval (a, b) where a < b. The procedure assumes that
integer arithmetic up to 3125 X 67108863 = 209715196875 is
available. The actual parameter corresponding toy must be an
integer identifier, and at the first call of the procedure its value
must be an odd integer within the limits l to 67108863 inclusive.
If a correct sequence is t0 be gene:rated, the value of this inte
ger identifier must not be changed between successive calls of
the procedure;

begin
y := 3125 x y; y := y - (y+67108864) x 67108864;
random := y/67108864.0 X (b-a) +a

end random

Coveyou [2] showed that for multiplicative congruential
methods of generating pseudorandom numbP-rs, the correlation
between successive numbers will be approximately the reciprocal
of the multiplying factor. Greenberger [3] showed further that the
factor should hP, considerably less than the square root of the
modulus.

The method of Algorithm 133 [1] satisfieB Greenbei·ger's condi
tion, but since the reciprocal of its multiplying factor is as high as
0.2, Coveyou's result shows that it is very unsatisfactory for pur
poses requiring statistically independent consecutive random
numbers.

Algorithms 133 and 266 have both been tested by computing a
number of sets of 2000 successive random integers between 0 and 9,
dividing each set into 400 groups of 5, and performing the poker
test [4]. The results were classified in the following seven cate
gories:

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

all different
1 pair
2 pairs
3 of a kind
3 of a kind and 1 pair
4 of a kind
5 of a kind.

266-P 1- 0

The following tables resulted:

ALGORITHM 133

Run Starting Value (i) (ii) (iii) (iv) (11) (vi) (vii)

--- ---- ------
1 13421773 114 193 42 37 7 7 0
2 22369621 111 181 46 40 14 8 0
3 33554433 130 178 48 28 7 6 3
4 6871947673 118 179 51 35 10 5 2
5 11453246123 128 189 44 28 6 4 1
6 17179869185 135 155 45 52 6 5 2

--- ----------
Expected for each 120.96 201.60 43.20 28.80 3.60 1.80 0.04

Run

Total for 6 Runs 736 1075 276 220 50 35 8
--------!·----------------
Expected for

Total

Run Starting Value

1 13421773
2 22369621
3 33554433
4 8426219
5 42758321
6 56237485
7 62104023

Expected for each
Run

Total for 7 Runs

Expected for
Total

725. 761209 .60 259 .20 172 .8021.6010.80 0.24

ALGORITHM 266

(i) (ii) (iii) (iv) ~1~ (vii)

132 191 35 38 2 2 0
140 187 45 27 0 1 0
129 198 44 25 4 0 0
107 202 50 37 2 2 0
101 207 60 25 5 2 0
118 203 42 34 1 2 0
119 206 41 27 6 1 0

------- -------
120.96 201.60 43.20 28.80 3.60 1.80 0.04

846 1394 317 213 20 10 0

846.72 1411.20 302.40 201.60 25.20 12.60 0.28

Combining categories (vi) and (vii) in each case, the observed
totals give x2 values (on 5 degrees of freedom) of 159.0 for Algo
rithm 133, and of 3.28 for Algorithm 266.

REFERENCES:
1. BEHRENZ, P. G. Algorithm 133, Random. Comm. ACM 5

(Nov. 1962), 553.
2. CovEYOU, R.R. Serial correlation in the generation of pseudo

random numbers. J. ACM 7(1960), 72-74.
3. GREENBERGER, M. An a priori determination of serial correla

tion in computer generated random numbers. Math. Comput.
15(1961), 383-389. Correction in Math. Comput.16(1962), 126.

4. KENDALL, M. G., AND BABINGTON-SMITH, B. Randomness and
random sampling numbers. J. Royal Statist. Soc. 101 (1938),
147-166.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 266 [G5]
PSEUDO-RANDOM NUMBERS [M. C. Pike and I. D.
Hill, Comm. ACM 8 (Oct. 1965), 605]
M. C. PIKE AND I. D. HILL (Recd. 9 Sept. 1965)
Medical Research Council, London, England

Algorithm 266 assumes that integer arithmetic up to 3125 X
67108863 = 209715196875 is available, which is not so on many
computers. The difficulty arises in the statements

y := 3125 x y; y := y - (y+67108864) x 67108864;
They may be replaced by

integer k;
for k : = (for list) do
begin

y := k x y;
y := y - (y+67108864) x 67108864

end;
where the (for list) may be

125, 25 (requiring integer arithmetic up to less than 233)
25, 25, 5 (requiring integer arithmetic up to less than 231)

or
5, 5, 5, 5, 5 (requiring integer arithmetic up to less than 229)

according to the maximum integer allowable. The first is appro
priate for the ICT Atlas. [And also for the IBM 7090, the second
for the IBM Bystem/360 ... Ref.]

Note. There are frequently machine-dependent instructions
available which will give the same values as the above statements
much more quickly, if speed is of much importance.

REMARK ON ALGORITHM 266 [G5]
PSEUDO-RANDOM NUMBERS [M. C. Pike and I. D.
Hill, Comm. ACM 8 (Oct. 1965), 605]
L. HAN8SON (Recd. 25 Jan. 1966)
DAEC, Riso, Denmark

As stated in Algorithm :266, that algorithm assumes that integer
arithmetic up to 3125 X 67108863 = 209715196875 is available. Since
this is frequently not the case, the same algorithm with the con
stants 125 and 2796203 may be useful. In this case the procedure
should read

real procedure random (a, b, y);
real a, b; integer y;

begin
y = 125 x y; y := y - (y+2796203) x 2796203;
random := y/2796203 X (b-a) +a

end

The necessary available integer arithmetic is 125 X 2796203 =
348525375 < 2 j 29. With this procedure body, any start value
within the limits 1 to 2796202 inclusive will do.

Seven typical runs of the poker-test gave the results:

start aalue all different 1 pair Z pairs 3 3-!- pair 4

100001 129 199 39 31 2 0 0
1082857 115 206 45 31 2 1 0
724768 120 195 49 32 3 1 0

78363 130 198 36 31 5 0 0
1074985 127 189 44 34 4 2 0
2567517 124 193 50 28 3 2 0
2245723 119 202 49 24 4 1 1

Totals for 7 runs:

864 1382 312 211 23 7 1

Totals for 100 consecutive runs withfirst start value 100001:

12023 20297 4301 2837 358 181 3

266-P 2- Rt

Certification of Algorithm 266 [GS]
Pseudo-Random Numbers [M.C. Pike and I.D. Hill,
Comm. ACM 8 (Oct. 1965), 605)

Walter L. SuJlins [Recd. 12 Feb. 1971]
School of Education, Indiana State University
Terre Haute, IN 47809

Key Words and Phrases: pseudo-random numbers, testing
random number generators

CR Cate.gories: 5.5

The Pike and Hill Algorithm 266 [2] generates pseudo-random
Ii.umbers in a prescribed open interval. Pike and Hill presented
favorable evidence_ for the serial and poker tests [1] but omitted
discussion of frequency tests.

The purpose of the present certification was to test the hy
pothesis that the numbers generated by the algorithm are rec
tangularly distributed. Nine sequences of numbers in the interval
(O, 1) were generated, and each was divided into 500 blocks of
various lengths. In each case the distribution of numbers was tested
against a uniform distribution, with .1 interval width, by com
puting x2 on nine degrees of freedom for each of the 500 blocks
within the sequence. The results are given in the table below.

Run Starting Block Sequence Pro-
value length length portion

1 32347753 400 200,000 .012
2 52142147 600 300,000 .018
3 52142123 640 320,000 .014
4 53214215 960 480,000 .008
5 23521425 1000 500,000 .006
6 42321479 1040 520,000 .006
7 20302541 1560 780,000 .006
8 32524125 1600 800,000 .010
9 42152159 2600 1, 300,000 .004

The proportions reported are the proportions of the 500 blocks
which produced significant chi-square values when the probability
of incorrectly rejecting the hypothesis of uniformity was set at .01.
Thus there is considerable assurance that the numbers generated
by the algorithm are rectangularly distributed. These findings also
support the algorithm with respect to Yule's [3] recommendation
that block sums be compared with expectation.

References
1. Kendall, M.G., and Babington-Smith, B. Randomness and
random sampling numbers. J. Royal Statist. Soc. 101 (1938),
147-166.
2. Pike, M.C., and Hill, l.D. Algorithm 266: Pseudo-random
numbers. Comm. ACM 8 (Oct. 1965), 605.
3. Yule, G. Udny. A test of Tippett's random sampling numbers.
J. Royal Statist. Soc. JOI (1938), 167-172.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 267
RANDOM NORMAL DEVIATE [Gfi]
M. C. PIKE (Recd. 3 May 1965 and 6 July 1965)
Medical Research Council, London, England

procedure RND(xl, x2, Random);
real procedure Random; real xl, x2;

comment RND uses two calls of the real procedure Random
which is any pseudo-random number generator which will
produce at each call a random number lying strictly between 0
and 1. A suitable procedure is given by Algorithm 266, Pseudo
Random Numbers [Comm. ACM 8(0ct. 19i55), 605] if one chooses
a = 0, b = 1 and initializes y to some larg,e odd number, such as
13421773. RND produces two independent random variables xl
and x2 each from the normal distributiion with mean 0 and
variance 1. The method used is given by Box, G.E.P., AND

MULLER, M.E., A note on the generation of random normal
leviates. (Ann. Math. Stat. 29 (1958), 610-(Hl];

begin real t;
xl := sqrt(-2.0 X Zn(Random));
t := 6.2831853072 X Random;
comment 6.2831853072 = 2 X pi;
x2 := xl X sin(t); xl := xl X cos(t)

end RND

Algorithm 121, NormDev [Comm. ACM 5 (Sept. 1962), 482; 8
(Sept. 1965), 556] also produces random normal deviates and
Algorithm 200, NORMAL RANDOM [Comm. ACM 6 (Aug. 1963),
444; 8 (Sept. 1965), 556] produces random deviates with an approxi
mate normal distribution, but the procedure RND seems pref
erable to both of them.

We may compare NORMAL RANDOM toRND (which is exact)
by noting that at recommended minimum n NORMAL RANDOM
requires 10 calls of Random while RND gets two independent
normal deviates from 2 calls of Random and one call each of sqrt,
Zn, sin and cos. Under the stated test conditions a single call of
NORM AL RAN DOM (with n = 10) took 20 percent more comput
ing time than a single call of RND when the real procedure Random
was given by Algorithm 266.

To compare NormDev to RND in the same way, we have first to
calculate the expected number of calls of ln,. sqrt, exp and Random
:or each call of NormDev. This may be done by noting that there is
(1) an initial single call of Random, then (2) with probability 0.68
a random normal deviate restricted to (0, 1) has to be found and
this requires on average 1.36 calls of Random and 1.18 calls of exp,
and (3) with probability 0.32 a random normal deviate restricted to
(1, oo) has to be found and this requires on average 2.04 calls of
Random and 1.52 calls of each of Zn and sqrt. NormDev thus requires
on average 2.58 calls of Random, 0.80 calls of exp, 0.49 calls of ln
and 0.49 calls of sqrt. (Note: NormDev requires one further call of
Random if a signed normal deviate is required.) Under the stated
test conditions a single call of N ormDev took virtually the same
amount of computing time as a single call of RN D when the real
procedure Random was as above.

(Note: In testing N ormDev the procedure was speeded up by re
placing A by 0:6826894 wherever it occurred and removing it from
the parameter list. In testing NORMAL RANDOM Mean, Sigma,
n were replaced by 0, 1.0 and 10 respectively and removed from the
pn.rameter list.)

267-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 268
ALGOL 60 REFERENCE LANGUAGE EDITOR [R2]
W. M. McKEEMAN* (Recd. 9 Dec. 1964, 23 Feb. 1965 and

17 May 1965)
Computer Science Department, Stanford University,

Stanford, California
*Supported in part by the Office of Naval Research under

Contract Nonr 225(37), NR 044-211.
The author expresses his thanks to the referee for several

valuable suggestions.

procedure Algoledit(characterset, linelimit);
string characterset;
integer linelimit;
comment If this procedure is presented an ALGOL 60 program
or procedure in the form of a sequence of basic ·symbols, it will
transmit to the output medium a copy of the text with indenta
tions between each begin -end pair and some rearrangement of the
blank spaces within the text. This procedure is an example of its
own output. It is used to edit ALGOL 60 text that i& difficult to read
because, for example, the ALGOL has been transcribed from
printed documents, or written by inexperienced programmers, or
stored in compressed form (i.e., with all redundant blank spaces
removed). The integer "-1" will represent the nonbasic symbol
"carriage return", "-2" will represent an end-of-file mark, other
symbols will have the integer value corresponding to their position
in the parametric string "characterset". The string must contain
exactly the 116 basic symbols of ALGOL 60. The parameter "line
limit" sets an upper bound on the number of basic symbols that
the user wishes to appear on a line of output. The identifiers
"lsq" and "rsq" will be used in place of strings of length one whose
only elements are " ' " and " ' ", respectively;
begin integer array spacesbefore, spacesafter[l : 116],

buff er[l : linelimit];
integer tabstop, symbol, i, symbolcount, level;
Boolean newline;
integer procedure val(s);
string s;
comment The value of this procedure is the integer
corresponding to the position in the string "characterset"
of the symbol in the string "s". The body of the
procedure must be expressed in code;
procedure get(symbol);
integer symbol;
begin insyrnbol(2, characterset, symbol);

if symbol = - 2 then go to eof
end get;
procedure send(symbol);
integer symbol;
begin comment "send" must not br•~ak identifiers

across lines or insert spurious characters into
strings;
integer i, u, v;
if symbol = - 1 V symbolcount 2 linelimit
then
begin v

if
.- tabstop;

newline then go to E· ,

end;

268-P 1- 0

if level ~ 0 then
begin comment Inside a string;

for i : = 1 step 1 until
symbolcount do outsymbol (1,
characterset, buffer[i]);
outsymbol (1, character set, 1) ;
v := 0

end else
begin u : = symbolcount;

newline : = true;

end;

if symbol = - 1 then go to D;
comment Find a convenient place to
break the line;
for u : = symbolcount - 1 step
1 until 1 do if buffer[u + 1]
val('u') V buffer[u] = val(rsq) then
go to D;
u := symbolcount;
comment Send the line;
D : for i := 1 step 1 until u do
outsymbol(l, characterset, buffer[i]);
outsymbol(l, characterset, - 1);
comment Find a non-blank character
to start the next line;
for i := u + 1 step 1 until
symbolcount do if buffer[i] ~ val('u')
then go to F;
go to G;
comment Move a new line to the
head of the buff er area;
F : for i := i step 1 until
symbolcount do
begin v := v + 1;

end;

newline : = false;
buffer[v] := buffer[i]

comment Insert blanks for tab stops;
G : for i := 1 step 1 until
tabstop do buffer[i] := val('u')

E : symbolcount : = v

comment Now we can put the new symbol in the
buff er array;
if symbol ~ - 1 /\ , (newline /\ symbol
= val ('u')) then
begin symbolcount . - symbolcount + 1 ;

newline : = false;
buffer[symbolcount] : = symbol

end
end send;
for symbol := 1 step 1 until 116 do
spacesbefore[symbol] := spacesafter[symbol] := O;
for symbol := val('+'), val('-'), val('-.'), val(':'),
val(':='), val('<'), val('5:. '), val('='), val('~'),

val('2'), val('>') do spacesbefore[symbol]
spacesaf ter [symbol] : = 1 ;

COLLECTED ALGORITHMS (cont ..)

for symbol := ml('/\'), 1•0/('V'), ml(':::>'), ml('='),
i•a/('then'), val('el~c'J, ml('t";tep')., ml('uutil'),
ml('whilc'), val('do') do spaceslwfords.11111bol] :=
spacesaf ter [symbol] : = 2;
for symbol := l'al('go lo').

m/('for'), ml('procedurc').
ml ('re a I'), ml ('Book au·),
m/('switch'), ml('lahcl').
spar.esaftcr[symbol] : = ·2;

val ('begin'), ml ('if'),
m/('valuc'), ml('own'),

val('integcr'), ml('array'),
ml('string'), ml(',') do

l('l'cl := symbolco11nt := fobs/op := O;
nc1c/inr := t rut";
nextsymbol : deblank : gel (sy111l111l);
scanned : if symbol = 1·al('u') V symbol =

I hen go to dchlank;
if symhol = ml('he1.dn') then send(- 1) Pli,;c
if symbol = rn.l('cnd'l then
liegin tabstop tahstop - .5;

send(- 1)

cn<l:
for i := l t";lPp
se11d(valt'u'));

si:n.d(symbol);

for 'i := 1 step
.'>nul(ml('u'));

until spriccsbefore[sy111l1ol] do

uul ii spacesaftcr[syml)(/11 (lo

if symbol = ml('commcnt ') then
hegin cornn1ent Pass comments on unchanged;

for i : = 1 while syml)()l -¥- val(';') do
hq~in gel (symbol);

scnd(symhol)
end

t•tul di-;e if sumbol = m.l('cnd') then
hcgin conunent "<~nd" comments;

for i := 1 while symbol -¥- val(';') do
h<'gin yd (symbol);

if symbol = ml('else') V symbol
val('end') then go to scanned;
sf'nd(symbul)

end
<'1HI el!-ic if symbol = mf(lsq) then
hcgin conunent Pass i-trings on unchanged;

ln·el := l;
for i : = 1 whilt• lrl'd "¥- 0 do
lu·gin yet (symbol);

8Cflff (.<l,1Jlnbol);

if symbol = 1·n.l<lsql tl1cn le1•el . - !Ncl

+ 1 <'l~e if S!Jmbol ml(rsq)
then fr1·d : = le1•1'l - 1

end
t•tul;
if symhnl = ra/('lwgin') then
t•li-;t• if s:l/111bol = m/(';') then
go to nextsymbol;
e11f .~i-:nri(- lj;
01ifsymbol (I, cham<'frrsl'f, - 2)

t•rnl . tlyuhdit

tab.'ltop
send(

lab.<;top + 5
1);

268-P 2- Rl

Irn.\IARI\: o~ ALUOHITIL\I 26S [H2]
ALGOL 60 REFEIU~.:\CE LAXGUAGE EDITOH

[\\'. \I. \Id\:cc>man, Cmnm. AC.11 8 (.:\ov. l\H);")), 6G7J
n. SAUER (Recd. 2:~ Dec. rnGS)
[nstitut for Thcorctischc Physik der Ju:-;tus-Liehig-Uni

versiUit, 6:~ (~icssen, \\' e:-;t C}erman.v

KEY WOHDS AND Plll{ASES: symbol manipnlation
CR CATE(;ORIES: 4.-rn

111 the procedure send, replace the line
1 until 1 do if huffer[u+ l] =

with the line
1 until labslop do if lrnffcr[n+IJ \1)
The published version fails to clear the buffer wlw11 a lin<~ to he

printed <'011tai11s no blanks and /a/1slop > 0, Pansing an array
bounds violation. Knowinµ; l111j}"er[lahslop+ll never to <'ontain a
blank char:wtcr, the search for blanks may he stopped at 11. =
tahstop + 1.

(') The author is indcbtf'll to the rcfer<'P for suggesting this brief
form.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 269
DETERMINANT EVALUATION [F3]
J A HOSLA V PF ANN AND JOSEF STRAKA

(Recd. 10 Sept. 1964 and 29 Dec. ~964)
Institute of Nuclear Research, Rez by Prague, Czecho

slovakia

real procedure determinant (A, n); array A; integer n;
comment This procedure evaluates a determindnt by triangu

larization with searching for pivot in row and with scaling of
the rows of the matrix before the triangulariz~tion. This was
done as in procedure EQUILIBRATE of the 1Algorithm 135
[Comm. ACM 5 (Nov. 1962), 553];

begin real product, temp; integer i, j, r, s;
array mult[l:n];
procedure EQUILIBRATE(A, n, mull);

integer n; array A, mull;
begin integer i, j; real mx;

for i := 1 step 1 until n do
begin mx := 0.0;

for j := 1 step 1 until n do
ifabs(A[i, j]) > mx then mx := abs(A[i, j]);

if mx = 0.0 then
begin determinant := O; go to RETURN end;
multii] := mx; commerit := base j ex for exact scaling;
if mx ~ 1.0 then
for j := 1 step 1 until n do A[i, j]

end
end EQUILIBRATE;
EQUILIBRATE(A, n, mult);
product : = 1;
for r := 1 step 1 until n-1 do
begins := r; temp := abs(A[r, r]);

for j : = r + 1 step 1 until n do
if temp < abs(A[r, j]) then

A [i, j]/mx;

begin temp := abs(A[r, j]); s := j end;
if temp = 0 then begin determinant := 0; go to RETURN

end;
ifs ~ r then
begin product : = - product;

for i := r step 1 until n do
begin temp := A[i, r]; A[i, r] .- A[i, s]; ·

A[i, ·s] temp
end

end;
product := product X A[r, r];
com1nent Be on guard against overflow or underflow here;
for i := r+l step 1 until n do
begin temp := A[i, r]/A[r, r];

for j := r+l step 1 until n do
A[i, j] A[i, j] - A[r, j] X temp

end
end;
temp := product X A[n, n];
for r := 1step1 until n do temp := temp X mull [r];
comment Again danger of overflow or underflow;
determinant : = temp;

RETURN:
end determinant

REFERENCE:

269 P 1 RI

McKEEMAN, W. M. Algorithm 135-Crout with equilibration and
iteration. Comm. ACM 5 (Nov. 1962), 553.

CERTIFICATION OF:
ALGORITHM 41 [F3]
EVALUATION OF DETERMINANT

[Josef G. Solomon, Comm. ACM 4 (Apr. 1961), 171]
ALGORITHM 269 [F3]
DETERMINANT EVALUATION

[Jaroslav Pfann and Josef Straka, Comm. ACM 8
(Nov. 1965), 668]

A. BERGSON, (Recd. 4 Jan. 1966 and 4 Apr. 1966)
Computing Lab., Sunderland Technical College,
Sunderland, Co. Durham, England

Algorithms 41 and 269 were coded in 803 ALGOL and run on a
National-Elliott 803 (with automatic floating-point unit).

The following changes were made:
(i) value n; was added to both Algorithms;
(ii) In Algorithm 269, since procedure EQUILIBRATE is only

called once, it was not written as a procedure, but actually written
into the procedure determinant body.

The following times were recorded for determinants of order N
(excluding input and output), using the same driver program and
data.

N T1 T2
Algorithm 41 Algorithm 269

(minutes)
10 0.87 0.78
15 2.77 2.18
20 6.47 4.78
25 12.47 8.99
30 21.37 14.98

From a plot of ln(T1) against ln(N) it was found that

T1 = 0.00104N2•92 •

Similarly,

T2 = 0.00153N2 •70

From a plot of Ti against T2, it was found that Algorithm 269
was 30.8 percent faster than Algorithm 41, but Algorithm 41
required less storage.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 270
1FINDING EIGENVECTORS BY GAUSSIAN ELIMI-

NATION [F2]
ALBERT NEWHOUSE (Recd. 3 May 1965 and 16 July 1965)
University of Houston, Houston, Texas

procedure NULLSPACE (n, a, ec, eps); value n, eps; integer
n,ec; realeps; arraya;

comment NULLSPACE computes the vectors x of order n such
that xa = z, where a is an nXn matrix, z is the zero-vector of
order n, eps is a small positive number :mch that if the maxi
mum pivot element is numerically less than eps the procedure
considers it zero. The ec vectors x are to be found in the first
ec rows of the matrix a upon exit from this procedure;

comment In finding the eigenvectors x of an nXn matrix B
after having found the eigenvalues }. of B by any of the many
available methods, it is often desirable to start from the original
matrix B and not from its transform from which the }.'s were
obtained. Whereas the resulting eigenvectors will still be in
fluenced by errors in the X's, the eigenvectors would not be
influenced by errors in the transformed matrix.

Since XI - B = A is a singular matrix of rank r the problem is
to find ec = n - r vectors x which form a basis of the left null
space of A.

Note: If the right null space is desired the matrix A should
be transposed.

The following algorithm finds these n-r linearly independent
vectors by the Gauss-Jordan elimination in place using the
maximal available element for the pivot. The process will termi
nate after r steps, since the maximal a,vailable elements for
pivoting are· then equal to zero.

Now, replacing these zero pivot elements by unity, the rows
of the matrix, from which no nonzero element has been chosen,
are the basis of the null space of A, that is, if x is such a row
then xA = z, the zero vector of order n.

The proof for this is established by the fact that the elimina
tion amounts to premultiplying B by a matrix A', a product of
elementary matrices, such that A'A is a, matrix with ones on
r of the diagonal positions and zeros everywhere else.

Test results. A version of this procedure acceptable to the
IBM 7094 (ALCOR-ILLINOIS 7090 ALGOL Compiler) was
tPsted.

With eps = 10-6 the results for the 5X5 matrix

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

showed the dimension of the null space as 3 having as a basis

X1 = (- .75, 1.00, 0.00, 0.00, - .25)

X2 = (- .50, 0.00, 1.00, 0.00, - .50)

X3 = (- .25, 0.00, 0.00, 1.00, - .75)

exact to 6 decimal places;
1,,egin integer array r, c[l:n]; integer i,j, k, m,jj, kk, t;

1·cal max, temp;
for i := 1 step 1 until n do r[i] .- c[i] := O;
form := 1 step 1 until n do

270-P 1- 0

begin max := O;
fork := 1 step 1 until n do
begin if r[k] ~ 0 then go to L else

for j := 1 step 1 until n do
if c[j] = 0/\ abs(a[k, j]) > max then
begin kk := k; jj := j; max := abs(a[k, j])
end j loop;

L: end k loop;
if max < eps then go to SORT;
c[jj] := kk; r[kk] := jj; temp := 1/a[kk, jj]; a[kk, jj] := l~
for j := 1step1 until n do a[kk, j] := a[kk, j] X temp;
fork := 1 step 1 until kk - 1, kk + 1 step 1 until n do
begin temp := a[k, jj]; a[k, jj] := O;

for j := 1 step 1 until n do
begin

a[k, j] := a[k, j] - temp X a[kk, j];
if abs(a[k, j]) < eps then a[k, j] := 0

end;
end k loop;

end m loop;
SORT: for j := 1 step 1 until n do

begin
REPEAT: if c[j] ~ O/\j ~ c[j] then

begin
fork := 1 step 1 until n do
if r[k] = 0 then
begin temp : = a[k, j];

a[k, j] : = a[k, c[j]]; a[k, c[j J] : = temp
end k loop;
: = c[jl; c[j] : = c[t]; c[t]

end;
end conditional and j loop;
ec := O;
fork := 1 step 1 until n do

if r[k] = 0 then

t; go to REPEAT

begin ec := ec + 1; a[k, k] 1;
if ec ~ k then
begin

for j := 1 step 1 until n do a[ec, j] := a[k, jl
end;

end conditional and k loop;
comment The first ec rows of the matrix a are the vectors

which are orthogonal to the columns of the matrix a;
end NULLSP ACE

COLLECTED ALGORITHMS FROM CACM

ALGOHITHM 271
QUICKERSORT [Ml]
R. S. ScowEN* (Recd. 22 Mar. 1965 and 30 June 1965)
National Physical Laboratory, Teddington, England

* The work described below was started while the author was
at English Electric Co. Ltd, completed as part of the research
programme of the National Physical Laboratory and is published
by permission of the Director of the Laboratory.

procedure quickersort (a, j);
value j; integer j; array a;

begin integer i, k, q, m, p; real t, x~ integer array ut,
lt[l :ln(abs(j)+2)/ln(2)+0.o11;

comment The procedure sorts the elements of the array a[l :j]
into ascending order. It uses a method similar to that of QUICK
SORT by C. A. R. Hoare [1], i.e., by continually splitting the
array into parts such that all clements of one part arc less than
all clements of the other, with a third part in the middle con
sisting of a single element. I am grateful to the referee for point
ing out that QUICKERSORT also bears a marked resemblance
to sorting algorithms proposed by T. N. Hibbard [2, 3]. In par
ticular, the elimination of explicit recursion by choosing the
shortest sub-sequence for the secondary sort was introduced by
Hibbard in [2].

An element with value tis chosen arbitrarily (in QUICKER
SORT the middle element is chosen, in QUICKSORT a random
element is chosen). i and j give the lower and upper limits of
the segment being split. After the split has taken place a value
q will have been found such that a[q] = t and a[I] :::=; t :::=; a[J]
for all I, J such that i ::::; I < q < J ::::; j. The program then
performs operations on the two segments a[i :q-1] and a[q+ 1 :j]
as follows. The smaller segment is split and the position of the
larger segment is stored in the lt and ut arrays (lt and ut are
mnemonics for lower temporary and upper temporary). If the
segment to be split has two or fewer elements it is sorted and
anothP-r segment obtained from the lt and ut arrays. When no
more segments remain, the array is completely :sorted.
REFERENCES:

1. HOARE, C. A. R. Algorithms 63 and 64. Comm. ACM 4 (July
1961)' 321.

2. HIBBARD, THOMAS N. Some combinatorial properties of
certain trees with applications to searching and sorting.
J. ACM 9 (.Jan. 1962), 13.

3. --. An empirical study of minimal st.orage sorting. Comm.
ACM 6 (May 1963), 20G-213;

i := m := l;
"N: if j-i > 1 then

begin comment This segment has more than two elements,
so split it;
p := (j+i) + 2;
comment p is the position of an arbitrary element in the

segment a[i :j]. The best possible value of p would be one
which splits the segment into two halves of equal size, thus
if the array (segment) is roughly sorted, the middle ele
ment is an excellent choice. If the array is completely
random the middle element is as good as any other.

If however the array a[l :j] is such that the parts a[l :j+ 2]
and a[j + 2+ 1 :j] are both sorted the middle element could
be very bad. Accordingly in some circumstances
p : = (i+j) + 2 should be replaced by p : = (i+3Xj) + 4
or p.: = RAN DOM (i, j) as in QUICKSORT;

t := a[p];
a[p] := a[i];
q := j;
for k : = i + 1 step 1 until q do

271-P 1- 0

begin comment Search for an element a[k] > t starting
from the beginning of the segment;

if a[k] > t then
begin comment Such an a[k] has been found;

for q := q step -1 until k do
begin comment Now search for a[ql < t starting fr.'>m

the end of the segment;
if a[q] < t then
begin comment a[q] has been found, so exchange

a[q] and a[k];
x := a[k];
a[k] := a[q];
a[q] := x;
q := q-1;
comment Search for another pair to exchange;
go to L

end
end for q;
q := k - 1;
comment q was undefined according to Para. 4.6.5 of

the Revised ALGOL 60 Report [Comm. ACM 6 (Jan.
1963), 1-17];

go to M
end;

L: end fork;
comment We reach the label M when the search going up

wards meets the search coming down;
M: a[i] := a[q];

a[q] := t;
comment The segment has been split into the three parts

(the middle part has only one element), now store the
position of the largest segment in the lt and ut arrays and
reset i and j to give the position of the next largest segment;

if 2 X q > i + j then
begin

lt[m] := i;
ut[m] := q-1;
i := q+l

end
else
begin

lt[m] := q+l;
ut[m] := j;
j := q-1

end;
comment Update m and split this new smaller segment;
m := m+l;
go to N

end

else if i ~ j then
begin comment This segment has less than two elements:

go to P
end
else
begin comment This is the case when the segment has just

two ~lements, so sort a[i] and a[j] where j = i + 1;
if a[i] > a[j] then

COLLECTED ALGORITHMS (c(]lnt.)

begin
x := a[i];
a[il := arjJ;
aljl := x

end;
comment If the lt and ut arrays contain more segments

to be sorted then repeat the process by splitting the smallest
of these. If no more segments remain the array has been
completely sorted;

P: m := m-1;
if m > 0 then
begin

i := lt[m];
j := u,t[m];
go to N

end;
end

end quickersort

CERTIFICATION OF ALGORITHM 271 (Ml)
QUICRERSORT [R. S. Scowen, Comm. ACM 8 (Nov.

1965), 669]
CnAHLEs R. BLAIR (Recd. 11 Jan. 1!)66)
Department of Defense, Washington, D.C.

QUICKERSORT compiled and ran without correction through
the ALDAP translator for the CDC 1604A. Comparison of
average sorting times, shown in Table I, with other recently pub
lished algorithms demonstrates QUICKERSORT's superior per-
formance.

TABLE I. AVERAGE SORTING TIMES IN SECONDS
----· -- ------ ------------- ·- ---- --------~

Algorithm 201 Algorithm 207 Algorithm 245 Algorithm 271
Number Shellsort ·stringsort Treesort 3 Quickersort

of items ~~--------

Integers Reals I.ntegers I ~~~Is Integers Reals Integers Reals
---- ---------

10 0.01 0.01 0.03 0.03 0.02 0.02 0.01 0.01
20 0.02 0.02 0.05 0.05 0.04 0.04 0.02 0.02
50 0.08 0.08 0.20 0.20 0.11 0.12 0.06 0.06

100 0.19 0.22 0.39 0.40 0.2G 0.27 0.13 0.13
200 0.48 0.53 1.0 1.1 0.5£1 O.G2 0.28 0.30
500 1.5 1. 7 2.8 2.9 l. 7 1.8 0.80 0.85

1000 3.7 4.2 G.6 6.9 3.7 4.0 1.8 l. 9
2000 9.1 10. 13. 114. 8.2 8.7 3.9 4.1
.5000 27. 30. 40. 141 23. 24. 11. 12.

10000 ()5. 72. 93. 97. 49. 52. 23. 25.

271-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 272
PROCEDURE FOR THE NORMAL DISTRIBUTION

FUNCTIONS* [S15]
M. D. MACLAREN

(Recd. 28 July 1964, 17 Nov. 1964 and 26 July 1965)
Argonne National Laboratory, Argonne, Ill., and Boeing

Scientific Research Laboratories, Seattle, Wash.
* Work performed in part under the auspices of the US Atomic

Energy Commission.

real procedure phi(a, k); value a, k; real a; integer k;
comment Before use, this procedure must be called once with

k = 3 to initialize own variables. Thereafter for k = 1 the
procedure gives

<I>(a) 1 la (27r)! _ exp (- t2/2) dt,

and for k = 2 it gives

<I>*(a) = 2(<I>(J a J) - .5)

= (;y tal exp (-t2/2) dt;

begin own integer N;
own real B, EPS, EPS2, EPS3, ONE, DELTA, J)ELT A2, Pl2;
comment <I>* (a) is computed by Taylor's series expansion in the

interval 0 ::; a ::; B, and by asymptotic series in the interval
B < a. The Taylor's series expanson is made about one of the
points 0, B/N, 2B/N, · · · , B, and the coefficients in the series
are computed using the recursion formula for Hermite poly
nomials. The number of terms to take in the ·series is deter
mined by an error estimate based on a majorizing series. This
procedure, which is essentially the familiar one of interpolat
ing in a stored table of values, gives a fast program and can be
used effectively for many functions. In this case another sig
nificant increase in speed could be obtained by also storing a
table of values of the first derivative cf <I>*. The; own variables
B, EPS and N might be called program parameters. By suit
ably choosing their values the programmer may make the
procedure as accurate as desired and may increase the speed
of the procedure at the cost of extra storage space. This is the
advantage of this procedure over others previously published
in this journal (see [1-4]).

The values of these program parameters are determined
when the procedure is coded, not when it is c~lled. They are
set by means of an initializing call with k = 3. The other own
variables are computed from B, EPS and N when the initializ
ing call is made. If FORTRAN IV were used, all the own vari
ables could be set by use of a DATA statement. An alternative
to either· method is to replace all occurrences of the parameters
by the appropriate constants.

The choice of the parameter N depends mainly on speed
versus storage considerations. The larger N i~, the faster the
procedure will be and the more storage will b~ needed. Note,
however, that N must be chosen large c;nough so that
B2 (1/ (2N) + 1/ (4N 2)) ::; 1, for otherwise them~thod of estimat
ing the error in the Taylor's series may fail. The choice of B
may also affect the speed, because for smaller values of a the

272-P 1- 0

asymptotic series for <I>* (a) will take longer than the Taylor's
series. The choice of B depends, however, mainly on the error
desired. Neglecting roundoff, the maximum error in the com
puted value of <I>*(a) will be EPS if a::; B or max (EPS, 8(a)/2)
if B < a, where 8(a) is the absolute value of the smallest term
in the .asymptotic series for <I>*(a). Some values of 8(a) arc:
o(4) = 3.0 X 10-s, 8(5) = 3.0 X 10-12 , 8(5.5) = 1.4 X 10-14 , and
8(6) = 4.4 X 10-11 • If N is large enough, roundoff will be no
problem. (The referee has pointed out that the computation
for B < a could be made by continued fractions, as in Algo
rithm 180. The advantage of this would be that the continued
fraction expansion converges for all a > 0, but roundoff errors
may be significant for smaller values of a.)

With the program parameters having the values giv£>n
below, the procedure was compiled as a FORTRAN II subroutine
on the IBM 1620, using eight-digit floating point arithmetic,
and tested for many values of a. The error never exceeded
2 X 10-s. The program was also compiled with B = 6.0, EPS =

2 X 10-15 and N = 60, using 15 digit arithmetic. Spot checks
turned up no errors greater than 2 X 10-15 ;

own real array C[O:l6];
comment The array C must give the value of <I>*(a) at the

point of expansion, i.e., C[m] must equal <I>*(mB/N). Tables of
<I>* (a) to fifteen decimal places are published by the National
Bureau of Standards [5]. The upper bound for the array must
equal the value of the program parameter N;

realf,fl,f2, x, y, z, t, t2, xt;
integer m;
real procedure max(x, y); value x, y; real x, y;
begin max : = if x ::; y then y else x;
end max;
if k = 3 then
begin comment initialize own variables;

EPS := .00000002; B := 4.0; N := 16; C[O] := 0.0;
C[l] : = .19741265;

C[2] : = .38292492; C[3] .5467530;
C[4] := .68268949;

C[5] : = .78870045; C[6] .86638560;
C[7] : = .91988169;

C[8] := .95449974; C[91 .97555105;
C[lO] := .98758067;

C[ll] := .99404047; C[12] .99730020;
C[l3] := .99884595;

C[14] := .99953474; C[15] .99982317;
C[l6] := .99993666;

ONE := .99999999;
comment ONE is the largest number less than 1 which may

be represented in the machine. This prevents loss of ac
curacy in some implementations of floating point sub
traction;

PI2 := .797884560802865;
comment PI2 = (2/1r)112 ;

DELTA := B/N;
DELT A2 := .5 X DELTA;
EPS3 := 2.0 X EPS;
t2 := max(BXDELTA, sqrt(2.0)XDELTA2);
t := DELTA2 X (B+DELTA2);
x := (t+sqrt(t)) X exp(.5Xt);
y := t2 X (1.0+t2) X exp(.5Xt2j2);
if t2::; 1 /\ y::; x then EPS2 := EPS/y else EPS2 := EPS/x;

COLLECTED ALGORITHMS (emit.)

phi := 0
end initialization
else
hegin c01n1ncnt compute <P(a);

y := abs(a);
if y > H then
begin comn1ent computation by asymptotic series;

:t := y j 2; J := P/2 X exp(-.5Xx)/y;
x := 1.0/x; z := f; fl := -f Xx;

form:= 3, m + 2 while abs(fl) < abs(f) do
hq~in z := z +fl; f :=fl; fl :== -fl X m Xx;

if abs (f) :::; E PS3 then go to Ll
crul;

U: z := ONE-z + .5 Xf
end asymptotic computation
else
hegin comment Taylor's series computation;

m : = enlier (y/DELTA);
x : = m X DELTA; t : = y - x;
if DELTA2 < t then
hcgin m := m + l; x := x +DELTA; t := y - x end;
xt := x X t; t2 := t j 2;
JI:= tX I'l2Xexp(-.5Xxj2);
f2 := -.5 X xt Xfl;
z := C[m]+fI+f2;

for m := :3, m + 1 while (m-1) X EP82 < max(abs(fl),
ribs (j2)) do

begin
f := (--xtXJ2-t2X (m-2) Xfl/(m-1))/m;
z : = z + f; fl : = f2; f2 : = f;

end
end Taylor's series romputation;
if k = 1 then
hegin

z := ifO:::; a then .5 + .5 X z else .fi - .5 X z
end;

phi := z
end computation

end phi

REFERENCES:

1. CnAWFORD, M., AND TEcno, IL Algorithm 123, Real error
function, ERF(x). Comm. ACM 5 (Sept. 1962), 482.

2. TuACHER, H. C., JR. Algorithm 180, Error function-large X.
Comm. ACM 6 (June 1963), 314.

3. IBBETSON, D. Algorithm 209, Gauss. Comm. ACM 6 (Oct.
1963), Gl6.

4. CYVIN, S . .T. Algorithm 226, Normal distribution function.
Comm. ACM 7 (May 1964), 295.

. 5. NATIONAL BnREAC OF STANDARDS. Tables of Normal Probability
Functions. Applied Math. Series, No. 23, US Government
Printing Off., Washington, D.C., 1953.

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, ERF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

272-P 2- R2

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION
LARGE X

!Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [815]
GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
:'.\JORMAL DISTRIBUTION FUNCTION

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. HILL AND S. A . .JoYcE (Recd. 21 Nov. 1966)
Medical Re~;earch Council,
Statistical Research Unit, 115 Gower Street, London

W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found :

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < io-10 was changed to Y - T = Y
both these amendments being as suggested in [l].

(iii) The labels 1 and 2 were changed to Ll and £2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.
(v) The extra statement x := 0.707106781187 X x was made

the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate .

ALGO IUTHM 180
(i) T : = -0.56418958/x/exp(v) was changed to

T := -0.564189583548 X exp(-v)/x. This is faster and also
has the advantage, when vis very large, of merely giving 0
as the answer instead of causing overflow.

(ii) The extra statement x : = 0.707106781187 X x was made
as in (v) of Algorithm 123.

(iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was 2 in the 11th decimal place.

ALGOllITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).

(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14].

COLLECTED ALGORITHMS (cont.)

The results were accurate to 9 significant figures for x < 8,
but to only 8 significant figures for x = 10 and x = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decin .. ~
places.

ALGORITHM 226
(i) 10 j m/(480Xsqrt(2X3.14159265)) was changed to

10 i m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to

m := 2 X n; for i := 1 step 1 until m do.
(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) i 2 X 0.125.
(iv) if i = 2 X n - 1 was changed to if i = m - 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to

b/(15.0397696478Xn).
Tests were made with m = 7 and m = 11 with the following

results:

Number of significant Number of decimal

x
figures correct places correct

m= 7 m = 11 m 7 m 11

-0.5 7 11 7 11
-1.0 7 10 7 10
-1.5 7 10 8 10
-2.0 7 9 8 10
-2.5 6 9 8 11
-3.0 6 7 8 9
-4.0 5 7 10 11
-6.0 2 12 10
-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig
nificant figures is stretching the machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at x = 0.8.

ALGORITHM 304 '
No modification was made. The errors in the 11th significant figure
were:

abs(x) x > 0 = upper x> 0 ¢ upper

0.5 1 1
1.0 1 2

1.5 21"(5) 2
2.0 25"(0) 4
3.0 0 0

4.0 2 3
6.0 6 0
8.0 14 0

10.0 23 0
20.0 35 0

272--P 3- 0

"'Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

abs(x) x > 0 =upper x > 0 ¢upper

1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely to be much the same on
other machines.

lNS'.l.'RUCTION CouN'r FOR 100 EvALUA'.1.'IONs
---- -·--

Algorithm number

abs(x)
123 180 209 226

I

181 272
rn = 7

-- --------- ------

0.5 58 8 97 24
1.0 65° 8 176 24
1.5 164 128 127 9 273 25
------ -----

2.0 194 78 90 8 387 24
2.5 252 54 68 10 515 24
3.0 42 51 9 628 25

·----------- ----
4.0 27 39 g 900d 25
6.0 15 30 6 1400d 16
8.0 9 28 7 2100d 18

--- ----- -- ------ ---- --

10.0 10 25

:

5 270Qd 16
20.0 9 22 5 G500d 16
30.0 9 9 5 10900d 16

----------·--

" Readings ref er to x > 0 = upper.
b Readings refer to x > 0 ¢ upper.

304"

25
29
35

39
131

97

67
49
44

38
32
11

30th

21
2\l
:~fi

3\l
4·1
50

4-1
2:~

11

11
11
11

c Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.
d 100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the fir,;t
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in

COLLECTED ALGORITHMS (cornt.)

Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFE:RENCES:

1. THACHER, HENRY C. JR. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IBBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BARTON, STEPHEN P., AND WAGNER, JOHN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

:). SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridg:e U. Press, Cambridge,
England, 1939.

REMARK ON ALGORITHM 272
PROCEDURE FOR THE NORMAL DISTRIBUTION

FUNCTIONS [S15J [M. D. MacLaren, Comm. ACM 8
(Dec. 1965), 789]

M. D. MACLAREN (Recd. 26 Dec. 1967)
Argonne National Laboratory, Argonne, Ill. 60439

KEY WORDS AND PHRASES: normal distribution function,
error function, normal function, normal curve integral

CR CATEGORIES: 5.5, 5.12

In [l] Hill and Joyce report that the value produced by
Algorithm 272 for the argument a = 0.8 is correct only to 5 decimal
places, although the algorithm specifies an accuracy of 2 X 10-s.
Upon checking we have found that the source of this inaccuracy is
a typographical error in the section beginning "begin comment
initialize own variables;" The statement initializing C[3] should
be changed to "C[3] = .54674530." With this change the published
algorithm is, as far as we know, accurate within the specified error
limit of 2 X 10-8 •

In the first comment of the algorithm the lower limit of the first
integral should be minus infinity and not merely a minus sign.

REFERENCE:
1. HILL, I. D., AND JOYCE, S. A. Rema.rk on algorithm 123.

Comm. ACM 10 (June 1967), 377.

272-P 4- Rt

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 273
SERREV [Cl]
HENRY C. THACHER, JR. (Recd. 2 Apr. 196fi)
Argonne National Laboratory, Argonne, Illinois
(Work supported by the US Atomic Energy Commission.)

procedure SERREV (A, B, C, N);
value N; integer N; array A, B, C;

comment This procedure produces in the array C the coefficients
of the power series yi = Li!i Ci;xi, where y is the solution of

N N
f(y) = I: Aiyi = g(x) = I: Bixi

i-1 i-1 .

and A1 = 1. The arrays A and Bare linear, with ;bounds 1 and
M ~ N. The array C is square, with bounds l:M, l:M. Ele
ments above the diagonal are not used. The derivation of the
method is given in [l];

begin integer I, J, K, LIM; real T;
for I := 1 step 1 until N do

begin for J := I-1 step -1until1 do
begin T := O; LIM := I-J;

for K := 1step1 until LIM do T := C[K,1] X C[I-K,J]
+ T; C[I,J+l] := T

end for J;
T := B[l];
for J := 2 step 1 until I do T := T-A[J] X C[l,J];
C[l,1] := T

end for I
end

REFERENCE:
1. THACHER, H. C., Jr. Solution of transcendental equations by

series reversion. Comm. ACM 9 (Jan. 1966), 10--11.

273-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITIL\I 274
GEKERATIO~ OF HILBERT DERIVED TEST

lVIATRIX [Fl]
.J. Boornnorn (Recd. 19 May 196S and 27 Aug. 1965)
University of Tasmania, Hobart, Tas., Australia

procedure testmx(a,n); value n; integer n; array a;
conunent T . .J. Dekker, "Evaluation of Determinants, Solution

of ~~·stems of Linear Equations and Matrix Inversion" [Rep.
Xo. :\IHti3, Mathematical Centre, Amsterdam] describes a test
matrix J![l:n, l:n] with the following properties:

(a) c'l<'ments M[i,j] arc positive integers,
(b J the inverse has elements (-1) j (i+j) X M[i,j],
(c•) the! degree of ill-condition increases rapidly with increas-

ing n.
Such matrit·Ps may lw formed by M = FG- 1HG where F is a
diagonal matrix diag(fi) with Ji = .faclorial (n-H-1)/(faclorial
\i-1 <'2i/factnrial(n-i), II is the order n segment of a Hilbert
matrix and G is diagonal, diag(gi), with gi derived from the prime
dceompo::;itio11 of Ji by:

Ji= plmlp2m2. •. pk"'k, gi = plm-o-:!p2m-c-2 ... pkmk-c-2.

This procedure forms matrices a[l:n, 1 :n] of this type and fol
lows Dekker in principle but not in detail. Factorials arc avoided
by evaluating the Ji with a recursion sequence

f[l] := n, J[Hll := J[il x (nT2-ij2) -;- ij2
(i=l, 2, · · · , n-1),

permitting the exact computation of f1: for much larger n than
would otherwise be possible. In the evaluation of expressions
of the form (aXb) -;- c, where the result is integral but c is not
a factor of either a orb, numerator integer overflow is avoided
by the simple device

expression := q X b + (rXb) -;- c where a= q X c+r.

Test matrices for 2 :;:; n :;:; 15 have been computed on a machine
with :t :39-bit integer register. During tests of the procedure the
specification of the arrny parameter was changed from real to
intcg(•r nnd the results checked by matrix multiplication using
an f'xact double precision i11tcger inner-product routine. The
uuit matrix was obtni11ed in all cases. As real arrays these
matrices will find use only for values of n such that all integer
t'll'ments have an exact floating point representation. For
10 :;:; n :;:; 15 the value's of the clements of largest modulus arc:

n .l![i,)Jmax

10 HiHili15
11 ·1088"120
12 108G3G528
13 4008043H
14 1859890032
15 220!)G817GOO;

begin integer 1'., j, k,Ji, gi, d, q, r; Boolean even;
integer array j, g[l:n];
comment First we compute F = diag(fi);
Ji : = f[l] : = n; j : = n X n;
for i := 1step1 until n-1 do

hegin d := i X i; k := j-d;
q :=Ji-;- d; r := fi-q X d;
j[i+l] :=Ji := q X k + (rXk) -;- d

end;

274-P 1- RI

eommcnt And now, using a modified prime factors algorithm
to obtain G = diag(gi), we compute FG- 1, whos<~ elC'rnents re
placC' those of F;

for i : = 1 step 1 until n do
hegin d := gi := 1; q :=F := f[i]; j := 2;

neuj: even : = false;
nc.rt: if q ~ j then

he gin <[: = f 1: -;- j;
if Ji ~ q X j then
begin j := j+d; d := 2; go lo newj end;
if even then gi : = gi X j; even : = --, even;
Ji := q; go to next

end;
g[i] : = gi; J[i] : = j[i] gZ:

end;
comment Finally, in one opC'rntion (FG- 1)HG whcrP II is a

noJH'xistcnt Hilbert matrix whose reciprocal PlC'mPnts,
i+j-1, an' compute-cl as we go;

for i : = l ;.;lep 1 until n do
heµ;in .fZ: := f['i];

for j := 1step1 until n do
hcgin gi := g[j]; k := i+j-1;

</ := Ji -;- k; 1' :=Ji - q x k;
a[i, j] q X gi + (rXgi) -;- k

encl
end

end testmx

RE.\L\RK OX ALGORITlL\f 27-! [FI]
CEXERATIOX OF IIILBEHT DEIUVED TE:--lT
~L\THIX [.J. Boothroyd, Comm. ACJI ,9 (.fan. InGG), l IJ
.T. BooTHIWYD (Recd. 7 .Jan. ID6D)
University of Tasmania, Hobart, Tasmania, Australia,

KEY WOI~ ()SA~]) PII I: A~E~: tPst matrix, IIilbPrt matrix
CR CATE(;OHIE~: 5.H

..\.n a]tPrnativc, simplPr, and morP efficient proeC'dme for gen
eral ing test mat rices having t.he s:1me propertic.s as those ge11-
Prat cd by Alf;!;orithm 274 is given below. The method, like that of
Alf;!;orithm 274, is <lnc to T .• J. I >ekker and may be dC'seribcd as
follows.

The elements of the inverse of a segment of a Hilbert matrix
are given by

(lf-l) (-l)•+i x j, x Jj(i + j - 1)

where

f 1 =factorial (n + i - 1)/(jactorial (i - 1)) j 2/faclorial (n - 1:).

COLLECTED ALGORITHMS (cont.)

The f; may be faC'tored as f; = f11 X f;2, in which

(
n + i - 1) f,1 = i _ 1 X n, f12 = (nn il).

Test matriecs T are eo11strndcd by T = D1lf f)2 where Di =

cliuy (J 11), /) 2 = rliay (fd, and II is the Hilbert matrix 1-'cgment
J/,,i = l/(i + j - 1). It may be seen that this is cquivalc11t to
deti11i11g the 1' ma tri1·cs b.\·:

T,,i (fi)(fj)/(i + j - 1),

. (n - 1)
fJ = n - j ,

with fi, fj given by the recurrence relations:

(fi)1

(fj)1

n,

1,

(fi)1+1 = (.fi); X (n + i)/i,

(fj);+1 = (fj); X (n - j)/j.

That. the condition K (T) of these matrices is (3evere may be
sf'en from an observation of the referee, who not.es that

K(1'l = II T ii x II r-1 II,

2 (max l;,j)j2 = Un, <n+I) + 2)j2, (2j3n/qn)i2,
1 :::; i.i :::; n

whNe II · · JI is the L1 , L2 , L,,, , or the Euclidean matrix norm.
Other propPrties of these matrices shared by those of Algorithm

274 are:
(a) Each matrix has unit determinant;
(b) The eigenvalues form a set X1 , X2 , · · · , l/X2 , l/X1 , so that

odd order matrices have one eigenvalue of unity.
The procedure teslmxl below has been tested on an Elliott

503 (positive integer word length of 38 bits) and matrices of all
orders up to 13 were generated before integer overflow occurred
with n = 14.

procedure testmxl (a, n); value n; integer n; array a;
comment generates in a[l : n, 1 n] test matrices with integer

elements given by

(
n + i - 1) (n - 1)

f;.; = i _ 1 X n X n _ j /(i + j - 1)

a.nd such that the elements of T inverse are (-1) i+i X ti,; .

To determine for a particular computer that limit on n which
permits the exact machine representation of all elements of
these matrices, the following maximum values are listed:

n

8
9

10
11
12

begin
integer i, j, fi, fj, ilessl;
fi := n; ilessl := O;

l;,; (max)

163800
1178100
8314020

61108047
440936496;

for i := 1 step 1 until n do
begin

fj := l;
for j := 1 step 1 until n do
begin

a[i, j] := (fiXfj) + (ilessl+j);
fj := ((n-j)Xfj) + j

end;

Ji := ((n+i)Xfi)
end

end testmxl

i; ilessl

274 p 2 0

Proofs that the test matrices described above have integer
elements and checkerboard inverses follow the lines of similar
proofs given in [l].

Acknowledgments: Thanks are due to T. J. Dekker for eom
municating details of this mpthod and to the referee for the con
tribution mentioned.

RF.FERENCE:

1. DEKKER, T. J. Evaluation of determinants, solution of sys
tems of linear equations and matrix inversion. Rep. No.
MR.63, Mathematical Centre, Amsterdam, June 1963, pp.
8 and 9.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 275
EXPONENTIAL CURVE FIT [E2]
GERARD R. DEILY (Recd. 27 July 196'1 and 16 Apr. 1965)
US Department of Defense, Washington, D. C.
(Now with HRB-Singer, Inc., State College, Pa.)

procedure EXPCRVFT (a, b, c, E squared, n, x, y, epsilon, l max,
flag);
integer n, l max, flag;
real a, b, c, E squared, epsilon;
real array x, y;

comment This algorithm will fit a curve defined by the equation
y = a X exp(b X x) + c to a set (x,, yi) of n data points. The
Taylor series modification of the classica~ least squares method
is utilized to approximate a solution to the system of nonlinear
equations of condition. After every iteration, the statistic E
squared is computed as a measure of the goodness of fit. Com
mencing with the second iteration, the E;uccessive values of E
squared are differenced, and when the difference in absolute
value becomes less than epsilon, the calculations cease. If the
number of iterations necessary to achieve this result exceeds
l max, a flag is set to a nonzero value and the procedure is termi
nated;

begin
integer i, l, m;
comment Computation of initial estima,tes follows;
b := 2 X ln(abs(((y[n] - y[n-1]) X (x[2:] - x[l]))/

((y[2] - y[l]) X (x[n] - x[n-1]))))/
(x[n] + x[n-1] - x[2] - x[l]);

a := (y[n] - y[n-1])/((x[n] - x[n-1])
X exp((b X (x[n] + x[n-1]))/2) X b);

m := (n+l) + 2;.
c := y[m] - a X exp(b X x[m]);
E squared := O;
for i := 1 step 1 until n do

E squared := E squared+ (y[i] - c - a X exp(b X x[i]))j2;
comment Computation of corrections follows;
for l : = 1 step 1 until l max do
he gin

real sumexl, sumex2, sumxiexl, sumxie~-:2, sumxi2ex2, sumyi,
sumyiexl, sumxyiexl, dll, dl2, dl3, d2'.~, d23, d33, el, e2, e3,
deltall, deltal2, delta13, delta22, delta23, delta33, delta, u, v, w,
save;

sumexl : = sumex2 : = swnxiexl : = sumxiex2 : = sumxi2ex2 : =
sumyi : = sumyiexl : = sumxyiexl : = 0;

for i := 1 step 1 until n do
begin

real exl, ex2, xiexl, xiex2, xi2ex2;
exl : = exp (b X x[i]);
ex2 : = exl j2;
xiexl := x[i] X exl;
xiex2 := x[i] X ex2;
xi2ex2 := x[i] X xi'3x2;
sumexl : = sumexl + exl;
sumex2 : = sumex2 + ex2;
surnxiexl : = sumxiexl + xiexl;
sumxiex2 : = sumxiex2 + xiex2;
sumxi2ex2 : = sumxi2ex2 + xi2ex2;

sumyi := sumyi + y[i];
sumyiexl : = sumyiexl + y[i] X exl;
sumxyiexl : = sumxyiexl + y[i] X xiexl;

275-P 1- 0

end computation of sum terms in normal equations;
dll : = sumex2;
dl2 : = sumxiex2 X a;
dl3 : = sumexl;
d22 : = sumxi2ex2 X a j 2;
d23 : = sumxiexl X a;
d33 := n;
el : = - sumex2 X a - sumexl X c + sumyiexl;
e2 := - sumxiex2 X a j 2 - sumxiexl X c X a +

sumxyiexl X a;
e3 : = - sumexl X a - n X c + sumyi;
deltall : = d22 X d33 - d23 j 2;
deltal2 : = dl3 X d23 - d12 X d33;
deltal3 : = dl2 X d23 - dl3 X d22;
delta22 : = dll X d33 - dl3 j 2;
delta23 : = dl2 X dl3 - dl 1 X d23;
delta33 : = dll X d22 - dl2 j 2;
delta : = dll X deltall + dl2 X deltal2 + dl3 X deltal3;
u : = (el X deltall + e2 X deltal2 + e3 X deltal3) /delta;
v : = (el X deltal2 + e2 X delta22 + e3 X delta23) /delta;
w := (el X deltal3 + e2 X delta23 + e3 X delta33)/delta;
a :=a+ u;
b := b + v;
c := c + w;
E squared := O;
for i := 1 step 1 until n do

E squared : = E squared + (y[i] - c - a X exp (b X xliJ)) j 2;
if l = 1 then go to retry;
if abs(save - E squared) < epsilon
then go to 73
else if l < l max

then go to retry
else go to unfurl;

retry: save : = E squared;
end computation of corrected values of a, b, and c;

unfurl: flag : = 1;
73: end least squares curve fit toy = a X exp(b X x) + c

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 276
CONSTRAINED EXPON'ENTIAL CURVE FIT [E2]

GERARD R. DEILY (Recd. 27 July 1964 and 16 Apr. 1965)
US Department of Defense, Washington, D. iC.
(Now with HRB-Singer, Inc., State College, Pa.)
procedure CSXPCVFT (a, b, c, E squared, n, x, y, k, z, epsilon,

l max, flag, jump) ;
integer n, k, l max, flag, jump;
real a, b, c, E squared, z, epsilon;
real array x, y;

comment This algorithm will fit a curve defined by the equation
y = a X exp(b Xx) + c to a set {xi , yi} of n data points, and
constrain the curve so it contains the point (x1o, z). The Taylor

series modification of the classical least squares method is
utilized to approximate a solution to the system of nonlinear
equations of condition. After every iteration, t;he statistic E
squared is computed as a measure of the goodness of fit. Com
mencing with the second iteration, the successive values of E
squared are differenced, and when the difference in absolute
value becomes less than epsilon, the calculations cease. If the
number of iterations necessary to achieve this result exceeds
l max, aflag is set to a nonzero value and the procedure is termi
nated. In normal usage, the ;'ump parameter is brought in as a
ZERO.

With certain data sets, convergence difficulti13s will be ex
perienced. In these cases it is sometimes helpful to first utilize
the procedure EXPCRVFT [Algorithm 275, Comm. ACM 9
(Feb. 1966), 85] to obtain initial values f.or b aljld c, and then
bring the jump parameter in as a ONE in order; to bypass the
following starting value computations for b and c.;

begin
integer i, l, m;
real exp factor;
if jump = 1 then go to entry;
comment Computation of initial estimates follows;
b := 2 X ln(abs(((y[n] - y[n-1]) X (x[2] - x[l]))/

((y[2] - y[l]) X (x[n] - x[n-1]))))/
(x[n] + x[n-1] - x[2] - x[l]);

m := (n+l) + 2;
exp factor := exp(b X (x[m] - x[k]));
c := (y[m] - z X exp factor)/(l - exp factor);
a : = (z - c) X exp (-b X x[k]) ;
E squared := O;
for i := 1step1 untiln do

E squared := E squared+ (y[i] - c - a X exp{b X x[i])) j 2;
comment Computation of corrections follows;

entry: for l := 1step1 until l max do
begin

real sumexl, sumex2, sumqexl, sumqex2, sumqexllsex2,
sumq2ex2, sumyi, sumyiexl, sumqyiexl, zlsc, dll, d12, d22,
el, e2, delta, v, w, save;

sumexl : = sumex2 : = sumqexl : = sumqex2 : = sumqexllsex2 : =
sumq2ex2 : = sumyi : = sumyiexl . - sumqyieicl : = 0;

for i := 1 step 1 until n do
begin

real q, exl, ex2, qexl, qex2, qexllsex2, q2ex2;
q := x[i] - x[k];
exl := exp(b X q);
ex2 := exl j 2;
qexl := q X exl;
qex2 := q X ex2;
qexllsex2 : = qexl - qex2;
q2ex2 := qex2 X q;
sumexl := sumexl + exl;
sumex2 : = sumex2 + ex2;
sumqexl : = sumqexl + qexl;
sumqex2 : = sumqex2 + qex2;
sumqexllsex2 : = sumqexllsex2 + qexllsex2;
sumq2ex2 : = sumq2ex2 + q2ex2;
sumyi := sumyi + y[i];
sumyiexl := sumyiexl + exl X y[i];
sumqyiexl := sumqyiexl + qexl X y[i];

276--P I~ 0

end computation of sum terms in normal equations;
zlsc := z - c;
dll : = sumq2ex2 X zlsc j 2;
dl2 : = sumqexllsex2 X zlsc;
d22 := n - 2 X sumexl + sumcx2;
el : = sumqyiexl X zlsc - sumqex2 .X zlsc j 2 -

sumqexl X zlsc X c;
e2 := sumyi - sumyiexl + sumexl X (2 X c - z) +

sumex2 X zlsc - n X c;

delta := dll X d22 - d12 j 2;
v := (el X d22 - e2 X d12)/delta;
w : = (e2 X dll - el X dl2)/dclta;
b := b + v;
c := c + w;
a := (z - c) X exp(-b X x[k]);
E squared := O;
for i := 1 step 1 until n do

E squared : = E squared +
(y[i] - c - a X exp(b X x[i])) j 2;

if l = 1 then go to retry;
if abs (save - E squared) < epsilon
then go to 73
else if l ·< l max

then go to retry
else go to unfurl;

retry: save : =;= E squared;
end computation of corrected values of a, b, and c;

unfurl: flag : = 1;
73: end constrained least squares fit to y = a X exp (b X x) +

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 277
COMPUTATION OF CHEBYSHEV SERIES
COEFFICIENTS [Cfll
LYLE B. SMITH (Recd. 1.5 July 1B65, 23 July 1965 and 20

Sept. 1965)
Stanford University, Stanford, California

procedure CHEBCOEFF CF, N, ODD, EVEN, .:1);
value ;V;
Boolean ODD, EVEN;
integer N;
real procedure F;
array A;

comment This procedure approximates the first N +l coeffi
cients, an , of the infinite Chcbyshev series expansion of a func
tion F(x) defined on [-1, l].

/?(x) = f, 1 a,.'l'n(x), (1)
n=O

where L' denotes a sum whose first term is halved, and Tn(x)
denotes the Chcbyshcv polynomial of the first kind of degree n,
defined by

Tn(X) = cos n(J, x = cos (J (n = 0, 1, 2, · · ·).

The truncated series L~~o an1'n(x), gives an approximation to
F(x) which has maximum error almost as small as that of the
"best" polynomial approximation of degree N, sec [l]. In this
procedure the coefficients, an , arc closely approximated by
Bn,N , n = O(l)N, which arc the coefficients of a "Lagrangian"
interpolation polynomial coincident with F(x) at the points
x; , i = O(l)N where Xi = cos(7ri/N), sec [2]. The Bn,N are given
by

2 N 2 N
Bn.N = NL" F(x.)Tn(X;) = - L" F(xJT;(Xn),

•-o N i-o

where L" denotes a sum whose first and last terms arc halved.
The Bn,N are evaluated by a recurrence relation described by
Clenshaw in [l) and improved by .John Rice. [5]. This recurrence
relation can also be used to evaluate the truncated series,
L~~o a~1'n(x), once CHEBCOEFF has found values for the
coefficients. For even N a relation between Bn,N/2 and Bn,N

(pointed out by Clenshaw 13, p. 27)) is used in computing Bn,N .

For large N, Bn,N is very close to an . In [~:] the relation is given
as

(2)

This shows that !BN,N approximates aN quite well for large N
since from (2) we sec that

(3)

For even N a simple check on the accuracy is available. Since
the relation

Rn,N = Bn,N/2 - BN-n,N , n = O(l)N /2-1 (4)

is used in the computation, the difference

Bn,N/2 - Bn,N = BN-n,N 1 (5)

which measures in some sense the accuracy of the approxima-

277-P 1- 0

tion, is available to the user. For instance, in the example below
with N = 8 the number A[7] is the difference between A[l] for
N = 4 and A [l) for N = 8.

PARAMETER EXPLANATION. If the function Fis odd or even
then the Boolean parameters ODD or EVEN should be true
respectively in which case every other coefficient in the array
A will be zero. The array A will contain the coefficients of the
truncated series with N +l terms.

EXAMPLE. For the function F(x) = ex the following values
were computed for A[n] with N = 4 and N = 8. The computations
were done using this procedure written in Extended ALGOL for
the Burroughs B5500 computer. Also shown are computed values
for the coefficients of the "best" polynomial of degree 8 from [4]
(digits differing from the correct result are in italics).

n A[n] with N = 4 A[n] with N = 8 "Best" an from [4] Correct an from (1]

0 2.53213 21539 2.53213 17555 2.53213 17555 2.53213 17555
11.13032 14175 1.13031 82080 1.13031 82080 1.13031 82080
20.27154 03174 0.27149 53395 0.27149 53395 0.27149 53395
3 0.04487 97762 0.04433 68498 0.04433 68498 0.04433 68498
4 0.00547 42404 0.00547 42404 0.00547 42404 0.00547 42404
5 0.00054 29263 0.00054 29263 0.00054 29263
(i 0.00004 49779 0.00004 49773 0.00004 49773
7 0.00000 32095 0.00000
8 0.00000 01992 0.00000

begin
integer i, m, N2, Sl, S2, Tl;
real bO, bl, b2, pi, TWOX, FXN2;
array FX, X[O:N];
Boolean TEST;
pi := 3.14159265359;
N2 := N + 2;

31984
01998

comment If N is even TEST is set to true;
if 2 X N2 = N then TEST := true
else TEST := false;

0.00000
0.00000

comment Compute the necessary function values;
for i := 0 step 1 until N do
he gin

X[i] := cos(pi X i/N);
F X[i] : = F (X[i));

end;
S2 := l; Sl := O;
comment If F(x) is odd or even initialize accordingly;
if ODD then
begin

form := 0 step 2 until N do
A[m] := O;

82 : = 2; Sl : = 1;
end else

if EVEN then
begin

form := 1 step 2 until N do
A[m) := O;

S2 : = 2; Sl : = O;
end;

31984
01992

comment If TEST is true the coefficients are computed in
two steps;

FXN2 := FX[N]/2.0;

COLLECTED ALGORITHMS (cont.)

if TEST then
begin

for m : = Sl step S2 until N2 do
begin

bl := O;
bO := FXN2;
TWOX := 2.0 X X[2 X m];
for i := N-2 step -2 until 2 do
begin

b2 := bl; bl := bO;
bO := TWOX X bl-b2 + FX[i];

end;
A[m] := 2.0 X (X[2Xm]Xb0-bl+FX[0]/2.0)/N2;

end;
A[N2] := A[N2]/2.0;
Tl := Sl;
if ODD V EVEN then
begin

if 2 X (N2 + 2) = N2
then Sl : = N2 + 2 - Sl
else Sl : = N2 + 1 + Sl;

end
else Sl := N2 + l;

end;
comment Compute the desired coefficients;
for m : = Sl step S2 until N do
begin

bl := O;
bO := FXN2;
TWOX := 2.0 X X[m];
for i := N-1 step - 1until1 do
begin

b2 :=bl; bl := bO;
bO := TWOX X bl - b2 + FX[i];

end;
A[m] := 2.0 X (X[m]XbO-bl+FX[0]/2.0)/N;

end;
if TEST then
begin

for i := Tl step S2 until N2-l do
A[i] := A[i] - A[N-i];

end;
A[N] := A[N]/2.0;

end CHEBCOEFF

REFERENCES:
l. CLENSHAW, C. W. Chebyshev Series for Mathematical Func

tions. MR 26 #362, Nat. Phys. Lab. Math. Tables, Vol. 5,
Dep. Sci. Ind. Res., Her Majesty's Stationery Off., London,
1962.

2. ELLIOTT, D. Truncation errors in two Chebyshev series
approximations. Math. Comp. 19 (1965), 234-.-248.

3. CLENSHAW, C. W. A comparison of "best" polynomial ap
proximations with truncated Chebyshev series expansions.
J. SIAM {B}, 1 (1964), 26-37.

4. Computed values by Dr. C. L. Lawson. (private communica
tion)

5. R1cE, JOHN. On the conditioning of polynomi31ls and rational
forms. (submitted for publication).

277-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 278
GRAPH PLOTTER [.J6]
P. LLOYD (Recd. 4 June 1965)
Queen Mary College, London, England

procedure graphplotter (N, x, y, m, n, xerror, yerror, g, L, S, EM,
CO, Cl, C2, C3, C4, label);
value N, m, n, xerror, yerror, g, L, S;
array x, y;
integer N, g, m, n, L, S;
real xerror, yerror;
string EM, CO, Cl, C2, C3, C4;
label label;

comment This procedure is intended to be used to give an ap
proximate graphical display of a multivalued function, y[i, j] of
x[i], on a line printer. Output channel N is selected for all out
put from graph plotter. The display is confined to points for which
l S i S m and 1 S j S n where 2 S n S 4. If n = 1, then y is
considered to be a one-dimensional array y[i] and the display is
again given for 1 S i s m. The format of the print out is ar
ranged so that a margin of g spaces separates the display from
the left-hand side of the page. L and S denote the number of
lines down the page and the number of spaces across the page
which the display will occupy. The graph is plotted so that lines
1 and L correspond to the minimum and maximum values of x,
and the spaces 1 and S correspond to the minimum and maxi
mum values of y, that is, y is plotted across the page and x down
the page. After the graph has been plotted, the ranges of x and
y for which the display is given are printed out in the order as
above, separated from the display by a blank line. The strings
EM · · · C4 must be such that they occupy only one character
position when printed out. The characters of Cl C2 C3 C4 repre
sent y[i,1] y[i,2] y[i,3] y[i,4]. EM is the character printed out
round the perimeter of the display. CO is printed at empty
positions. At coincident points the order of precedence of the
characters is Cl C2 C3 C4 EM CO. For the special case n=l the
character Cl represents y[i]. Control is passed from the pro
cedure to the point labeled label if the interval between the
maximum value and minimum values of :r[i] is less than xerror,
or if the range of y is less than yerror. If the values of x[i] occur
at equal intervals, choosing L=m will make one line equivalent
to one interval of x;

begin
real p, q, xmax, xmin, ymax, ymin;
integer i, j;
integer array plot[l :L,l :SJ;
xmax := xmin := x[l];
for i := 2 step l until m do
begin

if x[i] > xmax then xmax := x[i];
if x[i] < xmin then xmin : = x[i]

end of hunt for maximum and minimum values of x;
if n=l then go to NlA;
ymax :=.ymin := y[l,l];
for i := 1 step 1 until m do

for j := 1 step 1 until n do
begin

if y[i,j] > ymax then ymax := y[i,j];
if y[i,j] < ymin then ymin : = y[i,j]

end of hunt for maximum and minimum values of y;

278-P 1- 0

escape: if abs(xmax-xmin) < xerror V abs(ymax-ymin) <
yerror then go to label;
p := (L-1)/(xmax-xmin); q := (S-1)/(ymax-ymin);
for i := 1 step 1 until L do

for j := 1 step 1 until S do plot[i,j] := 2;
for i :=.1, L do

for j := 1step1 until S do plot[i,j] .- l;
for i := 2 step 1 until L-1 do

for j := 1, S do plot[i,J] := l;
if n = 1 then go to NlB;
for i := 1 step 1 until m do

for j := n step -1 until l do
plot[l+entier(0.5+pX (x[i]-xmin)),

l+entier(0.5+qX (y[i,j]-ymin))] := j+2;
plotter:

for i := 1 step 1 until L do
begin

NEWLINE(N,1); SPACE(.N,g);
comment NEWLINE and SP ACE must be declared

globally to graphplotter, NEWLINE(N,p) outputs p car
riage returns and p line feeds on channel N, SPACE(N,p)
outputs p blank character positions on channel N;

for j := 1 step 1 until S do
begin

switch SW := SWl, SW2, SW3, SW4, SW5, SW6;
go to SW[plot[i,j]];

SWl: outstring(N,EM); go tofin;
SW2: outstring(N,CO); go to fin;
SW3: outstring(N,Cl); go tofin;
SW4: outstring(N,C2); go to fin;
SW5: outstring(N,C3); go to fin;
SW6: outstring(N,C4);
fin:

end
end of display output;
NEWLINE(N,2); SPACE(N,g); outreal(N,xmin);

outreal(N,xmax);
outreal(N,ymin); outreal(N,ymax);
go to end;

NlA:
ymax := ymin := y[l];
for i := 2 step 1 until m do
begin
if y[i] > ymax then ymax : = y[i];
if y[i] < ymin then ymin := y[i]

end of hunt for maximum and minimum values of y when
n = 1;

go to escape;
NlB:

for i := 1 step 1 until m do
plot[l+entier(0.5+pX (x[i]-xmin)),

l+entier(0.5+qX (y[i]-ymin))] := 3;
go to plotter;

end:
end of graphplotter

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 279
CHEBYSHEV QUADRATURE [Dl]
F. R. A. HOPGOOD and c. LITHERLAND (Recd. 31 July

1964, 1 Dec. 1964, 16 Aug. 1965 and 29 Nov. 1965)
Atlas Computer Laboratory, S.R.C., Chilton, Berks,
England

real procedure cheb(a, b, error, nmax, f);
value a, b, error, nmax; real a, b, error; integer nmax; real

procedure f;
comment This routine evaluates the integral of f(x) with lower

and upper limits set to a and b respectively. ·The method is
that suggested by Curtis and Clenshaw [Num. ~ath. 2 197-205
(1960),]. The method consists of fitting 2 j n +il point Cheby
shev polynomial to integrand and thus findin~ integral. n is
tried equal to 2 and increased by 1 if error, th~ relative error,
is too large. If n reaches maximum nmax withdut required ac
curacy obtained a message is printed. Accuracy is determined by
assuming that error is less than the contribution to the integral
of the last term in the integrated Chebyshev polynomial. After
n = 2 has been tried, an estimate of the integral is available
and subsequently the last term in the Chebyshev polynomial is
found first and this saves evaluating whole polynomial if ac
curacy not obtained. An extra check is that the. next two terms
are also tested allowing up to 8 times error on previous term in
each case. A reasonable value for nmax is probably 7. Integrals
requiring many more points than this would prqbably be better
tackled using some method which subdivides the range. Also
the temporary storage required increases considerably for larger
values of nmax. For example nmax = 10 requires 2048 words;

begin
real arminl, araddl, bmina, badda, br, bsum, cs, csaddl, csadd2,

esterr, x, estint, intdv2, twodvn, twotr, verror;
integer j, k, m, r, s, mmax, mmaxd2, rk;
k : = 2 j (nmax - 2);
mmaxd2 := 2 X k;
mmax : = 2 X mmaxd2;
begin

real array func, cosine [O:mmax];
bmina := .5 X (b-a);
badda := .5 X (bXa);
twodvn := 1; m := 4;
comment m+l is number of points used in Chebyshev fit;

start : twodvn : = .5 X twodvn;
bsum := araddl := O;
k := k+2;
j : = if m = 4 then 0 else k;

fnretn: if j ~ · mmaxd2 then
begin

cosine [j] :=if m = 4 then cos (3.14159265· X j/mmax)
else if j = k then sqrt ((1 + cosine[2 X jl) /2)

else (cosine[j - k] + cosine[j + k])/(2 X cosine[k]);
cosine [mmax - j] := -cosinelf]

end;
x : = bmina X cosine [j] + badda;
June [j] := ifj = mmaxthen .5 X f(x) elsef(x);
j:=2Xk+j;

279-P I 0

comment Evaluates remaining values of integrand required
storing .5 X lower bound for easier use in Cr recurrence
formula;

if mmax ~ j then go to fnretn;
if m = 4 then k : = 2 X k;
verror : = error;
r := m;
rk := mmax;
comment verror is the error allowed in Chebyshev coefficient

compared with estimate of integral;
brretn: twotr := 2 X cosine[rk];

csadd2 := O;
csaddl := O;
s := mmax;

cretn: cs:= twotr X csaddl - csadd2 + func[s];
ifs ~ 0 then

begin
csadd2 : = csaddl ;
csaddl : = cs;
s := s - k;
go t0 cretn

end recurrence to evaluate next Chebyshev coefficient of
original function;

arminl : = .5 X twodvn X (cs - csadd2) X (if r = m then
.5 else 1.0); ·

br := .5 X (arminl - araddl)/(r + 1);
comment br is Chebyshev coefficient of integrated function;
bsum := bsum + br;
araddl : = arminl;
comment integral= (b - a) X (bl+ b3 + · · · + .5 X bn);
if r = m then esterr := br;
comment error assumed less than last term added in br sum;
if m ~ 4 7 433 m ~ mmax 7 433 r ~ m - 4 then

begin·
if abs (br) ~ verror X es tint then

begin
newm: m: = 2 X m;

go to start
end;

verror : = 8 X verror
end Checks last 3 coefficients to ensure within allowed

error bounds;
if r ~ 0 then

begin
r := r - 2;
rk : = rk - 2 X k;
go to brretn

end;
intdv2 : = bsum X bmina;
es tint : = abs (bsum) ;
if error X es tint < abs (es terr) then

begin
if m ~ mmax then go to newm;
outstring (1, 'Accuracy not obtained');

end;
cheb : = 2 X intdv2

end
end cheb

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 279
CHEBYSHEV QUADRATURE [Dl]
F. R. A. Hopgood and C. Litherland
[Comrn. ACM 9 (Apr. 1966), 270]

The 33rd line of the second column on pa.ge 270 should read:
if m ~ 4 /\ m ~ mmax /\ r ~: m - 4 then

A printing error showed /\ as 7433.

CERTIFICATION OF ALGORITHM 279 [Dl]
CHEBYSHEV QUADRATURE [F. R. A. Hopgood and

C. Litherland, Comm. ACM 9, 4 (Apr. 1966), 270]
:KENNETH HILLSTROM· (Recd. 16 Dec. 1966 and 30 Jan.

1967)
Applied Mathematics Division, Argonne National Labora

tory, Argonne, Illinois
Work performed under the auspices of the US Atomic Energy Commission

The 40th line of the first column on page 270 should read:
badda := .5 X (b+a);

So corrected, Chebyshcv quadrature was coded in CDC 3600
ALGOL. A modified version of this quadrature scheme was coded
in 3600 Compass language. In this modification the cosine values
are program constants, with 3600 single-precision accuracy, as
opposed to program generated values, which tests show have
maximum absolute errors of ~35 • These errors are carried into the
integrand argument evahiation, resulting :[n large relative errors
in the integrand evaluation, for functions bounded by unity over
the interval of integration, for example, e-x

2 over (0, 4.3) and sin(x)
over (0, 211'), which in turn delays convergence.

Since 3600 Compass does not permit dynamic allocation of
storage, the dimension of the cosine n,rra,y must be fixed. The
choice of 129 = 27 + 1 terms is based on the recommendation in
the comments of Algorithm 279, "A reasonable value for nmax is
})robably 7."

The Chebyshev quadrature 3600 ALGOL program, the modified
3600 Compass routine, and 3600 FORTRAN-coded Romberg and
Ifavie integration routines were tested with six integrands. The

279-P 2- R2

TABLE I

Num-
ber

Integrand A B EPS VI Routine VA
of

June-
tion

evalu-
at ions

--
Ha vie 0. 886226924 17

0 4.3 10-a 0. 886226924 Romberg 0. 886226925 65
Chebyshev 0.886095576 129
Chebyshev (Rev.) 0 . 886226926 17

- -- --
Ha vie 6. 268233308 129

sin (x) + 1 0 211' 10-a 6.283185308 Romberg 6. 268233309 129
Chebyshev 6. 282993876 129
Chebyshev (Rev.) 6.283185309 5

- - -- --
Ha vie 5. 034254231 129

0 1 10-a 6.0 Romberg 5. 034254231 129
Chebyshev 5. 829597734 129

(x)-<1!2> Jn(;)

Chebyshev (Rev.) 5. 701177427 129
- - --

Ha vie 14. 02585084 65
In (x) 1 10 10-6 14. 02585088 Romberg 14. 02585085 65

Chebyshev 14.02585096 17
Chebyshev (Rev.) 14. 0~585097 17

- --
Ha vie 1. 9797 45104 129

0 1 10-s 2.0 Romberg 1. 979745104 129
Chebyshev 1. 999599461 129

In CD
Chebyshev (Rev.) 1. 997983436 129

- - -- --
Ha vie 1. 582238946 17

-1 1 10-s 1.5822329"' Romberg 1. 582238946 17
Chebyshev 1. 58223!<967 17
Chebyshev (Rev.) 1. 582232967 17

"' The value f+1 dx = 1.5822329 is obtained from C. W. Clenshaw and
-i (x4 + z2 + 0.9)

A. R. Curtis, "A method for numerical integration on an automatic computer,"
Numer. Math. 2 (1960), 203.

Romberg and Havie routines are based upon Algorithm 60, Rom
berg Integration [Comm. ACM 4, (June 1961), 225], and Algorithm
257, Havie Integration [Comm. ACM 8(June1965), 381].

The results of these tests are tabulated in Table I. In the table,
A is the lower limit of the interval of integration, B is the upper
limit, EPS the convergence criterion, VI the value of the integral,
and VA the value of the approximation.

Due to storage requirements, Chebyshev quadrature is re
stricted to a maximum of 129 function evaluations. For reasons
of comparison, this limit is also imposed on Romberg and Havie
quadratures. Thus, in some cases the accuracy called for was not
obtained.

RK\IARK ON CORRECTION TO CERTIFICATION
OF ALGORITHM 279 [Dl]

CHEBYSHEV QUADRATURE [F.R.A. Hopgood and
C. Litherland, Comm. ACM 9 (Apr. 1966), 270 and 10
(May 1967), 294]

KENNETH HILLSTROM (Recd. 26 June 1967)
Applied Mathematics Division, Argonne National Labora

tory, Argonne, Illinois

There are two corrections that should be appended to the certi
fication of Algorithm 279.

Due to programming error, the integrand function routines for
e-x2 and sin(x)+l, used by the Chebyshev routine, incorrectly
evaluated the functions at x = 0, thus delaying convergence.

COLLECTED ALGORITHMS (cont.)

The revised Chebyshev routine still converges more rapidly
than the original scheme in the first two examples, but the ad
vantage is mucr less pronounced than previously indicated.

The amended Table I should read as follows, with the numerical
corrections italicized.

TABLE I
~-

Number
of June-

Integrand A B EPS VI Routine VA tion
evalu-
at ions

e -x2 0 4.3 10-5 0. 886226924 Ha vie 0. 886226924 17
Romberg 0. 886226925 65
Chebyshev 0. 8862269261 33
Chebyshev (Rev.) 0. 8862269258 17

sin(x)+l 6.283185308 Ha vie 6. 283185307 3
Romberg 6.283185307 3
Chebyshev 6 .,2831853086 9
Chebyshev (Rev.) 6. 2831853089 5

_,,..,,...

279P 3~ 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 280
ABSCISSAS AND WEIGHTS FOR GREGORY

QUADRATURE [Dl]
JoHN H. WELSCH (Recd. 27 Apr. 1965:, 14 May 1965, 14

Sept. 1965 and 9 Dec. 1965)
Computation Center, Stanford University, Stanford, Cali

fornia
procedure gregoryrule (n, r, t, w) ;

value n, r; integer n, r; real array t, w;
comment Computes the abscissas and weights of the Gregory

quadrature rule with r differences:

1:n f(t) dt = h Gjo + f1 + · · • + fn-1 + ~.f,..)- l~ (V'/,..- Lfo)

h
-

24
(V'2fn + L 2fo) - · · · -- hc:+i(V'rJ,.. + Nfo)

= "Lwif(tj),
i-0

where h = (t,.. - to)/n, and the c1* are given in Henrici [1964]. The
number r must be an integer from 0 to n, the number of sub
divisions. The left and right endpoints must be in t[O] and t[n]
respectively. The abscissas are returned in t[O] to t[n] and the
corresponding weights in w[O] to w[n].

If r = 0 the Gregory rule is the same as the repeated trapezoid
rule, and if r = n the same as the Newton-Cotes rule (closed
type). The order p of the quadrature rule is p = r + 1 for r
odd and p = r + 2 for r even. For n ~ 9 and large r some of the
weights caR be negative.

For n ~ 32 and r ~ 24, the numerical integration of powers
(less than r) of x on the interval [O, 1] gave 9 significant digits
correct in an 11-digit mantissa. Since the binomial coefficients
are generated in the local integer array b, integer overflow may
occur for large values of r. The type of b c;[Ln be changed to real
to prevent this with no change in the results stated above.
REFERENCES:

HILDEBRAND, F. B. Introduction to Numerical Analysis.
McGraw-Hill, New York, 1956, p. 155 ..

HENRICI, PETER. Elements of Numerical Analysis. Wiley,
New York, 1964, p. 252.;

begin integer i, j; real h, cj;
integer array b[O: n]; real array c[O: n + 1];
b[O] := 1; c[O] := 1.0; ell] := -0.5; b[n] := O;
h := (t[n] - t[O])/n; w[O] := w[n] := 0.5;
fori := n-1 step -1until1 do

begin w[i] := LO; t[i] := i X h + t[O]; b[i] := 0 end;
if r > n then r : = n;
for j := 1step1 until r do
begin cf := 0.5 X c[j];

for i := j step -1until1 do b[i] := b[il - bli-1];
for i := 3 step 1 until j + 2 do cj := cj + c[j+2-i]/i;
c[j+ll := -cj;
for i := 0 step 1 until n do

w[i] := w[i] - cj X (b[n - i] + b[i]);
end;
for i := 0 step 1 until n do w[i] := w[i])(h
end gregoryrule

280-P 1- 0

COLLECTED ALGORITHMS (cont.)

ALGORITHM 281
ABSCISSAS AND WEIGHTS FOR ROMBERG

QUADRATURE [Dl]
JoHN H. WELSCH (Recd. 27 Apr. 1965, i4 May 1965, 14

Sept. 1965 and 9 Dec. 1965)
Computation Center, Stanford University, Stanford Cali-

. '
fornia

procedure rombergrule (n, p, t, w);
value n, p; integer n, p; real array t, w;

comment Computes the abscissas and weights of the pth order
Romberg quadrature rule which features equally spaced ab
scissas and positive weights lying between 0.484 X h and 1.4524
X h. (h = subdivision length). The number of subdivisions n
must be a power of 2 (say 2 j q) and p an even number from 2 to

2~+2. Rom~er~ integration is normally given as the extrapola
t10n to the limit of the trapezoid rule; Let ·

T~k) = h Gfo + fi + · · · + N-1 + ~ f2k). and Tg''.

4_mT<k+1> _ T<k> = _· m-1 m-1

4m -1

then the Romberg quadrature rule gives

1
tn n

f(t) dt = T;:> = L w;f(t;),
0 i-0

where n = 2q, m = (p - 2)/2, and k = q-m. The left and right
endpoints must be in t[O] and t[n] respectively .. The abscissas
are returned in t[O] to t[n] and the corresponding weights in
w[O] to w[n].

If p = 2 the Romberg rule is the same as the :repeated trape
zoid rule, and if p = 4, the same as the repeated Simpson rule.

For n ~ 128 and p ~ 16, the numerical integrajtion of powers
(less than p) of x on the interval [O, 1] gave answers correct to
one round off error in an 11-digit mantissa.
REFERENCE: Bauer, F. L., Rutishauser, H., and Stiefel, E.
New aspects in numerical quadrature. Proc. of Symp. in Appl.
Math., Vol. 15: High speed computing and experimental arith
metic. Amer. Math. Soc., Providence, R. I., 1963,·pp. 199-218;

begin integer i, j, m, ml, m4, s;
real h, ci; real array c[O: (p - 2)/2];
h := (t[n] - t[O])/n; w[O] := w[n] := O;
for i := n-1 step -1 until 1 do

begin w[i] := c[i] := O; t[i] := i X h + t[O] end;
m := (p - 2)/2; c[O] := 1.0; s := m4 := l; c[ti] := O;
if m > ln(n)/ln(2) then m := ln(n)/ln(2); ~
for j := 1 step 1 until m do
begin m4 := 4 X m4; ml:= m4 - l;

for i := j step -1until1 do
c[i] := (m4 X c[i] - c[i - 1])/ml;

c[O] := c[O) X (m4/ml);
end;
for i := 0 step 1 until m do
begin ci := c[i) X s;

for j := 0 steps until n do w[j] := w[j]+ci;
8 := 2 x 8

end;

w[O] := w[n] := 0.5Xw[O);
for j := 0 step 1 until n do w[j] := w[j] X h;

end rombergrule

REMARK ON ALGORITHM 281 [DI]

281~P 1 R2

ABSCISSAS AND WEIGHTS FOR ROMBERG
QUADRATURE [John H. Welsch, Comm. ACM 9
(Apr. 1966), 273]

J. BooTHROYD (Recd. 13 Sept. 1966 and 14 Nov. 1966)
University of Tasmania, Hobart, Tasmania, Australia

The following changes which effect two minor improvements and
correct two errors are recommended:

1. The expression (p - 2)/2, which occurs twice, should
preferably be written (p - 2)+2

2. Delete c[i) := from the left part list of the statement
w[i] := c[i] := 0 which occurs within the scope of the first for
statement

3. Delete the statement c[n] := O;

4. Add, immediately following ml := m 4 - 1, the state
ment c[j] := O;

These changes have been tested by the author of Algorithm 281
using B5500 ALGOL.

COLLECTED ALGORITHMS FROM CACM

.ALGORITHM 282
DERIVATIVES OF ex/x, cos (x)/x, AND sin (x)/x*

[S22]
WALTER GAU'l'SCHI (Recd. 19 Aug. H)65)
Argonne National Laboratory, Argonne, Ill.

*Work performed under the auspices of the U.S. Atomic Energy
Commission. Author's present address is Purdue University.

procedurt dsubn(x, nmax, d);
value x, nmax; integer nmax; real x; array d;

comment This procedure generates the d1erivatives

dn (e"') dn(x) = - - (n, = 0 1 2 · · · nmax)
dxn x ' ' ' '

using the recurrence relation

dn(x) = (e"' - ndn-i(x))/x (n = 1, 2, 3, · · ·).

The results are stored in the array d. If x = 0, there is an error
exit to a global label called alarm;

begin integer n; real e;
if x = 0 then go to al.arm,·
e := exp(x); d[O] := e/x;
for n := 1 step 1 until nmax do

d[n] := (e - n X d[n - 1])/x
end dsubn;
procedure csubn(x, nmax, c);

value x, nmax; integer nmax; real x; array c;
comment This procedure obtains the derivatives

Cn(x) = - -- (n = 0 1 2 · · · nmax) dn (cos x)
dxn x ' ' ' '

from the recurrence relation

Cn(x) = (Tn(x) - ncn-1(x))/x (n =: 1, 2, 3, · · ·),

where {Tn(x)} =-1 = {-sin x, -cos x, sin .v, cos x, -sin x, .. ·}.
The results are stored in the array c. If x = 0, there is an error
exit to a global label called alarm;

begin integer n; array tau[l: 4];
if x = 0 then go to alarm;
tau[IJ := -sin(x); tau[2] := -cos(x);
tau[3] := -tau[l]; tau[4] := -tau[2];
c[O] := tau[4]/x;
for n : = 1 step 1 until nmax do

c[n] := (tau[n-4X ((n-1) + 4)] - nXc:[n-1])/x
end csubn;
procedure ssubn(x, nmax, d, s);

value x, nmax, d; integer nmax, d; rieal x; arrays;
comment This procedure generates to d significant digits the

derivatives

dn (sin x) Sn(x) = - -- (n = 0 1 2 · · · nmax)
dxn X ' ' ' ' '

and stores the results in the arrays. The 1'llethod of computation
is based on the recurrence relation

Sn(x) = (un(X) - nsn-1(x))/x (n = 1, 2, 3, · · ·),

where {un(x) J:-1 = {cos x, -sin x, -cos x, sin x, cos x,· • ·}.
The recurrence relation is applied in forward direction as long

282-P 1- Rt

as n ~ lxl, and in backward direction for the remaining values
of n, starting with an appropriately large n = 11. A detailed dis
cussion of the method will be published elsewhere. It is assumed
that a global real procedure t(y) is available, which evaluates
the inverse function t = t(y) of y = t ln t to low accuracy for

y ~ O. (See W. Gautschi, Algorithm 236, Bessel functions of
the first kind, Comm. ACM 7 (Aug. 1964), 479 Gautschi, W.
Computation of successive derivatives off (z)/z, in press;

begin integer n, nO, nu; real xl, dl, sl; array sigma [1: 4];
xl := abs(x);
sigma [1] := cos(x); sigma [2] := -sin(x);
sigma [3] := -sigma [1]; sigma [4] := -sigma [2];
nO : = entier (xl); s[O] : = if x ~ 0 then sigma [4]/x else 1;
for n : = 1 step 1 until if nO ;ii nmax then nO else nmax do

s[n] := (sigma[n - 4 X ((n - 1) + 4)] - n X s[n - 1])/x;
if nO < nmax then
begin

sl := O; dl := 2.3026 X d + .6931;
nu : = if nmax ~ 2. 7183 X xl 0 then

1 + entier (2.7183 X xl X t(.36788 X dl/xl)) else
1 + entier (nmax X t(dl/nmax));

for n :=nu step -1 until n0+2 do
begin

sl := (sigma[n - 4 X ((n - 1) + 4)] - x X sl)/n;
if n ~ nmax + 1 then s[n-1] := sl

end
end

end ssubn

REMARK ON ALGORITHM 282* [S22]
DERIVATIVES OF l/x, cos (x)/x, AND sin (x)/x

[Walter Gautschi, Comm. ACM 9 (April 1966), 272]
WALTER GAUTSCHI AND BRUCE J. KLEIN (Recd. 12 May

1969)
Computer Sciences Department, Purdue University, La

fayette, IN 47907 and College of Arts and Sciences,
Virginia Polytechnic Institute, Blacksburg, VA 24061

* Work supported by the National Aeronautics and Space
Administration NASA under Grant NGR 15-005-039.

KEY WORDS AND PHRASES: recursive computation, suc
cessive derivatives, error control
CR CATEGORIES: 5.11, 5.12

For large values of x, and derivatives of order n > x, the first
two procedures of Algorithm 282 incur substantial loss of accuracy.
The reasons for this, as well as remedial measures, are described
in the companion article (I]. The following revised procedures,
based on this article, are believed to preserve accuracy as far as
seems possible. Both procedures call upon the real procedure t of
Algorithm 236 [2].

procedure dsubn (x, nmax, ace, machacc, d, error) ;
value x, nmax, ace, machacc; integer nmax, ace, machacc;
real x; array d; label error;

COLLECTED ALGORITHMS (cont.)

comment Given x ~ 0, nmax, and the number mach.acc of decimal
digits available in the mantissa of machine floating-point num
bers, this procedure generates the derivatives

dn (e"') dn(x) = - - ,
dxn X

n = 0, 1, 2, · · · , nmax,

to an accuracy of ace significant decimal digits, except near a
zero of dn(x), where some significance may be lct>st. The result
dn(x) is stored in d[n]. If x = 0, the procedure immediately
exits to the label error;

begin
integer nO, min, n, nl; real xl, e, a, q;
Boolean booll, bool2;
if x = 0 then go to error;
xl := abs(x); nO := xl; e := exp(x);
d[O] := e/x;
a := 1.1513 X (mach.acc-acc) - .3466;
if a < 2 then a : = 2;
booll := x < 0 V xl ~ a; bool2 := nO < nma:t;
min : = if bool2 then no else nmax;
for n : = 1 step 1 until if booll then nma.c else min do

d[nJ := (e-nXd[n-1])/x;
if (-, booll) /\ bool2 then
begin

nl := 2.7183 X xl X
t ((xl +2.3026Xacc+ .6932) / (2.7183Xxl))-1;

if nl < nmax then nl : = nmax.;
q := 1/x;
for n := 1 step 1 until nl + 1 do q .- -n X q/x;
for n := nl step -1 until nO + 1 do
begin

q := (e-xXq)/(n+l);
if n ~ nmax then d[nJ .- q

end
end

end dsubn;
procedure esubn (x, nmax, ace, machaee, e, error);

value x, nmax, ace, maeh.ace; integer nmax, ace, mach.ace;
real x; array e; label error;

comment This procedure generates the derivatives

cn(x) = ~ (cosx
dxn x

for n = 0, 1, 2, · · · , nmax) ,

and stores them in the array e. The parameters ace, maeh.acc
have the same meaning as in the preceding procedure. There is
an error exit if x = O;

begin
integer nO, min, n, nl; real xl, a, q; array tau[l:4];
Boolean booll, bool2;
if x = 0 then go to error;
xl := abs(x); nO := xl;
tau[lJ : = -sin(x); tau[2] := -~os(x);
tau[3J := -tau[lJ; tau[4] := -tau[2];
e[O] : = tau[4]/x;
a := 2.3026 X (maeh.ace-ace) - .69315;
if a < 3 then a : = 3;
booll := xl ~ a; bool2 := nO < nmax;
min := if bool2 then nO else nmax;
for n : = 1 step 1 until if booll then nmax else min do

e[nJ := (tau[n-4X ((n-1)+4)]-nXc[n-1])/x;
if (-, booll) /\ bool2 then
begin

nl := 2.7183 X xl X t((2.3026Xaee+.6932)/(2.7183Xxl))-1;
if nl < nmax then nl : = nmax;
q := 1/x;
for n := 1step1 until nl + 1 do q := -n X q/x;
for n := nl step -1 until nO + 1 do

begin
q := (tau[n+l-4X (n+4)J-x><q)/(n+l);
if n ~ nmax then e[n] . - q

end
end

end esubn
REFERENCES:

282-P 2~ 0

1. GAUTSCH!, WALTER, AND KLEIN, BRUCE J. Recursive com
putation of certain derivatives-A study of error propagation.
Comm. ACM 13 (Jan. 1970), 7-9.

2. GAUTSCH!, WALTER. Algorithm 236, Bessel functions of the
first kind [817]. Comm. ACM 7 (Aug. 1964), 479-480.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 283
SIMULTANEOUS DISPLACEMENT OF POLYNO

MIAL ROOTS IF REAL AND SIMPLE [02]
lMMO 0. KERNER (Recd. 8 Sept. 1965 and 12 Nov. 1965)
Rechenzentrum Universitaet Rostock

J>rocedure Prrs (A, X, n, eps); value n, eps;
integer n; real eps; array A, X;

comment Prrs (polynomial roots real simple) computes the n
roots X of the polynomial equation

Anxn + An-ixn-l + · · · + Ao = 0

simultaneously. On entry the array X contains the vector of
initial approximations to the roots and on exit it contains the
vector of improved approximations to the roots. The initial
approximations must be distinct. Accuracy is specified by means
of a parameter eps. Iteration is continued until the Euclidean
norm of the correction vector does not exceed eps. The con
vergence is quadratic;

begin integer i, k; real x, P, Q;
eps := eps j 2;

W: Q := O;
for i := 1 step 1 until n do

begin x:=P:=A[n];
fork : = 1 step 1 until n do
begin x := x X X[i] + A[n - k];

if k ~ i then P :=PX (X[i]-X[k])
end;
X[i] := X[i]-x/P;
Q:=Q+(x/P)j2

end;
if Q > eps then go to W

end

283-P 1- 0

COLLECTED ALGORITHMS FROM ACM
284-P 1- Rl

ALGORITHM 284
INTERCHANGE OF TWO BLOCKS OF J!:>ATA [K2j
WILLIAM FLETCHER (Recd. 25 Oct. 1965 ~nd 24 Nov.

divisor of m and n. The integers 1, · · · , d belong to distinct
cosets C1 • • • Cd of C. These cosetS form a disjoint covering of G.

1965)
Bolt, Beranek and Newman, Inc., Cambridge, Mass.
and

The interchange procedure is· based on the fact that if we start
with a member x of the coset C., , and add n repeatedly modulo
m + n, we will in r steps have generated each member of C:r:
just once; .

begin

ROLAND SILVER
i:'he Mitre Corp., Bedford, Mass.

integer d, i, j, k, r;
real t;
d : = gcd (m ,· n) ;

procedure interchange (a, m, n);
value m, n; integer m, n; array a; l

comment This procedure transfers the contents 'of afl] · · · a[m]
into a[n+ll · · · a[n+m] while simultaneously transferring the
contents of a[m + 1] · · · afm + n] into a[l] · · · a[n] without using
an appreciable amount of auxiliary memory.

The nonlocal procedure gcd (x, y) has value the greatest
common divisor of the integers x and y. The nonlocal procedure
swap (x, y) interchanges the values of the variab~es x and y.

Let G be the additive group of integers modulo m+n. The
multiples 0, n, 2n, · · · of n form a cyclic subgroup C of G. The
order of C is r = (m + n)/d, where d is the greatest common

r := (m + n) + d;
for i := 1step1 until d do
begin

j := i;.
t := a[iJ;
fork := 1step1 until r do
begin

If j ~ m then j : = j + n else j : = j - m;
swav (t, a[j])

end k
end i

end interchange

ACM Transactions on Mathematical Software, Vol. 2, No. 4, December 1976, l'ag<'b- 3\J2- 3\J3.

REMARK ON ALGORITHM 2 84

Interchange of Two Blocks of Data [K2]
[W. Fletcher and R. Silver,. Comm. ACM 9, 5 (May 1966), 326]

M.R. Ito [Recd 25 July 1975 and 25 May 1976]
Department of Electrical Engineering, University of British Columbia, Vancouver,
B.C., Canada, V6T 1 W5.

The relocation of two contiguous blocks of data performed by Algorithm 284 can
be regarded as a permutation problem. That is, the first m components and the last
n components of an (m + n) dimensional vector, a, are interchanged by the trans
formation, b = Qa, where Q is a permutation matrix defined in partitioned form as

Q = [-~-!+l
and I k is the identity matrix of order k.

Algorithm 284 is in fact equivalent to the representation [1] of the desir~d per
mutation as the pmduct of r disjoint cycles, with each cycle comprising d compo
nents, where

d = greatest common denominator of m and n;
r = (m + n) + d.
A more efficient algorithm for performing the permutation is based on the fol

lowing decomposition of Q. Let Pk be the permutation matrix of order k with ones
along the minor diagonal (zeros elsewhere) . Then, Q can be decomposed as

Q = Pm+nRS,
where

s = [-~~!+l
The partial permutation associated with Pk can be represented a8 a product of

(k/2 - (k/2) mod 1) disjoint cycles; each cycle comprising only two components

C:OLLECTED ALGORITHMS (cont.)

with easily computed indices. This latter property, combined with the above de
composition of Q, leads to an algorithm which avoids the following features present
in Algorithm 284:

(i) computation of the greatest common denominator;
(ii) conditional calculation of array clement index in inner loop;

(iii) extra storage and variable assignment.
Geometrically, the matrix Q can be interpreted as a rotation matrix, and the

matrices P m+n, R, and Scan be interpreted as reflection matrices.
The new algorithm is given below.

procedure rotatecirclist (a, m, n);
value m, n; integer m, n; array a;
comment This procedure transfers the contents of a[l] ... a[m] into a[n + 1] ... a[n + m]

while simultaneously transferring the contents of a[m + 1] ... a[m + n] into a[l] ... a[n].
The nonlocal procedure swap (x, y) interchanges the values of the variables x and y.
Fewer steps occur if the result of integer division is truncated rather than rounded, but

the procedure also works in the latter case;
begin

if m ~ 0 /\ n ~ 0 then
begin

integer i, k, l;
k := m + 1; l := m + 2;
for i := 1step1 until l do swap (a[i], a[k - i]);
k := k + n; l := n + 2;
for i = 1 step 1 until l do swap (a[m + i], a[k - i])
l := (m + n) + 2;
for i : = 1 step 1 until l do swap (a[i], a[k - i])

end;
end rotatecirclist;

REFERENCES

1. KNUTH, D.E. The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading, Mass.,
1969.

284-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 285
THE MUTUAL PRIMAL-DUAL METHOD [H]
THOMAS J. Arnn (Recd. 29 June 1964 and 5 Apr. 1965)
Wolf Research and Development Corporation
Manned Spacecraft Center
Houston, Texas

procedure Linearprogram (n, p, A, min, psol, dsol, bool);
value p, n; integer p, n; array A, psol, dsol; real min;
Boolean bool;

comment This procedure solves the linear programming prob
lem by the Mutual Primal-Dual Simplex Method. The problem
is nssumed to be in the following form:

AX+ B s O

x :2: 0

min u = d + crx
where A is p X n, Bis p X 1 and C is n X 1. T,he dual problem
is then,

Y:2:0

ATY + c :2: 0

max v = d + BT Y.

The matrix of coefficients, also called A is formed in the follow
ing way:

Id Ci C2

c. l bi Au A12 A1n

A ~li Azi A~2 Azn

Avi Av2 Avn

The input matrix A is declared [O: p, 0: n], mfo is the value of
the objective function, psol is the solution vecto:r for the primal
problem, dsol is the solution vector for the dual ptoble~, bool w~ll
be set to true if an optimal solution is found, otherwise bool will
be set to false;
begin integer array row [0:2Xp,O:p], col [0:2Xp,O:n], norow,

nocol [0:2Xp], index [O:n+p];
integer i, j, k, s, t;
procedure subschema (k); integer k;
comment This procedure defines an admissible sequence of

subschema Sk+i Sk+2, · · · , assuming that Si , S2 , · · • Sk ,
have already been defined;

begin integer count;
for i := 1 step 1 until p do if A[i,O] > 0 then go to

WORK;
for j : = 1 step 1 until n do if A [O,j] < 0 then go to

WORK; k := O; go to RETURN;
WORK: if 2 X (k+2) = k then go to EVEN else go to ODD;
EVEN:

begin
if k = 0 then
begin .

for i : = l step 1 until p do if A [i,0] > 0 then

begin
row[l,O] := i; go to D3

end;

row[l,O] := O; go to D3
end·
for J : = 1 step 1 until nocol[k] do "

if A [row[k,0],col[k,j]] = 0 then go to D1;
go to RETURN;

Dl: for i : = 1 step 1 until norow[k] do
if A[row[k,i],col[k,O]] > 0 tht>Tl go to D2;

go to RETURN;
D2: row[k+l,O] := row[k,i];

col[k+l,O] := col[k,O];
count := O;
for j : = 1 step 1 until nocol[k] do
if A [row[k,O],col[k,j]] = 0 then
begin

count : = count + 1 ;
col[k+l,count] := col[k,j]

end;
nocol[k+ll := count;

D3: count := O;
for i : = 1 step 1 until norow[k] do
if A [row[k,i],col[k,O]] S 0 then
begin

count : = count + 1 ;
row[k+l,count] := row[k,i]

end;
norow[k+l] := count;
k := k + 1;
go to ODD

end EVEN;
ODD:

begin
for i : = 1 step 1 until norow[k] do

if A[row[k,i],col[k,011 = 0 then go to Bl;
go to RETURN;

Bl: for j : = 1 step 1 until nocol[k] do.
if A [row[k,0],col[k,j]] < 0 then go to B2;

go to RETURN;
B2: col[k+l,O] := col[k,j];

row[k+l,O] := row[k,O];
count := O;
for i := 1 step 1 until norow[k] do
if A [row[k,i],col[k,O]] = 0 then
begin

count : = count + 1 ;
row[k+l,count] := row[k,i]

end;
norow[k+l] := count;
count := O;
for j := 1 step 1 until nocol[k] do
if A [row[k,O],col[k,j]] :2: 0 then
begin

count : = count + 1;
col[k+l,count] := col[k,j]

end;
nocol[k+l] := count;
k := k + 1;
go to EVEN

end ODD;
RETURN:

end subschema;

285 p 1 0

COLLECTED ALGORITHMS (corut.)

procedure pivot (s,t); values, t; integers. t; .
comment The procedure pivot performs the usual pivot opera

tion on the matrix A, A[s,t] is the pivot element;
begin integer i, j;

A[s,t] := l/A[s,t];
for i := O step 1 until s - 1, s + 1~;tep1 until p do

begin
A[i,t] := -A[i,t] X A[s,t];
for j := 0 step 1 until t - 1, t + 1 step 1 until n do

if abs(A[i,j]+A[,1'.,t]XA[s,j]) ~ abs(A[i,j]X10-8) then
A[i,j] := 0
else A[i,j] := A[,i,j] + A[i,t] X A[s,j]

end;

for j := 0 step 1 until t - 1, t + 1step1 until n do
A[s,j] := A[s,j] X A[s,t];

i := index[t];
index[t] := index[n+s];
index[n+s] := i

end pivot;
procedure pickapivot (k,s,t); integer k, s, t;
comment The procedure pickapivot will choose a pivot ele

ment from sk or sk-1 in a manner which will guarantee im
provement in the goal vector;

begin real max, test;

if 2 X (k+2) = k then go to EVEN else go to ODD;
ODD:

Al:

begin
for j : = 1 step 1 until nocol[k] do
if A[row[k,O],col[k,j]] < 0 then
begin

for i : = 1 step 1 until norow[k] di[)
if A[row[k,i],col[k,j]] > 0 then go to Al;

s := row[k,O];
t : = col[k,j];
k := k - l;
go to RETURN;

end·
for J := 1 step 1 until nocol[k] do
if A (row[k,O],col[k,j]J < 0 then
begin

for i : = 1 step 1 until norow[k] do
if A [row[k,i],col[k,j]] > 0 then
begin s : = row[k,i];

t : = col(k,j];
max : = A [row(k,i],col[k ,O]]/ A [row[k,i],col[k,j]];
go to A2

end
end;
go to A3;

A2: for i := i + 1 step 1 until norow[k] do
if A [row[k,i],col[k,j]] > 0 then
hegin

test : = .11 [row[k,i],col[k,O]]/ A [row[k,i],col[k,j]];
if test > max then
begin

s := row[k,i];
max := test

end
end;
k := k - l;
go to RETURN;

A3: for j := 1step1 until nocol[k-1] do
if A[row[k,O],col[k-1,j]] < 0 then
begin

s : = row[k,O];

t := col[k-1,j];

max : = A [row[k-1,0],col[k-l,j]]/ A, [row[k,O],col[k-1,j]];

go to A4
end;

s : = row[k,O];

t : = col[k,O];

k := k - 2;
go to RETURN;

285-P 2- 0

A4: for j := j + 1 step 1 until nocol[k-1] do
if A[row[k,O],col[k-1,j]] < 0 then

begin .
test : = A [row[k-1,0],col[k-l,j]]/ A [row[k,O],col[k-1,J]];
if test > max then ·
begin

t : = col[k-1,j];
max := test

end
end;
k := k - 2;
go to RETURN

end ODD;
EVEN:

Bl:

begin
for i := 1 step 1 until norow[k] do
if A [row[k,i],col[k,O]] > 0 then
begin

for j : = 1 step 1 until nocol[k] do
if A [row[k,i],col[k,j]] < 0 then
go to Bl;
s : = row[k,i];
t : = col[k,O];
k := k - l;
go to RETURN;

end·
for i : = 1 step 1 until norow[k] do
if A (row[k,i],col[k,O]J > 0 then
begin

for j := 1 step 1 until nocol[k] do
if A [row[k,i],col[k,j]] < 0 then
he gin

s : = row[k,i];
t : = col[k,j];
max : = A [row[k,O],col[k,j]]/ A [row[k,i],col[k,j]];
go to B2

end
end;

go to B3;
B2: for j : = j + 1 step 1 until nocol[k] do

if A [row[k,ii,col[k,j]] < 0 then
begin

test : = A [row[k,O],col[k,j]]/ A [row[k,i],col[k,j]];
if test > max then
begin

t := col[k,j];
max := test

end
end;
k := k - l;

go to RETURN;
B3: for i : = 1 step 1 until norow[k-1] do

if A[row[k-1,i],col[k,O]] > then
begin

s := row[k-1,i];
t : = col[k,O];
max := A[row[k-l,i],col[k-1,0]]/ A[row[k-1,i],col[k,O]];

go to B4
end;

COLLECTED ALGORITHMS (cont.)

s := row[k,0];
t : = col[k,O];
k := k - 2;

go to RETURN;
84: for i : = i + 1 step 1 until norow[k-1] do

if A[row[k-1,i],col[k,O]] > then

begin
test : = A [row[k-1,i],col[k-1,0]]/ A [row[k·-1,i],col[k,O]];

if test > max then
begin

s := row[k-1,i];
max := test

end
end;
k := k - 2;
go to RETURN

end EVEN;
RETURN:

end pickapivot;
for i := 1step1 until p + n do index[i] := i;.
for i : = 0 step 1 until p do row[O,i] : = i;
for j := 0 step 1 until n do col[l,j] := j;
norow[O] := p; nocol[l] := n; k := O;
comment This is a check on the row constraints;

NEXT PIVOT:
for i := 1step1 until p do
begin

if A[i,O] ~ O then go to NEXT!;
for j := 1 step 1 until n do

if A [i,j] < 0 then go to NEXT!;
comment Row constraints are incompatible;
bool : = false;
go to FINISH;

NEXT!:
end;
comment This is a check on the column constraints;
for j := 1 step 1 until n do
begin

if A [O,j] ~ 0 then go to NEXT J;
for i := 1step1 until p do

if A [i,j] > 0 then go to NEXT J;
comment Column constraints are incompatible;
bool : = false;
go to FINISH;

NEXTJ:
end;
subschema (k) ;
if k = 0 then
begin

comment k = 0 indicates that the present solution is opti-
maL A[O,O] is value of the objective function;

min := A[O,O];
for i := 1step1 until p + n do psol[i] := dsol[i] := O;
comment Find the primal solution vector;
for i := 1step1 until p do

psol[index[n+i]] := -A[i,O];
comment Find the dual solution vector;.
for i : = 1 step 1 un:til n do

if index[i] > n then
dsol[index[i]-n] . - A [O,i]
else
dsol[index[i]+p] .- A[O,i];

bool : = true;
go to FINISH;

end;
pickapivot (k,s ,t);
if s = 0 V t = 0 then

begin
comment No feasible solution;
bool : = false;
go to FINISH;

end;
pivot(s,t);
go to NEXT PIVOT;

FINISH:
end Linearprogram

285 P 3 RI

CERTIFICATION OF ALGORITHM 285 [H]
THE MUTUAL PRIMAL-DUAL METHOD

[Thomas J. Aird, Comm. ACM 9 (May 1966), 326]
H. SPA.TH (Recd. 13 Feb. 1967)
Institut fiir N eutronenphysik und Reaktortechnik,
Kernforschungszentrum, Karlsruhe, Germany

The procedure Linearprogram has been translated into FORTRAN

II and successfully run on the IBM 7074 Computer. The fol
lowing corrections had been made (the first two are merely
typographical errors).

i. P. 328, left column, 1 line after label B3:
reads:

if A[row[k-1, i],col[k, 0]] > then
should read:

if A[row[k-1, i],col[k, O]] > 0 then

2. P. 328, left column, 1 line after label B4:
reads:

if A[row[k-1, i],col[k, O]] > then
should read:

if A [row[k-1, i],col[k, O]] > 0 then

3. P. 328, right column, after the end of the procedure pickapivot
and before the label NEXTPIVOT there must be inserted the
statement
col[O, 0] := O;

Otherwise col[O, O] has no assigned value when the procedure
subschema is entered for the first time.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 286
EXAMINATION SCHEDULING [ZH]
J. E. L. PECK AND M. R. WILLIAMS (Recd. 17 Mar. 1964,

25 Jan. 1965 and 1 Mar. 1966)
University of Alberta, Calgary, Alta., Canada

procedur~ par~ition (incidence) graph of order : (m) into : (n)
parts usmg weights : (w) bound : (max) preassignment :
(preassign) of number : (pren);
~oolean array incidence; integer array w, preassign;
integer m, n, max, pren;

comment This is an heuristic examination time-tabling :f>rO
c~dure for scheduling m courses in n time periods. It is essen
tially the problem of graph partitioning and map coloring.

In the terminology of graph theory: Given a graph of m ver
texes with a positive integer weight w[i] at the ith vertex
partition this graph into no more than n disjoint sets such
that each set contains no two vertexes joined by an edge,
and such that the total weight of each set is less than the
prescribed bound max.

We represent the graph as an mXm symmetric Boolean matrix
~n~idence whose i,jth element is true if and only if vertex i is
Jomed to vertex j by an edge (if a student is taking both course i
and course j), diagonal elements being assigned the value true.
The weight assigned to the ith vertex (number of students in the
ith c?urse) is w[i]. We shall see below that preassignment is
permitted. The number of courses to be preassigned is given in
pren and the course preassign [i, 1] is to be placed at the time
preassign [i, 2].

This procedure does not minimize the second order incidence
i.e. a vertex i being assigned to the set k, where the set k-1
contains a vertex j joined to i (a student writing two consecutive
examinations), but this may be done by rearranging the sets
after the partitioning is completed. The procedure contains its
o';n ?utput statements, but its driver should provide the input;

begin integer array row [1 :m], number [1 :n];
integer i, j, sum, course, t1:me;
Boolean preset, completed;

INITIALIZE: preset:= false;
for j := 1step1 until n do number [j] := O;
for i := 1 step 1 until m do
begin sum := O;

for j := 1 step 1 uritil m do
if incidence [i, j] then sum := sum + l;
row [i] := sum

end INITIALIZE. Note that row [i] now contains the multi
plicity of, or number of edges at the vertex i (number
of courses which conflict with the course i). Of course since the
incidence matrix is syrnmetric, less than half (i > j) need be
~tore?. However, this procedure, for the sake of simplicity,
is written for the whole matrix. Also note that row [i] will
eventually contain the negative of the set number to which
the ith vertex is assigned (examination time for the ith course)
and number [jJ will contain the weigJit of the jth set (number of
candidates at time j). From here on we drop the allusions to
graph theory in the comm en ts;

THE PREASSIGNMENT: for j := 1step1 until pren do
begin comment preassignment of courses to times is now car

ried out. If pren = 0, then there are no preassignments;
course :=preassign [j,l]; timei= preassian f.i,21:

286-P 1- 0

comment We now attempt to assign this course to the given
time;

SCRUTINIZE: if row [course] < 0 then
begin outstring (1, 'This course'); outinteger (1, course);

outstring (1, 'is already scheduled at time');
outinteger (1, -row[coiirse]); go to NEXT

end;
if number [time]+ w[course] >max then
begin outstring (1, 'Space is not available for course');

outinteger (1, course); outstring (1, 'at time');
outinteger (1, time); go to NEXT

end;
for i := 1 step 1 until m do
if row [i] = - time then
begin if incidence [i, course] then

begin outstring (1, 'course number');
outinteger (1, course); outstring (1, 'conflicts with');
outinteger (l ,i);
outsiring (1, 'which is already scheduled at');
out integer (1, time) ,
go to NEXT

end if incidence
end if row;

SATISFACTORY: row[course] := -time;
number [time]:= number [time]+ w [course];
preset : = true;

NEXT:
end THE PREASSIGNMENT;

MAIN PROGRAM: begin Boolean array avanable [1 :m];
integer next;
procedure check (course); integer course;
begin integer j; comment This procedure renders un

available those courses conflicting with the given course;
for j := 1step1 until m do

if incidence [course,j] then available [j] := false
end of procedure check.

For each of the ri t.ime periods we select a suitable set of non
conflicting courses whose students will fit the examination
room;

START OF MAIN PROGRAM:
for time := 1 step 1 until n do

if preset = number[time] > 0 then
begin comment The preceding Boolean equivalence di

rects the attention of the program initially only to
those times where prescheduling has occurred. We now
determine the available courses (i.e. unscheduled and
nonconflicting). If course i is already scheduled, then
row[i] is negative;

completed := true;
for i := 1 step 1 until m do if row [i] > 0 then
begin available [i] := true; completed:= false end

else available [i] := false;
if completed then go to OUTPUT;
if preset then
begin comment Some courses were prescheduled at

this time. It is necessary to render their conflicts un
available;

for i := 1 step 1 until m do
if row[i] = -time then check (i)

end prescheduled courses.

COLLECTED ALGORITHMS (cont.)

We now select the available course wi.th the most con
flicts. This is essentially the heuristic step and there
fore the place where variations on the method may be
made;

AGAIN:
sum:= O;

for i := 1 step 1 until m do
if available [i] /\ row [i] > surri then
begin next := i; sum := row [i] end most conflicts;

if sum > 0 then
begin comment There exists an available course, so

we test it (viz next) for size. If it does not fit we look
for another;

available [next] : = false;
if number [time] + w[next] > max theri go to AGAIN;
comment If we are here the course will fit so we use it;
row [next]:= -time;
number [time] :=number [time]+ w[next];
check (next); go to AGAIN

end sum> 0
end of the time loop;
if preset then

begin preset := false; go to START OF MAIN
PROGRAM end
In case of prescheduling this takes us back to try the re
maining time periods.

If we have reached here with completed true then all
courses are scheduled, but the converse may not be true,
therefore;

if --, completed then
begin completed : = true;

for i := 1 step 1 until m do
if row [i] > 0 then completed := false

end --, completed and
end of the main program;

OUT PUT: if -, completed then
begin comment The following for statement outputs the

courses that were not scheduled;
outstring (1, 'courses not scheduled');
for i := 1 step 1 until m do

if row [i] > 0 then outinteger (l,i)
end not scheduled.

The following outputs the time period j, the number of stu
dents number[j] and the courses i written at timej;

TIMETABLE: outstring(l, 'time enrolment courses');
for j := 1 step 1 until n do
begin outinteger (1,j); outinteger (1, number[j]);

for i := 1 step 1 until m do
if row[i] = -j then outinteger (l,i)

·end j.
The following outputs the courses, the times at which they are
written, and their enrolment;

outstring (1, 'course time enrolment');
for i := 1 step 1 until m do

if row [i] < 0 then outinteger (1, i); outinteger' (1, row [i]);
outinteger (1, w[i])

else
begin outinteger(l,i); outstring(l, 'unscheduled');

outinteger (1, w[i])
end

end of the procedure

286-P 2- 1

REMARK ON· ALGORITHM 286 (H]
EXAMINATION SCHEDULING (J.E. L. Peck and M.

R. Williams, Comm. ACM 9 (June 1966), 433].

The 6th and 7th lines from the end of the procedure should be

corrected by the insertion of a begin end prjr so that they read

if row [i] < 0 then
begin outinteger (1, i); outinteger (1, row [i]); outinteger

(1, w[1'.])

end

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 287
MATRIX TRIANGULATION WITH

INTEGER ARITHMETIC [Fl]
w. A. BLANKINSHIP

(Recd. 19 May 1965 and 17 Sept. 1965)
National Security Agency, Ft. Geo. G. Meade, Md.

integer procedure INTRANK (mat, m, n, e); value m, n, e;
integer m, n, e; integer array mat;

comment This procedure operates on an rn by n+e matrix whose
name is mat and whose elements are integers. If mat is considered
as composed of two submatrices U and 11, where U comprises
the first n columns of mat and V comprises the last e columns,
then the effect of the procedure is as follows:

(1) The rank of the submatrix U is returned as the value of
INTRANK (designated by r in the following discussion).

(2) mat is transformed by a sequence of elementary row opera
tions in such a manner that U is reduced to triangular form.
Triangular form means that the leading, or first nonzero, ele
ment of each row appeal's to the right of the leading element
of the preceding row.

(3) It is easy to deduce from the proof in (1, p. 72, Th. 12]
that for any set of k columns of mat, the greatest common divisor
of all kth order minors selected from those columns is preserved.
In particular, the product of all leading elements in U (final)
(which are preserved as the first r elements of the local array a)
will be equal to the gcd of all nth order minors of U.

(4) It is also easy to show, by the methods of [2] that if mat
contains an m X m identity matrix, I, then I ends up as a record
of the row operations actually performed, specificallv:

mat (final) = I (final) X mat (initial)

(5) Since (3) implies that the rank of U is preserved, and the
rank of U (final) is obviously equal to the number of nonzero
rows that it contains, this number, r, is returned as the value of
INTRANK.

(6) Under the conditions of (4), it follows that the last
m-r rows of I (final) comprise a complete, linearly independent
set of left-annihilators (row-dependences) of the matrix U.

The preceding properties are the basis of the claims for thP.
procedure SOLVEINTEGER [Algorithm 288, Comm. ACM 9
(July 1966), 514] which ca)ls this procedure.

INTRANK is designed to minimize the likelihood of overflow,
the detection of which is left to the user. The best method is to
include an identity matrix in mat and check the relation de
scribed in 4 (above). In many instances ove:rflow doesn't matter.
In particular, if (a) the machine-compiler combination does
integer addition, subtraction and multiplication modulo 2i+l
where i is the maximum integer representable in the machine,
(b) division is d,pne by the usual long-division algorithm, and
(c) the answers sought are either known tr. be less than i in
absolute value, or only desired mociulo 2i-r-1, then, short of
interference by 11.n over-Malous monitor, the procedure will
produce satisfactory results in spite of ove1~fiow. (Although the
CDC 1604 does not satisfy (a), the same effect can be achieved
by using a suitable suhroutine in place o:f the multiplication
sign in the procedure REDUCE.)

287-P I- 0

Overflow is generally dependent upon the magnitude of the
greatest common divisor of all r X r minors contained in U, as
this number, or a large divisor of it will appear in the rth row
of mat (final) and as a[r]. Thus if U is a square matrix whose
determinant is a prime greater than the capacity of the machine,
there is obviously no way to avoid overflow. Ev~n if the deter
minant is composite, it is most likely that only small factors
will be left on the diagonal and overflow will still occur. When
elements of U are chosen from a flat-random population of
integers in the closed interval [-13, +13] it has been found
empirically that overflow almost never occurs for m=n= 11
when run on the CDC 1604. where i = 246 -1. See also the dis
cussions on overflow in the procedure SOLVEINTEGER;

begin integer i, j, k, Q, T, topel, nextel, itop, inext;
integer array a [l:m];
procedure FINDNEXT;
begin nextel : = 0;

fork := i step 1 until m do
if a[k]>nextel!\k ~ itop then
begin nextel := a[k] ; inext := k
end

end;
procedure SW A PROWS;
begin fork := j step 1 until T do

begin Q := - mat[i,k];
mat [i,k] := mat [itop, k];
mat [itop, k] := Q

end;
a[i] := a [itop];
co.i:nment The last statement is a luxury which ensures that,

at the end of the algorithm, a will contain the leading ele
ments of the first INTRANK rows of mat;

end;
procedure REDUCE;
begin Q : = mat [itop,j] + mat [inext, j];

fork := j step 1 until T do
mat [itop,k] := mat [itop,k] ~Q X mat [inext,k];

a [itop] := if mat [itop,j] < 0 then - mat [itop,j] else
mat [itop,j];

end;
i := j:= itop := O; T := 1,+e;

NEXTROW: if itop ~ i then SWAPROWS;
i := i+l; if i > m then go to OUT;

NEXTCOL: j := j+l; if j > n then go to OUT;
fork := i step 1 until m do

a[k] := if mat [k,j] < 0 then - mat [k,j] else mat [k,j];
comment Find the value and location of the largest element at

or below position (i,j) of mat.;
itop := i-1; FINDNEXT;
if nextel = 0 then go to NEXTCOL;

GONTINUE: itop := inext; topel := nextel;
c'>mment Find the value and location of the next largest

element at or below position (i,j);
FINDNEXT;
if nextel = 0 then go to NEXTROW;
comment Subtract row containing next highest element from

that containing highest element. Repeat until,highP.st element
no longer ranks highest;

COLLECTED ALGORITHMS (cont.)

REDUCE;
go to CONTINUE;

OUT: INTRANK := i-1;
end

REFERENCES:

1. ALBERT, A. A. Fnndamental Concepts of Higher Algebra. U. of
Chicago Press., Chicago, Ill., 1956.

2. BLANKINSHIP, W. A. A new version of the Euclidean algorithm.
Amer. Math. Month. 70 (1963), 742-745.

287 p 2 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 288
SOLUTION OF SIMULTANEOUS LINEAR
DIOPHANTINE EQUATIONS [F4]
w. A. BLANKINSHIP

(Recd. 19 May 1965 and 17 Sept. 1965)
National Security Agency, Ft. Geo. G. Meade, Md.

Uoolean procedure SOLVEINTEGER (A) times: (x) equals
the vector: (b) times a least integer: (d) where A is a matrix of
dimension one to: (m) by one to: (n) Also find: (k) linearly
independent auxiliary solutions and store in the matrix: (Y);
value m, n;
integer m, n, d, k;
integer array A, x, b, y;

comment Seeks the smallest positive integer, d, for which an
integer solution to the equation Ax = bd exists.

If no solution exists then SOLVEINTEGER is returned as
false. Otherwise SOLVEINTEGER is returned as true and the
values of d and the solution vector x are returned.

If more than one solution exists then auxiliary solutions are
returned in the matrix Y. The additional 1rnlutions are obtained
by adding any linear combination of the first k rows of Y to the
solution x.

It is assumed that
A is dimensioned [l:m,l:n],
xis dimensioned [l:n],
b is dimensioned [l:m],
Y is dimensioned [l:n,l:n].

Note that a diophantine solution exists if and only if d is
returned as 1 and SOLVEINTEGER is returned as true.

The procedure relies entirely on the action of the procedure
INTRANK [Algorithm 287, Comm. ACM 9 (July 1966), 513].
In particular, a matrix, mat, is formed by adjoining -b to the
transpose of A, and then adjoining an (n + l)th order identity
matrix as follows:

mat= (~: 1)
INTRANK is then called upon to triangularize the first m+l

columns of mat (reaching into the first column of I). The value of
INTRANK will be returned as an integer r which is 1 greater
than the rank of A. Furthermore, as a consequence of properties
(4) and (6) claimed under INTRANK, the last n-r+l rows of I
(final) will comprise a complete set of left annihilators of the

matrix(~:). Since only the first of these rows (if any) will have

a nonzero element in the first column, it follows that this first
row expresses the value d and the desired solution (if d ~ O)
and the succeeding n-r rows constitute solutions to the homo~
geneous equation. If any linear combination of these last n-r+l
rows were to yield a vector whose elements have a greatest
common divisor ·not equal to 1, this would imply that
det (I (final)) = det (I (initial)) ~ 1, which is false. This en
nures that dis the smallest value, as claimed.

Overflow cannot occur in this procedure except as inherited
from the procedure IN TRANK. Overflow seems to be no problem
when solutions (x,d) exist which are within the machine's
capacity to verify. I am unable to fully explain this but nu
merous cases have been run on the CDC-1604 (47-bit integers plus

288--P 1- 0

sign bit) with elen_ients of A chosen randomly between -13 and
+13 inclusive and for m=n=5 through 20 (10 or more cases
each). Only a single failure (in the case m=n=20) occurred.
These cases were devised by preassigning integer values to x,
calculating b and then calling SOLVEINTEGER. It is difficult
to devise significant test cases where det(A) ~ d » 1 as this
involves assigning values of x satisfying Ax=O (mod d). This
implies d must be a divisor of det (A) which must therefore be

precalculated. But det (A) may overflow even though there may
bead for which solution is possible. When m=n the values of
x and d will usually be, according to Cramer's rule nth order
determinants, or high divisors thereof, which ~ay exceed
machine capacity. When the elements of both band A are chosen
equiprobably between -a and +a, inclusive, it can be shown
that the standard deviation of such a determinant is
(n!an (a+l)n/3)i. Since this is an upper bound for the expected
absolute value of such a determinant, it may be used as a rule of
~humb to predict overflow. If a=l3, then for n=ll this value
is 1013 ·6 and for n = 12 it is 1015 ·0 • 1604 capacity is 1014.1. In test
cases, the procedure invariably succeeded for n= 11 and in
variably failed for n = 12. (Remember, we are referring to .cases
where b is chosen randomly so that an integer solution will
hardly ever exist.)

Note that if m=l, this algorithm solves the gcd problem in
much the same way as Algorithm 237 [J. E. L. Peck, Comm.
ACM 8 (Aug. 1964), 481];

begin integer i, j, rank, s;
integer array mat [l : n+l, 1 : m+n+l];
for j := 1 step 1 until m do
begin mat [1,j] := -b [j];

for i := 1 step 1 until n do mat [i+l, j] := A [j,i]
end;
for j := 1 step 1 until n+l do
for i := 1 step 1 until n+l do

mat [i, j+m] := if i = j then 1 else O;
rank := INTRANK (mat, n+l, m+l, n);
d := mat [rank, m+l];
if d = 0 then begin SOLVEINTEGER := false; go to OUT

end;
for i := rank step 1 until m do
if mat frank, i] ~ 0 then
begin SOLVE!NTEGER :=false; go to OUT
end;

80LVEINTEGER :=true;
s : = if d < 0 then -1 else 1 · d : = s X d;
k : = n - rank + 1; '
for i := 1step1 until n do
begin x[i] := mat [rank, m+i+l] X s;

for j := 1step1 until k do
Y [j,i] := mat [rank+j, m+i+l]

end;
OUT:
end of procedure SOLVEINTEGER

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 289
CONFIDENCE INTERVAL FOR A RATIO [Gl]
I. D. HILL and M. C. PIKE (Recd. 8 Oct. 1965)
Statistical Research Unit, Medical Research; Council,
London, England
procedure Fieller (y, x, Vyy, Vxy, Vxx, t, r1, r2 1 inclusive);

value y, x, Vyy, Vxy, Vxx, t;
real y, x, Vyy, Vxy, Vxx, t, r1, r2;
Boolean inclusive;

comment This procedure finds the (1-2Xa) c<:>nfidence limits
for O/q, where y and x are estimates of 0 andl:q, respectively,
subject to random errors 'normally' distributed with zero means,
variance estimates Vyy and Vxx, and covarianc'e estimate Vxy,
each based on f degrees of freedom, and tis the upper (100Xa)
percent point of the t distribution on f degrees of freedom.

At exit, if inclusive is true then the confid(mce interval in
cludes all values such that rl ~ value ~ r2. Otherwise the
confidence interval includes all values such that - infinity ~
value ~ r2 and additionally all values such that rl ;;;;; value ;;;;;
infinity. ,

Where the interval is such that the value of rl or r2 should be
±infinity, the procedure sets the value to± the largest available
real number.

Reference: E. C. FrnLLER, A fundamental formula in the
statistics of biological assay, and some applications, Quart. J.
Pharm. Pharmacol. 17 (1944), 117-123;

begin
real c, r, infinity;
inclusive : = true; infinity : = io114;
comment Set infinity to largest available positive real number;
c := t j 2; r := x j 2 - c X Vxx;
rl := x X y - c X Vxy; c := y j 2 - c X Vyy;
if r ;C 0 then
begin

c := rl j 2 - r X c;
if r > 0 /\ c < 0 then c := O;
if c < 0 then go to unbounded;
inclusive := r > O; r :== 1.0/r; c :== sqrt (c);
r2 := (rl+c) X r; rl :== (rl-c) X r

end else
begin

if rl ;C 0 then
begin

c := c/(2.0Xrl);
if rl > 0 then
begin

rl := c; r2 :== infinity
· end else

begin
rl := -infinity; r2 :== c

end
end else
begin

unbounded: rl := -infinity; r2 :== infinity
end

end
end Fielle.r

289~P 1 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 290
LINEAR EQUATIONS, EXACT SOLUTIONS [F4]
J. BooTHROYD* (Recd. 7 Sept. 1965 and 21 Mar. 1966)
U. of Tasmania, Hobart, Tas., Australia
*Thanks are due to the referee for useful criticism and awkward
test cases.

procedure exactle(a, b, n, det); value n; integer n, det;
integer array a, b;

comment solves the matrix equation Ax = b for A = a [l:n,
l:n] and x, b[l:n] where the elements of A, bare small integers
and the results are required as ratios of integers. The solution
vector overwrites band has values given by det A Xx where det
A is the determinant of A and xis the true solution vector. The
user is warned that this procedure, of limited though useful
application, is not a substitute for other well-established
methods of solving general sets of linear equations owing to the
inherent danger of integer overflow. This may occur in the
reduction if the elements of the matrix are large or in the back
substitution if the determinant and/or the elements of the right
hand side are large and may even occur with small elements and
determinant if the order of the matrix a,nd the nature of the
equations combine to produce large solution values. Four
devices intended to avoid integer overflow are incorporated.
These are., (1) choice of column pivots having the smallest non
zero absolute value, (2) division by previous pivots (both after
Fox, L., An Introduction to Numerical L1~near Algebra, Oxford
U. Press, New York, 1965, p. 82), and (3) the local procedures
crossmpy and abdivc which respectively evaluate integer expres
sions of the form (aXb-cXd) +. e and a>< b + c by performing
the divisions before the multiplications. The output parameter
det yields the determinant of A. If A is singular det : = O;

begin integer piv, pivot, sum, arii, aki, i, j, k, pivi, ri, rk, m;
integer array r [l:n]; boolean zpiv;
integer procedure iabs (it); value it; integer it;

iabs := if it < 0 then - it else it;
integer procedure crossmpy(a)times :(b)minus :(c)times :(d)all

over:(e);
value a,b,c,d,e; integer a,b,c,d,e;

begin integer qab,qcd,r,res;
ifiabs(a) > iabs(b) theu
begin

qab := a + e; r := a - qab X e;
qab qab X b ; res : = r X b

end
else
begin

qab : = b + e; r : = b - qab X e;
qab : = qab X a; res : = r X a

end;

if iabs (c) > iabs (d) then

begin

qcd : = c + e; r : = c - qcd X e;
qcd . - qcd X d; res : = res - r X d

end

else

begin
qcd := d + e; r := d - qcd X e;
qcd qcd X c; res := res - r X c

end;

crossmpy : = qab - qcd + res + e
end crossmpy;

290-P 1-- 0

integer procedure abdivc(a,b,c,sum); value a,b,c; integer
a,b,c,sum;

comment evaluates expressions of the form a X b + c by
performing divisions before multiplications, assigning the
quotient to abdivc and accumulating the remainder in sum;

begin integer q,r,temp;
if iabs(a) > iabs(b) then
begin q := a+ c; temp := q X b;

r :=a - c X q;
q := b + c;
abdivc : = temp + q X r;
sum sum + (b-qXc) X r

end
else
begin q := b + c; temp

r := b - c X q;
q :=a+ c;
abdivc : = temp + q X r;

q X a;

sum := sum + (a-qXc) X r
end

end abdivc;
procedure permb(b,r,n); value n; integer array b,r; inte·

ger n;
comment rearranges the elements of b[l:n] so that b[i] :=

b[r[i]], i = 1, 2, · · ·, n;
begin integer i,k,w;

for i := n step -1 until 2 do
begin k := r[i];

L:
if k ~ i then
begin

if k > i then begin k := r [k]; go to Lend;
w := b[i]; b[i] := b[k]; b[k] := w

end
end

end permb;
m := 1;
for i := 1step1 until n do r[i] := i;
for i := 1 step 1 until n do
begin pivot : = 0; zpiv : = true;

fork := i step 1 until n do
begin aki := iabs(a[r[k],i]);

if zpiv /\ aki > 0 V aki ~ 0 /\ aki < iabs (pivot) then
begin zpiv := false; pivi := k; pivot := a[r[k],i] end

end;
if pivot = 0 then begin det : = 0; go to out end;
ri := r[pivi]; r[pivi] := r[i]; r[i] .- ri; if pivi ~ i then

m := -m;
for k : = i + 1 step 1 until n do
begin rk := r[k]; aki := a[rk,i];

for j := i + 1 step 1 until n do
a[rk,j] := if i = 1 then a[rk,j] X pivot - aki X a[ri,j]

else crossmpy(a[rk,j] ,pivot,aki ,a[ri ,j] ,piv);
b[rk] := if i = 1 then b[rk] X pivot - aki X b[ri]

end;
piv .- pivot

end;

else crossmpy(b[rk],pivot,aki,b[ri],piv)

COLLECTED ALGORITHMS (cont.)

ri := r[n];
if m ~ 1 then
begin det := aki := - a[ri,n]; b[ri] := - b[ri] end
else det := aki := afri,nl;
for i := n - 1 step -1until1 do
begin ri := r[i]; arii := a[ri,i];

sum : = 0; piv : = abdivc (b [ri],aki ,arii ,sum);
sum := - sum;
for j := i t- 1step1 until n do

piv := piv - abdivc(b[r[j]],a[ri,j],arii,sum);
b[ri] := piv - sum + arii

end;
permb (b,r,n);

out:
end exactle

290- p 2- ()

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 291
LOGARITHM OF GAMMA FUNCTION [S14]
M. C. PtKE AND I. D. HILL (Recd. 8 Oct. 1965 and 12 Jan.
1966)
Medical Research Council's Statistical Research Unit
University College Hospital Medic.al School, London:
England

real procedure loggamma (x);
value x; real x;

comment This procedure evaluates the natural logarithm of
gamma(x_) for all x > 0, accurate to 10 decimal places. Stirling's
formula is used for the central polynomial part of the procedure.;

hegin
real f, z;
if x < 7.0 then
begin f := 1.0; z := x - 1.0;

for z := z + 1.0 while z < 7.0 do
begin x := z; f := f X z
end;
x := x + 1.0; f := - ln(f)

end
else f := O;
z := 1.0/x j 2;
loggamma := f + (x-0.5) X ln(x) - x + .91893 85332 04673 +

(((- .00059 52380 95238Xz+ .00079 36507' 93651) X z - .00277
77777 77778)Xz+.08333 33333 33333)/x

end loggamma

REMARKS ON:
ALGORITHM 34 [SI 4]
GAMMA FUNCTION

[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2

[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

[William Holsten, Comm. ACM /i (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION

[Walter Gautschi, Comm. ACM '.'! (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION

[M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966),
684]

M. C. PIKE AND I. D. HILL (Recd. 12 Jan. 1966)
Medical Research Council's Statistical Research Unit
University College Hospital Medical School, '
London, England

291-P 1- RI

Algorithms 34 and 54 both use the same Hastings approxima
tion, accurate to about 7 decimal places. Of these two, Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines

if x = 0 then begin RGR : = 0; go to EXIT end
and

if x = 1 then begin RGR : = 1; go to EXIT end
should each be followed either by a semicolon or preferably by an
else.
(3) The lines

if x = 1 then begin RGR : = 1/y; go to EXIT end
and

if x < - 1 then begin y := y Xx; go to CC end
should each be followed by a semicolon.
(4) The lines

BB: if x = -1 then begin RGR := O; go to EXIT end
and

if x > -1 then begin RGR := RGAM(x); go to EXIT end

should be separated either by else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer i and real array B[O: 13] in RGAM
are in the wrong place; they should come immediately after

begin real z;

With these modifications (and the replacement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput
ing time, being twice as fast as 291 at x = 1, but this advantage
decreases steadily with increasing x so that at x = 7 the speeds are
about equal and then from this point on 291 is faster-taking only
about a third of the time at x = 25 and about a tenth of the time
at x = 78. These timings include taking the exponential of log
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

REMARK ON ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION [M.C. Pike

and I. D. Hill, Comm. ACM 9 (Sept. 1966), 684]
Miss M. R. HOARE (Recd. 24 Aug. 1967)
% C. Hoare and Co., 37 Fleet St., London, E.C.4.

(1) if x < 7.0 then
begin f := 1.0; z := x - 1.0;

for z := z + 1.0 while z < 7.0 do
would be better written as:

if x < 7 .0 then
begin f := 1.0;

COLLECTED ALGORITHMS (cont.)

for z := x, z + 1.0 while z < 7.0 do
This avoids unnecessary operations.

(2) In the final statement, loggamma should read loggamrna

291 p 2 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 292
REGULAR COULOMB WAVE FUNCTIONS
WALTER GAUTSCH! (Recd. 8 Oct. 196fi)
Purdue University, Lafayette, Indiana and Argonne

National Laboratory, Argonne, Illinois
Work performed under the auspices of the U. S. Atomic Energy Commission.

real procedure t (y); value y; real y;
comment This procedure evaluates the inverse function t = t(y)

of y = t ln tin the interval y ~ -1/e, to an accuracy of about
4 percent, or better. Except for the :!tddition of the case
-1/e ~ y ~ 0, and an error exit in case y < -1/e, the procedure
is identical with the real procedure t of Algorithm 236;

begin real p, z;
if y < - .36788 then go to alarm 1;
if y ~ 0 then t := .36788 + 1.0422 X sqrl(y + .36788) else
if y ~ 10 then
begin

p := .000057941 x y - .00176148; p := y x p + .02086,15;
p := y x p - .129013; p := y x p + .85777;
t : = y x p + 1.0125

end
else
begin

z := ln(y) - .775; p := (.775-ln(z))/(l+z);
p := 1/(1-fp); t := y X p/z

end
end t;
procedure minimal (eta, omega, eps, lal, dm);

value eta, omega, eps; real eta, omega, eps, lal, dm;
comment This procedure assigns the value of >..1' to lal, accu

rately to within a relative error of eps, where {>..L'} is the minimal
solution (normalized by >..o'=l) of the difference equation

2£ + 1 L2 + T/2
>..L-i-1 - ---w"XL - >..L-1 == 0 (w ¢ 0).

L + 1 L(L + 1)

(For terminology, see [3].) If {>..L} denotes the solution corre
sponding to initial values >..o = 1, >..1 = w - 71, the procedure also
assigns to dm the value >..1 - >..1'. The negative logarithm of
l>..1 - >..1'1 may be considered a measure of the "degree of mini
mality" of the solution {>..r,J;

begin integer L, nu; real eta2, r, ra;
eta2 := eta j 2;
nu := 20; ra := O;

Ll: r := O;
for L :=nu step -1until1 do
r := - (L j 2+eta2)/(LX ((2XL+l)Xomtga- (L+l)Xr));

if abs(r-ra) > eps X abs(r) then
begin

ra := r; nu := nu+ 10; go to Ll
end;
lal := r; dm := omega - eta - r

end minimal;
procedure Coulomb (eta, ro, Lmax, d, F);

value eta, ro, Lmax, d; integer Lmax, d; real eta, ro;
array F;

comment This procedure generates to d significant digits the

regular Coulomb wave functions FL(11, p) for fixed 11 ~ 0, p ~ 0,

and for L = O(l)Lmax. (For notation, e1ee [2, Ch. 14]). The
results are put into the array F. Letting

292-P 1- 0

the procedure first obtains fL as the minimal solution of the
recurrence relation

L[(L + 1)2 + 712] _ [.+- L(L + 1)] L(L + 1) = O
(L + 1)(2£ + 3) YL"t"l 7/ p YL + 2£ - 1 YL-1 '

using for normalization the identity

pe"'P = :f: >..LfL, AL= iLP~~.-i~)(-iw),
L-0

where P';:·fJ>(z) denotes the Jacobi polynomial of degree L. The
parameter w is so chosen as to avoid undesirable cancellation
effects. The final results FL are obtained recursively, by

FL(11, p) = CLfL'

CL= L~~L ~\) [£2 + 11
2]icL-1(L = 1, 2, 3 · · ·), Co= (e2 .. ~7r~ 1)1' .

A detailed justification of the process is to appear elsewhere
([3]). For large positive 11 and p, the generation of the coefficients
his subject to some loss of accuracy. If 0 ~ 11 ~ 20, 0 ~ p ~ 20,
none, or only a few decimal digits will be lost, however. Writing
the procedure minimal in double precision will resolve the
problem for 'I'/, p up to about 50, for normal accuracy require
ments. In any case, if higher precision is desirable, the procedure
puts out a message to this effect. There is an error exit, if p < O;

begin integer L, nu, nul, mu, mul, i, k;
real epsilon, rol, eta2, omega, dl, sum, r, rl, s, tl, t2;
array lambda, lmin[O:l], Fapprox, Rr[O:Lmax];
switch coefficients := L2, Ll, Ml;
if ro < 0 then go to alarm2;
if ro = 0 then
begin

for L := 0 step 1 until Lmax do F[L] := O;
go to L5

end;
epsilon := .5 X 10 j (-d); rol := 1/ro; eta2 := eta j 2;
tl := if eta > 0 then .5 X ro/eta else O;
omega := if eta< 1 then 0 else
if tl ~ 1 then 1.570796327 /tl else

(1.570796327 - arctan(sqrt(l/tl-1)) + sqrt(tlX (1-tl)))/tl;
lambda [O] := lmin[O] := 1; lambda[l] := omega - eta;
sum := ro X exp(omegaXro);
for L := 0 step 1 until Lmax do Fapprox[L] := O;
dl := 2.3026 x d + 1.3863;
t1 := 1.3591 X ro;
L := if Lmax < t1 then 1 + entier(tl) else Lmax;
tl := exp(l.5708Xeta); s := sqrt(l+omega j 2);
t1 := if omega = 0 then tl + 1/tl else

exp(-etaXarctan(l/omega));
t2 := omega+ s;
r := 1.3591 X ro X t2;
s := (dl+ln(t1Xsqrt(t2/s))-omegaX ro)/r;
nu := ifs ~ - .36788 then entier(rXt(s)) else 1;
nul := entier(LXt(.5Xdl/L));
nu := if nu < nul then nul else nu;
nul := 1;

COLLECTED ALGORITHMS (cont.)

if omega = 0 then i := 1 else i := 2;
LO: begin own array lambda[O:nu];

co~men~ Dynamic own array declaration;s are not per
mitted m most of the current ALGOL compilers. It can be
avoided here, at the cost of extra storage, iif lambda is de
clared as an array of dimension [O :300] at *e beginning of
the procedure Coulomb. The same remarkl applies to the
array lmin declared later in the block labeled Ml·

go to coefficients [i]; '
Ll: minimal (eta, omega, 10-m, rl, dl);

comment The letter min 10-m is a place 4older for a ma
chine-dependent integer, namely one less than the number of
decimal digits carried in the precision Wode (single or
double precision) of the procedure minimaJl. Similarly

1

for
the letter n in the next statement, which is a place holder
for the integer m + 1. Both m and n are to be properly
substituted by the user;

if abs(dlXepsilon) ~ 10-n then begin i := 1; go toL2 end·
outstring (1, 'The requested accuracy cannot ;be guaranteed:
Use of the procedure minimal in a higher precision mode
appears indicated'); , ·
i := 3; mul := O;

Ml: begin array Rra, lam[O:nu]; own array lmin[O:nu];
mu := entier (l.25Xnu);
for L := mul step 1 until nu do lam[L] :== O;

M2: r := O;
for L := mu step -1 until mul + 1 do
begin

'. := - (Li 2+eta2)/(LX ((2XL+l)Xomega- (L+l)Xr));
1f L ~ nu then Rra[L-1] : = r

end;
for L : = mul + 1 step 1 until nu do

lmin[L] := Rra[L-1] X lmin[L-1];
for L : = mul step 1 until nu do
if abs(lmin[L]-lam[L]) > epsilon X abs(lmin[L]) then
begin

fork := mul step 1 until nu do lam[k] := lmin[k];
mu:= mu+ 5;
if mu < 5 X nu then go to M2 else
begin

outstring (1, 'convergence difficulty in the generation of
the coefficients lambda sub L');

go to L5
end

end;
lam[O] := -rl; lam[l] := 1; tl := dl/(1 + rl j 2);
for L : = 2 step 1 until nu do
begin

lam[L] := ((2XL-l)XomegaXZam[L-1]+
((L-1) j 2+eta2)Xlam[L-2]/(L-1))/L;

lambda[L] := lmin[L] + t1 X (lam[LJ+rlXlmin[L])
end

end;
go to L3;

L2: for L := nul step 1 until nu - 1 do
lambda[L+lJ := ((2XL+l)XomegaXlambda[Ll+

(Li 2+eta2)Xlambda[L-1]/L)/(L+l);
L3: r : = s : = 0;

for L := nu step -1 until 1 do
begin

tl := eta/(L+l);
r := 1/((2XL-l)X (tl/L+rol- (l+tl j 2)Xr/(2XL+3)));
s := r X (lambda[L]+s);
if L ~ Lmax then Rr[L-1] := r

end;

292-P 2- 0

F[O] := sum/(l+s);
for L := 1step1 until Lmax do F[L] := Rr[L-1] X F(L-1];
comment The for-statement which follows is of purely

precautionary nature, making sure that the results have the
required accuracy. If speed is important, the statement
may be omitted:

for L := 0 step 1 until Lmax do
if abs(F[L]-Fapprox[L]) > epsilon X abs(F[L]) then
begin

fork := 0 step 1 until Lmax do Fapprox[k] := F[k];
nul := mul := nu; nu := nu + 10;
if nu < 300 then go to LO else
begin

outstring (1, 'convergence difficulty in Coulomb');
go to L5

end
end

end;
tl := 6.2831853072 X eta;
comment The constant 211" in t4e preceding statement must be

supplied more accurately if more than 11 significant digits are
desired in the final results;

if abs (tl) < 1 then
begin

t2 := s := l; L :=Jl;
L4:L:=L+l;

t2 := tl X t2/L; s := s + t2;
if abs(t2) >epsilon X abs(s) then go to IA;
s := sqrt(l/s)

end
else

s := sqrt(tl/(exp(tl)-1));
F[O] := s X F[O];
for L : = 1 step 1 until Lmax do
begin

s := (L-.5) X sqrt(Lj2+eta2) X s/(LX(L+.5));
F[L] := s X F[L]

end;
L5: end Coulomb;
comment The procedure Coulomb was tested on the CDC 3600

computer, with the procedure minimal in single precision (un
less stated otherwise). The tests included the following:

(i) Generation of iPL('Y/, p) = [CL(rJ)pLr+-1]-1FL('Y/, p), L = 0(1)21,
to 8 significant digits (d=8) for 'Y/ = 0, -5(2)5, p = .2,
1(1)5. The results were in complete agreement with values
tabulated in [4].

(ii) Computation of Fo('Y/, p), Fo'('Y/, p) = (d/dp)Fo('Y/, p) to 6
significant digits for 'Y/ = 0(2)12, p = 0(5)40, using
Fe' = (p- 1+rJ)Fo - (l+rJ2)W1 . Comparison with [5]
revealed frequent discrepancies of one unit in the last
digit. In addition, beginning with 'Y/ = 8, the results became
progressively worse for p = 30, 35, 40, being correct to
only 2-3 digits when 'Y/ = 12, p = 40. With the procedure
minimal in double precision, however, these errors dis
appeared.

(iii) Computation to 8 significant digits of Fo('Y/, p), Fo'('Y/, p) for
p = 21/, p = .5(.5)20(2)50. The results agreed with those
published in [1] for p ~ 16, but became increasingly in
accurate for larger values of p. Complete agreement was
observed, however, when the procedure minimal was
operating in the double-precision mode;

REFERENCES:

1. ABRAMOWITZ,M., AND RABINOWITZ, p. Evaluation of Coulomb
wave functions along the transition line. Phys. Rev. 96 (1954),
77-79.

COLLECTED ALGORITHMS (comt.)

2. ABRA1'IOWITZ, M., AND STEGUN, I. A. (Eds.). Handbook of
Mathematical Functions. NBS Appl. Math. Ser. 55, U.S. Gov't.
Printing Off., Washington, D. C., 1964.

3. GAUTSCH!, W. Computational aspects of three-term recurrence
relations. SIAM Rev., to appear.

4. NATIONAL BUREAU OF STANDARDS. Tables of Coulomb Wave
Functions, Vol. I. Appl. Math. Ser. 17, U.S. Gov't. Printing
Office, Washington, D. C., 1952.

5. TuBis, A. Tables of nonrelativistic Coulomb wave functions.

LA-2150, Los Alamos Scientific Lab., Los Alamos, New Mexico,
1958.

REMARK ON ALGORITHM 292 [822)
REGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. ACM 9 (Nov. Hl66), 793)
w ALTER GAUTSCH! (Recd. 5 July 1967)
Computer Sciences Department, Purdue University,

Lafayette, Indiana, and Argonne National Laboratory,
Argonne, Illinois
*This work was performed under the auspices of the United

States Atomic Energy Commission.

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions, regular Coulomb wave functions

CR CATEGORIES: 5.12

The following changes are suggested to eliminate the need for
multiple-precision arithmetic. The underlying theory will be
published in Aequationes Math.

l. Remove the procedure minimal.

2. Change the statement (near the bottom of page 794)

nu := ifs 2:: - .36788 then entier (rXt(s)) else 1

to read:

nu:= ifs 2:: -.36788 then entier (rXt(s)) else r/2.7183

3. Change the statement labeled Ll to read

Ll: dl := 2 X eta/(exp(2XetaXarctan(J./omega))-1)

and rephrase the comment following this statement to read:

comment The letter n in the following statement is a place
holder for a machine~dependent integer, namely, the number
of (equivalent) decimal digits carried in the mantissa of
floating-point numbers. This integer must be properly sub
stituted by the user;

4. Omit the output statement

outstring (1, 'The requested accuracy cannot be guaranteed.
Use of the procedure minimal in a higher precision mode ap
pears indicated');

5. Insert the statement

rl := lmin[l];
between the two lines

end;

and

lam[O] := -rl; lam[l] := 1; tl := dl/(l+rl j 2);

fi. Change the line (near the middle of page 795)

s := sqrt(tl/(exp(tl)-1));

to read

292-P 3- Rl

s := exp(-tl/4)/sqrt((exp(tl/2) - exp(-tl/2))/tl);

(These statements are mathematically equivalent, but the lat

ter delays overflow as the value of tJ hP.comes large.)

7. If large values of 1111 and/or p, say exceeding 100, are contem
plated, it may be necessary to increase the dimension of the ar
rays lambda and lmin (if they are declared at the beginning of
the procedure Coulomb) and to correspondingly increase the
upper limit for nu in the conditional clause

if nu < 300
near the top of page 795. The user, in this case, should also be
prepared to encounter overflow difficulties, especially in the
later entries of the array lam.

With these revisions the algorithm produced correct results on
the CDC 3600 for the three tests described at the end of Algorithm
292. It was also used (with input parameter d = 10) to compute
miscellaneous values of Fo(11, p) and <1>0(77, p) published in a paper
by C. E. Froberg (Numerical treatment of Coulomb wave func
tions. Rev. Mod. Phys. 27 (1955), 399-411). The results are sum
marized in the table below.

77 p Algorithm 292 (revised) Froberg

9 50 F o = 9. 35708568010 - 1 9. 357085510 - 1
50 80 Fo = 1.203662491io - 3 1.20366510 - 3
50 120 F o = 2. 00259934910 - 1 2. 0025510 - 1

100 4 <l>o = 5. 7229851541021 5. 7229851551021
200 1 <l>o = 7 .2366047321014 7.2366047311014

In addition, the algorithm was run (with d = 6, and lambda,
lmin being declared as arrays of dimension [0 : 600]) for 11 =

-200(20)200, p = 20(20)200, Lmax = 0(50)100. Apparently valid
results were obtained as long as 11 ::::; 100, though no tables seem to
exist to check these results against. Overflow was observed in some
of the entries of the array lam, for 11 = 120, p 2 120; 11 = 140,
p 2 60; 77 = 160, p 2:: 40; and 77 = 200, p 2:: 20. (For the pur
pose of this test, a number is considered to overflow if its modulus
exceeds 10300.)

CERTIFICATION OF ALGORITHM 292 [S22]
REGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. ACM 9 (Nov. 1966), 793]
AND OF
REMARK ON ALGORITHM 292 [S22]
REGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. ACM 12 (May 1969), 280)
K. S. KoLBIG (Recd. 10 Oct. 1967)
Applied Mathematics Group, Data Handling Division,

European Organization for Nuclear Research (CERN),
1211 Geneva 23, Switzerland

KEY WORDS AND PHRASES: Coulomb wave functions,
wave functions, regular Coulomb wave functions

CR CATEGORIES: 5.12

Both the original and the revised version of the procedure
Coulomb have been translated into FORTRAN and tested on a Con
trol Data 6600 computer. It became apparent that the following
changes in the original version are necessary:

1. The second sentence in the comment following the statement
labeled Ll in procedure Coulomb should be replaced by:

COLLECTED ALGORITHMS (cont.)

Similarly for the letter n in the next statement, which is a place
holder for the number of digits carried in the main program.

2. The second statement after this comment (beginning "out
string ... ") should be changed to

if abs(dl X epsilon) < 10-m-l then
outstring (1, 'The requested accuracy cannot be guaranteed.
Use of the procedure minimal in a higher precision mode ap
pears indicated.');

Since the original version of Coulomb is to !be superseded by
the revised one (see Remark), detailed test resul'.ts are given here
only for the latter. Most of the tests have alread~ been described
in the Algorithm itself or in the Remark. Thos~ presented here
are obtained on a different machine, and the results differ slightly
in some cases from the previous ones. The tests included the
following:

(i) Generation of o'J'.>L(.,,,p) = [CL(11)PL+11-1 FL(.,,,p), L = 0(1)21,
to 8 significant digits (d = 8) for .,, = -5(1)5, p = .2(.2)5. The
results were in complete agreement with the values tabulated in
[4] of Algorithm 292. In the cases where more than 8 significant
digits are tabulated, the highest discrepancy wa.t one unit in the
last digit; e.g. for L = 0, .,, = 5, p > 3.4, 10 to 11 correct signifi
cant digits have been found.

(ii) Computation of Fo(11,p), Fo'(11,p) = (d/dp) Fo(11,p) to 5 sig
nificant digits for.,, = 0(2)12, p = 0(5)40, using F' o = (p-1 + 11)Fo -
(l+112)l F1 . Comparison with [5] of Algorithm 292 revealed
frequent discrepancies of one unit in the fifth digit. For .,, = 2,
p = 40 the discrepancy in Fo is 80 units of the fifth digit. This is
probably an error in the table.

(iii) Computation to 8 significant digits of Fo(11,p), F0'(11,p)
for p = 2.,,, p = .5(.5)20(2)50. The results agreed completely with
those published in [1] of Algorithm 292.

(iv) Computation (with d = 10) of the miscellji.neous values of
Fo(11,p) and iJ'.>0(11,p) given in the Remark on Algprithm 292. The
results obtained differ slightly from those given: in the Remark.
In the worst case, .,, = 50, p = 120, the discrepancy is 16 units
in the tenth digit.

(v) After changing the dimensions of the arr4ys lambda, lmin
into [0:600] and adjusting the upper limit for m.i. to 600 (see Re
mark on Algorithm 292), FL(11,p) has been calculated with d = 6
for.,, = -200(20) 200, p = 20(20) 200, Lrnax = 0($0)100 merely to
test whether overflow occurs or not. The following table indi
cates where overflow, ip.definite results, or convergence difficulties
in the generation of "XL (see Algorithm 292) have been observed.

7/ p';:;:.

20 200
40 200
60 180
80 100

100 80
120 60
140 60
160 60
180 40
200 40

(vi) Calculation of F L(11,p) for L = 0(50)100 witl;l d = 7 for.,, = 1,
p = 10-n, n = -20(1)-1. Underflow occurred for L = 50, n ::; 5;
L = 100, n::; 2. The valid results have been compared with those
obtained by summation of the power series for iJ'.>L(11,p) (see [4,
(1.3) and (4.4)] of Algorithm 292). Agreement has been found
to 7 significant digits.

(vii) Calculation of o'J'.>L(.,,,p) to 13 significant d!igits (d=l3) for
p = 5, .,, = 0(1)5, L = 0(10)100. The results have been compared
with those obtained by summation in double-precision mode

292-P 4- RI

(27 digits) of the power series mentioned in (vi). Agreement was
found to at least 12 significant digits. The constant 2r in t.he
statement tl := ... on page 795 of Algorithm 292 was supplied
here with 14 significant digits, as required by the com.ment.

Acknowledgment. I wish to thank Professor Gautschi for use
ful remarks and comments.

REMARK ON ALGORITHM 292 [S22]*
REGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. ACM 9 (Nov. 1966), 793]
AND ON
REMARK ON ALGORITHM 292 [S22]
REGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. ACM 12 (May 1969), 280]
W. J. Cony AND KATHLEEN A. PACIOREK (Recd. 8 Sept.

1969 and 8 May 1970)
Argonne National Laboratory, Argonne, IL 60439

*Work performed under the auspices of the US Atomic Energy
Commission.

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions, regular Coulomb wave functions
CR CATEGORIES: 5.12

The revised version of the procedure Coulomb was translated
into IBM System/360 Algol and tested on an IBM S/360 Model 75
Computer. When.,, > 12 overflow problems were encountered in
the generation of intermediate arrays. These were due to the
smaller exponent range of the S/360, -64 ~ exp~ 63. The follow
ing changes, while not completely eliminating the overflow prob
e ms, greatly alleviate them.

Insert real scale;
after begin integer L, nu, nul, mu, mul, i, k;

Insert scale := 16 j (-57);
comment This value of scale is appropriate for the IBM S/360.

On a machine with a different base and a different exponent
range, say a ~ exp ::; {3, the value of scale should be base j
(6-{3);

between end;
and epsilon := .5 X 10 i (-d);

Change lambda [0] := lmin [0] := 1; lambda [1] .- omega-eta;
sum := ro X exp (omega X ro);

to lambda [O] :=scale; lmin [O] := 1;
lambda [1] := (omega-eta) X scale;
sum := ro X exp(omega X ro) X scale;

Change lmin [LJ := Rra [L - 1] X lmin [L - 1];
to begin

tl := Rra [L - 1] X lmin [L - 1];
comment The following constant 5 j (-10) is approximately

2 X base i a/scale, where base is the base of the :floating
point number system and a ~ exp ::; {3;

lmin[L] :=if abs(tl) > 5 j (-10) then
tl else 0

end;

Change lam [OJ := -rl; lam [1] := 1;
to lam [O] := -rl X scale; lam [1] := scale;

Change lambda [L] : = lmin [L] + tl X (lam [L] + rl X lmin [L])
to lambda [L] : = lmin [L] X scale + tl X

(lam [L] + rl X scale X lmin [L])

Change F[O] := sum/(l+s);
to F[O] := sum/(scale+s);

The authors gratefully acknowledge the referee's helpful sug
gestions.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 293
TRANSPORTATION PROBLEM rH]
G. BAYER (Recd. 9 July 1965 and 22 Aug. 1966)
Technische Hochschule, Braunschweig, Germany

procedure transpl (m, n, inf, c, a, b, x, kw); value m, n, inf;
integer m, n, inf, kw; integer array c, a, b, x;

comment transpl is derived from Algorithm 258, transport,
[Comm. ACM 8 (June 1965), 381] in order to reduce running time
by about 50 percent. The following notation is used.
c m, n-matrix of unit costs,
(J, array of quantities available,
b array of quantities required, following the usual descrip-

tion of the transportation problem,
·inf greatest positive integer within machine capacity,
:i; m, n-matrix of flows,
kw optimal total costs (computed by procedure).
c, a, bare disturbed by the procedure. Sum of a[i] = sum of b[i].
Multiple solutions are left out of account. [Ref.: G. Hadley,
Linear Programming, Reading, London, 19132, p. 351];

begin integer i, j, u, v, k, l, s, t, gd, h, p, cij, xij, ai, bj, lsvj, nlvi;
Boolean zg;
integer array g, listu, nlv[l:m], r, listv'.l:n], ls[O:m+n-1],

nl[l:mXn], lsv[O:n];
comment in the for-statement u := · · · after s33, operate on

all pairs i, j with c[i,j] = 0. To win time the array nl supervises
those zeros; the j-indices of zeros in row i are kept in
nl[(i-l)Xn+l] · · · nl[nlv[i]]. In the for-statement v := · · ·
after s33, operate on all pairs i,j withx[i,J] ;:e 0 (and c[i,j]=O).
ls supervises those essential zeros, the i-indices of essential
zeros in column j arc kept in ls[Zsv[j-1]+1] · · · ls[lsv[j]
Procedure 1:n adds to list ls, procedure ou.t takes out from list
ls an essential zero in position i, j;

procedure in;
begin

lsvj : = lsv[j];
fort:= lsv[n] step -1 until lsvj do ls[t-f-1] := ls[t];
for t := j step 1 until n do lsv[t] .- lsv[t] + 1;
ls[lsvj+l] := i

end ;
procedure out
begin

lsvj : = lsv[j];
fort := Zsv[j-1]+1 step 1 until lsvj do
begin

if ls[t] ;:e i then go to next;
s : = t; go to ex;

next:
end

ex:
for t : = j step 1 until n do lsv[t] : = lsv[t]-1;
lsvj := lsv[n];
for t := s step 1 until lsvj do ls[t] .- Zs[t+ll

end ;
for i := 1 step 1 until m do

for j := 1 step 1 until n do x[i,j] := O;
for i := 1 st~p 1 until m do nlv[i] .- (i-l)Xn;

lsv[Oj := O;
for j := 1 step 1 until n do
begin

listv[j] := 1;
lsv[j] := 0

end ;
sl:

kw := gd := O;

293-P 1- 0

comment gd is the defect, i.e., the sum of quantities not yet
transported;

for i := 1 step 1 until m do
begin

h :=inf;
for j := 1 step 1 until n do

if c[i, j] < h then h := c[i, j];
for j := 1 step 1 until n do
begin

cij := c[i, j] := c[i, j] - h;
if cij = 0 then
begin

listv[j] := O;
nlvi := nlv[i] := nlv[i] + 1;
nl[nlvi] : = j

end
end;
kw := h X a[i] + kw

end see next comment;
for j := 1 step 1 until n do
begin

if listv[j] = 0 then go to nextjl;
h :=inf;
for i := 1 step 1 until m do

if c[i, j] < h\ then h := c[i, j];
for i := 1 step 1 until m do
begin

cij := c[i, j] := c[i, j] - h;
if cij = 0 then
begin

nlvi := nlv[i] := nlv[i] + 1;
nl[nlvi] := j

end
end;

kw : = h X b [j] + kw;
nextjl:

end;
comment in step 1 the usual reduction of the matrix of costs

is achieved (dual problem), zeros are listed in nl;
s2:

for i := 1 step 1 until m do
begin

ai : = a[i]; nlvi : = nlv[i];
for u := (i-1) X n + 1 step 1 until nlvi do
begin

if ai = 0 then go to nexti2;
j := nl[u];
bj := b[J];
if bj = 0 then go to nextj4;
h := x[i, j] := if ai < bj then ai else bj;
ai := ai - h; b[j] := b.i - h; in;

COLLECTED ALGORITHMS (cont.)

nextj4:
end;

nexti2:
a[i] := ai; gd := gd + ai

end;
comment applying a usual rule to all zeros we get an initial

flow (restricted primal problem) in st~p 2;
s31:

if gd = 0 then go to s6;
comment problem is solved if defect has become zero;

s32:
for j := 1 step 1 until n do r[j] := O;
k := O;
for i := 1 step 1 until m do
begin

if a[i] ~ 0 then
begin

k := k + 1; listu[k] := i; g[i.! := inf
end
else g[i] := 0

end;
comment r[j] = 0 if column j is unlabeled., = i if labeled

from row i. g[i] = 0 if row i is unlabeled, :=:: inf if a[i] ~ O,
i.e., a[i] is a possible source of flow. The indices i of labeled
rows are kept in Zistu[l] · · · listu[k]. In step 3, consisting of
step 32 and step 33, the maximal flow is fdund by the· la
beling process. Labeling ends in only two ways: (a) a columnj
with b[j] > 0 has been labeled: go to step 4, (b) all labeling is
done, but a positive flow has not been found: go to s5;

s33:
l := O;
for u := 1 step 1 until k do
begin

i := listu[u]; nlvi := nlv[i];
begin

j := nl[s];
if r[j] ~ 0 then go to nextj5;
r[j] := i; l := l + 1; listv[i:] := j;
if b[j] > 0 then go to s4;

nextj5:
end

end in each newly labeled row, see listu, look for zeros in
unlabeled columns, list them in listv;

if l = 0 then go to s5;
k := O;
for v := 1 step 1 until l do
begin

j := listv[v]; lsvj := lsv[j];
for s := Zsv[j-1]+1 step 1 until lsvj do
begin

i := Zs[s];
if g[i] = 0 then
begin

g[i] := j; k := k + l;
listu[k] := i

end
end

end in each newly labeled column, see listv, look for essential
zeros in unlabeled rows, label these rows, liirt them in listu;

if k = 0 then go to s5;
go to s33;
comment step 4. A column j with b[j] has been labeled, b[j)

is the sink of a possible positive flow, the path of which is
indicated by labels. Find the minimum flow h along the path;

n := b[j]; p := j;
mark:

i := r[j]; j := g[i];
if j = inf then
begin

if a[i] < h then h := a[i]; go to re
end;
if x[i, j] < h then h := x[i, j];
go to mark;

re: ;

293--P 2- 0

comment flow h along the labeled path thus reduces defect
without changing total costs. Correct list of essential zeros
if necessary. Start labeling anew, optimizing the restricted
primal problem;

j := p; b[j] := b[j] - h; a[i] := a[i] - h;
gd := gd - h;

rel:
i := r[j]; xij := x[i, j]; x[i, j] := xij + h;
if xij = 0 then in;
j := g[i];
if j = inf then go to s31;
xij := x[i, j] := x[i, j] - h;
if xij = 0 then out;
go to rel;

s5:
comment step 5. Flow is maximal. To find a new solution to

the dual, take the part of matrix c which is the intersection
of labeled rows and unlabeled columns, reduce matrix in a
certain way;

k := O; l := n + l;
for j := 1 step 1 until n do
begin

if r[j] = 0 then
begin

k := k + l; listv[k] := j
end
else
begin

l := l - l; listv[l] := j
end

end list all labeled resp. unlabeled columns in listv;
h :=inf;
for i := 1 step 1 until m do
begin

if g [i] = 0 then go to nexti6;
for s := 1 step 1 until k do
begin

j := listv[s];
if c[i, j] < h then h := c[i, j]

end;
nexti6:

end find minimum h in partial matrix;
for i := 1 step 1 until m do
begin

zg := g[i] ~ O; nlvi := (i-1) X n;
for s := 1step1 until n do
begin

j := listv[s];
if zg then cij := c[i, j]
else
cij := c[i, j] := c[i, j] + h;
if cij = 0 then
begin

nlvi := nlvi + l;
nl[nlvi] : = j

end
end;
for s := 1 step 1 until k do
begin

COLLECTED ALGORITHMS (cont.)

j := listv[sJ;
if zg then cij := c[i, .11 := c[i, j] - h
elsecij := c[i,j];
if cij = 0 then
begin

nlvi := nlvi + 1;
nl[nlvi] := j

end
end;
nlv[i] := nlvi

end reduction, add h to labeled columns, subtract h from
labeled rows. Construct new list of zeros;

kw := h X gd +kw;
comment total costs for new solution of dual;
go to s32;

s6: ;
comment solution, defect has become zero;

end

CERTIFICATION OF:

ALGORITHM 258 [H]
TRANSPORT

[G. Bayer, Comm. ACM 8 (June 19()5), 381]
ALGORITHM 293 [H]
TRANSPORTATION PROBLEM

[G. Bayer, Comm. ACM 9 (Dec. 19()6), 869]

LEE S. S1Ms (Recd. 21 Feb. 1967 and 17 Mar. 1967)
Kates, Peat, Marwick & Co., Toronto, Ont., Canada

Both of these algorithms were coded in Extended ALGOL 60
and tested on a Burroughs B5500. Three problems were solved
correctly, one of them being of medium si2:e (55 X 167). On this
larger problem transpl was found to be about twice as fast as
transport.

In coding and debugging transpl three apparent errors were
found. In the right-hand column on page 870, after line 27 which is

i := listu[u]; nlvi := nlv[i];
a line is missing. This line should read

for s := (i-1) X n + 1 step 1 until nlvi do
Also in the right-hand column, the line

s4: ;
should be inserted ahead of line -12, which begins

comment Step 4. A column j with b[j] has been labeled, b[j]
On page 871, in the left-hand column, line --22 which reads

for s := 1 step 1 until n do
should read

for s :== l step 1 until n do

REMARK ON ALGORITHM 293 [H]
TRANSPORTATION PROBLEM [G. Bayer, Comm.

ACM 9 (Dec. 1966), 869]
G. BAYER (Recd. 24 Aug. 1967, 30 Oct. 1967 and 8 Jan.

1968)
Technische Hochschule Braunschweig, Germany

KEY WORDS AND PHRASES: transportation problem, linear
programming

CR CATEGORIES: 5.41

There is an error in the algorithm concerning the number of

293-P 3- R2

essential zeros which can be greater than m + n - 1. An example is:

c: 1 1 2 1

2 1 1 1

1 2 2 2

a: 4 6 1

b: 2 4 2 3

The difficulty may be overcome in two ways.
1. Declare array ls by:

integer array ls[O : mXn]
instead of:

integer array ls[O : m+n-1]

2. As the case of more than m + n - 1 essential zeros will seldom
arise in practical problems, it may be enough to have

ls[O: 2Xm+n-1];
(It is assumed that m~n). To make sure that list ls does not over
flow, add a statement to procedure in and remove inf from the
value part.

procedure in;
begin if lsv[nJ = 2 X m + n - 1 then

begin inf := O; go to s6 end;

Thus in the case of overflow of ls, the procedure is left with inf = 0
signalling that the optimum has not been reached and that the
solution is possibly incomplete. (One would wish then to run the
procedure anew with more space for ls and using the solution ob
tained as an initial flow. This would only be possible by partly re
writing the algorithm.)

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 294
UNIFORM RANDOM [G5]
W. MURRAY STROME (Recd. 26 May 1966)
Carnegie Institute of Technology, Pittsbur1~h, Pa.

real procedure UNIFORM (A, B, XO, C, M);
value A, B, XO, C, M; real A, B; integer XO, M, C;

comment This procedure generates the next uniformly distrib
uted pseudorandom number on (A, B). The "multiplicative
congruential" method is used, namely

Zn-ti = C X Zn (mod M)
M and. C are chosen to maximize the period and mm1m1ze the
correlation of the sequence generated. To accomplish this, M
should be as large as possible subject to the following conditions
[1]:

(i) C ~ vM and suitably chosen.
(ii) The expression X := XO/M followed by X := X X C

within the procedure must be evaluated with no roundoff
or truncation error for every positive integer XO < M.

For most applications, M and C may be chosen as follows. Let D
denote the number base of the machine (e.g., D = 10 for a decimal
machine) and n the number of significant D-digits of a real vari
able of the ALGOL implementation. Then let M = Dir. and
C = Dn-k - q·where k = entier ((2n + 1)/3). For D = 2, 4, 5, 8, 10
or 16 and Dn-k > 100, q = 3 is suitable. In general, choosing M
and C in the above fashion will guarantee that condition (ii) be
met, but this should be verified for the particular implementation.
See [1] for a more detailed discussion on the choice of C and M.
The first time UNIFORM is used in a program, XO should be a
positive integer less than and relativdy prime to M. Subsequently,
use XO= 0.

UNIFORM was translated into C.I.T's ALGOL-20 and run on
a CDC G-20 computer with M = 228 and C = 214 -- 3. Some scaling
was required to prevent roundoff in the multiplications since the
G-20 is a 14-octal digit machine rather than a 42-bit binary one
(the scaling would have been unnecessary had we used M = 89,

C = 86 - 3, but the period of the sequence w<;mld have been
shorter). In order to test the algorithm, the following statistical
tests were performed for sequences of pseudorandom numbers
generated on (-1, 1).

1. Distribution. We divided (-1, 1) into 10 equal subintervals.
Denote by fi the number of numbers of a sequence of length 1000
in the ith interval. The statistic

10

x2 = .01 .L: <fi - 100) 2

i=l

was computed for each of 62 different such sequences. For numbers
drawn from a uniform distribution, this statistic has a x2-dis
tribution, with 9 degrees of freedom [2]. The results obtained were
entirely consistent with the hypothesis that the numbers were
distributed uniformly.

2. Independence. Define the serial correlation (lag j) by

~~ £ XiXi+i - (! £ x,)2

N i=l N i=l

Pi

--
1
- £ xi2 - (I£ xi)2

•
N - 1 i=l N i=l

294-P 1- 0

If xi ' Xi+i are independent, then for large N, Pi is distributed
normally with mean -1/N and standard deviation 1/vN [3].
P1 was estimated for 16 different sequences each of length 5000.
The average, -0.004, and the standard deviation, 0.011, are con
sistent with the hypothesis of independence. Pi was estimated for
3 different sequences each of length 9900 for j = 1, 2, · · · , 49.
These results were consistent with the hypothesis that Xi, Xi+i
are independent for these values of j.
The Von Neumann ratio test [4] for 16 sequences of length 1000
also yielded results consistent with the hypothesis of independ
ence. The results of other tests for many values of C and M using
this method are outlined in [1];
begin own real X;

if XO~ 0 then X := XO/M;
X : = X X C; X : = X - entier (X);

UNIFORM := XX (B - A) + A
end procedure UNIFORM

REFERENCES:
1. HULL, T. E., AND DoBELL, A·. R. Random number generators.

SIAM Rev. 4 (July 1962), 230-254.
2. YAMANE, T. Statistics, An Introductory Analysis. Harper &

Row, New York, 1964, pp. 584-593.
3. ANDERSON, R. L. Distribution of the serial correlation coeffi

cient, Ann. Math. Stat. 13 (1942), 1-13.
4. HART, B. I. Tabulation of the probability for the ratio of the

mean square successive difference to the variance. Ann.
Math. Stat. 13 (1942), 207-214.

_COLLECTED ALGORITHMS FROM CACM

ALGORITHM 295
EXPONENTIAL CURVE FIT [E2]
H. SPATH (Recd. 29 Apr. 1966)
Institut fiir N eutronenphysik und Reaktortechnik,
Kernforschungszentrum Karlsruhe, Germany

procedure expfit (x, y, p, n 1 ca, ce, eps, a, b, c, s,Jx, exit);
value n, ca, ce, eps; intr-ger n; real ca, ce, eps, a, b, c, s;
label exit; array x, y, ;p, Jx;

comment If the method of least squares is used to determine
the parameters a, b, c of a curveJ(x) =a+ be-ex which approxi
mates n data points (xi , yi) with associated weights Pi , then

(I)

must be a minimum. A necessary condition for this is that

as as as
- = - = - = 0. (II)
aa ab ac

Usually (see [1]) it is attQmpted to solve this system of nonlinear
equations by an itera.tive method which is based upon the
linearization of J in (II) and the convergence of which depends
on the given starting values for a, b, c.

A simpler and more effective way which can always be chosen
if there is only one non.linear parameter in J is the following:
It is always possible to e,liminate a = a(c) and b = b(c) from the
equations as/aa = 0 and as/ab = 0 and to put these expressions
into as/ac = 0. This gives only one equation in one variable

as
F(c) : = - (a(c), b(c), c) == 0.

ac

If a value c' is calculated with F(c') = 0 then the corresponding
values of a and b are obtained from a' == a(c') and b' = b(c').

The following procedure is based upon this idea which is fully
treated in [2]. It allows to find a triple (a, b, c) which solves (II)
if you make available a nonlocal procedure Rootfinder which is
able to get a zero c of a £,unction F(c) in the interval [ca, ce] with
the relative accuracyeps:, if sign (F(ca)) ~·sign (F(ce)) otherwise
leaving to the global label exit. As the above F(c) is discontinu
ous at c = 0, [ca, ce] must not contain 0. [The speed and efficiency
of the algorithm depend on the choice of the procedure Root
finder .---REF.]

Most of the symbols are self-explanatory. The array Jx finally
contains the values a+ be-cxi;

begin integer i; real t, 'tl, v, w, Jc, hO, hl, h2, h3, h4, h5, h6, h7;
procedure franc (c, Jc); value c; reall c, Jc;
comment computes for a given c the value Jc = F(c) and

a = a(c), b = b(c);
hegin hO := hl := h2 :=! h3 := h4 := h5 := h6 := h7 := O;

for i := 1step1 until n do
begin

t := x[i]; u := exp(-cXt); v := p[i]; w := y[i];
hO : = hO + v; hl : = hl + u, X v; h2 : = h2 + u X u X v;
h3 := h3 + v X w; h4 := h4 + u Xv X w;

h5 : = h5 + t x u x v;
h6:=h6-t-tXuXuXv; h7:=h7-uXvXwXt

end i;

295-P 1- 0

t := l.O/(h0Xh2-h1Xhl); a := t X (h2Xh3-h1Xh4);
b := t X (h0Xh4-h1Xh3); Jc := h7 + (h5Xa+h6Xb)

end Jronc;
Rootfinder (franc, ca, ce, eps, c, exit); t : = O;
for i := 1 step 1 until n do
begin

v := Jx[i] :=a+ b X exp(-cXx[i]); v := v - y[i];
t : = t + p[i] x v x v

end i,·
s := t
end expfit

REFERENCES:

1. DEILY, G. R. Algorithm 275, Exponential curve fit. Comm.
ACM 9 (Feb. 1966), 85.

2. 0BEHLANDER, S. Die Methode der kleinsten Quadrate bei
einem <lreiparametrige11 Exponentialansatz. ZAMM 43
(1963), 493-506.

COLLECTED ALGORITHMS FROM CACM

ALGORITff.VI 296
GENERALIZED LEAST SQUARES FIT BY
ORTHOGONAL POLYNOMIALS [E2]
G. J. MAKINSON (Recd. 30 Sept. 1965 and 29 Aug: 1966)
University of Liverpool, Liverpool 3, England
procedure LSFITUW (f, x, w, m, k, si, p, l, al, be, s); value m, k;

inleger m, k; array f, w, si, p, x, al, be, s; Bpolean l;
wmment LSFITUW accepts m observations x[i], f[i], i = 1, 2,

· · ·, m each with its associated weight w[i]. The weights should
be provided inversely proportional to the standard error of the
observations.

x[l] should be algebraically the smallest abscissa and x[m] the
largest.

The coefficients of the best fitting polynomial of degree k or
less, where k < m - 1, are obtained in p[O:le], with p[O] the
independent term. si[O:k] contains the measures of the goodness
of fit of each polynomial tested. The si[t] am examined suc
cessively and the best polynomial is chosen of degree h if h is
the first value of t found such that si[h] < si[h+l] provided
that si[j] > 0.6 X si[h] fork ~ j > h + 1. If h is the first value
oft found such that si[h] < si[h+l] but then a j is found that
satisfies si[J] ~ 0.6 X si[h] for j > h + 1 the procedure will choose
the polynomial of degree j as best fit.

If an h such that si[h] < si[h+l] is not found then the poly
nomial is chosen of degree k. LSFITUW uses the procedure
POLYX (a, b, c, d, n) [Algorithm 29, Comm. AC~ 3 (Nov. 1960),
n04] to transform its results from the interval (-2,2) to the
interval (x[l], x[m]).

Normally l should be false but if the choice made is to be
overruled after consideration of the si and the best fitting
polynomial is required to be strictly of degree k, then l should be
true.

The programming is as outlined by G. E. Forsythe, [J. Soc.
lndust. Appl. Math. 5 (1957), 74-88] and origina~:Jy programmed
by J. G. Mackinney [Algorithm 28/29, Comm. ACM 3 (Nov.
1960), 604). LSFITUW incorporates remarks made by D. B.
MacMillan [Comm. ACM 4 (Dec. 1961), 544).

The variables in the paper of Forsythe have been abbreviated
as follows.

al[i] is alpha[i], be[i] is betali], si[i] is (si'.gma[i]) i 2, s[i] is
the same, om is omega, lw is w[i, i], tw is w[i+l, i+l),
ctplj] is the coefficient of x i j in This (the current)
orthogonal polynomial, clp[j] is the coefficient of x j j in
the Last (previous) orthogonal polynomial, cp[j] is the co
efficient of x j j in the most recently calculated polynomial
of best fit, tp[i] is the value at x[i) of the present orthogonal
polynomial, lp[i] is the value at x[i] of the last orthogo
naJ polynomial, simin is the least value of (sigma[i]) i 2
found so far, swx becomes false as soon as (sigma[i+l]) i
2 ~ (sigma[i]) j 2 one time, comp becomes true if swx

is false and some (sigma[i]) i 2 < 0.6 X simin;
begin integer i, j; real du, delsq, om, lw, tw, simin, a, b;

array ctp, cpsave, cp[O:le], clp[-l:k], lp, tp[l:m];

Boolean swx, comp;
comment initialization;

296-P 1- 0

for i := O step 1 until le do cp[i] := O; simin := O;
swx :=true; be[O] := clp[O] := clp[-1] := delsq := om O;

ctp[O] := 1; tw := O; comp := false;
for i := 1 step 1 until m do
begin

delsq := delsq + w[i] X f[i] i 2; tp[i] := 1;
lp[i] := O; om:= om+ w[i] X f[i]; tw := tw + w[i]

end;
s[O] := cp[O] := om/lw; delsq := delsq - s[O] X om;

si[O] := delsq/(m-1);
com1nent transformation of abscissa;
a:= 4/(x[m]-x[l]); b := - 2 - a X x[l];
for i := 1step1 until m do x[i] :=a X x[i] + b;
comment main computation loop;
for i : = 0 step 1 until le - 1 do
begin

du:= O;
for j := 1step1 until m do du:= du+ w[j] X x(jj X tprjJ i 2;
al[i + 1) := du/tw; lw := tw; tw :=om:= O;
for j := 1step1 until m do
begin

du := be[i] X lp[j];
lp[j] := tp[j];
tp[j] := (x[j]-al[i+l]) X tp[j] - du;
tw := tw + w[j] X tp[j] i 2;
om := om+ w[j] X f[j] X tp[j]

end;
be[i+l] := tw/lw; s[i+ll := om/tw;
delsq := delsq - s[i+lJ X om; si[i+l] := delsq/(m-i-2);

if l then go to Ll ;
if -, comp then
begin

if swx then
begin
if si[i+ll ~ si[i] then

begin
comment higher power appears not to improve fit;
swx : = false;
simin := si[i);
for j := 0 step 1 until k do

cpsave[j] := cp[j]

end;
go to Ll

end;
if si[i+ll < 0.6 X simin then comp := true;
comment termination of main loop at superior fit to first

one found;
comment recursion to obtain the coefficients cp of the

polynomial of best fit of degree i + 1;
Ll: for j := 0 step 1 until i do

begin
du := clp[j] X be[i];

clp[J] := ctp[j];

ctp[j] := clp[j-1] - al[i+l] X clp[j] - du;
cp[j] := cp[j] + s[i+l] X ctp[j]

end;
cp[i+l] := s[i+lJ; ctp[i+l] := 1; clp[i+l] := O;
if -, (comp V swx) then

COLLECTED ALGORITHMS (cont.}

begin
if i = k -- 1 then
for j := 0 step 1 until k do

cp[j] := cpsave[j]
end

end
.end end of main computation loop. Transformation of poly

nomial follows;
POLYX(a, b, cp, p, k)

end LSFITUW

REMARK ON ALGORITHM 296 [E2]
GENERALIZED LEAST SQUARES FIT BY

ORTHOGONAL POLYNOMIALS
(G. J. Makinson, Comm. ACM 10 (Feb. 1967), 87]

G. J. Makinson (Recd. 21 Mar. 1967)
University of Liverpool, Liverpool 3, England

The second sentence of the first comment should read "The
weights should be provided inversely proportional to the square
of the standard error of the observations."

instead of

·'The weights should be provided inversely proportional to the
standard error of the observations."

CERTIFICATION OF ALGORITHM 296 [E2]
GENERALIZED LEAST SQUARES FIT BY
ORTHOGONAL POLYNOMIALS [G. J. Makinson,

Comm. ACM 10 (Feb. 1967), 87]
WAYNE T. WATSON (Recd. 11Feb.1969 and 21Mar.1969)
Service Bureau Corp., Development Laboratory, 111 West

St. John Street, San Jose, CA 95113

KEY WORDS AND PHRASES: least squares, curve fitting,
orthogonal polynomials, three-term recurrence, polynomial re
gression, approximation, Forsythe's method
CR CATEGORIES: 5.13, 5.5

LSFITUW was compiled and tested in CALL/360:PL/1. No
modifications were made to the algorithm, and the computations
were made in long precision (about 15 significant floating point
digits). In addition, POLYX [2j was used to transform the results
of LSFITUW from the interval (-2,2) to the interval (x1 ,xm).

To generally test the algorithm, several small sets of data were
used with LSF ITUW and .the results were compared with those
obtained from an-independently written polynomial curve fitting
algorithm which does not use the method of orthogonal poly
nomials. Only polynomials of degree less than 5 were used to fit
the data. Agreement between coefficients and standard errors was
good.

As a more comprehensive test of the algorithm, all experiments
that could. be duplicated from the article by Ascher and Forsythe
[lJ were performed; a slight modification to LSFITUW was re
quired to transform the d,ata to the interval (-1,1) instead of
(--2,2). Briefly, the experiments included:

(1) For certain equally l"ipaced data, a comparison of the a; and
(3, calculated by the program against those values of a; and {3;

obtained from known for:m,ulas (a; =0 for equally spaced data).
(2) A fit of the functio~ j(x) = I x I over the interval (-1,1)

for equally spaced data for polynomials of dlegree as high as 30.
(3) A fit of the function j(x) = e"' for unequally spaced data

inside the interval (-1,1) for polynomials of degree as high as 32.

296-P 2- R3

The results of experiment (1) showed that LSFITUW produced
values of f3i differing only in the last significant digit (15) from
those calculated by the known formula. The values of ai produced
were in the range of the floating point round-off error c10-10).

The results of duplicrting experiments (2) and (3) were better
than those reported in [1) because of the greater precision used in
the calculations (about 10.8 versus· about 15 significant floating
digits). While conducting the last two experiments, it was noted
that for data values of x symmetric about the origin, the value of
b in the transformation equation x = at + b may be computed to
be a number in the floating point round-off range instead of exactly
zero. When fitting polynomials of a sufficiently high degree, this
may cause an underflow at line 4 of POLYX, the transformation
routine. The user may find it desirable to branch on an underflow
in POLYX and reset b to zero.

To check the computations of the uk 2 obtained by the recursive
definition of uk 2 used ·in the algorithm, the Uk 2 were compared
with results computed directly from the equation

(*)

where Yk is the best fitting polynomial of degree k for the data
x; , f; . Experience with the algorithm indicates that a loss of
accuracy in computing u1c 2 occurs at smaller values of k when using
the recursive definition than when using (*). If the values oLuk 2

are of importance to the user, he may find it useful to compute
them using (*) instead.

A comprehensive test of the algorithm's feature which uses the
uk 2 to automatically select the best fitting polynomial was not
made, but the feature did work properly for the polynomials used.
In connection with this feature, the user should be aware, though,
of the possible difficulty mentioned above in computing u1r. 2 ac
curately using the recursive definition. In this case, the user
should not expect the algorithm to select the best fitting poly
nomial. This difficulty was experienced several times while testing
the algorithm, but was circumvented by using (*) to calculate
uk 2• In order to detect a possible loss in accuracy, the uk 2 should
be examined carefully or compared with those obtained by (*).

Comprehensive tests were not made using weights; however,
no problems were encountered with a moderate usage of this
feature.
REFERENCES:

1. AscHER, M., AND FORSYTHE, G. E. SWAC experiments on the
use of orthogonal polynomials for data fitting. J. ACM 5
(Jan. 1958), 9-21.

2. MAcKINNEY, JoHN G. Algorithm 29, Polynomial transformer.
Comm. ACM 3 (Nov. 1960), 604.

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 297
EIGENVALUES AND EIGENVECTORS OF THE
SYMMETRIC SYSTEM (A-XB)X = 0 [F2]
J. BooTHROYD (Recd. 19 Aug. 1965, 7 Feb. 1966, 1 Aug.

1966, and 14 Nov. 1966)
University of Tasmania, Hobart, Tas., Australia

procedure eigensolve(a, b, x, n, nondef); value n; integer n;
label nondef; array a, b, x;

comment solves the equation (A - >-..B)X = 0 for symmetric
A, Bin a, b[l :n, 1 :n] provided one of these is either positive or
negative-definite. B is decomposed symmetrically so that B
= LL' and the equation transformed to (C->-..1) Y = O where
C = (L)-1A (L')-1 is symmetric and Y = L'X. If B is negative
definite (A- (->-..)(-B))X = 0 is solved. If Bis neither positive
nor negative-definite the original equation is rearranged as
(B- (l/>-..)A) X = 0 and solved as such for positive-definite A or
as (B-(-1/>-..)(-A))X = 0 for negative-definite A. Failure to
achieve one useful transformation from the four possibilities
leads to exit via the label nondef.

The procedure calls procedure symmetric QR 2 [P.A. Businger,
Algorithm 254, Eigenvalues and eigenvectors of a real
symmetric matrix by the QR method. Comm. ACM 8 (April,
1965), 218-219] to evaluate the roots and vectors of
(C-Al) Y = 0. That procedure leaves untouched the
strictly upper triangle of C. In conformity with this,
eigensolve preserves the strictly upper triangles of A and B.
If, before entry to eigensolve, the user saves the diagonals
of A, B, both these arrays may, if necessary, be fully
restored after exit.

On exit from the procedure the eigenvalues occupy the diago
nal elements a[i, i] with the eigenvectors in corresponding
columns of x[l :n, 1 :n];

begin integer i, j, k, jlessl, ilessl, adi, bdi;
real t, sum, xij, length;
Boolean recip;
procedure LCHOLESKI(a, n, fail); value n; integer n;

label fail; array a;
comment performs the symmetric decomposition A = LL'

for positive definite A in a[l :n, 1 :n]. The lower triangle of A
is overwritten by L. The strictly upper triangle of A is intact.
For nonpositive-definite A the procedure exits via label pa
rameter fail;

begin integer i, j, k, jlessl;
real ajj, ajk, aij;
jlessl := O;
for j := 1 step 1 until n do
begin ajj : = a[j, j];

fork := 1 step 1 until jlessl do
begin ajk := a[j, k];

ajj := ajj - ajk X ajk

end;
if ajj :::; 0.0 then go to fail;
ajj := a[j, j] := sqrt(ajj);
for i := j + 1step1 until n do
begin aij := a[i, j];

fork := 1step1 until jlessl do

297-P 1- 0

aij := aij - a[i, k] X a[j, k];
a[i, j] := aij/ajj

end;
jlessl := j

endj
end LCHOLESKI;
comment scan diagonals of A, B setting adi, bdi respectively

to +1,. -1, 0 if the diagonal elements are all positive and non
zero, all negative or neither. Save the diagonal of Bin X ·

adi := sign(a[l, 1]); '
x[l, l] := t := b[l, 1];
bdi := sign(t);
for i := 2 step 1 until n do
begin t := a[i, i];

if t = 0.0 V (t>O=adi<O) then adi := O;
x[i, i] := t := b[i, i];
if t = 0.0 V (t>O=bdi<O) then bdi := 0

end;
recip := false; comment prepare to solve (A->-..B)X == O·
if bdi = 0 then go to swap; comment Bis nondefinite· '
if bdi < 0 then '
begin comment prepare to solve (A-(->-..)(-B))X = O·

for i := 1 step 1 until n do '
for j := 1 step 1 until i do b[i, j] .- - b[i, j]

end;
newtry: LCHOLESKI(b, n, swap);

go took;
swap: if recip then go to nondef;

recip : = true;
comment prepare to solve (B-(1/>-..)A)X = O;
if adi = 0 then go to swap; comment to escape, since A is

also nondefinite;
if adi < 0 then
begin comment prepare to solve (B-(-1/>-..)(-A))X = O·

for i := 1 step 1 until n do '
begin b[i, i] := a[i, i]; a[i, i] := x[i, i];

for j := i + 1step1 until n do
begin b[j, i] .- -a[i, j]; a[j, i] := b[i, j] end

end
end
else
begin _comment prepare to solve (B- (l/>-..)A)X = O;

for i := 1 step 1 until n do
begin b[i, i] := a[i, i]; a[i, i] := x [i, i];

for j := i + 1step1 until n do
begin b[j, i] := a[i, j]; a[j, i] := b[i, j] end

end
end;
go to new try;
comment form C= (L)-IA(L')-1 by LX

places A;
ok: jlessl := O;

for j := 1 step 1 until n do
begin ilessl := O;

for i := 1 step 1 until j do
begin sum:= a[j, i];

fork := 1step1 until ilessl do
sum := sum- x[k, j] X b[i, k];
sum := x[i, j] := sum/b[i, i];
for k : = 1 step 1 until jlessl do

A, CL' X. C re-

COLLECTED ALGORITHMS (cont.)

sum := sum - (if k::;i then a[i", k] else a[k, i]) X b[j, k];
a[j, i] := sum/b[j, j];
ilessl : = i

end;
jlessl := j

end;
comment global call of symmetric QR 2 to solve (C-'Al) Y = 0.

symmetric QR 2 includes a built-in precision tolerance. For
use with eigensolve this constant should be changed to the
value appropriate to whatever computer is used. Those in
terested in using JACOBI [Thomas G. Evans, Algorithm 85,
JACOBI, Comm ACM 6(April1962), 208] in place of symmetri"c
QR 2 may do so by copying the lower triangle of A to the upper
triangle and making suitable changes to accommodate the
parameter rho of that procedure before {tis called. In this case
the strictly upper triangle of A will not be preserved on exit
from C'igensolve;

symmetric QR 2 (n, a, x);
comment change the Y vectors, now in x by L' X Y and

normalize to unit length;
for j := 1 step 1 until n do
begin length := 0.0;

for i := n step -1until1 do
begin sum : = x[i, j];

fork := i + 1 step I until n do
sum := sum -b[k, i] X x[k, j];

xij := x[i, j] := suni/b[i, i];
length : = length + xij X xij

end;
length := sqrt(length);
for i := 1step1 until n do x[i, j] := x[i, j]/length

end;
comment take the reciprocals and/or change the signs of the

roots if necessary;
for i := 1 step 1 until n do
if recip then
begin

if adi <0 then a[i, i] := -1.0/a[i, i]
else a[i, i] := 1.0/a[i, 'i] end

else if bdi <O then a[i, i] := -a[i, i]
end eigensolve

297-P 2- 0

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 298
DETERMINATION OF THE SQUARE-ROOT OF A
POSITIVE DEFINITE MATRIX [Fl]
IL SPATH (Recd. 20 Sept. 1966)
Institut fiir Neutronenphysik und Reaktortechnik
Kernforschungszentrum Karlsruhe, Germany

procedure WURZEL(A, B, N, theta, eps);
value N, theta, eps; integer N; real theta eps; array A, B;

comment Let A be a symmetric positive-definite matrix of the
order N. Further let Amin be the smallest and Amas: be the greatest
eigenvalue of A.
It is known [1] that for all{) with 0 < {) < 1 the sequence

Bo= 2cA (1)
with

{)
c=---

2VAmax

converges to VA. The rate of convergence of the above se
quence is given by the rate of convergence to zero of the se
quence

Xk = (1 - eVAmin/Amax)k.
As IJ A II = ll'.Amax with a 2::: 1, we set

()1

Ci = 2-v11A 11 ·

(2)

(In the program we choose II A II = max.; ILz:k I aik I) . Then
the sequence (1) with c = c1 converges for all e1 with

0 < ()1 < V;-= VIJ A II /Amax
and therefore in any case for e1 with 0 < e1 < l. Because of (2)
it is favorable to choose {) close to 1 and e1 close to v;: respec
tively. If nothing at all is known about a, the optimum is to
choose ()1 close to 1. The computing time is proportional to
j(e1)N3 , where f(e1) decreases as e1 increases.
Meaning of symbols in the formal parameter list:
A = A [1 :N, 1 :NJ must be symmetric and positive-definite.

A is not destroyed after leaving WURZEL

B = B[l :N, 1 :NJ contains VA when WURZEL is left
N is the order of A and B
theta = ()1 is an input parameter as described above
eps is an accuracy parameter. The iteration is stopped when

max I bW1
l - bf~l I < eps;

i.j

begin integer i, j, k; real delta, s, c; array bb[l:N];
comment determination of c; c := O;
for i := 1step1 until N do
begins := O;

for j := 1step1 until N dos := s + abs(A[i, j]);
c := if c < s thens else c

43nd.
c :=' .5 X theta/sqrt(c);
cmnment now Bo is set;
for i := 1 step 1 until N do
for j : = i step 1 until N do

B[i, jJ := B[j, i] := 2.0 X c X A [i, jJ;
comment start of iteration;

REPEAT: delta := O;
for i := 1 step 1 until N do
begin for j := i step 1 until N do

298--P 1- RI

begins := O; .
fork := 1step1 until N dos := s - B[i, kJ X B[k, J];
bb[jJ := B[i, j] + c X (A[i, jJ + s)

end·
for j := i step 1 until N do
begin s := abs(B[i, j] - bb[j]);

if s > delta then delta : = s;
B[i, j] := bb[j]

end
end;
for i := 1 step 1 until N - 1 do
for j := i + 1step1 until N do B[j,i] .- B[i, jj;
if delta > ·eps then go to REPEAT

end WURZEL

REFERENCE:

1. BABUSKA, I., PRAGER, M., AND VrTASEK, E. Numerical Processes
in Differential Equations. John Wiley & Sons, Ltd., London, 1966,
p. 31 ff.

CERTIFICATION OF ALGORITHM 298 [Fl]
DETERMINATION OF THE SQUARE ROOT OF A
POSITIVE DEFINITE MATRIX [H. Spath, Comm.

ACM 10 (Mar. 1967), 182]
B. J. DUKE (Recd. 26 Apr. 1967, 16 July 1968 and 10 Oct.

1968)
Department of Chemistry, University of Lancaster, Bail

rigg, Lancaster, England

KEY WORDS AND PHRASES: matrix, symmetric matrix,
positive definite matrix, matrix square root

CR CATEGORIES: 5.14

Algorithm 298 has been tested in ICT ALGOL and used suc
cessfully on a number of matrices. One minor modification seems
advisable. To avoid the procedure looping if an error occurs in
its call, a maximum number of iterations should be set, with the
procedure exiting through a label if this number is reached. The
modifications to the procedure are obvious.

Comparisons with an alternative method using a binomial
series are interesting. If

For convergence,
0 < 2 II A II /Amax ,

and thus a sufficient condition is 0 < 2.
Optimum convergence is for

COLLECTED ALGORITHMS (cont.)

2 llA II
Amax+ >.min

Thus
1 < a < 8opt < 2a

where a = llA 11/Xmax . The choice of 8 is difficult, as the method
is particularly slow for values of 8 not close to 8opt • Unless other
information is available, it seems preferable to choose 8 in the
range 1.4-1.8.

Both methods have been tested on over 30 positive definite
matrices of order 2 to 12 arising from physical problems. In about
half the cases studied all diagonal elements of A were equal; two
typical examples are illustrated below. There was no significant
difference between the behavior of these matrices and matrices
with diagonal elements differing in magnitude.

(a)

A = (1. O 0. 259952 0. 03886876 0. 01772265 0. 03886876)
0. 259952 1. 0 0. 259952 0. 03886876 0. 01772265
0. 03886876 0. 259952 1. 0 0. 259952 0. 03886876
0. 01772265 0. 03886876 0. 259952 1. 0 0. 259952
0. 03886876 0. 01772265 0. 03886876 0. 259952 1. 0

A•= (°.9911413 0.1309132 0.0104918 0.0063647 0.0187119)
0.1309132 0.9826457 0.1308604 0.0102163 0.0063647
0.0104918 0.1308604 0.9826144 0.1308604 0.0104918
0.0063647 0.0102163 0.1308604 0.9826457 0.1309132
0.0187119 0.0063647 0.0104918 0.1309132 0.9911413

(b)

A = (1.0
1 0.74917 0.48985)

0.74917 1.0 0.74917
0.48985 0.74917 1.0

A' = (°.9017878 0.38936S3 0.1875400)
0.3893683 0.8347906 0.3893683
0.1875400 0.3893683 0.9017878

In both methods iteration was continued until, at iteration k,
the estimate of A~D<k> changed by less than 10-7 , i.e.

I D~i - D~j1 I < 10-7 for all 1~ and j.

Algorithm 298-N o. of Iterations
N a 8

(a) 5
(b) 3

1.054
1.071

0.8
22
60

0.9
18
52

0.95
17
49

0.999
16
47

Series Method--N o. of Iterations

N 8opt ()

1.05
14
44

1.0 1.11.21.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
(a) 5 1.59 21 19 17 16 14 13 15 19 26 37 67
(b) 3 2.006 118 108 100 93 87 81 77 72 69 65 63

The behavior of Algorithm 298 was found to be similar in all
cases studied. The best choice of () is as close to a as possible.
Normally~ 0.999 must be chosen. The performance of the series
method is well illustrated by the two examples chosen. It is dif
ficult to determine a good value of 0, and even if a value very close
to 8opt is accidentally used, the performanc•e of the series method
can be inferior to the method used in Algorithm 298.

The series method has one other disadva,ntage. For an efficient
algorithm, several extra arrays are required as intermediate
storage. The only clear advantage is that the series method can be
readily modified for powers other than square root. Algorithm 298
is the most efficient method of the two.

298-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 299
CHI-SQUARED INTEGRAL [S15]
I. D. HILL AND M. C. Pnrn (Recd. 9 Sept. 1965 and 3

Oct. 1966)
Medical Research Council, Statistical Research Unit,

115 Gower St., London W.C.1., England

real procedure chiprob (x, f, bigx, normal, wrong);
value x, f, bigx; real x; integer f; Boolean bigx;
real procedure normal; label wrong;

comment Finds the probability that x2, onf degrees of freedom
exceeds x, i.e.,

1 100

--- ztl-1 e-!• dz (x ~ 0 'f ~ 1)
2ttr(!f) x - ' --

The algorithm is based upon the recurrence formula

[Handbook of Mathematical Functions, National Bureau of Stand
ards, Appl. Math. Series 55 (1964), formula 26.(8] by means of
which any x2-i.ntegral can be reduced to the sum of

or

(i) a series of terms that can be directly evaluated, and
(ii) a x 2-integral on 2 degrees of freedom (if f is even), or on

1 degree of freedom (if f is odd).
To evaluate (ii) we have either

The evaluation of the latter expression is performed by the
formal real procedure normal which must evaluate the lower
tail area of the standardized normal curve (real procedure
Gauss [D. Ibbetson, Alg. 209, Comm. ACM 6 (Oct. 1963), 616]
may be used as the actual parameter).

The parameter bigx should be set to true if the value of xis
too big for exp (-0.5Xx) to be accurately represented by the
machine, or false otherwise.

For even degrees of freedom the method is exact, and the
algorithm is essentially accurate to the accuracy of the machine.
For odd degrees of freedom the accuracy will be tlictated by the
accuracy of the real procedure normal. . ·

For large degrees of freedom, if speed is more; important than
great accuracy, it may be found preferable to use! an approxima
tion, e.g., the Wilson-Hilferty cubic formula [Wi~son, E. B., and
Hilferty, M. M., Proc. Nat. Acad. Sci. 17 (1931), ?84] which may
be expressed as

chiprob := normal (.-sqrt (4.5Xf)X ((x/f) t (1/3)+2/(9Xf)-l)).

This is accurate to 3 decimal places for f > 40.
The authors thank the referee and the editor for helpful

criticisms and suggestions;

begin
if x <·o V f < 1.then go to wrong else
begin

real a, y, s;
Boolean even;
a := 0.5 X x; even := 2 X (f+2) = f;
if even V f > 2 !\ -,bigx then y := exp(-a);

299-P 1- RI

s : = if even then y else 2.0 X normal (- sqrt (x));
if f > 2 then
begin

real e, c, z;
x := 0.5 X (f-1.0); z := if even then 1.0 else 0.5;
if bigx then
begin

e := if even then 0 else 0.572364942925; c := ln (a);
comment 0.572364942925 = Zn (sqrt(7r));
for z := z step 1.0 until x do
begin

e := Zn (z) + e;
s := exp(cXz-a-e) + s

end·
chip;~b := s

·end else
begin

e := if even then 1.0 else 0.564189583548/sqrt(a); c := O;
comment 0.564189583548 = 1/sqrt(7r);
for z := z step 1.0 until x do
begin

e := e X a/z;
c := c + e

end;
chi prob : = c X y + s

end
end else chi prob : = s

end
end chiprob

CERTIFICATION OF ALGORITHM 299 [S15]
CHI-SQUARED INTEGRAL [I. D. Hill and M. C.

Pike, Comm. ACM 10 (Apr. 1967), 243]
WILLIAM M. O'BRIEN AND JoAN Woon (Recd. 17 Oct.

1967 and 1 Dec. 1967)
Department of Preventive Medicine, University of Vir

ginia School of Medicine, Charlottesville, Virginia

KEY WORDS AND PHRASES: chi-squared integral, proba
bility, special functions

CR CATEGORIES: 5.5, 5.12

Chi-Squared Integral compiled and ran in Burroughs B5500
ALGOL with the following revisions:

(i) wrong was removed from the formal parameter list;
(ii) label wrong; was removed from th~ specification part

(iii) the last two lines were modified to read:

end,
wrong: end chiprob

COLLECTED ALGORITHMS (cont ..)

Chi squared
0.001
2.2
8.2

82.0

Degrees off reedom
1 to 3
1 to 17
1 to 32

even values 34 to 70

299-P 2- RI

These modifications were necessary since the heading of a typed
procedure may not contain a label in Burroughs Extended ALGOL.
[Editor's note: The question of whether a function procedure in
ALGOL 60 may have a label as a formal parameter providing an exit
from the procedure via a go to statement is not completely an
swered in the ALGOL 60 report. See D. E. Knuth, The remaining
trouble spots in ALGOL 60, Comm. ACM 10 (Oct. 1967), 611-618
(614). The use of wrong as a formal parameter in chi prob may cause
trouble in many compilers. Perhaps the best way to handle the
problem of error exits is to provide a formal parameter, error,
which is a procedure name and let the user provide his own pro
cedure for error recovery.--JGII].

bigx was set to true if exp(-0.5Xx) < io-10 and Aigorithm 209
[D. Ibbetson, Gauss, Comm. ACM 6 (Oct. 1963), 616] was used for
the formal real procedure normal.

The following were calculated:

The results were checked against E. S. Pearson and H. 0. Hartley,
B1:ometrika Tables for Statisticians, vol. 1, 2nd ed., Cambridge,
1962, pp. 122-129, which gives values of chi squared to five decimal
places. The computer calculations, which were carried to nine
places, gave identical results except in three instances, which were
x2 = 2.2 with df = 10, x2 = 8.2 with df = 24, and x2 = 82 with df =

38. In all three cases the sixth figure would have rounded to a 5
and the discrepancies appear to be due to inc0nsistencies in the
rounding of the original Biometrika Tables, rather than errors in
the procedure.

ACM Transactions on Mathematical Software, Vol. 2, No. 4, December 1976, l'agl's :l!J:l :l!J5.

REMARK ON ALGORITHM 299

Chi-Squared Integral [S15]
[I.D. Hill and M.C. Pi.kc, Comm. AC1l-1 10, 4 (April 1967), 243]

Mohamed cl Lozy, M .. D. [Recd 20 May 1976 and 15 July 1976]
Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave.,
Boston, MA 02115.

This work was supported in part by the Agency for International Development under Con
tract AID/afr-650 and in part by the Fund for Ilesearch and Teaching, Department of Nutri
tion, Harvard School of Public Health.

This algorithm suggests the use of the Wilson-Hilferty formula [3] if an approxi
mation is desired for large degrees of freedom. Pcizcr and Pratt [2] have since then
described a family of normal approximations far superior to the cube-root family,
their formula for the chi-square distribution being [eqs. (2.24b) to (2.27) of their
paper]:

z = d[(l + g(s/x))/2x]112

where z represents the corresponding normal deviate, x represents the chi-squared
value, n represents the degrees of freedom, and

s==n-1

d x - n + % - 0.08/ n

g(t) (1 - t2 + 2t In t)/(1 - t) 2
, t > 0, t ~ 1

g(O) 1, g(l) = 0.

The two approximations were compared for degrees of freedom n = 1 (1) 20 (5)
100 (2) 200 using, for each value of n, a grid of 500 chi-squared values uniformly
distributed over the interval from P = 0.00001 to P = 0.99999. The "true" values
of P were calculated using an IMSL subroutine, MDCHDI [1] which is essentially
a double precision Fortran version of Algorithm 299 not using any approximation.
Table I shows the maximum difference between the "true" results and those ob
tained with both approximations; the superiority of the Peizer and Pratt approxi
mation is clear. For' only 4 degrees of freedom it will give 3 correct decimals; for 11
degrees of freedom it will give 4 correct decimals; for 31 degrees of freedom it will
give 5 correct decimals; and for 120 degrees of freedom it will give 6 correct deci
mals. In contrast, the Wilson-Hilferty approximation will give 3 correct decimals
for 25 or more degrees of freedom, and calculations with a coarse grid show that 4
correct decimals arc achieved somewhere between 200 and 300 degrees of freedom.

COLLECTED ALGORITHMS (cont.)

Since full word length accuracy is rarely, if ever, needed in the evaluation of the
integrals of probability functions, it is suggested that for more than 30 degrees of
freedom the Pcizcr and Pratt approximation be used in place of the iterative al
gorithm. There would appear to be no justification for using the Wilson and Hil
ferty approximation.

The calculations were done on an IBM 370/168 using double precision through-

Table I. Maximum Absolute Errors for the Wilson-Hilferty and
Peizer-Pratt Approximations to the Chi-Squared Integral

Degrees of freedom

5
10
15
20
25
30
50

100
120
200

Maximum error using approximation of

Wilson-Hilferty

.26E-2

.13E-2

.82E-3

.61E-3

.48E-3

.39E-3

.23E-3

.llE-3

.92E-4

.54.E-4

Peizer-Pratt

.33E-3

.58E-4

.22E-4

.12E-4

.73E-5

.50E-5

.19E-5

.55E-6

.41E-6

.18E-6

out, as it was desired to test the accuracy of the approximation without having to
worry about inaccuracies due to the short word length of the machine. Single
precision calculations gave ~lmost identical results for the Wilson-Hilferty approxi
mation. In the case of the :~eizer and Pratt approximation very similar results were
obtained up to about 30 clbgrccs of freedom, after which the maximum error ob
tained with single precision was greater than that obtained with double. precision,
and never fell below .2E - :5, However, like the double precision version, the single
precision routine gave 5 correct decimal places for 31 or more degrees of freedom.

The use of the g functiqn avoids inaccuracies that would arise if the simpler
equation (2.24a) of [2) wcrq used. In evaluating it, care must be taken near the tvrn
singularities. For 1 degree bf freedom s = 0; so the argument to g(t) will be zero
and g(t) must be set to 1. :In the testing done, the smallest nonzero value of the
argument to g(t) was 0.04, which did not lead to any numerical problems. On the
other hand, values very clqse to 1 were obtained, the smallest absolute difference
from 1 being .14E - 4. In single precision at [east such arguments can lead to great
loss of accuracy; so for valu:es of the argument close to 1 the power expansion given
by Peizer and Pratt [2, eq. '(10.3)) should be used:

i=r;;J

g(t) == I: 2c1 - t)i/U + 1) u + 2).
i=l

It is not clear what the optimal value of the crossover point from the logarithmic
to the power series form of g(t) is, but in the single precision version we have used
an absolute value of (1 - t) less than 0.1 as the crossover criterion, taking the first
5 terms of the series.

REFERENCES

1. Library I Reference Manual, Vol. 2. Int. Math. and Stat. Libraries, 3rd edition, 1974.
2. PEIZER, D.B., AND PRATT, .J..W. A normal approximation for binomial, F, beta, and other

common, related tail probabilities, I. J. Amer. Stat. Assn. 63(1968),1416-1456.
3. WILSON, E.B., AND H1LFER'J~Y, M.M. The distribution of chi-square. Proc. Nat. Acad. Sci.,

1931, pp. 684-688.

299-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 300
COULOMB WAVE FUNCTIONS [822]
J. H. GuNN (Recd. 19 Feb. 1965)
Nordisk Institut for Teoretisk Atomfysik

Blegdamsvej 15, Copenhagen, Denm:ark

procedure Coulomb(F, Fd, G, Gd, sig, rho, eta, lmax, exit);
value rho, eta, lmax;
real rho, eta; integer lmax; array F, Pd, G, Gd, sig; label

exit;
comment The Coulomb wave functions FL and GL are defined

as the two independent solutions of the differential equation

d2y
-- + (1-2n/p-L(L+1)/p2)y = O
dp2

having the asymptotic behavior for large p

Jh rv sin (p-17 }n 2p-~ 1l"+ITL) 1

GL rv COS (p-17 ln 2p-~1r+O'L)

where uL = arg r (i11+L+l). The procedure calculates for a
given p = rho and 11 = eta, the functions FL and GL, their de
rivatives FL' and GL', and uL for all L from 0 up to lrnax (>0) and
places the results in the arrays F, G, Fd, Gd, sig respectively,
which must have bounds 0: lmax. rho must lie in the range 5-30
and eta in the range 0.1-30: values outside this range cause the
procedure to leave via the label exit. This range is one that is
often used in scattering and reaction problems in physics. De
tails of the methods used are to be found in: C. E. Froberg,
"Numerical treatment of Coulomb wave functions," Rev. Mod.
Phys. 27 (1955), 399-411, and in: H.F. Lutz and M. D. Karvelis,
"Numerical calculation or Coulomb wave functions for repulsive
Coulomb fields," Nucl. Phys. 43 (1963), 31--44. The author grate
fully acknowledges the extensive help of Miss Margaret Wirt
in the preparation of thi$ procedure;

begin
integer n; real rhom;
comment jump to label exit if rho and eta lie outside range of

procedure;
if rho < 5 V rho > 30 Veta < 0.1 Veta > 30 then

go to exit;
begin real sto; integer i;

comment phase shifts uL are calculated using formulae
44--45 of Lutz and Karvelis;

sto := 16 + eta j 2;
sig[O] := -eta + eta/2 X ln(sto) + 3.5 X arctan(eta/4) -

(arctan(eta)+arctan(eta/2)+arctan(eta/3)) - eta/(12Xsto) X
(1+1/30 X (eta j 2-48)/sto j2 + 1/105
X (eta j 4-160Xeta j 2+1280)/sto j 4) ;:

for i := 1 step 1 until lmax do
sig[i] := sig[i-1] + ~arctan(eta/i)

end;
if rho~ (5Xeta-15)/3 V rho~ eta then
begin comment G[O] and Gd[O] are calculated using the Ricca ti

method (p<211) ref. formulae 9.1-9.4, Fr<:>berg;

300-P 1- 0

integer i; real q, psi, psid, f; array g, gd[0:7], t, s[l:lO];
t[l] := rho/(2Xeta); s[l] := 1 - t[l]; q := sqrt(t[l]Xs[l]);
for i : = 2 step 1 until 10 do
begin t[i] := t[l] X t[i-1];

s[i] := s[l] X s[i-1]
end;
g[O] := q + arctan(t[l]/q) - 1.5707963;
g[l] := 0.25 X ln(t[1]/s[1]);
g[2] := - (8Xt[2]-12Xt[1]+9)/(48XqXs[l]);
g[3] := (8Xt[l]-3)/(64Xt[l] Xs[3]);
g[4] := (2048Xt[6]-9216Xt[5]+16128Xt[4]-13440Xt[3]-12240

Xt[2J+7560Xt[l]-1890)/ (92160XqXt[l] Xs[4]);
g[5] := 3X(1024Xt[3]-448Xt[2J+208Xt[l]-39)/(8192Xt[2]X

s[6]);
g[6] = - (262144Xt[10]-1966080Xt[9]+6389760Xt[8]-11714560

Xt[7]+13178880Xt[6]-9225216Xt[5J+13520640Xt[4]-
3588480Xt[3]+2487240Xt[2]-873180Xt[l]+l30977)/(10321920
XqXt[2]Xs[7]);

g[7] := (1105920Xt[5]-55296Xt[4]+314624Xt[3]-159552Xt[21
+45576Xt[l]-5697)/(393216Xt[3]Xs[9]);

gd[O] := q/t[l];
gd[l] := 0.25/(t[l]Xs[l]);
gd[2] := -(8Xt[l]-3)/(32XqXt[l]Xs[2]);
gd[3] := 3X(8Xt[2]-4Xt[lJ+l)/(64Xt[2]Xs[4]);
gd[4] := - (1536Xt[3]-704Xt[2]+336Xt[l]-63)/(2048XqXt[2J

Xs[5]);
gd[5] := 3X(2560Xt[4]-832Xt[3]+728Xt[2]-260Xt[1]+39)/

(4096Xt[3] Xs[7]);
gd[6] : = (-368640 X t[5]-30720X t[4] + 114944 X t[3]-57792 X t[2]

+ 16632X t[l]-2079) / (65536 X qX t[3] X s[8]);
gd[7] : = 3 X (860160 X t[6] +196608 X t[5] +308480 X t[4 J- l 77280X

t[3]+73432Xt[2]-17724Xt[1]+1899)/(131072Xt[4] Xs[lO]);
f := 2 X eta; psi := psid := O; q := -1;
for i := 0 step 1 until 7 do

begin psi := psi + q X f X g[ij;
ps1·d := psid + q X f X gd[i];
f := f/(2Xeta); q := -q

end·
G[O]

1

:= exp(psi); Gd[O] := G[O] X psid/(2X eta); rhom :=

rho
end else
if rho ~ (30Xeta+75)/13 /\rho < 2 X eta i 2 then

begin comment G[O] and Gd[O] are calculated using the second
Riccati method (217 < p) ref. formulae 9.6-9.8, Froberg;
integer i; real A, B, psi, phi, M, g; anay x, y, e[l:lO];
x[l] := 2 X eta/rho; y[l] := 1 - x[l]; q := sqrt(y[l]); e[l]

:= 2 X eta;
for i := 2 step 1 until 10 do
begin x[i] := x[l] X x[i-1]; e[i] := e[l] X e[i-1];

y[i] := y[l] x y[i-1]
end;
psi := - (8Xx[3]-3Xx[4])/(64Xe[2]Xy[3]) + 3 X x[5] X

(1024- 448Xx[lJ+208Xx[2]-39Xx[3])/(8192Xe[4] Xy[6])
x[7] X (1105920-55296Xx[1J+314624Xx[2]-159552Xx[3)+
45576Xx[4]-5697Xx[5])/(393216Xe[6]Xy[9]);

phi := e[l] X (q/x[l] + 0.5 X Zn((l-q)/(l+q))) + 0.7853982
- (9Xx[2]-12Xx[lJ+8)/(48Xe[l]XqXy[l])
- (2048-9216Xx[1]+16128Xx[2]-13440Xx[3]-12240

COLLECTED ALGORITHMS (cont.)

Xx[4]+7560Xx[5]-1890Xx[6])/(92160Xe[3]Xq~y[4])
- (130977Xx[10]-873180Xx[9]+2487240Xx[8]-S588480
Xx[7]+13520640Xx[6]-9225216Xx[5]+15178880 X x[4]
-11714560Xx[3] +6389760Xx[2]-1966080Xx[l]
+262144)/(10321920Xe[5]XqXy[7]);

A := q/x[2] + (8Xx[l]-3Xx[2])/(32Xe[2]XqXy[~])

- x[3] X (1536-704Xx[l]+336Xx[2]-63Xx[3n/
(2048Xe[4]XqXy[5]) + x[5] X (368640-30720Xix[l]
+ 114944Xx[2]-57792Xx[3] + 16632Xx[4]- 2079Xx[5]) I .
(65536Xe[6]XqXy[8]);

B := l/(4Xe[l]Xy[l]) - 3 X x[2] X (x[2]-4Xx[1]+8)/
(64Xe[3]Xy[4]) + 3 X x[4] X (2560-832Xx[l]-t728
Xx[2)-260Xx[3]+39Xx[4])/(4096Xe[5]Xy[7]) -- 3
X x[6) X (1899Xx[6]-17724Xx[5J+73432Xx[4]--'177280
X x[3) +308480Xx[2] + 196608Xx[l] +860160) / (13]072
Xe[7]Xy[10]);

M := sqrt(l/q) X exp(psi);
G[O] : = M X cos (phi) ;
Gd[O] := -x[2] X (AXMXsin(phi)+BXG[O]); rhom :=rho

end else
if eta < 4 then

begin comment G[O] and Gd[O] are calculated usin1g an asymp
totic expansion, ref. formulae 12.3-12.7, Froberg;'
reaI° ss, sl, tt, tl, SS, Sl, TT, Tl, sn, tn, Sn, Tn, An, Bn, theta,

cth, sth; integer i;
rhom := if rho ~ 2 X eta j 2 then rho else 2 X :eta j 2;
comment a suitable value of rhom is chosen for which the

expansion is valid;
ss : = sn : = 1 ; tt : = tn : = 0;
SS := Sn := O; TT := Tn := 1 - eta/rhom;
for i := 0 step 1 until 10, 11, i + 1 while (abs(sn)>io-7

Xabs (ss)Vabs(tn) >10-7Xabs(tt) V abs(Sn) >10-~7
X abs(SS) Vabs (Tn) > io-7 Xabs (TT))/\ (abs (sn)
<abs (sl) /\abs (tn) <abs (tl) /\abs (Sn)< abs (Sl) !\abs (Tn)
<abs(Tl)) do

begin An := (2Xi+l) X eta/(2X (i+l)Xrhom); ·
Bn := (eta j 2-iX (i+l))/(2X (i+l)Xrhom);
sl := sn; t1 := tn; Sl := Sn; Tl := Tn;
sn := An X sl - Bn X t1;
tn := An X tl + Bn X sl;

Sn := An X Sl - Bn X Tl - sn/rhom;
Tn :=An X Tl+ Bn X Sl - tn/rhom;

SS := SS + sn; tt := tt + tn;
SS :=SS+ Sn; TT := TT+ Tn

end·
thetd := -eta X ln(2Xrhom) + rhom + sig[O];
cth := cos(theta); sth := sin(theta);
G[O] := ss X cth - tt X sth; Gd[O] := SS X cth r- TT X sth

end else
begin comment G[O] and Gd[O] are calculated on t,he transition

line for rhom = 2 X eta, ref. formulae 10.3-10.4, Froberg;
G[O] := 1.22340416 X eta j (1/6) X (1+0.0495957017/eta i (4/3)

-0.0088888889/eta j 2+0.00245519918/eta i (10/3)
-0.000910895806/ eta j 4+0.000253468412/ eta j (16/3));

Gd[O] := -.707881773 X eta j (-1/6) X (1--0.172826037/
eta j (2/3)+0.000317460317 /eta j 2-0.003581214~5/eta i (8/3)
+0.000311782468/eta j 4-0.000907396643/eta j (14/3));

rhom := 2 X eta
end;
if rhom ~ rho then

begin comment Integrate the solutions G[O] al).d Gd[O] from
the value of rhom at which they were evaluated to the value
of rho required using Runge-Kutta formula;
integer nh, i; real kl, k2, k3, k4, klp, k2p, k:3p, k4p, y, yp,

x, h;

nh := entier(abs(rhom-rho)XlO+l);
h := (rho-rhom)/nh;
x := rhom; y := G[O]; yp := Gd[O];
for i : = 1 step 1 until nh do

300-P 2- Rt

begin kl := h X yp; klp := -h X (1-2Xeta/x) X y;
k2 := h X (yp+klp/2); k2p := -h X (l-2Xeta/ (x+h/2))
x (y+kl/2);
k3 := h X (yp+k2p/2); k3p := -h X (l-2Xeta/ (x+h/2))
x (y+k2/2);
k4 := h X (yp+k3p); k4p := -h X (l-2Xeta/(x+h)) X
(y+k3); y := y + (kl+2Xk2+2Xk3+k4)/6;
YP := yp + (klp+2Xk2p+2Xk3p+k4p)/6;
x := x + h

end;
G[O] := y; Gd[O] := yp

end;
n := if rho > lmax then entier(rho+lO) else lmax + 10;

begin comment Use downward recurrence relation (Millers
method) and normalisation condition to obtain solutions
F[L];
array f[O:n]; real fdO, alpha, sto; integer L;
f[n] := 0;
f[n-1] := 1;
for L := n - 1 step -1until1 do

f[L-1] := L/sqrt(eta j 2+L j 2) X (((2XL+l)Xeta/
(LX (L+1))+(2XL+l)/rho)X f[L]-sqrt(eta j 2
+(L+l) j 2)/(L+l)Xf[L+l]);

fdO := (eta+l/rho) X f[O] - sqrt(eta j 2+1) X f[l];
G[l] := (-Gd[OJ+ (l/rho+eta)XG[O])/sqrt(l'+eta j 2);
alpha := 1/(sqrt(l+eta j 2)X (f[O]XG[l]-j[l]XG[O]));
F[O] :=alpha X f[O];
Fd[O] := alpha X fdO;
comment Upward recurrence relations for remaining

solutions;
for L := 0 step 1 until lmax-1 do
begin F[L+l] :=alpha X f[L+l];

sto := sqrt(etaj2+(L+l) j2)/(L+l);
Fd[L+l] := sto X F[L] - (eta/(L+l)+(L+l)/rho) X
F[L+l]; G[L+l] := 1/sto X ((eta/(L+l)+(L+l)/rho)
XG[L]-Gd[L]); Gd[L+l] := sto X G[L] - (eta/(L+l)+
(L+l)/rko) X G[L+ll

end
end

end Coulomb

CERTIFICATION OF ALGORITHM 300 [S22]
COULOMB WAVE FUNCTIONS [J. H. Gunn, Comm.

ACM 10 (Apr. 1967), 244]
K. S. KoLBIG (Recd. 8 Feb. 1968)
Applied Mathematics Group, Data Handling Division,

European Organization for Nuclear Research (CERN),
1211Geneva23, Switzerland

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions

CR CATEGORIES: 5.12

The procedure Coulomb was checked for a few parameter
values using the ALGOL compiler of the CDC 3800 computer at
CERN. It was found that for p = 11 better results were obtained if
the first line of the second if statement was altered to read:

COLLECTED ALGORITHMS (cont.)

if rho ::; (5 X eta - 15)/3 V rho < eta then
It was also necessary to correct a misprint in the first constant

following the comment "G[O] and Gd[O] are calculated on the
transition line for rhom = 2 X eta, ref. formulas 10.3-10.4, Fro
berg." The line following this comment should read:

G[O] : = 1.223404016 X eta j (~t) X (1 + 0.0495957017 /eta j (%)

The procedure was then translated into FORTRAN and tested in
more detail on a CDC 6600 computer. The tests included the fol
lowing:

(i) Generation of <Jn(,,,p) = [CL(TJ)PL+t]-1 FL(rJ,p), L = 0(1)21
for 'YJ = 1 (1)5, p = 5. The results were compared with values
tabulated in [1]. In most cases, 6 to 7 significant digits agreed,
except for 'YJ = 1, where agreement was found to 3 to 4 significant
digits. It is interesting to compare some results for p = 'Y/ = 5
obtained with and without the first of the above corrections:

L "'-.<l>L

0
5

10
20

Table [1] and
Without correction With correction Gautschi [2]

6.554097103
1. 865738101
5 . 354953100
2 .440859100

6 . 552297 lo:3
1. 86522610 l
5. 353482100
2.440188100

6.552292103
1.865225101
5.353478100
2. 440187100

(ii) Computation of Fo(rJ,p), F 0'('YJ,P) = (d/dp)Fo('YJ,p) for 'YJ =
2(2)12, p = 5(5)30. Comparison with the table of Tubis [3] re
vealed frequent discrepancies of 1 (occasionally 2) units of the fifth
significant digit. However, disagreement was observed in many
fewer cases when comparing the calculated results with those
obtained by Gautschi's algorithm [2].

(iii) Computation of Fo('YJ,p), Fo'(rJ,p), Oo(rJ,p), and Go'(,,,p) for
p = 2'Y/, p = 5(.5)20(2)30. :comparing the results with the table of
Abramowitz and Rabinowitz [4] or with the values obtained with
Gautschi's algorithm, the following discrepancies were found in
units of the seventh decimal place:

Fo -frequently 1, occaE1ionally 2, units for p ::; 10;
Fo'-frequently 1 unit for p::; 8.5;
Go -for p S 8 up to 40 units, for 8 < p::; 14.5 up to 2 or 3 units;
Go'-for p::; 7.5 up to 13 units.
(iv) Calculation of Go(71,p), Go'('YJ,p) for 'YJ = .5(.5)20, p = 5(1)20.

The results have been compared with the tables given by Abramo
witz [5]. Agreement was found in most cases to 5 significant
digits. Discrepancies of 1, occasionally more, units of the fifth
significant digit were found, mainly for arguments near a line
separating two methods used in the algorithm. In some cases (in
the immediate neighborhood of a zero of Go or Go') there was
agreement to only 2 or 3 significant digits.

(v) Generation of FL('YJ,p), FL'('YJ,p), G'L('Y},p), GL'('YJ,p), O'L(TJ)
for L = 0(1)10, p = 5,10, 'YJ = 1 (1)5,10,25. As a first step, the results
were compared with values given in a table by Lutz and Karvelis
[6]. Since important discrepancies were noted for .,, = 1, p = 5
-and 'YJ ~ 4, the values for FL and FL' were also calculated by
Gautschi's algorithm, known to be correct by checking it against
the table [1]. Lutz and Karvelis give 6 significant digits, but
without commenting on a possible error tolerance. They state,
"we test [the generated functions] to see how closely the
Wronskian relation FL'GL - FLGL' = 1 is obeyed." Comparison
of their values with those obtained from Gautschi's algorithm
shows, for 'YJ < 4, occasional discrepancies of 1 unit in the sixth
significant digit. For 'YJ ~ 4 [disregarding some obvious misprints,
e.g. for G1(2,10) and G~o(l0,10)] there are discrepancies which in
a. few cases exceed a 100 units in the sixth significant digit. Be
cause of this, the table of Lutz and Karvelis was used for check
ing the procedure Coulomb only for 'YJ < 4. For 'YJ ~ 4 check values
were obtained from Gautschi's algorithm (FL and FL' only).
The following discrepancies were found in units of the sixth
significant digit:

'Y/ = 1, p = 5: FL-UP to 119 units (L = 8).
FL'-up to 87 units (L = O).
G L-up to 350 units (L = 2).

GL'-up to 247 units (L = O).

300-P 3- RI

'YJ = 1, p = 10;
.,, = 2,3 1 or 2 units in several cases, exceptionally more;

one isolated case Ga(3,10) with 23 units. Compari
son with Gautschi's values (where possible)
gives better agreement.

Occasionally 1 unit for FL and F L1
•

O'L(rJ) nearly always agreed to 6 significant digits for all tested 'YI·

To complete the check, values of the functions at 'YJ = 1, p = 5,
and 'YJ = p = 5 were calculated using the ALGOL procedure. The
results agreed with those calculated by the FORTRAN program to
the 6 significant digits which were compared.

REFERENCES:

1. NATIONAL BUREAU OF STANDARDS. Tables of Coulomb Wave
Functions, Vol. I. Appl. Math. Ser. 17, U.S. Govt. Printing
Office, Washington, D.C., 1952.

2. GAUTSCH!, W. Algorithm 292. Regular Coulomb wave func
tions. Comm. ACM 9 (Nov. 1966), 793-795.

3. TuBis, A. Tables of Nonrelativistic Coulomb Wave Functions.
LA-2150, Los Alamos Sci. Lab., Los Alamos, New Mexico,
1958.

4. ABRAMOWITZ, M., AND RABINOWITZ, P. Evaluation of
Coulomb wave functions along the transition line. Phys.
Rev. 96 (1954), 77-79.

5. --, AND STEGUN, I. A. (Eds.) Handbook of Mathematical
Functions. NBS Appl. Math. Ser. 55, U.S. Govt. Printing
Office, Washington, D.C., 1965.

6. LuTz, H. F., AND KARVELis, M.D. Numerical calculation of
Coulomb wave functions for repulsive Coulomb fields.
Nucl. Phys. 43 (1963), 31-44.

REMARK ON ALGORITHM 300 [822]
COULOMB WAVE FUNCTIONS [J. H. Gunn, Comm.

ACM 10 (Apr. 1967), 244]; CERTIFICATION OF
ALGORITHM 300 [K. S. Kolbig, Comm. ACM 12 (May
1969), 279]

K. S. KoLBIG (Recd. 14 Apr. 1969)
Data Handling Division, European Organization for

Nuclear Research (CERN), 1211 Geneva 23, Switzer
land

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions, special functions, function evaluation

CR CATEGORIES: 5.12

Recently, Isacson [1] pointed out that the coefficient of ,,-16' 3 in
the known asymptotic expansion for the irregular Coulomb wave
function Go(rJ, p) on the transition line p = 2.,, was erroneous.

In addition, he gave the expansions for Fo, Go, Fo' and Go' up
to order ,,-s, whereas the old expansions were given to, order
Y/-16/a only.

Therefore, and for reasons of speed, the relevant part of Algo
rithm 300 should be changed as follows:

begin comment G[O] and Gd[O] are calculated on the transition
line for rhom = 2 X eta, ref. Isacson in remark;
array et[l :12]; real etl;
et[l] :=eta i (-%);

COLLECTED ALGORITHMS (cont.)

for i := 2 step 1 until 12 do et[i] := et[l] X et[i-1];
etl := eta j Gt);
GlOJ : = 1.223404016 X etl X (1 + 0.04959570165 X et [2]
-0.008888888889 X et [3] + 0.002455199181 X et [5]
-0.0009108958061 X et [6] + 0.0008453619999)< et [8]
-0.0004096926351 X et [9] + 0.0007116506205 X et [11]
-0.00002439615603 X et [12]);
Gd[O] := (-0.7078817734/etl) X (1 - 0.1728260369 X et [1]
+ 0.0003174603174 X et [3] - 0.003581214850 X et [4]
+o.0003117824680 X et [6] - 0.0009073966427 X et [7]
+0.0002128570749 X et [9] - 0.0006215584171 X et [10]
+0.00003685244766 X et [12]);
rhom := 2 X eta

end;

Furthermore, it was found in this connection that replacing the
first line of the fourth if statement of the algorithm by

if eta < 4 /\ eta < rho/2 then
gives, together with the above expansions, better results for
p = 217 in test (iii) and for p = 3, '17 ="' 5 in test (i) of the Certification.

The relevant statements in test (iii) of the Certification should
therefore be replaced by the following ones:

Fo - 1 unit for p = 5, p = 6, and p = 8.5.
Fo' - 1 unit for p = 6.
Go - 1 unit for p = 5.5, p = 16, and p = 30.
Go' - 1 unit for p = 5.5.

REFERENCE:

1. IsAcsoN, T. Asymptotic expansion of Coulomb wave functions
on the transition line. BIT 8 (1968), 243-245.

Remark 2 on Algorithm 300 [822)
Coulomb Wave Functions [J.H. Gunn, Comm.
ACM JO (Apr. 1967), 244); Certification of Algorithm
300 [K.S. Kolbig, Comm. ACM 12 (May 1969),
279)); Remark on Algorithm 300 [K.S. Kolbig,
Comm. ACM 12 (Dec. 1969), 692).

H. Vos [Recd. 9 Aug. 1971 and 8 Feb. 1972]
Natuurkundig Laboratorium der Vrije Universiteit,
Amsterdam, The Netherlands

Key Words and Phrases: Coulomb wave functio.ns, wave
functions, special functions, function evaluation

CR Categories: 5.12

The procedure Coulomb can be used very well to generate the
Coulomb wave functions FL and G L and their derivatives, needed
in elastic scattering calculations in nuclear physics. When the pro
cedure is used many times for many values of rho and eta, it is
not only very useful but also necessary to have in each instance an
indication about the accuracy of the results. It is obvious to use
the Wronskian relations F L'G L - F LG L' = l for the purpose of
checking the results, as Froberg [1] states after formula (3.4).
However, one has to be very careful in using these relations. The
most significant check is given later on, but first it is shown what
can go wrong.

This investigation was part of the research program of the
"Stichting voor Fundamental Onderzock der Materie (F.O.M.),"
which is financially supported by the "Nedcrlandse Organisatie
voor Zuiver Wetenschappelijk Onderzoek (Z.W.O.)".

300-P 4- RI

Kolbig pointed out already in the certification that Lutz and
Karvelis [2] failed to notice discrepancies exceeding 100 units in
the sixth significant digit in their tables although they state "when
all the functions are generated we test to see how closely the Wron
skian relation F L'G L - F LG L' = 1 is obeyed." The way Lutz
and Karvelis generate the functions goes as follows. First they
calculate Go and Go'; then they use recurrence relations to get
G L and G L' for L > O; and lastly them use backward recurrence
relations together with the relation FoG 1 - G0F1 = (17 2 + I)-i
to get FL and FL' for all L. This last relation is in fact a different
form of the Wronskian relation, see e.g. Froberg [1] formula
(3.5). The use of the Wronskian relations to check the results now
gives information only about the stability in the use of the recur
rence relations, not about the accuracy of the Coulomb wave func
tions.

As an independent check on the function values, the following
procedure can be used. It is easy to calculate F0 and Fu' directly,
that is in the same way as Go and Go' are calculated (see Froberg
[l] and Isacson [3]). We call the results F0 (dir) and F0' (dir).
These values can be compared with the F0 (rec) and F0' (rec) cal
culated via the recurrence relations, Wronskian relation, and Go
and G1 as in the procedure Coulomb. This direct test has to be
preferred above a test via the Wronskian relation for the direct
results GoFo' (dir) - Go' Fo (dir) = 1 because errors in Fo (dir)
and Fo' (dir) sometimes cancel in the Wronskian. The other Wron
skian relations (i.e. for L > 0 and Fo (rec) and Fo' (rec)) are hardly
needed as a test because they only check the recurrence relations
used. The experience is that errors herein are completely negligible
(always less than one unit in the tenth digit for all values of L
for the 12-digit EL-X8 computer of the Mathematisch Centrum in
Amsterdam).

To include this check, Algorithm 300 should be changed as
follows:
1. The line following the first begin should read

integer 11; real rhom, q;

2. The line following the fourth comment (G[O] and Gd[O] are
calculated using the Riccati method (p <2?J) formulas 9.1-9.4,
Froberg;) should be altered, according to Froberg [1] formulas
(9.1) and (9.2), to read:

integer i; real q, psi, psid, plzi, plzid,f; array g, gd[0:7], t,
s[l: 10];

3. The relevant lines after the statement starting with gd[7j : """
should read:
f: = 2 X eta; psi:= psid: = phi : = plzid: = O; q : = -1;
for i : = 0 step 1 until 7 do
begin psi : = psi + q X f X g[i];

psid: = psid + q X .f X gd[i];
phi:= phi +f x g[i];
phid: = phid + f x gd[i];
.f: = f/2/eta; q : = -q

end;
G[O] : = exp(psi); Gd[O] : = G[OJ X psid/2/ew;
F[O] : = 0.5 X exp(phi); Fd[O] : = F[O] X phid/2/eta;
rhom: = rho;

4. The line just before the fourth if statement (if eta < 4 /\ eta
< r/10/2 then), i.e. end else, should according to Froberg formula
(9.8) be replaced by:

;F[O] : = M X si11(plzi);
Fd[O] := -x[2] X (BXF[O]-AXG[OJ)

end else

5. Insert after the last line of the calculation using an asymptotic
expansion, just before the third end else, according to Froberg
formula (12.7) , the following lines:

F[O] := tt X ctlz + ss X stlz;
Fd[O] : = TT X ctlz +SS X stlz;

COLLECTED ALGORITHMS (con1t.)

6. The two statements after the line

etl : = eta j (l/6);

i.e. G[O] : = ... , and Gd[O] : = ... , should be replaced by:

q := I;

liae 1:
G[O] : = 1.223 404 016 X etl X (1 + q X 0.049 595 701 65 X et[2]

-0.008 888 888 889Xet[3J+qX0.002 455 199 181
Xet[5]-0.000 910 895 806 1 Xet[6]-f--q
X0.000 845 361 999 9Xet[8]-0.000 409 692 635 1
Xet[9J+qXO.OOO 711 650 620 5Xet[ll l
-0.000 024 396 156 03Xet[12]);

Gd[O] : = (-qX0.707 881 773 4/etl) X (l-q
X0.172 826 036 9Xet[l]+O.OOO 317 460 317 4
Xet[3]-qX0.003 581 214 850Xet[4]
+o.ooo 311 782 468 0Xet[6]-qXO.OOO 907 396 642 7
Xetl7J+O.OOO 212 857 074 9Xet[9J--q
X0.000 621 558 417 1 Xet[l0]+0.000 036 852 447 66
Xet[l2]);

if q < 0 then begin
q := + l;
F[O]: = G[O] X 0.706 332 637 3 / 1.223 404 016;
Fd[Oj := Gd[O] X 0.408 695 732 3 /0.707 881 773 4;
go to here 1
end;

7. Replace the line
x: = rhom; y: = G[O]; yp: = Gd[O];

after comment Integrate the solutions G[O] ... by the lines

x := rhom;y := G[O];yp := Gd[O];q := +l;
here 2:

8. Replace the line following the next for statement; i.e.
G[O]: = y; Gd[O] : = yp

by the lines
if q > 0 then
beginG[O] := y;Gd[O] := yp;q := -1;

Y: = F[O]; yp: = Fd[O]; x: = rhom; go to here 2
end else
begin F[O] : = y; Fd[O] : == yp
end;

9. Insert after the next end; before the line

n : = if rho > /max then ... the following lines:

out real (F[O]); out real (Fd[O]); outreal

(Fd[O] X G[O]-F[O] X Gd[O]);

comment Fo (direct), Fo' (direct) and the Wronskian for the
direct results W(direct) are printed;

10. Insert just before the comment (Upward recurrence
relations for remaining solutions) the lines:

out real (F[O]); out real (Fd[O]);
comment Fo (rec) and F 0' (rec) are printed;

The tests of the procedure Coulomb with these changes in
cluded all the computations mentioned in the Certification except
those under (ii), and those in the Remark. The tests gave the
same results as in the Certification and in the Remark. Moreover
the following results were obtained:

The maximum M of the absolute differences

M = max (j [Fo(dir)-F0(rec)] / Fo(rec) J ,

J [Fo' (dir) --Fr>' (rec)] I Fo' (rec) I)
was always greater than the absolute difference between the Wron
skian for the direct results W(dir) and 1; i.•e.

M;:::: AW= j 1-W(dir) j.

300-P 5- 0

In some cases W(dir) differed not significantly from l, while the
test with M indicated considerable discrepancies (see Table I,
p,TJ = 6,1.5; 7,3.5 and 19,5.5). It was found that for all discrep
ancies stated by Kolbig in the Certification and in the Remark,
the relative error was smaller than or of the same order as M,
so M gives a good indication about the accuracy of the results
(see Table p,TJ = 7,3.5(cert) and 7,3.5(remark)). So discrepancies
of several units in the fourth or fifth significant digit were found
near some lines in the (p,TJ) plane separating two methods used in
the Algorithm: namely, the lines p = TJ for 5 ::; p ::; 7.5, 5TJ =

3p + 15, 3~ = 13p - 75 and TJ = 4, where integration of the
Coulomb wave functions from the transition line to the desired
arguments turned out to be the best method (see e.g. Table p,

TJ = 5,5.5). In some cases in the neighborhood of a zero of Go or
Go', the check with M indicated discrepancies in the third or fourth
significant digit (see e.g. Table p, TJ = 19,5.5).

These examples show that when the procedure Coulomb is
used as a standard procedure in calculations where an accuracy
of three or more digits is required, it is necessary to have in each
instance an indication about the accuracy of the results. The quan
tity M introduced above can be used very well for such a check.

Acknowledgment. We would like to thank Prof. Dr. C.C. Jonker
for valuable discussions and comments.

Table I.

p TJ ilWX 106 MX 106 Tabulated
--- -------~-·-·---- -- -- - - --~------ -~-------------

5 5.5 128 200 Go .38701 (-f--2) . 38704(+2)
6 1. 5 1. 3 50 Go - . 60187 - .60177
6 2 14.6 20 Go . 57306(-1) .57313 (-1)
7 3.5* .4 5 Go 1.520489 1.520492
7 3.5t .007 .05 Gu 1.5204917 1.520492

19 5.5 5 2000 Gu - .16442 - .16427

* Certification.
t Remark.

References
1. Froberg, C.E. Numerical treatment of Coulomb wave
functions. Rev. Mod. Phys. 27 (1955), 399-411.
2. Lutz, H.F., and Karvelis, M.D. Numerical calculation of
Coulomb wave functions for repulsive Coulomb fields. Nucl.
Phys. 43 (1963), 31-44.
3. Isacson, T. Asymptotic expansion of Coulomb wave functions
on the transition line. BIT (Nordisk Tidskrift for Informations
Behandling) 8 (1968), 243-245.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 301
AIRY FUNCTION [820]
GILLIAN BOND AND M. L. v. PITTEWAY

(Recd. 7 Apr. 1966 and 19 Oct. 1966)
Cripps Computing Centre, University of Nottingham,

England

procedure Airy (Ai, Bi, Aid, Bid, x, xia, control);
value x, xia, control; real Ai, Aid, Bi, Bid, x, xia;
integer control;

comment This procedure evaluates the real Airy functions and
their derivatives by solution of the differential equation y" = xy.
The solutions Ai and Bi satisfy the Wronskian relation Ai Bi' -
Bi Ai' = 1/1r. Ai decreases exponentially for large positive
values of x. For large negative values of x, Ai and Bi have simi
lar amplitudes but differ by rr/2 in phase.

The solution is tabulated in the interval -6.6 < x < 6.6 by
Taylor integration of the differential equation in the stable
directions (towards negative x for Ai and away from the origin
for Bi) with step size 0.1. Alternate values are stored using 268
locations so that any point is within Taylor range for subse
quent interpolation in the table. Asymptotic series are used
outside this range. The solutions are accurate to eight decimal
figures.

For extensive use, computation times can be reduced by ex·
tending the tabular range to -10 < x < 10 and changing the
step size to 0.05, using 804 locations. The coefficients A [7] to
A[lO] may then be dropped from the asymptotic series, and
tor [9] and tor [10] from the Taylor series (J. C. P. Miller, The
Airy Integral, British Association Mathematical Tables, part
volume B, Cambridge, 1946).

The operation of the procedure is controlled by the integer
code. A negative value should be assigned to code to set up the
Airy function tables on the first call for the procedure, or when
ever the tables have been disturbed. A subsequent entry with
code greater than 0 will form:

Ai = exp(xia) X Ai(x)

Bi = exp(-xia) X Bi(x)

Aid = exp(xia) X Ai'(x)

Bid = exp(-xia) X Bi'(x)

If the derivatives are not required, code should be set to zero.
This will avoid asymptotic series calculations, but Aid and Bid
are set if !xi < 6.6 even if code = O;

begin
real rtmdx, xi, factor, p, q, scale, s, c, xtab, h, pi;
integer n, r, j;
array A[O: 10];
own real array A itab, Bitab, A idtab, Bidtab [-33: 33];
procedure Taylor(yl, derivyl, x, h, y, derivy);

value x, h, y, derivy; real yl, derivyl, x, h, y, derivy;
comment Calculates y(x+h) from y(x) by series expansion of

dy2/ dx2 = xy;
begin

real square;
array tor[O:lO];
integer n;
if h = 0 then

begin
yl :=Yi
derivyl := derivy;
go to zerostep

end shortcut
else
begin

tor[O] := y;
tor[l] := h X derivy;
square := h X h;
tor[2] := 0.5 X square Xx X tor[O];
yl := tor[O] + tor[l] + tor[2];
derivyl := tor[l] + 2 X tor[2];
for n : = 3 step 1 until 10 do
begin

301-P 1~ 0

tor[n] := square X (xXtor[n-2]+hXtor[n-3])/
((n-l)Xn);

yl := yl + tor[n];
derivyl := derivyl + n X tor[n]

end;
derivyl := derivyl/h

end calculation of coefficients in series expansion;
zerostep:
end Taylor;

pi := 3.14159 26536;
if control < 0 then
begin

Bitab[O] := 0.61492 66274;
Bidtab[O] := 0.44828 83574;
Aitab[33] := 2.15659 9952510 - 6;
Aidtab[33] := -5.61931 944210 - 6;
xtab := O;
for n : = 0 step 1 until 32 do
begin

Taylor(Bi, Bid, xtab, 0.1, Bitab[n], Bidtab[n]);
Taylor(Bitab[n+l], Bidtab[n+l], xtab+O.l, 0.1, Bi, Bid);
Taylor(Bi, Bid, -xtab, -0.1, Bitab[-n], Bidtab[-n]);
Taylor(Bitab[-n-1], Bidtab[-n-1], -xtab-0.1, -0.1, Bi,

Bid);
xtab : = xtab + 0.2

end setting up Bi tables;
for n := 33 step -1 until -32 do
begin

Taylor(Ai, Aid, xtab, -0.1, Aitab[n], Aidtab[n]);
Taylor(Aitab[n-1], Aidtab[n-1], xtab--0.1, -0.1, Ai, Aid);
xtab := xtab - 0.2

end setting Ai tables
end;
if abs(x) ~ 6.6 then
begin

j := 5 Xx;
xtab := j/5;
h := x - xtab;
scale := exp(-xia);
Taylor(Ai, Aid, xtab, h, Aitab[j], Aidtab[j]);
Taylor(Bi, Bid, xtab, h, Bitab[j], Bidtab[j]);
Ai := Ai/scale;
Aid := Aid/scale;
Bi:= Bi X scale;
Bid : = Bid X scale;
go to finish

COLLECTED ALGORITHMS (cont.)

end interpolation in previously established table;
rtmdx := sqrt(abs(x));
xi := rtmdx j 3/1.5;
factor : = 1/ (12Xxi) ;
A[O] := 1/sqrt(piXrtmdx);
r := 6;
for n := 0 step 1 until 9 do

begin
A[n+l] := (r-1) X (r-5) X factor X A[n]/r;
r := r + 6

end calculation of asymptotic series coefficients;
if x < 0 then go to neg;
p := A[O] + A[2] + A[4] + A[6] + A[8] + A[lOJ;
q := A[lJ + A[3] + A[5] + A[7] + A[9];
scale : == exp (xi-xia) ;
Ai:= (p-q)/(2Xscale);
Bi := (p+q) X scale;
go to continue;

neg:
p := A[OJ - A[2] + A[4] - A[6] + A[8] - A[lO];
q := A[l] - A[3] + A[5] - A[7] + A[9];
s := sin (xi+pi/4);
c := cos(xi+pi/4);
scale : = exp (- xia) ;
Ai := (pXs-qXc)/scale;
Bi := (pXc+qXs) X scale;

continue:
if control = 0 then go to finish
else if x < 0 then
begin

p := -(rtmdx/xi) X
(-2XA[2]+4XA[4J-6XA[6]+8XA[8]-10XA[10]);

q := -(rtmdx/xi) X
(A{l]-3XA[3]+5XA[5]-7XA[7] +9XA[9]);

A id : = - (rtmdxX Bi)/ (scaleXscale) -A. i/ (4Xx)
- (pXs-qXc)/scale;

Bid := rtmdx X Ai X scale X scale - Bi/(4Xx)
- (pXc+qXs) X scale;

go to finish
end calculation of derivatives;
p := (rtmdx/xi) X

(2XA[2]+4XA[4l+6XA[6]+8XA[8]+10XA[10]);
q : = -(rtmdx/xi) X

(A[1]+3XA[3]+5XA[5]+7XA[7]+9XA[9]);
Aid := (p-q)/(2Xscale) - Ai X (rtmdx-tl/(4Xx));
Bid:= (p+q) X scale+ Bi X (rtmdx-l/(4Xx));

finish:
end Airy

REMARK ON ALGORITHM 301 [S~ID]
AIRY FUNCTION [Gillian Bond and M.L.V. Pitteway,

Comm. ACM 10 (May 1967), 291]
1\1.L.V. Pitteway (Recd. 19 May 1967)
Brunel University, ACTON, W.3., England

The initial minus sign has been omitted from the line immedi
ately following the line

end calculation of derivatives;
The statement should read

p:= - (rtmdx/xi) X (2 X A[2] + 4 X A[4] + 6 X A[6]
+ 8 >< A[8] + 10 X A[lO]);

301-P 2- Rl

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 302
TRANSPOSE VECTOR STORED ARRAY [K2]
J. BooTHROYD (Recd. 12 Sept. 1966, 28 Ndv. 1966, and

6 Feb. 1967)
U. of Tasmania, Hobart, Tas., Australia
procedure transpose (a, m, n); value m, n; integler m, n; array
a, comment performs an in-situ transposition of am m x n array

A[l:m, l:n] stored by rows in the vectora[l:m X n]. The method
is essentially that of Windley [1], modified for use with vectors
having unit lower subscript bounds.

The algorithm processes only elements A[l, 2] through
A[m, n-1] since A[l, 1] and A[m, n] retain their original posi
tions. Elements A[q, p] of the transposed matrix are placed in
a[i], in the order i = 2, 3, · · · , mn - 2, by an exchanging proc
ess. At the last step two elements are correctly placed which
accounts for the value mn - 2 as the upper bound on i. Valid
subscripts of the vector a[l:mXn] are elements in the I-origin
index set [1, 2, · · · , mn]. Computationally, however, it is more
convenient to use the zero-origin set [O, 1, · · · , riin-1]. Denot
ing by io (io=i-1) the corresponding zero-origin index of
a[i], to be occupied by A[q, p], we have i = m(q-1) + (p-1).

The corresponding zero-origin index jo of the Al[p, q] element
now in a[j], which must be transferred to a[i], is:

jo = j - 1 = n(p-1). + (q-1) = n X io mod(mn-1).

For each value of i = 2, 3, · · · , mn '.._ 2 (or io=
1, 2, · · · , mn - 3) we compute the index j of a[}] and exchange
a[i] and a[j] provided j~ i (i.e., jo ~ io). The casej < i indicates
that the element originally in a(j] is now elsewhere following
previous exchanges. Its present position is giv¢n by the first
j, ~ io in the series of zero-origin indices: :

jo, ir+1 = n X j,. mod(mn-1). !

The two sequences modulo(mn-1) are generated by different
methods. An additive process generates the first, using k to
duplicate the function of j, in case this is adjusted in the second
recurrence-generated sequence if j < i.

Unlike the similar problem [3], transposition does not appear
to be completely soluble on wholly group-theoretic lines. A
general discussion of transposition and a referenQe to its formu
lation as a problem in Abelian-Groups is given in (21. ·

[1] P. F. Windley, Transposing matrices in a digital computer.
Comp. J. 2 (1959), 47-48. [2] G. A. Heuer, Control Data
Technical Report T.R.53, pp. 3-5. (3] Fletcher, W., and
Silver, R. Algorithm 284. Comm. ACM 9 (May 1966), 326;

begin integer i, j, k, ilessl, mnlessl, done, jn, modlessn;
real t;
mnless 1 := m X n - 1; modlessn := mnless1 -·;n;
done:= mnless1 - 1; k := O; iless1 := 1;
for i : = 2 step 1 until done do
begin comment computesj = k = n X iomod(mn-1);

j : = k : = if k ;£ modlessn then k + n else k -· modlessn;
test: if j < iless1 then

begin comment computes j,.+1 = n X j,. mod(mn-1);
jn := j X n;

end;

j := jn - jn + mnless1 X mnless1;
go to test

comment avoid unnecessary exchanges;
if j ~ iless1 then
begin j : = j + 1;

t := a[i]; a[i] := a[j]; a[j] .
end;
iless1 := i

end
end transpose

302-P 1- RI

CERTIFICATION OF ALGORITHM 302 [K2]
TRANSPOSE VECTOR STORED ARRAY [J. Booth

royd, Cornm. ACM 10 (May 1967), 292]
I. D. G. MACLEOD (Recd. 8 Jan. 1968)
Department of Engineering Physics, Australian National

University, Canberra 2600, Australia
KEY WORDS AND PHRASES: matrix transposition, array

transposition,. vector stored array
CR CATEGORIES: 5.39

Algorithm 302 has been tested using both FORTRAN IV and
ALGOL on A.N.U's IBM System 360 model 50, with satisfactory
results in each case.

There is a misprint in line 2 of the procedure: the comma be
tween a and comment should be replaced by a semicolon.

This compact algorithm can be written even more briefly and
with improved efficiency by making the following changes:

1. Delete jn from the list of declared integers.
2. Replace lines 8 through 13 of the procedure body by

if j < iless1 then
begin comment computes ir+1 = n X j, mod (mn-1);
newj: j : = j X n - j + m X mnlessl;

if j < iless1 then go to newj
end;

In-situ transposition of a vector stored array may be considered
as a permutation which decomposes into a set of unique cycles.
Accessing arrays may be a relatively slow process (as in ALGOL
with subscript-bound checks) and, in general, unnecessary ac
cesses should be avoided. The test in Algorithm 302 for unneces
sary exchanges has been inserted for this purpose but it should
be pointed out that only one exchange is saved in each cycle.
The inclusion of this test yields a useful gain in efficiency only for
those situations in which: (i) the implementation is such that
array access time is dominant; and (ii) the required transposition
decomposes into a high proportion of short cycles, e.g. transposi
tion of a square matrix of order n decomposes into n cycles of
length 1 and n(n-1)/2 cycles of length 2.

If the implementation is such that accessing arrays is efficient,
and the algorithm is to be used for rectangular as well as square
matrices, replacement of lines 14 through 18 of the procedure
body by

j := j + 1;
t := a[i]; a[i] := a[j]; a[jj := t;

may make the algorithm more efficient and even more compact.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 303
AN ADAPTIVE QUADRATURE PROCEDURE
WITH RANDOM PANEL SIZES [Dl]
L. J. GALLAHER (Recd. 8 Nov. 1966 and 1 Feb. 1967)
Georgia Institute of Technology, ~Engineering Experi-

ment Station, Atlanta, Ga.

real procedure Integral(a, x, b, fx, random number, error);
value a, b, error;
real a, x, b, fx, error;
real procedure random number;
comment This procedure approximates the quadrature of the
function fx on the interval a < x < b to an estimated accuracy
of error. It does this by sampling the function fx at appropriate
points until the estimated error is less than error. The points to
be sampled are determined by a combination of random sam
pling and of estimating what regions are more in need of sam
pling, this need being determined by the samples already taken.
This process goes under the name "importance sampling" in nu
clear reactor literature [for example, see J.M. Hammersley and
D. C. Handscomb, Monte Carlo Methods, John Wiley, Inc.,
1964, p. 57]. The form of importance sampling used here is based
on estimates of the error contributed to the quadrature by the
second derivative. Tha.t is, random samples of the average value
of the second derivative of fx in a region are taken and used to
decide if more samples are needed in that region.

Randomness here is achieved through the real procedure
random number. This procedure is not given explicitly here but
can be any random nu;mber generator available, provided only
that the numbers given are distributed on the interval 0 to 1.
The random numbers given need not be of particularly high
quality (i.e., need not have low correlation). Further the ran
dom number generator need not be paEJsed as a parameter but
could be either global or local to the procedure Integral.

This procedure is meant to be used for low-accuracy estimate~
of quadratures, especially large dimensional multiple integrals
for which the high-accuracy methods would be too time consum
ing and expensive. It can achieve high accuracies but not al"
efficiently as algorithms already in the literature. The general
form of this algorithm is similar to Algorithm 145 [W. M.
McKeeman, Adaptive Numerical Integration by Simpson't'
Rule, Comm. ACM 5 (Dec. 1962)., 604] (and others) except thu.t
in subdividing the region of integration the panel sizes are de
termined in part by the random-number generator.

This quadrature procedure has been found particularly eff ec
tive in integrating ill-behaved functions of the following type.

A. }<'unctions having singularities on the boundary of the re
gion of integration. Such integrals as

[
1 x-112 dx,

·O

303-P 1- 0

and

have been successfully integrated with this procedure to
1 % accuracy.

B. Functions having an infinite number of zeros in the interval
of integration. Such integrals as

1

[dy yy sin (1.5 ln y),
·0

1 1 dy y-112 sin (0.5 In y),

and

! 2 1·1 dx dy xy<x-l) sin (x In y),
1 0

ha¥e been successfully integrated with this procedure to
1 % accuracy.

C. Functions having high-frequency oscillations or a large
number of discontinuities. The function

f(x) = {2 if the l~ast significant bit of xis 1
0 otherwise

is almost as discontinuous as can be represented in a binary
number computer. One hundred attempts at integrating this
function on the interval 0 to 1 gave an average of the abso
lute value of the error ~ 0.13.

The main limitation in integrating anomalous functions of the
above type is in the hardware or software of the particular ma
chine being used. The procedure will fail when the interval is
subdivided to a point where it is smaller than the smallest in
magnitude nonzero number representable in the machine.

A histogram is given below of the errors in the evaluation of
the integrals

1 1 dy xy<:i:-o sin (x In y)

and

1 1 dy xy<:i:-i) cos (x In y)

for x = 1.04(0.04)2.00, with error tolerances 10-3 and 10-4.

Numberofoccurrences_I 0 I 0 I 1 I 1 153141 I 4 \ 0 I 0 I 0 /

-5 -4 -3 -2 -1

Here Eo is the error requested, e is the error obtained.
The formal parameter fx is an arithmetic expression dependen.t

on x. In translating to another language it may be desirable to
make this parameter a procedure identifier with appropriate
modifications in the body of the program;

if a = b then Integral := 0

COLLECTED ALGORITHMS (cont.)

else
begin real fl, fr, c;

real procedure Int(a, x, b, fx, fc2, error);
value a, b, f c2, error;
real a, x, b, fx, fc2, error;

begin real dx, dxc, fcl, fc3;
error : = error X 0 .577;

comment The factor 0.577 is an approxim~tion to 1/ v'3.
The assumption here is that error contributed by the indi
vidual panels is random and not additive, thus the error
from three panels is assumed to be v'3 (no.t 3) times the
error of one panel;

dxc := (random number+0.5) X (b-a)/3;
dx := (b-a-dxc)/2;
x := a + dx/2; fcl := fx;
x := b - dx/2; fc3 := fx;
Int:=
if abs(dxX (fcl-2Xfc2+fc3)) ;;;:; error then

dx X (jcl +f c3) + dxc X f c2
else

Int (a, x, a+dx, fx, fcl, error)
+Int (a+dx, x, b-dx, fx, fc2, error)
+Int (b-dx, x, b, fx, fc3, error)

end;
c := a + (random number+0.5) X (b-a)/2;
x := (a+c)/2; fl := fx;
x := (c+b)/2; fr := fx;
error := abs(error) X 14.6;
comment The factor 14.6 can be thought of as an empirical

constant. There is some theoretical justification for calculat
ing an optimum value for this factor, but in practice it was
determined empirically;

Integral :=
Int(a, x, c, fx, fl, error)
+Int(c, x, b, fx, fr, error)

end

303~P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITH::\1 304
NORMAL CURVE INTEGRAL [S15]
I. D. HILL ANDS. A. JoYcE (Recd. 21 Nov. 1966)
-Medical Research Council, Statistical Research Unit,

115 Gower Street, London W.C.l., England

real procedure normal (x, upper);
value x, upper; real x; Boolean upper;

comment calculates the tail area of the standardized norm:1l
curve, i.e.,

l 1· v/~ e-11212 dt .

If upper is true the limits of integration are x and oo.
If nppcr is false the limits are - oo and x.
ff x lies in the central area of the curve the method used is the

convergent series

x~ x5 x7

x + - + 3)(5 + 3 x 5 x 7 +

(~ec [1, 26.2.11].)
lf x lies in one of the tails the method used is the c~nLinued

fraction

., /'

00

., 1 1 2 3 4 cc112Jx- c-<112w dl = ______

• x x+ x+ x+ x+ x+
(See [l, 26.2.14].)

The changeover point between the two methods is at abs(x) =
3.5 if the required area is greater than 0.5. This value is chosen
on grounds of speed. If, however, the required area is less than
0.5, a changeover as far out as 3.5 will lead to the loss of three
significant decimal figures due to cancellation error upon making
a subtraction. In this .case speed is sacrificed to accuracy and
the changeover point is at abs(x) = 2.32, chosen as the point at
which the area is 0.01. The value 2.32 may be changed to 1.28
(the point at which the area is 0.1) if the full accuracy of the
machine is desired over the range 1.28 < abs(x) < 2.32, but this
leads to a considerable loss of speed and the accuracy lost by
using 2.32 is only one decimal place.

Except for this subtraction error, the procedure works vir
tually to the accuracy of the machine (provided that the constant
1/sqrt(27r) is given to this accuracy) for x <; 7 but to 1 decimal
place less than the acc:uracy of the machine for x > 7.

REFERENCE: [1]. ABRAMOVITZ, M. AND STEGUN, I. A. Handbook
of Mathematical Functions, National Bureau of Standards,
Appl. Math. Ser. 55, US Government Printing Office, Wash
ington, D.C., 1964;

if x = 0 then normal : = 0.5 else
begin

real n, x2, y;
upper := upper = x > O;
x ;= abs(x); x2 := x X x;
y := 0.3989422804014 X exp (-0.5Xx2);
comment 0.3989422804.-014 = 1/sqrt(2X1r);
n := y/x;
if -, upper /\ 1.0 - n = 1.0 then normal : = 1.0 else
if upper /\ n = 0 then normal : = 0 else
begin

real s, t;
if x > (if upper then 2.32 else 3.5) then
begin

real pl, p2, ql, q2, m;
q 1 : = x; p2 : = y x x j
n := 1.0; pl := y;
q2 := x2 + 1.0;
if upper then
begin

s := m := pl/ql;
t := p2/q2

end else
begin

s := m := 1.0 - pl/ql;
t := 1.0 - p2/q2

end;
for n : = n + 1.0 while m ~ t /\ s ~ t do
begin

s := x X p2 + n X pl;
pl := p2; p2 := s;
s : = x X q2 + n X ql;
ql := q2; q2 := s;
s := m; m := t;

304-P 1- 0

t := if upper then p2/q2 else 1.0 - p2/q2

end;
normal :=

end else
begin

s := x := y X x; n := 1.0; t := O;
for n := n + 2.0 while s ~ t do

begin
t := s; x := x X x2/n;

s := s + x
end;
normal := if upper then 0.5 - s else 0.5 + s

end
end

end normal

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, ERF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION-
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 3151

ALGORITHM 209 [S15]
GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

COLLECTED ALGORITHMS (cont.)

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION.

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DIS~CRIBUTION
FUNCTIONS I

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. HILL AND S. A. JOYCE (Recd. 21 Nov. 1966)
Medical Research Council,
Statistical Research Unit, 115 Gower Street, London

W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found :

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < io-10 was changed to Y - T = Y
both these amendments being as suggested in [1].

(iii) The labels 1 and 2 were changed to LI and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.
(v) The extra statement x := 0.707106781187 >< x was made

the first statement of the algorithm, so as ;to derive the
normal integral instead of the error function ..

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no sirn,ple way of overcoming the
difficulty [3], and any search for a method of d<;>ing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := -0.5641895S/x/exp(v) was changed to

T := -0.564189583548 X exp(-v)/x. This is :faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.

(ii) The extra statement x := 0.707106781187 >< x was made
as in (v) of Algorithm 123. ·

(iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for th¢ minus sign).

(ii) Similar to (ii) of Algorithm 180. '
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14].
The results were accurate to 9 significant figures for x < 8,

but to only 8 significant figures for x = 10 and x = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 j m/(480Xsqrt(2X3.14159265)) was cha.nged to

10 i m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to

m := 2 X n; for i := 1 step 1 until m do.

304-P 2- 0

(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) i 2 X 0.125.
(iv) if i = 2 X n - 1 was changed to if i = m - 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to

b I (15.0397696478X n).

Tests were made with m = 7 and m = 11 with the following
results:

Number of significant Number of decimal

x
figures correct places correct

m = 7 m = 11 m = 7 m = 11
-------- ------

-0.5 7 11 7 11
-1.0 7 10 7 10
-1.5 7 10 8 10
-2.0 7 9 8 10
-2.5 6 9 8 11
-3.0 6 7 8 9
-4.0 5 7 10 11
-6.0 2 12 10
-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig
nificant figures is stretching the machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at x = 0.8.

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

abs(x) x > 0 =upper x > 0 ¢upper
--·- -

0.5 1 1
1.0 1 2

1.5 21"(5) 2
2.0 25"(0) 4
3.0 0 0

-- -

4.0 2 3
6.0 6 0
8.0 14 0

-- -

10.0 23 0
20.0 35 0

"Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

COLLECTED ALGORITHMS (cont.)

abs(x) x > 0 =upper x > 0 jE upper

1.0
2.0
4.0
8.0

2
7
2
8

3
1
0
0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely to be much the same on
other machines.

INSTRUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(x)
123 I 180 181 209 I 226 212 304"

0.5 58
1.0 65°
1.5 164 128 127

2.0
2.5
3.0

4.0
6.0
8.0

LO.O
20.0
30.0

194
252

78 90
54 68
42 51

27 39
15 30
9 28

10 25
9 22
9 9

- ---------- -~

8
8
9

8
10
9

--
9
6
7

5
5
5

Im= 7

97
176
273

387
515
628

900d

1400d
2IOOd

2700d
6500d

10900d
~-------·-

' Readings refer to x > 0 = upper.
b Readings ref er to x > 0 ¢ upper.

24
24
25

24
24
25
--

25
16
18

16
16
16

25
29
35

39
131
97

67
49
44

38
32
11

24
29
35

39
44
50

44
23
11

11
11
11

•!Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.
'1 100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One Eihould be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknmvledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

L. THACHER, HENRY C. JR. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

304-P 3- Rl

2. IBBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BARTON, STEPHEN P., AND WAGNER, JOHN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

CERTIFICATION OF AND REMARK ON
ALGORITHM 304 [815]
NORMAL CURVE INTEGRAL [I. D. Hill and S. A.

Joyce, Comm. ACM 10 (June 1967), 374]
A. BERGSON (Recd. 11Aug.1967 and 9 Nov. 1967)
Computing Laboratory, Sunderland Technical College,

Sunderland, Co. Durham, England

KEY WORDS AND PHRASES: normal curve integral, proba
bility, special functions

CR CATEGORIES: 5.5, 5.12

Algorithm 304 was coded in 803 ALGOL and run on a National
Elliott 803 (with automatic floating-point unit).

There are typographical errors in the first two integrals con
tained in the comment.

The integrals should read:

1 f 2 (i) -= e-Wt dt
v27r

f"' xa x6 x1
(ii) e<U"'2

e-<0 12 dt = X + - + --+ +
o 3 3X5 3X5X7

The algorithm was run as published and gave answers within
the accuracy of the machine [1] for a random selection of values of
x and upper.

With the following alterations, however, the algorithm was
made 0.2 percent more efficient in speed, and gave identical re
sults as above.

(a) n := 1.0; was omitted from the linen := 1.0; pl := y;

(b) the ten lines after q2 := x2 + 1.0; were replaced by:
m : = n; t : = p2 / q2;
if -, upper then
begin

m : = 1.0 - m; t : = 1.0 - t
end;
for n : = 2.0, n + 1.0 while m ;C t /\ s ;C t do

(c) in the line beginnings := x := y Xx;, n := 1.0; and t := 0;
were omitted and the next line written:
for n := 3.0, n + 2.0 whiles ;C t do

REFERENCE:
1. A specification of 803 ALGOL; Description of 803 Library Pro

gram A104. Elliott-NCR Ltd., Borehamwood, Hertfordshire,
England. (Jan. 1965, issue 4).

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 304 [815]
NORMAL CURVE INTEGRAL [I. D. Hill and S. A.

Joyce, Comm. ACM 10 (June 1967), 374] ·
ARTHUR G. ADAMS* (Recd. 17 Feb.1969and11June1969)
Glaxo Research Ltd., Greenford, Middlesex, ·~ngland
• Deceased 7 July 1969.
KEY WORDS AND PHRASES: normal curve in~egral, proba

bility, special functions
CR CATEGORIES: 5.5, 5.12

Algorithm 304 may be ma.de faster by using the c9ntinued frac
tion

1 (-1 -6 -20 -42 !-72)
; 1 + x• + a+ x' + 7+ x• + u+ x2 +15+ x• '.+ 19+ · · ·

i
whose convergents a.re equal to alternate convergents of the con-
tinued fraction

1 1 2 3 4 5

x+ x+ x+ x+ x+ x+
used in the original algorithm when x lies in one of the tails. This
requires two extra statements in the iteration loop~ which, how
ever, will only be performed about half as many tiu'.tes.

The alteration required to implement this impr0vement is to
replace the 19 lines between

if x > (if upper then 2.32 else 3.5) then
and

ql :== q2; q2 :== s;
by

begin
n~~.~.¢.~.~.~.m;
al : ... 2.0; a2 :== 0.0;
n :== x2 + 3.0;
pl :== y; ql :== x;
p2 :- (n - 1.0) X Yi ~ :== n X x;
m :== pl/ql; t :== p2/q2;
if .., upper then
begin

m :== 1.0 - m; t := 1.0 - t
end;
for n : == n + 4.0, n + 4.0 while m ¢ t /\ 8 ¢ f, do
begin

al := al - 8.0; a2 := al + a2;
s :== a2 X pl + n X p2;
pl := p2; p2 := 8j

s : == a2 X ql + n X q2;
This also incorporates the alterations suggested ii~ [l] below.
Comparison of the two versions using an ICtl903 (37-bit

floating-point mantissa), showed that the number !of iterations
was approximately halved, and that the results differed only to
the extent to be expected from rounding error. ·

The original Algorithm 304 contains in its cont;ment, "The
value 2.32 may be changed to 1.28 · · · if the full ac~uracy of the
machine is desired." However a test of the two vetsions taking
:a.rguments in the sequence 2.34 step -0.01 showed that the origi
nal version ran into overflow at 1.44, and the new version at 1.58,
on a machine allowing exponents up to 1077•

REFERENCE
1. BERGSON, A. Certification of and Remark on .Algorithm 304,

Normal Curve Integral. Comm. ACM 11 (Apr. 1968), 271.

304-P 4- RI

REMARK ON ALGORITHM 304[815]
NORMAL CURVE INTEGRAL [I. D. Hill and S. A.

Joyce, Comm. ACM 10(June 1967), 374]
Bo HOLMGREN (Recd. 30 Apr. 1970)
Dept. KDO, ASEA, S-721 83 Vasteras, Sweden

KEY WORDS AND PHRASES: normal curve integral, proba
bility, special functions

CR CATEGORIES: 5.12, 5.5

Algorithm 304 with the remark of Adams was translated into
Fortran IV and run on a GE-625 computer. The GE-625 has a 28-
bit mantissa and allows exponents up to 1038 • With upper =false
and x < -2.32, the routine ran into overflow at several values of
x. To avoid this the following lines

if q2 > 1080 then
begin

pl := pl x 10-30; p2:== p2 x 10-30;
ql := ql x 10-30; q2 := q2 x 10-30

end;
were inserted after the line

8 := m; m := t;

.COLLECTED ALGORITHMS FROM CACM

ALGORITHM 305
SYMMETRIC POLYNOMIALS [Cl]
P. BRATLEY AND J. K. S. McKAY (Recd. 23 Sept. 1966,

15 Feb. 1967 and 10 Mar. 1967)
Department of Computer Science, University of

Edinburgh, Edinburgh, Scotland

real procedure express(b, unit, n); valu•e n; integer n;
integer array b; array unit;
comment express expresses the symmetric sum '°' x~ 1x~2

• • ·x~ .. £..J i1 i2 i.,.

over n variables as a sum of determinants in the unitary sym
metric functions L Xi 1Xi:iXia • • • X•r • The non-negative ex
ponents b, (i = 1, · · · , n) are assumed to be in b[l :n] on entry
to express. (The elements of this array a.re altered by the pro
cedure.) The symmetric sum is first expressed in terms of Schur
functions which are then evaluated as determinants in the
unitary symmetric functions. The Schur functions are generated
in the local array c[l :i] with the sign in the local integer sig.
The unitary functions of degree r = 1, · · · , n should be in
unit[l:n] on entry to express.

This procedure may be used to determine the coefficients of a.
polynomial with roots the kth (k a positive integer) powers of
the roots of a given monic polynomial. Use is made of the
procedures determinant [Algorithm 224, Comm. ACM 12 (Apr.
1964), 243)] and perm [Algorithm 306, Comm. ACM 10 (July
1967), 450]

REFERENCES:

1. LITTLEWOOD, D. E. The Theory of Group Characters. Claren
don Press, Oxford, England 1958, !~nd ed., Ch. 6.

2. McKAY, J. K. S. On the representation of symmetric poly
nomials. Comm. ACM 10 (July 1967), 428-429;

begin integer array c, d[l: n];
integer sig, p, q, i, j; Boolean finish; real sigma;
procedure sort (x, c, n); value n; integer c, n;

integer array x;
com.n:lent sorts the integer array x[l: n] into descending order.

c is set to ±1 according to whether the number of transposi
tions made is even or odd;

begin integer i, j, k;
c := 1;

LA: i := 1; k := O; j := x[l];
Ll: i : = i + 1; if i > n then go to L3;

if x[i] S j then
begin x[i-1] := j; j := x[i] end

else begin x[i-1] := x[i]; k := 1; c .:= -c end;
go to Ll;

L3: x[n] := j; if k ¢ 0 then go to L4
end sort;
procedure conjugate(p, longl, q, long2); value longl;

integer array p, q; integer longl, long2;
comment conjugate forms in q[l :long2] the partition conju

gate to that in p[l :Zongl];
begin

integer r, i, j;
long2 := O;
for r := longl step -1 until 1 do
begin i := if r = longl then p{r] els·e p[r] - p[r+l];

305-P 1- Rl

for i := 1 step 1 until i do
begin long2 := long2 + 1; q[long2] := r end

end
end conjugate;
finish := true; sigma := O;
sort (b, sig, n);
if b[l] = 0 then begin sigma := 1; go to L99 end;

L3: perm (b, n, finish);
if finish then go to L99;
for i := 1 step 1 until n do
begin c[i] := b[i] + n - i;

for i := 1 step 1 until i - 1 do
if c[i] = c[j] then go to L3

end;
sort (c, sig, n);
for i := 1 step 1 until n do
begin c[i] := c[i] + i - n;

if c[i] = 0 then
begin i := i - 1; go to L7 end

end;
i := n;
colDlllent each Schur function and its sign are to be found in

c[l :i] and sig respectively;
L7: con;"ugate (c, i, d, q);

begin
array x[l :q, 1 :q];
for i := 1 step 1 until q do
for j := 1 step 1 until q do
begin p := d[i] - i + j;

x[i, j] := if p < 0 V p > n then 0 else
if p = 0 then 1 else unit[p]

end;
sigma := sigma + sig X determinant (x, q)

end;
go to L3;

£99 : express : = sigma
end express

REMARK ON ALGORITHM 305 [Cl]
SYMMETRIC POLYNOMIALS [P. Bratley and J. K.

S. McKay, Comm. ACM 10 (July 1967), 450]
J. K. S. McKAY (Recd. 13 Sept. 1967 and 18 Dec. 1967)
Atlas Laboratory, Science Research Council, Chilton,

Didcot, Berks., England

KEY WORDS AND PHRASES: symmetric polynomials, sym
metric sum, unitary symmetric functions, Schur functions

CR CATEGORIES: 5.39

The published algorithm fails with subscript overflow if
l:i -1 bi is greater than n and the partition conjugate to that in
c [1 : i] has more than n. parts.

The symmetric sum is defined ambiguously in the initial com
ment.

The following alterations· are suggested to remove the am
biguitv and correct the algorithm.

COLLECTED ALGORITHMS (cont.)

(1) In line 4,
· · · over n variables · · ·

should be replaced by
· · · over all distinct terms in n variables

to remove any ambiguity in the definition of the symmetric
sum.

(2) In line 8, before
The symmetric sum · · ·

insert
Three examples to clarify the value of the symmetric
sum are:

If n = 3 and the bi are 3, 2, 0 in any order the sum is
X1 3 X22 + X2 3 Xa

2 + Xa 3 X1
2 + X1 3 Xa

2 + X2 3 X1 2 + Xa 3 X2
2

•

If n = 3 and the bi are 2, 2, 0 in any order the sum is
X1 2

X2
2 + X2

2 Xa2 + Xa2 X1 2•

If all b,: are zero the procedure will return the value 1.

(3) In lines 17-18, the reference to Algorithm 224 should re~d:
Comm. ACM 7 (Apr.1964), 243 and (Dec.1964), 702.

(4) Lines 25-26
integer array c,d[l :n];
integer sig,p,q,i,j;

should be replaced by
integer sig,p,q,i,j; j := O;
for i := 1 step 1 until n do j := j+b[i];
begin integer array c[l :n], d[O:j];

(5) In line 72,
comment each Schur function · · ·

should be replaced by
comment at L7 each Schur function · · ·

(6) In line 87, an end should be inserted immediately before
end express

305-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 306
PERMUTATIONS WITH REPETITIONS [G6]
P. BRATLEY (Recd. 23 Sept. 1966 and 1.5 Feb. 1967)
Department of Computer Science, University of

Edinburgh, Edinburgh Scotland

procedure perm(a, n, W,st); value n; integer n;
integer array a; Boolean last;

comment a[l :n] is an integer array. Initially the elements of
a[l :n] must be arranged in descending order and last must be
set true. If the elements of a are not initially in descending
order the effect of the procedure is undefined. Successive calls of
perm generate in a all permutations of its elements in reverse
lexicographical order.

last is set false if the procedure has generated a new permuta
tion, but if the procedure is entered after all the permutations
have been generated, last will be set true. Neithera norn should
be altered between successive calls of the procedure;

begin integer i, p, q, r;
own integer m; own integer array b[l :n];
if -, last then go to £12; last := false;
for i := 1 step 1 until n do b[i] .- a[i];
p := b[n];
for i := n step -1 until 1 do

if p ":/= b[i] then
begin m := i; go to L99 end;

m := O; go to L99;
£12: if m = 0 then go to LlO;

p := b[m]; q := m; r := O;
£9: i := n;
L4: if a[i] = p then go to L2;

if a[i] < p then r := i;
L5: i : = i - 1; go to L4;
L2: a[i] := b[n] - 1; if r = 0 then go to L8;
Ll: a[r] := p; q := q + 1;
L3: r := r + 1; if r > n then go to LU else if a[r) > p

then go to L3;
Lll: if b[q] = p then go to Ll; r := O;
£6: r := r + 1; if a[r] ~ p then go to L6;

a[r] := b[q]; if q = n then go to L7;
q : = q + 1 ; go to L6;

L7; last := false; go to £99;
L8: q : = q - 1 ; if q = 0 then go to LlO;

if b[q] = p then go to L5;
p := b[q]; go to L9;

LIO: last := true;
£99:
end perm

306-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 307
SYMMETRIC GROUP CHARACTERS (Al]
J. K. S. McKAY (Recd. 23 Sept. 1966, 15 Feb. 1967, and

10 Mar. 1967)
Department of Computer Science, University of

Edinburgh, Edinburgh, Scotland

integer procedure character (n, rep, longr, clas.~, longc, first);
value n, rep, longr, class, longc;
integer n, longr, longc; Boolean.first;
integer array rep, class;

comment character produces the irreducible character of the
symmetric group corresponding to the partitiol!ls of the repre
sentation and the class of the group Sn stored with parts in
descending order in arrays rep[l :longr] and cl(iss[l :longc], re
spectively. Both arrays are preserved. The method is similar
to that described by Bivins et al. [1]. Comet describes a later
method.

On first entry to character,ftrst should be set true in order to
initialize the own array p[O:n, O:n]. This single initialization is
sufficient for all symmetric groups of degree less than or equal
ton. character is intended for computing individual characters.
If a substantial part of the character table is required it is sug
gested that procedure generate [Algorithm 263, Comm. ACM
8 (Aug. 1965), 493)] be used to produce the partitions prior to
use of character. If this is done, then the own array p should be
replaced by a suitable global array, andfirst·should be set false
to avoid unwanted initialization. character uses procedures set,
generate, and place [Algorithms 262, 263, 264, Comm. ACM 8
(Aug. 1965), 493].

REFERENCES:

1. BIVINS, R. L., METROPOLIS, N., STEIN, P.R., and WELLS,
M. B. Characters of the symmetric groups of degree 15
and 16. MTAC 8 (1954), 212-216.

2. LITTLEWOOD, D. E. The Theory of Group Characters. Claren
don Press. Oxford, England 1958, 2d ed._, Oh. 5.

3. COMET, S~ Improved methods to calculate the characters
of the symmetric group. MTAC 14 (1960), 104-117.;

begin
integer procedure degree (n, rep, length); val11le n, length;

integer n, length; integer array rep;
comment degree gives the degree of the r~presentation of the

symmetric group on n symbols defined by the partition
rep[l :length] with parts in descending order;

begin
own integer array p[O:n, O:n];

integer array q[l :length]; integer i, j, deg;
integer procedure fac(n); value n; integ:er n;
Jae := if n = 1then1 else n X fac(n-1);
for i := 1 step 1 until length do

q[i] := rep[i] + length - i;
deg := fac(n);
for i := 1 step 1 until length do
for j : = i + 1 step 1 until length do

deg := deg X (q[i]-q[j]);
for i : = 1 step 1 until length do

deg := deg + fac(q[i));
degree : = deg

end degree;

307 P I RI

if first then
begin set (p, n); first := false end;

begin
integer array pr[l:nJ, r[O:l, O:p[n, n)-1];
integer length, m, t, old, new, index, i, char, k, coeff, u, pos,

jl, j2;
m := longc;
new:= n;
index := 1;
for i := 0 step 1 until p[n, n] - 1 do

r[index, i] := O;
r[index, place(p, n, rep)] := 1;
fort := 1 step 1 until m do
begin if class[t] = 1 then go to identity;

index := 1 - index; old := new; new := new - class[t];
for i := 0 step 1 until p[new, new] - 1 do

r[index, i] := O;
for u := p[old, old] - 1 step - 1 until 0 do
begin if r[l - index, u] = 0 then go to B;

generate (p, old, u, pr, length);
k := length; jl := 1;

G: j2 := jl; coeff := r[l-index, u];
for i := 1 step 1 until k do rep[i] := pr[i];
if rep[l] = old then go to H;
rep[j2] := rep[j2] - class[t];
if rep[j2] + k - j2 < 0 then go to B;
if rep[j2] ~ if(j2 = k then 0 else rep[j2+1]) then go to F;
if rep[j2+1J= rep[j2] + 1 then go to J;
i := rep[j2+11; rep[j2+1l := rep[j2] + 1;
rep[j2] := i - 1; coeff:= - 1 coejf; j2 := j2 + l;

go to E;
El: rep[l] := rep[l] - class[t];
F: pos := place(p, new, rep);

r[index, pos] := r[index, pos] + coeff;
J: jl : = jl + 1; if jl :S:: k then go to G;
B:

end
end;

A: char := r[index, O]; go to Z;
identity: char : = O;

BB:

for u := p[new,new] - 1 step - 1 until 0 do
begin if r[index, u] = 0 then go to BB;

generate(p, new, u, pr, length);
char _:= char + r[index, u] X degree (new, pr, length);

end;
Z: character : = char

end
end character

REMARK ON ALGORITHM 307 [Al]
SYMMETRIC GROUP CHARACTERS

[J. K. S. McKAY, Comm. ACM 10 (July 1967), 451]
J. K. S. McKAY (Recd. 13 Sept. 1967)
Dept. of Computer Science, University of Edinburgh,

Edinburgh, Scotland

COLLECTED ALGORITHMS (cont.)

Three corrections are noted.
(1) Line 39:

own integer array p[O:n,O:n];
should be moved to the }jne after the begin in line 32.

(2) At E the line should read
B: if rep[j2] ;:::: (if j2=k then 0 else rep[j2+I])

then go to F;
(3) Three lines, later

coeff : = -1 coeff;
should read

coeff := -coeff;

307-P 2- 0

COLLECTED ALGORITHMS, FROM CACM

ALGORITHM 308
GENERATION OF PERMUTATIONS IN PSEUDO

LEXICOGRAPHIC ORDER [G6]
R. J. ORD-SMITH (Recd. 11 Nov. 1966, 1 Dec. 1966, 28

Dec. 1966 and 27 Mar. 1967)
Computing Laboratory, University of Bradford, England

Lexicographic generation has the advantage of: producing an
order easily followed by the user, but its real value in certain com
binatorial applications is that a (k-1)-th intransitive subgroup
of permutations is generated before the kth element is moved. By
not insisting on strict lexicographic generation, tho\lgh preserving
the latter property, an enormous reduction in the total number of
transpositions is obtained. The total number of tr3<nspositions in
this algorithm can be shown to tend asymptotically to (sinh 1) n!
which is less than in Algorithm 86 [J.E. L. Peck and G. F. Schrack,
Permute, Comm. ACM 5 (Apr. 1962), 208] and alm9st as good as
Algorithm 115 [H. F. Trotter, Perm, Comm. ACM 'f) (Aug. 1962),
434]. The algorithm offers a further useful facilityj. Like several
others it uses a nonlocal Boolean variable called.first,! which may be
assigned the value true, to initialize generation. Oniprocedure call
this is set false and remains so until it is again set t~ue when com
plete generation of permutations has been achieved.iAt any subse
quent call after initializing generation of permutations of degree
n, one may set parameter n = n' where n' :::; n. Further calls with
this value may continue until the completion of t~e subgroup of
degree (n' - 1) when.first will be set true. The proc~ss can be con
tinued by resetting.first false and calling with a larger value of n.
This gives the user complete control over the main attribute which
lexicographic order offers. There is no restriction o~ the elements
permuted. Table I gives results obtained for 1'9CONOPERM.
Times given in seconds are for an ICT 1905 compu:ter. The algo
rithm has also been tested successfully on IBM 7094, Elliott 503
and STC Stantec computers. tn is the time for complete generation
of n! permutations. rn has the usual definition rn = tn/(n·tn-1).

TABLE I

lgorithm I ta t1 ta re r1 rs : Number of
transpositions A

E CONOPERM
1-----

0.85 6.2 50.6 - 1.04 1.02 -+ 1.175n!

procedure ECONOPERM (x, n); value n; integer n;
array x;

begin own integer array q[2:n];
collllllent own dynamic arrays are not of ten implemented.

The upper bound will then have to b.e given explicitly;
integer k, l, m; real t;
l := 1; k := 2;

if first then
begin first := false; go to label end;

comment the above is the initialization proceHs;
loop: if q[k] = k then

begin if k < n then
begin k := k + 1; go to loop end
else begin.first := true; go to.finish end

end;

308--P 1-- RI

n := k - 1;
comment note n called by value;
label: form := 2 step 1 until n do q[m] := l;

comment after the initialization the for statement sets all
elements of q array to 1. Otherwise only the first k-2 elements
are reset 1;

q[k] := q[k] + 1;
transpose: t := x[l]; x[l] := x[k]; x[k] := t;

l := l + 1; k := k - 1;
if l < k then go to transpose;
comment when k < 4 only one transposition occurs. On final

exit when·first is reset true, no transposition occurs at all;
finish:
end of procedure ECONOPERM

REMARK ON ALGORITHM 308 [G6]
GENERATION OF PERMUTATIONS IN PSEUDO
LEXICOGRAPHIC ORDER [R. J. Ord-Smith, Comm.

ACM 10 (July 1967), 452]
R. J. ORD-SMITH (Recd. 21 May 1969)
Computing Laboratory, University of Bradford, England
KEY WORDS AND PHRASES: permutations, lexicographic
order, lexicographic generation, permutation generation
CR CATEGORIES: 5.39

Following the construction of the very fast lexicographic
permutation Algorithm 323 [1] it has become clear that the permu
tation sequence generated by the Algorithm 308 can be obtained
more quickly. In fact, replacement of .

trstart:m := q[k]; t := x[m]; x[m] := x[k]; x[k] := t;
q[k] := m + 1; k := k - 1;

by

tr start: q[k] : = q[k] + 1;

in Algorithm 323 produces the ECONOPERM sequence of Al
gorithm 308.

The times are as follows on an ICT 1905, in seconds.

Algorithm 323
New ECONOPERM
Old ECONOPERM

REFERENCE:

6
5.9
6.2

47
45
50.6

1. ORD-SMITH, R. J. Algorithm 323: Generation of permutations
in lexicographic order. Comm. ACM 11 (Feb. 1968), 117.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 309
GAMMA FUNCTION WITH ARBITRARY PRE

CISION [S 14]
ANTONINO MACHADO SOUZA FILHOANDGEORGESSCHWACH

HEIM (Recd. 12 Apr. 1966 and 14 Apr. 1967)
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro,

ZC82, Brazil

procedure gamma(z,y,msize,error);
value z, msize; real z; integer msize; label error;

comment This procedure computes the value y of the gamma
function for any real argument z for which the result can be
represented within the computer, working with msize decimal
digits. An exit is made thru the label error when the argument is
a pole or is too large, while a zero result is returned when the
argument is too small for a correct internal representation of the
result.

This procedure is especially useful for variable field length
computers and for double- or multiple-precision computations,
when a simple power series algorithm is no longer applicable.

It computes the gamma function thru the Stirling asymptotic
series for the logarithm of the gamma function with an argu
ment increased by an appropriate integer to insure the required
precision with the least computation work.

Negative arguments are reduced to positive ones by:

r(z) = . 7r
sm (7rz) X r(l - z)

This procedure is not recursive and uses no own variable.
It was translated to FORTRAN II and run on an IBM 1620. The
errors were at most of a few hundred units in the last digit of the
mantissa, being due to the use of logarithms;

begin
real procedure loggamma (t); value t; real t;
comment The loggamma auxiliary procedure computes the

logarithm of the gamma function of a positive argument t.
If its argument is below a value tmin, foggamma first increases
the argument by an integer value, using the relation:

k-1

ln r(t) = In r(t+k) - In([[(t + i))
i-0

where In r(t + k) is computed by the procedure lgm.
The formula we use for tmin is a rough empirical relation

to minimise computation time.
Indeed an increase of k while decreasing the number of

terms of the series, results in more computation for the fac
tor ln <Ilic t + i));

begin integer tmin;
tmin : = if msize 2 18 then msize - 10 else 7;
if t > tmin then loggamma . - lgm(t)
else
begin real f;

f := t;
L: t := t+l;

if t < tmin then
begin f := f X t;

go to L
end;

l1Jggamma := lgm(t) - ln (j)
end

309-P 1 0

end of procedure lo(jgamma;
real procedure lgm(w); value w; real w;
comment This procedure evaluates the logarithm of the

gamma function according to the Stirling asymptotic series:

ln r(w) ~ (w - !) x In (w) - w + ln V27r + ~ ;ii-1
'

The coefficients c, B2i/(2i(2i-1)), B21 being the
Bernoulli numbers, are rational numbers given here as irre
ducible fractions.

Twenty terms are sufficient for a precision of up to 50
decimal digits;

begin array c[l: 20]; real w2, presum, canst, den, sum;
integer i;
c[l] := 1/12; c[2] ·= -1/360;
c[3] := 1/1260; c[4] ·= -1/1680;
c[5] := 1/1188; c[6] ·= -691/360360;
c[7] := 1/156; c[8] ·= -3617/122400;
c[9] := 43867/244188; c[lO] := -174611/125400;
c[ll] := 77683/5796; c[12] := -236364091/1506960;
c[13] : = 657931/300; c[14] : = -3392780147 /93960;
c[15] := 1723168255201/2492028;
c[l6] := -7709321041217/505920;
c[17] := 151628697551/396;
c[18] := -26315271553053477373/2418179400;
c[19] := 154210205991661/444;
c[20] := -261082718496449122051/21106800;
canst := .91893853320467274178032973640561763986139747363778;
comment canst = lnv'27r;
den := w; w2 := w X w; presum ·= (w-.5) X ln(w) -
w +canst;
for i := 1 step 1 until 20 do
begin sum := presum + c[i]/den;

if sum = presum then go to exit:
den :=den X w2;
presum : = sum

end;
exit : lgm : = sum

end of procedure lgm;
comment: main procedure gamma starts here;
real pi;
pi := 3.1415926535897932384626433832795028841971693993751;
comment argov, argund, lnunder are hardware dependent con-

stants that are compared to the arguments of intermediate
results, setting error exit or zero result to prevent exponent
over or underflow. Should be replaced in the procedure by
the appropriate numbers;

if z > argov then go to error else if z = entier (z) then
begin if z s 0 then go to error; y := l;

if z > 2 then
begin loop: z : = z - 1; y : = y X z;

if z > 2 then go to loop
end

end when z is integer
else if abs(z) < 10 t (-msize) then y := l/z
else if z < 0 then
begin if z < around then y : = 0

else

COLLECTED ALGORITHMS (cont.)

begin comment As the use of the sine subroutine for large
arguments might introduce errors, some reductions of
the argument are made before using it;

Boolean procedure parity (m); real m;
begin integer j;

j := entier(m); parity := j = j + 2 X 2
end parity;

real procedure decimal(x); real x;
begin integer n;

n := x;
deci'.mal := abs(x-n)

end decimal;
r~al delta, ex;
delta : = decimal (z) X pi;
ex:= (ifdelta<lOj (-msize/2) then - ln(decimal(z)) else
ln(pi/(sin(delta)))) - loggamma(l-z);
y := if ex < lnunder then 0 else

end

if parity (z) then exp(ex) else
-exp(ex)

end when z is negative
else y : = exp (loggamma (z))

end of procedure gamma

309P 2 0

COLLECTED ALGORITHMS FROM CACM

.'\u:onrn-I.\r :~10
PHL\IE ~L\IBEH CE:\EHATOH 1 IAl]
H. A. CH.\HTHE:'-' (H('C(l. :2;) Oct. JD()() and 13 Apr. l!Hi7)
Compnter Science CP11tPr, Cniv<'rsity of \'irginia,
Charlottesville. Yirginia
i11tc~er proccdtu-c siel'd(111, pl; value 111; integer 111; in·

t cger array p;

commcnl sie1"el(111, p) generates the prime 11ttmlH'rS less than
or eqnal to 111, and plaees them in the array p, sett i11g; p[l J = 2,
p[:Zj = :i, p[:)J = .5, · · ·, plk] = Oarg;est prime found). The value
of the procedure is k, th(' number of primes less than or equal to
Ill.

Th<> method used is amodifieation of thP ~icve of Eratosthenes.
fn its eustomary form this rnethod requires a repeated sweeping
over m numbers (or m/2 odd numbers), crossini:; out all multiples
of thP 1'th prime on the ·ith sweep. The variation of the method
used here condenses all these Hweeps into one. When the odd
integer n is being tested ("if n=q[i]'') to sec whether it should
he crossed oi1t, ("t :=false"), q[i], for i = 3, 4, · · ·,;', contains
the smallest odd multiple of p[i] which is no smaller than either
nor p[i] r 2. The sequence of values taken Oil by q[i] defines the
set of llttmbers crossed out because they are multiples of p[i].
The initial value of q[i] is p[i] i 2 because all smaller odd multi
ples of pli] have at least one other odd prime factor smaller than
pli]. For the same reason, q[j+l] docs not become active ("j
:= .i+l") until n has become equal to p[j] ! 2. The dimension of
the arrn:,;s q and dq is therefore the number of primes less than
or eqiial to the square root of m. Thus we have replaced repeated
sweeps over the array p by (many more) repeated sweeps over
part of the m11ch smaller array q. This does not reduce the
arno1mt of computation, but does lead to a much more efficient
computer implementation, as only the arrays q and dq need be
held in a random access store.;

hegin

A:

integer array q, dq[2 : 2.7Xsqrl(m)/ln(m)] ·

integer i, j, k, n;

Boolean t;
pill := j := k := 2; p[2] := 3; q[2] := 9; dq[2] := 6;
for n := 5 "'tep 2 until m do
begin

t := true;

for i := 2 step 1 until j do
hegin

if n = qli] then
hegin

q[i] := n + dq[i];
if i = j then
hcgin

false;

j := j + 1; qlj] := pfj] \2;
dq[j] 2 X p[j]; go to :l

end
end

end;
if t then
begin

k := k + 1; p[kj := n
end;

end;
sievel k

end sievd

HK\IAHJ\:S OX:

..\LGOHITIL\I :i.:> [Al]

310-P I- RI

STEVE [T. C'. Wood, Co111111 .• tc.lf .j (".\far. 1961), L)l]
ALGOHITI-L\I :no [Al]
PHL\IE Xff\IBEH GEXElL-\ TOH 1 [B. A. Chartre~,

Cu111111 •• H'Jf 10 (Sept. 1967), ;)69]
ALGOHITI-L\l 311 [Al]
PRL\IE :\U~IBEH GEXERATOH 2 [B. A. Chartres,

Co111111. A(' JI JO (Sept. 19G7), ;)70]

B. A. CHAHTH.ES (Heed. 1:~ :\pr. 1967)
Computer Science Center, C niversit~· of Virginia,
Chnrl<)ttcsvillc, Virginia

Tlw three procedures SiP1'<'(111.p), sicvel(m,p), and sie1·e2(nz,p) 1

which all pPrform the same operation of putting the primes less
than or equal to 111 into the arra;-· p, were tested and compared for
spe<'d 011 the Bi11Tot1ghs B5500 at the lTnivcrsit;-· of \"irginia. The
modifi('atio11 of Siae sng;gestPd h;-· .J. :-;, Hillmore [Comm. AC.1! 5
(A.11g. l\Hi2), .+:38] was 11scd. It was also frnrnd that. Sieve could be
specckd up by a fact or of 1.05 b;-· avoiding the repeated eval11at ion
of sr11t(n). The modifiC'ation n'qnir<'d consisted of declaring ari

i11teg<'r variables, i11serti11g tlw ;;tatcrnent .<: := .'{qrt(n) immedi
ate>!;-· after i := :3, and replacing µ[ij~sqrt(n) by p[i]~s.

Th<' n11111i11g times fort he l'ompitt at ion of the first 10,000 primes
\Y<'r<':

Sic1•c (Algorithm :35)
Si<'l'C (modified)
.~in.1 cl

sicve2

."l-t5 ser
l:H sec
220 SPC

\H see

The> 1 imc rc>quired to compute 1 lw first k primes was found to lH',
for c>ach algorithm, rcmarkabl» accurately represented by a power
law throughout the range 500 ~ k ~ 50,000. The rnnning time of
Siei1e varied as ku0 , that of sir1·el as kl. 53 , and that of sieve2 as
k 13''. Thi1s the speed adva111ag;P of sievc2 over the other algorithms
increases with incrcasi11g k. However, it should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trnsted for extrapolation past
this point (there is no reason known why it should be), it would
take about 12 hours to find the first million primes.

CERTIFICATION OF ALGORITHM 310 [Al]
PRIME NUMBER GENERATOR 1 [B. A. Chartres,

Comm. ACM 9 (Sept. 1967), 569]
DoNALD G. RAPP AND LARRY D. ScoTT (Recd. 21 Apr.

1969 and 13 Aug. 1969)
Computer Science Group, Texas A &M University, College

Station, TX 77843

KEY WORDS AND PHRASES: prime numbers, generator
CR CATEGOlllES: 5.0

Algorithm 310 was coded in ALGOL GO reference language and
run on an IBM 360/65. The algorithm was tested for a large range
of values including m = 5, 10, 501, and 2000. Reference [1] was

COLLECTED ALGORITHMS (cont.)

utilized to verify the theory involved in the algorithm before actual
machine testing.

The intention of Algorithm 310 is to give only the number of
primes less thn.n or equn.1 to m. Actual confirmation in the initial
phases was accomplished through additional instructions that
printed the array of prime numbers, p, and the number of primes,
k. Both references listed were useful in substantia:tion of the prime
numbers given. These references were again useful in verifying that
all the primes in the array had been discovered aind printed.

Each test produced the correct number of rtimes, k, for the
specified range, m. When the primes were listed, the total taken by
hand agreed with the number, k, given by the algorithm.

REFERENCES:

1. EsTERMANN, T. Introduction to Modern Prime Number 'l'heory.
Cambridge U. Press, Cambridge, England, 1952.

2. LEHMER, D. N. Carnegie Institution of Washington, Publica
tion No. IM. Hafner, New York, 195G.

310 p 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHl\I 311
PRIME NUMBEll GENERATOR 2 [Al]
B. A. CHAHTREs (Recd. 25 Oct. 1966 and 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

integer procedure sieve2(m, p); value m:;

integer nL; integer array p;
comment sieve2 is a faster version of sievel. Two changes were

made to obtain higher speed.
(1) The multiples q[i] are sorted, smallest first, so that each

value of n does not need to be compared with every q[i]. The
sorted order of the q[i] if; indicated by an index array r. The
ith sorted element of q is q[r[i]]. It was found empirically that
greater speed is obtained when the q[r[i]J are not kept con
stantly sorted, but are re-sorted only at the time a new prime is
discovered. The integer jj indicates which of the q[r[i]] are sorted:
q[r[3]] through q[r[ij-1]] are out of order, whereas q[r[jj]] through
q[rfj]] are in order. Sorting is performed in two stages. A sift
sort first rearranges r[:3] through r[jj-1] into rr[3] through
rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1]
and r[J)"] through r[j] into r[lj through r[j].

(2) All multiples of 3 are automatically excluded from con
sideration by stepping n alternately by 2 irnd 4, and, in a similar
way, by stepping q[i] alternately by 2 X p[i] and 4 X p[i].;

begin
integer array q, dq, sq, r, rr[2:· 2.7Xsqrl(m)/ln(m) I;
integer i, j, jj, k, n, ir, jr, dn;
Boolean t;
p[l] := <in := 2; p[2] := j := Ji := k := r[3] := 3;
p[3] := .5; q[3] := 25; dq[3] := 10; sq[:~] := 30;
for n := 7 step dn until m do
begin

t := true; dn := 6 - dn;
for i := 3 !'itep 1 until jj do
begin

ir := r[i];
if n = q[irj then
begin

q!ir] := n + dq[ir];
dq[ir] := sq[ir] - dq[ir];
t := false;
if i = jj then
begin

.U := jj + l;
if ir = j then
begin

j := j + l; r[j] := j;
q[j] := p[j] i 2;
sq[j] := 6 X pjj];
dq[j] := sq[j] X (l+(pfj] + 3)) - 2X q[j]

end
end

end
end;
if t then
begin

k := k + 1; p[k] := n;
A: if jj = 3 then go to F;

jj := jj - 1;
if q[r[JJ°ll < q[r[jj+lJ] then go to A;
comment sift sort;
rr[3] := r[3];
for ir : = 4 step 1 until jj do
begin

i := ir - 1;
B: if q[r[ir]] < q[rr[i]] then

begin
rr[i+ll := rr[i]; i := i - 1;

if i > 3 then go to B
end;
rr[i+ll := r[ir]

end;
comment merge sort;
i : = ir : = 3; jr : = jj + 1 ;

C: if q[rr[ir]] < q[r[jr]] then
begin

r[i] := rr[ir]; ir := ir + 1;
if ir > jj then go to E

end
else
begin

rfi] := r[jr]; jr := jr + 1;
if jr > j then go to D

end;
i : = i + 1; go to C;

D: i := i + l; r[i] := rr[ir]; ir := ir + 1;
if ir < jj then go to D;

E: ij := 3

end;
F: end;

sieve2 := k
end si"eve2

REMARKS ON:

ALGORITHM 35 [Al]

311-P 1- 0

SrnvE [T. C. Wood, Comm. ACM 4 (Mar. 1961), 151]
ALGORITHM 310 [Al]
PRIME NUMBER GENERATOR 1 [B. A. Chartreg,.

Comm. ACM 10 (Sept. 1967), 569]
ALGORITHM 311 [Al]
PRIME NUMBER GENERATOR 2 [B. A. Chartres,.

Comm. ACM 10 (Sept. 1967), 570]

B. A. CHARTRES (Recd. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p),
which all perform the same operation of putting the primes less
than or equal tom into the array p, were tested and compared for
speed on the Burroughs B5500 at the University of Virginia. The
modification of Sieve suggested by J. S. Hillmore [Comm. ACM 5
(Aug. 1962), 438] was used. It was also found that Sieve could be
speeded up by a factor of 1.95 by avoiding the repeated evaluation

COLLECTED ALGORITHMS (cont.)

of sq1'f(n). The modification required consisted of declaring an
integer variable s, inserting the statement s :== sqrt(n) immedi
ately after i := 3, and replacing p[i]Ssqrt(n) by p[i]ss.

The running times for the computation of the first 10,000 primes
were:

Sieve (Algorithm 35)
Sieve (modified)
sievel

845 sec
434 sec
220 sec

sieve2 91 sec

The time required to compute the first k primes was found to be,
for each algorithm, remarkably accurately represented by a power
law througjlout the range 500 S k S 50,000. The running time of
Sieve varied as ki.40, that of sievel as kL 53, and that of sieve2 as
ki. 35• Thus the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, it should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolation past
this point (there is no reason known why it should be), it would
take about 12 hours to find the first million primes.

311-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 312
ABSOLUTE VALUE A~D SQUARE ROOT OF A
COMPLEX NUMBER, [A2]
PAUL FRIEDLAND (Recd. 13 Feb. 1967 and 16 June 1!)67)
Burroughs Corporation, Pasadena, California

real procedure cabs (x,y);
value x~ y; real x, y;

comment This procedure returns the absohtte value of the com
plex number x + iy. The procedure provides for the possible
overflow on x 2 + y 2 in I x + iy I = y1;;-2-+112;

begin

x :=abs (x); y :=abs (y);

cabs := if x = 0 then y else if y = 0 then x else

if x > y then x X sqrt (l+(y/x) j 2)
else y X sqrt (1 + (x/y) j 2)

end cabs;

procedure csqrt (x,y,a,b);

value x, y; real x, y, a, b;
comment This procedure computes a and b where a + ib =

vx+--ly. For x = y = 0 we have that a = b = 0 so we will assume
that x and y are not both zero.

Solving simultaneously for a and then b · · ·

(1) a=±l~±l~+-iYI, b=y/(2a)

and for b and then a . ..

(2) a = y/(2b)

To keep the radical real, we will always use the positive sign
with I x + iy I and use equation (1) with the sign of "a" taken
positive for x ~ 0 and (2) when x < 0, with the sign of "b"
taken positive for y ~ 0 and negative for y < O;

begin

if x = 0 /\ y = 0 then a : = b : = 0 else
begin

a := sqrt ((abs (x) +cabs (x, y)) X 0.5);
if x ~ 0 then b := yj(a +a) else

begin

b := ify < 0 then -a else a;
a := y/(b + b)

end

end

end csqrt

312-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 313
MULTI-DIMENSIONAL PARTITION
GENERATOR [Al]
P. BRA~LEY AND J. K. s; McKAY (Recd. 123 Aug. 1966,

15 Feb. 1967 and 14 Apr. 1967)
Dept. of Computer Science, University of Edinburgh

procedure part1:tion (N, dim, use);
value N, d1:m; integer N, dim; procedure use;

comment A partition of N is an ordered sequence of positive
k

integers, ni 2 n2 2 na 2 · · · 2 nk , such that .L: ni = N.
i~l

Such a partition may be represented by a Ferrers-Sylvester
graph of nodes with ni nodes in the ith row, e.g.,

represents 5, 4, 2, 2. This two-dimensional diagram may be gen
eralized in a natural way to three, or more, di!mensions. More
formally, we regard ad-dimensional partition of n as a set S of
n nodes, each defined by its non-negative integer coordinates
such that
(x1 , x2, · · · , x,i) E S if and only if (x1', x2', · · · , xi) E S
whenever

0 S xi' S Xi for all i = 1, 2, · · · , d.
This generalization reduces to the usual definition when d = 2.

There is little literat"lire on these generalized partitions. It is
with a view to facilitating numerical studies that this algorithm
is pnblished.

After generation, each partition is presented to the procedure
use, which should be supplied by the user for the purpose he
requires. use has three formal parameters, the first being the
name of a two-dimensional integer array, and• the second and
third being integers giving the size of this array. When the pro
cedure is called by

use (current, dim, N)

then the coordinates of the nodes entering into the newly
generated multi-dimensional partition will be found in current
[l:dim,l:N]. The parameters of use should be called by value,
or alternatively care should be taken that neither dim, N, nor
the contents of the array current are disturbed.

HEFERENCES:
1. GUPTA, II., GwYTHER, C. E., AND MILLER, J. C. P. Tables

of Partitions. Royal Society Mathematic·al Tables, Vol.
4, Cambridge Univ. Press, 1958.

2. MACMAHON, P. A. Combinatory Analysis; Vol. 2, Cam
bridge Univ. Press, 1916.

3. CHAUNDY, T. W. Partition generating functions. Quart.
J. Math. 2 (1931), 234-240.

4. ATKIN, A. 0. L., BRATLEY, P., MAcDoNALD, I. G., AND Mc
KAY, J. K. S. Some computations form-dimensional par
titions. Proc. Cambridge Phil. Soc. (to appear);

begin
integer i; integer array current [l:dim, l:NJ,

313 P I 0

x[l:dim,O: (N-l)Xdim];
procedure part (n,q,r); value n, q, r; integer n, q, r;
begin integers, i, j, k, p, m, z;

L4:

L3:

L5:

for p:= q step 1 until r - 1 do
begin

for i := 1step1 until dim do current [i,n] := x[i,p];
if n = N then begin use (current,dim,N); go to L2 end;
s := r;
for i := 1 step 1 until dim do
begin

for j := 1step1 until dim do x[j,s] := x[j,p];
x[i,s] := x[i,s] + 1;
for j : = 1 step 1 until dim do
begin

if x[j, s] = 0 then go to L3;
fork := 1 step 1 until n do
begin

for m : = 1 step 1 until dim do
begin

z : = if j = m then 1 else 0;
f ciurrent [m, k] ~ x[m,s] - z then go to L4

end;
go to L3;

end k;
go to L5;

end j;
s := s + 1;

end i;
part (n+l,p+I,s);

L2: end p
end part;
for i := 1 step 1 until dim do x[i,OJ := O; part (1,0,1)

end partition

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 314
FINDING A SOLUTION OF N FUNCTIONAL
EQUATIONS INN UNKNOWNS [C5]
D. B. DuLLEY AND M. L. V. Prl'TEWAY (Recd. 7 Apr. 1966,

19 Oct. 1966 and 5 July 1967)
Cripps Computing Centre, University of Nottingham,

England

procedure ndinvt (junctions, initstep, error, cycles, x, f, accest, n);
value n; procedure functions; real initstep, error;
integer cycles, n; array x, f, accest;

comment This procedure performs inverse interpolation in n
dimensions, i.e., it will find a set of values for n variables x,
such that n functions f(x) are zero. A mo:re sophisticated tech
nique, suitable for large values of n, has been developed by
S. M. Robinson (Interpolative Solution of Systems of Nonlinear
Equations, SIAM Journal of Numerical Analysis, 3 (1966),
650-658). It can also be used to fit a curve with n arbitrary
parameters to a set of points, the h functions being formed, in
this case, by equating to zero the differential of the sum of the
squares of the residues with respect to eaeh parameter in turn.

The functions required are specified by a procedure of the
form functions (f, x) where f and x are declared as arrays from
1 to n. This procedure should calculate the n functions from a
set of values given in x, placing the results inf. The first step is
made by forminl; partial derivatives over an interval initstep.
lio - 6 should be suitable for values of x of the order 1 to 10.
Exit from the procedure will occur if:

(i) the root sum square of the x increments is less than
error. If error is negative, th:is condition must be
satisfied for I error I, and in addition this process is
continued until the root slim square of the incre
mentsfails to decrease

or (ii) the number of iterations is greater than cycles, implying
that too much accuracy has been requested

or (iii) the specified equations are singular. In this case exit
is by a jump to a label fails.

On entry, the array x should contain the starting values. On
exit, the arrayxwill contain the accurate root,! the residues and
accest the last increments made to x as a measure of the accuracy.

This procedure calls on a global procedure eqnsolve
(A, b, n, label), which solves n linear simultaneous equations in
n unknowns Ax = b, placing the result in b. If A is singular, it
is assumed that an exit is made by a jump to label;

begin
real work, sumsqres, prevres;
integer i, j, count;
Boolean switch;
array prevf[l :n], copydelf[l :n, 1 :nJ, delx, delf[l :n, 1 :n+ll;
functions(prevf, x);
for i := I step 1 until n do
begin

x[iJ : = x[i] -t- initstep;
functions (f, x);
for j := 1 step 1 until n do
begin

delf[i, jJ :== f[jJ - prevf[jJ;

delx[i, j] := O;
end differencing initial point;
delx[i, ij := initstep;
x[i] := x[i] - initstep;

end setting up the initial matrix of points;
sumsqres : = l1o30;
count := O;

iterate:
switch := true;
prevres : = sumsqres;

tryagain:
for i := I step 1 until n do
begin

f[iJ := prevf[i];

314-P 1- Rl

for j := I step 1 until n do copydelf[i, j] := delf[i, jJ
end copying delf for destructive use in procedure eqnsolve;
eqnsolve (copydelf, f, n, inline);
sumsqres : = 0;
for := 1 step 1 until n do
begin

work := O;
for j := 1step1 until n do work := work - delx[i, j] X ffj];
accest[iJ := work;
x[i] := x[iJ + work;
sumsqres : = sumsqres + work X work

end calculation of next point;
count : = count + 1 ;
functions (f, x);
if count > cycles V sumsqres < error X error /\

(error > 0 V sumsqres > prevres) then go to exit;
for i := 1step1 until n do
begin

work := f[i] - prevf[i];
prevf[i] := f[i];
for j :=-= n step - 1 until 1 do
begin

delx[i, i+IJ := delx[i, j] - accest[i];
delf[i, j+lJ := delf[i, jJ - work

end calculation of new differences;
delx[i, 1) := -accest[iJ;
delf[i, 1) := -work

end moving points up one place in tables;
go to it.erate;

inline:
for i := 1 step 1 until n do
begin

delx[i, nJ := delx [i, n+ll;
delf[i, n] := delf[i, n+ll

end discarding alternative point;
switch := ..., switch;
if switch then go to fails else go to tryagain;

exit:
end ndinvt

REMARK ON ALGORITHM 314 [C5]
FINDING A SOLUTION OF N FUNCTIONAL

COLLECTED ALGORITHMS (cont.)

EQUATIONS IN N UNKNOWNS [D. B. Dulley and
M. L. V. Pitteway, Comm. ACM 10 (Nov. 1967), 726].

JAMES VANDERGRAFT AND CHARLES MESZTENYI

(Recd. 12 Aug. 1968)
Computer Science Center, University of Maryl,and,

College Park, MD 207 42

KEYWORDS AND PHRASES: functional equations, interpola
tion, nonlinear equations, secant method

CR CATEGORIES: 5.13, 5.15

The algorithm, as published, requires four iterations to find the
solution to a pair of linear equations. The difficulty seems to lie in
the last statement of the first column. If this is replaced by

delf fj,iJ :== f[j] - prevf[jJ;

then the algorithm works well. In fact, however, it is now simply
an n-dimensional secant method, which can be described by the
iteration

xH1 == xk - 5xk(5Fk)-1 F(xk), k == 0,1,2, ... ,

where 5Fk and 5xk are matrices whose ith columns are f(xk-')
f (xk) and xk-' - xk, respectively. The iteration is started by setting

x-' = :i;o +he,
where x 0 is a given vector, h is a small positive constant, and e, is
the ith unit coordinate vector.

It should be observed, also, that the algorithm will not break
down if 5xk becomes singular. However, if this should happen it
means that xk, xk-1, • . . ,xk-n lie in a proper subspac~ S of En, Euclid
ean n-space, and all successive iterates will also He in S. Hence
the algorithm may converge to a point in S which is not a solution
to f(x) == 0. To prevent this, the norm of f(x) should be checked
before leaving the procedure. ·

314-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 315
THE DAMPED TAYLOR'S SERIES METHOD FOR
MINIMIZING A SUM OF SQUARES AND FOR
SOLVING SYSTEMS OF NONLINEAR EQUATIONS
[E4, C5]
H. SPATH (Recd. 25 Oct. 1966 and 19 June 1967)
Institut for N eutronenphysik und Reaktortechnik

Kernforschungszentrum Karlsruhe, Germany

procedure TAYLOR (n, m, x, h,f, itmax, epsl, eps2, der, S, KENN,
EXIT);
value n, m, epsl, eps2; integer n, m, ~itmax, KENN;

real eps 1, eps2, S;

Boolean der; array x, h, f; label EX.TT;
comment

Let
m

S(x1,· • · ,xn) = L f;(x1, ... ,xn)
i=l

(m~n) (1)

the function to be minimized. Such functions always appear if
you apply the method of least squares w estimate nonlinear
parameters. The following sequence

x<k+1) = x<k> - {3!:l.x<k> = x<k> - /3(F'T F')-·1p'T F(x<">)
x(k) x(k) x(k)

F = (f1,. · · ,Jm), I (afi), , Fx = - i = 1 · · · m J = 1 .. · n
dXj ' '

1
' ' '

(2)

where /3, which is always possible, is chosen to be such that

(O<X<l) (3)

is known to ~onverge [lJ for any x<0> to a stationary point of
S (gradS=2F,,TF(x)=O), if on the carrying out of the iteration
the matrix F~TF: does not become singular.

Form = n you have !:l.x = F:- 1F(x) and (2) becomes a damped
version of Newton's method for solving the system of nonlinear
equations

F(x) = 0 (4)

All zeros of (4) are stationary points of (1). Thus we are able to
generate a sequence which converges for any x< 0> to a stationary
point of (1) and the possible divergence of Newton's method
(/3= 1) is avoided. It is not assured, however, that the method
will always converge to a solution of (4). Numerical experience
has shown that though Newton's method (/3= 1) diverges for a
certain x< 0 > the damped sequence converges to a solution of (4)
for the same x< 0>.

In the program we have chosen >.. = .2. At each iteration we
set first,B = 1 and then, if (3) is not valid, fJ = 2-i (j=l,2, ... ,16).
If j is greater than 16 then fJ < .00002 and we assume to have
reached a stationary point of S.

Meaning of the formal parameters:
n the number of variables Xi

m the number of functions f i

x the array x[l :n] which must first contain a starting value
x<0> and finally will contain a st2~tionary point of S if

'T , I • ,

Fx Fx or form = n Fx, respectively, has not become
singular

h

f

it max

epsl
eps2

der

315-P 1- 0

h[l :n] is a step size vector for the approximation of F:
(see below)

the array f[l :m] will contain the function values at the
last x calculated in TAYLOR

must initially contain the maximum number of iterations
to be performed. Leaving TAYWR regularly, itmax
contains the actual number of performed iterations

the iteration is stopped when S < epsl
the iteration is discontinued when Li'-1 I !:l.x?>I <

eps2 X Lf-1 I x~k+l) I
if der = true the matrix F: must be produced by a global

procedure named DERIVE(x, dfdx) which adjoins to
the vector x[l :n] the array dfdx[l :m, 1 :n]. In this case
the array h can be loaded by an arbitrary vector, for
instance x.

if der = false the matrix F; is approximated by

dfi fi(X1, ... , X; + hj,. ·. ,Xn) - fi(X1, •.. ,Xj - h;, ... 1 Xn)

dXj 2hj

whereh is a given step size vector. With a suitable choice
of the h; the convergence behavior of the sequence (2)
is not destroyed. DERIVE(x, dfdx) must be formally
declared outside of TAYLOR in this case.

[In some cases, particularly when solving nonlinear
equations, the extra accuracy achieved by using
central differences to estimate the derivatives is not
necessary. A considerable saving in execution time can
be obtained by using one-sided differences which
means only minor changes in the program below.
-REF.)

S should initially contain the greatest positive number
that the employed computer can store. Finally S con
tains S = S(x<ilmax>), if TAYLOR is regularly left.

KENN if after having called TAYLOR
KENN = 0 then one of the above interruptions applies

(epsl, eps2),
KENN = 1 then itmax iterations were carried out and

TAYLOR is left,
KENN = -1 then fJ = 2- 11 and TAYLOR is left.

EXJ T TA YLOR goes to this global label if i encounters a
singular matrix.

Further two global procedures must be made available to
TAYWR:
i) FUNCTION (x, f) which is able to calculate for a given vector

x[l :n] the function values f[l :m]
ii) GAUSS(n, A, b, x, EXIT) which solves the linear system of

n equations Ax = b for x. If A is singular then GA USS returns
to the global label EXIT. Any linear equation solver may be
used for GAUSS;

begin integer i, j, k, z, l; real hf, hl, hs, hz;
array fp, fm[l :m], b, dx[l :n], dfdx[l :m, 1 :n], aa[l :n, 1 :nJ;
hs := S; KENN := z := O;

ITERATION: z := z + 1;
if z > itmax then begin KENN .- l; go to ENDE end;

l := O; hl := 1.0;
DAMP: l := l + 1;

if 1 > 16 then begin KENN:= -1; go to ENDE end;
FUNCTION(x, f); hf := O;
for i := 1step1 until m do hf := hf+ f[i] X f[i];

COLLECTED ALGORITHMS (cont.)

if hf> hs X (1.0 - .2 X hl) then
begin hl := hl X .5;

fork := 1 step 1 until n do x[k] := x[k] + hl X dx[k];
go to DAMP

end;
hs :=hf; if hs < eps 1 then go to ENDE;
if der then DERIVE(x, dfdx) else
begin

for i := 1 step 1 until n do
begin hf:= h[i]; hz := 2.0 X hf;

x[i] := x[i] +hf; FUNCTION(x, fp);
x[i] := x[i] - hz; FUNCTJON(x, fm);
x[i] := x[i] +hf; hz := 1.0/hz;
for k := 1 step 1 until m do
dfdx[k, i] := hz X (fp[k] - fm[k])

end
end;

if m = n then GAUSS(n, dfdx, f, dx, EXIT) elise
begin

for i := 1 step 1 until n do
begin hf:= O;

fork := 1 step 1 until m do
hf:= hf+ dfdx[k, i] x f[k]; b[i] :=hf;

fork := i step 1 until n do
begin hf:= O;

for j := 1 step 1 until m do
hf := hf+ dfdx[j, i] X dfdx[j, k];

aa[i, k] := aa[k, i] := hf
end

end;
GAUSS(n, aa, b, dx,.EXIT)
end;
hz :=hf:= 0;
for i := 1 step 1 until n do
begin

x[i] := x[i] - dx[i]; hz := hz + abs(x[i]);
hf := hf+ abs(dx[i])

end;
if hf 2:: eps2 X hz then go to ITERATION;

ENDE: FUNCTION(x, j); S := O; itmax := z;
for i := 1 step 1 until m do S := S + f[i] X f[i]

end TAYLOR

REFERENCE:
[1] BRAEss, D. Uber Dampfung bei Minimalisierungsverfahren.
Computing 1 (1966), 264-272.

REMARK ON ALGORITHM 315 [E4, C5]
THE DAMPED TAYLOR'S SERIES METHOD FOR
MINIMIZING A SUM OF SQUARES AND FOR
SOLVING SYSTEMS OF NONLINEAR EQUA
TIONS [H. Spath, Comm. ACM 10 (Nov. 1967), 726].
GARY SILVERMAN (Recd. 4 Mar. 1969, 14 Apr. 1969 and
11 June 1969)
IBM Scientific Center, Los Angeles, CA 90067.
KEY WORDS AND PHRASES: solution of equations, least

squares approximation, Newton's method
CR CATEGORIES: 5.13, 5.14, 5.1 5

315-P 2- Rt

The algorithm, as published, may introduce unnecessary trun
cation error into the solution. If the matrix F'x is approximated
by central differences (der = false) then the value of the iterate is
used to compute these differences. This involves two additions to
and one subtraction from the iterate, each of which may result in
truncation error. To correct this, the following statements on
page 727

x[i] := x[i] + hf; FUNCTION (x, fp);
x[i] := x[i] - hz; FUNCTION (x, fm);
x[i] := x[i1 + hf; hz := 1.0/hz;

may be replaced by

hh := x[i];
x[i] := x[i] + hf; FUNCTION (x, fp);
x[i] := x[i] - hz; FUNCTION (x, jm);
x[i] := hh; hz := 1.0/hz;

after declaring an additional real variable hh.
In solving two equations in two unknowns the published al

gorithm converged to a solution with S = 8.83653 X 10-13 and
KENN= -1. After the above modification convergence was with
S = 0 and KENN= 0.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 316
SOLUTION OF SIMULTANEOUS NON-LINEAR
EQUATIONS [C5]
K. M. BROWN (Recd. 27 Oct. 1966, 31 Mar. 1967, 17 July

1967, and 26 July 1967)
Department of Computer Science, Cornell University,

Ithaca, New York

procedure nonlinearsystem (n, maxit, numsig, singular, x);
valuen, numsig; integern, maxit, numsig, singular; array x;

comment This procedure solves a system of n simultaneous
nonlinear equations. The method is roughly) quadratically con
vergent and requires only ((n 2/2)+ (3n/2)) function evaluations
per iterative step as compared with (ni+n) evaluations for
Newton's Method. This results in a savings of computational
effort for sufficiently complicated functions. A detailed de
scription of the general method and proof of convergence are
included in [1]. Basically the technique consists in expanding
the first equation in a Taylor series about the starting guess,
retaining only linear terms, equating to zero and solving for
one variable, say Xk , as a linear combination of the remaining
n - 1 variables. In the second equation, Xk is eliminated by
replacing it with its linear representation found above, and
again the process of expanding through linear terms, equating
to zero and solving for one variable in terms of the now remain
ing n - 2 variables is performed. One continues in this fashion,
eliminating one variable per equation, until for the nth equa
tion, we are left with one equation in one unknown. A single
Newton step is now performed, followed by back-substitution
in the triangularized linear system generated for the xi's. A
pivoting effect is achieved by choosing for elimination at any
step that variable having a partial derivative of largest absolute
value. The pivoting is done without physical interchange of
rows or columns.

The vector of initial guesses x, the number of significant digits
desired numsig, the maximum number of iterations to be used,
maxit, and the number of equations n, should be set up prior to
the procedure call which activates nonlinearsystem. After execu
tion of the procedure, the vector xis the solution of the system
(or best approximation thereto), maxit is now the number of
iterations used and singular = 0 is an indication that a Jaco
bian-related matrix was singular-indicative of the process
"blowing-up," whereas singular = 1 is an indication that no
such difficulty occurred. Storage space may be saved by imple
menting the algorithm in a way which takes advantage of the
fact that the strict lower triangle of the array pointer and the
same number of positions in the array coe are not used;

begin integer converye, m, j, k, i, jsub, iternp, kmax, kplus, tally;
real f, hold, h, fplus, dermax, test, factor, relconvg;
integer array pointer[! :n, 1 :n], isub[l :n--1];
array temp, part[l :n], coe[l :n, 1 :n+ll;
procedure backsubstitution (k, n, x, isub, coe, pointer);

value k, n;
integer k, n; integer array isub, pointer; array x, coe;

comment This procedure back-solves a triangular linear
system for improved x[i] values in terms of old ones;

begin integer km, kmax, jsub;
for km := k step -1 until 2 do
begin kmax := isub[km-1]; x[kmax] :== O;

for j := km step 1 until n do
begin jsub : = pointer[km, j];

316-P 1- 0

x[kmax] := x[kmax] + coe[km-1, jsub] X x[jsub]
end·
x[kt~ax] := x[kmax] + coe[km-1, n+ll

end;
end backsubstitution;
procedure evaluatekthfunction (x, y, k);

integer k; real y; array x; .
begin comment the body of this procedure must be provided

by the user. One call of the procedure should cause the value
of the kth function at the current value of the vector x to be
placed in y;

end evaluatekthfunction;
converge : = 1; singular : = 1; relconvg
for m : = 1 step 1 until maxit do

10 j (-numsig) ;

begin .
comment An intermediate output statement may be in

serted at this point in the procedure to print the successive
approximation vectors x generated by each complete itera
tive step;

for j := 1 step 1 until n do pointer [1, j] := j;
for k := 1 step 1 until n do
begin if k > 1 then backsubstitution (k, n, x, isub, coe, pointer);

evaluatekthfunction (x, f, k); factor : = .001;
A.AA: tally := O; for i := k step 1 until n do

begin itemp : = pointer[k, i]; hold : = x[itemp];
h :=factor X hold; if h = 0 then h := .001;
x[itemp] := hold + h;
if k > 1 then backsubstitution (k, n, x, isub, coe, pointer);
evaluatekthfunction (x, fplus, k);
part[itemp] := (fplus-f)/h;
x[itemp] :=hold; if (abs(part[itemp])=O)V
(abs(f/part[itemp]) > 1.01020) then tally := tally+ 1;

end·
if tally ~ n - k then go to AA; factor :=factor X 10.0;
if factor> .5 then go to SING; go to AAA;

AA: if k < n then go to A; if abs (part[itemp]) = 0

A:

B:

then go to SING;
coe[k, n+ll := O; kmax := itemp; go to ENDK;
kmax := pointer[k, k]; dermax := abs(part[kmax]);
kplus := k + 1;
for i := kplus step 1 until n do
begin jsub : = pointer[k, i]; test : = abs (part[jsub]);

if test < dermax then go to B; dermax := test;
pointer [kplus, i] := kmax; kmax := jsub;
go to END!;
pointer [kplus, i] : = jsub;

END!:
end;
if abs(part[kmax]) = 0 then go to SING; isub[k] := kmax;
coe[k, n+ll := O;
for j : = kplus step 1 until n do
begin jsub : = pointer[kplus, j];

coe[k, jsub] := -part[jsub]/part[kmax];
coe[k, n+ll .- coe[k, n+Il + part[jsub] X x[jsub]

end;
ENDK:

coe[k, n+ll (coe[k, n+l]-f)/ part[kmax] + x[kmax]
end k;

COLLECTED ALGORITHMS (cont.)

x[kmaxJ := coe[n, n+ll;
if ri > 1 then backsubstitution (n, n, x, isub, coe, pointer);
if m = 1 then go to D;
for i := 1 step 1 until n do

if abs((temp[i]-x[i])/x[i]) > relconvg then go. to C;
converge : = converge + 1;
if converge ;?; 3 then go to TERMINATE else go to D;

C: converge := l;
D: for i := 1 step 1 until n do temp[i] := x[i]

endm;
go to THROUGH;

TERMINATE:
maxit := m; go to THROUGH;

SING:
singular : = 0;

THROUGH:
end nonlinearsystem

APPENDIX

We include a sample procedure evaluatekthfunction for the
2 X 2 system:

(1 - _!_) (e2z i - e) + ~ x2 - 2ex1 = 0
471" 71"

1 . X2 X1
- sm (x1x2) - - - - = 0
2 471" 2 '

one solution of which is (.5, 11") see [2]
procedure evaluatekthfunction (x, y, k);

integer k; real y; array x;
begin switch functionnumber := Fl, F2;

go to functionnumber [k];
Fl: y := 2.71828183 X (.920422528 X (exp(2Xx[l]-l)-l)+

x[2]/3.14159265-2Xx[l]);
go to RETURN;

F2: y := .5 X sin(x[l]Xx[2]) - x[2]/12.5663706 - x[l]/2;
RETURN:
end evaluatekthfunction;

REFERENCES:
1. BROWN, K. M. A quadratically convergent method for solv

ing simultaneous non-linear equations. Doctoral Thesis,
Dept. Computer Sciences, Purdue U., Lafayette, Ind., Aug.,
1966.

2. BROWN, K. M., AND CONTE, S. D. The solution of simultane
ous nonlinear equations. Proc. ACM 22nd Nat. Conf., pp
111-114.

316-P 2- RI

Remark on Algorithm 316 [CS]
Solution of Simultaneous Nonlinear Equations
(K.M. Brown, Comm. ACM JO (Nov. 1967), 728-729)

William J. Raduchel (Recd. 12 Aug. 1970
and 8 Jan. 1971)
Project for Quantitative Research in Economic
Development, Harvard University,
Cambridge, MA 02138

Key Words and Phrases: nonlinear equations
CR Categories: 5.15

The procedure was coded in both Burroughs 5500 ALGOL and
IBM FORTRAN-IV and ran correctly on the sample problem provided.
However, two changes seem appropriate: In the loop to compute
the partial derivatives following AAA replace

if h = 0 then h := 0.001;
with

if h = 0 then h : = factor;
for otherwise the purpose of the loop is lost for variables currently
having the value zero. To avoid an interrupt for a zero-divide
replace

if abs ((temp [i]-x[i])/x[i]) > r<:lconvg
then go to C;

with
if abs ((temp [i]-x[i])/(if x[i] ¢. 0 then x[i] else if temp [i] ¢. 0

then temp [i] else 1)) > relconvg then go to C
As the author indicates there are unused positions in the arrays

pointer and coe because of the triangularity of the method. Im
plementing the algorithm to use this fact to conserve storage is
much easier if, in both the main procedure and in backsubstitution,
values are stored and retrieved in natural order rather than accord
ing to the current pivot scheme.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 317*
PERMUTATION [G6]
CnAHLES L. ROBINSON (Recd. 12 Apr. 1967, 2 May 1967

and 10 .July 1967)
Institute for Computer Research, U. of Chicago, Chicago,

Ill.
*This \Vork was supported by AEC Contract no. AT (11-1)-614.

procedure permute(n, k, v); value n, 7c; integer array v;
integer n, k;

comment This procedure produces in the vector v the kth
permutation on n variables. When k = 0, v takes on the value
1, 2, 3, 4, · · · , n. This algorithm is not as efficient as pre
viously published algorithms [1], [2], [3] for generating a
complete set of permutations but it is significantly better
for generating a random permutation, a property useful in
certain simulation applications. Any non-negative value of
k will produce a valid permutation. To generate a random
permutation, k should be chosen from the uniform distribu
tion over the integers from 0 ton! - 1 inclusive;

begin integer i, q, r, x, j;
for i := 1 step 1 until n do v[i] := O;
for i := n step -1until1 do
begin

q := k + i; r := k - q X i; x := O; j := n;
no: if vfj] = 0 then

begin
if x = r then go to it else x : = x + 1

end;
j : = j - 1; go to no;

it: v[j] := i; k .- q;
end

end
REFERENCES:

1. CovEYou, R. R., AND SULLIVAN, J. G. Algorithm 71, Per
mutation. Comm. ACM 4 (Nov. 1961), 497.

2. PECK, J. E. L., AND SCHRACK, G. F. Algorithm 86, Permute.
Comm. ACM 5 (Apr. 1962), 208.

3. TROTTER, I-I. F. Algorithm 115, Perm. Comm. ACM 5 (Aug.
1962)' 434.

317-P 1- 0

COLLECTED ALGORITHM[$ FROM CACM

ALGORITHM 318
CHEBYSCHEV CURVE-FIT (REVISED) [E2]
J. BooTHROYD (Recd. 15 May 1967)
University of Tasmania, Hobart, Tas., Australia

procedure chebfit(x, y, n, a, m); value n, m;
array x, y, a; integer n, m;

comment evaluates, in a[O] through a[m] of a[O:m+l], the co
efficients of an mth order polynomial P(x) = ao + a1x + · · · amxm
such that the maximum error abs(P(x;)-y;)) is a minimum over
the n(n>m+l) sample points x, y[l:n]. The x[i] must form a
strictly monotonic sequence.

This procedure is an extensive revision of Algorithm 91 (Albert
Newhouse, Chebyshev Curve-Fit, Comm. ACM 5 (May 1961),
281). The polynomial P(x) is a best-fit polynomial in the Cheby
shev sense as described by Stiefel (Numerical Methods of Tcheby
chejf Approximati"on), in Langer (En.), On Numerical Approxi
mation, U. of Wisconsin Press, 1959, pp. 217-232. Stiefel (p. 221)
shows that the procedure must terminate after a finite number
of steps. This is not always so with imperfect arithmetic, where
roundoff errors may cause cycling of the chosen reference sets.
This condition is detected by checking that the reference devia
tion is always raised monotonically. At exit the absolute value
of a[m+l] yields the final reference deviation. Negative a[m+lJ
indicates that the procedure has been terminated following the
detection of cycling;

begin
integer i, j, k,mplusl, ri, il, imax, rj, jl;
real d, h, ail, rhil, denom, ai, rhi, xj, hmax, himax, xi, hi, abshi,

nexthi, prevh;
integer array r[O:m+ll; array rx, rh[O:m+ll;
mplusl := m + l; prevh := O;
comment index vector for initial reference set;
r[O] := 1; r[mplusl] := n;
d := (n-1)/mplusl; h := d;
for i := 1 step 1 until m do
begin r[i] := h + l; h := h + d end;

start: h := -1.0;
comment select m + 2 reference pairs and set alternating

deviation vector;
for i := 0 step 1 until mplusl do
begin

ri := r[i];
rx[i] := x[ri]; a[i]
rh[i] := h := -h

end i;

y[ri];

comment compute m + 1 leading divided differences;
for j : = 0 step 1 until m do
begin

il := mplusl; ail := a[ilJ;
rhil := rh[il];
for i := m step -1 until j do
begin

denom := rx[il] - rx[i-j];
ai : = a[i]; rhi : = rh[i];
a[il] := (ail-ai)/denom;
rh[il] (rhil-rhi)/denom;
il := i; ail := ai; rhil := rhi

end i
end j;

318 P I 0

comment equate (m+l)th difference to zero to determine h;
h := -a[mplusl]/rh[mplusl];
comment with h known, combine the function and deviation

differences;
for i := 0 step 1 until mplusl do

a[i] := a[i] + rh[i] X h;
comment compute polynomial coefficients;
for j := m - 1 step -1 until 0 do
begin

xj := rx[j]; i := j; ai := a[i];
for il := j + 1step1 until m do
begin

ail : = a[il];
a[i] := ai - xj X ail;
ai := ail; i := il

end il
end j;
comment if the reference deviation is not increasing mono-

tonically then exit;
hmax : = abs(h);
if hmax :::; prevh then
begin a[mplusl] : = -hmax; go to fit end;

comment find the index, imax, and value, himax, of the largest
absolute error for all sample points;

a[mplusl] := prevh := hmax; imax := r[O]; himax:= h;
j := O; rj := r[j];
for i := 1 step 1 until n do

if i ;;z!'. rj then

begin
xi := x[i]; hi := a[m];
fork := m - 1 step -1 until 0 do
hi := hi X xi + a[k];
hi : = hi - y[i]; abshi : = abs (hi);
if abshi > hmax then
begin hmax : = abshi; himax : = hi; imax

end
el!"ie
if j < mplusl then
begin j := j + l; rj := r[j] end;

i end

comment if the maximum error occurs at a nonreference
point, exchange this point with the nearest reference point
having an error of the same sign and repeat;

if imax ;;z!'. r[O] then
begin

for i : = 0 step 1 until mplusl do
if imax < r[i] then go to swap;
i := mplusl;

swap: nexthi := if i - i + 2 X 2 = 0 then h else -h;
if himax X nexthi 2: 0 then r[i] imax
else
if imax < r[O] then
begin

jl := mplusl;
for j := m step -1 until 0 do
begin r[jl] := r[j]; jl := j end;
r[O] imax

end
else
if imax > r[mplusl] then
begin

COLLECTED ALGORITHMS (cont.)

j := O;
for jl : = 1 step 1 until mplusl do
begin r[j] := r[jl]; j := jl end;
r[mplusl] := imax

end
else r[i-1] := imax;
go to start

end;
fit:
end chebfit

318-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 319
TRIANGULAR FACTORS OF MODIFIED
MATRICES [Fl]
DA vrn R. GREEN (Recd. 26 Apr. 1965, 19 Oct. 1965 and

30 Aug. 1967) *
Mount Isa Mines Ltd., Queensland, Australia

KEY WORDS AND PHRASES: matrix decomposition, matrix
factors, matrix modifier, matrix perturbation

CR CATEGORIES: 5.14

procedure modifacs (l,c,x,m,n,epsilon,fail);
value epsilon,m,n; array l,c,x; integer m,n;
real epsilon; label fail;

co.nunent Suppose that the symmetric, positive definite, n X n
matrix a has been decomposed into the matr;ix product l.lT
where l is a lower triangular matrix and T denotes transpose.
If a is to be modified by the addition of a matrix triple product
x.c.xT, this procedure will modify l, in its own space, to pro
duce the triangular factors of a + x.c.xT in approximately mn2

operations (x is an n X m matrix, c is a symtnetric, m X m
matrix, m;::: 1, m « n).

This situation can arise, for example, in some treatments of
network flow problems and the elastic plastic a,nalysis of plane
frames. The referee has pointed out that a further very useful
application would be updating least squares solutions when
additional readings have been obtained. A fuH description of
the algorithm for general matrices is given by J.M. Bennett,
Triangular Factors of Modified Matrices, Numer. Math. 7 (1965),
217-221.

On entry, array l should hold the lower triaqgular matrix l.
Elements above the diagonal of l are ignored by the procedure.
On exit the modified values of l are held in the same format.
The method will fail if the resulting matrix a + x.c.xT is not
positive definite, so should the absolute value of any pivot be
less than the parameter epsilon, or should a pivot be negative,
then exit through fail will occur;

begin
array p[l :m];
integer i,j,k;
real d,t;
i := 1;

repeat:
d := l[i,i];
t := dj2;
fork := .1step1 until m do
begin

p[k] := O;
for j := 1 step 1 until m do
p[k] := p[k] + x[i,j] X c[j,k];
t := t + x[i,k] X p[k]

end;
if t < epsilon then go to fail;
l[i,i] := sqrt(t);

if i = n then go to exit;
for j := 1 step 1 until m do

p[j] := p[j]/l[i,i];
for j := i + 1 step 1 until n do
begin

l[j,i] := l[j,i]/d;
t := 0.0;
fork := 1 step 1 until m do
begin

x[j,k] := x[j,k] - x[i,k] X l[j,i];
t := t + x[j,k] X p[k]

end;
l[j,i] := l[i,i] x l[j,i] + t

end;
for j := 1 step 1 until m do
begin

c[j,j] := c[j,j] - p[jJt2;
if j < m then
for k := j + 1 step 1 until m do
c[j,k] := c[k,j] .- c[j,k] - p[j] X p[k]

end;
i:=i+l;
go to repeat;

exit:
end

319-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 320
HARMONIC ANALYSIS FOR SYl\fMETRICALLY
DISTRIBUTED DATA [C6]
D. B. HUNTER (Recd. 1 June 1965, 4 Jan. 1966, and 26

June 1967)
Department of .Mathematics, University of Bradford,

Yorkshire, England

KEY WORDS AND PHRASES: harmonic analysis, cosine series,
sine series, function approximation, curve fitting, trigonometric
series

CR CATEGORIES: 5.13

procedure trigjit (index, n, m, h, e, x, f, mt, a);
v.alue index, n, m, h, e; integer index, n, m, mt; real h, e; array

x,f,a;
comment Approximates afunctiony of x by a half-range cosine or

sine series of period 2h from values specified at discrete points,
not necessarily equally-spaced, in the rnnge (0, h). The input
parameters are:

index-if index = 0, a cosine series is fitted, if index = 1, a
sine series. No other value is permitted.

n--number of function-values given.
m--order of the highest harmonic required.
h-ha1f-period of the fitted series.
e-used to terminate the process if rounding errors start to

accumulate excessively (see note below).
x--the given values of x are stored on x[l], x[2], · · · , x[n].
f-the value of y corresponding to x == x[i] is stored on f[i]

(i=l, 2, · · ·, n).
The procedure then calculates the coefficients a[r] in the ap

proximation
mt

!a[Oj + L a[r] cos (r7rx/h) if index = 0,
r=l

S(x) =
mt

L a[rJ sin (TTrx/h) if index = 1.
r=l

Here normally mt = m, but provision is included to calculate
fewer harmonics if rounding errors begin to accumulate exces
sively (see note below).

Method of calculation. The coefficients a[r] are calculated
so as to minimize the sum

n = { ! if x[i] = 0 or h, L wi(f[i]-S(x[i])) 2, Wi
i=l 1 otherwise.

The method used is similar to that of [1]. First S(x) is expanded
in the form

where

mt

S(x) L bipi(:~)
i=index

?:

!a;o + L a;i cos (frrx/h} if index = 0,
j=l

i

L aii sin (j7rx/h)
j=l

if index = 1.

320-P 1- 0

Then

mt

a[r] = L b;air.
i=r

The polynomials Pi(x) are chosen so as to be orthogonal w.r.t.
summation over x = x[i], with weights Wi . This implies that

n n

bi = L wif[j]pi(x[j])/L wi[PhiW·
j=l j=l

The Pi(x) are generated by a recurrence relation

Pi+1(x) = (2 cos (7rx/h)-ai)Pi(X) - ~iPi-1(x)

where

n

2 L Wj cos (11'x[j]/h) · [pi(x[j])]2

j=l
·----------------

n

n

L Wj[ph[j])] 2

j=l

L Wj[pi(x[j])] 2

j=l
n

I: wj(pi-1(x[j])] 2

j=l

The initial forms are

po(x) = ! if index = 0

or p1(x) = sin (11'x/h) if index = 1.

(i ~ index),

(i > index).

Thus if the x[i] are equally spaced, i.e. if x[i] = (i-l)h/ (n-1),
it follows that

pk(x) = cos (k7rx/h) or sin (hx/h) according as index = 0 or 1.
The values of the Pi(x) are calculated by the method of [2].
Note. If the x[i] are verp irregular in their distribution

serious rounding errors may accumulate, and it is recommended
that the points be as nearly as possible equally spaced. However
the procedure includes provision, under control of parameter e,
to reduce the number of harmonics calculated, mt, if rounding
errors do start to build up.

Rounding error is controlled by estimating the error which
would occur in the analysis of a standard function q(x) for the
given points, where

r 1 if index = 0,

q(x) = ~ n l n sin (11'X/h)/ ~1 1 sin (11'x[j]/h) [if index = 1.

The estimate used for the rounding error in the rth harmonic is

r

Cr= L Ci X di,
i«=index+I

where

Ci = max [aii I for index S j S i,

n n

di= I L w1q(x[j])pi(x[j])/L w1[ph[j])] 2 I·
j=l j=l

COLLECTED ALGORITHMS (cont.)

If for any r, er > e, the procedure is term:nated with mt = r - 1.
REFERENCES:

1. CLENSHAW, C. W. Curve-fitting with a digital computer,
Comput. J. 2, 170--173.

2. WATT, J. M. A note on the evaluation of trigonometric
series. Comput. J. 1, 162;

begin
integer i, j; real sl, s2, s3, alpha, beta, c, d, u, v, w, g, s, mean,

p, coeff, er, cer;
array cl[O:m], c2[0:m+1J;
g := 3.1415926536/h;
if index = 0 then mean : = 1 else
begin mean : = 0;

for i := 1 step 1 until n do
mean := mean + abs(sin(gXx[i]));

mean : = n/mean
end;
for i := index step 1 until m do a[i] := O;
G2[m+1J := alpha := cer := O;
for i := 0 step 1 until m do cl[i] := c2[i] := O;
cl[index] := -1;
beta := s3 := 1; mt := index;

loop: coeff : = 0; for i : = index step 1 until mt do
begin

d := (if i=O then c2[1] else cl[i-1]) + c2[i+ll - beta X
cl [i] - alpha X c2[i];

cl[i] := c2[i]; c2[i] := d; d := abs(d);
if d > coeff then coejf : = d
end;
s 1 : = s2 : = d : = er : = O;
for i := 1 step 1 until n do
begin

c := 2 X cos(gXx[i]);
if mt= 0 then begin p := 0.5; go to sum end;
u := v := O;
for j := mt step - 1until1 do
begin

w := c Xu - v + c2fj]; v := u; u := w
end;
if index = 0 then
begin

s := 1; p := 0.5 X (uXc+c2[0]) - v
end
else
begin

s := sin(gXx[i]); p := u X s
end;

sum: w := if x[i] = 0 V x[i] = h then 0.5 else 1 ;:
d := d + w x p x f[i];
ifmt >index then er:= er+ w X p X s X mean;
p := w X p j 2; sl := sl + c X p; s2 :,;,,, s2 + p

end;
cer := cer + coeff X abs(er)/s2;
if cer > e then go to exit; alpha := sl/s2;
beta := s2/s3; d := d/s2; s3 := s2;
for i : = index step 1 until mt do

a[i] := a[i] + d X c2[i];
mt : = mt + 1; if mt ~ m then go to loop;

exit: mt := mt - 1
end trigjit;
procedure harmanalsymm (n, m, h, e, x, ypos, yneg, me, ms, a, b);

value n, m, h, e; integer n, m, me, ms; real h, e; array x,

ypos, yneg, a, b;
coininent Approximates a function y of x by a. finite trigono

metric series of period 2h from values specified at discrete points
in the range (-h, h). Those points need not be equally spaced,

320~-P 2- 0

but must be symmetrically distributed about the value x = 0.
Thus only the values of x in the range 0 ~ x ~ h need be given.

The input parameters are:
n-number of values of x in the range 0 ::::; x ~ h.
m-order of the highest harmonic required.
h-half-period of the fitted series.
e-used to terminate the process if rounding errors start to

accumulate excessively (see note on trigfit).
x-the given values of x in the range (O, h) are stored on x[l I,

x[2], · · · , x[n].
ypos-the value of y corresponding to x = + x[i] is stored on

ypos[i] (i=l, 2, · · · , n).
yneg-the value of y corresponding to x = - x[i] is stored on

yneg[i] (i=l, 2, ··· ,n).
The procedure then calculates the coefficients a[r] and b[r] in the
approximation

me ms

S(x) = ta[O] + L a[r] cos (r7rx/h) + L b[r] sin (r7rx/h).
r=l r=l

Here normally me = ms = m, but provision is included to calcu
late fewer harmonics if rounding errors begin to accumulate
excessively (see note on trigfit), or if m exceeds its maximum per
missible value. For the cosine terms this maximum value is
n - 1. For the sine terms it is n, this figure being reduced by 1
for each x[i] equal to 0 or h. The cosine and sine series are calcu
lated separately by trigjit, with

begin

f[i] = {0.5 X (ypos[i] + yneg[i]) for cosine series,

0.5 X (ypos[i] - yneg[i]) for sine series;

integer i, md; array f[l :n]; procedure trigjit;
for i := 1 step 1 until n do

f[i] := 0.5 X (ypos[i] + yneg[i]);
trigjit (0, n, if m 2:: n then n - 1 else m, h, e, x, j, me, a);
md := n;
for i := 1 step 1 until n do
begin

f[i] := 0.5 X (ypos[i] - yneg[i]);
if x[i] = 0 V x[i] = h then md := md - 1
end;

trigfit (1, n, if md 2:: m then m else md, h, e, x, f, ms, b)
end harmanalsymm

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 321
t-TEST PROBABILITIES [S14]
JOHN MORRIS (Recd. 6 Jan. 1967, 18 July 1967, and 10

Oct. 1967)
Computer Institute for Social Science Research, ::.\Iichigan

State University, East Lansing, Michigan

KEYWORDS AND PHRASES: T-test, Student's t-statistic, dis
tribution function

CR CATEGORIES: 5.5

real procedure ttest (x, df, maxn, gauss, error);
value x, df, maxn; real x; integer df, maxn; real procedure

gauss; label error;
comment This procedure gives the probability that t will be

greater in absolute value than the absolute value of x, where t
is the Student t-statistic, as defined and ta.bled by R. A. Fisher
[2], evaluated at df degrees of freedom: that is, 2 times the inte
gral of the distribution function of t, evaluated from abs(x) to
infinity. The procedure may also be used, e.g., to estimate the
two-tailed probability of a simple correlation, r, where N = the
number of pairs of observations, df = N - 2, and t = r X sqrt
(df /(1.0 - r i 2))(cf. e.g. [5]).

For reasonably small df, Student's cosine formula is used [3,
4]:

9

ttest = 1.0 - coef £ cosaf--1 fJ dfJ

where fJ = arctan (t/sqrt(df)) and

coef = (df-1)/(df-2) X (df-3)/(df-4)

... {(!) X (2/7r) for odd df,

(~) x (~) x m for even df.

Integrated in series, this gives results which appear to be cor
rect to very nearly the full single precision accuracy of the
machine (in terms of the number of digits after the decimal point,
not necessarily significant digits).

An approximation due to R. A. Fisher [1] gives results accurate
to within ±3 X 10-7 when maxn has been set at 30. The tradeoff
on time is also optimal at about this point. The real procedure
gauss computes the area under the left-hand portion of the nor
mal curve. Algorithm 209 [6] may be used for this purpose.

Thanks to the referee for many helpful suggestions, most of
which have been incorporated, ancl to David F. Foster, who
wrote an early version of part of the program.

REFERENCES:
1. FISHER, R. A. Metron 5 (1925), 109-112.
2. --. Statistical Methods for Research Workers. Oliver and

Boyd, Edinburgh, 1965.
3. GossET, W. S. (Student). The probable error of a mean.

Biometrika 6 (1908), 1.
4. --. New tables for testing the significance of observations.

Metron 5 (1925), 105.
5. GUILFORD, J. P. Fundamental StatisUcs in Psychology and

Education. McGraw-Hill, New York, 1956, pp. 219-221.
6. IBBETSON, D. Algorithm 209, Gauss. Comm. ACM, 6 (Oct.

1963), 616.

321-P 1- 0

begin
if df < 1 then go to error;
if x = 0 then ttest : = 1.0 else
begin real t;

t := abs (x);
if df < maxn then
begin integer i, nh; real cth, sth, cthsq, xi, coef, z;

z := t/sqrt(df);
cth := 1.0/sqrt(zj2+1.0);
sth := z X cth;
cthsq := cth i 2;
nh := (df-1) + 2;
if df = 2 X (df+2) then
begin

t := sth;
if nh = 0 then go to g;
cth := cthsq; xi := 1.0;
coef : = 0.5 X sth

end else
begin

t := 0.6366197724 X arctan(z);
comment 0.6366197723675813430755351 · · · = 2/ 7r;
if nh = 0 then go to g;

xi := O; coef := 0.6366197724 X sth
end;
for i := 1 step 1 until nh do
begin

t := t + coef X cth; cth := cth X cthsq;
xi := xi + 2.0;
coef : = coef X xi/ (xi+ 1.0)

end;
g: t := 1.0 - t
end else

if t > 6.0 then t := 0 else
if df < 106 then

begin real f, t2, t4, t6, t8, tlO, t12, t14, tl6, t18;
f : = df; t2 : = t x t; t4 : = t2 x t2; t6 : = t4 x t2;
t8 := t6 x t2; tlO := t8 x t2; t12 := tlO x t2;
tl4 := t12 x t2; tl6 := t14 x t2; tl8 := t16 x t2;
comment 0.3989422804014326779399461 · · · = 1/ sqrt (2X 7r);
t := 2.0 X (gauss(-t)+tX0.3989422804 Xexp(-0.5Xt2)X

((t2+1.0)/ (4.0XJ)+ (3.0X t6-7 .OX t4-5.0X t2-3.0)/
(96.0XJXJ)+(t10-ll.0Xt8+14.0Xt6+6.0Xt4-3.0Xt2-
15.0)/(384.0Xfi 3)+(15.0Xt14-375.0Xt12+2225.0Xt10-
2141.0Xt8-939.0Xt6-213.0Xt4-915.0Xt2+945.0)/
(92160.0XJ i 4) + (3.0X tl8-133.0X t16+ 1764.0X tl4-
7516.0X t12+5994.0X t10+2490.0X t8+ 1140.0X t6+ 180.0X
t4+5355.0Xt2+17955.0)/(368640.0Xf j 5)))

end else t := 2.0 X gauss(-t);
ttest := if t <0 then 0 else t

end
end ttest

COLLECTED ALGORITHMS (cont.)

REMARKS ON
ALGORITHM 321 [S14] t-TEST PROBABILITIES

[John Morris, Comm. ACM 11 (Feb. 1968), 115-6]
ALGORITHM 344, STUDENT'S t-DISTRIBUTION

[David Levine, Comm. ACM 12 (Jan. 1969), 37-8]
G. W. HILL, AND MARY LouGHHEAn* (Recd. 16 Apr.

1969 and 29 Sept. 1969)
Commonwealth Scientific and Industrial Research Or

ganization, Division of Mathematical Statistics, Glen
Osmond, South Australia
*Present address: Monash University, Clayton, Victoria,
Australia

KEY WORDS AND PHRASES: t-test, Student's t-statistic,
distribution function, approximation
CR CATEGORIES: 5.12, 5.5

Algorithm 321, as published, was coded in CSXRO 3200 ALGOL
and run on a CDC 3200 with programmed floating point opera
tions. A FORTRAN equivalent of Algorithm 321 was run for com
parison with the FORTRAN Algorithm 344, which uses the same
recurrence relation based on Student's cosine formula as that
used in Algorithm 321 for df degrees of freedom less than maxn.
Numerical results agreed with 6-digit tabulated' values [l] and
double precision calculations indicate that accuracy is limited by
truncation of intermediate results to the precisio:h of the proces
sor, with error in the final result increasing as the square root of
df. Timing tests rated Algorithm 344 at approximately (! df+l!)
msec; slightly faster than Algorithm 321, which required ap-
proximately (! df+2!)msec for df < maxn. .

For df ;::: maxn Algorithm 321 uses Fisher's [2]: fifth order ap
proximation, whose accuracy is summarized in 'Ii.he diagram. for
df = 10(10)50 (see Figure 1). The shaded regions ,indicate values
of t for which the claimed accuracy of 3 X 10-·1 for m,aa,n = 30
is not attained. For t > 6.0 this algorithm retu~ns zero values,
giving errors up to 1.39 X 10-a. The following a.Iterations avoid
this error and, by "nesting" Fisher's polynomial :approximation,
reduced the time from about 25msec to 20msec a)nd reduced the
store requirement by 27%.

Replace the 19 lines beginning "g: t := 1.0 ·- t" by

g: x := 1.0 - t
end else
begin x := 2.0 X gauss (-t);
if df < io6 then
begin real f, t2;
f := 0.25/df; t2 := t x t;

321-P 2- RI

I:'"
0
L..
L..

-4

-5

~-6
$2

Ol
0
_J -7

2 3 4 5 6
Student's t

FIG. 1

x := (((((((((((((3.0Xt2-133.0)Xt2
+1764.0)Xt2-7516.0)Xt2+5994.0)Xt2+2490.0)Xt2
+1140.0)Xt2+180.0)Xt2+5355.0)Xt2+17955.0) X f
+ ((((((15.0Xt2-375.0)Xt2+2225.0)Xt2-2141.0)Xt2
-939.0)Xt2-213.0)Xt2-915.0)Xt2+945.0) X f /60.0

7

+ ((((t2-ll.O)Xt2+14.0)Xt2+6.0)Xt2-3.0)Xt2-15.0) X f
+((3.0Xt2-7.0)Xt2-5.0)Xt2-3.0)Xf /6.0
+(t2+1.0)) X f X t X 0.7978845608 X exp (-0.5Xt2) + x

end;
ttest : = if x < 0.0 then 0.0 else x

8

The last statement, recommended by the referee, avoids negative
results due to rounding errors when the answer is small.

In Algorithm 344 the three statements beginning "1 T =
ABS(T)" were replaced by:

1 T2 = T*T/FLOAT(DF)
Tl = SQRT (T2)
T2 = l./(1.+T2)

to avoid changing the calling parameter T.
Although Algorithm 321 occupies about twice the store space

needed for Algorithm 344, and is slightly slower for df < maxn =
30, it is about three times faster for df = 100.

REFERENCES:
1. SMIRNov, N. V. Tables for the Distribution and Density Func

tions of t-distribution. Pergamon Press, New York, 1961.
2. FrsHER, R. A. Expansion of "Student's" integral in powers of

n-1. Metron. 5, 3 (1926), 109-112.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 322
F-DISTRIBUTION [814]
EGON DoRRER (Recd. 25 Jan. 1967, 3 July 1967, and 17

Oct.1967)
Institut fiir Photogrammetrie und Kartographie, Tech

nische Hochschule Miinchen, W. Germany; now: De
partment of Surveying Engineering, University of
New Brunswick, Fredericton, N.B., Canada

KEY WORDS AND PHRASES: Fisher's F-distribution, Stu·
dent's t-distribution

CR CATEGORIES: 5.5

real procedure Fisher (m, n, x);
value m, n, x; integer m, n; real x;

comment Fisher's F-distribution with m and n degrees of
freedom. Computation of the probability

r (m ~ n) lw €mt2- 1

Pr(F < x) = · dt:.

(m) (n) O (:~ + l)<m+n)/2 c;,
r - . r -

2 2

where w = (m/n)x and F = (L:i-1 x.2/m)/('£/?-1 yNn). The
13olution results recursively from the basic integrals

Fisher (1, 1,x) = 2· arctan -../w/7r, Fisher (1, 2,x) = (w/(w+l))t1

Fisher (2, 1, x) = 1 - 1/(w+l)+, Fisher (2, 2, x) = w/(w+l).

·ir is introduced by 0.3183098862 = l/7r. By calling Fisher (1, n,
.t j 2), Student's t-distribution will be obtained;

begin integer a, b, i, j; real w, y, z, d, p;
a := 2 X (m+2) - m + 2; b := 2 X (n+2) - n+ 2;

w := x X m/n; z := 1/(l+w);
if a= 1 then
begin

if b = 1 then
begin

p := .~qrt(w); y := 0.3183098862;
d := y X z/p; p := 2 X y X arctan(p)

end else
begin

p := sqrt(wXz); d := 0.5Xp X z/w
end

end else
if b = 1 then
begin

p := sqrt(z); d := 0.5 X z X p; p .-- 1 - p
end else
begin

d := z X z; p := w X z
·end;
:y := 2 X w/z;
for j := b + 2 step 2 until n do
begin

d := (1 + a/(j-2)) X d X z;
p := if a = 1 then p + d X y/(j-1) ulse (p+w) X z

endj;
'.Y := w X z; z := 2/z; b := n - 2;
for i := a + 2 step 2 until m do

322-P 1- Rl

begin
j:= i + b; d := y x d x j/(i-2); p := p - z x d/j

end i;
Fisher := p

end Fisher

CERTIFICATION OF ALGORITHM 322 [814]
F-DISTRIBUTION [Egon Dorrer, Comm. ACM 11 (Feb.

1968), 116]
J. B. F. FIELD (Recd. 15 Aug. 1968)
Commonwealth Scientific and Industrial Research Organi"'.'

sation, Adelaide, South Australia
KEY WORDS AND PHRASES: Fisher's F-distribution,

Student's t-distribution
CR CATEGORIES: 5.5

Algorithm 322 was coded into FORTRAN and run on a CDC 3200,
and its accuracy for moderate probability levels was tested using
(a) 5-figure critical values of the F-distribution at the .95 and .99
levels, taken from [1], and (b) 6-figure probability values of the t·
distribution, taken from [2). In both cases, limitations in the re
sults appeared to be due to limitations in the tables, rather than in
the algorithm.

232 values of the F-distribution were tested, form = 1 and 12
using all tabulated values of n, and for n = 10 and 21 using all
tabulated values of m. All the results agreed with the tabulated
probability level to 4 significant figures, 89% to 5 figures, and over
half the results agreed to 6 or more figures.

300 values of the t-distribution were tested, for n = 1 (1)30 and
t = .5(.5)5. All the results agreed with the tabulated probability to
5 significant figures, and 90% to the full 6 figures given in
the tables.

To test extreme probability levels, another 100 values of the
F-distribution were used: form = n = 2, 10, 50, 75, 100, 120, 150,
200, 300, and 400 for each of the values x = 10i, where i = 5(1)5.
It was found that for probabilities which are extremely close to 0
or 1, the algorithm may produce probabilities which are slightly
less than zero, or slightly greater than 1. It is recommended that
a "guard" be inserted in the program to set these values equal to
0 or 1. For example, this could be done. by inserting before
Fisher:=p the additional statement

p : = if p > 1 then 1 else if p < 0 then 0 else p;

The time taken by the algorithm was directly proportional to
the sum of the degrees of freedom. The constant of proportionality
depended mainly on whether m was even or odd (the time taken
for m even being .81 of the time taken for m odd, using a CDC 3200
with programmed floating point). To a much lesser extent, it was
influenced by whether n was even or odd (the time taken for n even
being .99 of that for n odd).

REFERENCES
1. OWEN, D. B. Handbook of Statistical Tables. Addison-Wesley,

Reading, Mass., 1962.
2. SMrnNov, N. V. Tables for the Distribution and Density Func

tions oft-distribution. Pergamon Press, Oxford, 1961.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHl\.f 322 (814]
F-DISTRIBUTION [Egon Dorrer, Comm. ACM 11

(Feb. 1968), 116]
HuBEHT TOLMAN (Recd. 7 Apr. 1970 and 13 Oct. 1970)
Department of Mathematics, Northeast Louisiana State

College, Monroe, LA 71201
KEY WORDS AND PHRASES: Fisher's F-distribution,
Student's t-distribution
CR CATEGORIES: 5.5

Replacing the statements
for j : = b + 2 step 2 until n do
begin

d := (1 +a/(j-2)) X d X z;
p : = if a = 1 then p + d X y / (j - 1) else (p + w) X z

end j;
by the algebraically equivalent statements

if a = 1 then
begin

for j : = b + 2 step 2 until n do
begin

d := (1 + a/(j-2)) X d X z;
p := p +dXy/(j-1)

end j;
end
else
begin

zk := z i ((n-1) + 2);
d : = d X zk X n/b;
p := p X zk + w X z X (zk-1)/(z-1);

end;
substantially reduces the execution time when mis even, and did
not change the speed when mis odd. For the resulting algorithm,
the execution time is proportional to m when m is even, and
proportional to m + n when m is odd.

TABLE I. PERCENT TIME SAVINGS

m
4 8 16 32 64

8 34 3 2 l 1
16 37 32 20 12 7
32 62 54 45 :30 19

n 64 79 73 63 51 36
128 88 85 78 68 54
256 94 92 88 81 71
512 96 95 93 90 83
1024 98 97 96 94 90

Both the new and original forms of the algorithm were coded
in Fortran and timed. The percentage reductions in execution
time are given in Table I. The greatest reductio;n came when n
is large and m is small. In many statistical applic,ations n is sub
stantially larger than m and seldom smaller, th~reby falling in
the region of the greatest saving in execution time.

322-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM :323
GENERATION OF PERMUTATIO~\J"S IN
LEXICOGRAPHIC ORDER [G6]
R. J. ORD-SMITH (Recd. 27 Apr. 1967 and 26 July 1967)
Computing Laboratory, University of Bradford, Bradford,

Yorkshire, England

KEY WORDS AND PHRASES: permutations, lexicographic
order, lexicographic generation, permutation generation

CR CATEGORIES: 5.39

Author's Remark. Lexicographic generation involves more
than the minimum of n ! transpositions for generation of
the complete set of n! permutations of n objects. The actual
number of transpositions required can be shown to tend
asymptotically to (cosh 1) n! ~ 1.53n! However, lexi
cographic generation can be described by an algorithm
requiring very simple book-keeping. The author is indebted
to Professor H. F. Trotter for suggesting an improvement
to an original algorithm, which now results in a process
more than twice as fast as the previously fastest lexi
cographic Algorithm 202 [Comm. ACM 6 (Sept. 1963),
517]. Tabulated results below show BE'STLEX to be only
9.3 percent slower than the transposition Algorithm 115
[Comm. ACM 5 (Aug. 1962), 434] when n = 8.

The usual practice is adopted of usin~; a nonlocal Boolean
variable called first which may be assigned the value true
to initialize generation. On procedure call this is set false
and remains so until it is again set true when complete
generation of permutations has been achieved. Table I
gives results obtained for BESTLEX. The times given in
seconds are for an I.C.T. 1905 computer. tn is the time for
complete generation of n ! permutations. rn has the usual
definition rn = tn/(n·tn-1).

TABLE I

Number of
Algorithm t1 ts rs trans positions

BEST LEX 6 47 0.98 -1> 1.53n!
202 12.4 100 1.00
115 5.6 43 0.98 n!

procedure BESTLEX (x, n); value n; integer n; array x;
begin own integer array q[2:n]; intege1r k, m; 1·eal t;
comment own dynamic arrays are not often implemented. The

upper bound will then have to be given explicitly;
if first then
begin first : = false;

form := 2 step 1 until n do q[m] .- 1
end of initialization process;
if q[2] = 1 then
begin q[2] : = 2;

t := x[l]; x[l] := x[21; x[2] := t;
go to finish

end;
fork := 2 step 1 until n do

323-P 1- RI

if q[k] = k then q[k] := 1 else go to trstart;
first := true; k := n; go to trinit;
trstart: m := q[k]; t := x[m]; x[m] := x[k]; x[k] := t;

q[k] := m + 1; k := k - 1;
trinit: m : = 1 ;
transpose: t :=-x[m]; x[m] := x[k]; x[k] .- t;

m := m + 1; k := k - 1;
if m < k then go to transpose;

finish:
end of procedure BESTLEX

CERTIFICATION OF ALGORITHM 323 [G6]
GENERATION OF PERMUTATIONS IN LEXI
COGRAPHIC ORDER [R. J. Ord-Smith, Comm.

ACM 11 (Feb. 1968), 117]
I. M. LEITCH (Recd. 9 July 1968, 6 Jan. 1969 and 17

Mar. 1969)
Department of Medicine, University of Newcastle upon

Tyne, Newcastle upon Tyne, England

KEY WORDS AND PHRASES: permutations, direct lexico
graphic order, reverse lexicographic order, lexicographic generation
CR CATEGORIES: 5.39

The ranking function Rd(a1 , a2 , · · · , an) which specifies the
position of a permutation (a1 , a2 , · · · , an) of the numbers 0 (1)
n-1 in a direct lexicographic order is commonly defined recur
sively[l] by

and

Rd(a1 , a2 , · · · , an) a1 • (n-1) ! + Rd (M(a1 , a2 , · · · , an))

where M(a1 , a2 , • • • , an) is the permutation of the numbers o:(l)
n-2 obtained from a1 , a2 , • • · , an by deleting a1 and reducing by
unity all those elements which exceed a1 .

Reverse lexicographic order of a permutation (b1 , b2 , • • • , bn)
is defined by a similar ranking function,

Rr(b1 , b2 , · • • , bn) = n ! - 1 - Rd(bn , • • • , b2 , b1).

As reverse lexicographic order has the property (which direct
order does not) that all the permutations which involve only the
first K elements are generated before the (K + 1)-tlv'element .is
moved, it is sometimes preferred above the direct order. trlie two
are closely related since in any n-element permutation vector a
typical element ai of the direct order corresponds to element an-i+i

of the reverse order. As both of these orderings are in common use,
it is inappropriate to describe either as lexicographic without
further qualification.

After replacement of the dynamic upper bound of the own
integer array by a constant (necessitated by a compiler imple
mentation restriction), Algorithm 323 was compiled by the Kids
grove ALGOL compiler and run on an English Electric KDF9 com
puter. The full permutation was generated for values of n = 2 (1)

COLLECTED ALGORITHMS (cont.)

9. The permutations generated by BESTLEX (Algorithm 323)
were compared automatically with those of Algorithm 202 [Comm.
ACM 6 (Sept. 1963), 517]. It was known that Algorithm 202 gener
ated permutations in a direct lexicographic order, and it was found
that permutations were produced by BEST LEX in a reverse lexi
cographic order.

The order in which the permutations of BESTLEX are genera
ted is governed by the own integer array q of that procedure and
its integer counters m and k. Because of the simple relationship
which exists between direct and reverse lexicographic order, the
published algorithm may be modified so that it will generate per
mutations in direct lexicographic order by systematic application
of the following three rules:

1. Wherever the value 1or2 occurs either as a subscript expres
sion or an integer constant which is not part of a more complex
expression, replace it by nor n-1, respectively.

2. Redefine the bounds of q and the limits of both for loops to
be from 1 to n-1. Reverse the direction of the k for loop.

3. In the last seven lines of the algorithm, the integer counter k
must be incremented by 1 from 1 (rather than decremented from
n), and, similarly, wherever m+l appears in an assignment state
ment it is replaced by m-1. Consequently m and k must be re
versed in the comparison on the penultimate line of the algorithm.

At each call of the algorithm these modifications redirect atten
tion from the beginning of the permutation vector to the end, and
so cause permutations to be generated in direct order. However,
because of the nature of these changes, no loss in computational
efficiency should be expected (since the only ext11a arithmetic in
curred is the evaluation of n-1, which need be performed only
once for each procedure call). This was confirmed at run times as
the times taken to generate a full permutation in reverse order by
the published algorithm and in direct order by ·the modified al
gorithm were identical.

Table I gives the time in seconds (tn) which is required by each
procedure for the complete generation of the nl permutations, rn
has the usual definition of tn/(n·tn-1).

Algorithm

BEST LEX
202

TABLE I

"' ta ,..
10.01 80.08 1.00
20.84 166.75 1.00

Both algorithms were also tested under the Whetstone ALGOL
interpreter on the KDF9, an ALGOL compiler for the 1130, and the
IBM 360 Model 67 Operating System ALGOL "F" compiler. As the
last two implementations do not recognize the concept of own,
results were obtained by inserting an integer array into the pro
cedure heading as an additional parameter and by not declaring
the own integer array in the procedure body. :For comparison,
execution times for then I permutations which were recorded when
the procedure was run on the IBM 360/67 are ghren in Table II. ·

TABLE II
Ir ta ra

BEST LEX 7.6 61.01 0.99

REFERENCES

1. LEHMER, D. H. Teaching combinational tricks to a computer.
Proc. of Symp. in Appl. Math., Vol. 10, Amer. Math. Soc.,
Providence, R. I., 1960, pp. 179-193.

323-P 2- RI

Remark on Algorithm 323 [G6]
Generation of Permutations in Lexicographic Order
[R.J. Ord-Smith, Comm; ACM 11 (Feb. 1968), 1171

Mohit Kumar Roy [Recd. 15 May 1972]
Computer Centre, Jadavpur University, Calcutta 32,
India

In presenting Algorithm 323, BESTLEX, for generating per
mutations in lexicographic order, the author has mentioned the
number of transpositions. It may be remarked here that equal
numbers of transpositions are required by both BESTLEX and
the previously fastest algorithm, Algorithm 202 [1]. The exact
number of transpositions (Tn) necessary to generate the complete
set of n ! permutations is given by

Tn = n! (t/;n-1) - (n+l)/2, if n is odd, and
Tn = n! (t/ln-2) - n/2, if n is even,

1 1 1
where i/;2n = 1 + 2t + 4i + · · · + (2n)

1
~ 1.543 for n 2::: 3.

The above expressions do not include the few extra transpositions
(equal to the integral part of n/2) required by BESTLEX to gener
ate the initial arrangement from the final one, as this portion has
not been included in Algorithm 202. Therefore, the number of
transpositions has no importance in the context of the claim that
BESTLEX is more than twice as fast as Algorithm 202.

The main factor contributing to the speed of BESTLEX is
the substantial reduction in the number of comparisons required,
by the introduction of the own integer array q. Taking into account
only those comparisons which involve array elements, the number
of comparisons (Cn) required to generate all the n! permutations
can be shown to be equal to

Cn (Algorithm 202) = '¥ [1 + 3<,0n--2l + n,

Cn (BESTLEX) = 11! [!+<Pn-d,

1 1 l
where <Pn = 1 +

2
-, + -

3
, + · · · + r ~ 1.718for11 2::: 6.

. . n.

This shows that the number of comparisons required by BESTLEX
is lower by .859(11!) (approximately) in the case of the generation
of all the n ! arrangements.

Finally, a modification of the BESTLEX algorithm is sug
gested which will reduce the number of comparisons again by
(11 !) /2. The modification involves replacement of lines 2-J 4 of
Algorithm 323 by the following.

begin own integer array q[3:n]; integer k, m;
real t; own Boolean.flag;

comment Own dynamic arrays are not often implemented. The
upper bound will have to be given explicitly;

if first then
begin first : = false; flag : = true
for m : = 3 step 1 until n do q [m] : =

end of initialization process;
if flag then
begin flag : = false;

t := x[l]; x[l] := x[2J; x[2J := t;
go to finish

end;
flag : = true;
for k : = 3 step 1 until 11 do

COLLECTED ALGORITHMS (cont.)

References
1. Shen, Mok-Kong. Algorithm 202, generation of permuta
tions in lexicographical order. Comm. ACM 6 (Sept. 1963), 517.

Added in proof: An improved version of BESTLEX, viz. Al
gorithm 323A, Generation of Permutation Sequences: Part 2, by
R.J. Ord-Smith !Comp. J. 14, 2 (May 1971), 136-139], which also
incorporates the modification suggested here, has come to the au
thor's attention.

323-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGOIUTIL\ I ;~24

~IAXFLOW [HJ
G. BAYER (Recd. :n July 1967)
Tcchnische Hochschulc, Braunschweig, Germany

KEY WORDS AND PHRASES: network, linear programming,
maximum flow

CR CATEGORIES: 5.41

procedure maxjlow (from, to, cap, flow, v, n, mflow, source, sink,
inf, eps);

value v, n, source, sink, inf;
integer v, n, source, sink; real inf, eps, mffow;
integer array from, to; array cap, flow;

comment The nodes of the network are numbered from 1 to sn.
It is not necessary but reasonable that each number represent a
node. The data of the network are given by arrays from, to, cap
in the following manner. There is a maximum possible flow of
cap[i], nonnegative, leading fromfrom[i] to toli], i = 1, · ·.· , v.

Compute the maximum flow mjlow from source to sink,
(source and sink given by their node numbers). inf represents
the greatest positive real number within machine capacity.
jlow[i] gives the actual flow from from[i] to lo[i]. Flows abso-
1 utely less than eps are considered to be zero. Literature: G.
Hadley, Linear Programming, Addison-Wesley, Reading (Mass.)
and London, 1962, pp. 337-344.

Multiple solutions are left out of account;
begin integer Z, j, k, r, lk, ek, u, s; real gjk, d;

integer array low, up, klist, labj[l :n], ind[l :v]; real array
labf[l :n];

comment Note structure of data lists in up and low;
l := 1;
for j := 1 step 1 until n do
begin low[j] := l;

for r := 1 step 1 until v do
begin if f rom[r] = j then

begin ind[l] : = r;
flow[l] := cap[l]; l := l + 1

end

end;
up[j] := l - 1

end;
mflow := 0.0;

lab:;
comment Prepare lists for new labeling;
for j := 1 step 1 until n do
begin labj[j] := klist[j] .- O;

labf[j] := 0.0
end;
labf [source] := inf;
comment labeling;
j := source; lk := ek := O;

path:
u := up[j];
for s : = low[j] step 1 until u do
begin l := ind[s];

k := to[l]; gjk :=flow[l];
if labj[k] ~ 0 V abs(gjk) < eps

then go to end;

324 P I Rl

labj[k] := j;
labf[k] := if gjk < labf[j] then gjk else labffj];
if k = sink then go to reached;
lk := lk + 1; klist[lk] := k;

end:
end;
ek := ek + 1; j := klist[ek];
if j ~ 0 then go to path else go to max;
comment sink is labeled, find path and possible

flow, reduce excess capacities along path;
reached:

j := sink; d := labf[j]; mflow := mflow + d;
look: k := labj[j]; u := up[k];

for s := low[k] step 1 until u do
begin l := ind[s];

if to[l] = j then fiow[l] := fiow[l] - d
end;
u := up[j];
for s := low[j] step 1 until u do
begin l : = ind[s];

if to[l] = k then flow[l] := fiow[l] + d
end;
j := k; if j ~ source then go to look;
go to lab;

max:; comment maximal flow found;
for l := 1 step 1 until v do

flow[l] .- cap[l] - jlow[l]
end

Remark on Algorithm 324 [HJ
Maxflow [G. Bayer, Comm. ACM 11 (Feb. 1968), 117]

G. Bayer [Recd. 5 Aug. 1971]
Technische Universifat, 33 Braunschweig, Germany

It is necessary to clarify the meaning of input parameters
from, to and cap describing the given network.

A connection between two nodes, say a and b, must be given
by two arcs like this: At two index-positions, say ia and ib, the
input arrays have values

from [ia] =a
to [ia] = b

cap [ia] = capab

from [ib] = b
to [ib] = a

cap [ib] = capba

Even if one of the two flows, say capab from node a to node b,
is zero, it must not be omitted, for otherwise the algorithm goes
wrong.

If there is no connection between two nodes, then no arcs are
to be given. In this case another input yields the same result:
Two arcs are given, each with a maximum possible flow of zero.
(But this case is not physically, or in the sense of the algorithm,
the same as the first one.)

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 325
ADJUSTMENT OF THE INVERSE OF A SYM
METRIC MATRIX WHEN TWO SYMMETRIC
ELEMENTS ARE CHANGED [Fl]
GERHARD ZIELKE (Recd. 24 Aug. 1967)
Institut fiir Numerische Mathematik der Martin Luther

Universitat Halle-Wittenberg, German Democratic
Republic

KEY WORDS AND PHRASES: symmetric matrix, matrix in
verse, matrix perturbation, matrix modification

CR CATEGORIES: 5.14

procedure INVSYM 2 (n, i, j, c, a, b);
value n, i, j, c; integer n, i, j; real c; array a, b;

comment INVSYM 2 computes the inverse A-1 = a of a non
singular symmetric nth order matrix A = B + c(eie/ + eie/)
which arises from a symmetric matrix B by a change c in two
elements Bii and Bii = Bii (i ¢ j). The inverse matrix B-1 = b
is assumed to be known. The calculation with the new formula

where

h1 = 1 + cb,,., h2 = -cbii, ha = -cb", d = h1
2 - h.Jia

requires n 2 + O(n) multiplications, therefore only about the
same number of operations as if the well-known Sherman
Morrison formula for a change in one element (see Algorithm
51 [Comm. ACM 4 (Apr. 1961), 180]) is used. In these equations
ei denotes the ith column and e/ the ith row of the unit matrix,
b.i = bei denotes the ith column and bi. = e/b the ith row of
the matrix b;

begin integer k, l; real hl, h2, h3, d;
array r, s[l:n];
hl := 1 + c x b[i, j]; h2 := -c x b[j, j];
h3 := -c X b[i, i]; d := hl j 2 - h2)(h3; d := c/d;
hl : = hl x d; h2 : = h2 x d; h3 : = h3 x d;
fork := 1step1 until n do
begin

r[k] := hl X b[j, k] + h2 X b[i, k];
s[k] := h3 X b[j, k] + hl X b[i, k]

end;
fork := 1 step 1 until n do
for l := 1 step 1 until k do

a[k, l] := a[l, k] := b[k, l] - b[k, i] X rPJ - b[k, j] X s[l]
end INVSYM 2

325-P 1- 0

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 32C
ROOTS OF LOW-ORDER POLYNOMIAL

EQUATIONS [C2J
TERENCE R. F. NONWEILER (Recd. 14 Apr. 1967)
James Watt Engineering Laboratories, The University,

Glasgow W2, Scotland

KEY WORDS AND PHRASES: rootfinders, polynomial equa
tion roots, quadratic equation roots, cubic equation roots, bi
quadratic equation roots, polynomial zeros

CR CATEGORIES: 5.15

ROOTFINDERS:
begin
comment suite of procedures finding the (complex) roots of the

lower order polynomial equations by the familiar algebraic
methods;

procedure BIQU ADROOTS(p, r); value p; airray p, r;
comment finds the roots x = r[l, k] + sqrt(--1) X r[2, k] of

the biquadratic equation p[O] X x j 4 + · · · + p[4] = O;
comment array r defined for subscript bounds [1:2, 1:4] and p

for [0:4]. Failure occurs (in overflow) if p[O] = 0 and in other
cases. Uses nonlocal procedures QUADROOTS and CUBIC
ROOTS;

begin real e, b, d, c, a;
integer k, j;
if p[O] .,t. 1.0 then
begin

fork := 1 step 1 until 4 do p[k] := p[k]/p[O]; p[O] := 1.0
end·
e :=' 0.25 X p[l]; b := e + e; c := b X b; d := 0.75 X c;
b := p[3] + b X (c-p[2]); a : = p[2] - d;
c := p[4] + e X (eXa-p[3]); a := a - d; p[l] := 0.5 X a;
p[2] := (p[l]Xp[l]-c)/4.0; p[3] := b X b/(-64.0);
if p[3j < 0 then
begin

CUBICROOTS(p, r);
fork := 1 step 1 until 3 do

if r[2, k] = 0 and r[l, k] > 0 then
begin

d := r[l, k] X 4.0; a := a + d;
p[l] := if a ~ 0 = b ~ 0 then sqrt(d) ·else -sqrt(d);
b := 0.5 X (a+b/p[l]); go to QUAD

end the general case jumping to QUAD;
end non7.ero p[3];
if p[2] < 0 then
begin

b := sqrt(c); d := b + b - a;
p[l] := if d ::; 0 then 0 else sqrt(d)

end
else
begin

b := sqrt(p[2]) X (if p[l]>O then +2.0 else -2.0) + p[l];
if b ~ 0 then p[l] := 0 else
begin

fork := 1 step 1 until 4 do

begin
r[l, k] := -e; r[2, k] := 0

end;
go to END

end
end;

QUAD: p[2] := c/b; QUADROOTS(p, r);
for k : = 1, 2 do

for j := 1, 2 do r[j, k+2J := r[j, k];

326-P I 0

p[l] := -p[l]; p[2] := b; QUADROOTS(p, r);
fork := 1 step 1 until 4 do r[l, k] := r[l, k] - e;

END:
end BIQU ADROOTS;
procedure CUBICROOTS(p, r); value p; array p, r;
comment finds the roots x = r[l, k] + sqrt(-1) X r[2, k], ar-

ranged in order (k= 1, 2, 3) of increasing modulus, of cubic equa
tion p[O] X x j 3 + · · · + p[3] = O;

comment array r defined for subscript bounds [1:2, 1:3] and p
for [0:3]. Failure occurs (in overflow) if p[O] = 0 and in other
cases. Assumes 0 < arctan(x) < pi/2 for x > O;

begin real s, t, b, c, d;
integer k;
if p[O] ~ 1.0 then

fork := 1 step 1 until 3 do p[k] : = p[k]/p[O];
s := p[l]/3.0; t := s x p[l];
b := 0.5 X (sX (t/1.5-p[2])+p[3]); t := (t-p[2])/3.0;
c := t j 3; d := b X b - c;
if d ~ 0 then
begin

d := (sqrt(d)+abs(b)) j (l.0/3.0);
if d ~ 0 then
begin

b := if b > 0 then -d else d; c := t/b;
end;
d := r[2, 2] :=· sqrt(0.75) X (b-c); b := b + c;
c := r[l, 2] := -0.5 X b - s;
if b > 0 = s ::; 0 then
begin

r[l, 1] := c; r[2, 1] := -d; r[l, 3] := b - s;
r[2, 3] := 0

end
else
begin

r[l, 1] := b - s; r[2, 1] := O; r[l, 3] := c;
r[2, 3] := -d

end
end the case of two equal or complex roots
else
begin

d := if b = 0 then arctan(l.0)/1.5 else arctan(sqrt(-d)/
abs(b))/3.0;
b := sqrt(t) X (if b<O then 2.0 else -2.0);
c := cos(d) X b; t := -sqrt(0.75) X sin(d) X b - 0.5 X c;
d := -t - c - s; c := c - s; t := t - s;
if abs(c) > abs(t) then r[l, 3] := c
else
begin

r[l, 3] := t; t := c

COLLECTED ALGORITHMS (conft.)

end;
if abs(d). > abs(t) then r[l, 2) := d ellse
begin

r[l, 2] := t; t := d
end;
r[l, 1) := t;
fork := 1step1 until 3 do r[2, k] := O;

end the irreducible case;
end CUBICROOTS;
procedure QUADROOTS(:p, r); array p, r;
conunent finds the roots x = r[l, k] + sqrt(-1) X r[2, k]

arranged in order (k= 1, 2) of ascending modulus, of the quadra
tic equation p[O] X x i 2 + p[l] X x + p[2] = O;

conunent array p defined for subscript limits [0:2] and r for
(1:2, 1:2]. The entry values of the array p are preserved. Fails
(in overflow) if p[O] = 0 and in other cases;

begin real b, c, d;
b := -p[l]/p[OJ/2.0; c := p[2]/p[O]; d := b X b - c;
if d > 0 then
begin

b := r[l, 2] := if b > 0 then sqrt(d) + b else b - sqrt(d);
r[l, 1) := c/b; r[2, 1] := r[2, 2) := 0

end
else
begin

d := r[2, 1] := sqrt(-d); r[2, 2) := --d;
r[l, 1) := r[l, 2] := b

end
end QU ADROOTS;
und

326-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 327
DILOGARITHM [822]
K. S. KoLBIG (Recd. 10 Oct. 1967)
Applied Mathematics Group, Data· Handli,ng Division,

European Organization for Nuclear Resea~ch (CERN),
1211 Geneva 23, Switzerland

KEY WORDS AND PHRASES: dilogarithm function, special
functions

CR CATEGORIES: 5.12

real procedure dilog(x); value x; real x;
collllllent This procedure evaluates the dilogarithm function

d(x) = - { (Zn I l - y l/y) dy

for real arguments x. 13 to 14 significant digits are correct,
except for values of x near to the zero of d(x) on the positive axis
(x ~ 12.6). This function appears in several fields' of theoretical
physics. The method of computation is described by Mitchell
[l]. For 0 < x ~ 0.5, a Chebyshev approximation is used, which
was obtained by economizing the power series 2::-1 xn;n2 with
a multi precision CERN library program [2].

REFERENCES:

1. MITCHELL, K. Tables of the function]~ (-log I 1-y l/y) dy,
with an account of some properties of this and related func
tions. Phil. Mag. 40 (1949), 351-368.

2. CARLSON, J. R. TCHEBY-telescoping of a polynom:lal.

CERN 6600 Computer Program Library E203 (1966), unpub
lished;

begin real f, u, y, z;
collllllent 3.289868 · · · = 11"2/3, 1.644934 · · · = 11"~/6;

if x?:. 2 then
begin

z := l/x; u := -0.5 X ln(x) j 2 + 3.289868133696453;
f := -1

end
else if x > 1 then
begin

z := (x-1)/x;
u := -0.5 X ln(x) X ln(zXx-z) + 1.644934066848226;
f := 1

end
else if x = 1 then
begin

dilog : = 1.644934066848226; go to Ll
end
else if x > 0.5 then
begin

z := 1 - x; u := -ln(x) X ln(z) + 1.644934066848226;
f := -1

end
else if x > 0 then
begin

z := x; u := O; f := 1
end
else if x = 0 then
begin

dilog := O; go to Ll
end
else if x ?:. -1 then
begin

327--P 1 0

z := x/(x-1); u := -0.5 X ln(l - x) j 2; f := -1
end
else
begin

z := 1/(1-x);
u := 0.5 X ln(z) X ln(x j 2Xz) - 1.644934066848226;
f := 1

end;
y := 0.008048124718341 x z + 0.008288074835108;
y := y x z - 0.001481786416153;
y := y x z - 0.000912777413024;
y : = y x z + 0.005047192127203 j
y := y x z + 0.005300972587634;
y := y x z + 0.004091615355944;
y := y x z + 0.004815490327461;
y := y x z + 0.005966509196748;
y : = y x z + 0 .006980881130380;
y := y x z + 0.008260083434161;
y : = y x z + 0 .009997129506220;
y : = y x z + 0.012345919431569 j
y : = y x z + 0.015625134938703;
'JI := y x z + 0.020408155605916;
y := y x z + 0.027777774308288;
y := y x z + 0.040000000124677;
y : = y x z + 0.062500000040762;
y := y x z + 0.111111111110322;
y := y x z + 0.24~999999999859;
y = y X z + 1; dilog = f X y X z + u;

Ll:
end dilog;
comment The procedure di'log was testud on a CDC 3800 com

puter, using an ALGOL compiler. It was translated into FORTRAN
and run on a CDC 6600 computer. The tests included the fol
lowing:

(i) Calculation of d(x) for x = -1 (0.01)1. A comparison
with the 9-figure table given in [l] revealed in few cases a
discrepancy of 1 unit in the last figure.

(ii) Calculation of d(x) for x = ±lOi, i = 0(10)100.
x = -3(0.1)15, x = ±lOi, i = -20(1)0.

(iii) Calculation of d(x) for x = 1 + i X 10-m, i = -10(1)10,
m = 10 in the case of the CDC 3800, m = 14 for the CDC
6600.

In all three cases the results have been compared with those
obtained by summing the power series directly. Agreement to
13 or 14 significant digits was found, with the exception men
tioned in the comment above;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 328
CHEBYSHEV SOLUTION TO AN
OVERDETERMINED LINEAR SYSTEM (F4l
RICHARD H. BARTELS AND GENE IL GOLUB

(Recd. 8 June 1967 and 22 Nov. 19fi7)
Computer Science Dept., Stanford University, Stanford,

Calif. 94305

KEY WORDS AND PHRASES: Chebyshev solutions, over
determined linear systems, linear equations, exchange algo
rithm

CR CATEGORIES: 5.13, 5.14, 5.41

procedure Chebyshev (A, d, h, m, n, refset, epz, insufficientrank,
zero lambda) ;
value m, n; integer m, n; real array A, d, h;
integer array refset; real epz; label insujficientrank, zero

lambda;
comment Chebyshev computes a solution in the Chebyshev

sense to an overdetermined system of linear equations, Ax = d.
Details and notation are given in a paper by Bartels and Golub
[Comm. ACM 11 (June 1968), 403-408].
The parameters to procedure Chebyshev am:

m
n
A

d

h

identifier

ref set

epz
zerolambda

type

integer
integer
real array

real array

real array

integer
array

real
label

insuffic1'.enlrank label

comments

Number of equations
Number of unknowns
Matrix of coefficients
Arraybounds-[O:m-1,0:n-l]
Right-hand-side vector
Array bounds-[O:m-1]
Solution vector
Array bounds-[O:n-1]
Final Tef erence equation numbers
Array bounds-[O: n]
Final reference deviation
Exit for condition 1 failure
Exit for condition 2 failure, or

in case rank (A) < n

The parameters m, n, A and dare not changed by Chebyshev.
We direct the user's attention to the identifier eta appearing in
the procedure and to the comment explaining its value and
purpose.;

b.egin
real procedure ip (ii, ll, uu, aa, bb, cc);

value ll, uu, cc; real aa, bb, cc; integer ii, ll, uu;
comment single-precision inner-product routine;
begin

real sum;
sum := cc;
for ii := ll step 1 until uu do sum := S'Mm + aa X bb;
,ip := sum

end ip;
real procedure ip2 (ii, ll, 1J,U, aa, bb, cc);
comment ip2 is a version of ip which accumulates the products

aa X bb in a double-precision sum, whose final value, rounded
to single-precision, is taken as the value of ip2.;

328-P 1- 0

Boolean.finished; switch decompbranch := return, itr;
switch failures : = insufficientrank, zerolambda;
integer ml, nl, npl, i, j, k, l, b, al, al, lst, kmax, cnt;
real lasteps, preveps, ref, s, t, eps, eta, cnorm, snorm;
real array P[O:n, O:n], lam, rv, sv, x, w, xr[O:n];
integer array r[O:n], ix[O:m-1];
comment The subsystem of n + 1 equations currently being

investigated is listed in ix[O], · · · , ix[n]. The other equations
are listed in the remainder of ix. r contains row indices. Row
interchanges during the Gauss decomposition of Pare carried
out by permuting the elements of r.;

ml:=m-1; nl:=n-1; npl:=n+l;
lasteps : = 0; preveps : = - 1 ;
for i := 0 step 1 until n do r[i] := ix[i] := i;
for i := npl step 1 until ml do ix[i] := i;
comment The initial reference subsystem is chosen by making

a copy of the transpose of A bordered with d and carrying out
a Gaussian reduction upon it with row and column inter
changes used to select the largest possible pivot at each stage.;

begin
real array TAB[O:n, O:ml];
for j := 0 step 1 until ml do
begin

TAB[n, j] := d[j];
for i := 0 step 1 until nl do TAB[i, j] .- A[j, i]

end;
for i := 0 step 1 until n do
begin

t := O;
for j := i step 1 until n do
begin

k := r[j];
for l := i step 1 until ml do
begin

ref := TAB[k, ix[lJ];
if abs(ref) > t then
begin

s :=ref; t := abs(ref); al:= j; b := l
end

end
end;
if t = 0 then begin j : = 1 ; go to singular end;
k := r[al]; r[al] := r[i]; lst := r[i] := k;
k := ix[b]; ix[b] := ix[i]; al:= ix[i] := k;
for j := i + 1step1 until ml do

begin
l := ix[j];
ref:= TAB[lst, l]/s;
fork := i + 1 step 1 until n do
begin

al := r[k];
T AB[al, l] : = T AB[al, l] - T AB[al, al] X ref

end
end

end
end;
b := O; al := 1;
comment The following segment of the program performs a

column-by-column Gaussian reduction of the matrix associ
ated with the reference equations, forming an upper and a
lower triangular matrix into the array P. (Each diagonal

COLLECTED ALGORITHMS (cont.)

element of the lower triangular matrix is one.) Interchanges
of rows take place so that the largest pivot in·each column is
employed. It is assumed that b - 1 columns have already
been decomposed. If the matrix is not of full rank, the exit
i'.nsufficientrank is taken, and it is left up to the user to deter
mine if the given overdetermined system can be solved
exactly.;

body:
for i := b step 1 until n do
begin

l := ix[i];
for j := if i = b then 0 else b step 1 until rt!do
begin

kmax : = if j < i then j - 1 else i - 1 ;
P[i, r[j]] .- -ip(k, 0, kmax, P[i, r[k]], P[k, r[j]],

-(if r[j] = n then d[l] else A[l, r[j]]))
end;
ref := O;
for j := i step 1 until n do
begin

t := P[i, r[j]];
if ref < abs(t) then

begin ref:= abs(t); s := t; k := j end
end;
if ref = 0 then begin j : = 1 ; go to singular end;
if i = n then go to decompbranch[al];
j := r[k]; r[k] := r[i]; r[i] := j;
for j : = i + 1 step 1 until n do

P[i, r[j]] .- P[i, r[j]]/s
end;

singular:
for i : = 0 step 1 until n do refset[iJ. : = ix[i];
go to failures[j];
comment Solve for the lambdas.;

return:
for j := b step 1 until n do

sv[j] := -ip(k, O,j - 1, sv[k], P[k, r[j]],
-(if r[j] = n then -1 else 0));

for j := n step -1 until 0 do
lam[j] := -ip(k, j + 1, n, lam[k], P[k, r[j]], -.~v[j])/P[j, r[j]];

comment Compute epsilon for the reference subsystem of
equations.;

t := O;
for i := 0 step 1 until n dot := t + abs(lam[i]);
eps := 1/t;
comment Each new value of eps must be greater than the

previous one. If this is not so, the solution may have been
"overshot".;

if eps < lasteps then go to ed;

lasteps : = eps;
comment Solve for the vector x, the Chebyshev solution of the

reference subsystem of equations.;
for i := 0 step 1 until n do xr[i] := sign(lam[i]) X eps;
for i := 0 step 1 until n do

w[i] := -ip(j, 0, i - 1, w[j], P[i, r[j]], -xr[i])/P[i, r[i]];
for i := n step -1 until 0 do

x[r[i]] := -ip(j, i + 1, n, x[r[j]], P[i, r[j]], -w[i]);
comment x[n] should be -1. It can be used to purify eps and

the other components of x.;
ref: = -x(n];
for i := 0 step 1 until nl do x[i] := x[i]/ref;
eps := eps/ref;
comment For each index ix[n+l], · · · , ix[m-1] compute the

residual A[ix[j], O] X x[O] + · · · + A[ix[j], n-l:] X x[n-1] -
d[ix[j]]. If the largest of these in magnitude is not greater than
eps, go to itr to refine the vector x, for it may be the Chebyshev
solution of the full system.;

ref := -1;
for j : = npl step 1 until ml do
begin

i := ix[j];
t := ip(k, 0, nl, x[k], A[i, k] -d[i]);
if abs(t) > ref theU:

328-P 2- 0

begin ref:= abs(t); al:= j; s := sign(t) end
end;
if ref ~ eps then go to itr;

ovr:
k := ix[al];
comment The following linear-system solution is computed in

order to determine which equation is to be dropped from the
reference set of equations.;

for i := 0 step 1 until n do
w[i] := -ip(j, 0, i - 1, w[j], P[j, r[i]],

- (if r[i] = n then d[k] else A[k, r[i]]));
for i := n step -1 until 0 do

w[i] := -ip(j, i + 1, n, w[j], P[j, r[i]], -w[i])/P[i, r[i]];
comment sis the sign of the residual with greatest magnitude.

Find the lar-gest of the ratios (w[k]/lam[k]) X s. If any compo
nent of lam is zero, the exit zerolambda is taken.;

ref := lam[n]; b := n;
if ref = 0 then begin j : = 2; go to singular end;
ref := (w[n]/ref) X s;
for j : = 0 step 1 until nl do
begin

t := lam[j];
if t = 0 then begin j : = 2; go to singular end;
t := (w[j]/t) X s;
if t >ref then begin b := j; ref:= tend

end;
comment Form a new reference subsystem by exchanging the

ix[al]-th and ix[b]-th equations.;
ix[al] := ix[b]; ix[b] := k; al := 1; go to body;

ed:
comment Restore the previous reference substystem.;
eps := lasteps; al := 2;
j := ix[al]; ix[al] := ix[b]; ix[b] := j; go to body;

itr:
lasteps := O; cnt := O;
comment Iteratively refine the vector x.;

ilp:
cnt : = cnt + 1 ; if cnt > 10 then go to insufficientrank;
cnorm := snorm := O;
for i := 0 step 1 until n do
begin

k := ix[i];
t := abs(x[i]);
if snorm < t then snorm : = t;
rv[i] := -ip2(j, 0, n, x[j], if j

A [k, j], -xr[i])
end;

for i := 0 step 1 until n do

n then d[k] else

rv[i] := -ip(j, 0, i - 1, rv[j], P[i, r[j]], -rv[i])/P[i, r[i]];
for i := n step -1 until 0 do

w[r[i]] := -ip(j, i+l, n, w[r[j]], P[i, r[j]], -rv[i]);
for i := 0 step 1 until n do
hegin

s := w[i];
x[i] := x[i] + s;
s := abs(s);
if cnorm < s then cnorm : = s

end;
if cnorm/snorm > eta then go to ilp;
comment eta is to be preiiJet with a small pos1t1ve multiple

of the largest positive single-precision machine number w

COLLECTED ALGORITHMS (con1t.)

having the property that 1 + w = 1 -· w = 1 in a single-pre
cision arithmetic. The small multiple will depend upon the
peculiarities of the machine's roundin1~ process and will have
to be empirically determined.;

ref:= -x[n];
for i := 0 step 1 until nl do x[ij := x[i]/ref;
eps := eps/ref;
comment Determine whether a Chebyshev solution has been

found. If any residual is greater in magnitude than eps while
eps is smaller than a value produced from an earlier refinement,
give up, print a warning, and return the best x computed thus
far.;

ref := -1;
for j := npl step 1 until rnl do
begin

i := ix[j];
t := ip2(k, 0, nl, x[k], A[i, k], -d[i]);
if aos(t) > ref then

begin ref := abs(t); al := j; s := sign(t) end
end;
if ref S eps then finished : = true
else if eps > preveps tbenfinished := false
else
hegin outstring (1, 'DOUBTFUL SOLUTION');

go to skip
end;
preveps := eps; refset[n] := ix[n];
for i : = 0 step 1 until nl do
begin

refset[i] := ix[i];
hfi] := x[i]

end;
if -, finished then go to ovr;

.skip:
epz : = preveps;

end Chebyshev

CERTIFICATION OF ALGORITHM 328 [F4]
CHEBYSHEV SOLUTION TO AN OVERDETER
MINED LINEAR SYSTEM [Richard H. Bartels and

Gene H. Golub, Comm. ACM 11 (.Tune 1968), 428]
NORMAN L. SCHRYER (Recd. 14 Nov. 1968, 2 Dec. 1968

and 27 Jan. 1969)
University of Michigan, Ann Arbor, Michigan
KEY WORDS AND PHRASES: Chebyshev solutions, over

determined linear systems, linear equations, exchange algorithm
CR CATEGORIES: 5.13, 5.14, 5.41

Two modified versions of the procedure Che"byshev have been
written, one with and one without iterative improvement. The
algorithms were compiled in FORTRAN IV on an IBM System/360
model 67 in double-quadruple and double··precision, respectively.
When run on the following test system

11 -8 6 1-68 0 -15 -12 -54
-13 -3 10 11

7 8 2 [::J 3
10 -7 9 -64
0 -5 5 -19
7 10 9 13

-15 0 15 l 30 -15 3 -15 72
2 5 14 -5

328-P 3- Rl

both versions gave the correct answer, x = (-3, 4, -1), to full
double-precision accuracy (16 digits). The above versions of the
procedure Chebyshev differ from the published ones in two ways.
Without these changes the routines have gone into an "infinite
loop" in certain circumstances.

On page 429, first column, the 14th line following the label
return should be changed from

if eps < lasteps then go to ed;
to

if eps ~ lasteps then go to ed;
The above change eliminates the problem of "infinite loops."

When using the version without iterative improvement, one
additional change is necessary. Change the code following the
label itr as indicated on page 405, column 2. Then replace the code
between labels ed and itr on page 429, column 2, by the following:

comment Restore the previous reference subsystem;
eps : = lasteps;
j := ix[al]; ix[al] := ix[b]; ix[b] := j;
ref:= -1;
for j := npl step 1 until ml do
begin

i := ix[j];
t := ip2(k, 0, nl, x[k], A[i, k], -d[i]);
if abs(t) > ref then ref := abs(t)

end;

This change is necessary in order to give the real variable ref the
proper value for determining if the vector x is a solution or a
"doubtful solution." That is, the above value of ref will be used
in the code following the label itr to determine if we have a "doubt
ful solution."

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 329
DISTRIBUTION OF IXDISTIXGUISHABLE
OBJECTS INTO DISTI~GUISHABLE SLOTS [G6]
ROBERT R. FENICHEL

(Recd. 24 Aug. 1967 and 8 Dec. 1967)
Electrical Engineering Department, ::\Iassachusetts Insti

tute of Technology, Cambridge, ::\lass. 02139
KEY WORDS AND PHRASES: object distributions, combina

tions, distribution numbers
CR CATEGORIES: 5.39

procedure dist (k, m, done, q, FirstCall);
value k, m; integer k, m; label done;
integer array q; Boolean FirstCall;

comment Successive calls to this procedure compute the

(m+k-l) d' . . h bl d' 'b . f . d" . . h bl rn istmgms a e istn nt10ns o m in istmgms a e

objects into k distinguishable slots. Upon the first call to dist,
FirstCall must have the value true. This value is changed to
false during the processing of the first call.

Upon return from a call to dist, a new distribution has been
noted in q[l:k], an integer array. In particular, the number of
objects to be distributed to the ith slot has been left as the value
of q[i].

The call following the (m~~-l)-th will cause transfer to the

label done.
The values of q must not be altered between calls to dist.
The method is best introduced by means of an .example. Sup

pose that 9 objects must be distributed among 3 slots. Each dis
tribution might be denoted by a three-digit decimal number
whose digits sum to 9. By the Rule of Nine, each such "distribu
tion number" is divisible by 9. Conversely, many' multiples of 9
are distribution numbers, although some (e.g. 189 and 198) are
not.

Now the method is as follows:
1. Treat q[l] · · · q[k] as a k-place number in a number system

based on (m+l). Usually, return from dist after adding m to this
number.

2. If q[i-1] ~ q[i] = q[i+ll = · · · = q[k] = 0, adding m will
not result in a distribution number: the sum of the digits will be
too large. Find the next distribution number by

a. Setting q[k] : = q[i-1] - 1.
b. Setting q[i-1] := 0.
c. Adding 1 to q[i-2].

The author is indebted to the anonymous referee who, at one
point in this algorithm's development, had evidently given it
more thought than had the author;

begin integer i; own integer Lef tmostZero;
if FirstCall then

begin

for i : = 1 step 1 until k - 1 do

q[i] := O;
LeftmostZero := k + 1;
q[k] := m;
FirstCall : = false

end

else if q[l] = m then go to done

else if LeftmostZero < k + 1 then

begin

LeftmostZ ero : = LejtmostZero - 1;
q[k] := q[LeftmostZero] - 1;
q[LeftmostZero] := O;

329~P 1- RI

q[LeftmostZero - 1] := q[LeftmostZero - 1] + 1
end skip 99, 189, 198, etc.
else

begin

if q[k] = 1 then LeftmostZero := k;
q[k] := q[k] - 1;
q[k-1] := q[k-1] + 1

end add m to units place
end of dist

REMARK ON ALGORITHM 329 [G6]
DISTRIBUTION OF INDISTINGUISHABLE OB
JECTS INTO DISTINGUISHABLE SLOTS [Robert

R. Fenichel, Comm. ACM 11 (June 1968), 430]
M. GRAY (Recd. 20 Sept. 1968)
Computing Science Department, University of Adelaide,

South Australia
As the procedure stands it is incorrect. Preceding

end skip 99,189,198, etc.
the following statement should be inserted:

if q[k] ¢ 0 then LeftmostZero := k + 1
Thus the compound statement becomes:

begin
LeftmostZero := LeftmostZero -1;
q[k] := q[LeftmostZero] - 1;
q[LeftmostZero] := O;
q[LeftmostZero-1) := q[LeftmostZero-1) + l;
if q[k] ¢ 0 then LeftmostZero := k + 1

end skip 99, 189, 1981 etc.

COLLECfED ALGORITHMS FROM CACM

ALGORITHM 330
FACTORIAL ANALYSIS OF VARIANCE [Gl}
IAN OLIVER (Recd. 21 Sept. 1967 and 12 Jan. 1968)
Computer Center, The Ohio State University, 1314 Kin-

near Rd., Columbus, Ohio 43212
(Now at Computer Centre, University of Queensland,
St. Lucia, Brisbane, Australia 4067)

KEY WORDS AND PHRASES: factorial variance analysis,
variance, statistical analysis

CR CATEGORIES: 5.5

procedure factorial AN OVA (X, n, levels, T);
value n; integer n; integer array levds; real array X, T;

comment This procedure carries out an a,nalysis of variance on
the data from a balanced complete factorial experiment. The
experimental observations are assumed to be stored in the array
X. The elements of the array levels are assumed to contain the
number of levels in each of then factors. The procedure produces
the sum of squares for the analysis of variance table in the array
T. A method of orthogonal transformations [l] is used.

The levels of the j-th factor are numbered 1, 2, · · · , levels[j].
The observations are conveniently stored in a multidimensional
array. For example, for n = 3, X[l, 3, 2] is the observation taken
at levels 1, 3, and 2 of the first, second and third factors re
spectively. factorial ANOV A actually m;es the procedure index
to compute the multidimensional subscript and uses X as a one
dimensional array so that n may have any value. Thus, if
factorial ANOV A is called with a multidimensional array as the
first argument, then index may have to be rewritten for a given
compiler to correctly compute any multiple subscript. As
written, index assumes that X has been declared in a statement
such as real array X[l: levels[l], · · · ,1: levels[n]] and that the com
piler arranges storage so that the first subscript varies most
rapidly.

Alternatively the data may be transmitted in a linear array
so that the factor levels associated with each observation are
ordered so that the levels of the first factor vary most rapidly.
The procedure index will then require no modification.

The array T may also be considered a linear array, or an n-di
mensional array declared in a statement of the form real array
T[1:2,1:2,. · -,1:2). Element T[2,l,· · -,1] is the sum of squares
for the main effect of the first factor. T[l,2,1, · · · ,1) is the main
effect for the second factor. T[2,2,1,· · · ,1] is the interaction be
tween the first two factors, and so on. If T is considered as a
linear array, an element may be interpreted by examining the
bit pattern in the binary value of the subscript minus one. For
example, 7'[6]= T[5+1J is the interaction between the first and
third factors.

On return from factorial ANOV A the data array X will con
tain orthogonal components of the sums of squares in the array
1'. As written, the components are the squ:'tres of values obtained
by performing an Helmert transformation [2] for each factor.
The procedure orthog may be modified, if the components are re
quired per se, to produce any desired orthogonal contrasts.

The advantages and limitations claimed for factorial ANOV A
are as follows. The procedure is very conservative of storage
provided no factor has & large number of levels. The amount of

330-P 1- 0

temporary array storage required is 3n + m(m+2) where m is
the maximum number of levels in any factor. The procedure
body is also very short. The routine should therefore be useful
for small computers or for inclusion as a subroutine in programs
whose primary purpose is not the statistical analysis. No com
parison of running time has been made with other methods but
this routine requires IIi zevezsi(Li zevezsi+1) floating multipli
cations and may therefore be comparable in speed with the
method described in [3].

This procedure is intended to present an algorithm rather
than an optimal program for an algorithm and so the coding can
be considerably improved in efficiency which was somewhat
sacrificed for clarity.

Acknowledgment. The author wishes to thank the referee and
the editor for their valuable comments and suggestions.
REFimENcEs:

1. OLIVER, I. Analysis of factorial experiments using general
ized matrix operations. J. ACM 14 (July 1967), 508-519.

2. KENDALL, M. G., AND STUART, A. The Advanced Theory of
Statistics, Vol. 1. Hafner, New York, 1958, pp. 250-251.

3. HARTLEY, H. 0. Analysis of variance. In Mathematical Methods
for Digital Computers, A. Ralston and H. S. Wilf (eds.),
Wiley, New York, 1960, pp. 221-230;

begin integer factor, kl, k2, j; integer array i, Ti, Tlimit [l:n];
integer procedure index(subscript, limit);

integer array subscript, limit;
begin integer j, temp;

temp := O;
for j := n step - 1 until 1 do

temp : = temp X limit[j] + subscript[j] - 1;
index := temp+ l;

end index procedure;
procedure orthog(Q, size);

value size; integer size; real array Q;
begin integer i, j;

for i := 1 step 1 until size do Q[i, l] := 1.0/sqrt(size);
for j : = 2 step 1 until size do
begin

for i : = 1 step 1 until j - 1 do
Q[i,j] := - l.O/sqrt(jX(j-1));
Q[j, j] := sqrt(j-1)/j);
for i := j + 1 step 1 until size do Q[i, j] := 0

end
end orthog procedure;
comment Carry out orthogonal transformation;
for factor : = 1 step 1 until n do
begin

real array A, B[l: levels ff actor]], Q[l: levels[factor],
1: levels[factor]];

orthog (Q, levels[factor]);
for j := 1 step 1 until n do i[j] := 1;

loopl: for i[factor] := 1 step 1 until levels [factor] do
A[i[factor]] := X[index(i, levels)];

for kl : = 1 step 1 until levels[factor] do
begin B[kl] := O;

for k2 : = 1 step 1 until levels[factor] do
B[kl] := B [kl] +Q[k2, kl] X A[k2]

end;
for i[factor] := 1 step 1 until levels[factor] do

X[index(i, levels)] := B[i[factor]];

COLLECTED ALGORITHMS (cont.)

for j := 1step1 until n do
if j ~ far.tor then
begin

i [j] : = i [j] + 1;
if i[j] S levels [j] then go to loopl else i[j] : = 1

end
end;
comment Form mean squares and sums of squares;
for j := 1step1 until n do

begin Ti[j] := 1; Tlimit[j] := 2 end;
loop2: for j : = 1 step 1 until n do i[j] : = Ti[j];

kl := index(Ti, Tlimit); T[kl] := O;
loop3: k2 : = index (i, levels);

X[k2] := X[k2] j 2; T[kl] := T[kl] + X[k2];
for j := 1 step 1 until n do

if Ti[j] -;e 1 then
begin

i[j] := i[j] + 1;
if i[j] S levels[}] then go to loop3 else i[j] := 2

end;
for j := 1step1 until n do
begin

Ti[j] := Ti[j] + 1;
if Ti[j] S 2 then go to loop2 else Ti[j] := 1

end
end factorial ANOV A

330-P 2-- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 331
GAUSSIAN QUADRATURE FORMULAS [Dl]
WALTER GAUTSCHI (Recd. 26 Aug. 1967 and 8 Feb. 1968)
Purdue University, Lafayette, Ind., and Argonne National

Laboratory, *Argonne, Ill. 60439
*Work performed under the auspices of the US Atomic Energy
Commission

KEY WORDS AND PHRASES: quadra.ture, Gaussian quad
rature, numerical integration, weight function, orthogonal poly
nomials

CR CATEGORIES: 5.16

begin
comment The procedure Gauss below obtains Gaussian quad

rature formulas relative to any weight function whose singu
larities, if any, are monotonic and located at the endpoints of
the (finite or infinite) interval of integration. The procedure is
most useful for (but not restricted to) '"nonclassical" weight
functions, i.e. weight functions for which the associated or
thogonal polynomials are not known explicitly;

real procedure Fourier (c, n); value c, n; integer n; real c;
comment This is a subroutine computing

;,. cos (2rnfJ)
l-2L..,

m=l 4m2 - 1 '
c == cos (J,

the truncated Fourier series of ('11"/2) sin fJ;
J)egin integer m; real cO, cl, c2, t, sum;

cl:=l; c0:=2XcXc-l; t:=2Xc0;
sum := c0/3;
form := 2 step 1 until n do
begin

c2 := cl; cl := cO; cO := t X cl - c2;
sum := sum+ c0/(4XmXm-l)

end;
Fourier := 1 - 2 X sum

end Fourier;
Jlrocedure transform (t, phi, phil); value t; real t, phi, phil
begin real t1;

tl := abs(t);
phi:= t/(1-tl); phil := 1/((1-tl)X(l-tl))

end trans! orm;
Jlrocedure symm tran.;f (t, phi, phil); value t; real t, phi, phil;
begin real t2;

t2 := t x t;
phi := t/(l-t2); phil := (l+t2)/((l-t2)X (l-t2))

end symm transf;
procedure Gauss (sequential, finite left, Jfoite right, left, right,

eps, wf, capn, n, results);
value sequential, finite left, finite right, left, right, eps, capn, n;
integer capn, n; real left, right, eps;
Boolean sequential, finite left, finite right;
real procedure wf;
array results;

comment This procedure generates approximate values for
the abscissas and weights of Gaussian quadrature formulas with
weight function wf. If the Boolean variable sequential has the
value true, then k-point formulas

331-P 1- 0

l b g(x)wf(x) dx ~ t w$k>g(x$k>),
a r=l

- oo ~ a < xik) < x~k) < · · · < x~k) < b ~ oo,

are generated fork = 1, 2, · · · , n, the abscissa x,(k) being stored
in results [k, r], the weight w/kl in results [n+l-k, n+2-r].
The array results, in this case, should be declared to have dimen
sions [l:n, l:n+l]. If the value of sequential is false, then a
single n-point formula is produced with the abscissa x,(n} being
stored in results [l, r], the weight w,(n) in results [2, r]. In this
case, the array results need only have dimensions [1:2, l:n].
The Boolean variable finite left must be assigned the value
true, if the lower limit of integration, a, is a finite number,
otherwise the value false. Similarly for the upper limit b and
the associated Boolean variable finite right. The parameter left
is to be set equal to a, if a is finite, and may be assigned an arbi
trary value, if a = - oo. Similarly for the parameter right,
which should be equal to b, if bis finite, and may be arbitrary,
if b = oo. The parameter eps is a tolerance used to control
termination of Newton's iteration for the calculation of the
abscissas x/k>. If d significant digits are desired one may set
eps = .5 X 10-a. Some leeway should be allowed to accommo
date moderate accumulation of rounding errors.

The method of computation is based on a suitable discretiza
tion of the inner product (f, g) = f~f(x)g(x)wf(x) dx, the num
ber of points used in the discretization being given by capn.
The desired abscissas and weights are approximated by the
zeros and weight factors of the resulting orthogonal polynomials
of a discrete variable. The process converges as capn - oo,

provided the singularities of the weight function wf, if any are
present, are located at the endpoints a, b and are monotonic.
The traditional approach via moments is deliberately avoided
because of its ill-conditioned character (when n is large). Fur
ther details of. the method are to appear elsewhere [4].

No general rules can be given for the appropriate value of
capn, the choice depending both on the desired accuracy and the
rate of convergence of our process. A reasonable approach is to
try, say, capn = 10 X n, and to repeat with a larger value of
capn (say twice as large). If the results agree to within the de
sired accuracy, those of the second trial may be accepted as
final. Otherwise, capn might be further incremented.

The nonsequential version of the procedure is preferable if
quadrature formulas for only one, or a few, selected values of n
are desired.

The procedure Gauss calls on the procedures transform, symm
transf, and the real procedures Fourier, wf, all of which (except
the last) are declared above. The real procedure wf has to be
supplied by the user;

begin
integer k, m, r, kmax, cou.nt, it;
real epsl, sum, phi, phil, tO, tl, polO, poll, q, cO, cl, c2, lower

bound, upper bound;
array w, x[l:capn], a[O:n-1], b[O:n], pO, pl, p2[-l:capnJ,

p[-l:n], list[O:n];
procedure p and pl (bool, m, n, t, pO, p, pl);

value m, n, t; integer m, n; real t; Boolean bool;
array pO, p, pl;

COLLECTED ALGORITHMS (cont.)

comment This procedure evaluates the m-tim.es deflated (dis
crete) orthonormal polynomials p, (x)(r=m, m+l, · · · , n),
as well as their first derivatives (if bool is true), for given
argument t. The array pO is assumed to hold the values of the
(m-1)-times deflated polynomials evaluated at the m-th
zero of Pn . When m :::::; 0 these are the values 1, 0, 0, · · · , O;

begin integer r;
p[m] := pO[m-1]/b[m]; p[m-1] := O;
for r := m step 1 until n - 1 do

p[r+l] := (pO[r]+(t-a[r])Xp[r]-b[r]Xp[r--1])/b[r+lJ;
if bool then
begin

pl[m] := pl[m-1] := O;
for r := m step 1 until n - 1 do

pl[r+ll := (p[rJ+(t-a[r])Xpl[r]-b[r]Xpl[r-lj)/b[r+ll
end

end p and pl;
lower bound : = left; upper bound : = right;
comment The piece of program extending fro:m this point to

the second following comment sets up the abscissas Xk and
weight factors Wk to be used in the inner product of the dis
crete orthogonal polynomials. It is here (and only here)
where explicit use is made of the given weight function wf;

kmax : = entier (capn/2);
fork := 1 step 1 until kmax do
begin

x[capn+l-k] := cos(l.5707963268X (2Xk-1)/capn);
x[k] := -x[capn-1-1-k];
w[k] := w[capn+l-k] := Fourier (x[k], kmax)

end;
comment In the preceding for-statement the values of the

cosine could have been generated recursively with consider
able saving of time, but some loss of accuracy, if capn is very
large. It was decided to sacrifice efficiency in favor of accu
racy.

If the weight function contains a square root singularity,
typified by x-112 at x = 0, rather improved accuracy may result
from modifying the last preceding statement to read
w[k]:=w[capn+l-k]:= 1.5707963268 X sqrt(l--x[k]Xx[k]),
and the second following statement to read

w[kma.:r,+1] := 1.5707963268.
This is especially so if the square root singularity occurs at
both endpoints;

if capn/2 ~ krnax then
begin

x[kmax+ll := O; w[kmax+ll := Fourier(O, krnax)
end;
if finite lef i then
begin

if finite right then go to Ll else go to L2
end
else
begin

if finite right then go to L3 else go to L4
end;

Ll: for k : = 1 step 1 until capn do
begin

x[k] := ((right-left)Xx[k]+right+left)/2;
w[k] := (right-left)Xw[k]Xwf(x[k])/capn

end;·
go to continue;

£2: fork := 1step1 until capn do
begin

transform (.5X (l+x[k]), phi, phil);
x[k] := left+ phi;
w[k] := w[k] X wf(x[k]) X phil/capn

end;

go to continue;
£3: fork := 1step1 until capn do

begin
transform (.5X(-l+x[k]), phi, phil);

x[k] := right +phi;
w[k] != w[k] X wf(x[k]) X phil/capn

end;
go to continue;

L4: for k : = 1 step 1 until capn do

begin
symm trans! (x[k], phi, phil);
x[k] := phi;
w[k] := 2 X w[k] X wf(phi) X phil/capn

end;

331-P 2- 0

comment The piece of program extending from this point to
the second following comment generates the coefficients a. ,
b,.+1(r=O, 1, · · · , n-1) in the recurrence relation

Pr+i(X) = ((x-ar)pr(x)-brPr-1(x))/br+l
for the (discrete) orthononormal polynomials Pr associated
with the inner product

capn

[j, gj = ~ Wkf(Xk)g(Xk).
k-1

The content of b[O] is set equal to 1/po ;
continue: sum : = 0;

for k : = 1 step 1 until capn do sum : = sum + w[k];
b[O] := sqrt(sum);
for k : = 1 step 1 until capn do
begin

pl[k] := O; p2[k] := 1/b[O]
end;
for r := 0 step 1 until n-1 do
begin

sum:= O;
con1ment If a = - oo, or b = oo, overflow conditions may

arise in the following two for-statements, which, if ignored,
should normally be of no consequence;

for k : = 1 step 1 until capn do
begin

pO[k] := pl[k]; pl[k] := p2[k];
aum := sum + w[k] X x[k] X pl[k] X pl[k]

end;
a[r] := sum; sum ::= O;
for k : = 1 step 1 until capn do
begin

p2[k] := (x[k]_-a[r])Xpl[k]-b[r]XpO[k];
sum := sum + w[k] X p2[k] X p2[k]

end;
b[r+ll := sqrt(sum);
for k := 1 step 1 until capn do p2[k] := p2[k]/b[r+ll

end;
comment Using the values of a,, br+1 just obtained, the pro

cedure now produces upper and lower bounds for the zeros of
Pn(x) when b = oo, or a = - oo, respectively. The bounds
are derived by applying the Gershgorin circle theorem to
the Jacobi matrix associated with the polynomials p,;

if --, finite right then
begin

upper bound := a[O] + b[l];
for r : = 1 step 1 until n - 2 do
begin

to := a[r] + b[r] + b[r+ll;
if tO > upper bound then upper bound : = tO

end;
to := a[n-1] + b[n-1];
if tO > upper bound then upper bound : = tO

COLLECTED ALGORITHMS (con1t.)

end;
if -, finite left then
begin

lower bound := a[O] - b[l];
for r : = 1 step 1 until n - 2 do
begin

tO := a[r] - b[r] - b[r+ll;
if tO < lower bound then lower bound . - tO

end;
to := a[n-1] - b[n-1];
if tO < lower bound then lower bound : == tO

end;

comment The remaining section of this procedure determines
approximations of the desired abscissas and weights. If se
quential is true, the zeros of the (discrete) orthonormal poly
nomials p,(r= 1, 2, · · · , n) are determined sequentially using
Newton's method. Suitable initial approximations are found
on the basis of the interlacing property of the zeros. Each
Newton approximation is checked on whether or not it satis
fies this property. If not, the appropriate subinterval is
searched more thoroughly for possible zeros. If none is de
tected the message "search for zeros unsuccessful" is printed
out. Otherwise, Newton's iteration is repeated with a revised
initial approximation. If again the interlacing property turns
out to be violated the message "interlacing property of the
zeros is violated" is printed out. The message "Newton itera
tion diverges" is printed if, for any reason, Newton's itera
tion fails to converge within 30 iterations. In either of these
abortive situations the procedure exit~;, leaving the cu.rrent
quadrature formula, and all subsequent formulas, uncom
pleted.

In the nonsequential case, the zeros of Pn are obtained by
Newton's method and successive deflation. Each deflation
(except the first) is preceded by a refinement of the respective
zero using Newton's iteration based on the original (unde
flated) polynomial Pn . If this iterati.on fails to converge
within 15 iterations the message "Newton iteration in re
finement diverges" is printed out. If Newton's method for
the deflated polynomials fails to converge within 30 itera
tions, it is checked whether this may he due to the tolerance
eps being too stringent, considering the presence of subtrac
tion errors in the generation of the polynomials and their
derivatives. If this is the case, the procedure goes on to re
fine the particular zero. Otherwise, it prints out the message
"Newton iteration diverges:" In either of the two abortive
situations the procedure exits, leaving the quadrature for
mula unfinished.

The weights are computed by the formula

k-1

[w/klJ-1 = L [p.(xr<k>)J2;
•~O

p2[-l] := l; fork := 0 step 1 until n - 1 do p2[k] .- O;
if sequential then
begin

list[O] := lower bound;
results [l, l] := a[O]; results[n, n+ll b[O] X b[O];
fork := 2 step 1 until n do
begin

form := 1 step 1 until k - 1 do
list[m] := results[k-1, m];

11'.st[k] := upper bound;
form := 1 step 1 until k do
begin

tO := (list[mJ+list[m-1])/2; count .- it .- O;
Newton: tl := tO; it := it + 1;

p and pl(true, 0, k, tl, p2, p, pl);
tO := tl - p[k]/pl[k];

if tO ~ list[m-1] V tO ;;;;; list[m] then

begin
if count = 0 then
begin

tO := list[m-1];

331-P 3- 0

p and pl (false, 0, k, tO, p2, p, pl);
polO := p[k]; q := .2 X (list[m]-list[m-1]);

search: tl := tO + q;
p and pl (false, 0, k, tl, p2, p, pl);
poll := p[k];
if polO X poll > 0 then
begin

to := tl;
if tO < list[m] then go to search else
begin

outstring (1, 1 search for zeros unsuccessful
1

) ;

outinteger (1, k) ; outinteger (1, m);
go to exit

end
end
else
begin

tO := (tO+tl)/2; count .- count + 1;
go to Newton

end
end
else
begin

outstring (1, 'interlacing property of zeros is vio-
lated');

outinteger (1, k); outinteger (1, m);
go to exit

end
end;
if it > 30 then
begin

outstring (1, 'Newton iteration diverges');
outinteger (1, k); outinteger (1, m);
go to exit

end;
if abs(tl-tO) > eps X abs(tO) /\ abs(tl-tO) > eps

/\abs(tO) > eps then
go to Newton;

results [k, m] := tO;
p and pl (false, 0, k-1, tO, p2, p, pl);
sum:= O;
for r := 0 step 1 until k - 1 do

sum := sum+ p[r] X p[r];
resultsln+l-k, n+2-m] .- l/sum

end
end

end
else
begin

p[-1] := l;
fork := 0 step 1 until n - 1 do p[k] .- O;
tO : = lower bound;
form := 0 step 1 until n - 2 do
begin

fork := m - 1 step 1 until n - 1 do pO[k] .- p[k];
it := O;

Newtonl: tl := tO;
it := it+ 1;
p and pl (true, m, n, tl, pO, p, pl);
to := tl - p[n]/pl[n];
if it > 30 then
begin

COLLECTED ALGORITHMS (cont.)

cO := abs(pO[n-1]);
cl := abs((t1-a[n-1])Xp[n-1]);

c2 := abs(b[n-l]Xp[n-2]);
phi : = if cO ;£ cl then

(if cl;£ c2 then c2 else cl)
else
(if c0;£c2 then c2 else cO);

phi := phi/b[n];
cO := abs(p[n-1]);
cl := abs((tl-a[n-l])Xpl[n-1]);

c2 := abs(b[n-l]Xpl[n-2]);
phil : = if cO ;£ cl then

(if cl ;£ c2 then c2 else cl)
else

(if cO ;£ c2 then c2 else cO);
phil := abs(phi1/(b[n]Xp1[n]));
phi : = if phi < phil then phil else phi;
epsl : = if phi > 1 then 10 X phi X eps else 10 X eps;
if abs(tl-tO) > epsl X abs(tO) /\ abs(tO) > epsl then
hegin

outstrfog (1, 'Newton iteration diverges');
outinteger (1, m+ 1) ;
go to exit

end
end
else
begin

if abs(tl-tO) > eps X abs(tO) /\ abs(t1-t0) > eps
/\abs(tO) > eps then
go to N ewtonl

end;
if m > 0 then
begin

it := O;
refine: tl : = tO;

it := it + l;
p and pl(true, 0, n, tl, p2, p, pl);
tO := tl - p[n]/pl[n];
if it > 15 then
begin

outstring (1, 'Newton iteration in refinement diverges');
outinteger (1, m+ 1) ;
go to exit

end;
ifabs(tl-tO) > eps X abs(tO) /\ abs(tl-tO) > eps

/\abs(tO) > eps then
go to refine

end;
results[l, m+ll := tO;
p and pl (false, m, n-1, tO, pO, p, pl)

end;
results[l, n] := a[n-1] - b[n-1] X p[n-1]/p[n-2];
fork := 1 step 1 until n do
begin

p and pl(false, 0, n-1, results[l, k], p2, p, pl);
sum:= O;
for r : = 0 step 1 until n - 1 do

sum := sum+ p[r] X p[r];
results[2, k] .- 1/sum

end
end;

exit: end Gauss;
comment The procedure Gauss, in both the sequential and non

sequential form, was tested on the CDC 3600 computer for a
number of weight functions. The tolerance eps = .510-9 was used
throughout. The following surveys the results obtained in a
few representative cases.

331-P 4- 0

(i) wf(x) = xa ln(e/x),O < x < 1,a = 0(1)3,.5,-.5, n = 5,
capn = 100. The maximum absolute error (rounded to 3
significant figures) in the abscissas and weights is shown be
low together with the values of k and rat which the maximum
occurs (l::;k::;n, l::;r::;k). For comparison we used the 7-118
values published by V. I. Krylov and A. A. Pal'cev [5].

maximum error k maximum error k in abscissas in weights

0 1.1010-6 2 1 5.6310-6 1 1
1 2.5410-7 5 4 3. 9010-7 5 3
2 7 .5810-7 5 4 9.5310-7 5 3
3 3.8810-7 4 3 2.8710-7 4 3

.5 6. 7610-7 4 1 5.4610-7 5 2
-.5 1.8610-3 1 1 5.9710-2 1

Note the relatively large errors for a = -!; using the modi
fication mentioned in the sixth comment, these errors are
slightly reduced to 6.7710-4 and 2.1710-2 respectively.

(ii) wf(x) = ln(e/(1-x)) ln(e/x), 0 < x < 1, n = 5, capn =
100,200,400. Comparing the results with llS values given by
V. I. Krylov and A. A. Pal'cev [5] the following absolute
errors were observed.

capn maximum error k maximum error k in abscissas in weights

100 9.3310-7 3 1.1310-5
200 2.3210-7 3 1 2.8110-6
400 5.8010-8 3 3 7.0410-7

(iii) wf(x) = [(l-x2)(1-k2x 2)J-!, -1 < x < 1, k = .1(.2).9,
.99, n = 10, capn = 100. The weight factors (and, indirectly,
the abscissas) were checked by comparing the sum L:;i,,, 1 w;n)
with the zero-order moment

l

mo = 1 [(1 - x2)(1 - k2x2)]-1' 2 dx = 2K(k).
-1

The moments mo , and the observed discrepancies, are shown
below, for the versions with and without the modification
mentioned in the sixth comment.

k mo error (with mod.) error (without
mod.)

.1 3.1494911230 1.1610-10 6.9310-3
.3 3.2160972399 1.7510-10 7 .2310-3
.. 5 3.3715007097 5.8210-ll 7. 9610-3
.7 3.6913879968 4.0710-10 9.6610-3
.9 4.5610982769 4.6610-10 1.5810-2
.99 6.7132010474 1.1610-10 4.8810-2

(The elliptic integral K(k) was computed from a 6th-degree
polynomial approximation due to W. J. Cody [2].) The rather
dramatic improvement due to the modification is well worth
noting. The positive abscissas and corresponding weights
fork = .5, as obtained by the modified procedure, are given
below.

x~IOl wP 0>

6 .15746 64996 .31717 65527
7 .45647 98649 .32407 60350
8 .70963 75175 .33617 78803
9 .89237 18385 .34961 83201

10 .98787 25254 .35870 15666

By symmetry, x;n) = -x~~L,., w;n> = w~~l-r (r=l,2,
... 'n).

(iv) wf(x) = l/((x+µ 2)vx), O < x::; 1, µ = 1,.1,.01, n = 10,
20, capn = 800. (The abscissas are the squares of the ab-

COLLECTED ALGORITHMS (cont.)

scissas of the 2n-point formula corresponding to wf(x) =
1/(x2+µ 2), -1 :::; x:::; 1, while the weights are twice those
of the 2n-point formula.) The moments mk satisfy

mo = ; arc tan G),
2

mk = --- - µ.2mk-1 (k = 1, 2, · · · , 2n - 1).
2k - 1

Shown below are the maximum relative e:rrors in the moments
mk, i.e.

Invariably, the maximum was attained for k = 2n - 1.
Again, the modification mentioned in the sixth comment was
used.

µ n rn ~· n l"n

1.0 10 6.1110-6 1.0 20 1.2510-5
.1 .5. 9.510-6 .1 1.2410-5
.01 5.9410-6 .m 1.2410-5

(v) wf(x) = E1 (x) = ff ext dt/t, 0 < x < oo, n = 20, capn =
160,320,G40. The moments in this case are given by mk =

k !/ (k+ 1). 8hown below are the maximum relative errors rn
in these moments. The maximum invariably occurred at
k = 0.

2
3
4
5
6
7
8
9

capn

160
320
640

2.2010--6
5 .. 5010--7
1.3710--7

Because of the intrinsic interest of this quadrature formula
in transfer problems [1] we list below the abscissas and weights
obtained with capn = 640, but rounded to 8 significant digits.

x(20
• r w~20 xf!O w~20)

. 041573069 .33006847 11 13. ~119556 1. 737364610- 7

.27423961 .33.501883 12 16.~!69573 7. 719701410-9

. 73i>21299 .20272710 13 20.41.5565 2.328565310-10
1.4364648 .090679419 14 24.3,04884 4 .549550710-12
2.3868423 .031192649 15 28. 7019.54 5 .403552010-14
3.5949493 8.396817310-3 16 33.6982')0 3 .567300310-16
5.0704204 1. 70.5195610-3 17 39 .431367 1.144795010-18
6.82474.52 2.671923910-4 18 46. 128447 1.434158310-21
8.871994;) 3 .152252710-.5 19 54.~:22968 4.633740710-25

10 11 . 22963 l 2.751164510-6 20 64.825944 1.362398610-29

(The exponential integral E 1 (x) was evaluated by the series
expansion E 1 (x) = -')' - lnx - ~=~-1 (-l)nxn/(nn!), if
0 < x < 2, and from a rational approximation due to Hast
ings [3, formula 5.1.56], if x ~ 2.)

(vi) wf(x) = Ix Jae-x, -oo < x < oo, a= 1, 2, 3, n = 20,
capn = 200,400,800. Shown below are the maximum relative
errors of the abscissas and weights as compared with values
tttbulated by A. H. Stroud and Don Secrest [6].

capn maximum errors ma~imum errors
in abscissas in weights

200 6.3110-3 ~!.1110- l
400 2.7310-6 ().8910-;)
800 6.5910-74010-7

2 200 1.1910-2 4.3010-l
400 1.1210-6 a.4410-5
800 4.6610-10 2.2710-8

3 200 1.6710-2 fi.5910-l
400 2.6910-6 'i' .9310-5
800 4 .5310-10 2.1210-8

end
REFEnrrnc1·~s:

331-P 5- Rl

1. CHANDRASEKHAR, S. Radiative Transfer. Oxford U. Press,
New York, 1950, Ch. 2.

2. CoDY, W. J. Chebyshev approximations for the complete
elliptic integrals Kand E. Math. Comput. 19 (19G5), 105-112.

3. GAUTSCH!, W. AND CAHILL, W. F. Exponential integral and
related functions. In Handbook of Mathematical Functions
(M. Abramowitz and I. A. Stegun, Eds.), NBS Appl. Math.
Ser. 55, 19G4, U.S. Govt. Printing Office, Washington D.C.,
Ch. 5.

4. GA uTcHI, W. Construction of Gauss-Christoffel quadrature
formulas. Math. Comput. 22 (1968), 251-270.

5. KRYLOV, V. I., AND PAL'CEV, A. A. Approximate integration
of functions having logarithmic singularities. (Russian)
Vesci Akad. Navuk BSSR, Ser. Fiz.-Teh. Navuk (1962), No.1,
13-18.

6. STROUD, A. II., AND SECREST, DoN. Gaussi'.an Quadrature For
nmlas. Prentice-Hall, Englewood Cliffs, N. J., 1966.

REMARK ON ALGORITHM 331
GAUSSIAN QUADRATURE FORMULAS [Dl] [Walter

Gautschi, Comm. ACM 11 (June 1968), 432]
I. D. HILL (Recd. 12 Sept. 1968)
Medical Research Council, Computer Unit (London),

London, N.1, England
KEY WORDS AND PHRASES: quadrature, Gaussian quadra

ture, numerical integration, weight function, orthogonal poly
nomials

CR CATEGORIES: 5.16

1. On pages 434 and 435 there are five strings, all of which have
identical opening and closing string quotes. 1 and 1 should be re
placed by 'and' in each case .

2. No space symbols appear in these strings. u should be in
serted in each space. Otherwise, no spaces will appear in the printed
messages.

3. In the second string, the hyphen in the word "violated"
should be deleted.

4. In the first column of page 433 there appear:
kmax := entier(capn/2);

and
if capn/2 ~ kmax then

Both these are critically dependent upon rounding error in the real
division. Presumably,

kmax := capn + 2;
and

if capn ~ 2 X kmax then
are intended.

5. A semicolon is necessary before the final end (on page 436).
As things stand, this end is part of the comment, and the algo
rithm never finishes.

Alternatively, the semicolon after end Gauss, two columns
earlier, could be deleted (in which case the symbol comment
could also be deleted if desired, but need not be). If this were done,
the final end would terminate the comment without the need for
a preceding semicolon.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 331 [Dl]
GAUSSIAN QUADRATURE FORMULAS [Walter

Gautschi, Comm. ACM 11 (June 1968), 432-436]
WILLIAM R. WISE, JR.* (Recd. 28 Jan. 19'70 and 2 Mar.

1970)
Box 35343, Georgia Institute of Technology, Atlanta,

GA 30332

*Work performed at Danish Atomic Energy Commission, Re
search Establishment Riso, Reactor Physics Department,
Computer Group

KEY WORDS AND PHRASES: quadrature, GBtussian quadra
ture, numerical integration, weight function, otthogonal poly
nomials, Newton's method, successive deflation
CR CATEGORIES: 5.16

The last Gaussian point calculated in the nonsequential meth
od, being the root of a linear equation, is calculated directly rather
than by Newton's method. In doing so it misses out on the refine
ment process.

If them-loop is extended to include this last point also (and of
course the direct calculation deleted), the results agree more
closely with those given by Stroud and Secrest [1]. The following
corrections will achieve this:

On the 4th line before the line labeled Newton 1 replace:

form : = 0 step 1 until n - 2 do

by:
for m := 0 step 1 until n - 1 do

Delete the 17th line following the line labeled refine, which now
reads:

results [1, n] :=a [n - 1] - b[n - 1] X p[n - l]/p[n - 2];

The following change may be made but is not necessary:
After the 14th line following the line labeled refine insert the

line:

if m < n - 1 then

Since this only deletes the call form = n - 1, which is almost de
generate, it usually proves to be a bigger waste of time to include
the comparisons rather than to have the unnecessary procedure
call.

Table I shows test examples indicating the difference between
the last Gaussian point computed directly and by including the
last Gaussian point in the m-loop.

TABLE I. GAUSS POINTS

Limits Computed Stroud and Computed Weight function Lower Upper n (a) with change Secrest (J] without change

l+x -1 7 .955041232 .955041227 .955041260
(1 + x)2 -1 7 .959734457 . 95973445~ .959734490
(1 - ;i:2)~ -1 7 .876922576 .876922518 . 876922615
(1 - x2)-~ (b) -1 7 .974927912 .97492791~ .974927938

1 -1 10 .973906536 .97390652~ .973906610

Ix I -1 7 .954679076 .954679025 . 954679111
e-z 0 19.3958995 19.3957279 19.3958995

(a) A capn of 70 was used excepted for n = 10 in which capn = 90 was used, eps =
1.0010 -9 throughout.

(b) The change for square root singularities suggested in comment 6 was used.

REFERENCE:

1. STROUD, A. H., AND SECREST, DoN. Gaussian Quadrature
Formulas. Prentice-Hall, Englewood Cliffs, N.J.~ 1966.

331-P 6-- 0

COLLECfED ALGORITHMS FROM CACM

ALGORITH~VI 332
JACOBI POLYNOMIALS [S22]
BRUNO F. W. WITTE (Recd. 2 Aug. 1967, 11 Oct. 1967,

8 Dec. 1967, 18 Jan. 1968)
U.S. Navy Electronics Laboratory Center, San Diego,

California 92152

KEY WORDS AND PHRASES: Jacobi p::>lynomials, orthogonal
polynomials, three-term recurrences, speeial functions

CR CATEGORIES: 5.12

comments JACOBI evaluates in double-precision the Jacobi
polynomial F = Pn(x), defined by Rodrigues' formula

for degrees n from 0 through 25, and for the given values of the
double-precision arguments a, (3, and x. The subroutine uses the
three-term recurrence relation (see, for example, [1, p. 169]):

Also calculated are the derivative FD = dF /dx and estimates of
the relative errors E and ED of F and FD. U1, V1 , an~. W1
are computed only once whenJ ACOBI is called repeatedly with
the same values of a and (3.

To explain the method for finding E and ED, we refer to the
two recursions (2) and (3) below:

(2)

(3)

Relation (2) is an abbreviated form of (1); relation (3) describes
a parallel recursion for a sequence of error-· perturbed polynomial
values Q1 which does two things: (a) it propagates previous
errors of the polynomial values P,._1 or Q1_ 1 , and P 1_2 or Q1_2

into Q1 ; and (b) it includes the effects of two errors generated
"locally" at the jlh step: the error of G which is included in H,
and the error s which arises when forming the difference itself
in (2). The error sis estimated from s =: max(E1 , E2), where
E 1 and E2 are the magnitudes of the errors of the two terms on
the right side of (2), i.e. E1 = I Eu· P;-1 J and E2 = J Ew · P1-2 J.

Here Eu is the error of G, and Ew is the error of W1. Eu and Ew
are estimated from Eu = max(j y· U1 J, . y· Vrx j) and Ew =
J y· W1 j. The value 3E-26 given toy in the DATA statement
reflects the accuracy of the CDC-1604. Hin (3) is given as H =
G +Eu. Finally, the relative error E of Pn is obtained from E =
11 - Q,,JPn J.

One might argue that the use of (3) could have been avoided
if the error of P1-1 had been taken into account in the evaluation
of E 1 , and the error of P;-2 in the evaluation of E2. However,
in numerical tests this led to serious instability in the vicinity
of the zeros of P n because of correlations between the errors.

Algorithm 332 is the first algorithm written in FORTRAN to be pub-
·-· ~

lished in the Algorithms department of Communicatio11:s of t~e ACM.
The department policy was extended to allow for algorithms m FOR
TRAN in August 1966. (For details see September 1966 issue, page 583.)

332-P 1- 0

REFERENCES:

1. Bateman Manuscript Project, Calif. Inst. of Tech. Higher
Transcendental Functions, vol. 2. McGraw-Hill, New York,
1953, pp. 168-174.

2. SzEGi:i, G. Orthogonal Polynomials. Colloq. Publ., vol. 23.
American Mathematical Society, New York, 1939, pp. 136-
138.

3. STROUD, A. H., AND SECREST, D. Gaussian Quadrature Formu
las. Prentice-Hall, Englewood Cliffs, N. J., 1966, pp. 17-31.

COLLECTED ALGORITHMS (cont.)

c

c
c
c

SUBROUTINE JACOBI

* CDEGREE,ALFA,BETA,x,F,FD,E~~Dl

DOUBLE PRECISION AtALF,ALFA,
* B,BETtBETA,c,o,F.FDt
* G,H,P,PD,Q,QD,
* r1,T2,u,v,w.x

REAL E,EO,EG,EltE2,StY

INTEGER J,J,K,M,N,OEGREE

DIMENSION UC25)t VC25)t WC 25),
* PC25) tPDC25),
* Q(25),QD(25)

DATA M /-2 /,
* ALF/-20+00/,
* BET/-20+00/t
* y /+3E-26/

IF CDEGREE.EQeO) GO TO 8

IF ((ALFA.NE.ALF)
*•OR. <BETA.NE.BET)) GO TO 1

IF CDEGREE.LEeM) GO TO 5

I M
K = DEGREE-!
M = DEGREE

IF CI-2> 2, 3, 3

CALCULATE THE UCJ),VCJ),W(J) IN
THE RECURRENCE RELATION PCJ)•
PCJ-l)*CUCJl+V(J)*X)-PCJ-2>*W(J)

1 M DEGREE
ALF ALFA
BET BETA
A :r: ALF+BET
B = ALF-BET
U(l) 812.
V(l) = le+A/2•
W(l) = ODO

IF CDEGREE.EQel) GO TO 5

'2 UC2)
V(2)
WC2l
WC2l
I

= A*B*CA+3el/(4•*<A+2•>**2)
= CA+3.l*CA+4e)/C4.•CA+2~))
= Cle+ALFl*Cl.+BET)*CA+4•)

WC2l/f2•*(A+2•)**2)
2

K OEGREE-1

3 IF CCDEGREE.EQ.2)
*•OR. C I.GT.K)) GO TO 5

DO 4 J = I,K
A 2*J+2
D = ALF+BET
A = A+D
B : D*CA-1.)*CALF-BET>
c "' J+l
c 2e*C*(A-2el*CC+0)
UCJ+l)= B/C
D A*(A-lel*CA-2.)
VCJ+lJ= D/C
D J
A 2e*CD+ALF)*(D+BETl*A
WCJ+l)= A/C

4 CONTINUE

c
c

c

c

332-P 2- 0

FIND THE STARTING VALUES FOR J=l
AND J=2 FOR USE IN THE RECURSION ••

5 Tl : VCll*X
P(lJ U(l)+Tl
S = Y*DMAXlCDABSCU(l))t

* DABS(Tll)
QCll P(l)+S
PDCl) c V(1)
QDCl>= VCl)

IF CDEGREE.EQ.l) GO TO 7
fl VC2l*X
G UC2>+Tl
~G : Y*DMAX1CDABSCUC2)),

* DABS(Tl))
H
Tl
El
P(2)
s
s

G+EG
"' G*P Cl>
= DABSCEG*P(l))

Tl-WC 2 l
c Y*DABS(W(2))

Q(2)
PDC2l=
QDC2l=

AMAXlCEltSI
H*QC11-WC2)+S
G*PDCll+VC21*PCll
H*QDCll+V(21*0(1)

IF (OEGREE.EQ.2) GO TO 7

USE THE RECURSION
DO 6 J 3,DEGREE

T2 VCJJ*X
G E UCJ)+T2
EG = Y*DMAXlCDABS(U(JJ),

* DABSCT2Jl
H G+EG
Tl G*P<J-1)
T2 W(J>*P<J-2)
El = DABSCEG*PCJ-1))
E2 DA8S(T2l*Y
P(J) = Tl-T2
S AMAX1CE1,E2l
Q(J) H*Q(J-1J-WCJ)*Q(J-2)+S
PDIJl G*PD<J-1)-W(JJ*PDIJ-2)
QDCJ> H*QD(J-ll-WCJ)•QD(J-2\
PDCJ) PD(J)+V(Jl*P(J-1)
QDCJ> = QD(J)+VCJl*QCJ-1)

6 CONTINUE

PREPARE THE OUTPUT·••
1 N DEGREE

F = PCN)
E = Y+DABS(P(N)-Q(Nl)

* /DABS(Fl
FD PD(N)
ED Y+DABSCPDCN)-QD(Nl)

* /DABS CFO)
GO TO 9

8 F .. 100
E = 0.
FD .. ODO
ED "' o.

9 RETURN
END

COLLECTED ALGORITHMS (cont.)

REMARKS ON:
ALGORITHM 332 [S22]
JACOBI POLYNOMIALS [Bruno F. W. Witte, Comm.

ACM 11 (June 1968), 436)
AI.JGORITHM 344 [S 14]
STUDENT'S t-DISTRIBUTION [David A. Levine,

Comm. ACM 12 (Jan. 1969), 37]
ALGORITHM 351 [Dl]
MODIFIED ROMBERG QUADRATURE [Graeme

Fairweather, Comm. 12 (June 1969), :324]
ALGORITHM 359 [G 1]
FACTORIAL ANALYSIS OF VARIANCE [.John R.

Howell, Comm. ACM 12 (Nov. 1969), 631]
ARTHUR H. J. SALE (Recd. 16 Feb. 1970)
Basser Computing Department, University of Sydney,

Sydney, Australia
KEY WORDS AND PHRASES: Fortran s1;andards
CR CATEGORIES: 4.0, 4."22

An unfortunate precedei;i.t has been set :in several recent al
gorithms of using an illegal FORTRAN construction. This con
sists of separating an initial line from its continuation line by a
comment line, and is forbidden by the standard (see sections 3.2.1,
3.2.3 and 3.2.4 of [1, 2]). The offending algorithms are to date:
332, 344, 351 and 359.

While this is perhaps a debatable decision by the compilers of
the standard, and trivial to correct, it seeIDJ~ a pity to break the
rules just for a pretty layout as has been done.

REFERENCES:

1. ANSI Standard FORTRAN (ANSI X3.9-1966), American
National Standards Institute, New York, 1966.

2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964),
591-625.

Remark on Algorithm 332 [S22]
Jacobi Polynomials [Bruno F.W. Witte, Comm. ACM
11 (June 1968), 436] .

Ove Skovgaard (Recd 23 April 1974 and 22 July 1974)
Institute of Hydrodynamics and Hydraulic Engineering,
Technical University of Denmark, DK-2800 Lyngby/
Denmark

In the last section of Algorithm 332, ther1e are the following
statements:

E = Y + DABS(PD(N) -- Q(N))/DABS(F)

where E should be an estimate of the relative error of the computed
value F (Jacobi polynomial);

ED = Y + DABS(PD(N) - QD(N))/DAEIS(FD)

where ED should be an estimate of the relative error of the com
puted value FD (derivative of the polynomial).

The value of For FD can be zero, but they are not checked in
the program. In addition the above statements are not in accordance
with the formulas for the relative errors, which are given by Witte
in the comments which precede the program.

332,_p 3- Rt

A reasonable modification of Algorithm 332 is: (i) calculate
absolute errors (instead of relative errors) if For FD is close to zero
(here is used IF I < y or I FD I < y); (ii) otherwise assign the
relative errors E and ED in accordance with the formulas E =
11 - Qn/Pn I and ED = \ 1 - QDn/PDn I; and (iii) add two
flag variables FLAGF and FLAGFD indicating what kind of error
(absolute, relative, or no error) is estimated. The variable FLAGF
corresponds to the error E of F. The variable FLAG FD c:orresponds
to the error ED of FD.

The two flag variables FLAGF and FLAGFD are assigned the
values 0, 1 or 2:

If a relative estimate of the error is used, the flag is assigned the
value 0. If an absolute estimate of the error is used, the flag is as
signed the value 1. If DEGREE = 0, both the errors are equal to
zero, and the flags are assigned the value 2.
The following corrections should be made in the program:

The first statement in the subroutine should read:

SUBROUTINE JACOBl
* (DEGREE,ALFA,BETA,X,F,FD,E,ED,FLAGF,FLAGFD)

The declaration of the integer variables:

INTEGER l,J,K,M,N,DEGREE

should read

INTEGER l,J,K,M,N,DEGREE,FLAGF,FLAGFD

The first IF in the program:

IF (DEGREE.EQ.O) GO TO 8

should read

IF (DEGREE.EQ.O) GO TO 10

The last section ("Prepare the output") should read:

C PREPARE THE OUTPUT
7 N = DEGREE

F = P(N)
IF (DABS(FleLToYI GO TO 8
FLAGF=O
E = DABS(l.-Q(N)/FI
GO TO 9

8 E = DABS(F-Q(N))
FLAGF=l

9 FD = PD(N)
IF (DABS(FDloLToYI GO TO 11
FLAGFD=O
ED = OABS(l.-OO(N)/FO)
GO TO 12

10 F = 100
E = Oo
FD = ODO
ED=O.
FLAGF=2
FLAGFD=2
GO TO 12

ll ED =OABSIFO-OO(N))
FLAGFD=l

12 RETURN
END

The value 3£-26 given to-y in the DATA statement reflects, ac
cording to the author, the accuracy of the CDC-1604. The author
gives no information how one can calculate this constant from the
given computer parameters (radix, number of digits in the mantissa
and information whether the machine is doing the chopping or
rounding). The constant y must b.;! some sort of "machine epsilon,"
e.g. the smallest number (provided by the implementation and the
chosen precision) for which

l+y>l. (1)

According to e.g. [4 pp. 7-9], we have

{
/j1- 1 chopping,

y = .(ji-t /2 rounding, (2)

where {j is the radix or base for the floating point numbers and t is
the number of digits (with radix m in the mantissa of the floating
numbers. In [2] algorithms and corresponding programs (in For
tran) are published which for any "reasonable" floating point com
puter compute the radix, number of digits of used floating-point

COLLECTED ALGORITHMS (co111t.)

numbers, and determine whether rounding or chopping is done by
fhe machine, see also [5]. The CDC-1604 has according to e.g. [3l
binary base, i.e. (3 = 2 with a normal word-length of 48 bit.
The word is divided into an exponent with 12 bit and a man
tissa or fraction with 36 bit. For the double-precision calcula
tions the rounding CDC-1604 has therefore
t = 36 + 48 = 84, i.e. y = ~~ X 21-84: = 5.2 X 10-2&.

With these modifications Algorithm 332 ~an successfully on an
IBM 370/165 with operating system 21.6, and with the IBM For
tran IVG compiler. For double-precision calculations on this chop
ping computer we have: (3 = 16, t = 14, i.e.:y = 16-13 = 2.2 X
10-16, see [1 p. 163].

References
1. International Business Machines. IBM System/370 Principles
of Operation. IBM Syst. Order No. GA22-7000-3, IBM, White
Plains, N.Y., 1973, xii+318.
2. Malcolm, M.A. Algorithms to reveal properties of floating
point arithmetic. Comm. ACM 15 (Nov. 1972), 949-951.
3. Stroud, A.H., and Secrest, D. A multiple-precision floating
point interpretive program for the Control Data 1604. Computer
J. 6 (1963), 62-66.
4. Wilkinson, J.H. Rounding Errors in Algebraic Processes.
Her Majesty's Stationery Office, London, and ;Prentice-Hall,
Englewood Cliffs, N.J., 1963, vi+161. ·
5. Gentleman, W.M., and Marovich, S.B. More on algorithms
that reveal properties of floating point arithmetic units. Comm.
ACM 17, 5 (May 1974), 276-277.

332-P 4- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 333
MINIT ALGORITHM FOR LINEAR
PIWGRAMMING [H]
RODOLFO C. SALAZAR AND SuBRATA K. SEN

(Recd. 26 June 1967 and 25 Jan. 1968)
Graduate School of Industrial Administration, Carnegie

Mellon University, Pittsburgh, Penna. 15213

KEY WORDS AND PHRASES: linear programming, dual
simplex method, primal problem, dual problem

CR CATEGORIES: 5.41

real procedure MINIT(m, n, p, e, td);
integer m, n, p; array e; real td;

comment MINIT(MINimum ITerations) is designed to solve a

linear programming problem of n variables and m constraints
of which the last p are equality constraints. The problem can
be stated as follows:

Maximize z = cX

subject to AX ~ b

x~o

c is a (lXn) row vector, X is a (nXl) column vector, A is a
(mXn) matrix, and b is a (mXl) column vector. e is a matrix
with (m+l) rows and lcol columns (where lcol=m+n-p+l)
and forms the initial tableau of the algorithm:

1 . lcol

-c (1 X n) 0 (1 X m - p) 0
-------~--

Identity (m - p)
Matrix inequality

A (m X n) (m - p X m - p) b constraints

Zero (rn X 1) p
Matrix equality

(p X m - p) constraints
m + 1

td is read into the procedure and should be a very small number,
e.g. 10-s. The condition of optimality is the nonnegativity of
e[l, j] for j = 1, · · · , lcol-1 and of e[i, lcol] for i = 2, ... ,
m + 1. If the e[i, j] values are greater than or equal to -td
they are considered to be nonnegative. The value of td should
reflect the relative magnitude of the coefficient matrix.

It should be noted that when equality constraints are present,
the dual solution vector is not complete, i.e. the procedure does
not compute the values of the dual variables corresponding to
the equality constraints. However, knowing the optimal solu
tion to the primal problem and the values of the dual variables
corresponding to the inequality constraints, it is a simple mat
ter to compute the values of the remaining dual variables. In
the initial tableau, the elements of the vector b must be non
negative for the equality constraints.

MINIT is based upon a technique suggested by Llewellyn
[1] and is a specialized algorithm based on the principle of the
dual simplex method. Llewellyn states that he has found the
MINIT algorithm to be more efficient than any other method

333-P 1- 0

he has used. MINIT's efficiency is based upon the fact that the
solution method confines the iterations to those constraints
which are defining (equality constraints and those inequality
constraints whose slack variables are zero in the optimal solu
tion). The algorithm starts with an infeasible solution as in the
dual simplex method. When "greater than or equal to" con
straints are involved, it also starts with an incomplete solution
since it avoids the use of artificial variables. This feature of the
algorithm considerably reduces the number of iterations re
quired to obtain the optimal solution. Both the primal and dual
problems are solved simultaneously and the pivotal element at
each iteration is so chosen that there is a maximum increase in
the functional value of the primal or a maximum decrease in
the functional value of the dual. The details of the algorithm
and a discussion of the theoretical reasons for its computational
efficiency may be obtained from the reference cited below.

The experience of the authors with the MINIT algorithm
has been very satisfactory. For example, on a CDC G-21 com
puter, the Simplex code available in the Carnegie Tech. program
library took 4 minutes 56 seconds to solve a 51 X 72 linear pro
gramming problem (consisting only of inequality constraints)
while the same problem was solved in 2 minutes 58 seconds by
the MINIT algorithm. For problems with mixed constraints,
i.e. equality and inequality constraints, the advantage of the
MINIT algorithm is even more pronounced.

REFERENCE:
1. LLEWELLYN, R. W. Linear Programming. Holt, Rinehart and

Winston, New York, 1964, pp. 207-220;
begin integer i, j, k, L, im, jmin, jm, imax; real grnin, phimax;

integer array ind[l: lcol], indl[l :m+l], chk[2:m+l];
procedure results ;
comment prints out the output. The value of the functional

is given by z. The optimal values of the variables are given by
x[i] for i = 1, · · · , n and the values of the dual variables are
given by w[j] for j = 1, · · · , m;

begin real z; array x[l:n], w[l:m];
z :=e[l:lcol];
for i := 1 step 1 until n do x[i] := O;
for J. := 1 step 1 until m do w[i] := O;
for i : = 2 step 1 until m + 1 do
begin

if chk[i] > n then chk[i] := O;
if chk[i] > 0 then x[chk[i]] := e[i, lcol]

end;
for j := n + 1 step 1 until lcol-1 do w[j-n] := e[l, jl;
comment Insert output statements to print out z, x[i],

and w[j], for example, the following six statements sepa
rated by semicolons: (1) outstring (1, 'value of the func
tional'), (2) outreal (1, z), (3) outstring (1, 'optimal values
of the variables'), (4) outarray (1, x), (5) outstring (1, 'values
of the dual variables'), (6) outarray (1, w);

go to LAST
end results;
procedure rowtrans(im, jmin);

integer im, jmin;
comment performs the usual tableau transformations in a

linear programming problem, (im, jmin) being the pivotal
element;

begin real dummy;
if im = 0 then

COLLECTED ALGORITHMS (cont.)

begin

comment Insert an output statement to print "no solu
tion", for example, the statement, outstring (1 'no solu-
tion'); '

go to LAST
end;
if jmin = 0 then
begin

comment Insert an output statement to print "no solu
t~on", for example, the statement, outstdng (1, 'no solu
t10n1);

go to LAST
end;
dummy := e[im, jminJ;
for j := 1 step 1 until lcol do e[im, jJ .- e[im, j]/dummy;
for i : = 1 step 1 until m + 1 do
begin

if i ~ im then
begin

if e[i, jmin] ~ 0 then
begin

dummy := e[i, jmin];
for j : = 1 step 1 until lcol do

e[i, j] := e[i, j] - e[im, j] X dummy
end

end
end;
chk[im] := jmin

end rowtrans;
procedure progamma;
comment performs calculations over columm1 to determine

the pivot element;
begin integer i, Ll; real theta, gamma; array thmin[l:lcol];

integer array imin[l: lcol];
gmi"n := 106 ; jmin := O;
comment gmin is set equal to a large number for initializa

tion purposes;
for Ll := 1 step 1 until L - 1 do
begin

imin[ind[Ll]] := O; thmin[ind[Ll]] .- 106;
for i : = 2 step 1 until m + 1 do
begin

if e[i, ind[Ll]] > td /\ e[i, lcol] ~ -td then
begin

theta : = e[i, lcol]/e[i, ind[Ll]];
if theta < thmin[ind[Ll]] then

begin
thmin[ind[Ll]] . - theta; i·min[ind[LlJ] := i

end
end

end;
if thmin[ind[Ll]] = 106 then gamma : = 108

else gamma := thmin[ind[Ll]] X e[l, ind[LlJ];
if gamma < gmin then
begin

gmin := gamma; jmin := ind[Ll]
end

end;
if jm1:n > 0 then im := imin[jmin]

end progamma;
procedure prophi;
comment performs calculations over rows to determine the

pivot element;
begin integer j, kl; real delta, phi; array delmax[l:m+l];

integer array jmax[l:m+lJ;
phimax := - 106; imax := O;
comment phimax is set equal to a small number for initial

ization purposes;

for kl := 1 step 1 until k - 1 do
begin

333-P 2- 0

jmax[indl [klJ] := O; delmax[indl [klJ] .- - 106 ;

for j : = 1 step 1 until lcol - 1 do
begin

if e[indl[kl], j] < -td /\ e[l, .il > -td then
begin

delta := e[l, j]/e[indl[kl], j];
if delta > delmax[indl[kl]] then
begin

delmax[indl[klJJ := delta; jmax[indl[kl]] := j
end

end
end;
if delmax[indl[klJJ = - 106 then phi := - 108
else phi := delmax[indl[klJ] X e[indl[kl], lcol];
if phi > phimax then
begin

phimax := phi; imax .- indl[klJ
end

end;
if imax > 0 then jrn := jmax[imax]

end prophi;
p1·ocedure phasel ;
comment applied only to equality constraints if any;
begin integer r; real theta, gamma; array thmin[l:lcol];

integer array imin[l: lcol];
for r := 1 step 1 until p do
begin

gmin := 106 ; L := l;
comment gmin is set equal to a large number for initial

ization purposes;
for j := 1 step 1 until n do
begin

thmin[jJ : = 106 ; if e[l, j] < 0 then
begin

ind[L] := j; L := L + 1
end

end;
if L = 1 then
begin

for j := 1 step 1 until n do ind[j] := j; L := n + 1
end;
for k : = 1 step 1 until L - 1 do
begin

for i : = m - p + 2 step 1 until m + 1 do
begin

if chk[i] = 0 then
begin

if eli, ind[k]] > 0 then
begin

theta : = e[i, lcol]/e[i, ind[kJ];
if theta < thmin[ind[k]J then
begin

thmin[ind[k]] .- theta; imin[ind[k]] .
end

end
end

end;
gamma := thmin[ind[k]] X e[l, ind[k]];
if gamma < gmin then
begin

gmin := gamma; jmin := ind[k]
end

end;
im := imin[jmin]; rowtrans(im, jmin)

end
end phasel;

COLLECTED ALGORITHMS (cont.)

for i := 2 step 1 until /fl + l do chkli] :'= 0;
if p = 0 then go to /N'S el~e phase I;
comment If there are au~· eq11ality cu11strai11ts i11 the problem

the program first gm•:-; tn phasd, otherwise it goes din'ctl~- to
HCS;

RCS : /, : = 1 ; k : = 1 ;
for .i := 1 :-otep l unlil /co{ - 1 do
hegin

if r[l . .il < - td then
begin

ind\/,j := j; /, := /, + I;
comment ind\/,] kePps tra<·k of tlw <"olnmns iu whi<'h dL.iJ

18 IH'gat ive;
end

end;
for i := 2 ~tcp 1 until 1n + 1 do
hegin

if e[i. lcolj < - td then
begin

indllk] := i; k := k + l;
conunen l im/l lk] kef'ps I nu·k <>f I he rows i 11 which l'r i. lrol 1

is nf'ga t ivf';
end

end;
if L =. 1 then
hegin

if k = 1 then res11lts ell-le
he{lin

if A· = 2 then
hel{in

for j := 1 step 1 until lcol - 1 do
hegin

if ef in</J[l], jj < 0 then #;[O to ll
end;
emnn1ent Insert 11.11 011tp11t statC'ment t.o print "primal

problem has no feasible solutions, dual objN·tive fur1e~

tiu11 is 1111bo11nded'', for f'Xamplf', the stateinent u11t-

1-1tring (l, 'primal prnblem haf> 110 frnsible solutiulls, dual
obje<'tive fun<'tiou is 11nhourulf'd 1

);

µ:o Lo LAST
end else go to R

end
end
ell'le
hegin

if L = 2 then
hep;in

if k = I then
lwgin

for i := 2 slep 1 unlil 111 + 1 do
hegin

if di, inrllllJ > 0 then go to C
end;

eomment Insert a11 011tp11t statement to pri111 "primal
obje<'tive f11netio11 is u11bon11ded, dnal problem hqs no
feasible solutions". for Pxample. the sta tf'meut 11111-

.-;fring 0. 'primal objectivP f1111etio11 is u11bo1111de<l, d11al
problem has 110 feasible solut io11s');

go to LlST
end else go to S

end;
if k = 1 then go to C else µo to S

end;
R: prophi; rou1trans(imax,j111); ~oto/U'8;

(': prog111nma; rowlrans(im. jminl; JlO to IU'S;
S: proga111 ma; propM;

iif gm in = JOH I hen

heµ: in
mwlrans(i111a.r, jm); go to /U'8

end;
if phima:r = -- 106 then
heµ:in

rowfmns(i111, jniin); go to /N'S;
end;

333-P 3- R2

if 11.h.~(phinw.r l > abs(g111in) then r1111'fmn~(ima.r,)1111

el!-ie ro1L'/mn.~(i111. jmin);
flO lo /N'S;

J,. \8T: end .l/ IXJT

HE:\IAHK U:\ ALGORITIL\I :rn:J [H]
:\lll\'IT ALGOHITH:\I FOH LI:'.\EAR PHOGRAl\l
:\II:\C [Rodolfo C. Salazar and Huhrata K. Sen, Comm.

A CM 11 (.June 1968), 4~7]
D. K. :\IE~sHA:'lt (Recd. 27 l'ov. 196:-.\ and 28 Feb. 1969)
Nelson Re~carch Laboratoric:-;, The English Electric Co.

Ltd., Stafford, England

KEY WOBDS AND PHHASES: linear prograniming, dual sim
plex met.hod, primal problem, dual problem

CR CATEGORIES: 5.41

The pro<"edurP has been tested with Marconi Myriad Algol, and
it rn11 s11c<'essfully when the following changes had been made (the
first is merely a misprint):

1. The first statement in procedme results was changed
from z : = e[l : lcol];
to z := e[l, lcol];
2. To s:itisf y an ALGOL ()0 restriction that a type procedure

should contain au assignment to its procedure identifier, the real
on the first line of the procedure was removed.

3. It is possible for the published algorithm to give in<'orrect
results when it reaches a state in phasel where there are no possible
pivotal elements in one column of the tableau. (For example,
maximize - Xi - X2 - Xa , with 2x1 + xi = 3 and xa = 1, rea<'hes
this state.) To corre<'t this the line in pro<'edure pluLsel

if gamma < gmin then
was changed to

if gamma < gmin A thmin [ind[k]] < to6 then
All the appearances of 106 in this algorithm should be writtPll as
to6.

The following improvPments are also suggested:
4. It. ii;; assumed that lcol is a global integer with the correct

value. 'fhi8 was made unnecessary by adding lcol to the list of
integerR declared on the line immediately following the initial com
ment; the houuds of the arra'y ind, declared on the next line, were
changed

from {1 : lcolj
to {1 : m+n-p+ l];
and lcol : = m + n - p + 1 ;

was inserted as the first executable statement of the procedure
MI.VIT (after end phasel ;) .

5. It is assumed that equality constraints will be given with
poi.:;itive right-hand sides. This restrietion was over<"ome by insert
ing in the procedure phase I after the line integer array imin
[1 : lcol]; the following:

for i := m - p + 2 step 1 until m + 1 do
if c[1'., lcnl] < 0 then
for .i := 1 step 1 until lcol do e[i, j] := - e[i, j];

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 333 [HJ
MINIT ALGORITHM FOR LINEAR PROGRAM

MING [Rodolfo C. Salazar and :Subrata K. Sen,
Comm. ACM 11 (June 1968), 437-440J

A. KOLM AND T. DAHLSTRAND (Recd. 15 Sept. 1969)
Information Processing Department, ASEA. S-721 83

Vasteras, Sweden

KEY WORDS AND PHRASES: linear programming, dual sim
plex method, primal problem, dual problem
CR CATEGORIES: 5.41

When we tried to run the program on a GE-625 computer it
became apparent that the following, rather qbvions changes in
the procedure phasel of the original program are necessary:
1. The statement after the statement thmin[j] := 106; should
begin with

if e[l,JJ < - td then · · ·
2. The beginning of the statement following the statement if
chk[i] = 0 then should be replaced by

begin
if e[i,ind[k]J > td then

3. The statement gamma : = thmin [ind[k]] X e[l ,ind[k]J; should be
preceded by

if thmin[ind[k]] = 106 then gamma : = 108 else
We also suggest that the parameters m, n, p, ld of the procedure
should be value-specified.

After these corrections the procedure has been successfully
tested in several problems. For problems of moderate size, which
without further modifications can be solved ·by the procedure,
the algorithm turned out to be most efficient. The numerical
accuracy was also good.

Remark on Algorithm 333 [HJ
Minit Algorithm for Linear Programming [Rodolfo
C. Salazar and Subrata K. Sen, Comm. A.CM 11
(June 1968), 437-440]

D. Obradovic*
Boris Kidric Institute of Nuclear Sciences,
11001 Beograd, Yuguslavia
*Present address: Institute of Investment Research, 1100 Beograd,
Yugoslavia.

The procedure has been tested with CDC 3600 Algol, and it
ran successfully when the following changes had been made in the
procedure phase 1 :
I . After the line

comment applied only to equality constraints if any;
instead

begin integer r;
one has to introduce

begin integer r, iml,jmin 1;
2. After the line

integer array imin[l :/col];
one has to introduce a new line

im 1 : = jmin 1 : = O;

3. The line
if L = 1 then

should read
LI: if L = 1 then

333-P 4- RI

4. Last nine lines of the procedure phase 1 should be changed to
read

if thmin[ind[k]J < 106 then
begin
gamma := tbmin[ind[k]] X e[l, ind[k]J;
if gamma < gmb1 then
begin
gmin := gamma;jmin := ind[k];
end
end;
end;
im : = imin[jmin];
if im = iml /\ jmin = jminl then
begin
L : = 1 ; go to L 1
end;
rowtrans(im, jmin);
iml : = im; jminl : = jmi11;
end
end phase 1;

These changes are necessary to avoid incorrect results in the
case if after application of the procedure rowtrans all e[i, ind[k]]
are negative as in the following example

Z = -0.9 X1 - 1.255632 X2 + 0.925 X3 + 0.375 X4

Xi < 2, i = 1, 2, 3, 4

2.19069 X1 - 0.925 X2 - 0.325 Xa - 0.1875 X4 = 0.76569
Xi - 0.1 Xa + 0.740896x4 = 1.640896

when the published algorithm ignores some of the equality con
straints.

Remark on Algorithm 333 [HJ Minit Algorithm for
Linear Programming [Rodolfo C. Salazar and
Subrata K. Sen, Comm. ACM 11(June1968),
437-440]

B. Holmgren,* D. Obradovic,t and A. Kolm*
[Recd. 13 May 1971]
*Information Processing Department, ASEA
S-721 83 Vasteras Sweden
t Boris Kidric Institute of Nuclear Sciences,
11001 Beograd, Yugoslavia

In addition to previously given remarks on the algorithm, the
following changes in the procedure phase 1 are necessary in qrder
to avoid incorrect results for some types of problems with equality
constraints:
1. Introduce into phase 1 the variable first by the declaration

Boolean first;

2. After the statement L : = 1; one has to set

jmin : = O; first : = true;

3. The statement if L = 1 then ... should be replaced by

LI : if L = 1 then ...

COLLECTED ALGORITHMS (cont.)

4. The statement im : = imi11 fjmi11]; should be preceded by

if jmin = 0 then
begin

if first then
begin

first : = false; L : = I; go to LI
end else im : = 0

end else

After these changes MI NIT can handle problems, for which equal
ity constraints cause all the current values of e[i, ind[k]] to be
negative at some stage in phase 1. For such cases the variables im
and jmin in the old version either were left undefined or remained
unchanged before entering the procedure rowtrans. An example
of this is the trivial problem

max x,, when
X1, X~ 2:: 0,
x 1 ~I,

X2 = J,
where the original procedure completely failed.

333-P 5- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITH1\1 334
NORMAL RANDOM DEVIATES [G5]
JAMES R. BELL (Recd. 13 Dec. 1965, 29 Nov. 1967,

and 23 Jan. 1968)
Stanford Research Institute, Menlo P~rk, Calif.

KEY WORDS AND PHRASES: normal deviates, ndrmal distribution, random

number, random number generator, simulation, probability distribution,
frequency distribution, random

CR CATEGORIES: 5.5, 5.13

procedure norm (Dl, D2);
real Dl, D2;

comment This procedure generates P1i1irs of independent
normal random deviates with mean zero abd standard deviation
one. The output parameters Dl and D2 ard normally distributed
on the interval (- oo, + oo). The metho1i is exact even in the
tails.

This algorithm is one of a class of normal deviate generators,
which we shall call "chi-squared projecitions" [1, 2]. An ail
gori thm of this class has two stages. The first stage selects a
random numberc L from a x22-distributiqn. The second sta~e
calculates the sine and cosine of a random angle 0. The generated
normal deviates are given by L sin (0) and L cos (0).

The two stages can be altered independently. In particular,
as better x22 random generators are developed, they can replace
the first stage. (The negative exponenti~l distribution is the
same as that of X22.)

The fastest exact method previously ptiblished is Algorithm
267 [4], which includes a comparison with earlier algorithms.
It is a straight chi-squared projection. ()ur algorithm differs
from it by using von Neumann rejection tq generate sin (q,) and
cos (</>), [cf> = 20], without generating .p: explicitly [3]. This
significantly enhances speed by eliminating the calls to the
sin and cos functions.

The author wishes to express his gratitude to Professor
George Forsythe for his help in developing the algorithm.

REFERENCES
1. Box, G., AND MULLER, M. A note on the :generation of normal

deviates. Ann. Math. Stat. 28, (1958), 610.
2. MULLER, M. E. A comparison of methods for generating

normal deviates on digital computers. J. ACM, 6 (July
1959)' 376-383.

3. VON NEUMANN, J. Various techniques us~d in connection with
random digits. In Nat. Bur. of Standa,rds Appl. Math. Ser.
12, 1959, p. 36.

4. PIKE, M. C. Algorithm 267, Random Normal Deviate.
Comm. ACM, 8 (Oct. 1965), 606.;

comment R is any parameterless procedure returning a random
number uniformly distributed on the interval from zero to one.
A suitable procedure is given by Algorithm :266, Pseudo-Random
Numbers [Comm. ACM, 8 (Oct. 1965), 605] if one chooses
a = 0, b = 1, and initializes y to some la:rge odd number, such
as y = 13421773.;

begin
real X, Y, XX, YY, S, L;
comment von Neumann rejection for choosing a random

angle cf> = 20, O = tan-1 (Y /X);
A: X := R; Y := 2 X R - 1;
xx := x i 2; yy := y i 2;

334 P 1- RI

s :=xx+ YY;
if S > 1 then go to A ;
comment chooses L randomly from a x2

2-distribution and
normalizes with S;

L :=sqrt (-2Xln(R))/S;
comment computes deviates as L X sin (q,) and L X cos (q,);

D1 := (XX-YY) XL;
D2 := 2 X X X Y X L;
end norm;

REMARK ON ALGORITHM 334 [G5]
NORMAL RANDOM DEVIATES [James R. Bell,

Comm. ACM 11 (July 1968), 498]
R. KNOP* (Recd. 5 Aug. 1968 and 8 Nov. 1968)
Physics Dept., University of Maryland, College Park,

MD 20742

This work was supported in part by an Atomic Energy Commission
contract.
*Present address: Physics Dept., Rutgers University, New
Brunswick, NJ 08903

KEY WORDS AND PHRASES: normal deviates, normal dis
tribution, random number, random number generator, simula
tion, probability distribution, frequency distribution, random

CR CATEGORIES: 5.13, 5.5

Algorithm 334 produces pairs of normally distributed random
deviates with zero mean and unit variance by the method of Box
and Muller [1]. The sine and cosine required by the Box-Muller
method are calculated by the von Neumann rejection technique
[2]. This technique allows the calculation of the sine and cosine of
an angle uniformly distributed over the interval (0, 211") without
referencing the sine, cosine, or square root .functions. We note
however, that Algorithm 334 require as square root calculation in
inverting the distribution function of the radius '(equal to L X S
in the notation of the algorithm).

We suggest that since the square root calculation seems un
avoidable, it can be used to obtain the required sine and cosine by
more conventional means. Thus we propose sampling points from
a density uniform over the unit disk in the X, Y-plane and cal
culating the sine and cosine from their definition in terms of the
legs and hypotenuse of a right triangle. The following changes in
Algorithm 334 are then necessary:

a. Replace X : = R by X :- 2 X R - 1
b. Replace L := sqrt(-2Xln(R))/S by

L :== sqrt(-2Xln(R)/S)
c. Replace Dl :- (XX-YY) XL by Dl :- XXL
d. Replace D2 := 2 X X X Y X L by D2 :- Y X L
Acknowledgment. The author thanks B. Kehoe for comments

concerning this algorithm.
REFERENCES:

1. Box, G., AND MULLER, M. A note on the generation of normal
deviates. Ann. Math. Stat. 28 (1958), 610.

2. VoN NEUMANN, J. Various techniques used in connection with
random digits. In Nat. Bur. Standards Appl. Math. Ser. 12,
US Govt. Printing Off., Washington, D. C., 1959, p. 36.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 334

Normal Random Deviates
[James R. Bell (with modifications due to R. Knop), Commun. ACM 12, 5 (May
1969), 281.]

Allen E. Tracht [Received 12December1981; revised 16December1981; accepted
16 December 1981]
Biomedical Engineering Department, Case Western Reserve University, Cleve-
land, OH 44106.

As modified by Knop, Algorithm 334 produces pairs of normally distributed
random deviates with zero mean and unit variance by a modification of the
"polar" method due to Box, Muller, and Marsaglia [2]. The following change
converts Algorithm 334, as modified by Knop, to the "polar" method:

Replace: L := sqrt(-2 x ln(R)/S)

byL := sqrt(-2 x ln(S)/S).

Note that this modification eliminates one invocation of the uniform random
number generator R. Using timing information given by Brent [1] in Algorithm
488, the "polar" method would be expected to take (83 + 1.27U) microseconds
rather than (83 + 1.77 U) microseconds per call. This is faster than the (91 +
1.38 U) microseconds giv1m by Brent for Algorithm 488.

REFERENCES
1. BRENT, R.P. Algorithm 488. A Gaussian pseudorandom number generator, Collected Algorithms

of the ACM., Vol. 2, ACM, New York, 1978.
2. KNUTH, D.E. The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass.,

1981, pp. 117-118 or 1969, pp. 104-105.

334-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 334
NORMAL RANDOM DEVIATES [G5]
JAMES R. BELL (Recd. 13 Dec. 1965, 29 Nov. 1967,

and 23 Jan. 1968)
Stanford Research Institute, Menlo Park, ·Calif.

KEY WORDS AND PHRASES: normal deviates, normal ~istribution, random

number, random number generator, simulation, probability distribution,

frequency distribution, random

CR CATEGORIES: 5.5, 5.13

procedure norm (Dl, D2);
real Dl, D2;

comment This procedure generates pairs of independent
normal random deviates with mean zero and standard deviation
one. The output parameters Dl and D2 are nor:dially distributed
on the interval (- oo, + oo). The method is exact even in the
tails.

This algorithm is one of a class of normal deviate generators,
which we shall call "chi-squared projections" [1, 2]. An al
gorithm of this class has two stages. The first stage selects a
random number L from a x22-distribution. The second stage
calculates the sine and cosine of a random angle~. The generated
normal deviates are given by L sin (0) and L cos! (0).

The two stages can be altered independently. In particular,
as better x22 random generators are developed, they can replace
the first stage. (The negative exponential distribution is the
same as that of x22.)

The fastest exact method previously published is Algorithm
267 [4], which includes a comparison with ea~lier algorithms.
It is a straight chi-squared projection. Our ~lgorithm differs
from it by using von Neumann rejection to gen~rate sin (cp) and
cos (cp), [<P = 20], without generating cp explicitly [3]. This
significantly enhances speed by eliminating the calls to the
sin and cos functions.

The author wishes to express his gratitude to Professor
George Forsythe for his help in developing the algorithm.

REFERENCES .
1. Box, G., AND MULLER, M. A note on the generation of normal

deviates. Ann. Math. Swt. 28, (1958), 610.
2. MULLER, M. E. A comparison of method8, for generating

normal deviates on digital computers. J. ACM, 6 (July
1959), 376-383.

3. VON NEUMANN, J. Various techniques used in :connection with
random digits. In Nat. Bur. of Standards 1~ppl. Math. Ser.
12, 1959, p. 36.

4. PIKE, M. C. Algorithm 267, Random Normal Deviate.
Comm. ACM, 8 (Oct. 1965), 606.;

comment R is any parameterless procedure rettl-rning a random
number uniformly distributed on the interval fi·om zero to one.
A suitable procedure is given by Algorithm 266, Pseudo-Random
Numbers [Comm. ACM, 8 (Oct. 1965), 605] ,if one chooses
a = 0, b = 1, and initializes y to some large odd number, such
as y = 13421773.;

begin
i·eal X, Y, XX, YY, S, L;
comment von Neumap,n rejection for choosing a random

angle cp = 20, O = tan-1 (Y/X);
A: X:=R; Y:=2XR-1;

xx := x i 2; yy := y i 2;

334 P I RI

S :=XX+ YY;
if S > 1 then go to A;
comment chooses L randomly from a x22-distribution and

normalizes with S;
L := sqrt (-2Xln(R))/S;

comment computes deviates as L X sin (cp) and L X cos (q,);
D1 := (XX-YY) XL;
D2 : = 2 X X X Y X L;
end norm;

REMARK ON ALGORITHM 334 [G5]
NORMAL RANDOM DEVIATES [James R. Bell,

Comm. ACM 11 (July 1968), 498]
R. KNOP* (Recd. 5 Aug. 1968 and 8 Nov. 1968)
Physics Dept., University of Maryland, College Park,

MD 20742

This work was supported in part by an Atomic Energy Commission
contract.
*Present address: Physics Dept., Rutgers University, New
Brunswick, NJ 08903

KEY WORDS AND PHRASES: normal deviates, normal dis
tribution, random number, random number generator, simula
tion, probability distribution, frequency distribution, random

CR CATEGORIES: 5.13, 5.5

Algorithm 334 produces pairs of normally distributed random
deviates with zero mean and unit variance by the method of Box
and Muller [1]. The sine and cosine required by the Box-Muller
method are calculated by the von Neumann rejection technique
[2]. This technique allows the calculation of the sine and cosine of
an angle uniformly distributed over the interval (0, 27r) without
referencing the sine, cosine, or square root functions. We note
however, that Algorithm 334 require as square root calculation in
inverting the distribution function of the radius (equal to L X S
in the notation of the algorithm).

We suggest that since the square root calculation seems un
avoidable, it can be used to obtain the required sine and cosine by
more conventional means. Thus we propose sampling points from
a density uniform over the unit disk in the X, Y-plane and cal
culating the sine and cosine from their definition in terms of the
legs and hypotenuse of a right triangle. The following changes in
Algorithm 334 are then necessary:

a. Replace X : = R by X : = 2 X R - 1
b. Replace L := sqrt(-2Xln(R))/S by

L := sqrt(-2Xln(R)/S)
c. Replace Dl := (XX-YY) XL by Dl :=XXL
d. Replace D2 := 2 XX X Y XL by D2 := Y XL
Acknowledgment. The author thanks B. Kehoe for comments

concerning this algorithm.
REFERENCES:

1. Box, G., AND MULLER, M. A note on the generation of normal
deviates. Ann. Math. Stat. 28 (1958), 610.

2. VoN NEUMANN, J. Various techniques used in connection with
random digits. In Nat. Bur. Standards Appl. Math. Ser. 12,
US Govt. Printing Off., Washington, D. C., 1959, p. 36.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 335
A SET OF BASIC INPUT-OUTPUT PROCEDURES

[I5]
R. DE VoGELAERE (Recd. 8 Sept. 1966 and 18 Nov. 1966;

description revised 2 Nov. 1967)
Department of Mathematics and Computer Center, Uni

versity of California, Berkeley, CA. 94720

By means of the primitives insymbol, ou;fsymbol and length,
as requested by this journal's Algorithms Policy [Comm. ACM
10 (Nov. 67), 729] a bask set of input-c1utput procedures is
defined aiming at quality and flexibility. outreal, for in
st.once, is written as a derived procedure; it outputs using the
fixed point or the floating point represEmtation, and rounds
properly. Variants can easily be written because of the explicit
call of the procedures decompose integer and decompose real.
The highly recommended practice of echoing input is made
easy with one subset of derived procedures (ioi, ior, iob,
ioa). The documentation of output in the form of equivalent
ALGOL statements is also provided when use is made of the
subset oti, otr, otb, ota. The Berkeley st~fle of providing in
formation on the form of output using prior calls of procedures
such as real format is defined. A use of the parameter out
channel to provide information for simultaneous output to
several channels is suggested. lnterrelatic)nship between the
declared procedures is furnished in tabular form.

KEY WORDS AND PHRASES: input output, tran!;put, input output pro
cedures, input echo, quality output, decompose integer, decompose real,
style, Berkeley style, procedures relationship, output documentation, equiva
lent ALGOL statements, ALGOL, ALGOL 60, integer format, real format,
out integer, read real, input output Boolean, input output array, flxed point
representation, floating point representation, out,:1ut channel interpretation

CR CATEGORIES: 4.0, 4.41

1. Introduction
The reader will find below a set of basic input-output proce

dures. Let me state first some of the purposes for writing this set
and give a general description and specific information about
the procedures and their interrelationship.

In the October 1964 issue of the Communications of the ACM
[l], a report on input-output procedures for ALGOL 60 was pub
lished. This report was prepared by a working group (WG 2.1)
of the International Federation for Information Processing
(IFI? /TC2) and approved by its Council.

The approved primitives were:

insymbol, outsymbol, length, inreal, outreal, inarray, outarray

In the examples the following derived procedures were defined:

outboolean, outstring, ininteger.

335 p 1 0

It is stated therein that "one needs, in practice, a fuller set of
input-output procedures" and it is observed also that "different
scheme of 1/0 procedures can be defined in it, largely by means of
these primitives."

Since then, a few procedures have been published (see for in
stance [2, 3]) and the Algorithms Policy of this journal has re
quested [6] the use of the primitives of [l] and the use of out
boolean, outstring, ininteger and outinteger for invut-output.

The purpose of this algorithm is to present part of a consistent
scheme of input-output procedures. The set uses as primitives,
insymbol, outsymbol, and outstring (or equivalently length).

First in integer, out integer, in real, out real, in Boolean, out
Boolean are derived. in real is related to [2]; out integer and out real
call the more basic procedures decompose integer and decompose
real. out real allows not only for floating point representation [3]
but also for fixed point representation and for correct rounding.

Several sets of procedures, which point in several directions
and which call the more basic ones, are then introduced. One set
consists of parameterless input function designators akin to the
procedure read of the Amsterdam Mathematisch Centrum. One
set provides for echo of input to insure that the correct numbers
have been read in-a practice which I recommend highly; it also
provides for easy documentation of the output in the form of
equivalent ALGOL statements. Another set with the same docu
mentation feature is for output only; the last set outputs num
bers, but no text.

It is not suggested that the set of procedures of this algorithm
be used for quantity output. Its main purpose is for quality output.

2. General Description
2.1. The only primitives used are insymbol, outsymbol, and

length (through outstring). insymbol and outsymbol assume that
the value -1 is associated with the symbol carriage return-line
feed (or new card), which is not a basic symbol of ALGOL 60.
This is done in accordance with the convention of [1, Sec. 3].
outstring could have been avoided with some loss of clarity in the
description of the procedures. insymbol, outsymbol, and outstring
are defined in [1].

inreal and outreal are defined as in [2, 3] in terms of insymbol,
outsymbol, and outstring. I do not believe that inreal and outreal
should be primitives, firstly, because these procedures can be
defined in terms of other primitives, and secondly, because many
definitions will satisfy the requirements of [1]. On the other hand,
the requirements set forth in [1] are most desirable.

in channel and out channel must be declared as integers and a&
signed a value in accordance with the requirements of insymboZ
and outsymbol [l].

I would like to observe in passing that the integer out channel
cannot only be interpreted as identifying a single channel, but
can also be interpreted as identifying a set of channels to all of
which the output is to be sent. (If the binary representation of out
channel is L a[i] X 2 i i, the output is sent to channel i if a[i] = 1
and is not sent if a [i] = O.) Although this is not yet implemented
at Berkeley in this fashion, all output going to a terminal is now
also sent to the printer. When time-sharing becomes widespread
this interpretation will, I hope, be increasingly popular.

2.2. The more basic input-output procedures are in integer,
in real, and in Boolean; the first two use in symbol only through
the integer procedure symbol.

symbol recognizes only the following basic symbols:

COLLECTED ALGORITHMS (cont.)

Olll2131415l61718l91·1-1+110l,ILJ

and carriage return-line feed (or new card).
in integer associates to the second parametet, which is of type

integer, the next integer read from channel (th~ first parameter).
Any number of consecutive spaces are ignor~d t efore the first
digit; after the first digit, termination occurs Jwit 1 two consecu
tive spaces, a comma, or a carriage return-lil).e jeed. A comma
before the first digit or sign, a period, (10), or' any other illegal
symbol will call the procedure error.

in real associates to the second parameter, w~ch is of type real,
the next real number read from channel (the! first parameter).
Any number of consecutive spaces are ignored before the first
digit, period, or (10); after that, termination '.occurs with two
consecutive spaces, a comma, or a carriage r~turn-line feed. A
comma before the first digit, sign, period, or {10), or any other
illegal symbol will call the procedure error. Cqmmunication be
tween in integer, in real, and in symbol to take ~are of separation
between integers or reals requires the nonllocals z8100b and
z8100bc.

in Boolean associates to the second parameter* which is of type
Boolean the next Boolean read from channel (thei first parameter);
any number of leading spaces or carriage retu~ns-line feed are
ignored; any illegal symbol will call the procedure error.

The procedure error has one parameter of type integer. It can
be written according to the wishes of a user or ofa group of users.
An example with diagnostics in full is given below.

2.3. The more basic output procedures are out integer, out real,
and out Boolean. The information on the form of the output can be
given in various ways; the style used for these ol,ltput procedures
is what I will call the Berkeley style by contrast with the style
used for output procedures at, for instance, the Amsterdam's
Mathematisch Centrum or at Copenhagen's !Regnecentralen.
Call of these output procedures must be prececled by a call of
corresponding procedures integer format, real for,,iat and Boolean
format.

The only parameter of integer format determines the field width
of any integer sent to the output channel. The parameters of
real format are a Boolean, which determines when the value is
true that fixed point representation is desired for the output of
real numbers and when the value is false that floatfng point repre
sentation is desired. The second parameter determines the field
width, the third parameter determines the nurnber of decimal
places and affects also the rounding of the number. The only
parameter of Boolean format determines the field width.

The following decisions were made for out integer, out real, and
out Boolean: If the field parameter is less than required, it is re
placed by 20. The sign is outputed before the n~1ost significant
digit if the number is negative. In floating point ,form, the first
significant digit is immediately to the left of the decimal point.
The exponent is replaced by four spaces if it is zero; otherwise the
sign of the exponent is always outputed and the exponent is
restricted to the interval -99 to 99.

If the user wishes to write variants of the Ber.'kfeley style, for
instance if he wishes always to print the sign, or if he wishes to
output it as the first character of the field, or if he wishes to out
put a space between every third or fifth digit, his task will be
greatly eased by the introduction of the proced-ures decompose
integer and decompose real which provide the basi:c information
about an integer (its sign, the number of significant decimal
digits, and the digits) or about a real (its sign, its size, the scale
factor such that the scaled number 'has its first sifPnificant digit
immediately to the left of the decimal point and tbe digits).

In decompose real, the size information determines if the num
ber is too small; an integer declaration has been chosen instead
of a Boolean to provide for the possibility of another test, which
would determine if the number is too large. The rounding for reals
is taken care of in decompose real.

335-P 2- 0

Correct rounding is essential for a set of input-output pro
cedures of quality. Although the point may be argued, I consider
incorrect the output of 2 to two decimals as 1.99 unless computer or
computations have only that precision. Examples:

real format (true, 5, 3); out real (1, 0.99099);

real format (false, 10, 2); out real (1, -0.99099);
will output

0.991-9.9ho - 1.

2.4. Four more sets of input-output procedures follow; these
procedures do not require explicit calls of the format procedures:

read i, read r, read bare function designators without parameters
which can be used to input respectively an integer, a real or a
Boolean.

ioi, ior, iob are function designators and ioa is a procedure to
input respectively an integer, a real, a Boolean or a real array and
to output an equivalent ALGOL statement.

This style, which I have introduced to give the output in the
form of parts of an ALGOL program in connection with the genera
tion of the nonlinear equations satisfied by Runge-Kutta type
methods (to be published elsewhere), can also be used to describe
input and output within the conventions of the ALGOL language.

For ioi, ior, iob, the second parameter gives the string to be
outputted; the others give the parameters corresponding to those
of the format procedures. For ioa, the second and third parameters
are the first and last subscript of the element of the one dimen
sional array to be read and the last parameters give the string to
be outputted as well as the format information. Examples:

ior(r, 'timeuinwninutes', true, 5, 2);
ioa(a, 1, 3, 'hippopotamus', true, 4, 1)

would output with appropriate input:
time in minutes :== 21.05;
i := 1; for hippopotamus [i] := 15.1, 6.2, 7.0 do i := i + 1;

The next four procedures oti, otr, otb, and ota are for output
only; the form of output is identical to that of ioi, ior, iob, and
ioa.

The last four procedures outi, outr, outb, and outa are for output
only. They output an integer, a real, a Boolean, or a sequence of
reals, the format information being provided by the parameters
of these procedures.

3. Specific Information About Procedures, Their
Relationship, and the Nonlocal Parameters

To ease the local exchange of procedures and nonlocal iden
tifiers of procedures between people at Berkeley, conventions
have been introduced which are examplified in the procedures of
this algorithm. All appropriate nonlocal identifiers are formed
using as first symbols the letter z followed by a digit associated
to the writer (I use 8) followed by 3 digits corresponding to the
number of the procedure in which the nonlocal identifier is first
used (my procedure symbol is number 100, in integer is number 101,
etc.) followed by an ordinary identifier.

The following declarations must be made in the same block as
that of this algorithm or in an outer block:

integer in channel, out channel, z8106n, z8107n, z8107d, z8l08n;
Boolean z8l00b, z8l00bc, z8l07B;
procedure in symbol (channel, string, destination); (see Comm.

ACM 7 (Oct. 1964), 628-630)
procedure out symbol (channel, string, destination); (Idem)
procedure out string (channel, string); (Idem)

in channel and out channel must be assigned an appropriate value
before a call of many of the input-output procedures (see Table I).

Table I indicates the relationship between the procedures
and the nonlocal variables. Moreover, an explicit call of out integer,
out real, and out Boolean requires a preceding call of the corre
sponding format procedure integer formal, real format, and Boolean
format. ,

TABLE I. RELATIONSHIP BETWEEN PROCEDURES AND NONLOCAL VARIABLZS

I
106 1071108 File Procedure Number error 97 98 99 100 101 102 103 104 105 109 110

---- ---
error 0
in symbol 97 0

z8096 out sym,irot 98 0
out string 99 0

symbol 100 x x 0
in integer 101 x + x 0

I
z8100 in real 102 x + x 0

in Boolean 103 x x 0

z8104 decompose integer 104 0
decompose real 105 0

integer jormat 106 0
z8106 real format 107 0

Boolean format 108 0

z8106 out integer 109 x x x 0
z8110 out real 110 x x x 0
z8110 out Boolean 111 x x

read i 112 + + + x
z8112 read r 113 + + x

read b 114 + + x

ioi 115 + + + x + x + + x
z8112 ior 116 + + + x + x + + x

iob 117 + + + x x +
ioa 118 + + + x + x x + + x

oti 119 + x + x x
z8119 otr 120 + x + x

otb 121 + x x
ota 122 + x + x

outi 123 + + + x x
z8119 outr 124 + + + x x

outb 125 + + x
outa 126 + + + x x

I~
~ ~

111 = It
~ ~
~ ~
.~ ~
--

x
x
x

0

x
x
x

x x
x x

x x x
x x

x
x
x
x

x
x

x x
x

file z8100

~ I ~ I T ~ I ~ I .~ 0 0 ~ ~ ~ ~ 00
0 0 0 0 0 0 0

~ ~ ~ ~ ~ ~ ~

I

I
1

I
I

x x
x x
x x

I
I I I

!

I I •
/,

x x x
x

x I

x x x
x

+ +
+ +

+ + +
+ + + + +

+
+ + + + +

+
+ + +

+
+ + +

+
+ + +

I
+

+ + +

("")
0
~
~
tr1 q
tr1
0
>
~
~
0
~

:3
::c:
3:
fJj

g
= rt" -

~
Yl
I
~

~
I

=

COLLECTED ALGORITHMS (cont.)

In Table I, each of the procedures is identified by a number.
An X indicates that the procedure correspondin~ to the number
in the same column or the nonlocal identifier on top of the same
column is used explicitly (and perhaps also imWlicitly); + in
dicates that the corresponding procedure or identifier is used
implicitly; 0 is placed in the column correspondin~ to the number
of the procedure. Related procedures are groupec;l together in a
file whose name appears in the first column. This iin.formation will
be used in further publications. ·
The following declaration can be used for the p~ocedure error:

procedure error (i); valuie i; integer i;
begin procedure nlcr; out81fmbol (channel,''. -1);

nlcr;
if i = 8100 then out string (1,'aUsymbolUiBUreadUwhichr.iiBUnotuaudigitU·U,U

1
-u+u1oU(space)UoorriageUreturn-lineU/eed') else !

y i = 810100 then out string (1,'whileUreadingUanUinteger,~nUillegalUB71mbolU
isUreadUbeforeUtheUfirstLldigit') else

if i = 810101 then out string (1,'whileUreadingUanUinteger,UanUillegalU81fmbolU
iBUreadUajterutheUtirstUdigit') else ·

if i - 810200 then out string (1,'whileUreadingUaUreal,µanUillegalUsymbolU
iBUreadUwhileUreadingUtheLldecimalUjraction') else ·

if i = 810201 then out string (1,'whileUreadingUaUreal,Ua.nUillegalU81fmbolUiBU
readUbeforeUtheUjirstLldigitUperiodUorU10') else

if i = 810202 then out string (l,'whileUreadingLiaUreal,Uo.,.iUillegalU81fmbolUisU
readUUihileUreadingUtheUezponentUpart') else

if i == 810203 then out string (1,'aUrealUnumberUisUimitoperlyUterminated')
else

out string (1, 'whileUreadingUoUBooleanUoLJBymbnlumhichUi~otUtrueUorUlalse,
isUreadUbe/oreUtermination '); !

nlcr
end error

Acknowledgment. The implementation of the: procedures in
this paper has been made possible by the existen¢e of an ALGOL
interpreter, which is the responsibility of many: (see [4]). The
editor, Q.E.D., used to prepare the program o~ the SDS 930,
has been planned and implementP.d by Peter Deut~ch and Butler
Lampson. I especially thank Mr. Deutsch for t:he inclusion of
requested features to copy part of a line until a given character
noninclusive and to delete part of a line until a given character
noninclusive. I thank my colleague R. S. Lehman! for the use of
his syntax checker and transliterator to BC-ALool.

Machine time for the preparation and implem~ntation of the
procedures and their tests was furnished by Project Genie of the
Computer Center operating under Contract SI)-185 with the
Advanced Research Project Agency and by the Bef keley Campus
Committee on Research.

REFERENCES
1. Report on input-output procedures for ALGOL 60. Comm.

ACM 7 (Oct. 1964), 628-630. .
2. McKEEMAN, W. M. Algorithm 239, Free Field: Read. Comm.

ACM 7 (Aug. 1964), 481.
3. WIRTH, N. E. Algorithm 249, Outreal n. Comrn, ACM 8 (Feb.

1965), 104.
4. BC ALGOL Manual. U. of California, Computer Center,

Berkeley, Oct. 1966 (Third Ed.).
5. ANGLUIN, D. C., DEUTSCH, L. P. Reference m$nual, Q.E.D.,

time-sharing editor. Doc. 30.60.30, Jan. 26, 1967, Contract
SD-185, Office of the Secretary of Defense, ARPA, Wash
ington, D. C.

6. Revised Algorithms Policy. Comm. ACM 7 (Oct. 1964), 586.

integer procedure· symbol(s); integer s;
collllllent symbol := s := the integer represep.tation of the

next symbol read, 0 to 9 for the integers, 10 ~or '· ', 11 for
'-', 12 for '+', 13 for '10', and 14 for ',' or for carriage
return (or new card) represented by -1 when; processed by
in symbol or for two consecutive spaces wheni the nonlocal
Boolean z8100b is false. When z8100b is true «ny number of
consecutive spaces are ignored. Any other symbol will call a
nonlocal procedure error with parameter equal to 8100;

335-P 4- 0

begin
rood: in symbol(in channel, '0123456789.-+iou,', s);

if s = -1 /\ z8100bc then go to rood;
ifs = 15 then
begin

if z8100b then go to rood
else in symbol(in channel, '0123456789.-+iou,', s)

end;
ifs = -1 Vs = 16 then symbol := s := 14
else
begin ifs ~ 0 then error(8100); symbol := s := s - 1 end

end symbol;
procedure in integer(channel, i); value channel;

integer channel, i;
comment i : = the next integer read from channel, any number of

consecutive spaces are ignored before the first digit, after the
digit termination occurs with two consecutive spaces, a comma
or a carriage return, any illegal symbol will call a nonlocal
procedure error with parameter equal to 8100 or 810100 or
810101;

begin
integers; Boolean negative;
negative := false; z8100b := z8100bc .- true;

in channel : = channel;
symbol(i); z8100bc : = false;
if i = 12 then symbol(i)
else if i = 11 then begin negative .- true; symbol(i) end;
if i ~ 10 then error(810100);
z8100b := false;

Ll: if symbol (s) < 10 then begin i := 1" Xi+ s; go to Ll end;
if s ;:C 14 then error(810101);
if negative then i : = -i

end in integer;
procedure in real(channel, r); value channel;

integer channel; real r;
comment r := the next real number read from channel, any num

ber of consecutive spaces are ignored before the first digit.
After the first digit termination occurs with two consecutive
spaces, a comma or a carriage return. Any illegal symbol will
call a non local procedure error with paramater equal to 8100
or 810200 or 810201 or 810202 or 810203. The main differences
with ALGORITHM 239 of W. M. McKeeman [2] are the substi
tution of his integer procedure CH AR by symbol, the introduc
tion of the Boolean z8100b, the intr<lduction of a parameter in
the nonlocal procedure error and the change of type of a few
declarations;

begin
real sig, fp, d, ep, ip; integer esig, ch;
real procedure unsigned integer;
begin

real u;
u :=ch;

K: if symbol(ch) < 10 then begin u := u X 10 +ch; go to K end;
unsigned integer : = u

end unsigned integer;
sig := 1.0; ep := fp := O; z8100b .- z8100bc ·= true;
in channel : = channel;
symbol(ch); z8100bc := false;
if ch = 12 then symbol(ch)
else if ch = 11 then begin sig := -1.0; symbol(ch) end;
z8100b : = false;
if ch ~ 10 then
begin

ip : = if ch < 10 then unsigned integer else 0;
if ch = 10 then
begin

if symbol(ch) ~ 10 then error(810200);
fp := O; d := 0.1;

COLLECTED ALGORITHMS (cont ..)

M: fp := fp +ch X d; d := d X 0.1;
if symbol(ch) < 10 then go to M

end decimal fraction
end decimal number
else if ch = 13 then ip := 1
else begin error(810201); ip := 1 end;
if ch = 13 then
begin esig : = 1 ;

if symbol(ch) = 12 then symbol(ch)
else if ch = 11 then begin esig := --1; symbol(ch) end;
if ch < 10 then ep : = unsigned integer X esig
else begin error(810202); ep : = 0 endl

end exponent part;
if ch ~ 14 then error(810203);
r := sig X (ip+fp) X 10.0 i ep

end in real;
procedure in Boolean(channel, b); value channel;

integer channel; Boolean b;
comment b := the next Boolean read fr:nn channel, any number

of spaces or carriage returns are ignored, any other symbol will
call a nonlocal procedure error with pars,meter equal to 8103;

begin
jnteger i;

L:in symbol(channel, 'true falseu', i);
if i = 3 V i = -1 then go to L;
if i ~ 0 then error(8103);
b := i = 1

end in Boolean;
procedure decompose integer(i, negative, n of digits, digit);

value i; integer i, n of digits; Booleim negative;
integer array digit;

comment: negative := i < O, n of digits := the number of decimal
digitsofi (ifi = Othennofdigits := O),digit [O:nofdigits- 1)
:= the decimal digits of i starting from the right;

begin
integer j;
if i < 0 then begin negative . - true;
else negative : = false;
n of digits := O;

L:
if 1: > 0 then
begin

.- -i end

j := i + 10; digit[n of digits] := i - j X 10;
n of digits : = n of dig1'.t3 + 1; i : = j; ~;o to L

end
end decompose integer;
procedure decompose real(r, max n of digits, negative, size, exponent,

digit);

value r; integer max n of digits, size, exponent; real r;
Boolean negative; integer array digit;

comment negative := r < 0, size := -1 if r is too small, i.e. is
such that when abs(r) is multiplied repeatedly by 10 it does
not become eventually larger than one, size := O otherwise,
exponent : = the power of 10 by which r is to be divided to ob
tain a number whose first significant digit is immediately to
the left of the decimal point, digit [O: ma::c n of digits - 1] :==

the decimal digits of r starting with the first significant digit
to the left;

begin
integer i, k, m;
Boolean procedure too small(r); real r;

too small ;= abs(r) < 2 j (-127);
comment this procedure should be replaced appropriately;
negative : = false;
if too small (r) then
begin siZe : = 1; go to end decompose end
else size := O;

if r < 0 then begin negative . - true; r
if r < 1 then
begin

exponent : = -1;
scale up: r := r X 10;

if r < 1 then

335-P S- 0

-rend;

begin exponent . - exponent - 1; go to scale up end
end
else
begin

exponent : = 0;
test:

if r ~ 10 thP-n
begin exponent := exponent + l; r := r X 0.1;

go to test end
end;
m := max n of digits;
r := r + 5 X 0.1 i m;
i := entier(r);
if i = 10 then
begin

i := 1; exponent := exponent+ 1; m := m + l; r := r/10
end
else if i = 0 then i : = 1 ;
digit[O] := i;
for k : = 1 step 1 until m - 1 do
begin

r := (r-i) X 10; i := entier(r);
i := digit[k] := if i ~ 0 then 0 else if i = 10 then 9 else i

end;
end decompose:
end decompose real;
procedure integer format(n); integer n; z8106n := n;
procedure real format(B, n, d); integer n, d; Boolean B;
begin

z8107B := B; z8107n := n; z8107d := d
end real format;
procedure Boolean format(n); integer n; z8108n := n;
procedure out integer(channel, i); value channel, i;

integer channel, i;
comment the style of this procedure and of the out real and out

Boolean procedures given below is what I will call the Berkeley
style by contrast with that used for output procedures at the
Amsterdam Mathematisch Centrum or at the Copenhagen
Regnecentralen, for instance. It is characterized by the use of
a field width parameter n and for real numbers, by the use of a
parameter B which decides if the fixed point (value true)
or the floating point representation (value false) is requested
and by the number of digits d after the decimal point. The
sign is outputed just before the most significant digit, if the
number is negative. In floating point form the first significant
digit is immediately to the left of the decimal point. If the
field parameter is less than required, it is replaced by 20. These
procedures pair with the corresponding input procedures if the
field width is at least two units greater than required;

begin
integer n of digitis, j, k; Boolean negative;
integer array digit[O: 19];
decompose integer(i, negative, n of digits, digit);
if n of digits = 0 then
begin n of digits : = l; digit[O] : = 0 end;
j : = n of digits + (if negative then 1 else O);
for k : = (if j> z8106n then 19 else z8106n-1)

step -1 until j do out string(channel, 'u');
if negative then out string(channel, '- ');
for k : = n of digits -1 step -1 until 0 do

out symbol(channel, '0123456789', digit[k]+ 1)
end out integer;

COLLECTED ALGORITHMS (cont.)

procedure out real(channel, r); value channel, r;
integer channel; real r;

comment this procedure outputs r properly rol!inded to channel
using the Berkeley style. In this variant, th¢ exponent part
in the floating point form is replaced by 4 space~ if the exponent
is zero. The sign of the exponent is always outputedt for com
patibility with in real. The exponent is restrict~d to the interval
-99 to 99;

begin
integer j, k, size, exponent; Boolean negative;
integer array digit[O: z8107d+l+(if z8107B then

entier(ln(abs(r)+l)X0.4343) else 0)];
procedure out digit(d); integer d;
begin

out symbol(channel, '0123456789', d+ 1)
end out digit;
if z8107 B then
begin

decompose real(r, if z8107d+exponent~O then 1 else I+
z8107d+ exponent, negative, size, exponent, digit);
if size = -1 then
begin

exponent := if z8107d = 0 then 0 else -:~8107d - l;
digit[O] := 0

end
else if z8107d = 0 /\ exponent < 0 then
begin exponent := O; digit[O] := end;
j : = (if negative then 3 else 2) +

(if z8107d = 0 then -1 else z8107 d) +
(if exponent ~ 0 then exponent else -1);

fork := (if j>z8107n then 19 else z8107n--1) step -1
until j do out string(channel, 'u');

if negative then out string (channel, '- ');
for k : = 0 step 1 until exponent do

out digit(digit[k]);
if z8107d > 0 then
begin

out string(channel, '· ');
fork := exponent + 1 step 1 until exponent + z8107d do
if k < 0 then out string(channel, '0') else out digit(digit[k])

end
end fixed point representation
else
begin

decompose real(r, z8107d+l, negative, size, exponent, digit);
if size = -1 then
begin

exponent : = 0;
fork := 0 step 1 until z8107d do digit[k] ;::::; 0

end;
j := 6 + (if z8107d=O then -1 else z8107d)+

(if negative then 1 else 0);
fork := (if j>z8107n then 19 else z8107n-1)

step -1 until j do
out string(channel, 'u');

if negative then out string(channel, '-');
out digit (digit [O]);
if z8107d ~ 0 then out string(channel, '· ');
fork := 1 step 1 until z8107d do out digit(d~git[k]);
if exponent = 0 then out string(channel, 'uuuu')
else
begin

out string(channel, 1
10

1
);

comment This procedure assumes that lo takes one space,
if not, the preceding statement should be modified;

if exponent ~ 0 then out string(channel, '+')
else

begin out string(channel, '- ');
exponent : = - exponent

end;
j : = exponent + 10;
if j = 0 then out string(channel, 'u')
else out digit(j);
out digit(exponent-jX 10)

end
end floating point representation

end out real;

335-P 6- 0

procedure out Boolean(channel, b); value channel;
integer channel; Boolean b;

begin
integer k, j;
j := if b then 4 else 5;
comment this procedure assumes that true and false take

respectively 4 and 5 spaces, if not the preceding statement
should be modified;

fork := (if j>z8108n then 19 else z8108n-l) step -1 until
j do out string(channel, 'u');

out symbol(channel, 'true false', j-3)
end out Boolean;
integer procedure read i;
begin

integer i;
in integer(in channel, i); read i : = i

end read i;
real procedure read r;
begin

real r;
in real(in channel, r); read r := r

end read r;
Boolean procedure read b;
begin

Boolean b;
in Boolean(in channel, b) ; read b : = b

end read b;
integer procedure ioi(i,s,n); strings; integer i, n;
comment this and the next 3 procedures input respectively an

integer, a real number, a Boolean or a one dimensional array,
they output an equivalent Algol statement;

begin
out string(out channel, s); out string(out channel, 'u u');
in integer(in channel, i); ioi := i;
integer format(n); out integer(out channel, i);
out string(out channel, ';u')

end ioi;
real procedure ior(r, s, B, n, d);

real r; string s; Boolean B; integer n, d;
begin

out string(out channel, s);
out string(out channel, 'u := u');
in real(in channel, r); ior := r;
real format(B, n, d); out real(out channel, r);
out string(out channel, ';u')

end ior;
Boolean procedure iob(B, s, n); Boolean b; strings;

integer n;
begin

out string(out channel, s);
out string(out channel, 'u : = u');
in Boolean(in channel, B); iob : = B;
Boolean format(n); out Boolean(out channel, B);
out string(out channel, ';u')

end iob;
procedure ioa(a, l, u, s, B, n, d);

integer l, u, n, d; array a; string s; Boolean B;

COLLECTED ALGORITHMS (cont.)

begin
integer i;
if l > u then go to end ioa;
real format(B, n, d); oti(l, 'i', 3);
out string(out channel, 'uforu');
out string(o'lj,t channel, s);
out string(out channel, '[i]u : = u');
for i := l step 1 until u do
begin

in real(in channel, a[iP · out real(out channel, a[i]);
if i < u then out string(out channel, ',u')
else out string (out channel, 'udouiu .- uiu+ul;u')

end;
end ioa:
end ioa;
procedure oti(i, s, n); value i, n; integer i, n; string s;
comment this and the following 3 procedures output Algol

statements compatible with those of the input output procedures
ioi, ior, iob, ioa;

begin
out string(out cluinnel, s);
out string(out channel, 'u := u');
integer format(n); out integer(out channel, i);
out string(out channel, ';u')

end oti;
procedure otr(r, s, B, n, d);

real r; strings; Boolean B; integer n, d;
begin

out string(out channel, s);
out string(out channel, 'u := u');
real format(B, n, d); out real(out channel, r);
out string(out channel, ';u')

end otr;
procedure otb(B, s, n) ; Boolean B; string s; integer n;
begin

out string(out channel, s);
out string(out channel, 'u := u');
Booleanformat(n); out Boolean(out channel, B);
out string (out channel, '; u')

end otb;
procedure ola(a, l, u, s, B, n, d);

integer l, u, n, d; array a; string s; Boolean B;
begin

integer i;
if l > u then go to end ota;
real jormat(B, n, d); oti(l, 'i', 3);
out string(out channel, 'uforu');
out string(out channel, s);
out stri'Yl;g(out channel, '(i]u := u');
for i := l step 1 until u do
begin

out real(out channel, a[i]);
if i < u then out stritig(out channel, ',u')
else out string (out clu;mnel, 'udouiu:= uiu+ul ;u')

end;
end ota:
end ota;
procedure outi(i, n); integer i, n;
comment this and the following 3 procedures output integers,

real numbers, Booleans or one dimensional arrays using format
as indicated in out integer;

begin
integer format(n);
out integer(out channel, i)

end outi;
procedure outr(r,B,n,d); realr; Boolean B; integern,d;

begin
real f ormat(B, n, d);
out real(out channel, r)

end outr;
procedure outb(B, n); Boolean b; integer n;
begin

Boolean format(n);
out Boolean(out channel, B)

end outb;

335-P 7- 0

procedure outa(a, l, u, B, n, d); integer l, u, n, d; array a;
Boolean B;

begin
integer i;
if l > u then go to end outa;
real f ormat(B, n, d) ;
for i : = l step 1 until u do out real(out channel, a[i]);

end outa:
end outa

COLLECfED ALGORITHI\1S FROM CACM

ALGORITHM 336
NETFLOW [H]
T. A. BRAY AND c. WITZGALL

(Recd. 2 Oct. 1967 and 20 May 1968)
Boeing Scientific Research Laboratories, Seattle, WA

98124

KEY WORDS AND PHRASES: capacitated network, linear pro
gramming, minimum-cost flow, network flow, out-of-kilter

CR CATEGORIES: 5.32, 5.41

procedure NETFLOW (nodes, arcs, I, J, cost, hi, lo, flow, pi,
INFEAS);
value nodes, arcs; integer nodes, arcs;
integer array /, J, cost, hi, lo, flow, pi; lahel INFEAS;

comment This procedure determines the least-cost flow over an
upper and lower bound capacitated flow network.

Each directed network arc a is defined by nodes l[a] and J[a],
has upper and lower flow bounds hi[a] and lo[a], and cost per unit
of flow cost[a]. Costs and flow bounds may be any positive or
negative integers. An upper flow bound must be greater than or
equal to its corresponding lower flow bound for a feasible solu
tion to exist. There may be any number of parallel arcs connect
ing any two nodes.

The procedure returns vectors flow and pi. flow[a] is the com
puted optimal flow over network arc a. pi[n] ts a number-the
dual variable-which represents the relative value of injecting
one unit of flow into the network of node n. NETFLOW may be
entered with any values in vectors flow and pi (such as those
from a previous or a guessed solution) feasible or not. If the
initial contents of flow do not conserve flow at any node, the
solution values will also not conserve flow at that node, by the
same· amount.

This procedure is a revision (see remark by T. A. Bray and C.
Witzgall [1]) of Algorithm 248 [2]. Like the original, it follows
the out-of-kilter algorithm described by D. R. Fulkerson (3)
and elsewhere. It follows the RAND code by R. J\ Clasen (FOR
TRAN) in three instances, using a single set of labels na, which
correspond to the nb of Algorithm 248, avoiding superfluous
tests in the part following BACK (for instance, c > 0 j\flow[a] <
lo[a] is equivalent to c > 0 at this point of the program), and
taking advantage of the fact that arcs remain in kilter and need
not be rechecked again. In addition, the convention inf = -1
is adopted in order to permit costs and bounds of value around
99999999 without their interfering with the initiation of mini
mum search.
REFERENCES:

1. BRAY, T. A., AND WITZGALL, C. Remark on Algorithm 248,
NETFLOW. Comm. ACM 11 (Sept. 1968), 633.

2. BRIGGS, WILLIAM A. Algorithm 248, NETFLOW. Comm.
A CM 8 (Feb. 1965), 103.

3. FULKERSON, D.R. An out-of-kilte method for minimal-cost
flow problems. J. Soc. Ind. Appl. Math. 9 (Mar. 1961),
18-27;

begin
integer a, aok, c, cok, del, eps, inf, lab, m, n, src, snk;
integer array na[l: nodes];
integer procedure minp(x,y); value x,y; integer x,y;
begin

if x < y I\ x ~ 0 then minp := x else min.P := y

end minp;
comment check feasibility of formulation;
for a := 1 step 1 until arcs do

if lo[aJ > hi[a] then go to INFEAS;
inf := -1;
comment find out-of-kilter arc;
for aok := 1 step 1 until arcs do
begin

cok := cost[aok] + pi[l[aok]] - pi[J[aok]];

336 p 1 0

TEST: if flow[aok] < lo[aok] V (cok<O!\flow[aok] <hi[aok]) then
hegin

src := J[aok]; snk := l[aok]; na[src] := + aok;
go to LABL

end;
if flow[aok] > hi[aok] V (cok>O!\flow[aok]>lo[aok]) then
begin

src := l[aokJ; snk := J[aok]; na[srcJ := -aok;
go to LABL

end;
comment arc aok is in kilter;
go to NEXT;
comment arc aok is out-of-kilter, clear all labels but source

label, start new labeling;
LABL: for n := 1 step 1 until src - 1, src + 1 step 1 until

nodes do na[n] := O;
WOP: lab := O;

comment switch set for determining whether a pass thru
the list of arcs yields a new label;

for a : = 1 step 1 until arcs do
begin

if (na[l[a]]=O,l\na[J[a]]=O) V (na[I[a]]~Oj\na[J[a]]~O) then
go to XC;

c := cost[a] + pi[l[a]J - pi[J[a]];
if na[l[a]] = 0 then go to XA;
if flow[a] ~ hi[a] V (flow[a]~ lo[a]!\c>O) then

go to XC;
na[J[a]] := +a; go to XB;

XA: if flow[a] ~ lo[aJ V (flow[a] :s;hi[a]!\c<O) then
go to XC;

na[l[a]] := -a;
XB: lab := 1;

comment node labeled, test for breakthru;
if na[snk] ~ 0 then go to !NCR;

X(: end no breakthru;
if lab ~ 0 then go to LOOP;
comment nonbreakthru, determine change to pi vector;
del := inf;
for a := 1 step 1 until arcs do
begin

if (na[I[a]] =0,1\na[J[a]] =0) V (na[l[a]]~O,l\na[J[a]]~O) then
go to XD;

c := cost[a] + pi[I[a]] - pi[J[a]];
if na[J[a]] = 0 ,l\flow[a] < hi[a] then

del := minp(del,c);
if na[J[a]] ~ 0 I\ flow[a] > lo[a] then

del := minp(del,-c);
XD: end;

if del = inf then
begin

if jlow[aok] = hi[aok] V flow[aok] lo[aok] then

COLLECTED ALGORITHMS (cont.)

del := abs(cok)
else go to IY FK·I S

end exit, no feasible flow;
comment change pi vector by computed del;
for n := 1 step 1 until nodes do

if na[n] = 0 then pi[n] := pi[n] + dd;
comment test whether aok is now in kilter;
if del = abs(cok) /\ jlou·[aok] 2:: lo[aok] /\ fiow[aok]

::; hi[aok] then
go to NEXT;

cok := cost[aok] + pi[l[aok]] - pi[J[aokj];
go to LOOP;
comment breakthru, compute increm·ental flow;

IXCR: eps := inf; n := src;
BACK: a := na[n];

if a > 0 then
begin

m. :=/[a];
if cost[a] + pi[m] - pi[n] > 0 then

eps := m.inp(eps, lo[a]-fiow[a])
else eps .- minp(eps, hi[n.]-jiow[a])

end
else
begin

m:=.f[-a];
if cost[-a] + pi [n] - pi Im] < 0 then

cps := m.inp(eps,jlow[-a]-hi[-a])
else cps : = minp(ep8,jlo1c[-a]-lo[-a])

end;
n := m; if n ~ src then go to BACK;
comment change flovv by cps;

B.1CK2: a := na[n];

if a > 0 then
begin

rn : = Ila]; .flow[a] : ~ .flo11•[a] + cps
end
else
begin

m := J[-a]; jlow[-a] := .flow[-a] -· eps
end;
n := rn; if n ~ src then go to /3.1CK2;
comment test whether aok is now in kilter;
go to TEST;

SEXT:
end find next ont-of-kilter an·

end XETF!DH' with a f0asihl0, optimal flow

llK\IARI\: ON ALGOlUTH.\I 336 [H]
NETFLOW [T. A. Bray and C. Witzg2~11, Comm. A.CM 11

(Sept. 1968), 631-632]
'L A. BRAY AND C. WITZGALL (Recd. 20 Oct. 1969)
Boeing Scientific Research Laboratories, Seattle, \VA

98124

KEY WORDS AND PHRASES: capacitated network, linear
programming, minimum-cost flow, network How, out-of-kilter
CR CATEGORIES: 5.32, .5.41

The algorithm as published contains an error on the 11th line
following the line labled XD, which reads:

ifdel = abs(cok) /\ •••
This line should read

if del ~ abs(cok) /\ ..•
Fortunately, this error does not invalidate the algorithm bnt may
in some cases lead to additional operations.

336--P 2- RI

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 337 ,
CALCULATION OF A POLYNOMIA~ AND ITS
DERIVATIVE VALUES BY HORNERs:cHEME [Cl]
W. PANKIEWICZ (Recd. 28 Mar. 1968 and l6 May 1968)
W arszawa - 1, Al. 3-go Maja 2/68, Poland.

KEY WORDS AND PHRASES: function evalu4'tion, polynom·
ial evaluation, Algol procedure, Horner's scheilne

CR CATEGORIES: 5.12, 4.22

procedure horner(n,a,k,r,xO,b); value n,k,xO,b;
integer n,k; real xO; Boolean b; array a,r;:

comment If bis true the procedure calculates ahd stores in r[i]
the value of

n

d'(L a[j]Xx i j)/dx'
;-o

and x = xO for i = O, 1, · · · , k. If b is false it calculates and
stores in the array r the values of the first k+l coefficients of
the expansion of the polynomial in a power series in the neigh
borhood of xO, i.e.

n n

L a[j] X x i j = ~ r[i] X (x-xO) j i.
j-0 1-0

Here n is the degree of the polynomial whose :coefficients are
given by a[O:n]. It is assumed that 0:::;; k:::;; n. \If k = 0 only
the value of the polynomial is calculated. If b is fMse the choice
k = n would be most useful.

This algorithm is essentially equivalent toi Algorithm 29
[Comm. ACM S (Nov. 1960), 604) in terms of quantities com
puted, but the application of Horner's schem;e significantly
reduces the number of operations.

Example 1. For the polynomial of degree n ·= 5: w(x) =
x i 5 + 2 x x i 4 - 3 x x i 3 + 8 x x i 2 ~ 7 x x + 11,
k = 2, xO = 2 and b = true, the following was obtained: r[O] ==
69, r[l] == 133, r[2] == 236, i.e. w(2) == 69, w':(2) == 133 and
w" (2) == 236.

Example 2. For the polynomial of degree n .== 7: w(x) ==
xj7-7Xxj5+6Xxi4+4Xx13-xj2-
2 Xx - 9, k == 7, xO == 2 and b =false the fol~owing vector r
was obtained: 15, 122, 279, 332, 216, 77, 14, 1, .i.e., the given
polynomial can be expressed in the form: w(x) :== 15 + 122 X
(x-2) + 279 X (x-2) j 2 + 332 X (x'"'.""2) j 3 + 216 X (x-2)
j 4 + 77 X (x-2) j 5 + 14 X (x-2) i 6 + (x-2) i 7;

oogin ;
integer i, j, l; real rr;
rr := a[O];
for i := 0 step 1 until k do

r[i) := rr;
for j := 1 step 1 until n do
begin

r[O] :== r[O] X xO + a[j];
l : == if n - j > k then k else n - j;
for i := 1 step 1 until l do

r[i] := r[i] X xO + r[i-1)
end;
it b then
begin

l := l;
for i := 2 step 1 until k do
begin

l := l xi;
r[i] := r[i] X l

end
end

end horner

337-P 1- Rl

REMARK ON ALGORITHM 337 [Cl]
CALCULATION OF A POLYNOMIAL AND ITS

DERIVATIVE VALUES BY HORNER SCHEME
[W. Pankiewicz, Comm. ACM 11 (Sept. 1968), 633]

OLIVER K. SMITH (Recd. 27 Sept. 1968)
Applied Mathematics Dept., Systems Group of TRW,

Inc., 1 Space Park, Redondo Beach, CA 90278
KEY WORDS AND PHRASES: function evaluation, polyno

mial evaluation,· ALGOL procedure, Homer's scheme
CR CATEGORIES: 4.22, 5.12

The definition of the given polynomial is incorrect in the com
ment. In both the third line and the eighth line of the comment,
a[j] should be replaced by a[n - j]. Also the first word "and" of the
fourth line of the comment should be changed to "at".

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 338
ALGOL PROCEDURES FOR THE FAST FOURIER
TRANSFORM [C6]
RICHARD c. SINGLETON*

(Recd. 21 Nov. 1966, 2 Aug. 1967 and 18 July 1968)
Stanford Research Institute, l\Ienlo Park, CA 94025

KEY WORDS AND PHRASES: fast Fourier transform, complex
Fourier transform, multivariate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly
nomials, orthogonal transformation, virtual core memory, per
mutation

CR CATEGORIES: 3.15,. 3.83, 5.12, 5.14

The following procedures are based on the Cooley-Tukey algo
rithm [1] for computing the finite Fourier transform of a complex
data vector; the dimension of the data vector is assumed here to
be a power of two. Procedt1re COMPLEXTRANSFORM computes
either the complex Fourier transform or its inverse. Procedure
REALTRANSFORM computes either the Fourier coefficients of a
sequence of real data points or evaluates a Fourier series with
given cosine and sine coefficients. The number of arithmetic opera
tions for either procedure is proportional to n log2 n, where n is
the number of data points.

Procedures FFT2, REVFFT2, REORDER, and REALTRAN are
building blocks, and are used in the two complete procedures men
tioned above. The fast tra.µsform can be computed in a number of
different ways, and these building block procedures were written
so as to make practical the computing of large transforms on a sys
tem with virtual memory. Using a method proposed by Singleton
[2], data is accessed in st~b-sequences of consecutive array ele
ments, and as much computing as possible is done in one section
of the data before moving on to another. Procedure FFT2 com
putes the Fourier transform of data in norrnal order, giving a re
sult in reverse binary order. Procedure RE'VFFT2 computes the
Fourier transform of data in reverse binary order and leaves the
result in normal binary order. Procedure REORDER permutes a
complex vector from binary to reverse binary order or from reverse
binary to binary order; this procedure also permutes real data in
preparation for efficient use of the complex Fourier transform.
Procedures FFT2, REVFFT2, and REORDER may also be used
to compute multivariate Fourier transforms. The procedure
REALTRAN is used to unscramble and combine the complex
transforms of the even and odd numbered elements of a sequence
of real data points. This procedure is not restricted to powers of
two and can be used whenever the number of data points is even.

REFERENCES:
1. CooLEY, J. W., and TUKEY, J. W. An algorithm for the

machine calculation of complex Fourier series. Math. Com
put. 19, 90, (Apr. 1965), 297-301.

2. SINGLETON, R. C. On computing the fast Fourier transform.
Comm. ACM 10 (Oct. 1967), 647-654;

* This work was supported by Stanford Research Institute out of Research and
Development funds.

338-P 1- 0

procedure COM PLEXTRANSFORM (A, B, m, inverse);
value m, inverse; integer m;
Boolean inverse; array A, B;

comment Computes thP. Fourier transform of 2m complex data
values. The arrays A (0: n-1] and B[O: n-1], where n = 2m,
initially contain the real and imaginary components of the data,
and on exit contain the corresponding Fourier coefficient values.
If inverse is false, the Fo11rier transform

1 n-J

_ ;- L: (ak + ibk) exp (i2Trjk/n)
v nk-o

is computed. The transform followed by the inverse transform
(or the inverse transform followed by the transform) gives an
identity transformation. Procedures FFT2 and REORDER are
used by this procedure and must also be declared;

begin integer n, j; real p, q;
n := 2 j m; p .- q := 1.0/sqrt(n);
if inverse then
begin

q := -q;
for j := n - 1 step -1until0 do B[j] := -B[j]

end;
FFT2(A, B, n, m, n); REORDER(A, B, n, m, n, false);
for j := n - 1 step -1 until 0 do

begin A[j] := A[j] X p; B[j] := B[j] X q end
end COMPLEXTRANSFORM;

procedure REALTRANSFORM(A, B, m, inverse);
value m, inverse; integer m;
Boolean inverse; array A, B;

comment Computes the finite Fourier transform of 2m+i ~ 4
real data points. If inverse is false, the arrays A[O: n] and
B[O: n], where n = 2m, initially contain the first 2m real data
points Xo, X1, · • · , Xn-1 as A[O], · · · , A[n-1] and the remaining
2m real data points Xn 'Xn+l' ••• 'Xzn-1 as B[O], B[l], ... 'B[n-1].
On completion of the transform the arrays A and B contain
respectively the Fourier cosine and sine coefficients ak and bk ,
computed according to the relations

and

l 2n-1

ak = - L: Xi cos (7rjk/n) for k = 0, 1, · · · , n,
n 1-0

l 2n-1

bk = - L X; sin (7rjk/n) for k = 0, 1, · · · , n.
n k-o

If inverse is true, the arrays A and B initially contain n + 1
cosine coefficients ao , ai , · · · , an and n + 1 sine coefficients
bo, bi , · · · , bn, where bo = bn = 0. The procedure evaluates the
corresponding time series Xo , X1 , • · • , X2n-1 , where

n-1

X; = ~2° + L [ak cos (7rjk/n) +bk sin (7rjk/n)] +~cos (Trj),
~ 2

and leaves the first n values as A[O], A[l], · · · , A[n-1] and the
remaining n values as B[O], B[l], · · · , B[n-1]. The procedures
FFT2, REVFFT2, REORDER, and REALTRAN are used by
this procedure, and must also be declared;

COLLECTED ALGORITHMS (cont.)

begin integer n, j; real p;
n := 2 j m;
if inverse then
begin

REALTRAN(A, B, n, true);
for j := n - 1 step -1 until 0 do B[j] := -·B[j];
FFT2(A, B, n, m, n);
for j := n - 1 step -1 until 0 do

begin A[j] := 0.5 X A[j]; B[j] := -0.5 X B[j] end;
REORDER(A, B, n, m, n, true)

end
else
begin

REORDER(A, B, n, m, n, true);
REVFFT2(A, B, n, m, l); p := 0.5/n;
for j := n - 1 step -1 until 0 do

begin A[j] := p X A[j]; B[j] := p X B[j] end;
REALTRAN(A, B, n, false)

end
end REALTRANSFORM;
procedure FFT2(A, B, n, m, ks); value n, m, ks;

integer n, m, ks; array A, B;
comment Computes the fast Fourier transform for one variable

of dimension 2m in a multivariate transform. n i$ the number of
data points, i.e., n = ni X n2 X · · · X np for a p-variate trans
form, and ks = nk X nk+1 X · · · X np, where nk = 2m is the
dimension of the current variable. Arrays A [O : n-1] and
B[O: n-1] originally contain the real and imaginary components
of the data in normal order. Multivariate data is stored accord
ing to the usual convention, e.g., a;kl is in A [jX n2X ns+kX na+Zl
for j = 0, 1, · · · , ni - 1, k = 0, 1, · · · , nz ·- 1, and l = 0,
1, · · · , na - 1. On exit, the real and imaginary components of
the resulting Fourier coefficients for the current:variable are in
reverse binary order. Continuing the above example, if the
"column" variable nz is the current one, column

is permuted to position

A separate procedure may be used to permute the results to
normal order between transform steps or all at once at the end.
If n = ks = 2m, the single-variate transform

n-1

(x; + iy;) = L (ak + ibk) exp (i27rjk/n)
k=O

for j = O, · · · , n - 1 is computed, where (a + ib) represent the
initial values and (x + iy) represent the transf 9rmed values;

begin integer kO, kl, k2, k3, span, j, jj, k, kb, kn, mm, mk;
real rad, cl, c2, c3, sl, s2, s3, ck, sk, sq;
real AO, Al, A2, A3, BO, Bl, B2, B3;
integer array G[O: m];
sq := 0.707106781187;
sk := 0.382683432366;
ck : = o. 92387953251;
C[rn] := ks; mm := (m+2) X 2; kn := O;
fork := m - 1 step -1 until 0 do G[k] := C[k+ll + 2;
rad:= 6.28318530718/(C[O]Xks); rnk := m - 5;

L: kb :=kn; kn:= kn+ ks;
if mm. ~ m then
begin

k2 :=kn; kO := C[mm] +kb;
L2: k2 : = k2 - 1; kO : = kO - 1;

AO:= A[k2]; BO:= B[k2];

A[k2] := A[kO] - AO; A[kO] := A[kO] +AO;

B[k2] := B[kO] - BO; B[kO] := B[kO] +BO;.
if kO > kb then go to L2

end;
cl := 1.0; sl := O;
jj : = 0; k : = mm - 2; j : = 3;
if k ~ 0 then go to L4 else go to LG;

L3: if C[j] ~ jj then
begin

jj : = jj - G[j]; j : = j - 1;
if G[j] ~ jj then
begin

jj := jj - C[j]j j := j - l; k := k + 2;
go to L3

end
.end;
jj := Cfj] + jj; j := 3;

L4: span := C[k];
if jj ~ 0 then
begin

338-P 2- 0

c2 := jJ X span X rad; cl := cos(c2); sl := sin(c2);
L5: c2:=cl j 2-sl j 2; s2:=2.0XclXsl;

c3 := c2 X cl - s2 X sl; s3 := c2 X sl + s2 X cl
end;
for kO :=kb+ span - 1 step -1 until kb do
begin

kl := kO +span; k2 := kl+ span; k3 := k2 +span;
AO := A[kO]; BO:= B[kO];
if sl = 0 then
begin

Al := A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2];
A3 := A[k3]; B3 := B[k3]

end
else
begin

Al := A[kl] X cl - B[kl] X sl;
Bl := A[kl] X sl + B[kl] X cl;
A2 := A[k2] X c2 - B[k2] X s2;
B2 := A[k2] X s2 + B[k2] X c2;
A3 := A[k3] X c3 - B[k3] X s3;
B3 := A[k3] X s3 + B[k3] X c3

end;
A[kO] :=AO+ A2 +Al+ A3; B[kO] :=BO+ B2 +Bl+ B3;
A[kl] :=AO+ A2 - Al - A3; B[kl] :=BO+ B2 - Bl - B3;
A[k2] :=AO- A2 - Bl+ B3; B[k2] :=BO - B2 +Al - A3;
A[k3] :=AO - A2 +Bl - B3; B[k3] :=BO- BZ - Al+ A3

end;
if k. > 0 then begin k := k - 2; go to L4 end;
kb := k3 +span;
if kb < kn then
begin

if j = 0 then begin k := 2; j := mk; go to L3 end;
j : = j - 1 ; c2 : = cl ;
if j = 1 then

begin cl :=cl X ck+ sl X sk; sl := sl X ck - c2 X sk end
else begin cl:= (cl-sl) X sq; sl := (c2 + sl) X sq end;
go to L5

end;
L6: if kn < n then go to L
end FFT2;

procedure REVFFTZ(A, B, n, m, ks); value n, m, ks;
integer n, rn, ks; array A, B;

comment Computes the fast Fourier transform for one variable
of dimension 2•n in a multivariate transform. n is the number of
data points, i.e., n = ni X n2 X · · · X np for a p-variate trans
form, and ks = nk+1 X nk+2 X · · · X np , where nk = 2"' is the
dimension of the current variable. Arrays A [O : n-1] and
B[O: n-1] originally contain the real and imaginary components
of the data with the indices of each variable in reverse binary
order, e.g., a;k1 is in A [j'Xn2Xna+k'Xna+l'] for j = 0, 1,

COLLECTED ALGORITHMS (cont.)

n 1 - 1, k = 0, 1, · · · , n 2 - 1, and l = 0, · · · , n 3 - 1, where
j', k', and l' are the bit-reversed values of j, k, and l. On comple
tion of the multivariate transform, the reaJ and imaginary com
ponents of the resulting Fourier coefficients are in A and B in
normal order. If n = 2m and ks = 1, a single-variate transform
is computed;

begin
integer kO, kl, k2, k3, k4, span, nn, j, jj, k, kb, nt, kn, rnk;
real rad, cl, c2, c3, sl, s2, s3, ck, sk, sq;
real AO, Al, A2, A3, BO, Bl, B2, B3, re, i'm;
integer array C[O: m];
sq := 0.707106781187;
sk : = 0.382683432366;
ck : = 0.92387953251;
C[O] :=ks; kn := O; k4 := 4 X ks; mk := m - 4;
fork := 1 step 1 until m do C[k] := ks := ks+ ks·
rad := 3.14159265359/(C[O]Xks);

L: kb : = kn + k4; kn : = kn + ks;
if m = i then go to L5;
k := jj := O; j := mk; nt := 3;
cl := 1.0; sl := O;

£2: span := C[k];
if jj ~ 0 then
begin

c2 := jj X span X rad; cl := cos(c2); sl := sin(c2);
L3: c2 :=cl i 2 - sl i 2; s2 := 2.0 X cl X sl;

c3 : = c2 X cl - s2 X s 1 ; s3 : = c2 X s l + s2 X cl
end else sl := O;
k3 := kb - span;

£4: k2 := k3 - span; kl := k2 - span; hO := kl - span;
AO:= A[kO]; BO:= B[kO];
Al := A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2);
A3 := A[k3]; B3 := B[k3];
A[kO] :=AO+ Al+ A2 + A3; B[kO] :=BO+ Bl+ B2 + B3;
if sl = 0 then
begin

A[kl] :=AO - Al - B2 + B3; B[kl] :=BO - Bl+ A2 - A3;
A[k2] :=AO+ Al - A2- A3; B[k2] :=BO+ Bl - B2 - B3;
A[k3] :=AO - Al+ B2- B3; B[k3] :=BO- Bl - A2 + A3

end
else
begin

re := AO - Al - B2 + B3; im := BO - Bl + A2 - A3;
A[kl] :=re X cl - im X sl; B[kl] :=re~ sl + im X cl;
re:= AO+ Al - A2 - A3; im :=BO+ Bl - B2 - B3;
A[k2] :=re X c2 - im X s2; B[k2] :=re X s2 + im X c2;
re := AO - Al + B2 - B3; im := BO - Bl - AZ+ A3;
A[k3] := re X c3 - irn X s3; B[k3] := re X s3 + im X c3

end;
k3 : = k3 + 1 ; if k3 < kb then go to L4;
nt := nt - l;
if nt ~ 0 then
begin

c2 :=cl;
if nt = 1 then

begin cl:= cl X ck+ sl X sk; sl := ·~l X ck- c2 X skend
else begin cl := (cl-sl) X sq; sl := (c2+sl) X sq end;
kb := kb + k4; if kb ~ kn then go to £3 else go to L5

end;
if nt = -1 then begin k := 2; go to £2 end;
if C[j] ~ jj then
begin

i.i := jj - C[j]; j := j - l;
if C[j] ~ jj then

begin jj : = jj - C[j]; j : = j - 1; k : = k + 2 end
else begin J"j := C[j] + jj; j := mk end

end
else begin jj := C[j] + jj; j := mk end:;

if j < mk then go to L2; k := O; nt := 3;
kb := kb;-!- k4; if kb ~ kn then go to L2;

LS: k := \rn+2) X 2;
if k ~ m then
begin

k2 :=kn; kO := j :=kn - C[k];
LO: k2 : = k2 - 1; kO : = kO - 1 ;

AO:= A[k2]; BO := B[k2];
A[k2] := A[kO] - AO; A[kO] := A[kO] +AO;
B[k2] := B[kO] - BO; B[kO] := B[kO] +BO;
if k2 > j then go to L6

end;
if kn < n then go to L

end REVFFT2;

procedure REORDER(A, B, n, m, ks, reel);
value n, m, ks, reel; integer n, m, ks;
Boolean reel; array A, B; .

338--P 3- 0

comment Permutes data from normal to reverse binary order
or from reverse binary to nor.ma! order. If reel is false, data for
one variate of dimension 2m in a multivariate data set of size n
is permuted. In a p-variate transform with n = n1 X ??-2 X
· · · X np , ks has the value ks = nk X nk+1 X · · • X np , where
nk = zm is the dimension of the current variable. For a single
variate transform, n = ks = zm. If reel is true, A [2Xj+l] and
B[2Xj] are exchanged for j = 0, 1, · · ·, (n-2)/2, then adjacent
pairs of entries in A and Bare permuted to reverse-binary order.
This option is used when transforming 2n real data values, with
the first n stored in A and the second n in B. After permutation,
the even-numbered entries are in A and the odd-numberd entries
are in B, each in reverse-binary order.

Calling REORDER twice with the same parameter values gives
an id entity transformation;

begin integer i, j, jj, k, kk, kb, k2, ku, lim, p;
real l;
integer array C, LST[O: m];
C[m) :=ks;
fork := m step -1 until l do C[k - 1] := C[k] + 2:
p : = j : = rn - 1 ; i : = kb : = 0;
if reel then
begin

ku := n - 2;
fork := 0 step 2 until ku do

begin t := A[k + l]; A[k + 1] := B[k]; B[k] := tend
end else rn := m - l;
lim :'= (m + 2) + 2; if p ~ 0 then go to L4;

L: ku := k2 := C[j] +kb; jj := C[m - j]; kk := kb+ jj;
£2: k : = kk + jj;
£3: t := A[kk]; A[kk] := A[k2]; A[k2] := t;

t := B[kk]; B[kk] := B[k2]; B[k2] := l;
kk : = kk + 1; k2 : = k2 + 1 ;
if kk < k then go to L3;
kk := kk + jj; k2 := k2 + jj;
if kk < ku then go to L2;
if j > lim then
begin

j:=j-1; i:=i+l;
LST[i] := j; go to L

end;
kb := k2;
if i > 0 then

begin j := LST[i]; i := i - l; go to Lend;
if kb < n then begin j := p; go to Lend;

L4:
end REORDER;

procedure REALTRAN(A, B, n, evaluate);
value n, evaluate; integer n;
Boolean evaluate; array A, B;

COLLECTED ALGORITHMS (cont.)

comment If evaluate is false, this procedure unscrambles the
single-variate complex transform of the n even-numbered and
n-odd-numbered elements of a real sequence of length 2n, where
the even-numbered elements were originally in A and the odd
numbered elements in B. Then it combines the two real trans
forms to giv~ the Fourier cosine coefficients A[OJ, A[l], · · · , A[n]
and sine coefficients B[O], B[l], · · · , B[n] for the full sequence
of 2n elements. If evaluate is true, the process is reversed, and a
set of Fourier cosine and sine coefficients is made ready for
evaluation of the corresponding Fourier series by means of
the inverse complex transform. Going in ¢ither direction,
REALTRAN scales by a factor of two, which should be taken
into account in determining the appropriate' overall scaling;

begin integer k, nk, nh;
real aa, ab, ba, bb, re,· im, ck, sk, de, ds, r;
nh := n + 2; r := 3.14159265359/n;
ds := sin(r); r := -(2Xsin(0.5Xr)) j 2;
de := -0.5 X r; ck := 1.0; sk := O;
if evaluate then

begin ck := -1.0; de := -de end
else begin A[n] := A[O]; B[n] := B[O] end;
for k : = 0 step 1 until nh do
begin

nk := n - k;
aa := A[k] + A[nk]; ab := A[k] - A[nk];
ba := B[k] + B[nk]; bb := B[k] - B[nk];
re : = ck X ba + sk X ab; im : = sk X ba - ck X ab;
B[nk] := im - bb; B[k] := im + bb;
A[nk] := aa - re; A[k] := aa +re;
de : = r X ck + de; ck : = ck + de;
ds : = r X sk + ds; sk : = sk + ds

P.nd
end REALTRAN

338--P 4- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 339
AN ALGOL PROCEDURE FOR THE FAST FOURIER
TRANSFORM WITH ARBITRARY FACTORS [C6]
RICHARD C. SINGLETON*

(Recd. 2 Dec. 1966, 19 July 1967, :2 Aug. 1967 and
18 July 1968)

Stanford Research Institute, Menlo Park, CA 94:025

KEY WORDS AND PHRASES: fast Fourier transform, complex
Fourier transform, multivariate Fourier transform, Fourier series,
harmonic analysis, spectral analysis, orthogonal polynomials,
orthogonal transformation, virtual core memory, permutation
CR CATEGORIES: 3.15, 3.83, 5.12, 5.14

procedure FFT(A, B, n, nv, ks); value n, nv, ks;
integer n, nv, ks; array A, B;

comment This procedure computes the finite Fourier transform
for one variate of dimension nv within a multivariate transform
of n complex data values. The real and imaginary components

• This research was supported by Stanford Research Institute out of Research
and Development funds.

of the data are stored in arrays A[O: n-1] and! B[O: n-1], follow
ing the usual arrangement for indexing multivariate data in
a single-dimensional array, e.g., aikl is stored in location
A[jXn2Xna+kXn3+ll for j = 0, 1 · · · n1 -· 1 k = 0 1 · · ·
n2 - 1, and l = 0, 1, · · · , na - 1~ The

1

value ~f ks fpr
1

the kth
variate of a p-variate transform is

ks = nk X nk+1 X · · · X np

where nv = nk and n = n1 X n2 X · · · X np. On completion of
the transform, the real and imaginary components of the result
ing Fourier coefficients are in A and B respectively. For a single
variable, n = nv = ks, and the transform

L (ak + ibk) exp (i27rjk/n)
k~o

is computed for j = 0, 1, ... , n - 1.
For a single-variate transform of 2n real-valued points, the

amount of computing can be reduced by approximately one-half
by using procedure REALTRAN [3] together with FFT. The
even-numbered data points are stored initially in array A, the
odd-numbered data points in array B, the transform is computed
with

FFT(A, B, n, n, n),

and the result is unscrambled with

REALTRAN(A, B, n, false)

and then scaled by 1/2n to give the cosine· coefficients as A[O],
A[l], · · · , A[n] and the S:ine coefficients as B[l], B[2], ... ,
B[n-1], with B[O] = B[n] = O~ The inverse operation, evaluat
ing the Fourier series with cosine coefficientB A and sine coeffi
cients B, is computed by

REALTRAN(A, B, n, true}

followed by

339-P 1- 0

FFT(A, B, n, n, n),

then scaling by 1/2, yi~lding the even-numbered time domain
values in array A and the odd-numbered values in array B.
Note that the upper bounds of array A and B must be increased
to n when procedure REALTRAN is used.

The method is based on an algorithm due to Cooley and
Tukey [1], with modifications proposed by Singleton [2], to
allow computing of large transforms on a system with virtual
memory. The dimension nv is first decomposed into its prime
factors nv1 , nv2 , · · · , nvm , and then nv/nv, transforms of di
mension nvi are computed for i = 1, 2, · · · , m. The resulting
transformed values are then permuted to normal order in a final
step. Computing times, to a first approximation, should be
proportional to n(nv1+nv2+ · · · + nvm). The dimension of array
FACTOR must be increased if nv has more than 20 factors.

In factoring nv at the beginning of the procedure, factors that
are squares of primes are first removed, then the square-free
portion is factored. The two factors of each square are placed
symmetrically about the square-free factors. For example,
nv = 72 is factored as 2 X 3 X 2 X 3 X 2. This arrangement is
used to simplify the final reordering in place. One symmetric
permutation step is ·done for each square factor, and the reorder
ing is completed by following the permutation cycles of the
square-free portion.

In the transform phase of the procedure, special coding for
factors of 2 and 3 is included for efficiency. Adjacent factors of
2 are also paired, and the results stored as for factors of 2 rather
than 4. The remaining factors are handled by an odd-factor
routine, using trigonometric function symmetries and smaller
real transforms to reduce the number of multiplications by one
half as compared with a straightforward complex transform of
an odd factor. The approximate number of complex multiplica
tions is n/2 for a factor of 2, 3n/4 for a factor of 4, and
(p-1) (p+3)n/4p for an odd factor p.

In both the transform and reordering phases, data is accessed
in subsequences of consecutive a~ray elements, and as much
computing as possible is done in one section of the data before
moving on to another. This is done to reduce the number of
memory overlay operations in a system with virtual memory.
After the first transform or symme~ric permutation step, the
remaining steps can be performed independently on each of
nv1 spans of data. We complete all remaining steps on the first
span before beginning with the second. Similarly, after the
second step the first span is subdivided in n'V2 independent spans.
This subdivision process is continued through the remaining
steps.

A number of working storage arrays are declared within this
procedure. For large n, the total working storage is small in
comparison with the 2n locations for data arrays A and B, ex
cept in a couple of cases. In the transform phase, approximately
6q working storage locations are used, where q is the largest
prime factor in the transform. This requirement is minor except
in a single-variate transform with n a prime number. During the
reordering phase, the worst case occurs when doing a single
variate transform with n a product of two or more primes with
no square factors. In this case, approximately n working storage
locations are required.

This program was tested on the Burroughs B5500 computer
and compared with another program computing a single n-by-n

COLLECTED ALGORITHMS (cont.)

complex Fourier transform. Whenever n had two or more prime
factors, procedure FFT was much faster. The B5500 ALGOL
system limits single-dimension arrays to 1023 words, but larger
transforms can be computed by declaring

array A, ~[O: (n-1) + 512, 0: 511],

storing the data 512 entries per row, and using partial word
indexing A[J.[30:9], J.[39:9]] instead of A[J] wherever A and B
appear in procedure FFT.

REFERENCES:

1. CooLEY, J. W., AND TUKEY, J. W. An algorithm for the
machine calculation of complex Fourier series. Math. Com
put. 19, 90 (Apr. 1965), 297-301.

2. SINGLETON, R. C. On computing the fast Fourier trans
form. Comm. ACM 10 (Oct. 1967), 647-()54.

3. SINGLETON, R. C. Algorithm 338: ALGOL procedures for
the fast Fourier transform. Comm. ACM 11 (Nov. 1968),
771-774;

begin integer array F ACTOR[O: 20]; Boolean zero;
real AO, Al, A2, A3, BO, Bl, B2, B3, cm, sm,

cl, c2, c3, sl, s2, s3, c30, rad;
integer kO, kl, k2, k3, jk, kf, kh, jf, mm,

i, j, jj, k, kb, m, span, kt, kn;
comment Determine the square factors of nv;
k : = nv; m : = 0; j : = 2; jj : = 4; jf : = 0;
FACTOR [O] : = l;

L: for i := k + Jj while i X jj = k do
begin m := m + l; FACTOR[m] := j; k := i end;

if j = 2 then j : = 3 else j : = j + 2;
jj : = j X j; if jj ~ k then go to L; kt : = m;
comment Determine the remaining factors of nv;
for j := 2, 3 step 2 until k do
for i : = k + j while i X j = k do

begin m := m + l; FACTOR[m] := j; k := i end;
if F ACTOR[kt] > F ACTOR[m] then k := F ACTOR[kt]
elsek := FACTOR[m];
for .i := kt step -1 until 1 do

begin m :=. m+l; F ACTOR[m] := F AC'.'l'QR[j] end;
begin integer array C,D[O: m];

begin array CK, SK, CF, SF[O:k-1];
array AP, BP, AM, BM[O:(k-1)+2];
array RD, CC, SS[O:m];
Boolean array BB[O:m+lJ;
rad := 6.28318530718; c30 := 0.866025403784;
for j := m step -1 until 2 do
begin

BB[j] := (FACTOR[j-l]+FACTOR[j])·= 4;
if BB [j] then

begin j := j - l; BB[j] := false en.d
end;
BB[m+iJ := BB[l] := false;
C[O] := ks + nv; kn := O; D[O] := ks;
for j := 1step1 until m do
begin

k := FACTOR[j]; C[j] := C[j-1] X k;·
D[j] := D[j-1] + k; RD[j] := rad/C[j];
cl := rad/k;
if k > 2 then

begin CC[j] := cos(cl); SS[j] := sin(cl) end
end;
mm := if BB[m] then m-1 else m;
if mm> 1 then
begin

sm := C[mm-2] X RD[m];
cm := cos(sm); sm := sin(sm)

end;
Ll: kb := kn; kn := kn +ks; jj := O; :== l;

cl := 1.0; sl := O; zero := true;

£2: if BB[i+l] then
begin kf : = 4; i : = i + 1 end

elsekf := FACTOR[i];
span := D[i];
if --. zero then
begin

339-P 2- 0

sl := jj X RD[i]; cl := cos(sl); sl := sin(sl)
end;
comment Factors of 2, 3, and 4 are handled

separately to gain efficiency;
L3: if kf = 4 then

begin
if --. zero then
begin

c2 :=cl i 2 - sl i 2; s2 := 2.0 X cl X sl;
c3 : = c2 X cl - s2 X sl; s3 : = c2 X s 1 + s2 X cl

end;
for kO : = kb + span - J step -1 until kb do
begin

kl := kO +span; k2 := kl +span; k3 := k2 +span;
AO := A[kO]; BO := B[kO];
if zero then
begin

Al := A[kl]; Bl := B[kl);
A2 := A[k2]; B2 := B[k2];
A3 := A[k3]; B3 := B[k3]

end
else
begin

Al := A[kl] X cl - B[kl] X sl;
Bl := A[kl] X sl + B[kl] X cl;
A2 := A[k2) X c2 - B[k2] X s2;
B2 := A[k2] X s2 + B[k2] X c2;
A3 := A[k3] X c3 - B[k3] X s3;
B3 := A[k3] X s3 + B[k3] X c3

end;
A[kO] := AO+ A2 + Al + A3; B[kO] := BO+ B2 +

Bl+ B3;
A[kl] := AO+ A2 - Al - A3; B[kl] := BO+ B2 -

Bl - B3·
A[k2] := AO - A2 - Bl + B3; B[k2] := BO - B2 +

Al - A3;
A[k3] := AO - A2 +Bl - B3; B[k3] := BO - B2 -

Al+ A3
end

end
else if kf = 3 then
begin

if --. zero then
begin c2 := cl j 2 - sl i 2; s2 := 2.0 X cl X sl end;

for kO := kb + span - 1 step -1 until kb do
begin

kl := kO + span; k2 := kl + span;
AO := A[kO]; BO := B[kO];
if zero then
begin

Al := A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2]

end
else
begin

Al := A[kl] X cl - B[kl] X sl;
Bl := A[kl] X sl + B[kl] X cl;
A2 := A[k2] X c2 - B[k2] X s2;
B2 := A[k2] X s2 + B[k2] X c2

end;
A[k(}] := AO+ Al + A2; B[kO] := BO+ Bl + B2;
AO := - 0.5 X (AHA2) +AO; Al := (Al-A2) X

c30;

COLLECTED ALGORITHMS (cont.)

BO := - 0.5 X (Bl+B2) + BO; Bl := (Bl-B2) X
c30;

A[kl] := AO - Bl; B[kl] := BO+ Al;
A[k2] := AO+ Bl; B[k2] := BO - AI

end
end
else if kf = 2 then
begin

kO := kb + span; k2 := kO + span;
if zero then
begin

for kO := kO - 1 while kO ~ kb do
begin

k2 := k2 - 1; AO := A[k2]; BO:= B[k2];
A[k2] := A[kO] - AO; A[kO] :== A[kO] + AO;
B[k2] := B[kO] - BO; B[kO] := B[kO] +BO

end
end
else
for kO := kO - 1 while kO ~ kb do
begin

k2 := k2 - l;
AO := A[k2] X cl - B[k2] X sl;
BO := A[k2] X sl + B[k2] X cl;
A[k2] := A[kO] - AO; A[kO] := A[kO] + AO;
B[k2] := B[kO] - BO; B[kO] := B[kO] +BO

end
end
else
begin

jk := kf - l; kh := jk + 2; k3 :=: D [i-1];
kO := kb + span;
if -, zero then
begin

k := jk - I; CJ?fl] := cl; SF[l] := sl;
for j := 1step1 until k do
begin

CF[j+l] := CF[j] X cl ·- SF[j] X sl;
SF[j+l] := CFUJ X sl + SF[j] X cl

end
end;
if kf ~ jf then
begin

CK[jk] := CK[l] := c2 := CC[i];\
SK[l] := s2 := SS[i]; SK[jk] := -s2;
for j := 1 step 1 until kh do
begin

k := .ik - j;
CK[k] := CK[j+IJ := CK[j] X c2 - SK[j] X s2;
SK[j+I] := CK[j] X s2 + SK[j] X c2;
SK[k] := -SK[j+l]

end
end;

L4: kl := kO := kO - 1; k2 := kO + k3:;
A3 := AO := A[kOJ; B3 := BO := B[kO];
for j : = 1 step 1 until kh do
begin

kl := kl + span; k2 := k2 - span;
if zero then
begin

Al := A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2]

end
else
begin

k := kf - j;
Al := A[kl] X CF[j] - B[kl] X SF[j];

339-P 3- 0

Bl := A[kl] X SF[j] + B[kl] X CF[j];
A2 := A[k2] X CF[k] - B[k2] X SF[k];
B2 := A[k2] X SF[k] + B[k2] X CF[k]

end;
AP[j] := Al+ A2; AM[j] := Al - A2;
BP[j] := Bl + B2; BM[j] := Bl - B2;
A3 := AP[j] + A3; B3 := BP[j] + B3

end;
A[kO] := A3; B[kO] := B3;
kl := kO; k2 := kO + k3;
for j := 1step1 until kh do
begin

kl := kl + span; k2 := k2 - span; jk := j;
Al := AO; Bl := BO; A2 := B2 := O;
fork := 1 step 1 until kh do
begin

Al := AP[k] X CK[jk] + AI;
A2 := AM[k] X SK[jk] + A2;
Bl := BP[k] X CK[jk] +Bl;
B2 := BM[k] X SK[jk] + B2;
jk : = jk + j; if jk ;;;; kf then jk : = jk - kf

end;
A[kl] := Al - B2; A[k2] := Al + B2;
B[kI] := Bl + A2; B[k2] := Bl - A2

end;
if kO > kb then go to L4; jf := kf

end;
if i <mm then

begin i := i + l; go to L2 end;
i := mm; zero := false;
kb : = D[i - l] + kb;
if kb < kn then
begin

for jj := C[i-2] + jj while jj ~ C[i-1] do
begin i := i - l; jj := jj - C[i] end;

if i =mm then
begin

c2 := cl; cl := cm X cl - sm X sl;
s 1 : = sm X c2 + cm X s 1; go to L3

end;
if BB[i] then i := i + l; go to L2

end;
if kn < n then go to L 1

end;
i := l;
for j := kt - 1 step -1 until 1 do
begin

FACTOR[j] := FACTOR[j] - l; i := FACTOR[j] + i
end;
comment We now permute the result to normal order;
comment The following if statement does the complete re-

ordering if the square-free portion of n has at most one
prime factor. Otherwiseit does a partial reordering, leaving
each entry in it.s correct section of length n + c[kt],
where c[kt] i 2 is the product of the square factors;

if kt > 0 then
begin integer array S[O :i];

j : = 1; i : = kb : = 0;
L5: k3 := k2 := D[j] +kb; jk := jj := C[j-1];

kO := kb + jj; span := C[j] - jj;
L6: k := kO + jj;
L7: AO := A[kO]; A[kO] := A[k2]; A[k2] := AO;

BO : = B[kO]; BfkO] : = B[k2]; B[k2] : = BO;
kO : = kO + 1; k2 : = k2 + 1;
if kO < k then go to L7;
kO := kO +span; k2 := k2 +span;
if kO < k3 then go to L6;
if kO < (k3+span) then

COLLECTED ALGORITHMS (cont.)

begin kO := kO - D[j] + jj; go to L6 end;
k3 := D[j] + k3;
if (k3-kb) < D[j-1] then
begin

k2 : = k3 + jk; jk : = jk + jj;
kO := k3 - D[j] + jk;. go to L6

end;
if j <kt then
begin

k := FACTOR[jJ + i; j := j + 1; .
L8: i := i + 1; S[i] := j; if i < k then g~ to L8;

go to L5 ·
end;
kb := k3;
if i > 0 then .

begin j := S[i]; i := i - 1; go to L5 ~nd;
if kb < n then begin j := 1; go to L5 e1tlid

end;
jk := C[kt]; span := D[kt]; m := m - kt;
kb := span + jk -2;
comment The following if statementcomple~es the reorder

ing if the square-free portion of n has two 1or more prime
factors;

if kt < m - 1 then
begin integer array R[O:kb];

array TA, TB[O:jk-1];
for j := kt step 1 until m do D[j] := D[j] + jk;
jj := O;
for j : = 1 step 1 until kb do

begin
k :=kt;
for jj := D[k+l] + jj while jj ~ D[k] dQ

begin jj := jj - D[k]; k := k + 1 end;
if jj = j then R[jJ := - j else R[j] := jJ

end;
comment Determine the permutation cyrles of length
~2;

for j := 1 step 1 until kb do if R[j] > 0 tl~en
begin

k2 := j;
for k2 := abs(R[k2]) while k2 ~ j do R[k2] := -R[k2]

end;
comment Reorder A and B following the permutation

cycles;
kn := i := j := O;

LA : kb : = kn; kn : = kn + ks;
LB: j := j + 1; ifR[j] < 0 then go to LB;

k : = R[j]; kO : = jk X k + kb;
LC: TA[i] := A[kO+i]; TB[i] := B[kO+i];

i : = i + 1; if i < jk then go to LC; i : = 0;
LD: k := -R[k]; jj := kO; kO := jk X k +kb;
LE: A[jj+il := A[kO+i]; B[jj+i] := B[kO+iJ;:

i : = i + 1; if i < jk then go to LE; i : = 0;
if k ~ j then go to LD;

LF: A[kO+i] := TA[i]; B[kO+iJ := TB[i];
i : = i + 1; if i < jk then go to LF; i : = 0;
if j < k2 then go to LB; j : = 0;
kb := kb + span; if kb < kn then go to LB;
if kn < n then go to LA

end
end

end FFT

339-P 4- RI

REMARK ON ALGORITH 339 [C6]
AN ALGOL PROCEDURE FOR THE FAST FOURIER
TRANSFORM WITH ARBITRARY FACTORS

[Richard C. Singleton, Comm. ACM 11 (Nov. 1968),
776]

RICHARD C. SINGLETON (Recd. 27 Nov. 1968)
Stanford Research Institute, Menlo Park, CA 94025

KEY WORDS AND PHRASES: fast Fourier transform, complex
Fourier transform, multi variate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly
nomials, orthogonal transformation, virtual core memory,
permutation

CR CATEGORIES. 3.15, 3.83, 5.12, 5.14

On page 778, column 2, the 7th and 6th lines from the bottom
should be corrected to read:

L.l: jJ := C[i-2] + jj; if J'j ~ C[i-1] then
begin i := i - 1; jj := jj - C(i]; go to LJ end;

On page 779, column 1, the 9th and 8th lines from the bottom
should be corrected to read:

LX: jj := D[k+l] + jj; if jj ~ D[k] then
begin jj := jj - D[k]; k := k + 1; go to LX end;

In both cases jj was originally used as the controlled variable of
a for clause and thus was undefined after exit; the corrections
preserve the value of jj for later use.

If the user prefers to compute constants with library functions,
line 5 in column 2 on page 777 may be replaced by:

rad:= 8.0 Xarctan(l.O); c30 := sqrt(0.75);
Algorithms 338 [Comm. ACM 11 (Nov. 1968), 773] and 339 were

punched from the printed page and tested on the CDC 6400
ALGOL compiler. After changing a colon to a semicolon at the end
of line 37 in column 2 on page 775, the test results agreed with
those obtained earlier with this compiler.

When computing a single-variate Fourier transform of real
data, procedure REALTRAN may be used with procedure FFT
(Algorithm 339) to reduce computing time. Two versions of
REALTRAN have been given (Algorithms 338 and 345 [Comm.
ACM 12 (Mar. 1969), 179-184]); the first version is the faster of
the two, but the second should be used if arithmetic results for
real quantities are truncated rather than rounded.

In describing the evaluation of a real Fourier series, in the
middle of column 2 on page 776, the necessary steps of reversing
the signs of the B array values both before and after calling FFT
were omitted. The correct steps, including scaling, are as follows:

REALTRAN(A B, n, true);
for j := n - 1 step -1 until 0 do B[j] := -B[j];
FFT(A, B, n, n, n);
for j := n - 1 step -1 until 0 do

begin A[j] := 0:5 X A[jJ; B[j] := -0.5 X BfjJ end;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 340
ROOTS OF POLYNOMIALS BY A ROOT-SQUARING
AND RESULTANT ROUTINE [C2]
ALBERT N OLTEMEIER

(Recd. 2 Nov. 1967, 25 Jan. 1968 andl 16 July 1968)
Technische Universitat Hannover, Rechenzentrum,

Hannover, Germany

KEY WORDS AND PHRASES: rootfinders, roots of poly
nomial equations, polynomial zeros, root-squaring operations,
Graeffe method, resultant procedure, subresultant procedure,
testing of roots, acceptance criteria

CR CATEGORIES: 5.15
procedure AG4(n, c, mm, delta, epsilon, range) Result: (re, im,

mu, rt, gc, m, i, t) Exit: (jail);
value n, mm, delta, epsilon, range;
integer n, m, i, mm; real delta, epsilon, range;
integer array mu;
array c, re, im, rt, gc, t;
label fail;

comment AG4 finds simultaneously zeros of a polynomial of
degree n with real coefficients by a root-squaring and resultant
routine.

This procedure supersedes Algorithm 59 [2]. The. following
changes were made:
(a) In the procedure heading, the meaning of the old formal

parameter alpha is shared by the three new parameters mm,
delta, and epsilon, and range, m, i, t,fail are added to the formal
parameter list.

(b) In the beginning of the procedure body the polynomial i.s
tested for 0 as a zero (label ZROTEST). Although the modulus
p = 0 can be found by squaring operations, the procedure
usually will not find the root 0 without that test.

(c) In the program section labeled SQUARING OPERATION
the iteratively squared coefficient is tested whether it will re
main in the allowed range of numbers (forn\al parameter
range) for a particular machine after another sq•rnring opera,
tion.

(d) If there is a complex zero with a real part of 0, the resultant
R(p) is a polynomial of degree n with the coefficients rn-1 =

rn = 0. Computing the moduli of the zeros of this polynomial
in the program section labeled SQUARING OPERATION
and testing for pivotal coefficients, one would have to divide
by 0. This case has been excluded by testing the divisor.

(e) If the acceptance criteria epsilon and delta are chosen too
large, the sum of the multiplicities of the already found zeros
may be greater than the degree n of the polynomial. In the
program sections labeled IT and D, the test for the degree of
the residual polynomial, the number of zeros, and the sum of
the multiplicities of zeros in order to end the procedure has
been improved.
Tests: The procedure AG4 has been tested on the CDC

1604-A computer at the Rechenzentrum, Technische Universitat
Hannover. The following results were obtained in a few repre
sentative cases. The parameters of acceptance criteria are
delta = 0.2, eps£lon = 10-1 , and mm = 10.
(i) P1(x) = x8 - 30x6 + 2731:4 - 820x2 + 5,76

Xi = 4.000 000 0010 X2 = -4.000 000 0010
Xa = 2.999 999 9990 X4 = -2.999 999 9990
Xa = 2.000 000 ()()()() X& = - 2.000 000 0000

340-P 1- 0

X7 = 1.000 000 0000 Xs = -1.000 000 0000
(ii) P 2 (x) = x6 + 7x4 + 5:i3 + 6x2 + 3x + 2

X1 = -6.3509936102
X2, a = 1.3506884657, X lQ-l ± i X 7.7014185283 X lQ-l

X4, 6 = - 4.5957204142 X lQ-l ± 1: X 5.5126354891 X 10-l
(iii) P 3 (x) = x6 - 2x5 + 2x4 + ±3 + 6x2

- 6x + 8
X1,2 - 9.9999999974 X lQ-l ± i X 1.0000000002
Xa,4 4 .9999999999 X lQ-l ± i: X 8.6602540377 X lQ-l

Xo,6 1.4999999997 ± i X 1.3228756548
(iv) P4 (x) = x2 - 4.0lx + 4.02
The procedure fails to compute any zero in this case (parameter
m = O). After changing the parameter epsilon to 10-5 , AG4
evaluates the zero x = 2.0049937655 with multiplicity 2 and re
mainder term 2.5 X 10-•;

Parameters:
n degree of the polynomial
c real coefficients of the polynomial

cfj](j=O,· · · ,n), where c[n] is the constant term
delta, epsilon parameters for acceptence criteria

practical input delta = 0.2, epsilon = 10 j (- 7)
range upper bound of the range of real constants

(for the cDc 1604 -A range = 10 i 307)
mm number of root-squaring iterations

practical input mm = 10
re real part of each zero re [j] (j = 1, · · · , m)
im imaginary part of each zero im[j] (j = 1, · · · , m)
mu corresponding multiplicity mit[j](j= 1, · · · , m)
rt remainder term rt[j](j=l, · · ·, m)
gc coefficients of the polynomial generated from these zeros

gc[jl\j=O, .. · ,n-i)
m number of distinct zeros found by the routine
i degree of the residual polynomial
t coefficients of the residual polynomial

t[j] (j =0, · · · ,i), where t[i] is the constant term
fail a zero with multiplicity greater than n found, change

parameters for acceptance criteria.

REFERENCES:
1. BAREISS, E. H. Resultant procedure and the mechaniza

tion of the Graeffe process, J. ACM 7 (Oct, 1960), 346-386.
2. BAREiss, E. H. AND FISHERKELLER, M. A. Algorithm 59,

Zeros of a real polynomial by resultant procedure,
Comm. ACM 4 (May 1961), 236-237.

3. THACHER, H. C. Certification of algorithm 3, Comm. ACM
3 (June 1960), 354.

4. GRAU, A. A. Algorithm 256, Modified Graeffe method,
Comm. ACM 8 (June 1965), 379;

begin
integer d,numzro;
Boolean zero;
numzro := O; zero := false; d := n;

ZROTEST:
if c[d] = 0 then
begin

zero := true; d := d - l; numzro := numzro + 1;
go to ZROTEST

end;
begin

integer ct, nu, nuc, beta, j, jc, k, p, em, l, mmc, ll, me, sm;

COLLECTED ALGORITHMS (cont.)

Boolean root;
real x, y, gx, rp, h;
array a, ac[O: d, 0: mm], rr, rc[O: d], s[-1:

1
d],

ag[O: d+l, -1: d+l], rh, q, g, f[l: 2 X dJi;
switch 88 := Sl, 82;
switch tt := Tl, T2;
switch vv := Vl, V2;
integer procedure min(u, v); integer u; v;

min := if u ~ v then u else v;
real procedure synd(ww, qq, ii, tt);

integer ii; real ww, qq; array tt;
SYNTHETICDIV:

begin
8(-1] := O; s[O] ~= tt[O];
for em := 1 step 1 until ii do

s[emJ := tt[em] - ww X 8[em-l] - qq X s[em-2];
if qq = 0 then synd := abs(s[ii])
else 8ynd := abs(s[ii-1] X sqrt(abs(qq))),+ abs(s[ii])

end synd;
ct := beta := l;

SQUARING OPERATION:
me:= mm;
begin

for m : = 1 step 1 until mm do
begin

for j := 0 step 1 until d do
begin

h := O;
for ll := 1 step 1 until min(d-j,j) do

h := h + (-1) j ll X a[j-ll, m-1.] X a[j+ll, m-1];
a[j, m} := (-1) j j X (a[j, m-1] j 2 +2 X h)

end;
for l := 0 step 1 untild do
begin
if abs(a[l, m]) 5;; 8qrt(range) then

begin me := m; go to Wl end
end

end
end;

Wl:

W2:

for j := 0 step 1 until d do
rr[}] :=if a[j, me] = 0 then 0 else

(-1) j j X a[j, me-1] j 2/a[j, me];
ll := O;
for j := d step -1 until 0 do
begin

if a[j, me] = 0 then
begin il := ll + l; rr[j] := ll end

else go to W2
end;

j := l; nu := 1;
RD:

Ml:

if (1-delta~rr[j]) /\ (rr[j]~l+delta) then
begin

rp := ab.s(a[j, me]/a[.j-nu, me]) j (1/(2 j meXnu));
go to tt[beta]

end;

nu :=nu+ 1;
M2:

j := j + l;
if j = d + 1 then go to ss[beta] else go to RD;

M3:
nu := l; go to M2;

340-P 2- 0

Tl:rh[ct] := rp; x := rp +epsilon X rp;
y := x + epsilon X rp;
fork := 0 step 1 until d do t[k] := abs(c[k]);
f[ct] : = synd(-y, 0.0, d, t) - synd(-:c, 0.0, d, t);
g[ct] := synd(-rh[Ct], 0.0, d, c);
if abs(f[ct]) > g[ct] then
begin

root := true; q[ct] := O;
ct := ct + l; f[ct] := f[ct-1]

end;
rh[ct] := -rp;
g[ct] : = synd(-rh[ct], 0.0, d, c);
if abs(f[ct]) > g[ct] then
begin

root := true; q[ct] := O;
ct := ct + l; f[ct] := f[ct-1]

end;
if nu = 1 then go to M2;
q[ct] := rp j 2; nuc := nu; jc := j;
mmc :=me;
for j := 0 step 1 until d do
begin

rc[j] := rr[j]; ac[j, me] := a[j, me]
end;

RESULTANT:

T2:

begin
array b[-l:d+l, -1 :d+lL aa[O:d],

r[O:d, O:d], cb[-l:d+lJ;
cb[-1] := cb[d+ 1] := O;
for j := 0 step 1 until d do

cb[j] : = c[J];
b[O, OJ := 1;
fork := 0 step 1 until d do
begin

b[k, -1] := O; b[k-1, k] := O;
for j := 0 step 1 until k do

b[k+l, j] := b[k, j-1] - q[ct] X b[k-1, j];
b[k+l, k+ll := 1; h := O;
for j := d - k step -1 until 0 do

h :=h + (cb[j] X cb[k+jl - cb[j-1]
X cb[k+j+1]) X q[ct] j (d-k-j);

aa[k] := (-1) j k X h;
for j := 0 step 1 until k - 1 do

r[k, j] := r[k-1, j] + aa[k] X b[k, j];
r[k, k] := aa[k]

end;
beta := .2;
for j := 0 step 1 until d do

a[j, O] := r[d, d-j]/r[d, d]
end;
go to SQUARING OPERATION;

if (rp/2) j 2 > q[ct] then go to M3;
rh[ct] := rp;
g[ct] := 8ynd(-rh[ct], q[ctJ, d, c);
if abs(f[ct]) > g[ct] then
begin

ct := ct+ l; f[ct] := f[ct-1];
q[ct] := q[ct-1]

end;
rh[ct] := -rp;
g[ct] := synd(-rh[ct], q[ct], d, c);
if abs(f[ct]) > g[ct] then
begin

ct := ct+ 1; f[ct] := f[ct-lj;
q[ct] := q[ct-1]

end;
go to M3;

COLLECTED ALGORITHMS (cont.)

82:

Sl:

me:= mmc;
for j := 0 step 1 until d do
begin

a[j, me] := ac[j, me]; rr[j] := rc[j]
end;
j : = jc; beta : = 1 ;
if root then go to M3 else nu : = nuc;
go to Ml;

for j := 0 step 1 until d do ag[j, OJ .-· l;
for j := -1, 1step1 until d do
form := 0 step 1 until d do

ag[m, j] := O;
k := 1: i := d; m := l; ll := O;
for j := 0 step 1 until d do t[j] := c[j];

MULT:

IT:

mu[m] := O;
p := if q[k] = 0 then 1 else 2;

gx := synd(-rh[k], q[k], i, t);
if abs(f[k]) > gx then
begin

ll := ll + p;
for j := 1 step 1 until ll do

ag[ll, j] := ag[ll-p, j] - rh[k] X a~r[ll-p, j-lJ + q[k] X
ag[ll-p, j-2];

mu[m] := mu[m] + p; i := i - p;
if i < 0 then go to fail;
if i = 0 then go to El;
for j := 0 step 1 until i do t[j] := s[j];
go to IT

end
else if mu[m] ~ 0 then

El:
begin

rt[m] := g[k]; go to vv[p];
end
else go to Dl;

Yl:
re[m] := rh[k]; im[m] := O; go to E;

V2:

E:

Dl:

re[m] := rh[k]/2;
im[m} := sqrt(q[k] - re[m] i 2);

m := m + l;

k:=k+l;
sm :== O;
if m ~ 1 then
for j := 1step1 until m - 1 do sm := sm + mu[j];
if k ~ ct /\ sm ~ d /\ i > 0 then go to MULT;
for j := 0 step 1 until d do gc[j] := a,g[ll, j];
m := m - 1;
if zero then
begin

for j := d + 1step1 until d + numzro do gc[j] := O;
m := m + 1;
re[m] := O; im[m] := O; mu[m] := numzro; rt[m] := 0

end
end

end AG4

340-P 3- Rl

REMARK ON ALGORITHM 340 [C2]
ROOTS OF POLYNOMIALS BY A ROOT-SQUARING
AND RESULTANT ROUTINE [Albei;t Noltemeier,
Comm. ACM 11 (Nov. 1968), 779]
ALBERT NoLTEMEIER (Recd. 6 Jan. 1969)
Technische Universitat Hannover, Rechenzentrum, Han
nover, Germany

KEY WORDS AND PHRASES: rootfinders, roots of polynomial
equations, polynomial zeros, root-squaring operations, Graeffe
method, resultant procedure, subresultant procedure, testing
of roots, acceptance criteria

CR CATEGORIES: 5.15

The following misprints were found in the algorithm and should
be corrected as indicated:

1. In the comment, in the first column on page 780, the last line
before the paragraph beginning with the word "Parameters" ends
with a semicolon; it should end with a period.

2. In the seventh line following the word "Parameters" the ab
breviation CDC should appear in capital letters.

3. In the procedure body, in the second column on page 780,
the line before the label SQUARING OPERATION is missing. It
should read as follows:

for j := 0 step 1 until d do a[j, OJ := c[j];

COLLECTED ALGORITHMS FROM CACM

ALGO RITH~\1 341
SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION [H]
J. L. BYRNE AND L. G. PROLL

(Recd. 8 Nov. 1967 and 17 June 1968)
Department of Mathematics, University of Southampton,

Hampshire, England

KEY WORDS AND PHRASES: linear programming, zero-one
variables, partial enumeration

CR CATEGORIES: 5.41

procedure IMPLEN (m, n, A, x, api, nosoln, count, inf);
value m, n, inf; integer m, n, count; real inf;
Boolean api, nosoln; real array A; integer array x;

comment This procedure solves the integer linear program,
minimize A[O, lJ X x[l] + · · · + A[O, n] X x[nJ
subject to A[i, lJ X x[lJ + · · · + A[i, n] X :i;[n]

+ A[i, OJ~ 0 (i=l, 2, · · · , m)
and x(jJ = 0 or 1 (j=l, 2, · · · , n).
It is assumed that A[O, jJ ~ 0 (j= 1, 2, · · · , n). The algorithm
used is that of Geoffrion (SI AM Rev. 9, No. 2). On entry, inf
is the largest positive real number available and api is set to
true if a priori information concerning the solt.ition is supplied
in the form of a binary vector x[l: nJ and its: associated cost
A[O, OJ. On exit nosoln is true if no feasible solution to the con
straints has been found, otherwise it is false and x contains the
optimal solution, A[O, OJ contains the optimal value of the ob
jective function and A[i, OJ contains the values of the slack
variables. In either case count contains the \umber of iterations
performed;

begin
integer i, j, k, ia, e, d; real z, q, max, r; Boolean null;
integer arrays, v[l: n];
comment s holds the current partial solution in order of as

signment, v is a state vector associated with 1;
if api then
begin

for j := 1 step 1 until n do
if x[jJ = 0 then lbegin s[jJ := -j; v[jJ := 2 end
else
begin

s[j] := j; v[j] := 3;
for i := 1 step 1 until m do

A[i, OJ := A[i, OJ+ A[i, j]
end;
e := n; z := A[O, OJ; go to LO

end;

for j := 1 step 1 until n do sfjJ := v[jJ := O;
z := 0.0; e : = O;

LO: nosoln := true; count := O; A[O, OJ := inf;
comment all relevant variables are now initialized;

START: co'Unl := count+ 1;
for i := 1 step 1 until m do

if A[i, OJ < 0.0 then go to FORMT;
comment best completion of sis feasible;
go to INCUMBENT;

FORMT: null := true;

341 p 1 0

comment form set T of free variables to which 1 may be profit
ably assigned;

for j := 1 step 1 until n do
begin

if 1 (v[jJ = O /\ A[O, jJ + z < A[O, OJ) then go to Ll;
fork := i step 1 until m do
if A [k, OJ < 0.0 /\ A [k, jJ > 0.0 then

begin null :=false; v[j] := 1; go to Ll end;
Ll: end; ;

if null then go to NEWS;
comment if T is empty then s is fathomed;
fork := i step 1 until m do
begin

if A [k, OJ ~ 0.0 then go to L2;
q := A[k, OJ;
for j := 1 step 1 until n do .

if v[jJ = 1 /\ A[k, jJ > 0.0 then q := q + A[k, J];
if q < 0.0 then go to NEWS;
comment if q is negative s is fathomed;

L2: end;
rnax := -inf;
for j := 1step1 until n do
begin

if vfjJ ~ 1 then go to L3; q := 0.0;
for i := 1 step 1 until m do
begin

r := A[i, OJ + A[i, j];
if r < 0.0 then q : = q + r

end;
if max ~ q then

begin max := q; d := j end;
L3: end;

e := e + 1; s[eJ := d; v[dJ := 3; ia := l;
comment Augments by assigning 1 to x[dJ;

RESET: for j := 1step1 until n do
if v[jJ = 1 then v[jJ := O;

comment clear T;
for i := 1 step 1 until m do

A[i, OJ := A[i, OJ+ ia X A[i, dJ;
z := z + ia X A[O, dJ;
comment Recalculate slacks and objective function;
go to START;

INCUMBENT: .nosoln := false;
if z ~ A[O, OJ then go to NEWS;
A[O, OJ := z;
if api then begin api := false; go to L4 end;
for j := 1 step 1 until n do

xfjJ := if v[jJ = 3 then 1 else O;
NEWS:- if e = 0 then go to RESULT;
L4: d := s[eJ;

if d > 0 then go to UNDERLINE;
v[-dJ := O; e := e - 1; comment backtrack;
go to NEWS;

UNDERLINE: s[eJ := -d; v[d] := 2; ia := -1;
comment Assign 0 to x[dJ;
go to RESET;

RESULT:
end

COLLECTED ALGORITHMS (cont.)

RE~\IARK OX ALGORITIL\l 3-H [H]
SOLUTIO~ OF LINEAR PROGRA.:.\IS IN 0-1
VARIABLES BY IMPLICIT ENU~IEHATION

[J. L. Byrne and L. G. Proll, Comm .. ACM 11 (Nov.
1968), 782]

L. U. PROLL (Recd. 5 Dec. 1968 and 18 Aug. 1969)
University of Southampton, Dcpm'tmcnt of l\Iathematics,

Hampshire, England

KEY WORDS AND PHRASES: linear programming, zero-one
variables, partial enumeration

CR CATEGOIUES: 5.41

The published algorithm contains an error in the assembly of
the initial partial solution, s, if a priori information is given. In
certain cases this can cause premature termi 11ation of the algo
rithm. The error may be corrected by replacillg t.he following lines
of the procedure body, from

begin
for j := 1slep1 until n do

to
e := n; z := ,1[0, OJ; go to/,();

by
he gin

e := O;
for j : = 1 step 1 until n do

if .r[j] = 0 l hen v[jJ := 0
else
begin

c : = c + l ; s [e] : = j ; v f.i I : = ~ ;
fo1· i := l !Step 1 until 1ll do

A[i, O] := :l\i, OJ+ A['i, j];
end;
z := A[O, OJ; go to LO;

and by deleting the lillc
if api then begin api : =: false; go Lo L-l encl;

REMARK ON ALGORITHM 341 [H]
SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION

fJ. L. Bryne and L. G. Proll Comrn. ACM 11 (Nov.
1968), 782]

M. M. GUIGNARD (Recd. 21 Mar. 1969 and 17 Nov. 1969)
Laboratoire de Calcul, 13 Place Philippe Lebon, Lille,

France
KEY WORDS AND PHRASES: linear programming, zero-one
variables, partial enumeration
CR CATEGORIES: 5.41

There is an error in the procedure; the slack variables are de
stroyed during computation. It is necessary then to declare an ar
ray slacks local to the procedure, and to return the final slacks in

A[i, O], i = 1, 2, · · · , m.

One could correct the program as follows. Add before second
comment:

real array slacks [1: m J;

add before NEWS:

for i := 1step1 until m do

slacks [i] := A[i, O];

add after RESULT:

if ..., nosoln then

for i := 1 step 1 until m do

A [i, OJ : = slacks [i];

341-P 2- Rl

COLLECTED ALGORITHM$ FROM CACM

ALGORITHM 342
GENERATOR OF RANDOM NUMBERS SATIS
FYING THE POISSON DISTRIBUTION [G5]
R1cHAIW H. SNow (Recd. 20 Dec. 1966, 24 Aug. 1967,

5 Feb. 1968, 26 Mar. 1968, 5 June 1968 and 9 Sept. 1968)
IIT Research Institute, Chicago, Ill. 60616:

KEY WORDS AND PHRASES: Poisson distribution, random
number generator, Monte Carlo

CR CATEGORIES: 5.12, 5.5

integer procedure poisson carlo (npx, npxl, random); value npx,
randonl; real npx, npxl, random;

comment The Poisson distribution gives the probability that
px events will occur in a certain interval or volume, where the
expected or mean value of events is npx. Applications are de'...
scribed by B. W. Lindgren and G. W. McElrath (1]. For a Monte
Carlo calculation we wish to generate numbers. px that satisfy
the Poisson distribution, that is to find the inverse of the Poisson
function. To do this we generate a pseudo-random number in
the interval 0, 1 and find the number px such ;that random :s;
(probability that the number is px or less) and random > (the
probability that the number is px - 1 or less).

poisson carlo returns the value -1 to signal that the pro
cedure was called with a value of npx < 0 or too large for the
precision of the computer. It is the responsibilitp-r of the user to
test the calculated value if there is any possibility of the occur
rence of the error condition.

In order to save computing time, values of the Poisson dis
tribution compute"d at a previous entry for the: same value,_ of
npx are stored in the own array pson. The previous value of
npx is npxl. The actual parameter corresponding to npxl must
be a real identifier, not a constant or an express!ion. Before the
first call of poisson carlo the calling program mu$t set npxl to a
value ~ npx. The number of pson elements that 'Yere previously
computed and stored is computed. If it is desired to save storage
space at the expense of computing time, the upper bound 84 of
pson may be reduced, but then the limit of computed near the
end of the procedure must also be decreased acc?rdingly.

The procedure which generates random is preferiably algorithm
266 [3] or 294 [2]. It can be called as the actual parameter in the
procedure call of poisson carlo.

The author thanks Mr. I. D. Hill for numerqus suggestions
and corrections which greatly improved the algobthm.
H 1-:FERENCES:

1. LINDGREN, B. W., AND McELRATH, G. W. Introduction to Prob
ability and Statistics, 2 ed. Macmillan, New York, 1966, pp.
64-68.

2. Pum, M. C., AND HILL, I. D. Algorithm 266, pseudo-random
numbers. Comm. ACM 8 (Oct. 1965), 605. ·

3. STROME, W. M. Algorithm 294, uniform random:. Comm. ACM
10 (Jan. 1967), 40;

begin
own integer computed; own real pnc;

own real array pson [O :84];.

integer n; real ps;
if npx < 0 then go to error;
if npx ~ npxl then
begin

computed := O;
pnc := pson [OJ :=exp (-npx);
if pnc = 0 then go to error;

342-P I· 0

<;omment pson [OJ is the probability that poisson carlo = 0.
It cannot be zero unless -npx underflows the argument
range of procedure exp. For most computers this sets an
upper limit of 85 for npx;

npxl := npx
end new npx;
ps := pson [computed];
if random ~ ps then
begin

integer nmin, nmax; .
comment The probability term can be found by searchmg

the stored values;
nmin := O; nmax := computed+ 1;
for n := (nmax+nmin-1) + 2 while nmar - nmin > 1 do

if random> pson[n] then nmin := n + 1 else nmax := n + 1;
poisson carlo nmin

end search
else
begin

real psc, pn; pn := pnc;
comment Additional probability terms must be computed;
for n := computed+ 1, n + 1 while random > ps do

begin
pn := pn X npx/n;
psc := ps; ps := ps + pn;
comment ps = cumulative probability of terms up to n,

and pn = probability of nth term;
if ps = psc then go to error;
ifn ::$; 84thenheginpson[n] := ps;
pnc :-:, pn; computed n end;
poisson carlo : = n

end
end more;
go tofin;

error: poisson carlo -1;
fin:
end poisson carlo; .
comment The following is an example of a calling program for

the case where poisson carlo is compiled within the calling
program rather than separately. Instead of own v:aria?le_s,
non-local variables may then be used. The program is w1thm
the IFIP subset if this change is made, and if the expression
(nmax+nmin-1) + 2 is replaced by the less efficient expression
.501X (nmax+nmin-2);

begin
integer x, computed; real array pson [0:84];
real pnc, npx, npxl;
real procedure random (x);
comment Procedure body random is inserted here;
integer procedure poisson carlo (npx, npxl, random);
comment Procedure body of poisson carlo is inserted here

after deleting declarations of own variables;
ininteger (2, x); npxl := -1;

inl: inreal (2, np.r);
outinteger (1, poisson carlo (npx, npxl, random (x)));
go to inl

end

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 343
EIGENVALUES AND EIGENVECTORS OF A
REAL GENERAL MATRIX [F2]
J. GRAD AND M. A. BREBNER

(Recd. 12 Oct. 1967, 1 July 1968 and 8 July 1968)
Computer Services, University of Birmingham, Birming-

ham 15, England

KEY WORDS AND PHRASES: eigenvalues, eigenvect·ors,
latent roots, latent vectors, Householder's method, QR
algorithm, inverse iteration

CR CATEGORIES: 5.14

ABSTRACT:

Purpose. This subroutine finds all the eigenvalues and eigen
vectors of a real general matrix. The e_igenvalues are computed
by the QR double-step method and the eigenvectors by inverse
iteration.

Method. Firstly the following preliminary modifications are
carried out to improve the accuracy of the computed results. (i)
The matrix is scaled by a sequence of similarity transformations
so that the absolute sums of corresponding rows and columns are
roughly equal. (ii) The scaled matrix is normalized so that the
value of the Euclidean norm is equal to one.

The main part of the process commences with the reduction of
the matrix to an upper-Hessenberg form by means of similarity
transformations (Householder's method). Then the QR double
step iterative process is performed on the Hessenberg matrix until
all elements of the subdiagonal that converge to zero are in modu
lus less than Z-1 JI HllE , where t is the number of significant digits
in the mantissa of a binary floating-point number. The eigenvalues
are then extracted from this reduced form.

Inverse iteration is performed on the upper-Hessenberg matrix
until the absolute value of the largest component of the right
hand side vector is greater than the bound 21 I (100 N), where N
is the order of the matrix. Normally after this bound is achieved,
one step more is performed to obtain the computed eigenvector,
but at each step the residuals are computed, and if the residuals
of one particular step are greater in absolute value than the
residuals of the previous step, then the vector of the previous
step is accepted as the computed eigenvector.

Program. The subroutine EIGENP is completely self-con
tained (composed of five subroutines

EIGENP, SCALE, HESQR, REALVE, and COMPVE)
and communication to it is solely through the argument list. The
entrance to the subroutine is achieved by
CALL EIGENP (N, NM, A, T, EVR, EVI, VECR, VECI, IND IC)
The meaning of the parameters is described in the comments at
the beginning of the subroutine EIGENP.

REFERENCES:

1. WILKINSON, J. H. The Algebraic Eigenvalue Problem. Clarendon
Press, Oxford, 1965, pp. 347-353, 485-b67, 619-633.

Test results. All tests have been performed. on a KDF9 computer
(t = 39). No breakdown of the method has occurred and in general
very accurate computed eigenvalues and eigenvectors have been
obtained.,

343-P 1 0

Some examples:
(i) The matrix

n -1 -1 -.5

-i l 0 0 0
1 0 0
0 1 0
0 0 1

has all eigenvalues with modulus equal to one. The computed
eigenvalues are
-1.00000 0000, - .25000 00000 ± i.96824 58366, .5'.)000 00000 ±
i. 86602 54038.

The computed eigenvectors are

Tl X2, X3 X4, X;

.447213595
- . 44i213595

.44i213595
-.447213595

. 447213595

1. 000000000 - . 500000000 =i= i. 866025404
- . 250000000 =i= i. 968245837 -1.0000000004= i.16E-10
- . 875000000 ± i. 484122918 - . 500000000 ± i. 866025404

. 687500000 ± i. 726184377

. 531250000 =i= i. 847215107
. 500000000 ± .: . 866025404

1 . 000000000

and the computed residuals are in modulus less than .3E - 10.

(ii) The matrix

has the eigenvalues

r-2
I -7

l-~
-4 ± i2 and -1 ± v2.

-5 -2
-1 -3

0 -1

The computed eigenval ucs are

-!] -2
0

-4.000000000 ± i2.000000000, -2.414213562, .4142135624.
The computed eigenvectors are

XI, X2

- . 2000000000 =F i. 4000000000
1.000000000

. 2000000000 ± i . 4000000000

.14E-10 ± i. 63E-ll

Xa

.60E-12
- . 7941044878

.5615166683
.2325878195

-.12E-ll
.4759631-195
.3365567706

- . 8125199201

and the computed residuals are in modulus less than .7E - 10.

(iii) The matrix A

A~ [0:1 : TJ
is transformed by the process of scaling into the form B

[

.574423 0 .066333]
B = .053454 .574423 O

0 .053454 .57 4423

with the elements given to six decimal places. The obtained
matrix B is essentially invariant under the QR double-step proc
ess. This kind of trouble was overcome by introducing the state
ments

R = DABS(X) + DABS(Y)
IF(R.EQ.O.O)SHIFT = A(M,M-1)
IF(R.EQ.O.O)GO TO 21

in the subroutine HESQR.
The exact eigenvalues of A are

u, o.95 ± i0.5v/o~o3.

COLLECTED ALGORITHMS (cont.)

The computed eigenvalues are
1.100000000, 0.9500000000 ± £0.0866025404. '

Acknowledgments. The authors wish to thank pr. K. A. Redish,
the former director of Computer Services at tihe University of
Birmingham, and Dr. S. H. Hollingdale, the p~esent director of
Computer Services, for their encouragement. Finally, the authors
are indebted to Dr. J. H. Wilkinson, National Physical Labora
tory, Teddington, for useful consultations ~nd suggestions.

SUBROUTINE EIGENP!NtNMtAtTtEVRtEVI,VECRtVECitINDICl
DOUBLE PRECISION DltD2tD3,PRFACT
INTEGER ItIVEC,J,K,KltKON,LtLltMtN,NM~
REAL ENORMtEPStEAtRtRltT
DIMENSION A(NM,l)tVECR<NMtlltVECIINMti>•

lEVR<NMJtEVI!NMltINDIC!NM> ;
DIMENSION IWORK!lOOltLOCAL!lOOltPRFACTI<lOO>
ltSUBDIA!lOO)tWORK11100>•WORK21100)tWO~Kll00)

c
C THIS SUBROUTINE FINDS ALL THE EIGENVALUES ~ND THE
C EIGENVECTORS OF A REAL GENERAL MATRIX OF O~DER Ne
c
c
c

FIRST IN THE SUBROUTINE SCALE THE MATRIX IS SCALED SO THAT
THE CORRESPONDING ROWS AND COLUMNS ARE APP~OXIMATELY

C BALANCED AND THEN THE MATRIX IS NORMALISED: SO fHAT THE
C VALUE OF THE EUCLIDIAN NORM OF THE MATRIX JS EQUAL TO ONE.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

THE EIGENVALUES ARE COMPUTED BY THE QR DOUBLE-STEP METHOD
IN THE SVBROuTINE HESQRo
THE EIGENVECTORS ARE COMPUTED BY INVERSE ITERATION IN
THF ~UBROl1TINE REALVEtFOR THE REAL EIGENVALUEStOR IN THE
SUBROUTJNE COMPVEtFOR THE COMPLEX EIGENVAL0ES.

THE ELEMENTS OF THE MATRIX ARE TO BE STORED IN THE FIRST N
ROWS AND COLUMNS OF THE TWO DIMENSIONAL ARRAY Ao THE
ORIGINAL MATRIX IS DESTROYED BY THE SUBROUtINE.
N IS THE ORDER OF THE MATRIX.
NM DEFINES THE FIRST DIMENSION OF THE TWO DIMENSIONAL
ARRAYS AtVECRtVECI AND THE DIMENSION OF TH~ ONE
DIMENSIONAL ARRAYS EVRtEVI AND INDIC. THER~FORE THE
CALLING PROGRAM SHOULD CONTAIN THE FOLLOWING DECLARATION

DIMENSION A<NMtNNltVECR<NMtNNltVECI<NM~NN>1
lEVR!NMltEVI!NMltINDIC<NM> i

WHERE NM AND NN ARE ANY NUMBERS EQUAL TO O~ GREATER THAN N
THE UPPER LIMIT FOR NM 1S EQUAL TO 100 BUT MAY BE
INCREASED TO THE VALUE MAX BY REPLACING THE DIMENSION
STATEMENT

DIMENSION IWORK!lOOltLOCAL<lOOlt ••• 1~0RKl100)
IN THE SUBROUTINE EIGENP WITH l

DIMENSION IWORK!MAXltLOCALIMAXlt ••• tWORKIMAX>
NM AND NN ARE OF COURSE BOUNDED BY THE SIZ~ OF THE STORE.

THE REAL PARAMETER T MUST BE SET EQUAL TO THE NUMBER OF
BINARY DIGITS IN THE MANTISSA OF A SINGLE P~ECISION
FLOATING-POINT NUMBER.

THE REAL PARTS OF THE N COMPUTED EIGENVALUE~ WILL BE FOUND
IN THE FIRST N PLACES OF THE ARRAY EVR AND ~HE IMAGINARY
PARTS IN THE FIRST N PLACES OF THE ARRAY EVlo
THE REAL COMPONENTS OF THE NORMALISED EIGEN~ECTOR I
<I•l12•••••N> CORRESPONDING TO THE EIGENVAL~~ STORED IN
EVR<I> AND EVI<IJ WILL BE FOUND IN THE FIRST N PLACES OF
THE COLUMN I OF THE TWO DIMENSIONAL ARRAY VECR AND THE
IMAGINARY COMPONENTS IN THE FIRST N PLACES OF THE COLUMN
OF THE TWO DIMENSIONAL ARRAY VECI.

THE REAL EIGENVECTOR IS NORMALISED SO THAT THE SUM OF THE
SQUARES OF THE COMPONENTS IS EQUAL TO ONE. ,
THE COMPLEX EIGENVECTOR IS NORMALISED SO THAT THE

C COMPONENT WITH THE LARGEST VALUE IN MODULUS:HAS ITS REAL
C PART EQUAL TO ONE AND THE IMAGINARY PART EQUAL TO ZERO.
c
c
c
c
c
c
c
c
c

c

THE ARRAY
EIGENP AS

VALUE

INDIC INDICATES THE SUCCESS
FOLLOWS
OF INDICCI)

0
1
2

IFCN.NE.l>GO TO
EVR!ll • ACltlJ
EVI<l> • 0•0
VECR!ltll = loO
VECI<ltl> • O.O
INDIC!ll • 2
GO TO 25

EIGENVALUE I
NOT FOUND
FOUND
FOUND

OF TH~ SUBROUTINE

EIQENVECTOR
NOT FOUND
NOT FOUND
FOUND

CALL SCALE<N•NMtAtVECitPRFACTtENORMl
C THE COMPUTATION OF THE EIGENVALUES OF THE NO~MALISED
C MATRIX.

EX= EXP!-T*ALOG!2o0)) !
CALL HESQRCNtNMtAtVECI,EVRtEVItSUBDIAtINDICtEPStEX>

343--P 2- 0

C THE POSSIBLE DECOMPOSITION OF THE UPPER-HESSENBERG MATRIX
C INTO THE SUBMATRICES OF LOWER ORDER IS INDICATED IN THE
~ ARRAY LOCAL. THE DECOMPOSITION OCCURS WHEN SOME

SVBDIAGONAL ELEMENTS ARE IN MODULUS ~ESS THAN A SMALL
C POSITIVE NUMBER EPS DEFINED IN THE SUBROUTINE HESQR • THE
~ AMOUNT OF WORK IN THE EIGENVECTOR PROBLEM MAY BE
C DIMINISHED IN THIS WAY•

c

J • N
I • 1
LOCAL< 1 > • 1
IF(J.EQollGO TO 4

2 IF!ABS!SUBDIA<J-l>>•GT.EPS>GO TO 3
I • I+l
LOCAL I I I =O
J = J-1
LOCAL!Il=LOCALlI)+l
IF(J.NE.llGO TO 2

C THE EIGENVECTOR PROBLEM.
4 K • 1

KON • 0
L • LOCAL!l)
M • N
DO 10 I•ltN

IVEC • N-I+l
IFlleLE.L>GO TO 5
K • K+l
M = N-L
L • L+LOCALIK>

5 IF(INDIC<IVECJ.EQoOlGO TO 10
IFIEVl!IVEC>.NE.O.O>GO TO 8

~ TRANSFER OF AN UPPER-HESSENBERG MATRIX OF THE ORDER M FROM
C THE ARRAYS VECI AND SUBDIA INTO THE ARRAY Ae

DO 7 Kl•ltM
DO 6 Ll•KltM

6 A<KltLll = VECI<KltLl>
IFIKl.EQ.l)GO TO 7
AIKltKl-1) • SUBDIACKl-11

7 CONTINUE

~ THE COMPUTATION OF THE REAL EIGENVECTOR IVEC OF THE UPPER
C HESSENBERG MATRIX CORRESPONDING TO THE REAL EIGENVALUE
C EVRC IVECJ •

c

CALL REALVECN,NMtMtIVEC,AtVECRtEVRtEVItIWORK1
WORKtINDICtEPS,EX>
GO TO 10

C THE COMPUTATION OF THE COMPLEX EIGENVECTOR IVEC OF THE
C UPPER-HESSE.NBERG MATRIX CORRESPONDING TO THE COMPLEX
C EIGENVALUE EVRCIVEC> + I*EVIIIVEClo IF THE VALUE OF KON IS
C NOT EQUAL TO ZERO THEN THIS COMPLEX EIGENVECTOR HAS
C ALREADY BEEN FOUND FROM ITS CONJUGATE.

c

8 IFCKON.NE.O>GO TO 9
KON "' 1
CALL COMPVE!NtNMtMtIVECtAtVECRtVECitEVRtEVI;INDICt
IWORK1SUBDIAtWORKl1WORK2.woRKtEPStEX>
GO TO 10

9 KON ., 0
10 CONTINUE

C THE RECONSTRUCTION OF THE MATRIX USED IN THE REDUCTION OF
C MATRIX A TO AN UPPER-HESSENBERG FORM BY HOUSEHOLDER METHOD

c

DO 12 I•l1N
DO 11 J•I 1N

AIItJI • O.O
11 AIJtII • O.O
12 A<Itil • 1.0

IFCN.LE.2>GO TO 15
M • N-2
DO 14 K•ltM

L • K+l
DO 14 J•2tN

Dl • OoO
DO 13 I•L1N

D2 • VECIIItKl
13 Dl • Dl+ D2*A(Jtll

DO 14 I•L1N
14 ACJtI) • A!Jtll-VECl!ItKl*Dl

C THE COMPUTATION OF THE EIGENVECTORS OF THE ORIGINAL NON
C SCALED MATRIX.

15 KON • 1
DO 24 I•ltN

L • 0
IF<EVI<Il.EQ.O.OJGO TO 16
L • 1
IF!KON.EQ.OlGO TO 16
KON • 0
GO TO 24

16 DO 18 J•ltN
Dl • OeO
D2 • o.o
DO 17 K•ltN

D3 • A!JtKl
Dl • Dl+D3*VECR!KtI)
IFCLeEQ.O)GO TO 17

COLLECTED ALGORITHMS (cont.)

D2 • D2+D3*VECRCKtl-1>
17 CONTINUE

WORKCJ> • Dl/PRFACTCJ)
IFCL.EQ.O>GO TO 18
SUBDIA(J)•D2/PRFACTCJJ

18 CONTINUE

~ THE NORMALISATION OF THE EIGENVECTORS AND THE COMPUTATION
C OF THE EIGENVALUES OF THE ORIGINAL NON-NORMALISED MATRIX•

IFCL.EQ.l>GO TO 21

c

c

c

01 • o.o
DO 19 M•ltN

19 Dl • Dl+WORKCM>**2
C>l • DSQRT C Dl)
DO 20 M'"'ltN

VECI CMt I> • O.O
20 VECRCMtl) • WORKCM)/Dl

EVRCll • EVRCl>*EN6RM
GO TO 24

21 KON • l
EVRCll • EVRCil*ENORM
EVRCl-11 • EVRCll
EVICil • EVICIJ*ENORM
EVIll-11 •-EVICll
R • o.o
DO 22 J•ltN

Rl • WORKIJ1**2 + SUBOIACJl**2
IFCR.GE.RlJGO TO 22
R • Rl
L • J

22 CONTINUE
D3 • WORK CL>
Rl • SUBOIACLI
DO 23 J•ltN

Dl • WORKCJl
02 • SUBDIACJI
VECRCJtll • CDl*D3+D2*Rll/R
VECICJtII • CD2*D3-Dl*RlJ/R
VECRCJ,1-ll • VECRIJtll

23 VECICJ,J-1> •-VECllJtI)
24 CONTINUE

25 RETURN
END

SUBROUTINE SCALECNtNM,AtHtPRFACTtENORMl
DOUBLE PRECISION COLUMN,FACTOR,FNORMtPRFACTtQtROW
INTEGER ltJtlTERtNtNCOUNTtNM
REAL BOUNDltBOUND2tENORM
DIMENSION ACNMtlltHCNMtlltPRFACTCNM>

C THIS SUBROUTINE STORES THE MATRIX OF THE ORDER N FROM THE
C ARRAY A INTO THE ARRAY H. AFTERWARD THE MATRIX IN THE
C ARRAY A IS SCALED SO THAT THE QUOTIENT OF THE ABSOLUTE SUM
C OF THE OFF-DIAGONAL ELEMENTS OF COLUMN I AND THE ABSOLUT~
C SUH OF THE OFF-DIAGONAL ELEMENTS OF ROW I LIES WITHIN THE
C VALUES .OF 90UND1 AND BOUND2.
C THE COMPONENT I OF THE EIGENVECTOR OBTAINED BY USING THE
C SCALED MATRIX MUST BE DIVIDED BY THE VALUE FOUND IN THE
C PRFACTLll OF THE ARRAY PRFACT. IN THIS WAY THE EIGENVECTOR
C OF THE NON-SCALED MATRIX IS OBTAINED.
c
C AFTER THE MATRIX IS SCALED IT IS NORMALISED SO THAT THE
C VALUE OF THE EUCLIDIAN NORM IS EQUAL TO ONE.
C IF THE PROCESS OF SCALING WAS NOT SUCCESSFUL THE ORIGINAL
C MATRIX FROM THE ARRAY H WOULD BE STORED BACK INTO A AND
C THE EIGENPROBLEM WOULD BE SOLVED BY USING THIS MATRIX.
C NM DEFINES THE FIRST DIMENSION OF THE ARRAYS A AND H. NM
C MUST BE GREATER OR EQUAL TO N.
C THE EIGENVALUES OF THE NORMALISED MATRIX MUST BE
C MULTIPLIED BY THE SCALAR ENORM IN ORDER THAT THEY BECOME
C THE EIGENVALUES OF THE NON-NORMALISED MATRIXe
c

DO 2 I•ltN
DO 1 J•ltN

1 HCltJ) • ACJ,J)
2 PRFACTCll• leO

BOUNDl • 0.75
BOUND2 • le33
ITER • 0

3 NCOUNT • 0
DO 8 l•ltN

COLUMN • o.o
ROW • O.O
DO 4 J•ltN

IFCl.EQ.JIGO TO 4
COLUMN• COLUMN+ ABSCACJtlll
ROW• ROW+ ABSCACl,Jll

4 CONTINUE
lFCCOLUMN.EQ.OeOlGO TO 5
IFIROW.EQ.O.OlGO TO 5
Q • COLUMN/ROW
IFCQ.LT.BOUNDlJGO TO 6
IFIQeGTeBOUND2>GO TO 6

c

c

c

5 NCOUNT • NCOUNT +
GO TO 8

6 FACTOR • DSQRTCQI
DO 7 J•ltN

IFCJ.EQ.JlGO TO 7
A(l,Jl • ACJ,Jl*FACTOR
AIJtII • AIJtll/FACTOR

7 CONTINUE
PRFACT<ll • PRFACTlll*FACTOR

8 CONTINUE
ITER • I TER+l
IFllTER.GT.30>GO TO 11
IFCNCOUNTeLTeNIGO TO 3

FNORM • OeO
DO 9 l•ltN

DO 9 J•ltN
Q • AlltJ>

9 FNORM • FNORM+Q•Q
FNORM • DSQRT<FNORMI
DO 10 l•ltN

DO 10 JsltN
10 AlltJl•AlltJ)/FNORM

ENORM • FNORM
GO TO 13

11 DO 12 I • lt N
DO 12 J•ltN

12 AIItJl • HCitJI
ENORM • l•O

13 RETURN
END

343-P 3- 0

SUBROUTINE HESQRCNtNMtAtHtEVRtEVltSUBDIAtINDICtEPStEXl
DOUBLE PRECISION StSRtSR2tXtYtZ
INTEGER ltJtKtLtMtMAXSTtMltNtNMtNS
REAL EPStEXtRtSHIFTtT
DIMENSION AINMtlltHINM1l),EVRINMltEVIINM>tSUBDJACNMI
DIMENSION INDICINMI

c
C THIS SUBROUTINE FINDS ALL THE EIGENVALUES OF A REAL
C GENERAL MATRIX• THE ORIGINAL MATRIX A OF ORDER N IS
C REDUCED TO THE UPPER-HESSENBERG FORM H BY MEANS OF
C SIMILARITY TRANSFORMATIONSIHOUSEHOLDER METHOD>• THE MATRIX
C H IS PRESERVED IN THE UPPER HALF OF THE ARRAY H AND IN THE
C ARRAY SUBDIA. THE SPECIAL VECTORS USED IN THE DEFINITION
C OF THE HOUSEHOLDER TRANSFORMATION MATRICES ARE STORED IN
C THE LOWER PART OF THE ARRAY H.
C NM IS THE FIRST DIMENSION OF THE ARRAYS A AND He NM MUST
C BE EQUAL.TO OR GREATER THAN N.
C THE REAL PARTS OF THE N EIGENVALUES WILL BE FOUND IN THE
C FIRST N PLACES OF THE ARRAY EVRtAND
C THE IMAGINARY PARTS IN THE FIRST N PLACES OF THE ARRAY EVI
C THE ARRAY INDIC INDICATES THE SUCCESS OF THE ROUTINE AS
C FOLLOWS
C VALUE OF INDICII> EIGENVALUE I
C 0 NOT FOUND
C 1 FOUND
C EPS JS A SMALL POSITIVE NUMBER THAT NUMERICALLY REPRESENTS
C ZERO IN THE PROGRAM. EPS • IEUCLIDIAN NORM OF Hl*EX tWHERE
C EX • 2**1-TI• T IS THE NUMBER OF BINARY DIGITS IN THE
C MANTISSA OF A FLOATING POINT NUMBER.
c
c
c
C REDUCTION OF THE MATRIX A TO AN UPPER-HESSENBERG FORM He
C THERE ARE N-2 STEPS.

IFIN-2114tlo2
SUBDIA<l> ., Al2tl>
GO TO 14

2 M • N-2
DO 12 K:altM

L • K+l
s • o.o
DO 3 l•LtN

HIItK> • AlltKl
3 S • S+ABS<AIItKll

IFISeNE.ABSIAIK+LtKl>lGO TO 4
SUBDIACKI • AIK+ltKI
H<K+ltKI • O.O
GO TO 12

4 SR2 ., o.o
DO 5 l•LtN

SR • AC J ,K >
SR • SR/S
A I I tK I • SR

5 SR2 • SR2+SR*SR
SR • DSQRTISR2l
IFIAILtKleLTeOeOIGO TO 6
SR • -SR

6 SR2 • SR2-SR*AILtKI
AIL.Kl • AILtKl-SR
HlltKI • HILtKl-SR*S
SUBDIAIK) • SR*S
X • S*DSQRTISR21

COLLECTED ALGORITHMS (cont.)

DO 7 I•L•N
H(I,KI • H!I•Kl/X

1 SUBDIA!II • AfI,Kl/SR2
C PREMULTIPLICATION BY THE MATRIX PR.

DO 9 J•L•N
SR • OoO
DO 8 I•L•N

8 SR• SR+A!I•Kl*A<l•JI
DO 9 I•LtN

9 A!I•JI • A!ItJl-SUBDIA!Il*SR
C POSTMULTIPLICATION BY THE MATRIX PRe

DO 11 J•l tN
SR•O.O
DO 10 I•L•N

10 SR• SR+A!Jtll*A<I•KI
DO 11 I11:L•N

11 A<J•ll • A!Jtil-SUBDIA!Il*SR
12 CONTINUE

DO 13 K"l•M
13 A!K+ltKI • SUBDIAIKI

C TRANSFER OF THE UPPER HALF OF THE MATRIX A lNTO THE
C ARRAY H AND THE CALCULATION OF THE SMALL POSITIVE NUMBER
C EPS.

c

SUBDIA!N-11 • A!N,N-11
14 EPS • o.o

DO 15 K•ltN
INDICIKI • 0

IFIK.NEeNIEPS • EPS+SUBDIA!K1**2
DO 15 I•K,N

HCKtll • A<KtII
15 EPS • EPS + A<Ktil**2

EPS • EX*SQRTIEPSI

C THE QR ITERATIVE PROCESS. THE UPPER-HESSENBE~G MATRIX H IS
C REDUCED TO THE UPPER-MODIFIED TRIANGULAR FOR~.
c
C DETERMINATION OF THE SHIFT OF ORIGIN FOR THE. FIRST STEP OF
C THE QR ITERATIVE PROCESS.

c

SHIFT • A!N,N-11
IFIN.LEo21SHIFT • O.O
IF!AIN•N>.NE.OoOISHIFT • o.o
IFIAIN-ltNleNE.O.OISHIFT • o.o
IF!AIN-ltN-lleNE.O.OISHIFT • O.O
M • N
NS• 0
MAXST • N*lO

C TESTING IF THE UPPER HALF OF THE MATRIX IS EQUAL TO ZEkO.
C IF IT IS EQUAL TO ZERO THE QR PROCESS IS NOT·NECESSARY.

c

DO 16 I•2tN
DO 16 K•ItN

IF!A!l-ltKl.NEeOeOIGO TO 18
16 CONTINUE

DO 17 I•ltN
IND IC I I I •1
EVR ! I I • A I I, I I

17 EVIlll•O.O
GO TO 37

C START THE MAIN LOOP OF THE QR PROCESS.
18 K•M-1

Ml•K
I • K

C FIND ANY DECOMPOSITIONS OF THE MATRIX.
C JUMP TO 34 IF THE LAST SUBMATRIX OF THE DECO~POSITION IS
C OF THE ORDER ONE.
C JUMP TO 35 IF THE LAST SUBMATRIX OF THE DECO~POSJTION IS
C OF THE ORDER TWO.

JF!Kl37t34tl9
19 IFIABSIAIM•Kll~LEeEPSIGO TO 34

IFIM-2.EQ.OIGO TO 35
20 I • I-1

IF!ABS!AIK•IlleLEeEPSIGO TO 21
K • I
IFIKeGT.llGO TO 20

21 IFCK.EQ.MllGO TO 35
C TRANSFORMATION OF THE MATRIX OF THE ORDER GRE~TER THAN TWO

S'" AIMtMl+AIMl,Mll+SHIFT
SR• AIMtMl*AIMltMll-AIM•Mll*AIMltMl+Oe25*~HIFT**2
AIK+2,KI • O.O .

C CALCULATE XltYltZltFOR THE SUBMATRIX OBTAINED BY THE
C DECOMPOSITION.

c

X • AIKtKl*IAIK,Kl-Sl+AIKtK+ll*AIK+ltKl+SR
Y • AIK+l•Kl*IA(KtKl+A(K+ltK+ll-SI
R • DABS<Xl+DABSIYI
IFIR.EQ.O.OISHIFT • AIMtM-11
IFCR.EQ.O.OIGO TO 21
Z • A<K+2tK+ll*AIK+l,KI
SHIFT • o.O
NS • NS+l

C THE LOOP FOR ONE STEP OF THE QR PROCESS•
DO 33 l•KoMl

IFIIeEQ.KIGO TO 22
C CALCULATE XR,yR,zR.

X • AII,J-11
Y • AII+l•I-1>

z • o.o
IFII+2.GT.MIGO TO 22
Z • AII+2,I-11

22 SR2 • DABSIXl+DABSIYl+DABS!ZI
IF!SRZ.EQ.OoOIGO TO 23
X • X/SR2
Y • Y/SR2
Z • Z/SR2

23 S • DSQRT<X*X + Y*Y + Z*ZI
IFIX.LT.O.OIGO TO 24
s • -s

24 IFII.EQ.KIGO TO 25
AIItl-11 • S*SR2

25 IFISR2oNE.O.OIGO TO 26
IFII+3.GT.MIGO TO 33
GO TO 32

26 SR • loO-X/S
s • x-s
X • Y/S
Y • ZIS

C PREMULTIPLICATION BY THE MATRIX PR.
DO 28 J=ItM

S = AIItJl+AII+l,Jl*X
IF!I+2.GTeMlGO TO 27
S • S+AII+2,Jl*Y

27 S = S*SR
AIItJl • AII•Jl-S
All+l,JI 11: A!I+l,Jl-S*X
IFII+2.GT.M>GO TO 28
AII+2•Jl s AII+2•Jl-S*Y

28 CONTINUE
C POSTMULTI~LICATION BY THE MATRIX PRe

L • 1+2

c

c

IFIIeLToMllGO TO 29
L "' M

29 DO 31 J=K•L
S • AIJ,Il+AIJtI+ll*X
IFII+2oGT.MIGO TO 30
S = S + A(J,I+21*Y

30 S • S*SR
A(J,11 • AIJ1ll-S
AfJ,I+ll•AIJ,I+ll-S*X
IFII+2.GT.MlGO TO 31
AfJ,I+2l=A!J,I+2>-S*Y

31 CONTINUE
IFII+3.GT.MJGO TO 33
S = -ACI+3tI+2l*Y*SR

32 AII+3til•S
AII+3tl+ll '"S*X
AII+3tl+21 • S*Y + AII+3tl+2l

33 CONTINUE

IFINSeGTeMAXSTlGO TO 37
GO TO 18

C COMPUTE THE LAST EIGENVALUE•

c

34 EVRIM) • AIMtMl
EV I IM l • 0 .o
INDICIMl "' 1
M "' K
GO TO 18

343 p 4- 0

C COMPUTE THE EIGENVALUES OF THE LAST 2X2 MATRIX OBTAINED BY
C THE DECOMPOSITION.

c

c

35 R. Oe5*1AIKtKl+AIMtMll
S"' Oo5*!AIMoMJ-AIKoKll
S = S*S + AIKtMl*AIMtKl
INDICIKl .. 1
INDICIMI • 1
IF!SeLT.O.OlGO TO 36
T • DSQRTISl
EVRIKI • R-T
EVRIMI • R+T
EV I I Kl ,. 0 • 0
EVI (Ml • o.o
M • M-2
GO TO 18

36 T • DSQ.RTl-Sl
EVR!Kl • R
EV I I Kl • T
EVRIM) • R
EVI IMI • -T
M • M-2
GO TO 18

37 RETURN
END

SUBROUTINE REALVEINtNMtMtlVtCtAtVECRtEVRtEVI•
lIWORKtWORKtINDICtEPStEXl

DOUBLE PRECISION StSR
INTEGER ltIVECoITER,J,K,LoM,NoNM,NS
REAL BOUND,EPS,EVALUE,EXtPREVIStRoRltT
DIMENSION AINM,lltVECRINM,lltEVR<NMl
DIMENSION EVI<NMloIWORKINM),WORKINMltINDICINMI

COLLECTED ALGORITHMS (cont.)

C THIS SUBROUTINE FINDS THE REAL EIGENVECTOR OF THE REAL
C UPPER-HESSENBERG MATRIX IN THE ARRAY AtCORRESPONDING TO
C THE REAL EIGENVALUE STORED IN EVRIIVEC>• THE INVERSE
C ITERATION METHOD IS USED.
C NOTE THE MATRIX IN A IS DESTROYED BY THE SUBROUTINE.
C N IS THE ORDER OF THE UPPER-HESSENBERG MATRIX.
C NM DEFINES THE FIRST DIMENSION OF THE TWO DIMENSIONAL
C ARRAYS A ANO VECR. NM MUST BE EQUAL TO OR GREATER THAN N.
C M IS THE ORDER OF THE SUBMATRIX OBTAINED BY A SUITABLE
C DECOMPOSITION OF THE UPPER-HESSENBERG MATRIX IF SOME
C SUBDJAGONAL ELEMENTS ARE EQUAL TO ZERO. THE VALUE OF M IS
C CHOSEN SO THAT THE LAST N-M COMPONENTS OF THE EIGENVECTOR
C ARE ZERO.
C IVEC GIVES THE POSITION OF THE EIGENVALUE IN THE ARRAY EVR
C FOR WHICH THE CORRESPONDING EIGENVECTOR IS COMPUTED.
C THE ARRAY EVI WOULD CONTAIN THE IMAGINARY PARTS OF THE N
C EIGENVALUES IF THEY EXISTED.
c
C THE M COMPONENTS OF THE COMPUTED REAL EIGENVECTOR WILL BE
C FOUND IN THE FIRST M PLACES OF THE COLUMN IVEC OF THE TWO
C DIMENSIONAL ARRAY VECR.
c
C IWORK AND WORK ARE THE WORKING STORES USED DURING THE
C GAUSSIAN ELIMINATION AND BACKSUBSTITUTION PROCESS.
C THE ARRAY INDIC INDICATES THE SUCCESS OF THE ROUTINE AS
C FOLLOWS
C VALUE OF INDICCII EIGENVECTOR I
C l NOT FOUND
C 2 FOUND
C EPS IS A SMALL POSITIVE NUMBER THAT NUMERICALLY REPRESENTS
C ZERO IN THE PROGRAM. EPS • CEUCLIDIAN NORM OF A>*EXtWHERE
C EX• 2**1-Tl• T IS THE NUMBER OF BINARY DIGITS IN THE
C MANTISSA OF A FLOATING POINT NUMBER.

VECRCltlVECJ = leO
IFCM.EQ.lJGO TO 24

C SMALL PERTURBATION OF EQUAL EIGENVALUES TO OBTAIN A FULL
C SET OF EIGENVECTORS.

c

EVALUE • EVRCIVEC>
IFIIVEC.EQ.MJGO TO 2
K • IVEC+l
R • o.o
DO 1 l•KtM

IFCEVALUE.NE.EVRllllGO TO
IFCEVICIJ.NE.OoOIGO TO 1
R ,. R+3.0
CONTINUE

EVALUE • EVALUE+R*EX
2 DO 3 K•ltM
3 AIKtKI ~ AIKtKl-EVALUE

C GAUSSIAN ELIMINATION OF THE UPPER-HESSENBERG MATRIX A. ALL
C ROW INTERCHANGES ARE INDICATED IN THE ARRAY !WORK.ALL THE
C MULTIPLIERS ARE STORED AS THE SUBDIAGONAL ELEMENTS OF A.

c

K • M-1
DO 8 l•ltK

L = l+l
IWORK I I l "' 0
IFIACl+l1IJ.NE.O.O>GO TO 4
IFIACltll.NE.o.01GO TO 8
AC It 11 "' EPS
GO TO 8

4 IFIABSIAIItl>J.GE.ABSIAll+l1IlllCiO TO 6
IWORK I I> = 1
DO 5 J•ltM

R • AlltJJ
All1Jl • All+l1JI

5 ACl+ltJ) = R
6 R = -AII+l1Il/All1Il

All+ltll • R
DO 7 J•L1M

7 ACI+ltJl ~ ACl+ltJJ+R*ACitJI
8 CONTINUE

IFCAIM1Ml.NE.O.OJGO TO 9
ACMtMI "' EPS

C THE VECTOR Cltlt•••tll IS STORED IN THE PLACE OF THE RIGHT
C HAND SIDE COLUMN VECTOR.

c

9 DO 11 I •l tN
IFCl.GT.MIGO TO 10
WORK I I I • 1 • U
GO TO 11

10 WORKIII • O.O
11 CONTINUE

C THE INVERSE ITERATION IS PERFORMED ON THE MATRIX UNTIL THE
C INFINITE NORM OF THE RIGHT-HAND SIDE VECTOR IS GREATER
C THAN THE BOUND DEFINED AS O.Ol/IN*EXI@

c

BOUND• OoOl/CEX * FLOATINI>
NS • 0
ITER • 1

C THE BACKSUBSTITUTION.
12 R • o.o

DO 15 I •l tM
J = M-1+1
S • WORKIJ)
IFCJ.EQ.MIGO TO 14

c

L • J+l
DO 13 K•LtM

SR • WORKIKI
13 S s S - SR*AIJtKI
14 WORK!J) = S/A(J,JI

T • ABSCWORKCJll
IFCR.GE.TIGO TO 15
R • T

15 CONTINUE

343-P 5-- 0

C THE COMPUTATION OF THE RIGHT-HAND SIDE VECTOR FOR THE NEW
C ITERATION STEP.

DO 16 IsltM
16 WORKlll • WORKCil/R

c
C THE COMPUTATION OF THE RESIDUALS AND COMPARISON OF THE
C RESIDUALS OF THE TWO SUCCESSIVE STEPS OF THE INVERSE
C ITERATION.IF THE INFINITE NORM OF THE RESIDUAL VECTOR IS
C GREATER THAN THE INFINITE NORM OF THE PREVIOUS RESIDUAL
C VECTOR THE COMPUTED EIGENVECTOR OF THE PREVIOUS STEP IS
C TAKEN AS THE FINAL EIGENVECTOR.

c

Rl • OoO
DO 18 I•ltM

T • o.o
DO 17 J•l1M

17 T = T+AII1Jl*WORK(JI
T • ABSITI
IF!Rl.GE.TIGO TO 18
Rla T

18 CONTINUE
IFCITER.EQollGO TO 19
IFCPREVIS.LE.RllGO TO 24

19 DO 20 l•ltM
20 VECRIItlVECJ = WORKlll

PREVIS • Rl
IFCNS.EQ.l)GO TO 24
IFCITEReGTo61GO TO 25
ITER • I TER+l
IFCR.LT.BOUNDIGO TO 21
NS • 1

C GAUSSIAN ELIMINATION OF THE RIGHT-HAND SIDE VECTOR.
21 K • M-1

c

c

DO 23 l•ltK
R • WORKll+ll
IFIIWORKCll·EQ.OIGO TO 22
WORKCI+ll•WORKCil+WORKII+l>*All+l1II
WORKI I I " R
GO TO 23

22 WORKCI+ll•WORKCl+ll+WORK<I>*ACI+ltll
23 CONTINUE

24
25

26
27

GO TO 12

INDICIIVECJ • 2
IFCM.EQ.NIGO TO 27
J • M+l
DO 26 t=JtN

VECR I I, IVEC I • o.o
RETURN
END

SUBROUTINE COMPVECNtNMtMtIVECtAtVECR1HtEVRtEVItlNDICt
ltWORKtSUBDIA1WORKltWORK21WORK1EPStEXI

DOUBLE PRECISION DtDl
INTEGER ltlltI2tITERt~VECtJ1K1LtMtNtNM1NS

REAL BtBOUND,EPStETA1EX1FKSI,PREVIStRtStUtV
DIMENSION ACNMtll1VECRINM1lltHCNM1lltEVRINMltEVICNM)1

lINDICCNMltlWORKCNMltSUBDIAINMltWORKllNMltWORK21NMlt
2WORKINMI

C THIS SUBROUTINE FINDS THE COMPLEX EIGENVECTOR OF THE REAL
C UPPER-HESSENBERG MATRIX OF ORDER N CORRESPONDING TO THE
C COMPLEX EIGENVALUE WITH THE REAL PART IN EVRllVECI AND THE
C CORRESPONDING IMAGINARY PART IN EVICIVECle THE INVERSE
C ITERATION METHOD IS USED MODIFIED TO AVOID THE USE OF
C COMPLEX ARITHMETIC.
C THE MATRIX ON WHICH THE INVERSE ITERATION IS PERFORMED IS
C BUILT UP IN THE ARRAY A BY USING THE UPPER-HESSENBERG
C MATRIX PRESERVED IN THE UPPER HALF OF THE ARRAY H AND IN
C THE ARRAY SUBDIA.
C NM DEFINES THE FIRST DIMENSION OF THE TWO DIMENSIONAL
C ARRAYS A1VECR AND H. NM MUST BE EQUAL TO OR GREATER
C THAN Ne
C M IS THE ORDER OF THE SUBMATRIX OBTAINED BY A SUITABLE
C DECOMPOSITION OF THE UPPER-HESSENBERG MATRIX IF SOME
C SUBDIAGONAL ELEMENTS ARE EQUAL TO ZERO. THE VALUE OF M IS
C CHOSEN SO THAT THE LAST N-M COMPONENTS OF THE COMPLEX
C EIGENVECTOR ARE ZERO.

~ THE REAL PARTS OF THE FIRST M COMPONENTS OF THE ~OMPUTED
C COMPLEX EIGENVECTOR WILL BE FOUND IN THE FIRST M PLACES OF
C THE COLUMN WHOSE TOP ELEMENT IS VECRCltlVECI AND THE
C CORRESPONDING IMAGINARY PARTS OF THE FIRST M COMPONENTS OF
C THE COMPLEX EIGENVECTOR WILL BE FOUND JN THE FIRST M
C PLACES OF THE COLUMN WHOSE TOP ELEMENT IS VECRlltIVEC-11•
c

COLLECTED ALGORITHMS (cont.)

C THE ARRAY INDIC INDICATES THE SUCCESS OF THE ROUTINE AS
C FOLLOWS
C VALUE OF INDICCII EIGENVECTOR
C 1 NOT FOUND
c 2 FOUND I

C THE ARRAYS IWORKtWORKltWORK2 AND WORK ARE ~HE WORKING
C STORES USED DURING THE INVERSE ITERATION PROCESS.
C EPS IS A SMALL POSITIVE NUMBER THAT NUMERidALLY REPRESENTS
C ZERO IN THE PROGRAM. EPS .. IEUCLIDIAN NORM '.OF H>*EXt WHERE
C EX • 2**1-Tle T IS THE NUMBER OF BINARY DIGITS IN THE
C MANTISSA OF A FLOATING POINT NUMBER. .
c

FKSI • EVRI IVEC>
ETA • EVIIIVEC>

C THE MODIFICATION OF THE EIGENVALUE IFKSI + ~*ETA> IF MORE
C EIGENVALUES ARE EQUAL. •

c

IFIIVEC.EQ.M>GO TO 2
K • IVEC+l
R • O.O
DO 1 I•KtM

IFIFKSI.NE.EVRIIllGO TO 1
IFIABSIETAloNEoABSIEVIII>l>GO TO 1
R • R + 3e0
CONTINUE

R • R*EX
FKSI • FKSl+R
ETA • ETA +R

C THE MATRIX llH-FKSI*Il*IH-FKSI*I> + IETA*ETAl*I> IS
C STORED INTO THE ARRAY A•

c

2 R = FKSI*FKSI + ETA*ETA
S • 2.0*FKSI
L • M-1
DO 5 l•ltM

DO 4 J•ItM
D = o.o

A<Jtl I • O.O
DO 3 K'"' ItJ

3 DR D+HlltKl*HIKtJ)
4 AIItJl • D-S*H(I,J>
5 A I I t I I • A 11 t I I +R

DO 9 I•ltL
R • SUBDIAIII
Al I+l ti I • -S*R
11 • I+l
DO 6 J•l tI l

6 AIJtII • AIJtll+R*H(J,I+ll
IFII.EQ.lJGO TO 7
AII+ltI-11 • R•SUBDIAII-ll

7 DO 8 J•ItM
8 AII+ltJl = AII+ltJl+R*HIItJI
9 CONTINUE

C THE GAUSSIAN ELIMINATION OF THE MATRIX
C <<H-FKSI*Il*IH-FKSI*II + IETA*ETAl*I> IN THE;ARRAY A. THE
C ROW INTERCHANGES THAT OCCUR ARE INDICATED IN THE ARRAY
C IWORK• ALL THE MULTIPLIERS ARE STORED IN THE FIRST AND IN
C THE SECOND SUBDIAGONAL OF THE ARRAY A·

c

c

K • M-1
00 18 I •1 tK

11 • I+l
12 • 1+2
IWORKlll • 0
IFIJ.EQ.KJGO TO 10
IFIAll+2tileNE.O.O>GO TO 11

10 IFIAll+ltileNE.O.OIGO TO 11
IFIAII1IleNE.O.OlGO TO 18
AIItII • EPS
GO TO 18

11 IFlleEQ.KIGO TO 12
IFIABSIAIJ+ltI~l·GE.ABSIAII+2tllllGO TO 12
IFIABSIAll1I)).GE.ABS<A<I+21IlllGO TO 16
L • I+2
IWORKI I I • 2
GO TO 13

12 IFCABSIAII1I1>.GE.ABSIA<I+l1IllJGO TO 15
L • I+l
IWORl<I I I s 1

13 DO 14 J•ItM
R • AIItJI
AC I tJl • AILtJ)

14 AILtJI • R
15 IFlleNEeKIGO TO 16

12 • 11
16 DO 17 L•lltl2

R • -ACLtil/AIItll
AILtil • R
DO 17 J•IltM

17 AILoJ) • AILtJl+R*ACltJl
18 CONTINUE

IFCAIM1Ml.NE.O.OIGO TO 19
AIMtMI • EPS

~THE VECTOR lltlt•••tll IS STORED INTO THE RIG~T-HAND SIDE
C VECTORS VECRI tIVECJ AND VECRI tIVEC-11 REPREfENTING THE

343--P ~- 0

C COMPLEX RIGHT-HAND SIDE VECTOR.

c

19 DO 21 I•l tN
IFII.GT.MIGO TO 20
VECRIItIVECI • loO
VECR!ItIVEC-1> • leO
GO.TO 21

20 VECRIItIVECI • o.o
VECRCitlVEC-11 • o.o

21 CONTINUE

C THE INVERSE ITERATION IS PERFORMED ON THE MATRIX UNTIL THE
C INFINITE NORM OF THE RIGHT-HAND SIDE VECTOR IS GREATER
C THAN THE BOUND DEFINED AS o.Ol/IN*EXJ.

c

BOUND= 0.01/IEX*FLOAT<Nll
NS " 0
JTER • 1
DO 22 I •l tM

22 WORK(ll • HCltI>-FKSI

C THE SEQUENCE OF THE COMPLEX VECTORS Z<SI a PISl+l*QISI AND
C WIS+ll= U<S+ll+I*VIS+ll IS GIVEN BY THE RELATIONS
C IA - IFKSl-I*ETAl*Il*WIS+l> = ZISI AND
C ZCS+ll • WIS+ll/MAXllriCS+ll >•
C THE FINAL WIS> IS TAKEN AS THE COMPUTED EIGENVECTOR.
c
C THE COMPUTATION OF THE RIGHT-HAND SIDE VECTOR
C IA-FKSI*ll*PISl-ETA*QISI• A IS AN UPPER-HESSENBERG ~ATRIX.

c

2 3 DO 2 7 I • l , M
D ~ WORKlll*VECRIItIVECI
IFII.EQellGO TO 24
D = D+SUBDIAII-ll*VECRII-l1IVECJ

24 L • I+l
IFILoGT.MIGO TO 26
DO 25 K•LtM

25 D • D+H!ItKl*VECRCK1IVEC>
26 VECR(ltlVEC-ll ,. D-ETA*VECRIItIVEC-11
27 CONTINUE

C GAUSSIAN ELIMINATION OF THE RIGHT-HAND SIDE VECTOR.

c

K • M-1
DO 28 I •l tK

L • l+IWORKIII
R • VECRILtlVEC-11
VECRCLtlVEC-11 • VECRCI,IVEC-11
VECR<ItlVEC-ll • R
VECRII+ltIVEC-11 • VECRll+ltlVEC-ll+A<I+ltll*R
IFll.EQ.KIGO TO 28
VECR(J+2tIVEC-ll ,. VECR!I+2tlVEC-ll+ACI+2tll*R

28 CONTINUE

C THE COMPUTATION OF THE REAL PART UIS+ll OF THE COMPLEX
C VECTOR WIS+ll. THE VECTOR UIS+ll IS OBTAINED AFTER THE
C BACKSUBSTITUTION.

c

DO 31 I •l tM
J • M-I+l
D • VECRIJtIVEC-11
IFCJ.EQ.MIGO TO 30
L • J+l
DO 29 K•LtM

Dl • AIJtKI
29 D • D-Dl•VECRIKtIVEC-11
30 VECRIJ1IVEC-ll • D/AIJtJI
31 CONTINUE

C THE COMPUTATION OF THE IMAGINARY PART VIS+ll OF THE VECTOR
C WIS+llt WHERE VIS+ll • IPISl-IA-FKSI*Il*UIS+lll/ETA.

c

DO 35 I •l tM
D • WORKIIl*VECRIItIVEC-11
JFCI.EQ.lJGO TO 32
D • D+SUBDIAII-ll*VECRII-ltlVEC-11

32 L • l+l
IFILoGT.MlGO TO 34
DO 33 K•LtM

33 D • D+HIItKl*VECRIKtIVEC-11
~4 VECRlltIVECI • IVECRlltIVECl-Dl/ETA
35 CONTI:NUE

C THE COMPUTATION OF IINFIN. NORM OF WIS+ll1**2 •
L • 1
s • o.o
DO 36 I•ltM

R • VECRIItIVEC>**2 + VECRlltIVEC-11**2
IFCReLE.SlGO TO 36
S • R
L • I

36 CONT I.NUE
C THE COMPUTATION OF THE VECTOR ZCS+l)tWHERE ZIS+l>• WCS+ll/
C !COMPONENT OF WIS+ll WITH THE LARGEST ABSOLUTE VALUEI •

U • VECRILtJVEC-ll
V • VECiRILtIVECI
DO 37 J•ltM

B • VECRIItIVECI
R • VECRIItlVEC-11
VECR!ItIVECl • IR*U + B*Vl/S

37 VECRIItIVEC-ll • IB*U-R*Vl/S

COLLECTED ALGORITHMS (cont.)

C THE COMPUTATION OF THE RESIDUALS AND COMPARISON OF THE
C RESIDUALS OF THE TWO SUCCESSIVE STEPS OF THE INVERSE
C ITERATION. IF THE INFINITE NORM OF THE RESIDUAL VECTOR IS
C GREATER THAN THE INFINITE NORM OF THE PREVIOUS RESIDUAL
C VECTOR THE COMPUTED VECTOR OF THE PREVIOUS STEP IS TAKEN
C AS THE COMPUTED APPROXIMATION TO THE EIGENVECTOR.

c

B • o.o
DO 41 I•l•M

R • WORK(ll*VECRCI•IVEC-11 - ETA*VECR<l•IVECI
U • WORK<Il*VECR(I,IVECI + ETA*VECRIItIVEC-11
IFIIeEQ.llGO TO 38
R • R+SUBDIAII-ll*VECR<I-ltIVEC-11
U • U+SUBDIAII-ll*VECRII-ltIVECI

38 L • I+l
IF!LeGT.MJGO TO 40
DO 39 J•LtM

R • R+HlltJl*VECRIJtIVEC-ll
39 U • U+HCltJl*VECRCJtIVECl
40 U a R*R + U*U

IF<B.GE.UlGO TO 41
B • U

41 CONTINUE
IF<ITER.EQ.lJGO T0.42
IF!PREVIS.LEeBIGO TO 44

42 DO 43 I=ltN
WORKlCil • VECRlltIVECI

43 WORK211l • VECRCltIVEC-ll
PREVIS • B
IFINS.EQellGO TO 46
IFIITER.GTe61GO TO 47
ITER • ITIER+l
IFIBOUND.GT.SORT<SllGO TO 23
NS • 1
GO TO 23

44 DO 45 I•ltN
VECRCitIVECI • WORKlCil

45 VECRCitlVEC-ll•WORK2Cll
46 INDICCIVEC-11 • 2

INDICIIVECI • 2
47 RETURN

END

ADDED IN PROOF. A small alteration to the program is desirable.
The four statements in the subroutine SCALE, page 822, lines
3-6, should be replaced by the four statements below. The
alteration is necessary so that the program will also give correct
eigenvectors for the case when no converg:ence of the process of
scaling occurs.

PRF ACT (I) 1.0
DO 12 J = 1, N

12 A (I, J) H (I, J)
ENO RM 1.0

CERTIFICATION 0]' ALGORITHM 343 [Fl]
EIGENVALUES AND EIGENVECTORS OF A
REAL GENERAL MA.TRIX [J. Grad and M. A.

Brebner, Comm. ACM 11 (Dec. 19()8), 820-826]
H. D. KNoBLE (Recd. 2 July 1969 and 18 Sept. 1969)
The Pennsylvania St~te University, Computation

Center, University Park, PA 16802

KEY WORDS AND PHRASES: norm, characteristic equation,
degenerate eigensystem, diagonalizable matrix, defective matrix
CR CATEGORIES: 5.14

The program used for this certification was copied directly from
the printed FORTRAN algorithm [l]. In addition to incorporating
the suggested modification, the algorithm as used here was modi·
fi.ed to operate completely in double procision arithmetic. The
tests were run on an IB:M; System/360 model 67 using FORTRAN IV,
double precision arithmetic (15 significant decimal digits; t = 53).
One criterion for measurip.g numerical precision of the results was
a norm of a residual ma~rix. That is, given a coefficient matrix,
A of order n, pose the ch1:1.racteristic equa1;ion as AX,. = y1cX1o and
define the norm of M as II M Iii = max;(,L:, Im,.;!), where

343-P 7- RI

M = (Mr.) = (AX,. - y,J[,.), Xr. is the kth right·hand eigenvector
of A, and yr. is the kth eigenvalue fork = 1, 2, · • · , n.

The norm II M Iii essentially measures the worst eigenvalue
eigenvector pair associated with the characteristic equation. In
order to gain information concerning the other extreme, as well
as an average measure of precision, the notations I M lmin =
min;(L• Im,.; I) and II M !lave = L;(,L:, I mi.; .Din will be used
respectively, the former simply indicating the quantity is not a
matrix norm.

The algorithm's performance was also analyzed by generating
test matrices with certain known properties thereby permitting
comparisons to be made between computational and theoretical
results.

The objective was to study the algorithm's sensitivity to ill
conditioning and degeneracy by observing its behavior relative to
the speed and precision, and accuracy where possible, with which a
variety of eigensystems could be solved. Testing was carried out
by entertaining four sets of matrices as follows:

CASE 1. Small Matrices with Known Solutions. Several
matrices from each of [l, 2, 3] varying in order from 3 to 8 yielded
eigenvalues, and eigenvectors where documented, accurate to at
least 7 decimal places. The largest 1-norm was II M Iii < 10-13 ;

11 M !lave averaged 10-14 ; and the largest value of I Ml min, was less
than 10-14 • Maximum computation time for any of these matrices
was less than a second.

Included in this test was a matrix, A, belonging to a.large class
of test matrices discovered by Gear [3]. This matrix, A = (a,.;)
of order 8 is defined as:

{

a>.o+1 = ai+1.• = 1, for i = 1, 2, · · · , 7,
A = a1,s = as.a = 1,

ai,i = 0, otherwise.
This nonsymmetric matrix has a zero trace and eigenvalue pairs:
±2, ±1, ±1, ±1. The algorithm yielded four of the eigenvalues
accurate to 15 decimal places and four values accurate to 7 places.

Deserving special note here is example (iii) presented with
the original algorithm. As the authors [1] stated, although this
matrix when transformed by scaling becomes invariant under the
QR process, the original, single precision algorithm yielded correct
results. However, the double precision version failed completely
regardless of the value of the hardware parameter t. In addition,
the algorithm may erroneously indicate success for this case; how
ever, with the machine configuration noted earlier, failure was
correctly indicated.

CASE 2. Degenerate and Defective Matrices. Using an al
gorithm suggested by the work of Hall and Porsching [4], a de
generate, nonsymmetric matrix of order 30 with known positive
eigenvalues was generated with eigenvalues: Y1 = 30; y, = 25
for i = 2, 3, · · · , 10; y, = 31 - i for i = 11, 12, · · · , 20; and
y, = 1 for i = 21, 22, · · · , 30. All eigenvalues were returned
accurate to at least 14 decimal places; II M Iii < 10-11, II M !lave <
10-12, and IM lmin < 10-18• Computation time was about 4 sec.

Gear [3] defines a class of matrices including a matrix B of order
25 such that

A I 0 I 0\ 0 1 0 1 0
IAIOO 10100

B = 0 I A I 0 where A O 1 0 1 0
OOI AI 00101
0 I 0 I A 01010

and I is the identity matrix. Using the theory developed by Gear
[3], it is easy to show the matrix B has 11 zeros, six pairs of eigen
values equal to ±2, and one pair of eigenvalues equal to ±4.
The algorithm yielded 14 eigenvalues accurate to 7 decimal places
and 11 eigenvalues (not all the zero values) with at least 14 place
accuracy; II M 111 < 10-12

, II M llave < 10-H, and \ M \min <
10-u. Computation time was less than 3 seconds.

To gain a measure of the algorithm's ability to separate eigen
vectors corresponding to the same eigenvalue, a degenerate sym
metric matrix was generated using an algorithm of Ortega [5].
Briefly, a similarity transformation was used to generate a matrix

COLLECTED ALGORITHMS (cont.)

A of order 6. That is, using Ortega's notation, A = CDC where
D = diag(l,2,3,1 12,3), C = (I-2vv'), and vis a column vector with
each element in this case equal to 1/ v6. For this: case II M II 1 <
10-13

, IJ M !lave < 10-13, and I M lmin < 10-14• The eigenvectors
corresponding to each eigenvalue pair are listed below to three
dec~mal places.

Eigenvalue Transposed eigenvectors

1 (+ .480, - .438, - .438, - .042, - .438, - .438)
(+ . 449, - .44 7, - .44 7' - . 002, - .44 7, - .44 7)

2 (-.254, +.723, -.254, -.254, -.469, -.254)
(-.151, +.745, -.151, -.151, -.595, -.151)

3 (-.328, -.328, +.672, -.328, -.328, -.344)
(-.328, -.328, +.671, -.329, ·-.329, -.342)

Even though the matrix A is obviously not defective, by inspec
tion it can be seen that the algorithm did not yield well-separated
eigenvectors. This fact is also evident by noting that if the al
gorithm extracts independent eigenvectors they will be returned
orthogonal (in fact orthonormal), yet the determinant of the
eigenvector matrix for this case is less then 10-4 in absolute value.

CASE 3. Ill-Conditioning. Two ill-conditioned matrices sug
gested by Wilkinson [6] were solved. One of these is a matrix A
of the form:

A = {a'~~: : O:~~ - i'.} , for i, j = 1, 2, · · · , 20; j ~ i, i + 1
aid=

a20,1 = E

whose eigenvalues are very sensitive to perturbations of e. With
e = 0, the matrix is triangular and the eigenvalues were returned
accurate to 15 places with II M 1!1 < 10-14 , II M !lave < 10-14 , and
IM lmin < 10-15• As Wilkinson [6] points out, with e = 10-1° the
eigenvalues change drastically, having been computed in this
case in complete agreement with this reference. For the perturbed
case II M 111 > 10-10, II M !lave > 10-11 and I M lmin remained less
than 10-14•

The algorithm was tested under a combination of ill-condi
tioning and degeneracy by generating nonsymmetric matrices as
in Case 2, but of order 20, conditioned such that max I eigen
value I = lOi X min I eigenvalue I for j = 2, 3, · · · , 20; de
generacy was introduced by generating the matrices with only 10
distinct eigenvalues. The values of II M II 1 for the matrices tested
in this class were such that II M II 1 ~ 10 i-11 for j = 2, 3, · · · , 18.
II M llave followed a similar curve; I M I min < 10-11 for j < 14
and never exceeded 10-6• Although the algorithm indicated suc
cess, severe computational breakdown was evident during this
test for values of j greater than 18. However, the largest eigen
value in every case was returned accurate to 15 decimal places.
Computation time for matrices of order 20 was consistently less
than 2 seconds.

CASE 4. Large Matrices. Several nonsymmetiric matrices of
order 50 with elements uniform on the interval (0, <50) were solved
yielding the following average figures: 11M111 < 10-9, II M !lave <
10-10, and I M lmin < 10-11• Computation time averaged 31
seconds.

A diagonal matrix A of order 50 with elements:
A = f a;,i = 1, for i := 1, 10, 20, 30, 4()1, 50,}

l ai,; = 0, otherwise,
was solved yielding 11 M Iii < 10-16, II M !lave < 10-17, and

IM lmin < 10-31
•

Computation time was about 5 seconds and all eigenvalues were
returned correct to 15 decimal places.

CONCLUSIONS. The algorithm is capable of successfully compu~
ing eigenvalues and eigenvectors of real general matrices even
under conditions considered unstable. It has the advantage of
being documented in ANSI (USASI) FORTRAN, being computa
tionally fast, and has the capability of yielding iresults with as
much precision as the hardware will permit. The algorithm does

343-P 8- RI

not break down when presented with a matrix which is not diag
onalizable; that is, a set of eigenvectors satisfying the eigen
equation is computed regardless of the existence of linearly inde
pendent eigenvectors. However, when a matrix is diagonalizable
and degenerate, the algorithm does not yield well separated eigen
vectors corresponding to non-distinct eigenvalues. Another
apparent disadvantage is the possible indication of completely
successful computation (INDIC), even in clearly ill-conditioned
situations where computational difficulties are inevitable. This
latter property, however, is a common fault of other algorithms
as well.

ACKNOWLEDGMENTS. This author wishes to thank the editor
and referee for their valuable critique and useful suggestions.

REFERENCES:
1. GRAD, J., AND BREBNER, M. A. Algorithm 343, Eigenvalues

and eigenvectors of a real general matrix. Comm. ACM, 11
(Dec. 1968), 820-826.

2. BARLOW, C. A. JR., AND JONES, E. L. A method for the solu
tion of roots of a nonlinear equation and for solution of the
general eigenvalue problem. J. ACM 13, 1 (Jan. 1966), 135-
142.

3. GEAR, C. W. A simple set of test matrices for eigenvalue pro
grams. Math. Comput. 23, 1 (Jan. 1969), 119-125.

4. HALL, C. A., AND PoRSCHING, T. A. Generation of positive
test matrices with known positive spectra. Comm. ACM 11,
8 (Aug. 1968), 559-560.

5. ORTEGA, J.M. Generation of test matrices of similarity trans
formations. Comm. ACM 7, 6 (June 1964), 377-378.

6. WILKINSON, J. H. The Algebraic Eigenvalue Problem. Clarendon
Press, Oxford, 1965, pp. 86-93.

REMARK ON ALGORITHM 343 [Fl]
EIGENVALUES AND EIGENVECTORS OF A REAL

GENERAL MATRIX [J. Grad and :M. A. Brebner.
Comm. ACM 11 (Dec. 1968), 820-826]

WILLIAM KNIGHT AND WILLIAM MERSEREAU (Recd. 7
Apr. 1970)

Computing Center, University of New Brunswick,
Fredericton, New Brunswick, Canada

KEY WORDS AND PHRASES: eigenvalues, eigenvectors,
latent roots, Householder's method, QR algorithm, inverse iter
ation
CR CATEGORIES: 5.14

This remark reports certain failures of Algorithm 343 when
applied to pathological matrices. The smallest example is a 4 X 4
matrix for which 16 guard bits (5+ digits) proved insufficient; all
computed eigenvalues were incorrect in the most significant digit.

The algorithm was implemented on an IBM System/360 model
50 using Fortran IV-G. The program was not modified to operate
completely in double precision as was done for Knoble's certifica
tion [2]. Satisfactory agreement was obtained for the three sample
matrices given with the algorithm.

Example A

-50
-52
-53
-51

53
1
0

53

52
53

1
52

51
52
53
52

COLLECTED ALGORITHMS (cont.)

The exact eigenvalues are all 1. The computed eigenvalues follow.
(Computed eigenvalues are reported rounded to 2 places after
the decimal point, any further figures being, rather obviously,
pointless.)

2.35
1.03 ± 1.38 i

--0.41

The maximum error in a computed eigenvalue exceeds 2 percent
of the largest element of the matrix.

Example B

-41
2

- 3
- 4
-55
-51

55
10
0
0
0

55

4
55
10
0
0
4

3
4

55
10
0
3

2
3
4

55
10
2

51
2
3
4

55
61

The exact eigenvalues are all 10. The computed eigenvalues:

14.76 ± 2.92 i
9.70 ± 5.33 i
5.54 ± 2.39 i

The maximum error in a computed eigenvalue exceeds 93 of the
largest element in the matrix.

Example C

-91 -94 0 0 0 0 0 0
95 98 0 0 0 0 0 0
90 99 5 0 0 0 0 0
90 0 99 6 0 0 0 0
90 0 0 99 7 0 0 0
90 0 0 0 99 8 0 0
90 0 0 0 0 99 9 0
99 99 0 0 0 0 99 10

The exact eigenvalues are 3, 4, 5, 6, 7, 8, 9, 10. The computed
eigenvalues are:

12.68
10.96 ± 3.73 i
6.47 ± 5.38 i
2.09 ± 3.73 i
0.27

Although all eigenvalues are real, the imaginary part of one pair
of computed eigenvalues exceeds 5 percent of the largest element
of the matrix. This matrix, like the other two, was maliciously
devised to take advantage of the program; it is indicative of this
that the transpose, being already in lower Hessenberg form, fares
much better, all computed eigenvalues being correct to within
±0.05.

Although, in view of the known sensitivity of multiple eigen
values to small changes of certain elements of certain matrices,
such counter examples are to be expected, it is probably worth
putting a few examples on record as the casual and unsophisticated
user is more apt to take warning of the dangers of eigenvalue
computations in single precision from a concrete case.

REFERENCES:

[1] GRAD, .J., AND M. A. BmrnNER. Algorithm 343, Eigenvalues
and eigenvectors of a real general matrix. Comm. ACM 11
(Dec. 1968), 820-826.

[2] KNODLE, H. D. Certification of Algorithm 343. Eigenvalues
and eigenvectors of a real general matrix. Comm. ACM 13
(Feb. 1970), 122-124.

343-P 9- RI

Remark on Algorithm 343 [F2]
Eigenvalues and Eigenvectors of a Real General
Matrix [J. Grad and M. A. Br·ebner, Comm. ACM 11
(Dec. 1968), 820-826]

Herbert Niessner (Recd. 26 Oct. 1970 and 18 Jan.
1971)
Brown, Boveri and Company, Baden, Switzerland

Key Words and Phrases: eigenvalues, eigenvectors,
QR-algorithm, nonsymmetric rnatric€:s, general matrices

CR Categories: 5.14

We had at our disposal a double precision version (all real
variables are declared to be of type double precision) for the IBM
360/50 of the algorithm 343 [l J with logical IF statements converted
to arithmetical ones. In the following three modifications which we
found to be of practical value are to be discussed.
a. Modification of the test of smallness of R in HESQR: 10 and
11 lines after statement 21, a test is made on R whether it is zero or
not. Because R is not of type integer such a test is almost inefficient.
Let us call a some value representing the order of the elements of
the matrix A (for example the Euclidean norm of A), i:,i a small
positive number numerically representing zero elements of A and
"m the relative machine accuracy. ln HESQR EA is chosen to be
EA,......_, m:m. By inspection of the formulas it is seen that R is of the
order of a 2 ; therefore R should be considered to be small if R <
a 2Em = EA 2/i:,,,. This is equivalent to }?./i:A < EA/Em, which does not
have the risk of underflow.

Following these ideas we changed the statements

IF(R.EQ.0.0) SHIFT=A(M,M-l)
IF(R.EQ.0.0) GO TO 21
Z =A (K + 2,K + 1) *A (K + 1,K)

10, 11, and 12 lines after statement 21 to

IF(R/EPS-EPS/EX) 215,215,217
215 IF(SHIFT-A(M,M-1)) 216,217,216
216 SHIFT=A(M.M-1)

GO TO 21
217 Z=A(K+2,K+l)*A(K+l,K)

(keeping in mind that i:. 1 = EPS and i:,,, = EX), and we were able
to solve example (i) and (ii) as well as example (iii) of fl I.
b. Modifications in E/GENP: In order to suppress unnecessary and
possibly impermissible computations in case of failure, the sub
routine EIGENP was modified as follows. We changed the state
ment L = 0, two lines after statement 15, to

ISW=INDIC(l)-1
IF(ISW) 24,152,152

152 L=O

statement

16 D0181=1,N

to

16 IF(ISW) 24,161,162
161 IF(L) 232,202,232
162 D0181=1,N

and statement

EVR(l) =EVR(I)*ENORM

COLLECTED ALGORITHMS (cont.)

one line after statement 20, to

202 EVR(l) =EVR(I)*ENORM

Statements

21 KON= 1

EV/(1-1) =-EV!(/)

have been removed and reinserted as

232 KON= 1

EV/(1-1) = - EV/(!)

between statement 23 and 24. Finally statement

R=O.O,

five lines after statement 21, has been changed to

21 R=O.O

c. Modifications in SCALE: It seems to be reasonable to change
statement:

Q==A(l,J)

preceding statement 9 to

I F(I- J) 88 ,89 ,88
88 A(l,J) = H(l,J) *PRFACT(l)/PRFACT(J)
89 Q==A(l,J)

so that even in case of many iterations being inecessary to calculate
PRFACT, the relation of similarity of the result matrix to the input
matrix will almost not be changed by rounding errors.

References
I. Grad, J., and Brebner, M.A. Algorithm 343, Eigenvalues and
eigenvectors of a real general matrix. Comm. ACM 11 (Dec. 1968),
820-826.

343-P 10- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 344
STUDENT'S t-DISTRIBUTION [S14]
DAVID A. LEVINE (Recd. 26 Mar. 1968 and 2 Aug. 1968)
State University of New York at Stony Brook, Stony

Brook, NY 11790
KEY WORDS AND PHRASES: Student's t-Distribution, t

test, small-sample statistics, distribution function
CR CATEGORIES: 5.12, 5.5

Comment t-Test evaluates in single-precision the value of
Student's [2] t-distribution for argument T and degrees of freedom
DF. The two-·tailed Student's t-distribution, A, is obtained as the
indefinite integral:

100 (2) DF+l
A(T,DF) = C T 1 + ;F --2 - dx

where C is chosen so that A (0, DF) = 1.
The integration of A can be accomplished exactly by integrat

ing by parts successively, obtaining:
for DF an odd integer,

A(T, DF) = 1 - ; { arctan a+ ab [1 + b (D + b2 G · ~)
DF-3

+·--+b--2- (~ . ~ ... DF - 3)]\
3 5 DF - 2 '

and for DF an even integer,

A(T,DF) = 1- a0)[1 + p - G) + b2 G·D
DF-2

+ ... +b_2_

T
where a = yDF, b = (1 + a2)-1.

(! . ~ DF - 3)]
2 4 DF - 2 '

A FORTRAN program evaluating these series is given below,
giving at least six correct significant figures after the decimal
more than enough accuracy for most statistical applications. The
t-Test is usually applied in small-sample statistics [1] where DF s
30. The algorithm presented here is faster and simpler, with ac
curacy equal to previous algorithms for DF s 30. In the range
30 S DF s 100, this algorithm is competitive in speed and ac
curacy with previous algorithms. For the range DF > 100, small
sample assumptions may be altered by replacing the integrand of
the distribution by a Gaussian (normal) curve; hence much greater
speed is obtained in this range by employing, for example, Al
gorithm 209 [3]. Instructive comments and bibliography are ob
tainable from Algorithm 321 [4], where an algorithm competitive
for the range 30 s DF S 100 is presented and the use of Algorithm
209 is discussed.

Thanks to the referee for many helpful suggestions, which have
been incorporated, and to Joan Warner, who has aided in the pro
gramming and testing of this algorithm.

344--P 1- 0

REFERENCES:

1. ALDER, H. L., AND ROESSLER, E:. B. Introduction to probabil
ity and statistics, 3rd ed. W. H. Freeman and Co., San
Francisco, 1964, p. 125

2. GossET, W. S. (Student). The probable error of a mean.
BIOMETRIKA 6 (1908), 1.

3. IBBETSON, D. Algorithm 209., Gauss. Comm. ACM, 6 (Oct.
1963), 616.

4. MORRIS, J. Algorithm 321, t-t;est probabiHties. Comm. ACM
11 (Feb. 1968), 115.

c

c

c

c

c
c
c

c

c
c
c

c
c
c

c

c
c
c

c

c

c

c
c

c

2

3

SUBROUTINE TTEST

* <T•DF•ANS.KERR)

~EAL ANS.Dl.D2•FltF2tTtTltT2

INTEGER DFtl•KERRtN

DATA 01/.63661977/

o.63661977236758134 ••• = 2/ Pl

KERR = 0

IF<DF.GTeO) GO TO 1

ERROR RETURN IF DF NOT POSITIVE

KERR =
ANS O•
RETURN

BEGIN COMPUTATION OF SE~IES

T
T 1
T2

ABS CT)

T/SQRTCFLOAT<DF>>
le/Cle+Tl*Tll

IFCCDF/21*2•EQ.DF> GO TO 5

DF IS AN ODD INTEGER

ANS= le-Dl*ATANCTl>

IFCDFeEOell GO TO 4

D2 Dl*Tl*T2
ANS ANS-D2

IFCDF.E0.3> GO TO 4

Fl = o.
N = <DF-2>/2
DO 3 I= l • N
F2 2e*FLOAT<I>-Fl
D2 D2*T2*F2/CF2+1.)
ANS ANS-02

COMMON RETURN AFT~R COMPUTATION

4 IFCANSeLTeOe) ANS = o~

RETURN

COLLECTED ALGORITHMS (cont.)

c
c

c

c

5

OF IS AN EVEN INTEGER

02 Tl*SORT~T2l

ti.NS 1 .-02

IFCDF.~0.2) GO TO 4

F 1 1.
GO TO 2
E:NO

REMARKS ON
ALGORITHM 321 [S14] t-TEST PROBABILITIES

[John Morris, Comm. ACM 11 (Feb. 1968), 115-6]
ALGORITHM 344, STUDENT'S t-DISTRIBUTION

[David Levine, Comm. ACM 12 (Jan. 19139), 37-8]
G. W. HILL, AND MARY LouGHHEAD* (Recd. 16 Apr.

1969 and 29 Sept. 1969)
Commonwealth Scientific and Industrial Research Or

ganization, Division of Mathematical Statistics, Glen
Osmond, South Australia
*Present address: Monash University, Clayton, Victoria,
Australia

KEY WORDS AND PHRASES: t-test, Studient's t-statistic,
distribution function, approximation
CR CATEGORIES: 5.12, 5.5

Algorithm 321, as published, was coded in CSIRO 3200 ALGOL
and run on a CDC 3200 with programmed floating point opera
tions. A FORTRAN equivalent of Algorithm 321 was run for com
parison with the FORTRAN Algorithm 344, which uses the same
recurrence relation based on Student's cosine :formula as that
used in Algorithm 321 for df degrees of freedom less than maxn.
Numerical results agreed with 6-digit tabulated values [1] and
double precision calculations indicate that accuracy is limited by
truncation of intermediate results to the precision of the proces
sor, with error in the final result increasing as the square root of
df. Timing tests rated Algorithm 344 at approximately (i df+l!)
msec; slightly faster than Algorithm 321, which required ap
proximately (i df+2!)msec' for df < maxn.

For df ~ maxn Algorithm 321 uses Fisher's [2] fifth order ap
proximation, whose accuracy is summarized in the diagram for
df = 10(10)50 (see Figure 1). The shaded regions indicate values

L:""
0
I...
I...

-4

-5

~-6

O>
0
....J -7

-8

2 3 4 5
Student's t

FIG. 1

344-P 2- R2

of t for which the claimed accuracy of 3 X 10--7 for ~n = 30
is not attained. For t > 6.0 this algorithm returns zero values,
giving errors up to 1.39 X 10-6• The following alterations avoid
this error and, by "nesting" Fisher's polynomial approximation,
reduced the time from about 25msec to 20msec and reduced the
store requirement by 27%.

Replace the 19 lines beginning "g: t : = 1.0 - t" by

g: x := 1.0 - t
end else
heginx := 2.0 X gauss (-t);
if df < io6 then
begin real f, t2;
f := 0.25/df; t2 := t x t;
x : = (((((((((((((3.0X t2-133.0) X t2

+1764.0) x t2-7516.0) x t2+5994.0) x t2+2490.0) x t2
+1140.0)Xt2+180.0)Xt2+5355.0)Xt2+17955.0) X f
+ ((((((15.0X t2-375.0) X t2+2225.0) X t2-214LO) X t2
-939.0)Xt2-213.0)Xt2-915.0)Xt2+945.0) X .f /60.0
+ ((((t2-ll.O)Xt2+14.0)Xt2+6.0)Xt2-3.0)Xt2-15.0) X f
+ ((3.0X t2-7 .0) X t2-5.0) X t2-3.0) Xf /6.0
+ (t2+ 1.0)) X f X t X 0. 7978845608 X exp (- 0.5X t2) + x

end;
ttest : = if x < 0.0 then 0.0 else x

The last statement, recommended by the referee, avoids negative
results due to rounding errors when the answer is small.

In Algorithm 344 the three statements beginning "1 T =
ABS(T)" were replaced by:

1 T2 = T*T/FLOAT(DF)
Tl = SQRT(T2)
T2 = 1./(1.+T2)

to avoid changing the calling parameter T.
Although Algorithm 321 occupies about twice the store space

needed for Algorithm 344, and is slightly slower for df < maxn =
30, it is about three times faster for df = 100.

REFERENCES:
1. SMIRNOV, N. V. Tables for the Distribution and Density Func

tions of t-distribution. Pergamon Press, New York, 1961.
2. FISHER, R. A. Expansion of "Student's" integral in powers of

n-1• Metron. 5, 3 (1926), 109-112.

REMARKS ON:
ALGORITHM 332 [S22]
JACOBI POLYNOMIALS [Bruno F. W. Witte, Comm.

ACM 11 (June 1968), 436]
ALGORITHM 344 [S14]
STUDENT'S t-DISTRIBUTION [David A. Levine,

Comm. ACM 12 (Jan. 1969), 37}
ALGORITHM 351 [Dl]
MODIFIED ROMBERG QUADRATURE [Graeme

Fairweather, Comm. 12 (June 1969), 324]
ALGORITHM 359 [G 1]
FACTORIAL ANALYSIS OF VARIANCE [.John R.

Howell, Comm. ACM 12 (Nov. 1969), 631]
ARTHUR H. J. SALE (Recd. 16 Feb. 1970)
Basser Computing Department, University of Sydney,

Sydney, Australia
KEY WORDS AND PHRASES: Fortran standards
CR CATEGORIES: 4.0, 4.22

An unfortunate precedent has been set in several recent al
gorithms of using an illegal FORTRAN construction. This oon-

COLLECTED ALGORITHMS (cont.)

sists of separating an initial line from its continuation line by a
comment line, and is forbidden by the standard (see sections 3.2.1,
3.2.3 and 3.2.4 of [1, 2]). The offending algorithms are to date:
332, 344, 351 and 359.

While this is perhaps a debatable decision by the compilers of
the standard, and trivial to correct, it seems a pity to break the
rules just for a pretty layout as has been done.

REFERENCES:

1. ANSI Standard FORTRAN (ANSI X3.9-1966), American
National Standards Institute, New York, 1966.

2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964),
591-625.

344-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 345
AN ALGOL CONVOLUTION PROCEDURE BASED
ON THE FAST FOURIER TRANSFORM [C6]
RICHARD c. SINGLETON* (Recd. 30 Dec. 1966, 26 July

1967, 19 July 1968, and 8 Nov. 1968)
Stanford Research Institute, Menlo Park:, CA 94025

• This work was supported by Stanford Research Institute out of Research
and Development• funds.

KEY WORDS AND PHRASES: fast Fourier transform, complex
Fourier transform, multivariate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly
nomials, orthogonal transformation, convolution, autocovari
ance, autocorrelation, cross-correlation, digital filtering,
permutation

CR CATEGORIES: 3.15, 3.83, 5.12, 5.14

Stockham [6] and Gentleman and Sande [3] have shown the prac
tical advantages of computing the circular convolution

n-1

Ck = .L: A;B U+k)mod n ,
i-O

k = 0, 1, · · · , n - 1,

of two real vectors A and B of period n by the fast Fourier trans
form [2, 3, 4]. The Fourier transforms

n-1

a; = L: AP exp(i2rpj/n)
p-0

and

n-1

(3; = L: Bq exp(i2rqj/n)
q-0

are first computed, then the convolution

l n-1

ck = - L: a;(3;* exp(i2rjk/n)
n t-o

where (3;* is the complex conjugate of (3;. By this method the num
ber of arithmetic operations increases by a factor slightly more
than 2 when n is doubled, as compared with a factor of 4 for the
direct method. Tests show a 16 to 1 time advantage for the trans-
form method at n = 256. ·

The operation of convolution is used in computing autocorrela
tion and cross-correlation functions, in digital filtering of time
series and many other applications.
Pro~edure CONVOLUTION computes the convolution of two

real vectors of dimension n = 2"'. The special features of this pro
cedure are: (1) the usual reordering of the fast Fourier transform
results is avoided, and (2) the return from frequency to time is
made with a transform of dimension n/2 instead of n. The two
vectors A and B are first transformed with a :~ingle complex
Fourier transform of dimension n. The complex product a(3* is
then formed, leaving the result in reverse binary order. Since the
convolution is real-valued, the real part x of the complex product
is an even function and the imaginary part y is an odd function;
thus the Fourier transform of xis real and that of Y is imaginary.
These properties lead to the identity

345 -P 1 - 0

T(x + iy) = Re(Tx) - Im(Ty)

= Re(T(x - y)) + Im(T(x - y))

where T represents the Fourier transform and T(x + iy) is the
desired convolution. We subtract y from x, yielding a real vector
of dimension n, then transform using a complex transform of di
mension n/2 and add the resulting cosine and sine coefficients to
give the convolution. Thus with procedure CONVOLUTION we
make maximum use of the complex Fourier transform in each di
rection and avoid any reverse binary to binary permutation. The
Fourier transform

T(A + iB) = a+ i(3

of the two original vectors is available in reverse binary order on
exit from the procedure. We can permute this transform to normal
order with procedure REVERSEBIN ARY and readily compute
the power spectra and cross spectrum of the two data vectors.

Procedure CONVOLUTION uses procedure REALTRAN, given
in Algorithm 338 [5], but repeated here with revisions to improve
accuracy on computers using truncated floating-point arithmetic.
Procedures FFT4 and REVFFT4 are also used :and perform the
same computation as procedures FFT2 and REVFFT2 given in
Algorithm 338 for use on a system with virtual memory. The trans
form procedures given here are organized without regard to the
problem of memory overlay. This change yields a 10 percent reduc
tion in computing time on the Burroughs B5500 for transforms of
dimension n = 512 or smaller. Procedure FFT4 is based on an
organization of the fast Fourier transform due to Sande [3], and
procedure REVFFT4 is similar to the method proposed by Cooley
and Tukey [2], except that the data is in reverse binary order. In
both cases, trigonometric functions are used in normal sequence,
rather than ~everse binary sequence, thus eliminating the need
for a reverse binary counter. Another gain in efficiency comes from
reducing the time for computing trigonometric function values.
The following difference-equation method is used:

cos((k + 1)0) = cos(kO) - (C X cos(kO) + S X sin(kO))

and

sin((k + 1)0) = sin(kO) + (S X cos(kO),... C X sin(kO)),

where the constant multipliers are C = 2 sin2(0/2) and S = sin(O),
and the initial values are cos(O) = 1 and sin(O) = 0.

These initial values should be computed to full machine preci
sion; if necessary, a stored table of sin(8) for 8 = r/2, r/4, 7r/8,
•• • , r/n can be added to procedures FFT4 and REVFFT4. Using
the standard sine function to compute initial values, the ratio of
rms error to rms data is about 2 X 10-11 for the transform-inverse
pair at n = 512 on the Burroughs B5500 computer; this error is
about the same as that obtained when the sine and cosine functions
are used for all trigonometric function values. On a computer
using truncated, rather than rounded, arithmetic operations, the
sequence of values for cos(kO) + i sin(kO) tends to spiral inward
from the unit circle. Since the error is primarily one of magnitude,
rather than angle, rescaling to the unit circle at each step gives a
satisfactory correction. This correction is included in procedures
FFT4 and REVFFT4 but may be removed to improve running
speed if rounded arithmetic is used.

Procedures FFT8 and REVFFTB are included as possible sub
stitutes for FFT4 and REVFFT4. These procedures use radix 8

COLLECTED ALGORITHMS (cont.)

arithmetic [lL rather than radix 4, and run about 20 percent faster
on the Burroughs B5500 computer; however, the compiled code is
twice as long. The code could be shortened by use of subscripted
variables and FOR statements, but this change would probably
eliminate most of the time-saving.

The permutation procedure REVERSEBIN ARY is based on a
modified dual counter, one in normal sequence and the other in
reverse binary sequence. In permuting a vector of dimension n,
the normal sequence counter goes from 1 to n/2 - 1, and the ele
ments indexed 1, 3, · · · , n/2 - 1 are exchanged with their reverse
binary counterparts (indexed greater than or equal to n/2) with
out need of a test. The reverse binary counter is incremented
only n/4 times, and exchanges of pairs of elements below n/2
are done jointly with pair exchanges in the upper half of the
array; i.e. if x; and x1c are exchanged, where j, k < n/2, then
Xn-1-i and x,._1-rc are also exchanged. Thia procedure is twice as
fast on the Burroughs B5500 as REORDER given in Algorithm
338 [5] and is the better choice when the additional features of
REORDER are not needed. For a single-variate, complex Fourier
transform of dimension n = 2m,

REVERSEBINARY(A, B, m);

REVFFT8(A, B, n, m, 1)

was found to be the best combination for n ~ 512 on the B5500
computer, giving a time of 0.79 sec. for n = 512.

REFERENCES:

1. BERGLAND, G. D. A fast Fourier transform algorithm
uS"ing base 8 iterations. Math. Comput. 22, 102 (Apr.
1968), 275-279.

2. CooLEY, J. W., AND TUKEY, J. W. An algorithm for the
machine calculation of complex Fourier series. Math. Com
put. 19, 90 (Apr. 1965), 297-301.

3. GENTLEMAN, W. G., AND SANDE, G. Fast Fourier trans
forms-for fun and profit. Proc. AFIPS 1966 Fall Joint
Comput. Conf., Vol. 29, Spartan Books, New York, 1966,
pp. 563-578.

4. SINGLETON, R. C. On computing the fast Fourier trans
form. Comm. ACM 10 (Oct. 1967), 647-654.

5. SINGLETON, R. C. Algorithm 338, ALGOL procedures for
the fast Fourier transform. Comm. ACM 11 (Nov. 1968),
773-776.

6. STOCKHAM, T. G. High-speed convolution and correlation.
Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol.
28, Spartan Books, New York, 1966, pp. 229-233;

procedure CONVOLUTION (A, B, C, D, m, scale);
value m, scale; integer m; real scale; array A, B, C, D;
comment This procedure computes the circular convolution

n-1

C1: = scale L: A;Bc;+rc> mod n, k = 0, 1, · · · , n - 1,
;-o

where n = ~and p mod n represents the remainder after divi
sion of p by n. (It is assumed that m~ 1.) Arrays A, B[O: n-1)
originally contain the two data vectors to be convoluted, and
on exit, contain the Fourier transform of A + iB arranged in
reverse binary order. A and B must not be the same array.
On exit9 array C[O : n-1] contains the convolution multiplied
by the factor scale. Array Dis a scratch storage array with lower
bound zero and upper bound at least n + 2. If the Fourier
transform of the data is not needed, the procedure can be called
with arrays A and B used for C and D in either order, for ex
ample, CONVOLUTION (A, B, A, B, m, scale). If the Fourier
transform is used, it should first be permuted to normal order
by the call REVERSEBIN ARY(A, B, m). After doing this, the
Fourier cosine coefficients of the A vector are

(A1c+ A,._1;) /n,

(2Ao)/n,

k = 1, 2, · · · , n/2,

k = 0,

345---P 2- 0

and the sine coefficients are

k = 1, 2, • • • , n/2 - 1.

The Fourier cosine coefficients of the B vector are

(Brc+B11-1c)/n,

(2Bo)/n,

k = 1, 2, · · · , n/2,

k = 0,

and the sine coefficients are

k = 1, 2, · · • , n/2 - 1.

The procedures FFT4, REVFFT4, and REALTRAN are used
by this procedure and must also be declared. If convolutions of
large dimension are to be computed on a system with virtual
memory, procedures FFT2 and REVFFT2 (Algorithm 338)
[5] should be substituted for procedures FFT4 and REVFFT4;

begin integer j, kk, ks, n; real aa, ab, ba, bb, im;
n := 2 i m; j := 1;
FFT4(A, B, n, m, n);
C[O] : = 4 X (A [O]XB[O]);

L: kk : = j; ks : = j : = j + .1;
L2: ks : = ks - 1;

aa := A[kk] + A[ks]; ab := A,[kk] - A[ks];
ba := B[kk] + B[ks]; bb := B[kk] - B[ks];
im : = ba X bb + aa X ab; aa : = aa X ba - ab X bb;
C[kk] := aa - im; C[ks] := a<i + im;
kk := kk + 1; if kk <ks the1ti go to L2;
if j < n then go to L;
kk := n + 2; ks := kk - 1; scale:= scale/(8Xn);
for j := 0 step 1 until ks do D[j] := C[j+kkJ;
REVFFT4(C, D, kk, m-1, 1);
REALTRAN(C, D, kk, false);
C[O] := scale X C[O]; C[kk] :== scale X C[lck];
for j : = 1 step 1 until ks do
begin C[n-j] := scale X (C[j]-D[j]);
end
C[j] :=scale X (C[j]+Dl.iD

end CONVOLUTION;
procedure FFT4(A, B, n, m, ks}; value n, m, ks;

integer n, m, ks; array A, B;
comment This procedure computes the fast Fourier transform

for one variable of dimension 2m in a multivariate transform.
n is the number of data pointii, i.e. n = n1 X n2 X · · • X n11

for a p-variate transform, a:n.d ks = n1c X nt.r1 X · · · X n11 ,

where nrc = 2m is the dimension of the current variable. Arrays
A[O: n-1] and B[O: n-1] originally contain the real and
imaginary components of the data in normal order. Multivari
ate data is stored according to the usual convention, e.g. aikl

is in A[jXn2Xna+kXna+l] for j = O, 1, · · • , n1 - 1, k = 0,
1, · · · , n 2 - 1, and l = 0, 1, · · · , na - 1. On exit, the Fourier
coefficients for the current variable are in reverse binary order.
Continuing the above example, if the "column" variable 1t2

is the current one, column

is permuted to position

ko2m-l + k1~-2 + • • • + km-22 + km-1 •

A separate procedure may be used to permute the results to
normal order between transform steps or all at once at the end.
If n = ks = 2m, the single-variate transform

n-1

(x;+iy;) = 2: (a1;+ib1:) exp (i27rjk/n)
1:-0

for j = O, 1, ... , n - 1 is computed, where (a+ib) represent
the initial values and (x+iy) r•epresent the transformed values;

COLLECTJED ALGORITHMS (cont.)

begin integer kO, kl, k2, k3, k, span;
real AO, Al, A2, A3, BO, Bl, B2, B3, re, imi:
real rad, de~ ds, cl, c2, c3, sl, s2, s3;
span : = ks; ks : = 2 i m; rad : = 4.0 X arctan(l.O) /ks;
ks : = span + ks; n : = n - 1; k : = m;
for m : = m - 2 while m ;s; 0 do
begin

cl := 1.0; sl := O; kO := O; k := ks;
de := 2.0 X sin(rad) j 2; rad := rad+ rad;
ds := sin(rad).; rad := rad+ rad;
span := span + 4;

La: kl := kO +span; k2 :=kl+ span; k3 ::= k2 +span;
AO := A[kO]; BO := B[kO];
Al := A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2];
A3 := A[k3]; B3 := B[k3];
A[kO] := AO+ A2 +Al + A3;
B[kOJ :=BO+ B2 +Bl + B3;
if s1 = 0 then
begin

A[kl] :== AO+ A2 - Al - A3;
B[kl] :=BO+ B2 - Bl - B3;
A[k2] :=AO - A2 - Bl+ B3;
B[k2] := BO - B2 + Al - A3;
A[k3] :== AO - A2 +Bl - B3;
B[k3] :=, BO - B2 - Al + A3

end
else
begin

re:= AO+ A2 - Al - A3; im := BO+B2- Bl-B3;
A[kl] := re X c2 - im X s2;
B[kl] := re X s2 + im X c2;
re := AO - A2 - Bl+ B3; im := BO-· B2 +Al - A3;
A[k2] :== re X cl - im X sl;
B[k2] := re X sl + im X cl;
re := AO - A2 +Bl - B3; im :=BO-· B2 - Al+ A3;
A[k3] :== re X c3 - im X s3;
B[k3] := re X s3 + im X c3

end;
kO := k3 +span; if kO < n then go to Ia;
kO := kO -- n; if kO ;e k then go to La;
comment If computing for the current factor of 4 is not

finished then increment the sine and cosine values;
if kO ;e span then
begin

c2 := cl - (dcXcl+dsXsl);
sl := (dsXcl-dcXsl) + sl;
comment The following three statements compensate

for truncation error. If rounded arithmetic is used, sub
stitute cl := c2;

cl := 1.~0.5 X (c2 j 2+sl j 2);
sl := cl X sl; cl := cl X c2;
c2 := cl i 2 - s1i2; s2 := 2.0 X cl X sl;
c3 := c2 X cl - s2 X sl; s3 := c2 X sl + s2 X cl;
k : = k + ks; go to La

end;
k := m

end,
comment J[f m is odd then compute for one factor of 2;
if k ;e 0 th•m
begin

span := s;pan + 2; kO := O;
Lb: k2 := kO +span; AO :== A[k2]; BO :== .B[k2J;

A[k2] :== .A[kO] - AO; A[kOJ := A[kO] + AO;
B[k2] :== B[kO] - BO; B[kO] := B[kO] + BO;
kO :== k2 +span; if kO < n then go to Lb;
kO :== kO ·- n; if kO ;e span then go to Lb

345-P 3-- 0

end
end FFT4;
procedure REVFFT4(A, B, n, m, ks); value n, m, ks;

integer n, m, ks; array A, B;
comment This procedure computes the fast Fourier transform

for one variable of dimension 2"' in a multivariate transform.
n is the number of data points, i.e. n == n1 X n2 X · · · X np
for a p-variate transform, and ks = nii-1 X n1i+s X · · · X n,, ,
where n1c = 2"' is the dimension of the current variable. Arrays
A[O:n-1] and B[O:n-1] originally contain the real and imagi
nary components of the data with the indices of each variable
in reverse binary order, e.g. a;1ci is in A[j'Xn2Xna+k'Xn3+l']
for j = 0, 1, · .. , ni - 1, k = 0, 1, .. · n:i - 1, and l == 0,
1, · · · na - 1, where j', k', and l' are the bit-reversed values of
j, k, and l. On completion of the multivariate transform, the
real and imaginary components of the result.ing Fourier coeffi
cients are in A and B in normal order. If n = 2m and ks == 1,
a single-variate transform is computed;

begin integer kO, kl, k2, k3, k, span;
real AO, Al, A2, A3, BO, Bl, B2, B3;
real rad, de, ds, cl, c2, c3, sl, s2, s3;
rad := 4.0 X arctan(l.O); n := n - l;
kO := O; span :=ks;
comment If mis odd then compute for one factor of 2;
if (m+2) X 2 ;e m then
begin

La: k2 := kO + span; AO :== A[k2]; BO :== B[k2];
A[k2] :.== A[kO] - AO; A[kOJ := A[kO] +AO;
B[k2] :;=: B[kO] - BO; B[kO] := B[kO] + BO;
kO := k2 +span; if kO < n then go to La;
kO := kO - n; if kO ;e span then go to La;
span : ::;= span + span; rad : = Q.5 X rad

end;
form := m - 2 while m ;s; 0 do
begin

cl := 1.0; sl := O; kO := O; rad := 0.25 X rad;
de := 2.0 X sin(rad) j 2;
ds := sin(rad+rad); k := ks;

Lb: kl := kO +span; k2 :=kl +span; k3 := k2 +span;
AO := A[kO]; BO := B[kO];
if sl = 0 then
begin

A2 := A[kl]; B2 := B[kl];
Al := A[k2]; Bl := B[k2];
A3 := A[k3]; B3 := B[k3]

end
else
begin

A2 := A[kl] X c2 - B[kl] X s2;
B2 := A[kl] X s2 + B[klJ X c2;
Al := A[k2] X cl - B[k2] X sl;
Bl := A[k2] X sl + B[k2] X cl;
A3 := A[k3] X c3 - B[k3] X s3;
B3 := A[k3] X s3 + B[k3] X c3

end;
A[kO] :=AO+ A2 +Al+ A3;
B[kO] := BO+ B2 +Bl + B3;
A[kl] :=AO - A2 - Bl+ B3;
B[kl] := BO - B2 + Al - A3;
A[k2] := AO + A2 - Al - A3;
B[k2] := BO + B2 - Bl - B3;
A[k3] := AO - A2 +Bl - B3;
B[k3] := BO - B2 - Al + A3;
kO := k3 +span; if kO < n then go to Lb;
kO := kO - n; if kO r!! k then go to Lb;
comment If computing for the current factor of 4 is not

finished then increment the sine and cosine values;

COLLECTED ALGORITHMS (cont.)

if kO ¢ S'[JQ,n then
begin

c2 :== cl - (dcXcl+dsXsl);
sl :== (dsXcl-dcXsl) + sl;
comment The following three statements compensate

for truncation error. If rounded arithmetic is used, sub
stitute cl :== c2;

cl : == 1.5-0.5 X (c2 i 2+sl i 2);
sl :== cl X sl; cl :== cl X c2;
c2 :== cl i 2 - sl i 2; s2 :== 2.0 X cl X 81;
c3 :== c2 X cl - s2 X sl; s3 :== c2 X sl + s2 X cl;
k : = k + ks; go to Lb

end;
span := 4 X span

end
end REVFFT4;
procedure REALTRAN(A, B, n, evaluate);

value n, evaluate; integer n;
Boolean evaluate; array A, B;

comment If evaluate is false, this procedure unscrambles the
single-variate complex transform of then even-numbered and
n odd-numbered elements of a real sequence of length 2n, where
the even-numbered elements were originally in A and the odd
numbered elements in B. Then it combines the two real trans
forms to give the Fourier cosine coefficients A[O], A[l], · · · ,
A[n] and sine coefficients B[O], B[l], · · · , B[n] for the full
sequence of 2n elements. If evaluate is irue, the process is
reversed, and a set of Fourier cosine and sine coefficients is
made ready for evaluation of the corresponding Fourier series
by means of the inverse complex transform. Going in either
direction, REALTRAN scales by a factor of two, which should
be taken into account in determining the appropriate overall
scaling;

begin integer k, nk, nh;
~~aa.~1 ~,M,u,im,~,d,~,~;
nh := n + 2; ds := 2.0 X arctan(l.O)/n;
~ := 2.0 X s-in(ds) i 2; ds := sin(ds+ds);
sk := O;
if evaluate then

begin ck := -1.0; ds := -ds end
else begin ck := 1.0; A[nJ := A[O]; B[n] := B[O] end;
fork := 0 step 1 until nh do
begin

nk := n - k;
aa := A[k] + A[nk]; ab := A[k] - A[nk];
ba := B[k] + B[nk]; bb := B[k] - B[nk];
re : = ck X ba + sk X ab; im : = sk X ba - ck X ab;
B[nk] := im - bb; B[k] := im + bb;
A[nk] := aa - re; A[k] := aa +re;
aa := ck - (dcXck+dsXsk);
sk := (dsXck-dcXsk) + sk;
comment The following three statements compensate for

truncation error. If rounded arithmetic is used, substitute
ck := aa;

ck := 1.5-0.5 X (aa i 2+sk i 2);
sk : = ck X sk; ck : = ck X aa

end
end RE ALT RAN;
procedure REVERSEBIN ARY(A, B, m); value m;

integer m; array A, B;
comment This procedure permutes the elements A[j] and B[j)

of arrays .A and B, for j = 0, 1, · · · , 2 i m - 1, according to
the reverse binary transformation. Element

k = km-12"'-l + km-22m-2 + · · • + ki2 + ko

is moved to location

ko2"'-l + k12m-2 + • • • + km-22 + km-1 •

345-P 4- 0

Two successive calls of this procedure give an identity trans
formation;
begin integer j, jj, k, lim, jk, n2, n4, nS, nn;
real t;
integer array C[O:m];
C[O] := nn := l; jj := O;
for j := 1step1 until m do C[j] := nn := nn + nn;
if m > 1 then n4 := C[m-2]; i.f m > 2 then n8 := C[m-3);
n2 := C[m-1]; lim := n2 - l; nn := nn - l; m := m - 4;
for j := 1step1 until lim do
begin

jk := jj + n2;
t := A[j); A[j] := A[jk]; A[j'k] := t;
t := B[j]; B[j] := B[jk]; B[jk] := t;
j := j + l;
if jj ~ n4 then
begin
jj := jj - n4;

if jj ~ nS then
begin

jj : = jj - nS; k : = m;
L: if C[k] ~ jj then

begin jj := jj - C[k]; k := k - 1; go to.Lend;
ii := C[k] + jj

end
else jj := jj + nS

end
else jj := jj + n4;
if jj > j then
begin

k : = nn - j; jk : = nn - jj ;:
t := A[j]; A[j] := A[jj]; A[jj] := t;
t := B[j); B[j] := B[jj]; B(jj] := t;
t := A[k]; A[k] := A[jk]; A[jk] := t;
t := B[k]; B[k] := B[jk]; Bljk] := t

end
end

end REVERSEBIN ARY;
procedure FFTS(A, B, n, m, ks); value n, m, ks;

integer n, m, ks; array A, B;
comment This procedure computes the fast Fourier transform

for one variable of dimension 2m in a multivariate transform.
n is the number of data points, i.e. n = n1 X n2 X · · · X n.
for a p-variate transform, ks = ?ik X nk+1 X · · · X np , where
nk = 2m is the dimension of the current variable. Arrays A[O:n-
1] and B[O:n-1) originally contailll the real and imaginary com
ponents of the data in normal orde,r. Multivariate data is stored
according to the usual convention, e.g. a;u is in A[jXn2Xna+
kXna+l] for j = 0, 11 • • • , n1 - l~ k = 0, 1, · · · , n2 - 1, and
l = 0, 1, · · · , n3 - 1. On exit, the Fourier coefficients for the
current variable are in reverse binary order. Continuing the
above example, if the "column" variable n2 is the current one,
column

is permuted to position

ko2m-l + k12m-2 + • • • + km-22 + kna-1 •

A separate procedure may be used to permute the results to
normal order between transform steps or all at once at the end.
If n = ks = 2m, the single variate: transform

n-1

(x;+iy;) == L: (ak+ib,b) exp (i211"jk/n)
k-o

for j == O, 1, .. · , n - 1 is computed, where (a+ib) represent
the initial values and (x+iy) represent the transformed values;

begin integer kO, kl, k2, k3, k4, k5, k6, k7, k, span;

COLLECTED ALGORITHMS (cont.)

real AO, Al, A2, A3, A4, A5, A6, A7, BO, Bl,, B2, B3, B4, B5,
B6,B7,x0,xl,x2,x3,x4,x5,x6,x7,y0,yl,y2,y3,y4,y5,y6,y7,
cl, c2, c3, c4, c5, c6, c7, sl, s2, s3, s4, s5, s6, s~r, c45, de, ds, rad;

span := ks; ks := 2 j m; rad := 4.0 X arcta:n(l.O)/ks;
ks := span + ks; n := n - l; c45 := sqrt(0..5); k := m;
comment Radix 8 transform;
form := m - 3 while m ~ 0 do
begin

cl := 1.0; sl := O; kO := O; k := ks;
de := 2.0 X sin(rad) j 2; rad := rad + rad;;
ds := sin(rad); rad := 4 X rad;
span := span + 8;

La: kl := kO +span; k2 := kl+ span; k3 := k2 +span;
k4 := k3 +span; k5 := k4 +span; k6 :== k5 +span;
k7 := k6 +span; AO := A[kO]; BO := B[kO];
Al := A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2];
A3 := A[k3]; B3 := B[k3J;
A4 := A[k4J; B4 := B[k4];
A5 := A[k5]; B5 := B[k5];
A6 := A[k6J; B6 := B[k6J;
A7 := A[k7]; B7 := B[k7J;
xO : = AO + A4; yO : = BO + B4;
x4 := AO - A4; y4 :=BO - B4;
xl := Al + A5; yl := Bl + B5;
x5 := (Al - A5 - Bl + B5) X c45;
y5 := (Al - A5 + Bl - B5) X c45;
x2 : = A2 + A6; y2 : = B2 + B6;
x6 : = B6 - B2; y6 : = A2 - A6;
x3 := A3 + A7; y3 := B3 + B7;
x7 := (A7-A3-B3+B7) X c45;
y7 := (A3-A7-B3+B7) X c45;
Al := xO + x2 - xl - x3; Bl := yO + y2 - yl - y3;
A2 := xO - x2 - yl + y3; B2 := yO - y2 + xl - x3;
A.3 := xO - x2 + yl - y3; B3 := yO - y2 - xl + x3;
A4 := x4 + x6 + x5 + x7; B4 := y4 + y6 + y5 + y7;
A5 := x4 + x6 - x5 - x7; B5 := y4 + y6 - y5 - y7;
A 6 : = x4 - x6 - y5 + y7; B6 : = y4 - y6 + x5 - x7;
A 7 : = x4 - x6 + y5 - y7; B7 : = y4 - y6 - x5 + x7;
A[kO] := xO + x2 + xl + x3; B[kO] := yO + y2 + yl + y3;
if sl = 0 then
begin

A[kl] :== Al; B[kl] := Bl;
A [k2] :== A2; B[k2] := B2;
A[k3] := A3; B[k3] := B3;
A[k4] := A4; B[k4] := B4;
A [k5] :== A5; B[k5] := B5;
A[k6] :== A6; B[k6] := B6;
A[k7] := A7; B[k7] := B7

end
else
begin

A[kl] := c4 X Al - s4 X Bl;
B[kl] := s4 X Al + c4 X Bl;
A[k2] := c2 X A2 - s2 X B2;
B[k2] :== s2 X A2 + c2 X B2;
A[k3] := c6 X A3 - s6 X B3;
B[k3] :== s6 X A3 + c6 X B3;
A[k4] := cl X A4 - sl X B4;
B[k4] :== sl X A4 + cl X B4;
A[k5] := c5 X A5 - s5 X B5;
B[k5] :== s5 X A5 + c5 X B5;
A[k6] := c3 X A6 - s3 X B6;
B[k6] :== s3 X A6 + c3 X B6;
A[k7] := c7 X A7 - s7 X B7;
B[k7] := s7 X A7 .f- c7 X B7

end;

kO := k7 +span; if kO < n then go to La.;
kO : = kO - n; if kO ~ k then go to La;
comment Increment sine and cosine values;
if kO ~ span then
begin

c2 := cl - (dcXcl+dsXsl);
s1 := (dsXcl-dcXsl) + sl;

345-P S-- 0

comment The following three statements compensate
for truncation error. If rounded arithmetic is used,
substitute cl := c2;

cl := 1.5-0.5 X (c2 i 2+sl j 2);
sl : = cl X sl; cl : = cl X c2;
c2 : = cl j 2 - sl j 2; s2 : = 2.0 X cl X s1 ;
c3 := c2 X cl-s2 X sl; s3 := c2 X sl + s2 X cl;
c4 := c2j2 - s2j2; s4 := 2.0 X c2 X ~~2;

c5 := cl X c4 - sl X s4; s5 := sl X c4 + cl X s4;
c6 : = c3 j 2 - s3 j 2; s6 : = 2.0 X c3 X .s3;
c7 := cl X c6 - sl X s6; s7 := sl X c6 + cl X s6;
k : = k + ks; go to La

end;
k3 := m

end;
comment If mis not a multiple of 3, then complete the trans

form with radix 2 steps;
for k3 : = k3 - 1 while k3 ~ 0 do
begin

kO := O; span := span + 2;
Lb: k2 := kO +span;

A2 := A[k2]; B2 := B[k2];
A[k2] := A[kO] - A2; B[k2] := B[kO] - B2;
A[kO] := A[kO] + A2; B[kOJ := B[kOJ + B2;
kO := k2 +span; if kO < n then go to Lb;
kO := kO - n; if kO < ks then go to Lb;
if ks = span then go to Ld;

Le: k2 := kO +span;
A2 := A[kO] - A[k2]; B2 := B[kO] - B[k2];
A[kO] := A[kO] + A[k2]; B[kO] := B[kO] -t- B[k2];
A[k2] := -B2; B[k2] := A2;
kO := k2 +span; if kO < n then go to Le;
kO := kO - n; if kO < span then go to Le;

Ld,; end
end FFT8;
procedure REVFFT8(A, B, n, m, ks); value n, m, ks;

integer n, m, ks; array A, B;
comment This procedure computes the fast Fourier transform

for one variable of dimension 2m in a multivariate transform.
n is the number of data points, i.e., n = n1 X n2 X · · · X np
for a p-variate transform, and ks = nk+1 X nk+2 X · · · X np ,

where nk = 2m is the dimension_of the current variable. Arrays
A[O:n-1] and B[O:n-1] originally contain t,he real and imagi
nary components of the data with the indict::lS of each variable
in reverse binary order, e.g. a;1c1 is in A[j'Xn2Xna+k'Xna+l']
for j = 0, 1, · .. , n1 - 1, k = 0, 1, · · · , n2 - 1, and Z ==
0, 1, · · · , n3 - 1, where j', k', and Z' are the bit-reversed values
of j, k, and Z. On completion of the multivariate transform, the
real and imaginary components of the resulting Fourier coeffi
cients are in A and B in normal order. If n = 2m and ks = 1,
a single-variate transform is computed;

begin integer kO, kl, k2, k3, k4, k5, k6, k7, k, span;
real AO, Al, A2, A3, A4, A5, A6, A7, BO, Bl, B2, B3, B4, B5,
B6,B7,~,rl,~,d,~,x~~'~'y0'~'~'~,y~y~~,y~
cl, c2, c3, c4, c5, c6, c7, sl, s2, s3, s4, s5, s61, s7, c45, de, ds, rad;

rad := 4.0 X arctan(l.O); n :== n - l;
c45 := sqrt(0.6); span := ks;
com.ment Compute radix 2 steps if mis not a multiple of 3;
k3 := (m+3) X 3;
for k3 : = k3 + 1 while k3 ~ m do
begin

COLLECTED ALGORITHMS (cont.)

kO := O;
La: k2 := kO +span;

A2 := .A[k2); B2 := B[k2);
A[k2] := A[kOJ - A2; B[k2J := B[kO) - B2;
A[kO) := A[kO) + A2; B[kOJ := B[kO) + .B2;
kO := k2 +span; if kO < n then go to La;
kO := kO - n; if kO <ks then go to La;
if ks = span then go to Le;

Lb: k2 := kO +span;
A2 := A[k2J; B2 :== B[k2);
A[k2J := A[kO) + B2; B[k2J := B[kO] - A2;
A[kOJ := A[kO] - B2; B[kOJ := B[kO) + A2;
kO := k2 +span; if kO < n then go to Lb;
kO := kO - n; if kO <span then go to Lb;

Le: span := span + span; rad := 0.5 X rad
end;
comment Radix 8 transform;
for m : = m ·- 3 while m ~ 0 do
begin

cl := 1.0; sl := O; kO := O; k := ks;
rad := 0.125 X rad; de := 2.0 X sin(rad) j 2;
ds := sin(rad+rad);

Ld: kl := kO +span; k2 := kl+ span; k3 := k2 +span;
k4 := k3 +span; k5 := k4 +span; k6 := k5 +span;
k7 := k6 +span; AO := A[kO); BO := B[kO];
if s1 = 0 then
begin

Al := A[kl]; Bl := B[kl);
A2 := A[k2]; B2 := B[k2];
A3 := A[k3J; B3 := B[k3J;
A4 := A[k4J; B4 := B[k4];
A5 := A[k5J; B5 := B(k5J;
A6 := A[k6J; B6 := B[k6J;
A7 := A[k7]; B7 := B[k7J

end
else
begin

Al := A[kl] X c4 - B[kl] X s4;
Bl := A[kl] X s4 + B[kl] X c4;
A2 := A[k2] X c2 - B[k2] X s2;
B2 := A[k2] X s2 + B[k2] X c2;
A3 := .A[k3) X c6 - B[k3] X s6;
B3 := A[k3) X s6 + B[k3] X c6;
A4 := A[k4] X cl - B[k4] X sl;
B4 := A[k4] X sl + B[k4] X cl;
A5 := A[k5] X c5 - B[k5] X s5;
B5 := A[k5) X s5 + B[k5] X c5;
A6 := A[k6] X c3 - B[k6] X s3;
B6 := A[k6J X s3 + B[k6] X c3;
A7 := A[k7] X c7 - B[k7J X s7;
B7 := A[k7] X s7 + B[k7] X c7

end;

xO : = AO + A 1 + A2 + A3; yO : = BO + Bl + B2 + B3;
xl := AO - Al - B2 + B3; yI := BO - Bl + A2 - A3;
x2 := AO + Al - A2 - A3; y2 := BO + Bl - B2 - B3;
x3 :=AO - AI+ 82 - B3; y3 :==BO - Bl - A2 + A3;
x4 := A4 + A5 + A6 + A7; y4 := B4 + B5 + B6 + B7;
x5 := (A4-A5-B6+B7) X c45;
y5 := (B4-B5+A6-A7) X c45;
x6 := A4 + A5 - A6 - A7; y6 := B4 + B5 - B6 - B7;
x7 := (A4-A5+B6-B7) X c45;
y7 := (B4-B5-A6+A7) X c45;
A[kO] := xO + x4; B[kO) := yO + y4;
A[kl] := xl -1- x5 - y5; B[kl] := yl + x5 + y5;
A(k2J := x2 - y6; B[k2J := y2 + x6;
A[k3] := x3 - x7 - y7; B[k3] := y3 + x7 - y7;
A[k4] := xO - x4; B[k4] := yO - y4;
A[k5] := xl - x5 + y5; B[k5J := yl - x5 - y5;

345-P 6- 1

A[k6] := x2 + y6; B[k6] := ir2 - x6;
A[k7] := x3 + x7 + y7; B[k7) := y3.:.. x7 + y7;
kO := k7 +span; if kO < n then go to Ld;
kO := kO - n; if kO < k the1t1 go to Ld;
comment Increment the sirn~ and cosine values;
if kO ~ span then
begin

c2 := cl - (dcXcl+dsXsl);
s1 := (dsXcl-dcXsl) + sl;
comment The following three statements compensate

for truncation error. If rounded arithmetic is used,
substitute cl := c2;

cl := 1.5-0.5 X (c2 t 2+sl j .2);
sl := cl X 81; cl := cl X c2;
c2 : = cl j 2 - s1 j 2; s2 : = 2.0 X cl X s1;
cq := cl X c2 - sl X s2; s3 := s1 X c2 + cl X s2;
c4 : = c2 j 2 - s2 t 2; s4 : = 2.0 X c2 X s2;
c5 := cl X c4 - s1 X s4; s5 := sl X c4 + cl X s4;
c6 :== c3 j 2 - s3 j 2; s6 := 2.0 X c3 X s3;
c7 := cl X c6 - s1 X s6; s7 := s1 X c6 + cl X s6;
k : = k + ks; go to Ld

end;
span := 8 X span

end
end REVFFT8

REMARK ON ALGORITHM :345 [C6]
AN ALGOL CONVOLUTION PROCEDURE BASED
ON THE FAST FOURJER TRANSFORM [Richard C.

Singleton, Comm. ACM 12 (Mar. 1969), 179)
RICHARD C. SINGLETON (Recd. 15 May 1969)
Stanford Research Institute, Menlo Park, CA 94025
KEY WORDS AND PHRASES: fast Fourier transform, com

plex Fourier transform, multivariate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly
nomials, orthogonal transformation, convolution, autocovari
ance, autocorrelation, cross-correlation, digital filtering, per
mutation

CR CATEGORIES: 3.15, 3.83, 5.12, 5.14

On page 180, column 2, the 3rd and 2nd lines from the end of
procedure CONVOLUTION must be interchanged, i.e. the final
four lines should read:

begin C[n-j] := scale X (C[j] - D[.71);
C[j] : = scale X (C[j] + D[j))

end
end CONVOLUTION;
The procedures included in Algorithm 345 were punched from

the printed page and tested on the CDC 6400 ALGOL compiler.
After making the one correction the test results agreed with those
obtained earlier with this compiler.

\1'1

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 346
F-TEST PROBABILITIES [S14]
JoHN MORRIS (Recd. 10 Apr. 1968, 12 Sept. 1968, and

6 Nov. 1968)
Computer Institute for Social Science Research, Michigan

State University, East Lansing, MI 488~~3

KEY WORDS AND PHRASES: F-test, Snedecor F-statistic,
Fisher test, distribution function

CR CATEGORIES: 5.5
procedure Ftest U, dfl, df2, maxn, prob, gaus.s, error);

value f, dfl, df2, maxn; real f, prob; integ•~r dfl, df2, maxn:
real procedure gauss; label error;

comment This procedure gives the probability that F will be
greater than the value off where

f = u12/u22,

u1 2 is the variance of the sample with size Ni , u 2
2 is the variance

of the sample with size N2, dfl = N1 - 1, df2 = N2 - 1,
and F is the Snedecor-Fisher statistic as defined and tabled by
Snedecor [4].

The present algorithm computes a value which is directly
related to that of Algorithm 322, such that prob = 1 - Fisher.
A number of test runs on various computers suggest that Ftest
may be considerably faster than Fisher.

An approximation is included to limit execution time when
sample size is large. It should be used when register overflow
would otherwise result, and the appropriate value for maxn
will therefore depend upon the specific implementation. When
maxn = 500 the approximation appears to give three-digit
accuracy. The real procedure gauss computes the area under
the left-hand portion of the normal curve. Algorithm 209 [3]
may be used for this purpose. If f < 0 or if dfl < 1 or if df2 < 1
then exit to the label error occurs.

National Bureau of Standards formulas ~~6.6.4, 26.6.5, and
26.6.8 are used for computation of the statistic, and 26.6.15 is
used for the approximation [2].

Thanks to Mary E. Rafter for extensive testing of this proce
dure and to the referee for a number of suggestions.

REFERENCES:
1. DoRRER, EGON. Algorithm 322, F-Distribution. Comm.

ACM 11 (Feb. 1968), 116-117.
2. Handbook of Mathematical Functions. N:!ttional Bureau of

Standards, Appl. Math. Ser. Vol., 55, Washington,
D.C., 1965, pp. 946-947.

3. IBBETSON, D. Algorithm 209, Gauss. Comm. ACM 6
(Oct. 1963), 616.

4. SNEDECOR, GEORGE W. Statistical Meth<)ds. Iowa State U.
Press, Ames, Iowa, 1956, pp. 244-250;

begin
if dfl < 1 V df2 < 1 V f < 0.0 then go to error;
if f = 0.0 then prob := 1.0
else
begin

real fl, j:2, x, ft, vp;
fl := dfl; f2 := df2; ft := 0.0;
x := f2/(f2+flXf); vp :=fl + f2 - 2.0j;
if 2 X (d.fl+2) = dfl /\ dfl ~ maxn then
begin

346-P 1- 0

real xx; xx := 1.0 - x;
for fl : = fl - 2.0 step - 2.0 until 1.0 do
begin

vp := vp - 2.0;
ft := xx X vp/fl X (1.0+ft)

end;
ft := x j (0.5Xf2) X (1.0+ft)

end
else if 2 X (df2 + 2) = df2 /\ df2 ~ maxn then
begin

for f2 : = f2 - 2.0 step - 2.0 until 1.0 do
begin

vp := vp - 2.0;
ft : = x X vp/j2 X (1.0+ft)

end;
ft := 1.0 - (1.0-x) j (0.5Xfl) X (l.O+ft)

end
else if dfl + df2 ~ maxn then
begin

real theta, sth, cth, sts, cts, a, b, xi, gamma;
theta := arctan(sqrt(j1Xf/f2));
sth := sin(theta); cth := cos(theta);
sts := sth j 2; cts: = cth j 2;
a:= b := 0.0;
if df2 > 1 then
begin

for f2 := f2 - 2.0 step - 2.0 until 2 .. 0 do
a := cts X (f2-l.O)/f2 X (1.0+a);

a := sth X cth X (1.0+a)
end;
a := theta +a;
if dfl > 1 then
begin

for fl :=fl - 2.0 step - 2.0 until 2.0 do
begin

vp := vp - 2.0;
b := sts X vp/fl X (l.O+b)

end;
gamma := 1.0; f2 := 0.5 X df2;

for xi := 1.0 step 1.0 until f2 do
gamma := xi X gamma/(xi-0.5);

b := gamma X sth X cth j df2 X (l.O+b)
end;
ft : = 1.0 + 0.636619772368 X (b-a);
comment 0.6366197723675813430755351 · · • =- 2.0/7r;

end
else
begin

real cbrf;
fl := 2.0/(9.0 X fl); f2 := 2.0/(9.0X/2);
cbrj :=Ji 0.333333333333;
ft := gauss(-((1.0-f2)Xcbrf+fl-l.O)/

sqrt(f2Xcbrfj 2+fl))
end;
prob : = if ft < 0.0 then 0.0 else ft

end
end Ftest

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 347
AN EFFICIENT ALGORITHM FOR SORTING WITH

MINIMAL STORAGE [Ml]
RICHARD C. SINGLETON* (Recd. 17 Sept. 1968)
Mathematical Statistics and Operations Research De

partment, Stanford Research Institute, Menlo Park,
CA 94025

• This work was supported by Stanford Research Institute with
Research and Development funds.

KEY WORDS AND PHRASES: sorting, minimal storage sort
ing, digital computer sorting

CR CATEGORIES: 5.31

procedure SORT(A, i, j);
value i, j; integer i, j;
array A;

comment This procedure sorts the elements of array A into
ascending order, so that

A[k] :s; A [k+l], k - i, i + 1, ..• , j - 1.

The method used is similar to QUICKERSORT by R. S. Scowen
(5], which in turn is similar to an algorithm given by Hibbard
[2, 3] and to Hoare's QUICKSORT [4]. QUICKERSORT is used
88 a standard, 88 it was shown in a recent comparison to be the
fastest among four ACM algorithms tested [1]. On the Bur
roughs B5500 computer, the present algorithm is about 25
percent faster than QUICKERSORT when tested on ran
dom uniform numbers (see Table I) and about 40 percent
faster on numbers in natural order (1, 2, · · · , n), in reverse
order (n, n-1, · · · , 1), and sorted by halves
(2, 4-, • • • , n, 1, 3,. · · , n-1). QUICKERSORT is slow in sorting
data with numerous "tied" observations, a problem that can be
corrected by changing the code to exchange elements a[k] ;::: t
in the lower segment with elements a[q] s; t in the upper seg
ment. This change gives a better split of the original segment,
which more than compensates for the additional interchanges.

In the earlier algorithms, an element with value twas selected
from the array. Then the array was split into a lower segment
with all values less than or equal tot and an upper segment with
all values greater than or equal to t, separated by a third seg
ment of length one and value t. The method was then applied

347-P 1 0

TABLE I. SORTING TIMES IN SECONDS FOR SORT AND

QUICKERSORT, ON THE BURROUGHS B5500

COMPUTER-AVERAGE OF FIVE TRIALS

Algorithm
Original. order and number of items SORT QUICKERSORT

Random uniform:
500 0.48 0.63

1000 1.02 1.40
Natural order:

500 0.29 0.48
1000 0.62 1.00

Reverse order:
500 0.30 0.51

1000 0.63 1.08
Sorted by halves:

500 0.73 1.15
1000 1.72 2.89

Constant value:
500 0.43 10.60

1000 0.97 41.65

recursively to the lower and upper segments, continuing until
all segments were of length one and the data were sorted. The
present method differs slightly-the middle segment is usually
missing-since the comparison element with value t is not re
moved from the array while splittr.ng. A more important differ
ence is that the median of the values of A[i], A[(i+j)+2J, and
A[j] is used fort, yielding a better estimate of the median value
for the segment than the single element used in the earlier
algorithms. Then while searching for a pair of elements to
exchange, the previously sorted data (initially, A[i]s;ts;A[jJ)
are used to bound the search, and the index values are compared
only when an exchange is about to be made. This leads to a small
amount of overshoot in the search, adding to the fixed cost of
splitting a segment but lowering the variable cost. The longest
segment remaining after splitting a segment o n has length
less than or equal to n - 2, rather than n - 1 as in
QUICKERSORT.

For efficiency, the upper and lower segments after splitting
should be of nearly equal length. Thus t should be close to the
median of the data in the segment to be split. For good statis
tical properties, the median estimate should be based on an odd
number of observations. Three gives an improvement over one
and the extra effort involved in us'.ing five or more observations
may be worthwhile on long segments, particularly in the early
stages of a sort.

Hibbard [3] suggests using an alternative method, such as
Shell's [6], to complete the sort on short sequences. An experi
mental investigation of this idea using the splitting algorithm
adopted here showed no improvement in going beyond the final
stage of Shell's algorithm, i.e. the familiar "sinking" method of
sorting by interchange of adjacent pairs. The minimum time
was obtained by sorting sequences of 11 or fewer items by this
method. Again the number of comparisons is reduced by using
the data themselves to bound the downward search. This
requires

A[i-1] s; A[k], i s; k s; j.

COLLECTED ALGORITHMS (cont.)

Thus the initial segment cannot be sorted in this way. The
initial segment is treated as a special case and sorted by the
splitting algorithm. Because of this feature, the present al
gorithm lacks the pure recursive structure of the earlier al
gorithms.

For n elements to be sorted, where 2k s n < 2k+1, a maximum
of k elements each are needed in arrays IL and JU. On the B5500
computer, single-dimensional arrays have a maximum length
of 1023. Thus the array bounds [0:8] suffice.

This algorithm was developed as a FORTRAN subroutine, then
translated to ALGOL. The original FORTRAN v1~rsion follows:

SUBROUTINE SORT(A,Il,JJI
C SORTS ARRAY A lNTO INCREASING ORDER, FROM Alli! TO A(JJ)
C OROERlNG IS ~y INTEGER SUBTRACTION, THUS FLOATING POINT
C NUMBERS MUST BE lN NORMALIZED FORM.
C ARRAYS IUIKI ANO TLIKI PERMIT SORTING UP TO Z**(K+ll-1 ELEMENTS

DIMENSION Alll,JUl161,IL(l6)
INTEGFR A,T,TT
"1=1
I= I I
J=JJ

5 IFll .GE. JI GO TO 70
10 K=I

IJ=IJ+Il/2
T=A I I Jl
IF!AIIl .LE. Tl GO TO 20
Al IJJ=AI I I
Alll=T
T=AllJI

20 L=J
IFIA!Jl .GE. Tl GO TO 40
AIIJl=AIJI
AIJl=T
T=A I 1 JI
IF!Alll .LE. Tl GO TO 40
Al I Jl=AI l l
Alll=T
T=AllJI
GO Hl 40

~O AILl=AIKI
AIKl=TT

40 L=L-1
IFIAILI .GT. Tl GO TO 40
TT=AILI

50 K=K+l
IFIAIKl .LT. Tl GO TO 50
IFIK .LE. Ll GO TO 30
IFIL-I .tE. J-KI GO TO 60
ILPO=I
IU!Ml=L
I=K
M=~+l

GO Tn BO
60 lLIMl"'K

lUIMl=J
J=L
M=,,,+1
GO TO BO

70 M=M-1
TFIM .EQ. 01 RETURN
I=JLI Ml
J=TUIMI

BO TF I J-1 .GE. 111 GO TO 10
IF (I .EQ., I I I GO TO 5
I=I-1

90 I= T +l
IF! I .EQ .. J, GO TO 70
T=AII+ll
TFI Al I I .. LE. Tl GO TO 90
K=I

100 A(K+ll=AIK)
K=K-1
IFIT .LT .. AIKJ I GO TO 100
AIK+ll=T
GO TO 90
ENO

This FORTRAN subroutine was tested on a CDC 6400 computer.
For random uniform numbers, sorting times divided by n log2 n
were nearly constant at 20.2 X 10-6 for 100 ::;; n S 10,000, with
a time of 0.202 seconds for 1000 items. This subroutine was also
hand-compiled for the same computer to produce a more efficient
machine code. In this version the constant of proportionality
was 5.2 X 10-6, with a time of 0.052 seconds for 1000 items. In
both cases, integer comparisons were used to order normalized
floating-point numbe:s.
REFERENCES:

1. BLAIR, CHARLES R. Certification of algorithm 271. Comm.
ACM 9 (May 1966), 354.

347~P 2-- 0

2. HIBBARD, THOMAS N. Some combinatorial properties of cer
tain trees with applications to searching and sorting. J.
ACM 9 (Jan. 1962), 13-28.

3. HIBBARD, THOMAS N. An empirical study of minimal storage
sorting. Comm. ACM 6 (May 1963), 206-213.

4. HOARE, C. A. R. Algorithms 63, Partition, and 64, Quicksort.
Comm. ACM 4 (July 1961), 321.

5. ScoWEN, R. S. Algorithm 271, Quickersort. Comm .. ACM 8
(Nov. 1965), 669.

6. SHELL, D. L. A high speed sorting procedure. Comm. ACM 2
(July 1959), 30-32;

begin
real t, tt;
integer ii, ij, k, L, m;
integer array IL, /U[0:8];
m : = 0; ii : = i; go to L4;

Ll: ij := (i+j) + 2; t := A[ij]; k :== i; L := j;
if A[i] > t then

begin A[ij] := A[i]; A[i] := t; t := A[ij] end;
if A[j] < t then
begin

A[ij] := A[j]; A[j] := t; t :== A[ij];
if A[i] > t then

begin A[ij] .- A[i]; A[i] :== t; t := A[ij] end
end;

L2: L := L - l;
if A[LJ > t then go to L2;

tt := A[L];
L3: k := k + 1;

if A[k] < t then go to L3;
if k SL then

begin A[L] := A[k]; A[k] := tt; go to L2 end;
if L - i > j - k then

begin IL[m] := i; IU[m] := L; i := k end
else

begin IL[m] := k; IU[m] := j; j := Lend;
m := m + 1;

L4: if j - i > 10 then go to Ll;
if i == ii then
begin if i < j then go to Ll end;
for i : = i + 1 step 1 until j do
begin
t := A[i]; k := i - l;
if A[k] .. > t then
begin

L5: A[k+l] := A[k]; k := k - l;
if A[k] > t then go to L5;
A[k+ll .- t
end

end;
m : = m - 1; if m ~ 0 then

begin i := IL[m]; j := IU[m]; go to L4 end
end SORT

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 347 [Ml]
AN EFFICIENT ALGORITHM FOR SORTING
WITH MINIMAL STORAGE

[Richard C. Singleton, Comm. ACM 12 (Mar. 1969),
185]

ROBIN GRIFFIN AND K. A. REDISH (Recd. 14 Apr. 1969
and 11 Aug. 1969)

McMaster University, Hamilton, Ontario, Canada
KEY WORDS AND PHRASES: sorting, minimal storage sort
ing, digital computer sorting
CR CATEGORIES: 5.31

The algorithm was tested on the CDC 6400 ALGOL compiler
(version 1.1, running under the SCOPE operating system, version
3.1.4). One trial was made using an array of 5000 pseudorandom
numbers; the results were correct.

The central processor time was about 6.9 seconds corresponding
to a value for K (defined below) of about 110 microseconds.

It would be more in the spirit of ALGOL to follow QUICKER
SORT [1] and give arrays IL and JU dynamic bounds. This in
volves changing line 4 on page 187 from

integer array IL, IU[0:8];
to

integer array IL, IU[O:ln(j-i+l)/ln(2)-0.9];
The FORTRAN subroutine given in the comments to the.algo

rithm was tested on a CDC FORTRAN compiler (the RUN compiler
version 2.3, running under the SCOPE operating system, version
3.1.4). Tests were made with each of the five initial orderings
described with the algorithm for a variety of array lengths from
500 to 40,000. For integer arrays, the results were correct; but
when the actual argument corresponding to the dummy argument
A was a real array containing large positive and negative numbers,
errors occurred. This does not invalidate the subroutine, but the
comments should be changed to

C SORTS INTEGER ARRAY A INTO INCREASING OR
DER, FROM A(II) TO A(IJ)

C ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO
2** (K+ 1) - 1 ELEMENTS

C THE USER SHOULD CONSIDER THE POSSIBILITY OF
INTEGER OVERFLOW

C THE ONLY ARITHMETIC OPERATION ON THE ARRAY
ELEMENTS IS SUBTRACTION

This gives enough information (and a hint) but leaves the re
sponsibility for any abuse of American National Standards In
stitute (formerly USASI) FORTRAN where it belongs-with the
user.

The subroutine was also tested on the IBM 7040 FORTRAN com
piler (the IBFTC compiler running under the IBSYS operating
system, version 9level10). The results were correct. The statement

INTEGER A, T, TT

was removed and the amended subroutine tested using similar,
but real, arrays. The results were again correct; running times
increased by up to 5 percent on the CDC 6400 and were unchanged
on the IBM 7040.

Tables I and II summarize the information on running times
in terms of K, where

time = Kn log2 n

(runs of other lengths are omitted for brevity).

347-P 3- 0

TABLE I. SonTING TIMES
Kin microseconds where time =Kn log, n

Test

Original order and number
of items ·

Random uniform
500

1000
5000

10000
40000

Natural order
500

1000
5000

10000
40000

Reverse order
500

1000
5000

10000
40000

Sorted by halves
500

1000
5000

10000
40000

Constant value
500

1000
5000

10000
40000

Method

Burroughs CDC 6400 CDC 6400 FOR- IBM 7040
5500 FORTRAN TRAN (INTE- FORTRAN

ALGOL* (REAL) GER AR.RAY)

107
102

65
62

67
63

163
173

96
97

21.2
21. 7
21.1
21.1
21.2

12.9
13.1
12.6
12.7
12.9

14.3
13.9
13.4
13.4
13.5

34.8
37.1
39.5
41.8
46.6

19.2
19.4
19.4
19.9
20.2

20.5
20.5
20.2
20.1
20.1

12.5
12.4
11.9
12.0
12.1

13.4
13.4
12.7
12.7
12.8

32.6
35.1
37.2
39.3
44.1

18.5
18.7
18.7
19.0
19.5

269
263

146
148

158
158

465
491

237
241

* Calculated from Singleton's results

TABLE II. VALUES OF n log2 n
~~~~--~~~~~~-

n 500 1000 5000 10000 40000 

o. 00448 o. 0099e; o. 0014 o .1329 o. 6115 

For use as a library routine one Blight change is recommended: 
JJ-11 should be tested on entry and a suitable error message pro
duced if negative. It would be possible to transfer "work" arrays 
to replace JU and IL thus allowing the user more control of storage 
allocation but the additional instructions needed to handle the 
extra arg~ments reduce the saving and this is hardly worthwhile. 

The authors would like to thank the referee for his helpful 
comments. 

REFERENCE: 
1. ScoWEN, R. S. Algorithm 271, Quickersort. Camm. ACM 8 

(Nov. 1965), 669-670. 



COLLECTED ALGORITHMS (cont.) 

REMARK ON ALGORITHM' 347 [Ml] 
AN EFFIG!ENT ALGORITHM FOR SORTING WITH 

MINIMAL STORAGE [Richard C. Singleton, Comm. 
ACM 12 (Mar. 1969), 185] 

RICHARD PE~ro (Recd. 18 Feb. 1970) 
Medical Research Council, 115 Gower Street, London 

W.C. l 

KEY WORDS AND PHRASES: sorting, ranking, minimal stor
age sorting, digital computer sorting 
CR CATEGORIES: 5.31 

If the values of ij, instead of always being (i+j) + 2, are at 
varying positions between i and j, then there is less likelihood of 
peculiar initial structure causing failure of the algorithm to per
form rapidly. The position of ij can be made to vary by replacing 
the statements 

m := O; ii:= i; go to L4; Ll: ij := (i+j) + 2; 

by 
real r; r := 0.375; m := O; ii := i; go 1~o L4; 
Ll: r := if r > 0.58984375 then r - 0.21875 else r + 0.0390625; 
ij := i + (j-i) X r; 

colUlllent These four decimal constants, which are respectively 
48/128, 75.5/128, 28/128, and 5/128, are rather arbitrary. On 
most compilers their binary representations will be exact, and 
the use of them in the statement Ll causes r to vary cyclically 
over the 33 values 48/128 · · · 80/128. Therefore ij takes a varia
ble position somewhere within the middle quarter of the segment 
to be sorted. Wider variation of ij would be undesirable in the 
special case of a partially presorted array; 

In sorting a.n array of N elements which are initially in random 
order this will waste (on ICL Atlas) less than N /105 seconds, but 
if the array is, for example, composed initially of two equal pre
sorted halves, then the use of the original rather than the modi
fied version would more than double the sorting time required if 
N > 10'. 

As the author points out, the published version could fail if 
used to sort arrays of 1024 or more elements because the upper 
bounds of IU and IL might be inadequate. For a standard pro
cedure the declaration IL, JU [0:8] should he replaced by the 
declaration IL, IU [0:20]. This permits the sorting of arrays of up 
to 4 million elements, which is, with present core store sizes, suffi
cient. 

The statement tt : = a[L] which precedes LS: will be executed less 
frequently if it is transferred into the next conditional statement, 
which then reads 

if k ~ L 1then begin tt := a[L]; a[L] := a[k]; a[k] := tt; 
go to L2 end 

347-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 348 
MATRIX SCALING BY INTEGER PROGRAMMING 

[Fl] 
R.R. KLIMPEL (Recd. 4 Mar. 1968, 13 June 1968, 16 Oct. 

1968 and 21 Nov. 1968) 
Computation Research Laboratory, The Dow Chemical 

Co., Midland, MI 48640 

KEY WORDS AND PHRASES: integer programming, linear 
algebra, mathematical programming, matrix condition, matrix 
scaling 

CR CATEGORIES: 5.14, 5.41 

procedure scale (a, m, n, g, u, v); 
value m, n, g; integer m, n; real g; 
real array a; integer array u, v; 

comment The use of scaling to precondition matrices so as to 
improve subsequent computational characteristics is of con
siderable importance. To measure the scaling condition of a 
matrix,ai; (i=l, · · · , m andj=l, · · · , n), Fulkerson and Wolfe 
[1] suggested the ratio of the matrix entry of largest absolute 
value to that of the smallest nonzero absolute value. This 
procedure implements the method of [1], i.e. finding multipli
cative row factors, r;, and column factors, s;, which, when ap
plied, minimize the above condition number. The minimization 
problem can be expressed as an equivalent additive discrete 
problem by taking logarithms and defining: 

b,1 = log, (abs (a,1)) 

and taking CiJ to be the least integer greater than or equal to 
bii. Thus the formulation becomes: minimize au integer w 
subject to the constraints 0 $ "-'i + v; + Ci; :::; w where Ui and 
v; are unrestricted and integral in value. The effect of decreasing 
the value of the base g would be to more accurately approximate 
the continuous scaling problem by the discrete form. 
REFERENCE: 

1. FULKERSON, D. R., AND WOLFE, P. An algorithm for scaling 
matrices. SIAM Rev. 4 (1962), 142-146; 

begin 
integer array c[l:m, l:n], ri[l:m], si[l:n]; 
real val; 
integer max, store, markr, markc, num, nopt, i, j; 
nopt := O; 
comment Create initial integer matrix c. Due to machine 

round-off errors, it may be desirable for some problems to 
insert a tolerance when checking for zero values of the input 
matrix and for matrix entries which are exact integral powers 
of the base g; 

for i := 1 step 1 until m do 
for j := 1 step 1 until n do 
begin 

if (a[i, j]=O) then 
begin 

c[i, j] := O; 
go to intf 

end; 

val := ln(abs(a[i, j]))/ln(g); 
c[i, j] := entier(val) + 1; 

348-P 1- 0 

if ((c[i, j]-l)=val) then c[i, J] := c[i, j] - 1; 
intf: 

end; 
comment Select initial values of u; and v; that satisfy con

straints of discrete formulation; 
for i := 1step1 until m do 
begin. 

u[i] := c[i, 1]; 
for j := 2 step 1 until n do 

if (c[i, j]<u[iJ) then u[i] :=: c[i, j]; 
u[i] := -u[i] 

end; 
for j := 1 step 1 until n do 
begin 

v[j] := c[l, j] + u[l]; 
for i := 2 step 1 until m do 
begin 

store := c[i, j] + u[i]; 
if (store<v[j]) then v[j] .- store; 

end; 
v[jJ := -v[j]; 

end· 
com'ment Step one. Initialize irow and column markers with 

unmarked rows and columns demoted by a 1 in ri[i] and si[j], 
respectively. Locate and marlk:: maximum entry of current 
working array; 

rcmax: max := O; 
for i := 1step1 until m do 
begin 

ri[i] := 1; 
for j := 1step1 until n do 
begin 

if (i = 1) then si[j] := 1; 
if (nopt=O) then c[i, j] := u[i] + v[j] + c[i, j]; 
if (c[i, jJ;;::max) then 
begin 

markr := i; 
markc := j; 
max : = c[i, j] 

end 
end 

end; 
nopt := 1; 
ri[markr] := -1; 
comment Repeat steps two and three in succession until 

there are either no freshly marked rows or no freshly marked 
columns. Any row or column m:irked in the immediately pre
ceding application of step one, two, or three is called freshly 
marked and denoted by -1 iin the appropriate indicator 
vector. Previously marked rows and columns that are not 
freshly marked are denoted by zero values; 

comment Step two; 
rmarks: num := O; 

for i := 1 step 1 until m do 
begin 

if (ri[i]>-1) then go to rmarkf; 



COLLECTED ALGORITHMS (cont.) 

ri[i] := O; 
num := num + 1; 
for j := 1step1 until n do 

if (si[j]=l) /\ (c[i, j]=O) then si[j] .- -'1; 
rmarkf: 

end; 
if (num=O) then go to change; 
comment St;ep three; 
num := O; 
for j := 1 step 1 until n do 
begin < 

if (si[j]>-1) then go to cmarkf; 
si[j] := O; 
num := num + 1; 
for i := 1step1 until m do 

if (ri[i] = 1) /\ 
((c[i, j]=max) V(c[i, j]= (max-1))) then 
ri[i] := -1; 

cmarkf: 
end; 
if (num~O) then go to rmarks; 
comment Step four. Modify integer scaling factors u and v 

and adjust current working matrix (ci;+u1+v1); 

change: if (si[markc]<l) then go to finis; 
for i : = 1 step 1 u,ntil m do 
if (ri[i] < 1) then 
begin 

u[i] := u[i] - 1; 
for j := 1step1 until n do 

c[i, j] := c[i, j] - 1 
end; 
for j := 1step1 until n do 
if (si[j)<l) then 
Le gin 

v[j] := v[.i] + 1; 
for i := 1step1 until m do 

c[i, j] := c[i, j] + 1 
end; 
go to rcmax; 

finis: 
end 

348--P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 349 
POLYGAMMA FUNCTIONS WITH ARBITRARY 

PRECISION* [814] 
ADILSON T ADEU DE MEDEIROS AND 

GEORGES ScHWACHHEIM (Recd. 15 Mar. 1968, 1 July 
1968, 28 Oct. 1968 and 3 Dec. 1968) 

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, 
ZC 82, Brasil 

"' This work was supported by the Conselho N acional de Pesquisas 
and the Banco Nacional do Desenvolvimento Economico of Brasil. 

KEY WORDS AND PHRASES: polygamma function, psi 
function, diganuna function, trigamma function, tetragamma 
function, pentagamma function, special functions 

CR CATEGORIES: 5.12 

procedure polygamma (n, z, nd, polygam, error); 
value n, z, nd; real z, polygam; integer n, nd; label error; 

comment This procedure assigns to polygam the value of the 
polygamma function of order n for any real argument z. For 
n = 0, we have the psi or digamma function, for n = 1 the tri
gamma function, for n = 2 the tetragamma function, and so on. 
For arguments that are poles of the function (nonpositive 
integer values), an exit is made through the label error. The 
parameter nd gives the requested relative precision expressed 
in number of decimal digits. 

It computes the polygamma function through the asymptotic 
series 

( )() ( 1) _1 [<n - 1)1 n! ;... (2k + n - 1)1] 
1/;n Z ~ - n --- +--+~ B2k-----

zn 2zn+l rl (2k) l zak+n 

except for n = 0, when the first term is -In (z). 
If the simple empirical relationship 

2z>n+nd 

is true, as well as z > n, one enters directly into the asymptotic 
series with the original argument. Otherwise, the computation 
of small arguments is reduced to that of sufficiently large argu
ments, applying repeatedly the recurrence relation: 

To save computation time, the argument, once larger than n, 
is increased just to the point when the minimum term of the 
asymptotic expansion is sufficiently small so as not to alter the 
value of the result within the chosen precision. 

The order of the minimum term is estimated by the first order 
approximation 

7rZ - n/2, 

and the corresponding absolute value by the approximation 
formula 

(27r )n exp (-27rZ). 

Negative arguments are related to positive ones through the 
reflection formula: 

dn 
(- l)n 1/;Cnl(l - z) = !fCnl(z) + 7r - cot 7rZ 

dzn 

349-P 1- 0 

The nth-order derivative of the cotangent is computed by 
term by term differentiation of the tangen1; or cotangent series 
after the convenient trigonome1;ric reductions of the argument's 
value. 

This procedure is not recursive and uses no own variable; 
begin 

real pi, pf, soma, zq, tl, fac, pr.ec, w, sab, pv; 
integer pr, nl, kl, ml; 
real procedure fat (n); 

value n; integer n; 
begin 

real f; integer i; 
f := l; 
for i := n step -1 until 2 d!o f := f X i; 
fat := f 

end of fat; 
procedure inc (s, xl, L); 

real s, xl; label L; 
begin 

real sant; 
sant : = s; s : = s + xl; 
if abs (s-sant) ::; abs (prec X' s) then go to L 

end of i'nc; 
comment The procedure polygamma uses a table of coeffi

cients sb for its series with the value 

00 

. I B2i I 'f;l (-- l)k-1/k
2
i 2 

sb(i) = (2i) ! = 7r2i(22H - 1) ~ (27l')2i ' 

the last being an asymptotic value for large i. The compu
tation of these coefficients need not to bie repeated at each 
procedure call; so it is convenient to transfer the declaration 
and block below to the main program and execute it just once. 

One should replace flund by the smallest positive real 
number within the machine representation, and ms by the 
number of decimal digits of the mantissa; 

array sb [l : entier (.272 X ln(2/fiund))]; 
begin 

real piq, sm, pipo, ptwo, dpi, sa; 
integer sg, in, k2, imax; 
array tr, q[2 : entier (IO j (ms/!~2))+1]; 
imax := entier (.272 X ln(2/flund)); 
piq : = 9 .86960440108935861883449099987615113531369940724079; 
pipo := piq j 11; plwo := 2097152; dpi := 4 X piq; 
sb [lJ := 1/12; 
sb [2] : = 1/720; 
sb [3] := 1/30240; 
sb [4] := 1/1209600; 
sb [5J := 1/47900160; 
sb [6J := 691/1307674368103; 
sb [7] := 1/74724249600; 
sb [BJ := 3617/1067062284288104; 
sb [9] : = 43867 /5109094217170944io3; 
sb [lOJ := 174611/8028576626982912105; 
sm := l; sg := -1; 
for in := 2, in + 1 while sm ;;.~ sa do 
begin 



COLLECTED ALGORITHMS (cont.) 

q[in] := 1/(in X in); 
tr[in] := sg X q[in] i 11; sa := sm; 
sm := sm + tr[in]; sg := -sg 

end; 
sb[ll] := sm/(pipo X (ptwo-1)); 
for k2 : = 12 step 1 until imax do 
begin 

sm : = 1; in : = 1; 
B: in := in+ 1; lr[in] := ir[in] X q[in]; sa := sm; 

sm := sm + tr[in]; if sa ~ sm then go to B; 
pipo := pipo X piq; ptwo := ptwo X 4; 
sb[k2] := sm/(pipo X (ptwo-1)); 
if in = 2 then go to L 

end; 
go to A; 

L: for k2 := k2 + 1 step 1 until irnax do 
sb[k2] := sb[k2-l]/dpi; 

A: end of sb coefficients computation; 
pi := 3.1..JJ5926535807032384G264338327950288419716939937510; 

pree := 10 i (-nrl); Jae :=fat (n); 
pr : = if n + 2 X 2 = n then 1 else - 1; 
pf : = pr X Jae; nl : = n + 1; 
if z S 0 then 

hegin 
if z = entier(z) then go lo e!'ror 

else 
hegin 

real x, y; integer d, l; Boolean C; 
kl := pr; d := z; :r := d - z; 

if x > 0 then l : = 1 
else 
hegin x := -x; l .- -pr end; 
C := x > .25; y := pi X (if C then (.5-x) else x); 
if n = 0 then 

soma · = l X pi X (if C then sin(y)/eos(y) else eo:;(y)/ 
sin (y)) 

else 
hcgin 

integer m, np, .i, i; integer a1·1·ay ft [1 :4]; 

real y2, p, f, t, s, v; 
m := n + 2; np := m X 2; 
ft[l] := np + 1; ft[2] := np; ft[3] := pr; 
jt[4]:=0; y2:=yXy; j:=m+l; 
f := jat(np+l); p := 4 i (m+l); 
t :=if pr= -1then1 else y; 

s := if C then 0 else pf /y j nl; 

E: v := if C then p X (1-p) else p; 
ine(s, -sb[j] X f X t X v, D); 
for i := 1 step 1 until 4 do 

ft[i] := ft[i] + 2; 

349 -P 2 RI 

f := f x ft[l] x ft[2] x y2/(ft[3] x ft[4]) j 

p:=4Xp; j:=j+l; 
go to E; 

D: soma := l X pi j nl X (if C thens X pr else s) 
end 

end; 
z := 1 - z; w := z i n; 
pv := ifn = 0 then ln(z) elsefae/(n X w); 
sab := abs(soma); 
if pv < sab then nd := nd - .434 X ln(sab/pv) 

end 
else 
begin soma := O; kl := l; w := z i n end; 
if nd s 0 then go to L; 
if 2 X z < n + nd V z < n then 

begin 
real term, eond; 
term := -pf /(z X w); 
inc(soma, term, L); 
eond := (n X 1.8378-ln(abs(term)) + 2.3025 X nd) X .1591; 
if eond < n then eond := n; 
if eond S z then z : = z + 1 
else 
begin 

integer ip, k; 
ip := cond - z + 1; 
if ip < 1 then go to L; 
fork := 1 step 1 until ip do 

ine(soma, -pf /(z+k) i nl, L); 
z := z + ip + 1 

end 
w := z i n 

end; 
ine(soma, if n=O then ln(z) else -pf /(n X w), L); 
inc(soma, -pf X .5/(z X w), L); 
zq := z X z; tl :=pf X nl/(w X zq); 
for ml : = 2 step 2 until 6.283 X z + n do 
begin 

ine(soma, -tl X sb[ml+2], L); 
t1 := -~tl X (nl+ml) X (n+ml)/zq 

end; 
L: polygam : = soma X kl 
end of polygamma 

ACM Transactions on Mathematical Software, Vol. l, No. 4, December 1975, Pages 380-381 

CERTIFICATION OF ALGORITHM 349 

Polygamma Functions with Arbitrary Precision [814] 
[Adilson Tadeu de :Medeiros and Georges Schwachheim, Comm. ACM 12, 4 (April 
1969)' 213-214] 

John Gregg Lewis [Recd 30 l\fay 1974] 
Computer Science Department, Stanford rniversity, Stanford, CA 94305 

This work was supported by a fellowship from the IBM Corp. and by the Stanford Center for 
Information Processing. 

A casual user should not be misled by the title of this· algorithm. Algorithm 349 
does not offer arbitrarily precise values of the polygamma functions. It does offer 
results with precision adjustable downward from something somewhat less than the 



COLLECTED ALGORITHMS (cont.) 

Table I. Consistency Checks 

Order of Magnitude of Relative Error, machine precision ~ 10-ie 

Xegative arguments 
Requested Positive 
precision arguments Digamma Trigamma Tetragamma Pentagamma Hexa(~amma 
(decimal (digamma- ----
digits) pentagamma) -10( +.005)0 -10(+.0l)O -10(.1)0 

6 (-6) (-7) ( -5) ( -5) (-5) ( --5) 

9 ( -9) ( -10) ( -10) ( -8) (-8) ( --8) 

10 (-11) ( -11) ( -11) (-11) (-9) ( --9) 
11 (-12) ( -12) ( -12) (-12) (-10) ( -11) 

12 ( -13) (-13) ( -13) (-12) ( -11) ( -11) 

15 ( -15) (-13) ( -13) (-13) (-12) ( -11) 

17 ( -15) ( -13) ( -13) ( -13) (-12) ( -11) 

floating-point prec1s10n of the computer on which it is run. Further, unlike the 
highly tuned functions to which we have become accustomed, this routine is not 
accurate to the last bit. In general, the last several decimal digits of the results of 
this procedure are in doubt. This procedure does not use rational function approxi
mations. Instead, it computes the polygamma functions as limits of asymptotic 
series. Hence it is relatively slow. It is on numerically shaky grounds since some 
values are the result of three separate summation processes where no efforts are 
made to rearrange the terms to preserve accuracy. Despite this, if used carefully 
within its limitations, the procedure performs as advertised. 

Algorithm 349 was translated into Fortran and tested in long precision on Stan
Ford University's IBM 360/67 computer using both the Waterloo WATFIV compiler 
and IBM's Fortran compilers. Since no other software to compute these functions 
is available at Stanford, the routine was checked by comparison with published 
tables of values and by several crude, but revealing consistency checks. For the 
digamma, trigamma, tetragamma, and pentagamma functions we checked directly 
against the tables in Abramowitz and Stegun [1], which give at least 10 and at 
most 11 significant digits in the range 1(.005)2.1 These were checked, requesting 
in turn 6, 9, 10, 11, 12, 15, and 17 decimal digits of precision. In this range the pro
cedure either provided the number of digits requested or agreed completely with 
the published tables, except that for the trigamma function, even with full machine 
precision requested, the numerical results (correctly rounded or truncated) for 
most arguments of the form l.xx5 disagreed with the last digit of the published 
value, an error on the order of 1 X 10-10• The trigamma, tetragamma, pentagamma, 
and hexagamma functions were also compared with tables provided by the authors 
[2] for negative arguments -9.9(.1) (-.1). The results of these tests are recorded 
in Table I. 

The following internal checks were made. For positive arguments in the range 
(0,1) and (2,11), we checked the translation properties of the procedure by com
puting the shifts in reverse order (to full machine precision) and compared results. 
For negative arguments the procedure computes derivatives of the cotangent 
function as limits of a series. We computed the needed low order derivatives ana
lytically and evaluated them using standard trigonometric functions instead. For 
the functions in the first test we compared results in the range ( -10(.005)0), 
skipping the poles at the negative integers. All of the values in the second test were 
checked similarly. In the latter case, where published tables for negative argu
ments were available, this internal check proved sharp-whenever the internal 
check indicated an error larger than the precision of the tables, the error was found 
to be of the expected order. 

1\ ote on translation. In the Fortran program, the first block of the Algol pro
cedure was made a separate initializing subroutine. The unnecessary procedures 

1 1 (.01 )2 for tetragamma and pentagamma. 

349-P 3- 0 



COLLECTED ALGORITHMS (cont.) 

FAC and INC were replaced by in-line code. To enhance portability, all constants 
are computed at run time. (The dimension of the arrays SB, TR, and Qare machine 
dependent.) The routine is available from the Numerical Analysis Program Li
brarian, Stanford Center for Information Processing, Stanford, CA 9430.j. It 
should not be implemented in single precision on short word-length machines. 

REFERENCES 

1. ABRAMOWITZ, M., AND STEGUN, I.A., Eds. Handbook of Mathematical Functfons. Nat. Bur. 
Standards Appl. Math. Series 55, U.S. Govt. Printing Office, Washington, D.C., 1964, pp. 
267-273. 

2. DAVIS, H.T. Tables of Mathematical Functions, 'Vol. II, revised. Principia Press, Trinity U., 
San Antonio, Tex., 19163. 

349-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 350 
SIMPLEX METHOD PROCEDURE EMPLOYING 
LU DECOMPOSITION* [H] 
RICHARD IL BARTELS AND GENE H. GoLUB (Recd. 2 Aug. 

1967 and 5 June 1968) 
Computer Science Department, Stanford University, 

Stanford, CA 94305 
*This project was supported in part by contracts NSF GP948 

and ONR NR 044 211. 

KEY WORDS AND PHRASES: simplex method, linear pro
gramming, LU decomposition, round-off errors, computational 
stability 

CR CATEGORIES: 5.41 

procedure linprog (m, n, kappa, G, b, d, x, z, ind, infeasible, un
bounded1 singular); 
value m, n; integer m, n, kappa; real z; 
array G, b, d, x; integer array ind; label infeasible, un

bounded, singular; 
comment linprog attacks the linear programming problem: 

maximize dTx 

subject to Gx = b and x 2 0 

Details about the methods used are given in a paper by Bartels 
and Golub [Comm. ACM 12 (May 1969), 266-268). 

The array G[O:m-1, O:n-1] contains the constraint coeffi
cients. Array b[O:m-1) contains the constraint vector, and 
d[O:n-1] contains the objective function coefficients (cost 
vector). The computed solution will be stored in x[O:n-1], and 
z will have the maximum value of the objective function if 
linprog terminates successfully. Error exit singular will be taken 
if a singular basis matrix is encountered. Error exit infeasible 
will be taken if the given problem has no basic feasible solution, 
and exit unbounded will be taken if the objective function is 
unbounded. If kappa = 0, problem (2) of the referenced paper 
will be set up and phase 1 entered. If 1 :$ kappa:::; m - 1, prob
lem (4) of the paper will be set up and phase 1 entered. The last 
1-rippa columns of G will be preceded by the first m - kappa 
columns of the identity matrix to form the initial basis matrix. 
If kappa = m, phase 2 computation will begin on problem (1) 
with variables numbered ind[O), · · · , ind[m-1] as the initial 
basic variables and variables numbered ind[mJ, · · · , ind[n-1] as 
the initial nonbasic variables. Hence each component of ind must 
hold an integer between 0 and n - 1 specified by the user. Fi
nally, if kappa > m, problem (3) will be set up, and phase 2 
computation will begin with variables numbered ind[O], · · · , 
ind[m] as the initial basic variables and variables numbered 
ind[m+l], · · · , ind[n+kappa-m-1] as the initial nonbasic 
variables. This option is of interest only because linprog, upon 
successful termination, leaves all variable numbers recorded in 
i'nd in their final order and provides kappa with an appropriate 
value. This permits linprog to be reentered at the phase 2 point 
after modifications have been made to G, b, or d. An understand
ing of the simplex method and the accompanying paper by Bar
tels and Golub will make clear what modifications can be per
mitted. If phase 1 is to be executed, ind must have array bounds 
[O:m+n-kappa] to allow for artificial variables. Otherwise, ind 
must have bounds [O:n+kappa-m-1]. The values in array b 
must be nonnegative if phase 1 is to be executed. The contents 
of m, n, G, b, and d are left unchanged by linprog; 

begin 
real procedure ip2(ii, ll, uu, aa, bb, cc); 

value uu; integer ii, ll, uu; real aa, bb, cc; 
begin 

350-P 1- 0 

comment ip2 must prodQ.ce a double-precision, accumulated 
inner product. Jensen's device is used. The main statement in 
ip2 is 
for ii := ll step 1 until uu d.o sum := sum + aa X bb 

where the local variable sum has been initialized by cc. How
ever, the multiplication aa X bb must produce a double-pre
cision result, so sum represents a double-precision accumu
lated sum. After all products have been summed together, sum 
is to be rounded to single-precision and used as the value of 
ip2; 

end ip2; 
procedure trisolv(fis, jid, fie, sis, sie, fi, si, sol, rhs, mat, piv); 

valuefid,fie; integer fis,fid,fie, sis, sie,fi, si; real sol, rhs, 
mat, piv; 

comment trisolv solves a triangular system of linear equa
tions. The off-diagonal part of the system's coefficient matrix 
is given by mat, the diagonal part by piv, and the right-hand 
side of the system by rhs. The solution is developed in sol. 
By appropriately setting the first five parameters, either an 
upper or a lower triangular system can be treated. Column by 
column LU decomposition of a matdx can be compactly ex
pressed using trisolv; 

begin real tt, pv; 
for fi := fis stepfid untilfie di[) 
begin tt := -ip2(si, sis, sie, sol, mat, -rhs); 

si := fi; pv := piv; 
sol := if pv = 1.0 then tt else tt/pv 

end 
end trisolv; 
array q, h, w, y, v[O:m], P[O:m, O:m]; 
integer array ix[O:m+n], ro[O:m]; 
integer mu, nu, alpha, beta, gamma, gml, iml, i, j, k, l; 
real tl, t2, infinity, prevz, eta; 
real procedure Gmat(ri, ci); 

value ri, ci; integer ri, ci; 
Gmat : = if ri = m then (if ci < n then 0 else 1.o) 

else if ci < n then G[ri, ci] 
else if ci - n = ri then 1.0 else 0; 

real procedure dvec (ii) ; valm: ii; integer ii; 
dvec := if ii < n then d[ii] else O; 

procedure decompose (mat, bottom, top); 
value bottom, top; integer bottom, top; 1real mat; 

comment This procedure performs a column-by-column re
duction of the matrix given by mat, forming an upper and a 
lower triangular matrix into the array P. (Each diagonal ele
ment of the lower triangular matrix is 1.) Interchanges of rows 
take place so that the largest pivot in each column is em
ployed. If P already contains the LU decomposition of a 
matrix differing from mat in only the (beta)-th column, ad
vantage is taken of this. The parameters bottom and top enable 
decompose to concentrate on fL lower right-hand submatrix of 
mat. This feature saves computation during phase 1. If mat 
is singular, exit singular is taken; 

begin 



COLLECTED ALGORITHMS (cont.) 

for i := beta step 1 until mu do 
begin 

iml := i ·- 1; l := ix[i]; 
trisolv(if i=bela then bottom else top, l, im.1, bottom, j - 1, 

j, k, P[ro[k], i], mat, P[ro[j], k], 1.0); 
trisolv(i, l, mu, bottom, iml, j, k, P[ro[k], i], mat, 

P[ro[j], k], 1.0); 
tl := O; 
for j : = i step 1 until mu do 
begin 

t2 := P[ro[j], i]; 
if abs(tl) < abs(t2) then begin tl .- t2; k := j end 

end; 
if tl = 0 then go to singular; 
if i =mu then go to decompover; 
j := ro[i]; ro[i] := ro[k]; ro[k] := j; 
for i := i + 1step1 until mu do P[ro[j], 1:] := 

P[ro[j], i]/tl 
end; 

decompover: 
end decompose; 
procedure findbeta; 
comment This procedure determines which of the basic 

vf!,riables is to become nonbasic; 
begin 

tl : = infinity; 
for i : = 0 step 1 until mu do 
begin 

if y[i] > 0 then 
begin 

t2 := h[i]/y[i]; 
if t2 < tl then begh.1 tl : = t2; beta : = i end 

end 
end 

end findbeta; 
procedurefindalpha(mat, vec); real mat, vec; 
comment This procedure determines which of the no.nbasic 

variables is to be made basic; 
begin 

tl : = infinity; 
for i := mu+ 1 step 1 until nu do 
begin 

k := ix[i]; 
t2 := ip2(j, 0, mu, mat, w[j], vec); 
if t2 < tl then begin alpha := i; tl := t2 e:nd 

end 
end findalpha; 
procedure refine(mat, rhs, od, lp, up, vec,fi, si, ord, ill); value 

ord; integer ord,fi, si; real mat, rhs, od, lp, up, vec; label 
ill; 

comment This procedure makes an iterative refinement of 
vec, which is the solution of the matrix equation mat X vec = 
rhs. The matrix mat has order ord. The LU decomposition of 
mat is specified by od, lp, and up. Exit ill is taken if mat iR too 
ill-conditioned for the refinement process to be successful. 
Note the global identifier eta, whose value and purpose are 
given in the next comment; 

begin 
array cor[O:ord]; real cnorm, snorm, eps, tt; integer cnt; 
cnt := O; eps := 5 X eta; 

loop: 
cnorm := snorm := O; cnt := cnt + 1; 
for fi : = 0 step 1 until ord do 
begin 

cor[fi] : = -ip2(si, 0, ord, mat, vec, -rhs); 
si :=fi; tt := abs(vec); 
if tt ::> snorm then snorm : = tt 

350-P 2- 0 

end; 
trisolv(O, 1, ord, O,fi-1,fi, si, cor[si], cor[fi], od, lp) ;. 

trisolv(ord, -1, O,fi+l, ord,fi, si, cor[si], cor[fi], od, up); 
for si : = 0 step 1 until ord do 
begin 

tt := cor[si]; 
vec := vec + tt; 
if abs(tt) > cnorm then cnorm := abs(tt) 

end; 
if cnt > 15 then go to ill; 
if snorm ~ 0 then 

begin if cnorm/ snorm > eps then go to loop end 
end refine; 
comment At this point, infinity and eta are set to special 

values. Set infinity to the largest positive single-precision 
floating-point number. Set eta to the largest positive floating
point number such that 1.0 + eta = 1.0 - eta = 1.0 in single
precision arithmetic. The convergence of the iterative re
finement process which is applied in refine is determined using 
eta; 

prevz := -infinity; 
for i := 0 step 1 until m do ro[i] := i; 
comment Determine from kappa whether phase 1 is to be 

skipped; 
if kappa :?: m then 
begin 

nu:= n +kappa - m-1; l := O; 
for i : = 0 step 1 until nu do 
begin 

j := ind[i]; if j;?: n then l := 1; ix[i] := j 
end; 
mu : = if l = 0 then m - 1 else m; 
go to phase 2 

end; 
mu:= m - 1; gamma:= m - kappa; gml :=gamma - 1; 
nu : = n + gml; l : = n - m; 
comment Set up the appropriate phase 1 problem; 
for i : = 0 step 1 until gml do 
begin 

ix[i] := n + i; 
P[i, i] := 1.0; 
for j := i + 1step1 until gml do P[i, j] := P[j, i] := O; 
for j :=gamma+ 1step1 until mu do P[i, j] := G[i, l+j] 

end; 
for i :=gamma step 1 until mu do 
begin 

ix[i] := l + i; 
for j := 0 step 1 until gml do P[i,j] := 0 

end; 
for i := m step 1 until nu do ix[i] := i - m; 
beta ·= gamma; 
go to no removal; 

new phase 1 cycle:; 
comment Begin a new simplex step on the phase 1 problem. 

Check the phase 1 problem objective function.; 
if ip2(i, 0, mu, w[i], b[i], 0) = 0 then go to phase 2; 
comment Determine which nonbasic variable is to become 

basic; 
findalpha(G[j,k],O); 
if t1 :?: 0 then go to infeasible; 
j := ix[alpha]; 
comment Solve a linear system for a vector y; 
trisolv(gamma, 1, mu, gamma, l - 1, l, k, v[k], G[ro[l],j], 

P[ro[l],k], 1.0); 
trisolv(mu, -1, gamma, l + 1, mu, l, k, y[k], v[l], 

P[ro[l],k], P[ro[l],l]); 
for i := 0 step 1 until gml do 



COLLECTED ALGORITHMS (cont.) 

begin 
l := ro[i]; 
y[i] := -ip2(k, gamma, mu, y[k], P[l,k], -G[l,j]) 

end; 
comment Use the vector y to determine which basic variable 

becomes nonbasic. If the variable which has become non
basic is an artificial variable, remove it entirely from the 
problem and make an appropriate rew and column inter
change upon the basis matrix P; 

findbeta; 
if beta ~ gamma then 
begin 

k := ix[alpha]; ix[alpha] := ix[beta]; ix[beta] := k; 
go to no removal 

end; 
k := ro[gml]; i := ro[gml] := ro[beta]; ro[beta] := k; 
P[k, beta] := 1.0; P[i, beta] := O; 
ix[beta] := ix[gml]; ix[gml] := ix[alpha]; beta:= gml; 
for i :=alpha+ 1step1 until nu do ix[i-1] := ix[i]; 
gamma:= gml; gml := gml - 1; nu:= nu - 1; 

no removal : ; 
comment Produce the LU decomposition of the new basis 

matrix; 
k := ix[beta]; 
for i := 0 step 1 until gml do P[ro[i],betaJ := G[ro[i],k]; 
decompose(G[ro[j],l], gamma, gamma); 
comment Find the basic solution h; 
trisolv(gamma, 1, mu, gamma, j - 1, j, k, v[k], 

b[ro[j]], P[ro[j],k], 1.0); 
trisolv(mu, -1, gamma, j + 1, mu, j, k, h[k], v[j], 

P[ro[j],k], P[ro[j],j]); 
for i := 0 step 1 until gml do 
begin 

k := ro[i]; 
h[i] := -ip2(j, gamma, mu, h[j], P[k,j], -b[k]); 
w[k] := -1.0 

end; 
comment Solve a linear system for the vector, w, of simplex 

multipliers; 
for i : = gamma step 1 until mu do 
begin 

tl := O; 
for j :== 0 step 1 until gml do tl := tl + P[ro[j],i]; 
v[i] := t1 

end; 
trisolv(gamma, 1, mu, gamma, i - 1, i, j, v[j], v[i], 

P[ro[j], i] P[ro[i],i]); 
trisolv (mu, - 1, gamma, i + 1, mu, i, j, w[ro[J1], vri], P[ro[j], i], 

1.0); 
go to new phase 1 cycle ; 

phase 2:; 
comment Set up the appropriate phase 2 problem and make 

an initial LU decomposition if necessary; 
beta:= 0; 
if kappa < m then 
begin 

if gamma > 0 then 
begin 

kappa:= m; nu:= nu+ 1; mu:= m; 
ix[nul := ix[mu]; ix[mu] := n + m 

end 
end; 
if kappa ~ m then go to decomp 
else trisolv(O, 1, mu, O, j - 1, j, k, q[kJ, if :o[j] = m then 0 else 

b[ro[j]], P[ro[j],k], 1.0); 
new phase 2 cycle : ; 

350--P 3- 0 

comment Begin a new simplex step on the phase 1 problem. 
Solve a linear system for the vector, w, of simplex multipliers; 

trisolv(O, 1, mu, 0, i - 1, i, j, v[j], dvec(ix[i]), P[ro[j],i], P[ro[i],i]); 
trisolv(mu, -1, 0, i + 1, mu, i, j, w[ro[j]], v['i], P[ro[j],i], 1.0); 

comment Determine which 11onbasic variable is to become 
basic; 

findalpha(Gmat(j,k), -dvec(k)); 
comment Check whether the solution has been found; 
if t1 ~ 0 then go to finished; 

not done yet: 
i := ix[alpha]; 
comment Solve a linear system for a vector y; 
trisolv(O, 1, mu, 0, j - 1, j, k, v!k], Gmat(ro[j],i), P[ro[j],k], 1.0); 
trisolv(mu, -1, 0, j + 1, mu, j, k, y[k], v[j], P[ro[j],k], P[ro[j],j]); 
comment Use y to determine: which basic variable is to be-

come nonbasic; 
findbeta; 
if tl = infinity then go to unbounded; 
k := ix[beta]; ix[beta] := ix[alpha]; ix[alpha] := k; 

decomp: ; 
comment Produce the LU decomposition of the new basis 

matrix; 
decompose(Gmat(ro[j],l), 0, beta); 
comment Compute the basic solution h; 
trisolv(beta, 1, mu, 0, j - 1, j, k, q[k], if ro[j] = m then 0 else 

b[ro[j]], P[ro[j],k], 1.0); 
trisolv(mu, -1, 0, j + 1, mu, j, k, h[k], q[j], P[ro[j],k], P[ro[j],j]); 
go to new phase 2 cycle; 

finished: ; 
comment Refine w and the basic solution h. Compute the 

objective function. Check the refined results to determine 
whether the optimum has been reached. If the check indicates 
nonoptimality but the objective function is less than any 
value previously computed for it, return the best basic solu
tion obtained so far and print a warning that the solution 
has doubtful validity; 

refine(Gmat(ro[j],ix[i]), dvec(ix[i]), P[ro[j],i], P[ro[i],i], 1.0, 
w[ro[j]], i, j, mu, singular); 

z := ip2(i, O, m - 1, w[i], b[i], 0); 
if z < prevz then 

begin comment Print out "doubtful solution"; end 
else 
begin 

prevz := z; 
refine(Gmat(ro[j], ix[k]), if ro[j] = m then 0 else b[ro[j]], 

P[ro[j],k], 1.0, P[ro[j],j], h[k], j, k, mu, singular); 
l := n - 1; kappa:= nu+ 1; 
for i := 0 step 1 until l do a:[i] := O; 
for i := 0 step 1 until nu do ind[i] := ix['i]; 
for i : = 0 step 1 until mu do 
begin 

j := ix[i]; 
if j< n then x[j] := h[i] 

end; 
findalpha(Gmat(j,k), -dvec(k)); 
if t1 < 0 then go to not done y.et 

end 
end linprog 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 351 
MODIFIED ROMBERG QUADRATURE:* [Dl] 
GRAEME FAIRWEATHER (Recd. 18 Sept. 1968 and 19 

Feb. 1969) 
Department of Applied Mathematics, University of St. 

Andrews, Fife, Scotland 
*This work was based in part on work done at U.K.A.E.A., Cul
ham Laboratory, Abingdon, England. 

KEY WORDS AND PHRASES: numerical integration, Rom
berg quadrature, trapezoid values, rectangle values, error 
bound 

CR CATEGORIES: 5.16 

Comments. ROMINT calculates the approximate value, 
VAL, of the definite integral 

I= LB F(X) dX 

and an error bound ERR for VAL, i.e. I VAL - J I ~ ERR. The 
integrand F(X) must be given as a function subp1rogram with the 
heading FUNCTION F (X). VAL is obtained from a modified 
form of Romberg quadrature which is less sensitive to the ac
cumulation of rounding errors than the customary one. In this 
procedure, which was devised by Krasun and Prager [l], the 
following "skeleton" Romberg table is construc1;ed: 

To0 

T1° 
Ro0 T2° 

R1° 
Ro1 R2° Tm0 

R11 

Ro2 Rm0 

R';-2 
m:-1 

Ro"' 

where m ~ MAXE, MAXE being on entry the maximum number 
of extrapolations wanted. In this subroutine MA.XE ~ 15. The 
quantities Re" (k == 0, 1, · · · , m) are the rectanglo values, 

B - A 211 
( ( 1) B - A) Re•=--"'F A+ j-- ---2k ~ 2 2k , ,_1 

which are calculated using a procedure proposedl by Rutishauser 
[2] to reduce the effect of rounding errors. The quantities R;" 
(j > O) are computed using the usual extrapolation formula: 

...Jc+1 Rk 
R Jc _ R~+1 + lf,f-1 - 1-1 

, - ,-1 41 - 1 ' k = O, 1, · · · , m - j. 

The formula (see [1]) 

0 2 . 41-l - 1 0 0 
T;° = R;-1 + 4i _ 

1 
(T1-1 - R;-1), j = 1, ··· ,m, 

enables one to determine the extrapolated 1irapezoid values 

351-P 1~ 0 

Ti 0, T2°, · · · , Tm 0 in the skeleton table from the trapezoid value 

B-A 
T 0° = -- [F(A) + F(B)] 

2 

and the rectangle values R0°, Ri 0 , • • • , R~_1 • In this subroutine 
only one linear array for storing the quantities Rj-i, j = 0, · · · , 
m (~ MAXE) is required. 

The subroutine is left when (see [3]) 

ERR = J T mo - RmO J ~ EPS, 
2 

where EPS specifies the desired accuracy, or when MAXE ex
trapolations have been performed. On exit, VAL == (T m0 + Rm0 )/2 
(m ~ MAXE) and N = 2<m+i) + 1 is the number of function 
evaluations. The exit value of MAXE ism unless the maximum 
number ofj extrapolations wanted has been performed without 
the desired accuracy being obtained, in which case the exit value 
of MAXE is zero. 

This subroutine can be used to estimate the definite integral I 
provided F(X) is at least three or four ti'mes differentiable and is 
not periodic with period B - A. 

Test cases. Two test cases were carried out on the IBM 1620 
of the Computing Laboratory, University of St. Andrews, to 
compare ROMINT with a FORTRAN 11-D version of haflieintegrator 
[4]. The calculations were carried through in single-precision, i.e. 
working to 8 significant decimal digits. The results are summarized 
in the following table. 

True Number of 
Integrand A B EPS value ha'Diei ntegrator ROM INT extra po-

lations 

cos :i: 0.0 1t/2 10-• 1.0 0.99999985 0.99999995 3 
e-:i:• 0.0 4.3 io-• 0.88622692 0.88622665 0.88622675 5 

REFERENCES: 

1. KRASUN, A. M., AND PRAGER, W. Remark on Romberg quadra
ture. Comm. ACM 8 (Apr. 1965), 236-237. 

2. RuTISHAUBER, H. Description of Algol 60. In Handbook for 
Automatic Computation, Vol.1, Springer-Verlag, Berlin, 1968, 
Part a. 

3. HAVIE, T. On a modification of Romberg's algorithm. BIT 6 
(1966)' 24-30. 

4. KUBIK, R. N. Algorithm 257, Havie integrator. Comm. ACM 
8 (June 1965), 381. 

c 

c 

c 
c 

SUBROUTINE ROMINT 
****************** * (VAL,ERR,EPS,A,B,N,MAXE) 

DIMENSION RM(l6) 
INITIAL TRAPEZOID VALUE •• 

T = (B-A)*(F(A)+F(B))*0.5 

INITIAL RECTANGLE VALUE •• 
RM(l) = (B-A)*Fl(A+B)*0.5) 



COLLECTED ALGORITHMS (cont.) 

c 

c 

c 
c 
c 

c 

c 
c 

c 
c 

c 
c 

c 

N = 2 
R = 4 
DO 11 K = l,MAXE 

BB s CR*0.5-1. )/CR-1.) 
IMPROVED TRAPEZOID VALUE •• 

T = RM( l)+BB*CT-RM( l)) 

DOUBLE NUMBER OF SUBDIVISIONS 
OF f A ,B> •• 

N = 2*N 

s = 0 
H = (B-A)/fLOAT(N) 

CALCULATE RECTANGLE VALUE 
I F ( N-3.2 ) l , l t 2 

l NO = N 
GO TO 3 

2 NO = 32 
3 ln(N-512) 4r4r5 
4 Nl = N 

GO TO 6 
5 Nl = 512 
6 00 9 K 2 = l , N , 512 

Sl = 0 
KK = K2+Nl-l 
DO 8 Kl = K2,KK,32 

so = 0 
KKK .., Kl+N0-1 
DO 7 KO = Kl,KKKr2 

SO = SO+FCA+FLOAT(KO)*H> 
7 CONTINUE 

Sl = SO+Sl 
8 CONTINUE 

S = S+Sl 
9 CONTINUE 

RM(K+l) = 2.*H*S 
END CALCULATION OF RECTANGLE VALUE. 

R = 4 
FORM ROMBERG TABLE FROM RECTANGLE 
VALUES •• 

DO 10 J • l ,K 
L = K+l-J 
RM(L) = RM(L+l)+(RM(L+ll-RM(L)) 

* /CR-1.) 
R = 4.*R 

10 CONTINUE 

ERR= ABS(T-RM(l))*0.5 

C CONVERGENCE TEST 
IF(ERR-EPS) 12rl2rll 

c 
11 CONTINUE 
12 VAL = (T+RM(l))*0.5 

N = N+l 
IF ( K-MA XE) 14t13, 13 

13 MAXE = 0 
GO TO 15 

14 MAXE = K 
15 RETURN 

END 

351-P 2- R2 

REMARK ON ALGORITHM 351 [Dl] 
MODIFIED ROMBERG QUADRATURE [Graeme 

Fairweather, Comm. ACM 12 (June 1969), 324] 
N. D. CooK (Recd. 11 Sept. 1969) 
Bettis Atomic Power Laboratory, P.O. Box 79, West 

Miffiin, PA 15122 

KEY WORDS AND PHRASES: numerical integration, Romberg 
quadrature, trapezoid values, rectangle values, error bound 
CR CATEGORIES: 5.16 

There is an error in calculating the output value MAXE in the 
algorithm in the case where the desired accuracy is obtained by 
the last requested extrapolation. Statement 11 (the end of the DO 
loop on K) should be followed by: 

K = 0 
12 VAL = (T+RM(l))•0.5 

N = N+l 
MAXE = K 
RETURN 
END 

When the two test cases were repeated in single precision on the 
CDC-6600, the 14-digit arithmetic yielded results accurate to 10 
digits with the same number of extrapolations as used to get 6-
digit results on the 8-digit IBM-16W. The time spent in ROMINT 
was 0.7 and 2.0 msec for the cosine and e-:i2 integrals respectively, 
with a total time of 1.1and3.8 msec when the time spent evaluating 
the functions is included. 

REMARK ON ALGORITHM 351 [Dl] 
MODIFIED ROMBERG QUADRATURE, 

[G. Fairweather, Comm. ACM 12 (June 1969), 324] 
GEORGE c. WALLICK 

Mobil Research and Development Corporation, Field 
Research Laboratory, P. 0. Box 900, Dallas, TX 75221 

KEY WORDS AND PHRASES: numerical integration, Rom
berg quadrature, modified Romberg quadrature, trapezoid values, 
rectangle values 
CR CATEGORIES: 5.16 

Algorithm 351 was compiled and run successfully in FORTRAN 

IV on a CDC 6400 computer. Computation times for equivalent 
orders were essentially the same as for a FORTRAN version of Al
gorithm 60 Romberg Integration [lJ; storage requirements were 
approximately 20 percent greater. 

Algorithm 351 incorporates two modifications to the standard 
Romberg algorithm, each designed to reduce roundoff: (1) the 
Krasun and Prager [3] replacement of the table of trapezoidal 
values T/' with a table of rectangular values R;"; (2) the method 
proposed by Rutishauser [6] for the evaluation of the rectangular 
sums Rl0 • Since neither of these modifications .has been properly 
evaluated we have chosen to compare integral values returned 
by five variants of the Romberg algorithm: 

1. Conventional Romberg integration as described by Algo
rithm 60 

2. A Krasun and Prager modification of Algorithm 60 (TI 
table replaced by R,.Jo table) 

3. A Rutishauser modification of Algorithm 60 (Tl' ta.ble 
extrapolation with improved evaluation of the Ro'°) 

4. Modified Romberg integration as described by Algorithm 
351 (R/' table; improved Ro'° evaluation) 

5. Algorithm 351 with the Ru1iishauser procedure replaced 
by the standard evaluation of the Ro• (R/' table extrapolation) 



COLLECTED ALGORITHMS (cont.) 

The following test integrals were investigated .. 

f 
1.1 

A. x-a dx, a = 3.0, 4.0, 5.0 
.01 

B. fol (1 + xa)-1 dx, a = 1.0, 4.0 

c. to 
1 

In x d:'C 

D. l5 e-z1 dx 

Integral A was suggested by Thacher [7), Inte@:ral B by Rabi-. 
nowitz [5], Integral C by Hillstrom [2], and Inte1gral D by Hill
strom and by Kubik [4]. All computation was carried out in CDC 
6400 single-precision floating-point arithmetic. Results were re
corded to 14 decimal digits. (CDC 6400 word len,gth corresponds 
to 14+ decimal digits.) The data obtained in this manner are 
summarized in Tables I-IV. 

For a specified order of extrapolation m, Algori.thm 60 variants 
require 2m + 1 function evaluations and return Tmo. Algorithm 
351 requires 2<m+o + 1 function evaluations and returns T m1· 

Thus one cannot meaningfully compare integral values returned 
by the two algorithms for the same specified order .. We have there
fore chosen to compare integral values resulting from the same 
number of function evaluations and have tabul:ited these data 
in terms of the Algorithm 60 order m. The corresponding specified 
order for Algorithm 351 variants is m - 1. 

In each example considered, Algorithm 351 returns integral 
values for the optimum extrapolation order that are more accurate 
than the Algorithm 60 solutions by from one to two significant 
figures. There is, of course, no increase in the rate of convergence 
and little difference in solution accuracy for approximation 
orders less than that corresponding to the maximum attainable. 
accuracy. If one were interested in, e.g. six or eight significant· 
figure accuracy, either algorithm would be satisfactory. If ac
curacy requirements are not severe and one is satisfied with 
integral values correct to a number of significant figures less 
than half the computer word length, either algorithm may be used. 
If one seeks the maximum achievable accuracy" Algorithm 351 
is clearly the proper choice. 

Tables I-IV include data recorded when the order was over
specified, i.e. when m was greater than that required for optimum 
accuracy. For both algorithms the accuracy at firs:t increases with 
increasing order. This continues until an optimum accuracy ob
tains. With Algorithm 60 a further increase in m results in a 
decline, at times rather rapid, in evaluation accuracy. With 
Algorithm 351 there is little loss in accuracy with increasing 
order. The accuracy decline rate is strongly retarded and in many 
cases practically eliminated. This is a very significant result. 

In routine use of the algorithms, the unwary may overestimate 
the order required for optimum convergence (Algorithm 60 termi
nates only when a specified order has been obtained) or may 
specify an accuracy criterion for termination that cannot be 
satisfied. With Algorithm 351 the only loss is that of computer 
time; with Algorithm 60 solution accuracy may be impaired. 

From the data presented in Tables I-IV we may determine the 
extent to which each of the procedural modifications contributes 
to the overall superiority of Algorithm 351. It is immediately 
evident that the Krasun and Prager modification has little effect 
either on the accuracy of the algorithms or on the loss of accuracy 
as the optimum order is exceeded. Results obtained using this 
modification differ from those returned by Algorithm 60 by at most 
2 in the 14th figure. When the Rutishauser procedure is sub
tracted from Algorithm 351, the algorithm becomes, for all prac- -
tical purposes, equivalent in accuracy to Algorithm 60. This con
clusion has been further supported by results obtained in the 

351-P 3- 0 

evaluation of eight additional test integrals selected from the 
literature. 

If, on the other hand, the Rutishauser procedure is added to 
Algorithm 60, the results obtained are essentially the same as 
those recorded for Algorithm 351. Clearly the Rutishauser modifi
cation is the dominant factor determining the superiority of 
Algorithm 351. 

The success of the Rutishauser modification tempts one to 
expand the procedure to include an additional summation level. 
Experiments with such expansions indicate that they may be of 
value where slow Romberg convergence requires the use of orders 
m > 13. 

The following changes are suggested as possible improvements 
in the algorithm. The integration interval (B-A) is now com
puted K + 2 times where K is the order of approximation on exit 
from the routine. We suggest an initial definition of a variable 
e.g. SH= (B-A) and the replacement of (B-A) by SH in thes~ 
statements where (B-A) appears. Initialization should also 
include a test to insure that the maximum extrapolation order 
MAXE permitted is less than or equal to 15 with a possible re
placement.MAXE = 15 if this condition is violated. Alternatively, 
one could replace the statement DO 11 K = 1, MAXE with 
DO 11 K = 1, 15 and test for K < MAXE prior to executing 
statement no. 11. The GO TO 3 statement following statement 
no. 1 should read GO TO 4. If N ::; 32, N is also ::; 512. 

Upon exit, the input parameter MAXE is assigned either the 
value MAXE = K, where K is the approximation order, or 
MAXE = 0 if the accuracy criterion has not been satisfied. We 
believe that it is poor programming practice to have a subroutine 
alter the value of an input parameter. We suggest the addition of 
an output parameter, e.g. MFIN = K which returns the order 
on exit. Where we now set MAXE = 0, we could set MFIN = 16. 
One can test as easily for MFIN ::; 15 as for MAXE = 0. This 
would eliminate the necessity for resetting MAXE each time the 
subroutine is entered. It is also useful to return the final value 
of the accuracy ERR. In the event that MAXE = 0, one could 
test ERR to determine whether or not the returned integral 
value falls within acceptable limits. 

In practical applications we prefer to express the procedure 
as a function subprogram and to add the name of the generating 
function F to the argument list. We also consider a test for rela
tive error rather than absolute error to be more useful in routine 
use of the algorithm. 

The author wishes to thank the Mobil Research and Develop
ment Corporation for permission to publish this information. 

REFERENCES: 
1. BAUER, F. L. Algorithm 60, Romberg integration. Comm. 

ACM 4 (June 1961), 255. 
2. HILLSTROM, K. Certification of Algorithm 257, Havie in

tegrator. Comm. ACM 9 (Nov. 1966), 795. 
3. KRASUN, A. M., AND PRAGER, W. Remark on Romberg quadra

ture. Comm. ACM 8 (Apr. 1965), 236-237. 
4. KUBIK, R. N. Algorithm 257, Havie integrator. Comm. ACM 8 

(June 1965), 381. 
5. RABINOWITZ, P. Automatic integration of a function with a 

parameter. Comm. ACM 9 (Nov. 1966), 804-806. 
6. RuTISHAUSER, H. Description of Algol 60. In Handbook for 

Automatic Computation, Vol. 1, Springer-Verlag, New York, 
1967, Part a, 105-106. 

7. THACHER, H. C., JR. Certification of Algorithm 60, Romberg 
integration. Comm. ACM 5 (Mar. 1962), 168. 



COLLECTED ALGORITHMS (cont.) 351-P 4- Rl 

TABLES. COMPARISONS OF ROMBERG METHOD VARIATIONS 
(KP = Krasun-Prager Modification; RUT = Rutishauser Modification; NSF = Number of Significant Figures) 

Variations Returning T mo Variations Returning T ml Variations Returning T m0 Variations Returning T m1 

Algorithm Algorithm Algorithm 351 Algorithm Algorithm Algorithm .Algorithm 351 Algorithm 
Rom- Algorithm 60 60 60 351 Rom- Algorithm 60 60 60 351 (KP+ RUT) (KP+ RUT) berg +KP +RUT (KP only) berg +KP +RUT (KP only) 

a Order a Order 1-

1 -~1 m 

l.O 
4 
5 
6 
7 
8 
9 

10 
11 
12 

4.0 4 
5 
6 
7 
8 
9 

10 
11 
12 

3.0 8 
9 

10 
11 
12 
13 
14 
15 

4.0 8 
9 

10 
11 
12 
13 
14 
15 

5.0 8 
9 

10 
11 
12 
13 
14 
15 

INSF ~1 INSF ~1 ~1 ......... ......... Digits .,-. 
Digits 1-14 ·'?.,..!..NSF ·:,,..!..NSF ·:,,..!..NSF 

Q ... Q-. 6-14 c 
I. IN THE EVALUATION OF I(a) = I! (1 + xa)-1 dx 

1(1) = 0.69314 71805 59945; 1(4) = 0.86697 29873 3991 

69314 7 
69314 7 
69314 7 
69314 7 
69314 7 
69314 7 
69314 7 
69314 7 
69314 7 
69314 7 

4776 4482 
1819 1673 
1805 6227 
1805 5991 
1805 5987 
1805 5984 
1805 5971 
1805 5951 
1805 5906 
1805 5822 

86697 2 
86697 2 
86697 2 
86697 2 
8$697 2 
86697 2 
86697 2 
86697 2 
86697 2 

9736 8070 
9872 2539 
9873 4006 
9873 3983 
9873 3977 
9873 3963 
9873 3939 
9873 3890 
9873 3787 

6 4482 
8 1673 

11 6228 
13 5992 
12 5988 
12 5984 
12 5972 
12 5951 
11 5906 
11 5822 

7 8070 
9 2539 

12 4006 
12 3984 
12 3978 
12 3964 
11 3940 
11 3890 
11 3788 

6 4482 6 
8 1673 8 

11 6227 11 
13 5992 13 
12 5991 13 
12 5990 13 
12 5989 12 
12 5988 12 
11 5991 13 
11 5987 12 

7 8070 7 
9 2539 9 

12 4007 12 
12 3987 13 
12 3986 13 
12 3985 12 
11 3985 12 
11 3984 12 
11 3983 12 

II. IN THE EVALUATION OF J(a) 

79014 8123 
71830 7192 
71805 6360 11 
71805 5993 13 
71805 5992 13 
71805 5992 13 
71805 5990 13 
71805 5989 12 
71805 5990 13 
71805 5989 12 

30046 3711 7 
29872 1216 9 
29873 4005 12 
29873 3988 13 
29873 3987 13 
29873 3986 13 
29873 3985 12 
29873 3986 13 
29873 3985 12 

r-1 
.01 x-a dx 

I"" 7192 
6360 
5992 
5988 
5984 
5972 
5951 
5906 
5822 

3711 
1216 
4003 
3984 
3979 
3964 
3940 
3890 
3788 

1(3) = 0.49995 86776 85950 x 104; 1(4) = 0.33333 30828 95066 x 106; 
1 (5) = 0.24999 99982 9247 X W 

50289 45604 12491 2 1249 2 1255 2 49952 9475 9469 
50007 88217 4010 3 4010 3 4037 3 88324 8156 8128 
49996 05996 3754 5 3755 5 3813 5 05997 5088 5 5029 
49995 86888 2917 7 2917 7 3041 7 86888 3087 7 2962 
49995 86777 0553 10 0553 10 0814 10 86777 0815 10 0553 
49995 86776 8069 10 8070 10 8588 12 86776 8590 12 8070 
411995 86776 7547 10 7549 10 8585 12 86776 8587 12 7549 
49995 86776 6495 10 6496 10 8581 12 86776 8583 12 6496 

33918 76383 3713 3713 3717 1 83321 8573 1 8568 
33362. 40891 0012 0011 0028 3 41103 2353 3 2337 
33333 86458 8643 8642 4 8682 4 86461 5904 5865 
33333 31207 4466 4466 7 4547 7 31207 4679 4598 
33333 30829 8056 9 8055 9 8220 9 30829 8220 8056 
33333 30828 9178 11 9178 11 9508 13 30828 9509 13 9178 
33333 30828 8842 10 8843 10 9500 12 30828 9501 12 8843 
33333 30828 8163 10 8163 10 9497 12 30828 9499 12 8163 

25979 73076 7608 1 7608 1 7611 82577 2026 1 2023 
25058 17539 3846 2 3846 2 3857 17800 9312 2 9300 
25001 31264 6257 4 6257 4 62.82 31270 0511 4 0486 
25000 01021 0524 6 0524 6 0576 01021 0887 6 0835 
24999 99985 6515 9 6515 9 6621 9 99985 6622 9 6516 
24999 99982 9053 11 9053 11 9267 12 99982 9268 12 9054 
24999 99982 8817 11 8818 11 9242 13 99982 9243 13 8818 
24999 99982 8379 10 8380 10 9241 12 99982 9242 13 8380 

5 
8 

11 
13 
12 
12 
12 
12 
11 
11 

7 
9 

12 
12 
12 
12 
11 
11 
11 ..... 

2 
3 
5 
7 

10 
10 
10 
10 

4 
7 
9 

11 
10 
10 

9 
11 
11 
10 

-----: __ I __ = 

m 

INSF INSF -~1 .... -. Digits Digits 1-14 ·i.!.. NSF ·i.!., NSF ·i.!., NSF ;::;-. c:) ..... 6-14 c:)-. 

JlO 
III. IN THE EVALUATION OF I = 1 1 In x dx = 

14.025 85092 99404 6 
4 14025 60234 7275 5 7275 5 7275 5 60498 3885 5 3885 5 
5 14025 84455 4627 6 4627 6 4627 6 84.433 5675 6 5675 6 
6 14025 85085 2042 8 2043 8 2043 8 85085 05.05 8 0505 8 
7 14025 85092 9556 11 9556 11 9556 11 85092 9552 11 9551 11 
8 14025 85092 9938 13 9938 13 9939 13 85092 9939 13 9938 13 
9 14025 85092 9937 13 9937 13 9940 14 85092 9940 14 9937 13 

10 14025 85092 9934 12 9934 12 9939 13 85092 9940 14 9934 12 
11 14025 85092 9928 12 9929 12 9939 13 85092 9940 14 9929 12 
12 14025 85092 9916 12 9916 12 9940 14 85092 9939 13 9916 12 

'"5 2 
IV. IN THE EVALUATION oF I = J 0 e~ dx = 

0.88622 69254 51396 
5 88622 59970 9402 5 9043 5 9042 5 59296 9073 5 9073 5 
6 88622 69310 8538 7 8539 7 8541 7 69308 5739 7 5736 7 
7 88622 69254 4529 10 4529 10 4535 10 69254 4570 10 4564 10 
8 88622 69254 5117 12 5117 12 5134 12 69254 5135 13 5117 12 
9 88622 69254 5093 12 5094 12 5131 12 69254 5134 12 5095 12 

10 88622 69254 5053 11 5054 11 5135 13 69254 5134 12 5054 11 
11 88622 69254 4974 11 4975 11 5130 12 69254 5133 12 4976 11 
12 88622 69254 4801 11 4802 11 5129 12 69254 5131 12 4803 11 
13 88622 69254 4463 10 4463 10 5128 12 69254 5129 12 4464 10 
14 88622 69254 3801 10 3802 10 5125 12 69254 5127, 12 38031 10 

RE:\IARKS ON: 
ALGORITHM 332 [822] 
JACOBI POLYNO:.\IIALS [Bruno F. W. Witte, Comm. 

ACJI 11 (June 1968), 436] 
ALGORITHl\I 344 [814) 
STUDENT'S t-DISTRIBUTION [David A. Levine, 

Comm. ACM 12 (Jan. 1969), 37] 
ALGORITH:.\1 351 [Dl] 
MODIFIED R0:.\1BERG Q!UADRATURE [Graeme 

Fairweather, Comm. 12 (June 1969), 324] 
ALGO RITH:.\1 359 [G 1] 
FACTORIAL ANALYSIS OF VARIANCE [.John R. 

Howell, Comm. ACM 12 (Nov. 1969), 631] 

ARTHUR H. J. SALE (Recd. 16 Feb. 1970) 
Basser Computing Department, University of Sydney, 

Sydney, Australia 

KEY WORDS AND PHRASES: Fortran standards 
CR CATEGORIES: 4.0, 4.22 

An unfortunate precedent has been set in several recent al
gorithms of using an illegal FORTRAN construction. This oon
sists of separating an initial line from its continuation line by a 
comment line, and is forbidden by the standard (see sections 3.2.1, 
3.2.3 and 3.2.4 of [l, 2)). The offending algorithms are to date: 
332, 344, 351 and 359. 

While this is perhaps a debata.ble decision by the compilers of 
the standard, and trivial to correct, it seems a pity to break the 
rules just for a pretty layout as bas been done. 

REFERENCES: 
1. ANSI Standard FORTRAN (ANSI X3.9-1966), American 

National Standards Institute, New York, 1966. 
2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964), 

591-625. 



COLLECTED ALGORITHM[S FROM CACM 

.ALGORITH:\l ;~;)2 
( 'f-L\R.-\CTEHISTIC VALVES A~D 
ASHOCL\TED SOLUTIONS OF 
~IATHIElJ'S DIFFERENTIAL 
EQUATIO:\ [S22] 
Do:\'ALD S. CLE:\nr (Recd. 2 .Tune 

IHG7, IS Apr. 1968, 6 Jan. 19()9 
and 10 ~Jar. 1969) 

Aero:-;pacp Research Laboratorie~ 
Wright-Patterson Air Force Base 
OH 4;).1:33 

KEY WOHDS AND PHRASES: Ma
thieu's diffNent ial equation, Mathieu 
function. characteristic value, periodic 
i-mlutio11. radial solution 

CR CATECOHIES: 5.12 

('omments Algorithm 352 is a package of 
du11hlc-precisio11 .FORTRAN routines which 
co11sists nf the following primary routines: 

.MFCVAL-- referred to as Algorithm 352 
(Part. A) 

;\fATH · ··· rPferrC'd to as Algorithm :152 
<Part Bj 
BEH8EL -referred to as Algorithm 352 
(l>art C .l 

.'.\IFCV AL computes characteristic values of 
;\'lathieu's differential equation. MATH 
compu t PH the associated solu tioJLs of th is 
<'qliation, using BESSEL as an auxiJiarv 
rout inc to £>valuate Bessel functions. This 
latter rout itH' may be used indepc11dpr1tly. 

There are other, secondary routi11es in
cluded in the package, and the 11umbering 
system (<>.g. Algorithm 352 (Part A.1)) indi
cates somewhat the mutual relation between 
them, as well as their relation to the primary 
routines. The functioning of the routines 
and thf' liukages between them arc explained 
in the comments prefacing each one. All 
literature citations refer to the following 
list. 

HE~'EllE'.\ICE8: 

l. :\Hlt.\.MOWITZ, M., AND STEGl'N' I. A. 
(Eds.). Handbook of Mathematical ' 
Functions. NBS Appl. Math. Ser. 55, 
US Covt.. Print. Off., Washington, 
I>.C., 1964. 

'..!. BLANCH, n. Numerical evaluation of 
<'Ontinued fractions. SIAM Re11. 6, 4 
( HJG4 J , :~8~{-4 21. 

:). B1.A'.\lc11. G. Numerical aspeC'tl' of Ma
thif'tt eigenvalues. Rend. ('fr('. .lfot.. 
Palrrmo (2) 15 (1966), 51-9i. 

4. BLANCH, G., AND CLEMM, D. ~. 'J'al>les 

Relating to the Rad,ial ]If athie11 Fu nc
tions, Vol. 1, Funl'lions of the Fir1:1t 
Kind. US Govt. Print. Off., Washing
ton, D.C., 1962. 

5. BLANCH, G., AND CLEMM, D. S. Tables 
Relating to the Radial 1vlathie1.l Func
tions, Vol. 2, Functions of the Second 
Kind. US Govt. Print. Off., Washing
ton. J>.C., 19fl5. 

G. INCE, E. L. Tables of thP PllipLic cylin
der functions. />roe. Noy. Soc. Edin
burgh 52 (1932), 355-423; also Zeros and 
turning poi11ts. Proc. Roy. Soc. Edin
bu.rgh 52 (1932), 424-433. 

7. National Bureau of Standards. Tables Re
lating to Mathieu Functions. Appl. 
Math. Ser. 59, US Govt. Print. Off., 
Washington, n.C., 1967. (second ed.'i 

8. STRATTON, J. A., MORSE, P . .'\I., CHU, L. 
J., AND IlUTNETt, R.. A. Elliptic Cyl?'.n
der and Spheroidal W011e Functions. 
Wiley, New York, 1!)41. 

Algorithm 352 (Part A) 
MFCV AL (Characteristic Values) 

Comments The subrountine MFCVAL com
putes the first N characteristic values, a, to
gether wit.h upper and lower hounds, of 
1\fathieu 's differential equation for noUJH'ga
tive values of the real parameter, q. ThP 
equation can be writ ten in the form 

y" + (a - 2q cos '2x) y = 0, ( I ) 

where a = ar (a = br) indicates a character
istic value associated with the even (odd) 
periodic solutions. 

The method consists of three steps: (1) 
calculate a rough approximation based 011 

coefficients obtained from curve-fitting of 
available tabulations, (2) determine crude 
upper and lower bounds, and (3) iterate, 
using a variation of Newton's method. For 
a justification of this method, see [3]. 

Explanation of the arguments: 
>l' the given number of characteristic 

values desired 
H given as N -1 or N according as the 

characteristic values are to be asso
ciated with the even or odd solu
tions, respectively 

QQ the given nonnegative param0tPr q 
CV the computed 6 by N array of chante

teristic values and bounds 
J tlw number of characteristic values 

successfully computed .. J ~ X indi
cates that .J va.lues w0re computPd 

352-P 1- 0 



COLLECTED ALGORITHMS (cont.) 

with au ('rror occurring 011 tlw J + 1 
value. :\ printed message will ae
compauy such a11 t'ITor condition. 

The output array, CV, must be appro
priately dimensioned in the calling pr1Jgram 
and upon return will contain 1 he following 
data: 

For the Kth characteristic value, K 1, 
2, ... '.J, 
CV 0, K) the characteristic value a 
CT (2. K) the function JJ(a) = -'f'm(<Il 

'J',,,' (a.) 

C\' n, KJ al, , a lower bouud of a 
C\" (-1:, I() the function D(aL) 
C\" (5. K J a,. , an upper bound of a 
CV (6, K J tl1c> fu 11ct ion J) (ac·). 

Hefcrencc is agaiu made to 13], where the 
fu11ct ion 1',,, (a) is lh'fined and it is proved 
that Tm(a) = 0 if and only if a is a charac
teristic value. From this, it can be said that 
the fnuct ion D is a11 indication of the ac
curacy of itH aqi;ument, since a + D (a) 
'"'·oukl be the value of the next iteration. 

The firnt executable statement. in 
.:\IFCVAL sets a tolerance of 10-1a. This may 
be changf~d by the user, but. the following 
comments ~hould he heeded if it is at -
tempted. 

If it is desirc>d to reduce the tolerance iu 
ordf'r 1o achieve the greatest possible ac
curacy, care Hhould be taken that the LolN
ance is not less t hau io-(n-2J when executing 
the routiues 011 a machine which uses n-digit 
arithmetic. 111 other words, if the w,ier's 
computer employs 24-digit arithmetic, thi~ 
tolerance should be no less than 10-22 • A too 
small tolerauce will impose an unattainable 
accuracy requir<'rneut aud overflow ma.\· 

occur. 1 

011 the other hand, Home time-saving may 
be achieved, at the t>Xpense of accuracy, by 
making the tolerance less stringent. A toler
allcf' of 10-·l will produce results good to at 
least d digits. This iR a conservative esti
mate. si11cC' one additional iteratio11 is pcr
fornH'd aftPr the tolerance is met and, nor
mall.\·. the converge11ce of successive itera
tions is quadratic. 

Perhaps it should be noted again that the 
accuracy of any characteristic value, a, can 
\w determined from the size of it relative to 
t hP fu11ct ion IJ (a). Hee the description of t.hc 
contents of the output arra_,. CV. ::\IFC, .. \L 
calls on the sub rout ineR: 

BOUNDS-referred to as Algorithm 352 
(Part A.1) 
:VIFITR8-referrcd to as Algorithm 352 
(Part A.2) 
TMOF A-referred to as Algorithm 3.52 
(Part A.3) 

1 The conRtant in ;;tat~ment numbers 425 and 445 is in tr" 
duced to avoid the possibility of a zero tolerance. This 
should not be altered unle;;s the routines are being run on 
a machine which m;es arithmetic of more than 16 digitR, 
and then it must not he less than 10- tn--2>, with n df'fined 
as ahun:.. 

SUBROUTINE MFCVAL IN,R,uu,(V1JI 
c ***************** 

10 

INTEGER 

DOUBLE PRECISION 
A.cv.DL10R.DTMtUoUUo 
T1TM,TOL0TOLA 

DIMENSION 
* CV(6oNI 

* 

EQUIVALENCE 
<DLoDR,T> 

COMMON /MFl/ 
Q,TOLtTYPEoDUMMYl4) 

T OL = lo D-13 

IF IN-Rl 10tl0o20 

GO TO 30 
20 L 2 
30 Q QQ 

DO 5'10 K = l oN 
J = K 

IF (QI 9600490140 

40 KK = Ml~OIKo41 
TYPE = 2*MOO<Lo21+MOOIK-L+l,2l 

FIRST APPROXIMATION 

l 00 

110 
120 

130 

140 

150 
160 

* 
1 70 

180 

200 

210 
220 

* 

no 

300 

310 
320 

330 

* 
350 

400 

420 

GO TO 1100o200,300o400)t KK 

IF IQ-1.DOI 110ol40ol40 

llO TO <120'13011 L 
A l.Do-a-.125DO•Q•Q 

GO TO 420 
A Q•Q 
A A*<-.500+o0546875DO*AI 

GO TO 420 

IF ca-2.Do1 150ol801l8C 

GO TO 11600170>· L 
A l.03300-lo0746GO*O-

.C688DO*O*Q 
GO TO 420 

A .23D0-.495DO*O-
ol91DO*O*U 

GO TO 42·'.) 
A -.2500-2.00•0+ 

2.oo•DSQRTl(.)I 
GO TO 420 

DL = L 

GO TO 1220o230Jo L 
A 4o01521DO-O* 

l.046DO+.C6678~7DO*Ol 

GO TO 420 
A loDO+lo05007DO•Q-

ol 80 l43DO•Q•Q 
GO TO 42~ 

I~ <0-8.DO> 3101350,3~0 

GO TO (320o330lo L 
A 8o93867D0+.178156D0*0-

•0252132DO*O*O 
GO TO 420 

A 3.70017D0+.953485D0*0-
•0475065DO*( t>Q 

GO TO 420 
DR K-1 
A CVlloK-11-DR+ 

A 
A 

4oOO*D5QRTIQ) 
GO TO 420 

CVlloK-11-CV<l,K-21 
3oDO*A+CVlloK-31 

IF (Q.GEoloDOI GO TO 440 

IF IK.NE.11 GO TO 430 

352-P 2- 0 



COLLECTED ALGORITHMS (cont.) 

4?5 TOLA DMAXl<DMINlCTOLoDABSCA) l 
tl.D-141 

GO TO 450 
43C TGLA TOL*DABSCAl 

GO TO 450 
44(1 T')LA TOL*DMAXlCQ,DABS(A) l 
445 TOLA DMAXlCDMINl<TOLAtDABSCAl 

,.4DO*DSQRTCO>) 
,1.D-14) 

CR1J DE l_JPP[R AND LOWER bOurws 
45J CALL BOUNDS (K,A,TOLA.cv.N.~) 

I F ( I·'• NE • 0 ) 
IF CM-ll 470,QlQ,000 

ITERATt 
CALL ~FITR8 <TOLAtCV<ltKlt 

CVUoKltMl 

IF (~.GT.QI GO TO 920 

C FINAL BOUNDS AND FUNCTIONS, D 

c 

c 

47: = CV(l,Kl-TOLA 
CALL TMOFA <T,TM,DTMtMI 

IF c~.GToOl GO TO 940 

CVC3oKl = T 
CVC4tKl = -TM/DTM 

482 T = CV<ltKl+TOLA 
CALL TMOFA CTtTM,DTMtM) 

IF (MoGToOI GO TO 950 

CVC5,Kl 
CV<6•Kl: -TM/DTM 

0 EQUALS ZERO 
490 CVlloKl <K-L+l1**2 

CVC2tKl a.DO 
CVl3tKl CV<loKl 
CVC4tKI O.DO 
CVl5oKI CV<loK) 
CV<6.Kl o.Do 

500 CONTINUE 
550 

PRINT ERROR MESSAGES 
9CO \olRITE <6,9011 K 

GO TO 500 

RETURN 

901 FORMAT<20HOCRUDE bOUNDS CANNOT, 
22H bE LOCATED, NO OUTPUT, 

7H FOR K=IZI 
GO TO 930 

91 0 WRITE I 6, 911 l K 
011 FORMAT<20HOERROR IN SUBPROGRAMt 

22H TMOFAt VIA SUBPROGRAM, 
18H BOUNDS, NO OUTPUTt 

7H FOR K=I2l 
GO TO 930 

920 WRITE C6t92ll K 
921 FORMAT!20HOERROR IN SUBPROGRAM• 

22H TMOFAt VIA SUBPROGRAM, 
18H MFITRB, NO OUTPUTt 

7H FOR K=I2l 
930 J = J-1 

GO TO 550 
940 WRITE (6,Q4ll K 
941 FORMATC20HOERROR !N SUBPROGRAMt 

22H TMOFA, NO LOWER BOUNDt 
7H FOR K=!21 

CVC3oKl = OoDO 
CV14tKl =- O.DO 

GO TO 480 
950 WRITE C6t95ll K 
951 FORMAT<20HOERROR IN SUBPROGRAM, 

* 22H TMOFAt NO UPPER BOUND, 
7H FOR 1(=!21 

CVl5oKI = OoDO 
C'IC6,Kl = O.DO 

GO TO 500 
960 WRITE (6,9611 
961 FORMATl20HOQ GIVEN NEGATIVELYot 

20H USED ABSOLUTE VALUEI 
Q = -o 

GO TO 40 
END 

Algorithm 3.52 (Pnrt Il) 
:\1ATH (:\Int hieu F11nct ions) 

Comment.'! The s11hro11t inc :\L\ TH corn 
putes vnrio1rn solutions (nnd thPir ckriva
t ivmi), of either :\fathi01t's diffPrential pq11a
tio11 or :\fathieu's modifi0d <'({llation, which 
are associated with the charactrrist ic 
values. 

The ei·en periodic solution of equation 
(1) is 

ce,(x,rz) f: A21,._._r cos (2k+p)x, (2) 
k~o 

associated with a,(rz), and the oriel pcriorlir'. 
solution is 

~ 

sc,(x,rz) L B21:- 1, sin (21.:+p).r, (3) 
k~n 

associated with b,(rz). The ordrr, r, is oft hP 
form 2n + p. Then is a nonnegat ivc integer 
while p = 0 or 1 indicates the solution is of 
period 7r or 27r. Calculation of the periodic 
solutions allows the following three options 
of normalization: 

(a) ~eutral. \Ve define neutral coeffi
cients such that .:l2k+v = A2k+vf.l2s+v , 

wheres is chosen so that A2s+r is the numeri
cally largest one of the set. The B2k+v an~ 
similarly defined. This has the computa
tionally convenient effect of making the 
largest coefficient equal to unity, hence all 
calculations arc carried out with them. If a 
normalization other than neutral is selected, 
it is effected on the output arra.1-· F onl.1-·, the 
coefficients themselves remaining un
changed. 

(b) Ince. The normalization adopted in 
r6J is defined so that if y(x,rz) represents 
either function (2) or (3) then 

ro'.!1!' Jn !J2(:r, q)d.r = 7r. 

(c) Stratton. As defined in [8], and in 
the notation of [7], this normalization is 
effected so that 

Ser(r1, 0) = - So,(q, x) = 1. 
[

d . . ] 
rl:r I=O 

where Se is the evc11 solution and So the odd. 
If we replace x by ix in (1), we gf't 

y" - (a-2q cosh 2x) y = 0, (,~) 

known as :\Iathieu 's modified equation. Tlw 
sol11t ions of (-1) have been termed radial in 
[8) and, for characteristic values, can be put 
in the following form, using the notation of 
[41 and [5): 

Jfc~i) (x,rz) 
~ (.~) 
L.J (-l)n+k A2k+p [F\ +Gd/.12s+pE~s+1•' 
k~o 

associated with a,(q), and 

.lls~n(x,q) = 
~ (6) L (-1)n+kB2k!-p [Fk - k]/B2s-p, 

k=O 

352--P 3 0 



COLLECTED ALGORITHMS (cont.) 

associated with b,(q). The order r equals 
2n + p, as in (2) and (3), and Em = 1 if 
rn =;t. 0, but Eo = 2. The choice of sis arbitrary 
here, but for numerical purposes we choose 
it in the manner described previously for 
neutral normalization. The coefficients are 
the same as defined in (2) and (3), while Fk 
and Gk involve the Bessel functions as fol
lows: 

Ji\ Jk-s(U1) Zki)P+s(U2), (7) 

(8) Gk Jkt-p+s(U1) Zkil,(u2), 

z~l(u) = Jm(u), z;,;l(u) = Ym(n). 

The solutions (5)-(6) are said to be of the 
first or second kind depending on whether 
j = 1 or 2 in (5)-(8). 

Explanation of the arguments: 
XX the given independent variable x 
QQ the given positive parameter q 
R the given order r 
CV the given characteristic valm~, 

SOL 

FNC 

a,(q) or b,(q) 

given as 1, 2, or 3 according as the 
desired solution is (1) radial of 
the first· kind, (2) radial of the 
second kind, or (3) periodic 

given as 1, 2, 3, or 4 according as 
the desired solution is (1) asso
ciated with bf , (2) associated 
with ar , (3) the derivative of 
solution (1), or (4) the deriva
tive of solution (2) 

NORM given as 1, 2, or 3 according as the 
desired normalization is (1) de
fined as neutral, (2) defined by 
Ince, or (3) defined by Stratton. 
(This argument is decoded only 
if SOL = 3.) 

}"' the computed three-element array, 
containing: (1) the solution 
value, (2) the series term of 
largest magnitude, and (3) the 
last term included in the summa
tion 

K the computed two-element array, 
containing: (1) the index, k, of 
the term in F (2), and (2) the 
index of the term in F (3) 

M the error indicator cell: :\I = 0 
indicates successful execution of 
subprogram, M = 1 sigHifies an 
error condition explained by an 
accompanying printed message. 

The accuracy of results (within limits) 
and the speed of convergence may be nltered 
by the user. See SUM (Algorithm 352 (Pnrt 
B.2)) for details. 

MATH calls on the subroutines: 
COEF-referred to as Algorithm 352 (Part 

B.1) 
SUM-referred to as Algorithm 352 (Part 

B.2) 

BESSEL-referred to as Algorithm 352 
(Part C) 

ClJfifH;tJTINE MATH IXXo'Jf.itfltC'lt~OLt 

l"tl C , NOil M t F , r , ~ ) 
c *************** 

c 

c 

c 

10 

• 
• 

INTEGER 
FNCo I tK( ;n tYLA:..T .r,r~AXtLt 
LLtMtMFoML,MMtMGtMlt~2~t 

NtN0RMtPtRt~t~OLtTYP[ 

f)OUBLE PP[Cl'.;ION 
AoAO,CVouLA~T,~MAXoF<31oGo 
J,Q,~U,TtTULoUloU2oXtXXoY 

EXTERNAL 
oc,uuc,uus,us,DPC,vPS, 
PC,PS 

J!25Cl ,vc2c.,oi .~1.u2,N.P,',, 
* LoXoTtloLLoGoDMAXoULAST, 
* KMAX 0 KLA~T.~UMlC~7bloAt 

DUM2C6ltMM,MLoAbC2COI 

C0"1MON /MFl/ 
* OoTOLoTYP[,MloMOoM~~.~F 

M = 0 

If ISOLoLTol oORo 
* SOLoGTo3 oORo 

FNCoLTol oORo 
* FNCoGTo4l GO TO 40C 

A CV 
Q QQ 

T OL lo D-13 
TYP[ 2*MOD(FNCo2l+MCDIRo2l 
CALL COEF IM l 

IF !Ml 410ol0t420 

N R/2 
p llOD<R,2> 
s MM/2 
L ML/2 
x xx 
T lo DO 

IF <SOL.E0.31 
* GO TO !150ol60ol70,180)o FNC 

u 1 DSQRT!Ul*DEX~l-XI 

U2 0/Ul 
LL L+S+P 

COMPUTE BESSEL FUNCTIONS 
CALL BESSEL !loUl,J,LLl 
CALL BCSSEL (SOL,u2,Y,LL) 

EVALUATE .SELECTED FU~CTION 
GO TO ISCt60o70t80l, FNC 

so CALL SUM ! DS l 
GO TO 300 

60 CALL SU,_. <DCl 
GG TO 300 

n CALL SU~·1 !DOSI 
GO TO 300 

80 CALL SUM ! DOC l 
GO TO 300 

150 CALL SUM l PS l 
(,0 TO 200 

160 CALL SUIA (P(l 
GO TO 200 

170 CALL SUM <DPSJ 
GO TO 200 

180 CALL SUM <DPCl 

200 IF l NOR,..-2 l 300.210.2so 

INC [ NORMALIZATION 
210 T = ABl11**2 

IF !TYPEoEQ.Ol T = T+T 

DO 220 I = loL 
T = T +AB ( I+ l l ** 2 

220 CONTINUE 
T DSQRTITJ 
I = M0/2 

352-P 4- 0 



COLLECTED ALGORITHMS (cont.) 

JF IAB!lleLTeOoDOl T = -T INTEGER 

GO TO 300 

c STRATTON NORMALIZATION 

250 IF (TYP[oGToll GO TO 270 

T = ABlll 
DO 260 I ltL 

T = T+ABII+ll 
260 CONT I NUE 

GO TO 300 
270 T DBLE<FLOAT<Pll*AB<ll 

DO 280 I ltL 
T T+AB<I+ll* 

* DIJLEIFLOAT!2*I+Pl l 
280 CONTINUE 

300 F ( 1 l GIT 
F< 2 I DMAX/T 
r < 3 > DLAS TIT 
K ( l I K~·~A X 
K ( l.' l KLAST 

350 RETURN 

C PRINT ERROR ~ESSAGES 

400 WRITE 16•4Cll 
401 FORMAT ( llJllO~OL OR FNC OUT UF • 

* 17H RANGE• NO OUTPUT! 
GO TO 450 

410 WRITE !6t4lll 
411 FORMAT115HOMORE THA~ 200 • 

* 22HCOEFFICIENTS REQUIRED•• 
* 20H QQ AND R TOO LAl\GE t • 
* lOH NO OUTPUT> 

GO TO 450 
420 WRITE !6t42ll 
421 FORMATl20HOERROR IN SUBPROGRAM• 

* 22H TMOFA, VIA SUBPROGRA~• 

* 13H COEFt VERIFY• 
* 21H ARGUMENTS. NO OUTrUT) 

450 M 1 
Fl 11 a.Do 
F ( 2 I a.Do 
FI 3 l o.oo 
K ( l l 0 
K ( 2 l = 0 

G© TO 350 
END 

Algorithm 352 (Part A.1) 
BOUNDS (Crude Bounds) 

(Called by MFCVAL) 

Comments The subroutine BOU:\ DS detPr
mines crude upper and lower hounds fcir the 
Kth characteristic value, K ;:;;; ::\. 

Explanation of the other arguments: 
APPROX 1 he first approxinrnt ion 
TOLA the tolerance determined hy 

CV 

N 

MM 

subroutiue MFCYAL 
the 6 by ::\ army descrih<'d i11 

subroutine l\lFC\. AL 
variable dime11sio11 of the CY 

array 
an indicatnr cell used to eom

muuicatc unusual and <'n·1ir 
conditions 
MFCYAL 

to f'Ubro11tillt' 

The output, 11 0 <a < a1, i,,; pn1 into thP 
cummon block labeled :\1F2. 

BOUNDS calls on the t-rnbrout i11c: 
TMOFA-rcferrcd to as Algorithm :~;):,? 

(Part A.3) 

SUBROUTINE BOUND~ IKtAPPROXt 
TOLAtCVtNtMMl 

* K,KA,M,MMtN 

DOUBLE PRECISION 
A9 APPROX,AQ,Al,CV,UTM• 

* DOtDl•QtTMtTOLA 

DIMENSION 
* CV!6tNl 

COMMON /MF 1 I 
* Q,DUMMY!7) 

COMMON /MF2/ 
* AO,AtAl 

l<'A = 0 

IF <K.EQ.ll GO TO 20 

IF <APPROx-cv11.K-l)) io.10.20 

10 AO CV<l.K-11+1.DO 
GO TO 30 

20 AO APPROX 
30 CALL TMOFA <AO,TMtDTMtMl 

IF IM.GT.Ol GO TO 250 

DO = -TM/DTM 

IF IDO> 100t300t50 

C AO IS LOWER BOUNDt 
C SEARCH FOR UPPER BOUND 

50 Al = AO+DO+elDO 
CALL TMOFA !AltTM,DTM,Ml 

IF <M.GToOl GO TO 250 

D 1 = -TM/DTM 

IF <Dll 200,350,60 

60 AO Al 
DO = Dl 
KA = KA+l 

IF IKA-4) 50,400,400 

C Al IS UPPER BOUND• 
C SE~RCH FOR LOWER BOUND 

100 Al AO 
D 1 = DO 
AO = DMAXllAl+Dl-.lD0,-2.DC*Ol 

IF IK.EQ.ll GO TO 110 

110 CALL TMOFA IAO,TMtDTMtMl 

IF IM.GT.Ol GO TO 250 

DO : -TM/DTM 

IF <DOI 120t300,200 

120 l<'A = KA+l 

IF IKA-4) 100t400t400 

150 rA = ICA+l 

IF IKA-4) 160,400t400 

160 AO Al+DMAXllTOLAtDABS<Dlll 
GO TO 30 

200 A o5DO*IAO+DO+Al+Dll 

IF IAoLEoAO .ORo 
AoGE.All A= e5DO*IAO+All 

250 MM = M 
RETURN 

300 C VI 1 tK l AO 
310 CV I 2 ,Kl o.oo 

-1 
GO TO 250 

,5;: ( V( 1 ,Kl Al 
GO TO 310 

400 ~ 

GO TO 250 
END 

352-P 5- 0 



COLLECTED ALGORITHMS (cont.) 

:\lgorithm 352 (Part A.2) 
~IFITH.8 (Improves Characteristic Value) 

(Called by MFCVAL) 

('omments Given ao < a < a1 , where ao is a 
lower and a1 an upper bound, the subron
t iue MFITR8 iterates to the characteristic 
value, replacing one of the bounds with a 
better approximation at each step. The 
process terminates after 40 iterations unless 
one of the following conditions occurs first: 
(1) a - ao ~ TOLA, (2) a1 - a ~ TOLA, or 
(3) I D(a) I < TOLA. See Appendix 3, 
method 2, of [3] for a detailed description of 
this process. 

Explanation of output: 
CV the characteristic value, a 
DCV the function D (a) 
MM an indicator cell used to communi

cate an error condition to subrou
tine MFCVAL. 

MFITR8 calls on the subroutine: 
TMOFA-referred to as Algorithm 352 (Part 

A.3) 

SUBROUTINE MFITR6 CTOLAtCVtDCVtMM) 
c ••••••••••••••••• 

c 

INTEGER 
* MtMMtN 

DOUBLE PRECISION 
... AtAOtAl1A2.cv.D.DCV1DTMt 

TM,TOLA 

LOGICAL 
LAST 

COMMON /MF2/ 
AOtAtAl 

N 
LAST 

50 N 

0 
.FALSE. 
N+l 

CALL TMOFA !A,TMoDTMtM) 

IF CM.GT.Cl GO TO 400 

D = -TM/DTM 

IS TOLERANCE MET 
IF IN .Ea. 40 .OR. 

* A-AO .LE.TOLA .OR. 
* Al-A .LE.TOLA eOR. 

OABSIDleLT.TOLAl LAST 

IF ID> 110,100,120 

100 c v 
ocv 

A 
o.oo 

eTRlJEo 

GO TO 320 

C REPLACE UPPER ciOUND ~y A 
110 Al = A 

GO TO 200 

C REPLACE LOWER BOUND BY A 
120 A.0 = A 
200 A2 = A+D 

IF <LAST I GO TO 300 
l F IA2.GT.AOeANDeA2.LT.All 

* GO TO 250 

A o5DO*!AO+All 
GO TO 50 

250 A A2 
GO TO 50 

300 IF !A2.LE.AO.ORoA2oGE.All 
GO TO 350 

CALL TMOFA !A2,TMtDTM,Ml 

IF CM.GT.OJ GO TO 400 

D -TM/DTM 
CV A2 

310 DCV D 
320 '1M M 

RETURN 
350 CV A 

GO TO 310 
400 CV o.Do 

DCV O.Do 
GO TO 320 

END 

Algorithm 352 (Part A.3) 
TMOFA (Accuracy Indicator) 

(Called by MFCVAL, BOUNDS., MFITR8 
and COEF) 

Comments The subroutine TMOFA evalu
ates the function Tm (a) and its derivative 
dT m (a) /da. See [3] for the definitions, theo
rems, and numerical methods relating to the 
computation of these quantities. 

Explanation of the arguments: 
ALFA the given argument, a 
TM Tm(a) 
DTl\I dTm(a)/da 
KD internal error indicator cell 

TMOF A calls no other subprograms. 

SUBROUTINE TMOFA IALFAtTM1DTM1NDl 
c **************** 

c 

* 
* 

INTEGER 
K1KKtKT1LtMFtM01Ml1M2St 
NDoTYPE 

DOUBLE PRECISION 
AtAAtALFA,B,DG,DTMoDTYPE, 

* FoFLtGtH1200loHPtOtOINVt 
* 01.02.T.TM.TOLoTToV 

* 
* 
* 

COMMON 
GC200t2ltDGl200t21•AA, 
Al3l•B<3ltDTYPE10tNV10lt 
021T1TTtKtLtKK1KT 

COMMON /MFl/ 
* OtTOL1TYPE1Ml1MOtM2StMF 

EQUIVALENCE 
* IHClltGlltlllo!OloHPlt 
* CQ2,Fl 

DATA FL /leD+30/ 

STATEMENT FUNCTION 
V!Kl z IAA-DBLE!FLOAT!Kll•*2l/Q 

ND 
KT 
AA 
D TYPE 
QINV 
DO 10 

DO 

0 
0 

"' ALFA 
TYPE 
leDO/Q 

L • 112 
K = 11200 

GIKtll .. o.Do 
DG!Ktll .. a.Do 

5 CONTINUE 
10 CONTINUE 

IF IMODCTYPEt2ll 20,30,20 

20 MO 

30 MO 
40 K 

* 
'-1 2 s 

* 

GO TO 40 
TYPE+2 
.5DO*DSQRTIDMAX1< 
3.DO•Q+AA ,Q .DO l l 
MINOC2*K+M0+4, 

396+MOD!MOt2l l 

352-P 6-- 0 



COLLECTED ALGORITHMS (cont.) 

C EVALUATION OF THE TAIL OF A 
C CONTINUED FRACTION 

50 

A<ll 1.DO 
A<2l V!M25+2l 
B< ll V!M2SI 
8<21 A(Zl*B<l>-1.DO 
01 A<21/Bl2l 
00 5C K 1•200 

MF M2S+2+2*K 
T V (MF I 
A<3l T*A(2l-Alll 
B<3l T*lH21-B<ll 
02 AC3l/BC3l 

IF <OABS<Ol-021.LT.TOL) 
GO TO 70 

01 02 
A ( 1 l A ( 2 l 
A ( 2 l A C3 l 
B < l l B < 2 l 
B<2l B C3 l 

CONTI NU!:: 
KT 

70 T 
TT 
L 

loDO/T 
-T*T*OINV 
MF-M25 

DO 80 K 

T 
TT 

2•L•2 
loDO/CV(MF-Kl-Tl 
T*T*CTT-QINVl 

80 CONTINUE 
KK M2S/2+1 

IF CKT.EOoll 02 c 

GCKK,2l ~ ,5D0*<02+Tl 
DGIKK,2>~ TT 

STAGE 1 

100 

110 

120 

G < 2 '1 l 
DO 140 

KK 

= loDO 
K MO,M2S,2 

= K/2+1 

IF (K.LT.5l 
IF ( K- 3 l 100 • 110, 12 0 

GIKKtll = V<K-2l-loDO/G(KK-ltll 
DG<KKtll= QINV+DG<KK-1,ll/ 

G(KK-ltll**2 

GI 2 tl l 
DG< 2 t l l 

G ( 2 t 1 l 

DG< 2 • l l 

G ( 3 tl l 

DG< 3 • l l 

v ( 0) 

OINV 

GO TO 130 

GO TO 130 
V(ll+DTYPE-2.DO 
QINV 

GO TO 130 
Vl2l+<DTYPE-2.D0l/ 
GI 2 tl l 
OINV+<2oDO-DTYPEl* 
DG<2•ll/Gl2tll**2 

IF !TYPE.E0.2l G!2tll = O•DO 

130 IF <DABSIG<KKtllloLTolel>Ol 
GO TO 2CO 

140 CONTINUE 

BACK TRACK 
TM GIKK,2l-G!KK,ll 

DG<KKt2l-DG<KK,ll 
M2S 

150 

160 

DTM 
.., l 
KT 
DO 

M25-MO 
180 L 2tKTt2 
K M2S-L 
KK K./2+1 
G!KKt2> loDO/!V!Kl-G!KK+lt2l l 
DG!KKt2l= -G!KK12)**2* 

(Q!NV-DGIKK+l•2ll 

IF (K-21 15001501160 

G!2t2l 2.DO*G!Z,2l 
DG!2tZl = 2oDO*DGl2t2l 
T = G(KKt2l-G<KKtll 

IF <DABS!Tl-DABS!TMll 
170.1800180 

170 TM T 
DG<KKt2l-DG<KK,ll 
K 

DTM 
Ml 

180 CONTINUE 
GO TO 328 

c ST AGE 
2oc Ml K 

K M2S 
KK K/2+1 

210 IF <K.EO.Mll 
IF <K-21 300 t300 .310 

K K-2 
KK KK-1 
T VCKl-GCKK+l,2l 

IF <DABSITl-1.DOl 250.220.220 

220 G!KK,21 = l .DO/T 
DG<KKt2l= !DG!KK+l12l-QINVl/T**2 

GO TO 210 

c STAGE 3 
250 IF IKoEOoMll IF IT l 220.290,220 

HP DG!KK+l,2>-0INV 
260 GCKK12l FL 

H(KKl T 
I( K-2 
KK .. KK-1 
F V!Kl*T-loDO 

IF <K.EQ.Mll IF <FI 280.290,280 

IF <DABSCFl-DABSCTll 210.280.280 

270 HP HP/T**2-QINV 
T FIT 

GO TO 260 
280 G<KK,2! T/F 

!:>G< KK, 2 l = CHP-UINV*T*Tl/F**2 
GO TO 210 

290 "4D 
GO TO 320 

C CHAINING~ EQUALS 2 
300 G<2•2> 2·DO*Gl2t2l 

DG<2t2l 2.DO*DGl2t2l 
310 TM GCKK,2l-GCKK,ll 

DTM DGIKKt2l-DGIKK,ll 
320 RETURN 

ENC' 

Algorithm :352 (Part TU) 
COEF (Coefficients) 

(Called by .:\IATH) 

Comments The subroutine COE1< com
putes the neutrnl coefficients, as defined in 
the r'o1111ncnfs of Algorithm 052 (Part B), 
and returns them via common array AB. 
Argumeut .M is a11 internal error indicator 
cell. For <let ails of 1 he method used, sec Ap
pe11dix 6of l~n COEF calls on thesubroutine: 
T:\fOFA-rcferred to as Algorithm 352 

(Part A.3) 

c 
cuRROUTINE COEF !Ml 
*************** 

INTEGER 

* K1KA1KB1KK0MtMFtML1MMt 
MOtMltM2S,TYPE 

DOUBLE PRECISION 
A1AB,FLoG1Hl200loOoT• 
TOLtVtV2 

COMMON 

* G!200t2loOUM1(800ltAoTtKo 
KA1KB1KK1MM,ML,AB!200l * 

COMMON /MFl/ 
OoTOL1TYPE0Ml1MOoM2SoMF 

EQUIVALENCE 
* (H(ll1Glltlll 

DATA FL,V2/loD+30•l·D-15/ 

352-P 7- 0 



COLLECTED ALGORITHMS (cont.) 

c STATEMENT FUNCTION 
VIKI • IA-DBLEIFLOATIKll**21/Q 

CALL TMOFA IAoTtTtMI 

IF IMeNEeOI GO TO 300 

DO 60 K • 10200 
ABIKI " OeDO 

60 CONTINUE 
KA = Ml-M0+2 
DO 90 K • 2oKAt2 

KK • IMl-Kl/2+1 

IF IK-21 10.10.ao 

70 ABIKKI • leDO 
GO TO 90 

80 ABIKKI :a ABIKK+ll/.GIKK+hll 
90 CONTINUE 

KA = 0 
DO 130 K • MloM2So2 

U:. • K/2+1 
ML • K 

IF IGIKKo21.EQ.FLI GO TO 100 

ABIKKI ABIKK-ll*GIKKt21 
GO TO 110 

100 ABIKK-21 

ABIKKI • T/IVIK-Zl*HIKKl-leDOI 

110 IF IDABSIABIKKlleGEeleD-171 
KA = 0 

IF IKAeE0.51 GO TO 260 

11:.A 
130 CONTINUE 

T 

* KA 
~L 

= KA+l 

DLOGIDABSIABIKKll/V21/ 
DLOGlleDO/DABSIGIKKoZlll 

• 2*IDINTITI 
"' KA+2+M2S 

IF IML.GT.3991 GO TO 400 

KB • KA+Z+MF 
T • leDO/VIKB> 
KK " MF-M2S 
00 150 K • 2oKKo2 

T • leOO/IVIKB-KJ-TJ 
150 CONTINUE 

KK s ML/2+1 
GI KK o2 I ,. T 
DO 200 K "' 2oKAo2 

KK • IML-Kl/2+1 
GIKKo21 • leDO/CVCML-KI-

* GIKK+lo211 
200 CONT I NUE 

KA "' M2S+2 
DO 250 K • KAoMLt2 

KK • K/2+1 
ABIKKI • ABIKK-ll*GIKKt2l 

25.0 CONT I NUE 

C NEUTRAL NORMALIZATIO~ 
260 T = ABlll 

MM • MOOITYPEoZI 
KA = MM+2 
00 280 K • KAoMLo2 

KK • K/2+1 

• 
lF IDABSITl-DABSIABIKKlll 

270o280t280 

270 T 
MM 

280 CONT I NUE 
!)0 290 

ABIKI 
291' CONTINUE 
300 
400 M 

END 

s ABIKKI 
• I( 

K • loKK 
• ABIKJ/T 

-1 
RETURN 

GO TO 300 

Algorithm 352 (Part B.2) 
SUM (Series Evaluation) 

(Called by :MATH) 

Comment.<; The subroutine SUM[ performs 
the summation, truncating the series wlH'n 
the magnitude of two successive terms, rela
tive to the magnitude of the largest term, is 
less than or equal tq 10-1a. 

If the user is willing to accept reduced ac
curacy, he may save some computing timP 
by making .this tolerance larger. 011 the 
other hand, however, a smaller tolerance 
will not necessarily increase the accuracy, 
si11ce on a machine usi1tg 16-digit arithmetic 
the SUm Will be, at best, good to 11) <ligitH. 

The particular series being evaluated i::i 
determined by the arguments SOL a11d FXC 
within subroutine :\IATH and commu11i
cated to this subroutine via argume11 t DC.:\1. 

Output is returned via common: varia
hleH F, Dl\IAX, l>LART, l\l\'CAX, and 
KLA~T. 

Rr:l\1 calls on one of 1 he functions of 
Algorithm 352 (Part B.2.1). 

c 

• 

SUBROUTINE SUM l~UMI 

************** 

INTEGER 
KtKLASToKMAXtLtS 

DOUBLE PRECISION 
DLASToDMAXoOUMoFuT 

COMMON 
DUM111006ltStLtDUM2161tFt 

* DMAXtDLASToKMAXoKLASTtT 

10 

2C 

K .. 0 
F • DUMIOI 
DMAX s F 
T = OABSIFI 
KMAX " 0 
DO 30 KLAST = loL 

DLAST = DUMIKLASTI 
F = F+OLAST 

IF IT-DABSIDLASTJI 10olOo20 

D~1AX DLAS T 
T = DA6SIDMAXI 
KMAX = KLAST 

IF IKLAST.LEoSI GO TO 30 

[F IDABSIDLASTl/ToGToleD-131 
I( = 0 

K = K+ l 

IF !KeEOo31 GO TO 40 

3') CONTINUE 
KLAST = L 

40 RETURN 
END 

Algorithm 352 (Part C) 
BESSEL (Bessel Functions) 2 

(Called by MATH) 

Comments The subroutine BESSEL eval
uates Bessel functions of the first or second 
kind, actording as the argument SOL = 1 or 
2, of orders 0, 1, · · · , n and argument u, both 

352-P 8- 0 



COLLECTED ALGORITHMS (cont.) 

of which must be nonnegative. Functions of 
order zero and one are always evaluated, re
gardless of the value of n. Results are re
turned via array JY, with element JY(K) 
containing the function of order K-1. 

It should be noted that for SOL = 2 and 
u = 0, a large negative constant (-1037 ) is 
returned as the function value for all orders 
and no warning is given. 

Different methods of computation are 
used for Jo(u), J1(u), Yo(u), and Y1(u), 
depending upon whether u < 8, or not. (See 
subroutines JOJl, YOYl, and LUKE for 
details.) The Jn(u), n = 2, 3, · · · , m, are 
computed by means of a continued fraction 
(see subroutine JXS), whereas the Yn(u) 
for corresponding orders are calculated di
rectly from the recurrence relation: 

BESSEL calls on the subroutines: 
JOJl-referred to as Algorithm 352 (Part 

C.1) 
YOYl-referred to as Algorithm 352 (Part 

C.2) 
LUKE-referred. to as Algorithm 352 (Part 

C.3) 
J~S-referred to as Algorithm 352 (Part 

C.4) 

SUBROUTINE BESSEL ISOLtUtJYtNI 
c *********•******* 

INTEGER 
* N.NN,SOL 

DOUBLE PRECISION 
* JY<l501tU 

NN = MINO!Nt249) 

IF cu.Ea.o.Do.AND.SOL.EQ.21 
* GO TO 80 

IF CU.GE.!3.DOI GO TO 

GO TO (1002011 SOL 
10 CALL JOJ l IU,JYI 

20 CALL YOYl IU,JYI 

30 CALL LUKE <UtSOL 1JY I 

40 IF <N.LT.21 GO TO 100 

GO TO C50o60)o SOL 
50 CALL JNS CJY1U1NNI 

30 

GO 

GO 

TO 

TO 

40 

40 

GO TO 100 

C RECURRENCE FORMULA 
60 DO 70 K = 21NN 

JYIK+ll = 2.DO* 
* DBLE<FLOATCK-11 I* 
* JY<Kl/U-JYCK-11 

70 CONTINUE 
GO TO 100 

80 NN = NN+l 
DO 90 K l 1NN 

JYl!(I -I.D+37 
90 CONT I NUE 

100 RETURN 
END 

~This subroutine (together with its subsidiary routines) 
may be remo\'ed in toto, with no ehanges, and used inde
pendently as n Bes8el function algorithm. The results are 
g"o<l to 14 significant digit!!' or decimal places, whicheYer 
is least accurate, with an error of no more than one unit in 
the bst digit or plac~. 

Algorithm 352 (Part C.1) 
JOJl (First Kind} 

(Called by BESSEL) 

Comments The subrontine JOJl computes 
the Bessel functions of the first kind, Jo(x) 

and J1 (x), for x < 8. This is done by evalu
ating formula 9.1.10 of [1]. The results are 
returned via array .J. 

JOJl calls 110 other subprograms. 

~UBROUTINE JOJI ex.Ji 
c *************** 

DOUBLE PRECISIO~~ 

* 
COM MON 

JC2),TC5),X 

DUMCIOI4),T 

X/2.DO 
I.DO 
T ( I ) 

TC l I 
J ( 1) 

J ( 2 I 
T ( 2 I -T<ll**2 

TC 3 I 
TC 4) 

I.DO 
I.DO 

10 TC41 TC41*TC21/TC31**2 
Jill= JCl)+TC41 
TC51 TC41*TCll/CTC3)+1.DOl 
JC21 JC2l+T(5) 

IF CDMAXlCDABSCTC411tDABS(TC5111 
.LT.l.D-I5) RETURN 

TC31 = T!3)+I.DO 

END 

Algorithm 352 (Part C.2) 
YOYl (Second Kind) 

(Called by BESSEL) 

GO TO IO 

Comments The subroutine YOYl computes 
the Bessel functions of the second kind, 
Yo (x) and Y1 (x), for x < 8. This is done by 
evaluating formulas 9.1.13 and 9.1.11 of fl]. 
The results are returned via array Y. 

YOYl calls no other subprograms. 

~UBROUTINE YOYl (X,Y) 
c *************** 

DOUBLE PRECISION 
TC lOl tX•Y<2 I 

COMMON 
* [)lHAl1014)tT 

TC l) Xl2.DO 
TI 2 I = -TC1)**2 
y ( 11 I.DO 
y ( 2) TI l l 
TI 7) O.DO 
TI 10 l = -TC l) 
T ( 3 I o.DO 
TC 4 I O.DO 
TI 5 l " I .DO 

10 TC 3 l 
T ( 4 I 
T ( 5 l 

TC3l+l.DO 
TC4l+I.OO/T<31 
Tl5)*TC21/Tl31**2 

YI 11 Y( l)+T<51 
T<61 = -Tl5)*Tl4) 
Tt71 TC7J+TC6) 
TC81 T<5l*TClll<T(3)+1.DOl 
y ( 2) 

TC 9 l 
Y(2)+T(8l 
-Tl8l*l2.DO*Tl4l+ 
1.DO/(TC31+1.DOll 

TClOI= TC10l+Tl91 

352-P 9 0 



COLLECTED ALGORITHMS (cont.) 

IF (~MAXl<nABSIT(6) ),DA~S<T<9l )) 
oGEoloD-151 GO TO lC 

T<2> o577Ll566490l53~lGDC+ 

DL:JGI T ( l l I 
Y < 1 l o 6 3 6 6 1 9 7 U 3 6 7 5 8 l 3 '• D 0 * 

<Y<lll<T(2l+T<71l 
Y<2l 06360197723675813400* 

END 

< Y < 2 l * T < 2 l -1 o DO IX l + T < l 0 I I 
30141592653589793200 

RETURN 

Algorithm 352 (Part C.3) 
LlIKE 

(Called by BESSEL) 

Comments The subroutine LUKE evalu
at cs Bessel fun ct ions of order zero and one, 
(If the first or second kind, according aR the 
argument KI~D = 1 or 2, for u ~ 8. The re
sults are returned via the 2-element array 
JY. 

The Bessel fun ct ion of the third kind 
(Hankel function), H~I) (u) = Jv (u) + 
iYv(u), can be expressed in terms of the 
Chebyshev polynomials, Tn*(x), as follows: 

l/~!)(u) = C-~ y ei( u -T- - i-) 
(9) 

co 

· L (ak.i + i{jkv»Tk*(R/u). 
k=o 

\Ve now define ak0> = Ak+1 , {j~o> = Bk+t , 
af'l = Ck+1 , {jk1> = Dk+1 , x = R /u, and 
Tk*(x) = Gk+1(x). The recurrence relations 
for the Gk (x) are as follows: 

1, G2(x) = 2x - 1, 

(4x-2) Gk-1(x) - Gk_z(x), 

k ~ 3. 

If we let v = 0 and make other appropriate 
r,,:ubstitutions in (9), while remembering that 
ri~ = cos 0 + i sin 0, we can separate the real 
and imaginary parts and get the following 
relations: 

.!0(11) = (~)i 
7r1l 

. [eos 0 ~ A1.; Gk(x) 

( 
2 )t 

Yo(u) = 7iU 

. [cos o ~ Bk G1.(x) + sin o ~ A1.; Gh)] , 
where 0 = u - 7r/4. 

~otice t.hat if v = 1 in (9), then 0 is re
placed by 0 - 7r/2. Also, cos (tJ-7r/2) = 

sin O and sin (0-·rr/2) = -cos 0. There
fore, proceeding as before, we get 

.f1(ul = (7i2Ji 

. [sin O ~ c, G,(x) + cos 0 ~• lh G.(x)], 

}",(11) = (~)~ 7i ll 

The cocfficien ts A, B, C, and D ::rnvc been 
computed for R = 8 in eq. (9) and arc guar
atltccd tot.he number of digits given. 

c 

c 
c 
c 

LUKE calls no other subprograms. 

~UBROUT!NE LUKE IU,KIND.~Yl 

*************** 

INTEGER 
K•KIND 

DOUflLE PRECISION 
A( 191,5(191tCStC<19) • 
D < 1 9 l t G < 3 l , J Y ( 2 I ,, RI 2 I • 
S<2ltSNtTtUtX 

COMMON 
llUM ( l 0 14 I , R, S, <..it X t T t SN• CS 

WARNING - THE FOLLOWING DATA 
STATEMENTS ARE NOT IN ASA 
STANDARD FORTRAN 

DATA A I 
o99959506476867L87~16DOt 

-o5380795613960691JD-3t 
-ol3179677123361570U-3t 

01514224970486440-St 
0158468617920630-6" 

-08560695539460-Bt 
* -o29572343355D-9t 

065735562540-lOt 
-02237497030-llt 
-o44821140D-12t 

o6954827D-13t 
-ol51340D-14t 
-.924220-15, 

ol5558D-15t 
-.476D-17t 
-o274D-17t 

o6lD-l8t 
-o4D-19t 
-.lD-19/ 

DATA B I 
-07769355694205321360-2• 
-o774803230965447670D-2t 

o253654ll65430796D-4t 
03942735983997110-5. 

-ol072349829912Q0-6. 
-07213897993280-Bt 

0737646028930-?t 
o 150 6 8 7 8110- 11 , 

-05745895370-llt 
o45996574D-12t 
022703230-13, 

-08878900-14, 
.744970-15. 
o5847D-l6t 

-.2410D-l6t 
.265D-17t 
ol3D-18t 

-0100-1a. 
o2D-l9/ 

352-P 10- 0 



COLLECTED ALGORITHMS (cont.) 

~)ATA C I 

l.00067753586591346234D0o 
.90100725195908183D-3• 
o2217243491U5994540-3o 

-.196575946319104D-5o 
-.20889531143270D-6, 

ol028144'50894D-7o 
.375970547890-9, 

* -.7638891,580-10, 
02387346700-llo 
.51825489D-12, 

-.76939690-13, 
.1440080-140 

* .103294D-14, 

DATA D I 

-.168210-15. 
.459D-17. 
• 302D-17' 

-.650-18, 
.40-19• 
.10-19/ 

.23376829986285d03280-lt 

.2334680122354557533D-l, 
-.35760105909013820-4, 
-.5608631494926270-St 

.13273894084340D-6, 
··9169758450660-8, 
-.86838880371D-q, 
-.3780730050-llt 

o663145586D-llt 
-.505843900-12, 
-.27207820-13 • 

• 985381D-l4o 
-.79398D-15t 
-.6757D-16• 

.2625D-16t 
-.280D-17t 
-ol50-18t 

.100-10. 
-.20-19/ 

X 8oDO/U 
GCll loOO 
G<2> 2.00*X-1.00 
R C l ) AC l ) +AC 2 > *G < 2 > 
.<:<l> BCll+tlC2l*G<2> 
RC 2 > CC 1 >+CC 2 l *G C 2 l 
~C2l 0Cll+OC2l*GC2> 
00 10 K 3tl9 

GC3> C4.00*X-2.DO>*G<2l-GC1> 
RCl> RCll+A!K)*GC3l 
SCll SCll+tl(Kl*G<3> 
R < 2 l RC 2 l +C <Kl *G C 3 > 
S<2l SC2l+D<K>*GC3l 
G < l l G C 2 l 

GC2l = G!3l 
10 CONTINUE 

T .797884560802865400/0SQRT<Ul 
SN OSINCU-.7853981633974483001 
CS DCOS<U-.785398163397448300) 

GO TO 120t30)t KIND 
20 JYlll T*IR(ll*CS-S<ll*SNl 

JYl2> T*<Rl2l*SN+S<2l*CSl 

30 JY(l) 
JY ( 2 l 

40 
END 

GO TO 40 
T*<SI ll*CS+R< l l*SNl 
T*<Sl2l*SN-R<2l*CSI 

RCTURN 

Algorithm 352 (Part C.4) 
J::-.;~ 

(Called by BESSEL) 

Comments The subroutine JNS evaluates 
Bessel functions of the first kind, of orders 
n = 2, 3, · · · , m, for argument u, given 
Jo(u) and J1(u). From the definition 
Gn = Jn( u) /J ,._1 ( u) and the recurrence rela
tion, 

we can derive the following equation: 

1 
G,. 

2n 
- Gn.+1 

(10) 

u 

Since Gn +1 is of the same form as Gn , we can 
continue the process and obtain the con
tinued fraction, 

G,. = -- ---- _____________ 1 __ _ 
2n 2(n + 1) 

'II 1l 

1 

2(n + k) · 
----- - G,.+k+i 

u 

(11) 

Gm is evaluated using (11), then the other 
G,. are computed from (10) for n = m - 1, 
m -2, · · · , 2. Finally, the Jn are evaluated in 
a forward direction from J,. = GnJ,._1 and 
returned via argument array JJ. See [2] for 
a more detailed treatment of this process. 

J:-\S calls no other subprograms. 

cuBROUTINE JNS CJJ,UoM) 
c ************** 

INTEGER 
KoKA,KKtM 

DOUBLE PRECISION 
A, B, 0 < 2 l , OM, G c 2 4 9 > , 

JJ<250> oP(3l oU< 3> ,u 

EQUIVALENCE 

COM MON 

<AoG)o!DtGC2llt 
CP,G(4lloCQ,G<7ll• 
CD~tG!lOlltCB,G<llll 

* DUMC 1014) oGtMtKtKKtKA 

10 

20 

DM 2*M 
PCll O.DO 
Q < 1 l lo DO 
PC 2l loDO 
Q!2l DM/U 
DCll PC2l/C.l!2l 
A 2 .[)O 

B <OM+A)/U 
Pl 3 l B*P<2>-P<l> 
Q(3) B*OC2>-Q<l> 
0 < 2 l = PC3l/QC3l 

IF C DABS CD Ill -D < 2 > > 

* oLTol.0-15l GO TO 20 

p Ill :: Pl 2 l 
Pl2l Pl 3 l 
QI l l " QI 2 l 
Ql2l :: 013) 
D ( l l 0(2) 
A ,. A+2.DO 

GO 
G C ~1l DC 2) 
KA M-2 
DO 30 K ltKA 

KK M-K 
2*KK A 

G<KK> U/ I A-U•G I KK+ 1 l l 

IF IG<KK1.Ea.o.Do1 

TO 

G<KKl l·D-35 

30 CONTINUE 
DO 40 K 

JJ(K+ll 
40 CONTINUE 

2,M 
G(Kl*JJ(K) 

10 

RETURN 
END 

352-P 11- 0 



COLLECTED ALGORITHMS (cont.) 

Algorithm 352 (Part B.2.1) 
DS, DC, DDS, DDC, PR, PC, DPS, DPC 

(Cal1ed by MATH via SU:\-1) 

Comments The following collection of func
tion subprograms is utilized hy SUM to eval
uate the kth term (k = 0, 1, · · · ) of one of 
the following: eq. (2), on, (5), (6), or their 
derivatives. 

DS and DC call on fu11ctiorn1 FJ and FY. 
DDS and DDC call on functions F.J, FY, 

l >.J and DY. 
PS, PC, DPS, and DPC call 110 othn sub

programs. 

c 

DOUBLE PRECISION FUNCTION OSIKK) ......................... 
I NTl::GER 

)QUBLE PRECISION 
AB,FJ,FY 

COMMON 
DUl'Alll004)tNtPt5tOUM2<17)t 
KtNltN2tDUM3<~831tABl2001 

EVALUATES ONE TERM OF THE RADIAL 
SOLUTIONt ASS0CIATEU WITH BIQl 

K KK 
NI 1(-S 
N2 l(+S+P 
~S = A~(K+ll*IFJINll*FY<N2l

FJIN2l*FY<Nlll 

IF <MOD<K+Nt~l.NE.Ol US = -DS 

R[TURN 
EN'."l 

DOUBLE PRECISION FUNCTION DC<KK) 
************************* 

! ,'HE.GER 

OOU3LE PRECISION 
AB,FJ,FY 

COMMON 
uL"·H < 1004) ,N,f', S ,DJM2 I l 7 l, 
K,NltN2,Dl.J:"-131<·83ltA0(2'.)()) 

EVIL~ATfS D~E TERM CF THE RADIAL 
SJLUTIONt ASSOCIATED WITH ~(JI 

K KK 
.\j 1 '(-S 

K+S+r 
AOIK+ll*IFJ<Nll*FYIN2l+ 

FJ<N2l*"'Y1Nlll 

IF 1worl'(+N,2l.NE.Cl cc= -DC 

IF <S+ 0 .EO.vl DC = e50C*DC 

;;:EJURN 
END 

OOLGLE ~~ECISIO~ F~~~TIO~ DDSIKKl 

········~~···***••··~···· 

I NH.CiER 

:::oc.:eLE PREC!SION 
A~ , DJ , DY tr J , f Y , U l o-' 2 

DU"~l<!OUCltUiti.-' .~-;,p,::,, 

:)U.'i.2<17),.;.,Nl,,\ , 
')U'13<58Jl ,M.lC20 

E~~LUATLS ONE TERM OF TYE DERIVATIVE 
OF THE RADIAL SOLUT!ON, 
ASSOCIATE~ W!~H ]l~l 

c 

: 

) 

K+S+P 
ABIK+ll*IU2*!~J1Nll*GYIN2l

F J < N 2 l <'-DY I N l I I -l: 1 * I c ',' ( ~· 2 l • 
DJ1Nll-FY1Nll*DJIN2l )) 

')OUBLE PRFCISION FUNCT!O~ DDC<<Kl 

I NTESER 

CCU2LF PRECISION 
AB,DJ,DY,FJ,FY,~l.U2 

::: OMMON 
')UMlllOOOltUltUZ,NtP•S• 
DUM2 ( 17) ,K,til ,NZ, 
')UM3<~83l•A~<20Cl 

EVALUATES ONE TERM OF THE DERIVATIVE 
OF THE RADIAL SOLUTION, 
AS~OCIATF8 ~ITH AICI 

K KK 
,'J l K-5 

K+S+P N2 
JDC ABIK+ll*(U2*1FJl~il*DY<N2l+ 

FJ<N2l*DY<Nll l-Ul*<FY<N2l* 
')JINll+FYtNll•DJ!N2Jll 

IF IMOC<K+Nt2leNE.~l DDC ~ -DDC 

IF <S+P.EQ.Ol DDC = .5DC•~DC 

r<E TU_R N 

JOUBLE PRECl510N FU~CT:ON P5(() 

··················•*••••• 
I ~n EGER 

~OUBLE PRECISION 
AGtX 

C v"1MON 
Dl.JMl < 1005 I ,P,DUfJ,z ! 2 l tXt 
UU~3(600ltA8(200l 

:O:VALUATES CJN[ TlRM OF THE ODD 
PEPIODIC SOLUTION 

PS ABIK+ll* 
DSIN<DBLE<FLOAT<Z*K+Pll*Xl 

RETURN 
END 

CCUBLE PRECISION FUNCTION PC<<> 
~··•***~~************~*** 

I ~HEGER 
KtP 

DOUBLE PRECISION 
AB,X 

':: OMr--<ON 
[lU,.,,.11 l 00 5 I , Pt DUM2 I 2) t X, 
DU~3<600l tAB<200l 

EVALUATES ONE TERM OF THE EVEN 
PERIOUIC SOLUTION 

PC AO!K+ll* 
DCOSIJBLE<FLOAT!2*K+Pll*Xl 

RETURN 

)000LE PRECl~lON FuNCT:0N ~PSIKI 
••*•·~·····••*****«••~••t 

352-P 12- 0 



COLLECTED ALGORITHMS (cont.) 

DSUBLE PRECISION 
Ao,T,x 

DU~11( 1005J oPtDv:·~2(2l tXt 
Du~·~ c 14>,T,o: .. n~41 584,, 
Al.H20C> 

E'/f\LUf,TE.S ONE TERM OF TH[ uERIVATIVE 
OF THE ODD PERIODIC SCLUTIO~ 

T 2*K+P 
DPS= AUIK+ll*T*DCCSIT•Xl 

RETvRN 

)OUilLE PRECISION FUNCTION DPCC~) 

•••••••v•********~~****** 

I(' p 

'..i'J'AiLE Pf:CCI~IOM 
il.u, T tX 

~)IJ1' l ( l 00 5 l , I!', DIJM 2 I 2 l • X • 
~U~3(14ltToDUM4(5641• 

Ml!2'.JOI 

FVt.LIJ/ITf:., ONF: TER:-1 OF THE DERIVATIVE 
CF Ttll [VlN Pi.FnouJC 50LUTIQN 

T 2~ ~:+P 

~PC -Ab(K+ll*T*DSINIT*XI 
RETURN 

END 

Algorithm 352 (Part B.2.2) 
FJ, FY, DJ, DY (Bessel Functiorn; and lJl'

rivatives) 
(Called by DS, DC, DDS, DDC) 

Commcnt.<i The :following collect.ion of func
tion subprograms produces Bessel functionl' 
or their derivatives for integer order 11, 11 

beiug positive or negative. This is accom
plished by using the already computed f1111c
tions of nonnegative order (Algorithm ~.52 

(Part C)) and substituting them in one of 
the following formulas: 

./ _,.(11) 

L,.(n) 

J,.'(u) 

(-l)n.J n(u), 

(-·l)nYn.(u), 

Y,.'(u) = L_1(u)-~ Y,.(n). u . 

whichever is appropriate. 

c 
c 

J),J calls on fun ct ion FJ. 
DY calls on function FY. 
FJ and FY call no other subprograms. 

DOUBLE PRECISION FUNCTION FJCNI 
****••=··~(·····•****~·~~ 

INTEGER 

DOUBLE PRECISION 
J 

COMMON 
JC250ltDUMC527)tK 

PRODUCES BESSE~ FUNCTIONS 
OF THE FIRST KIND 

= !ABS<NI 

c 

c 
c 

c 

(. 

c 

c 
c 

IF IK.G[o2501 GO TO 20 

FJ = J(K+ll 

If IMODCNt2loLTo0) FJ = -FJ 

10 RETURN 

20 FJ = O.DO 
WRITE C6t991 N 

99 FORtt.AT12HCJI3t7H NLEl>EDI 
GO TO 10 

END 

DOUBLE PRECISION FUNCTION FYINI 
************************* 
I NH.GER 

DOUBLE PRFCISION 
* y 

COMMON 
DUM11500)tYl250ltDUM2<27l•K 

PRODUCES BESSE~ FUNCTIONS 
OF THE S[CCND KIND 

K = IAB5CNl 

Ir IK.G[.2501 GO TO 20 

FY= Y(K+l) 

IF CMODINt2leLT.OI FY -FY 

10 

20 FY = OoDO 
WRITE C6t991 N 

99 FORMAT12HOYIJt7H NEEDED> 

END 

RETURN 

GO TO 10 

DOUULE PRECISION FUNCTION DJ!NI 
************************* 

I NT[GER 
N 

DOUGLE PRECISION 
FJ,FNtUl 

COMMON 
DUM1110001tUltDUM2<26ltFN 

rERIVATIVES Of BESSEL FUNCTIONS 
OF TH[ F:RST KIND 

FN = N 

IF CN-2491 10•20t40 

10 DJ FN*FJ!Nl/Ul-FJ!N+ll 

20 DJ 
30 

GO TO 30 
FJIN-11-FN*FJ!Nl/Ul 

RETURN 

40 DJ = C.DC 
WRITE C6t9Q) N 

99 FORMATl3HOJ@l3,7H NEEDED> 

* 

GO TO 30 
END 

DOUBLE PRECISION FUNCTION DYCNI 
********•**************** 

I NT EGER 
N 

DOUBLE PRECISION 
FN,FYtU2 

COMMON 
DUM1Cl002ltU2tDUM2124l•FN 

DERIVATIVES OF BESSEL FUNCTIONS 
OF THE SECOND KIND 

IF INeG~.2501 GO TO 20 

352-P 13 0 



COLLECTED ALGORITHMS (cont.) 

FN N 
DY FYIN-11-FN•FYINl/U2 

10 RETURN 

2'J DY = O.DO 
WRITE 16t991 N 

99 FORMATl3HOY@l3t7H NEEDED> 
GO TO 10 

END 

REMARK ON ALGORITHM 352 [S22] 
CHARACTERISTIC VALUES AND ASSOCIATED 

SOLUTIONS OF MATHIEU'S DIFFERENTIAL 
EQUATION [D. S. Clemm, Comm. ACM 12 (July 
1969)' 399-407] 

ARTHUR H.J. SALE (Recd. 4 May 1970 and 28 May 1970) 
University of Sydney, Sydney, NSW, Australia 

KEY WORDS AND PHRASES: Mathieu's differential equation, 
Mathieu function, characteristic value, periodic solution, radial 
solution 
CR CATEGORIES: 5.12 

This algorithm contains a number of syntactically incorrect 
FORMAT statements: labeled 901, 911, 921, 941, and 951 in sub
routine MFCV AL, and 99 in the functions FJ, FY, DJ, and DY. 
The error consists of omitting a comma separating the Hollerith 
field descriptor and the integer field descriptor, as required by 
Sections 7.2.3 and 7.2.3.2 of the Fortran standard [1, 2]. In all cases 
this may be corrected by inserting a comma immediately preceding 
the field descriptor /3 in these statements. 

It has also been pointed out by the referee and the Algorithms 
Editor that the two FORMAT statements in functions DJ and DY 
contain a character not in the standard Fortran character set. 
The standard is somewhat ambiguous on this point: any represent
able character is permitted in a Hollerith constant in a CALL or a 
DAT A statement, and also in data to be read in with an Aw field 
descriptor (Sections 4.2.6, 5.1.1.6), but since Hollerith field de
scriptors are not Hollerith constants, it must be presumed that 
the prohibition of Section 3.1 applies. The "at" symbol (@) in 
these two statements should therefore be replaced by a blank or 
some other character in the standard set. 

There is another, more serious, error: subroutines BOUNDS 
and MF ITRS both reference a named common block which is not 
referenced by the routine that calls them (MFCV AL). According 
to Section 10.2.5 of the standard, the contents of this block will 
therefore become undefined at the moment either of these two 
routines executes a RETURN, unless this common block is ref
erenced by a routine which is directly or indirectly calling 
MFCV AL. This undefinition permits named common blocks to 
be overlaid, and since it is not the author's intention to allow this 
block to become undefined, the following two statements should 
be added to MFCV AL immediately following the existing 
DOUBLE PRECISION and COMMON statements respectively: 

DOUBLE PRECISION FILL(3) 
COMMON /MF2/ FILL 
REFERENCES: 

1. ANSI Standard Fortran ANSI (USASI) X3.9-1966. American 
National Standards Institute, New York, 1966. 

2. FORTRAN vs Basic FORTRAN. Comm. ACM 7 (Oct. 1964), 
591-625. 

352-Pl4- R2 

Remark on: 
Algorithm 352 [S22] 
Characteristic Values and Associated Solutions of 
Mathieu's Differential Equation 
[Donald S. Clemm, Comm. ACM 12 (July 1969), 
399-4071 

Michael J. Frisch [Recd. 27 Jan. 1971] 
University Computer Center, University of Minnesota, 
Minneapolis, MN 55455 

Key Words and Phrases: ANSI Fortran standal!'d 
CR Categories: 4.0, 4.22 

The following items were fournd during compilation of the 
algorithms written in Fortran published to date in Communica
tions. The MNF compiler written at the University of Minnesota 
for CDC 6000 Series machines by Lawrence A. Liddiard and E. 
James Mundstock was used to check the validity of the algorithms. 

Algorithm 352 does not conform to the standard in subroutine 
MATH which calls subroutine SUM with arguments that were in 
an EXTERNAL statement but not in a type statement. The dummy 
argument in subroutine SUM has type DOUBLE PRECISION 
so a statement DOUBLE PRECISION DS, DC, DDS, DDC, PS, 
PC, DPS, DPC should be inserted before the EXTERNAL state
ment in subroutine MATH (Section 8.4.2). 

In subroutine JNS, the dummy argument M is also in blank 
common, contrary to 7.2.1.3. In the same subroutine, arrays D, G, 
P, and Q are referenced by array name instead of array element 
name as required in Section 7.2.1.4. The statement should be: 

EQUIVALENCE (A,G(l)), (D(l),G(2)), (P(l),G(4)), (Q(l), 
G(7)), (DM,G(lO)), (B,G(ll)). 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHl\I 353 
FILOX QUADRATURE [Dl] 
STEPHEN .M. CHASE AND LLOYD D. FosDICK (Recd. 

7 July 1967 and 6 Jan. 1969) 
Department o:f Computer Science, University of Illinois, 

Urbana, IL 61820 

KEY WORDS AND PHRASES: quadrature, Filon quadrature, 
integration, Filon integration, Fourier coefficients, Fourier 
series 

CR CATEGORIES: 5.16 

comment FSERl evaluates the integrals 

C = [ F(X) cos (M7rX) dX, S = £1 

FLY) sin (M7rX) dX 

using the Filon quadrature algorithm. The user may request an 
evaluation of C only, S only, or both C and S. FSEIU contains 
an automatic error-control feature which selects an integration 
step size on the basis of an error parameter supplied by the user. 
The Filon quadrature formulas, truncation error, rounding error, 
and automatic error control are described in a companion paper 
[1] by the authors. 

The calling parameters for this subroutine are defined as fol
lows.Fis the na.me of a FUNCTION subprogram F(X), supplied 
by the user, which evaluates F (X) appearing in the integrand. 
EPS is the name for e appearing in inequalities (45) and (46) of 
[1]. It is used in the error control portion of the algorithm. The 
error in the computed values of C and Sis related to e by the in
equality (76) given in [1]. The user must assign a value to EPS 
before calling FSERl. MAX specifies the maximum number of 
halvings of the step size that are allowed. The minimum step size, 
h in equation (16) of [1], is 2-MAx. The user must assign a value to 
MAX before calling FSERl. M is the parameter appearing in 
the argument M7rX of the cosine and sine functions. The user 
must assign a value to M before calling FSERl. C is the value 
of the cosine integral determined by FSERl. S is the value of the 
sine integral determined by FSERl. LC is used on entry as a signal 
that the user does want C evaluated (LC = 1) or does not want 
C evaluated (LC = O). It is used on exit to report the value of h 
used by the subroutine to evaluate C, this value being 2-Lc. The 
user must assign a value of 1 or 0 to LC before calling FSERl, 
and if LC = 1 on entry, then the subroutine will assign a new value 
to LC related to the step size by 2-Lc. LS is used on entry as a 
signal that the user does want S evaluated (LS =' 1) or does not 
want S evaluated (LS= 0). It is used on exit to report the value of 
h used by the subroutine to evaluate S, this value being ~Lo. 
The user must assign a value of 1or0 to LS before calling FSERl, 
and if LS = 1 on entry, then the subroutine wiill assign a new 
value to LS related to the step size by ~Ls. 

FSERl calls a subroutine ENDTl which is also listed below. 
The purpose of ENDTl is to perform the end test described by 
inequalities (45) and (46) of [1]. 

REFERENCES: 
1. Fosv1cK, LLOYD D., AND CHASE, STEPHEN M. An algorithm 

for Filon quadrature. Comm. ACM 12 (Aug. 1969), 453-457. 

SUBROUTINE FSERl(F,EPS,MAX,M, C, S, LC, LSI 
PI = 3.1415926535898 
XM = M 

C Fl = COS(M*PI) TEMPORARY. 
Fl = l - 2 * ( M- (M/2 I * 2 I 
FO = F!O.OI 
Fl= F!l.O) *Fl 

353-P 1 0 

C 'CIR' WILL B~ USED THROUGHOUT THESE COMMtNTS TO STANO FOR 1 SIN 1 OR 
c •cos• WHEREVER THOSE TWO SYMBOLS MAY OCCUR. 
C NOW DEFINE SUMC!R OF THE ENDPOINTS. 

SUMCOS = !Fl + FO ) * .s 
SUMSIN = O.O 
81=2./3. 

c TMAX rs THE SWITCH-OVER POINT I~ THE ANGLE T. 
C OUR ANALYSIS INDICATES THAT TMAX = 1/6 IS THE BEST FOR THE ILLIAC II 
C WHICH HAS A 44 BIT FLOATING Pll!NT MANTISSA. 

TMAX = 0.166 
C N IS THE NUMBER OF THE ITERATION. NOTE THAT WE START AT THE 
C FOURTH ITERATION STEP. 
C ACTUALLY, THE FIRST EVALUATIUN OF AN INTtGRAL IS AT N = 5, ANO 
C THEREFORE, THE FIRST COMPARISON OF VALUtS IS AT N= 6. 

N = 4 
C BOTH TMAX AND N MAY BE CHANGED IF THE MACHINE FOR WHICH THIS 
C ROUTINE IS INTENDED HAS GREATER OR LESS ACCURACY THAN ILLIAC II. 
C IF N JS CHANGEU , THEN THE CORRESPOND1NG CHANGES MUST BE MADE 
C IN THE ASSIGNMENTS OF H AND NSTOP. 

H = 1. I 16. 
C H = 2 ** -N. 

NSTOP = 15 
C NSTOP = 2**N - 1 

T = H * XM 
TP = T * Pl 
NST = l 
ASSIGN 67 TO MSWTCH 

C LLC AND LLS ARE USED BY THE ROUTINE IN CUMPUTED-GO-TO STATEMENTS. 
C AS SOON AS LLS AND LLC HAVE BEEN DEFINED, WE CAN USE LS AND LC 
C AS RETURN PARAMETERS !SEE ABOVE). 

IF ( LS I 1, 1, 2 
LLS = 2 
GO TO 3 
LLS = 1 
LS = MAX 

3 IF ( LC ) 4, 4, 5 
4 LLC = 2 

GO TO 7 
LLC = l 
LC = MAX 

7 LN = l 
C ALL OF THE ABOVE IS EXECUTED ONLY ONCE PER CALL. 
C NOW THE ITERATION BEGINS. 

10 ODCOS = O. 
ODSIN = O. 

C BEGIN SUMMATION FOR DUCOS AND OOSIN. 
DO 65 I = 1, NSTOP, NST 

XI = I 
THA = XI * T 

C THA*Pl IS THE ANGLE USED IN THIS ITH TERM. 

CIR(!H*PI) IS CALCULAT.ED HERE USING THE IDENTITY 
CIR ( INTEGER MULTIPLE OF Pl + FRACTIONAL MULT OF Pl I 

COS(INTEGER*Pll * CIR!FRAC*Pll 
= (+ OR -l * CIR!FRAC*Pl). 

FRAC = THA 
IN = THA 
THA = IN 
FRAC = (FRAC - THA) * Pl 

C THA JS A FLOATING POINT INTEGER, FRAC IS THE FRACTIONAL PART *PI. 
COS!P = 1 - 2*(1N - 2*(1N/2)) 
TEMPI = COSJP * F!Xl*H) 

C TEMPl = COS(!NTEGER PART)* F(l*Hl. 

'>O 
55 
60 
65 

GO TO ( 50 , 55 l , LLS 
ODSJN = TEMPI * S!N(FRACl + ODSIN 
GO TO ( 60 , 65 l , LLC 
ODCOS = TEMPl * COS!FRACl + OOCOS 
CONTINUE 

GO TO MSWTCH,(67 9 70) 
67 NST = 2 

C NOW HAVE MADE UP FOR THE FIRST 4 ITERATION STEPS, SO RESET THESE 
C TWO NUMBERS TO LOOK LIKE THE GENERAL CASE. 

NSTOP = 16 
C NSTOP = 2**N !IN CASE YOU CHANGE STARTING VALUE OF~>. 

c 
c 
c 
c 
c 
c 

ASSIGN 70 TO MSWTCH 
GO T.O 92 

70 TSQ = TP*TP 
IF (T -TMAX) 74, 74, 75 

74 lS THE POWER SERIES FOR SMALL T, 75 IS THE CLOSED FORM USED WITH 
LARGER VALUES OF T. 
THF. POWER SERIES ARE !WITH •TN• = TP**N) 
A (2./45.l*T3 - !2./315.)*T5 + !2./4725.)*T7 
B = (2./3.l + !2.115.)*12 - (4./105.l*T4 + !2./567.l*T6 

- (4./2227'>. l*TB 
C G = 
C THE 

14./3.) - <Z.115.l*TZ + !l./210.).*T4 - (l./113'•0.l*T6 
NEXT TERMING IS TOD SMALL. IT IS !l./997920.l*T8 

74 A= TP *TSO* Cl.~ TSQ * !l. - TSO I 15.l I 7.l I 22.5 
B2 Bl * TSO* .2 
83 = 82 *Tso·* 2./7. 
B4 = B3 * TSQ I 10.B 
B5 = B4 * TSO * 14.j275. 
B = Bl+ B2 - 83 + 84 - 85 
G = 2.*Bl - 82+ 83/ A. - B4/40. 

C G 2.*Bl - B2 + B3/8. - B4/40. + 5.*B5/H96. IF YOU WANT THE: TS 



COLLECTED ALGORITHMS (cont.) 

C TERM INCLUDED IN G. 
GO TO AO 

C CLOSED FORM Of THE COEFFICIENTS, WHFRE AGAIN •TN' MEANS TP••N. 
CA= l./TP • COS(TPl•SIN!TPl/T2 - 7,,,.!SINtTPll*•2/T3 
CA 2.•111 + <COSITPll**2l/T2 - 2.'1<SIN!l>'l*CUS(TPl/T31 
CG 4.')(SIN<TPl/T3 - CIJS!TPl/T2l 

75 IN = T 
TEMPI : l - 2 * ( IN - 2 * ( IN I 2 I I 
TEMP2 = IN 

C TFMPl JS COS < INTEGER PART OF TPl, TEMP2 IS FRACTIONAL PART OF TP. 
TF.MP2 =IT - TF.MP2 I * Pl 
Sl = TEMPl * SIN ITFMP2l 

C Sl = S!N(TPl 
Cl = TEMPl • COS (TEMP2) 

C Cl = COS(TP) 
P = Sl * Cl 
SlSO = Sl * Sl 
A= 1((-2.*SISO/Tt>l + Pl/TP +I.I/ TP 
B = 2. * ((-2.• Pl TPI+ 2. -SlSOl I TSO 
G = 4. * ( S l I TP - Cl I I TSO 

80 GO TO 181, 85), LLS 
C HAVE CALCULATED THE COEFFICIENTS, NOW READY FO~ THE INTEGRATION 
C FORMULAS. 

Al T2 = H* IA* (FO - Fll + B * SUMSIN + G * llDSINI 
C ENOTl IS A SUBROUTINE WHICH CHECKS FOR THE CONVERGENCE OF THE 
C ITERATIONS. ENOTl REOUIRES THE PRESENT VALUE TO AGREE WITH THE 
C PREVIOUS VALUE TO WITHIN EPS2, WHERE 
C EPS2 = 11.0 + ABSF(PRESENT VALUEll•EPS 
C EPS IS SUPPLIED BY THE USER. 

CALL ENOTl IPVT2, T2, EPS, S, LLS, LN) 
GO TO ( 85, 84 ), LLS 

A4 LS = N 
B5 GO TO (86,901,LLC 

C THIS IS THF. COSINE INTEGRAL. 
A6 Tl = H * I B * SUMCOS + G * OOCOSl 

CALL ENOTl (PVTl, Tl, EPS, C, LLC, LN) 
GO TO ( 90, A9 ), LLC 

A9 LC = N 
90 LN = 2 

C NOW TEST TO SEE IF DONE. 
IF !LLC + LLS - 3) 92, 92, 100 

92 N = N • l 
C THIS IS THE BEGINING OF THE ITERATION. 

IF (N-MAXI 95, 95,100 
95 H = .5 * H 

T = .5 * T 
TP = .5 * TP 
NSTOP = 2 * NSTOP 
SUMSIN = SUMSIN • ODSIN 
SUMCOS = SUMCOS + OUCOS 
GO TO 10 

100 s = T2 
C = Tl 
RETURN 
END 
SIJBROUTINE ENOTl !PREVOT, QUANT,El'S, VALlJt:, Ll, L2) 
GO TO I 29, 20), L2 

20 REPS= EPS * (l,O + ABS((JUAlllT)) 
23 IF !ABSIPREVOT - QUANT> - REPS) 25, 2~, 29 
25 VALUE = OUANT 

L l = 2 
GO TO 30 

29 PREVOT = QUANT 
10 RETURN 

fND 

REMARK ON ALGORITHM 353 [Dl] 
FILON QUADRATURE [Stephen M. Chase and 

Lloyd D. Fosdick, Comm. ACM 12 (Aug. 1969), 
457-458] 

Bo EINARSSON (Recd. 8 Dec. 1969) 
Research Institute of National Defense, Box 98, 

S-147 00 Tumba, Sweden 
KEY WORDS AND PHRASES: quadrature, Filon quadrature, 
integration, Filon integration, Fourier coefficients, Fourier series 
CR CATEGORIES: 5.16 

The algorithm has been tested in double precision on an IBM 
360/75 with great success. An improvement to the algorithm to 
take care of heavily oscillating functions can easily be ma.de. The 
starting value of the number N of iterations is chosen to give at 
least four quadrature nodes for each full period of the trigono
metric function. The following changes are therefore suggested: 

line 22: N = ALOG(2.*XM)/0.693 
line 27: H = 1.0/FLOA T (2**N) 
line 29: NSTOP 2uN - 1 
line 79: NSTOP = 2**N 

353-P 2- Rl 

The following example shows the importance of this change at 
the computation of the sine integr:il form = 64 with the function 
f(x) = x2(1-x), which is zero at both endpoints. Entry variables 
were in both cases MAX = 20, 1\1[ = 64, LC = 1, LS = 1, and 
EPS = 1.0E-10. The computation in double precision gave the 
results: 

original version LC =-LS = 6 C = -0.2473t>61710D-04 
s = 0.0 

improved version LC = LS = 9 C -0.2473661709D-04 
S = -0.7381790409D-06 

The exact values are 
c -1/(6411')2 = -0.2473661710·10-4 

and 
s -6/(647r)3 = -0.7381790413· 10-6• 

The failure of the original computation is due to the fact that 
all the inner nodes of the sine integral are multiples of 71', and the 
boundary contribution is zero. The connection with the sampling 
theorem is obvious. 

The original version of the algorithm is not valid for negative 
values of M. The use of ALOG(2.*XM) is therefore no essential 
restriction, since the algorithm is rather slow for computing an 
ordinary quadrature (with M = O). 

It is important to observe that the present version will give 
correct values only if the maximum number MAX is larger than 
the computed value N. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 354 
GENERATOR OF SPANNING TREES [H] 
M. DOUGLAS McILROY (Recd. 29 Apr. 19610, 9 Sept. 1968 

and 6 Mar. 1969) 
Bell Telephone Laboratories, Murray Hill, NJ 07971, and 

Oxford University Computing Laboratory, Oxford, 
England 

KEY WORDS AND PHRASES: spanning trees, trees, graphs 
CR CATEGORIES: 5.32 

/* This procedure finds all trees that span a nondirected graph 
on n nodes. The essential step of this procedure partitions the set 
T(G) of trees which span graph G into two classes. Trees of one 
class contain a branch connecting a selected pair of nodes, i and 
j; trees of the other class exclude such branches. To formalize the 
effect of partitioning with respect to nodes i andj,, we let A,,. be the 
"attachment set" of branches between them, and Gi; be the graph 
derived from G by combining i and j into a:single node. Then 

T(G) = T(Gi;) X Ai; U T(G-Ai;;). 

The algorithm generates T(G) by a particular combination of re
cursive and iterative applications of this partition. A set S of 
combined nodes is "grown" by incorporating one node at each 
level of recursion. The attachment set for node i is the set of 
branches radiating from i to members of S. The recursion bottoms 
whenever S contains all nodes, and a "family" of trees is then 
produced, where a family•is the Cartesian product of the attach
ment sets from each level. 

The basic method would work for any graph, but to simplify 
data representation, this algorithm requires that G be free of 
paralleled branches and self-loops. All computations are done in 
terms of the original graph to save actually ha,ving to combine 
nodes and, incidentally, to avoid parallels arising from combina
tion. A set of nodes is represented by a string of n bits, with l's 
for nodes present and O's for nodes absent. The original graph is 
represented by an array of n strings, where the ith string indicates 
the set of nodes neighboring node i. An attachment set for node i 
is a suitable subset of its neighborhood. 

The algorithm maintains the graph G, the set of combined 
nodes S, and a boundary set B of nodes neighboring members of 
S. Bis disjoint from S. Initially S contains only node 1; Bis the 
neighborhood of node 1. The key recursive routin1e "grow" iterates 
over the nodes of B. For each node i in Bit finds the attachment 
set (necessarily nonempty) connecting i to S. It then removes the 
attachment set from G and node i from B, and calls "grow" 
recursively with S augmented by node i and B augmented by 
neighbors of i (except those in S). The recursive call thus yields 
trees which include branches from node i to S, while the iteration 
over succeeding nodes in B yields trees which exclude such 
branches. 

As an example, for the graph 

1(2,3,4) 2(1,3) 3(1,2,4) 4(1,3) 

354-P 1- 0 

the algorithm generates eight trees in four families: 

1() 2(1) 3(1,2) 4(1,3) 
1() 2(1) 3(4) 4(1) 
1 ( ) 2 (3) 3 (1) 4 (1, 3) 
1() 2(3) 3(4) 4(1) 

In these lists a set is represented by its index together with a 
parenthesized list of contained nodes. 

Unlike other algorithms in the literature [1, 2, 3], this produces 
unique trees and hence does not require storage for a checklist of 
trees already produced. An algorithm of Burstall [4] generalizes 
this strategy to a wide class of problems; however, a direct par
ticularization of Burstall's algorithm for spanning trees would be 
less efficient. 

Acknowledgment is due S. C. Johnson, A. J. Goldstein, J. B. 
Kruskal, and D. M. R. Park for discussion and help, also P. 
Seaman and IBM U. K. Laboratories for testing. 

REFERENCES 

1. HAKIMI, S. L., AND GREEN, D. G. Generation and realization 
of trees and k-trees. IEEE Trans. CT-11 (1964), 247-255. 

2. WATANABE, H. A computational method for network topol
ogy. IRE Trans. CT-7 (1960), 296-302. 

3. MACWILLIAMS, F. J. Topological network analysis as a com
puter program. IRE Trans. CT-5 (1958), 228-229. 

4. BuRSTALL, R. M. Tree-searching methods with an application 
to a network design problem. In Machine Intelligence 1, N. L. 
Collins and D. Michie (Eds.), Oliver and Boyd, Edinburgh, 
1967.*/ 

/* Nomenclature 
G = the graph, or modified graph, 
S = set of nodes covered by growing family, 
B = "boundary" set of uncovered nodes neighboring to 

A 
f(A) 

trees: 

members of S, 
array of attachment sets, 
routine for processing each family once it has been 
generated.*/ 

procedure (G, f) ; 
declare G(*) hit(*), f entry, n fixed binary; 
n = hbound(G, 1); 
begin; 

declare A (n) hit(n), 
unit entry(fixed binary) returns(hit(n)); 
/*Start at node 1. Arguments by value .. */ 

call grow((G), unit(l), (G(l))); 
grow: 

procedure(G, S, B) recursive; 
declare(G(n), S, B) hit(n), i fixed binary; 
if -.S = 'o' h then call f(A); 
else 
do i = 1 ton; 

if substr(B, i, 1) then 
do· 

s~bstr(B, i, 1) = 
101h; 

A(i) = G(i) & S 
G(i) = G(i) & -.S; 
call grow((G). Slunit(i), BiG(i)); 
if G(i) = 101 h then return; 

end; 



COLLECTED ALGORITHMS (cont.) 

end; 
end grow; 

unit: 
procedure(i) bit(n); 

declare i fixed binary, u bit(n) initial (
11

h); 
substr(u, i, 1) = 

11
1
b; 

return(u); 
end unit; 

end; 
end trees; 

354-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 355 
AN ALGORITHM FOR GENERATING ISING CON

FIGURATIONS [Zl 
J. M. S. SIMOES PEREIRA (Recd. 20 Dec .. 1967 and 10 

Mar. 1969) 
University of Coimbra, Coimbra, Portugal 

KEY WORDS AND PHRASES: Ising problem, zero-one se
quences 

CR CATEGORIES: 5.39 

procedure Ising (n, x, t, S); integer n, x, l; integer array S; 
comment Ising generates n-sequences (S1, ···,.Sn) of zeros and 

ones where x = :E~-1 s,. and t = :Ef.:;.1 I Si+1 -· s, I are given. 
The main idea is to interleave compositions of x and n - x 
objects and resort to a lexicographic generation of composi
tions. We call these sequences Ising confi.gur:!l.tions since we 
believe they first appeared in the study of the so-called Ising 
problem (See Hill [1], Ising [2]). The number R(n, x, t) of dis
tinct configurations with fixed n, x, t is well known [1, 2): 

Now define a block of l's (or zeros) in the sequence as a set 
of a maximum number of consecutive l's (or zeros) eventually 
consisting of a single element. For given n, x, t, the number p 
of blocks of l's may easily be deduced from t, as well as the num
ber q of blocks of zeros. In fact, a block of l's including either 
Si or Sn yields one variation and each one of the others yields 
two variations; hence we get p = q """ m + 1 when t = 2m + 1 
(t odd requires S1 ¢ Sn) and either p = m + Jl, q = m (S1 = 
Sn = 1), or p = m, q = m + 1 (S1 = Sn = 0) when t = 2m. 
Clearly, there is a 1-1 correspondence between the compositions 
of x with p parts and the distributions of the x 1'1s into p blocks. 
And for each distribution of l's, distinct distributions of the 
n - x zeros into g blocks correspond to distinct configurations. 

The main body of the algorithm is compose, which generates 
compositions of an integer x with k parts and stores them in the 
array L. The role of sort and bisort is to form thEt final sequence 
(S1 , • • • , Sn) from the structure of one-block1:1 Li and zero
blocks M,. 

The Ising problem was brought to my attention by Dr. B. 
Dejon during an informal visit to the IBM Research Laboratory 
in Zurich. Thanks are also due to Prof. Paul Erdos for pointing 
out to me reference [l) and to Prof. A. A. Zykov for correspond
ence. The procedure was tested on the NCR 4130 of the Labora
t6rio de Calculo Automatico, Universidade do Porto. Thanks 
are also due to the Director and his Staff. 

REFERENCES 

1. HILL, T. L. Statistical Mechanics. McGraw Hill, New York, 
1956, p. 318. 

355-P 1- 0 

2. Isrno, E. Beitrag zur Theorie des Ferromagnetismus. Z. 
Physik 31 (1925), 253-258; 

begin 
integer k; integer array L, M[l : t+2+1]; 
procedure sort (L, M, z); integer array L, M; integer z; 
begin 

integer r, i, j, m, zb; 
form:= 1step1 until n do S[m] := z; 
r := i := l; zb := 1 - z; 

AA: j := r + L[i] - l; 
for m : = r step 1 until j do S[m] : = zb; 
if i + 1 ~ k then 
begin r := j + M[i] + l; i := i + l; go to AA end; 
comment Insert here an output procedure such as out-

array (1, S); 
end sort; 
procedure bisort (L, M); integer array L, M; 
begin sort (L, M, 0); sort (M, L, 1) end bisort; 
procedure compose (x, k, L, p); value x; integer x, k; 

integer array L; procedure p; 
begin 

integer i, a; 
if x < k then go to CC; 
L[l] := x - k + l; 
for i := 2 step 1 until k do L[i] := l; 
p; 
if k ~ 1 then go to CC; 
a:= l; 

BB: if L[a] > 1 then 
begin 

cc. 

L[a] := L[a] - l; L[a+lJ := L[a+l] + 1; p; 

if a ¢ k - 1 then a : = a + 1; go to BB 
end; 
L[a] := L[a+lJ; L[a+l] := 1; a:= a - 1; 
if a. ;?::: 1 then go to BB; 

end compose; 

k := t + 2 + l; 
if t ¢ (t+2) X 2 then 
begin 

procedure pl; bisort (L, M); 
procedure p2; compose (n-x, k, M, pl); 
compose (x, k, L, p2) 

end 
else 
begin 

procedure p3; sort (L, M, O); 
procedure p4; compose (n-x, k-1, M, p3); 
procedure p5; sort (M, L, 1); 
procedure p6; compose (n-x, k, M, p5); 
compose (x, k, L, p4); 
compose (x, k-1, L, p6) 

end 
end Ising 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 356 
A PRIME NUMBER GENERATOR USING THE 
TREESORT PRINCIPLE [All 
RICHARD c. SINGLETON* (Recd. 28 Jan. 1969 and 11 June 

1969) 
Stanford Research Institute, Menlo Park, CA 94025 
*This research was supported by the Stanford Research Insti
tute out of Research and Development funds. 

KEYWORDS AND PHRASES: prime numbers, numbertheory, 
sorting 

CR CATEGORIES: 3.15, 5.30, 5.31 

procedure PRIME(IP, m); value m; 
integer m; integer array IP; 

comment This procedure finds the first m ~ 4 elements of the 
infinite sequence 2, 3, 5, 7, 11, · · · of prime numbers and stores 
them in IP[l], IP[2], · · ·, IP[m]. The method of distinguishing 
primes from composite numbers is similar to that used by B. A. 
Chartres [1]. A counter value n is compared with the smallest 
value in a list IQ of odd multiples of primes less than or equal 
to v'n. If unequal, n is a prime and is added to the output list 
IP. Otherwise, the matching elements of IQ are incremented, 
based on the corresponding entries in the list JQ. Both n and 
the composite numbers in IQ are incremented so as to omit 
multiples of 2 and 3. 

This procedure differs from Algorithm 311 in the method of 
finding the smallest entry in IQ. Here the list IQ is kept partially 
ordered as a tree, i.e. 

IQ[i] ~ IQ[i + 2] for 2 :::;; i :$; j, 

thus the base element IQ[l] is always smallest. The variable 
iqi holds the current value of IQ[l], and jqi the negative of 
JQ[l]. If n = iqi, then iqi is incremented by jqi + jqi if jqi > 0 
or by -jqi if jqi < 0. Then IQ is reordered to bring the next 
smallest element to the base and to return the new value of iqi 
to the tree, using a method similar to Williams' procedure 
SWOPHEAP [3]. The tag list JQ is permuted along with IQ. 
The treesort principle, used in SWOPHEAP, is well suited to 
the present task of finding the smallest element of a changing 
list. 

In Algorithm 311, five working-storage arrays serve the func
tion of the two used here, and the information is totally ordered 
each time a prime is found. Between primes the unordered seg
ment of the information is searched to locate the smallest ele
ment. The method used here is both simpler and more efficient. 

On the Burroughs B5500 computer, this procedure finds the 
first 10,000 primes in 53 sec. For other values of m, time is pro
portional to mL24 • Corresponding times for Algorithm 311 were 
91 sec for m = 10,000, with time proportional to mi.as for 
other values of m. However, another algorithm [2] finds the 
first 10,000 primes in 14 sec on the B5500 and has times propor
tional to mt. 14 for other values of m. 
REFERENCl!JS: 
1. CHARTRES, B. A. Algorithm 311: Prime number generator 

2. Comm. ACM 10 (Sept. 1967), 570. 
2. SINGLETON, R. C. Algorithm 357: An efficient prime num

ber generator. Comm. ACM 12 (Oct. 1969), 563-564. 

356-P 1- 0 

3. WILLIAMS, J. W. J. Algorithm 232: Heapsort. Comm. ACM 
7 (June 1964), 347; 

begin 
integer array IQ, JQ[O : sqrt(m)jl; 
integer i, ij, inc, iqi, j, jj, jqi, k, n; 
JP[l] := j := 2; 
IP.[2] := k := 3; 
IP[3] := n := 5; 
jj := iqi := 25; jqi := -10; 

JQ[2] := 49; JQ[2] := -14; 
inc := 4; 
go to Le; 

La: iqi := if jqi > 0 then iqi + jqi + jqi else iqi - jqi; 
i := 1; 
comment Reorder the tree, bringing the smallest eleMent to 

the bottom; 
for ij := i + i while ij < j do 
begin 

if IQ[ijJ > IQ[ij + 1] then ij :'= ij + 1; 
if IQ[ij] ~ iqi then go to Lb; 
JQ[i] := IQ[ij]; JQ[i] := JQ[ijl; i := ij 

end; 
if iqi < jj then go to Lb; jj : = IQ[j]; 
comment Add a new entry to the top of the tree; 
j : = j + 1; ij : = I P[j + 2]; 
IQ[j] := ij j 2; JQ[j] := ij + ij; 
if (ij-(ij+3)X3) = 1 then JQ[j] := - JQ[j]; 
comment Return iqi and jqi to the tree and fetch a new pair 

from the bottom; 
Lb: JQ[i] := iqi; iqi := IQ[l]; 

JQ[i] := jqi; jqi := - JQ[l]; 
if n = iqi then go to La; 
comment Increment n and compare with the next smallest 

composite number; 
Le: inc := 6 - inc; n := n + inc; 

if n = iqi then go to La; 
k := k + 1; IP[k] := n; 
if k ~ m then go to Le; 

end PRIME 



COLLECTED ALGORITHIVIS FROM CACM 

ALGORITHM 357 
AN EFFICIENT PRIME NUMBER GENERATOR 

[Al] 
RICHARD c. SINGLETON* (Recd. 28 Jan. 19i69and11 June 

1969) 
Stanford Research Institute, Menlo Park, CA 94025 
* This research was supported by the Stanford Research Insti
tute out of Research and Development funds. 

KEY WORDS AND PHRASES: prime numbers, factoring, 
number theory 

CR CATEGORIES: 3.15, 5.30 

integer procedure NPRIME(IP, m, jlim); value m, jlim; 
integer m, jlim; integer array IP; 

comment This procedure finds the next m primes and stores 
them in IP[l], IP[2], .. ·, IP[m]. IP[m+l], IP[m+2], .. ·, 
I P[jlim] are used for working storage, where jl:im > m. On the 
first entry, IP[l] must have a value less than 0 as a flag to set 
initial conditions. Also, m must be greater than or equal to 2 
on first entry and greater than or equal to 1 on subsequent en
tries. The arrays IQ and JQ must be large enough to hold all 
primes less than or equal to the square root of the maximum 
number scanned in looking for primes. To generate the first 
million primes, approximately 550 entries are needed in each of 
these two lists. The lists are extended as needed, using a sec
ondary prime number generator similar to Wood's [3], and the 
current upper index is returned as the value of NPRIME. 

The method used is the familiar sieve of Eratosthenes. The 
elements of the upper portion of array IP are set to zero, and 
correspond to a sequence of consecutive odd integers. The com
posite numbers are crossed off by entering the smallest prime 
factor in the corresponding cell, leaving zeros for primes. (At 
this point, the array IP contains the equivalent of a factor 
tal'Sle, i.e. the smallest factor for each composite odd integer.) 
The list of primes is then constructed by storing; the consecutive 
prime numbers in the lower portion of IP. Whenever the infor
mation in the upper portion of IP is exhausted1, a new sequence 
of odd numbers is scanned as described above. On exit, the un
used portion is left for use in the next call. 

As compared with another algorithm [2] based on comparing 
a counter value with the next smallest composite number, and 
not working ahead in a scratch storage, the present algorithm 
was found to be faster, even for jlim = m + 1. Efficiency im
proves with added working storage. The improvement is sub
stantial at first but is slight beyond jlim = 2m. For jlim = 2m, 
time to find the first n primes on the Burroughs B5500 or the 
CDC 6400 computer was proportional to ni.u. On the B5500 
computer, it ·took 13.5 sec to find the first 10,000 primes, gen
erating them 500 at a time in an array length of 1022. On the 
CDC 6400 computer, with the algorithm coded in machine lan
guage, it took less than 98 sec to find the first million primes, 
generating them 1000 at a time in an array of length. 10,000. 
Timing within this run, with jlim = lOm, was proport10nal to 
nt.oet, It is interesting to note that Chartres estimated a time 
of 12 hours on the B5500 for this task, using Algorithm 311 [1]. 

This algorithm. can be expressed in either ALoOL or FORTRAN, 
and gains no special advantage from machine language. coding. 
However, if we plan to produce very large tables of primes for 

357-P 1- 0 

future use, machine language shift operations may be useful in 
compressing the data for storage. One method of compression 
is to use a single bit to indicate that an integer is a prime, e.g. 
O = composite and 1 = prime. By omitting multiples of 2, 3, 
and 5 from the corresponding sequence of integers, 8 bits suffice 
to identify the primes in each 30 consecutive integers. 

REFERENCES: 
1. CHARTRES, B. A. Algorithm 311: Prime number generator 

2. Comm. ACM 10 (Sept. 1967), 570. 
2. SINGLETON, R. C. Algorithm 356: A prime number gener

ator using the treesort principle. Comm. ACM JS (Oct. 
1969), 563. 

3. WooD, T. C. Algorithm 35: Sieve. Comm. ACM 4 (Mar. 
1961), 151; 

begin 
own integer array IQ, JQ[O : 600] 
own integer ij, ik, inc, j, nj; 
integer i, jqi, k, ni; 
k := O; if IP[l] ~ 0 then go to Lf; 
comment Set initial conditions; 
JP[l] := JQ[l] := ik :=inc := 2; 
/Q[2] := 9; JQ[2] := IQ[l] := ij := 3; 
IQ[3] := 25; JQ[3] := nj := 5; k := 1; 
comment Prepare to delete a sequence of composite numbers; 

La: j : = k + 1; ni : = IQ[l] - j - j; 
IQ[l] : = jlim + jlim + ni; 
for i := j step 1 untilJZim do IP[i] := O; 

Lb: i := ij; if IQ[ij] ~ IQ[l] then go to Le; 
comment Extend the list of primes in array JQ counting so 

as to omit multiples of 2 and 3; 
Le: nj := nj +inc; inc := 6 - inc; 

if JQ[ik + 1] j 2 =:; nj then ik := ik + 1; 
for j : = 3 step 1 until ik do 

if (nj + JQ[j]) X JQ[j] = nj then go to Le; 
ij := ij + 1; JQ[ij] := nj; JQ[ij] := nj j 2; 
go to Lb; · 
comment If j + j + ni is composite, enter its smallest prime 

factor in IP[j]. If j + j + ni is prime, then IP[j] = O; 
Ld: IP.[j] := jqi; j := j + jqi; 

if j < jlim then go to Ld; 
IQ[i] : = j + j + ni; 

Le: i .:= i - 1; jqi := JQ[i]; j := (IQ[i] - n·i) + 2; 
if j < jlim then go to Ld; 
if i ¢ 1 then go to Le; j := k; 
comment Pack the next m primes in IP[l], · · ·, IP[m]; 

Lf: j :- j + 1; if IPfj] ¢ 0 then go to Lf; 
if j = jlim then go to La; 
k :- k + 1; IP[k] := j + j + ni; 
if k ¢ m then go to Lf; 
comment The current length of the tables in arrays IQ and 

JQ is returned; 
NPRIME := ij 

end NPRIME 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 357 [Alj 
An Efficient Prime Number Generator [Richard C. 
Singleton, Comm. ACM JO (October, 1969), 563) 

Richard M. De Morgan [Recd 8 August 1972], Digital 
Equipment Co. Ltd., Reading, England 

On some Algol 60 implementations, the value of 11i is destroyed 
between subsequent calls to the procedure. The second and third 
lines of the algorithm should be changed to make 11i an own integer: 

own integer ij, ik, i11c,j, ni, 11j; 

integer i, jqi, k; 

357-P 2- 0 



COLLECTED ALGORITH:MlS FROM CACM 

ALGORITHM 358 
SINGULAR VALUE DECOMPOSITION 
OF A COMPLEX MATRIX [Fl, 4, 5] 
PETER A. BusINGER AND GENE H. GOLUB (Recd. 31 Jan. 

1969 and 18 June 1969) 
Bell Telephone Laboratories, Inc., Murray Hill, NJ 07974 
Stanford University, Stanford, CA 94305 
KEY WORDS AND PHRASES: singular values, matrix decom

position, least squares solution, pseudoinverse 
CR CATEGORIES: 5.14 

CSVD finds the singular values u1 ~ u2 ~ • • • ~ UN of the com
plex M by N matrix (M ~ N) which is given in the first N columns 
of the array A. The computed singular values :are stored in the 
array S. CSVD also finds the first NU columns of an M by M 
unitary matrix U and the first NV columns of an N by N unitary 
matrix V such that llA - U:EV*ll is negligible relative to llAll, 
where l: = diag (ui). (The only values permitted for NU are 0, 
N, or M; those for NV are 0 or N). Moreover, the transformation 
U* is applied to the P vectors given in columns N + 1, N + 2, · · ·, 
N + P of the array A. This feature can be used .as follows to find 
the least squares solution of minimal Euclidean length (the pseu
doinverse solution) of an overdetermined system Ax ~ b: Call 
CSVD with NV= N and with columns N + 1, N + 2, · · ·, N + P 
of A containing P right-hand sides b. From the computed singu· 
lar values determine the rank r of l: and define :E+ = diag (u1-1, 

u 2- 1, ···, ur-1, 0, ···, 0). Now x = V:E+b, whereb = V*b is fur
nished by CSVD in place of each right-hand side b. 

CSVD can also be used to solve a homogeneom1 system of linear 
equations. To find an orthonormal basis for all solutions of the 
system Ax = 0 call CSVD with NV = N. The desired basis con
sists· of those columns of V which correspond to negligible singular 
values. Further applications are mentioned in the references. 

The constants used in the program for ET A a.nd TOL are ma
chine-dependent. ET A is the relative machine precision, TOL 
the smallest normalized positive number divided by ETA. The 
assignments made are valid for a GE635 computer (a two's 
complement binary machine with a signed 27-bi1; mantissa and a 
signed 7-bit exponent). For this machine, ETA = 2-26 = 1.5E-8 
and TOL = 2-129 ;2-26 = 1.E-31. 

The arrays B, C, and Tare dimensioned undeir the assumption 
that N ~ 100. 

The authors wish to thank Dr. C. Reinsch for his helpful sug
gestions. 

REFERENCES 

1. GOLUB, G. Least squares, singular values, and matrix ap
proximations. Aplikace Matematiky 1S (1968), 44-51. 

2. GoLUB, G., AND KAHAN, W. Calculating the singular values 
and pseudoinverse of a matrix. J. SIAM Numer. Anal. 2 
(1965)' 205--224. 

3. GOLUB, G., AND REINSCH, C. Singular value decomposition 
and least squares solutions. Numer. Math. (to appear) 

c 

~U8ROUTINE C S V 0 
l IA• MMAXt NMAX• Mt N• Po NU• NVo 
;;? S• U • VI 

C0"1PLEX A( MMAXo l I •UIMMAXo l I• VINMAXo 11 
INTEGER M•NtPoNUoNV 
RE AL SI 11 
COMPLEX GtR 
REAL BllOOloC( lOOloTllOOl 
DATA ETAtTOL/l.5E-8tl.E-31/ 
NP=N+P 
Nl:N+l 

C HOUSEHOLDER REOUCTIOr. 
c111 :o.ro 

c 

K:l 
10 Kl:K+l 

ELIMINATION OF AIItKI• I:K+lt ... oM 
z=o.Eo 
DO ZO t:KoM 

20 Z=Z+REALIAl!oKll .. 2+AI"AGIAIItKll .. 2 
81Kl:O.EO 
IflZ~LE.TOLIGOTO 70 
z:SQRTIZl 
BI K ): Z 
w:CA8SlfdK•Kll 
Q:( l.EO oO.E 01 
IF IW.NE. o. EO I Q:AIK oK I /W 
AfKoKl:Q•IZ+WI 
IFIK.EG.NPIGOTO 70 
DO 50 J:t<l•NP 

Q:I O.EOtO.EOI 
DO 30 I=K•" 

30 Q:Q+CONJGIAII•Kll•AII•Jl 
Q:Q/IZ•IZ+Wll 
DO 110 I:KoM 

lfO AII•Jl:AIIoJl-G•AIIoKI 
50 CONTINUE 

PHA5E TRANSFOR"1ATION 
Q:-CONJGIAIKoKll/CA8SIAIKtKll 
DO 60 J:KloNP 

'60 AIK•Jl=O•AIKoJI 

C ELIMINATION Of AIKtJlt J:K+2t ... tN 

c 

70 IFIK.EQ.NIGOTO 1110 
z=o .Eo 
DO 80 J:KltN 

80 Z:Z+REALIAIKoJl) .. 2+AIMAGIAIKoJll .. 2 
CIKll:O.EO 
IflZ.LE.TOLIGOTO 130 
z:SQRTIZI 
CIKll:Z 
w: CA 8 S ( A I K t K 11 I 
Q: 11. EO • 0 .E 0 I 
IFIW.NE.O.EOlll:AIK •K 11 /W 
A IK tKl l:Q•I Z+WI 
00 110 I:KltM 

Q: 10.EOtO.EOI 
DO 90 J:Kl•N 

90 Q:Q+CONJGI AIK oJI I •Al It JI 
,Q:Q/IZ•I Z+W,11 
DO 100 J:KloN 

100 Al I oJI :Al I tJl-G•AIK •JI 
110 CONTINUE 

FHASE TRANSFORMATION 
Q:-CQNJGIAIK0Kll l/CA8SIAIK0Kll I 
DO 120 I::Kl tM 

120 AIIoKll:Al!tKll*G 
130 K:Kl 

GOTO 10 

TOLERANCE FOR NEGLIGIBLE ELEMENTS 
llfO fPS:O.EO 

00 150 K:l•N 
SI Kl :8 I Kl 
TIKl:CIKI 

150 EPS:AMAXllEPSoSIKl+TIKll 
EPS:EPS•ETA 

C INITIALIZATION OF U ANO V 
IflNU,EG.OIGOTO 180 
0 0 l 7 0 J: l •NU 

DO 160 I=l•M 
160 UII•Jl:IO.EO•O.EOI 
170 UIJ•Jl=ll.EOtO.EOl 
180 IFINV.EG.OIGOTO 210 

DO 200 J:ltNV 

358--P 1- 0 



COLLECTED ALGORITHMS (cont.) 

c 
c 

c 
c 

c 
c 

(' 

c 

c 

00 190 I=loN 
190 VllrJl=IO.EOtO.EOI 
200 VIJ•Jl=ll.EO•O.EOI 

GR OIAGONALIZATJON 
210 DO 380 KK=lrN 

K=Nl-KK 

TEST FOR SPLIT 
220 00 230 LL=lrK 

L::K+1-LL 
IflABSITILll.LE.EPSIGOTC 29C 
IF< ABSISIL-11 I .LE.EPSI GOTO 240 

230 CONTINUE 

CANCELLATION OF EILI 
240 CS=O.EO 

SN=l.EO 
L l=L-1 
DO 280 I=L•K 

F=SNoT I I I 
rn >=CS•llI' 
IFIABSIFl.LE.EPSIGOTO 290 
H::S II I 
W::SQRTIF•F+H•HI 
S II l::w 
cs=H/W 
SN=-F /W 
IFINU.EG.OIGOTO 260 
DO 250 J=l •N 

X::REALI UIJoll I I 
Y:: RE A LIU I J ol J I 
U IJ ol 11 =CHPL XI X•CS+ Y•SN tO .EO I 

250 UIJoil=CMPLXIY•CS-X•SN•OoEOI 
260 IFINP.EQ.NJGOTO 280 

DO 2"7C J=Nl •NP 
G::AILlrJI 
R=AII1Jl 
AILloJl=G•CS+R+SN 

270 • AIIoJl=R•CS-G•SN 
280 CONTINUE 

TEST FOR CONVERGENCE 
290 W=SIKI 

IFIL.EG.KIGOTO 360 

ORIGIN SHIFT 
X=SILI 
V=SIK-11 
G=TIK-ll 
H=TIKl 
F = I I V -Ii l • I Y +WI + I G -H I •I G + H I I II 2. E 0 • H •YI 
G=SQRT<F•F+l.EOI 
IFIF.LT.O.EOJG::-G 
F =I I X-W l" IX+ WI• I Y II Ft G 1-H I• HI/ X 

GR STEP 
CS=I.EO 
SN=l .EO 
Ll:L+l 
DO 350 I=LltK 

G=TCII 
Y=S I! I 
H=SN•G 
G=CS•G 
W=SGRTIH•H+F•F I 
TCI-11 =W 
CS=F/W 
SN=H/W 
F=X•C S+G •SN 
G=G•CS-X•SN 
H= Y•SN 
V =Y·•C S 
IFINV.EG.OIGOTO 310 
00 300 J=l•N 

X=REALIVIJtI-ll l 
W:: RE AL IV I J, I I I 
V!J•I-ll=CHPLXIX•CS+W•SNtO.EOl 

300 VIJ•Il=CHPLXIW•CS-X•SNrO.EOl 
310 W:SGRl IH•H+F •FI 

SU-1 l=W 
C S::F /W 
SN=H/W 
F=CS•G+SN•·y 
x=c S• Y-SN •G 
YFINU.EG.OIGOTO 330 
00 320 J=l•N 

Y:REALIU IJrI-1 II 
W=REALIUIJtlll 
UIJ•l-ll=CHPLXIY•CS+W•SNtC.EOI 

320 UI J• I I =CHPLXIW•CS-Y•SNtO.EOI 
330 IFCN.EG.NPlGOTO 350 

DO 340 J::NltNP 
Q::A(I-l•JI 
R::A( It JI 
Afl-loJl=G•CS~R•SN 

340 AIItJl=R•CS-G•SN 
350 CONTINUE 

TILJ=O.EO 
II KI ::F 
SIKl::X 
GOlO 220 

CONVERGENCE 
360 IFIW.GE.O.EOIGOTO 380 

SIKl=-W 
IFI NV.EG. OIGOTO 380 
DO 370 J=loN 

370 VIJtKl::-VIJtKI 
380 CONTINUE 

C SORT SINGULAR VALUl~ 

c 

00 450 K=l •N 
G=-1.EO 
J=K 
DO 390 I=KoN 

IFISIIl.LE.GlGOTO 390 
G=SIII 
J=I 

390 CONTINUE 
IFCJ.EQ.KIGOTO 450 
SIJl=SIKI 
SIKl=G 
IFINV.EG.OIGCTO 410 
00 400 I=l•N 

G=VIIoJl 
VIItJl=VIIoKl 

400 VIIoKl=G 
410 IFINU.EG.OlGOTO 430 

DO 420 I=l•N 
Q=UI ! oJ I 
UIIoJl=UII oKI 

420 UIIrKl=Q 
430 IFIN.EQ.NPlGOTO 450 

00 440 I=Nl•NP 
G=AIJtll 
AIJril=AIKoil 

440 AIKril=O 
450 CONTINUE 

C BACK TRANSFORMATION 
IFINU.EG.OIGOTO SlC 
DO 500 KK=l•N 

K=Nl -KK 
IFIBIKJ.EO.O.EOIGOTO 500 
0 =-A I K , K l/C A Fl S I A I K • K I I 
DO 460 J=lrNU 

460 UIK•Jl=G•UIKrJI 
00 490 J=l1NU 

a=co.EOrO.EOl 
00 470 I=K oH 

470 o=a+CCNJGIAII0Kll•t;II1J) 
o=a/ICABSI AIKoKI l•BIKI I 
00 480 I=K•H 

'180 UII•Jl=UIIrJl-G•AIItKl 
490 CONTINUF.: 
500 CONTINUE 
510 IFINV.EQ.OIGOTO 570 

IFIN.LT.21GOTO 570 
00 560 KK=2 tN 

K=Nl-KK 
Kl=K+l 
IFCCC~ll.EG.O.EOIGOTO 560 
Q: -C ONJG I A I K, K 11 I/CABS I A I K, Kl l ) 
00 520 J=lrNV 

520 VIKloJl=Q•VIKloJl 
00 550 J=l•NV 

G=<O.EOtO.EOI 
00 530 I=KloN 

530 G=G+AIKoI l•Vll tJI 
a= QI IC ABS I A I K • K 1 I ) • C ( K 11 I 
DO 540 I=KltN 

5'10 VIIrJl=VlloJl-G•CONJGOIKrill 
550 CIJNTINUE 
560 CONTINUE 
570 RETURN 

ENO 

358-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 359 
FACTORIAI, ANALYSIS OF VARIANCE* [Gll 
JoHN R. HOWELL (Recd. 2 Aug. 1968 and 12 May 1969) 
Department of Biometry, Medical Center, Virginia Com-

monwealth University, Richmond, VA 28219 
*This investigation was supported in part by Public Health 
Service Research Grant FR 00016-05, from the National 
Institutes of Health. 

KEY WORDS AND PHRASES: factorial variance analysis, 
variance, statistical analysis 
CR CATEGORIES: 5.5 

COMMENTS. This subroutine transforms a vectory y, observed 
in a balanced complete t1Xt2X · · · Xtn factorial experiment, into 
an interaction vector z, whose elements include mean and main 
effects. 

The experimental observations y,, (s = (s1 , s2 , · · ·, sn); Si = 0, 
1, · · ·, ti - 1; i = 1, 2, · · ·, n) are assumed to be stored in the 
array Y in increasing order by the composite base integer s. 
After the transformation, the array Z will contain the interactions 
in natural order. 

The method used is Good's [1, 2) modification of Yates's [5] in
teraction algorithm. In [1, p. 367), the interactions are expressed 
in the form z == (M1 ® M2 ® · · · ®Mn)y, whe:re Mi is a tiX ti 
matrix of normalized orthogonal contrasts and where ® denotes a 
direct (Kronecker, tensor) product. The interactions can also be 
written z = (C1C2 · · · Cn)y, where 

C1 = Mi ® 11 2 ® · · · ® ltn 

C 2 = J ti ® M 2 ® ' ' ' ® J In 

and where Iti. is the tiXl1 identity matrix. 
By performing elementary operations (row and column inter

changes) on the C, we get z = (D1D2 · · · Dn)y, where 

and where Mt; is row j of M, . The symbol$ denot;es a direct sum. 
For an example of this for an unnormalized ma.trix, see Good 
[1, p. 362]. 

Since each row of Di consists of a row of M, and zeros, we only 
need M, for forming z. The subroutine forms first Dny, then this 
result is premultiplied by Dn-1, and so on until we obtain z. The 
elements of z are the required interactions. 

This method can be mechanized for hand computation in the 
following way. (The subroutine was written from this point of 
view.) Write the observations in the order specified above. Write 
row one of Mn down the right edge of a strip of paper using the 
same spacing as for the observations. Now place this movable 

359-P 1- 0 

strip alongside the observation vector so that the top element on 
the paper strip is opposite the top element of the observation 
vector. Multiply adjacent elements and write the sum of these 
products at the top of a new column. Now slide the paper strip 
down tn spaces. Form the indicated inner product as before and 
write the result in the new column below the previous entry. Con
tinue in this manner until all the observations have been used. 
Now write row two of Mn on a strip of paper and proceed as before. 
If we continue this process with all the rows of Mn we will get a 
new vector Zn whose elements are linear transformations of the 
observation vector y. The dimension of zn is the same as that of 
y. Similarly form Zn-1 from Zn and Mn-t . Continuing this process 
we finally obtain z1 = z which is the desired interaction vector. 

In all the foregoing we used the normalized contrast matrices; 
thus the sums of squares are the squares of the elements of z. For 
hand computation, one might prefer using the unnormalized con
trast matrices, since their elements are integers. But then we need 
a vector of divisors; it is obtained .by performing the same opera
tions on a column of ones as on y, except that we use the squares 
of the elements of the contrast matrices. Then the ith sum of 
squares equals zi: 2 divided by the corresponding divisor. 

This method might be called a "paper strip method" for analy
sis of variance and is similar to paper strip methods used for 
operations with polynomials. For examples of this, see Lanczos 
[3] and Prager [4]. 

We require 2t1t2 · · · tn locations for storing y and z plus sup(t1 , 
t2 , · · ·, tn) locations for storing a row of Mi . The number of mul
tiplications required is <IIti)(Lti + 1). 

ACKNOWLEDGMENTS: The author wishes to thank Dr. A. E. 
Brandt for initiating his interest in programming analysis of 
variance. He wishes to thank Dr. W. H. Carter, Jr., and the 
referee, for helpful comments. 

REFERENCES: 
1. GooD, I. J. The interaction algorithm and practical Fourier 

analysis. J. Roy. Statist. Soc. {B} 20, 2 (1958), 361-372. 
2. GooD, I. J. The interaction algorithm and practical Fourier 

analysi&: An addendum. J. Roy. Statist. Soc. {Bl 22, 2 (1960). 
372-375. 

3. LANczos, C. Applied Analysis. Prentice-Hall, Englewood 
Cliffs, N.J., 1956. 

4. PRAGER, W. Introduction to Basic Fortran Programming and 
Numerical Methods. Blaisdell, Waltham, Mass., 1965. 

5. YATES, F. The design and analysis of factorial experiments. 
Imperial Bureau of Soil Science, Harpenden, England, 1937. 



COLLECTED ALGORITHMS (cont.) 

SUBROUT !NE FNO\·A SUBROUTINE AROW c ************** .. * c *************** * < Y 1Z • RCW 1M5 l ZE 1NCLS, NFC TR l 
* (ROW1NRNC1Jl 

DIMENSION Y ! l l •Z ! ll • DIMENSION ROW( 1) ROW(l11MSIZE(ll c IF ROW ONE 
LOOP FOR NFCTR CONTRAST MATRICES IF(J-113'1•3 00 5 NF = l 1NFCTR A • NRNC I .. l EL " 11/SQRTIAI GET SIZE OF THE MATRIX DO 2 I . ltNRNC 

K = NFCTR-NF+l RO~ll I l • EL NRNC "MSIZE(KI c AND 
DO 3 J .. l tNRNC RETURN c ROW OF A CONTRAST MATRIX c ELSE 
CALL AROW (ROWoNRNCoJl JMl • J-1 c PERFORM THE 1 PAPER STRIP' RJ • J c OPERATION FOR A MATRIX ROW A • SQRT ( RJ*RJ-RJ l 
00 2 K " l1NCLS•NRNC EL . lo/A Z <I> = o. DO 4 I . 11JMl DO l L " l oNRNC 4 ROW<!>= EL KLl '" K+L-l 

Z (I l . Z <I l +RO"' (LI *Y < KLl l 
DO 5 l c JtNRNC 

ROw<l>•Oo 
I " I+l RO~! ( J) c ( le-RJ l /A CONT I NUE RETURN c MOVE Z INTO Y END 

DO 4 J = l oNCLS 
4 Y(Jl = z ( J) 
5 COIHl"WE 

DO 6 J " l tNCLS 
y ( J) " Y(J)*Y(JI 

RE TURN 
ENO 

RE:.\L\RKS ON: 
ALGORITHM 332 [S22] 
JACOBI POLYNO~IIALS [Bruno F. W. Witte, Comm. 

ACJI 11 (June 1968), 436] 
ALGORITH~I 344 [Sl4] 
STUDENT'S t-DISTRIBUTION [David A. Levine, 

Comm. ACM 12 (Jan. 1969), 37} 
ALGORITH~1 351 [Dl] 
MODIFIED R0~1BERG QUADRATURE [Graeme 

Fairweather, Comm. 12 (June 1969), 324] 
ALGORITH~1 359 [G 1] 
FACTORIAL ANALYSIS OF VARIANCE [.John R. 

Howell, Comm. ACM 12 (Nov. 1969), 631] 
ARTHUR H. J. SALE (Recd. 16 Feb. 1970) 
Basser Computing Department, University of Sydney, 

Sydney, Australia 

KEY WORDS AND PHRASES: Fortran standards 
CR CATEGORIES: 4.0, 4.22 

An unfortunate precedent has been set in several recent al
gorithms of using an illegal FORTRAN construction. This oon· 
sists of separating an initial line from its continuation line by a 
comment line, and is forbidden by the standard (see sections 3.2.1, 
3.2.3 and 3.2.4 of [1, 2)). The offending algorithms are to date: 
332, 344, 351 and 359. 

While this is perhaps a debatable decision by the compilers of 
the standard, and trivial to correct, it seems a pity to break the 
rules just for a pretty layout as has been done. 

REFERENCES: 

1. ANSI Standard FORTRAN (ANSI X3.9-1966), American 
National Standards Institute, New York, 1966. 

2. FORTRAN vs. Basic FORTRAN, Comm. ACM 7 (Oct. 1964), 
591-625. 

359-P 2- RI 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 360 
SHORTEST-PATH FOREST WITH TOPOLOGICAL 
ORDERING [H] 
ROBERT B. DIAL (Recd. 21 Nov. 1968, 27 Nov. 1968 and 

30 Apr. 1969) 
Alan M. Voorhees and Associates, Inc., McLean, VA 22101, 

and Department of Civil Engineering, University of 
Washington, Seattle, WA 98105 

KEY WORDS AND PHRASES: shortest path, tree, network, 
directed graph 
CR CATEGORIES: 5.32, 5.42 

procedure MOORE (INDEX, J, D, maxd, n, DIST, I, NEXT, 
LAST, maxdist, ROOT, m); 
value maxd, n, maxdist, m; 
integer array INDEX, J, D, DIST, I, NEXT', LAST, ROOT; 
integer maxd, n, maxdist, m; 

comment Given a subset (called "roots") of the nodes (num
bered from 1 to n) spanned by a directed graph composed of 
arcs of known length, MOORE finds for each node in the network 
the shortest path connecting it to its closest root node. The 
result is a disjoint set of shortest-path trees, referred to here as 
a "shortest-path forest." MOORE's output describes all the 
paths in the forest and gives their lengths. It B>lso provides two 
lists which sequence the nodes spanned by the forest in forward 
and backward topological order. In the algorithm's terminology, 
"forward topological order" is a sequence in which any given 
node is listed after any other node which lies on the path be
tween it and its root node. Conversely, the "backward topo
logical order" has the nodes arranged in decreasing distance 
from their nearest root node. 

The procedure below implements a well-known, widely-used 
algorithm by E. F. Moore [1] and is particularly suited for a 
large, sparse network whose arc lengths are short and which 
have a small variance, e.g. an urban highway system. As an 
indication of its efficiency, an Assembly Language routine pat
terned after MOORE for the IBM 360 model 65· found all short
est paths from a single root node to the remaining 12,000 nodes 
of a 36,000-arc network (i.e. built a minimum-path tree) in one 
(1) second. In general, for a connected graph, MOORE's "run
ning time" is directly proportional to the number of arcs in the 
network and is independent of the number of roots. The me
chanics of the algorithm are summarized in the following 
three steps: 
O. Mark each root node r "reached but not sca.nned" and asso

ciate with it a distance of zero (DIST[r]:=O). Mark each 
nonroot node i "not reached" and associate ·with it a distance 
of infinity (i.e. DIST[i]==maxdist). Go to Step 1. 

1. From among the nodes marked "reached but not scanned," 
select the node i whose distance is smallest. If there is no 
node so marked, the forest .is complete. Otherwise go to Step 
2. 

360-P 1- 0 

2. For each arc (i, j) in the network (i.e. all arcs exiting the 
selected node i), compare DIST[j] with the sum of DISTiiJ 
and the arc length of (i, j). Whenever this latter sum is less 
than the former quantity, set DIST[j] equal to it, mark 
node j "reached but not scanned," and put the arc (i, j) in 
the forest, removing any other arc whose final node is j. 
When all arcs exiting node i have been so examined mark 
node i "reached and scanned" and go to Step 1. 

While Moore's algorithm possesses the important attribute of 
examining each arc in the network only once, the speed achieved 
in its implementation depends primarily on its efficiency in 
Step 1. To facilitate this node selection, the procedure below 
uses a topological ordering of the final nodes of the arcs in the 
partial forest. It effects Step 1 by referring to a forward-order
ing list, NEXT, to determine which node should be selected 
nmct from the "reached but not scanned" category. A backward
ordering list, LAST, aids updating the ordering when a previ
ously found path to a node is superseded by a newly found, 
shorter one. Also used in this updating process are two short 
local vectors, HEAD and TAIL. HEAD[d] and T AIL[d] contain 
the first and last node of a sublist of nodes, whose associated dis
tance is not less than the distance of the node selected in Step 1 
and is congruent to d modulo the net's maximum arc length. 
The use of these latter two arrays becomes clear while studying 
the ALGOL below. 

Besides them root nodes stored in ROOT[l], "· · , ROOT[m], in
put to MOORE consists of a network description in three vectors, 
J, D, and INDEX, together with the scalar parameters n, maxd, 
and maxdist. The array J contains the final node numbers of all 
arcs in the network stored in ascending sequence with respect 
to their initial node number. The second vector, D, is parallel 
to the array J and holds the corresponding arc lengths-against 
which paths are to be minimized. INDEX[i] points to the first 
element of J representing an arc exiting node i. INDEX is di
mensioned from 1 to n + 1, where the parameter n is the highest 
node number in the network, and INDEX[n+lJ contains one 
plus the total number of arcs in the network. The arc lengths 
stored in the array D must be positive integers strictly less than 
the parameter maxd. Similarly, as maxd exclusively limits the 
length of an arc, so does the other input scalar parameter 
maxdist limit the length of a path. MOORE only considers paths 
which are shorter than maxdist. 

The algorithm's output describes the minimum-path forest 
in two vectors, I and DIST. I[jJ contains the initial node of the 
forest's unique are whose final node is j. Thm=1 the sequence of 
nodes representing the shortest path from the nearest root 
to j is found in reverse order by looking at I[j], I[l[j]], etc., 
until a root node is encountered. DIST[j] returns the minimized 
distance from the closest root node to j. If j is not reachable 
from any root node via a path shorter than maxdist, MOORE 
returns with DIST[j] == maxdist and I[j] = 0. The forest's topo
logical orderings are returned in list form in the pointer vectors 
NEXT and LAST.NEXT is a circular successor list. The number 
of the node closest to its root node is stored in NEXT[ROOT[l]]. 
The next closest node is contained in NEXT[NEXT[ROOT[l]]], 
etc., until ROOT[l] is encountered in some NEXT[j], where j is 
the number of the node farthest from its root node. Similarly, 
LA.ST is a circular predecessor list. The backward topological 
order is obtained by starting at LAST[ROOT[l]], which contains 
the number of the most distant node. LAST[LAST[ROOT[l)]] 



COLLECTED ALGORITHMS (cont.) 

has the next most distant, etc., until LASTfj] = ROOT[l], j 
being the closest node to its root. When no path shorter than 
maxdist exists between a root node and j, then j appears in 
neither the NEXT nor the LAST list. 

REFERENCE: 
1. MooRE, E. F. The shortest path through a maze. In Inter

national Symposium on the Theory of Switching Proceedings. 
Harvard U. Press, Cambridge, Mass., Apr. 1957, pp. 285-292; 

begin 
integer procedure mod(d, maxd); value d, maxd; integer 

d, maxd; mod :== d - maxd X entier(d+maxd); 
integer array HEAD[O:maxd-1], TAIL[O:maxd-1]; integer 

i, pt, k, v, j, q, ct; 
for i := 1step1 until maxd-1 do HEAD[i] := TAIL[i] := O; 
for i := 1step1 until n do 
begin DIST[iJ := maxdist; l[i] ;= 0 end; 
for i := 2 step 1 until m do 

begin 
NEXT[ROOT[i-1)) := ROOT[i]; LAST[ROOT[i]J :== ROOT 
[i-1); 
DIST{ROOT[i]J : == O 

end; 
LAST[ROOT[l]J := NEXT[ROOT[m]] := DIST[ROOT[1JJ := 

pt:= O; 
i := HEAD[OJ := ROOT[l]; TAIL[OJ := ROOT[m]; 

comment Examine all exits from selected node (Step 2 above); 
r: fork := INDEX[i) step 1 until INDEX[i+lJ - 1 do 

begin 
v := DIST[i] + D[k]; j := J[k); 
if v < DIST[j] then 
begin 

comment Path to .i via i is shortest so far-put arc (i, j) 
in forest; 
if DIST[j) ¢ ma.cdist then 
begin 

comment Delete node j from its prior sublist; 
q := mod(DIST[j], maxd); 
if HEAD[q] = j then HEAD[q] := NEXT[j] 
else 
begin 

if T AIL[q] = j then 
begin TAIL[q] := LAST[j]; NEXT[LAST[jJJ .- O 

end 
else 
begin LAST[NEXT[j]J := LAST[j); NEXT[LAST 

[j]] := NEXT[j] end 
end 

end; 
comment Hook j to its new sublist, and put arc (i, j) in 

forest; 
q := mod(v, maxd); 
if HEAD[q] = 0 then 
begin HEAD[q] := }; LAST[j) := O end 
else 
begin LAST[j] := TAIL[q]; NEXT[TAIL[q]J := j end; 
comment Update forest and forward ordering; 
l[j] := i; DIST[.il := v; TAIL[qJ := j; NEXT[j] := O 

end 
end; 
comment Select next node i whose exit arcs are to be examined 

(Step 1 above); 
if NEXT[i] ¢ 0 then 
begin 

comment Sublist containing i not empty-use successor of 
i; i := NEXT[i]; go tor 

360-P 2- 0 

end; 
comment Sublist containing i empty-use first node in next 

nonempty sublist; 
HEAD[pt] := O; 
for ct : = 1 step 1 until maxd - 1 do 
begin 

pt := mod(pt+l, maxd); 
if HEAD[pt] ¢ 0 then 
begin 

comment Found a nonempty sublist-hook it to lists; 
LAST[HEAD[pt]J := i; i := NEXT[,i] := HEAD[pt]; 

go tor 
end; 

end; 
comment All sublists empty, forest built-circularize lists 

and quit; 
LAST[ROOT[l)J := i; NEXT[i] := ROOT[l] 

end MOORE 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 361 
PERMANENT FUNCTION OF A SQUARE 
MA TRIX I AND II [G6] 
BRUCE SHRIVER, P. J. EBERLEIN, AND R. D. DIXON (Recd. 

19 Feb. 1969, 7 Mar. 1969 and 9 July Ul69) 
State University of New York at Buffalo, Amherst, NY 

14226 
KEY WORDS AND PHRASES: matrix, permanent, determi
nant 
CR CATEGORIES: 5.30 

real procedure perl (A, n); 
integer n; array A; 

comment Let A be an n X n real matrix, n > 1. The perma
nent function of A, denoted per(A), is computed by H. J. 
Ryser's [l] expansion formula: 

n-1 r 

per(A) = L: (-l)r L: II x,i 
r=O xE Tn-r i-1 

where Tj, j = n, n - 1, · · · , 2, 1, is the set of vectors x = (xi), 
i = 1, 2, · · · , n which are obta.iDed by addin!~ j columns of A 

together in ali(;) possible ways. To effect the sum over vectors 

in T;, n - 1 sums are computed. The natural 1-1 map from the 
binary integers to all r-combinations, r = 1, ~!, · · · , n - 1, is 
used to increment the sums over the sets T;. 

REFERENCF:: 
1. RYSER, H, J. Combinatorial Mathematics, Carus Monograph 

~14. Wiley, New York, 1963, p. 27; 
begin 

real sig, pem, ';)rod, rowsum; 
integer number, limit, mod, gen, g, i, j, r; 
array sum[O:n-1]; 
integer array d[l :n]; 
sig := -1; pera := O; limit:= (2 in) - l; 
for r := 0 step 1 until n - 1 do sum[r] := O; 
for number : = 1 step 1 until limit do 
begin 

r := O; gen := number; 
for mod := 1 step 1 until n do 
begin 

g := gen + 2; if (gen-gX2) = 1 then 
begin r := r + l; d[r] := mod end; 
gen := g 

end; 
prod := l; 
for i := 1step1 until n do 
begin 

rowsum := O; 
for j := ll step 1 until r do 
rowsum :,= rowsum + A[i, d[j]]; 
prod : = prod X rowsum 

end; 
sum[n-r] := sum[n-r] +prod 

end; 
for r := 0 step 1 until n - 1 do 
begin sig := -sig; pira := pera + sig X sum[r] end; 
per := pera 

end of real procedure perl; 

real procedure per2(A, n); 
integer n; array A; 

361-P l- 0 

comment Let A be an n X n real matrix, n > 1. The permanent 
function of A, denoted by per(A) is computed by Jurkat and 
Ryser's [l] method of inductively generating the vectors 
Pi , · • · , Pn where Pr is the vector of permanents of r by r sub-

matrices of the first r rows of A. This vector has ( ~) components 

indexed by the r-combinations of {l, · · · , nl. The natural 1-1 
map from the binary integers {l,. · · · , 2 j n-1} to the r-com
binations of {l, · · · , n} for r = 1, · · · , n is used to index the 
p's and thus they are generated in an order somewhat different 
from that of Jurkat and Ryser. 

REFERENCE: 
1. JURKAT, W. B. AND RYSER, H. J. Matrix factorizations of 

determinants. and permanents. J. Algebra 3 (1966), 1-27; 
begin 

integer number, limit, mod, gen, g, r, dig, sub, j; 
array list [l :2 j n-1]; 
limit : = 2 j n - 1; 
comment Initialize list as accumulators; 
for j := 1step1 until limit do list [j] := O; 
for j := 1step1 until n do list [2 j (j-1)] .- A[l, j]; 
for number : = 1 step 1 until limit do 
begin 

if list [number] F 0 then 
begin 

r := l; gen := number; 
for mod := 1step1 until n do 
begin 

g :=gen+ 2; 
if gen - 2 X g = 1 then r : = r + 1; 
gen := g 

end count of l's in number; 
dig := l; gen :=·number; 
for mod := 1step1 until n do 
begin 

g :== gen + 2; 
if gen - 2 X g == 0 then 
begin 

sub : = number + dig; 
list [sub] := list [s'ltb] + list [number] X A [r, mod] 

end; 
gen := g; dig := 2 X dig 

end computations with list [number]; 
end 

end; 
per :== list [limit] 

end of real procedure per2; 

Note. On the Permanent Function of a Square Matrix I and II: 
Program I is slower than Program II. However Program II uses 
approximately 2n more locations of store. The running times for 
both programs double when n is incremented by 1. 



COLLECTED ALGORITHMS (cont.) 

REMARK ON ALGORITHM 361 [G6] 
PERMANENT FUNCTION OF A SQUARE MATRIX 

I AND II [Bruce Shriver, P. J. Eberlein, and R. D. 
Dixon, Comm. ACM 12 (Nov. 1969), 634] 

BRUCE SHRIVER, P. J. EBERLEIN' AND R. D. DIXON 

(Recd. 22 Jan. 1970) 
State University of New York at Buffalo, Amherst, NY 

14226 

KEY WORDS AND PHRASES: matrix, permanent, determi
nant 
CR CATEGORIES: 5.30 

The authors would like to cite the following misprints in the 
above two algorithms: 
(A) In procedure perl(A, n) 

(1) in line 43, the variable name pira should be pera 
(2) in line 44, the variable name per should be perl. 

(B) In procedure per2(A, n) 
(1) in line 47, the variable name per should be per2. 

361-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 362 
GENERATION OF RANDOM PERMUTATIONS [G6] 
J. M. RoBSON (Recd. 1 Apr. 1969) 
Programming Research Group, 45 Banbury Road, Oxford, 

England 

KEY WORDS AND PHRASES: permutation, random permu
tation, transposition 
CR CATEGORIES: 5.5 

procedure perm(n, r, A); value n, r; integer n, r; integer 
array A; 

comment This procedure produces in the vector A a permuta
tion on the integers 1, 2, · · · , n, each of the n! permutations 
being given by one value of r between 1 and n! inclusive. It is 
thus similar in effect to the procedure given in [1] but it is con
siderably faster, especially for large values of n, since it uses a 
single loop rather than a double one. 

A permutation is generated as the product of n - 1 transpo
sitions of which the jth transposes A[n+l-j] and A.[x] for 
some x :5;; n + 1 - j. 

If the line 
for i := 1step1 until n do A[i) := i 
is omitted the proced'ure will permute the original values 
A[l], · · · , A[n] in the same manner. 
REFERENCE: 

1. ROBINSON, C. L. Algorithm 317, Permutation. Comm. ACM 10 
(Nov. 1967), 729; 

begin 
integer i, x, y; 
for i := 1step1 until n do A[i] := i; 
for i := n step -1 until 2 do 
begin 

x := r - (r+i) X i + 1; r := r + i; 
y := A[x]; A[x] := A[i); A[i] := y 

end 
end 

362-P 1- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 363 
COMPLEX ERROR FUNCTION* [815] 
WALTER GAUTSCH! (Recd. 11 June 1969) 
Computer Sciences Department, Purdue University, La

fayette, IN 47907 
*Work supported, in part, by the National Aeronautics and 
Space Administration (NASA) under grant NGR 15-005-039 
and, in part, by Argonne National Laboratory. 

KEY WORDS AND PHRASES: error function for complex 
argument, Voigt function, Laplace continued fraction, Gauss
Hermite quadrature, recursive computation 
CR CATEGORIES: 5.12 

procedure wofz(x, y, re, im); value x, y; real x, y, re, im; 
comment This procedure evaluates the real and imaginary 

part of the function w (z) = exp ( -z2)erfc ( -iz) for argument.' 
z = x + iy in the first quadrant of the complex plane. The accu 
racy is 10 decimal places after the decimal point, or better. 
For the underlying analysis, see W. Gautschi, "Efficient com
putation of the complex error function," to appear in SI AM 
J. Math. Anal.; 

begin 
integer capn, nu, n, npl; 
real h, h2, lambda, rl, r2, s, sl, s2, tl, t2, c; 
Boolean b; 
if y < 4.29 A x < 5.33 then 
begin 

s := (1-y/4.29) X sqrt(l-x X x/28.41); 
h := 1.6 X s; h2 := 2 X h; 
capn : = 6 + 23 X s; nu : = 9 + 21 X s 

end 
else 
begin h := O; capn := O; nu := 8 end; 
if h > 0 then lambda := h2 j capn; 
b : = h = 0 V lambda = 0; 
rl := r2 := sl := s2 :== O; 
for n := nu step -1until0 do 
begin 

npl := n + l; 
tl := y + h + npl X rl; 12 := x - npl X r2; 
c := .5/(tl x tl + t2 x t2); 
rl := c X tl; r2 := c X t2; 
if h > 0 A n ~ capn then 
begin 

tl := lambda+ sl; sl := rl X tl - r2 X s2; 
s2 : = r2 X tl + r 1 X s2; 
lambda : = lambda/h2 

end 
end; 
re := if y = 0 then exp(-xXx) else 

1.12837916709551 X (if b then rl else sl); 
im : = 1.12837916709551 X (if b then r2 else s2) 

end wofz 

363-P 1- RI 

Certification of Algorithm 363 [SIS] 
Complex Error Function [Wa~ter Gautschi, Comm. 
ACM 12 (Nov. 1969), 635] 

K.S. Kolbig* (Recd. 8 Oct. 1970) 
Data Handling Division, European Organization for 
Nuclear Research (CERN), 1211 Geneva 23, 
Switzerland. 

Key Words and Phrases: error function for complex argument, 
Voigt function, special functions, function evaluation 

CR Categories: 5.12 

As a result of an exchange of letters with W. Gautschi it became 
apparent that the following alterations simplify somewhat the pro
cedure wofz: 
(i) insert the statement 
lambda : = h2 j cap11; 

between the statements 

capn : = 6 + 23 X s; nu : = 9 + 21 X s 

(ii) delete the statement 

if h > 0 then lambda : = h2 j capn; 

Furthermore, for clarification, a comment could be inserted before 
the statement b : = h = 0 V lambda = O; namely 

comment In the following statement, lambda = 0 covers the under-
flow case when h > 0 is very small; 

After these slight modifications, the procedure wofz was translated 
into Fortran and extended to the whole z-plane (z = x+iy) by means 
of fl, No. 7.1.11, 12] 

w(-z) = 2e-'
2 

- w(z), w(z) = w(-z). 

It was then tested on a CDC 6500 computer at CERN. The tests 
included the following: 
(i) Calculation of the seven examples No. 12-18 for w(z), erf(z), 

and the Fresnel integral S1(z) given in [1, No. 7.5]. At least 11 
significant digits agreed with the values obtained by 

w(z) = e-•
2
fl-ef'.f(-iz)] = e-•

2
ef'.fc(-iz). (1) 

The error function erf(z) for complex z in (I) was calculated using 
Salzer's formula, which is reproduced in the NIBS Handbook [1, 
No. 7.1.29]. This formula require' the computation of erf(x) for real 
x, which was done with the help of a library program based on the 
approximation given by Cody [2J. (Note that the correct value 
of /mSi[CYz+i)v2] in example 18 is -0.681620 instead of 
-0.681619.) 
(ii) Calculation of w(z) for 

Z = 4.29 + lQ-lOp + i(5.33+ 10-Mq) 

with p, q = - 1, 0, 1. These values of z lie near the line which sepa
rates two branches in the procedure wofz. Eight to nine significant 
digits, corresponding to nine to ten figures after the decimal point, 
agreed with the values obtained from (1). 



COLLECTED ALGORITHMS (cont:.) 

(iii) Calculation of w(z) along the diagonal z = (I +i)u for u 
- 27(1) 100, 1000, 10000. For u < 10, the formula [l, No. 7.9] 

w[(l + i)u] = 
(2) 

was used for comparison. The Fresnel integrals C(x) and S(x) were 
computed with a library program based on the Algol procedure 
Fresnel written by Bulirsch [3]. Twelve to fourteen significant digits 
agreed. For 11 > 10, the results of wof:. were checked against the 
asymptotic expansion [l, No. 7.1.23] 

w(z) ,.._, --- 1 + L i ( 00 1.3 ... (211 - 1)) 
V7rZ n=l (2z2)n 

(z ~ oo, - J < arg(z) < ~). 
Thirteen to fourteen significant digits agreed. 
(iv) Calculation of w(z) along the imaginary axis x 

-27(1)100, 1000, 10000. For y < 25, the formula 

w(iy) = eY
2 
er.fc(y) 

0 for y 

(3) 

(4) 

was used for comparison. The complementary erro: function er.fc(x) 
was computed by means of a library program based on [2]. For 
- 27 ::::; y ~ - 2 and for 10 ::::; y < 25, 12 to 14 significant digits 
agreed, whereas for - 2 < y < 10, ten to thirteen significant digits 
were found to be in agreement. For y ~ 25, the results were checked 
against the asymptotic expansion (3). Thirteen to fourteen signifi
cant digits agreed. 
(v) Calculation of w(x) - e-x

2 along the real axis y = 0 for 
x = 0(1) 100, 1000, 10000 using the formula [l, No. 7.9] 

w(x) - e--x = - e-x e1 dt = - F(x) 2 2i 2 f x 2 2i 
V7r 

0 
V7r 

(5) 

for comparison. The Dawson integral F(x) was computed with the 
help of the rational approximations given by Cody et al. [4]. For 
x ~ 7, IO to 12 significant digits agreed, whereas for x > 7, 13 to 
14 significant digits were found to be in agreement. 
(vi) Calculation of w(z) for z = (1 +ii v'Jlu and z = (1 +i v3)u for 
11 = lOk, k = -10(1)4. Fork ::::; 0, the results were compared with 
the values obtained from the power series 

w(z) = 2_"'... -~ • 
n=~o rO + 1) (6) 

Ten significant digits agreed. Fork > 0, 13 to 14 significant digits 
agreed with the values obtained from the asymptotic expansion (3). 
(vii) Calculation of w(z) for z = x + 10-si for x = 1(1)100, 1000, 
10000. For x < 5, the results were compared with the values ob
tained from formula (1). Six to eight significant digits, correspond
ing to at least nine to ten decimals, agreed for the real part. However, 
the accuracy of wofz may be higher, since the values from formula 
(1) are possibly inaccurate. The imaginary part agreed to ten to 
twelve significant digits. For x > 5, the asymptotic expansion (3) 
was used :for comparison. For 6 ::::; x ::::; 8, ten to twelve significant 
digits, and for x > 8, thirteen to fourteen significant digits agreed 
in both the real and imaginary part. For x = 5, it was not possible 
to calculate accurate values for the real part of w(z) either by means 
of formula (1) or from the asymptotic expansion (3l. 

References 
1. Gautschi, W. Error function and Fresnel integrals. Chap. 7 in 
Handbook of Mathematical Functions, M. Abramowitz and J.A. 
Stegun, Eds. NBS Appl. Math. Ser. 55, U.S. Govt. Printing Office, 
Washington, D.C., 1965. 

363-P 2- 0 

2. Cody, W.J. Rational Chebyshev approximations for the error 
function. Math. Comp. 22 (1968), 631-637. 
3. Bulirsch, R. Numerical calculation of the sine, cosine and 
Fresnel integrals, Handbook Series Special Functions. Numer. 
Math. 9 (1967), 380-385. 
4. Cotly, W.J., Paciorek, K.A., and Thacher, H.C.Jr. Chebyshev 
approximations for Dawson's integral. Math. Comp. 24 (1970), 
171-178. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 364 
COLORING POLYGONAL REGIONS [Z] 
RoBERT G. HERRIOT (Recd. 30 Jan. 1967, 31 Oct. 1968 

and 2 July 1969) 
University of Wisconsin, Computer Science Department, 

Madison, WI 53706 
KEY WORDS AND PHRASES: coloring polygonal regions, 

coloring planar surfaces, drawing pictures, shading enclosed 
regions 

CR CATEGORIES: 4.9 

procedure drawarea (x, y, firstpoint, lastpoint, section, numrows, 
numseats, regcolor, paintflag, paintcolor, sgn, dir, edge); 

value firstpoint, lastpoint, numrows, numseats, regcolor, 
paintflag, paintcolor, sgn, dir, edge; 

integer firstpoint, lastpoint, numrows, numseats, regcolor, 
paintcolor, sgn; 

real edge; 
Boolean paintflag, dir; 
real array x, y; 
integer array section; 

comment This procedure is a part of a large program which 
produces the card stunts for the Stanford University football 
game half-times. The initial development was done by L. Breed, 
L. Tesler, and J. Sauter. The author (a Stanford student at the 
time) made many further developments on this program which 
included producing an algorithm for coloring in polygonal re
gions. Prior to the development of this algorithm, there were 
many cases which did not work. The larger program takes as 
input an English description of the stunts and produces as out
put an image of each flip (similar to a frame in a movie film), 
as a rectangle that has 45 rows with 77 seats in each row. The 
main program, which will be considered the driver program for 
the purpose of the procedure drawarea, does all of the handling 
of the definition of regions and also the printing of the images. 
It should be mentioned that the procedure drawarea in the actual 
program is just part of a larger procedure and that all of the 
parameters are global in order to increase efficiency. The pur
pose of drawarea is to take the current regions and draw them in 
the two-dimensional array section, which is to be declared as 
section [1: numrows, 1: numseats] (the array is 45 by 77 for Stan
ford). Each completed picture in section is then printed and also 
written out on tape. Another program later takes this tape and 
processes it to produce an instruction card for each student 
holding a set of colored cards in the rooters section. 

The larger program allows objects of any shape to be defined 
by a series of x, y-coordinates. It will accept a series of points 
which are given an identifying name by the user and which can 
then be used as (1) a group of points, (2) a series of connected 
line segments, (3) a polygonal region enclosed by the points 
(with the first and last point connected by a straight line). It 
also allows ellipses to be defined. Once an object is defined, it 
can be expanded and contracted in size, rotated about any fixed 
point, or moved anywhere, including all or partially out of 
sight. As soon as all objects are in place, the user can ask that an 
image of the picture be made. Except for polygonal regions, 
producing the image of these objects is trivial. The procedure 

364-P 1- 0 

drawarea is the routine which places the polygonal regions in the 
array section. 

The array section is presumed to have a background color 
associated with it. All objects, which also have an associated 
color, are then drawn into the array in a specified order so that 
the objects which are to be superimposed over other objects are 
drawn last. The procedure drawarea takes the coordinates of 
the point (which may not be integral) from arrays x and y with 
subscript values ranging fromfirstpoint to lastpoint and decides 
which seats in array section will form the left and right bound
aries of this new region. After the boundary, is determined, the 
interior must be colored in. The algorithm colors the region by 
taking each row and then examining each seat from left to right. 
For optimization, only the area of a minimal circumscribing 
rectangle is examined. At the beginning of each row the variable 
count is set to leftcount [row, 0)-rightcount [row, 0), which will be 
zero unless the object is partially out of sight on the left. Then 
as long as count remains zero, the seat is on the exterior and is 
not colored. As each seat is encountered, leftcount [row, seat] 
is added to count. When count is positive, the seat is in the in
terior or on a boundary and is colored. After each seat is proc
essed, rightcount [row, seat] is subtracted from count. When 
count returns to zero, the seat is an exterior seat and is not cQl
ored. In any row it is possible to have the color turned on and 
off several times. Arrays lef tcount and rightcount contain twice 
the number of left and right boundaries which pass through each 
individual seat. These two arrays solve the problem created by 
having several boundaries passing through one seat. 

A further complication to the routine is added by allowing a 
region to be gradually changing color. Thus each region always 
has a color (regcolor) associated with it, and if the region is 
being swept with a new color, then paintftag is true and paint
color, sgn, dir, and edge are used to determine the section of 
the region which is to be of the new color (paintcolor). The roles 
of the parameters for painting are: sgn and dir indicate the direc
tion in which the imaginary paintbrush is moving. dir = true 
means the direction is horizontal and dir = false means ver
tical. sgn = -1 means the direction is left or down and sgn = 1 
means the direction is right or up. edge is the row or seat (col
umn) where the new color (paintcolor) ends and the old color 
(regcolor) begins. The driver program is expected to change 
edge with each new image so that the region looks as if it is 
being swept by a new color. 

A related algorithm which determines whether a point is 
inside a polygon is presented in Algorithm 112 [1, 2]. 

REFERENCES: 
1. HACKER, RICHARD. Certification of Algorithm 112, Position 

of point relative to polygon. Comm. ACM 5 (Dec. 1962), 606. 
2. SHIMRAT, M. Algorithm 112, Position of point relative to 

polygon. Comm. ACM 5 (Aug. 1962), 434i 
begin 

integer row, seat, toprow, rightseat, rit, lef, top, bot, iox, ioy, 
inx, iny, sdx, sdy, j, ix, iy, count; 

real ox, oy, nx, ny, dx, dy, dxdy, const; 
integer array leftcount, rightcount [O: numrows+l, 

0: numseats+ll; 
integer procedure max(x, y); value x, Yi integer x, Yi 

ma:c := if x ~ y then x else y; 
integer procedure min(x, y); value x, y; integer x, y; 

min := if x :$ y then x else Yi 



COLLECTJED ALGORITHMS (cont.) 

toprow ~ = numrows + l ; 

rightseat : = numseats + 1; 
for row : = 0 step 1 until toprow do 

for seat : = 0 step 1 until rightseat do 
leftcount [row, seat] := rightcount [row, seat] := O; 

ox := x[lastpoint]; rit := left := iox := ox; 
oy := y[lastpoint]; top := bot := ioy := oy; 
comment Draw the boundary by iterating through the points; 
for j : = firstpoint step 1 until lastpoint do 

begin 
nx := x[j]; inx := nx; 
ny := y[jJ; iny := ny; 
dx := nx - ox; 
dy := ny - oy; 
sdx := if dx < 0 then -1else1; 
sdy := if dy < 0 then -1 else l; 
if ioy = iny then 
begin 

comment The line is horizontal, or almost so; 
comment min and max keep the point in the section; 
row := max(min(ioy, toprow), O); 
seat := max(min(max(iox, inx), rightseat), O); 
rightcount [row, seat] := rightcount [row, sea1:] + 1; 
seat := max(min(min(iox, inx), rightseat), O); 
leftcount [row, seat] .- leftcount [row, seat] + 1; 

end horizontal line 
else 
begin 

comment The line is not horizontal; 
dxdy := dx/dy; 
const : = if abs (dx) ~ abs (dy) 

then ox - dxdy X oy 
else ox - dxdy X (oy - sdx/2) - ~rdy/2; 

comment Draw Une between two points by stepping 
through each row and determining which seat should be 
marked as the boundary; 

for iy : = ioy step sdy until iny do 
begin 

ix := dxdy X iy + const; 
row := max(min(iy, toprow), O); 
seat : = max (min (ix, rightseat), 0) ; 
comment Because end points are each processed twice, 

we add only 1 to them instead of the usual 2; 
if dy > 0 then 
begin 

comment Boundary on right side of area; 
rightcount.[row,seat] : = rightcount[row,seatl 

+ (if iy=ioyViy=iny then 1 else 2) 
end 
else 
begin 

comment Boundary on left side of area; 
leftcount[row ,seat] : = leftcount[row ,seat] 

+ (if iy=ioyViy=iny then 1 e)se 2) 
end 

end drawing of line; 
end sloping line; 
comment Move on to next line segment; 
ox := nx; iox := ox; 
oy := ny; ioy := oy; 
comment Find rectangle which circumscribes the area; 
if rit < iox then rit : = iox 
else if lef > iox then lef : = iox; 
if top < ioy then top : = ioy 
else if bot > ioy then bot := ioy; 

end bordering area; 

lef := max(l; lef); rit := min(rit, numseats); 
bot := max(l, bot); top := min(top, numrows); 

364-P 2- 0 

comment Color the area. It is only necessary to look within 
the circumscribing rectangle; 

for row : = bot step 1 until top do 
begin 

count := leftcount [row, OJ - r-ightcount [row, OJ; 
for seat := lef step 1 until rit do 
begin 

count : = count + lef tcount [row, seat]; 
if count > 0 then 

section [row, seat] := if paintflag then 
(if sgnX ((if dir then seat else row)-edge) > 0 

then 
regcolor 
else paint color) 

else regcolor; 
count := count - rightcount [row, seat]; 

end coloring of 0ne seat; 
end coloring of one row; 

end drawarea; 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 365 
COMPLEX ROOT FINDING [05] 
H. BACH (Recd. 18 Apr. 1968 and 15 July 1969) 
Laboratory of Electromagnetic: Theory, Technical Uni-

versity of Denmark, Lyng by, Denmark 

KEY WORDS AND PHRASES: downhill method, complex 
relaxation method, complex iteration, complex equation, 
transcendental complex equation, algebraic complex equation 

CR CATEGORIES: 5.15 

COMMENT. The present subroutine determines, within a cer
tain region, a root of a complex transcendental equationf(z) = 0, 
on which the only restriction is that the function w = f (z) must be 
analytic in the region considered. The iterative method used, 
the downhill method, was originally described in [2] and is dis
cussed and modified in [1]. 

The program uses a complex function subprogram FUNC(Z) 
for the computation of f(z). From a given complex starting point 
ZS, the iteration is performed in steps of initial length HS. The 
iterations stop at the root approximation ZE when either the 
function value DE at the end point is less than the prescribed 
minimum deviation DM or when the step length HE has become 
less than the prescribed minimum step length HM. For reference, 
the subroutine also returns DS, the function value at the starting 
point ZS, and N, the number of iterations used. There are thus 
four input parameters, namely the starting point ZS, the initial 
step length HS, the minimum step length HM, and the minimum 
deviation DM. 

AcKNOWLEDGMENT. Thanks are due to Mr. Frank Jensen, 
M.Sc., who helped in the testing of this algorithm. 

.REFERENCES: 
1. BACH, H. On the downhill method. Comm. ACM 12 (Dec. 

1969) 675-677. 
2. WARD, .J. A. The downhill method of solving f(z) = 0. J. 

ACM 4 (Mar. 1957), 148-150. 

SUB ROUT I NE CRF 'ZS .Hs. HM.OM. FUNC IDS .zE .HE I DE IN I 

THE SUBROUT HIE DETERMINES A ROOT OF A TRl\NSCEN
C DENTAL COMPLEX EQUATION FIZ)•O BY STEP-WISE !TE
C RATJONolTHE DOWN HILL METHOD! 
c 
C INPUT-PARAMETERS. 
c 
C ZS= START VALUE OF Zo!COMPLEXI 
C HS • LENGTH OF STEP AT START, 
C HM • MINIMUM LENGTH OF STEP. 
C DM • MINIMUM DEVIATION, 
c 
C SUAPROGR AM o 
c 
C FUNCIZlt A COMPLEX FUNCTION SUBPROGRAM FOR THE 
C CALCULATION OF THE VALUE OF FIZI FOR A COMPLEX 
C ARGUMfNT Zo 

c OUTPUT-Pl\RAMETERS. 
c 
c OS • CABSIFUNCIZSI !=DEVIATION AT STA'RTo 
c ZE END VALUE OF Zo ICOMIPLEX I 
c HE LENGTH OF STEP AT EN Do 
c DE • CABSIFUNCIZEll•DEVIATION AT END. 
c N • NUMBER OF I TERATIONSo 

c 
C RESTRICT ION So 
c 

365-P 1- 0 

C THE FUNCTION W=FIZI MUST BE ANALYTICAL IN THE 
C REc:;·10N WHERE ROOTS ARE SOUl;HTo 
c 

c 

REiil Wl3l 
COMPLEX zo,zs,zE1ZD1ZZoZl3loCW0AoV1U!7loFUNC 
\)( 11 • ( 1 .. 0. l 
U I 21=I0 08660254 ,O • 50000<lo l 
Ul31•IOoOOOOOOn1loOOOOOOOI 
U I 4 I• I 0.9659258 10 02588190 I 
UI 51•IOo7071068 .o, 7071 Of>8 I 
UI 6 I• I 002588190,0 .9659?58 I 
UI 71•1-0025881901009659258 I 
H•HS 
zo,.zs 
N•O 

C CALCULATION OF OS. 
c 

c 

CWsFUNC I ZO I 
WO•ABS!REALICWll+ABSIAIMAG!CWll 
DSsWO 
IFIWO-DMI 18tl8'1 

l K•l 
l•O 

2 V= 1-1o100 l 

EQUILATERAL TRIANGULAR WALK PATTERN. 

3 A .. 1-o.o;,0.8661 

C CALCULATION OF DEVIATIONS W IN THE NEW TEST POINTS. 
c 

c 

4 Zlll•ZO+H*V*A 
CW= FU NC I Z I 1 II 
Wlll•ABSIREALICWll+ABSIAIMAGICWll 
Z I 2 I :ZO+H*V 
CWsFUNCIZl;>l I 
Wl2l•ABSIREALICWl)+ABSIAJMAGICWll 
Z I "I) •ZO+H•CONJGI A l*V 
CW=FUNCIZIJ)I 
Wl1l=ABSIREALICWll+ABSIAIMAGICWll 
N•N+l 

DETERMINATION OF WINRh THE SMALLEST OF WI !lo 

l FI WI 1 I-WI 3 l I 5 1'i16 
5 I F I W I 1 ) -W I 2 l l 7 , 8 , 8 
6 IF I WI 2 I-WI 3 l I 8 18 • 9 
7 NR:l 

c:;oro 10 
8 NQs2 

GOTO 10 
<I NR•'.3 

10 IFIWO-WINRI l 11•12112 
11 GOTO ll31l411511K 
12 K=l 

l•O 

C FORWARD DIRECTED WALK PATTERN. 
c 

A•I0 0707,Q 0707) 
V•IZINRl-ZOl/H 
WO•WINRI 
ZO•ZINRl 
lFIWO-DMl 18•18.4 

11 K•2 

C REDUCTION OF STEP LENGTH. 
c 

c 

IFIH.LToHMl GOTO 18 
H•H*Oo25 
GOTO 1 

14 K•1 

C RESTORATION OF STEP LENGfHo 
c 

c 

H=H*4• 
GOTO 2 

15 I• l+l 

C ROTATION OF WALK PATTERN. 
c 

c 

IFll-71 16•16•17 
16 V•UI 11 

GOTO 3 

C REDUCT I ON OF STEP LENGTH• 
c 

17 IFIH.LToHMl GOTO 18 
H•H*Oo25 
1~0 

GOTO 2 
18 ZE•ZO 

HE•H 
DE•WO 
RETURN 
END 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 366 
REGRESSION USING CERTAIN DIRECT 
PRODUCT MATRICES [G2] 
P. J. CLARINGBOLD (Recd. 10 May 1968 and 8 July 1969) 
Division of Animal Genetics, C.S.l.R.O., P.O. Box 90, 

Epping, N.S.W., Australia, 2121 

KEY WORDS AND PHRASES: analysis of vHriance, analysis 
of covariance, regression analysis, experimental design, matrix 
direct product, projection operator, orthogonal matrix 

CR CATEGORIES: 5.14, 5.5 

procedure regressor (vec, kobs, levs, code, kfac, nfac, ndf); 
value nfac; 
integer kobs, levs, code, kfac, nfac, ndf; 
real vec; 

comment The mathematical basis of the algorithm which forms 
the kernel of a very general analysis of variance and covariance 
procedure (Algorithm 367) is set out in [5, 6]. An overwhelming 
majority of the experimental designs in [2] may be analyzed in 
this way. Statistical nomenclature is given in parentheses. 

A vector vec, of nobs elements (observations) traced by kobs, 
is replaced by ndf ~ nobs elements (regression coefficients) 
obtained by the matrix product CT·vec, since the matrix is 
semiorthogonal. The number of initial elements is implied as 
the product of the nfac values of the variable levs which are 
traced by kfac. Values of code, similarly traced, specify matrices 
which enter a direct product [4] to form the transforming matrix 
CT (independent variates transposed). As code takes the values 0, 
1, or 2, the matrices selected are I, j, or V, i.e. the unit matrix 
of order lev$, the unit vector of levs equal elements, or a matrix 
made up of lev.s - 1 mutually orthogonal unit vectors which are 
also orthogonal to the previous vector (VT·j = 0 and VT. V =I). 
A direct product of the transposes of the selected matrices forms 
the transforming matrix. An example of an actual call is shown 
to illustrate tracing: example: regressor (vec[kobs], kobs, 
levs[kfac], code[kfac], kfrw, nfac, ndf). 

The squared length of the resultant vector (sum of squares on 
ndf degrees of freedom) is equal to the squared length of the 
projection of the original vector in the subspace spanned by an 
idempotent symmetric matrix (idix) P. Eigenvectors associ
ated with unit eigenvalues of this projection operator [1] com
prise the rows of the transforming matrix. 

(1) 

The cosine of the angle between two similarly transformed vec
tors (correlation coefficient) is obtained in an analogous manner 
from a scalar product· (sum of cross products). 

lveclwecCOS (6) = Vee T · p ·Wee. (2) 

Prior evaluation of direct products is very wasteful of opera
tions [3], and use is made of an identity which involves ordinary 
( ·) and direct (X) products: 

(AXBXC)·y = (AXIXI)· (IXBXI)· (lXlXC)·y. (3) 

Although shown for a triple product the identity obviously 
holds for any number of factors. The identity, however, is only 
valid for square matrices and the rectangular j or V factors 

366--P 1- 0 

must therefore be bordered by zeros to satisfy. In the algorithm 
multiplication by these zeros is bypassed, and after each trans
formation the vector is packed ready for the next. 

Another identity: 

(AXB)·(CXD) = (A·C) X (B·D), (4) 

implies that the ordinary products in (3) may be taken in any 
order, since the direct product factors commute. The trans
formations should therefore be taken in the order which achieves 
the largest reduction in the number of elements. Since j-factors 
achieve a reduction in the ratio levs :1, while V-factors merely 
achieve levs :levs - 1, the transformations are arranged in de
scending order of levels for j-factors ·followed by an ascend
ing order of levels for V-factors. Transformations requiring 
the unit matrix are, of course, skipped. 

REFERENCES: 
1. BANERJEE, K. S. A note on idempotent matrices. Ann. Math. 

Statist. 35 (1964), 880-882. 
2. CocHRAN, W. G. and Cox, GERTRUDE M. Experimental De

signs (2 Ed.) Wiley, New York, 1957. 
3. GooD, I. J. The interaction algorithm and practical Fourier 

analysis. J. Roy. Statist. Soc. {Bl 20 (1958), 361-373. 
4. MARCUS, M. Basic theorems in matrix theory. Nat. Bur. 

Standards Appl. Mathl Ser. 57 (1960), Washington, D.C. 
5. NELDER, J. A. The analysis of randomised experiments with 

orthogonal block structure. I. Block structure and the null 
analysis of variance. Proc. Roy. Soc. {Al 283 (1965), 147-162. 

6. NELDER, J. A. The analysis of randomised experiments with 
orthogonal block structure. II. Treatment structure and the 
general analysis of variance. Proc. Roy. Soc. {A} 283 (1965), 
163-178; 

begin 
integer ifac, jgo, nlft, nrgt, jfac, jump, ilft, irgt, jumphold, ilev, 

jumpo, jumper, iup, idown, nlev, maxp; 
real x, v; 
integer array ranks[! :nfac]; 
maxp := ndf := 1; 
for kfac : = 1 step 1 until nfac do 
begin 

comment Transmit levels and determine largest factor; 
ranks[kfac] := nlev := levs; ndf := ndfXnlev; 
if nlev > maxp then maxp : = nlev 

end with degrees of freedom set in null case; 
maxp := -(maxp+I); 
for jgo := 1, 2 do 
begin 

comment Averaging before differencing transformations; 
mfac: 

begin 
comment Search for best remaining factor; 
nlev := maxp; ifac := O; 
for kfac : = 1 step 1 until nfac do 
begin 

ilev := (3-2Xjgo) X ranks[kfac]; 
if code = jgo /\ ranks[kfac] = levs /\ ilev > nlev then 
begin 

nlev : = ilev; if ac : = kf ac 
end if a better factor 

end search; 
if ifac > 0 then 



COLLECTED ALGORITHMS (cont.) 

begin 
comment Process a factor; 
kfac := ifac; nlev := levs; nlft .- nrgt .- 1; 
for jfac : = 1 step 1 until nfac do 

if ifac ~ jf ac then 
begin 

comment Determine orders of unit matrices to left 
and right; 

if jfac < ifac then nlft := nlft X ranks[jfac] 
else nrgt := nrgt X ranks[jfac] 

end products; 
begin 

comment Evaluate normalization constants; 
array rootfjgo : if jgo=l then 1 else nlev]; 
if }go = 1 then root[l] := sqrt(l/nlev) 
else 
for ilev : = 2 ste1> 1 until nlev do 

root[ilev] := sqrt(l/(ilevX(ilev-1))); 
comment Begin transformation of vector; 
jump := O; 
comment Loop over all combinations to the left; 
for ilft : = 1 step 1 until nlft do 
begin 

jump :=jump+ 1; 
comment Loop over all combinations to the right; 
for irgt : = 1 step 1 until nrgt do 
begin 

jumphold :=jump; jump:= jump - nrgt; x := O; 
comment Loop over active factor; 
for ilev : = 1 step 1 until nlev do 
hegin 

comment Form sum; 
jumpo :=jump; kobs :=jump :=jump + nrgt; 
if jgo = 2 /\ ilev > 1 then 
begin 

comment Form difference when appropriate; 
v := vec; kobs := jumpo; 
vec := (x- (ilev-l)Xv)Xroot[ilev] 

end now do sum; 
kobs := jump; x := x + vec 

end sum and difference loop; 
if jgo = 1 then 
begin 

comment Insert normalized average; 
kobs := jumphold; vec := x X rooi[l] 

end insertion; 
jumper : = jump; jump : = jumphold + 1 

end loop over all combinations to the right; 
jump : = jumper; 

end loop over all combinations to the left 
end block; 
iup : = nrgt X nlev; idown : = if jgo = 1 then nrgt else 

iup - nrgt; 
for ilf t : = 2 step 1 until nlft do 
begin 

comment Compact vector; 
for frgt : = 1 step 1 until nrgt do 
for 'ilev : = 2 step 1 until nlev do 

if ilev < 3 V }go = 2 then 
hegin 

kobs := iup := iup + 1; v := vec; 
kobs := idown := idown + 1; vec := v 

end within block moves; 
iup := if jgo = 1 then iup + (nlev-1) X nrgt else 

iup + nrgt 
end block moves; 

366--P 2- 0 

comment Adjust dimensions of pseudoarray; 
ranks[ifac] := if jgo = 1th.en 1 else nlev - 1; 
ndf : = idown; 
go to mfac 

end 
else go to end jgo 

end labeled compound statement; 
end jgo: 

end loop over factor types 
end regressor 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 367 
ANALYSIS OF VARIANCE FOR BALANCED 
EXPERIMENTS [G2] 
P. J. CLARINGBOLD (Recd. 27May1968 and 8July1969) 
Division of Animal Genetics, C.S.I.R.O., P.O. Box 90, 

Epping, N.S.W., Australia, 2121 

KEY WORDS AND PHRASES: analysis of variance, analysis 
of covariance, regression analysis, experimental design, bal
anced experiment, missing data, interblock estiimate, intrablock 
estimate 

CR CATEGORIES: 5.14, 5.5 

integer procedure balanced anova (y, missing y, a:, fixed effect, eRti
mate, error level, error code, ally, all x, lengthy, length x, pooled 
beta, se beta, normalized beta, error, df total, df error, tolcor, 
tolength, tolmpss, ispace, nspace, ires, jres, nrt1s, itrt, ntrt, iobs, 
nobs, ifac, nfac, max cycle, check diagonality, projector, pulpy, 
getpy, putpx, getpx); 

value tolcor, tolength, tolmpss, nspace, nres, ntrt, nobs, nfac, max 
cycle, check diagonality; 

real y, x, ally, all x, lengthy, length x, pooled beta:, se beta, normal
ized beta, error, tolcor, tolength, tolmpss; 

integer error level, error code, df total, df error, ispace, nspace, 
ires, jres, nres, itrt, ntrt, iobs, nobs, ifac, nfac, max cycle; 

Boolean mis1;ing y, fixed effect, estimate, check diagonality; 
procedure projector1 putpy, getpy, putpx, getpx;; 

comment The algorithm provides analyses of v-ariance, covari
ance, and regression for data collected according to a wide 
variety of experimental designs. The vector of elements compris
ing either a response (y or dependent) or a treatment (x or inde
pendent) variate forms a conceptual complete :array of nfac di
mensions. The implied subscripts are a set of discrete variables 
which define an error classification. Designs of 1;his type include 
the fully randomized, randomized block, incomplete block, split (to 
any order) plot, Latin (and higher) squares, latticE1s, et cetera, and 
make up the overwhelming majority in use [3]. By means of an 
appropriate transformation the frequency data of contingency 
tables may be processed to provide partitions of chi-square [1]. 
A comprehensive account of the mathematical basis is given in 
[4, 5). 

In this implementation extensive use is made of the call-by
name facility so that generators and routines involving auxiliary 
store may freely be used for all input variables. Usually data 
sets are quite small and storage of intermediate quantities 
within the immediate access store is possible. In the following 
notes on the formal parameters relevant tracer variables are 
shown in brackets. An arrow (-) indicates that the variable is 
used only as a source of information. 

balanced anova: If the projection of x-variate numbered jtrt 
has a correlation coefficient exceeding tolcor with the projection 
of x-variate numbered ktrt in subspace ispace of the design, then 
abnormal termination is forced with balanced anova = 106 X 
ispace + 103 X jtrt + ktrt. Zero is returned as the value of the 
procedure in the case of normal termination. Note that this 
time-consuming check of the balance of the treatment model 
with respect to the error model is only performed if check diago
nality is set true. 

367-P 1- 0 

y, missing y (ires, iobs) - : They-variate generator or array 
must provide trial values, e.g. the average of present elements 
for the variate, for any missing data. These elements are flagged 
by true in the Boolean missing y which may take the form of 
an expression in terms of ires, iobs, and integer constants. 

x (itrt, iobs) - : A complete specification of the orthogonal 
decomposition of the total sum of squares (and products) using 
polynomials or some other form of contrast representation is 
required. In the case of treatment classifications (for example 
factorial experiment) the x-variate values may be generated as a 
direct product (or as a selection of elements from such a matrix) 
of a number of small contrast matrices, i.e. orthogonal matrices 
with first column having elements greater than zero (usually 
constan_t). 

fixed effect (itrt, is'[XLCe) - : By setting this variable true the 
flagged re_gression coefficients, i.e. beta number itrt in estimation 
subspace number ispace, are declared to be error free or invari
ants. In most practical cases this facility is only relevant to the 
constant term of the regression model. 

estimate (itrt, ispace) - : By setting this variable false the 
flagged regression coefficients are declared to be zero and are 
not estimated in the indicated subspaces. Usually this facility 
is not required, and the constant true is used as actual parame
ter. 
error level· (ifac) - : The variable sets the number of levels 

of the error classifications. If it is assumed that the conceptual 
subscripts have unit lower bounds, then the upper bounds are 
set. Variates (traced by iobs) must be in lexical order by the 
implied subscripts, and use of a permutation array or function 
may be required to achieve this end. 

error code (ifac, ispace) - : Error sources of variation (esti
mation or error subspaces) are specified by integer codes 0, 1, 
or 2. The codes could be generated by means of a procedure 
which interpreted a string of input characters denoting the 
error structure of the experimental design, see [4, 5]. A set of nfac 
integers specifies a projection operator which spans a subspace. 
The operator is formed as the direct product of (O) identity 
matrix I, (1) averaging matrix J, or (2) differencing matrix K = 
I - J. Every element of the averaging matrix is equal to the 
reciprocal of the order, 
e.g.: 2, O, 1, 2, 1 H> Ki X 12 X Ja X K. X Jr, =, Pi, say. 
It is required that the error subspaces be mutually orthogonal, 
PiP; = ~i;P1. 

Code Sets for Some Common Designs 
Design Codes P1+P• 

Fully randomized 1 2 0 
Randomized or 11 21 02 01 

incomplete 
block 

Split plot 111 211 021 002 011 
Split split plot 1111 2111 0211 0021 0002 0111 
Square or 11 21 12 22 01 

rectangle 
Revlicated square 111 211 021 012 022 011 

or rectangle 
Three-way crossed 111 211 121 112 221 212 122 222 011 

error 
In certain circumstances it may be desired to work 
mod(JXJX · · · XJ), that is they-variates are. adjusted to have 
zero mean. In this case the first code is omitted from the analy-



COLLECTED ALGORITHMS (cont.) 

sis. Usually it is convenient to pool the subspaces defined by 
J X J X · · · X J and K X J X · · · X J yielding (by addition) 
I X J X · · · X J, and if this is required the first two columns 
of the table are replaced by the rightmost auxiliary column. 

ally [ires}, all x [itrtJ, lengthy [ires, ispaceJ, length x [itrt, ispace]: 
The lengths of they, x, projected y, and projected x vectors are 
returned. Null variates (which have zero length) should be indica
ted in, or excluded from, analysis of variance tables (et cetera) 
derived from an activation of the procedure. 

pooled beta, se beta [ires, itrtJ: The weighted mean regression 
coefficient relating y-variate number ires to x-variate number itrt 
is returned in pooled beta, and the standard error of the estimate 
in se beta. 

normalized beta [ires, itrt, ispace J: Within each subspace the 
regression coefficients are scaled so that it may be assumed that 
the sum of squares of each (nonnull) projected x-variate is unity. 
The dyad obtained by forming all pairwise products over the 
tracer ires (fixing the other tracers) is a single degree of freedom 
contribution due to treatment (x-variate) number itrt to sub
space number ispace of the analysis of variance (and covariance 
if nres > 1). 

error [ires, jres, ispace]: For each subspace an error covari
ance matrix is computed. This is the only variable bearing the 
tracer jres which is constrained so that jres ~ ires. The calling 
program may make provision to pack the matrices in triangular 
form using a subscript function: pack[ires] + jres, where 
pack[iresJ = (iresX (ires-1)) + 2. 

df total, df error [ispace]: The variables return the total and 
error degrees of freedom for each subspace. 

tolcor: If the activation calls for a check of the orthogonality 
of projected x-variates, then this constant sets the value of the 
correlation coefficient, which should not be exceeded in the test. 

tolength: A projected vector is assigned zero length if the 
ratio of the computed length to that of the unprojected vector, 
multiplied by the square root of the ratio of the number of ob
servations to degrees of freedom of the subspace, fails to exceed 
this criterion. 

tolmpss: As a single measure of all missing data a sum of 
squares is computed. If the ratio of the absolute value of the 
difference between this sum and that of the previous iteration 
(or 0), to the current sum, fails to exceed this constant, no 
further iterations are made. 

ispace, nspace, ires, jres, nres, itrt, ntrt, iobs, nobs, ifac, nfac: 
The identifiers with initial letter i or j are tracers mnemonically 
related to the remaining identifiers which define the number of 
subspaces, y-variates, x-variates, observations and error factors, 
respectively. 

max cycle: An upper limit to the number of iterations re
quired for ·the convergence of estimates of missing data is pro
vided by this parameter" 

check diagonality: If this parameter is true then the projected 
x-variates are checked for orthogonality. While computing time 
is saved by the opposite setting, incorrect results are computed 
if an invalid assumption of orthogonality is made. 

projector: In order to compute the consequences of projection 
of variates, a choice between at least two procedures is made: 
P·x = C·C7'.x or CT·x. The idempotent symmetric projection 
operator P (see [4, 5]), or the rectangular matrix made up of 
the eigenvectors corresponding with unit eigenvalues (see [2]) 
is used. The second alternative is preferred since the transform
ing matrix is then thin, and Algorithm 366 is an implementation 
of this approach. 

putpy, getpy, putpx, getpx: These procedures are concerned 
with the transmission of transformed variates between arrays 
internal to the algorithm and auxiliary store. While immediate 
access store may be used as auxiliary store with small problems, 
backing media such as magnetic drum, disk, or tape are required 
for large problems. The procedure putpy transmits all nelm ele-

367-P 2- 0 

ments of a transformed y-variate to auxiliary store, while getpy 
performs the reverse transmission. Similar actions on the 
x-variates are carried out by the other two procedures. All four 
routines have similar calling sequences: (vec[ielm], ielm, nelm, 
ivar, ispace), where vec identifies the vector to be moved, ielm 
traces the elements of the vector, nelm (returned by projector) 
specifies the number of elements to be moved, ivar gives the 
variate number, and ispace gives the subspace number. The ele
ments to be moved are in the foading position in vec, and an 
appropriate instruction begins for ielm := 1 step 1 until 
nelm do. The la.st two formal pa:rameters may be used to index 
an array listing the starting posit.ions of the vectors in auxiliary 
storage. 

REFERENCES: 
1. CLARINGBOLD, P. J. The use of orthogonal polynomials in 

the partition of chi-square. Austral. J. Statist. S (1961), 48-
63. 

2. CLARINGBOLD, P. J. Algorithm 366. Regression using certain 
direct product matrices. Comm. ACM 1~ (Dec. 1969), 687-
688. 

3. CocHRAN, W. G., AND Cox, GERTRUDE M. Experimental De
signs (Ed. 2). Wiley, New York, 1957. 

4. NELDER, J. A. The analysis of randomised experiments with 
orthogonal block structure. I. Block structure and the null 
analysis of variance. Proc. Roy. Soc. {A} 283 (1965), 147-162. 

5. NELDER, J. A. The analysis of randomised experiments with 
orthogonal block structure. II. Treatment structure and the 
general analysis of variance. Proc. Roy. Soc. {A} ~89 (1965), 
163-178; 

begin 
array yy, xx[l:nobs]; reals, t, o, ssmp; 
integer i cycle, ndf, jtrt, ktrt, kres, nelm, nmis; 
real procedure sigma (x, i, n); 

value n; 
real x; integer i, n; 

begin 
real xx; xx := O; 
for i := 1step1 until n do xx :=xx+ x; 
sigma:= xx 

end sigma; 
comment Count missing data items; 
nmis := O; ssmp := O; 
for ires : = 1 step 1 until nres do 
for iobs : = 1 step 1 until nobs cllo 

if missing y then nmis : = nmfa + 1; 
begin 

comment Get space for estimfates of missing data; 
array y missingll : if nmis=O then 1 else nmis]; 
comment Set up loop for miss:ing data iteration; 
for i cycle := 1 step 1 until max cycle do 
begin 

comment Analyze data in various error subspaces; 
for ispace : = l step 1 until nspace do 
begin 

comment Determine subspace degrees of freedom; 
if i cycle = 1 then 
begin 

comment Only compute degrees of freedom once; 
ndf := l; 
for ifac : = 1 step 1 until nfac do 

ndf : = ndf X (if error code= 0 then error level 
else if error code=l then 1 else error level-1); 

df total : = ndf 
end 
else ndf : = df total; 
comment Project response vectors; 
nmis := O; 



COLLECTED ALGORITHMS (cont.) 

for ires : = 1 step 1 until nres do 
begin 

commient Fetch a vector, and possibly fit missing 
data; 

for iobs : = 1 step 1 until nobs do 
if m1:ssing y then 
begin 

nmis := nmis + 1; 
if 1:space = 1 then y missing[nmis] : ,= if i cycle = 1 

then y 
else sigma (pooled beta Xx, itrt, ntrt); 

yy[iobs] := y missing[nmis] 
end 
else yy[iobs] := Yi 

if ispace = 1 then ally:= sqrt(sigma(yy[iobs] j 2, iobs, 
nobs)); 

projector(yy[iobs], iobs, error level, error code, ifac, nfac, 
nelm); 

jres : = ires; 
error :'= sigma(yy[iobs] j 2, iobs, nelm); 
length y := if sqrt((errorXnobs)/ndf)/aU y > tolength 

then sqrt(error) else O; 
putpy (yy[iobs], iobs, nelm, jres, ispace); 
for jres : = 1 step 1 until ires - 1 do 
begin 

comment Determine sums of cross products; 
getpy(xx[iobs], iobs, nelm, jres, ispace); 
error : = sigma(yy[iobs]Xxx[iobs], iobs, nelm) 

end cross products 
end dependent variates; 
comment In the first cycle project treatment vectors; 
if i cycle = 1 then 
for jtrt : = 1 step 1 until ntrt do 

if estimate then 
begin 

comment Only work on variates included in regres
sion; 
itrt := jtrt; 
fo1· iobs := 1step1 until nobs do xx[iobs] := x; 
if ispace = 1 then all x := sqrt(sfgma(xx[iobs] j 2, 

iobs, nobs)); 
projector(xx[iobs], iobs, error level, error code, ifac, nfac, 

nelm); 
t :::= sigma(xx[iobs] j 2, iobs, nelm); 
s := length x := if sqrt((tXnobs)/ndf)/all x > tolength 

then sqrt(t) else O; 
if 8 > 0 then 
begin 

comment Null variates are skipped; 
pu,tpx(xx[iobs], iobs, nelm, itrt, is'pace); 
if check diagonality then 
for ktrt : = 1 step 1 until jtrt - l do 

if estimate then 
begin 

comment Orthogonality checked for variates 
in regression; 

itrt := ktrt; v := length x; 
if v > 0 then 
begin 

comment Null variates are skipped; 
getpx(yy[iobs], iobs, nelm, iti-t, ispace); 
if abs(sigma(xx[iobs]Xyy[iobs], iobs, nelm))/ 

(sXv) > tolcor then 
begin 

comment Force termination since ex-

367-P 3- 0 

1 cessive correlation; 
balanced anova . - 1000 X (lOOOX ispace+ 

jtrt) + ktrt; 
go to exit 

end large correlation 
end if secondary variate has projection 

end secondary variate loop 
end if primary variate has projection 

end primary variate loop; 
comment Compute normalized regression coefficients; 
for itrt := 1 step 1 until ntrt do 

if length x > 0 /\ estimate then 
begin 

comment Skip null or not in regression independent 
variates; 

ndf := ndf - 1; 
getpx(xx[iobs], iobs, nelm, itrt, ispace); 
for ires : = 1 step 1 until nres do 

if length y > 0 then 
begin 

comment Skip null dependent variates; 
getpy(yy[iobs], iobs, nelm, ires, ispace); 
normalized beta := sigma(xx[iobs]Xyy[iobs], iobs, 

nelm) /length x 
end 
else normalized beta : = 0 

end 
else for ires := 1 step 1 until nres do normalized beta 

:= O; 
df error : = ndf; 
comment Reduce sums of squares and products for 

regression; 
for itrt : = 1 step 1 until ntrt do 

if length x > 0 /\ estimate then 
begin 

for kres := 1step1 until nres do 
for jres := 1 step 1 until kres do 
begin 

ires : = jres; s : = normalized beta; 
ires : = kres; error : = error - s X normalized beta 

end dyad reduction loops 
end normalized regression coefficient computation; 

comment Determine true regressions and information; 
for ires : = 1 step 1 until nres do 
begin 

for jres : = 1 step 1 until ires do 
error : = if length y = 0 V ndf = 0 then 0 else error/ ndf; 
jres : = ires; 
for itrt : = 1 step 1 until ntrt do 
begin 

comment Clear areas at start; 
if ispace = 1 then pooled beta : = se beta : = 0; 
if estimate then 
begin 

comment Set information as unity for fixed 
effects; 

t : = if fixed ejf ect /\ length x > 0 then 1 else 
if ndf = 0 then 0 else length x j 2/ (if error= 0 

then 1 else error) ; 
se beta := se beta + t; 
pooled beta : = pooled beta + t X (if length z = 0 

then 0 else normalized beta/length x) 
end of addition to pools 

end independent variate loop 
end dependent variate loop 

end error subspace loop; 
for ires : = 1 step 1 until nres do 
for itrt : = 1 step 1 until ntrt do 



COLLECTED ALGORITHMS (cont.) 

if se beta > 0 then 
begin 

comment Compute weighted means and standard 
errors; 

pooled beta := pooled beta/se beta; 
se beta := sqrt(l/se beta) 

end average; 
if nmis > 0 then 
begin 

comment Check convergence of missing items; 
s := sigma(y missing[iobs] t 2, iobs, nmis); 
if abs(s-ssmp)/s > tolmpss then ssmp := s 
else go to finish 

end missing data. convergence test 
end cycle; 

finish: balanced a nova : = 0; 
exit: 

end block 
end balanced anova 

361-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 368 
NUMERICAL INVERSION OF LAPLACE 
TRANSFORMS [D5] 
HARALD STEHFEST* (Recd. 29 July 1968,, 14 Jan. 1969 

and 24 July 1969) 
Institut f. angew. Physik, J. W. Goethe Universitat, 

6000 Frankfurt am Main, W. Germany 
• The work forms part of a research program :supported by the 
Bundesministerium ftir wissenschaftliche Forschung and the 
Fritz ter Meer-Stif tung. 

KEY WORDS AND PHRASES: Laplace transform inversion, 
integral transformations, integral equations 
CR CATEGORIES: 5.15, 5.18 

procedure Linv(P, N, T, Fa, V, M); 
value N, T; 
integer M, N; real T, Fa; array V; real procedure P; 

comment If a Laplace transform P(s) is given. in the form of a 
real procedure, Linv produces an approximate1 value Fa of the 
inverse F (t) at T. Fa is evaluated according to 

Fa = In 2 t V; p (In 2 i) . 
T ,_1 T 

N must be even. Since the V; depend on N only, in case of re
peated procedure calls with the same N the array V is to be 
evaluated only once. That is why the formal parameter M has 
been introduced: that part of the algorithm which computes the 
Vi is run through only if M ~ N, and after every call of Linv M 
equals N. At the first call M may be any integer different from N. 

The calculation method originates from Gav-er (2), who con
sidered the expectation of F(t) with respect to the probability 
density 

(2n)! 
f,.(a, t) = a n!(n - l)! (1 - e-at)ne-nae, a > 0: 

Fn = [° F(t)j,.(a, t) dt (1) 

(2n)! ~ (n) ( )" (( =a---- L..J . -1 •P n + i)a). 
nl(n - 1)1 i~o i 

fn(a, t) has the following properties: 

1. Jo"° f,.(a, t) dt = 1, 

2. modal value of fn(a, t) = ln 2/a 

3. var(t) = l/a2L:~o l/(n + i)1• 

They imply that Fn converges to F(ln 2/a) fo:r n --. CD. Fn has 
the asymptotic expansion [2] 

F .. r-..1 F - + - + - + - + .. · · . (
ln 2) a1 a2 aa 

a n n2 n1 

For a given number N of P-values a much better approximation 
to F(ln 2/a) than FN-1 is attainable, and that by linear combi
nation of F1 , F1 , • • • , FN/t : requiring 

368-P 1- 0 

K . 1 
~ Xi(K) (N/2 + 1 - i)" == 3"°, 

k = 0, 1, • · · , K - 1, K ~ N /2, 

we find 

x,(K) = (-~ll-1 (~) i (N/2+1 - i")K-I 

and thus 

K (In 2) (N /2 - K) 1 
~ Xi(K)FNt2+t-i = F ~ + (-1) Hl a (N/2)! 

(
(N/2 - K)!) 

+ 0 (N/2)1 . 

Setting K = N /2, a = ln(2)/T, and using (1.) we get the ex
pression the procedure evaluates: 

N 1
2 In 2 N . (In 2 ) 

Fa = ?: Xi(N /2)FNt2+1-i - T ~ v, P T i 
i-1 i-1 

with 

Min(i,N/2) 
v. = (-l)N/tti L kN12+i (2k)I 

(N /2 - k)lk!(k - l)!(i - k)!(2k - i)I • 
rc=f~1] 

(The method of "extrapolation to the limit," which Gaver [2] 
used, leads to less accurate results for the same N, because not 
so many powers of n cancel out. Moreover, with this method N 
must be a power of 2, so that in general one cannot make the 
best use of the available computer precision.) 

Theoretically Fa becomes the more accurate the greater N. 
Practically, however, rounding errors worsen the resuJts if N 
becomes too large, because v, with greater and greater absolute 
values occurs. (This reflects the unboundedness of the inverse 
Laplace operator.) For given P(s) and T the N at which the 
accuracy is maximal increases with the number of significant 
figures used. For fixed computer precision the optimum value 
of N is the smaller, i.e. the maximum accuracy iis the greater, the 
faster Fn (see eq. (1)) converges to F(T). In the following the 
term "smooth" is used to express that. the rate of convergence 
is sufficiently great. An oscillating F (t) certainly is not smooth 
enough unless the wavelength of the oscillations is large com
pared with the half-width of the peak which fNt20.n 2/T, t) has 
at T. No accurate results are to be expected, too, if F(t) has dis
continuities near T. If F(t) behaves equally in the neighborhood 
of two different T-values the result at the smaller T-value will 
be the better one, because the peak of /nO.n 2/T, t) broadens 
as T increases. 

The only way to sharpen these qualitative statements is to 
apply Linv to many La.place transforms the inverses of which 
are known. This was done with 50 transforms. The numbers of 
significant. figures used ranged from 8 to 17 (IBM 7094, single 
and double precision, CDC 3300). The T-values lay between 0 
and 50. It was found that with increasing N the number of cor
rect figures first increases nearly linearly and then, owing to 
the rounding errors, decreases linearly. The optimum N is 
approximately proportional to the number of digits the machine 
is working with. Table I was calculated using 8-digit arithme
tic and N = 10. 



COLLECTED ALGORITHMS (cont.) 

TABLE I 

T F(T) Fa F(T) Fa 

1 l F(I) - -C - In (I), 
F(t) - .y,r; , P(s) - Vs P(s) • In (s)/s 

1.0 0.56419 0.56555 -0.57722 -0.57782 
2.0 0.39894 0.39912 -1.27036 -1.27084 
3.0 0.32574 0.32655 -1.67583 -1.67544 
4.0 0.28209 0.28278 -1.96351 -1.96392 
5.0 0.25231 0.25174 -2.18665 -2.18727 
6.0 0.23333 0.22989 -2.36898 -2.36870 
7.0 0.21324 0.21322 -2.52313 -2.52270 
8.0 0.19947 0.19956 -2.65666 -2.65740 
9.0 0.18806 0.18814 -2.77444 -2.77390 

10.0 0.17841 0.17796 -2.87980 -2.88091 

F(t) - P/6, P(s) - 1/r F(t) - r', P(s) - 1/(s + 1) 

1.0 0.16667 0.16568 0.36788 0.36798 
2.0 1.33333 1.32543 0.13534 0.13557 
3.0 4.50000· 4.47354 0.04979 0.05043 
4.0. 10.66667 10.60342 0.01832 0.01849 
5.0 20.83333 20.70845 0.00674 0.00640 
6.0 36.00000 35.78832 0.00248 0.00195 
7.0 57.16667 56.82535 0,00091 0.00036 
8.0 85.33333 84.82735 0.00034 -0.00006 
9.0 121.50000 120.78473 0.00012 -0.00047 

10.0 166.66667 165.66759 0.00005 -0.00020 

F(t) =-sin (V2i}, P(s) - Vi• e-1J<sa> F(t) - La(t), P(s) ... (s ~ l)• 

1.0 0.98777 0.98775 -0.66667 -0.66533 
2.0 0.90930 0.91001 -0.33333 -0.32531 
3.0 0.63816 0.63826 1.00000 1.02575 
4.0 0.30807 0.30968 2.33333 2.39533 
5.0 -0.02068 -0.02119 2.66667 2.78844 
6.0 -0.31695 -0.31927 1.00000 1.21092 
7.0 -0.56470 -0.57254 -3.66667 -3.32956 
8.0 -0.75680 ·-0.76869 -12.33333 -11.82953 
9.0 -0.89168 ·-0.91049 -26.00000 -25.28393 

10.0 -0.97128 -0.98949 -45.66667 -44.88511 

With double precision arithmetic and N = 18 the number of 
correct :figures doubles. The chosen N-values are about the op
timum N for all functions of the table. Evaluating an unknown 
function from its Laplace transform, one should, nevertheless, 
compare the results for different N, to see whether the function 
is smooth enough, what accuracy can be reached, and what the 
optimum N is. Even then it is risky to rely solely on the results 
of Unv. One ought to be sure a priori that the unknown function 
F (t) has not any discontinuities, salient points, sharp peaks, 
or rapid oscillations. Moreover, the accuracy should be checked 
by employing other inversion techniques. 

The inverses of the 60 test functions were also evaluated ac
cording to the inversion technique of Bellman et al. [1], which 
is based on the approximation of F (t) by a polynomial in e-•. 
It appeared that the algorithm Unv generally produces better 
results, i.e. the condition "F (t) is everywhere smooth (in the 
sense described above)" is less restrictive than the condition 
"F (-In (r)) can be well approximated by a polynomial in r = e-' 
for 0 ~ r ~ 1". The evaluation of the function F(t) = t2/2 from 
its Laplace transform P(s) = 1/s8 illustrates the difference be
tween the two conditions: using Unv the inverse is correct 
within o.1 percent, using the inversion technique described in 
[1] errors of hundreds of percents occur (N = 10, 0.1 < T < 10). 

The algorithm was successfully applied to renewal equations, 
differential-difference equations, and systems of partial differ-

368-P 2- Rt 

ential equations. Reference [1] includes many other problems 
to which the algorithm can be e.pplied. 

REFERENCES: 
1. BELLMAN, R. E., KALABA, R. K, AND LOCKETT, J. Numerical 

Inversion of the Laplace Transform. American Elsevier, 
New York, 1966. 

2. GAVER, D. P. Observing stochastic processes, and approxi
mate transform inversion. Oper. Res. 14, 3 (1966), 444-
459; 

begin 
integer i, ih, k, Nh, sn; real a; array G[O::N], H[l:N/2]; 
if M = N then go to C; 
G[O) := l; Nh := N/2; 
for i := 1step1 until N do G[i] := Gli-1] Xi; 
H[l] := 2/G[Nh-1); 
for i : = 2 step 1 until Nh do 

H[i] := i j Nh X G[2Xi]/(G[Nh-i]XG[i]XG[i-1]); 
sn := 2 X sign (Nh-Nh+2X2) - 1; 
for i := 1 step 1 until N do 
begin 

V[i] := O; 
fork := (i+l) + 2step1 untiil if i < Nh then i else Nh do 

V[i) := V[i] + H[k]/(G[i-k]:XG[2Xk-i]); 
V[i] := sn X V[i]; 
sn := -sn 

end; 
M:=N; 

C: Fa := O; a := ln(2)/T; 
comment ln(2) should be replaced by its actual value 

0.69314 ... ; 
for i := 1step1 until N do 

Fa := Fa + V[i] X P(iXa); 
Fa:= a X Fa 

end 

REMARK ON ALGORITHM 368 [D5] 
NUMERICAL INVERSION OF LAPLACE 

TRANSFORMS [Harald Stehfest, Comm. ACM 13 
(Jan. 1970),47] 

HARALD STEHFEST (Recd. 6 May 1970) 
Institut f. angew. Physik, J. W. Goethe-Universitat 

6000 Frankfurt a.M., W. Germany 

KEY WORDS AND PHRASES: I,aplace tram1form inversion, in· 
tegral transformations, integral equations 
CR CATEGORIES: 5.15, 5.18 

Some errors have crept into thu comment of the procedure af
ter proof-reading: 
The formula following "and thus" should read 

~ F (In 2) ( )K+l (N/2-K)l {=t x,(K) N/2+1-& = F -;- + ·-1 °'K (N 12) ! 

(
(N/2-K)I) 

+ 0 (N/2)! . 

The formula following "with" should read 
Min(i,N/2) 

v, = (-l)N/2-H L 
k-['~1] 

kN12(2k)I 

(N/!~-k)lkl(k-l)l(i-k)l(2k-i)!' 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 369 
GENERATOR OF RANDOM NUMBERS 
SATISFYING THE POISSON DISTRIBUTION [G5] 
HENRY E. SCHAFFER* (Recd. 27 Jan.1969 and16July1969) 
North Carolina State University, Genetics Department, 

Raleigh, NC 27607 
* This work was supported by Grants PR-OOOlll and GM-11546 
of the National Institutes of Health. 

KEY WORDS AND PHRASES: Poisson distribution, random 
number generator 
CR CATEGORIES: 5.5 

integer procedure poissrn (lambda); 
value lambda; real lambda; 

comment At each call this procedure returns an observation 
from a Poisson distribution with parameter lambda. The rejec
tion method discussed by Kahn [1] is used. It requires an aver
age of lambda + 1 (pseudo) random numbers (uniformly dis
tributed on the 0, 1 interval) per call. For efficiency the random 
number generator should be coded in-line. 

This procedure is especially suitable when t'l, small number of 
random numbers are needed from each of a large number of 
different Poisson distributions. This can occur when the Poisson 
parameter used in each call is itself chosen according to some 
probability distribution. Algorithm 342 [2] is more efficient for 
repeated use of the same value of the Poisson parameter. 

A value of -1 is returned to signal a value of lambda which 
is not positive. A value of -2 is returned to signal a value of 
lambda which is too large for the significance of the computer. 

I thank the referee for his suggestions and comments. 
REFERENCES: 

1. KAHN, H. Applications of Monte Carlo. RM-1237-AEC, Rand 
Corp. 1956 (revised version). 

2. SNOW, R. H. Algorithm 342, Generator of random numbers 
satisfying the Poisson distribution. Comm .. ACM 11 (Dec. 
1968), 819; 

if lambda ~ 0.0 then poissrn : = -1 
else 
begin 
real z; 
z : = exp ( - laamdb) ; 

if z = 0.0 then poissrn : = -2 
else 
begin 

real t; integer k; 
real procedure random; 
begin 

comment The body of this procedure must be provided 
by the user to generate the uniformly distributed random 
numbers required by poissrn. The random number gen
erator is placed here rather than called as a global pro
cedure to decrease the time taken to obtain each random 
number. For the same reason a fast generator should be 
chosen. It is also important that this ~;enerator should 
have negligible serial correlation; 

(procedure body); 
end random.; 
k := O; t := 1.0; 
fort := t X random while t > z do k := k + 1; 

poissrn := k 
end 

end poissrn 

369-P 1- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 370 
GENE'RAL RANDOM NUMBER GENERATOR [G5] 
EDGAR L BUTLER (Recd. 20 June 1969 and 11Aug.1969) 
Texas A & M University, College Station, TX 77840 
KEY WORDS AND PHRASES: random number generator, prob
ability density function, transformation, cumulative density 
function 
CR CATEGORIES: 5.13, 5.5 

Introduction. The algorithm below will generate random num
bers from any probability density function, whether it be ana
lytical, hypothetical, or experimentally acquired. Although there 
are in existence some fast and some general routines, the fast ones 
are for specific densities whereas the general algorithms are slow. 
As an example of a general algorithm, IBM's GPSS [7] uses the 
transformation theory of random deviates [4) to generate random 
numbers from any density function which can be described by data 
points. The GPSS algorithm is simple, and its precision is de
pendent upon the degree of interpolation and the number of points 
used for estimating the transformation function. 

The program below has made the transformation method more 
accurate than the GPSS routine by using 257 points and linear 
approximation to the probability density function. Speed was 
acquired by appropriate organization of necessary tables. A time 
estimate for the performance of an assembly language program of 
the algorithm RANDG on an IBM 360/65 is about 33µsec for 
each generation. 

Initialization. The operation of RANDG is based on vectors 
Q and R which can be derived by RANDGI as indicated below. 
An explanation of the routine RANDGI will give the reader some 
insight into the theory of RANDG. 

1. Let (x,;, y,), i = 1, 2, · · · , n be coordinates describing the 
probability density function, y = f(x). 

2. Using the trapezoida,l rule, find P• = J:~ f(x) dx so that p(x) 
approximates the cumulative density function of f(x). 

3. Let x = p- 1(v), the inverse cumulative density function. 
4. Find qi = p-l(v;) by using Lagrange's quadratic interpola

tion formula on p-1(v) for values of v1 = j/256 andj = 0, 1, 2. · · · 
256 [5]. 

5. Compute f(q;) and let r; = (f(q1+1)-f(q;))/(f(q;+1Hf(q;)) 
for j = 0, 1, 2, · · · , 255. The I r; I is the ratio of the triangular 
area to the total area of a trapezoid approximating the probability 
density function between x = q; and x = q;+1 (Figure 1) and the 
sign of r; is the sign of the derivative. If the vectors Q and R are 
available to the experimenter, it is not necessary to use RANDGI. 
It should also be noted that RANDGI need be used only once for a 
given density function and, therefore, does not usually affect the 
speed of generation. 

Program. The routine RANDG then uses Q and R to generate 
the random ordinates in the following manner: 

1. Select the jth interval with probability 1/256. 
2. Let L. and Li be uniform random numbers on the interval (0, 

1). It follows thatSY1 - Q; + (Q;+1 -Q;)•L. is uniformly random 
over the interval (Q; , Q1+1) and Y2 = Q; + (Q;+1 -Q;)• max (L. , 
Li.) is triangularly distributed on the same interval and is skewed 
left. 

3. Let P[Y=Y1] = IR; and P[Y=Y2] - 1 - IR; . Then 
Y is trapezoidally distributed with 

370-P 1- 0 

TOTAL AREA TRIANGUL~R AREA + RECTANGULAR AREA 

--------~-------RE CTA N (j ULA R AREA 

FIG. 1. Trapezoid approximating area under 1;he probability den
sity function from QJ to QJ+1 

f(Y) 

2R;(Y-Q;)/(Q;+i-Q;)2 

+ (1-R;)/(Q;+i-Q;), 

0, 

Q; < y < Q1+1, 

otherwise. 

4. If R; < 0 then use Y2 = Q; + (Q;+i--Q;)• min (L1, L2). 
The use of 256 intervals was arbitrary. For speed in assembly 
language on a binary machine a power of 2 should be used. It is 
possible that 128 or 64 values are adequate and the use of fewer 
than 256 would certainly save storage. (Note: Any good uniform 
random number generator may be used for selecting the interval 
and finding L1 and L2 [1, 2, 3, 6].) 

REFERENCES 
1. HULL, T. E., AND DOBELL, A. n. Random number generators. 

SIAM Rev. 4 (July 1962), 230-254. 
2. LEWIS, P. A. w., GOODMAN, A. s., AND MILLER, J. M. A 

pseudo-random number generator for the System/360. IBM 
Syst. J. 8, 2 (1969), 136. 

3. MARSAGLIA, G., AND BRAY, T. A. One-line random number 
generators and their use in combinations. Comm. ACM 11 
(Nov. 1968), 757-759. 

4. Moon, A. M. Introduction to the Theory of Statistics. McGraw
Hill, New York, 1950, pp. 107-108. 

5. SALVADOR!, M. G., AND BARON, M. L. Numerical Methods in 
Engineering (2nd ed.). Prentice-Hall, Englewood Cliffs, N. J., 
1964, pp. 88-91. 

6. WHITTLESEY, J. RB. A comparison of the correlational be
havior of random number generators for the IBM 360. Comm. 
ACM 11 (Sept. 1968), 641-64·:1. 

7. General purpose simulation 8ystem/360 user's manual. No. 
H20-0326-3 (1968), IBM, White Plains, N. Y., pp. 26-35. 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 
C SUBROUTINE RANDG 

c 

C PURPOSE 

C COMPUTE RANDOM NUMBERS FROM ANY GENERAL DIS'rRIBUTION. 

c 

C USAGE 

C CALL RANDG (L,X,R,Y) 



COLLECTED ALGORITHMS (cont.) 

c 

C DESCRIPTION OF PARAMETERS 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

INPUT 

L -A NON ZERO ODD RANDOM INTEGER 

X -VECTOR OF LENGTH 257 CONTAINING ORDINATE POINTS 

SEPERATED BY EQUAL PROBABILITY ON DESIRED DISTRIBUTION. 

(CAN BE CALCULATED IN RANDGI). 

R -VECTOR OF LENGTH 256 CONTAINING RATIOS OE' DERIVATIVE*DX 

OUTPUT 

TO AREA/DX FOR EACH ORDINATE'POINT IN X. 

(CAN BE CALCULATED IN RANDGI). 

Y -RANDOM NUMBER 

C REMARKS 

C QUADRATIC APPROXIMATION OF CDF (CUMULATIVE DENS:ITY FUNCTION) 

C WHICH IMPLIES LINEAR APPROXIMATION OF PDF (PROBABILITY DENSITY 

C FUNCTION) • 

c 

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 

C NONE DIRECTLY. RANDGI MAY BE USED FOR INITIALIZATION. 

c 

C METHOD 

C TABLE LOOK UP PLUS UNIFORM ANP TRIANGULAR DISTRIBUTION 

c 

c 

VARIABLES ARE USED. 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * • 

c 

SUBROUTINE RANDG (L,X,R,Y) 

DIMENSION X(257),R(256) 

C GENERATE TWO UNIFORM RANDOM NUMBERS ON INTERVAL (1 - 2**31) 

C ANY GOOD GENERATOR MAY BE SUBSTITUTED. 

c 

c 

Ll=IABS(65539*L) 

L=IABS (65539*Ll) 

L2=L 

C CALCULATE TWO UNIFORM' RANDOM NUMBERS 

C Kl INTEGER ON INTERVAL (1 - 256) 

C AK2 REAL ON INTERVAL (O - 1.0) 

c 

c 

Kl=Ll/8388608+1 

AK2=FLOAT (MOD (Ll, 8388608)) *l .192093E-7 

IF(AK2-ABS(R(Kl))) 8,8,30 

8 IF(R(Kl)) 20,10,10 

C CALCULATE TRIANGULAR RANDOM SKEWED LEFT 

c 

c 

10 Y=X(Kl) + (X (Kl+l) -X(Kl)) *AMAXO (Ll,L2) *4 .656613E:-10 

RETURN 

C CALCULATE TRIANGULAR RANDOM SKEWED RIGHT 

c 

c 

20 Y=X (Kl)+ (X (Kl+l) -X(Kl)) *AMINO (Ll,L2) *4.656613E:-10 

RETURN 

C CALCULATE UNIFORM RANDOM 

c 

30 Y=X(Kl)+(X(Kl+l)-X(Kl))*FLOAT(L2)*4.656613E-10 

RETURN 

END 

370-P 2- 0 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • 
c 

C SUBROUTINE RANDGI 

c 

C PURPOSE 

C COMPUTE INITI~IZING VECTORS FOR RANDG 

c 

C USAGE 

C CALL RANDGI (N,X,Y,P,0,R,IER) 

c 

C DESCRIPTION OF PARAMETERS 

C INPUT 

C N -NUMBER OF (X,Y) POINTS OF APPROXIMATION TO PDF 

C (PROBABILITY DENSITY FUNCTION) 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

X -VECTOR OF LENGTH N CONTAINING ORDINATE OF PDF 

Y -VECTOR OF LENGTH N CONTAINING ABSCISSA OF PDF 

OUTPUT 

P -WORK VECTOR OF LENGTH N 

Q -VECTOR OF LENGTH 257 CONTAINING ORDINATE POINTS 

SEPERATED BY EQUAL PROBABILITY ON DESIRED DISTRIBUTION. 

R -VECTOR OF LENGTH 256 CONTAINING RATIOS OF DERIVATIVE*DX 

TO AREA/DX FOR EACH ORDINATE POINT IN Q. 

IER-ERROR INDICATOR 

l - ERROR IN SCALING. I.E. TOTAL AREA OF PDF NOT EQUAL TO 

1. ASSUMING ESTIMATION ERRORS A FUDGE FACTOR IS USED 

TO SCALE A RESULT. 

2 - DENSITY NOT POSITIVE. I.E. SOME Y(I) LT O. ABORT 

3 - NOT IN SORT. I.E. SOME X(I) LT X(I·-1). ABORT 

4 - SEARCH ERROR. SHOULD NEVER O".:CUR BECAUSE OF FUDGE 

FACTOR USED. THIS MEANS SOME P(I) NOT LARGE ENOUGH 

FOR SEARCH OF PROPER Q. INVESTIGATION IS NEEDED. 

C REMARKS 

C NONE 

c 

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 

c 

c 

NONE 

C METHOD 

C LINEAR APPROXIMATION OF PDF TO FIND CDF (CUMULATIVE DENSITY 

c FUNCTION) AND ICDF (INVERSE CDF). QUADRATIC INTERPOLATION ON 

C ICDF TO FIND Q lu~D R. 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c 

SUBROUTINE RANDGI (N,X,Y,P,Q,R,IER) 

DIMENSION X(300) ,Y(300) ,P(300) ,Q(257) ,R(256) 

C CALCULATE CUMULATIVE PROBABILITIES 

c 

IER=O 

IF(Y(l)) 5,10,10 

c 

C ERROR 2 



COLLECTED ALGORITHMS (cont.) 

c 

c 

5 IER=2 

RETURN 

10 P(l)=O.O 

DO 15 I=2,N 

IF(Y(I)) 5,11,11 

11 IF(X(I)-X(I-1)) 6,12,12 

C ERROR 3 

c 

c 

RETURN 

12 P(I)=(Y(I)+Y(I-l))*(X(I)-X(I-l))*0.5+P(I-l) 

15 CONTINUE 

IF(P(N)-0.996094) 7,7,16 

16 IF(P(N)-1.003906) 3,7,7 

C ERROR 1 

c 

7 IER=l 

3 F=l.O/P (N) 

DO 4 I=2,N 

4 P(I)=P(I)*F 

c 

C CALCULATE X POINTS FOR EQUAL-DISTANT'CUMULATIVE PROBABILITIES 

c 

c 

V=O.O 

Q (1) =X(l) 

Tl=Y(l) 

Jl=2 

100 DO 150 I=2,257 

IF(I-257) 102,103,103 

102 V=V+3.90625E-3 

C LOCATE BEST POINT FOR INTERPOLATION 

c 

DO 101 J=Jl,N 

IF(P(J)-V) 101,104,105 

101 CONTINUE 

c 

C ERROR 4 

c 

c 

IER=4 

103 J=N 

104 Q (I) =X (J) 

T2=Y(J) 

GO TO 125 

105 IF(J-3) 113,108,107 

107 IF(J-N) 108,111,111 

108 IF((P(J)-V)-(V-P(J-1))) 110,110,lll 

110 Jl=J-1 

GO TO 120 

111 Jl=J-2 

GO TO 120 

113 Jl=l 

C QUADRATIC INTERPOLATION OF P INVERSE FOR Q 

c 

120 XT2=P(Jl+2)-P(Jl) 

XT3=P(Jl+2)-P(Jl+l) 

XTl=P(Jl+l)-P(Jl) 

XVl=V-P (Jl) 

XV2=V-P (Jl+l) 

XV3=V-P (Jl+2) 

370-P 3- Rl 

Q (I) =(XV3*XV2*X(Jl) )/(XTl*XT2)-.(XV3*XVl*X(Jl+l) )/(XTl*XT3)+ 

1 (XV2*XVl*X(Jl+2))/(XT2*XT3) 

c 

C LINEAR INTERPOLATION OF Y FOR T2 AND R 

c 

T2= (Y (J) -Y (J-1)) * (Q (I) -X(J-1) )/(X (J) -X (J-1)) +Y(J-1) 

125 R(I-l)=(T2-Tl)/(T2+Tl) 

Tl=T2 

Jl=J 

150 CONTINUE 

RETURN 

END 

Remark on Algorithm 370 [GS] 
General Random Number Generator [Edgar L. Butler, 
Comm. ACM 13 (Jan. 1970), 49--52] 

L.G. Proll* (Recd. Nov. 1970) 
Department of Mathematics, University of 
Southampton, U.K. 

Key Words and Phrases: random number generator, 
probability density function, transforma1tion, cumulative 
distribution function 

CR Categories: 5.13, 5.5 

Algorithm 370 was translated into Algol and run on an ICL 
1907 computer. Tests revealed that, in several instances, the sub
routine RAN DGI generated incorrect values for the vector Q and, 
consequently, for R. In particular, RANDGI does not guarantee 
that Q(/) increases with I as clearly should be the case. For ex
ample, a selection of the results for Q and R, rounded to four 
decimal places, obtained by RANDGI with 

N = 4 
x = (0.0,0.5,1.0,2.0) 
y = (0.0,0.5, 1.0,0.0) 

corresponding to a symmetric triangular distribution [1] on [O, 2), 
is as follows: 

I Q(I) R(I) 

78 0.9211 0.0031 
79 0.9268 0.0030 
80 0.9322 0.0029 
81 0.7232 -0.1262 
82 0.7284 0.0036 



COLLECTED ALGORITHMS ( conlt.) 

Similar results were obtained for several other distributions. 
The error lies in changing the interpolating quadratic between 

two interpolation points and will always arise when, for some J, 
(i) interpolation takes place at points between P(J) and P(J + 1), 
(ii) the interpolating quadratic on the points P(J-1), P(J) and 
P(J+ 1) is convex, 
(iii) the interpolating quadratic on the poinits P(J), P(J+ I) and 
P(J+2) is concave. 

Alteration of the interpolating quadratic only at an interpola
tion point will avoid this error; an appropriate alteration to the 
algorithm is given later. 

In addition, the following remarks can be made about the 
algorithm: 
(i) The statements labeled 105, 110, and 120 in the subroutine 
RANDGI imply that N ~ 4. However only three points are needed 
for quadratic interpolation, and moreover, it is meaningful to 
specify a probability distribution by only three points, e.g. any 
triangular distribution. 
(ii) A trivial alteration would allow the subroutine RAN DGI to 
trap the condition X(l) = X(l- 1) which would otherwise cause an 
overflow in calculating an element of Q. 
(iii) The usefulness of Algorithm 370 can be enhanced by allowing 
the vector Y to represent either a probability density function or a 
cumulative distribution function as required. The experimenter 
may, for instance, have directly available the cumulative polygon [2] 
of an empirical distribution. 

The following alterations to the subroutine RANDGI incor-
porate the above correction and remarks: ' 
(i) In the opening comment, 

(a) replace line 9 by 

C CALL RANDGI (N,X,Y.P,Q,R,K,IER) 

(b) replace line 14 by 

C (PROBABILITY DENSITY FUNCTION) OR CDF 
C (CUMULATIVE DISTRIBUTION FUNCTION), N.GE.3. 

(c) add the words OR CDF to lines 15 and 16 

(d) insert after line 16, 

C K - K SHOULD BE SET TO 1 IF Y REPRESENTS 
C A CDF, OTHERWISE Y WILL BE INTER-
C PRETED AS A PDF 

(e) replace line 28 by 

C 3 - NOT IN SORT, I.E. SOME X(I) LE X(I-1).ABORT 

(ii) Change the subroutine statement to 

SUBROUTINE RANDGl (N,X,Y,P,Q,R,K,IER) 

(iii) Change the statement labeled 11 to 

ll IF(X(l)-X(l-1))6,6,12 

(iv) Delete the statement labeled 12 and ins~rt 

12 IF (K.EQ.1) GO TO 13 
P(I) = (Y(l)+Y(l-l))*(X(l)-X(l-1))*0.5 + 

1 P(l-1) 
C YISAPDF 

GOTO 15 
13 P(I) = Y(I) 

C YIS ACDF 

(v) Delete the five statements commencing at label 105 and insert 

105 IF (J.LE.3) GO TO 113 

With these alterations to the subroutine RAN DGI and with the 
incorporation of locally available routines for generating uniform 
and triangular deviates [3] into RAN DG, satisfactory results were 
obtained for the first two moments of several distributions including 
the beta, symmetric triangular, nonsymmetric triangular, and vari
ous empirical distributions. Table I contains a selection of the results 

370-P 4- 0 

obtained for various values of N for samples of size 1000 from a 
beta(4, 3) distribution. In each case, the distribution wa,s specified at 
the points 

X(l) = (I-1)/(N-1), I= 1,2--N. 

With the exception of the case when N = 5, the true mean and 
variance lie within the appropriate 95 percent confidence intervals 
obtained from the samples. 

In addition to tests on the first two moments, the samples were 
also subjected to Q - Q plots [4]; i.e t.he ordered observations were 
plotted against the quantiles of the parent distribution. The proce
dure indicates a perfect match by a straight line of slope 1 passing 
through the origin and is especially sensitive to differences in the 
tails of the distributions. The quantiles of the beta distribution were 
calculated by interpolation in values of the beta c.df obtained by 
the method of Hill and Pike [5]. Serious departures from the desired 
shape were observed for N = 5, l 0 in both the cases K = l and 

Table I. 

K~l K=l 
N Mean Variance Mean Variance 

5 0.605 0.037 0.663 0.026 
10 0.576 0.031 0.580 0.028 
20 0.578 0.029 0.580 0.029 
50 0.571 0.030 0.574 0.030 

100 0.565 0.029 0.573 0.029 
True value 0.571 0.030 0.571 0.030 

K :JC 1. The results obtained for N ~ 20 were satisfactory for both 
cases. 

References 
1. Feller, W. An Introduction to Probability Theory and Its 
Applications, Vol. II. Wiley, New York, 1968. 
2. Guttman, I., and Wilks, S.S. Introducing Engineering 
Statistics. Wiley, New York, 1965. 
3. Proll, L.G. A subroutine package for the generation of random 
deviates on an ICL 1900 computer. Mathematics Depart. Tech. 
Rep. 70/1, U. of Southampton, U.K. July 1970. 
4. Wilk, M.B., and Gnanadesikan, R. Probability plotting 
methods for the analysis of data. Biometrika 55 (Mar. 1968), 1-17. 
5. Pike, M.C., and Hill, I.D. Remark on Algorithm 179: 
Incomplete beta ratio. Comm. ACM IO (June 1967), 375. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 371 
PARTITIONS IN NATURAL ORDER [Al] 
J. K. S. McKAY (Recd. 28 Apr. 1967) 
California Institute of Technology, Mathematics Division, 

Pasadena, CA 91109. 

KEY WORDS AND PHRASES: partitions, number theory 
CR CATEGORIES: 5.39 

procedure partition (J>, k, last); integer n, k; 
integer array p; Boolean last; 

comment Partition may be used to generate partitions in their 
natural (reverse lexicographical) order. On entry the first k 
elements of the global integer array p[l :n] should contain a parti
tion, p{l] ;::: p[2] ;::: · · · ;::: p[kJ, of n into k parts. In order to ini
tialize m, the first entry must be made with last set true: this will 
result in p[l], p[2], · · · , p[k] and k remaining unaltered and last 
set false on exit. On all subsequent entries with last false, k is 
updated and p[l], p[2], · · · , p[k] will be found to contain the 
next partition of n with parts in descending order. On returning 
with the last partition, p[l] = p[2] = · · · = p[n], last is set 
true. To generate all partitions of n, p[l], k, last should be set 
to n, l, true, respectively for the initial call: these variables 
must not be altered between successive calls for partition; 

begin 
own integer m; integer t; 
if last then 
begin 

last : = false; 
for m : = 1 step 1 until k do 

if p[m] = 1 then go to c; 
m := k; go to c 

end; 
t := k - m; 
k := m; 
p[m] := p[m] - 1; 

a: if p[k] > t then go to b; 
t := t - p[k]; 
k := k + l; 
p[k] := p[k-1]; 
go to a; 

b: k := k + 1; 
p[k] := t + l; 
if p[m] ~ 1 then m := k; 

c: if p[mj = 1 then m := m - 1; 
if m = 0 then last true; 

end partition 

371-P 1- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 372 
AN ALGORITHM TO PRODUCE COMPLEX 
PRIMES, CSIEVE [Al] 
K. B. DUNHAM (Recd. 29 July 1968 and '7 Oct. 1968) 
Georgia Institute of Technology, School of Information 

Service, Atlanta, GA 30332 

KEY WORDS AND PHRASES: primes, complex numbers 
CR CATEGORIES: 5.39 

procedure CS I EVE (m, PR, PI); 
value m; integer m; integer array PR, PI; 

comment Primes can be defined in the complex domain, a + bi, 
where a and b are integers. A unity is ±1 or ±·i. A unity times a. 
prime is its associate. Primes are not unique itmong associates; 
but except for that ambiguity, all the ordinary rules of real 
primes, such as the unique factorization law, apply to complex 
primes. 

It can be shown that a complex integer is prime if and only if its 
conjugate is prime. Therefore it is sufficient to search for primes 
in the one-eighth plane area with a closed bound along y = 0 
and an open bound along x = y, where xis positive and y is less 
than x but nonnegative. Any prime found in that area has 
seven more associated primes: -x + yi, ±~~ - yi, ±y +xi, 
±y - xi. A discussion of complex primes can be found in [l]. 
It should be pointed out that numbers prime in the real domain 
are not necessarily prime in the complex domain, e.g. 2 = 
2 + Oi = (l+i) (1-i). 

Algorithms 35 [2], 310 [3], and 311 [4] gene:rate real primes. 
The simplistic technique used by Algorithm 35 applies equally 
well to generating complex primes. Unfortunately the more 
efficient techniques of Algorithms 310 and 311 cannot easily be 
translated into complex prime sifters. This algorithm, CS/EVE, 
uses the result that a complex integer is prime if the square of 
its modulus is relatively prime to the square of the moduli of 
all previous primes. The procedure is called with a value m, the 
number of complex primes to generate, PR and PI, the real and 
imaginary parts of the prime list generated where PR > PI ~ 0 
for each prime. The seven other associated primes must be gen
erated externally to CS/EVE. 
REFERENCES: 

1. HARDY, G. H., AND WRIGHT, E. M. An lntroduction to the 
Theory of Numbers. Clarendon Press, Oxford, 1954, Ch. 12. 

2. WooD, T. C. Algorithm 35, Sieve. Comm. ACM 4 (Mar. 1961), 
151. 

3. CHARTRES, B. A. Algorithm 310, Prime number generator 1. 
Comm. ACM 10 (Sept. 1967), 569. 

4. CHARTRES, B. A. Algorithm 311, Prime number generator 
2. Comm. ACM 10 (Sept. 1967), 570; 

begin 
integer dn, nr, ni, sq, root, i, j, k; 
integer arr.ay PMl2:m]; 
dn := PR[l] := P/[lJ := PJ[2] := l; PM[2] := 5; 

j := PR[2J := 2; 
for nr : = 3 step 1 until m do 
begin 

dn := 1 - dn; 
for ni : = dn step 2 until nr - 1 do 
begin 

sq : = m X nr + ni X ni; 
root : = entier (1.5 X nr) ; 

for i := 2 step 1 until j do 
begin 

372-P 1- RI 

if ((sq+PM[iJ) X PM[iJ) = sq then go to C; 
if root < PM [iJ then go to A; 

end; 
A: for i : = 2 step 1 until j do 

begin 
if P M[i] > sq then 
begin 

fork := j step -1 until i do 
PM[k+l] := PM[kJ; 

go to B; 
end 

end; 
B: PM[i] := sq; j := j + l; PR[j] := nr;. Pl[jJ := ni; 

if j = m then go to D; 
C: end 

end; 
D: 
end CSIEVE 

REMARKS ON 
ALGORITHM 372 [Al] 
AN ALGORITHM TO PRODUCE COMPLEX 

PRIMES, CSIEVE [K. B. Dunham. Comm. ACM 13 
(Jan. 1970), 52-53] 

ALGORITHM 401 [Al] 
AN IMPROVED ALGORITHM TO PRODUCE COM

PLEX PRIMES [P. Bratley. Comm. ACM 13 (Nov. 
1970), 693] 

PAUL BRATLEY (Recd. 25 Feb. 1970) 
Departement d'informatique, Universite de Montreal, 

C.P. 6128, Montreal 101, Quebec, Canada 

KEY WORDS AND PHRASES: number theory, prime num
bers, complex numbers 
CR CATEGORIES: 5.39 

Algorithm 372 was run on the CDC 6400 at the University of 
Montreal. The variable i is undefined if the for-loop at label A is 
completed. The statement 

i := j + l; 
should be added immediately before label B. Algol purists may 
also care to remove redundant semicolons after go to A and go to 
B, and the redundant parentheses in one if-statement. With these 
changes the algorithm produced correct results for several values 
of m. 

The comment in Algorithm 372 is slightly inaccurate. The first 
prime generated by the algorithm is 1 + i, which does not have. 
PR > PI, and which has not seven but three associated primes. 

It is not possible to compare the speeds of Algorithm 372 and 
Algorithm 401 directly since they generate primes in a different 
order. However, the following test was run. A value of m was 
chosen, and Algorithm 401 was used to list all the complex primes 
with modulus less than m. The time taken and the number of 
primes produced were noted. Then Algorithm 372 was used to 



COLLECTED ALGORITHMS (cont.) 

produce an equal number of primes, the time taken again being 
noted. Times observed are shown in Table I. 

TABLE I 

Limit on Algorithm 401 Time taken Time taken by Algorithm Ratio of 
modulus produced this (secs) 37 2 to produce the same times taken number of primes number of primes (secs) 

25 60 0.278 0.331 1.2 
50 189 1.577 2.140 1.4 
75 373 4.217 7.602 1.8 

100 62a 8.618 20.214 2.4 
150 1266 23.732 79.481 3.4 

The conclusion from the figures in Table I is that if the speed 
with which the complex primes are generated is of paramount 
importance then Algorithm 401 should be preferred to Algorithm 
372. 

As written Algorithm 401 will use more memory than Algorithm 
372 since it is convenient and perspicuous to use sieve2 in an un
modified form, which makes it necessary to store temporarily all 
the rational primes less than m2 • However, if space is tight then 
sieve2 can easily be modified so as to generate rational primes one 
at a time on successive calls, and in this way the use of the long 
array P2 can be avoided. If this modification is made Algorithm 
401 will in fact use less store than Algorithm 372, which wastefully 
stores many useless values in PM. It is also to be noticed that the 
factors 0.7 and 1.4 occurring in the declarations of P2 and P3 may 
be diminished for large m: all that is necessary is that P2 should 
be long enough to hold the rational primes less than m2, and that 
P3 should be long enough to hold the rational primes which are 
not greater than m and which are of the form 4n + 3. Some space 
may be saved similarly in sieve2, which is called from Algorithm 
401. 

372-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 373 
NUMBER OF DOUBLY RESTRICTED 
PARTITIONS [Al] 
JoHN S. WHITE (Recd. 4 Mar. 1969) 
University of Minnesota, Department of Mechanical 

Engineering, Minneapolis, MN 55455 
KEY WORDS AND PHRASES: partitions, restricted parti
tions, sums of integers, restricted sums 
CR CATEGORIES: 5.39 

procedure setk (P, N, K); value N, K; 
integer N, K; integer array P; 

co1DD1ent The number of partitions of L with parts greater than 
or equal to K and less than or equal to M is set in P[L, M] for 
all L, M such that N ~ L ~ M ~ 0. This algori1;hm is a general
ization of [1] which treats the case K = 1. 

REFERENCE: 

1. McKAY, J. K. S. Algorithm 262, Number of restricted par
titions on N. Comm. ACM 8 (Aug. 1965), 493; 

begin integer L, M; 
for L := 0 step 1 until N do 

for M := 0 step 1 until L do P[L, M] := O; 
P[O, O] := 1; 
for L := K step 1 until N do 

for M := K step 1 until L do 

end 

P[L, M] := P[L, M-1] + P[L-M,ifL-M<MthenL-M 
else M] 

373-P 1- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 374 
RESTRICTED PARTITION GENERATOR [Al] 
JoHN S. WHITE (Recd. 4 Mar. 1969) 
University of Minnesota, Department of Mechanical 

Engineering, Minneapolis, MN 55455 
KEY WORDS AND PHRASES: partitions, restricted parti
tions, sums of integers, restricted sums 
CR CATEGORIES: 5.39 

procedu~e gen (P, N, K, position, ptn, Zen); 
value N, K, position; 
integer N, K, position, Zen; integer array P, ptn; 

comment The partitions of N with smallest part greater than 
or equal to K are mapped in their natural order, one-one, onto 
the consecutive integers from 0 to P[N, N] - 1, where P[N, N] 
is the number of partitions of N with smallest part greater than 
or equal to K. The array Pis set by the procedure setk. On entry, 
position contains the integer onto which the partition is mapped. 
On exit, len contains the number of parts of the partition and 
ptn[l :Zen] contains the parts of the partition in descending order. 
This algorithm is a generalization of [1] which considers the 
case K = 1. 

REFERENCE: 

1. McKAY, J. K. S. Algorithm 263, Partition generator. Comm. 
ACM 8, (Aug. 1965), 493; 

begin integer L, M, psn; 
L := N; psn := position; Zen := O; 

A: 
Zen : = Zen + 1; M : = K; 

B: 
if P[L, M] < psn then 
begin 

M := M + 1; go to B 
end 
else if P[L, M] > psn then 

C: 
begin 

ptn[Zen] := M; psn := psn - P[L, M-1]; 
L : = L - M; if L < K then go to D; go to A 

end 
else M : = M + 1; 
if M = L then go to C else go to B; 

D: 
end; 
begin integer N, I, J, K, Zen, position; 

integer array P[0:20, 0:20], ptn[0:20]; 
comment driver for setk and gen; 
Next: 

outstring (1, " "); outstring (1, " "); 
outstring (1, "partitions of N, N = "); ininteger (2, N); 
outstring (1, "with parts 2::: K, K = "); ininteger (2, K); 
for I := 0 step 1 until N do 

for J := 0 step 1 until N do P[I, J] := 0; 
setk (P, N, K); 
outstring (1, "P array"); 
for I := 0 step 1 until N do 
begin 

for J : = 0 step 1 until N do outinteger (1, P[J, J]); 
outstring (1, " ") 

end; 

374-P 1- 0 

outstring (1, " "); 
outstring (1, "pos. partition"); 
for position := 0 step 1 until P[N, N] - 1 do 
begin 

gen (P, N, K, position, ptn, Zen); 
outinteger (1, position); 
for I : = 1 step 1 until Zen d.o outinteger (1, ptn[l]); 
outstring (1, " "); 

end; 
go to Next 

end 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 375 
FITTING DATA TO ONE EXPONENTIAL [E2] 
H. SP.A.TH (Recd. 23 Oct. 1967) 
Institut fiir N eutronenphysik und Reaktortechnik, Kern

forschungszentrum Karlsruhe, Germany 
KEY WORDS AND PHRASES: nonlinear least squares fit 
CR CATEGORIES: 5.15 

procedure abfit (x, y, p, n, eps, a, b, ab, eb, bool, exit); 
value n, eps; integer n; real eps, a, b, ab, i~b; 
label exit; array x, y, p; Boolean bool; 

comment If you want to fit data points (x,, y,) (i=l, · · · , n) 
with associated weights Pi to f(x) = ae-bz the usual approach is 
to do a linear fit in the sense of least squares with ln(f(x)) = 
ln(a) - bx to the data (xi , In (y,)) that is to minimize 

n 

S* = :E g,(ln(y,)-ln(a)+bx,)2• (1) 
i-1 

In [l] it is shown that this approach for findin~; a and b that are 
minimizing 

n 

S(a, b) = :E p,(yi-ae-bzi)2 
1-1 

is in general bad if you do not choose 

(2) 

g, = p,y,2 (i=I, ··· ,n). (3) 
Proceeding similarly as in [2] from the necessary conditions for 
S having a minimum 

as== as = 0 
aa ab ' 

(4) 

we eliminate a = a(b) from the first equation of (4) and put this 
into the second one. We result in an equation 

F(b) = o. (5) 

If we have found a zero b of (5) then (a(b), b) is a solution of (4). 
The procedure abfit has two possibilities to do this. For bool = 

false we use the result b* from minimizing (1) with weights (3) 
to set up the intervals 

[ ( 
j ) ( j + 1)] . ' b* 1 - 20 , b* 1 - 2Q (J = 0, +l, +2, · · ·, +19) (6) 

and to look if F has opposite signs at the endpoints of one of 
these intervals [ab, eb]. Experience has shown t.hat for realistic 
data this method is a good one. If we do not find such an interval, 
abfit is left through e:dt and we can deliver ab and eb as input 
parameters to abfit with bool = true. 

In both cases a global procedure Rootfiruler must be made 
available to find an existing zero b with relative accuracy eps 
in the calculated or given interval otherwise leaving to the label 
exit. 

The label exit would further be used if for bool = false the 
condition y, > 0 for i = 1, · · · , n is not fulfilled. 

REFERENCES: 
1. B5TTGER, H. Uber Gewichtsverteilung beim Fit mit Expo

nentialfunktionen. ZJK-TPh 22 (1966). 
2. SP.A.TH, H. Algorithm 295, Exponential curve fit. Comm. 

ACM 10 (Feb. 1967), 87; 
begin integer k; 

real hl, h2, ha, M, h5, h6, h7, hS, bl, b2, FI, F2, F3, F4, h; 
procedure Fl1(b, F); value b; real b, F; 
comment For given b this procedure calculates F = F (b); 

begin 
hl : = h2 : = ha : = h4 : = 0; 
fork := 1 step 1 until n do 
begin 

h5 := exp(-bXx[k]); h6 := p[k]Xy[k]; 
h8 := h5 x h6; h7 := p[k] x h5 x h5; 
hl : = hl + h8; h2 : = h2 + h7; 

375-P 1- 0 

h3 := h3 + x[k] X hS; h4 := h4 + x[k] X h7 
end; 
a : = hl/h2; F : = h3 X h2 - hl X h4 

end Fb; 
if bool then go to ROOT; 
hl : = h2 : = h3 : = h4 : = h5 : = 0; 
comment The linear fit is done to get the estimate b*; 
fork := 1 step 1 until n do 
begin 

if y[k] ~ 0 then go to exit; 
hS := ln(y[k]); h6 := p[k] X y[k] X y[k]; h7 := h6 X x[k]; 
hl := hl + h6; h2 := h2 + h7 X z[k]; h3 := h3 + h7; 
h4 := h4 + h7 X hS; h5 := h5 + h6 X h8 

end; 
hS := 1.0/(h1Xh2-h3Xha); b := -hS X (h1Xh4-h3Xh5); 
bl := b2 := b; k := O; h := O; Fb(b, Fl); F2 :=Fl; 

SEARCH: k := k + 1; if k > 20 then go to exit; 
h := h + .05; ab := bl X (1.0-h); Fb(ab, 173); 
if Fl X F3 < 0 then begin eb : = bl; go to ROOT end; 
eb := b2 X (1.0+h); Fb(eb, F4); 
if F2 X F4 < 0 then begin ab := b2; go to ROOT end; 
bl :=ab; b2 := eb; Fl := F3; F2 := F4; go to SEARCH; 

ROOT: Rootjiruler (Fb, ab, eb, eps, b, exit) 
end abfit 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 376 
LEAST SQUARES FIT BY f(x) = A cos (Bx+C) [E2] 
H. SPATH (Recd. 26 June 1967 and 28 Oct. 1968) 
Institut fiir N eutronenphysik und Reaktortechnik, Kern-

forschungszentrum Karlsruhe, Germany 
KEY WORDS AND PHRASES: nonlinear lea.st squares fit 
CR CATEGORIES: 5.15 

procedure cosfit(x, y, p, n, beg'inB, endB, eps, A, B, C, JB s jx 
exit); I I I 

value n, beginB, endB, eps; integer n; 
real beginB, endB, eps, A, B, C, JB, s; 
array x, y, p, Jx; label exit; 

comment Let (x11 , y,.) be n given data points with associated 
weights P•. We want to find the three parameters A, B, and C 
of a curve f(x) = Acos(Bx+C) such that j fits the data in the 
least squares sense. Introducing the parameters a = -Asin(C), 
fJ = Acos(C), 'Y = B, we have j(x) = asin(')'X) + {Jcos(-yx) and 
thus only one nonlinear parameter 'Y. Now we can use the same 
method as in [1]. From the necessary conditions for 

s(a, {J, 'Y) = 'f' p1:(x1c - f(x,.)) 2 
{=f. 

having a minimum we eliminate a and fJ getting one equation in 
one nonlinear parameter 'Y, F ('Y) = 0. If we obtain a root -y* of 
F then the triple (a('Y*), {3(/'*), 'Y*) is a stationary point of sand 
we finally get the desired parameters by 

B = 'Y, 
C = arctan(a/fJ), 
A = -sign(a) X sign(sin(C)) X (a" + {32)!. 

A global procedure named Rootfinder must be made available 
to cosfit which is able to get a zero 'Y = B of a function F('Y) in 
a. given inte.rval [begin.B, endB] with relative accuracy eps, if 
sign (F(beginB)) ~ sign(F(endB)) otherwise leaving to the 
global label exit. A bisection routine is possible, but an interpo
lation method like that in [2] is to be preferred. 

By setting beginB equal to endB, the procedure cosfit can 
be us~d to tabulate the functions fB = F(B) = F(beginB), s = 
s(beginB), A = A(beginB), and C = C(beginB) and thus allows 
to get all minima in a given range. Often, the tabulation is made 
superfluous by proceeding as follows. In a rough graph we 
gather two intervals (x1*, x1**) and (x2*, x 2**) including two 
successive zeros X1 and x2 of the desired function j. Then the 
two values beginB = 27r/(x2*-x1**), endB = 211"/(x2**-x1*) in 
general form an interval that contains the value B for which 
s ~~the absolute mi~imum. -:1s s has in general infinitely many 
mm1ma, our method IS superior to general purpose minimizing 
methods. If ·~he found zero of F is not a minimum of s in the 
sense that the Jacobian sr is numerically not positive definite, 
the program puts s equal to -s. As rounding errors may cause 
here a wrong decision it is recommended to look also at the 
magnitude of s. 

The label exit is further used if, during the zero locating 
process, it would happen that the elimination of a and fJ were 
not possible. Variables JB and s finally have the values F(B) 
and s (B) at the found zero. The array fx will contain the fitted 
values fx[k] = A X cos(BXx[k]+C). 

REFERENCES: 

1. SP.A.TH, H. Algorithm 295, Exponential curve fit. Comm. 
ACM 10 (Feb. 1967), 87. 

2. KRISTIANSEN, G. K. Contribution No. 6, Zero of arbitrary 
function. BIT S (1963), 205-207; 

376-P 1- 0 

begin 
integer k; real hl, h2, h3, h4, h5, h6, h7, hS, h9, hll, h12, h13, 
hl4, hh, alpha, beta, gamm, t, u, v, w, z, q, r, h, d, e, f; 
procedure Fgamma(gamm, Fgamm); 
value gamm; real-gamm, Fgamm; 
begin 

if gamm = 0 then go to exit; 
hl := h2 := h3 := h4 := h5 :== h6 := h7 := h8 := h9 := O; 
fork := 1 step 1 until n do 
begin 

t := x[k]; u := gamm X t; v := sin(u); u := cos(u); 
w := v X v; z := u X u; q := p[k]; r := v X u; 
h := y[k]; d := q X h; e :== q X t; f := e X h; 
hl : = hl + q X w; h2 : = h~: + q X z; h3 : = h3 + q X r; 
h4 := h4 + d Xv; h5 := h5 + d Xu; h6 := h6 + e X r; 
h7:=h7+eX (z-w); hB:==hB+fXu; h9:=h9+fXv 

end; 
hh : = hl x h2 - h3 x h3; 
if hh = 0 then go to exit; h = 1/hh; 
alpha : = h X (h4Xh2-h3Xh5); beta : = h X (h1Xh5-h3Xh4); 
Fgamm := fB := h6 X (alpha-f-beta) X (alpha-beta) 

+ alpha X beta X h7 - alpha X hS + beta X h9 
end Fgamma; 
if beginB = endB then begin Fgamma(B,JB); go to CC end 
Rootfinder (Fgamma, beginB, endB, eps, gamm, exit); 

B := gamm; 
CC : if beta =0 then C := - 1.5707963 else C := -arctan 

(alpha/beta); 
A := -sign(alpha) X sign(sin(C)) X sqrt(alphaXalpha+betaX 

beta) ; h : = 0; 
fork := 1 step 1 until n do 
begin 

v := fx[k] := A X cos(BXx[kl+C); 
v := v - y[kJ; h := h + p[k] :x v x v 

end; 
s := h; if beginB = endB then go to END; 
if hl S 0 V hh < 0 then begins .- -s; go to END end; 
hll := h12 := h13 := h14 := O; 
fork := 1 step 1 until n do 
begin 

u := BX x[k]; v := sin(u); u := cos(u); 
e := x[k] X x[k]; r := p[k] X e; f := r X y[k]; 
hll := hll + r X (uXu-vXv); h12 := h12 + r X u X v; 
hl3 := h13 + j Xv; h14 := h14 + j Xu 

end; 
hll := hll X (alpha+beta) X (alpha-beta) 

- 4 X alpha X beta X h12 + alpha X h13 + beta X h14; 
hl2 := 2 X alpha X h6 + beta >< h7 - hS; h13 := alpha X h7 

- 2 X beta X h6 + h9; 
if hll x hh - h13 x (hl x h13 - h3 x h12) 

+ h12 X (h3 X h13 - h2 X hl:2) S 0 then s := -s; 
END: end 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 377 
SYMBOLIC EXPANSION OF ALGEBRAIC 
EXPRESSIONS [R2] 
MICHAEL J. LEVINE* 
Department of Physics, Carnegie-Mellon University, 

Pittsburgh, PA 15213 
AND STANLEY M. SwANSoNt (Recd. 27 Jan .. 1969) 
89 Mid Oaks Lane, St. Paul, MN 55113 

* This work was done in part at the Divi:sion of Theory, 
CERN, Geneva, Switzerland. 
t This work was done in part at the Institute of 'Theoretical Phy-

sics, Stanford University, Stanford, California. 

KEY WORDS AND PHRASES: algebra, symbolic algebra, 
symbolic multiplication, algebraic distribution, algebraic multi
plication, distribution algorithm, multiplication :algorithm, prod
uct algorithm, polynomial distribution, polynomial expansion 
CR CATEGORIES: 3.10, 3.17, 3.20, 4.13, 4.90 

procedure EXPAND(M); integer M; 
comment This algorithm algebraically expamds arbitrarily 

parenthesized. expressions into monomials. Distribution is direct, 
without intermediate expansion of lower level expressions. The 
algorithm has been used as a part of algebra programs in the
oretical physics [2, 3). It was devised by H.J. Kaiser [1] and re
constructed by M. J. Levine. Expansion proceeds in two steps: 
First, parsing an input expression into a sequence of variable
operator pairs with associated parenthesis-level information, 
and then picking out the variables which belong together as 
factors of monomial terms. EXPAND accepts an abbreviated 
ALGOL-like syntax: 

(variable) : : = A I B I C I D I E I F I (} 
(primary) : : = (variable) I ((expression)) 

(term) : : = (primary) I (term) X (p1rimary) 
(expression) : : = (term) I (expression) + (term) 

REFERENCES: 
1. KAISER, H.J. Trace calculation on electronic computer. Nu

clear Physics 43 (1963), 620. 
2. LEVINE, M. J. Dirac matrix and tensor algebras on a compu

ter. J. Computat. Phys. 1 (1967), 454. 
3. SWANSON, S. M. Computer algorithms for Dirac algebra. 

J. Compittat. Phys. 4, 1 (1969), 171; 
begin 

integer LVL, N, T, U; Boolean array MULT[O:M]; 
integer array V, VL, OPL, INDEX[O:MJ; 
integer procedure CH AR; 
begin 

integer C; 
A: insymbol (2, 'X) + (ABCDEFGu;', C); if C = 12 then go 

to A; 
CHAR:= C 

end CHAR; 
procedure DIS'l'RIBUTE(N); integer N; 
comment There are two problems in distribution: first, to se

lect the variables in an expression which belong together as 
factors of the current monomial, and then to alter the reference 
marks in USED to indicate the next monomial. A Boolean 
value in USED is associated with each variable-operator pair. 
The expression is scanned from the left to select the first un
used variable, and then any variables in an additive relation 

377-P 1- 0 

to the selected variable are skipped before continuing the 
scanning for other factors. For the next monomial, the first 
selected variable followed by a "+" is marked used, and the 
marks on all the variables to the left are altered, depending on 
their operator type and level relation to the "+". Distribu
tion is from left to right (initial factors change most of ten); 

begin 
integer I, J, K, L, LEVEL; 
Boolean ALTER, PRODUCT, TERM; 

Boolean array USED[O:N]; 
for K : = 0 step 1 until N do USED[K] : = false; 

NEXT: ALTER:= true; J :=I:= -1; 
FACTOR: I:= I+ 1; if USED[!] then go to FACTOR; 

J := J + 1; INDEX[J] := I; 
SKIP: if MULT[IJ then go to FACTOR; LEVEL := OPL[l]; 

if LEV EL > 0 then 
hegin 

if ALTER then 
begin 

L :=LEVEL; LEVEL:= VL[l] + 1; 
USED[!]:= PRODUCT:= TERM:= true; 
ALTER := false; 
for K :=I - 1 step -1until0 do 
begin 

if OPL[K] <LEVEL then 
begin 

LEVEL:= OPL[K]; PRODUCT:= MULT[KI; 
if PRODUCT then LEVEL := LET!EL + l; 
if LEVEL ;£ L then TERM := false 

end; 
if PRODUCT then USED[K] :=TERM 

end 
end 
else 
hegin 

R: I:= I+ 1; if LEVEL;£ OPL[l] then go to R 
end; 
go to SKIP 

end; 
PROCESS(J); if-, ALTER then go to NEXT; 

end DISTRIBUTE; 
procedure PROCESS (J); integer J; 
comment A skeletal output routine (normally, monomials are 

further manipulated, sorted, and accumulated); 

begin 
integer I; outstring (1, '+'); 
for I := 0 step 1 until J do 
begin 

outsymbol (1, "X) + (ABCDEFG", V[INDEX[IJ]); 
if I ~ J then outstring (1, "X ") 

end 
end PROCESS; 
comment The following statements parse the input. A full

fledged input routine would extend (primary) to include num
bers and would class both "-" and "+" together as (adding 
operators). DISTRIBUTE still works with only"+" and "X" 
since a"-" is either absorbed into a following unsigned num
ber or replaced by the string "-1 X ". Only a single subexpres
sion, followed by an unparenthesized "+", is expanded at a 
time. M limits the size of this subexpression. A syntax error or 
a semicolon terminates the processing of input; 



COLLECTED ALGORITHMS (cont.) 

LYL := N := O; U := CHAR; if U < 4 then go to ERR; 
A: T := U; if U = 13 then T := 3 else U :=CHAR; 

if U ~ 4 then 
begin 

if 'l' = 1 then 
he gin 

MULT[N] :=true; OPL[N] := LVL; N :=A+ 1 
end 
else if T = 3 then 
hegin 

lv!ULT[N] := false; OPL[N] := LVL; 
if LVL = 0 then begin DISTRIBUTE(N); N := O end 
else N := N + 1 

end 
else if T = 4 then LVL := LVL + 1 
else go to ERR 

end 
else 
begin 

if T = 2 /\ L V L > 0 L hen L V L : = L V L - 1 else 
if T ~ 5 then begin ir[N] := T; r'L[N] := LVL end 
else go to ERR; 

end; 
if U ;;"' 13 then go lo A else if LF/, = 0 then go to B; 

ERR: outstring (1, 'syntax error'); 
B: end EXP.1ND 

377-P 2- 0 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 378 
DISCRETIZED NEWTON-LIKE METHOD FOR 
SOLVING A SYSTEM OF SIMULTANEOUS 
NONLINEAR EQUATIONS [C5] 
W. PANKIEWICZ (Recd. 24 May 1967, 13: July 1967 

and 2 Oct. 1968) 
W arszawa-90, W yszatycka 28, Poland 

KEY WORDS AND PHRASES: Newton's method, nonlinear 
equations, interpolating polynomials 
CR CATEGORIES: 5.15, 5.13 

integer procedure nielin (n, h, w, eps, psi, y, z); 
value n, h, w, eps, psi; 
integer n; rieal h, w, eps, psi; array y, z; 

comment Functional procedure nielin, of the integer type, 
solves a system of simultaneous nonlinear algebraic or trans
cendental equations. 

Let us consider a given system of n equations with n variables: 

f;(y1 , Y2 , • • ·, Yn) = O, i = 1, 2, • • •, n. (1) 

A kth approximation of the solution of the system (1) is 
supposed to be given: 

(2) 

If for every i, 

(3) 

where e > 0 is a given number, then the approximation (2) is 
considered as a solution of the system (1), otherwise a further 
approximation is calculated. 

Let h<k> > 0 be given and construct then new points: 

Yt' = (y~k>, .. ·, y~/:}1 , y~k> + hck>, y}t\ , · · ·, y~k», i = 1, 2, .. ·, n. (4) 

For every function of the system (1) a new interpolating poly
nomial of the first order is constructed on the points (2) and 
( 4) such that: 

w;(Y?» = f;(Yjk>), j = 0, 1, · · ·, n, i = 1, 2, · · ·, n. (5) 

A solution of the linear system: 

W;(Y1 ' Y2 ' ••• 'Yn) = 0, i = 1, 2, ... ' n, (6) 

is used as the (k+l)-th successive approximation. 
The special choice of the interpolation points (2) and (4) 

assures existence and uniqueness of the interpolating poly
nomials w; (5). Namely, the kth approximation has for the ith 
function the form: 

(7) 

where 

(8) 

The solution of the system (6) where w; is g;iven by (7) can 
be written in the form (see [2}): 

y<k-H) = y?> - (1/a<k»z~k> X h<k>, i = 1, 2, • · ·, n, (9) 

where z<k> = (z~k>, z?', · · ·, z~,.,) is a solution of the following 

378--P 1 0 

linear system: 
n 

I: 1'( y<k» X z; 1, 2, n, (10) 
i-1 

and 

(11) 

If the sequence I yck>} is convergent when k-+ oo and, ( h<k> I -+ 0 
then the solution of the system (1) is the limit of the sequence. 

The algorithm described above is realized by means of the 
procedure nielin, which in turn uses the following two addi
tional procedures: 
(1) nonlocal procedure f(y, z), which calculates for a given 
vector y values of the left-hand sides of the system (1), and 
(2) local procedure gauss (u, a, y), see [1]. 

yO 

-.4 
-.1 

-.7 
-.2 

-.7 
-.2 

Input parameters: 
n number of equations in the system (1), 
h number which is used for the construction of auxiliary 

points (4), 
w factor multiplying the number h in every iteration, 
eps number used in the checking of condition (2), 
psi maximal admissible absolute value of the left-hand 

sides of the system (1). 
Input/output parameters: 

y vector of dimension [l:n]. Initially this vector must 
contain the starting approximation; subsequently y will 
contain the successive approximations to the solution. 

Output parameters: 
z vector of dimension [l:n] which contains the values of 

the equations in (1) evaluated at y, 
nielin assigned one of the following values: 

-1 if any left-hand side exceeds the given value psi, 
-2 if the linear system (10) is singular, 
-3 if the sum of the roots of the system equals 1, i.e. if 

alpha = 0 (11), 
m number of iterations, if the required accuracy eps is 

attained. 
Example. To solve the system 

Y12 + Y22 
- 1 = 0, 

0.75y13 - Y2 + 0.9 = 0, 

the procedure (see footnote*) was applied. 
For eps = lo-7, psi = 103 and w = .1 the following results 
were obtained: 

h k 'Y 

.1 7 - .9817026 
.1904203 

.1 6 - .9817026 
.1904203 

1 -2 .3581622 
.9366243 

-410-9 
910-9 

0 
0 

-710-l 
510-l 

k 

4 .3569699 
.9341159 

-410-8 
-410-8 

•The procedure applied was: 
procedure f(y, z); 

array y, z; 
begin 

z[l] := y[l] i 2 + y[2] i 2 - 1; 
z[2] .- .75 X y[l] i 3 - y[2] + .9 

end 



COLLECTED ALGORITHMS (cont.) 

The second result of the third set was obtained from a 
repeated call as indicated below. 

Procedure nielin was tested on many 2 X 2 and 3 X 3 systems. 
If, from a given starting guess the process was divergent, the 
divergence was apparent after two or three iterations. 

In the case when the auxiliary linear system (10) was singular 
or a = 0 (11), the obtained approximation was close to the 
required approximation. Then the repeated call of the proce
dure with the obtained approximation and the starting value h 
g:we the desired result after 3-4 iterations. The last remark 
suggests the following construction of the call of procedure 
nielin: 

REPEAT: k := nielin (n, h, w, ep8, psi, y, z) 

if k = -2 V k = -3 then go to REPEAT 

REFERENCES: 

1. CouNTS, J. W. Algorithm 126, Gauss' method. Comm. ACM 5 
(Oct. 19G2), 511. 

2. PANKIEWICZ, W. About some method for solving a system of 
simultaneous nonlinear equations. Proc. of the Symposium: 
Systems of the Computers, Novosibirsk, USSR, 1967, pp. 
102-105 (in Russian); 

begin 
integer m, i, k; real alpha, r; 
Boolean bl, b2; array A[l :n, 1 :n+l], v[l :n]; 
procedure gauss (u, a, y); 

integer u; array a, y; 
begin 

comment At this point the body of a procedure named 
Gauss (see [l]) must be supplied by the user to solve a 
u X u linear system whose coefficient matrix is stored in 
the first it rows and u columns of a, whose vector of con
stants (right-hand side) is stored in the (u + 1)-th column 
of a, and whose solution is given as y. If the system is singu
lar it should execute go to error; 

end gauss; 
m := O; 

POCZATEK: 
bl :=true; b2 :=false; f(y, z); 
for i := 1step1 until n do 
begin 

A[i, n+ll := r := z[i]; 
r := ab.s(r); 
b 1 : = b 1 /\ r < eps; 
b2 : = b2 V r > psi 

end: 
if bl then go to KON/EC; 
if b2 then go to ALAR1vl; 
for i := 1step1 until n do 
begin 

r := y[i]; y[i] := r + h; f(y, z); 
fork := 1step1 until n do 

A[k, i] := z[k]; 
y[i] := r 

end; 
gauss (n, A, v); 
alpha:= 1; 
for i := l step 1 until n do 

alpha : = alpha - v[i]; 
if alpha = 0 then go to ALPHA; 
alpha : = h/alpha; 
for i := 1step1 until n do 

y[i] : = y[i] - v[i] X alpha; 
h := h X w; m := m + 1; 
go to POCZATEK; 

KON/EC: 
nielin := m; go to END; 

ALARil.l: 
nielin := -1; go to END; 

error: 
nielin := -2; go to END; 

ALPH.1: 
nielin : = -3; 

END: end nielin 

378-P 2- 0 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 379 
SQUANK (SIMPSON QUADRATURE USED 
ADAPTIVELY-NOISE KILLED)* [Dl] 
J. N. LYNESS (Recd. 21 Apr. 1969 and 25 Nov. 1969) 
Applied Mathematics Division, Argonne National Labo-

ratory, Argonne, IL 60439 
* Work performed under the auspices of the US Atomic Energy 
Commission. 

KEY WORDS AND PHRASES: numerical integration, integra
tion rule, adaptive integration, automatic integration, Simpson's 
rule, numerical quadrature, quadrature rule, adaptive quadra
ture, automatic quadrature, round-off error control 
CR CATEGORIES: 5.16 

DESCRIPTION: 

Purpose. SQUANK is an automatic ru1merical quadrature 
routine. The user provides a = A, and b = BIG, the lower and 
upper limits of integration, the tolerance Etol == ERROR he re
quires, and a function subprogram FUN(X) for the integrand 
f(x). The routine returns Rf= SQUANK, where Rf is an expres
sion of the form Rf= L:f-1 wif(xi) which is an :approximation to 
the integral If = J~ f(x) dx. 

Hopefully, this approximation is within the claimed accuracy 
E;ol , i.e. I Rf -· Ifl = I Eacd ~ E;ol • 

The routine returns three other quantities, as arguments. 
These are 

FIFTH-the fifth-order adjustment term. This may be used as 
an error estimate in cases in which round-off error is not sig
nificant. 

NO = N-the number· of calls to the function subprogram. 
RUM = E;oz·-the claimed accuracy. This is nl[)rmally the same 

as Etoz , the required tolerance, except in cases in which round
off error is significant, when it is higher than E101 . 

Like many other routines, SQUANK is a special purpose routine. 
It is designed to treat efficiently integrands f(x) having both the 
following properties: 

(a) f(x) and its first four derivatives are continuous in the open 
interval (a, b). 

(b) f(x) does not have high frequency oscillations. 
By experiment the routine has been found efficient for the wider 
class of functions 

(c) g(x) = f(x) Ix - xoja, a ;::::: 0, where Xo = a or Xo = b or xo = 
(a+b)/2 and f(x) satisfies both (a) and (b) above. 

Construction. The construction of this routine is described in 
detail in [3]. Briefly, it is based on the ideas of the Adaptive 
Simpson Quadrature routine [5-8), referred to below as ASQ, but 
embodies four major modifications: 

(1) a different assignment of allowed error to interval and a 
different interval convergence criterion; 

(2) interval bisection in place of trisection; 
(3) inclusion of an adjustment term to give a result of poly-

nomial degree 5 in place of degree 3; ' 
(4) a round·-off error guard (which guards against the effects 

of excessive round-off error in function values). 
The first three modification~ are of a standard nature. Their 
effect is described below under Comparisons. The fourth mod
ification is somewhat unusual and is described by means of an 
example below. 

Round-off Error Guard. The accuracy attainable by any quad
rature routine is clearly limited by the accuracy to which the func-

379-P 1- 0 

tion is evaluated. The effect in an automatic routine of requesting 
an accuracy in excess of the accuracy of the function evaluation 
is described elsewhere [4] and can be catastrophic. SQUANK 
contains a "round-off error guard" which is Modification 4 of [3]. 
Thus the user may request any tolerance Etol , even E101 = 0. The 
routine provides a result which may reflect different accuracies 
over different ranges of x, the local tolerance level being con
strained to remain above the level of the apparent local round-off 
error. The overall estimated accuracy E;oz is returned as argument 
RUM. 

As an example, the same problem was treated using SQUANK 
on two different computers. These have machine accuracy param
eters EM = 10-11 and EM = 10-1, respectively. The problem was to 
evaluate 

with various tolerances Etol • A selection of the results is tabu
lated below. 

EM= 10-n EM= 10-7 

Etol Etol Eact N F.tol Eacl N 

10-a 10-a -2.4 x 10-5 1081 2.4 X 10-3 9.1x10-4 889 
IQ-9 9.9 X 10-s -3.2 x 10-10 12057 1.5 X 10-a 9.1x10-4 2513 
0 9.9 X 10-s -3.2 x 10-10 14809 1.5 X 10-a 9.1x10-4 2513 

Here Eact is the difference between Rf and If. 
It should be borne in mind that the peak of the integrand is of 

magnitude 106. Thus the accuracy in function evaluation near the 
peak is about 10-5 or 10-1, respectively. Naturally, the machine 
with smaller word length produced a less accurate result, but at a 
lower cost in function evaluation. No intervention by the user 
was necessary. For a further comparison, the round-off error 
guard was disabled. For Etol ~ 10-1, the routine then required 
577 ,197 function values, but the resulting value Rf was about the 
same. Thus in this example, the round-off error guard cut the 
computation time by a factor of 40. 

The inclusion of this round-off error guard has one serious 
drawback. If the routine is used with an integrand which is discon
tinuous, or has a low order discontinuous derivative, SQUANK 
may take this to be evidence of round-off error and may adjust 
the tolerance. In these cases, the result may have a much lower 
accuracy than requested. However, this value of the accuracy is 
estimated and returned in argument RUM. The number of func
tion values required for such a less accurate result is correspond
ingly lower. 

Comparisons. Besides the testing carried out by the author, 
SQUANK has been subjected to two independent sets of extensive 
tests in comparison with other quadrature routines [1, 2]. The 
respective authors have kindly made some of their results avail
able to me. These tests involve a set of routines, :a. set of functions, 
and eight different tolerances, all large enough so that round-off 
error is not significant. 

Restricting attention only to functions of type (c) and to the 
two routines SQUANK and ASQ, the following information is 
reported. Of a set of 47 functions, both routines are equally reli
able; ASQ is more economic than SQUANK for only one of these. 
For the other 46, SQU ANK is more economic, generally by factors 
of about two [1]. Of a set of 14 functions, in all cases SQUANK is 



COLLECTED ALGORITHMS (cont.) 

more economic, by factors ranging from 1.4 (at high accuracies) 
to 3 or 4 (at low accuracies) [2]. 

Turning to a general comparison with other routines, certain 
trends are apparent, although there are no clear simple conclu
sions. In some cases SQU ANK is more economic than other 
routines; in other cases it is obviously much worse. 

REFERENCES: 

1. CclSALETTO, J., PICKET, M., AND RICE,. J. A comparison of 
some numerical integration programs. CSD TR 37, Purdue 
U., Lafayette, Ind., June 1969, and "SIGNUM Newsletter" 
4, 3 (Oct. 1969), 30-40. 

2. KAHANER, D. K. Private communication. See also Compari
son of numerical quadrature formulas, LA-4137, Los Alamos 
Sci. Lab., Los Alamos, N.M., June 1969. 

3. LYNESS, J. N. Notes on the adaptive Simpson quadrature 
routine. J. "1CJl.f 16 (July 1969), 483-495. 

4. LYNESS, J. N. The effect of inadequate convergence criteria 
in automatic routines. Comput. J. 12 (1969), 279-281. 

5. McKEEMAN, W. M. Algorithm 145, Adaptive numerical in
tegration by Simpson's rule. Comm. ACM 5 (Dec. 1962), 604. 

6. Certification of algorithm 145, Adaptive numerical inte-
gration by Simpson's rule. Comm. ACJ16 (Apr. 1963), 167-168. 

7. --, AND TESLER, L. Algorithm 182, N onrecursive adaptive 
integration. Comm. ACM 6 (June 1963), 315. 

8. Algorithm 198, Adaptive integration and multiple inte-
gration. Comm. ACM 6 (Aug. 1963), 443. 

ALGORITHM: 

FUNCTION SQUANK C A,BIG, ERROR,FIFTH,RUM,NO,FUNl 
c 
C S•Q•U•A•N•K STANDS FOR • SIMPSON QUADRATURE USED ADAPTIVELY. NOISE KlllED.• 
c 
c 
C CALLING PROGRAM REQUIRES 
C EXTERNAL FUN 
C THIS IS FUNCTIUN TO BE INTEGRATED 
C A THE LOWER LIMIT OF INTEGRATION 
C i:!IG THE UPPER LIMIT 
C ERROR THE REQUIRED TOLERANCE !ABSOLUTE ERROR! 
c 
C OUTPUT 
c 
C SOUANK THE FIFTH ORDER RESULT a THIRD+ FIFTH 
C FIFTH THE FIFTH ORDER ADJUSTMENT TERM 
C RUM THE CLAIMED TOLERANCE 1 ADJUSTED FOR ROUNDOFF ERROR) 
C NO THE NUMBER OF FUNCTION EVALUATIONS REQUIRED 
c 
c 
c NCTES ON use. Ill DISCONTINUOUS FUNCTIONS 
c 
C THIS ROUTINE IS BASED ON DEGREE 3 AND DEGREE 5 LOCAL POLYNOMIAL APPROX-
C IHU!ON, CONSEQUENTLY IT SHOULD NOT BE USED WITH FUNCTIONS WHICH HAVE 
C DISCONTl'IUITIES IN THE FOURTH OR LOWER DERIVATIVES WITHIN THE INTERVAL OF 
C INTEGRATION. IF THERE ARE SUCH DISCONTINUITIES, THIS ROUTINE WILL TAKE 
C THIS TO BE EVIDENCE OF ROUND OFF ERROR IN FUNCTION VALUES ANO Hill ADJUST 
C THE TOLERANCE, 
C IF Tf<E LOCATIONS OF SUCH OISCONTINUI TIES ARE KNOWN, THE ROUTINE MAY 
C BE USEC SEPARATELY FOR EACH INTERVAL BETWEEN CONSECUTIVE DISCONTINUITIES. 
C WHILE, LIKE ALL SUCH ROUTINES, IT DISLIKES DISCONTINUITIES, IT CAN HANDLE 
C THEM IF THEY ARE LOCATED AT THE END POINTS OF THE INTEGRATION INTERVAL• 
c 
c 
C NCTES ON USE. 121 FUNCTIONS WITH HIGH-FREQUENCY OSCILLATIONS. 
c 
C THE ROUTINE WILL RETURN UNRELIABLE RESULTS FOR FUNCTIONS LIKE GIXJ 
C TIMES COS(lOO•XI. IF THE HIGHEST PERIOD LIKELY TO BE ENCOUNTERED IS 
C KNOWN, THE INTERVAL SHOULD BE SUB-DIVIDED IN SUCH A WAY THAT, 
C I ONE I THERE ARE NOT MORE THAN THREE PER I ODS PER INTERVAL, ANO 
C ITWOl THE ?tRIOO •P• DIVIDED BY THE SUB-INTERVAL• •IB - Al• IS NOT A 
C A Sll'PLE FRACTION •N/M• WITH NOR M LESS THAN 9. 
c 
c 
C NCTES ON USE. 131 INTERVAL SUB-DIVISION 
c 
C THE FAILURES DESCRIBED ABOVE ARE GENERALLY WORSE FOR •SQUANK• THAN FOR 
C OTHER RCUT!NES BECAUSE •SQUANK• TAKES THE INCONVENIENT BEHAVIOR AS llN 
C INDICATION OF ROUND OFF ERROR. IN GENERAL SUB-DIVISION OF THE INTERVAL IS 
c ADVOCATED. ESSENTIALLY THE USER CARRIES our, UNDER DRIVING PROGRAM 
C CONTROL, A SEOUENCE OF CALCULATIONS WHICH SHOULD HAVE BEEN CARRIED OUT 
C IN THE SUBROUTINE IN .<INY CASE. IN THIS WAY HE PREVENTS CHANCE LOW ORDER 
c FALSE CCNVERGENCE AT VIRTUALLY NO ADDITIONAL cnsT. NOTE THAT THE SUM OF 
C THE PARAMETERS •ERROR• FOR THE SUB-INTERVALS SHOULD CORRESPOND TO THE 
C VALUE REQUIRED FOR THE WHOLE INTERVAL. 
c 
c 
C NIM NUMBERING SYSTEM ANO LOGIC 
c 
C THE INTERVAL IA.Bl IS DEFINED NIM = l , LEVEL = O. 
C THE INTERVAL NIM = N, LEVEL = L IS BISECTED, IF NECESSARY, INTO 
C TWO INTERVALS, NIM = 2•N ANO NIM = 2•N + l, BOTH AT LEVEL • L•l• 
C IF INTERVAL NIM = N. LEVEL • L DOES NOT CONVERGE. THE NEXT INTERVAL 
C CONS/CEREO IS NIM = 2•N, LEVEL = L+l. 
C IF INTERVAL NIM=N, LEVEL = L DOES CONVERGE, THE NEXT INTERVAL CONSIDERED 
C IS NIM = MIRI + l , LEVEL = L-R , WHERE MIR) IS THE FIRST 
C EVEN MEMBER Of THE SEQUENCE MIO! = N, MIS+ll = IMISll-ll/2. IF THIS 
C GIVES LlVEL • u, THE CALCULATION IS COMPLETE. 
c 
c 
C SCALING TC AVOID EXCESSIVE DIVISION BY TWO. 
c 

379-P 2- 0 

c THE INTERVALIXl,X5l IS OF LENGTH H = X5-Xl. THE POINTS x1,x2,x3,x4,x5 
C ARE THE POINTS OF QUARTERSECTION OF THIS INTERVAl ANO FXl,FK2oFO,FX4, 
C FX5 ARE THE CORRESPONDING FUNCTIOI~ VALUES. 
C EST IS APPROXIMATION TO 16.0/Hl• llHEGRALIX1,X5l. 
C IESTl+EST21 IS APPROXIMATION TO 112.Ci/HI • INTEGRAlCXl,X5l. 
C SUM IS APPROXIMATION TO 112.0l • INTEGRALCA,Xll, 
c 
c 
C STORAGE 
c 
C X3ST1Ll = 0.5•1X5ST!Ll + Xll. THUS X3STILJ COULD BE RECALCULATED 
C AT EACH STAGE TO AVOID STORAGE. E5TSTlLl IS SAME IN THIS RESPECT. 
C THE RESULTS OF ABOVE RECALCULATIOI~ ARE IDENTICAL MACHINE NUMBERS. 
C X5STILl = Xl + IB-Al•l2 .. l-Lll • THIS COl.:LD ALSO BE RECALCULATED. BUT 
C IN THIS CASE CALCULATION IS EXCESHVE ANO THERE IS A POSSIBILITY OF 
C ROUNC OFF ERROR ARISING BECAUSE TliE SAME POINT IS BEING CALCULATED 
C IN TWO OR MORE DIFFERENT WAYS. 
c 
c 
C AVOIDANCE OF ROUND OFF ERROR TROUBLE 
c 
C IF INTERVAL DOES NOT CONVERGE, FOLLIJWING INTERVAL SHOULD HAVE ADIFF 
C VALUE APPRO~IMATELY EQUAL TO 11/lbl TIMES PREVIOUS ADIFF VALUE, CALLEO 
C AOIFFl IN THE COOE. THERE IS A THEOREM WHICH STATES THAT, UNLESS THE 
C FOURTH DERIVATIVE OF FUNIXl VANISHE'.i IN THE PREVIOUS INTERVAL, ADIFF 
C IS LESS THAN OR EQUAL TO AOIFFl. II' THIS ODES NOT HAPPEN, IT IS TAKEN 
C TO BE AN INDICATION OF POSSIBLE ROUljD OFF LEVEL. IN THIS CASE, 
C UNLESS LEV IS LESS THAN FIVE, THE CURRENT TOLERANCE LEVEL, CEPSt 
C IS APPROPRIATELY ADJUSTED. HOHEVER CEPS IS RESET AS ANO WHEN 
C APPEARS THAT IT SHOULD BE ADJUSTED l:ITHER UP OR DOWN. IT IS REDUCED 
C IF CONVERGENCE OCCURS WITH A NON-ZEIW AOIFF STRICTLY LESS THAN 
C 0.25•CEPS. AN INVOLVED SECTION OF COOING GUARDS TO SONE EXTENT AGAINST 
C AN UNREALISTIC VALUE ARISING AS A RESULT OF A ZERO IN THE FOURTH 
C DERIVATIVE. A FACTOR EFACT IS CALCULATED WHICH ADJUSTS THE CLAIMED 
C TOLERANCE TO TAKE INTO ACCOUNT THESE ALTERATIONS IN THE TOLERANCE LEVEL. 
C THE ROUTINE: ENTERS THESE INVOLVEO SECTIONS OF COOING ONLY IF ROUND 
C OFF ERRCR APPEARS TO BE PRESENT. II~ A NORMAL IROUNO OFF ERROR FREEi 
C RUN, THESE SECTIONS ARE SKIPPED AT A COST OF A SINGLE COMPARISON PER 
C ITERATICN ITWO FUNCTION EVALUATIONS). 
c 
c 
C ARBHRARY CONS TAN TS 
c 
C THE FOLLOWING CONSTANTS HAVE BEEN A:iSIGNEO IN THE l.IGHT OF EXPERIENCE 
C WITH NC THEORETICAL JUSTIFICATION. 
C Ill NO CONVERGENCE IS ALLOWED AT LEVEL a .. ZERO... THIS MEANS THAT THE 
C ROUTINE IS CONSTRAINED TO BASE THE RESULT ON AT LEAST 9 FUNCTION VALUES. 
C 121 NO UPWARD ADJUSTMENT OF THE TOLEllANCE LEVEL IS CONSIOERED AT LEVELS 
C LOWER THAN LEVEL = .. F IV!:... THE PIJINT SPACING IS THEN CBIG-Al/128.0. 
C 131 PHYSICAL LIMIT, HIGHEST LEVEL Al.LOWED IS LEVEL • .. THIRTY ... HERE 

C CONVERGENCE IS ASSIGNED WHETHER OR IWT THE INTERVAL HAS CONVERGED. THE 
C POINT SPACING IS THEN ABOUT IBIG-Al,.2.0• lDH-llJ. 
c 14) UPWARO ADJUSTMENT OF TOLERANCE u:vEL IS LIMITED IN GENERAL TO 
C A FACTOR .. z.o .. OR LESS, 
C 151 DOWNWARD ADJUSTMENT OF TOLERANCE LEVEL IS INHIBITED IN GENERAL UNLESS 
C BY A FACTOR GREATER THAN ••~.O••• 

c 
c 
C SOME NOTATION 
c 
C SUM ANC SIM ARE RUNNING SUMS, INCREASED AT STAGE EIGHT. THEY ARE 
C RESPECTIVELY 12.0 • C THIRD ORDER APPROXIMATION JO THE INTEGRAL 
C ANO -180.0 • C FIFTH ORDER AOJUSTl4ENT TO THE INTEGRAL). 
C CEPSF IS THE REQUIRED ISCALEOl TOLEHANCE. 
C CEPS IS THE RUNNING VALUE OF THE ADJUSTED TOLERANCE. 
C QCEPS = 0.25 • CEPS 
C LEVTAG • -1 OR 0,2,3 INDICATES WHETHER TOLERANCE IS NOT OR IS 
C CURRENTLY ADJUSTED, C SEE COMMENT J:N STAGE SEVEN.I 
C EFACT IS RUNNING SUM CORRESPONDING TO lBO.O • RUM 
C FACERR • 15.v OR l.C DEPENDING ON WHETHER TOLERANCE IS OR IS NOT 
C CURRENTLY ADJUSTED. IF IT IS, TtiERE IS NO JUSTIFICATION FOR THE 
C FIFTH ORCER ADJUSTMENT AND ACCURACY IS NOT EXPECTED TO BE ll/151 TIMES 
C DIFFERENCE OF APPROXIMATICNS. FACERR = 15.0 REMOVES THE BUILT IN 15.0 
C FACT CR FOR CALCULATION OF EFAC T • 
C EPMACH THE MACHINE ACCURACY PARAMETER, THE ROUND OFF ERROR GUARD DOES 
C NOT REQUIRE THIS NUMBER. IT IS MllCHINE INDEPENDENT. THIS IS ONLY 
C USED TO HELP IN AN INITIAL GUESS J:N STAGE THO IF THE VALUE OF ERROR 
C HAPPENS TO BE ZERO, ANY NON-ZERO NUMBER MAY BE USED INSTEAD, WITH A 
C VEHY SMALL PENALTY IN NUMBER OF FUNCTION EVALUATIONS IF A COMPLETELY 
C UNREASONABLE NUMBER IS USED. 
c 
c 

c 

0 I MENS I CN FXJSTl 30 l, X3S Tl 3U J ,ESTST DOI ,FX5STI 301 ,XS STl30) 
DIMENSICN PREDIFC 3Gl 
DOUBLE PRECISION SUM,SIM 
EPMACH = O. OOOOU00000075 

STAGE ONE 
INITIALISE ALL QUANTITIES REQUIRED FOR CENTRAL CALCULATION (STAGE 31. 

SUM • o.o 
SIM = O.G 
CEPSF = 160.0•ERROR/CBIG - Al 
CEPS • CEPSF 
ADIFF = O.C 
LEVTAG = -1 
FACERR = l.C 
XZERO a A 
EFACT a C ,Q 
NIM = l 
LEV = 0 
Fl RST INTERVAL 
Xl • A 
X5 • 6 I G 
X3 • 0.5•1A+BIGJ 
FXl• FUf\IXll 
FX3• FUNIX31 
FX5= FUNC X5 I 
NO = 3 
EST • FXl + FX5 + 4.0•FX3 

C STAGE TWO 
SET A STARTING VALUE FOR TOLERANCE IN CASE THAT CEPSF • OoO 

IFICEPSFJ 295,205,295 
205 LEVTAG • 0 

FACERR = 15.u 
CEPS = EPMACH•ABS I FXl l 
IFIFXll 295,210,295 

210 CEPS • EPMACH•ABS C FX3l 
LEVTAG = 3 
IFIFX3l 295,215,295 

215 CEPS • EPMACH•ABS CFXSI 
IFIFX5l 295,220,295 

220 CEPS • EPMACH 
295 QCEPS • G.25•CEPS 

C INITIALISING COMPLETE 
c 
C STAGE THREE 



COLLECTED ALGORITHMS (cont.) 

c 

CENTRAL CALCULATION. 
REOU IRES X l 1 X3, X51FXl1FX31F X5 tE ST 1ADIFIF0 

300 CONT I NU E 
X2 • 0.5•1Xl + X31 
Xlt • 0.5•1X3 + X51 
FX2• FUN(X21 
FXlt• FUN I Xlt I 
NO • NO + 2 
ESTl • FXl + 4,(l•FX2 + FX3 
EST2 • FX3 + 4,0•FX4 + FX5 
AOIFFl • AOIFF 
DIFF • EST + EST - ESTl - EST2 
IFILEV - 301 305t8001800 

305 ADIFF• ABS IOIFFI 
CRIT • ACIFF - CEPS 
IF ICR IT I 70017001400 
ENO OF CENTRAL LOOP 

NEXT STAGE IS STAGE FOUR IN CASE OF NO NATURAL CON~ERGENCI 
NEXT STAGE IS STAGE SEVEN IN CASE OF NATURAL CON~ERGENCE 

STAGE FOUR 
NO NATURAL CONVERGENCE. A COMPLEX SEQUENCE OF INSUUCTIONS 
FOLLOWS WHICH ASSIGNS CONVERGENCE ANO I OR ALTERS T'DLEA.ANCE 
LEVEL IN UPioiARO DIRECTION IF THERE ARE INDICATIONS OF ROUND OFF 
ERROR. 

400 CONTINUE 
IFIADIFFl - AOIFFI itl01 ltl01 500 

IN A NORMAL RUN WITH NO ROUND OFF ERROil PROBLEM, AOIFFl 15 GREATER THAN 
ACIFF ANO THE REST OF STAGE FOUR. IS OMITTED. 

itlO IFILEV - 51 500,ltl5 11tl5 
ltl5 EFACT • EFACT + CEPS •IXl - XZER.Ol•FACEllR 

XZERO • Xl 
FACERR • 15o0 

THE REST OF STAGE FOUR DEALS WITH UPWARO ADJUSTMENT OF TOLERANCE ICEPSI 
BECAUSE OF SUSPECTED ROUND OFF ERROR TROUBLE. 

IFIADIFF-2.0•CEPSI 42014201425 
SMALL JUMP IN CEPS. ASSIGN CONVERGENCE 

420 CEPS • AOIFF 
LEVTAG • IJ 
GO TO 78t 

425 IFI AOIFFl - AOIFFI 435,430 105 
UIRGE JUMP IN CEPS 

430 CEPS • AOIFF 
GO TO 445 

FACTOR TWO JUMP IN CEPS 
435 CEPS • 2,0•CEPS 

IFILEVTAG - 31 440 1445 1445 
41oO LEVTAG • 2 
41o5 QCEPS • (),25•CEPS 

C STAGE FIVE 
C NO ACTUAL CONVERGENCE• 
C STORE RIGHT HANO ELEMENTS 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

500 CONTINUE 
NIM • 2•NIM 
LEV • LEV + 1 
ESTSTILEVI • EST2 
X3STILEVI• Xlt 
X5STILEV)z XS 
FX3ST ILEVl•FX4 
FX5STILEVl=FX5 
PREOIFILEVI • AOIFF 

STAGE SIX 
SET UP CUANTITIES FOR CENTRAL CALCULATION. 

READY TO GO AHEAD AT LEVEL LCWER WI TH LEFT HANO ELEMENTS 
Xl AND FXl ARE THE SAME AS BEFORE 
X5 • X3 
Xl • X2 
Fll5 • FX3 
FX3 = FX2 
EST = ESH 
GO TO 30() 

STAGE SEVEN 
NATURAL CONVERGENCE IN PREVIOUS INTERVAL. THE FOLLOWING COMPLEX SEQUENCE 
CHECKS PRIMARILY THAT TOLERANCE LEVEL IS NOT TOO HIGH. UNDER CERTAIN 
CIRCUMSTANCES NON CONVERCENCE IS ASSIGNED ANO I OR TOLERANCE LEVEL 
IS RE-SET, 

700 CONT I NUE 
CHECK T~A T IT WAS NOT LE VE L ZERO INTERVAL. IF SO ASSIGN NON CONVERGENCE 
IF I LEV I it001it001 7U5 

LEVTAG =-1 
LEVTAG • 0 
LEVTAG 2 

LEVTAG = 3 

CEPS • CEPSF, ITS ORIGINAL VALUE. 
CEPS IS GREATER THANCEPSF. REGULAR SITIUATION, 
CEPS IS GREATER THANCEPSF.CEPS PREVIOUSLY ASKED FOR A BIG 

JUMP, BUT DID NOT GET ONE. 
CEPS IS GREATER THANCEPSF,CEPS PREVIOUSLY HAO A BIG JUMP. 

705 IFILEVTAGI aoo.110.110 
IN A NCRMAL RUN WITH NO ROUND OFF ERROR PROBLEM, LIEVTAG • -1 ANO THE 
REST OF STAGE SEVEN IS OMITTED. 

710 CEPST = 15,C•CEPS 
CEPST HERE IS FACERR•CURRENT VALUE OF CEPS 

IFICRITI 715,aoo,eoo 
715 IFILEVTAG - 21 72U,7"0,750 

LEVTAG = 0 
720 IFIAOIFFI ac:>,aoo,725 
"125 IFlAOIFF - CCEPSI 73u180018CiO 
730 IFIADIFF - C6PSFI 770 177C,735 
·135 LEVTAG • 0 

CEPS • AO[Ff 
EFACT • EFACT + CEPShlXl - XZEROI 
XlERO = Xl 
GO TO lt45 

LEVTAG • 2 
7it0 LEVTAG = tJ 

IFlAOIFFI 765 1 7651725 
LEVTAG = 3 

750 LEVTAG • 0 
IFIAOIFFI 77517751730 

·71.5 CEPS = ACIFFl 
GO TO 775 

710 LEVTAG = -1 
FACERR = l,Q 
CEPS • CEPSF 

775 EFACT = EFACT + CEPST•l Xl - XZEROI 
XZERO = Xl 

780 CONTINUE 
QCEPS = C,25•CEPS 

STAGE EIGHT 
ACTUAL CONVERGENCE IN PREVIOUS INTERVAL, INCREMENTS ADDEO INTO 
RUNNING SUMS 

AOC INTO SUM ANO SIM 

800 CONT I NU E 
SUM = SUI' +IESTl+EST2l•IX5-Xll 
IFILEVTAGI acs.e10.a10 

379-P 3- Rl 

WE ADD INTO SIM ONLY IF WE ARE CLEAR OF ROUND OFF LEVEL. 
805 SIM= SIM+ OIFF•IX5-Xll 

c 

810 CONTINUE 

STAGE NINE 
SORT Qi.;T WHICH LEVEL TO GO TO. THIS INVOLVES NIM NiUMBERING SYSTEll 
DESCRIBED BEFORE STAGE ONE. 

905 NU"1 • N 11'/2 
NOH·• NII' - Z•NUM 
IFINOMI ~10,9151910 

910 Nl"1 • NUP' 
LEV=LEV-1 
GO TO 9C5 

915 N 1 M • N 11' + l 
NEW LEVEL IS SET, IF LEV•O WE HAV.E FINISHED 
IFI LEV I 1100,uco,1000 

C STAGE TEN 
C SET UP CUANTITIES FOR CENTRAL CALCULATION. 
c 

c 

1000 CONTINUE 
Xl • XS 
FXl• FX5 
X3 = X3STILEVI 
X5 • X5STILEVI 
FX3= FX3STILEVI 
FX5• FXSSTILEV I 
EST• ESTSTILEVI 
AOIFF = PRECIFILEVI 
GO TO 30\l 

C STAGE ELEVEN 
C CALCULATION NOW COMPLETE. FINALISE. 
c 

110\l CONTINUE 
EFACT = EFACT + CEPS •IBIG- XZEROl•FACERR 
RU"1 • EFACT/180,\J 
THIRD~ SUM/12.0 
FIFTH •-SIM/180.0 
SCUANK • THIRD + FIFTH 
RETURN 

ENO OF SQUANK 
ENC 

Certification of Algorithm 379 [Dl] 
Squank (Simpson Quadrature Used Adaptively
Noise Killed) (J.N. Lyness, Comm. ACM 13 (Apr. 
1970), 260-263] 

P. Hallet and E. Mund [Recd. 18 Jan. 1971 and 27 
Apr. 1971] 
Service de Metrologie Nucleaire, Universite Libre de 
Bruxelles, Brussels, Belgium 

Work supported by the Belgian Fonds National de la Recherche 
Scientifiq ue. 

Key Words and Phrases: numerical integration, integration rule, 
adaptive integration, automatic integration, Simpson's rule, 
numerical quadrature, quadrature rule, adaptive quadrature, 
automatic quadrature, round-off error control 

CR Categories: 5.16 

The algorithm was compiled and run without corrections on a 
CDC-6400 with a machine accuracy parameter of 0. 7 X 10-14 • 

Our purpose was to test SQUANK's ability to integrate a function 
blurred by random noise, and so the function FUN(X) is the result 
of applying a random perturbation R to some regular function 
f(x), either by adding R to x before computing J, hereafter ref erred 
to as "x-noise", or by adding R to f after having computed it, 
"y-noise". R is taken as 

R = C * (2. * RANF(X) - 1.) 

where C is the noise amplitude and RANF is a system function 
generating pseudorandom numbers (O. :$ RANF(X) :$ 1.) 

Our test program called SQUANK 100 times in situations 
involving all combinations of noise amplitude C = 10-2, 10-4, 10-6, 

10-s, 10-10, required tolerance e1 = 10-4, 10-s, 10-s, 10-10, 10-12, 
both noise types and the two functions /1(x) = k1 exp(x) and 
f 2(x) = k 2 (1 + 104 x2)-1 integrated on (0, 1]. The constants k1 
and k 2 were chosen to normalize unblurred integrals to unity so 



COLLECTED ALGORITHMS (cont.) 

that errors and tolerances may be seen as absolute or relative. 
A rough calculation shows that y-noise causes in both integrals 

a deviation D that shouldn't exceed C. For x-noise, with/(x + R) ~ 
f(x) + Rf'(x), D shouldn't exceed respectively C and k 2C (meaning 
that the second function is oversensitive to x-noise by a factor 
k2 ~ 200/11'"). 

The test program was run five times, yielding different results 
because the random perturbations were irreproducible. The fol
lowing quantities were kept and averaged over the five runs. 

I e2 \ actual error (specifically, E2 is the difference SQUANK( · · ·) 
- 1.0). 

E3 error estimate (specifically, EJ is the value of parameter RUM 
as returned by SQ U AN K). 

N number of function evaluations. 

A sample of these averaged results is given in Table I. 

Table I 

I fi(x), x-noise fi(x), y-noise 
c fl 

II" I N I E2 I N t3 E3 

10-s 10-12 6. 3 10-10 5. 5 10-9 11278 8.4 10-10 5.9 10-9 8416 
io-s 10-4 7.9 10-9 1.0 10-4 9 9.2 10-9 1.0 10-4 9 
10-2 10-12 i 7.6 10-4 4.6 10-3 6986 8.9 10-4 5.3 10-3 8747 
10-2 10-4 i 1.6 10-a 1.5 10-a 106 I. 3 10-a 1.6 10-a 59 ----1-----------
C f2(x), x-noise f2(x), y-noise 

El 

I •2 I E3 N l•2I E3 N 

10-s 10-12 2.9 10-! 4.4 10-1 35956 I. 8 10-10 5.5 10-9 63254 
10-s 10-4 5.8 10-s 1.0 10-4 77 5.8 10-s 1.0 10-4 77 
10-2 10-12 6.3 10-2 3.5 10-1 9127 I. 3 10-3 5.2 10-a 8496 
10-2 10-4 6.9 10-2 4.2 10-1 3896 7.2 10-4 2. 5 10-a 205 

In 487 of the 500 calls it was found that SQUANK's accuracy 
estimate of its own result was reliable, i.e. that E~ · > I E2 I . For the 
remaining 13 calls, the ratio I E2 I/ Ea ranged from 1 to 20 (in the 
worst cases, E3 ~ E1 < C, just as if SQUANK had failed to notice 
the presence of the noise). 

In 473 of the 500 calls it was found that SQUANK's estimation 
was as good as could be reasonably expected, i.e., that 
E3 < max (D, .e1) = E1. For the remaining 27 calls (all of them for 
/2) the ratio Ea/ E4 never exceeded 1.15 (note that the test was made on 
EJ, not on the actual error I E2 I). 

379-P 4- 0 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 380 
IN-SITU TRANSPOSITION OF A RECTANGULAR 
MATRIX [Fl] 
SusAN LAFLIN AND M. A. BREBNER* (Recd. 21 

July 1969 and 31 Oct. 1969) 
Computer Centre, University of Birmingham, 

Birmingham 15, England 
*Present address: Department of Mathematics, Statistics, and 
Computing Science, The University of Calgary, Calgary 44, 
Alberta, Canada. 

KEY WORDS AND PHRASES: rectangular matrix, transpose 
CR CATEGORIES: 5.14 

DESCRIPTION: 

The matrix (n X m) is assumed to be stored, column by 
column, in the one-dimensional array A, of length m X n. 
Then the position Jl of the element ai; is A(Jl) where 
Jl = n X (j-1) + i. This element must be moved to the position 
J2 of the element a;i which is given by J2 = m )( (i-1) + j and 
these two locations are related by the expression 

(J2-1) = m X (Jl-1) - (mXn-1) X [(.Jl-1)/n] 

where [e] indicates integer part of e. 
It is more convenient to work in terms of index Il, taking values 

from 0 to K = m X n - 1, which gives the expression 12 = m X 
I1 - K X [Il/n] and the value in A(Il+l) must be moved to 
A(I2+1). By repeating this formula we find that the transposi
tion consists of a series of "loops", I1 -+ 12 -+ 13 -+ • • • -+ Il. 

We also note that this process is symmetric. F'or example, if I 
is the smallest value in a loop then K - I is the hi.rgest value of a 
loop, although both these values may in fact belong to the same 
loop. 

This is a special case of a more general result;, which may be 
stated as follows: 

Theorem. If 11 -+ 12 -+ 13 · · · -+ 11 is a loop, then (K-11) -+ 
(K-12)-+ (K-13) · · · -+ (K-11) is also a loop. 

Comments on Theorem. This may be two representations of 
the same loop or it may describe a "symmetric" pair of loops. 
For a 2 X 8 matrix the process generates the following loops, 
where K = 2 X 8 - 1 = 15. 

(a) I 1 -+ 2 -+ 4 -+ 8 -+ 1 
K - I 14 -+ 7 -+ 11 -+ 13 -+ 14 

(b) I 
K - I 

5 -+ 10 -+ 5 
10-+ 5~10 

(c) I 3 -+ 6 -+ 12 -+ 9 -+ 3 
K - I 12 -+ 9 -+ 3 -+ 6 -+ 12 

Case (a) is an example of a "symmetric" pair of loops. Cases (b) 
and (c) are both examples of a duplicated loop. An idealized 
picture of the circuits for this example is given in Figure 1, where 
the closed curves only indicate the range of the circuits, since the 
actual directed paths will be intertwined in a more complex 
manner. 

Proof of Theorem. It is sufficient to show that 

(K-12) = m X (K-Il) - K X [(K-Il)/n] · · · (1) 

where 12 is generated from I1 by the expression given in the first 
paragraph. 

380-P 1- 0 

Now 

· (K-12) = K - m X 11 + K X [Il/n]. 

Let 

[Il/n] = L1 , [(K-Il)/n] = L2 . 

Hence it is required to prove that 

K - m X I1 + K X L1 = m X (K-Il) - K X L2, 
or 

or 
K X L2 = K X La, 

where 
La= m - 1 - L1. 

Note L1, L2 and La are integer. 
Let 

(Il/n) - L1 = E1 , ((K-Il)/n) - L2 = E2. 

From the definition of [ ] in paragraph one, it is obvious that 
E1 and E2 satisfy the inequalities 

Now 

Also 

or 

or 

0 s E1 s 1 - 1/n, 0 s E2 s 1 - 1/n. 

K X ((K-Il)/n) = K X ((mXn-1-Il)/n) 
= K X (m-1/n-Il/n) 
= K X (m-1-Il/n+(l-l/n)) 
= K X (La-E1+(l-l/n)). 

K X ((K-Il)/n) = K X (L2+E2), 
K X (La-E1+(l-l/n)) = K X (L2+E2), 

La - E1 + (1-1/n) = L2 + E2, 

·La - L2 = e1 + E2 - (1-1/n). 

Therefore 

or 

0 + 0 - (1-1/n) S La - L2 S 2 X (1-1/n) - (1-1/n), 

1 I La-L2 I S 1 - -. . n 

Since L2 and La are integer and differ by less than unity, L2 must 
equal La, hence K X L2 = K X La , which implies that (1) is true. 

Method. Each matrix will contain two or more "single ele
ments," that is, loops consisting of only one point. The condition 

0 

FIG. 1 



COLLECTED ALGORITHMS (cont.) 

for this is 

I = m X I - K X [I/n]. 

Writing I =a X n +band inserting K = m X n - 1, this condi
tion becomes 

a(n-1) = b(m-.1). 

We shall always have the two pairs of integers (O, 0) and (m-1, 
n-1) giving I = 0 and I = K as single elements. 

The method used in the subroutine is as follows. First the 
number of "single elements" in the array is calculated and 
NCOUNT is set equal to this value; then, starting with variables 
I = 1 and MAX = K + 1, we search through the array, moving 
the elements in each loop once until all the elements have been 
moved. The variable NCOUNT is used to record how many ele
mer.ts have been moved and the process is terminated when 
NCOUNT > mn. For each value of I, the loop generated by I is 
examined, ~d if it contains any values less than 1 or greater 
than MAX, then we know that this loop has already been moved 
and so go on to examine the next value of I. If, however, I is the 
smallest value, the elements in this loop are moved round and at 
the same time a test is made to see if K - I also belongs to this 
loop. Each time a loop is completed NCOUNT is tested against 
mn. If K - I has been included in the loop for which I was smallest 
value, MA.,"'{ is set equal to K - I and we return to statement 
number 20 to examine the next value of I. If K - I does not belong 
to the same loop as I, then the elements in the loop generated by 
K - I are also moved before returning to label 20. 

The process is further speeded up by use of an array MOVE, 
dimension IWRK. Initially all elements of MOVE are set equal 
to 0 and whenever element I is moved, MOVE(I) is set equal to 2. 
Hence, so long as I ~ IWRK, it is possible to detect whether or 
not the loop generated by I has been moved without calculating 
values around the loop. The value of IWRK to give the shortest 
possible time depends only on m and n, but so far it has not been 
possible to give a theoretical expression for this value. In 93 
percent of the cases examined, the value of IWRK = I Hm+n) I 
was large enough for the transposition to be completed before I 
exceeded IWRK. Since this condition gives the minimum execu-

TABLE I 
--------------~--- ----- --------- -- - --- ·--------

Trans 2X(T1-T2) Trans No 2X(T1-T3) 
Size MXN Alg. 302 IWRK= Move (THT3) (M+N)/2 (THT2) 

------
MXN Tl (sec.) T2 (sec.) T3(sec.) 

------~------------ -----
7 x 60 0.56 0.29 0.640 0.37 0.426 
7 x 70 0.96 0.32 1.012 0.37 0.897 
7 x 80 0.68** 0.57 0.180 0.63 0.078 
7 x 90 1.24 0.43 0.978 0.71 0.547 
7 x 100 1.49 0.46 1.057 0.56 0.911 
8 x 60 0.97 0.31 1.045 0.25 1.192 
8 x 70 0.83 0.61 0.300 0.75 0.105 
8 x 80 1.08** 0.78 0.319 1.02 0.061 
8 x 90 1.50 0.46 1.065 0.37 1.216 
8 x 100 1.60 0.71 0.766 1.05 0.419 
9 x 60 0.91 0.47 0.649 0.63 0.365 
9 x 70 1.11 0.57 0.641 0.82 0.298 
9 x 80 1.53 0.46 1.082 0.37 1.223 
9 x 90 1.92 0.51 1.156 0.62 1.028 
9 x 100 1.88 0.63 0.997 1.10 0.528 

45 x 50 4.89 2.09 0.804 2.89 0.515 
45 x 60 6.10 1.59 1.173 1.38 1.261 
46 x 50 4.57 2.69 0.519 3.76 0.195 
46 x 60 5.99 2.88 0.701 4.16 0.361 
47 x 50 4.92 3.22 0.416 3.96 0.216 
47 x 60 6.59 1.66 1.195 1.45 1.279 

Range of values of 
(Tl - T2)/t(Tl + T2) 

-0.5 to 0.0 
0.0 to 0.5 
0.5 to 1.2 

TABLIG II 

380-P 2- 0 

Percentage of results lying 
within this range 

6.4% 
29.5% 
64.1% 

tion time, we suggest the value I Hm+n) I for the length of the 
array MOVE. 

This routine has been compared with a FORTRAN version of 
Algorithm 302 [2]. In the cases where the transpose is effected in 
a few loops each containing a large number of elements, our 
routine is very efficient, in many cases halving the time needed by 
Algorithm 302. It is less efficient for cases with a large number of 
loops, but in the cases where Algorithm 302 is faster, the dif
ference in time is small. 

Our method for the rectangular arrays is :similar to that at
tributed to J. G. Gower in the paper by P. F. Windley [1] but using 
our concept of "symmetry" greatly improves the efficiency of the 
process. The case of a square array is detected and treated sepa
rately exchanging pairs aii and aii instead of testing for loops. 

Res~lts. The execution times Tl, for the FORTRAN version of 
Algorithm 302, and T2, for our routine TRANS with IWRK = 
I !(m+n) I, are given in Table I for a selection of matrices. The 
column T3 gives execution times for a version of TRANS from 
which all references to the array MOVE have been deleted. On the 
basis of more than 150 tests of this type, in which the relative 
difference between Tl and T2 was determined, only 6.4 percent 
gave a result favorable to Algorithm 302. A summary of the re
sults of these tests is given in Table II. 

The stars by the values of Tl indicate the condition T4 ~ 
Tl < T5 where T4 and T5 are execution times for TRANS with 
IWRK = I HmXn)I and IWRK = 1 respectively. In these cases, 
the length of IWRK determines whether Algorithm 302 or TRANS 
is the quicker. 

All the execution times refer to the ICL KDF9 computer. 
Acknowledgments. The authors wish to thank Dr. S. H. 

Hollingdale, director of the Computer Centre, for his support and 
encouragement. 

REFERENCES: 
1. WINDLEY, P. F. Transposing matrices in a digital computer. 

Comput. J. 2 (Apr. 1959), 47-'l8. 
2. BooTHROYD, J. Algorithm 302, Transpose vector stored array. 

Comm. ACM 10 (May 1967), ~~2-293. 

ALGORITHM: 

c A ISs~a§2~!b~AEm~~AlAA~~~YM~,M~~~Gf~R~~!~~~. WHICH 
C CONTAINS THE MXN MATRIX TO BE TRANSPOSED <STORE~ 
C COLUMWISEloMOVE IS A ONE-DIMENSIONAL ARRAY OF LENGTH IWRK 
C USED TO STORE IMFORMATION TO SPEED UP THE PROCESS• THE 
C VALUE IWRK•IM+Nl/2 IS RECOMMENDED. IOK INDICATES THE 
C SUCCESS OR FAILURE OF THE ROUTINE. 
C NORMAL RETURN IOK •O 
C ERRORS IOK• -1 oMN NOT EQIJAL TO M*N• 
C IOK= -2 oIWRK NEGATIVE OR ZERO. 
C IOKoGT.Ot ISHOULD NEVER OCCURlolN THIS CASE 
C WE SET IOK EQUAL TO THE FINAL VALUE OF I WHEN THE ~ARCH 
C IS COMPLETED i:lUT SOME LOOPS HAVE Nt)f BEEN MOVED. 

DIMENSION AIMNI tMOVEI IWRKI 
c 
C CHECK ARGUMENTS AND INITIALISE 
c 

c 

IFIMoLTo2oORoNoLT.ZIGO TO 60 
IFIMN.NE.M*NI GO TO 92 
IFI IWRKoLTollGO TO 93 
IFIM.EQoNI GO TO 70 
NCOUNT,.2 
M2•M-2 
DO lCI I•loIWRK 

10 MOVEIIl•O 
IFIMZ.LTollGO TO 12 

c COUNT NUMBERtNCOUNTtOF SINGLE POINrs. 



COLLECTED ALGORITHMS (cont.) 

c 

c 

DO 11 IA•l ,M2 
I B• IA* ( N-11/C M-1 I 
IFIIA*CN-lloNEoIB*IM-llJGO TO 11 
NCOUNT•NCOUNT+l 
Is!A*N+IB 
IFII.GT.IWRKIGO TO 11 
MOVECll•l 

11 CONTINUE 

C SET INTITAL VALUES FOR SEARCH. 
c 

c 

12 K"MN-1 
KMI•K-1 
MAX•MN 
I •l 

C AT LEAST ONE LOOP MUST BE RE-ARRANGED• 
c 

GO TO 30 
c 
C SEARCH FOR LOOPS TO REARRANGE. 
c 

20 

21 

22 

23 
c 
c REARRANGE 
c 

30 
31 
32 

33 

34 

35 

c 

MAJ<=K-1 
l=l+l 
KMl,.K-1 
IFO.GT.MAXI GO TO 90 
IFIIoGTolWRKIGO TO 21 
lf(MOVEClloLTollGO TO 30 
GO TO 20 
lf(l.EQ.M•I-K*Cl/Nll GO TO 20 
11 "l 
I2"M*l l-K*C 11/NI 
IFCl2oLE.l .oR. 12.GE.MAXI GO TO 23 
11=,12 
GO TO 22 
IFCI2.NE.llGO TO 20 

ELEMtNTS OF A LOOP. 

11= I 
B=ACll+ll 
12=M*ll-K*C 11/Nl 
IF C 11 •LE• I WRK) MOVE C 11) =2 
NCOUNT=NCOUNT+l 
JFCl2oEQoloOR.l2oGEoKMll GO TC 35 
ACll+ll=AC12+1l 
11=!2 
GO TO 32 
IFIMAX.EO.KMI.OR.12.Ea.11 GO To 41 
MAX=KMI 
GO TO 34 

C TEST FOR SYMMETRIC PAIR OF LOOPS. 
c 

c 

41 Alll+ll=B 
IFCNCOUNToGEoMN) GO TO 60 
If( 12.EQ.MAx.oR.MAX.EU.KMl) GO TO 20 
MAX=KMI 
11 =MAX 
GO TO 31 

C NORMAL Rt TURN. 
c 

c 

60 IOK=O 
RETURN 

C IF MATRIX IS SQIJARE.EX<.HANGE ELEMENTS ACI.JI AND A'IJollo 
c 

c 

7U Nl=N-1 
DO 71 l=l •Nl 

Jl=l+l 
DO 71 J=Jl ,N 

l l=l+(J-1 l*N 
12=.J+( l··ll*M 
b=A I 11 l 
A<Ill=A(J2) 
A ( 12 l=l:l 

71 CONTINUE 
GO TO 60 

C ERROR RETURNS• 
c 

c 

9CJ !OK= I 
91 RETURN 
92 IOK=-1 

GO TO 91 
93 IOK=-2 

GO TO 91 

END 

380-P 3- 0 

REMARK ON ALGORITHM 380 
SUBROUTINE- TO PERFORM IN-SITU 
TRANSPOSITION OF A RECTANGULAR 
MATRIX 
[Susan Laflin and M. A. Brebner, Comm. ACM 13 

(May 1970), 324-326] 
RALPH LACHENMAIER 

University of Colorado Graduate School Computing 
Center, Boulder, CO 80302 

KEY WORDS AND PHRASES: rectangular matrix, transpose 
CR CATEGORIES: 5.14 

Laflin and Brebner compared the execution times of their 
transposition algorithm (Algorithm 380) and Algorithm 302 [1] 
when run on an !CL KDF 9 computer. This comparison showed 
Algorithm 380 to be faster than Algorithm 302, in most cases. In 
order to generalize this comparison, the same matrix transposi
tions were run on the CU CDC 6400 computer. Table I shows the 

TABLE I. ON THE !CL KDF--9 

Range of values of 
(Tl - T2)/l(Tl + T2)* 

Percentage of results lying 
within this range 

-------------------------------
-0.5 to 0.0 

0.0 to 0.5 
0.5 to 1.2 

6.4% 
29.5% 
64.1% 

TABLE II. ON THE CDC 6400 

Range of values of 
(Tl - T2)/!(Tl + T2)* 

-0. 7 to 0.0 
0.0 to 0.5 
0.5 to 1.3 

Percentage of results lying 
within this range 

15.4% 
28.9% 
55.'7% 

"'Tl refers to execution time for Algorithm 380. T2 refers to execution for Algorithm 
302. 

results from the KDF 9 computer and Table II, the results from 
the 6400. It should be noted that Algorithm 380 did not enjoy as 
great an advantage on the 6400 as on the KDF 9. 

REFERENCES: 
1. BOOTHROYD, J. Algorithm 302, Transpose vector stored array. 

Comm. ACM 10 (May 1967), 292-293. 



COLLECTED ALGORITHMS (cont.) 

Certification of Algorithm 380 [Fl] 
In-Situ Transposition of a Rectangular Matrix [Susan 
Laflin and M.A. Brebner, Comm. ACM 13 (May 1970), 
324-326) 

I.D.G. Macleod [Recd. 25 Aug. 1970) 
Department of Engineering Physics, Research School 
of Physical Sciences, The Australian National 
University, Canberra, Australia, 2600 

Key Words and Phrases: rectangular matrix, transpose 
CR Categories: 5.14 

Algorithm 380 (i.e. subroutine TRANS) has been extensively 
tested using FORTRAN IV (level G) on the A.N.U's IBM System 
360 model 50; the test matrices were correctly transposed in every 
case. It should be pointed out that the FORTRAN convention of 
column-major storage of the input matrix is assumed in TRANS. 
Implementations which assume row-major matrix storage will 
have to be appropriately modified. 

Some unnecessary computation can be avoided by changing: 

21 IF(l.EQ.M*l-K*!l/N)) GO TO 20 
11 =I 

22 12=M*ll-K*(ll/N) 
IF(l2.LE.1.0R.l2.GE.MAX) GO TO 23 
11=12 
GO TO 22 

23 IF(l2.NE.l) GO TO 20 

to: 
21 12 =M*l-K*(l/N) 

IF(l2.LE.I.OR.12.GE.MAX) GO TO 20 
22 12=M*I2-K*(l2/N) 

IF(12.GT.I.AND.12.LT.MAX) GO TO 22 
IF(U.NE.l) GO TO 20 

As an extension of the timing tests reported by Laflin and 
Brebner, and Lachenmaier [1 ], four versions of TRANS were 
timed against TRANSPOSE [2] and PERMUTE [3], using FOR
TRAN IV G for all routines. As in the case of TRANS, the method 
employed in PERMUTE is similar to that attributed by Windley 
[4] to J.G. Gower, but PERMUTE is intended for general permu
tations and hence does not take advantage of the symmetry pres
ent in in-situ transpositions. Execution times on the A.N.U's 
IBM System 360 model 50 for the test set of 21 matrices given by 
Laflin and Brebner are summarized in Table I; further tests on 
this machine have confirmed the relative efficiencies indicated. 

Table I 

Routine 

Original version of TRANS 
(i) IWRK = (M + N)/2 
(ii) No MOVE 
TRANS modified as 
recommended above 
(i) IWRK = (M + N)/2 
(ii) No MOVE 
TRANSPOSE 
PERMUTE 

References 

Execution 
time (sec) 

9.0 
12.6 

8.2 
10.8 
18.9 
13.7 

1. Lachenmaier, R. Remark on Algorithm 380. Comm. ACM 
13 (May 1970), 327. 
2. Boothroyd, J. Algorithm 302, Transpose vector stored array. 
Comm. ACM 10(May1967), 292-293. 
3. Macleod, 1.0.G. An algorithm for in-situ permutation. Austral. 
Comput. J. 2 (Feb. 1970), 16-19: (May 1970), 92 (Errata). 
4. Windley, P. F. Transposing matrices in a digital computer. 
Comput. J. 2 (Apr. 1959), 47-48. 

380--P 4- 0 



COLLECTED ALGORITHMlS FROM CACM 

ALGORITHM 381 
RANDOM VECTORS UNIFORM IN 
SOLID ANGLE [G5] 
RoBERT E. KNOP* (Recd 20 Nov. 1969 and 20 Jan. 1970) 
Department of Physics, Rutgers University, New Bruns-

wick, NJ 08903 
* This work was supported in part by the National Science 
Foundation. 

KEY WORDS AND PHRASES: random numbeir, random vector, 
random number generator, probability distribution, frequency 
distribution, simulation, Monte Carlo 
CR CATEGORIES: 5.5 

procedure unisph (X, Y, Z); 
real X, Y, Z; 

comment This procedure generates the components of random 
unit vectors distributed uniformly in solid ang;le. Let Z be the 
polar axis, () the polar angle, and cf> the azimuthal angle. The 
arguments returned may then be written as: 
X = sin(O) X cos(q,) Y, = sin(O) X sin(q,), Z = cos(O) 

In this algorithm, RU represents a procedure which returns 
random numbers which are distributed uniformly over the in
terval (-1, 1) [l]. The algorithm operates by the method of re
jection [2]. The variables X and Y are first sampled from the 
uniform distribution over the interval (-1, 1). After rejecting 
points outside of the unit disk, we may transform variables 
from X, Y to cf>, S by use of the formulas X = ~rqrt(S) X cos(q,) 
and Y = sqrt(S) X sin(</>). It can be demonstr:ited that S is a 
random variable uniformly distributed over the interval (0, 1). 
The distribution of the cosine of the polar angle must be uniform 
over the interval (-1, 1). Thus Z is determined from S by the 
formula Z = 2 XS - 1 [3]. Finally, the X and Y components of 
the vector are normalized using the constraint that the vector 
be of unit length (3, 4]. 

A modification of this algorithm could be used to generate 
vectors which were azimuthally uniform but have a specified 
non\].niform distribution in the cosine of the polar angle. This 
would be achieved by replacing the statement Z := 2 X S - 1 
with Z := F(S), where Fis a procedure to calculate the inverse 
distribution function of Z. 

The author wishes to express his gratitude to B. Kehoe for 
comments concerning this algorithm, and to R. Nelson for doing 
much of the programming involved in testing it .. 

REFERENCES: 
1. VAN GELDER, A. Some new results in pseudo-random num

ber generation. J. ACM 14 (Oct. 1967), 785-7H2. 
2. VoN NEUMANN, J. Various techniques used in connection 

with random digits. Nat. Bur. of Standardls Appl. Math. 
Ser. 12, 1959, p. 36. 

3. KNUTH, DONALD E. The Art of Computer Programming, 
Volume 2, Seminumerical Algorithms. Addison-Wesley, 
Reading, Mass., 1968, p. 34. 

4. KNOP, R. Remark on algorithm 334. Comm. ACM 12 (May 
1969), 281.; 

begin 
real X, Y, Z, S; 
comment Rejection method yields two independent random 

variables, the azimuthal angle q,, and the square of the radius 
S.; 

A: 
X :=RU; Y := Rll; 
s := x i 2 + y i 2; 
if S > 1 then go to A ; 

381-P 1- RI 

comment Z must be uniform over the interval (-1, 1). It can 
be demonstrated that S is uniform over the interval (0, 1).; 

Z:=2XS-l; 
comment Given Z, X and Y are normalized by the constraint 

that the vector be of unit length.; 
S := sqrt.((l-Zj2)/S); 
X :=XX S; Y := Y XS; 

end unisph 

Remark on Algorithm 381 [GS] 
Random Vectors Uniform in Solid Angle [Robert E. 
Knop, Comm. ACM 13 (May 1970), 326] 

Gilnther F. Schrack [Recd. 1 Aug. 1970, 7 June 1971, 
and 4 Oct. 1971] 
The University of British Columbia, Departments of 
Electrical Engineering and Computer Science, 
Vancouver 8, B.C., Canada 

Key Words and Phrases: random vector generator, points 
uniform on sphere, spherically symmetric probability distribution 

CR Categories: 5.5 

Syntax corrections: The type declaration of the procedure body 
should be 

real S; 

and not 

real X, Y,Z, S; 

The sequential operator if in the conditional statement should be 
boldface and not in italic. The semicolon following the last assign
ment statement should be deleted. Also, in reference [3], p. 34 
should be replaced by paragraph 3.4. 

The following three cases are considered in this remark. 

Case 1: the original algorithm, Algorithm 381. 

Case 2: the modification of case 1 obtained by replacing the third 
last arithmetic assignment statement by 

S := 2 X sqrt(l-S); 

Case 3: an alternative modification of case 1 obtained by replacing 
the assignment statement for Z by 

Z :=RU; 

possible because Z is uniformly distributed in [ - 1, I]. 
The three cases were translated into Fortran IV and tested on a 

/360-67 running under the Michigan Terminal System. The gen
erated vectors were all normalized. Two statistical tests were con
ducted in order to investigate some characteristics of these versions. 



COLLECTED ALGORITHMS (cont.) 

For these tests, Rl 1 was replaced by 2*FRAND - 1, where FRAND 
is the fast random number generator in [4] with the multiplier re
placed with 78125005. Each of the following two tests were repeated 
six times, initializing the random number generator once only with 
0.461000. The sample size used for all tests was 1000. 
(i) Chi-square test for goodness of fit for each variable. The number 
of categories used was 20. For case 1 the null hypothesis Ho that 
each variable X, Y, and Z is uniformly distributed was rejected at 
the 1 percent significance level for variable X once out of the six 
tests; for variable Y, Ho was rejected once at the 5 percent signifi
cance level for too good a fit; and was not rejected for variable Z. 
For case 3, no rejection of Ho occurred. 
(ii) Linear correlation coefficient between pairs of the variables. As 
the correlation coefficient p of the population has the theoretical 
value zero, two-tailed tests of the null hyposesis H0 :p = 0 were con
ducted. For case 1, all sample correlation coefficients were suffi
ciently small as not to reject H0 at the 5 percent level of significance. 
For case 3, H0 was rejected at the 1 percent significance level but 
not rejected at the 5 percent level for one out of the 18 sample 
correlation coefficients. 

Case 2 saves one division compared to case 1 but otherwise does 
not change the behavior of the algorithm as tested above. Case 3 
was slightly slower (less than 7 percent) than case 1 in execution 
time. 

Finally, a comparison in execution time of case 1 with three 
other methods published previously [I, 2, 3] was carried out. Al
gorithm 381 showed a considerable advantage in speed, the three 
algorithms in [l, 2, and 3] were between 30 and 100 percent slower. 

References 
I. Cook, J.M. Rational formulae for the production of a 
spherically symmetric probability distribution. Math. Tables Other 
Aids Comp. 11 (1957), 81-82. 
2. Hicks, J.S., and Wheeling, R.F. An efficient method for 
generating uniformly distributed points on the surface of an 
n-dimensional sphere. Comm. ACM 2 (Apr. 1959), 17-19. 
3. Muller, M.E. A note on a method for generating points 
uniformly on n-dimensional spheres. Comm. ACM 2 (Apr. 1959), 
19-20. 
4. Seraphin, D.S. A fast random number generator for IBM 360. 
Comm. ACM 12 (Dec. 1969), 695. 

381-P 2- 0 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 382 
COMBINATIONS OF M OUT OF N OBJECTS [G6] 
PHILLIP J. CHASE (Recd. 18 Mar. 1969 and 31Oct.1969) 
Department of Defense, Fort Meade, MD 20755 

KEY WORDS AND PHRASES: permutationlS and combina
tiolJlS, permutatiolJlS 
CR CATEGORIES: 5.39 

procedure TWIDDLE (x, y, z, done, p); intege:r x, y, z; 
Boolean done; integer array p; 

comment TWIDDLE can be used (1) in generating all combi
nations of m out of n objects, or (2) in genera.ting all n-length 
sequences containing m l's and (n-m) O's. 

In the case (1), suppose the n objects are given by an array 
a[l:n], and let us successively store combinatiolJlS in another 
array, say, c[l:m]. For the first combination, i~[l] through c[m] 
are equated, respectively, to a[n-m+l] through a[n]. 
TWIDDLE (x, y, z, done, p) is called. If done = true, then all 
combinatiolJlS have been processed and we therefore stop. If 
not, a new combination is made available by E1etting c[z] equal 
to a[x]. TWIDDLE is called, and we continue on this loop until 
done= true. 

In the case (2), let the sequences of m l's and (n - m) O's be 
stored successively in an integer array, say, b[l:n]. The first 
sequence is obtained by setting b[l] through b[n-ni] equal to 0, 
and b[n-m+lJ through b[n] equal to 1. TWIDDLE (x, y, z, 
done, p) is called. If done = true, then all required sequences 
have been processed, and we therefore stop. If not, a new se
quence is made available by setting b[x] equal to 1, and b[y] 
equal to 0. TWIDDLE is again called, and we continue on this 
loop until done = true. 

m and n are used only in the initialization of the auxiliary 
integer array p[O:n+lJ, which is done in the main program as 
follows. (It is assumed that 0 :S; m :S; n and 1 $ n.) p[OJ is set 
equal to n + 1, and p[n+lJ is set equal to --2. p[l] through 
p[n-mJ are set equal to 0. p[n-m+lJ through p[nJ are set 
equal, respectively, to 1 through m. If m = 0, then set p[l) 
equal to 1. done is set equal to false. 

The algorithm has several features which deserve mention. 
When used in generating combinatiolJlS: (a) at 1each stage, only 
one combination number, namely c[zJ, is changed, (b) 
TWIDDLE is order preserving in the sense th:!tt at each stage 
c[lJ through c[mJ will equal, respectively, some a[i1] through 
a[im] where ii through im are strictly increasinf~. When used in 
generating fixed-delJlSity 0-1 sequences: (c) at each stage, it is 
only necessary to change two numbers of the sequence, b[x] 
and b[y], and these are changed in a specific manner. 

The algorithm underlying this procedure was discovered by 
Leo W. Lathroum in 1965. Another algorithm which accom
plishes combinatiolJlS by tralJlSpositions was discovered by 
Donald E. Knuth in 1964. The author has knowledge of the work 
of Lathroum and Knuth from private communications. He will 
include further detail in a mathematical paper, which will in
clude justification of this procedure, to be published elsewhere; 

begin integer i, j, k; j := O; 
Ll: 

j := j + 1; if p[jJ :S; 0 then go to Ll; 
if p[j- lJ = 0 then 
begin 

for i := j -· 1 step -1 until 2 do p[i] :== -·l; p[jJ O· , 

p[l] := x :== z :== 1; y :== j; go to L4 
end; 

if j > 1 then pfj-1) :== O; 
L2: 

j :== j + l; if p[jJ > 0 then go to L2; 
i :== k := j - l; 

L3: 
i := i + l; if p[i] = 0 then 
begin p[i] := -1; go to L3 end; 
if p[iJ = -1 then 
begin 

p[iJ := z := p[kJ; x := i; y := k; 
p[k] := -1; go to L4 

382-P 1- 0 

end· 
if i:.. p[O] then begin done~:= true; go to L4 end; 
z := p[j] := p[i]; p[i] :== O; x := j; y := i; 

L4: 
end of TWIDDLE 

REMARK ON ALGORITHM 382 [G6] 
COMBINATIONS OF M OUT OF N OBJECTS 

[Phillip J. Chase, Comm. ACM 13 (June 1970), 368] 
PHILLIP J. CHASE (Recd. 18 Mar. 1969 and 31 Oct. 

1969) 
Department of Defense, Fort Meade, MD 20755 
KEY WORDS AND PHRASES: permutations and combina

tiolJlS, permutations 
CR CATEGORIES: 5.39 

The following driver program illustrates the use of Algorithm 
382. 
begin integer m, n, i, x, y, z, q, r; Boolean done; 

integer array a, b, c[l:30J, p[0:31]; 
procedure TWIDDLE (x, y, z, done, p); 
comment Body of TWIDDLE is to be ilJlSerted here; 
comment TWIDDLE is here used to generate: (1) all combi-

nations c[l:m] of a[l:n]. Here we take a[i] equal to i, each i. 
(2) all sequences b[l:n] consisting of m l's and (n-m) O's. 
The user must supply m and n such that 0 :S; m :S; n and 1 ::; n. 
(Our declarations here require n :S; 30.); 

ininteger (2, m); ininteger (2, n); 
for i := n step -1 until 1 do a[i] := i; 
comment We initialize the parameters p and done of 

TWIDDLE as follows; 
r := n - m; 
for i := r step -1 until 1 do p[i] := O; 
for i := m step -1 until 1 do p[r+iJ := i; 
p[O] := n + l; p[n+lJ := -2; done := false; 
if m = 0 then p[lJ := l; 
comment We initialize c(l:m]; 
for i : = m step -1 until 1 do c[i] : = a[r+iJ ;. 
comment Next we initialize b(l:n]; 
for i := m step -1until1 do b[r+iJ := 1; 
for i := r step -1 until 1 do b[i] :== O; 
comment Now we generate and output our successive com

binatiolJlS and sequences; 
q := O; 



COLLECTED ALGORITHMS (cont.) 

L: 
q := q + 1; 
outinteger (1, q); 
for i : = rn - 1 step -1 until 0 do outinteger (1, c[m-i]); 
for i := n - 1 step -1 until 0 do outinteger (1, b[n-i]); 
TWIDDLE (x, y, z, done, p); 
if ..., done then 
begin 

c[z] := a[x]; b[x] := 1; b[y] := O; go to L 
end 

end of driver program 

382-P 2- 0 



COLLECTED ALGORITHM[S FROM CACM 

ALGORITHM 383 
PERMUTATIONS OF A SET WITH 

REPETITIONS [G6] 
PHILLIP J. CHASE (Recd. 4 Aug. 1969 and 13 Feb. 1970) 
Department of Defense, Fort Meade, MD :20755 
KEY WORDS AND PHRASES: permutations and combina
tions, permutations 
CR CATEGORIES: 5.39 

procedure EXTENDED TWIDDLE (x, y, k, u, clone, p); 
value k, u; illlteger x, y, k, u; Boolean clone; integer array 

p; 
comment EXTENDED TWIDDLE is a generalization both of 

TWIDDLE [2], which is used in generating <iombinations by 
transpositions, and of the Trotter-Johnson adjacent-transpo
sition permutation algorithms [5, 3]. 

In the main program, to successively store aU distinct permu
tations of C[IJ numbers equal to N[IJ (I= 1 to J") in an array A, 
take, as the first permutation, that obtained by dividing 
A[l:C[lJ+· · ·+C[JJJ into J intervals and setting the C[IJ 
numbers of interval I equal to N[I] (l=l to J). (We assume 
that J ;::: 2 and that each C[I] ;::: 1. For distinct permutations, 
we need N[l'J~N[I"] whenever I' ~ I". For 1:1omewhat better 
efficiency, it is desirable, but not necessary, that the sequence 
C[IJ be non-increasing.) 

EXTENDED TWIDDLE (x, y, k, u, clone, p) is caUed. If 
done = true, then all permutations have been processed and 
we therefore stop. If not, a new permutation is made available 
by transposing A[x] and A[y], EXTENDED TWIDDLE is 
called, and we continue on this loop until clone === true. 

EXTENDED TWIDDLE is initialized in the main program. 
k is equated to J, u is equated to C[l] + · · · + C[J] + 1, done 
is equated to false, and p[OJ and p[u] are eqUlated to J + 1. 
p[l:u-1] is initialized by setting the membern of the Ith in
terval, of length C[I], equal to J - I + 1(I=1 to J); 

That the procedure proceeds by transpositions (not neces
sarily a.djacent, this being impossible in general) will introduce 
a special economy in some cases. If this feature is of no value 
in a particular application, then the algorithm of Bratley [lJ 
or of Sagg [4] might be appropriate. For J = 2, TWIDDLE [2], 
which also has the transposition feature, will be more efficient 
than EXTENDED TWIDDLE. If each C[IJ = 1, then Trotter's 
algorithm [5] for generating permutations by transpositions, 
is appropriate. 

REFERENCES: 
1. BRATLEY, P. Algorithm 306, Permutations wilth repetitions. 

Comm. ACM 10 (July 1967), 450-451. 
2. CHASE, P. J. Algorithm 382, Combinations of M out of N 

objects. Comm. ACM JS (June 1970), 368. 
3. JOHNSON, S. M. Generation of permutations by adjacent 

transpositions. Math. Comp. 17 (1963), 282-28i5. 
4. SAGG, T. W. Algorithm 242, Permutations of a, set with repe

titions. Comm. ACM 7 (Oct. 1964), 585. 
5. TROTTER, H.F. Algorithm 115, PERM. Comm .. ACM 6 (Aug. 

1962)' 434-435.; . 
begin integers, i, j, b; 

j := b := s := O; 
Ll: 

j := j + 1; if abs (p[j]) = k then 
begin if p[j] < 0 then 8 := j; go to Ll end; 

if p[j-1] = k then 
begin 

383-P 1- 0 

for i := j - 8 - 1 step -1 until 2 do p[~; + i] := -k; 
if 8 > b then p[s] := k; 
p[s+lJ := p[j]; p[:i] := k; x := 8 + 1; y := j; go to L4 

end; 
if 8 > b then p[s] := k; 

L2: 
j := j + 1; if abs (p[j]) < k then go to L2; 
if j = u then 
begin 

if k = 2 then begin clone : = true; go to L4 end; 
j : = b : = 8; k : = k - 1; go to Ll 

end; 
i := b := j - 1; 

L3: 
i : = i + 1; if p[i] = k then 
begin p[i] := -k; go to L3 end; 
if p[i] = -k then 
begin 

p[i] := p[bJ; p[b] := -k; x := b; y := i; go to L4 
end; 
if i = u then 
begin 

if k = 2 then begin done : = true; go to L4 end; 
u : = j; j : = b : = 8; k : = k - 1; go to Ll 

end; 
x := j; y := i; p[j] := p[i]; p[i] := k; 

L4: 
end EXTENDED TWIDDLE 

REMARK ON ALGORITHM 383 [G6J 
PERMUTATIONS OF A SET WITH 

REPETITIONS [Phillip J. Chase, Comm. ACM 13 
(June 1970), 368] 

PHILLIP J. CHASE (Recd. 4 Aug. 1969 and 13 Feb. 1970) 
Department of Defense, Fort Meade, MD 207 55 
KEY WORDS AND PHRASES: permutations and combina
tions, permutations 
CR CATEGORIES: 5.39 

The following driver program illustrates the use of Algorithm 
383. 
begin integer x, y, k, u, J, Q, I, L; Boolean clone; 

integer array p[0:31J, A, C, N[1:30J; 
procedure EXTENDED TWIDDLE (x, y, k, u, done, p); 
comment Body of EXTENDED TWIDDLE :is to be inserted 

here; 
comment Program uses EXTENDED TWIDDLE in generat

ing all permutations of C[IJ numbers equal to N[IJ (I= 1 to J). 
They are successively stored in A and output. The user must 
supply: 1. J (indexing above requires J::;30); 2. C[IJ (l=l to 
J), each ;::: 1 (indexing above requires C[l]-t- · .. +C[J]::;30); 
3. N[IJ (l=l to J), distinct numbers (declarations above 
requires integer type); 

ininteger (2, J) ; 
for I := 1step1 until J do 
begin ininteger (2, C[IJ); ininteger (2, N[IJ) end; 
comment The array A is initialized; 



COLLECTED ALGORITHMS (cont.) 

L := 1; 
for I := 1step1 until J do 
for Q : = C[J] step -1 until 1 do 
begin A[L] := N[J]; L := L + 1 end; 
comment EXTENDED TWIDDLE is initialized; 
L := 1; 
for I := 1 step 1 until J do 
for Q : = C[J] step -1 until 1 do 
begin p[L] := J - I+ 1; L := L + 1 end; 
p[O] := p[L] := J + l; 
done : = false; 
k := J; u := L; 
comment Permutations are successively generated and 

output; 
Q := O; L := u - 1; 

Ll: 
Q := Q + 1; 
outinteger (1, Q); 
for I :='= u - 2 step -1 intil 0 do outinteger (1, A[L-1]); 
EXTENDED TWIDDLE (x, y, k, u, done, p); 
I:= A[x]; A[x] := A[y]; A[y] := J; 
if ...., done then go to Ll 

end of driver program 

383-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

[ 

The following algorithm by G. W. Stewart relates to the pa:per by the same 
uthor in the Numerical Mathematics department of this issue on pages 866-
67. This concurrent publication in Communications follows a policy an

nounced by the Editors of the two departments in the March 1967 i11sue. 

ALGORITHM 384 
EIGENVALUES AND EIGENVECTORS OF A REAL 

SYMMETRIC MATRIX [F2] 
G. W. STEWART (Recd. 7 Nov. 1969) 
Department of Computer Sciences, The University of Texas 

at Austin, *Austin, TX 78712 

*Work on this algorithm was supported in part by the National 
Science Foundation under grant GP-8442 and by the US Army 
Research Office (Durham) under grant DA-A.RO(D)-31-124-
G1050 at the University of Texas at Austin. 

KEY WORDS AND PHRASES: real symmetrie matrix, eigen
values, eigenvectors, QR algorithm 
CR CATEGORIES: 5.14 

DESCRIPTION: 
SYMQR finds the eigenvalues and, at the users option, the 

eigenvectors of a real symetric matrix. If the ma1;rix is not ini
tially tridiagonal, it is reduced to tridiagonal form by House
holder's method [2, p. 290]. The eigenvalues of the tridiagonal 
matrix are calculated by a variant of the QR algorithm with origin 
shifts [1]. Eigenvectors are calculated by accumulating the prod
ucts of the transformations used in the Householder transforma
tions and the QR steps, a procedure which guarantees a nearly 
orthonormal set of approximate eigenvectors. 

At each QR step the eigenvalues of the 2 X 2 submatrix in the 
lower right-hand corner are computed, and the one nearest the 
last diagonal element is distinguished. When these numbers settle 
down they are used as origin shifts. 

The user may choose between absolute and relative convergence 
criteria. The former accepts the last diagonal element as an ap
proximate eigenvalue when the last off-diagonal element is a small 
multiple (EPS) of the infinity norm of the matrix. The latter re
quires that the last off-diagonal be small compared t.o the last two 
diagonal elements .. To avoid an excessive number of' QR steps, an 
important consideration when eigenvectors are computed, the 
following guidelines should be followed. The convergence tolerance 
should not be smaller than the data warrants [2, p. 102]. The rela
tive convergence criterion should be used only when there are 
eigenvalues, small compared to the elements of the: matrix, that 
are nonetheless determined to high relative accuracy. Finally, 
when there is a wide disparity in the sizes of the elements of the 
matrix, the matrix should be arranged so that the sma,ller elements 
appear in the lower right hand corner. 

The program will work with matrices whose elements very 
nearly underflow or overflow the range of a :floating-point word. 
Some accuracy may be gained by accumulating inner products. 
'l'he places where this should be done are signaled by the appear
ance of the variables SUM and SUMl. 

REFERENCES: 
1. STEWART, G. W. Incorporating origin shifts into the sym

metric QR algorithm for symmetric tridiagonal matrices. 
Comm. ACM 19 (June 1970), 365-367. 

2. WILKINSON, J. II. The Algebraic Eigenvalue Proi•lem. Claren
don Press, Oxford, 1965. 

( 

c 
c 
c 
c 
c 
c 
c 

·C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
r 
c 
r 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
r 
c 
c 
c 

( 

c 
c 
r 

c 
c 
c 

c 
c 
c 

c 
c 
c 

384-P 1~- 0 

ALGORITHM: 

SUBROUTINE SYMQR(A,D,E,KOoNoNAoEPS,ABSCNVoVEC,,TRD,FAILI 

EXPLANATIUN OF THE PARAMETERS IN THE CALLING SEQUENCE. 

A A DOUBLE DIMENSIONED ARRAYo IF THE MATRIX IS NOT 
INITIALLY TRIDIAGONAL, IT IS CONTAINED IN THE LOWER 
TRIANGLE OF Ao IF EIGENVECTORS ARE NOT REQUESTED 
THE LOWER TRIANGLF OF A IS DESTROYED WHILE THE 
ELEMENTS ABOVE THF DIAGONAL ARE LEFT UNDISTt!RBED. 
IF EIGENVECTORS ARE REQUESTED, THEY ARE RETURNED IN THE 
COLUMNS OF Ao 

D A SINGLY SUBSCRIPTED ARRAY. IF THE MATRIX IS 
INITIALLY TRIDIAGONALo D CONTAINS ITS DIAGONAL 
ELEMENTS. ON RETURN D CONTAINS THE EIGENVALUES OF 
THE MATRIX• 

E A SINGLY SUBSCRIPTED ARRAY. IF THE MATRIX IS 
INITIALLY TRIDIAGONAL, E CONTAINS ITS OFF-DIAGONAL 
ELEMENTS• UPON RFTURN E!ll CONTAINS THE NUMBER OF 
ITERATIONS REQUIRED TO COMPUTE THE APPROXIMATE 
EIGENVALUE O!ll. 

KO A REAL VARIABLE CONTAINING AN INITIAL ORIGIN SHIFT TO 
BE USED UNTIL THE COMPUTED SHIFTS SETTLE DOWN• 

N AN INTEGER VARIABLE CONTAINING THE ORDER OF THE 
MATRIX. 

NA AN INTEGER VARIABLE CONTAINING THE FIRST DIMENSION 
OF THE ARRAY Ao 

EPS A REAL VARIABLE CONTAINING A CONVERGENCE TOLERANCEo 

ABSCNV A LOGICAL VARIABLF CONTAINING THE VALUE .TRUE• IF 
THE A~SOLUTE CONVERGENCE CRITERION IS TO BE USED 
OR THE VALUE .FALSE. IF THE RELATIVE CRITERION 
IS TO BE USED. 

VEC A LOGICAL VARIABLE CONTAINING THE VALUE oTRUE• IF 
EIGENVECTORS ARE TO BE COMPUTED AND RETURNED IN 
THE ARRAY A AND OTHERWISE CONTAINING THE VALUE 
.FALSE•• 

TRD A LOGICAL VARIABLF CONTAINING THF VALUE oTRUEo 
IF THF MATRIX IS TRIDIAGONAL AND LOCATED IN THE ARRAYS 
D AND E AND OTHERWISE CONTAINING THE VALUE .FALSEoo 

FAIL AN INTEGER VARIABLE CONTAINING AN ERROR SIGNAL. 
ON RETURN THE EIGENVALUES IN D!FAIL+ll•••••DINI 
ANO THEIR CORRESPONDING EIGENVECTORS MAY BE PRESUMED 
ACCURATE. 

REAL 
1A!NA,ll•D!lloE!lJ,KOoDloD2oKoEPSoS2,CON,NINF,TEST•CBoCC•CDt 
2CoSoTEMP,PoPP,Q,QQ,NORM,R,TITTERoSUMoSUMloMAX 

INTEGFR 
1NoNMloNM2oNAoFAILololl 0 J,L,LloLLoLLl,NL,NU,NUMl,SINC0SoRETURN 

LOGICAL 
lABSCNVoVECoTRDoSHFT 

TITTER • 50. 
NMl " N-1 
NM2 "' N-2 
NINF • O. 
ASSIGN 500 TO SINCOS 

SIGNAL ERROR IF N IS NOT POSITIVE• 

!FINoGToOI GO TO l 
FAIL • -1 
RETURN 

SPECIAL TREATMENT FOR A MATRIX OF ORDER ONE. 

1 IFIN.GT•ll GO TO 5 
!Fl.NOToTRDI 0111 "'A!loll 
IFfVECI Alloll = lo 
FAIL • 0 
PE TURN 

IF THE MATRIX IS TRIDIAGONALt SKIP THE REDUCTION. 

5 IFITRDI GO TO 100 
IFINoEQo21 GO TO 80 

REDUCE THE MATRI~ TO TRIDIAGONAL FORM BY HOUSEHOLDERS METHOD. 

DO 70 L•loNM2 
Ll " L+l 
DILi = AILoLI 
MAX • 0• 
t>O 10 l=LloN 

10 MAX• AMAXllMAXoABS!All,Llll 
IF!MAX.NE.Ool GO TO 13 
E!LI • o. 
A.!Loll • 1. 
GO TO 70 



COLLECTED ALGORITHMS (cont.) 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

( 

c 
c 

c 

13 SUM = O. 
no 17 I=LltN 
Alltll "Atltll/MAX 

17 StJM = SU"l + Alltll**2 
S2 = SUM 
52 = SORTtS2l 
IFIAllltll oLTo Ool S2 -S2 
£IL l = -S2*MAX 
At L 1 , l l " At L l 'l l + S2 
AtL,Ll " S2*AIL1,Ll 
SUMl • o. 
00 5(1 l :L l tN 
svM " o. 
DO 20 J•Lltl 

20 SUM" SUM+ AtltJl*AtJ,Ll 
IFtloEOoNl GO TO 40 
11 • l+l 
DO 30 J•!l ,N 

30 SUM• SUM+ AtJ,Ll*AtJ,ll 
40 Etll • SUM/AlLtLl 
50 Sl.Joll • SUMl + Atl,Ll*Etll 

CON • •5*SUMl/AlLtLl 
DO 60 l•LltN 
E 11 l • EI I l - CON* A t I • L l 
DO 60 J•Ll, I 

60 All,J> "AtltJl - Atl•Ll*EtJl - AtJ,LJ*Elll 
70 CONTINUE 
~O DINMll "AtNMltNMll 

DINI • AINtNl 
FtNMll • AINtNMll 

IF ElµENVECTORS ARE REQUIRED• INITIALIZE Ao 

100 IFloNOToVECl GO TO 180 

IF THE MATRIX WAS TRIDIAGONAL, SET A EQUAL TO THE IDENTITY MATRIX• 

JFtoNOToTRO oAND. N.NEo2l GO TO 130 
00 120 lsl,N 
DO 110 J•ltN 

110 All,Jl "Oo 
120 At I, I l • lo 

GO TO 180 

IF THE MATRIX WAS NOT TRIDIAGONAL, MULTIPLY OUT THE 
TRANSFORMATIONS OBTAINED IN THE HOUSEHOLDER REDUCTION. 

130 A IN t N l • lo 

135 
140 

150 

l,C,0 
170 

180 

190 

200 

A INMl ,NMl l = lo 
A I NM 1 , N l • 0 • 
A!NtNMll • Oo 
DO 170 L•l1NM2 
LL "' NM2-L+l 
lLl • LL+l 
00 140 l•LLl tN 
SUM • O. 
00 135 J•LL ltN 
SUM• SUM+ AtJtLLl*AlJtll 
AtLLtll "SUM/AtLLtLLl 
DO 150 l•Lll ,N 
DO 150 JzLLltN 
Atl,Jl "Atl1Jl - Atl,Lll*AtLL,Jl 
00 160 l=Lll •N 
A!I,Lll zOo 
A tLL, I l = O. 
AtLLtLLl = lo 

IF AN ABSOLUTE CONVERGENCE CRITERION IS REQUESTED 
IABSCNV•.TRUEolt COMPUTE THE INFINITY NORM Of THE MATRIX• 

IFloNOToABSCNVl GO TO 200 
NINF • AMAXllABSIDtlll+ABStEllll1ABStOtNll+~ASIEtNMllll 
IFtN.EOo2l GO TO 200 
no 190 I=21NM1 
NINF • AMAXltNINF,ABSIOtllJ+ABStFtlJl+ABSIEtl-llll 

START THE QR ITERATION. 

NU " N 
NtJMl = N-1 
SHFT . oFALSEo 
Kl . KO 
TEST " NINF•EPS 
EtNl ,. o. 

C CHECK FOR CONVERGENCE ANO LOCATE THE SUBMATRIX IN WHICH THE 
C QR ST~P 15 TO BE PERFORMED. 
c 

(" 

210 DO 220 NNL=l•NUMl 
NL = NUMl-NNL+l 
IFloNOToABSCNVl TEST• EPS•AMINltABStDtNLlltABSIDCNL+lJJI 
IFlABStEINLJI oLEo TEST> GO TO 230 

220 CONTINUE 
GO TO 240 

230 EtNLl • Oo 
NL • NL+l 
lftNL oNEo NU! Gn TO 240 
IFtNUMl oEO. ll RETURN 
I Ft Et 200! oNEoOo l PRINT 2000• IOI I I tEI I l tl•loNUJ 

7000 ·FORMAT!lH010El2o4/llH 10El2o411 
Nll • NllMl 
NUMl • NU-1 
GO TO 210 

240 EINUl K EtNUl+FLOATtNUMl-NLJ 
IFllo oEQ. lo! GO TO 250 
JFIO. oEQ. lei GO TO 250 
FAIL • NU 
RETURN 

C CALCULATE THE SHIFT. 
c 

c 
c 
c 
c 

c 
c 
c 

c 

384-P 2- RI 

7~0 CB• t0tNUMll-DtNUll/2o 

2Ml 
270 

300 

310 

MAX• AMAXltAAStCBl,ABstEtN~Mllll 
CB = C"6/MAX 
CC = 1EtNUMll/MAXl**2 
CO • S0RTtCB**2 + CCI 
IFICB •NE. Ool CO• SIGNICD,CBl 
K2 = DtNUl - MAX*CC/ICB+CDl 
IFtSHFTl GO TO 270 
IFIAAStK2-Kll oLTo o5*ABStK2ll GO TO 260 
Kl = K2 
K • KO 
GO Tn 300 
SHFT • oTPUEo 
K • K2 

PERFORM ONE QR STEP WITH SHIFT K ON ROWS AND COLUMNS 
NL THROUGH NU 

lftEt20o1.NE.Oo .AND• KoLE•l•E-14*ABSIDtNLIJl K•Oo 
P • DtNLl - K 
Q • EINLl 
ASSIGN 310 TO RETURN 
GO TO SINC0Sol500l 
00 380 l•NL,NUMl 

IF REQUIRED, ROTATE THE EIGENVECTORS. 

IFCoNOToVECJ GO TO 330 
DO 320 J,.l,N 
TEMP• C•AtJ,11 + s•AtJ1l+ll 
A(J,l+ll • -s•A(J,IJ + C•A(Jol+ll 

,20 AIJ1ll •TEMP 

C PERFORM THE SIMILARITY TRANSFORMATION ANO CALCULATE THE NEXT 
C ROT AT ION. 
(" 

c 

,30 Dill• C•OtlJ + S*EllJ 
TEMP• C•EllJ + S*DCl+ll 
Dll+lJ • -S*EtlJ + C*DCl+lJ 
Ft I J • -S*K 
DtlJ • C•Dtll + S*TEMP 
IFtl .EO. NUMll GO TO 380 
JFtABStSl oGTo ABStCJJ GO TO 350 
R • SIC 
DCl+lJ • -S*EtlJ + C*DCl+ll 
P • 0(1 +lJ - K 
rJ • C*F t 1+11 
ASSIGN 340 TO RETURN 
GO TO SINC0Sot5001 

340 Etll • R•NORM 
F Cl +l J • Q 

GO TO 380 
,50 P • C*EllJ + S*DCl+lJ 

Q • S*Etl+ll 
OCl+ll • C*P/S + K 
Etl+ll • C*Ell+ll 
ASSIGN 360 TO RETURN 
GO TO SINC0Sol50~1 

360 EllJ •NORM 
380 CONTINUE 

TEMP • C•EtNUMll + S*DINUI 
OINUJ • -S*EINUMll + C*DINUI 
EtNUMlJ " TEMP 
GO TO 210 

C INTERNAL PROCEDURE TO CALCULATE THE ROTATION CORRESPONDING TC 
C THE VECTORIPtOlo 
c 

'500 PP "' ABSIPI 
QQ " ABSCQJ 
IFCQQ oGTo PPJ GO TO 510 
NORM • PP*SORTllo + (QQ/PP1**2l 
GO TO 520 

'510 IFCOQ oEQ. Ool GO TO 530 
NORM • QQ•SORTllo + IPP/001**21 

520 C • P/NORM 
S • Q/NORM 
GO TO RETURNol3l0,340o3601 

530 C • lo 
s • o. 
lllORM • 0 0 

GO TO RETURN,C31~.340o360l 
EHP 

REMARK ON ALGORITHM 384 [F!~] 
EIGENVALUES AND EIGENVECTORS OF A REAL 

SYMMETRIC MATRIX [G. W. Stewart, Comm. ACM 
6 (June 1970), 369-371] 

G. w. STEWART 

Department of Computer Sciences, The University of 
Texas at Austin, Austin, TX 78712 

KEY WORDS AND PHRASES: real symmetric matrix, eigen
values, eigenvectors, QR algorithm 
CR CATEGORIES: 5.14 



COLLECTED ALGORITHMS (cont.) 

The following changes should be made in the subroutine 
SYMQR. Change the statement: 

REAL 
lA(N A,1) ,D(l) ,E(l),KO,Dl,D2, ... 

to: 
REAL 

lA(N A,1),D (1),E(l) ,KO,Kl,K2, ... 

After statement number 230 delete the statements: 
IF(E(200) .NE.O.) PRINT 2000,(D(l),E(I),I=l,NU) 

2000 FORMAT(lH010El2.4/(1H 10E12.4)) 

Replace the statements: 
240 E(NU) = E(NU)+FLOAT(NUMl-NL) 

IF(l. .EQ. 1.) GO TO 250 
IF(O .. EQ. 1.) GO TO 250 

by: 

240 E(NU) = E(NU)+l. 
IF(E(NU) .LE. TITTER) GO TO 250 

Replace the statements: 
300 IF(E(200) .NE.O .. AND. K.LE. l.E-14*ABS(D(NL)))K=O. 

P D(NL) - K 

by: 

300 P D(NL) - K 

384~P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 385 
EXPONENTIAL INTEGRAL Ei(x) [813] 
KATHLEEN A. PACIOREK* [Recd. 16 May 1969 and 11 

March 1970] 
Argonne National Laboratory, Argonne, IL 60439 

* Work performed under the auspices of the US Atomic Energy 
Commission. 

KEY WORDS AND PHRASES: exponential integral, special 
functions, rational Chebyshev approximation 
CR:CATEGORIES: 5.12 

DESCRIPTION: 
The classical exponential integral is defined by 

l xet 100
e-t 

Eh)= - dt = - - dt, x > 0 
-00 t -x t 

where the integral is to be interpreted as the Cauchy principal 
value. Except for the sign, it represents the natural extension of 
the function 

J arg z J < 7r 

to the negative real axis. 
The rational approximations and corresponding intervals used 

in this routine are: 

e"' [ 1 J Ezm(x) = ; 1 - ; Rzm(-1/x) , 

= -e"'R1m(-l/x), 

= ln(-x) - R1m(-x), 

= ln(x/xo) + (x - Xo)Rzm(x), 

e"' 
== - R1m(l/x), 

x 

e"' [ 1 J = ; l + ; Rzm (1/ x) , 

x ~ -4 

-4~xs-1 

-1 ~ x < 0 

O<x~6 

6 s x ~ 12, 12 s x s 24 

24 s x 

where the Rim(t) are rational functions of degree l in the numerator 
and m in the denominator, and 

Xo = .372507410781366634461991866580 

is the zero of Ei(x). See [2, 3} for the derivation of these approxi
mations. 

In several of the ranges, it was necessary to express the rational 
functions either as J-fractions or as ratios of finite sums of Cheby
shev polynomials, since the original forms were found to be poorly 
conditioned, i.e. subject to cancellation errors (subtraction of 
nearly equal quantities), large roundoff errors, etc. The approxi
mations chosen for this routine have the following maximum 
relative errors. 

Range 

x less than -4 
(-4, -1) 
(-1, 0) 
(0, 6) 
(6, 12) 
(12, 24) 
x greater than 24 

Maximum 
Relative Error 

l.32D-19 
6.33D-20 
1.12D-21 
l.24D-18 
2.35D-18 
6.0D-20 
7.85D-19 

385-P 1- 0 

Different approximations would naturally be required for use on 
computers with different word len;g;ths. See [2, 3]. 

Test results. This routine was tested on an IBM System 360 
model 75, where truncation is approximately 7 .OD-18, usual for 
long normalization form. However, since this is a base 16 machine, 
truncation may be l.lD-16, maxiimum for short normalization. 
The testing procedure is described in [1}. The maximum relative 
errors (MRE) and root mean square relative errors (RMS) follow. 
(Note-Argonne National Laboratory versions of DEXP and 
DLOG, rather than the IBM subroutine library routines, were 
used in these tests.) 

Range MRE RMS 

(-150, -4) 4.44D-16 1.52D-16 
(-4, -1) 6.02D-16 2.50D-16 
(-1,0) 4.41D-16 l .08D-16 
(0, 6) 6.68D-16 2.71D-16 
(6, 12) 7.45D-16 3.58D-16 
(12, 24) 8. lSD-16 2.56D-16 
(24, 100) 3.88D-16 l.36D-16 

On the IBM System 360 model. 75 the average time per call, 
excluding the jump from the caning program, was 245 micro
seconds. Using small perturbations of the constant coefficients in 
the numerators of the rational functions, in order to compensate 
for the biased arithmetic on the IBM System 360, it is possible 
to reduce the MRE by an average of 25 percent and the RMS by 
an average of 45 percent. 

Machine dependent features. Since Ei(O) = -· oo, an argument of 
zero results in a function value which is the smallest negative 
floating point number on the IBM System 360. Both the Argonne 
version of DEXP and that of the IBM System 360 Subroutine 
Library treat an argument greater than 174.673 as an error and 
return the largest possible floating point number. Since DEXP(X) 
is used for X greater than 24, this exponential integral routine 
returns the largest possible floating point number on the IBM 
System 360 whenever the argument is greater than 174.673, elimi
nating the call to the DEXP routine. In order to maintain good 
relative accuracy in the vicinity of Xo , the quantity (x - xo) 
should be computed to higher than machine precision to preserve 
the low order bits of xo . This can be readily accomplished by 
breaking xo into two parts, X1 and x2 , such that, to the precision 
desired, xo = x1 + x2 and the floating point exponent on X2 is much 
less than that of x 1 • See [2]. Examining the hexadecimal represen
tation xo = .5F5CA54AD2D7FOF264C3 (base 16), we see that for 
the IBM System 360 we might, and in fact this routine does, use 
xi = .5F5CA54AD2 (base 16) and x2 = .OOOOOOOOOOD7FOF264C3 
(base 16) or, x 1 = 409576229586./2**40 (base 10), in a form which 
will avoid decimal to hexadecim:al conversion errors and x2 = 
.7671772501993940D-12 (base 10). Then, (x - Xo) is computed as 
(x - xo) = (x - xi) - x2 • Additional precautions will have to be 
taken to compute ln(x/xo) for x near Xo. We use a low order ra
tional approximation to ln(x/xo) = log (1 + y), for J y J < .1, 
where y = (x - xo)/xo . However, a few terms in the Taylor series 
forln (1 + y) will usually suffice. 

REFERENCES: 

1. CLARK, N. A., CoDY, W. J., H1L:LsTROM, K. B., AND THIELEKER, 
E. A. Performance statistics of the FORTRAN IV(H) 
library for the IBM System/360. Argonne National Labora
tory Rep. ANL-7321, May 19U7. 

2. CODY, W. J., AND THACHER, HENRY C., JR. Chebyshev ap
proximations for the exponential integral Ei(x). Math. 
Comp. 23 (Apr. 1969), 289-303. 

3. CoDY, W. J., AND THACHER, Hi~NRY C., JR. Rational Cheby-



COLLECTED ALGORITHMS (cont.) 

shev approximations for the exponential integral E 1 (x). 
Math. Comp. 22 (July 1968), 641-649. 

4. R1cE, J. R. On the conditioning of polynomial and rational 
forms. Numer. Math. 7 (1965), 426-435. 

ALGORITHM: 

FUNCTION Df:l(Xll 
C AN EXPONENTIAL INTEGRAL ROUTINE 
C FOR X GREATER THAN O, THE EXPONENTIAL INTEGRAL, El• IS DEFINED BY 
C El(X)•INTEGRAL(EXPIT)/T OT) , FROM T=-INFINITY TO T•X 
C WHERE THE INTEGRAL IS TO BE INTERPRETED AS THE CAUCHY PRINCIPAL 
C VALUE. FOR X LESS THAN O, E!(X)•-El(-X), WHERE 
C EllZl•INTEGRAL(EXPl-Tl/T DTI FROM T=Z TO T•INFINITV. 

DOUBLE PRECISION DE1,x1,x,xo,xMXO,Y,R,OENM,FRAC,w,A,B.C,o,E. 
XF 9 P0 9 Pl,P2,P3,P4,00,0lt02,03,04,PX,OX,T,SUMP,SUMO 

DI MENS I ON Pl( 9 I , 0 l ( 9 ) , P2 ( 9 I , 0 2 ( 8 I , P 3 ( l 0 ) , 0 3 ( 9 I ,, PX ( l 0 ) , 0 X ( l 0 ) ' 
XP4( 101 ,04(9) ,P0(61 ,00161 

DIMENSION A(6),B(6),Cl8ltD(8),E(81tFl81 , 
DATA PO/l.00,2.23069937666899751DOt 1.7027705960680929500, 

X5.l0499279623219400D-lt 4.890892537892791540-2, 
X3.654622241323684290-4/ 

DATA OO/l.00,2.7306993766689975100, 2.7347869510692583600, 
x l. 21765962960151532DO' 2. 288179339905264l2D-l. 
x l. 3 l l 1415 ll 94977706D-2 / 

DATA Pl/5.9956994689237001009, -2.5038999488635136208, 
X7.05921609590056747D8, -3.3689956420159190106, 
X8.98683291643758313D6, 7.3714779018465744304, 2.8544688181364701 
X504, 4.l2626667248911939D2, 1.1063954724163958001/ 

DATA 01/2.55926497607616350D9, -2.79673351122984591D9, 
X8 .02 827782946956507D8, -1 .44980714393023883D8, 1. 771583080107998 
X84D7, -1. 495 75457 202559218 06, 8. 5 3 7710001807~909704, -3 • 0252 368 
X223822741003, 5.12578125Dl/ 

DATA P2 /9. 9895 7666516551 7040-1, 5. 73116 705 7445 08018DO, 
X4.18102422562856622DO, 5.88658240753281111DO, -1.941329675144307 
xo2D1, 7.89472209294457221Do, 2.32730233839039141Dl, -3.67783113 
X4 78311458Dl, -2 .46940983448 36 l 265DO/ 

DATA 02/l.14625253249016191DO, -1.9914960023123516402, 
X3.41365212524375539D2, 5.23165568734558614Dl, 3.1727948925436932 
X802, -8.38767084189640707DO, 9.6540521742928D303D2, 2.639830073 
Xl8024593DO/ 

DATA P3/9.999933106l60568740-l,. -l.84508623239127867DO, 
X2.65257581845279982Dl, 2.49548773040205944Dl, 
X-3.32361257934396228Dl, -9.l3483569999874255D-l, 
X-2 o l 0574079954804045Dl, -1. 0006419 l 398928483Dl, 
X-l.86009212112643758Dl, -l.64772117246346314DO/ 

DATA 03/lo00153385204534270DO, -l.09355619539109124Dl, 
Xl.99100447081774247D2, l.l9283242396860101D3, 
X4.42941317833792840Dl, 2.53881931563070S03D2, 
X5.99493232566740736Dl, 6.40380040535241555Dlt 
X9.79240359921729030Dl/ 

DATA P4/l.00000000000000486DO, -3.0000000032098l266DO, 
X-5.00006640413131002DO, -7.0681097789502935-960, 
x-1. 528 56623636929637Dl, -7. 631411016202 5363 lDO, 
X-2. 79798528624305389Dl, -l .81949664929868906D 1, 
X-2.23127670777632410D2, l.75338801265465972D2/ 

DATA 04/l.99999999999048104DO, -2.99999894040324960DO, 
X-7.99243595776339741DO, -l.20187763547154743Dl, 
X7.04831847180424676Dl, l.17179220502086455D2, 
Xl.37790390235747999D2, 3.97277109100414518DQ, 
X3.97E45971167414721D4/ 

DATA A/-5.77215664901532863D-l, 7.541643136630166200-1, 
Xl.29849232927373234D-lt 2.4068135568~977413D-2, 

Xl.32084309209609371D-3t 6.57739399753264501D-5/ 
DATA B/1.0D0,4.25899193811589822D-lt 7.9779471841022822D-2, 

X8.302084760987716770-3, 4.864271383930164l6D-4, 
X l. 3065519582284887 8D-5 I 

DATA C/8.67745954838443744D-8, 9.999955193013903020-1, 
Xl.1848310555494584401, 4.55930644253389823Dl, 
X6.99279451291003023Dl, 4.2520203476884077901, 8.83671808803843939D 
xo, 4.01377664940664720D-l/ 

DATA D/l.DO,l.28481935379156650Dlt 5.6443356956l803199Dl, 
Xl.06645183769913883D2, 8.973ll097125289802Dl, 3.l4971849170440750D 
x1, 3.79559003762122243Do, 9.08804569188869219D~21 

DATA E/-9.99999999999973414D-lt -3.44061995006684895Dl, 
X-4.27532671201988539D2, -2.39601943247490540D3, 
X-6.1688521005547635103, -6.57609698748021179D3, 
X-2.l0607737142633289D3t -l.48990849972948169Dl/ 

DATA F/l.D0,3.6406199500645980401,4.9434507020990364502, 
X3.19027237489543304D3, lo03370753085840977D4, 
Xl.6324145355778350304, l.ll497752871096620D4, 
X2.37813899102160221D3/ 

DATA X0/.372507410781366634DO/ 
X•Xl 

1 IFIX.LE.0.0001 GO TO 100 
IFIX.GE.12.00) GO TO 60 
IFIX.GE.6.DOI GO TO 40 

C X IN (0,6) 
T•X+X 
T•T /3. OD0-2 ., ODO 
PX( lOl•OoODO 
OX(lOl=O•(}OQ 
PX(91•Pl(9) 
OXl91•01(91 

C THE RATIONAL FUNCTION IS EXPRESSED AS A RATIO OF FINITE SUMS OF 
C SHIFTED CHEBYSHEV POLYNOMIALS AND IS EVALUATED BY NOTING THAT 
C T•IX)•Tl2X-ll AND USING THE CLENSHAW-RICE ALGORITHM FOUND IN 
C REFERENCE(4). 

DO 10 L=2t8 
I "'10-L 
PX I I > = T *PX I I+ 1 I-PX I I+ 2 I+ P 1 I I I 

10 OXlll•T*OX(l+ll-OX(l+21+0l(II 
R•l.5DO*T*PXl21-PXl31+Plll)l/l.5DO*T*QXl21-0X(3)+0lllll 

C (X-XOl•(X-Xll-X2 9 WHERE Xl•409576229586./2**40 AND 
C X2•-.7671772501993940D-12. 

XMX0•(X-409576229586.DO/l099511627776.DOJ-.767177250l993940D-l2 
JF(DABS(XMXO) .LT •• 037D0) GO TO 15 
OEl•DLOG(X/XO)+XMXO*R 
RETURN 

15 Y=XMXO/XO 

385-P 2- 0 

A RATIONAL APPROXIMATION TO LOGIX/XO)•LOG(l+YI, WHERE Y=IX-XOl/XO 
ANO OABS(Y) IS LESS THAN .1, THAT IS FOR OABSIX-XOI LESS THAN .037 

SUMP=I (I I P0(6 )*Y+POI 5) l*Y+PO 141 l*Y+P0(3) l*Y+P0(2I)*Y+POI11 
SUMQ=((((Q0(61*Y+QOl5ll*Y+Q0(4)1*Y+00(311*Y+00121l*Y+00(11 
DE I= (SUMP/ I SUMO*XO I +RI *XMXO 
RETURN 

X IN (6,121 
40 DENM=P2191+X 

FRAC=02(8l/DENM 
C THE RATIONAL FUNCTION IS EXPRESSED AS A J-FRACTION. 

DO 25 J•2,8 
I =9-J 
OENM=P211+ll+X+FRAC 

25 FRAC=Q2111/DENM 
OEI•OEXPIX)*( (P2( ll+FRACl/XI 
RETURN 

60 IF(X.GE.24.DO) GO TO 80 
C X IN (12,24) 

OENM=P3110l+X 
FRAC=Q3(9)/0ENM 

C THE RATIONAL FUNCTION IS EXPRESSED AS A J-FRACTION. 
DO 26 J•Z,9 
1=10-J 
OENM=P3I·1+11 +X+FRAC 

26 FRAC=03111/DENM 
OEl=DEXPIXl*l(P31ll+FRACl/Xl 
RETURN 

X GREATER THAN 24 
80 IFIX.LE.174.67300) GO TO 90 

'C X IS GREATER THAN 174.673 AND DEi IS SET TO INFINITY ON IBM S/360 
OEl=7.2075 
RETURN 

90 Y=l.000/X 
OENM=P4110l+X 
FRAC=Q4 I 9 I /OENM 

C THE RATIONAL FUNCTION IS EXPRESSED AS A J-FRACT!ON. 
DO 28 J=2,9 
I=lO-J 
OENM•P41 l+l )+X+FRAC 

28 FRAC•Q4(I)/OENM 
DEl=OEXP(X)*IY+Y*Y*IP4tll+FRACll 
RETURN 

100 IFIX.NE.0.00) GO TO 101 
X =O AND DEi IS SET TO -INFINITY ON IBM S/360 

DE I =-7 .2D75 
PRINT 500 

500 FORMATl57HOOEI CALLED WITH A ZERO ARGUMENT, RESULT SET TO -INFINIT 
XVI 

RETURN 
101 Y=-X 
110 W=l.ODO/Y 

IFIY.GT.4.0DOI GO TO 300 
IFIY.GT.l.0001 GO TO 200 

C X IN (-1,0I 
DE I =DLO(l.I YI -I ( ( ( (A ( 6) *Y+A t 5 I I *Y+A I 4) I *Y+A I 3 I ) *Y+A I 2 I I *Y+A I 1 ) I I 

X ( ( ( ( IB (61*Y+BI 5) l*Y+BI 41l*Y+B(3) l*Y+B( 2 I l*Y+BI 11 I 
RETURN 

200 DEl='-DEXPl-YI*( ( ( ( (I I (C(8)*W+C(7) l*W+Cl61 l*W+Cl5 I l*W+Cl4) l*W+Cl31 I 
C X IN (-4,-11 

x•w+c ( 2 I ) *W+C ( 1 I ) I ( ( ( ( I ( ( 0( 8) *W+O ( 7 I I •W+D ( 6) ) •w+o ( 5 I ) *W+O ( 4 I I *W+ 
XO( 3) l*W+O( 2) l*W+DI 11)) 

RETURN 
C X LESS THAN -4 

300 OE I =-DEXP (-YI* I W* ( l ~ODO+W* ( I I ( ( I IE ( 8 I *W+E ( 7 I ) *W+E ( 6 I I *lo/+E I 5 I I *W+ 
XE ( 4 I ) *W+ EI 3 I ) *W+E I 2 I I *W+E I l) ) I (I ( ( ( ( ( F ( 8) *W+F I 7) I *W•F I 6) I *W+F I 5) I 
X*W+F ( 4 I I *W+F ( 3 I I *W+F I 2 I I *W+F I l) I) I 

RETURN 
END 

CERTIFICATION OF ALGORITHM 38.5 [813] 
EXPONENTIAL INTEGRAL Ei (x) (Kathleen A. 

Paciorek, Comm. ACM 13 (July 1970) 444-445) 
EDWARD W. NG* (Recd. 2 Jan. 1970) 
Jet Propulsion Laboratory, California Institute of 

Technology, Pasadena, CA 91103 

* This paper presents the results of one phase of research car
ried out at the Jet Propulsion Laboratory, California Institute 
of Technology, under Contract NAS7-100, sponsored by the 
National Aeronautics and Space Administration. 



COLLECTED ALGORITHMS (cont.) 

KEY WORDS AND PHRASES: exponential integral, special 
functions, rational Chebyshev approximation 
CR CATEGORIES: 5.12 

General discussion. This algorithm computes, for x 2': 0, 
et . 

Ei(x) = ;:= - dt and -E1(x) = Ei(-x). It is a straightfor-
-"" t 

ward implementation of approximations produced by Cody and 
Thacher, the references as given in the algorithm. It fills a gap left 
by previously published algorithms, e.g. Clenshaw et al. [1] and 
IBMSSP [2), in that it computes Ei(x) for all values of real x 
within computer restrictions and that it is done with comparably 
high precision. Moreover, it is based on more efficient approxima
tions than those used in the algorithms mentioned above. How
ever, it is inferior in one aspect to Clenshaw et al. in that the type 
of approximations used makes it difficult for implementing an 
algorithm of variable precision, a feature included in Clenshaw 
et al. 

The documentation and design of this algorithm are very good 
with clear reference to the method used, the amount and result of 
testing, the machine dependent features, etc. A minor defect is 
that the data are not identified by comments, probably because 
they can be recognized readily in the main body of the code. 

Testing. This algorithm was compiled and executed without 
any modification on a UNIVAC 1108 computer. It was tested 
against a reference subprogram QElEI which computes Ei(x) in 
extended precision using a package of subroutines in 70-bit (about 
21 decimal) arithmetic, written by Dr. C. L. Lawson and associates 
at the Jet Propulsion Laboratory. The subprogram QElEI, 
written by the present author, computes Ei(x) from truncated 
Chebyshev series for negative x [3], and from Taylor and asymp
totic expansions for positive x [4, eqs. (2.1), (2.2), (2.3)). QElEI 
itself has been tested for some overlap ranges of values of x where 
more than one computational method is applicable and is be
lieved to be correct to at least 19 significant decimal digits (except 
when x is very close to the zero of Ei, x ~ 0.3725 where relative 
accuracy is poor). 

For the seven intervals of x as indicated in this algorithm, tests 
were made of the algorithm against QElEI which was considered 
as producing the "correct" function values. Each interval was 
partitioned into 1000 subintervals of equal length and in each 
subinterval one test value of x was selected using a uniform 
pseudorandom number generator. The results of the tests are as 
follows: 

Inter'Dal of x Maximum RMS Relati'De 
Relative Error Error 

[-150, -4] 2.2D-16 5.lD-17 
[-4, -1) 7.5D-17 1.2D-17 
[-1, O] 8.7D-18 1.4D-18 
[O, 0.5] 1.SD-16• 3.2D-17• 
[0.5, 6) 5.5D-17 1.0D-17 
[6, 12] l .6D-17 3.0D-18 
[12, 24] 2.9D-17 7 .lD-18 
[24, 100] 8.9D-17 l.9D-17 

The errors marked by * are adjusted to exclude the subinterval 
[0.37245, 0.37255] in which QElEI does not have sufficient relative 
accuracy to give meaningful comparison with this algorithm, 
which is coded in such a way as to retain good relative accuracy 
near Xo ~ 0.3725 · · · . In fact, xo is given in the data as two con
stants with a total accuracy of 79 bits, so that on the computer 
with an N-bit mantissa, this algorithm produces good relative 
accuracy for Ix - xol > 2N- 79 • However, the additional relative 
accuracy thus obtained is based on the assumption that x is 
exactly zero in the (N + l)th through 79th bits-an assumption 
not too realistic in most applications. 

We observe that the errors found are smaller than those ob
tained by the author of the algorithm. This is due to smaller 

385-P 3- RI 

truncation error for long precision on the UNIVAC computer 
("'l.D-18). 

In the range Ix - x0 I < 0.37, the author supplied an approxi
mation for log(x/x0). Such approximation is in the form of a 5-5 
rational function (i.e. a fifth degree polynomial divided by another 
fifth degree polynomial). It should be noted that there exists in 
the literature a 2-2 rational approximation suitable for the same 
purpose. (See [5, p. 111, Index 2720].) 

The two error exits occur for Ei(O) == ·- oo, and Ei(x > 
174.673) ~ oo. These were tested and return :±:7.2D75 which are 
approximately the smallest negative or largest positive floating 
numbers for the IBM 360. No timing test was performed owing to 
the apparent lack of reliability of time accounting on the UNIVAC 
1108 EXEC-8 system used here. 

I am indebted to C. L. Lawson and W. J. Cody for helpful dis
cussions. 

REFERENCES: 
1. CLENSHAW, C. W., MILLER, G. F., AND WooDGER, M. Algo

rithms for special functions L Numer. Math. 4 (1963), 403-419. 
2. IBM System/360 Scientific Subroutine Package (360A-CM-

03X) Version III Programmer's Manual. 1968, pp. 368--369. 
3. CLENSHAW, C. W. Chebyshev series for mathematical func

tions. NPL Math. Tables, Vol. 5, Dept. of Scien. and Indus. 
Res., H.M.S.O., London, 1962. 

4. CoDY, W. J., AND THACHER, H. C., JR. Chebyshev approxima
tions for the exponential integral Ei(x). Math. Comp. ~3 
(Apr. 1969), 289-303. 

5. HART, ET AL. Computer Approximations. Wiley, New York, 
1968. 

REMARK ON ALGORITHM 385 [Sia] 
EXPONENTIAL INTEGRAL Ei(x) [Kathleen A. 

Paciorek, Comm. ACM 13 (July 1970), 446--447] 
K. A. REDISH (Recd. 3 Aug. 1970) 
Department of Applied Mathematics, Hamilton, 

Mc Master University, Ontario, Canada 
KEYWORDS AND PHRASES: ANSI Fortran standard 
CR CATEGORIES: 4.0, 4.22 

(a) This algorithm does not conform to the standard in that the 
DATA statements contain array names. Section 7.2.2 of ANSI 
Fortran standard [Comm. ACM 7 (Oct. 1964), 590-625] (1) states 
that the Iist(s) of a data statement contain "names of variables 
and array elements." It is therefore necessary to list the elements 
singly. (A more readable layout can be obtained in one of the 
following ways: 

or 

DATA 
1 A(l)/-5.77215664901532863D-l/, A(2)/7 .54164313663016620D-l/, 
2 A(3)/ l.29849232927373234D-l/, A(4)/2.40681355683977413D-2/, 
3 A(S)/ 1.32084309209609371D-3/, A(6)/6.57739399753264501D-5/ 

DATA A(l) 
/-5.77215664901532863D-1 , 

A(3) , 
3 1.29849232927373234 D-1 , 
4 A(S) , 
s I l.32084309209609371D-3 , 

A(2) 
:r.54164313663016620D-1/, 

A(4) 
:!.40681355683977413D-2/' 

A(6) 
'5.57739399753264501 D-5/ 

The latter example might well be broken into three separate 
data statements.) 

(b) In the discussion of Machi:ne dependent features it is noted, 
in particular, that references are made to the largest positive real 
number and (in effect) its natural! logarithm. These references are 
buried in the code, at the statement numbered 80, 2 lines later, 
and 2 lines after the statement numbered 100. I feel that these 
should, at least, be defined by DATA statements at the head of 
the program. In fact, perhaps the time is now ripe for standard 
names and definitions of these and other environmental entities. 



COLLECTED ALGORITHMS (con1t.) 

Remark on Algorithm 385 [S13] 
Exponential Integral Ei(x) 
[Kathleen Paciorek, Comm. ACM· 13 (July 1970), 
446-447] 

Michael J. Frisch [Recd. 27 Jan. 1971] 
University Computer Center, University of Minnesota, 
Minneapolis, MN 55455 

Key Words and Phrases: ANSI Fortran sumdard 
CR Categories: 4.0, 4.22 

The following items were found · during compilation of the 
algorithms written in Fortran published to date in Communica
tions. The MNF compiler written at the University of Minnesota 
for CDC 6000 Series machines by Lawrenct~ A. Liddiard and E. 
James Mundstock was used to check the validity of the algorithms. 

Algorithm 385 does not conform to the standard in that the 
function name DEi appears in a type statement (Section 8.3.1). 
It should not appear there, and the function statement should be 
DOUBLE PRECISION FUNCTION DEi (Xl). The third state
ment (PRINT 500) after the statement numbered 100 is not among 
the statements allowed in standard Fortran. A comment card sepa
rates the initial line from the continuation line in the statement 
numbered 200 contrary to Section 3.2.1. 

385--P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 386 
GREATEST COMMON DIVISOR OF n INTEGERS 

AND MULTIPLIERS* [AI] 
GORDON H. BRADLEY (Recd. 14 Oct. 1969, 28 Nov. 1969, 

and 26 Feb. 1970) 
Administrative Sciences Department, Yale University, 

New Haven, CT 06520 

*This research supported in part by funds from the Yale Com
puter Center. 

KEY WORDS AND PHRASES: greatest common divisor, 
Euclidean algorithm, number theory, diophantine equations 
CR CATEGORIES: 3.15, 5.10 

DESCRIPTION: 

The algorithm calculates the greatest common divisor, IGCD, 
of n integers A(i). Multipliers Z(i) are constructed so that 

IGCD = A(l) X Z(l) + · · · + A(n) X Z(n). 

Details of the method and comparisons to other algorithms are 
given in [l]. 

The algorithm is a new version of the Euclidean algorithm for 
n integers. The algorithm first calculates gcd(A(l), A(2)), then 
gcd(gcd(A(l), A(2)), A(3)), etc. The n - 1 calculations of the 
greatest common divisor of two integers is accomplished by means 
of a modified version of the Blankinship algorithm which is de
scribed in [1]. The n - 1 sets of multipliers are then used to cal
culate the multipliers for the A(i). 

If then - 1 applications of the gcd algorithm for two integers 
requires a total of k iterations, then the algorithm requires 
2(n - 1) + 2k multiplications, k + n - 1 divisions, and 2k addi
tions. The number of arithmetic operations is less than indicated 
in [l] due to a modification noted below. In [1] the following bound 
on k is given. 

THEOREM. k is never greater than n - 1! plus five times the number 
of digits in A (1). 

COROLLARY. k is less than n - 1 plus the logarithm of A (1) to the 
base 1.6. 

This bound can be achieved. The bound on k can be reduced by 
having A(l) be the smallest number (in absolute value) among the 
A(i). 

If at some step of the algorithm the gcd becomes one, then the' 
gcd calculations are terminated. There is a reduction in the num
ber of arithmetic operations in this case. 

If all input integers are zero, then output is zero gcd and all 
multipliers zero. 

The multipliers constructed by the algorithm are, in general, 
not small numbers. A minimal set of multipliers described in [l] 
can be constructed by a slight modification of the FORTRAN 
program. 

REFERENCES: 

1. BRADLEY, G. H. Algorithm and bound for the greatest com
mondivisorof n integers. Comm. ACM 13(July1970),433-436. 

386--P 1- 0 

ALGORITHM: 

SUBROUTINE GCDN 
* !N,A,Z .IGCD) 

C N NUMBER OF INTEGERS 
C Al I> INPUT ARRAY OF N INTEGERS, Al I) IS USED AS WORKING STORAGE, 
C INPUT IS DESTROYED. 
C Zill OUTPUT ARRAY OF N MULTIPLIERS 
C IGCD OUTPUT, GREATEST COMMON DIVISOR OF THE All) INTEGERS 
c 

DIMENSION A150),Z(50) 
INTEGER A,z,c1,c2,v1,v2,Q 

C FINO FIRST NON-ZERO INTEGER 
DO 1 M = l,N 
IFIAIMl.NE.Ol GO TO 3 

l ZIM> = 0 
C ALL ZERO INPUT RESULTS IN ZERO GCO AND ALL ZERO MULTIPLIERS 

IGCO = 0 
RETURN 

C IF LAST NUMBER IS THE ONLY NON-ZERO NUMBER, EXIT IMMEDIATELY. 
3 IFIM.NE.Nl GO TO 4 
• IGCD = A IM) 

l (Ml = l 
RETURN 

4 MPl = M + l 
MP2 • M + 2 

C CHECK THE SIGN OF AIM> 
!SIGN = 0 
IF1A1Ml.GE.0) GO-TO 5 
IS IGN = l 
AIM) = -A(M) 

C CALCULATE ~CD VIA N-1 APPLICATIONS OF THE GCO ALGORITHM FOR TWO 
C INTEGERS. SAVE THE MULTIPLIERS. 

5 Cl = AIM> 
DO 30 I = MPl,N 
JF!All).NE.Ol GO TO 7 
A I I I = l 
Z l I> = 0 
GO TO 25 

7 Yl = l 
Y2 = 0 
C2 = IABSIAI I)) 

10 Q = CZ/Cl 
C2 = C2 - O*Cl 

TESTING BEFORE COMPUTING Y2 AND BEFORE COMPUTING Yl BELOW SAVES N - l 
ADDITIONS AND N - l MULTIPLICATIONS. 

IFIC2.EQ.0) GO TO 20 
Y2 = Y2 - O*Yl 
O = Cl/C2 
Cl = Cl - O*C2 
IFICl.EQ.0) GO TO 15 
Yl = Yl - O*YZ 
GO TO 10 

15 Cl = CZ 
Yl = Y2 

20 Z<I> =(Cl - Yl*AIM))/All) 
A I I) = Yl 
AIM) = Cl 

C TERMINATE GCO CALCULATIONS IF GCO EQUALS ONE. 
25 IFICl.EQ.ll GO TO 60 
30 CONTINUE 
40 IGCO = A IM) 

C CAltULATE MULTIPLIERS 
DO 50 J = MP2,J 
K = I - J + 2 
KK "· K + l 
ZIKI ·•,; ZIKl*AIKK) 

50 AIKI =AIK)*AIKK) 
ZIMI = AIMPl) 
IF(!SIGN.EQ.Ol GO TO 100 
ZIM) = -ZfMl 

100 RETURN 
C G~g ~~~N~, 1 S!T 1 REMAINDER OF THE MULTIPLIERS EQUAL TO ZERO. 

DO 65 J = IPl,N 
65 z ( J) = 0 

GO TO 40 
END 



COLLECTED ALGORITHMS (co111t.) 

Certification of Algorithm 386 [Al] 

Greatest Common Divisor of n Integers and Multipliers 
[Gordon H. Bradley, Comm. ACM 13 (July 1970), 447] 

Larry C. Ragland and Donald I. Grnod [Recd. 18 
June 1971, 22 August 1972, and 6 November 1972] 
Department of Computer Sciences, The University of 
Texas at Austin, Austin, TX 78712 

Key Words and Phrases: proof of algorithms, greatest common 
divisor, m:uclidean algorithm, inductive assertion method 

CR Categories: 3.15, 4.42, 5.10, 5.24 

Subroutine GCDN, Algorithm 386 as described in [1, 2], com
putes the greatest common divisor, IGCD, of n integers A ( l), ... , 
A(n) by using the Euclidean algorithm to compute first gcd(A(l), 
A(2)), then gcd(gcd(A(l), A(2)), A(3)), etc. It also computes in
teger multipliers Z(l), ... , Z(n) such that/GCD = L:f-1 A(i)Z(i). 

A formal proof that a modified version of GCDN performs 
these two tasks has been constructed and is available from the 
authors. The proof employs a slight variation of one of the inductive 
assertion method techniques described in [3, 4]. Eight points in the 
program were tagged with assertions and the verification conditions 
for the 20 resulting paths were constructed automatically and 
proved manually. The initial assertion used in the proof is 

1 ~ No ~ dimension (A) = dimension (Z) 

and the final assertion is 

IGCD = gcd(Ao(I), . .. , A 0(N0)) and 
No 

IGCD = L Ao(i)Z(i). 
i-1 

A variable with a zero subscript denotes the value of that variable 
at the time the subroutine is entered, and a variable without the zero 
subscript denotes the value of the variable when the subroutine 
terminates. A proof of termination is not included but termination 
can be deduced from the bounds Bradley describes for the algo
rithm in [2]. 

Three modifications of the program were necessitated by errors 
in the original algorithm. 
(a) The two statements following statement 3 

IGCD = A(M) 
Z(M) = 1 

should be replaced by 

IGCD = IABS(A(M)) 
Z(M) = A(M)/IGCD 

so that a positive greatest common divisor will result when all 
elements of array A are zero except the last, and it is negative. 
(b) The second statement after statement 40 

K=I-J+2 

should be replaced by 

K =I - J + MPl. 

The statement replaced is correct only if the first element of array A 
is nonzero, in which case M Pl = 2. 
(c) Statement 60 

60 /Pl == I+ 1 

should be replaced by 

60 IF(I.EQ.N)GO TO 40 
/Pl == I+ 1. 

386 -P 2- 0 

This is necessary when the greatest common divisor becomes one 
on the last element of array A. If N 0 is strictly less than dimension 
(Z) then this last change may be omitted; however, this leads to the 
possibility of the value of the initial parameter of a DO statement 
being greater than the value of the terminal parameter. This problem 
is discussed below. 

The proof of GCD N assumes that DO statements consist of the 
following four steps. 

Step 1. 
Assign the control variable the value of the initial parameter. 

Step 2. 
Execute the body of the DO statement. 

Step 3. 
If control reaches the terminal statement, ~execute the terminal 
statement and increment the control variable by the incremen
tation parameter. 

Step 4. 
If the value of the control variable is less than or equal to the 
value of the terminal parameter, go back to 2; otherwise the 
DO is satisfied and execution continues out of the statement. 

This interpretation of the DO statement makes it necessary to insert 
the statement 

I= N 

following statement 30. 
For implementations in which DO statements are not handled 

as described above, other program modifications may be necessary. 
For example, according to the Fortran standard [5], at Step 1 the 
value of the initial parameter must be less than or equal to the value 
of the terminal parameter and in Step 4, if the DO is satisfied, the 
control variable becomes undefined. In subroutine GCDN, the only 
DO statement in which the value of the initial parameter may be 
greater than the value of the terminal parameter is DO 50 J = 

M P2,I. The program will give the correct result whether this loop is 
executed once (as in the proof) or is bypassed; however, if a fatal 
error will result, then the statement 

IF(MP2.GT.l)GO TO 51 

should be inserted before the statement 

DO 50 J = MP2,I 

and the statement following statement 50 should be labeled 51. In 
many implementations the control variable remains defined at the 
last value used in execution when the DO is satisfied. In this case the 
statement I = N, which was inserted earlier, may be omitted. This 
statement is necessary if the control variable becomes undefined, or 
if the control variable remains defined at its last value used in execu
tion plus the incrementation parameter (as in this proof). 

References 
1. Bradley, G.H. Algorithm 386, Greatest common divisor of n 
integers and multipliers. Comm. ACM 13, 7 (July 1970), 447-448. 
2. Bradley, G.H. Algorithm and bound for the greatest common 
divisor of n integers. Comm. ACM 13, 7 (July 1970), 433-436. 
3. Good, D.I. Toward a man-machine system for proving 
program correctness. Ph.D. Th., U. of Wisconsin, June 1970. 
4. Elspas, B., Levitt, K.N., Waldinger, R. J., and Waksman, A. 
An assessment of techniques for proving program correctnes~ 
Computing Surveys 4, 2 (June 1972), 97-147. 
5. USA Standard X3.9-1966 Fortran. United States of America 
Standards Institute, New York, 1966. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 387 
FUNCTION MINIMIZATION AND LINEAR 
SEARCH [E4] 
K. FIELDING (Recd. 23 Sept. 1969) 
Computing Centre, University of Essex, Wivenhoe Park, 

Colchester, Essex, England 

KEY WORDS AND PHRASES: function minimization, rela
tive minimum, quasi-Newton method 
CR CATEGORIES: 5.15 

[EDITOR'S NOTE. According to tests made by the referee this 
algorithm is slower than FLEPOMIN, Algorithm 251, Comm. 
ACM 8 (Mar. 1965), 169-170. However, in two out of six tests 
FLEPOMIN failed and BROMIN did not fail to f.ind a mini
mum.-L.D .F.] 

procedure Bromin (n, iterations, number, maxiters, toliter, toler
ance, x, f, g, h, compute f, compute g, converged); 
value n, iterations, toliter, tolerance, maxiters; 
integer n, iterations, number, maxiters; 
real toliter, tolerance, f; 
array x, g, h; Boolean converged; procedure compute f, 

compute g; 
comment This procedure minimizes a function using the method 

of Broyden [1]. The parameters are described as follows. n is 
the number of independent variables. iterations is an upper 
limit on the number of iterations allowed. On exit mtmber is the 
actual number of iterations taken. maxiters is the maximum 
number of function evaluations allowed on each linear search. 
to liter is the convergence limit for Linmin 2. tolerance is used as 
the convergence limit. A solution is assumed to have been reached 
if g(x)g' (x) < tolerance. x[l :n] is an estimate of the solution. On 
exit it is the best estimate of the solution found. f is the current 
function value f(x). g[l :n] is the current gradient vector of f(x). 
h[l:n, l:n] is the inverse Jacobian at the solution if number~ n 
and if converged = true on exit. compute f (x, f) is a procedure 
provided by the user to evaluate the function at any point. 
compute g(x, g) is a procedure provided by the user to evaluate 
the gradient vector at any point. converged is a Boolean vari
able used as follows: 

On entry converged = true implies that x, f, g, and hall have 
been assigned values, if converged = false however it is assumed 
that just x has been assigned a value and h will be set to a unit 
diagonal matrix. 

On exit converged = true means that a solution has been found, 
converged = false means that no solution has been found. How
ever x is set to the best point found so far while the function 
value, gradient vector, and estimated inverse Jacobian cor
responding to x are inf, g, and h. 

The procedure Linmin 2 (n, maxiters, toliter, x, f, compute f, 
t, p) is used to find a linear minimum on each iteration. 

REFERENCE: 
1. BROYDEN, C. G. The convergence of a class of double-rank 

minimization algorithms. J. Inst. Math. Appl. (to appear); 
begin 

integer i, j; real norm, t, ythy, pty, temp; 
array p, y, hy [1 :n]; 
if ~ converged then 
begin 

comment Initialize g, f, hand converged; 
compute f(x, f); compute g(x, g); 
converged : = true; 
for i := 1step1 until n do 

begin 
h[i, i] := 1.0; 
for j := i + 1 step 1 until n do 

h[i, j] := h(j, i) := 0.0 
end of loop on i to set up h 

end of initial set up 
start of main loop on number; 
for number : = 1 step 1 until iterations do 
begin 

for i := 1 step 1 until n do 
begin 

comment Evaluate the search vector p; 
p[i] := 0.0; 
for j : = 1 step 1 ·until n do 

p[i] : = p[i] - h[i, j] x g[j] 
end of loop on i to evaluate p; 

387-P 1- 0 

Linmin 2 (n, maxiters, to liter, x, f, compute .f, t, p); 
comment Finds the optimum value oft and the values of x 

and f associated with it; 
for i := 1 step 1 until n do 

y[i] : = g[i]; 
comment Use y as a temporary storage location for the old 

gradient before evaluating the new one asy = g new - gold; 
compute g(x, g); 
norm := 0.0; 
for i := 1step1 until n do 
begin 

norm := norm + g[i] j 2; 
y[i] : = g[i] - y[i] 

end of loop to calculate g'g and y; 
ythy := pty := O; 
for i. : = 1 step 1 until n do 
begin 

hy[i] := O; 
for j := 1step1 until n do 

hy[i] := hy[i] + h[i, j] x yUJ; 
ythy : = ythy + y[i] x hy[i]; 
ply := pty + p[i] x y[i] 

end of loop to evaluate hy, p'y and y'hy; 
temp := ythy I pty + t; 
for i := 1 step 1 until n do 
begin 

h[i, i] := h[i, i] + ((p[i] X temp-2.0 X hy[i]) X p[i])/pty; 
for j := i + 1step1 until n, do 

h[i, j] := h[j, i] := h[i, j] + ((p[i] X temp - hy[i]) 
x p[j] - hy[j] x p[i])/pty 

end of loop to update the matrix h; 
if norm < tolerance then go to successful 

end of main loop on number; 
number := iterations; 
converged : = false; 

successful: 
end of procedure Bromin; 
procedure Linmin 2 (n, maxiters, toliter, x, f, compute f, t, p); 

value n, maxiters, toliter; 
integer n, maxiters; real toliter .. f, t; array x, p; procedure 

compute f; 
comment This procedure carries out a linear search over t. It 

considers f (x+p X t) as a function of t alone. f is evaluated for 
three points. It is now assumed that f(t) can be approximated 
by a quadratic. If this quadratic has a minimum, then this is 
taken as a better estimate of the minimum of f(t). If, however~ 
the quadratic is concave, a step is taken in the direction of the 
best point so far. If the four points obtained form an increasing 



COLLECTED ALGORITHMS (cont.) 

or decreasing sequence with respect to t then the largest is re
jected. If they do not, then they must bracket a local linear 
minimum and the three points retained are those that most 
closely enclose this minimum. This process is repeated until it 
is felt that a good estimate of t is available (see parameter 
toliter), or until some limit on the number of function evalua
tions is violated (see parameter maxiters). The parameters are 
described as follows. n is the number of variables. maxiters is the 
maximum number of function evaluations allowed in the linear 
search. toliter is the tolerance for minimization, exit if abs((t -
last t)/t) < toliter. x[l :nJ is the array of independent variables. 
f contains the function value f(x). compute f(x,f) is the user 
provided routine to evaluate the function values at any point. 
t contains the best value of the scalar used for the step length. 
p[l :nJ is the vector which gives the direction of the step. If 
tf is the final value of t then the actual step taken is p X tf. 
This routine is based on the procedure quadmin by Broyden [2J. 

REFERENCE:: 
2. BROYDEN, C. G. A class of methods for solving nonlinear 

simultaneous equations. Math. Comp. 19 (1965), 577-593; 
begin 

integer i, left, center, right, count; 
real alpha, beta, gamma, last t, ptp; 
array vt, phi [1 :3J; 
procedure reject (j); 

value j; integer j; 
comment This procedure replaces one of the old values of t 

and then sorts the remaining three in ascending order of t in 
the array vt; 

begin 
procedure interchange (i, j); 

integer i, j; 
comment if vt[iJ > vt[jJ interchange i and j; 
begin 

integer k; 
if vt(i) > vt[jJ then 
begin k : = i; i : = j; j : = k end 

end of interchange 
start of reject; 
vt[jJ := t; phi[jJ := f; 
interchange (center, right); 
interchange (left, center); 
interchange (center, right) 

end of reject; 
procedure basic 
comment This procedure evaluates a new vallue for x and the 

corresponding value off; 
begin 

for i ·= 1step1 until n do 
x[i] : = x[iJ + (t- last t) X p[iJ; 

last t := t; compute f(x, f) 
end of basic 
start of Linmfo 2 itself; 
comment Initialize phi, vt, left, center and right; 
phi[lJ := f; 
left : = 1; center : = 2; right : = 3; 
last t := vt[lJ := ptp := 0.0; 
for i := 1 step 1 until n do 

ptp := ptp + p[iJ i 2; 
ptp := 1.0/sqrt(ptp); 
comment ptp is now used to limit the initial step; 
vt[2] : = t : = if ptp < 1.0 then ptp else 1.0; 
basic; 
phi[2] := f; vt[3J := t := t X 2.0; 
basic; 
phi[3] := f; 
comment Sets up first three values before entering main loop; 
for count : = 3 step 1 until maxiters do 

begin 
alpha := vt[2J - vt[3J; 
beta := vt[3J - vt[lJ; 
gamma := vt[l] - vt[2J; 
alpha := -(phi[lJXalpha+phi[2JXbeta+phi[3J 

X gamma)/(alpha X beta X gamma); 

387-P 2- 0 

beta : = (phi[lJ - phi[2J) /gamma - alpha X (vt[l] + vt[2J); 
comment If the quadratic through the three points is con

vex, tis chosen as the minimum of it. If it is concave, how
ever, tis chosen as a step in the direction of steepest descent; 

t := if alpha > 0.0 then - beta/(2.0 X alpha) 
else if phi [right] > phi [left] 
then 3.0 X vt [left] - 2.0 X vt [center] 
else 3.0 X vt [right] - 2.0 X vt [center J; 

if abs((t - last t)/t) < toliter then 
begin 

t := last t; go to exit 
end of exit where minimum has been found; 
basic; 
if t > vt [right] 

V (t > vt [center] /\ f < phi [center]) 
V (t > vt [leftJ /\ t < vt [center] /\ f> phi [center]) 
then reject (left) else reject (right); 

comment Choose which point to reject; 
end of main loop which used count as an index; 

exit: 
end of Linmin 2 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 388 
RADEMACHER FUNCTION [822] 
H. HUBNER 
Forschungsinstitut des FTZ der Deutschen Bundespost, 

Darmstadt 
H. KREMER, K. 0. LINN, AND W. SCHWERING (Recd. 

16 Jan. 1970) 
Institut for Allgemeine N achrichtentechnik der Tech

nischen Hochschule Darmstadt, Germany 

KEY WORDS AND PHRASES: Rademacher function 
CR CATEGORIES: 5.12, 5.13 

integer procedure radfun(k, x); 
value k, x; integer k; real x; 

comment The procedure radfun computes the Rademacher 
function rk(x) as defined in [1, 2, 3]. This definition is used in re
cent papers and differs from the original definition [4] by an op
posite sign. The Rademacher functions rk(x) form an incom
plete set of orthogonal, normalized, periodic square wave 
functions with period equal to one. They assume only the values 
+1 and -1. The Rademacher function rk(X) may be defined 
either by the formula 

rk(x) == sgn[sin(211"2kx)] (1) 
or by the following algorithm: 

Let x be in the interval ~-'- < x < m + 1
, m = 0, ±1, ... 

2...-1 - 2k+l 

then 
- r + 1 for m even 

rk(X) - \ -1 form odd. (2) 

The index k must be a nonnegative integer and the argument x 
can be any real number in the range - oo =:; x =:; oo. 

Equations (1) and (2) show that rk(x) is piecewise constant and 
has 2k+l jump discontinuities in the interval 0 =:; z < 1. The 
procedure radfun uses eq. (2) for computation. 

REFERENCES: 
1. PALEY, R. E. A remarkable series of orthogonal functions. 

Proc. London Math. Soc. Ser. 2, 34 (1932), 241-279. 
2. FINE, N. J. On the Walsh functions. Trans. Amer. Math. 

Soc. 65 (1949), 372-414. 
3. MORGENTHALER, G. W. On Walsh-Fourier series. Trans. 

Amer. Math. Soc. 84 (1957), 472-507. 
4. RADEMACHER, H. Einige Satze von allgemeinen Orthogonal

funktionen. Math. Ann. 87 (1922), 112-138; 
begin 

integer r; 
x := x - entier(x); 
r : = entier(xX2 j (k+ 1)); 
radfun :=if r/2 = r + 2 then 1 else - 1 

end 

388-P 1- 0 



COLLECTED ALGORITHJMS FROM CACM 

ALGORITHM 389 
BINARY ORDERED WALSH FUNCTIONS [S22] 
H. HU-BNEH 
:Forschungsinstitut des FTZ der Deutschen Bundespost, 

Darmstadt 
II. KREMEH, K. 0. LINN, AND W. SCHWERING (Recd. 

16 Jan. 1970) 
Institut fiir Allgemeine N achrichtentechnik der Tech-

nischen Hochschule Darmstadt, Germany 

KEY WORDS AND PHRASES: Walsh functions, binary ordered 
Walsh functions 
CR CATEGORIES: 5.12, 5.13 

integer procedure binwal (k, x); 
value k, x; integer k; real x; 

comment The procedure binwal computes the binary ordered 
Walsh function wk(x) as defined in [1, 2, 3, 4]. These functions 
form a complete set of orthogonal, normalized rectangular func
tions which are periodic with period equal to one. They assume 
only the values +1 and -1. Using the Rademacher functions 
rk(x) [5], the function wk(x) may be defined in the following way: 

Write k as a binary number 

then 

m 

k = L ai2i, ai E (O, 1), 
i=O 

The functions are defined fork a nonnegative integer in the range 
-oo sxs oo. 

In binwal the procedure radfun [5] is used. 
REFERENCES: 

1. PALEY, R. E. A remarkable series of orthogonal functions. 
Proc. London Math. Soc. Ser. 2, 34 (1932), 241-279. 

2. FINE, N. J. On the Walsh functions. Trans. Amer .. Math. 
Soc. 65 (1949), 372-414. 

3. MoRGEN'l'HALER, G. W. On Walsh-Fourier series. Trans. 
Amer. Math. Soc. 84 (1957), 472-507. 

4. HAMMOND, J. L., AND JOHNSON, R. S. A review of orthog
onal square-wave functions and their applications to 
linear networks. J. Franklin Inst. 273 (1962), 211-225. 

5. HUBNER, H., KREMER, H., LINN, K. 0., AND SCHWERING, w. 

begin 

Algorithm 388, Rademacher function. Comm ACM 13 
(Aug.1970), 510; 

integer i, l, m, ww; 
l := k; m := WW := 1; 
i := -1; 
for i : = i + 1 while m S l do 
begin 

if k/(m + m) ¢ k + (m + m) then 
begin ww := ww X radfun(i, x); k := k - mend; 

m := m + m 
end; 
binwal := ww 

end 

389-P 1- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 390 
SEQUENCY ORDERED WALSH FUNCTIONS [S22) 
H. HUBNER 
Forschungsinstitut des FTZ der Deutschen Bundespost, 

Darmstadt 
H. KREMER, K. 0. LINN, AND W. SCHWERING (Recd. 

16 Jan. 1970) 
Institut fiir Allgemeine Nachrichtentechnik der Tech-

nischen Hochschule Darmstadt, Germany 
KEY WORDS AND PHRASES: Walsh functions, sequency 
ordered Walsh functions 
CR CATEGORIES: 5.12, 5.13 

integer procedure seqwal(k1 x); 
value k, x; integer k; real x; 

comment The procedure seqwal computes the sequency ordered 
Walsh function walk(x) as defined in [1, 2]. These functions form 
a complete set of orthogonal, normalized, periodic rectangular 
functions with period equal to one. They are closely related to 
the binary ordered Walsh functions wk(x) [3]. The set of walk(x) 
consists of the same functions as the set of Wk(x) but in another 
scheme of ordering. The set of Wk(x) is ordered with regard to 
the binary decomposition of the index k, whereas the set walk(x) 
is ordered according to the number of jump discontinuities in 
the open basic interval 0 < x < 1 in the sense that walk(x) has 
exactly k jumps. The relation between walk(x) and Wk(x) is 
given by walk(x) = w,.(x) with n = k $ (k + 2), where EB means 
the addition modulo 2 (binary addition without carry). The 
functions are defined for k a nonnegative integer in the range 
-- oo ~ x :::;; oo. In seqwal the procedure binwal [3] is used. 

REFERENCES: 

1. W .A LSH, J. L. A closed set of normal orthogonal functions. 
Amer. J. Math., Vol. 45 (1923), 5-24. 

2. H.ARMUTH, H.F. Transmission of Information by Orthogonal 
Functions. Springer-Verlag, New York, 1969. 

3. HUBNER, FI., KREMER, H., LINN, K. 0., AND SCHWERING, w. 

begin 

Algorithm 389, Binary ordered Walsh functions. Comm. 
ACM 13 (Aug. 1970), 511; 

integer i, k2, l, m, m2, n, vl, v2; 
k2 := k + 2; l := k; m := 1; n := O; 
i := O; 
for i : = i + 1 while m ~ l do 
begin 

vl : = v2 : = 0; m2 : = m + m; 
if k/m2 ~ k + m2 then 
begin k := k - m; vl := 1 end; 
if k2/m2 ~ k2 + m2 then 
begin k2 := k2 - m; v2 := 1 end; 
if vl ~ v2 then n := n + m; 
m := m + m 

end; 
seqwal := binwal(n, x) 

end 

390-P 1- 0 



COLLECTED ALGORITH1'~S FROM CACM 

ALGORITHM 391 
UNITARY SYMMETRIC POLYNOMIALS [Z] 
JOHN McKAY (Recd. 9 Mar. 1970) 
Department of Mathematics, California Institute of 

Technology, Pasadena, CA 91109 

KEY WORDS AND PHRASES: symmetric polynomials, uni
tary symmetric polynomials 
CR CATEGORIES: 5.11, 5.30, 5.5 

procedure unitary (a, x, n); 
array a, x; integer n; 

comment With Xi in x[i], i = 1, 2, · · · , n, on entry, the unitary 
symmetric polynomials ar = L Xi1Xi2 • • • Xir will be found in 
a[r], r = 1, 2, · · · , non exit. 

It is suggested that this algorithm repbtce Algorithm 156 
which is an 0(2n) procedure for computing ~C~-1 (-l)r-1ar . 

It is optimal in storage and requires n(n--1) additions and 
!n(n - 1) multiplications. It has uses in the theory of symmetric 
functions since the unitary symmetric polynomials form a basis 
for the symmetric polynomials. These polynomials arise, too, 
in probability theory. In numerical analysis it may be of in
terest to compute the coefficients (-lYar of the monic. poly
nomial with roots x1 , x2 , · · · , Xn which is best done by altering 
the two lines 

to 

begin 

a[k] := a[k] + t X a[k -- 1);; 
a[l] := a[l] + t 

a[k] := a[k] - t X a[k - 1]:; 
a[l] := a[l] - t; 

integer i, k; real t; 
for i := 1step1 until n do 
begin 

a[i] := O; t := x[i); 
fork := ·i step - 1 until 2 do 

a[k] := a[k] + t X a[k-1]; 
a[l] := a[l] + t 

end 
end unitary 

Remark on Algorithm 391 [Z] 
Unitary Symmetric Polynomials [John McKay, Comm. 
ACM 13 (Aug. 1970, 512] 
Gunther F. Schrack (Recd. 9 Nov. 1970 and 11 Jan. 
1971) 
Departments of Electrical Engineering and Computer 
Science, University of British Columbia, Vancouver 8, 
B.C., Canada 

Key Words and Phrases: symmetric polynomials, elementary 
symmetric polynomials, unitary symmetric polynomials, polynomial 
synthesis, revel'se Horner scheme, reverse synthetic division, 
binomial coefficients 

CR Categories: 5.11, 5.30, 5.5 

To avoid using semicolons in the body of the comment, re-

place: 

the two lines ... ; begin 

by 

the plus signs to minus throughout; begin 

391-P 1- RI 

Algorithm 391 has been tested on the IBM 360-67 with the 
OS Algol F compiler running under the Michigan Terminal Sys
tem. A number of sets of real Xi, i = 1, 2, .... , n with n = 1, 2, 
... , 10 with various positive, negative, and zero elements were 
used, drawn from a collection of test polynomials. Both versions 
of the algorithm produced correct results. 

Remarks. 
1. The modified version produces the coefficients of the monic 
polynomial 

f(z) = aoZn + a1zn-l + · · · + an-1Z +an, 

i.e. as the leading coefficient a0 = 1 is implied it must be supplied 
by the calling program. Alternatively, the insertion of 

a[O] := 1; 

immediately preceding the first for statement will supply that 
coefficient. In this case line 3 of the comment should be replaced by 

a[r], r = 0, l, ... , non exit. 

2. unitary may be used for the generation of complex elementary 
symmetric functions or complex polynomials from complex Xi , 

provided all real parameters in the procedure are declared complex. 
3. The number of additions is !n(n+l), i.e. for n > 3 it is less 
than the number claimed. 
4. Consider a polynomial with real zeros x .. only, and consider a 
deflation of that polynomial by Homer's scheme (i.e. synthetic 
division) by the linear factor (x-x1). Again usin~ Homer's scheme, 
deflate the quotient by (x-x2). Repeat this procedure for all 
zeros and call the resulting table the repeated Horner scheme. 
unitary is in effect the repeated Horner scheme carried out in re
verse order. Since the Horner scheme is optimal in the number of 
operations [1], so is unitary. 
5. The second version of unitary with the modification suggested 
in Remark 1 may be used to calculate all binomial coefficients 
(~), m = 0, 1, ... , n by setting Xi = 1, i = 1, 2, ... , n. The 
algorithm then represents an in situ generation of Pascal's triangle 
with ai = (~), k = 1, 2, ... , n, i = 0, 1, .... , k. Because all 
Xi are unity, this can be programmed using additions as the only 
arithmetic operations. Then the accuracy of the binomial coeffi
cients is limited only by the word length of the computer. 

References 
1. Pan, V.Ya. Methods of computing values of polynomials. 
Russian Math. Surveys 21 (1966), 105-136. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 392 
SYSTEMS OF HYPERBOLIC P.D.E. [D3] 
ROBERT R. SMITH AND DENNIS McCALL (Recd. 7 Jan. 

1969 and 17 June 1969) 
US Naval Electronics Laboratory Center, San Diego, 

CA 92152 

KEY WORDS AND PHRASES: hyperbolic p.d.e., character
istic, extrapolation, second order p.d.e., quasilinear p.d.e. 
CR CATEGORIES: 5.17 

DESCRIPTION: 

CHARAC solves the initial value problem for the quasilinear 
hyperbolic system of equations 

A1U.. + A2Ulf + AaV,, + A4Vlf = H1 

BiU,, + B2Ulf + BaV,, + B4Vlf = H2 
(1) 

in two independent variables X, Y and two unknown functions 
U(X, Y), V(X, Y), where Ai = Ai(X, Y, U, V), · · · , H2 = H2(X, 
Y, U, V). Specified data Xi, Yi, Ui, Vi (i=l, · · · , M) given along 
a noncharacteristic curve r are used to find U and V at character
istic grid points in the entire characteristic cone associated with 
the initial curve. Values in the opposite characteristic cone can be 
computed by specifying the initial data points Xi, Yi, Ui, Vi in 
the opposite order (Xi, Y1, Ui, Vi becomes X M, Y M, UM, V M, 
etc.). 

If the system (1) is hyperbolic, it can be reduced to a normal 
form containing directional derivatives along two characteristic 
directions. The derivation of this normal form is given in Forsythe 
and Wasow [1, p. 38]. 

For (1) the normal form is 

(~~).=<Ti, 
R· = ("u) + S· (ov) = T· 

• oX , • oX , " 

i = 1, 2, (2) 

where (o/oX), is the directional derivative along the characteristic 
with slope <Ti. Let A = A1Ba - AaBi, C = A2B4 - A4B2, B = 
l(A1B4-A.Bi-AaB2+A2Ba). Then the coefficients in (2) are given 
by 

ui(X, Y, U, V) 
B - (-l)i (B2 - AC)1 

A 

Ri(X, Y, U, V) = A.i(B1ui-B2) - B1(A1cr;-A2), 

Si(X, Y, U, V) = Aa(B1u;-B2) - Ba(A1cr•-A.2), 

T,(X, Y, U, V) = H1(B1u;,-B2) - H2(A1ui-A2). 

The system (1) is called hyperbolic if B 2 - AC > 0 and if R1S2 -
R~1 ~O. 

The subroutine CH VAR (XYUV, VAR) computes the values 
u1, u2, Ri, R2, 81, 82, Ti, T2 from Ai, Bi, H, evaluated at the 
values X, Y, U, V given in the array XYUV. (The subroutine 
CH COEF giving Ai, B;, Hi must be provided by the user, see 
Examples.) The computed values are returned in the array VAR 
of length 8. If <Ti, Ri, S,, Ti are known to the user, he may provide 
his own routine CH VAR. 

The system (2) is discretized by Massau's method, which is 
described in Forsythe and Wasow [1]. Given two adjacent points 

392-P 1- 0 

on the initial curve r, the nonparallel characteristics through the 
points intersect at a third point adjacent to the curve r. The values 
X, Y, U, V at the third point are estimated by replacing the dif
ferential equations in (2) by simple difference equations. The sub
routine CH STEP performs this discretization. By repeating this 
process for each pair of adjacent points on r, datum points are 
computed on a curve r' adjacent to I' and inside the characteristic 
cone. If the initial curve has characteristic slope somewhere, the 
curve r' will not be adjacent tor but will cross it. The routine does 
not recognize this, but it is obvious from the output. Successively 
calling CHA RAC generates a sequence of adjacent curves until the 
entire characteristic cone is filled in .. 

Extrapolation to the limit is applied to this discretization as 
follows: Compute the data on r' by using only every fourth initial 
datum point on r. Then use every other initial datum point to 
estimate the data on an intermediate curve and then on r'. Finally 
use every datum point. Thus three estimates are found with dif
ferent step sizes ho, h0/2, and ho/4. One can then extrapolate these 
estimates to h = 0 in an attempt to obtain a better estimate. Nu
merical results have indicated that extrapolation does indeed sig
nificantly improve the estimates. In fact the method with extrapo
lation has an error of o(h3) while Massau's method alone has an 
error of o (h). The theoretical considerations of extra po la tion are 
given by Bulirsch and Stoer [21, and applications to integration 
and ordinary differential equations are discussed. In general, ex
trapolation improves calculated results only if the exact solution 
is sufficiently differentiable. CHARAC can thus be expected to be 
an improvement over Massau's method only when the coefficients 
of the system (1) and the initial data are sufficiently differentiable. 
Note that the extrapolation requires M = 4 X N + 1 for some inte
ger N. 

CHARAC is defined by 

SUBROUTINE CHARAC (DATA, M, !FAIL). 

In the parameter list of CHARAC, M is the number of datum 
points on the initial curve. DATA is dimensioned DATA(4, M) 
(where M =4XN +1 for some N) and the column DATA(*, J) con
tains the four datum values X1 , Y1, U1, V1 of theJth datum point. 
Upon calling CHARAC, the data on an adjacent curve r' are com
puted and restored in DAT A and M = 4 X N + 1 is replaced by 
M - 4 = 4 X (N-1) + 1. Hence CHARAC can immediately be 
called again with r' the initial curve. Continuing until M = 1 will 
yield the single datum point at the apex of the characteristic cone. 
(See TEST CH used to solve example.) !FAIL is a flag which is 0 
if the call to CHARAC was successful. If !FAIL = 1 upon return
ing, then CH VAR detected that B 2 -- AC:::; 0, so (1) was not hyper
bolic. If !FAIL= 2 upon returning, then CH STEP detected that 
cr1 = u2 or R1S2 = R2S1 within a relative tolerance of 10-5; this 
tolerance parameter is represented by EPS in CH STEP. This 
indicates that (1) was not hyperbolic or that the characteristics 
are so close to parallel that the method fails. 

The user must provide a routine 

SUBROUTINE CH COE.'fi' (COEFF, XYUV) 

which computes the coefficients of the system (1) for the values 
X, Y, U, V given sequentially in the list XYUV of length 4. The 
computed coefficients must be returned in the list COEFF of length 
8 in the order A1, A2, Aa, A4, Hi, B1, B2, Ba, B,., H2. 

Example (I). Unsteady, one-dimensional Isentropic Flow. 
(See Jeffrey and Taniuti [3, p. 71].) The system of equations for the 
flow velocity u(x, t) and the density p(x, t) in terms of the space 



COLLECTED ALGORITHMS (cont.) 

ALGORITHM: 

SUBROUTINE TEST CH 
DIMENSION DATA (4,81) 
N = 20 

C GENERATE INITIAL DATA. 
M=4*N+l 
FM = 4.0 * FLOAT (N) 
00 100 I t,M 
OATA(l,Il FLOAT (1-ll I FM 
OATA(2,!l O.O 
DAT A ( 3, I l 0 • 0 
OATA(4,!) 2.0 *EXP <DATA(l,Ill 

100 CONTINUE 
!FAIL = 0 
WR! TF ( 51, 900) 

900 FORMAT ( lHl) 
200 DO 250 I = l,M 

WRITE (51,910) DATA(l,I), 
*DATA(2,!), OATA(3,I), OATA(4,ll 

910 FORMAT (4H X =,E20.9,5X,4H Y =, 
*E20.9,5X,4H U =,E20.9, 
*5X,4H V =,E20.9l 

250 CONTINUE 
IF (M.LE.ll GO TO 300 
IF (I FAIL.NE.OJ GO TO 300 
CALL CHARAC !DATA, M, IFA!Ll 
WRITE (51, 9001 
GO TO 200 

300 CONTINUE 
WR I TE ( S l, 9 2 0) M, IF A IL 

920 FORMAT (X,3HM =,I2,8H !FAIL =,12) 
RETURN 
ENO 
SUBROUTINE CH COEF (COF.FF, XYUV) 
DIMENSION COEFF(lO), XYUV(4) 

C COMPUTES COEFFICIENTS Al, A2, A3, 
C A4, Hl, Bl, B2, fl3, B4, H2 ANO 
C STORES THEM SEQUENTIALLY IN COEFF. 

COEFF(l) t.O - XYUV(3l**2 
COEFF(2l -XYUV(3) * XYUV(4) 
COEFF(3) = -XYUV(3) *XYUV(4) 
COEFF(4) = 1.0 - XYUV(4l**2 
COEFF(5) = -4.0 * XYUV(3l * 

*EXP !XYUV(1Jl**2 
COEFF(6J O.O 
COEFF(7J = 1.0 
COEFF(8) = -1.0 
COEFF(9) = O.O 
COEFF(lOJ = O.O 
RE TURN 
ENO 

SUBROUTINE CHARAC (DATA, M, !FAIL) 
OIMENSION DATA(4, MJ,00(4J, Dl(4), 

'-02(4J, 03(4J, 04(4J 
DIMENSION Tl(4J, T2(4), T3(4) 

*T4<4J, T5<4l, T6(4l, T7(4), vi<B1, 
~·V2(8), V3(8), V4(8), V5(8), V6(8), 
"'V7(8), V8(8), 119(8), Vl0(8) 

DIMENSION Sl<4l, S2(4), S3(4) 
INTEGER FAIL, FLAG 
COMMON/CHFAIL/FAJL, FLAG 

C THIS ROUTINE ADVANCES ONE GRID STEP 
C THE SOLUTION OF THE SYSTEM 
C Al ~· U(X) + A2 4 IJ(Y) 
C + A3 * V(X) + A4 * V(Y) = Hl 
C fll '; lJ(X) + B2 '' ll(Y) 
C + A3 * V(Xl + 84 * VIYJ = H2 
C WHERE U(X) MEANS PARTIAL DFRIV. OF 
C U W.R. T. X, F. TC., 
C AND Al = Al (X, y, U, VJ, ---. 
C THE INITIAL DATA IS GIVEN IN THE 
C MATRIX DATA, EACH COLUMN OF FOUR 
C ELE'MENTS CONTAINING A VALUE 
cx,Y,u,v. 
CM IS THE NUMBER OF DATA POINTS 
C ON THE INITIAL CURVE. 

FAIL = 0 
M = M - 4 
IF (M.LE.Ol RETURN 
no 145 J = i, 4 
Ol(JJ DATA(J.lJ 
02(JJ = nATA(J,2) 
D31JJ = DATA(J,3) 

145 D41Jl = OATA(J,4) 
CALL CH VAR (Dl, V2) 

IF (FAIL.NE.Ol GO TO 250 
CALL CH VAR (()2, V3l 

IF (FAIL.NE.OJ GO TO 2SO 
CALL CH VAR (D3, V4l 

IF (FAIL.NE.OJ GO TO 250 
CALL CH VAR (D4, V5) 

IF (FAIL.NE.OJ GO TO 250 
FLAG = 0 
DY D2(2) - Dll2l 
OX 112 ( l l - Dl I l J 

IF (DY) 148, 149, 150 
148 DY -DY 

DX -OX 
GO TO 150 

149 f)Y 1.0 
DX l.OE30 

lSO DXl =DY I V2(1) 
DX 2 = DY I V2 ( 2) 
IF ( ( DXl .LT .OX l .AND. ((JX2.GE.DX)) 

*GO TO l 70 
IF ( (DX2.LT.DXl.MID.(DXl.GE.DXll 

*GO TO 1 75 
IF ((JX2.GE.0Xll GO TO 175 

170 FLAG = l 
175 CONTINUE 

200 

201 

CALL CH STEP ([)l, 1/2' 
*03, V4, Tl) 

IF <FAIL.NE.OJ 
CALL CH VAR (Tl, V6) 

IF (FAIL.NE.OJ 
CALL CH STEP ( D2' V3, 

*04, vs, T6J 
IF (FAIL.NE.OJ 

CALL CH VAR (T6, VlO) 
IF !FAIL.NE.Ol 

CALL CH STEP ( D3, V4, 
•04, vs, T2J 

IF (FAIL.NE.OJ 
CALL CH VAR (T2, V71 

IF (FAIL.NE.OJ 
CALL CH STEP ( D2' V3, 

•03, V4, T4) 
IF (FA! L .~IE .O) 

CALL Cl~ VAR !T4, V9 J 
IF !FAIL.NE.OJ 

CALL CH STEP (T4, V9, 
*T2, V7, T3J 

IF (FAIL.NE.OJ 
CALL CH VAR ! T3, VB) 

IF (FAIL.NE.OJ 
CALL CH STEP (Dl' v2, 

*02' V3, TSI 
IF (FAIL.NE.OJ 

CALL CH VAR (T5' Vll 
IF (FAIL.NE.0) 

CALL CH STEP (T5, Vl, 
~'T4, V9, T4l 

IF !FAJL.NE.Ol 
CALL CH VAR ( T4, Vl l 

IF (FAIL.NE.OJ 
CALL CH STEP < T4, Vl, 

*T3, v0, T4l 
IF (FAIL.NE.OI 

CALL CH VAR (T4, V9 l 
IF (FAIL.NE.OI 

DO 100 I = l,M 
DO 200 J 1,8 

Vl ( J J V2 ( J l 
V2 (J l V3 ( J l 
V3 (JI V4( Jl 
V4(J) V5 ( J) 

CONTINUE 
DO 201 J = 1,4 
00 ( J) 01 ( J J 
Dl ( J) D2 ( J) 

02 ( J) = 03 ( J) 
03 ( J) = [)4( J) 
04 ( J) = IJATA(J, 1+4) 
CALL CH VAR (()4, V5 l 

IF !FAIL.NE.OJ 

CALL CH STEP (DO, Vl, 
*D4, V5, Sl J 

GO TO 250 

GO TO 250 

GO TO 250 

GO TO 250 

GO TO 2SO 

GO TO 2SO 

GO TO 2SO 

GO TO 250 

GO TO 250 

GO TO 2SO 

GO TO 250 

GD TO 250 

GO TO 250 

GO TO 2SO 

GO TO 2SO 

GO TO 250 

GO TO 2SO 

IF !FAIL.NE.OJ GO TO 250 
CALL CH STEP !DZt V3, 

'-'04, V5, T5 l 
IF (FAIL.NE.Ol GO TO 250 

CALL CH VAR !TS, Vll 
IF (FAIL.NE.Ol GO TO 250 

CALL CH STEP (Tl, V6, 
*T5, v1, s21 

IF !FAIL.NE.Ol GO TO 250 
CALL CH STEP (D3, V4, 

*D4, V5, Tl l 
IF (FAIL.NE.OI GD TO 250 

CALL CH VAR (Tl, V6) 
IF (FAIL.NE.OJ GO TO 250 

CALL CH STEP (T2, V7, 
*Tl, V6, T7l 

IF (FAIL.NE.OJ GO TO 250 
DO 210 J 1, 4 

T2(JI Tl(Jl 
V7 ( J l V6 ( J l 

V7(J+4) V6(J+4) 
Tl(J) T6(J) 
V6(J) VlO(JJ 

V6(J+4l Vl0(J+4) 
T6(J) TS(J) 

VlO(JJ Vl(JJ 
Vl0(J+41 Vl(J+4l 

210 CONTINUE 
CALL CH VAR !T7, Vll 

IF (FAJL.NE.OI GO TO 250 
CALL CH STEP (T3, V8, 

*T7t Vl, T51 
IF !FAIL.NE.OJ GO TO 250 

DO 220 J 1,4 
T3(J) T7(J) 

V8(J) = Vl!Jl 
V8(J+4J = Vl(J+4) 

220 CONTINUE 
CALL CH VAR (T5, Vll 

IF (FAIL.NE.Ol GO TO 250 
CALL CH STEP (T4, V9, 

*T5, Vl, S3J 
IF (FAIL.NE.OJ GO TO 250 

DO 230 J lt4 
T4(J) T5(J) 
V9(JJ Vl(J) 

V9(J+4) Vl(J+4) 
230 CONTINUE 
EXTRAPOLATE 1THE THREE 
SUCCESSIVE APPROXIMATIONS 

00 300 J = 1,4 
300 DATA (J, I) = 0.3333333333 * 

*<8.0 * S3(Jl - 6.0 * 52(JJ + Sl(J)) 

392-P 2 

100 CONTINUE 
!FAIL = 0 
RETURN 

ERROR EXIT. 
250 !FAIL =FAIL 

RETURN 
END 
SUBROUTINE CH VAR (XYUV, VARI 
DIMENSION XYUV(4), VAR(8), T<lO) 
INTEGER FAIL, FLAG 
COMMON/CHFAIL/FAJL, FLAG 

C COMPUTES THE VALUES S!GMA1,SIGMA2, 
c Rl, R2. st, s2, Tl, T2 
C !STORED IN THE LIST VARI 
C FROM THE COEFFICIENT FUNCTIONS 
C AND THE VALUES X, Y, U, V 
C (IN THE LIST XYUV). 

CALL CH COEF (T, XYUV) 
C COEFFICIENTS OF SYSTEM ARE STORED 
C IN THE LIST <Tl. 

A= Till* T(8) - T(3) * T(6J 
B = 0.5 * !Till * T!9) - T(4J * 

*T(61 - T!3l * T(7l +- T!2l * T(8) 
C = T!2J * T(9J - T!4J * T(7) 
IF (A.NE.0.01 GO TO 150 
IF <B.EQ.O.OJ GO TO SOO 
VAR(l) = l.OElS 
VAR(2J = 0.5 * C I B 
IF (8.GT.0.0) GO TO 400 
VARlll = VAR(2) 
VAR(2) = l.OE15 

GO TO 400 
ISO 0 = B * B - A * C 

IF (0.LE.0.0) GO TO 500 
0 = SQRT (0) 
IF <B.LT.O.OJ GO TO 300 
VAR ( l ) = ( B + D l I A 
VAR!21 =CI (A* VARlll l 

GO TO 400 
300 VAR(2J = (fl - 0) I A 

VAR(lJ =CI (A* VAR(2) l 
400 00 l 00 I = l, 2 

T ( 4 J = T ( l J * VAR ( I l 
T(9) = T(6) *VAR(!) 
VAR(l+2J T!ll*T(9) 
VAR( 1+4J T(3l*Tl9l 
VARll+6J = T!5l*T(9J 

100 CONTINUE 
RETURN 

C ERROR EXIT. 
SOO FAIL = 

RETURN 
END 

- T( 2 J 
- Tl7J 
- Tl6l*T<41 
- TlBl*T(4) 

T< 10l*T(4) 

SUBROUTINE CH STEP 
•<DI, v1, D2, v2, D3l 

DIMENSION Dl(4), D2(4J, D3(41. 
*Vl(8J, V2(8J 

INTEGER FAIL, FLAG 
COMMON/CHFAIL/FA!L, FLAG 

C THIS ROUTINE COMPUTES THE VALUES 
C OF X3, y3, U3, V3 AT THE POINT 
C DETERMINED IW THE INTERSECTION OF 
C THE CHARACTERISTICS THROUGH 
c xt,Yl AND x2,y2. 

EPS = l .OE-5 
IF !FLAG.NE.OJ GO TO 150 

lOOSIG Vl(2l 
Rl Vl (4J 
Sl Vl ( 6) 

Tl Vl<8J 
GO TO 180 

lSO SIG Vllll 
Rl Vl ( 3 J 
Sl Vl<5l 
Tl Vl ( 7 J 

180 CONTINUE 
IF lFLAG.NE.Ol GO TO 250 

200 RHO V2 ( ll 
R2 V2(3) 
S2 = V2 ( 5 J 
T2 V2(7J 

GO TO 280 
250 RHO V2l21 

R2 V2(4) 
S2 • V2(6J 
T2 V2(8J 

280 CONTINUE 
c COMPUTE x3,y3,u3,v3 

DEMI = SIG - RHO 
IF (ABS([)EMll.LT.EPS*ABS!SIGll 

* GO TO 900 

0 

AA= Dl<2l - SIG* Ol<ll 
BB= D2(2) - RHO* D2(1) 
D32 = (SIG * BB - RHO * AA) I DEMI 
D31 = (BB - AA) I OEMl 
TA= Tl* (031 - Dl(ll) 

* + Rl * Dl(31 + Sl * Dll4J 
TB= T2 * (031 - 02(ll J 

* + R2 * D2(3) + 52 * D2(4J 
TC R l * 52 
TD=R2·*Sl 
OEM2 = TC - TD 
TC= AMAXl (AB5<TCJ, ABS<TDJ J 
IF (ABS!DEM2J.LE.EPS•TCI * GO TO 900 
03(31 (TA*S2 - TB*SlJ I DEM2 
03(4) = <TB*Rl - TA*R2) I DEM2 
03(2) = 032 
03( 11 = 031 
RETURN 

900 FAIL = 
RETURN 
END 



COLLECTED ALGORITHMS (cont.) 

variable x and time t are 

pUz + Upz + Pt - 0 
(3) 

pUUz + pUt + a"p• == 0. 

Assume the sound speed a = 1. Let the initial data given along the 
curve t = 0, 0 ~ x ~ 1 be u(x, O) = 0 and p(x, O) = 1 +ex for some 
constant c. 

Setting t = y, u = U, and p = V, (3) has the form of (1) with 
Ai = V, A2 = 0, Aa = U, A. = 1, H1 = O, B1 == UV, B2 = V, 
Ba = 1, B. == 0, H2 = 0. 

For c = 1 the problem is well conditioned. Solving this problem 
on a 10-digit machine using the 21 initial datum points X; = (j-1)/ 
20; Y; - O; U1 == O; V; = 1 + X;; j = 1, · · · , 21, the following 
values were computed for the apex of the characteristic cone (by 
calling CHARAC 5 times): 

x = .4107503; y = .5099940; 

u = - .3465748; v = 1.4142185. 

The correct values for the apex are 

x = .4107581; y = .5099899; 

u = - .3465736; v = 1.4142136. 

The maximum relative error is 1.9 X 10-5 • Using 41 initial datum 
points and calling CHARAC 10 times, the computed values for the 
apex were 

x = .4107572; y = .5099904; 

u = - .3465737; v = 1.4142142. 

The maximum relative error is 2.2 X 10-8 • Thus doubling the num
ber of points decreases the error by a factor of about 8, as would be 
expected for a third order method. 

The above problem was also solved for c = 10 using 21 initial 
datum points X; = (j-1)/20; Y; = O; U; = O; V; = 1 + lOX;; 
j = 1, · · · , 21. The computed values at the apex were 

x = .0905; y = .6190; 

u = -1.2028; v = 3.3100; 

while the correct values are 

x = .0936; y = .6176; 

u = --1.1990; v = 3.3165. 

Using 41 initial datum points the computed values are 

x = .0930; y = .6178; 

u = --1.1996; v = 3.3158. 

Doubling the number of points decreases the error by a factor of 
only 5. The high order of the truncation error is partially obscured 
by the rounding error, which is larger for c = 10 than for c = 1. 

Example (II). Steady Two-dimensional J3upersonic Flow. 
(See Jeffrey and Taniuti (3, p. 76].) The single second-order equa
tion 

(4) 

is hyperbolic if "'"'2 + q>11
2 > c2• Set H = -4"'"' exp (2x), so that 

<P(X, Y) = 2 exp (X) sin (Y) is a solution of (4). Then (4) is hyper
bolic for c = 1 if X > ln (0.5). 

Letting U = "'•, V = q>11 , (4) becomes 

(l-U2)U. - UV(U11+V,,,) + (l-V2)V11 = -4U exp (2X) 
(5) 

U11 - V. = 0. 

Let the initial data given along Y = 0, 0 ~ X ~ 1 be U(X, O) = 0, 
V(X, O) = 2 exp (X). Then throughout the cone the exact solution 
is U(X, Y) = 2 exp (X) sin (Y), V(X, Y) = 2 exp (X) cos (Y). 

392-P 3- Rt 

This problem was solved using 81 datum points on the initial 
curveX; = (j-1)/80; Y; = O; U; = O; V; = 2exp (U;); j = 1, · · ·, 
81. By calling CHARAC 20 times, the following values were com
puted for the apex of the characteristic cone:: 

x = 1.6130; y = 1.1576; 

u = 9.1980; v = 4.0184. 

The correct values for the apex a:re 

x = 1.6144; y = 1.1580; 

u = 9.2057; v = 4.0312. 

Using 81 datum points on the initial curve but not applying extrap
olation, the computed values were 

x = 1.5889; y = 1.1418; 

u = 9.0441; v = 3.7319. 

Thus extrapolation significantly improved the results. 
By plotting the characteristic grid points in the X-Y plane, one 

sees that the characteristics become more parallel near the apex. 
Thus the above problem is ill conditioned. If the initial curve is 
chosen as Y = 0, 1 ~ X ~ 2, the problem becomes so ill condi
tioned that the method fails for 81 datum points on the initial 
curve. 

Example of use. In the following listing TEST CH sets up the 
initial data and makes the necessary calls to CHARAC to solve 
Example (II) for 81 initial datum points. CH COEF computes the 
coefficients A1 = 1 - U2 , A2 = -UV, Aa = - UV, A. = 1 - V 2, 

Hi = -4U exp (2X), B1 = 0, B2 = 1, Ba = -1, B. = 0, H2 = 0 
as determined from (5). 

REFERENCES: 
1. FORSYTHE, G. E., AND W.R. WAsow. Finite-Difference Methods 

for Partial Differential Equations. Wiley, New York, 1960, 
p. 64. 

2. BuLIRSCH, R., AND J. STOER. Fehlerabschatzungen und Extra
polation mit Rationalen Funktionen bei Verfahren vom 
Richardson-Typus. Num. Math. 6 (1964), 413-427. 

3. JEFFREY, A., AND T. TANIUTI. Non-Linear Wave Propagation. 
Academic Press, New York, 1964. 

Remark on Algorithm 392 [D.3] 
Systems of Hyperbolic P.D.E. 
[Robert R. Smith and Dennis McCall, Comm. ACM 13 
(Sept. 1970), 567-570] 

Michael J. Frisch [Recd. 27 Jan. 1971 J 

University Computer Center, University of Minnesota, 
Minneapolis, MN 55455 

Key Words and Phrases: ANSI Fortran standard 
CR Categories: 4.0, 4.22 

The following items were found during compilation of the 
algorithms written in Fortran published to date in Communica
tions. The MNF compiler written at the University of Minnesota 
for CDC 6000 Series machines by Lawrence A. Liddiard and E. 
James Mundstock was used to check the validity of the algorithms. 

Algorithm 392 does not conform to the standard in subroutine 
CHARAC in which at six statements before the statement num
bered 145, the variable dimension M of the array DAT A is re
defined during execution contrary to Section 7.2 .. 1.1.2. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 393 
SPECIAL SERIES SUMMATION WITH ARBITRARY 

PRECISION [C6] 
S. KAMAL ABDALI* (Recd. 23June1969 and 9 Mar. 1970) 
University of Wisconsin, Department of Computer 

Sciences, Madison, WI 35706 
*This work was done while the author was at the University of 
Montreal, Montreal, Canada. 

KEY WORDS AND PHRASES: function evaluation, series 
summation, approximation 
CR CATEGORIES: 5.12, 5.13 

procedure series (places, terms, base, digit, sgn, numerator, de
nominator, numO, denomO); value pla.ces, terms, base; integer 
places, terms, base, sgn, numO, denomO; integer array digit; 
integer procedure numerator, denominator; 

comment Programs for very precise summation of series are 
conventionally written in machine language and employ multi
precision routines to perform arithmetic on es1pecially defined 
multiword registers. The present algorithm requires only integer 
arithmetic and can be implemented in any algebraic language. 
It is applicable to series in which the ratios of successive terms 
can be expressed as quotients of given integers or integer func
tions of term positions. 

The sum of a given series is computed to a given number of 
places, places, in a specified base for representation, base. The 
number of terms needed, terms, should be calculated outside the 
procedure. Procedures numerator and denominator are to be 
obtained from the fraction ith term/(i-1)-th term, expressed as 
a ratio of two integer functions of i. (That fraction should prefer
ably be reduced to its lowest terms.) numO and denomO are the 
integer numerator and denominator of the 0th term. The out
puts of the procedure are the sign of the result, ~~gn, the integer 
part, digit [OJ, and the digits of the fractional part, digit [1], · · · , 
digit [places]. 

For example, one way to compute sin 0.6 = .6 -- .68/31 + .6&/51 
- · · · correct to 1000 decimal places is to call series with the 
parameter values: terms = 226, numO = 3, denomO = 5, (and 
since ith term/(i-l)th term = - .61/2i(2i+l)) numerator(i) = 
-9·and denominator(i) = 50i(2i+l). By taking base = 100000 
and places = 200, five decimal digits of the result will be obtained 
per word of the array digit. 

The use of a large base (and, consequently, smaller places) 
results in faster computation, as the number of operations is 
proportional to (placesXterms) for large value:s of terms and 
places. However, the intermediate products (baseXnum[i)X 
coef[i]) (and coef[i] can almost equal denom[i]) should not ex
ceed the largest number representable by an integer variable. 
Also within this limit should be the product of base and the in
teger portion of the result; 

begin 
integer i, j, k, l; integer array num[-l:terms], denom, 

coef[O: terms] ; 
comment Express the series by the expression 

no( n1( n, )) - I Co + - Ci + .. · + - (c,) · · · I 
i4 d1 de 

(1) 

where n, and d, are positive and c1 are ±1. (For short, n, d, c 

393-P 1- Rt 

and tin (1) stand fornum, denom, coef and term.s, respectively); 
num[-1) := 1; num[O] := abs(numO); denom[O] := abs
(denomO); coef[O] := sign(numO) X sign(denomO); 
for j := 1 step 1 until terms do 
begin 

k := numerator(j); l := denominator(j); num[j] :== abs(k); 
denom[j] := abs(l); coef[j] :== coef[j-1) X sign(k) X sign(l) 

end; 
comment Calculate digits one at a step by extracting the in

teger part of base X (1) and restoring the fractional part in 
form (1); 

for i : == 1 step 1 until places do 
begin 

l :== O; 
for j :== terms step -1until0 do 
begin 

k :== num[j] X (coef[j]Xbase+l); l :== k + denom[j]; 
coef[j] := k - l X denom[j]; num[j] := num[j-1] 

endj; 
digit[i] : = l 

end i; 
comment Some digits may be negative or larger than base in 

absolute value. Process the array digit to obtain true base 
representation; 

l := O; 
for i :== places step -1until1 do 
begin 

k :== digit[i] + l; l :== k + base; digit[i] := k - base X l; 
if digit[i] < 0 then 
begin digit[i] : = digit[i] + base; l : == l - 1 end 

end; 
digit[O] := l; sgn :== sign(l); 
if l < 0 then 
begin 

digit[O] := -l - 1; digit[places] := digit[pla.ces] - 1; 
for i : == 1 step 1 until places do digit[i] : = base - 1 - digit[i) 

end 
end series 

Remark on Algorithm 393 
Special Series Summation with Arbitrary Precision [C6] 
[S. Kamal Abdali, Comm. ACM 13 (Sept. 1970), 570] 

Arthur H.J. Sale 
Basser Department of Computer Science, University of 
Sydney, NSW 2006, Australia 

Key Words and Phrases: function evaluation, series summation, 
approximation 

CR Categories: 5.12, 5.13 

Algorithm 393 has been tested on a number of different series 
including those for e"' and sin(x) and the harmonic series, and i~ 
all cases it gave the expected results. Some remarks should however 
be made concerning this algorithm. 



COLLECTED ALGORITHMS (cont.) 

This algorithm is a slight generalization of a method first 
described in the reference given here in which it was used to pro
duce an accurate approximation to the transcendental number e. 
As noted in that reference the digits computed when expanding the 
e-series are correct as produced, and need no subsequent process
ing. This technique is very well suited to this application. 

As the author correctly states some types of series will allow 
negative digits to be computed, or digits which exceed the value of 
the chosen base. The series for sin(x) can give rise to the first case, 
for it contains negative as well as positive terms; the second case 
can arise if the remnant series is not always fractional (and will 
always occur if the value of the original series has an integer part). 
To illustrate this the first few terms of the harmonic series may be 
summed: 

7-2 + ~~ + ~i + % + 7~ = 1.45000 ... 

which using a base of 10 produces the digits 14, 4, 10. This means 
that the answer returned by the algorithm is not necessarily correct 
to the number of places requested either in a truncated or rounded 
sense. This is particularly important if it is possible that the 
(i + 1)-th term is greater in magnitude than the ith term, for then 
the final remnant series (which is of course the truncation error) 
may have a large value. 

The author too has not sufficiently emphasized the problem of 
integer overflow. Intermediate results produced can be quite large, 
and for example the evaluation of the above mentioned few terms 
of the harmonic series generated an intermediate value of 100 
(with a base of 10). Reversing the order of the terms gave a worse 
result: a value of 378 was generated, which even exceeds the bound 
given by the author of the algorithm. The implications of this are 
that considerable care must be taken to choose a base that is not 
too large, and that the techniqu.e may be restricted in application 
by the size of common computer words. For example to evaluate 
sin(0.999) (given to three decimal places), using 100 terms and a 
base of 10, would appear to require an integer range of about 1017 

by the author's bound, which is certainly beyond the capacity of a 
32 bit machine. 

To summarize, this technique is fairly specialized; it is not 
suitable for summing series whose values have large integer parts, 
and care must be taken in applying it to an arbitrary series. 

References 
1. Sale, A.HJ. The calculation of e to many significant digits. 
Comput. J. 11 (Aug. 1968), 229-230. 

393-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 394 
DECISION TABLE TRANSLATION [H] 
RoBERT B. DIAL (Recd. 31 Oct 1969 and 8 May 1970) 
Alan M. Voorhees and Associates, Inc., McLean, Vir-

ginia, and Department of Civil Engineering, University 
of Washington, Seattle, WA. 98105 

KEY WORDS AND PHRASES: Decision table, decision table 
translation 
CR CATEGORIES: 4.19 

integer procedure decitable(t, m, n, test, yes, no); value m, n; 
comment This algorithm converts the limited-·entry decision 

table stored in them by n matrix t into a machine processable 
test-and-branch code matrix returned in the column vectors 
test, yes, and no. The input decision table's format and terminol
ogy generally agree with that introduced in Pollack [1]. The rows 
of t represent the decision table's conditions, its columns, its 
rules. Each of its entries represents a Y (truth), or an N (falsity), 
or a - (indifference). The output code matrix tabulates a 
decision tree, which can be traced to ascertain efilciently which 
rule any given transaction satisfies. Intended for use by a com
puter, this code matrix can readily drive an interpretive routine, 
or it can easily be transformed into code in some specified lan
guage. An example of a test-and-branch code mat;rix appears be
low in Figure 2. Figure 1 is the input decision tB~ble which gen
erates it, and Figure 3 is the decision tree it repr1esents. 

Rule 

Rl R2 R3 

Cond ition Cl y N -
C2 N - y 

C3 y - -
C4 - N y 

FIG. 1. DEicision Table 

R4 

-
N 
N 
y 

Test-and-Branch 

~ 'iti~ ,.,1•1 I ""1;1 

1 4 2 5 
2 2 -3 3 
3 3 4 -4 
4 1 -1 0 
5 1 6 -2 
6 3 7 0 

I 1 2 o -1 

Frn. 2. Code Matrix 

Each row of the code matrix in Figure 2 corresponds to a non
terminal, decision node in the tree in Figure 3. These row num
bers have been posted alongside the nodes in Figure 3. The root 
node corresponds to row 1, and the first condition to be tested 
is C4, indicated by the 4 in test[l]. In general test[i] contains the 
condition (decision table row) number to be tes:ted at node i. 
yes[i] and no[i] specify subsequent alternative actions selected 
on the basis of the result of testing condition test[i]. yes[i] is an 
integer telling what to do if condition test[i] is true. Its interpre
tation depends on its relationship to zero: 
1. If yes[i] is positive, then the next thing to do is perform the 

test-and-branch given in row yes[i] of the code matrix. This is 
equivalent to moving down one ply in the decision tree via the 
"true arc" to enter another decision node. 

2. If yes[i] is negative, no more testing is neeessary; Rule 
abs(yes[i]) has been satisfied. This is equivalent; to encounter
ing terminal rule node in the decision tree. In typical applica
tions, a procedure would be invoked to perform the actions 
corresponding to Rule abs(yes[i]). 

3. If yes[i] is zero, then testing is complete; no rule can be satis
fied. In this case a terminal node is reached which indicates 

394-P 1- 0 

that none of the decision table's rules is satisfied. The action(s) 
corresponding to the "Else-rule" would be invoked here. 
The interpretation of no[i] is identical to that of yes[i], apply

ing to the case where the result of testing Condition test[i] is 
false. 

The algorithm's technique is due to Pollack, who explains it 
in fine tutorial manner [2]. Another excellent discussion is given 
by Press, who provides additional insights and refinements [3). 
In brief, the procedure selects a row of the decision table and 
bifurcates the table into two decision subtables from which the 
selected row is excluded. One subtable contains only rules 
(columns) for which the selected row's condition may be true 
(Y or -) . The other subtable contains only rules for which the 
condition may be false (Nor-). This splitting is recursively ap
plied to each subtable (which is at least one row smaller than the 
parent table) until a "degenerate" subtable results. If the de-

FIG. 3 

generate subtable has no rows or is composed of only dashes, 
then a rule is satisfied and noted. If the degenerate subtable has 
no columns, then the Else-rule is in effect. 

In the Algol below, the author attempts to provide code which 
would allow a flexible and practical implementation. Computa
tional efficiency is traded off for storage conservation and ease of 
modification. No local arrays are declared in recursive routines. 
The decision table's manipulation and subtable "creation" are 
effected by sorting the global row and column index arrays, row 
and col. The algorithm never modifies or reproduces any part of 
the original copy of the input decision table. 

To facilitate user control of the desired attributes of the out
put decision tree, the routine which selects the condition row 
on which to split the table is mad.e a separate procedure. To im
pose his own criterion for row selection, the user can easily 

··modify or substitute code in the procedure select. His procedure 
generally depends on the kind of code matrix he wants. For ex
ample, if storage were a problem, he would want the shortest 
code matrix, i.e. a tree with fewest decision nodes. On the other 
'hand, if execution time of the code matrix were of prime impor
tance; he would want to minimize the expected number of exe-



COLLECTED ALGORITHMS (cont.) 

outed decision nodes. In general, each of these criteria does not 
yield the same (:lelect procedure. The procedure below uses a 
criterion given in [2]. Others may be found in [2 and 3). 

The syntax o'f Algol 60 does not allow strings such as "Y", 
"N", arid "-" to be elements of an array such as the decision 
table matrix t. Thus in the code below, the local variables N, D, 
and Y contain the integers -1, 0 and 1 to represent respectively 
the characters "N", "-", and "Y". Accordingly, the input 
decision table must also follow these conventions, or the user 
must appropriately modify the three assignment statements 
which establish the value of these local variables. 

The author thanks the referee and the editor for their valuable 
observations. 

REFERENCES: 

1. POLLACK, S. L. How to build and analyze decision tables. 
P-2829, Nov. 1963, RAND Corp., Santa Monica, Calif. 

2. POLLACK, S. I,. Conversion of limited entry decision tables to 
computer programs. RM-4030-PR, May 1964, RAND Corp., 
Santfl. Monica~ Calif. 

3. PRESS, LA.TJRENC!il I. Conversion of decision tables to computer 
programs. Comm. ACM 8 (June 1965), 385-390. 

begin 
own int"ger array row[l:m], col[l:n]; 
own real~ !11.'ray cc[l: ni; own integer N, D, Y, line; 
integer 'i; 
integer pToeedure ~lllect (t, rowB, firBt, last); 
comment This !Jrocedure picks a row of the decision (sub)

table defined by the row indices row[l], row[2], · · · , row[rowB] 
and th~ Mh1:on i:odices col[first], col[firBt+ 1), · · • , col[last]. 
The .crib~·:.or. i.? a ."li,i·imaJ "dash count", with the difference 
between the 1,umbP,r of Y's and the N's to be minimized in 
case of a tie.~\ short code matrix should result [2]; 

value rows, firBt, tast; 
begin. 

integer i, j, imin, delta, deltamin; real daBh, dmin; 
dmin := (last-first+l) X (2 j rows); imin :== O; 
for j : = fi_rst step 1 until last do 
beldu 

commt.'nt Calculate column count; 
cc[col[j]J := l; for i := 1step1 until rows do 

if t[row[i], c!'!L1H = D then cc[col[j]J :== 2 X cc[col[jJJ 
els'l: 'tmin : = 1 

end; 
if imin ¢ 0 then for i := 1step1 until rows do 
begin 

comm<tmt Calculate dash count; 
dash :== delta :=== O; for j :=first step 1 until las(do 

H' t[row[i], col[j]] = D then dash := dash+ cc[col[jJJ 
else delta : == 

delta + (if t[row[i), col[j]] = Y then 1 else -1) ; 
if dash < dmin V (dash=dmin/\abs(delta) <deltamin) then 
begin 

comment Row i has the smallest dash count so far; 
imin := i; dmin :- dash; deltamin :== abB(delta) 

end 
end; 
select : - imin 

end select; 
procedure left (t, row, first, last, key, lyp, ldp); 
comment This procedure creates the two subtables described 

nbove with respect to condition row by rearranging the column 
indices col[first], colCfirst+l], · · • , col[lastJ based on the con
~.ents of t[row, col[firBt]J, · · • , t[row, col[last]J. Upon return, 
cot[first] up to col[lyp-1] contain all the column indices j such 
that t[row, j] = Y. col[lyp] up to col[ldp-1) return the indices 
j such that t[row, j] == D~ and col[ldp] up to col[last] have the 
indices such that t[row, j] = N. Thus the two subtables are 

394-P 2- 0 

defined by the indices colCfirst], · · · , col[ldp] and col[lyp], · • • : 
col[laBt]. left is executed twice for each external reference, 
First it places all the "Y" columns at the far left. Second it 
calls itself to push all the"-·" columns to the right of the last 
"Y" column. The paramete:r key contains the code for "Y" 
or "-" to indicate which character is being matched; 

value row, first, last, key; 
begin 

integer i, j, temp; 
i :== firBt; j := last; 
for i := i while i ~ j do if t[row, col[i]J =key then i := i + 1 

else 
begin 

for j :== j while t[row, col[j]J ¢key/\ i < j doj := j - 1; 
temp : = col[i]; col[i] : = col[j]; col Lil : = temp; j : = j - 1 

end; 
lyp :== i; if key ¢ D then left (t, row, i, last, D, ldp, lyp) 

end left; 
integer procedure split (t, rows, first, last, test, yes, no) 
comment This procedure recursively bifurcates the nonde-

generate decision subtable defined by the row indices row[l], 
• • • , row[rows] and the column indices col[first], · · · , col[laBt]. 
The global parameter line determines the position of the, 
code matrix into which Bpi:it enters test-and-branch data. 
The procedure "creates" subtables from which the selected 
condition row is deleted by swapping the selected condition 
row index with the last row index, reducing the rows counter 
by 1, and having procedure l.ejt rearrange the column indices. 
If the input table has no rows, then split returns zero indicat
ing the Else-rule. If the table is entirely dashes or has no 
columns, then Bplit returns the value - col[first], indicating a 
terminal, rule node. Otherwise split p]aces the next condi
tion to be tested as a deciBion node into test[line+ll and 
calls itself for the corresponding subtables; 

value rows, first, last; 
begin 

integer mine, imin, lyp, ldp;. 
mine : = 0; if first ~ last th.en 
b~gin 

imin :=select (t, rows,first, last); 
if imin = 0 then 
begin 

mine :-= -col[first]; if first ¢ last then 
begin 

outBtring (1, 'Following· rules are redundant:'); 
for i := first step 1 until last do outinteger (1, col[i1) 

end; 
end else 
begin 

mine := line := line+ 1; test[mine] := row[iminJ; 
row[iminJ := row[rows]; 
left(t, test[mine], first, last, Y, lyp, ldp); 
yes[mine] := split (t, rows-1, first, ldp-1, test, yeB, no); 
comment Restore column indices rearranged in 

recursion; 
left(t, test[mine], first, lo!p-1, Y, lyp, ldp); 
no[mine] := split(t, rows·-1, lyp, last, test, yes, no); 
row[iminJ := test[mine] 

end 
end; 
split := mine 

end split; 
for i := 1step1 until m do raw[i] := i; 
for i := 1step1 until n do, c.ol[iJ := i; 
N : = -1; D : = 0; Y : = 1; line : = 0; 
i := split(t, m, l, n, teBt, yes, no); 
dec-z'.table : = line; 
comment The value of decita:ble is the length of code matrix; 

end decitable 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 394 [H] 
Decision Table Translation [R.B. Dial, Comm. ACM 
13 (Sept. 1970), 570] 

D.R.T. Marshall [Recd. 3 Mar. 1971] 
Data Processing Department, University of Waterloo 
Waterloo, Ontario, Canada 

Key Words and Phrases: decision table, deci.sion table translation 
CR Categories: 4.19 

The first comment of procedure split has the words "columns" 
and "row" transposed in sentences four /five. It should read "If 
the input tables has no columns, then split returns zero, .... 
If the table is entirely dashes or has no rows, then split, .... 

The statement in the main procedure invoking the procedure 
split uses a variable" I", which is not defined. 

This variable should be initialized to establish the "first" 
column in the array to be processed. This would, of course, nor
mally be set to one. 

The writer has programmed and executed the algorithm suc
cessfully in PL/I with the above noted changes. 

394-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 395 
STUDENT'S t-DISTRIBUTION [S14] 
G. W. HILL (Recd. 17 Nov. 1969 and 23 Mar. 1970) 
C.S.1.R.O., Division of Mathematical Statistics, Glen 

Osmond, South Australia 

KEY WORDS AND PHRASES: Student's t-statistic, distribu
tion function, approximation, asymptotic expansion 
CR CATEGORIES: 5.12, 5.5 

real procedure 8tudent (t, n, normal, error); value t, n; real t, n; 
real procedure normal, error; 

com.m.ent student evaluates the two-tail probability P(t In) 
that t is exceeded in magnitude for Student's [1] t-distribution 
with n degrees of freedom. The procedure provides results accu
rate to 11 decimal places and 8 significant digits for integer val
ues of n, with approximate continuation of the function through 
noninteger values of n (over 6 decimal places for n > 4.3). 

The procedure normal (x) returns the area under the standard 
normal frequency curve to the left of x, so that a negative argu
ment yields the lower-tail area. The user-supplied procedure, 
error(n), should produce a diagnostic warning and may go to a 
label, terminate, or return a distinctive value (zero or -1.0) as 
a signal of error to the calling program. 

Student's series expansion of the probability integral is sup
plemented by a faster asymptotic approximation for large values 
of n and by a more precise "tail" series expansion for large 
values oft. 

The value of x, defined as the normal deviate at the same 
probability level as t, may be approximated by an asymptotic 
normalizing expansion of Cornish-Fisher type [2]. 

x = z + (z3+3z)/b - (4z7+33z6+240z1+855z)/10b1 

+ (64z11+ 788z1+9801z7+89775z11+543375z8+1788885z) /210b1- • • • 

where z = (aXln(l+t 2/n))I, a = n - l and b = 48a2 [3]. 
This is well approximated by the first three terms with the third 
term's divisor replaced by 

lOb (b+0.8z'+ 100). 

The student probability is double the normal single-tail area, 
corresponding to the deviate x. 

The maximum error in the probability result for all values oft 
is displayed as a function of n in Figure 1, for this approxima
tion, for the first few terms of the asymptotic expansion and for 
Fisher's [4] fifth-order approximation used in Algorithm 321 [5] 
for n ~ 30. 

For small n and moderate t the result is calculated as P(t In) = 
1 - A(t In) using Student's cosine series for A(t In), rearrang
ing formulas 26.7.3 and 26.7.4 of the NBS Handbook [6] in 
nested form 

A(tln odd) = ~ [arctan(y) + ! {1 + _! { ... (n-
5

) 
... b 3b (n-4)b 

. {l + (n-3) }· .. ·}}] 
(n-2)b 

y { 1 { (n-5) { (n-3) } ' }} 
A(tln even) - v'(b) 1 + 2b ••• (n-4)b 1 + (n-2)b • . • , 

where y = v'(t1/n) and b == 1 + t1/n. In the nested form, terms 

395-P 1- 0 

are treated in reverse order to 1;he summation in Algorithm 321 
and Algorithm 344 [7], reducini~ the number of operations re
quired and reducing build up of roundoff error. Explicit decre
menting of the "loop" parameter ensures that its final value 
remains defined on exit from the loop for use in an odd/even test. 

Execution times for Fortran versions run on a CDC 3200 with 
programmed floating point aro displayed in Figure 2, which 
indicates that nesting decreases the time for the cosine series 
method by about 30 percent and that it is appropriate to change 
over to the asymptotic method (using Algorithm 209 [8] for 
normal) when n ;::_ 20. Althou~:h this approximation would be 
accurate to more than 11 decimal places, the use of Algorithm 
209 limits accuracy to about 9 decimals. This accuracy may be 
sufficient for many applications, in which case student may be 
abbreviated by deleting lines 15 and 27 through 35, removing 

"'"° ~· "O ~ 
1)0 ti>,.., ~~ 

=-t-~ ~I 

~\~~ ~ 
~ 10-101._ ___ 2..____3..____41--..1..5_5.1......1-JEI 10 14 20-._.__~....._.---JL.......1-L...1.-1.....1100 

DEGREES OF FREEDOM 'l'1i 

Fm. 1. Maximum error of approximations for "Student's" 
t-probability: 1, 2, and 3 term expansion, approximation with 
adjusted divisor, and Fisher's 5th order approximation 

en 
~100 
8 w en 
3 
i 
~ 
w 
~ 50 
I-

'Yl.)200 

LIMIT WITH 
PRECISE 
NORMAL() 
2----

3----
5----

,,,_,--~~~~....;.:A~SY_M_P_TO~T-IC;;~-A~PP~R~O~X-IM~AT-1-0;N~~~--·ll'lO~j== 

01.+--...---r.;..=.--=-~~::...;;....;__~~-~--~~--.--~-~--..-----1 

0 10 20 30 50 100 150 200 
DEGREES OF FREEDOM n 

Fm. 2. Execution times (CDC3200 with programmed floating 
point). Broken lines: "tail" series for selected values of t (upper 
left); asymptotic method using precise normal (right) 



COLLECTED ALGORITHMS (cont.) 

the declaration and assignment of z from line 3, replacing line 
5 by 

if n > entier(n) V n ~ 20 then 

and replacing line 25 by 

student : = If a > 1.0 then 0.0 else 1.0 - a 

The latter avoids spurious negative results due to roundoff 
error when a is near 1 for large values of t. The storage required· 
for this abbreviated version was a little less than for Algorithm 
344 and less than half that for Algorithm 321. 

Applications such as production of tables or function inversion 
to obtain extreme quantiles may require greater precision at 
extreme probability levels than these methods provide. For the 
cosine series and the asymptotic approximation using a high 
precision procedure for normal, such as Algorithm 304 [9], the 
relative error in the result increases in magnitude as the result 
decreases to extremely small values, as illustrated in Figure 3. 

10-10 
PROBABILITY LEVEL P 

Frn. 3. Relative error, I P - P* II P, of approximation P*; 
shaded region for restricted t values 

For small P more precise results are obtained using a series 
expansion of P(t In) in terms of w = 1/sqrt(l+it2/n), 

{
1 1 x w2 1 x 3 x tv' } 

P(tln) = C(n) X wn -; + 2(n+2) + 2 X 4(n+'l) + . . . , 

where C(n) = I'((n+l)/2)/{v''ll"Xr(n/2)). The seiries is summed 
till a negligible term occurs and then the factor C(n)Xw" is 
applied using the same repeated loop as the cosine series. Except 
for w near 1 when tis small, the truncation error is small, and 
accumulation of error in the repeated loop is moderate unless n 
is very large. 

The cosine series method loses precision mainly in the sub
traction 1 - A (t I n) as well as from the sqrt procedure and arctan 
when n is odd. In the worst case, n = 19, the error is kept below 
3 decimals by changing to the tail series if t > 2, which ensures 8 
significant digits in the result for the 36-bit {about 11 decimal) 
precision real variables for the processor used. As shown in 
Figure 3, change over from the asymptotic method td the tail 
series when t 2 > n maintains about 8 significant digits in the 
result. For a machine of greater precision the use of more terms 
in the asymptotic series may be warranted, and the change over 
criteria would need adjustment to balance speeds: and precision 
between the three methods. 

Execution times for the· tail series are shown as broken lines 
in Figure 2 for selected values oft: with bounds t ~~ 2 for n < 20, 
t 1 ~ n for n ~ 20 and with the limit n < 200 preventing excessive 

395-P 2- 0 

time for large t beyond a probability level near 10-'0 • For the 
asymptotic method, using for normal a higher precision pro
cedure based on Algorithm 304, the execution times for different 
values of the argument approach those shown at the right of 
Figure 2. Averaged over a range of arguments arising in practice, 
the provision for higher precision more than doubles the time 
required. In the case of Smirnov's [10] 6D tables of S(t In) = 
1 - 0.5 X P(t In), retabulation to lOD, using the more precise 
procedure for normal, increased the time from :about 7 minutes 
to 12 minutes, while introducing the tail series method to tabu
late P(t In) over the same range to 8 significant digits increased 
the time further to about 16 minutes. Use of the asymptotic 
approximation enabled Smirnov's 6D tables of 1/l(t 11000/~), 
which is an approximate continuation of S(t In) over non
integer values of n = 1000/~, to be extended to lOD for~= 0(2)30 
in 5 minutes, and permits continuation to ~ = 200 with over 6D 
accuracy as indicated in Figure 1. 

The preparation of diagrams by Murray C. Childs is gratefully 
acknowledged. 
REFERENCES: 

1. GossET, W. S. (Student). On the probable eirror of a mean. 
Biometrika 6 (1908), 1. 

2. HILL, G. W., AND DAVIS, A. W. Generalized asymptotic expan
sions of Cornish-Fisher type. Ann. Math. Statist. 39, 4(1968), 
1264. 

3. HILL, G. W. Progress results on asymptotic approximations 
for Student's t. Unpublished manuscript, Oct. 1969. 

4. FISHER, R. A. Expansion of "Student's" integral in powers of 
n-1• Metron, 5 (1926), 109-112. 

5. MORRIS, J. Algorithm 321, t-test. Comm. ACM 11 (Feb. 1968), 
115. 

6. ABRAMOWITZ, M., AND STEGUN, I. A. (Eds.) Handbook of 
Mathematical Functions. Appl. Math. Ser. Vol. 55, Nat. 
Bur. Stand., US Govt. Printing Off. Washington, D.C., 
1965, p. 948. 

7. LEVINE, D. A. Algorithm 344, Student's t-distribution. Comm. 
ACM 12 (Jan. 1969), 37. 

8. IBBETSON, D. Algorithm 209, Gauss. Comm. ACM 6 (Oct.1963), 
616. 

9. HILL, I. D., AND JOYCE, S. A. Algorithm 304, Normal. Comm. 
ACM 10 (June 1967), 374. 

10. SMIRNOV, N. V. Tables for the Distribution and Density Func
tions oft-Distribution. Pergamon Press, New York, 1961; 

if n < 1 then student := error(n) else 
begin 

real a, b, y, z; z := 1.0; 
t :.= t t 2; y := t/n; b := 1.0 + y; 
if n > entier(n) V n ~ 20 /\ t < n V n > 200 then 
begin 

comment Asymptotic series for large or noninteger n; 
ify > io-6 theny := ln(b); 
a := n - 0.5; b := 48.0 X a t 2; y := a X. y; 
y := (((((-0.4Xy-3.3)Xy-24.0)Xy-85.5)/ 

(0.8Xy t 2+IOO.O+b)+y+3.0)/b+l.O)Xsqrt(y); 
student := 2.0 X normal(-y); 

end 
else 
if n < 20 /\ t < ·4.0 then 
begin 

comment Nested summation of "cosine" series; 
a := y := sqrt(y); if n = 1 then a := 0.0; 

loop: 
n : = n - 2; if n > 1 then 
begin a := (n-1)/(bXn) X a+ y; go to loop end; 
a := if n = 0 then a/sqrt(b) 

else (arctan(y)+a/b) X 0.63661977236; 
comment 2/11" = 0.6366197723675813430755351 · · · 
student : = z -- a 



COLLECTED ALGORITHMS (cont.) 3·95_p 3- Rt 

end 
else 
begin 

begin 
z :=a; y := y X (j-1)/(b><j); a :=a+ y/(n+j) 

end; 
cornrnent "tail" series expansion for large t-values; 
integer j; a : = sqrt (b) ; y : = a X n; j : = 0; 

n := n + 2; z := y := 0.0; ii := -a; go to loop 
end 

for j : = j + 2 while a '¢ z do end 

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 238-239. 

REMARK ON ALGORITHM 395 

Student's t-distribution [S14] 
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 617-619] 

and 
REMARK ON ALGORITHM 396 

Student's Quantiles [814] 
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 619-620] 

Mohamed el Lozy [Recd 9 June 1978] 
Department of Nutrition, Harvard School of Public Health, 665 Huntington 
Ave., Boston, MA 02115 

Both of these algorithms incorporate very accurate mathematical methods, but 
contain a source of loss of precision which is severe for the many processors with 
precision less than or not sufficiently greater than that claimed for the algorithms. 

In Algorithm 395 the use of the asymptotic series involves the evaluation of 
ln(l + t 2 /n). For small y = t 2 /n and b = 1 + y, ln(b) is of the order of magnitude 
of y, so that the statement 

if y > 10-6 then y := ln(b) 

admits a loss of precision of up to 6 decimal digits. This loss will be espiecially 
marked on a machine with hexadecimal number representation, since the leading 
byte in 1 + y will be hexadecimal 1, or binary 0001, with a loss of a further 3 bits, 
in addition to the loss inherent in the addition. Where the processor's implemen
tation of ln(b) for b near 1 effectively involves the Taylor series (b - 1) -- (b -
1) 2 /2 + ... , the replacement statement 

if b =F 1 then y := y x (ln(b)/(b - 1)); 

as in IMSL's subroutine MDTD [l], counteracts the loss of precision in evaluating 
the logarithm as evidenced by column 3 of Table I. However, in the general case 
there are two solutions, the simplest of which is to evaluate Y = DLOG(l.ODO 
+ DBLE(Y)), using the variable Y (single precision) for t 2/n, as in the algorithm 
under discussion. An alternative method might be based on the use of single 
precision LOG(l.0 + Y) for "sufficiently large" Y, and a suitable number of terms 
of the Taylor expansion otherwise. In this case the optimal crossover point 
between the two methods of evaluation would be machine dependent and the 
coding would be longer, as exemplified for an analogous case in Algorithm 465 
[2]. 

In Algorithm 396 the expression exp(x 2 /n) - 1 occurs, and here again substan
tial loss of precision can occur for small y, to use the algorithm's notation. 
Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts 
to a Taylor series expansion of exp(y) - 1fory<0.002, but this choice is machine 
dependent and unsuitable for 32-bit machines. Here again I would opt for double 
precision evaluation of that one expression (storing the result in single precision) 
over the alternative Taylor series approach. 

The Remark on Algorithm 396 was supported by the Fund for Research and Teaching, Department 
of Nutrition, Harvard School of Public Health. 



COLJLECTED ALGORITHMS (c:ont.) 395-P 3- RI 

begin end 
else 
begin 

z :=a; y := y X (j-1)/(bXj); a :=a+ y/(n+j) 
end; 

comment "tail" series expansion for large t-values; 
integer j; a : = sqrt (b) ; y : = a X :n; j : = 0; 
for} : = j + 2 while a ~ z do 

n := n + 2; z := y := 0.0; a := -a; go to loop 
end 

end 

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 238-239. 

REMARK ON ALGORITHM 395 

Student's t-distribution [S14] 
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 617-619] 

and 
REMARK ON ALGORITHM 396 

Student's Quantiles [S14] 
[G.W. Hill, Comm. ACM 13, 10 (Oct. 1970), 619-620] 

Mohamed el Lozy [Recd 9 June 1978] 
Department of Nutrition, Harvard School of P\,lblic Health, 665 Huntington 
Ave., Boston, MA 02115 

Both of these algorithms incorporate very accurate mathematical methods, but 
contain a source of loss of precision which is severe for the many processors with 
precision less than o:r not sufficiently greater than that claimed for the algorithms. 

In Algorithm 395 the use of the asymptotic series involves the evaluation of 
ln(l + t 2/n). For smally = t 2/n and b = 1 + y, ln(b) is of the order of magnitude 
of y, so that the statement 

if y > 10-6 then y :== ln(b) 

admits a loss of precision of up to 6 decimal digits. This loss will. be especially 
marked on a machine with hexadecimal number representation, since the leading 
byte in 1 + y will be hexadecimal 1, or binary 0001, with a loss of a further 3 bits, 
in addition to the loss inherent in the addition. Where the processor's implemen
tation of ln(b) for b near l effectively involves the Taylor series (b - 1) - (b -
1) 2 /2 + ... , the replacement statement 

if b ~ 1 then y := y x (ln(b)/(b - 1)); 

as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating 
the logarithm as evidenced by column 3 of Table I. However, in the general case 
there are two solutions, the simplest of which is to evaluate Y = DLOG(l.ODO 
+ DBLE(Y)), using the variable Y (single precision) f~r t 2/n, as in the algorithm. 
under discussion. An alternative method might be based on the use of single· 
precision LOG(l.O + Y) for "sufficiently large" Y, and a suitable number of terms 
of the Taylor expansion otherwise. In this case the optimal crossover point 
between the two methods of evaluation would be machine dependent and the 
coding would be longer, as exemplified for an analogous case in Algorithm 465 
[2]. 

In Algorithm 396 the expression exp(x 2/n) -- 1 occurs, and here again substan
tial loss of precision can occur for small y, to use the algorithm's notation. 
Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts 
to a Taylor series expansion of exp(y) - 1fory<0.002, but this choice is machine 
dependent and unsuitable for 32-bit machines. Here again I would opt for double 
precision evaluation of that one expression (storing the result in single precision} 
over the alternative Taylor series approach. 

The Remark on Algorithm 396 was supported by the Fund for Research and Teaching, Department 
of Nutrition, Harvard School of Public Health. 



COI,LECTED ALGORITHMS (cont.) 

Table I. Relative Errors in the Calculation ofln(l + t 2/n) and exp(x 2/n) - 1 by the 
Methods of Algorithms 395 and 396, for x = t = 2 and Various Values of n 

ln(l + t 2 /n) exp(x 2 /n) - 1 

n PDP IBM IMSL/IBM PDP IBM 

~m 0.245E-6 0.654E-6 0.0 0.538E-6 0.242E-5 
40 0.313E-6 0.500E-5 0.0 0.708E-6 0.567E-5 
80 0.137E-5 0.149E-4 0.299E-6 0.203E-5 0.118E-4 

160 0.754E-6 0.151E-4 0.0 0.177E-5 0.311E-4 
320 0:817E-5 0.150E-4 0.0 0.281E-5 0.349E-4 
640 0.688E-5 0.909E-4 0.0 0.187E-4 0.178E-4 

1280 0.201E-4 0.244E-3 0.298E-6 0.153E"-4 0.282E-3 
2560 0.224E-5 0.244E-3 0.149E-6 0.372E-6 0.447E-6 
5120 0.700E-4 0.244E-3 0.0 0.745E-7 0.298E-6 

10240 0.104E-3 0.164E-2 0.0 0.745E-7 0.0 

Table I shows the relative errors of single precision evaluation of these two 
expressions fort (or x) equal to 2 and for various values of n, using the first two 
terms of the Taylor series for the exponential for y < 0.002 as in the algorithm, as 
well as the IMSL "fix." The computations were done on an IBM 370/168 run111ing 
under 08/MVT and on a PDP 11/70 running under UNIX. Though both 
machines have a mantissa of 24 bits, the results on the PDP are far better than 
those on the 370, presumably due to the hexadecimal normalization of the latter 
machine. 

REFERENCES 
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973. 
2. HILL, G.W. Algorithm 465. Student's t frequency. Comm. ACM 16, 11 (Nov. 1973), 690. 

REMARK ON ALGORITHM 395 

Student's t-Distribution [814] 
[G. W. Hill, Commun. ACM 13, 10 (Oct. 1970), 617-618.] 

G. W. Hill [Received 6 December 1978; revised 7 July 1979; accepted 6 August 
1979] 
Division of Mineral Chemistry, CSIRO, Port Melbourne, Australia 3207. 

The precision loss noted in [1], in the evaluation of ln(l + t 2 /n) for Algorithm 
395, exceeds the margin of precision of the 36-bit processor over the eight 
significant decimal digits target mentioned in the algorithm. A suitable correction 
for this case is the replacement (recall that y = t 2 /n and b = 1 + t 2 /n) of lim' 8 of 
the procedure body by 

if y > 0.01 then y := ln(b) 
else y := ((-y x 0.75 + 1.0) x y/3.0 - 0.5) x y x y + y; 

However, when extended precision is required [2, 4], a number of details of the 
algorithm must be changed. A more generally applicable replacement of line 8 
imitates a technique in Algorithm 465 [3]. 

z := t := y; if y > cmax then y := ln(b) 
else 
for a := 2.0, a + 1.0 while y 7'= b do 
begin z := - z x t; b = y; y := z/a + y end; 

For small y (<cmax say) the precision lost in evaluating ln(l + y) corresponds 
to a relative error about e/y, where e denotes the relative magnitude of processor 
roundoff. The alternative summation of the logarithmic series until the Rth term 

ACM Transactions on Mathematical Software, Vol. 7, No. 2, June 1981, Pages 247-249. 

395-P 4- Rt 

m _______________________________________ ,_._.,.•¥•111•-•ti!IAl!ll. -----



COLl_,ECTED ALGORITHMS (cont.) 

is negligible, (yR /(R + 1) < e), accumulates roundoff error resulting in an average 
relative error of about eJR. The maximum of these relative errors is minimized, 
as in Algorithm 465, by choosing cmax = R- 112, where R is determined for ap-bit 
precision processor by an approximate criterion for neglecting the R th term; 
cmaxR / R ::::: e = r.P, or equivalently, R/2 + 1 ::::: 2P. For p = 36 the solutions 
R = 16 and cmax == 0.25 imply an approximate relative error about 4e in the 
result. For precision as extended asp = 96, cmax == 0.16B holds this precision loss 
to about one decimal digit. 

For each combination of actual parameter values, Algorithm 395 applies criteria 
to select whether to use Student's cosine series, the asymptotic normal approxi
mation, or the "taill" series, in order to achieve BS (significant decimal digits) 
without excessive loss of speed for the IO.BS processor used. For an extended 
precision version thie criteria must be changed to balance precision against speed 
characteristics of the processor used. In the case of double precision to about 29S 
of a CDC 6000-7000 series processor; a target precision of 25S allows for precision 
loss up to four decimal digits, such as occurs in the subtraction of almost equal 
quantities, P(t/n) = 1 - A (t/n), to obtain small tail probabilities using Student's 
cosine series for A(t/n). The effect of this and other causes of precision loss is 
illustrated in Figure 3 of Algorithm 395. 

Greater precision is achieved in the case of extreme probability levels and large 
n values by the use of the asymptotic normal approximation. To improve precision 
for larger n, it is efficient to extend the normal approximation up to the sixth 
term of the series [2] in terms of z = [(n - t)ln(l + t 2/n)] 112 and b = 4B(n - -~-)2. 

x = z + (z3 + 3z)/b - (4z7 + 33z5 + 240z3 + B55z)/I0b2 

+ (64z11 + 7BBz 9 + 9BOlz7 + B9775z5 + 543375z3 + 17BB885z)/210b3 

- (1152z15 + 18896z13 + 329496z11 + 46985B5z9 + 52027920z7 

+ 424303110z5 + 2349874B00z3 + 7412830425z)/4200b4 

+ (122BBz19 + 251776z17 + 5645776z15 + 10B788520z13 

+ 1738275417z11 + 22499221635z9 + 229192224030z7 

+ 1754611114410z5 + 9309549058425z3 + 28756631378475z)/46200b 5 
- ••• 

To achieve at least !mS for n > 100, the sixth term's divisor is replaced by 

46200b4 
( b + 0.43595z4 + 2z2 + 537), 

which accounts for a substantial portion of the omitted next terms, in a fashion 
similar to the effect displayed in Figure 1 of Algorithm 395, which also illustrates 
"diminishing returns" in precision gain from additional terms of the series. 
However, the consequent increase in computing time is moderated by the fact 
that two-thirds of the arithmetic operations arise in evaluating the fifth and sixth 
terms, for which single-precision arithmetic and representation of coefficients 
prove sufficient. 

For large enough values of z4/b = [ln(l + t 2/n)] 2/4B,. the asymptotic approxi
mation becomes poor or even divergent, so that for such large values of 1 + t 2/n 
the tail series in powers of w 2 = 1/(1 + t 2/n) is used and converges rapidly with 
little accumulation ofrounding error. The factor r ( (n + 1) /2) / ( J; x I'(n/2)) >< 
wn may be evaluated using the same repeated loop as for the cosine series, or by 
using Algorithm 465 to evaluate the frequency function f(t In) as a factor for the 
equivalent tail series expansion, 

r: -Jn, [ 1 1 x w
2 

1 X 3 X w
4 J 

P(t In) = 2J (t In) x - - + + + · · · . rw n 2(n + 2) 2 x 4(n + 4) 

This can improv~~ speed for large n and, since Algorithm 465 is valid for 
noninteger n, permits continuation of the probability integral over noninteger 
values of n down to n = 1 with considerable precision for t 2 > n; that is w 2 < l 

395-P 5- 0 



COLLECTED ALGORITHMS (cont.) 

In neither form does the series converge well for w near 1; and for small t or large 
n the time required for evaluation, the accumulated roundoff error, and the 
truncation error can increase to unacceptable levels. 

Where the domains of validity of the three methods overlap, correspondence 
between results of two methods can be used as a basis for determining the error 
level of the third. Where two methods achieve precision exceeding the target, 
counts of instructions or timing tests may be used to select the faster. Increase or 
decrease of the target precision is found to have a marked effect on computing 
time so that some compromise trade-off of precision against speed is required 
according to the particular processor used and the intended application. Reason
able speed of execution with precision at least to 238, but generally 258 or more, 
is achieved for the CDC 6000-7000 series processor by replacing line 5 by (recall 
that t represents t 2

, the square of the actual parameter value) 

if n > entier(n) v n > 1000 v n ~ 100 " t < 0.1 x n - 5 then 

to select evaluation by the six-term asymptotic approximation. Replacement of 
line 15 by 

if n < 100 A t < 16 then 

selects the cosine series method for smaller values of n and t < 4; the else clause 
evaluates the double-precision tail expansion to obtain a sufficiently precise result 
for smaller probability levels. For continuation extension as outlined in the 
preceding paragraph, the replacements of lines 5 and 15 are 

if n > 1000 v n ~ 100 A t < 0.1 X n - 5 then 
if n = entier(n) A n < 100 A t < 16 then 

Some margin of precision loss from the full precision level of the processor is 
unavoidable due to accumulated roundoff error and is traded off further to 
achieve an acceptable speed of execution. With this reservation the methods of 
Algorithm 395 can be extended to provide higher precision results, as evidenced 
by their use in evaluating quantiles to 20D [2]. 

REFERENCES 
1. EL LozY, M. Remark on Algorithm 395. Student's t distribution. ACM Trans. Math. Softw. 5, 

2 (June 1979), 238-239. 
2. HILL, G.W. Reference Table: "Student's" £-distribution quantiles to 20D. Tech. Paper No. 35, 

Div. Math. Statist., CSIRO, Australia, 1972, 24pp. 
3. HILL, G.W. Algorithm 465. Student's t frequency. Commun. ACM 16, 11(Nov.1973), 690. 
4. LING, R.F. A study of the accuracy of some approximations tot, x2 and F tail probabilities. J. 

Amer. Statist. Assoc. 73, 362 (1978), 274-283. 

395-·P 6- 0 

ii·,-------····-··----,-------------·------------------,---------· 



COLI,ECTED ALGORITHMS (cont.) 

Table I. Relative Errors in the Calculation ofln(l + t 2/n) and exp(x 2/n) - 1 by the 
Methods of Algorithms 395 and 396, for x = t = 2 and Various Values of n 

ln(l + t 2/n) exp(x 2/n) - 1 

n PDP IBM IMSL/IBM PDP IBM 

20 0.245E:-6 0.654E-6 0.0 0.538E-6 0.242E-5 
40 0.313E:-6 0.500E-5 0.0 0.708E-6 0.567E-5 
80 0.137E:-5 0.149E-4 0.299E-6 0.203E-5 0.118E-4 

160 0.754E:-6 0.151E-4 0.0 0.177E-5 0.311E-4 
320 0.817E-5 0.150E-4 0.0 0.281E-5 0.349E-4 
640 0.688E-5 0.909E-4 0.0 0.187E-4 0.178E-4 

1280 0.201E-4 0.244E-3 0.298E-6 0.153R-4 0.282E-3 
2560 0.224E-5 0.244E-3 0.149E-6 0.372E-6 0.447E-6 
5120 0.700E-4 0.244E-3 0.0 0.745E-7 0.298E-6 

10240 0.104E-3 0.164E-2 0.0 0.745E-7 0.0 

Table I shows the relative errors of single precision evaluation of these two 
expressions fort (or x) equal to 2 and for various values of n, using the first two 
terms of the Taylor series for the exponential for y < 0.002 as in the algorithm, as 
well as the IMSL "fix." The computations were done on an IBM 370/168 running 
under 08/MVT and on a PDP 11/70 running under UNIX. Though both 
machines have a mantissa of 24 bits, the results on the PDP are far better than 
those on the 370, presumably due to the hexadecimal normalization of the latter 
machine. · 

REFERENCES 
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973. 
2. HILL, G.W. Algorithm 465. Student's t frequency. Comm. ACM 16, 11 (Nov. 1973), 690. 

395-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 396 
STUDENT'S t-QUANTILES [S14] 
G. W. HILL (Recd. 6 Jan. 1970 and 18 May 1970) 
C.S.l.R.0., Division of Mathematical Statistics, Glen 

Osmond, South Australia 

KEY WORDS AND PHRASES: Student's t-statistic, quantile, 
asymptotic approximation 

CR CATEGORIES: 5.12, 5.5 

real procedure t quantile (P, n, normdev, error); 
value P, n; real P, n; real procedure normdev, error; 

comment This algorithm evaluates the positive quantile at the 
(two-tail) probability level P, for Student's t-distribution with 
n degrees of freedom. The quantile function is an inverse of the 
two-tail 

P(tln) = 2 r(!n+U ("" du 
v'(rn)r(!n) J t (l+u2/n)<ln+l> 

which is approximated in Algorithm 395 [1] by series whose in
verses are used in this algorithm fort quantiles. Test calculations 
to 36-bit precision indicate that the result is correct to at least 
6 significant digits, even for the analytic continuation through 
noninteger values of n > 5. 

The procedure normdev(p) is assumed to return a negative 
normal deviate at the lower tail probability level p, e.g. -2.32 
for p = 0.01. The user-supplied procedure for error(n) should 
give a diagnostic warning that the value of P or n is invalid and 
may go to a label, terminate, or return a distinctive value as an 
error signal to the calling program. 

For n = 1 and n = 2 the exact result of integration is readily 
inverted to yield t = cot(PXr/2) and t 1 = 2/(P(2-P))-2, 
respectively. For larger n an asymptotic inverse expansion 
about normal deviates is applicable, while for smaller values of 
P a second series expansion is used to achieve suffi'.lient preci
sion. Both approximations have been adjusted to enhance pre
cision for n as low as 3. 

Both methods involve an expansion of the factor 

d/n = H y';r(Hn)/r(~n + %) 

in terms of a = 1/ (n-!) and b =48/a 2 

d/n = v (ar/2) (l-3/b+94.5/b2-9058.5/b8+ · · ·) [2]. 

A three term approximation uses b(b+c) instead of b 2 as a 
divisor, where the coefficients in 

c = 96.36 - 16a - 98a2 + 20700a,3/b, 

have been fitted to ensure 8 significant digits in d for n as low 
as 3. 

The inverse asymptotic expansion of Cornish-Fisher type re
lates a function y(t) = y[(n-t)ln(l+t2/n)] to the normal 
deviate x at the corresponding probability level, P/2: 

y=x - (x3+3x)/b + (4x7 +63x6+360x3+945x)/10b 2 

(64x11+1628x11+1988lx7 +145719x6+694575x8 

+1902285x)/210b3 + ... [2], 

whence t = y[nX(exp(aXy2)-1)]. :For a three term approxi-

396-P 1- 0 

mation the third term's divisor iB replaced by 

whose coefficients have been fitted to reduce the error for small 
n and for larger n and X· For n < 5, c is increased by 0.3(n-4.5) 
(x+0.6) to further reduce error in an interval of P not well 
covered by the following approximation. 
~or small P, where t 2/n is large, the inLegrand may be ex

panded in terms of w 1 = 1/(l+t2/n) and integrated term by term 
to yield 

p nw"{l u1' 1 X 3w' } 
... d ~ + 2(n+2) + 2 X 4(n+4) + ··· ' 

which may be inverted to express t 2/n in terms of y = (PXd)21" 

~=!+n+l{-l+-Y~+ nXy' 
n y n + 2 2(n+4) 3(n+2)(n+6) 

n(n+3)(2n1+9n-2)y1 
•• ·} 

+ 8(n+2)1(n+4)2(n+8) + · 

Since the ratio of successive tenns is nearly n X y/(n+6) for 
small n, replacement of the term in y 2 by y/[3(n+2){ (n+6)/ 
(nXy)-1.0}] provides an approximate allowance for subsequent 
terms in the series, which is empiirically improved by replacing 
the -1.0 by -0.822 - 0.089 X d. 

As n and P increase, the errors :for the asymptotic approxima
tion decrease, whereas errors for the second series increase, so 
that for each value of n the error curves intersect at a value of 
P above which the asymptotic approximation is better and be
low which the second series should be used. By adjusting the 
two approximations the error level at these intersections has 
been balanced at about the seventh significan~ digit for n ~ 3 
and P > 10-H. The value of y at these points is about a + 0.05 
and this fact provides a convenient criterion for selecting which 
approximation to use: the asymptotic series if y exceeds a + 
0.05, otherwise the second series. 

Although better approximations could be obtained by use of 
more terms in each series, greate:r precision can be achieved by 
using the result of this algorithm a.s a starting value for iterative 
inversion of P(t In), whose value and derivative can be com
puted with considerable precision using recurrence relations as 
in Algorithm 395. 

A comparison of results from this algorithm against values 
obtained by inverting the function provided by Algorithm 395 
indicates a precision of over 6 significant digits for 10-u s 
P s 0.9, n ~ 1. At the conventional tabulation points in 0.001 s 
P s 0.9 results for n = 1, n = 2, imd n > 10 checked to 8 signifi
cant digits. 

Previously published tables [3, 4, 5) provide 3 or 4 decimal 
place check values, some of which are found to be slightly in 
error. Thus for n = 2, P = 0.001, tis given as 31.598 by Fisher 
and Yates and by Federighi, 31.5~191 by Smirnov, and 31.5990546 
by this procedure, while for n = ll, P = 0.001 the value 636.6096 
given by Smirnov conflicts with Fisher and Yates, Federighi 
(636.619) and this procedure (636. 1fH925). Other errors in the last 
few digits in Smirnov's table for low values of n and P include 
10.2129 for n = 3, P = 0.002, which should be 10.2145, and 4.7812 
for n = 9, P = 0.001, which should be 4.7809. 

t quantile may be used to obtain percentiles at values of P and 



COLLECTED ALGORITHMS (cont.) 

begin 
real half pi; half pi := 1.5707963268; 
if n = 1 then 

396-P 2- Rt 

n not provided in existing tables or for extending their accuracy. 
Such tables are customarily used for assessing the significance of 
a. sample value fort, but for automatic computation the proba
bility level is more effectively determined as P(t In) using a 
direct procedure such as Algorithm 395. 

begin P := PX half pi; t quantile := cos(P)/sin(P) end 
else 

Pseudorandom t-values may be generated for sampling appli
cations by using uniformly distributed pseudorandom numbers 
for P, and in this case normdev may be a real p:rocedure return
ing pseudorandom normal deviates which are independent of P. 

REFERENCES: 
1. HILL, G. W. Algorithm 395, Student's t-distribution Comm. 

ACM JS (Oct. 1970), 617-618. 
2. HILL, G. W. Progress results on asymptot.ic approximatiops 

for Student's t. Unpublished manuscript, Oct. 1969. 
3. FISHER, R. A., AND YATES, F. Statistical Tables for Biological 

Agricultural and Medical Research. Oliver and Boyd, London, 
1963. 

4. SMIRNOV, N. V. Tables for the Distribution and Density Func
tions of t.-Distribution. Pergamon Press, New York, 1961. 

5. FEDERIGHI, E.T. Extended t~bles of the percentage points of 
Student's t-distribution. J. Amer. Stat. Assoc. 64 (1959), 
683-688; 

if n < 1 V P > 1.0 V P ~ 0.0 then t quantile : = error (n) 
else if n = 2 then t quantile:= Bqrt(2.0/(PX {2.0-P))-2.0) 
else 

begin 
real a, b, c, d, x, y; 
a:= l.0/(n-0.5); b := 48.0/a r 2; 
c := ((20700Xa/b-98)Xa-16) X a + 96.36; 
d := ((9U/(b+c)-3.0)/b+l.O) X sqrt(aXhalf pi) X n; 
:t := d X P; y := x t (2.0/n); 
ity > 0.05 +a then 
begin 

comment Asymptotic inverse expansion about normal; 
x := normdev(PX0.5); y := x t 2; 
if n < 5 then c :== c + 0.3 X (n-4.5) X (x+0.6); 
c := (((0.05XdXx-5.0)Xx-7.0)Xx-2.0) X x + b + c; 
y := (((((0.4Xy+6.3)Xy+36.0)Xy+94.5)/c-y-3.0)/b+ 

1.0) Xx; 
y :=ax y r 2; 
y := if y>0.002 then exp(y) - 1.0 else 0.5 x 'JI r 2 +" 

end 
else y := ((l.O/(((n+6.0)/(nXy)-0.089Xd--0.822)X 

(n+2.0) X3.0) +0.5/ (n+4.0)) Xy-1.0) X 
(n+l.O)/(n+2.0) + 1.0/y; 

t quantile := sqrt(nXy) 
end 

end Student's t-quantile 

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 238-239. 

REMARK ON ALGORITHM 395 

Student's t-distribution [S14] 
[G.W. Hill, Comm. ACM J.'3, 10 (Oct. 1970), 617-619] 

and 
REMARK ON ALGORITHM 396 

Student's Quantiles [S14] 
[G.W. Hill, Comm. ACM W, 10 (Oct. 1970), 619-620] 

Mohamed el Lozy [Recd 9 June 1978] 
Department of Nutrition, Harvard School of Public Health, 665 Huntington 
Ave., Boston, MA 02115 

Both of these algorithms incorporate very accurate mathematical methods, but 
contain a source of loss of precision which is severe for the many processors with 
precision less than or not sufficiently greater than that claimed for the algorithms. 

In Algorithm 395 the use of the asymptotic series involves the evaluation of 
ln(l + t 2/n). For smally = t 2/n and b = 1 + y, ln(b) is of the order of magnitude 
of y, so that the statement 

if y > 10-6 then y := ln(b) 

admits a loss of precision of up to 6 decimal digits. This loss will be especially 
marked on a machine with hexadecimal number representation, since the leading 
byte in 1 + y will be hexadecimal 1, or binary 0001, with a loss of a further 3 bits, 
in addition to the loss inherent in the addition. Where the processor's implemen-

The Remark on Algorithm 396 was supported by the Fund for Research and Teaching, Department 
of Nutrition, Harvard School of Pulblic Health. 



COLLECTED ALGORITHMS (cont.) 

Table I. Relative Errors in the Calculation of ln(l + t 2/n) and exp(x 2/n) - 1 by the 
Methods of Algorithms 395 and 396, for x = t = 2 and Various Values of n 

ln(l + t 2 /n) exp(x 2/n) - 1 
-------------------------·-~------- --------~--~-------

.n PDP IBM IM SL/IBM PDP IBM 

20 0.245E-6 0.654E-6 0.0 0.538E-6 0.242E-5 
40 0.313E-6 0.500E-5 0.0 0.708E-6 0.567E-5 
80 0.137E-5 0.149E-4 0.299E-6 0.203E-5 0.118E-4 

160 0.754E-6 0.151E-4 0.0 0.177E-5 0.311E-4 
320 0.817E-5 0.150E-4 0.0 0.281E-5 0.349E-4 
640 0.688E-5 0.909E-4 0.0 0.187E-4 0.178E-4 

1280 0.201E-4 0.244E-3 0.298E-6 0.153E-4 0.282E-3 
2560 0.224E-5 0.244E-3 0.149E-6 0.372E-6 0.447E-6 
5120 0.700E-4 0.244E-3 0.0 0.745E-7 0.298E-6 

10240 0.104E-3 0.164E-2 0.0 0.745E-7 0.0 

tation ofln(b) for b near 1 effectively involves the Taylor series (b - 1) - (b -
1)2 /2 + ... , the replacement statement 

if b =;/:. 1 then y := y x (ln(b)/(b - 1)); 

as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating 
the logarithm as evidenced by column 3 of Table I. However, in the general case 
there are two solutions, the simplest of which is to evaluate Y = DLOG(l.ODO 
+ DBLE(Y)), using the variable Y (single precision) for t 2/n, as in the algorithm 
under discussion. An alternative method might be based on the use of single 
precision LOG( 1.0 + Y) for "sufficiently large" Y, and a suitable number of terms 
of the Taylor expansion otherwise. In this case the optimal crossover point 
between the two methods of evaluation would be machine dependent and the 
coding would be longer, as exemplified for an analogous case in Algorithm 465 
f2l. 

In Algorithm 396 the expression exp(x 2/n) - 1 occurs, and here again substan
tial loss of precision can occur for small y, to use the algorithm's notation. 
Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts 
to a Taylor series expansion of exp(y) - 1fory<0.002, but this choice is machine 
dependent and unsuitable for 32-bit machines. Here again I would opt for double 
precision evaluation of that one expression (storing the result in single precision) 
over the alternative Taylor series approach. 

Table I shows the relative errors of single precision evaluation of thes«~ two 
expressions fort (or x) equal to 2 and for various values of n, using the first two 
terms of the Taylor series for the exponential for y < 0.002 as in the algorithm, as 
well as the IMSL "fix." The computations were done on an IBM 370/168 rultlning 
under 08/MVT and on a PDP 11/70 running under UNIX. Though both 
machines have a mantissa of 24 bits, the results on the PDP are far better than 
those on the 370, presumably due to the hexadecimal normalization of the latter 
machine. 

REFERENCES 

1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973. 
2. HILL, G.W. Algorithm 465. Student's t frequency. Comm. ACM 16, 11 (Nov. 1973), 690. 

396-P 3- 0 



...,, 

COLLECTED ALGORITHMS (cont.) 

Table I. Relative Errors in the Calculation of ln(l + t 2/n) and exp(x 2/n) - 1 by the 
Methods of Algorithms 395 and 396, for x = t = 2 and Various Values of n 

ln(l + t 2/n) exp(x 2/n) - l 
-- ·-------

n PDP IBM IMSL/IBM PDP IBM 

20 0.245E-6 0.654E-6 0.0 0.538E-6 0.242E-5 
40 0.313E-6 0.500E-5 0.0 0.708E-6 0.567E-5 
80 0.137E-5 0.149E-4 0.299E-6 0.203E-5 0.118E-4 

160 0.754E-6 0.151E-4 0.0 0.177E-5 0.311E-4 
320 0.817E-5 0.150E-4 0.0 0.281E-5 0.349E-4 
640 0.688E-5 0.909E-4 0.0 0.187E-4 0.178E-4 

1280 0.20118-4 0.244E-3 0.298E-6 0.153E-4 0.282E-3 
2560 0.224E-5 0.244E-3 0.149E-6 0.372E-6 0.447E-6 
5120 0.700E-4 0.244E-3 0.0 0.745E-7 0.298E-6 

10240 0.104E-3 0.164E-2 0.0 0.745E-7 0.0 
----

tation of ln(b) for b near 1 effectively involves the Taylor series (b - 1) - (b -
1)2/2 + ... , the replacement statement 

if b ~ 1 then y := y x (ln(b)/(b - 1)); 

as in IMSL's subroutine MDTD [1], counteracts the loss of precision in evaluating 
the logarithm as evidenced by column 3 of Table I. However, in the general case 
there are two solutions, the simplest of which is to evaluate Y = DLOG(l.ODO 
+ DBLE(Y)), using the variable Y (single precision) for t 2/n, as in the algorithm 
under discussion. An alternative method might be based on the use of single 
precision LOG(l.O + Y) for "sufficiently large" Y, and a suitable number of terms 
of the Taylor expansion otherwise. In this case the optimal crossover point 
between the two m~~thods of evaluation would be machine dependent and the 
coding would be longer, as exemplified for an analogous case in Algorithm 465 
rn 

In Algorithm 396 the expression exp(x 2 /n) - 1 occurs, and here again substan·· 
tial loss of precision can occur for small y, to use the algorithm's notation. 
Admitting a loss of precision of up to nearly 3 decimal digits, this algorithm shifts 
to a Taylor series expansion of exp(y) - 1fory<0.002, but this choice is machine 
dependent and unsuitable for 32-bit machines. Here again I would opt for double 
precision evaluation of that one expression (storing the result in single precision) 
over the alternative Taylor series approach. 

Table I shows the relative errors of single precision evaluation of these two 
expressions for t (or x) equal to 2 and for various values of n, using the first two 
terms of the Taylor series for the exponential for y < 0.002 as in the algorithm, as 
well as the IMSL "fix." The computations were done on an IBM 370/168 running 
under 08/MVT and on a PDP 11/70 running under UNIX. Though both 
machines have a mantis~a of 24 bits, the results on the PDP are far better than 
those on the 370, pr€~sumably due to the hexadecimal normalization of the latter 
machine. 

REFERENCES 
1. Library 1 Reference Manual, Vol. 2. Int. Math. Stat. Libraries, 3rd ed., 1973. 
2. HILL, G.W. Algorithm 465. Student's t frequency. Comm. ACM 16, 11 (Nov. 1973), 690. 

396-P 3- 0 



COLLECTED ALGORITHMS (cont.) 

REMARK ON ALGORITHM 396 

Student's t-Quantiles [814] 
[G. W. Hill, Commun. ACM 13, 10 (Oct. 1970), 619-620.] 

G. W. Hill [Received 6 December 1978; revised 7 July 1979; accepted 6 August 
1979] 
Division of Mineral Chemistry, CSIRO, Port Melbourne, Australia 3207. 

The precision in excess of six decimal digits, claimed for quantiles evaluated using 
Algorithm 396 on a 36-bit precision processor, cannot be achieved for a processor 
precision of six hexadecimal digits. As noted in [1], the statement 

y :=if y > 0.002 then exp(y) - 1.0 else 0.5 x y j 2 + y 

should be replaced by its implied extension 

y :=if y > 0.1 then exp(y) - 1.0 
else ((y + 4.0) x y + 12.0) x y x y/24.0 + y 

The relative error of this truncated Taylor series is less than that recorded for 
exp(y > 0.1) - 1 in el Lozy's tests [1] on an IBM 370/168. 

For extended precisiOn quantiles an initial approximation by Algorithm .396, 
for example, to:= t quantile (P, n, normdev, error), may be used as argument in 
an extended precision version of Algorithm 395 [2] to evaluate the two--tail 
probability integral P(to In). The difference of this result from the target proba
bility level may be divided by twice the frequency {(to In), evaluated using 
Algorithm 465 [3], to obtain the first-order correction for to, 

t(P(to In) - P) 
z=------

f(to In) 

Rather than iterative inversion tr+1 =tr+ z(tr In), as suggested in the commentary 
of Algorithm 396, it is more efficient to avoid repeated evaluation of the proba
bility integral and frequency function by using the Taylor series expansion [I>] 

t/;zz (2t/;2 + t/;')z3 
t=to+z+-+ · + ··· 

2! 3! ' 

where 

-a (n + l)to 
l/;=-[lnf(toln)]= 2, 

ato n +to 

,,,, = al/; = (n + l)(n - t5) 
't' ato (n + t5) 2 

' 

and the coefficient Cr of zr /r! is determined from 

Cr+I = (n/; +!_)Cr, Co= 1. 
iJto 

The relative error of the series, truncated to order Z 8
, is approximately l/; 8 toE 8

+
1/ 

(s + 1), where E = z/to is the relative error of the initial approximation. Using 
Algorithm 396, for which IE I < 10-6

, the first few terms of the series provide 
considerable precision in the result. 

For processor "double precision" of 14 hexadecimal (16-17 decimal) digits, such 
as that of the IBM 360/370 series, the first three terms are sufficient: 

0.5 
t := (n + 1) X to X z X z X + z + t0; 

to x to +n 

provided that both the precision of P(to In) and the sum of precisions of to and 
{(to In) at least equal a level appropriate for 14 hexadecimal precision, such as 14 
decimals to allow for precision loss in evaluating P(to In). For 96-bit double 
precision of the CDC 6000 series processor, allowing two or three decimal digit 

ACM Transactions on Mathematical Software, Vol. 7, No. 2, June 1981, Pages 250-251. 

396-P 4- 0 

----------------·------------------------------.................................................. 1.llmllmll ................. ,~ 



·~· 

COLLECTED ALGORITHMS (cont.) 

precision loss in P(to In), the series to z 3 is sufficient for precision in excess of 
25 decimal digits, except for extreme probability levels beyond 10-20 and large 
n (>50), for which the term in z 4 ensures 25-26 decimals. 

It is faster to use single-precision rather than double-precision operations in 
evaluating higher order terms of the Taylor series, such as the first term in the 
statement displayed above and the terms in z 3 and z 4 in the fifth-order case. This 
approach has been validated by a FORTRAN implementation to double precision 
for the CDC 6400 and 7600 for tabulation of Student's t-quantiles rounded off to 
20D [4]. 

REFERENCES 
1. EL LozY, M. Remark on Algorithm 395. Student's t distribution. ACM Trans. Math. Softw. 6, 

2 (June 1979), 238-289. 
2. HILL, G.W. Algorithm 395. Student's t distribution. Commun. ACM 13, 10 (Oct. 1970), 617-619. 
3. HILL, G.W. Algorithm 465. Student's t frequency. Commun. ACM 16, 11(Nov.1973), 690. 
4. HILL, G.W. Reference Table: "Student's" t-distribution quantiles to 20D. Tech. Paper No. 36, 

Div. Math. Statist., CSIRO, Australia, 1972, 24pp. 
5. HILL, G.W., AND DAVIS, A.W. Generalized asymptotic expansions of Cornish-Fisher type. Ann. 

Math. Statist. 39 (IMS), 1264"-1273. 

396-P 5- 0 



,, ............................................................................................................ 1 ................. .. 



COLLECTED ALGORITHM:S FROM CACM 

ALGORITHM 397 
AN INTEGER PROGRAMMING PROBLEM [H] 
S. K. CHANG AND A. GILL (Recd. 16 Feb. 1970 and 

11May1970) 
Electronics Research Laboratory and Department of 

Electrical Engineering and Computer Sciences, 
University of California,* Berkeley, CA 94720 

• Research sponsored by the Air Force Office of Scientific Re
search Office of Aerospace Research, United States Air Force, 
AFOSR Grant AF-AFOSR-639-67 and the National Science 
Foundation, Grant GK2277. 

KEY WORDS AND PHRASES: integer programming, change
making problem 

CR CATEGORIES: 5.41 

procedure MINDIST(C, M, SENSE, W, RESULT); 
value C, M; integer C, M; Boolean SENSE; 
integer array W, RESULT; 

colllillent This algorithm solves an integer programming prob
lem described in [1]. Given is a fixed weight vector w = (w1 , 
w.2, · · · , Wm), where thew; are nonnegative integers, where m 
is a positive integer, and where 

1 = W1 < W2 < • • • < Wm 

For any nonnegative integer c (representing cost), an m-dis
tribution of c relative to w is an m-tuple (a1 , a2 , · · · , am) such 
that the a; are nonnegative integers, and such that Li'-1 a;w; 
= c. Them-distribution (a1 , a2 , · · · , am) is minimal if, for any 
m-distribution (b1 , b2 , · · · , bm) of c relative to w, we have 
Li'-1 a; ~ L:i'-1 b; . The m-distribution (a1 , a2 , · · · , am) is 
standard if it is obtainable as follows: 

Cm= C 

(i=m-1, m-2, · · · , 1) 

(i=m, m-1, · · · , 1) 

(where all divisions are integer divisions). 
If MINDIST(C, M, SENSE, W, RESULT) is called with a 

nonnegative integer C, a positive integer M, and an array 
W = (W[l], W[2], · · · , W[M]), then the resulting array 

RESULT = (RESULT[l], RESULT[2], · · · , RESULT[M]) 
is a minimal M-distribution of C relative to W. If, before calling 
MINDIST, SENSE is set to true, then M.lNDIST retains 
SENSE as true if and only if RESULT is also a standard M
distribution of C relative to W. 

REFERENCE: 

1. CHANG, S. K., AND GILL, A. Algorithmic solution of the 
change-making problem. J. ACM 17 (Jan. H)70) 113-122; 

begin 
integer I, J, R, Q, SUM, SUN; 
integer array A[l:M], B[l:M]; 
if M = 1 then 
begin 

RESULT[l] := C; 
EXIT1 : 

go to EXIT 

end 
Q := C/W[M]; 
if (QXW[M]) > C then Q := Q - 1; 
R := C - W[M] X Q; 
if M = 2 then 
begin 

RESULT[lJ := R; RESULT[2] := Q; 
EXIT2. 

go to EXIT 
end; 
J := O; 

WOP: 

397-P 1- Rl 

MIN DIST (R+JXW[M], M-1, SENSE, W, B); 
if J ¢. 0 then go to NOT ZERO; 

BETA: 
for!:= 1step1 untilM-1 do A[IJ := B[l]; 
A[MJ := O; 

GAMMA: 
if J = Q then 
begin 

for I := 1 step 1 until M do RESULT[!] := A[J]; 
EXITS: 

go to EXIT 
end; 
SUM:= O; 
for I:= 1step1 until M do SUM :=SUM+ A[I]; 
if (W[MJXSUM-R-JXW[M]}/(W[MJ-W[M-1]) ~ 0 then 
begin 

for I:= 1step1 until M - 1 do RESULT[!] := A[I]; 
RESULT[M] := A[MJ + Q - J; 

EXIT4: 
go to EXIT 

eQ.d; 
J := J + 1; 
go to WOP; 

NOT ZERO: 
SUM := O; SUN := O; 
for I:= 1step1 until M do SUM:= SUM+ A[l]; 
for I:= 1step1 untilM - 1 do SUN:= SUN+ B[J}; 
if SUM ~ SUN then 
begin A[M] := A[M] + 1; go to GAMMA end; 
SENSE := false; 
go to BETA; 

EXIT: 
end PROCEDURE MIN DIST 

Remark on Algorithm 397 [H] 
An Integer Programming Problem [S.K. Chang and A. 
Gill, Comm. ACM 13 (Oct. 1970), 620-621] 

Stephen C. Johnson and Brian W. Kernighan (Recd. 
15 Sept. 1971) 
Bell Laboratories, Murray Hill, NJ 07974 

Editor's note: The first correction was also noted by K.W. Coull 
of the University of Alberta.-L.D.F. 



COLLECTED ALGORITHMS (cont.) 

Key Words and Phrases: integer programming, change-making 
problem 

CR Categories: 5.41 

The published algorithm contains two substantial errors. 
1. Five lines after the label EXIT3, the line 

if (W[M]XSUM-R-JXW[M])/(W[M]-W[M-1]):::; 0 then 

should be replaced by 

if (W[M-l]XSUM-R-JX W[M]) < (W[M]-W[M-1]) then 

The use of W[M-1] instead of W[M] corrects an error which also 
appears in the J. ACM article ! l] upon which Algorithm 397 is 
based. 
2. Four lines after the label NOT ZERO, the line 

if SUM~ SUN then 

must be replaced by 

if SUM < SUN then 

When this change is made, the algorithm correctly solves the test 
case described in [I], although producing a different answer than 
was published there. 

The algorithm would be clarified if, three and four lines after 
the label EX/Tl, the statements 

Q := C/W[M]; 

if (QX W[M]) > C then Q : = Q - 1; 

were replaced by 

Q := C ...;-- W[M]; 

References 
1. Chang, S.K., and Gill, A. Algorithmic solution of the change
making problem. J. ACM 17 (Jan. 1970), 113-122. 

397-P 2- 0 



COLLECTED ALGORITH~vlS FROM CACM 

ALGORITHM 398 
TABLELESS DATE CONVERSION* [Z;] 
RICHARD A. STONE (Recd. 2 Jan. 1970 and 6 April 1970) 
Western Electric Company, P.O. Box 900,. 

Princeton, NJ 08540 
*Patent applied for. 

KEY WORDS AND PHRASES: date, calendar 
CR CATEGORIES: 5.9 

procedure calendar(y, n, m, d); 
value y, n; iinteger y, n, m, d, t; 

com.m.ent calendar is called with the year in y and the day of the 
year inn. The month number is returned in m, and the day of the 
month is returned ind. The first section of the procedure changes 
the dates so that February has ·30 days. The second section uses 
the fact that 30.55 (m+2) - 91 passes through the number of 
days preceeding each month. 

Error detection: m will be in the range 1-12 if and only if n 
is in the correct range; 

begin 
t := if (y + 4)•4 = y then 1 else O; 
com.m.ent The following statement is unnecessary 

if it is known that 1900 < y < 2100; 
t := if (y+400)•400 = y V (y+l00)*100 ¢ y then t else O; 
d : = n + (if n > (59+t) then 2 - t else 0); 
m := ((d+91)•100) + 3055; 
d : = (d+91) -- (m•3055) + 100; 
m := m - 2 

end calendar 

Remark on Algorithm 398 [Z] 

Tableless Date Conversion [Richard A. Stone, Comm. 
ACM 13 (Oct. 1970), 621] 

J. Douglas Robertson [Recd. 16 Dec. 1970 and 30 
Mar. 1971] 
200 Oakcrest Drive F-161, Lafayette, LA 70501 

Key Words and Phrases: date, calendar, Fortran statement func
tion, arithmetic statement function 

CR Categories: 3.15, 4.9, 5.9 

As a companion to Algorithm 398, I off er a relatively compact 
algorithm for calculating the day of the year on which a particular 
date falls given the year, month, and day of the month. The algo
rithm is written below as a Fortran arithmetic statement function, 
where I is the year; J is the month, (1 = Jan, ... , 12 = Dec); 
and K is the day of the month. 

IDAY(l,J,K) = 3055*(J+2)/100-(J+l0)/13*2-91 
+ (1- (1-1/4*4+3) /4+ (1-1/100•100+99) /100 
-· (I-I/400*400+399)/400)•(J+l0)/13+K 

398-P 1- RI 

The above, along with Stone's Algorithm 398, Robert G. 
Tantzen's Algorithm 199 [2], and the two algorithms by H.F. 
Fliegel and T.C. Van Flandern [1 J constitute a comprehensive set 
of algorithms for processing calendar dates. A useful addition to 
this set would be an algorithm for Zeller's Congruence (calculates 
the day of the week on which a particular date falls) as described 
in [3J. It appears below as a Fortran arithmetic statement function, 
where I is· the year; J is the month, (1 = Jan, ... , 12 = Dec); 
and K is the day of the month. 

IZLR(l,J,K) = MOD((13•(J+l0-(J+10)/1M2)-1)/5+K+17 
+ 5*(I+(J-14)/12-(H(J-14)/12)/100*100)/4 
+ (H(J-14)/12)/400- (H(J-14)/12)/100•2,7) 

References 
1. Fliegel, H.F., and Van Flandern, T.C. A machine algorithm 
for processing c_alendar dates. Comm. ACM 11 (Oct. 1968), 657. 
2. Tantzen, Robert G. Conversions between calendar date and 
Julian day number, Algorithm 199. Comm. ACM 6 (Aug. 1963), 
444. 
3. Uspensky, J.V., and Heaslet, M.A. Elementary Number 
Theory. McGraw-Hill, New York, 1939, p. 206. 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 399 
SP ANNING TREE [H] 
JouKo J. SEPPANEN (Recd. 6 Jan. 1970 and 8 May 1970) 
Computing Center, Helsinki University of Technology, 

Otaniemi, Finland 

KEY WORDS AND PHRASES: graph, tree, spanning tree 
CR CATEGORIES: 5.32 

procedure spanning tree(v, e, I,J, p, T); 
value v, e; integer v, e, p; integer array I, J, T; 

comment This procedure grows a spanning tree T for a given 
undirected loop-free graph G = (N, E) of v vertices and e ed~es. 
If G is disconnected a spanning forest will be grown. 

The edges (I[k], J[k]) E E fork = 1, 2, · · · , e are assumed to 
be stored in the arrays I[l:e] and J[l:e]. At each stage of the 
algorithm one edge is considered whereby one of four possible 
conditions will arise. If neither of the vertices is included in a 
tree, this edge is taken as a new tree and its vertices numbered 
by an incremented component number c. If one vertex is in a 
tree, the edge will be grown to this tree. If the two vertices are in 
different trees, these will be grafted into a single tree by renum
bering the vertices of the other component. Finally, if both 
vertices are in the same tree, the edge completes a fundamental 
cycle of the graph with respect to the spanning tree and conse
quently will hot be considered further. At the end, the indices 
of the edges in the spanning tree are stored in the array T[l: v-p] 
where p is the number of trees in the forest. The procedure can 
also be used to find a minimal spanning tree by sorting the edges 
into ascending order before calling the procedure. 

The main loop in the procedure is executed e times. For cases 
where the ratio e/v is high it could be worthwhile to introduce 
an additional variable, say d, in the program, for keeping a 
count of the number of edges included in T. When d has attained 
the value of v - 1 the algorithm could terminate. 
REFERENCES: 

1. BERGE, C., AND GHoUILA-HouRI, A. Programmes, Jeux et Re
seaux de Transport. Dunod, Paris, 1962, pp. 179-182. 

2. BERGE, C., AND GHOUILA-HouRI, A. Programming, Games and 
Transportation Networks. Methuen, London, and Wiley, New 
York, 1965, pp. 177-180. 

3. KRUSKAL, J. B., JR. On the shortest spanning subtree of a 
graph and the travelling salesman problem. Proc. Amer. 
Math. Soc. 7 (1956) 48-50. 

4. 0BRUCA, A. Algorithm 1. Mintree. Computer Bull. (Sept. 
1964) 67. 

5. KNUTH, D. E. The Art of Computer Programming, Vol I Fun
damental Algorithms. Addison-Wesley, Reading, Mass., 1968. 
pp. 370-371; 

begin 
integer i, j, k, c, n, r; 
integer array V[l:v]; 
c := n := O; 
fork := 1step1 until v do V[k] := O; 
fork := 1 step 1 until e do 
begin 

i := I[k]; j := J[k]; 
if V[i] = 0 then 

399-P 1- 0 

begin 
T[k-n] := k; 
if V[j] = 0 then V[i] .- l'[j] := c := c + 1 
else 
V[i] := V[j] 

end 
else if V[j] = 0 then 
begin 

T[k-n] := k; V[j] := V[i] 
end 
else if V[i] ~ V[j] then 
begin 

T[k-n] := k; i := V[i]; j := V[j]; 
for r := 1step1 until v do 

if V[r] = j then V[r] : = i 
end graft 
else n := n + 1 

end edge; 
p := v - e + n 

end spanning tree 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 400 
MODIFIED HAVIE INTEGRATION [DI] 
GEORGE C. WALLICK (Recd. 26 Jan. 1970 and 25 Apr. 

1970) 
Mobil Research and Development Corporation, Field 

Research Laboratory, P.O. Box 900, Dalllas, TX 75221 

KEY WORDS AND PHRASES: numerical integration, Ha vie 
integration, Romberg quadrature, modified Romberg-quadra
ture, trap~zoid values, rectangle values 

CR CATEGORIES: 5.16 

DESCRIPTION: 
The Ha vie integration method for the approxima.te evaluation of 

the definite integral 

l = lB F(x) dx (1) 

as implemented in ACM Algorithm 257 [4] is based. upon the paral
lel generation of the Romberg table of trapezoida.l T /' values [1] 
and the table of rectangular Rf'' values also used. by Krasun and 
Prager [3]. At each step in the development of the tables the dif
ference I Tik - R;k I is examined. If I T;1° - R;k I ~ Ethe process 
is said to have converged and the algorithm returns a value of 

T~+i = l (T i1e+Ri1e). (2) 

For some F(X), e.g. F(X) = e-x2 and F(X) = ~~/(2+sin l07rX), 
the R/11

, T 1k pairs converge more rapidly than the Romberg se
quence of T 1k values. (This is the same class of F'(X) for which a 
simple nonadaptive Simpsons Rule algorithm [5] is competitive 
with the Havie algorithm.) For other F(X), the Havie algorithm 
is slightly less efficient than the Romberg algorithm. 

Like Romberg quadrature, Ha vie integration requires the evalu
ation of the rectangular values 

R k = -- L F A + (j-i) -- . B - A 
2

k [ . B -· A] 
o 2k j-1 2A: • 

(3) 

Rutishauser [6] recognized that this repeated addition of small 
terms to a large partial sum can lead to serious roundoff error. 
He suggested a procedure for the evaluation of the R0 " which sig
nificantly reduces this error. The method, used by Fairweather [2] 
in a modified Romberg algorithm, leads to a significant improve
ment in accuracy for large orders of extrapolation. 

In the modified Havie integration algorithm HJRVINT the Rok 
are evaluated using a 3-level version of the Rutishnuser procedure. 
The arguments .X of the generating function F(X) are evaluated 
as in eq. (3) rather than by accumulative addition as in Algorithm 
257. 

In the argument list for HRVINT, F is the namu of the generat
ing function FUNCTION F(X) which returns a value of F(X) 
corresponding to a specified value of X, A , and B represent the 
lower and upper limits of integration; and MAX is the maximum 
order of extrapolation to be permitted, MAX ::; 16. Values of 
MAX > 16 are interpreted as MAX = 16; the value of MAX is not 
changed by the subprogram. Computation is terminated when 

I T;k - Rik I ::; AOC• I T;" I 
or when the order of extrapolation MFIN = MAX. Here AOC is a 
measure of the desired relative accuracy, AOC > 0. Upon exit 
HRVINT is the approximate value of the integral, F AC is a meas-

400-P 1- 0 

ure of the final relative accuracy achieved 

FAC = l T;k - R;" I/I 1'ik I 
and MFIN is the order of extrapolation. 
· Test case. HRVINT was tested in Fortran IV on a CDC 6400 
computer using single-precision floating point arithmetic (14+ 

TABLE I. A COMPARISON OF THE HAVIE AND MODIFIED 
HA VIE ALGORITHMS 

I= lB F(X)dX 

(m • Extrapolation Order, m :$ 16; N.S.F. • Number of 
Significant Figures) 

Numerical Evaluation 

Correct 
Bame Modified Hawe value F(X) A. B (digits Specified 

10-16) relative I ~ I ~ accuracy (digits m c., (digits m ~ 10-14) :c:; 10-14) 
~ -- ---- - --

4141 0;0 5.0 45139 66 10-1-10-1 46726 3 10 46726 3 10 
10-1-10-10 45039 4 11 45039 4 11 

10-11 45110 5 12 45111 5 12 
io-12 45128 6 12 45131 6 12 
10-u 45134 6 12 45137 6 13 
10-u 39757 16 9 45137 7 13 
10-u 39757 16 9 45136 10 13 

ln x 1.0 10.0 29940 46 10-e 29845 8 11 29846 8 11 
10-10 29937 8 13 29939. 8 13 

10-11.-10-u 29937 9 13 29940 9 14 
10-u 29937 9 13 29940 10 14 
10-14 29666 16 11 29940 10 14 

(1 + x)-1 0.0 1.0 55994 53 10-9 66353 6 11 56354 6 11 
10-1q 56996 6 13 M997 6 13 
10-11 M990 6 13 55991 6 13 
10-12 56988 7 12 66991 7 13 
10-11 65987 ~ 12 511991 7 13 

10-H-10-16 53242 16 10 55991 9 13 

(1 + %4)-1 0.0 1.0 33991 10 10-11-10-1 35633 5 10 35634 5 10 
io-a_10-10 33993 6 13 33995 6 13 

10-11.-10-12 33984 7 12 33989 7 13 
10-1a 30854 16 10 33987 7 13 

10-u .... 10-u 30854 16 10 33988 9 13 

x-• . 0.01 1.1 68595 04 10-• 71022 13 10 71529 13 10 
10-e 68136 13 11 68647 13 11 
io-10 68076 13 10 68589 13 12 
10-11 64508 16 10 68590 14 12 

10-12....10-11 64508 16 10 68589 14 12 
10-u .... 10-11 64508 16 10 68584 16 12 

x-• 0.01 1.1 89506 64 10-a 89368 13 11 89694 13 11 
10-e 89199 13 11 891126 13 12 
10-10 88857 14 10 89503 14 13 

10-11.-10-12 86878 16 10 89502 14 13 
10-11 86878 16 10 89502 15 13 

l0-1Ll0-16 86878 16 10 89499 16 12 

s-• 0.01 1.1 29246 64 10-a 29666 13 11 29767 13 10 
10-1qo-10 28828 14 11 29247 13 14 

10-11 27667 16 10 29245 14 13 
10-12....10-11 27M7 16 10 29244 15 13 

10-u 27657 16 10 29244 16 13 
10-11 27557 16 10 29242 16 13 



COLLECTED ALGORITHMS (cont.) 

decimal digits).. Corresponding integral values were also obtained 
using a Fortran version of the standard Havie Algorithm 257. The 
results of these tests are summarized in Table I. 

For modest accuracy requirements, the two algorithms are seen 
to be equivalent. For both algorithms the maximum accuracy 
achievable is limited by truncation and roundoff error. Since the 
Hutishauser modification serves to reduce the magnitude of such 
errors, the modified Havie algorithm can, in many cases, return 
optimum integral values that are from 1 to 2 significant figures 
more accurate than those returned by Algorithm 257. 

In the routine use of the algorithm:-; it is possible to specify an 
accuracy requirement that cannot be satisfied. When this condition 
obtains, the algorithms are forced to proceed to the maximum per
mitted extrapolation order. With Algorithm 257 error accumula
tion accompanying such an overspecification can lead to a serious 
decline in evaluation accuracy. With the modified Ha vie algorithm 
HRVINT this loss is minimized and in most cases virtually elimi
nated. 

Acknowledgment. The author wishes to thank Mobil Research 
and Development Corporation for permission to publish this in
formation. 

HEFERENCES: 
1. BAUER, F. L. Algorithm 60, Romberg integration. Comm. 

ACM 4 (June 1961), 255. 
2. FAIRWEATHER, G. Algorithm 351, Modified Romberg quadra

ture. Comm. ACM 12 (June 1969), 324-325. 
:3. KRASUN, A. M., AND Pu.AGER, W. Remark on Romberg quadra

ture. Comm. ACM 8 (Apr. 1965), 236-237. 
4. KUBIK, R. N. Algorithm 257, Ifavie integrator. Comm. ACM 

8 (June 1965), 381. 
.5. P1mL1s, A. J., AND 8AMELSON, K. Preliminary report--inter

national algebraic language. Comm. ACM 1 (Dec. 1958), 
8-22. 

6. RcTISHAUSER, II. Description of Algol GO. In Handbook for 
Automatic Compttlation, Vol. 1. Springer-Verlag, New York, 
1967, Part a, pp. 105-lOG. 

ALGORITHM: 
FUNCTION HRVINT(F,A,B,MAX,ACC,FAC,MFl"Jl 

C HAVIF INTEGRATION WITH AN EXPANDEO RlJTISHAIJSER
C TYPE SlJMMAT ION PROCEDURE 

OIMENSION Tll7l,U(l7l,TPREV(l7l,lJPREVl17) 
C TEST FOR MAX GREAHR THAN 16 

MlJX=MAX 
IF (MAX-16l10,10,5 

5 MUX=l6 
C IN IT I ALI Z AT ION 

10 ENPT=0.5*(F(Al+F(B)l 
Sll·~T =O. 0 
MF IN= 1 
N=l 
H=B-A 
SH=H 

C BFGIN RfPFTITIVF LOOP FROM ORDER l TO ORDER MAX 
15 l(ll=H*IFNPT+SUMT) 

SllM=O. 
NN=N+N 
FN=NN 
fM=SH/FN 

BFGIN RUTISHAIJSER FVALIJAT!(IN OF RECTANGULAR SIJl-15 
INITIALIZATION 

IF!NN-16120,20,2~ 

?O NZ =NN 
Gfl TO 30 

? '> NZ= lh 
lf'INN-25hl30,30,35 

10 NA=NN 
GO TO 40 

V> NA=256 
lF!NN-4096!40,40.45 

40 Nfl=NN 
GO TO 50 

4'i Nf\=4096 
C OFVELOPMENT OF RfCTAN';IJLAR SIJMS 

50 00 70 KC=\ ,NN,4096 

5'i 
60 
f,5 
70 

SUMFl=O. 
KK=KC+NR-1 
00 h5 KB=KC,KK,251', 

SllMA=O. 
KKK=Kfl+NA- l 
rm hO KA=Kl\,KKK,\f, 

SIJMZ=O. 
KFR=KA+Nl.-1 
JlO 55 Kl=KA,KFR.Z 

7.KZ=KZ 
SUMZ=SllMZ+F ( A+ZK7*EMJ 

SIJMA =Sil MZ + SlJMA 
StJMB= SUMA+SllMB 

SlJ M: SIJMB+ SI lM 

C END OF Rill I SHAii SER PROCFDllRE 
lJ ( 1) =H*SllM 
K=l 

C l\EGIN EXTRAPOLATION LOOP 
75 FAC=ABS!TIKJ-ll(Kll 

IFIT(Kl lB0,85,F!O 

C HST FOR RELATIVE ACCURACY 
80 IF ( FAC-AFIS ( ACC*T (Kl l )90 ,90, :.OO 

C TEST FOR ABSOLIJTE ACCURACY W>-iEN TO: )=0 
B5 IF!FAC-ABSIACCl )95,95,100 
90 FAC=FAC/ABS(T(Kll 

C INTEGRAL EVALUATION BEFORE EXIT 
95 HRVINT=0.5*(T(K)+ll(Kll 

RETllRN 
100 IFIK-MFINll05,115,ll5 
105 AK=K+K 

0=2.**AK 
DMA=D-1.0 

C BEGIN EXTRAPOLATION 
TIK+ll=ID*T(Kl-TPREV(Kll/DM~ 
TPREV(Kl=T(K) 
lJ(K+ll=ID*UIKl-UPREV<Kll/DM~ 
UPREVIKl=lJ(K) 

C END EXTRAPOLATION 
K=K+l 
IF ( K-MUX )75t110, 110 

C END EXTRAPOLATION LOOP 
110 FAC=ABSI T ( K 1-U( K) l 

IFIT(Kl 190,95,90 
C ORDER IS INCREASED BY ONE 

115 H=D.5*H 
SUMT=SUMT+SllM 
TPREV(K)=TIKl 
tJPREVIKl=IJIKl 
MFIN=MFIN+l 
N=NN 
GO TO 15 

C RETURN FOR NEXT ORDER EXTRAPOLATION 
END 

Remark on Algorithm 400 [D 1] 
Modified Havie Integration 

400-P 2- Rl 

[George C. Wallick, Comm. A.CM 13 (Oct. 1970), 622-
624] 

Robert Piessens [Recd. 17 Apr. 1973] 
Applied Mathematics and Programming Division, Uni
versity of Leuven, B-3030 Heverlee, Belgium 

Recently, Casaletto et al. 11] tested a number of automatic in
tegrators by calculating 50 test integrals with different specified 
tolerances. We shall refer to these integrals as #1, #2, ... , #50. (A 
list can be found in (1] or [2].) One of the aims of their tests was to 
give a summary of the number of failures (when the computed value 
was not within the requested tolerance) and overflows (when an 
upper bound on the number of integrand evaluations prevented the 
specified accuracy from being reached) of each integrator. We have 
examined some other recently publi~;hed integrators in a similar way. 
Our study reveals that HRVINTfaiJ,s more frequently than the other 
integrators. For example, for the specified relative accuracy ACC = 

J0- 3, HVRINTfails on #26, #31, #34, #45, and #47, and for ACC = 
10-4, on #20, #26, #31, #32, #34, #45, and #47. It is worth while to 
note that #20 and #32 are integrals with very smooth integrand. 

Most failures can be avoided by changing the statement labeled 
75 to 
75 IF (MFIN-2) 100, 100, 76 
76 FAC = ABS (T (K)-U(K)) 
Indeed, with this alteration failures occur only on #47 (for both ac
curacies ACC = 10- 3 and 10- 4). 

References 
1. Casa1etto, J., Pickett, M., and Rice, J. A comparison of some 
numerical integration programs. SIGNUM Newsletter 4, 3(1969), 
30--40. 
2. Gentleman, W.A. Implementing Clenshaw-Curtis quadrature, 
I. Methodology and experience. Comm. ACM 15 (May 1972), 
337-342. 



COLLECTED ALGORITH1\'1S FROM CACM 

ALGORITHM 401 
AN IMPROVED ALGORITHM TO PRODUCE 

COMPLEX PRIMES [Al] 
PAUL BRATLEY (Recd. 25 Feb. 1970) 
Departement d'informatique, Universite de Montreal, 

C.P. 6128, Montreal 101, Quebec, Canada 

KEY WORDS AND PHRASES: number theory, prime numbers, 
complex numbers 
CR CATEGORIES: 5.39 

integer procedure cprimes(m, PR, PI); 
value m; integer m; integer array PR, PI; 

comment The procedure generates the complex prime numbers 
located in the one-eighth plane defined by 0 ::; y < x. Any prime 
found in that area has seven more associated primes: -x + yi, 
± x - yi, ± y ± xi. These associated primes must be generated 
externally to cprimes. The first complex prime generated by 
cprimes is 1 + i, which exceptionally lies on x = y and has only 
three associated primes. 

The algorithm generates a list of complex primes in order of 
increasing modulus: the parameter m of the call is the highest 
modulus to be included in the list and should satisfy m > 2. 
PR and PI will contain respectively the real and imaginary 
parts of the generated list, with PR ~ PI ~ 0 for each prime. 
The value of the procedure is the number of primes generated. 

Algorithm 311 [1], sieve 2, is used to generate the rational 
primes less than m2• Then it is known (see, for instance [2]) 
that a rational prime p of the form p = 4n + 1 can be expressed 
as p = a 2 + b2, and factorized as (a+bi)(a-bi:) in the complex 
plane, where a + bi and a - bi are complex primes. For our 
present purpose we choose a > b and include only a + bi in the 
list. A rational prime p of the form p = 4n + 3 remains prime 
in the complex plane, so we include p + Oi in the list if p < m. 
Finally, the complex prime 1 + i may be thqught of as one ·of 
the factors of the remaining rational prime 2 == (l+i)(l-i). 

Although this algorithm and Algorithm 372 [3] are not directly 
comparable, since they produce the list of complex primes in a 
different order, the accompanying remark suggests that the 
present algorithm is often to be preferred. 

REFERENCES: 
1. CHARTRES, B. A. Algorithm 311, Prime number generator 2. 

Comm. ACM 10 (Sept. 1967), 570. 
2. HARDY, G. H., AND E. M. WRIGHT. An Introduction to the 

Theory of Numbers, 4th ed. Clarendon Press, Oxford, 1965, 
Chs XII and XV. 

3. DuNJ{AM, K. B. Algorithm 372, An Algorithm to produce 
complex primes, CSIEVE. Comm. ACM 13 (Jan. 1970), 
52-53; 

begin 
integer a, b, c, d, e, i, j, p, q; 
integer array P2[1:0.7Xmj2/ln(m)J, 

P3[l: l.4Xm/ln(m)]; 
e := sieve 2(m j 2, P2); 
PR[l] := PI[l] := a := c .- 1; 
b := O; 
ford := 2 step 1 until e do 
begin 

p := P2[d!; q := p - 1; 
if {q+4) X 4 ~ q then 

LI: 

begin 
if p :$ m then 
begin b := b + 1; P3[b] := pend 

end 
else 
begin 

if a ::; b then 
begin 

if P3[a] j 2 < p then 
begin 

c := c + 1; PR[c] := P3[a]; 
a :=a+ 1; PI[c] := O; 
go to Ll 

end 
end; 
q := entier(sqrt(p/2)+1); 
for i := q step 1 until p do 
begin 

j : = sqrt(p-i j 2); 
if i j 2 + j j 2 = p then go to L2 

end 

401 -P 1- 0 

comment Note that the jump to L2 is always made before 
the cycle is terminated; 

L2: 
c := c + 1; PR[c] := i; PI[c] := j 

end 
end; 

L3: 
if a :$ b then 
begin 

c := c + 1; PR[c] := P3[a]; 
a : = a + 1; PI[ c] : = 0; 
go to L3 

end; 
cprimes := c 

end cprimes 

REMARKS ON 
ALGORITHM 372 [Al] 
AN ALGORITHM TO PRODUCE COMPLEX 

PRIMES, CSIEVE [K. B. Dunham. Comm. ACM 13 
(Jan. 1970), 52-53] 

ALGORITHM 401 [Al] 
AN IMPROVED ALGORITHM TO PRODUCE COM

PLEX PRIMES [P. Bratley. Comm. ACM 13 (Nov. 
197o), 693] 

PAUL BRATLEY (Recd. 25 Feb. 1970) 
Departement d'informatique, Universite de Montreal, 

C.P. 6128, Montreal 101, Quebec, Canada 

KEY WORDS AND PHRASES: number theory, prime num
bers, complex numbers 
CR CATEGORIES: 5.39 

Algorithm 372 was run on the CDC 6400 at the University of 
Montreal. The variable i is undefined if the for-loop at label A is 
completed. The statement 

i := j + 1; 



COLLECTED ALGORITHMS (cont.) 

should be added immediately before label B. Algol purists may 
also care to remove redundant semicolons after go to A and go to 
B, and the redundant parentheses in one if-statement. With these 
changes the algorithm produced correct results for several values 
of m. 

The comment in Algorithm 372 is slightly inaccurate. The first 
prime generated by the algorithm is 1 + i, which does not have 
PR > PI, and which has not seven but three associated primes. 

It is not possible to compare the speeds of Algorithm 372 and 
Algorithm 401 directly since they generate primes in a different 
order. However, the following test was run. A value of m was 
chosen, and Algorithm 401 was used to list all the complex primes 
with modulus less than m .. The time taken and the number of 
primes produced were noted. Then Algorithm 372 was used to 
produce an equal number of primes, the time taken again being 
noted. Times observed are shown in Table I. 

Limit on 
modulus 

25 
50 
75 

100 
150 

Algorithm 401 
produced this 

number of primes 

60 
189 
373 
623 

1266 

TABLE I 

Time taken Time taken by Algorithm Ratio of 
( ec ) 37Z to produc~ the same time taken 
s s 1iumber of primes (secs) s 

0.278 0.331 1.2 
1.577 2.140 1.4 
4.217 7.602 1.8 
8.618 20.214 2.4 

23.732 79 .481 3.4 

The conclusion from the figures in Table I is that if the speed 
with which the complex primes are generated is of paramount 
importance then Algorithm 401 should be preferred to Algorithm 
372. 

As written Algorithm 401 will use more memory than Algorithm 
372 since it is convenient and perspicuous to use sieve2 in an un
modified form, which makes it necessary to store temporarily all 
the rational primes less than m2 • However, if space is tight then 
sieve2 can easily be modified so as to generate rational primes one 
at a time on successive calls, and in this way the use of the long 
array P2 can be avoided. If this modification is made Algorithm 
401 will in fact use less store than Algorithm 372, which wastefully 
stores many useless values in PM. It is also to be noticed that the 
factors 0.7 and 1.4 occurring in the declarations of P2 and P3 may 
be diminished for large m: all that is necessary is that P2 should 
be long enough to hold the rational primes less than m2, and that 
P3 should be long enough to hold the rational primes which are 
not greater than m and which are of the form 4n + 3. Some space 
may be saved similarly in sieve2, which is called from Algorithm 
401. 

401-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

. ALGORITHl\1 402 
INCREASING THE EFFICIENCY OF 

QUICKSORT* [~'ll] 
M. H. VAN E:\IDEN (Recd. 15 Dec. 1969 and 7 July 1970) 
~fathcmatical Centre, Amsterdam, The Netherlands 

*The algorithm is related to a paper with the same title and by 
the same author, which was publi1:1hed in Comm. ACM 13 (Sept. 
1970)' 563-567. 

KEY WORDS AND PHRASES: sorting, quicksort 
CR CATEGORIES: 5.31, 3.73, 5.6, 4.49 

procedure qsort(a, ll, ul); 
value ll, ul; integer Zl, ul; array a; 

comment This procedure sorts the elements a[lll], a[ll+l], , 
a[ul] into nondescending order. It is based on the idea described 
in [1]. A comparison of this procedure with another procedure, 
called sortvec, obtained by combining C. A. R. Hoare's quicksort 
[2] and R. S. Scowen's quickersort [3], in such a way as to be 
optimal for the Algol 60 system in use on the Electrologica X-8 
computer at the Mathematical Centre is shown below. Here 
"repetitions" denotes the number of times the sorting of a 
sequence of that "length" is repeated; "average time" is the 
time in seconds averaged over the repetitions; "gain" is the 
difference in time relative to time taken by sortvec. 

procedure length repetitions average time gain 
sortvec 30 23 .09 
qsort 30 23 .06 +.37 
sortvec 300 16 1.25 
qsort 300 16 1.03 +.17 
sortvec 3000 9 17.43 
qsort 3000 9 15.25 +.13 
sortvec 30000 2 232.46 ;., 
qsort 30000 2 197.96 +.15 

RE FERENC EB: 

1. VAN EMDEN, M. H. Increasing the efficiency of quicksort. 
Comm. ACM 13 (Sept. 1970), 563-567. 

2. HOARE, C. A. R. Algorithm 64, quicksort. Comm. ACM 4 
(July 1961), 321-322. 

3. ScowEN, R. S. Algorithm 271, quickersort. Comm. ACM 8 
(Nov. 1965), 669; 

begin 
integer p, q, ix, iz; 
real x, xx, y, zz, z; 
procedure sort; 
begin 

integer l, u; 
l := ll; u := ul; 

part: 

left: 

p := l; q ;= u; x := a[p]; z := a[q]; 
if x > z then 
begin y := x; a[p] := x := z; a[q] := z :== y end; 
if u - l > 1 then 
begin 

xx : = x; ix : = p; zz : = z; iz . - q; 

for p : = p + 1 while p < q do 

begin 
x := a[p]; 
if x ~ xx then go to right 

end; 
p : = q - 1 ; go to out; 

right: 

dist: 

out: 

for q : = q - 1 while q > p do 
begin 

z := a[q]; 
if z ~ zz then go to dist 

end; 
q : = p; p : = p - 1; z : = x; x : = a[p ];; 

if x > z then 
begin 

Y := Xj a(pj := X .- Zj 

a[q] := z := y 
end; 
if x >xx then 
begin xx := x; ix := pend; 
if z < zz then 
begin iz := z; iz := q end; 
go to left; 

if p ¢ ix /\ x ¢ xx then 
begin a[p] := xx; a[ix] := x end; 
if q ¢ iz /\ z ¢ zz then 
begin a[q] := zz; a[iz] := z end; 
if u - q > p - l then 

402 P I Rl 

begin l1 := l; ul := p - 1; l := q + 1 end 
else 
begin ul : = u; l1 : = q + 1; u : = p - 1 end; 
if ul > l1 then sort; 
if u > l then go to part 

end 
end of sort; 
if ul > l1 then sort 

end of qsort 

Remark on Algorithm 402 [Ml] 
Increasing the Efficiency of Quicksort [M.H. Van 
Emden, Comm. ACM 13 (Nov. 1970), 693-694] 

RobertE. Wheeler [Recd. 6 July 1971] 
E.I. du Pont de Nemours and Company, 
Wilmington, DE 19899 

It will happen during execution of this algorithm that sequences 
will be encountered which are already in nondes.cending order 
and which should not be further sorted. Changes to the algorithm 
which accomplish this are indicated below. For a Fortran version 
of this algorithm running on a Univac 1108, these changes de-



COLLECTED ALGORITHMS (cont.) 

creased running time by 1.25 percent when sorting random arrays 
of length 500 and by 2.7 percent when sorting random arrays of 
length 50. 

Line Clra11ge to: 
2 integer p, q, ix, iz, i, j; 
9 p:=I; q:=u; x:=a[p]; z:=a[q]; i:=O; 

j:=q-p-1; 
36 begin xx : = x; i : = i + 1 ; ix : = p end; 
38 begin zz : = z; i : = i + 1 ; iz : = q end; 
48.5 if i y6. j begin 
50.5 end; 

402-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 403 
CIRCULAR INTEGER PARTITIONING [Al] 
M. W. COLEMAN AND M. S. TAYLOR (Recd. 30 June 1970) 
Aberdeen Proving Ground, MD 21005 

KEYWORDS AND PHRASES: partitions, combinatorics, 
statistical design of experiments 
CR CATEGORIES: 5.39, 5.5 

DF~SCRIPTION: 

The partition, when expressed as aK-tuple (X1, ···,Xx), may 
be thought of as a K-digit number in the base V number system. 
The procedure CIRPI then functions as a counter which generates 
successive K-dig;it numbers in the base V number system. How
ever, since all K-digi t numbers do not correspond to circular 
partitions, it is possible to have the procedure generate only a 
subset of K-tuples for consideration, using the following criteria: 

(a) The digits are constrained to sum to V, consequently, the 
K digits are not independent. Thus the procedure need only 
operate on the K - 1 most significant digits, the least significant 
digit being an easily computable function of the other K - 1 digits. 

(b)· Since the numbers are sequentially increasing, a given 
number is a cyclic permutation of a previously generated number 
if a cyclic rotation of its digits produces a number with a smaller 
value. Thus the most significant digit, X1 , provides an effective 
minimum value for any of the digits. 

(c) Given that the digits must sum to V and the minimum value 
for any digit is X1 , the value V - X1 * (K - 1) provides an effec
tive maximum for any digit. 

(d) Since the maximum and minimum values depend on the 
most significant digit, X1 , the procedure is finished when X1 has 
increased to the point where the minimum digit size exceeds the 
maximum digit size, i.e. when X1 > V - X 1 * (K - 1). This 
easily reduces to X1 > V/K, providing an easy method for termi
nating the K-tuple generation as early as possible. 

Therefore, the procedure efficiently generates the totality of 
circular partitions since it can greatly restrict the number of K
tuples that must be considered. 

REFERENCES: 

1. DAVID, H. A., AND F. W. WoLOCK. Cyclic designs. Annals of 
Math. Stat. 36 (1965), 1526-1534. 

2. NIVEN, I., Mathematics of Choice. Random House, New York, 
1965, ch. 6. 

ALGORITHM: 
SUBROUTINE CIRPI CV, K, XI 

c 
C THIS SUBROUTINE GENERATES All K-TUPLFS SUCH THAT ••••• 
C 41 THE SUM OF THE K ELEMENTS OF THF K-TUPLE IS V, 
C Bl EACH OF THE ELEMENTS IS AN INTEGER GREATER THAN O, ANO 
C Cl NO K-TUPLE IS A CYCLIC PFRMUTATION OF ANY OTHER K-TUPLE. 
C THE K-TUPLE IS STORED IN THe ARRAY X, WITH ONE ELEMENT 
C PER ARRAY ELEMENT. EACH K-TUPLE IS PROCESSED BY THE USER 
C !USING THE SUBROUTINE 'PROCES'l BEFORE THE NEXT K-TUPLE IS 
C GENERATED. THE SUBROUTINE 'PROCES• MUST NOT CHANGE THE 
C CONTENTS OF THE ARRAY X. 
c 

c 

INTEGER XIKI, V, Vlt V2t Cr SUM 
Vl = V-K+l 
V2 = V/K 
Kl = K-l 
K2 = K-2 
SUM ~ Kl 

C INITIALIZE THE ARRAY X WITH THE FIRST K-TUPLE. 

c 

00 100 I = l, K 1 
XI I l = l 

100 CONTINUE 
GO TO 115 

403-P 1- 0 

GENERATE THE NEXT K-TUPLE WHICH SATISFIES THE GIVEN 
CONOITIONS, Al -Cl. 

110 c = l 
SUM = X(ll 

DO l l 3 I = 1 , K2 
11 = K-1 
XI 111 = XI 11 I +C 
IF IX!lll .LT. VII GO TO lll 

X(Jll = Xlll 
GO TO 112 

lll c = 0 
112 SUM= SUM+Xllll 
113 CONTINUE 

IF IC .EQ. 01 GO TO 115 
X(ll = Xlll+l 
IF IXlll .GT. V21 RETURN 

00 114 I l = 2, Kl 
Xllll = Xlll 

114 CONTINUE 
SUM = XI ll *Kl 
Vl = V-SUM 

11 5 SUM = V- SUM 
IF (SUM .LT. Xllll GO TO llO 

XIKI = SUM 

C CHECK TO SEE IF THF K-TUPLE IS A CYCLIC PERMUTATION OF 
C ANY PREVIOUSLY GENERATED K-TUPLES. IF IT IS, GENERATE THE 
C NEXT CANDIDATE, OTHERWISE, CALL TYE SUBROUTINE 'PROCES' TO 
C PROCESS THE K-TUPLf BEFORE GENERATING THE NEXT ONE. 
c 

120 DO 122 I = 2, K 
I F IX ( 11 • GT • X I 1 I l GO T 0 12 2 
IF ( XI I l • LT. XI l l I GIJ TO l 1 0 
11 = I +l 
DO 121 17 = 2, K 

IF Ill .GT. Kl II= 11-K 
IF IXllll .GT. Xll21l GO TO 12? 
IF !Xllll .LT. X!llll GLl TO 110 
11 = 11+1 

121 CONTINUE 
GO TO 130 

122 CONt INUE 
110 CALL PROCFS IX, Kl 

GO TO 110 
ENO 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 404 
COMPLEX GAMMA FUNCTION [S14] 
C. W. LucAs JR.* AND C. W. TERRILL (Recd. 13 Feb. 1970 

and 19 June 1970) 
Physics Department, College of William and Mary in 

Virginia, Williamsburg, VA 2:H85 
*William and Mary Predoctoral Fellow. This work was partly 
supported by the National Aeronautics and Space Agency, 
Contract NOL 47-00GOOS. 

KEY WORDS AND PIIHASES: gamma function, poles of 
gamma function, Stirling's asymptotic series, recursion formula, 
reflection formula 
CR CATEGORIES: 5.12 

DESCHIPTION: 

C GAM:Vf A evaluates in single precision the gamma function 
for complex arguments. The method of evaluation is similar to the 
one employed by A. M. S. Filho and G. Schwachheim in evaluating 
the gamma function with arbitrary precision for real arguments 
(l]. First the real part of the argument of the gamma function is 
increased by some integer M, if necessary, so that Stirling's 
asymptotic series for the logarithm of the gamma function may 
be used with high precision and a small number of terms. Then the 
recursion formula for the gamma function 

r(Z) = r(Z + 1)/Z 

is used to step down to the original gamma function. 
The conditions on the value of T = Z + M used in Stirling's 

asymptotic series are: 
1. Real (T) > 10 
2. Arg(T) = arctan(lmaginary(T)/Real(T)) ::; 11'"/4 
This second condition ensures that the error incurred in using 

Stirling's asymptotic series with a finite number of terms is less 
than the value of the next term in the series [2]. 

The only condition on the argument Z is that it must not be 
too close to a pole of the gamma function, i.e. Z = 0, -1, -2, · · ·. 
A rough empirical relation was found between the number of 
significant figures obtained by Stirling's asymptotic series and 
the distance o in the complex plane from Z to the nearest pole by 
approaching the poles at 0 and -1 from several directions. If o 
= 10-n (n an integer ~ 3) this relation is (minimum number of 
signijicanlfigures) = 7 - n. With o = 10-4 , for instance, Stirling's 
asymptotic series gives three or more significant figures depend
ing on the direction of Z from the pole. The upper limit Oil the 
size of Z for which CGAM MA will work is a function of the com
puter system. For the IBM 3GO system where the largest size 
number that can be handled is about 1075 the upper limit for real 
Z is about ±57, for Z on the line Imaginary (Z) = ±Real(Z) it is 
(G3 ± G3i), forReal(Z) > 0 and (-32 ± 32i) forReal(Z) < 0, 
and for Z on the imaginary axis it is ±107-i. 

CGAM2v!A has been tested in several ways. The reflection 
formula 

r(Z)r(l - Z) 

and the relation 

r(n + 1) n! (n integer) 

404-P 1- 0 

have been employed as checks. Also log(gamma(Z)) has been 
compared with tabulated valued in reference [2] for a number of 
values of Z. These tests lead us to conclude that CG AM.MA gives 
four to five significant figures for Z outside disks of radius o = 

10-3 centered on the poles. If the subroutine is written in double 
precision, we have found that about eight more significant figures 
will be obtained everywhere for an IB.i.\1 3GO system, and near the 
poles 

(minimum number of significantfigures) = 15 - n 

where o = 10-n. The range of the subroutine remains the same. 
Acknowledgment. The authors wish to express their gratitude 

to Dr. Morton Eckhause of the William and :Mary Physics Depart
ment for his continuing advice and to Shirley .:\1cCallum and 
Samuel Pettus Hoyle of the College of William and Mary Com
puter Center who frequently reduced the programming difficulties. 

RBFERJ<~NCES: 

1. FI Luo, ANTONINA MAcH.\DO SouzA AND Scu\V.\CHHEIM, GEORGES. 

Algorithm 309, Gamma function of arbitrary precision. 
Comm. ACM 10 (Aug. 1967), 511. 

2. US Dep. of Commerce, Amer. Nat. Stand. Inst. Table of the 
gamma function for complex arguments. Clearinghouse, 
Springfield, VA 22151 (1954), p. \'III. 

ALGORITHM: 

[Warning. System dependent constants are used in assigning 
values tu IOUT, PI, TOL, SUM-L.D.F.] 

FUNCTION CGAMMA(ll 
CllMPLEX z,zM,T,TT.SUM,TERM,OEN.CGAMMA,Pl,A 
OIMENSION C!l2l 
LOGICAL REFLEK 

SET !OUT FOR PROPER OUTPUT CHANNFL OF COMPUTFR SYSTEM FOR 
ERROR MESSAGES 

I OUT = 3 
Pl = D.141593,0.0l 
X = RFAL(Zl 
Y = A!MAG!ZI 

C TOL = LIMIT OF PRECISION OF COMPUTER SYSTEM IN SINGLE PRECISION 
TOL = l.OE-7 
REFLFK = • TRUE. 

DETERMINE WHETHER Z IS TOO CLOSE TO A POLE 
CHECK WHETHER TOO CLOSE TO OR !GIN 

IF(X.GE.TOLl GO TO 20 
C FIND THE NEAREST POLE AND COMPUTE DISTANCE TO IT 

XO!ST = X-INT(X-.5) 
ZM = CMPLX(XDIST,YI 
!F(CABS!ZMl.GE.TOLl GO TO 10 

IF Z IS TOO CLOSE TO A POLE, PRINT ERROR MESSAGE AND RETURN 
WITH CGAMMA = (l.E7,0.0FOI 

WR I TF ( I Ol IT , 9 0 0 ) Z 
CGAMMA = (l.E7,0.EO) 
RETllRN 

C FOR REAL !Z I NEGATIVE EMPLOY THE RE'FLECTION FORMULA 
C GAMMA(Z I = Pl/( SIN( Pl "l l*GAMMA( 1-21 I 
C AND COMPUTE GAMMA(l-Zl. NOTE REFLEK IS A TAG TO INDICATE THAT 
C THIS RELATION MUST BE USEfl LATER. 
10 JF(X.GE.0.01 GO TO 20 

Rl'FLEK = .FALSE. 
z = 11.0,0.01-z 
X = 1.0-X 
y = -Y 

C IF Z IS NOT TOO CLOSE TO A POLE, ~AKE REAL(Zl>lO AND ARG<Zl<PJ/4 
20 M = 0 
40 IF(X.GE.10.) GO TO 50 

x = x + 1.0 
M = M + l 
GO TO 40 

50 JF!ABS(Yl.LT.Xl GO TO 60 
X=X+l.O 
M = M + l 
GO TO 50 

60 T = CMPLX(X,Y) 
TT = T*T 
DEN = T 

C COEFFICIENTS JN STIRLING'S APPROXIMATION FOR LN(GAMMA(Tll 
((1) 1.112. 
C(21 -1./360. 
((3) 1./1260. 
C(4l -1./1680. 
((5) 1./1188. 



COLLECTED ALGORITHMS (cont.) 

C(6) -691./360360. 
c ( 7) l. 1156. 
C(8) -3617.1122400. 
C(9) 43867./244188. 
C<lOl = -174611.1125400. 
C<lll = 77683./5796. 
SUM= (T-(.5,0.0l l*CLOG(T)-T+CMPLX(.5*ALOG<2.*1.l4159),Q.0) 
J = l 

70 TERM=C(J)/DEN 
C TEST REAL ANO IMAGINARY PARTS OF LN(GAMMA( l) l SFPARATFLY FOR 
C CONVERGENCE. IF l IS RFAL SKIP IMAGINARY PAlfT OF CHECK. 

F (ABS ( RFAL ( TFRM) /RFAL ( SIJM)) .GE. TOL) GO TO 80 
!F(Y.FQ.0.0) GO TO 100 
!F(AFIS(A!MAG!HRM)/A!MAG(SIJM)J.LT.Tnll GO TO 100 

RO SUM = SIJM + TFRM 
J = J + l 
OEN = OEN*TT 

C TFST FOR NONCONVFRGENCE 
!F(J.FQ.12) GO TO 90 
GO TO 70 

C STIRLING'S SERIES 010 NOT CONVERGE. PRINT ERROR MESSAGE ANO 
C PROCEOF. 
90 WR! TF( IOIJT,910) Z 
C RFCIJRSION RELATION IJSEO TO OflTAl/\J LN(GAMMA( Z)) 
C LN(GAMMA( Z)) LN( GAMMA( Z+M )/ ( Z*( l+l) *• • .':<! Z+M-1))) 
C L/\J(GAMMA(Z+M)-LN(Zl-LN(Z+ll- ••• -LN(l+M-1) 
100 IFIM.•Q.O) GO TO 120 

fJfl 11 O I = I, M 
A= (MPLX(!•"l.-1.,0.0) 

110 <;IJM = S1JM-(LOG(Z+A) 
C CHFCK Tri SU IF REFLECT lfl/\J FORMULA SHfllJLfl flF IJSFO 
170 IF!RFFl_IK) Gfl TO 110 

SlJt-< = CLOG(f'l/CSl/\J!Pl*Zll-SlJM 

l = 11.0,0.0l -z 
l:lO CGAMMA = CFXP( SIJM) 

RFTllRN 
900 FORMAT(lX.ZFl4.7,[0X,49HARGIJMF/\JT OF GAMMA FlJNCTION IS TOO CUJSF TO 

l /\ f'fll Fl 
YlO FIJRMAT(44H ERROR - ST!RLl/\Jl~'S SF 0 IES HAS NflT CONVFR\,FD/14X,4Hl = • 

l?Fl4.7l 
FNll 

Certification and Remark on Algorithm 404 [Sl4] 
Complex Gamma Function [C.W. Lucas Jr. and C.W. 
Terril, Comm. ACM 14 (Jan. 1971), 48] 

G. Andrejkova and J. Vinar, Computing Center, 
Safarik University, Kosice, Czechoslovakia 

The following changes were made in the algorithm: 
a. The function subroutine heading was changed to read 

COMPLEX FUNCTION CGAMMA(Z) 

in accordance with the standard. 
b. The convergence tests following statement number 70 involve 
the computation of the quantity REAL(TERM)/REAL(SUM). 
This can lead to overflow if Z is real and near to a pole. For these 
reasons the two statements were replaced by 

IF (ABS(REAL(TERM)) .GE. TOVABS(REAL(SUM))) GO TO 
80 

and 

IF (ABS(AIMAG(TERM)) .GE. TOL*ABS(AIMAG(SUM))) GO 
TO 100 

c. For similar reasons the statement 

SUM= CLOG(Pl/CSIN(P1*Z))-SUM 

was replaced by 

SUM= CLOG(Pl)-CLOG(CSIN(P1*Z))-SUM 

With these modifications the algorithm was translated on MINSK 
22M using the FEL Fortran compiler (with seven significant dig-its 

404-P 2- Rl 

in single precision and 15 in double precision) and ran satisfactorily. 
The following tests were performed: 

a. The logarithms of CGAMMA(Z) for= = x+iy with x = 1.0 
(0.1) 10.0 and y = 0.0(0.1)3.0 were checked against the values given 
in [1 j. An overall accuracy of five to six digits was observed. The 
imaginary part frequently had one more accurate digit than the real 
part. 
b. The behavior in the vicinity of poles was tested by computing 
the values of CGAMMA{Z) in eight evenly spaced points on circles 
of decreasing diameter. The value of 1.E-7 for the minimum diam
eter was found adequate. 
c. The values of CGAMMA(Z) were computed for z = x+iy with 

I. x = 0.0(1.0)23.0, y = 0.0 
2. x 0.0, .Y = 0.0(1.0)26.0 
3. x y = 0.0(1.0)25.0 
4. x -y = 0.0(1.0)25.0 
5. -x = y = 0.0(1.0)12.0 
6. -x = -y = 0.0(1.0) 12.0 

in all cases the final value is the last for which the program did not 
run into overflow or, in the last two cases, try to take a logarithm 
of too small a number. 

References 
1. Table of gamma function for complex arguments. National 
Bureau of Standards, Applied Math. Series 34, August 1954. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 405 
Roots of Matrix Pencils: 
The Generalized Eigenvalue 
Problem [F2] 
ALICE M. DELL, Ro::vrAN L. WEIL, GERALD L. THm1PsoN* 

(Recd. 25 May 1970 and 12 Oct. 1970) 
Committee on Information Sciences, University of 

Chicago, Chicago, IL 60637, Graduate School of 
Busine8s and Committee on Information Sciences, 
University of Chicago, Chicago, IL 60637, and Gradu
ate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh, PA 15213 

*This work was su!Jported by the US National Aeronautics 
and Space Administration, by the National Science Founda
tion under Grant GS-2703 to the University of Chicago, and 
by the US Office of Naval Research under Grant NONR 760(24) 
:KR 047-048 to Carnegie-Mellon University. Computations 
were done on the University of Chicago's Maniac III computer 
and were supported by the US Atomic Energy Commission 
under grants AT (11-1)-614 and AT (11-1)-2094. 

KEY WORDS AND PHRASES: eigenvalues, matrix roots, pen 
cil roots 

CR CATEGORIES: 5.1, 5.3 

procedure PENCIL(A, B, m, n, LAMDA, Sp, Par, Tol); 
value A, B; real array A, B, LAMDA; integerm,n, Sp, Par; 
real Tol; 

comment PENCIL finds the generalized eigenvalues LAMDA 
which solve x(A-XB) = 0 and (A-XB)y = 0 and simultaneously 
reduce the rank of (A -'J...B), where A and B are m by n matrices, 
see [l, 3, 4]. PENCIL converts them by n problem of finding the 
rank-reducing numbers of (A-XB) into an ordinary r by r 
eigenvalue problem by a sequence of elementary transforma
tions. The theory is developed in [3) and [4). These techniques 
are to be thought of as a combinatorial solution to an unsolved 
general !Jroblem. Our techniques may be numerically unsound 
for ill-conditioned problems. There are at most k = rnin(m, n) 
such generalized eigenvalues. Sp is the number of generalized 
eigenvalues found. The real parts of the roots are stored in 
DAMDA(l, i), and the imaginary parts in LAMDA(2, j), j = 
1 ... Sp. LAMDA is declared external to this procedure and 
should be dimensioned 11:2, l:k]. The procedure sets the param
eter Par: Par = 0 indicates there are no roots, otherwise Par = 
+ 1. The tolerance value To l governs the accuracy of the pivot
ing routine used in the procedure REDUCE. REDUCE is a pro
cedure applied to a matrix X of rank r to find matrices Pl and 
P2 so that 

Pl x x x P2 = G' ~l 
The input parameters of PENCIL must be A, B, m, n, and Tol. 
The following supplementary procedures are required: RE
DUCE, SWAP, Matmul, EIG. The purpose of each of these pro
cedures is explained in the head comment of each. A routine 
for finding eigenvalues of a square matrix should be supplied by 
the user to be called from procedure EIG; 

comment Examples. We show several examples of the general
ized eigenvalue problem and how the procedure PENCIL pro
cessed these examples for input into the user-supplied eigen-

405-P 1- 0 

value routine, here named EIGEWV ALU ES, which is called in 
PENCIL by EIG. The format for the examples is (a) the original 
A and B matrices are shown, (b) the derived Ar matrix (to four 
digits) whose eigenvalues are 1;he rank-reducing numbers of 
(A-XB) which is input to EIG 3,nd then to EIGENVALUES is 
shown, and (c) any pertinent comments about that example are 
made. 

A= [1~ I~ Ir t -l] B = ,,_- ~21: 
1 1 -1 1 15 

As = [. :~~ :: :r:~ 
.3107 .0554 - .0699 

-.1792 .0261 .1447 

~: ~J ~r J] 
1 -1 11 

.2358 - .1426] 

.0636 .0015 
- .0357 .2016 

.8551 - .0791 
- .0173 1.4020 

(1) 

This example contains no complications since both A and Bare 
square of full rank. Ao is effectively B-1A. The example is the 
first shown in [2, Sec. 7). 

[2 -1 1] 
B = 2 2 2 

2 -1 1 
(2) 

This example, from unpublished notes by J. H. Wilkinson, calls 
PENCIL recursively. A and B above are transformed to the 
one by one matrices 

A I = (.23077] B' = 11.1538) 

for re-entry to PENCIL. The final output from PENCIL is the 
derived matrix Ai = [.2]. 

[
2 3 2] 

A= 3 5 2 
2 2 2 [

1 0 OJ 
B = 0 1 0 

0 0 0 
(3) 

Herem - r - q = n - r - q = 0 so that there were no recursive 

[
o 11 

calls of PENCIL. On exit from PENCIL A2 = l 
3
J 

A = [2 1 2 1] B = [1 -1 1 1] (4) 
2 1 2 1 1 -1 1 1 

This system has no roots which reduce the rank (A-XB). The 
failure is an example of Theorem 2.3(a) of [4] when both E12 
and E21 exist. 

A = r; ;] 
L

2 2 
1 1 

[ -~ --~l 
B = 1 lJ 

1 1 

(5) 

This system has no roots which reduce the rank (A-XB). The 
failure is an example of Theorem :?.3(b) of [4] where both E12 and 
E21 exist. 

r -1 0 2 4 1 -1] [-1 -1 0 0 1 oll I -1 1 3 6 1 -1 o 1 -1 1 -1 
A = L 0 1 1 6 0 0 B = 1 0 1 -1 -1 -lJ (6) 

1 2 4 8 1 1 2 -1 3 -3 1 -2 

This system has no roots which reduce the rank of (A-XB), but 
that fact is not discovered by PENCIL until a recursive call 
is made on 

A I = [.2353 .2353 O] B' = [.4706 1 - .3529]. 



COLLECTED ALGORITHMS (cont.) 

The failure is an example of Theorem ·2.3(a) of [4] when E21 is 
degenerate. 

[
-~ -~ ~ ;] 

A 2 3 1 4 
- 4 6 6 8 

1 1 0 1 
-1 -1 0 1 

0 
1 

-1 
1 

-1 
0 

(7) 

This system has no roots which reduce the rank of (A->..B), but 
that fact is not discovered by PENCIL until a recursive call is 
made on 

A'= [.1176] 
.2353 

Except for the entry in the fifth row and third column of B, 
this example is the transpose of example (6). The failure is an 
example of Theorem 2.3(b) of [4] when E12 is degenerate. 

A == [~ ~ ~ ~ l B = rlo~l ~ ~ ~] 
o o 2 o

0
J o o o 

0 0 0 0 0 0 (8) 

A, -G :J 
Examples (8), (9), and (10) all reduce to the same derived eigen
problem. Each, however, tests paths to different exits from 
PENCIL. Heres + t = 0. 

[2 3 0 OJ [1 
A= 3500 B= 0 

0 0 2 0 0 
(9) 

A,-[: :J 
See comment at example (8). Heres = 0, i.e. B21 is degenerate 
and t is found to be zero. 

~l 
~J (10) 

See comment at example (8). Here t = 0, i.e. B12 is degenerate 
ands is found to be zero. 

=n 
-1 n [2 3 I] A 2 B = 3 5 '> ~-
-1 3 4 <1 

"'' 

A,=[-! 0 I] (11) 

2 -1 
-2 0 

In all other examples rank(A) > rank(B). Here rank(A) < 
rank(B). The derived eigenproblem has one nonzero root 5 
and two zero roots. Note that this problem is the same as' ex~ 
ample (2) except that A and Bare interchanged. Ordinarily in
terchanging the roles of A and B yields the r'~ciprocals of the 
eigenvalues. When one problem has zero eigenvalues, the inter
changed problem has no corresponding reciprocal eigenvalue. 
Thus in example (2) we find only one solution, the reciprocal of 5; 

comment Here we relate our work to that reported in the litera
ture. Gantmacher [1, Chap. XII] has shown that every m X n 
matrix of the form (A->..B) can be transformed by elementary 
row and column operations to a canonical form. (We call this 
form the Gantmacher Normal Form, G.N.F.) That is, there exist 
nonsingular m X m matrix P and n X n matrix Q so that P(A
>..B)Q has a quasi-diagonal form which is the direct sum of as 

405-P 2- 0 

many as (p+q+r+2) blocks as follows: 

{ h[g], LEo+i, • • • , LEo+p, 

g 
All other entries in the G.N.F. are zero. The block h[O] has h 
rows and g columns and all its elements are zero. The block 
LEu+i has Eo+i rows and (e0+i + 1) columns with structure 

E + 1 

01 

XJ 
The block L;h+; has (11h+;+l) rows and11h+i columns with struc
ture 

T/ 

01 
L.,t = IT/+ 1. 

~J 
The square block Nµ.k is µk by µk with structure 

µ 

The final block (J ->..!)is an ordinary square eigensystem in Jor
dan normal form. 

For a given matrix (A->..B) let 

{ (
µ- - 1')} w = m:x Ei , 1/i , entier T, 

where Ei, 1/i, µi are defined from the G.N.F. Then PENCIL ap
plied to (A - >..B) will require no more than w recursive calls to 
derive the reduced eigenproblem. We have run many examples 
with various combinations of L, LT, and N blocks to test our 
procedures. Since the L, LT, and N blocks contribute no solu
tions, these examples are uninteresting to reproduce here. If the 
G.N.F. of the original problem contains only L, LT, and N 
blocks, there are no solutions. If the G.N.F. contains (J->..I) as 
well, the output of our procedures for EIG is the matrix whose 
Jordan normal form is J. 
REFERENCES: 

1. GANTMACHER, F. R. The Theory of Matrices, II. Chelsea Pub. 
Co., New York, 1959, pp. 35--40. 

2. MARTIN, R. S., AND WILKINSON, J. H. Reduction of the sym
metric eigenproblem Ax = >..Bx and related problems to 
standard form. Num. Math. 11 (1968), 99-110. 

3. THOMPSON, G. L., AND WEIL, R. L. Reducing the rank of 
(A->..B). Proc. AMS 26, 4 (Dec. 1970), 548-·554. 

4. THOMPSON, G. L., AND WEIL, R. L. The roots of matrix pencils 
(Ay=>..By): existence, calculations, and relations to game 
theory. Center for Mathematical Studies in Business and 
Economics, Rep. 6936, U. Chicago, Aug. 1969 [Linear Alg. 
Appl. (to appear)]; 



COLLECTED ALGORITHMS (cont.) 

begin 
integer q, r, s, t, i, j, k, lime, limr; 
begin 

array Pl[l:m, l:m], P2[l:n, l:n]; 
Par := +1; Sp := O; 
k :=if m < n then m else n; 
for i := 1step1 until 2 do 

for j := 1step1 until k do LAM DA [i, j] := 0; 
REDUCE(Pl, B, P2, m, n, r, Tol); 
if r == 0 then 
begin Par :== O; go to Endp; end; 
Matmul(Pl, A, A, m, m, n); Matmul(A, P2, A, m, n, n); 
Matmul(Pl, B, B, m, m, n); Matmul(B, P2, B, m, n, n); 
comment NOTE:; The last two matrix multiplications to-

gether, by definition of Pl and P2, change B to 

[ Ir OJ 
0 0 . 

To avoid the multiplications at this point, an r by r identity 
matrix B can be generated directly. Note that r is deter
mined by the immediately preceding call of REDUCE;· 

end; 
comment At this stage 

A := Pl X A X P2, B :== Pl X B X P2 = [~r ~]. 

B is "reduced" and the corresponding operations have been 
performed on A ; 

if ((n-r) == 0 /\ (m-r)=O) then 
begin 

EIG(LAMDA, A, r); go to Endp; 
comment Calculations for examples (1) and (11) exit here, 

and for example (2) cease here after one recursive call. See 
discussion in the "Examples" comment; 

end; 
lime :== if (n-r) = 0 then 1 else n - r; 
limr := if (m-r) = 0 then 1 else m - r; 
begin 

array Cl2[1: r, 1: lime], C21 (1: limr, 1: r], C22[1: limr, 1: lime:], 
Pl [l:limr, l:limr], P2[l:lime, l:lime]; 

if (n-r) :;t. 0 then 
begin 

for i := 1 step 1 until r do 
for j := r + 1 step 1 until n do 
Cl2[i, j-r] := A[i, j]; 

end; 
if (m-r) :;t. 0 then 
begin 

for i :== r + 1 step 1 until m do 
begin 

for j :== 1step1 until r do C21[i-r, j] :== A[i, j]; 
if (n-r) :;t. 0 then 
begin 

for j :== r + 1step1 until n do C22[i-r,j-r] := A [i,j]; 
end 

end 
end; 

comment A has now been partitioned and the parts are 
ref erred to below as 

r n - r 

[
A C12 Jr 
C21 C22 n - r; 

if ((n-r) == 0 V (m-r) ==0) then 
begin q := O; go to Mul; end; 
REDUCE(Pl, C22, P2, limr, lime, q, Tol); 
Matmul(C12, P2, C12, r, lime, lime); Matmul(Pl, C21, C21, 

limr, limr, r); 

405-P 3- 0 

Matrnul(Pl, C22, C22, limr, limr, lime); Matmul(C22, P2, C22, 
limr, lime, lime); 

comment See "Note" comment above to generate C22 
directly without matrix multiplications; 

comment C22 has been "reduced',. and the requisite opera
tions have been performed on C12 and C21. That is 

C22 :== Pl X C22 :X P2 == [~q ~], 

C12 : = Pl X Cl2, and C21 : == C21 X P:2. Thus A now looks 
like 

r n-r 

r· Cl2 ·l Ia :Jm-r; C21 
0 

if q == 0 then go to Mul; 
begin 

array D21 [l : r, 1: r]; 
Matmul (Cl2, C21, D21, r, q, r); 
for i := 1 step 1 until r do 

for j :== 1 step 1 until r do 
A[i, j] :== A[i, j] - D2l[i, j]; 

end; 
Dstep: 

if ((m-r-q) =0 /\ (n-r-q) =0) then 
begin 

EIG(LAMDA, A, r); go to Endp; 
comment Calculations for example (3) cease here. See 

discussion in the "Examples" comment; 
end; 

Mul: 
limr :=if (rn-r-q) == 0 then 1 else m -· r - q; 
lime :== if (n-r-q) = 0 then 1 else n - r - q; 
begin 

array El2(l:r, l:lime], E21[l:limr, l:r]; 
if (n-r-q) :;t. 0 then 
begin 

for i := 1 step 1 until r do 
for j := q + 1 step 1 utntil n - r do 

El2[i, j-q] := Cl2[i, j]; 
end; 
if (m-r-q) :;t. 0 then 
begin 

for i : = q + 1 step 1 until m - r dio 
for j := 1step1 until r do 

E2l[i-q, j] := C2l[i, j]; 
end; 
comment The columns of Cl2 above Iq and the rows of C21 

to the left of Iq are annihila,ted. The remaining submatrices 
are now called El2 and E'21, respectively. 

[

Ar 0 El2] 
A = 0 Ia 0 ; 

E21 0 0 
begin 

array Pl, P4[l:r, l:r], P:2[l:lime, l:lime], 
P3[1 :limr, 1 :limr]; 

if (n-r-q) :;t. 0 then REDUCE(Pl, El2, P2, r, lime, t, 
Tol 

else); t := O; 
if (m-r-q) ~ 0 

then REDUCE(P3, E21l, P4, limr, r, s, Tol); 
else s := O; 
if ((r==t) V (r=s)) then 
begin 

comment Set parame1;er for no solutions; 



COLLECTED ALGORITHMS (cont.) 

par := O; go to Endp; 
comment Calculations for examples (4-7) (after one 

recursive call for (6) and (7)) cease here. See discus
sion in the "Examples" comment; 

end; 
if (s+t) = 0 then 
begin 

EIG(LAMDA, A, r); go to Endp; 
comment Calculations for examples (8-10) cease here. 

See discussion in "Examples" comment; 
end; 
if (n-r·-q) ~ 0 then 
begin 
Matm~tl(Pl, A., A, r, r, r); Matmul(Pl, B, B, r, r, r); 

end; 
if (m-r-q) ~ 0 then 

begin 
Matmul(A., P4, A, r, r, r); Matmul(B, P4, B, r, r, r); 
comment El2 and E21 have been "reduced" and the 

requisite operations have been performed on B. That 
is 

[ 

E12 := Pl X E12 X P2 = [~1 ~l 

E21 := P3 X E21 X P4 = u· ~l 
and Br := Pl X Ir X P4. Thus A looks like 

r q t (n-r-q-t) 

I, O l 
0 r 

0 0 

0 0 q 

I. 0 8 

0 0 

0 
(m-r-·q-s) 

and B looks like 

Br 0 0 
0 0 0 
0 0 0 
0 0 0 

0 
0 
0 
0 k-r-q-s) 

end 
end 

end 
end; 
comment The columns of Ar above I. and the rows of Ar to the 

left of le are annihilated, and the remaining (r-s) X (r-t) 
submatrix is called G. The corresponding r - i~ rows and r - t 
columns of B are called H. The following statements build 
the matrices G and H; 

begin 
array G, H[1:r-t, l:r-s]; 
for i : = t + 1 step l until r do 

for j := s + 1 step 1 until r do 
begin 

G[i-t,j -s] := A[i,j]; H[i-t,j-sJ := B[i,j] 
end; 

PENCIL(G, H, r-t, r-s, LAMDA, Sp, Par, Tol); 
end; 

Endp: 
end PENCIL; 

405 p 4 0 

procedure REDUCE(/1, X, 12, m, n, dex, Tol); value X; 
real array X, 11, 12; real Tol; integer m, n, dex 

comment REDUCE applied to an m by n matrix X of rank dex 
finds an m by rn matrix 11 and an n by n matrix I2 such that 

11 X X X I2 = [~d•z ~l 
The rank is found by REDUCE and returned index. Gaussian 
elimination with complete pivoting is used until the (dex + l)st 
pivot element would be less than Tol, a parameter to be supplied 
by the user to PENCIL. This procedure is supplied to make 
the PENCIL routine complete. Users concerned with increased 
numerical accuracy should write their own routines paying 
attention to multiple precision, and ill-conditioning. Note that 
Xis called by value and is not altered. When preserving X is 
not important, PENCIL can be made to run faster by elimi
nating value X in REDUCE and the matrix multiplications in 
PENCIL that directly follow the calls to REDUCE; 

begin 
integer i, j, k, l, lim, p, q; real div; 
real array CVEC, 1'EMP[l:n, l:n], /3[1:m, l:m]; 
integer array rvec[l :m], mvec[l :n]; 
if m > n then lim := n else lim := m; 
dex := O; 
for i := 1 step 1 until m do 
begin 

/l[i, i] := 1; rvec[i] := i; 
for j := 1step1 until m do ifi ~ j then lll[i,j] := O; 

end; 
for i := 1step1 until n do 
begin 

mvec[i] := i; 
for j := 1step1 until n do 
begin 

if i ~ j then I2[i, j] := TEMP[i, j] := CVElC[i, j] :== O 
else /2[i, j] := TEMP[i, j] := CVEC[i, j] := 

end 
end; 

Rowop: 
for i := 1step1 until m do 
for j := 1 step l·until m do 

if i = j then /3[i, j] := 1 else I3[i, j] := O; 
dex : = dex + 1 ; 
if dex S: lim then 
begin 

SEARCH(X, dex, k, l, m, n, rvec, mvec); 
comment X(k, l) is the pivot element; 
!SW AP(rvec[dex], rvec[k]); ISWAP(mvec[dex], mvec[lJ) ;, 
for i := 1step1 until n do SWAP(CVEC[i, dex], CVEC[i l]); 
if abs(X[rvec[dex], mvec[dex]]) < Tol then 
begin dex : = 0; go to Endr end; 
for i : = 1 step 1 until m do if i ~ dex then 
begin 

div := X[rvec[i], mvec[dex]]/X[rvec[dex], mvec[dex]); 
/3[i, k] := -div; 
for j := dex step 1 until n do 

X[rvec[i], mvec[j]] 
:= X[rvec[i], mvec[j]] - (divXX[rvec[,dex], mvec[j]J); 

end; 
I3[dex, kl := 1.0/X[rvec[dex], mvec[dex]]; 
for j : = dex step 1 until n do 

if j ~ dex then 
X[rvec[dex], mvec[j]] 

:= X[rvec[dex], mvec[j]]/X[rvec[dex], mvec[dex]]; 
X[rvec[dex], mvec[dex]] := 1.0; 
if k ~ dex then SW AP(I3[dex, dex], l3[k, dex]); 
Matmul(/3, Il, Il, m, m, m); 
for i := dex + 1step1 until m do 

for j := dex + 1 step 1 until n do 



COLLECTED ALGORITHMS (cont.) 

if abs (X[rvec[iJ, mvec[j]]) > Tol then go to Rowop; 
end; 
if m < n V dex < lim then 
begi~ 

integer p, q; real mul; 
for i := 1 step 1 until dex do 

for j := dex + 1step1 until n do 
if abs(Xrrvec[i), mvec[jJ)) > Tot then 
begin 

mul := TEMP[i, j] := -X[rvec[i], mvec[j}]; 
for p := 1step1 until m do 

X[rvec[p], mvec[j]] 
:= Xfrvec[p], mvec[jl] + (mulXX[rvedpl, mvec[i)J); 

Matmul(l2, TEMP, 12, n, n, n); 
for p := 1 step 1 until n do 

end 

for q := 1 step 1 until n do 
if p -;e q then TEMP[p, q] := 0 

else TEMP[p, q] := 1; 

end; 
Matmul(CVEC, 12, 12, n, n, n); 

Endr: 
end REDUCE; 
procedure SWAP(r, s); real r, s; 
comment SW AP interchanges real variables rands; 
begin 

real temp; 
temp := r; r := s; s := temp; 

end SWAP; 
procedure ISWAP(r, s); integer r, s; 
comment !SWAP interchanges integer variables rands; 
begin 

integer temp; 
temp := r; r := s; s := temp; 

end !SWAP; 
procedure Matmul(X, Y, Z, u, v, w); 

real array X, Y, Z; integer u, v, w; 
comment Matmul causes the matrix product X times Y to be 

stored in matrix Z. X is u by v, Y is v by w, and Z is u by w. 
For improved accuracy inner products should be accumulated 
using double precision arithmetic; 

begin 
integer i, j, k; real array 1'EMP[l:u, l:w]; 
for i := l step 1 until u do 

for j := 1 step J until w do 
begin 

TEMP[i, j] := 0 
fork := 1 step 1 until v do 

TEMP[i, J.] := TEMP[i, j] + X[i, k] X Y[k, j]; 
end; 
for i := 1 step l until u do 

for j := 1step1 until w do Z[i, j] := TEMP[i, jj; 
end Matmul; 
procedure SEARCH (Y, Lim, k, l, m, n, veci, veci); 

array Y; integer Lim, k, l, m, n; integer array veci, vecj; 
comment SEARCH finds the largest element in the m by n 

array Y starting at Y[Lim, Lim], searching the remaining sub
array. Vectors veci and vecj re~ord the row and column swaps 
which have occurred previous to the call of SEARCH. k and l 
are the row and column indices, respectively, for the largest 
element in the array searched. 

begin integer i, j; 
k := l :=Lim; 
for i := Lim step 1 until m do 

for j := Lim step 1 until n do 
begin 

if abs(Y[veci[i], vecj[j]]) > abs(Y[veci[k], vecj[l]]) then 
begin k := i; l := j; end 

end 

405-P 5- RI 

end SEARCH; 
procedure EIG(LAMDA, X, r); 

real array LAM DA, X; inte1~er r; 
comment EIG calls a procedure which finds the eigenvalues of 

the r by r matrix X and stores them in the 2 by r matrix LAM DA, 
real parts inLAMDA[l,j], imag:inary parts in LAMDA[2,j]; 

begin 
EIGENVALUES (X, LAMDA, r); 
Sp:= r; 

end EJG; 

Remark on Algorithm 405 [F2] 
Roots of Matrix Pencils: Th1e Generalized Eigenvalue 
Problem [A.M. Dell, R.L. Weil, and G.L. Thompson, 
Comm. ACM 14, (Feb. 1971), 113-117] 

Richard M. Heiberger [Recd. 19 May 1971, 29 July 
1971, and 8 Sept. 1971] 
Department of Statistics, Harvard University* 

Key Words and Phrases: eigenv~nlues, matrix roots, pencil roots 
CR Categories: 5.1, 5.3 

Algorithm 405 calculates rank-reducing numbers which are 
similar to, but not identical to, generalized eigenvalues. An eigen
value of A with respect to B, as defined in this Remark, satisfies 
the equations 

xT(A - AB) = 0, (A - AB)y == 0 (1) 

for appropriately dimensioned vec1tors x and y. A rank-reducing 
number Ao, as defined by Thompson and Weil [3], further satisfies 

Rank (A - "'AoB) < Rank (A - AB) (2) 

for some value A -;e Ao. The distinction is meaningful only if the 
matrices A and B are of less than full rank. 

The definition (1) is the simplest generalization of the ordinary 
eigenvalue problem in that the only new concept is the replacement 
of an identity matrix with an arbitrary matrix B. This form of the 
problem arises in many physical contexts, usually with A and B 
square symmetric, and B positive definite (see [41 for examples). 
Dell, Weil, and Thompson find that in their context the additional 
condition (2) is desirable since rank-reducing numbers are always 
discrete, finite in number, and related to a Jordan-like canonical 
form. 

In order to insure that all eigenvalues, as defined here by (1), 
are discrete, one further condition than given in Algorithm 405 
must be tested. It is necessary that 

Rank (A - AB) = min (m, n) 

for at least one value of A. In the special case that m 
matrices) the condition (3) is equivalent to 

det (A - AB) -;e 0 

(3) 

n (square 

(4) 

for at least one value of A. When this condition is violated, the 
spectrum of eigenvalues is continuous; that is, for every complex 
number A there exist vectors x and y such that (1) is satisfied. 
Discrete rank-reducing numbers may exist even when the rank 
condition (3) is violated. Example 8 accompanying Algorithm 405 
does not satisfy condition (3) and therefore does not have discrete 
eigenvalues although it does have discrete rank-reducing numbers. 

The procedure PENCIL is similar to the algorithm developed 
by Fix and Heiberger [1] for the generalized eigenvalue problem 
when A and Bare Hermitian matric1~s. We showed that the spectrum 

* This work was supported by the Cambridge Project through 
the Department of Statistics, Harvard University. Author's current 
address; Department of Statistics, Iowa State University, Ames, 
IA 50010. 



COLJLECTED ALGORITHMS (cont.) 

of Ax - XBx = 0 consists of stable and unstable eigenvalues, 
which undergo, respectively, small and larg,e changes in response to 
small changes in A and B. We proved that our algorithm isolates 
and accurately computes the eigenspace associated with the stable 
eigenvalues. We did not attempt to extend our proof to non-Her
mitian and rectangular matrices, for whkh Algorithm 405 may 
also be used. Our proof explicitly does not apply to rank-reducing 
numbers unless the rank condition (3) is :satisfied. Instead it sug
gests that the computed solution may be inaccurate, as the first 
exampRe in [l] shows. We programmed in APL (2] and Fortran 
(unpublished). 

The following changes to Algorithm 405 will modify it to 
caJculate either eigenvalues or rank-reducing numbers at the user's 
option. The user of rank-reducing numbers will be warned if the 
rank condition (3) is not satisfied, and tlhere may be numerical 
inaccuracy in his solution. 

Page 113, column 1. Replace procedure heading with: 
procedure PENCIL (A,B,m,11,LAM DA,,Sp,Par,Tol,eigrrn); 

Page 113, column 1, preceding first comment insert: 
integer array eigrrn; 

Page 113, column 1, first comment. Replace the sentence: 
The input parameters of PENCIL must be A, B, m, 11, and Toi. 

with the following: 
The input parameter eigrrn[l] is used to direct the program 

to calculate either eigenvalues or rank-reducing numbers. If eigrrn[1] 
= 0, then eigenvalues will be calculated. If eigrrn[l] = 1, then rank
reducing numbers will be calculated. Tlhe parameter eigrrn[2] 
must be set to 0 as an input parameter. As an output parameter 
eigrrn[2] indicates whether the rank condition (3) is satisfied. If 
eigrrn[2] = 0, the condition is satisfied. If eigrrn[2] = 1, the con
dition is violated. When the rank condition is violated and eigen
values are being calculated, the parameter Par is set to 0 indicating 
no roots, and the procedure is terminated. When the rank condition 
is violated and rank-reducing numbers are being calculated, the 
procedure continues calculations as at present, but the user is warned 
that there may be numerical inaccuracy in the solution. The input 
parameters of PENCIL must be A,. B, m, 11, Toi, eigrrn[l], and 
eigrrn[2]. 

Page 116, column 1, preceding line - 11. Insert: 
if ((n-r-q-t~O) /\ (m-r-q-s~O)) thien 
begin 
comment Set parameter for continuous spectrum; 

eigrrn[2] : = 1; 
if eigrrn[l] = 0 then 

end; 

begin 
comment Set parameter for no solutiorn; 

Par:= O; go to Endp; 
end; 
comment Beware of possible numerical inaccuracy; 

Page 116, column 1, line -4. Replace with: 
PENCIL(G,H,r-t,r-s,LAMDA,Sp,Par,Tol,eigrrn); 

There are several typographical errors. The following lines 
should read as given below. 

Page 115, column 2, lines -8 and-7: 
Toi) 
else t := O; 

Page 115, column 2, line - 5: 
RED UCE(P3,E21,P4,limr,r,s,Tol) 

Page 116, column 1, line 1 : 
Par : = O; go to Endp; 

I would also suggest that the following value parts be added 
for more efficient execution. 

Procedure PENCIL 
value A,B,m,n,Tol; 

Procedure REDUCE 
value X,m,n,Tol; 

References 

405-P 6- 0 

Procedure Matmul 
value u,v,w; 

Procedure SEARCH 
value Lim,m,11,veci,vecj; 

1. Fix, G., and Heiberger, R.M. An algorithm for the 111-
conditioned generalized eigenvalue problems. SIAM J. Numer. 
Anal. (Mar. 1972), 78-88. 
2. Heiberger, R.M. APL functions for data analysis and 
statistics. Res. Rep. CP-5, Dep. of Statistics, Harvard U., 1971. 
3. Thompson, G.L., and Weil, R.L. Reducing the rank of 
(A - XB). Proc. Amer. Math. Soc. 26, 4 (Dec. 1970), 548-54. 
4. Wilkinson, J.H. The Algebraic Eigenvalue Problem. Oxford 
U. Press, Oxford, 1965. 



COLLECTED ALGORITHMS FROM CACM 

Key Words and Phrases: residue arithmetic, symmetric residue, 
modulus, mixed-radix representation, symmetric mixed-radix 
representation, mixed-radix conversion, prime number, linear 
equations, Gaussian elimination, matrix inversion, determinant, 
adjoint matrix, ill-condition 

CR Categories: 3.15, 5.14 

Description 

Purpose. The subroutine EXACT sqlves the matrix equation 
AX = B for X, where A is an N by N integer matrix, B is an N by 
M integer matrix, and X is an N by M real matrix. Residue arithme
tic is used to obtain the exact solution, consisting of the rational 
components of X, i.e. det(A) and the elements of y = AadiB and 
the rounded solution, computed as the quotient of the rational 
components and stored in the array X. The subroutine can be used 
to solve systems of linear algebraic equations, to invert matrices, 
and to compute determinants and adjoint matrices. 
. Method. A methd similaor to the one described in [1, 2, and 3] 
is used to solve a system of linear algebraic equations AX = B, 
using residue arithmetic. However, since there are differences we 
shall describe them here. In [1] the concept of residue modulo m 
refers to the least nonnegative remainder of the integer x after divi
sion by m. The definition here, on the other hand, is preferable as a 
matter of computational convenience reflected by the definition of 
the FORTRAN MOD function. 

Definition. Given any integer x and any modulus m, if 

406-P 1- 0 

Algorithm 406 

Exact Solution of Linear 
Equations Using Residue 
Arithmetic [F4] 
Jo Ann Howell (Recd. 23 Mar. 1970 and 2 July 1970) 
The University of Texas at Austin, Center for Numerical 
Analysis, Austin, TX 78712 

(i) r-=:::. x (mod m), 
(ii) I r I < m, and 
(iii) sgn(r) = sgn(x), 

then we write 
r =IX Im 
and say r is a residue of x modulo m. 

It is easily shown that this residue is also unique. 
Since our definition of residue here differs from that in [l], we 

must point out that each of the theorems in [1], relative to the non
negative residue system, has an analog in 1the residue system defined 
here. However, in some of the analogous theorems it may be neces
sary to use the congruence symbol = in place of the equality 
symbol =. Thus, Algorithm I in [1] and [2] and Algorithm II in 
[3] can be completely described using our definition of residue. 

We should point out that there are 1related discussions in [5], 
[6], and [7]. 

The subroutine EXACT uses Algorithm II to solve AX = B 
using the residue system described here. First, the following pre
liminary calculations are carried out by the program before solving 
the system of equations. (i) The number, IS, of moduli required to 
obtain a solution is predicted by subroutine LOGBND, as described 
in [2]. The program computes 

BOUND = log (2 [fi ct aii)l IT fi I hkt 1]), Cl hkil ¢ 0) 
i=-1 J-1 l=l k=·l 

and IS chosen so that 

BOUND ~ SUMLOG 
= log(MM(l)) + · · · + log(MM(IS)). 



COLI..ECTED ALGORITHMS (coint.) 

where the MM(!) are the stored moduli. (ii) The elements of A and 
Bare reduced modulo MM(I), I = 1, · · · , lS. 

The subroutine SOLVE solves the residue system 
AX= B (mod MM(!)), I = 1, · · · , IS 
for the residue representations (see [1]) of d and the elements of Y, 
d"' II dlMMc1>, I dlMM<2>, ···,I dlMMmnl 
and 
Yii ,..._,II Yii IMM(l)' I Yii IMM(2)' ... 'I Yii IMM(lS)}, 
where 
d = det(A) 
and 
y = AadiB. 

The computation is performed by means of Gaussian elimina.ti9n 
for residue arithmetic [1] using the residue system described here. 
Then, the residue representations for d and the elements of Y are 
converted to their symmetric residue representations (see [3]), 
d ,...__, {/d/MM(I)' /d/MM(2) I ••• ' /d/MM(IS;t} 
and 
Yii,....., II Yii /MM(I)' I Yii IMM(2)' ... 'I Yii /MM(IS)}. 

Next, subroutine MXRADX converts the symmetric residue 
representations for d and the elements of Y to their corresponding 
symmetric mixed-radix representations [3], 
d,....., (f31, {32, · • ·, f31s> 
and 
Yii "' (0t.iit, ot.ih, · · ·, a;i1s). 
The conversion is accomplished by means of a mixed-radix con
version process described in [3]. 

From their symmetric mixed-radix representations, d and the 
elements of Y are directly obtainable, as follows: 

2 

d = f31 + f32MM(l) + {33 II MM(k) + .. " 
k=l 

IS-2 IS-1 
+f31s-1 II MM(k) + f3rs II MM(k) 

k=l k=l 
and 

2 

Yii = Ol.iji + Ol.ihMM(1) + Ol.iJa II MM(k) + · · · 
k=l 

IS-2 IS-1 
+ a;iJ8 _ 1 II MM(k) + Ol.iiIS II MM(k). 

k=l k=l 

Since e~ch of these quantities may overflow a fixed-point word, they 
are stored as" multilength" numbers. In other words, d and each of 
the elements of Y are stored in several words, with ND/GIT digits 
in each word. On return from EXACT, these multilength numbers 
are stored in MULTL, with the elements of Y (stored columnwise) 
in the first M*N rows of MULTL, and din the (M*N + l)th row of 
MULTL. The lowest order digits are in the first column, and the 
highest order digits are in column LCOUNT. Thus, the exact solu
tion of AX= B, consisting of the elements of Y (stored columnwise) 
and the determinant of A, may be printed out as follows (assuming 
ND/GIT S 7): 

WRITE (1, 10) 
10 FORMAT(24H MULTILENGTH DIGITS OF Y/) 

MTN= M*N 
MNl = MTN+l 
L1 = LCOUNT+l 
DO 20 I = 1, MTN 

20 WRITE (1, 30)(MULTL(I, Ll-J), J=l, LCOUNT) 
30 FORMAT (IX, 10I8) 

WRITE (1, 40) . 
40 FORM'.AT (/ /l 7H DETERMINANT OF A/) 

WRITE (1, 30)(MULTL(MN1, Ll-J),, J = 1, LCOUNT) 

Program Call. Subroutine EXACT is completely self-contained 
(composed of eight subroutines EXACT, SOLVE, MXRADX, 
MLTLTH, CHECK, INVERS, RES/DU, and LOGBND), and the 
calling sequence, which has 22 parameters, is 
CALL EXACT (A, N, IN, B, M, IM, IMPIN, IMINJ, ND/GIT, 
KPRIME, NOPRIM, N02, X, DET, IER, MULTL, LCOUNT, 
ATEMP, MM, RY, W, V) 
Communication to EXACT is solely through the parameter list 

406-P 2-- 0 

which is described in comments at the beginning of the subroutine 
EXACT. 

Cautions to User.1. The user should test IER before attempting 
to print results. An error code of 1 may arise if 

(a) ldet(A)I > tr KPRIME(l), 
1=1 

where r is the number of primes, KPRIME(J), for which 
det(A) ¢ 0 (mod(KPRIME(J))), 

(b) max IYiil > tr KPRIME(l), 
i,j I=l 

where r is defined as in (a), 
(c) KPRIME(I) is not a prime (for some I), 
(d) KPRIME(I) = KPRJME(J), J ~ l. 
2. This algorithm is of limited use due to the fact that A and B must 
be integral, due to the limitations given in 1 (a)-1 (d) above, and due 
to the algorithm's inherent slowness. It is not intended as a substi
tute for other well-established procedures for solving systems of 
linear algebraic equations. However, it may be: useful in obtaining 
the exact solution of an ill-conditioned system of equations which 
has integral coefficients or a system which has rational coefficients 
which can be scaled to make it integral. In fact, as Knuth [8, p. 
256] states, this method is "substantially faster than anv other 
known method for obtaining exact solutions.'' 

Test Results. Subroutine EXACT was tested on a coc 6600 
computer on which the maximum size of integer variables which 
can be used in arithmetic operations is 48 bits ("'14 digits). Tqe 
maximum size of real variables is 48 bits with an 11-bit exponent. 
The results are summarized below. The following parameters were 
used as input for both test cases: 
IN 10 ND/GIT 7 
IM 10 NOPRIM 10 
IMPIN 20. N02 20 
/MINI 101 

10000019 
10000079 
10000103 
10000121 

KPRIME = 10000139 
10000141 
10000169 
10000189 
10000223 
10000229 

(i) Input to EXACT: 

N = 10 M= 1 

10 9 8 7 6 
9 9 8 7 6 
8 8 8 7 6 
7 7 7 7 6 
6 6 6 6 6 

A 5 5 5 5 5 
4 4 4 4 4 
3 3 3 3 3 
2 2 2 2 2 
1 1 1 1 1 

B = e10. 

Output from EXACT: 

5 
5 
5 
5 
5 
5 
4 
3 
2 
1 

-1. 9999998E+07 
1 . 9999998E+07 
0. 

x 
0. 
0. 
0. 
0. 
0. 

-1 . OOOOOOC>E+OO 
2. OOOOOOOE+OO 

DET = 1.0000000E+OO 

4 3 2 
4 3 2 
4 3 2 
4 3 2 
4 3 2 
4 3 2 
4 3 2 
3 3 2 
2 2 2 
1 1 1 

107 

1 
1 
1 
1 
1 
1 
1 
1 
1 



COLLECTED ALGORITHMS (cont.) 

MULTILENGTH DIGITS FOR Y 

-1 -9999998 
1 9999998 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 -1 
0 2 

MULTILENGTH DIGITS FOR DETERMINANT A 
0 1 

(ii) Input to EXACT[4]: 
N°=5 M=5 

A 

[ 

5 
-60 
210 

-280 
126 

300 
-2400 

6300 
-6720 

2520 

-2100 
18900 

-52920 
58800 

-22680 

4200 
-40320 
117600 

-134400 
52920 

-25201 
25200 

-75600 

88200J 
-35280 

B = Is. 

Output from EXACT: 

x 
[

1 . OOOOOOOOOOOOE+OO 
5. OOOOOOOOOOOOE-01 
3 .333333333333E-01 
2. 500000000000E-01 
2. OOOOOOOOOOOOE-01 

1 . OOOOOOOOOOOOE+OO 
3. 333333333333E-01 
2. 500000000000E-01 
2. OOOOOOOOOOOOE-01 
l .666666666667E-01 

1.ooooooooooooE+oo 
2. OOOOOOOOOOOOE-01 
1. 666666666667E-01 
1 .428571428571E-Ol 
l .250000000000E-01 

DET = 5.3343360000E+10 

MULTILENGTH DIGITS FOR Y 

5334 3360000 
2667 1680000 
1778 1120000 
1333 5840000 
1066 8672000 
5334 3360000 
1778 1120000 
1333 5840000 
1066 8672000 
889 560000 

.5334 3360000 
1333 5840000 
1066 8672000 
889 560000 
762 480000 

5334 3360000 
1066 8672000 
889 560000 
762 480000 
666 7920000 

5334 3360000 
889 560000 
762 480000 
666 7920000 
592 7040000 

1.000000000000E+OO 
2. 500000000000E-01 
2. OOOOOOOOOOOOE-01 
1.666666666667E-Ol 
l .428571428571E-Ol 

1 . OOOOOOOOOOOOE+OO] l .666666666667E-01 
1.428571428571E-01 
1.250000000000E-01 
1.llllllllllllE-01 

406--P 3- 0 

MULTILENGTH DIGITS FOR DETERMINANT A 
5334 3360000 

Acknowledgments. The author wishes to thank Dr. Robert T. 
Gregory for his encouragement. This work was supported in part 
by grants from the Army Research Offic:e (Durham) (Grant DA
ARO(D )-31-124-G 1050), and the National Science Foundation (NSF 

Grant GP8442), at the University of Texas at Austin. 

References 
1. Howell, J. A. and Gregory, R. T. An algorithm for solving 
linear algebraic equations using residue arithmetic I. BIT 9, 3 
(1969), 200-224. 
2. Howell, J. A. and Gregory, R. T. Ant algorithm for solving 
linear algebraic equations using residue arithmetic II. BIT 9, 4 
(1969), 324-337. 
3. Howell, J. A. and Gregory, R. T. So1,ving linear equations 
using residue arithmetic-algorithm II. BIT 10, 1 (1970), 23-37. 
4. Lotkin, M. A set oftest matrices. MTAC 9 (1955), 153-161. 
5. Borosh, I. and Fraenkel, A. S. Exact solutions of linear 
equations with rational coefficients by congruence techniques. 
Math. Comp. 20 (1966), 107-112. 
6. Newman, M. Solving equations exactly, J. Research NBS 
17B, 4 (1967), 171-179. 
7. Takahasi, H. and Ishibashi, Y. A new method for exact 
calculations by a digital computer. Information Processing in Japan 
1, (1961), 28-42. 
8. Knuth, D. E. The Art of Computer Programming, vol. 2. 
Addison-Wesley, Reading, Mass., 1969. 

Algorithm 

(. 

c 
c 
c 
c 

L 
c 
c 
(. 

(. 

c 
c 
(. 

c 
c 
c 
(. 

c 
c 
c 
(. 

c 
c 
c 
c 
c 
c 
c 
(. 

(. 

c 
c 
(. 

c 
c 

SUBROUTINE EXACTIA.N,IN,BoM1IM,(MPIN,IMINl,NDIGIT, 
1KPRIME,~OPRIM 1 NU2,X,OET,IER,MULTL,LCOUNT,AT~MP,MM, 
2Ry,w,v1 

OIMENSICN A(IN,INl,BCIN,IMl,XCIN,IMl,ATEMPCIN,IMPIN), 
lMULTLI IP' I Nl, NOPRI Ml ,MMI NOPRIM I ,RY I IMINl l, 
2KPRIMECNOPRIP'loWIN021,VIN021 

INTEGER A,K,ATEMP,PP,w,v 
COMMON/P'LEN/18,PP,NZ,ISrlFLAG,IQUJT,NORES 

THIS SUBROUTINE SOLVES THE MATRIX EQUATION AX•B 
FOR X ANO FUR THE EXACT SOLUTION, Y•ACADJl*B 
AND DET A. KESIDUE ARITHMETIC IS USED TO OBTAIN 
THE SOLUTION. 

A IS THE N BY N COEFFICIENT MATRIX AND MUST BE 
CF TYPE INTEGER. 

N IS THE ORDER OF THE MATRIX A IN GREATER THAN 1). 
IN IS A lllMtNSION PARAMETER WHICH DEFINES THE 

CIMENSION OF A. IT MUST BE EQUAL TO DR GREATER 
THAN N. 

B IS THE N BY M MATRIX OF THE RIGHT-HAND SIDE A~O 
P'UST BE Of TYPE INTEGER. 

M IS THE NUMBER OF COLUMNS OF B ANO X IM GREATER 
THAN 01. 

IM IS A OIMCNSION ~ARAMETER WHICH DEFINES THE 
SECONll DIMENSION OF THE 2-0IMENSIONAL ARRAYS 
fl ANO X. IT '4USJ BE EQUAL lO OR GREAfER THAN M. 

IMPIN IS A DIMENSION PARAMETER WHICH IS IM + IN. 
IMINl IS A OIMt:NSION PARAMtTER WHICH IS IM * IN + 1. 

NOIGIT IS THE NUMBER OF DIGITS STORED IN EACH WORD 
CURING MULTILENGTH ARITHMETIC OPERATIONS. IT IS 
P'ACHINE DEPENDENT ANO MUST BE CHOSEN SO THAT 
10 ** 12 • NOIGITI IS LESS rHAN OR EQUAL TO THE 
LARGEST REPRESENTABLE INTEGER FOR THE COMPUTER 
eE ING USEO. 

KPRIME IS THE LINEA~ ARRAY OF NOPRl'4 MODULI. THE 
'400ULI MUST BE PRIMES, CHOSEO AS LARGE AS 
POSSIBLE ANO SO THAT KPRIMECll * KPRIMEIJI DOES 
~OT OVERFLOW AN INTEGER WORD, FOR ALL I ANO J. 

NOPRIM IS A DIMENSION PARAMETER WHICH DENOTES THE 
~UMBER Ot PRIMES IMOOULll STORED IN KPRIHE. 

N02 IS A DIM~NSION PARAMETER WHICH IS 2•NOPRIM. 
X IS THE N BY M FLOAflNG-POINT MATRIX WITH THE 

P' SOLUTION VECTORS AS COLUMNS. IT IS THE 
ROUNDED ~UOTIENJ Of THE RATIONAL COMPONENTS 
CF X. 



COLLECTED ALGORITHMS (co111t.) 

C DET IS THE FLOATJP\IG 1>CINT OETERMl"ll1"1T 1F A. 
C IER IS AN i:Rt\OR CODE WHICH IS 
C O If THE SYSTtM IS SOLVED SATISFACTORILY, 
L l IF TH~~E ARE NJT E~OUGH 'ODULI AV~ILABLE 
C TO SOLVE THE' SYSTEM, 
L 2 IF THE COF.FFICIE"IT MATRIX IS SIN'1ULAR 
C MOLULO E•CH Of THE NCPRIM MODULI llN WHICH 
C CASE X AND OET ARE NOT COMPUTEOI, 
C 3 IF ONE OR MORE OF THE INPUT l"ITEGER 
C ARGUMF."ITS IS INCORRECT (I.E. N,M,IN,IM, 
C IMPINolMINl,NU21. 
C MULTL IS THE MATRIX IN WHICH THE MULTILF.NGTH DIGITS 
C CF YI (,JI ANO DET A ARE STORED. THE ELEMENTS 
L CF Y ARE STO~FO OY COLUMNS IN THE FIRST M * N 
L ROWS OF MULTL, ANO OET A IS STORED IN THE 
L I'* N + llTH ROW. LOW ORDER DIGITS ARE JN 
C COLUMN OME OF 'ULTL, ANO HIGHEST ORDER DIGITS 
C ARE IN COLUMN LCOUNT. IT SHOULD BE DIMENSIONED 
L IMINl BY NOP~IM. 

C LCOUNT IS THE CuLUM~ NUMBER IN MULTL WHICH LONTAINS 
C THE HIGHEST OROEK MULTILENGTh DIGITS. 
C ATEMP 15 THE IN BY IMPIN MATRIX OF TYPE INTEGER USED 
C BY EXACT TO HOLD THE AUGMENTED MATRIX IA,61 
C IN RESIDUE FORM. 
C MM IS THE LINEA~ ARRAY USED BY S~LVE TO HOLD THE 
C 'ODULI WHICH WERE USED TO SOLVE THE SYSTEM OF 
C EQUATIOl\5. IT SHUULD BE OIME"ISIONEO THE SAME 
C AS KPRIME. 
C RY IS THE LINEAR ARRAY USED BY EXACT TO STORE THE 
L FLOATING-POl~T EL~MENTS OF Y ANO THE FLOATING-
C POINT OE TERM!NANT OF A. ITS OIMENSIOl\I SHOULD 
c ee !MINI. 
C IS THE LINEAR ARRAY OF TYPE INTEGER USED RY 
L ~LTLTH TO HOLD A MULTILENGTH NUMBER WHILE 
C PERFORMING MULTILENGTH ARITHMETiC OPERATIONS 
(; CN IT. IT SHOULO OE DIMENSIONED N02. 
C IS THE LINEAR ARRAY OF TYPf INTEGER USED BY 
C CHECK FOK COMPARING THE VALUES OF TWO MULTILENGTH 
L l\UMBF.RS. IT SHOULD BE DIMENSIONED THE SAME AS W. 
c 
c 
C CHECK INPUT PARAMETERS FOR CONSISTENCY 

IF(N .LE. l .OR. N .GT. JN) GO TO 80 
IFCM .LE. 0 .OR. M .GT. l"I GO TO 80 
IFllMPIJ\ .NE. IM+INI GO TO 80 
IF(IMINl ."IE. IM*IN+ll GO TO 80 
IF(N02 .NE. 2•NuPRIMI GO TO 80 
NOR.ES=M•N+l 
IB=lO**f\OIGIT 
SUMLOG=C. 

C NZ IS THE NLMClER OF PRIMES FOR WHICH 
C THE RESJ[)UE SYSTEM IS SINGULAR 

Nl"'O 
C IF IQUIT IS NOT EQUAL TO O, THEN A IS SINGULAR 
C MODULO EACH OF THE STORED PRIMES 

IQUI T=O 
C IS WILL COUJ\T THE NUMBER OF PRIMES 
C USED SUCCESSFULLY 

I S"l 
C !COUNT WILL COUNT THE NUMBER OF PRIMES TRIED 

ICOUNT=l 
COMPUTE A LCWER BOUND ON THE NUMBER 
OF REQIJI REO MOOUL I 

CALL LOGBNDIA,N,IN,B,M,IM,BOUNDI 
COMPUTE RES I DUE OF A ANO R 
AND STORE BCTH IN ATEMP 

10 PP••KPRI ,.E llCOUNTI 
P=PP 
DO 20 I= l ,N 

DO 20 J=l,N 
20 ATE,.Pll,Jl=MODIACl,J),PPI 

DO 30 l=l,N 
DO 30 J=l,M 

JJ=f\+J 
30 ATEf'P(l,JJl=MODCBll,Jl,PPI 

IFl.AG=O 
C SOLVE THE RESIDUE SYSTEM AX=B (MOO PPI 
C FOR Y=AIADJl•B (MOD PP) ANO DET (MOO PPI 
C ANO STORE RESULTS JN MULTL 

CALL SOLVEIATEMP,MULTL,N,IN,MM,M,IMPJN,lMINl,NOPRIMI 
IF IQUIT IS NOT EQUAL TO O, THEN THE SYSTEM IS 
SINGULAR MOCULO EACH OF THE STORED PRIMES, 

C AND HENCE, CANNOT B~ SOLVED BY THIS PROGRAM. 
~ RETURN AN ERROR coot OF 2. 

IFllQUIT .EC. 01 GO TO 40 
IER.=2 
RETURN 

L IF IFLAG IS NOT EQUAL TO 0 1 THEN A IS SINGULAR 
C MODULO KPRl~E(JCOUNfl. CHOOSE ANOTHER PRIME, 
C I.E. KPRIMEllCOUNT+ll, AND TKY TO SOLVE 
<. THE SYSTEM AGAIN. 

40 IFllFLAG .NF.. Ol GO TO ~O 
SUMLOGzSUMLOG+ALOGIPI 

C TEST TO SEE IF THE REQUIRED NUMBF.K 
C OF PRJ MES Hll VE BEEN USED 

IFISUMLCG .GE. BOUND) GO TO 60 
IS=I S+ l 

~O ICOUNT•ICOUNT+l 
C IF ALL PRIMES HAVE BEEN TRIED 

AND STILL Af\OTHER I~ REQUIRED, 
COMBINE RESLLTS ANO CHECK SOLUTION 

IFIICOUl\T .LE. NOPRIMI GO TO 10 
IS=! S-1 

COMBINE RESLLTS RY CONVFRSION 
TO SYMMETRIC MIXEO-RAOIX 
60 CALL MXKADX ( MUL TL• M,., RY, LCOUNT, NOIG IT• IM INl ,NOPR IM, 

1N02,WI 
C CHECK SOLUTION BY CO,.PUTING AV AND OB 

CALL CHECKIA,N,IN,B,f',IM,IER,MULTL,IMINl,NOPRIM, 
1N02,w,v1 

IFllER .EQ. 11 RETU~N 

C COMPUTE THE SOLUTIC~ X = 11/UETl*Y 
OET=KYll\ORESI 
INDEX=O 
DO ro J=t.M 

DO 70 l=loN 
INDEX=INOfX+l 

70 Xll,Jl=RYllNOEXl/OET 
RETURN 

RETURN ERROq cone o~ 3 FOR •~CONSISTENT 
INPUT PARAMETERS 
80 IER•3 

RETURN 
END 

406-P 4- 0 

SUBROUTINE SOLVEIATEMP,,.ULTL,N,IN,M"•"'•l~PIN,IMINl, 

lNOPRIMI 
OIMENSICN MMCNCPRIM),MULTLCIM!Nl,~OPRIMl,ATEMPCIN,(MPl~I 
INTEGER ATF.MP,PP,RESlflU 
COMMON/~lfN/IB,PP,Nl,[S,(FLAG,IUUIT,"IORES 

THl5 SUBROUTINE SOL\IF.S THE RE:'>IOUE ~YSTEM 
AX=tl (MOD PP) ~ORY (MOC PPI ti.Nl> OET (MOO J>pJ1. 

IUE T= l 
C Fl"ID A PIVOTAL ELEMENT RELATIVELY PRIME TO PP 

t~PN=M+N 

DO 110 J•t,N 
DO 10 I =J,.N 

IFl~OOIATEMP(l,Jl,PPl .NE. 01 GC TO 20 
IF( I .E<J. NI GO TO 100 

10 CONJINIJE 
C PFRMUTE ROWS I ANO J 

20 IF(l.F.(J.JICOTC40 
IUET=-IDET 
DO 30 JJ•J,MPI'< 

ITE~P=ATEMPCJ,JJI 
AT-El'P(J,JJl=ATEl'P((,JJI 

30 ATE,.,Pll ,JJ) =!TEMP 
C ACCUMULATE CETERMl~ANr 

40 IDET=IOFT*ATE~P(J,JI 

IDET=l'OOC IOET,PPI 
C FIND INVERSE Of' PIVOL\L ELEMENT 

IX= I NV ER S ( ATE MP ( J , J I , PP I 
L MULTIPLY RO~ J BY INVERSE OF PIVOTAL ELEME"IT 

DO 50 JJ=J,MPN 
ITE~P=ATEMP(J,JJl*IX 

50 ATE~PIJ,JJl•MODllTEMP,PPI 

C REPLACE L TH ROW RY l TH ROW-JTH ROW, ( L NOT EQUAL JI 
DO 70 L=l,N 

!FIL .EQ. JI GO TO 70 
IK•ATEMPCL,JI 
00 60 JJ=J, MP'l 

ITEMP=ATEMP(J,JJl•IK 
ITEMP=MOOIITEMP,PP) 
ITEMP=ATEMP(L,JJl-ITEMP 
ATEMPCL,JJ)=MODllTtl'P,PPI 

60 CCNTINUE 
10 CONJINUE 
80 CONTlt\lJE 

C STORE SYMMETRIC RESIDUE DIGITS IN MULTL, 
C AND MODULUS IN MM 

Nl=N+l 
INDEX=O 
DO ~O J=Nl,,.PN 

DO qo l•l,N 
INDEX=INDEX+l 
ITEl'P~ATEMP(l,Jl*IOET 

qo MlJLTLllNOEX,ISl=RESIUU(ITEMP,PPI 
MULTLCNCRES,ISl=RESIDUllDET,PPI 
l'M(ISl=PP 
RETURN 

100 'll=NZ+l 
IFLAG=l 

C TEST TO SEE IF ALL PRIMES HAVE FAILED 
IF IN Z • GT. N OPR I M-1 I I QUI I= l 
RETURN 
END 
SUBROUTINE MXRADX C MUL TL, MM, RY ,LCOUNT, ND I GIT• IM I "ll, 

lNOPR(M,1\02,WI 
DIMENSICN Ml'INOPRIMl,MULTLllM!Nl,NOPRIMl,RYCIMINll, 

1W(N021 
INTEGER RESIOU,W,PP 
DOUBLE PRECISION ACC,ACC1,ACC2,TEX 
COMMON/l'LEN/IB,PP,NZ,IS,IFLAG,IQUlT,NORES 

SUBKOUTINE l'XRADX COMPUTES THE SYMMETRIC 
MIXED-RADIX DIGITS CF Y ANO DET A FROM 

L THEliFf;~M=~~~c l ~E~~D~~ ~~g1 r~,; 
COMPUTE SYMl'ETRIC MIXED-RADIX ~IGITS 
ANO STORE T~EM l'l l'ULTL 

DO l 0 I =2, IS 
KK= 1-1 
DO 10 J=l.IS 

IX=INVEr{S(Ml"IKKl,M,.(Jll 
DO 10 K•l,NURES 

I TEMP=MUL TLIK,J 1-MUL TL I K, 1-1 I 
ITEMP=I TEr<P*I X 

10 MLLTLIK,Jl=RESIOUIITEMP,MMIJll 
COMPUTE Y A"D 0 FROM 
THEIR SYMMETRIC MIXtD-R\OIX DIGITS 
USl'lG MULTILENGTH ARITHMETIC 

LCOUNT=C 
20 00 140 l=lo'lORE~ 

WI 11-= l 
DO 30 K=2,IS 

30 W(Kl-=O 
C COMPUTE YI I I= ( ••• CMULTL (I. IS l*Ml',C IS-1 I+ 
C MUL TLC I, I S-1 I I •MM (I S-21 + ••• +MUL TLC I, 2 I I 
C MM( ll+MULTLI I, l I 

W( l l=ld ll*.'1UL TLI 1,ISl*MI'( IS-1 I 
CALL ~LrLTHCN02,WI 
J.:( s 

40 J=J-1 
lf(J .LE. 11 GO TO 60 
W ( l I = ~ ( l I+ MUL TL ( I , JI 
CALL l'LTLTHCNU2,WI 
DO 50 K = l ti S 

50 W(Kl=W(Kl*l'"'(J-11 
CALL ~LTLTH(NUZ,WI 

GO TO 40 
60 Wlll=~(ll+MULIL([,J) 

CALL l'LTLTHIN02,WI 
STORE MULTILFNGTH DIGlfS OF YCll 
IN MUL TL Cl, JI, J = 1, IS 
STORE MULTILF"IGTH DIGITS OF rtT A 

(; l'l MULTL(NOtlES,J),J=t,IS 
DO 70 J=l, IS 

70 MUlfL(l,Jl=WCJI 
c COMPUTE Y(I) IN FLOATINr.-PT. FROM MULTILE'lr.TH u1::;1Ts 

K=IS 



COLLECTED ALGORITHMS (cont.) 

110 (F(Wlt<I ."l(. Ol G'J TO 9u 
IFIK .~Q. ll GO TO 100 
K=K-1 
GD TO 80 

90 IFIK .Lt:. ll 1J0 TC LOC' 
AC C = W t K l * I !3 +W ( K - I l 
TEX=NCIGIT•IK-21 
GO TO I LO 

LOO RVl!l=Wlll 
GO TO I 10 

110 :r1K .LE. 21 C.G TO 120 
ACCl=lolK-21 
ACC2=10.00••ND!Glr 
ACC=ACC+ACC1/ACC2 

120 ACCl=\.OO+l••rEX 
RV( 1 l =ACC•ACC l 

130 IF(K .LE. LCCUNTl GO Tu 140 
LCOU'll=K 

140 CONTll\UE 
RE TURN 

1'>0 DO 160 !=I.NORI:'.> 
l60 RY(ll="ULTLll,11 

RETURN 
END 
SUBtWUTl'lF MLTLfHCNC2,WI 
DIMENSIC'l WIN021 
INT~GFR w,PP 
CC MM ON/ l'L EN/ 11:\ 9 l'P • Nl •IS• I FLAG, I !JU IT• NORE S 
!HIS .E:J. 11 IHTURN 
L= I S-l 

c r·1~rRil:IUTF. IHE D!GllS l'l w 50 THAT 
L LAC:I ELEMENI OF W CONTAINS NCIGIT DIGITS 

DU 10 K =I• L 
W(K+I l=WIKl/lll+W(K+ll 

10 WIKl.=-ldt<l/IB•rn+W(KI 
K= IS 

C All rHE ELEl'E~TS OF W SHOULD HAVE THE SAME SIGN. 
20 lf'IWIKI 160,rn,40 
30 IFIK .H:. ll RETURN 

K=K-1 
GO llJ 2C 

40 00 SO K" l , l 
IF(W(Kl .GE.,)) Gf) TO 50 
W(Kl=lo(Kl+lfl 
W(K+ll =W(K+l l-1 

50 CONTl1'UE 
RE TURN 

60 DO 10 K = 1 1 l 
IFIWlt<l .LE. 01 GU TO 70 
WIK l=ll I KI-Ill 
W(K+l l=W(K+ll+I 

70 CONT I l\IJE 
RETURN 
ENO 
SUBROUTINE CHECK(A,N, IN 9 B 9 M9 IM, IER 9 1"ULTL.IMINl 1 

lNOPR IM, 1\02, W, V l 
O!MENS!C:'-1 Vl"102l,MULTLllMINl,NOPRIMl,AC!N,1Nl, 

lflC IN, IMI ,W(NU2l 
INTEGER w.v.A,!l,PP 
COMMON/~LEN/IB,l'P,NZ,15,!FLAG,!QUIT,NORES 

SUl:IROUTI NE CHECK CHtCKS THE SOL UT 10"' BY COMP UT I NG 
A•Y AND IOET Al*fl AND COMPARING THE RESULTS. 
Y IS STORED ~y COLUMNS IN ~ULTL 
DET IS STORED IN "UlTLINORE~ 1 llol=l.tS 

LL"'I S 
KK"' IS• l 
flO ~O I= I ,N 

INDD=O 
DO '10 L=l,M 

L "'ULTIPLY ROii I OF A l'V COLUM1't L OF Y 
DO 10 K= l,Nu2 

10 WI I<) =O 
IS=KK 
00 40 J=l,N 

l~rEX=INDt)(+L 

JJ=A(l,J)/lll 
I I =-JJ•IB+AI I.JI 
Ifill .fQ. 11 GO TC 30 
DC 20 K=2 ,LL 

WC KI =W ( KI+ MlJL TLC I :>!U[ X •KI• 11 +MUL Tl I I "IOEX, K- I l • JJ 
CALL MLILTHINU2.WI 

20 CONTINO~ 

rn W(ll=ll*"'ULTLC!l'ff'EX.ll+Wlll 
w I K KI= JJ+ MUL TL I I ND tX, LL I +WI KK I 
CALL MLTLfHINCZ,wl 
lfCIAl\SIWC!Sll .LT. IBI GU TO 40 
IFllS .GE. N021 GO TO 40 
IS= IS+ l 
w I I 5 l =WI I S- L l II B 
WI I S-1 ) =- w I I 5 I• If\+ WI IS- L ) 

40 CCNTl"<UE 
C STOil.E THE PRODUCT INV 

DO 5 <' K= l, I 5 
50 V(Kl=WCKI 

C "'ULrJPLY Ill !,LI flV CET ANO STCRf IN W 
JJ:~ II .Liil e 
I I=-JJ*IB+BC I oL I 
IFILL .EQ. ll GG TU 70 
00 60 K=2,LL 

60 WCKl=MULTLCNO~ES,Kl•ll+MULTLINORES,K-ll*JJ 

10 Wlll=ll*MULTLCNORES,L) 
WCKl<l=JJ•MULTLINURES,LLl+W(KKI 
CALL ~LTLTHC~o2.w1 

C TEST EQUALITY OF WAND V 
00 ~n J=l,IS 

IFIWIJI ... E. VIJii t.0 TO LOO 
HO CCNTINUE 

90 CONTl'llJF. 
IF SOLUTION CHECKS, RfTUR"< ltrl"'C 
~LSt:, RETURI\ IER=l 

IER=O 
I S=LL 
RE:TUR"l 

100 IER=l 
RE TURN 
ENO 
FUNCTllll\ INVERSIK,Ml 

INVERS COMPLTES A"I INVERSE OF K (MOO Ml 
BV THE EUCLlrEAN ALGQRITH"l 

I =K 
L=M 
J= I 
INVERS=C 

l 0 KK = II L 
NN=MOO I l , LI 
!FINN .EQ. 01 GU TO 20 
l"'l 
L=NN 
NN=-KK*l"'VERS+J 
J=l~VERS 
INVERS=l\N 
GD TO IC 

20 IFIL .GE. Ol GC TO 30 
INVERS=-1 NVERS 

C kETURN A POSITIVE VALU[ 
30 IFllNVEQS .GE:. Cl RETURN 

INVERS=~+INVE:RS . 
RE TURN 
ENO 
INTEGER FUNCTION RESIDUIK,MI 
RESIDU=~GDIK,MI 

THE FU"lCTIOI\ ''ESIDU COMPUTES THE SYM~ETRIC 
RESIDUE OF I< IMCO "'I 
I.E. -M/2 LESS THAN RESIDU LESS THAN M/2 

IFIRESICllll0,20,30 
10 IFl2*RESIDU+M .t.E. 0) Rl:'TURN 

RESIDU=RfSIOU+'°' 
20 RflURN 
30 1Ft-2•RESIOU+M .GE. Ol RtTUR'l 

RES I OU=i:!E SI DU-"' 
RE TuR"l 
ENO 
SUBROUTINE LCGBNO(A,N,IN,B,M,IM,~OlJNOl 
OIMENSICN Al IN, INl,fll IN, IMl 
INTl:'GER A,EJ 

L BOUND IS A LOWER BOU"lO FOR THE 
L LOG OF THE PRODUCT UF THE MUCUL I 

BOUNO=O. 
DO 20 I= l, N 

ALPHA=O. 
00 l 0 J= 1,"' 

TEMP= AC (,JI 
TEMP= TEMP+T EMP 

lO ALP~A=Al~HA+TEMP 

20 BOUND=!'IOUND+ALOGIALl'HAI 
BOUND=BCUNll/2. 
DO 30 J=l•"' 

DO 30 l=l,N 
llLP~ll=IAIJSCllC !,JI I 
IFIALPHI\ .ECJ. 0.) GO TO 30 
f\Ou~r=f\OU'•C•ALO';( /ILPHA l 

30 CONllNUl 
40 flOUNO='lCUt•(1+ALU•~l2. l 

RE TURN 
ENO 

Remark on Algorithm 406 [F4] 

406--P 5- RI 

Exact Solution of Linear Equations Using Residue 
Arithmetic [Jo Ann Howell, Comm. ACM 14 
(Mar. 1971), 180-184] 

Jo Ann Howell [Rec'd 6/ 10/71 l 
Department of Computer Science., Yale University, 
New Haven, CT 06520 

The following statement should be added to subroutine 
MXRADX before the last RETURN statement (after statement 
160): 

LCOUNT = l 

Without this statement, LCOUNT is undefined whenever IS 1. 



COl;LECTED ALGORITHMS FROM CACM 

Key Words and Phrases: differential equations, stiff differential 
equations 

CR Categories: 5.17 

Description 

This subroutine integrates a set of up to N ordinary differential 
equations one step of length H, where H may be specified by the 
user, but is contrplled by the subroutine to control the estimated 
error within a specified tolerance, if possible. 

A multistep predictor corrector method is used whose order is 
automatically chosen by the subroutine as the integration proceeds. 
Either an Adams' method or methods suitable for stiff equations 
can be selected. The starting procedure is automatic and the in
formation retained by the program about previous steps is stored in 
such a way as to make the interpolation to a nonmesh point 
straightforward. (See the description of the parameter Y in the 
subroutine.) The methods used are described from a mathematical 
point of view in the papers referenced in [1]. 

The programs may call on up to three subroutines. They are 

DIFFUN(T, Y, DY) 
PEDERV(T, Y, PW, M) 
MATINV(PW, N, M, J) 

The first, DIFFUN, must be provided always, and it must 
evaluate the derivatives of the dependent variables Y with respect to 
the independent variable T a.nd place the results in DY. Y is di
mensioned 8 by N, and the function values are in Y(l, /) for I = 

1 to N. 
MATTNV must be provided if stiff methods are requested. It 

should invert the matrix PW which is of size N by N. The (/, J) 
element of PW is stored in position PW(I+M*(J-1)), that is, 
PW is dimensioned as an M by M array. (Th1t! value of Mused by 
DIFSUB is equal to the value of N used on the::: first call to DIFSUB 
when the user supplied parameter JSTART is 0.) If stiff methods 
are not used, MAT/NV is never called, so it is sufficient to provide a 
dummy subroutine to satisfy the loader if Adams' methods are used. 
The parameter Jin MAT/NV should be set to a+ 1 on return if 
the inversion is successful, -1 if the matrix is thought to be nearly 
singular. 

If large systems of stiff equations are to be integrated, the in
version should be done in two stages. The call to MAT/NV after 
statement 300 should be replaced by a call of an LU factorization 
program; e.g. subroutine DECOMP [2, p. 68). 

407 p 1. 0 

Algorithm 407 

DIFSUB for Solution of 
Ordinary 
Differential Equations [D2] 
C.W. Gear [Recd. 29 Dec. 1969 and IO April 1970] 
Department of Computer Science, University of Illinois, 
Urbana, IL 61801 

The set of statements 
D0400 I= 1, N 

400 SAVE(9, I) = D 

should be replaced by a call to the second stage of a Gaussian 
elimination program; e.g. subroutine SOLVE [2, p. 69]. The net 
result must be to solve the N by N linear system P Wll< X = Y where 
the array Y is in SAVE (!, 1), I = NS + 1 to NS + N and the 
unknown array Xis to be returned to SAVE (9, I), I = 1 to N. 

Tests have indicated that MAT/NV is called about ten times 
less frequently than the code represented by the above DO loop is 
executed. The cost of the change would be the overhead of the call 
to SOLVE which is independent of N; the saving due to the change 
would be about SN3 /6 multiplications and overhead operations 
each time that DECO MP is called instead of MAT/NV. The break 
point will depend on the computer and compiler used, but the 
change will lead to time saving on most computers when N exceeds 
about S. 

PERDERV is another optional subroutine called only if the 
method flag MF is set to 1. (See the description of the parameters.) 
If it is not used it can be replaced by a dummy subroutine to 
satisfy the loader. When used, it should compute the partial deriva
tives of the differential equations with respect to the dependent 
variables. The partial of the /th equation with :respect to the Jth 
variable should be stored in PW(I+M*(J-1)). For example, if 
the two equations 

Y~ = Y1 Y2 12 

y~ = -yi + 6y1 

were being solved by method type 1, PEDERV should compute 
as follows: 

PW(l) = Y(l, 2)*T**2 
PW(2) = 6.0 
PW(l+M) = Y(l,l)*n*2 
PW(2+M) = -2.0*Y(l,2) 

If the first value of N used in a call to DIFSUB was 2, then the left 
hand sides of the last two assignment statements could better be 
written PW(3) and PW(4) for speed. 

The DOUBLE PRECISION statement may be removed if a 
single precision version is required. If it is left in, all variables begin
ning with the letters A to H and Q to Z are double-precision 
floating-point, those beginning with Pare single-precision floating
point. (In particular the matrix PW is computed and inverted in 



COLLECTED ALGORITHMS (cont.) 407-P 2- 0 

Table I 
~ETHOO TYPE 0 

ERROR RQ PRES ENT ERROR ML\ XI MUM ERRPR NO. STEPS FN E"vALS MAT INVS AVERAGE STEP CU?.P. ENT T IfJE 
0 .. 100 D-03 0.28060-06 0.28060-06 1+ 2 120 0 0.87510-04 o.<no5012s118 
0.1000-03 0.33610-06 0.33610-06 211 623 0 c.16010-03 '1.1001121513 
0 .1 CO C-03 I NTEGR/\T IO\I ABANDONED WHEN NO. OF FN EVALUATiCNS EXCEEDED 5000 AT T = 0.851V0512R 
C.1 OOD-O't 0.10330-07 0.10330-07 50 143 0 o. 70430-04 (). 0100 71'·571 
c .1000-01+ 0. 517 5D-06 0.51750-06 2L8 6't5 0 0. 15 54 D-03 o. 10021'-!-3720 
0 .1 OO·D-04 INTEGRATION ABANDONED WHEN NO. OF FN EVALUAT rm~s EXCEEDED 5000 AT T = O. R43'+23S8QO 
0.1000-05 0.1863()-07 0 .18630-07 60 1 78 0 o. 57240-04 O.Ol0l.A896l5 
0.1 OOD-C5 0 •'+52 50-06 0.45250-06 18 2 548 0 C.18330-03 O. l O Qt+ 5 3 1 l r~ 7 
0.1000-05 INTEGRATION ABANDONED WllEN :"JO• OF FN EVALUATIONS EXCEEDED 5000 AT T = o.q3f)l!1AOJ.21 
O.lC00-06 0.6061D-08 0 .6061C-08 77 2 28 0 0 .4450 0-04 0 • f') l 0 l't 5 1 6 11 5 
O. l OOD-C6 0 ·'·60 80-07 0.46080-07 203 5 7'+. 0 C.17470-03 0 • 1 0 0 2 5 9 7 0 7 It 
0 .1000-06 0.44190-07 0 ·'+6080-07 1576 4 5 €8 0 0. 21 SO D-03 l. 'JfHH 15987'1 
0.1000-06 INTEGRATION A3/\NDONED \.:HEN NO. OF FN EVA LU AT I CNS EXCEEDED 5000 AT T = t • 06 R6 l 7 a 2 f: 1 
0.1000-07 0.155QD-08 0.15500-08 85 269 0 C.37720-04 0 • I) l ll 1 '~ 6 2 9 2 3 
o .:. coo-er 0 • 5 7 8 '•D-0 8 0. 57840-08 22 3 6'·9 0 C.15420-03 1).1001.053613 
O.lOOD-07 0.31620-07 0.31620-07 1396 3997 0 c.25020-03 l.. 00 r:o05ciqr;z 
O. l OOD-C7 INT.EGRATIO\I ABANJONED HHEN NO. OF FN EVALl..AitCNS EXCEEDED 5000 1\T T == l • 16 713 f, '~ 2 16 R 
o.100D-C8 0.2378J-09 0 .23780-09 106 J 23 0 c. 31200-04 0.0100780205 
0.1000-cs C.34120-09 0 .34120-09 249 710 0 0. 14150-03 o. 100'+ 7') 809'~ 
0.1000-0/J 0.66800-10 o .31.izo-09 l 1+2 l 3923 0 o. 25520-03 l.0011817C)C)I+ 
0.1000-08 INTEGRATION /\BANOONEQ WHEN NO. OF FN EVALUATIONS EXCEEDED 5000 AT T = 1. ~6 lflr15988!. 
O. l OOU-09 0.39610-10 0. 39 610-10 13 0 392 0 o. 25760-01t o.01on9756<:i8 
0.1000-09 0.50420-10 0.50420-10 284 8 1t l 0 0.11990-03 O. l00fP70225 
0.1000-09 0.20360-09 0.20360-09 1420 lt028 0 C.2 1t830-03 l.oomrno31C» 
0. l OOD-09 INTEGRATION ABANDONED WHEN NU. OF FN EVALUATIONS EXCEEO::O 5000 AT T = l.?.7318563CJ2 

Table 11 
~ET HOD TYPE 1 

ERP OR RQ PRESENT ERROR MAXIMUM ERRPR NO. STEP 5 FN EVA LS MAT I f\VS AVERAGE STEP CU?.P. ENT TI~E 
0.1000-03 0 .35330 .... 04 0 .35330-04 39 87 6 0.12370-03 0.01('7625'119 
o.1oou-03 0.75520-04 0.75520-04 66 155 10 0.65480-03 ').101'~987087 

0.1000-03 C.7956D-04 0. 7956D-04 98 231 13 C.44010-02 1.01664033813 
0.1000-03 0.90210-04 0.90210-04 126 303 16 o.3scoc-oi 10. 60 57160621 
O.lCOD-03 O.lll3D-03 0 .1113 D-03 146 346 20 0.31380 00 108. '5682Cl't5165 
C .1 OOD-C3 0.341t7D-04 0. 1113 0-03 15 7 380 24 C.27860 01 1051'3. 62114133326 
0. lOOD-04 0.22020-06 0.22020-06 53 121 6 0.85640-04 a. 0 to~624010 
O. l COD-04 C. l369D-0't 0. l 3690-04 103 243 12 c. 41560-03 '.J. l(l(lC"l973518 
0.1 OOD-04 0.26490-05 0 .1369l)-0l+ 15 5 366 17 0. 27 480-02 1. ()(I 5654<)9l16 
0.1000-04 0. 20960-0 1+ 0. 20961)-04 192 453 21 o.2215D-01 11). 30. 7 3 3 6 11R31 
o.1000-C'• 0.12090-0't 0. 20960-04 220 5 18 24 0.19570 co l 0 l • 3 5 0 5 6 5 11 1t l '+ 
0. l 000-0't 0.16710-06 0. 20960-04 242 564 27 C.19950 Ol 112 5. "'12 7707 C076 
0.1000-05 C .9 !OOD-07 0.91000-07 7.J l 79 7 c. 57 230-04 <:J • I) l (l 2 't 3 6 7 c l 
o .1 coo-as o.26670-05 0. 266 70-05 110 262 12 c. 40030-03 0.10'•fll3'.)CIC68 
0 .1000-05 0.22080-05 0.26670-05 163 4C5 15 C.24990-02 l.Ol22667~2't 
0 .1008-05 0.28700-05 0.28700-05 2i6 523 20 c. 19140-1)1 10.011071358<;7 
0.1000-05 0.29840-05 0.298.t+D-05 252 616 2.5 0.16640 00 102.~7712R3917 

o.1coo-cs 0.11991)-05 0. 29 8 1tD-05 28 3 693 29 0.1 1+800 01 1025. 1'1'69259724 
0.1000-06 0.32610-07 0. 32610-07 86 192 6 0 • 5 2 4 5 D- 01t o. 01onn2~c2 
o.lOOD-C6 0.30130-01 0.32610-07 l'~ 5 341 12 o. 30490-03 O.l0395858l2 
O. l OOD-06 0.78330-07 0. 78330-07 219 530 17 0.19210-02 l. O"!. 787TH"l65 
0.1000-06 0.58890-07 0. 78330-07 281 672 22 0. 15390-01 10. 3'+ 138 8 2 '+3R 
0. l C00-06 Q.1(1960-07 0. 78330-07 333 1c;2 27 C.12970 00 102. 7 375071042 
0 .1000-06 0.25880-06 0. 2588 0-06 393 930 32 0.10970 01 l 02(1. 66 8f35 99969 
O. l OOD-C7 0 .45690-08 0.45690-08 113 254 6 0. 3995 D-04 0 • Q 1.0 l't 6 7 7 c <) 

0.1 COD-C7 0 .546 80-08 0. 54630-0il 171 '• CCJ 11 0. 2 1+45 0-03 O. lf'."'0002034() 
0.1000-01 0. 11+400-07 0. 14 1+00-07 26<::J 654 17 0.15530-02 1. 01 563<)4503 
O. l OOO-C7 o.na10-01 0 • l 1+ '• 0 o- 0 7 350 8 37 23 0. 12110-01 10.13'·2196229 
0 .1000-07 0 .13940-011 0. l41tOD-07 413 978 29 0.10300 00 100. 757R63UH9 
0 .1000-07 o.7589D-09 0 .14400-07 47 3 111'+ 34 0.9005'.) 00 l 0 0 3. 11 53 4 0 l 6 ~ 3 
0 .1000-08 0.6't86D-09 0. 64860-09 14 8 327 6 0. 3115 0-04 0 .. 1)1018613'333 
o .1 oou-oe 0.16180-oa 0 .16180-08 218 529 10 0.19'100-03 0.102617'..\')~C) 

0.1000-ca o.s1320-os 0. 51320-08 345 849 13 C. ll930-02 l .. Oi2f>228lt30 
0.1000-08 c .532 5[)-08 0. 53250-08 4'+ 7 1101 19 C.91670-02 10. on::v· 15 q 51,r, 
Q .1000-08 0.37160-08 0. 53250-08 52 8 1297 24 0.77710-01 100. 7Fl<i3A55<J5t+ 
0.1000-0!.l 0.22000-os 0.53250-08 593 1447 29 0.10080 00 1Cl4.073431526Q 
o.1coc-09 0.7502D-10 0.75(120-10 184 t, 22 6 0.23940-04 o. 0101rn 1830 
0.1000-09 0. 297 70-09 0.29770-09 273 666 11 0. 1520 D-03 0.101246<)8()6 
o.1ocu-09 0.5416()-09 0.54160-09 .lt-39 1C94 12 c. 9 l 560-03 l • <) 0 l 6 5 '• 8 3 61 
0.1000-09 0.90220-09 O.Q022D-09 575 l't 17 19 c. 7100 0-02 l0.0o072nA383 
0.1000-09 0.63310-09 0.90220-09 68 l 1657 25 o. 61180-01 101. 3735614n3 
O. l COD-09 0. 35 l 5D-09 0.'9022U-09 765 1856 32 0.54771) 00 1016. 5477264277 



COLLECTED ALGORITHMS (cont.) 

single-precision to save space and time. Its accuracy only affects the 
rate of convergence of the method slightly.) All variables beginning 
with letters I to N are integers. 

Because this program computes its own indices in the temporary 
storage array SAVE provided by the user in the call sequence, use of 
an optimizing compiler will reduce execution time considerably. (A 
version in which several more arrays of temporary storage must be 
provided in the call sequence has been compared with this. It uses 
these arrays to avoid computing indices, a111d consequently runs 
about 10 percent faster than this version on an IBM 360/91 using 
Fortran H, OPT = 2. However it is not as convenient for the user.) 

Generally the problem should be scaled so that the square of 
any values of the solution that are to be considered nonzero when 
multiplied by the test constant EPS discussed! below remain within 
the range of numbers representable in floating-point. 

The following test problem proposed by F. T. Krogh (private 
communication) was run. Let U be the unitary matrix given by 

Table III 
METHOD TYPE 

ERROR RQ 
0. l 000-03 
o. J. 000-03 
0.1000·-03 
o. lOOD·-03 
O.lOOD-03 
0 .1000·-03 
0.1000·-04 
0 • l co o-- 0't 
0 .1 COD·-0 1t 

0.1000--01. 
0.1000·-0't 
0.1000--04 
0.1000-os 
0 .1000-·05 
0.1000--cs 
0.1000··05 
0 .1 CO D-·05 
0 .1000--05 
0 .1 COD-·Cf.> 
0.1000-·06 
O. l 00 D-·06 
0 .1000-06 
0 .1 OOO-·C6 
fJ .1 OOD-·C6 
O. l OOO-C7 
0. l OOU-·07 
0 .1000-·07 
0 .1000-·07 
O.lOOD-·07 
0 .1 OJO-·C7 
0 .1000-08 
0 .1000-08 
0.1000-08 
C .1 OOU-08 
O.J.OOD-·08 
O.lOOD-08 
0 .1 COD-·09 
0.1000-·09 
0.1000-09 
o. 1000-09 
0 .1 OOU-·09 
0 .1000-·09 

1 
-1 

1 
1 

1 
1 

-1 
1 

~l lJ. 
-1 

2 

PRES ENT ERROR MAXIMUM ERRPR 
0.35330-01 .. 0.35330-04 
0. 75520-0"t 0.7~:1520-04 
0.79560-04 0. 79 56 0- 0't 
0 • 9 0 2 0 U - Q It 0. '90200-04 
0.11130-03 0 .11130-03 
0.19010-04 0. 1113 D-03 
c.22020-06 o .no20-06 
0 .13690-04 0.13690-04 
0.26490-05 0. 13690-04 
0.20820-0 1+ o. 201J2lJ-04 
0.120 70-04 0. 20820-0 1 .. 

0.16950--05 0.20820-04 
0.9100()-07 0.91.000-07 
0.26670-05 0.2667.D-05 
0.22080-05 0. 26670-05 
o.2u1ou-os 0.2U70:J-05 
0 .298 1+0-05 0.29840-05 
0.12010-05 0. 29840-05 
C.32610-07 o.3?610-01 
0.30730-07 0. 32610-07 
o.7833D-07 0.7B330-07 
0.58880-07 0.78330-07 
0 .10960-07 0.78330-07 
0.25860-06 0.25·860-06 
0 ·'+5690-08 0. '15·690-08 
0.5 1t680-08 0. 54·680-08 
0.14400-07 0. l'•ltOD-07 
0.13180-07 0. l.'1400-07 
0.32460-07 0 • 3 2 't 6 D- 0 7 
0 .37580-07 0.37580-07 
0 .6'1B6D-oq 0 .64860-09 
0.16180-08 0. 16180-08 
o.51310-08 0.51310-08 
0.53240-08 o. 53240-08 
0.37160-08 0 • 5 3 2 Ltl)- 0 f3 
0 .219 50-08 o. 532'•0-08 
0.7502D-10 0.75020-10 
0.29770-09 0 .29770-09 
0. 5 1t6 BD-09 o.54680-09 
0. 89770-09 0. 89 770-09 
0.62830-09 0. 89770-09 
0.353 70-09 0. 89770-09 

NO. STEPS 
39 
66 
98 

12 6 
146 
15 7 

53 
103 
15 5 
19 2 
220 
2 1t 2 

70 
ll 0 
108 
216 
252 
283 

86 
l't 5 
219 
28 l 
33 3 
393 
113 
171 
269 
3SO 
'~ l 5 
467 
14 8 
218 
345 
4 1t7 
52'8 
593 
l8 4 
273 
't39 
575 
681 
765 

FN 

Let B be the diagonal matrix 

0 
0 
(33 
0 

The differential equation 

y' = Uz - UBUy 

~l 
OJ. 
(34 

is integrated from t = 0 to t = 10,000 where 

407~-P 3 0 

[
Y11 rW1

2
] [W1] [-11 

Y = Y2J ' z = w22 ' w = w2 = Uy with y(O) = - IJ . 
Ya LWa2 Wa -1 
Y4 W42 W4 -1 

The solution is 

y= 

EVA LS MAT INVS AVERAGE ST El' CU RP.EMT TI r-<~ 
l ll 6 C.96960-04 0 • (') l 0 7 6 2 5 ,, 1 Q 

195 10 o. 52050-03 0.1014Q87Cfl7 
.2SJ 13 o. 35920-02 l.0166'·(12801 
367' 16 0.28900-01 10. 6050'~0::\6'i'1 
426 20 0.25480 ao 108. "iA361F6c:P6 
li 11 24 0.23910 01 l 14 0 • '· 0 0 8 n:~ 5 5 3 l 
145 6 C.71 1160-04 0. 0 l (' 3 (, ;> '• 0 7 () 
291 12 0. 3 4 7 lf)- 0 3 O. 10()<1<1T~5 l8 
43'• 17 0.23170-02 t. ()I') 5655("\1,] 0 
537 21 0. 1919 0-01 10. 3073!' ~26J7 
614 24 0.16540 00 101. 51+(:3f)q<JA66 
6 77 28 C. l665D 01 ~127.40l<l')57261 

207 7 0.'•9490-0't o.nl02'·367r:l 
310 12 0.33830-03 0. 10'·8 8" <") (11) ll 
1t 65 15 c. 21770-02 1 • 0 l?. 2 6 6 7 3 ;> '• 
603 20 C.16600-01 l 0 • n 1 10 r, 5 5 r, r, IJ 
716 25 C.14310 00 102 • 4 7 (,t, 5 7 q C)O<} 

809 29 0.126BD 01 1. 0 2 5. 98".'lt,o 2""~'• ?Q 
216 6 c • 1t6 6 3 ::J- Ql~ O."ll01)71?.<Jr;> 
389 12 c. 2(., 72 0-03 o.1n3qsssri11 
598 17 0. 17 C2 D-02 1.017fl7P.'181.'1 
760 22 0.13610-01 10. 3't l 4 ".) 2 7 3 Q 2 
9CO 27 C. 11 '•2 D 00 102. 731177!.530", 

1057 32 0.96550 Qr) l.02n. 5530661127 
278 6 0. 36 50 0- 0'+ 0.()101467707 
453 11 o.22cso-03 C.10':00?.03<i7 
7 22 17 c. l't07 0-02 1 • 0 l 5 (, 3 r. l v l 
927 23 o. 10930-01 l 0 • 1Vt2 l 7 1 3 o 3 

10<12 30 0. 91 <10 D-01 l00.3545'1?.65CR 
12 32 35 C.81280 00 1N'll. '•2'1087Sqr-11 
351 6 c. 29020-04 0.01018683?1 
569 10 0 .18 C3 l.J-03 n. 10 2617,,2"'7 
901 13 c • 1 1 2 1+ o- 0 2 1. () 1?. 61Q86 0(, 

1177 l9 c. 85 750-02 10. 0<127076()(,1, 
1393 24 C.72350-01 10 0 • 7 R l 0 l R It 3 fir) 
1563 29 0.64850 00 1013. 5805'.'l'tl'75 

41i6 6 0.22650-04 0.010l011R13 
710 11 0.14260-03 0.10124"7'875h 

11'10 l2 0.87920-03 l. ()rl?.235l16C.IJ 
1'199 19 0.67450-02 10. l 108'1463Il 
1788 27 c. 5688 c-01 101.698417122'• 
2005 33 c. 51 02 0 00 l 0 23 • 0 3 77 8 2 r, 1, CJ?. 



COLLECTED ALGORITHMS (cont.) 

Tables I-III show the results for fJ1 = 1000, fJ2 = 800, fJ3 = -10, 
{3 4 = .001. The columns show the requested error (EPS), the error 
at the time of printing in the least accurate component, the maxi
mum such error to date, the number of steps, number of calls to 
DIFFUN (i.e. function evaluations), number of calls to MAT/NV, 
average step size and the current value of T. The initial step was set 
to 10-4 and printing occurred at the first step to pass 1 o• for i = - 2, 
-1, 0, 1, 2, and 3. The three different methods were used (MF= 0, 
1, and 2), but the integration was stopped if the number of function 
evaluations exceeded 5000, as it did with Adams' methods for this 
stiff problem. The problem was run for EPS = 10-i for i = 4, 5, · · ·, 
10. (Warning; this problem is critically stable. If an error in excess of 
about 10-3 occurs, the solution of the perturbed problem may have 
a pole.) It should be noted that the results will depend slightly on the 
precision of the machine and the characteristics of the library pro
gram used for MAT/NV. 

References 
1. Gear, C. W. The automatic integration of ordinary 
differential equations. Comm .. ACM 14 (Mar. 1971), 176-179. 
2. Forsythe, G. and Moler, C. Computer Solution of Linear 
Algebraic Systems. Prentice Hall, Englewood Cliffs, N. J., 1967. 

Algorithm c 
c 
c 
c 

SUBROUTINE DIFSUB(N,T 1Y,SAVE,H,HMIN,HMAX,EPS,MF,YMAX,ERROR1KFLAG,C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

l JSTART,MAXDER,PW) C 
DOUBLE PRECISION A,O,E,H,R,T,Y,Rl,RL,RND,EPS,EUP,EDWN,ENOl C 

l ,ENQ2,ENQ3,HMAX,HMIN,HNEW,HOLO,SAVE,TOLD,YMAX,ERROR,RACUM C 

THE PARAMETERS TO THE SUBROUTINE OIFSUB HAVE 
THE FOLLOWING MEANINGS •• 

N 

SAVE 

H 

HMIN 

HMAX 
EPS 

MF 

THE NUMBER OF FIRST ORDER DIFFERENTIAL EQUATIONS. 
MAY BE DECREASED ON LATER CALLS IF THE NUMBER OF 
ACTIVE EQUATIONS REDUCES, BUT IT MUST NOT BE 
INCREASED WITHOUT CALLING WITH JSTART = O. 

THE INDEPENDENT VARIABLE. 
AN 8 BY N ARRAY CONTAINING THE DEPENDENT VARIABLES ANO 

THEIR SCALED DERIVATIVES. Y(J+l,ll CONTAINS 
THE J-TH DERIVATIVE OF Y( I) SCALFO BY 
H**J/FACTORIAL(Jl WHERE H IS THE CURRENT 
STEP SIZE. ONLY Y( l,J l NEED BE PROVIDED BY 
THE CALLING PROGRAM ON THE FIRST ENTRY. 

IF IT IS DESIRED TO INTERPOLATE TO NON MESH POINTS 
THESE VALUES CAN BE USED. IF THE CURRENT STEP SIZE 
IS H AND THE VALUE AT T + E IS NEFDEO, FORM 
S = E/H, ANO THEN COMPUTE 

Y( I l ( T+E) 
NQ 

SUM YLl+l,ll*S**J 
J=O 

A BLOCK OF AT LfAST 12*N FLOATING POINT LOCATIONS 
USED BY THE SUBROUTINES. 

THE STEP SIZE TO BE ATTEMPTED ON THE NEXT STEP. 
H MAY BE ADJUSTED UP OR DOWN BY THE PROGRAM 
IN ORDER TO ACHIEVE AN ECONOMICAL INTEGRATION. 
HOWEVER, IF THE H PROVIDED BY THE USER DOES 
NOT CAUSE A LARGER ERROR THAN REQUESTED, IT 
WILL BE USED. TO SAVE COMPUTER TIME, THE USER IS 
.~DVISED TO USE' A FAIRLY SMALL STEP FOR THE FIRST 
CALL. IT WILL BE AUTOMATICALLY INCREASED LATER. 

THE MINIMUM STEP SIZE THAT WILL BE USED FOR THE 
INTEGRATION. NOTE THAT ON STARTING THIS MUST 
MUCH SMALLER THAN THE AVERAGE H EXPECTED SINCE 
A FIRST ORDER METHOD IS USED INITIALLY. 

THE MAXIMUM SIZE TO WHICH THE STEP WILL RE INCREASED 
THE ERROR TEST CONSTANT. SINGLE STEP ERROR ESTIMATES 

DIVIDED BY YMAX(I) MUST BE LESS THAN THIS . 
IN THE EUCLIDEAN NORM. THE STEP ANO/OR ORDER IS 
ADJUSTED TO ACHIEVE THIS. 

THF METHOD INDICATOR, THE FOLLOWING ARE ALLOWED •• 
0 AN ADAMS PREDICTOR CORRECTOR IS IJSEO. 
l A MULTI-STEP M~THOD SUITABLE FOR STIFF 

SYSTEMS IS USED. IT WILL ALSO WORK FOR 
NON STIFF SYSTEMS. HOWEVER THE USER 
MUST PROVIDE A SURROUTINE PEOERV WHICH 
EVALUATES THE PARTIAL DERIVATIVES OF 
THE DIFFERENTIAL EQUATIONS WITH RESPECT 
TO THE Y'S. THIS IS DONE BY CALL 
PEDERV(T,Y,PW,Ml. PW IS ANN BY N ARRAY 
WHICH MUST BF. SET TO THE PARTIAL OF 
THE I-TH EQUATION WITH RESPECT 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

KFLAG 

JS TART 

MAX DER 

PW 

407-P 4- 0 

A COMPLETION CODE WITH THF FOLLOWING MEANINGS •• 
+l THE STEP WAS SUCCFSFUL. 
-1 THE STEP WAS rt.KEN WITH H = HMJN, BUT THE 

REQUESTED ERROR WAS NOT ACHIEVED: 
-2 THE MAX I MUM ORDER SP EC IF I ED WAS FOUND TO 

BE TOO LARGE •. 
-3 CORRECTOR CONVERGENCE COULD NOT BE 

ACHIEVED FOR H .GT. HMIN. 
-4 THE REQUESTED E:RROR IS SMALLER T .AN CAN 

BE HANDLED FOR THIS PROBLEM. 
AN INPUT INDICATOR WITH THE FOLLOWING MEANINGS •• 

-1 REPEAT THE LAST STEP WITH A NEW H 
O PERFORM THE FIRST STEP. THE FIRST STEP 

MUST BE DONE WITH THIS VALUE OF JS TART 
SO THAT THE SURROUTINF CAN INITIALIZE 
ITSELF. 

+l TAKE A NEW STEP CONTINUING FROM THE LAST. 
JSTART IS SET TO NO, THE CURRENT ORDER OF THE METHOD 
AT EXIT. NO IS ALSO THE ORDER OF THE MAXIMUM 
DERIVATIVE AVAILABLE. 

THE MAXIMUM DERIVATIVE THAT SHOULD BE USED IN THE 
METHOD. SINCE THE ORDER IS EQUAL TO THE HIGHEST 
DERIVATIVE USED~ THIS RESTRICTS THE ORDER. IT MUST 
BE LESS THAN B OR 7 FOR ADAMS OR STIFF METHODS 
RESPECTIVELY. 

A BLOCK OF AT LEAST N**2 FLOATING POINT LOCATIONS. 

DIMENSION Y(8,NltYMAX(N),SAVE(lO,Nl,ERR0R(N),PW(N), 
1 AIBJ,PERTST(7,2,3l 

THE COEFFICIENTS IN PERTST ARE USED IN SELECTING THE STEP AND 
ORDER, THEREFORE ONLY ABOUT ONE PERCENT ACCURACY IS NEEDED. 

DATA PERTST /2.0,4.5,7.333,10.42,13.7,17.15,l.O, 
l 2.o.12.o,24.o,31.09,53.33,10.00,B7.97. 
l 3.0,6.0,9.167, 12.5,15.9B,l.O.t.O, 
1 12.0,24.0,37.B9,53.33,70.08,87.97,l.O, 
l 1.' l. '0.5,0.l667,0.04133,0.00B267, 1.0, 
1 i.o,1.o,2.o,1.0,.3151,.01401 •• 01391 

DATA A(2l I -1.01 
IRET = l 
KFLAG = l 
IF (JSTART.LE.Ol GO TO 140 

BEGIN BY SAVING INFORMATION FOR POSSIBLE RESTARTS AND CHANGING 
H BY THE FACTOR R IF THE CALLER HAS CHANGED H. ALL VARIABLES 
DEPENDENT ON H MUST ALSO BE CHANGED. 
E IS A COMPARISON FOR ERRORS OF THE CURRENT ORDER NQ. EUP IS 
TO TEST FOR INCREASING THE ORDER, EDWN FOR DECREASING THE ORDER, 
HNEW IS THE STEP SIZE THAT WAS USED ON THF LAST CALL. 

100 

110 

120 

130 

DO 110 I = - 1 , N 
DO 110 J = l ,K 

SAVE(J,I) = Y(J,!l 
HOLD = HNEW 
IF (H.EO.HOLDl GO TO 130 
RACUM = H/HOLD 
IRETl = 1 
GO TO 750 
NOOLD = NQ 
TOLD = T 
RACUM = 1.0 
IF IJSTART.GT.OI GO TO 250 
GO TO 170 

TO THE J DEPENDENT VARIABLE IN PW(l,J). 
PW IS ACTUALLY STORED IN AN M BY M 
ARRAY WHERE M IS THE VALUE OF N USED ON 
THE FIRST CALL TO THIS P~OGRAM. 

THE SAME AS CASE lt FXCEPT THAT THIS 
SUBROUTINE COMPUTES THE PARTIAL 
DERIVATIVES BY NUMERICAL DIFFERENCING 
OF THE DERIVATIVES. HENCE PEDERV IS 
NOT CALLEO. 

140 
c 

IF IJSTART.E0.-11 GO TO 160 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

YMAX 

ERROR 

AN ARRAY OF N LOCATIONS WHICH CONTAINS THE MAXIMUM 
OF EACH Y SEEN SO FAR. IT SHOULD NORMALLY BE SET TO 
l IN EACH COMPONENT BEFORE THE FIRST ENTRY. (SEE THE 
DESCRIPTION OF EPS.) 

AN ARRAY OF N ELEMENTS WHICH CONTAINS THE ESTIMATED 
ONE STEP ERROR IN EACH COMPONENT. 

c 
c 
c 

ON THE FIRST CALL, THE ORDER IS SET TO l AND THE INITIAL 
DERIVATIVES ARE CALCULATED. 

NO 1 
N3 = N 
Nl N*lO 
NZ = Nl + l 
N4 = N**2 
N5 Nl + N 
N6 N5 + l 



COLLECTED ALGORITHMS (cont.) 

c 

CALL DIFFUN(T,Y,SAVE(N2,lll 
DO 1. 50 I = 1, N 

Nll = Nl + I 
150 Y(2.Il = SAVE<Nll.ll*H 

HNEW = H 
K = 2 
GO TO 100 

C REPEAT LAST STEP BY RESTORING SAVED INFORMATION. 
c 

c 

160 IF (NQ.EQ.NOnLDl JSTART = 1 
T = TOLD 
NO = NQOLD 
K = NQ + 1 
GO TO 120 

C SET THE COEFFICIENTS THAT DETERMINE THE ORDER AND THE METHOD 
C TYPE. CHECK FOR EXCESSIVE ORDER. THE LAST TWn STATEMENTS OF 
C THIS SECTION SET IWEVAL .GT.O IF PW IS TO BE RE-EVALUATED 
C BECAUSE OF THE ORDER CHANGE, AND THEN REPEt1T THE INTEGRATION 
C STEP IF IT HAS NOT YET BEEN DONE (IRET = 11 OR SKIP TO A FINAL 
C SCALING BEFORE EXIT IF IT HAS BEEN COMPLETED (!RET = 21. 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

170 IF (MF.EQ.Ol GO TO 180 
IF (NQ.GT.61 GO Tn 190 
GO TO (2?.1,222,223,224,225,226),NQ 

180 IF (NO.GT.71 GO TO 190 
GO TO (211t212,213,214,215,216,217),NQ 

190 KFLAG = -2 
RETURN 

THE FOLLOW I NG COEFFICIENTS SHOULD BE DEF I NED TO THE MAX I MUM 
ACCURACY PERMITTED BY THE MACHINE. THEY ARE IN THE ORDER USED •• 

-1 
-112,-112 
-5112 .-3/4,-1/6 
-3/8,-11/12,-1/3,-1/24 
-251/720,-25/24,-35/72,-5/48,-1/120 
-95/288,-137/120,-5/8,-17/96,-1/40,-1/720 
-19087/60480,-49/40,-203/270,-49/192,-7/144,-7/1440,-l/5040 

c -1 
c -2/3,-113 
c 
c 
c 
c 
c 

-6/11,-6/11,-1/11 
-12/25,-7/10,-1/5,-1/50 
-120/274 ,-22 5/ 274 ,-B5 /2 74' -l 5 /274 ,-1 /274 
-180/441,-58/63,-15/36,-25/252,-3/252,-1/1764 

211 

212 

213 

214 

215 

216 

A(ll = -1.0 
GO TO 230 
A(ll = -0.500000000 
A(3) • -0.500000000 
GO TO 230 
A(l) = -0.4166666666666667 
A(3) • -0.750000000 
A(4) = -0.1666666666666667 
GO TO 230 
A(l) -0.375000000 
A( 31 = -0.9166666666666667 
A(4) = -0.3333333333333333 
A ( 5 ) = -0. 0416666666666666 7 
GO TO 230 
A(ll = -0.3486111111111111 
A(3) = -1.0416666666666667 
A(4) = -0.4861111111111111 
A(51 = -0.1041666666666667 
A(6) = -0.008333333333333333 
GO TO 230 
A(ll -0.3298611111111111 
A(3) • -1.1416666666666667 
A(4l -0.625000000 
A(5) • -0.1770833333333333 
A(61 -0.0250000000 
A(7) = -0.001388888888888889 
GO TO 230 

c 
c 
c 
c 
c 

217 A(l) -0.3155919312169312 
A(3) -1.235000000 
A(4) -0.7518518518518519 
A ( 5 l -0. ?552083333333333 
A(6) = -0.04861111111111111 
A(7) = -0.004861111111111111 
A(8) = -0.0001984126984126984 
GO TO 230 

221 A(l) = -1.000000000 
GO TO 230 

222 A(ll = -0.6666666666666667 
A ( 3 l = -0. 3333333333333333 
GO TO 230 

223 All) = - 0.5454545454545455 
Al3l = A(l) 
A(4) = -0.09090909090909091 
GO TO 230 

224 A( 1 l -0.480000000 
A(3l = -0.700000000 
A(4) = -0.200000000 
A ( 5) = -0 .020000000 
GO TO 230 

225 A( 1 l -0.437956204379562 
A(3) -0.8211678832116788 
Al41 = -0.3102189781021898 
A(51 = -0.05474452554744526 
A(6) = -0.0036496350364963504 
GO TO 230 

226 A Ill -0.4081632653061225 
Al 3) -0.9206349206349206 
Al4l -0.4166666666666667 
A(5) -0.0992063492063492 
Al61 -0.0119047619047619 
A(7) -0.000566893424036282 

230 K = NQ+l 
!DOUB = K 
MTYP 14 - MFl/2 
ENQ2 = .5/FLOATINQ + ll 
ENQ3 = .5/FLOATINQ + 21 
ENQ1 = 0.5/FLOATINQ) 
PEPSH = EPS 
EUP = IPERTSTINQ,MTYP,2l*PEPSHl .. *2 
E = IPERTSTINQ,MTYP,ll*PEPSHl**2 
EDWN =IPERTST(NQ,MTYP,3l*PEPSH)**2 
IF (EDWN.EQ.01 GO TO 780 
BND = EPS*ENQ3/DFLOATINI 

240 1 WE VAL = MF 
GO TO I 250, 680 ),IRET 

407--P 5-

THIS SECTION COMPUTES THF PREfHCTFO VALllFS BY FFFECT!VELY 
MULTIPLYING THE SAVED INFORMATION RY THE PASCAL TRIANGLE 
MATRIX. 

250 T = T + H 
DO 260 J = 2,K 

DO 260 Jl = J,K 
J2 = K - JI + J - 1 
DO 260 l = 1, N 

260 
c 

YIJ2,J) = YIJ2,)) + YIJ?+l,!) 

0 

c UP rn 3 cnRRECTOR ITERl\Tll)NS ARE TAKEN. CnNVFRGFNCE IS TESTFll 
BY REQUIRING CHANGES TO BE LESS THAN BND WHICH IS DEPENDENT nN 

C THE ERROR TEST.CONSTANT. 
C THE SUM OF THE CORRECT IONS IS ACCUMULATED IN THE ARRAY 
C ERROR(!). IT IS EQUAL TO THE K-TH DERIVATIVE OF Y MULTIPLIED 
C BY H**K/(FACTORIAL(K-1l*A(K)), AND IS THEREFORE PROPORTIONAL 
C TO THE ACTUAL ERRORS TO THE LOWEST POWER OF H PRESENT. (H**Kl 
c 

DO 270 I = 1,N 
270 ERROR(!)= O.O 

DO 430 L = l .3 
CALL DIFFUN (T,Y,SAVE(N2.l)) 

c 
C IF THERE HAS BEEN A CHANGE OF ORDER OR THERE HAS BEEN TROUBLF 
C WITH CONVERGENCE, PW IS RE-EVALUATED PRIOR TO STARTING THE 
C CORRECTOR ITERATION IN THE CASE OF STIFF METHODS. IWFVAL IS 



COLLECTED ALGORITHMS (cont.) 

THEN SET TO -1 AS AN INDICATOR THAT IT HAS BEEN DONE. 

IF llWEVAL.LT.11 GO TO 350 
IF (MF.EQ.2) GO TO 310 
Cil.U_ PEDERVIT,Y,PW,N3) 
R = A ( l) *H 
DO 280 I = l,N4 

280 PW(!)= PW(l)*R 
290 N 11 = N3 + l 

Nl2 = N*Nll - N3 
DO 300 I = l,Nl2,Nll 

300 PW (I) = 1.0 + PW (I) 
IWEVAL = -1 
CALL MATI NV( PW,N,N3,Jl) 
IF (Jl.GT.O) GO TO 350 
GO TO 440 

310 DO 320 I = l,N 
320 SAVE(9,J) =Vil.I) 

DO 340 J = l ,N 
R ~ EPS*DMAXl(EPS,OABSISAVE(9,J))) 
Y(J,J) = Y(l,J) + R 
D = A(l)*H/R 
CALL DI FFUN ( T, Y, SAVE ( N6 .1)) 
003301=1,N 

Nll =I+ (J-ll*N3 
Nl 2 = N5 + I 
Nl3 = Nl + I 

330 PW(Nlll = ISAVEIN12.ll - SAVE\Nl3.ll>*O 
340 Yll,Jl = SAVE(9,J) 

GO TO 290 
350 IF (MF.NE.0) GO TIJ 370 

Oil 360 I = l, N 
Nll = Nl + I 

360 SAVEl9.Il = Y(2,J) - SAVEINll.ll*H 
GO TO 410 

370 DO 380 I = l,N 
Nll = N5 + I 
Nl2 = Nl + I 

380 SAVE(Nll.l) = y(;>,I) - SAVF(Nl2,l)*H 

390 
400 
410 

420 

DO 400 I = l, N 
[) = 0 .o 
DCI 390 J = 1, N 

Nll = I + (J-l>*N3 
N 12 = N5 + J 
D = D + PW(Nlll*SAVEIN12.l) 

SAVE(9, I) = D 
NT = N 

00 420 I = l, N 
Y(l,I) = Y(l,I) + Alll*SAVEl9,J) 
Y(2,[) = Y(2,J) - SAVE(9,I) 
FRRORl I) = ERROR( I> + SAVE(9,J) 
IF IDABS ( SAVEl9, I)) .LE. ( BND*YMAX (I))) NT 
CONT I NUE 

IF (NT.LE.OJ GO TO 490 

NT - l 

430 
c 

CONTINUE 

c 
c 
c 
c 
c 
c 
c 

c 

THE CORRECTOR ITERATION FAILED TO CONVERGE IN 3 TRIES. VARIOUS 
POSSIBILITIES ARE CHECKED FOR. IF H IS ALREADY HMIN AND 
THIS IS EITHER ADAMS METHOD OR THE STIFF METHOD IN WHICH THE 
MATRIX PW HAS ALREADY BEEN RE-EVALUATED, A NO CONVERGENCE EXJf 
IS TAKEN. OTHERWISE THE MATRIX PW IS RE-EVALUATED AND/OR THE 
STEP IS REDUCED TO TRY AND GET CONVERGENCE. 

440 T = T - H 
IF ((H.LE.(HMIN*l.00001)).ANO.((IWEVAL - MTYPl.LT.-1)) GO TO 460 
IF ((MF.EQ.Q).OR.(JWEVAL.NE.Q)) RACUM = RACUM*0.2500 
IWEVAL = MF 
IRETl = 2 
GO TO 750 

4·60 KFLAG = -3 
4. 10 on 4AO 1 = l, N 

DO 480 J 1, K 
480 Y(.J,!) SAVEtJ,J) 

H = HOLD 
NQ = NIJQLD 
.JS TART = NO 
RF TlJRN 

C THE CORRECTOR CONVERGED AND CONTROL IS PASSED TO STATEMENT 520 
C IF THE ERROR TEST IS O.K., AND TO 540 OTHERWISE. 
C IF THE STEP IS O.K. IT IS ACCEPTED. IF IDOUB HAS BEEN REDUCED 
C TD ONE, A TEST IS MADE TO SEE IF THE STEP CAN BE INCREASED 
C AT THE CURRENT ORDER OR BY GOING TO ONE HIGHER OR ONE LOWER. 
C SUCH A CHANGE IS ONLY MADE IF THE STEP CAN BE INCREASED BY AT 
C LEAST 1.1. IF NO CHANGE IS POSSIBLE !DOUB IS SET TO 10 TO 
C PREVENT FUTHER TESTING FOR 10 STEPS. 
C IF A CHANGE IS POSSIBLE, IT JS MADE AND !DOUB IS SET TO 
C NQ + l TO PREVENT FURTHER TESING FOR THAT NUMBER OF STEPS. 
C IF THE ERROR WAS TOO LARGE, THE OPTIMUM STEP SIZE FOR THIS OR 
C LOWER ORDER IS COMPUTED, AND THE STEP RETRIED. IF IT SHOlJLD 
C FAIL TWICE MORE IT IS AN INDICATION THAT THE DERIVATIVES THAT 
C HAVE ACCUMULATED IN THE Y ARRAY HAVE ERRORS OF THE WRONG ORDER 
C SO THE FIRST DERIVATIVES ARE RECOMPUTED AND THE ORDER IS SET 
C TO l. 
c 

490 I) = o.o 
DO 500 I = l,~I 

500 D • D + IERROR(J)/YMAX(J))**2 
IWEVAL = 0 
IF to.GT.E) GO TO 540 
IF (K.LT.3) GO TO 520 
DO 510 J 3, K 

DO 510 I = l ,N 

c 

510 Y(J,J) = Y(J,J) + AtJ>*ERROR(J) 
520 KFLAG = +l 

HNEW = H 
IF tlDOUB.LE.l) GO TO 550 
I DOUB = I DOUB - l 
IF t!DOUB.GT.ll GO TO 700 
DO 5 30 I = l, N 

530 SAVEtlO,I) =ERROR(!) 
GO TO 700 

540 KFLAG = KFLAG - 2 
IF (H.LE.tHM!N*l•OOOOl)) GO TO 740 
T = TOLD 
IF IKFLAG.LE.-5l GO TO 720 

550 PR2 = to/El**ENQ2*1.2 
PR3 = 1.E+20 

407-P 6- 0 

IF ((NQ.GE.MAXOERl.OR.tKFLAG.LE.-lll GO TO 570 
D = o.o 
DO 560 I = l, N 

560 D = D + (lERRORlll - SAVE(l0,lll/YMAX(lll**2 
PR3 = (0/EUPl**ENQ3*1.4 

570 PRl = 1.E+20 
IF tNO.LE.ll GO TO 590 
0 = o.o 
00 580 I. = l, N 

580 D = 0 + (Y(K,Jl/YMAX(l))**2 
PRl = (D/EDWNl**ENOl*l.3 

590 CONTINUE 
IF (PR2.LE.PR3l GO TD 650 
IF tPR3.LT.PR1) GO TO 660 

600 R = l.O/AMAXllPRl,1.E-4) 
NEWO = NO - 1 

610 !DOUB = 10 
IF ((KFLAG.EO.l>.AND.tR.LT.ll.llll GO TO 700 
IF (NEWQ.LE.NQl GO TO 630 
DO 620 I = l,N 

620 Y(NEWQ+l,Jl = ERROR(ll*A(Kl/Df'LOAT(K) 
630 K = NEWQ + l 

IF (KFLAG.EQ.ll GO TO 670 
RACUM = RACUM*R 
IRETl = 3 
GO TO 750 

640 IF (NEWQ.EQ.NQ) GO TO 250 
NO = NEWQ 
GO TO 170 

650 I~ tPR2.GT.PRll GO TO 600 
NEWQ = NQ 
R = l.O/AMAXltPR2,l.E-4) 
GO TO 610 

660 R = l.O/AMAXl(PR3,l.E-4) 
NEWQ = NQ + 1 
GO TO 610 

670 IRET = 2 
R = DM!Nl(R,HMAX/OABS(H)) 
H = H*R 
HNEW = H 
IF (NQ.EQ.NEWQ) GO TO 680 
NQ = NEWQ 
GO TO 170 

680 Rl = l.O 
DO 690 J = 2 ,K 

Rl = Rl*R 
DO 690 I = 1 ,N 

690 Y(J,J) = Y(J,J l*Rl 
!DOUB = K 

700 DO 710 I = l,N 
710 YMAX(I) = DMAXltYMAXtlJ,DABSl'f(l,J))) 

JSTART = NQ 
RETURN 

720 IF (NQ.EQ.ll GO TO 780 
CALL DIFFUN tT,Y,SAVElN2.l)) 
R = H/HOLD 
DO 730 I = l, N 

Ytl,Jl = SAVE(l,I) 
Nll = Nl + I 
SAVEt2.I) = HOLD*SAVEtNll.ll 

730 Y(2,J) = SAVE(2,J )*R 
NQ = l 
KFLAG = 1 
GO TO 170 

740 KFLAG = -1 
HNEW = H 
JSTART = NQ 
RETURN 

C THIS SECTION SCALES ALL VARIABLES CONNECTED WITH H AND RETURNS 
C TO THE ENTERING SECTION. 
c 

750 RACUM = DMAXl(DABS(HMIN/HOLD),RACUMl 
RACUM = OMINltRACUM,DABS(HMAX/HOLDll 
Rl = 1.0 
DO 760 J = 2,K 

Rl = Rl*RACUM 
DO 760 I 7 l ,N 

760 Y(J,J) = SAVE(J,ll*Rl 
H = HOLD*RACUM 
DO 770 I = l ,N 

770 Ytl,J) = SAVE(l,J) 
!DOUB = K 
GO TO ( 130 , 250 , 640 ), IRETl 

7BO KFLAG = -4 
GO TO 470 
END 



COLLIECTED ALGORITHMS ( co11t.) 

Certification of Algorithm 407 [D2] 
DIFSUB for Solution of Ordinary Differential Equa
tions [C.W. Gear, Comm. ACM 14 (Mar. 1971), 185-
190] 

Paul J. Nikolai [Recd. 1 Mar. 1972, 21 July 1972] 
Aerospace Research Laboratories, Wright-Patterson 
AFB, OH 45433 

The program used for this certification was keypunched directly 
from the printed Fortran algorithm [2]. The algorithm was imple
mented on a CDC 6600 computer using Fortran Extended, Version 
3.0, Level 261A, OPT (Optimization Level) = 1. The DOUBLE 
PRECISION statement was deleted, and the built-in or intrinsic 
double precision function references were replaced by their single 
precision equivalents. Thus about 14 decimal digits (48 binary 
digits) were retained in the computations. An apparent bug in 
Fortran Extended required changing the statiement 

N4 = N**2 

following statement 140 to the equivalent statement 

N4 = N*N. 

The test problem given in [2] was coded, compiled, and ex
ecuted to prepare three tables analogous to those given with the 
problem. The results are available from the present writer. In addi
tion to the computed error [1, eq. (16)] returned by DIFSUB, the 
tables iµclude the corresponding true error obtained by computing 
the Euclidean norm of the difference between the dependent vari
able vector returned by DIFSUB and that computed directly from 
the known solution of the test equation normalized by the infinity 
norm of the latter. The number of steps and average step size reflect 
these items over the appropriate printing interval and are not cumu
lative as the corresponding values apparently are in the tables with 
[2]. H was set initially to 10-4, and MAXDER was set to 4. The 
tables compare quite favorably for the larger values of the requested 
error, the discrepancies over the smaller values being attributable 
to the drop in precision from 16 decimal digits on the IBM 360/91 
to roughly 14 on the CDC 6600. The results from the stiff methods 
are truly impressive. 

Several inconsistencies become apparent, unfortunately, if one 
should choose the value of H, the current step size, to be negative. 
For negative values of H the IF statement following statement 440, 
the IF statement following 540, and the arithmetic expression for R 
following 670 do not work correctly. We recommend replacing H 
and HMIN by ABS(H) and ABS(HMIN) in the IF statements and 
HMAX/ABS(H) by ABS(HMAX/H) in the expression for R. 

DIFSUB with the above modifications has been incorporated 
into a general program for solving linear two-point boundary value 
problems for ordinary differential equations by the method of pro
jections {3]. Past experience with the method of projections indi
cates that stiff equations arise often in applic:ations. We currently 
feel that DIFSUB is our best hope for handling these problems. 

References 
1. Gear, C.W. The automatic integration of ordinary differential 
equations. Comm. ACM 14 (Mar. 1971), 176-1179. 
2. Gear, C.W. Algorithm 407, DIFSUB for solution of ordinary 
differential equations. Comm. ACM 14 (Mar. 1971), 185-190. 
3. Guderley, Karl G., and Nikolai, Paul J. Rt:duction of two-point 
boundary value problems in a vector space to initial value problems 
by projection, Numer. Math. 8 (1966), 270-289. 

407-P 7- 0 



COLLECTED ALGORITHMS FROM CACM 

Key Words and Phrases: matrix, sparse matrix, matrix 
manipulation 

CR Categories: 5.14 

Description 
It is frequently necessary to manipulate large sparse matrices, 

for example in electrical network problems. In such cases much time 
and memory space can be saved if only the nonzero elements are 
stored. A set of Fortran subroutines has been written for performing 
various operations on sparse matrices stored in compact form in 
core. Core storage requirement is reduced for any square matrix less 
than 66 percent dense. These subroutines have been tested on an 
IBM 360/50 using a "WATFOR" compiler. 

Method of Storage. The nonzero elements are stored row-by
row (in one case column-by-column) in a single-dimensioned real 
array (A, say) while entries in an associated single-dimensioned 
integer array (M, say) contain the column indices of the correspond
ing elements. In addition the M-array contains certain control in
formation. 

The control information and column indices are packed into the 
M-array as indicated in Table I. By the "right half" of an integer 
word is meant the four least significant decimal digits, while the 
"left half" means the next four digits. Thus it is assumed that the 
computer word length is sufficient to contain at least an eight deci
mal digit integer (i.e. 28 bits including sign). 

There should be no gaps in the M-array; thus, if the number of 
rows is odd; the first column index will appear in the right half of the 
word which contains "number of elements in last row" in its left 
half. 

The total number of words needed in the M-array will be 
{ 4 + (number of rows) + (number of nonzero elements) + 1 } /2 
[rounded down to nearest integer]. 

408 p 1 

Algorithm 408 
A Sparse Matrix Package 
(Part I) [F 4] 
John Michael McNamee (Recd. 26 Nov. 1969 and 

15 July 1970) 
York University, Downsview, Ontario, Canada 

0 

Note that the number of rows or columns may be as high as 
9999, while the number of elements stored may be 108 - 1. (This is 
more than can fit into the core of any existing computer.) 

As an example consider the matrix: 

0 
3 
0 
1 ~] 

The A-array would be as follows: 

/; 1 I 2 I 3 1 4 1 5 
A(/) : 1. I 2. I 2. I 3. I 1. 

while the M-array would be: 

/: 1, 2, 3, 4, 5, 6, 7 
M(l): 40003, 5, 20002, 00001, 10003, 10002, 20000 

As a second example consider a l(X) X 100 matrix having an 
average of three nonzero elements per rovv (as might arise in an elec
trical network problem). The A-array requires 300 words and the 
M-array (4 + 100 + 300 + 1)/2 = 202, for a total of 502. This is 
just over 5 percent of the area required to store the matrix in full. 

Thirdly, consider a 100 X 100 matrix having an average of 66 
nonzero elements per row. This requires a total of 6600 + (4 + 
100+ 6600 + 1) /2 = 9952 words, just short of the 10000 needed for 
full storage. Thus it is economical to use the sparse method of storage 
for square matrices having up to 66 percmt nonzero elements. Time 
is also saved up to a certain degree of "nonsparseness." 

List of Subroutines. The subroutines described here are listed in 
Table II. 

Notes on the Subroutines 
1. Using RDSPMX a sparse matrix may be input on cards as 

follows. The nonzero elements only are entered row-by-row in order 
of ascending column number with ·a sentfu.el (which may be any 



COLLECTED ALGORITHMS (cont.) 

fable I. Storage of Control Information and Column Indices 

Word 
Number 
M(l) 
M(2) 
M(3) 

M(4) 

M(I) 

M(Hl) 

M(!+2) 

M(J) 

Left Half Right Half 
Number of rows Number of columns 
~Number of elements stored~ 
Number of nonzero Number of nonzero 
elements in row 1 elements in row 2 
Number of nonzero 
elements in row 3 etc ... 

Column index of first 
element stored 
Column index of 
third element stored 

Number of nonzero 
elements in last row 
Column index of sec
ond element stored 

etc ... 

Column index of last 
element stored 

number) after the end of each row. After each element, its column 
index is entered, the end-of-row sentinel having an index of the form 
90000 +I where I is the row number. At the end of the whole matrix 
there is an additional sentinel (any number) with an index 99999. 

The elements and column indices are entered four per card in 
the format 4 (£15.8, I5); i.e. 

Columns 1-15 first element in £15.8 format 
16-20 first column index in I5 format 
21-35 second element 
36-40 second column index 
41-55 third element 
56-60 third column index 
61-75 fourth element 
76-80 fourth column index 

etc. 

The elements are preceded by a control card containing in I5 
format: 

Columns 1-5 number of rows in A 
6-10 number of columns in A 

11-15 number of nonzero elements in A 

For example the matrix 

2 
0 
0 

would be entered thus: 

Col. 5 Col. 10 

l 1 
Card !fl 1: 3 3 

20 

Card 
2 
3 
4 

Cols. 1-15 

l.OEOO 
4.0EOO l 
0. OEOO 99999 

Col. 15 

1 
5 

21-35 40 41-5!i 60 61-75 76-80 

(say) 
2.0EOO 2 3.0EOCI 3 O.OEOO 90001 
5. OEOO 3 0. OEOCI 90002 0. OEOO 90003 

Note the third row must have an end-of-row sentinel. 

The subroutine checks that this information agrees with the 
number of rows and elements actually entered, and that no column 
index exceeds the number of columns as statecil. It also checks that 
column indices within a given row are entered in ascending order. 

408--P 2 0 

Table II. List of Sparse Matrix Subroutines. (X, MX) means 
"matrix with elements stored in X and control information 
and column indices stored in MX." 

Name and 
Parameters 
RDS PMX(A,M, 
NA,NM) 

ADSPMX(A, 
MA,B,MB,C, 
MC,NA,NM) 
MUSPMX(A, 
MA,B,MB,C, 
MC,NA,NM) 

TRSPMX(A,M, 
AT,MT,NA, 
NM,IP,NP) 
PERROW(A,M, 
AP,MP,IP,NA, 
NM,NP) 

PERCOL(A,M, 
AP, MP,IP,AT, 
MT,NA,NM, 
NP) 
ARSPMX(A,M, 
AN,MN,R,IR, 
IT,NA,NM) 
ACSPMX(A,M, 
AN,MN,R,IR, 
IT,NA,NM) 

MRSPMX(A,M, 
AN,MN,R,IR, 
NA,NM) 
MCSPMX(A,M, 
AN,MN,R,IC, 
NA,NM) 

ERSPMX(A,M, 
AN,MN,IR,J R, 
J,NA,NM,NP) 
ECSPMX(A,M, 
AN,MN,IR,JR, 
J,NA,NM,NP) 
MVSPMX(A,M, 
AN,MN,NA, 
NM) 
SMSPMX(A,M, 
AN,MN,S,NA, 
NM) 
RVS PMX(A,M, 
IR,V,N,NA, 
NM) 
CVSPMX(A,M, 
IC,V,AT,MT,N, 
NA NM,IP) 
INS PMX(A,M, 
N,NA,NM) 

OTSPMX(A,M, 
N,NA,NM) 

WRSPMX(A,M, 
TIT,NA,NM) 

Function 
Read from 

cards in non
packed form 

Add (A,MA) 
and (B,MB) 

Postmultiply (A, 
MA) by the 
transpose of (B, 
MB) 
Transpose (A, 
M) 

Permute rows of 
(A,M) accord-
ing to per mu ta-
ti on in IP 
Permute col-
umns of (A ,M) 
according to 
permutation in IP 
Add R times 
row IR of (A, 
M) to row IT 
Add R times 
column IR of 
(A,M) to col-
umn IT 
Multiply row IR 
of (A,M) by the 
scalar R 
Multiply col-
umn IC of (A, 
M) by the sca-
lar R 
Exchange rows 
IR and JR of 
(A,M) 
Exchange col
umns IR and JR 
of (A,M) 
Move (A,M) 

Multiply all ele
ments of (A,M) 
by the scalar S 
Extract row IR 
of (A,M) 

Extract column 
IC of (A,MA) 

Read from 
back-up storage 
(Fortran unit 
N) in packed 
form 
Write (A,M) 
onto back-up 
storage in 
packed form 
Print (A,M) in 
edited form. 
TIT (10) con
tains 10 four
letter words de
scribing (A,M). 

Resllllt 
stored in 
(A,M) 

(C,MC) 

(C,MC) 

(AT,MT) 

(AP,MP) 

(AP,MP) 

(AN,MN) 

(AN,MN) 

(AN,MN) 

(AN,MN) 

(AN,MN) 

(AN,MN) 

(AN,.MN) 

(AN,,MN) 

v 

v 

(A,M) 

Fortran 
unit N 

See note 
number 

1 

2 

3 

11 

4(a), 5 

4(b), 5 

6 

6 

7 

7, 11 

8 

8 

9 



COLLECTED ALGORITHMS (cont.) 

Reading is via unit IN, which is set to 5. This may be changed by 
the user if necessary. 

2. A subroutine to subtract (B,MB) from (A,MA) may be ob
tained by making the following minor changes to ADSPMX: 
(i) Replace first line by SUBROUTINE SUSPMX(A,MA,B,MB, 

C,MC,NA,NM) 
(ii) Replace statement number 9 by T = A(JA) - B(JB) 
(iii) Replace 1st line after statement number 10, and also 2nd line 

after statement number 12, by C(JA) = -B(JB) 
(iv) In statements 2, 4, 17 & 19 replace" ... ADSPMX . .. " by 

" ... SUSPMX .. . " 
3. MUSPMX requires (B,MB) to be stored column-by-column. 

If it is not in this form the user must first call TRSPMX. 
4(a). In PERROW old row IP(/) becomes new row I. NP is 

dimension of IP (equals number ofrows in A). 
4(b). In PERCOL old column I becomes new column IP(/). 

NP is dimension of IP (equal number of columns). AT,MTare used 
internally. 

5. The subroutine ANTIP (see ancillary subprograms below) 
may be used to invert the permutation IP. 

6. J is used internally. NP is number of rows (for ERSP MX) or 
number of columns (for ECSPMX). It is the dimension of J. 

7. The row (or column) extracted from (A,M) by RVSPMX (or 
CVSPMX) is stored in full in V; i.e. zero elements are included. N is 
dimension of V (equal number of columns or rows in A). 

8. It is often possible to write more efficient subroutines for 
cransfer to/from mass storage devices, using machine coding or 
special subroutines available on individual computer systems. 

9. WRSPMX produces a printout of the nonzero elements of 
(A,M), row-by-row, five elements per line. Each element is followed 
by its column index. Each row is preceded by the heading "row 
number /". TIT is printed at top of each page. 

10. In all the subroutines NA,NM are the dimensions of A,M, 
respectively. Checks are made that these limits are not exceeded. 

11. The array IP(NP) in TRSPMX or IP(N) in CVSPMX is 
used internally. 

12. All on-line writes are on unit LP, set to six at start of each 
subroutine. The user may change this number. 

Ancillary Subprograms 
(i) FUNCTION IND(M,l,NM) is used to extract the /th half

word from the array M. All the subroutines listed in Table II 
use this except RDSPMX, INSPMX. 

(ii) SUBROUTINE IPK(K,M,l,NM) is used to pack K into the 
/th half-word of array M. All the subroutines listed in Table 
II use this except MVSPMX, SMSPMX, RVSPMX, 
CVSPMX, INSPMX, OTSPMX, WRSPMX. NM is the di
mension of M. 

(iii) ANTIP(IP,AP,N) may be used to invert a permutation array 
IP of N elements, storing the result in AP. For example sup
pose IP is (3, 1, 2), then AP will be (2, 3, 1). This may be useful 
in conjunction with PERROW and PERCOL. Note also that 
some subroutines call on others: namely, ERSPMX calls 
PERROW, ECSPMX calls PERCOL, CVSPMX calls 
TRSPMX, and RVSPMX. 

Possible Alterations 
(i) On machines having word lengths of 36 bits or more (such as 

IBM 7000 series), an integer contains over ten decimal digits. 
Hence by a slight change to IND or IP K a five digit integer 
may be stored in each half-word of the M-array. (No change 
to the main subroutines is required.) Thus matrices with up to 
99999 rows or columns can be stored. At the cost of extra 
storage and changes to the main subroutines a similar effect 
can be obtained on the IBM 360 by using a full-word for each 
column index (then IND and IP Kare not needed). 

(ii) If the program does not have to handle matrices with more 
than 999 rows or columns, a further saving of space can be 
made by packing three (more on some machines) indices into 
each word of the M-array. This requires changes to most of 
the subroutines as well as to IND and IPK; e.g. in MRSPMX 
and MCSPMX second line before statement number 2 would 
be changed to Il = (5 +NRA+ NEA)/3. 

408-P 3- 0 

(iii) On the IBM 360 the same effect as packing two column indices 
per word can be obtained mor1e easily by declaring the 
M-array to be half-length (two bytes per word), and using one 
(half-length) word per index. Then subprograms IND and 
IP K are no longer required. This requires considerable 
changes to all the subroutines, but may save time. 

Further Extensions. It is hoped to present subroutines for 
solving sparse systems of linear equations, and (perhaps) for solving 
eigen-problems of sparse matrices at a future date. 

Algorithm: 

FUNCTION INDIM, I ,NMI 
c *******••*·········· 
C UNPACKS l•T~ COLUMN INOEX.AKRAY M CONTAINS TWO 4-DIGIT 
C INDICES PER WORD, LUWER INDEX IN UPPER FOUR DIGITS. 
c 

DIMENSICN MINMI 
C J*TH WORD OF M CONTAINS I•TH INDEX. 

J = ll+ll/2 
C L IS 0 IF l EVEN, l IF I ODD. 

L = l-11121•2 
C KT CONTAINS UPPER 4 OIGITS Of MIJI. 

KT = MIJl/10000 
IF Ill l.112 

l !NO MIJl-KT•lOOOO 
RETURN 

2 IND = KT 
RETURN 
END 
SUBROUTINE IPKlt<.,M, l,NMI 

c *******•••••••••••••**** 
C PACKS K I l*TH COLUMN INOEXI IN ARRAY M, WHICH WILL 
C CONTAIN TWO 4-DIGIT INDICES PER ·WORD, LOWER INDEX 
C UPPt:K 4 DIGITS. 
c 

DIMENSICN Ml"lMI 
J = 11+11/l 
L = 1-11121*2 
IF Ill l .112 

l MI JI MI J I +K 
RETURN 

2 MIJI " MIJl+K*lOOOO 
RETURN 
ENO 

c •••••••••••• * *** *** *****************• ********************* 
SUBROUTINE ACSPMX I A, M, AN,MN, R, IR, IT, NA, NM) 

c ••••••••• *** *** *****************•'********* 
c 
C ADDS R TIMES COL IR TO COL IT Of MATRIX STORED IN A, 
C PLACING RES~LT IN AN. M,MN CONTAIN CONTROL DATA ANO COL 
C INDICES FOR A,AN. 
C NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M,MN. 

RE AL A, AN 1 R 1 AR 
INTEGER ,.. 1MN, IR, IT 1 NA,NM 1 I 1 NRA, NCA,L, Jf, N IR, NIRA,J 21 Kt 

* Kl,IFL,LP,J 
DIMENSICN AINA) ,MINMl,ANINA),MNl~IMI 

C LP IS UNIT !\UMBER Of LINE PRINTER. 
LP " 6 

C CHECK THAT PARAMF.TEKS WITHIN RANGE. 
IF IR.E~.0.01 WRITE ILP1141 
IF IIR.LE.O.OR.IT.LE.01 GO TO 15 

C CLEAR MN. 
DO l I = l,NM 

l MN( I I " 0 
C CHECK THAT AN DOES NOT OVER-WRITE A. 

IF IMCll.EQ.01 GO TO 17 
C UNPACK ANO TRANSFER CONTROL DATA. NRl1,NCA ARE NUMBERS OF 
C ROWS,COLS II\ A. 

NRA " INOIMtl,NMI 
NCA " INDIM,2,NMI 
MN( l I = MC l I 

C CHECK PARAMETERS WI THIN RANGE. 
If CIR.GT.NCA.OR.IT.GT.NCAt GO TO 15 

C L COUNTS ELEMENTS OF AN. 
L " l 
Jf • 4+NRA 

CJ COUNTS ELEMENTS TO END OF ROW Cl-11. 
J " 0 

C I COUNTS RO~S OF A. 
DO l3 I " l , NRA 

C NIR IS NUMBER IN NEW ROW. 
NIR " 0 

C NIRA IS NUMBER IN ROW I Of A. 
NIRA • INDIM,4+1,NMI 
IF (NIRA.EQ.Ol GO TO 12 



COLLECTED ALGORITHMS (cont.) 

C J2 COUNTS ELEMENTS TO END OF CURRENT ROW. 
J2 "' J+NIRA 

c Jl COUNTS ELEMENTS UP TO FIRST ONE IN CURRENT Row. 
Jl ... J+l 

C PICK OUT ELEMENT IN COLUMN IR. 
AR .,, O. 
DO 2: K " Jl,J2 

Kl = INDIM,K+JF,NMI 
IF I Kl. NE. IR l GO TO 2 
AR .,, AIKI 

2 CONTINLE 
C PICK OUT ANO ALTER I~ NECESSARY ELEMENT IN COL IT. 
C TRANSFER REST OF ROW TO AN,MN. lFL SET TO 1 WHEN ELEMENT 
C IN COL IT FCUNU OR CREATED. 

IFL ., 0 
K = Jl-1 
K .,, K+ l 
Kl = INDIM,K+JF,NMl 
Al = AIKI 
If (Kl.GE.IT> &O TO 7 

C CHECK IF ARRAYS FULL. 
4 If IL.LE.NA.ANU.Jf+L.LE.2•NM) GO TO 6 

WRITE ILP,51 
FORMATC7lH IN ACSPMX ARRAY FULL) 
CALL EX IT 

C COLUMN IT NCT YET REACHED. 
6 ANILI = Al 

CALL IPKIKl,MN,JF+L,NMl 
L = L+l 
NIR = NIR+l 
GO TO 10 

1 IF (Kl.GT.Ill GO TO 8 
C Kl tQUALS IT, I.E. THERE IS A NON-ZERO ELEMENT IN COL. IT 
C uF ROW I. 

IFL = l 
Al = AR*R+AIKI 
IF IAl.NE.0.01 GO TO 4 
GO TO 10 

8 IF llFL.NE.0) GO TO 9 
C Kl GREATER THAN IT AND ELEMENT IN COL IT HAS NOT YET 
C BEEN FOUND, THUS COL IT HAS A ZERO ~LEMENT. 

IFL l 
K K-1 
Al = AR*R 

C A NEW ELEME~T IN COL IT IS CREATED IF Al NOT ZERO. 
Kl = IT 
IF IAl.NE.0.01 GO TO 4 
GO TO 10 

C K GREATER THAN IT AND ELEMENT IN COL IT ALREADY FOUND OR 
C CREATED, JUST TRANSFER TO NEW ARRAY. 

9 Al = AIKI 
GO TO 4 

10 IF CK.LT.J21 GU TO 3 
IF llFL.NE.O.OR.AR.EQ.O.Ol GO TO 12 
IF IL.LE.NA.AND.JF+L.LE.2*NMl GO TO 11 
WR IT E I L P, 5 l 
CALL EXIT 

11 ANIL I = AR*R 
CALL IPKllT,MN,Jf+L,NMI 
L = L+l 
NIR = NIR+l 

C END OF ROW. 
12 CALL IPKINIR,MN,4+1,NMI 

J = J2 
13 CONTINUE 

C ENO OF LAST ROW. 
MN(2 l = L-1 
RETURN 

C ERROR MESSAGES. 
14 FORMATl20H IN ACSPMX R IS ZEROI 
15 WRlfE ILP,161 
16 FORMATl32H IN ACSPMX IR OR IT OUT OF RANGEi 

CALL EXIT 
17 WRITE ILP,181 
18 FORMATC35H IN ACSPMX OUTPUT OVER-WRITES INPUT, 

* 34H OR INPUT HAS NO ROWS AND COLUMNS.I 
CALL EX IT 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE ADSPMX I A, MA, ii, MB, C ,MC,NA, NM I 
••••••••••••••••••••••••••••••••••••••• c 

c 
C ADD TWO SPARSE MATRICES. 
c 
c 
c 
c 
c 

A,B,C CONTAIN ELEMENTS OF FIRST,SECONO AND SUM MATRICES. 
MA,MB,MC, CCNTAIN CONTROL DATA AND COL. INDICES FOR A,B,C. 
NA IS DIMENSION OF A,B,C. NM IS DIMENSION OF MA,MB,MC. 

REAL A,B,C 
INTEGER MA,MB,MC,LP,NRA,NCA,NRB,NCB,JC,KA,KB,JB,KF, 

• ltKAlrJA,Jl,J2,NOLD,NA,NM 
DIMENSICN AINAl 1 MAINMl,BCNAl,MBCNMl,CINAlrMCCNMI 

C LP IS UNIT ~UMBER OF LINE PRINTER. 
LP = 6 

C CLEAR MC. 
DO 1 I = l,NM 

l MCI II = 0 
CHECK THAT C DOES NOT OVER-WRITE A OR B. 

IF CMACll.EQ.O.OR.MBlll.EQ.01 GO TO 18 
C UNPACK CONTROL DATA. NRA,NCA ARE NUMBER OF ROWS,COLUMNS 
C IN A. NRB, NCB ARE ROWS, COLUMNS IN B. 

NRA • INDIMA,l,NMI 
NCA = INDIMAt2rNMI 
NRB = INDCMB,l,NMl 
NCB = INDCMB,2,NMI 

C TEST FOR CO~PATIBILITY. 
If CNRA.EQ.NRBI GO TO 
WRITE CLP,21 NRA,NRB 

2 FORMATC3?H IN ADSPMX NUMBER OF ROWS IN A (,14, 
* 37HI DCES NOT EQUAL NUMBER OF ROWS IN Bl,14r2Hl.I 

CALL EXIT 
3 IF INCA.EQ.NCBI GO TO 5 

WRITE ILP,41 NCA,NCB 
4 FORMATl31H IN ADSPMX NUMBER OF COLS IN Al,14, 
* 36HI DOES NOT EQUAL NUM. OF COLS. IN Bl, 14t2HI. I 

CALL EXIT 
C JC COUNTS ELEMENTS OF C. 

5 JC = 1 

408 p 4 

C KA,KB ARE NUMBERS IN FIRST I ROWS OF A,B. 
KA = 0 
KB = 0 

C KF IS NUMBER OF CONTROL DATA IN A,B OR C. 
KF = 4+NRA 

C JB COUNTS ELEMENTS OF B. 
JB " l 

c I COUNTS ROhS OF A, a.c. 
DO 15 l=ltNRA 

KB = KR+INOCMB,4+1,NMI 
C NIRA IS NUMBER IN ROW I OF A. 

NIRA = INDIMA,4+1,NMI 
IF INIRA.EQ.01 GO TO 12 
KAl = KA+l 
KA = KA+NIRA 

C JA COUNTS ELEMENTS OF A. 
DO ll JA= KAl,KA 

6 Jl = INOIMA,JA+KF,NMI 
C AT END OF B-ROW TRANSFER REST OF A-KOW. 

IF IJB.GT.KBI GO TO 7 
J2 = INDCMB,JB+KF,Nt'.I 
IF 1Jl-J21 7,9,10 

C IF A-INDEX LESS THAN B-INDEX TRANSFER A-ELEME~T TO C. 
7 IF (JC.GT.NA) GO TO 16 

CIJCI = ACJAI 
IF IJC+KF.GT.2•NMI GO TO 16 
CALL IPKIJl,MC,JC+KF,NMI 
JC = JC+l 
GO TO 11 

IF A-INDEX EQUALS B-INOEX ADO ELEMENTS ,PLACE SUM IN C. 
9 T = AIJAl+BIJBI 

C IGNORE SUM ELEMENT IF ZERO. 
IF IT .EQ.0.01 GO ro 11 
IF IJC.GT.NAI GO TO 16 
CC JC I .,, T 
JB = JB+l 
GO TO 8 

C IF A-INDEX GREATER THAN B-l"IDEX TRANSFER B-ELEMENT TO C. 
10 IF tJC.GT.NAI GO TO 16 

CCJCI = BIJBI 
IF IJC+KF.GT.2•NMI GO TO 16 
CALL IPKCJ2,MC,JC+KF,NMI 
JB JB+l 
JC .,, JC+l 
GO TO 6 

11 CONTINUE 
C END OF ROW CF A. TRANSFER REST OF ROW OF B. 

c 

12 IF CJB.GT.KBI GO TO 13 
IF (JC.GT.NA) GO TO 16 
CIJCI = BIJBI 
J2 = INDIMB,JB+KF,NMI 
IF CJC+KF.GT.2*NMI GO TO 16 
CALL IPK(J2,MC,JC+KF,NMI 
JC = JC+l 
JB = JB+l 
GO TO 12 

13 IF II.GT.II GO TO 14 
NOLD = JC-1 

NIRC IS NUMBER IN ROW I OF C. 
NIRC ~ JC-1 
GO TO l5 

14 NIRC .,, JC-1-NOLD 
NOLD = JC-1 

15 CALL IPKCNIRC,MC,4+1,NMI 

C LAST ROW. STORE CONTROL DATA IN MC. 
CALL IPKCNRA,MC,l,NMI 
CALL IPKCNCA,MC,2,NMI 
MC I 2 I = JC- l 
RETURN 

ERROR MESSAGES. 
16 WRITE ( LP, 1 7 I 
17 FORMATC41H IN AOSPMX SPACE FOR SUM MATRIX EXCEEDEO.I 

CALL EX IT 
18 WRITE ILl',191 
19 FORMATl33H IN AOSPMX SUM OVER-WRITES INPUT, 

* 34H OR INPUT HAS NO ROWS AND COLUMNS.I 
CALL EX l T 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE A"ITIP(N,P,API 

c •••••••••••••••••••••••• 
c 
C INVERT PERMLTATION IN P, PLACING RESULT IN AP. 
C N IS NUMBER OF ELEMENTS IN P,AP. 
c 

INTEGER PCNl,APINI 
C LP IS UNIT ~UMBER OF LINE PRINTER. 

LP = 6 
CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT. 

APCll = 0 
IF IP(ll.EQ.01 GO TO 4 
DO 3 I = l ,N 

J = P(I) 

IF I JI 1, 1, 3 
WRITE ILP,21 I 
FORMATl37H IN ANTIP PERMUTATION CONTAINS A NON-, 

* 28HPOSITIVE NUMBER IN POSITION ,151 
CALL EX IT 

3 AP I JI = I 
RETURN 

C ERROR MESSAGES. 
4 WRITE (LP,51 
5 FORMATl42H IN ANTIP OUTPUT OVER-WRITES INPUT OR Pill, 
* BH IS ZERO) 

CALL EXIT 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE ARSPMX(A,M,AN,MN,R,IR,IT,NA,NMI 
•••••••••••••••••••••••••••••••••••••••••• c 

c 
C ADO R TIMES ROW IR OF SPARSE MATRIX TO ROW IT. 
c 
(. 

c 
c 

A,M CONTAIN ELEMENTS, COLUMN INDICES OF INPUT MATRIX. 
AN,MN CONTAIN ELEMENTS, COLUMN INDICES OF NEW MATRIX. 
NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M,MN. 

0 



COLLECTED ALGORITHMS (cont.) 

c 
REAL A,AN,R 
INTEGER M,MN,IR, IT, I ,NRA,NCA,NEA,NIRA,JR, 11,JT,J,JF, 

* Jl,JT2,JN,J2,KR,KT,JT1,1Tl,K,NA,NM,JTO,LP 
DIMENSICN AINA) ,MINMJ,ANINA),MNINMI 

C LP IS UNIT NUMBER OF LINE PRINTER. 
LP = 6 

C CHECK PARAMETERS WITHIN RANGE. 
IF (IR.LE.O.OR.IT.LE.Ol GO TO 23 

C CLEAR MN. 
DO l I = l, NM 

1 MNI 11 = 0 
C CHECK THAT AN DOES NOT OVER-WRITE A. 

IF lMlll.EQ.Ol ~OTO 25 
C UNPACK CONTROL DATA, STORE IN MN. 

NRA INOIM,1,NMI 
NEA = Ml2 l 
MNI 11 = Ml 11 
DO 2 I = l,NRA 

IF 11.EO.ITI GO TO 2 
K = l"IDIM,4+1,NMl 
CALL IPKIK,MN,4+1,NM) 

2 CONTINUE 
C CHECK PARAMETERS WI THIN RANGE. 

IF llR.GT.NRA.OR.IT.GT.NRAl GO TO 23 
C JR,JT ARE NLMBERS OF ELEMENTS BELOW ROWS IR,IT. 

JR = 0 
IF llR.LE.11 GO TO 4 
IRl IR-1 
DO 3 I 1, I Rl 

JR = JR+INOIM,4+1,NMI 
JT = 0 
JF = 4+NRA 
I F I IT • LE • 11 GO TO 7 
!Tl = IT-1 
0051=1,ITl 

JT = JT+INOIM,4+1,NMI 
C TRANSFER ELEMENTS BELOW ROW IT. 

DO 6 I = 1, J T 
ANI I I = Al I I 
J = INDIM,JF+l,NMI 

6 CALL IPKIJ,MN,JF+l,NMI 
7 JTO = JT 

C AuO R TIMES ROW IR TO ROW IT. 
JT2 = JT+INDIM,4•1T,NMI 
JT = JT+l 

C JN COUNTS ELEMENTS OF NEW MATRIX. 
JN = JT 

C NJRR IS NUMBER OF ELEMENTS IN ROW IR OF A. 
NIRR = INDIM,4+1R,NMI 
IF INIRR.EQ.01 GO TO 14 
Jl = JR+l 
J2 = JR+NIRR 
DO 13 I= J l, J2 

C CHECK ARRAY LIMIT. 
IF IJN.LE.NA.ANO.IJN+JFl.LE.2*NMl GO TO 8 
WRITE ILP,211 
CALL EXIT 
KR = INOIM,JF+l,NMI 
IF IJT.GT.JT21 GO TO 12 
KT = INDIM,JF+JT,NMl 
IF !KT.GE.KR) GO TO 10 
ANIJNl=AIJTI 
CALL IPKIKT,MN,JN+JF,NMI 
JN = JN+l 
JT = JT+l 
GO TO 9 

10 IF !KT.GT.KR) GO TO 12 
S = AIJTl+R*AI 11 
IF IS.EQ.O.Ol GO TO 11 
ANIJNl=S 
CALL IPKIKT,MN,JN+JF,NMI 
JN = JN+ l 

11 JT = JT+l 
GO TO 13 

12 S = R*Alll 
IF IS.EQ.0.01 GO TO 13 
ANIJNJ:S 
CALL IPKIKR,MN,JN+JF,NMI 
JN = JN+l 

13 CONTINUE 
TRANSFER REST OF ROW IT. 

14 IF IJT.GT.JT21 GO TO 16 
IF IJN.LE.NA.AND.IJN+JFl.LE.Z*NMI GO TO 15 
WRITE I LP,211 
CALL EXIT 

15 ANIJN) = AIJT) 
KT • 1NOIM,JF+JT,NMl 
CALL IPKIKT,MN,JF+JN,NMI 
JN = JN+ l 
JT = JT+l 
GO TO 14 

C JTl IS NUMBER IN ROW IT OF AN. 
16 JTl = JN-1-JTO 

CALL IPKIJTl,MN,4+1T,NMl 
C STORE ROWS ABOVE IT. 

IF IIT.FQ.NRAI GO TO 20 
!Tl = IT+l 
00 l q I" I Tl, NRA 

C K IS NUMBER IN ROW I. 
K = INOIM,4+1,NMll 
IF IK.E0.01 GO TO 19 
JT JT2 
JT2 = JT+K 
JTl = JT+l 
00 18 J = JT1,JT2 

IF (Jll.LE.~A.ANO.(JN+JFl.LE.2*NMI GO TO 17 
WRITE ILP,211 
CALL ~ X IT 

17 ANCJNI = AIJI 
K = INDIM,J+JF,NMl 
CALL IPKIK,MN,JN+JF,NMI 

18 JN = JN+l 
lq CONTINUE 
20 MNl21 = JN-1 

RETURN 

C ERROR MESSAGES. 
21 FORMATl21HOARRAY FULL IN ARSPMXI 
22 FORMATl20H IN ARSPMX R IS ZtROI 
23 WRITE ILP,24) 

408-P 5- 0 

24 FORMATl33H IN ARSPMX IR OR IT OUT OF RANGE.I 
CALL EXIT 

25 WRITE ILP,261 
26 FORMATl35H IN AKSPMX OUTPUT OVER-WRITES INPUT, 

* 34H OR INPUT HAS NO ROWS ANO COLUMNS.I 
CALL EX IT 
ENO 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE CVSPMX(A,M,1c,v,AT,MT,N,NA,NM,IPI 

c •••••••••••••••••••••••••••••••••••••••••••• 
C EXTRACTS COL IC OF SPARSE MATRIX IN A,STORING RESULT INV 
C IN EXTENDED FORM, I.E. ALL ELEMENTS INCLUDING ZEROS ARE 
C REPRESENTED. 
C M CONTAINS COLUMN INDICES OF A. 
C AT,MT ARE USED INTERNALLY. 
C N IS DIMENSION OF V. NA IS DIMENSION OF A,AT. 
C NM JS DIMENSION OF M,MT. 
C IP US USED INTERNALLY BY TRSPMX. 
c 

REAL A,AT,V 
INTEGER M,IC,MT,N,NA,NM,IP 
DIMENSICN AINA),M(NMl,ATINAl,MTINMl,VINl,IPINI 
CALL TRSPMXIA,M,AT,MT,NA,NM,IP,NI 
CALL RVSPMXIAT,MT,1c,v,N,NA,NMI 
RETURN 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE ECSPMXIA,M,AN,MN,IR,JR,J,AT,MT,NA,NM,NPI 

c ••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
C RESULT IN All. 
C EXCHANGE COLUMNS IR,JR OF SPARSE MATRIX IN A, STORING 
C M,MN CONTAlll COLUMN INDICES OF A,AN. J IS USED INTERNALLY. 
C AT,MT ARE USED BY PERCOL. 
C NA IS DIMENSION OF A,AN. NM IS OIME~SION OF M,MN. 
C NP IS DIMENSION OF J,AT,MT. 
c 

REAL A,AN,AT 
INTEGER M ,MN, IR, JR, J, NCA, NA, NM, lllP, MT 
OIMENSICN AINAJ,MINMl,ANINAJ, 

* MNINMl,JINPl,ATINPl,MTINPI 
C SET UP PERMLTATION ARRAY J WITH IR,JR INTERCHANGED. 
C NCA IS NUMBER OF COLUMNS IN A. 

NCA INDIM,2,NMI 
00 1 I " l t NCA 
JI I l I 

JI IR I = JR 
JCJRI = IR 

C PERMUTE COLS OF A. 
CALL PERCOLIA,M,AN,MN,J,AT,MT,NA,NM,NPI 
RETURN 
END 

********* **. **** *** ••••••••••••• **** *********** •••• *****. * 
SUBROUTINE ERSPMXIA,M,AN,MN,IR,JR,J,NA,NM,NPI 

c ••••••••••••••••••••••••••••••••••••••••••••• 
c 
C EXCHANGE ROkS IR,JR OF SPARSE MATRll IN A,STORING RESULT 
C IN AN. M, Mii CONTAIN COLUMN INDICES OF A, AN. 
C NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M,MN. 
C NP IS DIMENSION OF J,WHICH IS USED INTERNALLY. 
c 

REAL A,AN 
INTEGER M,MN,IR,JR,NRA,NAoNM,J,NP 
DIMENSICN AINAl,MCNMl,ANINAl,MNCNMl,JCNPI 

C SET UP PERM~TATION ARRAY WITH IR,JR INTERCHANGED AND ALL 
C OTHER INTEGERS IN NATURAL ORDER. 
C NRA IS NUMBER OF ROWS IN A. 

NRA IND(M,l,NMI 
00 l I "' \,NRA 

JCI l = I 
JC IR I = JR 
JIJRI = IR 

C PERMUTE ROWS OF A. 
CALL PERROWIA 1 M,AN,MN,J,NA,NM,NPI 
RETURN 

END 
c ~·········· •• *** *** **** ••••••••••••• , •••• **** *** ........... . 

SUBROUTINE OTSPMXCA,M,N,NA,NMl 
c ****************************** 
C WRITE SPARSE MATRIX IN A,M ON FORTRA.N UNIT N IMASS STORAGE 
C DEVICE>. 
C NA,NM ARE DIMENSIONS OF A,M. 
c 

REAL A 
INTEGER M,N,NEA,NRA,NEM,NA,NM 
OIMENSICN ACNAl,MCNMI 

C NEA IS NUMBER OF ELEMENTS IN A. 
NEA • MIZl 

C NRA IS NUMBER OF ROWS IN A. 
NRA = INOIMtltNMl 

C NEM IS NUMBER OF WORDS IN M. 
NEM • 15+NRA+NEAl/2 
WRITE 1111 NEM 
WRITE Od (M(IJ,l•l,NEMl 
WRITE Oil CAlllol•l,NEAl 
REWIND II 
RETURN 
END 

c ••••••••••••••••••••••••••••••••••••.••••••••••••• , ••••••••• 
SUBROUTINE INSPMXCA,M,N,NA,NMI 

c ••••••••••••••••••••••••••••••• 
C READ SPARSE MATRIX FROM FORTRAN UNIT N CMASS STORAGE 
C DEVICEI. STORE IN A, WITH COLUMN !~DEX ARRAY IN M. 
C NA,NM ARE DIMENSIONS OF A,M. 
c 

c 

REAL A 
INTEGER M,N,NEM1NEA 
OIMENSICN AINAl,MINMI 

C NEM IS NUMBER OF WORDS IN M. 
READ PO NEM 
READ INl IMlll1l•l,NEMI 



COLLECTED ALGORITHMS (cont.) 

C NEA IS NUMBER OF ELEMENTS IN A. 

c 

c 
c 

NEA = Ml21 
READ INI IAlll,l"lt'llEA) 
REWI NO I\ 
RETURN 
END ·······························••*-••••••*············· SUBROUTINE MCSPMX(A,M,AN,MN,R,IC,NA,NMI 
••••••••••••••••••••••••••••••••••••••• 

C MULTIPLIES COL IC OF SPARSE MATRIX IN A BY R, STORING 
C RESULT IN Al\. M,MN CONTAIN COLUMN INDICES OF A,AN. 
C NA 15 DIMENSION OF A,AN. NM IS DIMENSION OF MtMN. 
c 

INTEGER M,MN,1C,NRA,NCA,NEA,Jl,J,J,JF,NIRA,J2,Jl,K,IT, 
* NA,NM,L,NC 

DIMENSICN AINAl,MINM),ANINA),MNINMI 
REAL A,.AN,R 

C LP IS UNIT l\UMBER O~ LINE PRINTER. 
LP 6 

C CLEAR MN. 
DO l I = l,NM 

l MN( 11 = 0 
C CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT. 

IF IMlll.EQ.01 GO TO 9 
UNPACK AND TRANSFER CONTROL DATA. NRA,NCA,NEA ARE NUMBERS 

OF ROWS, CCLS, ELEMENTS IN A. 
NRA INOIM,t,NMI 
NCA INOIM,2,NMI 
NEA = Ml21 
D021=1,2 

2 MN 11 I = MI I I 
C CHECK IC WITHIN RANGE. 

IF llC.GT.NCA.OR.IC.LE.01 GO TO 7 
CJ COUNTS ELEMENTS TO END OF ROW 11-ll OF A. 

J = 0 
JF = 4+NRA 

L COUNTS ELEMENTS O~ NEW MATRIX. 
L = l 

C I COUNTS ROh OF A. 
DO 5 12 l,NRA 

C NIRA IS NUMBER OF ELEMENTS IN ROW I OF A. 
NIRA = INDIM,4+1,NMI 

C NIRAN IS NU~BER OF ELEMENTS IN ROW OF AN. 
NIRAN "' NIRA 

IF INIRA.EQ.01 GO TO 5 
C J2 COUNTS ELEMENTS TO END OF ROW I OF A. 

J2 = J+NIRA 
C Jl COUNTS ELEMENTS UP TO FIRST ONE IN ROW 1 OF A. 

Jl = J+l 
C PROCESS ROW I OF A. 

00 4 K = Jl,J2 
IT = INOIM,JF•K,NM) 
IF llT.EQ.ICl GO TO 3 

C TRANSFER COLUMNS OTHER THAN IC. 
ANILI = AIK) 
11 = INO(M,JF+K,NMI 
CALL IPK(ll,MN,JF+L,NMI 
L = L+l 
GO TO 4 

C MULTIPLY COL IC BY R. 
3 If IR~EQ.0.01 NIRAN= NIRA-1 

If IR.EQ.0.01 GO TO 4 
AN(ll = R*AIKI 
11 = INO(M,JF+K,NMI 
CAll IPK(ll,MN,JF+L,NMI 
L = L+l 

4 CONTINLE 
C ENO OF ROW I. 

J = J2 
CALL IPKINIRAN,MN,4+1,NMI 

5 CONTINUE 
ENO OF LAST ROW. 

If IR.NE.0.01 GO TO 6 
Ml21 = L-1 

6 RETURN 
C ERROR MESSAGES. 

7 WR IT E I LP, BI 
8 FORMATl26H IN MCSPMX IC OUT OF RANGEi 

CALL EX IT 
9 WRITE ILP,101 

10 FORMATl35H IN MCSPMX OUTPUT OVER-WRITES INPUT, 
* 34H OR INPUT HAS NO ROWS ANO COLUMNS.I 

CALL EX IT 
ENO 

c ·····~················································ SUBROUTINE MRSPMXIA,M,AN,MN,R,IR,NA,NMI 
c •••••. , ••••••••••••••••••••••••••••••••• 
c 
C MULTIPLIES ROW IR OF SPARSE MATRIX A BY R, STORING 
C RESULT IN Al\. M,MN CONTAIN COLUMN INDICES Of A,AN. 
C NA LS DIMENSION OF A,AN. NM IS•OIMENSIOl\I OF M,MN. 

REAL A,.AN,R 
INTEGER M,MN,IR,NM,NRA,NEA,Iltlt 

* J,NIRA,J2,Jl,KtNA,L,Jf 
DJMENSICN AINA),MINMl,ANINAl,MNll\IMI 

LP IS UNIT l\UMBER Of LINE PRINTER. 
LP " 6 

C CLEAR MN. 
00 1 I " .l t NM 

1 MN( n •O 
C CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT. 

IF IMlll.EQ.Ol GO TO 9 

C UNPACK ANO TRANSFER CONTROL DATA. 
NRA = INOIM,l,NMI 
NEA = Ml21 
D02I=l,2 

2 MNll I = Ml I I 
C CHECK THAT IR IS WITHIN RANGE. 

IF IIR.GT.NRA.OR.IR.LT.11 GO TO ll 
CJ COUNTS ELEMENTS TO END OF ROW 11-ll Of Ao 

J = 0 
C L COUNTS ELEMENTS Of NEW MATRIX. 

L = l 
JF = 4+NRA 

C COUNTS ROhS Of A. 
DO 7 I = l,NRA 

C NIRA IS NUMBER IN ROW I Of A. 
NIRA = INDCM,4+1,NMI 
CALL IPKINIRA,MN,4+I,NMI 
If INIRA.EQ.01 GO TO 7 

C J2 COUNTS ELEMENTS TO ENO OF ROW I OF A. 
J2 = J+N IRA 

c Jl COUNTS ELEMENTS ro FIRST ONE 11\1 ROW I Of A. 
Jl " J+ l 
If 11.EQ.IRI GO TO 4 

C TRANSFER ROhS OTHER THAl\I I. 
00 3 K = Jl,J2 
It = INOIM,Jf+K,NMI 
CALL IPK(ll,MN,Jf+L,NMI 
ANIL I = A IKI 
L = L+l 

GO TO 6 
C MULTIPLY ROh IR BY R. 

4 00 5 K = J l, J2 
If (R.EQ.0.01 GO TO 5 
11 = INOIM,Jf+K,NMI 
CALL IPKlll,MN,JF+L,NMI 
ANIU R•AIKI 
L L+l 

5 CONTll\UE 
6 J J2 

ENO Of ROW I. 
7 CONTINUE 

ENO Of LAST ROW. 
If CR.NE.0.01 GO TO B 
MC21 = L-1 
CALL IPK(O,MN,4+1R,l\IMI 

8 RETURN 
C ERROR MESSAGES. 

9 WRITE ILP,101 

408-P 6- 0 

10 FORMATl36H IN MRSPMX OUTPUT OVER-WRITES INPUT , 
* 34H OR INPUT HAS NO ROHS ANO COLUMNS.I 

c 
c 

CALL EXIT 
11 WRITE ILP,121 
12 FORMATl26H IN MRSPMX IR OUT OF RANGEi 

CALL EXIT 
ENO 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUB ROUT I NE MUSPMX I A, Mii, B, MB, C, MC ,NA, NM I 
••••••••••••••••••••••••••••••••••••••• 

C MULTIPLY TWC SPARSE MATRICES. 
c 
c 
c 
c 
c 
c 
c 
c 
c 

B MUST BE STORED BY COLUMNS, I.E. WE FORM C = 
A*IB TRANSPCSEOI. 
A,B,C CONTAIN FIRST,SECONO ANO PRODUCT MATRICES RESPECT
IVELY. 
NA,MB,MC COl\TAIN COLUMN INDICES OF FIRST SECOND ANO 
PRODUCT MATRICES RESPECTIVELY. 
NA IS DIMENSION OF A,e,c. NM IS DIMENSION OF MA,MB,MC. 

REAL A,B,c,s 
INTEGER MA,M8,MC,NRA,NCA,NR8,NCBtLC,KA,KAF,KBF,KB,KAl, 

* K81,JB,JAM,JBM,Jl,J2,LCM,NEC,K,IT,l,J,NA,NM,LP 
DIMENSICN AINAl,BINAl,CINAl,MAINMl,MBINMl,MCCNMI 

C LP IS UNIT ~UMBER OF LINE PRINTER. 
LP = 6 

CLEAR MC. 
00 l I • l,NM 

l MCCl I = 0 
C CHECK THAT C DOES NOT OVER-WRITE A OR B. 

IF IMAlll.EQ.O.OR.MBlll.EQ.01 GO TO 16 
C UNPACK CONTROL INFORMATION. NRA IS NUMBER OF ROWS IN A. 

NRA = INOIMA,l,NMI 
NCA IS NUMBER Of COLS IN A. 

NCA = INOIMA,2,NMI 
C NRB,NCB ARE NUMBER OF ROWS AND COLUMNS IN B. 

NRB = INDIMB,l,NMI 
NCB = INOIMB,2,NMI 

C TEST FOR ~O~PATIBILITY. 
If INCA.EQ.NRBI GO TO 3 
WRITE (LP,21 

2 FORMATl31H A ANO B INCOMPATIBLE IN MUSPMXI 
CALL EXIT 

LC IS NUMBER Of ELEMENTS IN C. 
3 LC .,. l 

C KAF,KBF ARE NUMBERS OF CONTROL DATA IN MA,MB. 
KAF = 4+NRA 
K8F = 4+NRB 

C KA,KB ARE N~M8ERS OF ELEMENTS IN FIRST I ROWS OF A,B. 
KA = 0 

C NEC IS NUMBER OF ELEMENTS IN C. 
NEC = 0 
00 15 I = l , NRA 

KB = 0 
C NIRA IS NUMBER IN ROW I Of A. 

NIRA = INOIMA,4+1,NMI 



COLLECTED ALGORITHMS (cont.) 

C NIRC IS NUMBER IN ROW I OF C. 
NIRC = 0 
IF INIRA.EQ.01 GO TO 15 
KAl = KA+l 
KA = KA+NI KA 
DO 14 J = l , NC B 

C NIRB IS NUMBER IN ROW I OF B. 
NIRB = INDIMB,4+J,NMI 
IF INIRB.EQ.OI GO TO 14 
KBl KB+l 
KB = KB+NIRB 

CS WILL CONTAIN I,J ELEMENT OF C. 
s = o. 

C JB COUNTS ELEMENTS IN B. 
JB = KBl 
OD 8 JA=KAloKA 

JAM JA+ KAF 
JBM = JB+K!\F 
Jl = IND(,.A,JAM,NMI 
J2 = INO(MB,JBM,NMI 
IF (Jl-J21 B,6,7 
S = S+AIJAl*BIJBI 
IF (JB.EQ.KBI GO TO 9 
JB = JB+ l 
GO TC 8 
IF IJB.EQ.KBI GO TO 9 
JB JB+ l 
GO TC 5 

8 CONTlll.UE 
C IF ELEMENT ZERO 00 NOT STORE. 

9 IF IS.EQ.0.01 GO TO 14 
IF (LC.LE.NA) GO TO 11 
WRITE ILP,101 

10 FORMATl17HOSIZE OF PRODUCT , 
25HMATRIX EXCEEDED IN MUSPMXI 

CALL EXIT 
C STORE ELEMEll.T ANO INDEX IN C,MC. 

ll CILCI = S 
LCM = LC+KAF 
If ILCM.LE.2•:-!MI GO TO 13 
WR I TE ( LP , 12 I 

12 FORMATl40H SIZE OF INDEX MATRIX EXCEEDED IN MUSPMXI 
CALL EXIT 

13 CALL IPK(J,MC,LCM,NM) 
LC = LC+l 
NIRC = NIRC+l 

14 CONTINLE 
NEC = NEC Hlf RC 
CALL IPKINIRC,MC,4+1,NMI 

15 CONTINUE 
C STORE CONTRCL DATA IN MC. 

CALL IPK(NRA,MC,l,"11') 
CALL IPK(NCB,MC,2,NMI 
MCl21 = NEC 
RETURN 

C ERROR MESSACF. 
l 6 WR I TE IL P ,l 7 I 
17 FORMATl36H IN MUSPMX PRODUCT OVER-WRITES INPUT, 

* 34H OR INPUT HAS NO ROWS ANO COLUMNS.I 
CALL EXIT 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE MVSPMXIA 9 M,AN 9 MN,NA 1NMI 

c 
C MOVE SPARSE MATRIX IN A TO AN. 

M,MN CONTAlll. COLUMN INDICES FOR A,AN. 
NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M,MN. 

REAL A,AN 
INTEGER M,MN,NEAoloNRA,N,NA,NM 
OIMENSICN AINA),MINM),AN(NAl,MNINMI 

C NEA IS NUMBER OF ELi:MENTS IN A. 
NH M ( 2 I 

MOVi: A. 
DO l I = 1, NEA 

l AN( 11 = Al 11 
C NRA IS imMBER Of ROWS IN A. 

NRA = IND(M, l,NMI 
C N I~ NUMBER OF WORDS IN M. 

N 15+NRA+NEAl/2 
C MOVE M. 

DO 2 I l ,N 
MN( 11 Ml 11 

RETURN 
ENO 
•••••••••••••••••••••••••••••••••• 
SUBROUTINE PERCOLIA 1 M,AP 1 MP,IP,AT,MT,NA1NM,NPI 

c •••••••••••••••••••••••••••••••••••••••••••••• 
C PERMUTE COL~MNS Of A SPARSE MATRIX STORED IN A. 
C I' CONTAINS COLUMN INDICES Of A. 
C AP,MP WILL CONTAIN ELEMENTS ANO COLUMN INDICES OF RESULT. 
C IP CONTAINS PERMUTATION--THAT IS OLD COLUMN I BECOMES NEW 
C COLUMN I PCl l. 
C AT,MT WILL CONTAIN ROW OF A,M. 
C NA IS DIMENSION OF A1AP. NM IS DIMENSION OF M1 MP. 
C NP IS DIMENSION OF AT,MT,IP. 
c 

c 

REAL A,AP,AT,Al 
INTEGER M,MP,IP,NR,NC 11,IloNIR1K, 

•L,N,J,Jl,LJ,Nl 1 1FL,Ml,NA,NM,NP,LP 
DIMENSICN A(NAl,MINM),APINA), 

* MPINMlvlP(NPl,ATINP),MTINP) 

C LP IS UNIT II.UMBER OF LINE PRINTER. 
LP = 6 

CLEAR MP. 
00 l I • loNM 

1 MP( II = 0 
C CHECK THAT CUTPUf DOES NOT OVER-WRITE INPUT. 

IF IMlll.EQ.01 GO TO 15 
C UNPACK CONTROL INFORMATION. 

NR = INOIM,l,NMI 
NC = INO(M,2,NMI 

C CHECK THAT IPIKI IS WITHIN RANGE. 
00 2 K " loNC 

IF llPIKl.LE.O.OR.IPIKl.GT.NCI GO TO 13 
2 CONTI NIJE 

C TRANSFER CO~TROL DATA TO MP. 
12 = 4+NR 
DO 3 I = l, 12 

K = INOIM,l,NMI 
3 CALL IPKIK,MP,l,NMI 

C L COUNTS ELEMENTS ALREADY PERMUTED. 
L = 0 

C I IS ROW COLNTER. 
DO 12 I = 1, NR 

N = IND(M,4+1,NMI 
IF IN.EQ.01 GO TO 12 

C STORE ROW I IN AT WITH COLUMN INDICES IN MT. 
00 4 J l oN 
Jl 4+NR+L+J 
K INO(M,Jl,NMI 
MT (JI I PIK I 
LJ L+J 
ATIJI = AILJI 

IF (N.EQ.11 GO TO 10 
Nl = N-1 

408-P 7- 0 

C IFL WILL RE~AIN 0 WHEN SORTING OF ROW I COMPLETE. 
5 IFL = 0 

SORT ELEMENTS OF ROW I IN ORDER OF INCREASING COLUMN INDEX 
00 9 J " l,Nl 

IF (MTIJl-MTIJ+ll I 9,6,8 
C ERROR MESSAGE. 

6 WRITE ILP,71 
7 FORMATl26H IN PERCOL 2 INDICES EQUAL) 

CALL EXIT 
Ml " MTIJI 
MTIJI = MTIJ+l I 
MTIJ+ll= Ml 
Al ATIJ I 
ATIJI ATIJ+ll 
ATIJ+ll= Al 
IFL l 

9 CONTINLE 
IF llFL.EQ.ll GO TO 5 

TRANSFER RO~ I. 
10 00 11 J = l,N 

LJ L+J 
APILJI = ATIJl 
Jl = LJ+4+NR 
K "MTIJI 

11 CALL IPK(K,MP,Jl,NMI 
12 L = L+"I 

RETURN 
C ERROR MESSAGES. 

13 WRITF. ILP.141 
14 FORMATl43H IN PERCOL PERM CONTAINS INDEX OUT OF RANGEi 

CALL EXIT 
15 WRITE ILP,161 
16 FORMATl35H IN PERCOL OUT~UT OVER-WRITES INPUT, 

* 34H OR INPUT HAS NO ROWS ANO COLUMNS.I 
CALL EXIT 
ENO 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUT !"IE PERROWIA,M,AP,MP, IP,fliA,NM,NP I 

t •••••••••••••••••••••••••••••••••••••••• 
C ~ERMUTE ROWS OF A SPARSE MATRIX STORED IN A. 
C M CONTAINS COLUMN INDICES OF INPUT MATRIX A. 
C AP CONTAINS ELEMENTS OF OUTPUT MATRIX • 
C MP CONTAINS COLUMN INDICES OF OUTPUl MATRIX. 
C IP CONTAINS PERMUTAf ION--1.E. OLD ROW !Piii BECOMES NEW 
C ROW I. 
C NA IS DIMENSION OF A,AP. NM IS DIMENSION OF M,MP. 
C NP IS DIMENSION OF IP. 
c 

c 

REAL A,flP 
INTEGER M,MP,IP,NR,NC,1,Il,NIR,12, 

•K,LA1IM,"1l,J1Jl,13,NZ,NM,NA,NP,LP 
OIMENSICN AINAl,M(NM),APINAl,MPINM),IPCNPI 

C LP IS UNIT ~UMBER OF LINE PRINTER • 
LP .. 6 

C CLEAR MP. 
DO l I = l,NM 

l MPI I I " 0 
C CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT. 

IF (Mlll.EQ.01 GO TO 10 
C UNPACK CONTqOL INFORMATION. 

NR INOIM, l,NMI 
NC INO(M,2,NMI 

C RECORD NUMBERS OF ROWS ,COLUMNS ANO ELEMENTS IN MP. 
00 2 I " 1, 2 

2 MP(ll "MCll 
C LA,LM COUNT ELEMENTS IN AP,MP. 

LA " l 
LM " 5+NR 

C PERMUTE ROWS. 
00 9 I• loNR 

Nl • 0 



COLLECTED ALGORITHMS (cont.) 

C J IS OLD NU" BER Of NEW ROW I. 
J = IPlll 
K = INOIM,4+J,NMI 
CALL IPK(K,MP,4+1,NMI 
If IJ.GT.NR.OR.J.LE.01 GO TO 3 
GO TO 5 

C J OUT Of RA~GE--GIVE ERROR MESSAGE. 
3 WR I TE IL P, 4 I I 
4 FORHATl38H IN PERROW PERM CONTAINS INDEX OUT OF 

17HRAhGE IN POSITION,131 
CALL EXIT 

C PICK OUT START AND tND OF ROW J. 
5 IF IJ.EQ.11 GO TO 1 

Jl "' J-1 
DO 6 I3= l,Jl 

6 Nl =Nl+INCIM,4+13,NMI 
C NIRJ IS NUMBER IN ROW J OF A. 

7 NIRJ = IN01Mr4+J,NMI 
IF INIRJ.EQ.01 GO TO 9 
N2 = Nl+NIRJ 
Nl = Nl+l 

TRANSFER ROW J OF A,M TO ROW I OF AP,MP. 
DO 8 13= Nl,N2 

APILA I,. AC 131 
K = IND(M,4+NR+l3,NMI 
CALL IPKIK,MP,LM,NMI 
LA = LA+l 

8 LM = LM+l 
C ENO OF LOOP ON llROW NUMBERI. 

9 CONTINUE 
RETURN 

C ERROR MESSAGE. 
10 WRITE ILP,111 
11 FORMATC35H IN PERROW OUTPUT OVER-WRITES INPUT, 

* 34H OR INPUT HAS NO ROWS ANO COLUMNS.I 
CALL EX IT 
ENO 

············································*•••·········· SUBROUTINE ROSPMX(A,M,NA,NM) 
c •••••••••••••••••••••••••••• 
c 
C READS A SPARSE MATRIX F•OM CARDS INTO ARRAY A,STORING 
C COLUMN INDICES ANO CONTROL DATA IN M. 
C NA IS DIMENSION OF A, NM IS DIMENSION OF M. 
c 

REAL A 
INTEGER NR,NC,NE,JE,JR,JF,K,MIN,M, 

* l 1 NIR,J,Jl,J2,Ll,L2,NA,NM,LIMF,IN,LP 
DIMENSICN AINAl,MINMl,AINl41,MINC41 

C IN IS UNIT ~UMBER OF CARD READER. 
IN = 5 

C LP IS UNIT ~UMBER OF LINE PRINTER. 
LP = 6 

C NR,NC,NE ARE NUMBERS OF ROWS,COLS,ANO ELEMENTS IN A. 
READ 11~ 1 11 NR,NC,NE 

1 FORMATl3151 
C JE,JR COUNT NUMBER OF ELEMENTS,ROWS. 

JE = 1 
JR = 1 
DO 2 I 1, NM 
Mill 0 

!ERR 0 
LIMF 0 

C JF IS NUMBER OF CONTROL DATA. 
JF 4+NR 

C K COUNTS ELEMENTS WITHIN ROW. 
K = 0 

C AIN,MIN ARE ELEMENTS ANO INDICES AS REAC FROK CARD. 
3 READ 11111,4) IAINCl),MINlll.I=l,41 
4 FORMATl41El5.B,15)1 

00101=1,4 
c CHECK FOR Rew-SENTINEL. 

IF IMl~IIl.GE.900001 GO TO 9 
CHECK VALIDITY OF COLUMN-INDEX. 

IF IMl~lll.LE.NC) GO TO 6 
WRITE I LP,51 MI NII 1 rJE 
FORMATl15H COLUMN INDEX (,15r20HIGREATER THAN NUMBE~, 

24H OF COL IN ELEMENT NUM. r151 
I ERR = l 

C STORE ELEMEH. 
6 IF IJE.LE.NA.AND.IJE+JFl.LE.2*NMI GO TO 8 

IF CLl"F.EQ.11 GO TO 10 
LIMF = 1 
WR IT E I L P, 71 
FORMATl21HOARRAY FULL IN RDSPMX) 
GO TO 10 

8 AIJEI = AINlll 
CALL IPKIMINCl l,M,JE+JF,NMI 
JE = JE+l 
K = K+l 
GO TO 10 

C CHECK FOR E~D-OF-MATRIX SENTINEL· 
9 IF CMJl'llll.EQ.999991 GO TO 11 

C RECORD NUMBER OF ELEMENrS IN ROW JR OF A. 
CALL IPK(K 1 M,4+JR,NMI 
K 0 
JR JR+l 

10 CONTINUE 
C READ NEW CARO. 

GO TO 3 
C AT ENO OF MATRIX CHECK NUMBER Of ROWS IS AS STATED. 

l l JR = JR-1 
IF IJR.EO.NRI GO TO 13 
WRITE ILP, 121 JR, NR 

408-P 8 

12 f0RMATl17H NUMBER OF ROWS (,15,17H) DOES NOT EQUAL , 
* l5HSTATEO NUMBER (,15,lHll 

IERR = l 
C CHECK NUMBER Of ELEMENTS. 

13 JE = JE-1 
IF IJE.EQ.NEI GO TO 15 
WRITE ILP,14) JE,NE 

14 FORMAT12lH NUMBER OF ELEMENTS (,15,llHI DOES NOT t 
* 2lHEQUAL STATED NUMBER l,15tlHll 

!ERR = l 
C CHECK ASCENDING ORDtR OF INDICES. 

15 J = JF 
00 19 I= l,JR 

C NIR IS NUMBER IN ROW I OF A. 
NIR = INOIM 1 4+1,NMI 
J2 = NIR+J 
Jl = J+2 
IF INIR.LE.11 GO TO 18 
DO 17 K = Jl,J2 
Ll = INDIM,K-ltNMI 
L2 = IND(M,K,NMI 
IF 1Ll.LT.L21 GO TO 17 
Kl = K-Jl+2 
WR IT E I LP, l 61 Kl, I 

16 FORMAT( 9H ELtMENT ,I5,8H IN ROW ,J5,llH HAS WRONG 
12HCCLUMN INUEXI 

IERR = l 
17 CONTINLE 
18 J = J2 
19 CONTINUE 

STORE CONTRCL DATA. 
CALL IPKINR,M,l,NMI 
CALL IPl<INC,M,2,NMI 
MC21 = NE 
IF I IERR.GE. ll CALL EXIT 

RETURN 
ENO 

c •••••••••••••••••••••••••••••••• 
SUBROUTINE RVSPMXIA,M,IR,v,N,NA,NMI 

c ••••••••••••••••••••••••••••••••••• 
C EXTRACTS ROii IR OF SPARSE MATRIX IN A,STORING RESULT IN 
C VECTOR V IN EXTENDED FORM, I.E. INCLUDING ZERO ELEMENTS. 
C M CONTAINS COLUMN INDICES OF A. 
C N1 NA,NM ARE OlMENSIONS OF V,A,M. 
c 

REAL A, V 
INTEGER M,IR,N,NRA,I,NIRS,IRl,JM,K,J,NIRA,NA,NM,LP 
DIMENSICN AINA),MINM),VINI 

C LP lS UNIT NUMBER OF LINE PRINTER. 
LP = 6 

C NRA IS NUMBER OF ROWS IN A. 
NRA = I ND IM, l , NM I 
IF llR.GT.NRAI GO TO 2 

C N IS NUMBER OF COLS IN A !EQUALS NUMBER OF ELEMENTS IN VI. 
N INDIM,2,NMI 

C CLEAR V. 
DO l I = l, N 

l VI 11 O.O 
C NIRS WILL BE NUMBER OF ELEMENTS IN ROWS PRIOR TO IR. 

NIRS 0 
IF I IR-11 2,6,4 
WR tT E IL P ,3 I 
FORMATl34H IN RVSPMX ROW NUMBER OUT OF RANGEi 
CALL EXIT 

4 IRl IR-l 
DO 5 I = l ,[RI 

NIRS = NIRS+INOIM,4+1,NMI 
6 JM = 4+NRA+NIRS 

C NIRA IS NUM8ER IN ROW IR. 
NIRA = INDIM,4+1R,NMI 
IF INIRA.LE.0) GO TO 8 

C TRANSFER ELEMENTS OF ROW IR. 
DO 1 I l, N IRA 

K INOIM,JM+l,NMI 
J NIRS+I 
VIKI AIJI 

RETURN 
END 
• ••••••••••••••••••••••••••••••••• 
SUBROUTINE SMSPMXIA,M,AN,MN,S,NA,NMI 

c •••••••••••••••••••••••••••••••••••• C MULTIPLY SPARSE MAT~IX IN A BY SCALAR S, STORING RESULT IN 
C AN. 
C M,MN CONTAI~ COLUMN INDICES FOR A,AN. 
C NA IS DIMENSION OF A,AN. NM IS DIMENSION OF M,MN. 
c 

c 

REAL A,.AN,S 
INTEGER M,MN,NEAtlrNRA,N,NA,NM,LP 
DIMENSICN AIN~l,MINM),ANINAl,MNINMI 

C LP IS UNIT flUMBE\; ~ LINE PRll'ITER. 
LP = 6 

CHECK THAT CUTPUT DOES NOT OVER-WRITE INPUT. 
MN( 11 = 0 
IF IMlll.EQ.01 GO TO 5 
IF IS.EC.0.01 GO TO 3 

NEA IS NUMBER OF ELtMENTS IN A. 
NEA = Ml21 

MULTIPLY A BY S. 
DO 1 I = ltNEA 

l ANIII = Alll*S 
C NRA IS NUMBER OF ROWS IN A. 

NRA = INOIM, L,NMI 
C N IS NUMBER OF WORDS IN M. 

N = 15+NRA+NEAl/2 

0 



COLLECTED ALGORITHMS (cont.) 

C MOVE M. 
00 2 I • l,N 

MNCI l = Mil I 
RETURN 

3 MN Cl I ,. M Cl I 
NRA INOIH,l,NHI 
K =15+NRAl/2 
00 4 I • 2,K 

4 HNI 11 "' 0 
RETURN 

C ERROR MESSAGE. 
5 WRITE ILP,61 
6 FORHATl35H IN SHSPMX OUTPUT OVER-WRITES INPUT, 

• 34H OR l~PUT HAS NO ROWS ANO COLUMNS.I 
CALL EX IT 
END· 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE TRSPHXIA,M,AT,HToNA,NM,IP,NPl 

c •••••••••••••••••••••••••••••••••••••••• 
c 
C TRANSPOSE A SPARSE MATRIX IN A, STORING THE RESULT IN AT. 
C M,MT CONTAI~ COLUMN INDICES Of A,AT. 
C NA IS DIMENSION OF A,AT. NH IS DIMENSION OF M,MT. 
c !Pill Will BE NUMBER OF ELEMENTS IN COLUMN I OF A, ALSO 
c IP(ll WILL BE POINTER TO FIRST ELEMENT IN ROW I OF AT. 
C NP IS DIMENSION OF IP. 
c 

INTEGER 1,1C,1FC,IFR,IT,Jl,IP 
REAL A,AT 
DIMENSICN A(NAl,HINMl,ATINAl,MT(NMl,IP(NPI 

C LP IS UNIT ~UMBER OF LINE PRINTER. 
LP = 6 

C CLEAR HT. 
DO l I = l,NM 

I MTI 11 = 0 
C CHECK THAT AT DOES NOT OVER-WRITE A. 

IF (Mlll.EQ.01 GO TO 8 
C UNPACK CONTROL INFORMATION. NR,NCrNE ARE NUMBERS OF ROWS, 
C COLUMNS ANC ELEMENTS IN A. 

NR = INOIM 0 1 0 NMI 
NC = I NO I H, 2, NM I 
NE = Ml 21 

C CHECK FOR PCSSIBLE OVERFLOW OF MT. 
L = 4+NC+NE 
IF (L.GT.2•NMI GO TO 10 

PACK NUMBER OF ROWSINCI, COLUMNSINRI ANO ELEMENTS OF AT. 
CALL IPKINC,MT,l,NHI 
CALL IPKINR,MT 1 2,NHI 
MTl21 = Ml21 

C IFR,IFC ARE NUMBER OF CONTROL DATA IN A1 AT. 
IFR 4+NR 
IFC 4+NC 

C CLEAR IP. 
DO 2 I = l,NC 

2 IP( 11 0 
C COUNT NUMBER OF ELEMENTS IN EACH COLUMN OF AIROW OF ATI. 

DO 3 I = l, NE 
K INDIM,IFR+l,NMI 

3 IP(KI = IP(Kl+l 
C PACK NUMBERS OF ELEMENTS IN ROWS OF AT. 

DO 4 J = l,NC 
K IPIJI 

4 CALL IPKIK,MT,4+J 1 NMI 
SET UP POINTER TO FIRST ELEMENT IN ROW I OF AT. 

NICAl"' IP(ll 
IPlll l 
DO 5 I 2,NC 

NICA "' IPI 11 
IPlll"' IPll-ll+NICAl 

5 NICAl NICA 
PROCESS ROWS Of A. Jl IS POSITION OF FIRST ELEMENT OF 
CURRENT ROW OF A. 

Jl = l 
C I COUNTS RO~S OF A. 

DO 1 I = lrNR 
C NIRA IS NUMBER OF ELEMENTS IN CURRENT ROW OF A. 

NIRA = INOIM,4+1,NMI 
IF INIRA.EQ.01 GO TO 1 
J2 "' Jl+NIRA-1 
00 6 J " Jl,J2 

C K IS COLUMN NUMBER OF J•TH ELEMENT IN A, l.f..ROW NUMBER 
C IN AJ. 

K INDIM,IFR+J,NHI 
C IT IS POSITION OF CURRENT ELEMENT IN AT. 

IT = IPIKI 
AHITI = A(JI 
CALL IPKll,HT,IT+IFCrNH·I 
IPIKI = IPIKl+l 

Jl = J2+1 
RETURN 

C ERROR MESSAGES. 
B WRITE ILP,91 
9 FORMAT(27H IN TRSPHX AT OVER-WRITES A, 
* 34H OR INPUT HAS NC ROWS ANO COLUMNS.I 

CALL EXIT 
10 WRITE ILP,111 
11 FORHATl27H IN TRSPMX MT WILL OVERFLOW) 

CALL EX IT 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE WRSPHXIA,M,TIT,NA,NMI 

c •••••••••••••••••••••••••••••••• 
C WRITE SPARSE MATRIX A. 
C M CONTAINS COLUMN INDICES OF A. 

C TIT CONTAINS DESCRIPTION OF A. 
C NA,NH ARE DIMENSIONS OF A,H. 
c 

REAL A, .aouT' TIT 

408-P 9- RI 

INTEGER H,P,1,LrNRA,JF,NIRA,J,J2,K2,KrKJ,HOUT,NA,NM,LP 
OIMENSICN AINAl,HCNMl,TITl101,AOUTl51,MOUTl51 

c 
C LP IS UNIT ~UMBER OF LINE PRINTER. 

LP • b 
C P IS PAGE CCUNTER. 

p " l 
C HEADING ANO DESCRIPTION. 

WRITE (LP,ll ITITCll,l•l,101,P 
l FORMATl23HlPRINTOUT OF SPARSE HAT, 
• 4HRIX.,l3XrlOA4,10Xr5HPAGE ,15//I 

C l IS LINE CCUNTER. 
L " 2 

C NRA IS NUMBER OF ROWS IN A. 
NRA = INDIH,lrNMI 
JF • 4+NRA 

C NJRS IS NUMBER IN ROWS ALREADY WRITTEN. 
NIRS " 0 

C I IS ROW COLNTER. 
DO 8 I " l,NRA 

c NIRA IS NuHeER IN ROW OF A. 
NIRA = INOIH,4+1,NHI 
IF INIRA.EQ.01 GO TO 8 

C J COUNTS ELEMENTS WRITTEN. 
J " 0 
IF IL.LT.511 Gu TO 3 

C AT ENO OF PAGE WRITE NEW HEADING ON NEXT PAGE,UPDATING 
C PAGE NUMBER. 

2 P • P+l 
WRITE ILP,ll (TIT(Kl,K•lrlOl,P 
l " 2 
WRITE ILPr41 I 

4 FORMATl12HOROW NUMBER ,15// 
• lX,5(4Xr7HELEMtNT,~X,3HCOL,5Xll 

l = L+4 
C EXTRACT NEXT LINE OF OUTPUT. 

5 J2 • HINOINIRA,J+5l 
K2 • J2-J 
00 6 K '\ l rK2 

KJ • 'K+J+NIRS 
MOUT(KI• INDIM,KJ+JF,NHI 

6 AOUTI KI 2 A I KJ I 
WRITE (LP,7) IAOUTIKl,HOUT(KloK=lrK21 

1 FORHATl1X,5CE15.7,15r4Xll 
l = L+l 
J .. J+5 
IF IJ.GE.NIRAI GO TO B 
IF (L-551 5,2,2 

B NIRS = NIRS+NIRA 
C LAST ROW WRITTEN. 

RETURN 
ENO 

c ··················································~········ 

Remark on Algorithm 408 [F4] 
A Sparse Matrix Package (Part I) [J.M. McNamee, 
Comm. ACM 14 (Apr. 1971), 265-273] 

Arthur H.J. Sale [Recd. 6 Aug. ll971] 
Basser Computing Department, University of 
Sydney, Sydney, Australia 

Key Words and Phrases: matrix, sparse matrix, matrix 
manipulation, Fortran standards 

CR Categories: 514 

There are a number of minor flaws in the presentation of Al
gorithm 408. The first concerns the liberal use of a subroutine 
EXIT not described in the Algorithm: nor to be found in the For
tran standard as an intrinsic procedure. Probably the use of this 
particular routine is self-evident (especially to IBM users), but 
it is difficult to justify using it when the STOP statement is available. 
The safest way to correct this flaw i:> to write a short program 
that scans the algorithm text replacing occurrences of CALL 
EXIT by STOP; by my count there are 25 of these. The alternative, 
of supplying a subroutine named EXIT has a trap: a subprogram 



COLLECTED ALGORITHMS (cont.) 

must contain a RETURN (see [l, Sec. 8.4.1.1(:5) of the standard]),· 
so the routine must be (a) in nonstandard Fortran or machine 
code, or (b) something like: 

SUBROUTINE EXIT 
J=O 
IF (J.EQ.0) STOP 
RETURN 
END 

The other flaw occurs in the very last line of the algorithm: 
an END statement delimits a program (see [1, Sec. 3.2.2]), so 
that the comment following it must belong 1to another program 
segment (which does not have an END and is: in error). The cure 
is simple: remove the comment. 

There is also a minor criticism one might make of the effi
ciency of the subprograms IND and !PK, which are frequently 
called. In practice the advantage of using available Fortran ver
sions will often outweigh the gain in speed possible by lapsing 
into assembly language, and therefore the following versions are 
offered as probably compiling to a more efficient code. They 
utilize the intrinsic function MOD (often compiled in-line) and 
remove needless computations and assignments. 

FUNCTION IND(M, I, NM) 
DIMENSION M(NM) 
J = (Hl) / 2 
IF (MOD(!, 2)) 1, 1, 2 

1 IND = MOD(M(J), 10000) 
RETURN 

2 IND = M(J) / 10000 
RETURN 
END 

SUBROUTINE IPK(K, M, I, NM) 
DIMENSION M(NM) 
J = (J+l) / 2 
IF (MOD(!, 2)) 1, 1, 2 

1 M(J) = M(J) + K 
RETURN 

2 M(J) = K*lOOOO + M(J) 
RETURN 
END 

References 
1. Fortran vs Basic Fortran. Comm. ACM 7 (Oct. 1964), 590-625. 

Remark on Algorithm 408 [F4] 
A Sparse Matrix Package (Part I) 
[John Michael McNamee, Comm. ACM 14 (Apr. 1971), 
265-273] 

408-PlO- R2 

E.E. Lawrence [Recd. l February 1972, 12 March 1973) 
Central Application Laboratory, Mullard Limited, 
New Road, Mitcham, Surrey CR4 4XY, England 

The subroutines constituting Algorithm 408 were, with the 
exception of MVSPMX and WRSPMX, tested on an IBM 360/65 
using CALL/360-0S. The author's alteration (iii) was introduced, 
i.e. declaration of the M-array to be half length. Other changes 
were introduced in order: (a) to make the algorithm more con
versational in a time shared environment; and (b) to improve the 
speed of the sorting procedure in P ERCOL. 

The following deficiencies in the algorithm were noted 
1. The dimensional parameters of ACSPMX, ADSPMX, and 
MUSPMX are incomplete. As an illustration of this consider the 
two matrices 

A-'~ 
0 0 ~l 2 0 

-L~ 0 3 ~J 0 0 

B -'~ 
0 0 ~l 0 3 

-l~ 2 0 ~J 0 0 

each of which has four nonzero elements. 
Then the sum matrix has eight such elements, and in general, 

for two matrices with 11, and 112 nonzero elements, the number of 
nonzero elements, 113 , in the sum matrix is in the range O :S n3 :S 
111 + 112. 

However in ADSPMX the condition used is 111 = 112 = 113. 

Similar arguments apply to ACSPMX and MUSPMX. 
To correct this requires extensions to the parameter lists and 

dimension statements, and also it changes the conditional state 
ments within the subroutines concerned. 

This shows up with the CALL/360-0S system since the com~ 
piler performs subscript checking. It would not be evident on most 
compilers including the IBM Fortran IV G compiler. It is, how 
ever, bad practice to rely on default effects of compilers. 
2. There are three, probably copying, errors in ·.MUSPMX (page 
270). 

(i) Line 33 should be: 
IF(NCA.EQ.NCB) GO TO 3 

(ii) Line 55 should be: 
DO 14 J = 1, NRB 

(iii) Line 102 should be: 
CALL IPK(NRB,MC,2,NM) 

ACM Transactions on Mathematical Software, Vol. 3, No. 3. September 1977, Page, 308 

REMARK ON ALGORITHM 408 

A Sparse Matrix Package (Part I) [F4] 
[J.M. McNamee, Comm. ACM 14, 4 (1971), 265-273] 

Paolo Sipala [Recd 10 October 1976] 
Istituto di Elettrotecnica, University of Trieste, Trieste, Italy 

The subroutines RDSPMX, ADSPMX, MUSPMX, TRSPMX, MVSPMX, and 
WRSPMX of ACM Algorithm 408 were tested after conversion to Basic Fortran, 



c:OLLECTED ALGORITHMS (cont.) 

and the following corrections appear to be needed: 
(1) In ADSPMX, the line after statement number 9 should be changed to 

IF (T.EQ.0.0) GO TO 911 

and before statement number 11 the following line should be inserted: 

911 JB = JB + 1 

(2) In TRSPMX, after statement number 5 thefollowing lineshould beinserted: 

J2 = 0 

The error in ADSPMX shmvcd up when adding two matrices containing ele
ments ·with opposite values in corresponding positions, ·which should cancel; the 
error in TRSPMX was noted when transposing a matrix having a null first line. 

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Pages 295. 

REMARK ON ALGORITHM 408 

A Spru~se Matrix Package (Pfilt 1) [F4] 
[J.M. McNamee, Comm. ACM 14, 4 (April 1971), 265-273] 

Fred Gustavson [Recd 25 J anufily 1978] 
T.J. Watson Research Center, IBM, Yorktown Heights, NY 10598 

The subroutine TRSPMX of ACM Algorithm 408 was compared with Algorithm 
HALFP [1] and the following corrections appefil to be needed: 

(1) Before statement DO 5 ... , insert the line 

IF (NC.LE.I) GO TO 100 

(2) After label 5 insert the line 

100 J2 = 0 

The need for correction (1) is required when the matrix is a column vector 
(NC = 1). The need for correction (2) was noted in [2] as TRSPMX fail:s when 
transposing a matrix with an empty first row. 

REFERENCES 

1. GUSTAVSON, F.G. Two fast algorithms for sparse matrices: Multiplication and permuted transpo
sition. ACM Trans. Math. Software 4, 3 (Sept. 1978), 250-269. 

2. SIPAI.A, P., Remark on Algorithm 408. ACM Trans. Math. Software 3, 3 (Sept. 1977), 302:. 

408-Pll- R3 



COLLECTED ALGORITHMS (cont.) 

and the following corrections appear to be needed: 
(1) In ADSPMX, the line after statement number 9 should be changed to 

IF (T .EQ .0 .0) GO TO 911 

and before statement number 11 the following line should be inserted: 

911 JB = JB + 1 

(2) In TRSPMX, aJfter statement number 5 thefollowing lineshould beinserted: 

J2 = 0 

The error in ADSPMX showed up when adding two matrices containing ele
ments ·with opposite values in corresponding positions, which should cancel; the 
error in TRSPMX wa:s noted when transposing a matrix having a null first line. 

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Pages 295. 

REMARK ON ALGORITHM 408 

A Sparse Matrix Package (Part 1) [F4] 
[J.M. McNamee, Comm. ACM 14, 4 (April 1971), 265-273] 

Fred Gustavson [Recdl 25 January 1978] 
T.J. Watson Research Center, IBM, Yorktown Heights, NY 10598 

The subroutine TRSPMX of ACM Algorithm 408 was compared with Algorithm 
HALFP [1] and the following corrections appear to be needed: 

(1) Before statement DO 5 ... , insert the line 

IF (NC.LE.1) GO TO 100 

(2) After label 5 insert the line 

100 J2 = 0 

The need for correction (1) is required when the matrix is a column vect<n· 
(NC= 1). The need for correction (2) was noted in [2] as TRSPMX fails when 
transposing a matrix with an empty first row. 

REFERENCES 
1. GUSTAVSON, F.G. Two fast algorithms for sparse matrices: Multiplication and permuted transpo

sition. ACM Trans. Math. Software 4, 3 (Sept. 1978), 250-269. 
2. SIPALA, P., Remark on Algorithm 408. ACM Trans. Math. Software 3, 3 (Sept. 1977), 303. 

ACM Transactions on MathematicalSoftware, Vol. 6, No. 3, September 1980, Pages 456-457. 

REMARK ON ALGORITHM 408 

A Sparse Matrix Package (Part 1) [F4] 
[J.M. McNamee, Commun. ACM 14, 4 (April 1971), 265-273] 

U. Harms, H. Kollakowski, and G. Moller [Received 15 May 1978 and 15 August 
1978; accepted 12 December 1979] 
Regionales Rechenzentrum fiir Niedersachsen, Technische Universitat Han
nover, Wunstorfer Stra.Be, D-3000 Hannover, West Germany 

When implementing Algorithm 408 on a CDC Cyber 76-12 and a Cyber 73-16, the 
errors noted by Lawr·ence [2] are corrected. In ARSPMX the dimensional 
parameters were incomplete and have been completed. Thus it is possible to add, 
for example, two sparse matrices having different numbers of nonzero elements. 

408-Pll- R3 



COLLECTED ALGORITHMS (cont.) 408-P12- 0 

There is another severe error in ADSPMX, as pointed out by Sipala [3]: when 
adding two elements whose sum is zero, ADSPMX gives an incorrect result. For 41111 
example, when 

ll 0 21 
A= 2 3 0, 

0 1 OJ 
B = [=O~ ~ ~1. 

1 OJ 

then the result of A + B by ADSPMX is 

[-1 0 4] 
c = --~ ~ ~ ' 

not the correct sum. 
The necessary changes in ADSPMX arc 

(1) line 73: IF (T.EQ.0.0) GO TO 30 
(2) before line 86: 30 CONTINUE 

JB = JB + 1 

Then the zero sum is ignored. For better definition, all elements of C are set to 
zero. If all elements of C are zero, then a message is printed later in the code. 

There are some minor changes in some other subroutines; for example, in 
ARSPMX, MCSPMX, and MRSPMX the variable NEA is set but never used. 
The same thing happens to the variable NC in PERROW. For this reason NEA 
and NC are eliminated in the subroutines presented here. 

In MCSPMX the statement M(2) = L - 1 (I line before statement 6) should 
be changed to MN(2) = L - l, and in MRSPMX the statement M(2) = L - 1 
(2 lines before statement 8) should be changed to MN (2) = L - 1. 

Moreover, some errors in TRSPMX, pointed out by Sipala [3] and Gustafson 
[I], have been corrected. 

REFERENCES 
1. GUSTAFSON, F. Remark on Algorithm 408. ACM Trans. Math. Softw. 4, 3 (Sept. 1978), '.295. 
2. LAWRENCE, E.E. Remark on Algorithm 408, A sparse matrix package (part I). Commun. ACM 

16, 9 (Sept. 1973), 578. 
3. SIPALA, P. Remark on Algorithm 408, A sparse matrix package (part I). ACM Trans. Math. 

Softw. 3, 3 (Sept. 1977), 303. 

ALGORITHM 

[Code for Algorithm 408 with all the corrections given here is available from the 
ACM Algorithms Distribution Service (see inside back cover for order form) or 
may be found in microfiche form in "Collected Algorithms from ACM."] 

NAME(n): 
NAMET(n): 
Contents: 

indicates a Fortran module with n records 
indicates "NAME" is included for testing purposes 
IND(18), IPK(14), ANTIP(39), RDSPMX(121), WRSPMX(62), 
ANDPMX(152), SUSPMX(148), MVSPMX(24), SMSPMX(52), 
CVSPMX(30), ERSPMX(29), ECSPMX(28), INSPMX(l9), 
OTSPMX(21), PERCOL(101), PERROW(84), RVSPMX(50), 
MUSPMX(134), TRSPMX(95), MCSPMX(89), MRSPMX(83), 
TESTT(536), CHECKT(37), MAINT(56), RANDOT(13), 
RANDUT(8), ACSPMX(142), ARSPMX(163) 



COLI,ECTED ALGORITHMS FROM CACM 

ALGrO RITHM 409 
Discrete Chebychev 
Curve Fit [E2] 
H. Schmitt [Recd. 23 June 1970 and 12 Oct 1970] 
Rechenzentrum der Technischen Hochschule 
Darmstadt, West Germany 

Key Words and Phrases: approximation, polynomial 
approximation, exchange algorithm, Chebychev· approximation, 
Remez algorithm 

CR Categories: 5.11, 5.13 

procedure approx (m, n, k, x, y, epsh) transients: (maxi!, ref) 
results: (hmax, h, a) exits: (exparameter, exmaxit, exsign); 
value m, n, k, epsh; integer m, n, k, maxit; real epsh, hmax; 
array x, y, h, a; integer array ref; 
label exparameter, exmaxit, exsign; 

comment This procedure computes the best approximation poly
nomial in the sense of Chebychev of required degree m to a set 
of n distinct points given by their abscissas and ordinates (array 
x, y [ 1 : n]). The abscissas must be arranged in increasing order 
x[l] < x[2] < · · · < x[n]. The desired polynomial is even, odd, 
or mixed fork = 2, k = 1, or k = 0, respectively. It is expected 
that x[ll ~ 0 in case of k = 2 and x[l] > 0 in case of k = 1. 
Leveling according to the exchange method described by Stiefel 
[l] is done up to a tolerance of abs(epsh). The sign of epsh 
decides whether ref is expected to supply entry data (cf. param
eter ref). 

maxit enters an upper limit for the number of exchange steps 
allowed and returns the number of steps actually performed. 
The parameter ref is used to carry entry data only if epsh < 0. It 
is an integer array containing the subscripts of the points to be 
used as initial reference. The lower array bound is 1, the upper 
bound (say p) ism + 2 in the case of mixed (k = 0) polynomials, 
entier ((m+3)/2) in the case of odd (k = 1), and entier 
( (m +4) /2) in the case of even (k = 2) polynomials. It is expected 
that 1 ~ ref[l] < r~f(2] < · · · < ref[p] :::;; n. Unless an initial 
reference is not explicitly given by means of the array ref and 
indicated by a value epsh < 0, the points lying next to the so
called Chebychev abscissas ~with regard to the interval [x[l], 
x[n]]) are determined to start off the algorithm. As output, this 
parameter returns the reference belonging to the approximation 
polynomial. 

The output parameters are hmax to return the maximum devia
tion, an array h[l :n] to return the approximation errors at all 
given points, and an array a[O:m] to carry the polynomial 
coefficients. The array h containing the approximation errors is 
introduced as a formal parameter to allow a drawing of the error 
function to be made outside the procedure. This provides a means 
to look at the quality of the computed approximation and is 
recommended to the user. A totally leveled approximation 

409-P 1 0 

polynomial should have an error function with well charac· 
terized extrema of equal height. 
Three emergency exits are provided for extraordinary events. 

exparameter is an exit to be used when entry data are entered 
incorrectly. exmaxit is used when the best fit iis not found within 
the maximum number of exchange steps allowed. In this case, 
the parameter ref denotes a new reference which may be used as 
entry data for a further call of approx. The exit exsign is used 
when the approximation errors at the points of reference do not 
alternate in sign. In this case, accuracy of the computer is insuffi
cient to generate an approximation polynomial of the required 
degree. 

Acknowledgment. The author wishes to express his apprecia
tion to Prof. Dr. W. Barth for many valuable discussions on the 
subject of Chebychev approximation. 

Reference 
1. Stiefel, E. L. Numerical methods of Chebychev approximation. 
In On Numerical Approximation, R. Langer, (Ed.), U. Wis
consin Press, 1958, pp. 217-232; 
begin 

integer i, j, p, ql, q2, r; Boolean kO, kl; 
kO : = k = O; kl : = k = 1; 
ql : = if kl then 1 else O; 
q2 : = if kO then 1 else 2; 
for i : = 0 step 1 until m do a [ i] : = 0; 
if-, kO then m : = entier ((m-ql) X 0.5 + 0.1); 
p := m + 2; 
comment Check for properly given parameters; 
if n < p V m < 0 V -, kO /\ (-, kl V x[l] ~ 0) 

/\ (k =I= 2 V x[l] < 0) then go to exparameter; 
for i : = 2 step 1 until n do 

if x[i] ~ x[i-1] then go to exparameter; 
begin 

procedure exchange (n, p, h, epsh, z, equal); 
value n, p, epsh; 
real epsh; integer n, p; label equal; 
array h; integer array z; 

comment This procedure performs the e:xchange technique. 
The number of points and the number of reference points 
are entered by n and p. The approximation errors at different 
points are compared relative to epsh. The subscripts of the 
points of reference are carried by z[l] · · · z[p] of the integer 
array z[O:p+l], a parameter which serves to enter the 
former and return the new reference. z[O] and z[p+ 1] are 
for internal use only and are expected to have the values 0 
and n + 1. If both the old and new references are equal to 
each other, a jump to the label equal occurs. No global 
quantities are contained within this procedure; 

begin 
integer i, j, I, index, ind!, indr, sig, ze; 
real hzl, hzp, max, maxi, maxr; 
I:= O; sig := -sign (h[z[l]]); 
if sig = 0 then sig : = 1; 
for i : = 1 step 1 until p do 
begin 

max:= O; sig := -sig; ze := z[H-1] - l; 
for j : = z [ i - 1 ] + 1 step 1 until ze do 
if (h[j]-max) X sig > 0 then 
begin max : = h[j]; index : = j end; 
if abs (max-h[z[i]]) > abs(max) X epsh then 
begin z[i] : = index; I : = 1 end 



COLLECTED ALGORITHMS (cont.) 

shr: 

sh/: 

end: 

end; 
maxi:= maxr := O; 
for j : = z[p] + 1 step 1 until n do 
if £maxr -h[j]) X sig > 0 then 
begin maxr := h[j]; indr := j end; 
hzl := h[z[l]]; sig := sign(hzl); 
for j := 1step1 until z[l] - 1 do 
if (maxl-h[j]) X sig > 0 then 
begin maxi : = h[j]; ind/ : = j end; 
maxi : = abs(maxl); maxr : = abs(maxr); 
hzl : = abs(hzl); hzp : = abs(h[z[p]]); 
if/ = 0 then 
begin 

if maxi - hzp ~ maxi X epsh /\ 
maxr - hzl ~ maxr X epsh then go to equal 

end; 
if maxi = 0 /\ maxr = 0 then go to end; 
if maxi > maxr then 
begin 

if maxi > hzp t:hen to go sh/ 
else if maxr ~ hzl then to go shr 

end 
else 
begin 

if maxr > hzl then go to shr 
else if maxi ~ hzp then go to sh/ 

end; 
go to end; 

index:= z[l]; 
for i : = 1 step 1 until p - 1 do z[i] : = z[i+ l]; 
z[p] : = indr; 
if maxi > 0 then 
for i : = 1 step 1 until p - 1 do 
begin 

if abs (h[indl]) ~ abs (h[z[i]]) then 
begin j : = z[i]; z(i] : = ind/; ind/ : = index; 

index : = j end 
else go to end 

end; 
go to end; 

index : = z[p]; 
fori := pstep - 1 until2doz[i] := z[i-1]; 
z[l] : = ind/; 
if maxr > 0 then 
for i : = p step - 1 until 2 do 
begin 

if abs (h[indr]) ~ abs(h[z[i]]) then 
begin j : = z[i]; z[i] : = indr; indr : = index; 

index : = j end 
else go to end 

end; 

end procedure exchange; 
real arg, max, pi, q, s, t, dt, xl, xa, xe; Boolean bl, b2; 
array xx[l :n], aa, daa[O:m], c, d [1 :p]; 
integer array z[O:p+ll; 
comment Set up of initial reference; 
z[O] := O; z[p+ll := n + l; 
if epsh < 0 then 
begin 

j := O; 
for i : = 1 step 1 until p do 
begin 

r := z[i] := ref[i]; 
if j < r then j : = r else go to exparameter 

end; 

mO: 

ml: 

if j > n then go to ex parameter; 
epsh : = abs (epsh); go to ml 

end; 

409-P 2- 0 

pi:= 3.14159265; xl := x[l]; xe := x[n]; 
if kO then 
begin xa := xe + xl; xe := xe - xl; 

arg := pi/(m+l) end 
else 
begin xa := O; xe := xe + xe; 

arg := pi/(2X(m+l)+ql) md; 
for j : = p step - 1 until 1 do 
begin 

xl := xa + xe X cos (arg >< (p-j)); r := z[j+ll; 
for i : = r - 1 step - 1 until 2 do 
if x[i] + x[i-1] ~ xl then go to mO; 
i := l; 

z[j] :=if r > i then i else r -
end; 
if z[l] ~ 1 then go to ml; 
for j : = 1, j + 1 while z [j] < j do z [j] : = j; 

for i : = 0 step 1 until m do aa[i] : = O; 
for i : = 1 step 1 until n do 
begin h[i] : = y[i]; q : = x[i]; 

xx[i] : = if kO then q else q >< q 
end; 
bl := b2 :=false; r := -1; t := O; 

iterat: 
r : = r + 1; s : = 1.0; 
comment Computation of the divided difference schemes; 
if kl then 
begin 

for i : = 1 step 1 until p do 
begin 

s := -s; j := z[i]; q :== x[j]; 
c[i] := (h[j] + s X t)/q; d[i] := s/q 

end 
end 
else 
for i : = 1 step 1 until p do 
begins:= -s; c[i] := h[z[i]] + s X t; d{i] :=send; 
for i : = 2 step 1 until p do 

for j : = p step - 1 until i do 
begin 

q := xx[z[j]] - xx[z[l+j-i]]; 
c[j] := (c[j] - c[j-1])/q; 
d[j] : = (d[j] - d[j-1])/q 

end; 
dt := -c[p]/d[p]; t := t + dt; 
comment Computation of the polynomial coefficients; 
for i : = m step - 1 until 0 do 
begin 

daa[i] := c[i+l] + dt X d[i+l]; q := xx[z[i+l]]; 
for j : = i step 1 until m - 1 do 

daa[j] := daa[j] - q X daa[j+l] 
end; 
for i := 0 step 1 until m do aa[i] := aa[i] + daa[i]; 
comment Evaluation of the polynomial to get the approxima-

tion errors; 
max:= O; 
for i : = 1 step 1 until n do 
begin 

s := aa[m]; q := xx[i]; 
for j : = m - 1 step - 1 untill 0 do s : = s X q + aa [j]; 
if kl thens:= s X x[i]; 
q := h[i] := y[i] - s; 
if abs (q) > max then max : = abs(q) 



COLLECTED ALGORITHMS (cont.) 

m2: 

end; 
comment Test for alternating signs; 
j := -sign (h[z[l]]); 
for i : = 2 step 1 until p do. 

if sign (h[z[i]]) = j then j : = -j else 
begin bl : = true; go to m2 end; 

comment Search for another reference; 
exchange (n, p, h, epsh, z, m2); 
if r < maxit then go to iterat else b2 : = true; 
comment Results to output parameters; 

for i := 0 step 1 until m do a[ql+iXq2] := aa[i]; 
for i : = 1 step 1 until p do ref[i] : = z[i]; 
hmax :=max; maxit := r; 
if bl then go to exsign; 
if b2 then go to exmaxit 

end 
end procedure approx 

409-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

ALGORITHM 410 
Partial Sorting [M 1] 
J. M. Chambers [Recd. 15 July 1970] 
Bell Telephone Laboratories, Murray Hill, NJ 07974 

Key Words and Phrases: sorting, partial sorting, order 
statistics 

CR Categories: 5.31 

Description 
We introduce the notion of partial sorting as follows. Given an 

array A of N elements the result of sorting the array (in place) is 
to arrange the elements of A so that 
A(l) S A(2) S · · · S A(N). 
An equivalent statement is that, for J = 1, 2, · · · , N, A(J) is a 
value such that for 1 s I < J < K s N 
A(I) S A(J) S A(K) (1) 
This property is also equivalent to the statement that A(J) is the 
Jth order statistic [4] of A, for all J. 

Partial sorting is a procedure which rearranges A so that ( l) 
holds for some selected values of J, but not necessarily for all J. 
The advantage of using partial sorting, where possible, is that the 
cost is substantially less than for sorting, when the number of order 
statistics required is small compared to N. 

Such will frequently be the case, for example, in statistical applic
ations, when the sample is to be summarized using some of the 
order statistics. For large N only a portion of the sample would be 
needed, even for displays such as the empirical distribution function. 

Specifically, in the algo:.-ithm PSORT below, the user supplies the 
array A of size N and a set of indices IND of size NI. On return, 
A will have been rearranged so that relation (1) holds, i.e. A(J) has 
the value it would have if A were sorted, for J = IND(l), IND(2), 
... , IND(NI). 

For example, suppose A is the vector (10., 8., 3., 5., 7., 2.) and 
IND is the vector (2, 5). Then after a partial sort of A with IND, 
A(2) = 3. and A(5) = 8 .. 

Table I. Examples of PSORT. C = number of comparisons, 

-1.0 
N NI IND c T c 

100 2 33 67 303 11.0 384 
100 3 25 50 75 323 11.8 468 
500 2 33 67 1122 36.0 1356 
500 3 25 50 75 1182 37.9 1414 
500 3 125 250 375 1628 49.3 2213 
500 Call to SORT 151.3 

1000 3 250 500 750 3258 96.9 4870 

410-P 1- 0 

The method used is based on Hoare's method [1, 2] as de
veloped by Singleton [3]. Hoare's method consists of choosing an 
element A (m) and splitting the array into three portions which are 
respectively smaller than, equal to, and larger than this element. 
The method is then applied recursively to the first and third por
tions, until the data is completely sorted. Successive versions 
leading to [2] alter the method in four important respects. (i) in
stead of choosing A(m) arbitrarily, the median of the first, last and 
middle element are chosen; (ii) the recursion is simulated, rather 
than explicit; (iii) short sequences (less than 10 in [3]) are sorted 
by a "sinking" sort; (iv) a different treatment of "tied" observations 
is introduced. 

Hoare's method is very well suited to handle the partial sorting 
problem. The algorithm is modified simply by passing over the 
portion of A in which none of the indices in IND are found. Once 
we have established a segment of A which is known not to contain 
any of the desired order statistics, there is no need to sort it further. 
The special case of NI = 1 was treated in procedure FIND of [1]. 

For a fixed number of indices, the cost of applying PSORT is 
very nearly proportional to N, as opposed to the full sort, with 
cost of the order of Nlog(N). Because of the simplicity of the 
modified algorithm, the cost of PSORT will almost always be sig
nificantly less than the cost of the full sort, providing NI is sub
stantially less than N. Notice, however, that a full sort will be carried 
out unless some adjacent elements of IND differ by more than 10. 

The following restrictions are to be noted: it is assumed that 
IND is initially sorted into ascending order; A is of type REAL; 
if N is the dimension of the A array then the arrays INDU, INDL, 
I U, IL must have dimension K where N < 2K+I, (see [3]); 

Examples. Table I gives some examples of the performance of 
PSORT on various size arrays with various initial orderings. The 
examples were constructed as follows. Samples of N were simulated 
with a standard normal marginal distribution, and a correlation p 

with an ordered normal sample. (Specifically we generated ai, bi for 
i = 1, · · · , N as independent standard normal variates, then 
formed Yi = pai + (1 - p2)!bi and sorted the Yi, carrying along 
the a;. The resulting a; are the desired input to PSORT.) 

Computations were carried out in two ways. By replacing the 
comparisons of elements in A by special functions, the number of 
comparisons required was counted, and is shown in the columns of 
Table I headed C. This gives a machine independent result, but 
does not include the costs of transposition, logic, etc. Therefore, 
we also give timings for the original algorithm, on a GE 635 com
puter, in the columns headed T. The unit of time is one millisecond. 

The results of Table I suggest, as one would expect, that the 
most expensive case, for given value of NI, is for the desired order 
statistics to be evenly spaced; i.e. JN/(NI+l) for j = 1, · · · , NI. 
For this worst case, the cost does grow proportionately to N (a 
little less than that, in the table). 

A comparison with the full sort, using Singleton's algorithm, 
is included for sample size 500. 

T = time in 10-3 sec. 

Correlation with ordered data 
-0.5 0.0 +o.5 +1.0 

T c T c T c T 

14.2 392 14.2 386 13.6 291 9.0 
17.5 429 15.9 470 16.7 329 10.2 
43.7 1169 36.7 1362 41.3 1121 27.8 
46.3 1307 41.5 1406 43.1 1181 29.9 
70.l 2184 71.3 2205 67.2 1748 43.9 

151.2 150.2 150.4 150.9 
145.1 4438 137 .27 4725 140.4 3503 85.6 



COLLECTED ALGORITHMS (cont.) 

References 
1. Hoare, C. A. R. Algorithms 63, Partition; 64, Quicksort; and 
65, Find. Comm ACM 4 (July 1961), 321-322. 
2. Hoare, C. A. R. Quicksort. Comput. J. 5 (1962), 10-15. 
3. Singleton, R. S. Algorithm 347 Sort. Comm. ACM 12 (1969), 
185-186. 
4. Wilks, S.S. Mathematical Statistics. Wiley, New York, 1962, 
p.234. 

Algorithm 

SUBROUTINE PSORTIA,~,NI I 
PARAMETERS TO PSORT HAVE. THE FOLLOWING MEANING 
A ARRAY TO BE SORTEC 
N ~IUMBE R OF ELEMENTS IN A 
INO ARRAY CF INOICES IN ASCENDING ORDER 
NI NUMBER OF ELEMENTS IN IND 

ornENSICN AINI, INQl'jl I 
DrnENSICN INOUI 161. INDL 1161 
DIMENSICN IUl161,ILl161 
INTEGER P 
JL~l 

Ju~rH 

INUL 111 = l 
INDUI 11 =f'd 

ARRAYS INDL, INCU Ki:EP ACCOUNT OF THE PC'RTION OF IND RELATED TO THE 
CURRENT SEG~ENT OF DATA BEING ORDF.REC. 

l=l 
J=N 
M=I 
IF([.GE.JI GO Tu 70 

C. FIR~T ORUER Alll,A(J),Alll+Jl/2), ANC USF MEOIA/14 TO SPLIT THE DATA 
10 K=I 

IJ"( l+J l/2 
T=Al IJ I 
IFfAlll.LE.TI GU TO 20 
Al !J l=A 111 
Al I l=T 
T=Al IJI 

.20 L=,I 
IFIAIJl.GE.TI GO TO 40 
AIIJl=AIJI 
Al.ll=T 
T=AI I JI 
lf(Alll.LE.TI GU TO 40 
Al IJ I =A 111 
Al n l=T 
T=ll 11 JI 
GO TO 4C 

3-0 Alll=All'l 
AIKl=TT 

40 L=t-1 
IFIAILl.GT.TI GU TO 40 
TT=AlU 

c SPLIT THE D.olfA INTC All TO u.u.r. AIK TO Jl.GT.T 
,0 K=I'.+ l 

IF!A(Kl.LT.TI GO TO 50 
IFIK.LE.L I GO TC 30 
INDLIMl=JL 
INDUIMl=JU 
P=l'I 
M=l'l+l 

C SPLIT THE LARGER OF THE SEGMENTS 
IFIL-1.LE.J-KI GC TC 60 
ILIPl=I 
IUI P l=L 
l=I'. 

C SKIP ALL SEGMENTS NLT CORRESPONDING TO AN ENTRY IN IND 
~'> IFIJL.Gl.JUI GO TO 70 

IFllNOIJLl.GE.11 GO TO 58 
JL=JL+l 
GO TO 55 ,H INDUIPl=JL-1 
GO TO er 

60 ILIPl=K 
IUIPl=J 
J=l 

b'> IFIJL.GT.JUI GC TO 70 
IFllNDIJUl.LE.JI GO TO 68 
JU=JU-1 
GO TO 65 

oil INDLIPl=JU+l 
GO TO ec 

7G M=l'l-1 
IFIM.EQ.O I RETURN 
I= IL IM I 
J=IUIMI 
JL~INDLIMI 
JU=I NDU IM I 
IFIJL.Gl.JUI GO TO 10 

bl IFIJ-1.0.101 GO TO 10 
IFll.EQ.11 GO TO 5 
1=1-l 

')(, l=l+l 
If( l.EQ.JI GO TC 70 
l=AI 1+11 
IFIAlll.LE.TI GU TO 90 
K= I 

lvC AIK+ll=AIKI 
K=K-1 
IF IT. LT. A I K II GG TO l 00 
Al K+ 11 =l 
GO ro 9C 
END 

410-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 411 

Three Procedures for the Stable 
Marriage Problem [HJ 
D.G. McVitie* and L.B. Wilson (Recd. 12 Aug. 1968 
and 15 July 1969) 
Computing Laboratory, University of Newcastle 
upon Tyne, Newcastle upon Tyne, NEI 7RU, 
England 

Key Words and Phrases: assignment problems, assignment pro
cedures, combinatorics, discrete mathematics, operations research, 
stable marriage problem, university entrance 

CR Categories: 5.30 

Part 1 
procedure GS (malechoice, femalechoice, marriage, count, n); 

value n; integer count, n; 
integer array malechoice, femalechoice, marriage; 

comment This procedure finds the male optimal stable marriage 
solution using the Gale and Shapley algorithm. The result is 
left in the integer array marriage. Thus marriage [i] is the man 
whom the ith woman marries. n is the size of the problem, 
count is the number of proposals made before the stable marriage 
is found. malechoice and femalechoice are the choice matrices 
for the men and women respectively, i.e. femalechoice[i, j] 
is the jth choice of the ith woman. The femalechoice array is 
changed to the integer array Jc, where fc[i, jj is the choice num
ber (first, second, third, ... ) of the jth man- to woman i. This 
new arrangement is adopted for convenience when the women 
compare proposals. All the women keep a dummy man 0 in sus
pense initially. This dummy man is given a choice number n + 1 
so that he will be given up as soon as any other offer is made; 

begin 
integer i, m, j; Boolean array refuse [O:n]; 
integer array Jc [1 :n, O:n], proposal, malecounter [1 :n]; 
for i : = 1 step 1 until n do 
begin 

for j : = 1 step 1 until /1 do 
Jc [i, femalechoice [i, j]] : = j; 

comment The femalechoice array is rearranged for conven
ience in the marriage part of the procedure; 
refuse [i] : = true; marriage [i] : = O; 
malecounter [i] : = 1; Jc [i, O] : = n + 1 

end; 
count:= O; 

PROPOSE: 
m := O; 
comment Now the rejected men propose to the next woman in 

their choice lists. Initially all the men propose to their first 
choices; 

*Now at Software Science, Ltd., Wilmslow, Cheshire, England. 

for i : = 1 step 1 until n do 
if refuse [i] then 
begin 

411-P 1- 0 

proposal [i] : = malechoice [i, malecounter [ill; 
malecounter [i] : = malecounter [i] + 1; 
m : = m + 1 ; refuse [i] : = false 

end 
else proposal [i] : = - 1; 

if m = 0 then go to FINISH; 
comment The procedure terminates if at any stage no proposals 

are made by the men; 
count:= count + m; 
comment In the next part of the procedure all the ~n who 

have had a proposal decide whetber to reject it ...,, the one 
they are keeping in suspense; 

for i : = 1 step 1 until n do 
if proposal [i] > 0 then 
begin 

j : = proposal [il; 
if Jc U, i] > Jc U, marriage Ull th•~n refuse [i] : ,= true 
else 
begin refuse [marriage UH . - true; marriage Ul : = end 

end; 
go to PROPOSE; 

FINISH: 
end of procedure GS 

Part 2 
procedure MW(malechoice, femalechoice, marriage, coulll, n); 

value n; integer count, n; 
integer array malechoice, femalechoice, marriage; 

comment The heading is the same as for the GS procedure and 
the formal parameters have the same meaning. Also the female
choice array has been rearranged in the array Jc as before, and 
the women given initially a dummy man 0 with choice number 
11 + 1; 

begin 
integer i, j; 
integer array Jc [1 :n, O:n], malecounter [1 :11]; 
procedure PROPOSAL (i); value i; integer i; 
comment This procedure makes the next proposal for man i 

and calls the procedure REFUSAL to see what effect this 
proposal will have. The procedure does nothing if man i is 
the dummy man O; 

if i ~ 0 then 
begin 

integer j; count : = count + 1; 
j : = malecounter[i]; ma/ecounter[i] : = j + 1; 
REFUSAL(i, malechoice[i, j]) 

end; 
procedure REFUSAL(i, j); value i, j; integer i, j; 
comment This procedure decides wh(:ther woman .i should keep 

the man she is holding in suspense in marriageUl or man i 
who has just proposed to her. Whichever she rejects goes 
back to the procedure PROPOSAL to make his next proposal; 

if fcU, marriage[j]] > fcU, i] then 
begin 

integer k; 
k : = marriagel/]; marriagel/] : = i; 
PROPOSAL(k) 

end 



COLLECTED ALGORITHMS (cont.) 

else PROPOSAL(i); 
for i : = 1 step 1 until n do 
begin 

for j : = 1 step 1 until n do 
fc[i, femalechoice[i,j]] : = j; 

marriage[i] : = O; malecounter[i] : = 1 ;J'C[i, O] : = n + 1 
end; 
count : = O; 
for i : = 1 step 1 until n do PROPOSAL(i); 
comment This for statement operates. the algorithm and after 

the ith cycle a set of stable marriages exists for the men 1 to i 
and i of the women; 

end of procedure MW 

Part 3 
procedure ALL STABLE MARRIAGES (malechoice,femaleclwice, 

n, STABLE MARRIAGE); 
value n; 
integer array malechoice, femalechoice; 
integer n; procedure STABLE MARRIAGE; 

comment malechoice and femalechoice are the same arrays as were 
used in GS and MW, n is size of problem. STABLE MARRIAGE 
(marriage, n, count) is a procedure (with three parameters) writ
ten by the user which is entered when a rn~w stable marriage is 
formed after count proposals. The marriage is stored such that 
marriage[i] contains the number of the man married to woman i.· 
The locally declared Boolean array unchanged is used to make 
sure Rule (2) is not violated; i.e. during a breakmarriage opera
tion started on man i only men ;:::: i may propose. The locally 
declared Boolean success is set true if breakmarriage to man i 
leads to a new stable marriage, otherwise it is set false; 

begin 
integer :array marriage, malecounter [O: n], j'c [1: n, 0: n]; 
Boolean array unchanged [O: n]; 
integer i, j, k; Boolean success; 
proceduil'e breakmarriage(malecounter,marriage,i,n,count); 

value malecounter, marriage, i, n, count; 
integer i, n, count; integer array malecounter, marriage; 

comment This procedure breaks the marriage of man i; 
begin 

integer j; 
marriage [malechoice [i, malecounter [i]-1]] . - -i; 
proposal (i,malecounter,marriage,count); 
if -. success then go to EXIT; 
STABLE MARRIAGE (marriage,n,count); 
for j : = i step 1 until n - 1 do 

breakmarriage (malecounter,marriage,j,n,count); 
comment The lower limit i in the above for statement is the 

application of Rule(l) which after a successful break
marriage operation on man i restricts fuirther breakmarriages 
to men;:::: i; 

for j ; = i + 1 step 1 until n - 1 do 
unchanged [j] : = true; 

EXIT: 
unchanged [i] : = false; 

end of breakmarriage; 
procedull"e proposal (i, malec, marriage, c); 

value i; 
integer i,c; integer array malec, marriage; 

comment In this procedure man i proposes to the next woman 
in his choice list, and calls the procedure refusal for this 
woman. If i is negative on entry then a successful break
marriage operation has been completed and a new stable 
marriage found. If the Boolean success is made false during 
a breakmarriage operation then it means that this break
marriage has failed; 

if i < 0 then success : = true 

411-P 2-

else if i = 0 V malec [i] = n + 1 V -. unchanged [i] 
then success : = false 

else 
begin 

c : = c + 1; j : = ma lee [i]; malec [i] : = j + 1 ; 
refusal (i,malechoice[i,j],malec ,marriage ,c) 

end of proposal; 
procedure refusal (i,j,malec,marriage,c); 

value i,j; 
integer i,j,c; integer array malec, marriage; 

0 

comment This procedure decides whether woman j prefers man 
i or the man in marriage [j]. Whichever she rejects goes back 
to the procedure proposal to make his next choice; 

if Jc, [j, abs (marriage [j])] > ft·[j,i] then 
begin 

k : = marriage [j]; marriage [j] 
proposal (k,malec,marriage,c) 

end 
else proposal (i,malec,marriage,c); 
for i : = 1 step 1 until n do 
begin 

for j : = 1 step 1 until n do 
fc[i,femalechoice [i,j]] : = j; 

i· 
' 

marriage [i] : = O; malecounter [i] : = 1; 
fc[i,O] : = n + 1; unchanged [i] : = true; 

end; 
count : = O; 
for i : = 1 step 1 until /1 do 

proposal (i,malecounter,marriage,count); 
comment Male optimal stable solution found\; 
ST ABLE MARRIAGE (marriage,n,count); 
for i : = 1 step 1 until n - 1 do 

breakmarriage (malecounter, marriage, i,n,count); 
end of procedure ALL STABLE MARRIAGES 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 412 

Graph Plotter [J6] 
Josef Cermak (Recd. 19 Mar. 1970 and 12 Nov. 1970) 
Department of Physics, University of Chemical 
Technology, Pardubice 1 CSSR. 

Key Words and Phrases: plot, graph, lineprinter plot 
CR Categories: 4.41 

procedure graphplotter (N, x, y, m, n, xerror, yerror, g, L, S, EM' 
CO, Cl, C2, C3, C4, label); 
value N, m, n, xerror, yerror, g, L, S; 
array x, y; integer N, g, m, n, L, S; real xerror, yerror; 
string EM, CO, Cl, C2, C3, C4; label label; 

comment This procedure is functionally identical with Algorithm 
278. It needs, however, a significantly smaller array than Al
gorithm 278 for storage of the graph before it is printed. The 
procedure is intended to be used to give an approximate graph
ical display of a multivalued function y[i, j] of x[i], on a line 
printer. Output channel N is used for all output. The graph is 
plotted for those points such that 1 ~ i ~ m and 1 ~ j ~ n 
where 2 ~ n ~ 4. If n == 1, then y must be a one-dimensional 
array y[i] and the graph is plotted for x[i] and y[i] for 1 ~ i ~ 
m. The format of the output is arranged so that a margin of g 
spaces appears on the left-hand edge of the graph. L and S 
specify the number of lines down the page and the number of 
spaces across the page which the graph is to occupy, respec
tively. The graph is printed so that lines 1 and L correspond tc 
the minimum and maximum values of x, and character posi
tions 1 and S correspond to the minimum and maximum values 
of y. That is to say, y is plotted across the page and x is plotted 
down the page. After the entire graph has been plotted, the 
minimum and maximum values for x and y are printed out in 
order xmin, xmax, ymin, ymax. The argument EM represents 
the character which is printed on the perimeter of the display. 
The argument CO represents the character printed at empty 
positions. The arguments, Cl, C2, C3, C4, represent the charac
ters printed for y[i, 1], y[i, 2], y[i, 3], and y[i, 4], respectively. 
At those points at which more than one character would ap
pear, the order of preference is Cl, C2, C3, C4. Control is 
passed from graph-plotter to the point whose label appears as 
the parameter label if the range of x[i] is less than xerror, or 
if the range of y[i, j] is less than yerror, for all j. If the values of 
x[i] occur at equal intervals, choosing L = m will make one 
line of printout equivalent to one interval of x. The graph may 
look somewhat out of true proportion since this algorithm as
sumes that spacing along both axes is the same, but most line 
printers do not have the same spacing between adjacent lines 
as between adjacent characters on a line; 

begin 
real p, q, xmax, xmin, ymax, ymin; 
integer i, j; 
integer array plot L, ind [1 :L], plot S [1 :SJ; 
xmax := xmin := x[l]; 
for i : = 2 step 1 until m do 
begin 

if x[i] > xmax then xmax : = x[i] else 

412-P 1- 0 

if x[i] < xmin then xmin : = x[i] 
end of hunt for maximum and minimum values of x; 
if n = 1 then go to NIA; 
ymax := ymin := y[l, 1]: 
for i : = 1 step 1 until m do 

for j : = step 1 until /1 do 
begin 

if y[i, j] > ymax then ymax : = y[i, j] else 
if y[i, j] < ymin then ymin : = y[i, j] 

end of hunt for maximum and minimum values of y; 

escape: 
if abs(xmax-xmin) < xerror V abs(ymax-ymin) < yerror 

then go to label; 
p := (L-l)/(xmax-xmin); q := (S-1)/(ymax-ymin); 
for i : = 1 step 1 until L do plot L[i] : = 1; 
for i : = m step-1 until 1 do 
begin 

integer r; 
r := 1 + entier ((x[i]-xmin)Xp-t-0.5); 
plot L[r] : = O; ind[r] : = i 

end; 
NEWLINE (N, 1); SPACE (N, g); 
comment NEWLINE and SPACE must be declared globally to 

graphplotter, NEWLINE (N, p) outputs p carriage returns 
and p line feeds on channel N, SPACE (N, p) outputs p 
blank character positions on channel N; 

for j : = 1 step 1 until S do outstring (N, EM); 
for i : = 1 step 1 until L do 
begin 

plotS[1] :=plots [SJ:= 1; 
for j : = 2 step 1 until S - 1 do plot S[j] : = 2; 
if plot L[i] = 0 then 
begin 

if /1 = 1 then 
plot S [1 +en tier (0.5+qX (y[ind[i]]- ymin))] 3 
else 
for j : = n step - 1 until 1 do 
plot S [l+entier (0.5+qX(y[ind [i], j]-ymin))] := j + 2 

end; 
NEWLINE (N, 1); SPACE (N, g); 
for j : = 1 step 1 until S do 
begin 

switch SW:= SWl, SW2, SW3, SW4, SW5, SW6; 
go to SW [plot s[j]]; 

SWl: 
outstring (N, EM); 

SW2: 
outstring (N, CO); 

SW3: 
outstring (N, Cl); 

SW4: 
outstring (N, C2); 

SW5: 
outstring [N, C3); 

SW6: 
outstring (N, C4); 

fin: 
end; 

end; 

go to fin; 

go to.fin; 

go to.fin; 

goto.fin; 

go to.fin; 

NEWLINE (N, 2); SPACE (N, g); 
for j : = 1 step 1 until S do outstring (N, EM); 
NEWLINE (N, 2); SPACE (N, g);; outreal (N, xmin); 



COLLECTED ALGORITHMS (cont.) 

out real (N, xmax); 
out real (N, ymin); outreal (N, ymax); 
go to end; 

NIA: 
ymax := ymin := y[l]; 
for i : = 2 step 1 until m do 
begin 

if y[i] > ymax then ymax : = y[i] else 
if y[i] < ymin then ymin : = y[i] 

end of hunt for maximum and minimum values of y when 
n = 1; 

go to escape; 
end: 
end of graphplotter 

Remark on Algorithm 412 [J6] 
Graph Plotter [Joseph Cermak, Comm. ACM 14 (July 
1971), 492-493] 

Richard P. Watkins [Recd. 31 Jan. 1972], Mathematics 
Department, Royal Melbourne Institute of Technology, 
Melbourne, Australia 3000 

This algorithm is not functionally identical to Algorithm 278 
as claimed. If the x[i] values are not uniformly spaced or if 111 > L, 
it is possible for two or more of them to correspond to the same 
printer line. In this case, the array ind will contain only the largest 
of the values of i and only one set of y[i, jj values, corresponding to 
that value of i, will be plotted. 

The array ind is redundant. The following changes enable 
p/otL to take over the functions of ind (where all line numbers refer 
to lines relative to the label escape): 

a. Line 4. Replace 

for i : = 1 step 1 until L do plotL[i] : = 1 

by 

for i : = I step 1 until L do plotL[i] : = 0 

b. Line 9. Replace 

plotL[r] : = O; i11d[r] : = i 

by 

plotL[r] : = i 

c. Line 21. Replace 

if plotL[i] = 0 then 

by 

if plotLlil > 0 then 

d. Line 24. Replace 

p/otS 11 -t- entier(0.5 -t- q X (y[i11d[ijj -ymi11)) j . - 3 

by 

plotSll +entier(0.5-t-qX (y[p/01L[ijj-ymi11))j := 3 

e. Line 27. Replace 

plotS [I + e11tier(0.5 + q X (y[ind[iJ,jj - ymi11))] : = j + 2 

by 

plotSll + emier(0.5 + q X (y[plotL[iJ,j] - ymi11))] : = j + 2 

412-P 2- RI 

(The referee has noted that there is a typographical error on the 
fifth line before the line labeled escape. Replace 

for j : = step I until 11 do 

by 

for j : = I step I until 11 do 

He has also noted that the array declaration for ind should be 
deleted if the above changes are made.-L.D.F.) 



COLLECTED ALGORITHMS FROM CACM 

Editor's note: The algorithm described here is available on magnetic 
tape. The text plus the listing of the algorithm will be printed in the 
Collected Algorithms from CACM. The charge for the taped algo
rithm is $J6.00 (U.S. and Canada) or $J8.00 (elsewhere). If the user 
sends us a small tape (wt. less than J lb.) we will copy the algorithm 
on it and return it to him at a charge of $10.00 (U.S. only). All orders 
are to be prepaid with checks payable to "ACM Algorithms." The 
algorithm is recorded as one file of BCD BO-character card images at 
556 B.P.l., even parity, on seven-track tape. If requested, the algo
rithm is supplied at a density of 800 B.P.l. The cards for the algorithm 
are sequenced starting at JO and incremented by JO. The sequence 
number is right-justified in column 80. Although every attempt is made 
to insure that the algorithm conforms to the printed description, no 
guarantee is made, nor is there a guarantee that the algorithm is 
correct. -L.D .F. 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission. tThis research was supported in part by 
National Science Foundation research grant number NSF-GP-16071 
from the Division of Mathematical and Physical Sciences. 

Copyright© 1971, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, an algo

rithm is granted, provided that reference is made to this publica
tion, to its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Association for 
Computing Machinery. 

413-P 1- 0 

Algorithm 413 

ENTCAF and ENTCRE: 
Evaluation of Normalized 
Taylor Coefficients of an 
Analytic Function [C5] 
J.N. Lyness,* Argonne National Laboratory, Argonne, 
IL 60439, and G. Sande,t Department of Statistics, 
The University of Chicago, Chicago, IL 60637 (Recd. 
17 June 1968, 12 Feb 1970, and 20 July 1970) 

Key Words and Phrases: Taylor coefficients, Taylor series, 
Cauchy integral, numerical integration, numerical differentiation, 
interpolation, complex variable, complex arithmetic, fast Fourier 
transform 

CR Categories: 5.12, 5.13, 5.16 

Description 
Introduction. Two subroutines, ENTCAF and ENTCRE, 

coded in ANSI FORTRAN are described here. ENTCAF may be 
used to calculate approximations rsa!ml to a set of normalized 
Taylor coefficients 

r8as = r"f(•l(r)/s! s = 0,1,2, .... (1.1) 

The values of rand r, a complex number, are provided by the user 
together with a function subprogram that represents /(z) as a 
complex-valued function of a complex variable. The user also pro
vides a value of Ereq, the required absolute accuracy. The routine 
returns an accuracy estimate Ees t together with approximations 
r•a;ml and a number m. These are supposed to satisfy 

I r:a!m) - r8as I < Eest s = 0,1,2, ... 'm - 1, 
Ir as I < Eest s = m, m + 1 ...... 

(1.2) 

A result status indicator NCODE is output. If Eest > Er•q this gives 
a brief indication of why the required accuracy was not achieved. 

ENTCRE carries out the same task as ENTCAF in the case that 
r is real and also that /(z) is real when z is real. In this special and 
common case, ENTCRE is about twice as economic as ENTCAF. 

Outline of method. The Taylor coefficients as occur in the Taylor 
series 

00 

f (z) = L a,(z - r) 8
, I z - r I < Re' (2.1) 

s-o 

where Re is the radius of convergence of the Taylor series. Cauchy's 
theorem provides a set of integral representations. One of these is 

r• f f(z) 
r"a. = ---: ( ) dz, r < Re , 

27rl c r z - r s+l 
(2.2) 

where Cr is the circle I z - r I = r. The approximation r•a;m) is 
obtained by replacing the integral in (2.2) by an approximation 
based on an m-point trapezoidal rule approximation. Specifically, 

m-1 

r"a. ~ r•a;ml = m-1 ~exp (-27rijs/m)f(r + rexp (27rz}/m)), (
2

.
3
) 

s = 0,1, ... , m - 1. 



COLLECTED ALGORITHMS (cont .. ) 

The calcullation is in two parts. The first part (stages 1, 2, and 3) 
is iterative in nature. Using (2.3) the approximations aJm> with 
m = 1,2,4,8, · · · are calculated. The function values are retained. 
The convergence criterion is based on the circumstance that the 
true value 

ao = f(t) (2.4) 

of one of the approximations a6ml may be determined by a single 
function evaluation. A rather involved convergence criterion based 
on the orderly approach of the sequence aa"'>' m = 1,2,4, ... ' to its 
limiting value ao is used. This is described in some detail by Lyness 
[8]. 

When the convergence of aam> to a0 has been achieved the routine 
carries out the second part (stage 4). This consists of evaluating 
r'a;m> from (2.3) for s = 0,1, · · · , m - 1 using the function values 
calculated and retained during the first part. A fast Fourier trans
form technique is used for this calculation. This is particularly 
appropriate since m is a power of two. The derivation and imple
mentation of this technique is described in Gentleman and Sande 
(5, pp. 566-7]. The specialized version used in ENTCRE is 
described in Sande [9]. 

Restrictions: theoretical. There are two restrictions of a theo
retical nature. 

1. The value of r must be less than the radius of convergence, 
Re , of the Taylor series. So long as this condition is satisfied, it 
can be shown (see [5] and [8]) that 

I r"a,, I < Kp", 

I r•a;m) - las I < Kpm+s /(1 - pm), 
(3.1) 

where p is any number greater than r/ Re and K depends on p. Thus 
the approximations approach their limiting values and there are 
only a finite number of normalized Taylor coefficients whose 
magnitude exceeds Ereq • If this restriction is violated, that is, a 
value of r ;:::: Re is chosen, then in general the sequence r"a~m> 
converges, but not to r•a • . Instead it converg,es to the integral on 
the right in (2.2), but (2.2) is not generally vailid if r ;:::: Re . Thus 
the routine itself fails to converge since aam) does not approach 
f(t) in the limit of increasing m. 

2. The function /(z) must not be an odd function of (z - t). 
While the convergence criterion based on (2.4) has much to recom
mend it, it does have one serious drawback. If it happens (as it does 
in the case f(z) = sin (z); r = 0) that 

f(z - t) =-~ ·-f(t - z), (3.2) 

then every approximation aam> is zero, as is the true value a0 • The 
routine then finds that it converges immediately. In this case the 
problem should be reformulated. One defines g(z) = /(z) / (z - t) 
or g(z) = (z - t)f(z). The Taylor ~oefficients A. of g(z) = tare 
then calculated using ENTCAF. A. is the same as a.+1 or a._1 as 
the case may be. 

Restrictions: practical. There are two principal practical re
strictions. These arise because (1) the computer uses finite length 
floating-point arithmetic; (2) execution cannot be allowed to 
continue indefinitely; at some stage it has to terminate whether 
or not the calculation is complete. 

An output status parameter NCODE indicates to the user 
whether the results have been significantly affected by either of 
these restrictions. 

1. Roundoff error. The routine requires as an input parameter 
the machine accuracy parameter EM. The approximations r"a;m> 
giyen by (2.3) are of such a form that an estimate of the roundoff 
error level is 

E;".',; = EM max I/Cr+ r exp (27rij/m)) I· 
j-~ ••.. , m-1 

(3.3) 

If, at any stage it appears that 

Ereq < 10 If;".'] , (3.4) 

the routine internally replaces Ereq by 10 E;':'] and either terminates 

413-P 2 0 

(input NCODE negative) or continues with the calculation (input 
NCODE nonnegative). 

2. Physical upper limit. This is defined by an input parameter 
N MAX. Iterations in the first part to calculate acim>, m = 1,2,4,8, ... , 
with m < N MAX are possible. If convergence has not been achieved 
by this stage, the calculation is completed. 

The output status parameter NCO DE is + 1 ff all went well. In 
general NCODE = 0 if the calculation was terminated; is positive 
if it converged and negative if it did not converge; has magnitude 
1 if roundoff error was not observed; and has magnitude 2 if 
roundoff error was observed. 

If NCODE -.e 0, the returned value Eest corresponds to the 
estimated accuracy of TCOF(J) whether or not convergence or 
roundoff error occurred. If NCODE = 0, the quantity 10 E;~ is 
returned in place of Ees 1 • 

Comments. The algorithms described here deliver approxima
tions to a set of normalized Taylor coefficients r•a • . It is natural 
to ask why this choice of output was made, rather than perhaps a 
set of Taylor coefficients a. or a set of derivatives j(B)(t). The most 
immediate reason is that the algorithm naturally provides a set or 
normalized Taylor coefficients to a uniform absolute accuracy. 
The user specifies rand Ereq only. If, for example, one is interested 
in a set of derivatives, the specification of the accuracy requirements 
becomes very much more complicated. However, if one looks 
ahead to the use to which the Taylor coefficients are to be put, one 
finds in many cases that uniform accuracy in normalized Taylor 
coefficients corresponds to the sort of accuracy requirement which 
is most convenient. 

As an illustration we considP. .. a very trivial problem. We wish 
to represent /" (x) as a polynomial in the interval (-1,1) to an 
accuracy E. Clearly 

oo 1 
00 (x)•-2 !" (x) = L s(s - l)a. xa-2 = -; L s(s - l)a, r8 -.-2 r a=2 r 

(4.1) 

A very crude approach might be to taker = / and E = r2E/6. In 
this case the error in the sth term is less than s(s - l)E(x/l)a-2/6. 
One cannot be assured that for x ~ 1 these errors may not cooperate 
in such a way as to lose the required accuracy. However, if r is 
chosen to be greater than / and E = r2(1 - l/r) 3E/2 then it follows 
at.once that if the allowed error in a., r• is less thah E, the error in 
f" (x) is less tpan E. These two approaches represent extremes. 
Neither take into account that the sequence a.rs itself approaches 
zero and for high values of s it is unnecessary to bound the error 
in omitting such a term by E. A more complicated formula based on 
(3.1) is derived by Lyness and Delves [5], eq. (2.9). But the under
lying feature of any of these approaches to approximating (4.1) 
is that a uniform absolute accuracy for a.rs, s = 0,1,2, ... , is very 
convenient for this problem. If the algorithm instead calculated 
/<•) (0) to a specified relative accuracy, the determination of the 
accuracy to use in this problem would be very much more involved. 

Possible modifications. The general approach to a numerical 
calculation by means of the numerical evaluation of contour 
integrals is at present an open field for investigation. The algo · 
rithms described here may be used in several problems known to 
the authors. These are: (a) determination of zeros of analytic func
tion (7, 1, and 5]; (b) numerical differentiation [7, 6]; (c) numerical 
quadrature [8]. 

In particular applications, modifications of ENTCAF or 
ENTCRE can lead to more efficient calculations. Possible modifi
cations include: (a) Provision for calculation of only some of the 
Taylor coefficients, for example, s even or s ~ 12; (b) Provision 
for a "subsequent return option" which allows the same calculation 
to be taken up at a later stage if it is found subsequently that higher 
accuracy is required; (c) Provision for an "early exit." Used in 
conjunction with (b) this would enable the program to consider 
intermediate results to determine whether to continue with the 
current values of r and E, before a high investment of computer 
time has been made. 

In fact, ENTCRE is a special modification of ENTCAF de
signed for a particular application, r real, /(x) real. The output 



COLLECTED ALGORITHMS (cont.) 

status parameter NCODE is of particular use in these applications 
since it allows appropriate remedial action to be taken under pro
gram control. 

Algorithms which include modifications (b) and (c) above have 
been used by the first author. However, these involve complicated 
logic and are strongly connected with the particular application. 
The algorithms listed here may be modified by the user in par
ticular applications for any large scale use. However, in pilot runs 
or small scale calculations they are adequate as they stand. 

Comparisons and examples. In [6] and [8), several numerical 
examples are given, and comparisons with other methods are made. 
So far as the determination of zeros of an analytic function is con
cerned, the method described in [6] has some advantages in a 
global situation, but should not be used locally. For numerical 
quadrature, the method described [8) is definitely superior to 
standard methods if there is a nearby pole or singularity of a special 
type. In these cases a proper evaluation depends on the details of 
the problem under consideration. 

It is in problems involving numerical differentiation that the 
method on which these algorithms are based show up to great 
advantage. This is simply because, once the use of complex function 
values is allowed, the numerical instability associated with numeri
cal differentiation may be avoided. 

In [6], a different but related method for numerical differentia
tion is described. The remarks about the roundoff error given there 
apply to these routines also. There as an example, the calcula
tion of f<B> (0) was considered for 

f(x) = e"'/(sin3(x) + cos3(x)). 

The actual value of this derivative is an integer, namely 

/<6>(0) = -164. 

In order to provide some sort of comparison, a special algo
rithm for numerical differentiation based on polynomial interpola
tion was written using only function values at real abscissas. A set 
of several dozen numerical experiments were carried out on a 
machine for which EM = 3 X 10-u. The closest result was in error 
by 10-2; the worst result had the wrong sign. 

ENTCRE was then used for the same problem in an attempt to 
obtain seven-digit accuracy, i.e. an absolute accuracy of E = 10-4. 
A sequence of values of r was used, with in each case Ereq = r 5 X 
10-4;5 ! and input parameter NCO DE = -1 to secure immediate 
termination if roundoff error prevented a sufficiently accurate 
result from being attained. With r = 0.1 and r = 0.2, execution 
terminated using in each case one complex and three real function 
values. With r = 0.4, the result 

j<t»(O) = -164.00000013 

was obtained at a cost of 15 complex and three real function values 
(m = 32); the accuracy estimate given by the algorithm was 

Eest = Eest 5!/r• = 6 X 10-6• 

Incidentally, an absolute accuracy of less than 10-4 was estimated 
and a better accuracy obtained for r = 0.3, 0.4, 0.5, 0.6, 0.7 
with m = 32, 32, 64, 64, 128, respectively. For r = 0.8 and r = 0.9 
the routine failed to converge with m = 128 giving absurd results 
and estimates. These latter values of r are greater than the radius 
of convergence Re= 7r/4. 

The role played by the output status parameter NCODE is 
illustrated in this example. With r = 0.1 and r = 0.2, the value of 
NCODEindicated immediately that the results were not to be taken 
seriously because of roundoff error. With r = 0.8 and r = 0.9, 
the value of NCODE indicated that the results were not to be taken 
seriously because of lack of convergence. Thus the calculation 
could have been carried out completely under program control, 
with a driver program finding for itself an appropriate value of r. 
An efficient program for this application would require modifi
cations (a), (b), and (c) of the previous section. 

The testing of the algorithm included the calculation of high-

413-P 3- 0 

order derivatives. In general, it frequently happens that even when 
analytic closed expressions are known for such derivatives, these 
expressions are difficult to evaluate because of excessive subtraction 
error. Cases in point include the functions e"'/x and sin(x)/x. 
Programs were written to evaluate the first 80 derivatives of these 
functions at x = 5, 10, 20, 40, and 80. It turned out that meaningful 
results could be obtained. For exampl1!, for f(x) ,= e"' Ix, using 
r = 32 and Ereq = 10-10, ENTCRE gives 

/< 25>(40) = 3 .6560469 x 1016 

with an estimated relative accuracy of 2. 5 X l0-9
• These results 

were compared with those obtained using an algorithm due to 
Gautschi and Klein [2, 3). In all cases examined corresponding 
results agreed to within the calculated error estimate. 

References 

1. Delves, L.M., and Lyness, J.N. A numerical method for 
locating the zeros of an analytic function. Math. Comput. 21 
(1967)' 543-560. 
2. Gautschi, W., and Klein, B.J. Recursive computation of certain 
derivatives-A study of error propagation, Comm. ACM 13 (Jan. 
1970), 7-9. 
3. Gautschi, W., and Klein, B.J. R282 Derivatives of e"'/x, 
cos(x) and sin(x)/x. Comm. ACM 13 (Jan. 1970), 53-54. 
4. Gentleman, W.M., and Sande, G. Fast Fourier transforms
for fun and profit. Proc. AFIPS 1966 FJCc, Vol. 29, Spartan Books, 
New York, pp. 563-578. 
5. Lyness, J.N., and Delves, L.M. On numerical contour 
integration round a closed contour. Math. Comput. 21 (1967), 
561-577. 
6. Lyness, J.N., and Moler, C.B., Numerical differentiation of 
analytic functions. SIAM J. Numer. Anal. 4 (1967), 202-210. 
7. Lyness, J.N. Numerical algorithms based on the theory of 
complex variables. Proc. ACM 22nd Nat. Conf. 1967, pp. 125-134. 
8. Lyness, J.N. Quadrature methods based on complex function 
values. Math. Comput. 23 (1969), 601-620. 
9. Sande, G., Fast Fourier transform--A globaly complex 
algorithm with locally real implementation. Proc. 4th Ann. 
Princeton Symp. on Information Scienc1es and Systems, 1970, pp. 
136-142. 

Algorithm 

c 
c 

<;11<>ROUTINF ~NTCRE ( CFliN• Zflil• RC[R(;, EPRt::U• FPt-lACH• NMA)(, l\ICODEt 
• .-µf5T. 1-JTCllF. rcoF. ~IORK, NTAJJ. Sl,!IAk ) 

EVALUATION Or NOPMAL!1.Ell TAYLOR Cl)fFFIC!E:.NTS *" 
OF A !?EAL ANALYTIC FUNCTION 

C "" GENt:.R~l PllRP<J5E 
C THIS Dl)UTINr h/•11 llATf.S A ,,UM 11.0..ir~ALIZfU TAYLOR Cl)EfFICIENTS 
C TCOF( J+\) = <RClRC<Hf.JJ t> IJ-TH llrfJIVAf!Vt: OF CFU'l<71 AT Z=ZETAI 
c DIVIDFll HY rA(f'J>t[AL(.J) .... J = o.i.z,3.,,NMAx-1. 
C TO A IJM!FORM AIJS01.Uf£ ACCUf.'ACY "*FPE'>l"" USING FUNCTION 
C VALllF<; OF CHJN(ZJ AT POINTS IN THE COMPL~X PLANE LYING ON 
c THF C:IPCLE OF µ11u1uc; ""RC:lfJC*" Ill[ TH CE,1H.R AT z = n:TA. 
c THIS .rnuTINt:: 1c; A '>PECIAL Vl:1·6ION (jf l:l"fCM FOi-i llSF. WHEN 
C 7E.TA t<; REAL AND ALSO CFUN!ZI !'> f>FAL W~·EN 7 IS PF.Ill• 
c 
C "* THfCl"fTICAL RE5TJ.l!CTI0,1<; "* 
C PC!RC MUSl tlf <;MALL!'.'< THAN T~lf RAJ1!US OF CONVERGEMCF Of 
C THF: TAYLOR '>ffllt S. THE PRO[l[ FM HllS TO tit:. REFORMULATED 
C SHrJUl 0 CFllNl·ll HflPPEllj TO Ht: A1" OUIJ FUl\ICI ION 
C OF <7 - ZFHl , THAT IS If THF. PfLATif1N 
C ** -CF!IN(-U-ZET/ll l=CFU•Hl.-/ftA) "" JC, AN ll)ENT!TY. 
c 
c 
c 

'"'' RFIJlllREMENTS FOR CALLIN(, PROl;RAM <><> 
CALi.l'ir, PJ.lOl;R~M MIJ'if CONlAll\I C!lNlRllL STATEMENTS DESCRIHEO 
NOTE'> (J) A'm 14) HELOw. !1 Mll'iT AL<;() ASSIGN >/ALUFS TO 
INPUT PARAMt TF.RS, ft-IE ROUT !Nf R~_llUI ><ES TWO SUHPR01;RAMS • 
HFCOF <L [<;ff() AFl!:.R f.NTCRt' I A-.iJ CFllN <Sf.E NOTE (4l HELOWl • 

'"'INPUT PA../A~FTfµ<;<H> 
(I) CFllN NIIMI' OF CU,..f'LF ~ Fl.INC r I rJN SUliJ.lf.l()ul<AM. 
12) 7FTA >ff/IL P!l!Nf A>HlUf wt-!ICH TAYLOR EXPAN~:)!ON IS REUUIRElJ 
13) RCTRC RAll!LJ<; !REAi.) 
(4) EPl<ftl lHE AHSOLUTf ACCURACY !REALI TO wH!CH THF. 

NOfJM/\l_ IZEll l'AYLfJ>i COf.FF!Ct.t-JTS• lCOF (J) • ARF. l<[QUIRE:tl 
15> f1.>'•ACH IHF '·'ACH!Nf ACC:lffJACY f'ARAMflF>< (Rl:ALl 

<OR A;, llµP~\J 1llJU"Jl• ON )H~ 'lfl.Al!VI:. AC(.IJPACY OF 
•JIJAl\JflTF.'i L!Kt.lf JO flf FrJCOll,df>'Elll, 

lfil NM/IX P>•y<;JC11L UPPFk l )Ml 1 O"J THf SIZE AND lf•1c;H1 
OF r Ht. c AIJUL Ar ION. r Hf 'IAX I MUM NUMl:fffJ . OF 
CrJEFF ICIEMT<; C•\LCULATl:.ll will. HE THAT f>O\.fR OF TWO 
1.r5S T>-iAN OR f:lllfAL fll •1;~AX, NMAJ( 15 AS!"llME:O TO 
Hf Al 1.t/\ST >j, ISft N1>TE IJ) H~.LOW), 

17> .irnl1f .r,f,l) Tiff wl)l)f[NF •'ll.L IJU A<, WELL AS Ir C/\N, 
,) 1,\1 TH~. h'Ollfl-.F '•ILL AllOPl AT AN F.ARl.Y STAGE 
IF THE .>f:CIU[Rr.il A(C:U>'ACY CAt'J'10T flt: ATTA[1,1EO 
Ht:C.,U'.>f_ Of ROlldl1 OFF t:l<Rllw, 



COLLECTED ALGORITHMS (cont.) 

C (I 2l l\JT AH 
c 

IN ~JlJfJMAI. RU~11\JI''li• NTJIH SHOlllll HI:. SE:T TO ZERO 
'ir.FnRE T>-if. f I><<;T C~LL TO ENTCl<t.o AUT LffT ALONE 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c: 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

AFTff' T>-iAT, IFOI< M0flf StWHIST!CATEU tlSFo '>EE 
tJtJTPuT 1-'AClA'!EHR'> 112! ANO 113> ANO t~OTF:<2> HELOW) 

~-_,. 1JU fPtJI P•\kl\Mr. TEtl'- '"' 
(Jlol?)d)lol4)t(S)o(h) Itlr_NTICAL "lfTH 11\Jl-'llT VAl_tJFS. 

17! >1C<lllf RFSUl.T STAlllS J'illJC:AlllR. 

If\) n>f 15T 

(9) 'ITCOf 

I Io l TC'OI 

Ill> 01nRK 

( 12) 1·Jl AF\ 

<I Jl <, J NY t.11 

T~n.s 01;E tlF FlVf VAltlr.'O AS FOLLO-•S• 
= +I. co•1vu-11,En Wll<MALL y. 
= -I• ll [ll rJ<l I CU•IVUl<>t • NO •lUll~lll Of F ~RRUR 
rrJ(Jlldl.f. 
= +(', ('t)l~Vt<.1r,f"\J, Hiii ·•I fH A Hl(,HE.R TOLFRANCE 
sr:T >IY T>-if_ >ll)'J~•lJ ()ff LtVU .• IEYFSf.Gf.FPREQ) 
= -?. Diil Ml[ CONVHIGF li'J Sf-'I ft: OF HlliHfR 
TOIJ.<.111:.CE St: I 1-<Y Rl"IUMl OFF LEVEL. 

O. f-'IJ'' tv<I', lll:Hll-' I t.ll 1<1:.COtlSf U'l<f<J IS 
lll\J1\TTftl'JllHl.t: 'ltll Tn kOtlNIJ OFF LfVEL Al\lfl INPUT 
f•C'1l1t: IS l\Jr.1»1 TI Vf, 
~.STl1~ATE Of AClUAL UNff•)kM AHSULLITE ACCIJRACY 
If\! ALL TCnF. f~CFl-'l o If NCODE.EO.O ESTIMATE:. 
nF 1<011"'11 OFF l E VF:l .• 
Ml'ltll:P OF .;o,;T•'1VTAL VALUES OF TCOF AClllALLY 
CALCIJlhTEn. P-<EY llh'f HASE!> ON NTCOF/.?+i' CALLS 
OF CF11r, (]H>ltt CALI.'> wERt Fol-I 1-'URELY 
t-11 O\ llt-/(;tlMft·J fl. 
h'FAI. tlI~1E.NSTIF' lf'l'1l • ~>'PRO~IMATION5 TO lHE 
NO>lr-<l•LIZEil TAYLOI·' \Orff IC!FNfS, fXCEPT ~HEN 
<HITl'llT •;l'()lrF = o. IS~.f Nl"lfr.IJ) 1-Jfl_UW> 
IN!t:l<Nlll l•'<Wl\Ji'IG 11Rt:A OF REAL iJIMENSION <DIM> 
ISff. "'0ff("l) •1fU1<1,) CONTE~ITS 15 IlJOITJCAL WITH 
T H,i f OF TCOF • 
NIJ"1Hh> '1F viii tlE':> llf- S HJ! Afl AV/\ I LA8LE 
l'ift NOTf (?) Ht:I f)"<), 

REAi_ IJJ~t:N'->!11/\i !IJJ~1/4l • ISJ:E NUTfS (2) ANO (J) 

HFL(lW,) SINTA'-'IJ+I l = 'dN(f'I<>J/c<>NTAHl 
J.:: 0•1•2••••1,;-1AH-J. 
(A IJtlARfFR CYCLU llTHFk LOCATIONS ARE f"1PTY. 

C NOH<, ilN INl-'UT/IHJTl-'UT 1-'ARO"FTtRS "* 
C 'IOTF 11 l '"' i"COIJE IS tJSfP HOTM AS Tl\J>'UT ANO OUfl'IJT PARAMETEI<, 
C NORMAi.i Y IT RFTfd'JS THF_ VALUF_ +I ANll f"FEO '"OT Hf RF SET 
c HE T\ff<""' t<OP'1AI. f<iJiJS. 
C N()TF1;.>J<><> T•if 1\P1Jflll-IA"1Cf- Of tJTAH A"JO S!NTAH IN THE 
c CAI l. T'·Jl~ SHJ•.IFMU. lllllit•~ fHt IJSF:.- fO l~A~E ll~f OF - ()p JO 
C PRFCnMIJUTF - P-•~- SF ,,lJ•IHF>lS !>J ll'"OTf'fl< PAKT OF THF. 1-'ROt;RAM 
c 5'1011/ ,, Hf. SU l)f~ ]/Ir.. •,T l\H Mil'> T bt- 4 PO•rll-1 OF r .io Ill-I o. 
c NOTFI U"" THE APPEARANCf. <)f h:MAXoTcm.,,ol<K A•JI) SI•ITAfl IN 
C THf \~I LJN(, '>fll<lt'·ICE /\L l_()"'S IHF SCfJPl rlF THt: <,UHPRnGRAM AND 
C THE A••ntl•1T <>f STO•>AGF TO Ht AS">IGNffJ HY THE CALLINh 
C PPOGR·I''• ''Hlf.H '-,1ithlLIJ COl\Jff.H• A C0~1TROL ::.fAH•H:t"T TO THF. 
C FOLi OJl'\JG FHfCT -
c 1-1FA1. rcnF<uT-~>. :·•<WKllilM>, <;JNIAllill!M/4> 
c '•>-ifRF <'l]M !~ i'Jl)Jl;~au.Y A 1-'0wEr< OF 1"1U. "'MAX IS NO!lMALLY 
C: f()UAI. Tll DIM• HUT MAY tff. I ES'i THAN •ll"• 
C NOTFC4)n<> CFllNl/l IS A OSEI-I PROVIOEO COMPLEX VAl:UED 

F1J~·CT[ON SIJt;PR()(,RAM wJl•; A COMPUX VALIJft) ARGUMENT. THE 
CAU l'•i<' f'R(Jbl-IAM MllSf CONTAJ~J CONT><Ol SfAfEMENTS AS FOLLOWS -

t XTf•>'tAL. Crill" cnMl-'l.fX CFll~I 

"" HOOt'KrF"IN<, f'l\l-IAMFTf'<'i fl)K STAGf. ONt 
NCnNv I Cf\NVE1,1;u1n: i•Ccl I F.vr l). 

-·I •ill COMVl:>ll>E•ICF oCHitVFll. 
NPntl'•ll I •10 kO<I~") OFF T>lOtJ•,l.t: o:-istRVl:D. 

;> llOll•liJ OFF l l.ll)thlf llH~Lh'Vt IJ. 
NAflO<il Ii lll-'llllTF fUl.E'IAt;Ct. ANO ('Ol"T TfltJt ON Al-'PEAYANCE OF 

Of wou1,I) Of r Tl,OIJ>-<L t:. 
Tf'<Mil\,ATE WH01 ROIJ~ilJ OFF TROllrJLF Otl'>fllVf.U. 

C E:XArT THt. FXACT VllLtlf OF TCOF 1 ll Wf-<JCH IS CFUNl!FTA), 
C 'iAFFTY lH!S I'> 11 <;AF[ TY FACftlK HY i;1-<!CH fHI:. R1l1JlTl\JE AVOIDS 
C T lit_ l-lfllJl·JI) OFF L.F Vf.l. I I IS SF T T 0 l 0 • () A'JlJ 
C l\Pf-'FA<.1c, l)~ILY IN ]Ht CllMtlTNATlllN (~AFET'f*l:.P"1ACH)·, 

C Tll ALTFf< THIS FA\fl)f', OR TO l<fMOVt" THl R()tlND OFF 
C f.R•IO!l GUAl-l1J CrJMPU T El Y • THE USF_K NEHl ONLY ADJUST 
c 
c 

THt INf-'IJT PARAMf IFI' rf'MAC>-< 11PPROP1<IATELY. 

C ntlANI ITitS CALCllLAlfU TN SfllliE THktE (A) ;'* 
C THIS JS !Ht Fll<ST PART 'lf" ITH<ATI0'1 NUMHfY NTCOF, 1->RESE.NTLY 
C AVA II A'<Lf A>lF -
C Sl~ITM1(J+ll = SI'JIPJ*,ll<''"ITAl1) , ,I= o.i,~ .... NTAii-I, 
C WE RF()lill<f. l"HF SF.1lUE"ICI S],'l(l-'J;o·,J/t'*(NfrOF/'+l l, 
C J = J. loS• .. .(NfC11F/4-I), 
c IF ''ITl"OF.1.r .• 4*"JTAH) l'ir_SF NllMlicRS ARE ALl-ltAllY •WATLAHLE IN 
C lHF ST'1TAR fAHLE SPACEIJ l\f AN i"'Hl<Vl\L ,><>NSllACE. = R<>NfMl/NTCOF, 
C OTHF:llwlSE • NTCOF = fl*NfAll ANll THE: SINTAR fAtlLE IS tiPIJAIED. 
C lHTS TMVOLVtS ilfl\PRANGil\Jb THF •1TAli VALIJr'i AVAILAHLf, 
C CALCllJ_ATIN(, ANll '">TrJRINh Nfllfl >.1f·w \llll<JfS Al"U Ul-'O•HI•IG 
C NTAR TO ?*NfAtl, 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

'"' llllA,1TIT!f<; CALCULAIF:IJ IN SIAGf. Tl-•Ktt(tl) "* 
ITE<HTIOl•S llRE NIJM8F.1-<t11 ,qolfio32• .. ,llT THE ENI) OF ITERATION 

NTCnF. THE: '~TC:OF/? + I COMPLFX FUNCTION VAl.UES llT 
A8SC I SSAS PU;tJL At-IL Y SPACE'l UN llPl-'FI< HALF Of CIRCLE ARE 
STOPF.•1 IN TliE TCOF vt:CTnR A<; FOLLOWS. 

TCOF1.J+I) = llEl\L PAI-IT OF CFUN<l<Jl) J=o.i,2 ..... NTCOF/2, 
TCOF C'ITCOF-.J+ l) = l'~Ardl~Af'Y 1-'llRT OF CFtJNIZ (Jl) 

.i=l •l• ••. ("TCOf /2-1). 
WHE'IE 

Zl.Jl = lfTA • RCIRC"C:i::XP(t'*PT<>EYE*J/1,TCOFl 
THIS T"VOLVtS A Kfl\RRAJ'IGFMENT OF THE NTCOF/4 + 1 FllNCTION 
VALUH; AVl\It.A>!J_t AT THI' <;TAI-IT OF T'1E ITERATION l\Nll THE 
CAI Clli ATIDN OF A Fui<THEl-I NTCOf/4 r°UNCTl1lN VALUE.S, IN 
AllD!T IClN FMAX l\NLJ APPROX AfJE. CALC11LATF.D, fHESE ARF 

FMAX MAX !MUM M'11JULllS OF THE FUNCTION VALUES. SO FAR 
fNCOUN ff l<EIJ • 

APPR()X Ai'i APP!<O~IMAIION TO TCOFlll 
RASUl UN THESE FUNCTION VALUE<;, 

""' llllAi'illTIEo CALCl.ILAHD AT STAGE THllEE.IC> 
fRPn11l CURRE"T Vlllilf Of THF ftlRllR = A':lSIAPPROl(-F:XACT>. 
ERROR?,ERRUk)oERJ.lllR4 VJ\LIJES OF ERROR AT l:.NO OF THPEE 

PRr_Vf'JllS ITF'<AT!Oi'IS, 
FPMA('H MACHI NF ACCURACY 1-'ARAME ltR, ( ]Ni-'Ul PARllMElF.Rl 
EPRFO RF<)IJl>lfll ACCU•lACY, (INPUT PARAMI:. TEP) 
EPR'1 HiuHt'.>T 1\CC'Jf'ACY REASOf\IAHLY ATTAINAHLE IN VIEW OF 

THF. <;JLE OF THE FUNCTION VALUES SO FAR ENrOUNTERED. 
C: l=lll,0"E>'"4ACH<>FM/IX) 
C EPCOF CUKRf.N TL Y f~EOll IRFD ACCIJRllCY ( =A1'1AX I IEPHEQ oEPRO l) • 
C EPF<;T fSI !MhTE OF ClJJ"lROIT ACCURACY. <THI:. MAKllMllM OF EPRO 
C A~'I> A ~UNCTION OF ERl-IORS J,2,J ANll 4) .:OUTPUT PARAMETlRl 
c 
c 
c 
c 
c 
c 
(. 

c 

on CClNl/i:.RGfNCE ANIJ TERMINAlinM CHECi<S IN STAGE IHREEIC) "* 
(]) tlSES fMAX TO RA!SF EPCOF AHOVE ROUND OFF u:vn.. IF 

THIS lS NFCF.SSAl<Y AND THE INPUT VALUE OF NCODE IS NEGATIVE• 
IT TF'"'11NATES Sl:.TT!NG NC<lllf. = O, 

l?l q<;ES llf-'PPOX TO F.VALtJhTE. CuNVft-IGENCE OF TCOf" (I> TOWARDS 
l:XACT. IT MAY ASSIGN CONVE.l-l<>~NCE !\NU GO TO STllGF. FOUR(A) 
SETTl'IG NCOllF =+I OR +2, 

413-P 4-

13> llSES NMA~ TO CHECK PHYSICAL LI.MIT. IF THIS HAS BEEN 
REACHflJ, II GOES TO ~TAG!:. FOllR(Al SETTING NCODE = -1 OFI -2. 

(4l ()THEPWISE CUNTINUt:'S l\JfXT ITERATION BY GOING TO STAGE THREE 
c 
C D<> C:ALCULAI ION OF FIRST NTCOF TAYl_Oll COEFFICIENT<; IN 
C <><> <;TAGf ftJU>l(A) 
C A VfRS!ON OF T11f FA~T FOtl'llt:R TRA·~SFOR<~ USING A WORK ARFIAY 
C IS USFll, THE llRRAY <>l>wllRI<"* IS USE[) ONLY UUl<Ii.G THIS STAGE. 
C THF 1mRK ARl-IAY ALLO'•'> THE Pl:.f<•~Uf!N(; OF INUJCES ASSOCIATED 
C WITH ['1-PLACE FFTS TO RE SIJPPRESSEIJ, Tf-<E FFl CALCllLATES 
C THF NFC:CESSARY SU>.\MAT!ONS EXCEPT FOi< DIV!UING BY NTCOF, 
c 
c 
c 
c 
c 
c 

"" SETTING Uf RFMAIN!NG TAYLOI-' CUfFFICIENTS IN SUr.F FOUR(t!) 
THF cnNVEJlGE•ICE CRITF.ldON ALI ows us TO INFEI< THAT THE 

NIJRMAL!ZFO !AYLOR COEFf ICJFNT'i Of UR1)EI< GREATER Tf-IAN NTCOf 
ARF ZF1~(l TO ACCURACY fPF.<;T. THE.Y ARE EVALUATED AS BEING 
fXACTi.Y ZFRI), 

UlMPLfX CFtlN 
RFAL lFfAol<Cli<CoEIJRFrJor.f'MACH•lt'F.ST 
TNT EGt:R N.~AX, "'C()[lf o l\Jl CnF, Nl AH 
RFl\L TCUF (j), WORK lllo <;INTAtl (I) 
T NTlbtR NAHOllT, 1,CONV, Nil I SP, "'UOL IM, NP REV, NROUND, NS PACE 
I :oJTEGf.R J •,JCONJ, JCIJS, Jf l<OM • Jt-IC\lf\IJ, JRU l •JSIN, .JTO 
RF Al APl-'ROx, COSD IF, EPCOF, EPM IN, El-'RO, t::P J2' EP42 
RFllL ERR'11-/l ,ERROR2oERl<OR3,EllROR4,EXACT•FMAX•FVAL IM 
RF Ill FVALRE. Rens. RS IN. SAFET y' <;CALE. SUPPER' TWOP I 
\cJMPLFX FVAL o lVl\L 
C'lMPlf X CMPL X 

STAGE ()\Jf 

i'llTJlli !SE HOOKKEFl-'JN(, PARAMF.HRS ANIJ EXACT VALUE OF TCOf(l), 
N<lllU~lfl = I 
':AHORT = n 
TF INCOIJE,l T ,Q) NAHORf = I 
EPCOF = Ef.>Pl:.•l 
"'FETY = 10.0 
7vn = CMPI x IZF rA.0.0) 
FvAL = CF11N<1VALl 
F•/Al.l-lf = REALCfVAl.l 
fXACT =Fl/ALI-If 

<;TAl;f Tw1l 

FIRST THREE IltYAT(ON'> ( THOSf WIJH NTCnt 
7VAL = CMPL.XUt fA+RCJllC.o.o> 
FVAL = CF11N(/VAL) 
FvALRE = REAL IFVALI 
APPROX = FVlll.PE 
Ft1AX = AASIFVAL•lfl 
rcnF<ll = FVJ\Lll!:_ 
f- ,:ii>r)llJ = A•I'> I AIJ>'kOX-[XACT l 
!VAL = CMIJJ.XC7ETA-RCJr<C.o.o> 
FVAL = CFtlNllVALI 
FVnLRE = >lfAL IFVALI 
Af.>IJROX = o ,<,<> ( APPl<OX +FVAL RF l 
F'1AX = AMAX! IFMAXoAHS<FVAt.RE> l 
TrnFI I) = FVllLR[ 
F"lli<OR? = /lf\S ( APPPnX-F XACT l 
/\/AL = CMPLX ILFfil,f<Cil-IC) 
fVl\L = CF"l1•\•(/Vlll.) 
FVALkE = ><f_AL (f VAL) 
Fv~Ll"1 = A1MA1;if-VAL> 
APPPOX = 0,'>" IAl'PRIJX+FVAl RU 
FIA/IX = AMAX! <FMAXoCAH'> IFVlll_)) 
TCllF I?> = FV1ILRE 
TCnF(4) = FVAL!M 
FRROR l = 1\1-!S ( 1\PPROX-f-_XACT) 
l\JTCOF = 4 
f PPO = f Ml\X"'>AFETY<>fPMACH 
IF IE::PR\l,[_ 1,t:.PCtlf > GO TO 100 

FPCOF = f.l-'RO 
W~OIJl\JIJ = 2 
TF ("'1IRORT .t:0.0) GO TO 100 
''CODF. = il 
FPf">T = Ff-'Ru 
1'0 TO 4 l<l 
<;TAG!' fHREE 

CO"M[:Jrl:: I H.PA l I UN NUl'Ht:R NT COF, 
)00 fn"T INllf 

NP"EV = f\ITC:OF 
~ITCOf = ?<>NT COf 

<;TAGE THr>EEIA) 

llPOATF STMTAB TAlllE IF NtCESSARY. 
IF (4"NTAb.<>f .• •JTCOF> GO TO ]4[1 
IF INTAH,Gf .• c) l;O TO 310 

'>I NT Ati (I) 0 .O 
Sl'ITAH Ii'! = SIJl'T ((J,':>) 

t;TAl:l = ~ 
r,o To 340 

31 0 Cnt" TI NUf. 
Nllnl IM = NT AH- I 
llO 320 J = I oNllill JM 

IFROM = Nl •\1\-J 
ITO = c'*.Jf"IWM 

'-.I"ITAH urn+ 11 = <;JNTllH UFROM• 1 > 
320 (1)r,1T I NI.It-_ 

NHH = c*l~l llH 
T .inP I = H, U "A 1 A., (I, n) 

Cn<;Dlf = COS(hrtlPI/FLOAT(4*NT/lt:l)) 
N1>'1ll'1 = Nf,\H-1 
r1n 330 .I= loNDOl!Mo2 

<;f'JTAH (.J+ I> = IO,S*Si'iTAll(J) +O,S<>SJNTAH(J+2l > /COSOH" 
330 r~nNTIMlt 

ST•JTAtllNfl\Rl = COSlllf 
341) C'l,•rTNllt 

<;TAGf THI-IEE (Ii) 

UPDllTF I. !ST Of flJNCf!ON VALllFS IN fCOF, 
CAI Cl If A TE FMA X ANIJ APPROX. 

N'1llLJM = NPRl:V-1 
flq 3'00 .J = loNDOLT"1 

IF'<0•1 = NPRF V-J 
JTO = ?<>JrR•)M 
lCIJF(JTll+l) = TCOF(JFl<0'1+1l 

3Sn C:()l•T JNUr_ 
S· IPl-'t.f< 0 .tJ 
~ldOLIM (NPR~_V/2l-I 
N<;PACE l4<>NTA'll /i'ITC1JF 
[)I) JfiO ,I = I oNillll TMo,> 

JS J i'i .J*NSIJllCf 
JCO'i "TA[j-.J<; IN 
<>SI•I PCIPC*SINTAHIJSJ~l+I) 

RC()S l<CIRCwSH•TA8LICOS+I) 
.JCONJ = NT COF-.J 
!VAL = CMPLX (lf. TA+RC'OS•RSINl 
FVAL = C:FllNllVAL) 
FVALRt = Rf: AL IFVAL) 

0 



COLLECTED ALGORITHMS (cont.) 

c 

Fl/ALIM = AIMA{;ffVAU 
SUPPf.H = SUPl'Ell+FVAL.llE 
FMAX : AMAX! Cf"MAX+CAHS(fVALl) 
TCOFIJ•ll = FVALIJE 
TCOF <JCO"IJ+l> = FVALJM 
.JREFL = fllf'HEll-J 
JRCONJ = NTCOF-JRFFL 
71/AL = CMPLX ( Zfll-RCOS.RS IN> 
FVAL = CFUNIZllAL> 
FVALHt = f!EAL <FVAL) 
FVAL IM = Al"4AG(FV.\l.) 
SUPPER = SIJPPER+f 11"1..Rt 
F"4AX = AMAXl(FMAX+Cll11S(FVAL>l 
TCOF" ( .JRFFL.+ I> = FVAL.ltl:. 
TCOf < .JRCOM.J+ J > = FV4L IM 

3l>O CONT INUt 
APPROX = 0 .'>*APPROX+'>IJl'Pf.IJ/FLOATlf\IPHEVl 

<;T AGE Tl-tPl::E I U 

CONVfPf;ENCE ANO Tl:.RMINATION CHE.CK. 
FPIJOR4 = f.RHORJ 
FRIJOR3 = t:RPOR2 
f_RROR2 = ERIJORI 
FRRORI = AHS I APPROX-tXACT l 
fPRO = r MAX"SAFETV•EPMACM 
!F <EPRO,LT.EPCOF> GIJ TO 3711 

FPCOF = FPRO 
NROUNll = ? 
rF (NARORf,f_Q,0) GO TO 370 
"CODE = 0 
~.PFST = EPRO 
r,o To 4 1 o 

370 (ONTll<Ut. 
FPPOR4 = A-t_Aq (E.l>ROR4,EPRO> 
FRROl'U : AMAXI ([tJROR3•EPRO> 
F<>42 = t.RROR2"((ERRUR?/El>ROR4)<tt>(4.0/),0)) 
fP32 = £Rf/OR2"( (fPPOR?/E.RROR3>""2l 
FPMIN = Af>'!NI IFRR0Ri'+f:P32+fP42> 
fPf<;T = A"Ol (fl~RORl,£PM!N·f.PROl 
IF nPF'iT,GT.EPC:OF> GU 10 3il0 

•iC:O"JV : I 
r;() 10 4011 

3RO rnNTIMI~_ 

ff <2"NlCOF.U ."JMAX) GO TO 300 
NCONV = -1 
STAGt FOUR(A) 

c -··-----------------------
( CALCULATION OF r·!R<;T MICOF fllYLUR COt:Ff!CllNTS USllllG F.F.T. 

400 rn1"T 1 ~11JF 
Nroui: = NrON\/<!N1WUNIJ 
Nl)f SP = NTCUF 

410 C'l1MTINUt 
NlllSP = NillSP/2 
CALL hf"COF INTCOF,NDl<;P,TC:OF+>IOHi<+NlAA+SlNTAFll 
IF <NDhP.Gf. l l GO TO 430 
110 420 .J = I• "TC<J~ 

lCOF!J) = WilRK(J) 
420 C()l\j Tl Mlt 

r;n TC' 440 
430 <ONT!MJt. 

O\Jll l SP = 'Ii.I I SP I~ 
<:~LL t-<FCOF (NTCO• +NIJI<;P,WORK,TCOF+NTAlhS!NTAH) 
IF (NPISl'.r;T. I l bO TO 410 

440 C:OMTll\JlJt:. 
SCALF = I .OIFLC1AT <NTCOFl 
[)q 450 J = l•'l/TCClF 

TCOF <.Jl = lC'OF (Jl <>SCALF 
'"l)RK ( J) = r CnF ( J) 

4511 f'ONTl~1Ut. 

C """ <:TJl(;F FCIUR!Hl 

<,fTTf•~G Of" "l:.MAINl•ll; TAYl.OR C0FH ICIENTSo 
IF (NITCllF .G• .• NMl\0 GO 10 470 
"-lfllll l M = "JTCOF •I 
(10 4fltl I : NIHll P·41tf1J""4AJ( 

TC()f" (.J) 0 0 (} 

·•ORK (.I) = 0. 0 
460 rn~IT IMJt. 
4 70 '''"T INl'I:. 

p,·ruR•• 
C t.NIJ OF f.NTrRE 

Fr-..11~ 

<;tJllPOIJT INF t1FCOF ( NfCOF• Nl)!<;P, TCOF• WORK+ NTAB+ S!NTAB > 

c 
C "" <;t Nt.PAI PllRPO<;t 
c THIS llOUT!Nt:. nnt'i O"JE PA'i'i UF A FA'iT FOUR!t.R TRANSFORM. 
C THf lo\lnl:.XlM<; I<; A>-!RAtlGEll SU Tt<AT THE COEFFICIENT<; ARE IN 
C OPDEP /\T H•t. t:NIJ OF THt: LA<;l PASS. Tl-ti<; INUt.XING RE<lUIRES 
C 11-tE IJ'if OF !:>t.PARA H. ARRAYS FOR INPUT ANll UUTPUl OF Tl-tE 

PARTIAL f.l~SULTS. TtH<; 1l'1llTINE. 15 CALLfll UNCf. FOR FACl-t PASS. 

(ll 
( ?l 
(]) 

(S) 

((,) 

INPUT 
"fCOf 
Ml)[SP 
TCOF 
MTflli 
S (Ml A>< 

PARAMETERS "" 
l\llJM>IER OF roE.FF IClfNTS TO HE. PROCE<;SflJ, 
Mf\X I MUM VALUE OF IJ l 'iPL A CEMENT I NIJE X. 
<P•:ill) INPUT Al>RAY. 
1~U..,Ht:Y OF HHIJ!ES II< Sil<TAH. 
(f<fALl TAHLE OF VALUES OF S!Nt:. 
S(;•Tl\n(J•l l=SlN(Pl*J/2*NfA!:ll' j:o,1.2 ••• NTAH-l 

c 
c 
c 
c 

"" OUT>'UT I' AR AME TfR<; "* 
(4) "'ORK <REAU UIJTPUT AHRAY, 

413-P 5- 0 

C IlllUEX!lllG OF ARRllYS *" 
C THE T ,io PO INT FUIJR !ER TRANSFORM IS APPL rt:D TO THE POINTS 
C OF TCnF WITl-t ll\llJICES 
C JnlSP<>NPREV•JREPL ANO Jl)ISl'<>NPllEV•,IRl:.Pl.+NHALF 
C THE RFSULVi ARE MOIJ/FIEO '1Y Tf1£ Af'PROPRll1TE TioliOOLF FACTOR 
C ANO STORED IN WOR'< WITH INDICES 
C Jn>SP*NNl:.XT•.HlEPL llND JOISl'*NNEXT•,IRf.Pl+NPREV 
C WHF<>F 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

P\1•,1F 1..T 
NH~l.F 
lllFYL 

.lnf'iP 

PRUOUCT OF RHIAINING FACTORS. 
PRODUCT Of PREVIOlJ'i FACTOHS. 
PIJOflUCT OF PREVIOUS ANO CURRENT FACTORS. 
PRO<IUCT 0~ PREVIOUS ANO RE:MAINING FACTORS, 
HEPLICAllON INIJEX = \,2 ..... NPREV. 
11f.R"1IflAN SYi~MFTRY IN THIS INUEX RESULTS IN 
TH<JE.E CASES. 
I> l•l! l !Al. f'OINT - JDISP"O• INPUT POINTS 
ARE 1-'URF.LY Rt:AL. AND OUTPll 11 f'OINTS ARf. 
>'•J>'EL Y REAL.. 
i'l "1lDOLl'. f'OINT - JIJISP=tlll!SP/2 - lllOT 
AU~AY'i PPESt NT, IMPlJT POINTS ARf COMPLEX ANO 
OUTPUT POINTS ARE PURELY flEAL. 
Jl INfERMffJIATE POINTS - JUISP=l +2+ •• (NIJISP/2-1 l 
- "IOT ALWAYS PRESENT. IlllPUl POINT<; ARE 
ClJMPLl:.X AND OUTPUT f'O INTS ARE COMPLF X • 

O"J IMPUT• THE HE.RMITIAN SYMMETRY IS IN A RLOCK OF 1.Ef\/GTH 
2<>i'<Ol5P+ 1.1:.. THE POINT COl\IJUGllTI: TO JDISP IS 2*Nll!Sl'-JOISP. 
ON OllTPUT+ THF. HERMITIAN SYMMlTRY IS IN 1\ BLOCK OF LENGTH 

C ND!SP, I.E. THE f'O!Nf C0NJlluATE TO JO!SP IS NOISI'- JOISP, 
C A Hf.<lM!TIAN SYMMt:TllJC HLOC:K 1-'AS Rt_AL PARTS AT Ti-tE FRONT 
C IMAGl!\IARY PART<; «mEN THEY EXIST> AT Tl11:: CONJlJGATF. 
C POSITIONS 11 f Ti-tE HACK, 
c 
c 
c 
c 
c 
c 
c 

THE T.nDOLF Fl\CTOR CEXP(-Pl"FYE"JINlllSP>. J=l+2• •• <Nll!SP/2-ll 
IS 0'1TAINf.ll AS SEPARATE HtAL AND lMAGINAln f'ARTS flJOM 
THF. SINTAB TAHLF. THt: 1"4AGINARY PART SHHPl"J/NOISPl IS 
FOUND AT A SPA<:J•JG OF NSPACl::=2"NTAA/NOISP IN SINfAH. 
THE RFllL PART IS fOU"JO AT A CONJUGATE PO";IlION IN Tl-tE TABLE, 

l•1Tff;fR lliTCUF+"JiJISP+!\iTAH 
RPL TC<1F (ll• ~.IRK <I>+ S!NlAH II> 
rlFAL CS• IS+ lU• lP+ I I •RSor<UeROolll•SN 
I '·I rt.GER JCONJ+ JCOS+ JOT SP+ JRff'L, J'i IN• ,JT + JTC +JWe.JWf"'. +KTO ,KT I 
T·1TEGER ~ T? +KT .l •KWO '' w l +KW2 +~ W3 •N111\LI·· +NI• lijl • "JNFX T t l~PREV +NSPACE 
N11hl.F N TC<iF I"? 
NPRf::V = NlCOf/(;><tfl!IJ['-;1'1 
'hiFXl = "'ri:oF /NUISI-' 
N1~TllL = !NOISP-ll/2 
~t;Pl\CF. = 12"NTA1il l•JIJI<;p 

C INTTT~I. f'OJNT<; OF HLOCK5. 
Dl) I 00 J>'EPL = I• •~PRt V 

KTO = JREPL 
KTI = l<TCl•Nl-tALf 
KWO = .JHEPL 
KWI = Kw•l•NPREV 
<.>0 = lCOF (KTOl 
in = lCOf(KTll 
'<ORK (KWO) = RO•RI 
1o10RK!K\o/ll = RO-RJ 

100 rnNTIMJt. 
C INTfl./M~_l)lllTt. PQHJT'> (1~ AL•JCKS. 

IF (NMl•il .• 1.1.ll Go TO 400 
11() 30U .llJ!SP = l•N'1111L 

.JCOfll.J "' ~·IJ I SP-.JIJ l <;P 
JS IN = .Jll I SP"'~'>IJ ~CE 
ICOS = IHMi-JS!N 

<,N = SINTAtl(.J5!N•l> 
rs .. ::.UITAH(.JC1J<;+\) 
JT = Jllf<;IJU\Jf'~tV 

·'re = .JCO"J.J""J>'RF v 
.JW = .Jll[<;P*-JNEl\T 
.JWC = JC:OMJ"NNEXT 
1•0 ?OU JREPL = l ,"JPl./E\/ 

KTO JT+.JRFPL 
KTl KlO+NHAU 
KT~ = .iTC•.JREf'L 
KT] = ~-I .... MHAL ' 
Kwr I\'.+ .JREI'( 
Kwl = KW0•N,..RFV 
Kw? = J>IL + JRt >'l 
KW] = KW2+NPREV 
<>O TCOF IKTO> 
10 Tf'.IJF (KlJl 
"I TrD~ (Kfcl 
11 -TC•lf"<KTIJ 
RS ll11+Rl 
IS I fl• I I 
RU Rrt-RI 
!II [O-l l 
WOPK(KWI)) t<S 
WOl./K (Kwc) IS 
wORI\ (Kl<l I l Rli"C'i• llJ"SI< 
WORK ( Kv/)) l U*C<;-RU"SN 

200 roNTINLll:. 
JOO f:Of\IT IMUE 
400 ("O~IT INllt: 

C MlllOLF POINT'i •JF •<LOCK'>. 
IF <NIJ!<;P.Lf .1) GO TU bOO 
.IT = (NU ISP/cl <>NPRf.V 
. I.< = ( fllll I SP/ 2 l *N"Jf. X T 
fl·) 5on JRfPI = I •Nf'RtV 

'<TO= JT•Ji>~>'L 

KTI = K ro•NHALf 
KWO = .JV/+JRt>'L 
K'-'ll ~ KWll+NPl"<[V 
LJC) = ICOFIKTOl 
10 = rcoF <~.Tll 
~10RK (KWO) 2.0<>RO 
<ilORK (KWI) = 2,0n(O 

500 ro~1TINU£ 
oOO emir a.ut: 

Pf' l lJRN 
C fNO OF 1-tFCO~ 

f"f) 
SIJA'IOUTINE f.NTCllF (CHIN• ZETll, RC!RC+ EPREQ1 FPMACHt "JMAX, NCQOE+ 

, FPEST• NTCOFo TCOF+ «iOHK, NTAAt EX>'TAtl ) 



COLLECTED ALGORITHMS (cont..) 

c 
c 
r 
c 

EVllLUATION OF NO"lMALIZl:O TAYLOR COEFFICIENTS 
rJF AN ANAL YT IC FUNC [ION 

C "" GENERAL PURPOSE 
C THIS ROIJT IN~- EVALUATES A SET OF NORMALIZED TAYLOR COEFFICIENTS 
C TCOFLJ+ll = <RCIRC<>"J) <> (J-TH 01:.tHVATIVE OF CFUNl7> AT Z=ZETA> 
c DIVIOEn HY fACTOR[AL(J} ••• J = o.i.2,3 ... NMAX-1. 
C TO A 1J~1lFORM AFlSOLUTE ACCURACY ""EP!::ST<><> USING FUNCTION 
C VAl.IJFS Of CFUN<L> AT POINTS IN THE COMPLEX PLANE LYING ON 
C THE CJPCLE OF RADIUS *"RCP<C"" WI TH CENTER AT l = LETA, 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

'"' THEO>lETICAL RFSTRICT IONS "" 
RCIRC MllSl t:IE SMALLER THAN TH[ RADIUS Of' CONVERGENCE Of' 
THf •TAYLOfl -;EPTl'S, THE PROijLfM HAS TO flE REFORMULATED 
SHOULO CFlJN<Zl HAPl-'EN TO HE AN ODD FUNCTION Of IZ - LETA>. 
THAT tS IF THf. flELATlUN <><>-CFUN<-IZ-lETA> >=CFUNIZ-7ETA>*" 
IS AN IDENTITY. 

<><• RE<.JU lflEMlNTS FOR CALL ING Pr/OGRAM "" 
CAU.JNr; PRO\,f<AM MUST CONTAIN CONTROL STATEMENTS OE.SCRJl:IED 
IN NrJHS I Jl /IND (4) HELOW, IT MIJST ALSO ASSIGN VALUES 10 
INPUT PARAMUEPS, THf ROUT !NE Rl:.<JUIRES TWO SUHP~OGRAMS• 
CFCOF <L JSTfD AFTER ENTCAF > ANO CFUN ISH. NOTE (4) RE LOW>• 

<><>INPUT 
( 1) CFUN 
<i'l nTA 

< 1 l l'C I RC 
(4) FPREQ 

('i) FPMACH 

(f> l N"IAX 

< 7) NCOOF 

PARAMETERS<><> 
NAME OF COMPLl':X f!JNCT I ON SUFlPROGRAM, 
COMPLEX POIN[ AHOUT wH!CH TAYLOR ExP.~N<;ION 
IS REOUJRED. 
FIAl)[IJ<; (REAL) 
TH!: AflSOUITf ACCURACY <Rl:.AL> TO WHICH THE 
NORMALIZED TAYLOR COEFFICIENTS, TCOFUl• ARE REQUIRED 
THE MACHINE ACCURACY PAflAMETl:.R <REAL I <OR AN 
lJPf.'fR e!OU~'IJ ON !HE RELATIVE ACCURACY OF 
011•NllTJF<; LIKELY TO 81:. t:N-:OuNIEkEfJ),, 
P'1Y<;JCAL Uf>PER Ll"'ll ON fHt SIZ!:. ANO LENGTH OF 
THE CALCUI ATl<Jt., TH!: MAXJr1U:-1 NUMRt:R Of 
COEFFICIENTS CALCllL,.H:D WILL RE THAT POWER Of 
l'.Jlf) LF:'iJ l '1AN DR F!lUAL TU NMA ~. NMAJ( IS 
ASSUME') TO HE AT L!:.AST 4, (SEE "JOTE (3) RELOW.) 
,GE.O THE t<OUT INF 111ILL IJO A<; Wt.LL AS IT CANo 
,Lf .o THF ROUT !NE WILL. AflORT AT AN EllRL Y 
<;T~l>E IF THE RFOllll'!:.0 ACCURACY CAN~JOT Rt: 
ATTAINED HtCAlJ'iE Of ROUNIJ <JfF ERROR. 

C < li'l NTAH 
c 

IN NORMAL P<JNNl1~f,, NTAfl SHOULI) HI:. SElC TO nRO 
H~_FOR~ Tilt F lR'-T ('ALL TO l:NTCAf • .-IUT LFFT ALONE 
MTHI THAT, <FIW "10Rt SOPH!STICATEO 1.JSF, SEE 
01JTPUT P1IRAMt:TERS <12> 4NO <13) A"IO NOTF:l2) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
c 

Hf-l(lw •} 

OUTPUT PARJ\"1fTFRS ~" 
(J),(;.>J 0 ()),(t;),('i),(h) Ji'F.tHICAL W!TH INPUT VALUES+ 
(1) w:oDE R!:SULT STATIJ', [Nf1TCATrlR. TA~ES ONE OF FIVE 

Vl\L.U!:.S AS FOLl.fJWS+ 
=•I , CO~Jvf ><G• I) NOrlMALL Y, 
=-1, iJ JO NOT CONVEf<t>E, NO ROUND OFF E:RROfl HlOUflLE 
=•?, CllNVt><l>f'iJ, Hill WITH A HIGHER TOLE.RANCE SET 
,,y THE rlOlJNll OFF LEVE:L. <!YEST .GT ,EPJ;!Ell) 
=-?. IJ[i) NOT CIHJVt:flGf IN SPI rt:: or- Hl6H~P 
Tfll.Fi<•"'CF. SI:. T RY l>OUND OFF U:.V!:.L, 
= n. f.'IN W.\'i AflORTEO HECAU'if Ef'flEQ IS 
U"JAfTAJl'llli:ll.F. llU!:. TO "OUNll OH LEVEL ~·Nil INPUT 
•ICOIJI: IS "c(;~TIVE, 

(f>J FPFST FST!t4ATE OF ACTUAL UNIFORM 4HSOLUTE ~.cr.uRACY 
IN ALL rro~. r XCf.PT IF NCODE ,fo.o EST [MATE Of 
ROIJMO OFF U.VfL, 

(CJ) NTCOF l\/UMHl:.R OF NONTRIVIAL VALUES OF TCOf AC:TlJALLY 
CALCULATED, THtv ARI: HASED 0~1 NTCOF+ l CALLS 
o• CFllN, 

(}Q) H:tlf C0'1PL•.x IJ!MENSION (l)IM). APPrlOXIMATIO•JS ro 

<Ill 

THt MlrlMALlllll !AYLOR CO~FFICll:NTS• E.XCEPT WHEN 
OIJTPUT NCOLIE = o, <SEF NOTEf3> ':!ELOW,) 
l1~Tl:l'l\/AL WORKING AREA OF COMl-'L!:.X !JlMENSlON <DIM>, 
<SEE ••OH (J) MELOwl, CONlENIS IS IDENTICAL 
WITH T'1AT •JI-" rroF, 

< l?l FXPTJ\fl COMl-'LFX !JIMfNSION <fi!M/2), <Sff NOTES <?> ANO 
Ill HH>J.,,,I FXPTAR(J+I) = ClXl'(Pl*FYF<>J/N[M!) 
.J = 'lolt2••••''"1AH-,-l, <A HAU CYCLE> 
UTHf_t' LOCAf ION'> Af<E F'1PTY, 

NOii"'> ON INt'llf/OUff'UT PARAMETERS** 
NOTE I I l "" •1CollE IS IJSl':ll h!lTl1 AS INPIJT Ai'<U OUTPUT PARAMETER. 

NORMAl .. LY 11 <>F.rAlNS lHf VALIJf +l ANIJ Nt!:.Ll NOT l:ll:. RESET 
HF 1"JF:F:N NORMAi. R1JN';, 

NOTE!?l*w TH[ APl-'t:A><A•iCf' OF NlAfl A~•ll t::Xi'TAl1 IN THF CALLING 
c 5FQIJf'ICF •Llfl•S THt 11'->rfl TU l"AKt USt fJF - uf< ro Pf>FCllMPUTE -
c TH[<;F NllMRU«; PJ A"'OTHr.R PAl'T Or THE PR()(;k'AM 'iHOIJi.0 HE 
c so OF<; IRE" NTAY "liST HE II POWE" (lF r .. n Ofl o. 
C NOTf(ll** fHt. APPfA>;ANCF OF NMAX, !COF, wOkK• A"JD FXPTAB 
C IN THF CALI_ ING SFQ'itNCf. ALLOWS THE SCOPI: OF THE <;11RPRUGRAM 
C AND THE AMUIJ~!T OF 5TOllA(;f TO HE ASSIGNED IH [HE ChLL ING 
C PROGJ'hMo wHJCH SHOULD CONlAIN A CONrRfJL STATEMENT TO lHE 
C FOLLrl":IN<i l:FFEl.1 
C CO~Pl_f X TCIJF (Ill Ml• lv!Jld (IJ[M)o EXJ.>lA>HDIM/.:'l 
C tJHfl'F il IM IS ND'<M,\Li Y A POWfP OF TWO, NMAX 1 S NrWMALL Y 
c EfJUAI TO J)jM, Jj!Jf MhY di' u::<;s ThAN IJ[M. 
c NOTF(.;J•<> uu1•<Z> IS A UStR PkOVl>lr.ll co·~PLt::x VALUF'l 
C FIJNCT!ON <,IJHP'<OGRAM .ilTH A COMPLl'X VALUED ARGUMEl~T. THE 
C CllLL!•JG PPOGR/IM '~UST Cll•HAlN CONTROL STATEMENTS A'i FOLLOWS 
C EXTfR>lllL (rll'IJ 
C COMl-'I F .X CFI IN 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

'·><> HOOK.KFFi->11·,,, PAl<1\•Al-_lff<S FOk <,TAGE OM:. 
NCONV Cll"'VEl-ll;f'JCF. liCHlfvEo. 

-1 •n CllNVERljFNCE ACHIEVt::1l. 
Ni0011N'1 l l\/f.> HOIJNIJ rlFF fPOlJHU. Oh'>lRl/l:IJ, 

? 1-101,.llJ OFF Tl'tJllHLF OH~FQV[I), 

NAAO•H II UPOA ff [()UYilf\JC[ AMO CON [!NU!:. ON APf'E:,AFIANCE Of 
l'OllNtl OFF rwdlJHLE, 

I l f"M I i\JA TF wHE•• ROUNO llFF TROIJt:ILl <.JHSEl~VEO, 
FXACT Ttll: !:XllCT VAi Uf. OF TCOF< I) WHICH 15 CFUNl7ETA) • 
SAFFTY Tl-1[<; IS A SAH-TY rACTOrl RY l'IHICH !11E ROUTINE AVOIDS 

THF l./!llJN'l O•F LEV•.L, IT IS St.T TO lfJ,0 AND .APPEARS 
0NLY IN THr COMkj<~•IJlllN (<;MUY*EPMACH), TO ALTER THIS 
F •CTO~'o ()'l rn •lf.'1UVL 1 HE l-IOUNll OFF tRROR GlJAI<[) 
CflMPLFlELY• T•tE lJSFI' NEfD ONLY AOJl1ST THE INPUT 
PAR AMF 1 ER EP"1ACI' APf'RflPP I A TEL Y, 

413-P 6-- 0 

c 
C ** QUANTITIES CALCULATED IN STAGE THkEEIAl ** 
C THIS IS THE FIRST PART Of IH.RATJON NUMBER NTCOf, PRESENTLY 
C AVAIL.ABLE ARE ExPTABIJ+l > = CEXP(PJ•EYE*J/NTAB> • 
C J = 0,1,2.,,,NTAH-lo 
C WE Rf QUIRE THE SEQUEl'lCE CEXI-' <Pl*EYt*J/NT<.:Of /'1>1 • 
C J= 1+1•S,,,,(NTCOF/2-I>, 
C IF <NTCOF +LE.o?*NTAfl) THESE NUMl:lERS ARE ALREADY AVAJ,LABLE 
C IN THF EXPTAH TAHtE SPACFD AT AN INTERVAL 2<>NSPACE = 4*NTAB/NTCOF+ 
C OTHfRWISE+ NTCOF = 4•NTAH AND THf. EXPTAH TAl:ILE IS UPDATED. 
C THl'i INVOLVES RE.ARRllNG!NG THE NTAll VALUES AVAILAALE• 
C CALC1JLATlillG ANIJ STORIN<, NTAH NEW VALUES ANO UPDATING 
C lllTAR TO i'*NTAH, 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

*" rlUANflTTl:.S CALCULATED TN SfAliE THRf.E<Bl "* 
ITERATIONS ARE NlJJ.\f-IERtD 4+Bd6+ .,, AT THI: ENll Of 
lTEPATION NUMHE::R NTCOF, THI:. NTl.OF COMPLl:X FUNCTION 
VALllFS AT AHCl~SAS REGULARLY SPACED ON CIRCLE ARE STORED 
IN THF TC Or VECTOR AS FOLLOWS 

TCOF(J+I> = CflJNIZU» J=Ool•2,,,,,NTCUF-l 
WHfflF. 

7<JI = ZEIA + RCJRC*CFXP<2"Pl"!:.YE*J/NTCOFl 
THI5 INVLOVf.S A REARRANGfMENT Of THE NTCOF/'1 FUNCTION 
VALUF'> AVA ILAf-ILE AT THf START OF THE ITl:RATION ANO THE 
CALCULATION OF A Fi)RTl-tER NTCOF/2 FUNCTION VALUES, IN 
ADOITION FMAX ANIJ APPROX ARE CALCULATED. THESE ARE 

FM Ax MAX [MUM MOIJULUS OF THE Fl.INC r !ON VALUES so FAR 
ENCOUNlt:t>ED. 

APP1HJX AN APf.'rl0Xl•1ATION TO TCOHI> l:lASED ON THE5E 
fU"JCTION VALUFS, 

*" QllilNI !TIES CALCULATED AT STAGE THl'Et:.<C> "" 
FRRORl CURRENT Vllllll:. OF THI:: fR!'Ok = CAHS<APPROX-EXACT>• 
E.RROR?. ERRlll'3o l:flflOR4 VALUES OF fRROR AT !:.ND Of THREE 

PREVIOUS ITFRATION<;, 
EPt'ACH "IACHINE ACClJflACY PA>1At'ETER. <INPUT PARAMETER> 
EPREQ RE<JIJ!Rl:O ACCIJRACY. <INPUf i->ARA"lfTER> 
EPPO HIGHEST ACCURACY Rt:ASONAHLY ATTAINAl:ILE IN VIEW Of 

THE SIZE OF THE flJNCT
0

ION VALUES c;o FAR ENCOUNTERED+ 

fPCOF 
fPEST 

< = 1 o. o<>EPMAC11•Ft~Ax > 
CURRtNTLY RUllllREIJ ACCURACY <=AMAXl IEPREQ,EPRO> > • 
ESTJMA fE OF CURR~:NT ACCURACY, <THE MAX !MUM OF EPRO ANO 
A FllNCTTON OF Eilrl!JflS I +2.J ANO 4, <OUTPUT PARAMETER> 

** CONVt:.RGENCE ANll Tl:.flt-dNATlON CHECKS IN STAGE fHREEIC> "" 
C <I> llSFS FMAX TO l'AISE EPCOF AflOVt "OUNIJ OFF Lt:VEL, 
C IF THIS NFCE'iSA'<Y AND THE INPUT VALUE. Of NCOOE IS NEGATIVE• 
C IT Tf•>MINATF.S SETTIN(• "JCOlll=O, 
C <2> ll<;FS APf.'ROX TO EVALllATF CONVERGE1KE OF TCOF<ll TOWARDS 
C EXACT. IT ~IAY ASSIGN CONVEflGENCE AND GO TO <;TAGE FOURIA> 
C SETTING NCUOF.=+I O•~ +?, <CONVERGENCE. 15 NOT CHECKF.D FOR 
C FOUR Oii fFwf." 1-'0l~ITS>, 
C Ul U<;FS NMAX TO CHEC~ f'HYSICAL LIMIT. If THIS HAS HEEN 
C REACYf.ll• IT liflt::S TO C,lAGf_ FllUR<A> SETTING NCOJJE=-1 OR -2. 
C (4) OTHEl-IWJSF C0'-iTINllE5 ~1fXT ITEf/ATJON HY l;OING TO STAGE 
C THRFF, 

~ •><•CALCllLAT!UN o• Fl>lST NTCoF TAYLOl-I CoEFFIClt:NTS IN ·;,TAGE FOlJfl(A} 
C A Vfp<;JON uf TH~- FA5T HlllRlfP TRANSFORM USING A ·~ORK ARRAY 
c TS lJ'iF11, Tt1E ARRAY ""'1•)rlr-"" IS u<;E::D ONLY UUfl[NG THIS STAGE. 
C THF ol()R'< ARl-IAY "LLOWS THE PERMUTING Of !NOICES ASSOCIATED 
c WITH n1-PLACE FF[S fl) nE Silf'PRESSED. rHt •FT CALCIJl__,ATES 
C THE NF.r.CE'iSARY SUMMATIONS tllCEPT FOR DIVIDING HY NTCOF+ 

c 
C "*Sf TT ING O~ l'fMAINING !AYLOR COtH ICJE"lTS IN STAGE l'"OUR<Hl 
c THf cnNVER<>E NCi:. CR 11 ER lO"J ALLOWS us TO INFER 'HAT THE 
C NORMAL I ZEO 1 AYLOfl COE FF 1 CI F:NTS Of ORDER GR!:.A TER THAN "lTCOF 
C ARF 7F:l'0 TO ACCUrlACY fi-'f ST. 
C THEY Al'E FVALUAll:.IJ 4S fJI: ING fXACTl.Y ZERO, 

Cf)'4PI.~ X CF1 IN 
Cn'4PLE x u_ r 1\ 
RFM. RCIRC,EJ-'rltQ•EPMACH•fPfST 
l'Jll'.Gf" NMAX.t·1COIJE.NTCOF.NTAH 
C:dMPLFX TCOF < 1 lo WrlflK I I lo FXf'TAfl (1 > 
J l\JTEGER NAH!IRT +NC!lNV •NJ\ I Sf'• NUOL !M ,Ni-'REV •NROIJND+NSPACE 
PF 'L CO'ill lF oE.PCOF ,[f>M IN•f PRO •fYJz, t.P42+ !:.RRORI • F RROR2 
RE ~L F Rk()R] •ErlR!)r14 'FMAX. SAFE [Y. SCALE. TWOP I 
C•JMPU .. X APP RUX, EXACT, FVAL •REX fJ •SUM• ZVAL 
INTEGFR .Jo,JCON.J+JfilrlM,JTAH,JTO 
CnMPLE X (•~PL X, COl,,Jb 

C "~* <;TAG!: 0"U:: 

INlTlni_lSE l:lOOKM.EP[NG PAl'AMl'TFRS ANI) fXACr VALUE ()f TCOF<l>. 
NP'llJNll = I 
NAHORT = 0 
IF ( NC01Jt, LT, 0) NAflOfl T = I 
FPr.OF = f PflbJ 
<;J\FETY = 10,u 
7VllL = lf'TA 
FVAL = Cf'JN (/VAL) 
FxACT = FVl\L 

STAr;F T>10 

C FIP<;T Tl'IO I ffl'~T lfJl\/S < THOSl WITH NTCOF 
F1.1ROl'3 = 0,<l 
71/AL = LETA+C"1PLX<flClRC:•IJ,0) 
FVllL = Cf11,1<Ll/AL> 
ApP>lf\X = FVAL 
f'~AX = CAH'i (Fl/~I_ l 
Trr.F ( l) = FV<IL 
r"R"O<>? = r.AH'> ( APf.'IJ(JX-EX ACT l 
l'thL = LFTA-CMf'LX <RCIRC•O.O) 
FVAL = CF IJM <lVAL) 
APPPOX = 0, '->" ( Ai-'Pl-lrJX +FVAL ) 
F•gX = AMAX! (f"IAXoCAH'i(fVAl) l 
rcoF (;>) = FVAI 
FrlflOR I = c.~HS ( Af>Pr<OX-fXACT) 
'"1ff'QF = C 

<;TAGf TH><tt: 

COM"1F'1CE lTti>AT!OhJ NUMHtf< NTC0F, 
:ioo r.ri~•T I "JIJ>: 

f"PREV = l\JTCOF 
•n r.oF = -'"'iTCllf 

<>TAGF TH\Jf.E(A) 

UPOAH- E.Xi-'T"H TllHLE rF ~1>.n.~Sl\RY, 
IF (i'"•'iA•i,hF:,NfCOf > ,,o TO J40 
IF" (t\lll\lj.GF.2) ciO 10 HO 

l'XP[AH(l) (J,1),0,1)) 

•·xr>rr1..s<?> = <0.11.1.0> 
•-•T/lfl = ? 
1;0 10 34~ 

1.2 ) • 



COLLECTED ALGORITHMS (cont.) 

310 CONTl!l.Uf. 
NOnLJM = NTAl:l-1 
no 320 J = loNOOLIM 

,JFR0"4 = NT AR-J 
,JTO = 2* JHHJM 
F XPTAl:l ( .JTO+ I) = F XPl AR LJFROM+ I> 

320 IO•IT.IMJI: 
NTllB = ""'ITAi:! 
r-.oPI = H.O*ATA'l(J.•)) 
CO<;OIF = cos ( r.ioi.>J/FL<lAT <?.<>NTAH>) 
''110LIM = NTAl:l-_l 
ll'l )JO J = l •NUOL!Mo2 

rXPTAH(J+ll = !O,-.<>FXPTA'l(Jl+0,5*f.XPTAR<J•2))/COSO!F 

330 CONT I f\Jllt 
F~PTAH<'lllAf.ll = (0,.,<>EXPTAA(NTAH-l>-<0.5o0.0)l/COSOIF 

340 CO•I TI NUt 
C *"" STAGF THRtE OJ) 

UPDATF LlSf OF FU,1CTION VAIUF.S IN TCOF• 
CALClll_ATE FMAX AN(l 41'PROX. 

•JflOL !"4 = NPRI:. V-1 
nn ]50 J = 1 .. ~[JOL!M 

,JFROM = "Jl'Rf V-J 
.JTO = 2*JFROM 
rcoF<JTO•I) = TCOF<-JFROM+J) 

350 CrlNT I Nllt 
'ill" = <o.o.o.o> 
'!<;PACE = <.?"NT AH> /NTCOf 
no 36 0 J = I • NllOL IM.,. 

JT Ai:l J*NSPACE 
REXP = l'<CJRC<>EXPfAHUTAH+I) 
?VAL = lt:TA+REXP 
FVAL = CFlJl\j UVAL> 
<;UM = SUM+FVAL 
FMAX = AMAX! (FMAXtCARS(FVAL>) 
TCOFCJ•l> = FVAL 
JCONJ = NTC<JF-J 
/VAL = 7F.IA•CO·~JG!RFXP1 
•VAL = CFtJ"l(lVAL) 
SUM = 51H.\+ FVAL 
FMAX = AMAX I (l:MAXoCAtlS<FVAL) I 
TCOFfJCO'IJ+\) = fVAL 

360 ro,1T!MJt 
APPROX = l),'.J<>ApPLIOX+SIJM/fLOAl !NTCOFl 

c;TAGF THi.>tl !Cl 

CONVERf1t:NCE /IND TER'llNAT ION C11ECK. 
fRPOf/4 f RRt.lld 
F»<>ORJ = ~Rf<CJR? 
FLl<>OR2 = f~RIWR I 
F RROR I = ( ~H'> ( APPRl)x-E xAC T) 
FP<lO = f"'ll,("SAFETY<>FYMACH 
IF <E.PRO,I T,t:PCClf) GO TO TIO 

FP('Of = f.f'RO 

'JROlJNIJ = ? 
TF Ct'JAf.lORT ,bQ.0) GO TO HO 
~·GOOF = 0 
FPFST = FPR•l 
r.O TO 4 "IO 

:no r11,1TJMJt 
IF !NTfllF .1_._,4) liO TO HlO 
F:><.ll]R4 = A-1Aq CE1>ROR4orPR()J 
F"OORJ = A·.•AX\ (fl<RCJtl:l•rPf/0) 
FP42 = •.RR11'12* ( (f:Rtl0Rc/tRR(ltl4)<H !4.0/],0)) 

f P12 = umo1a~ < < E.Rfl"Ri'lr.R<>O«J > """ > 
f<"AiN = Al•l;'JJ <t:Rli0R2or>'J2.EP4?1 
>µf<;T = il"AXI lFRRORI .tl'M!N•t:PRU) 
IF CF.PEc,1.•il .tPCOFl (,() Tn )<lO 

f\1(()/\1\/ = l 
r,o 1n 40'1 

1110 rnr.JT !"1tl~ 
IF <2"NICOF.Ll=.NMl\X) c;o 10 JOU 

••CONV = - I 
<.TAGf FCIUii!Al 

C CllLCUt.ATION OF FIR'iT NTCOF lAYLOfl CUl:.FFICIENTS USING F.F.T. 
400 rnNTl'·UI: 

N('OOE = 'WONV<>"Jo<Ot!'m 
'In J SP = '·<TCUF 

410 [0NTIMIE 
'Ill I <;P = •11J! SP/? 
(.\IL CFC<W !NTCOF •Nill'if'tTCOFo.ioRl\t"JTAHoE.APfAtll 
IF CNU!<;f',GT. I) GU fl1 430 
01) 4?11 I = l • 'Jf(()f 

rCOF (.J) = <illRI( (J) 

r.<i TO 44U 

P..Jl)fSP = "'~lll~tJ/,> 
C~l.l CfLflF (l\jfCOF,NllJSi.>o•<Ofll\oTCOf oNTAH,[XPTAHI 
IF (Nlll'-,P,(;l .11 CiO T'> <+10 

440 CONTINllt. 
<;r.ALE = l •Ill• i_l)A 1 HJI COF) 
fin 4'00 J = l tNTCOF 

TC0F ( J) = TCut' (JI *SCALr 
"'Ol<K CJ) = lC1JF CJI 

4'i0 C'l'IT T•.<Jt. 
<;TA\,~ F 01111 C rl I 

<;FTTI<;(; OF >'f.''~llJlt·IG ff.\Yl_O>< Cnfn !Clf:NTS. 
IF (NTCUF.Gt.~l··•·Hl G0 fl) h70 
'''l0LIM = Nflfif"+l 
r>n 460 ._J = J\1l)(Jl. P·1•1\lt-'J\X 

l C riF (.JI ! 0 • 0, U. n l 
•lllRl\C.1) = (0,0•0.0) 

400 C: 1,t 1 T l~tlt 
4 tri rl)~•T 1 f\'llt. 

RC- TlJI-'~' 

C ENO OF F.'llC•F 
F 11' 
StJ"ROlJT INF UC•lF ( •IJC0f • NIJj<.,P, TCOFt WORK, ''Tl\B, EKPTAH ) 

cn .. Pt.EX fOl)O{fP cur.FF !Cftl\lfS "* 
,,.,, t,,f Mt IHI. f'iJRPOq. 

THI<; ·.>OUT!Nt. llOtS O''J~ PASS OF A f ll'-,f Fntll<(tl< T><AN<;FORM, 
T'lF l'lllEXH•u IS Al/>11\Nuf.U so THAI [Ht COFH ICIENT5 APE IN 
ORflFI-' ~T THI: fi;l1 OF H<F. I A<;T i.>ASS. T,.,h !Nlll:.XJNG •IFQU!l<t:S 
TH~ IJ<;F Of -..fP•WATf '•><'lAYS IOI< INl-'tlf A~"l OUTPUT OF THt: 
PAPT!AI h'fSIJI f<;, !HIS tWlJf\"'I: l'i CAl.l.~IJ ONCf FOR 
EACH Ph<;<;. 

c 

413-P 7- 0 

!Nl-'UT PARll...,ETERS *" 
<11 "TCIJF NUM1~Ei> IJf C•JtFF!ClfNTS TO <-ii: PROCE<;<;fO, 
!<'I ~dll<;P "4AX!'~tJI>' VALlit Of 1,ic,p1_ACEMf.NT !Nllf.X. 
!31 JCOf !CllMPUXl INPUT Aflh'AY. 
(<;) 'llAH ~llHHEIJ <JF Ef\Jll-'ItS IN f.XPrAf:l, 
Ch) FXPTAH CCuMPl.fXI IA>ll.F Of VALUt.'i OF ClMIJLFX EXPONENTIAL• 

fX>'TA'H.l+ll = CtXl-(f'l*EYF.*J/NTl\tl)t 

J = 0 • l • 2 t • • •, "' T A ..... -1 • 

OUTPUT PARA ~FTlt<S "" 
(4) wOfiK !COMPLEX! OUTPIJT t,RRAY. 

C INllf.n"G OF Ml,.,AY'i "" 
C TfiF T·•O POINl FllUR!f.R IRAl\jSFORM IS APPL.It:tl TO THE POINTS 
C OF TCIJF WITl-1 INLl!Cf':<; 
C CJlll'iP-J)<'NPtlfV+JREPL l\NfJ <JDISP-ll*"JPRtV•JREPL+NHALF. 
C THF Of<;ULTS Allf. MOIJlflflJ l:lY TH~ /;f'PROPRIArt hilDllU. FACTOR 
c AN[) c;rnRf;O [M wORJ<' il!TH ('llllCfS 
C !JOl<;P-1 l"MNF~f•.Jllf.PL AND (,JUISf'-ll"l\jNEl\T+J>ltPL+NPREV 
C WHfRF 
c Nl1TSP 

'IP>IEV 
PRIJtllJCT OF RF.:MA!NlNG FACTOtlS. 
PfiOPIJCT OF i.>Rf.VIOUS FACfORS. c 

c 
c 
c 
c 
c 
c 
c 
c 

M»1FX T 

''H~l.F 
Jl)JSP 
,IP> Pl 

PROIJUC T OF PRE VI OLIS ANO CURRENT FACTORS. 
1-'ROIHJCT OF PflEVIOllS ANI) REMAINING F/ICTORS. 
U!Sf'l_ACF.MENT !Nlll:.'- = ! tl'• ... NDISP, 
RtPL!CllT!O!I. !NOEi\ = J,z, ... NPREV. 

THE TdflDLF FACTOti n.xf'!-Pl*fYf.",llNlllSP>• J=Od.9'll\ICII5P-l 
IS OHHINEll HY lAKTl·H' THE CON.JUGArt OF ELEMENTS SP•\CEU 
EVE~Y •1SPA[t_=IHAIJ/Nill5P OF EXPTAtl. 

l'llF.GER ~JTCOF.•HJJ<;l-',NlAl:l 

C1l!>'Plr.~ TCOF ! I>• >J()tiK (I I• f.XPT Afl (I> 
C1111PL.EX CONJt1 
r0"PLtX RClT•lOtZ! 
l"ITF.GF_R J,JIJJ<;P,JREPloJTARoJI,Jw 
l'ITEGF.R KTCJ.KTl .KwO.K·~l ·NHAU .NN~:XTtNPREV.~ISPACE 
N•1ALF = NTCOF ;-,. 
NPRE V = NTCIJF I (<'*NO [SP) 
'"·.1~ XT = NTCOF/NOISP 
N<;PACb = NT AH/t~I)! SP 
no 200 .JO!Sf' = l ·NllTSP 

J = .JUI s»-1 
,IT AR = .l"l\'Si.>4CF: 
POT= CO'l.H;!FXPTllH(JTA11+J)l 
IT = ,J<tNPkf..V 

.!'< = J""JNr J( r 
no \01J .]Pf.Pl = l •"PRtV 

K ro J[+JRfPI 
KT I = KTO+Nl-IALF 
KWO = .Jw+,11->l:YL 
KWl = t<vJU+NP~F I/ 
ZO = TC0F (I\ TO> 
11 = T [OF CK Tl) 
W()PKCK••li) /0+11 
WORK (Kw I> = !lll-Z I) <>RI) r 

100 <:ONTl"JUf 
200 rn•1Tl"Ut. 

RF TURN 
C ENO OF CFCOF 

E111n 



COLLECTED ALGORITHMS FROM CACM 

Key Words and Phrases: approximation, Clllebyshev 
approximation, Remez algorithm 

CR Categories: 5.13 

The second algorithm of Remez can be used to compute the 
minimax approximation to a function,f(x), by a linear combination 
of functions, I Q;(x) I~', which form a Chebyshev system. The only 
restriction on the function to be approximated is that it be continuous 
on a finite interval [a,b]. An Algol 60 procedure is given, which will 
accomplish the approximation. This implementation of the second 
algorithm of Remez is quite general in that the continuity of f(x) is 
all that is required whereas previous implementations have required 
differentiability, that the end points of the interval be "critical 
points," and that the number of "critical points" be exactly n + 2. 
Discussion of the method used and of its numerical properties is given 
as well as some computational examples of the use of the algorithm. 
The use of orthogonal polynomials (which chang1e at each iteration) as 
the Chebyshev system is also discussed. 

Description 
1. Introduction. Given a Chebyshev system, <Po(x), <Pi(x), ... , 

<Pn(x), we define the Chebyshev or minimax approximation to a 
continuous function/(x) over an interval [a, b] to be the function 

Pn(X) = Co<Po(X) + · · · + Cn<Pn(X), 

such that E is minimized, where 

E = max lf(x) - Pn(X) I. 
a:s;x:s;b 

(1.1) 

(1.2) 

If <P;(x) = xi, we have the minimax polynomia1 approximation of 
degree n to f(x). If 'l'i (x) = T; (x), where T,: (x) denotes the Cheby
shev polynomial of the first kind of order i, we have the minimax 
approximation as a sum of Chebyshev polynomials. For the defini
tion of a Chebyshev system, see Achieser [3, p. 73 ]. 

Copyright© 1971, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, an 

algorithm is granted, provided that referenc1:! is made to this 
publication, to its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Association for Com
puting Machinery. 

*Now at Computing Center, University of Colorado, Boulder, 
co 80302 

414-P 1- 0 

Algorithm 414 

Chebyshev Approximation of 
Continuous Functions by a 
Chebyshev System of 
Functions [E2] 

G.H. Golub and L.B. Smith* (Recd. Oct. 11, 1967, 
Jan. 27, 1969, and Apr. 11, 1970) Dept:. of Computer 
Science, Stanford University, Stanford CA 94305 

The algorithm presented here computes the coefficients c, , 
i = 0, 1, ... , n, in (1.1) for any given Chebyshev system <P;(x), 
i = 0, 1, ... , n. The algorithm is based on the second algorithm 
of Remez [l ], and also makes use of the exchange method de
scribed by Stiefel [2]. 

The characterization of the error curve, given by 

n 

E(x) = L C;<P;(x) - f(x), 
i=O 

(1.3) 

is the basis for the second algorithm of Remez .. It is shown, for 
example, by Rice [11, p. 56] that p,,*(x) = L::'-o c;ip;(x) is the 
Chebyshev approximation to f(x) on [a, b] if and only if there exists 
a set of points a :::; Xo < x, < x2 < · · · < Xn+1 :::; b such that 

(a) E(X;+1) = -E(x,), 
(b) I E(x;) I = E*, and 
(c) max I E(X) I = E*. 

a:::;;x$b 

Thus, when the computed error curve attains this "equal ripple' 
character with at least n + 1 sign changes in [a,bJ we know we 
have the desired minimax approximation. 

The second algorithm of Remez, based on the: characterization, 
can be outlined in three steps. 

(i) Choose an initial set of points, the reference set, a :::; xo < 
X1 < · · · < Xn+l :::; b. 
(ii) Compute the discrete Chebyshev approximation to f(x) on 
the reference set. 
(iii) Adjust the points of the reference set to be the extrema of the 
error curve (1.3). 

Steps (ii) and (iii) are repeated until convergence is obtained. 
Proof of the existence of the minimax polynomial (given by 

(1.1) and (1.2) with l<Pd ~, a Chebyshev system) is given by Achie
ser [3, p. 74]. 

Proof that the second algorithm of Remez converges for any 
starting values for the critical points is given by Novodvorskii and 
Pinsker [4]. If f(x) is differentiable, Veidinger [12] proves that the 
convergence is quadratic. That is 

where E* is the maximum error for the Chebyshev approximation 
and E<k> is the maximum error at the kth iteration. A survey article 
concerned with minimax approximations is given by Fraser [8]. 

2. Applicability. The algorithm presented herein has wide ap
plicability in that it can be used to approximate any continuous 
function given on an arbitrary closed interval. In addition, the 



COLLECTED ALGORITHMS (cont.) 

approximating function is not restricted to polynomials or Cheby
shev polynomials, but is allowed to be any linear Chebyshev system. 
to be supplied by the user. Three simplifying assumptions often 
made in an implementation of the second aJgorithm of Remez are: 

(a) DifferentiabiJity of f(x), the function to be approximated. 
(sec [6], for example) 
(b) The end points of the interval are critical points (see [8, p. 
299]). 
(c) The existence of exactly n + 2 points of extreme value on the 
error curve (see (8, p. 299]). 

None of these three assumptions is made for this algorithm. 
Ja. Formal parameter list: input to the procedure 
n integer degree of the Chebyshev system of functions to be 

used in the fit liro(x), ir1(x), · · ·, <Pn(x)j. 
a lower end point of the interval of approximation, of type 

real. 
b upper end point of the interval of approximation, of type 

real. 
kstart integer controlling the number of points 

(kstartX (n+2)) used in the initial approximation. See (i) in Sec
tion 5. 

kmax integer allowing control of the number of times k is 
increased above ks tart. 

loops integer allowing control over the number of iterations 
taken by Remez's second algorithm if convergence is not yet 
attained. 

f a real procedure to compute the function f(x) to be ap
proximated; procedure heading required: 

real procedure f(x) ; 
value x; 
real x; 

the argument is the untransformed variable x. f(x) must be con
tinuous in the interval [a, b]. 

chebyshev a procedure to evaluate the Chebyshev system of 
functions being used at some point, x, in the interval [a, b]; pro
cedure heading required: 

procedure chebyshev(n, x, t); 
value n, x; 
integer n; 
real x; 
real array t; 

n is the degree of the system, x is the point in [a, b], and t is an 
array that will contain the values t[i] = ip;(x), i = 0, 1, ... , n. 

eps a real procedure to compute the error curve given by 
(5.1); procedure heading required: 

real procedure eps(x, c, n); 
value _x, n; 
real x; 
integer n; 
real array c; 

xis a point in [a, b], n is the degree of the system, and c is an array 
containing the coefficients of the approximation, c[i] ~ c; in (5.1). 

exchange a procedure, [10] for example, to locate then + 2 
subset of m + 1 given points which determine the minimax poly
nomial on those m + 1 points; procedure heading required: 

procedure exchange (a,d,c,m,11,refset,emax,singular,r); 
value m,n; integer m,n; real emax; 
real array a,d,c ,r; 
integer array re/set; 
label singular; 

a is a realm + 1 by n + 1 array, dis am + 1 component vector, 
c is a n + 2 component vector, m + 1 is the integer number of 
points (xo , ... , Xm), n is the degree of the system, re/set is a n + 2 
component integer vector, emax is a real number and singular is a 
label. r is . a vector containing the m + 1 values of the residual 
at the m + 1 points under consideration. On entry the components 

414--P 2- 0 

of a and dare 

a[i,j] = ip;(x;) and 

d[i] = f(x;), i = O(l)m, j = O(l)n. 

Upon exit from exchange, the array c contains the coefficients of 
the minimax function found, re/set contains the subscripts identify
ing the points used to compute the minimax function, i.e. the refer
ence set, and emax contains the value of the maximum deviation 
of the minimax function from f(x) on the points x;, i = O(l)m. 

Jb. Formal parameter list: output from the procedure 
c the array of coefficients c; of eq. (5.1). 
emax the maximum modulus of th1e error curve (5.1) for the 

final approximation function, of type real. 
trouble a label to which control is transferred if remez does 

not converge properly. 
why an integer whose vaJue on exit will be set to one of the 

following: 

why = -1 if number of added points is greater than n. (See step 
(ii) in Section 5.) 

why = 1 if trouble occurs in procedure quadraticmax. 
why = 2 if trouble occurs in procedure exchange. 
why = 3 if no convergence after iterating loops times. 
why = 4 converged according to the maximum and minimum 

residual comparison. 
why = 5 converged according to why == 4 and the critical point 

test. 
why = 6 converged according to why = 4 and the coefficient test. 
why = 7 converged according to why == 4 and both the critical 

point and the coefficient tests. 
why = 8 converged according to critical point test only. 
why = 9 converged according to coefficient test only. 
why = 10 converged according to critical point and cor ficient 

tests. 

4. Organization and notational details. The algorithm calls 
for three procedures, in addition to the function/(x) to be approxi
mated, as indicated by the formal parameter list. 

exchange Based on Stiefel's Exchange algorithm, which finds 
then + 2 subset of m + 1 given points which determine the mini
max polynomial. Use [10], for exampfo. 

eps To be supplied by user: eps computes the error curve 

E(x) = L c;ip,(x) - /[x] 
i=O 

(4.1) 

where the c; , i = 0, ... , n, are parameters and the <Pi(x), i = 0, 
1, ... , n, are the Chebyshev system of functions being used to 
fit the function f(x). For best results E(x) should be computed in 
double precision and then rounded to single precision accuracy. 
If f(x) cannot be calculated easily or efficiently in double precision 
at least the sum, L°:f=o ci<Pi(x), should be accumulated in double 
precision and rounded to single. 

chebyshev To be supplied by user: chebyshev evaluates the 
Chebyshev system <Pi(x), i = 0, 1, ... , n for a given argument x. 
chebyshev is called by eps. 

The functions E(x) and <Pi(x) (computed by eps and chebyshev) 
can often be computed by simple recursive procedures. For ex
ample, if the Chebyshev system used is the set of Chebyshev poly
nomials, there is a well-known recurrence relation (<Pi+1(x) = 

2x<Pi(x)-ir;-i) that can be used to efficiently evaluate the required 
functions. 

An outline of the organization of the algorithm is given in the 
following steps: 
(i) Let m = k X (n+2), take m + L points in the interval 
[a,b] and use exchange to determine the "best" polynomial (i.e. 
the 

n 

c, 3 max I L c;<P;(x;) - f(x;) I = minimum) 
05,JS,n i=O 

on those points. Exchange will pick n + 2 of the original points as 



COLLECTED ALGORITHMS (co1nt.) 

critical points. The m + 1 points are chosen equally spaced or as 
the zeros of Tm-1(x) - Tm_.a(x) with k ~ 1. 
(ii) Use the n + 2 points chosen by exchange in step (i) and 11 
other local extrema (subject to the conditions discussed under 
Example 2, Section 6) as input to the procedure· quadraticmax 
(11~0). 
(iii) Procedure quadraticmax adjusts the n + 11 + 2 critical points 
to be the abscissas of the extrema of the error curve given by ( 4.1). 
Section 5b gives a discussion of how the adjustments are com
puted. After adjustment the new points are tested for alternation 
of sign, and if the property has been lost, we increase k and go 
back to step (i). 
(iv) The adjusted critical points are then input to exchange which 
finds the new coefficients ci , i = 0, 1, · · · , n for the "best" poly
nomial on the adjusted n + 11 + 2 points. 
(v) Now convergence tests can be applied to the coefficients Ci , 
found in step (iv), to the critical points x, , i = 0, 1, · · · , n and 
to the extreme values of ( 4.1). If not converged, go back to step 
(iii) since the previous critical points will not be the exact extreme 
points after the approximating polynomial is changed in step (iv). 

5a . .Discussion of numerical properties and methods: accuracy 
and convergence. The accuracy of the approximations generated 
by this procedure is limited by the precision of the arithmttic used 
and the accuracy of the subsidiary procedures /, exchange, eps, 
and chebyshev. The use of double precisiorn in eps, for example, 
can improve the results of remez since it will then have a" smoother" 
error curve to work on. This use of double precision in eps is 
strongly recommended by the authors. The maximum absolute 
error of the approximation is output from remez and depends, of 
course, on n, the degree of approximation. 

The procedure is deemed to have convt::rged when the coeffi
cients of the approximating function or the critical points have 
satisfied certain relative criteria between successive iterations. 
We use the notation c~n> to represent the ith coefficient at the nth 
iteration and similarly, x~n> represents the ith critical point at the 
nth iteration. 

When 

max I c~n> - c~n-ll I::;; epscl c~n> I 
i 

or 

max I X~ 11 > - x~n-l) I::;; epsxl x~n> I 
i 

(5.1) 

(5.2) 

we consider the procedure to have converged. If I c~nJ I or I x~n> I 
is very small the relative test is not appropriate. In that case we 
test i c~nl - c~n-Il \ and I x~n> - x~n-Il I against allowed absolute 
errors, absepsc and absepsx. Typical values for the constants (for 
an 11-decimal place machine) could be 

epsc = 10-s 

epsx = 10-4 

absepsc == 10-8 

absepsx = 10-- 4 

(5.3) 

A third convergence criterion is the comparison of the maxi
mum and minimum magnitudes of the error curve at the critical 
points. Let 

maxr = max\ E(X~n» I 
i 

and 

minr = mi-r I E(X~ 11» I 
i 

where lx~n> I are the critical points chosen at the nth iteration, and 
then make the following test. If maxr::;; rcompare X minr then 
claim convergence. A typical value for the constant rcompare 
could be 1.0000005. 

When the maximum absolute error approaches 10-•(Jm), 

414-P 3- 0 

where s is the number of places available in the machine, and fm 
is maxa<x<b I f(x) \, we are approaching the limit of obtainable 
accuracY." We are working with 

E(x) = P,,(x) - f(x) (5.4) 

so when t(x) is nearly equal to 10-1'(x), we are losing abouts places 
in the subtraction in (5.4). This is where judicious use of double 
precision can be made to increase accuracy if necessary. Pn(x) 
can be computed in double precision and a single precision differ
ence formed, or for even further accuracy f(x), if possible, could be 
computed in double precision and the double precision difference 
taken. 

A comparison of the discrete approximation on a finite num
ber of points in an interval, and the continuous approximation 
which this algorithm finds, is studied by Rivlin and Cheney in 
[9]. Rice (11, pp. 66-70] discusses the question of convergence (and 
rate of convergence) of the discrete approximation to the continu
ous approximation. This relates to the question of how large to 
choose kin step (i), Section 4. We have found that for well-behaved 
functions like ex on [ - 1, 1 ] a value for k of about 3 gives good 
starting values. On the other hand a function like 1 I (x -- X) on 
[ -1,1] with X > 1 and X near 1 requires k to be about 15 to obtain 
good starting values. The choice of k should be large enough so 
that the initial approximation chosen by the procedure exchange 
is close enough to the final approximation to insure that the "alter
nation of sign" property is never lost during the iterations. There is 
no known method of choosing such a k a priori. This is why the 
algorithm tests for "alternation of signs" at each iteration and in
creases k if the property is lost. 

5b. Discussion of numerical properties and methods: Locating 
the extrema of t(x). Most of the programming effort is involved 
in locating the extrema of the error function t(x). The programming 
is similar to that done by C.L. Lawson in a Fortran program to 
compute the best minimax approximation (7]. t(x) is given by 

n 

E(x) = L CN>i(x) - f(x). 
i=O 

The procedure exchange then is used to compute the coefficic 1ts 
of the minimax function. That is, given n + 11 + 2 points, 11 ~ 0, 
exchange computes the coefficients of the function :Lf-o ci'Pi(x) 
such that on the discrete set of points E(Xi), j = 0, 1, · · · , n + 11 + 1 
has at least 11 + 2 extreme values (at the given points) equal in 
magnitude and of alternating signs. The satisfaction of this condi
tion when the points are indeed the extrema of the continuous 1:(x) 
guarantees that 2:7-c ci'Pi(x) is the unique minimax approximat
ing function that we seek. 

5b.l Discussion of numerical properties and methods: Parabolic 
approximation to locate extremum. Given the initial guesses Xi , 
i = 0, 1, . · · , n + 11 + 1 (at each iteration) for the abcissas 
of the extrema of the error curve, we must locate these critical 
points more precisely. We consider two cases. First the interior 
points, and secondly the least and greatest of the initial guesses 
which may be equal to the respective end points of the interval on 
which the function is to be approximated. 

For interior points we do the following. Take 

(5.5) 

W = Xi + a(Xi-1-Xi) 

where a is a parameter 0 < a< 1 (e.g. a=0.1). We then deter
mine the parabola through the three points E(u), E(v), anc' E(w). 
The abscissa, x*, corresponding to the vertex of this parabola is 
then taken as the next guess for the ith "critical point." The point 
x* is given by 

x* = ! ~(u2 - v2)E(w) + (v2 - w2)E(u) + (w2 -: u2)E(v)] . (
5

.
6

) 
2 [(u - v)E(w) + (v - w)E(u) + (w - u)E(v)] 

For computational purposes x* is not computed directly by (5.6) 



COLLECTED ALGORITHMS (cont.) 

since for u, v, and w very close, the denominator will be quite small. 
Therefore, the denominator of (5.6) is computed 

d = [(u-v)t(w)+(v-w)E(u)+(w-u)E(v)], 

and then by dividing out (5.6), we express x* as 

r ~ (u + v) if d = 0 

x* = i 1 ( ) 1 (v - u)(u - w) [E(v) - E(w)] 
l2 u + v + 2 d 

(5.7) 

(5.8) 

ifd~ 0. 

Once x* is computed, it is then tested to insure acceptability since 
for u, v, and w very close, machine roundoff may introduce spurious 
results. Also, the value of a or the nature of the function /(x) and 
therefore of E(x) may introduce an unacceptable value for x* in 
which Case u, v, or w, whichever has highest ordinate value, is used 
for x*. If x* is acceptable it can replace u, v, or w, whichever has the 
lowest (in abolute value) ordinate value on the error curve E(x), 
and a second x* is computed. This iteration will converge to the 
abcissa of the extremum near Xi if roundoff is ignored and u, v, 

and w are sufficiently close to that point. (Compare convergence 
to Muller's method for solving algebraic equations [5].) However, 
this iteration need not be carried out excessively (2-4 iterations 
should be sufficient) since during each iteration of the overall 
process we. recompute the approximating function and thereby ob
tain a new error curve whose extrema will not necessarily have the 
same abscissas. 

For the end points (5.5) cannot apply since Xi+i and x,_1 do 
not exist at the right and left ends respectively. Therefore we take, 
at the left end for example, 

U =Xi 

v = Xi + a(Xi+i -x;) 

f Xi + /3(Xi+1-Xi) if Xi = a 

w = l . 
\Xi + a(a-xi) if a< x; , 

(5.9) 

with the requirement that a ~ {3. The right end is handled simi
larly. Again the parabola through the three points f(u), e(v), and 
f(w) is used to determine x*. The tests for acceptability and itera
tions are performed as they were for the interior points. 

5b.2 Discussion of numerical properties and methods: Crude 
search to locate extremum. In case approximation by parabola does 
not yield an acceptable value for the abscissa of an extremum, the 
following rather crude method works effectively. We simply divide 
the interval under consideration into I equal intervals (e.g. l = 10) 
and examine the ordinate of the error curve at the end points of the 
intervals. The points to the left and right of the point with maxi
mum ordinate (in absolute value) then define a new interval upon 
which the process is repeated. This subdivision continues until the 
subintervals become smaller than some specified value (e.g. 10-5). 

The method causes the function to be evaluated more often than 
the parabolic approximation, but works successfully at a point 
where the error curve has a sharp cusp-like extremum. 

The choice of I = 10 in this crude search procedure is arbitrary. 
In fact, for an initial interval of length /, a smaller value, say I = 4, 
would reduce the subinterval size to 10-5 ·I with a minimum of 21 
function evaluations, whereas using I = 10 would require at least 
51 function evaluations. However, small values of I increase the 
chances of missing the true extremum. 

To decide whether to use this crude search or not we employ a 
relative test. Let the parabolic choice be x* and the three points 
used to compute x* be u, v, and w. Then one would expect (hope) 
that I f(x*) I~ I e(u) I, I E(v) \, and I f(w) \, in which case x* has 
the desired properties. However, if E'm = maxx=u,v,w I e(x) I, and 
I .e(x*) I < E'm , then we must doubt the acceptability of x* and 
perhaps use the crude method to determine x*. We found a suc
cessful way to make this decision was to use the crude method if 
11 f(x*)\ - Em I > C·fm, where C is an arbitrary constant (e.g. 
10-4). 

414--P 4- 0 

Fig. 1 

T~ 
--~r?-----~-------___. x 

1.0 0.5 I 1.0 

Table I. Coefficients c, of" best" polynomial 
P4(X) = I:Lo c;T,.(x) (to 6D) 

Start Iteration 1 Iteration 2 Iteration 3 

0 1.266 063 1.266 066 l .266 066 1.266 066 
1 1.130 321 1.130 318 1.130 318 1.130 318 
2 0.271 495 0.271 495 0.271 495 0.271 495 
3 0.044 337 0.044 336 0.044 336 0.044 336 
4 0.005 523 0.005 519 0.005 519 0.005 519 

Table II. Critical points, x1, of best polynomial (to 6D) 

j Start Iteration 1 Iteration 2 Iteration 3 

() -1.000 000 -1.000 000 -1.000 000 -1.000 000 
1 -0. 771 429 -0. 797 573 -0.797 682 -0.797 682 
2 -0.257 143 -0. 278 189 -0.279 152 -0.279 152 
3 0.314 286 0.339 805 0. 339 061 0. 339 061 
4 0.828 571 0.820 978 0.820 536 0.820 536 
5 1.000 000 1.000 000 1.000 000 1.000 000 

Table III. Comparison of starting values Xi for f(x) = ex, n = 4 
(to 3D) 

j To(x) - T3(x) exchange on exchange on TRUE 
= 0 or ITs(x)i 6(N+2) 201 points (computed) 
= 1 points equally 

equally spaced 
spaced 

0 -1.000 -1.000 --1. 000 -1.000 
1 -0.809 -0. 771 --0.800 -0.798 
2 -0.309 -0.257 --0.280 -0.279 
3 0.309 0.314 0.340 0.339 
4 0.809 0.829 0.820 0.821 
5 1.000 1.000 1.000 1.000 
Dmax 0.030 0.027 0.002 

Table IV. Critical points chosen at each iteration. 

Iteration The n+2 points used (se1e Figure 3) 

1st 2 3 4 7 8 9 10 11 12 
2nd 2 3 6 7 8 9 10 11 12 
3rd 2 3 6 7 8 9 10 11 12 



COLLECTED ALGORITHMS (cont.) 

6. Examples. The procedure was tested on the Burroughs B5500 
at the Stanford Computation Center using Burroughs Extended 
Algol. 

We have chosen two examples to illustrate the use of the al
gorithm. The first is the function 

/1(x) = ex on (-1,1) 

and the second is 

l + x, -1.0~ x < -0.5 

-x, -0.5~ x< 0.0 

x, 0.0~ x ~ 1.0. 

(6.1) 

(6.2) 

The first example, /1(x), is an infinitely differentiable function so 
that the error curve (4.1) is also differentiable, whereas /2(x) (see 
Figure 1) is continuous, but its derivative,/2'(x), has discontinuities 
at x = --0.5 and at x = 0.0, which cause the error curve to have a 
discontinuous derivative. We examine /2(x) as it provides an in
teresting example of approximating a function which is only con
tinuous. In both cases we used Chebyshev polynomials as the 
Chebyshev system of functions. 

Example 1. [fi(x) =ex]. Tables I and II show how the critical 
points and the coefficients of the approximating polynomial con
verge as we approximate/1(x) = ex by a 4th-degree sum of Cheby
shev polynomials. Figures differing from the final result are under
lined at each step. 

Table I shows that the coefficients of the "best" polynomial 
have converged to 60 after only one iteration; however, the critical 
points don't converge until the second iteration as shown by Table 
II. In other words, the polynomial does not change coefficients 
very much with a small change in the critical points. The starting 
points shown in Table II are chosen by exchange from 6 X (n+2) = 

36 (for n = 4) equally spaced points in the interval [-1,1 ]. 
Various methods for choosing the starting values for the 

critical points have been proposed. These include the zeros of 
Tn+1(x) -- Tn-1(x), which are also the extrema of Tn+i(x), and 
what we propose here is to let exchange choose n + 2 points from 
some original set of k(n+2) points where k ~ 1. The original 
k(n+2) points may be equally spaced, or they may be the zeros of 
Tk<n+2>+1(x) - ncn+2>-1(x). 

Table III compares various starting values for this example, 
/1 (x) = ex (n = 4). Dmax represents the maximum deviation from 
the "TRUE" values. 

Example 2. [/2(x) ]. Approximation of f2(x) by an 8th degree 
sum of Chebyshev polynomials (n = 8) poses the problem of hav
ing an error curve with more than N + 2 local extrema. This 
problem also arises when approximating an even or odd function 
(see [6]). We resolve the problem by including all the local extrema 
of the error function, e(x), which have the alternation of sign 
property, in the search for n + 2 critical points. That is, if the 
abcissas of the extrema are ordered algebraically, the signs of the 
corresponding ordinates must alternate. We obtain starting guesses 
for local extrema by having exchange pick n + 2 starting points 
from some original set of points, together wiith the corresponding 
first approximating polynomial, and then examining the resultant 
residuals. If the table of residuals indicates an extremum not al
ready chosen by exchange, which has the correct alternating sign, 
then the corresponding abcissa is included as a critical point for 
later iterations. k must be chosen greater than 1 in order for this 
method to work. 

Figure 2 shows the error curve, e(x), for the first and third 
iterations of approximating /2(x) by an 8th-d«!gree linear combina
tion of Chebyshev polynomials. 

Table IV indicates how the choice of critical points can change 
from one iteration to the next. If we had not included the addi
tional extrema at points 5 and 6 at the first iteration, we would have 
arrived at the· approximation whose error curve is illustrated by 
Figure 3. That is n + 2 extrema of the error curve have equal 
magnitude and alternating signs, but another extremum exists 
with larger modulus. 

Fig. 2 

§ 
0 

:;:;:: 
ii 

8 
~ 

1.000 

Fig. 3 

8 
~ 

§ 

~ 
Li:i' 

0 

~ -
I 

§ 
"': 

/h) . .'V 

8 
Approximating /Ax) by .~0 c;T,,(x) 

414-P 5- 0 

1"1 iteration Y 11 iteration 

I 
I 

, 

0.600 

-"" 
- I ' 

I ', 
r-----

-----,----~·-· 1--·-·· -- -- T 

().200 0. 200 0 6()(l I om 
,\ 

Error curve v.ith points 'i and 6 not used. 

10 11 12 

l-------r-----~----.-~-~~,-- r 
1.000 1.000 -0.600 -0.200 0.200 0.600 

x 



COLLECTED ALGORITHMS (cont.) 

Tab]e V. Comparison of starting values x; for f(x) = / 2 (x), 
n = 8 (to 4D) 

j Tg(X) - T1(x) exchange on exchange on TRUE 
= 0 33 points 201 points (computed) 

equally equally 
spaced spaced 

0 -1.0000 -1.0000 -1.00 -1.0000 
1 -0.9397 -0.8750 -0.86 -0.8565 
2 -0.7660 -0.6250 -0.62 -0.6248 
3 -0.5000 -0.1250 -0.14 -0.1424 
4 -0.1736 0.0 0.0 0.0 
5 0.1736 0.1250 0.15 0.1456 
6 0.5000 0.4375 0.44 0.4413 
7 0.7660 0.7500 0.73 0.7290 
8 0.9397 0.9375 0.93 0.9289 
9 1.0000 1.0000 1.000 1.0000 

Dmo.x 0.3750 0.0210 0.0048 

As an interesting comparison to Table III we give a similar ta
ble for f(x) = f2(x). Dmax represents the maximum deviation from 
the "TRUE" values in Table V. 

7. Use of orlhogonal polynomials. Consider the polynomials 
Po(x), P1(x), · · · , Pn(x) orthogonal on the set of points x~ < x 1 < 
· · · < Xm • Such polynomials are described by Forsythe [ 13], 
and they form a Chebyshev system. This is easily seen since any 
licear combination, 

P(x) = L CiPi(x), 
i=O 

(7.1) 

is a polynomial of degree n which has exactly n zeros. Hence on 
any interval, P(x) has no more than n zeros. This satisfies the defini
tion of a Chebyshev system. 

It is known, see Forsythe [13], that orthogonal polynomials 
have advantages over standard polynomials in least squares data
fitting. In the Remez algorithm, if a new set of polynomials, or
thogonal on the critical points, is computed each time the critical 
points are adjusted, convergence is assured. This can be proved by 
nothing that at each iteration the best orthogonal polynomial 
fit is equivalent to the best fit that would be obtained if the Cheby
shev system were held constant as standard polynomials. Perhaps 
this use of orthogonal polynomials will have computational ad
vantages over, say, standard polynomials on the interval (0,1 ]. 

The use of orthogonal polynomials for the Chebyshev system 
has been implemented and tried successfully on a Burroughs B5500 
but as yet we have no illustrations of any dramatic advantages over 
any other Chebyshev system. 

References 
1. Re~ez,. E. Y. General computational methods of Chebyshev 
approximation. In The Problems with Linear Real Parameters 
AEc-tr-4491, Books 1 and 2, English translation by US AEC. ' 
2. Stiefel, E.L. Numerical methods of Chebyshev approximation. 
In On Numerical Approximation, R.E. Langer (Ed.) U. of Wisconsin 
Press, Madison, 1959. 
3. Achieser, NJ. Theory of Approximation. (Trans. by C.J. 
Hyman), Frederick Ungar Publ. Co., New York, 1956. 
4. Novodvorskii, E.N., and Pinsker, I.S. On a process of 
equalization of maxima. Uspehi Mat. Nauk. 6 (1951), 174-181. 
(Trans. by A Shenitzer, available from New York U. Library.) 
5. Mul~er, D.E. A method for solving algebraic equations using an 
automatic computer. Math Tables Aids Comp. JO (1956), 208-215. 
6. Murnaghan, E.D., and Wrench, J.W. Rep. No. 1175, David 
Taylor Model Basin, Md., 1960. 
7. Lawson, C.L. Private communication. 
8. Fraser, W. A survey of methods of computing minimax and 

414--P 6- 0 

near minimax polynomial approximations for functions of a single 
independent variable. J. ACM 12 (July 1965), 295-314. 
9. Rivlin, T.J., and Cheney, E.W. A comparison of uniform 
approximations on an interval and a finite subset thereof. SIAM 
J. on Numer. Anal. 3 (June 1966). 
10. Bartels, R.H., and Golub, G.H. Computational considerations 
regarding the calculation of Chebyshev solutions for overdetermined 
linear equation systems by the exchange method. Tech. Rep. No. 
CS67, Comput. Sci. Dep., Stanford U. (June 1967). Also Algorithm 
328 Comm. ACM 11(June1968), 401-406, 428-430. 
11. Rice, J.R. The Approximation of Functions, Vol. 1, Reading 
Mass. Addison-Wesley, 1964. 
12. Veidinger, L. On the numerical determination of the best 
approximations in the Chebyshev sense. Numer. Math. 2 (1960), 
95-105. 
13. Forsythe, G.E. Generation and use of orthogonal polynomials 
for data-fitting with a digital computer. J. SIAM 5 (June 1957), 
74-88. 

Algorithm 
procedure remez (n, a, b, kstart, kmax, loops, f, chebyshev, eps, 

exchange, c, emax, trouble, why); 
value n, a, b, kstart, kmax, loops; 
real array c; real a, b, emax; label trouble; 
integer n, kstart, kmax, loops, why; 
real procedure f, eps; procedure chebyshev, exchange; 

comment Procedure remez finds the best fit (in the minimax sense) to 
a function/using a linear combination of functions which form a 
Chebyshev system. The exchange algorithm of E.L. Stiefel is used 
to obtain starting values for the critical points and the Remez 
algorithm is then used to find the best fit; 

begin 
procedure quadraticmax(n, x, niter, a/fa, beta, ok, a, b, c, nadded, 

eps); 
value n, niter, a/fa, beta, nadded; array x, c; 
integer n, niter, nadded; real a/fa, beta, a, b; 
Boolean ok; real procedure eps; 

comment Procedure quadraticmax is called to adjust the values of 
the critical points in each iteration of the Remez algorithm. The 
points are adjusted by fitting a parabola to the error curve in a 
neighborhood, or if that proves uns1:ttisfactory a brute force de
termination of the extrema is used; 

begin 
integer i, count1, count2, nhalf, signepsxstar, signu, signv, signw, 

jmax, ncrude, j, nn; 
real u, v, w, denom, epsu, epsv, epsw, xstar, epsxstar, xxx, misse, 

missx, dx, emax, etmp; 
integer array signepsx [0: n + 1]; array epsx [O: n + 1]; 
nn : = n - nadded; 
comment On arbitrary parameters ... 

ncrude The number of divisions used in the brute force 
search for extrema. 

nhalf The parameter (alpha) which determines the size of 
interval to be examined for an extremum is reduced by 
half if a bad value for xstar is computed, however this 
reduction may occur only nhalf times. 

misse If the value of the error curve at a new critical point 
differs from the previous value by a relative dift'erence of 
more than misse then the brute force method is brought in. 

missx The brute force method keeps searching until it is 
within missx of an extremum; 

comment Set values of the constants; 
ncrude := 10; nhalf := 4; misse := 1.010 -2; missx .-

1.010 -5; 
comment Compare missx with absepsx. They should be equal; 
for i : = 0 step 1 until n + 1 do 
begin 

epsx[i] : = eps(x[i], c, nn); 
signepsx[i] : = sign(epsx[i]); 

end; 
for i : = step 1 until n + 1 do 



COLLECTED ALGORITHMS (cont.) 

Ll: 

L2: 

begin 
comment If the starting values for the critical points do not 

alternate the sign of eps(x), then we: go to the label trouble; 
if signepsx[i] X signepsx[i- l] ~ -11 then go to trouble; 

end; 
comment First find all the interior extrema. Then we will find 

the end extrema, which may occur at the ends of the interval; 
for i : = 1 step 1 until n do 
begin 

countl : = O; cmmt2 : = O; 

u := x[i]; 
v := u + a/fa X (x[i+l] - u); w u + a/fa X 

(x[i-l] - u); 
epsu := epsx[i]; signu := signepsx[l]; 
epsv : = eps(v, c, nn); signv : = sign(epsv); 
epsw : = eps(w, c, nn); signw : = sign(epsw); 
if -, signu = signv V .., signv = signw then go to L3; 
comment If the sign of eps(x) at the three points is not the 

same, we go to L3 where a/fa is reduced to make the points 
closer together; 

epsu : = abs(epsu); epsv : = abs(epsv); epsw : = abs(epsw); 

denom : = 2.0 X ((epsv - epsu) X (w - u) + (epsw -
epsu) X (u- v)); 

if denom = 0.0 then xstar : = 0.5 X (v + w) else xstar : = 

0.5 X (v + w) + (v - u) X (u - w) X (epsv - epsw) / 
denom; 

countl : = countl + 1; 
comment Test xstar to be sure it is what we want. Is it be

tween x[i-1] and x[i+ l]? Is eps(xs.rar) ~ eps(u, v, w)? If 
xstar is too bad, go to L3 and reduce a/fa unless a/fa has 
been reduced nhalftimes. Otherwise if ok, go to savexstar; 

if xstar = u V xstar = v V xstar = w then 
begin 

epsxstar : = eps(xstar, c, nn); signepsxstar . - sign 
(epsxstar); 
epsxstar : = abs(epsxstar); go to savexstar 

end; 
if xstar ~ x[i-l] V xstar ~ x[i+lJ t~hen go toL3; 
epsxstar : = eps(xstar, c, nn); 
signepsxstar : = sign(epsxstar); 
epsxstar : = abs(epsxstar); 
if signepsxstar ~ signu V epsxstar < epsu V epsxstar < 

epsv V epsxstar < epsw then 
begin 

if epsu ~ epsv /\ epsu ~ epsw then 
begin 

if abs(epsxstar - epsu) > misse X epsu then go to 
LBL2; 

xstar : = u; epsxstar : = epsu; signepsxstar : = signu · 
go to savexstar; 

end; 
if epsv ~ epsu /\ epsv ~ epsw then 
begin 

if abs(epsxstar - epsv) > misse X epsv then go to 
LBL2; 

xstar : = v; epsxstar : = epsv; si'gnepsxstar : = signv: 
go to savexstar· 

end; 
if ahs(epsxstar - epsw) > misse X epsw then go to 

LBL2; 
xstar : = w; epsxstar : = epsw; signepsxstar : = signw; 
go to savexstar; 

LBL2: 

LBLl: 
jmax := O; 

dx := (v-w)/ncrude; emax := 0.0; xxx .- w - dx; 
for j : = 0 step 1 until ncrude do 
begin 

xxx := xxx + dx; jmax := jmax + 1; 

L4: 

etmp : = eps(xxx, c, nn); 
if abs(etmp) > emax then 
begin 

emax : = epsxstar : = abs(etmp); 
signepsxstar : = sign(etmp); 
u := xstar := xxx; 
v : = u + dx; w = u - dx; 

end 
end; 
if dx > m issx then go to LBL 1 ; 

414-P 7 

comment Make sure v and ware within bounds; 
if v ~ x[i+l] then go to L3; 
if w ~ x[i- l] then go to L3; 
go to sa vexstar 

end; 
if countl > niter then go to savexstar; 
if epsu ~ epsw then 
begin 

if e psv < e psu then 

begin 
comment v is minimum; 
if xstar > u then 
begin 

v : = xstar; epsv . - epsxstar; go to L2; 
end; 
if xstar > w then 
begin 

epsv := epsu; v := u; 
epsu : = epsxstar; u : = xstar; 
go to L2; 

end 
else 
begin 

v := u; epsv : = epsu; 
u := w; epsu := epsw; 
w : = xstar; epsw : = epsxstar; 
go to L2; 

end; 
end 
else 
begin 

comment u is minimum; 
if xstar ~ v then 
begin 

u := v; epsu := epsv; 
v : = xstar; epsv : = epsxstar; 
go to L2; 

end; 
if xstar ~ w then 
begin 

u : = xstar; epsu : = epsxstar; 
go to L2; 

end 
else 
begin 

u := w; epsu := epsw; 
w : = xstar; epsw : = epsxstar; 
go to L2; 

end; 
end; 

end 
else 
begin 

if epsv < epsw then 
begin 

comment v is minimum; go to L4; 
end 
else 
begin 

comment w is minimum; if xstar ~ ~· then 

0 



COLLECTED ALGORITHMS (cont.) 

L3: 

LS: 

L5: 

begin 
w := u; epsw := epsu; 
u := v; epsu := epsv; 
v : = xstar; epsv : = epsxstar; 
go to L2; 

end; 
if xstar ~ u then 
begin 

w := u; epsw := epsu; 
u : = xstar; epsu : = epsxstar; 

go to L2; 
end 
else 
begin 

w : = xstar; epsw . - epsxstar; 
go to L2; 

end; 
end; 

end; 

count2 : = count2 + 1 ; 
if count2 > nhalfthcn go to trouble; 
a/fa := 0.5 X a/fa; 
comment The factor 0.5 used in reducing alpha is arbitrarily 

chosen; 
go to Ll; 
comment Replace xli] by xstar after checking alternation of 

signs; 
savex'star: 

if i > 1 A signepsxstar X signepsx[i-1] ~ -1 then go to 
trouble; 

signepsx[i] : = signepsxstar; 
x[i] : = xstar; 

end; 
comment This is the end of the loop on i which finds all interior 

extrema. Now we proceed to locate the extrema at or near 
the two endpoints (left end, then right end); 

comment We assume beta > a/fa; 
for i : = 0, n + 1 do 
begin 

count! : = O; count2 O; 

u : = x[i]; if i = 0 then 
begin 

if a < u then w : == u + a/fa X (a - u) else w . - u + 
beta X (x[l] - u); 
v := u +a/fa X (x[l] - u); 

end 
else 
begin 

if b > u then w : = u + a/fa X (b - u) else w . - u + 
beta X (x[n] - u); 
v := u +a/fa X (x[n] - u); 

end; 
epsu : = epsx[i]; signu : = signepsx[i!; 
epsv : = eps(v, c, nn); signv : = sign(epsv); 
epsw := eps(w, c, nn); signw := sign(epsw); 
if signv ~ signu V signv ~ signw then go to L 7; 
epsu : = abs(epsu); epsv : = abs(epsv); epsw : = abs(epsw); 

denom := 2.0 X (epsu X (v-w) + epsv X (w-u) + epsw X 
(u-v)); 

if denom = 0.0 then xstar : = 0.5 X (w+v) else xstar : = 
0.5 X (v+w) + (v-u) X (u-w) X (epsv - epsw)/ 
denom; 

if i = 0 A (xstar < a V xstar ;::: x[l D then 
begin 

xstar : = a; epsxstar : = eps(a, c, nn); 
signepsxstar : = sign(epsxstar); epsxstar : = abs (epsxstar); 

end 

L7: 

414--P 8- 0 

else 
if i = n + 1 A (xstar > b A xstar ~ x[n]) then 
begin 

xstar : = b; epsxstar : = eps(h, c, nn); 
signepsxstar : = sign(epsxstar); epsxstar : = abs (epsxstar); 

end 
else 
begin 

epsxstar : = eps(xstar, c, nn); 
signepsxstar : = sign(epsxstar); 
epsxstar : = abs(epsxstar); 

end; 
countl : = countl + 1; 
if i = 0 A xstar ;::: x[l] then go t1C> L7; 
if i = n + 1 A xstar ~ x[n] then go to L7; 
if xstar = u V xstar = v V xstar = w then go to L6; 
if signepsxstar ~ signu V epsxslar < epsu V epsxstar < 

epsv V epsxstar < epsw then 
begin 

if epsu ~ epsv A epsu ~ epsw then 
begin 

xstar : = u; epsxstar : = epsu; 
signepsxstar : = signu; go to L6; 

end; 
if epsv ~ epsu A epsv ;::: epsw then 
begin 

xstar : = v; epsxstar : = epsv; 
signepsxstar : = signv; go ti() L6; 

end; 
xstar : = w; epsxstar : = epsw; 
signepsxstar : = signw; go to L6; 

end; 
if countl > niter then go to L6; 
if epsu < epsw then 
begin 

if epsv < epsu then 
begin 

comment vis minimum; 
v : = xstar; epsv : = epsxstar; 
go to L5; 

end 
else 
begin 

comment u is minimum; 
u : = xstar; epsu : = epsxsrar; 
go to L5; 

end; 
end 
else 
begin 

if epsv < epsw then 
begin 

comment vis minimum; 
v : = xstar; epsv : = epsxswr; 
go to L5; 

end 
else 
begin 

comment w is minimum; w 
go to L5; 

end 
end; 

count2 : = count2 + 1; 
if count2 > nhalfthen go to trouble; 

xstar; epsw : = epsxstar; 

a/fa : = 0.5 X a/fa; beta : = 0 .. 5 X beta; 
go to LB; 
comment Replace x[i] by xstar a:fter checking its sign; 



COLLECTED ALGORITHMS (cont.) 

L6: 
if i = 0 /\ signepsxstar X signepsx[l] ~ 1 then go to 

trouble; 
if i ~ 0 /\ signepsxstar X signepsx[n] ~ 1 then go to 

trouble; 
signepsx[i] . - signepsxstar; x[i] : = xstar; 

end; 
go to done; 

trouble: 
ok : = false; go to L9; 

done: 
ok : = true; 

L9: 
end quadraticmax; 
comment Procedure start computes the arrays which are then in

put to exchange to find the best approximation on the points at 
hand; 

procedure start (m, n, a, d, xi, chebyshev, f); 
value m, n; integer m, n; 
array a, d, xi; 
procedure chebyshev; real procedure f; 

begin 
integer i, j; real array t[O:n]; 
for i : = 0 step 1 until m do 
begin 

chebyshev- (n, xi[i], t); 
for j : = 0 step 1 until n do a[i,j] : = tfj]; 
d[i] : = f(xi[i]); 

end 
end start; 
comment Now the procedure remez; 
real epsc, a/fa, beta, epsx, absepsc, absepsx, rcompare, dx, maxr, 

minr, tempr, minsep; 
integer m, i, itemp, j, niter, nloop, k, nadded, isub, maxri, ilast, 

signnow, jj; 
integer signnew; integer array refset[O : n + 1 + n]; 
comment Assume number of points added :S n; 
integer airray ptsadd[O : n); 
array clast[O : n + 1), xq, xqlast[O : n + 1 + n]; 
Boolean firsttime, ok, convx, convc, addit; 
why : = O; k : = kstart; 
comment Come here if k gets changed: 

newk: 
m : = n + 1 + (k - 1) X (n + 2); 
begin 

array r, xi, d[O : m], aa[O : m, 0 : n + lJ; 
firsttime : = true; convx : = false; convc : == false; 
nloop := O; 
comment This makes the initial points spaced according to the 

extrema of the Chebyshev polynomial of degree m - l; 
for i : = 0 step 1 until m do 
xiii] : = (a+b)/2.0 - (b-a) X cos((3.14159265359 X i)/m)/ 

2.0; 
comment 3.14159 ... is 7rj 

dx : = (b-a)/m; 
comment To use equally spaced points a statement such as the 

following could be used. for i : = 0 step l until m do xilil : = 

a+ i X dx; 
start(m, n, aa, d, xi, chebyshev, f), 

comment The following constants are used in testing for conver
gence 
epsc used in relative test on coefficients 
absepsc used in absolute test on coefficients 
epsx used in relative test on critical points 
absepsx used in absolute test on critical JPOints 
rcompare used to compare relative magnitudes of max and 
min values of residual on the critical points; 

epsc : = 1.010 - 7; absepsc : = 1.010 - 7; epsx : = 1.010 - '· 
absepsx : = 1.0io - 5; 

rcompare : = 1.0000005; 

414-P 9 0 

comment epsx and absepsx should be the same as missx in pro
cedure quadraticmax. epsc and absepsc should be adjusted 
according to knowledge of the expected magnitudes of the 
coefficients (if known). It is best to depend on the critical 
points and/of the max and min of the residuals for conver
gence criteria; 

comment Now call on exchange to find the first approximation 
to the best approximating function; 

exchange (aa, d, c, m, n, refset, emax, singular, r); 
comment The subscripts of the points chosen are in array ref

set [O:n + 1], the coefficients of the best approximating func
tion on them points are in c[O:nJ, the residuals in r; 

comment The reference set, the coefficients at this step, and/or 
the residuals may be written at this point; 

for i : = 0 step 1 until n do clast[i] : = c[i]; 
comment Now we are going to look for any extrema not given 

by the points chosen by exchange; 
comment Make sure critical points are algebraically ordered; 
for i : = 0 step 1 until n do for j : = i + 1 step 1 until n + I do 
begin 

if refset[j] < refset[iJ then 
begin 

itemp : = r~fsetUJ; refsetUJ refset[i]; 
refset[iJ itemp; 

end 
end; 
nadded : = O; maxr : = O; maxri : = O; ilast : = O; 
signnow : = sign(r[O]); 
for i : = 0 step 1 until m + 1 do 
begin 

LBL: 

if i = m + 1 then go to LBL; 
if sign(r[i]) ~ 0 /\ sign(r[i]) = signnow then 
begin 

if abs(r[i]) > maxr then 
begin maxri : = i; maxr : = abs(r[i)); end 

end 
else 

begin 
if i < m + 1 then signnow : = sign(r[i)); 
addit : = true; 
for j : = 0 step 1 until n + 1 do 
begin 

for jj : = ilast step 1 until i - 1 do 
begin 

if jj = refsetUJ then addit : = false; 
end 

end; 
if addit then 
begin 

nadded : = nadded + 1 ; if nadded > n then 
begin 

comment We assume nadded is always :S n. If nadded 
is > n, why is set to -1 and we go to the label 
trouble. This can be modified by changing this test 
and changing the declarations for ptsadd, refset, xq, 
and xqlast above; 

why:= -1; 
go to trouble 

end; 
ptsadd[nadded] : = maxri; 
refset [n + 1 + nadded] := maxri; 

end; 
if i < m + 1 then 
begin 

ilast : = i; maxr : = abs(r[i]); maxri : = i; 
end 

end 
end; 
comment We now have n + 2 + nadded points to send to 

quadraticmax for adjustment; 



COLLECTED ALGORITHMS (cont.) 

m := n + nadded; 
comment Make sure critical points are algebraically ordered; 
for i : = 0 step 1 until m do for j : = i + 1 step 1 until m + 1 

do 
begin 

if refsetUJ < refset[i] then 
begin 

itemp : = refsetU]; refsetUl : = refset[i]; 
refset[i] : = itemp; 

end 
end; 
for i: = 0 step 1 until m + 1 do xq[i] : = xi[refset [i]]; 
niter : = 2; 
comment This is the number of times to iterate in quadraticmax; 
a/fa:= 0.15; beta := 0.2; 
comment a/fa and beta are used to determine the points used 

in quadraticmax to fit a parabola. They are arbitrary subject 
to: 0 < a/fa < beta < 1. Also beta should be fairly small 
to· keep the points on one side of zero; 

comment This is the beginning of the loop that calls on 
quadraticmax, exchange, etc.; 

loop: 
nloop : = nloop + 1; 
quadraticmax(m, xq, niter, a/fa, beta, ok, a, b, c, nadded, eps); 
if ...., ok then 
begin 

k : = k + 1 ; if k > kmax then 
begin why : = 1; go to trouble; end; 
go to newk; 

end; 
if -, firsttime then 
begin 

comment Compare the largest and smallest of the residuals 
at the critical points (after adjustment); 

comment Set minr to a large number; 
maxr : = 0.0; minr : = 1.01050; 
for i : = 0 step 1 until n + 1 do 
begin 

addit : = true; 
for j : = 1 step 1 until nadded do if refset[i] = ptsadd[j] 

then addit : = false; 
if addit then 
begin 

tempr : = abs(eps (xq [refset [i]], c, n)); 
if tempr > maxr then maxr : = tempr else if tempr < 

minr then minr : = tempr; 
end 

end; 
if maxr ~ rcompare X m·inr then wiry : = 4; 

end; 
comment Compare xq to xq/ast; 
if -, firsttime then 
begin 

convx : = true; 
for i : = 0 step 1 until m + 1 do 
begin 

if abs(xq [i] - xqlast[i]) > absepsx then 
begin 

if abs (xq [i] - xqlast[i]) ~ epsx X abs(xq (i]) /\ 
xq[i] ~ 0.0 then convx : = false; 

if xq[ij = 0.0 /\ abs(xq [i] - xqlast[i]) > absepsx 
then convx : == false; 

end; 
xqlast [iJ : = xq [ i]; 

end 
end 
else 

414--P 10- 0 

begin 
first time : = false; 
for i : = 0 step 1 until m + 1 do xqlast [i] : = xq [i]; 
for i : = 0 step 1 until n do clast[i] : = c [i]; 

end; 
comment Get ready to call exchange again; 
start(m + 1, n, aa, d, xq, chebyshev, f); 
exclrange(aa, d, c, m + 1, n, refset, emax, singular, r); 
comment Now compare the new coefficients to the last set of 

coefficients; 
if -, firsttime then 
begin 

convc : = true; 
for i : = 0 step 1 until n do 
begin 

if abs(c[i] - clast[i]) ~ epsc X abs(c[i]) /\ c[i] ~ 0.0 
then convc : = false; 

if c[i] = 0.0 /\ abs(c[i] -- clast[i]) > absepsc then 
convc : = false; clast[i] : = c[i]; 

end 
end; 
comment Set the parameter wiry to the proper value according 

to the following: 
why = 4 if maxr :::; rcompare X minr. 
why = 5 if "4" and convx = true. 
wiry = 6 if "4" and convc = true. 
why = 7 if "4" and convx = convc = true. 
why = 8 if convx = true. 
why = 9 if convc = true. 
why = 10 if convx = convc == true. Any value of why ~ 

4 indicates convergence; 
if why = 4 /\ convx then why : = 5; 
if why = 4 /\ convc then why : = 6; 
if why = 5 /\ convc then why : = 7; 
if why = 0 /\ convx then why : = 8; 
if why = 0 /\ convc then why : = 9; 
if why = 8 /\ convc then why : = 10; 
if why ~ 4 then go to converged; 
if nloop ~ loops then 
begin why : = 3; go to trouble e111d; 
comment We go to label trouble in calling program if no con

vergence after a number of iterations equal to loops; 
go to loop; 

singular: 
why : = 2; go to trouble; 
comment We come to singular if exchange gets into trouble; 

converged: 
end· 
co~ment End of block using m in array declarations; 
comment There are four exits to the label trouble ... 

(why= 1) if k gets > kmax 
(why= 2) if exchange gets into trouble 
(why= 3) if no convergence after iterating loops number of 

times 
(why = - 1) if number of added points is greater than n; 

end remez 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 415 

Algorithm for the Assignment 
Problem (Rectangular 
Matrices) [H] 
F. Bourgeois, and J.C. Lassalle [Recd. 21 Sept. 1970 
and 20 May 1971] CERN, Geneva, Switzerland 

Key Words and Phrases: operations researi~h, optimization 
theory, assignment problem, rectangular matric:es 

CR Categories: 5.39, 5.40 

Description 
This algorithm is a companion to [3] where the theoretical 

background is described. 

References 
I. Silver, R. An Algorithm for the assignment problem. Comm. 
ACM 3 (Nov. 1960), 605-606. 
2. Munkres, J. Algorithms for the assignment and transportation 
problems. J. SIAM 5 (Mar. 1957), 32-38. 
3. Bourgeois, F. and Lassalle, J.C. An extension of the Munkres 
algorithm for the assignment problem to rectangular matrices. 
Comm. ACM 15 (Dec. 1971), 802-804. 

Algorithm 
procedure assignment (a, n, m, x, total); 

value a, n, m; integer n, m; 
real total; array a; integer array x; 

comment: a[i, j] is an n X m matrix, x[l], x[2], ... , x[n] are assigned 
integer values which minimize total : = sum(i : = 1 (l)n) ·of the 
elements a[i, x[i]]. If m > n the x[i] are distinct and are a subset 
of the integers 1, 2, ... , m. If m = n the x [i] are a permutation 
of the :integers 1, 2, ... , n. If m < n the set of x[i] consists of 
some permutation of the integers 1, 2, ... , m interspersed with 
n - m zeros. The permutation and the posiitions of the zeros are 
chosen in such a way as to minimize the above sum with the 
convention that a[i, o] is to be taken equal to zero. imin = 
min(n, m) and imax = max(n, m) must be such that: imin > 0, 
imax > 1. 
This procedure is based on that of Silver [1] which uses the 
assignment algorithm of Munkres [2]. Silver's procedure has 
been extended to handle the case n ;e m; 

Copyright© 1971, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, an algorithm 

is granted, provided that reference is made to this publication, to 
its date of issue, and to the fact that reprinting privileges were 
granted by permission of the Association for Computing Machinery. 

415--P 1- 6 

begin 

JA: 

JB: 

Jl: 

switch switch : = NEXT, LI, NEXT 1, MARK; 
real min; 
integer array c[l:n], cb[l:m], lambda[l:mJ, mu[l:n], r[l:n], 

y[l:m]; 
integer cbl, cl, clO, i, j, k, l, rl, rs, sw, imin, imax, flag; 
total:= O; imin : = m; imax : = n; 
if n > m then go to J A; 
imin := n; imax := m; 
for i : = 1 step 1 until n do 
begin 

min : = a[i, 1]; 
for j : = 2 step 1 until m do if a[i, j] < min then min : = a[i, j]; 
for j: = 1 step 1 until m do a[i, j] : = a[i, j] - min; 
total : = total+ min; 

end; 
ifm > nthen goto JB; 

for j : = 1 step 1 until m do 
begin 
min : = a[l,j]; 

for i : = 2 step 1 until n do if a[i, j] < min then min : = a[i, j]; 
for i : = 1 step 1 until n do a[i, j] : = a[i, j] - min; 
total : = total + min; 

end; 

for i : = 1 step 1 until n do x[i] : = O; 
for j : = 1 step 1 until m do y[j] O; 
for i : = 1 step 1 until n do 
begin 

for j : = 1 step 1 until m do 
begin 

if a[i, j] r!' 0 V x[i] ;C 0 V y[j] ~ 0 then go to JI; 
x[i] := j; y[j] := i; 

end; 
end; 
comment Start labeling; 

START: 

II: 

flag:= n; rl :=cl:= O; rs:= l; 
for i : = 1 step 1 until n do 
begin 

mu[i] := O; 
if x[i] ~ 0 then go to Il; 
rl : = rl + 1; r[rl] : = i; mu[i] : = -1; 
flag:= flag - l; 

end· 
iffl~g = imin then go to FINI; 
for j : = 1 step 1 until m do lambda [j] : = 0; 
comment Label and scan; 

LABEL: 

J2: 

i := r[rs]; rs:= rs+ 1; 
for j : = 1 step 1 until m do 
begin 

if a[i, j] ;C 0 V lambda[j] ~ 0 then go to J2; 
lambda [j] : = i; cl : = cl + 1; c[cl] : = j; 
if y[j] = 0 then go to MARK; 
rl : = rl + 1; r[rl] : = y[j]; mu[y[j]] : = i; 

end; 
if rs ~ rl then go to LABEL; 
comment Renormalize; 
sw := l; clO :=cl; cbl := O; 
for j : = 1 step 1 until m do 
begin 

if lambda [j] ¢. 0 then go to J3; 
cbl := cbl + 1; cb[cbl] := j; 



COLLECTED ALGORITHMS (cont.) 

/3: 

12: 

end· 
min':= a[r[1J, ch[1J]; 
for k : = 1 step 1 until rl do 
begin 

for/ : = 1 step 1 until chi do 
if a[r[kJ, ch[/)] <min then min:= a[r[k], ch[/)]; 

end; 
total:= total+ min X (rl+chl-imax); 
for i : = 1 step 1 until n do 
begin 

if mu[i] ¢. 0 then go to 12; 
if c/O < 1 then go to 13; 
for/ : = 1 step 1 until clO do a[i, c[l]) : = a[i, c[/]] + min; 
go to 13; 

for/ : = 1 step 1 until chi do 
begin 

a[i, ch[/]] : = a[i, ch[/)) - min; 
go to switch[sw]; 

NEXT: 
if a[i, ch[/]] ¢. 0 V lambda[ch[I]] -¢ 0 then go to Ll; 
lamhda[cb[l]] : = i; 

if y[cb[I]] = 0 then 
begin 

415-P 2- 0 

j := ch[IJ; sw := 2; gotoLl; 
end· 
cl::,,, cl+ 1; c[cl] :=ch[/]; ,r/ := rl + 1; 
r[rl] : = y[cb[l]J; 

LI: 

13: 
end; 

end; 
go to switch[sw + 2]; 

NEXTl: 
if clO = cl then go to LABEL; 
for i : = c/O + 1step1 until cl do mu[y[c[i]]] : = c[iJ; 
goto LABEL; 
comment Mark new column and permute; 

MARK: 
yUJ : = i: = lambdafj]; 
if x[i] = 0 then begin x[i] : = j; go to START; 

end; 
k :=j; j := x[iJ; x[iJ := k; goto MARK; 

FINI: 
end 



COLJLECTED ALGORITHMS FROI\11 CACM 

Algorithm 416 

RapJid Computation of 
Coefficients of 
Interpolation Formulas [El] 
Sven-Ake Gustafson* [Recd. 21 Aug. 1969] 
Computer Science Department, Stanford University, 
Stanford, CA 94305 

Key Words and Phrases: divided differences, Newton's 
interpolation formula 

CR Category: 5.13 

Description 
This· algorithm is a companion to [1] where the theoretical 

background is described 

References 
1. Gustafson, Sven-Ake. Rapid computation of interpolation 
formulae and mechanical quadrature rules. Comm. ACM 14 
(Dec. 1971), 797-801. 

Algorithm 
procedure .INTP (dx, f, c, ord, n); 

value n; real array dx, f, c; 
integer array ord; integer n; 

begin 
comment JNTP determines the coefficients of the polynomial of de

gree less than n which reproduces given function values and 
divided differences. The parameters of INTP are: 

idenlifier type comment 
n integer 
ord integer array Array bounds [1 :n] 
dx, f, c real array Array bounds [1 :n] 

n is the number of coefficients of the interpolating polynomial. 
ord gives the character of the input data: if ord[iJ = 1 then x[i] 
should be an argument and /[i] the corresponding function value. 
But if ord[i] > 1 then/[i] should contain a divided difference with 
a number of arguments equal to ord[i]. In this case dx[i] should 
contain the difference between the argument of highest index of 
f[i] and that off[i-1]. 

Upon execution of INTP the coefficients of the desired poly
nomial are stored in c in such a manner that the coefficient in 
front of the power ti-1 is contained in c[i]. Other parameters are 
not changed. Caution: The given data must be such that it is 
possible to construct Newton's interpolation formula with 
divided differences from them. We must also have ord[l] = 1. 

416-P 1- 0 

Observe that if derivatives of f are given the corresponding 
divided differences with confluent arguments must be evaluated 
and given as input data. 

Examples of use of JNTP: 
Example 1. Determine the polynomial of degree less than n which 
interpolates a function fat n distinct points Xi , i = l, 2, ... , n. 
Input data: dx[i] = Xi , f[i] = fi, ord[i] = 1, i = 1, 2, ... , n. 
Example 2. Let xi , x2 , x 8 , x4 be four given points. We know 
Ji, /i.2, /2.a, and./4. Determine the polynomial of degree 3 which 
reproduces these quantities. Input data: n = 4, 

dx[l] =Xi ord[l] = 1 /[1] = fi 
dx[2] = X2 - xi ord[2] = 2 /[2] = /i.2 
dx[3] = Xa - X2 ord[3] = 2 /[3] = /2.a 
dx[4] = X4 ord[4] = 1 /[4] = .14 

Example 3. The same problem when we are given f ( - 1), f' ( - 1), 
f"(-1), and/(1). Input data: n = 4, 

dx[l] = -1 ord[l] = 1 /[1] = f(-1) 
dx[2] = 0 ord[2J = 2 /[2] = f'(-1) 
dx[3] = 0 ord[3J = 3 /[3] = 0.5· f"(-1) 
dx[4] = 1 ord[4] = 1 /[4] = /(1) 

For further details see [1]; 
integer i,j, k; real ai, h, d, xx; 

real array arg [1 : n]; 
comment Initiate phase DI; 
for i : = 1 step 1 until n do 

arg[i] : = if ord[i] = 1 then dx[i] else dx[i] + arg[i-1); 
comment Phase DI; 
for i : = 2 step 1 until n do 
begin 

j := ord[i]; 
if j = 1 then go to divde; 
d := f[i]; 
fork:= istep -1 until i -j + 2dof[k] := /[k-1); 
f[i-j+lJ := d; 
h : = dx[iJ; ai: = arg[iJ; 
for k : = i - j + 2 step 1 until i - 1 do 

f[k] := f[k] + f[k-1] X (ai-arg[k-1]); 
f[i] : = f[i] + f[i-1] x h; 
arg[i] : = ai; 

divde: 
for k : = i - j step - 1 until 1 do 

f[k] := (f[k+lJ-f[k])/(arg[i]-arg[k]); 
end i-loop; 
comment phase DII; 
c[l] : = /[l]; if n = 1 then go to ready; 
for i : = 2 step 1 until n do 
begin 

xx:= arg[i]; c[i] := c[i-1]; 
fork:=i-lstep-luntil2do 
c[k] := -xx X c[k] + c[k-1]; 
c[l] : = f(i] - xx X c[l] 

end second i-loop; 
ready: 
endINTP 

*Present Address: Inst. F. Informations Behandl1ing (Numeisk an
alys), KTH, 10044 Stockholm, Sweden. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 41 7 

Rapid Computation of Weights 
of Interpolatory Quadrature 
Rules [Dl] 

0 * Sven-Ake Gustafson [Recd. 21 Aug. 1969] 
Computer Science Department, Stanford University, 
Stanford, CA 94305 

Key Words and Phrases: divided differences 
CR Categories: 5.16 

Description 
This algorithm is a companion to [1] where the theoretical 

background is described 

Reference 
1. Gustafson, Sven-Ake. Rapid computation of interpolation 
formulae and mechanical quadrature rules. Comm. ACM 14 
(Dec. 1971), 797-801. 

Algorithm 
procedure INTG(y, dx, m, ord, n); 

value n; real array y, dx, m; 
integer array ord; integer n; 

begin 
comment INTG determines weights in quadrature rules of the form 

l
b n 

/(t) da(t) = ~ m1Jtd<i> 
a i-l 

(1) 

Heref.:°7d<i> can be a function value or derivative or divided dffer
ence of order 1. The weights mi are determined such as to render 
the rule exact when the integrand f is a polynomial of degree less 
than n. The parameters of!NTG are: 

identifier type comment 
n integer 
ord integer array Array bounds [1 :n] 
y, dx, m real array Array bounds [1 :n] 

n is the number of abscissae in formula (1). ord gives the charac
ter of the quantities /'f,'d(i): if ora'.fil = 1 then nrd(i) is the function 
value.Ii, if ord[i] = 2, then/~•d«> is a divided difference with two 
arguments. (The procedure does not handle cases where ord[i] > 
2.) 

If ord(i] = 1, then dx[i] should contain the argument corre
sponding to !~rd <i>, else dx[i] should contain the difference between 
the arguments of highest index in/rd<i> and that off°/!1<i-l). 

y should contain the moments, that is in y[r] must be stored 
the number 

i b rr-1 da(t) 

* Present address: Inst. F. Informations Behandling (numerisk 
analys), KTH, 10044 Stockholm, Sweden. 

417--P l- 0 

Upon execution of INTG the weight mi is stored in m[i]. Other 
parameters are not changed. Example of use of INTG: Deter
mine the coefficients m1 , m2, m3 , and m4 in the rule 

J
+l 

_
1 

/(x) dx = mi/(-1) + md'(-1) + maf(l) + md'(l) 

Input data: n = 4 

dx[l) = -1 ord[l] = 1 y[l] = 2 
dx[2] = 0 ord[2] = 2 y[2] = 0 
dx[3] = 1 ord[3J = 1 y[3] = 2/3 
dx[4] = 0 ord[4] = 2 y[4] = 0 

Restriction: We can only have ord[i] == 1 or ord[i] = 2. Further
more the given data must be such that it is possible to construct 
Newton's interpolation formula with divided differences from the 
set x; Jrd<i> i = 1, 2, ... , n. We must also have ord[l] = 1. 
For further details, see [1]; 
integer i, j, k; real t; 
real array x[l:n); 
comment Initiate phase Pl; 
for i : = 1 step 1 until n do 
begin 

m[i] : = y[i]; 
x[i] : = if ord[i] = 1 then dx[i] else dx[i] + x[i-1] 

end; 
comment Phase Pl; 
for j : = 2 step 1 until n do 
begin 

t := xl/-1]; 
for i: = n step -1 untilj do m[i] : = m[i] - t X m[i-1] 

end; 
comment Phase P II; 
for k : = 1 step 1 until n - 1 do 
begin 

comment transform from descending diagonal k to descending 
diagonal k + 1 ; 
if k = n - 1 /\ ord[n] = 2 then go 1to ready; 
t := x[kJ; m[n] := m[n]/(x[n]-t); 
for i: = n - 1 step -1 until k + 2do m[i] := (m[i] - m[i+ 1])/ 
(x[i]- t); 
if ord[k+1J = 2then 
begin 

m[k+1J := m[k+lJ - m[k+2J; goto on; 
end; 
if k + 1 < n then 
m[k+l] := (m[k+lJ - m[k+2])/(if ord[k+lJ 2 then 
dx[k+lJ else x[k+lJ-t); 
if ord[k] = 1 /\ ord[k+lJ = 1 then 
begin 

m[k] := m[k] - m[k+l]; goto on 
end; 
for i : = k - 1 step - 1 until 1 do 
if ord[i] = 1 then 
begin 

j : = i; go to next 
end; 

next: 
t := m[k+l]; 
for i: = k step -1 untilj + 1 do m[i] : = m[i] - t X dx[i]; 
mUJ := m[j] - t; 

on: 
end; 

ready: 
end JNTG; 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 418 

Calculation of Fourier 
Integrals [D 1] 
Bo Einarsson [Recd. 25 Aug. 1970, 30 Oct. 1970, and 
25 Jim. 1971] 
Research Institute of National Defense, Box 98, 
S-147 OOTumba, Sweden 

Key Words and Phrases: quadrature, Filon quadrature, 
integration, Filon integration, Fourier coefficients, Fourier 
integrals, Fourier series, spline, spline approximation, spline 
quadrature, extrapolation, Richardson extrapolation 

CR Categories: 5.16 

Description 
The most commonly used formula for calculating Fourier in

tegrals is Filon's formula, which is based on the approximation of 
the function by a quadratic in each double interval. In order to 
obtain a better approximation the cubic spline fit is used in [1]. 
The obtained formulas do not need the expliicit calculation of the 
spline fit, but in addition to the function valuies at all intermediate 
points, the values of the first and second derivatives at the bound
ary points are required. However, these values are often obtained 
from symmetry conditions. If the derivatives at the end-points are 
unknown, they may be calculated from a cubic spline fit, for ex
ample by using some exterior points or by using two extra interior 
conditions for the spline fit. It can also be noted that in certain 
periodic cases the terms containing the derivatives will cancel, 
and their values will be superfluous. The use of Algorithm 353 
[2] is recommended if the frequency w/1r is a positive integer and 
the interval is [0,1]. Test computations reported in [1] indicate 
that the spline formula is more accurate than Filon's formula. 
Both are of the fourth order. The expansion of the error term in 
powers of the step length contains only even powers, and there
fore the use of Richardson extrapolation is very efficient. 

The algorithm presented here is similar to Algorithm 353. by 
Chase and Fosdick [2], but in the present routine, Richardson ex
trapolation is included in order to obtain faster convergence. 

The routine FSPL2 evaluates the integrals 

c = r e-x cos (wx) dx and s = e-x sin (wx) dx. 
12 112 

12 2 

Copyright© 1972, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, an algorithm 

is granted, provided that reference is made to this publication, to 
its date of issue, and to the fact that reprinting privileges were 
granted by permission of the Association for Computing Machinery. 

418-P 1-- 0 

using the algorithm described in [1 ]. FSPL2 contains a feature 
which selects an initial integration step size such that at least two 
quadrature nodes are within each full period of the trigonometric 
function, cf. [3]. This step size is reduced by halving until the 
specified accuracy is obtained or the maximum number of interval 
halvings of the original interval is reached. Two evaluations are 
always performed. If the interval [a, b] is long, it is advised to take 
special precautions. 

The use of Richardson extrapolation, which is performed in 
the subroutine ENDT2, decreases the number of function evalua
tions by a factor 4 in several of the test examples. It is possible 
to introduce the fast Fourier transform in order to obtain faster 
computation of the inner loop of the algorithm. Another exten
sion is to calculate the central part of the integral with the spline 
algorithm and the tails with the method in [4], which gives accu
rate results even when the function f(x) is slowly decreasing if the 
frequency w is large. 

Finally we give some test examples for both single and double 
precision computation of 

C = Lb f(x) cos (wx) dx and S = Lb f(x) sin (wx) dx 

Error in computed 
MAX LC LS w EPS c s c s 

SP Input 10 1 I 0.05 10-s 
Output 5 5 0.133645 0.020190 -30.10-s -15.10-s 

SP Input 10 I 1 50.0 10-e 
Output 9 9 0.001417 0.002306 -13.10-s -14. lo-a 

DP Input 15 1 1 0.05 10-14 
Output 7 7 0.133645 0.020190 -68.10-11 -1.10-11 

DP Input 15 I 1 50.0 10-14 
Output II 11 0.001417 0.002306, 3.10-l'i 

References 

1. Einarsson, Bo. Numerical calculation of Fourier integrals 
with cubic splines. BIT 8 (1968), 279-286. 

8. 10-11 

2. Chase, Stephen M., and Fosdick, Lloyd D. Algorithm 353, 
Pilon quadrature. Comm. ACM 12 (Aug. 1969), 457-458. 
3. Einarsson, Bo. Remark on algorithm 353, Pilon 
quadrature. Comm. ACM 13 (Apr. 1970), 263. 
4. Gustafson, Sven-Ake, and Dahlquist, Germund. On the 
computation of slowly convergent Fourier integrals. Presented at 
Nov. 1970 meeting in Oberwolfach and to appear in Methoden 
und Verfahren der Mathematischen Physik. 
5. Einarsson, Bo. On the calculation of Fourier integrals. 
Preprints of the IFIP Congress 71, Booklet TA-· 1, 
North-Holland Pub. Co., Amsterdam, 1971, pp. 99-103. To 
appear in Information Processing 71, same publication. 



COLLECTED ALGORITHMS (cont.) 

Algorithm 

c 

SUBROUTINE FSPL2 
(F,A,B,FPA,FPB,FBA,FBB,W,EPS,MAX,C,S,LC,LSI 

C THIS ROUTINE COMPUTES THE FOURIER INTEGRALS 
C C=INTEGRAL FIXI COS WX DX FROM X=A TO X•B 
C S=INTEGRAL FIX) SIN WX DX FROM X=A TO X•B 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

WITH THE SPLINE PROCEDURE lN B. EINARSSON, NUMERICAL 
CALCULATION OF FOURIER INTEGRALS WITH CUBIC SPLINES, 
BIT, VOL. 8, PP. 279-2B6, [968. 

REPEATED RICHARDSON EXTRAPOLATION IS USED. 

THIS SUBROUTINE HAS ADAPTED SEVERAL IDEAS FROM 
ALGORITHM 353, FILON QUADRATURE BY CHASE AND FOSDICK, 
COMM. ACM, VOL. 12, PP. 457-458, 1969. 

FIXr•THE FUNCTION TO BE INTEGRATED, SUPPLIED BY THE USER 
AND DECLARED 'EXTERNAL' JN THE CALLING PROGRAM. 

DATA Pl I 3.141592653589793 I 

C A•LOWER QUADRATURE LIMIT AND B•UPPER QUADRATURE LIMIT 
C IF AoGE.B THE COMPUTATION IS BYPASSED ANO THE SIGNS OF 
C LC, LS, ANO EPS ARE CHANGED. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

FPA AND FPB ARE THE VALUES OF THE DERIVATIVE OF FCXI. 
FBA AND FBB ARE THE CORRESPONDING VALUES OF THE SECOND 
DERIVATIVE AT THE POINTS A AND B. 
W•THE ANGULAR FREQUENCY 

EPS • REQUIRED ACCURACY, DEFINED BY 
IERRORI ~ EPS•(l.+ICll 

ANO 
IERRORI ,i EPS•ll.+ISll 

IF CONVERGENCE JS NOT OBTAINED, THE VALUE 
OF EPS IS RETURNED WITH NEGATIVE SIGN. 

MAX=THE MAXIMUM NUMBER OF PARTITIONS !INTERVAL HALVINGSI 
IN THIS ROUTINE THE INTERNAL VARIABLE MXN DEFINED BELOW 
IS USED INSTEAD OF MAX. 
LC POSITIVE ON ENTRY INDICATES THAT C IS WANTED. 
LS POSITIVE ON ENTRY INDICATES THAT S IS WANTED. 
ON EXIT LC ANO LS GIVE THE NUMBER OF PARTITIONS USED 
FOR THE COMPUTATION OF C AND So 

THIS ROUTINE CALLS THE SUBROUTINE ENDT2. 

DIMENSION PVTCl71rPVTSl71 
IFIEPS.LT.O.I GOTO 5 
IFIA.LT.BI GOTO 10 
EPSz-EPS 
LC•-LC 
LS•-LS 
RETURN 

10 N• 1 
WlaABSIWI 
TEMP•2.0•IB~Al•Wl/PI 
IFITEMP.GT.2.01 N•ALOGITEMPl/0.693 

C 0.693aAlOGl2ol ROUNDED DOWNWARDS. 
MXN=MAXOIMAX,N+ll 
FA=f(A) 
FB•f(BI 
COSA=COSIWl•AI 
SINA•SIN (Wl*A) 
COSB=COS(Wl•BI 
SINB•SINCWl•BI 
H•CB-Al/FLOAT(2**NI 
NSTOP•2••N-l 
NSTal 

C TMAX IS THE SWITCH-OVER POINT FOR TETA. 
C ANALYSIS SHOWS THAT WITH A 56 BIT FLOATING POINT MANTISSA 

TMAX•0.2 
C IS SUITABLE, WHILE WITH A 24 BIT MANTISSA WE PREFER 

TMAX•l• 
C TMAXB IS THE SWITCH-OVER POINT JN BETA, WHERE THE 
C CANCELLATION JS STRONGEST. 

TMAXB•5 • •TMAX 
C LLC ANO LLS ARE USED BY THE ROUTINE IN COMPUTED-GO-TO 
C STATEMENTS. AS SOON AS llS ANO llC HAVE BEEN DEFINED, 
c we CAN USE LS ANO LC AS RETURN PARAMETERS (SEE ABOVE). 

IFILSlllrllrl2 
11 LlS•2 

GOTO 13 
12 llS•l 
13 IFCLCl14tl4rl5 
14 LLC•2 

GOTO 17 
15 LLC=l 
17 CONTINUE 

SUMCOS=0.5•(FA•COSA+FB•COSBI 
SUMSINz0.5•1FA•SINA+FB•SINBl 

C All OF THE ABOVE IS EXECUTED ONLY ONCE PER CALL. 
C NOW THE ITERATION BEGINS. 
C THE CONSTANT 1M1 IS USED IN THE RICHARDSON EXTRAPOLATION. 
C M-1 IS THE NUMBER OF TIMES THE ORIGINAL STEP LENGTH 'H' 
C HAS BEEN DIVIDED BY TWO. 

M"'l 
20 CONTINUE 

H2•H*H 
TETA•Wl•H 
DO 65 l•lrNSTOP,NST 

XaA+H•FLOAT(ll 
WX•Wl•X 

GOTO C50r55lrllS 
50 SUMSIN•SUMSIN+F(Xl•SINIWXI 
55 GOTO (60,651rllC 
60 SUMCOS•SUMCOS+FIXl•COSCWXI 
65 CONTINUE 

T2•TETA*TETA 
TEMP=l.O-SIN(0.5•TETAl••2/l.5 
IF (TETA-TMAXI 70,70,75 

418-P 2-

C 70 IS THE POWER SERIES FOR SMALL TETA, 75 IS THE CLOSED 
C FORM USED WITH LARGER VALUES OF TETA. 
C THE COEFFICIENTS Of THE DIFFERENT J•OWER SERIES BELOW ARE 
C GIVEN IN EXACT FORM, COMPARE WITH THE REFERENCE ABOVE. 

70 ALFA•TETA•Cl.O-T2•(2.0/15.0-T2u(l9.0/1680.0-
-T2• I 13 .0/25200 .O-T2• (293 .0/199~i8400.0-
-T 2•1B l .0/619164000.0lIlII/12 .0 

DELTA•-loO/l2oO+T2•Cl.0/90.0-T2•(5.0/12096.0-
-T2•(1.0/129600.0-T2/11404800.0l l I 
EPSIL=l.O-T2•Cl.0/6.0-T2•(0.0l25-T2•(17.0/30240.0-

-T2•(31.0/1814400.0-T2/2661120.0l I l I 
T3,.T2 

72 BETA•TETA•H2•Cl.O-T2/2loO•Cl.O-T2•Cl.0/48.0-
-T2*(1.0/3960.0-T3/494208.0llll/180.0 

GOTO 80 
C CLOSED FORM OF THE COEFFICIENTS. 

75 TEMPl•C0.5•TETAl**2 
TEMP2aSINI0.5*TETAl**2/TEMPl 
TEMP3•SINITETAl/TETA 
ALFA=CTEMP-TEMP2•TEMP31/TETA 
OELTA=ITEMP-TEMP21/T2 
EPSIL=TEMP2•TEMP2 
IF CTETA-TMAXBI 76,76178 

76·T3•T2•Cl.-T2•11./175.-T2•11./40800.-T2/12209400.))) 
GOTO 72 

78 BETbCTEMP-TEMP31/CTETA*Wl*~lll 
C HAVE CALCULATED THE COEFFICIENTS, NOW READY FOR THE 
C INTEGRATION FORMULAS. 

80 GOTO C81,8511LLS 

0 

81 TS•H•CCBETA•FBB-ALFA•FBl•COSB+IALFA•FA-BETA•FBAl•COSA+ 
+OELTA•H•IFPB•SINB-FPA*SINAl+EPSIL*SUMSINl/TEMP 

CALL ENOT21PVTS,TSrEPSrSrLLS,MI 
LS"'N 

85 GOTO (861901 rLLC 
86 TC=H•llALFA•FB-BETA•FBBl•SINB+IBETA•FBA-ALFA•FAl•SINA+ 

+DEL T A*H* I FPB •COSB-FPA•COSA 1 <·E PS IL •SUMCOS I /TEMP 
CALL ENDT21PVTC,TC,EPS,C,LLC,MI 
LC=N 

90 CONTINUE 
C NOW TEST TO SEE IF DONE. 

IFILLC+LLS-31 92,92,100 
92 N=N+l 

C THIS IS THE BEGINNING OF THE ITERATION. 
IFIN-MXNI 95,95,99 

95 Hs0.5•H 
NSTa2 
NSTOP=2••N 
M=M+l 
GOTO 20 

99 EPS=-EPS 
100 CONTINUE 

IFILS.GT.O.ANO.w.LT.0.01 S=-S 
RETURN 
ENO 

SUBROUTINE ENOT21PREVOT,QUANT,EPS,VALUE,LrMI 
c 
C ENDT2 IS A SUBROUTINE THAT PERFORMS RICHARDSON EXTRA-
C POLATION OF THE VALUES 1QUANT' WHICH ARE INTRODUCED INTO 
C THE ROUTINE EACH TIME IT IS CALLEO, EACH TIME WITH 
C INCREASING VALUE OF 'M't STARTING WITH M • lo THE CURRENT 
C VALUES ARE STORED IN THE ARRAY 1PREVOT 1 , WHERE 'PREVOTlll' 
CAT EXIT IS EQUAL TO 'QUANT'• THE BEST VALUE FOR THE MOMENT 
C IS GIVEN IN 'VALUE'. ENDT2 REQUIRES THE PRESENT VALUE TO 
C AGREE WITH THE PREVIOUS VALUE TO WITHIN EPSZ, WHER~ 
C EPS2 • EPS•lloO + ABSIPRESENT VALUEll. 
C EPS IS SUPPLIED BY THE USER. 
C THE ERROR EXPANSION IS OF THE FORM 
C ERROR = C4*H**4 + C6*H**6 + C8*H**8 + + CN•H••N + ••• 
c 

DIMENSION PREVOTl71rRICHl71 
DATA RICHlll I OoO/, RICHl21 

* RICHl31 I 63.0/, RICHl41 
RICHl51 I 1023.0/, RICHl61 

* RICHl71 /16383.0/ 
C RICHlll • 0 IS NOT USED 
C RICHIKI • 2••12•KI - lt K=2t3t4t5t6r7 

TEMP2=PREVOTIII 
PREVOTlll=QUANT 
TEMPl .. QUANT 
IFIM.EQ.11 GOTO 30 

20 REPS=EPS•ll.O+ABSIQUANTll 
DO 23 K=2,M 

DIFF=TEMP1-TEMP2 
IFIABSIOIFFl-REPSI 25r25r22 

22 IFIK.EQ.81 GOTO 30 
TEMPl=TEMPl+DIFF/RICHIKI 
TEMP2=PREVOTIKI 
PREVOT CK l•TEMPl 

23 CONTINUE 
GO TO 30 

25 L*2 
30 VALUE=TEMPl 

RETURN 
END 

15.0/, 
255.0/, 

4095.0/, 



COLLECTED ALGORITHMS (coni:.) 

Remark on Algorithm 418 [DI] 
Calculation of Fourier Integrals [Bo Einarsson, Comm. 
ACM 15 (Jan. 1972), 47-48] 

Bo Einarsson [Recd. 31 Jan. 1972] 
Research Institute of National Defense, Box 98, 
S-147 00 Tumba, Sweden 

Key Words and Phrases: quadrature, Filon quadrature, 
integration, Filon integration, Fourier coefficie111ts, Fourier 
integrals, Fourier series, spline, spline approximation, spline 
quadrature, extrapolation, Richardson extrapol:ation 

CR Categories: 5.16 

Algorithm 418 looks confusing since the first 12 lines of the 
Fortran listing have been lost at the printing. Another error is that 
the two formula lines in the description are interchanged; the 
routine of course evaluates the general Fourier cosine and sine 
integrals. Finally, in the last line of the references, for "publica
tion," read "publisher." The beginning of the algorithm is 

SUHROUT !NE FSPL2 
( F ,A,B ,FPA ,FPfl,FEIA,FBB,w ,EPS.,MAX ,c,s,LC ,LS) 

c 
C THIS ROUTINE COMPUTES THE FOURIER INTEGRALS 
c·c=INTEGRAL FIX) cos wx DX FROM X=A TO X=B 
C S=INTEGRAL FIX I SIN WX OX FROM X=A TO X=B 
c 
C WITrt THE: SPLINE PROCEDURE IN B, EINARSSON, NUMERICAL 
C CALCULATION OF FOURIER INTEGRALS WITH CUBIC SPLINES, 
C BIT, VOL. 8, PP, 279-266, 1968, 
c 
C REPEATED RICHARDSON EXTRAPOLATION IS USED, 

Remark on Algorithm 418 [DI] 
Calculation of Fourier Integrals [Bo Einarsson, Comm. 
ACM 15 (Jan. 1972), 47-48] 

Robert Picsscns [Recd. l June 1973] 
Applied Mathematics and Programming Division, Uni
versity of Leuven, 8-3030 Heverlee, Belgium 

The algorithm has been tested in double precision on an IBM 
370, 155 with success. However, in the case that the Fourier cosine 
integral C and the Fourier sine integral S of the function flx) are 
wanted simultaneously (LC and LS positive on entry), the efficiency 
can be improved, since each value of F(x) is then computed twice. 
This causes a considerable waste of computing time, which can 
easily be avoided by the following alterations: 
(i) insert statement 
FX = F(X) 
5 lines after statement 20. 
(ii) replace statement 50 by 
50 SUMSIN = SUMSIN + FX*SIN(WX) 
and statement 60 by 
60 SUMCOS = SUMCOS + FX*COS(WX) 

418-P 3- RI 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 419 

Zeros of a Complex 
Polynomial [C2] 
M.A. Jenkins 
Queen's University, Kingston, Ontario, Canada 
and 
J .F. Traub* [Recd. 10 Aug. 1970] 
Department of Computer Science, Carnegie-Mellon 
University, Pittsburgh, PA 15213 

Key Words and Phrases: roots, roots of a polynomial, zeros of a 
polynomial 

CR Categories: S.ts 

Description 
The subroutine CPOL Y is a Fortran program to find all the 

zeros of a complex polynomial by the three-stage complex algorithm 
described in Jenkins and Traub [4]. (An algorithm for real poly
nomials is given in [5].) The algorithm is similar in spirit to the 
two-stage algorithms studied by Traub [l, 2]. The program finds the 
zeros one at a time in roughly increasing order of modulus and 
deflates the polynomial to one of lower degree. The program is 
extremely fast and the timing is quite insensitive to the distribution 
of zeros. Extensive testing of an Algol version of the program, 
reported in Jenkins [3], has shown the program to be very reliable. 

The program is written in a portable subset of ANSI Fortran. 
It has been successfully used on the IBM 360/65, the GE 635 and 
the CDC 6600. The program is a translation of the Algol 60 pro
cedure cpoiyzerofinder appearing in [3]. 

MCON, the final subroutine of the program, sets four variables 
which describe the precision and range of the floating point arith
metic being used. Instructions for setting MCON variables are given 
in the MCON comments. The algorithm will accept polynomials of 
maximal degree 49. 

The authors would like to thank K. Paciorek and M.T. Dolan 
for their assistance in preparing the Fortran version of the program 
and P. Businger and C. Lawson for suggesting improvements to the 
program. 

Copyright© 1972, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, an algorithm 

is granted, provided that reference is made to this publication, to 
its date of issue, and to the fact that reprinting privileges were 
granted by permission of the Association for Computing Machinery. 

•This work was done while J.F. Traub was at Bell Telephone 
Laboratories. 

419-P 1- 0 

References 
1. Traub, J.F. A class of globally convergent iteration functions 
for the solution of polynomial equations. Math. Comp. 20 (1966), 
113-138. 
2. Traub, J .F. The calculation of zeros of polynomials and 
analytic functions. In Mathematical Aspects of Computer Science, 
Proceedings Symposium Applied Mathematics, Vol. 191 Amer. 
Math. Soc., Providence, R.1., 1967, pp. 138-152. 
3. Jenkins, M.A. Three-stage variable-shift iterations for the 
solution of polynomial equations with a posteriori error bounds 
for the zeros. Diss., Rep. CS 138, Comput. Sci. Dep., Stanford U., 
Stanford, Cal., 1969. 
4. Jenkins, M.A., and Traub, J.F. A three-stage variable-shift 
iteration for polynomial zeros and its relation to generalized 
Rayleigh iteration. Numer. Math. 14 (1970), 252-263. 
5. Jenkins, M.A., and Traub, J.F. A three-stage algorithm for 
real polynomials using quadratic iteration. SIAM J. Numer. Anal. 
7 (1970), 545-566. 

Algorithm 

SUBROUTINE CPOLYIOPR10Pl1DEGREE,ZE:ROR,ZEROl1FAILI 
C FI NOS THE ZEROS Of A COMPLEX POLYNOM ll1L. 
C OPR, OPI - DOUBLE PRECISION VECTORS Of REAL ANO 
C IMAGINARY PARTS Of THE COEFFICIENTS IN 
C ORDER OF DEC REAS I NG POWERS. 
C DEGREE - INTEGER DEGREE Of POLYNmllAL. 
C lERDR1 ZERO! - OUTPUT DOUBLE PRECIStON VECTORS Of 
C REAL AND IMAGINARY PARTS OF THE ZEROS .. 
C FAIL - OUTPUT LOGICAL PARAMETER,, TRUE ONLY If 
C LEADING COEFFICIENT IS ZERO OR If CPOLY 
C HAS FOUND FEWER THAN DEGREE lEROS. 
C THE PROGRAM HAS BEEN WRITTEN TO REDUCE THE CHANCE OF OVERFLOW 
C OCCURRING. If IT DOES OCCUR, THERE JS STILL A POSSIBILITY THAT 
C THE lEROFINOER WILL WORK PROVIDED THE OVERFLOWED QUANTITY IS 
C REPLACED SY A LARGE. NUMBER. 
C COMMON AREA 

COMMON/GLOBAL/PR, PI 1HR,;HI1 QPR ,QP 11,QHR,QH I 1 SHR, SHI, 
• SR,S! 1TR 1Tl 1PVR,PVl,ARE 1MRE 1 EJA,JNFIN,NN 

DOUBLE PRECISION SR1Sl 1TR 1Tl 1 PVR,PVI1ARE,MRE,ETA1INFIN1 
• PR I 50I1PI150 I 1HRI 501,HI I 501tQl1RI 501,QPJI50l ,QHRC 5011 
• QHll50J,SHRl501,SHJC501 

TO CHANGE THE SIZE Of POLYNOMIALS WHICH CAN BE SOLVED, REPLACE 
THE DIMENSION OF THE ARRAYS IN THE COHMON AREA· 

DOUBLE PRECISION XX, YY 1 COSR, S INR, SMALNO, BASE, XXX, ZR, Z I 18N01 
• OPR I 11,0PI Ill 1ZERORI ll 1ZEROI ( :t I 1 
• CM00 1 SCALE 1 CAUCHY,OSQRT 

LOGICAL FAIL,CONV 
INTEGER DEGREE1CNT11CNT2 

C INITIALIZATION OF CONSTANTS 
CALL MCONCETA,JNFIN,SMALN0 1 8ASEI 
ARE • ETA 
MRE = 2.000•0SQRTC2.0DOl•ETA 
xx" .70710678 
yy • -xx 
COSR • -.060756474 
SINR "' 09975640~ 
FAIL • .FALSE. 
NN " DEGREE+ l 

C ALGORITHM FAILS If lllt LEADING COEFFIGIENT JS ZERO .. 
If (OPRCll .Mr. n.ooo .OR. OPICll .NE. 0.0001 GO TO 10 

FAIL • • T·,.u,-. 
RETURN • 

C REMOVE THE ZEROS AT THE ORIGIN If ANY· 
10 If IOPRINNI .NE. O.ODO .OR. OPICNIO .NE. 0.0001 GO TO 20 

I ONN2 "' OEGREE-NN+2 
ZERORllONN21 " 0.000 
ZEROICIONN21 • O.ODO 
NN " NN-1 
GO TO 10 

C MAKE A COPY OF THE COEFFICIENTS. 
20 DO 30 I • 11NN 

PR I 11 "' OPR 111 
Pl I 11 • OPI CI I 
SHRiii • CMOOCPRCll1Plllll 



COLLECTED ALGORITHMS ( co11t.) 

30 CONTINUE 
C SCALE THE PCLYNOHIAL. 

BNO • SCALE CNN1SHR1ETA1INFIN1SHALN01BASEI 
IF CBNO .EQ. 1.0001 GO TO 40 
00 35 I • l1NN 

PRC 11 • BNO•PRC 11 
PICll • BNO•PICll 

35 CONTINUE 
C START THE ALGORITHM FOR ONE ZERO. 

40 IF CNN.GT. 21 GO TO 50 
C CALCULATE THE FINAL ZERO ANO RETURN, 

CALL COIVIOC-PRC21,-PIC211PRCll1Pl!ll1ZERORCDEGREEl1 
* ZEROICOEGREEll 

RETURN 
C CALCULATE IJND, A LOWER BOUND ON THE HOOULU!i OF THE ZEROS, 

50 DO 60 I • l,NN 
SHRiii • CHOOIPRCll1PIClll 

60 CONTINUE 
BNO • CAUCHYCNN1SHR1SHll 

C OUTER LOOP TO CONTROL 2 MAJOR PASSES WITH DIFFERENT SEQUENCES 
C OF SHIFTS. 

DO 100 CNTl • 112 
C FIRST STAGE CALCULATION, NO SHIF.T. 

CALL NOSHFTC 5 I 
C INNER l.OOP TO SELECT A SHIFT, 

00 90 CNT2 = 119 
C SHIFT IS CHOSEN WITH HOOULUS BNO AND AHPLll'UOE ROTATED BY 
C 9 .. DEGREES FROM THE PREVIOUS SHIFT, 

XXX • COSR*XX-S INR*YY 
VY = SJNR*XX+COSR*YY 
xx " xxx 
SR = BNO•XX 
SI " BND•YY 

C SECOND STAGE CALCULATION, FIXED SHIFT. 
CALL FXSHFTClO•CNT2,ZR,Zl,CONVI 
IF I.NOT. CONVI GO TO 80 

C THE SECOND STAGE JUMPS DIRECTLY TO THE THIRD STAGE ITERATIJ~. 
C IF SUCCESSFUL THE ZE:RO IS STORED AND THE PCILY"'IOHIAL DEFLATED. 

IONN2 = DEGREE-NN+2 
ZERORCIDNN21 = ZR 
ZEROICIONN21 • ZI 
NN = NN-1 
DO 70 I • 11 NN 

PRC 11 QPRll I 
Pl I 11 • QP IC I) 

10 CONTINUE 
GO TO 40 

80 CONTINUE 
If THE ITERATION IS UNSUCCESSFUL ANOTHER S~IFT IS CHOSE~. 
90 CONTINUE 

C IF 9 SHIFTS FAIL, THE OUTER LOOP IS REPEATED WITH ANOTHER 
C SEQUENCE Of SHIFTS. 

100 CONTINUE 
C THE ZEROFINDER HAS FAILED ON TWO MAJOR PASS.ES. 
C RETURN EMPTY HANDED. 

FAIL • • TRUE. 
RETURN 
END 
SUBROUTINE NOSllFTCLll 

C COMPUTES THE DERIVATIVE POLYNOMIAL AS THE l~ITIAL H 
C POLYNOMIAL ANO COMPUTES Ll NO-SHIFT H POLYN,OHIALS. 
C COMMON AREA 

COMMON/GLOBAL/PK, Pl ,HR,Hl 1QPR,QP I ,QHR,Q•HI ,SHR, SHI, 
• SR,Sl,TR,Tl,PVR,PVl,ARE,MRE,ETA1INFIN1NN 

DOUBLE PRECISION SR1Sl,TR,Tl,PVR,PVl,ARE,HRE,ETA,INFIN1 
• PRC 50) ,PIC50) ,HRc'50 I 1HI I 501,QPRI 50), QPI I 50) ,QHRI 5011 
• QHIC501,SHRC50),SHIC50) 

DOUBLE PRECISION XNl,Tl1T21CHOO 
N " NN-1 
NHl • N-1 
DO 10 I = l, N 

XNI = NN-1 
HRlll • XNl•PRll)/FLOATIN) 
HICll • XNl•Plll)/FLOATINI 

10 CONTINUE 
00 50 JJ .. 11'Ll 

If CCMOOCHRINl,HICNll .LE. ETA•lO.ODO•CMOOCPRl~l1PllNlll 
GO TO 30 
CALL COIVIOC-PRINNl,-PICNNl,HRIN),HllN),TR,Tll 
00 20 I • l1NHl 

J "' NN-1 
Tl ., HRCJ-11 
T2 • HllJ-11 
HRIJ) = TR•Tl-Tl•T2+PRIJI 
HICJI • TR•T2+Tl•Tl+Pl(J) 

20 CONTINUE 
HRC 11 ,. PRCl I 
Hllll = Pllll 
GO TO 50 

C IF THE CONStANT TERM IS ESSENTIALLY ZERO, S~IFT H COEFFICIE~TS. 
30 DO 40 Is 1,NHl 

J = NN-1 
HR I J) = HR I J-1 I 
HICJI • HllJ-ll 

40 CONTINUE 
HR( l) "' 0.000 
HI Ill "' O.OUO 

50 CONTINUE 
RETURN 
El\ID 
SUBROUTINE FXSHFTCLZ1ZR1Zl1COl\IVI 

C COMPUTES L2 FIXED-SHIFT H POLYNOMIALS ANO TfSTS FOR 
C CONVERGENCE, 
C INITIATES A VARIABLE-SHIFT ITERATION AND RETURNS WITH THE 
C APPROXl'IATE ZERO IF SUCCESSFUL. 
C L2 - LIHIT CF FIXED SHIFT STEPS 
C ZR 1ZI - APPROXIMATE ZERO IF CONV IS .TRUE. 
C CONV - LOGICAL INDICATING CONVERGENCE OF S'fAGE 3 ITERATIO~ 
C COMMON AREA 

COMttON/GLOBAL/PR 1 Pl,HR 1 Hl10PR,QPl,QHR,Q~l1SHR,SHI, 
• SR 1Sl 1TR,T1 1PVR,PVl,ARE,HRE,ETA,INFIN,NN 

OOUEILE PRECISION SR, SI, TR, TI, PVR, PV l ,ARIE,HRE, ETA, I !'<fF IN, 
PRC501,Pll501,HRC501,Hll501,QPRC501,QPIC501,QHRC50I, 

• QHIC50),SHRC501,SHll50l 
DOUflLE PRECISION ZR,Zl,OTR,OTl,SVSR,SVSl,CMOO 

LOGICAL CONV,TEST,PASO,BOOL 

N = NN-1 
C EVALUATE PATS. 

CALL POLYEVCNN 1 SR~Sl,PR,Pl,QPR,QPl,PVR,PVll 
TEST" .TRUE. 
PASO " .FALSE. 

C CALCULATE FIRST T • -PISl/H(Slo 
CALI., CALC Tl 800L I 

C HAIN LOOP FCR ONE StCOl\IO STAGE STEP. 
oo 50 J = 11L2 

OTR = TR 
OTI = Tl 

C COMPUTE NEXT H POLYNOMIAL AND NEW T. 
CALL l\IEXTHCliOOLI 
CALL CALCTC liOOLI 
ZR = SR+TR 
Zl • Sl+TI 

419-P 2- 0 

C TEST .FOR CONVERGENCt UNLESS STAGE 3 HAS FAILED ONCE OR THIS 
C IS THE LAST H POLYNOMIAL. 

IF I BOOL .OR •• NOT. TEST .oR. J .eo. L2) GO TO 50 
IF ICHOOITR-OTR 1Tl-OTII .GE •• 500•CHOOCZR,Zlll GJ TJ 40 

IF I.NOT. PASOI GO TO 30 
C THE WEAK CONVERGENCE TEST HAS BEEN PASSED TWICE, START THE 
C THIRD STAGE ITERATIUN, AFTER SAVING THE CURRENT H POLYNOMIAL 
C ANO SHIFT• 

00 10 I = t.N 

SHRC () • HRCI I 
SHIC II • HI( 11 

10 CONTINUE 
SVSR • SR 
SVSI '" SI 
CALL VRSHFTClO,ZR,Zl,CONVI 
IF CCONV) RETURN 

C THE ITERATION fAILED TO CONVERGE. TURN OFF TESTING AND RESTORE 
C H,S,PV ANO T. 

TEST • .FALSE. 
DO 20 I = 11N 

HRC II = SHRC II 
Hiii i • SHll 11 

20 CONTINUE 
SR • SVSR 
SJ = SVSI 
CALL POLYEVCNN,SR,Sl,PR,Pl,QPR,QPl,PVR,PVI) 
CALL CALCTCBOOLI 
GO TO 50 

30 PASO • • TRUE. 
GO TO 50 

.. o PASO = .FALSE. 
50 CONTINUE 

C ATTEMPT AN ITERATION WITH FINAL H POLYNOMIAL FROM SECOND STAGE. 
CALL VRSHFTllO,ZR,Zl,CONVI 
RETURN 
ENO 
SUBROUTINE VRSHFTCL3,ZR,ZJ,CONVI 

C CARRIES OUT THE THIRD STAGE ITERATION. 
C L3 - LIMIT OF STEPS l'N STAGE 3. 
C ZReZI - ON ENTRY CONTAINS THE ll\llTIAL ITERATE, IF THE 
C ITERATION CONVERGES IT CONTAINS THE FINAL ITERATE 
C ON EXIT. 
C CONY .TRUE. IF ITERATION CONVERGES 
C COMMON AREA 

COHMON/GLOBAL/PK,Pl,HR,Hl,QPR,QPl,QHR,QHl,$HR,SHI, 
* SR,Sl,TR,TJ,PVR,PVl,ARE,HRE,ETA,INFIN,NN 

DOUBLE PRECISION SR, SI, TR, TI, PVR, PVI ,ARE ,HRE,ETA, I NF IN, 
* PRC501 1Pll501,HRC501 1Hil501,QPRl501,0PIC5011QHRC5011 
* QHll501,SHRC501,SHIC501 

DOUBLE PRECISION ZR1 Z I, HP, HS, OHP,RELSTP, Rt., R2,CMOO,DSQR T, ERR EV, TP 
LOGICAL CONV,B,BOOL 
CONY • .FALSE. 
B • .FALSE. 
SR • ZR 
SI • ZI 

C HAIN LOOP FOR STAGE THREE. 
00 60 I • l,L3 

C EVALUATE P AT S ANO TEST FOR CONVERGEl'<ICE • 
CALL POLYEVCl'<IN,SR,Sl,PR,Pl,QPR,QPl,PVR.PVll 
HP• CHOOCPVR1PVll 
HS = CHODCSR,SI I 
IF IMP .GT. 20.0DO•ERREVINN,QPR,QPl,MSvMP,ARE,HREI) 

• GO TO 10 
C POLYNOMIAL VALUE IS SMALLER JN VALUE THAN A BOUND ON THE ER~OR 
C IN EVALUATING P, TERMINATE THE ITERATION. 

CONV • • TRUE. 
ZR = SR 
ZI • SI 
RETURN 

10 IF Cl .EQ. 1) GO TO 40 
IF IB .OR. HP .LT.OMP .OR. RELSTP .GE •• 0500) 

* GO TO 30 
C ITERATION HAS STALLED. PROBABLY A CLUSTER OF ZEROS. DO 5 FIXED 
C SHIFT STEPS INTO THE CLUSTER TO FORCE ONE ZERO TO DOMINATE. 

T~ - nc.LS TP 
8 • .TRUE. 
IF CRELSTP .LT. ETAI TP • ETA 
Rl ,. OSQRTCTPI 
RZ = SR•Cl.OOO+Rll-Sl•Rl 
SI .. SR•R1~s1•c1.ooo+Rll 
SR = R2 
CALL POL YE VI NN, SR,Sl ,PR, PI ,QP'R ,QP I, PVR, PVI > 
00 20 J "' 1,5 

CALL CALCTC BOOLI 
CALL NElCTHCBOOLI 

20 CONTINUE 
OHP • INFIN 

GO TO 50 
C EXIT IF POLYNOMIAL VALUE INCREASES SIGNIFICANTLY. 

30 IF CMP•.100 .GT. OHPI RETURN 
40 OHP • HP 

C CALCULATE NEXT ITERATE. 
50 CALL CALCTCBOOLI 

CALL NEXTHC BOOL I 
CALL CALCTC BOOU 
IF CBOOLI GO TO 60 
RELSTP • CHOOCTR,Tll/CMOO(SR,Sll 
SR • SR+TR 
SI = Sl+Tl 



COLLECTED ALGORITHMS (cont.) 

60 CONTINUE 
RETURN 
ENO 
SUBROUTINE CALCTCBOOL) 

C COMPUTES T 2 -PISl/HISJ. 
C BOOL - LOGICAL, SET TRUE If HISI IS ESSENTIALLY ZERO. 
C COMMON AREA 

COMMON/GLOBAL/PH., Pl, HR, HI, QPR ,QP I, QHR,QH It SHR, SHI, 
* SR,Sl,TR,Tl,PVR,PVl,ARE,HRE,ETA,INFIN,NN 

DOUBLE PRECISION SR,Sl,TH.,Tl,PVR,PVl,ARE,HRE,ETA,INFIN, 
* PRl501,Pll50l,HRl501,HIC501,QPRC501,QPll501,QHRC50i, 
* QHIC501,SHRl501,SHIC501 

OOUDLE PRECISION HVR,HVl,CMOD 
LOGICAL BOOL 
N "' NN-1 

EVALUATE HISJ. 
CALL POL YEV IN, SR, SI ,HR,HI, QHR,QH l,HVR,HV 11 
BOOL • CMODIHVR,HVll .LE. ARE•lO.ODO•CMOOIHRINJ,HllNll 
IF IBOOLI GO TO 10 

CALL COIVIOl-PVR,-PVl,HVR,HVl,TR,Tll 
RETURN 

10 TR "' O.ODO 
Tl =, O. ODO 
RETURN 
END 
SUBROUTINE NEXTHIBOOLI 

CALCULATES THE NEXT SHIFTED H POLYNOMIAL. 
BOOL LOGICAL, If .TRUE. HISI IS ESSENTIALLY ZERO 
COMMON AREA 

COMMON/GLOBAL/PR,Pl,HR,HI,QPR,QPl,QHR,QHl,SHR,SHI, 
• SR,Sl,TR,TI 1 PVR,PVl,ARE,MRE,ETAtlNFIN,NN 

DOUBLE PRECISION SR, S l, TR, T It PVR, PV I ,ARE ,MRE, ET A, I NF I Nr 
* PRI 50 I ,p II 50 I tHRI 50ItHI1501,QPRI 501,OPII501,0HRC 501, 
* QHll501rSHRl501rSHll501 

DOUBLE PRECISION Tl, T2 
LOGICAL BOOL 
N • NN-1 
NMl = N-1 
IF CBOOLI GO TO 20 

DO 10 J 2 1 N 
Tl = QHRC J-11 
T2 "'QHllJ-11 

HRIJI = TR•Tl-Tl•T2+QPRIJI 
HllJI = TR•T2+Tl*Tl+QPllJI 

10 CD~TINUE 

HR 111 = QPR 111 
H 1111 = OP 1111 
RETURN 

C If HIS) IS Zfq_O REPLACE H WITH OH, 
20 DO 30 J = 2,N 

HRIJI = QHRIJ-11 
H I I J I = QH II J-11 

30 CONTINUE 
HRI 11 = 0.000 
Hllll = 0.000 
RETURN 
END 
SUBROUTINE POLYEVINN,SR,Sl,PR,Pl,QR,Ql,PVR,PVll 

EVALUATES A POLY~OMIAL P AT S BY THE HORNER RECURRENCE 
PLACING THE PARTIAL SUMS IN Q ANO THE COMPUTED VALUE IN PV. 

DOUBLE PRECISION PRINNl,PllNNl,QRINNl,Qll~NI, 
* SR,Sl,PVR,Pvl,T 

QR I l I "' PR I l I 
Qllll = Pllll 
PVR = QR( 11 
PVI = QI I 11 
DO 10 I = 2,N., 

T = PVR•SR-PVl*Sl+PRlll 
PVI = PVR*Sl+PVl*SR+Pllll 
PVR " T 
QRlll "'PVR 
QIC II = PVI 

10 CONTINUE 
RETURN 
ENO 
OOUDLE PRECISION FUNCTION ERREVCNN,QR,Ql,MS,MP,ARE,MREI 

C BOU~OS THE ERROR IN EVALUATING THE POLYNOMIAL ~y THE HOR~ER 
C. RECU'RREl\ICE. 
C QR,QI - THE PARTIAL SUMS 
C HS -MODULUS OF THE POINT 
C HP -MODULUS OF POLYNOMIAL VALUE 
C ARE, HRE -ERROR DOUNDS ON COMPLEX ADDITION ANO MULTIPLICATIJN 

DOUBLE PRECISION QRINNl,QllNNJ,MS,MP,ARE,MRE,E,CMOO 
E = CMOCIQRlll,Qlllll•MRE/IARf+MREI 
DD LO I = L, NN 

E = E•MS+CMOOIORlll,Qlllll 
10 CONTINUE 

ERREV = E*IARE+MREl-MP*MRE 
RETURN 
ENO 
DOUBLE PRECISION FUNCTION CAUCHYINN,PT,QI 

CAUCHY COMPUTES A LOWER BOUND ON THt MODULI OF THE ZEROS OF A 
POLY~OMIAL - PT IS THE MODULUS Of THE COEFFICIENTS. 

~OUBLE PRECISION QINNl,PTCNNl,x,xM,F,OX,Of, 
* OABS,DEXP,OLOG 

PTINNI = -PTINNI 
C COMPUTE UPPER ESTIMATE OF BOUND. 

N = NN-1 
X = DEXPI IDLOGl-PTCNNll - DLOGIPTlllll/fLOATINI 
IF IPTC,.,.l.EQ.O.COOI GO TO 20 

C IF NEWTON STEP AT THE ORIGIN IS BETTER, USE IT. 
XM = -PTINNl/PTINI 
IF IXM.LT.XI XzXM 

C CHOP THE INTERVAL CO,XI UNITL fCzO, 
20 XM = X•.100 

F .. PTlll 
DO 30 I ,. 2rNN 

f "' F•XM+PTI II 
30 CONTINUE 

IF IF.LE. 0.0001 GO TO 40 
X • XM 
GO TO 20 

40 DX • X 
C DO NEWTON ITERATION UNTIL X CONVERGES TO TWO DECIMAL PLACES. 

50 IF IOABSIOX/XI .LE •• 005001 GO TO 70 
0111 "' PTlll 
OD 60 I : 2,NN 

0111" Qll-ll*X+PTlll 
60 CONTINUE 

f • Q(NNI 
Of = QI 11 
DO 65 I = 2rN 

Of = OF•X+QI 11 
65 CONTINUE 

OX = F/Of 
x .. x-ox 
GO TO 50 

70 CAUCHY = X 
RETURN 
ENO 

419-P 3- 0 

DOUBLE PRECISION FUNCTION SCALEINN,PT,ETA,INFIN,S~AL~O,BASEI 
C RETURNS A SCALE FACTOR TO MULTIPLY THE COEFFICIENTS Of THE 
c; POLYNOMIAL. THE SCALING IS DONE TO AVOID OVERFLOW AND TO AVJI 0 
C UNDETECTED UNDERFLOW INTERFERING WITH THE CONVERGENCE 
c CRITERION. THE FACTOR IS A POWER OF me BASE. 
C PT - MODULUS Of COEFFICIENTS OF P 
C ETArlNFIN,S~ALNO,BASE - CONSTANTS DESCRIBING THE 
C FLOATING POINT ARITHMETIC. 

DOUBLE PRECISION PT I NNI, ET A, I NF IN,, SMALNO, BA SE ,ttl, LO, 
• MAX,MIN,x,sc,DSQURT,DLOG 

C FIND LARGEST ANO SMALLEST MODULI Of COEFFICIENTS. 
HI • OSQRTllNFINI 
LO = SMALND/ETA 
MAX = 0.000 
MIN = lfl4FIN 
DO LO I = l,N"I 

X = PTlll 
If IX .GT. MAXI MAX = X 
IF IX .NE. O.ODO .AND. X.LT.M~NI MIN • X 

LO CONTINUE 
C SCALE ONLY IF THERE ARE VERY LARGE OR VERY SMALL COMPONENTS. 

SCALE "' 1.000 
IF (MIN .GE. LO .AND. MAX .LE. Hll RETURN 
X a LO/l'IN 
ff IX .GT. l.ODOI GO TD 20 

SC = 1.000/IOSQRTIMAXl*OSQRT!HINll 
GO TO 30 

20 SC "' X 
If llNFIN/SC .GT. MAXI SC= 1.000 

30 L = OLDGISCl/OLOGIBASEI + .~oo 
SCALE = BASE**L 
RETUR'll 
ENO 
SUBROUTINE COIVIOIAR,Al,BR,Bl,CR,Cll 

C COMPLEX DIVISION C = A/B, AVOIDING OVERFLOW. 
DOUBLE PREC1SION AR,Al,BR,Bl,CR,Cl,R,D,T,INFIN,OABS 
If IBR .NE. 0.000 .OR. Bl .NE. O.ODOI GO TD 10 

C DIVISION BY ZERO, C = INFINITY. 
C'LL MCON IT,INFl'll,T,TI 
CR = INFIN 
CI = INF IN 
RETURN 

10 IF IOABSIRRI .GE. OABSIBlll GO TO 20 
R a l:IR/BI 
D = 8 l+R*BR 
CR= IAR*R+All/O 
Cl = IAl•R-ARl/D 
RETURN 

20 R = Bl/eR 
D • BR+R*BI 
CR = IAR+Al*Rl/0 
Cl = IAl-AR•Rl/D 
RETURN 
ENO 
DOUBLE PRECISION FUNCTION CMOOIR,11 

C ~OOULUS OF A COMPLEX NUMBER AVOIDING OVERFLOW. 
DOUBLE PRECISION R,l,AR,Al,DABS,OSQURT 
AR • OABSIRI 
Al "' OABSlll 
IF IAR .GE. Al I GO TO 10 

CMOC = Al•DSQRTl1.0DO+IAR/All**21 
RETURN 

10 IF IAR .LE. Afl GO TO 20 
CMOD"' AR*OSQRTll.OOO+IAl/ARl**21 
RETURN 

20 CHOO • AR•DSQRTC2.0DOI 
RETURN 
ENO 
SUBROUTINE MCONIETA,INFINY,SMALNO,BASEI 

C MCON PROVIDES MACHINE CONSTANTS USED IN VARIOUS PARTS OF T~E 
C PROGRAM. THE USER MAY EITHER SET THEM DIRECTLY DR USE THE 
C STATEMENTS BELOW TO COMPUTE THEM. THE MEANING OF THE FOUR 
C CONSTANTS ARE -
C ETA THE MAXIMUM RELATIVE REPRESENTATION ERROR 
C WHICH CAN RE OESCRll:IEO AS THE SMALLESr POSITIVE 
c; FLOATING-POINT NUMBER SUCH THAT 1.000 + ETA IS 
c GREATER THAN l.ooo. 
C INFINY THE LARGEST FLOATING-POINT NUMBER 
C SMALNO THE SMALLEST POSITIVE FLOATING-POINT NUMBER 
C BASE THE BASE OF THE FLOATING-POINT NUMBER SYSTEM USED 
C LET T BE THE NUMBER Of BASE-DIGITS IN EACH FLOATING-POINT 
C NUMBERIOOUBLE PRECISIONI. THEN ETA IS EITHER .5*B**Cl-TI 
C OR B**ll-TI DEPENDING ON WHETHER ROUNDING OR TRUNCATIO"' 
C IS USED. 
C LET M BE THE LARGEST EXPONENT AND N THE SMALLEST EXPONENT 
C IN THE NUMBER SYSTEM. THEN INFINY IS ll-BASE••l-Tll•BASE••~ 
C ANO SMALNO IS BASE••N. 
C THE VALUES FOR l:IASE,T,M,N BELOW CORRESPOND TO THE lBM/360. 

DOUBLE PRECISION ETA,INFINY,SMALNO,BASE 
INTEGER M,N,T 
BASE ., 16.0DO 
T • 14 
M • 63 
N • -65 
ETA ,. B.ASE**ll-TI 
INFINY BASE•Cl.000-BASE**l-Tll*BASE**CM-ll 
SMALNO"' C8ASE••IN+311/8ASE**3 
RETURN 
ENO 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 419 [C2] 
Zeros of a Complex Polynomial [M.A. Jenkins and 
J.F. Traub, Comm. ACM 15 (Feb. 1972), 97-99] 

David H. Withers [Rec. 9 Oct. 1972 and 14 May 1973] 
IBM, Essex Junction, VT 04352 

The published algorithm has performed satisfactorily for all 
except one (degenerate) case. When· removing zeros at the origin, 
the algorithm does not stop if all roots have been located. An error 
will occur if the polynomials, XN = 0 or aN = 0 are given to the 
algorithm. The difficulty may be avoided by inserting after state
ment 40 the statement 

IF (NN.EQ. l)RETURN 

The referee pointed out the second type of degenerate case above 
and two typographical errors: 
1. In the initialization of constants section COSR should be 
initialized by COSR = -,069756474. 
2. In the FUNCTIONS SCALE and CMOD, the declaration of 
DSQRT as DOUBLE PRECISION was accidentally typed as 
DSQURT. 

419-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 420 

Hidden-Line Plotting 
Program [J6] 
Hugh Williamson [Recd. 4 March 1970 and 4 Feb. 1971] 
Tracor Computing Corporation, Austin, Texas 

Key Words and Phrases: hidden-line plot, surface plot 
CR Categories: 4.9 

Description 
HIDE produces a two-dimensional representation of a surface 

or figure by plotting segments of a succession of curves; each curve 
is plotted where it is not hidden by any of the curves previously 
plotted (that is, where it does not fall below any of them as they 
appear in the two-dimensional representation). 

The calling sequence is described in some detail in the comment 
cards at the first of the subroutine. 

The following are options: 
(1) Translate the arrays before plotting to simulate stepping in the 
depth dimension. 
(2) Draw any of the following: an 8! by 11 inch border, axes, and 
a title. (Whether this option is exercised or not, labeling may be 
added by the calling program.) 
(3) Draw the unhidden part of the underside of a figure. In this 
case, the lines are assumed to be hidden where they fall above those 
previously plotted. This option together with the program's capa
bility to plot the visible maximum can be used to represent the 
unhidden areas of both the top and the underside of a surface. This 
can be done by plotting all visible segments of each successive curve, 
beginning with the farthest in the foreground, as in the exemplary 
driver routine that produces the graph titled Test for plotting 
routine HIDE. Or all the segments to represent the top of the 
surface can be drawn first, and then all the segments to represent 
the underside. The method used in the driver routine listed is ad
vantageous in that only one of the curves to be plotted must be 
stored at a time, but it is disadvantageous in that two sets of working 
arrays are required. 

Explicit provisions are not made in HIDE for perspective plots 
or for rotations. If, however, the arrays to be plotted are properly 
transformed before HIDE is called, such effects can be achieved. 

The arrays XG, G, XH, and H must be dimensioned in the 
calling program. G vs. XG is the visual maximum function; that is, 
after the first n - 1 curves have been plotted, G vs. XG is the func
tion such that the nth curve falls below one or more of the first 
n - 1 curves (as they appear in the two-dimensional graph) at 
exactly the same points where it falls below G vs. XG. (Thus the 
intersections of the nth curve with G vs. XG are endpoints of inter
vals within which the nth curve is entirely hidden or entirely visible.) 

The number of points used in arrays G and XG after n curves 
have been plotted is the sum of: 
(1) the number of original data points of any of the first n curves 

420-P 1- 0 

that lie on the curve G vs. XG, 
(2) the number of intersections of diff ernnt curves that lie on G vs. 
XG (if the kth curve coincides with the maximum function of the 
first k - 1 curves over an interval, every data point of the .kth curve 
with an abcissa within that interval is considered an intersection), 
and 
(3) the number of points needed to simiL1late discontinuities in the 
maximum function; this number is no greater than four times the 
number of curves to be plotted for the graph. 

An adequate dimension for XG and G and for the working 
arrays XH and H is an upper bound for the number of points that 
will be needed for the visual maximum function. 

Developed on Tracor Computing Corporation's UNIV AC 1108 
system, HIDE calls several basic systems plotting routines. In the 
listing, these calls are preceded by comment cards with asterisks 
across the lines. If HIDE were to be used on a different com
puter system, calls could be substituted to the corresponding 
routines of that system, or, if more flexibility were desired, to 
user-supplied routines. 

Although partially explained in comment cards, the calling 
sequences of systems routines called by HIDE will be described 
more fully here. On TCC's system, these routines write pen codes 
on magnetic tapes, which are used to drive offline drum plotters. 

PDATA(X, Y,N,J,L,XMIN,DX, YMIN,D Y,HT) 
This routine plots curves. 
Xis the abcissa array. 
Y is the ordinate array. 
N is the number of points (X(I), Y(I)) to be plotted. 
I J I is the number of data points from plotted symbol to plotted 

symbol. If J = 0, a line plot will be produced. If J is negative, only 
the symbols will be plotted. If J is positive, both the line and the 
symbols will be plotted. 

L specifies the symbol to be plotted (the table correlating values 
of L with symbols would be of inten::st only to users of TCC's 
system). 

XMIN is the x value at the plotting reference point, which is 
the origin for plotting pen movements (but not necessarily the data 
origin). 

DX is the x increment per inch for the plot. 
YMIN is they value at the plotting reference point. 
D Yis they increment per inch. 
HT is the height in inches of the symbols. 

MOVPEN(X, Y,I) 
(X, Y) is the point in inches relative to the reference point to 

which the plotting pen is to be moved. 
I I I = 1 if the pen is to be left as it was prior to this call (up 

or down). 
[ I ] = 2 if the pen is to be placed down before movement. 
I I I = 3 if the pen is to be picked up before movement. 
If I is negative, (X, Y) will become the new reference point. 

Other options exist which are not used by HIDE. 

PSYMB(X,Y,HT,T,TH,N) 
This routine plots alphanumeric information. 
(X,Y) is the position in inches relative to the reference point 

of the lower left-hand corner of the first symbol. 
Ht is the height of the symbols. 
T is the starting location in core for the information to be 

plotted. 
TH is the angle in degrees counter-clockwise relative to hori

zontal at which the symbols are to be plotted. 
N is the number of symbols to be plotted. 



COLLECTED ALGORITHMS (conit.) 

PAXIS(X, Y,T,N,S,TH,FMIN,DF) 
This routine draws and labels a linear axis. 
(X, Y) is the point in inches relative to the plotting reference 

point of the beginning of the axis. 
T is the starting location in core for a title for the axis. 
I N I is the number of characters in the title. If N is negative, 

the labeling will be on the clockwise side of tlbe axis; otherwise, on 
the counter-clockwise side. 

S is the length in inches of the axis. 
TH is the counter-clockwise angle in degrees relative to hori

zontal at which the axis is to be drawn. 
FMIN is the data value at the start of the axis. 
DF is the data increment per inch. FMIN and DF are necessary 

for labeling the axis. 

PLTOFF, which is not called by HIDE but is called by driver 
routines, writes the remaining information in the buff er on the plot 
tape and writes an end-of-file mark. 

If HIDE were to be used on a computer system with word 
length different from 36 bits, it is possible that EPS1, the relative 
abscissa increment used to simulate discontinuities in the visual 
maximum function, should be changed. EPSl, which is defined in 
a data statement near the beginning of the program, should be one 
or two orders of magnitude larger than the smallest recognizable 
relative difference in single precision floating point arithmetic. 

The helpful suggestions made by the referees for improving the 
capabilities of HIDE are greatly appreciated by the author. 

Algorithm 
c 
C THIS DRIVER R0UTINE F0R HIDE PR0DUCES THE GRAPH TITLED 
C TEST F0R PL0TTING R0UTINE HIDE· 
c 

c 

DIMENSI0N XCl50>1YCl50>1YICl50>1XGC500>1GC500>1XHC500> 
1 1HC500>1XGIC500>1GlC500>1TICl4> 

DATA NG1NGl1N1Nl1NFNS1MAXDIM1XMIN1DELTAX.YMIN1DELTAY• 
I XLNTH.YLNTH.XX/0.-31150.-150126.50010o11·051-l•1 
2 o671•601·3 .. 3ol41592654/ 

EQUIVALENCE CXHCl>1TICI>> 
READ l1TI 
P0RMATC I 3A61A2> 
STEP = 3·141592654/74.5 
XCI> = o. 
Ylct> = o. 
D0 2 I = 21N 

X<I> = XCI-l>+STEP 
2 YICI> = •2*SINCXCI>> 

z = o. 
STEP = 3•141592654/12·5 

C THE CALLS T0 HIDE NECESSARY T0 PL0T THE T0P AND B0TT0M 
C CUNDERSIDE> 0F A SURFACE ARE MADE IN THE F0LL0WING L00P• 
c 

c 

D0 3 I = l•NFNS 
CZ = C0SCZ> 
D0 4 J = I 1N 

4 YCJ) • YICJ>•CZ-CEXPC-CXCJ>-XX>**2-CZ-XX>**2>* 
1 C0SCl.75•CCXCJ>-XX>••2+CZ-XX>••2>>>•1·5 

C PL0T THE PART 0F THE ITH CURVE THAT LIES 0N THE UNHIDOEN 
C PART 0F THE T0P 0F THE SURFACE. 
c 

CALL HIDECX1Y1XG.G1XH.H1NG,MAXDIM.N1NFNS1Tl1XLNTH> 
YLNTH1XMIN.DELTAX,YMIN•DELTAY> 

c 
C PL0T THE PART 0F THE ITH CURVE THAT LIES 0N THE UNHIDDEN 
C PART 0F THE UNDERSIDE 0F THE SURFACE· 
C CN0TE• IF PART 0F THE UNDERSIDE FALLS BEL0W YMIN. BUT 
C STAYS WITHIN THE DESIRED AREA 0N THE PL0T• HIDE WILL STILL 
C PERF0RM THE PL0TTING C0RRECTLY·> 
c 

CALL HIDECX.Y.xG1.G1.xH.H.NGl.MAXDIM.N1.o.6HN0TTLE. 
I XLNTH.YLNTH.XMIN.DELTAX.YMIN.DELTAY> 

3 Z = Z+STEP 
c 
C CALL SYSTEMS R0UTINES T0 M0VE THE PEN 0ff THE GRAPH T0 THE 
C RIGHT AND T0 TERMINATE THE PL0T· 
c 

c 

CALL M0VPENC10.,-2.,-3) 
CALL PLT0FF 
END 
SUBROUTINE HIDECX1Y1XGrG1XH1HrNG1MAXDIM,Nl1NFNS 1TITLEr 

l XLNTH1YLNTH,XMIN,DELTAXrYMIN,DELTAYI 

C THIS SUBROUTINE PRODUCES A 2-0IMENSIONAL REPRESENTATION OF 
C A 3-DIMENSICNAL FIGURE OR SURFACE. 
C THE FIRST CALL TO HIDE IS FOR INITIALIZATION AND PLOTTING 
C THE CURVE FARTHEST JN THE FOREGROUND. ON EACH SUBSEQUENT 
C CALL, A CURVE FARTHER IN THE BACKGROUND IS PLOTTED. 

420-P 2 0 

C X IS THE ABCISSA ARRAY FOR THE CURVE TO BE PLOTTED BY 
CHIDE ON THIS CALL. THE X VALUES MUST BE INCREASING. 
C IF XIII GE Xll+ll FOR SOME 11 MAXDIM WILL BE SET TO ZERO, 
C ANO A RETUR~ WILL BE EXECUTED. 
C Y IS THE ORCINATE ARRAY. 
C G VS. XG IS THE CURRENT VISUAL MAXIMUM FUNCTION ON EACH 
C RETURN FROM HIDE. 
C XH ANO H ARE WO~KING A~RAYS. 
C ON EACH RETURN FROM HIDE, NG IS THE NUMBER OF POINTS IN 
C THE CURRENT MAXIMUM FUNCTION. 
C ON THE FIRST CALL, NG IS A NONPOSITIVE INTEGER WHICH 
C SPECIFIES CERTAIN OPTIONS. 
C -1 DO NOT DRAW THE ij 1/2 BY 11 INCH BORDER. 
C -~ PLOT UNHIDDEN MINIMUM RATHER THAN MAXIMUM. IN THIS 
C CASE, G VS. XG WILL BE THE NEGATIVE OF THE VISUAL 
C MINIMUM FUNCTION. 
C -3 DO NOT PLOT BORDER, PLOT MINIMUM RATHER THAN MAXIMUM. 
C 0 PLOT BORDER, PLOT MAXIMUM. 
C IF THE BORDER IS DR AWN, ITS LEFT, BOTTOM CORNER WI LL BE 
C WHERE ~HE PLOTTING REFE~ENCE POINT WAS JUST BEFORE THE 
C FIRST CALL TO HIOE 1 ANO THE REFERENCE POINT WILL BE MOVED 
C l INCH RIGHT AND 2 INCHES UP. IF THE BORDER IS NOT DR~WN, 
C THE REFERENCE POINT WILL NOT BE MOVED BY HIDE. 
C MAXDIM IS THE DIM~NSION IN THE CALLING PROGRAM OF THE 
C ARRAYS XG, Gr XH, ANO H. IF ONE OF THESE ARRAYS WOULD 
C HAVE BEEN OVERFLOWED, MAXDIM IS SET EQUAL TO ITS NEGATIVE, 
C AND A RETURN IS EXECUTED. 
C Nl IS THE NUMBER OF POINTS CXlll,Yllll TO BE PLOTTED IN 
C A GIVEN CALL TO HIDt. 
C IF Nl IS LESS THAN o, Y VS. X Will NOT BE PLOTTED, BUT ON 
C SUBSEQUENT CALLS, PLOTTING WILL BE DONE AS IF 
C llXlll,Yllll,l=l,-Nll HAD BEEN PLOTTED (WHERE UNHIODENI. 
C Nl Will BE RETURNED AS ITS ABSOLUTE VALUE. 
C NFNS IS THE TOTAL NO. OF CURVES TO BE PLOTTED FOR THIS 
C GRAPH IF TRANSLATING THE ARRAYS TO SIMULATE STEPPING IN 
C THE DEPTH DIMENSION IS DESIRED. IF NO TRANSLATION IS 
C DESIRED, NF~S SHOULD BE NEGATIVE. IF THE SAME TRANSLATION 
C AS IN THE PREVIOUS CALL TO HIDE IS DESIRED, NFNS SHOULD BE 
C ZERO. THE NFNS=O OPTION MAY BE SPECIFIED FOR INDIVIDUAL 
C CURVES AFTER THE FIRST FOR A GIVEN GRAPH. ALL 
C TRANSLATIONS WHICH ARE PERFORMEU WILL HAVE EQUAL STEP SIZE 
C DETERMINED BY THE VALUES IN THE INITIAL CALL FOR XLNTH, 
C YLNTH, AND NFNS. 
C TITLE IS AN BO-CHARACTE~ TITLE. 
C IF TITLECll•6HNOTTLEr THE TITLE WILL. NOT BE PLOTTED. 
C TITLElll ANC XHlll OR Hlll MAY BE THE SAME LOCATION IF THE 
C TITLE IS NOT NEEDED AFTER IT IS PLOTTED. 
C XLNTH IS THE LENGTH IN INCHES Of THE HORIZONTAL AXIS. 
C IF XLNTH IS LESS THAN O, THE X-AXIS AND THE DEPTH AXIS 
C WILL NOT BE DRAWN. IN ANY CASE, UNLESS THIS OPTION IS 
C SUPPRESSED THROUGH NFNS, THE ITH CURVE WILL BE TRANSLATED 
C 11-11*19.-ABSIXLNTHll/INFNS-ll INCHES TU THE LEFT. THIS 
C PLUS A SIMILAR VERTICAL TRANSLATION IS DONE TO SIMULATE 
C STEPPING IN THE DEPTH DIMENSION. 
~ XMIN-19.-ABSIXLNTHll•DELTAX WILL BE THE ABCISSA VALUE AT 
C THE PLOTTING REFERENCE POINT IWHICH JS WHERE THE 
C HORIZONTAL AND VERTICAL AXES WOULD INTERSECT IF DRAWN). 
C YLNTH IS THE LENGTH OF THE VERTICAL AXIS IN INCHES. 
C IF YLNTH· IS LESS THAN o, THE VERTICAL ANO DEPTH AXES WIL~ 
C NOT ~E DRAW~. BUT IN ANY CASE, UNLESS THIS OPTION IS 
C SUPPRESSED THROUGH NFNS, THE ITH CURVE Will BE TRANSLATED 
C 11-11*16.-ABSIYLNTHll/INFNS-ll INCHES UP TO SIMULATE 
C STEPPING IN THE DEPTH DIMENSION. YMIN-(6.-ABSCYLNTHll• 
C DELTAY WILL BE THE ORDINATE VALUE AT THE PLOTTING 
C REFERENCE PCINT. 
C IF TRANSLATIONS ARE PERFORMED, X ANO Y Will BE RESTORED TO 
C THEIR ORIGl~Al VALUES BEFORE THE RETURN TO THE CALLING 
C PROGRAM. 
C NOTE THAT IF A8SCXLNTHl•9 1 AND ABSIYLNTHl=61 THERE Will BE 
C NO TRANSLATION, AND, IF BORDER AND AXES ARE NOT DRAWN, THE 
C DIMENSIONS CF THE PLOT ARE UNSPECIFIED. 
C IF THE AXES ANO BORDER ARE DRAllN, THE TOP OF THE VERTICAL 
C AXIS AND THE RIGHT END OF THE HORIZONTAL AXIS ARE FIXED 
C RELATIVE TO THE BORDER, AND THE DEPTH AXIS JOINS THE LEFT 
C END OF THE HORIZONTAL AXIS ANO THE BOTTOM OF THE VERTICAL AXIS. 
C XMIN IS A LCWER BOUND FOR X. 
C DELTAX IS THE X DATA INCREMENT PER INCH FOR THE PLOT. 
C XMIN ANO DELTAX DETERMINE THE PLOTTING SCALE FOR X. 
C CSEE ABOVE.I 
C YMIN ANO DELTAY, SIMILARLY, DETERMINE THE SCALE FOR Y. 
C If AN ERROR RETURN IS MADE FROM HIDE, All FURTHER CALLS 
C Will RESULT ONLY IN THE EXECUTION OF A RETURN UNLESS 
C MAXDIM IS RESET TO A POSITIVE VALUE. 
c 

c 

DIMENSICN XI 1J,YC11,XGI 11,GC l ltHI 11,XHC 11,TITLEI l) 
INTEGER TITLE 

C THE ONLY PUR?OSE OF THE FOLLOwlNG EQUIVALENCE STATEMENT IS 
C TO SAVE STORAGE. 

EQUIVALENCE CKl11WHICHl,CK2,SLOPEl,CFNSMl,Zll, 
l llGGP1,Kll,CK1 1N21 

c 
C EPSl IS THE RELATIVE ABCISSA INCREMENT USED TO SIMULATE 
C DISCONTINUITIES IN THE MAXIMUM FUNCTION. 

DATA EPSl/.000001/ 
DATA NOTTLE/6HNOTTLE/ 

~ THE FOLLOWl~G STATEMENT FUNCTION COMPUTES THE ORDINATE ON 
C THE LINE JOINING IXI,Yll AND (XIPl,YIPll CORRESPONDING TO 
C THE ABCISSA XX. 

FCXX,Xl,Yl,XIPl,YIPll. Yl+IXX-Xll*CYIPl-Yl)/(XIPl-XII 
IFCMAXDIM.LE.01 RETURN 
DO 71 I = 2,Nl 

IF(XCl-ll.LT.XClll GO TO 71 
MAXDIM • 0 
GO TC 7S 

71 CONTINUE 
IFPLOT = l 
IFCNl.GT.OI GO TO 76 
Nl = -Nl 
If PLOT " 0 



COLLECTED ALGORITHMS (cont.) 

c 

76 IFING.GT.Ol GO TO 5000 
IFIN1+4.LE.MAXDIMI GO TO 7, 
MAXDIM a -MAXOIM 

75 RETlJRN 

C WE WANT SIGN 2 l IF WE ARE PLOTTING MAXIMUM, a -1 IF 
C MINIMUM.· 

74 SIGN. a l. 
IFCNG.LT.-11 SIGN• -1. 

c. 
C THE KTH CURVE TO BE PLOTTED WILL IOPTIONALLYI BE 
C TRANSLATED BY THE VECTOR 1-DXINoDYINl•CK-ll TO SIMULATE 
C STEPPING IN THE DEPTH DIMENSION. 

c 

IF(NFNS.LE.01 GO TO 46 
FNSl'H .s NFNS-1 
OXIN a 19.-ABSCXLNTHll-OELTAX/FNSMl 
DYIN • 16.-ABSCYLNTHll•DELTAY/FNSMl 

C SYSTEMS ROUTINE MOVPEN MOVES THE PEN TO A POINT WHOSE 
C COORDINATES ARE SPECIFIED IN INCHES BY THE FIRST TWO 
C PARAMETERS. THE PEN IS PICKED UP IF THE ABSOLUTE VALUE OF 
C THE THIRD PARAMETER IS 3 1 IS PUT DOWN IF 2, A~D IS LEFT AS 
C AFTER LAST CALL IF 1. If THE THIRD PARAMETER IS NEGATIVE, 
C A NEW REFERENCE POINT Will BE ESTABLISHED. 

46 IFING.EC.-l.OR.NG.EQ.-31 GO TO 41 
c 
C DRAW 8 1/2 BY 11 INCH BORDER. 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CALL MOVPENCll.,0.,21 
CALL MOVPENl11.,B.5oll 
CALL MOVPENI0.,8.5,ll 
CALL MOVPENIO.,O.,ll 
CALL MOVPENll.,2.0,-31 

c 
C CALL SYSTEMS ROUTINE TO PLOT THE BO-CHARACTER TITLE. 
C THE FIRST TloO ARGUMENTS ARE THE COORDINATES IN INCHES 
C RELATIVE TO THE REFERENCE POINT OF THE LOWER LEFT-HANO 
C CORNER OF T~E FIRST CHARACTER. THE THIRD ARGUMENT 
C DETERMINES THE HEIGHT IN INCHES OF THE CHARACTERS. THE 
C FIFTH ARGUMENT GIVES THE ANGLE RELATIVE TO HORIZONTAL OF 
C THE PLOTTED CHARACTERS. 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

41 IFITITLElll.NE.NOTTLEI CALL PSYMBC-.28,-1.,.14, 
l TITLE,o.,ao1 

IF(XLNTH.LT.O.I GO TO 42 
c 
C CALL SYSTEMS ROUTINE TO DRAW THE HORIZONTAL AXIS. THE 
C LEFT ENO IS SPECIFIED IN INCHES RELATIVE TO THE REFERENCE 
C POINT BY THE FIRST TWO ARGUMENTS. 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 

CALL PAXISl9.-XLNTH,0.,1H ,-1,XLNTH,O.,XMINoDELTAXl 
IFIYLNT~.LT.O.I GO TO 43 

C DRAW THE DEPTH AXIS. 

c ·······················~·································· CALL MOVPENl~.-XLNTH,0.,31 

CALL MOVPENI0.,6.-YLNTH,21 
42 IFIYLNT~.LT.O.I GO TO 43 

c 
C DRAW THE VERTICAL AXIS. THE BOTTOM POINT IS SPECIFIED IN 
C INCHES RELATIVE TO THE REFERENCE POINT BY THE FIRST TWO 
C ARGUMENTS. c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CALL PAXISI0.,6.-YLNTH,lH ,l,YLNTH,90.,YMIN10ELTAYI 
c 
C CURVES SUCCESSIVELY FARTHER IN THE BACKGROUND WILL BE 
C PLOTTED WHERE THEY ARE NOT HIDDEN BY G VS. XG. G VS KG 
C WILL BE UPDATED EACH TIME A NEW CURVE IS DRAWN ANO WILL BE 
C THE VISUAL ~AXIMUM IOR MINIMUM) FUNCTION OF THE CURVES 
C ALREADY PLOTTED. 

c 

43 INDEXT=3 
00 3 J = loN 1 

XGll~OEXTI z XIJI 
GllNCEXTI = SIGN•YIJI 
INDEXT = INOEXT+l 

C THE FOLLOWl~G PRECAUTIONARY STEP IS USED IN PLACE OF A 
C TEST IN SUBROUTINE LOOKUP TO SEE IF THE VALUE FOR WHICH WE 
C WANT AN INDEX IS OUTSIDE THE TABLE. 
C THE LAST XG VALUE WILL 6E SET EQUAL TO THE LAST AHCISSA 
C OF THE CURVE TO RE PLOTTED IN THE NEXT CALL TO HIDE. 

c 

EPS "' EPSl•IABSCXMINl+ABSIDELTAXll 
NG = Nl+4 
XGlll = -FNSMl•DXIN+XMIN-ABSIXMINl-ABSIXGl3ll-l. 
XGl21 = XGl31-EPS 
XGCN1+31 = XGIN1+21+EPS 
ZZ=YMIN 
IFISIGN.LT.0.1 ZZ • -YMIN-50.•DELTAY 
GI ll = ll 
Gl21 = Zl 
GINl+31 = ZZ 
GINGI = Zl 

C CALL SYSTEMS ROUTINI:: TO PRODUCE A LINE PLOT OF 
C IX(ll,Ylllol=loNll - THIS IS THE CURVE FARTHEST IN THE 
C FOREGROUND. 
c XSTART rs THE x VALUE AT THE REFERENCE POINT. 

XSTART = XMIN-(9.-ABSIXLNTHll•OELTAX 

IFllFPLCT.EQ.11 CALL POATA(X,V,Nl,0,1,xsTART,OELTAX, 
l YMIN,OELTAY,.071 

OXKK = C. 
OYKK = C. 
RELINC DEL TAX/DEL TAY 
XGl"lGl = SIGN 
RETURN 

c 
C STATEME~T 5000 IS REACHED IF ANY EXCEPT THE CURVE FARTHEST 
C IN TH~ FOREGROUND IS TO BE PLOTTED. 

c 

5000 SIGN = XGINGI 
XGINGI = KINl I 

C TRANSLATE T~E ARKAYS BEFORE PLOTTING TO SIMULATE STEPPING 

C IN THE DEPT~ DIMENSION. 
IFINFNSI 52,48,49 

49 OXKK • CKKK+OXIN 
OYKK a CYKK+OYIN 

48 00 4 J = l,Nl 
YIJl = SIGN•IYIJl+DVKKI 

4 XIJI = XIJl-OXKK 
52 CALL LOCKUPIXllloXGCll,JJl 

IFIJJ.GE.MAXDIMI GO TO 700 
00 31 J = l,JJ 

KHIJI = KGIJI 
31 HCJI = GIJI 

IG "' JJ+l 
XH ( I G I = K 11 l 
HllGJ • FIXlll 0 XG(JJl,GIJJl,KGllGl,GllGll 

420-P 3-

c 
C WE WILL BE ~AKING TABLE LOOKUPS FOR l1N INCREASING SE.QUENCE 
C OF NUMBERS - THEREFORE, WE 00 NOT HAVE TO SEARCH FROM THE 
C FIRST OF THE IXG ANO XI TABLES EACH TIME. HENCE XNDEXG 
C ANO INOEXT. 

c 

INDEXG .. JJ 
INDEXT = l 
z1 .. x111 
Fl "' HI IGl-Vlll 
IT " 2 
JJ "' IC 
IFIHllGl.GE.Yllll GS TO 32 
IF(JJ.GE.MAXOIMI GO TO 700 
JJ ., IG+l 
HI JJI a Y 111 
XHIJJI = Zl+EPS 

32 LAST "' C 
Xl = Zl 

C FINO THE FIRST ZERO, Z2, OF THE FUNCHON G-Y TO THE RIGHT 
C OF ll. 

1100 IFIXGllGl.LT.XllTJI GO TO 1001 
c 
C 00 NOT JUMP IF WE AKE TO LOOK FOR A ZERO BETWEEN Xl AND 
c x 111. 

c 

!WHICH = 0 
X2 = XI IT I 
FZ = Fl X2,XGI IG-11,GI IG-ll 0 XG( IGll ,G( IGI I-YI ITI 
IT z IT+l 
GO TO 1002 

C COME TO 1001 IF WE ARE TO LOOK FOR A ZERO BETWEEN Xl ANO 
C XGI IGI. 

c 

1001 X2 = XG I !GI 
!WHICH = 1 
F2 = GCIGl-FIX2,XllT-ll,YllT-ll,V.llTl,YllTll 
IC = IG+ l 

C THE FUNCTID~ IG-YI HAS A ZERO Z2 SUCH THAT Kl LE Z2 LE X2 
C IF ANO ONLY IF IG-Y AT Xll • IG-Y AT X21 LE o. 
C IG-Y IS ASSLMEO, FOR PLOTTING PURPOSES, TO BE LINEAR ON 
c EACH INTERV6L cx1,x21.1 

c 

1002 IFIFl•F2.GT.O.I GO TO 1005 
SLOPE = (F2-Fll/(X2-Xll 
IGG = IG-1-IWHICH 
ITT = IT-2+1WHICH 
IFIABSISLOPE•RELINCl.GT.l.E-61 GO TO 1007 

C IF GANO Y CIFFE~ IMPERCEPTIBLY IFOR PLOTTING PURPOSESI 
c ON THE INTERVAL 1x1,x21, SET Z2=X2. THIS STEP PREVENTS 
C DIVISION BY ZERO. 

Z2 = X2 
GO TO 1006 

c 
C OTHERWISE, COMPUTE THE ZERO l2. 

1007 Z2 = Kl-Fl/SLOPE 
GO TO 1006 

c 
C IF NO ZERO ~AS FOUND BETWEEN Xl ANO X2, CONTINUE THE 
C SEARCH FOR ZEROES. 

c 

1005 Xl = X2 
Fl = F2 
IFllT.L~.Nll GO TO 1100 

C IF THE ENO CF THE X TABLE HAS BEEN KEACHEO, CONSIDER THE 
C INTERVAL FRCM THE LAST ZERO FOUND TO THE ENO OF THE X 
C TABLE (PLOT, UPDATE MAXIMUM FUNCTION AS INDICATEOI. 

c 

1008 LAST = l 
l2 = X(~ll 
CALL LOCKUPIZ2,XGllNOEXG),IGGI 
IGG = l~DEXG+IGG-1 

ITT "' Nl-1 

c IT IS NECESSARY TO PLOT y vs. x ON THE INTERVAL 1z1,z21 
CONLY IF Y 1S UNHIOOl::N AT EACH ZZ SUCH THAT Zl LT ZZ LT Z2. 
C WE CHOOSE ZZ NEAR THE LEFT END OF THE INTERVAL FOR 
C EFFICIE~CY IN THE TABLE LOOKU~. 

C NOTE THAT IT IS MORl EFFICIENT TO CHOOSE THIS VALUE FOR ZZ 
C THAN, SAY, .9q*XllNDEXTl+.Ol•XllNOEXT•l11 WHICH WOULD 
C ELl~INATE O~E OF THt TWO TABLE LOOKUPS, BUT WOULU 
c NECESSITATE A TEST ro DETERMINE IF zz WAS BETWEE~ ll ANO 
c l2. 

1006 zz = .qq•z1+.01•l2 
CALL LOCKUPIZZoXllNDEXTl,Kll 
CALL LOCKUP(ll,XGllNOEXGl,KZI 
Kl = Kl+INDEXT-1 
K2 = K2+1NDEKG-l 
IFIFIZZ,XIKl),Y(Kll,xlKl+ll,YIKl+lll.GT. 

l FIZZ,XGIK211GIK21oXGIK2+11,GIK2+1111 GO TO 7 
c 
C IF Y IS HIDCEN BETWEE~ ll ANO Z2, UPDATE THE MAXIMUM 
C FUNCTION 

0 



COLLECTED ALGORITHMS (cont:.) 

C FOR GENERALITY, THE MAXIMUM FUNCTION IS UPDATED EVEN IF 
C THIS IS THE INFNSITH CURVE. 

c. 

IFIJJ+IGG-INDEXG.GE.MAXOIMI GO TO 100 
IFllNOEXG.EQ.IGGI GO TO 712 
Jl " INCEXG+l 
DO 12 I = Jl,IGG 

JJ .. JJ+l 
XHCJJI = XGlll 

12 H(JJI = Giii 
712 JJ = JJ+l 

XHIJJI = l2 
HIJJI = FIZ21XGllGGl,GllGGl,XGllGG+ll1GllGG+lll 
INOEXG = IGG 
INOEXT " ITT 
GO TO 6C 

C If T IS NOT HIDDEN BETWEEN ll ANO l21 UPDATE THE MAXIMUM 
C FUNCTIO~ ANC PLOT. 

1 NGRAPH = ITT-INOEXT+2 
IFIJJ+NGRAPH-l.GT.MAXDIMI GO TO 700 
N2 = JJ 
IFINGRAPH.EQ.21 GO TO 9 
Jl = INCEXT+l 
DO ll I = Jl,ITT 

JJ = JJ+l 
XH I J J I = X 11 I 

ll HIJJI =VIII 
9 JJ " JJ+l 

XHIJJI = l2 
HIJJ) "'Fll20XllTTl,VllTTl1XllTT+l11YllTT+lll 

c 
C CALL SYSTEMS ROUTINE TO PRODUCE LINE PLOT OF 
C IXHlll1Hlllol=N2,N2+NGRAPH-ll. 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 

c 

IFllFPLCT.EQ.11 CALL POATAIXHIN211HCN2),NGRAPH10111 
l XSTART,DELTAX,SIGN•VMIN 1 
2 SIGN•DELTAV., .071 

INOEXT "' ITT 
INDEXG = IGG 

60 IFllAST.EQ.11 GO TO 61 
Xl " X2 
Fl -= F2 
Zl ,. l2 

C AFTER PLOTTING ANO/UR UPDATING THE MAXIMUM FUNCTION ON THE 
c. INTERVAL 1z1.z21, SEARCH FOR THE NEXT ZERO IF THE ENO OF 
c THE ABCISSA TABLE xr HAS NOT BEEN REACHED. 

c 

IFCIT.LE.Nll GO TO 1100 
GO TO lC08 

C AFTER Y VS. X HAS BEEN PLOTTED, FINISH UPDATING ANO STORE 
C THE NEW MAXl"'U"' FUNCTION. 
C ALLOW FUR T~E POSSlttlLITV fHAT fHE PREVIOUS MAXIMUM 
C FUNCTION EXTENDS TO THE RIGHT OF THE FUNCTION JUST 
C PLOTTED. 

c 

61 IFIXGCNGl.LE.XGING-111 NG= NG-l 
IFIXGCNGl.LE.XINlll GO TO 33 
IFIJJ+3+NG-IGG.GT.MAXDIMI GO TO 700 
XHIJJ+ll = XHIJJl+EPS 
JJ '" JJ+l 
HCJJI FIXCNll ,XGI IGGl,GC IGG),XGI IGG+l),GC IGG+lll 
IGGPl = IGG+l 
DO 34 J = IGGPl 1NG 

JJ = JJ+l 
XH C J J I = XG I J I 

34 HIJJI = GIJI 
33 l\IG ,. JJ+2 

IFCNG.GT.MAXOIMI GO TO 700 
00 .l 3 I = 11 JJ 

Gii I = HI 11 
13 XGCll = XHlll 

C THE FOLLOWihG PRECAUTIONARY STEP IS USED IN PLACE OF A 
C TEST IN SUBROUTINE LOOKUP TO S~E IF THE VALUE FOR WHICH WE 
C WANT AN INDEX IS OUTSIDE THE TABLE. 
C THE LAST XG VALUE WILL BE SET E~UAL TO THE LAST ABCISSA 
C Of THE NEXT CURVE TO BE PLOTTED. 

c 

XGIJJ+l 1·-= XGIJJl+EPS 
GIJJ+ll = VMll\l+UYKK 
IFISIGN.LT.O.I GIJJ+ll = -YMIN-50.•0EUAY+DYKK 
GINGI = GIJJ+ll 

C RESTORE ARRAYS X ANC Y BEFORE RETURNING. 
66 IFCNFNS.LT.01 GU TO 53 

DO 02 I = l, Nl 
l<l I I = XI I l+CXKK 

82 VIII = SIGN•Ylll-OYKK 
53 XGINGI "' SIGN 

RETURN 
c 
C IF STATEMENT 700 IS REACHED, DIMENSIONS WOULD HAVE BEEN 
C EXCEEDED. SEE COMMENTS ON CALLING ~EQUENCE FOR HIDE. 

c 

700 MAXOIM = -MAXDIM 
GO TO 6t: 
ENO 
SUBROUTINE LOOKUPIX,XTBL1JI 

C THIS SUBROUTINE IS CALLEO BY HIDE TO PERFORM A TABLE 
C LOOKUP. BECAUSE OF PRECAUTIONS TAKEN lN HlOE, A TEST TO 
C SEE IF X IS OUTSIDE THE TABLE IS UNNECESSARY. 
c 

OIMENSICN XTBLlll 
J • 2 

4 IFIXTBLIJl-XI 1,2,3 
1 J • J+l 

GO VO 4 
RETURN 
J .. J-1 
RETURN 
END 

420-P 4- 0 

Driver 

(a) Test for plotting routine HIDE. 

(b) Test case for HIDE. 

(c) Geometrical test case. 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 420 [J6] 
Hidden-Line Plotting Program [H. Williamson, Comm. 
ACM 15 (Feb. 1972), 100-103] 

I.D.G. Macleod and A.M. Collins [Recd. 19 June 
1972] Department of Engineering Physics, Research 
School of Physical Sciences, Australian National Uni
versity, Canberra, A.C.T. 2600, Australia 

The number of point pairs to be plotted in subroutine HIDE is 
indicated by the magnitude of parameter Nl. If Nl is less than zero, 
the visual maximum function is updated but no plotting is carried 
out. In this case, however, the construction 

DO 7I I = 2, Nl 
IF (X(I-1) .LT. X(I)) GO TO 71 
MAXDIM = 0 
GO TO 75 

71 CONTINUE 
is nonstandard and may lead to undesirable results. If the check for 
increasing X values is to be retained when Nl is negative, its abso
lute value should be used as the terminal value of the DO loop. 

In sections 8.3.2 and 10.1.3, ANSI Fortran [1] indicates that 
where X is an array there should be no distinction between the use 
of X and the use of X [1] as parameters in a procedure reference. 
Nevertheless, some Fortran implementations (and languages such as 
Algol and PL/I) make such a distinction, in which case subroutine 
LOOKUP and the calls to it would have to be appropriately 
modified. 

References 
1. American National Standards Institute: Fortran. Publication 
X3.9-1966. 

l~emark on Algorithm 420 [J6] 

Hidden-Line Plotting Program 
[Hugh Williamson, Comm. ACM 15 (Feb. 1972), 
100-103] 

Hugh Williamson [Recd. 9 Oct. 1972] 
National Con-Serv, Incorporated, Austin, Texas 

The input quantities to subroutine HIDE referred to in the 
following paragraphs (e.g. NI, NFNS, "input curve to be plotted") 
are described in the block of comment statements at the beginning 
of HIDE as originally published. 

If NI < 0, DO loop 7 I is not executed properly, since the 
upper limit, NI, is less than the lower limit, 2. This affects only 
checking for monotonicity in the input abscissa array; otherwise, 
if the inputs are correct, the performance of the program is not 
affected. 

The error is corrected if the first 11 executable statements are 
replaced by the following (the first executable statement of the 
original program, which is not changed, is listed for clarity): 

IF(MAXDIM.LE.0) RETURN 
IFPLOT = l 
IF(Nl.GT.O) GO TO 76 
NI= -Nl 
lFPLOT = 0 

Fig. I. Without verticals. 

Fig. 2. Wnh verticab to Mid vi-.ualizat1on. 

~ 

o.ao 2.00 

76 DO 71 I --= 2,NI 
IF(X{l-1).LT.X(I)) GO TO 71 
MAXDIM = 0 
GO TO 75 

71 CONTINUE 
I F(NG.GT.OJ GO TO 5000 

420-P 5- RI 

On computers in which all variables are not automatically 
set to zero before execution, FNSMI is not properly initialized 
if NFNS ~ 0. To correct this, simply insert the statement 

FNSMI = 0. 

before the statement 

IF(NFNS.LE.O; GO TO 46 

The latter is the sixth statement after Fortran statement num
ber 74. 

FNSMI will still be improperly defined if NFNS = l. If 
only one curve is to be plotted, however, translating to simulate 
stepping in the depth dimension will not be done, so set NFNS = 

- 1 for only one curve to be plotted. 
In some cases, the three-dimensional surface is easier to visual

ize if (nearly) vertical lines are drawn at the left edge of each curve; 
this effect is illustrated by Figures l and 2. The verticals are 
added by inserting (XA11N-f:, YMIN) as the first point in each 
input curve to be plotted, where E is a small positive number 
(I0-4 X DELTAX would be appropriate). 

The author appreciates very much the comments received 
from readers of Communications regarding implementation of 
HIDE on different computers. 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 420 [J6] 
Hidden-Line Plotting Program [Hugh Williamson, 
Comm. ACM 15 (Feb. 1972), 100-103]. 

Blaine Gaither [Recd. 3 Apr. 1973] 
New Mexico Insti!tute of Mining and Technology 
(TERA), Socorro, NM 87801 

The algorithm was compiled and run without corrections on an 
IBM 360 G44. It has been in use for a year now with no problems. 
However, there is danger of division by zero if NFNS equals 1. To 
eliminate this danger the statement: 
IF(NFNS. EQ. l) NFNS = -1 
should be inserted between the statements: 
IF(NG.LT.-1) SIGN = -1 
IF(NFNS.LE.O) GO TO 46 

Depth axis may be added by the following changes. Where 
ZMJN and ZMAX are the values for the neares.t and farthest curves 
respectively, replace the continuation card of H JD E's subroutine 
statement with: 
I XLNTH,YLNTH,XMIN,DELTAX,YMIN,DELTAY, 

ZMIN,ZMAX) 
In place of the statement labeled 42 insert: 

42 DELZ = ZMAX - ZMIN 
IF (DELZ) 960I, 9602, 9601 

9601 XSC = XLNTH - · 9. 
YSC = 6. - YLNTH 
IF (XSC) 9604, 9603, 9604 

9603 ANGZ = 90. 
GOTO 9605 

9604 ANGZ = ATAN(YSC1XSC)*57.29578 
9605 ZLEN = SQRT(XSC*XSC+ YSC*YSC) 

IF (ZLEN - I.) 9602, 9602, 9606 
9606 CALL PAXIS (0.,YSC,IH,-1,ZLEN,ANGZ,ZMAX, 

-DELZ!ZLEN) 
9602 IF (YLNTH.LT.O.) GO TO 43 

If ZMlN equals ZMAX or if the length of 1the depth axis would 
be less than or equal to 1., these changes will have no effect. The 
max and min numbers on the depth axis may overlap with those of 
the horizontal and vertical axis. 

Remark on Algorithm 420 [J6] 
Hidden-Line Plotting Program [Hugh Williamson, 
Comm. ACM 15 (Feb. 1972) 100-103.] 

T.M.R. Ellis [Recd. 26 Mar. 1973 and .30 July 1973] 
Computing Services, University of Sheffield, England 

Algorithm 420 has been implemented on an ICL 1907 computer 
and used to plot the surface entitled "Test for Plotting Routine 
Hide" as well as a number of other surfaces. The system plotting 
routines for the ICL I 900 series computers more or less duplicate 
those used by Williamson, except in the case of PD AT A for which 
no equivalent routine exists. There is however a system routine 
which draws a smooth curve through a set of points, and only slight 
modifications were required to reproduce the exact effect of PDATA. 

The implementation was checked by the satisfactory reproduc
tion of the "Test for Plotting Roi.I tine Hide," and subsequently it 
produced good representations of other surfaces. However, when 
attempting to plot a square-based pyramid, the program failed due 
to an error in HI DE. 

When HI DE is searching for points at which the current line 
appears and disappears, it searches for the zeros of a function 
(G- Y) where G is the current visual maximum (i.e. as already 
drawn) and Y is the current ordinate (as to be drawn). This search 

Fig. 1. 

y 

G 

-.--~.,.___-;;?'"- 4f 1 

Fig. 2. 

Fig. 3. 

I 

I 
y I 

Fig. 4. 

y I 

KO Kl 

XI 

1 I 

'I 
I I 

X2 X,3. 

I ~ . ~ .\ 
P\\ 

I~ 
I 

XI 
X2. !
'f( 

I 
I G 

\ 

\. \ 

\ 

420-P 6- 0 

(Fl=F2=0} 

(Fl F2=0) 

is carried out by comparing the values of the function (G - Y; at 
adjacent points in the current line ( Y) and, ·or the current visual 
maximum ( G), as shown in Figure I. 

Due to the fact that each line drawn is shifted upward and to 
the left, in order to simulate perspective, data points on successive 
lines which in the actual surface would have the same abscissa will 
have different abscissa in the drawing. Thus XO arid XI might repre
sent the same value of the abscissa in the surface. At XO and XI in 
the above drawing the function (G- Y) has a negative value, while 
at X2 and X3 it is positive. Clearly if FI and F2 are the values of 
(G- Y) at XI and X2 there is a zero between XI and X2 if and only 
if Fl and F2 have opposite signs. This is tested for by the statement: 
1002 IF(Fl*F2.GT.O.) GO TO 1005 

If a zero is found to exist, its abscissa is calculated by linear 
interpolation, the slope of the line being determined by the next 
statement:: 
SLOPE = (F2-Fl)i(X2-XI) 

A check is subsequently made to avoid dividing by zero if 
SLOPE is too small. 

In the case of the square based pyramid referred to above, the 
projection used was such that it was viewed down its rear face. and 
therefore all lines traversing the far face of the pyramid were both 
parallel to one another and passed through the same point on the 



COLLECTED ALGORITHMS (cont.) 

graph (the peak of the pyramid). Thus for a part of their length all 
the lines after that which goes over the peak are drawn on top of 
each other. as shown in Figure 2. When plotting the second of these 
coincident lines the respective Ci and Y functions are therefore as 
shown in the exploded form in Figure 3. 

This clearly means that for a number of consecutive abscissa 
values both Fl and F2 are zero. Due to the way in which HIDE 
keeps track of its path along the two functions G and Y. the effect 
of both Fl and F2 being zero is for the abscissa (XI) corresponding 
to the first of the two "zeros" to be entered in the visual maximum 
arra; for a second time. During the plotting of the next line there
fore. the visual maximum function G vs. XG has two identical 
entries. and thus the stage comes when XI corresponds to the first, 
and X2 to the second (see Figure 4). 

If. as in this case. this (third) line would be coincident with the 
second (and the tirstJ at this point, then Fl = F2 = 0 and the test 
at 1002 (above) will lead to the calculation of SLOPE. and hence 
failure due to the division by zero (X2- XI). 

The problem can. however, be very easily corrected by insert
ing the following statement immediately after the statement with 
label 1002: 
IF(Fl.EQ.FZ!GOTO 1005 

Since this statement can only be reached if Fl *F2 is less than or 
equal to zero. then clearly the jump will be made if and only if 
Fl = F2 °= 0. In this case the second "zero" is ignored. and the 
program proceeds satisfactorily. 

Remark on Algorithm 420 [J6] 
Hidden-Line Plotting Program [Hugh Williamson, 
Comm. ACM 15 (Feb. 1972) 100-103] and Remark on 
Algorithm 420 [T.M.R. Ellis, Comm. ACM 17 (June 
1974), 324-325] 

T.M.R. Ellis [Recd. 8 July 1974] Computing Services, 
University of Sheffield, England 

There was an unfortunate printing error in my Remark on 
Algorithm 420 which made nonsense of the whole thing. The state
ment which should be inserted to correct the error discussed should, 
of course, be: 

IF(Fl.EQ.F2) GO TO 1005 

and not: IF(Fl.EQ.FZ) GO TO 1005 as printed. 

420-P 7- Rl 



COLl..,ECTED ALGORITHMS FROM CACM 

Algorithm 421 

Complex Gamma Function 
with Error Control [S14] 
Hirondo Kuki* (Recd. 17 Aug. 1970 and 21June1971) 
Computation Center, The University of Chicago, 
Chicago1 Illinois 

Key words and phrases: complex gamma fu111ction, gamma 
function, complex loggamma function, loggamma function, round-off 
error control, inherent error control, run-time enror estimates, error 
estimates, special functions 

CR Categories: 4.9, 5.11, 5.12 

Descriptio111 
This Fortran program computes either the: gamma function or 

the loggamma function of a complex variable in double precision. 
In addition, it provides an error estimate of the computed answer. 
The calling sequences are: 
CALL CDLGAM (Z, W, E, 0) for the loggamma, and 
CALL CDLGAM (Z, W, E, 1) for the gamma, 
where Z is the double precision complex argument, Wis the answer 
of the same type, and E is a single precision real variable. Before the 
call, the value of E is an estimate of the errot in Z, and after the call, 
it is an estimate of the error in W. 

For details of the characteristics of the program, an analysis of 
the algorithm, and the nature of the error estimate, see [1 ]. 

This program was tested on an IBM Syst1!m 360 Model 65. A 
slightly modified version was used for this purpose to take advan
tage of the availability of such facilities as the ENTRY statement 
and functions of the type double precision complex. Compiled by 
OS/FORTRAN-H, opt. 2, it required 3188 bytes of storage. Per-

*Deceased. 

421-P 1- 0 

formance statistics on samples of 500 arguments each, from seven 
disjoint regions within the square 

{z = z1 + iz2; I z1 I , I z2 I < 30J, 
were as follows: 
Region I 0 :$ z 1 and I z I < 3 
Region II 0 s z 1 and 3 s I z I < 10 
Region III 0 :$ z1 < 10, -30 < z2 < 30, and 10 :$ I z I 
Region IV 10 :$ z1 < 30, -10 < z2 < 10 
Region V 10 :$ z1 < 30, 10 :$ I z2 I < 30 
Region VI - 30 < z 1 < 0, -1 < z2 < 1 
Region VII - 30 < z1 < 0, 1 :$ I z2 I < 30 

time* 

Region log r r Max error** RMS error** 

I 2100 2470 2.3 x 10-16 8.7 x 10-16 

II 1800 2230 7.6 x 10-16 2.8 x 10-16 

III 1700 1930 1.6 x 10-14 7 .8 x lQ-16 
IV 920 1500 1.4 x 10-14 7 .1 x lQ-16 
v 1000 1500 1.6 x 10-14 7 .9 x lQ-16 
VI 2130 2330 2.6 x 10-14 7 .9 x 10-16 
VII 1900 2050 2.4 x 10-14 9.5 x 10-16 

* Average time in µs. 
** Generated absolute errors for computation of the log

gamma function. 

Essentially the same statistics were obtained as generated rela
tive errors for computation of gamma function. Statistics on the 
effectiveness of the error estimate are found in [1]. 

References 
1. Kuki, H. Complex gamma function with error control. 
Comm. ACM 15 (Apr. 1972), 262-267. 

Algorithm 
SUBR0UTI NE CDLGAMC GARG• CANS. ERR0R• L FO > 

C C0MPLEX GAMMA AND L0GGAMMA F'UNCT10NS WITH ERR0R ESTIMATE 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

GARG A C0MPLEX ARGUMENT, GIVEN AS A VECT0R 01' 2 D0UBLE 
PRECIS10N ELEMENTS C0NS1STING 0F THE REAL. C0MP0NENT 
f'0LL0WED BY THE IMAGINARY C0MP0NENT 

CANS THE COMPLEX ANSWER, 01' THE SAME TYPE AS CARG 
ERR0R = A REAL VARIABLE· IT STANDS f'0R AN ESTIMATE 01' THE 

ABS0LUTE ERR0R 0F' THE Af<GUMENT AS INPUT. AS 0UTPUT 
IT GIVES AN ESTIMATE 01' THE ABS0LUTE Cl'0R L0GGAMMA> 
0R THE RELATIVE CF'0R GAMMA> ERR0R 0F THE ANSWER 

Lf'O = FLAG• SET IT T0 0 f'0R L0GGAMMA, AND I 1"0R GAMMA 
D0UBLE PREC I SI0N CARGC2 >.CAN SC 2 >. C0EFC 7 >. f'Q, f' I• GO, G 1, 

$ PI. DPI. HL2P.AL2P. DEL TA. DEO. DEi. z 1. z2. zz 1. WI. w2. y •• 
$ A. s. u. UI. 02. UUI. uu2. UUUI. uuu2. v •• v2. VVI. vv2. Tl. T2. 
$ H, Ht. H2, AL I• AL2• ON, EPS, 0MEGA 

DATA C0EFC I )/+0.6410256410256410260-2/ 
DATA C0EF'C2 > /-0. 1917 526917526917530-2/ 
DATA C0Ef'C 3 l/+O .8 417508 417 508 41751 D-3/ 
DATA C0El'C 4> /-0; 59 523809 523809 52380-3/ 
DATA C0Ef'C 5> /+O. 793650793650793651 D-3/ 
DATA C0EF< 6> 1-0 .2777777777777777780-2/ 
DATA C0El'C 7 > /+O ·8333333333333333330-1 I 
DATA F'0/8 40. 07 38529605261900/, Fl /20. 00123082189420000/ 
DATA GO/ I 680. I 477059210524001.GII180. 0 I 47704705204200/ 
DATA PI/3.t4159265358979324DO/ 
DATA DP I /6.28318 530717958 64800/ 
DATA HL2P/Q.91893853320467274200/ 
DATA AL2P/t .83787706640934548DO/ 

C C0NSTANTS EPS AND 0MEGA ARE MACHINE DEPENDENT. 
C EPS lS THE BASIC R0UND-OF'F UNIT. f'0R S/360 MACHINES. 
C IT IS CH0SEN T0 BE 16••-13· f'0R BINARY MACHINE OF N-
C BIT ACCURACY SET IT T0 2••<-N+ll. AND INITIALIZE DEO 
C AS s.o RATHEi< THAN AS 2.0 
C OMEGA IS THE LARGEST NUMBEI< REPRESENTABLE BY THE f'L0AT 
C P0INT REPRESENTATI0N 01' THE MACHINE. f'0R S/360 
C MACHINES• IT IS SLIGHTLY LESS THAN 16••63· 

DATA EPS/2.2D-16/ 
DATA 0MEGA/7.23700538D75/ 
ZI = CARG<I> 
Z2 = CARGC2> 
DEL TA = ABS C ERR0R > 
DEO 2.000 
DEi = a.a 



COLLECTED ALGORITHMS (cont.) 

C F"0RCE SIGN 0F IMAGINARY PART QIF ARG. T0 NQIN-NEGATIVE 
LFI = 0 
IF <Z2 ·GE. 0·0> G0 T0 20 
LF"l = I 
Z2 = -Z2 

20 LF2 = 0 
I,F" <ZI .GE. o.O) G0 T0 100 

C CASE WHEN REAL PART 0F ARG IS NEGATIVE 
LF2 = I 
LF"l = LF"l-1 
Tl = AL2P - P1*Z2 
T2 = P1*<0.SDO - ZI> 
U = -DPI•Z2 
IF CU .GE. -O.t054DO> G0 T0 40 
A = O.ODO 

C IF" E**U ·LT. I0*•<-17>. IGN0RE IT T0 SAVE TIME AND T0 AV0ID 
C IRRELEVANT UNDERFL0W 

IF CU ·LE. -39.tSDO> G0 T0 30 
A = DEXP<Ul 

30 HI = I .ODO - A 
G0 T0 50 

40 U2 U*U 
A = -U*<F"l•U2 + FO> 
HI = CA+ Al/CCU2 + Gl>•U2 + GO+ A> 
A = I .ODO - HI 

C DINT IS THE D0UBLE PRECISI0N VERSI0N 0F AINT, INTEGER EX-
C TRACTIQIN. THIS FUNCTI0N IS N0T INCLUDED IN ANSI F0RTRAN 
C WHEN THIS FUNCTlfilN IS N0T PR0VIDED BY THE SYSTEM. 
C EITHER SUPPLY IT AS AN EXTERNAL SUBR0UTI NE C AND TYPE THE 
C NAME DINT AS D0UBLE PRECISl0N>. 0R M0DIFY THE NEXT 
C STATEMENT AS THE EXAMPLE F"0R S/360 INDICATES• F0H S/360 
C REPLACE IT WITH 
c 
C DlllUBLE PRECISl0N SCALE 

DATA SCAL E/Z 4FOOOOOOOOOOOOOO/ 
50 B ZI - CCZI - O.SDO> +SCALE> 
50 B ZI - DINTCZI - O.SDO> 

H2 A*DSINCDP1*B> 
B DSINCP1*B> 
HI HI + CB+Bl*B*A 
H DABS<H2> + HI - DPI*A*DELTA 
IF CH .LE. 0·0> G0 T0 500 
DEO = DEO + DABS< Tl> + T2 
DEi = Pl + DPI*A/H 
ZI = I.ODO - ZI 

C CASE WHEN NEITHER REAL PART N0R IMAGINARY PART 0F ARG IS 
C NEGATIVE• DEF"INE THRESH0LD CURVE T0 BE THE BR0KEN LINES 
C C0NNECTING P01NTS IOF0*1, IOF4.142*1, O.IF"l4.042*I•AND 
C O.IF0MEGA*I 

100 LF3 = 0 
YI ZI - O.SDO 
WI o.o 
W2 = 0 .o 
K = 0 
B = DMAXICO.tDO, DMINICIO.ODO. l4.t42DO-Z2» - ZI 
IF <B .LE. O.O> G0 T0 200 

C CASE WHEN REAL PART 0F ARG IS BETWH.N 0 AND THRESH0LD 
LF3 = I 
ZZ I = Z I 

B + I. ODO 
ON N 
Z I Z I + DN 
A Zl*ZI + Z2*Z2 
VI ZI /A 
V2 -Z2/A 

C INITIALIZE Ul+U2*1 AS THE RIGHTM0ST FACT0R 1-1/CZ+N> 
UI = I .ODO - VI 
U2 = -V2 
K = 6.0DO - Z2*0.6DO - ZZI 
IF <K .LE· O> Giil T0 120 

C FlllRWARD ASSEMBLY 0F FACTlllRS CZ+J-1 l/CZ+N> 
N = N - K 
UUI CZZl*ZI + Z2*Z2> / A 
UU2 = DN•Z2/A 
VVI = o.o 
VV2 = O.O 
D0 110 J = I .K 

B = Ul*CUUl+VVll - U2*CUU2+VV2> 
U2 = U1*CUU2+VV2> + U2*CUUl+VVI> 
UI = B 
VVI = VVI + VI 

I I 0 VV2 = VV2 + V2 
120 IF CN .LE. I> G0 T0 140 

C BACKWARD ASSEMBLY 0F FACT0RS 1-J/CZ+N> 
VVI = VI 
VV2 = V2 
00 130 J = 2.N 

VVI = VVI + VI 
VV2 = VV2 ·+ V2 
B = Ul*Cl·ODO - VVI> + U2*VV2 
U2 = -Ul*VV2 + U2•C I .ODO - VVI > 

130 UI = B 
140 U = Ul•UI + U2*U2 

IF CU .EQ. o.OJ Giil T0 500 
IF" <LF"O .EQ. 0> G0 T0 150 
IF" CK ·LE. O> G0 T0 200 

150 ALI= DL0G<U>•O.SDO 
IF CLFO ·NE. O> G0 T0 160 
WI = ALI 
W2 = DATAN2CU2.UI) 
IF < W2 • LT. 0. 0 > W2 = W2 + DP I 
IF CK ·LE• O> G0 T0 200 

I 60 A = ZZ I + Z2 - DEL TA 
IF <A ·LE· O·O> G0 T0 500 
DEO = DEO - AL I 
DEi = DEi + 2.0DO + I ·ODO/A 

C CASE WHEN REAL PART 0F ARG IS GREATER THAN THRESH0LD 
200 A = Z1*ZI + Z2•Z2 

ALI = DL0G<Aao.soo 
AL2 = DATAN:?.<Z2.ZI> 
VI = Y1*ALI - Z2•AL2 
V2 = YI •AL2 + Z2*AL I 

C EVALUATE ASYMPT0TIC TERMS. IGN0RE THIS TERM, IF ABS VAL<ARG> ·GT. 

421-P 2- 0 

C 10**9• T0 SAVE TIME AND T0 AV0ID IRRELEVANT UNDERFL0W 
VVI = o.o 
VV2 = 0 .o 
IF CA .GT. I oODIB> G0 T0 220 
UUI = Zl/A 
UU2 = -Z2/A 
UUUI = UUl•UUI - UU2•UU2 
UUU2 = UU1*UU2*2. ODO 
VVI = C0EFC I> 
D0 210 J = 2. 7 

B = VVl*UUUI - VV2•UUU2 
VV2 = VVI *LIUU2 + VV2•UUUI 

210 VVI = B + C0EFCJ) 
B = VV 1*UUI - VV2•UU2 
VV2 = VV I *LILI2 + VV2•UUI 
VVI = B 

220 WI= CCCVVI + HL2P> - WI> - ZI> +VI 
W2 = C CV~ - W2 > - Z2 > + V2 
DEO = DEO + DABSCVI > + DABSCV2> 
IF CK ·LE. 0> DEi = DEi + ALI 

C FINAL ASSEMBLY 
IF CLF2 .NE· O> G0 T0 310 
IF CLFO .EQ. O> G0 T0 400 
A = DEXPCWI > 
WI = A*DC0S<W2> 
W2 = A*DSIN<W2> 
IF CLF3 .EQ. O> G0 T0 400 
B = CW1*UI + W2*U2> I U 
W2 = CW2*UI - W1*U2l / U 
WI = B 
G0 T0 400 

310 H = Hl•HI + H2*H2 
IF <H .EQ, O.OJ G0 T0 500 
IF CLFO .EQ. 0> G0 T0 320 
IF CH ·GT. I ·OD-2> G0 T0 330 

320 A = DLlllGCH>•O· SDO 
IF CH ·LE· I ·OD-2> DEO = DEO - A 
IF CLFO oNEo 0> Giil T0 330 
WI = CTI - Al - WI 
W2 = <T2 - DATAN2CH2.HI > l - W2 
G0 T0 400 

330 Tl Tl - WI 
T2 T2 - W2 
A DEXP<TI> 
Tl A•DClllSC T2 > 
T2 A*DSIN<T2> 
WI CTl*HI + T2*H2>/H 
W2 CT2•HI - Tl*H2>1H 
IF CLF3 .EQ. O> G0 T0 400 
B = WI *Lii - W2*U2 
W2 = Wl*U2 + W2*UI 
WI = B 

400 IF CLF"l .NE· 0> W2 = -W2 
C TRUNCATI0N ERR0R 0F STIRLINGS F0RMULA IS UP T0 3*10**-17• 

DEi = DEO•EPS + 3·0D-17 + DEl*DELTA 
Giil T0 600 

CASE WHEN AHGUMENT IS T00 CL0SE HJ A SINGULARITY 

~00 \H = 0MEGA 
W2 = 0MEGA 
DEi = QIMEGA 

600 CANSC I> = WI 
CANSC2> = ~J2 
ERRlllR = DEi 
RETURN 
END 



COLI"'ECTED ALGORITHMS FROM CACM 

Algorithm 422 
Minimal Spanning Tree [H] 

V. Kevin M. Whitney (Recd. 4 May 1970, 13 Oct. 1970, 
and 3 Aug. 1971) 
Department of Electrical Engineering, University of 
Michigan, Ann Arbor, MI 48104 

Key Words and Phrases: spanning tree, minimal spanning tree, 
maximal spanning tree 

CR Category: 5.32 

Description 
This algorithm generates a spanning tree of minimal total edge 

length for an undirected graph specified by an array of inter-node 
edge lengths using a technique suggested by Dijkstra [1 ]. Execution 
time is proportional to the square of the number of nodes of the 
graph; a minimal spanning tree for a graph of 50 nodes is generated 
in 0.1 seconds on an IBM System 360/67. Previous algorithms [2, 3, 
4, 5] require an amount of computation which depends on the graph 
topology and edge lengths and are best suited to graphs with few 
edges. 

The nodes of the graph are assumed to be numbered from 1 to 
N. The length of an edge from node I to nodt:~ J is given by array 
element DM(I, J). If there is no edge from node I to node J, 
DM(I, J) is given a value larger than the length of the longest edge 
of the graph, say 1010• The diagonal elements of array DM are not 
used and may have any value. After execution of the algorithm, the 
edges of a minimal spanning tree are specified by pairs of nodes in 
array MST and the total edge length is given by CST. 

The Dijkstra algorithm grows a minimal spanning tree by suc
cessively adjoining the nearest remaining node 1to a partially formed 
tree until all nodes of the graph are included in the tree. At each 
iterative step the nodes not yet included in the tree are stored in 
array NIT. The node of the partially completed tree nearest to node 
NIT(/) is stored in JI(/), and the length of edge from NIT(/) to 
JI(/) is stored in UI(I). Hence the node not yet in the tree which is 
nearest to a node of the tree may be found by searching for the 
minimal element of array UI. That node, KP, is added to the tree 
and removed from array NIT. For each node remaining in array 
NIT, the distance from the nearest node of the tree (stored in array 
Ul) is compared to the distance from KP, the new node of the tree, 
and arrays UI and JI are updated if the new distance is shorter. The 
nearest node selection and list updating are performed N - 1 times 
until all nodes are in the tree. A proof that this algorithm finds a 
minimal spanning tree and a discussion of the related shortest path 
tree algorithm will be found in either of references [1] or [6]. 

Most of the execution time for this algorithm is spent in the 
search and updating statements between statements labeled 200 and 
500 which are executed N - 1 times. Since on the Kth execution a 

422-P 1- 0 

list of N-K items is searched and updated, the total execution time 
is proportional to N2. 

If the graph represented by the inter-node edge length array D M 
is not connected, the procedure will generate a minimal spanning 
forest containing the minimal spanning trees of the disjoint compo
nents joined together by edges of length 1010• A disconnected graph 
is indicated by a value of 1010 for variable UK at step 500 during 
execution of the algorithm. 

The algorithm may be simply modified to find a spanning tree of 
maximal total length by changing the loop between statements 300 
and 400 to search for the most distant rather than for the nearest 
remaining node to be adjoined to the partially completed tree. 

The data storage required for the algorithm may be reduced 
from N (N + 5) locations to 5N locations by replacing array D M with 
an edge length function which calculates the required inter-node 
edge lengths as they are needed. Such a function will be called 
N (N - 1) /2 times and may extend considerably the size of problem 
which can be solved by this algorithm on a machine with limited 
core storage. 

Acknowledgment is due E.L. Lawler for bringing reference [1] 
to my attention. This work was supported in part by Rome Air 
Development Center Contract F30602-69-C-0214 with the Systems 
Engineering Laboratory of the University of Michigan. 

References 
1. Dijkstra, E.W. A note on two problems in connection with 
graphs. Numer. Math. I, 5 (Oct. 1959), 269-271. 
2. Kruskal, J.B. Jr. On the shortest spanning subtree of a graph 
and the traveling salesman problem. Proc. Amer. Math. Soc. 7 
(1956), 48-50. 
3. Prim, R.C. Shortest connection networks and some 
generalizations. Bell Syst. Tech. J. 36 (Nov. 1957), 1389-1401. 
4. Obruca, A. Algorithm 1. MINTREE. Comput. Bull. (Sept. 
1964), 67. 
5. Loberman, H., and Weinberger, A. Formal procedures for 
connecting terminals with a minimum total wire length. J. ACM 4, 
4 (Oct. 1957), 428-437. 
6. Lawler, E.L. An Introduction to Combinatorial Optimization 
Theory and Its Applications, 2 vols. Holt, Rinehart: & Winston, 
New York, 1971. 

Algorithm 
SUBR0UTI NE DMT0MSC OM, N, MST• IMS T •CST> 

c 
C THIS SUBROUTINE FINDS A $ET 0F EDGES 0F A LiNEAH GRAPH 
C COMPHISING A THEE WITH MINIMAL T0TAL EDGE LENGTH· THE 
C GRAPH IS SPECiFIED AS AN AiikAY OF INTEH-NCDE EDGE LENGTHS. 
C THE EDGES 0F THE MINIMAL SPANNING TKEE 0F THE GRAPH ARE 
C PLACED IN AiiiiAY MST· EXECUTION TIME IS Pk0P0RTI0NAL T0 
C THE SQUARE 0F THE NUMBEH 0F M0DES• 
c 
C CALLING SEQUENCE VAHIABLES AHE: 
c 
C DM AHRAY 0F 

0

lNTEK-N0DE EDGE LENGTHS· 
C DMCI,J> Cl ·LE· I,J ·LE• IN> IS THE LENGTH 0F 
C AN EDGE FR0M N0DE I T0 NODE- J. IF THEiiE IS N0 
C EDGE FR0M N0PE I T0 N0DE J, SET DMCI,,J>=IO·**IO 
C N N0DES ARE NUMB EH ED I• 2, • • • • N • 
c 
C MST ARHAY IN ~HICH EDGE LIST CF MST IS PLACED· MSTCl.I> 
C IS THE 0HIGINAL N0DE AND MST<2• I> IS lrHE TEkM.INAL 
C N0DE 0F EDGE I FOi< I ·LE. I ·LE· IM$T .. 
C IMST NUMBER OF EDGES IN ARkAY MST· 
C CST SUM 0F EDGE LENGTHS 0F EDGES 0F Tt<EE· 
c 
C PR0GHAM VAi<IABLES 
c 
C NIT ARRAY CF NODE~ N0T YET IN TkEE. 
C NITP NUMBER OF NCDES IN AHt<AY NIT· 
C Jl<I> N0DE 0F PARTIAL MST CLOSEST T0 NODE NIT<I>· 
C UICI> LENGTH OF EDGE FH0M NITCI> T0 JICI>• 
C KP NEXT NCDE T0 BE ADDED T0 ARRAY MST· 



COLLECTED ALGORITHMS (cont.) 

c 
DlMENS10N OM< SQ, 50>.MST<2• 50> 
DlMENSl0N Ul ( 50 >. Jl < 50>. Nl TC 50 > 

c 
C INITIALIZE N0DE LABEL AHHAYS 
c 

c 

csT,.o. 
NITPzN-1 
KP=N 
IMST•O 
D0 100 I=l•NITP 

NIT< I >=I 
Ul<I>=DH<I.KP> 

100 Jl<I>=KP 

C UPDATE LABELS 0r N0DES N0T YET IN TREE· 
c 

c 

200 00 300 l=l.NlTP 
NI = NIT< l> 
D=DHCNI.KP> 
Ir<UI<I>.LE.U> G0 T0 300 
UICI >"'D 
JI< I >=KP 

300 C0NTINUE 

C FIND N0DE 0UTSIDE TREE NEAHEST T0 TREE· 
c 

UK=UI< I> 
00 400 l=l•NITP 

IF<UI <I> ·GT.UK> G0 T0 400 
UK=UI< I> 
K=I 

400 C0NTINUE 
c 
C PUT N0DES 0r APPH0PtUATE EDGE lNT0 AHRAY MST· 
c 

c 

lMST=lMST+I 
MST<l.IMST>=NITCK> 
MST<2•1MST>,.JI<K> 
CST=CST+UK 
KP=NITCK> 

C DELETE NEW THEE N0DE FR0M AtlHAY IT. 
c 

c 

UI1K>=UI<NITP> 
NITCK>=NITCNITP> 
JI<K>=JI<NITP> 
NITP=NITP-1 

500 Ir <NITP.NE.O> G0 T0 200 

C INHEN ALL N0DES ARE IN THEE. QUIT. 
c 

RFTUHN 
END 

Remark on Algorithm 422 [H] 
Minimal Spanning Tree [V.K.M. Whitney, Comm. 
ACM 15 (Apr. 1972), 273-4] 

B.W. Kernighan [Recd. 23 June 1972] Bell Telephone 
Laboratories, Incorporated, Murray Hill, New Jersey 

An integer-arithmetic version of Algorithm 422 has been tested 
on the Honeywell 6070 using the Fortran A compiler, on several 
graphs. The algorithm produced correct results in all cases. 

Algorithm 422 computes the minimal spanning tree by suc
cessively adding the nearest remaining node to a partially formed 
tree until all nodes of the graph are included in the tree. This pro
cedure, which the author attributes to Dijkstra [1], was in fact in
dependently developed by R.C. Prim [2], two years earlier. 

References 
1. Dijkstra, E.W. A note on two problems in connection with 
graphs. Numerische Math. I, 5 (Oct. 1959), 269-271. . 
2. Prim, R.C. Shortest connection networks and some generaliza
tions. Bell Syst. Tech. J. 36 (Nov. 1957), 1389-1401. 

422-P 2- RI 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 423 
Linear Equation Solver [F4] 
Cleve B. Moler (Recd. 1 July 1970 and 1 Dec. 1970) 
Department of Mathematics, The Unliversity of 
Michigan, Ann Arbor, MI 48104 
(This work was supported by the Office of Naval 
Research under contract NR 044-377.) 

Key Words and Phrases: matrix algorithms, linear equations, 
Fortran, paged memory, virtual memory, array processing 

CR Categories: 4.22, 4.32, 5.14 

Description 
These routines are modifications of, and intended as replace

ments for, the corresponding routines in [1]. The modifications in
crease efficiency while retaining accuracy and ease of use. Considera
tion is made of the effect of Fortran array storage conventions and 
oaged dynamic memory allocation schemes. When translated by a 
good Fo11ran compiler, the routines should be competitive with 
programs written directly in machine language. For more details, 
see [2]. 

Both routines must be used to solve a system oflinear equations, 
Ax = b. DECO MP carries out that part of the computation which 
depends only on the matrix A. SOLVE uses these results to obtain 
the solution for any right hand side b. 

References 
1. Forsythe, G.E., and Moler, C.B. Computer Solution ofLinear 
Algebraic Systems. Prentice-Hall, Englewood Cliffs, N.J., 1967. 
2. Moler, Cleve B. Matrix computations with Fortran and paging. 
Comm. ACM 15 (Apr. 1972), 268-270. 

Algorithm 

c 

SUBROUTINE i.lECOMP(tl, NiJl11, A, IP) 
REAL ACNDIM,NUIM), T 
I NT EGER I P(NDl:1) 

C MATRIX TRIANGULAHIZATIOtJ OY GAUSSIAN ELIMINATIOfJ. 
C ltlPUT .. 
C N • Ol'WER OF 11ATRI x~ 
C NDl11 • OECLAREtl OlllENS IOtl OF ARRAY A , 
C A • 11ATRI X TO flE TIU ANGULAR I LED. 
C OUTPUT,. 
C A(l,J), l.LE.J • UPPEil TiUANGULAR FACTOR, U. 
C A(l,J), l.GT.J • llULTIPLIERS • LOilER TRIANGULAfl 
C FACTOR, 1-L • 
C IP(K), K.LT.N •INDEX OF K-Ttl PIVOT ROii, 
C IP(N) • C-l)••(NUMBER OF INTERCHANGES) OR 0 • 
C USE 'SOLVE' TO OBTAIN SOLUTION OF LINEAR SYSTHI. 
C L)ETERl1(A) • IP(N)•A(l,l)•A(:.!,2)• ••• •ACt!,rl), 
C IF IP(N)•O, A IS SINGULAR, SOLVE ttlLL DIVIDE GY ZERO. 
C INTERCllANGES FINl!>llED IN U, ONLY PArtTLY IN L. 
c 

I P(N) • 1 
DO 6 K • 1, tl 

IFCK.EQ,N) GO TO 5 
KPl • K+l 
t1 • K 
00 1 I • KPl,rl 

c 

IF(ABS(A(l,K)).GT.ABS(AC:i,K))) 11 =I 
CONTINUE 
I P(K) • 'I 
IFCl1.NE.K) IP(N) = -IP(N) 
T = A(fl,K) 
A(l·l,K) = ACK,K) 
ACK,K) = T 
IF(T.EQ,O.) GO TO 5 
DO 2 I • KPl, N 

ACl,K) = -ACl,K)/T 
00 4 J • KPl,N 

T • A(t.l,J) 
A(1~1,J) • A(K,JJ 
ACK,J) • T 
IF ( T, EQ. 0.) GO TO 4 
l>O 3 I • KPl,N 

A(l,J) = A(l,J) + ACl,K)•T 
CONTINUE 
I FCACK,K). Ell. O.) I P(ll) = 0 

CONTINUE 
RETURN 
END 

SUBROUTINE SOLVECN, tDH1, A, B, IP) 
REAL ACtiUl<l,llUl:1) ,iJ(fWli1), T 
INTEGER IP(Ni.llt:) 

C SOLUT I OtJ OF LI r~EAI! SY!;T Erl, A• X ..; • 
C INPUT •• 
C N = ORiJElt UF liATRI X. 
C IJUlt1 = LJECLAREiJ UL1W.>IOtJ dF AR!!AY A • 

423-P 1- 0 

C A• TRIAtlGULAHIZEll t1ATnlX Ol.ITAltlEU FRUI~ 'uECUi1P'. 
C U = JU GHT llArJU S ll.JE VECTJI~. 
C IP• PIVOT VECT:rn OllTAltJED FROM 'DECO!IP 1 • 

C JO NOT USE IF lJECUilP HAS SET IP( NJ=O. 
C UUTPUT •• 
C LI • SOLUTION VECTOR, X • 
c 

lF(N.EQ.l) GO TO 9 
Nl11 • N-1 
iJO 7 K • l,N:\l 

KPl = K+l 
i1 = I P(K) 
T • llC:IJ 
13 (fl) = J (Kl 
B(K) • T 
UO 7 I = K Pl, N 

7 ll(I) = iJCIJ + ACl,K)•T 
00 8 KB = l,11111 

l(fll = N-Kn 
K • Kiil+ 1 
ll(K) • S(K)/A(K,K) 
T • -U(K) 
UO ll I = l,Ki-11 

d(I) = il(I) + A(l,Kl*T 
l.1(1) = Ll(l)/A(l,l) 
i!ETURN 
ENO 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 424 

Clenshaw-Curtis 
Quadrature [D-1] 
W. Morven Gentleman (Recd. 5 Oct. 1970 and 
13 Aug. 1971) 
University of Waterloo, Waterloo, Ontario, Canada 

Key Words and Phrases: quadrature, Chebyshev series, cosine 
transform, fast Fourier transform 

CR Categories: 5.1 

Description 
Clenshaw-Curtis quadrature is one of the most effective auto

matic quadrature schemes available, particularly for integrands with 
some continuous derivatives. It can also be used for any piecewise 
continuous integrand, although it is not recommended for inte
grands with discontinuities. 

The automatic scheme ( l] consists of evaluating the N + 1 point 
Clenshaw-Curtis quadrature formula, together with some error 
estimate, for a sequence of N's until the estimated absolute error 
E"'STERR is less than the product of the tolerated relative error 
TOLERR and the absolute value of the current estimate of the 
integral, or until the permitted number of function evaluations 
would be exceeded. The function subprogram CCQUAD uses the 
sequence N = 6, 18, ... , 2*3**M. The error estimate used is the 
absolute difference between the integral estimates for the current and 
preceding choices of N. Other error estimates exist [1) although they 
are not as reliable, and the cosine transform CSXFRM(l), ... , 
CSXFRM( USED) is returned so they can be computed if desired. 
The N + 1 point Clenshaw-Curtis quadrature formula shifts the 
interval (A, B) to the interval (-1, 1), then integrates the poly
nomial which interpolates the integrand F at the Chebyshev points 
cos(1T's/ N), s = 0, 1, ... , N. Because the cosine transform is an 
explicit representation of this polynomial, an approximation to the 
indefinite integral of the integrand in the interval can be obtained 
from the indefinite integral of this polynomial, which is another 
reason why the cosine transform is returned. 

Earlier implementations of this quadrature scheme [e.g. 4) 
computed the cosine transform by a recursive method which was 
slow and suffered from rounding error, but CCQUAD uses a variant 

424-P 1- 0 

of the fast Fourier transform [2, 3] and is very fast and very resistant 
to rounding errors. Timings on several machines indicate that the 
total cost of the quadrature can be well described as the cost of 
computing two sines and two cosines for each integrand value used, 
plus, of course, the cost of computing the integrand values them
selves. The variant of the FFT used obtains all sines and cosines as 
required, and does not build tables or march recurrance relations. 
Using a separate subroutine (RJPASS) to perform the passes of the 
FFT on interleaved subsequences of the original sequence is a device 
introduced by G. Sande to force compilers for many machines to 
generate optimal code for the FFT. 

There is no requirement in the subprogram CCQUAD that A 
be less than B. There is also no requirement that TOLERR be posi
tive: if it is not, the maximum permitted number of integrand values 
will be used. The stopping rule always depends on relative error: if 
this is meaningless because the true integral vanishes, the maximum 
permitted number of integrand values will be used. Because the 
number of nested DO loops used to generate integrand values in digit 
reversed order is fixed at eight, the maximum number of integrand 
values permitted is the smaller of L/Mff and 2*3**9 + 1 = 39367. 
This should be ample but the restriction iis easily changed. 

Throughout the subprogram CCQUAD various statements 
appear with a C in column 1. If these comments are replaced by the 
statements themselves, intermediate results are written on unit 
number 6, enabling one to follow the decision process of the scheme. 
This can be very instructive in understanding the way the scheme 
works. 

References 
1. Gentleman, W.M. Implementing Cl1enshaw-Curtis quadrature, 
I Methodology and experience. Comm. ACM 15 (May 1972), 
337-342. 
2. Gentleman, W.M. Implementing Clenshaw-Curtis quadrature, 
II Computing the cosine transformation Comm. ACM 15 
(May 1972) 343-346. 
3. Gentleman, W.M., and Sande, G. Fast Fourier transforms-for 
fun and profit. Proc. AFIPS 1966 FJCC, Vol. 29, Spartan Books, 
New York, pp. 563-578. 
4. Hopgood, F.R.A., and Litherland, C. Algorithm 279, 
Chebyshev quadrature. Comm. ACM 9 (1966), 270. 

Algorithm 

c 

HEAL FUNCTIO~ CCQOAC (F,A,B,TCLERR,LIMIT,ESTfRR,USED, 
CSX fRll) 

C INPUT ARGUllENTS-
REAL F,A,B,TOLF.Pn 
INTEGER LillI'!' 

C OUTPUT ARGUMFNTS-

c 

R EAL F.STERR,CSXFR~(LIMIT) 

INTEGER USED 

C USING CLENSHAW-CURTIS QUADRATURE, THIS FUNCTION SUB-
C PROGRAM ATTEMPTS '!'O I~TEGRATE TllE FUNC'l'TON P FROM A 'l'O B 
C TO AT LEAST THE R~OUESTEt RELATIVE ACCU~ACY TOL~RP, WHILE 
C USING NO ~CR! T~'~ LIMI~ FUNCTION FVALUATJONS, IF THIS 
C CAN BE DONE, CCQUAD P!TURNS THE VALUE OF THE INTEGRAL, 
C ESTERR RETURNS AN ESTIMATE OF THE ABSOLUTE PRROR ACTUALLY 
C COMMITTED, USFD ~PTUNNS TllF. NUMllEP OF FUNCTION VALUES 
C ACTUALLY USF.C, A~U CSXFRM(1) ,, , • ,CSXFRM(USFO) CONTAINS 
C N=USE0-1 TIMES THE DISCRETE COSINE TRANSFORM, AS USUALLY 
C OF.FINED, OF THE INTEGRAND IN THE INTERVAL. IF THE 
C RF.QUEST!D ACCOPl\CY CANNOT BB AT•AINED WITH THF. NUMBER OF 
C FUNCTION EVALUATIOSS PPRMTTTF.C, THE LAST (AND PRESUMABLY 
C BEST) ANSWF.R OBTAINPD IS RETORN!D. 
c 

~EAL PI,9'!'3,C~NTP~,WIDTll,SHIFT,FUND,ANGLE,C,S 
RF.AL CLnINT,~!WJNT 

R!AL T1,T2,T1,T4,T5,Tfi,T7,T8,T9,T10,T11,T12 



COLLECTED ALGORITHMS (cont.) 

C INSERT THE FrLLO~lNG STATEMENT TO TRACE PROGRAM FLOW 
C RSAL SCLIN'I,SCLFRR 

c 
c 

INTEGER N,N2,Nl,N LESS 1,N LESS 3,MAX,M MAX,J,STFP 
INTEG~R L(8),L1,I2,Ll,L4,L5,l6,L7,l8 
INTEG~R J1,J2,Jl,J4,J5,J6,J7,J8,J REV 
ro u Iv ALF N CE < L < 1 > , L 1 > , < L < 2) , L 2) , ( L < 3 > , L 3 > , < L < 4 > , L 4) , 

(L (5) ,LS) I (L (Ii) I L6) I (L (7) I l.7) I (L (8) I LS) I (Jfl,J REV) 
DATA PI,RT3/ l.141592653589EO, 1.7l2050807568EO / 
DA'IA M MAX/ 9 I 

C INITIALIZATION 

c 
c 

C~NTRE=(A+B)*.5F0 

WID'T'H= (B-A) *. 5EC 
MAX=MINO(LIMIT,2*3**(M MAX+1)) 
DO 10 J=1,M '11'1X 

L (J) = 1 
10 CCNTINUE 

C COSINE TRANSPORM 
C CCMPUTE DOUOLF 'T'HE COSINE TRANSFOPM WITH N=6 

N=6 
C SAMPLE FUNCTION 

CSXFR'1(1)=F(A) 
CSX!'R'I (7) =F ('3) 
SHIFT=WICTH*RT3*.SEO 
CSXFR"l(2)=F(CENTR~-SHIFT) 

CSXFRM(fi)=F(CENTRE+SHIFT) 
SHIFT= WIDTH*. S'!:0 
CSXFRM(3)=F(CENTRE-SHIFn 
CSXl'RM(5)=F(CENT~~+SHIFT) 
CSXFRM(l.l)=F(C~NTFE) 

C EVALUA'IE TH3 FACTORFD N=6 COSINE TR~NSFORM 
T1=CSXFRM (1) +CSX FRM (7) 
'I2=CSXFRM (1) -CSXFRM (7) 
T3=2.EO*CSXF~"l(4) 
'11.i=CSXFR'l (2) +CSXFflM (Ii) 
T5= (CSXFRM (2) -CSXF:n1 (6)) *RT3 
T6=CSXFR"I (3) +CSXFR"I (S) 
T7=CSXFRM(3)-CSXFRM(S) 
T8=T1+2.EO*T6 
'I9=2.1>,0•T4+T) 
T10,,,T2+T7 
'I11~T1-T6 
T12,,,T4-T3 
CSXFRM (1) =T8+".'CI 
CSXPRM(2)=T10+T5 
CSXPRM(3)=T11+T12 
CSXFRM(~)=T2-?..FO*T7 
CSXFRM(S)=T11-T12 
CSXFRM(n)=T10-T5 
CSXFRM (7) =TA-'l''J 
USED=7 

C GO TO INTEG~AL COMPUT~TION, BUT FIRST COMPUTE INTEGRAL FOR 
C N=2 

c 
c 

GO TO 2·~') 

C COMPUTE REFINED APPROXIMATION 
c SAMPLE FUNCrio~ AT TN?EOMEDIATE PCINTS IN DIGIT REVERSFD 
c ORDER. AS THE SEOUENCP. rs GENERATED, COMPUTE THE FIRST 
C (RADIX POUR TRANSFOrM) PASS OF THE FAST FOURIER TRANSFORM 

100 DO 11') J=2,M MAX 
L (J-1) =L (J) 

110 CONTINUE 
L(M MAX)=3*L(M MAX-1) 
J=USED 
FUNO=PI/FLOAT(3*N) 
DO 120 J1=1,L1,1 

DO 120 J2=Jl,L2,L1 
DO 120 J3=J2,L3,L2 

120 CONTINUE 

DO 120 J~=J3,L4,L3 
DO 120 J5=J4,L5,Ll.I 

no 120 J6=J5,L6,L5 
DO 120 J7=J6,L7,L6 

DO 120 JA=J7,L8,L7 
ANGLE=FUND*PLOAT(1•J REV-2) 
SHIFT=WIDTH*COS(ANGLE) 
T1=F(CENTRE-SHIFT) 
T3=F(CENTRE+SHIFT) 
SHIFT=WIDTH*SIN(ANGLE) 
T2=F(CE~TRE+SHIFT) 
Tl.l=F(CENTRE-SHIFT) 
T5=T1+T3 
T6=T2+T4 
CSXFRM(J+1)=T5+T6 
CSXFRM(J+2)=T1-T3 
CSXFRM(J+3)=TS-T6 
CSXFRM(J+4)=T2-T4 
J.=J+4 

C DO RADIX 3 PASSES OF FAS, FOURIER TRANSFORM 
N2=2*N 

c 

STEP,=4 
150 J1=USED+STEP 

J2=USED+2*STEP 
CALL R3PASS 1N2,SIEP,N2-2*STEP,CSXFRM(USED+1), 

CSXFRM (.Jl +1), CSXFRM (J2+ 1)) 
SrEP,.3•ST-O:P 
H' (STEP • LT. N) GO TO 150 

C COMBINE RESULTS 

c FIRST no J=O AND J=N 
T1=CSXFRM (1) 
'I2=CSXFJM(USED+1) 
CSXFRM ( 1) =Tl +2. EO*T2 
CSXFRM(USED+1)=T1-T2 
T1=CSXFRM (N+l) 
T2=CSXFRM (N2n) 
CSXFRM(N+1)=Tl+T2 
CSXFRM(~2+2)=~1-2.E~•~2 

c NOW DO REMAINING VAtu~s CF J 
N3=3*N 
N LESS l=N-1. 
DO 180 J=l,N LP.SS 1 

J 1=N+,l 
J2=N3-J 
ANGLE=FUND*FLO~T(J) 

C=COS (A Nr: L':) 
S=SU (ANr.L~) 
T1=C*CSXF~M(J1+2)-S*CSXFRM(J2+2) 

424-P 2-

T2= (S*CSXFnM (J 1+?) +C*CSXFRM (.J2+2)) *R'l" 3 
CSXFRM (J1+2) =CSXJ'RM (.1+1) -T1-T2 
CSXFHM(J2+2)=CSXFR~(J+1)-T1+T2 
CSXFRM (J+1) =CSXFRM (J+1) +2. "0•T1 

180 CONTINUE 
C NOW UNSCRAMBLE 

T1=CSXF'1M (N2+1) 
T2=CSXFRM (N2+:>) 
DO 190 J=l,N LPSS 

J1=USF.D+J 
J2=N2+J 
CSXFHM(J2)=CSXFR~(J1) 

CSXPRM(J1)=CSX•RM(J2•2) 
190 CCN'T'INCTE 

CSXFRl'I (NJ) =T1 
CSXPRM(N3+1)=T2 
N=N3 
USFD=N+1 

C GO TO INTEGRAL COMPUTATTCN 
GO TO 210 

c 
c 
C INT"~RAL RVALUATION 
C INTEGRAL ESTI~ATES ARL NOT SCALED RY WIDTH*N/~ 
C UNTIL F!JNCTTCN CC\,l!JAD 'GfTUPNS. 
c 
C WHEN '1=6,P.VAlllATE IN'T'":G'IAL 1'CP N=/ 

200 OLDINT=('I1+2.~0*Tl);l.F~ 
c 
c 
C EVALUATE NEW ESTIMATE OF INTEGRAL 

c 
c 

210 N LESS J=N-3 
NEWTNT=.5EO*CSXF~M(!JSEr)/PLOAT(1-N••2) 

DO 220 J=1,N L~SS 3,2 
J REV=N-J 
NEWINT=NSWTN~+CSX•R~(J ?EV)/FLOAT(J REV*(2-J REV)) 

220 CCNTINUS 
NEWINT=N!WTNr+.SP~*CSXFRM(1) 

C TF.S T IF DON .S 
C TEST IF FSlIMATED ERPC'I ADEQ!JPTE 

ESTE~R=AES(OLDINT*J.Fn-"IEWINT) 

0 

C INSERT THE FOLLOWING FOUR STATE~ENTS TO TRACE PROGRAM FLCW 
C SCLINT=WinTH*N~WINT;FlOAT(~/2) 

C SCLERR=WIDT!l*(OLnINT*3.E0-NEWINT)/FLOAT(N/2) 
C WRITE (fi,900) t;,SCL:'.:NT,SCLEi?R 
C 900 FOR'lAT (31! N=,!S,2311 INTEGRAL ES~IMATEC AS ,E15.B, 
C 7H ERROR ,~1~.8) 

IF (ABS (NEWI'IT) *TCL!':Rfl .GE. ESTERR) GO TO l.lf'IO 
c IF ESTI~ATFn PRRrR TOC LARGE, RFFINE SA~PLING IF PERMITTED 

OLDIN'I=NFWI"IT 

c 
c 
c 
c 

IF (3*N+1 • LR. "1AX) C.O 'M 100 
IF REFINEMENT Nor PFPMITTFC, OR IF ESTIMATED ERROR 
SATISFACTORY, RP.SCALF ANSWERS ANC RETURN 
INSERT THE FCLLOWING ~wn STATEMENTS TO TRACE PROGRA"1 PLOW 

WRITP. (li,Cl1G) 
c 910 

400 
FORMAT (2SH REFINFMFNT NOT PElHHT'!'ETl) 
CCOUAD=WIDTH•NBWIKT/FLOAT(N/2) 
FSTF.RR=WIDTH*ESTF~R;FLO~T(N/2) 

c 
c 
c 
c 

R-O:TURN 
END 

SUBROUTINE PJPA~S (N2,M,LEMGTH,X0,X1,X2] 
C RADIX 3 PASS FO~ FAS, FOURIER TPhNSFORM OF REAL SEQU~NCE 

C OF LENGTH N2 
INTEGER N2,M,LFNG!H 
REAL X0(LENGTH),x1 (lENGTH) I X2 (LENGTH) 

C THE NOTATION OF REF!R~NCFS 2 AND 3 JS USED IN THIS 
C SUBFOUTINE. 
C M IS THE LENGTH OF ~11~ TRANSFORM ALREADY ACCOMPLISHED, 
C I.E. THE NUMEFR OF DISTINCT VALU!S 01' TH! FREQUFNCY INDEX 
C·C HAT OF THES~ TRANSFORMS, AND THE SPACING OF THE 
C SEQUENCES TO BE TRANSFORMED. EXPLICIT USE IS MADE OF THE 
c FACT THAT M rs EVEN ANr. NOT LESS THAN FOUR. 

INTEGER HALF M,M1,K,KO,K1,J,J0,J1 
Rl>,AL TWOPI,!IAF~Tl,FSUM,RDIFF,PSUM2,ISUM,IDIFF,IDIFF2 
REAL FUNC,AN~L~,c1,s1,c2,s2,RO,R1,R2,JO,I1,T2 
DATA TWOPI, HAFFT3/ 6.283185107E", .866025403EO I 
HALF l'l=(M-1)/2 
M 3-=l'I• 3 
FQNO=TWOPl/FLOAT(~3) 



COLLECTED ALGORITHMS (cont.) 

C DO ALL TRANSF0~'15 FOR C HAT=O, I.E. TWinDLE FACTOR UNITY 
DO 10 K=1,N2,M1 

F5Ul'I= (X 1 (K) +X 2 (K)) 
ROI FF= (X 1 (K) -X2 (K)) *HHRT1 
X 1 (K) =XO (K) -r«;IHI*. 'iE0 
X2 (K) =PDP'F 
xr (K) =XC (K) +fSU'I 

10 CONTINUE 
C DO ALL TRANSFORMS POP C HAT=CAP C/2, I.E. TWIDDLE FACTOR 
c ! (P./I)) 

J=Pl/2+ 1 
DO 20 K=J, N2,.., 1 

RSUI'!= (X1 (K) +X2 (K)) •HHRT3 
FDIFP= (X1 (K) -X2 (K)) 
X 1 (K) =XO (K) -RDifF 
X2 (K) -=F5U'I 
XO(K)=XO(K) +l!DIPF*.'>Eu 

20 CONTINUF 
C DO ALL TFAN5FOP'I~ fOF RE~AINING VALIJ!S OP C HAT. ORSERVE 
C THAT C HAT ANO CAP C-C HAT ~UST BF PAIRFD 
C CHCOSE A FRECUF.NCY lNrEX 

DO 40 J=1,HALF Pl 
JO=J+1 
J1=1'!-J+1 

c COMPUTE THE T~IrnLE F~c~c~ 

AN;.Lf=FUN9*FLCAT(J) 
Cl-=COS (ANGL"'.) 
51-=SB (ANr.Lc) 
C2-=C1••2-S1••2 

52=2. !'"*S 1*C 1 
C CHOOSE THP. ~~PL!C~TTCN 

DO 10 KO=J0,N2,M1 
K1=K0-.l''+J1 

C 00,AIN TWICnLED VALU~S 
RO=XO (K") 
I"=XO (K 1) 
R1=C1•X1 (K()-51•X1(K1) 
I 1=S1•X1 (K") +C1•X 1fK1) 
R2=C2•0 (Kfi) -s2•x2(K1) 
J2=s2•x2 (Kr) +c2•x2(!<1) 

C CCPIPUTE TRANSPO~'IS ,.D ?!TURN I~ PLACE 
RSIJl'I=!' 1 + P2 
IlDIFF'=(R1-:?2) •HAF~'l'1 
RSU..,2=PJ-,5S0•RSU'I 
ISUl'l=I1+I2 
In I FF'= ( I 1- I 2 I • 11 Ar rT 1 
IDTFP2·r~-.~rr•ISUM 

x" I K ('I • ~()+fl:, IJ 'I 
X n I K 1 ) • R S TJ M 2 + ID IF F 
X1 (K)) =RSU'l2-IC:HF 
X1(K1)=1DTPF+!nIFF2 
X2 (KO) =RU!FF-Ir.IFF2 
X 2 ( K 1 ) • I ') + ! ~; U M 

10 CG NT I NU!' 
110 CONTINUE 

ll~TIJRN 

END 

424-P 3-R2 

Remark on Algorithm 424 [D l] 
Clenshaw-Curtis Quadrature [W.M.Gentleman, Comm. 
ACM 15 (May 1972), 353-355.J 

As published, this algorithm will not execute correctly under 
some compilers (e.g. Fortran V in the Univac 1108). One minor 
change is sufficient for proper operation: replace the variable J REV 
by the index J8 inside the DO 120 loop. 

Albert J. Good lRccd. 19 December 1972] Systems, 
Science and Software, La Jolla, CA 92037 

The appearance of J REV and JS in a:n EQUIVALENCE state
ment is not meaningful since the memory location associated with 
a DO loop index does not always contain the current value of the 
index (this depends on the compiler). 

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 240. 

REMARK ON ALGORITHM 424 

Clenshaw-Curtis Quadrature [01] 
[W.M. Gentleman, Comm. ACM 15, 5 (May 1972), 353-355] 

K.O. Geddes [Recd 1 February 1978 and 17 April 1978] 
Department of Computer Science, University of Waterloo, Waterloo, Ont., Can
ada N2L 3Gl 

This algorithm may be used to compute the Chebyshev series coefficients for a 
function F which is continuous on the interval [-1, 1], as noted in [1]. For this 
purpose, function CCQUAD would be called with A = -1, B = 1, and appropriate 
values of TOLERR and LIMIT. (For some applications, one would prefer instead 
to state the number of Chebyshev series coefficients desired.) The comments in 
function CCQUAD indicate that the array CSXFRM contains, on return, N = 
USED - 1 times the discrete cosine transform of F. Therefore, the values 

CSXFRM(K)/N, 1 $ K $NUMBER, 

for some NUMBER $ USED, should be estirpates for the first NUMBER 
Chebyshev series coefficients of F. 

However, the published code produces an array CSXFRM with an incorrect 
sign on each value CSXFRM(K) for K even (i.e. the odd Chebyshev :series 
coefficients will all have incorrect signs). This error does not affect the vallue of 
the definite integral computed by the algorithm because only the even terms in 
the Chebyshev series enter into- the computation of the definite integral. The 
error does, however, affect the stated claim that "because the cosine transform is 
an explicit representation . . . , an approximation to the indefinite integral .... can 
be obtained from the indefinite integral [of the truncated Chebyshev series]." 
The error can be corrected as follows. 



COLLECTED ALGORITHMS (cont.) 

Change the eighth and ninth executable statements 

CSXFRM(l) = F(A) fo CSXFRM(l) = F(B) 
CSXFRM(7) = F(B) to CSXFRM(7) = F(A) 

Change the statements one and four lines below this 

SHIFT= WIDTH•RT3•.5EO to SHIFT= -WIDTH•RT3•.5EO 
SHIFT = WIDTH •.5EO to SHIFT = -WIDTH •.5EO 

Change the second. and fifth statements following the eight nested "DO 120" 
statements 

SHIFT = WIDTH •COS(ANGLE) 
SHIFT= WIDTH•SIN(ANGLE) 

REFERENCES 

to SHIFT= -WIDTH•COS(ANGLE) 
to SHIFT= -WIDTH•SIN(ANGLE) 

1. GEDDES, K.O. Near-minimax polynomial approximation in an elliptical region. SIAM J. Numer. 
Anal. 15 (1978), 1225-1233. 

424-P 4-0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 425 

Generation of Random Cor
related Normal Variables [GS] 
Rex L. Hurst 
Applied Statistics-Computer Science, Utah State 
University, Logan, UT 84321 
and 
Robert E. Knop* [Recd. 12 March 1970, 23 March 1971, 
and 9 Nov. 1971] 
Department of Physics, Florida State University, 
Tallahassee, FL 32306 

Key Words and Phrases: random number, normal density, 
normal distribution, Gaussian density, Gaussian distribution, 
simulation, Monte Carlo 

CR Categories: 5.5 

Description 
We have programmed and made timing comparisons for two 

algorithms which sample the multivariate normal density 

N(µ., V) = I v-1 //(2rr)n 12 ·exp(- 1/2( y - µ) T v--1(Y - µ.)) (1) 

where V is an n X n covariance matrix, µ is an n component vector 
of means, and Y is an n component random vector [ 1]. 

The first algorithm proceeds by rotating coordinates to a system 
in which the covariance matrix is diagonal. In this system the multi
variate normal density becomes equal to the product of its marginal 
densities, and each marginal density can be sampled independently 
of the others. After obtaining a sample vector in this rotated system, 
the coordinates are rotated back to the original system. In the 
fo11owing discussion this will be referred to as the matrix diagonali
zation algorithm [l]. 

The second algorithm proceeds by decomposing the multi
variate normal density into the product of the marginal density of 
the first variate times the joint density of the remaining variates, 
conditional upon the value sampled for the first. This joint density is 
determined once the first variate has been sampled from its marginal 
density. The procedure is then applied to the second variate and 
iterated until values have been assigned to all components of the 
sample vector. In the following discussion this will be referred to as 
the conditional decomposition algorithm [1]. 

Both algorithms require that the covariance matrix be positive 
definite, and that it modify the argument JENT to indicate if this 
condition was not satisfied. Both algorithms perform extensive cal
culations on the covariance matrix the first time it is used. Subse
quent sample vectors with the same covariance matrix bypass these 
calculations with considerable savings in execution time. Tests with 
eight variables produced the following execution times on an IBM 
360/44: 

*This work was supported in part by the United States Atomic 
Energy Commission. 

425-P 1- 0 

1 Matrix 1 Matrix 200 Matrices 
500 1000 1 
Observations Observations Observation 

Matrix 37 sec 72 sec 143 sec 
diagonalization 

Conditional 35 sec 68 sec 14 sec 
decomposition 

We note that the conditional decomposition algorithm executes 
more rapidly in all cases. 

Matrix Diagonalization. Suppose we define A to be the desired 
correlation structure; A can always be represented as BI Br. We 
know the characteristic values Ai of A are defined as the roots of the 
characteristic equation 

I A - A;/ I = 0. (2) 

The characteristic vector is a vector not identically zero satisfy
ing, for characteristic value Ai 

(A - A;/)Xi = 0. (3) 

If A is symmetric, all roots diff enmt, and Xi are normalized, 
then 

X/Xi = Oii 

where o ii is the Kronecker delta. Let C be the matrix of characteris
tic vectors and D be a diagonal matrix of the characteristic roots: 

C =[Xi, X2 · · ·] 

D-[~' ~ ···] (5) 

Then 

Cr C = I and C Cr = I. (6) 

The matrix C is thus orthogonal [2]. 
For an orthogonal matrix C and a symmetrix matrix A 

CT A c = D and A = c D er, (7) 

therefore 

A = c Di I Dli CT' (8) 

and we see that the matrix required to transform a set of independent 
normal variates to a new set with correlation matrix A is B = C Di. 

If A is distributed according to N(O, A) (cf. (1)) and we define: 

[
ql () ·' '] [µ.1'] 

S = ~ u2 and µ = 72_ 

then (S Z + µ) is distributed according to N(µ., 2:) where 2: is the 
variance-covariance matrix. To save computational time the matrix 
B may be defined 

B = SC D~ (10) 

Subroutine RANVR receives a correlation matrix A, a vector of 
desired standard deviations SD, a positive definite test variable 
JENT, an argument for a random number generator IARG, variables 
for defining the order of A (NV) and the order of the arrays used 
NI, and work arrays X, Y, andZ. Z is the return array. Upon return 
the diagonal of A contains the roots and the columns of X 
the vectors. 

It requires a subroutine for computing characteristic values and 
vectors for real symmetric matrices [3-7], a subroutine for generat-



COLLECTED ALGORITHMS (cont.) 

ing random normal deviates [8-12] which in turn requir~s a sub
routine for generating random uniform numbers [13, 14] ... We use a 
modification of Seraphin [14], which allows the gen~ration of 
different sequences by modifying an entry argument. 

Calling sequence (BZ desired means) 

/ENT= -1 

CALLRANVR(A, X, Y,Z, SD, NV, NI, /ENT, IARG) 
IF (IENT·LE·O) GO TO 5 
DO 41 = 1, NV 

4 Z(/) = Z(I) + BZ(I) 

5 Error handling if not positive definite. 

Conditional Decomposition. To achieve tht! conditional decom
position of the multivariate normal density N(O, V), we begin by 
partitioning the covariance matrix into the scalar v11 , the 
1 X (n - I) and (n - 1) X 1 vectors V12 and V21 , and the (n -
1) X (n -· 1) matrix Vz2 : 

V = ( Vn 
Vii 

The inverse covariance matrix we represent as: 

From V v-1 = I we obtain the following relations: 

1/vu = ru + R12R"22
1
R21, 

R22 = (Vz2 - V12 Vzi/v11)-1. 

(11) 

(12) 

(13) 

The quadratic form of the multivariate normal density N(O, V) can 
be written as: 

(14) 

Multiplying this out results in 

YTV-1Y =: Y1r11Y1 + (Y2TR22Y2 + Y2TR21Y1 -t- Y1R12Y2). (15) 

Performing the matrix analog of completing the square on the term 
involving Y2 allows this to be written as 

YTV-1Y = Y1(r11 - R12R22
1
R21)Y1 

+ ( Y2 - (RZ.} R21Y1) T Rd Y2 - R22
1 
R21Y1). 

Substituting from (13) we obtain 

YTV-1 Y = Y12/v11 + ( Y2 - V21yi/v11) T(V22 - V21V12/v11)-1 

(Y2 - V21yi/v11). 

(16) 

(17) 

Thus the multivariate normal density N(O, V) can be separated into 
the marginal density N(O, vu) of the variate y, times the joint den
sity 

(18) 

of the vector Y2 conditional upon Yi . This procedure is then re
peated until every component of the random vector Y has been 
assigned a value. 

Subroutine RNVR receives a covariance matrix A, a positive 
definite test variable /ENT, an argument for a random number 
generator IARG, variables defining the order of A(NV) and the 
order of the arrays used NI, and work arrays X, B, C. Xis the return 
array. 

It requires a subroutine for generating random normal deviates 
which requires a subroutine for generating random uniform 
numbers. 

Calling Sequence 

/ENT= -1 

(BZ desired means) 

425--P 2- 0 

CALL RNVR (Z, A, Y, C, NV, NI, JENT, IARG) 
IF (IENT.LE.O) GO TO 5 
DO 41 = 1, NV 

4 Z(/) = Z(/) + BZ(I) 

5 Error handling if not positive definite. 

References 
1. Anderson, T.W. An /11troductio11 to Multivariate Statistical 
Analysis. Wiley, New York, 1958, p. 26. 
2. Searle, S.R. Matrix Algebra/or the Biological Sciences. 
Wiley, New York, 1966, p. 188. 
3. Evans, Thomas G. Algorithm 85, Jacobi. Comm. ACM 5 
(Apr. 1962), 208. 
4. Hillmore, J.S. Certification of Algorithm 85, Jacobi. 
Comm. ACM 5 (Aug. 1962), 440. 
5. Naur, P. Certification of Algorithm 85, Jacobi. Comm. 
ACM 6 (Aug. 1963), 447-448. 
6. Greenstadt, John. The determination of the characteristic 
roots of a matrix by the Jacobi method. In Mathematical Methods 
for Digital Computers, A. Ralston and H.S. Wilf (Eds.), Wiley, 
New York, 1967, pp. 84-91. 
7. Stewart, G.W. Algorithm 384, Eigenvalues and eigenvectors 
of a real symmetric matrix. Comm. ACM 13 (June 1970), 369-371. 
8. Box, G., and Muller, M. A note on the generation of normal 
deviates. Ann. Math. Stat. 28 (1958), 610. 
9. Marsaglia, G. Expressing a random variable in terms of 
uniform random variables. Ana. Math. Stat. 32 (1961), 894-898. 
10. Knuth, Donald E. The Art of Computer Programming, Vol. 2, 
Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 1968. 
11. Bell, James R. Algorithm 334, Random normal deviates. 
Comm. ACM 11 (July 1968), 498. 
12. Knop, R. Remark on Algorithm 334, Random normal 
deviates. Comm. ACM 12 (May 1969), 281. 
13. Strome, W. Murray. Algorithm 294, Uniform random. 
Comm. ACM 10 (Jan. 1967), 40. 
14. Seraphin, Dominic S. A fast random number generator for 
IBM 360. Comm. ACM 12 (Dec. 1969), 695. 

Algorithm 
SUBR0UTINE RNVR<X.A.e.c.Nv. NI. I ENT. IARG) 

C GENERATES A RAND0M N0t!MAL VECT0R <H1S> 
C A INPUT C0\IAR1ANCE MATRIX, C0ND!Tl0NAL M0MENTS HlTUKN 
c z,y,c. W0RI< ARRAYS. RETUKN VEC10t! 0F t!AND0M N0HMAL VAH!ABLES IN l 
C NV1Nl 0t!DEt! 0F C0VAH1ANCE MATK!X. 0RDEk 0F At!l<AY 
C !ENT -I• INITIAL ENTRY 
C O= RETURN IF N0T P0SlTlVE DEl'lNlTE 
C I= riETUKN 11' f'0SITIVE DEFINITE 
C lARG ARGUMENT F0K t<ANl>0M NUMBEK GENEKAT01< 

DlMENSl0N XCNI >•A<Nl,Nl >.BOU >1CCN! > 
ll'<IENT> 11916 

C ••• CllMPUTE C0ND1 Tl0NAL M0MENTS 
I NA•NV-1 

D0 4 I<= I ,NA 
T•ACl<,I<) 
ll'<T> 10. 10.2 
NB=l<+I 
C<l<>•SQRT<T> 
00 3 ('"NB.NV 

A< l1l<>•A<1<, 1 l/T 
00 4 !•NB.NV 

00 4 J•l1NV 
A< l1J>•A( l,J>-A< l1l<>•ACl<1J> 

IF<A<NV1NV> > 10.10, 5 
5 IENT•I 

C<NV> •SQRT< A<NV• NV>> 
C ••• C0MPUTE A RANDBM VECT0t! 

6 DB 8 l•l•NV 
B< I >•RNBH< lARG>•C< 1 > 
X<l >•B<l > 
1F'<1 • EQ •I> G0 T0 8 
NB•l-1 
D0 7 J•I 1NB 

X< I >•X< l >+A< l1J>•B<J> 
8 C0NT1NUE 
9 RETURN 

10 lENT•O 
RETURN 
END 
FUNCTl0N HN0t!<lt!> 
GENERATES A RAND0M NBRMAl. NUMBEK CQ, I> 
!ARG IS A LARGE 0DD INTEGER F0R A BEGINNING ARGUMENT 



COLLECTED ALGORITHMS (cont.) 

REQUIRES l'UNCTl0N RN WHICH GENERATES A U"l!f'0KM KAND0M NUMBER 0-1 
DATA l/0/ 
II'< I oGT.O>G0 T0 30 

10 X•2.0•RN<lto-1.o 
Y=2.0•RN< H0-1.0 
S=X•X•Y•Y 
!!'CS.GE.Cl .O»G0 T0 10 
S=SQRT C -2 .O•AL0G< S l /S > 
RN0R=X•S 
G02•Y•S 
I= I 
60 T0 "10 

30 RN0R•G02 
I cO 

"10 RETURN 
£ND 

nemark on Algorithm 425 (GS] 
Generation of Random Correlated Normal Variables 
\Rex L. Hurst and Robert E. Knop, Comm. ACM 15 
(May 1972), 355-357] 

R. L. Page [Recd. 3 Oct. 1973] 
Computer Science Program, Colorado State University, 
Fort Collins, CO 80521 

The work array parameters Band C of SUBROUTINE RNVR, 
which may prove cumbersome for some users. may be removed 
by making some minor changes. The removal of C is simple: simply 
change references to CU) to AU. I). (The diagonal of A is presently 
unused once the conditional moments are computed.) 

The vector X can be used in place of B provided its components 
are computed in reverse order. Thus. DO loop 8 (starting at state
ment 6J becomes two separate loops as shown below. 

6 DO 7 I = I. NV 
7 X!I) = RNOR(lARG)*A(I, IJ 

DO 8 I = 2. NY 
NB= NV-1+1 
DO 8 J = I. NB 

8 X1NB+IJ = X(NB+l)+A(NB+l, J)*X(J) 

The revised algorithm was tested on covariance matrices of 
orders two through six. Assuming the algorithm generates sample 
vectors from the zero mean normal distribution with the given co
variance. the difference between the sample covariance and the 
given covariance. divided by the standard error of the covariance 
estimator. would give samples from a standard normal distribution. 
Our test did not contradict this assumption since 37 of 55 of these 
numbers. 67 percent, were in the range - I to 1 (one would expect 
about 68 percent) and 54 of 55, 98 percent, were in the range - 2 
to 2 (one would expect about 95 percent). 

425-P 3- Rl 



COLl.1ECTED ALGORITHMS FROM CACM 

Algorithm 426 

Merge Sort Algorithrn [Ml] 
C. Bron (Recd. 4 Feb. 1970 and IO May 1971) 
Technological University, Eindhoven, The Netherlands 

Key Word!; and Phrases: sort, merge 
CR Categories: S.31 

Description 
Sorting by means of a two-way merge has a reputation of re

quiring a clerically complicated and cumbersome program. This 
ALGOL 60 procedure demonstrates that, using recursion, an ele
gant and efficient algorithm can be designed, the correctness of 
which is easily proved [2]. Sorting 11 objects gives rise to a maximum 
recursion depth of [log2(11 - 1) + 2]. This procedure is particularly 
suitable for sorting when it is not desirable to move the n objects 
physically in store and the sorting criterion is not simple. In that 
case it is reasonable to take the number of compare operations as a 
measure for the speed of the algorithm. When n is an integral power 
of 2, this number will be comprised between (11 )( log211)/2 when the 
objects are sorted to begin with and (n X log211 - /1 + 1) as an upper 
limit. When n is not an integral power of 2, the above formulas are 
approximate. 

It is assumed that each object can in some way be uniquely 
identified by one of the integers from 1 to n. This correspondence 
has to be supplied in the call by replacing hi and lo by two integer 
variables and the Jensen parameter loafterhi by a Boolean expres
sion that yields the value true if the object identified by lo has to 
follow the object identified by hi in the ordered sequences, and 
false otherwise. Let e; be the identifying integer of the ith object in 
the ordered sequence. Upon return from the procedure sort delivers 
the value of e1 and the pointer array pllf will be filled in such a way 
that pnt[ei] = ei+i, 1 ~ i < n, and pnt[en] = 0. Therefore the 
bounds of the actual array supplied for pnt will have to include the 
range (1 :n]. Sorted subsequences that arise during the sorting 
process will have a similar chain structure. 

The essence of the algorithm is to be found in the procedure 
head. It has the duty to form an ordered chain of desired length 
(des/en) from the objects identified by coullt + 1 through count + 
des/en. It does so by introducing a chain of length 1, consisting of 
object count + 1, and then repeatedly doubling the length of that 
chain by merging it with a chain of equal length the creation of 
which is left to a recursive call on head. If des/en is not an integral 
power of 2, a chain of length des/en can not be built by repeatedly 
doubling. In that case, before the last merge operation, a chain of 
length (desired length - present length) is created and merged with 
the present chain to produce the required result. 

As an example of a call on the sorting procedure we supply 
sort(IO 000, chain, i, j, A[i] > A[j]) although it should be stressed 
that the present version of the algorithm is not efficient when the 
sorting criterion is as simple as a comparison of two array elements. 
In such a case one does not only gain by replac:ing the calls on the 
formal parameter loafterhi by A [lo] > A [hi] and declaring lo and hi 
as local variables of the procedure sort, but also one might resort to 

426-P 1-- 0 

in situ sorting techniques like [1] that do not need the auxiliary 
array pnt. A comparison of this algorithm with QU/CKERSORT 
[1] conducted under equivalent circumstances on the ALGOL sys
tem for the EL XS showed no significant difference in speed when 
sorting arrays containing random numbers. 

Acknowledgment. The author is grateful to Prof. E.W. Dijk
stra for his contributions to this version of the algorithm, and to the 
referee for his careful analysis and valuable suggestions. 

References 
1. Scowen, R.S. Quickersort, Comm. ACM 8 (Oct. 1965), 669-670. 
2. Bron, C., Proof of a merge sort algorithm, May 1971 
(unpublished). 

Algorithm 
integer procedure sort(n, pnt, lo, hi, loafterhi); 

value 11; integer n, lo, hi; integer array pnt; 
Boolean loafterhi; 

begin 
integer count, link; 
comment link is a working location for merging; 
integer procedure head(deslen); 

value des/en; integer des/en; 
comment The value of head will be the identifying integer of the 

object leading the sorted chain; 
begin 

integer beg, /en, next/en; 
INTRODUCE NEW CHAIN OF LENGTH 1: 
SUPPLY WITH END MARKER: 
MAKE beg POINT TO ITS HEAD: 

beg:= count:= count+ 1; pnt[beg] : = O; /en : = 1; 
TEST: TO SEE WHETHER DESIRED LENGTH HAS BEEN 
REACHED: 

if /en < des/en then 
begin 

next/en : = if /en < des/en - /en then /en 
else des/en - /en; 

INTRODUCE NEW CHAIN: 
hi : = head(nextlen); 

AND START MERGING: 
FIND LEADING OBJECT OF MERGED CHAIN: 

lo:= beg; 
if loafterhi then 
begin beg : = hi; hi : = lo; lo : = beg end; 

INITIALIZE CHAIN ON MECHANISM: 
link : = lo; 

CHA/NON: 
lo : = pnt[link]; 

TEST FOR END OF lo CHAIN: 
if lo~ 0 then 
begin 

ADD LINK TO CHAIN: 
if loafterhi then 
begin 

SWITCH LINK TO hi CHAIN: 
pnt[link] : = link : = hi; hi : = lo 

end 
else 

STEP DOWN IN lo CHAIN: 
link : = lo; 
go to CHAIN ON 

end; 



COLLECTED ALGORITHMS (cont.) 

APPEND REMAINING TAIL: 
p11t[li11kl : = hi; 
/en : = /en + next/en; 
goto TEST 

end; 
head:= beg 

end head; 
coullf : = O; sort : = head(n) 

end sort; 

Remark on Algorithm 426 
Merge Sort Algorithm [Ml] 
lC. Bron, Comm. ACM 15 (May 1972), 357-358] 

C. Bron [Recd. 5 Nov. 1973] 
Technological University of Twente, P.O. Box 217, 
Enschede, The Netherlands 

A remark in [3 p. 158] suggested to the author that Algorithm 
426 needs only very minor modifications in order to handle the 
sorting of records that are chained to begin with. The algorithm then 
rearranges the chain and needs no additional array to store chaining 
information. Furthermore, the assumption that we should be able 
to associate each of the integers from 1 to n with each of the n 
records to be sorted is no longer necessary [2]. 

References 

1. Bron, C. Algorithm 426, Merge Sort Algorithm. Comm. ACM 
15 (May 1972), 358. 
2. Bron, C. An "In Situ" Merge Sort Algorithm. Tech. Note 
CB 64, Technological University of Twente, Enschede. The 
Netherlands. 
3. Martin, W.A. Sorting. Comp. Surv. 3 (1971), 147-174. 

426-P 2- RI 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 427 

Fourier Cosine Integral [DI] 

Peter Linz (8 June 1970, 3 Dec. 1970, and 11 Feb. 1971) 
Department of Mathematics, University of California, 
Davis, CA 95616 

Key Words and Phrases: numerical integraltion, quadrature, 
adaptive quadrature, Filon quadrature, Fourier coefficients, Fourier 
integrals 

CR Categories: S.16 

Description 
The function FRCOS approximates 

C(f, w) = lrn f(t) cos (wt) dt 

by numerical evaluation of 

Cr(/, w) = foT f(t) cos (wt) dt. 

The calling parameters for the function are: 
1. FC is the name of the function subprogram, supplied by the user 
which computes f(t). It is assumed that f(t) is bounded in [O, oo) 
and is such that lim Cr (f,w) = C(f,w). 

r-+oo 

2. W represents w. It will normally be positive, although w = 0 will 
be handled correctly. In the latter case the algorithm reduces to an 
adaptive Simpson's rule. There is, however, some inefficiency in this 
because the cosine routine is used to compute cos(0.0) and some 
additional bookkeeping is done. The inefficiency may become signifi
cant if the time taken by the cosine routine is comparable to the time 
required to evaluate f(t). The program will not work correctly for 
negative w. 

3. T should be chosen such that 

Cr(J, w) = C(f, w) 

within the required accuracy. The program actually evaluates 
CrA(f, w) where TA is chosen as follows: 

(a) if 2n21r < wT::::; 2n+1211", for n 2 -9, 
then TA = 2n+l211"/w, 

(b) if wT::::; 2ir/512, then TA = T. 

If an upper limit 2n2ir is desired without adjustment, the T specified 
should be slightly smaller than this· number (to avoid round-off 
error problems). 
4. ET specifies the required (absolute) accuracy. The routine 
attempts to compute an answer which differs from Cr A (f, w) by less 
than ET. 
5. HL represents an upper limit on the stepsize; the integral over an 
interval is not considered to have converged unless the size of the 
interval is less than HL. Normally, HL can be chosen quite large, say 
T/10. However, when the integrand has a sharp peak, the choice of 
HL may be difficult. If it is chosen too large the peak may be missed 
altogether; if it is chosen small the computatio111s become inefficient, 
since the limit is enforced everywhere. In suc:h cases it might be 

427-P 1 0 

preferable to use a variable HL, computed by means of a subpro
gram. FRCOS can be modified easily to do this. 

The computations are done by means of an adaptive quadrature 
method described in detail in [1]. In summary, the approximate 
value of the integral over an interval [a, b], denoted by !, is com
puted as follows: 

( 1) If b - a ~ 11" /256w, Simpson's rule is used. 
(2) If 11"/256w < b - a < 2ir/w, Filon's method (referred to as 

FILON 2 below) is used. Here 1 is computed by 

f = h { w1 cos (wa) + W2 5in (wa)} f(a) 

+ hw,cos ('•(a;- b} (" ~ b) 
+ h { w1 cos (wb) - W2 sin (wb) l f(b), 

where 

h = (b - a)/2, 

w1(wh) = -
1
- {cos (2wh) - _i_ cos (wh) sin (wh) + 3fl , 

2h2w2 hw 

w2(wh) = -
1
-{- sin (2wh) + _i_ sin2 (wh) -- 2hw}, 

2h2w2 hw 

wa(wh) = ,----
2

4 
{_!_sin (wh) - cos (wh)}. 

11 w2 ~hw 

In the routine weights are needed only for wh = 1rr/2P, p = 1, 2, ... , 
9. They have been precomputed to 14 significant digits and arc 
stored in the arrays WlC, W2C, W3C, such that WlC(l) contains 
w1(11"/2), W1C(2) contains w1(ir/4), W2C(1) contains w2(ir/2), etc. 
If higher accuracy is required the computation of the w's from the 
above formulas must be done with some care, since for small wlr 
large cancellation errors may occur. The use of multiple precision is 
recommended. Alternatively one may use the series expansions 

00 
. 22i-l(2i - 3) . 

w1(wh)=L(-l)i (2' )1 (wh)2i-2, 
i=l l + 1 . 

00 22i+3i 
W2(wh) = L (-1)• . (wh)2i+1, 

i=l (21+4)! 
00 

. Si . 
wa(wh) = - L ( -1)' ( . ) 

1 
(wh) 2•-2• 

i=l 21+1 . 

(3) If b - a = 2nir/w, a special case of Filon's rule (called FILON 
1) is used. Here 

f - w'(b 4__ a) {/(a) - 2/ (a~ h) + f(b)} . 

The error is estimated by halving each interval and comparing 
the two estimates thus obtained. We denote by I the integral over 
[a, b], by lo and /1 the approximations with stepsize (b - a)/2 and 
(b - a)/4, respectively and write 

lo = I+ Eo, 
/1 =I+ ~1. 

If we know a such that 

then 

E1 ~ a(/o - /1)/(l - a). 

A given interval is split into parts until the estimated error is below 
a certain bound; once this is accomplished its contribution is added 



COLLECTED ALGORITHMS (cont.) 

to the total integral and the next interval is considered. The error 
"allotted" to each interval depends on the size of the interval as well 
as on an estimate of the errors of all previously converged intervals. 

The ratios a used in the error estimation are derived in [ 1]. 
The final expressions are: 

( 1) for Simpson's rule a 

(2) for FILON 1 

(b - a) 2/32 - 6/w2 

(b - a) 2/8 ~6;:,2- ' 

(3) for FILON 2 

1/16, 

12 sin (p) - p2 sin (p) - 6p - 6p cos (p) 

a(p) = 12 sin (p) - 4p2 sin (p) - l2p cos (p) 

where p = w(b - a) /2. 

For FILON 2 the a's are needed for p = 7r/2P, p = 1, 2, ... , 9. 
They were precomputed and stored in the array ER, with ER(l) 
containing a(7r /2), etc. 

Computed values of FC are saved for later use, and it is possi
ble that the space assigned for this purpose is exhausted before the 
computations are completed. In this case the routine returns with an 
error indication. (In the present implementation the value of FRCOS 
is set to 1.0 X 103°, although this may be changed to suit the user.) 
Usually this occurs only if the routine is used improperly (e.g. ET 
has been specified so small that, due to round-off errors, the accu
racy criterion cannot be met). While the assigned space appears to 
be adequate for most purposes, the user can easily change this by, 
say, doubling the sizes of the arrays FS, PV AL, and AS, and chang
ing the overflow test. 

The user should keep in mind that such an adaptive approach 
does not guarantee that the final answer has an error less than ET; 
accidental (false) convergence is always a possibility. While empiri
cal evidence suggests that FRCOS is relatively immune to this, some 
examples of false convergence were encountered during the test of 
the algorithm. The user should always try to safeguard against this 
possibility, for example by making ET smaller than required, or by 
doing the computations twice with different values of ET and HL. 

References 
l. Linz, P. An adaptive quadrature algorithm for Fourier cosine 
integrals. (Unpublished manuscript available from author.) 

Algorithm 

,INC 110111 ,.tCO~C FC 1W 1T1fT1Hl. I 
C THIS ltOUTllill COMP11Tt:S f11l 'OultllA COSllllE llllTt.c.AAL 'MOM 
c lfAO TO 1111,lllllTY Of fC1T1•coscw•T1 BY Alli ADAPTIVE 
c ouAOltATUAl METHOD USllllG A (()MdlNArlON Of 'ILUN AlilO 
( SIMPSON ltULfS 
C PARAMETERS 
C ,, -MU~T BE DECLAltEO E•TEAlllAL IN CAl.LllllG Plt()GAAH 
C V •VALUE MUST BE lllOlll-NEGATIVE 
C T -uPPEA LIMIT FOA OUADAATUAE-!>HOULD NORMALLY BE CHOSEN 
C SUCH THAT REST OF INTEGRAL IS NEGLIGIBLE• THE ACTUAL 
t: LIMIT USED BY TH( PAOGRAH HAY Bl SOMEWHAT LAAGEA THAN 
C THE GIVEN TCSEE INTROOUCTOAY COMMENTS!. 
C ET -REOUESTEO ACCUAACYCABSOLUTEI 
C HL -LIMIT OH STEP SllE-COlllVERGENCE IN ANY S.U~llllTEAVAL IS 
C NOT RECOGNIZED UNLESS SUBINTERVAL IS SMALLER THAN HI. 

DIMENSIOH WlCC911W2CC91oWlCC911ERC91 
C AltRAYS ER1WlC1W2C1WlC CONTAIN PRECOMPUTED CONSTANTS 
C NEED£0 TO COMPUTE APPAOXIHATE VALUES ANO EMROA 
C ESTIMATES FOA FILON2CS[E COM4E:NTSI• 

DATA ERCll1[1tC211ERCll1fRC410ERC,l1EltC6l1£RC711EAlllo 
I flt19JI Oo.OS06l1eOS9691e06lll1e062lle e06246• 
I e06249oe06249oe062SI 

DATA w1cc11.w1cc21.w1c1311w1cc•11w1ccs11w1cc611w1cc111 
1· WlCCftloWlCC911 
• ..os21•7l4S64J4E-Ol1l.6761020169lllE-011 
I J•4Jl67607SS74lE-Ol1l•lS671ll2l4962E-Ol• 
I '•ll974ll712l41E-Ol1l•ll49l160IS9l4E-011 
I 1oll,7l41S94419E-Olo,.lll4ll7271212E-Olo 
I 1e1Jl1Sl4l276SlE-Oll 

DATA w2cc111w2c1211w2cc111w2cc•11w2ccs11w2cc61,w2cc11. 
• w2cc111v2Cc911 
I le20S9S2ll4l6l9E-Ol 1 lo9710110149097E-021 
I 2e6,212771S2SOSE-Ol1 lel4S914170ll21E-041 
I 4el9970l6077777E-OSoS•2'S0600l06S70f•06t 
I 6eS70S2ll44l491E-071le21)611S416l'OE-011 

427-P 2- 0 

I le0267267S9S664f-Oll 
DATA WlCCll1WlCC211WlCCll1Wl(fl41oW1CISloW,CC6JoWlCC71t 

I W]CCll1WlC191/ 
I l•Ol204910116241le2'>217~001~4901lo112IB4S7997S2, 
I lel211999171SS71l133204167007921lelll01301479491 
c l 0 lll2.,,016~1.,111.'ll'll7Sl67411lellll113lll4471 

DIMENSION FSC6l I 1PVAL C lOl 1ASf '.lO I 
C ARRAYS FS1PVAL1AS AA£ STOAAGE FOlt SAVED VALUES OF F 
C AND BOOK-KEEPING 

DATA P121Pl2S616.21ll1Sl071796te012271146ll 
C Pl2•2•Plt Pl2S6•Pl/2S6 

DATA ALN2eERC1ROC/e69l14711ol1E+l01leE-SI 
C ALN2•NATUAAL LOG OF 21EAC•ERROR 'IALUE RETuANEO 
C BY FltCOSeROC•CONSTANT USED TO ELIMINATE ROUNDOFF 
C PROBLEMS IN COMPUTING INTERVAL LIMITS 

EPS• ET 
VAL• Oe 
N• 1 
ASlll•Oe 
FSCll• FCCOel 
PvALCll•ERC 

C TEST IF UPPER LIMIT ADJUSTMENT IS NECESSARY 
VT•V•T 
IFCWT-Pl2S6+AOC I 10011001101 

C ~TE-CONSTANT AOC•l.E-S USED THROUGHOUT PAOGAAM TO 
C ELIMINATE EFFECT OF FLOATING POINT AOUHOOFF ERAOA 

SET UP F l~ST ll•TtHVAL FvR Sl"41JC,Qt. HULf 
100 Fc;111••Cr.">•T1•Cnc;1.">•wTl 

FSl'lll • f(!TJ• CO<,twTI 
R•T 
GO TO ln'> 

ADJUST UPPER Ll"'IT 
101 NPo IFIXIALO~IWTtP17">61/ALN?l+! 

TA• 2••NP• Pl1">61W 
R•TA 

SET UP FIRST INTE.RVAI FOR FILON RULE. 
fC\171• F(C,">•TA) 
F'\C'l" F(CTAl 

TAKE LAST INTE.RVAL FRO,. LI ST 
10., A•AC.CNI 

HI •8-A 
WHl•W•HI 
N1•2'N 
fl• FSIN2-ll 
fl• F'\CNll 
Fl• FSIPlll•ll 
XO• B-.7">•HI 
XOl • 8-•2">•HI 

YEST TO DE.TlRMINt WHICH OuADRATURt RuLE IS APPLICABL~ 
IFC WHI - P11.,6 -ROC 11011101111 

110 IFI WHI - Pl2'>6 +ROC 20012001201 
111 IFC WHI - Pll -ROC l 22012101230 

ESTIMATE BY Sl,.PSON RULE 
700 FOz F(IXQl•(OSIW•XOl 

FQ)•F(CX03l•COSIW•XQ3l 
VN£Wl• Hl•Cfl+4.•FQ+F1l/l2• 
VNEW2• Hl•tf2•4o•FQ3+f31112• 
VN[W• VNfWl+VN[W2 
£AA• CPVALCNl-VNEWltl">• 
GO TO 300 

SWITCH FRO~ f'ILON TO Sl~PC,ON RULE 
101 Ft • Fl• c0scw•a1 

F2 c F2• cos1w•rB-.S•HI l l 
Fl • Fl• COStw•Bl 
PVALCNl• Hl•1Fl+4.•F2+f'31/6. 
GO TO 100 

ESTIMATE BY FILON2 
120 H•e.?'>•HI 

FO• F(llCQI 
FO'll= f'(IXO'l 
NH• IFIXIALOGrPl2/WHI l/ALN2+RO(l+I 
WI• Wl(CNHl 
W7•-W1Cl"IHI 
W)• lll)(llllHI 
WA•W•A 
WAl•W•lfl-.">•HI I 
WR•W•8 
(01• (0<..fWA! l 
Sil• <,INIWA)l 
VNFWI • H•t ·~1·coc,1.A1+w1•sl1111•All'fl + w3•(UStw•xo>• 

' ra+1w1•co1-w1•s111•r21 
VNfw2 = H•rtwl&COI ••2•~.Jll 1 F2 + wl•COSlw•xQjl•F03 

' +lwl•COSIWB> -w2•C.lllitwbl l•f')I 
V"lfw·v~EWl+VNtw2 

fQT: FRll\iMl 
FRQ • ERT•tl'VAll'ltl-Vl\iF·A'l/() 0 -fRT> 

SKIP CONVERC.t'lCt ltST If l'llTC:kVAL= 01\il Pf.kiOO 
IFClllHI- Pl1• ROC I 30011001400 

( £STl~ATE BY FILOl\il 
210 FO•FCCXOI 

FQl•FCIXOll 
w1.w•w 
co ... ST•8.llW.?•HI I 
VNfWl• CONST•1Fl-2••FQ+F2l 
VN£W2• CONST•IF2-2o•FQ3+f31 
VNEW• VNEWl+VNEW1 
W1•6olW2 
Wl•Hl•HI 
ERT•CW3/32.-w2111111318.-w21 
ERR• £RT•CPVALCNl-VNE1111/llo-ERTI 

C CONVERGENCE TEST 
C SKIP CONVlRGENCE TEST IF HloGToHL 

100 IFCHI- HLI 30113011400 
101 IFCA8SIERAl-EPS•Hl/BI ">001~001400 

C CONVERGENCE NOT OBTAINED -SPLIT INTERVAL ANO A()O TO LIST 



COLLECTED ALGORITHMS (cont.) 

C TEST FOR POSSIBLE LIST OVERFLOW 
400 IFCN-301 4010600•600 
401 fSIN2+,l• f~ 

FSIN2+21• fQ3 
FSCN2+11• f2 
F.SCN21• FO 
ASIN+ll•A+.~•HI 

PVALCNl•VNEWl 
PVALCN+ll•VNEW2 
N•N+l 
GO TO 10' 

C CONVE~GENCE OBTAINED -ADO FXTRAPOLATEO PARTIAL SUM TO 
C TOTAL--AOJUST ERROR A~D INTERVAL 

'00 VAL• VAL +VNEW-lRR 
EPS • EPS-ABSIERRI 

R•A 
lftNI 700.700•10~ 

( C~VERGtNCE FAILURE -ROUTINE RETURNS ER(•l.E+30 
C OPTIONAL ERROR MESSAGE MAY BE INSERTED HERE 

600 fRCOS•ERC. 
RfTURN 

C°"4PUTATIO~S COMPLETED SUCCESSFULLY 
700 f R("O<,s VAL 

RETURN 
[HD 

427-P 3 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 428 

Hu-Tucker Minimum 
Redundancy Alphabetic 
Coding Method [Z] 

J.M. Yohe* [Recd. 2 January 1970, 12 February 1971, 
and21June1971] 
Mathematics Research Center, University of 
Wisconsin, Madison, WI 53706 

Key Words and Phrases: information theory,coding theory, 
Hu-Tucker method, minimum redundancy coding 

CR Categories: 5.6 

Description 
This algorithm implements the Hu-Tucker method of variable 

length, minimum redundancy alphabetic binary encoding [l ]. The 
symbols of the alphabet are considered to be an ordered forest of /1 

terminal nodes. Two nodes in an ordered forest are said to be 
tentative-e,onnecting if the sequence of nodes between the two given 
nodes is either empty or consists entirely of nonterminal nodes. 

An interval of nodes each pair of which is a tentative-connecting 
pair is called a tentative connecting string. 

Given an ordered forest, we create a new ordered forest with one 
less tree by combining a pair of tentative-connecting nodes ;1 , i 2 

such that Q[ii] + Q[i2] is minimal. Such a pair is said to have mini
mal weight sum. The old nodes i1 and i2 are eliminated, and the new 
?ode replaces the first of the former nodes in the ordering. Its weight 
1s the sum of the weights of the former nodes. 

The original forest will, after a finite number of steps, be con
nected into a single tree. This tree will not, in general, satisfy the 
order-preserving requirement. However, it is shown in [lj that the 
path lengths are feasible for the construction of a tree which does 
satisfy this requirement and is, moreover, minimal in cost. 

The present procedure finds a minimal cost tree whose longest 
path length and total path length are minimal. This was done for the 
nonalphabetic case by Schwartz [3], and his work carries over 
directly to the alphabetic case by virtue of the fact that any optimal 
alphabetic encoding can be constructed by the Hu-Tucker method 
simply by modifying the choice of which tentative-connecting node~ 
are combined. This procedure therefore represents a modification of 
the Hu-Tucker algorithm to incorporate these ideas of Schwartz. 

During the procedure, the array L is used to determine which 
roots are tentative-connecting. If L is initially filled with 1 's instead 
of O's, any pair of nodes will be considered tentative-connecting, and 
the procedure will implement Huffman's method [2], giving the 
same results as the "bottom merging" method of Schwartz and 

*Sponsored by the United States Army under Contract No.: 
DA-31-124-ARO-D-462. 

428-P 1- 0 

Kallick [4]. This is because this procedure picks, among those pairs 
with minimal weight sum, the first pair having minimal length sum. 

Mcdifying the procedure to pick th•.! first pair having maximal 
length sum would be equivalent to the "top merging" method of 
Schwartz and Kallick, and would maximize the total number of 
digits and the maximal length of the code in alphabetic case (and in 
the nonalphabetic case, if the L-array is initially filled with l's). 

The decision tree may be obtained from the branch lengths by 
combining the first node of maximal path length with the second 
node of maximal path length to form a new node with path length 
one less than that of the original nodes, iterating the procedure until 
only one node (the root) remains. The code can then be constructed 
by assigning the value 0 to the first node on the next level from the 
root and 1 to the second node, appending 0 or respectively 1 to the 
ith level encoding of a node to obtain the encoding for the first or 
second son on the (i + 1)-th level. 

References 
1. Hu, T.C., and Tucker, A.C. Optimal computer search trees and 
variable-length alphabetical codes. SIAM J. Appl. Math. (to appear). 
2. Huffman, David A. A method for the construction of 
minimum-redundancy codes. Proc. I.R.E. 40 (1952), 1098-1101. 
3. Schwartz, Eugene S. An optimum encoding with minimum 
longest code and total number of digits. Inform. Contr. 7 (1964), 
37-44. 
4. Schwartz, Eugene S., and Kallick, Bruce. Generating a 
canonical prefix encoding. Comm. ACM 7 (1964), 166-169. 

Algorithm 
procedure Hutree (n, Q, L); 

value n; integer n; integer array Q, L; 
comment /1 is the number of symbols 1in the alphabet, and Q is a 

vector of length n. Q [i] is the weight to be attached to the ith 
symbol in the alphabet. 

The output of the procedure is the vector L of length 11. L[i] is 
the length of the path to the ith symbol of the alphabet in a tree of 
minimal cost (i.e. the sum of the Q[i] X L[i] is minimal) which has 
the further property that, subject to minimality of cost, the sum of 
the L [i] and max L [i] are minimal; 

begin 
integer maxn, m, i; 
integer array P[l : n], s[l : /1 - 1], d[l : n - 1]; 
comment P is used to hold the weights of the trees in the ordered 

forest, beginning with the alphabet at the start of the procedure 
and ending with the tree at the conclusion of the procedure. L is 
used during the procedure to hold information relating to the 
length sums. At the conclusion of the procedure, L is used to 
return the path lengths. 

If il < i2 and nodes il and i2 are connected on the mth pass 
through the body of the algorithm, then P[il] will be set equal 
to P[il] + P[i2], which is the weight of the new node, and P[i2] 
will be set to zero to indicate that node i2 is no longer a partici
pating node. Llil] is set equal to L[il] + L[i2] + 1, which is one 
less than the number of terminal nodes which are descended 
from the new node. This number is also one less than the incre
ment to the total path length which would result from connect
ing the new node il in a subsequent pass through the body of 
the algorithm. The value of L[i2] is irrelevant during the re
mainder of the procedure. The s and d vectors are used to 
record connections of tentative-co11mecting nodes. s[m] is set to 
i1 , which is both the ordered position of the leftmost node and 



COLLECTED ALGORITHMS (cont .. ) 

the ordered position of the new node, and d[m] is set to i2, 
which is the ordered position of the rightmost node. 

The variable maxn is set to a number which is larger than the 
sum of the elements of Q. 

The following simple example should b1;! of some assistance 
in understanding the procedure. Assume the procedure is called 
with n = 5 and Q = (3, 1, 1, 1. 3). The evolution of the vectors 
P, L, s, and dis shown in the following table. Values which are 
not relevant are indicated by dashes. 

m 0 2 3 4 

P[l] 3 3 3 6 9 
P[2] 1 2 3 3 0 
P[3] 1 0 0 0 0 
P[4] 1 1 0 0 0 
P[5] 3 3 3 0 0 
L[l] 0 0 0 1 4 
L[2] 0 2 2 -
L[3] 0 - -
L[4] 0 0 -
L[5] 0 0 0 - -

s[m] 2 2 
d[m] 3 4 5 2; 

maxn := 1; 
for i : = 1 step 1 until n do 
begin 

L[i] : == O; P[i] : = Q[i]; 
maxn : = maxn + Q[i]; 

end 
comment Since there are /1 terminal nodes in the original forest, we 

must make exactly n - 1 connections. On each pass through 
the body of this procedure we will determine the next optimal 
connection. We initialize by setting the minimum weight to a 
large value to insure that any valid connection chosen will 
replace the bogus connection initially indicated; 

for m : = 1 step 1 until n - 1 do 
begin 

Bl: 

B2: 

integer j, jl, mini, minLl, j2, min2, minL2, pt, pm in, sumLt, 
sumL, ii, i2; 

i := O; 
pm in : = maxn; 

i := i + 1; 
comment At B2 we begin our scan of the next tentative-connect

ing string to find the most desirable pair in the string. If 
necessary, we skip over any previously absorbed nodes. We 
initialize the most desirable node to the first in the tentative
connecting string, and the record of the se:cond most desirable 
node is initialized to reflect a very large minimum. This 
insures that any participating node will be more desirable and 
that valid information will replace the bogus information as 
soon as the next participating node is encountered. If the 
first participating node is the last node in the forest, or if no 
further nodes are participating nodes, then we have com
pleted our scan for the next tentative-connecting pair and we 
go to El to make the optimal connection; 

if il ~ /1 then go to El else 
if P[i] = 0 then go to Bl; 
min2 : = maxn; 
jl := i; 
minLI := L[i]; mini:= P[i]; 
comment We now begin our scan of all remaining nodes in the 

current tentative-connecting string. The string will end as 
soon as we have examined a participating node which has not 
previously been combined. The purpose of this scan is to 
locate the optimal tentative-connecting pair in the tentative
connecting string. The optimal pair is defined to be that pair 

£2: 

428-P 2- 0 

with minimal weight and minimal length sum which occurs 
first in the tentative-connecting string; 

for j : = i + 1 step 1 until n do 
begin 
comment We check for P[j] > 0 to see whether thejth node is a 

participating node. If P[j] = 0, the node has previously been 
absorbed and we pass over the empty space; 

if P[j] > 0 then 
begin 

if P[j] < mini V (P[j] = mini /\ Lfj] < mi11Ll) then 
begin 
comment If the jth node is "more desirable" than either of 

the previously most desirable tentative-connecting nodes, 
we record the previous most desirable node as the second 
most desirable node and record the jth node as being 
most desirable; 
min2 : = mini ;j2 : = jl; minL2 : = minLl; 
mint : = PU] ;jl : = j; minLl : = Lfj]; 

end 
else if P[j] < min2 V (P[j] = min2 /\ L[j] < minL2) then 
begin 
comment If the jth node was not more desirable than the 

previous most desirable node, but is more desirable 
than the previous second most desirable node, we record 
thejth node as being second most desirable; 
min2 := PUJ;j2 :=j;minL2 := L[j]; 

end; 
if LU] = 0 then go to E2; 
comment If L[}] = 0 then we have reached the end of the 

current tentative-connecting string, and we have found 
the most desirable pair in that string. We now go to 
compare it with the previous most desirable pair in the 
forest; 

end 
end; 

pt:= P[jl] + P(j2]; 
sumLt: = L[jl] + L[j2]; 
comment We have now found the next tentative-connecting 

pair, namely the jl and j2 nodes. Here, we test this new pair 
against the previous minimal pair to see whether the new pair 
is more desirable. The new pair is more desirable if its weight is 
less than that of the previous pair, or if its weight is equal to 
that of the previous pair and its length sum is smaller; 

if pt < pm in V (pt = pm in/\ sumLt < sumL) then 
begin 

pmin: =pt; 
ii : = jl; i2 : = j2; 
sumL : = sumLt; 

end; 
comment The next tentative-connecting string begins with the 

last participating node in the current tentative-connecting 
string. Hence we replace i by j and return to B2 to begin 
processing the next tentative-connecting string; 

i := j; 
go to B2; 
comment Upon reaching El the procedure has scanned all 

tentative-connecting pairs and the decision has been made to 
connect nodes in order positions i1 and i2. We switch il and 
i2 if necessary to insure that il < i2. We record the connec
tion by setting s[m] : = il and d[m] : = i2. The weight of the 
new node is placed in the weight table in position il (the 
order position of the new node). The weight in the order 
position of the second combined node is set to zero to indi
cate that the node has now been absorbed and no longer 
participates in the scan. L[il] is set to one less than the incre
ment to the path length sum which would result from con
necting the new node; 



COLLECTED ALGORITHMS (cont.) 

El: 
if il > i). then 
begin 

jl : = il; il : = i2; i2 : = )1; 
end; 
s[m] := il;d[m] := i2; 
P[il) : = pmin; P[i2] : = O; 
L[il] := sumL + 1; 

end; 

comment s[11 - l] gives the ordered location of the root of the . 
tentative tree. We now generate the path lengths as follows: 
the path length to the root is zero, and if the path length to any 
node is i, then the path length to each of its sons is i + l. The 
two sons of the node whose order position is given in s[m] lie in 
the order positions given in s[m] and d[m]. Moreover, if an 
order position is given in s[m] for m < 11 - 1 then that order 
position must be listed in sf}] or d[jj for some} > m, so the path 
lengths obtained by this algorithm are well defined. 

Returning to our example, we now trace the construction of 
the vector of path lengths. This is shown in the following table. 
For the sake of clarity, the vectors s and dare now shown in 
reverse order. 

m 4 3 2 

L[l] 0 2 2 2 
L(2] - 1 2 3 
/.,[3] 3 
L[4] 2 2 
L[5] 2 2 2 

s[m] 1 2 2 
d[m] 2 5 4 3 

Thus the final value of the vector L is (2, 3, 3, 2, 2); 
L[s[11 - JJJ := O; 
for m : = /1 - 1 step - 1 until 1 do 
L[s[m]] : = L[d[m]] : = L[s[m]] + 1; 

end; 

l~emark on Algorithm 428 [Z] 
Hu-Tucker Minimum Redundancy Alphabetic Coding 
Method [J.M. Yohe, Comm. ACM 15 (May 1972), 
360-3621 

J.G. Byrne [Recd. 26 June 19721 Department of Com
puter Science, Trinity College, Dublin 2, Ireland 

Algorithm 428 was translated into Basic Fortran l V and run 
on IBM System 360/44 running under RAX. When the line just 
after the label B2: 

if il > /1 then go to £1 else 

was changed to 

if i > /1 then go to £1 else 

the algorithm gave correct results for the example given and for the 
example in Gilbert and Moore [I]. In the latter case the cost 
defined as 

L;":,1 Q(l)*L(J) 

-:tf..1 Q(l) 

and code lengths were correct. 
When the L array was set to I's on entry, the optimum (Huff

man) codes were obtained, and they were the same as those given 
by the Schwartz and Kallick [21 method as claimed in the author's 
description. 

428-P 3- RI 

Table I. 

Size of alphabet 10 27 60 

Time to find optimum alphabetic codes. 0·02 0· 14 0·62 
(secs) 

Time to find optimum codes (secs) 0·02 0·08 0·34 

Table I, which gives the cpu time required, shows that the 
algorithm is very fast for small alphabets and that the time is 
approximately proportional to 11 2, as expected. 

References 
1. Gilbert, E.N., and Moore, E.F. Variable length binary 
encodings. Bell Systems Tech. J. 38 (1959), 93"3-968. 
2. Schwartz, E.S., and Kallick, B. Genierating a canonical prefix 
encoding. Comm. ACM 7 (Mar. 1964), 166-169. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 429 

Localization of the Roots of 
a Polynomial [C2] 
W. Squire (Recd. 16 Mar. 1970, 2 June 1971, and 
4 Oct. 1971) 
College of Engineering, Dept. of Aerospace 
Engineering, West Virginia University, Morgantown, 
WV 26506 

Key Words and Phrases: polynomials, roots of polynonials, 
theory of equations, Routh-Hurwitz criterion 

CR Categories: 5.15 
Language: Fortran 

Description 
This algorithm provides information about the roots of the 

polynomial 

(1) 

The theorem [1] that the roots of (1) are all inside a ring of 
radius 

1 + max IC; I 
l_:s;i~n 

is embodied in the Fortran function RADIUS. By applying this to 
the original polynomial and to the polynomial 

+ Cn-1 1 + Cn-2 2 + 1 yn _ yn- _ yn- •• , + _ 
Cn Cn Cn 

(2) 

the inner and outer radii of an annulus containing all the roots are 
determined. 

The theorem [1] that the positive real roots of (1) are less than 

+ [ max I Cl J I/m 
l~i~n 

where m is the subscript of the first negative coefficient is embodied 
in RADIUS. If there are no negative coefficients there cannot be any 
positive roots and RADIUS returns zero in this case. By applying 
RADIUS to both (1) and (2) upper and lower bounds are obtained 
for the positive roots. In some cases (all coefficients positive) it is 
possible to say that there are no real positive roots, but the converse 
does not hold so that the determination of boundls does not guaran
tee the existence of a real root between those bounds. RADIUS is 
also applied to the equations whose roots are the negatives and nega
tive reciprocal of the roots of (1) to obtain similar results for the 
negative real roots. 

The Fortran function HRWTZR employs a modification of the 
Routh-Hurwitz criterion [2] to determine whether (1) and the equa
tion whose roots are the negatives of those of ( 1) have any roots with 
positive real parts. Unfortunately a zero real part is considered 

429 P I·- 0 

positive so that this test will not determine if an equation nas purely 
imaginary roots. 

The subroutine POLY AN, which computes the coefficients for 
the modified polynomials, calls the functions, and prints out suit
able messages, has for its arguments: 
1. An N element array C which contains the coefficients of the 
polynomial except for the leading 1. 
2. An auxiliary N element array CM in which the coefficients of 
the modified polynomials are stored as needed. 
3. N is equal to the degree of the polynomial. 

If desired the argument list can be extended to include the 
various bounds so that they can be transmitted back to the main 
program for use. 

References 
1. Berezin, I.S., and Zhidkov, N.P. Computing Methods. Vol. 
II, Ch. 7. Pergamon Press, New York, 1965. 
2. Sherman, S., Di Paola, J., and Frissel, H.F. Thi;: simplification 
of flutter calculation by the use of an extended form of the Routh 
discriminant. J. Aeronaut. Sci. 12 (1945), 385-392. 

Algorithm 

SU8H0UTl'JE t>GLYAN<C1Ci~. N> 
C PGLYAN OBTAINS INFORMATION ABOUT THE LOCATION 
C OF THE ROOTS 0F A ?OLYN0MIAL BY USING 
C 80UND1kADIUS1AND HRWTZH 
C C IS A N ELEMENT ARRAY CONTAl~ING THE CGEFICIENTS 
C NORMALIZED 50 THAT THE LEADING COEFFICIENT<~HICrl 

C IS NOT INCLUDED IN Cl IS +1.0 
C CM IS A ~GnKING ARRAY THE SAME SIZE AS C 
C N=DEGREE Gr P0L YN01"llAL 
c 

DIMENSION C<N>,CM<N> 
LOGICAL HtlWTZf< 

TEST F0H ZEHG HOOT 
IFCCCN>.EQ.Q.O) GO TO 50 
COEFFICIENTS FCR RECl?KCCAL ?CLYNGMIAL AKE ?UT IN CM 
CMC.\Jl= l ./CCNl 
NMl=N-1 
DC 5 l=l•N,"11 
,,JJ=N-1 
CM<l>=CM<N>*C<Nll 
R0UT=F<ADIU::.<C,N> 
~!N=l./KADIU~<CM,Nl 

~Ji<ITEC6,201> HIN, ti0UT 
201 FORMAT<40H RGOTS ARE IN AN ANNULUS CF INNER nADIU:;., 

IEI0.31l7H AND CUTEk HADIU51El0.3> 
P.PU=BOUNDCC1Nl 
IFCRPU.Nf.O.O> GO TO 10 
l·:RITE<6,202> 

202 F0RMATC 33H THEHE AHE NC• r<EAL ?0SI Tl VE 1WOTS> 
GO TO 20 

10 rtPL=l./80UND<CM1Nl 
WRITEC61203l ~PL, HPU 

203 FOKMAT 
IC40H THE POSITIVE ROOTS<IF ANY> AHE BETWEEN, 
2EIO.J,4H AND1EIO.J> 

C CCEF"FICIENT5 F0R NEGATIVE r:ECIPt<OCAL ARE PUT IN CM 
20 DO 25 I=l1N12 
25 CMCl>=-CMCI> 

RNU=B0UNDCCM1Nl 
IFCKNU.NE.o.O>GC rn 30 
•JRITEC6,204> 

204 FORMAT 
I C33H THEHE ARE NO NEGATIVE 1{£AL ;WOT:.> 

GO T0 40 
C COEFFICIENTS FCK NEGATIVE 1<00T5 A1<E I-UT IN CM 

30 X=-1.0 
DCJ 35 l=l1N 
CMCI >=X*C( I> 

3~ X=-X 
RNU= - I • /l~NU 
RNL=-B0UNDCCM1Nl 
WrtlTE(6,205l ~NU, kNL 

205 FORMAT 
1(44H THE REAL NEGATIVE HOOTS<IF ANYlAkE BETWEEN, 

40 IF<rlRWiZK (C,N>> WHITEC6,206l 
206 FOi~MAT 

1<44H THEHE AHE N0 r•OOTS l·llTH t>0SITlVE llEAL PANTS> 
IFCHnWTZH <CM,N>> ~RITEC61207> 

207 r0RMAT 
l C44H THERE AHE .~O iWOTS h!TH NEGATIVE HEAL PART!;> 

RETURN 
50 WKITEC6,208> 



COLLECTED ALGORITHMS (cont.) 

c 
c 

c 
c 
c 

208 

10 

F"0RMAT C41H P0LYN6MIAL HAS A lEKO R60T.f<EDUCE DEGREE> 
RETURN 
END 
FUNCTION t<ADIUS<C.N> 
RAD! US HETUNNS AN UPPEt< LIMIT F::J:< THE M0DULUS 
6F THE H66TS 01" AN N DEGi~EE POLYN6MlALo 

DIMENSieN C<N> 
t<ADIUS=ABS<C<I>> 
D0 10 I=2•N 
IF<ABSCC<I>>.GT.kADIUS> RADIUS=ABS<C<I>> 
RADIUS=l.+RADIUS 
f<ETURN 
END 
FUNCTI0N B0UND<C.N> 
B0UND RETURNS AN UPPEt< L l1'1l T FOR THE 
i'OSITIVf. t<EAL k00TS 0F AN N DEGREE P0LYN0MIAL 

DIMENSION CCN> 
M=O 
B0UND=o.o 
oe 10 1=1.N 
IFCM.GT.O> G0 TO 10 
IF<C<I>·LT.O.O> M=I 

10 IFCCCI>·LT.BOUND> BOUND=C<I> 
IFCMoEO.O> RETUt<N 
BOUND= I•+ C -B0UND>** c Io IF'l.l?ATC M > > 
t<ETURN 
END 
LOGICAL FUNCTION Ht<WTZR<C.N> 

C HRWTZR WETU~NS .TRUE. IF ALL THE t<00TS HAVE 
C NEGATIVE REAL ~AKTS.0THEt<WisE.FALSE·IS RETURNED. 
c IF A REAL PART rs ZEt<0,THEN ·FALSE. IS RETURNED· 
c 

DI;~ENSI0N CCN) 
HkwTZR=, FALSE. 
Cl=C<l> 
IFCCloLE.O.O>RETURN 
M=N-1 
DO 30 I=l.M 
KM=N-1 
DO 20 K=t.KM 
C<K>=Cl*C<K .. I > 
IFO<.EQ.KM.(lR.2*CK/2hEO.K> GO T0 20. 
CCK>=C<K>-C<K+2> 

20 C<K>=C<K>/CI 
Cl=C< I> 
lFCCloLE.O.O> RETURN 

30 CONTINUE 
HR~JTZR=, TRUE, 
RETUf<.'J 
END 

Remark on Algorithm 429 [C2J 
Localization of the Roots of a Polynomial [W. Squire, 
Comm. ACM 15 (Aug. 1972), 776J 

Edward J. Williams lRecd. 15 Sept. 19721 Computer 
Science Department, Ford Motor Company, P.O. 
Box 2053, Dearborn, MI 48121 

Corrections are needed in the third paragraph. The theorem 
that the positive real roots of (I) are less than 

1 + [maxi:::; i:::; n I Ci I ]1 1m . .. should read 

1 + [max1:::;i:::; n Ci<O I Ci I )1i>n 

Further, the four words" RADIUS" in this paragraph should be 
replaced by" BOUND". 

References 
I. Zaguskin, 0.0. Solutio11 <~/'Algebraic u11d Tra11sce11de11tal 
Equations, Pergamon Press, New York, 1961, p. 21. 

429-P 2- R2 

Remark on Algorithm 429 f C2] 

Localization of the Roots of a Polynomial [C2] 
[W. Squire, Comm. ACM 15 (Aug. 1972), 776-777] 

H.B. Driessen and E.W. LeM. Hunt [Recd. 13 Oct. 
1972, 29 Jan. 1973] 

Supreme Headquarters Allied Powers of Europe, 
Technical Center, P.O. Box l 74, The Hague, The 
Netherlands 

There seems to be an error in this algorithm. lf we take the 
polynomial: 

z4 + a2z2 + aaz3 + a.z + a;; = 0, 

then after the second pass through the K-loop of the logical func
tion HRWTZR(C, N), the term (a2aa--a4)a4 - a5a2 is tested for a 
minus sign. However, the term which should be tested according 
to the Routh-Hurwitz criterion is (a2aa-a.)a. - a5a22. If this 
term is negative then there are no roots with positive real parts. 

As an example, if the polynomial 

z4 + 5.6562 z3 + 5.8854 z2 + 7.3646 z + 6.1354 = 0 

is studied with the help of Algorithm 429 one will find as output: 

Roots are in an annulus of inner radius .454 E + 00 and 
outer radius .836 E + 01; 

There are no real positive roots; 
The negative roots (if any) are between - .454 E + 00 and 

--.836 E + 01; 
There are no roots with positive fli!al parts. 

However, if one calculates the roots of this equation, one will 
tind approximately: 

Z1 -1.()()()J 
Zi = -4.7741 
Z3,4 = +0.0089 + 1.1457 i 

Statement 20 + 1 in the logical function HRWTZR(C,N), 
which was originally "Cl = C(l)", should be amended to read 
"Cl = C(l)/Cl". 

As a by-product of our investigation, it turns out that the 
structure of the logical function HRWTZR can be simplified by 
abandoning the logically redundant steps C(K) = C(K+ 1). 

The following listing incorporates both the correction and 
the simplifications. The function has been parameter tested on a 
CDC-6400. 

LOGICAL FUNCTION HR WTZR (C,N) 
DIMENSION C(N) 
HR WTZR = .FALSE. 
IF (C(l) .LE.O .. OR.C(N).LE.0.) RETURN 
Cl = C(l) 
M = N - 1 
DO 30 I = 2,M 
DO 20 K = I,M,2 

20 C(K) = C(K) - C(K+l)/Cl 
Cl = C(I)/Cl 
IF (Cl.LE.O.) RETURN 

30 CONTINUE 
HRWTZR = .TRUE. 
RETURN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 430 

Immediate Predominators in a 
Directed Graph [H] 
Paul W" Purdom Jr.* and Edward JF. Moore [Recd. 
14 Aug. 1970 and 13 July 1971] 
Computer Sciences Department, University of 
Wisconsin, Madison, WI 53706 

Key Words and Phrases: predominator, immediate predomina
tor, graph theory, directed graph, shortest path, articulation, 
connectivity, program optimization, optimizing •~ompiler 

CR Categories: 4.12, 5.32 
Langlllage: Algol 

Description 
We assume a directed graph whose nodes are labeled by integers 

between 1 and n. The arcs of this graph correspond to the flow of 
control between blocks of a computer program. The initial node of 
this graph (corresponding to the entry point of the program) is 
labeled by the integer 1. For optimizing the object code generated 
by a compiler, the relationship of immediate predominator has been 
used by Lowry and Medlock [3]. We say that node i predominates 
node k if every path from node I to node k passes through (i.e. both 
into and out of) node i. Node j is an immediate predominator of 
node k if node J predominates node k and if every other ·node i 
which predominates node k also predominates node j. It can 
easily be proved that if k r!- 1 and node k is reachable from node 1 t 
hen node k has exactly one immediate predominator. In case k = 1 
or node k is not reachable from node 1, the immediate predominato; 
of node k is undefined, and the value 0 will be given by the procedure 

· PREDOMINATOR. 
The input to this procedure is described for clarity of exposition 

as the adjacency matrix M of the directed graph. 
It is assumed that there is a known bound a such that the 

number q of arcs in the directed graph satisfies q ::::; a. 
Both the machine time and the memory required to perform this 

procedure are related in a simple way to the number n of nodes and 
the number q of arcs of the given graph. If Tis the length of time 
re.quired to perform the procedure PREDOMINATOR, then Tis 
bounded by 

Ts k1n2 + k~q + kan + k..q + k5, 

where the k; are constants depending on the machine used for the 
procedure. If Sis the memory required to perform the procedure 
PREDOMINATOR, then Sis given exactly by 

S = k&112 + k1a + ksn + k9 . 

The k&112 term is merely the memory re.quired to store the ad
jacency matrix M which is used to give the input description of the 
graph. The description of the graph is first transformed into a linked 
list, and no further use is made of the Boolean array M. If this 
procedure were incorporated into an optimizing compiler, the 
adjacency matrix should be eliminated, going directly from the 

* Present address: University of Indiana, Department of 
Computer Science, Bloomington, IN 47401. 

430-P 1 0 

source program into the list form, saving the memory used to. store 
the adjacency matrix M, which would remove the kr,112 term from the 
memory re.quired, as well as decreasing the computing time re
quired. The precise details of the list representation can be ex
pressed in a more brief and unambiguous manner by a few lines of 
Algol than by an English description. The predominators of any 
given node can be computed as in [3] from the immediate predomi
nators, and the articulation points of a graph are the predominators 
of the exit node. 

In an article on program optimization, Allen (l] gives an algo
rithm for computing articulation points (which are the predomina
tors of the exit node). To test if node i is an articulation point, he 
removes node i, from the graph, and computes the transitive closure 
to see if the exit node is connected to the entry node. By successively 
considering each node as an exit node, his algorithm can be adopted 
to computing the predominators (from which immediate predomi 
nators can be quickly computed) in a time proportional to n2 times 
the time re.quired to compute the transitive closure. Since the transi
tive closure takes between n2 and n3 operations to c:ompute [4, 5, and 
6], Allen's algorithm would be slower than the one presented here 
by at least a factor of n for large problems. 

The procedurePREDOMINATOR depends for its speed on the 
use of an algorithm first proposed by Dijkstra [2] for finding the 
shortest path between two points in a graph. The basic idea of the 
method is that a tree is found which is rooted on the entry node and 
which includes each node in the graph which can be reached from 
the entry node. Any node which cannot be reached from the entry 
node does not have an immediate predominator. Each node which 
can be reached from the entry node has the entry node as a predomi
nator. It is the immediate predominator unless the node has a pre
dominator which is closer to it along the path which was used to 
reach it. To test if a node i, other than the entry node, is a predomin
ator of some nodes, a test is made to see which nodes below (further 
from the root) i cannot be reached from the remaining nodes in the 
tree without going through i. The nodes which cannot be reached 
without going through i have i as a predominator. Using this method 
the entry Immediate[i] is set to the various predominators of node}. 
The calculation is, however, organized to start at the root of the tree 
and proceed to the leaves, so that the last value of Immediate[}! con
tains the immediate predominator of j. 

The program was tested on 38 graphs including one with 36 
nodes and 49 arcs which represents the flowchart of the algorithm 
and one with 82 nodes and 125 arcs which represents the flowchart 
of a Fortran program. The running time of the program on a Bur
roughs B5500 was 0.6 sec for the 36 node graph and 3.8 sec for the 
82 node graph. The longest time for the remaining graphs was 0.5 
sec for a graph with 18 nodes and 48 arcs. The shortest time was 0.07 
sec for graphs with two nodes and one arc, five nodes and 25 arcs, 
and five nodes and 21 arcs. While these numbt:rs are useful for 
estimating the average running time of the program, they are of 
limited use in calculating the constants in the formula for the run
ning time, because the formula gives only an upper limit on the 
running time. 

References 
1. Allen, F.E. Program optimization. Annual Rev. in Automatic 
Programming 5 (1969), 239-307. 
2. Dijkstra, E.W. A note on two problems in connexion with 
graphs, Numerische Mathematik I, 5 (Oct. 1959), 269-271. 
3. Lowry,. Edward S. and Medlock, C. W. Object code optimiza
tion, Comm. ACM 12, 1 (Jan. 1969), 13-22. 



COLLECTED ALGORITHMS (cont.) 

4. Munro, Jan. Efficient determination of the transitive closure 
of a directed graph. To be published. 
5. Purdom, Paul Jr. A transitive closure algorithm, BIT JO, 1 
(1970), 76-95. 
6. Warshall, S. A theorem on Boolean matrices. J.ACM 9 
(Jan. 1962), 11-12. 

Algorithm 
procedurePREDOMJNATOR( Immediate, M, n, a); 

value n, a; integer n, a; 
integer array Immediate; Boolean array M; 

comment The procedure sets lmmediate[i] to the immediate predomi
nator of i or to 0 if i has no immediate predominator. The inci
dence matrix of the graph is given by M, where M[i, j] is true if 
there is an arc from node i to node j. The number of nodes in the 
graph, which must be at least 1, is n, and a is (an upper limit on) 
the number of arcs in the graph. The start node is assumed to be 
node 1; 

begin 
integer node, j, avail, k, stp, new, oldnode, down; 
integer array First, Last, St[l :n\, Next[l :n+u], Suc[n+ 1 :n+al; 
Boolean array Mark[l :n]; 
comment This section initializes various variables and forms a 

linked list representation of the graph. The head of the list of 
arcs out of node i is Next[i] (for 1 ~ i ~ n). The arcs are put on a 
list linked by the array Next where the corresponding entry in 
the array Sue gives the node to which the arc goes. In the array 
Next 0 indicates the end of the list. For most uses of the proce
dure the graph will already be available as a linked list and in 
such cases the procedure should be modified so that it starts 
from the list and does not use the array M.; 

avail : = n; 
for j : = I step 1 until n do 
begin 

Mark[jj : = false; Next[i] : = Immediate[}] : = O; 
fork : = step 1 until n do if M[j, k] then 
begin 

avail : = avail+ 1; Suc[avail] : = k; 
Next[avail] Next[j]; Next[j] : = avail; 

end; 
end; 
down : = Last[1J : = O; St[l] : = stp . = oldnode : = 1; 
Mark 11] :=true; new:= Next[l]; 
comment newpl is the start of Dijkstra's[2] algorithm for the 

shortest path, modified for the case where all distances are 0 or 
infinity. In addition the array First is set to link the nodes in the 
order they are traversed by Dijkstra's algorithm. Lastlil is set to 
the next node after node i on the list First which cannot be 
reached from node i by those arcs of the graph which are tra
versed by Dijkstra's algorithm. Node I is set as the tentative im
mediate predominator of each node that can be reached from 
node 1; 

newpl: 
if new ~ 0 then 
begin 

node : = Sue[ new] ; 
if --, Mark[node]then 
begin 

for j : = 1 step I until down do Last[Suc[Sr[s1p+Jlll . - node; 
down : = O; stp : = stp+ l; St[stp] : = new; 

Mark[node] : = true; 
lmmediate[node] : = 1; Firstfoldnode] : = node; 
oldnode : = node; new . - Next[node]; 
go to new pl; 

end; 
new : = Next[new]; 
go to new pl; 

end; 

430-P 2- 0 

down : = down+ 1; new : = Next[St[stp]]; stp : = stp-1; 
if stp:;r.O then go to newpl; 
for j : = 2 step 1 until down do last[Suc[Sr[j]]] . - O; 
First[oldnode] : = O; j : = 1; 
if First[l] =0 then go to exit; 

nextdom: 
oldnode : = j; j : = First[j]; k : = First[j]; 
if k=O then go to exit; 
comment The nodes that the above version of Dijkstra's algorithm 

reached by going through node j will now be unmarked; 
unmark: 

if k~Last[j] then 
begin Mark[k] := false; k := First[k]; go to unmark; end; 
First[oldnode] Last[)]; k : = 1; 

trace: 
if k~O then 
begin 

new := Next[k]; stp := l; 
comment newp2 starts a second modification of Dijkstra's 

algorithm to find which unmarked nodes can be reached 
from the marked nodes without using node j; 

newp2: 
if new ~ 0 then 
begin 

node : = Suc[new]; 
if --, Mark[node] then 
begin 

stp : = stp+ 1; St'.stp] new; Mark[node] true; 
new : = Next[node]; 
go to newp2; 

end; 
new := Next[new]; 
go to newp2; 

end; 
new:= Next[St[stp]];stp .- stp--1; 
if srp:;r.O then go to newp2; 
k : = First[k]; 
go to trace; 

end; 
k : = First[j]; First[oldnode] : = j; 
comment Each unmarked node will now be remarked and have 

j set to be its tentative immediate predominator. The last 
tentative immediate predominato1r is the actual one; 

marker: 
if k :;r.Last[j] then 
begin 

if --, Mark [kl then 
begin Immediate[k] : = j; Mark[k1 . - true; end; 
k : = First[k]; 
go to marker; 

end; 
go to nextdom; 

exit: 
end of PREDOMINATOR; 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 431 

A Computer Routine for 
Quadratic and Linear 
Programming Proble1ns [H] 
Arunachalam Ravindran [Recd. 24 Aug. 1970, 11 June 
1971, and 1 Nov. 1971] 
School of Industrial Engineering, Purdue University, 
Lafayette, IN 4 7907 

Abstract. A computer program based on Lemke's 
complementary pivot algorithm is presented. This can be used 
to solve linear and quadratic programming problems. The 
program has been extensively tested on a wide :range of problems 
and the results have been extremely satisfactory. 

Key Words and Phrases: linear program, quadratic program. 
complementary problem, Lemke's algorithm, simplex method 

CR Categories: 5.41 
Language: Fortran 

Description 
Introduction. The computer routine given below is based on 

Lemke's complementary pivot algorithm [2] to solve the com
plementary problem of the form: 

Find w, z ~ 0 
such that w = Mz + q (1) 

w'z = 0 

where Mis an (N X N) square matrix; w, z and q are (N X 1) 
column vectors. ("Prime" denotes the transpose of a vector or 
matrix.) 

A solution to the above problem will be calk!d a complementary 
solution, and Lemke's algorithm is guaranteed to find a comple
mentary solution to system (1) only if the matrix M satisfies one of 
the following: 
1. M has all positive elements. 
2. Mis a positive semidefinite matrix or x'Mx ~ 0 for all x. 
3. M has positive principal determinants. 

Applications. The two important applications of the comple
mentary problem (1) are to solve linear and quadratic programming 
problems by converting them to an equivalent complementary 
problem. 

Quadratic Programming. Consider the quadratic program: 

Minimize Z = c' x + x' Qx 
subject to Ax ~ b 

x~O 

where A is an (m X n) matrix, Q is an (n X n) matrix of the quadra
tic form, c and x are (n X 1) column vectors, and b is an (m X 1) 
column vector. 

431-P l- 0 

An optimum solution to the above problem may be obtained 
by solving a complementary problem of the form: 

u, v, x, y ~ 0 
v'x + u'y = 0 

(2) 

where u denotes the slack variables of the given quadratic program 
and (y, v) denotes the variables of the dual problem. Comparing 
the above system (2) with the original complementary problem 
(1), we note that 

(v) (x) (Q+Q' A') ( c) w = u , z = Y , M = A 0 and q = _ b . 

System (2) can be solved by the given computer routine and then 
an optimum solution to the given quadratic program may be 
obtained by reading off the values of (z1 , z2 , ... , Zn , Wn+1 , ..• , 

Wn+m) from the complementary solution. It should be remarked 
here that the matrix Min this case is positive semidefinite if and only 
if the matrix Q is positive semidefinite. Hence, the computer routine 
is guaranteed to find an optimum solution to the given quadratic 
program only if the objective function Z is a convex function. 

Linear Programming. Consider the linear program: 

Minimize Z = c' x 
subject to Ax ~ b 

x ~ 0. 

The only difference between a linear program and a quadratic 
program is in the objective function. Hence, by setting Q = 0 in 
system (2), we get the equivalent complementary problem for a 
linear program. 

Program. A detailed description of Lemke's algorithm to 
solve the complementary problem, on which the computer routine 
is based, is given in [3]. The program consists of six subroutines and 
a main program which calls these subroutines in proper order. The 
various input data to the program are the number of problems to be 
solved in succession, the size of the problem and the elements of 
matrix M and vector q. The original Lemke's algorithm [2] was 
modified by the author along the lines of the revised simplex 
method [l] for a linear program to take advantage of the fact that 
for solving linear and quadratic programs, the M matrix in system 
(1) has many zero entries. This led to a greater efficiency of the 
computer routine. . 

In an experimental study conducted by the. author [4], this 
computer routine was extensively used to compare the relative 
efficiencies of the simplex method [l] and Lemke's algorithm to 
solve linear programs. The study revealed the superiority of Lemke's 
algorithm over the simplex method in a number of problems both 
with regard to the number of iterations and computation time. Also 
in [3], another modification of Lemke's algorithm for solving linear 
programs has been proposed which may save a considerable 
storage and computation time. 

References 
1. Dantzig, G.B. Linear Programming and Extensions. Princeton 
U. Press, Princeton, N.J. 1963. 
2. Lemke, C.E. Bimatrix equilibrium points and mathematical 
programming. Management Sci. l1 (1965), 681-689. 
3. Ravindran, A. Computational aspects of Lemke's 
complementary algorithm applied to linear programs. Opsearch 
7 (1970), 241-262. 



COLLECTED ALGORITHMS (cont.) 

4. Ravindran, A. A comparison of the primal-simplex and 
complementary pivot methods for linear programming. Rep. 
No. 70-9 (July 1970), School oflndustrial Engineering, Purdue 
U ., Lafayette, Ind. 

Algorithm 
C ,(E...,Ard<S 
C SINCE CHI::; PKCGKA.'1 I!> CIUMt'L.E:TE IN AL.I.. r<ESr>ECT!;,, If CAN BE 
C KUN AS IT IS wlTHOUT ANY AUDITIONAL. M0DlFICATl0N ~K 

C INSTriUCTIO,'l.IN SUCH CA!:>I:: F0L.L.l<i~• THE INrUf FC.<MAT AS GIVEN 
c 
C t"KOGKAM F0K S0L.llING L.INEAr< A11jU OlJAUr<ATlC r>KCGi<M'IMING 
c Pr<OBL.EMS IN THE FOKM W•M•Z+u. w.z=o. "" ANU z N0NNEGATlllE 
C BY LEMKE'S AL.G0r<ITHM· 
c 
c MAIN PrieG~A.., WHICH CAL.LS THE SIX suar<0U11NES-MAl~lXo 
c lNITIA.NEwBASoS01:T.rI\/0T AND PPr<INT IN t"K0PEr< 0i<DEK· 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

C0M . ..,0N AMolul. Io 81Nl.I1 NL.21 Ao NE I 1 NE2o IK• MllASISo wo l. 
DIMENSION AM<50150>1 O<SO>: B<S0o50>• A<SO> 
UIMENSION w<50>o ZC50>• MBA!:>ISCIOO> 

DESCklPTlON 0F t'AHAMETl::KS IN C0MMe~ 
AM A Tw0 UIMENSICJNAL. Ar<KAY CONTAINI'.llG THE 

ELEMENTS 0f ~ATKIX M. 
0 

L.I 

A 

NL.I 

.'lEI 
NL.2 

NE2 
A 

Ir< 

A SINGL.Y SUBSCr<lPTED Ar<r<AY CONTAINING THE 
EL.EMF:NTS 0F VECTOK Q. 
AN INTEGEK VAHIABL.E lNUICAf ING THE NUMBEK 0f 
ITERATIONS TAKEN F0K EACn Pr<OBL.EM· 
A H10 DlMENS10NAL. AKr<AY CONTAINING THF 
ELEMENTS i<iF THE INVEKSE 0f THE CUKKENT BASIS• 
A SINGL.Y SUBSCKIPTED AkKAY CeNTAINING THE llAL.UE::. 
0F W llAr<IARL.l::S IN EACH SOLUTION. 
A SINGL.Y SUBSCKit'TED AKKAY C0NTAINING THE VALUES 
0F l. 11Ai<IA8L.ES IN EACH SOL.UTI0N. 
AN INTEGEK llAKIABL.E TAKING \/AL.UE I Cr< 2 UEPEND
ING ON wHETHEK llAKIABL.E lo 01< Z L.t:AVES THE BAl'-,lS 
!:>IMil..AK TO NL.I BUT INDICATES llAKIABL.E ENTEKlNG 
AN lNTEGEk VAKIABL.E INDICATING ~HAT COMPONENT 
0F w 0K l. llAKIABL.E LEAVES fHE BASIS• 
SIMIL.AK TC NL.2 BUT INDICATES VArtlABL.E ENTEKING 
A SINGLY SUBSCr<lt'TED AKkAY C0NTAINING THE 
ELEMENTS OF THE TKANSF01<MED COLUMN THAT IS 
ENTEKING THE BASIS• 
AN INTEGE1< llAKIABL.E DEN0TING THE t'IVOT k0w AT 
EACH ITEr<ATION. AL.SO USED TO INDICATE TE~MINA
TION 0F A PR0BL.EM RY GIVING IT A VAL.UE Of 1000° 

MRASIS A SINGL.Y SUBSCKlt'TE0 Ar<KAY-INUICATOK F0K THE 
BASIC VAKIABL.ES· Two lNDICATOHS AKE USED F0K 
EACH BASIC VAKIABL.E-0NE INDICATING ~HETHEK 
IT IS A w 0K Z AND AN0THEH INDICATING wHAT 
COMPONENT 21F W 0i< Z. 

C NEAD IN THE llAL.UE 0f VAKIABLE Ii' INDICATING THE 
C NUMBEK o~·. f'KlilBL.EMS. T0 BF. SOLVED· 

HEAD<5o3> IP 
C VAKIABLE NO INDICAfE!:> THE CUKr<ENT t'K0BLEM BEING S0LllED 

N0=0 

c 

I NO=N0+1 
IF C~O·GToIP> G0 T0 5 
WKITEC612> NO 

2 F0KMAT CIHl1IOX1llHPK0BL.EM N001l2> 

C READ IN THE SIZE 0F THE MATRIX M 
HEAD<5•3> N 

3 F0i<"'IAT ( 12> 
C PROGHAM CAL.LING SEQUENCE 

CALI.. MATRIX <N> 
C PAkAMEIEN N INDICATF.S THE PKOBLEM SllE 

CALL. IN! TIA <N> 
C SINCE FOK ANY PK0BL.EM TEKMINATION CAN 0CCUK IN lNITIAo 
C NEWBAS 0K S0HT SUBk0UTINEoTHE VAL.UE OF IH IS MATCHED ~llH 
C 1000 T0 CHECK wHETHEK T0 CONTINUE 0K GO T0 NEXT PROBLEM· 

IF ClR.EQ.1000> G0 T0 I 
4 CALL NEWBAS <N> 

IF ClKoEQolOOO) G0 TO I 
CAL.L S0KT <N> 
IF CIH.EQ.1000> GO TO I 
CALL PIV0T CN> 
Ge TO 4 

5 STOP 
END 
SUBK0UTINE MATRIX CN> 

C PURPOSE - T0 INITIAL.llE AND NEAD IN THE VAl<IOUS INPUT DATA 
c 

C0MMON AM1QoLl1B1NLl1NL.20A1NEloNE20IK1MBASIS1W1Z 
DIMENSI0N AM<S01S0>1 QCSO>• BCS01SO>• A<SO> 
DIMENSl0N WCS0>1 ZCS0>1 ~BASISCIOO> 

C READ THE ELEMENTS OF M MATRIX C0LUMN BY C0LUMN 
D0 I J=l1N 

I READC512> CAM<I,J>1l•l1N> 
2 F0HMAT C7Fl0o5) 

C KEAD THE ELE"'IENTS 0F Q VECTOI'< 
kEADCS12> <O<l>1l=l•N> 

C IN ITEKATION loRASIS INVEKSE IS AN IDENTITY MATKIX· 
D0 5 J= I oN 

U0 4 I=loN 
IF cI.EQ.J> G0 TO 3 
BC11J>"O•O 
GO 'Hl 4 
BC 1.J>z1.o 

4 CONTINUE 
5 CONTINUE 

l{ETUKN 
END 
SUBROUTINE INITIA (N) 

C PURP0SE-T0 FIND THE INITIAL ALM0ST C0MPl..EMENTAkY S0LUTl0N 
C BY ADDING AN AHT!fICIAL VAttlABLE Z0• 
c 

C0MM0N AM,Q1L.l1B1Nl..l•NL.21A1NEl1NE21lk1MBASIS1W1Z 
DIMENS10N AMCS0150>• QC50>1 BC50150>1 A<50> 
DIMENSION w<SO>• Z<S0>1 MBASISCIOO> 

431-P 2-

C SET l.O EQUAL T0 THE M0ST NEGATl VE O< I> 
I=I 
J=2 

I IF CQ<I>.LEoQ(J)) GO T0 2 
1 .. J 

2 J=J+I 
IF (JoL[oN) G0 T0 I 

C Ui'UATE Q VECT0R 
If<zI 
Tia-QC 11<> 
IF CTl.L.E·O·O> GO 10 ~ 
D0 3 lzl oN 

WC I >=0C I> +Tl 
CONTINUE 

QC IK>=TI 
C UPDATE BASIS INVEKSE AND INDICATOK llECTOK 
C OF BASIC VARIABLES· 

D0 4 J= Io N 
RC J.I I<>=- I .O 
WCJ>=OCJ> 
zcJ>=o.o 
MRASIS<J>=I 
L=N+J 
MAASISCL>=J 
C0NTINUE 

NL.I =I 
L.=N+IK 
NL2,.IH 
.'1BASISC ln>=3 
MBASISCL>aO 
1.<11<>=0.o 
ZO=O<li<> 
L. I= I 

C PKINT THE INITIAL AL.MOST CCMt'L.FMENTAl'<Y SOLUTION 
WK I TE< 60 5> 

5 F0hMAT C3(/),5Xo29HINITIAL. AL.MOST CCMPL.EMENTAr<Y • 
I BHS0LUTI0N> 

D0 7 Izl 1N 
Wi<lTEC6o6) lo~JCI)· 

FC1<"1AT C 10Xo2HWC.I 4o2H>=• FI::;. S> 
CONTINUE 

l>t<ITE< 616> ZO 
8 FC!kMAT C10Xo3HL0=1Fl5o5> 

1<ETUKN 
9Wt<ITEC61IO> 

10 FORMAT C5X136Ht'KDBL.EM nAS A lKllllAL. COMPL.EMENTA~Y • 
I 23HS0LUTION WI Hi ~1=Gi1 l=O· > 

IK=IOOO 
KETUl<N 
END 
SUBr<eUTINE NF.wRAS CN> 

C t"UKPOSE - TO FIND THE NEW BASIS CCL.UMN T0 ENTEK IN 
C TE1<MS 0F THE CUHkENl BASIS. 
c 

COM..,(•N AM10ol.l1Bo NL.I. NL.21Ao NEI• NE2• IK1MBASI ::;, wo Z 
DIMENS10N AM<so.so>. ~(50>· ec~o.so>. ACSO> 
DIMENSION WC50>o l.(50>. MOASISCIOO> 

C IF :~LI IS NEITHEJ< I N0K 2 THEN THE VAKIABLE l.O L.EAVES THE 
c BASIS INDICATING TEKMINATION WITH A COMPl..EMENTAKr seLUTION 

IF CNLloEOol) G0 TB 2 
IF CNL.1.EG.2> G0 T0 5 
Wl<I TE< 60 I> 

I F0RMAT C5Xo22HCOMPL.EMENTAKY S0LU110Nl 
CAL.I.. PPKINT CN> 
IK=IOOO 
:<ETUK~ 

2 NE1=2 
NE2.,NL.2 

C UPDATE NE"' BASIC C0L.UMN BY MUL.1 IPL.YING BY BASIS INVEr<SE· 
D0 4 l=l •N 

Tl=O.O 
D0 3 J= I• N 

Tl=Tl-B(l,J>•AMCJoNE2> 
AC I >=Tl 
CONTINUE 

.~ETUkN 

S NEl=I 
NE2"Nl.2 
DO 6 l=loN 

AC I >=B< loNE2> 
CONTINUE 

t<ETURN 
END 
SUAK0UTINE S0rtT <N> 

C PURP0SE - T0 FIND THE PIVOT K01. FOk NEXT lTEr<AlICN BY THE 
C USE 0~ CSIMt'LEX-TYt'E> 1"1lNIMUM KAT10 r<ULE:• 
c 

C0MM0N AM. a. L. I 1 B. NL 1. NL.21 A. NE 1. Nl~2· IK1 MBA SI s.1 ... L 
DIMENSl0N AMC50o50>• ~<SO>• d(~Q,SO>• AC50> 
DIMENSION WCSO>• Z<SO>o MHASIS<IOO> 
1 .. 1 

I IF <A<I>.GT.o.o> GO TC 2 
I= l +I 
IF CioGToN) GO T0 6 
GO TO I 

2 Tl=OCl>/ACl) 
IR=l 

3 I=I+I 
IF <l·GToN) GO TO ::; 
IF CACl>.GT.o.o> GO re 4 
G0 T0 3 

4 T2•0<l>IA<l> 
IF CT2.GE.TI> G0 Te 3 
lk=l 
TlzT2 
G0 TO 3 

5 RETUi!N 
C FAIL.Ur<E 0F TH[ KATl0 KUL.E INDICATE::. TEHMINATl0N 1.ITH 
C N0 C0MPLEMFNTAHY SOLUTION. 

6 WKITE<6.7> 
7 FOkMAT C 5X1 37Ht"K01:ll.EM HA::. N0 C0.'11"l.EMENTAKY S0L.UTI ON> 

~1l<ITEC61>3l LI 
8 FORMAT <JOX113HITEKATlON N0 .. l4> 

11<• IOOO 
KETUJ(N 
END 

0 



COLLECTED ALGORITHMS (cont .. ) 

SUBrl0UTINE PIV0T CN> 
C PURPOSE - T0 f'Ekf"0RM THE PIVOl Or>E1~ATION DY UPUATING lHE 
C INVEkSE 0f" THE BASIS AND 0 \/ECTOK• 
c 

CeMMON AM. Q, L •• R. :llL 1. NL2. A. NE 1. NE2. lK• MEIASI s. w. t. 
DIMENSI0N AMC5Q,50>. w<SO>. 8<50.51)>. A<SO> 
DIMENSI0N wCSO>• t.CSO>• MBASISCIOO> 
00 I I=l •N 

B<IR.I>=BCIR.l>/AClR> 
Q(lR>=Q<lR>/A<lR> 
D0 3 I"' I• N 

If" Cl.EQ.IR> G0 T0 3 
QCl>=Q<l>-QClk>•A<l> 
D0 2 J= I .N 

B<l.J>•B<l.J>-B<IR.J>•A<I> 
2 C0NTINUE 
3 C0NTINUE 

C UPDATE THE INDICAHlk \/ECT0H 0f" BASIC vA1HABL.ES 
NLI =MBAS IS< HO 
L"N+IR 
NL2=MBASIS<L> 
MBASISCIR>aNEI 
MBASIS<L>•NE2 
Ll=Ll+I 
RETURN 
END 
SUBR0UTINE PPRINT CN> 

C PUkP0SE - T0 PRINT THE CUi<RENT S0LUTION T0 C0MPLEMENTARY 
C Pi<0BLEM AND THE ITERATION NUMBER· 
c 

C0MM0N AM.0.t.1.B.NLl•NL2.A.NEl·NE2·1K.MBASIS.w.z 
DIMENSION AMC50.SO>• QCSO>• B<SO.SO>• ACSO> 
DIMENSION WCSO>• Z<SO>• MBASISCIOO> 
~JRITE<6.I> LI 

I f"0RMAT CIOX.13HITERATl0N N0••I4> 
l=N+I 
J= I 

2 Kl•MBASIS<I> 
K2=MBASIS<J> 
If" CQ<J>.GE·O·O> GO T0 3 
Q<J> .. o.o 

3 If" <K2.EQ.I> G0 T0 5 
WRITE<6.4> Kl.O<J> 

4 f"0RMAT CIOX.2HZC.14.2H>=•Fl5•5> 
G0 T0 7 

5 WRITE<6•6> Kl,Q<J> 
6 f"0RMAT <IOX.2Hw<1I412H>=·f"IS·S> 
7 l=I +I 

J=J+I 
If" <J.LE•N> GO TO 2 
RETURN 
END 

Editor's note: Algorithm 432 described here is available on magnetic 
tape from the Department of Computer Science, University of 
Colorado, Boulder, CO 80302. The cost for the tape is $/6.00 (U.S. 
and Canada) or $18.00 (elsewhere). If the user sends a small tape 
(wt. less than I lb.) the algorithm will be copied on it and returned 
to him at a charge of $/0.00 (U.S. only). All orders are to be prepaid 
with checks payable to ACM Algorithms. The algorithm is re corded 
as one file of BCD 80 character card images at 556 B.P.l·, even 
parity, on seven track tape. We will supply the algorithm at a 
density of 800 B.P.I. if requested. The cards for the algorithm are 
sequenced starting at JO and incremented by 10. The sequence number 
is right justified in colums 80. Although we will make every attempt 
to insure that the algorithm conforms to the description printed here, 
we cannot guarantee it, nor can we guarantee that the algorithm is 
correct.-L.D.F. 

431-P 3- R2 

Remark on Algorithm 431 [HJ 
A Computer Routine for Quadratic and Linear Pro
gramming Problems [HJ [Arunachalam Ravindran, 
Comm. ACM 15 (Sept., 1972), 818J 

Arunachalam Ravindran [Recd. 12 Mar. 1973 J 
School of Industrial Engineering, Purdue University, 
West Lafayette, IN 47907 

A small error has been brought to my notice in this algorithm. 
The error is in defining the matrix M. It should read as 

M = (Q+Q' -A') 
A 0 . 

Remark on Algorithm 431 [HJ 
A Computer Routine for Quadratic and Linear Pro
gramming Problems [A. Ravindran, Comm. ACM 15 
(Sept. 1972), 818-820J 

L.G. Proll (Recd. 13 Aug. 1973) 
Centre for Computer Studies, University of Leeds, 
Leeds LS2 9JT, England 

Algorithm 431 is a Fortran implementation of Lemke's comple
mentary pivot algorithm [l ]. This algorithm has recently received a 
considerable amount of attention in the literature; in particular, 
there is some evidence that the algorithm is an attractive means of 
solving linear programs [2, 3) and can readily be modified to find 
stationary points of nonconvex quadratic programs [4]. 

Eaves (5) has shown that, in principle, degeneracy causes no 
problems in Lemke's algorithm and that it will always be possible 
to pivot the artificial variable out of the basis. In the presence of 
rounding error, however, this may no longer be true, and further 
pivoting may not be possible despite the presence of the artificial 
variable with a value close to zero. In such a case Algorithm 431 
may incorrectly arrive at the conclusion that the problem has no 
complementary solution because it only recognizes a complementary 
solution when the artificial variable leaves the basis. 

The difficulty can be avoided by: (a) testing whether the value 
assumed by the artificial variable is acceptably "small" if no further 
pivoting is possible; and (b) not pivoting on "small" elements. The 
problem of deciding what is meant by "small" in this context is one 
for which there is no adequate theory. Clasen [6] has, however, pro
posed some empirical rules for dealing with similar problems in the 
revised simplex algorithm, and an adaptation of these has proved 
satisfactory. The modifications of Algorithm 431 given below incor
porate Clasen's pivot tolerance to deal with point (b) above and 
also use this value as the upper limit on the acceptable value of the 
artificial variable. 

(i) In the subroutine IN/TIA, add /ZR to the end of the COMMON 
list and insert after the statement labeled 4, the statement 

IZR =IR 

(ii) In the subroutine SORT, add /ZR to the end of the COMMON 



COLLECTED ALGORITHMS (cont.) 

list and 
(a) after the second DIMENSION statement, insert 

AMAX= ABS(A(l)} 
DO 101=2,N 

IF (AMAX.GE.ABS(A(l))) GOTO 10 
AMAX =ABS(A(I)) 

10 CONTINUE 
TOL =AMAX*2.0** (-NB) 

C IN ANY ACTUAL IMPLEMENTATION NB SHOULD BE RE-
C PLACED BY B -11 WHERE B IS THE NUMBER OF BITS IN 
C THE FLOATING POINT MANTISSA AS CLASEN SUGGESTS 

(b) Replace 0.0 by TOL in the statement labeled 1 and in the 
statement two lines before that labeled 4. 

(c) Replace the label 6, occurring two lines before the statement 
labeled 2, by 9. 

(d) Immediately after RETURN, insert the statements, 

9 IF(Q(IZR).GT.TOL) GOTO 6 
WRITE(6,ll) 

11 FORMAT(5X,22HCOMPLEMENT ARY SOLUTION) 
CALL PPRINT(N) 
IR=IOOO 
RETURN 

References 
1. Lemke, C.E. Bimatrix equilibrium points and mathematical 
programming. Management Sci. 11 (1965), 681-689. 
2. Ravindran, A. Computational aspects of Lemke's comple
mentary algorithm applied to linear programs. Opsearch 7 (1970), 
241-262. 
3. Ravindran, A. A comparison of the primal simplex and 
complementary pivot methods for linear programming. Naval 
Res. Log. Q. 20 (1972), 95--100. 
4. Eaves, B.C. On quadratic programming. Management Sci. 
17 (1971), 698-711. 
S. Eaves, B.C. The linear complementarity problem. Management 
Sci. 17 (1971), 612-634. 
6. Clasen, R.J. Techniques for automatic tolerance control in 
linear programming. Comm. ACM9 (1966), 802-803. 

431-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 432 

Solution of the Matrix 
Equation AX+ XB = C [F4] 
R.H. Bartels and G.W. Stewart [Recdl. 21 Oct. 1970 
and 7 March 1971] 
Center for Numerical Analysis, The University of Texas 
at Austin, Austin, TX 78712 

Key Words and Phrases: linear algebra, matrices, linear equa
tions 

CR Categories: 5.14 
Language: Fortran 

Description 
The following programs are a collection of Fortran IV sub

routines to solve the matrix equation 

AX+ XB = C (1) 

where A, B, and Care real matrices of dimensions m X m, 11 X n, 
and m X n, respectively. Additional subroutirnes permit the efficient 
solution of the equation 

(2) 

where C is symmetric. Equation (1) has applications to the direct 
solution of discrete Poisson equations (2]. 

It is well known that (I) has a unique solution if and only if the 
eigenvalues a1 , a2 , ... , am of A and /31 , /32 , ... , f3n of B satisfy 

ai + /3; ~ 0 (i = 1, 2, ... , m;j = 1, 2, .· .. , n). 

One proof of the result amounts to constructiing the solution from 
complete systems of eigenvalues and eigenvectors of A and B, when 
they exist. This technique has been proposed as a computational 
method (e.g. see (1]); however, it is unstable when the eigensystem 
is ill conditioned. The method proposed here 1is based on the Schur 
reduction to triangular form by orthogonal similarity transforma
tions. 

Equation (1) is solved as follows. The matrix A is reduced to 
lower real Schur form A' by an orthogonal similarity transforma
tion U; that is A is reduced to the real, block lower triangular form. 

0 

A~1 A~2 A~P 
where each matrix A;i is of order at most two. Similarly Bis reduced 

This research was supported in part by Grant DA-ARO(D)-
31-124-G721, Army Research Office, Durham, and by National 
Science Foundation Grant GP-5253 awarded to The University 
of Texas at Austin. 

432-P 1-- 0 

to upper real Schur form by the orthogonal matrix V: 

B~1 B~2 B'.,l 
B~2 B2q 

B' = VTBV = 

BJ 0 

where again each B;i is of order at most two. If 

[

c··.-1

1

1

1 
c' = uTcv = 

Cp1 

c.,l 
Cpq 

and 

[

x;1 

X' = urxv = :, 

Xp1 

. x.,l · 
Xpq 

then eq. (I) is equivalent to 

A'X' + X'B' = C'. 

If the partitions of A', B', C', and X' are conformal, then 

(k=l,2,···,p; 1=1,2,···,q). 
(3) 

These equations may be solved successively for X~1 , X~1 , ... , X],1 , 
X~2 , X~2 , ... The solution of (1) is then given by X = UX' vr. 

The reduction of A and B to real Schur form is accomplished by 
standard techniques. The matrix Bis reduced to upper Hessenberg 
form by Householder's method (4, p. 34], and the upper Hessenberg 
matrix is in turn reduced to real Schur form by the QR algorithm 
(3]. The product of the transformations used in the reductions is 
accumulated to form the matrix V. The reduction of A to lower real 
Schur form is accomplished by reducing the transpose of A to upper 
real Schur form and transposing back. 

Since the QR algorithm is an iterative method that, as used here, 
reduces the subdiagonal elements of an upper Hessenberg matrix to 
zero, some criterion must be adopted for determining: when an ele -
ment is negligible. In these programs an element of H is considered 
negligible if it is less than or equal to EH II H lloo where EH is a con
stant supplied by the user. This criterionis appropriate if the ele 
ments of Hare all of roughly the same size. A different criterion may 
be required if the elements vary widely and the small elements are 
significant, as when the elements decrease greatly in size as one 
passes from the upper left to the lower right comers of A (see, for 
example, the criterion in (3]). 

The solution for X~1 in (3) still requires the solution of a matrix 
equationofthe form (1). However, in thiscasethe matrices A~kand 
B;1 are of order at most two; hence the solution of (3) can be ob
tained by solving a linear system of order at most four. For example, 
if A~k and B;1 are both of order two, then 

a12 
a;2 + a;1 

0 
b;2 

b~1 
0 

a;1 + b;2 
a21 



COLLECTED ALGORITHMS (cont.) 

where a:,., b:,., and x:; denote the elements of A~k, B;i, and Xi~ 
and d;; denotes the elements of the right-hand side of (3). The sys
tems arising from (3) are solved using the Crout reduction. Once 
calculated, the solution X~i may be stored in the locations occupied 
by Cki , which is no longer needed. 

The programs contain provisions for skipping the reduction of 
A to real Schur form, so that once A' and U have been calculated 
they may be used to solve new systems with different matrices B and 
C. Likewise, the reduction of B may be skipped. These provisions 
may be used to advantage in the iterative refinement of the com
puted solution X1 of (1). Namely, let the residual matrix R1 = C -
AX1 - X1B be computed in double precision and rounded to single 
precision (on many computers this may be done with single-pre
cision multiplications and double-precision additions). Use the pro
grams to solve the system A Y1 + YiB = R1 . Then X2 = Xi + Y1 
will in general be a more accurate approximate solution. This 
process may be iterated, no step after the computation of Xi re
quiring reductions of A and B. This iteration is perfectly analogous 
to the iterative refinement of approximate solutions of linear sys
tems described by Wilkinson [4, p. 255]. 

The following trick enables one to use an upper rather than a 
lower real Schur form of A in the solution of (I). Let D be the ma
trix with ones on the secondary diagonal and zeros elsewhere. Then 

(DAD)DX + DXB = DC. (4) 

Moreover, if A' = UT AU is an upper real Schur form for A, then 
DA'D = (DUD)T(DAD)(DUD) is a lower real Schur form for 
DAD. Hence to calculate DX, which is X with its rows written in re
verse order, one may use the above algorithm with DA'D and DUD 
to solve (4). A similar trick enables one to use a lower real Schur 
form for B. 

In principle, the algorithm described above can be used to solve 
the symmetric problem (2). However, it is pcssible to take advantage 
of the symmetry. Let U be orthogonal and A' = UT AU be in upper 
real Schur form. Partition A', C' = UTCU, and X' = UTXU in the 
form 

A 1 = [Adi ~i:J ' 
X' [X!1 X~f J , 

Xu X22 

C' [C~1 C~{ J , 
C21 C22 

where A~ 1 , X~ 1 , and C~1 are at most of order 2. Then from the equa
tion A'TX' + X'A' = C', it follows that 

A~[ X~2 + X~2A~2 = C~2 - X~1A;2 - A;[ X~1. 
Hence, once x;1 and X~ 1 have been calculated, the size of the prob
lem can be reduced. 

The matrix X~ 1 is computed as described above for the general 
case. The matrix x;1 satisfies the symmetric equation 

A;; x;1 + x;iA;i = c;1 , (5) 

whose solution is trivial when A;1 is of order unity. When A;1 is of 
order two, equation (5) gives a !1ew linear system of order three for 
the three distinct elements of Xu . 

A mild saving in operations may be realized in the computation 
Of C' = UTCU and x = UX'UT. Let c = T + TT, where Tis 
upper triangular. Then 

C' = UTCU = UTTU + (UTTU)T. 

Thus one need calculate only UTTU, and, since T is upper tri
angular, the product TU can be computed with about half the 
operations required for the computation of CU. 

The number of multiplications required for the solution of (1) 
is probably overestimated by 

5 
(2 + 4u)(m3 + n3) + - (mn2 + nm2

) 
2 

432-P 2- 0 

where" is the average number of QR steps required to make a sub
diagonal element negligible. The first term is due to the reduction of 
A and B to real Schur form. A like estirna1te for the solution of (2) is 
given by 

7 
(2 + 4u)n3 + 2 n3 ; 

the first term is again due to the reduction of A to real Schur form. 
To solve the nonsymmetric problem, the user must furnish 

2m2 + 2n2 + mn storage locations to hold the matrices A, U, B, V, 
and C. If A, B, and C are required for latt~r use, they must be stored 
elsewhere, since the programs overwrite A and B with their real 
Schur forms and C with the solution. Tine symmetric problem re
quires 3112 locations to ho1d A, U, and C. 

In assessing the effects of rounding error on the algorithm, we 
should consider the algorithm stable if the computed solution were 
near a matrix X that satisfied 

(A+E)X + X(B+F) = C + G 

for some small E, F, and G. We are unablie to establish such a result. 
However, an- elementary rounding error analysis, combined with 
the known properties of the other algorithms used in the method, 
shows that the residual matrix is small compared with the larger of 
11 A 11 11 x 11 and II B II !I x 11. 

Here follows a brief description of the programs listed below. 
Detailed information on their use will be found in the program list
ings themselves. The casual user need only familiarize himself with 
the programs AXPXB and ATXPXA, which coordinate the other 
programs for the solutions of (1) and (2), respectively. 

AXPXB. The coordinating program for the solution of (1). 
Given A, Band C the program overwrites C with the solution X. 
The lower real Schur form of A overwrites A, and the upper real 
Schur form of B overwrites B. The user may furnish the real Schur 
forms and skip the reductions. The subroutine requires the subrou
tines HSHLDR, BCKMLT, SCHUR, SHRSLV, and SYSSLV. 

ATXPXA. The coordinating program for the solution of (2). 
Given A and C the program overwrites C with the solution X. The 
upper real Schur form of A overwrites A. The user may furnish the 
real Schur form and skip the reduction. The subroutine requires 
the subroutines HSHLDR, BCKMLT, SCHUR, SYMSLV, and 
SYSSLV. 

HSHLDR. Reduces a matrix A to upper Hessenberg form. The 
upper Hessenberg form and a history of the transformations over
write A. 

BCKMLT. Takes the output A of HSHLDR and computes 
the orthogonal matrix U that reduces the original matrix A to 
upper Hessenberg form. At the user's option the elements of U 
can overwrite A. 

SCHUR. Computes an upper real Schur form of an upper 
Hessenberg matrix A. SCHUR is an adaptation of thel Agol pro
cedure hqr by Martin, Peters, and Wilkinson [l ]. The product of 
the transformations used in the reduction is accumulated. SCHUR 
leaves undisturbed the elements below the third subdiagonal of the 
array containing A. (N.b. The modifications made in hqr to find a 
real Schur form make SCHUR an inefficient program for calculat
ing the eigenvalues of an upper Hessenberg matrix.) 

SHRSLV. Solves an equation of the form (1), where A is in 
lower real Schur form and Bis in upper real Schur form. 

SYMSLV. Solves an equation of the form (2), where A is in 
upper real Schur form. 

S YSSLV. Solves a system of lineair equations. 
When m ;:::: n, AXPXB can be modified so that the real Schur 

forms of A and B share the storage originally allocated to A and the 
matrix V occupies the locations occupied by B. The modifications 
are as follows. Replace the section labeled "IF REQUIRED, 
REDUCE B TO UPPER REAL SCHUR FORM" with 
35 IF(EPSB .LT. 0.) GO TO 45 

CALL HSHLDR (B, N, NB) 



COLLECTED ALGORITHMS (conlt.) 

DO 40 I= 1, N 
IF (I .NE. 1) A(l, 1+4) B(l-1, Nll) 
DO 40 J =I, N 

A(I, J+5) = B(I, J) 
40 CONTINUE 

CALL BCKMLT(B,B,N,NB,NB) 
CALL SCHVRA(l,6),B,N,NA,NB,EPSB,.FAIL) 
FAIL= -FAIL 
IF(FAIL .NE. 0) RETURN 

In the sections labeled "TRANSFORM C" and "TRANSFORM 
C BACK TO THE SOLUTION" replace all occurrences of the 
variable V with B and all references to A(l,Ml) with A(Ml,l). 
Change the call to SHRSLV to 

CALL SHRSLV(A,A(l,6),C,M,N,NA,NA,NC). 

Note that in this modification the reduction of B to real Schur 
form cannot be skipped without also skipping the reduction of A. 
When m ~ 11 a similar modification can be ma.de to store the Schur 
form of A and B together in B. 

References 
1. Bickley, W.G. and McNamee, J. Matrix and other direct 
methods for the solution of systems of linear difference equations. 
Philos. Trans. Roy. Soc. (London) Ser. A, 252 (1960), 69-131. 
2. Dorr, Fred W. The direct solution of the discrete Poisson 
equation on a rectangle. SIAM Rev. J 2 (1970), 248-263. 
3. Martin, R.S., Peters, G., and Wilkinson, J.H. The QR 
algorithm for real Hessenberg matrices. (Handbook series 
linear algebra.) Numer. Math. 14 (1970), 219-231. 
4. Wilkinson, J.H. The Algebraic Eigenvalue Problem. Clarendon, 
Oxford, 1965. 

Algorithm 

c 

SUBR0UTINE AXPXBCA1U1M1NA1NU1B1V1N1NB1NV1C1NC1EPSA1 
IEPSB,FAIL> 

C AXPXB IS A F0ttTRAN IV SUBR0UTINE T0 S0LVE THE REAL MATRIX 
C EQUATION AX + XB - c. THE MATHICES A AND B ARE TRANS-
C FORMED INT0 REAL SCHUK F0RM1 AND THE TRANSF0RMED SYSTEM IS 
C S0LVED BY BACK SUBSTITUTl0N• THE PR0GRAM REQUIRES THE 
C AUXILIARY SUBR0UTINES HSHLDR1 BCKMLT1 SCHUR, AND SHRSLV• 
C THE PARAMETERS IN THE ARGUMENT LIST ARE 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

A 

u 

M 
NA 
NU 
B 

N 
NB 
NV 
c 

NC 
EPSA 

EPSB 

FAIL 

A 00UBLY SUBSCRIPTED ArtRAY C0NTAINING THE 
MATRIX A. 0N RETURN. THE L0WER TRIANGLE 
AND SUPERDIAG0NAL 0F THE ARRAY A C0NTAIN 
A L0WER REAL SCHUR F0RM OF A. THE ARRAY 
A MUST BE DIMENSl0NED AT LEAST M+I BY 
M+I • 
A D0UBLY SUBSCRIPTED ARRAY THAT, 0N 
RETURN, C0NTAINS THE 0HTH0G0NAL MATRIX 
THAT REDUCES A T0 REAL SCHUR r0RM· 
THE 0RDER 0F THE MATRIX A, 
THE FIRST DIMENSI0N 0F THE ARRAY A. 
THE FIRST DIMENSI0N 0F THE ARRAY u. 
A D0UBLY SUBSCHIPTED ARRAY C0NTAINING THE 
MATRIX B. 0N RETUim. THE UPPEfc TRIANGLE 
AND SUBDIAG0NAL OF THE ARRAY B C0NTAIN AN 
UPPER REAL SCHUR F0RM 0r B. THE ARRAY B 
MUST BE DIMENSIONED AT LEAST M+l BY M+J, 
A D0UBLY SUBSCRIPTED ARRAY THAT. 0N 
HETURN. C0NTAINS THE 0RTH0G,0NAL MATRIX 
THAT REDUCES B T0 REAL SCHU~ F0RM. 
THE 0RDER 0F THE MATRIX B. 
THE FIRST DIMENSI0N 0r THE ARRAY B· 
THE FIRST DIMENSl0N 0F THE AkRAY V~ 
A D0UBLY SUBSCRIPTED ARRAY 1C0NTAIN1NG THE 
MATRIX C. 0N RETURN. C CON'fAINS THE 
S0LUTl0N MATRIX x, 
THE rIRST DIMENSI0N 0r THE ARRAY c. 
A CONVERGENCE CRJTERl0N F0R THE REDUCTl0N 
0F A T0 SCHUK F0RM· EPSA SH0ULD BE SET 
SLIGHTLY SMALLER THAN 10·••<-N>. WHEHE N 
IS THE NUMBrn 0F SIGNIPICAN'f DIGITS IN 
THE ELEMENTS 0r THE MATRIX A. 
A C0NVERGENCE CRITERION F0k THE REDUCTI0N 
0F B T0 REAL SCHUR F0RM· 
AN INTEGEI< VARIABLE THAT. 0N RETURN. 
C0NTAINS AN ERR0R SIGNAL. IF FAIL IS 
P0SITIVE <NEGATIVE> THEN THI:: PR0GkAM WAS 
UNABLE T0 REDUCE A CB> T0 Rl::AL SCHUH 
F0RM. IF FAIL IS ZER0. THE HEDUCTI0NS 
PR0CEEDED WITH0UT MISHAP. 

WHEN EPSA IS NEGATIVE THE REDUCTl0N 0F A T0 HEAL SCHUf< 
F0RM IS SKIPPED AND THE ARRAYS A ANO U ARE ASSUMED T0 

432-P 3-

C C0NTAIN THE SCHUR F0RM AND ACC0MPANYING 0RTH0G0NAL MATHIX. 
C THIS PERMITS THE EFFICIENT S0LUTl0N 0F SEVERAL £QUATl0NS 
C 0F THE F0RM AX + BX = C WHEN A D0ES N0T CHANGE. LIKEwlSE. 
C IF EPSB IS NEGATIVE. THE REDUCT10N 0F B HJ REAL SCHUR F0RM 
C IS SKIPPED· 
c 

c 

REAL 
IACNA.l>•UCNU.1>.BCNB•l>•VCNV.l>•CCNC.l>•EPSA.EPSB.TEMP 

INTEGER . 
IM. NA. NU. N·NB. NV. NC. FAIL.Ml. MM 1. NI. NM 1. I. J. K 

Ml = M+I 
MMI = M· I 
NI = N+I 
NMI = N-1 

C IF REQUIRED. REDUCE A T0 UPPER HEAL SCHUR F0RM. 
c 

c 

IFCEPSA ·LT. Q,) GO T0 35 
D0 10 l=l1M 

D0 I 0 J=I•M 
TEMP = ACl.J> 
AC I•J> = ACJ1 I> 
ACJ.I> = TEMP 

10 C0NTINUE 
CALL HSHLDRCA.M.NA> 
CALL BCKMLTCA.U.M,NA.NU> 
IFCMMI 0 EQ. O> G0 T0 25 
D0 20 I=l.MMI 

ACl+l•I> = ACl.Ml> 
20 C0NT1NUE 

CALL SCHURCA.U.M.NA1NU1EPSA,FAIL> 
IFCFAIL oNEo O> RETURN 

2 5 00 30 I= I• M 
D0 30 J=I.M 

TEMP = AC I, J> 
.ACl1J) ACJ,I> 

ACJ• I> = TEMP 
30 C0NTINUE 

IF REQUIRED• HEDUCE B T0 UPPER HEAL SCHUR F0RM. 

35 IFCEPSB .LT. Q,) G0 T0 45 
CALL HSHLDRCB.N.NB> 
CALL BCKMLTCB1V1N1NB1NVl 
IFCNMI oEQ. O> G0 T0 45 
D0 40 I" 1 •NM I 

BCI+l•l> =SCI.NI> 
40 C0NTINUE 

CALL SCHURCB.V.N.NB.NV.EPSB.FAIL> 
FAIL = -FAIL 
IFCFAIL .NE. O> RETURN 

C TRANSF0RM c. 
c 

c 

45 D0 60 J=l1N 
D0 50 I= 1.M 

AC l•MI > = O. 
D0 50 K= [,M 

ACl1MI> = AC11MI> + UCK.l>•CCK,J> 
50 C0NTINUE 

D0 60 I= l •M 
CCl1J> = ACl.MI> 

60 C0NTINUE 
D0 80 l=l1M 

D0 70 J=l•N 
BCNl.J> = O. 
00 70 K= J ,N 

BCNl1J> " B<Nl•J> + CCl1K>•VCK.J> 
70 C0NTINUE 

D0 80 J•l1N 
CCl.J> = BCNl.J> 

80 C0NTINUE 

C S0LVE THE TRANSF0RMED SYSTEM. 
c 

CALL SHRSLVCA.B.c.M.N.NA.NB.NC> 
c 
C TRANSF0RM C BACK T0 THE S0LUTI0N· 
c 

D0 100 J=l 1N 
D0 90 l=l1M 

AC I1MI > = 0• 
00 90 K" 1.M 

ACI.Ml> = ACl1MI> + U<I•K>•CCK.J> 
90 C0NTINUE 

D0 100 I= I 1M 
CC l•J> " AC I.Ml> 

100 C0NTINUE 
D0 120 I•l•M 

D0 110 J•l•N 
BCNl•J> = O. 
00 110 K=l•N 

BCNJ,J) = BCNl.J> + CCI1K>•VCJ,K> 
110 C0NTINUE 

D0 120 J•l•N 
cc1.J> • BCNl.J) 

120 C0NT1NUE 
RETURN 
END 
SUBR0UTINE SHRSLVCA.e.c.M.N.NA.NB.NC> 

C SHRSLV IS A r0RTRAN IV SUBR0UTINE T0 S0LVE THE REAL MATRIX 
C EQATI0N AX + XB • C. WHERE A IS IN L0WER REAL SCHUR F0RM 
C AND B IS IN UPPER REAL SCHUR F0RM. SHRSLV USES THE AUX• 
C ILIARY SUBR0UTlNE SYSSLV• WHICH IT C0MMUNICATE~i WITH 
C THR0UGH THE C0MM0N BL0CK SLVBLK. THE PARAMETEf;tS IN THE 
C ARGUMENT LIST ARE 
C A A D0UBLY SUBSCRIPTED ARRAY C0NTAINING THE 
C MATRIX A IN L0WER REAL SCHUR F'0RM· 
C B A 00UBLY SUBSCRIPTED ARRAY C0NTAINING THE 
C MATRIX B IN UPPER REAL SCHUR F0RMo 
C C A 00UBLY SUBSCRIPTED ARRAY C0NTAINING THE 
C MATRIX C. 
C H THE 0RDER 0F THE MATRIX Ao 

0 



COLLECTED ALGORITHMS (cont.) 

c 
c 
c 
c 
c 

c 

10 

IS 

20 
30 
40 

45 

so 
60 

70 

80 

90 

N THE 0ROER 0F THE MATRIX B. 
NA THE FIRST OIMENSl0N 0F THE ARRAY A. 
NB THE FIRST OIMENSl0N 0F THE ARRAY B· 
NC THE FIRST DIM£NSl0N 0F THE ARRAY c. 

REAL 
IA<NA,1>,B<NB,1>.C<NC.!),T,P 

INTEGER 
IM•N.NA.NB.NC.K.KMt.DK.KK.t..l.Mt.Dl..1.1..l.IB.J.JA.NSYS 
C0MM0N/Sl.VBLK/TCS,S),p(5),NSYS 
I. = I 

I.Ml = I.- I 
DI. = I 
IF<L .£Qo N> G0 T0 IS 
IF<BCL+l•L> ·NE· Q. > DI.. = 2 
LL = l.+DL-1 
IFCL .£Q. I> G0 10 30 
D0 20 J=L•LL 

D0 20 l=l•M 
D0 20 IB=t.LMI 

C<l•J> "' C<I,Jl - C<I.IB>•B<IB,Jl 
C0NTINU£ 
K = I 

KMI = K-1 
DK = I 
lFCK .EQ, M> G0 10 45 
IF<A<K•K+l > ·NE• Q.) DK 2 
KK = K+DK-1 
IFCK .EQ. I> G0 T0 60 
00 50 l=K,KK 

D0 50 J=l..1.1. 
D0 50 JA= I• KM I 

CCl,J> = C<l•Jl - ACI,JA>•C<JA,J> 
C0NTINUE 
lFCDI. .EQ. 2> G0 T0 80 
IFCDK .EQ. 2> G0 T0 70 
TCl.ll = ACK.K> + B<L•L> 
IFCTCI, I> .EQ• Q, > ST0P 
C<K•L> = CCK,Ll/TCl,ll 
G0 T0 100 
TC 1'1 > ACK.K> + 
TC I •2> = ACK.KK> 
TC2.1 > = ACKK,K) 
rc2.2> = A<KK,KK> 
PC!> CCK,Ll 
PC2> = C<KK,Ll 
NSYS = 2 
CALL SYSSLV 
GCK,L> = PCI> 
GCKK,L> = PC2l 
Gtl T0 100 

B<L.I.> 

.. 8(1.,L> 

IFCDK .EQ. 2> G0 T0 90 
TCl•I> A<K,K> + EJ<L,L> 
TCl,2> = BCLL•L> 
TC2, I> = BCl.,LLl 
rc2.2> = ACK.Kl + BCLL·LL> 
P< I> CCK,L> 
PC2> = CCK,LL> 
NSYS = 2 
GALL SYSSLV 
GCK,L> = PC I> 
GCK.LL> = PC2l 
G0 T0 100 
T<l, I l ACK, Kl + 
TC 1.2> ACK,KK> 
TC 1·3l B<LL•L> 
TC 1, 4) o. 
TC2'1 > ACKK,K> 
TC2.2> ACKK,KKl 
TC2. 3> o. 
TC2. 4> TCI, 3> 
TC3.t > BCL,LL> 
TC 3,2 l o. 
TC 3, 3> ACK, Kl + 
TC 3, 4) TC 1.2> 
TC 4, I> 0. 
TC 4, 2 > TC 3.t l 
TC 4, 3 > TC2, I> 
TC 4, 4) .l\CKK,KKl 
PC I> G<K,Ll 
PC2> CCKK,Ll 
PC3> CCK,LL> 
PC4l CCKK,LL> 
NSYS 4 
CALL ;;YSSLV 
CCK,t.> = PC I> 
CCKK,Ll = PC2> 
CCK1LLl = PC3l 
CCKK,LL> = PC4> 

B<L,L> 

+ BCL.L> 

BCLL•LLl 

+ BCLL,LL> 

I 00 K = K + DK 
IFCK ·LEo Ml G0 T0 40 

L = L + DL 
lFCL .LE. N> GO T0 10 
RETURN 
F.:ND 

SUBR0UTINE ATXPXACA.u.c.N.NA,NU.NC.EPS.FAIL> 

C ATXPXA IS A F0RTkAN IV SUBROUTINE T0 StlLVE THE HEAL MATRIX 
C EOUATI0N TRANSCAl*X + X•A a C• WHERE C IS SYMMETRIC AND 
C TRANSCA> DEN0TES THE TRANSP0SE 0F A. THE EQUATI0N IS 
C THANSF0RMED S0 THAT A IS IN UPP~R HEAL SCHUR F0KM, ANO THE 
C TRANSF0RMED EQUATieN IS StlLVED BY A RECURSIVE Pr<0CEDURE· 
C THE Pk0GRAM REQUIRES THE AUXILIARY SUBR0UTINES HSHLDR, 
C BCKMLT, SCHUH, AND SYMSLV· THE PARAMETERS IN THE ARGUMENT 
C LIST ARE 
c 
c 
c 

c 
c 
c 

A 

u 

A D0UBLY SUBSCKIPTED AHRAY C0NTAINING THE 
MATRIX A. 0N RETURN, THE UPPEK T~IANGLE 

AND THE Fll~ST ::>UBDIAG0NAL 0F THE Ar<r<AY A 
CONTAIN AN UPPER REAL SCHUR F0RM 0F A. 
THE ARr<AY A MUST BE Dl~ENSIONED AT LEAST 
N+I BY N+I. 
A D0UBLY SUBSCRIPTED ARRAY THAT, 0N 
RETURN, C0NTAINS THE 0RTH0G0NAL MATRIX 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

N 
NA 
NU 
NC 
£PS 

FAIL 

432-P 4-

THAT REDUCES A T0 UPPER HEAL !>CHUH F0HM 0 

A DOUBLY SUBSCRIPTED ARRAY C0NTAlNING THE 
MATRIX c. 0N RETURN, C C0NTAINS THE 
S0LUTl0N MATRIX Xo 
THE 0RDER 0F THE MATRlX A. 
THE FIRST DIMENS10N 0~ THE ARHAY A· 
THE FIRST DIMENSl0N 01• THE AHRAY u. 
THE FIRST DIMENSI0N 0F THE ARRAY C· 
A C0NVERGENC£ CRITERI0N FtlR THE REDUCTl0N 
0F A T0 REAL SCHUR F0HM• £PS SH0ULD BE 
SET SLIGHTLY SMALLER THAN 10·*•<-N>. 
wHEHE N IS THE NUMBER 0F SIGNIFICANT 
DIGITS IN THE ELEMENTS 0F THE MATHIX A. 
AN INTEGER VARIABLE THAT, 0N RETURN• 
C0NTAINS AN EHR0R SIGNAL• IF FAIL IS 
N0NZER0• THEN THE PROGRAM ~IAS UNABLE T0 
REDUCE A T0 REAL SCHUH F0RM • H- FAIL I;; 
ZER0, THE REDUCTl0N PR0CEEOED WlTH0UT 
MISHAP. 

C WHEN EPS IS NEGATIVE, THE REDUCTl0N 0F A T0 HEAL SCHUR 
C •0RM IS SKIPPED AND THE ARRAYS A AND U AHE ASSUMED T0 
C C0NTAIN THE SCHUR F0RM AND ACC0MPANYING 0RTH0G0NAL MATRIX. 
C THIS PiRMITS THE EFFICIENT S0LUTl0N 0F SEVERAL £QUAT10NS 
C WITH DIFFERENT RIGHT HAND SIDES· 
c 

G 

REAL 
IACNA, I >.U<NU, I >.C<NC, I »EPS 

INTEGER 
IN•NA,NU,NC,FAIL,Nl,NMl•l•J,K 

NI " N+I 
NMI = N-1 

C IF REQUIRED, REDUCE A T0 L0wER REAL SCHUH F0HM· 
c 

c 

IFCEPS .LT• O.> G0 Ttl 15 
CALL HSHLDRCA,N,NA> 
CAL~ BCKMLT<A•U•N,NA,NU> 
D0 10 I= 1,NMI 

ACI+l,1> = A<I,NI> 
10 CONTINUE 

CALL SCHUHCA,u,N,NA,NU,EPS,FAIL) 
IFCFAIL .NE• O> RETURN 

C TRANSF0RM C. 
c 

c 

I 5 00 20 I= t, N , 
Cc 1, I > = C < 1, l > 12. 

20 C0NTINU£ 
D0 40 l= 1,N 

D0 30 J= I ,N 
ACNl,Jl = o. 
D0 30 K=I,N 

A<Nl,J> = ACNl,J> + CCI,K>•UCK,J> 
30 C0NTINUE 

D0 40 J= I •N 
C<I,Jl = A<Nl,J> 

40 C0NTINUE 
D0 60 J=!,N 

D0 50 I= I ,N 
ACl,NI> = 0• 
D0 50 K= J ,N 

A<I,NI> = ACl,Nll + UCK,Il*CCK,J> 
50 C0NTINUE 

D0 60 I= 1, N 
C<I,J> = A<l,Nll 

60 C0NTINUE 
D0 70 l=l,N 

D0 70 J=l,N 
C<I,J> C<I,J> + C<J,I> 
C<J, I> = C<I,J> 

70 C0NTINUE 

C S0LVE THE TRANSF0RMED SYSTEM· 
c 

c 

CALL SYMSLVCA,C,N,NA,NC> 

TRANSF0RM C BACK T0 THE S0LUT10N. 

D0 80 l=t,N 
Cc I , I > = CC I , I > /2 • 

80 C0NTINU£ 
D0 100 I= 1, N 

D0 90 J=l•N 
A<Nl,Jl = o. 
D0 90 K=I,N 

ACNl,J> " ACNl,J> + Ccl,K>~U<J•K> 
90 C0NTINUE 

D0 100 J=l,N 
CCl,J> = ACNl,J> 

100 C0NTINU£ 
D0 120 J= 1, N 

D0 110 l= I ,N 
AC I,NI > = Q. 

D0 110 K= I• N 
ACI,Nll = A<I,Nll + U<I1K»~CCK,J> 

110 C0NTINUE 
D0 120 I= I, N 

C<I,J> = A<I,Nll 
120 C0NTINUE 

00 130 I= 1,N 
D0 130 J= I, N 

C<I,J> C<I,J> + C<J.X> 
CCJ.Xl = C<l•J> 

130 C0NTINUE 
RETURN 
END 
SUBR0UTINE SYMSLV<A•C•N,NA,NC> 

C SYMSLV IS A F0RTRAN IV SUBR0UTIN£ T0 S0LVE THE REAL MATRIX 
C EQUATl0N TRANS<A>•X + X*A = c, WHERE C IS SYMMETRIC, A IS 
C IN UPPER REAL SCHUR F0RM1 AND TRANSU\l DEN0TES THE TRANS
C P0SE 0F A. SYMSLV USES THE AUXILIARY SUBR0UTIN£ SYSSLV• 
C WHICH IT C0MMUNICATES WITH THR0UGH THE C0MM0N Bl.0CK 

0 



COLLECTED ALGORITHMS (cont.) 

C SLVBLK. 
c 

THE PARAMETERS IN THE ARGUMENT LIST ARE 
A A D0UBLY SUBSCRIPTED ARRAY C0NTAINING 

MATRIX A IN UPPER REAL SCHUR F0RM. c 
c 
c 
c 
G 
G 
c 

REAL 

A D0UBLY SUBSCRIPTED ARRAY C0NTAINING 
MATRIX C. 

N THE 0RDER 0F THE MATRIX A. 
NA THE FIRST DIMENSI0N 0F THE AKRAY A. 
NC THE FIRST DIMENSI0N 0F THE AHHAY C. 

I AC NA, I >. CC NC, I » T, P 
INTEGER 

IN1NA,NC1K1KK1DK1KMl1L1LL1DL1LDL1l•IA1J1NSYS 
C0MMON/SLVBLK/TC515l1PC5l1NSYS 
L = I 

10 DL = I 
I F<L .EQ. Nl G() T0 20 
IF< A< L +I 1 L l • NE. 0. > DL 

20 LL = L+DL-1 
K = L 

30 KMI = K-1 
DK = I 
IF<K .EQ. Nl G0 T0 35 
IF<ACK+l1Kl .NE. O.l DK 

35 KK = K+DK-1 
IF<K .EQ. Ll G0 T0 45 
D0 40 I=K,KK 

D0 40 J=L•LL 
D0 40 IA=L1KMI 

CCI,Jl = GCI,J> - A<IA1I>*CCIA1J> 
40 C0NTINUE 
45 IF<DL .EQ. 2l G0 T0 60 

IF<DK .EQ. 2 l G0 T0 50 
TCl1ll = A<K1Kl + ACL1Ll 
IF<T<l.tl .EQ. O.> ST0P 
C<K1Ll = CCK1Ll/TCl1ll 
G0 T0 90 

50 

60 

70 

80 

90 

TC I .I> 
TC I 12l 
Tc2.1 > 
T<2.2l ACKK1KK> + ACL1Ll 
PC I> CCK1Ll 
PC2l = CCKK1Ll 
NSYS = 2 
CALL SYSSLV 
C<K1Ll = PCll 
G<KK.L> = P<2> 
G0 T0 90 
IFCDK .EQ. 2l G0 T0 70 
T<l1ll ACK.Kl+ ACL>Ll 
rct.2> = A<LL.L> 
TC21ll = ACL.LLl 
T<2.2l = ACK.Kl + A<LL.LL> 
PC I l C<K,Ll 
PC2> = GCK.LLl 
NSYS = 2 
CALL SYSSLV 
GCK1Ll = P< I> 
GCK1LL> = PC2> 
G0 T0 90 
IFCK .NE. Ll G0 T0 80 
TCl1l> ACL.Ll 
T<t.2> ACLL•Ll 
TC t.3> O. 
rc2. I l ACL.LL> 
T<2.2> ACL•L> + ACLL1LL> 
T<2.3> TC 112> 
T<3.!l o. 
TC3.2> T<21ll 
T<3.3l· = ACLL1LLl 
PC I l GCL.Ll/2. 
P<2> GCLL>Ll 
PC3l = CCLL>LLl/2. 
NSYS = 3 
CALL SYSSLV 
CCL.Ll = P<tl 
GCLL.Ll z PC2l 
CCL.LL> = PC2l 
CCLL,LL> = PC3l 
G0 T0 9D 
Tct.t> ACK.Kl + ACL•Ll 
TCt.2l ACKK1Kl 
T<t.3> ACLL.L> 
T< 1. 4) o. 
T<21 I l ACK,KK> 
TC2.2> ACKK.KK> + ACL.L> 
T<2.3> Q. 

T<2.4> T<t.3> 
T<3.I> A<L.LL> 
T<3•2> = O· 
T<3>3> ACK.Kl + ACLL1LLl 
T<3.4) T<t.2> 
T< 4, I> " Oo 
TC4.2l = TC3.ll 
T<4.3) T<2.t> 
TC4.4> ACKK,KK> + ACLL1LLl 
PC I l " CCK•L> 
PC2> C<KK.L> 
PC3> G<K>LL> 
PC4> = CCKK.LL> 
NSYS • 4 
CALL SYSSLV 
C<K.L> = PCI > 
C<KK,L> = PC2> 
CCK.LL> = PC3> 
CCKK.LL> = PC4> 

K = K + DK 
lFCK .LE· N> GO T0 30 
L.DL = L + DL 
lF<LDL .Gr. N> RETURN 
1>0 120 J=LDL>N 

D0 100 I=L1LL 
cc l•J> D CCJ. I) 

THE 

THE 

432-P 5-

100 C0NTINUE 
D0 120 I=J,N 

D0 110 K=L•LL 
C<I,J> = C<I.J> - CC11Kl*ACK,J> - ACK1Il*C<K.J> 

c 

110 C0NTINUE 
C<J,Il = CCI,J> 

120 C0NTINUE 
L = LDL 
G0 T0 10 
END 
SUBR0UTINE HSHLDR<A,N.NA> 

C HSHLDR IS A F0RTRAN IV SUBR0UTINE T0 REDUCE A MATRIX T0 
C UPPER HESSENBERG F0RM BY ELEMENTARY HERMITIAN TRANSF0RMA
C Tl0NS <THE METH0D 0F H0USEH0LDER>· THE PARAMETERS IN THE 
C ARGUMENT LIST ARE 
C A A DOUBLY SUBSCRIPTED ARRAY C0NTAINING THE 
C MATRIX A. l<lN RETURN. THE UPPER TRIANGLE 
C 0F THE ARRAY A MATRIX AND THE CN+l>-TH 
C C0LUMN C0NTAIN THE SUBDIAG0NAL ELEMENTS 
C 0F THE TRANSFORMED MATRIX. 0N RETURN• 
C THE L0WER TRIANGLE AND THE CN+l>-TH H0W 
C 0F THE ARRAY A CONTAIN A HISTORY 0F THE 
C TRANSF0RMATI0NS. 
C N THE 0HDER 0F THE MATRIX A. 
c NA THE FrnST DIMENSI0N OF THE ~·RRAY A. 
c 

c 

REAL 
IA<NA1ll1MAX1SUM1S1P 

INTEGER 
IN1NA1NM21Nl,L.Ll>I•J 

NM2 = N-2 
NI = N+l 
IFCN ·EQ. I> RETURN 
IFCN oGT. 2> GO T0 S 
A<l,Nll = AC21ll 
RETURN 

5 D0 80 L=l,NM2 

LI = L+I 
MAX = Q. 
D0 10 I=Ll1N 

MAX = AMAXICMAX,ABSCACl>Llll 
10 CONTINUE 

IF<MAX .NE. O·> GG T0 20 
A<L>NI > = O. 
ACNl1Ll = O. 
G0 TO 30 

20 SUM =. O. 
D0 30 I=Ll>N 

A< I• L > = A< I , L > /MAX 
SUM= SUM+ ACI1Ll**2 

30 CONTINUE 
S = SIGNCSQRT<SUMJ.A<Ll•L» 
ACL1NI l = -MAX*S 
ACLl1Ll = S + ACLl•L> 
ACNl.Ll = S*ACLl1Ll 
D0 50 J=Ll.N 

SU1"1 = o. 
D0 40 I=Lt.N 

SUM= SUM+ ACI1Ll*AC!1Jl 
40 C0NTINUE 

P = SUM/ACNl>L> 
D0 50 I=L t. N 

ACI 1 JJ = ACI.Jl - ACI.Ll*P 
50 C0NTINUE 

D0 70 I=l1N 
SUM = O. 
D0 60 J=L I 1 N 

SUM= SUM + ACI1Jl*ACJ1Ll 
60 C0NTINUE 

P = SUM/ACNl1Ll 
D0 70 J=L I• N 

ACI 1Jl = ACI,J> - P*ACJ1Ll 
70 C0NTINUE 
BO C0NTINUE 

ACN-l1Nll = ACN1N-ll 
RETURN 
END 
SUBROUTINE BCKMLTCA1U1N1NA1NU> 

C BGKMLT IS A F0RTRAN IV SUBR0UTINE THAT, GIVEN THE 0UTPUT 
C 0F THE SUBk0UTINE HSHLDR• C0MPUTES THE ORTHOGl3NAL MATRIX 
C THAT REDUCES A T0 UPPER HESSENBERG F"0RM• THE PARAMETERS 
C IN THE ARGUMENT LIST ARE 
C A A D0UBLY SUBSCRIPTED ARRAY C0NTAINING THE 
C 0UTPUT FR0M HSHLDR· 
C A D0UBLY SUBSCRIPTED ARRAY THAT. 0N 
C RETURN, G0NTAINS THE 0RTH0G0NAL MATRIX· 
C N THE 0RDER 0F THE MATRIX A IN HSHLDR. 
C NA THE FIRST DIMENSI0N 0F THE ARRAY A. 
C NU THE FIRST DIMENSI0N 0F THE ARRAY U. 
c 
C THE ARRAYS A AND U MAY BE IDENTIFIED IN THE CALLING 
C SEQUENCE. IF TH IS IS D0NE1 THE ELEMENTS 0F THE 0RTH0G0NAL 
C MATRIX WILL 0VERWRITE THE 0UTPUT 0F HSHLDR· 
c 

REAL 
IA<NA1ll1UCNU.tl1SUM,P 

INTEGER 
tN.NA1Nl1NMl1NM21LL1L1Ll1I1J 
NI = N+ I 
NMI = N-1 
NM2 = N-2 
UCN1N> = I• 
IFCNMI .EQ. 0> RETURN 
UCNMl1N) = O. 
UCN1NMI > " O. 
UCNMI 1NMI l = I• 
IFCNM2 .EQ. Ol RETU~N 
00 40 LL=l•NM2 

L = NM2-LL+I 
LI = L+l 
IFCACNl1L> .EQ. O.l G0 T0 25 

0 



COLLECTED ALGORITHMS (cont.) 

00 20 JaLl.N 
SUM '" o. 
00 10 l=Ll•N 

·SUM " SUM + A<l•L>•UCl,J> 
10 C0NTINUE 

P = SUH/ACNt.L> 
00 20 l=Ll•N 

U<l,J> = u<1.J> - A<l•L>•P 
20 C0NTINUE 
2S 00 30 I=Ll.N 

U<l•L> = o. 
U<L•I> = o. 

30 C0NTINUE 
U<L:.L> .. 1 • 

40 C0NTINUE 
RETURN 
END 
SUBR0UTINE SCHUR<H.U.NN.NH.NU.EPS.F"AIL> 

c 
C SCHUR IS A F"0RTRAN IV SUBR0UTINE T0 REDUCE AN UPPEK 
C HESSENBERG MATRIX T0 REAL SCHUR F"0RM BY THE QR METH00 wlTH 
C IMPLICIT 0RIGIN SHIF"TS· THE PR00UCT 0F THE TRANSF"0RMA-
C TI0NS. USED IN THE REDUCTl0N IS ACCUMULATED· SCHUR IS AN 
C AOAPTATl0N 0F" THE ALG0L PR0GRAM HOR BY MARTIN. PETERS. AND 
C WILKINS0N <NUMER· MATH. 14 <1970> 219-231>• THE PARA-
C METERS IN THE ARGUMENT LIST AR~ 
C H A 00UBLY SUBSCRIPTED ARRAY C0NTAINING THE 
C UPPER HESSENBERG MATRIX H• 0N RETURN. H 
C C0NTAINS AN UPPER REAL SCHUR F"0RM 0F H• 
C THE ELEMENTS 0F" THE ARRAY H BEL0W THE 
C THIRD SUBDIAG0NAL ARE UNDISTURBED. 
C U A D0UBLY :SUBSCRIPTED ARRAY C0NTAINING ANY 
C MATRIX• 13N RETURN. U C0NTAINS THE MATHIX 
C U•R<l>•R<2>•••• WHERE H<I> ARE THE TRANS-
C F"0RMATl0NS USED IN THE REDUCTION 0F" H• 
C NN THE 0RDER 0F" THE MATRICES H AND u. 
C NH THE F"IRST DIMENS10N 0F" THE ARRAY H. 
C NU THE F"IRST DIMENSI0N 0F" THE ARRAY u. 
C EPS A NUMBER USED IN DETEHMINING WHEN AN 
C ELEMENT 0F HIS NEGLIGIBLE· H<l•J> IS 
C NEGLIGIBLE IF ABS<H<l.J>> IS LESS THAN 0k 
C EQUAL Hl EPS TIMES THE INFINITY N0RM 0F 
C H· 
C FAIL AN INTEGER VARIABLE THAT, 0N HETURN. 
C C0NTAINS AN ERR0R SIGNAL· IF FAIL IS 
C P0SI Tl VE. THEN THE PR0GRAM FAILED T0 MAKE 
C THE FAIL- I 0R FAIL-2 SUBDIAG0NAL ELEMENT 
C NEGLIGIBLE AFTEk 30 ITERATl0NS• 
c 

REAL 
IH<NH.l>·U<NU.t>.EPS.HN.RSUM.TEST.P.a.R.s.w.x.y.z 

INTEGER 
INN. NA. NH. FAIL. 1. I rs. J. JL• K. L. LL• M.MM. M2. M3. N. NA 
L0GICAL 

ILAST 
N = NN 
HN = Oo 
D0 20 I=l .N 

JL. = MAXO C I • I - I > 
HSUM = Q. 
D0· 10 J=JL, N 

RSUM = kSUM + ABS<H<l•J>> 
10 C0NTINUE 

HN' = AMAX I C HN, kSUM > 
20 C0NTINUE 

TEST = EPS•HN 
IFCHN .EQ. Q.> G0 T0 230 

30 IF<N .LE. I> G0 T0 230 
ITS = 0 
NA = N-1 
NM2 = N-2 

40 D0 50 LL=2• N 
L = N-LL+2 

IF<ABS<HCLoL-1>> ·LE• TEST> G0 T0 60 
SO. C0NTI NUE 

L = I 
G0 T0 70 

60 HCL,L-1> = o. 
10 IF<L oLTo NA> G0 T0 72 

N = L-1 
G0 T0 30 

72 X = HCN.Nl/HN 
Y = HCNA,NA>/HN 

tR = <H<N,NAl/HN>•CHCNA.Nl/HN> 
IF<ITS ·LT· 30> G0 T0 7S 
FAIL = N 
RETURN 

7S IF<ITS.EQ.10 ·0R· ITS.EQ.20> G0 T0 80 
S =·X + Y 
Y = X•Y - R 
G0 T0 90 

80 Y = CABS<H<N•NA>> + ABS<HCNA,NM2>ll/HN 
S = I •5*Y 
Y =· Y••2 

90 ITS a ITS + I 
00 100 MM=L.NM2 

M NM2-MM+L 
X HCM.Ml/HN 
R HCM+l,M>/HN 
Z = HCM+!,M+ll/HN 
P X•<X-S> + Y + R•CHCM.M+ll/HN> 
Q = R•<X+Z-S> 
R R•<H<M+2,M+l>/HN> 
W = ABS<P> + ABSCQ> + ABS<R> 
P = P/W 
Q Q/W 
R " R/W 
IF<M ·EO· L> G0 T0 110 

IFCABS<H<M.M-l>>•<ABSCQ>+ABS<R>> .LE· ABS<P>•TEST> 
I G0 T0 110 

100 C0NTINUE 
llOM2=M+2 

M3 " M+3 
00 120 l•M2.N 

HCI.1-2> = O. 

c 

120 

130 
140 

150 

C0NTINUE 
IFCM3 oGTo N> G0 T0 140 
D0 130 I•M3.N 

H< I.1-3> • o. 
C0NTINUE 
D0 220 K•M.NA 

LAST z K.EQ.NA 
IF<K .EQ• M> G0 T0 ISO 
P" HCK.K-1> 
Q = H<K+l,K-1> 
R = O. 
IFC.N0ToLAST> R = H<K+2.K-I> 
X = ABS<P> + ABS<Q> + ABSCR> 
IFCX •EQ. O·> G0 T0 220 
P '" P/X 
Q = Q/X 
R = R/X 
S = SQRTCP••2 + Q••2 + R••2> 
IF<P .LT. O.> S = -S 
IF<K oNEo M> HCK.K-1> = -S•X 
IFCK.EQ.M .AND· LoNEoM) HCK.K-1> 
p = p + s 
X P/S 
y Q/S 
Z R/S 
Q Q/P 
R R/P 
D0 I 70 J=K• NN 

P = HCKoJ> + Q•H<K+l,J> 
IFCLAST> G0 T0 160 
P = P + R•H<K+2oJ) 
H(K+2,J) = HCK+2oJ> - P•Z 

160 HCK+l,J> = HCK+loJ) - P•Y 
H<K•J> = HCK.J> - P•X 

170 C0NTINUE 
J = MINOCK+3,N> 
D0 190 I .. 1.J 

P = X•H<l•K> + Y•H<l.K+I> 
IFCLAST> G0 T0 180 
P = P + Z•H<l.K+2> 
HCl.K+2> = HCl.K+2> - P•R 

180 HCl.K+I> = HCl.K+l> - P•Q 
H< l•K> = H< I.Kl - P 

190 C0NTINUE 
D0 210 lzl,NN 

P • X•U~l.K) + Y•U<l•K+l> 
IF<LAST> G0 T0 200 
P = P + Z•U< l•K+.2> 
UCl.K+2> = UCl.K+2) - P•R 

200 U<I.K+I> = UCl.K+ll - P•O 
U<l•K> = UCl.Kl - P 

210 C0NTINUE 
220 C0NTINUE 

G0 T0 40 
230 FAIL = 0 

RETURN 
END 
SUBR0UTINE SYSSLV 

432-P 6-

-H<K.K-1> 

C SYSSLV IS A F0RTRAN IV SUBR0UTINE THAT S0LVES THE LINEAR 
C SYSTEM AX = B 01' 0RDER N LESS THAN S BY CH0UT REDUCTl0N 
C F0LL0\~ED BY BACK SUBS TI TUTI0N• THE Ml\TRIX A. THE VECT0R 
C B. AND THE 0RDER N ARE C0NTAINED IN THE ARRAYS A.B. AND 
C THE VARIABLE N 01' THE C0MM0N BL0CK SLIJBLK· THE S0l.UTl0N 
C IS RETURNED IN THE ARRAY B· 
c 

c 

C0MM0N/SLVBLK/A(S,S>.B<S>•N 
REAL MAX 

I NM! = N-1 
NI = N+l 

C C0MPUTE THE LU FACT0RIZATl0N 0F A· 
c 

c 

D0 80 K= I •N 
KMI = l<-1 
IFCK.EQ.I> G0 T0 20 
D0 10 I=K•N 

D0 10 J=l.KMI 
A<I•K> = A<l•K> - ACl.J>•A<J.K) 

10 C0NTINUE 
20 IFCK.EQ.Nl G0 T0 100 

KPI = K+l 
MAX = ABSCACK,K>> 

INTR = K 
D0 30 I =KP 1, N 

AA = ABS<A< lo Kl> 
IF<AA ·LE. MAX> GO T0 30 
MAX = AA 
INTK = I 

30 C0NTINUE 
IF<MAX .EQ. O·> ST0P 
A<Nl.K> = lNTH 
IFCINTR .EQ. K> G0 T0 50 
D0 i!O J= I• N 

TEMP " ACK,J> 
A<l<.J> = A<INTR.J> 
ACINTR.J> = TEMP 

40 C0NTINUE 
SO 00 80 J=KP I• N 

IFCK.EQ·I> G0 T0 70 
D0 60 I= 1, KM I 

ACKoJ> = ACK.J> - A<l<.l>•ACl.J> 
60 C0NTINUE 
70 A<K.J> = ACK,Jl/A<K•K> 
80 CIZ:NTINUE 

C INTERCHANGE THE C0MP0NENTS 0f B· 
c 

100 D0 110 J=l•NMI 
INTR = ACNl,J> 
IF<INTR .EQ. J> G0 T0 110 
TEMP = B<J> 
B<J> = BCINTR> 
BC INTR> = TEMP 

110 C0NTINUE 

0 



COLLECTED ALGORITHMS (cont.) 

c 
C S0l.VE l.X = B· 
c 

c 

200 BCI> = BCl>/ACl•I> 
00 220 I=2•N 

IM! = I-I 
00 210 J= I• IM I 

BCI> = BCI> - ACI.J>*BCJ> 
210 C0NTINUE 

BCX> = BCI)/ACl.I> 
220 C0NTXNUE 

C S0l.VE UX = B· 
c 

300 00 310 II=t.NMI 
I ,. NMI -1 I+ I 
11 = I+ I 
00 31 0 J= II • N 

BCI) = BCI> - ACI.J>*B<J> 
310 C0NTINUE 

RETURN 
END 

432-P 7- 0 



COLLECTED ALGORITHMS FROM CACM 

Editor's note: Algorithm433 described here is available on magnetic 
tape from the Department of Computer Science, University of 
Colorado, Boulder, CO 80302. The cost for the tape is $J6.00 (U.S. 
and Canada) of $J8.00 (elsewhere). If the user sends a small tape 
(wt. less than J lb.) the algorithm will be copied on it and returned 
to him at a charge of $10.00 (U.S. only). All orders are to be prepaid 
with checks payable to ACM Algorithms. The algorithm is recorded 
as one file of BCD 80 character card images at 556 B.P.I., even 
parity, on seven track tape. We will supply the algorithm at a 
density of 800 B.P.l. if requested. The cards for the algorithm are 
sequenced starting at JO and incremented by JO. The sequence number 
is right justified in columns 80. Although we will make every attempt 
to insure that the algorithm conforms to the description printed here, 
we cannot guarantee it, nor can we guarantee that the algorithm is 
correct.-L.D.F. 

Algorithm 433 

Interpolation and Smooth 
Curve Fitting Based on Local 
Procedures (E2) 
Hiroshi Akima [3 Nov. 1970, 9 Apr. 1971, and 1 Mar. 
1972] 
U.S. Department of Commerce, Office of Telecom
munications, Institute for Telecommunication Sciences, 
Boulder, CO 80302 

Key Words and Phrases: interpolation, polynomial, slope of 
curve, smooth curve fitting 

CR Categories: 5.13 
Language: Fortran 

Description 

Introduction. User information and Fortran listings are given 
on two subroutines, INTRPL and CRVFIT. Each subroutine im
plements the method of interpolation and smooth curve fitting 
based on local procedures [l]. These subroutines are written in 
ANSI Standard Fortran [2]. 

Outline of the Method. The method is devised in such a way 
that the resulting curve will pass through all the given data points 
and appear smooth and natural. It is based on a piecewise function; 
a portion of the curve between a pair of given points is represented 
by a third-degree polynomial for a single-valued function and by 
two third-degree polynomials for a multiple-valued function. In 
this method, the slope of the curve is determined at each given 
data point locally by the coordinates of five data points, with the 
data point in question as a center point and two data points on 
each side of it. Each piece of the function representing a portion 

433-P 1- 0 

of the curve between a pair of given data points is determined by 
the coordinates of and the slopes at the points. 

When interpolation is made near the end points of the curve, 
two more points estimated at each end point are used to determine 
the slope of the curve. In this method, this estimation is based 
on three data points, the end point in question and two adjacent 
given data points. 

The resulting curve of this method for a single-valued function 
is invariant under a linear-scale transformation of the coordinate 
system; different scalings of the coordinates result in equivalent 
curves. The resulting curve of this method for a multiple-valued 
function, on the other hand, is variant under a linear-scale trans
formation of the coordinate system; both the abscissa and the 
ordinate should be scaled with their respective units having an 
equal length on the graph. 

This method requires only straightforward procedures, not 
iterative solutions of equations with preassigned error tolerances, 
which are required by some methods. No problem concerning 
computational stability or convergence exists in application of 
this method. 

The INTRPL Subroutine. This subroutine interpolates, from 
values of the function given as ordinates of input data points in 
an x-y plane and for a given set of x values (abscissas of desired 
points), the values of a single-valued function y = y(x). 

The entrance to this subroutine is achieved by 

CALL INTRPL(IU,L,X, Y,N,U,V) 

where the input parameters are 

JU = logical unit number of standard output unit, 
L = number of input data points (must be two or greater), 
X = array of dimension L storing th•~ x values (abscissas) of 

input data points in ascending order, 
Y = array of dimension L storing the: y values (ordinates) of 

input data points, 
N = number of points at which interpolation of the y value 

(ordinate) is desired (must be one or greater), 
U = array of dimension N storing the x values (abscissas) of 

desired points, 

and the output parameter is 

V = array of dimension N where the interpolated y values 
(ordinates) are to be displayed. 

This subroutine occupies 515 locations on the CDC-3800 
computer. Computation time required for this subroutine on the 
same computer is approximately equal to 

1 + 0.2 N msec for L = 10, 
3 + 0.5 N msec for L = 100, 

when the elements of the U array are given in ascending order; and 

1 + 0.5 N msec for L = 10, 
3 + 0.7 N msec for L = 100, 

when they are given in random order. 
When the function to be interpolated represents a periodic 

function and a set of Lp data points covers a whole period, two 
additional data points should be added at each end and a set of 
Lp + 4 data points should be given as the input data points to 
this subroutine. 

The CRVFIT Subroutine. This subroutine fits a smooth curve 
to a given set of input data points in an x-y plane. It interpolates 
points in each interval between a pair of data points and generates 
a set of output points consisting of the input data points and the 



COLLECTED ALGORITHMS (cont.) 

Fig. 1. Curve fitted to the input data points given in Table I (a). 
(Encircled points are given data points.) 

MD = 

Table I. An Example of CRVFIT (MD 1) 

(a) Input data points 

I X(I) Y(l) I X(I) Y(I) I X(l) F(l) 

0.000 0.000 4 3.000 0.000 7 6.000 10.000 
2 1.000 0.000 5 4.000 0.000 8 7.000 80.000 

2.000 0.000 6 5.000 1.000 9 8.000 100.000 
4 3.000 0.000 7 6.000 10.000 10 9.000 150.000 

(b) Output points 

K U(K) V(K) K U(K) V(K) K U(K) V(K) 
----

1 0.000 0.000 16 3.000 0.000 31 6.000 10.000 
2 0.200 0.000 17 3.200 0.000 32 6.200 18. 341 

0.400 0.000 18 3.400 0.000 33 6.400 33.645 
4 0.600 0.000 19 3.600 0.000 34 6.600 51. 778 

0.800 0.000 20 3.800 0.000 35 6.800 68.607 
6 1.000 0.000 21 4.000 0.000 36 7.000 80.000 

1.200 0.000 22 4.200 0.068 37 7.200 85.510 
8 1.400 0.000 23 4.400 0.244 38 7.400 88.574 
9 1.600 0.000 24 4.600 0.485 39 7.600 90.882 

10 1.800 0.000 25 4.800 0. 751 40 7.800 94.127 
11 2.000 0.000 26 5.000 1.000 41 8.000 100.000 
12 2.200 0.000 27 5.200 1.523 42 8.200 108.080 
13 2.400 0.000 28 5.400 2.659 43 8.400 116. 940 
14 2.600 0.000 29 5.600 4.433 44 8.600 126. 760 
15 2.800 0.000 30 5.800 6.871 45 8.800 137. 720 
16 3.000 0.000 31 6.000 10.000 46 9.000 150.000 

433-P 2- 0 

Fig. 2. Curve fitted to the input data points given in Table II (a). 
(Encircled points are given data points.) 

MD = 2 

Table II. An Example of CRVFIT (MD 2) 

(a) Input data points 

I X(l) Y(l) I X(I) Y(l) I X(l) Y(l) 

-30.000 70.000 4 -18.000 4.000 7 30.000 20.000 

2 -30.000 40.000 5 0.000 0.000 8 30.000 40.000 

3 -30.000 20.000 6 18.000 4.000 9 30.000 50.000 

4 -18.000 4.000 7 30.000 20.000 10 30.000 70. 000 

(b) Output points 

K U(K) V(K) K U(K) V(K) K U(K) V(K) 

l -30.000 70.000 16 -18.000 4.000 31 30.000 20.000 

2 -30.000 64.000 17 -14.641 2.463 32 30.000 24.000 

3 -30.000 58.000 18 -11.097 1. 331 33 30.000 28.000 

4 -30.000 52.000 19 -7.433 0.567 34 30.000 32.000 

5 -30.000 46.000 20 -3. 713 0.136 35 30.000 36.000 

6 -30.000 40.000 21 0.000 0.000 36 30.000 40.000 

7 -30.000 36.000 22 3. 713 0.136 37 30.000 42.000 
8 -30.000 32.000 23 7.433 0.567 38 30.000 44.000 
9 -30.000 28.000 24 11.097 1.331 39 30.000 46.000 

10 -30.000 24.000 25 14.641 2.463 40 30.000 48.000 

11 -30.000 20.000 26 18.000 4.000 41 30.000 50.000 
12 -29. 315 16.080 27 21. 501 6.240 42 30.000 54.000 

13 -27.466 12.400 28 24. 758 9.080 43 30.000 58.000 

14 -24. 758 9.080 29 27.466 12.400 44 30.000 62.000 
15 -21.501 6.240 30 29. 315 16.080 45 30.000 66.000 

16 -18.000 4.000 31 30.000 20.000 46 30.000 70.000 



COLLECTED ALGORITHMS (cont.) 

interpolated points. It can handle either a single-valued function 
or a multiple-valued function. 

The entrance to this subroutine is achieved by 

CALL CRVFIT(IU,MD,L,X, Y,M,N, U, V) 

where the input parameters are 

JU = logical unit number of standard output unit, 
MD = mode of the curve (must be 1 or 2) 

= 1 for a single-valued function 
= 2 for a multiple-valued function, 

L = number of input data points (must be two or greater), 
X = array of dimension L storing the abscissas of input data 

points (in ascending or descending order for MD = 1), 
Y = array of dimension L storing the ordinates of input data 

points, 
M = number of subintervals between each pair of input data 

points (must be two or greater), 
N = number of output points 

= (L-l)M + 1, 

and the output parameters are 

U = array of dimension N where the abscissas of output points 
are to be displayed, 

V = array of dimension N where the ordinates of output points 
are to be displayed. 

This subroutine may also be entered by 

CALL CRVFIT(IU,MD,L,X, Y,M,N,X, Y) 

but the input data X and Y are not preserved in this case. 
This subroutine occupies 711 locations on the CDC-3800 

computer. Computation time required for this subroutine on the 
same computer is approximately 

500 + 300 L + 50 (L-1) (M-1) µsec for MD = 1, 
500 + 600 L + 75 (L-1) (M-1) µsec for MD = 2. 

When the curve exhibits periodicity (that includes a closed 
curve) and a set of Lp data points covers a whole period, two ad
ditional data points should be added at each end, a set of Lp + 
4 data points be given as the input data points to this subrou
tine, and two intervals on each side be discarded from the set of 
output points. 

Test Results. AH tests were performed on a CDC-3800 com
puter. An example of smooth curve fitting by the CRVFIT sub
routine for a single-valued function (MD= 1) is shown in Table I, 
and for a multiple-valued function (MD= 2) in Table II. In each 
table, input data shown in (a) were given to CRVFIT with L = 10, 
M = 5, and N = 46, and values shown in (b) were obtained. 
Also, the data in Table I (a) together with the U values in Table I 
(b) were given to the INTRPL subroutine with L = 10 and N = 
46, and the V values in Table I (b) were obtained. Figure 1 depicts 
the curve fitted to the input data points given in Table I (a) by 
the CRVFIT subroutine with MD = 1, and Figure 2, Table II 
(a) with MD = 2; both curves are fitted with L = 10, M = 20, 
and N = 181. These examples demonstrate one of the properties of 
this method, that the resulting curves are free from unnatural 
wiggles. 

Acknowledgments. The author expresses his deep appreciation 
to Rayner K. Rosich of Office of Telecommunications and Jeanne 
M. Tucker of National Oceanic and Atmospheric Administration, 
both in Boulder, Colorado, for their critical review of this paper. 

References 
1. Akima, Hiroshi. A new method of interpolation and smooth 
curve fitting based on local procedures. J. ACM 17, 4 (Oct. 1970), 
589-602. 
2. ANSI Standard Fortran, Pub. X3.9-1966. American National 
Standards Institute, New York, N.Y. Also reproduced in Heising, 
W.P. History and summary of FORTRAN standardization de
velopment for the ASA. Comm. ACM 7 (Oct. 1964), 5~25. 

433--P 3- 0 

Algorithm 

SUBR0UTINE INTRPL<IU•L•X•Y•N•U•V> 
C INTERP0LATl0N 0F A SINGLE-VALUED FUNCTI0N 

C THIS SUBR0UTINE INTERP0LATES. FR0M VALUES 0F THE FUNCTI0N 
C GIVEN AS 0RDINATES 0F INPUT DATA P01NTS IN AN X-Y PLANE 
C AND F0R A GIVEN SET 0F X VALUES <ABSCISSAS>• THE VALUES 0F 
C A SINGLE-VALUED FUNCTl0N Y • Y<X>• 

C THE INPUT PARAMETERS ARE 

c IU • L0GICAL UNIT NUMBER 0F STAN'DARD 0UTPUT UNIT 
c L = NUMBER 0F INPUT DATA P01NTS 
c <MUST BE 2 0R GREATE~> 
c x = ARRAY 0F DIMENSl0N L ST0RllllG THE X VALUES 
c <ABSCISSAS> 0F INPUT DATA P01NTS 
c <IN ASCENDING 0RDER> 
c y = ARRAY 0F DIMENSI0N L ST0RIMG THE Y VALUES 
c C0RDINATES> 0F INPUT DATA P01NTS 
c N = NUMBER 0F P0INTS AT WHICH 1NTERP0LATl0N 0F THE 
c Y VALUE <0RDINATE> IS DESlHED 
c <MUST BE l 0R G~EATER> 
c u = ARRAY 0F DIMENSl0N N ST0RING THE X VALUES 
c <ABSCISSAS> 0F DESIRED P0INTS 

C THE 0UTPUT PARAMETER IS 

c 
c 

V • ARRAY 0F DIMENSl0N N WHERE THE INTERP0LATED Y 
VALUES <0RDINATES> ARE T0 BE DISPLAYED 

C DECLARAT10N STATEMENTS 

DIMENSl0N 
EQUIVALENCE 
REAL 
EQUIVALENCE 

X<L>•Y<L>•U<N>.V<N> 
<PO.X3>•<QO.Y3>.CQ1.T3> 

l 

Ml .M2.M3.M4,M5 
<UK.DX>·<IMN.x2.A1.Ml>1CIMX.x5.A5.M5>. 
CJ.SW.SA>•<Y2•W2.W4,Q2>•<Y5.W3.Q3> 

C PRELIMINARY PR0CESSING 

10 LO=L 
LMl=L0-1 
LM2=LM1-l 
LPl=LO+l 
NO=N 
IF<LM2.LT.O> G0 T0 90 
IFCNO·LE.O> G0 T0 91 
D0 11 1=2.LO 

IF<X<l-1>-X<I>> 11.95.96 
11 C0NTINUE 

IPV=O 

C MAIN D0-L00P 

D0 80 K=l•NO 
UK=UCK> 

C R0UTINE T0 L0CATE THE DESIRED P01NT 

20 IF<LM2.EQ·O> G0 T0 27 
IFCUK.GE.XCLO>> G0 T0 26 
IF< UK• LT• X < I > > G0 T0 25 
IMN=2 
IMX=LO 

21 l=CIMN+IMX>/2 
IFCUK.GE.XCI>> G0 T0 23 

22 IMX=I 
G0 T0 24 

23 IMN=l+l 
24 lFCIMX·GTolMN> G0 T0 21 

l=IMX 
G0 T0 30 

25 I=l 
G0 T0 30 

26 l=LPl 
G0 T0 30 

27 1=2 

C CHECK IF I = IPV 

30 IFCl.EQ.IPV> G0 10 70 
IPV=I 

C R0UTINES T0 PICK UP NECESSARY X AND Y VALUES AND 
C T0 ESTIMATE THEM IF NECESSARY 

40 J=l 
IFCJ.EQ.l> 
lFCJ.EQ.LPl> 
X3=X<J-I> 
Y3=Y<J-l> 
X4=X< J> 
Y4=YCJ) 
A3=X4-X3 
M3,..CY4-Y3>1A3 
IFCLM2oEQ·O> 
IF< J.EQ.2> 
X2=X<J-2> 
Y2=Y<J-2> 
A2=X3-X2 
M2•<Y3-Y2>1A2 
IF<J.EQ.LO> 

J=2 
J=LO 

G0 T0 43 
G0 T0 41 

G0 T0 42 



COLLECTED ALGORITHMS (cont.) 

41 

42 

43 

45 

46 
47 

X5zXCJ+I> 
Y5,.YCJ+ I> 
A4=XS-X4 
M4=CYS-Y4>/A4 
XFCJ.EQ.2) M2•M3+M3-M4 
60 T0 45 
M4=M3+M3-M2 
60 T0 45 
M2=M3 
M4=M3 
IFCJ.LE.3> G0 T0 46 
Al=X2-XCJ-3> 
Ml•CY2-YCJ-3))/AI 
G0 T0 47 
Ml•M2+M2-M3 
IFCJ.GE.LMI> G0 T0 48 
l\5zXCJ+2>-X5 
M 5= < Y C J+2 >-Y5 )/AS 
G0 T0 50 

48 MS•M4+M4-M3 

C NUMERICAL DIFFERENTIATI0N 

50 

SI 

52 

lFCI.EQ.LPI> 
W2:oABSCM4-M3> 
~13,.ABSCM2-MI > 
SW=W2+W3 
IFCSW.NE.o.o> 
W2•0·5 
W3=0·5 

G0 T0 52 

G0 T0 51 

SW•l·O 
T3•CW2•M2+W3•M3>/SW 
lFCI.EQ.l> G0 T0 54 
W3,.ABSCM5-M4) 
W4•ABSCM3-M2> 
SW,.W3+W4 
I re SW .NE.o .o) 
W3=0·5 

SW•l •0 

G0 T0 53 

53 T4=CW3•M3+W4•M4)/SW 
IFCI.NEoLPI) G0 T0 60 
T3•T4 
SA=A2+A3 
T4=0·S*CM4+M5-A2•CA2-A3>•CM2-M3>/CSA•SA>> 
X3=X4 
y3:11y4 
tl3=A2 
M3=M4 
G0 T0 60 

54 T4•T3 
SAzA3+A4 
T3=0•5*CMl+M2-A4•CA3-A4>•CM3-M4)/CSA•SA>> 
X3:oX3-A4 
Y3.,Y3-M2•A4 
.A3•A4 
M3•M2 

C DETERMINATI0N 0F THE C0EFFICIENTS 

60 Q2,.C2.0•CM3-T3>+M3-T4)/A3 
Q3=<-M3-M3+T3+T4)/CA3•A3> 

C C0MPUUITI0N 0F THE P0LYN0MIAL 

70 DX,. UK-PO 
80 VCK>=QO+DX•CQl+DX•<Q2+DX•Q3>> 

RETURN 

C ERR0R EXIT 

90 WRITE CIU12090> 
G0 T0 99 

91 WRITE CIU12091> 
G0 T0 99 

95 WRITE <IU12095> 
G0 T0 97 

96 WRITE CIU.2096) 
91 WRITE CIU.2097) 1.xcI> 
99 WRITE CIU12099> LO.NO 

RETURN 

C F0RMAT STATEMENTS 

2090 
2091 
2095 
2096 
2097 
2099 

F0RMATC 1X/22H *** .L = l 0R LESSo.I> 
F0RMATC1X/22H *** N • 0 0R LESS./> 
F0RMAT<lX/27H *** IDENTICAL X VALUES./> 
F0RMATCIX/33H *** X VALUES 0UT 0F SEQUENCE./) 
F0RMATC6H I •• 11.1ox.6HXCI> =·El2·3> 
F0RMATC6H L =.11.1ox.3HN =·17/ 

l 
END 

36H ERR0R DETECTED IN R0UTINIE: 

SU8R0UTINE CRVFITCIU1M01L•X•Y•M•N•U•V> 
C SM00TH CURVE FITTING 

INTRPL> 

C THIS SlJBR0UTINE FITS A SM00TH CUkVE T0 .~ GIVEN SET 0F IN
C PUT DATA P0INTS IN AN X-Y PLANE. IT 1NTERP0LATES P0INTS 
C IN EACH INTERVAL BETWEEN A PAik 0F DATA P0INTS AND GENER
C ATES A SET 0F 0UTPUT P01NTS C0NSISTING 0F THE INPUT DATA 
C P01NTS ANO THE INTERP0LATEO P0INTS· IT CAN PR0CESS EITHER 
C A SINGLE-VALUED F'UNCTI0N 0R A MUL TIPLE-VALUEO F'UNCTI0No 

433-P 4- 0 

C THE INPUT PARAMETERS ARE 

C IU "' L0GICAL UNIT NUMBEk 0F STANDARD 0UTPUT UNIT 
C MO M00E 0F THE CURVE <MUST BE I 0K 2> 
C = I F0R A SINGLE-VALUED FUNCTI0N 
C 2 F'0R A MULTIPLE-VALUED FUNCTI0N 
C L = NUMBER 0F' INPUT DATA P0INTS 
C CMUST BE 2 0R GREATEk> 
C X = ARRAY 0F DIMENSI0N L ST0RING THE ABSCISSAS 0F 
C INPUT DATA P0INTS CIN ASCENDING 0R DESCENDING 
C 0RDER F0R MO = I> 
C Y • ARRAY 0F DIMENSION L ST0RING THE 0ROINATES 0F 
C INPUT DATA P0INTS 
C M NUMBER 0F SUBINTERVALS BETWEEN EACH PAIR 0F 
C INPUT DATA P0INTS <MUST BE 2 0R GREATER> 
C N NUMBER 0F' 0UTPUT P0INTS 
C CL-l>•M+I 

C THE 0UTPUT PAKAMETERS ARE 

c 
c 
c 
c 

U = ARRAY 0F' OIMENSI0N N WHERE THE ABSCISSAS 0F 
0UTPUT P0INTS ARE T0 BE DISPLAYED 

V ARRAY 0F OIMENSI0N N WHERE THE 0RDINATES 0F 
0UTPUT P0INTS ARE T0 BE DISPLAYED 

C DECLARATI0N STATEMENTS 

DIMENSI0N 
EQUIVALENCE 

I 
REAL 
EQUIVALENCE 

l 

XCL>•Y<L>.U<N>.V<N> 
CMl.Bl>1CM21B2>.CM3.B3>1CM41B4>• 
CX2.P0>1CY2,QO>.CT2,QI) 
Ml.M2.M3.M4 
CW2,Q2),CW3,Q3>1CAl.P2>.CB1.P3>• 
CA2.0Z>.csw.R.Z> 

C PRELIMINARY PR0CESSING 

10 MOO=MD 
MDMl=MD0-1 
LO=L 
LMl=L0-1 
MO,.M 
MMl•M0-1 
NO=N 
IF<MDOoLE.O> 
I F'CMOOoGEo3) 
I F'CLMl oLEoO) 
IFCMMI .LE.O> 
IFCNOoNEoLMl*MO+I> 

G0 T0 Cll.16>• MOO 
11 1'"2 

IFCXC I >-XC2> > 
12 00 13 I=31LO 

IF<X<I-1>-X<I>> 
13 C0NTINUE 

G0 T0 18 
l 4 D0 I 5 I= 3, LO 

IFCXCI-1>-X<I» 
15 C0NTINUE 

G0 T0 18 
16 00 17 1=2.LO 

IFCXCI-l>·NEoXCI>> 
IF<Y<I-l>·EQ.YCI>> 

17 C0NTINUE 

18 K=NO+MO 
I"LO+l 
00 19 J=l.LO 

K=K-MO 
I=I-1 
UCK)aXCI> 

19 VCK>,.YCI> 
RM•MO 
RM= I .Q/RM 

C MAIN 00-L00P 

20 K5=MO+l 
00 80 I=l1LO 

G0 T0 90 
G0 T0 90 
G0 T0 91 
G0 T0 92 
G0 T0 93 

12.95.14 

96.95.15 

G0 T0 17 
G0 T0 97 

C R0UTINES T0 PICK UP NECESSARY X ANO Y VALUES ANO 
C . T0 ESTIMATE THEM IF NECESSARY 

30 

31 
32 

33 

IF'CloGTol) G0 T0 40 
XJ•UCI) 
Y3=VCI> 
X4=U<MO+I > 
Y4•VCMO+l > 
A3•X4-X3 
B3•Y4-Y3 
IF'CHOMl.EQ.O> M3•B3/A3 
IF'CLO·NE•2l G0 T0 41 
A4=A3 
B4•B3 
G0 T0 <33132>• MOO 
A2•A3+A3-A4 
Al•A2+A2-A3 
B2•B3+B3-B4 
Sl•B2+B2-B3 
G0 T0 cst.56>· MOO 



COLLECTED ALGORITHMS (cont.) 

40 X2•X3 
Y2•Y3 
X3•X4 
Y3•Y4 
X4•XS 
Y4•YS 
Al•A2 
81•82 
A2•A3 
82=83 
A3•A4 
83=84 
IF'< I ·GEol.MI > 

41 KS•KS+MO 
XS•U<KS> 
YS•V< KS> 
A4=XS-X4 
84•YS-Y4 

G0 Te -42 

Ir<MDMl·EQ.Q) M4•84/A4 
G0 T0 43 

42 IrCMDMl·NE·O> A4=A3+A3-A2 
84=83+83-82 

43 IrCl.EQol> G0 T0 31 
60 T0 <SO.SS>• MOO 

c NUMERICAL. DlrrERENTIATl0N 

SO T2=T3 
SI W2=ABSCM4-M3> 

W3=ABS<M2-MI> 
SW=W2+W3 
IP<SW.NEoOoO) 
W2=0·S 
W3=0·S 
SW=l.O 

G0 T0 S2 

S2 T3=<W2•M2+W3•M3>/SW 
1rc1-1> ao.ao.60 

SS Ct'JS2=C0S3 
SIN2=SIN3 

S6 W2=ABSCA3•84-A4•B3> 
W3=ABS<Al•B2-A2•BI> 
lrCW2+W3.NE.O·O> G0 T0 S7 
W2=SQRT<A3•A3+83•83> 
W3=SQRT<A2•A2+82•B2> 

S7 C0S3=W2•A2+W3•A3 
SIN3=W2•B2+W3•B3 
R=C0S3•C0S3+SIN3•SIN3 
lr<R·EQ.O.O> 60 T0 SB 

P3•A2-Pl-P2 
Ql•R•SlN2 
Q2•3·0•B2-R•<SIN2+SIN2+SIN3> 
Q3•B2-Ql-Q2 
60 T0 7S 

C C0MPUTATI0N 0r THE P0l.YN0MIAL.S 

70 DZ•A2•RM 
Z•O.O 
00 7 I J• I •MM I 

K•K+I 
Z•Z+DZ 
U<K>::rPO+Z 

71 VCK>•QO+Z•<Ql+Z•<Q2+Z•Q3>> 
60 T0 79 

7S Z•O.O 
00 7 6 J• I • MM l 

K•K+l 
Z•Z+RM 
U<K>•PO+Z•<Pl+Z•<P2+Z•P3>> 

76 V<K>•QO+Z•CQl+Z•CQ2+Z•Q3>> 

79 K•K+I 
80 C0NTINUE 

RETURN 

C ERR0R EXIT 

90 WRITE <IU.2090> 
G0 T0 99 

91 WRITE CIU.2091> 
60 T0 99 

92 WRITE <IU.2092> 
G0 T0 99 

93 WRITE <IU.2093> 
G0 T0 99 

9S WRITE CIU.209S> 
G0 T0 98 

96 WRITE <IU.2096> 
G0 T0 98 

97 WRITE CIU.2097> 
98 WRITE <IU•2098) 1.xcI>.Y<I> 
99 WRITE CIU.2099) MDO.L.O.MO.NO 

RETURN 

C r0RMAT STATEMENTS 

433-P 5- RI 

R=SQRTCR> 
C0S3=C0S3/R 

2090 r0RMATCIX/31H *** 
2091 r0RMATCIX/22H *** 
2092 r0RMATCIX/22H *** 
2093 r0RMAT<IX/2SH *** 
209S r0RMATCIX/27H *** 
2096 r0RMATCIX/33H *** 
2097 r0RMATCIX/33H *** 

MD 0UT 0F PR0PER RANGE./> 
l. • l 0R LESSo/) 

S'IN3=SIN3/R M = I 0R LESS·/) 
ss 1rc1-1> ao.so.6s IMPR0PER N VALUE./> 

IDENTICAL X VAL.UES·/> 
c DETERMINATl0N 0r THE C0ErrlCIENTS X VALUES 0UT 0r SEQUENCE·/> 

IDENTICAL X AND Y VALUES./) 
60 Q2=C2.0•CM2-T2>+M2-T3>/A2 

Q3=<-M2-M2+T2+T3>/CA2•A2> 
60 T0 70 

6S R=SQRTCA2•A2+B2•B2> 
Pl=R•C0S2 
P2=3·0•A2-R•<C0S2+C0S2+C0S3> 

2098 r0RMATC7H I =•14.IOX.6HXCI> =•El2o3• 
I lOX.6HY<I> =•El2o3) 

2099 r0RMATC7H MD =·14.8X.3Hl. =.is.ax. 
l 3HM =.1s.sx.3HN ··IS/ 
2 36H ERR0R DETECTED IN R0UTINE 

END 

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976, Page 208 

REMARK ON ALGORITHM 433 

Interpolation and Smooth Curve Fitting Based on Local Procedures [E2] 
[H. Akima, Comm. ACM 15, 10 (Oct. 1972), 914-918] 

Michael R. Anderson [Recd 8 Dec. 1975] 
Gettysburg College, Gettysburg, PA 17325 

Subroutine CRVFIT is not written in ANSI Standard Fortran as referenced in [2]. 
In particular, [2, 7.1.2.8] states that the initial value of a DO statement must be 
less than or equal to the value represented by the terminal parameter. DO state
ments numbered 12 and 14 violate this rule when Lis input as 2, which the limita
tions of the program allow. Error conditions of IDENTICAL X VALUES or 
XV ALUES OUT OF SEQUENCE may improperly result from the IF tests within 
these two DO statement loops. 

The subroutine may be corrected as follows. Delete the statement numbered 12 
and replace it with the following two statements: 

12 IF (LO.EQ.2) GO TO 18 
DO 13 1=3,LO 

CRVrlT> 



COLLECTED ALGORITHMS (cont.) 

Delete the statement numbered 14 and replace it with the following two statements: 

14 IF (LO.EQ.2) GO TO 18 
DO 15 I=3,LO 

The subroutine, if tested for the case L = 2, would have performed correctly 
because of the implementation of DO statements in Fortran for the CDC-3800, 
which would not have executed the range if L < 3. However, for the IBM System/ 
360 Fortran compilers, the subroutine produces the erroneous mesBages mentioned. 

With the preceding corrections, the subroutine has been used with much success 
on a wide variety of problems. 

433-P 6- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 434 

Exact Probabilities for R x C 
Contingency Tables [G2] 

David L. March [Recd. 24 Nov. 1970 and 7 Mar. 1971] 
School of Education, Lehigh University, 
Bethlehem, PA. 18015 

Key Words and Phrases: probability, contingency table, test of 
significance 

CR Categories: 3.5, 5.5 
Language: Fortran 

Description 
Freeman and Halton [1] derive a general method for computing 

exact probabilities for contingency tables that result if a sample is 
subjected to k different and independent classifications. The follow
ing algorithm is limited to the case where k = 2. 

If a sample of size N is subjected to two different and inde
pendent classifications, A and B, with Rand C classes respectively, 
the probability P x of obtaining the observed array of cell frequencies 
X(Xij), under the conditions imposed by the arrays of marginal 
totals A(ri) and B(ci) is given by 

R C 

II (r;!) II (ci!) 
Px = i=l R ~·=1 (1) 

N! II II (X;j!) 
i=l .i=l 

Expression (1) is exact and holds if (a) the parent population is 
infinite or the sampling is done with replacement of the sampled 
items, (b) the sampling is random, (c) the population is homo
geneous, and (d) the marginal totals are considered fixed in re
peated sampling. 

To test the null hypothesis that A and B are independent against 
the indefinite two-sided alternative, the probability Ps of obtaining 
an array as probable as, or less probable than, the observed array 
is needed. P., is found as follows: (a) the probability Pt of the ob
served array is computed; (b) the probabilities for all other possible 
arrays of cell frequencies, subject to the conditions imposed by the 
fixed marginal totals, are computed; and (c) P. is then obtained by 
summing all of the probability values found in (b) that are less than, 
or equal to, the probability Pt . 

Method. The method of the subroutine uses the fact that 
expression (1) can be rewritten as 

Px = Qx/Rx 

where 

R C 

II (r;!) II (ci!) 

Qx = i=l ~!=1 

434-P 1- 0 

which is constant for the given set of marginal totals (ri) and (c;) 
and 

R C 

R,, =II II (x;;!) 
i=li=l 

which varies depending on the array of cell frequencies (x;j}. In 
order to avoid machine overflow and roundoff error, these compu
tations are performed using log~rithms. 

The observed R X C contingency table is specified by the 
NR X NC matrix which is partitioned as follows: 

Xu 
Xic I 
XRC TR 

C1 
.. -----------1---.-

· · · cc N 

After computing the constant term QXLOG and the probability 
of the given table PT, the subroutine assigns to each of the lower 
right (R - 1) X (C - 1) cells the minimum of its corresponding 
row and column totals which is the maximum possible number for 
the cell. These cells are then varied in all possible combinations with 
each cell varied between its maximum number and zero. 

Starting with cell (2, 2), the variation is accomplished by sub
traction of 1. When the subtraction yields a zero or positive result 
the routine goes to compute the remainder of the cell frequencies. 
When a negative result is obtained, the cell in question, say cell 
(i, )) , is reset to the minimum of the corresponding row and column 
totals, I is subtracted from cell (i, j + I) or, if j + 1 is greater than 
C, cell (i + 1, 2), and the count down n~sumes at cell (2,2). If none 
of the lower right (R - 1) X (C - 1) cells yield a zero or positive 
result, the computations are complete and the subroutine returns to 
the caller. For example, if the top line (below) is the cell maximum 
ordered left to right from the (2,2) to the (R, C) cell, the combina
tions generated will be 

2 
1 1 
0 1 
2 0 

0 
2 

0 

0 
0 

0 

0 

0 

The column 1 and row 1 cells are filled by subtraction of the 
generated cell numbers from the marginal totals. Since the method 
described above yields illegal as well as legal partitions, it is possible 
to obtain a negative result for one of these cells. When this occurs, 
the routine goes back to get a new set of cell frequencies. Otherwise 
RXLOG is computed. Then, the probability PX is computed and 
added to the cumulative sum PC. If PX is less than, equal to, or, 
to avoid missing one due to computational inaccuracy, slightly 
larger than PT, PX is also added to the significance probability PS. 

Since PC is the probability of obtaining some of the tables 
possible within the constraints of the marginal totals, PC should 
equal 1.0 .. The accuracy of the result can be estimated from the 
amount of deviation of PC from 1.0 .. 

The floating point logarithms (base 10) of the integer factorials 
are obtained from function FACLOG. For arguments less than or 
equal to 100, the result is obtained from a table that is computa
tionally filled on the first reference to FACLOG. Stirling's approxi
mation is used for arguments greater than 100. 



COLLECTED ALGORITHMS ( con1t.) 

Results. The algorithm was tested on a CDC 6400 (60 bit word) 
using 2 X 3 (N = 30), 2 X 4 (N = 7), and 3 X 3 (N = 7) con
tingency tables. Results for the 2 X 3 tables were verified against 
values separately computed using programs developed by March 
[2). In several cases PC deviated from 1.0. by 1.0 X 10-12• Results 
for the 2 X 4 and 3 X 3 tests were verified by hand computation. 

The author is indebted to the referees for their valuable com
ments and suggestions. 

References 
1. Freeman, G.H., and Halton, J.H. Note on an exact treatment 
of contingency, goodness of fit, and other problems of significance. 
Biometrika 38 (1951), 141-149. 
2. March, D.L. Accuracy of the chi-square approximation for 
2 X 3 contingency tables with small expectations. An unpublished 
D.Ed. Diss., School of Education, Lehigh U., Bethlehem, Pa., 
1970. 

Algorithm 
SUBR0UTINE C0NPCMATRIX.NR.NC.PT.PS.PC> 

c 
C INPUT ARGUMENTS. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

MATRIX = SPECIFICATI0N 0F THE C0NTINGENCY TABLE. 

NR 

NC 

THIS MATRIX IS PARTITI0NED AS F0LL0WS 

xn1>·····xc1c> 

XCRI) ••••• xcRC> 
CC I>••••• CCC> 

RC I> 

RCR> 
N 

WHERE XCIJ> ARE THE 0BSERVED CELL FREQUENCIES. 
RCI> ARE THE R0W T0TALS. CCJ> ARE THE C0LUMN 
T0TALS. AND N IS THE T0TAL SAMPLE SIZE· 
N0TE THAT THE 0RIGINAL CELL FREQUENCIES ARE 
DESTR0YED BY THIS SUBR0UTINE. 

THE NUMBER 0F R0WS IN MATRIX CR=NR-1>· 

THE NUMBER 0F C0LUMNS IN MATRIX CC=NC-1>. 

0UTPUT ARGUMENTS. 

PT = THE PR0BABILITY 0F 0BTAINING THE GIVEN TABLE. 

PS = THE PR0BABILITY 0F 0BTAINING A TABLE AS PR0BABLE 
AS, 0R LESS PR0BABLE THAN, THE GIVEN TABLE. 

PC ~ THE PR0BABILITY 0F 0BTAINING S0ME 0F THE 
TABLES P0SSIBLE WITHIN THE C0NSTRAINTS 0F THE 
MARGINAL T0TALS. CTHIS SH0ULO BE 1.0. DEVIATI0NS 
FR0M ! .O REFLECT THE ACCURACY 0F THE C0MPUTATI0N. > 

EXTERNALS. 

FACL0GCN> = FUNCTI0N T0 RETURN THE FL0ATING P0INT 
VALUE 0F L0G BASE 10 0F N FACT0HIAL. 

DIMENSI0N MATRIXCNR.NC> 
INTEGER R,C,TEMP 

R=NR- I 
C=NC- I 

C C0MPUTE L0G 0F C0NSTANT NUMERAT0R 
c 

QXL0G= -FACL0G CMATHI X < Nk• NC>> 
D0 l 0 I= 1, R 

10 QXLOG=QXL0G+FACL0GCMATRIXCI,NC>> 
00 ~~o J= 1. c 

20 QXL0G=QXL0G+FACL0GCMATRIXCNR,J>> 
c 
C C0MPUTE PR0BABILITY 0F GIVEN TABLE 
c 

c 

c 

RXLDG=O.O 
D0 50 I=\ ,R 
D0 50 J= 1,c 

50 RXLOG=RXLOG+FACL0GCMATRIXCl,J>> 
PT=IO·O**CQXL0G-RXL0G> 

Ps=o.o 
Pc=o.o 

C FILL L0WER RIGHT CR-I> X CC-I> CELLS WITH 
C MINIMUM 0F R0W AND COLUMN T0TALS 
c 

c 

D0 100 I=2•rt 
00 100 J=2,c 

100 MATRIXCI,J>=MINOCMATRIXCI,NC>.MATRIXCNR,J>> 
G0 T0 300 

C OBTAIN A NEW SET 0F FREQUENCIES IN 
CLOWER RIGHT CR-I> X CC-I> CELLS 
c 

200 DO 220 I=2.R 
D0 220 J=2.C 

MATRIXCI,J>=MATRIXCI,J>-1 
l•CMATRIXCI.J>.GE.O> G0 T0 300 

434-P 2- RI 

220 MATRIXCI,J>=MINOCMATRIXCI1NC>1MATRIXCNR1J>> 
HETUKN 

c 
C FILL REMAINDER OF 0BSERVED CELLS 
C •••••C0MPLETE C0LUMN I 
c 

c 

300 DO 320 I =2, K 
TEMP=MATRIXCl,NC> 
Do 310 J=2,c 

310 TEMP=TEMP-MATRIXCI1J> 
IFCTEMP.LT.Ol G0 T0 200 

320 MATRIX< I, I >=TEMP 

C •••••C0MPLETE R0W I 
c 

c 

DD 340 J=l,C 
TEMP=MATRIXCNR,Jl 
D0 330 1=2,R 

330 TEMP=TEMP-MATRIXCl,Jl 
IFCTEMP.LT.O> GD TD 200 

340 MATRIX< l1J>=TEMP 

COMPUTE L0G OF THE DEN0MINAT0R 

RXL0G=o.o 
D0 350 I=t,R 
DO 350 J=l1C 

350 RXL0G=RXL0G+FACL0GCMATRIXCI1Jll 

C0MPUTE PX. ADD TD PS IF PX .LE· PT 
CALLOW FOR ROUND-OFF ERROR> 

PX=IO·O**CQXLOG-RXLDG> 
,PC=PC+PX , 

IFCCPT/PX>.GT.0.99999> PS=PS+PX 
GO T0 200 
END 
FUN CTI ON FACU:lG < N > 

C INPUT ARGUMENT. 
c 
C N = AN INTEGER GREATER THAN 0R EQUAL TO ZERO· 
c 
C FUNCTl0N RESULT. 
c 
C FACLOG = THE LOG TO THE BASE 10 OF N FACT0RIAL. 
c 

c 

DIMENSl0N TABLECIOI> 
DATA TPIL0G/0.39908 99342/ 
DATA EL0G /0.43429 44819/ 
DATA IFLAG/O/ 

USE STIRLINGS APPR0XIMATI0N IF N GT 100 

IFCN.GT. tOO> G0 TO 50 

L00K UP ANSWER IF TABLE WAS GENERATED 

IFC ll'LAG.EQ.O> GO TO 100 
10 FACL0G=TABLECN+ll 

RETURN 

C HERE FOR STIRLINGS APPR0XIMATI0N 
c 

c 

50 X=FL0ATCN> 
FACL0G=CX+0.5l*AL0GIOCX> - X•EL0G + TPIL0G 

I + EL0G/Cl2·0•X> - EL0G/C360·0•X*X*Xl 
RETURN 

C HERE T0 GENERATE L0G F'ACT0RIAL TABLE 
c 

100 TABLE< I >=O.O 
00 120 I=2, 101 

X"F'L0ATCI-t> 
120 TABLECl>=TABLECI-l>+AL0GIOCX> 

I l'LAG= I 
G0 T0 10 
END 

Remark on Algorithm 434 [G2] 
Exact Probabilities for R X C Contingency Tables [D. L. 
March, Comm. ACM 15 (Nov. 1972), 991 J 

D.M. Boulton rRecd. 5 Mar. 1973 and 30 July 1973] 
Department of Information Science, Monash Univer
sity, Melbourne, Australia 

Algorithm 434 calculates the exact probability of a two-dimen
sional contingency table by generating all possible cell frequency 
combinations which satisfy the marginal sum constraints, and 
summing the probabilities of all combinations as likely or less 
likely than the observed combination. The method used to generate 
all the cell frequency combinations is rather ineffi.cient as it operates 
by generating all combinations which satisfy a weakened set of 
constraints and then rejecting those combinatiions which violate 



COLLECTED ALGORITHMS (cont.) 

the actual marginal sum constraints.· As the number of combina
tions rejected very often far exceeds the actual number accepted, 
the process. is very wasteful. 

A more efficient combination generating algorithm is described 
in Boulton and Wallace [I]. It generates explicitly only those com
binations which satisfy the marginal sum constraints. In addition, 
because the combinations are generated by a set of nested DO loops 
each with a different cell frequency as its controlled variable, the 
order of generation is such that one combination usually only differs 
from the next in the values of a few cell frequencies in the lower 
right corner of the table. This ordering can be used to reduce the 
time taken to obtain the logarithm of the probability of each com
bination. Instead of always summing over all cells, an array of 
partial sums of logarithms of cell frequencies is maintained, and 
for. each new combination only that part of the logarithm which 
has changed is evaluated and then added to the relevant partial sum. 

March's algorithm has been modified to use the combination 
generating algorithm of Boulton and Wallace and to take advantage 
of the order in which the combinations are generated. A series of 
comparison tests were run on a CDC 3200, and the results of a few 
are shown in Table I. The modified algorithm was always faster, 
and as can be seen in Table I, the speed improvement can be quite 
large. 

Table I. Ti mes for Evaluating Probabilities 

Contingency 
Time (sec) 

table Probability Original Improved 

8 12, (20) .05767116 .026 . 013 
8, 2, (JO) 

(16) (14) (30) 

5, 3, 3, 0 (11) .35262364 .290 .095 
2, 3, 1' 2 ( 8) 

(7) (6) (4) (2) (19) 

5, I, 0, 0 (6) 
1, 1, 2, 1 (5) .10625089 3.31 .510 
0, I, 1, I (3) 

(6) (3) (3) (2) (14) 

2, 0, 0, 0 (2) .12380952 13.9 .693 
0, 1, 0, 1 (2) 
0, 0, 2, 0 (2) 
0, 1, 0, l (2) 

(2) (2) (2) (2) (8) 

Finally, it is worth noting that the coll}bination generating 
algorithm of Boulton and Wallace can be systematically extended 
for contingency tables of more than two dimensions. It can thus be 
used as the basis of a subroutine for calculating exact probabilities 
in more than two dimensions. 

References 
1. Boulton, D.M., and Wallace, C.S. Occupancy of a rectangular 
array. Comp. J. 16, I (1973), 57-63. 

434-P 3- RI 

Remark on Algorithm 434 (G2] 
Exact Probabilities for R X C Contingency Tables 
[D.L. March, Comm. ACM 15 (Nov. 1972), 991] 
T.W. Hancock [Recd 16 Nov. 1973, 11 Feb 1974] 
Waite Agricultural Research Institute, The University 
of Adelaide, Glen Osmond, South Australia 5064. 

The above algorithm was presented for computing exact 
probabilities of R X C contingency tables by the method described 
by Freeman and Halton [I]. Clearly inelfficient for small matrices, 
this algorithm becomes impracticable for 4 X 4 matrices or larger. 
For this reason the subroutine presented b~low is suggested. Every 
effort has been made to minimize the number of coding changes 
so that (a) the original work of March can be recognized; and 
(b) the important differences are apparent to anyone wishing to 
compare the two approaches. Row and column dimensions have 
been added to the formal parameters, so that the elements of the 
contingency table do not have to be stored in a contiguous manner. 
(Both are included to ensure compatibility with any type of com
piler.) Function F ACLOG(N) is exactly as presented by March. 

Acknowledgment. I thank Dr. 0. Mayo, Waite Agricultural 
Research Institute, University of Adelaide, for suggesting that I 
investigate March's algorithm. 

Differences in Method Comment cards have been included 
in the listing to locate and describe the differences discussed below. 
These can be identified by an asterisk in column three. Also where 
appropriate this is followed by a number which relates to the order 
in the list below . 
1. All cell frequencies are set to zero initially. 
2. The jump indicator KEY is equivalenced to 1, and cell (2,2) 
(MATRIX(2,2) in the subroutine) is set to -1. 
3. The generation process is accomplished by addition of 1 to 
the ~ppropriate (/,J) cell frequency (where I and J proceed from 
2, ... , R and 2, ... , C respectively). 

"c 4. Thevalueof row marginal I is checked against L..K-JMATRIX 
(l,K). Similarly column marginal J is checked. If either marginal 
is less than the appropriate sum, control returns via 8 below to 3 
above. 
5. If indicator KEY equals 2 the cell frequencies preceding cell 
(/,J) are set to zero and the addition sequence recommences from 
cell (2,2) (i.e. 2 above). 
6. However, if KEY equals 1, subroutine /NIT is called to gen
erate the "next" matrix of cell frequencies satisfying the margin
als. /NIT first adjusts the marginals for the cell values in MATRIX. 
Then beginning at the lower left hand corner matrix (i.e. cell (R, 1)), 
each cell in turn is increased to its maximum value and its marginals 
reduced. Once the row marginal is reduced to zero the sequence 
jumps to the first cell in the row above. Using this process it is 
possible to progress from one valid set of frequencies to the next, 
thus saving considerable time. 
7. After the probability calculations have been computed, for 
the matrix returned from /NIT, a sequence of matrices is generated 
if the frequencies of cells (1,2) and (2,1) are both greater than 
zero. (As explained by Freeman and Halton the probabilities of 
the members of this sequence of matrices are related and recognition 
of this simplifies their calculation.) 
8. KEY is equivalent to 2, and control returns to 3 above via the 
loop terminator causing cell (/,J)' to be increased by 1. 

Results The two methods were compared on a Control Data 
Corporation CYBER 73 using contingency tables over a range of 
sizes and cell frequencies. Table I summarizes the CP times. Clearly 
the original method becomes unquestionably slow; in fact for a 
4 x 4 matrix, with all frequencies one, this method would attempt 
59 = I 953 125 matrices before it reached a result. For the same 
matrix 'the' revised method calculates probabilities for 10147 
matrices, all of which are compatible with the marginals. Obviously 
this improved method would be impracticable for contingency 



COLLECTED ALGORITHMS ( eo11C:.) 

Table I. Comparison of Subroutines 
(CP time required in seconds to compute exact probabilities 
for RXC contingency tables; where all c:ell frequencies are 
chosen equal to one. These are presented to illustrate the rela
tive improvement of RXC P RB over CON P. Obviously the actual 
times will depend on the machine used.) 

RXC 
2 x 2 
2 x 3 
3 x 2 
2 x 5 
5 x 2 
3 x 3 
3 x 4 
4 x 3 
4 x 4 

CON P (by March) 
.019 (3t) 
.012 (9) 
.018 (9) 
. 073 (8) 
.093 (81) 
.110 (256) 

1.279 (4096) 
1. 344 (4096) 
Unknown* 

RXCPRB 
.018 (3 t) 
.010 (7) 
.016 (7) 
.054 (51) 
.055 (51) 
.055 (55) 
.509 (415) 
.514 (415) 

15 .495 (10147) 

t Numbe1r of matrices attempted in the calculation 
* Computation was still incomplete after 500 seconds 

tables with more degrees of freedom and/or larger total sample 
size, but grouping of classes and alternative statistical tests are 
available in this area (see Goodman [2] or Sugiura and Otake 
[3]). Further it is generally trivial to continu«:: once the tail prob
ability becomes large, so that insertion of a statement of the form, 

JF(PS. GT. 0.1. AND. PC. LT. 0.9)RETURN 
in subroutine RXCP ROB prior to statement numbered 32 would 
increase efficiency. 

In all cases, RXCPROB and CONP produced correct prob
abilities. (For smaller matrices, the computed probabilities were 
checked by hand; for the larger ones, agreement between the 
methods was taken to indicate the correctness of RXCPROB, 
since March had already tested his subroutine.) The maximum 
deviation of PC from 1.0 was 1.0 X 10-10• Although slightly larger 
than reported by March this is a direct result of the increased 
complexity of the tables solved, and in fact CONP gave a similar 
deviation. 

References 
1. Freeman, G.H., and Halton, J.H. Note on an exact treatment 
of contingency, goodness of fit, and other problems of significance. 
Biometrika 38 (1951), 141-149. 
2. Goodman, L.A. On methods for comparing contingency tables. 
Journal ofRoyal Statistical Society Series A 126 (1963), 94-105. 
3. Sugiura, N., and 6take, M. Numerical comparison of Im
proved methods of testing in contingency tables: with small fre
quencies. Annals of the Institute of Statistical Mathematics 20 
(1968), 505-517. 

Algorithm 
SUBROUTINE RXCPRJ3CMATRIX1 NRD, NCO, NR, NC, 

*PT, PS, PC> 
C * THIS SUBROUTINE COMPUTES EXACT 
C * PROBABILITIES FOR R X C CONTINGEl\iCY TABLES 
C *INPUT VIA FORMAL PARAMETERS 
C * NRD • THE ROW DIMENSION 
C * NCO • THE COLUMN DIMEt; SI ON 
C NR •THE NUMBER OF ROWS IN MATRIX CR•NR-1>• 
C NC • THI! NUMBER Of COLUMNS IN MATRIX <C•NC-1 ), 
C MATRIX = SPECIFICATION OF THE CONTINGENCY 
C TABLE· THIS l1ATRD' IS PARTI.TIONEC AS 
C FOLLOWS 
c * XCl1l)1XCl12), ••••••••••• ,xc1,c> xc1 •. NC> 
C $ I••••••••••• I 
c • .. ........... .. 
C * X C R, I ) , X CR, 2 > , • • • • • • • • • • • , X C P., C ) X C R,, N C ) 
c * YCNP.,]),Y,(]l~R.2), ••••••••• ,xcNR.C> XCNR1NC) 
C * ~HERE XCI1J) ARE THE OBSERVED CELL 
C * FREQUENCIES, XCI,NC> ARE THE RO't.I TOTALS, 
C * Xct:R,J> ARE THE COLUMr; TOTALS, .ANJ: XUJR,NC> 
C * IS THE TOTAL SAMPLE SIZE· 
C NOTE THAT THE ORIGINAL CELL FREQUENCIES ARE 
C DESTROYED BY THIS SUBROUTINE. 

434-P 4 

C OUTPUT ARGUMENTS. 
C PT "' THE PROBABILITY OF OBTAIN·ING THE GIVEN 
C TABLE· 
C PS • THE P'fi,OBABILITY OF OBTAINING A TABLE AS 
C PROBABLE AS, OR LESS PROBABLE THAN, THE 
c GI vn; TABLE. 
C * PC = THE PROBABILITY OF OBTAINING ALL OF THE 
C TABLES POSSIBLE WITHIN THE CONSTRAINTS OF 
C THE MARGit:AL TOTALS. CTHIS SHOULD BE 1.0. 
C DEVIATIONS FROM 1·0 REFLECT THE ACCURACY OF 
C THE COMPUTATION·> 
C EXTE PNAL S • 
C * INITCMATRIX,NRD1NCD1NR1NC> • SUBROUTINE WHICH 
C * RETURNS THE •NEXT* MATRIX TO SATISFY 
C * THE MARGINALS• 
C FACLCGCN> = FUNCTION TO RETURN THE FLOATING 
C POINT VALUE OF LOG BASE 10 OF N FACTORIAL • 

DIME~SION MATRIXCNRD,NCD> 
INTEGER R, C 
R = NR - I 
C = NC - I 

C COMPUTE LOG OF CONSTANT NUMERATOR 
QXLOG • -FACLOG CMATP.IXUJR,NC>) 
DO 10 I=J,R 

QXLOG "QXLOG-+ FACLOGCMATRIXCI,NC>> 
10 CONTINUE 

DO 20 J=J,C 
QXLOG • QXLOG + FACLCGCMATRIXCNR,J>> 

20 ccr;TINUE 
C COMPUTE PROBABILITY OF GIVEN TABLE 

RXLCG = IZ .0 
DO 40 I=J,R 

DO 30 J= J, C 
RXLOG = RXLOG + FACLOGCMATRIXCI,J>> 

30 CO!\'TWUE 
40 COl\'Tll\iUE 

PT = 10·0••CQXLOG-RXLOG> 
PS = 0. 0 
PC "' 0.0 

C * I• ALL CELL VALUES INITIALLY SET TO ZERO 
DC c0 I=J,R 

DO 50 J= 1, C 
MATRIXCI,J) = 0 

50 CONTINUE 
60 COl'lTINUE 

C * 2. EACH CYCLE STARTS HERE 
70 KEY " I 

MATRIXC212) " -I 
C * 3, GENERATING SET OF FREQUENCIES PROGRESSIVELY IN 
C * LO'.fER RIGHT CR-I>* CC-I) CELLS· 

c * 4, 

c * 
c * 
c * 

80 

DO Jc0 I .. 2,R 
DO 150 J=2,C 

NATRIXCI,J> = MATRIXCI,J> -+ I 
CHECKING SUMMATIONS .LE. RESPECTIVE MARGINALS 
I·E· CSUM OF ELTS. J TO C IN ROW I> 0 LE· 
MATRIXCI,NC> AND CSUM OF ELTS. I TO R IN COL· 
J).LE. !'1ATRIXCNR,J> 

I SUM • 0 
JSUM "' 0 
DO 80 M•J, C 

ISUM = ISUM -+ MATRIX<I1M) 
C<l'-JTINUE 
IF CISUM.GT.MATRIXCI,NC>> GO TO 130 
DO 90 K"I' R 

JSUM = JSUM + MATRIXCK1J) 
90 CONTINUE 

IF CJSUM.GT.MATRIXCNR,J)) GO TO 130 
C * 5. JUMP TO STATEMENT 170 WHERE ALL CELLS PRIOR TO 
C * MATRIYCI,J> ARE SET TO ZERO. 

IF CKEY.EQ.2> GO TO .170 
IP "' I 
JP = J 

C * t. CALL SUBROUTINE INIT TO FIND THE NEXT BALANCEr; 
C * MATRIX 

CALL INITCMATRJX, NRD, NCD1 NR, NC> 
C COMPUTE LOG OF THE DENOMINATOR 

RXLOG = 0·0 
DO 110 Ko: I, R 

CO 100 M=J,C 
PYLOG = RXLOG + FACLOGCMATRIXCK1M>> 

100 CONTINUE 
I 10 cor;TINUE 

C * COMPUTE PX. ADD TO PC AND ALSO PS IF PX .LE. PT 
C CALLO' F011 POUND-OFF ERROR> 

c * 7. 

c * 
c * 
c * 
c * 

I 20 

* 

PX = 10·0**CQXLOG-RXLOG> 
PC = PC -+ PY 
IF C <PT/PX> .GT.e;.<;9999> PS • PS + PX 

IF PCSSIBLE A SE0UENCE OF MATRICES AND 
ASSOCIATED PROSABILITIES CPX1PC ANL J>S> ARE 
GENEFIATED !3Y MANIPULATING CELLS CJ,]), Cl,2» 
C2,J> AND C2,2> CSIMILAPLY ALLOWING 
FOP. ROUND-OFF ERROR> 

IF CMATRJXCl12>.LT.J ,QR. 
MATRIXC21 I >·LT. J > GO TO 140 

~:ATRIXCJ,]) = MATRIXCJ,J) +I 
MATRIYC212> = MATRIXC2,2> + I 
PX= PX•FLOATCMATRIXCJ,2>>*FLOATCMATRIXC2,J )) 

/FLOATCMATRIXCJ,]))/FLOATCMATRIXC2,2>> 
PC = PC + PX 
IF CCPT/PX).ClT.0.99999> PS• PS+ PX 
MATRIXCl12> = MAiRIXCl,2> - I 
MATRIXC21I) = MATRIXC2.I> - I 
G 0 TO 120 

0 



COLLECTED ALGORITHMS (cont.) 

130 

c * s. 
l41Z 
IS~ 

160 

IP = I 
JP = J 

KEY SET TO 
KEY = ::> 

CONTH:UE 
CONTn:uE 
"'ETU<>t; 

AS CYCLE COMPLETED 

C * ALL CELLS OF MATRIY PRIOR TO THE CJ,J>TH· ARE 
C * SET TO ?ERO. 

171Z DO rs~ M=2.JP 
MATRIX< IP1M) = 0 

180 CCNTH:UE 
IP = IP - l 
DO 21ZZ l<= 1, IP 

DC J 9e ~:=2, C 
MATl1IX<K1M) • 0 

I 91Z CONTINUE 
200 CONTINUE 

GO TO 7121 
E~;D 

SUBROUTl~E INITCMATRJX, NRO, NCO, NR, NC> 
C * THIS SUBPOUTIN~ RETURNS THE •NEXT• MATRIX TO 
C * SATISFY Cl) THE MAPGH!ALS AND C2> THE SEQUENCE 
C * OF GENERATION DEFtr;ED II~ SUBROUTH;E. RY.CPRB· 

DIMENSION MATP.IXCNl1D,r;CD), MROWC50), M.COLCS0) 
lr'TEGER Fl, C 
0 . = r,•P. - J 
c = r;c - 1 

C * EQUIVALENCE MROl·T AND ~•COL TO ROW Al'JD COLUMN 
C * MARGINALS PESPE.CITVELY. 

DO 10 l<=J,R 
MATRIXO<, I) = 0 
MROW<K> = MATRIXCK,KC> 

l 0 CONTINUE 
DC. 20 n= J, C 

MCCLCMJ = MATRIXCNR,M) 
20 CONTir:UE. 

C * FO" EACH R01·T, SUBTRACT ELEMUJTS 2 TO C FROM MROW 
DC 40 Yc2, '1 

DO 30 M=21C 
MRC'JCK> = MROWCI{) - MATRIXCK1M) 

30 CCJ-!TINUE 
40 CONTihUE 

C * FOP EACH COLUMr:, SUBT?.ACT ELE.MCJJT S 2 TO Fl FROM 
C * ~CCL 

DO t:0 M=2, C 
DC 50 1<=2• R 

434-P 5- RI 
MCOLCM> = MCOLCM) - MATRIXCK,M) 

S0 CCNTINUE. 
t,0 CONTINUE. 

c * FORMJr;G •r;cxT BALANCED• ARRAY 
DC 90 I=J,P 

IR = NT! - I 
DC 80 J=.1, C 

MIN = MIN0CMRCWCIR>,MC0LCJ)) 
IF CM IN • EQ, rz; > G 0 TO 7 0 
MATRIXCIR,J) • MATRIXCIR,J> + MIN 
MRC1.f<IP.>,. MRO'/CIFD - MIN 
MCOLCJJ = HCOLCJJ - MIN 

70 IF CMROWCIRJ.EQ.rz;:, GO TC 90 
80 CQt>.;TINUE 
90 CONTINUE 

RETURt; 
END 

FUNCTICN FACLOGCN> 
C INPUT ARGl.l'JENT· 
C rJ = AN INTEGER GREATEI~ THAN OR EQUAL TO ZERO. 
C FUNCTION RESULT· 
C FACLCG " THE. LOG TO THE. BASE 10 OF N FACTORIAL· 

DIMENSICN TABLECllZJ> 
DATA TP IL OG /0. 39908<;•; 342/ 
DATA E.LOO /0.4342944819/ 
DATA IFLAG /0/ 

C USE STIRLINGS APPROXIMATION IF N GT 100 
IF CN.GT.100) GO TO 213 

c LCOK UP ANSWER IF TABLE w.cis GENERATED 
IF CIFLAG.EQ.0) GO TO 30 

10 FACLGG = TABLEC~+J> 
PE.TURN 

C HERE. FCR STIRLINGS APPROXIMATION 
20 Y = fLOATCN) 

FACLOG = CX+0.5)*ALOGl0<X> - X•ELOG + TPILCG + 
* ELOO/C I 2·0*X> - E.LOG/C 3l>(!J,0*X•X•X) 

RETURN 
C HERE TO GEN ERA TE LOG FACTORIAL TABLE 

30 TABLECJ) = 0.0 
DO 40 I=2110J 

X • fL OAT Cl - I ) 
TABLECI) = TABLE<I-1> + ALOGJ0<XJ 

40 CONTINUE. 
!FLAG = I 
GO TO 10 
END 

ACM T.rMUl&ctions on Nai.hematical Software, Vol. 2; No.}., Ma.rcb W-6, Pece 108 

REMARK ON ALGORITHM 434 

Exact Probabilities for R X C Contingency Tables [G2] 
[D.L. March, Comm. ACM 15, 11 (Nov. 1972), 991] 

D.M. Boulton [Recd 25 June 1975] 
Department of Computer Science, Monash University, Clayton, 3168, Victoria, 
Australia 

Two previous Remarks, by Boulton (1974) [1] and by Hancock (1975) [2], 
have shown that Algorithm 434 by March (1972) is rather inefficient, especially for 
contingency tables with many degrees of freedom. The inefficiency lies in the method 

Table I. Times in Seconds for the Table II. Times in Seconds for the 
Contingency Tables in Boulton [1] Contingency Tables in Hancock[2] 

RXC Hancock Boulton RXC Hancock Houlton 

2 x 2 0.024 0.018 2 x 2 0.008 0.007 
2 x 4 0.16 0.10 2 x 3 0.023 0.016 
3 x 4 1.37 0.68 3 x 2 0.023 0.016 
4 x 4 2.21 1.05 2 x 5 0.21 0.11 

5 x 2 0.21 0.10 
3 x 3 0.22 0.12 
3 x 4 2.08 0.98 
4 x 3 2.08 0.99 
4 x 4 63.5 25.5 



COLLECTED ALGORITHMS (cont:.) 

of generating all those cell frequency combinations that satisfy the marginal sum 
constraints. 

The purpose of this remark is to compare directly the speeds of the above two 
more recent algorithms (in the Remarks). Th.e comparisons were carried out on a 
Hewlett-Packard HP2100A computer with fully extended arithmetic and micro
programmed array referencing and subroutine entry. In Table I, times are given for 
the four examples originally used in Boulton. In Table II, times are given for the 
examples presented in Hancock. 

The algorithm by Boulton is always faster, and for aH but 2 X 2 tables the 
improvement is quite significant, being more than a factor of 2 for contingency 
tables with several degrees of freedom. 

The same set of tests were run again on the HP2100A with standard firmware, 
i.e. without microprogrammed array referencing and subroutine entry. The times 
were then found to be even more in favor of Boulton's algorithm. The speed ratio 
increased to 3 for Hancock's 4 X 4 table. 

REFERENCES 

[1] BouLTON, D.M. Remark on Algorithm 434. Comm. ACM 17, 6(June 1974), 326. 
[2] HANCOCK, T.W. Remark on Algorithm 434. Comm. ACM 18, 2(Feb. 1975), 117-119. 

434-P 6- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 435 

Modified Incomplete Gamma 
Function [S 14] 
Wayne Fullerton [Recd. 30 Dec. 1970 and 12 April 
1971] 
Department of Astronomy, University of Michigan, 
Ann Arbor, MI 48104 

Key Words and Phrases: modified incomplete Gamma flDlction, 
incomplete Gamma f1D1ction, chi-square distribution f1D1ction, 
Poisson distribution f1D1ction 

CR Categories: 5.13 
Language: Fortran 

Description 
The incomplete Gamma function is defined by 

-y(a, x) = Lx ya-i. e" dy, x~O. (1) 

If x is allowed to assume negative values and if the absolute value of 
y is substituted for y in the term ya-i., then a modified incomplete 
Gamma function may be defined by 

-y'(a, x) = Lx I Y ja-i. e11 dy, ·-oo <x~ oo. (2) 

Note that if x is less than zero, the above is equivalent to 

r1x1 
-y'(a, x) = - Jo ya-i. e+11 dy, x~O. (3) 

The function subprogram GAMINC given below computes the 
more general function 

GAMINC (a, Xi , x2) ~ ~i C2 I y 1a-l. e-11 dy 
•xi (4) 

= exih'(a, x2) - -y'(a, x1)]. 

For x1 equal to zero, GAMINC is just a modified incomplete 
Gamma function. And if x2 is also greater than or equal to zero, 
then GAMINC is simply an incomplete Gamma function. 

The need for the function GAMINC arises in the calculation of 

I = ea+bz exp - ea+fJZ' --- ---f z 2 { 1 z dZ' l dZ 
Zi 0 -sin({}) J -sin({})' 

(5) 

The facilities of the University of Michigan Computing 
Center were used for this work and the research was supported by 
the National Science Foundation through a Traineeship granted 
to the author. Author's present address: Los Alamos Scientific 
Laboratory, Los Alamos, NM 87544. 

435-P 1- 0 

where {} is an angle between - 7r and +7(' 111ot equal to zero. The two 
constants band fJ are of the same sign. The integral in the exponent 

can be done explicitly to yield 

I = ea+bz exp --- dZ 
ea-To+ Xi f Z2 {-ea+fJZ} 
-sin ({}) zi -sin ({}) ' 

(6) 

where 

and 

1Z1 dZ' 
TO = ea+fJZ' --. -. 

0 -sm (1') 

A change of variables finally reduces the above integral to 

I ~ ,•-•• I b sin (") [Mr-1.,-.,,1• [ •'" i:' I Y [Pf>-1.e-• dy] (7) 

The quantity in brackets is GAMINC(fJ/b, Xi, X2). 
The approximations of -y' (a, x) used in G AM/NC are valid only 

for 1. ;5 a ;5 2. (See Table I.) The user may compute GAMINC 
for other values of a with the aid of the recurrence relation (m is a 
positive integer such that 1. ;5 a ;5 2). 

GAMINC(m + a, xi , x2) 
= {m + a - 1) GAMINC(m + a - 1, Xi , X2) + [I X1 lm+a-i (8) 

- I x2 lm+a-ie:.:i-:.:2] 

In general for xi ~ 0 and x2 ~ 0, 

GAMINC(m + a, xi , X2) 

= (m + a - 1)-(m +a - 2) · · · (a) ·GAMINC(a, Xi, X2) 

m-i 

+ I Xt 1° [I X1 lm-i· + L (m + a - 1) 
i-i 

· · · (m + a - i) I Xi lm-i-•] (9) 
m-i 

- I x2 I" [I x2 lm-J• + L (m +a - 1) 
t-t 

... (m + a -- i) I X2 1m-1-i ]e:i:i-z2. 

The recurrence relation should be applied in the other direction 
if m + a is less than 1. 

For large values of a (a ?, 15.) in the incomplete Gamma 
function, the user is referred to the algorithm by Takenaga [5]. 

In all cases we use approximations which are functions of both 
a and x, so that it is not necessary to compute and store an econo
mized polynomial for each value of a. 1rhe overhead in execution 
time for doing this is not significant sin.ce many-term expressions 
would result anyway. Also exponentiation and real numbers 
raised to a real power require 30 percent of the total computing 
time. Multiplying -y'{a, x2) - -y'(a, xi) by e:i:i saves two exponentia
tions and greatly extends the range over which the difference can be 
represented without over- or underflows: occurring. Four separate 
approximations are used to compute -y'(a, x). 

Region 1. For x ~ 5.0, the complimentary incomplete Gamma 
function is computed by using a continued fraction approximation 
[1] 

(10) 



COLLECTED ALGORITHMS (cont .. ) 

where 

T· _... i+a 
' - 1 + i/(x + Tt+i) ' 

and where r(a) is the complete Gamma functilon of a. Only terms 
through Ta are used explicitly. T, is taken into account in an ap
proximate way by setting T, = 1.7, which is it:s approximate value 
when x,...., 5.0. If both argument values are greater than 5.0, then 
significance is maintained by subtracting the complementary func
tions, not the functions themselves. 

Region 2A. For -12. < x < -1. and 1. < x < 5., the con
tinued fraction approximation gi~en by Luke [3] is valid. We 
rewrite the approximation in the form 

' x· IX 1a-l.e-x 
'Y (a, x) = ---'----'---

a· T 1 

where 

(11) 

(a+ n - O·x Tn = 1 - ___________ :....__ _______ _ 
· (a+ 2n - 2).[a + 2n - 1 + (n·x)/((a + 2n) ·Tn+1)] · 

Only terms through T1 are used explicitly, and Ts is computed by 
using the approximate expression 

Ts~ 1.00150 - 8.95· 10-6 ·a + x 
· (-0.0337062 + .0004182 ·a + x 
-(.000999294 - .000104103 ·a)). 

(12) 

On a computer with 32 bit words, eq. (11) must be evaluated in 
double precision in order to maintain approximately six significant 
figures of accuracy. On an IBM 360 double precision evaluation 
can be forced by including more than seven digitsin a constant as is 
done in eq. (12). Of course, double precision evaluation is unneces
sary if there are somewhat more than 32 bits per word. Because 
the calculation of the approximation of -y' (a, x) is a relatively time 
consuming operation, a separate approximation is used when 
Ix I s t. 

Region 28. For -1.0 s x s 1.0, a change of variables is made 
so that 

l x (Y )a-1. 
'Y1 (a, x) = I xla-l.e-x 

0 

~ e-u+x dy, (13) 

or 

/(a,x) = x·lxla-l.e-x 11 (1 - p)a-1.exPdp. (14) 

Because -1.0 s xp s 1.0, e"P may be adequately approximated 
with a polynomial. A Chebyshev approximation of nine terms yields 
a maximum absolute error less than 10-7, which is adequate to 
insure that the maximum relative error of the integral ordinarily be 
much less than about 10-6• Since the relative: error jn the single 
precision evaluation of I x lae-., is usually ""1 · 10-s for a machine 
with a 32 lbit word length, the above error bound seems entirely 
reasonable. Write 

M 

ez ~ L biz;., -1.0 S Z s 1.0. (15) 
i-0 

Then 

M i!b·xi 
/(a x) ~ x· Ix 1a-1.e-x L i 

' i-o (i + a)(i +a - 1) · · • (a)· 
(16) 

Finally we may define b/ = bi·i!, and write 

(17) 

435-P 2- 0 

Note that if the series was not economized, all 1the b/ would be 
unity. But because a finite Chebyshev economized series is em
ployed, the b/ are only approximately unity. 

Of course, it would be possible to extend the Chebyshev ap
proximation to include the entire range -12. < x < 5.0; however 
the many-term result would have to be evaluated in double pre
cision in order to insure a relative error < 10-6• It would also be 
possible to decrease the range of validity of the ascending continued 
fraction approximation; however the other approximations would 
then have to be more complicated and would require an accordingly 
longer time to evaluate. Such a change was judged inadvisable since 
the function is used predominantly with arguments whose absolute 

Table I. Relative Errors of GAMINC(A,0.,X) in Units of 
the Sixth Decimal Place 

A 
x -·----

0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.9 3.5 
-- -- -- ---- ---~- --

-14. 16.57 3.37 0.27 0.79 1.11 0.81 1.87 1.35 1.03 
-12. 1.03 1.61 0.42 0.47 1.23 0.95 2.70 1.69 2.70 
- 8. 0.09 1.04 0.34 0.69 1.69 1.07 2.01 2.11 2.24 
- 4. 0.38 0.82 0.15 0.79 0.67 0.19 0.51 1.59 0.75 
- 2. 1.22 0.78 0.50 0.11 0.07 0.01 0.09 0.11 0.51 
- 0.5 0.65 0.43 0.21 0.32 0.23 0.15 0.18 0.65 0.78 
+ 0.5 1.03 0.42 0.66 1.19 1.25 0.77 0.29 0.06 0.35 

2. 0.53 1.57 0.77 0.26 0.04 0.22 0.05 0.23 0.40 
6. 0.44 0.38 0.06 0.01 0.06 0.06 1.21 0.36 2.21 

10. 0.63 0.73 0.03 0.02 0.08 0.03 0.()() 0.04 0.26 

Table II. Execution Times of GAMINC(A, X1 , X2) in Milli
seconds 

-12. < Xz <5 

X2 S -12. Xz 2: 5. 

IX2IS1. IX2l>l. 

X1S -12. 1.1 1.4 2.0 0.6• 

_ 12 <X < 5 {IX1IS1. 1.4 1.3 2.0 1.4 
. 1 . IX1 I> 1. 2.0 2.0 2.4 2.0 

Xi 2: 5. 0.6• 1.4 2.0 1 .1 -
X1 = 0. 9.8 0.9 1.4 0.8 

• Only the modified incomplete Gamma function for X = Xi was calculated, 
because I X2 - Xi I was greater than EXPL/M. 

values ace large. Also, the present choice of ranges and approxima
tions provides for the accurate representation of -r'(a, x) further 
beyond a = 2. than would many other choices. 

Region~- For x s -12., the asymptotic expansion 

-y
1 (a, x) ~ r(a) 

_ lxla-1.e-:r[l +a - 1 +(a - l)·(a - 2) + ···] (18) 
x x2 

is used. Shank's e1 process [4] is applied once to the six-term series 
in order to accelerate convergence. 

The function subprogram is invoked by a reference of the form 

GAMINC(A, Xl, X2, GAM), 

where GAM is the user-supplied value of the complete Gamma 
function of A. r(a) is now commonly a part of the standard Fortran 
library of functions. If it is not, one of the several algorithms de
scribed in this department may be used, or GAMMA given in 
IBM's Scientific Subroutine Package (cf. Hastings [2]) may be 
used. 



COLLECTED ALGORITHMS (cont.) 

Table I presents the absolute value of the relative errors (multi
plied by 106) of -y'(a, x) for selected values of a and x. Because 
Ix l0 e-z was not calculated in double precision, these errors are the 
total errors and not the errors in the approximations. The "exact" 
values were found by directly summing the series 

I N (-x)i 
'Y (a, x) S:: Ix la :E-( +")"I 

;_o a 1 1. 

in double precision. N was chosen so that the contribution of the 
Nth term was less than 2 · lo-9 times the sum of the previous N terms. 
Single precision approximations were used to represent a and x in 
order to insure that the series and the subprogram gave -y'(a, x) 
for the same parameter values. The subroutine has been used 
extensively to compute a three-fold integral which includes numer
ous cases of eq. (5) as a part of the integral. Independent numerical 
integration results are in agreement with subroutine results to 
within three significant figures-the accuracy of the numerical 
integration. Table II gives the average execution times in milli
seconds of the subroutine for various argument combinations. The 
times are for an IBM 300/67, which, for comparison, exponentiates 
in approximately 0.1 milliseconds. 

Acknowledgments. It is a pleasure to thank Dr. Carl deBoor 
for commenting on a draft of this paper. 

References 
1. Abromowitz, M., and Stegun, I.A. Handbook of Mathematical 
Functions. National Bureau of Standards, U.S. Gov. Print. Off., 
Washington, D.C., 1967, p. 263. 
2. Hastings, C. Approximations for Digital Computers. Princeton 
University Press, Princeton, N.J., 1955, p. 155. 
3. Luke, Y.L. The Special Functions and Their Approximations 
Vol II. Academic Press, New York and London, 1969, p. 196. 
4. Shanks, D. Non-linear transformations of divergent and 
slowly.convergent sequences. J. Math. Phys. 34 (1955), 1. 
5. Takenaga, R. On the evaluation of the incomplete gamma 
function. Math. Computation 20 (Oct. 1966), 606. 

Algorithm 

rUNCTI0N GAMINC <A.x1.x2.GAM> 
c 
C C0MPUTE THE DIFFERENCE BETWEEN TW0 M0DIFIED INC0MPLETE 
C GAMMA FUNCTl0NS F0R <A.XI> AND <A.X2> THEN MULTIPLY BY 
C EXP<XI). THAT IS, C0MPUTE THE INTEGRAL 0F ABSCX>**CA-1·> 
c •EXPCXl-X> FR0M XI T0 x2. IF XI .Gr. x2. THEN x1-x2 MUST 
C BE •LE· EXPLJM. 
C EXPLIM CAN BE·A MACHINE DEPENDENT C0NSTANT WHICH PREVENTS 
C EXP0NENTIATI0N 0VER- AND UNDERFL0~1S. IT IS USED HE~E T0 
C SUPPRESS THE CALCULATl0N 0F MIGAMCA.X2> WHEN THE VALUE 0F 

435-P 3- Rl 

C MIGAMCA.X2> IS INSIGNIFICANT. THIS USAGE REQUIRES X2 + 
C EXPLIM oGE• XI. <MIGAM IS AN ABBREVIATl0N F0R M0DIFIED IN
C C0MPLETE GAMMA FUNCTI0N.> 
C GAM IS THE C0MPLETE GAMMA FUNCTl0N 0F A SUPPLIED BY THE 
C CALLING PR0GRAM· 
c 
C F0R X .Gr. 5., GAM-MIGAMCA,X> IS C0MPUTED WITH A ~0NTINUED 
C FRACTl0N APPR0XIMATI0N• F0R ABSCX> oLE· 1.0, THE INTEGRAL 
C IS TRANSF0RMED AND EXPCQ> IS APPR0XIMATED WITH A CHEBYSHEV 
C SERIES S0 THAT THE NEW INTEGRAL MAY BE D0NE ANALYTICALLY• 
c F0R x oGTo -12. AND x oLT· 5. CABSCX> .GT. I oO>. A C0NTIN
c UED FRACTl0N APPR0XIMATI0N IS USED· FINALLY F0R X 0LE 0 
C -12., THE ASYMPT0TIC EXPANSI0N IS USED· 
c 
C SGN IS A S~JITCH WHICH, IF N0NZER0, INDICATES WHETHER GAM 
C SH0ULD BE ADDED 0R SUBTRACTED FR0M AN INTERMEDIATE RESULT· 
c 

DATA EXPLIM/20./ 
Z=XI 
SGN=O, 
TIH=-1 • 
EXPDIF=l •0 
IF CZ .NE· O·> G0 T0 10 
GAMl=O• 
SGN=SGN+TIH 
G0 T0 40 

10 IF CZ oLE• 5·> G0 T0 20 
C USE EQUATI0N 10· 

GAMl=-EXPDIF•Z••AICZ+c1.-A)/Clo+lo/(Z+c2.-A)/Clo+2. 
I /CZ+C3·-A>IC I o+3o/CZ+l o7))))))) 

G0 T0 40 
20 AZ=ABSCZ> 

IF CZ oLE· -12•> G0 T0 30 
SGN=SGN+TIM 

C USE EQUATI0N 17. 
IF CAZ oLE• I•> GAMl=EXPDIF•ZIA •AZ••<A-1·> 

I •Cl. +Z/CA+I.> •C.9999999+,/CA+2·> 
2 •C.9999999 +Z/CA+3•> •<1·000008+Z/CA+4.) 
3 •<1.000005 +Z/CA+5.) *<·9994316+Z/CA+6.) 
4 •C.999SS87 +Z/CA+7•> $Clo031684+Z/CA+B·> 
5 •1.028125)))))))) 

C USE EQUATI0NS 11 AND 12· EVALUATl0N MUST BE 00NE 

~ ~~D~~~~~ p~~c~~l~~HI~6~~M~~T~~ ~~!L~~T~~N·~~E~e~~~~ 
C BY THE D. p, C0NSTANTS IN C0NTINUAT10N CARD 9• 

IF CAZ .GT· I•> GAMl•EXPDIF•ZIA •AZ••<A-1·> 
I /Cl.- A. •ZIC A •CA+ I.+ Z/CCA+ 2·> 
2 •Ct.-CA+l•>•ZICCA+ 2•>•CA+ J,+2••l/CCA+ 4,) 
3 *Cl·-<A+2•>•ZICCA+ 4•>•CA+ 5·.+3.•ZICCA+ 6·> 
4 •Cl.-CA+3·>•Z/CCA+ 6·>•<A+ 7.+4·•ZICCA+ 8·> 
S •Cl.-CA+4•>•ZICCA+ B·>•CA+ 9.+S.•ZICCA+IO·> 
6 •c1.-cA+S·>•Z/CCA+lO·>•CA+ll·•6·•Zl<CA+l2·> 
7 •Cl.-CA+6•>•ZICCA+l2•>*CA+l3o+7.$Z/CCA+l4•> 
8 •<l·OOISO-A•8·9SE-S +z•c-.0337062+A•·0004182 
9 +Z•<·000999294-A•·000104103>>> >>>> >>>> >>>> 
A >»> »» >»> »» 

G0 T0 40 
C USE EQUATI0N 18 AND SHANK-S El PRl!ICESS 0NCE. 

30 GAHl•-EXPDI F•AZ••<A-1 ·>•<I• +01- I•> •CI .+c A-2 • >• 
I Cl.+CA-3·>•Cl•+CA-4.>•<l•+<A-So)/CZ-A+6•>> 
2 IZ>IZ>IZ>IZ> 

40 IF <TIM .GT• O·> G0 T0 SS 
GAMINC•GAMI 
Ir CABS<Xl-X2> .GT. EXPLIM> GQI T0 SO 

C IF TRUE• C0NTRIBUTI0N AT X2 IS ·Ll'. l·E-7 *<C0NTR AT XI>. 
C PR0VIDED X2 .GT• XI• 

Z•X2 
EXPDIF•EXPCXl-X2> 
TIM•I• 
G0 T0 S 

50 GAMl•O• 
S5 GAMINC•GAMl-GAHJNC 

IF CSGN .NE• o. > GAMINC•GAMINC:-SIGNCGAM•EXPCXI >.SGN> 
RETURN 
END 

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Pages 296-304. 

REMARK ON ALGORITHM 435 

Modified Incomplete Gamma Function [814] 
[Wayne Fullerton, Comm. ACM 15, 11(Nov.1972), 993-995] 

Andrew Y. Schoene [Recd 18 May 1977 and 13 October 1977] 
Research Laboratories, General Motors Technical Center, General Motors Cor
poration, Warren, MI 48090 

The following changes were made to ACM Algorithm 435: 
(1) .LE. in the line labeled 10 was changed to .LT. to conform with the 

algorithm presented in the text. 
(2) .LE. in the line following the line labeled 20 was changed to .LT. This 

change is recommended because the continued fraction [eq. (11)] is more accurate 
than the asymptotic expansion [eq. (18)] at X = -12. 1 

1 Equation numbers in this Remark refer to those in ACM Algorithm 435, ric'ferenced above. 



COLLECTED ALGOJRITHMS (cont.) 

Note, also, that the expression for Ti following eq. (10) contains a misprint: the 
numerator should read i - a rather than i + a. 

With changes (1) and (2) the algorithm was executed on an IBM 370/168 !!sing 
the Fortran H extended (Opt = 2) compiler, and Table I of Algorithm 435 was 
approximately reproduced (see Table I of this Remark). 

The proposed method for extending the range of applicability of GAMINC is, 
however, not entirely satisfactory. It is the purpose of this Remark to show how 
Fullerton's methods may be successfully employed to compute his modified 
incomplete Gamma function for an extended parameter range. A Fortran function. 
subprogram GAMDRV which accomplishes this is included here; it serves partly 
as a driver for GAMINC and should be·a useful companion to it. 

To compute GAMINC(A, Xl, X2) for 2 < a < 15, Fullerton suggests the use of 
forward recursion. However, satisfactory accuracy cannot be maintained for all 
values of the parameters due to numerical instability of the recursion. For 
simplicity we consider only the modified incomplete Gamma function defined by 
Fullerton as G(a, x) := f~IYla-i exp(-y) dy. Using the methods of Gautschi [l], 
forward recursion for G(a, x) can be shown to be numerically unstable for x > 0 
and for x < 0 with a> lxl. For example, computing G(12.5, 2) by double-precision 
forward recursion starting from G(l.5, 2) yields a value with the incorrect sign. 

While recursion cannot be used indiscriminately, it is possible to extend 
G(a, x) to the range 2 <a< 15 while maintaining approximately six-significant
digit accuracy. This can be done most simply by dividing the x-axis into three 
regions and using a different extension in each region. This task can be appreciably 
simplified by evaluating the term lxla-I in eqs. (11) and (17) of Algorithm 435 in 
double precision. The Fortran function subprogram GAMDRV(A, X), when used 
in conjunction with a version of GAMINC modified as suggested above, will 
compute G(a, x) for 1 s a < 15 and -EXPLIM s x < oo to an accuracy of 
approximately six significant digits. EXP LIM is a machine-dependent constant 
(with the value 20. for the IBM 360/370 series) used in GAMINC to prevent 
exponent overflow. The extensions employed by GAMDRV are sketched by 
region as follows. 

Region 1: x ;:::: 5. GAMDRV also makes use of the complementary incomplete 
Gamma function denoted by CG( a, x) = J; ya-I exp ( -y) dy and its continued 
fraction approximation [eq. (IO)] from Algorithm 435. Since up to three digits of 
accuracy may be lost in the subtraction G(a, x) = Gamma(x) - CG(a, x) for 
values of a near 15, i:t is necessary to use double precision exclusively in this 
region. Five terms of 1eq. (10) are used, with T5 represented by a linear function 
of a, selected to fit for x = 5, 2 s as 3. After subtraction from Gamma(x) this 
basic approximation yields six-digit accuracy in the region x;:::: 5, as .5 (x + 4) 
(this bound is slightly conservative to simplify the code). For larger a, the 
recurrence relation CG( a + 1, x) = a· CG( a, x) + xa · exp(-x) is employed after 
first reducing a to get a sufficiently accurate starting value. 

Region 2: -12 s x < 5. If lxla-I in eqs. (11) and (17) of GAMINC is evaluated 
in double precision as suggested above, then GAMINC achieves.approximately 
six-digit accuracy for 2 < a < 15. On the assumption that this has been done, 
GAMDRV calls GAMINC to obtain the value. If GAMINC is not so modified, 
then as a very rough approximation the relative error increases linearly with a, 
reaching levels of 20 >< 10-6 for a > 10. 

We consider further the evaluation of eqs. (11) and (12). On the IBM 370 series 
the double-precision constants in eq. (12) cause some subexpressions of eq. (11) 
to be evaluated in double precision while others involving only a and z are 
evaluated in single precision and. the results subsequently extended to double 
precision. If double precision is used for the entire expression (including lxla-1

), 

then only six terms of the continued fraction are required to achieve six-digit 
accuracy throughout the entire range 1 s a < 15. A slight complication in the 
coding is that different approximations to T6 must be used for x < 0 and x > 0. 
The following were obtained by a least squares fit to computed values of T6 for 

435-P 4- 0 



COLLECTED ALGORITHMS (cont.) 

Table I. Relative Errors of GAMDRV (X 106
) 

a 

x 1.50 5.50 8.00 11.00 14.50 

-18.00 0.61 2.57 0.87 1.19 3.63 
-14.00 0.10 1.40 0.85 1.03 2.79 
-12.00 0.14 0.o7 0.12 0.12 0.30 
- 8.00 0.65 0.12 0.01 0.57 0.00 
- 4.00 0.21 0.36 0.12 0.15 0.18 
- 2.00 0.12 0.10 0.05 0.01 0.25 
- 0.50 0.15 0.32 0.12 0.14 0.25 

0.50 0.84 0.75 0.59 0.29 0.63 
2.00 0.17 0.36 0.29 0.15 0.18 
5.00 0.03 0.62 0.18 0.00 0.33 
7.00 0.03 1.64 0.05 0.02 0.02 

--------·-

Table II. Execution Times of GAMDRVin Milliseconds on the IBM 370/168. 

(The numbers in parentheses represent the original GAMINC values.) 

a 

x 1.5 5. 10. 15. 

X<-12. .21 (.20) .23 .36 .39 
(-12. :S x < -1. 1. < x .27 (.28) .28 .28 .28 
< 5.) 

IX! :S l. .20 (.17) .21 .21 .21 
X=5. .21 (.20) .27 .34 .38 
X= 10. .21 .25 .33 .37 
X= 15. .21 .25 .31 .34 

the critical regions -12 ::: x ::: -10, 1 ::: a ::: 2 and 4 ::: x ::: 5, 1 ::: a ::: 2, 
respectively: 

TB== .92391 + x· (-.065094 + .00073933 ·x) 

+ a·(.020541 + .0020402·a + .0060327·x), x < 0 

== .96410 - x · (.029325 + .0012057 ·a) 

+ .0034758 ·a, x>O. 

This six-term double-precision approximation executes slightly faster than the 
original eight-term approximation on the 370/168. Double-precision arithmetic ils 
only modestly slower than single precision on this computer. 

Region 3: x < -12. GAMINC yields approximately six-digit accuracy for 2 ::= 
a ::: 6 and is called by GAMDRV for such a. Larger a are reduced to the range 
1 < a ::: 2 (it is necessary to start the recursion with as accurate an a value as 
possible) and the forward recursion relation G(a + 1, x) = -xa·exp(-x) -
a· G(a, x) employed. This recursion is essentially stable in the above rang1e, 
although accuracy deteriorates slightly for a near 15 where the maximum ob
served relative error of 5 x 10-6 occurs. 

Table I presents the absolute value of the relative errors (multiplied by 106
) for 

selected values of a and x using GAMDRV in conjunction with the modified 
version of GAMINC described above. The exact values were found as described 
in Algorithm 435. For x > 8 the observed relative errors were always less than 1. 
Execution times of GAMDRV for various arguments are given in Table II. 

REFERENCES 
I. GAUTSCH!, W., AND KLEIN, B.J. Recursive computation of certain derivatives-A study of error 

propagation. Comm. ACM 13, l (Jan. 1970), 7-9. 

435-P 5- 0 



COLLE~CTED ALGORITHMS (cont.) 

ALGORITHM 

c 
C TEST DRIVER FOR FUNCTION SUBPROGRAM GAMDRV 
C FOR -EXPLIM .LE. X .LT. 10. THE "EXACT" ANSWER IS COMPUTED BY 
C FUNCTION SUBPROGRAM SUMSER. 
C FOR X .GE. 10. THE "EXACT" ANSWER IS COMPUTED BY FUNCTION 
C SUBPROGRAM COMGAM. . 
c 

DOUBLE PRECISION AA,XX,GAM,SERIES,DELTA 
DOUBLE PRECISION SUMSER,COMGAM 
DIMENSION A(30) ,X(30) ,T(30,30) 

50 READ(5,9) NA,NX 
IF (NA . EQ. 0) GO TO 400 
READ (5, 10) (A( I), I=l,NA) 
READ(5,10) (X(J), J=l,NX) 
WRITE(6,l) NA 
WRITE(6,2) (A(I), I=l,NA) 
WRITE(6,3) NX 
WRITE(6,2) (X(J), J=l,NX) 
WRITE(6,4) 
DO 200 J=l,NX 

DO 100 I=l,NA 
XX = X(J) 
AA = A(I) 
GAM = GAMDRV(A(I),X(J),IER) 
IF (IER .NE. 0) WRITE(6,7) IER 
IF (X(J) .LT. 10.) SERIES= SUMSER(A(I),X(J)) 
IF (X(J) .GE. 10.) SERIES= COMGAM(A(I),X(J)) 
RELDEL = 0. 
IF (SERIES .EQ. (/).DC/)) GO TO 20 

DELTA = (GAM-SERIES)/SERIES 
RELDEL = ABS(SNGL(DELTA)) 
T(I,J) = l.D6*(DABS(SERIES-GAM)/SERIES) 

20 WRITE(6,5) A(I),X(J),GAM,SERIES,RELDEL 
100 CONTINUE 
200 CONTINUE 

WRITE(6,8) 
WRITE(6,6) (A(I), I=l,NA) 
DO 300 J=l,NX 

300 WRITE(6,2) X(J),(T(I,J), I=l,NA) 
1 FORMAT(///30H NUMBER OF INPUT VALUES OF A =,I3) 
2 FORMAT(/16F8.2) 
3 FORMAT(/30H NUMBER OF INPUT VALUES OF X =,13) 
4 FORMAT(/45H A X GAMDRV EXACT, 

* 18H REL ERR/) 
5 FORMAT(2F8.2,2Dl8.8,El2.3) 
6 FORMAT(//9X,15F8.2/) 
7 . FORMAT(/5H IER=, 13/) 
8 FORMAT(//10X,41HTABLE OF RELATIVE ERRORS OF GAMDRV X l.E6) 
9 FORMAT(213) 

10 FORMAT(l2F6.2) 
GO TO 50 

400 STOP 
C LAST CARD OF TEST DRIVER PROGRAM FOR FUNCTION SUBPROGRAM GAMDRV 

END 

c 

FUNCTION GAMDRV(A,X,IER) 
REAL A,X 
INTEGER IER 

C PURPOSE: COMPUTES A MODIFIED INCOMPLETE GAMMA FUNCTION DEFINED 
C AS THE INTEGRAL OF AEiS(Y)**(A-1.) * EXP(-Y) FROM 0 TO X, WHERE 
C X MAY BE NEGATIVE. GAMDRV IS AN EXTENSION OF GAMINC (ALGORITHM 
C 435, CACM), AND USES IT AS AN AUXILIARY FUNCTION SUBPROGRAM. 
c 
C PRECISION: SINGLE 
c 
C ARGUMENT RESTRICTIONS: 1. .LE. A .LT. 15. 
C -EXPLIM .LE. X .LT. INFINITY 
C EXPLIM IS A MACHINE DEPENDENT CONSTANT USED BY GAMINC TO PREVENT 
C EXPONENT OVERFLOW. IT HAS THE VALUE 20. FOR THE 360/370 SERIES. 
c 
C ERROR RETURNS: IER = -1 A .LE. (/). OR X .LT. -EXPLIM 

SCHC/>0400 
SCH00450 
SCHC/>0500 
SCH00550 
SCHC/>0600 
SCHC/>0650 
SCHC/>0700 
SCH00750 
SCHC/>0800 
SCH00850 
SCH00900 
SCH00950 
SCH01000 
SCHC/>1050 
SCHC/>1100 
SCHC/>1150 
SCH01200 
SCH01250 
SCH01300 
SCH(/)1350 
SCHC/>1400 
SCHC/>1450 
SCHC/>1500 
SCH01550 
SCH01600 
SCH01650 
SCH01700 
SCH01750 
SCH01800 
SCH01850 
SCH01900 
SCH01950 
SCH020r/Jr/J 
SCHC/)2050 
SCHC/>2100 
SCH02150 
SCH02200 
SCH02250 
SCH02300 
SCH02350 
SCH(/)2400 
SCH02450 
SCH02500 
SCHC/>2550 
SCH(/)2600 
SCH02650 
SCHC/>2700 
SCHC/>2750 
SCH02800 
SCHC/>2850 
SCH02900 
SCHC/>2950 
SCH03000 
SCH03050 

SCH03450 
SCH03500 
SCH03550 
SCH03600 
SCH03650 
SCH03700 
SCH03750 
SCH03800 
SCH03850 
SCH03900 
SCH03950 
SCH04000 
SCHC/>4050 
SCH04100 
SCH04150 
SCH04200 
SCH04250 

435-P 6- 0 



COLLECTED ALGORITHMS (cont.) 

C IER = 0 NORMAL RETURN 
C IER = 1 0 .. LT. A .LT 1. 
C IER = 15 A .GE. 15. 
C FOR IER = -1 GAMDRV RETURNS THE VALUE 0., WHILE FOR 0 .. LT. A .LT. 
C OR A .GE. 15. THE (INACCURATE) APPROXIMATION IS RETURNED. 
c 
C SUBROUTINES REQUIRED: DGAMMA (DOUBLE PRECISION GAMMA FUNCTION) 
C AND GAMINC, WHICH IN TURN REQUIRES GAMMA (SINGLE PRECISION GAMMA 
C FUNCTION). BOTH ARE COMMONLY INCLUDED IN THE FORTRAN LIBRARY OF 
C FUNCTIONS. OTHER SOURCES ARE THE IMSL (INTERNATIONAL MATHEMATICAL 
C AND STATISTICAL LIBRARIES, INC.) AND NAG (NOTTINGHAM ALGORITHMS 
C GROUP) FORTRAN LIBRARIES. ALGORITHM 54, COMM. ACM 4 (APRIL 1961), 
C P. 180, IS ALSO SATISFACTORY FOR THE SINGLE PRECISION GAMMA 
C FUNCTION. ALGORITHM 221, COMM. ACM 7 (MARCH 1964), P.143, 
C ACHIEVES 10 SIGNIFICANT DIGIT ACCURACY WHICH IS SUFFICIENT FOR 
C THE DGAMMA REQUIRED BY GAMDRV. 
c 

c 

c 

DOUBLE PRECISION DA,DX,DEXPXA,DGAMl 
DATA EXPLIM/20.C/J/ 
IER=C/J 
ASAVE = A 
IF (X .NE. 0.) GO TO 1(/J 

GAMDRV = (/J. 
RETURN 

1(/J IF (X .LT. -EXPLIM) GO TO 5(/J 

IF (A .GT. 0.) GO TO 1(/JC/J 
C A IS NOT POSITIVE OR X IS LESS THAN -EXPLIM 

c 

5(/J IER = -1 
GAMDRV = (/J. 
RETURN 

1(/J(/J IF (A .GT. 2.) GO TO 11(/J 
C A IS LESS THAN OR EQUAL TO 2. 

c 

IF (A .LT. 1.) IER = 1 
GAMDRV = GAMINC(A,(/J. ,X) 
RETURN 

11(/J IF (A .LT. 15.) GO TO 21(/J 
C A .GE. 15. SET IER = 15 AND CONTINUE 

IER = 15 
c 

21(/J IF ((X .LT. -12.) .AND. (A .GT. 6.)) GO TO 22(/J 
IF (X .GE. 5.) GO TO 23(/J 

C -12 .LE. X .LT. 5. GET REQUIRED VALUE FROM GAMINC. 

c 

GAMDRV = GAMINC(A,0.,X) 
RETURN 

C REDUCE A TO RANGE 1 .. LT. A .LE. 2. AND USE FORWARD RECURSION 
c 

22(/J NRECUR = INT(A)-2 
C IF A IS NOT INTEGRAL'· ONE MORE RECURSION WILL BE NEEDED 

IF (A-FLOAT(NRECUR) .GT. 2.) NRECUR = NRECUR+l 
A = A-FLOAT(NRECUR) 
SIGNX = SIGN(l.C/J,X) 
EXPXA = EXP(-X) * ABS(X)**A 

c 
C CALL GAMINC TO GET INITIAL VALUE FOR RECURSION 
c 

c 

GAMl = GAMINC(A,(/J.,X) 
DO 225 K = l,NRECUR 

GAMl = SIGNX * (EXPXA + GAMl*A) 
A = A+l.(/J 
EXPXA = EXPXA*ABS(X) 

225 CONTINUE 
GAMDRV = GAMl 
A = ASAVE 
RETURN 

C CALCULATE THE COMPLEMENTARY INCOMPLETE GAMMA FUNCTION. IF A IS 
C TOO LARGE, REDUCE A AND USE FORWARD RECURSION. DOUBLE PRECISION 
C IS REQUIRED SINCE SIGNIFICANT CANCELLATION OF LEADING DIGITS 
C MAY OCCUR IN SUBTRACTION FROM GAMMA(A) WHEN A IS LARGE. 

SCH0430C/J 
SCH04350 
SCH04400 

l.SCH04450 
SCH04500 
SCH04550 
SCH04600 
SCH04650 
SCH04700 
SCH04750 
SCH04800 
SCH04850 
SCH04900 
SCH04950 
SCH05000 
SCH05050 
SCH05100 

SCH(/)5150 
SCH0520C/J 
SCH(/)5250 
SCH05300 
SC:H05350 
SCH05400 
SCH05450 
SC:H05500 
SC:H05550 
SC:H05600 
SCH05650 
SCH05700 
SCH05750 
SCH05800 
SCH05850 
SCH05900 
SCH05950 
SCH06000 
SCH06050 
SCH06100 
SCH06150 
SCH06200 
SCH06250 
SCH06300 
SCH06350 
SCH06400 
SCH06450 
SCH06500 
SCH06550 
SCH06600 
SCH06650 
SCH06700 
SCH06750 
SCH06800 
SCH06850 
SCH06900 
SCH06950 
SCH07000 
SCH07050 
SCH07100 
SCH07150 
SCH07200 
SCH07250 
SCH07300 
SCH07350 
SCH07400 
SCH07450 
SCH07500 
SCH07550 
SCH07600 
SCH07650 
SCH07700 
SCH077 50 
SCH07800 
SCH07850 
SCH07900 
SCH07950 

435-P 7- 0 



COLLECTED ALGORITHMS (cont.) 

c 
230 NRECUR = 0 

RANGE = .5* (XH.) 
c 
C TEST TO SEE IF FORWARD RECURSION IS.NECESSARY. 

c 

c 

IF (A .LE. RANGE .OR. X .GE. 22.) GO TO 235 

NRECUR = INT (A-·RANGE) + 2 
A = A-FLOAT(NRECUR) 

235 DA = A 
DX = X 
DEXPXA = DEXP(-DX) * DABS(DX)**DA 
DGAMl = DEXPXA/(DX+(l.D0-DA)/ 

1 (1. D0 + l.D0/ (DX+(2 .D0-DA) I 
2 (l.D0 + 2.D0/(DX+(3.D0-DA)/ 
3 (l.D0 + 3.D0/(DX+(4.D0-DA)/ 
4 (l.D0 + 4.D0/(DX+l.78D0 - .64D0*(DA-2.D0)))))))))) 

IF (NRECUR .EQ. 0) GO TO 250 

C DO FORWARD RECURSION FOR COMPLEMENTARY INCOMPLETE GAMMA 
DO 240 K=l,NRECUR 

DGAMl = DGAMl*DA + DEXPXA 
DA = DA+l.D0 
DEXPXA = DEXPXA*DX 

240 CONTINUE 
250 GAMDRV = DGAMMA(DA) - DGAMl 

A = ASAVE 
RETURN 

C LAST CARD OF FUNCTION SUBPROGRAM GAMDRV 
END 

c 

FUNCTION GAMINC(A,Xl,X2) 
c 
C MODIFIED VERSION OF ALGORITHM 435, MODIFIED INCOMPLETE GAMMA 
C FUNCTION, TO BE USED WITH FUNCTION SUBPROGRAM GAMDRV. THE 
C MODIFICATIONS ARE DESCRIBED IN THE ACCOMPANYING TEXT. 
c 

DOUBLE PRECISION DA,DZ,T6 
DATA EXPLIM/20./ 
DATA ZER0/0./ ,ONE/l./ ,FIVE/5./ ,TWELVE/12./ 
Z = Xl 
SGN = 0. 
TIM = -1. 
EXPDIF = 1. 

5 IF (Z .NE. ZERO) GO TO 10 
GAMl = 0. 
SGN = SGN + TIM 
GO TO 40 

10 IF (Z .LT. FIVE) GO TO 20 
C USE EQUATION 10 (SEE REFERENCE) 

GAMl = -EXPDIF ·A Z**A/(Z+(l.-A)/(l.+1./(Z+(2.-A)/(l.+2. 
1 /(Z+(3.-A)/(l.+3./(Z+l.7))))))) 

GO TO 40 
20 AZ = ABS(Z) 

IF (Z .LT. -TWELVE) GO TO 30 
SGN = SGN + TIM 
IF (AZ .GT. ONE) GO TO 25 

C USE EQUATION 17 

c 

GAMl = EXPDIF*Z/A* DBLE(AZ)**(A-1.) 
1 *(1.000000 +Z/(A+l.) *(.9999999+Z/(A+2.) 
2 *(.9999999 +Z/(A+3.) *(l.000008+Z/(A+4.) 
3 *(1.000005 +Z/(A+5.) *(.9994316+Z/(A+6.) 
4 *(.9995587 +Z/(A+7.) *(l.031684+Z/(A+8.) 
5 * 1.028125)))))))) 

GO TO 40 

C USE EQUATIONS 11 AND 12. EVALUATION IS DONE IN DOUBLE PRECISION. 
c 

25 DA = A 
DZ = Z 
IF (Z .LT. 0.) T6 = .92391D0 + DZ*(-.65094D-l + .73933D-3*DZ) 

1 + DA*(.20541D-l + .20402D-2*DA + .60327D-2*DZ) 
IF (Z .GT. 0.) T6 = .96410D0 - DZ*(.29325D-l + .12057D-2*DA) 

1 + .34758D-2*DA 
GAMl = EXPDIF*DZ/DA * DBLE(AZ)**(DA-l.D0) 

SCH08000 
SCH08050 
SCH08100 
SCH08150 
SCH08200 
SCH08250 
SCH(/)8300 
SCH08350 
SCH08400 
SCH08450 
SCH08500 
SCH08550 
SCH08600 
SCH08650 
SCH08700 
SCH08750 
SCH08800 
SCH08850 
SCH08900 
SCH08950 
SCH09000 
SCH09050 
SCH09100 
SCH09150 
SCH09200 
SCH09250 
SCH09300 
SCH09350 
SCH09400 
SCH09450 
SCH09850 

SCH09900 
SCH09950 
SCH10000 
SCH10050 
SCH10100 
SCH10150 
SCH10200 
SCH10250 
SCH10300 
SCH10350 
SCH10400 
SCH10450 
SCH10~00 
SCH10550 
SCH10600 
SCH10650 
SCH10700 
SCH10750 
SCH10800 
SCH10850 
SCH10900 
SCH10950 
SCHll000 
SCH11050 
SCHlll00 
SCHlll50 
SCHll200 
SCH11250 
SCHll300 
SCHll350 
SCHll400 
SCH11450 
SCH11500 
SCHll550 
SCHll600 
SCHll650 
SCHll700 
SCHll750 
SCH11800 
SCHll850 
SCH11900 
SCHll950 
SCH12000 
SCH12050 

435-P 8- 0 



COLLECTED ALGORITHMS (cont.) 

1 /(l.D0- DA *DZ/( DA *(DA+ l.D0+1.D0*DZ/((DA+ 2.D0) 
2 *(l.D0-(DA+l.D0)*DZ/((DA+ 2.D0)*(DA+ 3.D0+2.D0*DZ/((DA+ 4.D0) 
3 *(l.D0-(DA+2.D0)*DZ/((DA+ 4.D0)*(DA+ 5.D0+3.D0*DZ/((DA+ 6.D0) 
4 *(l.D0-(DA+3.D0)*DZ/((DA+ 6.D0)*(DA+ 7.D0+4.D0*DZ/((DA+ 8.D0) 
5 *(l.D0-(DA+4.D0)*DZ/((DA+ 8.D0)*(DA+ 9.D0+5.D0*DZ/((DA+l0.D0) 
6 * T6 )))) )))) )))) )))) )))) 

GO TO 40 
C USE EQUATION 18 AND SHANKS El PROCESS ONCE 

SCH12100 
SCH12150 
SCH12200 
SCH12250 
SCH12300 
SCH12350 
SCH12400 
SCH12450 
SCH12500 
SCH12550 
SCH12600 
SCH12650 
SCH12700 
SCH12750 
SCH12800 
SCH12850 
SCH12900 
SCH12950 
SCIU3000 
SCH.13050 
SCH13100 
SCH.13150 
SCH13200 
SCH13250 
SCH133r/J0 
SCH13350 
SCH13750 

30 GAMl = -EXPDIF*AZ**(A-l.)*(l.+(A-l.)*(l.+(A-2.)* 
1 (l.+(A-3.)*(l.+(A-4.)*(l.+(A-5.)/(Z-A+6.))/Z)/Z)/Z)/Z) 

40 IF (TIM .GT. ZERO) GO TO 55 
GAMING = GAMl 
IF (ABS(Xl-X2) .GT. EXPLIM) GO TO 50 

c 
C IF TRUE, CONTRIBUTION AT X2 IS .LT. l.E-7 * CONTRIBUTION AT Xl, 
C PROVIDED X2 .GT. Xl. 

Z = X2 
EXPDIF = EXP(Xl-X2) 
TIM = 1. 
GO TO 5 

50 GAMl = 0. 
55 GAMING = GAMl - GAMING 

IF (SGN .NE. ZERO) GAMING= GAMING - SIGN(GAMMA(A)*EXP(Xl),SGN) 
RETURN 

C LAST CARD OF FUNCTION SUBPROGRAM GAMING 
END 

c 

DOUBLE PRECISION FUNCTION COMGAM(A,X) SCH13800 
C SCH13850 
C COMPUTES THE INCOMPLETE GAMMA FUNCTION BY SUBTRACTING A SCH13900 
C CONTINUED FRACTION EXPANSION FOR THE COMPLEMENTARY INCOMPLETE SCH13950 
C GAMMA FUNCTION FROM DGAMMA(X). SCH14r/J00 
C REFERENCE: ABROMOWITZ, M. ,AND STEGUN, I.A .. HANDBOOK OF MATHEMATICALSCH14050 
C FUNCTIONS. NATIONAL BUREAU OF STANDARDS, U.S. GOV. PRINT. OFF. , SCH14100 
C WASHINGTON D.C., 1967, P. 263, FORMULA 6.5.31 SCH14150 
C SCH14200 

DOUBLE PRECISION DA,DX,TK SCH14250 
DA = A SCH14300 
DX=X SCH1435r/J 
TK=0.D0 SCH1440r/J 
LAST=20 SCH14450 
DO 10 K=l,LAST SCH14500 

FK = FLOAT(LAST+l-K) SCH14550 
TK = (DBLE(FK)-DA)/(l.D0+DBLE(FK)/(DX+TK)) SCH14600 

10 CONTINUE SCH14650 
TK = DEXP(-DX)*DX**DA/(DX+TK) SCH14700 

COMGAM = DGAMMA(DA) - TK SCH14750 
RETURN SCH14800 

C LAST CARD OF FUNCTION SUBPROGRAM COMGAM SCH1485(/J 
END SCH14900 

DOUBLE PRECISION FUNCTION SUMSER(A,X) SCH15300 
C SCH15350 
C COMPUTES THE INCOMPLETE GAMMA FUNCTION FOR -EXPLIM .LE. X .LT. 10. SCH15400 
C THE SERIES IS TRUNCATED AS DESCRIBED BY FULLERTON. SCH15450 
C REFERENCE: ABROMOWITZ, M. ,AND STEGUN, I.A .. HANDBOOK OF MATHEMATICALSCH15500 
C FUNCTIONS. NATIONAL BUREAU OF STANDARDS, U.S. GOV. PRINT. OFF., SCH15550 
C WASHINGTON D.C., 1967, P. 262, FORMULA 6.5.29 SCH15600 
C SCH15650 

DOUBLE PRECISION SUM,TERM,X2,ISIGN SCH15700 
DOUBLE PRECISION XX,AA SCH15750 
IF (X .NE. 0.) GO TO 5 SCH15800 

SUMSER = 0.D0 SCH15850 
RETURN SCH15900 

5 XX = X SCH15950 
AA = A SCH16000 
TERM = 1. D0/ AA SCH16050 
SUM = TERM - XX/ (AA+ 1. D0) SCHl 6100 
ISIGN=l.D0 SCH16150 
X2 = XX*XX SCH16200 
DO 10 N=2,100 SCH16250 

FN = FLOAT(N) SCH16300 
TERM= X2*ISIGN/(2.D0*(AA+DBLE(FN))) SCH16350 

435-P 9- 0 



COLLJgCTED ALGORITHMS (cont.) 

SUM = SUM + TERM 
IF (DABS(TERM) .LT. 2.D-9 * DABS(SUM)) GO TO 20 
!SIGN = .:.rsIGN 
X2 = X2*XX/(IDBLE(FN)+l.D0) 

10 CONTINUE 
20 SUMSER = DABS(KK)**AA * SUM 

IF (X .LT. 0.) SUMSER = -SUMSER 
RETURN 

C . LAST CARD OF FUNCTION SUBPROGRAM SUMSER 
END 

5 11 
1.5 5.5 8.0 11.0 14.5 

-18. -14. -12. ·-8. -4. -2. -.5 
1 1 
1.5 

-25. 
1 1 

-1.2 
4. 

1 1 
.5 
2. 

1 1 
16.5 
2. 
0 0 

• 5 2. 5 • 7. 

SCH16400 
SCH1645Q'J 
SCH16500 
SCH16550 
SCH16600 
SCH16650 
SCH16700 
SCH16750 
SCH16800 
SCH16850 

SCH17250 
SCH17300 
SCH17350 
SCH17400 
SCH17450 
SCH17500 
SCH17550 
SCH17600 
SCH17650 
SCH17700 
SCH17750 
SCH17800 
SCH17850 
SCH17900 
SCH17950 
SCH18000 

435-PIO- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 436 

Product Type Trapezoidal 
Integration [DI] 
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 
1971] 
Department of Mathematics, Clemson University, 
Clemson, SC 29631 

Key Words and Phrases: numerical integration, product type 
quadrature; trapezoidal integration 

CR Categories: 5.16 
Language: Fortran 

Description 
This subroutine uses the product type trapezoidal rule com

pounded n times to approximate the value of the integral 

.b L f(x)g(x) dx. 

The approximating sum is 

h n (2 1) ·(g(a + (j - l)h)) 
-
6 

L: (f(a + (j - l)h),f(a + jh)) 
i-1 1 2 g(a + jh) ' 

where h = (b - a)/n. Note that if g(x) = 1 (or f(x) = 1), the 
rule reduces to the regular trapezoidal rule. The procedure was 
proposed and discussed by Boland and Duris in [ 1]. 

The subroutine was written in Fortran using double precision 
arithmetic and was checked on an IBM 360 Model 50. The calling 
parameters for the routine are as follows. A is the name for the 
lower limit of integration, and B is the name for the upper limit. 
N is the number of times the formula is to be compounded. The 
basic interval [A, BJ is subdivided into N su'l.1intervals each of 
length (B - A)/N and the rule is applied to each subinterval. 
FN and GN are names of double precision FUNCTION subpro
grams which evaluate.A-he functions f(x) and g(x), respectively. 
These are to be supplied by the user. The result is stored in VINT. 

There are no machine dependent parameters. 

References 
1. Boland, W.R., and Duris, C.S. Product type quadrature 
formulas. BIT 11, 2 (1971), 139-158. 

Algorithm 

SUBR0UTINE PTKAP<A. e. N. rN. GN. VINT> 
c 
C THIS SUBR0UTINE USES THE PR0DUCT TYPE TkAPEZ0IDAL RULE 
C C0MP0UNDED N TIMES T0 APPROXIMATE THE INTEGRAL rR0M A T0 B 
c 0P THE rUNCTI0N rN<X> * GN<X>. rN AND GN ARE rUNCTI0N 
C SUBPR0G~AMS WHICH MUST BE SUPPLIED BY THE USE~· THE 
C HESUL.T IS ST0RED IN VINT• 
c 

D0UBLE PRECIS10N A, AG. AM<212>. e. r<2>. rN1 G<2>. 
* GN1 H. VINT1 x, DBLE 

DATA AM<l1I>. AM<212> 12 * 2.DOI, AM<l12>. AMC21I> 
* /2 * I .DO/ 

H = <B - A> / DBLE<FL0AT<N>> 

VINT = Q.DO 
x = A 
P<2> = rN<Al 
G<2> = GNCA> 
DO 2 I = 1. N 

rCI > = FC2 > 
G< I> . GC2> 
X = X + H 
r<2> = FNCX> 
G<2> = GNCX> 
00 2 J = 1. 2 

AG = O·DO 
00 I K = I 1 2 

AG = AG + AMCJ,K> * G<K> 
VINT = VINT + FCJ) * AG 

VINT = H * VINT I 6oDO 
RETURN 
END 

436--P 1- 0 



COLlLECTED ALGORITHMS FROM CACM 

Algorithm 437 

Product Type Simpson's 
Integration [DI] 
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 
1971] 
Department of Mathematics, Clemson University, 
Clemson, SC 29631 

Key Words and Phrases: numerical integration, product type 
quadrature, Simpson's rule 

CR ·categories: 5.16 
Language: Fortran 

Description 
This subroutine uses the product type Simpson's rule com

pounded n times to approximate the value of the integral 

b i f(x)g(x) dx. 

The approximating sum is 

h n 

30 
t; (f(a + (j - l)h),f(a + (j - !)h),f(a + jh)) 

. ( ; 1~ -~)(~~:: ~~ = ~~~~). 
-1 2 4 g(a +jh) 

where h = (b - a)/n. Note that if g(x) = 1 (or f(x) = 1), the rule 
reduces to the regular Simpson's rule. The procedure was proposed 
and discussed by Boland and Duris in [l]. 

The subroutine was written in Fortran using double precision 
arithmetic and was checked on an IBM 360 Model 50. The calling 
parameters for the routine are as follows. A is the name for the 
lower limit of integration and B is the name for the uppec limit. 
N is the number of times the formula is to be compounded. The 
basic interval [A, BJ is subdivided into N subintervals each of 
length (B - A) IN and the rule is applied to each subinterval. 
FN and GN are names of double precision FUNCTION subpro
grams which evaluate the functions f(x) and g(x), respectively. 
These are to be supplied by the user. The resUtlt is stored in VINT. 

There are no machine dependent parametiers. 

References 
1. Boland, W.R., and Duris, C.S. Product type quadrature 
formulas. BIT II, 2 (1971), 139-158. 

Algorithm 
SUBR0UTIN1" PSI MP< A, B• N, l'N. GN. VI NT> 

c 
C THIS SUBt<0UTINE USES THE PR0DUCT TYPE SIMPS~IN RULE 
C C0MP0UNDED N TIMES T0 APPR0XIMATE THE INTEGMAL l'tHlM A T0 B 
C 01' THE l'UNCTI0N l'NCX> * GNCX>, FN AND GN ARE: l'UNCTI0N 
C SUBPR0GRAMS WHICH MUST BE SUPPLIED BY THE USEI'<· THE 
C k~SULT IS ST0RED IN VINT. 

437-P 1 ~ 0 

D0UBLE f>RECISI0N A, AG, AMC313>. 81 FC3J. FN1 GC3J. 
* GN, H1 VINT, XC2>• DBLE 

DATA AMCl1lJ. AMC3.3> /2 * 4·001. AMct.2>. AMC21ll. 
AMC2•3>• AMC312) /4 * 2000/1 AMCl13)1 AMC31l> 

* /2 * -1.001, AMC212l /16·00/ 
H = CB - Al I DBLECFL0ATCNll 
XC!l =A+ HI 2.DO 
XC2l = A + H 
VINT = o.oo 
l'C3l = FNCA> 
GC3) = GNCA> 
00 3 I = 11 N 

l'C 1 > = FC 3> 
GC 1 > = Ge 3> 
00 1 J = 1,2 

FCJ+l> = FNCXCJ>> 
GCJ+l> = GNCXCJll 
XCJ> = X<Jl + H 

00 3 J = 1. 3 
AG = O.DO 
00 2 K = 1. 3 

2 AG = AG + AM(J,K> * GCK> 
3 VINT = VINT + FCJ> * AG 

VINT = H * vlNT I 30.DO 
RETUkN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 438 

Product Type Two-point 
Gauss-Legendre-Simpson's 
Integration [Dl] 
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 
1971] 
Department of Mathematics, Clemson University, 
Clemson, SC 29631 

Key Words and Phrases: numerical integration, product type 
quadrature, Gaussian quadrature, Simpson's rule 

CR Categories: 5.16 
Language: Fortran 

Description 
This subroutine uses the product type two-point Gauss

Legendre-Simpson's rule compounded n times to approximate the 
value of the integral 

b i f(x)g(x) dx. 

The approximating sum is 

h n 

-- L (f(a + (j - ! - 3112/6)h), f(a + (j - ! + 3112/6)h)) 
12 i-1 

. (1+3112 4 1-3112) (g(: + (~ - 1)~)) 
1-3112 4 1+3112 g( + (1 - t) ) ' 

g(a + jh) 

where h = (b - a)/n. Note that if g(x) = 1, the rule reduces to 
the regular two-point Gauss-Legendre rule, while if /(x) = 1, it 
reduces to the regular Simpson's rule. The procedure was proposed 
and discussed by Boland and Duris in [1]. 

The subroutine was written in Fortran using double precision 
arithmetic and was checked on an IBM 360 Model 50. The calling 
parameters for the routine are as follows. A is the name for the 
lower limit of integration and B is the name for the upper limit. 
N is the number of times the formula is to be compounded. The 
basic interval [A, BJ is subdivided into N subintervals each of 
length (B - A) IN and the rule is applied to each subinterval. 
FN and GN are names of double precision FUNCTION subpro
grams which evaluate the functions f(x) and g(x), respectively. 
These are to be supplied by the user. The result is stored in VINT. 

There are four machine dependent constants. These are: 

(i) 1 + 3112 ~ 2.732050807568877, 
(ii) 1 - 3112 ~ -0.7320508075688773, 
(iii)! - 3112;6 ~ 0.2113248654051871, and 
(iv)! + 3112;6 ~ 0.7886751345948129. 

The first constant is assigned to AM(l, 1) and AM(2, 3), the second 
to AM(l, 3) and AM(2, 1), while the third and fourth are used in 
the calculation of X(l) and X(2), respectively. 

438-P 1- 0 

References 
1. Boland, W.R., and Duris, C.S. Prodluct type quadrature 
formulas. BIT 11, 2 (1971), 139-158. 

Algorithm 

SUBR0UTINE P2PGSCA. B. N• fN, GN. VINT> 
c 
C THIS SUBk0UTINE USES THE PR0DUCT TYPE TW0-P0INT GAUSS
C LEGENDkE-SIMPS0N RULE C0MP0UNDED N TIMES T0 APPri0XlMATE 
c THE INTEGRAL fR0M A Te B 0f THE fUNCTrnN fNCX> * Gl~CX>· 
C fN AND GN ARE FUNCTION SUBPR0GKAMS l<H!CH MUST BE SUPPLIED 
C BY THE USER. THE RESULT IS ST0RED IN VINT· 
c 

D0UBLE PRECISI0N A, AG. AM<2•3>• B. fC2>• fN, GC3>• 
* GN. H. VINT. XC2>• YC2>. OBLE 

DATA AMC I• I>• AMC 2. 3 > /2 * 2. 7 320 ')0807 568877DO/o 
* AMCl.2>. AMC2.2> /2 * 4oDO/, A:-ICl.3>• AMC2.J> 
* /2 * -.7320508075688773DO/ 

H = CB - A> I DBL EC fL0ATC N> > 
XCI> =A+ 0211324865405187100 * H 
XC2> • A + 0788675134594812900 * H 
YCI> =A+ HI 2oDO 
YC2> = A + H 
VINT = O.OO 
GC3> = GNCA> 
D0 3 I = I• N 

GC I l = GC 3> 
D0 I J = 1. 2 

fCJ> = fNCXCJ> > 
GCJ+I> = GNCYCJJ> 
XCJJ = X<J> + H 
YCJ) = YCJ> + H 

D(') 3 J = 1. 2 
AG = O.DO 
D0 2 K = I• 3 

AG = AG + AMCJ,K> * GCKJ 
VINT = VINT + fCJ> * AG 

VINT = H * VINT I 12.DO 
RETUttN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 439 

Product Type Three·-point 
Gauss-Legendre-Simlpson's 
Integration [DI] 
W. Robert Boland [Recd. 10 Dec. 1970 and 14 May 
1971] 
Department of Mathematics, Clemson University, 
Clemson, SC 29631 

Key Words and Phrases.: numerical integration, product type 
quadratul!"e, Gaussian quadrature, Simpson's mle 

CR Categories: 5.16 
Language: Fortran· 

Description 
This subroutine uses the product type three-point Gauss

Legendrc-Simpson 's rule compounded n times to approximate the 
value of the integral 

b i f(x)g(x) dx. 

The approximating sum is 

h n 
- L (/(a + (j - l - !(3/5)112)h), f(a + (J - !)h), 
9 i-1 

f(a + U - ! + !(3/5)112)h)) 

W - (5/3)1
1
2
)') (g(a + (j - l)h)) 

0 g(a + U - !)h) , 

W + (5/3)112)) g(a + jh) 
(
w + (513)112) 

. 0 4 

w - (5/3)112) 

where h = (b - a)/n. Note that if g(x) - 1, the rule reduces to 
the regular three-point Gauss-Legendre rul 1e, while if /(x) = 1, 
it reduces to the regular Simpson's rule. The procedure was pro
posed and discussed by Boland and Duris in [1]. 

The subroutine was written in Fortran using double precision 
arithmetic and was checked on a IBM 360 Model 50. The calling 
parameters for the routine are as follows. A is the name for the 
lower limit of integration and B is the name for the upper limit. 
N is the number of times the formula is to be compounded. The 
basic interval [A, BJ is subdivided into N subintervals each of length 
(B - A)/ N and the rule is applied to each subinterval. FN and 
GN are names of double precision FUNCTION subprograms 
which evaluate the functions f(x) and g(x), respectively. These are 
to be supplied by the user. The result is stored in VINT. 

There are four machine dependent constants. These are: 

(i) w + (5/3)112) ~ 1.718245836551854, 
(ii) w - (5/3)112) ~ -0.2182458365518542, 

(iii) !(1 - (3/5)112) ~ 0.1127016653792583, and 
(iv) W + (3/5)1'2) ~ 0.8872983346207417. 

The first constant is assigned to AM(l, 1) and AM(2, 3), the second 

439-P 1- 0 

to AM(l, 3) and AM(2, 1), while the third and fourth are used in 
the calculation of X(l) and X(2), respectively. 

References 
1. Boland, W.R., and Duris, C.S. Product type quadrature 
formulas. BIT II, 2 (1971), 139-158. 

Algorithm 

SUBR0UTINE P3PGS < A, B, N. FN, GN• VINT> 
c 
C THIS SUBK0UTINE USES THE PR0DUCT TY~E THREE-P0INT GAUSS
C LEGENDRE-SIMPS0N RULE C0MP0UNDED N TIMES T0 AF'PR0XIMATE 
C THE INTEGRAL F'R0M A HJ B 0F THE FUNCTION FN<X> * GNOD • 
C FN AND GN ARE F'UNCTieN SUBPiHJGRAMS ~iHICH MUST BE SUPPLIED 
C BY THE USER• THE RESULT IS ST0kED IN VINT. 
c 

D0UBLE PRECISI0N A, AG. AM<2.3>. B, F<2>. FN, G<3>. 
* GN, H• VINT. X<2> • Y<2>. DBLE 

DATA AM<t.1>. AM<2,3> 12 * 1.71624563655165400/. 
AM<l.2>. AM<2.2> 12 * loDOt. .4M<l•3>. AM<2•1> 

* 12 * -·2162456365516542DOI 
H = <B - A> I DBLE< FL0AT<N> > 
X<l> =A+ ·1127016653792SB3DO * H 
X(2) = A + .667296334620741700 * H 
Y<I> =A+ HI 2.00 
Y<2> = A + H 
VINT = o.oo 
G<3> = GN<A> 
D0 3 I = I• N 

AG= FN<YCI» 
GCI > = GC3> 
00 I J = I• 2 

FCJ> = FNCX<J>> 
GCJ+I> = GNCYCJ)) 
XCJ> = XCJ> + H 
Y<J> = YCJ) + H 

VINT = VINT + AG * 4.00 * GC2> 
00 3 J = 1.2 

AG = o.oo 
00 2 K = I• 3 

2 AG = AG + AMCJ,K> * GCK> 
3 VINT = VINT + F<J> * AG 

VINT = H * VINT I 9.DO 
RETURN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 440 

A Multidimensional 
Monte Carlo Quadrature with 
Adaptive Stratified 
Sampling [DI] 

L.J. Gallaher (Recd. 10 Dec. 1970, 20 July 1971) 
Rich Electronic Computer Center, Georgia Institute 
of Technology, Atlanta, GA 30319 

Key Words and Phrases: Monte Carlo quadrature, stratified 
sampling, adaptive quadrature, sequential stratification 

CR Categories: 5.16, 5.5 
Language: Algol 

Description 
This procedure evaluates then-dimensional integral 

. 1b11b2 lb" 
J v(x) dx = · · · v(x1 , x 2 , • • • , Xn) dxn · · · dx2 dx1 

V(a,b) a1 az an 

by the Monte Carlo method. The variance reduction scheme used 
here is a form of stratified sampling. 

The advantages of stratified sampling are well known [ 1], and 
the concept of optimum stratification is discussed in most text books 
on Monte Carlo methods [2, 3, 4]. The advantages of adaptive 
quadrature are also well known, and many such algorithms have 
been published in Communications and elsewhere [5, 6, 7]. Com
bining adaptive quadrature with stratified sampling is a straight
forward process [8, 9]. 

The workings of this procedure are somewhat similar to 
Algorithm 303 [6]. Algorithm 303 is one-dimensional, and while 
it can be used for multidimension integrals by recursive calls, for 
more than approximately six dimensions the number of evaluations 
of the integrand becomes intolerable. The goal of the algorithm 
given here is to try to overcome this defect of Algorithm 303 and 
other algorithms like it. 

The procedure works as follows: 
I. A set of samples is taken, uniformly stratified throughout the 
entire volume being integrated. 
2. Based on the variance in these samples, a decision is made as 
to whether more samples are needed. 
3. If more samples are needed, the volume is cut in half and the 
entire procedure (but with fewer samples) is repeated on each 
half, recursively, the halvings being repeated as required. The 
choice of axis for the halving is based on samples of the gradient. 

The result of this process is that the overall stratification is not 
uniform, but approaches optimum as more and more samples are 
taken, since more halvings (thus more samples) are taken in the re
gions of high variance. 

A certain amount of caution must be used in the choice of the 
input parameter m (m + n is the number of samples taken initially). 

440-P 1- 0 

If the function being integrated is reasonably smooth, relatively low 
values of m (say 5 to 10) are satisfactory. If v(x) is known to have 
sharp peaks, ridges, valleys, or pits, then large values of m will be 
necessary in order to avoid· missing these high and low spots. A 
rough rule is that m should be inversely proportional to the error 
tolerance and proportional to the logarithm of volume of anoma
lous regions. If VA is the fractional volume of the anomalous re
gions and £, is the relative error tolerance, then the empirical rule 
m ~ ( - 2 lo (VA)) IE, has proved satisfactory. For this quadrature 
algorithm tc be useful, the results should be insensitive to the users 
choice of m, and this has been observed provided m is not chosen 
too small. (This difficulty about the occasional need to choose m 
shrewdly is characteristic of all adaptive quadrature schemes, 
whether Monte Carlo or "exact" methods such as Romberg, 
Simpson, or others.) 

As a test of this procedure, 100 evalli.lations were made of the 
volume of 1/32 of a hypersphere in five dimensions (in rectangular 
coordinates), i.e. 

R R R R {if L xi
2 

;:::: R2 then 0 j 
l<i<4 l 
- - ( dx1 dx2 dxa dx4 , i i i i else (R2 - L xi2) 1t2 j 

l~i:$;4 

with 33 accuracy requested. A histogram is given below of the 
values obtained. 

Number of 

_oc_c_u_rr_en_c_es~-+-4~+--0--+~8--1-'-4-+-'8~+-l1~~--+·~_._~__._ 
l,,1,.!le:r;act 0.94 0.9.5 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 

Here lab• is the value observed, lezact is the correct value. The initial 
value of m was 120, and the average number of function evaluations 
per integral was 1427. The standard error for the 100 evaluations 
was approximately 2%. For corresponding accuracy, about 4.5 
times as many samples would have been needed by unstratified uni
form sampling. 

Finally it should be pointed out that the results given by adap
tive stratification are not entirely unbiased in the usual sense of the 
Monte Carlo method. There is, in fact, a biasing in favor of regions 
having low values of the magnitude of the gradient. However, this 
bias should normally be expected to be much smaller than the re
quested error tolerance. 

Acceptable random number generators for this algorithm may 
be found in [10]. 

References 
t. Cochran, William G. Sampling Techniques. Wiley, New 
York, 1953 (2nd ed. 1963). 
2. Kahn, Herman. Applications of Monte Carlo. RM-1237-AEC, 
Rand Corp., Santa Monica, Calif., Apr. 1954 (revised Apr. 1956). 
3. Hammersley, J.M., and Handscomb, D.C. Monte Carlo 
Methods. J. Wiley, New York, 1964. 
4. Spanier, Jerome, and Gedbard, Ely Mf. Monte Carlo Principles 
and Neutron Transport Problems. Addison-Wesley, Reading, 
Mass., 1969. 
5. McKeeman, William M. Algorithm 145: Adaptive numerical 
integration by Simpson's rule. Comm. ACM 5 (Dec. 1962), 604. 
6. Gallaher, L.J. Algorithm 303: An adaptive quadrature 
procedure with random panel sizes. Comm. ACM JO (June 1967), 
373-374. 
7. Lyness, J.N. Algorithm 379: SQUANK (Simpson quadrature 
used adaptively-noise killed). Comm. ACM 13 (Apr. 1970), 



COLLECTED ALGORITHMS (cont.) 

200-263. 
8. Halton, J.H., and Zeidman, E.A. Montie Carlo integration 
and sequential stratification. Comput. Sci. Tech. Rep. 13, U. of 
Wisconsin, Madison, Wis. 1968. 
9. Zeidman, E.A. The Evaluation of multidimensional integrals 
by sequential stratification. (to be published). 
10. Halton, John H. A retrospective and prospective survey of 
the Monte Carlo method. SIAM Rev. 12, 1 (Jan. 1970), 1-63. 

Algorithm 
real procedure quadmc (11, a, x, b, vx, esq, m, Vab, rn); 

value n, esq, m, Vab; 
integer n, m; real vx, esq, Vab, rn; 
array a, x, b; 

comment The procedure parameters are: 
11 - number of dimensions, /1 2 1 
a - array of n lower bounds 
x - array of n position coordinates of which v(x1 , x2 , ... , Xn) is 

a function, x is called by name 
b - array of n upper bounds (it is not required that bi > a;) 
vx - function to be integrated, vx must be a function of the array 

x (Jensen's device) and be called by name 
esq - square of the absolute error toleranc{: for the quadrature 
m - the number of samples to be taken at the first level is m + 11, 

m2n 
Vab - volume being integrated, i.e. Vab '= Il1<i<n I (b; - a;) I 
r11- procedure to give a new random numbe~ @iform on the 

open interval zero to one (0 < rn < 1) each time referenced, 
called by name. 

All of these parameters are input parameters to be supplied by 
the user. 

Some of the local variables of this procedure are: 
vbar - average value of v(x) for m + n samples, i.e. 

- l " v = -- L..J v(x;) 
m -t /1 I5i5m+n 

vsqbar -· average value of v(x) 2 form + n samples, i.e. 

ssq - the square of the standard error of the mean (of the integral) 
for m + /1 samples, i.e. 

(~ - ii2) 2 
u2 = ( Vab 

m+n-1) 

vi - value of v(x) at ith sample, i.e. v(x;) 
vip - a value of v(x) such that 2 I vip - vi I is a sample of the 

magnitude of the ith component of the average normalized 
gradient, 1 :$. i :$. n 

it - vector of shuffled integers 1 to m 
j - array of n different vectors of shuffled integers 1 to m used in 

constructing the (uniform) stratification 
cl - point on the /th axis that divides the volume of integration in 

half for the next recursive level, i.e. cl = (bl/] - a[/]) /2, 
I - index of the axis having the largest in magnitude sample of 

the component of the average normalized gradient. 
end of comment; 

begin 
integer/; real vbar, ssq; 
if m < n then m : = n; 
begin 

real gm, vi, vip, vsqbar; 
integer itemp, ir, k, i; 
array h[l :n]; 
integer array j[l :n, 1 :m], it[l :mJ; 
for i : = 1 step 1 until m do it[i) : = i; 

, _ _.. _____ I - ·• 

440-P 2- 0 

for k : = 1 step 1 until n do 
begin 

hlk] := (b[k] - a[k])/m; 
for i : = 1 step 1 until m do 
begin 

ir : = entier (rn X m) + 1 ; 
comment 0 < rn < 1 ; 
itemp : = it[i]; itliJ : = it[ir]; it[ir] : = itemp; 

end; 
for i : = 1 step 1 until m do j[k, i] : = it[i]; 

end; 
I:= 1; 
vsqbar := vbar :=gm:= O; 
for i : = 1 step 1 until m do 
begin 

for k : = 1 step 1 until /1 do 
xtkJ := a[k] + (j[k, i] - rn) X h[k]; 
vi:= vx; 
vbar : = vbar + vi; 
vsqbar: = vsqbar + vi j 2; 
if i :$. n then 
begin 

comment Sample the gradients; 
x[i] : = x[i] + abs(h[i] - a[i]) /2X 
(if x[i] < (b[i] + a[iJ) /2 then 1 else - l); 
vip : = vx; 
vbar : = vbar + vip; 
vsqbar : = vsqbar + vip j 2; 
if gm < abs(vip - vi) then 
begin 

I:= i; gm:= abs(vip - vi); 
end; 

end; 
end; 
vhar : = vhar/(m + n); 
vsqbar : = vsqbar/(m+n); 
ssq:= Vah i 2X (vsqbar- vbarj2)/(m-t-n-J); 

end; 
if ssq :$. 2 X esq then quadmc : = vbar X Vab else 

begin 
real temp, cl, al, hi; 
m := m X 0.707; 
if m < ssq/esq then m : = ssq/esq; 
comment The author is indebted to the referee's 

discussions pointing out the significance of maintaining 
m <:, ssq/esq; 

esq : = esq X ssq/(ssq - esq); 
al:= a[/]; hi:= b[/]; 
bl/] : = cl : = (bl + al) /2; 
temp : = quadmc(n, a, x, b, vx, esq/2, m, Vab/2, rn); 

b~ := M; a~:= cl; 
temp : = quadmc(h,. a, x, b, vx, esq/2, m, Vab/2, rn) + temp; 
a[/] := al; 
quadmc := (temp X ssq + esq X vbar X Vah)/(ssq+esq); 

end; 
end of quadmc 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 441 

Random Deviates from the 
Dipole Distribution [G5] 
Robert E. Knop [Recd. 12 Jan. 1971, 7 May 1971, 23 
Aug. 1971, and 8 Mar. 1972j 
Department of Physics, The Florida State University, 
Tallahassee, FL 32306 

Key Words and Phrases: random number, probability density, 
probability distribution, Dipole distribution, Cauchy distribution, 
simulation, Monte Carlo 

CR Categories: 3.17, 5.5 
Language: Fortran 

Description 
The function subprogram DI PO LE returns a random deviate 

- CD < z < CD sampled from the two parameter (R2 < 1, a arbi
trary) family of density functions: 

/(z) = l/(11"(l+z2)) 

+ R2X((l-z2)Xcos(2a) + 2XzXsin{2a))/(11"X(l+z2)2) 

The cumulative distribution function is: 

F(z) = (1/2) + (l/11")Xtan-1(z) 

+ R2X (zXco(s(2a -- sin(2a))/(11"X (l +z2)) 

Densities of this type commonly occur in the analysis of 
resonant scattering of elementary particles. We note that when 
R = 0 we have the Cauchy [1] or Breit-Wigner [2] density. When 
R = 1 and a = 0 we have the single channel dipole density. 1 

The dipole density with free parameters has been proposed to 
describe multichannel resonant scattering [3 ]. 

The algorithm begins by sampling the random vector (x, y) 
from a density uniform over the unit disk. The center of the unit 
disk is then displaced from the origin by the transformations 
u = x + RXcos(a) and v == y + RXsin(a). Letting u = rXcos(O) 
and v = rXsin(O) we can find the marginal density of 0: 

( 
(r2 (r2 ) 

f(O) = 1/(211") X lo + ds + lo - ds 

where the limits of integration for r are given by: 

r±(O) = RXcos(O-a) ± (1-R2 Xsin2(0-a))!. 

The marginal density of O is thus: 

f(O) = (1 + R2cos(2X (O-a)))/rr 

for -11"/2 < 0 < 11"/2. The transformation z = tan(O) = v/u then 
yields the dipole density function. Other densities which could be 

This work was supported in part by the U.S. Atomic Energy 
Commission. 

1 The density is named after the analytic property of having 
poles of order 2 in the complex plane. See [2]. 

441-P 1- 0 

easily sampled by computing rational f u111ctions of u and v are 
suggested by transformations such as z = tan2(0), sin2(0), sin(2XO), 

or I/I sin(2XO)I - I. 
Function DIPOLE has two arguments which must be calcu

lated by the calling program, A = RXcos(a) and B = RXsin(a). 
DI PO LE calls the function R 11 (D) which must return a random 
deviate from the uniform distribution over the interval ( - 1, I). 
D represents a dummy argument. 

The author wishes to express his gratitude to Prof. R.G. Glasser 
of the University of Maryland for comments concerning this 
algorithm. 

References 
1. von Neumann, J. Various techniques used in connection with 
random digits. In Nat. Bur. Standards ApJPJ. Math. Ser. 12, U.S. 
Gov. Print. Off., Washington, D.C., 1951, p. 36. 
2. Goldberger, M.L., and Watson, K.M. Collision Theory. J 
Wiley, New York, 1964, Chap. 8. 
3. Rebbi, C., and SJansky, R. Doubled r,esonances and unitarity. 
Phys. Rev. 185, 1838 (1969). 

Algorithm 
FUNCT10N DIP0LE<A.B> 

I 0 X = R 11< D> 
Y " IH ICD> 
IFC I ·O-X•X-Y•Y> lQ, lQ,20 

20 DIP0LE " CY+B>ICX+A> 
RETURN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 442 

Nonmal Deviate [S14] 
G.W. Hill and A.W. Davis [Recd. 20 Jan. 1971 and 2 
Aug. 1971] 
C.S.l.R.O. Division of Mathematical Statistics, Glen 
Osmond, Sth. Australia 

Key Words and Phrases: normal distribution inverse, probit 
transfornt. Taylor series approximation 

CR Categories: 5.12, 5.5 
Language: Algol 

Description 
This procedure evaluates the inverse of the cumulative normal 

distribution, i.e. the normal deviate u(p), corresponding to the 
probability level p, where 

1
1t 

p = P(u) = -oo cp(t) dt, 
1 

cp(t) = (
2

71" )! exp( -t2/2). 

An initial approximation to u(p), such as x(p), may be improved by 
using an expansion of u(z), defined as the inverse of 

z = p - P(x) = iu cp(t)dt. 

u(z) may be developed in a Taylor series about z =0, where 
u(O)=x, see ref. [1], 

Un = x + t c.(x) (-(z )),• / r! , 
r=l cjJ x ! 

and 

c1(x)=l, c2(x)=x, ca(x)=2x2+1, c4(x)=6xa+7x, 

Cr+1(x) = (rx+d/dx)c.(x). 

An error t:(x) in the initial approximation, uo =x(p), entails an 
error t:n(x) in Un of the order of "n+1cn+1(x)/(n+ 1) ! In order to mini
mize the maximum relative error Rn=max I 1:n/Un I in the result 
obtained from n terms of the Taylor series, several sets of coeffi
cients in an initial rational approximation styled after Hastings [2] 

a+ bs + cs2 

x(p) = s -- d + es + fs2 + sa' s = (-2/n(p))!, 0 < p < 0.5, 

have been obtained such that I [E(x)]n+1cn+1(x)/x I is minimax for 
I x I < 40. For odd n the minimized expression is an even function 
of E and x, so that the relative error level may be halved when n 
is odd by adding !xRn . The resulting precision is shown below as 
Sn, i.e. 

0-s I error(result) I l n = max 
result 

442-P 1- 0 

a b d e I 

UI 1271.059 450.636 7.45551 500.756 750.365 110.4212 0.62210 - 7 7.50 
U2 1484.397 494.327 7.61067 589.557 855.441 119.4733 0.64410 - 10 10.19 
U3 1251.789 444.751 7.51005 493.187 739.156 109.3967 0.7431n - 13 13.43 
U4 1637.720 494.877 7.47395 659.935 908.401 117.9407 0.11110 - 15 15.95 
Us 1488.369 460.200 7.38458 598.957 831.379 110.7527 0.94010 - 19 19.37 
U6 1269.225 448.718 7.49755 499.171 749.275 110.0194 0.75910 - 21 21.12 
UT 1266.846 448.047 7.49101 498.003 748.189 109.8371 0.16610 - 23 24.07 

According to the precision required, one set of coefficients and the 
corresponding labeled statement, selected from the following list, 
should be incorporated in the procedure body as illustrated for 
the case of u1 . 

ul: normdev : = z + xX 1.0000000311 

u2: normdev : = (xXzX0.5 + 1.0) Xz + x 

u3: normdev := (((s + 0.5)Xz/3.0 + xX0.5)Xz + l.O)Xz + x 

+ 0.371310-13 

u4: normdev : = (((((sX0.75 + 0.875) Xz + x)><x + 0.5) Xz/3.0 

+ xX0.5)Xz + l.O)Xz + x 

u5: normdev := ((((((sX0.6 + l.15)Xs + 0.175)Xz 

+ (sX0.75 + 0.875)Xx)Xz + s + 0.5)Xz/3.0 

+ xX0.5)Xz + l.O)Xz + x 

+ 0.4210-19Xx 

u6: normdev : = (((((((120Xs + 326) Xs + 127) XxXz/6 

+ (24Xs + 46)Xs + 7)Xz/40 + (0.75Xs 

+ 0.875)Xx)Xz 

+ s + 0.5)Xz/3.0 + xX0.5)Xz + l.O)Xz + x 

u7: normdev : = (((((((((720 Xs + 2556) Xs + 1740) Xs 

+ 127) Xz/7 

+ ((120Xs + 326)Xs + 127)Xx)Xz/6 

+ (24Xs + 46)Xs + 7)Xz/40 + (0.75Xs 

+ 0.875)Xx)Xz 

+ s + 0.5)Xz/3.0 + xX0.5)Xz + l.O)Xz + x 

+ 0.83210-24Xx 

Coefficients in a similar Taylor series in powers of ln(P(x)/p), used 
in AS Algorithm 24 [3], require more computation than the cn(x) 

in these approximations. 
The real procedure supplied by the user for normal(x,y) should 

return the value of the tail area to the left of x and, via the second 
parameter, y, should return the value of cp(x), which is often avail
able in the process of computing the tail area. A procedure based on 
Algorithm 304 [4] is recommended since other algorithms such as 
Algorithm 209 [5] and CDFN [6] lose precision as p approaches 
their error levels (about 10-1 , 10-10 respectively), whereas Algo
rithm 304 maintains precision until calculations involving cp(x) 
exceed the capacity of floating point representation. The similar 
CJ Algorithm 39 [7] matches the precision of u2 and may be readily 
modified to return also the value of cp(x). 

The user-supplied real procedure extreme (p) should cater for 
the cases p = 0, p = 1, by returning suitable extreme values dependent 
on the floating point representation for the processor used, e.g. 
extreme(O) = - 37 where binary exponents are ten bits, since 
cp( - 37) is approximately 2-210 and ext:eme(l) ,= + 7 for 36-bit 
precision, since P(x > 7) is approximately 1-2-35 • If p lies outside 
(0, 1) the procedure should provide a diagnostic warning and may 
terminate or return an extreme value such as + 37 as an indication 
of error to the calling program. 

Precision may be extended by using the D decimal digit result 



COLLECTED ALGORITHMS (cont.) 

from one application of normal and the 11-term Taylor series as an 
initial approximation for a second application, thus increasing 
precision to at least (n+ l)(D-log1o(x2+ 1)) decimal digits (as noted 
by the referee) or at most the precision of normal, e.g. u1 (ui) as in 
CDFNI [6] would have a relative error O(l0-14 (x2 +1)), if not 
limited by the use of the lower precision CDFN for normal. For 
double precision calculations the more elaborate higher order 
terms of the Taylor series may be evaluated using single precision 
operations, enabling achievement of extended precision with rela
tively little increase in processor time. Calculations to 25 decimal 
digit precision and independently calculated check values to 18 
significant· digits f 8] confirmed achievement of at least 10 significant 
decimal digits for Algorithm AS 24 and Sn significant digits for this 
procedure, except for limitations of representation of p near 1.0. 

References 
I. Hill, G.W., and Davis, A.W. Generalized asymptotic 
expansions of Cornish-Fisher type. Ann. Math. Statist. 39, 4 (Aug. 
1968)' 1264-1273. 
2. Hastings, C. Jr. Approximations.for Digital Computers. 
Princeton U. Press, Princeton, New Jersey, 1955, pp. 191-192. 
3. Cunningham, S.W. Algorithm AS 24, From normal integral 
to deviate. J.R. Statist. Soc. C. 18, 3 (1969), 290-293. 
4. Hill, LD., and Joyce, S.A. Algorithm 304, Normal. Comm. 
ACM JO, 6 (June 1967), 374. 
5. Ibbetson, D. Algorithm 209, Gauss. Comm. ACM 6, 10 (Oct. 
1963), 616. 
6. Milton, R.C., and Hotchkiss, R. Computer evaluation of the 
normal and inverse normal distribution functions. Teclmometrics 
l 1, 4 (Nov. 1969), 817-822. 
7. Adams, A.G. Algorithm 39. Areas under the normal curve. 
Comp. J. 12, 2 (May 1969), 197-198. 
8. Strecok, A.J. The inverse of the error function. Math. Comp. 
22, 101 (Jan. 1968), 144-158. 

Algorithm 
real procedure normdev(p, normal, extreme); 

value Pi real Pi real procedure normal, extreme; 
comment Input parameter p is the cumulative normal probability 

defined by 

p = L: ¢(!) dt, 
1 

ct>(t) = -( -)1 exp(-12/2), 
21r • 

normal (x,y) is a procedure for evaluating the above integral 
for u=x and which returnsy = cf>(x), extreme(p) is a procedure 
designed to handle extreme values of p. On completion of ex
ecution of this procedure normdev is an approximation for u; 

begin 
real s, x, z; 
x :=if p > 0.5 then 1.0 - p else Pi 
if x < 0.0 then normdev : = extreme (p) 
else 
begin 

u7: 

comment Initial rational approximation; 
s := sqrt(-2.0 X ln(x)); 
x := ((-7.49101 x s ·- 448.047) x s - 1266.846)/ 

(((s + 109.8371) X s + 748.189) X s + 498.003) + s; 
if p < 0.5 then x := -·x; 
z := p - normal(x,s); z := z/s; s :=xi 2; 

normdev : = (((((((((720 X s + 2556) X s + 1740) X s 
+ 127) X z/7 
+ ((120 X s + 326) X s + 127) X x) X z/6 
+ (24 X s + 46) X s + 7) X z/40 + (0.75 X s + 0.875) 
X x)X z 
+ s + 0.5) X z/3.0 + x X 0.5) X z + 1.0) X z + x 
+ 0.83210-24 x x 

end seven term Taylor series for 24 decimal precision 
end normal deviate 

442-P 2- 0 



COl,LECTED ALGORITHMS FROM CACM 

Algorithm 443 

Solution of the Transcen
dental Equation wew = x [CS] 

F.N. Fritsch, R.E. Shafer, and W.P. Crowl~y [Recd. 11 
Dec. 1970, and 15 Sept. 1971] 
University of California, Lawrence Livermore 
Laboratory, Livermore, CA 94550 

Key Words and Phrases: transcendental fonction evaluation, 
solution of transcendental equation 

CR Categories: 5.12, 5.15 
Language: Fortran 

Description 
Purpose. WEW solves the transcendental equation wew = x 

for w, given x > 0, by an iteration that converges much more 
rapidly than either Newton's method or fixed-point iteration. 
The user provides x = X. The routine returns w = WEW and the 
last relative correction en = EN. Two versions are described here. 
Version A produces CDC 6600 machine accuracy (48 bits), and the 
relative error should be approximately en3• Version B produces at 
least six significant figures, and the relative error should be approxi
mately en4• 

Iteration. Assuming x > 0, we may rewrite the equation de
fining was 

w + /og(w) = log(x). (1) 

For a given approximation Wn tow, let Wn+1 == Wn + on be a much 
better approximation. Substitution into (1) yields 

On + log (1 + on/Wn) = log X - log Wn - Wn 

= Zn, say. 

Using the approximation [1] log (1 + o/w) ~ (ow + 1/6 o2)/ 

(w2 + 2/3 ow) and clearing fractions yields th1! following quadratic 
equation for on : 

(2/3 Wn + 1/6)on2 + (Wn2 + Wn - 2/3 ZnWn)On - ZnWn2 = 0. 

Solving for the root that tends to zero as Zn ---> 0 gives 

On = (1 + Wn - 2/3 Zn) + ((1 + Wn + 2/3 z,.) 2 - 2zn)l . 

This has a continued fraction expansion [3] 

2zn 
2(1 + Wn) - 2(1 + Wn + 2/3 Zn) 

2zn 

2(1 + Wn + 2/3 Zn) 

for which the third convergent yields sufficient accuracy. If we ig-

Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

443-P 1- 0 

nore the quantity 2/3 Zn in the third term, we obtain the iteration 
formula 

Wn+l =:= Wn + On = Wn(l + en), 

where 

Zn 2(1 + Wn)(l + Wn + 2/3 Zn) - Zn 

en = 1 + w~ 2(1 + Wn)(l + Wn + 2/3 Zn) ....:. 2z~ ' 

(2) 

(3) 

and the error term is O(en4). An iteration which is O(en3) is obtained 
by trun~ating the continued fraction at the second convergent: 

en = (1 + Wn)(l + Wn + 2/3 Zn) - 1/2 Zn • 
(4) 

Initial guesses. For small values of x, the given equation has a 
series solution due to L. Euler [2]. A Pade rational fraction ap-
proximation to this series is 

x + 4/3 x 2 

Wo = 1 + 7 /3 x + 5/6 x 2 • 
(5) 

As computed from (5), w0 (x) < w(x), good to within 5 percent if 
x = 2.5 and much better for smaller values of x. For larger values 
of x we may use 

Wo = log(x), (6) 

which has a maximum relative error no greater than 37 percent 
for x ~ e. Version A actually switches from (5) to (6) at x = 6.46, 
the approximate location of the intersection of the two relative 
error curves. With these initial guesses, one iteration of (2) with en 

computed from (3) produces a maximum relative error of about 
2.7 X 10-s (see Figure 1), so that a second .iteration using (4) 
produces CDC 6600 machine accuracy. 

A much better initial guess for x > 0. 7 can be derived by sub
stituting wo = log(x) + o into (1) to obtain 

a + log (I + a + log (;)) ~ O. 
Exponentiation yields 

e-6 - 1 - o = log (;) . 

Using a Pade approximation to the series expansion of the left 
hand side, we have 

2o - 112 02 

e-6 -1-o~-----
l - 1;12 02' 

so that (approximately) 

( 1/2 + 1/12 log(;)) a• - :U - log(;) ~ 0. 
If this equation is solved approximately by the same procedure 
that was used to derive (3) and (4), the second convergent of th~ 
continued fraction yields the approximation 

Wo = log(x) _ 24(/og2(x) + 2/og(x) - 3) . 
7log2(x) + 58/og(x) + 127 

(7) 

Version B switches from (5) to (7) at x = 0,7385. With these initial 
guesses, a single iteration of (2) with en computed from (3) yields 
at least six-figure accuracy (see Figure 2). 

Testing. WEW has been tested for x in the range 0.01 s x s 
1000 against an algorithm that uses Newton's method for small to 
moderate values of x and fixed-point iteration for large values of x 



COLLECTED ALGORITHMS (cont.) 

on both the CDC 6600 and 7600 computers. Measured computing 
times were about the same for small x (~ 1.), but the time required 
by WEW is better liy a factor of 1.5 to 3.4 (depending on the re
quired relative error) for moderate to large x. Some typical times 
(microseconds) obtained on the Livermore Time Sharing System are 
given in Table I. 

Implementation Note. The section of coding preceding state
ment 20, labeled "set constants," provides a machine-independent 
means for setting the values of the constants Cl, C2, C3, C4 on the 
first execution of WEW. Since the object of these algorithms is 
speed, it is recommt:nded that the user compute these constants 
to the accuracy required for his particular machine and set them 
initially by means of a DATA statement. 

Fig. 1. Relative error I w - w1 I /w with w0 computed from (5) for 
x :s; 6.46 and from (6) for x > 6.46. The apparent cusp is due to 
the fact that the error curve (w - w1) has a zero near x = 80.4. 

Ml 

E·tC 

[•II 

[·12 

Fig. 2. Relative error I w - w1 I /w with w0 computed from (5) for 
x ~ 0.7385 and from (7) for x > 0.7385. The strange appearance of 
the curve for small x is due to the fact that w0 = w for x = e and 
several values of x between 0.7 and 1.1. 

E-:6,-----------------------------

[·12 

[·15 

E·IA 

[·15---L 
!? 0 0 

5~~ N ~ :-; ~ . ~ ~ ~ :; ~ ·- ~ -~ co 0 

w 

Table I. Execution Times for WEW (microsec) 

CDC 6()(X) CDC 7600 

Version Version 

A B 
------ --------

118 
105 

88 
87 

Version Version 

A 

25.8 
23.0 

B 

17.8 
18.1 

• Xe = 6.46 for Version A or 0.7385 for Version B 

443-P 2- 0 

References 
1. Abramowitz, M., and Stegun, I.A. Handbook of Mathematical 
Functions. National Bureau of Standards (AMS-55), Washington, 
D.C., 1964, Formula 4.1.39, p. 68. 
2. Polya, G., and Szego, G. Aufgaben und Lehrsatze aus der 
Analysis, Vol. 1. Springer-Verlag, Berlin, 1954, Problem 209, p. 125. 
3. Wall, H. Analytic Theory of Continued Fractions. Van 
Nostrand, New York, 1948. 

Algorithms 
FUNCTl0N "Elti ex. EN> 

c 
C ITEl'!ATlllE S0L.UTl0N 0F X•lti•EXP01> ltiHEKE ~. IS GIVEN. (N0VEMBER 1970> 
C <REVISED - SEf'TEMBEH 1971> 
C VERSI 0N A -- CDC 6600 MACHINE ACCURACY• 
c 
C INPUT PARAMETERl 
C X ARGUMENT 0F W<X > • 
c 
C 0UTPUT PAkAMETEHSl 
C wE~1 THE DESIRED S0L.UTl0N• 
C EN THE L.AST REL.ATIVE C0RRECTl0N T0 "CX>• 
c 

c 

SET C0NSTANTS ••• 
DATA NEWEii/ 
IF <NEWE> 10,20,10 

10 NEWE = 0 
Cl"<l•/3· 
C2•7./3. 
C3•S./6. 
C<i•2./3. 

c C0MPUTE INITIAL. GUEss ... 

c 

20 FL.0GX " AL.0G<X> 
IF <X•6.<16> 30.30.<IO 

30 WN • X•<l.+Cl•X>l<l•+X•<C2+C3•X» 
ZN = FL.0GX • WN • AL.0G<WN> 
G0 T0 SO 

<10 WN = FL.0GX 
ZN = •AL.0GCWN> 

SO C0NTINUE 

1TERAT10N 0NE. •. 
TEMP • I• + WN 

'I' = 2.•TEMP•<TEMP+C<l•ZN> • ZN 
WN"' WN•<I• + ZN•'l'l<TEMP•<Y·ZN>» 

ITERAT10N TW0 ... 
ZN = FL.0GX • WN • AL.0G<"N> 

TEMP "' I· + WN 
TEMP2 • TEMP + C<i•ZN 

EN • ZN•TEMP21< TEMP•TEMP2·. S•ZN> 
WN = WN•< I .+EN> 

RETURN ••• 
WEW • WN 
RETURN 
END 

FUNCT10N WEW (.~, EN> 

C ITEl{ATIVE SOL'JT10N OF X"''•*EX?<W> WHEKE )( IS GIVEN. CN0VEMBEk 1970) 
C <REV I SEO • SEPTEMBEH 1971 > 
C VEH510N B -- MAXIMUM REL.ATIVE El<R0R 3·E-7 • 
c 
C INPUT PARAMETEl'!l 
C X A.":GUMENT 0F v1<X> • 
c 
C 0UTPUT i'ArtAMETEi<SJ 

c 

WEI'/ THE l>ES!t<ED SOL.UT10S. 
EN THE LAST KELATIVE C0.<t<ECTH;N Hi ~i<X>• 

SET Ct:JNSTANTS • • • 
EOUI VALENCE < F • FL.0GX > 
DATA NEWEii/ 
IF <NEWE> 10,20, 10 

10 NEWE • 0 
Cl=<lo/3. 
C2=7 .13. 
C3"S./6. 
C<i=2./3• 

ce,~PUTE INITIAL GUESS··· 
20 FL.OGX = AL0GCX> 

IF ()(•.7385> 30,30,40 
30 1-iN = X*<t.+Cl•X>l<l•+X•<C2+C3•X» 

G0 T0 SO 
<10 WN = F • 24·•«F+2•>*F·3.)/(( .7•F+58.>•F+l27•> 
50 C0NTINUE 

ITERAT10N 0NE• • • 
ZN "' FL0GX - lvN - AL.0G<WN> 

TEi'I? • I• + l<IN 
'I' • 2·•TE"IP•<TEMP+C<l•ZN> • ZN 
EN " lN*Y IC TEMP*<'l'·ZN> > 
VIN "' WN•< I o+EN> 

C RETURN ••• 
~IEW • WN 
RETURN 
ENO 



COLLECTED ALGORITHMS (cm1t.) 

Remark on Algorithm 443 (CS] 
Solution of the Transcendental Equation we"' 
(F.N. Fritsch, R.E. Shafer, and W.P. Crowley, 
ACM 16 (Feb. 1973), 123-124] 

x 
Comm. 

Bo Einarsson [Recd. 5 Mar. 1973 and 4 June 1973] 
Research Institute of National Defense, Box 98, 
S-147 00 Tumba, Sweden 

This algorithm contains a violation of the Fortran standard as 
defined in [I j. According to Section I 0.2.6 of the standard, certain 
variables in a subprogram will be undefined at the execution of 
the RETURN statement, if they are not in a common block. This 
applies to the section in Algorithm 443 labeled "set constants" 
and commented in the Implementation Note. The IBM FORTRAN 
IV H Extended Compiler (Program Product) makes use of the 
standard in such a way that the variable NEWE does not have the 
value zero at a reentry to the subprogram, so that the variable 
NEWE does not fill its purpose. On the other hand this compiler 
performs the divisions and stores the quotients, so that no divi
sions are needed at the execution of the subprogram. The IBM 
FORTRAN IVG Compiler performs as the authors of Algorithm 
443 take for granted. Other optimizing compilers may have the 
value of NEWE as zero at reentry but have undefined values of 
Cl, C2, C3, and C4. In that case the subprogram would produce 
erroneous results. 

The remark above is similar to the third paragraph of Remark 
on Algorithm 352 121, where the consequences of Section 10.2.5 
of the standard are discussed. 

The problem with the local variables can be evaded without 
loss of computing efficiency by replacing statement 30 with 

30 WN = X * (3. +4. * X) I (3. +x *(7. +2.5 *X)), 

replacing C4 * ZN wherever it appears with ZN/1.5, and finally de~ 
leting the section "set constants'' and the "Implementation Note". 
ln version B the statement EQUIVALENCE (F, FLOGX) must 
be kept. 

I have also certified the routine (version B) by testing it in 
single precision on an IBM 360/75 by performing some statistics 
on R(x) = (we"' - x)/x. The first test used x = 0.01 (0.01) 10.00 
and the second a thousand x values from a normal random dis
tribution with mean value zero and variance 1, but if the obtained 
random value x was nonpositive, a new value of x was computed. 
The values of R were calculated in double precision. 

The following results were obtained: 

Standard 
Mean value deviation Maximal value 

Test of R of R of IR I 
-~------ ~-

Linear -l.7·10- 6 1.2.10- 5 4.2· 10- 6 

Random -0.4· 10- 6 0. 5 .10- 5 3.3·10- 6 

Since the relative error in a single precision value on IBM 360 may 
be as high as 0.5 · 10- 6, the above results appear reasonable. 

References 
1. American National Standard FORTRAN, ANSI X3.9-1966. 
American National Standards Institute, New York, 1966. 
2. Sale, A.H.J. Remark on Algorithm 352. Comm. ACM 13 (Dec. 
1970), 750. 

443-P 3- 0 



Algorithm 444 

An Algorithm for Extracting 
Phrases in a Space- Optimal 
Fashion [Z] 
R.A. Wagner [Recd. 5 Mar. 1971and30Aug. 1971] 
Department of Systems and Information Science, 
Vanderbilt University, Nashville, TN 37203 

Key Words and Phrases: information retrieval, coding, text 
compression 

CR Categories: 3.70, 5.6 
Language: PL/I 

Description 
Jmroduction. The algorithm PARSE computes and prints a 

minimum-~pace form of a textual message, MS. The 
minimization is performed over all possible" parses" of MS 
into sequences of phrase references and character strings. Each 
phrase reference represents one of a finite collection, P, of 
phrases. The collection, P, must be selected before PARSE is 
applied. . 

Assumptions and requirements. PARSE assumes that the umt 
of storage is the byte, defined such that one byte can hold either 
a single character of text or an integer i in the range 0 S i < W. 
(For IBM 360 equipment, W = 256 = 2**8). PARSE also 
assumes that the number of different phrases in the collection P 
is no larger than W** PHC, and that each message to be parsed 
contains fewer than W**CHC characters of text. The parameter 
values CHC = PHC = 1 appear appropriate on IBM 360 
equipment, when PARSE is applied to short messages, such as 
compiler error messages. 

PARSE requires two arguments. The first is the message to 
be parsed; the second is the table of common phrases which 
may be used in the parse. 

PARSE assumes that an external procedure HASH is 
present; HASH(MS,I,K) is defined as follows: Let H1, H2, . .. , 
H,,. be a sequence of indices such that among them they exhaust 
all entries P(Hi) such that 

SUBSTR(MS,1,3) = SUBSTR(P(Hi),1,3). 

(That is, the H;'s include indices for every phrase P(H;) which 
agrees with characters I, I + 1, and I + 2 of the given 
message. Other indices may occur among the H;'s, as well.) 
Then HASH(MS,1,0) = H1, HASH(MS,I,Hi) = Hi+1, and 
HASH(MS,l,Hm) = 0. 

A" hash table" procedure can easily be modified to yield 
this performance; an equally useable, although slower version 
returns MOD(K + 1, M + 1) on every call. A procedure 
HASH is included below. 

Methods. The method used to determine which phrases to 
extract from the given message is described in [l]. The resulting 
parsed message requires least space, assuming that messages are 
storable only as described in [l]-that is, as sequences of 

C (number) (character string) 
I P (number) 

representing a literal string of characters, and a reference to a 
common phrase, respectively. 

During the course of the computation, arrays G and H are 
filled with values of functions g and h, r1~spectively, as defined 
in [1 ]. Just before label BUILD is reached, 

H(J) length of the best parse of SUBSTR(MS,I), and 
G(l) = length of the best parse of SUBSTR(MS,l) among 

those parses beginning with a c:haracter string, 

both for I = 1, ... , LENGTH(MS). 
Internally, PARSE uses a single army, Z, paralleling the 

function arrays G and H, to retain the information needed for 
re-constructing the parsed form of the message. 

z (I) K, if G (/) > H(l), where K is the number of the "best" 
common phrase matching MS at I, or 
J, if G(/) = H(l). (G(I) < H(I) is impossible.) 

J gives the index of the end (plus one) of the character string 
starting at /. In this case, the best parse at I begins with this 
character string. J satisfies: G(J) > H(.T) and for all k, IS k 
< J, G(k) = H(k). 

Results: To make the printed form of the parsed message 
more intelligible, PARSE prints: 
'C (number) 1 as '#ddd' 
'P (number)' as '%ddd' 
where "ddd" is the 3-digit decimal representation of {number) 
+ 1. In practice, a number representing a character count or 
phrase index can be stored as an integer, in place of CHC or 
PHC characters respectively. Thus, the character string 
'ABC' would be stored as 'C?.ABC', where?. is a CHC-byte 
integer whose value is 2. The same string would be printed by 
the PARSE algorithm as '#003ABC'. 

The program PARSE returns the number of bytes needed to 
store MS, given the particular set of extractable phrases i? P. 

A sample driver, two sample input streams and associated 
output follow the procedures PARSE and HASH. 

References 
1. Wagner, R.A. Common phrases and minimum-space text 
storage. Comm. ACM 16, 3 (Mar. 1973), 148-152. 
2. Bell, James R. The quadratic quotie:nt method; a hash code 
eliminating secondary clustering. Comm. ACM 13, 2 (Feb. 1970), 
107-109. 

Algorithm (Figures 1-6 follow.) 



COLLECTED ALGORITHMS (cont.) 

Fig. 1. The PARSE Algorithm. 
PARSE: PROC(MS,P) RETURNS(FIXED BINARY); 

DCL (MS,P(*)) CHAR(*) VARYING; 
DCL N; 
DCL HASH RETURNS( FIXED BINARY); 
DCL ( CHC, /* BYTES PER CHARACTER-COUNT "/ 

PHC) /* BYTES PER PHRASE-INDEX */ 
STATIC EXTERNAL FIXED BINARY; 

N=LENGTH(MS); 
BEGIN; 

DCL (G,H ,z) ( N+ 1 ) FIXED BI NARY; 
DCL(I ,J,K,L,T) FIXED BINARY; 

G(N+l )=3; H(N+l )=l; J ,Z(N+l )=N+l; 
MSGP: DO I=N BY -1 TO l; 

K=HASH(MS,I ,OB); 
H(I), G(I) =MIN( G(l+l)+l, H(I+l)+CHC+2 ); 
Z(I)=J; 

!* J HOLDS INDEX OF END+ 1 OF NEXT CHAR-STRING */ 
Ml: DO WHILE (K>O); 

L=LENGTH(P(K)); 
IF L -p N-1+1 THEN 
IF L < N THEN 
IF SUBSTR(MS,I ,L)=P(K) THEN DO; 

T=H(I+L)+PHC+l; 
IF H(I)>T THEN DO; 

H(I)=T; Z(l)=K; J=I; 
END; 

ENO; 
K=HASH(MS,I ,K); 
END Ml; 

END MSGP; 

PUT SKIP EDIT(H(l) ,N+3,': ')(2 F(4),A); 
I=l; GOTO Bl; 

BUILD: 
IF H(i)<G(I) THEN DO; 

PUT EDIT('%', Z(l))(A,P'999'); 
I= I +LENGTH ( P ( Z ( I) ) ) ; 
END; 

ELSE DO; 
J=Z(I)-1; 
PUT EDIT('#' ,J,SUBSTR(MS,l,J))(A,P'999' ,A); 
I=Z(I); 
END; 

Bl: IF J-, >N THEN GOTO BUILD; 
PUT EDIT('.')(A); 
RETURN(H( 1)); 

END PARSE; 

Fig. 2. An acceptable HASH procedure. 
HASH: PROC(MS,I ,K) RETURNS( FIXED BINARY); 

DCL MS CHAR(*), J FIXED BINARY(31 ,0), 
(HT (0:200)1NIT((201)0), 

KJ, HP INIT(l97), 
HX,HY ,HZ) FIXED BINARY STATIC; 

DCL ( CHC, /* BYTES PER CHARACTER-COUNT * / 
PHC) /* BYTES PER PHRASE-INDEX */ 
STATIC EXTERNAL FIXED BINARY; 

CALL HCMN( K) ; 
RETURN(HT (HZ)); 

HCMN: PROC(K); 
IF K = 0 THEN 

IF LENGTH(MS)-1 < PHC+l THEN HZ=-l; 
ELSE DO; 

ELSE DO; 

UN SPEC (J) =UNSPEC ( SUBSTR(MS, I, PHC+;~)); 
HZ=MOD(J ,HP); 
HY=J/HP; 
HX=O; 
END; 

HX=MOD(HX+HY ,HP); 
HZ=MOD(HX+HZ ,HP); 
END; 

HZ=HZ+l; 
HETURN; 
END HCMN; 

ENTER: ENTRY(MS,I ,K); 
IF LENGTH(MS) < PHC+2 THEN RETURN; 
KJ=O; 

El: CALL HCMN( KJ); 
KJ=HT(HZ); 
IF KJ > 0 THEN GOTO El ; 
HT(HZ)=K; 
RETURN; 
END HASH; 

Fig. 3. A driver for the PARSE procedure. 
DRIVER: PROC OPTIONS(MAIN); 

DCL MS CHAR(256) VARYHIG; 
DCL NP ,M; 
DCL (HASH RETURNS( FIXED BINARY), ENTER) 

ENTRY(CHAR(256) VARYING, FIXED BINARY, FIXED BINARY); 
DCL PARSE RETURNS(FIXED BINARY); 
DCL (CHC, /* BYTES PER CHARACTER-COUNT */ 

PHC) /* BYTES PER PHRASE-INDEX */ 
STATIC EXTERNAL FIXED BINARY; 

CHC,PHC=l; /* COUNT/INDEX SIZE=l tlYTE */ 
GET SKIP LIST(NP,M); 
BEGIN; 

DCL P(NP) CHAR(M) VARYING; 
DCL NB,NA,l,J; 

NB,NA=O; 
DO I=l TO NP; 
GET SKIP LIST(P(I)); 
CALL ENTER(P(I), 1,1); 
END; 

444-P 2- 0 

PUT PAGE LIST(' PHRASES, AND THEIR PARSED FORMS'); 
DO I=l TO NP; 

PUT SKIP(2) EDIT(!,' '"II P(l) II"") 
(F(4) ,A); 

NA=NA+PARSE ( P (I), P); 
END; 

PUT PAGE LI ST ( 'MESSAGES: '); 
L l: GET SKIP LIST(MS); 

PUT SKIP(2) LIST( "" 11 MS 11 "" ); 
IF MS='' THEN GOTO L2; 
NB=NB+LENGTH(MS)+CHC+2; 

/* ALLOW FOR STRING-OVERHEAD + END MARK *I 
NA=NA+PARSE(MS,P); 
GOTO Ll; 

L2: PUT SKIP EDIT( 'FINAL STATISTICS:', 
'WITHOUT PHRASE EXTRACTION:' ,NB, 
'AFTER PHRASE EXTRACTION:' ,NA, 
'SAVING:' ,NB-NA, 
' (' ,(NB-NA)*lOO/NB, '%) ') 

(A, 3(SKIP ,A,F( 5)) ,A, F(5, 1) ,A); 
RETURN; 
END DRIVER; 

Fig. 4. Sample input files. 
(a) Two phrases, four messages. Illustrates heavily overlapping 
phrases. 
(b) Five phrases, 23 messages. These messages are the first 23 
numbered error messages from the syntactic analysis section of 
the PL/C compiler. 
A 

CMS03 LISTING OF INPUT STREAM 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 

2, 10 
'AAAAA' 
'AAAAAAA' 
'AAAAAAAAAA ' 
'AAAAAAAAAAAA ' 
'AAAAAAAAAAAAAA ' 
'AAAAAAAAAAAAAAA ' 

B CMS03 LI ST! NG OF INPUT STREAM 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 

5,20 
'EXTRA ' 
'MISSING ' 

'IMPROPER ' 
'SEMI -COLON' 
'EXPRESS ION' 
'EXTRA (' 
'MISSING(' 
'EXTRA ) ' 
'MISSING ) ' 
'EXTRA COMMA' 
'MISSING COMMA' 
'EXTRA SEMI-COLON' 
'MI SS ING SEMI-COLON' 
'MISSING : ' 
'MISSING =' 
'IMPROPER *' 
'MISSING *' 
'EXTRA END' 

'MISSING END' 
'MI SS I NG KEYWORD' 
' INCOMPLETE EXP-RESS ION' 
'MISSING EXPRESSION' 
'MISSING VARIABLE' 
'MISSING ARGUMENT, 1 SUPPLIED' 
'EMPTY LI ST' 
'IMPROPER NOT' 
'IMPROPER ELEMENT' 
'UNTRANSLATABLE STATEMENT' 

Fig. 5. Result of applying DRIVER to the cards listed in Figure 
4(a). Note that phrase 2 is itself reduced in size by PARSE, while 
each of the messages are reduced to strings of phrase references 
alone. 
PHRASES, AND THE! R PARSED FORMS 

'AAAAA' 
8: #005AAAAA. 

'AAAAAAA' 
10: #002AA%001. 

MESSAGES: 

'AAAAAAAAAA ' 
5 13: %001%001. 

' AAAAAAAAAAAA' 
5 15: %001%002. 

'AAAAAAAAAAAAAA' 
5 l 7: %002%002. 

'AAAAAAAAAAAAAAA' 
7 18: %001%001%001. 

FINAL STATISTICS: 
WITHOUT PHRASE EXTRACTION: 63 
AFTER PHRASE EXTRACTION: 37 
SAVING: 26 ( 41.3%) 



COLLECTED ALGORITHMS (cont.) 

Fig. 6. Result of applying DRIVER to the cards listed in Figure 4(b). 
PHRASES, AND THEIR PARSED FORMS 

'EXTRA ' 
9: #006EXTRA . 

2 'MISSING ' 
11 11: #008MISSJNG 

3 '!~PROPER ' 
12 12: #009IMPROPER . 

4 'SEMI-COLON' 
13 13: #01 OSEMJ -COLON. 

5 'EXPRESS ION' 
13 13: 

MESSAGES: 

'EXTRA (' 

#01 OEXPRESS ION. 

6 l 0: %001 #001 ( • 

'MISSING (' 
6 12: %002#001 ( . 

'EXTRA ) ' 
6 10: %001#001). 

'MISSING ) ' 
6 l 2: %002#001 ) . 

'EXTRA COMMA' 
l 0 14: %001 #OOSCOMMA. 

'MISSING COt"MA' 
l 0 16: %002#005COMMA. 

'EXTRA SEMI-COLON' 
5 19: %001 %004. 

'Ml SS I NG SEMI -COl!.ON' 
5 21 : %002%004. 

'MISSING : ' 
6 12: %002#001:. 

'MISSING =' 
6 12: %002#001 =. 

'IMPROPER *' 
6 13: %003#001 *. 

'MISSING *' 
6 12: %00211001 *. 

'EXTRA END' 
B 12: %001 #003END. 

'MISSING END' 
8 14: %002#003END. 

'MI SS I NG KEYIJORD' 
12 18: %002#007KEYWORD. 

'INCOMPLETE EXPRESSION' 
16 24: #011 INCOMPLETE %005. 

'MISSING EXPRESSION' 
5 21 : %002%005. 

'MISSING VARIABLE' 
13 19: %002#008VARIABLE. 

'MISSING ARGUMENT, 1 SUPPLIED' 
25 31: %002#020ARGUMENT, 1 SUPPLIED. 

' EMPTY LI ST' 
13 13: #01 OEMPTY LI ST. 

' I MP ROPER NOT' 
8 1 5: %003#003NOT. 

'IMPROPER ELEMENT' 
12 19: %003#007 ELEMENT. 

'UNTRANSLATABLE STATEMENT' 
27 27: #024UNTRANSLATABLE STATEMENT. 

FINAL STATISTICS: 
WITHOUT PHRASE EXTRACTION: 376 
AFTER PHRASE EXTRACTION: 283 
SAVING: 93 ( 24.6%) 

444 --P 3- 0 



COLLECTED ALGORITHMS FROM CACM _________________ , ____________________________________ _ 

Algorithm 445 

Binary Pattern 
Reconstruction f rorr1 
ProJiections [Z] 
Shi-Kuo Chang [Recd. 4 Nov. 1970 and 12 May 1971] 
School of Electrical Engineering, Cornell University 
Ithaca, NY 14850. 

Key Words and Phrases: pattern reconstn11ction, image 
reconstruction, data compression, picture processing 

CR Categories: 3.63, 5.30 
Language: Algol 

Description 
This procedure reconstructs a binary pattern from its horizon

tal and vertical projections [l]. The paramt:ters are described as 
follows. m, n are the dimensions of the binary pattern f switch is 
an integer variable. fx [l :n] is the projection off on the horizontal 
axis. fy [l:m, 1] is initially set to (1, 2, ... , m). fy [l:m, 2] is the 
projection off on the vertical axis. f[l :11, l:m] is the pattern to be 
reconstructed, initially set to 0. 

The projections fx and .fy are inconsistent if there is no pattern 
f having such projections. The pattern f is unambiguous if there is 
no other pattern having the same projections as f Given the pro
jections fx and fy, there are three possibilities: (1) fx and fy are 
inconsisteut; (2) they are consistent but the pattern /is ambiguous; 
or (3) they are consistent and the pattern .f is unambiguous. 
(1) Inconsistent Projections. This procedure sets switch to -1 and 
reconstructs a pattern f having the correct horizontal projection 
fx. Its vertical projection will be different from .fy. 
(2) Ambiguous Pattern. This procedure sets, switch to 0 and re
constructs a pattern f having projections fx and fy. 
(3) Unambiguous Pattern. This procedure sets switch to 1 and 
reconstructs a pattern f having projections fx and .fy. In this case f 
is unique. 

References 
1. Chang, S.-K. The reconstruction of binary patterns from their 
projections. Comm. ACM 14, 1 (Jan. 1971), 21-25. 
2. Chang S.-K., and Shelton, G.L. Two algorithms for multiple
view binary pattern reconstruction. IEEE Trans. Syst., Man, 
Cybern. (Jan. 1971), 90-94. 

Algorithm 
procedure Pattern Reconstruction (switch, m, n, fx, fy, f); 

integer m, n, switch; integer array fx, fy, f; 
comment The parameters are defined as follows: switch is an 
output parameter with values -1, 0, or 1 according as the 
projections are inconsistent (switch = -1), the pattern is 
ambiguous (switch = 0), the pattern is unambiguous (switch = 
1). m is the column dimension of the binary pattern f, and n is 
the row dimension of the binary pattern f m and 11 are input 

Author's present address: Institute of Mailhematics, Academia 
Sinica, 910 Nankang, Taiwan, Republic of China. 

445-P 1- 0 

parameters. The array fx [1 :n] is the projection of the binary 
pattern f on the x axis. fx is an input array. The array .fy [ 1 :m, 
l :2] contains l, 2, ... , m in column l initially, and column 2 
contains the projection of the binary pattern .f on the y axis. fy 
is an input array, and it is modified by this procedure. The array 
f [1 :n, 1 :m] contains 0 initially and contains the reconstructed 
binary pattern finally; 

begin 
integer ix, iy, j, number; 
procedure Sort; 
begin 

Sl: 

integer limit, ind, i; 
limit : = m - 1 ; 

ind:= O; 
for i : = 1 step 1 until limit do 
iffy [i, 2] < fy [i+1, 2] then 
begin 

integer tl, t2; 
ind:= 1; 
tl := .fy [i+l, 1]; 12 := fy [i+1, 2]; 
fy [i+l, l] := fy [i, 1]; 
.fy [i+l, 2] := fy [i, 2]; 
fy [i, l] := t1; fy [i, 2] := t2 

end; 
limit : = limit - 1 ; 
if (limit > 0) /\ (ind = 1) then go to SI 

end Sort; 
procedure Merge; 
iffy [number, 2] < fy [number+ 1, 2] then 
begin 

S2: 

S3: 

S4: 

integer nl, 112, tl, t2; 
n1 : = number; 

if nl > l then 
begin 

iffy [n1, 2] = fy [111-1, 2] then 
begin 111 : = 111 - l; go to S2 end 

end; 
n2 : = number + 1 ; 

if n2 < m then 
begin 

iffy [n2+1, 2] = fy [n2, 2) then 
begin n2 : = n2 + l ; go to S3 end 

end; 

tl := fy [111, 1]; 12 := fy [111, 2]; 
.fy [n1, l] := fy [n2, 1]; fy [111, 2] := fy [112, 2]; 
.fy [n2, 1] : = t1; fy [n2, 2] : = t2; 
if (nl < number) /\ (number+ 1 < 112) then 
begin nl := nl + l; n2 := n2 - 1; go to S4 end 

end Merge; 
comment The procedure Sort orders fy, and the procedure Merge 

reorders fy. The main procedure now follows; 
switch := 1; 
Sort; 
for ix : = l step 1 until n do 
begin 

number:= fx [ix]; 
if number> 0 then 



COLLECTED ALGORITHMS (cont.) 

begin 
for j : = 1 step 1 until number do 
begin 

iy : = .fy [j, 1]; 
fy [j, 2] := fy [j, 2j - 1; 
/[ix, iy] : = 1 

end; 
comment One column off is reconstructed; 
if number< m then 
begin 

if (switch= I) /\ Uv[number, 2] < fy[number+1, 2]) 
then switch : = O; 
comment The above condition indicates that the 

pattern f is ambiguous, and the switch is set to O; 
Merge; 
comment fy is reordered before we start to reconstruct 

the next column; 
end 

end 
end; 
for j : = 1 step 1 until m do 
if .fy [j, 2] ~ 0 then switch : = - 1; 
comment The above condition indicates that the projections are 

inconsistent, and the switch is set to - 1; 
end Pattern Reconstruction 

Remarks on Algorithm 445 [ZJ 
Binary Pattern Reconstruction from Projections [by 
Shi-Kuo Chang, Comm. ACM 16 (Mar. 1973 ), 
185-186] 

John Lau [Recd. 22 July 1971J 
Department of Computer Science, University of 
British Columbia, Vancouver 8, B.C., Canada 

Key Words and Phrases: pattern reconstruction, image 
reconstruction, data compression, picture processing 

CR Categories: 3.63, 5.30 
Language: Algol 

The procedure works well for all consistent patterns, ambiguous 
or unambiguous. However, when fx and fy are inconsistent, the 
procedure can construct a pattern /[I :n, I :m] with fx satisfied, only 
if all elements of fx have values between 0 and m. If any of these 
elements is greater than m, a program interrupt would usually be 
caused by "value of subscript outside declared bounds" when the 
program executes the Jines 

for j : = l step 1 until number do 
begin 

iy : = .fy[j, 1]; 
fy[i, 2] : = fy[j, 2] - I; 
JT.ix, iy] := I 

er.d; 

and execution of program would then be terminated. Even if a 
pattern could be constructed in this case, it would not be able to 
satisfy fx entirely. 

445-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 446 
Ten Subroutines for the 
Manipulation of Chebyshev 
Series [Cl] 
R. Broucke [Recd. 17 May 1971 and 7 April 1972] 
University of California, Los Angeles, CA 90024, and 
Jet Propulsion Laboratory, Pasadena, Calif. 

Key Words and Phrases: Chebyshev series, differentiation, 
integration, curve fitting, approximations, negative powers 

CR Categories: 5.12, 5.13, 5.16 
Language: Fortran 

Description 
Introduction. These subroutines deal with the manipulation of 

Chebyshev series. The operations performed are the construction 
of the Chebyshev approximation of functions, the evaluation of the 
series or their derivative, the integration or diifferentiation, and the 
construction of negative or fractional powers of such a series. 

The subroutines are written in ANSI Fortran. They have been 
used without modification on such compute:rs as the IBM-7094, 
IBM-360/91 (Fortran-IV-G compiler) and Univac 1108 (Fortran-V 
compiler), 

The ten subroutines are considered as a single set, principally 
because they all use the same storage philosophy. All information 
is transmitted through the CALL-sequence rather than through 
the use of COMMON statements. Therefore, 1the user must provide 
storage for all the series in his main program, taking into account 
that all operations are performed in double precision. The coeffi
cients of each series occupy a one-dimensional double-precision 
array according to the rules of ANSI Fortran. ·When several 
Chebyshev series are being manipulated, it is convenient to store 
all the series in a matrix. Each column of the matrix contains a 
single series, in order that the coefficients of each series occupy 
consecutive storage locations. 

The first six subroutines contain no calls to other subroutines· 
in this sense they may be considered as independent. Each sub~ 
routine can be used separately. 

. In the present type of operations, it is extremely important to 
design and perform a large number of tests to certify all of the 
subroutines. We have tested the subroutines by generating some 
Chebyshev series which were published by Clenshaw [4], but we 
have also tested them with a number of additional methods· for 
instance: ' 
a. The .series for several elementary functions such as sin(x), 
cos(x), sm(2x), and cos(2x) have been constructed directly. These 
series have then been evaluated, and the values have been compared 
with the values of the functions. 
b. The series for cos(2x) and sin(2x) have bc!en derived from the 
series sin(x) and cos(x) by multiplication and addition of series. 
c. The series for sin(x) and cos(x) have been derived from each 
other by integration and differentiation. 

446 P I 0 

d. Many tests have been made by multiplying a series f(x) by the 
series 1/f(x) or for instance by squaring the series for f(x)t or other 
similar operations. ' 

The generation, evaluation and multiplication subroutines. The 
methods for the generation of a Chebyshev series have been taken 
f~om C. W. Clenshaw's papers [3, 4, 5). The rule for the multiplica
tion of Chebyshev series is also described by Genshaw [3, p. 137], 
but the flowchart of our subroutine is from L. Carpenter [2]. 

We only consider the interval ( -1, + 1) of the independent 
variable x, and we represent a truncated Chebyshev series of order 
11 in the form: 

f(x) = Cco/2) + c1T1(x) + c2T2(x) + · · · + c.,.Tn(x). (1) 

We want to draw the user's attention to the fact that we use a 
factor ! in the zero-order term but not in the last term of the series. 
Some authors have used different conventions in relation to this 
factor ! for the first and last terms. 

In the applications of the subroutines some caution is also 
necessary, because the independent variable x (the Chebyshev 
independent variable) is within the limits (-1, +1). If the user's 
variable t (the physical independent variable) is within the limits 
(t1 , 12), the conversions between t and x should be made with the 
linear relations 

t = ((t2 + t1)/2) + ((t2 - t1)/2)x; 
x = ((2t - (t2 + !1))/(!2 - /1)). 

(2) 

The coefficients Ci in formula (1) are computed with the rule 
given by Clenshaw [4, p. 3]: 

Ci = (2/n L:" /(cos (7rj/n)) cos(7rij/n); 
j-0 

i = 0, 1, ... , n. (3) 

The double accent means that the first and last terms of the sum are 
divided by two. It is seen that n + 1 special values of the function 
f(x) are needed. In some applications, n has been as large as 1,500. 

A large number of applications have shown that in most in
stances the user desires to construct the Chebyshev series for not 
just one function but for several functions simultaneously. For 
instance, in the study of the motion of a particle there will always 
be three coordinates, X1 , x 2 , x3 , rather than just one. For this 
reason we programmed the subroutine CHEBY to efficiently con
struct several Chebyshev series simultaneously. In particular, the 
number of cosine calculations has been minimized. There will be 
only 2n cosine calculations, no matter how many functions are 
being analyzed simultaneously. 

Besides the main program, the user will have to provide his own 
subroutine for the evaluation of the special values of the functions 
to be analyzed, as explained in the comments of the subroutine 
CHEBY. The user may choose any name for this subroutine· how
ever, this name has to be transmitted through the CALL CHEBY
statement. This function subroutine will generally evaluate the 
funct!on values either by using the appropriate formulas or by per
~ormmg table lookup and interpolations if the data is only available 
m the form of a table with discrete points. 

The subroutine ECHEB evaluates a Chebyshev series with the 
aid of Clenshaw's recurrence rule [4, p. 9]. The c/s being the coeffi
cient.s of the given series, we compute the values bn+2 , bn+l , bn, ... , 
bo with: 

(4) 

where the subscript i runs from n to 0. The number of arithmetic 



COLLECTED ALGORITHMS (cont.) 

operations involved is only 311, and the value of the function is then 
f(x) = (b0 - b2)/2. 

The subroutine EDCH B evaluates the derivative of a Chebyshev 
series (without storing the coefficients of the differentiated series). 
It implements a combination of the evaluation formula (4) and 
the differentiation formula (6) given below. 

The differentiation and integration subroutines. Clenshaw's 
formulas (4, p. 11] have again been used for the differentiation and 
integration operations. The coefficients ai of the integrated Cheby
shev series are derived from the input coefficients Ci by: 

ai = (Ci-I - Ci+I)/2i; 
i = 1, 2, ... , n - 1. 

ao = O; (5) 

The coefficients di of the differentiated series are obtained by a set 
of recurrence equations: 

d;_1 = di+i + 2ic i ; 

i = n - ], II - 2, ... , l. 
dn = O; dn-1 = 2nc1!; (6) 

When using the differentiation and integration subroutines, the 
user should remember the relation between the differentials of t 
and x: 

dt = ((12 - li)/2) dx = (tit/2)dx. (7) 

This should be considered whenever ditf erentiation or integration 
of Chebyshev series is performed. For instance we have for any 
Chebyshev series /: 

f ! dt = (D..t/2) f fdx. (8) 

Negative and fractional powers. Our last four subroutines, 
dealing with expansion or iteration methods for the generation of 
noninteger powers of a Chebyshev series, are somewhat more so
phisticated than the first six subroutines, but the theoretical basis 
of their operation has recently been described in detail [1]. For this 
reason, they will not be described in more detail here. All four sub
routines use the multiplication subroutine MLTPLY but are 
otherwise independent. The subroutines BINO M, XALF A2, and 
XALF A3 all have the same purpose but operate with different 
methods and have different convergence properties. All three are 
given in order to allow the user to experiment and eventually select 
the one that is most efficient for his particular application. 

Acknowledgments. I wish to thank Nancy Hamata at the Jet 
Propulsion Laboratory for her assistance in the programming and 
debugging of the present subroutines; also the two anonymous 
reviewers for their useful suggestions. 

References 
1. Broucke, R. Construction of national and negative powers of 
a formal series. Comm. ACM 14, 1 (Jan. 1971), 32-35. 
2. Carpenter, L. Planetary perturbations in Chebyshev series. 
NASA Tech. Note TN-D-3168, Goddard Space Flight Center, 
Greenbelt, Md., Jan. 1966. 
3. Clenshaw, C. W. The numerical solution of linear differential 
equations in Chebyshev series. Proc. Cambr. Phil. Soc., 53 (1957), 
134-149. 
4. Clenshaw, C.W., Chebyshev series for mathematical functions. 
Nat. Phys. Lab. Math. Tables, 5 (1962) London, HMSO. 
5. Clenshaw, C.W., and Norton, H.J. The solution of nonlinear 
ordinary differential equations in Chebyshev series. Computer J. 
6 (1963)' 88-92. 

Algorithm 
SURHCUTINE CHEBYCNFo NPLo NPLMAXo N2o FUNCTNo Xo FXJ. GC> 

C SIMULTANEOUS CHEBYSHEV ANALYSIS CF NF FUNCTl0NS 
C COMPUTES A MATRIX• x. CONTAINING ONE CHEBYSHEV SERIES PER 
C C0LUMN F~H A GIVEN NUMBER OF FUNCTl0NS. NF. INPUT NFL• 
C THE NUMBER CF TERMS IN ALL SEkIES• NPLMAX• THE KG~ 
C DIMENSION CF x IN THE CALLING Pk0GkAM <MUST BE.GE.NFL>• 
C N2. DIMENSICN 0F GC CMUST BE.GE·2•CNPL-l>>• AND FUNCTN• 
C THE NAME 0F USEk SUBR0UTINE WHICH DEFINES THE NF 
C FUNCTION~· FXJ AND GC AKE ~OKK SPACE· 
C AN EXAMPLE 0F SUCH A SUBK0UTINE IS AS FOLL0wS 
C SUBR0UTINE FUNCTNCA.VAL> 
C D0UBLE PRECISI0N A.VALC2> 
C VALCl>=DSIN<A> 
C VALC2>,.DC0SCA> 
C kETUKN 
C END 

446--P 2- 0 

00UBLE PRECISION XCNPLMAX.N~->. FXJCNF>. GC<N2lo ENN• XJ• 
• FK. PEN, FAG 

00 20 K=l.NPL 
D0 I 0 J= I• N~ 

XCK1J> = O.OO 
10 C0NTINUE 
20 C0NTINUE 

N = NPL - 1 
ENN = N 
PEN= 3.141592653589793200/ENN 
00 30 K=t.N2 

FK = K - I 
GCCK> = DCCS<FK*PEN> 

30 CONTINUE 
00 80 J=l•NPL 

XJ = GC<J> 
CALL FUNCTNCXJ. FXJ> 
IF CJ.NE.t ·AND· J.Nf.oNPL> GO TC1 50 
DC 40 K= I• NF 

FXJCK> = ·5DO•FXJCK> 
40 C0NTI NUE 
50 00 70 L=l•NPL 

LM = M0D<CL-l>•CJ-l>•N2l + I 
00 60 K=l.NF 

XCLoK> = XCL.K> + FXJCK>•GC<LM> 
60 C0NTINUE 
70 C0NTINUF: 
60 C0NTINUE 

FAC = 20000/ENN 
DC I 00 K= I• NPL 

00 90 J= I, NF 
XCK•J> = FAC•XCK,Jl 

90 C0NTINUE 
100 C0NTINUE 

KETUHN 
E>\JD 

SUoK0UTINE MLTPLYCXX. x2. NPL• X3> 
c MULTIPLIES Tw0 GIVEN CHEBYSHEV SEKIES. xx AND x2. h!TH 
C NPL TERMS T0 PR CD UC E AN 0UTPUT CH EBY SHEV SEH I ES• X3 • 

DOUBLE PRECISICN XXCNPL>• X2<NPL>• X3<NPL>• EX 
00 10 K=t.NPL 

X3CK> = OoOOO 
10 C0NTINUE 

00 30 K=l.NPL 
EX = O.OOO 
MM = NPL - K + I 
00 20 M=l.MM 

L="l+K-1 
EX = EX + XX<M>•X2CL> + XXCL>•X2CM> 

20 C0NTINUE 
X3CK> = Oo5DO•EX 

30 C0NTINUE 
X3CI> = X3<1> - 0·5DO•XXCl)*X2CI> 
00 50 K=3.NPL 

EX = O.OOO 
MM = K - I 
D0 40 M=2,MM 

L"'K-M+I 
EX = EX + XXCM>*X2CL> 

40 C0NTINUE 
X3{K) " o.soo•EX + X3<K> 

50 C0NTINUE 
RETUKN 
END 

SUBROUTINE ECHEBCX. C0EF• NPL• FXl 
C EVALUATES THE VALUE FX<X> 0F A GIVEN CHEBYSHEV SERIES• 
C C0EF• ~ITH NPL TEHMS AT A GIVEN VALUE 0F X BETwEEN 
C -I· AND I• 

D0UBLE PRECISI0N C0EF<NPL>• X• Fx. BK• BkPP> BkP2 
Bk " OoODO 
ar<PP " o.oao 
00 10 K=l .NPL 

J = NPL - K + I 
BRP2 "' BRPP 
BRPP = Bk 
BR = 2·0DO*X•BHPP - BRP2 + C0EF<J> 

10 C0NTINUE 
FX .. Oo5DO*CBR-BRP2> 
RETURN 
~D 

SUBR0UTINE EDCHEB<X• C0EF• NPL• FX> 
C EVALUATES THE VALUE FXCX> 0F THE DERIVATIVE 0F A 
C CHEBYSHEV SERIES• C0EF. hITH NPL TEKMS AT A GIVEN 
C VALUE 0F X BETWEEN -I• AND I• 

D0UBLE PRECISI0N C0EFCNPL>. X• FX• XJP2• XJPL• XJ• BJP2• 
• BJPL• BJ, BF. DJ 

XJP2 " 0.000 
XJPL = OoOOO 
BJP2 • Q.ODO 
BJPL " OoODO 
N '" NPL - I 
00 10 K= I •N 

J = NPL - K 
DJ "' J 
XJ • 2oDO•C0EFCJ+l>•DJ + XJP2 
BJ "' 2·DO•X•BJPL - BJP2 + XJ 
BF "' BJP2 
BJP2 = BJPL 
BJPL BJ 
XJP2 "' XJPL 
XJPL "' XJ 

10 C0NTINUE 
FX = .5DO•CBJ-BF> 
RETURN 
END 



COLLECTED ALGORITHMS (cont.) 

SUBR0UTINE DrRNTCXX. NPL• X2> 
c C0MPUTES THE DERIVATIVE CHEBYSHEV SERIES. x2. 0r A GIVEN 
C CHEBYSHEV SERIES• XX. WITH NPL TEHMS• 
C T0 REPLACE A SERIES X BY ITS DERIVATIVE. USE 
C CALL DrHNTCX.NPL.X> 

D0UBLE PRECISI0N XXCNPL>. XXN• XXL, DN• DL• X2CNPL> 
D:-J = NPL - I 
XXN,. XXCNPL-1> 
X2CNPL-1> • 2oDO*XXCNPL>*DN 
X2 C NPl. > = 0 , DO 
00 10 K•3.NPL 

L = NPL - K + I 
DL = L 
XXL • XXCL> 
X2CL> = X2CL+2> + 2oDO*XXN*DL 
XXN = XXL 

10 C0NTINUE 
RETUHN 
END 

SUBKOUTINE NTGRTcxx. NPL. X2> 
c C0MPUTES THE INTEGRAL CHEBYSHEV SEnIES· x2. 0F A GIVEN 
C CHEBYSHEIJ SEKIES• XX. WITH NPL TEl<MS· 
C TO HEPLACE A SERIES X BY ITS INTEGKAL• USE 
C CALL NTGRTCX1NPL1X> 

D0UBL.E PRECISI0N XXCNPL» XPK• TEr<M• DK, X2CNPL> 
XPH" XXCI> 
X2C 1 l = O.ODO 
N = NPL - 1 
00 10 K•2.N 

DK • K - 1 
TERM= CXPH-XXCK+l))/(2.DO*DK> 
XPI< = XXCK> 
X2CK) • TEl<M 

10 CONTINUE 
DK = N 
X2<NPL> 
f<ETUaN 
END 

SUBROUTINE INVEl<TCX, XX• NPLo NETo XNVSEo Wwo W2> 
C C0MPUTES THE INVEnSE CHEBYSHEV SEKIES• XNVSE• GIVEN A 
C CHEBYSHEV SEKIES• X1 A rIHST APPK0XIMATION CHERYSH[V 
C SEtHE~:» XX. r.IlH Ni'L TEl<MS• AND THE. NUMBEI< Of 
C ITEKATI0NSo NET. THE SUBHOUTINE USES THE EULEK METH0U 
C AND C0MPUTES ALL P0WEKS EPS**K Ui' TC K=2••CNET+l>• 
c wHERE EPS=l-X*CXX INVEKSE>· Ww AND w2 AKE W0KK SPACE· 
C SU8K0UTINES USED - ~LTPLY 

D0UBLE PHECISI0N XCNPL>• XXCNPL>• XNVSE<NPL>• WWCNPL>o 
* w2CNPL > 

CALL MLTPLrcx. xx. NPL· WW) 
WWCl> • 2.DO - W~Cl> 

00 10 K•21NPL 
Wrl(K) = -rllVCK> 

10 CONTINUE 
CALL MLTPLYCWW, WW. NPL. W2> 
WWCl> = 2.00 + WWCl> 
00 40 K•l.NET 

CALL MLTPLYCWW. w2. NPL. XNvSE> 
00 20 J= 1 • NPL 

WwCJ> = WWCJ> + XNVSECJ) 
20 C01HINUE 

CALL MLTPLYCW2. w2, NPL1 XNVSE> 
00 30 J=l1NPL 

W2CJ) = XNVSECJ> 
30 CONTINUE 
40 C0NTINUE 

CALL MLTPLrcww. xx. NPL. XNVSE> 
HETUnN 
END 

SUBROUTINE BIN0MCX. xx. NPL. M. NT. XA. kw. w2. w3) 
C C0MPUTES THE 8IN0MIAL EXPANSION SEKIES. XA, F0k C-1/M) 
c P0r1ER 0r A GI VEN CHEBYSHEV SE1d ES. x. WI TH NPL TERMS. 
C WHERE M IS A POSITIVE INTEGEH. XX IS A GIVEN INITIAL 
C APPROXIMATION 10 X**C-1/M)o NT IS A GIVEN NUMBEH 0r 
C TERMS IN BIN0MIAL SERIES. ww, W2, AND W3 ARE WORK SPACE 
C SUBROUTINES USED - MLTPLY 

D0UBLE PHECISI0N XCNPL>• XXCNPL>• XACNPL>• WW<NPL>• 
* W2CNPL>• W3CNPL>• ALFA, C0Er. DM1 DKMM, DKM2 

DM = "I 
ALFA = -I oDOIDM 
00 1 0 J= 1, NPL 

Wr1(J) = XCJ> 
10 C0NTINUE 

D0 30 K=l1M 
CALL MLTPLYCWW, XX. NPL, W2> 
DO 20 J= 1 • NPL 

WWCJ> = W2CJ> 
20 CONTINUE 
30 C0NTINUE 

WWCI) • WWCl> - 2oDO 
XACl> = 2.DO 
00 40 J•2, NPL 

XAC.J) • OoODO 
1·:3(.J) = o.oo 

40 CONTINUE 
W3C I> = 2. DO 
DO 60 K=21NT 

DKMM = K - I 
DKM;! = K - 2 
COEF = CALrA-DKM2l/DKMM 
CALL MLTPLYCw3. WW, NPLo W2> 
D0 50 J= I, NPL 

W3CJ> = W2CJ>•C0Er 
XACJ> = XACJ> + w3CJ> 

50 CONTINUE 

60 CONTINUE 
CALL MLTPLYCXA. xx. NPL1 W2> 
00 70 J=l1NPL 

XACJ> = W2CJ> 
70 CONTINUE 

f<ETUHN 
END 

446 p 3 

SUBROUTINE XALrA2CX, XX• NPL• M• MAXET• EP~LN• NET. ww, 
* W2> 

c t<EPLACE:s A GIVEN INITIAL APPk0XIMAT10N CHEBYSHEV s~~KIES· 

C XX• BY A GIVEN CHEBYSHEV SERIES• x. WITH NPL TEkMS• 
C RAISED T0 THE C-1/M) P0kEK• WHEkE M IS AN INTEGEH· 
C INPUT MAXET1 MAXIMUM ALL0WED NUMBER 0r ITEkATl0NSo AND 
C EPSLN, REQUIRED PHECIS10N EPSILON. OUTPUT AnGUMENT• 
c NET. IS NUMBER 0r ITEKATIONS PnEr0kMED· Ir MAXET=NET. 
C REQUIRED PKECISION MAY N0T HAVE BEEN rtEACHED AND THE~E 
C MAY BE DIVERGENCE. WW AND W2 AHk WCKK SPACE. 
C C0NVERGENCE IS QUADRATIC 
C SUBR0UTINES USED - MLTPLY 

D0UBLE PRECISI0N XCNPL>• XXCNPL>• WwCNPL>• k2CNPL>• 
* EPSLN, DALFA1 OM. s. TDMM 

DM = M 
DALrA = I .OOIDM 
TDMM = 2oDO*<DM+lolJ0) 
D0 60 JX=l1MAXET 

00 10 L=l1NPL 
~.wcL> = X<L> 

10 C0NTINUE 
00 30 K=l1M 

CALL MLTPLYCWW, XX• NPLo W2> 
00 20 L=l1NPL 

WIHL> = r12CL> 
20 CONTINUE 
30 CONTINUE 

40 

s = -2.00 
00 40 L = I • NPL 

S = S + DABSCwWCL>> 
U1CL> = -rll·1CL> 

C0NTINUE 
WW(!) = WWCI) + TDMM 
CALL MLTPLYCWW, XX. NPL. W2> 
DO 50 L=l.NPL 

XXCL> = W2CL>•DALrA 
50 C0NTINUE 

NET = JX 
Ir CDABSCS>.LT.EPSLN> RETURN 

60 CONTINUE 
1'ETUHN 
END 

SUBRC'IUTINE XALrA3CX. XX, NPL, M• ·MAXETo EPSLNo NET. Wk, 
* W2> 

C REPLACES A GIVEN INITIAL APP1<0XIMATI0N CHEBYSHEV SEKIES• 
C XX. BY A GIVEN CHERYSHEV SEHIES. x. ~ITH NPL TEnMS. 
C HAISED 10 THE C-1/M) POWEH• WHEHE M IS AN INTEGER. 
C INPUT MAXET. MAXIMUM ALLO~IEIJ NUMBEk 0F ITEkATIONS. AND 
C EPSLN. REQUIRED PRECISION EPSIL0N. 0UTPUT AHGUMFNTo 
c NET. 1S NUMBER Or ITERATIONS i'KE~0~MED. Ir MAXET=NEl· 
C HEOUIRED PkECISI0N MAY NOT HAVE BEEN rtEACHED AND THEl<E 
C MAY BE DIVERGENCE· WW AND W2 AkE k0RK SPACE. 
c CONVERGENCE IS Or (JkDEn THKEE 
C SUBR0UTINES USED - MLTPLY 

D0UBLE PRECISl0N XCNPL>• XXCNPL>• WWCNPL>• w2<NPLJ• 
* EPSLN. ·DALFA, OM• S• TDMM• PSDML 

DM = M 
DALrA = 1 .DO/OM 
TDMM = 2oDO*<DM+l.DO> 
P5DML = .soo*CDM+l.DO> 
D0 90 JX=l1MAXET 

DO 10 L=l.NPL 
W ~'CL > = X CL > 

10 CONTINUE 
DO 30 K= J ,M 

CALL MLTPLYCWW, XXo NPL. W2> 
00 ao L= 1. NPL 

WW CL> · = W2 CL > 
20 C0NTINUE 
30 CONTINUE 

s = -2.00 
00 40 L =I • NPL 

S = S + DABSCWWCL>> 
40 C0NTINUE 

WWCI> = WWCI> - 2oDO 
00 50 L•J,NPL 

WWCL> = W~<L>•DALrA 
50 C0NTI NUE 

CALL MLTPLYCWW, Ww1 NPL. W2> 
DC 60 L= I• NPL 

r.l'ICL> = -WWCL> 
W2 CL> = W2 t L HP 5DML 

60 C0NTINUE 
WWCI> = WWCl> + 2.DO 
00 70 L= I• NPL 

W2CL> = W2CL> + WWCL> 
70 CONTINUE 

CALL MLTPLYCW2, xx. NPL. Ww> 
00 80 L=l1NPL 

XXCL> • lv~«L> 

80 C0NTINUE 
NET = JX 
Ir CDABS<~>·LT.EPSLN> RETU~N 

90 CONTINUE 
HETUi'<N 
END 

0 



COLLECTED ALGORITHMS (cont.) 

Remark and Certification on Algorithm 446 
Ten Subroutines for the Manipulation of Chebyshev 
Series [Cl] lR. Brouckc, Comm. ACM 16 (Apr. 1973), 
254-265] 

Robert Piessens and Irene Mertens [Recd 11 Jan. 
1974] Applied Mathematics and Programming 
Division, University of Leuven, B-3030, Heverlee 
(Belgium) 

1. Two corrections are needed in the subroutine CH EBY: 

(i) The statement after statement 50 must be changed into: 

LM = MOD(L-l)*(J-1), 2*N) + 1 

(ii) formulas (1) and (3) for the computation of Chebyshev series 
coefficients c1 do not agree with the exact formulas given by Fox and 
Parker [l, p. 66]. Indeed the last coefficient must be halved. This 
can be accomplished in the routine by replacing the five statement 
before RETURN by 

DO 100 J = 1, NF 
DO 90K = 1, NPL 

X(K, J) = FAC•X(K, J) 

90 CONTINUE 
X(NPL, J) = 0.5 DO*X(NPL, J) 

100 CONTINUE 

2. Moreover, the number of cosine-evaluations in CHEE Y 
can be reduced by a factor 4 if the DO-loop: 

DO 30 K = 1, N2 

30 CONTINUE 

is replaced by 

NN = (NPL+l)/2 
DO 30 K = 1, NN 

FK = K - 1 
GC(K) = DCOS(FK*PEN) 
NPLK = NPL+l - K 
GC(NPLK) = -GC(K) 

30 CONTINUE 
DO 35 K = 1, N 

NPLK = NPL + K 
GC(NPLK) = -GC(K+ 1) 

35 CONTINUE 
3. In subroutine MLTPL Y, the DO-loop 

DO 10 K = 1, NPL 

10 CONTINUE 

may be deleted. 
We have tested INVERT and BINOM by calculating 

[T0 (x) + aT1(x)J-1, 

and BINOM, XALFA2 and XALFA3 by calculating 

[ ( 1 + ~) To(x) + ·2aT1(x) + i Tb) J112 

The results are compared with the exact Chebyshev series expansion 
00 

(1 +ax)-1 = L:' akTk(X) 
k~O 

where 

ak = _2 __ ((l-a2)! - !)k, 
(l-a2)~ a 

I a I < 1. 

446-P 4- 0 

The rate of convergence of this series depends strongly on the 
value of a. For this reason, we have given a the values 0.1, 0.2, 
... , 0.9. 

We have noted that, especially in the case of slowly converging 
series, INVERT, XALFA2 and XALFA3 are more efficient than 
BINOM. Moreover, in order to have convergence, BINOM re
quires more accurate initial approximations than the other rou
tines. 

Reference 
1. Fox, L., and Parker, J.B. Chebyshev Polynomials in Numerical 
Analysis. Oxford University Press, London, 1968. 



COLI,ECTED ALGORITHMS FROM CACM 

Algorithm 447 

Efficient Algorithms tor Graph 
Manipulation [HJ 
John Hopcroft and Robert Tarjan [Recd. 24 March 
1971 and 27 Sept. 1971) 
Cornell University, Ithaca, NY 14850 

Abstract: Efficient algorithms are presented for partitioning a 
graph into connected components, biconnected components and 
simple paths. The algorithm for partitioning of a graph into simple 
paths is iterative and each iteration produces a new path between 
two vertices already on paths. (The start vertex can be specified 
dynamically.) If Vis the number of vertices and Eis the number of 
edges, each algorithm requires time and space proportional to 
max ( V, E) when executed on a random access computer. 

Key Words and Phrases: graphs, analysis of algorithms, graph 
manipulation 

CR Categories: 5.32 
Language: Algol 

Description 
Graphs arise in many different contexts where it is necessary 

to represent interrelations between data elements. Consequently 
algorithms are being developed to manipulate graphs and test them 
for various properties. Certain basic tasks are common to many 
of these algorithms. For example, in order to test a graph for 
planarity, one first decomposes the graph into biconnected com
ponents and tests each component separately. If one is using an 
algorithm 14] with asymptotic growth of V log(V) to test for 
planarity, it is imperative that one use an algorithm for partition
ing the graph whose asymptotic growth is linear with the number 
of edges rather than quadratic in the number of vertices. In fact, 
representing a graph by a connection matrix in the above case 
would result in spending more time in constructing the matrix 
than in testing the graph for planarity if it were represented by a 
list of edges. It is with this- in mind that we present a structure for 
representing graphs in a computer and several algorithms for simple 
operations on the graph. These include dividing a graph into con
nected components, dividing a graph into biconnected compo
nents, and partitioning a graph into simple paths. The algorithm 
for division into connected components is well known [7]. The 
description of an algorithm similar to the biconnected components 
algorithm has just appeared [6]. For a graph with V vertices and E 
edges, each algorithm requires time and space proportional to 
max(V, £). 

Standard graph terminology will be used throughout this dis
cussion. See for instance [2]. We assume that the graph is initially 

This research was carried out while the authors were at Stan
ford University and was supported by the Hertz Foundation and 
by the Office of Naval Research under grant number N-00014-67-
A-0112-0057 NR-44-402. 

447-P 1- 0 

Fig. 1. Flowchart for connected components algorithm. 

Empty Stack. 

Number startpoint, put on stack. 

,....N_o __ -< Edge out of top point on stack? 

Yes 

Delete edge from graph, 

add to current connected component. 

No 
Hl!ad of point? 

Number nt!w on stack. 

One point in stack? No 
Re move top point 

f ram stack. 
Yes 

Is there an unnumbered point? No 

Stop 

given as a list of pairs of vertices, each pair representing an edge 
of the graph. The order of the vertices is unimportant; that is, the 
graph is unordered. Labels may be attached to some or all of the 
vertices and edges. 

Our model is that of a random-access computer with standard 
operations; accessing a number in storage requires unit time. We 
allow storage of numbers no larger than k max( V, E) where k is 
some constant. (If the labels are large data items, we assume that 
they are numbered with small integer codes and referred to by their 
codes; there are no more than k max( V, E) labe:ls.) It is easy to 
see and may be proved rigorously that most interesting graph pro
cedures require time at least proportional to E when implemented 
on any reasonable model of a computer, if the iinput is a list of 
edges. This follows the fact that each edge must be examined once. 

It is very important to have an appropriate computer repre
sentation for graphs. Many researchers have described algorithms 
which use the matrix representation of a graph [I]. The time and 
space bounds for such algorithms generally are at least V2 [3] 
which is not as small as possible if Eis small. (In planar graphs for 
instance, E s 3V - 3.) We use a list structure representation of a 
graph. For each vertex, a list of vertices to which it is adjacent is 
made. Note that two entries occur for each edge,, one for each of 
its end points. A cross-link between these two entries is often useful. 
Note also that a directed graph may be represented in this fashion; 



COLLECTED ALGORITHMS (cont.) 

if vertex v2 is on the list of vertices adjacent to v1 , then ( v1 , v2) is 
a directed edge of the graph. Vertex 111 is called the tail, and vertex 
11~ is called the head of the edge. 

A directed representation of an undirected graph is a repre
sentation of this form in which each edge appears only once; the 
edges are directed according to some criterion such as the direction 
in which they are transversed during a search. Some version of this 
structure representation is used in all the algorithms. 

One technique has proved to be of great value. That is the 
notion of search, moving from vertex to adjacent vertex in the 
graph in such a way that all the edges are covered. In particular 
depth-first search is the basis of all the algorithms presented here. 
In this pattern of search, each time an edge to a new vertex is dis
covered, the search is continued from the new vertex and is not 
renewed at the old vertex until all edges from the new vertex are 
exhausted. The search process provides an orientation for each 
edge, in addition to generating information used in the particular 
algorithms. 

Detailed Description of the Algorithms 
Algorithm for finding the connected components of a graph. This 

algorithm finds the connected components of a graph by perform
ing depth"first search on each connected component. Each new 
vertex reached is marked. When no more vertices can be reached 
along edges from marked vertices, a connected component has been 
found. An unmarked vertex is then selected, and the process is 
repeated until the entire graph is explored. 

The details of the algorithm appear in the flowchart (Figure 1). 
Since the algorithm is well known, and since it forms a part of the 
algorithm for finding biconnected components, we omit proofs of 
its correctness and time bound. These proofs may be found as 
part of the proofs for the biconnected components algorithm. The 
algorithm requires space proportional to max( V, E) and time pro
portional to max(V, E), where Vis the number of vertices and E 
is the number of edges of the graph. 

Algorithm for finding the biconnected components of a graph. 
This algorithm breaks a graph into its biconnected components by 
performing a depth-first search along the edges of the graph. Each 
new point reached is placed on a stack, and for each point a record 
is kept of the lowest point on the stack to which it is connected 
by a path of unstacked points. When a new point cannot be reached 
from the top of the stack, the top point is deleted, and the search 
is continued from the next point on the stack. If the top point 
does not connect to a point lower than the second point on the 
stack, then this second point is an articulation point of the graph. 
All edges examined during the search are placed on another stack, 
so that when an articulation point is found the edges of the cor
responding biconnected component may be retrieved and placed 
in an output array. 

When the stack is exhausted, a complete search of a connected 
component has been performed. If the graph is connected, the 
process is complete. Otherwise, an unreached node is selected as a 
new starting point and the process repeated until all of the graph 
has been exhausted. Isolated points are not listed as biconnected 
components, since they have no adjacent edges. They are merely 
skipped. The details of the algorithm are given in the flowchart 
(Figure 2). Note that this flowchart gives a nondeterministic 
algorithm, since any new edge may be selected in block A. The 
actual program is deterministic: the choice of an edge depends on 
the particular representation of the graph. 

We will prove that the nondeterministic algorithm terminates 
on all simple graphs without loops, and we also derive a bound on 
the execution time. We will then prove the correctness of the algo
rithm, by induction on the number of edges in the graph. Note 
that the algorithm requires storage space proportional to max( V, E), 
where V is the number of vertices and E is the number of edges 
of the graph. 

Let us consider applying the algorithm to a graph. Referring 
to the flowchart, every passage through the YES branch of block A 
causes an edge to be deleted from the graph. Each passage through 

447-P 2- 0 

the NO branch of block B causes a point to be deleted from the 
stack. Once a point is deleted from the stack it is never added to the 
stack again, since all adjacent edges have been examined. Each 
edge is deleted from the stack of edges once in block C. Thus the 
blocks directly below the YES branch of block A are executed at 
most E times, those below the NO branch of block B at most V 
times, and the total time spent in block C is proportional to E. 
Therefore there is some k such that for all graphs the algorithm 
takes no more than k max( V, E) steps. A more explicit time bound 
may be calculated by referring to the program. 

Suppose the graph G contains no edges. By examining the 
flowchart we see that the algorithm, when applied to G, will termi
nate after examining each point once and listing no components. 
Thus the algorithm operates correctly in this case. Suppose the 
algorithm works correcly on all graphs with E-1 or fewer edges. 
Consider applying the algorithm to a graph G with E edges. Since 
the stack of points becomes empty at least once during the opera
tion of the algorithm, and since the YES branch at block D must 
be taken when only two points are on the stack, every edge must 
not only be placed on the stack of edges but must be removed in 
block C. Consider the first time block C is reached when the algo
rithm is applied to graph G. Suppose not all the edges in the graph 
are removed from the stack of edges in this execution of block C. 
Then p, the second point on the stack, is an articulation point 
and separates the removed edges from the other edges in the graph. 

Let E1 be the set of removed edge:s, let E2 be the set of edges 
still on the stack, and let Ea be the s1:!t of remaining edges of G. 
Let G1 be the subgraph of G made up of the edges from E1, and 
let G2 = G - G1. Since G1 and G2 each have at most E-1 edges, 
the induction hypothesis implies that the algorithm operates cor
rectly on both G1 and G2 . 

Assume that the edges for each vertex in G1 and G2 are listed 
in the same order as for G. Consider the sequence of steps taken 
when the algorithm is applied to G. The sequence of steps taken on 
G2 can be divided into an initial sequence of steps which results 
in placing the edges E1 on the stack, followed by the remaining 
sequence S2. The sequence of steps taken on G consists of the 
sequence S1 , followed by the steps taken on G2 with p as the start 
point, followed by S2 . 

The behavior of the algorithm on G is simply the composite 
of its behavior on G1 and G2; thus the algorithm must operate 
correctly on G. 

Now suppose that the first time block C is reached, all the 
edges of Gare removed from the stack of edges. We want to show 
that in this case G is biconnected. Suppose that G is not bicon
nected. Then choose a biconnected component of G which may be 
separated by removing some one point p and which does not con
tain the start point of G. Let the edges making up this component 
be subgraph G1 of G; let the remainder of G be G2 . The algorithm 
operates correctly on G1 and on G2 by assumption. The behavior of 
the algorithm on G is a composite of its behavior on G1 and on G2. 
Assume that the edges for each vertex in G1 and G2 are listed in the 
same order as for G. The sequence of steps on G is identical to the 
sequence of steps on G1 until an edge of G2 out of vertex p is se
lected. Then the sequence of steps of G is identical to the sequence 
on G2 with start point p. The remaini111g steps on G are the same 
as the remaining steps on G1. But the algorithm reaches block C 
once while processing G1 and at least once while processing G2 • 

This contradicts the fact that the algorithm only reaches block C 
once while processing G. Thus G must be biconnected. and the 
algorithm operates correctly on G. By induction, the algorithm is 
correct for all simple graphs without loops. 

Algorithm for finding simple paths in a graph. This algorithm 
may be used to partition a graph into simple paths, such that all 
the paths exhaust the edges of the graph. Each iteration of the algo
rithm produces a new path which contains no vertex twice, and 
which connects the chosen startpoint with some other vertex which 
already occurs in a path. Total running time is proportional to the 
number of edges in the graph. The starting point for each successive 
path may be selected arbitrarily. In fact, the initial edge of each 



COLLECTED ALGORITHMS (cont.) 

Fig. 2. Flowchart for biconnected components algorithm. 

-----0 
[ 

, Fm p t v s t a<' k • 

\:umbt•r st;i,rtpnint. put on st ii(' k. 

~dge fr11m !l,rarh. 

le a 

h C' ad Pf 
ed~e lower than 
LOWPOJNT of top point 
set l.OWPOINT nf top 
point tc> that numht•r. 

----0 
on stack? 

stark 11f Pdll~ 

po n t. Yes 

Number new point. 
Add to stack of points. 
Set LOWPOJNT of the 
point to number of 
previous top of stack. 

In stark? 

~"""letit be new 

~tpclint. 

Remove top point 
frnm stack. 

Form new bl-
connected 
component by 
de 1 et i ng 
edges from 
ed!(e stack 
until finding 
one which 
connects to 
point below 
next point 
on stat- k. 

successive path may be selected arbitrarily from the set of unused 
edges. 

The algorithm is highly dependent on the graph being bicon
nected. (The biconnected components of a graph are found using 
the previously described algorithm.) In order to find a new path, 
the initial edge is selected and the head of the edge is checked. 
If this point has never been reached before, a depth-first search is 
begun which must end in a path since the graph is biconnected. 
The search generates a tree-like structure: specifically, it is a tree 
with edges connecting some vertices with their (not necessarily im
mediate) ancestors. (We will visualize the tree drawn so that the 
root, which is an ancestor of all points, is at the bottom of the tree.) 
Enough information is saved from this tree so that if a point in it 
is reached when building another path, the path may be completed 
without any further search. 

The flowchart (Figures 3 and 4) gives the details of the algo
rithm. It is divided into two parts; one for the depth-first search 
process and one for path construction using previously gathered 
information. We shall prove the correctness of the algorithm and 
give a time bound for its operation. To derive the time bound, we 
assume that one point is marked old initially, and a different point 

Fig. 3. Flowchart for pathfinding algorithm (I). 

Yes 

l' n u s e d p d k~ l' f r 0 m s t a r t p ('l j n t ·.• 

Y t:' s c ~ o r'"' r 11 

Put Pdge in paths tack. 

l.t·t pc1fnt be head ,,f ed~e. 

Point previous Iv? 

i.-------~ \) 

rnsearched edge from point? 

Yes 

Set backward edp,e Mark ed~e searched. 
of point to edgf' 

447-P 3-

on pathstack. Set 
pastpoint to tail Head of ed~e unreached·Q 
of edge. If l.OW
PO(NT of point less 
than LOWPOINT of 
pastpoint, modifv 
LOWPOINT and for
ward edge of past
point to Indicate 
edge to point. 

Set point to rast-
point. Delete 
edl',e from path
s tack . 

No Yes 

Hfl!a o e ~e on path-Put edge] 

old and nnt 
str:1rtprdnt? 

s t ~ck. Set 
po 1 n t to 
head of 
edge . 

Yes 

No 

If number of head oJ 
edp,e less than LOll·-
POINT nf point, mod-
i fv l.OWPO!Nl end fnr
ward ed~e pf point 
t0 indicate edRe. 

Mark 

Mark 

p0ints in path~ 
Pdges in path -~ 

st l' r 

Fig. 4. Flowchart for pathfinding algorithm (II). 

~umber of point less th~~ 
number of startpoint?~ 

\o 

LO\;PQil'T of point less 
than number of .5tartpofnt? 

edg 
on pathstack. Set 
point to head of 
edge. 

Yes 

\o 

o 1 d? 

~o 

!lo 

0 



COLLECTED ALGORITHMS (cont.) 

is selected as the initial startpoint. The algorithm is then run re
peatedly with arbitrary startpoints until all edges are used to form 
paths. 

Let us consider path generation using depth-first search; that is, 
suppose the algorithm is applied and that the head of the first edge 
selected is previously unreached. Referring to the flowchart, we see 
that the search process is very similar to that used in the bicon
nectivity algorithm. A search tree is generated, and each edge 
examined is either part of the tree or connects a point to one of its 
predecessors in the tree. LOW PO INT is exactly the same as in the 
biconnectivity algorithm; it gives the number of the lowest point 
in the tree reachable from a given point by continuing out along the 
tree and taking one edge back toward the root. The forward edges 
point along this path, while the backward edges point back along 
the tree branches. We have shown in the correctness proof of the 
biconnectivity algorithm that, if the graph is biconnected, LOW
PO INT of a given point must point to a node which is an ancestor 
of the immediate predecessor of the given point. In particular, 
LOW PO INT of the second point in the search tree must indicate 
an old point which is not the startpoint. Therefore the algorithm 
will find a path containing the initial edge. Note that all points 
encountered during the search process must either be old or un
reached, since every point reached in a previous search either has 
had all its edges examined or has been included in a path. 

Let us now suppose that the head of the first edge has been 
reached previously but is not marked old. Then the forward and 
backward pointers, along with the LOW POINT values, allow the 
algorithm to construct a path without further search. First, if the 
number of the head of the edge is less than the number of the 
startpoint, then following backward pointers will certainly produce 
a simple path, since the root of a search tree must be old and each 
successive point along a backward path has a lower number and 
thus is distinct from the other points in the path. If the initial edge 
is part of a search tree and the startpoint is the predecessor of the 
second point, then LOW POINT of the second point must be less 
than the number of the startpoint. Following forward edges until 
reaching a point numbered lower than the startpoint and then fol
lowing backward edges will produce a simple path. This is true 
since the forward edges point through descendants of the tree, 
with the single exception of the edge whose head is a point below 
startpoint in the tree. The last case to consider occurs when the 
initial edge is not part of a search tree but points from a node to 
one of its descendants in a tree. In this case some node in the tree 
between the startpoint and the second point of the path must have 
a LOW POINT value less than the number of the startpoint. If we 
follow backward edges until the first such point is reached, then 
follow forward edges until a point numbered less than the startpoint 
is reached, and finally follow backward edges until an old point is 
reached, we will generate a simple path. Note that the first forward 
edge taken cannot lead to the previous point because, if it did, the 
LOW POINT value at the previous point would be less than the 
number of startpoint, and the forward edge from this point would 
have been chosen instead of the backward edge. 

We thus see that each execution of the pathfinding algorithm 
produces a simple path, assuming that the algorithm is applied to 
a biconnected graph with at least one point which is not the first 
startpoint marked old initially. Since each edge is examined at 
most once in the search section of the algorithm, and since each 
edge is put into a path once, there is a constant k such that the time 
required to execute the algorithm until no edges are unused is less 
than kE steps, where E is the number of edges in the graph. (Note 
that the number of vertices, V, is less than E if the graph is bicon
nected.) Detailed examination of the program will produce a more 
exact time bound. 

Another algorithm for finding simple paths exists. Lempel, 
Even, and Cederbaum [5] have described an algorithm for number
ing the vertices of a biconnected graph such that: (i) each number 
is an integer in the range 1 to V, where V is the number of vertices 
on the graph; (ii) vertices 1 and V are jointed by an edge; (iii) for 
all 1 < i < V, vertex i is joined to at least two vertices, one with a 

447-P 4- 0 

higher number and one with a lower number. We may use this algo
rithm to partition a graph into simple paths. 

Given a start point and an adjacent end point, number the 
vertices so that the startpoint is 1, the endpoint is V, and the 
numbering satisfies the conditions above. Take edge ( 1, V) as the 
first path. Given an arbitrary startpoim, find an edge to a higher 
numbered vertex. Continue to find edges to successively higher 
numbered vertices until an old vertex is reached. 

This algorithm is clearly correct and looks conceptually simple. 
However, Lempel, Even, and Cederbaum present no efficient im
plementation of their numbering algorithm, and the only efficient 
way we have found to implement it requires using the previously 
described pathfinding algorithm in a: more complicated form. Thus 
the new algorithm requires time and space proportional to 
max( V, E), but the constants of proportionality are larger than 
those for the implemented algorithm. 

Imp/eme111atio11. The algorithms for finding connected com
ponents, biconnected components, and simple paths were originally 
implemented and tested in Algol W. The programs were then 
translated to Algol for publication and tested using the OS/360 
Algol compiler. Auxiliary subroutines were also implemented. Brief 
descriptions of the procedures are provided below. 

ADD2(A, B, STACK, PTR): This procedure adds value A 
followed by value B to the top of sta1;;k ST ACK and increments 
the pointer to the top of the stack (PT R). Stacks are represented as 
arrays; the top of the stack is the highest filled location. 

NEXTLINK(POINT,V ALUE): This procedure is used to 
build the structural representation of a graph. It adds VALUE 
to the list of vertices adjacent to POINT. (POINT, VALUE) is an 
edge (possibly directed) of the graph. 

CONNECT(V, E, EPTR, EDGELi.ff, COMPONENTS): This 
procedure, given a graph with V vertices and E edges, whose edges 
are listed in EDGELIST, computes th•:! connected components of 
the graph and places the edges of the components in COM PO
N ENTS. Each component is preceded by an entry containing the 
number of edges E' of the component. The edges are oriented for 
output according to the direction in which they were searched 
(head first, tail second). 

BICONNECT(V,E,EPTR,EDGELlST,COMPONENTS):This 
procedure, given a graph with V vertices and E edges, whose 
edges are listed in EDGELIST, computes the biconnected com
ponents of the graph and places them in BICOMPONENTS. Each 
component is preceded by an entry containing the number of 
edges E of the component. The edges are oriented for output 
according to the direction in which they were searched (head first, 
tail second). 

PATHFINDER(STARTPT,PATHPT,CODEVALUE,PATH): 
This procedure, given a list structure representation of a bicon
nected graph with certain vertices marked as old, constructs a 
simple path from STARTPOINT to some old vertex, saving 
information to be used in constructing succeeding paths. The new 
path is stored in array PATH. Calling PATHFINDER repeatedly 
may be used to partition the graph into simple paths. 

The procedure PATHFINDER r,equires that the structural 
representation of the graph be stored as follows. Each edge is 
treated as a pair of directed edges each of which is represented 
by an integer between v + 1 and v + 2 X e. If ii, i2 , ... , hare the 
integers corresponding to the edges out of vertex i, then initialize 
NEXT(i) to i1, NEXT(ii) to ii+1, 1 :::; j < k, and NEXT(k) to 0. If 
the edge ii terminates at vertex/, initialize HEAD(ii) to/. LINK(ii) 
is the integer corresponding to the edge in the other direction. For 
1 :::; i:::; v, BACK(i), FORW ARD(i), PATHOCDE(i) are initialized 
to 0, LOW POINT(i) is initialized to v + l, NODE(i) is initialized to 
NEXT(i) and OLD(i) is initialized to FALSE. For v + 1 :::; i :::; 
v + 2 X e MARK(i) is initialized to FALSE. Before the first call 
of PATHFINDER some nonnull set of vertices must be marked 
as OLD and assigned successive PATHCODE values. CODE
VALUE is set equal to the number of vertices marked as OLD. 
If this is not done the first path cannot end at an OLD vertex. 

Further comments may be found in the program listings below. 



COLLECTED ALGORITHMS (cont.) 

References 
1. Fisher, G.J. Computer recognition and extraction of planar 
graphs from the incidence matrix. IEEE Trans. in Circuit Theory 
CT-13, (June 1966), 154-163. 
2. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 
1969. 
3. Holt, R., and Reingold, E. On the time required to detect 
cycles and connectivity in directed graphs. Comput. Sci. TR 70-33, 
Cornell U. Ithaca, N.Y. 
4. Hopcroft, J., and Tarjan, R. Planarity testing in v log v steps, 
extended abstract. Stanford U. CS 201, Mar. 1971. 
5. Lempel, A., Even, S., and Cederbaum, I. An algorithm for 
planarity testing of graphs. Theory of Graphs: International 
Symposium: Rome, July 1966. P. Rosenstiehl (Ed.) Gordon and 
Breach, New York, 1967, pp. 215-232. 
6. Paton, K. An algorithm for the blocks and cutnodes of a-
graph. Comm. ACM 14, 7(July 1971), 428-"475. 
7. Shirey, R.W. Implementation and analysis of efficient graph 
planarity testing. Ph.D. diss., Comput. Sci. Dep., U. of Wisconsin, 
Madison, Wis., 1969. 

Algorithm 
procedure add2 (a, b, stack, ptr); 

value a, b; integer a, b, ptr; integer array stack; 
comment Procedure adds values a and b to stack stack and in

creases stack pointer ptr by 2; 
begin 

ptr: = ptr + 2; stack[ptr - 1) : = a; stack[ptr] : = b 
end of add2; 
procedure. next/ink (point, val); 

value point, val; integer point, val; 
comment Procedure adds directed edge (point, val) to structural 

representation of a graph. Global variables are described as fol
lows. hcad[v+ 1 :v+2Xe] and next[l :v+2Xe] contain the struc
tural representation of the graph. freenext is the current last 
entry in next array; 

begin 
freenext := freenext + 1; next[freenext] :=, next[point]; 
next(poi'nt] : = freenext; headffreenext] : = val 

end of next/ink; 
integer procedure min(a, b); 

value a, b; integer a, b; 
comment Procedure computes the minimum of two integers; 
if a < b then min : = a else min : = b; 
procedure connect (v, e, cptr, edgelist, components); 

value v, e; integer v, e, cptr; 
integer array edge/ist, components; 

comment Procedure finds the connected components of a graph. 
The parameters are described as follows. v and e are the number 
of vertices and edges of the graph. edgelist[l :2Xe] is the initial 
list of edges of the graph. components 11 : 3 Xe] is the list of edges 
for each component. The list of edges for each component is pre
ceded by an entry giving the number of iedges of the compo
nent. cptr is a pointer to the last entry in components. The global 
variables are described as follows. lzead[v+ 1 :v+2Xe] and 
next[ I :v+2Xe] contain the structural representation of the 
graph. freenext is the last entry in the array next. The local 
variables are described as follows. number[! :v+ l] is used for 
numbering the vertices during the depth first search. code con
tains the current highest vertex number. point is the current 
vertex being examined during the search. v2 is the next vertex 
to be examined during the search. oldptr 1contains the position 
in components to place the value of the next component. The 
global procedures are add2 and next/ink. A recursive depth
first search procedure is used to examine connected components 
of the graph; 

begin 
integer array number [l:v+l]; 
integer code, point, v2, oldptr, i; 
procedure connector (point, oldpr); 

value point, oldpt; integer point, oldpt; 

447-P S- 0 

comment This recursive procedure finds a connected component 
using a depth-first search. The parameters are described as fol
lows. point is the startpoint of search. oldpt is the previous 
startpoint. Global variables are the same as for connect. The 
global procedures are add2; 

comment Examine each edge out of point; 
for i = i while next[ point] > 0 do 
begin 

comment v2 is head of edge. Delete edge from structural repre-
sentation; 

v2 := head[next[point]]; 
next[point J : = next[next[point]]; 
comment Has this edge been searched in the other direction? 

If so, look for another edge; 
if (number[v2] < number[point]) /\ (v2~oldpt) then 
begin 

comment Add edge to components; 
add2(point, v2, components, cptr); 
comment Determine if a new point has been found; 
if number[v2] = 0 then 
begin 

comment New point found. Number it; 
number[v2] : = code : = code + 1; 
comment Initiate a depth-first search from the new point; 
connector( v2, point) 

end 
end 

end; 
comment Construct the structural representation of the graph; 
freenext : = v; 
for i : = I step 1 until v do next[i] : = O; 
for i : = 1 step 1 until e do 
begin 

comment Each edge occurs twice, once for each endpoint; 
11extli11k(edgelist[2 Xi-1 ], edgelist[2 Xi]); 
nextlink(edgelist[2 Xi], edgelist[2 Xi -1]) 

end; 
comment Initialize variables for search; 
cptr := O; point:= I; 
for i : = I step 1 until v + I do number[i] : = O; 
for i : = i while point ~ v do 
begin 

comment Each execution of connector searches a connected 
component. After each search, find an unnumbered vertex 
and search again. Repeat until all vertices are investigated; 

11umber[point] : = code : = I ; 
v/dptr : = cptr : = cptr + 1; 
connector(point,O); 
comment Compute number of edges of components; 

components[oldptr] : = (cptr-oldptr)-T 2; 
for i . - i while 11umber[poi111] ~ 0 do point : = poillf + J 

end 
end; 
procedure bicom1ect(v, e, bptr, edgelist, bicompo11e11ts); 

value v, e; integer v, e, bptr; 
integer array edgelist, bicomponents; 

begin 
comment Procedure finds biconnected components of a graph. 

The parameters are described as follows. v and e are the num
ber of vertices and edges of the graph. edgelist[l :2Xe] is the 
initial list of edges of the graph. bicomponents[l :3 Xe] is the list 
of edges for each component found. Each component is pre
ceded by an entry giving the number of edges of the com
ponent. bptr is a pointer to the last entry of bicompo11e11ts. The 
global variables are described as follows. headlv+ I :v+2Xel 
and 11ext[l :v+2Xe] contain the structural representation of the 
graph. freenext is the last entry in the array next. The local 
variables are described as follows. 11umber[l :v+ 1) is an array 
used for numbering the vertices during the depth-first search. 
code is the current highest vertex number. edgestack[1:2Xel 



COLLECTED ALGORITHMS (cont.) 

is used for storage of edges examined during search. eptr is 
a pointer to last entry in edgestack. point is the current point 
being examined during search. v2 is the next point to be ex
amined during search. newlowpt is the Jowpoint for the bi
connected part of graph above and including v2. o/dptr is 
pointer to position in bicomponents to place a value of next 
component. The global procedures are min, add2, and next
/ink. A recursive depth-first search procedure is used to divide 
the graph. The lowest point reachable from the current point 
without going through previously searched points is calculated. 
This information allows determination of the articulation 
points and division of the graph; 

integer array number[I:v+l], edgestack[I:2Xe]; 
integer code, eptr, point, v2, newlowpt, o/dptr, i; 
procedure biconnector (point, of dpt, low point); 

integer point, of dpt, lowpoint; 
comment Recursive procedure to search a connected component 

and find its biconnected components using depth-first search. 
The parameters are described as follows. point is the startpoint 
of the search. o/dpt is the previous startpoint. lowpoint is the 
lowest point reachable on a path found during search. The 
global variables are the same as for biconnect. The global 
procedures are min and add2; 

comment Examine each edge out of point; 
for i : = i while next[point J > 0 do 
begin 

comment v2 is the head of the edge. Delete edge from structural 
representation; 

integer v2; 
v2 := headfnext[point]]; 
nexr[point] : = next[next[pointJ]; 
comment If the edge has been searched in the other direction, 

then look for another edge; 
if (number[v2] <number[point]) /\ (v2rfo/dpt) then 
begin 

comment Add edge to edgestack; 
add2 (point, v2, edge stack, eptr); 
if number[v2J = 0 then 
begin 

comment New point found. Number it; 
number[v2] :=code:= code+ 1; 
comment Initiate a depth-first search from the new point; 
new/ow pt : = v + 1; 
biconnector (v2, point, new/ow pt); 
comment Note that although the global variable v2 is 

changed, its value is restored upon exit from this pro
cedure. Recalculate lowpoint; 

low point : = min(lowpoint, new/ow pt); 
if new/ow pt ~ number[point] then 
begin 

comment point is an articulation point. Output edges 
of component from edgestack; 

oldptr : = bptr : = bptr + 1; 
for i : = i while number[edgestack[eptr-1]] > 

number[poilll] do 
begin 

add2(edgestack[eptr-1], edgestack[eptr], bicom-
ponents, bptr); 

eptr := eptr - 2 
end; 
comment Add last edge; 
add2(point, v2, bicompo11e11ts, bptr); 
eptr : = eptr - 2; 
comment Compute number of edges of component; 
bicomponents[oldptr] (bptr-oldptr) + 2 

end 
end 
else 
begin 

447-P 6- 0 

comment New point not found. Recalculate lowpoi11t; 
low point : = min(lowpoint, number[v2]) 

end 
end 

end; 
comment Construct the structural representation of the graph; 
freenext : = v; 
for i : = 1 step 1 until v do next [i] : == O; 
for i : = 1 step 1 until e do 
begin 

comment Each edge occurs twice, once for each endpoint; 
nextlink(edgelist[2Xi-1], edgelist[2Xi]); 
nextlink(edgelist[2Xi], edgelist[2><i-1]) 

end; 
comment Initialize variables for search; 
eptr := O; bptr := O; point:= 1; v2 := O; 
for i : = 1 step 1 until v + 1 do number[i] : = O; 
for i : = i while point ~ v do 
begin 

comment Each execution of biconnector searches a connected 
component of the graph. After each search, find an unnum
bered vertex and search again. Repeat until all vertices are 
examined; 

number[point] :=code:= 1; newlowpt := v + 1; 
biconnector(point, v2, new/ow pt); 
for i : = i while number[point] -, rf 0 do point : = point + 1 

end 
end; 
procedure pathfinder (start point, parhpt, codevalue, path); 

integer startpoint, pathpt, codevalue; 
integer array path; 

begin 
comment Procedure finds disjoint paths with arbitrary starting 

points in a biconnected graph. The points of each path are 
listed in the array path. The following variables are assumed 
global. next[l :v+2Xe], head[v+ 1 :v+2Xe] and link 
[v+l :v+2Xe] define the graph using singly linked edge 
lists and a set of cross reference pointers. old[ I :v] and mark 
[v+l :v+2Xe] indicate used points and edges. pathcode[l :v] 
is the consecutive numbering of the points. lowpoint[l :v], 
forward[! :v] and back[l :v] give information saved from depth
first search, node[ I :v] gives the next unsearched edge from each 
point; 

integer point, pastedge, edge, pastpo.illl, v2, i; 
path[l] : = start point; 
comment Choose initial edge; 
edge := 11ext[startpoi11t]; 
for i : = i while (if edge=O then fals·e else nwrk[edgeJ) 

do edge : = next[edge]: 
begin 

comment No unused edge and thus. no path exists: 
next[start point] : = O; pathpt : = 0: 
go to done 

end; 
11ext[startpoi111J : = next[edge]; path[2] . - edge; 
point:= head[edge]; pathpt := 2; 
if old[poilll] then go to pathfound; 
if forward[point] rf 0 then 
begin 

comment Use previously found information to build a path. 
forward, back, lowpoint describe trees investigated using 
depth-first search; 

if pathcode[startpoint] > pathcodelpoim] then 
go to nextback; 

next mark: 
if pat/zcode[startpoi111] > lowpoi111[poi111] then 
begin 

nextforward: 
edge : = forward(point]; point : == head[ edge J; 



COLLECTED ALGORITHMS (cont.) 

pathpt := pathpt +1; path[pathpt]: =edge; 
if old[poillf] then go to pathfound; 
if pathcode[start point] > pathcode[poillf] 

then go to next back; 
go to nextforward 

end; 
edge : == back[point]; point : = head[edge]; 
pathpt := pathpt + 1; path[pathpt] .- edge; 
if old[point] then go to pathfound else 

go to nextmark; 
nextback: 

edge: =0 back[point]; point : = head[edge]; 
pathpt := pathpt + 1; path[pathpt] :=edge; 
if old[point] then go to pathfound else 

go to nextback 
end; 
comment Use depth-first search to find a path. Save information 

describing search tree; 
next point: 

codevalue : = codevalue + 1; pathcode[pobu] : = codevalue; 
nextedge: 

edge : = node [point]; 
for i: = i while edge = 0 do 
begin 

back[point] : = link[path[pathpt]]; 
past point : = head[back[point]]; 
if (forward[pastpoint] = 0) V 

(lowpoint[poilll] < lowpoint[pastpobrt]) then 
begin 

forward[pastpoint] : = path[pathpt]; 
low point [past point] : = low point[point] 

end; 
point : 0= pastpoint; pathpt := pathpt - 1; edge:= node[point] 

end; 
node[poillf] : = next[edge]; v2 : = head[edge]; 
if pathcode[v2] = 0 then 
begin 

point : 0= v2; pathpt : = pathpt + 1; 
path[pathpt] : = edge; go to next point 

end; 
if old[v2] /\ (v2~startpoint) then 
begin 

pathpt: ~ pathpt + 1; path[pathpt] : = edge; 
go to pathfound 

end; 
if (forward[point] = 0) V (pathcode[v2] < lowpoi11tlpoi11t]) then 
begin 

forward[poi11t] : = edge; lowpoint[poi11t] : = pathcode[v2] 
end; 
go to nextedge; 
comment Path found. Convert stack of edges to list of points in 

path. Mark all edges and points in path; 
pathfound: 
for i : = 2 step 1 until pat Ir pt do 
begin 

edge:= path [i]; point:= head[edge]; 
forward[point] := back[point]: = O; old[point] :=true; 
mark[link[edge]] : = mark [edge] : = true; 
path [iJ : = point 

end; 
done: 
end 

447-P 7- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 448 
Number of Multiply
Restricted Partitions [Al] 
Terry Beyer* and D.F. Swinehartt (Recd. 1 Jan. 1971 
and 28 June 1971) 
* Computer Science Department and Computing Cen
ter, University of Oregon, Eugene, OR 97403. 
t Department of Chemistry, University of Oregon, 
Eugene, OR 97403. 

Key Words and Phrases: partitions, enumeration, change 
making, energy-level degeneracies, molecular vibrational 
energy-levels 

CR Categories: 3.13, 5.30 
Language: Fortran 

Description 
Given a positive integer m and an ordered k-tuple c = (c1 , 

· · · , ck) of not necessarily distinct positive integers, then any 
ordered k-tuple s = (s1 , · · · , sk) of nonnegative integers such that 
m = :LL s,c, is said to be a partition of m restricted to c. Let Pc(tn) 
denote the number of distinct partitions of m restricted to c. The 
subroutine COUNT, when given a k-tuple c and an integer 11, com
putes an array of the values of Pc(m) for m = 1 to 11. Many com
binatorial enumeration problems may be expressed in terms of the 
numbers Pc(m). We mention two below. 

Applications: Change making. Letting c = ( 1,5, 10) and 11 = 100, 
the subroutine computes the number of ways of making each 
amount of change from one cent to one dollar using pennies, 
nickels, and dimes. Letting c = (1,5,5,10) corresponds to using two 
distinct types of nickels. 

Applications: Chemistry. This algorithm is of some importance 
to problems in chemistry. In the theory of unimolecular reactions 
[2,6] a quantity appears, :L:,._o P(e,.), in which P(e,.) is the number 
of ways a given amount of vibrational energy, e,., may be distributed 
among the quantized vibrational modes of a polyatomic molecule, 
assuming all of these modes to be harmonic. Setting m = e,. and 
c = (c1, · · · , ck), where Ci is the energy corresponding to the 
fundamental frequency of the ith vibrational mode, thens, becomes 
the corresponding vibrational quantum number and we have 
P(e") = Pc(m). The desired quantity L~,-o P(e,) may thus be 
readily obtained from the output of the subroutine COUNT. 
No algorithm previously available has been sufficiently efficient 
for calculating these sums directly. Various functions have been 
proposed as approximations for this calculation [5]. The present 
algorithm allows calculation of L P(e,.) directly and efficiently. 

Method. Input to COUNT is a positive integer N and an integer 
array C containing K entries. Output is the array P containing N 
integers where P(M) is the number of partitions of M restricted to 
C for M = 1 to N. The following assumptions are made concerning 
the input; (1) K is positive: (2) C contains positive integers only; 
and (3) N is greater than the maximum value in C. Restriction 3 
is not inherent in the problem but is a restriction required by 
COUNT. The algorithm operates by initializing P to contain the 
number of partitions of an integer restricted to an empty sequence. 

448-P 1- 0 

Each pass through the outer loop which follows, updates P to 
reflect an additional element of C by using the recursive relations 

{

P(c
1

, ... ,c1_1)(m) if m < C;, 

P(c1, ... ,c;)(m) = P(c1, ... ,c;_1)(m) + 1 if m = C;, 

P(c1, ... ,c;_1)(m) + P(cl'"'•c;)(m - ci) if m > C;. 

These equations are derived by counting additional partitions of m 
obtained by using c; . Thus if m < Ci , no additional partitions are 
obtained. If m = c; , the single additional partition consisting of Ci is 
obtained. If m > Ci, then any partition of m involving Ci comes 
from a partition of (m - c;) which involves one less occurrence of 
c;. Readers may wish to refer to [3 and 4] which contain recurrence 
algorithms for more classical forms of the partition enumeration 
problem of which the problem presented here is a generalization. 

Scaling. The time required by the algorithm is roughly propor
tional to k X n. If the integers c1 , · · · , Ck have a common divisor d, 
the results may be obtained approximately d times as quickly by 
making use of the relations 

f o if d{ m 
Pc(m) = l Pctd(m/d) if d I m 

where c/d = (cr/d, · · · , ck/d). The computation of Pctd(m/d) for 
m/d = 1 to n/d will require time proportional to k X (n/d) and 
an array of dimension n/d rather than n. COUNT does not auto
matically perform this scaling. 

Accuracy. The algorithm itself is precise. However in typical 
applications to chemistry the numbers P(M) generated may exceed 
the magnitude limitation for Fortran integers. In this case one may 
simulate multiple precision integer arithmetic and continue to 
obtain precise results, or one may swit1;h to floating point. In the 
latter case, roundoff errors will be introduced into the calculation. 
The authors have not investigated the accumulation of roundoff 
errors under these conditions. 

Test cases. The subroutine COUNT has been tested on the 
following compiler /computer combinations. 

IBM FORTRAN IV(G) IBM S/360 (Mod. 50) 
University of Waterloo WATFOR IBM S/360 (Mod. 50) 

Results for several change counting problems were compared with 
results from hand calculations. Results. for the special case of un
restricted partitions were compared to published table values [1 ]. 

Acknowledgment. The authors wish to thank the University of 
Oregon Computing Center for supporting the testing of this work. 

References 
1. Hall, M. Jr. Combinatorial Theory. lBlaisdell, Waltham, Mass., 
1967, pp. 29-35. 
2. Marcus, R.A., and Rice, 0.K. The Kinetics of the 
recombination of methyl radicals and iodine atoms. J. Physical 
and Colloid Chem. 55 (June 1951), 894-908. 
3. McKay, J.K.S. Algorithm 262, Number of restricted partitions 
of N. Comm. ACM 8 (Aug. 1965), 493 .. 
4. White, J.S. Algorithm 373. Number of doubly restricted 
partitions. Comm. ACM 13 (Feb. 1970), 120. 
S. Whitten, G.Z., and Rabinovitch, B.S. Accurate and facile 
approximation for vibrational energy-level sums. J. Chem. Phys. 
38 (15 May 1963), 2466-2473. 
6. Wieder, G.M., and Marcus, R.A. Dissociation and 
isomerization of vibrationally excited species. IL Unimolecular 



COLLECTED ALGORITHMS (comt.) 

reaction rate theory and its application. J. Chem. Phys. 37 (15 Oct. 
1962), 1835-1852. 

Algorithm 

SUBH0UTINE COUNTCC, K, p, NJ 
INTF.GER C, P 
DIMENSl0N CCKJ. PCNJ 

C C0UNT COMPUTES THE NUMBEH 0F PAkTITIONS 0F AN INTEGER 
C RESTRICTED TO C F0R INTEGERS IN THE RANGE I TO N. 
C INPUT: K A POSITIVE INTEGER 
C C AN ARRAY OF K POSITIVE INTEGERS 
C N AN INTEGER LARGER THAN THE MAiIMUM VALUE IN C 
C OUTPUT: P AN ARRAY 0F N INTEGERS, WHERE PCM> IS THE 
C NUMBER 0F PARTITIONS OF M RESTRICTED T0 C 
C I NI TI ALI Z E P 

00 10 I=l,N 
P<IJ = 0 

10 C0NTINUE 
C EACH PASS THR0UGH THE 0UTER L00P BEL0~ TRANSFORMS P FROM 
C PARTITIONS RESTRICTED T0 CCI>• CCI-I> T0 
C PARTITI0NS RESTRICTED T0 CCI» •••,CCI>· 

DO 30 I= 1,K 
J = CCI> 
JI'! = J + I 
PCJJ = PCJJ + I 
DO 20 M=JPl1N 

MMJ = M - J 
PCM> = PCM> + PCMMJJ 

20 CONTINUE 
30 C0NTINUE 

RETURN 
END 

448-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 449 
Solution of Linear 
Programming Problems in 0-1 
Variables [H] 
Frantisek Fiala [Recd. S Feb. 1971] 
Department of Computing Science, University of 
Alberta, Edmonton, Alberta, Canada* 

Key Words and Phrases: linear programming, zero-one variable 
CR Categories: 5.41 
Language: Fortran 

Description 
This subroutine solves the linear zero-one programming prob

lem of the following form. 
Find the maximum and all maximizing points of the objective 

function 

f = auxi + · · · · + a1nXn + a10 

subject to 

ai1X1 + · · · + ainXn 2;: bi , i = 2, ... , m, 

where Xi = 0 or 1; ai;, bi are integer coefficients. 
The algorithm follows the procedure described in [1, 2). 
First of all we add a supplementary constraint 

(1) 

(2.1) 

where b1 is equal either to the value off - a1o for a solution to the 
system of constraints, or to a lower bound off - a10 . As soon as 
we find a feasible solution to the system of constraints, we replace 
b1 by the corresponding value off - a10. Consequently, if a feasible 
solution is found, then the following procedure can lead only to 
solutions with the same or better value of the objective function. 
Using the formula x = 1 - x, we bring (2.1) into the form 

a~irXi1 + · · · + a~inxi n 2:: bi', 

with a~h 2:: · • • 2:: a~in 2:: 0, 

(2'.1) 

(3) 

where x is either x or x. If there are coefficients with the same 
absolute value in (2.1), then their order in (2'.1) corresponds with 
that in (2.1). The order of coefficients in (2' .1) indicates the order of 
branching points. Coefficients in (2' .1) are used in the accelerating 
test. 

At every stage of the procedure we have a partial solution and 
the corresponding (current) problem derived from the original one. 
In the partial solution, some variables are assigned fixed values (0 
or 1) and the others remain free. The partial solution corresponding 
to the original problem has all variables free. A partial solution is 
completed if all variables are fixed. 

Given a partial solution we try to complete it. If there is a com
pletion, we change the supplementary constraint and backtrack. If 
there is no completion, we backtrack. In both cases we go back to 

*This research was done while the author was a post-doctorate 
fellow with the Department. Present address: Department of Mathe
matics, Carleton University, Colonel By Drive, Ottawa, Ontario, 
Canada. 

449-P 1- 0 

the last branching point and examine the new partial solution with 
the complementary value for the branching variable. We use the 
accelerating test if applicable. As a result we find either all maxi
mizing points and maximum off or the: problem has no solutions. 

Accelerating test. Suppose that at a certain step we have a 
partial solution with the fixed variables xih, hEH~{l, ... , nl, 
and we have to branch. We take the first variable x;0 still occurring 
in (2'.1)-branching variable-and put first x;0 = 1 and then x;0 = 

0. We examine the new partial solution with x;0 = 1. If there is a 
feasible completion of the partial solution and if 

(4) 

where K is the set of all indices h { 1 , . . . , n l - H such that 
xh = 0 in the completion, then the branch with Xio = 0 can be 
dropped out. 

The subroutine MAXLOl is self-contained, and communication 
to it is through the argument list. The calling statement is of the 
following form 

CALL MAXLOl (MO, NO, NEST, M, N, AO, BO, A, B, Bl, Sl, C, 
X, S, BC, T, IND, INC, NESTEX, V, NOPT, OPTS, NI,' NAT) 

The meaning of the parameters is described in the comments at the 
beginning of the sub~outine. Here the meaning of only two output 
parameters is explained. INC = 0 or 1 means that the problem has 
feasible solutions or not, respectively. As we have to estimate the 
number NEST of all alternative optimal solutions in advance (as to 
define the array OPTS), NESTEX = 1 or 0 indicates whether the 
estimated number is exceeded or not, respectively. Consequently, 
after return from the subroutine we have to examine first the values 
of INC and NESTEX in order to give tlhe proper answer. 

Test results. The subroutine has been tested on an IBM 360/67. 
No breakdown of the method has occurred. Further details about 
the computational experience are given iin [1]. 

Two examples. 
(i) The objective function: 
f = 2x1 + 5x2 + 4xa + X4 - 3x5 - X6 + 3. 

The constraints; 
2x1 - X2 + 3xa + 5x11 - 2xs 2:. 3 

4x2 - 7xa + 3x4 + Xs - Xs 2: -9 
X1 + 8x2 + 4x4 + 2xs + 3xa 2 7 

5x1 - 2x2 + 4xa + 3x4 - 5xs 2:: - 5 
X1 - X2 + X4 + Xe 2;: 0 

Maximum: 15. Maximizing point: (1, 1, 1, 1, 0, 0). 
Iterations: 5. Accelerating test: 3. 

(ii) The objective function: 
f = 2x1 - X2 + 4xa + 7x4 - 5x5 + 12x11 + 9x1 -· 4xs - X9 + 

2x10 + 5. 
The constraints: 

3x1 - X2 + 2xa + 4xs - 3x1 + Bxs + X11 ;::: 5 
4x2 + 7xa + X4 + 2xo - 5xs + 3x9 + 9x10 2:: 1 
xi - x2 + 3x4 + 7x;, + 8xa + 5x1 - Xs - 7x9 + 4x10 2:: 12 
2x1 + 4xa - X4 + 4xs + 5x9 + 3x10 2 2 
Maximum: 41. Maximizing point: (1, 0, 1, 1, 0, 1, 1, 0, 0, 1). 
Iterations: 9. Accelerating test: 7. 

References 
1. Fiala, F. Computational experience with a modification of an 
algorithm qy Hammer and Rudeanu for linear 0-1 Programming. 
Proc. ACM 1971 Nat. Conf. ACM, New York, pp. 482-488. 
2. Hammer, P.L., and Rudeanu, S. Boolean Methods in Operations 
Research and Related Areas. Springer-Verlag, New York, 1968. 



COLLECTED ALGORITHMS (cont.) 

Algorithm 

SUBR0UTINE MAXLOl<M0• N0• NEST. M. N• A0• B0. A. B. Bl• 
* st. c. x. s. s0. BC. T. IND. INC. NESTEX. v. N0PT. 0PTS. 
* NI. NAT> 

INTEGER A0CM0.N0>. ACM0.N0>. B0CM0>. BCM0>. Bl CM0>. 
* SI CM0>. CCN0>. XCN0>. SCN0>. S0CN0» BCCN0>. TCN0>. 
* INOCM0>. V• VNEG. 0PTSCNEST.N0> 

C THIS SUBR0UTINE F'INDS THE MAXIMUM AND ALL MAXIMIZING 
C P0INTS T0 THE LINEAR 0BJECTIVE F'UNCTI0N c I> SUBJECT T0 M-1 
C LINEAR C0NSTRAINTS <2·I> WITH NCGREATER THAN I> ZER0-0NE 
C VARIABLES AND INTEGER C0EF'F'ICIENTS• 
C THE MEANING 0F' THE INPUT PARAMETERS· 
C M0. N0, NEST ARE THE ADJUSTABLE DIMENSI0NS SPECIF'YING THE 
C UPPER B0UNDS F'0R THE NUMBER 0F' ALL C0NSTRAINTS. VARIABLES 
C AND ALTERNATIVE 0PTIMAL S0LUTI0NS. RESPECTIVELY• 
C M IS THE NUMBER 0F' .C0NSTRAINTS INCLUDING THE SUPPLEMENTARY 
C 0NE• N IS THE NUMBER 0F' THE VARIABLES. A0 IS THE TW~-
C DIMENSI0NAL ARRAY C0NTAINING IN THE F'IRST M R0WS AND N 
C C0LUMNS THE C0EF'F'ICIENTS 0F' ALL C0NSTRAINTS. THE F'IRST R0W 
C C0NTAINS THE C0EF'F'ICIENTS 0F' THE SUPPLEMENTARY C0NSTRAINTo 
C THE 0NE-DIMENSI0NAL ARRAY B0 C0NTAINS THE RIGHT-HAND SIDE 
C TERMS 0F' THE C0NSTRAINTS• B0C I> IS THE ABS0LUTE TERM 0F' 
C THE 0BJECTI VE F'UNCTI0N. A0. B0 REMAIN UNCHANGED DURING 
C THE WH0LE PR0CEDURE· 
C THE MEANING 0F' THE AUXILIARY PARAMETERS· 
C THE TW0-DIMENSI0NAL ARRAY A 0R THE 0NE-DIMENSI0NAL ARRAY B 
C C0NTAINS THE C0EF'F'ICIENTS 0R THE RIGHT-HAND SIDE TERMS 
C 0F' THE CURRENT SYSTEM 0F' C0NSTRAINTS. RESPECTIVELY• 
C VNEG IS THE SUM 0F' ALL NEGATIVE C0EF'F'ICIENTS IN THE 
C 0BJECTIVE F'UNCTI0N MINUS I• 
C ITEST=I 0R 0 INDICATES IF' THE WH0LE SYSTEM 0F' C0NSTRAINTS 
C IS REDUNDANT 0R N0T• RESPECTIVELY. SIMILARLY. THE I-TH 
C C0MP0NENT 0F' THE 0NE-DIMENSI0NAL ARRAY· IND INDiclATES 
C WHETHER THE I-TH C0NSTRAINT IS REDUNDANT 0R N0T• 
C THE 0NE-DIMENSI0NAL ARRAY X C0NTAINS THE CURRENT PARTIAL 
C S0LUTI0N. A F'REE VARIABLE IS REPRESENTED BY A C0MP0NENT 
C EQUAL T0 2. 
C THE 0NE-DIMENSI0NAL ARRAY S 0R BC 0R T INDICATES THE 0RDER 
C AND MANNER IN WHICH THE F'IXED VARIABLES WERE ASSIGNED 
C THEIR VALUES 0R THE BRANCHING P0INTS 0R THE BRANCHING 
C P0INTS IN WHICH THE ACCELERATING TEST CAN BE APPLIED. 
C RESPECTIVELY· NS IS THE NUMBER 0F' C0MP0NENTS IN S AND BC· 
c THE 0NE-DIMENSI0NAL ARRAYS B1.s1.s0 AND c HAVE AN 
C AUXILIARY CHARACTER· 
C THE MEANING 0F' THE 0UTPUT PARAMETERS. 
C INC=O 0R I MEANS THAT THE GIVEN PR0BLEM IS C0NSISTENT 
C 0R INC0NSISTENT• RESPECTIVELY· 
C NESTEX=O 0R I INDICATES THAT THE ESTIMATED NUMBER 0F' 
C F'EASIBLE S0LUTI0NS WAS N0T 0R WAS EXCEEDED. RESPECTIVELY· 
C V IS THE MAXIMAL VALUE 0F' THE 0BJECTIVE F'UNCTI0N. 
C N0PT IS THE NUMBER 0F' ALL MAXIMIZING P0INTS. 
C THE TW0-DIMENSI0NAL ARRAY 0PTS C0NTAINS IN THE F'IRST N0PT 
C R0WS ALL MAXIMIZING P0INTS. A C0MP0NENT MAY BE EQUAL T0 2 
C WHICH INDICATES THAT THE VALUE 0F' THE C0RRESP0NDING 
C VARIABLE CAN BE ARBITRARY, NI 0R NAT INDICATE THE NUMBER 
C 0F' ITERATI0NS 0R THE NUMBER 0F' SUCCESSF'UL APPLICATI0NS 0F' 
C THE ACCELERATING TEST. RESPECTIVELY· 
C THE CALLING PR0GRAM SH0ULD C0NTAIN THE F'0LL0WING TYPE
C STATEMENT 
C INTEGER A0CM0. N0>. ACM0. N0 >. B0CM0>. B CM0 >.BI CM0>. SI CM0>. 
C XCC N0 >. X C N0 >.SC NO>. S0CN0>. BC< N0 >.TC N0 >.IND< M0 >. V. 
C X0PTS<NEST.N0> 

INC = 0 
NEST EX 
N0PT = 0 
NS = 0 
NI = 0 
NAT = 0 
DO 10 J=l•N 

T<J> = 0 
10 C0NTINUE 

C C0PY THE ARRAYS A0• B0· 
D0 30 I=l •M 

BC I> = B0< I> 
D0 20 J=l,N 

A<I,J> = A0CI.J> 
20 C0NTINUE 
30 C0NTINUE 

ADD THE SUPPLEMENTARY C0NSTRAINT. DETERMINE THE INITIAL 
PARTIAL S0LUTI0N. 

VNEG = -1 
D0 40 J=l,N 

X<J> = 2 
IF CACl.J>.LT·O> VNEG VNEG + ACl,J> 

40 C0NTINUE 
BCll = VNEG 
V = VNEG 

50 00 60 I = I • M 
INDCI> = 0 

60 C0NTINUE 
C EXAMINE THE CURRENT SYSTEM 0F' C0NSTRAINTS. 

70 D0 80 I=l•M 
Bl<I> = BCI> 

80 C0NTINUE 
NI "' NI + I 
ITEST = I 
D0 110 I= t.M 

SICI> = 0 
IF < IND<I >.EQol > G0 T0 110 
D0 90 J=l•N 

IF' CA<I.J>.LT·O> BICI> = Bl<I> - A<I.J> 
Sl<I> = SICI> + IABSCA<I,J» 

90 C0NTINUE 
Ir CBl<I>.LE·O> G0 T0 100 
ITEST = 0 
G0 T0 110 

100 IND<I> = I 
110 C0NTINUE 

IF' CITEST.EQ.t> G0 T0 420 
C THE SYSTEM C0NTAINS AT LEAST 0NE IRREDUNDANT INEQUALITY• 

D0 120 I=l•M 
IF' CIND<I>·EQ.t> G0 T0 120 
IF' <Sl<I>-Bl<I>·LT·O> G0 T0 560 

I 20 C0NTI NUE 

449-P 2- 0 
C THE SYSTEM D0ES N0T C0NTAIN ANY INC0NSISTENT INEQUALITY. 
C C0NSIDER EACH INEQUALITY SEPARATELY· 

I = I 
130 IF' CINDCI>.EQ.t> G0 T0 360 

IF' CSICI>-Bl<I>.GT.O> G0 T0 200 
C S0ME 0F' THE F'REE VARIABLES ARE F'0RCED T0 CERTAIN F'IXED 
C VALUES. 

140 D0 190 J=l•N 
IF' <A<I•J>·EG.O> G0 T0 190 
NS " NS + I 
BCCNS> = I 
IF' CA<I•J)oLT·O> G0 T0 160 
SCNS> = J 
XCJ> = I 
D0 I 50 I J• I• M 

B<IJ> = BCIJ> - ACIJ,J> 
150 C0NTINUE 

G0 T0 170 
160 SCNS> = -J 

X<J> = 0 
170 D0 180 IJ•l•M 

ACIJ.J> = 0 
180 C0NTI NUE 
190 C0NTINUE 

G0 T0 70 
200 D0 210 J=l•N 

C<J> = IABSCACI.J>> 
210 C0NTINUE 

LI = I 
220 J = LI + I 
230 IF' CCCLl>·GE·C<J>> G0 T0 240 

IP • CCLI> 
CCLI> = CCJ> 
CCJ> • IP 

240J=J+I 
IF' CJoGT.N> G0 T0 250 
G0 T0 230 

250 LI = LI + I 
IF' CL! •LT·N> G0 T0 220 

260 IF' CCCLl>.GT.O> G0 T0 270 
LI = LI - I 
G0 T0 260 

270 IF' CSICI>-CCLl>•LT.BICI>> G0 T0 140 
IF' CSICI>-CCl>-BICI>.GE.O> G0 T0 360 

C 0NE F'REE VARIABLE IS F'0RCED T0 A CERTAIN F'IXED VALUE. 
NS = NS + I 
BCCNS> • I 

280 D0 290 J=l•N 
IF' CIABSCACI.J>>.EQ.CCI>> G0 T0 300 

290 C0NTINUE 
300 IF' CACI.J>•LT·O> G0 T0 330 
310 SCNS> = J 

XCJ> = I 
Diil 320 IJ=t.M 

BCIJ> • BCIJ> - ACIJ.J> 
320 C0NTINUE 

G0 Tiil 340 
330 SCNS> = -J 

XCJ> = 0 
340 Diil 350 IJ=l•M 

AC IJ,J> = 0 
350 ClllNTINUE 

Giil T0 70 
360 I = I + I 

IF' CioLEoM) G0 T0 130 
IF' CNS.EQ.N) G0 T0 480 

F'IND A NEW BRANCHING P0INT• 
Diil 370 J=t.N 

C<J> = IABSCACl.J>> 
370 C0NTINUE 

D0 380 J=2•N 
IF' CCCl>·GE.CCJ>> G0 T0 380 
CCI> = C<J> 

380 C0NTINUE 
IF' CCCl).EQ.O> G0 T0 390 
NS = NS + I 
BCCNS> = 0 
I = I 
G0 T0 280 

390 D0 410 J=l•N 
D0 400 Jt=l.NS 

IF' (J.EQ.IABSCSCJI>>> G0 T0 410 
400 C0NTINUE 

NS = NS + I 
BC<NS> = 0 
G0 T0 310 

410 C0NTINUE 
C THE SYSTEM 0F' C0NSTRAINTS IS REDUNDANT. S0LVE AN 
C UNC0NSTRAINED PR0BLEM. 

420 00 470 J=l,N 
IF' CNS.EQ.N> G0 T0 480 
IF' <<X<J>.NE.2> .0R. CACJ,J).EQ.O>> G0 T0 470 
NS = NS + I 
BCCNS> = I 
IF' CACl.J>.LT.O> G0 T0 440 
SCNS> = J 
X<J> = I 
D0 430 I= l•M 

BCI> = BCI> - A<I,J> 
430 C0NTINUE 

G0 T0 450 
440 SCNS> = -J 

XCJ> = 0 
450 D0 460 I=l•M 

A<I,J> = 0 
460 C0NTINUE 
470 C0NTI NUE 

C F'IND THE NEW VALUE 0F' THE 0BJECTIVE F'UNCTI0N• 
C ADJUST THE ACCELERATING TEST SEQUENCE T· 

48Q NEWV = 0 
D0 490 J= I• N 

NEWV = NEWV + XCJ>•A0Ct.J> 
490 C0N Tl NUE 

D0 500 J=l,NS 
K = NS + I - J 
IF' <Bd<K>.EQ.O> T<K> 



COLLECTED ALGORITHMS (cont.) 

500 C0NTI NUE 
IF CNEWV.GT.V> G0 T0 510 
N0PT = N0PT + I 
IF CN0PT.LE.NEST> GO TO 540 

C THE ESTIMATED FIRST DIMENSI0N 0F THE ARRAY 0PTS IS 
C EXCEEDED· 

NESTEX = I 
RETURN 

C THE NEW S0LUTI0N F0UND GIVES A BETTEk VALUE T0 THE 
C 0BJECTIVE FUNCTION. CHA:-.IGE THE SUPPLEMENTARY C0NSTRAINT• 

510 N0PT = I 
V = NEWV 
BC I> = V 
D0 520 J= 1, N 

IF <X<J>.NE.I> G0 T0 520 
B < I ) = BC I > - A0 C 1, J > 

520 C0NTINUE 
D0 530 J=l•N 

S0<J> = SCJ> 
530 C0NTINUE 

C M0DIFY THE SET 0PTS. 
540 D0 550 J=l•N 

0PTSCN0PT,J> = XCJ> 
550 C0NTINUE 
560 IF CNS.EO.O> G0 T0 580 

C QUESTI0N IF A BACKTRACKING IS P~SSIBLE· 
IS = 0 
D0 570 J=l,NS 

IS = IS + BC<J> 
570 C0NTINUE 

IF <IS.LT.NS> G0 T0 600 
IF cv.GT.VNEG> G0 T0 590 

C THE SYSTEM 0F C0NSTRAINTS IS INCONSISTENT. N0 S0LUTI0NS• 
580 INC • I 

RETURN 
C THE GIVEN PR0BLEM HAS A S0LUTI0N. ALL S0LUTI0NS HAVE BEEN 
C F0UND. 

590 V = V + B0 C I > 
RETURN 

C THE BACKTRACKING IS POSSIBLE· 
600 00 610 Jlzl,NS 

K = NS + I - JI 
IF <BCCK>.EO.O> G0 T0 620 

610 C0NTINUE 
620 IF C TC K). EQ .J > G"' T0 7 50 
BACKTRACK. 
630 D0 740 Jl=K,NS 

D0 640 J=l,N 
IF CJ.EQ.IABSCSCJI>>> G0 T0 650 

640 C0NTINUE 
650 IF CK·EO·JI> G0 T0 700 

IF CXCJ) .EQ. I> G0 T0 670 
D0 660 I= 1,M 

ACI,J> = A0CI,J> 
660 C0NTINUE 

G0 T0 690 
670 D0 680 I= I 1 M 

ACI,J> = A0CI1J) 
BCll = SCI> + ACI1J> 

680 C0NTI NUE 
690 XCJ> = 2 

G0 T0 740 
700 SCK> = -SCK> 

BC<K> = I 
XCJ) = I - X<J> 
IF CXCJ).EQ.O> G0 T0 720 
D0 710 I= 11 M 

BC ll = BC I> - A0CI, J> 
710 C0NTINUE 

G0 T0 740 
720 00 730 I=l•M 

B<I> =SCI> + A0CI,J> 
730 C0NTINUE 
7 40 C0NTI NUE 

NS = K 
G0 T0 50 

C THE ACCELERATING TEST. 
750 TCK> = 0 

I Tl = O 
IT2 = 0 
D0 790 Jl=K,N 

D0 760 J= I• N 
IF CJ.EQ.IABSCS0CJI>>> G0 T0 770 

760 C0NTINUE 
770 IF CK.EQ.JI> G0 T0 7RO 

I; ((fl'(( .J). EQ .O> .AND. CA0 < 1, J>.GT. 0)) .0R. 
* CCXCJ>·EO.I> .AND· <A0Cl1J>.LT.O>>> IT2 = IT2 + 
* IABS<A0<1,J» 

G0 T0 790 
780 IT1 = IABSCA0<1,J>> 
790 Cl'JNTINUE 

IF <ITI .LE.JT2> G0 T0 630 
C THE APPLJCATI0N 0F THE ACCEl..ERATING TEST WAS SUCCESSFUL• 

BCCK> = I 
NAT = NAT + I 
G0 10 560 
END 

449-P 3- 0 

Editor's note: Algorithm 449 described here is available on magnetic 
tape from the Department of Computer Science, University of 
Colorado, Boulder, CO 80302. The cost for the tape is $16.00 (U.S. 
and Canada) or $18.00 (elsewhere). If the user sends a small tape 
(wt. less than 1 lb.) the algorithm will be copied on it and returned to 
him at a charge of$10.00 (U.S. only). All orders are to be prepaid 
with checks payable to ACM Algorithms. The algorithm is recorded 
as one file of BCD 80 character card images at 556 B.P.l., even 
parity, on seven track tape. We will supply algorithm at a density of 
800 B.P.l. if requested. Cards for algorithms are sequenced starting 
at JO and incremented by 10. The sequence number is right justified in 
column 80. Although we will make every attempt to insure that the 
algorithm conforms to the description printed here, we cannot guaran
tee it, nor can we guarantee that the algorithm is correct.-L.D.F. 
and A.K.C. 



COLl.,ECTED ALGORITHMS FROM CACM 

Algorithm 450 

Rosenbrock Function 
Minimization [E4] 
Marek Machura* and Andrzej Mulawat 
lRecd. 22 March 1971] 

* Institute of Automation and Measurements, Warsaw, Poland. 
t Institute of Computing Machinery, Warsaw, Poland. 

Key words and phrases: function minimizati:on, Rosenbrock's 
method 

CR Categories : 5.19 
Language : Fortran 

Description 
Purpose. This subroutine finds the local miinimum of a function 

of 11 variables for an unconstrained problem. lit uses the method for 
direct search minimization as described by Rosenbrock [ 1 ]. 

Method. The local minimum of a function is sought by con
ducting cyclic searches parallel to each of the 11 orthogonal unit 
vectors, the coordinate directions, in turn. n such searches con
stitute one stage of the iteration process. For the next stage a new 
set of /1 orthogonal unit vectors is generated, such that the first 
vector of this set lies along the direction of greatest advance for the 
previous stage. The Gram-Schmidt orthogonalization procedure is 
used to calculate the new unit vectors. 

Program. The communication to the subroutine ROMIN is 
solely through the argument list. The user must supply two ad
ditional subroutines FUNCT and MONITOR. The entrance to the 
subroutine is achieved by 

CALL ROMIN (N, X, FUNCT, STEP, MONITOR) 

The meaning of the parameters is as follows. N is the number 
of independent variables of the function to be minimized. X(N) is 
an estimate of the solution. On entry it is an initial estimate to be 
provided by the user; on exit it is the best estimate of the solution 
found. FUNCT (N, X, F) is a subroutine calculating the value F of 
tbe minimized function at any point X. STEP is an initial step 
length for all searches of the first stage. The subroutine MONITOR 
(N, X, F, R, B, CON, N R) supplies printouts of any parameter from 
the argument list and contains convergence criteria chosen by the 
user. (Different kinds of convergence criteriia and their use arc 
discussed in [1] and [4].) R is the actual number of function evalua
tions. B is the value of the Euclidean norm of the vector repre
senting the total progress made since the axes were last rotated, i.e. 
the total progress in one stage. CON is a logical variable. At the 
start of the subroutine ROMJN CON is set .FALSE .. If the con
vergence criteria are satisfied CON must be set .TRUE. in the sub
routine MONITOR, which transfers control back to the main pro
gram. N R is the MONITOR index used as described in [3]. The 
CALL statement of the subroutine MONITOR with N R equal to 1 
occurs once per function evaluation and with N R equal to 2 once 
per stage of the iteration process. 

Test results. As a test example, the parabolic valley function 

f(X1 , Xt) = }()() (Xt - .\'1 2)2 + (l - .\'1) 2 

450-P 1- 0 

was chosen. This function attains its minimum equal to 0 at the 
point (1, 1). Starting from the point (- 1.2, 1.0) the best estimate of 
the solution after 200 function evaluations as found by the sub
routine ROMIN was 0.29774· 10-4 at the point (0.99513, 0.99053). 
The initial step length STEP was set equal to 0.1 [2]. 

References 
1. Rosenbrock, H.H. An automatic method for finding the 
greatest or least value of a function. Computer J. 3 (1960), 175-184. 
2. Rosenbrock, H.H., Storey, C. Computatio11al Tecl111iques j(Jr 

Chemical Engineers. Pergamon Press, New York, 1966. 
3. Rutishauser, H. Interference with w1 ALGOL Procedure, ill 
A1111ual Review in Automatic Programming, Vol. 2. R. Goodman 
(Ed.), Pergamon Press, New York, 1961. 
4. Powell, M.J.D. An efficient method for tit1ding the minimum of 
a function of several variables without calculating derivatives. 
Computer J. 6 ( 1964), 155-162. 

Algorithm 
SUBR0UTINE R0MINCN, x, FUNCT• STEP, M0NI TRl 
INTEGER N, IP 
REAL STEP 
DIMENSl0N XCN> 
L0GICAL C0N 
INTEGER 1, J, K, L• p, R 
REAL FO, Ft, B, BETY 
DIMENSI0N AC30>. DC30>. VC30,30>. ALPHAC30,30>. BETAC30>. 

* EC30l• AVC30) 
C THIS SUBR0UTINE MINIMIZES A FUNCTl0N 0F N VARIABLES 
C USING THE METH0D 0F R0SENBH0CK. THE PAHAMETEKS ARE 
C DES CR I BED AS F0LL0WS I . 

C N IS THE NUMBER 0F INDEPENDENT VARIABLES 
C XCN) IS AN ESTIMATE 0F THE S0LUTI0N C 0N ENTRY -
C AN INITIAL ESTIMATE, 0N EXIT - THE BEST ESTIMATE 
C 0F THE S0LUTI0N F0UND > 
C FUNCTCN,X,F> IS A H0UTINE PR0VIDED BY THE USER T0 
C CALCULATE THE VALUE F 0F THE MINIMIZED FUNCTI0N 
C AT ANY P0INT X 
C STEP IS AN INITIAL STEP LENGTH F0H ALL C00RDINATE 
C DIRECTI0NS AT THE START 0F THE PH0CESS 
C M0NITR CN,X,F,R,B,C0N,NRl IS A R0UTINE PR0VXDED BY 
C THE USER F0R DIAGNOSTIC AND C0NVEHGENCE PURPOSES 
C R IS THE ACTUAL NUMBER OF FUNCTION EVALUATIONS C FOR 
C THE INITIAL ESTIMATE R=O > 
C B IS THE VALUE OF THE EUCLIDEAN NORM OF THE VECTOR 
C REPRESENTING THE T0TAL PROGRESS MADE SINCE THE 
C AXES ~ERE LAST ROTATED 
C CON IS A L0GICAL VARIABLE· AT THE START 0F THE 
C SUBR0UTI NE ROM IN C0N=, FALSE• IF THE CONVERGENCE 
C CRITERIA 0F THE R0UTINE M0NITOH ARE SATISFIED 
C CON MUST BE SET .TRUE· TO STOP THE PR0CESS 
C NR IS THE MONITOR INDEX 
C INITIALIZE C0N, ECI> AND H 
C ECil IS A SET OF STEPS TO BE TAKEN IN THE CORRESPONDING 
C COORDINATE DIRECTIONS 

C0N = • FALSE• 
00 10 I= I, N 

EC!> = STEP 
I 0 CONTINUE 

R = 0 
C VCI,J> IS AN NXN MATRIX DEFINING A SET OF N MUTUALLY 
C ORTHOG0NAL €00R01NATE OIRECTI0NS· V<I,Jl IS THE UNIT 
C MATRIX AT THE START 0F THE PR0CESS 

00 30 I=l •N 
00 20 J=l•N 

VCI,Jl = o.o 
IF < I • EQ. J l V <I, J > I • 0 

20 C0NTINUE 
30 CONTINUE 

CALL FUNCTCN, x, FO> 
START 0F THE 1TERAT10N L00P 
40 00 50 1 = I , N 

ACll = 2.0 
OCll = o.o 

50 CONTINUE 
EVALUATE F AT THE NEW P01NT X 
60 00 130 I=J,N 

00 70 J=J,N 
XCJ) • XCJl + FCI>•V<I,Jl 

70 CONTINUE 
R = R + I 
CALL FUNCTCN, x, Fil 
CALL M0NITRCN, x, Fl• R• o, C0N. I> 
IF CC0Nl G0 T0 290 
IF CFl-FO> ao. 90. 90 



COLLECTED ALGORITHMS (cont.) 

C THE NEW VALUE 0F THE FUN CTI 0N IS LESS THAN THE 0LD 0NE 
60 DCI> = DCI> + ECIJ 

ECll = 3·0*FCll 
FO = fl 
If CA<IJ.GTol.5l A<Il = 1.0 
G0 T0 110 

C THE NEW VALUE 0F THE FUNCTI0N IS GREATER THAN 0k EQUAL 
C T0 THE 0LD 0NE 

90 00 I 00 J= 1, N 
XCJl = XCJl - FCll*VCl,Jl 

100 C0NTINUE 
EC Il = -0 • 5*FC Il 
IF CACIJ.LTol .5) AC!l = o.o 

110 00 120 J=l1N 
IF CACJJ.GE·0·5l G0 T0 130 

120 C0NTINUE 
G0 T0 140 

130 C0N:TI NUE 
G0 T0 60 

C GRAM-SCHMIDT 0RTH0G0NALIZATI0N PR0CESS 
I 40 00 I 60 K= 1, N 

00 150 L=l•N 
ALPHACK.Ll = O.Q 

150 C0NTINUE 
I 60 C0NTI NUE 

D0 190 l=l•N 
00 160 J=l,N 

00 170 L=I,N 
ALPHAC!,Jl ALPHACI,Jl + O<Ll*V<L,Jl 

170 C0NTINUE 
160 C0NTINUE 
190 C0NTINUE 

8 = o.o 
D0 200 J= 1, N 

8 = 8 + ALPHACI,Jl**2 
200 C0NTINUE 

8 = SORTCBl 
CALCULATE THE NEW SET 0F 0RTH0N0RMAL C00ROINATE 
DIRECTI0NS C THE NEw MATRIX VCI,Jl l 

D0 210 J=l•N 
VCl,Jl = ALPHACl,Jl/8 

210 C0NTINUE 
D0 280 P=2,N 

BETY = o.o 
IP = P - I 
00 220 M= 11 N 

BETACMl = o.o 
220 C0NTINUE 

00 250 J= 1, N 
00 240 K=t, IP 

AVCKl = O.O 
00 230 L=l,N 

AVCKl = AVCKl + ALPHACP,Ll*VCK,Ll 
230 C0NTI NUE 

BETACJ) = BETACJl - AVCKl*VCK1Jl 
240 C0NTINUE 
250 C0NTINUE 

00 260 J= 1, N 
BETACJl = BETACJl + ALPHACP,Jl 
BETY = BETY + RETACJl**2 

260 Ci1JNTINUE 
BETY = SQRTCBETYl 
00 270 J=l1N 

VCP,Jl = BETA<Jl/BETY 
270 C0NTINUE 
280 C0NTINUE 

C ENO 0F GRAM-SCHMIDT PR0CESS 
CALL M0NITR<N, x, F01 R• 9, C0N1 2l 
IF CC0N> ~0 T0 290 

C G0 T0 THE NEXT 1TERATI0N 
G0 HI 40 

290 RETURN 
END 

450-P 2- Rl 

Remark on Algorithm 450 [E4] 
Rosenbrock Function Minimization [Marek Machura 
and Andrzej Mulawa, Comm. ACM 16 (Aug. 1973), 
482-483] 

Adhemar Bultheel [Recd. IO Oct. 1973] 
Katholieke Universiteit Leuven, Faculty of Applied 
Sciences, Applied Math Division, Celestijnenlaan 200 B, 
B-3030 Heverlee, Belgium 

1. Some misprints were found in the listing of the algorithm. 
(a) An E has to replace the F printed in the following statements: 

The one preceding the statement labeled 70. 
The one following the statement labeled 80. 
The one preceding the statement labeled 100. 
The one following the statement labeled 100. 

(b) The digit 1 should replace the charncter I as the first index of 
ALPHA in the statement preceding the statement labeled 200. 
(c) RETA should be read BETA in the statement preceding the 
statement labeled 260. 

2. Some compilers detect an error in the calling sequence of 
MON/TR in the third line following the statement labeled 7U be
cause the fifth argument of MON/TR is an INTEGER-type con
stant, and in the subroutine MON/TR the fifth argument stands 
for the norm B of a vector which is obviously a REAL-type variable 
as is also assumed in the other calls of MON/TR. One way to over
come this difficulty is to replace 0 by any REAL constant, say 0. 

3. Since it is often useful to have the initial guess and the cor
responding function value printed, an additional call to MON/TR 
could be inserted just preceding the COMMENT 
C START OF THE ITERATION LOOP 
This statement could be 
CALL MONITR (N, X, FO, R, 1.E JO, CON, 0). 
The last argument is the monitoring index N R. The user of Romi11 
should program MON/TR to handle the initial guess when NR=O 
(printing or not, checking for convergence or not, ... ) . The fifth 
argument is chosen to be a large constant because it stands for the 
norm B of a vector. The routine MON/TR will contain a test to 
see if B < E with E "small" and chosen by the user. If one wants to 
check the initial guess for convergence, then the routine would stop 
when B equals 0 .. 

4. With these corrections and changes the algorithm was suc
cessfully used under a WATFIV compiler on the IBM 370-155 
computer of the Computing Centre of the University of Leuven. For 
the example of the parabolic valley function given by the authors 
of the algorithm and with the same starting point the following 
results were obtained: in a single-precision version 202 function 
evaluations were needed to reach F ,= 0.299986.10--4, and in a 
double-precision version 194 function evaluations to reach 
F = 0.297742.10--4 and 290 function evaluations gave F = 

0.489134. lQ-!3. 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 450 [E4] 
Rosenbrock Function Minimization [Marek Machura 
and Andrzej Mulawa, Comm. ACM 16 (Aug. 1973), 
482-483] 

Jifi Klemes and Jaroslav Klemsa (Recd. 14 Nov. 1973) 
Applied Mathematics Department, Research Institute of 
Chemical Equipment, CHEPOS, Brno, Czechoslovakia 

After correcting misprints [1] this algorithm runs successfully 
using an ODRA 1204 computer made by ELWRO, Poland. The 
results were the same as reported by authors. Some successful tests 
have been also made in optimization problems concerning the Wil
liams-Otto chemical plant [2]. It can be se(~n from the solution of 
some application problems [3] that it is very useful to select different 
step lengths in different coordinate directions. 

Therefore, we recommend replacement of the third and fourth 
line in the subroutine ROMJN: 

REAL STEP 
DIMENSION X(N) 

by 

DIMENSION X(N), STEP(N) 

and the line before label 10 

E(I) =STEP 

by 

E(I) = STEP(I) 

In addition we recommend that the lines between labels 220 and 260 

be replaced by the lines: 

220 CONTINUE 
DO 240 K =l,IP 

AV(K)=O.O 
DO 230 L=l,N 

450-P 3 · RI 

AV(K) = A V(K) + ALPHA(P,L) * V(K,L) 
230 CONTINUE 
240 CONTINUE 

DO 260 J=l,N 
DO 250 K = l,IP 

BETA(J) = BETA(J) - AV(K) * V(K,J) 
250 CONTINUE 

BETA(J) = BETA(J) + ALPHA(P,J) 
BETY = BETY + BETA(J)**2 

260 CONTINUE 

Although, this change does not reduce the number of function 
evaluations, in each Gram-Schmidt step some computer time may 
be saved. This is caused by the difference between the number of 
executions of the statement AV(K) = AV(K) + ALPHA(P, L) * 
V(K, L) in the original program and the suggested modification 

which may be estimated as N(N - 1) L~-2 (P - 1), whereas for 

the statement AV(]()= 0.0, this difference is (N- o:L:_2 (P - 1). 
(Note that N is the number of independent variables.) 

References 
1. Bultheel, A. Remark on Algorithm 450. Comm. ACM 17, 8 
(Aug. 1974), 470. 
2. Williams, T.J., and Otto, R.E. A generalized chemical 
processing model for the investigation computer control. A.l.E.E. 
Trans. 79, P. 1, Communications and Electronics, (1960), 458-473 
3. KlemeS, J., and Vasek, V. Methods for optimizing complex 
chemical processes. In Proc. 2nd Symp. on Use of Computers in 
Chemical Engineering, CVTS, Ustinad Labem, Czechoslovakia, 
Sept. 1973, pp. 0 84-0 102 

ACM Transactions on Mathematical Software, Vol. 2, No. 3, September 1976. Pages 300-301 

REMARK ON ALGOR:ITHM 450 

Rosenbrock Function Minimization [E4] 
[M. Machur and A. Mulawa, Comm. ACM. 16, 8 (Aug. 1973), 482-483] 

Alan M. Davies [Recd 20June1975 and 3 Dec. 1975] 
Institute of Oceano1~raphic Sciences, Bidston Observatory, Birkenhead, Cheshire, 
L43 7RA, England. 

The algorithm, incorporating the corrections given in [1], was compiled using the 
Fortran H compiler OPT= 2, and run on an IBM 370/165 computer in single pre
cision. The test problem given by the authors gave a function value of 0.29923 -10-4 

at (0.99512, 0.99051), after 200 function evaluations, and a minimum of 0.38379· 
10-s was obtained at (0.99994, 0.99988), after 240 evaluations. 

In problems with a large number of variables, the Schmidt orthogonalization 
process can be affected by numerical errors1 producing a set of vectors which are 
only approximately orthogonal, and this can increase the number of function 
evaluations required to reach a minimum. 

The orthogonalization of the basis can be enhanced by using the improved Gram-
Schmidt procedure, together with a few re-orthogonalizations. These changes are 
readily incorporated into ROM IN by replacing the coding following statement 
210 through statement 280 with: 



COLLECTED ALGORITHMS (cont.) 

DO 300 JCYC = l,NCYC 
DO 250 P=2,N 
IP=P-1 
DO 230 M=P,N 
BETY=O.O 
DO 220 K=l,N 

220 BETY=BETY-ALPHA(M,K)*V(IP,K) 
DO 230 J=l,N 

230 ALPHA(M,J) = ALPHA(M,J) +BETY *V(IP,J) 
BETY=O.O 
DO 240 K=l,N 

240 BETY =BETY +ALPHA(P,K)**2 
BETY =SQRT(BETY) 
DO 250 K=l,N 

250 V(P,K) =ALPHA(P,K)/BETY 
IF(JCYC.EQ.NCYC) GO TO 300 
DO 3021=2,N 
DO 302 J=l,N 

302 ALPHA(I,J) = V(I,J) 
300 CONTINUE 

Since the arrays AV and BETA are no longer required (a slight saving of core), 
the DIMENSION statement becomes 

DIMENSION A(30), D(30), V(30,30), ALPIIA(30,30), E(30) 

with the variable NCYC, which determines the number of re-orthogonalizations, 
being incorporated into the argument list of ROMIN. 

In problems with four or less variables, this coding did not improve the result. 
However, in an f'xtension of Rosenbrock's problem [2], 

n-1 

.f(x1, x2, ... , x,.) = L lOO(xi+1 - Xi:
2

)
2 + (1 - xi) 2 

i=!,2 

(where ·i = 1,2 indicates that i increases in increments of 2), for N = 6 starting at 
(0.5, 1.5, 0.6, 1.4, 1.7, 0.3) using this improved Gram-Schmidt procedure, with two 
re-orthogonalizations, a function value of 0.11241·10-3 at (1.00150, 1.00308, 
L.00933, 1.01877, 0.99559, 0.99136) was obtained after 1000 function evaluations 
compared with 0.11296· 10-2 produced by the original program plus corrections [l]. 

For N = 12, after 1300 evaluations the re-orthogonalized (NCYC = 3) calculation 
gavef = 0.10871 · l0-2 compared with 0.17160 · l0-2 (NCYC = 1, no re-orthogonaliza
tion), and after 2600 evaluations the results wf'fe 0.57029 .10-4 (NCYC = 1) and 
0.75086·10-5 (NCYC=3). The original program gave 0.15628·10-3 compared with 
tlw abow vahw of 0.57029 .10--4 produced by using thf' improwd Gram-Schmidt 
JH'OCPdurP almw. HmYf'VPr, using thf' original program but incorporating just the 
code for re-orthogonalizing a valuf' of 0.73922·10-5 (NCYC=3) was ohtainf'd, 
illustrating the improvement to be gained by just rP-orthogonalization. 

The method was also tested on an extension of Box's problem [3] using 18 vari
ables. The original program calculated a minimum of 0.40310· l0-3 ; however, by 
incoroorating the changes given above a minimum of 0.48176 .1()-4 was obtained. 

REFERENCES 

1. BvLTHEEL, A. Remark on Algorithm 450. Cornm. ACM 17, 8 (Aug. 1974), 470. 
2. RosENBROCK, H.H. An automatic method for finding the greatest or least value of a function. 

Cornvuter J. 3 (1960), 175-184. 
3. Box, M.J. A comparison of several current optimization methods and the use of transforma

tions in constrained problems. Computer J . . 9 (1966), 67-77. 

450-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 451 

Chi-Square Quantiles [G 1] 
Richard B. Goldstein lRccd. 30 June 1971 and 20 
March 1972] 
Department of Mathematics, Providence College, 
Providence, R.I. 

Key Words and Phrases: Chi-square statistic, asymptotic 
approximation, normal deviate, chi-square deviate, degrees of 
freedom 

CR Categories: 5.12, 5.5 
Language: Fortran 

Description 
The algorithm evaluates the quantile at the probability level 

P for the Chi-square distribution with N degrees of freedom. 'The 
quantile function is an inverse of the function 

P(X IN) = (2Nf'!.r(N/2))-1 f00 z~N-le-~Z dZ (x 2:: 0, N 2:: 1). 
X(P) 

The function GAUSSD(P) is assumed 1.o return the normal 
deviate for the level P, e.g. -1.95996 for P = .025. The proce
dure found in Hastings [5] may be used, or for increased accuracy, 
the procedure found in Cunningham [3] may be used. 

The Wilson-Hilferty cubic formula [7 J which is 

x2 ,.._,,NI1 - 2/9N + X (2/9N)!j 3 

where X is the normal deviate can be extended to the 19-term 
asymptotic approximation: 

x2 ~Nil - 2/9N + (4X4 +16X2-28)/1215N2 

+ (8x~+nox4+3216x2+2904)/229635N" + ... 
+ (2/N)![X/3 + (-X"+3X)/l62N 
- (3X'+40X3 + 45X)/5832N2 

+ (301X7 -l519X5 -32769X"-79349X)/7873200N~ +···Ji" 
where X is the normal deviate by taking the cube root of the pol)
nomial expansion in Campbell [2j. For N = 1 

x 2 = IGAUSSD(!P)l 2 

and for N = 2 

x2 = -2 ln (P). 

For 2 < N < 2 + 41 X j, x2 was fit with polynomials of the same 
form as the asymptotic approximation: 

x2 ==:NI (1.0000886-.2237368/N-.01513904/N2) 

+ N-!X(.4713941 +.02607083/N- .008986007 /N 2) 

+ N-1x2 (.0001348028+.0l 128186/ N + .02277679/ N 2) 

+ N-3 ' 2X3(- .008553069- .01153761/N- .01323293/N2) 

+ N-2X4(.00312558+.005169654/N- .00695035.6/N2) 

+ N-5 ' 2X5 ( - .0008426812+ .00253001 / N + .001060438/ N 2 ) 

+ N-3 X 6 (.00009780499- .001450117 IN+ .001565326/ N 2) l" 
from Abramowitz and Stegun [ 11 for P = .0001, .0005, ... , .995 
and Hald and Sink.back l4J for P = .999, .9995. The deviates 
for N = 3, 4, ... , 9 were made accurate within 10 6 by using 
Algorithm 299 of Hill and Pike \6]. 

451-P 1- 0 

Fig. I 

l 

I.I) 

~ 10 1 r-~--t-----f----'lir-t--+-+---+-·-+-~-+-~-+;:::f 
~ 

O') 

i 
'!! 1 0~2 1-----l--+--t--+-~:14----+-¥+--+---+--I 
0 
0 

~ 

z 10-31------it---t---i-\-t~-+~~~~-·-+-~+-~-+-~ 0 

Q:: 

0 

Q:: 10·4i--~--it---t---t-+~-+--+-~--t--·-+-'Y'l''o2--~-+-~ Q:: 

LI.I 

:E 
~ 10 5 ...._~-+--4---1-~~--+-~ 
:E 

>< 
c 
:E l o- 6''------',___~__..___.. _ ___..___... __ ~_._.__~ __ __,.__ _ _, 

Fig. 2 

I.I) 

O') 

O') 

O'). 

t! 
V1 

1 3 4 5 8 10 20 30 50 80 100 

DEGREES OF FREEDOM 

~ 10- 1 1---~~l---+~~~~~t::--~-1~·-r~-;-~-;--, 
0 
0 
o. 
z 
0 

Q:: 
0 
ac: 
ac: 
..... 
..... 
> 
.... 
c .... .... 
ac: 

>< 
c 
~ 

4 5 A 10 20 30 50 00 100 

DEGREES OF FREEDOM 



COLLECTED ALGORITHMS (cont.) 

For N = 1 and N = 2 the . x2 deviate is as accurate as the 
GAUSSD and ALOG procedure of the system. For .0001 :::; P:::; 
.9995 and N ;:.:::: 3 the absolute error in x2 is less than .005 and the 
relative error is less than .0003. This is some 100 to 1000 times as 
accurate as the Wilson-Hilferty formula even for large N. Error 
curves for three approximations are shown in Figures 1 and 2. 

The program was tested on an IBM/360 at Rhode Island Col
lege and r-esulted in the output of Table I. 

Table I. 
Table of Computed Values 

Deg. 
Fr. 0.9995 0.9950 0.5000 0.0010 0.0001 

1 0.000000 0.000039 0.454933 10.827576 15.135827 
2 0.001000 0.010025 1.386293 13 .815512 18.420670 
3 0.015312 0.071641 2.365390 16.268982 21.106873 
4 0.063955 0.206904 3.356400 18.467987 23.510040 
5 0.158168 0.411690 4.351295 20.515503 25.744583 

I 0 I .264941 2.155869 9.341794 29.589081 35.565170 
15 3 .107881 4.601008 14.338853 37.697662 44.267853 
20 5.398208 7.433892 19.337418 45.314896 52.387360 
50 23.460876 27.990784 49.334930 86.660767 95.969482 

100 59.895508 67.327621 99.334122 149 .449051 161.319733 

References 
1. Abramowitz, M., and Stegun, I. (Eds.) Handbook of 
Mathematical Functions, Appl. Math. Ser. Vol. 55. Nat. Bur. 
Stand., U.S. Govt. Printing Office, Washington, D.C., 1965, 
pp. 984-985. 
2. Campbell, G.A., Probability curves showing Poisson's 
exponential summation. Bell Syst. J. 2 (1923), 95-113. 
3. Cunningham, S.W. From normal integral to deviate. In 
Applied Statistics. Vol. 18, Royal Statis. Soc., 1969, pp. 290-293. 
4. Hald, 0.0., and Sinkbaek, 0.0. Skandinavisk Akturarie
tidskrift (1950), 168-175. 
5. Hastings, C. Jr. Approximations for Digital Computers. 
Princeton U. Press, Princeton, N.J., 1958, p. 192. 
6. Hill, 1.0., and Pike, M.C. Algorithm 299, Chi-squared in
tegral. Comm. ACM, JO, 4 (Apr., 1967), 243-244. 
7. Hilferty, M.M., and Wilson, E.B. Proc. Nat. Acad. Sci., 
17 (1931), 684. 
8. Riordan, J. Inversion formulas in normal variable mapping. 
A1111a/s of Math. Statist. 20 (1949), 417--425. 

Algorithm 
FUNCTI0N CHISQD<P• N> 
DIMENSI0N C<21>• ACl9> 
DATA C<l>/l 0 565326E-3/~ CC2>/l.060438E-J/, 

* C<3>/-6.950356E-3/, CC4>/-l.323293E-2/, 
* C<S>/2.277679E-2/, CC6)/-8.986007E-J/, 
* CC7>/-1°513904E-2/, C<8>/2.530010E-J/, 
* CC9)/-t.450117E-3/, CCl0)/5.t69654E-J/, 
* CCll>/-l.153761E-2/, CCl2>/l.128186E-2/• 
* CCl3)/2.607083E-2/. cci4>/-0.2237368/· 
* C<IS>/9.780499E-5/, CCl6>/-8.426812E-4/, 
* CCl7)/3.J25580E-J/, CCl8)/-8.553069E-3/• 
* CCl9)/l.348028E-4/• CC20)/0.4713941/• CC21>/t.0000886/ 

DATA ACl>/l.264616E-2/, AC2)/-l·425296E-2/, 
* AC3)/I o400483E-2/• AC4)/-5o886090E-3/. 
* AC5>/-lo091214E-2/• AC6)/-2.304527E-2/• 
* AC7)/3ol35411E-3/• AC8>/-2•728484E-4/• 
* AC9)/-9o699681E-3h ACl0)/J .316872E-2h 
* ACll)/2.618914E-2/, ACl2)/-0.2222222/, 
* ACl3>/5.406674E-5/, ACl4)/3.483789E-5/• 
* ACl5>/-7.274761E-4/• ACl6)/J,292181E-3/• 
* AC17>/-8.729713E-3/, ACl8)/Q.4714045/, AC19>/l./ 

IF CN-2> 10. 20. 30 
10 CHISQD GAUSSDC.5•P> 

CHISQD CHISQD*CHISQD 
RETURN 

20 CHISQD -2.•AL0G<P> 
RETURN 

30 F' = N 
Fl = I ./F 
T = GAUSSD<l·-P> 
F2 = SQRTCF'l>•T 
IF CN.GE.C2+INT<4·•ABSCT>>>> G0 T0 40 
CHISQD=<<<CCCCC<l>•F'2+C(2>>•F2+CC3>>*F'2+CC4>>•F'2 

451--P 2- RI 

* +CC5>>•F'2+CC6>>•F'2+CC7>>*Fl+<<<<<CC<8>+CC9>*F'2>*F2 
* +CCIO>>•F2+CCll>>•F2+CCl2>>*F'2+CC13>>*F'2+CC14>>>*F'l + 
* <<<<<C<l5>•F2+CCl6>>*F'2+CCl7>>*F2+CC18>>•F2 
* +CCl9>>,..,.2+CC20>>•F'2+CC21> 

G0 T0 50 
40 CHISQD=<<<A<l>+AC2>•F2>•Fl+CCCA<3>+A<4>•F2>•F2 

* +AC5>>•F2+AC6>>>•Fl+CCCCCAC7>+A<8>*F2>•F2+AC9>>•F'2 
* +AClO>>•F2+ACll>>•F2+AC12>>>•F'l + <<<<<AC13>•F2 
* +ACl4>>•F2+AC15>>•F2+AC16>>*F'2+ACl7>>*F'2•F2 
* +AC18>>*F2+A<19> 

50 CHISQD = CHISQD*CHISQD*CHISQD*F' 
RETURN 
END 

Certification of Algorithm 451 [Gl] 
Chi-Square Quantiles [Richard B. Goldstein, Comm. 
ACM (Aug. 1973), 483-484] 
William Knight [Recd 26 Nov. 1973] 
Department of Computer Science 
University of New Brunswick* 

The algorithm was tested for degre4!S of freedom, N = 3 (1) 
5 (5) 25 (25) 100, and tail probabilities, P, of 

.00010 .0010 .010 .10 .80 .980 .9980 
·00015 .0015 .015 .15 .85 .985 .9985 
·00020 .0020 .o20 .20 .90 .990 .9990 
·00030 .0030 .030 .30 .93 .993 .9993 
·00050 .0050 .050 .50 .95 .995 .9995 
·00070 .0070 .070 .70 .97 .997 

The descriptive text of the algorithm claimed absolute error 
no more than 0.005 and relative error no more than 0.0003 for 
0.0001 :::; P ~ 0.9995; the values of P listed above were chosen to 
cover this domain. 

The largest absolute error found on the above grid was 0.0059 
at N = 3, P = 0.0003; a finer scale search nearby uncovered an 
erro1 of 0.0062 at N = 3, P = 0.00031. The largest relative error 
found on the grid was 0.0035 at N = 3, P = 0.9985; this being 
an order of magnitude more than the figure claimed, I conjecture 
a typographical error, especially as the table of computed values 
accompanying the algorithm lists 0.071641 for N = 3, P = 0.9950 
which has a relative error exceeding 0.001. 

The remainder of this note describes computational details. 
Testing was done using the Watfiv compiler on an IBM 370/ 

165 at the University of Toronto. 
The following changes were made in the data statements. ( l) 

Since the Watfiv compiler will not acc:ept a representation of a 
number consisting of more than seven digits (including, it seems, 
leading zeros) as a short real constant, C(J.4), C(20), C(21), A(l2) 
and A(18) were rejected by the compiler. This was easily circum
vented by changing these representations to "E" form. (2) The two 
long data statements were broken into several shorter data state
ments to simplify detection and correetion of punching errors. 
(Moreover, some compilers will not accept nine continuation 
cards!) 

For the inverse normal distribution function subroutine, 

*On sabbatical leave to Mathematics Department, University 
of Toronto, 1973-74. 



COLLECTED ALGORITHMS (co111t.) 

GAUSSD, formula 26.2.23 of Abramowitz and Stegun [I] was 
used, followed by two Newton-Raphson iterations in double 
precision, the normal distribution function needed being con
structed from the DERFC (complimentary error function) which is 
included in Watfiv. This should give accuracy to single precision; 
spot checks against tables in Abramowitz and Stegun [I] bore this 
out. 

The actual testing procedure was this: From a given N and P, 
CHISQD computed a chi-square value. To establish the correct 
value with which to compare this, it was refined by a single Newton 
Raphson iteration. A rather free Fortran translation of Algorithm 
299 [2] was used to compute the chi-square integral. (Algorithm 299 
should be: accurate to the limit set by word length and the square 
root, exponential, logarithm and error function routines.) Where 
possible corrected chi-square values were checked against table 
26.8 of Abramowitz and Stegun [I], agreement to at least three 
places after the decimal point or four significant·figures, whichever 
was more stringent, being found in all cases. 

References 
l. Abramowitz, M., and Stegun, I. (Eds) Handbook of Mathe
matical Functions. Appl. Math. Ser. Vol. 55. Nat. Bur. Stand., U.S. 
Gov. Print. Off., Washington, D.C., 1965. 
2. Hill, I.D., and Pike, M.C., Algorithm 299, Chi-squared inte
gral. Comm. ACM. 10, 4 (Apr., 1967), 234-244. 

451-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 452 

Enumerating Combinations 
of m Out of n Objects [G 6] 
C.N. Liu and D.T. Tang [Recd. 7 July 1971 and 
1 May 1972] 
IBM Thomas J. Watson Research Center, Yorktown 
Heights, NY 10598 

Key Words and Phrases: permutations, combinations 
CR categories: 5.30 
Language: Fortran 

Description 
NXCBN can be used to generate all combinations of m out of 

11 objects. Let the binary 11-vector of ml 's and (11 - m) O's repre
senting a combination of m out of /1 objects be stored in an in
teger array, say /C(11). If NXCBN (11, m, IC) is called, a binary 
vector representing a new combination is made available in the 
array IC(11). If NXCBN (11, m, IC) is called (::,) times successively, 
then all combinations will be generated. 

The algorithm has the following features; (a) each output 
binary 11-vector differs from the input at exactly two positions
consequently each generated combination differs from the pre
vious one by a single object: (b) the 11-vectors generated by this 
subroutine form a closed loop of (:;,) elements--therefore the ini
tial combination may be specified arbitrarily, and the enumeration 
of any subset of (;:.) combinations can be readily achieved. The 
second feature is not found in Chase's algorithm l l]. 

The algorithm underlying this procedure is based upon our 
study of properties of Gray codes. It can be shown that constant 
weight code vectors from a Gray code sequence are separated by a 
Hamming distance of 2. The mathematical analysis is contained 
in 12] and 13]. 

References 
l. Chase, P.J. Algorithm 382, Combinations of m out of 11 

objects. Comm. ACM 13 (June 1970), 368. 
2. Tang, D.T., and Liu, C.N. On enumerating /11 out of /1 

combinations with minimal replacements. Proc. of Fifth 
Ann. Princeton Conf. on Info. Sci. and Sys., Mar. 1971. 
3. Tang, D.T., and Liu, CN. Distance-Two Cyclic Chaining 
of Constant-Weight Codes. JEEETC. C-22, 2 (Feb. 1973), 176-180. 

Algorithm 
SUBR0UTINE NXCBN<N• M, IC> 

C EXPLANATI0N 0F THE PARAMETERS IN THE CALLING SEQUENCE 
C N THE T0TAL NUMBER 0F 0BJECTS 
C M THE NUMBER 0F 0BJECTS T0 BE TAKEN FR0M N 
C IF M=O• 0R M>=N. EXIT WITH ARGUMENTS UNCHANGED 
C IC AN INTEGER ARRAY. IC C0NTAINS AN N-OIMEN-
C SI0NAL BINARY VECT0R WITH M ELEMENTS SET T0 I 
C REPRESENTING THE M 0BJECTS IN A C0MBINATI0N 
C THIS ALG0RITHM IS PR0GRAMMED IN ANSI STANDARD F0RTRAN 

INTEGER IC<N> 

C CHECK ENDING PATTERN 0F VECT0R 
IF CM.GE.N .0R. M.EQ.O> G0 T0 140 
NI = N - I 
D0 10 J=l,Nl 

NJ = N - J 
IF <ICCN>·EQ.ICCNJ>> G0 T0 10 
JI = J 
G0 T0 20 

10 CONTINUE 
20 IF CM0DCM12>.EO.l> G0 T0 90 

C F!iJR M EVEN 
IF CICCN>.EO.l> G0 T0 30 
Kl = N - JI 
K2 = Kl + l 
G0 T0 130 

30 IF CM0DCJl,2>·EQ.l> G0 T0 4C 
G0 T0 120 

C SCAN FR0M RIGHT T0 LEFT 
40 JP= CN-Jl> - I 

c 

D0 SO I= I 1 JP 
I l = JP + 2 - I 
IF CICCil>.EO.O> G0 T0 SO 
IF <IC<Il-l>·EO·l> G0 T0 70 
G0 T0 80 

SO C0NTINUE 
60 Kl = I 

K2 = CN+I) - M 
G0 T0 130 

70 Kl = I l - I 
K2 = N - JI 
G0 T0 130 

80 Kl = II - I 
K2 = CN+ I> - JI 
G0 T0 130 

F0R M 0DD 
90 IF C ICC N > • EQ • l > G0 T0 110 

K2 = CN-Jl) - l 
IF CK2.EQ.O> G0 T0 60 
IF CICCK2+1>.EQ.I .AND· IC0<2>.EQ-1> 
Kl = K2 + l 
G0 T0 130 

l 00 Kl = N 
G0 T0 130 

110 IF CM0DCJ1,2>.EQ.I> G0 T0 120 
G0 T0 40 

120 K 1 = N - J 1 
K2 = MINOCCKl+2>1N> 

452-P 1- 0 

G0 T0 100 

C C0MPLEMENTING TW0 BITS T0 0BTAIN THE NEXT C0MBINAT10N 
130 ICCKl> I - ICCKI> 

ICCK2> = I - ICCK2> 
1 40 RETURN 

END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 453 

Gaussian Quadrature 
Formulas for Bromwich's 
Integral [DI] 
Robert Piessens [Recd. 2 Aug. 1970 and 8 Feb. 1972] 
Applied Mathematics Division, University of Leuven, 
Heverlee, Belgium 

Key Words and Phrases: Gaussian quadrature, Bromwich's 
integral, complex integration, numerical inv1ersion of the Laplace 
transform 

CR Categories: 5.16, 5.13 
Language: Fortran 

Description 
BROMJN calculates the abscissas x:,··> and weights wk·'> of the 

Gaussian quadrature formula 

(I) 

where c is an arbitrary real positive number, .1· is a real nonnegative 
parameter, and F(x) must be analytic in the 1right-half plane of the 
complex plane. 

Abscissas xi•) and weights wi·•> are to be determined so that (I) 

is exact whenever F(x) is a polynomial in .c1 , of degree ~2N - I. 
The abscissas xi•> are the zeros of PN,,(.c1) where . 

u). (2) 

Properties of PN,s(u) are studied in jlj. 
The quadrature formulas of even order have no real abscissas; 

those of odd order have exactly one real abscissa. All the abscissas 
have positive real parts and occur in complex conjugate pairs. 

The zeros of (2) are calculated using Newton-Raphson 's 
method. Finding an approximate zero as starting value for the 
iteration process is based on a certain regularity in the distribution 
of the zeros (see [I] and [2]). The starting values, used by BROMJN 
were tested for s = 0.1 (0.1)4.0 and N = 4(1) 12. Each abscissa 
was found to at least eight significant figures in at most six iteration 
steps. 

The weights are given by 

Ak = (-l)s- 1 ~-·(N - 1)_! ____ [2N_±__s-=-/]- (J) 
r(N + s - l)Nxk2 PN-1.,(x'k) 

The polynomial (2) is evaluated by a three•term recurrence rela
tion (see [I]). Due to roundoff errors, the accuracy of abscissas 
and weights decreases significantly for increasing N. In Table I 
we give for some values of sand N the moduli of the relative errors 
in the abscissas and weights, calculated by BROMJN (with TOL = 
0.1£ - 10) on an IBM 370 computer in double precision (approxi
mately 16 significant figures). For comparisorn we used the 16 - S 
values given in (3]. 

Note that the relative errors in the weights are larger than in 
the abscissas. 

The use of complex arithmetic is avoided in BROMJN in 
order to facilitate the conversion to a double precision subroutine. 

453-P 1- 0 

Table I. Maximum Relative Errors in Abscissas and Weights 

Maximum error in Maximlllm error in 
abscissas weights 

s N = 6 N = 12 N = 6 N 12 
-~---~-

0.] 1.8 x 10-13 1. 7 x 10-9 1.2 x 10-13 2.3 x 10-s 
1.0 1.9 x 10-14 5.3 x 10-11 1.5 x 10--14 6.4 x 10--10 
4.0 1. 3 /.. 10-15 2.3 x 10-12 1.0 x 10-14 4.3 x 10-11 

References 
1. Piessens, R. Gaussian quadrature formulas for the numerical 
integration of Bromwich's integral and the inversion of the Laplace 
transform. J. Eng. Mat/1. 5 (Jan. 1971), 1-9. 
2. Piessens, R. Some aspects of Gaussian quadrature formulas 
for the numerical inversion of the Laplace transform. Compur. 
J. 14 (Nov. 1971), 433-435. 
3. Piessens, R. Gaussian quadrature formulas for the numerical 
integration of Bromwich's integral and the inversion of the 
Laplace transform. Rep. TWI, Appl. Math. Div. U. of Leuvcn, 
1969. 

Algorithm 
SUBR0UTINE BR0MINCN, s, T0L1 XR• XI, WR. l~l• EPS. !ER> 
D0UBLE PRECISl0N AK. AN, ANG. Cl• CR. D. DI• D2• E• EPS• 

* F'AC. F'AC.TI1 F'ACTR• PI, PR. QI, QR, RI1 RI~. s, Tl. T21 
* T0L1 U1 V1 WI, WR1 XI, XR, YI, YR, Z 

INTEGER IER1 J, K1 L1 N1 NI. NUM1 NUP1 IGNAL 
DIMENSl0N XRCNl. XICNl. WR<N>, WI<N> 

C THIS SUBR0UTINE CALCULATES ABSCISSAS AND WEIGHTS 0F' THE 
C GAUSSIAN QUADRATURE F'0RMULA 01' 0RDER N F'0R THE BR0MWICH 
C INTEGRAL· 0NLY THE ABSCISSAS 01' THE F'IRST QUADRANT 0F' 
C THE C0MPLEX PLANE, THE REAL ABSCISSA <IF N IS 0DD> AND 
C THE C0RRESP0NDING WEIGHTS ARE CALCULATED· THE 0THER 
C ABSCISSAS AND WEIGHTS ARE C0MPLEX C0NJUGATES. 
C INPUT PARAMETERS 
C N 0RDER 0F' THE QUADRATURE 1'0RMULA· 
C N MUST BE GREATER THAN 2. 
C T0L REQUESTED RELATIVE ACCURACY 01' THE ABSCISSAS. 
C S PARAMETER 01' THE WEIGHT l'UNCTI0N. 
C 0UTPUT PARAMETERS 
C XR AND XI C0NTAIN THE REAL AND IMAGINARY PARTS 0F' 
C THE ABSCISSAS· IF' N IS 0DD• THE REAL. ABSCISSA 
C IS XRCI>. 
C WR AND WI C0NTAIN THE REAL AND IMAGINARY PARTS 0F' 
C THE C0RRESP0NDING WEIGHTS. 
C EPS IS A CRUDE ESTIMATI0N 0F' THE 0BTAINED RELATIVE 
C ACCURACY 0F' THE ABSCISSAS. 
C IER IS AN ERR0R C0DE. 
C IF' IER•O THE C0MPUTATI0N IS CARRIED 0UT T0 
C THE REQUESTED ACCURACY. 
C IF' IER.GT.O THE IER-TH ABSCISSA IS N0T 1'0UND. 
c IF IER=-1 THE C0MPUTATI0NS ARE CARRIED 0UT. 
C BUT THE REQUESTED ACCURACY IS N0T 
C ACHl EVED· 
C IF' IER=-2 N IS LESS THAN 3. 
C l'UNCTI0N PR0GRAMS REQUIRED 
C F'UNCTI0N GAMMACXl WHICH EVALUATES THE GAMMA 
C F'UNCTI0N F'0R P0SITIVE x. 

IER = -2 
IF' <N·LT.3> RETURN 
NI = <N+l l/2 
L " N - 1 
AN " N 
IER = 0 
EPS " T0L 
ARG = 0·034DO•C30.DO+AN+ANl/CAN-1.DOl 
F'ACTR = DC0SCARG> 
F'ACTI = DSINCARG> 
F'AC=l·DO 
AK • O.DO 
D0 10 K=l1L 

AK= AK + 1.DO 
F'AC = - F'AC•AK 

10 C0NTINUE 
F'AC = F'AC•C AN+AN+S-2 •DO l ••2/C AN•DGAMMAC AN+!)- 1 • DO>> 

C CALCULATI0N 0F' AN APPR0XIMATI0N 0F' THE F'IRST llBSCISSA 
YR= 1·333DO•AN + s - 1.sDO 
YI = o.ODO 
IF' CN-Nl-Nll 30. 20. 20 

20 YI= YI + 1.6DO + 0.07DO•S 
C START MAIN L00P 

30 D0 140 K=l1Nl 
E = T0L 
IGNAL 0 
NUM 0 
NUP = 0 



COLLECTED ALGORITHMS (cont.) 

C NEWT0N-RAPHS0N METH0D 
D = YR•YR + YI•YI 
YR = YR/D 
YI = -YI/D 
G0 T0 50 

40 IGNAL = I 
50 QR • S•YR - I •DO 

QI • 'S•YI 
PR • CS+l .DO>•CCS+2.DO>•CYR•YR-Y1*YI>·2·DO•YR> + I oDO 
PI • 2•DO•< S+ l •DO> •YI•< c S+2 • DO>•YR-1 •DO> 
z • 2.DO 
00 60 J=3.N 

RR ,. QR 
RI • QI 
QR '" PR 
QI • PI 
z • z + 1.Do 
u • z + s - 2oDO 
v .. u + z 
D = CV•YR+c2.oo-S>/CU-2.oo>>/U 
DI cz-1.DO>•V/CU•cv-2.DO>> 
D2 : V•Yl/U 
PR~ cv-1.DO>•CQH•D-OI•D2> + Dl•RR 
PI = cv-1.DO>•<QI•D+OR•D2> + Ol•RI 

60 C0NTI.NUE 
IF ClGNAL.EO·I> G0 T0 100 
D = CYR•YR+YI•YI>•V 
DI= CCPiHOk>•YR+CPl+Ql>•YI>/O +PR 
02 = ·CCPI+QI>•YR-CPR+QN>•YI>/O +PI 
lJ = COl•Dl+02•02>•AN 
Tl PR•YR - PI•Yl 
T2 PI•YR + PR•YI 
CR CTl•Ol+T2•02l/D 
Cl CT2•01-Tl•D2>/D 
YR YH - CR 
YI YI - Cl 
NUM • NUM + I 

TEST 0F C0NVERGENCE 0F ITERATI0N PR0CESS 
IF CCR•CR+Cl•CI-E•E•CYR•YR+YI•YI>> 40• 40. 70 

TEST 0F NUMBER 0F ITERATI0N !>TEPS 
70 IF CNUM-10> SO, SO, 60 
80 E = E•IO·OO 

IER '! -1 
NUP = NUP + I 
IF CNUP-S> SO. SO, 90 

90 I ER = K 
RETURN 

CALCULATI0N 0F WEIGHTS 
100 IF CEPS.GE.E> G0 T0 110 

EPS = E 
110 0 = <OR•OR+Ql•OI>•*2 

DI = YR•QR + Yl•Ol 
02 = YI•Qf< - YR•OI 
WRCK> = FAC•COl•Ol-D2•02>1D 
wICKl = 2.DO•FAC•D2•Dl/O 
D = YR•YR + Yl•YI 
Xt<CK> = YR/D 
XICKI = -Yl/D 
IF CK+l-NI> 130, 120• ISO 

120 FAC TR = DC0S C I • SDO•ARG > 
FACT! = DSINCl·SDO•AHG> 

C CALCULATl0N 0F AN APPR0XIMATl0N 0F THE CK+! >-TH ABSCISSA 
130 YR= CXHCK>+0.67DO•AN>•FACTR - XICK>•FACTI - Oo6700•AN 

YI = CXRCK>+0.67DO•AN>•FACTI + XICK>•FACTR 
140 C0NTINIJE 
150 RETURN 

END 

453-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 454 

The Complex Method for 
Constrained Optimization [E4] 
Joel A. Richardson and J.L. Kuester* !Rec'd. Dec. 22, 
1970and May5, 1971] 
Arizona State University, Tempe, AZ 8528 l 

Key Words and Phrases: optimization, constrained 
optimization, Box's algorithm 

CR Categories: 5.41 
Language: Fortran 

Description 
Purpose. This program finds the maximum of a multivariable, 

nonlinear function subject to constraints: 

Maximize 
Subject to 

F(X1, x~, ... , xN) 
Gk S Xk S Hk, k = I, 2, ... , M. 

The implicit variables XN+i, ... , XM are dependent functions of 
the explicit independent variables Xi , x~ , ... , X.v . The upper 
and lower constraints H1. and Gk are either constants or functions 
of the independent variables. 

Method. The program is based on the "complex" method of 
M.J. Box 12]. This method is a sequential search technique, which 
has proven effective in solving problems with nonlinear objective 
functions subject to nonlinear inequality constraints. No deriva
tives are required. The procedure should tend to find the global 
maximum because the initial set of points is randomly scattered 
throughout the feasible region. If linear constraints are present or 
equality constraints are involved, other methods should prove to 
be more efficient 1 J j. The algorithm proceeds as follows: 
(I) An original "complex" of K ~ N + 1 points is generated 
consisting of a feasible starting point and K -- 1 additional points 
generated from random numbers and constraints for each of the 
independent variables: X1.i = G, + r1.i(H; -- G1), i = 1, 2, ... , 
N, and j = I, 2, ... , K - 1, where r;,i are random numbers be
tween 0 and 1. 
(2) The selected points must satisfy both the explicit and implicit 
constraints. Jf at any time the explicit co11straints are violated, 
the point is moved a small distance o inside the violated limit. If 
an implicit constraint is violated, the point is moved one half of the 
distance to the centroid of the remaining points: X;,i(new) = 

(X,,i(old) + X;,c)/2, i = 1, 2, ... , N, where the coordinates 
of the centroid of the remaining points, J:,.,c, are defined by 

~\' 1 .c = - I_ [± X1.j - X;,j(old)J, i = 1, 2, ... , N. 
K -- 1 i=l 

* The authors acknowledge financial support from a National 
Science Foundation summer fellowship and Arizona State Uni
versity Grants Committee fellowship. Computer facilities were 
provided by the Arizona State University Computer Center and 
AiResearch Manufacturing Company. 

454-P 1- 0 

This process is repeated as necessary until all the implicit con
straints arc satisfied. 
(3) The objective function is evaluated at each point. The point 
having the lowest function value is replaced by a point which is 
located at a distance a times as far from the centroid of the re
maining points as the distance of the rejected point on the line 
joining the rejected point and the centroid: 

X1.1(new) = a(A;,c - X;,j(Old)) + ..\\c, i = 2, ... , N. 

Box l2J recommends a value of a = 1.3. 
(4) If a point repeats in giving the lowest function value on con
secutive trials, it is moved one half the distance to the centroid of 
the remaining points. 
(5) The new point is checked against the constraints and is ad
justed as before if the constraints are violated. 
(6) Convergence is assumed when the objective function values 
at each point are within {:J units for 'Y consecutive iterations. 

Program. The program consists of three general subroutines 
(JCONSX, JCEK1, JCENT) and two user supplied subroutines 
(JFUNC, JCNSTI). The use of the program and the meaning of 
the parameters are described in the comments at the beginning of 
subroutine JCONSX. All communication between the main 
program and subroutines is achieved in the subroutine argument 
lists. An iteration is defined as the calculations required to select a 
new point which satisfies the constraints and does not repeat in 
yielding the lowest function value. 

Test results. Several functions were chosen to test the program. 
The calculations were performed on a CDC 6400 computer. Some 
examples: 

1. Box Problem [2J 
Function: F = (9 - (X1 - 3)2)X}/27v3 
Constraints: 0 :'S Xi :'S 100 

0:::::; X2 :'S Xi/v3 
0 :::::; (X1 = Xi + v3XJ :'S 6 

Starting point: X 1 = 1.0, x~ = 0.5 
Parameters: K = 4, a= 1.3, {:J = .001, 'Y = 5, o .0<>01 

Computed results Correct results: 
F 1. 0000 F 1. 0000 
Xi = 3.0000 Xi 3.0000 
X2 = 1. 7320 x~ 1. 7321 
Number of iterations: 68 
Central processor time: 6 sec. 

2. Post Office Problem [3j 
Function: F = XiX2Xs 
Constraints: 0 :'S Xi :'S 42, i = 1, 2, 3 

O :'S (X4 = Xi + 2X2 + 2Xs) :S: 72 
Starting point: Xi = 1.0, X2 = 1.0, Xa = 1.0 
Parameters: K = 6, a = 1.3, {:J = .01, 'Y = 5, ;; 

Computed results: Correct results: 
F = 3456 F = 3456 
Xi = 24.01 X1 = 24.00 
X~ = 12.00 X2 12.00 
Xa = 12.00 Xs = 12.00 
Number of iterations: 72 
Central processor time: 6 sec. 

.0001 



COLLECTED ALGORITHMS (cont.) 

3. Beveridge and Schechter Problem [l j 
Function: F = -(Xi - 0.5)2 - (X~ - 1.0)2 
Constraints: - 2 ::; X1 ::; 2 

- vz ::; x~ ::; -v2 
-4 ::; (X1 = 0 X1 2 + zx~~ - 4) S 0 

Starting point: X1 = 0., x~ = 0. 
Parameters: K = 4, a = 1.3, f3 = .00001, 1 ~c 5, 

Computed results: Correct results: 
F .0000 F .0000 
Xi = . 5035 X1 . 5000 
x~ = . 9990 x~ 1 .oooo 
Number of iterations: 40 
Central processor time = 5 sec. 

Referen~cs 

.0001 

1. Beveridge, G.S., and Schechter, R.S. Optimization: Theory 
and Practice .. McGraw-Hill, New York, 1970. 
2. Box, M.J. A new method of constrained optimization and a 
comparison .with other methods. Comp. J. 8 ( 1965), 42-52. 
3. Rosenbrock, H.H. An automatic method for finding the 
greatest or least value of a function. Comp. J. 3 (1960), 175-184. 

Algorithm 
SUBR00TINE JC0NSX<N• M, K, ITMAX, ALPHA, BETA, GAMMA• 

* DELTA, X, R, F, IT, IEl/2, K0• G, H• XC• L> 
C PURP0SE 
C T0 FIND THE C0NSTRAINED MAXIMUM 0F A FUNCT10N 0F 
C SEVERAL VARIABLES BY THE C0MPLEX METH0D 0F Mo J. B0X. 
C THIS IS THE PRIMARY SUBR0UTINE AND C00RDINATES THE 
C SPECIAL:PURP0SE SUBR0UTINES <JCEKI, JCENT, JFUNC• 
C JCNSTI) ~ INITIAL GUESSES 0F THE INDEPENDENT VARIABLES• 
C RAND0M NUMBERS, S0LUT10N PARAMETERS, DIMENSI0N LlMI TS 
C AND PRINTER C0DE DESIGNAT10N ARE 0BTAINED FR0M THE MAIN 
C PR0GRAM. FINAL FUNCTI0N AND INDEPENDENT VARIABLE 
C VALUES l\RE TRANSFERRED T0 THE MAIN PR0GRAM F0R 
C PRINT0UT. INTERMEDIATE PRINT0UTS ARE PR0VIDED IN THIS 
C SUBR0UTlNE• THE USER MUST PR0VIDE THE MAIN PR0GRAM AND 
C THE SUBR0UTINES THAT SPECIFY THE FUNCTI0N <JFUNC> AND 
C C0NSTRAINTS CJCNSTI>· F0RMAT CHANGES MAY BE REQUIRED 
C WITHIN •HIS SUBR0UTINE DEPENDING 0N THE PARTICULAR 
C PR0BL EM UNDER C0NS I DERA Tl 0N. 
C USAGE 
C CALL JC:0NSXC N, M, K, I TMAX, ALPHA, BETA, GAMMA. DEL TA, X• R• F, 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IT, IEV2"K0.G.H,xC,L> 
SUBR0UTIN.ES REQUIRED 

JCEKI <N,..M.K.x.G.H. I.K0DE.xc. DEL TA.L.K I) 
CHECK~ ALL P0!NTS AGAINST EXPLICIT AND IMPLICIT 
C0NSTRAINTS AND APPLYS C0HRECTl0N IF Vl0LATI0NS ARE 
F0UND 

JCENT<N.M.K.IEVl.1.xc.x.L.Kl> 
CALCULATES THE CENTR01D 0F P0INTS 

JFUNC<N•M,K,X, F, I,L> 
SPECIFIES 0BJECTIVE FUNCTI0N CUSEH SUPPLIED> 

JCNSTl(N,M.K,X,G,H,I,L> 
SPEClFIES EXPLICIT AND IMPLICIT C0NSTRAINT LIMITS 
<USER SUPPLIED>· 0RDEH EXPLICIT C0NSTRAINTS FIHST 

DES CR I PTl 0N 0F PARAMETERS 
N NUMBER 0F EXPLICIT INDEPENDENT VARIABLES - DEF"JNE 

IN MAIN PR0GRAM 
M 

I TMAX 

ALPHA 
BETA 
GAMMA 
DELTA 

NUMBER 0F SETS 0F C0NSTHAINTS - DEFINE IN MAIN 
PR0GRAM 
NUMBER 0F P01NTS IN THE C0MPLEX - DEFINE IN MAIN 
PR0GRAM 
MAXIMUM NUMBER 0F ITENAT!0NS - DEFINE IN MAIN 
PR0GRAM 
REFLECTl0N FACT0R - DEFINE IN MAIN PR0GRAM 
C0NVERGENCE PARAMETER - DEFINE IN MAIN PR0GRAM 
C0NVERGENCE PARAMETER - DEFINE IN MAIN PR0GRAM 
EXPLICIT C0NSTRAINT Vl0LATl0N C0RNECTl0N - DEFINE 
IN MAIN PR0GRAM 
INDEPENDENT VARIABLES - DEFINE INITIAL VALUES IN 
MAIN PR0GRAM 
RAND0M NUMBERS BETWEEN 0 AND I - DEFINE IN MAIN 
PR0GRAM 

F 0BJECT!VE FUNCTl0N - DEFINE IN SUBR0UTINE JFUNC 
IT ITERATl0N INDEX - DEFINED IN SUBR0UTINE JC0NSX 
l£V2 INDEX 0F ~0INT WITH MAXIMUM FUNCTl0N VALUE -

DEFINED IN SUBR0UTINE JC0NSX 
lEVI INDEX 0F P01NT lilITH MINIMUM FUNCT10N VALUE -

DEFINED IN SUBR0UTINE JC0NSX AND JCEKI 
K0 
G 
H 
XC 
L 

PRINTER UNIT NUMBER - DEFINE IN HAIN PR0GRAH 
L01i1ER C0NSTRAINT - DEFINE IN SUBR0UTINE JCNSTI 
UPPER C0NSTRAINT - DEFINE IN SUBR0UTINE JCNSTI 
CENTR01D - DEFINED IN SUBR0UTINE JCENT 
T0TAL NUMBER 0F INDEPENDENT VARIABLES <EXPLICIT + 
IMPLICIT> - DEFINE IN MAIN PR0GRAM 

I P01NT INDEX - DEFINED IN SUBR0UTINE JC0NSX 
K0DE KEY USED T0 DETERMINE IF IMPLICIT C0NSTRAINTS ARE 

PR0Vl OED - DEFINED IN SUBR0UTINE JC0NSX AND JCEK I 
Kl D0 L00P LIMIT - DEFINED IN SUBR0UTINE JC0NSX 

DIMENSI0N XCK.L>. RCK,N» FCK>. G<M>. H<H>. XCCN> 
INTEGER GAMMA 
IT " I 
lilRITE CK0,99995> IT 
K0DE = 0 
IF C.M-Nl 20• 20, 10 

10 K0DE = I 
20 C0NTINUE 

D0 40 11=2.K 
00 30 J=l•N 

XCII,J> = O. 
30 C0NT1NUE 
40 C0NTINUE 

454-P 2- 0 

C CALCULATE C0MPLEX P0INTS AND CHECK AGAINST C0NSTRAINTS 
D0 60 I !=2,K 

00 50 J= 1, N 
I = I I 
CALL JCNSTI CN, M, K• x, G• H, I• L> 
XC l.l1Jl = GCJ> + RC II1Jl*<HCJ>-GCJ)) 

50 C0NTINUE 
Kl = I 1 
CALL JCEK IC N, M, K, x, G• H, I• K0DE, XC. DEL TA. L, KI> 
lilRITE CK0,99999) 11, CXCII,J>,J=l•N> 

60 C0NTINUE 
Kl = K 
D0 70 l=l•K 

CALL JFUNCCN, M, K, x, F, I, L> 
70 C0NTINUE 

K0UNT = I 
IA = 0 

C FIND P0INT WITH L0WEST FUNCTI0N VALUE 
WRITE CK0,99998> CFCI>,I=l,Kl 

80 I EVI = I 
D0 100 ICM=2,K 

IF <FCIEVl>-FCICM» 100, 100, 90 
90 IEVI = ICM 

I 00 C0NTl NUE 
C FIND P0INT WITH HIGHEST FUNCT10N VALUE 

I EV2 = 1 
D0 120 ICM=2,K 

IF C F C I E V2 > - F C ICM)) 1 I 0, 1 1 0, 120 
I I 0 I EV2 = I CM 
120 C0NTI NUE 

C CHECK C0NVERGENCE CRITERIA 
IF CFCIEV2l-CFCIEVll+BETA>.> 140, 130, 130 

130 K0UNT = I 
G0 T0 I SO 

140 K0UNT = K0UNT • I 
IF CK0UNT-GAMMA> 150• 240, 240 

C REPLACE P01NT WITH L0wEST FUNCT10N VALUE 
ISO CALL JCENTCN, M, K, IEVI, !, XC, x, L, Kl> 

00 I 60 J= I• N 
XCIEVl,Jl = Cl.+ALPHA>*CXCCJ)) - ALPHA*CXCIEVl1J)) 

I 60 C0NTl NUE 
I = I EVI 
CALL JCEKICN. M, K, X, G, H, I, K0DE• XC, DELTA, L• Kil 
CALL JFUNCCN, M. K, X, F, I, Ll 

C REPLACE NEW P0INT IF IT REPEATS AS L0WEST FUNCT10N VALUE 
170 IEV2 = 1 

D0 190 ICM=2,K 
IF <FCIEV2>-FCICM>l 190, 190, 180 

180 IEV2 =ICM 
190 C0NTINUE 

IF CI EV2- l EV!> 220, 200, 220 
200 D0 21 0 JJ= I, N 

XCIEVl,JJ> = CXCIEV!,JJl+XCCJJll/2. 
210 C0NTINUE 

I = IEVI 
CALL JCEK IC N. M, K. X, G, H, 1, K0[)E, XC, DEL TA, L, KI> 
CALL J FUNC C N, M, K, X, F, I, L l 
G0 T0 I 70 

220 C0NTINUE 
WRITE CK0,99997l CXCIEVl,JB>,JB=l.tn 
WRITE CK0.99998l CFC!J,l=l•Kl 
WRITE CK0.99996l CXCCJ>,J=l,N> 
IT = IT + I 
IF CIT-ITMAX> 230, 230, 240 

230 C0NTINUE 
WRITE CK0.9999S> IT 
G0 T0 80 

240 RETURN 
99999 F0RMATCIH, 15X, 21WC00NDINATES Af P01NT, I4/8CF8.4, 2X)) 
99998 F0RMATC IH ' 2ox. 16H FUNCT10N VALUES· /80'10.4. 2X» 
99997 F0RMATCIH. 2ox. 16H C0RRECTED P01NT. /8CF8.4. 2X)) 
99996 F0RMATCIH, 21H CENTR0ID C00HD!NATES• 2X, 8CF8·4• 2Xll 
9999S F0RMATC IH , //!OH ITEr<ATI0N, 4X, I 5l 

END 

SUBR0UTINE JCEKICN, M. K, x, G, H, I, K0DE• XC, DELTA, L, 
* Kl> 

C PURP0SE 
C T0 CHECK ALL P0INTS AGAINST THE EXPLICIT AND IMPLICIT 
C C0NSTRAINTS AND T0 APPLY C0RRECTl0NS IF Vl0LATI0NS ARE 
C F0UND 
C USAGE 
C CALL JCEKICN.M.K,X1G1H1!1K0DE1XC,l)ELTA.L1Kl> 
C SUBH0UTINES REQUIRED 
c 
c 
c 
c 

JCENT<N.M.K. !EV!, 1.xc.x.L.KI) 
JCNSTICN1M,K,X.G,H,!1Ll 

DESCRIPTI0N 0F PARAMETERS 
PREV l 0USL Y DEFINED IN SUBR0UTINE JC0NSX 

DIMENSl0N XCK,L), GCM>, HCM), XCC~I) 

10 KT = 0 
CALL JCNSTICN, M, K, x, G, H, I• Ll 

C CHECK AGAINST EXPLICIT C0NSTRAINTS 
00 50 J= 1, N 

IF <X<I,J>-G<J» 201 20, 30 
20 X<I,J> = G<J> + DELTA 

G0 T0 50 
30 IF CH< J l -X < ! , J > > 40 • 40 • 50 
40 XCl,Jl = H<J> - DELTA 
50 C0NTINUE 

IFCK0DE> 110• 110• 60 
C CHECK AGAINST THE IMPLICIT C0NSTRAINTS 

60 C0NTINUE 
NN = N + I 
D0 100 J=NN,M 

CALL JCNSTI CN, M, K. X, G, H, I, L> 
IF ex< I1Jl-GCJ)) so, 10. 70 



COLLECTED ALGORITHMS (cont.) 

70 IF CH(J)-XCJ.J)) ao. 100. 100 
80 I EV I = I 

KT = I 
CALL JCENT<N• M, K, IEVI• I, XC• x, L• Kl> 
00 90 JJ= I, N 

XCJ,JJ> = CXCI,JJ>+XC<JJ))/2· 
90 C0NTINUE 

I 00 C0NTI NUE 
IF <KT> 110, 110, 10 

I I 0 RETURN 
END 

SUBR0UTINE JCENTCN, M, K• IEVI, I, XC, x, L, Kl> 
PURP0SE 

T0 CALCULAfE THE CENTR0ID 0F P01NTS 
USAGE 

CALL JCENTCN.M.K.IEVt.I.xc.x.L.Kl) 
SUBR0UTINES REQUIRED 

N0NE 
OESCRIPTI0N 0F PARAMETERS 

PREVI0USLY DEFINED IN SUBR0UTINE JC0NSX 
DIMENSI0N X(K,L>• XCCN> 
00 20 J=l•N 

XC<J> " o. 
D0 10 IL" 1,KI 

XCCJ) = XC<J> + X<IL,J> 
10 C0NTINUE 

HK = Kl 
XCCJ) = <XCCJ>-X<IEVl,Jll/CRK-1·> 

20 C0NTINUE 
RETURN 
END 

Remark on Algorithm 454 [E4] 
The Complex Method for Constrained Optimization 
[Joel A. Richardson and J.L. Kuester, Comm. ACM 16 
(Aug. 1973), 487-489) 

Kenneth D. Shere [Recd. 8 Oct. 1973] 
Mathematical Analysis Division, Naval Ordnance Lab
oratory, Silver Spring, MD 20910 

This algorithm can result in an infinite loop. This happens 
whenever the "corrected point," the centroid of the remaining 
"complex" points, and every point on the line segment joining these 
two points all have functional values lower than the functional 
values at each of the remaining complex points. Two examples for 
which this algorithm fails are [1] and [2]: 
1. maximize/(x) = -100(x2-x12) 2 - (1-x1) 2 

- 10 s X1, X2 s 10, initial value (x1, x2) = ( -2.5, 5.0) 
and 
2. maximize 

/(8, c/;i) = 0.2 (sin (80) cos (<J>o) sin (8) cos (</>) + sin (80) sin (</>o) 
sin (8) sin (</>) + cos (80) cos (8)) - 1.0 (sin2 (8) cos2 (8) 
+ cos2 (</>) sin2 (</>) sin4 (8)) 

0 S fJ, </> S 7r/2, (80, </>o) = (.8726, .0873), 
initial (8, <J>) = (Tr/4, Tr/4) 

Also, there is no ditf erence in usage between M and L. 
A similar method is the "simplex method" (3 ]. A modification 

to the "complex method" which uses the ideas of [3] has been pro
grammed. The modified JCONSX solves each of the above prob
lems in under 5 CP sec on a CDC 6400. The modified routine is 
available to interested parties upon request. 

It is also worth noting that the variable IA, which appears in 
the second statement after 70 CONTINUE is not used elsewhere. 

References 
1. Rosenbrock, H.H. An automatic method for finding the 
greatest or least value of a function. Comput. J. 3 (1960), 175-184. 
2. Ferguson, R.E. An electromagnetism problem. (Private 
communication.) 
3. Parkinson, J.M., and Hutchinson, D. An investigation into the 
efficiency of variants on the simplex method. In Numerical, Methods 
for Nonlinear Optimization, F.A. Lootsma, Ed., Academic Press, 
New York, 1972. 

454-P 3- RI 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 455 

Analysis of Skew 
Representations of the 
Symmetric Group [Z] 
D.B. Hunter* and Julia M. Williamst [Recd. 5 Feb. 
1971] 
*Department of Mathematics, University of Bradford, 
Yorkshire, England 
t 12 Peel Close, Heslington, York, England 

Key Words and Phrases: symmetric group, skew representation, 
partition, Young diagram, lattice permutation, binary model, outer 
product 

CR Categories: 5.30 
Language: Algol 

Description 
This algorithm analyzes the skew representation [A]-[µ] of the 

symmetric group <1'n corresponding to a pair of partitions 

(A) = (A1 , X1 , •.. , Ar) and (µ) = (µ1 , µ2 , ... , µ.,) where 

r ~ s l 
A1 ~ A2 ~ · · · 2 Ar f 
µ, 2 µz 2 · · · 2 µ, (I) 
Ai 2 µi (1 S i S s) 

n = L::-1 Ai - L::-1 µ; 

(see Robinson [4, sec. 2.5]). The analysis takes the form 

[A]-[µ] = L<» C(v) [v], (2) 

where the summation is over all partitions (v) of n, the coefficients 
C(•) being nonnegative integers. 

The method used may be described as follows: construct all 
possible diagrams which can be built up in accordance with the 
following two rules. 
(a) Replace µ. of the nodes in the Young diagram corresponding 
to (A) by identical symbols a .• in such a way that: (i) the unchanged 
nodes form a regular Young diagram; and (ii) no two identical 
symbols a. lie in the same column. Then replace µ._ 1 further nodes 
by identical symbols a,_1 in accordance with the same rules, and 
so on, finally replacing µi nodes by identical symbols a1 . 

(b) In the final diagram the altered nodes should form a lattice 
permutation of a~1a~2 • • • a~• (Robinson [4, sec. 2.4]) when 
read from right-to-left through successive rows. 

Then the pattern of unchanged nodes in each diagram so con
structed defines a term [v] in the analysis. 

This method appears not to have been explicitly stated in the 
above form before, but is an immediate consequence of Little
wood's method for analyzing the outer product [A].[µ] (see Little
wood [3, sec. 6.3, th. VJ, Robinson [4, sec. 3.3]), noting that c<» 
is also the coefficient of [A] in the analysis of [µ]. [v] (Littlewood 
[3, sec. 6.41 th. VIII]). 

In the procedure, binary models of those partitions (v) in (2) 
for which c<v) ~ 0 are stored, in lexicographic order, in nu[l], 

455-P 1- 0 

nu[2], ... , nu[p], the corresponding values C(•) being stored in 
c[l], c[2], ... , c[p]. The binary model used is due to Comet [1], 
a partition (v) = (v1, v2 , ••• , vi) being represented by the number 

(3) 

The techniques used are similar to those employed in [2]. In 
particular, two two-dimensional arrays lam and sigma are required. 
Corresponding to any particular diagram, lam (i, j] specifies the 
number of nodes in row j which are still unchanged when all the 
symbols a 8 , a,_1, ... , a; have been inserted (j = i, i + 1, ... , r), 
and sigma [i, j] specifies the total number of symbols a; inserted 
in rows i, i + 1, ... , j. Thus the quantities lam[i,j] are generated 
by the equation 

lam[i,j] = lam[i+l,j] - sigma[i,j] + sigma[i,j-1]. (4) 

The rules for constructing the diagrams impose the restrictions 

sigma[i-1,j-1] 2 sigma[i-1,j] - lam[i,j] + lam[i,j-t-1] (5) 

and 

sigma[i- l,j-1] 2 sigma[i,j]. 

Each time array lam is completed, a term 

(v) = (/am[l,1], lam[l,2], ... , lamfl,r]) 

is added to the analysis. 
Note 1. In view of the identity 

(6) 

(7) 

[A].[µ] = [A1+µ1, A1+µ2, ... , A1+µ., A1, A2, ... , Ar] - [A1•], 

procedure skew may also be used to analyse the outer product 
[A].[µ]. It is, however, less convenient for this purpose than pro
cedure outer product of Hunter [2]. 

Note 2. Value of p. It is difficult to predict the value of p in 
any example. Clearly, p s p(n), where p(n) denotes the number of 
partitions of n. On the other hand, for any value of n, there are 
partitions (A) and (µ) for which p 0= p(n), namely, (A) = 

(n,n-1, ... , 1), (µ) = (11-l, ... , 1). 

References 
t. Comet, S. Notations for partitions. MTAC 9 (1955), 143-146. 
2. Hunter, D.B. Outer product of symmetric group representa
tions. BIT JO (1970), 106-114. 
3. Littlewood, D.E. Theory of Group Characters, 2nd ed. Oxford 
U. Press, England, 1950. 
4. Robinson, Gilbert B. Representation Theory of the Symmetric 
Group. U. of Toronto Press, Toronto, Ont., Canada, 1961. 

Algorithm 
procedure skew (r, s, lambda, mu, p, c, nu); 

value r, s; integer r, s, p; integer array lambda, mu, c, nu; 
begin 
comment Input parameters. 

r: the number of parts in partition (A). 
s: the number of parts in partition (µ). 
lambda: the part A; is stored in lambda[i], i = 1, 2, ... , r. 
mu: the part µi is stored in mu[i], i = 1, 2, ... , s. 
Output parameters. 
p: the number of terms on the right in (2) for which 

C(v) ~ 0. 
nu: Binary models (3) of the partitions (v) in (2) for which 

cc» ~ 0 are placed in lexicographic order in nu[ll, 
nu[2], ... , nu[p]. 

c: c[i] contains the coefficient c<•) of the partition whose 
binary model is in nu[i]; 



COLLECTED ALGORITHMS (cont.) 

integer i,j, k, x, y; 
integer array lam[1:s+1,1: r], sigma[l :s+ 1 ,0: r]; 
p : = O; for i : = 1 step 1 until s do lam[i+ l,iJ : = lambda [i]; 
for j : = s + 1 step 1 until r do 
begin 

/am[s+l,j] := /ambda[j]; sigma[s+1J-11 := 0 
end; 
for i : = 1 step 1 until s do sigma[i, r] : = mu[i]; 
k : = mu[s] - lambda[r]; sigma[s, s-1 j : == O; 
for j : = r - 1 step - 1 until s do 
begin 

sigma[s, Jl : = if k ~ 0 then k else O; 
k := sigma[s,j] - /ambdaUJ + lambdali+l I 

end; 
i := s; 

build: 
for i : = i step - 1 until l do 
begin 

for j : = i step 1 until r do 
lamJi,j] := lam[i+1,j] - sigma[i,jj + sigma[i,j-1]; 
if i ;;e: 1 then 
begin 

k : = mu[i-l J - lam[i, r]; sigma[i-1, i-21 : = O; 
for j : = r step - 1 until i do 
begin 

sigma[i-l,j-1] :=if k ~ signia[i,)J then k 
else sigma[i, }]; 
k := sigma[i-1,J-11 - lam[i,j-IJ + lam[i,)J 

end 
end 

end; 
x := j := 1; 
for j := j + 1 while (if J>r then false else lam[i,j]>O) 

do x : = x X 2 i lam[l,j] + 1; 
if (if p = 0 then true else x>l1U[p]) then 
begin 

p := p + 1; nu[pj := x; c[p] := 1 
end 
else 
if x = nu[p] then c[p] : = c[p] + 1 
else 
begin 

}:=l;k:=p; 
search: 

y := U+k) + 2; if x = 11u[y] then c[yj := c[y] + 1 
else 
if nu[y] < x Ax < nu[y+1l then 
begin 

for k : = p step -1 until y + 1 do 
begin, 

c[k+ll := c[k]; nu[k+ll := nu[k] 
end; 
c[y+ll := 1; nu[y+ll := x; p := p + 1 

end 
else 
begin 

if x < nu[y] then k : = y elsej : = y; go to search 

end 
end; 
for· i : =, l step 1 until s do 
for y : c.= i step 1 until r - 1 do 
if sigma[i,y] < sigma[i,y+ 1] then 
begin 

sigma[i,y] : = sigma[i,y] + 1; 
for j : = y step - 1 until i do 
begin 

k := sigma[i,j] - lam[i+1,j] + lam[i+l,j+ll; 
sigma[i,j-1] : = if k > sigma[i+ 1,j] then k 

else sigma[i+l,jJ; 
if sigma[i,j-1] = 0 then 
begin 

455-P 2- 0 

for x := j - 1 step -1 until i do sigma[i,x-1] := O; 
go to build 

end 
end 

end 
end skew 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 456 

Routing Problem [HJ 
Zdenek Fencl [Recd. 16 Nov. 1970, 4 Oct. 1971, and 
28 Jan. 1972] 
RCA, Computer Systems Division, 200 Forest Street, 
Marlborough, MA 01752 

The algorithm was originally developed as a part of vector 
ordering procedures at the Design Automation Center, RCA, Marl
borough, Massachusetts, and was extended to general use in the 
traveling salesman and nonsymmetric routing problem. 

Key Words and Phrases: routing problem, shortest path, traveling 
salesman problem, Hamiltonian circuit 

CR Categories: 5.40 
Language: Fortran 

Description 
The algorithm finds the shortest serial (branchless) connection 

between n .nodes of a net beginning in the start node sn and termi
nating in the end node en or terminating in any node. Also given 
is the m X m matrix d of distances (with zero diagonal and not 
necessarily symmetric) between all pairs of nodes, and the vector 
p containing n node numbers to be connected referring to appro
priate entries in the matrix d. The algorithm is constructed so that 
for one net (given by the matrix d) various connections, not neces
sarily exhausting all of m nodes, may be created; hence n s m. 
The case sn = en is also permitted, which actually yields a Hamil
tonian circuit--traveling-salesman problem. If, in input, en = 0, 
the start-to-any connection is assumed. Also as an input is the 
number of runs r, which is discussed below. In the output, the 
original vector p is replaced by conjectured optimal sequence of 
n nodes, and I contains the connection length. The matrix d does 
not need to represent a Euclidean net nor be symmetric. Thus 
the algorithm may serve as a more general tool to solutions of 
related problems. 

Since the method is heuristic, which implies it is approximate, 
guaranty of an optimal solution is based on empiric probability. 
The algorithm uses a tour-building method combined with tour-to
tour improvements. 

In the first phase, the tour, or sequence of nodes, is built up 
by successively inserting not-yet-involved nodes into the tour. 
If, in the middle of tour building, the tour, for instance, consists 
of the nodes Pi , P2 , ... , Pk , the next node among the nodes 
Pk+i, Pk+2, ... , Pn, and the arc (to be split by the chosen inserted 
node) among the arcs P1P2, P2Pa, ... , PkPt, are chosen so that 
the tour increment will be minimum; i.e. i (1 s i s k) and 
j(k <j s n) are chosen in such a mannerthatd<Pi·Pi> + dcPi·Pi+i> 

-- d< Pi· Pi+ 1 > = min. Tour building starts with the arc P1P1 and ter-
minates when all n nodes have been included. The tour-building 
approach of this kind for the traveling-salesman problem was 
originated by Karg and Thompson [1) and further developed 
by Raymond [2]. This algorithm, however, handles an open con
nection-start-to-end or start-to-any node. The maintenance of 
this property is ensured in the algorithm by assigning to the end
to-start or each-to-start distance sufficiently large negative values 
( - n X maxii[di;]) which, in some way, firmly attach the end or any 

456-P 1- 0 

of n nodes to the start node permitting a circuit to form. In fact, 
the algorithm works on a net as if it were a closed circuit and 
keeps the node configuration by modifying the distance matrix. 
In output, the distance matrix is returned! to its original form. 

A tour thus built is hardly optimal and for larger nets it is 
probably far from optimum. The second phase improves the tour 
(for n ~ 3) by the so-called 3-opt method proposed by Lin [3]. 
Improvements consist in exchanging three arcs, or links of the 
given connection by three other links. If there are no more 3 links to 
exchange for tour improvement, the tour is said to be 3-optimal. 
In general, >--optimality can be considered. The implication of the 
3-link exchange is essentially in reinsii!rtions. Consecutive node 
chains of length k (1 s k < n) are successively tried to be rein
serted (both as are and inverted) into remaining links for tour 
improvements, which actually represent 3-link exchanges (and 
also 2-link at the same time). A 3-opt tour shows a certain proba
bility to be an optimal one in relation to n. Different 3-opt tours 
can be achieved if different initial nodes are chosen, which allows 
us to increase the probability of obtaining an optimal solution. 

The algorithm can run r trials (a.s specified in input) with 
different initial nodes (p1, set automatically), thus obtaining 
different solutions while the best is saved and replaced in the vector 
p in output. For runs r > n (r s 2n) there is little chance for 
further improvement, because initial nodes repeat and the tour 
development can be affected only by previous contents of the 
vector p on which the tour is built. Probability that the 3-opt 
tour is optimal is somewhat higher in this algmithm, than in the 
one Lin suggests. In contrast to finding a 3-opt solution from a 
given random sequence of nodes, the fast building of an appropriate 
tour in the first phase considerably reduces the number of rein
sertions in the second phase. The algorithm generalization to the 
noncyclic and nonsymmetric problems, in comparison to the 
traveling-salesman problem, increases computational time. 

A considerable number of test examples have been run by the 
algorithm including the three problem types mentioned and the 
non-Euclidean and nonsymmetric problems. To outline the capa
bility and how the "cost-approximation" factor r should be set 
for various n's, a survey of tested problems is presented, most of 
which problems have been solved and published before. The algo
rithm in Fortran was run on the RCA's SPECTRA 70/45 (fixed
point add time equals 8.88 µsec), and is recommended for a high 
probability (over 95 percent) of obtaining an optimum if r = 2 
to 5 for n s 10 and r = 5 to 15 for n s 30. For higher n's, unless 
cost is out of consideration and r can be set up to 2n, the checking 
of successive results is advisable to see how improvements are 
developing (p and /1 should be checked! after the tour-length calcu
lation). These checks can also serve for getting suboptimal solutions. 

In the program, the distance matrix d is in fixed-point mode, 
which makes computation faster and does not seem to be a serious 
restriction. Decimal order range of distances is expected to be 
small enough to be represented in fixed point, and calculations 
(additions and subtractions) will, most likely, not face overflow 
problem. 

The arrays ID and Q should have the maximum subscript set 
at least ton. 

The algorithm is believed to be applicable also to problems 
in which all connections do not necessarily exist. In terms of graph 
theory a graph representing the net to be routed need not be com
plete; i.e. every pair of vertices may be connected only in one of 
the two possible directions. The graph, however, must be strongly 
connected; i.e. there must be a path joining any pair of arbitrary 
distinct vertices. Nonexisting arcs might be expressed by assigning 



COLLECTED ALGORITHMS (cont.) 

Survey of tested problems 

Ref. n sn 

Karg and Thomp-
son [1) 

Raymond [2] 
7 

Barachet [4] 
10 

10• 

Author 
12 

Author 
13 

Held and Karp [5] 

25 

Karg and Thomp-

son [1] 33 

en 

2 
0 
1 

5 
0 
1 

2 
0 
1 
2 
0 

2 
0 

6 
0 
l 

25 

0 

33 

0 

Conjectured 
optimum 

118 
en =5 108 

148 

165 
en =4 140 

179 

350 
en =7 298 

378 
308 

en =7 257 

en =12 

en=12 

.. 
en =25 

;~=14 .. 

336 

102 
95 

114 

117 
102 
130 

1517 

1517 
1711 

10655 

10585 
10861 

To pt 

1 
1 
2 
1 
2 
2 

10 

2 

2 

10 
6 

ti 
[sec) 

<l 

<1 

1.4 

3.0 

3.0 

21. 8 

22.3 
29. 7 

53.6 

53.4 
53. 7 

• Nonsymmetric problem (two distances changed: (6, 5) 
••Results obtained from 10 runs. 

l, and (8, 3) = 1). 

to the appropriate distances dki sufficiently large positive values, 
for instance n X maxi; [di;]. 

Symbol summary 
n number of nodes to be connected (2 :S n :S m). 
p vector containing n node numbers (in output, it contains 

node number sequence of conjectured shortest path). 
s11 start node number (1 :S sn :S m; no chec:k is provided whether 

sn is contained in p). 
en end node number (1 :S en :S m; if en == 0, start-to-any con

nection is assumed; en = sn is allowed, which is traveling
salesman problem; no check is provided whether sn is con
tained in p) 

m order of distance matrix d (m ~ n ~ 2). 
d m X m matrix of distances of all node pairs (zero diagonal, 

not necessarily symmetric). 
length of conjectured shortest path (output). 

r number of runs (trials; r :S 2n). 
ropt serial run number during which optimum has been achieved. 
t1 average computational time of one run :in seconds. 

References 
t. Karg, R.L., and Thompson, G.L. A heuristic approach to 
solving traveling salesman problem. Mgm.r. Sci. 10, 2 (1964), 
225-248. 
2. Raymond, T.C. Heuristic algorithm for the traveling-salesman 
problem. IBM J. Res. Develop. 13, 4 (1969), 400-407. 
3. Lin, S. Computer solutions of the traveliing salesman problem. 
Bell Syst. Tech. J. 44 (Dec. 1965), 2245-2269. 
4. Barachet, L.L. Graphic solution of the traveling salesman 
problem. Oper. Res. 5 (1957), 841-845. 
5. Held, M., and Karp, R.M. A dynamic programming approach 
to sequencing problems. J. Soc. Indust. Appl. Math. JO, 1 (1962), 
196-210. 

456-P 2- 0 

6. Saksena, J.P., and Kumar S. The routing problem with 'k' 
specified nodes. Oper. Res. 14 (1969), 909-913. 
7. Bellmore, M., and Nemhauser, G.L. The traveling salesman 
problem: A survey. Oper. Res. 16 (1968), 538-5.58. 
8. Berge, C. The Theory of Graphs and Its Applications. Wiley, 
New York, 1962. 
9. Berge, C., and Ghouila-Houri, A. Programming, Games and 
Transportation Networks. Wiley, New York, 196.5. 

Algorithm 

c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBR0UTINE R0UTNGCN, p, SN• EN, M, o, L, K> 
INTEGER PCN>. DCM,M>. IDC60>. QC60>. SN, EN. R 

N - NUMBER 0F N0DES T0 BE C0NNECTED 
P - N0DE NUMBER VECT0R CIN 0UTPUT, 0PTIMAL C0NNECTI0N> 
SN- START N0DE NUMB EK 
EN- END N0DE NUMBER 
M - DISTANCE MATRIX 0RDER 
D - DISTANCE MATRIX 
L - SH0RTEST C0NNECTI0N LENGTH C0UTPUT> 
R - NUMBER 0F RUNS 
GET LARGE NUMB EK < = N X MAX D <I, J » 

LARGE = 0 
00 20 I=l•M 

D0 10 J=l•M 
IF CDCI,J>.GT.LARGE> LARGE DCI,J> 

10 C0NTINUE 
20 C0NTINUE 

LARGE = LARGE•N 
DEFINE N0N-EXISTING ARCS BY ASSIGNING 
THEIR DISTANCES LARGE NEGATIVE VALUES 

IF CEN.NE.O> G0 T0 40 
D0 30 I= I •M 

IDCI> = on.SN> 
DCI•SN> = -LARGE 
DCSN, SN> = 0 

30 C0NTINUE 
40 IF CSN.EQ.EN ·0R· EN.EQ.O> G0 T0 50 

ID<I> = DCEN.SN> 
DCEN,SN> = -LARGE 

C RUN R TRIALS 
50 L " LARGE 

D0 280 IRS=l•R 
C BUILD T0UR BY SUCCESSIVE INSERTING 
C N0T-YET-INV0LVED N0DES 
C INITIATE T0UR IS C0NSIDERED AS 
C ARC PC!> T0 PC!> 

D0 90 JS=2• N 
MINING = LARGE 

C TRACE ALL N0T-YET-INV0LVED N0DES 
C T0 CH00SE THE 0NE WITH MINIMUM INCREMENT 

D0 70 J=JS, N 
JP = PCJ> 
JE = JS - I 

C F0R EACH N0T-YET-INV0LVED N0DE TRACE ALREADY 
C BUILT-UP T0UR T0 CH00SE THE MINIMUM INCREMENT AkC 

60 
70 

C STRETCH 
C BETWEEN 

80 

D0 60 I=l,JE 
IP = P<I) 
IP! = P<I+I > 
IF CI.EQ,JE> IPI =PC!> 
INC= D<IP,JP> + DCJP,IPI> - D<IP>IPI> 
IF CINCoGEoMININC> G0 T0 60 
JI = J 
I I = I 
MINING = INC 

C0NTINUE 
C0NTINUE 
T0UR BY INSERTING THE CH0SEN N0DE PCJI> 
THE N0DES P<II> AND P<Il+I> 
JI = JI - I 
IF CJloEQ.II> G0 T0 90 
IP = PCJI > 
PCJI> = PCJl+I> 
P<Jl+I> = IP 
G0 T0 80 

90 C0NTINUE 
C C0RRECT T0UR BY 3-0PT METH0D 
C VARY C0NSECUTIVE CHAIN LENGTH K 

NI = N - I 
IF <N.LT.3> G0 T0 210 
D0 200 K=l•NI 

IC0UNT = 0 
C SHIFT C0 .. .;ECUTIVE CHAIN 
C THR0UGH0UT SEQUENCE 0F N N0DES 

100 IC0R = 0 
D0 190 J=l•N 

C CALCULATE CHAIN LENGTH IN F0RWARD 
C ANO BACKWARD DIRECTI0N 

110 

LI = 0 
LR = 0 
IF CK.EQ.I) G0 T0 120 
I = J 
Kl = I 
IF <I.GT.N> I = I - N 
IP = PCI> 
IP! = I + I 
IF CIPt.GT·N> IP! 
IP! = P<IPI> 
LI = LI + D<IP, IP!> 
LR = LR + D<IP!, IP> 
I = I + I 
Kl = Kl + I 
IF CKl.LT.K> G0 T0 110 

C F0R EACH P0SITI0NED CHAIN <AS IS AND INVERTED> 
C CHECK ALL ARCS IF INSERTI0N IMPK0VES T0UR 

120 MINING = LARGE 
JI = J + K - I 
IF (JI oGToN) JI = JI - N 
D0 150 I=l •N 

IF CJ.LE.JI .AND· <I ·GE.J .ANO. I .LE.JI>> G0 T0 



COLLECTED ALGORITHMS (cont.) 

* 150 
IF CJ.GT.JI .AND. (I .LE.JI o0R· I oGE.J>) GO T0 150 
IP= P<I> 
JP = P<J> 
JPI = PCJI > 
IPI = I + I 
IF < IPI .GT.N> IPI 
JE = IPI 
I r < IP I • EQ. J > IP I JI + I 
Ir < IPI .GT.N> IPI I 
IPI = PC IPI > 
LN = LI 
IR = 0 

130 INC= D<IP,JP) + LN + D<JPl.IPI> - DCIP.IPI> 
IF <INC.GT.MININC o0H• CINC.EQ.MININC .AND. 

* CJE.NE.J .0R. JE.EQ.J .AND. IR.EGlol»> G0 HJ 140 
II = I 
IRI = IR 
MININC = INC 

140 IF CIR.EQ.1> G0 T0 150 
IR = I 
LN = LH 
JS = JP 
JP = JPI 
JPI = JS 
GO T0 130 

150 C0NTINUE 
I = I I + I 
IF CI.GT.N> I = I 
Ir CI.EQ.J ·AND. IRI .EQ.O> GO T0 190 

C REINSE1H CHAIN 0F LENGTH K STA1HING IN J 
C BETWEEN N0DES P<Il> AND PCil+l> 

IC0H = I 
JS = J 
JE = 0 
Ir C IRI ·EO.O> G0 T0 160 
JS JI 
JE = - I 

160 Kl = 0 
170 Kl = Kl + I 

IF CKI .GJ.K> G0 T0 190 
I = JS 
JS = JS + JE 
IF <JS.LT.I> JS N 

180 IP = I + I 
IF CIP.GT.N> IP 
JP = PC I> 
P<I > = PC IP> 
PC IP> = JP 
I = I + I 
IF CI.GT.N> I 
IFCIP-Ill 180, 170. 180 

190 C0NTINUE 
IF CICOt<-EO.OJ G0 TB 200 
IC0UNT = IC0UNT + I 
IF CIG0UNT.LT.N> GO T0 100 

200 C0NTI NUE 
C 0HIENT T0UR ~;ITH SN IN PC I> 

210 DO 230 I=l•N 
IF CPCl>·EQ.SN> G0 T0 240 
JS = PC I> 
DP.I 220 J=l.NI 

P < J > = p CJ+ I > 
220 CONTI NUF: 

PCNl = JS 
230 CONTINUE 

C CALCULATE T0Uk LENG TH 
2.40 LI ~ 0 

DO 250 I= I •NI 
IP = PC I> 
Ir' I = r'<I +I l 
LI= LI+ UC!P,!Pll 

250 GGNrDIUE 
IP = PC I l 
II' CSN.EQ.E;~> LI =LI + D<It'l,IP> 

C SAVE SOLUTl0N. IF 8FTTF:~. A\JO SF:T NE~ INITIATE NOUE 
II' CL! .GE.L> G0 TC 270 
L = LI 
DG 260 I=l,N 

'J<ll = PC!l 
"fJ) CC'~TINUE 

271) J = l 1<S + I 
IF CJ.[T.Nl J J - N 
J:, = . CI J 

PCIJ = PCJ> 
r'C.IJ = J.S 

2.30 cc" I I ,.,~: 

C ;<~:,fr: .. ;· £\NIJ •J.;; l'i 

1): 1 ·1iJ I= 1,, .J 

c'C I> = c I> 
:-'90 crm11.~11> 

IF CL·'···-.,)) b( IC ~<l·J 

D'.:: 3<J.J C = 1. 1 
iJC I,::-~> = I iJC I> 

30J CC" 1\IIl1\/UE 

IJCf,~,o,,\J) = ID<I l 
32·J 1.~ I d.-.:N· 

F:\JtJ 

Remark on Algorithm 456 [H] 
Routing Problem 

456-P 3- RI 

[Zdenek Fencl, Comm. ACM 16 (Sept. 1973), 572] 

Gerhard Tesch [Recd. 15 Oct. 1973] VFW Vereinigte 
Flugtechnische Werke GMBH, 28 Bremen l, Hunefeld
strasse 1-5, Germany and Zden·ek Fencl, M.l.T., De
partment of Urban Studies, R. 9-643, Cambridge, Mass. 

Some confusion arose from the description of the algorithm 
capability. It should have been stated that the generated tour must 
pass through each of the n nodes once and only once, although this 
is the base for the definition of the traveling salesman problem. This 
algorithm solves an extended traveling salesman problem in which 
the end node does not have to be the start node. Such connections 
may be sought in the design automation of serial printed circuits as 
well as in transportation problems. The traveling salesman problem 
is discussed in [3, p. 232] and methods of solution are surveyed in [1]. 

The users who seek the shortest paths in electric networks (the 
shortest connection between the two specified nodes in a net without 
regard to the number of nodes to be wnnected) are referred to 
Ford's shortest path algorithm [2, p. 69] and Dantzig's shortest path 
algorithm [3, p. 175]. There is a set of thre:e efficient Algol algorithms 
by J. Boothroyd [4] handling the shortest path problem as defined 
in [2, p. 69] and [3, p. 175]. These Algol algorithms can be modified 
so that even the number of nodes may bt:: minimized or a restriction 
of some nodes may be imposed, etc. 

Another type of shortest path algorithm is Lee's algorithm [5 
and 6]. This algorithm is applicable for the orthogonal routing of 
printed circuit boards. 

References 
1. Bellmore, M., and Nemhauser, G.L. The traveling salesman 
problem: A survey. Oper. Res. 16 (1968), 538-558. 
2. Berge, C. The Theory of Graphs and Its Applications. 
Wiley, New York, 1962. 
3. Berge, C., and Ghouila-Houri, A. Programming, Games 
and Transportation Networks. Wiley, New York, 1965. 
4. Boothroyd, J. Algorithms 22, 23, 24. Shortest path. Comp. J. 
JO (1967), 306-308. 
S. Lee, C.J. An algorithm for path connections and its applications. 
IEEE Trans. Elect. Comput. EC-10 (Sept. 1961), 346--365. 
6. Akers, S.B. A modification of Lee's path connection algorithm. 
IEEE Trans. Elect. Comput. (Feb. 1967), 97-98. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 457 

Finding All Cliques of an 
Undirected Graph [I-I] 
Coen Bron* and Joep Kerbosch t [Recd. 27 April 
1971 and 23 August 1971] 
* Department of Ma thematics t Department of In
dustrial Engineering, Technological University Eind
hoven, P.O. Box 513, Eindhoven, The Netherlands 

Present address of C. Bron: Department of Electrical Engineering, 
Twente University of Technology, P.O. Box 217, Enschade, The 
Netherlands. 

Key Words and Phrases: cliques, maximal complete subgraphs, 
clusters, backtracking algorithm, branch and bound technique, 
recursion 

CR Categories: 3.71, 5.32 
LangUiage: Algol 

Descriptiolll 
Introduction. A maximal complete subgraph (clique) is a 

complete subgraph that is not contained in any other complete 
subgraph. 

A recent paper [I] describes a number of techniques to find 
maximal complete subgraphs of a given undirected graph. In this 
paper, we present two backtracking algorithms, using a branch
and-bound technique [4] to cut off branches that cannot lead to a 
clique. 

The first version is a straightforward implementation of the 
basic algorithm. It is mainly presented to illustrate the method used. 
This version generates cliques in alphabetic (lexicographic) order. 

The second version is derived from the first and generates 
cliques in a rather unpredictable order in an attempt to minimize 
the number of branches to be traversed. This version tends to pro
duce the larger cliques first and to generate sequentially cliques 
having a large common intersection. The detailed algorithm for 
version 2 is presented here. 

Description of the algorithm-Version I. Three sets play an 
important role in the algorithm. (1) The set compsub is the set 
to be extended by a new point or shrunk by one point on traveling 
along a branch of the backtracking tree. The points that are eligible 
to extend compsub, i.e. that are connected to all points in compsub, 
are collected recursively in the remaining two sets. (2) The set 
candidates is the set of all points that will in due time serve as an 
extension to the present configuration of compsub. (3) The set 
not is the set of all points that have at an 4~arlier stage already 
served as an extension of the present configuration of compsub and 
are now explicitly excluded. The reason for maintaining this set 
not will soon be made clear. 

The core of the algorithm consists of a recursively defined 
extension operator that will be applied to the three sets JUSt de
scribed. It has the duty to generate all extensions of the given 
configuration of compsub that it can make with the given set of 

457-P 1- 0 

candidates and that do not contain any of the points in not. To 
put it differently: all extensions of compsub containing any point 
in not have already been generated. The basic mechanism now 
consists of the following five steps: 

Step 1. Selection of a candidate. 
Step 2. Adding the selected candidate to compsub. 
Step 3. Creating new sets candidates and not from the old sets by 

removing all points not connected to the selected candidate 
(to remain consistent with the definition), keeping the old sets 
in tact. 

Step 4. Calling the extension operator to operate on the sets just 
formed. 

Step 5. Upon return, removal of the selected candidate from 
compsub and its addition to the old set not. 

We will now motivate the extra labor involved in maintaining 
the sets not. A necessary condition for having created a clique is 
that the set candidates be empty; otherwise compsub could still be 
extended. This condition, however, is not sufficient, because if 
now not is nonempty, we know from the definition of not that the 
present configuration of compsub has already been contained in 
another configuration and is therefore not maximal. We may now 
state that compsub is a clique as soon as both not and candidates are 
empty. 

If at some stage not contains a point connected to all points in 
candidates, we can predict that further extensions (further selec
tion of candidates) will never lead to the removal (in Step 3) of that 
particular point from subsequent configurations of not and, there
fore, not to a clique. This is the branch and bound method which 
enables us to detect in an early stage branches of the backtracking 
tree that do not lead to successful endpoints. 

A few more remarks about the implementation of the algo
rithm seem in place. The set compsub behaves like a stack and can 
be maintained and updated in the form of a global array. The sets 
candidates and not are handed to the extensions operator as a 
parameter. The operator then declares a local array, in which the 
new sets are built up, that will be handed to the inner call. Both 
sets are stored in a single one-dimensional array with the following 
layout: 

I not I candidates 

index values: l.. ... ne ............... ce ... . 

The following properties obviously hold: 

I. ne ::::; 
2. ne 
3. ne 
4. ce 

ce 
ce:empty (candidates) 
0 : empty (not) 
0 :empty (not) and empty (candidates) 

= clique found 

If the selected candidate is in array position ne + 1, then the second 
part of Step 5 is implemented as ne : = ne + 1. 

In version 1 we use element ne + 1 as selected candidate. This 
strategy never gives rise to internal shuffling, and thus all cliques 
are generated in a lexicographic ordering according to the initial 
ordering of the candidates (all points) in the outer call. 

For an implementation of version 1 we refer to [3]. 
Description of the algorithm-Version 2. This version does not 

select the candidate in position ne + 1, but a well-chosen candidate 
from position, say s. In order to be able to complete Step 5 as 
simply as described above, elements s and ne + 1 will be inter
changed as soon as selection has taken place. This interchange 
does not affect the set candidates since there is not implicit ordering. 



COLLECTED ALGORITHMS (cont.) 

Fig. l. Random graphs show the computing time per clique (in 
ms) versus dimension of the graph (in brackets: total number of 
cliques in the test sample). 

160 

140 

(50) ( 127) 

no data 
available 

(330) (579) 

no data 
ava." lable 

o • Bierstone 

• • Version I 

+ • Version 2 

(2163) (3784) (8816) (43223) (12856) 

01'-0-----'---'-15---20,__ __ 2__._s ____ 30,___ __ 3_.._s_ ---~---~45-- ·--so'---~ 

The selection does affect, however, the order in which the cliques 
are eventually generated. 

Now what do we mean by "well chosen"? The object we have 
in mind is to minimize the number of repetitions of Steps 1-5 in
side the extension operator. The repetitions terminate as soon as 
the bound condition is reached. We recall that this condition is 
formulated as: there exists a point in not connected to all points in 
candidates. We would like the existence of such a point to come 
about at the earliest possible stage. 

Let us assume that with every point in not is associated a 
counter, counting the number of candidates that this point is not 
connected to (number of disconnections). Moving a selected 
candidate into not (this occurs after extension) decreases by one 
all counters of the points in not to which it is disconnected and 
introduces a new counter of its own. Note that no counter is ever 
decreased by more than one at any one instant. Whenever a counter 
goes to zero the bound condition has been reached. 

Now let us fix one particular point in not. If we keep selecting 
candidates disconnected to this fixed point, the counter of the 
fixed point will be decreased by one at every repetition. No other 
counter can go down more rapidly. If, to begin with, the fixed point 
has the lowest counter, no other counter can reach zero sooner, 
as long as the counters for points newly added to not cannot be 
smaller. We see to this requirement upon entry into the extension 
operator, where the fixed point is taken either from not or from 
the original candidates, whichever point yields the lowest counter 
value after the first addition to not. From that moment on we only 
keep track of this one counter, decreasing it for every next selec
tion, since we will only select disconnected points. 

The Algol ()() implementation of this version is given below. 
Discussion of comparative tests. Augustson and Minker [1) 

have evaluated a number of clique finding techniques and report 
an algorithm by Bierstone [2] as being the most efficient one. 

1 Bierstone's algorithm as reported in [1] contained an error. 
In our implementation the error was corrected. The error was 
independently found by Mulligan and Corneil at the University 
of Toronto, and reported in [6]. 

457-P 2- 0 

fig. 2. Moon-Moser graphs show the computing time (in ms) ver
sus k. Dimension of the graph = 3k. Plotted on logarithmic scale. 

o • Bierstone 

'• • version I, slope • .607 (
10

1og 4 • .602) 

+ • version :~. slope • .497 (IOlog 3 • .477) 

In order to evaluate the performance of the new algorithms, 
we implemented the Bierstone algorithm1 and ran the three algo
rithms on two rather different testcast:s under the Algol system 
for the EL-X8. 

For our first testcase we considered random graphs ranging 
in dimension from 10 to 50 nodes. For each dimension we gen
erated a collection of graphs where the percentage of edges took 
on the following values: 10, 30, 50, 70, 90, 95. The cpu time per 
clique for each dimension was averaged over such a collection. The 
results are graphically represented in Figure 1. 

The detailed figures (3] showed the: Bierstone algorithm to be 
of slight a:lvantage in the case of small graphs containing a small 
number of relatively large cliques. The most striking feature, how
ever, appears to be that the time/clique for version 2 is hardly 
dependent on the size of the graph. 

The difference between version 1 and "Bierstone" is not so 
striking and may be due to the particular Algol implementation. 
It should be borne in mind that the sets of nodes as they appear in 
the Bierstone algorithm were coded as one-word binary vectors, 
and that a sudden increase in processing time will take place when 
the input graph is too large for "one-word representation" of its 
subgraphs. 

The second testcase was suggested by the referee and consisted of 
regular graphs of dimensions 3 X k. These graphs are constructed 
as the complement of k disjoint 3-cliques. Such graphs contain 
Jk cliques and are proved by Moon antd Moser [5] to contain the 
largest number of cliques per node. 

In Figure 2 a logarithmic plot of computing time versus k is 
presented. We see that both version 1 and version 2 perform sig. 
nificarttly better than Bierstone's algorithm. The processing time 
for version 1 is proportional to 4k, and for version 2 it is propor
tional to (3.14)k where Jk is the theoretical limit. 

Another aspect to be taken into account when comparing 
algorithms is their storage requirements. The new algorithms 
presented in this paper will need at most !M(M+3) storage loca. 
tions to contain arrays of (small) integers where M is the size of 
largest connected component in the i111put graph. In practice this 
limit will only be approached if the input graph is an almost com-



COLLECTED ALGORITHMS (cont.) 

plete graph. The Bierstone algorithm require:s a rather unpredict
able amount of store, dependent on the number of cliques that 
will be generated. This number may be quite large, even for mod
erate dimensions, as the Moon-Moser graphs show. 

Finally it should be pointed out that Bierstone's algorithm 
does not report isolated points as cliques, whereas the new al
gorithm does. Either algorithm can, however, be modified to pro
duce results equivalent to the other. Suppression of 1-cliques in 
the new algorithm is the simplest adaption. 

Acknowledgments. The authors are indebted to H.J. Schell 
for preparation of the test programs and colkction of performance 
statistics. Acknowledgments are also due to the referees for their 
valuable suggestions. 

References 
1. Augustson, J.G., and Minker, J. An analysis of some graph 
theoretical cluster techniques, J. ACM 17 (1970), 571-588. 
2. Bierstone, E. Unpublished report. U of Toronto. 
3. Bron, C., Kerbosch, J.A.G.M., and Schell, H.J. Finding 
cliques in an undirected graph. Tech. Rep. Technological U. of 
Eindhoven, The Netherlands. 
4. Little, John D.C., et al. An algorithm for the traveling sales
man problem. Oper. Res. 11 (1963), 97i-989. 
S. Moon, J.W., and Moser, L. On cliques in graphs. Israel J. 
Math. 3 (1965), 23-28. 
6. Mulligan, G.D., and Corneil, D.G. Corrections to Bier
stone's algorithm for generating cliques. J. ACM I9 (Apr. 
1972), 244-247. 

Algorithm 
procedure output maximal complete subgraphs 2(co1111ected, N); 

value N; integer N; 
8QOlea111 array connected; 

comment The input graph is expected in the form of a symmetrical 
Boolean matrix connected. N is the number of nodes in the 
graph. The values of the diagonal elements should be true· 

be~ ' 
integer array ALL, compsub[1 : N]; 
integer c; 
procedure extend version 2(old, ne, ce); 

value ne, ce; integer ne, ce; 
integer array old; 

begin 
integer array 11ew[l : cej; 
integer nod, fixp; 
integer newne, newce, i, j, count, pos, p, j' set, minnod; 
comment The latter set of integers is local in scope but need 

not be declared recursively; 
minnod : = ce; i : = nod : = 0; 

DETERMINE EACH COUNTER VALVE AND LOOK FOR 
MINIMUM: 

for i : = i + 1 while i ~ ce /\ minnod =;t. O do 
begin 

p : = old[i]; count : = O; j: = ne.; 
COUNT DISCONNECTIONS: 

for j : = j + 1 while j ~ ce /\ count < minnod do 
if I connected[p, oldfj]] then 
begin 

count : = count+ 1; 
SAVE POSITION OF POTENTIAL CANDIDATE: 

pos := j 
end; 

TEST NEW MINIMUM: 
if count < minnod then 
begin 

fixp: = p; minnod: = count; 

if i ~ ne then s : = pos 
else 
begins : = i; PRE/NCR: nod:= 1 end 

end NEW MINIMUM; 
end i; 

457-P 3- 0 

comment If fixed point initially chosen from candidates then 
number of disconnections will be preincreased by one; 

BACKTRACKCYCLE: 
for nod : = minnod + nod step - 1 until 1 do 
begin 

INTERCHANGE: 
p : = old[sj; old[sj : = old[ne + l J; 
sel := old[ne + 1] := p; 

FIU NEW SET not: 
newne : = i : = O; 
for i : = i + 1 while i ~ ne do 

if connected[sel, old[i]] then 
begin newne := newne + l; new[newnej := old[ij end; 

FILL NEW SETcand: 
newce : = newne; i : = ne + 1; 
for i : = i + 1 while i ~ ce do 

if connected[sel, old[i]] then 
begin newce : = newce + 1; new [newce] : = old[i] end; 

ADD TO compsub: 
c : = c + 1; compsub[c] : = sel; 
if newce = 0 then 
begin 

integer /oc; 
outstring(1, 'clique = '); 

for /oc : = 1 step 1 until c do 
outinteger(l, compsub[loc]) 

end output of clique 
else 
if newne < newce then extend version 2(new, newne, 11ewce); 

REMOVE FROM compsub: 
c := c - 1; 

ADD TO not: 
ne := ne + I; 
if nod > I then 
begin 

SELECT A CANDIDATE DISCONNECTED TO THE FIXED 
POINT: 

s := ne; 
LOOK: FOR CANDIDATE: 

s:=s+l; 
if connected[fixp, old[s]] then go to LOOK 

end selection 
end BACKTRACKCYCLE 

end extend version 2; 
for c : = 1 step 1 until N do ALL[c] : = c; 
c : = O; extend version 2(ALL, 0, N) 

end output maximal complete subgraphs 2; 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 458 

Discrete Linear L 1 

Approximation by Interval 
Linear Programming [E2] 
P.D; Robers* and S.S. Roberst 
[Recd. 26 Feb. 1971 and 6 Oct. 1971] 
*Ernst & Ernst, 1225 Connecticut Ave., NW, Washing
ton, D.C. 26636. 
t 2308 Riviera Drive, Vienna, VA 22180 

Key Words and Phrases: discrete approximation, L, 
approximation 

CR Categories: 5.13, 5.41 
Language: Fortran 

Description 
Purpose. This subroutine finds the discrete linear Li approxima

tion using the suboptimization method of interval linear program
ming. 

Problem. The problem is stated as: 
n 

minimize L I E; I 
i-1 

subject to 

Fx + E = t 

(1) 

(2) 

where the matrix F = (};;) and the vector t = (t,) are given; the 
vectors E = (Ei) and x = (x;) are to be found (i = 1, ... , n; j = 1, 
... 'm). 

Such problems arise, for instance, if a given set of data { (s i , t ,) : 
i = 1, ... , n} is to be approximated, in the sense of the Li norm, by 
a linear combination of given functions {gi(s); j = 1, ... , ml. 

Work on this algorithm was done while P.D. Robers and S.S. 
Robers were employed by The Research Analysis Corporation, 
McLean, Va., and the Mitre Corporation, McLean, Va., respec
tively. 
The problem is then: 

minimize f I Ei I 
i-1 

subject to 

"' L gJ(s;)xi + Ei = t;, i = 1, ... , 11, 
j-1 

458-P 1- 0 

which has the form of problem ((1), (2)) if we let fii = g;(si) for 
all i andj. 

Method. The algorithm works with the dual' problem of ((1), 
(2)), which may be written: 

maximize t Ty 

subject to 

FTy = 0, -e S y S e, 

where e T = (1, 1, ... , 1). This problem could be solved by any 
linear programming algorithm. The suboptimization method of 
interval linear programming, however, iis specially suited to solve 
the dual problem because of its structun;!. It is an iterative method 
which solves a subproblem at each stage. 

The details of applying the suboptimization method to the Li 
approximation problem are contained in [l] and will not be pre
sented here. A general discussion and development of the sub
optimization method is contained in [2]. 

Program. Subroutine APPROX is completely self-contained 
and communication to it is solely through the argument list. It can 
be used in two modes: (1) to solve a problem from scratch; and 
(2) to solve a problem using an advanced start from a previous run. 
The advanced start mode is useful if the optimal value of the objec
tive function is too large on a given problem (i.e. the approximation 
is too poor) and the problem is to be rerun after adding additional 
columns to the F matrix (i.e. increasing the order of the approxima
tion). In some applications the user may wish to constructthe calling 
program in such a way that the advanced start mode for APPROX 
is easily utilized. For example, the program might punch out in
formation about an optimal problem solution, on request, which 
could automatically be read in at a later time for use as an advanced 
start if the problem was resolved. The main program might also 
contain a step-wise option which provides the capability for in
creasing the order of approximation iteratively until either the 
program runs out of data or a desired approximation accuracy is 
reached. The Fortran listing for a general purpose calling program 
which has both of the above features is available on request from 
the authors. Entrance to the subroutine: APPROX is achieved by 
using the statement 

CALL APPROX (MD, M, N, T, FT, INBASE, A/NV, Y, XOPT, 
ZOPT, /ER). 

The meanings of the parameters in APPROX are as follows: 
MD, the mode of operation indicator. Note that if MD = 1, 

the problem is to be solved from the beginning. If MD = 2, the 
problem is to be solved from an advanced start from a previous run. 

M, the number of columns in the F matrix (if MD = 2, M must 
be the modified value). 

N, the number of rows in the F matrix. 
T, the right hand side vector for the problem (dimension N). 
FT, the transpose of the F matrix (dimension M X N). 
JN BASE, a vector which contains indices of basic columns in 

the optimal solution to the linear program when APPROX re
Huns control (dimension N). 

A/NV, a matrix which contains tht~ inverse of the matrix of 



COLLECTED ALGORITHMS (con1t.) 

optimal basic columns when APPROX returns control (dimension 
NX N). 

Y, a vector containing the optimal dual sollution when APP ROX 
returns control (dimension N). Note that no initial values are re
quired for /NBASE, A/NV, and Y when APPROX is called with 
MD = 1. However, when MD = 2, these parameters should con
tain the saved values that were contained in the respective positions 
when APPROX returned control on the previous run which is now 
to be used as the advanced start. 

XOPT, a vector containing the optimal x-values when APPROX 
returns control. 

ZOPT, the optimal value of the objective function when 
APPROX returns control. 

/ER, error indicator. Note that /ER = 0 at return is normal. If 
/ER = 1 at return, a singular matrix was generated. If /ER = 2, 
APPROX exceeded the iteration limit (10 X (m + 1)). The latter 
two conditions are abnormal returns, and the contents of IN BASE, 
A/NV, Y, XOPT, and ZOPT are unpredictable. 

As presently dimensioned, the size limitations for APPROX 
are M ::; 15 and N ::; 50. The dimension statements could clearly 
be changed to accommodate larger problem or ones with different 
proportions. Core storage and running time requirements for 
APPROX are modest. Since Li approximation will typically be 
"moderate" in size, the authors' experience indicates that APPROX 
should adequately solve all problems of practical interest, although 
specific tests directed at determining size limitations have not been 
performed. The ultimate size limitation will probably depend on the 
conditioning of the particular coefficient matrix, which is indeed 
an interesting area of study in itself. 

Test Results. All tests have been performed on a CDC 6400 
computer. No breakdown in the method has occurred, and in ge.neral 
very accurate results have been obtained. 

Some examples: 

(i) IT = (0.5, 1.0, 2.0, 3.0) 

( 1.0 1.0 1.0 
FT = I 0.0 1.0 2.0 

l 0.0 1.0 4.0 

1.0 I 
3.0J 
9.0 

The optimal solution found by APPROX in three iterations is 

XT = (0.5000000, 0.6666667, -0.1666667), 

and the minimum value of (1) is 

z* = 0.8333333. 

(ii) IT = (1.52, 1.025, 0.475, 0.0100, -0.475, -1.005) 

FT = (1.0 1.0 1.0 1.0 1.0 1.0)• 
0.0 1.0 2.0 3.0 4.0 5.0 

The optimal solution found by APPROX in two iterations is 

XT = (l.520000, -0.5033333), 

and the minimum value of the objective function is 

z* = 0.07333333. 

(iii) 1T =· (0.0, 1.5, 4.0, 3.0, 4.5, 5.0, 3.0, 7.0, 10.0) 

(1.0 1.0 1.0 1.0 1.0 1.0 l.O 1.0 1.0 I 
FT= 10.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.o I 

10.0 1.0 4.0 9.0 16.0 25.0 36.0 49.0 64.0 J 
lo.o 1.0 8.0 27.0 64.0 125.0 216.0 343.0 512.0 

The optimal solution found by APPROX after eight iterations is 

XT ~ (.7771561 X 10-14, .3333333 X 101, 
-.8437500' .7291667 x 10-'-1) 

and the minimum objective function value is 

z* = 5.250000. 

The above set of three problems was solved on the CDC 6400 
using APPROX in less than four seconds of central processor time. 
This estimate is the complete running time including Fortran com
pilation time of a main program and APPROX. 

458-P 2- 0 

References 
1. Robers, P.D., and Ben-Israel, A. An interval programming 
algorithm for discrete linear L1 approximation problems. J. 
Approximation Theory, 2(1969), 323-336. 
2. Robers, P.D., and Ben-Israel, A. A suboptimization method 
for interval linear programming: A new method for linear pro
gramming. Linear Algebra and Its Applications, 3 (1970), 383-405. 

Algorithm 

c 
c 

SUBR0UTINE APPR0X CMD, M. N• T • F'T• INBASE. AINV'. Y • X0PT, 
* Z0PT,IER> 

C THIS SUBR0UTINE S0LVES THE DISCRETE LINEAR LI 
C APPR0XIMATI0N PR0BLEM USING THE SUB0PTIMIZATI0N METH0D 01' 
C INTERVAL LINEAR PR0GRAMMING. THE PR0BLEM T0 BE S0LVED IS 
c 
c 
c 
c 
c 

MINIMIZE Z • ABSCECl>> + ••• + ABSCECN>> 
SUBJECT T0 

F'X + E = T 

C WHERE F' IS A GIVEN N BY M MATRIX. T IS A GIVEN N VECT0R• 
C X AND E ARE VECT0RS 01' VARIABLES HAVING DIMENSJ0N M AND N 
C RESPECTIVELY. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBR0UTINE APPR0X IS DESIGNED T0 BE USED IN TW0 M0DES
C I> T0 S0LVE A PR0BLEM F'R0M SCRATCH• AND 
C2> T0 S0LVE A PR0BLEM USING AN ADVANCED START F'R0M A 

PREVI0US RUN• 
THE ADVANCED START M0DE IS USEF'UL IF' THE 0PTJMAL VALUE 01' 
Z JS T00 LARGE 0N A GIVEN PR0BLEM <I·E· THE APPR0XJMATI0N 
IS T00 P00R> AND THE PR0BLEM JS T0,BE RERUN AF'TER ADDING 
ADDITI0NAL C0LUMNS T0 THE F' MATRIX CJ.E. INCREASING 
THE 0RDER 01' THE APPR0XIMATI0N> • 

SUBR0UTINE APPR0X JS C0MPLETELY SELF'-C0NTAJNED AND 
C0MMUNJCATI0N JS ACHIEVED S0LELY THR0UGH THE ARGUMENT 
LIST• THE MEANING 01' THE PARAMETERS ARE AS F'0LL0WS
MD = THE M0DE 01' 0PERATI0N INDICAT0R. 

IF' MD = I• THE PR0BLEM IS S0LVED F'R0M THE BEGINNING• 
IF' MD = 2• THE PR0BLEM JS T0 BE S0LVED USING AN 
ADVANCED START F'R0M A PREVI0US RUN. 

M = THE NUMBER 01' C0LUMNS JN THE F' MATRIX <IF' IMO " 2, 
M MUST BE THE M0DIF'IED VALUE·> 

N = THE NUMBER 01' R0WS IN MATRIX F'. 
T = THE RIGHT HANO SIDE VECT0R F'0R THE PR0BLEM. 
F'T = THE TRANSP0SE 01' MATRIX F'. 
JNBASE = A VECT0R WHICH C0NTAINS INDICES 01' BA.SIC C0LUMNS 

IN THE 0PTIMAL S0LUTI0N T0 THE LINEAR PR0GRAM WHEN 
APPR0X RETURNS C0NTR0L. 

AINV = A MATRIX WHICH C0NTAINS THE INVERSE 0F' 'fHE MATRIX 
01' BASIC C0LUMNS WHEN APPR0X RETURNS C0NTR0L· 

Y = A VECT0R C0NTAI NI NG THE 0PTIMAL DUAL S0LUTI 0N WHEN 
APPR0X RETURNS C0NTR0L• 

X0PT = A VECT0R C0NTAJNING THE 0PTJMAL X-VALUES WHEN 
APPR0X RETURNS C0NTR0L. 

Z0PT = THE 0PTIMAL VALUE 01' THE 0BJECTIVE F'UNCTJ0N 
WHEN APPR0X RETURNS C0NTR0L· 

IER = ERR0R INDJCAT0R WHEN APPR0X RETURNS C0NTR0L• IER•O 
INDICATES N0RMAL RETURN• 

N0 INITIAL VALUES ARE REQUIRED F'0R INBASE. AINV. AND 
Y WHEN APPR0X IS CALLED WITH MD = I• WHEN MD " 2• AN 
ADVANCED START JS INDICATED. THESE VARIABLES 14UST THEN 
C0NTAJN THEIR F'INAL VALUES F'R0M THE PREVI0US RUN· THE 
USER WILL THUS WANT T0 MAKE PR0VISI0US F'0R SAVING THESE 
VALUES IN THE CALLING PR0GRAM S0 THAT THEY CAN BE REUSED 
IF' NEEDED. 

C THE CALLING PR0GRAM AND APPR0X SH0ULD C0NTAJN THE 
C F'0LL0WJNG DIMENSI0N STATEMENT-
C DI MENSI 0N TC N>. F'TCM. N >.I NBA SEC N>.AI NVC N. N>- YCN>. X0PTCM > 
c 
C APPR0X MUST ALS0 C0NTAIN THE F'0LL0WJNG DIMENSI0N 
C STATEMENT-
CDJMENSJ 0N BPCN>.BMCN>.ARCN>. ARAJNVCN>. QCN> • GAMMACN>. OEL<N> 

C •TEMP<N> 
DJ MENSI 0N T< 50>. F'TC 1 5, 50 >. J'NBASE< 50>.AJNV< 50, 50>. Y< 50> 
*•X0PTC 15> 

DI MENSI 0N BP< 50>. BM< 50>.ARC 50>. ARAI NV< 50>- QC 50>. 
* GAMMA<50>.0ELC50>.TEMPC50> 

INTEGER ENT,QQ,ADBASE,Q,p 
EQUIVALENCE <GAMMA.DEL> 

C EPSI JS THE SJNGlR..AR MATRIX ERR0R MESSAGE CRITERI0N• 
C THE VALUE 01' EPSI CAN BE REDUCED F'0R ILL C0NDJTJ0NED 
C PR0BLEMS. 

EPSJ = ·0000001 
IF' CMD·EQ.2> G0 T0 70 

C PR0BLEM T0 BE S0LVED F'R0M THE BEGINNING. 
C DEFINE INITIAL SUBPR0BLEM. 

IT = 1 
ADBASE = N+l 
D0 20 I=l •N 

BP< I> = 1 .o 
BM< I> = -1 .o 
AR<I> = F'T<l•I> 
INBASE< I> = I 

C INITIALIZE AINV AS THE IDENTITY MATRIX. 
D0 10 J=l•N 

10 AJNVCJ,J> = Q.O 
20 AINVCJ,J> = 1·0 

C FIND THE INITIAL Y VECT0R· 
D0 60 I=l•N 

I F'C TC I>> 30• 40, 50 
30 Y CI> • - I • 0 

G0 T0 60 
40 Y<I> = o. 



COLLECTED ALGORITHMS (cont.) 

Ge re 60 
SO YCI> • l•O 
60 CeNTJNUE 

Ge Tl!l 100 
OPR81l.EM re BE seLVED rReM AN ADVANCED START· 

70 ADBASE • M+N 
De 90 I•l•N 

If CINBASECI>·LE·N> Ge re 80 
BP<I> • o.o 
BMC I> • o.o 
Ge, re 90 

80 BP< 1> a l .o 
BM<I> •-l.O 

90 AR< l> • fT<M• I> 
IT • IT+I 

100 BRM " O·O 
BRP = o.o 

C BEGIN GENERAL ITERATieN. 
c DETERMINE DEL CTHE AM0UNT er INfEASIBILITY IN THE Bl!ITTeM 
C CllJNSTRAINT 0f THE CURRENT SUBPReBLEM>. 

l 10 CeNTINUE 
s = o.o 
De 120 I=t.N 

120 S = S + AR<I>•Y<I> 
D • S-BRP 
Ir co.Gr.o.> Ge re 130 
D "' S - BRM 
Ir co.GE·O·> Ge re 430 

l 30 C0NTI NUE 
Dl!I 140 I•l•N 

ARAINVC I> • O·O 
D0 140 J= I •N 

140 ARAINV<I> • ARAINV<I>+AR<J>•AINV<J•I> 
c CALCULATE GAMMA VECTeR <THE VECTeR er MARGINAL cesrs reR 
C MeVING T0WARD fEASIBILITY>. 

00 170 I"'t.N 
TEMP< I> • Q.O 

D0 I SO J= l•N 
ISO TEMP<I> '" TEMP<I>+TCJ>•AINV<J•I> 

If <ARAINV<I>.NE.o.o>Ge T0 160 
GAMMA( I> a -I .o 
Ge T0 170 

160 GAMMA<I> "' TEMP<I>/ARAINV<I> 
If <D.LT·O·O> GAMMACI>=-GAMMA<I> 

170 C0NTINUE 
C fIND Q VECTeR <THE VECT0R 0f INDICES WHICH INDICATE THE 
C VARIABLES WHICH CAN BE CHANGED T0 M0VE TeWARD fEASIBILITY>• 

QQ=O 
D0 2.10 L'"l•N 

Dl!I 180 I•l•N 
If CGAMMACI>.LT·O·O> Ge T0 180 
S = GAMMA<I> 
J=I 
G0 T0 190 

180 C0NTINUE 
G0 T0 21S 

190 D0 200 I•l•N 
If <GAMMACileLT.Q. ·0R· GAMMACI>·GE·S>G0 Tl!I 200 
S = GAMMA< I> 
J=I 

200 Cl!INTINUE 
QQ=QQ+I 
QCL> "' J 

210 GAMMA<J> • -1.0 
C CALClA..ATE DEL TA VECT0R CTHE VECT0R INDICATING THE MAXIMUM 
C PERMISSABLE CHANGES IN THE VARIABLES>. 

21S D0 260 I•ot,QQ 
K='QC I> 
s = o.o 
II • INBASECK> 
If <II·LE·N> Gl!I Tl!I 230 
L "' II-N 
01!1 220 J=l•N 

220 S • S + fT<L•J>•Y<J> 
G0 Tl!I 240 

230 S "' Y< II> 
240 If<D•ARAINVCK>.LE·O•> Gil T0 2SO 

DELCK> " BMCK>-S 
Ge re 260 

2SO DELCK> • BP<K>-S 
260 C0NTINUE 

c DETERMINE p <THE NUMBER er VARIABLES CHANGED 
C THIS ITERATil!IN>• 

De 280 I=l•QQ 
p " I 
s .. o.o 
Dl!I 270 J• l• I 

K • QCJ> 
270 S • S+DEL<K>•ARAINVCK> 

If CABS<S>.GE.ABS<D>> Ge Tl!l 290 
280 Cl!lNTINUE 

C CALCULATE THETA <THE AMl!lUNT WHICH THE PTH VECTl!IR IS 
C CHANGED>. 

290 L '" P-1 
s=o.o 
If CL .Lr. I> Ge Te 310 
De 300 J• l•L 

K " QCJ> 
300 S • S+DEL<K>•ARAINV<K> 
310 K=QCP> 

THETA • -<D+S)/ARAINV<K> 
C UPDATE Y VECTeR <THE 0PTIMAL SeLUTI eN T0 THE CURRENT 
C SUBPRl!IBLEM>. 

00 320 I• l•N 
320 TEMP<I> • O·O 

If' <L .LT• 1> G0 T0 3"10 
00 330 I=l•L 

K "' QC I> 
330 TEMPCK> • DELCK> 
340 K • QCP> 

TEMPC K) • THETA 
De 360 I• l•N 

s .. o.o 
De 3SO J•l•N 

350 S • S+AINVCI.J>•TEMPCJ> 

360 YCI> "' YCI>+S 
K • QCP> 
BPCK> • BRP 
BMCK> = BRM 
INBASECK> • ADBASE 

C CALCULATE NEW AINV MATRIX• 
Dl!l 370 l=l•N 

TEMP< I> • o.o 
D0 370 L•l•N 

370 TEMPCI> • TEMPCI>+AR<L>•AINV<L•Il 
If <ABSCTEMPCK>>•GT• EPSI > G0 Tlil 380 

458-P 3- 0 

C SINGULAR MATRIX INDICATED• SET ERR0R TAG AND TERMINATE• 
IER "' I 
RETURN 

380 00 390 I•l•N 
390 AINV<l.K> • AINVCI.K>/TEMPCKl 

D0 420 J=l•N 
If<J•EQ.Kl G0 T0 410 
D0 400 I"' l•N 

AINVCl.J> • AINV<I.J>-AINV<I•K>•TEMP<J> 
400 Cl!lNTINUE 
410 ClilNTINUE 
420 C0NTI NUE 

C l"IND S <THE LARGEST INfEASIBILITY>• ~1ND ENTCTHE INDEX el" 
C THE C0RRESP0NDING C0NSTRAINT>. 

430 TEMP< I> • o. 

440 

450 

460 

L = M+N 
00 510 I= l•L 

D0 440 J= l•N 
Il"CINBASE<J>.EQ.I> G0 Tlil SlO 
C0NTINUE 

If<I·LE.N> G0 T0 470 
s = o. 
II = I-N 
D0 450 J•l•N 

S " S + fTCII.J>*Y<J> 
Il"<S.EQ·O·> G0 T0 510 
If<ABSCS> ·LE· TEMP<!» Glil T0 ~110 
TEMP<t> = ABS<S> 
ENT = I 
Glil T0 510 

470 S = Y< I> 
Ir cs-1.> 490.490.480 

480 S = S- I. 
Glil T0 460 

490 IF' cs+1.> 500.510.510 
500 S • S+l. 

G0 T0 460 
5 I 0 C0NTI NUE 

S = TEMP< I> 
IF' CS.EQ.O.> G0 T0 560 

PRESENT S0LUTI0N INFEASIBLE• START THE NEXT ITERATI0N· 
IT = I T+I 

C DEl"INE THE NEXT SUBPR0BLEM. 
IF' CENT.LE.N> G0 T0 530 
BRP = o.o 
BRM = O.O 
L = ENT-N 
00 520 J=l•N 

520 AR<J> " fTCL.J> 
G0 T0 550 

530 BRP = I .o 
BRM= -t.O 
00 540 J= l•N 

540 ARCJ> = o.o 
AR< ENT> = I .o 

550 ADBASE = ENT 
If <IT·LEolO•CM+I>> G0 Tl!I 110 

C ITERATil!IN LIMIT EXCEEDED· SET ERRl!IR TAG AND TERMINATE• 
IER = 2 
RETURN 

C l!IPTIMAL DUAL Sl!ILUTI0N fl!IUND• CALCULATE PRIMAL Sl!ILUTI0N• 
560 00 600 J= l•M 

570 

L = J+N 
00 570 I=l•N 

IF'<INBASECI>·EQ.L> Glil Tl!I 580 
Cl!INTINUE 

Xl!IPT<Jl = Q. 
G0 Tl!I 600 

580 TEMP< I> = Q. 

590 
D0 590 L= I •N 

TEMPCI> = TEMP<I>+T<L>•AINV<L .. I> 
Xl!IPT<J> = TEMPCI> 

600 Cl!INTI NUE 
Zl!IPT = o. 
D0 610 I=l•N 

610 Zl!IPT = Zl!IPT + YC I >•T< I> 
RETURN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 459 

The Elementary Circuits 
of a Graph [H] 
Maciej M. Syslo [Recd. 30 Apr. 1971:and15 Aug. 19721 
Department of Numerical Methods, University of 
Wroclaw, Wroclaw, pl. Grunwaldzki 2/4, Poland 

Key Words and Phrases: algorithm, graph theory, circuit 
search algorithm, path search algorithm, searching 

CR Categories: 3. 74, 4.22, 5.32 
Language: Algol 

Description 
This algorithm investigates the existence of elementary circuits 

of a directed graph G. 
Data: n is the number of vertices; arc(i,j) is the Boolean pro

cedure with two parameters i, j of type integer, which is equal to 
true if (i, j) E G, and false otherwise. 

Results: 
(a) If the graph has no circuits, then the following sequence of 
symbols will be printed: 

Graph without elementary circuits. 
Ordered numeration of vertices i1 i~ ia i,. 
where (ii , i2, ... , in) is the permutation of numbers (1, 2, ... , 
11), and a new numeration of vertices such that if (j, i) E G, 
then}< i. 

(b) In the other case the following sequence! of symbols will be 
printed: 

Graph contains the circuits: 
Circuit i1 i2 · · · 1, 11 

Circuit }1 h · · · J., }1 

Every elementary circuit will be printed once and only once. 
Method. This Algol program is based on the well-known 

method used while searching for cycles (circuills) in oriented graphs 
(fl, 2]). However, before the beginning of this method, vertices 
which do not belong to any circuits are labe:led (s[i] = n2). The 
process uses only two arrays: nodes[l :n], which contains either the 
ordered numeration of vertices or the verticies of the elementary 
path of the move; and s[l :n], the ith element of which denotes the 
investigation phase of vertex i. 

If the incidence matrix is stored one bit per entry, the process 
needs nfn/w] + 2n machine words, where w 1is the number of bits 
in a machine word. 

The program has been run on the ODRA-1204 computer and 
numerous examples were tested, including complete graphs. 

References 
1. Tiernan, J.C. An efficient search algorithm to find the elemen
tary circuits of a graph. Comm. ACM 13 (Dec .. 1970), 722-726. 
2. Vantrusov, Ju.I. About the Analysis of Finite Graph, in Mathe
matical Programming (in Russian). Moscow, 1966, pp. 68-77. 

Algorithm 
begin 

integer n; 
ininteger (2, 11); 
begin 

integer array s, nodes [ 1: 11]; 
integer i, j, k, kl, k2, k3, k4, 111, 112, ~j; 
Boolean/; 

459-P 1- 0 

comment The body of procedure arc and all other declara-
tions connected with it should be inserted here; 

111 := -n - 1; 112 := -n - 2; 
I:= true; 
for i : = 1 step 1 until n do s[i] : = O; 
for k : = 1, k + 1 while k :::; n /\ f do 
begin 

for i : = 1 step 1 until n do 
if s[i] = 0 then 
begin 

for j : = 1 step 1 until n do 
if s[j] = 0 then 
begin 

if arc(}, i) then go to nexti; 
end s[J] = 0, j; 
nodes[k] : = i; s[i] : = n2; 
go to nextk; 

nexti: 
end s[i] = 0, i; 
f: =false; 

nextk: 

rep: 

end k; 
if /then 
begin 

outstring (1, 'Graph willwut elementary circuits.'); 
out string (1, 'Ordered numeration of vertices'); 
outarray (1, nodes) 

end/ 
else 
begin 

for j : = 1 step 1 until n do 
if sU] = 0 then 
begin 

for i : = 1 step 1 until n do 
if s[i] = 0 then 
begin 

if arc(j, i) then go to nextj 
end s[i] = 0, i; 
s[j] := n2; 
go to rep; 

nextj: 

scan: 

end s[j] = 0, j; 
outstring(1, 'Graph contains the circuits:'); 
k2 := 1; 

for k3 : = s[k2] while (k3 = 112 V k3 = 111) /\ k2 < /1 do 
begin 

if k3 = 111 then s[k2] : = 112; 
k2 := k2 + 1 

end k3; 
fork : = k2 + 1 step 1 until n do 
if s[k] = nl then s[k] : = n2; 



COLLECTED ALGORITHMS (cont.) 

cd: 

c:dl: 

if k3 = 0 then 
begin 

i := 1; kl := node.s[ll := k2; 

i:=i+l; 

for j : = ubs(s[k2J) + 1 step 1 until /1 do 
begin 

sj: = s[j]; 
if sj ~ n2 then 
begin 

if arc(j, k2) /\ (k3 = 0 V sj = /1 l V sj ~ O) then 
begin 

s[k2] : = if k3 = 0 thenj else -j; 
if sj = nl then 
begin 

if k3 = 0 then k3 := k2; 
sUJ := o 

end sj = nl; 
if sf j] > 0 then 
begin 

outstring(l, 'Circuit'); 
k4 : = O; k : = i; 
outinteger( 1, j); 
for k : = k - 1 while k4 ~ j do 
begin 

k4 : = nodes[k I; 
outinteger(l, k4) 

end k; 
go to cdl 

end s[j] > 0 
else 
begin 

k2 : = 11odes[i] : = j; 
go to cd 

end sj ~ 0 
end arc(j, k2) .. · · 

end sj ~ 112 
endj; 
s[k2] := 111; 
if k2 ~ kl then 
begin 
i := i - I; 
if k 3 = i - I the111 k 3 : = 0; 
k2 : = nodes[i - 1 ]; 
go to cdl 
end k2 ~kl; 
go to scan 

end k3 = 0 
end-, f 

end 
end 

459-P 2- Rt 

Remark on Algorithm 459 {HJ 
The Elementary Circuits of a Graph lMaciej M. Syslo, 
Com. ACM 16 (Oct. 1973), 632-633] 

Maciej M. Syslo (Recd 11 Feb. 1974) Department of 
Numerical Methods, University of Wroclaw, pl. Grun
waldzki 2/4, 50384 Wroclaw, Poland 

Corrections are needed in the algorithm: 
(i) Insert: 

k3 := s[k2]; 

after the statement end k3; 
(ii) The 9th line from the end of the algorithm 

if k3 = i - I then k3 : = O; 

and insert the line 

if k3 = k2 then k3 : = O; 

before the statement go to cdl. 



COI,LECTED ALGORITHMS FROM CACM 

Algorithm 460 

·Calculation of Optin1um 
Parameters for Alternating 
Dir1ection Implicit Procedures 
[D3] 

Paul E. Saylor 
Department of Computer Science, University of Illinois, 
Urbana, IL 61801 
and 
James D. Sebastian 
Boeing Computer Services, Seattle, WA 98124 
[Recd. 26 May 1971and12Nov. 1971] 

Key Words and Phrases: elliptic difference equations, Peaceman
Rachford, Douglas-Rachford, W. B. Jordan, optimum parameters, 
alternatfing-direction-implicit, ADI 

CR Categories: 5.14, 5.17 
Language: Fortran 

Description 
Purpose. Let Gz = s be a system of simultaneous equations, 

where G is a positive-definite matrix, sis a known vector, and z an 
unknown vector. Such systems arise, for example, as the result of 
the discretization of an elliptic boundary value problem. Beginning 
with an initial approximation z0 , one version of the Alternating 
Direction Implicit (ADI) method [2] determines successive ap
proximations to the true solution, z, from two iterative formulas, 

Zk+l/2 = (H + WkHI)-ls - (H + Wkn/)-l (V ·- Wkul)zk 

and 

Zk+l = (V + Wk vl)-1s - (V + wkVJ)-1 (H - Wk vl)zk+112 , 

k = 0, 1, ... , m - 1, where H and V are symmetric matrices such 
that G = H + V, I is the identity matrix, Wklf and Wkv are param
eters chosen to accelerate convergence, and m is the number of 
iterations, When Hand V commute, i.e. HV == VH, the parameters 
that yield fastest convergence for fixed m, the optimum parameters, 
are the solution to a min-max problem that has been completely 
solved by W.B. Jordan using techniques of elliptic function theory 
[1, App. and 2]. 

An algorithm for computing optimum parameters based on 

460-P 1- 0 

Jordan's solution does not appear to be generally available, and it 
is our aim to provide one here. 

Method. The formulas used in the subroutines are taken from 
the solution of Jordan as presented in [2]. We refer to [2] for their 
derivation, and observe here only that, given either m orµ,,,, but not 
both, where µ,,. is the spectral norm of the m-step error propagation 
matrix 

m-1 

T,,, = II (V + Wkvf)-1(H - wkvl)(H + WkHl)-1(V - w'ky/), 
k=o 

the subroutine computes the parameters wk v and wkH that minimize 
the value of m or µ111 , which is not given, while satisfying the in
equality 

// Z - z,,. //2 $ µ,,,// Z - Zu 1/2. (1) 

This makes the Jordan algorithm more flexible than alternative 
methods of computing parameters, due to Peaceman and Rachford 
[4] and Douglas and Rachford [5]. These methods compute an in
teger m and a satisfactory but not optimal sequence of m param
eters such that (1) is satisfied, givenµ,,. . Unlike the Jordan algorithm, 
it is impractical to specify the number m of iterations then 
compute a sequence of m parameters and an estimate of µ,,, . 

Form = 2k, where k is a nonnegative integer, another algorithm 
for computing an optimum sequence of m parameters and an 
estimate of µ,,. is due to Wachspress [2]. Again, the greater flex
ibility of the Jordan algorithm is apparent. However, it employs 
truncated infinite series, whereas, for m = 2k, the Wachspress 
algorithm only requires the approximation of square roots. 

Program. The number of iterations, m, and the spectral radius, 
µ,,., are represented in the argument list by ITNS and DMU re
spectively. Iteration parameters wkn and wk v are the kth entries of 
the arrays OMEH and OMEVrespectively. The dimension of each 
array is the value of N. The program parameter IO PT, specified on 
entry, determines one of two options: 
(i) If IO PT has the value 1, then /TNS must be specified on entry. 
Optimum parameters OMEH(l), OMEV(l), .... , OMEH(ITNS), 
OMEV(ITNS) are computed together with the value of DMU. 
(ii) lf /OPT has the value 2, then DMU must be: specified on entry. 
A value of ITNS is then computed with optimum parameters 
OMEH(l), OMEV(l), ... , OMEH(ITNS), OMEV(ITNS) such 
that /TNS is the minimum number of iterations for which µ,,. is less 
than or equal to the value of D MU. 

In option (ii), if ITNS.GT.N is satisfied, then ITNS is set equal 
o N, corresponding optimum parameters are computed, and the 

error f'ia'g /ER is set to 2. Other possible values of /ER are 0 and 1. 
The~e indicate that computation was normal or that some input 
parameter was improper. 

Estimates of the minimum and maximum eigenvalues of H are 
assigned on entry to parameters A and B respectively. Estimates 
of the minimum and maximum eigenvalues of V are assigned to C 
and D. Gerschgorin's theorem yields satisfactory estimates of B 
and D, whereas estimates of A and C may be c:omputed from an 
algorithm suggested by Wachspress [3J. 



COLLECTED ALGORITHMS (cont.) 

Machine dependent constants. The constants -90, -10, 10, and 
30 in the three IF statements following the last comment card in 
the program are machine dependent. At the point where this com
ment occurs, DMU is to be computed from the formula 

DMU = (2.DO*DEXP(TEMP)/ 
(l.DO + 2.DO*DEXP(TEMP)**4))**2 

but for greater efficiency and to avoid underflow, overflow, or 
argument out of range conditions on the IBM 360, the formula 
actually used to compute DMU is chosen according to the value of 
TEMP. These constants are used as follows: If TEMP:::; -90 or 
TEMP 2 30, then DMU < 10+*-77, as may be verified from the 
above formula, and the program simply sets DMU = 0. Let djl(X) 
denote the IBM 360 Fortran internal double precision floating 
point representation of X. It is easily verified that if TEMP :::; -10 
then 

dfi(l.DO + 2.DO*DEXP(TEMP)**4) = djf(l.DO), 

and if TEMP 2 10, then 

dfi(2.DO + DEXP(TEMP)**-4) = djf(2.DO). 

Thus D MU is computed to full machine prec1s1on from 
DMU = 4.DO*DEXP(2.DO*TEMP)whenTEMP ~ -10,andfrom 
DMU = DEXP(-6.DO*TEMP) when TEMP 2 10. Finally, 
DMU is computed from the formula given at the beginning of 
this section when -10 < TEMP < 10. 

Tests. The program has been tested on the 360/75 by applying 
the parameters to the solution by ADI of Gz = s, with z = s = 0. 
In each test, G is a 900 by 900 matrix obtained from discretizing 
aiJ2/iJx2 + (3iJ 2/iJy2, a and f3 constants. Therefore, G = aH + {3V, 

where Hand Vare discrete analogs of a2/ax2 and a2/ay2 respectively. 
The initial vector, zo, was chosen to have a nonzero component in 
the direction of each of the eigenvectors of H or V. 

To test option (i), two pairs of values of a and (3 were used. For 
a = !, {3 = 2, called the model problem ITNS was assigned the 
values ITNS = 1, 2, ... , 20. For a = }, {3 = 200, called the gen
eralized model problem, and considered a more difficult problem 
for ADI, ITNS was assigned ITNS = 15, ... , 20. In each case 
z1, ... , zrTNs were computed and the validity of E.LT.DMU was 
tested where Eis the /2 relative error defined by 

E = I/ z - Z1TNS 112/1/ z -- Zo 112. (2) 

With a = !, f3 = 2, the comparison E.LT.DMU was satisfied for 
ITNS = 1, ... , 29, whereas for ITNS = 30, it failed. Performance 
of the program may nevertheless be considered satisfactory since 
for ITNS = 30,DMU was less than .9 D-17, a value beyond 
practical interest and sufficiently small that one may expect to ob
serve roundoff. In the second case for a = !, f3 = 200, E.LT.DMU 
was satisfied for ITNS = 15, ... , 18, whereas for 19 and 20 the 
comparison fails. For each failure, DMU was less than .2 D-25. 

To test option (ii), parameter DMU was assigned the values 
DMU = 10-ifori = -1, -3, ... , -15, then/TNSandthe optimum 
parameters for ITNS iterations were computed and the validity of 
E.LT.DMU checked. For each value of ITNS, E.LT.DMU was 
satisfied for both problems. 

Observe that tests of this kind are not in fact objective and do 
not test whether the iteration parameters are optimal; they verify 
that values of DMU or ITNS, depending on the option, are con
sistent with the results obtained by solving actual problems with 
the computed iteration parameters. To evaluate the accuracy of 
the program more objectively, we compared ADJP as follows to a 
FORTRAN version of the Wachspress algorithm for computing 
exact parameters when the number of iterations is a power of 2. 
Values of the optimum parameters and the spectral radius of the 
iteration matrix were computed from each program for 2, 4, 8, 16, 
and 32 iterations, with other input data taken from the model 
problem and generalized model problem described above. In addi
tion each set of optimum parameters was applied to the solution of 
the model problem and generalized model problem. 

Comparisons between the output of each program were made by 

460-P 2- 0 

computing the relative difference of the spectral radii and each pair 
of optimal parameters. (The relative difference of ai and aw is 
defined to be I ai - aw l/ai where ai is computed from ADIP and 
aw is computed from the Wachspress algorithm.) 

For the model problem the relative difference of each quantity 
was bounded by 10-5 for 2, 4, 8, and 16 iterations. For each number 
of iterations, the /2 relative errors (2) of each pair of computed 
solutions were in agreement to five significant digits. In each case 
the relative error of the computed solution as computed from ADJP 
parameters was larger (in the sixth decimal place or higher) than 
the relative error computed from the Wachspress exact parameter 
program. This confirms the expectation that the Wachspress al
gorithm is more accurate, although the difference is slight, since this 
is a comparison of relative error. 

For 32 iterations in the solution of the model problem, the dif
ferences between the two algorithms weire somewhat greater, but 
with the performance of ADIP superior. The 12 relative error in the 
solutions as computed by ADIP and the Wachspress program were 
respectively .71 D-18 and .75 D-18. The difference in these 
values is not significant. For, 32 is an unrealistic number of itera
tions. Also, any difference in relative error does not imply the same 
difference in accuracy of the computed solutions. Here, each ap
proximation agrees with the exact solution to 18 significant figures 
in the ft sense. Rather than this, the significant feature of the com
parison is that ADIP is more reliable when input parameters are 
nontypical. This is also evident in testing with the generalized model 
problem. 

In runs of the generalized model problem for 2, 4, and 8 itera
tions, the differences between corresponding l~ relative errors of the 
approximate solution were greater than for the model problem 
but still insignificant. For 2 and 4 iterations, the 11 relative error 
obtained by ADIP parameters was smaller than that obtained by 
parameters from the Wachspress exact parameter program. Param
eters from the. Wachspress program yielded more accurate results 
only for 8 iterations. For 16 and 32 iterations, the response of the 
Wachspress exact parameter program was bizarre. Certain param
eter values returned were negative whe:reas exact parameters are 
positive. In each case, the spectral radius was assigned the value 
zero. Of course the conditions of the runs are extreme. They represent 
an attempt to reduce the 12 relative error to unrealistically small 
values. The results again indicate that ADI P performs more reliably 
under adverse conditions. In fact, ADIP is self-consistent for 16 
iterations in reducing the relative error to less than the computed 
value of the spectral radius, although for 32 iterations, the self 
consistency test fails. 

In conclusion, these tests indicate that the Wachspress exact 
parameter program yields more accuratt: values under ideal condi
tions, but that the difference is of no practical significance. When 
the requirements of the problem are severe or fanciful, ADIP is 
more reliable than the Wachspress exact parameter program. 

References 
1. Wachspress, E.L. Extended application of alternating direction 
implicit model problem theory. SIAM J. Appl. Math. 11 (1963). 
2. Wachspress, E.L. Iterative Solution cif Elliptic Systems. 
Prentice-Hall, Englewood Cliffs, N. J., 1966. 
3. Wachspress, E.L. Numerical solution of neutron diffusion 
problems. In Numerical Solution of Field Problems in Continuum 
Physics. SIAM-AMS Proc. Vol. 2, AMS, Providence, R. I., 1970. 
4. Peaceman, D. W., and Rachford, H.H. The numerical solution 
of parabolic and elliptic differential equations. J. Soc. Ind. Appl. 
Math. 3 (1955), 28-41. 
5. Douglas, J., and Rachford, H.H. On the numerical solution 
of heat conduction problems in two and three space variables. 
Trans. AMS 82 (1956), 421-439. 



COLLECTED ALGORITHMS (co111t.) 

Algorithm 

SUBR0UTINE ADIPCA, B, c. o, 10PT• N, ITNS. DMU, 0MEH• 
* 0MEV, IER> 

D0UBLE PRECISl0N A• ALFA, B, BETA, BMO, BPO. c, CMA• CPA, 
* o, DEL• DEXP, DKPR, DL0G• OM, DMU. DIRJ, DSQRT. 0J• 
* 0MEHCN>. 0MEVCN>. PISQ, TEMP, TEMPA, TEMPS, TEMPC 

DATA PISQl9o869604401089359DOI 
C GIVEN A MATRIX EQUATl0N GZ=S• WHERE G IS A REAL P0SITIVE 
C DEFINITE MATRIX. S IS A KN0WN. AND Z THE UNKN0WN. VECT0R· 
C LET H AND V BE SYMMETRIC C0MMUTING MATRIC!ES SUCH THAT 
C G•H+V. BEGINNING WITH AN INITIAL APPR0XlMATI0N ZCO>• LET 
C SUCCESSIVE APPR0XIMATl0NS T0 Z BE GENERATED F'R0M 
C ZCK+ll2>=CH+0MEHCK>*l>**C-ll*CS-CV-0MEHCKl*I>*ZCK>> 
C ZCK+I> =CV+0MEVCK>*I>**C-l>*CS-CH-0MEVCK>*Il*ZCK+l12>>• 
C WHERE I IS THE IDENTITY MATRIX· FINALLY. LET 0NE 0F' ITNS 
C AND DMU BE GIVEN. THEN THIS SUBR0UTINE C0MPUTES THE PAR
C AMETERS 0MEHCK>• 0MEVCK> THAT MINIMIZE THE VALUE 0F' 
C DMU AND ITNS WHICH IS N0T GIVEN WHILE SATISFYING THE 
c INEQUALITY /Z-ZCITNSlloL[oOMU*IZ-ZCO>I· WHERE II DEN0TES 
C THE EUCLIDEAN N0RM. 
C THE SUBR0UTINE ARGUMENTS HAVE THE F'0LL0WING MEANING. 
C A AND B ARE L0~JER AND UPPER 80UNOS. RESPECTIVELY• 0N THE 
C EIGENVALUES 0F' H. C AND D ARE L0~JEk AND UPPER B0UNDS1 
C RESPECTIVELY, 0N THE EIGENVALUES 0F' Vo THI;: VALUES 0F' A1B1 
C C• AND D MUST SATISFY THE INEQUALITIES O.LT.A.LE.81 AND 
C 0 ··LT• C , LE, D • 
C 10PT DEN0TES TME INPUT 0PTl0N• IF' 10PT=l THEN THE VALUE 0F 
C ITNS MUST BE SPECIFIED 0N ENTRY AND DMU WILL BE C0MPUTED· 
C IF l 0PT=2 THEN THE VALUE 0F' DMU MUST BE SPEC I F'l ED 0N ENTRY 
C AND ITNS WILL BE C0MPUTED. 
c IF' 10PT=I THEN THE INEQUALITY loLEolTNS.LE.N MUST BE 
c SATISFIED· WHILE IF' 10PT=2 THEN THE INEOU1\LITIES NoGEo I 
C AND DMU.GT.O MUST BE SATISFIED· 
C N IS THE PIMENSI0N 0F' THE ARRAYS 0MEV AND 0MEH. 
C ITNS XS THE N.UMBER 0F' ITERATl0NS T0 BE PEHF'0RMED· 
C DMU IS A B0UND 0N THE SPECTRAL N0RM 0F' THJ;: ITERATl0N 
C MATRIX T0 THE ITNS P0WER. IF' I0PT=2 A VALUE F'0R DMU MUST 
C BE SPECIFIED 0N ENTRY, AND THIS VALUE MAY BE CHANGED BY 
C ADIP CSEE IER, BEL0Wl• 
C THE VALUES 0F' THE REQUIRED PARAMETERS ARE C0NTAINED IN THE 
C L0CATl0NS 0MEVCK>. 0MEH<K>. K=l• ••• ,ITNS l~N EXIT F'R0M 
C ADIP· 
C IER IS A VARIABLE WH0SE VALUE 0N EXIT F'H0M ADIP HAS THE 
C F'0LL0WING MEANING 
C IER=O SIGNIFIES C0MPUTATI0N 0F' THE PARAMETERS HAS BEEN 
C PERF'0RMED WlTH N0 CHANGE 0F' THE VALUES SPECIFIED 0N ENTAY· 
C IER=I SIGNIFIES THAT S0ME INPUT VALUE VI0l.ATES THE 
C C0NSTRAINTS GIVEN AB0VE1 AND HENCE THE PARAMETERS HAVE N0T 
C BEEN C0MPUTED. 
C IER=2 CP0SSIBLE 0NLY IF' I0PT=2l SIGNIFIES THAT F'0R THE 
C GI VEN VALUE 0F' DMU, THE C0MPUTED VALUE 0F' ITNS W0ULD BE 
C GREATER THAN N1 S0 THAT ITNS HAS BEEN SET EQUAL T0 N AND 
C DMU HAS BEEN REC0MPUTED AS F'0R I0PT=I. 
C TEST INPUT VALUES F'0R RANGE 

IICR = I 
IF C ·N0T. CA.GT.O.DO oAND• A.LE.a .AND. C.GT.0.00 .ANDo 

* CoLE.Dl> G0 T0 90 
If ( oN0To Cl0PT.EQ.t o0R· I0PT.EQ.2>:1 G0 T0 90 
IF CI0PT.EQ.2l G0 T0 10 
IF ( oN0To ( ITNSoGEo I oANDo ITNS0LE0N:1) G0 T0 90 
G0 T0 20 

10 IF C oN0T. CN.GE.J .AND. DMU.GT.O.DOl:I G0 T0 90 
C STAGE I - PRELIMINARY C0MPUTATl0NS C0MM0N T0 80TH 0PTl0NS 

20 IER 0 
BPD B + D 
BMD B - D 
CPA C + A 
CMA C - A 
OM = 2.DO*CCD-Cl*CB-A>llCBPD*CPA> 
DKPR = \,DOICJ.DO+DM+DSQRTCDM*CDM+2.DOlll 
DEL = OoDO 
IF CBMD.EQ.O.DO .AND. CMAoEQ.O.DO> G0 T0 30 
TEMP = BPD*DKPR 
DE:L = 2, DO*C TEMP-CPA> IC CPA*BMD+TEMP*Cl'lAl 

30 AL.FA = DKPR*<CMA+2oDO*DEL*A*CllCPA 
BETA = (2.DO+DEL*BMD)/BPD 
H:MP = DKPRl4.DO 

C END 0F STAGE I - COMPUTE ITNS F'0R 0PTI0N 2 
If CI0PToEQ,Jl G0 T0 40 
ITNS = <DL0G<DMUl4.DOl*DL0GCTEMPll/PISQ + 1.00 
If CITNSoLE·N> G0 T0 40 
I TNS = N 
IER = 2 

C STAGE 2 - C0MPUTATl0N 0f THE 0PTIMAL PARAMETERS 
40 TEMPA = 2*1TNS 

TEMPB = TEMP*TEMP 
00 50 J= 1, I TNS 

DRJ = 2*J - I 
DRJ = DRJITEMPA 
TEMPC = TEMP**DRJ 
0J = 2.DO*<TEMPC+TEMPBITEMPCllC \ .DO<-TEMPC*TEMPC> 
TEMPC = DEL*0J 
0MEVCJ) = C0J-ALfAl/CBETA-TEMPCl 
0MEHCJl = <0J+ALfA>l<BETA+TEMPCl 

50 C0NTINUE 
If <10PT.EQ.2 oANDo IERoEOoO) G0 T0 90 

C END 0F STAGE 2 - C0MPUTE DMU F'0R 0PTI0N I 
TEMPA = ITNS 
TEMP= PISQ*TEMPAIDL0GCTEMPB*Cl.D0+8oDO*TEMPBll 

C CH00SE PR0PER F'0RMULA T0 AV01 D UNDERF'L0W ~lR 0VERF'L0W 
If <TEMPoLE·-90.DO .0R. TEMP.GE.30.DOI G0 T0 60 
If <TEMPoLE.-\O.DOl G0 T0 70 
If CTEMP.LTo\O.DOl G0 T0 80 
DMU = DEXPC-6oDO*TEMPl 
G0 T0 90 

60 DMU = O.DO 
G0 T0 90 

70 DMU = 4oDO*DEXPC2.DO*TEMPl 
G0 T0 90 

80 TEMP = DEXPCTEMP> 
DMU = C(2.DO*TEMPl/(\,00+2.DO*TEMP**41l*l2 

90 RETURN 
END 

460-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 461 
Cubic Spline Solutions to a 
Class' of Functional 
Differential Equations [D2] 
F.J. Burkowski and W.D. Hoskins [Recd. 3 June 1971 
and 27 Apr. 1972] 
Department of Computer Science, University of Mani
toba, Winnepeg, 19, Manitoba, Canada 

Key Words and Phrases: differential equation, spline 
approximation 

CR Categories: 5.17 
Language: Fortran 

Description 
Purpose. The subroutine SPNBVP calculates a piecewise con

tinuous approximation to the solution of the boundary value 
problem 

X"(t) = P(1)X(t) + Q(t)X(G(t)) + R(t) (1) 

on the interval [A, BJ. The existence of such a solution has been 
demonstrated by Grimm and Schmitt [5), and it should be noted 
that the boundary values take the form of two continuous functions 
U(t) and V(t) specified on the two intervals {a, A] and [B, fl] re
spectively where 

a= min {G(t),AI and !l = max IG(t),Bl. 
l<[A, BJ t<[A, BJ 

Boundary value problems of this type can arise in the study of 
variational problems in control theory where the problem is com
plicated by the effect of time delays in signal transmission. For 
example, one may wish to determine extrema of the functional 

Jab F(t, x(t), x(g(t))) dt 

under the conditions 

x(t) = ij;(t), t S a, x(b) = B. 

Under suitable hypotheses on F, this problem leads to a boundary 
value problem of the above type. Such problems have been treated 
by El'sgol'ts [3]. Other related works are the survey papers [6, 7, 8, 
9]. 

Method. SPNBVP utilizes an iterative scheme where each 
iterate is a cubic spline [4, p. 1] serving as an approximation to the 
true solution. Burkowski and Cowan [2] have demonstrated that 
such an iterative procedure will converge to an approximation of 
the solution if the condition 

max {I P(t) I + g(l) I Q(t) I l s 8/((B - A) 2 + 6H2) 
ASts;B 

is satisfied where H is defined below and 

g(t) = 1 if G(t) E[A, BJ, 
= 0 if G(t)~ [A, BJ. 

The interval (A, BJ is partitioned into N equal subintervals of 
length H = (B ·- A)/N. That is we have a sequence of "knots" 

A = to < 11 < · · · < tn = B 

461-P 1- 0 

such that t1 - t1_1 = H for j = 1, 2, ... , N. For our purpose the 
equation of the cubic polynomial in the interval [lj-1 , t1] may be 
written as 

S(t) = XJ-1(VJ - t)3/6H) + x/((t - lj-1Pi6H) 
+ (x1-1 - (H2/6)xj_1)((ti - t)/H) 
+ (x1 - (H2/6)x/')((t - 11-1)/H) (2) 

where Xi = X(ti) and x;'' = X"(t1). 

In order to ensure that the spline has the necessary continuity 
conditions at the knots, the Xi and xi" values are subject to the 
following "continuity equations" 

Xj+l - 2Xj + Xj-1 = (H2/6)[XJ+l + 4x/ + x~'._iJ (3) 

valid for j = I, 2, 3, ... , N - 1. Using the central difference opera
tor i5 this can be rewritten as 

iJ2Xj = H2((o2/6) + l)x/' j = 1, 2, 3, ... , N - 1 (4) 

In [2], it is also demonstrated that the accuracy of the spline ap
proximation is proportional to H 2• 

The difficulty in constructing solutions to such equations as (1) 
arises in having to evaluate terms such as X(G(t,)) in order to 
calculate the value of X" (t) at a point t, . By using splines a con
tinuous rather than , discrete approximation to the solution is 
generated and hence a value for X(G(l,)) can be determined even if 
G(t;) does not correspond to a value ti for some j. Since a cubic 
spline is used, the method is superior to any algorithm which 
simply evaluates X(G(t,)) by using a linear interpolation. 

The basic strategy used in SPNBVP is to calculate a sequence 
of successive splines or essentially a sequence of vectors each con
taining the values x;, i = 1, 2, ... , N - 1. Once a set of Xi values 
is calculated, we may use the continuity equations and boundary 
values to evaluate the x," values and hence determine the cor
responding spline. 

The Xi, i = 1, 2, ... , N - 1 are treated as unknowns in the 
system of equations 

i5 2x; = H 2((o2/6) + 1) I P(!J)Xj + Q(tj)X(G(lj)) + R(lj) l 
.i = 1, 2, ... , N - 1 

(5) 

derived from (1) and (4). The solution of (5) is obtained by setting 
up the matrix equation 

(MAT)(X) = (VM) (6) 

where the vector (X) contains the unknowns Xj , j = 1, 2, · ·, N -
l and the matrix (MAT) contains the coefficients of the x; un
knowns. The vector (VM) contains values arising from the func
tion R(t) and also other quantities discussed below. In the calcula
tion of a spline, the iterative character of the algorithm arises from 
the fact that the values X(G(tj)) are calculated from the previous 
spline or from the current spline depending upon the nature of 
G(t1). More precisely, if for a certain t1 we have G(t1)~ [A, BJ, then 

X(G(t3)) = U(G(t1)) if G(t1) S A 
= V(G(t1)) if G(t1) ~ B. 

Since the value of this term is independent of any x;, an appro
priate entry is made in the vector (VM). If G(t;) = 1k for some lk, 

then X(G(t;)) = xk, and in this case (MAT) is accordingly modi
fied. If neither of these last two conditions prevails, we set 
X(G(t;)) = S(G(t3)) in eq. (2), and hence X(G(t1)) is expressed in 
terms of two unknowns Xk and Xk-1 (for some k) and also in terms 
of Xk" and x/Z-1, two values which are taken from the previous 
spline. Thus we use only the x /' values of any spline when we 
calculate the next successive spline. To start the iteration we assume 
an initial spline with x/' = 0, j = 0, 1, 2, ... , N. 



COLLECTED ALGORITHMS (conit.) 

Program Call. Parameters in the call statement for SPNBVP 
include the following: 

A, Bare the endpoints of the inverval under consideration. 
NP is the number of knots in [A, BJ, and hence NP = N + l. 
NK is the number of interior knots in [A, B], and so NK = 

N- 1. 
X will contain the values of xi, j = 1, 2, 3, ... , N - 1 on 

return to the calling program. 
XDP will contain the values (H2/6)x/', i = 0, 1, 2, ... N. 
EP SPNBVP returns to the calling program when convergence 

has progressed so far that 
N-1 N-1 

L I Xi - Xi I ~ EP L I Xi 1. 
i-1 i=l 

Thus, if EP is set to the value 10-<m+i>, convergence of the iteration 
to the approximation has been attained if the Xi have m persistent 
figures in successive iterates. Hence this may be considered as a 
machine dependent constant. The term x, denotes the value of 
x, in the previous spline. 

The remaining eight variable names havie been included in the 
parameter list in order to achieve execution-time dimensioning of 
arrays. The user need only concern himself with the dimension and 
type of each of these arrays as explained in the comment cards. 

SPNBVP requires six function subprograms defining the func
tions U(t), V(t), P(t), Q(t), R(t), and G(t) as defined above. Four 
other subroutines are required. GAGB is used when xo and XN are 
calculated. These quantities require rather special treatment since 
the continuity equations apply only to the internal knots ti, j = 

I, 2, ... , N - I. SOLVE is simply a special routine which when 
given xi values quickly calculates x/',j = 1, 2, ... , N - 1 by using 
the continuity equations. Finally, the user is responsible for the 
provision of routines which compute the solution of the matrix 
system (6). In this case the routine LUDCMP replaces (MAT) by 
its LU decomposition. The routine LUSUB uses this new matrix 
and the vector (VM) to compute the next iterate (X). The descrip
tion and analysis of such routines are given in [1, pp. 93-110]. 

References 
1. Bowdler, H.J., Martin, R.S., Peters, G., aind Wilki11son, J.H. 
Solution of real and complex systems of linear equations. In 
Handbook for Automatic Computation, Vol. H, Springer Verlag, 
2. Burkowski, F.J., and Cowan, D.D. The numerical solution of 
a boundary value problem involving differential-difference 
equations. SIAM J. Numer Anal. JO (1973), 489-495. 
3. El'sgol'ts, L.E. Qualitative Methods in Mathematical Analysis. 
Trans. Math. Mono. 12, AMS, Providence, R.I., 1964. 
4. Greville, L.J. Theory and Application of Spline Functions. 
Academic Press, New York, 1969. 
5. Grimm, L.J., and Schmitt, K. Boundary value problems for 
differential equations with deviating arguments. Aequationes 
Mathematicae 3 (1969), 24-38. 
6. Kamenskii, G.A., Norkin, S.B., and El'sgol'ts, L.E. Some 
directions of investigation in the theory of differential equations 
with deviating arguments, Trudy Sem. Teor. Differential. Uravnenii 
s Otklon. Argumenton Univ. Druzhby Narodov Patrisa Lumumba 6 
(1968), 3-36. 
7. Kamenskii, G.A. On existence and uniqueness of solutions of 
differential equations with deviating arguments. Ibid. 5 (1967), 
107-108. 
8. Myshkis, A.D., and El'sgol'ts, L.E. Some results and problems 
in the theory of differential equations. Uspehi Mat. Nauk, 22 
(1967), 21-57. 
9. Zverkin, A.M., Kamenskii, G.A., Norkin, S.B., and El'sgol'ts, 
L.E. Differential equations with a perturbed argument. Ibid. 17 
(1962), 77-164. 

Algorithm 

SUBR0UTINE SPNBVP<A• B, NP, NK, X• XDP• EP, GT, KG, VP, 
* VQ, VR• VG, MAT, VM> 

C THIS ALG0RITHM COMPUTES ITERATIVELY A CUBIC SPLINE 
C APPR0XIMATION TO THE SOLUTION OF THE DIFFERENTIAL EQUATION 
C X••<T>=P<T>X<T>+QCT>X<G<T>>+RCT> ON THE INTERVAL CA.B> 
C WITH BOUNDARY CONDITIONS GIVEN BY UCT> IF T.LE.A AND 
C V<T> IF ToGE·B• 

c 
c 
c 

461-P 2- 0 

A AND B ARE TWO REAL VARIABLES DEFINED A~ ABOVE. 
NP AN INTEGER VARIABLE SPECIFYING THE NUMBEH OF KNOTS 

ON THE I NT ER VAL CA, B >. 
C NK 
c 

AN INTEGER VARIABLE SPECIFYING THE NUMBEf( OF INTERIOR 
KNOTS· THUS NK=NP-2. IT IS USED TO ESTABLISH THE 
DIMENSION OF CERTAIN ARRAYS MENTIONED BELOW. c 

c x 
c 

0N RETURN TO THE CALLING PROGRAM X WILL CONTAIN THE 
VALUES OF THE APPROXIMATI0N TO THE S0LUTXON AT THE 

c 
c 

NK INTERIOR KNOTS. THIS IS AN ARRAY OF DIMENSION 
NK AND TYPE REAL• 

C XDP 
c 

ON RETURN. XDP CONTAINS THE QUANTITIES H•Hl6o0 
MULTIPLIED BY THE SECOND DEHIVATIVE VALUES AT ALL THE 
KNOTS· XDP IS A REAL AHRAY 0F DIMENSION NP. c 

C EP 
c 

THIS REAL VARIABLE IS SET TO THE VALUE l·OE-M IF WE 
REQUIRE M-1 IDENTICAL FIGURES IN SUCCESSilVE ITERATES. 
AN INTEGER ARRAY OF LENGTH NP WHICH ASSIGNS TO EACH C GT 

c KNOT T SUB J AN INTEGER VALUE BETWEEN I MlD 6. THIS 
VALUE DESIGNATES RESPECT! VEL Y THE CASES l~HEN c 

c 
c 
c 
c 

GCT SUB J> IS. 1 > oLE. A, 2> .GE·B• 3> WITHIN EP OF 
SOME KNOT VALUE, 4) IN THE FIRST SUBINTERVAL• 
5> IN THE LAST SUBINTERVAL, AND 6> IN ANY OTHER 
SUBINTERVAL. GTC I+I > C0KHESPONDS l0 KNOT T SUB I• 

C KG 
c 

AN INTEGER ARRAY OF LENGTH NP WHICH ASSIGNS T0 EACH 
KNOT AN INTEGER BETWEEN 2 AND NP-1. IF GTCI+l>=3 
THEN KGCI+l> CONTAINS THE SUBSCHIPT OF THE KNOT c 

c 
c 
c 

AT THE POINT GCT SUB I>· IF GT<I+ll=6 THEN KGCI+l> 
CONTAINS THE SUBSCRIPT OF THE KNOT AT THE RIGHT HAND 
ENDPOINT OF THE SUBINTERVAL IN ~IHICH G<T SUB I> LIES. 

C VP. 
c 

VQ. VR. AND VG ARE ALL REAL AHRAYS OF DIMENSION NP AND 
CONTAIN THE VALUES OF THE FUNCTIONS p, o, R AND G 
RESPECTIVELY EACH EVALUATED AT THE NP KNOTS. c 

C MAT 
c 

IS A REAL NK BY NK ARHAY USED IN THE MATRIX EQUATION 
CMAT> CX>=CVM> SET UP TO SOLVE F"0k THE X SUB J VALUES 
STORED IN ARRAY x. c 

C VM 
c 

AN ARRAY OF LENGTH NK AND TYPE REAL USED AS 
DESCRIBED ABOVE. 

c 
c 
c 
c 
c 
c 
c 

THE USER MUST SUPPLY REAL FUNCTION SUBPR0GRAMS TO COMPUTE 
THE FUNCTIONS UCT>.V<T>.P<T>.QCT>.RCT> AND GCT> DEFINED AS 
ABOVE. HE MUST ALSO SUPPLY SUBPROGRAMS WHICH SOLVE THE 
SYSTEM CMAT><X>=CVM>· THE ROUTINE LUDCMPCMAT,NK> IS T0 
REPLACE MAT BY ITS LU DECeMPOSITION. THE ROUTINE 
LUSUB1VM,MAT.X.NK> IS TO COMPUTE X WHEN VM AND THE LU 
F"0RM OF MAT IS GIVEN. 

INTEGER GTYP, GTE. GTCNP» KGCNP» GTI• GTNP 
REAL XDPCNP>• VPCNP>• VQCNP>• VRCNP>• VGCNP> 
REAL MATCNK.NK» VMCNK» XCNK> 

C KPR IS PRINTER DEVICE NUMBER 
DATA KPR/6/ 
CC T> = T*C T•T- 1 .) 

C INITIALIZATION 
N = NP - 1 
RN = N 
NK = N - 1 
DO 20 K=l.NK 

DO 10 J= l • NK 
MATCK,J> o.o 

10 CONTINUE 
20 CONTINUE 

XA = UCA> 
XB = VCB) 

C INITIALIZE XDP TO ZERO <INITIAL SPLINE> 
D::J 30 K=l•NP 

XDPCK> = o.o 
30 CONTINUE 

C SET UP P • Q, R, G VECTORS 
H = CB-Al/RN 
HS = H*H/6.0 
HR = 1 o/H 
DO 40 K= 1 >NP 

HK = K - I 
TM = A + RK*H 
VPCK> PCTM> 
VQ<K> = QCTM> 
VRCK> = HCTMl 
VG<K> " GCTM> 

40 CONTINUE 
C SET UP •TYPE OF G VALUE* ARRAY AND KG ARRAY 

APLSE = A + EP*ABS<A> 
BMINE ~ B - EP*ABSCB> 
DO 70 I<= 1, NP 

GTE = 6 
VGE = VGCKJ 
IF CVGE.LT.A+H> GTE = 
IF <VGE.GT.B-H> GTE = 
IF CVGE.LE.APLSE> GTE 
IF CVGE.GE.BMINE> GTE = 2 
VDH = CVGE-Al/H 
KN0T ;; VDH + EP 
RKNOT = KNOT 
IF «KNOT.LT.I> .OR· CKN0T.GT.NK» GO H' 50 
IF <ABS<VDH-RKNOT>.GT.EP> G0 TO 50 
GTE = 3 
KGCKJ = KNOT 
G0 TO 60 

50 KGCK> = KN0T + 1 
60 GTCK> = GTE 
70 CONTINUE 

C PUT XSUBJ C0EFFICIENTS INTO CMAT> AND INITIALIZE X TO ZERO 
DO 90 J=l • NK 

XCJ> = O.O 
IF (J.EQ.ll GO TO 80 
MATCJ,J-1 > = I· - HS•VPCJ> 

80 MATCJ,J> = -2·•<1·+2.*HS•VPCJ+I>> 
IF CJ.EQ.NK> GO TO 90 
MATCJ,J+I> = I• - HS•VPCJ+2> 

90 CONTINUE 
C ADD INTO <MAT> X SUB G SUB T COEFFICIENTS 

DO 1 50 J= I • NK 
DO 1 40 JJ= I• 3 

JZ = JJ - 1 
JJZ = J + JZ 
COEF = HS•VQCJJZ> 
IF <JZ.EQ.1> COEF COEF•4• 
GTYP = GT<JJZ> 



COLLECTED ALGORITHMS (cont.) 

GO T0 Cl40.140.IOO.tl0.120.130>• GTYP 
100 KNOT = KGCJJZ> 

MATCJ,KN0T> = MATCJ.KN0T> - C0EF 
G0 T0 140 

110 MATCJ.I> = MATCJ.I> - C0EF•i'CVGCJJZ>-A>•HR 
G0 T0 140 

120 MATCJ,NK> = MATCJ.NK> - C0EF•CB-VGCJJZ>>•HR 
Gfl T0 140 

130 KN0T = KGCJJZ> 
RKN0T = KN0T 
CCC = RKN0T + (A-VGCJJZ>>•HR 
MATCJ,KN0T-I) = MATCJ.KN0T-I> - C0EF•CCC 
CCC= CVGCJJZ>-A>•HR - RKN0T + I• 
MAT<J.KN0T> = MATCJ.KN0T> - C0EF•CCC 

140 C0NTINUE 
150 C0NTINUE 

C REPLACE <MAT> BY ITS LU DEC0MP0SITI0N. 
CALL LUDCMPCMAT. NK> 

C A SEQUENCE 0F SPLINES CUP T0 20> IS N0W GENERATED 
VPA = VPC I> 
VPB = VPCNP> 
D0 2 50 NNN= I• 20 

C VECT0R VM. IS N0W SET UP 
D0 200 J= I, NK 

VMCJ> = <VR<J>+4.•VRCJ+l>+VkCJ+2>>•HS 
D0 I 90 JJ= I• 3 

JZ = JJ - I 
JJZ = J + JZ 
GTYP = GTCJJZ> 
C0EF = HS•VQCJJZ> 
IF <JZ.EQ•I> C0EF = C0EF*4• 
IF CGTYP.EQ.I> VMCJ> = VMCJ> + C0EF•UCVGCJJZ>> 
IF <GTYP.EQ.2) VMCJ> = VM<J>. + C0EF•V<VGCJJZ> > 
G0 T0 Cl90,190•190.t60.170.180>. GTYP 

160 TM = CVGCJJZ>-A>•HR 
TJ = 1. - TM 
CCC= TJ•XA + CCTM>•XDPC2> + C<TJ>•XDPCll 
VMCJ> = VMCJ> + C0EF•CCC 
G0 T0 190 

170 TJ = CB-VGCJJZ>>•HR 
TM=l.-TJ 
CCC = TM•XB + CCTM>•XDPCNK+2> + CCTJl*XDPCNK+I > 
VMCJ> = VMCJ> + C0EF•CCC 
G0 T0 190 

180 KN0T = KGCJJZ> 
RKN0T = KN0T 
TJ = CA-VGCJJZ>>*HR + RKN0T 
TM=l.-TJ 
CCC= CCTM>•XDPCKN0T+I) + CCTJ>•XDPCKN0T> 
VMCJ> = VMCJ> + C0EF•CCC 

190 CONTINUE 
200 C0NTI NUE 

VMCI> = VM<I> - Cl.-HS•VPA>*UCA> 
VMCNK> = VMCNK> - Cl.-HS•VPB>•VCB> 

C THE NE~I X ARRAY IS N0W C0MPUTED. 
C THE ARRAY VP SERVES AS A W0RK AREA. 

D0 .210 JF=l1NK 
VP<JF> = X<JF> 

210 C0NTINUE 
CALL LUSUBCVM. MAT, x, NK> 
TSTVLI = o.o 
TSTVL2 = o.o 
D0 220 JF=t,NK 

TSTVLl = TSTVLI + ABSCVPCJF>-XCJF>> 
TSTVL2 = TSTVL2 + ABSCXCJF> > 

220 C0NTI NUE 
C CALCULATI0N 0F XDP AT A AND B 

GTI = GTCI> 
GTNP = GTCNP> 
IF <GTl.EQoll XGAA = UCVGCI)) 
IF CGTloEQ.2> XGAA = VCVG<I>> 
IF CGTNP.EQ.I) XGAB • U<VGCNP>> 
IF <GTNPoE0.2> XGAB = VCVGCNP>> 
CALL GAGBCGTI. XGAA, KGCll. VGCI>. x, XDP, A, B, NP, NK> 
CALL GAGBCGTNP, XGAB, KGCNP>. VGCNP>. X. XDP, A, B, NP, 
NK> 
XDPA = CVPA•XA+VOCll•XGAA+VRCl>>•HS 
XDPB = CVPB•XB+VQCNP>•XGAB+VRCNP>>•HS 

C S0LVE F0R XDP VALUES 0F CURRENT SPLINE USING C0NTINUITY 
C EQUATI0NS. VM AND VP ARE USED AS W0RKING AREAS. 

VMCI> = XA + XC2> - 2 •• xc1> - XDPA 
NKI = NK - I 
VMCNKJ = XB + XCNKI> - 2•*XCNK> - XDPB 
D0 230 J=2, NK I 

VMCJ> = XCJ-1> + XCJ+ll - 2.•XCJl 
230 C0NTI NUE 

CALL S0LVECVM, NK, VP, NP> 
XDPC I> = XDPA 
XDPCNP> = XDPB 
00 2 40 J= I , NK 

XDPCJ+I > = VM<J> 
240 C0NTINUE 

IF <TSTVLl·LE·TSTVL2•EP> RETURN 
IFCNNN.EQ.20> WRITECKPR,1000> 

1000 F0RMATC32H N0 C0NVERGENCE IN 20 ITENATI0NS 
250 C0NTINUE 

HE TURN 
END 

SUBR0UTINE GAGBCGTYP. ANS. K, GV. x, XDP, A, B. NP, NK> 
REAL XCNK>• XDPCNP> 
INTEGER GTYP 
CCT> = T•<T•T-1.J 
RNKD = NK + I 
RK = K 
XA = UCA> 
XB = VCBl 
H = CB-Al/RNKD 
G0 T0 CI o, 20. 30• 40, SO. 60 >, GTYP 

10 RETURN 
20 RETURN 
30 ANS = XCKl 

RETURN 

40 TM = CGV-Al/H 
TJ = 1. - TM 

461-P 3- 0 

ANS= TM•XCI> + TJ•XA + CCTM>•XDPC2l + C<TJl*XDPCI> 
RETURN 

50 TJ = <B•GVl/H 
TM=l.-TJ 
ANS= TM•XB + TJ•XCNK> + CCTM>•XDPCNK+2> + CCTJ>•XDPCNK+I> 
RETURN 

60 TJ = CA-GVJ/H + RK 
TM=l·-TJ 
ANS• TM•XCKJ + TJ•XCK-1> + CCTM>•XDPCK+I) + CCTJ>•XDPCK> 
RETURN 
END 

SUBR0UTINE S0LVECD. NK. M. NP> 
REAL DC NK >. MC NP> 
NKI = NK - I 
MCNK> = .25 
00 10 I=t.NKI 

J = NK - I 
MCJ> = I o/(4.-MCJ+I » 
DCJ> = DCJ> - DCJ+ll*MCJ+ll 

10 C0NTINUE 
DC I >=DC! )ot<MC I l 
00 20 1=2,NK 

DCI > = C DCI > -D<I-1 »•MCI> 
20 C0NTINUE 

RETURN 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 462 

Bivariate Normal 
Distribution [SIS] 
Thomas G. Donnelly lRecd. 9 July 1971] 
Department of Biostatistics and Center for Urban and 
Regional Studies, University of North Carolina at 
Chapel Hill, Chapel Hill, NC 27514 

Key Words and Phrases: bivariate, norm~lll Gaussian, 
frequency distribution 

CR Categories: 5.5 
Language: Fortran 

Description 
Purpose. Tables of the bivariate normal distribution are avail

able [1] for H, K = 0(.1)4 and R = ±.0(.05)0.95(.0l)l to six 
decimal places for positive Rand to seven decimal places for nega
tive R. A valuable section in the preface to [ 1 J by D. B. Owen de
scribes a wide variety of problem areas in which the tables can be 
applied. 

The advantages of being able to access these data in a computer 
are many. Frequently the values of (H, K, R) in which one is inter
ested will have been produced through computer calculations, and 
it is much more convenient if the user can produce the corresponding 
probability immediately and continue his calculations. Secondly, 
use of tables ordinarily involves the user in three-dimensional hand 
calculated interpolation, and the risk of errors here can be eliminated 
by use of a functional subprogram. Finally, a functional subprogram 
is a starting point for additional refinemernts, such as confidence 
regions and tetrachoric correlations. 

Method. The methods employed in the program were basically 
those described in [2, eqs. 3.5, 3.8, 3.9], and comments in the pro
gram have been reduced to a minimum because the relations be
tween the program and the equations should be self-evident. Because 
the expression used [2, eq. 3.9] in evaluating T(h, a) is an alternating 
convergent series, it was possible to provide controlled precision in 
the algorithm. As written, it provides accuracy to 15 decimal places, 
but the parameter controlling this, /DIG, may be adjusted to suit 
the computer environment in which the algorithm is to be used. Of 
course, the value selected must conform to the precision obtainable 
from the univariate error function used, suclh as Algorithm 304, [3] 
and the other standard subroutines used, as well as to the computer 
characteristics. 

The lower-left tail values of the distribution, if desired, are 
obtained by reversing the signs of Hand K. 

References 
1. National Bureau of Standards, Tables of the Bivariate Normal 
Distribution and Related Functions, N.B.S., Applied Math. Series, 
No. 50, 1959. 
2. Owen, D.B. Tables for computing bivariate normal probabili
ties. Ann. Math. Stat. 27 (1956), 1075-1090. 
3. Hill, I.D., and Joyce, S.A. Algorithm 304. Normal curve 
Integral. Comm. ACM JO (June 1967), 374. 

This work was supported in part by NASA Grant No. NGR 
34-003-040 and by OWRR Project No. B-012-NC, Matching Grant 
Agreement No. 14-01-0001-1935. 

Algorithm 
D0UBLE PRECISI0N FUNCTI0N BIVN0KCAH, AK, kl 

C BIVN0R IS A C0NTR0LLED PRECISI0N 
C F0RTRAN FUNCTI0N T0 CALCULATE THE 
C BIVARIATE N0RMAL UPPER RIGHT AREA, VIZ· 
C THE PR0BABILITY F0R TW0 N0RMAL 
C VARIATES X AND Y WH0SE C0RRELATI0N 
c IS R. THAT x oGTo AH AND y oGTo AK. 

462-P 1- 0 

D0UBLE PRECISI0N TW0PI, 9, AH, AK, R, Gl'I• GK, RR• GAUSS, 
• DERF. H2. A2. H4. DEXP. EX. w2. AP. s2. SP· st. SN. SQR, 
* DSQRT• C0N, DATAN, WH, WK, GW, SGN, T, DABS, G2, C0NEX, 
* CN 

GAUSS CT> = (I oODO+DEl-<FCT/DSQRTC2oODO>) )1'2oODO 
C GAUSS IS A UNIVARIATE L0WER N0RMAL 
C TAIL AREA CALCULATED HERE FR0M THE 
C CENTRAL ERl'i0R FUNCT10N DEKFo 
C IT MAY BE REPLACED BY THE ALG0RITHM IN 
C HILL,IoDo AND J0YCE,s.A. ALG0RITHM 304• 
c N0flMAL CURVE INTEGRALCSIS). C0MM.A.CoMoCIO> 
C <JUNE.1967>,p,374, 
c S0URCEI 0WEN. DoBo ANNoMATHoSTATo 
c V0Lo 27Ct9S6), Pol07So 
C TW0PI = 2. * PI 

TW0PI = 6·28318S307179S87DO 
B = o.ODO 
IDIG = IS 

C THE PARAMETER 'IDIG' GIVES THE 
C NUMBER 0F SIGNIFICANT DIGITS 
C T0 THE RIGHT 0F THE DECIMAL P0INT 
C DESIRED IN THE ANSWER• IF 
C IT IS WITHIN THE C0MPUTER'S 
C CAPACITY 0r C0URSE. 

GH = GAUSSC-AH)/2oODO 
GK = GAUSSC-AK)/2oODO 
IF CR> JO, 30, 10 

10 RR= loODO - R•R 
IF CRR) 20, 40, 100 

20 WRITE <3.99999> R 
C ERR0R EXIT F0R ABSCR> .GT. I ·ODO 
99999 F0RMATCl2H BIVN0R R IS, D26ol6> 

ST0P 
30 B = 4, ODO•GH•GK 

G0 T0 3SO 
40 IF CR> so, 70, 70 
SO IF CAH+AK> 60, 3SO, 3SO 
60 B = 2oODO•CGH+GK> - loODO 

G0 T0 3SO 
70 IF CAH-AK> eo. 90. 90 
BO B = 2.0DO•GK 

G0 T0 3SO 
90 B = 2.0DO•GH 

G0 T0 3SO 
100 SQR = DSQRTCRR> 

IF CIDIG-IS> 120, 110• 120 
110 C0N = TW0P1*1 ·D-l S/2.0DO 

G0 T0 140 
120 C0N = TW0PI/2.0DO 

D0 130 I=l.IDIG 
C0N = C0N/JO.ODO 

130 C0NTI NUE 
140 IF <AH> 170• ISO, 170 
ISO IF <AK> 190, 160, 190 
160 B = DATANCR/SQR>ITW0PI + 0.2SDO 

G0 T0 3SO 
170 B = GH 

IF CAH•AK> 180• 200, 190 
180 B = B - O·SDO 
190 B = B + GK 

IF <AH> 200, 340• 200 
200 WH = -AH 

WK = CAK/AH-Rl/SQR 
GW = 2.0DO•GH 
IS = -I 

210 SGN = -t .ODO 
T = OoODO 
IF CWK> 220, 320, 220 

220 IF CDABSCWK>-t.ODO> 270, 230• 240 
230 T = WK•GW•Ct.ODO-GWl/2.0DO 

G0 T0 310 
240 SGN = -SGN 

WH " WH•WK 
G2 = GAUSSCWH> 
WK = I .ODO/WK 
IF CWK> 2SO, 260, 260 

250 B = B + OoSDO 
260 B = B - CGW+G2l/2·0DO + GW•G2 
270 H2 = WH•WH 

A2 = WK•WK 
H4 = H2/2.0DO 
EX DEXPC-H4> 
W2 H4•EX 
AP I .ODO 
S2 AP - EX 
SP AP 
SI 0 .ODO 
SN SI 
C0NEX = DABSCC0N/WK> 
G0 T0 290 

280 SN SP 
SP SP+ t.ODO 
S2 S2 - W2 
W2 = W2•H4/SP 



COLLECTED ALGORITHMS (cont.) 

AP = -AP•A2 
290 CN = AP•S2/CSN+SPl 

SJ = SJ + CN 
l' CDABSCCN>-C0NEX> 300, 300, 260 

JOO T = CDATANCWKl-WK•Sl l/TW0Pl 
:310 B = B + SGN•T 
J20 I, ClSl 330, 350, 350 
J30 I' CAKl J40, 350, 340 
:340 WH -AK 

WK = <AH/AK-Rl/SQR 
GW = 2.ooO•GK 
IS = 1 
G0 T0 2JO 

J50 I' CB> 360• 370, 370 
:360 B = O.OOO 
J70 I' cs-1.000> 390, 390, 360 
J80 B = leOOO 
.390 BIVN0R = B 

RETURN 
END 

462-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 463 

Algorithms SCALE!, 
SCALE2, and SCALE3 for 
Determination of Scales on 
Computer Generated Plots [J 6] 
C.R. Lewart (Recd. 6 Aug. 1971 and 28 Jan. 1972) 
Bell Telephone Laboratories, Incorporated, Holmdel, 
NJ 07733 

Key Words and Phrases: plotting, scaling for plotting 
CR Categories: 4.41 
Language: Fortran 

Description 
l11troductio11. It is often desirable to plolt computer generated 

output or obtain discrete distribution functions such as histograms 
automatically. In general the raw data does not lend itself directly 
to an easily readable presentation. The three related algorithms as 
presented here obtain readable linear or logarithmic scales with 
uniform interval sizes for users of various plot routines. 

Readability. A readable linear scale is defined here as a scale 
with interval size a product of an integer power of 10 and 1, 2 or 5, 
and scale values integer multiples of the interval size. 

A readable logarithmic scale on a display with uniform plotting 
intervals is defined here such that the ratio of adjoining scale values 
DIST= 10< 11 

L+KJ' where Kand Lare integers, with 1 SL S 10; 
scale values are equal to DISTM, where M is a set of successive 
integers. 

The definition of readability used for SCALE 1 and SCALE 2 
permits scale values such as: 

-0.5, 0.0, 0.5, 1.0, ... 
1.24, 1.26, 1.28, ... 
100.0, 200.0, 300.0, ... , etc. 

It prohibits the following examples: 

-1.0, 4.0, 9.0, .. . 
1.2, 1.31, 1.42, .. . 
0.0, 4.0, 8.0, 12.0, ... , etc. 

The definition of readability for logarithmic plots would permit 
scale values of 1, \110, (\110)

2
, 10, ... , bU1t disallow 1, yl5, 5, 

5yl5, 25, .... 

Usage. A call of the form 

CALL SCA.LEI (XMIN, XMAX, N, XMINP, XMAXP, DIST) 

where XMIN and XMAX are the minimum a111d maximum, respec
tively, of a given array and Na requested number of grid intervals 
will return a new minimum and maximum XMINP and XMAXP 
such that the range [XMINP, XMAXP] is the smallest range which 
will embrace the range [XMIN, XMAX] and simultaneously result 
in approximately N grid intervals, each of the length DIST. Interval 
DIST is selected by SCALEl as the product of an integer power of 
10 and 1, 2, or 5. XMINP and XMAXP are integer multiples of 
DIST. 

463-P 1- 0 

In certain cases the number of plot intervals N has to be fixed. 
In particular, for plots generated by devices with relatively large 
pen increments, e.g. line printers or teletypewriters, N is restricted. 
For such cases SCALE2 for linear plots and SCALE3 for logarith
mic plots have to be used. 

SCALE2 with the same arguments as SCALEl differs from 
SCALEl in that XMINP and XMAXP are determined such that 
exactly N grid intervals will result; as a consequence the range 
[XMIN P, XMAXP] will in general be less economical than that 
obtained by SCA.LEI. Parameters DIST, XM/NP, and XMAXP 
will still satisfy requirements specified for SCALEl, namely DIST 
will be an integer power of 10 times 1, 2, or 5; and XMINP and 
XMAXP will be integer multiples of DIST. 

SCALE3 with the same arguments as SCA.LEI will set XMINP 
and XMAXP such that N logarithmic uniformly spaced grid inter
vals will cover the range [XMIN, XMAXJ. DISTwill be the ratio of 
adjacent grid line values. 

SCALE3 selects DIST as 10< 
11 

L+K), where Kand Lare integers 
and I < L < 10. XMINP and XMAXP are selected so that 
XMINP- = DlSTi, and XMAXP = DIST

1 
where} and I are inte

gers. 
Calling SCALE I, SCALE2, or SCALE3 will approximately 

center the range [XMIN, XMAXJ between XMINP and XMAXP. 
SCALE I, having determined DIST, selects the most economical 
limits, i.e. (XMIN - DIST) < XMIN P ~ XM/N and XMAX S 
XMAXP < (XMAX + DIST). SCALE2 and SCALE3 select 
limits to minimize (XMAXP - XMAX) and (XMIN - XMINP) 
without necessarily satisfying the previous inequalities, but subject 
to the constraints of a fixed number of intervals. 

The actual number· of intervals Na, determined from the out
puts returned by SCALE I is as follows: 

Na = (XMAXP - XM/NP)/DIST. 

Na may be slightly larger or smaller than N as shown by the fol
lowing inequality: 

(N/yi2.5) < Na < (N X yl2.5 + 2). 

Na will always equal N if SCALE2 or SCALE3 is called. 
Round-off co11sideratio11s. The three algorithms compensate for 

the computer round-off to assure that XMIN and XMAX are 
within the range [XMINP, XMAXP]. A normalized parameter 
DEL is introduced to serve as a narrow gate around the minimum 
XM!N and the maximum XMAX to avoid an unnecessarily large 
range [XMINP, XMAXP] caused by computer round-off. For 
example, if DEL = 0.0001, N = 3 and SCA.LEI or SCALE2 is 
called, XM!NP of 1.0 and XMAXP of 4.0 will result for 0.9999 < 
XMIN S 1.0001 and 3.9999 S XMAX < 4.0001. DEL is nor
malized to the interval size and should satisfy the following in
equality: 

A <DEL< (BX N)/C, 

where A is the round-off expected from a division and float opera
tion, B is the minimum increment of the plotting device in inches, 
N is the number of intervals on the plot, and C is the plot size in 
inches. For example, using single precision REAL*4 variables 
(IBM 360): A "" 0.0000002; for a precision flat bed plotter: B = 
0.002, C = 50.0. Assuming N = 10 the following inequality is 
obtained: 

0.0000002 <DEL < 0.0004. 

It is obvious from this inequality that in practical cases the range of 
permissible values of DEL is so large that DEL is quite insensitive 
to the type of plotter and the type of computer used. 



COLLECTED ALGORITHMS (cont.) 

Examples 

SCALE! 

XMIN XMAX N DIST 

Actual 
No. of 
Intervals 

-3.1 11.1 5 
XMJNP 

-4.0 
5.0 

-12000 

XMAXP 
12.0 
11.0 

2.0 8 
5.2 10.1 5 1.0 6 

-12000 -100 9 0 1000 12 

SCALE2 

XMIN XMAX N DJST 

Actual 
No. of 
Imervals 

-3.1 11.1 5 
XMINP 

-5.0 
4.0 

-14000 

XMAXP 
20.0 
14.0 

4000 

5.0. 5 
5.2 10.1 5 2.0 5 

-12000 -100 9 2000 9 

SCALE 3 Actual 
No. of 
Intervals 

XMIN XMAX N XMJNP XMAXP DIST 
1.8 125.0 10 1.58 158.49 1.58 

(=~10) 
0.1 10.0 2 0.1 10.0 10.0 
0.1 1500.0 4 0.077 2154.4 12.92 

( = lQ(l+l/9)) 

Algorithm 

SUBl<OUTINE S,CALEI CXMIN, XMAX, N, X~1INP, XMAXP, DIST> 
C ANSI F0KTRAN 
C GIVEN XMIN,XMAX AND N SCALE! FINDS A NEW t<ANGE XMINP AND 
C XMAXP DIVISIBLE INTO APPHOXIMATELY N LINEAi< INTEKVALS 
C 0F' SIZE DIST 
C VINT IS AN ARRAY 0F ACCEPTABLE VALUES F'OH DI5T CTIMES 
C AN INTEGER P0WEM OF IOl 
C SQM IS AN ARMAY 0F GEOMETRIC MEAN!> OF ADJACENT VALUES 
C OF' VINT, IT IS USED AS BREAK POINTS TO DETEl<MINE 
C ~JHICH VINT VALUE T0 AS:>IGN TO DIST 

DIMENSION VINTC4>. SOKC3l 
DATA VINTCI), VINTC2>. VINTC3>. llINTC4l/l·• 2., 5., IQ./ 
DATA !>OHCI» SOiH2>. 5QRC3l/.t.41421<\, 3·162278, 7.071066/ 

C CHECK WHETHEI< PKOPEI< INPUT \/ALUl!:S lvE1{E SUPPL I ED 
IF' CXMIN.LT·XMAX .AND. N.GT.O> GO TO 10 
\·:KITE C6,99999l 

99999 FOR~AH34H IMPROPER INPUT SUPPLIEU HJ SCALEll 
RETURN 

C DEL ACC0UNTS F0R C0MPUTE1< ROUND-OFF 
c DEL !>H0ULD BE· GilEATEM THAN THE t<0UND-on EXPECTED F1<0M 
C A DIVISION AMO "'L,OAT OPEHATI0N, IT SHOULD BE LESS THAN 
C THE MINIMUM INCREMENT 0F THE PLOTTING DEVICE U:>ED BY 
C THE MAIN PMOGJ(AM <IN.J D1VIDED BY THE PL0T SIZE CIN.J 
C TIMES NUMBEH OF INTERVALS N 

10 DEL = .QQ002 
FN = N 

C FIND APPROXIMATE INTERVAL SIZE A 
A = <XMAX-XMINl/FN 
AL = ALOGIO<Al 
NAL = AL 
IF CA.LT.t.l NAL = NAL - I 

C A IS SCALEU INTO \/AklABLE NAMEU B BET~EEN I AND 10 
B = A/IO•**NAL 

C THE CLOSEST PEKMISSIBLE \/ALU~: FOn 8 IS F'OUND 
. DO 20 I= 1, 3 

IF CB.LT·S0t<Clll GO TO 30 
20 CONTINUE 

I = 4 
C THE INTERVAL SIZF. l::i COMPUTED 

30 DIST = VINTC I l'-<IO•**NAL 
FMI = XMIN/DIST 
Ml = FMI 
I F < FM I •LT • 0 • l M.t = MI - I 
IF CABSCFLOATCMIJ+t.-FMll·LT.DELl Ml= ,41 +I 

C THE NH.I MINIMUi'i AND MAXIMUM Ll1'1IT:O At<E F0UNO 
XMINP = DIST*FLOAT<MI~ 
FM2 = XMA;vor:;T 
M2 = FM2 + I. 
l F < F1'12 •LT• < - I • l l M2 " M2 - I 
IF CA8SCF'M2+t.-FL0ATCM2ll·LT.DELl M2 = M2 - I 
XMAXP = Dl5T*FLOATCM2) 

C ADJUST LIMIT& TO ACCOUNT FOt< ROUND-OFF IF NECESSAKY 
IF CXMIN~.GT.XMINl XMINP XMIN 
IF <XMAXP.LT.XMAXl XMAXP = XMAX 
l<ETUrtN 
END 

SUBROUTINE SCALE2<Xi'IIN, XMAX, N, XMINF, XMAXP, DIST> 
C ANSf FORTRAN 
C GIVEN XMIN,XMAX AND N 5CALE2 FINDS A NEh RANGE XMINP AND 
C XMAXP DIVISIBLE INTO EXACTLY N LINEAR INTEK\/ALS 0F :OIZE 
C DIST, WHERE N 1:0 G1~EATEt( THAN I 

DIMENSION VINTCSl 
DATA VINTC I» VINTC2J, Vlo'H<.3>. \/INTC 4), VINTC 5l/t ., 2., 

* s., 10., 20./ 

10 

2 
4 

C CHECK WHETHER PR0PER INPUT VALUES lvERE SUPPLIED 
IF CXMINoLT·XMAX .AND. NoGT.tl,G0 TD 10 
W1'1 TE C 6, 99999) 

463-P 2- 0 

99999 F0RMATC34H IMPtWPEi; INPUT SUPPLIED TO SCALE2l 
RETUl<N 

10 DEL = ·00002 
F'N = N 

C F'IND APPROXIMATE INTERVAL SIZE A 
A = CXMAX-XMINl/FN 
AL = AL0GIOCA> 
NAL = AL 
IF <A.LT·l·l NAL = NAL - I 

C A IS SCALED INT0 VARIABLE NAMED B BET~EEN I AND 10 
8 = A/IO·**NAL 

C THE CLOSEST PERMISSIBLE VALUE FGH B 15 FOUND 
DO 20 I=l•3 

IF <B.LT.<VlNTCil+DELl> GO T0 30 
20 C0NTINUE 

I = 4 
C THE INTEl<VAL SIZE IS COMPUTED 

30 DIST = VINT<I>*IO·**NAL 
FMI = XMIN/DIST 
Ml = FMI 
IF <FMl.LT·O·> Ml= Ml - I 
IF CABS<FUlATCMl>+t.-FMtl.LT.OELl Ml =Ml + I 

C THE NEW MINIMUM AND MAXIMUM LIMITS ARE FOUND 
XMINP = DIST*FLOATCMI l 
F'M2 = XMAX/DIST 
M2 = FM?. + I. 
IF' C FM2. LT .C - I.)) M2 = M2 - I 
IF <ABSCFM2+t .-FLOATCM2l> .LT.DEL> M2 M~~ - I 
XMAXP = DIST*FLOATCM2> 

C CHECK ~1HETHEk A SECOND PASS IS REQUI;:ED 
NP = M2 - Ml 
IF CNP.LE.NJ GO TO 40 
I = I + I 
GO T0 30 

40 NX = CN-NPl/2 
XMINP = XMINP - FLOAT<NX>*DIST 
XMAXP = XMINP + FL0AT<Nl*DIST 

C ADJUST LIMITS T0 ACCOUNT F0R K0UND-OFF IF NECESSAKY 
IF' <XMINP.GT.XMIN> XMINP XMIN 
IF' CXMAXP.LT.XMAXl XMAXP = XMAX 
RETURN 
END 

SUBROUTINE SCALE3CXMIN, XMAX, N, XMINP, XMAXP, DISTl 
C ANSI F0RTRAN 
C GIVEN XMIN,XMAX AND N, WHEKE N IS GREATEt< THAN 1, SCALE.3 
C F'INOS A NEW RANGE XMINP AND XMAXP DIVISIBLE INTO EXACTLY • 
C N LOGAKITHMIC INTERVALS• ~JHEkE THE RATIO OF ADJACENT 
C UNIFOr~MLY SPACED SCALE VALUES IS DISl 

DIMENSION VlNTClll 
DATA VINTCIJ, VINTC2» VINTC3» VINTC4» VINT<5» VINTC6» 

* VINTC7>. VINTC8>. VINTC9J. VINTC 10>. VINT< 11 l/IO., 9., 
* B.,, 1.,, 6., 5.,, 4 ... 3., 2.,, 1.,, .S/ 

C CHECK WHETHER Pk0PER INPUT VALUES l·JEJ;.E SUPPLIED 
IF CXMIN.LToXMAX .AND· NoGT.I .AND· XMIN.GT.Oo) G0 TO 10 
HRITE (6,99999> 

99999 F'OHMAT<34H IMPROPEK INPUT SUPPLIED T0 SCALE3l 
RETURN 

10 DEL = 000002 
C VALUES ARE TRANSLATED F'R0M THE LINEA~ INTO LOGAl<ITHMIC 
C REGION 

XMINL = ALOGIOCXMINl 
XMAXL = ALOGIOCXMAX> 
FN = N 

C F'IND APPROXIMATE INTERVAL SIZE A 
A = CXMAXL-XMINLl/FN 
AL = AL<:JGIOCA> 
NAL = AL 
IF' cA.LT·l·> NAL = NAL - I 

C A IS SCALED INTO VAl<IABLE NAMED B BETWEEN I AND 10 
B = A/IO·**NAL 

C THE CLOSEST PERMISSIBLE VALUE F0R B IS FOUND 
D0 20 l=t,9 

IF CB.LT.CtO./VINTCll+DELll GO TO 30 
20 C0NTINUE 

I = 10 
C THE INTERVAL SIZE IS COMPUTED 

30 DISTL = IO·**<NAL+ll/VINTCll 
FMI = XMINL/DISTL 
Ml = F'Ml 
I F C FM I • LT • 0 • l MI = M I - I 
IF <ABSCF'LOAT<Ml>+l·-FMl>·LT.DEL> Ml= Ml+ I 

C THE NEW MINIMUM AND MAXIMUM LIMITS AKE F0UND 
XMINP = DISTL*F'LOAT<Ml l 
FM2 = XMAXL/DISTL 
M2 = FM2 + I. 
IF' <FM2.LT.C-t.)) M2 = M2 - I 
IF CABSCFM2+t.-F'L0ATCM2ll·LT·DELl M2 M2 - I 
XMAXP = DISTL*FL0AT<M2l 
NP = M2 - Ml 

C CHECK l':HETHEr< ANOTHER PASS IS NECESSARY 
IF CNP·LE.N> GO T0 40 
I : I + I 
G0 TO 30 

40 NX = <N-NPl/2 
XMINP = XMINP - F'LOAT<NXl*DlSTL 
XMAXP = XMINP + F'LOATCN>*DISTL 

C VALUES ARE THANSLATED FKOM THE LOGARITHMIC INTO ltlE LINEAR 
C REGION 

DIST = IO•**DISTL 
XMINP = IO·**XMINP 
XMAXP = IO•**XMAXP 

C ADJUST LIMITS TO ACCOUNT F0R R0UND-OF'F IF NECESSAMY 
IF' CXMINP.GT.XMINl XMINP XMIN 
IF' CXMAXP.LT.XMAX> XMAXP = XMAX 
RETUKN 
END 



COLJLECTED ALGORITHMS FROM CACM 

Algorithm 464 

Eigenvalues of a Real~, 
Symmetric, Tridiagonal 
Matrix [F2] 
Christian H. Reinsch [Recd. 11 Mar. 1971] 
Mathematisches Institut der Technis1chen Universitat, 
8000 Milnchen 2, Arcisstra 21, Germa1t1y 

Key Words and Phrases: eigenvalues, QR Algorithm 
CR Categories: 5.14 
Language: Algol 

Description 
This algorithm uses a rational variant of the QR transformation 

with explicit shift for the computation of all of the eigenvalues of a 
real, symmetric, and tridiagonal matrix. Details are described in 
[l). Procedures tredl or tred3 published in [2] may be used to reduce 
any real, symmetric matrix to tridiagonal foirm. Turn the matrix 
end-for-end if necessary to bring very large entries to the bottom 
right-hand corner. 

References 
t. Reinsch, C.H. A stable, rational QR algorithm for the com
putation of the eigenvalues of an Hermitian, tridiagonal matrix. 
Math. Comp. 25 (1971), 591-597. 
2. Martin, R.S., Reinsch, C.H., Wilkinson, J. H. Householder's 
tridiagonalization of a symmetric matrix. Numer. Math. 11 (1968), 
181-195. 

Algorithm 
procedure tq/rat (n,macheps) trans: (d,e2); 

value n, macheps; 
integer 11; real macheps; array d, e2; 

comment 

11 

macheps 

d[l:nJ 
e2[1:nJ 

d[l :n] 

e2[1 :n] 

begin 

Input: 
order of the matrix, 
the machine precision, i.e. minimum of all x such that 
1 + x > 1 on the computer, 
represents the diagonal of the ma1trix, 
represents the squares of the sub-diagonal entries, 
(e2[1.] is arbitrary). 
Output: 
the computed eigenvalues are stored in this array in 
ascending sequence, 
is used as working storage and the original informa
tion stored in this array is lost; 

integer i, k, m; real b, b2,f, g, h, p2, r2, s2; 
for i : = 2 step 1 until n do e2[i-1] : = e2[i]; 

e2[n] := b := b2 := .f:= 0.0; 
for k : = 1 step 1 until n do 
begin 

464-P 1- 0 

h := macheps X macheps X (d[k]j2 + e2[kl); 
if b2 < h then 
begin b : = sqrt(h); b2 : = h end; 
comment Test for splitting; 
for m : = k step 1 until n do 

if e2[m] ::::; b2 then go to contl; 
contl: 

if m = k then go to root; 
comment Form the shift from leadiag 2 X 2 block; 

nextit: 
g := d[k]; p2 := sqrt(e2[k]); 
h := (d[k+l]-g)/(2.0Xp2); r2 := sqrt(h><h+l.O); 
d[k] := h := p2/(if h<O.O then h-r2 else h+r2); 
h := g - h;f := .r+ h; 
for i : = k + 1 step 1 until n do d[ i] : = d[ i] -- h; 
comment Rational QL transformation, rows k through m; 
g := d[m]; if g = O.Othen g := h; 
h : = g; s2 : = 0.0; 
for i : = m - 1 step - 1 until k do 
begin 

p2 := g X h; r2 := p2 + e2[i]; 
e2[i+ 1] : = s2 X r2; s2 : = e2[i]/r2; 
d[i+lJ : = h + s2 X (h+d[i]); 
g := d[i] - e2[i]/g; if g = 0.0 then g := h; 
h := g X p2/r2 

end i; 

root: 

e2[k] := s2 X g X h; d[k] := h; 
if e2[k] > b2 then go to nextit; 

h : = d[ kl + .f; 
comment One eigenvalue found, sort eigenvalues; 
for i : = k step - 1 until 2 do 

if h < d[i-1] then d[il : = d[i-1 l else go to cont2; 
i: = 1; 

cont2: 
d[iJ := h 

end k 
end tqlrat; 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 465 

Student's t Frequency [S14] 
G.W. Hill [Recd. 24 Aug. 1971, 23 Feb. 1972, 10 
July 1972) 
C.S.I.R.O., Division of Mathematical Statistics, Glen 
Osmond, South Australia 

Key Words and Phrases: Student's t statistic, density function, 
series approximation 

CR Categories: 5.12, 5.5 
Language: Algol 

Description 
The frequency function for Student's t distribution, 

f(t In) = I'(!n + !) (l + t2,ln)-<!n+4>, 
(11"n)tr(jn) 

is evaluated for real t and real n > 0 to a precision near that of 
the processor, even for large values of 11. 

The factor involving t is evaluated as exp(- ·y},b) where b is 
computed as (11 + 1)/n(l + t2 /n) if t2jn = c is large ( >cmax, 
say) or, to avoid loss of precision for smaller c, by summing 
the series for b = (t2 + c)(l - c/2 + c2/3 - c3/4 + · · ·) until 
negligible terms occur, i.e. er /(r + 1) < E, where E is the relative 
magnitude of processor round-off. The relative error up to E/ 
cmax in evaluating /11(1 + c) and the accumulated round-off 
error of order E -V R in summing a maximum of R terms of the 
series can be limited to about the same low level by choosing 
cmax = R-t where R-~R/R ~ E. Thus for R = 12, 16, 23, or 32, 
values of cmax ~ 0.2887, 0.25, 0.2085, or 0. t 762, respectively, 
correspond to processor precision where E = 2-24, 2-36, 2-56, 

or 2-84 , respectively. 
Evaluation of the ratio of gamma functions by exponentiating 

the difference of almost equal values of their logarithms would 
involve considerable loss of precision for large 11. This is avoided 
by use of the asymptotic series obtained by differencing the Stirling 
approximations, changing the variable to a = 11 - ! , and ex
ponentiating the result (see also [ 1]): 

r(!n + !) . 
___ 1 ____ = (ta)! L C,(4a)-2r, 

r(2n) r-0 

where Co= Cr= 1, C2 = --19/2, Ca= 631/2, C4 = -174317/8, 
c, = 204 91783/8, C6 = -73348 01895/16, C1 = 185 85901 
54455/16, Cs = -5 06774 10817 68765/128, C9 = 2236 25929 
81667 88235/128, C10 = -24 80926 53157 85763 70237 /256. 

The relative error of the sum of the first s terms is negligible 
for /1 > nmin where I c.1 x [4 (11mi11- u1-2• ~ E, e.g. for s = 5 
and E = 2-24 or 2-as, nmin ~ 6.271 or 13.76, respectively, and for 
s = 10 and E = 2-55 or 2-84 , nmin ~ 15.5 or 40.89, respectively. 
For smaller /1 the ratio of gamma func.:tions is obtained from the 
ratio for some N Z: nmin by the relation: 

1'(!11 + !) n (n + 2) (N - 2) r(jN + !) 
--I'(!n)- = (n + 1) (n + 3) · · · (N - 1) r(tN) 

465-P 1- 0 

For large 11, processor underflow at line 21 is avoided by use of the 
normal approximation, which is adequate for values of n > l/E, 
whose representation is unaffected by subtraction of 0.5. Protection 
against negative or zero n is provided by returning the distinctive 
value, - 1.0, which may be supplemented by an error diagnostic 
process, if required. 

For double precision calculations speed is improved by evalu
ating higher order terms of the gamma ratio series using single 
precision operations. Comparison of double precision (E = 2-s4) 
results with single precision results (E = 2-36, nmin = 13.76, cmax = 

0.25) for a Control Data 3200 indicated achievement generally of 
about ten significant decimal digits, dropping to about eight sig
nificant decimals for arguments beyond the 10-20 probability level. 

Valuable comments from the refer-ee are gratefully acknowl
edged. 

Reference 
1. Fields, J.L. A note on the asymptotic expansion of a ratio of 
Gamma functions. Proc. Edinburgh Math. Soc. Ser. 215 (1966), 
43--45. 

Algorithm 
real procedure t frequency (t, 11); 

value t, n; real t, n; 
if n _:5 0.0 then t frequency : = -1.0 
else 
begin 

real a, b, c, d, e, nmin, cmax; 
comment for 36-bit precision processor; 
nmin := 13.76; cmax := 0.25; 
b : = t X t; c : = b/n; a : = d: = b + c; 
if c > cmax then b : = (n+ 1.0) X /n(l.O+c) 
else 
for e : = 2.0, e + 1.0 while b ~ d do 
begin a:= -a X c; b := d; d := a/e + dend; 
a : = n; c : = 0.3989422804; 
comment 1/sqrt(211") = 0.3989422804014326779399461 ... ; 
for e : = a while e < nmin do 
begin c := c X a/(a+l.O); a:= a+ 2.0end; 
a:=a-0.5; 
if a ~ n then 
begin 

c : = sqrt(a/n) X c; a : = 0.25/a; ll : = a X a; 
c := ((((-21789.625Xa+315.5)>Ca-9.5)Xa-t-l.O)Xa+l.O) 

Xe 
end; 
t frequency : = exp(-0.5Xb) X c 

end Student's I-frequency 



COLIJECTED ALGORITHMS FROM CACM 

Algorithm 466 

Four Combinatorial 
Algorithms [G6] 
Gideon Ehrlich [Recd. 25 Aug. 1971, 4 Jan. 1972, and 
12 Dec. 1972] 
Department of Applied Mathematics, Weizmann In
stitute of Science, Rehovot, Israel 

Key Words and Phrases: permutations and combinations 
CR Categories: 5.39 
Language: PL/I 

Description 
Each of the following algorithms produce, by successive calls, 

a sequence of all combinatorial configurations, belonging to the 
appropriate type. 
PERMU Permutations of N?.3 objects: X(l), X(2), ... , X(N). 
COMB/ Combinations of M natural numbers out of the first N. 
COMPOMIN Compositions of an integer P to M + 1 ordered 

terms, INDEX(k), each of which is not less than a given mini
mum MIN(k). 

COMPOMAX The same as COMPOMIN but each term has its 
own maximum MAX (k). 
The four algorithms have in common the important property 

that they use neither loops nor recursion; thus the time needed for 
producing a new configuration is unaffected by the "size" (N, N 
and M, P and M respectively) of that configuration. 

Each algorithm .. uses a single simple operation for producing a 
new configuration from the old one, that is: 
PERMU A single transposition of two adjacent elements. 
COMB/ Replacing a single element x by a y having the property 

that there is no element between x and y belonging to the com
bination. 

COMPOMIN(MAX) Changing the values of two adjacent terms 
(usually only by 1). 

The algorithms are written in PL1 (F). 
Special instructions for the user and notes. 
PERMU (1) The mean work-time is actually a decreasing func

tion of N since, on (N - 1)/N of the callls, it returns by the 
first RETURN. (2) The procedure operates directly on any 
object vector x[l :NJ. (3) For the first permutation one must 
call FlRSTPER; for other permutations PERMU must be 
used. (4) Together with the last permutation, which is the 
original one, we will get DONE = '1 'B. If we continue to call 
PERMU, the entire sequence will repeat i111definitely. If at any 
stage we set DONE = 'O'B, then at the end of the appropriate 
sequence it will become '1 'B. (5) The entire resulting sequence 
is the same as that of Johnson [1] and Trotter [2]. 

COMB/ Every combination is represented in two forms: (1) As a 
bit array of M '1 'sand N - M 'O's which is identical to A(l), 
A(2), ... , A(N). (2) As an array C of M different integers not 
greater than N. The M elements are ordered according to their 
magnitude. If the second representation is not needed one can 
omit Z, H and C together with the last line of the procedure. 
For the first combination we can use the following initializa
tion (for other initializations see [3]): 

466-P 1- 0 

DECLARE A(O:N) BIT (1), (X, Y, T(N), F(O:N), 
I, L, Z, H(N), C(M)) FIXED; 

DOK = 0 TON - M; A(K) = 'O'B; END; 
DOK= N- M+ 1 TON;A(K) = 'l'B;END; 
DO K = 1 TO M; C(K) = N - M + K; H(N - M + K) = K; 

END; 
T(N - M) = -1; T(l) = O; F(N) = N - M + 1; I= N - M; 

L = N; 
(The initialization was not done in the body of the procedure 

COMB/ only in order to simplify the procedures COMPOMIN
MAX:.) 

Instead of using such a large number of parameters it is pos
sible to retain only A, I, L as parameters of the procedure and 
declare and initialize the other present parameters in the body of 
the procedure (as is done in PERMU). In such a case N, T, F, L, H 
must be declared as STATIC or CONTROLLED ('own' in AL
GOL). 
COMPOMIN Each of the M + 1 M/N(k), as well as P, can be 

any integer (positive, negative, or zero), but the sum S of all 
those minima cannot be greater than P. 
For the first composition set INDEX(l) = P - S + MIN(l) 

INDEX(k) = MIN(k), for k > 1. 
Set N = P - S + M, and declare and initialize all variables 

that also appear in COMB/ in the same way as was done for 
COMB/. 

Together with the last composition, we will get I = 0 as a 
signal to halt. 
COMPOMAX The instructions for COMPOMIN are valid for 

COMPOMAX provided: (1) MIN is replaced by MAX (S 
?. P); and (2) N is initialized to N = S - P + M. 
The vector C (but not H!) has no use in COMPOMIN(MAX), 

so one can omit all statements in which it appears. A justification 
for the four algorithms and for some others can be found in [3]. 

Acknowledgment. I would like to thank Professor Shimon Even 
for guidance and encouragement. 

References 
1. Johnson, S.N. Generation of permutations by adjacent 
transformations. Math. Comp. 17 (1963), 282-285. 
2. Trotter, H.F. Algorithm 115, Perm. Comm ACM 5 (Aug. 
1962),pp.434-435. 
3. Ehrlich, G., Loopless algorithms for generation permutations 
combinations and other combinatorial configurations. J. ACM 
20 (July 1973), 500-513. 

Algorithm 

FIRSTPER: PROCEDURE (X,DONE); 
DECLARE (X(*), (XN,XX) STATIC) DECIMAL, DONE BIT(l) 
(N,S,V,M,L,I,DI,IPI) BINARY STATIC, 
(P(O:N),IP(N-lhD(N-1),T(N}) BINARY CONTROLLED; 
N=DIM(X,1}; 
IF ALLOCATION (P) THEN FREE P,IP,D,T; ALLOCATE P,IP,D,T; 
DO M=l TO N-1; P(M),IP(M)=M; D(M)=-1; END; 
XN=X(N); V=-1; S,P(O),P(N)=N; M,L=l; 
T(N)=N-1; T(N-l)=-2; T(2)=2; 
DONE= 101 B; 
PERMU: ENTRY (X,DONE); 
IF s~=M THEN DO; X(S)=X(S+V}; S=S+V; X(S}=XN; RETURN; END; 



COLLECTED ALGORITHMS (cont.) 

l=T(N); 
IP(I),IPI=IP(I)+DI; 
P(IPl-Dl)=M; 
XX=X(M); 
L=l-L; 
IF P(IPI+DI) < I THEN 

DI=D(I); 
M==P(IPI); 
P(IPI)=I; 
X(M)=X(M-DI); 
V=-V; 

DO; IF l:N-1 THEN RETURN; 
T(N)=N-1; T(N-1) = -1; RETURN; 

END; 
D(I )=-DI; 
IF T(I) < 0 THEN 

IP(M)=IPI-DI; 
M=IPI+L; 
X(M-DI)=XX; 
M=N+l-S; 

DO; IF T(Ih=l-1 THEN T{I-l)=T(I); T(I)=I-1; END; 
IF I 1 =N-1 THEN DO; T(N)=N-1; T(N-1}=-I-1; END; 
T(l+l )=T(I): 
IF 1=2 & P(2)=2 THFN DONE= 1 l 1 B; 
ENO; 
COMB I PROCEDURE (A,N ,X, Y ,.T ,F ,I ,L,Z ,H ,C); 
DECLARE A(*)BIT(l), (N,X,Y,T(*),F(*),I,L,Z,H(*),C(*)) FIXED; 
IF T(I) < 0 THEN 
DO; IF -T(I)-.=I-1 THEN T(l-l)=T(I); T(I)=I-1; END; 
IF-, A(I) THEN 
DO; X=I; Y=F(L); 

END; 
V=I; 

IF A(l-1) THEN F(I)=F(l-1); ELSE F(l)=I; IF F(L)=L THEN 
DO; L=I; l=T(I); GOTO CHANGE; END; 
IF L=N THEN 
DO; T(F(N))=-1-1; T(I+l)=T(I); I=F(N); 

F(N)=F(N)+l; GOTO CHANGE; 
END; 
T(L)=-I-1; T(I+l)=T(I); 
F(L)=F(L)+l; I=L; GOTO CHANGE 

CF h =L THEN 
DO; 

END; 

F(L),X=F(L)-1; F(I-l)==F(l); 
IF L=N THEN 
DO; LF I=F(N) -1 THEN DO; I=T(I); GOTO CHANGE; END; 

T(F(N)-1)=-I-1; T(I+l)=T(I); 
I=F(N)-1; GOTO CHANGE; 

END; 
T(L)=-I-1; T(I+l)=T(I); I=L; GOTO CHANGE; 

X=N; F(L-l)=F(L); F(N)=N; L=N; 
IF I=N-1 THEN DO; l=T(N-1); GOTO CHANGE; END; 
T(N-1)=-I-1; T(l+l)=T(I); I=N-1; 
CHANGE; 
A(X)='l'B; A(Y)='O'B; 
H(X),Z=H(Y); C(Z)=X; 
END COMB I; 
COMPOMIN: PROCEDURE (INDEX,A,N,X,Y,T,F,I,L,Z,H,C); 
DECLARE A(*) BIT(l), 

(INDEX(*),N,X,Y,T (*),F(*),I,L,Z,H(*),C(*)) FIXED; 
CALL COMBI (A,N,X,Y,T,F,l,L,Z,H,C); 
INDEX(Z)=INDEX(Z)+X-Y; INDEX(Z+l)=INDEX(Z+l)+Y-X: 
END COMPOMIN; 
COMPOMAX: PROCEDURE (INDEX,A,N,X,Y,T,F,l,L,Z,H,C); 
DECLARE A(*) BIT(l), 

( INDEX(*),N,X,Y,T(*),F(*),l,L,Z,H(*),C(*)) FIXED; 
CALL COMBI (A,N,X,Y,T,F,l,L,Z,H,C); 
INDEX(Z)=INDEX(Z)-X+Y; INDEX(Z+l)=INDEX(Z+l)-Y+X; 
END COMPOMAX; 

466-P 2...., 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 467 

Matrix Transposition in 
Place [Fl] 
Norman Brenner [Recd. 14 Feb. 1972, 2 Aug. 1972] 
M.I.T., Department of Earth and Planetary Sciences, 
Cambridge, MA 02139 

Key Words and Phrases: transposition, mat1rix operations, 
permutations, primitive roots, number theory 

CR Categories: 3.15, 5.14, 5.39 
Language: Fortran 

Description 
Introduction. Since the problem of transposing a rectangular 

matrix in place was first propos~d by Windley in 1959 [1], several 
algorithms have been used for its solution [2, 3, 7]. A significantly 
faster algorithm, based on a number theoretical analysis, is de
scribed and compared experimentally with exis.ting algorithms. 

Theory. A matrix a, of n1 rows and n2 columns, may be stored 
in a vector v in one of two ways. Element a;j (0-origin subscripts) 
may be placed rowwise at Vk , k = in2 + j, or columnwise at Vk' , 

k' = i + Jn1. Clearly, letting n = nl and m = 111112 - 1, 

k' = nk (mod m). (1) 

Transposition of the matrix is its convers.ion from one mode 
oi storage to the other, by performing the permutation (1). This 
permutation may be done with a minimum of working storage in 
a minimum number of exchanges by breaking it into its subcycles. 
For example, for a 4 X 9 matrix, one subcycle: representation is 

(0) (1 4 16 29 11 9) (34 31 19 6 24 26) 
(22 18 2 8 32 23) (13 17 33 27 3 12) 
(5 20 10) (30 15 25) (7 28) (14 21) (35). 

The notation for the sixth subcycle, for example, means that 
V5 +-- V20 ~- V10 +-- V5. 

For a subcycJe starting with element s, the elements of the 
subcycle are sn' (mod m), for r = 0, 1, .... The following theo
rems are easily established. 

THEOREM 1. All the elements of the subcyc/e beginning with s 
are divisible by d = (s, m), the largest common factor of both sand 
m. They are divisible by no larger divisor of m. 

PROOF. Both m ands are divisible by d, and therefore so is any 
subcycle element sn' (mod m). But n and m have no common 
factors (since m = nn2 - 1), so no divisor of m larger than d can 
divide sn'. [J 

THEOREM 2. For every subcyc/e beginning with s, there is 
another (possibly the same) subcycle beginning with m - s. 

PROOF. The elements of the second subc:ycle are just -sn' 
(mod m). It is the same subcycle if for some r, n' = -1 (mod m'), 
form' = m/(s, m).O 

The next theorem gives the group representation of the integers 
modulo m. 

THEOREM 3. Factor m into powers of primes, m =pf 1 • • • PT 1• 

Let ri be a primitive root of Pi; that is, the powers rik (mod Pi) for 
k = O, 1, ... , p - 2, comprise every positive integer less than Pi . 

467-P 1- 0 

Define the generator gi = 1 + Rm/pf i, where ~ = (ri - 1) 

(m/pri)-1 (mod pri). Define the Euler totient function q,(1) = 1; 

otherwise q,(k) = the number of integers less than k having no com
mon factor with it. Then, for any integer x less than m, there exist 
unique indices h for which 0 s h < q,(pf i /(x, pfi)) and 

x = (x, ni)g{. 1 · · · g{ 1(mod m). 

PROOF. In [4]; if any Pi = 2, replace g{i by ±5ii, where 0 s 
j; < q,(2ai-2 /(x, 2a1-2)). O 

For example, for m = 35, as in our example above, x = 
22h31h (mod 35) for (x,35) = 1andforOsj,<4and0Sj2 < 6. 

Index notation is analogous to logarithmic notation in that 
multiplication modulo m becomes merely addition of indices. 

The following theorem solves the problem of the subcycle 
starting points. It is similar to the algorithm in [6]. 

THEOREM 4. Let n and m be defined as for (1). Then, for any 
integer x less than m, upper bounds Ji may be found so that unique 
indices h exist in the range 0 s j; < h and x = ±(x, m) 
11iog{1 ... g{l (mod m). 

PROOF. Express n and -1 in index notation. Then, compute 
from the indices of n the smallest e such that ne = 1 (mod m). 
Initially, set each J; = q,(pfi /(x, p~i)). Next, doing only index 

arithmetic, examine each power ±ni for nontrivial relations of the 
form g1i = ±nig{1 • • • g{ 1 (mod m/(x, m)) where 0 s jk < Jk 

for each k. Then set Ji = h. Stop when the product of the Ji and e 
equals q,(m/(x, m)), which is the number of integers in subcycles 
divisible only by (x, m). D 

Notice that the choice of J; by this method is not unique. For 
example, continuing from above, for (x, m) = 7, n = 4, 
x = 7 · 4io22it (mod 35), for 0 s j 0 < 2 and 0 s h < 2. The rela
tions found were (-1)1 = 41 (mod 5), 222 = 41 (mod 5) and 311 = 4° 
(mod 5). 

Theorem 4 is more important in theory than in practice. The 
tremendous labor in finding primitive roots for large primes (since 
a table of roots is very bulky) and in finding the index representa
tion of n is not compensated for by time savings afterward; see the 
timing tests below. The same practical objection holds against the 
algorithm in [6]. 

Algorithm. An efficient program breaks naturally into two 
parts. First determine starting points for the subcycles and then 
move the data. In each part, the program below is significantly 
faster than Algorithm 380 in [3]. 

For each divisor d of m, the subcycles beginning with d and with 
m - d are done. If the number of data moved is still less than 
q,(m/d), further subcycle starting points of the form sd are tried, 
for s = 2, 3, .... The most general test is that sd is acceptable if 
no element in its subcycle is less than sd or greater than m - sd. 
Since this test requires much time-consuming computation, it is 
much faster to look for sd in a table where marks are made to 
indicate that an element has been moved. In some applications, a 
bit within each datum may be used. For example, if the data are all 
biased positive, the sign bit may be used; or, for normalized, non
zero, binary floating point data, the high bit of the fraction is always 
one and so may be used. In general, a special table of length 
NWORK is used. As in [3], NWORK = (n1 + n2)/2 was found to 
be sufficient for most cases. However, when m has many divisors, 
Algorithm 380 must perform the time-consuming general test for 
many possible starting points when the new algorithm need not. 

The inner loop of the algorithm computes (1), moves data, 
marks in the table, and checks for loop closure. Since the major 
part of the time of the inner loop is calculating (1), time is saved 
over Algorithm 380 by moving elements vk and Vm-k simultaneously. 



COLLECTED ALGORITHMS (cont.) 

Timing Tests 

111 112 m (all times in msec) 
Alg.302 Alg.380 Alg.380 

IWRK=O /WRK= 
(n1+n2)/2 

Ti T2 Ta 

45 50 13· 173 350 317 167 
45 60 2699 558 123 117 
46 50 1l2·19 367 339 217 
46 60 31 ·89 425 350 250 
47 50 34 ·29 383 378 267 
47 60 2819 483 127 133 
45 180 7·13·89 1200 1050 816 
45 200 8999 1767 408 416 
46 180 17·487 1816 1233 583 
46 200 9199 1700 508 417 
47 180 11 ·769 1450 1133 667 
47 200 3· 13·241 983 1150 1067 

In special cases, further savings may be made. For example, m is 
divisible by 2 only when both n1 and n2 are odd. Then the subcycles 
beginning at m/2 - sand m/2 + s may be done simultaneously 
with the subcycles from s and m - s, thus reducing the number of 
times (1) is computed. 

Timing tests. A set of test matrices were transposed on the 
360/65 with all programs written in Fortran H, OPT = 2. The new 
algorithm was always faster than both Algorithm 380 [3] and Al
gorithm 302 [2] when NWORK = (111+112)/2. When NWORK = 0, 
it was slower than Algorithm 380 (for IWRK = 0) and Algorithm 
302 only for a few cases when n1n2 < 100. It was especially faster 
than Algorithm 380 when m = 111112 - 1 had many factors and 
there were hence many subcycles. 

An experiment was made for cases when m was prime. A known 
primitive root of m was then taken from a table [5] and was used 
to generate subcycle starting points. Since no time was wasted 
in finding the primitive root or in finding subcycle starting points, 
this test showed the maximum time savable by implementing 
Theorem 4. For NWORK = (111 + 112)/2 and m > 200, no im
provement was found over the normal algorithm. For N WORK = 0, 
the gain in speed was never more than 25 percent. 

References 
1. Windley, P.F. Transposing matrices in a digital computer. 
Comp. J. 2 (Apr. 1959), 47-48. 
2. Boothroyd, J. Algorithm 302, Transpose vector stored array. 
Comm. ACM JO (May 1967), 292-293. 
3. Laflin, S., and Brebner, M.A. Algorithm 380: In-situ 
transposition of a rectangular matrix. Comm. ACM 13 (May 
1970), 324-326. 
4. Bolker, E. An Introduction to Number Theory: An Algebraic 
Approach. Benjamin, New York, 1970. 
5. Abramowitz, M., and Stegun, I. Handbook of Mathematical 
Functions, Table 24.8. Nat. Bur. of Standards, Washington, D.C., 
1964. 
6. Pall, G., and Seiden, E. A problem in Abelian Groups, with 
application to the transposition of a matrix on an electronic 
computer. Math. Comp. 14 (1960), 189-192. 
7. Knuth, D., The Art of Computer Programming, Vol. I. 
Addison-Wesley, Reading, Mass., 1967, p. 180, prob. 12, and 
p. 517, solution to prob. 12. 

Algorithm 

SUBR0UTINE XP0SECA, NI• N2• Nl2• M0VED• Nw0RK> 
C TRANSP0SITl0N 0f A ~ECTANGULAH MATKIX IN SITU. 
C BY N~RMAN BHENNER• MIT. 1/72• Cf· ALG· 380• CACM. 5/70° 
C TKANSP0SITI0N 0r THE NI BY N2 MAT~IX A AM0UNTS T0 
c REPLACING THE l'I oMoNT AT Vol:TOlri Plil<:;TTTOIN r cn-oiwrr.TN\ 

467-P 2- 0 

XPOS XPOS 
NWORK=O NWORK= 

(n1+n2)/2 
T4 Tr. Ti/T4 TdT4 Ta/Tr. 

133 67 2,62 2,38 2,50 
90 100 6,20 1, 37 1, 17 

106 83 3,46 3,21 2,60 
133 83 3, 19 2,63 3,00 
72 67 5,18 5,23 4,00 
90 100 5,36 1,41 1,33 

517 300 2,25 2,03 2,72 
283 300 6,25 1,44 1,39 
267 267 6,41 4,63 2, 19 
383 317 4,44 1,33 1,32 
383 267 3,78 2,96 2,50 
550 467 1,69 2,09 2,29 

C wlTH THE ELEMENT AT P0SITl0N Nl*I CM0D Nl*N2-I>• 
C EACH SUBCYCLE 0r THIS PEkMUTAT10N IS C0MPLETED IN 0~DEK• 
c M0VED IS A L0GICAL W0RK AkRAY 0r LENGTH Nw0RK. 

L0GICAL M0VED 
DIMENSl0N ACNl2>• M0VED<Nw0KK> 

C HEALLY ACNl.N2>. BUT Nl2 = Nl*N2 
DIMENSl0N IFACT<8>• IP0wEHC8J• NEXPCS>• IEXPC8> 
IF CNl.LT·2 ·0R· N2.LT·2> RETURN 
N = NI 
M = Nl*N2 - 1 
II' CNl.NE.N2> G0 T0 30 

C SQUARE MATRICES ARE D0NE SEPARATELY F0k SPEED 
llMIN = 2 
D0 20 llMAX=N•M•N 

12 = IIMIN + N - I 
D0 10 Il=llMIN.IIMAX 

ATEMP = A<II> 
ACll> = ACI2> 
AC 12> = ATEMP 
12 = 12 + N 

10 C0NTINUE 
llMIN = IIMIN + N + I 

20 C0NTINUE 
RETURN 

C M0DULUS M IS rACT0RED INT0 PRIME P0WERS· EIGHT l'ACT0RS 
C SUrFICE UP T0 M = 2*3*5*7*11*13*17*19 = 9.767,520• 

30 CALL rACT0RCM. lrACT. IP0WERP NEXP. NP0wER> 
D0 40 IP=l.NP0wER 

IEXP<IP> = 0 
40 C0NTINUE 

C GENERATE EVERY DIVIS0R 0F M LESS THAN M/2 
IDIV = I 

50 Ir <IDIV.GE.M/2) G0 T0 190 
C THE NUMBER 0F ELEMENTS wHOSE INDEX IS DIVISIBLE BY IDIV 
C AND BY N0 0THEK DIVIS0R 0r M IS THE EULER T0TlENT 
C rUNCTI0N, PHICM/IDIV>• 

NC0UNT = M/IDIV 
D0 60 IP=l,NP0WER 

IF <IEXPCIP>.EQ.NEXPCIP>> G0 T0 60 
NC0UNT = CNC0UNT/lrACT<IP>J*CIFACTCIP>-I> 

60 CONTINUE 
D0 70 l=l.NW0KK 

M0VED<I> = ·FALSE. 
70 C0NTINUE 

C THE STARTING P01NT 0F A SUBCYCLE IS DIVISIBLE 0NLY BY IDIV 
C AND MUST N0T APPEAR IN ANY 0THER SUBCYCLE. 

ISTART = IDIV 
80 MMIST = M - ISTART 

IF <ISTART.EQ.IDIV> G0 T0 120 
Ir <ISTART.GT.NW0RK> G0 T0 90 
Ir CM0VED<ISTAkT>> G0 T0 160 

90 rs0ID = ISTART/IDIV 
00 100 IP=l.NP0wER 

Ir <IEXPCIP>.EQ.NEXPCIP>> G0 T0 100 
IF <M0D<IS0ID.lrACT<IP>>•EQ.O> G0 T0 160 

100 C0NTINUE 
Ir CISTART.LE.NW0RK> G0 T0 120 
ITEST = ISTART 

110 ITEST = M0DCN*ITEST.M> 
Ir <ITEST·LT.ISTAHT ·0K• ITEST.GT.MMIST> GO T0 160 
Ir CITEST·GToISTART .AND. ITESToLT.MMIST> G0 T0 110 

120 ATEMP = A<ISTART+I~ 
BTEMP = A<MMIST+l> 
IAI = !START 

130 IA2 = M0DCN*IAl,M> 
MMIAI = M - IAI 
MMIA2 = M - IA2 
IF CIA!.LE.NW0RK> M0VED<IAl> = ·TRUE. 
IF CMMIAl·LE.NW0RK> M0VED<MMIA1> = •TRUE. 
NC0UNT = NC0UNT - 2 



COLLECTED ALGORITHMS ( co111t.) 

C M0VE TW0 ELEMENTS. THE SEC0ND FR0M THE NEGATIVE 
C SUBCYCLE. CHECK FIRST F0R SUBCYCLE CL0SURE· 

IF <IA2.EQ.ISTART> G0 T0 140 
IF <MMIA2.EQ.ISTART> G0 T0 150 
A<IAl+l) = A<IA2+1) 
ACMMIAl+l> = A<MMIA2+1> 
IA 1 = IA2 
G0 T0 130 

140 A<IAl+l> = ATEMP 
A<MMIAl+l> =STEMP 
G0 T0 160 

150 A<IAl+l> = STEMP 
ACMMIAl+l) = ATEMP 

160 !START= !START+ IDIV 
IF CNC0UNT.GT.O> G0 T0 80 
00 180 IP=l•NP0WER 

IF CIEXPCIP>.EQoNEXPCIP>> G0 T0 170 
IEXPCIP> = IEXPCIP> + 1 
IDIV = IDIV*IFACTCIP> 
G0 T0 50 

170 IEXPCIP> = 0 
IDIV = IDIV/IP0WERCIP> 

180 CeJNTINUE 
190 RETURN 

END 

SUBR0UTINE FACT0RCN. !FACT. IP0WER. NEXP. NP0WER> 
C FACT0R N INT0 ITS PRIME P0WERS. NP0WER IN NUMBER· 
C E·G·• F0R N=1960=2**3 *S *7**2• NP0WER=3• IFACT=3•5•7• 
C IP0WER=a,5,49, AND NEXP=3•1•2• 

DIMENSI0N IFACTCB>• IP0WERC8>. NEXPCB> 
IP = 0 
I FCUR = 0 
NPART = N 
IDIV = 2 

10 IQU0T = NPART/IDIV 
IF CNPART-IDIV*IQU0T> 60• 20, 60 

20 IF <IDIV-IFCUR> 40• 40• 30 
30 IP = IP + 1 

IFACT<IP> = IDIV 
IP0WERCIP> = !DIV 
IFCUR = IDIV 
NEXPC IP> = 1 
G0 T0 50 

40 IP0WERCIP> = IDIV*IP0WERCIP> 
NEXP<IP> = NEXP<IP> + 

50 NPART = IQU0T 
G0 T0 10 

60 IF CIQU0T-IDIV> 100. 100• 70 
70 IF <IDIV-2> 80• 80• 90 
80 I DIV = 3 

G0 T0 10 
90 IDIV = IDIV + 2 

G0 T0 10 
100 IF CNPART-1> 140. 140• 110 
110 IF <NPART-IFCUR> 130, 130• 120 
120 IP = IP + 1 

IFACTCIP> = NPART 
IP0WER<IP> NPART 
NEXPC IP> = 1 
G0 T0 140 

130 IP0WER<IP> NPART*IP0WERCIP> 
NEXPCIP> NEXPCIP> + 1 

140 NP0WEH = IP 
RETURN 
END 

467-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 468 

Algorithm for Automatic 
Numerical Integration Over 
a Finite Interval [DI] 
T.N.L. Patterson [Recd. 20 Jan. 1971, 27 Nov. 1972, 
12 Dec. 1972, 26 Mar. 1973] 
Department of Applied Mathematics and Theoretical 
Physics, The Queen's University of Belfast, Belfast BT7 
1 NN Northern Ireland 

Key Words and Phrases: automatic integration, numerical 
integration, automatic quadrature, numerical quadrature 

CR Categories: 5.16 
Language: Fortran 

Editor's note: Algorithm 468 described here is available on magnetic 
tape from the Department of Computer Science, University o( 
Colorado, Boulder, CO 80302. The cost for the tape is $J6.00 (U.S. 
and Canada) or $J8.00 (elsewhere). ff the user sends a small tape 
(wt. less than J lb.) the algorithm will be copied 011 it and returned to 
him at a charge of $JO.OO (U.S. only). All orders are to be prepaid 
with checks payable to ACM Algorithms. The algorithm is recorded 
as one file of BCD 80 character card images at 556 B.P.J., even 
parity, on seven track tape. We will supply algorithm at a density of 
800 B.P.J. if requested. Cards for algorithms are sequenced starting 
at JO and incremented by JO. The sequence number is right justified in 
column 80. Although we will make every attempt to insure that the 
algorithm c01~forms to the description printed here, we cannot guaran
tee it, nor can we guarallfee that the algorithm is correct. -L.D.F. 
and A.K.C. 

Description 
Purpose. The algorithm attempts to calculate automatically 

the integral of F(x) over the finite interval [A, BJ with relative 
error not exceeding a specified value E. 

Method. The method uses a basic integration algorithm 
applied under the control of algorithms which invoke, if necessary, 
adaptive or nonadaptive subdivision of the range of integration. 
The basic algorithm is sufficiently powerful that the subdivision 
processes will normally only be required on very difficult integrals 
and might be regarded as a rescue operation. 

The Basic Algorithm. The basic algorithm, QUAD, uses a family 
of interlacing whole-interval, common-point, quadrature formulas. 
The construction of the family is described in detail in [1]. Begin
ning with the 3-point Gauss rule, a new 7-point rule is derived, with 
three of the abscissae coinciding with the original Gauss abscissae; 
the remaining four are chosen so as to give the greatest possible 
increase in polynomial integrating degree; the resulting 7-point 
rule has degree 11. The procedure is repeated, adding eight new 
abscissae to the 7-point rule to produce a 15-point rule of degree 23. 

468-P 1- 0 

Continuing, rules using 31, 63, 127, and 255 points of respective 
degree 47, 95, 191, and 383 are derived. The 255-point rule has not 
previously been published. In addition, a 1-point rule (abscissa at 
the mid-point of the interval of integration) is included in the family 
to make eight members in all. The 3-point Gauss rule is in fact 
formally the extension of this 1-point rule. The successive applica
tion of these rules, until the two most recent results differ relatively 
by e or better, is the basis of the method. Due to their interlacing 
form, no integral evaluations need to be wasted in passing from one 
rule to the next. 

The algorithm has been used for some time on practical problems 
and has been found to generally perform reliably and efficiently. 
Its domain of applicability generally coincides with that of the 
Gauss formula, which is much wider than commonly supposed 
[2]. It will perform best on" smooth" functions, but the degree of 
deterioration of performance when applied to functions with various 
types of eccentricities depends more on the harshness of these 
eccentricities than on their presence as such. Integrands with large 
peaks or even singularities at the ends of the interval of integration 
are handled reasonably well. It may be noted that none of the rules 
actually uses the end points of the interval as abscissae. Peaks in 
the integrand at the center of the interval and discontinuities in the 
integrand are less easily dealt with. Although it is recommended that 
the algorithm be applied using the control algorithms described 
}ater, if desired it can be used directly as follows. 

The algorithm is entered by the statement: 

CALL QUAD (A, B, RESULT, K, EPSJL, NPTS, /CHECK, F) 

The user supplies: 
A lower limit of integration. 
B upper limit of integration. 
EPSIL required relative error. 
F F(X) is a user written function to calculate the integrand. 
The algorithm returns: 
RESULT an array whose successive elements RESULT(l), 

RESULT(2), etc., contain the results of applying the succes
sive members of the family of rules. The number of rules ac
tually applied depends on EPSJL. The array should be de
clared by the calling program to have at least eight elements. 

K element, RESULT(K), of array RESULT contains the value 
of the integral to the required relative accuracy. K is determined 
from the convergence criterion: 

I RESULT (K) - RESULT (K - 1) I 
s EPSJL* I RESULT (K) I 

N PTS number of integrand evaluations. 
/CHECK this flag will normally be 0 on exiting from the sub

routine. However, if the convergence criterion above is not 
satisfied after exhausting all members of the family of rules, 
then the flag is set to 1 . 
The control algorithms. Two control algorithms are provided, 

QSUBA and QSUB, which if necessary invoke subdivision respec
tively in either an adaptive or a nonadaptive manner. QSUBA is 
generally more efficient than QSUB, but since there are reasons for 
believing [2] that adaptive subdivision is intrinsically less reliable 
than the nonadaptive form, an alternative is provided. 



COLLECTED ALGORITHMS (cont.) 

Table I. Test Integrals and Their Values 

1. 

2. 

f y'x dx = ~ 

1
1 

[0.92 cosh (x) - cos (x)] dx == 0.4794282267 
-1 

3. 1: dx/ (x 4 + x 2 + 0.9) - 1.582232964 

·11 2 4. x! dx = 5 
0 

5. £1 

dx/(l + x 4 ) = 0.8669729873 

6. fo 1 

dx/(l + 0.5 sin (31.4159x)) - 1.154700669 

1 

7. i x dx/(ex - 1) == 0.7775046341 

8. 

9. 

11 

sin (314.159x)/(3.14159x) dx = 0.009098645256 
0.1 

fo
10 

50 dx/(2500x 2 + 1)/3.14159 = 0.4993638029 

1
3.1415927 

10. 
0 

cos (cos (x) + 3 sin (x) + 2 cos (2x) 

+ 3 cos (3x) + 3 sin (2x)) dx = 0.8386763234 

11. fo1 

In (x) dx = -1.0 

12. fo
1 

411"2X sin (207rX) cos (27rx) dx - -0.6346651825 

1 

13. i dx/(1 + (230x - 30)2) = 0.0013492485650 

The adaptive algorithm QSUBA. QUAD is first applied to the 
whole interval. If a converged result is not obtained (that is, the 
convergence criterion is not satisfied), the folllowing adaptive sub
division strategy is invoked. At each stage of the process an interval 
is presented for subdivision (initially the whole interval (A, B)). 
The interval is halved, and QUAD applied to each subinterval. If 
QUAD fails to converge on the first subinterval, the subinterval is 
stacked for future subdivision and the second subinterval imme
diately examined. If QUAD fails to converge on the second sub
interval, it is immediately subdivided and the whole process re
peated. Each time a converged result is obtained it is accumulated 
as the partial value of the integral. When QUAD converges on both 
subintervals the interval last stacked is chosen next for subdivision 
and the process repeated. A subinterval is not examined again once 
a converged result is obtained for it, so that a spurious convergence 
is more likely to slip through than for the nonadaptive algorithm 
QSUB. 

The convergence criterion is slightly relaxed in that a panel is 
deemed to have been successfully integrated if either QUAD con
verges or the estimated absolute error committed on this panel 
does not exceed E times the estimated absolut·e value of the integral 
over (A, B). This relaxation is to try to take account of a common 
situation where one particular panel causes special difficulty, per
haps due to a singularity of some type. In this case, QUAD could 
obtain nearly exact answers on all other pane:ls, and so the relative 
error for the total integration would be almost entirely due to the 
delinquent panel. Without this condition the computation might 

468-P 2- 0 

continue despite the requested relative error being achieved. The 
risk of underestimating the relative error is increased by this pro
cedure and a warning is provided when it is used. 

The algorithm is written as a function with value that of the 
integral. The call takes the form: 

QSUBA(A, B, EPSIL, NPTS, /CHECK, RELERR, F) 

and causes F(x) to be integrated over (A, B) with relative error 
hopefully not exceeding EPSIL. RELERR gives a crude estimate of 
the actual relative error obtained by summing the: absolute values of 
the errors produced by QUAD on each panel (estimated as the 
differences of the last two iterates of QUAD) and dividing by the 
calculated value of the integral. The reliability of the algorithm will 
decrease for large EPSIL. It is recommended that EPSIL should 
generally be less than about 0.001. F should be declared EXTERN AL 
in the calling program. N PTS is the number of integrand evaluations 
used. The outcome of the integration is indicated by !CHECK: 
/CHECK = O. Convergence obtained without invoking subdivi-

sion. This corresponds to the direct use of QUAD. 
/CHECK = 1. Subdivision invoked and a converged result ob

tained. 
/CHECK = 2. Subdivision invoked and a converged result ob

tained but at some point the relaxed convergence criterion was 
used. If confidence in the result needs bolstering, EPSIL and 
RELERR may be checked for a serious discrepancy. 

/CHECK negative. If during the subdivision process the stack of 
delinquent intervals becomes full a result is obtained, which 
may be unreliable, by continuing the integration and ignoring 
convergence failures of QUAD which cannot be accommodated 
on the stack. This occurrence is noted by returning /CHECK 
with negative sign. 
The nonadaptive algorithm QSUB. QUAD is first applied to 

the whole interval. If a converged result is not obtained the follow
ing nonadaptive subdivision strategy is invoked. 

Let the interval (A, B) be divided into 2N panels at step N of 
the subdivision process. QUAD is first applied to the subdivided 
interval on which it last failed to converge, and if convergence is 
now achieved, the remaining panels are integrated. Should a con
vergence failure occur on any panel, the integration at that point is 
terminated and the procedure repeated with N increased by one. 
The strategy insures that possibly delinquent intervals are examined 
before work, which later might have to be discarded, is invested on 
well behaved panels. The process is complete when no convergence 
failure occurs on any panel, and the sum of the results obtained by 
QUAD on each panel is taken as the value of the integral. 

The process is very cautious in that the subdivision of the inter
val (A, B) is uniform the fineness of which is controlled by the suc
cess of QUAD. In this way it is much more difficult for a spurious 
convergence to slip through than for QSUBA .. The convergence 
criterion is relaxed as described for QSUBA. 

The algorithm is used in the same way as QS U BA and is called 
with the same arguments as QSUBA. One of th~~ possible values of 
!CHECK has a different interpretation: 
!CHECK negative. If during the subdivision process the upper 

limit on the number of panels which may be generated is 
reached, a result is obtained, which may be unreliable, by con
tinuing the integration ignoring convergence failures of QUAD. 
This occurrence is noted by returning /CHECK with nega
tive sign. 
Tests. The algorithms have been found to perform reliably on 

a large number of practical problems. To give a feeling for the 
performance, results for a number of contrived examples are given 
using the adaptive control algorithm, QSUBA. It would be dif
ficult to justify these examples as acid tests of any method, but they 
have the advantage of having being quoted at various times in the 
literature. 

For comparison a number of automatic procedures were used, 
which include SQUANK [3] (adaptive Simpson), as well as the 



COLLECTED ALGORITHMS (cont.) 

Table II. Relative Error Requested, 10-·3 

Integral Ne A DRE N QSll BA TcADRE/TQsUBA 

17 15 I. 8 
2 17 7 2.9 
3 33 15 4.4 
4 9 7 1. 9 
5 9 7 2.2 
6 175 127 3.2 
7 9 7 1. 8 
8 1137 255 8.5 
9 97 127 2.4 

10 107 63 2.2 
11 137 31 9.9 
12 252 63 6.3 
13 129 787 .52 
N and T with appropriate subscripts give respectively the num-
ber of integrand evaluations and the time taken for the com-
putation. 

Table III. Relative Error Requested, 10- 6 

1 33 63 .75 
2 33 15 2.6 
3 49 31 3.0 
4 129 31 5.0 
5 17 15 2.0 
6 401 255 2.9 
7 9 7 1. 8 
8 2633 255 18. 
9 281 255 2.4 

10 193 63 3.8 
11 233 795 .74 
12 532 127 6.4 
13 305 1001 .90 

Table IV. Relative Error Requested, 10-s 

1 65 255 .36 
2 33 15 2.7 
3 97 31 4.9 
4 545 31 20. 
5 65 31 3.6 
6 569 255 3.8 
7 17 15 l. 6 
8 4001 255 24. 
9 337 255 2.8 

10 305 127 2.8 
11 297 2415 .28 
12 932 127 10. 
13 481 1017 1. 1 

modified Havie integrator [4] and CADRE [5] (both based on the 
Romberg scheme). The latter algorithm, which attempts to detect 
certain types of singularities using the Romberg table, was found, 
on the examples tried, to be the best overall competitor to QSUBA, 
and only this comparison is quoted. The Havie algorithm was par
ticularly poor and had the disturbing feature of converging spu
riously on periodic integrands. Thacher [6] has described the short
comings of Romberg integration, and Algorithm 400 appears to 
exhibit them. SQUANK was found to be quite good when used 
at low accuracy, but the performance deteriorated as the demand for 
accuracy increased. It also gave trouble on some of the more awk
ward integrals such as 8 and 11. SQUANK also computes the in
tegral in the context of absolute error, and since this is meaningless 
unless an estimate of the order of magnitude of the integral is 
known, the algorithm can hardly be described as automatic. 
CADRE allows a choice of absolute or relative error. A criticism 
sometimes levied at relative error is that should the integral turn 

468-P 3- 0 

out to be zero a difficulty will arise. The only advice that can be 
offered in this respect is that, should a user suspect that this is likely 
to happen, a constant should be added to the integr:rnd reflecting 
some appropriate quantity such as the maximum of the integrand. 
The constant which will be integrated exactly can be removed after 
the algorithm has done its work. 

The test integrals are listed in Table I, and the results obtained 
for various required relative accuracies in Tables II, III, and IV. 
Generally QS U BA is superior by a substantial margin. The methods 
are compared in terms of the number of integrand evaluations 
needed to obtain the required accuracy and also in terms of the 
times required. For simple integrands the bookkeeping time of 
some methods can be significant, and QUAD can obtain a con
siderable advantage by its relative simplicity. Integrals 11 and 13 are 
interesting examples of this. The numbe:r of integrand evaluations 
exceeding 255 indicates that QS U BA invoked subdivision to obtain 
the result. In Tables III and IV QSUBA returned /CHECK = 
2 on integral 11, but the requested tolerance was achieved. 

Integral 8 caused special difficulty to CADRE, and for Tables 
III and IV a converged result could be obtained only after a relatively 
large investment of computer time. The feature of CADRE to 
detect certain singularities should show up in integrals 1 and 11, 
but the gain does not emerge until high accuracy is requested as in 
Table IV. For harsher singularities the gain would likely become 
apparent earlier. 

References 
1. Patterson, T.N.L. The optimum addition of points to quad
rature formulae. Math. Comp. 22 (1968), 847-856. 
2. Cranley, R., and Patterson, T.N.L. On the automatic numeri
cal evaluation of definite integrals. Comp. J., 14 (1971), 189-198. 
3. Lyness, J.N. Algorithm 379, SQUANK. Comm. ACM 13 
(Apr. 1970), 260-263. 
4. Wallick, G.C. Algorithm 400, Modifiied Havie integration. 
Comm. ACM 13 (Oct. 1970), 622-624. 
5. de Boor, Carl. CADRE: An algorithm for numerical 
quadrature. Mathematical Sofiware. J.R. Rice (Ed.) Academic 
Press, New York, 1971, pp. 417-449. 
6. Thacher, H.C. Jr. Remark on Algorithm 60, Comm. ACM 
(July, 1964), 420-421. 

Algorithm 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBR0UTINE QUAOCA. B, RESULT, K1 EPSIL1 NPTS1 ICHECK1 F> 
OIMENSI0N FUNCTC127>• PC381>• kESULTCS> 

THIS SUBR0UTINE ATTEMPTS T0 CALCULATE THE INTEGRAL OF FCX> 
0VER THE INTERVAL *A* T0 *B* WITH RELATIVE EkN0H N0T 
EXCEEDING *EPSIL*• 
THE RESULT IS 0BTAINEO USING A SEQUENCE 0F 1,3,7,15,31,631 
1271 ANO 255 P0INT INTEHLACING f0RMULAECN0 INTEGRAND 
EVALUATI0NS AHE wASTED> OF kESPECTIVE DEGREE 1.s.11.23, 
47,95,191 AND 383· THE FORMULAE AKE BASED 0N THE 0PTIMAL 
EXTENSI0N 0f THE 3-P0INT GAUSS F0kMULA. DETAILS 0F 
THE F0RMULAE ANE GIVEN IN 'THE 0PTIMUM AOOITl0N 0F P0INTS 
T0 QUAONATURE FONMULAE' BY T·N•L• PATTERS0N1MATHS.C0MPo 
V0L 221847-85611968. 

C A 
C B 

*** INPUT *** 
L0WEH LIMIT 0F INTEGRATI0N. 
UPPER LIMIT 0F INTEGHATI0N• 

C EPSIL 
c 

HELATIVE ACCUHACY HE~UIHED· wHEN THE HELATIVE 
DIFFERENCE 0F TW0 SUCCESSIVE: F0r<MULAE DCES N0T 
EXCEED *EPSIL* THE LAST F0RMULA C0MPUTEO IS TAKEN 
AS THE HESUL T • 

c 
c 
C F 
c 

FCX> IS THE INTEGRAND. 
*** 0UTPUT *** 

C RESULT 
c 

THIS AHHAY1WHICH SH0ULD BE DECLARED T0 HAVE AT 
LEAST 8 ELEMENTS, H0LOS THE HESUL TS 0BTAINED BY 
THE 1.3,7, Ere., P0INT F0RMLILAE. THE NUMBEH 0f 
F0HMULAE C0MPUTED DEPENDS 0N *EPSIL*• 

c 
c 
C K 
c 

RESULT<K> H0LOS THE VALUE C!Jf" THE INTEGRAL T0 THE 
SPECifIEO RELATIVE ACCURACY· 

C NPTS NUMBER INTEGRAND EVALUATI0N~· 
C ICHECK 
c 

0N EXIT N0RMALLY ICHECK•O· H0WEVER IF CONVEKGENCE 
T0 THE ACCURACY REQUESTED I~ N0T ACHIEVED !CHECK•! 

c 
c 
c 

0N EXIT• 
ABSCISSAE ANO WEIGHTS 0F QUADRATURE HULES ARE STACKED IN 
AHHAY *P* IN THE 0HDER IN WHICH THEY ARE NEEDED· 

DATA 
* PC I >.PC 2>.Pc· 3>.PC 4>.PC 5>.F'C 6>.PC 7>. 
*PC 8>1PC 9>1PCI0>1PCll>1PC12>,PC13>1PCl4>• 
* PC15>1PCl6>1PC17>1PCl8>1PCl9)1PC20>1PC21>• 
* PC22>.PC23>1PC24)1PC25>1PC26>,PC27>1PC28>/ 
* o.77459666924148337704E oo,o.ss5555555ssssss5s5s6E oo. 
* Q.88888888888888888889E QQ,Q.26848808986833344073E 00• 
* o.96049126870802028342E oo.o.10465622602646726519E oo, 
* Oo43424374934680255800E QQ,Q.40139741477596222291E 001 



,J'"'I 

>/t'' 

r 
/' 

/'COLLECTED ALGORITHMS (co111t.) 

* o.45091653865847414235E oo.o.13441525524378422036E oo. 
* 0·51603282997079739697E-01•0·20062852937698902103E 00• 
* Oo99383196321275502221E oo.0.17001719629940260339E-Ol• 
* Oo88845923287225699889E oo.0.92927195315124537686E-Ol• 
* o.62110294673722640294E oo.o.111s1190913639138079E oo. 
* o.22338668642896688163E oo.o.2191s685840l58749640E oo. 
* o.22551049979820668739E oo.0.67207754295990703540E-Ol. 
* 0·25807598096176653565E-01•0·10031427861179557877E QQ, 
* o.84345657393211062463E-02•0·46462893261757986541E-OI• 
* Oo85755920049990351154E-Ol•O·I0957842105592463824E 00/ 

DATA 
* PC29>.PC30>.PC3l>•P<32>.PC33>•PC34J.PC35>• 
* PC36),PC37>1PC38>•PC39>•PC40>•PC4IJ1PC42>1 
* PC43>1PC44>,PC45>1PC46>1PC47>•P<48J1PC49)1 
* PC50>1PC51>1PC52>oPC53>1PC54>oPC55JoPC56)/ 
* o.999098124967667S9766E oo.o.2s••78079156181441S4E-o2. 
* 0.9815311495537401(}.(,87E 0010.l6446049854387810934E-011 
* Oo92965485742974005667E 0010o35957103307129322097E-Ol1 
* Oo83672593816886873550E oo.o.56979509494123357412E-Olo 
* o.1024962064915270786tE oo.o.7687962049900353I043E-01. 
* Oo53131974364437562397E oo,0.93627109981264473617E-011 
* o.33113539325797683309E oo,o.105669B9358023480974E oo, 
* Ooll248894313318662575E 0010olll95687302095345688E 001 
* Ooll275525672076869161E 0010•33603877148207730542E-011 
* Ool2903800100351265626E-Olo0o50157139305899537414E-Ol. 
* Oo42176304415588548391E-02.0o2323l446639910269443E-OI. 
* Oo42877960025007734493E-0110o54789210527962865032E-011 
* Ool2651565562300680114E-0210o82230079572359296693E-02· 
* Ool7978551568128270333E-Ol10o28489754745833548613E-Ol/ 

DATA 
* PC57>1PC58>1PC59>1PC60>1PC6l>1PC62J1PC63>• 
+ PC64bPC65>.PC66bPC67>1PC68>1PC69:11PC70>o 
* PC71>1PC72>1PC73)oPC74>1PC75>1PC76)1PC77>• 
* PC78>1PC79)1PCSO>•P<8l>1PC82)1PC83J1PC84)/ 
* Oo38439810249455532039E-0110o46813554990628012403E-Ol· 
* Oo52834946790116519862E-0110o55978436510476319408E-011 
* o.9998728B812035761194E oo.o.36322148184553065969E-o3, 
* o.9912062s931222195908E oo.o.25790497946856B82724E-02. 
* Oo98868475754742947994E oo,0.6115!>068221172463397E-021 
* Oo97218287474858179658E 0010ol0498246909621321898E-011 
* Oo94634285837340290515E OOoO•l5406750466559497802E-Ol• 
* o.91037115695700429250E 0010o20594233915912711149E-Olo 
* Oo86390793819369047715E QQ,0.25869679327214746911E-Ol• 
* o.80694053195021761186E 0010o31073551111687964880E-011 
* Oo73975604435269475868E 0010o36064432780782572640E-OI· 
* o.66290966002478059546E 0010•40715510116944318934E•Ol1 
* Oo57719571005204581484E 0010o44914531653632197414E-011 
* Oo48361802694584102756E oo.0.48564330406673198716E-OI/ 

DATA 
*PC 8SJ1PC 86)1PC 87)oPC 88>1PC 89>1PC 90>1PC 91>• 
* PC 92J1PC 93>1PC 94)1PC 95>1PC 96>1PC 97>.PC 98)1 
*PC 99)1PCI00>1PCIOl>1PCI02>1PCI03>1PCl04>oPC105>1 
* PCl06>1PCl07>1PCI08>1PC109)0PCll0>1PClll>•P<ll2>/ 
* Oo38335932419873034692E 0010o51583253952048458777E-011 
* O .277 7 4982202182431 507E 001 0 • 5390 ~,49933 52 66063927 E-0 I• 
* Ool6823525155220746498E 0010o55481404356559363988E-011 
* Oo56344313046592789972E-Ol10o56277699831254301273E-Ol· 
* Oo56377628360384717388E-Ol10ol6801938574103865271E-OI· 
* Oo64519000501757369228E-0210o25078569652949768707E-011 
* Oo21088152457266328793E-0210oll615723319955134727E-Ol. 
* Oo21438980012503867246E-0110o27394605263981432516E-OI· 
* Oo63260731936263354422E-0310•41115039786546930472E-021 
* Oo89892757840641357233E-02.0ol4244877372916774306E-Ol. 
* Ool9219905124727766019E-0110o23406777495314006201E-011 
* Q,26417473395058259931E-Olo0•27989218255238159704E-OI• 
* Ool8073956444538835782E-03o0ol2895240826104173921E-021 
* Oo30577534101755311361E-02o0·52491234548088591251E-02/ 

DATA 
* PC113>.PC114>.PC115»PCl16>1PCll7>,,pc11a>.PCll9J. 
+ PC120>1PC12l>oPC122>1PC123>1PC124>•P<125>1PC126>1 
* PC127>1PC128>1PC129>1PC130>1PC13l>•PC132>1PC133>• 
* PC134>1PC135>1PC136>1PC137>oPC138>•P<l39)1PCl40>/ 
* Oo77033752332797418482E-02;0.10297116957956355524E-Olo 
* Ool2934839663607373455E-0110ol5536775555843982440E-Ol· 

0·16032216390391286320E-Olo0·20351755058472159467E·Olo 
* Oo22457265826816098707E-0110o24282165203336599358E-011 

Q.25791626976024229388E-0110•26952749667633031963E-0!1 
* Oo27740702178279681994E-0110•28138849915627150636E-Olo 
* 0.99998243035489159858E ao.o.50536095207862517625E-04, 
* Oo99959879967191068325E 0010o37774664632698466027E-031 
* O, 99831663531840739253E 00• 0 • 938369848 542381 50079E-03o 
* 0·99572410469840718851E 00o0•1681R428654214699063E-02, 
* Oe99149572117810613240E oo,o.25687649437940203731E-02. 
* Oe98537149959852037111E 0010·35728927835172996494E-02, 
* Oo97714151463970571416E 0010o46710503721143217474E-o2. 
* o.96663785t55841656709E oo.o.ss434498758356395076E-oa/ 

DATA * PC14l>•PCl42),PCl43>1PC144),PC145>•PC146)1PC147>1 
* PC148>1PCl49),PCl50>1PC151>1PCl52>•PCl53>1PCl54>• 
* PC155>1PClS6)1PC157>1PC158>1PCl59>•P<160>•P<161>• 
* PC162>.PC163),PCl64>1PC165>1PCl66J,PC167>1PCl68>/ 
* o.9531300064257611364tE oo.o.1012439995433sss4680E-02. 
* o.93832039777959288365E oo.o.8342B3B7539681577056E-02. 
* o.92034002547001242073E 0010·96411777297025366953E-021 
* Q.89974489977694003664E OO.O·I0955733387837901648E-011 

o.s765134l448470526974E oo.o.1227s830560082770o87E-01. 
* o.85064449476835027976E oo.o.13s91s11009165546790E-01. 
* o.a221562543649B040737E oo.o.148936416648t5t82035E-01. 
* Oo79108493379984836143E 0010ol6173218729577719942E-OI• 
* Oo75746396638051363793E 00o0ol7421930159464173747E·Ol, 
* Oo72142308537009891548E QO,Q.t863l848256138790186E-011 
* Oo68298743109107922809E QO,Ool9795495048097499468E-Olo 
* Q,64227664250975951377E 0010·20905851445812023852E-Ol. 
* Q.59940393024224289297E oo.o.21956366305317824939E-Ol· 
* o.ss449513263193254887E oo.o.22940964229387748761E-01/ 

468-P 4- 0 

DATA 
* PC169>1PC170>1PC171>1PC172>1PC173J1PC174>1PC175>• 
* PC176>1PC177)1PC178>1PCl79>oPC180>•PCIBl>•PCl82>• 
* PC183>1PCl84>1PC185>1PCl86JoPCl87>1PCl88>1PCl89>• 
* PCl90>.PC191>1PC192>1PC193>.PCl94),PC195>.PC196)/ 
* o.so768775753371660215E oo.o.23854os2106038540080E-01, 
* Oo45913001198983233287E 00.0.24690524744487676909E-Ol. 
* Oo40897982122988867241E 0010.25445769965464765813E-Ol• 
* 0°35740383783153215238E 00.0.26115673376706097680E-Ol. 
* 0·30457644155671404334E oo.o.26696622927450359906E-01. 
* 0·25067873030348317661E oo.o.21185513229624791819E-o1. 
* Ool9589750271110015392E oo.o.27579749566481873035E-Ol• 
* Ool4042423315256017459E oo,o.27877251476613701609E-Ol. 
* 0·84454040083710883710E-Ol•0•28076455793817246607E-Ol. 
* Oo28184648949745694339E-0110o28176319033016602131E-Ol. 
* Oo281888141B0192358694E-Olo0.84009692870519326354E-02• 
* Oo32259500250878684614E-02•0·12539284826474884353E-Olo 
* Ool0544076228633167722E-0210o58078616599775673635E-02. 
* Ool0719490006251933623E-Olo0ol3697302631990716258E-Ol/ 

DATA 
* PC197>1PC198J1PC199>•PC200>.PC20l>•PC202>1PC203>o 
* PC204J.PC205>1PC206),PC207>.PC208>•PC209>oPC210), 
* PC211>1PC212>1PC213>1PC214>1PC215>1PC216>1PC217>• 
* PC218>1PC219>1PC220>•PC22l>•P<222>1PC223>1PC224)/ 
* Oo31630366082226447689E-03o0o20557519893273465236E-02, 
* o.44946378920320678616E-02.o.11224386864583871532E-o2. 
* Oo96099525623638830097E-o2.o.11703388747657003101E-Ol. 
* Ool3208736697529129966E-Ol.Ool3994609127619079652E-Ol. 
* Oo90372734658751149261E-0410o64476204130572477933E-03. 
* O·l5288767050677655684E-o2.o.26245617274044295626E-o2. 
* 0°38516876166398709241E-02.o.s1485584789781777618E-02. 
* Oo64674198318036867274E-0210o77683877779219912200E-02. 
* Oo90161081951956431600E-0210ol0178877529236079733E-Ol· 
* Ooll228632913408049354E-0110ol2141082601668299679E-Ol. 
* Ool2895813488012114694E-0110•l3476374833816515982E-Ol• 
* Ool3870351089139840997E-0110ol4069424957813575318E-Ol· 
* Oo25157870384280661489E-0410ol8887326450650491366E-03. 
* Oo46918492424785040975E-03.0o8405714327107224636SE-03/ 

DATA 
* PC225>oPC226>1PC227>oPC22B>•PC229>1PC230),PC231>• 
* PC232>.PC233>oPC234>.PC235>.PC236>1PC237)1PC238>• 
* PC239>.PC240>.PC24l>•PC242>•P<243>1PC244),PC245>• 
* PC246>.PC247)oPC248)oPC249>1PC250>1PC25l>•P<252)/ 
* Q.12843824718970101768E-02.0.17864463917586498247E-02• 
* Oo23355251860571608737E-02•0·29217249379178197538E-02• 
* Oo35362449977167777340E-0210o41714193769840788528E-02· 
* Oo48205868648512683476E-0210o54778666939189508240E-02. 
* 0·61379152800413850435E-02•0·67957655048827733948E-02• 
* Oo74466208324075910174E-02•0·80866093647888599710E-02• 
* Oo87109650797320868736E-02o0o931592412B0693950932E-o2. 
* Oo98977475240487497440E-02•0·10452925722906011926E-Olo 
* 0·10978183152658912470E-01•0·11470482114693874380E-OI• 
* O~lt927026053019270040E·01•0·12345262372243838455E-Ol• 
* 0 • 1272288 49827 3-236290 6E-O I• 0, 130 578366883 53048840E-O1, 
* Ool3348311463725179953E-Ol.Ool3592756614812395910E-Ol· 
* Ool3789874783240936517E-Ol.0.13938625738306850804E-Ol• 
* 0·14038227896908623303E-Ol,Q.14088159516508301065E-OI/ 

DATA 
* PC253>1PC254>oPC255>1PC256>.PC257>1PC258>1PC259>• 
* PC260>1PC26l>oPC262>.PC263>1PC264>oPC265),PC266>• 
* PC267)1PC268)1PC269),PC270>1PC27l>•P<272>1PC273>• 
* PC274>.PC275>.PC276>1PC277>.PC278>1PC279>1PC260)/ 
* Oo99999759637974846462E oo.o.69379364324108267170E-05. 
* Oo99994399620705437576E 00•0·53275293669780613125E-Q4, 
* Oo99976049092443204733E oo.o.13575491094922871973E-03• 
* Oo99938033802502358193E OQ,Q.24921240048299729402E-03o 
* Oo99874561446609511470E OO,Q.38974528447328229322E-03• 
* 0·99780535449595727456E oo.o.55429531493037471492E-03• 
* Oo99651414591489027385E 0010.74026280424450333046E-03. 
* 0·99483150280062I00052E oo.o.94536151685852538246E-03. 
* Oo99272134428278861533E oo.o.11674841174299594077E-o2. 
* 0·99015137040077015918E oo.o.14049079956551446427E-o2. 
* 0·98709252795403406719E oo.o.t6561127261544526052E-02. 
* 0·98351865757863272876E oo.o.19197129710138724125E-o2. 
* 0·97940628167086268381E oo.o.21944069253638368368E-o2. 
* Oo97473445975240266776E 0010o24789582266575679307E-02/ 

DATA 
* PC261>1PC282JoPC283>1P<284>1PC285)1PC286)1PC287)1 
* PC288>.PC269>.PC290>•PC291>•P<292>1PC293)1PC294)o 
* PC295>1PC296>.PC297>•PC298>oPC299>1PC300)1PC30I>• 
* PC302>.PC303>.PC304J,PC305>•PC306>•PC307),PC308)/ 
* Oo96946465950245923177E 0010.27721957645934509940E-02. 
* Oo96364062156981213252E oo.0.30730184347025783234E-02. 
* 0·95718821610986096274E QQ,Q,33803979910669203623E-02. 
* Oo95011529752129487656E 0010o36933779170256506183E-02. 
* Oo94241156519108305981E 0010.40110681240750233989E-02• 
* 0·93406843615772578800E 00•0·43326409680929628545E-02• 
* Oo92507893290707565236E oo.o.46573172997568547773E-02. 
* 0·91543758715576504064E oo.o.49B43645647655386012E-02. 
* Oo90514035861326159519E 0010.53130666051670565663E-02. 
* Oo89418456833555902286E 00o0.56426181013844441585E-02. 
* Oo68256864024734190664E 00•0·59729195655081658049E-02. 
* Oo87029305554611390585E 0010o63027734490657587172E-02• 
* Oo85735831088623215653E 0010o66317812429018878941E-02• 
* Oo84376688267270860104E 00.0.69593614093904229394E-02/ 

DATA 
* PC309>1PC310>1PC311>1PC312>oPC313>1PC314>1PC315>• 
* PC316)1PC317>1PC318),PC319>1PC320>.PC321)1PC322)1 
* PC323>1PC324J1PC325>1PC326>1PC327>1PC328>1PC329)o 
* P<330>1PC331>1PC332>.PC333>•PC334>1PC335>1PC336)/ 
* Oo82952219463740140016E 0010.72849479805538070639E-02, 
* o.a14628787655t3741344E oo.o.16079B96657190S6S832E-02. 
* 0·79909229096084140160E oo.o.79279493342946491103E-o2. 
* Oo78291939411828301639E 0010o82443037630328680306E-02• 
* Oo76611781930376009072E 00.0.85565435613076896192E-02. 



COLLECTED ALGORITHMS (cont.) 

* o.7~869629361693660282E oo.o.ss641732094824942641E-02. 
* o.1306645212421s126133E oo.o.91667111635607884067E-o2. 
* o.1120331ss3622s203459E oo.o.94636899938300652943~-02. 
* O·b92B1376977911470289E oo.o.97546565363174114611E-u2. 
* Oo67301883023041847920E OO.Ool0039172044056840798E-OI• 
* 0.65266166541001749610E oo.o.1031681233094762!682E-OI• 
* Oo63175643771119423041E QO,Ool0587167904885197931E-OI• 
* 0.61031811371518640016E oo.o.10849844089337314099E-OI· 
* o.56836243444766254143E oo.o.11104461134006926537E-o1/ 

DATA 
* PC337>.PC338>.PC339>,PC340>1PC34l>•PC342),P(343>• 
* PC344>.PC345>.PC346>1PC347>.PC348),PC349>.P<35Q), 
* PC351>.PC352>.P<353),PC354>.PC355>•P<356>•PC357>• 
* PC358>.PC359),PC36Q),PC361>.PC362),PC363>•P<364)/ 
* o.56590588542365442262E oo.o.11350654315980596602E-OI· 
* Oo54296566649831149049E QQ,Q.11588074033043952568E-OI• 
* Q.5!955966153745702199E oo.o.11816385890830235763E-Ol• 
* Q.49570640791876146017E oo.o.12035270785279562630E-OI· 
* 0.47142506587165887693E OO,Q.12244424981611985899E-01• 
* Oo44673538766202847374E 00.0.12443560190714035263E-Ol• 
* 0.42165768662616330006E oo.0.12632403643542078765E-OI· 
* o.39621280605761593918E oo.o.12a10698163877361967E-o1. 
* o.310422os19soo1s23014E oo.o.1291a2022395373992s6E-01. 
* Q.34430734159943802278E oo.o.13134690091960152836E-OI· 
* a.3!789a812a6847668318E aa,a.13279951743930530650E-OI• 

Oo29119514851824668196E oo.O.l3413793085110098513E-OI· 
o.26424337241a92676t94E oo.o.13s36a35934956213614E-a1. 

* a.231osBB455B9B2972121E oo.o.1364651BI0257129142BE-Ol/ 
DATA 

* PC365>•P<366>.PC367),P(36B>.PC369>.PC370>.PC37l>• 
* PC372>.PC373>1PC374>.PC375>.PC376>.PC377>.PC37B>• 
* PC379>•P<3BO>.P<381)/ 
* Oo20966523824318119477E oo.0.13745093443001896632E-011 
* o.18208649675925219825E oo.o.13B31631909506428676E-Ol• 

o.154346Bll4Bl37BI0869E oo.o.13906a1960l32546t264E-a1. 
* a.12641ass43723a196685E oa.o.139681588a6516938516E-a1. 
* 0.98482396598119202a90E-a!,a.14al796Ba394566a8610E-Ol, 
* o.70406976042855179063E-a1.a.14a55382072649964277E-Ol· 
* a.42269164765363603212E-Ol.Ool4080351962553661325E-Ol. 

0.14093886410782462614E-a1,0.14092845069160408355E-011 
* 0.14094407090096179347E-Ol/ 

!CHECK = 0 
C CHECK F0R TRIVIAL CASE. 

IF CA.EQ.B> G0 T0 70 
C SCALE FACT0RS. 

SUM :i CB+A>/2.Q 
DIFF = CB-A>/2•0 

C l-P0INT GAUSS 
FZERC = FCSUM> 
RESUL TC I> = 2·0*FZER0*DI FF 
I = 0 
I0LD = 0 
INEw = 1 
K = 2 
ACUM = o.o 
G0 Till 30 

10 IF CK.EQ.8> G0 T0 50 
K = K + 1 
ACUM = O.Q 

C C0NTRIBUTI0N FR0M FUNCTI0N VALUES ALfiEADY C0MPUTED· 
D0 20 J= 1, I 0LD 

I = I + 1 
ACUM = ACUM + PCI>*FUNCTCJ> 

20 C0NTINUE 
C C0NTRIBUTI0N FR0M NEW FUNCTI0N VALUES. 

30 I0LD = I0LD + INEW 
00 40 J=INEW.I0LD 

I = I + 1 
X = PCI>*DIFF 
FUNCTCJ) = FCSUM+X> + FCSUM-X> 
I = I + 1 
ACUM = ACUM + PCI>*FUNCTCJ> 

40 C0NTINUE 
INEW = 10LD + I 
I = I + 1 
RESULTCK> = CACUM+PCI>*FZER0>*DIFF 

C CHECK F0R C0NVERGENCE. 
If CABS<RESUL TCK>-RESUL TCK-1 > >-EPSIL*ABSrnESUL TCK> > > 601 

* 60. 10 
C C0NVERGENCE N0T ACHIEVED. 

5a !CHECK = 1 
C N0RMAL TERMINATION. 

6a NPTS ·= INEW + 10LD 
RETURN 

C TRIVIAL GASE 
7a K = 2 

l~ESULTC I> a .Q 
RESULTC2> a.a 
NPTS = 0 
RETURN 
END 

FUNCTI0N QSUBCA, B, EPSIL, NPTS. !CHECK. RELERR1 F> 
C THIS FUNCTI0N R0UTINE PERF0RMS AUT0MATIG INTEGRATI0N 
C 0VER A FINITE INTERVAL USING THE BASIC INTEGRATI0N 
C ALG0RITHM QUAD, T0GETHER WITH, IF NECESSA~Y. A N0N-
C ADAPTIVE SUBDIVISI0N PR0CEss. 
C THE CALL TAKES THE FOKM 
c 
c 
c 
c 
c 
c 
c 
c 

QSUBCA1B1 EPSIL,NPTS, ICHECK.RELERR, F> 
AND CAUSES F<X> TO BE INTEGRATED 0VEK CA1B> WITH RELATIVE 
ERROR H0PEFULLY NOT EXCEEDING EPSIL. SH0ULD QUAD CONVERGE 
CICHECK=O> THEN QSUB WILL RETURN THE VALUE OBTAINED BY IT 
0THEKWISE SUBDIVISI0N wILL BE INV0KED AS A RESCUE 
0PERATI0N IN A NON-ADAPTIVE MANNER· THE ARGUMENT RELERR 
GIVES A CRUDE ESTIMATE 0F THE ACTUAL RELATIVE ERROR 
OBTAINED· 

468-1 

C THE SUBDIVISI0N STRATEGY IS AS f'OLL0WS 
C LET THE INTERVAL CA.B> BE DIVIDED INT0 2**N PANELS 1 

C N 0f' THE SUBDIVISI0N PR0CESS· QUAD IS APPLIED FIRS1 
C THE SUBDIVIDED INTERVAL 0N WHICH QUAD LAST FAILED T0 
G CONVERGE AND IF CONVERGENCE IS N0W ACHIEVED THE REMA. 
C PANELS ARE INTEGRATED. SH0ULD A C0NVERGENCE FAILURE -~ 
C 0N ANY PANEL THE INTEGRATION AT THAT P0INT IS TERMINATED 
C AND THE PROCEDURE REPEATED WI TH N INCREASED BY 1. THE 
C STRATEGY INSURES THAT P0SSIBLY DELINQUENT INTEKVALS AHE 
C EXAMINED BEF0RE WORK, WHICH LATER MIGHT HAVE T0 BE 
C DISCARDED, IS INVESTED ON WELL BEHAV[O PANELS. THE 
G PR0CESS IS C0MPLETE WHEN N0 C0NVE1WENCE FAILURE 0CCURS 0N 
C ANY PAi>JEL ANO THE SUM 0F THE RESULTS 0BTAINED BY QUAD 0N 
C EACH PANEL IS TAKEN AS THE VALUE 0f' THE INTEGRAL. 
C THE PROCESS IS VERY CAUTI0US IN THAT THE SUBDIVISI0N 0F 
C THE INTERVAL CA.B> IS UNIF0HM. THE FCNENESS 0F WHICH IS 
C CONTROLLED BY THE SUCCESS 0F QUAD. CN THIS WAY IT IS 
C RATHER DIFFICULT F0R A SPUid0US C0NVl~RGENCE TO SLIP 
C THR0UGH. 
C THE C0NVERGENCE CRITERI0N 0f' QUAD CS SLIGHTLY RELAXED 
C IN THAT A PANEL IS DEEMED T0 HAVE BEl~N SUCCESSFULLY 
C INTEGRATED IF EITHER QUAD C0NVERGES l~R THE ESTIMATED 
C ABS0LUTE ERf<0R COMMITTED 0N THIS PANl~L D0ES NOT E:XCEED 
C EPSIL TIMES THE ESTIMATED ABS0LUTE VALUE 0F THE INTEGRAL 
C 0VER CA,B> • THIS RELAXATI0N IS T0 Tl~Y T0 TAKE ACC0UNT 0F 
C A C0MM0N SITUATI0N WHERE 0NE PARTICULAR PANEL CAUSE::> 
C SPECIAL DIFFICULTY, PERHAPS DUE T0 A SINGULARITY 0F SOME 
C TYPE. IN THIS CASE QUAD C0ULD 0BTAIN NEARLY EXACT 
C ANSWERS 0N ALL 0THER PANELS AND S0 THE KELA TI VE ERR0R F0K 
C THE T0TAL INTEGRATION W0ULD BE ALM0ST ENTIRELY DUE T0 THE 
C DELINQUENT PANEL. WITHOUT THIS C0NO.CTI0N THE C0MPUTATI0N 
C MIGHT C0NTINUE DESPITE THE REQUESTED RELATIVE ERROR BEING 
C ACHIEVED· 
C THE 0UTC0ME 
C ICHECK=O 

0F THE INTEGRATION IS lNDICATEO BY !CHECK. 
C0NVERGENCE 0BTAINED WITHOUT INV0KING 
SUBDIVISI0N. THIS C0HRESP0NOS TO THE 
DlRECT USE 0F QUAD. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

I CH ECK= I 
ICHECK=2 

KESULT 0BTAINED AFTER INVOKING SUBDIVISI0N. 
AS F0R ICHECK=I BUT AT S0ME POINT THE 
RELAXED C0NVERGENCE CHI TERI0N WAS USED· 
THE RISK 0f' UNDERESTIMATING THE RELATIVE 
ERR0R WILL BE INCREASE:D. IF NECESSARY. 
CONFIDENCE MAY BE RESTORED BY CHECKING 
EPSIL AND RELERR F0R t1 SERI0US DISCREPANCY. 

!CHECK NEGATIVE 
IF DURING THE SUBDIVISI0N PROCESS THE 
ALLOWED UPPER LlMI T ON THE NUMBER 0F PANELS 
THAT MAY BE GENERATED CPRESENTLY 4096> IS 
REACHED A RESULT IS 0BTAINED WHICH MAY BE 
UNRELIABLE BY C0NTINU1NG THE INTEGRATION 
WITH0UT FURTHER SUBDIVISI0N 1GN0RING 
C0NVERGENCE FAILURES. THIS 0GCURRENCE IS 
FLAGGED BY RETURNING !CHECK WITH NEGATIVE 
SIGN. 

THE RELIABILITY 0F THE ALGORITHM WILL DECREASE F0R LARGE 
VALUES 0f' EPSIL• IT IS REC0MMENDED THAT EPSIL SH0ULD 
GENERALLY BE LESS THAN AB0UT 0.001. 

DIMENSI0N RESULT<B> 
INTEGER BAO, OUT 
L0GICAL RHS 
EXTERNAL f' 
DATA NMAX/4096/ 
CALL QUADCA, B, RESULT• K. EPSIL, NPTS• IGHECK, F> 
QSUB = RESULTCK> 
RELERR = a.a 
IF CQSUB.NE.Q.O> RELERR 

* ABSCCRESULTCK>-RESULTCK-1))/QSUB> 
C CHECK IF SUBDIVISI0N IS NEEDED. 

IF CICHECK.EQ.a> RETURN 
C SUB DI VI DE 

ESTIM = ABSCQSUB*EPSIL> 
IC = I 
RHS .FALSE· 
N = I 
H = B - A 
BAD = I 

la QSUB = a.a 
RELERR = a .Q 

H = H*O·S 
N = N + N 

C INTERVAL CA.B> DIVIDED INT0 N EQUAL SUBINTERVALS. 
C INTEGRATE 0VER SUBINTERVALS BAD T0 CEIAD+l > WHERE TR0UBLE 
C HAS 0CGURRED. 

Ml = BAD 
M2 = BAD + 1 
0UT = I 
G0 T0 50 

C INTEGRATE 0VER SUBINTERVALS 1 T0 CBAI>-1> 
20 Ml :i I 

M2 = BAD - 1 
RHS = .FALSE. 
0UT = 2 
G0 T0 sa 

C INTEGRATE 0VER SUBINTERVALS CBAD+2> 70 N. 
30 Ml = BAD + 2 

M2 = N 
0UT = 3 
GO T0 5a 

C SUBDIVISION RESULT 
4a !CHECK = IC 

RELERR = RELERR/ABSCQSUB> 
RETURN 

C INTEGRATE 0VER SUBINTERVALS Ml T0 M2 .. 
50 IF CM1.GT.M2> G0 T0 90 

00 BO JJ=Mt.M2 
J = JJ 



COLLECTED ALGORITHMS (cont.) 

* o.45091653865847414235E oo.o.13441s2ss24378422036E oo. 
* 0·51603282997079739697E-Ol.0.20062852937698902103E oo. 
* o.99383196321275502221E oo.o.17001719629940260339E-Ol. 
* o.88845923287225699889E oo.0.92927195315124537686E-Ol. 
* o.62110294673722640294E oo.o.11151190913639t38079E oo. 
* o.22338668642896688163E oo.o.21915685B40l58749640E oo. 
* Q.22551049979820668739E oo.o.67207754295990703540E-Ol. 
* 0·25807598096176653565E-Ol.0·10031427861179557877E 00• 
* 0.84345657393211062463E-02.0.46462893261757986541E-01• 
* o.85755920049990351154E-Ol.0.10957842105592463824E 00/ 
DATA 

* PC29>.PC30>.PC3l>•PC32>•PC33>•PC34)•PC35>• 
* PC36>•PC37>•PC38>•PC39>•PC40>•PC41J•PC42>• 
* PC43>.PC44>•PC4S>•PC46>•PC47),PC48>•PC49>• 
* PC50>•PC5l>•PC52>•PC53J.PC54J,PC55),PC56J/ 
* o.99909s12496766759766E oo.o.25447807915618744154E-02. 
* 0·98153114955374011M87E OO.o ·I 6446049854387810934E-Ol. 
* D·92965485742974005667E oo.o.35957103307129322097E-OI. 
* D·83672593816886873550E oo.o.S6979509494123357412E-OI. 
* 0.7Q249620649152707861E oo.o.76879620499003531043E-Ol· 
* o.53131974364437562397E oo.o.93627109981264473617E-01. 
* o.33113539325191683309E oo.o.1os669B93580234B0974E oo. 
* o.11248B94313318662575E oo.o.1119568730209534568BE oo. 
* o.11275525672076B69161E oo.o.33603877148207730542E-01. 
* 0.12903800100351265626E-Ol.0·50157139305899537414E-OI• 
* 0·42176304415588548391E-02.o.23231446639910269443E-OI• 
* 0.42877960025007734493E-Ol.0.54789210527962865032E-OI• 
* o.126Sl565562300680114E-02.o.s2230019s12359296693E-02. 
* o.17978551568128270333E-Ol.o.28489754745833548613E-OI/ 

DATA 
* PC57J.PC58J.PC59>•PC6QJ,PC6l>•P<62>•P<63>• 
* PC64J.PC65J,PC66J,PC67>•PC6B>•PC69>•P<70>• 
* PC71>•PC72>•PC73J.PC74>•PC75>•P<76J•PC77>• 
* PC78>•PC79J.PC80J.PC8l>•PCB2>•PC83>•PC84>/ 
* 0.38439810249455532039E-01•0•46813554990628012403E-OI. 
* o.52834946790116519862E-Ol.0·55978436510476319408E-OI• 
* o.999872B8812035761194E oo.o.36322148184553065969E-03• 
* o.9912062593722219590BE oo.o.25790497946856B82724E-02. 
* o.9886B475754742947994E oo.o.61155068221172463397E-02. 
* o.97218287474858179658E oo.o.10498246909621321898E-Ol• 
* Q.94634285837340290515E oo.o.15406750466559497802E-Ol· 
* 0·91037115695700429250E oo.o.20594233915912711149E-01· 
* 0.86390793819369047715E oo.o.25869679327214746911E-OI• 
* o.so694053195021761186E oo.o.3t073551111687964880E-OI• 
* 0.73975604435269475868E oo.o.36064432780782572640E-Ol• 
* o.6629096600247B059546E oo.o.401155to116944318934E-ot. 
* o.57719571005204581484E oo.o.44914531653632197414E-ot. 
* 0·48361802694584102756E 00,0.48564330406673198716E-Ol/ 

DATA 
* PC 85),PC 86),p( 87>.PC 88>.PC 89J,PC 90>•PC 91>• 
* PC 92),p( 93>.P< 94J.P< 95),p( 96>.PC 97>•P< 98>• 
*PC 99J.PC100>.PC10l>•P<I02>•P<I03J,PCI04>•P<I05>• 
* PCI06>•PC107),PCI08>•P<109),PC110>•PC1ll>•PC112>/ 
* 0 • 383359324198 7 3034692E OO. 0 • 51583:~539 52048 458777E-O I• 
* o.27774982202182431507E oo.o.53905499335266063927E-Ol• 
* o.16B2352515522014649BE oo.o.5s481404356559363988E-01. 
* 0·56344313046592789972E-Ol.0·56277699831254301273E-Ol• 
* 0 • 56377 6283603847 I 7388E-O b 0•I6801938 57 41038 65271 E-0 l • 
* 0.64519000501757369228E-o2.o.25078569652949768707E-OI• 
* o.21088152457266328793E-o2.o.1l615723319955134727E-Ol· 
* o.21438980012503867246E-01·0·27394605263981432516E-01· 
* 0·63260731936263354422E-03.0·41115039786546930472E-02• 
* O·B9892757840641357233E-02.0·l4244877372916774306E-OI• 
* 0.19219905124727766019E-01•0·23406777495314006201E-OI• 
* 0.26417473395058259931E-Ol.0·27989218255238159704E-Ol• 
* 0·18073956444538835782E-03.0·12895240826104173921E-02• 
* 0·30577534101755311361E-02.0.52491234548088591251E-02/ 

DATA 
* PC113>.PC114>.PC115>.PCl16>.PC117>.PC118»P<119» 
* PC120>.PC12l>•PC122>•P<l23>•P<124>•P<125>•PC126>• 
* PC127>.P<12B>.P<129>.PC130>•P<13l>•PC132>•PC133>• 
* PC134>•P<l35>.PC136),PCl37),PC138),fC139>•PC14d>I 
* o.77033752332797418482E-02;0.10297116957956355524E-Ol· 
• 0.12934839663607373455E-Ol.O·l5536775555843982440E-Ol. 

Ool8032216390391286320E-Ol.0·20357755058472159467E-Olo 
* o.22457265826816098707E-Ol.0.24282165203336599358E-Ol· 
* 0.25791626976024229388E-Ol.0·26952749667633031963E~OI• 
* Oo27740702178279681994E-Ol.0·28138849915627150636E-OI· 
* Oo99998243035489159858E ao.o.50536095207862517625E-04• 
* o.9995987996719106832SE oo.o.31114664632698466027E-o3. 
* Oo99831663531840739253E 00.0·93836984854238150079E-03• 
* 0.99572410469840718851E OO.O·l6811428654214699063E-02. 
* Oo99149572117810613240E QQ,Q.25687649437940203731E-02. 
* 0·98537149959852037111E oo.o.35728927835172996494E-oe. 
* 0.97714151463970571416E oo.o.46710~03721143217474E-02• 
* 0·96663785155841656709E 00•0·58434498758356395076E-02/ 

DATA 
* PCl4l>•P<l42>.P<143>.PC144>•P<l45),p(146)•P<147>• 
* PC148>.PC149J,PC150>•P<15l>•PC152>•P<153>•PC154>• 
* PC155>.PC156J.PC157>.PC158>.PC159>.PC160>.PC161>. 
* PC162>.PC163),PC164),PC165>•P<166),PC167>•P<168>/ 
* On95373000642576113641E QQ,Q.70724899954335554680E-02. 
* Q.93832039777959288365E OQ.0.83428387539681577056E-02• 
* 0·92034002547001242073E oo,Q.96411777297025366953E-Q2, 
* Oo89974489977694003664E OO,Q.10955733387837901648E-OI. 
* Oo87651341448470526974E oo.o.12275830560082770087E-OI• 
* 0·85064449476835027976E oo.o.13591571009765546790E-Ol• 
* o.s221s625436498040737E oo.o.1489364166481s1s2035E-01. 
* Q.79108493379984836143E oo.o.t6173218729577719942E-Ol. 
* o.75748396638051363793E oo.o.17421930159464173747E-01. 
* o.1214230853700989154BE oo.o.18631848256138790l86E-01. 
* o.6B298743I09101922809E oo.o.19795495048097499488E-01. 
* o.64227664250975951377E oo.o.209osss1••sa12023852E-01. 
* Q.59940393024224289297E oo.o.2t956366305317824939E-Ol. 
* Q.55449513263193254887E oo.o.22940964229387748761E-OI/ 

468-P 4- 0 

DATA 
* PC169>.PC170>.PCl71>•P<172J.P<l73>•P<174),PC175>• 
* PC176>.P<177),PCl78),PC179),PC180>•P<1Bl>•P<182>. 
* PC183>.PCl84),PC185>,P<l86),PCl87>•P<IBB>•PC189>• 
* PC190>.PC191>•PC192>•P<l93),PCl94>•P<195>.P<l96)/ 
* o.S0766775753371660215E oo.0.23854052106038540080E-Ot. 
* 0.45913001198983233287E oo.0.24690524744467676909E-OI. 
* Q.40897982122988867241E oo.o.25445769965464765813E-Ot. 
* o.357403B3783ts321s238E oo.o.26115673376706097680E-01. 
* o.30457644155671404334E oo.0.26696622927450359906E-OI. 
* o.25067873030348317661E oo.o.27185513229624791819E-OI. 
* o.195s91so21111001s392E oo.o.21s1974956648tB73035E-01. 
* o.14042423315256017459E oo.o.21a112514166t370t609E-o1. 
* 0.84454040083710883710E-Ol,0.28076455793817246607E-Ot. 
* 0.28184648949745694339E-OJ.0.28176319033016602131E-Ol• 
* Q.28188814180192358694E-Ot.0.84009692870519326354E-02• 
* o.322595002508786846!4E-02.o.1253~284826474884353E-OI. 
* o.1054407622B633167722E-02.o.s801a616s99775673635E-02. 
* Q.t0719490006251933623E-Ol.O·l36973026319907!6258E-Ol/ 

DATA 
* PCl97>.PC198),p(J99),p(200>.P<20l>•P<202>•PC203>• 
* PC204>•P<205>.PC206>.PC207),PC208>•P<209>•P<210>. 
* PC211>.P<212>.P<213>•PC214),PC215>•P<216>•P<217>• 
* P<218>.PC219>.P<220>.PC22t>.PC222>•PC223),PC224)/ 
* 0·31630366082226447689E-03•0•20557519893273465236E-02. 
* 0.44946378920320678616E-02.0.71224386864583871532E-02. 
* 0·96099525623638830097E-02.0·11703386747657003101E-OI. 
* Q.J3208736697529129966E-Ol,0·13994609127619079852E-Ol• 
* Q.9Q372734658751149261E-04,0·64476204130572477933E-03. 
* o.152887670S0877655684E-02.o.262456t7274044295626E-02. 
* 0.38516876166398709241E-02.0·51485584789781777618E-02. 
* Q.64674198318036867274E-02.0.77683877779219912200E-02. 
* 0.90161081951956431600E-02.0·10178877529236079733E-OI. 
* 0.11228632913408049354E-01•0·12141082601668299679E-OI. 
* o.1289581348B012114694E-01.o.13476314833a165t5982E-o1. 
* o.t3870351089139840997E-Ol.O·l4069424957813575318E-OI. 
* 0.25157870384280661489E-04.0·188B7326450650491366E-03• 
* 0.46918492424785040975E-03.0·84057143271072246365E-03/ 

DATA 
* PC225),PC226>.P<227>.P<228>.PC229>•P<230>•P<231>• 
* PC232>.PC233>.PC234>.PC235>,PC236>•P<237>•P<238>• 
* PC239>,P<240>.PC24l>•P<242>.PC243>•PC244>•P<245>• 
* PC246>.P<247>.PC248>•P<249>.PC250>•P<2SIJ•P<252>/ 
* o.12B43B247t8970101168E-02.o.110644639175B6498247E-02. 
* o.23355251860571608737E-02.o.2921124937911s191s38E-02. 
* 0.35362449977167777340E-02.0.41714193769840788528E-02. 
* 0.48205888648512683476E-02.0·54778666939189508240E-02, 
* o.6t3791528004t385043SE-02.o.679578sso4as21133948E-02. 
* o.74468208324075910174E-02.o.BOB66093647888599710E-02· 
* o.s1109650797320868736E-02.o.931s92412so693950932E-o2. 
* o.96977475240487497440E-02.o.10452925722906011926E-OI. 
* o.10978183152658912470E-Ot.O.tl470482114693874380E-OI. 
* Q.119270260530!9270040E-Ot.0.12345262372243838455E-Ot. 
* o.127228849827s2382906E-Ot.o.13057836688353048840E-OI. 
* Q.13348311463725179953E-01•0·13592756614812395910E-OI, 
* o.t3789874783240936517E-Ot.0.13938625738306850804E-OI. 
* Q.t4038227896908623303E-Ot.O.t4068159516508301065E-OI/ 

DATA 
* PC253),PC254>.PC255>.PC256>.PC257>•P<25B>•P<259>• 
* PC260>.PC261),PC262>.PC263>.PC264>•P<265>•P<266>• 
* PC267),PC268>.PC269>.P<270>.PC27l>•P<272>•P<273>• 
* PC274>.PC275>.PC276),PC277>.PC278>•P<279>•P<280)/ 
* o.99999759637974846462E oo.o.69379364324t08267170E-os. 
* 0 • 9999439962070 5437 57 6E OO. 0 • 532·7 5293 669780 613 l 25E-04• 
* o.99976049092443204733E oo.o.13575491094922a11913E-03. 
* o.99938033B02502358193E oo.o.2492t240048299729402E-03. 
* o.998745614468095tt470E oo.o.30914s2a447328229322E-03. 
* o.99780535449595727456E oo.o.5S42953149303747t492E-03. 
* o.996514145914B902738SE oo.o.740282B0424450333046E-03. 
* Oo99483150280062100052E oo.0.94536151685852538246E-03• 
* o.9921213442827B86t533E oo.o.11674B41174299594077E-o2. 
* o.9901s1310•001101591sE oo.o.t404907995655t446427E-02. 
* 0·987092527954034067t9E oo.o.t656112728t544526052E-o2. 
* o.9a35t665757863272B76E oo.o.19191129110130124125E-02. 
* o.97940628t6706626B381E oo.o.219440692536383B8388E-02. 
* o.97473445975240266776E oo.o.247B9582266575679307E-02/ 

DATA 
* PC28l>•PC282J.PC283),PC284>.PC285>•P<286J.PC287), 
* PC288>.PC289>.P<290>.P<291>•P<292>•P<293>•PC294>• 
* PC295>.PC296J.PC297>.PC298>.PC299>•P<300>•P<30I>• 
* PC302>•P<303>.P<304>•P<305>.PC306>•P<307>•P<308)/ 
* o.96948465950245923177E oo.o.211219S7645934509940E-02. 
* o.9636406215698t213252E oo.o.301301a43410251a3234E-02. 
* o.9571882t6t0986096274E oo.o.J3803979910869203823E-oe. 
* o.95011s291s21294B7656E oo.o.36933779!70256soa1s3E-02. 
* o.94241156Sl910B305981E oo.o.401106872407502339a9E-02. 
* o.93406B436ts11251a800E oo.o.43326409680929828545E-02. 
* o.92507893290707565236E oo.o.46573172997568547773E-02. 
* o.9t543758715576S04064E oo.o.49843645647655386012E-02. 
* o.9os1403S88t326t59519E oo.o.s3t30866051a1os65663E-02. 
* o.a9418A56B33555902286E oo.o.s642BIB1D1384444t585E-02. 
* O·BB256884024734190684E oo.0.59729195655081658049E-02. 
* o.a7029305554811390S85E oo.o.63027734490B57sa1112E-02. 
* o.8573SB3I0886232t5653E oo.o.66317B1242901as10941E-02. 
* o.s437668826721oa60104E oo.o.69593614093904229394E-021 

DATA 
* PC309J,PC3IOJ,P<31l>•P<312>•PC313J•P<314>•P<315>• 
* PC316>.P<317>,PC318>•PC319J,PC320>•PC321>•P<322>• 
* PC323>•PC324>•P<32S>.P<326),PC327>•P<328>•P<329), 
* PC330>.PC331>.PC332>•P<333>.PC334>•P<335>•P<336)/ 
* o.a29522t94637401400t8E oo.o.12849479805538070639E-02. 
* Oo81462878765513741344E oo.0.76079896657190565832E-02. 
* o.19909229096oa•1•0100E oo.o.79279493342948491t03E-02. 
* o.7829t93941t82830t639E oo.o.a24430316303286B0306E-o2. 
* o.766tl781930376009072E oo.o.855654356t3076896192E-oe. 



COLLECTED ALGORITHMS (cont.) 

* o.748696293616936602B2E oo.o.ss64t732094B24942641E-02. 
* o.730664521242tBl26133E oo.o.91667111635607884067E-02. 
* o.11203315536225203459E oo.0.94636899938300652943E-02. 
* o.b9281376977911470289E oo.o.97546565363174114611E-u2. 
* o.6730IBB3D23D41847920E oo.o.10039112044056B4079SE-o1. 
* o.65266166541001149610E oo.o.10J16Sl23309476216B2E-01. 
* o.63t7564377tll9423041E oo.o.1oss1167904885197931E-Ot. 
* o.61031s11311s1s6400l6E oo.o.1os49B440B9337314099E-o1. 
* o.sss36243444766254143E oo.o.11104461134006926537E-ot1 

DATA 
* PC337),PC338>1PC339>1PC340>•PC341>1PC342>,PC343>• 
* PC344>.PC345>.PC346>.PC347>•P<348>1PC349>1PC350>• 
* PC35]),P(352>,PC353>•P<354J,PC355),PC356J,PC357>• 
* PC358J,PC359),PC360),PC361>·PC362J,PC363J1PC364>1 
* o.S6590SBB542365442262E oo.o.113so6s4Jt59B0596602E-01. 
* o.54296566649B31149049E oo.o.11ssso14033043952s6BE-01. 
* o.st955966t53745702L99E oo.o.11s163BSB90S30235763E-Ol1 
* o.49s10640791876t460t7E oo.o.1203s2101ss219s62630E-01. 
* Oo47142506587165887693E OQ,O.t2244424981611985899E-OI, 
* Oe44673538766202847374E oo.o.12443560190714035263E-OI. 
* o.42t6576B6626t6330006E oo.o.12632403643542078765E-o1. 
* o.J96212so6os161s9391sE oo.o.12s10698t63B77361967E-o1. 
* Oo37042208795007823014E QO,Q.t2978202239537399286E-OI• 
* Oo34430734159943802278E oo.o.13134690091960152836E-OI. 
* o.311s9os1206B476683tsE oo.o.132199s1143930530650E-01. 
* o.29119St485t82466BL96E oo.o.134t37930B5t1009ss13E-01. 
* Q.2~424337241092676194E oo.o.J3536035934956213614E-OI. 
* 0°23705884558982972721E oo.o.13646518102571291428E-OI/ 

DATA 
* PC365J,PC366J,PC367>1PC368),PC369>1PC370J,PC371>• 
* PC372),PC373>.PC374),PC375J,PC376>1PC377J,PC378>• 
* PC379>,PC3BO>.PC381)/ 
* o.20966523B2431Btt9477E oo.o.1314so93443001s96632E-o1. 
* o.1s2os6496759252t9825E oo.o.13s3163t90950642B676E-o1. 

o.154346Btt4St378tOB69E oo.o.139060l960t32546J264E-o1. 
* Ool2647058437230196685E oo.o.t3968158806516938516E-Ol1 
* 0.98482396598119202090E-Ol10.t4017968039456608610E-OI, 
* 0.70406976042855t79063E-Ol•O•l4055382072649964277E-OI. 
* Q.42269164765363603212E-Ol•O·l4080351962553661325E-OI• 
* Ool4093886410782462614E-Ol•O•l4092845069160408355E-Ol• 
* o.t4094407090096179347E-Ol/ 

!CHECK = 0 
C CHECK F0R TRIVIAL CASE. 

IF CA.EQ.B> G0 T0 70 
C SCALE FAC HlRS. 

SUM = <B+AJ/2·0 
DIFF = CB-AJ/2.0 

C 1-P0INT GAUSS 
FZERC = l'CSUM> 
RESULT<!> = 2·0*FZER0*DIFF 
I = 0 
I0LD = 0 
INEw = I 
K = 2 
ACUM = O.O 
G0 T0 30 

10 IF <K·EO·B> G0 T0 50 
K = K + I 
ACUM = o.O 

C C0NTRIBUTI0N FR0M FUNCTION VALUES ALREADY C0MPUTED· 
D0 20 J= I 1 I 0LD 

I = I + I 
ACUM = ACUM + P<I>*FUNCTCJ> 

20 CONTINUE 
C C0NTRIBUTION FROM NEW FUNCTION VALUES· 

30 10LD = 10LD + !NEW 
D0 40 J=INEW1!0LD 

I = I + I 
X = PC I>*Dl FF 
FUNCTCJ) = FCSUM+XJ + FCSUM-X> 
I = I + I 
ACUM = ACUM + P<I>*FUNCTCJ> 

40 C0NT!NUE 
INEW = IOLD + 
I = I + I 
RESULTCK> = CACUM+PCI>*FZER0>*DIFF 

C CHECK F0R CONVERGENCE· 
IF CABSCRESUL T<K>-RESUL TCK-1 > >-EPSIL*ABSCHESUL TCK> > > 60• 

* 60, I 0 
C CONVERGENCE N0T ACHIEVED· 

50 !CHECK = I 
C NORMAL TERMINATION. 

60 NPTS = INEW + !OLD 
RETURN 

C TRIVIAL CASE 
70 K = 2 

:~ESUL TC I> 0 .o 
RESUL TC2> o.o 
NPTS = 0 
RI". TURN 
END 

FUNCTl0N QSUBCA, B, EPSIL• NPTS. !CHECK, RELERR1 F> 
C THIS FUNCTION R0UT!NE PERFORMS AUT0MATIC INTEGHATION 
C 0VER A FINITE INTERVAL USING THE BASIC !NTEGRATI0N 
C ALG0HITHM QUAD, T0GETHER WITH, IF NECESSArtY• A NON-
C ADAPTIVE ~UBIJIVISION PK0CESS• 
C THE CALL TAKES THE FOHM 
c 
c 
c 
c 
c 
c 
c 
c 

QSUBCA181EPSIL1NPTS1ICHECK•RELERR1F> 
AND CAUSES FCX> TO BE INTEGkATED OVER CA,B> WITH KELATIVE 
ERROR HOPEFULLY N0T EXCEEDING EPSIL• SHOULD QUAD C0NVERGE 
<ICHECK=O> THEN QSUB WILL RETURN THE VALUE OBTAINED BY IT 
OTHERWISE SUBDIVISION wILL BE INVOKED AS A RESCUE 
OPERATION IN A NON-ADAPTIVE MANNER. THE ARGUMENT RELERR 
GIVES A CRUDE ESTIMATE 0F THE ACTUAL RELATIVE ERR0R 
OBTAINED· 

468-P 5- 0 

C THE SUBDIVISI0N STRATEGY IS AS FOLLOWS 
C LET THE INTERVAL CA,B> BE DIVIDED INTO 2**N PANELS AT STEP 
C N OF THE SUBDIVISION PROCESS· QUAD !S APPLIED FIRST TO 
C THE SUBDIVIDED INTERVAL ON WHICH QUAD LAST FAILED TO 
C CONVERGE AND IF C0NVERGENCE IS N0W ACHIEVED THE HEMAINING 
C PANELS ARE INTEGRATED· SH0ULD A C0NVERGENCE FAILURE OCCUR 
C ON ANY PANEL THE INTEGRATI0N AT THAT POINT IS TERMINATED 
C AND THE PROCEDURE REPEATED WITH N INCREASED BY 1. THE 
C STRATEGY INSURES THAT P0SSIBLY DELINQUENT INTERVALS ARE 
C EXAMINED BEFORE W0RK• WHICH LATER MIGHT HAVE T0 BE 
C DISCARDED• IS INVESTED ON WELL BEHAVED PANELS• THE 
C PROCESS IS COMPLETE WHEN N0 CONVERGENCE FAILURE OCCURS ON 
C ANY PANEL AND THE SUM OF THE RESULTS 0BTAINED BY QUAD ON 
C EACH PANEL IS TAKEN AS THE VAL.UE OF THE INTEGRAL. 
C THE PROCESS IS VERY CAUTIOUS IN THAT THE SUBDIVISION 0F 
C THE INTERVAL CA,B> IS UNIF0RM1 THE FINENESS OF WHICH IS 
C CONTROLLED BY THE SUCCESS OF QUAD. IN THIS WAY IT IS 
C RATHER DIFFICULT F0H A SPURI0US C0NVERGENCE TO SLIP 
C THR0UGH. 
C THE C0NVERGENCE CRITERION OF QUAD IS SLIGHTLY RELAXED 
C IN THAT A PANEL IS DEEMED T0 HAVE BEEN SUCCESSFULLY 
C INTEGRATED IF EITHER QUAD CONVEHGES 0R THE ESTIMATED 
C ABS0LUTE ERROR COMMITTED 0N THIS PANEL D0ES NOT EXCEED 
C EPSIL TIMES THE ESTIMATED ABS0LUTE VALUE OF THE INTEGRAL 
C OVER CA,B>· THIS RELAXATION IS T0 TRY T0 TAKE ACC0UNT OF 
C A COMMON SITUATION WHERE ONE PARTICULAR PANEL CAUSES 
C SPECIAL DIFFICULTY, PERHAPS DUE TO A SINGULARITY 0F S0ME 
C TYPE. IN THIS CASE QUAD COULD 0BTAIN NEARLY EXACT 
C ANSWERS 'ON ALL OTHER PANELS AND SO THE RELATIVE ERR0R FOK 
C THE T0TAL INTEGRATION W0ULD BE ALMOST ENTIRELY DUE TO THE 
C DELINQUENT PANEL. WITHOUT THIS C0NDITI0N THE C0MPUTATION 
C MIGHT CONTINUE DESPITE THE REQUESTED REl...ATIVE ERROR BEING 
C ACHIEVED· 
C THE OUTCOME 
C ICHECK=O 

OF THE INTEGRATION IS INDICATED BY ICHECK. 
CONVERGENCE 0BTAINED WITHOUT INV0KING 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ICHECK=I 
ICHECK=2 

SUBDIVIS10N. THIS C0RRESPONDS TO THE 
DIRECT USE 0F QUAD. 
RESULT OBTAINED AFTER INV0KING SUBDIVISION• 
AS FOR ICHECK=I BUT AT SOME P01NT THE 
RELAXED CONVERGENCE CRITERION WAS USED· 
THE RISK OF UNDERESTIMATING THE RELATIVE 
ERROR WILL BE INCREASED· IF NECESSARY• 
CONFIDENCE MAY BE RESTORED BY CHECKING 
EPSIL AND RELERR FOR A SERIOUS DISCREPANCY· 

ICHECK NEGATIVE . 
IF DURING THE SUBDIVISION PROCESS THE 
ALLOWED UPPER LIMIT ~IN THE NUMBEtt OF PANELS 
THAT MAY BE GENERATED CPRESENTLY 4096> IS 
REACHED A RESULT IS OBTAINED WHICH MAY BE 
UNRELIABLE BY CONTINUING THE INTEGRATION 
WITHOUT FURTHER SUBDIVISION IGN0RING 
CONVERGENCE FAILURES. THIS 0CCURRENCE IS 
FLAGGED BY RETURNING !CHECK WITH NEGATIVE 
SIGN. 

THE RELIABILITY 0F THE ALG0RITHM WILL DECREASE FOR LARGE 
VALUES OF EPSIL• IT IS REC0MMENDED THAT EPSIL SHOULD 
GENERALLY BE LESS THAN ABOUT 0.001. 

DIMENSION RESULT<B> 
INTEGER BAD, OUT 
LOGICAL RHS 
EXTERNAL F 
DATA NMAX/4096/ 
CALL QUADCA, B, RESULT, K, EPSIL., NPTS• !CHECK, F> 
QSUB = RESULTCK> 
RELERR = 0 .o 
IF CQSUB.NE.O·O> RELERR 

* ABSCCRESULTCK>-RESULTCK-l>>IQSUB> 
C CHECK IF SUBDIVISION IS NEEDED· 

IF CICHECK.EQ.O> RETURN 
C SUBDIVIDE 

ESTIM = ABSCQSUB*EPSIL> 
IC = 1 
RHS ·FALSE. 
N = I 
H = B - A 
BAD = 1 

10 QSUB = o.o 
RELERR = O·O 
H = H*0.5 
N = N + N 

C INTERVAL CA,B> DIVIDED INT0 N EQUAL SUBINTERVALS. 
C INTEGRATE 0VER SUBINTERVALS BAD T0 CBAD+l> WHERE TR0UBLE 
C HAS OCCURRED· 

Ml = BAD 
M2 = BAD + I 
OUT = I 
GO TO 50 

C INTEGRATE 0VER SUBINTERVALS I T0 CBAD-1> 
20 Ml = I 

M2 = BAD - I 
RHS = ·FALSE. 
OUT = 2 
GO TO 50 

C INTEGRATE OVER SUBINTERVALS CBAD+2> T0 N. 
30 Ml = BAD + 2 

M2 = N 
OUT = 3 
G0 TO 50 

C SUBDIVISION RESULT 
40 !CHECK = IC 

RELERR = RELERR/ABSCQSUB> 
RETURN 

C INTEGRATE OVER SUBINTERVALS Ml T0 M2. 
50 IF CMl·GT.M2> GO T0 90 

DO 80 JJ=Ml1M2 
J = JJ 



COLLECTED ALGORITHl\1S FROM CACM 

Algorithm 469 
Arithmetic Over a 
Finite Field [Al] 
C. Lam* and J. McKayt [Recd. 8 Oct. 1971] 
*Department of Mathematics, Caltech University, Pasa
dena, CA 91101 t School of Computer Science, McGill 
University, P.O. Box 6070, Montreal 101, P.Q. Canada 

Key Worrds and Phrases: algebra; CR Categories: 5.19 
Language: Algol 

Description 
The rational operations of arithmetic over the finite field Fq, 

of q = pn(n ~ 1) elements, may be performed with this algorithm. 
On entry a[i] contains ai E Fv with 0 s ai < p, i = 0, ... , 

11 - t, and x E Fq satisfies the primitive irreducible polynomial 
P(x) = xn + 'L)::0

1akxk. fq produces e; in e[i], i 0= -1, ... , q - 2, 
where t + x' = xei with the convention that -1 represents *and 
X* = 0. During execution the range of the ai is altered to - p < 
a; s 0, i = 0 ... fl - 1. The storage used is 2q +fl + 6 locations 
including the final array e. 

With appropriate conventions for*• multiplication and division 
are trivial, and addition and subtraction are given by xa + x1' = 

x"(l + .x1>-a) for a Sb and xa - x1' = xa + x!(q--ll xb when p ~ 2. 
For small values of q, it is suggested that addition and multiplica
tion tables be generated by this algorithm. A description of the 
method and its generalization to a multi-step process when n is com
posite is in [2). A list of primitive irreducible polynomials is given 
in [I]. Further useful information (especially for p = 2) is to be 
found in [3]. 

References 
1. Alanen, A.J., and Knuth, D.E. Tables of finite fields. Sankhyii
(A) 26 (1964), 305-328. 
2. Cannon, J.J. Ph.D. Th., 1967 U. of Sydney, Sydney, Australia. 
3. Conway, J.H., and Guy, M.J.T. Information on finite fields. In 
Computers in Mathematical Research. North-Holland Pub. Co., 
Amsterdam, 1967. 

Algorithm 
procedurejq(p, 11, a, e); 

integer p, n; integer array a, e 
begin 

integer array c[O:n-1],f[O:p j n-1); integer q, i,J, d, s, w; 
q : = p i 11; 

for i : = 0 step 1 until 11 - 1 do if a[i] ~ 0 then a[i] : = a[i] - p; 
for i : = 1 step 1 until 11 - 1 do c [ i] : = 0; 

c[O] : = 1; f[I] : = O; f[O] : = - I: 
for i : = 1 step 1 until q - 2 do 

begin 
d:= e[n - l]; s := O; 
for j : = n - 1 stP-p - 1 until 1 do 

begin 
w:=cfi-1)-dXa[i); w:=w-w+pXp; 
c[j] : = w; s: = p X s + w 
end; 

469-P 1- 0 

w := -d X a[O]; w := w - w + p X p; c[O] := w; 
f[p x s + w l : = i 

end; 
for i : = q step - p until p do 

begin 
e [f[i- 1]) : = f[i- P] ; 

for J : = i - p step 1 until i - 2 do e[f[j)] : = f[J+ 1] 
end 

end 



COLLECTED ALGORITHMS (cont.) 

C EXAMINE FIRST THE LEFT 0R RIGHT HALF 0r THE SUBDIVIDED 
C TR0UBLES0ME INTERVAL DEPENDING 0N THE 0BSERVED TREND• 

Ir CRHS> J a M2 + Ml - JJ 
ALPHA= A+ H*<J-1> 
BETA ~ ALPHA + H 
CALL QUADCALPHA, BETA, RESUL T1 M1 EPSIL• NF", I CHECK• I'> 
C0MP = ABSCRESULTCM>-RESULT<M-1>> 
NPTS a NPTS + Nr 
IF" CICHECK.NE.I> G0 T0 70 
If CC0MP.LE.ESTIM> G0 T0 100 

C SUBINTERVAL J HAS CAUSED TR0UBLE. 
c CHECK If fURTHER SUBDIVISI0N SH0ULD BE CARKIED 0UT. 

IF" CN.EQ.NMAX> G0 T0 60 
BAD = 2*J - I 
RHS = .FALSE· 
Ir <<J-2*CJ/2)>.EQ.O) RHS .TRUE. 
G0 T0 10 

60 IC= -IABS<IC> 
70 QSUB = QSUB + RESULTCM> 
80 C0NTINUE 

RELERR = RELERR + C0MP 
90 G0 T0 <20130140>• 0UT 

C RELAXED C0NVERGENCE 
100 IC= ISIGNC21IC> 

60 T0 70 
END 

rUNCTl0N QSUBACA, B, EPSIL, NPTS• !CHECK• RELERR• F"> 
c THIS rUNCTl0N rt0UTINE PERr0RMS AUT0MATIC INTEGRATI0N 
C 0VER A FINITE INTERVAL USING THE BASIC INTEGRATI0N 
C ALG0RITHM QUAD T0GETHER WITH, IF" NECESSARY AN ADAPTIVE 
C SUBDIVISI0N PR0CESS. IT IS GENERALLY M0KE EfF"ICIENT THAN 
C THE N0N-ADAPTIVE ALG0RITHM QSUB BUT IS LIKELY T0 BE LESS 
C RELIABLECSEE C0MP.J.,14,18911971>· 
C THE CALL TAKES THE f0RM 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

QSUBACA,B,EPSIL,NPTS,ICHECK.RELERK•f> 
AND CAUSES r<X> T0 BE INTEGRATED 0VER CA,B> WITH RELATIVE 
ERR0R H0PEFULLY N0T EXCEEDING EPSIL. SH0ULD QUAD C0NVERGE 
CICHECK=O> THEN QSUBA wILL RETURN THE VALUE 0BTA1NED BY IT 
0THERWISE SUBDIVISl0N WILL BE INV0KED AS A RESCUE 
0PERAT10N IN AN ADAPTIVE MANNER. THE ARGUMENT RELERR GIVES 
A CRUDE ESTIMATE 0r THE ACTUAL RELATIVE ERrl0R 0BTAINED. 

THE SUBDIVISI0N STRATEGY IS AS r0LL0WS 
AT EACH STAGE 0r THE PR0CESS AN INTERVAL IS PRESENTED rOR 
SUBDIVISI0N <INITIALLY THIS WILL BE THE WH0LE INTERVAL 
CA,B>>• THE INTERVAL IS HALVED AND QUAD APPLIED T0 EACH 
SUBINTERVAL. SH0ULD QUAD rAIL 0N THE FIRST SUBINTERVAL 
THE SUBINTERVAL IS STACKED r0R F"UTURE SUBDIVISI0N AND THE 
SEC0ND SUBINTERVAL IMMEDIATELY EXAMINED. SH0ULD QUAD rAIL 
0N THE. SEG0ND SUBINTERVAL THE SUBINTERVAL IS 
IMMEDIATELY SUBDIVIDED AND THE WH0LE PR0CESS REPEATED· 
EACH TIME A C0NVERGED RESULT IS 0BTAINED IT IS 
ACCUMULATED AS THE PARTIAL VALUE 0F THE INTEGRAL· WHEN 
QUAD C0NVERGES 0N B0TH SUBINTERVALS THE INTERVAL LAST 
STACKED IS CH0SEN NEXT rlllR SUBDIVISI0N AND THE PR0CESS 
REPEATED. A SUBINTERVAL IS N0T EXAMINED AGAIN lllNGE A 
C0NVERGED RESULT IS llJBTAINED r0R IT S0 THAT A SPURI0US 
G0NVERGENCE IS M0RE LIKELY T0 SLIP THR0UGH THAN F"0R THE 
NlllN-ADAPTIVE ALG0RITHM QSUB• 

THE C0NVERGENCE CRITER10N 0F QUAD IS SLIGHTLY RELAXED 
IN THAT A PANEL IS DEEMED T0 HAVE BEEN SUCCESSFULLY 
INTEGRATED Ir EITHER QUAD G0NVERGES 0R THE ESTIMATED 
ABS0LUTE ERRlllR ClllMMITTED 0N THIS PANEL D0ES NlllT EXCEED 
EPSIL TIMES THE ESTIMATED ABS0LUTE VALUE 0F THE INTEGRAL 
llJVER CA,B>· THIS RELAXAT10N IS .T0 TRY T0 TAKE ACC0UNT 0r 
A C0MM0N SlTUATI0N WHERE 0NE PARTICULAR PANEL CAUSES 
SPECIAL DirrICULTY. PERHAPS DUE Tiil A SINGULARITY 0r S0ME 
TYPE· IN THIS CASE QUAD C0ULD 0BTAIN NEARLY EXACT 
ANSWERS llJN ALL 0THER PANELS AND S0 THE RELATIVE ERR0R FllJR 
THE T0lAL !NTEuRATI0N WlllULD BE ALM0ST ENTIRELY DUE T0 THE 
DELINQUENT PANEL. WITH0UT THIS GlllNDITilllN THE C0MPUTATI0N 
MIGHT C0NTINUE DESPITE THE REQUESTED RELATIVE ERR0R BEING 
ACHIEVED. 

THE 0UTG0ME 
ICHEGK=O 

IGHECK=I 
ICHECK•2 

0r THE INTEGRATI0N IS INDICATED BY ICHEGK. 
C0NVERGENCE 0BTAINED wlTH0UT INV0KING SUB
DI VISl0N. THIS W0ULD C0RRESPlllND T0 THE 
DIRECT USE 0r QUAD. 
RESULT llJBTAINED ArTER lNVlllKING SUBDIVISI0N· 
AS rlllR ICHECKBI BUT AT SOME P01NT THE 
RELAXED G0NVERGENCE CRITERI0N WAS USED· 
THE RISK 0r UNDERESTIMATING THE RELATIVE 
ERR0R WILL BE INCREASED· IF NECESSARY, 
ClllNrIDENGE MAY BE REST0RED BY CHECKING 
EPSIL AND RELERR r0R A SERl0US DISCREPANCY. 

!CHECK NEGATIVE 
IF" DURING THE SUBDIVISl0N PR0GESS THE STACK 
llJr DELINQUENT INTERVALS BEG0MES rULL <IT IS 
PRESENTLY SET T0 H0LD AT M0ST 100 NUMBERS> 
A RESULT IS 0BTAINED BY C0NTINUING THE 
INTEGRATilllN IGN0RING G0NVERGENGE FAILURES 
WHICH CANN0T BE AGC0MM0DATED 0N THE STACK. 
THIS lllCGURRENGE IS FLAGGED BY RETURNING 
!CHECK WITH NEGATIVE SIGN. 

THE RELIABILITY 0r THE ALG0RITHM WILL DEGREASE r0R LARGE 
VALUES 0F EPSIL. IT IS REG0MMENDED THAT EP5IL SHllJULD 
GENERALLY BE LESS THAN ABlllUT 0.001. 

DIMENSI0N RESULT<B>• STACK<IOO> 
EXTERNAL F 
DATA ISMAX/100/ 
CALL QUADCA, B, RESULT, K• EPSIL• NPTS• !CHECK, F"> 
QSUBA = RESULT<K> 
RELERR a o.o 
IF (QSUBA.NE.o.o> 

* RELERR = ABSC<RESULTCK>-RESULTCK-1))/QSUBA> 

G CHECK IF" SUBDIVISl0N IS NEEDED 
IF CICHECK.EQ·O> RETURN 

C SUBDIVIDE 
ESTIM = ABS<QSUBA*EPSIL> 
RELERR = o.o 
QSUBA = o.o 
IS = I 
IC = I 
SUB! = A 
SUB3 = B 

10 SUB2 • CSUBl+SUB3>*0•5 

468-P 6- 0 

CALL QUADCSUBI• SUB2, RESULT. K, EPSIL, Nf, !CHECK• F> 
NPTS = NPTS + NF 
C0MP = ABSCRESULTCK>-RESULTCK-1>> 
Ir CICHECK.EQ·O> Giil Tiil 30 
Ir CC0MP.LE.ESTIM> G0 T0 70 
IF" <IS.GE.ISMAX> G0 T0 20 

c STACK SUBINTERVAL CSUBl.SUB2> F0R FUTURE EXAMINAT10N 
STACK< IS> SUB! 
IS • IS + I 
STACKCIS> = SU82 
IS = IS + I 
G0 T0 40 

20 IC = -IABSCIG> 
30 QSUBA = QSUBA + RESULTCK> 

RELERR = RELERR + C0MP 
40 GALL QUADCSUB2, SUB3, RESULT, K, EPSIL, NF, ICHECK1 F> 

NPTS = NPTS + Nr 
C0MP = ABS<RESULTCK>-RESULTCK-1>> 
Ir <ICHECK.EQ.O> G0 Tiil 50 
Ir <C0MP.LE.ESTIM> Giil T0 80 

C SUBDIVIDE INTERVAL CSUB21SUB3> 
SUB I = SUB2 
Giil T0 10 

50 QSUBA = QSUBA + RESULTCK> 
RELERR = RELERR + GlllMP 
IF" CIS.EQ.t> G0 T0 60 

C SUBDIVIDE THE DELINQUENT INTERVAL LAST STACKE:D 
IS = IS - I 
SUB3 = STACKCIS> 
IS = IS - I 
SUB! = STAGKCIS> 
G0 Tiil 10 

C SUBDIVISI0N RESULT 
60 !CHECK = IC 

RELERR = RELERR/ABSCQSUBA> 
RETURN 

C RELAXED C0NVERGENCE 
70 IC= ISIGNC2,IC> 

Giil T0 30 
BO IC= ISIGN<2,IC> 

Giil T0 50 
END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 470 

Linear Systems with Almost 
Tridiagonal Matrix [F4] 
Milan Kubicek [Recd. 6 Dec. 1971, 8 May 1972, 12 Oct. 
1972, 12 Dec. 1972] 
Department of Chemical Engineering, Technical Uni
versity, Technicka' 1905, Praha 6, Dejvice, Czecho
slovakia 

Key Words and Phrases: system of linear equations, almost 
tridiagon:al matrix, sparse matrix 

CR Categories: 5 14 
Language: Fortran 

Description 
The program FAKUB is based on the method of modified 

matrices. In fact, FAKUB solves Tx = b where T = T + R, Tis 
tridiagonal (11 Xn) and R is a matrix of low rank. Let us write 
R = R,R/ where R1 , Rz are /1 X m matrices. R1 contains columns 
ii , }z , ... , }m of T - T, and Rz is matrix of unit vectors 

eii, eh'· · · • eim · 

Subroutine FAKUB performs the following steps: 
Step 1. Determine n by m matrix V and vector y satisfying TV = R1 

and Ty = b. (The Thomas algorithm [1] is used to split T =LU 
and V and y are obtained by back solving m + 1 times. This 
algorithm is in principle the standard LU factorization of a 
tridiagonal matrix, see e.g. [2]. Note that we normalize L, 
while in [2] U is normalized.) 

Step 2. Form m by m matrix A = I + Rz T Vand vector w = Rz Ty. 

Step 3. Solve Az = w for z. 
Step 4. Calculate the solution x = y - Vz. 

The method described here will be particularly useful if m « n, 
however, it can be used advantageously also if m < n. 

Let us now define the matrix B, n X (m+ 1), in the following 
way: ( 1) the first column of the matrix Bis the vector b; (2) (k + 1 )-st 
column of the matrix B is equal to the kth column of the matrix 
R,, i.e. to the hth column of the matrix f - T. This holds for 
k = 1, 2, ... , m. 

The description of the formal parameters of the subroutine 
FAKUB is given in the comments at the beginning. In accordance 
with the symbols used above we have 

N,......, n, 
S(l) ,......, t,-,i-1, 

D(l) ,......, ti,i, 
H(l) ,......, ti, 1+1 , 

B(l, J) ,......, bi,i, 

M,......,m + 1, 
i = 2, 3, ... ' ll 

i = 1, 2, ... ' /1 

i = 1, 2, ... ' /1 - 1 
JP ROM (K) ,......, .h, 

where T == lt1,jl and B = lb1,jl. 
Two parameters deserve to be discussed in detail. The param

eter EPS tests zero on the diagonal in the course of the Thomas 
algorithm. If\ D(I) \ < EPS, then the value of ALFA is added to 
D(l) and the RHS of B is modified so that the solution of the 
system remains the same; at the same time the statement in the 
form 

470-P 1- 0 

FAKUB INFORMATION ON ZERO ON LINE I 

is printed. During this modification the matrix B can be expanded 
in one column, which has to be considered when declaring MM. 
If during the modification the space assigned for array B is ex
ceeded, the statement 

FAKUB MANY REARRANGEMENTS, END OF FAKUB 

is printed, and after return the value of M is equal to - I. For 
practical problems this occurrence is a very rare event. The dimen
sion specifications A(20, 20), PS(20) can be changed if 20 is low; 
however, we must have M::::; 20, and M can always increase by one 
during the above mentioned modifications. If the dimension 
specification was low (see statement number 49) the statement 

FAKUB LOW DIMENSION, END OF FAKUB 

is printed, and after return M = - 2. This can be corrected, e.g. 
by increasing the parameter ALFA. 

If the rnatrix T is singular (see the comment under statement 
label 5 in subroutine GA USD, which has to be modified specifically 
with respect to the type of computer) the statement 

FAKUB SINGULAR MATRIX OF SYSTEM, END OF FAKUB 

is printed, and after return M = 0. 
After regular return (M > 0), the results are in the first column 

of the matrix B. 
If m = 0, the given algorithm is equivalent to the Thomas 

algorithm with the exception that it insures against zeros occurring 
on the diagonal. Subroutine GA US D plays the role of a standard 
linear equation solver. Any other standard routine can be used, 
e.g. see [2]. 

The program was successfully run for calculations of distilla
tion columns (n = 100, m = 3). It can also be applied in linear 
multipoint boundary value problems. 

Acknowledgment. The author would like to thank to Dr. Fred 
Gustavson of IBM Thomas J. Watson Research Center for his 
very valuable comment. 

References 
i. Thomas, L. H. Dept. of Watson Scientific computing 
Laboratory, New York, 1949. 
2. Forsythe, G. E., and Moler, C. B. Computer Solution of 
Linear Algebraic Systems; Prentice Hall, Englewood Cliffs, N.J., 
pp. 115 and 68. 

Algorithm 
SUBR0UTINE FAKUBCN. s, D• H. e, M, NN• MM. JPR0M• ALFA. EPS> 
DIMENSI0N SCN>, DCN>• HCN>. BCNN,MM>, JPR0MC20>• AC20.20>• 

* WC20> 
C S0LUTI0N 0F SYSTEM 0F LINEAR EQUATI0NS WITH MATRIX 0F SPECIAL 
C CALM0ST TRIDIAG0NAL> TYPE 
C N=NUMBER 0F EQUATI0NS 
C SC2>.SC3>- •. ·=L0WER DIAG0NAL ELEMENTS 
C DC1>.DC2>-···=MA1N DIAG0NAL ELEMENTS 
C HCl>•HC2>••••=UPPER DIAG0NAL ELEMENTS 
c ec1.1>.ec2.1> •••• =RIGHT HAND SIDES 
C JPR0MCt>.JPR0MC2>•••••JPR0MCM-l>=INDICES 0F UNKN0WNS F0R WHICH 
C N0N-ZER0 N0NDIAG0NAL C0EFFICIENTS EXIST 
c ce<I.J+I), I=t.N>=C0LUHN 0F C0EFFICIENTS 
C CWITH0UT DIAG0NAL ELEMENTS>• WHICH C0RRESP0NDS 
C T0 UNK0WN WITH INDEX JPR0MCJ> 
C M-l=NUMBER 0F TRANSFERRED UNKN0WNS 
C ALFA=N0N ZER0 PARAMETER USED F0R REARRANGEMENTS 
C EPS=SCALE 0F ZER0 DIAG0NAL ELEMENT.DEPENDENT 0N THE C0MPUTER 
C TYPE 
C M.EQ.Q AFTER RETURN! MATRIX WAS SINGULAR 
C M.EQ.-1 AFTER RETURN: MANY REARRANGEMENTS.SMALL VALUE 0F MM 
C M.EQ.-2 AFTER ttETURN: L0W DIMENSl0N SPECIFICATI0N IN FAKUB 
C WE WISH T0 S0LVE G•X=C WHERE G IS A N BY N MATRIX ANO C IS A 
C VECT0R. 
C G = T + R· R = Rl•R2T. RI AND R2 ARE N BY Ml MATRICES 0F RANK 
C Mt• 
C CR2T---R2 TRANSP0SE> THE METH00 0F M0DIFIED MATRICES IS USED. 



COLLECTED ALGORITHMS (cont.) 

C T IS A TRIDIAG0NAL MATRIX GIVEN ey INPUT VECT0RS s, D AND H. 
CB= <C.RI) IS AN BY M MATRIX. RI IS A SET 0f' Ml C0LUMNS 0f' G -
C T. 
C R2 IS A SET 0f' Ml UNIT VECT0RS SPECIFIED BY JPR0M. 
C f'0R EFFICIENCY RANK Ml IS MUCH LESS THAN N• 
C KPR IS PRINTER DEVICE NUMBER 

DATA KPR/6/ 
99999 f'0RMAT(//4SH f'AKUB SINGULAR MATRIX 0f' SYSTEM1END 0f' f'Ai<U!!!/I> 
99998 f'0RMAJ<//34H f'AKUB INf'0RMATI0N 0N ZER0 0N LINE.XS/I> 
99997 f'0RMATC//39H f'AKUB MANY REARRANGEMENTS, END 0f' f'AKUB/I> 
99996 f'0RMAJ<//33H f'AKUB L0W DIMENSI0N1END 0f' f'AKUB/I> 

NI = N - I 
Ml = M - I 
JUMP = I 

c f'0RM L.u AND L••<-1 He. N0TE L•U J. 
I = I 

10 P = D.<I > 
II' <ABS<PJ.LE.EPS> G0 T0 40 

20 H<I > = H<I >IP 
Pl = S<I+I> 
D0 30· J=l,M 

If' <!!!<I,J>.EQ.Q.Ql G0 T0 30 
B<I,J> = B<I,Jl/P 
B<I+l1J> = B<I+l,J> - Pl•B<I,J> 

30 C0NTINUE 
D< l+U = D< I+I > - Pl•H< I> 
I = I + I 
If' <I.LE.NI> G0 T0 10 

C MATRICES L.U AND L••<-l>•B ARE DETERMINED HERE 
G0 T0 100 

40 WRITE < KPR, 99998 > I 
PIV0T D<IJ NEARLY ZER0· ADJUST MATRICES T AND RI 50 THAT 
G REMAINS' EQUAL T0 T + R. NEW T HAS PIV0T D<I> NEAR T0 ALFA. 

Ir <Ml.EQ.Q) G0 T0 60 
D0 so· J= I • MI 

If' CJPR0M<Jl.EQ.I> G0 T0 80 
50 C0NTINUE 
60 M = M + I 

Ml = Ml + I 
Ir CM.GT.MM> G0 T0 200 
D0 70· J=l•N 

B(J,M> = O.O 
70 C0NTINUE 

B< I,M,) = -ALFA 
JPR0MCMI > = I 
G0 T0 90 

80 BCI,J+I> = BCI,J+I) - ALFA 
90 DCI> = D<I> +ALFA 

P = DCI> 
G0 T0 C20a l IO» JUMP 

100 If' <ABS<D<N>>.GT.EPS> G0 T0 110 
I = N 
JUMP ,= 2 
G0 T0 40 

I I 0 D0 120 J= I, M 
BCN.J> = B<N,J>ID<N> 

120 C0NTI.NUE 
C 1'0RM U*•C-l>*L*•<-ll*B = T••<-ll*B· T••<-l>•e 

D0 I '10 I I= I , NI 
I = N - I I 
D0 130 J= l,M 

B<I.J> = B<I,J> - H<I>•S<l+l,J> 
130 C0NTINUE 
I '10 C0NHNUE 

Ir CMl.EQ.Ol RETURN 

<Y,V> 

C THE NEXT STATEMENT NECESSARY AS A ANO W HAVE DIMENSI0N 01' 20. 
lr CMl.GT.20> G0 T0 210 

C r0RM Ml BY Ml MATRIX A = 1 + R2T•V ANO Ml VECT0R W = R2T•Y· 
00 160 I"'l1MI 

II = JPR0M<I> 
00. I 50 J= I , MI 

ACI.Jl = BCI!.J+I> 
150 C0NTINUE 

WCI>= B<I111> 
ACI1Il = ACI.I> + 1.0 

I 60 C0NTI NUE 
C S0LVE A•Z = W f'0R Z USING SU8R0UTINE GAUSD· 

CALL GAUSD<Ml, A, W, M2, 20> 
II' CM2.EQ.O> G0 T0 190 

C f'0RM S0LUTI0N VECT0R X = Y - V•Z· 
D0 180 I"l•N 

00 170 J=21M 
B<I, I> = 8<111> - B<I1J>•W<J-l > 

170 C0NTINIJE 
180 C0NTI NUE 

RETURN 
190 WRITE <KPR,99999) 

M = 0 
RETURN 

200 WRITE CKPR199997l 
M = -I 
RETURN 

210 WRITE <KPR.99996> 
M = -2 
RETURN 
END 

SUBR0UTINE GAUSD<N• A, B, M, NN> 
DIMENSI0N ACNN1NNl1 B<NN>• IRR<20>• X<20> 

C S0LUTI0N 0f' SYSTEM 01' LINEAR EQUATI0NS 
C N=NUMBER 0f' EQUATI0NS <N.LE.20> 
C A=MATRIX' 0f' SYSTEM 
C !!!=RIGHT HAND SIDES 
C M=II' M.EQ.O AFTER RETURN1THEN MATRIX A WAS SINGULAR 

M = I 
ID = I 
00 10 I= 1.N 

IRR< I> = 0 
10 C0NTINUE 

20 IR = I 
IS "' I 
AMAX = O.O 
00 60 I= I 1 N 

If' <IRR<I>> 60, 301 60 
30 00 SO J= I • N 

P = ABS<A<I•J» 
If' C P-AMAX > 501 SO. '10 

40 IR = I 
IS = J 
AMAX = P 

SO C0NTINUE 
60 C0NTINUE 

If' CAMAX.NE.O.O> G0 T0 70 
C THIS C0NOITI0N MUST BE SPECif'IED M0RE EXACTLY 
C WITH RESPECT T0 C0MPUTER ACTUALLY USEJ) 

M = 0 
G0 T0 120 

7 0 I RR < IK > = I S 
00 90 I=l•N 

470-P 2- 0 

If' <I.EQ.IR ·0R. A<I.IS>·EQ.0.01 G0 T0 90 
P = ACI.IS>IACJR1IS> 
D0 80 J=l1N 

If' <A<JR1Jl•NE.O·O> A<I.J> = A<I.J> - P•A<IR•J> 
80 C0NTINUE 

A< I• IS> '" o.o 
8CI> = BCI> - P•BCIR> 

90 C0NTINUE 
ID = IO + I 
If' ClD·LE.N> G0 T0 20 
00 100 I=l•N 

IR "' IRR<I> 
X<IR> = B<I>/ACI.IR> 

1 00 C0NTI NUE 
00 110 I= l •N 

BCI> = XCI> 
110 C0NTINUE 
120 RETURN 

END 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 471 

Exponential Integrals [S 13] 
Walter Gautschi [Recd. 21 Jan. 1972 and 9 Oct. 1972] 
Department of Computer Sciences, Purdue University, 
Lafayette, IN 47907 

Key Words and Phrases: exponential inte1~ral, recurrence 
relations, recursive computation, continued fradions 

CR Categories: 5.12 
Language :Algol 

Work supported in part by a Fulbright research grant, and in 
part by the U.S. Atomic Energy Commission. 

Description 
1. lntrod11ctio11. The functions 

E,.(x) = i >') e-.rt 1-nd1, x > 0, /1 an integer, 

are referred to as exponential integrals. The special case /1 

gives £ 0 (x) = e-r /x, and for /1 negative we have 

£,,(x) = (- l)"(d/dx)lnl£0(x), /1 < 0, 

0 

for which an algorithm was published previously [3]. Our concern 
here is with the case of positive integers 11. We present an algorithm 
which evaluates 

f,,(x) = e"En(x), X > 0, II = 1, 2, ... , N 

to an accuracy of d significant decimal digits. 
2. Method of Calculation. The basic tool of computation is the 

well-known recurrence relation 

f.,+1(x) = (1 - xfn(x))/11. (2.1) 

We use it in two different ways, depending 0111 whether 0 < x ::::; 1 
or x > 1. 

On the first interval, we apply (2.1) for /1 = 1, 2, ... , N - 1, 
assuming a real procedure /1 to supply th1;~ starting value .fi(x). 
The real procedure fl furnished below obtains .fi(x) accurately to d 
significant digits. It is based on the power series expansion 

("'oo (- l)k-lxk ) 
fi(x) = e" L.Jk-I k X k! - 'Y - In (x) , (2.2) 

where 'Y = .5772156649 ... is Euler's constant. Since the terms in 
the infinite series of (2.2) are alternating in sign and strictly de
creasing in modulus (if 0 < x ::::; 1), the partial sums of even order, 
s2k , converge monotonically increasing to the limit value s,,, , 
while those of odd order, s2k+1 , converge monotonically decreasing 
to s.,,. Consequently, if sk = (s2k + s2k+1)/2, we have I Sk - s.,, I ::::; 
!El Sk I as soon as s2k+1 - s2k s ESk. The last inequality, with 
E = 10-d, is used as a termination criterion foe the summation of 
the infinite series in (2.2). In order to prevent !infinite loops in cases 
where dis specified unreasonably large for a particular computer, 
we use Rutishauser's device [8, §36.3] of terminating the summation 
process also if the machine representations of s2k, or s2k+1, cease 
to exhibit monotonic behavior. 

471-P 1- 0 

The subtraction of 'Y + ln(x) from the infinite series in (2.2) 
does not cause any appreciable loss of significance if x is restricted 
to the interval O < x ::::; 1. This consideration was partly responsible 
for choosing x = 1 as the transition point. 

On the remaining interval, x > 1, we let nl = (x), the integer 
closest 1o x, and compute .f,,(x) by backward recurrence for 
1 ::::; n < 111, and by forward recurrence for 111 < 11:::; N (if N > 111), 
thereby maintaining optimal error propagation characteristics 12, 
Ex. 5.4]. The starting value /,, 1(x) for both recursions is obtained 
from Legendre's continued fraction [7, p. 103] 

ex£ (x) = _l _ _!!__ _1_ n + 1 _2_ 11+ 2 _3_ .... 
n x+ 1 + x+ 1 + x+ 1 + x+ 

(2.3) 

Noting that the partial numerators and denomi.nators are all posi
tive, it follows that the convergents of even and odd order approach 
the common limit value monotonically increasing and decreasing, 
respectively. Therefore, devices similar to those described above for 
/ 1 (x) can be used to terminate the continued fraction evaluation. 
The convergents of even order are obtained as the successive con
vergents of the even contraction 

(2.3e) 

where 

a1 = 1, bi = x + n, 

ak = (k - l)(n + k - 2)lk = 2 3 4 
bk = x + 11 + 2k - 2 f ' ' ' ... ' 
while those of odd order are obtained as the successive convergents 
of the odd contraction 

e>E.(x) ~ k (I - b~'_ b':- b:'_: . . ) ' 

where 

a1 = 11, b1 = x + 11 + 1, 

ak = (k - l)(n + k - 1)} k = 2, 3, 4, 
bk = x + n + 2k - 1 

(2.3o) 

In either case, the successive convergents are evaluated directly by 
the third method described in [ 1, p. 29). Overflow problems asso
ciated with the more common method based on the three-term 
recurrence relation for the numerators and denominators are thus 
avoided. 

The number of convergents required in (2.3e) and (2.3o), to 
meet a particular accuracy requirement, was observed to be a non. 
increasing function of x on x ~ I, if we take /1 = (x). In contrast, 
the number of terms required in the infinite series of (2.2) increases 
with x. Some relevant information is collected in Table I. For values 
of x between 0 and 1, the numbers listed represent the number of 
even (and odd) partial sums required in (2.2) to obtain .f1(x) ac
curately to d significant digits. Similarly, for x > 1, we list the 
number of even (and odd) convergents of the Legendre continued 
fraction required to obtain e:r £" (x) for /1 = (x) to the same ac
curacy. 

It will be noted that near the transition point x = 1 the con
tinued fraction evaluation is considerably more time-consuming 
than the series evaluation. The imbalance could easily be corrected 
by moving up the transition point. In so doing, however, the evalua
tion of f1(x) from (2.2) involves progressively more loss of sig
nificant accuracy. In our algorithm, we have decided to leave the 



COLLECTED ALGORITHMS (cont.) 

Table I. Number of Partial Sums in (2.2), and Convergents 
in (2.3), To Meet Specifk Accuracy Requirements 
"-..._d 

2 4 10 12 14 16 18 20 22 24 26 
_x~ 

------------·--·~--·---

.01 2 2 

.20 2 l . 4 9 9 

·"'° 2 3 5 8 9 10 II 
.60 3 5 8 9 10 10 II 12 
.80 3 6 9 10 10 II 12 11 

1.00 3 6 10 10 II 12 I) I l 

1.01 4 II 20 31 45 62 81 103 128 155 185 218 251 
1.20 4 9 17 27 39 5) 70 88 109 132 157 185 214 
I. 50 4 15 23 34 45 59 74 92 110 1,31 154 177 
2.00 3 12 19 27 36 "6 58 71 86 IOI 119 117 
5.00 2 II 15 19 24 29 35 42 49 57 65 

10.00 2 4 10 13 16 19 23 27 31 35 "'° 20. 00 2 3 10 12 14 16 19 22 24 27 
40.00 2 3 9 II 13 14 16 18 20 
80.00 I 2 9 10 12 13 14 16 

transition point at x = 1, thus sacrificing efficiency in favor of 
accuracy. 

Alternatively, instead of the continued fraction (2.3) we could 
use a Taylor expansion about x=n, when n is moderately large, and 
asymptotic formulas, when x and /1 are large. This would result in 
a more efficient, but larger, program. It would also become neces
sary to store key values of En(n) and thus to fix the precision d. 

No provisions are made to test for overflow or underflow con
ditions which may arise near the singularities x = 0 and x = oo 

of f,,(x). As for the first, overflow occurs only for extremely small 
values of x and is likely to be caught by the library subroutine for 
the logarithm. At the singularity at infinity tmderflow occurs only 
for extremely large values of x or 11, or both. 

3. Tests. Exponential integrals are tabulated by G.F. Miller [5], 
who gives (x + n)exEn(x) to nine significant digits in the range 
O ~ x s; 20 and O ~ x-1 ~ .05, generally for 11 = 1 (1)24. We 
tested our algorithm (with nmax ~ 24, d = 9) against these tables 
for selected x-values in the interval (O, 20], and for x-1 = .001, 
x--1 = .005(.005) .05. No discrepancies were detected, other than 
occasional end figure errors of one unit. We also found ourselves in 
agreement with the initial portion (x ~ .6) of the 7-105 table in 
Kourganoff and Busbridge [4], but observed many end figure 
discrepancies (of up to 12 units) in the remaining portion of the 
table. A double check with Miller's table indicates that these dis
crepancies are due to small errors in the Kourganoff-Busbridge 
table. John W. Wrench Jr. has kindly supplied the author with 
255 values of En(lO), 11 = 1 (1)25, which he computed in 405 
arithmetic on a desk calculator. A double precision Fortran version 
of our algorithm (run. with nmax = 25, d = 25) reproduced these 
values correctly to all 25 significant digits. The same Fortran version 
of the algorithm was used with nmax = 1, d = 16, to compare 
against the 165 table of e"E1(x) given by Miller and Hurst [6]. 
For the test values x = .2(.05) 1.0, x = 1.05, x = 1.5, x = 2\ 
k = 1(1)6, no discrepancies were observed, except for x = .95, 
where the last digit was in error by one unit. All tests were performed 
on a CDC 6500 computer. 

4. Formal parameter list. 
x the argument inf,,(x); type real; 
nmax the maximum value N of 11; type integer; 
d the desired number of significant decimal digits; type 

f 
integer; 
an array of dimension [l:nmax] holding the result f,.(x) 
inf[n]. 

Acknowledgment. The author is pleased to acknowledge valu
able suggestions of the referee, which resulted in a simpler and more 
flexible algorithm. 

References 
1. Gautschi, W. Computational aspects of three-term recurrence 
relations, SIAM Rev. 9 (1967), 24-82. 

471-P 2- 0 

2. Gautschi, W. Zur Numerik rekurreniter Relationen, Com
puting 9 (1972), 107-126. 
3. Gautschi, W., and Klein, B.J. Remark on Algorithm 282, 
Derivatives of ex/x, cos(x)/x, and sin(x)/x. Comm. ACM 13, l 
(Jan. 1970), 53. 
4. Kourganoff, V., and Busbridge, I.W. Basic Methods in 
Transfer Problems. Clarendon Press, Oxford, 1952. 
5. Miller, G.F. Tables of generalized exponential integrals. 
National Physical Lab. Math. Tables, Vol. 3, H.M. Stationery 
Office, London, 1960. 
6. Miller, J., and Hurst, R.P. Simplified calculation of the 
exponential integral. Math. Tables Other Aids Comp. 12 (1958), 
187-193. 
7. Perron, 0. Die Lehre von den Kettenbriichen, Vol. 11. B.G. 
Teubner, Stuttgart, Germany, 1957. 
8. Rutishauser, H. Description o./ALGOL 60, Handbook for 
Automatic Computation, Vol. 1, Pt. a. Springer, New York, 1967. 
9. Wrench, J.W., Jr. A new calculation of Euler's constant. 
Math. Tables Other Aids Comp. 6 (1952) .. 255. 

Algorithm 
procedure fsubn(x, mnax, d, f); 

value x, nmax, d; 
integer nmax, d; real x; array f; comment f[ 1 :nmax]; 

comment This procedure evaluates fn(x) = exEn(x) for x > 0, 
11 = 1, 2, ... , nmax, to an accuracy of d signiijcant decimal 
digits. The results are stored in the array f If x ~ 0, or nmax ~ 0, 
the procedure immediately sends control to a procedure recovery 
and exits from the procedure fsubn. A call is made to a real pro
cedure.fl which is to returnf;(x) for 0 < x <; 1, with an accuracy 
of d significant digits. A possible version of such a procedure is 
declared below; 

begin 
integer n, n 1, k, k 1 ; 

real eps, ue, ve, we, wel, uo, vo, wo, wol, w, r, s; 
real procedure fl (x, d); value x, d; integer d; real x; 
begin 

integer k, kl, k2; real eps, gamma, se, sel, so, sol, s, te, to; 
eps : = 10 i ( -d); 
comment The constant gamma in the following statement 

should be supplied to at least a' significant decimal digits. 
For the first 328 digits see [9]; 

gamma:= .577215664901532860606512; 
se := O; sel := -1.0; so:= to:= x; sol:= 2 Xx; s := x/2; 
kl := 1; 
fork : = kl while so-se > eps X s /\ se > sel /\ so < sol do 
begin 

sel := se; sol :=so; k2 := 2 >< k; 
te : = (k2- l) X x X to/(k2Xk2); se : = se + to - te; 
to:= k2 Xx X te/((k2+1) X (k2+1)); so:= so - te + 

to; 
s := (se+so)/2; kl :=kl + 1 

end; 
f 1 : = (s- gamma-ln(x)) X exp(x) 

end fl; 
if x S 0 V nmax S 0 then begin recovery; go to exit end; 
comment recovery is a procedure which the user has to supply 

and in which he may wish to print appropriate error messages; 
if x S 1 then 
begin 

f[l] : = fl(x, d); 
for /1 : = 1 step 1 until nmax - 1 do 

f[n+ l] : = (l-xXf[n])/11; 
go tp exit 

end; 
eps:= 10 i (-d); 
11 l : = entier(x+ .5); 
ue := 1.0; ve := we:= 1/(x+nl); wel := O; 
uo := 1.0; vo -111/(xX(x+nl+l)); wot 

vo + wol; 
l/Xj WO .-



COLLECTED ALGORITHMS (conit.) 

w : = (we+wo) /2; 
kl := 1; 
fork : = kl while wo-we > eps X w /\ we > wel /\ wo < wol do 
begin 

wel := we; wol := wo; 
r := nl + k; s := r + x + k; 
ue := 1/(l-kX(r-l)Xue/((s-2)Xs)); 
uo : = 1/(1-kXrXuo/(sXs-l)); 
ve := ve X (ue-1); vo := vo X (uo-1); 
we : = we + ve; wo : = wo + vo; 
w: = (we+wo)/2; kl := kl + 1 

end; 
if 111 ~ nmax then .f[nl] : = w; 
for n : = n 1 - 1 step - 1 until 1 do 
begin 

w := (1-nXw)/x; 
if n ::; nmax then .f[n] : = w 

end; 
for /1 : = 111 step 1 until nmax-1 do 

.f[n-1-1] := (l-xXf[n])/11; 
exit: end fsubn 

471-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 4 72 

Procedures for Natural 
Spline Interpolation [El] 
John G Herriot* 
Computer Science Department, Stanford University, 
Stanford, CA 94305 
and Christian H. Reinsch 
Mathematisches lnstitut der Technischen Universitat, 
8 Mtinchen 2, Germany 
[Recd. 6 Mar. 1972] 

* The work of this author was supported in part by the Na
tional Science Foundation under Grant Number GJ-408. 

Key Words and Phrases: approximation, interpolation, spline, 
natural spline, spline approximation, cubic natural spline 

CR Categories: 5.13 
Language: Algol 

Description 
1. Introduction 
The purpose of the procedures presented here is to determine 

the interpolating natural spline function S(x) of degree 2m - 1 for 
the set of data points (xi, y;), i = Nl, Nl + 1, ... , N2 where it is 
assumed that xN 1 < xNi+i < · · · < xN 2 • The interpolatingnatural 
spline function S(x) with the knots xN 1 , ... , xN 2 has the proper
ties: (i) S(x) is a polynomial of degree 2m - 1 in each interval 
(x;, x;+1) i = Nl, ... , N2 - 1. (ii) S(x) and its derivatives DiS(x), 
j = 1, 2, ... , 2m - 2 are continuous in (xN 1 , xN 2 ). (If m = 1 the 
conditions on the derivatives are not applicable.) (iii) DiS(xNJ = 

DiS(xN 2 ) = O,j = m, m + 1, ... , 2m - 2 if m > 1. (iv) S(x,) = 
y; . If N2 - Nl + 1 2:: m then there is a unique natural spline 
function which has the properties (i)-(iv). (See, e.g. Greville[3, 4).) 
This spline function can be represented in the form 

S(x) = Aio + Ai!t2 + A;2t2 + · · · + A;,2m-1t2"'-1 (I) 

with t = x - x; for x, ~ x < x;+1, i = NI, ... , N2 - 1. Evi
dently A,o = y,. Three of the procedures calculate the other ele
ments A,. i of the matrix of the coefficients of (I). 

The procedure NATSPLINE computes the coefficients of the 
natural spline in the general case described above. Because the com
putation requires the calculation of mth order divided differences 
of the data and these are subject to serious roundoff errors when m 
is large, it is recommended that this procedure not be used for large 
values of m, say, greater than seven. Moreover, the condition of the 
matrix which occurs in the system of equations which must be solved 
in the computation deteriorates rapidly with increasing m. 

Procedure NATSPLINEEQ treats the case of equidistant knots 
x; . If the knots are known to be equidistant, the use of this procedure 
results in considerable economy of computational effort. The time 
required for the calculation of the coefficients using NATSPLINEEQ 
is less than half that required if NATSPLINE is used. Note that in 
the case of equidistant knots it is not necessary to specify the values 

472-P 1- 0 

of x;. The representation (1) is still used, but nowt = (x - x;)/h 
where h = x •+1 - x, , the constant spacing of the knots. 

Since the case of a cubic natural spline: is of frequent occurrence, 
we give also a procedure, CUBNATSPLlNE, which computes the 
coefficients in this special case. This procedure is very much faster 
than either of the other procedures when used with m = 2 to produce 
the same results. 

In some applications of cubic natural splines it is more efficient 
to evaluate the spline approximation by means of the formula 

S(x) = y;(l - t) + Y1+if 
+ V(-2t + 3t2 - t3)/6 + W(t3 - t)/6 (

2
) 

with t = (x - X1)/h; for Xi ~ x < Xi+L' h; = X1+1 - Xi' v = 
h;2S"(x;), W = h, 2S"(x1+1), instead of using (I). The procedure 
CUBNATSPLINE2D calculates the second derivatives S"(xi) and 
the values of h; which are the quantities needed to use (2). Since 
this procedure uses one less array than does CUBNATSPLINE, the 
saving of storage may be significant if the number of data points is 
arge. It is also slightly faster than CUBNATSPLINE. 

2. Method of Calculation 
(a) General case. The calculation of the coefficients is carried 

out in a numerically stable manner following a method described by 
Anselone and Laurent [I) specialized to the case of the interpolating 
natural spline as described above. The method is based on the use 
of minimum support B-splines (2, 4) to form a basis for the class of 
mth derivatives of the natural splines. For convenience of calcula
tion we use a normalizing factor different from that of Greville 
(4). For a fixed m, our B-splines are defined by 

Mk(X) = M(x; Xk, Xk+1, ... , Xk+m) 

where 

M(x;t) = ((-1) 111/(m - l)!)(t - x)'.;'.- 1
. 

(3) 

(4) 

Here X+' = xr if x > 0 and 0 otherwise. M(x;xk' Xk+I' ... 'Xk+m) 
denotes the mth divided difference of M(x;t) with respect tot based 
on the arguments Xk , Xk+1 , ... , Xk+m . Ah(x) is of constant sign in 
(Xk, Xk+m) and vanishes outside this interval. It is known that a 
natural spline function S(x) may be extended uniquely over the 
whole real line by imposing the continuity conditions (ii) at all 
points. Then outside (XN1, XN2), S(x) i:s a polynomial of degree 
m - I, and consequently D"'S(x) vanishes outside (XN1, XN 2). It 
follows that DinS(x) has a unique representation of the form 

~N2-m 
D"'S(x) = L..Jk-Nt dk(2m - 1) ! Mk(x). (5) 

The constants dk are found by solving the well-conditioned system of 
equations 
~N2-m 

L..Jk-NI N;ktik = Yi,i+l, ... ,i+m' i = Nll, ... ' N2 - m (6) 

where 

N;k = N(x;, Xi+l, •.. , Xi+m ; Xk, Xk+I , ... , Xk+m) (7) 

with 

N(s, t) = (s - t)im-i. (8) 

Here N,k are the elements of a positive definite band matrix with 
N,.k = 0 if Ii - k I 2:: m. The solution of this system is obtained by 
Gaussian elimination without pivoting. 

In order to determine S(x), eq. (5) has to be integrated m times. 
We introduce two m-fold integrals of (2m - l)! Mk(x): 

Et(x) = (2m - 1) ! f,,, dx ... 1: dx Mk(x), (9) 



COLLECTED ALGORITHMS (conit.) 

and 

Fk(x) = (2m - 1) ! r dx . . . r dx Mk(x). 
l+rxi l+rxi 

(10) 

If we use the well-known form of the mth divided difference (see, 
e.g. Greville [4]) we can use (3) to obtain two alternative explicit 
formulas for Mk(x). When we substitute these in eqs. (9) and (10), 
we obtain 

and 

Fk(X) 

where 

Wk'(x) = Dx[(x - Xk)(x - Xk+1) • · • (x - Xk+m)J. 

Equation (11) shows that Ek(x) = 0, if x < Xk, and 

Ek(X) = (x - Xk) 2"'-1/wk'(xk), ifxk ~ x < Xk+1. 

(11) 

(12) 

(13) 

(14) 

Each time we pass a knot Xk+i from left to right, there enters a term 
(x - Xk+;) 2"'-1/wk'(xk+1) which is added to tlhe current polynomial. 
We can therefore write Ek(x) in the form 

fa(x) = I:7::~ 1 
ek, i, j(X - Xk+i)i in Xk+i ~ x < Xk+i+l. (15) 

From eq. (14) it is clear that 

ek,O,j = 0 
= 1/wk'(xk) 

j = 0, 1, ... , 2m - 2, 
j=2m-1. 

The other ek,i,i are determined recursively. When ek,i-1,; have been 
calculated so that fa(x) is determined by (15) in Xk+i-1 ~ x < 
Xk+i, we use the complete Horner scheme: to expand the poly
nomial in powers of x - Xk+i and then add the appropriate term 
required to pass to the interval [xk+i, Xk+i+1). In the same way Fk(x) 
may be written in the form 

Fk(X) = L~=~1 
ek,-i,;(x - Xk+m-;)i, Xk+m-i < X ~ Xk+m-i+l. (16) 

Again the ek,-i,i are determined recursively. It suffices to generate 
ek,i,i and ek,-i,i for only a very limited set of values of k and i as we 
see below. 

By integrating eq. (5) m times, using (9) and (10), and noting 
that Ei(x) = 0 for x ~ Xj, and F 1(x) = 0 for x 2. x;+m, we find 
that 

S(x) = T(x) + P(x) (17) 

where 

"'k-1 ) "'Xj<X d ( ) (18 T(x) = L..x;+m>x d;F;(x + L..k-l ;E; x ) 

with k arbitrary and P(x) a polynomial of degree m - 1 depending 
on k. 

We now let k assume the set of values best described by the 
Algol 00 for-clause 

fork:= Nl step m - 1 until N2 - m, N2 -· m + 1 do. 

For each such value of k we calculate T(x) in the interval [xk , Xk+m-1). 
Then P(x) is uniquely determined by the interpolation conditions 

Yk+l = T(xk+l) + P(Xk+l), I = 0, 1, ... , m - 1. 

Newton's divided difference formula is used iin obtaining P(x). For 
each value of kit is necessary to calculate the values of ep,i,J only 
for p = k, k + 1, ... , k + m - 2, i = 0, 1, ... , k + m - p - 2, 
j = 0, 1, ... , 2m - 1, and for p = k - m +- 1, k - m + 2, ... , 
k - 1, i = -1, - 2, ... , k - m - p, j == 0, 1, ... , 2m - 1. 
Furthermore, pis restricted to lie between Nl and N2 - m. More 
details on the organization of the calculations are given in [5]. 

(b) Equidistant knots. The calculation of the coefficients in 
NATSPLINEEQ for the case of equidistant knots is carried out in 
the sall)e manner as in NATSPLINE for the ~:eneral case. However, 
there are a number of simplifications which result in considerable 

472-P 2- 0 

Table I. Cubic Natural Spline. 
Five nonequidistant knots. Coefficients calculated by 
NATSPLINE 

x S(x) S'(x) S"(x)/2 s"'(x)/3: 

-3.000000 7.000000 -1.999998 0 0.9999998 
11.00000 9.999996 5.999997 0.9999998 

-1.000000 11.00000 10.00000 5.999999 -1.000000 
25.99998 18.99998 2.999999 -1.000000 

0 26.00000 18.99997 2.999995 -1.999996 
55.99995 -16.99994 -14.99997 -1.999996 

3.000000 56.00000 -16.99998 -14.99999 4.999996 
29.00003 -31. 99995 0 4.999996 

4.000000 29.00000 

economy of computational effort. It is not necessary to specify the 
Xi. Hence we can assume that Xi = i. It is convenient to modify 
eq. (6) slightly. First of all the right-hand sides reduce to 
ilmyi/m! where ilmyi are ordinary mth differences and require no 
divisions in their calculation. In the second place it can be shown 
that Nik is the 2mth ordinary difference of s-t~m- 1/((- l)"'(m!) 2) 

based on the values s - t = i - k - m, ... , i - k + m. We re
scale M(x; t), Mk(x), fa(x), Fk(x) by multiplyil1lg their representa
tions in eqs. (4), (11), and (12) by ( - l)"'m!. Thus dk is rescaled by 
dividing it by (-J)mm!. We denote the rescaled coefficients by dk*· 
If we let N7k be the 2mth difference of j~m-l based on the values 
j = i - k - m, ... , i - k + m, then N7k = Jfo(-1)"'(m!) 2 and 
eq. (6) becomes 

I:f..:;~ N7k dk* = ilmyi, i = Nl, ... , N2 - m. (19) 

For large values of m, the calculation of N7k by the obvious differ
encing technique involves serious cancellation and may introduce 
errors in the computed values of N;k . It can b{: shown that these 
differences satisfy t~.~ recurrence relation 

.:ln(j~-1) = (n + j)iln-l((j + m-1) - j.:ln-l(j~-2). (20) 

We need to calculate these quantities only for n = 2m at 
j = i - k - m for i - k = -m + 1, ... , 0, 1, ... , m - I, i.e., 
for j = - 2m + 1, ... , - 2, - 1. In this range, the two weight fac
tors 2m + j and - j are both positive, one ranging from 1 to 2m - 1 
and the other from 2m - 1 to 1. Thus no cancellation can occur 
when formula (20) is used for calculating N7k . 

A further simplification occurs because the coefficients of 
Ek(x) and Fk(X) are independent of k. It therefore suffices to com
pute the coefficients of £ 0 (x) and F 0 (x). Moreover Fo(x) = 

(-l)m£0 (m - x). Thus we have only to calculate the values of an 
array ei; for i = -m + 1, ... , -1, 0, 1, ... , m - 1 and j = 
0, 1, ... , 2m - 1. This is a major saving over the calculations for the 
general case. The rest of the calculations are carried out as in the 
general case. 

(c) Cubic spline. Much computational labor is saved by treat
ing this as a special case instead of using the general program with 
m = 2. We start with eq. (I) setting m = 2. By imposing the condi
tions (ii), (iii) and (iv) at the knots, we get relations between the 
coefficients, which yield a tridiagonal system of equations for 
A;2( = S"(x;)/2, the coefficients of t2 • This tridiagonal system is 
solved by Gaussian elimination. In the procedure CUBNATSPLINE· 
2D the values of S"(x;) and hi = X;+1 - Xi are output. In the pro
cedure CUBNATSPLINEthe values of A;1, A;2 and A,3 are output. 

3. Tests 
These procedures have been tested in Alcor Algol on the Tele

funken TR-4 at the Rechenzentrum of the Technischen Universitat 
Mi.inchen and in Algol Won the IBM 360/67 at the Stanford Com
putation Center. The latter tests included timing tests of the pro 
cedures over a range of values of m up to 7 and number of knots N = 
N2 - Nl + 1 up to 100. The time was found to be approximately 



COLLECTED ALGORITHMS (cont.) 

proportional to the number N of knots and to the square of m. The 
time Tin seconds for the execution of the procedure NATSPLINE 
was found to be approximately 

T = N/flJ (0.l 17m2 - 0.296m + 0.512). 

For NATSPLINEEQ the time was approximately 

T = N/flJ (0.014m2 + 0.023m + 0.029). 

For CUBNATSPLINE the time was approximately 

T = .045N/flJ = .00075N. 

For CUBNATSPLINE2D the time was approximately 

T c=o .03N /60 = .0005N. 

In order to check the accuracy of the coefficients calculated for 
the spline approximation S(x), the values of DkS(x)/k !, k = 
I, 2, ... , 2m - 2 were calculated at the right-hand endpoint of 
each subinterval [x; , x •+1) and compared with their values (the co
efficients in eq. (I)) at the left-hand endpoint of the next subinter
val. It was found that the accuracy deteriorated somewhat for 
larger values of m, although form = 7, with the data used, the largest 
relative differences were observed to be approximately 0.0018. 
Table I shows the results of a typical run using NATSPLINE for 
five nonequidistant knots with m = 2. The first line of each box 
gives the tabulated quantities at the given value of x, which is the 
left-hand endpoint of the subinterval, and the second line of the 
box gives the tabulated quantities at the right-hand endpoint of the 
same subinterval. The close agreement of these quantities DkS(x) / k !, 
k = 1, 2, ... , 2m - 2 shows that the spline function and its de
rivatives satisfy the specified continuity conditions. This is a good 
indication of the correctness of the results. 

References 
1. Anselone, P.M., and Laurent, P.J. A general method for the 
construction of interpolating and smoothing spline functions. 
Numer. Math. 12 (1968), 66-82. 
2. Curry, H.B., and Schoenberg, l.J. On P6lya frequency func
tions. IV. The fundamental spline functions and their limits. J. 
Analyse Math. 17 (1966), 71-107. 
3. Greville, T.N.E. Spline functions, interpolation and numerical 
quadrature. In Mathematical Methods for Digital Computers, Vol. 
II. A. Ralston and H.S. Wilf (Eds.) Wiley, New York, 1967. 
4. Greville, T.N.E. Introduction to spline functions. In Theory 
and Applications of Spline Functions. T.N.E. Greville (Ed.) Aca
demic Press, New York, 1969, pp. 1-35. (Pub. No. 22 Mathe
matics Research Center, U.S. Army, U. of Wisconsin.) 
5. Herriot, John G., and Reinsch, Christian H. Algol flJ pro
cedures for the calculation of interpolating natural spline func
tions. Tech. Rep. STAN-CS-71-200, Comput. Sci. Dep., Stanford 
u. 1971. 

Algorithm 
procedure NATSPLINE(NI, N2, m, x, A); 

value NI, N2, m; integer Nl, N2, m; 
array x, A; 

comment NATSPLINE computes the coefficients of a natural spline 
S(x) of degree (2Xm- l), interpolating the ordinates y[i] at 
points x[i], i = NI through N2. For xx in [x[i], x[i+ I]): S(xx) = 

A[i, 0] + A[i, I] X t + ... + A[i, 2Xm-l] X t j (2Xm-1) 
with t = xx - x[i], 
Input: 

NI, Nl subscript of first and last data point 
m 2Xm-1 is the degree of the natural spline, 

admissible values range from 1 to N2 - Nl + I, 
recommended values are not greater than seven (say) 

x[Nl :N2] contains the given abscissas x[i] which must be 
strictly monotone increasing 

472-P 3- 0 

A[Nl :N2, 0:2Xm-1] contains the ·given ordinates as zero-th 
column, i.e. A[i, 0] represents y[i], 

Output: 
A[Nl :N2, 0:2Xm- l] the coefficients of the natural spline as de

scribed above (the zero-th column is unchanged and no val
ues are assigned to the last row of A); 

if m > 0 /\ m ~ N2 - NI + 1 then 
begin 

integer i,j, k, I, 11, ml, m2, mm, n, mk, kl,jj, kk,jl; 
real!, z, w; 
array C[0:2Xm], D[Nl :N2], E[O:m-1, l-m:m-1, 0:2Xm-l], 

P[O:m], Q[O:m, Nl :N2]; 
comment i-j-entry of band-matrix stoned in A[i, j--i+ 1], right-

hand stored in vector D; 
ml : = m - 1; m2: = m - 2; mm:= 2 X m - 1; 11: = N2 -m; 
for j : = Nl step 1 until N2 do 
begin 

I :=j + m; if/> N2then/ := N2; 
for i: = j step I until I do Q[i-:-j,j] : == (x[i] - x[j]) j mm 

end; 
for i : = Nl + 1 step 1 until N2 do 
begin 

I : = i - NI; if I > m then I : = m; 
forj := Ostep 1 until/doPUl := Q[.i, i-j]; 
for k : = 1 step 1 until m do 
begin 

11 : = i + k - N2; if /1 < 1 then /I : = I; 
for j : = I step - 1 until/ I do 
PU]:= (PU-IJ-PU])/(x[i-j+k]-x[i-j]) 

end; 
for j: = 11 step I until I do QU, i-j] : = P[j] 

end; 
for j : = Nl step 1 until n do 
begin 

for i: = 0 step 1 until m do P[i] : = Q[i,j]; 
for k : = 1 step 1 until m do 
begin 

11 : = Nl - j + k; if /I < 1 then 11 : = 1; 
for i: = m step -1 until/I do 

P[i] : = (P[i]-P[i-1])/(x[;+j]-x[i+j-k]) 
end; 
for i : = 11 step 1 until m do Q[i,j] : == P[i] 

end; 
for j : = 1 step 1 until m do 
begin 
l:=n-j+l; 
for i: = NI step 1 until I do A[i,j] : == Q[m-j+ 1, i+j- I] 

end; 
for i: = NI step 1 until N2 do D[i] : = A[i, 0]; 
for k : = 1 step 1 until m do 
begin 

I:= N2-k; 
for i : = Nl step 1 until I do 

D[i] := (D[i+l]-D[i])/(x[i+k]-x[i]) 
end; 
comment Gaussian elimination w1ithout pivoting, rational 

Cholesky; 
for i : = Nl step 1 until /1 do 
begin 

I : = i +ml; if I > n then I:= n; 
for j : = i + 1 step I until I do 
begin 

comment/:= j-i-entry/i-i-entry, symmetry; 
/:= A[i,j-i+l]/A[i, l]; 
D[j] : = D[j] - f X D[i]; 
for k : = j step I until I do 

A[j,k-j+l] := A[j,k-j+l] -JX A[i,k-i+1] 
endj 



COLLECTED ALGORITHMS (con1t.) 

end i; 
comment Back substitution; 
for i : = n step -1 until Nl do 
begin 

I : = n - i; if l ~ m then l : = m 1 ; 
f := D[i]; 
forj := 1step1 until/do/:=/- A[i,j-1-1] X D[i-1-j]; 
D[i] := f/A[i, l] 

end i; 
comment Now compute the coefficients of the natural spline; 
if ml = 0 then 
begin 

for k : = Nl step 1 until /1 do 
A[k, 1] := -D[k]/(x[k+l]-x[k]) 

end 
else 
fork : =: Nl step ml until 11, N2 - ml do 
begin 

comment Now compute coefficients of the two sets of m-fold 
integrals of the minimum support splines scaled with 
(2 >< m - 1) factorial; 

I : = m2; if l > n - k then l : = n - k ;; 
for kk : = 0 step 1 until l do 
begin 

mk :=ml - kk; 
for j : = 0 step 1 until mm do C[j] : = O; 
for i : = 1 step 1 until mk do 
begin 

kl := k + kk; 
w := 1; 
for j : = 0 step 1 until m do if j ~ i -- 1 then 

w := w X (x[kl+i-1]-x[kl+j]); 
C[mm] := C[mm] + l/w; 
for j : = 0 step 1 until mm do 

E[kk,i-1,j] := C[j]; 
ijf i < mk then 
begin 

z := x[kl+il - x[kl+i-1]; 
for j : = 1 step 1 until mm do 

for jl : = mm step -1 until j do 
CUl-1] := C[jl] X z + Cl/1-·l] 

end 
end 

end; 
I : = ml; if I > k - Nl then I : = k - Nl; 
for kk : = 1 step 1 until I do 
begin 

mk := m - kk; 
for j : = 0 step 1 until mm do C[j] : = O; 
for i : = 1 step 1 until mk do 
begin 

kl := k - kk; 
w := 1; 
for j : = 0 step 1 until m do if j ~ m - i + 1 then 

w := w X (x[kl+m-i+ll - x[kl+j]); 
C[mm] := C[mm] - l/w; 
z := x[kl+m-i] - x[kl+m-i+ll; 
for j : = 1 step 1 until mm do 
for jl : = mm step - 1 until j do 

C[jl - l) : = C(jl] X z + C[jl - 1); 
for j := 0 step 1 until mm do E[kk-1,-i,j] := C[j] 

end 
end; 
for I : = 0 step 1 until m2 do 
begin 

comment Coefficients of the spline T(x) of degree (2Xm- l) 
in the interval [x[k+l], x[k+l+ 1]) stored as (k+l)-th 
row of A, P(x) = y(x) - T(x) at the points x = x[k] 
through x[k+m-1) stored in P; 

for j : = 0 step 1 until mm do C(j) : = O; 
for i : = I - m 1 step 1 until l do 
begin 

jj : = l - i; j : = k + jj; 

472-P 4- 0 

if i < 0 then begin j : = j - m; jj : = m 1 - jj end; 
if j ~ Nl /\ j ::s; n then 
begin 

.f: = D[j]; 
for .il : = 0 step 1 until mm do 

C[jl] : = C[jl] + f X E[jj,i,jl] 
end.i 

end i; 
for j : = 1 step 1 until mm do A[k+l,j] : == C[j]; 
P[I] := A[k+l,O] - C[O] 

end I; 
.f: = O; z : = x[k+ml] - x[k+ml-1]; 
for j : = mm step - 1 until 0 do f : = f X z + C(j); 
P[m1] := A[k-1-ml,O) - J; 
comment Compute P(x) from its ordinates at the points 

x = x[k] through x[k+m-1] using Newton's divided 
difference scheme for interpolation; 

for i : = 1 step 1 until ml do 
for .i : = m 1 step - 1 until i do 

P[j] : = (P[j]-Pfj-l])/(x[k-1-j]-x[k-l-j--i]); 
for I : = 0 step 1 until m2 do 
begin 

comment Add coefficients of P(x) in interval 
[x[k+l],x[k+l+l]) to those of T(x) stored in (k+l)th 
row of A; 

for j : = 0 step 1 until ml do C[j] : = P[j]; 
for i : = m2 step - 1 until 0 do 
for j : = i step 1 until m2 do 

C[j] := C[j] + (x[k+l]-x[k+i]) X C[.i+l]; 
for j : = 1 step 1 until ml do 

A[k+l,j] : = A[k+l,j] + C[j] 
end l 

end k 
end NATSPLINE; 

procedure NATSPLINEEQ (N1,N2,m,A); 
value Nl, N2, m; integer N1,N2,m; 
array A; 

comment NATSPLINEEQ computes the coefficients of a natural 
spline S(x) of degree (2Xm-1), interpolating the ordinates y[i] 
at equidistant points x[i], i = Nl through N2. For xx in 
[x[i], x[i+l]): S(xx) = A[i,O] + A[i,1] X t + .... 
+ A(i,2Xm-1] X ti (2Xm-1) with 
t = (xx-x[i])/(x[i+ 1 ]-x[i]) from (0,1), 
Input: 

Nl, N2 subscript of first and last data point 
m 2Xm-1 is the degree of the natural spli;ne, 

admissible values range from 1 to N2 - Nl + 1, 
recommended values are not greater than seven (say) 

A[Nl :N2,0:2Xm- l] contains the given ordinates as zero-th 
column, i.e. A [i,O] represents y[i], 

Output: 
A[Nl :N2,0:2Xm-l] the coefficients of the natural spline 

as described above, (the zero-th column is unchanged and 
no values are assigned to the last row of A); 

if m > 0 /\ m ::s; N2 - Nl + 1 then 
begin 

integer i, j, jl, k, I, ml, m2, mm, 11; real/; 
array C[0:2Xm), D[Nl :N2], E[l-m:m-l,0:2><m-1], P[O:m]; 
comment i-j-entry of band-matrix stored in A[i,i-i+lJ, 

right-hand stored in vector D; 
ml : = m - 1; m2 : = m - 2; mm : = 2 X m - 1; 
n := N2 - m; 
for i : = 1 step 1 until mm do 



COLLECTED ALGORITHMS (cont.) 

begin 
C[i] : = l; 
for j : = i - 1 step - 1 until 2 do 

C(j] := U+l-j) X CU-ll + j X C[j] 
end i; 
for i : = Nl step 1 until N2 do D [i] : = A [i,0]; 
for j : = 1 step 1 until ·m do 
begin 

f := C[m+l-j]; I:= N2 -j; 
for i : = Nl step 1 until n do A [i,j] : = f; 
for i : = Nl step 1 until I do D[i] : = Dfi+ 1] - D[i] 

endj; 
comment Gaussian elimination without pivoting, rational 

Cholesky; 
for i : = Nl step 1 until n do 
begin 

I : = i + ml; if I > n then I : = n; 
for j : = i + 1 step 1 until I do 
begin 

comment/: =j-i-entry /i-i-entry, symmetry; 
f: = A[i,j-i+ 1]/ A[i,J ]; 
Dfj] : = D[j] - f X D[i]; 
for k : = j step 1 until I do 

Afj,k-j+l] := A[j,k-j+l] - f X A[i,k-i+l] 
endj 

end i; 
comment Back substitution; 
for i : = n step - 1 until N 1 do 
begin 

I : = n - i; if I 2 m then I : = m 1 ; 
f: = D[i]; 
.for j : = 1 step 1 until I do .f: = f - A[i,j+ l] X D[i+j]; 
D[i] := f/A[i,l] 

end i; 
comment Now compute coefficients of the two m-fold integrals 

of the minimum support spline scaled with (2Xm-1) 
factorial; 

I:= l; 
for j : = 0 step 1 until mm do C[j] : = O; 
for i : = 1 step 1 until ml do 
begin 

C[mm] : = C[mm] +I; 
I : = I X (i-1-m)/i; 
for j : = 0 step 1 until mm do E[i-1,j] : = C[j]; 
for j : = l step 1 until mm do 
fork : = mm step -1 untilj do C[k-1] : = C[k-1] + C[k]; 
for j : = 0 step 1 until mm do E[ - i,j] : = C[j] 

end i; 
comment Change sign; 
for j : = ml step -2 until 0, m + 1 step 2 until mm do 
for i := -ml step 1 until --1 do E[i,j] := -E[i,j]; 
comment Now compute coefficients of the natural spline; 
if ml = 0 then 
begin 

fork:= NI step 1until11 do A[k,1] := D[k] 
end 
else 
fork : = Nl step ml until 11, N2 - ml do 
begin 

for I : = 0 step 1 until m2 do 
begin 

comment Coefficients of the spline T(x) of degree (2Xm- l) 
in the interval [k+l,k+I+ 1) stored as (k+l)-th row of 
A, P(x) = y(x) - T(x) at the points x = k through 
k + m - 1 stored in P; 

for j : = 0 step 1 until mm do C[j] : = O; 
for i : = I - m 1 step 1 until I do 

472--P 5- 0 

begin 
j : = k + I - i; if i < 0 then j : = j - m; 

if J 2 N 1 /\ j ~ 11 then 
begin 

f: = D[j]; 
for jl : = 0 step 1 until mm do 

C[jl] := C[jl] +JX E[i,jl] 
endj 

end i; 
for j : = 1 step 1 until mm do A [k +l,j] : = C[j]; 
P[/] := A[k+l,O] - C[O] 

end/; 
/:= O; 
for j : = mm step - 1 until 0 do f: = f + C[j]; 
P[ml] := A[k+ml,O] - f; 
comment Compute P(x) from its ordinates at the points x = k 

through k + m - 1 using Newton's divided difference 
scheme for interpolation; 

for i : = 1 step 1 until ml do 
for j: = ml step -1 until i do P[jj : 0= P[j] - P[j-1 ]; 
/:=I; 
for j : = 2 step 1 until ml do 
begin 

f: = f X j; P[j] : = Pljj/ f 
endj; 
for I : = 0 step 1 until m2 do 
begin 

comment Add coefficients of P(x) in interval lk -f-/,k -f-/ +I) 
to those of T(x) stored in (k+IHh row of A; 

for j : = 0 step 1 until ml do C[j] : = P[j]; 
for i : = m2 step - I until 0 do 
for j : = i step 1 until m2 do C(J] : =° C[j] + C[j-f--1] X (/-i); 
for):= 1step1 unfil ml do Alk+l,j] := A[k+l,j] + C[j] 

end I 
end k 

end NATSPLINEEQ; 

procedure CUBNATSPLINE(N1,N2,x,y,B,C,D); 
value NJ, N2; integer NJ, N2; 
array x, y, B, C, D; 

comment CUBNATSPLINE computes the coefficients of a cubic 
natural spline S(x) interpolating the ordinates y[i] at points x[i], 

i = NI through N2. For xx in [x[i],x[i-t- I]): 
S(xx) = ((D[i]Xt+C[i])Xt+B[i]) X t + y[ijwitht =xx -- x[i], 

Input: 
Nl, N2 subscript of first and last data point 
x, y[NI :N2] arrayswithx[i] asabscissa andy[i] as ordinate of 

i-th data point. The elements of the array x must be strictly 
monotone increasing, 

Output: 

begin 

B, C, D [Nl :N2] arrays collecting the coefficients of the 
cubic natural spline S(xx). C[N2] = 0 while B[N2] and 
D[N2] are left undefined; 

integer i, Ml, M2; real R, S; 
Ml : = Nl + 1; M2 : = N2 - 1; S : = O; 
for i : = Nl step 1 until M2 do 

begin 
D[i] : = x[i+ I] - x[i]; 
R := (y[i+IJ-y[i])/D[i]; 
C[i] : = R - S; S : = R 

end i; 

R := S := C[NI] := C[N2j := O; 
for i : = Ml step I until M2 do 
begin 

C[i] := C[i] +RX C[i-1]; 
B[i] := (x[i-1]-xli+l]) X 2 - RX S; 
S := D[i]; R := S/B[i] 



COLLECTED ALGORITHMS (co1r1t.) 

end i; 
for i : = M2 step - I until Ml do 

C[il := (D[i]XCli+l]-C[i])/Blil; 
for i : = NI step I until M2 do 
begin 

B[il := (yli+ll-y[i])/D[i[ - (2XC[iJ+C[i+J]) X Dli]; 
D[i] := (Cli+l]-C[i])/Dlil; 
C[iJ : = 3 X C[i] 

end i 
end CUBNATSPLINE; 

procedure CUBNATSPL/NE2D(NI ,N2,x,y,D,h); 
value NI, N2; integer NI, N2; 
array x, y, D, '1; 

comment Construction of a cubic natural spline S(x) interpolating 
the ordinates ylil at points xii], i = NI through N2. For xx in 
lxliJ,xli+ I]): 
S(xx) = yli] X (I - t) + yli+ I] X t + V 

x (-2xr+3XtXt-/X/Xt)/6 + w x (IXtXt-1), 6 
with t = (xx-xiii) //iii], hJil = x[i+ I] - x[i], 
V = /ilil X /ilil X Dli], W = h[i] X flli] )< D[i-t- I]. This form 
is especially suited for the evaluation of S(x) and its second 
derivative at points corresponding tor = l! /2, 1 /4, 3,'4, 1, 8, 
3/8, ... ' 
Input: 

NI, N2 subscript of first and last data point 
x, ylNI :N2] arrays with x[i] as abscissa and yli] as ordinate 

of i-th data point. The clements of the array x must be 
strictly monotone increasing, 

Output: 
DINI :N2] Dli] is the second derivative of S(x) at x = xiii, 

i = NI through N2 
li[NI :N2] /i[i] = xii+ I j - x[i], i = NI through N2 - I; 

begin 
integer i, Ml, M2; real U, V, W; 
Ml:== NI+ I; M2 := N2 - I; U :,= y[NIJ; 
for i : = NI step I until M2 do 
begin 

V : = yli+ I]; /i[i] : = x[i+ I] - x[i]; 
Dli+IJ := (V-:-U)llr[i]; U := V 

end i; 
W := /i[NI]; D[NI] := U := O; 
for i : = Ml step I until M2 do 
begin 

comment U = h[i-1 j IP[i-1], V = h[i--1], W = h[i], Pfi] 
stored in /i[i], where P[i] denotes diagonal coefficient in the 
Gaussian elimination; 

V:=W; W:=h[i]; '1[i]:=(V-t-W)X2-UXV; 
D[ij := Dli+IJ - D[i] - U X D[i-1]; U := W/lt[i] 

end i; 
D[N2] := O; 
for i : = M2 step -1 until Ml do 
begin 

comment Back substitution and restore Ii [i]; 
W := x[i+IJ - x[i]; 
D[i) : = (6XD[i]- WXD[i-t-1])/h[i]; 
/z[i] := w 

end i 
end CUBNATSPLJNE2D 

472-P 6- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 473 

Computation of Legendre 
Series Coefficients [C6] 
Robert Piessens [Recd. 13 Mar. 1972 and 5 Sept. 1972] 
Applied Mathematics Division, University of Leuven, 
Heverlee, Belgium 

This work was supported by the Nationaal Fonds voor Weten
schappelijk Onderzoek (Belgium) under Grant No. 10.174. 

Key Words and Phrases: Legendre series, Chebyshev series 
CR Categories: 5.13 
Language: Fortran 

Description 
LEGSER approximates the first N + 1 coefficients Bn of the 

Legendre series expansion of a function f(x) having known Cheby
shcv series coefficients An . Several algorithms are available for the 
computation of coefficients An of the truncated Chebyshev series 
expansion on [ - 1, l] 

N 

f(x) ~ L' AnTn(x), (1) 
n=O 

where I:' denotes a sum whose first term is halved. The commonly 
used algorithms are based on the orthogonal property of summa
tion of the Chebyshev polynomials [I]. The application of the 
analogous property of the Legendre polynomials for the calculation 
of the coefficients Bn of the expansion 

N 

f(x) ~ L BnPn(X) (2) 

is less suitable for practical use since it requires the abscissas and 
weights of the Gauss-Legendre quadrature formulas [2]. 

We present here a simple method for the calculation of the 
coefficients Bn , when the coefficients An are given. Since 

B,. = (n + 1/2) [~
1 

Pn(x)f(x) dx (3) 

we have 
N 

Bn ~ (n + 1/2) L' Adn,k, (4) 
k=O 

where 
+1 

1,.,k = {
1 

P,.(x)Th) dx. (5) 

The integrals In, k can be calculated using the recurrence formula 

[(k - l)k - 11(11 + l)](k + 2) 
l,.,k+2 = Uk + 3)(k + 2f=-n(n +-Olk ln.k, (6) 

where ln.k = 0 if k < n, ln.n = 22n(n!) 2/(2n + 1) ! if 11 > 0, / 0,0 = 2. 

Example. The Chebyshev series coefficients of the function 
f(x) = 1 /(2 - x) are A,. = 2"(1 - y'0.75)"/v'0.75. 

473-P 1- 0 

Table I. Coefficients of the Legendre Series Expansion of 
J(x) 1 /(2 - x) 

n Exact Bn Errors in computed Bn 
Absolute Relative 

errors errors 

0 0.549294EO 0.12E-4 0.22E-4 
1 0.295830EO 0.59E-5 0.20E-4 
2 0.105917EO 0.20E-5 0.19E-4 
3 0.340972E -1 0.56E-6 0.16E-4 
4 0.104495E-l 0.17E-6 0.16E-4 
5 0.311269E-2 0.42E-7 0.13E-4· 

10 0.601250E-5 0.41E-10 0.68E-5 
15 0.101339E-7 0.29E-12 0.29E-~; 

20 0.161332E-IO 0.63E-12 0.39E-1 

In Table I, the exact Legendre series coefficients of this function 
are compared with the computed values (N = 20). The computa
tions are carried out in single precision on an IBM 370 computer. 

fo this example, the Chebyshev coefficients are known exactly. 
In most cases, they must be calculated using an algorithm as ih [ 1 ]. 

References 
1. Smith, L.B. Algorithm 277, Computation of Chebyshev series 
coefficients. Comm. ACM. 9 (Feb. 1966), 86-87. 
2. Bakhvalov, N.S., and Vasileva, L.G. Evaluation of the integrals 
of oscillating functions by interpolation at nodes of Gaussian 
quadratures.Z. Vycisl. mat. i mat. Fiz. 8 (1968), 175-·181. 

Algorithm 
SUBKCUTINE LEG~EKCA, G, NJ 

C THI.S SURrlOlJTf:\JE CALCUl_AH~S TfiE CC·E:FHCLE,\lfS OF- THE: 
c LEGEND~E SEri!E;j EXPANSIO\I c~ A rUNClION HAvlNG 
C KNClN CHFRYSHEV SEKIES EX~ANSICN. 
C I.'Jr'UT PAl(AMEH:.-s 
C N DEGKEE OF THE TKUNCAfEU CHE8YSHEv SEKIES 
c A VECHlt~ OF UIMEN::iro,\j ,\j+l \·:!- ICH CCNTAI.'.J;j rHE 
C CllEIJl'SHEV CCE~FICIE:,\lf::, 

C OUTPUT YAKA~ETEK 
C 8 VECTGK OF DIMENSION N+l ~~ICH CONTAINS THE 
C LEGFND~E COEFFICIENTS 

1<E:AL A, AK, AL, 13, l:n:l, c, U 
INTF:GE1~ K, L, LL, N, \!l 
UI~ENSI0N ACNJ, 8<N> 
N 1 = N + I 
A•<= •J.OEO 

C CALCULAflON OF THE Flt<.'.JT LE:CE.\ID"r: CCEH IC I ENT 
BCl> = Q.~EO*A(l) 
If (\l-1) 10, 30, 10 

10 UO 20 ~=3,NI,? 
A I( = AK + 2 • 0 E 0 
RC l> = RC l> - ACK)/(AK*Ar<-1 .OEO> 

·~o CCNTI NUE 
3U C = 2.0E0/3.0EO 

C STAKT ~Al\I LOGY 
J>O f.0 L=?, \II 

C CALCULATIC.'J CF THE L-Trl LHoE,\IU,;~: CGt·:rrICil:.,\lf 
LL = L + 2 
AL = AL + I , J i::<J 
flfl = C*AC L > 
Ir CLL.G'J.,\11) Gr• TC ~o 

[) = c 
A•< = AL 
DC 40 r<=LL, 1\ll, ~ 

u = CUH-1.u~-LJH<flr<-AL*CAL+J.Ui::U))*Ulr<+c.l)l:.u>*U/ 

<C<Ar<+3.0EO>*<Ar<+~.0~0>-'L*CAL+J,9EO>>*Ar<> 

B~ = gR + A<K>*D 
A:< = /\;( + ;c.OEU 

* *CAL+AL+~.LJ~OI) 

8<L> = <AL+\.J.~E0>*~8 

60 CO,'-'llNUf 
70 1(FTU1UI! 

F'JD 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 474 

Bivariate Interpolation and 
Smooth Surf ace Fitting Based 
on Local Procedures [E2] 

Hiroshi Akima (Recd. 30 Mar. 1972 and 3 Nov. 1972) 
U.S. Department of Commerce, Office of Telecommu
nications, Institute for Telecommunication Sciences 
Boulder, CO 80302 ' 

Key Words and Phrases: bivariate interpollation, interpolation, 
partial derivative, polynomial, smooth surface t~tting 

CR Categories: 5.13 
Language: Fortran 

Description 
Introduction. User information and Fortran listings are given 

on two subroutines, ITPLBV and SFCFIT. Each subroutine imple
ments the method of smooth bivariate interpolation based on local 
procedures [3]. These subroutines are written in ANSI Standard 
Fortran [4]. 

Outline of the method. T'his method interpolates values of a 
single-valued smooth bivariate function z = z(x,y) and fits a 
smooth surface to a set of values of the function given at grid 
points in an x-y plane. These grid points may be unevenly spaced. 

The method is an extension of the method of univariate inter
polation developed earlier by the author [I ,2] and is likewise based 
on local procedures. It is designed to avoid excessive undulations 
between grid points. 

This method is based on a piecewise function composed of a 
set of bicubic polynomials in x and y; a bicubic polynomial in x and 
y is a polynomial that has terms xayfl, when! a = 0, 1, 2, 3 and 
(3 = 0, 1, 2, 3. Each polynomial is applicable to a rectangle in the 
x-y plane. In this method, three partial derivatives az/ax, az/ay, 
and ih/axay are determined at each data point locally by the 
coordinates of 13 data points, with the data point in question as 
the center, two data points on each side of it in the x and y direc
tions, and one data point in each diagonal direction. Each bicubic 
polynomial corresponding to a rectangle in the x-y plane is deter-

Editor's note: Algorithm 474 described here is available 011 magnetic 
tape from the Departmellf of Computer Science, University of 
Colorado, Boulder, CO 80302. The cost for the tape is $J6.00 (U.S. 
and Canada) or $J8.00 (elsewhere). ff the user sends a small tape 
(wt. less than J lb.) the algorithm will be copied on it and returned to 
him at a charge of $JO.OO (U.S. only). All orders are to be prepaid 
with clu:cks payable to ACM Algorithms. The algorithm is recorded 
as one file of BCD 80 character card images at 556 B.P.l., even 
parity, on seven track tape. We will supply algorithm at a density of 
800 B.P.l. if requested. Cards for algorithms are sequenced starting 
at JO and incremented by JO. The sequence number is right justified in 
column 80. Although we will make every attempt to insure that the 
algorithm conforms to the description printed here, we ca1111ot guaran
tee it, nor ca11 we guarantee that the algorithm is correct.-L.D.F. 
and A.K.C. 

474-P 1- 0 

Table I. An Example Set of Input Data 

Z(IX, IY) 

IY = 
1 2 4 6 7 8 9 

IX X(IX) Y(IY) 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
~-·- ----~---

1 0.0 58.2 61.5 47.9 62.3 34.6 45.5 38.2 41.2 41. 7 
2 5.0 37 .2 40.0 27.0 41. 3 14.1 24.5 17. 3 20.2 20.8 
3 10.0 22.4 22.5 14.6 22.5 4.7 7 .2 1.8 2.1 2.1 
4 15.0 21.8 20.5 12.8 17.6 5.8 7.6 0.8 0.6 0.6 
5 20.0 16.8 14.4 8.1 6.9 6.2 0.6 0.1 ·0.0 0.0 
6 25.0 12.0 8.0 5.3 2.9 0.6 0.0 0.0 0.0 0.0 
7 30.0 7.4 4.8 1.4 0.1 0.0 o.o 0.0 0.0 0.0 
8 35.0 3.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
9 40.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 45.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
11 50.0 0.0 o.o o.o o.o 0.0 0.0 0.0 0.0 0.0 

mined by the values of the function and its three partial derivatives 
at four corner points of the rectangle. 

When interpolation is made near or on the boundary of the 
defined range of z, the z values estimated at several grid points 
outside the range are used to determine the partial derivatives. In 
this method, this estimation is based on three data points in the 
x or y direction, the boundary point and two adjacent given data 
points. 

The resulting surface of this method is invariant under a linear
scale transformation of the coordinate system; different scalings of 
the coordinates result in equivalent surfaces. 

This method requires only straightforward procedures, not 
iterative solutions of equations with preassigned error tolerances 
which are required by some methods. No problem concernin~ 
computational stability or convergence exists in application of 
this method. 

The ITPLBV subroutine. This subroutine interpolates, from 
values of the function given at input grid points in an x-y plane and 
for a given set of points in the plane, the values of a single-valued 
bivariate function z = z(x,y). 

The entrance to this subroutine is achieved by 

CALL ITPLBV (IV, LX, LY, X, Y, Z, N, U, V, W) 

where the input parameters are 
IV = logical unit number of standard output unit, 
LX = number of input grid points in the x coordinate (must be 

two or greater), 
LY = number of input grid points in the y coordinate (must be 

two or greater), 
X = array of dimension LX storing the x coordinates of input grid 

points (in ascending order), 
Y = array of dimension LY storing the y coordinates of input grid 

points (in ascending order), 
Z = doubly-dimensioned array of dimension (LX,L Y) storing 

the values of the function (z values) at input grid points, 
N = number of points at which interpolation of the z value is 

desired (must be one or greater), 
U = array of dimension N storing the x coordinates of desired 

points, 
V = array of dimension N storing the y coordinates of desired 

points, 
and the output parameter is 



COLLECTED ALGORITHMS (cont.) 

Table II. Output Data Obtained from the Input Data Given 
in Table I 

W(KX, KY) 

KY-
l 4 6 9 

-- - ----~--------

KX U(KX) V(KY) -
o.o 2.5 5.0 7 .5 10.0 12.5 15.0 17.5 20.0 

-----
l o.o 58.20 61.70 61.SO 55.0I 47.90 54.82 62.30 48.13 34.(i() 
2 2.5 47.08 S0.59 S0.40 43.75 36.45 43.73 51.62 36.94 22.94 
3 5.0 37.20 40.31 40.00 33.81 27.00 33.86 41.30 27.41 14.10 
4 1.5 28.22 30.35 29.90 24.80 19.22 2S.03 31.18 19.15 7.49 
5 10.0 22.40 23.29 22.SO 18. 15 14.(i() J8.4S 22.SO 13.47 4.70 
6 12.5 21.91 22.19 21.02 17.47 13.67 16.39 19.28 12.14 5.23 
7 lS.O 21.80 21.82 20.SO 16.74 12.80 15.07 17.(i() 11.66 S.80 
8 17.S 19.28 18.98 17.48 13.78 I0.33 10.92 11.79 9.12 6.12 
9 20.0 (6.80 16.0S 14.40 10.96 8.10 7.40 6.90 6.51 6.20 

10 22.5 14.39 12.86 11.12 8.73 6.69 5.61 4.65 3.94 3.49 
11 25.0 12.00 9.79 8.00 6.58 5.30 4.IO 2.90 1.71 0.60 
12 21.5 9.68 7.77 6. IS 4. 71 3.29 2.05 I. IS 0.60 0.17 
13 30.0 7.40 6.18 4.80 3.07 1.40 0.4S 0.10 0.03 0.00 
14 32.5 5.24 3.86 2.S7 1.34 0.35 0.04 0.01 0.00 0.00 
15 35.0 3.20 1.68 0.70 0.20 0.00 0.00 0.00 0.00 0.00 
16 31.5 1.09 0.41 0.08 -0.01 0.00 o.oo 0.00 0.00 0.00 
17 40.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
18 42.S o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
19 45.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
20 41.5 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 
21 so.o o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

---------
KY -

9 10 11 12 13 14 15 16 17 
----------~- ~----

V(KY) -
20.0 22.5 25.0 21.5 30.0 32,s JS.O 31.5 40.0 
----------------- -

l 0.0 34.60 40.39 4S.SO 41.20 38.20 39.80 41.20 41.67 41.70 
2 2.5 22.94 29.19 34.69 30.29 27.23 28.95 30.46 30.99 31.08 
3 s.o 14.10 19.63 24.SO 20.25 17.30 18.84 20.20 20.70 20.80 
4 1.5 7.49 11.32 14. 73 10.48 7.34 8.3S 9.26 9.58 9.68 
5 10.0 4.70 6.12 7.20 4.03 1.80 1.96 2. IO 2.12 2.10 
6 12.5 5.23 6.11 6.(i() 3.41 1.17 0.93 0.7S 0.68 0.62 
7 15.0 S.80 6.84 7.60 3.74 0.80 0.66 0.60 0.59 0.60 
8 17.S 6.12 4.79 3.61 1.72 0.39 0.28 0.22 0.21 0.22 
9 20.0 I 6.20 3.37 O.(i() 0.25 0.10 0.04 0.00 -0.01 0.00 

10 22.S 3.49 1. 77 0.16 0.06 0.02 0.01 0.00 -0.00 -0.00 
11 25.0 0.60 0.04 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 
12 21.5 0.17 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 
13 30.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
14 32.S o.oo 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o.oo 
15 35.0 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 
16 31.5 o.oo o.oo o.oo o.oo 0.00 0.00 0.00 0.00 0.00 
17 40.0 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 o.oo 
18 42.S 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 
19 45.0 : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
20 41.S : 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
21 so.o o.oo o.oo o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 

Fig. 1. Perspective representation of (a) the original data points 
given in Table I and of (b) the surface fitted by the SFCFIT sub
routine with LX = 11, LY = 9, MX = 5, MY = 5, NU = 51, 
and NV= 41. 
(a) (b) 

474-P 2- 0 

W = array of dimension N where the interpolated z values at 
desired points are to be displayed. 
This subroutine occupies 1577 locations on the CDC-3800 

computer. Computation time required for this subroutine on the 
same computer is approximately equal to: 1 + 3.0 * N msec for 
LX =LY= 10; 10 + 4.0 * Nmsec forLX =LY= 100. 

When the function to be interpolated represents a reriodic 
function of x and/or y, the input data 1to this subroutine should 
consist of the data that cover a whole period and two additional 
grid lines on each side of them. 

The SFCFIT subroutine. This subroutine fits a smooth sur-
face of a single-valued bivariate function z = z(x,y) to a set of 
input data points given at input grid points in an x-y plane. It 
generates a set of output grid points by equally dividing the x and Y 
coordinates in each interval between a pair of input grid points, 
interpolates the z value for the x and y values of each output grid 
points, and generates a set of output points consisting of input 
data points and the interpolated points. 

lhe entrance to this subroutine is achieved by 

CALL SFCFIT (JU, LX, LY, X, Y, Z, MX, MY, NU, NV, U, 
V, W) 

where the input parameters are 
IU = logical unit number of standard output unit, 
LX = number of input grid points in the x coordinate (must be 

two or greater), 
LY = number of input grid points in the y coordinate (must be 

two or greater), 
X = array of dimension LX storing the x coordinates of input grid 

points (in ascending or descending order), 
Y = array of dimension LY storing the y coordinates of input grid 

points (in ascending or descending order), 
Z = doubly-dimensioned array of dimension (LX,L Y) storing the 

values of the function at input grid points, 
MX = number of subintervals between each pair of input grid 

points in the x coordinate (must be two or greater), 
MY = number of subintervals between each pair of input grid 

points in the y coordinate (must be two or greater), 
NU= number ofoutput grid points.in the x coordinate = (LX-1)* 

MX+ 1, 
NV = number of output grid points in they coordinate = (LY-1) * 

MY+ 1, 
and the output parameters are 
U = array of dimension NU where the x coordinates of output 

points are to be displayed, 
V = array of dimension NV where the y coordinates of output 

points are to be displayed, 
W = doubly-dimensioned array of dimension (NU,NV) where 

the z coordinates of output points are to be displayed, 
This subroutine occupies 1333 locations on the CDC-3800 

computer. Computation time required for this subroutine on the 
same computer is approximately 

(1.5 + (0.15 + 0.1 * MX) *MY) * LX *LY msec. 

When the surface exhibits periodicity with respect to x and/or 
Y, the input data to this subroutine should consist of the data that 
cover a whole period and two additional grid lines on each side of 
them, and two intervals on each side be discarded from the set of 
output points. 

Test results. All tests were performed on a CDC-3800 com
puter. An example is shown in Tables I and II. The X, Y, and Z 
values shown in Table I were given to the SFCFIT subroutine as 
input data with LX = 11, LY= 9, MX '= 2, MY= 2, NU= 21, 
and NV = 17, and the U, V, and W values shown in Table II were 
obtained. Also, the data in Table I, together with each combination 
of the U and V values in Table II, were given to the ITPLBV sub
routine with LX = 11, LY= 9, and N == 1, and the respective W 
value in Table II was obtained each time. Figure 1 (a) depicts the 
original data points given in Table I, and Figure 1 (b) the surface 



COLLECTED ALGORITHMS (cont.) 

fitted by the SFCFIT subroutine with LX = 111, LY = 9, MX = 5, 
MY = 5, NU = 51, and NV = 41. This example demonstrates 
one of the properties of this method, that the resulting surface is 
free from excessive undulations. 

Acknowledgments. The author expresses his deep apprecia
tion to L. David Lewis, Rayner K. Rosich, and Jeanne M. Tucker 
of the U.S. Department of Commerce Boulder Laboratories for 
their critical review of this paper. 

References 
1. Akima, Hiroshi. A new method of interpolation and smooth 
curve fitting based on local procedures. J. ACM 17, 4 (Oct. 1970), 
589-602. 
2. Akima, Hiroshi. Algorithm 433, Interpolation and smooth 
curve fitting based on local procedures. Comm. ACM 15, 10 (Oct. 
1972)' 914-918. 
3. Akima, Hiroshi. A method of bivariate interpolation and 
smooth surface fitting based on local procedures. Comm. ACM 17, 
1 (Jan. 1974), 18-20. 
4. ANSI Standard Fortran, Publication X3.9-1966. Amer. 
Nat. Standards Inst., New York. Also reproduced in W.P. Heising, 
History and summary of FORTRAN standardization development 
for the ASA. Comm. ACM 7,10 (Oct. 1964), .590-625. 

Algorithm 
SUBROUTINE ITPLBV<IU, LX, LY, x, y, z, N, U, V, W> 

C BIVARIATE INTERPOLATION 
C THIS SUBROUTINE INTERPOLATES, FROM VALUES CIF THE FUNCTION 
C GIVEN AT INPUT GP.IO POINTS IN AN X-Y PLANE ANO FOR A GIVEN 
C SET 0 F POINTS IN THE PLANE, THE VALUES OF A SINGLE-VALVED 
c BIVARIATE FUNCTION z • zcx.Y>. 
C THE METHOD IS BASED ON A PIECE-WISE FUNCTION COMPOSED OF 
C A SET OF BICUBIC POLYNOMIALS IN X ANDY. EACH POLYNOMIAL 
C IS APPLICABLE TO A RECTANGLE OF THE INPUT GRID IN THE X-Y 
C PLANE• EACH POLYNOMIAL IS DETERMINED LO CAI.LY. 
C THE INPUT PARAMETERS ARE 
C IU = LOGICAL UNIT NUMBER OF STANDARD OUTPUT l'NIT 
C LX " NUMBER OF INPUT GRID POINTS IN THE X COORDINATE 
C CMUST BE 2 OR GREATER> 
CLY • NUMBER OF INPUT GRID POINTS IN THEY COORDINATE 
C CMUST BE 2 OR GREATER> 
C X • ARRAY OF DIMENSION LX STORING THE X COORDINATES 
C OF INPUT GRID POINTS CIN ASCENDING OflDEP> 
C Y = ARRAY OF DIMENSION LY STORING THE Y COORDINATES 
C 0 F INPUT GRID POINTS C IN ASCENDING OflDER > 
C Z • DOUBLY-DIMENSIONED ARRAY OF DIMENSION CLX1LY> 
C STORING THE VALUES OF THE FUNCTION cz: VALUES> 
C AT INPUT GRID POINTS 
C N • NUMBER OF POINTS AT WHICH INTERPOLATl:ON OF THE 
C Z VALUE IS DESIRED CMUST BE I OR GREATER> 
C U = ARRAY OF DIMENSION N STORING THE X CCIORDINATES 
C OF DESIRED POINTS 
C V ARRAY OF DIMENSION N STORING THE Y CCIOROINATES 
C OF DESIRED POINTS 
C THE 0 l'TPUT PARAMETER IS 
C W = ARRAY 0 F DI MENS ION N l.'HERE THE INTERPOLATED Z 
C VALUES AT DESIRED POINTS ARE TO BE DISPLAYED 
C SOME VARIABLES INTERNALLY USED ARE 
C ZA = DIVIDED DIFFERENCE OF Z WITH RESPECT TO X 
C ZB = DIVIDED DIFFERENCE OF Z WITH RESPECT TO Y 
C ZAB = SECOND ORDER DIVIDED DIFFERENCE OF Z WITH 
C RESPECT TO X AND Y 
C ZX = PARTIAL DERIVATIVE OF Z "1ITH RESPECT TO X 
C ZY = PARTIAL DERIVATIVE OF Z WITH RESPECT TO Y 
C ZXY • SECOND ORDER PARTIAL DERIVATIVE OF Z WITH 
C RESPECT TO X AND Y 
C DECLARATION STATEMENTS 

DIMENSION XCLX>, YCLY>, ZCLX1LY>1 UCN>, VCN), 1.YCN> 
DIMENSION ZACS,2>. ZB<2.s>. ZAB(J,3>. z:xc4,4), zyc4,4), 

* ZXYC4,4> 
EQl.!IVALENCE CZ3Al.ZACI>>, CZ3A2,ZAC2>>• CZ3A31ZAC3>>1 

* CZ3A4.ZAC4)), CZ3AS,ZACS)), CZ4Al1ZAC(1)), CZ4A2,ZA<7)), 
• CZ4A3,ZAC8», (Z4A4,ZAC9)), CZ4A5,ZACl0)), CZ3Bl,ZBCI)), 

CZ3B2,ZBC3)), <Z3B3, ZBC 5> ), CZ3B41ZBC1'> ), <Z3B5,ZBC9> ), 
CZ4Bl,ZBC2>>. CZ4B2,ZBC4», CZ4BJ,ZBCE»>, (Z4B41ZBC8»1 

* CZ4B5,ZBCl0)), cZA2B2,ZABCI», <ZA3B21ZABC2», 
* CZA4B2,Z:ABC3>>. CZA2B3,ZABC4», <ZA3B~l,ZABCS», 

* CZA4B3,ZABC6)), CZA2B4,ZABC7)), CZA3B~1.ZAB<8»1 
* CZA4B4,ZABC9)), (ZX33,ZXC6», CZX43,ZXC7)), 
* CZX34,ZXCl0)), CZX44,ZXCll», CZY33,Z'i'C6)), 
* CZY43,ZYC7», CZY34,ZYC 10», CZY441ZY< 11»• 
* <ZXY33,ZXY<6», CZXY43,ZXY<7», <ZXY3~1,ZXYCl0)), 

* CZXY44,ZXYCl I», CP00,Z33>, CP01,ZY33>, CPl0,ZX33>• 
* CPll,ZXY33> 

EQUIVALENCE CLX0,ZXCI)), CLXMl1ZXC4)), CLXM2,ZXC13», 
CLXPl 1 ZXCl6», CLY0,ZYCI>>. CLYMl,ZYC~1)), CLYM2,ZYCl3», 
CLYPl1ZYC16», ClX,ZXYCI»• CIY,ZXYC4)), CIXPV,ZXYCl3)), 
CIYPV,ZXYCl6)), CIMN,JX>. CIMX,JY->, CJXM21JXI>. 
CJYM2 ,JY I>, CUK, DX>, CVK1 DY>, CAI, AS, El 1, B51ZXC 2>, A1 Q0 >, 
CA2,ZX<S>,B,QI>, CA4,ZX<8>.C,Q2>, CB2,ZYc2>,0,Q3), 
CB4,ZYCl4>.E>, CX2,ZXC3>.A3SQ), CX4,ZXC9)), CXS,ZXC 12)), 

• <Y2.ZXCl4». CY4.ZY<3>.B3SQ), <YS.ZXCIS>.P02>. 
* CZ23 1 ZYCS>,P03>, CZ24,ZYC8>.Pl2>. <Z3~~.ZYC9),Pl3>, 
* <Z34,ZYCl2>.P20>. CZ35,ZYCl5>,P21l1 CZ.42,ZXYC2>,P22>. 
* CZ43,ZXYC5),P23l, CZ44,ZXYC3),P30>. CZ.45,ZXYC8l,P31), 
* CZ53,ZXYC9J,P32>• CZ54,ZXYCl2>,P33>, CW2,1..'Y2,11.14l1 
* CW3,WY3,Wl,W5l, Cl.1X2,ZXYCl4>l, CWX3,ZXYCl5ll 

474-P 3-

PRELIMINARY PROCESSING 
SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES 

IU0 = IU 
LX0 = LX 
LXMI = LX0 - I 
LXM2 • LXMI - I 
LXPI " LX0 + I 
LY0 = LY 
LYMl=LY0-I 
LYM2 • LYMI - I 
LYPI " LY0 + I 
N0 • N 

C ERROR CHECK 
IF CLXM2.LT.0> GO TO 710 
IF CLYM2.LT.0> GO TO 720 
IF CN0.LT.I> GO TO 730 
DO 10 IX•2,LX0 

IF <XCIX-1>-X<IX» 10, 740, 750 
10 CONTINUE 

DO 20 IY.,2,LY0 
IF CYCIY-1>-YCIY)) 20, 770, 780 

20 CONTINUE 
C INITIAL SETTING OF PREVIOUS VALUES OF IX ANO IY 

IXPV = 0 
IYPV = 0 

C MAIN DO-LOOP 
DO 700 K• I, Nil 

UK = U<K> 
VK = V<K> 

ROUTINES TO LOCATE THE DESIRED POINT 
TO FIND OUT THE IX VALUE FOR WHICH 
<U<K>, GE. XC IX- I> l oANO. <U<K> ·LT.XC IX>> 

IF CLXM2.EQ.0l GO TO 80 
IF CUK.GE.XCLX0>l GO TO 70 
I F' < UK, LT , X c I l > GO TO 6 0 
IMN = 2 
IMX • LX0 

30 IX = <IMN+IMXl/2 
IF <UK.GE.X<IX>> GO TO 40 
IMX • IX 
GO TO 50 

40 IMN " IX + I 
50 IF CIMX. GT.IMNl GO TO 30 

IX = IMX 
GO TO 9 0 

60 IX = I 
GO TO 90 

70 IX • LXPI 
GO TO 90 

80 IX = 2 
TO FIND OUT THE IY VALUE FOR WHICH 
CVCKl. GE. Y< IY-1 l >.AND. <V<K> .LT. 'r < IY> > 
90 IF' CLYM2.EQ.0l GO TO 150 

IF' <VK.GE.YCLY0>l GO TO 140 
IF CVK.LT.YCI» GO TO 130 
IMN = 2 
IMX = LY0 

100 IY = CIMN+IMX>/2 
I F < VK, GE. Y C I Y > l GO TO I I 0 
IMX = IY 
GO TO 120 

110 IMN = IY + I 
120 IF CIMX.GT.IMNl GO TO 100 

IY = IMX 
GO TO 160 

130 IY = I 
GO TO I 60 

140 IY = LYPI 
GO TO 160 

150 IY = 2 
TO CHECK IF THE DESIRED POINT I.S IN THE SAME RECTANGLE 
AS THE PREVIOUS POINT. IF YES, SKIP TO THE COMPUTATION 
OF THE POLYNOMIAL 
160 IF' CIX.EQ.IXPV .ANO. IY.EQ.IYPVl GO TO 690 

IXPV = IX 
IYPV = IY 

C ROUTINES TO PI CK UP NECESSARY X, Y, ANO Z VALUES, TO 
C COMPUTE THE ZA, ZB, ANO ZAB VALUES, AND TO ESTIMATE THEM 
C WHEN NECESSARY 

JX = IX 
IF CJX,EQ.l) JX 
IF CJX,EQ.LXPll JX = LX0 
JY = IY 
IF CJY.EQ.I) JY = 2 
IF CJY.EQ.LYPI> JY = LY0 
JXM2 " JX - 2 
JXML = JX - LX0 
JYM2 = JY - 2 
JYML = JY - LY0 

IN THE CORE AREA, I.E., IN THE RECTANGLE THAT CONTAINS 
THE DESIRED POINT 

X3 = XCJX-1> 
X4 XCJX> 
A3 = l.0/CX4-X3l 
Y3 = YCJY-ll 
Y4 YCJYl 
B3 = l.0/CY4-Y3l 
Z~3 ZCJX-1,JY-I> 
Z43 = ZCJX,JY-ll 
Z34 = ZCJX-1,JY> 
Z44 = ZCJX,JYl 
Z3A3 CZ43-Z33l•A3 
Z4A3 = CZ44-Z34l•A3 
Z3B3 • CZ34-Z33l•B3 
Z4B3 = CZ44-Z43>•B3 
ZA3B3 = CZ4B3-Z3B3l•A3 

C IN THE X DIRECTION 
IF CLXM2.EQ.0l GO TO 230 
IF CJXM2.EQ.0l GO TO 170 
X2 a XCJX-2> 
A2 = I .0/CX3-X2> 
Z23 = ZCJX-2,JY-I> 
2:24 • ZCJX-2,JY> 

0 



COLLECTED ALGORITHMS (cont.) 

Z3A2 = CZ33-Z23l•A2 
Z4A2 • CZ34-Z24l•A2 
IF' <JXML.·EQ.0> GO TO 180 

170 XS= XCJX+ll 
A4" 1.01cxS-X4l 
ZS3 • ZCJX+l,JY-1> 
ZS4 • ZCJX+l,JYl 
Z3A4 • CZ53-Z43l•A4 
Z4A4 = CZ54-Z44l•A4 
IF' <JXM2.NE.0l GO TO 190 
Z3A2 • Z3A3 + Z3A3 - Z3A4 
Z4A2 • Z4A3 + Z4A3 - Z4A4 
GO TO 190 

180 Z3A4 " Z3A3 + Z3A3 - Z3A2 
Z4A4 • Z4A3 + Z4A3 - Z4A2 

190 ZA2B3 = <Z4A2-Z3A2>•B3 
ZA4B3 • <Z4A4-Z3A4l•B3 
IF' <JX.!.E.3> GO TO 200 
Al = l.0/CX2-X<JX-3)l 
Z3AI = CZ23-ZCJX-3,JY-l>l•AI 
Z4AI • CZ24-ZCJX-3,JYll•AI 
GO TO 210 

200 Z3AI • Z3A2 + Z3A2 - Z3A3 
Z4AI • Z4A2 + Z4A2 - Z4A3 

:210 IF' cJX.GE.L.XMll GO TO 220 
AS• lo0/(XCJX+2>-XSl 
Z3A5 • <ZCJX+2,JV-l>-ZS3>•AS 
Z4A5 • CZCJX+2,JYl-Z54l•A5 
GO TO 2;10 

220 Z3A5 • Z3A4 + Z3A4 - Z3A3 
Z4A5 • Z4A4 + Z4A4 - Z4A3 
GO TO 240 

230 Z3A2 • Z3A3 
Z4A2 • Z4A3 
GO TO 180 

C lN THE Y DIRECTION 
240 IF' Cl.YM2.EQ.0l GO TO 310 

IF' CJYM2.EQ.0l GO TO 250 
Y2 • YCJY-2> 
B2 • t.0/CV3-V2> 
Z32 • ZCJX-1,JV-2> 
Z42 • ZCJX,JV-2> 
Z3B2 • CZ33-Z32>•B2 
Z4B2 • CZ43-Z42>•B2 
IF' CJVMl.oEQ.0> GO TO 260 

2S0 Y5 • YCJY+ll 
B4 • lo0/CVS-V4> 
Z35 • ZCJX-1,JV+ll 
Z4S • ZCJX,JV+ll 
Z384 • <Z3S-Z34l•B4 
Z4B4 • CZ45-Z44>•B4 
IF' <JVM2.NE.0> GO TO 270 
Z3B2 " Z3B3 + Z3B3 - Z384 
Z4B2 • Z4B3 + Z483 - Z484 
GO TO 270 

260 Z3B4 • Z3B3 + Z3B3 - Z3B2 
Z4B4 • Z4B3 + Z4B3 - Z4B2 

270 ZA382 • <Z4B2-Z3B2l•A3 
ZA3B4 • <Z4B4-Z384l•A3 
IF' CJY.L.E.3> GO TO 280 
Bl • t. 0/CY2-V<JY-3> > 
Z3BI • CZ32-ZCJX-l,JY-3>>•BI 
Z4BI • <Z42-Z<JX,JV-3>>•BI 
GO TO 290 

280 Z3BJ • Z382 + Z3B2 - Z383 
Z4BI • Z4B2 + Z4B2 - Z4B3 

:290 IF' CJY.GE.L.YMll GO TO 300 
BS • lo0/(YCJV+2l-YS> 
Z3B5 • CZ<JX-l.JY+2l-Z3S>•BS 
Z4BS • <Z<JX,JY+2l-Z4Sl•B5 
GO TO 320 

100 Z3B5 " Z3B4 + Z3B4 - Z3B3 
Z4B5 • Z4B4 + Z4B4 - Z4B3 
GO TO 320 

:)10 Z3B2 • Z3B3 
Z4B2 • Z4B3 
GO TO 260 

C IN THE DIAGONAL. DIRECTIO~S 
:320 IF' Cl.XM2.EQ.0l GO TO 400 

IF' <L.YM2.EQ.0l GO TO 410 
IF' CJXML.EQ.0> GO TO 350 
IF' CJYM2.EQ.0l GO TO 330 
ZA4B2 • <<Z53-ZCJX+l,JY-2>>•B2-i4B2l•A4 
IF' <JYML.EQ.0> GO TO 340 

130 ZA4B4 • <<Z<JX+l,JY+ll-Z54>•B4-Z4B4>•A4 
IF' <JVM2.NE.0> GO TO 380 
ZA4B2 • ZA483 + ZA4B3 - ZA4B4 
GO TO 380 

340 ZA4B4 " ZA4B3 + ZA4B3 - ZA482 
GO TO 380 

3S0 IF <JYM2.EQ.0> GO TO 360 
ZA2B2 • <Z3B2-<Z23-Z<JX-2,JV-2l>•B2>•A2 
IF <JYML..EQ.0> GO TO 370 

360 ZA2B4 • <Z3B4-<Z<JX-2,JY+ll-Z24l•B4l•A2 
IF' CJYM2.NE.0> GO TO 390 
ZA2B2 • ZA2B3 + ZA2B3 - ZA2B4 
GO TO 390 

370 ZA2B4 " ZA2B3 + ZA2B3, - ZA2B2 
GO TO 390 

380 If <JXM2.NE.0> GO TO 350 
ZA2B2 " ZA3B2 + ZA382 - ZA4B2 
ZA2B4 • ZA3B4 + ZA3B4 - ZA4B4 
GO TO 420 

390 IF' CJXML..NE.0> GO TO 420 
ZA4B2 • ZA382 + ZA3B2 - ZA282 
ZA4B4 • ZA3B4 + ZA3B4 - ZA2B4 
GO TO 420 

.1;00 ZA282 " ZA382 
ZA4B2 • ZA3B2 
ZA2B4 • Z:A384 
ZA4B4 = ZA3B4 
GO TO 420 

410 ZA2B2 • ZA283 
ZA2B4 • ZA2B3 
ZA4B2 • ZA4B3 
ZA4B4 • ZA4B3 

474-P 4-

C NUMERICAi. DIFFERENTIATION TO DE1'ERMINE PARTIAL. 
C DERIVATIVES ZX, zy, AND ZXY AS WEIGHTED MEANS OF' DIVIDED 
C DIF'F'ERENCES ZA, ZB. AND ZAB, RESPECT I VEL.Y 

420 DO 480 JY•2, 3 
00 470 JX•2,3 

W2 • AES<ZA<JX+2,JY-ll-ZA<JX+l,JY-I)) 
W3 "ABS<ZA<JX,JY-ll-ZACJX-1,.IY-lll 
S•' • W2 + '-'3 
IF' CSW.EQ.0.0> GO TO 430 
... X2 " W2/SW 
WX3 " W3/ S"1 
GO TO 441i! 

430 WX2 " 0.5 
WX3 = 0.5 

440 ZX< JX,JY l " WX2•ZA< JX, JY- I l + WX3•ZA< JX+ I, JY- I l 
•'2 • AESCZB<JX-l,JY+2l-ZB<JX-l.,JY+lll 
W3 " ABS<ZB<JX- l,JY>-ZB<JX-1-.IY- Ill 
SW " W2 + W3 
IF' <SW.EQ.li!.0l GO TO 450 
'-'Y2 " W2/S"1 
WY3 • W3/SW 
GO TO 460 

450 1.rv2 = 0.s 
l.'Y3" 0.s 

460 ZY<JX,JYl • '-'Y2•ZB<JX-l,JYl + WV3•ZB<JX-1,JV+ll 
ZXY<JX,JY> • 
llY2• < WX2•ZAB< JX- I 1 JY- I l +WX3•Zi\BCJX, JY- I l > + 

• WY3• < WX2•ZAEC JX- I ,JYl +WX3•ZAl'•:JX, JY l l 
470 CONTINUE 
480 CONTINUE 

c WHEN CU<Klol.ToXCllloORo<U(K).GT.X<L.Xll 
IF' CIX.EQ.L.XPll GO TO 530 

490 
500 

510 

520 

S30 

540 
S50 

560 

570 

580 
C WHEN 

590 

600 

610 
620 

630 

IF' C IX• NE. I > GO TO S9 0 
W2 • A4•<3. 0•A3+A4l 
WI • 2·0•A3•<A3-A4l + W2 
DO 500 JY,,2, 3 

ZX<l,JY> • CWl•ZA<l1JY-ll+W2•ZAC21JY-lll/CWl+W2> 
ZVC l,JVl • ZVC2,JV> + ZVC2,JV> ·• ZVC31JV> 
ZXYC I.JV> • ZXV<2,JV> + ZXVC2,JY> - ZXVC3,JV> 
DO 490 JX1•2,3 

JX • S - JXI 
ZXCJX,JV> • ZX<JX-1,JY> 
ZYCJX,JV> • ZVCJX-1,JY) 
ZXVCJX,JV> • ZXYCJX-1,JV> 

CONTINUE 
CONTINUE 
X3 • X3 - lo0/A4 
Z33 • Z33 - Z3A2/A4 
00 S 10 JY• I, S 

ZBC2,JV> • ZBCl,JV> 
CONTINUE 
DO S20 JY=2,4 

ZBCl,JV> • ZBCl1JV> - ZABCl,JV-ll/A4 
CONTINUE 
A3 • A4 
JX " I 
GO TO S70 
W4 " A2•C3.0•A3+A2> 
WS • 2.0•A3•CA3-A2> + W4 
00 SS0 JY•2, 3 

ZXC4,JV> • CW4•ZAC41JY-l>+WS•ZACS1JV-lll/CW4+WS> 
ZYC4,JY> " ZYC3,JYl + ZVC3,JY> - ZVC2,JVl 
ZXVC4,JY> • ZXY<3,JY) + ZXYC3,JY> - ZXVC2,JV> 
DO 540 JX=2, 3 

ZXCJX,JY> " ZX<JX+l,JV> 
ZY<JX,JV> " ZY<JX+ I 1JY> 
ZXYCJX,JYl • ZXY<JX+l,JY> 

CONTINUE 
CONTINL'E 
X3 • X4 
Z33 " Z43 
DO 560 JY• 1, S 

ZB<l,JVl • Z8C2,JYl 
CONTINUE 
A3 • A2 
JX • 3 
ZA< 3, I> • ZA< JX+ I, I> 
DO 580 JV• I, 3 

ZABC2,JY> • ZAB<JX,JY> 
CONTINUE 

CV<K> ol.T.YC I)) .QR. <V<K> • GT.VCL.Yl l 
IF CIY·EQ.L.YPll GO TO 630 
IF' <IY.NE. I> GO TO 680 
W2 " B4•<3.0•B3+B4l 
WI " 2.0•B3•CB3-B4l + W2 
DO 620 JX•2, 3 

IF CJX.EQ.3 .AND· IX.EQ.L.XPI> GO TO 600 
IF' CJX.EQ.2 .AND• IX.EQ.tl GO 1'0 600 
ZYCJX, I> = CWl•ZB<JX-1, I >+W2•ZllCJX- I, 2l l/C'-'l+\12) 
ZXCJX,ll • ZX<JX,2> + ZX<JX,2> - ZX<JX,3> 
ZXY(JX1 1l = ZXV<JX,2l + ZXY<JX,2l - ZXV<JX,3> 
DO 610 JY I= 2, 3 

JV " 5 - JYI 
ZYCJX1JVl • ZYCJX,JY-ll 
ZX<JX,JYl • ZX<JX,JY-1) 
ZXY <JX, JY > • ZXY< JX, JY- I> 

CONTINUE 
CONTINUE 
Y3 "V3 - lo0/B4 
Z33 " Z33 - Z3B2/l'4 
Z3A3 " Z3A3 - ZA382/B4 
Z383 • Z3B2 
ZA3B3 • ZA382 
B3 = B4 
GO TO 670 
W4 = B2•C3.0•B3+B2> 
WS • 2o0•B3•CB3-B2l + \14 
00 660 JX•21 3 

0 



COLLECTED ALGORITHMS (cont.) 

IF CJX.EQ.3 .ANO. IX.EQ.LXPI> GO TO 640 
IF CJX.EQ.2 .ANO. IX.EQ. ll GO TO 640 
ZYCJX,4> = <W4•ZB<JX-l,4l+W5•ZBCJX-l.5ll/CW4+W5> 
ZXCJX,4> = ZXCJX,3> + ZXCJX,3) - ZXCJX,2> 
ZXYCJX, 4) = ZXYCJX .. 3> + ZXYCJX, 3> - ZXYCJX, 2> 

640 DO 650 JY=2,3 
ZYCJX,JY> = ZYCJX,JY+l> 
ZXCJX,JY> • ZXCJX,JY+ll 
ZXYCJX,JY) = ZXYCJX,JY+l) 

6 50 CONTINUE 
660 CONTINUE 

Y3 = Y4 
Z33 = Z33 + Z3B3/B3 
Z3A3 = Z3A3 + ZA3B3/B3 
Z3B3 = Z3B4 
ZA3B3 = ZA3B4 
83 = B2 

670 IF <IX.NE.I .ANO. IX.NEoLXPI> GO TO 680 
,JX = IX/LXP I + 2 
,JX I = 5 - JX 
,;y = IY/LYPI + 2 
,JY 1 • 5 - JY 
ZXCJX,JY) • ZXCJXl,JY) + ZXCJX,JYI> - ZXCJXl,JYI> 
ZYCJX,JY> = ZYCJXl,JY> + ZYCJX,JYl> - ZYCJXl,JYI> 
l.XYCJX,JY> • ZXYCJXl,JY> + ZXYCJX,JYI> - ZXYCJXl,JYI> 

C DETERMINATION OF THE COEFFICIENTS OF THE POLYNOMIAL 
680 ZX3B3 <ZX34-ZX33>•B3 

ZX4B3 = CZX44-ZX43>•B3 
ZY3A3 = CZY43-ZY33>•A3 
ZY4A3 • CZY44-ZY34>•A3 
A = ZA3B3 - ZX3B3 - ZY3A3 + ZXY33 
B = ZX4B3 - ZX3B3 - ZXY43 + ZXY33 
C = ZY4A3 - ZY3A3 - ZXY34 + ZXY33 
D = ZXY44 - ZXY43 - ZXY34 + ZXY33 
E = A + A - B - C 
A3SQ = A3•A3 
B3SQ = B3•B3 
P02 C2.0•CZ3B3-ZY33l+Z383-ZY34>•B3 
P03 C-2.0•Z3B3+ZY34+ZY33>•B3SQ 
Pl2 = C2.0•<ZX3B3-ZXY33>+ZX3B3-ZXY34>•B3 
P13 • C-2.0•ZX3B3+ZXY34+ZXY33>•B3SQ 
P20 C2.0•CZ3A3-ZX33>+Z3A3-ZX43>•A3 
P21 C2. 0•<ZY3A3-ZXY33>+ZY3A3-ZXY43>•A3 
P22 C3.0•<A+El+D>•A3•B3 
P23 • C-3.0•E-B-Dl•A3•B3SQ 
P30 • C-2.0•Z3A3+ZX43+ZX33>•A3SQ 
P3 l C -2. 0•ZY3A3+ZXY 43+ZXY33 > *A3SQ 
P32 <-3.0•E-C-D>•B3•A3SQ 
P33 CD+E+E>•A3SQ•B3SQ 

C COMPUTATION OF THE POLYNOMIAL 
690 DY VK - Y3 

Q0 P00 + DY•CP0l+DY•<P02+DY•P03>> 
QI Pl0 + DY•CPI l+DY•CP12+DY•Pl3» 
Q2 = P20 + DY•CP2l+DY•CP22+DY•P23>> 
Q3 P30 + DY•CP3l+DY•CP32+DY•P33>> 
DX UK - X3 
WCK> Q0 + DX•CQl+DX•CQ2+DX•Q3)) 

7'00 CONTINUE 
C NORMAL EXIT 

RETURN 
C ERROR EXIT 

710 WRITE CIU0,99999) 
GO TO 800 

720 WRITE CIU0.99998> 
GO TO 800 

730 WRITE CIV0,99997> 
GO TO 800 

740 WRITE CIU0,99996> 
GO TO 760 

750 WRITE CIU0,99995> 
760 WRITE CIU0,99994> IX, XCIX> 

GO TO 800 
770 WRITE CIU0,99993> 

GO TO 790 
780 WRITE CIU0,99992> 
790 WRITE < IU0,9999 l > IY, Y< IY> 
800 WRITE CIU0,99990> LX0, LY0, N0 

RETURN 
C FORMAT STATEMENTS 
99999 FORMATC1X/23H *** LX = I OR LESS./) 
99998 FORMATCIX/23H *** LY• I OR LESS./> 
99997 FORMATCIX/22H N = 0 OR LESS.I> 
99996 FORMAT< I X/2 7H *** I DENT I CAL X VALUES./> 
99995 FORMAT< IX/33H *** X VALUES OUT OF SEQUENCE 0 /l 
99994 FORMATC7H IX=• I6, 10X, 7HXCIX> =• E12.3> 
99993 FORMAT< IX/27H *** IDENTICAL Y VALUES.I> 
99992 FORMAT< IX/33H *** Y VALUES OUT OF SE:QUENCEoll 
99991 FORMAT<7H IY =• I6, !lilX, 7HYCIY> •• El2.3> 
99990 FORMATC7H LX ... I6. 10x. 4HLY •• I6. 10x, 3HN =· I7/ 

* 36H ERROR DETECTED IN ROUTINE ITPLUV> 
END 

SUBROUTINE SFCFITCIU, LX, LY, X, y, z, MX, MY, NU, NV, U, 

* v, •'> 
SMOOTH SURFACE FITTING 
THIS SUBROUTINE FITS A SMOOTH SURFACE OF A SINGLE-VALUED 

C BIVARIATE FUNCTION Z • ZCX,Y> TO A SET OF INPUT DATA 
C POINTS GIVEN AT INPUT GRID POINTS IN AN X-Y PLANE· IT 
C GENERATES A SET OF OUTPUT GRID POINTS BY EtlUALLY DIVIDING 
C THE X AND Y COORDINATES IN EACH INTERVAL BETWEEN A PAIR 
C OF INPUT GRID POINTS, INTERPOLATES THE Z Vl\LUE FOR THE 
C X AND Y VALUES OF EACH OUTPUT GRID PO INT, l\ND GENERATES 
C A SET OF OUTPUT POINTS CONSISTING OF INPUT DATA POINTS 
C AND THE INTERPOLATED POINTS. 
C THE METHOD IS BASED ON A PIECE-WISE FUNCTION COMPOSED OF 
C A SET OF BICUBIC POLYNOMIALS IN X ANDY. EACH POLYNOMIAL 
C IS APPLICABLE TO A RECTANGLE OF THE INPUT GRID IN THE X-Y 
C PLANE. EACH POLYNOMIAL IS DETERMINED LOCAL.LY. 
C THE INPUT PARAMETERS ARE 
C IU • LOGICAL UNIT NUMBER OF STANDARD OUT-PUT UNIT 
C LX • NUMBER OF INPUT GRID POINTS IN THE X COORDINATE 
C <MUST BE 2 OR GREATER> 

474-P 5-

C LY • NUMBER OF INPUT GRID POINTS IN THEY COORDINATE 
C <MUST BE 2 OR GREATER> 
C X • ARRAY OF DIMENSION LX STORING THE X COORDINATES 
C OF INPUT GRID POINTS <IN ASCENDING OR DESCENDING 
C ORDER> 
C Y = ARRAY OF DIMENSION LY STORING THE Y COORDINATES 
C OF INPUT GRID POINTS <IN ASCENDING OR DESCENDING 
C ORDER> 
C Z = DOUBLY-DIMENSIONED ARRAY OF DIMENSION CLX,LY> 
C STORING THE VALUES OF THE FUNCTION AT INPUT 
C GRID POINTS 
C MX • NUMBER OF SUBINTERVALS BETWEEN EACH PAIR OF 
C INPUT GRID POINTS IN THE X COORDINATE 
C <MUST BE 2 OR GREATER> 
C MY • NUMBER OF SUBINTERVALS BETWEEN EACH PAIR OF 
C INPUT GRID POINTS IN THE Y COORDINATE 
C <MUST SE 2 OR GREATER> 
C NU • NUMBER OF OUTPUT GRID POINTS IN THE X COORDINATE 
C • <LX-l>•MX+I 
C NV • NUMBER OF OUTPUT GRID POINTS IN THE Y COORDINATE 
C = CLY-l>•MY+l 
C THE OUTPUT PARAMETERS ARE 
C U ARRAY OF DIMENSION NU WHERE THE X COORt)INATES OF 
C OUTPUT POINTS ARE TO BE DISPLAYED 
C V = ARRAY OF DIMENSION NV WHERE THE Y COORDINATES OF 
C OUTPUT POINTS ARE TO BE DISPLAYED 
C W DOUBLY-DIMENSIONED ARRAY OF DIMENSION CNU,NV> 
C WHERE THE Z COORDINATES OF OUTPUT POINTS ARE TO 
C BE DISPLAYED 
C SOME VARIABLES INTERNALLY USED ARE 
C ZA = DIVIDED DIFFERENCE OF Z WITH RESPECT TD X 
C ZB = DIVIDED DIFFERENCE OF Z WITH RESPECT TO Y 
C ZAB • SECOND ORDER DI VI OED DIFFERENCE 0 F Z WI TH 
C RESPECT TO X AND Y 
C ZX • PARTIAL DERIVATIVE OF Z t,,.•ITH RESPECT TCI X 
C ZY " PARTIAL DERIVATIVE OF Z t,,.•ITH RESPECT TO Y 
C ZXY • SECOND ORDER PARTIAL DERIVATIVE OF Z WITH 
C RESPECT TO X AND Y 
C DECLARATION STATEMENTS 

DIMENSION XCLX» YCLY), ZCLX,LY), U<NU>. VCNV>. WCNU,NVl 
DIMENSION ZA(4,2>. ZBCS), ZAB<2,3» ZXC2J.. ZYC2), ZXYC2l 
EQUIVALENCE CZ3A2,ZAC !)), CZ3A3,ZAC2», C:Z3A4,ZAC3», 

* CZ3A5,ZAC4)), CZ4A2,ZACS», CZ4A3,ZAC6)l'> CZ4A4,ZA<7», 
* CZ4A5,ZAC8)), CZ4Bl,ZB<l>>. CZ4B2,ZBC2n, CZ483,ZBC3ll, 

CZ4B4,ZB<4»• <Z4BS.ZB<5», <ZA382,ZAB<l)), 
CZA4B2,ZAB<2>>• <ZA3B3,ZAB<3>>• <ZA483,ZABC4>>, 

* CZA3B4,ZAB<S>» CZ.A4B4,ZABC6>» <ZX43,Z>t<l», 
* CZX44,ZXC2>>, <ZY43,ZY<ll), <ZY44,ZYC2>>, 
* CZXY43 1 ZXYCI», CZXY44,ZXYC2)), CP00,Z3:1>, CP01,ZY33>, 
* CP10,ZX33>, CPll,ZXY33> 

EQUIVALENCE CIXMl,JX), CIXML.JY), CDU.DV,ox,oY>. 
* <FMX,RMX,FMY,RMY,SW,E), CW2,1.'Y2,A,Q0), <:W3,WY3,B,Ql>. 
* CWX2,C,Q2>. CWX3,D,Q3>. CZ3A2,P02), CZ4A2,P03>, 
* CZ4Bl,Pl2), CZ4B2,Pl3>, CZ484,P20>, CZ4U5,P21>, 
* CZA3B2,P22>. CZA3B4,P23> 

PRELIMINARY PROCESSING 
SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES 

IU0 = IU 
LX0 • LX 
LXMI = LX0 - 1 
LXM2 = LXMI - I 
LY0 = LY 
LYM! = LY0 - I 
LYM2 = LYM! - 1 
MX0 = MX 
MXPI = MX0 + 
MXMI = MX0 -
MY0 = MY 
MYPI = MY0 + 
MYMI " MY0 -
NU0 = NU 
NV0 = NV 

C ERROR CHECK 
IF CLXM2.LT.0> GO TO 400 
IF CLYM2.LT.0> GO TO 410 
IF CMXMl.LE.0> GO TO 420 
IF CMYMl.LE.0> GO TO 430 
IF CNU0.NE.LXMl•MX0+1> GO TO 440 
IF CNV0.NE.LYMl•MY0+l> GO TO 450 
IX = 2 
IF CXCl>-XC2» 10, 460, 30 

10 DO 20 IX•3,LX0 
IF CXCIX-1>-XCIX)) 20, 460, 470 

20 CONTINUE 
GO TO 50 

30 DO 40 IX•3,LX0 
IF CXCIX-1>-XCIX» 470, 460, 40 

40 CONTINUE 
50 I Y = 2 

IF CYCl>-YC2» 60, 490, 80 
60 DO 70 IY=3,LY0 

IF CYCIY-l>-YCIY» 70, 490, 500 
70 CONTINUE 

GO TO 100 
80 DO 90 IY•3,LY0 

IF CYCIY-1>-YCIY» 500, 490, 90 
90 CONTINUE 

C COMPUTATION OF THE U ARRAY 
100 FMX = MX0 

RMX = lo0/FMX 
KU = I 
X4 • XCI) 
UC I) = X4 
DO 120 IX•2,LX0 

X3 • X4 
X4 = XC IX> 
DU • CX4-X3l*RMX 
DO 110 JX•l,MXMI 

KU • KU + I 
UCKU> = UCKU- I> + OU 

110 CONTINUE 
KU = KU + I 
UCKU> = X4 

120 CONTINUE 

0 



COLLECTED ALGORITHMS (cont.) 

C COMPUTATION OF THE V ARRAY 
FMY = MYe 
RMY • 1.e/FMY 
KV • l 
Y4 " YCI> 
VC I> • Y4 
DO 14e IY•2.LYe 

Y3 • Y4 
Y4 • YCIY> 
DV • <Y4-Y3>•RMY 
DO 13e JY•l,MYMI 

KV • KV + I 
VCKV> "VCKV-1> + DV 

1 3e CONTINUE 
KV • KV + 1 
VCKV> • Y4 

14e CONTINUE 
C MAIN DO-LOOPS 

JYMX " MYe 
KVe = e 
DO 39e IY•21LYe 

IYM2 • IY - 2 
IYM3 " IYM2 - I 
IYML • IY - LYe 
IYMLl • IYML + I 
IX6 " e 
IF CIYMLoEQ,e> JYMX • MYPI 
JXMX ,. MXe 
KUe • e 
DO 38e IX .. l.LXe 

IXMI • IX - I 
IXML • IX - LXe 
IF CIXML.EQ,e> JXMX ,. MXPI 

C ROUTINES TO PICK UP NECESSARY X, y, AND Z VALUES, TO 
C COMPUTE THE ZA, ZB, AND ZAB VALUES, AND TO ESTIMATE THEM 
C WHEN NECESSARY 
C PRELIMINARY WHEN IX.EQ, I 

IF CIXMloNE.e> GO TIJ 1se 
Y3 • YC IY-1 > 
Y4 • YCIY> 
B3 • 1.e/CY4-Y3> 
R3SQ • B3•B3 
IF CIYM2.GT.e> B2 " 1.e/CY3-YCIY-2)) 
IF CIYM3.GT.0> Bl • 1.0/CYCIY-2>-YCIY-3>> 
IF CIYMLoLT.e> B4. 1.e/CYCIY+l>-Y4) 
IF CIYMLloLT.e> 85 • lo0/CYCIY+2>-YCIY+I)) 
GO TO 18e 

C TO SAVE THE OLD VALUES 
1se Z3A2 • Z3A3 

Z4A2 • Z4A3 
X3 • X4 

16e 

11e 

Z33 • Z43 
Z3B3 • Z4B3 
A3 • A4 
A3SQ • A3•A3 
Z3A3 • Z3A4 
Z4A3 " Z4A4 
ZA3B2 • ZA4B2 
ZA3B3 • ZA4B3 
ZA3B4 • ZA4B4 
X4 • XS 
Z43 • Z53 
Z4BI • Z581 
Z4B2 • Z5B2 
Z4B3 • Z5B3 
Z4B4 • ZSB4 
Z4BS " Z5B5 
A4 = AS 
Z3A4 " Z3A5 
Z4A4 • Z4AS 
ZA4B2 • ZASB2 
ZA4B3 = ZASB3 
ZA4B4 • ZASB4 
XS • X6 
Z53 • Z63 
Z54 • Z64 
ZSBl • Z6Bl 
Z582 • Z682 
ZS83 " Z6B3 
ZSB4 " Z684 
ZSBS • Z685 

C TO COMPUTE THE ZA, ZB, AND ZAB VALUES AND 
C TO ESTIMATE THE ZB VALUES 
C WHEN CIY.LE.3>.0R.CIY.GE.LY-1) 

tee IX6 = IX6 + I 
IF CIX6.GT.LXe> GO TO 26e 
X6 • XCIX6> 
Z63 • ZCIX6,IY-I> 
Z64 = ZCIX6.IY> 
Z683 = <Z64-Z63>•B3 
IF CLYM2oEQoil> GO TO 2e0 
IF CIYM2.EQ.e> GO TO 19e 
Z62 ,. ZC!X6,IY-2) 
Z6B2 ,. CZ63-Z62>•B2 
IF <IYML.NE.e> GO TO 19e 
Z684 • Z683 + Z683 - Z682 
GO TO 21e 

l9e Z65 " ZCIX6,IY+ll 
Z684 " CZ6S-Z64l•B4 
IF CIYM2.NE.e> GO TO 21e 
Z682 = Z6B3 + Z683 - Z684 
GO TO 2 le 

2e0 Z6B2 = Z683 
Z684 = Z6B3 

210 IF <IYM3.LE.0> GO TO 220 
Z681 = CZ62-Z<IX6,IY-3>>•Bl 
GO TO 23e 

22e Z6Bl " Z682 + Z682 - Z683 
230 IF CIYMLl·GE.0> GO TO 240 

Z685 = CZCIX61IY+2>-Z65l•BS 
GO TO 2S0 

240 Z6BS = Z684 + Z684 - Z683 
2se IF CIX6.EQ. I) GO TO 170 

AS• lo0/CX6-XS> 
Z3AS • CZ63-Z53>•A5 
Z4A5 • CZ64-ZS4>•AS 
ZAS82 • CZ6B2-ZSB2>•AS 
ZA583 • CZ683-ZSB3>•AS 
ZASB4 • CZ684-ZSB4>•A5 
IF CIX6.EQ.2) GO TO 160 
GO TO 280 

C TO ESTIMATE THE ZA AND ZAB VALUES 
C WHEN CIX.GE.LX-1>-AND.CLX.GT.2> 

260 IF CLXM2.EQ.0> GO TO 270 
Z3A5 • Z3A4 + Z3A4 - Z3A3 
Z4AS • Z4A4 + Z4A4 - Z4A3 
IF CIXMLoEQ.Ql) GO TO 290 
ZASB2 = ZA4~2 + ZA4B2 - ZA3B2 
ZAS83 • ZA483 + ZA4B3 - ZA3B3 
ZASB4 = ZA4B4 + ZA4B4 - ZA3B4 
GO TO 290 

C TO ESTIMATE THE ZA AND ZAB VALUES 
C WHEN CIX.GE.LX-1>-AND.CLX.EQ.2> 

270 Z3A5 • Z3A4 
Z4A5 • Z4A4 
IF CIXML.EQ,0l GO TO 291!1 
ZASB2 • ZA482 
ZASB3 • ZA483 
ZASB4 = ZA484 

C TO ESTIMATE THE ZA AND ZAB VALUES 
C WHEN IX.EQ, I 

280 IF CIXMloNEo0) GO TO 290 
Z3A3 • Z3A4 + Z3A4 - Z3A5 
Z3A2 • Z3A3 + Z3A3 - Z3A4 
Z4A3 = Z4A4 + Z4A4 - Z4AS 
Z4A2 • Z4A3 + Z4A3 - Z4A4 
ZA382 • ZA482 + ZA482 - ZASB2 
ZA383 • ZA483 + ZA483 - ZA583 
ZA384 = ZA484 + ZA484 - ZA584 
GO TO 300 

474-P 6- 0 

C NUMERICAL DIFFERENTIATION TO DE:TERMINE PARTIAL 
C DERIVATIVES ZX, zy, AND ZXY AS WEIGHTED MEANS OF DIVIDED 
c DIFFERENCES ZA. za. AND ZAB. RESPECTIVE:LY 
C TO SAVE THE OLD VALUES WHEN IX.NE.I 

290 ZX33 • ZX43 
ZX34 " ZX44 
ZY33 = ZY43 
ZY34 " ZY44 
ZXY33 • ZXY43 
ZXY34 " ZXY44 

C NEW COMPUTATION 
300 DO 350 JY•l,2 

W2 • ABSCZAC4,JY>-ZA<3,JY>> 
W3 = ABSCZAC21JY>-ZA<l,JY>> 
SW = W2 + W3 
IF csw.EQ.e.0> GO TO 31e 
WX2 • W2/SW 
WX3 " W3/SW 
GO TO 320 

310 wx2 • e.s 
WX3 • e. S 

320 ZXCJY> • WX2•ZAC2,JY) + WX3•ZAC3,JY> 
W2 • ABSCZBCJY+3>-ZBCJY+2)) 
W3 • ABSCZBCJY+l>-ZBCJY» 
SW • W2 + W3 
IF csw.EQ.0.0> GO TO 330 
WY2 • W2/SW 
WY3 • W3/SW 
GO TO 34e 

33e wv2 • 0.s 
WY3 • 0,5 

340 ZYCJY> • WY2•ZBCJY+I> + WY3•ZBCJY+2> 
ZXYCJY> • WY2•CWX2•ZABCJ,JY>+WX3•ZABC2,JY>> + 

• WY3•CWX2•ZABCJ,JY+l>+wX3•ZABC2,JY+I>> 
3Slll CONTINUE 

I F < I XM I , EQ, e > GO TO 38 Ill 
C DETERMINATION OF THE COEFFICIENTS OF THE POLYNOMIAL 

ZX383 ,. CZX34-ZX33>•B3 
ZX483 • CZX44-ZX43>•B3 
ZY3A3 • CZY43-ZY33l•A3 
ZY4A3 • CZY44-ZY34l•A3 
A • ZA383 - ZX383 - ZY3A3 + ZXY33 
B • ZX483 - ZX383 - ZXY43 + ZXY33 
C " ZY4A3 - ZY3A3 - ZXY34 + ZXY33 
D • ZXY44 - ZXY43 - ZXY34 + ZXY33 
E • A + A - B - C 
Pe2 • c2.e•<Z3B3-ZY33l+Z383-ZY34>•B3 
P03 • C-2,fll•Z383+ZY34+ZY33>•B3SQ 
Pl2 • C2o0•CZX3B3-ZXY33l+ZX383-ZXY34>•B3 
P 13 • C -2, lll•ZX383+ZXY34+ZXY33 H•B3SQ 
P20 • C2.0•CZ3A3-ZX33>+Z3A3-ZX43>•A3 
P21 • c2.e.CZY3A3-ZXY33l~ZY3A3··ZXY43>•A3 
P22 • C3.e•CA+E>+Dl•A3•83 
P23 " C-3,e•E-B-Dl•A3•83SQ 
P30 • <-2,fll•Z3A3+ZX43+ZX33l•A3SQ 
P31 • C-2.0•ZY3A3+ZXY43+ZXY33> 0 A3SQ 
P32 • c-3.e•E-C-Dl•B3•A3SQ 
P33 • CD+E+El•A3SQ•B3SQ 

C COMPUTATION OF THE POLYNOMIAL 
DO 37e JY•l,JYMX 

KV • KVe + JY 
DY • VCKVl - Y3 
Q0 • Pelll + DY•CPl!ll+DY•CP02+DY•P03l> 
QI • Pl0 + DY•CPI l+DY•CPl2+DY•Pl3» 
Q2 • P2e + DY•CP21+DY•CP22+DY•P23» 
Q3 • P30 + DY•CP31+DY•<P32+D'f•P33>l 
DO 360 JX• I, JXMX 

KU • KUe + JX 
DX • UCKUl - X3 
WCKU1 KV) • Qe + DX•CQl+DX•,:Q2+DX•Q3)) 

361!1 CONTINUE 
371!1 CONTINUE 

KUe • KU,ll + · MXll 
381l CONTINUE 

KVll • KVll + MYl!I 
391l CONTINUE 



COLl,ECTED ALGORITHMS (cont.) 474-P 7- Rt 

500 WRITE ClU0,99989> 
510 WRITE CIU0,99988> IY. YCIY> 

C NORMAi. EXIT 
RETURN 

C ERROR EXIT 520 WRITE CIU0,99987> LX0, MX0, NU0, LY0. MV0, NV0 
400 WRITE CIU0,99999> 

GO TO 520 
410 WRITE CIU0.99998> 

GO TO 520 
420 WHITE CIU0,99997> 

GO TO 520 
430 WRITE CIU0,99996> 

GO TO 520 
440 WRITE CIU0,99995> 

GO TO 520 
450 WRITE C!U0;99994) 

GO TO 520 
460 WR! TE CI U0, 9999 3 > 

GO TO 480 
470 WRITE C !U0,99992) 
480 WRITE CIU0,99991) IX, XCIX> 

GO TO 520 
490 WRITE C IU0,99990> 

GO TO 510 

RETURN 
C FORMAT STATEMENTS 
99999 FO.RMATC IX/23H *** LX • I OR LESS.I> 
99998 FORMATCIX/23H *** LY• I OR LESS.I> 
99997 FORMATCIX/23H *** MX • I OR LESS,/> 
99996 FORMATCIX/23H *** MY• I OR LESS,/> 
99995 FORMAT< IX/26H *** IMPROPER NU VALUE·l> 
99994 FORMAT< IX/26H *** IMPROPER NV VALUE• l> 
99993 FORMATCIX/27H *** IDENTICAL X VALUES .. !> 
99992 FORMATCIX/33H *** X VALUES OUT OF SEQUENCE.I> 
99991 FORMATC7H IX •• 16, 10X, 7HXCIX) •• E:12.3> 
99990 FORMAT< IX/27H *** IDENTICAL Y VALUES •. !> 
99989 FORMATCIX/33H *** Y VALUES OUT OF SEQUENCE.I> 
99988 FORMATC7H IY •• I6. 10X. 7HYCIY> •• Ei12.3> 
99987 FORMATC?H LX •• I~. 1ex. 4HMX •• 16. n0x. 4HNU •• I6/ 

• 7H LY •• I6. 10x. 4HMY ... I6. 10x. 4HNV •• I6/6H ERROR. 
* 30H DETECTED IN ROUTINE SFCFIT> 

END 

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, Pages 241. 

REMARK ON ALGORITHM 4 7 4 

Bivariate Interpolation and Smooth Surface Fitting Based on Local 
Procedures [E2] 
[H. Akima, Comm. ACM 17, 1 (Jan. 1974), 26-31] 

M.R. Anderson [Recd 14 February 1978 and 5 April 1978] 
Department of Phys:ics, University of Michigan, Physics-Astronomy Building, 
Ann Arbor, MI 4810H 

Subroutine SFCFIT contains a violation of the Fortran Standard [1] similar to 
that observed [2] in a previous contribution by the same author [3]. Section 
7.1.2.8 states that the initial value of a DO statement must be less than or equal 
to the value represented by the terminal parameter. When LX or LY are input as 
2, DO statements labeled 10, 30, 60, and 80 violate this -rule. Error conditions of 

IDENTICAL X VALUES, X VALUES OUT OF SEQUENCE, 
IDENTICAL Y VALUES, Y VALUES OUT OF SEQUENCE 

may improperly result from comparisons of array variables, subscripts for which 
are incorrectly generated, within these DO loops. 

Subroutine SFCFI'.T may be corrected to avoid the above violation by changing 
the initial parameters in DO statements labeled 10, 30, 60, and 80 from 3 to 2. 

As altered, these carefully written subroutines have been used extensively and 
successfully. 

REFERENCES 
1. ANSI Standard Fortran, X3.9-1966. Amer. Nat. Stand. Inst., New York, 1966. 
2. ANDERSON, M.R. Remark on Algorithm 433. ACM Trans. Math. Software 2, 2 (June 1976), 208. 
3. AKIMA, H. Algorithm 433. Interpolation and smooth curve fitting based on local procedures. 

Comm. ACM 15, 10 (Oct. 1972), 914-918. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 475 

Visible Surface Plotting 
Program [J6] 
Thomas Wright [Recd. 18 Apr. 1972, 13 Oct. 1972] 
Computing Facility, National Center for Atmospheric 
Research, Boulder, CO 80302 

National Center for Atmospheric Research is sponsored by the 
National Science Foundation 

Key Words and Phrases: hidden line problem, computer 
graphics, contour surface 

CR Categories: 3.65, 4.41, 8.2 
Language: Fortran 

[This program is not in ANSI Fortran. Nonstandard features·are 
noted in the text. A demonstration driver is included to illustrate 
use of the subroutines. 1/0 unit 9 is used by this driver.-LDF.] 

Description 
This package of three routines produces a perspective picture 

of an arbitrary object or group of objects with the hidden parts not 
drawn. The objects are assumed to be stored in the format described 
below, a format which was chosen to facilitate the display of func
tions of three variables (Figure I) or output from three-dimensional 
computer simulations (Figure 2). The basic method is to contour 
cuts through the array, starting with a cut nearest the observer. The 
algorithm leaves out the hidden parts of the contours by suppressing 
lines enclosed within lines produced while processing preceding cuts. 
The technique is described in detail in [2]. 

The object is defined in a three-dimensional array by setting 
words to one where the object is, and to zero where it is not. That 
is, the position in the array corresponds to a position in three-space, 
and the value of the array tells whether any object is present at that 
position or not. Because a large array is needed to define objects 
with good resolution, only a part of the array is passed to the 
package with each call. 

There arc three subroutines in the package. INIT3D is called 
at the beginning of a picture. This call can be skipped sometimes 
if certain criteria are met and certain precautions are taken. See the 
comment lines for details. SETORG (which has an entry point 
PERSPC) does three-space to two-space perspective transforma
tions. It is called by INIT3D and need not be called by the user. 
The mathematical method for the three-space to two-space trans
formation is due to Kubert, Szabo, and Giulieri [I]. DAN DR 
(draw and remember) is called successively to process different 
parts of the three-dimensional array. For example, in Figure 3, the 
nearer plane would be processed in the first call to DAN DR, while 
the further plane would be processed in a subsequent call. A sample 
program is provided with the algorithm to illustrate this point. 

Although this package was developed using NCAR 's CDC 
machines with locally written systems and compilers, implementa
tion on different machines or systems should not be too difficult 
regardless of the plotter. The algorithm has been tested on the 

475-P 1- 0 

Fig. 1. Four contour surfaces of the wave function of a 3-P 
electron in a one electron atom: 50 X 50 X 50 object cube, 100 X 
100 screen model. 

P • l .OE-05 P • 3. OE-05 

P • 5.0E-05 P = 7 .OE-05 

Fig. 2. Output from a three-dimensional cloud model: 100 X 
I 00 X 60 object cube, 200 X 200 screen model. 

i i ....... 
I ....... ·" 
Lo:: _________ _ 

---------------------------------

Fig. 3. Processing different parts of a three-dimensional array. 

NEARER 
PLANE 

w 



COLLECTED ALGORITHMS (coUtt.) 

Minnesota Fortran compiler (MNF), and wh1~n the following items 
are taken care of, should be portable. 

There is a PROGRAM card in the demonstration program 
There is an ENTRY statement in SETORG. ENTRY statements 
are nonstandard, but are generally portable. It could be eliminated, 
but the package would run longer. There are two machine-de
pendent variables used and described in DANDR. There is one 
system routine, LINE, called once and described in DANDR, 
which must be implemented or simulated to use this package. In 
three statements (which are marked) in DANDR, . 0 R. and .AND. 
are used for· masking operations. with inte:ger variables. Some 
compilers may not produce the desired code, so references to 
machine language functions may have to be substituted. There 
is a nonstandard but common form of the DAT A statement in 
DANDR. Functions which are assumed available are SQRT, 
ACOS, and SIN. 

Figures 4 and 5 are referred to in the listing as the first pic
ture and the second picture. 

Fig. 4. The first picture produced by the test program. 

Fig. 5. The second picture produced by the test. program. 

475-P 2- 0 

References 
1. Kubert, B., Szabo,~., and Giulieri, S. The perspective 
representation of functions of two variables. J. ACM 15, 2 (Apr. 
1968), 193-204. 
2. Wright, T. A one-pass hidden-line remover for computer 
drawn three-space objects. Proc. 1972 Summer Comput. Simulation 
Conf., pp. 261-267. 

Algorithm 

PKCG1<AM ACMTEST 
C DEMONS TKA TI 0N PK0Gt<AM 

DIMENSl0N EYEC3J. 5(4), STl cso,so,2>. 152(31 160) 
DIMENSl0N IOBJC80180> 

C USE ~;HOLE FllAME 
SC 1 J 0. 
SC 2) = I• 
SC3> = O. 
SC 4 > = I. 

C SET EYE POSITICN 
EYEClJ = 250. 
EYE C 2 > = I 50 • 
EYEC3> = 100. 

C !N!T!AL!lE PACKAGE 
CALL INIT3DCEYE, 001 801 801 STl1 3, 1601 152, 9, SJ 

C CkEATE AND PLOT TEST OBJECT 

C BALL 

DO 50 1=1•80 
A = Cl-50l**2 
DO 40 J=l.80 

c = ( J-25>**2 
D = !ABSCJ-63> + !ABSC!-2S> 
D0 30 K= 1, 80 

IF CSQ1<TCA+C+CFL0AlCK>-2S->**2J.LE.2S.l GO T0 10 
C P01NT 

IF CD.GT.FLOATC80-K>*•187S> G0 TC 20 
10 IOBJCJ,f<> I 

G0 T0 30 
20 IOBJCJ,K) = 0 
30 CONTINUE 
40 C0NT I ;•JUE 

CALL DANDr«BO, 801 ST!. 3, 1601 160, IS2, 9, ::,, 108.J, 
* 80) 

50 CONTINUE 
C ADVANCE T0 THE NEXT FKAME. 

CALL Ft<AMt:: 
C A SECOND PICTUt<E WILL NOV. BE CALLEO USING THE SAME ::.ILE 
C AKKAYS ANIJ EYE POSITION. THIS MEAN::. THE LALL 10 INil3U, 
C THE BIGGEST TIME C0:\ISU~EH: CAN BE ::.KIPPED IF THE FOLLO~ING 

C F0U~ LINES AKE INCLUDED· 
1<Elv !ND 9 
DO 70 I= I, 3 

UO 60 J= 1, 1 60 
IS2CI,J> = 0 

60 r.eNTINUE 
70 CONTI :\IUE 

THIS PI\,TUKr: WILL BE THF: T=4 CONTCUI< SUl<FACE 01' 
T=l/SOKTCU*U•V*V+~•Wl+C.5-Vl**2/SWKTCU*U+v*VJ. 

DO 120 1=1•80 
U = C40.S-FLOATCI>Jl79. 
UU = U*U 
DO 1I0 J= 1, 80 

V = CFLCATCJJ-40.SJ/79. 
VV = V*v 
A = I .ISOi<TCUU+vV> 
IJO I 00 K= l • t!O 

C THE FOLLCV.ING CAKD AIJU5 AXES. 
IF Cl*J.EQ.t .01<. l*K·Eu.l .OK• J*K.tUJ.J) G0 HJ bO 
W = CFLOATCK>-•O·~l/7~; 
IF C 1.1:;ur<TCUU+vv+O,*v.l+C .":>-vl**2*A.LE.4.J G0 !O 90 

80 l0BJCJ,~) I 
GO Hl 100 

90 I 0B JC J, Kl = 0 
100 C01'1JT!NUE 
110 CONTINUF. 

CALL DANUKC801 80• :;Tl, 3, 1601 160, 152,, 9, S• !OBJ, 
80) 

120 CONTINUE 
C FLUSH PLQIT BUFFER 

CALL F1~AME 

5T0P 
END 

SUBr<0UTINE 1'111T3DCEYE. NU. NV, \J~, s11, Lx .• :\l'r, I::,2, Iu. 
* SJ 

DIMENSION EYEC3J1 :;TlCi'<IV1\Jlv12l, l52CLX,.\JYJ., SC4) 
C BY TH0MAS lvKIGHT 
C C0MPUTl\JG FACILITY 
C THE NATIONAL CENTEi< FOK ATM0SPHEnIC KE::.EAr<CH 
C B0ULDEK1 C0L0KAD0 80302 
C NCAR IS SP0NSOKED BY THE NATIONAL ::.CIENCE F0UNIJAllON. 
C THE METH0D IS DESCn!BEU IN DETAIL IN - A ONE-PASS HIDDEN
C LINE REMOVEH FOK C0MPUTEK IJKAWN THnEE-SPACE 0BJECTS• PnOC 
C 1972 SUMMEK C0MPUTEk SIMULATION CONFEr<ENCE, 261-267, 1972• 
C THIS VEKSl0N IS FOK U5E 0N CDC 6000 Ori 7000 COMPUTE1<S• 
C THIS PACKAGE 0F K0UTINES PLOTS 3-DIMENSIONAL OBJECT:; WITH 

HIDDEN PAKTS N01 SHO~N· OBJECTS AKE ST0r<ED IN AN AKr<AY, 
WITH THE POSITION IN lHE A~i<AY COnnE5PONDING TE A LOCATION 

C IN 3-SPACE AND THE VALUE OF THE AkHAY ELEMENT TELLING IF 
C ANY OBJECT Is Pi<ESENT AT THE LOCATION. 
C INIT3D IS AN INITIALIZATION KOUTINE FOK THIS PACKAGE. IT 
c IS CALLED· THEN A SEQUENCE 0F CALLS At<E MAUE re DANDK T0 
C PKODUCE A PICTUKE• 
C EYE AN AKKAY 3 LONG CONTAINING THE u, v, AND ~ COOt<DI-
C NATES OF THE EYE POSITION. 0BJECT::. AKE C0NS!DEKED 
c TO BE IN A BOX w!TH 2 EXTnEME COt<NEr<S AT c1.1,1J AND 



COLLECTED ALGORITHMS (cont.) 

c 
c 
c 
c 
C NU 
C NV 
C Nw 
C STI 
C LX 

CNU1NV,Nw). THE EYE POSIT!0N MUST HAVE POSITIVE 
C00kU!NATES AwAY FK0M THE C00KDINATE PLANES U•O• 
V•O, AND w=O. ~HILE GAINING EXPEK!ENCE w~rH THE 
PACKAGE. USE EYEC I J=S•Nu. EYEC2>=4•NV. l::YEC3J=3•Nw. 
U DI~ECTI0N LENGTH 0F THE BOX CONTAINING THE OBJECTS 
V D!KECTI0N LENGTH OF THE BOX CONTAINING THE 0BJECTS 
w DlkFCTION LENGTH 0' THE BOX G0NTAINING THE OBJECTS 
A SCkATCH AkKAY AT LEAST NV•Nw•2 wOkDS·LONG. 
'1KST DIMENSION OF A SCKATCH AKr<AY, IS21 U!:>ED BY THE 
PACKAGE FOK kEMEMBEKING wHEt<E IT !:>HOULD NOT Ul<AI<.. 
LX•l+NX/NBPw. SEE DANDK C0MMENTS FOk NX ANU NBPw. 

NY SEGONU UIMENSION OF IS2• SEE DANDH COMMENTS· 
C IS2 A SC1<ATCH At<t<AY AT LEAST LX•NY wOt<U!:> LONG· 
C IU UNIT ~UMAEH OF SCRATCH FILE FOH THE PACKAGE. STI 
C WILL BE wKITTEN NU TIMES ON THI!:> FILE. 
C S AN ARRAY 4 LONG wH!CH CONTAINS THE COOKDINATES OF 
c THE At<EA wHEr<E THE P!CTUt<E IS TO BE DRA\<.N. [HAT Is. 
C ALL PLOTTING C00HUINATE!:> GENEHATED w!LL BE BOUNDED 
c AS FOLLOwS-- x COOHDINATES w!LL BE BETl<.EEN SCI) AND 
c SC2>. y COOKDINATE!:> wlLL BE BETwEEN Sl3) AND 514). 
C TO Pt<l::Vl::NT Dl!:>TORTION1 HAVE Sl2>-Sll>•Sl4>-SC3>· 
C IF SEVERAL PICTUKES AKE T0 BE DHAWN w!TH THE SAME SIZE 
C ARRAYS AND FYE POSITION AND THE USEt< r<Ew!NDS !U AND FILLS 
C IS2 WITH ZEr<OES, INIT3D NEED NOT l:lE (;ALL!cD FOK 0THEr< THAN 
C THE F!HST PICTUkF• 
C SET UP Tt<ANSF0r<MAIION t<0UflNE FOK THIS LINE OF SIGHT. 

U = NU 
V = NV 
w = Nw 
CALL SETOKGCU+.s. V•·S· w+.5, EYECI), EYEC2), EYEC3)) 

C FIND EXTkEMES IN fr<ANSFOHMED SPACE• 
CALL PEkSPCll•• I., \<.1 D1 YT, D> 
CALL PEkSPCIU, v, 1., D• YB, D> 
GALL PEkSPCIU1 1., I•• XL, u, D> 
CALL PEkSPCCI., v, I•• XK1 o, D> 

ADJUST EXTkEMES rn PkEVENT UISlOt<TlON wHEN G0!NG FKOM 
TkANSFOKMED SPACE TO PLOTlEk SPACE· 

DIF = IXK-XL-YT+YB>•·S 
IF CDIFl 10, 301 20 

10 XL = XL + OIF 
Xr< = XH - DI F 
Go Hi 30 

20 YA = Yl:l - OIF 
YT = YT + UIF 

30 HEWIND IU 
C FIND THE PLOTTEK COOHDINATES OF THE 3-SPACE LATTICE P0INTS 

Cl ·9*<Sl2>-Sll )l/IXH-XLJ 
GP= ·05*CSl2l-SCI» <·Sill 
C3 = .9+1Sl4>-SC3Jl/CYT-YB> 
C4 = ·OS•CSC4l-Sl3» + SC3J 
DO 60 I= I, NU 

U = NU + I - I 
00 !:>O J=l.NV 

v = J 
DO 40 K=l•N;; 

CALL PEKSPCIU, v, FL0AT<K>. x, y, D> 
STI CJ1K1 l > Cl*IX-XLJ + C2 
STICJ1K12> = C3•1Y-YBJ + C4 

40 CONTINUE 
50 CONTINUE 

c WkITE THEM 0N UNIT IU· 
v1kI TE C !Ul STI 

60 CONTINUE 
RE\VIND I U 

C ZER0 OUT Akr<AY wHEKE VISIBILITY IS HEMEMBERED· 

00 80 J=l1NY 
00 70 I=t.LX 

I S2 C [, J J 
70 C0NTINUE 
80 CONTINUE 

KE TURN 
END 

SUBROUTINE SETORGIX, y, z, XT. rT. ll> 
THIS ROUTINE IMPLEMENTS THE 3-SPACE T0 2-SPACE TKANSF0k
MATI0N BY KUBEt<, SZABO AND GIULIEt<l1 THE PEr<SPECTIVE 

c kEPRESENTATION OF FUNCTIONS. OF Two VAKIABLES. j, ACM IS· 
c 2. 193-20411968· 
C SETOKG AKGUMENTS 
c x,y,z AHE THE 3-SPACE COOHDINATES OF THE INTEKSECTION 
C OF THE LINE OF SIGHT ANO THE IMAGE PLANE. THIS 
C POINT CAN BE THOUGHT OF AS THI:: P0INf L00KEO AT· 
c XT.n •• n AKE THE 3-SPACE C00kDINATE!:> 0F THE EYE P0S!T!ON. 
C PERSPC AkGUMENfS 
c x,y,z ARE THE 3-SPACE C00KD!NATES 0F A P0!NT TO BE 

Tr<AN;;FOKl'IED. 
C XT1YT THE kESULTS OF THE 3-SPACE TO 2-SPACE TnANSF0R-
C MAT ION. 
C ZT NOT USED. 
C ST0KI:: TME PAKAMETEHS 0F THE SETOkG CALL FOK USE WHEN 
C PEKSPC IS CALLED. 

AX 
AY 
AZ 
EX XT 
EY YT 
El l T 

AS MUCH COMPUTATION AS POSSIBLE IS DONE DUr<!NG EXECUTION 
OF SETOt<G SINCE PERSPC IS CALLED TH0USANDS OF TIMES FOr< 

C EACH CALL TCl SETOHG. 
DX = AX - EX 
DY = AY - EY 
DZ = AZ - EZ 
D = SQHT<DX+DX+DY•DY+DZ*DZ> 
COSAL • DX/D 
COSFlE = DY /D 
COSGA = Dl/I) 
AL = AC0SCC0SAL> 
BE = AC0S<COSBE> 
GA = ACOSCCOSGAJ 
SINGA = SINCGA> 

C THE 3-SPACE POINT LOOKEU AT IS THANSF0KMEU INIO 10101 OF 

475-P 3- 0 

C THE 2-SPACE. THE 3-SPACE l AXIS IS TRANSFORMED INT0 lHE 
C 2-SPACE Y AXIS· IF THE LINE 0F SIGHT IS CLOSE TO PAHALLEL 
C TO THE 3-SPACE Z AXIS• THE 3-SPACE Y AXIS IS CHOSEN <IN-
C STEAD OF THE 3-SPACE l AXIS> T0 BE TkANSFOkMED INTO THE 
C 2-SPACE Y AXIS• 

IF CSINGA.LT.0·0001> G0 TO 10 
R = I ·ISINGA 
ASSIGN 20 T0 JUMP 
RETURN 

10 SINBE = SINIBEl 
H = l·/SINBE 
ASSIGN 30 TO JUMP 
KETUkN 

C ******************** ENTKY PEKSPC *********************** 
Eo\ITkY PEKSPC 
0 = D/ICX-EXl•C0SAL+CY-EY>•COSBE+CZ-EZ>•COSGA> 
G0 TO JUMP, C20130J 

20 XT ~ CCEX+O•CX-EX>-AX>•COSBE-CEY+Q•IY-EY>-AYl•C0!:>ALl*t< 
YT = CEZ+O*IZ-EZl-AZ>+H 
RETURN 

30 XT = CCEZ+O•CZ-EZ>-AZ>•C0SAL-IEX+G1•CX-EX>-AX>•COSGAH•1< 
YT = CEY+O+Cr-Er>-AYl*K 
HETUHN 
END 

SUBH0UTINE DANDHCNV, N~:, STI, LX, NX, NY• I!:.21 IIJ, 5, 
* !OBJS, MVJ 

D!MENSI0N STI CNv.Nw,2J. IS2CLX1N'(), SI 4J. I0BJSCMV1Nw> 
C THIS H0UTINE IS CALLED NU TIMES• EACH CALL PROCESSING THE 
C PAr<T 0F THE PICTURE AT U=NU+l-1 wHERE I IS THE NUMBER 0F 
C THE CALL TO DANDR• THAT IS• THE PAHT OF THE P!CTUkE AT 
C U•NU IS PHOCESSED DUKING THE Fit<ST GALL• THE PAHT OF THE 
C PICTUkE AT U•NU-1 IS Pr<0CESSED DUH!NG THE SECOND CALL, AND 
C 50 ON UNTIL THE PANT 0F THE PICTUi<E AT U=l IS PROCESSED 
C DUKING THE LAST CALL· 
C NV SEE INIT3D COMMENTS· 
C Nw SEE INIT3D COMMENTS· 
C STI SEE INIT3D COMMENTS· 
C LX THE NUMBE1< OF w0HDS NEEDED TO H1~LD NX BIT!:>· ALSO, 
C THE FIRST DIMENSION OF IS2· 
C NX NUMAEH OF CELLS IN THE /\ Dlr<ECTI0N OF A MODEL OF THE 
C IMAGE PLANE. A SILHOUETTE 0F THE PAKTS OF THE PIC-
C TURE PROCESSED SO FAH IS STOKED IN THIS MODEL· LINES 
c TO BE Di<AwN A~E TESTED F01< VISBILI TY Br EXAMINING 
G THE SILHOUETTE. LINES IN THE SILHOUETTE ARE HIDDEN. 
C LINEs 0UT OF THE SILHOUETTE AKE VISIBLE· THE SOLU-
C T!ON IS APPHdX!MAlE BECAUSE THE SILHOUETTE IS NOT 
C FOkMED EXACTLY· SEE IS~ COMMENT BELOw. 
C NY NUMBEH OF CELLS IN THE Y D!HECTION OF THE MODEL OF 

THE IMAGE PLANE. ALSO THE SECOND DIMENSION OF IS2· 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
(; 

IS2 AN AHHAY TO HOLD THE !MAGE PLANE MODEL• IT IS 
DIMENSIONED LX BY NY• THE MODEL IS NX l:lY NY AND 
PACKED DENSELY. IF HIDDEN LINES Ar<E DkAV.N, DECREASE. 
NX AND NY <AND LX IF POSSIBLE). IF VISIBLE LINES 
ARE LEFT our OF THE PICTUKE· INCKEASE NI\ AND NY CAND 
LX IF NEEQ BEJ. AS A GUIDE, SOME EXAMPLES SH0wING 
SUCCESSFUL CHOICES AKE Ll!:>TED 

IU 
IOBJS 

MV 

GIVEN NU NV N" RESULTING NX NY FKOM TE~TING 

I 00 I 00 60 200 200 
60 60 60 110 110 
40 40 40 7 s 7 '=> 

SEE INIT3D COMMENTS• 
A NV BY N~ AKHAY C~ITH ACTUAL FIKST DIMENSION MV IN 
TtlE CALLING PkOGKAM> DESCt<lE:!lNG THE OBJECT· IF THIS 
IS CALL NUMBEk I TO DANDK1 THE PAr<l OF THE P!ClUKE 
AT U=NU+l-I rs T0 BE Pl<OCESSEO. HiBJS DEFINES THE 
OBJECTS T0 BE DKAWN IN THE FOLL0"1NG MANNEr< --
10BJSCJ1K>=I IF ANY OBJECT CONTAINS THE POINT 
CNU+l-!1J1Kl AND IOBJSCJ,K>=O 0THEHwlSE· 
ACTUAL FIKST DIMENSION 0F !OBJ~ IN THE CALLING 
PKOGKAM. 

C************** MACHINE DEPENDANT CONSTANTS **************** 
C NBPW NUMBEH OF BITS PEk wOkD 
C MASK AN ARRAY NBP~• LONG. MASKll>=2+~«1-l>. 1=1•2••"•NBPw 
C CDC 6000 ON 7000 VERSION 

DIMENSION MASKC60> 
DATA NBP~i/60/ 

DATA MASK/ I B1 2B, 481 I QB, 20B• 40B• I OOB, 20QB, 400B1 I OOQB, 
* 200QB, 4000B, IOOOOB, 2000DB, 40000EJ, I OOOOOB, 200000B, 
* 40000QB, I 00000081 200000081 4000000B1 I OOOOOOOB, 

20000000B1 40000000B, I 000000008.<!0000000QB, 400000000B, 
I OOOOOOOOOB, 2000000000B, 4000000000B, I OOOOOOOOOQB, 

+ 20000000000B. 40000000000B. IOOOOOOOOOOOB. 
* 200000000000B.40000ooooooos.1000000000000B. 
+ 2000000000000B. 4000000000000B. IOOOOOOOOOOOOOB. 
* 2oooooooooooooe. 4oooooooooooooe,. 1 ooooooooooooooB. 
* 200000000000000B1 400000000000000B• I OOOOOOOOOOOOOOQB, 
* 2000000000000000B. 4000000000000000B. 
* I OOOOOOOOOOOOOOOOB, 2000000000000000081 
+ 40000000000000000B, I OOOOOOOOOOOOOOOOQB, 
* 200000000000000000B. 40ooooooooooooooooB, 
* I OOOOOOOOOOOOOOOOOQA, 2000000000000000000B, 
* 40000000QOO.OOOOOOOOB1 I OOOOOOOOOOOOOOOOOOOB, 
* 20000000000000000000B. 40000000000000000000B1 

ASSIGN 120 TO IHET 
C HX AND RY AHE USED TO MAP PL0TTER C00RDINATES INT0 THE 
C IMAGE PLANE MODEL• 

RX= CFLOATCNXl-l.J/CSC2>-SCI)) 
RY= IFLOATCNY>-l.J/CS14>-SC3)) 

READ THE RELATIVE PLOTTER COORDINATES 0F THE LATTICE 
POINTS FROM UNIT 1u. 

READ IIU) STI 
C DX, DY AND DZ ARE USED TO FIND HEQUIHED COORDINATES OF 
C NON-LATTICE POINTS· 

NVD2 " NV/2 
NWD2 = NW/2 
DX = C STI C NV1 NwD2• I> -ST I (I 1 NWD2• :1 > J * • 5/1 Ft.0ATC NV l - I•> 
DY" CSTICl,NWD212>-STl<NV1NWD2,:ll>••S/CFL0ATCNV>-l·> 
DZ • ISTICNVD21NW12J-STICNVD21l12>>•·S/CFLOATCNW>-I•> 

C sL0PE IS USED TO DEFORM THE IMAGE PLANE MODEL SO THAT 



COLLECTED ALGORITHMS (cont.) 

CLINES 0F C0NSTANT Y OF THE IMAGE'M0DEL HAVE THE SAME 
C SL0PE AS LINES OF C0NSTANT U ANO w IN THE PICTURE. THIS 
C IMPR0VES THE PICTURE. 

SL0PE • DY /DX 
C THE F0LL0WING L00PS THH0UGH STATEMENT 130 GENEHATE THE .5 
C C0NTOUR LINES IN 2-SPACE F0R THE ARRAY I0BJS <WHICH CON
G TAINS 0NLY ZEH0ES AND 0NESl. TESTS THE LINES FOK VISIBIL
C ITY. AND CALLS A ROUTINE TO PLOT THE VISIBLE LINES· 

D0 130 1=2.NV 
JUMP= IOBJSCI-l.ll•8 + IOBJSCI.1>•4 + I 
D0 120 J=2.NW 

Y = STICI,J,2> 
c DECIDE wHICH 0F THE 16 P0SSIBILITIES THIS rs. 

JUMP= CJUMP-ll/4 + IOBJs<I-1.J>•B + I0BJSCI,J>•4 + I 
G0 TO ( 120. 20. 40. so. 70. ao. 30. I oo. I oo. Io. ao. 70. so. 40. 
20.120>.JUMP 

C GOING TO 10 MEANS JUMP=IO WHICH MEANS 0NLY THE LOWER-HIGHT 
C AND UPPER-LEFT ELEMENTS 0F THIS CELL AKE sE1 TO I• 
C TWO LINES SHOULD BE DRAhN. A DIAGONAL CONNECTING THE 
C MIDDLE OF THE B0TT0M TO THE MIDDLE OF THE HIGHT SIDE OF 
C THE CELL CLOhEH-HIGHT LINE>• AND A DIAGONAL CONNECTING THE 
C MIDDLE 0F THE LEFT SIDE TO THE MIDDLE OF THE T0P CUPPEH-
C LEFT LINE> 0F THE CELL. 

10 ASSIGN 90 T0 !KET 
C L0~EH-HIGHT LINE 

20 XI X 
YI = Y - Dl 
X2 = X + DX 
Y2 = Y - OY 
GO rn 110 

C L0WEK-LEFT AND UPPEH-HIGHT 
30 ASSIGN 60 re IHET 

C LOl-.ER-LEFT 
40 XI 

YI = Y - Dl 
X2 = X - DX 
Y2 = Y + DY 
GO TO I I 0 

C HOKllONTAL 
50 XI X + DI\ 

r 1 = -r - or 
112 = X - DI\ 
Y2 = Y + DY 
GO TO I I 0 

C UPPEk-U:FT 
60 ASSIGN 120 TO lHET 
70 XI X + OX 

YI = Y - DY 
X2 = /\ 
Y2 = Y + DZ 
G!J TCJ I I 0 

C \/Ei<TICAL 
80 XI 

YI = Y - Dl 
X2 = X 
Y2 = Y + DZ 
GOT0110 

90 ASSIGN 120 TO lKET 
C UPPEk-LE:FT 

I 00 XI X - DX 
YI = Y + DY 
X2 = X 
Y2 = Y + Dl 

c TEST VlslBILirr OF THIS LINE SEGMENT. 
110 IX = <XI-SC I »•RX 

IY=MOD<IFIXCCYl-S<J>l•KY-SLOPE•FL0AT<IX>>+NY•NYl+I 
!BIT = MOD<IX.NBPW> + I 
I/\ = IX /N8P~J + I 

C *********** .AND. USED AS A MASKING 0PERATeH ************** 
IV=IS2C IX, Ir> .A,\JO,MASKC Fl![) 

C I~ EITHER END OF THE LINE IS AT A MAHKED SPDT O\J THE IMAGE 
C PLANE MODEL. THE LINE IS HIDDEN 

IF CIV.NE.O> GO T0 IHET. C6Q,90.120l' 
IX = C X 2 - SC I > > *·"X 
I Y=MIJDC IF Ill<< '1'2-SC 3> > *1<'1'-SLOPO:•FLOAT < 111 >>+NY• NY>+ I 
!BIT = M0DCIX.NBPhl + I 
IX· = IX/N8PW + I 

c *********** .AND. USED As A MASKING OPO:nAT0h ************** 
Iv=1s2c IX. IY> .l\NDoMASKC ll:lIT> 
IF CIV.,\/E.O> GO TO IHET. <60,90.120> 

C *************** UNOEFINED EllTEKNAL nEFEHENCE ************** 
C SUBR0UTINE LINECXl.Yl.X2.Y2> IS ASSUMED T0 D1:M. A LINE 
C FriOM <XI.YI> T0 CX2.Y2> 

CALL LINE<XI• YI• 112. '1'2> 
GO TC IRET. C60,90.120> 

120 CG·\JTINUE 
130 CONTINUE 

C CODE THNOUGH STATEMENT 150 CriEATE& A\/ APP~0XI~AT10N 0F 
C THE SILH0UETTE 0F THE PAKT 0F THE PICTUK~ JUST DNAWN BY 
C MARKING THE IMAGE PLANE MQDEL WHEKE THE 0BJECT OCCUNS• 

00 I 50 I= I, N\J 
DO I 40 J= I• N~1 

IF <I0BJSCI.Jl.EQ.O> GO T0 140 
IX= CST!<J.J.l>-SCl»*HX + o.5 
T~K = SL0PE•FLOATCIX> - O.S 
IY•MODCIFIXCCSTICI.J.2>-SC3>>•kY-TWK>+NY•NYl+I 
!BIT• MODCIX.NBPW> + I 
IX = IX/NBPW + I 

c ************ o0Ro USED AS A MASKING 0PEKAT0~ ************** 
IS2<111.IY>=IS2ClX•IY>·OK•MASKCIBIT> 

140 C0NTINUE 
150 CONTINUE 

RETUKN 
END 

475-P 4- R2 

Remark on Algorithm 475 [J6] 

Visible Surface Plotting Program [Thomas Wright, 
Comm. ACM 17 (Mar. 1974), 152-155] 
Lawrence W. Frederick [Recd 31 May 1974] 
Emory University Computing Center, Uppergate 
House, Emory University, Atlanta, GA 30322 

In the initialization phase a significant savings in time may be 
obtained (as a function of the box dimensions, NU, NV, NW) by 
integrating subroutine SETORG into subroutine INIT3D. The time 
consuming part of INIT3D is the 3-space to 2-space transformation 
done via the call to the PERSPC entry of SETORG. This transfor
mation is performed in a regular fashion by triply nested DO loops 
ranging over the box dimensions. By algebraically separating the 
transformation, expressions not depending on inner loop indices 
may be floated to outer loops. This arrangement eliminates a large 
number of redundant operations and the nonstandard ENTRY 
statement. 

Remark on Algorithm 475 [J6j 
Visible Surface Plotting Program [Thomas Wright, 
Comm. ACM 17 (Mar. 1974), 152-155] 

R.G. Mashburn [Recd 9 Dec. 1974] Computer 
Sciences Division at Oak Ridge National Laboratory 
Union Carbide Corporation, Nuclear Division* Oak 
Ridge, TN 37830 

*Prime contractor for the U.S. Energy Research and Develop
ment Administration. 

The Visible Surface Plotting Program, Algorithm 475, has been 
modified to run on IBM 360 hardware using the Fortran IV (level 
H) compiler. Using a modifid version of the demonstration pro
gram supplied with the algorithm, the two sample plots were suc
cessfully produced. The following documents the changes that were 
required to convert the programs from CDC 6000 or 7000 programs 
to IBM 360 programs. In addition to the changes listed below it was, 
of course, necessary to include a FRAME subroutine, a LINE sub
routine, and other calls to plotting subroutines which support 
locally available plotting equipment. However, since plotting equip
ment and its software support vary from one installation to another, 
only those changes pertinent to the IBM 360 are listed here. 

Demonstration program: 
1. Remove the PROGRAM statement. 
2. Change the first DIMENSION statement from: 

DIMENSION EYE(3), S(4), ST1(80, 80, 2), IS2(3, 160) 

to: 

DIMENSION EYE(3), S(4), STl (80, 80, 2), IS2(5, 160) 

Note. The comments in the program indicate the first extent 
LX of the array /S2 is calculated as follows: 

LX = 1 + NX/NBPW 



COLLECTED ALGORITHMS (cont.) 

This is true so long as NX is not an integral multiple of NBPW. 
However, in this case NX is 160 and NBPW (the number of 
bits per word) is 32 for the IBM 360. Thus NX is an integral 
multiple of NBPW, and LX is calculated simply as NX/NBPW 
In general use 

LX = 1 + (NX-1)/NBPW. 

3. Change the call to the INJT3D subroutine to: 

CALL INIT3D (EYE, 80, 80, 80, STl, 5, 160, IS2, 9, S) 

4. Change the two calls to DANDR (one after statement 40, the 
other after statement 110) to: 

CALL DANDR (80, 80, STl, 5, 160, 160, IS2, 9, S, IOBJ 
*80) 

5. Change the DO statement following the REWIND 9 state
ment from: 

DO 70 I = 1 , 3 to: DO 70 I = 1 , 5 

JNJT3D subroutine: No changes required. 
SETORG subroutine: 
1. Because no standard exists for referencing arc cosine, the 

three statements containing references to the arc cosine sub
routine were changed from: 

AL = ACOS(COSAL) to: AL = ARCOS(COSAL) 
BE = ACOS(COSBE) BE = ARCOS(COSBE) 
GA = ACOS(COSBA) GA = ARCOS(COSGA) 

2. Because no standard exists for ENTRY statements and their 
syntax differs among compilers, it was necessary to change the 
ENTRY statement from: 

ENTRY PER SPEC to: 
ENTRY PERSPC(X, Y, Z, XT, YT, ZT) 

DANDR subroutine: 
1. The DIMENSION statement should be changed from: 

DIMENSION MASK (60) to: DIMENSION MASK (32) 

2. The two DATA statements following the DIMENSION 
statement should be changed from: 

DATA NBPWi60' 
DATA MASK-'l B, 2B, 48, JOB, 20B, 408, IOOB, 2008, 400B, 
lOOOB, 

* 2000B, 4000B, lOOOOB, 20000B, etc., 

to: 

DATA NBPW /32/ 
DATA MASK/Zl, Z2, Z4, Z8, ZlO, Z20, Z40, Z80, ZIOO, 

* Z200, Z400, Z800, ZIOOO, Z2000, Z4000, Z8000, ZIOOOO, 
* Z20000, Z40000, Z80000, ZIOOOOO, Z200000, Z400000, 
* Z800000, ZlOOOOOO, Z2000000, Z4000000, Z8000000 
* ZIOOOOOOO, Z20000000, Z40000000, Z80000000/ 

3. The two uses of the . AND. masking operation and the one 
use of the . 0 R. masking operation were changed to call 
assembly language function subprograms /AND and /OR 
(programs written locally for the ORNL computing center 
Fortran library) which return an JNTEGER*4 value which is 
the logical AND and logical OR respectively of the two argu
ments given them. 
Change the two . AND. statements from: 

IV = IS2(1X, IY). AND. MASK (IBIT) to: 

IV = IAND(IS2(IX, IY), MASK (IBIT)) 

Change the . 0 R. statement from: 

IS2(X, IY) = IS2(1X, IY) .OR. MASK (IBIT) to: 

IS2(IX, IY) = IOR(IS2(1X, IY), MASK (!BIT)) 

Note. In the original program listing of subroutine DANDR, 
the comment card immediately preceding statement 60 reads: 

C UPPER-LEFT but should say: C UPPER-RIGHT. 

475-P 5- 0 

Remark on Algorithm 475[J6] 

Visible Surface Plotting Program [Thomas Wright, 
Comm. ACM 17 (Mar. 1974), 152-155] 
C.J. Doran [Recd 22 Oct. 1974], Physics Department, 
University of Nottingham, England 

Algorithm 475 has been successfully implemented on a D.G. 
Nova 1220 minicomputer and an I.CL. 1906A, making substitu
tions for the nonstandard features of the original algorithm. 

ENTRY statements are permitted in 1900 Fortran but not by 
Data General. SETORG and PERSPC were therefore written as 
separate subroutines linked by a labelled common area declared as: 

COMMON/CSETORG/JUMP, EX, EY, EZ, AX, AY, AZ, D, R, 
COSBE,COSAL,COSGA 

JUMP being declared as a LOGICAL variable. The assigned 
GO TO statement in PERSPC then becomes 

IF (JUMP) GO TO 30 

with JUMP = • FALSE. replacing the first ASSIGN statement 
in SETORG, and JUMP = . TRUE. replacing the second. 

The DATA statement in DANDR may easily be standardized 
by writing decimal literals, but most compilers will not accept an 
integer 2.vuPw. NBPW should then be redefined as one less than 
the number of bits per word. 

Logical operations between integers may be performed by 
portable Fortran functions /AND and /OR as: 

FUNCTION IAND(l, J) 
LOGICAL BI, BJ 
EQUIVALENCE (BI, II), (BJ, JJ) 
Il = I 
JJ o= J 
BI = BI . AND . BJ 
IAND = H 
RETURN 
END 

with equivalent coding for /OR. The first two masking operations 
then become: 
IV = IAND(JS2(/X, JY), MASK(JBIT)) 

and the third becomes: 

152(/X, IY) = JOR(JS2(/X, IY), MASK(IBIT)) 



COLLECTED ALGORITHMS (con1t.) 

ACM Transactions on Mathematical Software, Vol. 1, No. 4, December 1975, Pages 381-382. 

CERTIFICATION OF ALGORITHM 47 5 

Visible Surface Plotting Program [J6] 
[T. Wright, Comm. ACM 17, 3 (March 1974), 152-157] 

Gordon E. Bromage [Recd 6 May 1975 and 11 July 1975] 
University of Bradford, West Yorkshire, U.K. 

Author's present address: S.R.C. Astrophysics Research Division, Culham Laboratory, Abingdon, 
Oxon., U.K. 

This package \Vas modified to remove all the nonstandard features mentioned in 
the algorithm description, together with one that was not pointed out, namely, 
two calls in ACMTEST to the system-dependent graph-plotting routine FRAME. 

The bit-manipulation (masking) operators .AND. and .OR. and the nonstandard 
DATA statement (all in DANDR) were dealt with in the following way. The 
masking operators were replaced by segments IAND and IOR written in an as
sembly language. Since the array I\'!ASK is only used in these bit manipulations, 
the data statement assigning values to the elements of :MASK was removed from 
DANDR and a corresponding statement inserted into the assembly-language 
segments, so that only the bit number (IBIT) was referenced from DANDR. 
Thus, in DANDR, the statement 

IV = IS2(IX,IY) .AND. MASK(IBIT) 

was replaced twice by the line 

CALL IAND (IS2 (IX,IY) ,IBIT,IV) 

and the line 

IS2(IX,IY) = IS2(1X,IY) .OR. :\IASK(IBIT) 

was replaced once by 

CALL IOR(IS2(IX,IY) ,IBIT,IS2(IX,IY)). 

The package was then tested on an ICL 1904A machine (George 3 system), 
which uses a word length of 24 bits. 

For the system-dependent graph-plotting routines, Calcomp routines were used 
in place of LIKE and FRA:\IE. In fact, to allow for duplication and editing of 
graphs without having to rerun the package, the plotting routines were separated 
from the main program. Thus the coordinates (Xl,Yl,X2,Y2) of the lines to be 
plotted were written onto files in DAXDR using the statement 

WRITE (IUX) Xl,Yl,X2,Y2 in place of CALL LINE (Xl,Yl,X2,Y2) 

(where HJX is the I/O unit number assigned to a particular file), and the plotting 
was performed by a separate program. 

It should be emphasized that the number of scratch files needed for assignment 
of I/O unit IU in IXIT3D is also system dependent. For example, on the 1904A 
more than one file was needed for picture resolutions higher than that correspond
ing to a 30 X 30 X 3:0 object cube mesh; for 60 X 60 X 60 mesh, four files were 
needed, each one storing the information relating to 15 of the 60 image planes. 

With the above changes implemented, the package ran successfully on the ICL 

1904A for the processing of concave pictures (optimization objective-function 
surfaces) as well as for pictures of bounded objects and for a wide variety of eye 
positions. Successful processing was often obtained even when one of the eye
position coordinates was negative (cf. comment lines relating to the array EYE in 
IXIT3D). On this machine, less than 3.0K 24-bit words were needed at run time 
for a resolution corresponding to a 60 X 60 X 60 mesh; while 12K words were 
sufficient for a 30 X 30 X 30 mesh resolution. The run time for the first test picture 
at the higher resolution was approximately 10 minutes. 

475-P 6 0 



COLLECTED ALGORITHMS (cont.) 

ACM Tranaactiona on Mathematical Software. Vol. 2, No. 1, March 1'976, Paaee 109-110 

REMARK ON ALGORITHM 475 

Visible Surface Plotting Program [J6] 
[T. Wright, Comm. ACM 17, 3(March 1974), 152-155] 

Lucian D. Duta [Recd 5 Aug. 1975] 
Academy of Economic Studies, Str. Dorobanti 15-17, Bucharest, Romania 

Algorithm 475 has been modified for running on an IBM 370 computer andl on a 
FELIX C-256 computer, using the Fortran IV compilers. The two sample plots 
were successfully produced on a BENSON 222 plotter. 

The changes in the program are those described by Mashburn [1 ]. In addition to 
these changes, we suggest the following. 

SETORG Subroutine 

1. Because the parameter ZT is not used in the PERSPC entry, change the entry 
statement to 

ENTRY PERSPC(X, Y,Z,XT, YT) 

2. Remove the statements 

AL - ACOS(COSAL) 
BE - ACOS(COSBE) 
GA - ACOS(COSGA) 

3. Change the statement 

SINGA - SIN(GA) 

to 

SINGA =- SQRT(l. - COSGA•COSGA) 

4. Change statement 10 from 

10 SINBE - SIN (BE) 

to 

10 SINBE - SQRT(l. - COSBE•COSBE) 

INIT3D Subroutine 

1. Modify all statements which call to P ERSPC entry by removing the last 
argument: 

CALL PERSPC(l. ,1., W,D,YT) 
CALL PERSPC(U,V,l.,D,YB) 
CALL PERSPC(U, 1., 1., XL, D) 
CALL PERSPC(l., V,l. ,XR,D) 

2. Include an ENTRY statement after statement 60: 

ENTRY INIS2 

A call to the INIS2 entry will produce the filling of the array IS2 with zeros and 
the rewinding of the JU unit. Because the call to the IN I 82 entry is madie only 
after the call to the INIT3D subroutine, the INIS2 entry need not have 
parameters. 

3. Change the comment cards from 

C IF SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE 
C ARRAYS AND EYE POSITION AND THE USER REWINDS IU AND FILLS 
C 182 WITH ZEROES, INIT3D NEED NOT BE CALLED FOR OTHER 'THAN 
C THE FIRST PICTURE. 

to 

C IF SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE 
C ARRAYS AND EYE POSITION, INIT3D NEED NOT BE CALLED FOR 

475-P 7- 0 



COLLECTED ALGORITHMS (cont.) 

C OTHER THAN THE FIRST PICTURE. IN THIS CASE, BEFORE EACH 
C SUBSEQUENT PICTURE THE INIS2 ENTRY MUST BE CALLED FOR 
C REWINDING IU AND FILLING THE ARRAY 182 WITH ZEROES. 

Demonstration Program 

1. Change the followi.Jtig statements: 

C FOUR LINES ARE INCLUDED. 

to 

REWIND 9 
DO 70 I - 1,3 

DO 60 J - l,160 
182(1,J) - 0 

60 CONTINUE 
70 CONTINUE 

C LINE IS INCLUDED. 
CALL INl82 

REFERENCES 

[1] MASHBURN, R.G. Remark on Algorithm 475. Comm. ACM 18, 5(May 1975), 276-277. 

REMARK ON ALGORITHM 4 75 

Visible Surface Plotting Program [J6] 
[T. Wright, Comm. ACM 17, 3 (March 1974), 152-155] 

A.C.M. van Swieten [Recd 28 July 1976 and 12 Sept. 1978] 
VSSG, P.O. Box 3032, Leyden, The Netherlands 

and 

J .Th.M. de Hosson 
Department of AppliE'd Physics, Rijksuniversiteit Groningen, Universiteitscom
plex Paddepoel, Nijenborgh 18, 9747 AG Groningen, The Netherlands 

This research was supported by the Netherlands Organization for the Advancement of Pure Research 
(Z.W.0., The Hague). 

This remark describes an extension of the visible surface plotting program, ACM 
Algorithm 475. This program turns out to result in a long plotting time when one 
is using CALCOMP plot routines. The long plotting time is mainly caused by 
numerous idle pen movements which are inherent to the structure of the algo
rithm. Essentially the algorithm does the following: the three-dimensional surface 
is cut in slices. The slilces are separated and then searched in order to produce a 
perspective image of that slice and to remove the hidden lines; therefore, the 
algorithm generates a large number of small segments in the search direction. In 
general, however, the search direction does not coincide with the contour direc
tion. When one is using CALCOMP subroutines there are a lot of idle pen 
movements due to the fact that the segments are not in an appropriate order. In 
Figure l(a) it is shown that numerous idle pen movements are necessary to plot 
a disklike form. In the improved version only one idle pen movement is made 
(see Figure l(b)). 

The extension consists of two subroutines: SDLINE and PLTOUT. In the 
original subroutine DANDR we have to add five statements: Insert 

COMMON/TOMl/NSE:Q, SS; SS= 0.04, NSEQ = 0 

before the statement 

SLOPE = DX/DY 

ACM Transactions on Mathematical Software, Vol. 5, No. 4, December 1979, Pages 521-523. 

475-P 8- RI 



COLLECTED ALGORITHMS (cont.) 

6 

\a) (b) 

Fig. 1. (a) The pen movements generated by the original version of the plotting 
program. The idle pen movements are dashed lines. (b) Output of the improved 

plotting program showing one idle pen movement (dashed line) 

which initializes 

SDLINE; CALL SDLINE(Xl, Yl, X2, Y2) 

instead of 

LINE(Xl, Yl, X2, Y2) 

which builds up the sequences and 

CALL PLTOUT 

after the statement 

130 CONTINUE 

in DANDR which plots the sequences. The subroutine SDLINE(Xl, Yl, X2, Y2) 
temporarily stores the segments in order to construct the sequences. This is done 
by comparing the last point of each sequence with the endpoints of a segm.ent. 
The criterion for the continuation of a sequence is that one of the endpoints of 
the segment lies within a square with edges of 2SS around the last point of a 
sequence. The value of SS depends on the plotter precision and it is taken ito be 
equal to 0.04. If there is no continuation point of any sequence a new sequence is 
started through the segment. 

In the present version the length of the sequences is equal to 80 and the number 
is equal to 20. If a sequence has been filled up completely a new sequence is 
created. If one needs more than 20 sequences intermediate plotting takes place 
by calling PLTOUT. 

The subroutine PL TOUT plots the sequences taking into account the minimum 
distance between starting points and ends of sequences. This is done by ordering 
the sequences in an appropriate way and by indicating whether they should be 
processed in normal or reversed order. 

Finally we give some test results of the revised program compared with the old 
version. The core size, execution time, and CALCOMP plotting time are compared 
in the case of the second example (Figure 5) in Algorithm 475. Although this type 
of surface is not the one that results in the greatest reduction, the saving of 
plotting time is significant (see Table I). In Table I the time spent in DANDR 
but not the time spent in PL TOUT is listed. The. space of INIT3D + P + 
DANDR (old version) and of INIT3D + P + DANDR + SDLINE + PL TOUT 
+TOM are also given in Table I. 

Table I 

CALCOMP plotting 
CYBER 74-16 Space Time time (minutes) 

Old version 1277a 5.012 31 
Revised version 10544a 5.621 8 

475-P 9- 0 



COLLECTED ALGORITHMS (cont.) 

REVISED ALGORITHM 

C PROGRAM CONES(I~WUT,OUTPUT,PLOT,TAPE6=0UTPUT,TAPE5=INPUT, 
C 1TAPE99=PLOT,TAPE9) 
c 
C DEMONSTRATION PROGRAM 
C BY THOMAS WRIGHT IN: 
C ALGORITHM 475, VISIBLE PLOTTING PROGRAM (J6), 
C COMMUNICATION OF THE ACM, MARCH 1974,VOL.17,NUMBER 3,P 152. 
C*********** MACHINE DEPENDANT FUNCTIONS ************************** 
C FIRST CARD IS THE PROGRAM CARD FOR CDC 6</J</J</J AND CDC 7</J</J</J SERIES. 
C CALCOMP PACKAGE WHICH CONTAINS THE SUBROUTINES NAMPLT,ENDPLT, 
C NAMPLT = TO INITIALIZE THE SYSTEM. 
C ENDPLT = TO TERMINATE PLOTTING ON A FILE. 
c 

DIMENSION EYE (3}, S (4), STl (8</J, 8</J, 2), IS2(3,16</J) 
DIMENSION IOBJ (8</J, 8</J) 
CALL NAMPLT 

C USE WHOLE FRAME 
s (l)=</J. 
S(2)=28. 
s (3)=</J. 
S(4)=28. 

C SET EYE POSITION 
EYE (1)=2</J</J. 
EYE(2)=4</J</J. 
EYE (3)=3</J</J. 
NX=8</J 
NY=8</J 
NZ=8</J 
NCELLS=2 
MX=NCELLS*NY 
LX=l+MX/6</J 
MY=MX 

C THIS PICTURE WILL BE THE T=4 CONTOURSURFACE OF 
C T=l/SQRT(U*U+V*V+W*W)+(. 5-V)**2/SQRT(U*U+V*V). 
C THIS IS THE SECOND PICTURE (FIG.5) PRODUCED BY THE TEST PROGRAM 
C OF THOMAS WRIGHT. 

CALL INIT3D(EYE,NX,NY,NZ,ST1,LX,MY,IS2,9,S) 
DO 5</J I=l,NX 
U=(4</J.5-FLOAT(I))/79. 
UU=U*U 
DO 4</J J=l,NY 
V=(FLOAT(J)-4</J.5)/79. 
VV=V*V 
A=l./SQRT(UU+VV) 
DO 3</J K=l,NZ 

C THE FOLLOWING CARD ADDS AXES. 
IF (I*J.EQ.l .OR. I*K.EQ.l .OR. J*K.EQ.l) GO TO 8</J 
W=(FLOAT(K)-4</J.5)/79. 
IF (l./SQRT(UU+VV+W*W) + (.5-V)**2*A.LE.4.) GO TO 9</J 

8</J IOBJ(J,K)=l 
GO TO 3</J 

9</J IOBJ(J,K)=</J 
3</J CONTINUE 
4</J CONTINUE 

CALL DANDR(NY,NZ,STl,LX,MX,MY,IS2,9,S,IOBJ,NY) 
5</J CONTINUE 

CALL ENDPLT 
STOP 
END 
SUBROUTINE INIT3D(EYE,NU,NV,NW,ST1,LX,NY,IS2,IU,S) 

C BY THOMAS WRIGHT 
C THIS ROUTINE IMPLEMENTS THE 3-SPACE TO 2-SPACE TRANSFORMATION BY 
C KUBER,SZABO AND GIULIERI, THE PERSPECTIVE REPRESENTATION OF 
C FUNCTIONS OF TWO VARIABLES. J. ACM 15,2, 193-2</J4,1968. 
c 

DIMENSION EYE (3), STl(NV ,NW, 2), IS2(LX,NY), S (4) 
C THE METHOD IS DESCRIBED IN DETAIL IN - ONE-PASS HIDDEN-
C LINE REMOVER FOR COMPUTER DRAWN THREE-SPACE OBJECTS. PROC 
C 1972 SUMMER COMPUTER SIMULATION CONFERENCE ,261-267,1972. 
C THIS VERSION IS FOR USE ON CDC 6</J</J</J OR 7</J</J</J COMPUTERS. 
C THIS PACKAGE OF ROUTINES PLOTS 3-DIMENSIONAL OBJECTS WITH 
C HIDDEN PARTS NOT SHOWN. 
C INIT3D IS AN INITIALIZATION ROUTINE FOR THIS PACKAGE. IT IS CALLED 

l</J 
20 
30 
40 
5</J 

60 
7</J 

8</J 
90 

1</J</J 
11</J 
12</J 
13</J 
14</J 
150 
160 
17</J 
180 
190 
200 
21</J 
220 
23</J 
240 
250 
260 
27</J 
28</J 
29</J 
3</J</J 
31</J 
320 
33</J 
34</J 
35</J 
36</J 
37</J 
38</J 
39</J 
4</J</J 
41</J 
42</J 
43</J 
44</J 
45</J 
46</J 
47</J 
480 
49</J 
5</J0 
51</J 
52</J 
53</J 
54</J 
55</J 

56</J 

57</J 

58</J 
59</J 

6</J</J 

61</J 
620 
63<1> 
64</J 
65</J 
66</J 
670 
68</J 
69</J 
7</J</J 

71</J 
72</J 
73</J 

475-PlO- 0 



COLLECTED ALGORITHMS (cont.) 

C ,THEN A SEQUENCE OF CALLS ARE MADE TO DANDR TO PRODUCE A PICTURE. 
c 
C EYE AN ARRAY 3 LONG CONTAINING THE U,V,W COORDINATES OF THE EYE 
C POSITION. OBJECTS ARE CONSIDERED TO BE IN A BOX WITH 2 EXTREME 
C CORNERS AT (1,1,1) AND (NU,NV,NW). THE EYE POSITION MUST HAVE POSI 
C TIVE COORDINATES AWAY FROM THE COORDINATE PLANE U=</J, V=</J,W=</J. 
C WHILE GAINING EXPERIENCE WITH THE PACKAGE, USE EYE(l)=5*NU,EYE(2)= 
C 4*NV, EYE(3)=3*NW. 
C NU U DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECTS 
C NV V DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECTS 
C NW W DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECTS 
C STl A SCRATCH ARRAY AT LEAST NV*NW*2 WORDS LONG. 
C LX FIRST DIMENSION OF A SCRATCH ARRAY, IS2, USED BY THE PACKAGE 
C FOR REMEMBERING WHERE IT SHOULD NOT DRAW. 
C LX=l+NX/NBPW. 
C NY SECOND DIMENSION OF IS2. 
C IS2 A SCRATCH ARRAY AT LEAST LX*NY WORDS LONG. 
C IU UNIT NUMBER OF SCRATCH FILE FOR THE PACKAGE. STl 
C WILL BE WRITTEN NU TIMES ON THIS FILE. 
C S AN ARRAY 4 LONG WHICH CONTAINS THE COORDINATES OF THE 
C AREA WHERE THE PICTURE IS TO BE DRAWN, 
C THAT IS, ALL PLOTTING COORDINATES GENERATED WILL BE BOUNDED AS 
C FOLLOWS-- X COORDINATES WILL BE BETWEEN S(l) AND S(2), 
C Y COORDINATE WILL BE BETWEEN S(3) AND S(4). 
C TO PREVENT DISTORTION, HAVE S(2)-S(l)=S(4)-S(3) 
C IF SEVERAL PICTURES ARE TO BE DRAWN WITH THE SAME SIZE 
C ARRAYS AND EYE POSITION AND THE USER REWINDS IU AND FILLS IS2 
C WITH ZEROES, INIT3D NEED NOT TE BE CALLED FOR OTHER THAN THE 
C FIRST PICTURE. 
c 
C SET UP TRANSFORMATION ROUTINE FOR THIS LINE OF SIGHT. 

U=NU 
V=NV 
W=NW 
AX=U*</J.5 
AY:=V*</J.5 
AZ=W*</J.5 
EX=EYE(l) 
EY=EYE(2) 
EZ=EYE(3) 
DX= AX-EX 
DY:=AY-EY 
DZ=AZ-EZ 
D=SQRT(DX*DX+DY*DY+DZ*DZ) 
CA=DX/D 
CB==DY/D 
CG=DZ/D 

C************ MACHINE DEPENDANT FUNCTION ******** ACOS *************** 
C AL=ACOS(CA) 
C BE=ACOS(CB) 
C GA=ACOS(CG) 
C THE MACINE DEPENDANT FUNCTION ACOS CAN BE REPLACED BY ARCCOS 

AL=ARCCOS(CA) 
BE=ARCCOS(CB) 
GA=ARCCOS(CG) 
SINGA=SIN(GA) 

C THE 3-SPACE POINT LOOKED AT IS TRANSFORMED INTO (</J,</J) OF 
C THE 2-SPACE. THE 3-SPACE Z-AXIS IS TRANSFORMED INTO THE 
C 2-SPACE Y AXIS. 

IF(SINGA.LT.</J.</J</J</Jl)GO TO 11 
R=l./SINGA 

C FIND EXTREMES IN TRANSFORMED SPACE. 
CALL P(l.,l.,W,DUMMY,YT,AX,AY,AZ,EX,EY,EZ,CA,CB,CG,D,R) 
CALL P(U,V,l.,DUMMY,YB,AX,AY,AZ,EX,EY,EZ,CA,CB,CG,D,R) 
CALL P(U,1.,1.,XL,DUMMY,AX,AY,AZ,EX,EY,EZ,CA,CB,CG,D,R) 
CALL P(l.,V,l.,XR,DUMMY,AX,AY,AZ,EX,EY,EZ,CA,CB,CG,D,R) 

C ADJUST EXTREMES TO PREVENT DISTORTION WHEN GOING FORM 
C TRANSFORMED SPACE TO PLOTTER SPACE. 

DIF=(XR-XL-YT+YB)*.5 
IF(DIF)l</J,3</J,2</J 

l</J XL=XL+DIF 
XR=XR-DIF 
GO TO 3</J 

2</J YB=YB-DIF 
YT=YT+DIF 

3</J REWIND IU 

74</J 
75</J 
76</J 
77</J 
78</J 
79</J 
8</J</J 
81</J 
82</J 
83</J 
84</J 
85</J 
86</J 
87</J 
88</J 
89</J 
9</J</J 
91</J 
920 
93</J 
940 
950 
96</J 
97</J 
980 
99</J 

1000 
1010 
l</J2</J 
103</J 
1040 
1050 
l</J6</J 
l</J7</J 
108</J 
1090 
1100 
1110 
1120 
113</J 
1140 
1150 
1160 
117</J 
118</J 
119</J 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
128</J 
1290 
1300 
1310 
1320 
133</J 
1340 
1350 
1360 
1370 
138</J 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
147</J 
1480 
1490 

475-Pll- 0 



COLLECTED ALGORITHMS (co111t.) 

C FIND THE PLOTTER COORDINATES OF THE 3-SPACE LATTICE POINTS. 
Cl=.9*(S(2)-S(l))/(XR-XL) 
C2=.05*(S(2)-S(l))+S(l) 
C3=.9*(S(4)-S(3))/(YT-YB) 
C4=.05*(S(4)-S(3))+S(3) 
DO 60 I=l,NU 
U=NU+l-I 
DO 50 J=l,NV 
V=J 
DO 40 K=l,NW 
W=K 
Q=D/((U-EX)*CA+(V-EY)*CB+(W-EZ)*CG) 
X =((EX+Q*(U-EX)-AX)*CB-(EY+Q*(V-EY)-AY)*CA)*R 
Y =(EZ+Q*(W-EZ)·-AZ)*R 
ST1(J,K,l)=Cl*(X-XL)+C2 
STl (J ,K, 2)=C3* (Y-YB)+C4 

40 CONTINUE 
50 CONTINUE 

C WRITE THEM ON UNIT IU. 
WRITE(IU)STl 

60 CONTINUE 
REWIND IU 

C ZERO OUT ARRAY WHERE VISIBILITY IS REMEMBERED. 
DO 80 J=l,NY 
DO 70 I=l,LX 
IS2(I,J)=0 

70 CONTINUE 
80 CONTINUE 

RETURN 
11 CONTINUE 

STOP 
END 
SUBROUTINE P(X,Y,Z,XT,YT,AX,AY,AZ,EX,EY,EZ,CA,CB,CG,D,R) 

C X,Y,Z ARE THE 3-SPACE COORDINATES OF A POINT TO BE TRANSFORMED. 
C XT,YT THE RESULTS OF THE 3-SPACE TO 2-SPACE TRANSFORMATION. 
c 

Q=D/((X-EX)*CA+(Y-EY)*CB+(Z-EZ)*CG) 
XT=((EX+Q*(X-EX)-AX)*CB-(EY+Q*(Y-EY)-AY)*CA)*R 
YT= (EZ+Q* (Z-EZ)·-AZ) *R 
RETURN 
END 
SUBROUTINE DANDR(NV,NW,STl,LX,NX,NY,IS2,IU,S,IOBJS,MV) 

c 
C THE PURPOSE OF THE SUBROUTINE AND THE INPUT AS WELL AS THE 
C OUTPUT PARAMETERS ARE THE SAME AS PUBLISHED BEFORE BY WRIGHT. 
C THEY ARE SUMMARIZED AND REPETED IN BEHALF OF THE USERS OF THIS 
C SUBROUTINE DANDR 
c 
C THIS SUBROUTINE IS CALLED NU TIMES, EACH CALL PROCESSING THE 
C PART OF THE PICTURE AT U=NU-I+l WHERE I IS THE NUMBER OF THE CALL 
C TO DANDR. THE PART OF THE PICTURE AT U=NU IS PROCESSED DURING 
C THE FIRST CALL, THE PART OF THE PICTURE AT U=NU-I+l DURING 
C THE SECOND CALL, AND SO ON UNTIL THE PART OF THE PICTURE AT U=l 
C IS PROCESSED DURING THE LAST CALL. 
C PARAMETERS IN THE CALL 
C NV V DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECT. 
C NW W DIRECTION LENGTH OF THE BOX CONTAINING THE OBJECT. 
C STl A SCRATCH ARRAY AT LEAST NV*NW*2 WORDS LONG. 
C LX THE NUMBER OF WORDS NEEDED TO HOLD NX BITS. 
C NX NUMBER Oll" CELLS IN THE X DIRECTION OF A MODEL OF THE 
C IMAGE PLANE. 
C NY NUMBER Oll" CELLS IN THE Y DIRECTION OF THE MODEL OF THE 
C IMAGE PLANE. 
C IS2 AN ARRAY TO HOLD THE IMAGE PLANE MODEL. 
C IU UNIT NUMJBER OF SCRATCH FILE FOR THE PACKAGE. 
C STl WILL BE WRITTEN NU TIMES ON THIS FILE. 
C IOBJS A NV BY NW ARRAY DESCRIBING THE OBJECT. 
C IF THIS IS CALL NUMBER I TO DANDR, THE PART OF THE PICTURE 
C AT U=NU-I+l IS TO BE PROCESSED. IOBJS DEFINES THE OBJECTS 
C IOBJS(J,K)=l IF ANY OBJECT CONTAINS THE POINT (NU-1+1,J,K) 
C AND IOBJS(J,K)=0 OTHERWISE. 
C MV THE ACTUAL FIRST DIMENION OF IOBJS IN THE CALLING PROGRAM. 
C S AN ARRAY WHICH CONTAINS THE COORDINATES OF THE AREA WHERE 
C THE PICTURE IS TO BE DRAWN. 
C THE PROGRAM IS TESTED USING A CDC7600 (CYBER 76-16) COMPUTER 
C INSTALLATION, AND CDC 6600 INSTALLATION AS WELL. 

1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
194© 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 

475-Pl2- 0 



COLLECTED ALGORITHMS (cont.) 

c 
C INLINE FUNCTION WHICH ARE ASSUMED TO BE AVAILABLE, ARE= 
C ABS, FLOAT, !FIX, MOD. 
C************ MACHINE DEPENDANT CONSTANTS ************************ 
C NBPW NUMBER OF BITS PER WORD 
C CDC SERIES (PRESENT CASE) NBPW=60. 
C IBM SERIES, NBPW=32. 
C UNIVAC 1100 SERIES, NBPWz36. 
C MASK AN ARRAY NBPW LONG. MASK(I)=2**(I-1),I=l,2,3, •• ,NBPW. 
c 

DIMENSION STl(NV,NW,2),IS2(LX,NY),S(4),IOBJS(MV,NW) 
DIMENSION MASK(60) 
INTEGER AND,OR 
COMMON/TOMl/NSEQ,SS 

C**************** NBPW *********************************************** 
DATA NBPW/60/ 
DATA MASK/1B,2B,4B,10B,2</JB,4</JB,1</J0B,200B,4</J0B, 

*1000B,2000B,40</J</JB,1000</JB, 
*200</J0B,4</J0</J</JB,1</J</J</J</J</JB,2</J</J</J00B,4</J00</J</JB,1</J</J</J</J</J</JB,2</J</J</J</J</J</JB,4</J</J</J</J</J</JB, 
*1</J</J00</J</J</JB,2</J</J</J</J</J</J</JB,40</J</J</J</J</J</JB,1</J</J</J00</J</J</JB,2</J00</J0</J0</JB,4</J</J</J</J</J</J</J</JB, 
*1</J</J</J</J</J</J00</JB,2</J</J</J</J</J</J</J</J</JB,4</J</J0000</J</J</JB,1</J</J</J</J00</J</J</J</JB,2</J</J</J</J</J00</J</J</JB, 
*40</J</J</J</J</J</J</J</J</JB,l</J</J</J</J</J</J</J</J</J</J</JB,2</J</J</J00</J0</J</J00B,4</J00</J</J</J</J00</J</JB, 
*10</J</J0</J</J00</J</J00B,20</J0000000000B,400</J000000000B,1</J</J</J0000</J000</J0B, 
*200</J000000</J00</JB,4</J</J</J</J</J</J</J</J</J00</J</JB,l</J</J</J</J00</J</J0</J00</J</JB,2</J</J</J</J</J</J</J</J</J</J</J</J</J</JB, 
*4</J</J</J</J</J</J</J</J</J</J</J</J0</JB,10</J0</J</J</J</J</J0</J</J00</J</JB,2</J</J0</J</J0</J</J</J</J00</J</J</JB, 
*4</J</J</J</J0</J</J</J</J</J</J00</J0B,1</J000</J</J0</J0</J</J</J</J</J</J</JB,2</J</J</J~</J</J</J0</J</J</J00</J</J</JB, 
*4</J</J0</J</J</J0</J</J0</J0</J0</J</JB,100</J0</J0</J000</J000000B,2000000000000000</J0B, 
*40</J</J0</J000</J000</J0</J</J</JB,1</J</J</J</J</J00</J</J0</J00</J</J</J</J0B,2</J</J0</J</J00</J</J</J</J</J</J</J</J</J</J0B, 
*4</J</J</J00</J</J</J</J</J</J</J</J</J</J</J</J</JB,1</J</J000</J00</J</J</J0</J</J</J00</J</JB,2</J</J</J00</J</J</J</J</J</J00</J</J</J</J</J</JB, 
*4</J</J</J</J</J</J</J</J</J</J</J</J</J</J</J</J00</JB/ 

ASSIGN 12</J TO IRET 
C INITIALIZATION 

NSEQ=</J 
SS=</J.</J4 
RX=(FLOAT(NX)-l.)/(S(2)-S(l)) 
RY=(FLOAT(NY)-1.)/(S(4)-S(3)) 
READ(IU)STl 
NVD2=NV/2 
NWD2=NW/2 
DX=(STl(NV,NWD2,1)-STl(l.NWD2,l))*.5/(FLOAT(NV)-1.) 
DY=(ST1(1,NWD2,2)-ST1(NV,NWD2,2))*.5/(FLOAT(NV)-l.) 
DZz(STl(NVD2,NW,2)-STl(NVD2,1,2))*.5/(FLOAT(NW)-l.) 
SLOPE=DY/DX 
DO 13</J 1=2 ,NV 
JUMP=IOBJS(I-l,1)*8+IOBJS(I,1)*4+1 
DO 12</J J=2,NW 
X=STl(I,J ,1) 
Y=STl(I,J ,2) 
JUMP=(JUMP-l)/4+IOBJS(I-1,J)*8+IOBJS(I,J)*4+1 
GO TO(l2</J,2</J,4</J,5</J,7</J,8</J,3</J,1</J</J,10</J,l</J,8</J,7</J,5</J,4</J,2</J,12</J),JUMP 

1</J ASSIGN 9</J TO IRET 
2</J Xl=X 

Yl=Y-DZ 
X2=X+DX 
Y2=Y-DY 
GO TO 110 

3</J ASSIGN 6</J TO IRET 
4</J Xl=X 

Yl=Y-DZ 
X2:=X-DX 
Y2:=Y+DY 
GO TO 11</J 

5</J Xl=X+DX 
Yl=Y-DY 
X2=X-DX 
Y2=Y+DY 
GO TO 110 

60 ASSIGN 120 TO IRET 
70 Xl=X+DX 

Yl=Y-DY 
X2=X 
Y2=Y+DZ 
GO TO 11</J 

8</J Xl=X 
Yl=Y-DZ 

226</J 
227</J 
228</J 
229</J 
23</J0 
231</J 
232</J 
233</J 
234</J 
235</J 
236</J 
237</J 
238</J 
239</J 
2400 
241</J 
2420 
243</J 
2440 
2450 
2460 
247</J 
2480 
2490 
25</J</J 
2510 
252</J 
2530 
2540 
2550 
256</J 
2570 
2580 
259</J 
2600 
261</J 
262</J 
263</J 
264</J 
265</J 
2660 
267</J 
268</J 
2690 
27</J</J 
271</J 
272</J 
273</J 
274</J 
275</J 
276</J 
277</J 
278</J 
279</J 
28</J</J 
281</J 
282</J 
283</J 
284</J 
285</J 
286</J 
287</J 
288</J 
289</J 
29</J</J 
2910 
292</J 
2930 
294</J 
2950 
296</J 
2970 
298</J 
299</J 
3</J</J</J 

475-Pl3- 0 



COLLECTED ALGORITHMS (cont.) 

Y2=Y+DZ 
GO TO 110 

90 ASSIGN 120 TO IRET 
100 Xl=X-DX 

Yl=Y+DY 
X2=X 
Y2=Y+DZ 

110 IX=(Xl-S(l))*RX 
IY=MOD(IFIX( (YJL-S (3) )*RY-SLOPE*FLOAT(IX) )+NY ,NY)+l 
IBIT=MOD(IX,NBPW)+l 
IX=IX/NBPW+l 
Il=IS2(IX,IY) 
I2=MASK(IBIT) 
IV=AND(Il,I2) 
IF(IV.NE.Qi)GO TO IRET,(60,90,120) 
IX=(X2-S(l))*RX 
IY=MOD(IFIX( (Y2-S (3) )*RY-SLOPE*FLOAT(IX) )+NY ,NY)+l 
IBIT=MOD(IX,NBPW)+l 
IX=IX/NBPW+l 
Il=IS2(IX,IY) 
I2=MASK(IBIT) 
IV=AND(Il,I2) 
IF(IV.NE.0)GO TO IRET,(60,90,120) 
CALL SDLINE(Xl,Yl,X2,Y2) 
GO TO IRET,(60,90,120) 

120 CONTINUE . 
130 CONTINUE 

CALL PLTOUT 
C SUBROUTINE PLTOUT PLOTS THE SEQUENCES TAKING INTO ACCOUNT 
C THE MINIMUM DISTANCE BETWEEN BEGINNING AND ENDPOINTS OF THE 
C SEQUENCES. 

DO 150 I=l,NV 
DO 140 J=l,NW 
IF(IOBJS(I,J).EQ.0)GO TO 140 
IX= (STl(I ,J, 1) ·-S (1) )*RX+0. 5 
TWK=SLOPE*FLOAT(IX)-0.5 
IY=MOD(IFIX((STl(I,J,2)-S(3))*RY-TWK)+NY,NY)+l 
IBIT=MOD(IX,NBPW)+l 
IX=IX/NBPw+l 
Il=IS2(IX,IY) 
I2=MASK(IBIT) 
IS2(IX,IY)=OR(Il,I2) 

140 CONTINUE 
150 CONTINUE 

RETURN 
END 

C*****MACHINE DEPENDENT *********************************************** 
INTEGER FUNCTION AND(I,J) 

C*****THIS VERSION FOR CDC 6000 SERIES ********************************* 
C********* .AND. USED AS MASKING OPERATOR. ************************ 

AND= I. AND. J 
RETURN 
END 

C*****MACHINE DEPENDENT *********************************************** 
INTEGER FUNCTION OR(I,J) 

C*****THIS VERSION FOR CDC6000 SERIES ********************************** 
C****** .OR. USED AS MASKING OPERATOR. **************************** 

OR=I .OR.J 
RETURN 
END 
SUBROUTINE SDLINE (Xl, Yl ,X2, Y2) 

C PEN-UP MINIMIZING VERSION OF THE VISIBLE SURFACE PLOTTING PROGRAM 
C ORIGINAL PROGRAM BY T. WRIGHT , COMMUN. ACM 17, 3(MARCH 1974) 
c pp 152-155. 
C AUTHORS , A.C.M. VAN SWIETEN (*) AND J.TH.M. DE ROSSON (**) 
c 
C (*) MATHEMATICAL INSTITUTE, STATE UNIVERSITY GRONINGEN, 
C P.O. BOX 800, GRONINGEN, THE NETHERLANDS (PRESENT ADDRESS 
C VSSG,P.O. BOX 3032, LEYDEN, THE NETHERLANDS). 
C (**)NORTHWESTERN UNIVERSITY, DEPT. MATERIALS SCIENCE AND 
C ENGINEERING, THE TECHNOLOGICAL INSTITUTE, EVANSTON,ILLINOIS 60201, 
C U.S.A. ( ON LEAVE OF ABSENCE, LABORATORIUM VOOR FYSISCHE METAAL-
C KUNDE, MATERIALS SCIENCE CENTRE, NIJENBORGH 18, GRONINGEN, 
C THE NETHERLANDS , SEPT.1976- SEPT. 1977). 
c 
C IN THE ORIGINAL SUBROUTINE DANDR ONE HAS TO ADD THE 

3020 
3030 
304</J 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 
3160 
3170 
3180 
3190 
320</J 
3210 
3220 
323</J 
324</J 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
34</J</J 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
35</J<t> 
3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 
3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 
3690 
3700 
3710 
3720 
3730 
3740 
375r/J 
3760 
377</J 

475-Pl4- 0 



COLLECTED ALGORITHMS (cont.) 

C FOLLOWING FIVE STATEMENTS 
C 1)2) SS=0.04,NSEQ=0,BEFORE SLOPE=DX/DY WHICH INITIALIZE SDLINE. 
C 3) ADD COMMON/TOMl/NSEQ,SS TO DANDR. 
C 4) CALL SDLINE(Xl,Yl,X2,Y2) INSTEAD OF LINE(Xl,Yl,X2,Y2). 
C 5) CALL PLTOUT AFTER STATEMENT 130 CONTINUE IN DANDR. 
c 
c 
c 
c 
c 
c 
c 

THE SUBROUTINE SDLINE(Xl,Yl,X2,Y2) TEMPERARILY STORES THE 
SEGMENTS IN ORDER TO BUILT UP THE SEQUENCES. THIS IS DONE BY 
COMPARING THE LAST POINT OF EACH SEQUENCE WITH THE ENDPOINTS 
OF A SEGMENT. SDLINE IS ASSUMED TO DRAW A LINE FROM (Xl,Yl) 
TO THE POINT (X2,Y2) UTILIZING THE SUBROUTINES PLTOUT AND PLOT. 

C LOGICAL OPERATIONS .AND. , .OR. 
C************ MACHINE DEPENDANT CONSTANTS ************************ 
C CDC 6000 AND CDC 7000 SERIES. 

c 

c 
c 

c 

c 

c 

c 

DIMENSION XX(80,20),YY(80,20),NN(20) 
COMMON/TOM/NN,XX,YY 
COMMON/TOMl/NSEQ,S 
IF(NSEQ.EQ.0) GOTO 20 
SEARCH FOR CONTINUATION POINT. 
DO 10 ISEQ=l,NSEQ 
INN=NN(ISEQ) . 
ISW=0 

5 XL=XX(INN,ISEQ) 
YL=YY(INN,ISEQ) 
TRUE IN NEXT STATEMENT MEANS CONTINUATION POINT FOUND 

.AND. LOGICAL MULTIPLICATION. 
IF((ABS(Xl-XL).LE.S).AND.(ABS(Yl-YL).LE.S)) GOTO 50 
IF((ABS(X2-XL).LE.S).AND.(ABS(Y2-YL).LE.S)) GOTO 40 

LOGICAL EXPRESSION = INCLUSIVE .OR. 
IF((INN.GT.2).0R.(ISW.NE.0)) GOTO 10 
XBL=XX(l,ISEQ) 
YBL=YY(l,ISEQ) 
XX(l,ISEQ)=XX(2,ISEQ) 
YY(l,ISEQ)=YY(2,ISEQ) 
XX(2,ISEQ)=XBL 
YY(2,ISEQ)=YBL 
ISW=l 
GOTO 5 

10 CONTINUE 
NEW SEQUENCE 

20 IF(NSEQ.EQ.20) CALL.PLTOUT 
NSEQ=NSEQ+l 
XX(l,NSEQ)=Xl 
XX(2,NSEQ)=X2 
YY(l,NSEQ)=Yl 
YY(2,NSEQ)=Y2 
NN(NSEQ)=2 
RETURN 
CONTINUE OLD SEQUENCE 

40 X2=Xl 
Y2=Yl 

50 INN=INN+l 
IF(INN.GT.80) GOTO 20 
XX(INN,ISEQ)=X2 
YY(INN,ISEQ)=Y2 
NN(ISEQ)=INN 
RETURN 
END 
SUBROUTINE PLTOUT 

C INSERT CALL PLTOUT AFTER STATEMENT 130 CONTINUE IN 
C THE ORIGINAL DANDR SUBROUTINE. 
c 
C THIS SUBROUTINE PLOTS THE SEQUENCES TAKING INTO ACCOUNT 
C THE MINIMUM DISTANCE BETWEEN BEGINNING AND ENDPOINTS OF THE 
C SEQUENCES. THIS IS DONE BY ORDERING THE SEQUENCES IN AN 
C APROPRIATE WAY AND BY INDICATING WHETHER THEY SHOULD BE PROCESSED 
C IN THE NORMAL ORDER OR REVERSED. 
C****** UNDEFINED EXTERNAL REFERENCES ********************************* 
C SUBROUTINE PLOT(X,Y,IND)IS AVAILABLE IN THE CALCOMP PACKAGE. 
C PLOT(X,Y,IND) =TO MOVE THE PEN FROM ITS CURRENT POSITION 
C TO A NEW POSITION. 
C X = X-COORDINATE, IN CM, OF NEW PEN POSITION RELATIVE TO ORIGIN. 
C Y = Y - COORDINATE, IN CM, OF NEW PEN POSITION RELATIVE TO ORIGIN. 
C IND= IS USED TO CONTROL VERTICAL POSITION OF THE PEN, THE 

3780 
3790 
3800 
3810 
3820 
3830 
3840 
3850 
3860 
3870 
3880 
3890 
3900 
3910 
392</J 
3930 
3940 
395</J 
3960 
3970 
3980 
399(/J 
M/Jf/J0 
·~010 
·~020 
•+030 
•+040 
•+050 
l+060 
l+070 
l+080 
i•09</J 
1•100 
l1110 
'•120 
t•l30 
Lll40 
L1150 
L1160 
L1170 
Lil80 
L1190 
lf2</J</J 
4.210 
4.220 
4.230 
4.24</J 
4250 
4260 
4270 
4280 
4290 
43</J</J 
431</J 
4320 
4330 
434</J 
4350 
4360 
4370 
4380 
439</J 
4400 
441</J 
4420 
4430 
444</J 
445</J 
4460 
447(/J 
4480 
4.49(/J 
4500 
4.51</J 
4520 
4530 

475-·PIS- 0 



COLl,ECTED ALGORITHMS (cont.) 

c 
c 
c 

ESTABLISHING OF NEW ORIGINS, DUMPING OF THE BUFFER, AND 
THE STARTING OF NEW BLOCKS. 

DIMENSION XX(810,20) ,YY(80,20) ,NN(20) ,IND(20) ,IDR(20) 
COMMON/TOM/NN,XX,YY 
COMMON/TOMl/NSEQ,S 
IF(NSEQ.EQ.0) RETURN 
DO 10 I=l,NSEQ 
IND(I)=I 

10 CONTINUE 
IDR(l)=l 
ITEMP=NN(l) 
OLDX=XX(ITEMP,l) 
OLDY=YY(ITEMP,l) 
DO 30 I=2,NSEQ 
DMIN=l0000</J0. 
DO 20 J=l ,NSEQ 
K=IND(J) 
DX=XX(l,K)-OLDX 
DY=YY(l,K)-OLDY 
D=SQRT(DX*DX+DY*DY) 
IF(D.GE.DMIN) GOTO 15 
DMIN=D 
MINJ=J 
IDRT=l 

15 ITEMP=NN(K) 
DX=XX(ITEMP ,K) ··OLDX 
DY=YY(ITEMP,K)-OLDY 
D=SQRT(DX*DX+DY*DY) 
IF(D.GE.DMIN) GOTO 20 
DMIN=D 
MINJ=J 
IDRT=-1 

2</J CONTINUE 
L=IND(MINJ) 
IND(MINJ)=IND(I) 
IND(I)=L 
IDR(I)=IDRT 
IB=l 
IF(IDRT.NE.l) IB=NN(K) 
OLDX=XX(IB,K) 
OLDY=YY(IB,K) 

3</J CONTINUE 
DO 5</J I=l,NSEQ 
K=IND(I) 
N=NN(K) 
IB=l 
M3=IDR(I) 
IF(M3.NE.l) IB=N 
Ml=IB+M3 

C***** UNDEFINED EXTERNAL REFERENCE ** PLOT ************************* 
CALL PLOT(XX(IB,K) ,YY(IB,K), 3) 
DO 4</J L=2,N 

C***** UNDEFINED EXTERNAL REFERENCE ** PLOT ************************* 
CALL PLOT(XX(Ml,K),YY(Ml,K),2) 
Ml=Ml+M3 

4</J CONTINUE 
NN(K)=</J 

5</J CONTINUE 
NSEQ=</J 
RETURN 
END ' 
FUNCTION ARCCOS(Y) 

C BECAUSE ACOS IS NOT A STANDARD FORTRAN FUNCTION THE PRESENT 
C -~UNCTION ROUTINE IS AN APPROXIMATION FOR IT. 

PI=3.1415926 
X=ABS(Y) 
ARCCOS=(l.57</J7288-0.2121144*X~.</J7426l*X*X-</J.0187293*X*X*X)*SQRT(l 

A.-X) 
IF (Y. LT. </J.) ARCCOS=PI-ARCCOS 
RETURN 
END 

4540, 
4550 
4560 
457</J 
458</J 
4590 
460</J 
4610 
462(/J 
463</J 
464</J 
465~1 
466</J 
467</J 
468</J 
469(/J 
4700 
4710 
472</J 
4730 
4740 
4750 
476</J 
4770 
4780 
479</J 
48</J</J 
481</J 
482</J 
4830 
484</J 
485</J 
486</J 
487</J 
488(~ 

489</J 
4900 
491</J 
4920 
4930 
494</J 
4950 
496</J 
497</J 
4980 
4990 
5</J</JC/J 
5</Jl</J 
5</J20 
5</J31b 
5</J41~ 
5</J5r/J 
5</J61b 
5C/l70 
508</J 
5090 
5100 
5110 
512¢ 
5130 
5140 
5150 
5160 
5170 
5180 
519</J 
52</J0 
521'tl 
5220 
5230 
5240 
525</J 

475-Pl6- 0 



COLLECTED ALGORITHMS FROM CACM 

Editor's note: Al goritlrm 476 described lrere is available 011 mag11eric 
!ape from the Deparlme111 of Computer Science, U11iversi1y of 
Colorado, Boulder, CO 80302. Tire cost /(Jr tire rape is $16.00 (U.S. 
all{/ Canada) or $18.00 (elsewhere). If rite user sends a small tape 
(wt. less 1/ra11 l lb.) tire algorirlrm will be copied 011 ii and re/urned 10 
/rim al a charge of $10.00 (U.S. 0111 y). All orders are lo be pre paid 
wirlr checks payable to ACM Algoritlrms. Tire algorithm is recorded 
as one file of BCD 80 clraracter card images at 556 B.P.l., e~·e11 
parity, 011 seven track rape. We will supply algoritlrm at a density of' 
800 B.P.I. 1f requesred. Cords /or algorirlrms are sequenced starring 
al JO and i11creme111ed by JO. Tire sequence 1111mber is rig/rt jusrijied in 
column 80. Altlrouglr we will make erery allempr 10 insure rlrat lite 
al goritl11n co11Jorms to rlre descrip1io11 primed Ire re, we ca111101 guaran
tee ii, nor can we guarantee tlrat tlte algorithm is correct.-L.D.F. 
and A.K.C. 

Algorithm 476 

Six Subprograms for Curve 
Fitting Using Splines Under 
Tension [E2] 
A.K. Cline 
National Center for Atmospheric Research,* P.O. Box 
1470, Boulder, CO 80302 
[Recd. 21Apr.1972 and 13 June 1973] 

*Sponsored by the National Science Foundation. 
Author's present address: Institute for Computer Applications 

in Science and Engineering, Mail Stop 132-C, NASA-Langley 
Research Center, Hampton, VA 23365 

Key Words and Phrases: interpolation, splines, contouring, 
curve fitting 

CR Categories: 5.13, 8.2 
Language: Fortran 

Description 
The spline under tension package includes six subprograms: 

two in each of three problem areas. These implement the theory 
presented in [1]. The first pair, CURVl and CURV2, solves the 
standard interpolation problem: determine a real-valued function 
that assumes values Lr,1:'~1 at abscissas lx,j;'=1. The second pair, 
KURVl and KURV2, solves the more general problem of passing 
a curve through a sequence of pairs Ix,, y,J7~1 in the plane. The 
third pair, KURVPI and KURVP2, solves the same problem, but 
the solution curve is closed. 

CU RVI and KU RVI require additional endpoint slope condi
tions to determine the solution. The user may omit the information 
in which case values are produced internally based upon the other 
input information. If three or more points are to be interpolated, 
these internal slope values are the slopes given by a quadratic 

476-P 1- 0 

polynomial interpolating the first three values for the initial slope 
and last three values for the terminal slope. If only two points are 
to be interpolated and no slope information is given, the resulting 
curve is a straight line. The subprogram KURV Pl determines 
periodic splines under tension, and thus no additional slope infor
mation is required. 

In each pair of subprograms, the first is called only once, and 
sets up and solves the tridiagonal system to specify the spline. The 
second is used for the actual mapping of points. The function 
CURV2 returns an image point for a given real value. The sub
routines KURV2 and KURVP2 return the image pairs in their 
parameter sequences. Each of these subprograms, CURV2, KURV2, 
and KU RV P2, first must determine which data points are adjacent 
to the input value. This search usually begins with the leftmost 
values and proceeds until the correct interval is found. However, if a 
sequence of input values is to be mapped, the search can be made 
more efficient by ordering these values left to right. The search can 
then proceed on one call from where it ended on the previous 
call. All three subprograms include an efficiency option which in 
effect says, "You may proceed from where you stopped." 

All the subprograms included require a natural exponential 
function named EXP. KURVI, KURV2, KURVPl, and KURVP2 
require a square root function SQRT The subroutine KURVl 
requires the sine (SIN) and cosine (COS) functions, in addition to 
the function AT AN2 of two arguments which when given x and y 

(not both zero) returns an angle(} which satisfies x = y X 1a11 (0). 
All of these are basic Fortran external functions. 

References 
1. Cline, A.K. Scalar- and planar-valued curve fitting using 
splines under tension. Comm. ACM J7, 4 (Apr. 1974), 218-220. 

Algorithm 

SUBROUT!!IJE CUP.Vl(N, x, y, SLPI, SLPN, YP, TEMP, SIGMA> 
INTEGER N 
REAL X(N), YCN>, SLPJ, SLPN, YPCN>1 TE~PCN), SIGMA 

C THIS SUBROUTINE DETERMINES THE PARAMETERS NECESSARY TO 
C COMPUTE AN l!IJTEFPOLATORY SPLINE U!IJDER TENSION THFOUGH 
c A SEQUENCE OF FtlNCTIO!IJAL VALl"ES. THE SLOPES AT THE n:o 
C ENDS OF THE CURVE MAY BE SPECIFIED OR OMITTED. FOR ACTUAL 
C COM Pl.TAT I ON 0 F PO !NTS ON THE CL'FVE IT IS NECESSARY TO CALL 
C THE FUNCTIO!IJ CURV2. 
C ON INPl'.T--
C N IS THE NUMBER OF VALUES TO BE INTERPOLATED CN.GE.2), 
C X IS AN AP.RAY OF THE !IJ INCREASING ABSCISSAE OF THE 
C fl'.NCTIONAL VALl'ES, 
C Y IS AN AP.FAY OF THE N ORDl!IJATES OF THE VALUES, (I.E. YCK> 
C IS THE FllNCTIONAL VALUE CORRESPONDl:JG TO XCK)), 
C SLPI AND SLPN CONTAIN THE DESIRED VALUES FOR THE FIPST 
C DERIVATIVE OF THE CURVE AT X<l> AND XCN), RESPECTIVELY. 
C IF THE QUANTITY SIGMA IS !IJEGATIVE THESE VALUES ~ILL EE 
C DETERMINED INTERNALLY AND THE l"SEF NEED ONLY Fl'FN I SH 
C PLACE-HOLDING PAFAMETERS FOR SLPI AND SLPN• SUCH PLACE
C HOLDING PARAMETERS \.'ILL EE IGNORED EVT l~OT DESTROYED, 
C YP IS AN ARP.AY OF LENGTH AT LEAST N 
C TEMP IS AN ARRAY OF LE:>IGTH AT LEAST N 1''''11CH IS USED FOP 
C SCRATCH STORAGE, 
C ANO 
C SIGMA CONTAINS THE TENSION FACTOR· THIS IS NON-ZERO ANO 
C INDICATES THE CURVINESS DESIRED. IF APSCS!GMA> IS NEARLY 
C ZERO CE.G •• 001> THE RESULTING CURVE IS APPPOXIMATELY A 
C CUBIC SPLINE• IF APSCSIGMA> IS LARGE CE.G. 50.> THE 
C RESULTING CURVE IS NEARLY A POLYGONAL LINE. THE SIG!IJ 
C OF SIGMA INDICATES li.'HETHER THE DEPIVATIIJE INFORMATION 
C HAS BEEN INPUT OR NOT. IF SIGMA IS NEGATIVE THE ENDPOl!IJT 
C DERIVATIVES WILL EE DETERMINED INTEPNALJ.Y, A STANDARD 
C VALUE FOR SIGMA IS APPROXIMATELY I, IN ABSOLUTE VALUE. 
C ON OUTPt'T--
C YP CONTAINS VALUES PROPOPTIO:-JAL TO THE !;ECOND DEPIVATIVE 
C OF THE CURVE AT THE GIVEN NODES. 
C N,X,Y,SLPl,SLPN AND SIGMA ARE UNALTERED,, 

NMI = N - I 
NP! 2 N + I 
DELXI • XC2> - X< I> 
DX!= CYC2>-Y<l))/DELXI 

C DETERMINE SLOPES IF NECESSARY 
IF CSIGMA·LT· 0. > GO TO 51il 
SLPPI = SLPI 
SLPPN = SLPN 



COLLECTED ALGORITHMS (cont.) 

C DENORMALIZE TENSION FACTOR 
10 SIGMAP • ABS<SIGMA>•l'LOAT<N-l>l<X<Nl-X<l» 

SET UP RIGHT HAND SIDE A.1110 TRIDIAGONAL SYSTEM !'OF YP ANO 
PERl'ORM fORl.IARO ELIMINATION 

DELS • SI GMAP•OELX I 
EXPS • EXP<DELSl 
SINHS • .5•<EXPS-l./EXPSl 
SINHIN • l.ICOELXl•SINHSl 
DI.AG! = SINHIN•<DELS•.5•<EXPS+l./~XPS>-SINHSl 
DIAGIN • I ./DIAGI 
YP<ll • DIAGIN•<DXl-SLPPll 
SPDIAG = SINHIN•<SINHS-OELS> 
TEMP<ll • OIAGIN•SPDIAG 
If CN.EQ.2> GO TO 30 
DO 20 I=2,NMI 

DELX2 • X <I+ I) - X <I> 
DX2 = <Y<I+l>-Y<Ill/OELX2 
DELS = SIGMAP•DELX2 
EXPS • EXP<OELSl 
SINHS • .5•<EXPS-J./EXPS> 
SINHIN • l./(0ELX2•SINHSl 
DIAG2 = SINHIN•COELS•C.5•CEXPS+l./EXPS>l-SINHSl 
DIAGIN" l./COIAGl+DIAG2-SPDIAG•TEMP<l-lll 
YP<l> = DIAGIN•<DX2-0X1-SPOIAG•YPCI-I>> 
SPDIAG • SINHIN•<SINHS-DELS> 
TEMP<!> • DIAGIN•SPOIAG 
DXI = OX2 
DIAGI " DIAG2 

20 CONTINUE 
30 DI.AGIN= l./<DIAGl-SPOIAG•TEMPCNMI» 

YPCN> • OIAGIN•CSLPPN-OX2-SPOIAG•YPCNMlll 
C PERFORM BACK SUBSTITUTION 

DO 40 1 .. 2,N 
!BAK = NPl - I 
YPCIBAKl " YPCIBAK> - TEMPCIBAKl•YPCIBAK+l> 

40 CONTINUE 
RETURN 

50 If CN.EQ.2l GO TO 60 
II' NO DERIVATIVES ARE GIVEN USE SECOND ORDE:R POLYNOMIAL 
INTERPOLATION ON INPUT DATA FOR VALUES AT E:NOPOINTS. 

DELX2 = X<3> - XC2l 
DELX I 2 • X C 3 l - X CI> 
Cl = -C<DELXl2+DELXl>IDELX12/0ELXI 
C2 • DELXl2/DELXl/OELX2 
CJ • -DELX1/0ELXl2/0ELX2 
SLPPI = Cl•YCll + C2•YC2> + C3•YC3> 
DELN • XCN> - XCNMll 
DELNMI • XCNMll - XCN-2> 
DELNN = XCN> - XCN-2> 
Cl = COELNN+DELNl/OELNN/OELN 
C2 = -DELNN/DELN/OELNMl 
C3 = DELN/OELNN/DELNMl 
SLPPN • C3•YCN-2l + C2•YCNMI> + Cl•Y<Nl• 
GO TO 10 

IF ONLY TWO "DINTS AND NO DERIVATIVES ARE GIVEN, USE 
STRAIGHT LINE FOP CURVE 

61!1 YP< l l = 0. 
YPC2> = 0. 
RETURN 
END 

FUNCTION CURV2CT, tJ, X, Y, YP, SIGMA, !Tl 
INTEGER N, IT 
REAL T, XCN>, YCN), YPCN), SIGMA 

C THIS FUNCTION INTERPOLATES A CUP.VE AT A GIVL'I POINT 
C USING A SPLINE UNDER TENSION. THE SUBROUTINE CURVl SHOULD 
C BE CALLEO EARLIER TO DETERMINE CERTAIN NECESSARY 
C PARAMETERS. 
C ON INPUT--
C T CONTAINS A REAL VALUE TO BE MAPPED ONTO THE INTERPO
C LATING CURVE. 
C N CONTAINS THE NUMBER Of POINTS WHICH WERE INTERPOLATED 
C TO DETERMINE THE CURVE, 
C X ANO Y ARE ARRAYS CONTAINING THE ORDINATES ANO ABCISSAS 
C Of THE INTERPOLATED POINTS, 
C YP IS AN ARRAY WITH VALUES PROPORTIONAL TO THE SECOND 
C DERIVATIVE Of THE CURVE AT THE NODES 
C SIGMA CONTAINS THE TENSION FACTOR CITS SIGN IS IGNORED> 
C IT IS AN INTEGER SWITCH. IF IT IS NOT l THIS INDICATES 
C THAT THE FUNCTION HAS BEEN CALLED PREVIOUSLY CWITH N,x, 
C Y, YP, A.'ID SIGMA UNAL TEREDl AND THAT THIS \IALL'E 0 f T 
C EXCEEDS THE PREVIOUS VALUE. WITH SUCH INFORMATION THE 
C FUNCTION IS ABLE TO PERFORM THE INTEPPOLATIO:-J MUCH MORE 
C PAPIDLY. If A USER SEEKS TO INTERPOLATE AT A SEQUENCE 
C Of POINTS, EFFICIENCY IS GAINED BY OP.DERING THE VALUES 
C INCREASING ANO SETTING IT TO THE INDEX Of THE CALL· 
C If IT IS I THE SEARCH FOP. THE INTERVAL CXCK>,XCK+l>> 
C CONTAINING T STARTS WITH K=l. 
C THE PARAMETERS N,X,y,yp AND SIGMA SHOULD BE INPUT 
C UNALTERED FROM THE OUTPUT Of CURVI. 
C ON OUTPUT--
C CURV2 CONTAINS THE INTERPOLATED VALUE. FOR T LESS THAN 
C Xe I> CURV2 • YC I l. FOR T GREATER THAN XCN> CURV2 " YCNl. 
C NONE OF THE INPUT PARAMETERS ARE ALTERED. 

S = XCN> - XCll 
C DENORMALIZE SIGMA 

SIGMAP • ABS<SIGMA>•FLOATCN-ll/S 
If IT.NE.I START SEARCH WHERE PREVIOUSLY TERMINATED, 
OTHERWISE START FROM BEGIN:-JING 

I f C IT. EQ. I l I I = 2 
C SEARCH FOR INTERVAL 

10 DO 20 I• I I, N 
If (XCll-Tl 20, 20, 30 

20 CONTINUE 
I = N 

C CHECK TO INSURE CORRECT INTERVAL 
30 If CXCl-ll·LE.T .QR. ToLE.X<l» GO TO 40 

RESTART SEARCH AND RESET II 
C INPUT ''IT'' l<'AS INCORRECT l 

I l = 2 
GO TO 10 

C SET UP AND PERFORM INTERPOLATION 
40 DELI • T - XCI-i> 

DEL2 • XCll - T 
DELS • X<Il - XCI-1> 

EXPSI = EXPCSIGMAP•DELl> 
SINHDI • .5•CEXPSl-l./EXPSll 
EXPS • EXPCSIGMAP•DEL2> 
SINHD2 = .S•CEXPS-1./EXPSl 
EXPS = EXPSl•EXPS 
SINHS = .5•CEXPS-l./EXPSl 

47<>-P 2- 0 

CURV2 • CYP<Il•SINHOl+YPCl-ll•SINH02l/SINHS + 
* <CY< I> -YP CI l l •DEL l + C YC I - l l -YP <I - l > l * DEL2) I DELS 

I l • I 
RETURN 
ENO 

SUBROUTINE KURVlCN, X, y, SLPl, SLPN, XP, YP, TEMP, s, 
* SIGMA> 

C THIS SUBROUTINE DETERMINES THE PARAMETERS NECESSARY TO 
C COMPUTE A SPLINE UNDER TENSION PASSING THROUGH A SEQUENCE 
C OF PAIRS <XCl»YCl)), ••• ,CXCN»YCNll IN THE :PLANE. THE 
C SLOPES AT THE TWO ENDS Of THE CURVE MAY BE SPEC I fl ED OP 
C, OMITTED. FOR ACTUAL COMPUTATION Of POINTS ON THE CUR\!E IT 
C IS NECESSARY TO CALL THE SUBROUTINE KURV2. 
C ON INPUT--
C N IS THE NUMBER Of POINTS TO cE INTERPOLATED CN.GE.2l, 
C X IS AN ARRAY CONTAINING THE N X-COORDINATES Of THE 
C POINTS, 
C Y IS AN ARRAY CONTAINING THE tJ Y-COOROINATES Of THE 
C POINTS, 
C SLPI AND SLPN CONTAIN THE DESIRED VALUES FOR THE SLOPE 
C Of THE CUP.VE AT CXCl),YCl)) AND CXCN),YCNl), RESPEC
C TIVELY. THESE QUANTITIES ARE IN DEGREES AND MEASURED 
C COUNTERCLOCKWISE FROM THE POSITIVE X-AXIS. THE POSITIVE 
C SENSE Of THE CURVE IS ASSUMED TO BE THAT MOVING FRO~ THE 
C POINT I TO POINT N. IF THE QU~'ITITY SIG~A IS NEGATIVE 
C THESE SLOPES l<'ILL EE DETERMINED INTERNALLY AND THE USER 
C NEED ONLY FURNISH PLACE-HOLDING PARAMETERS FOR SLPl ANO 
C SLPN. SUCH PLACE-HOLDING PAP.AMETEPS WILL BE IGNORED BUT 
C NOT DESTROYED, 
C XP,YP ARE ARRAYS Of LENGTH AT LEAST N, 
C TEMP IS AN ARRAY Of LENGTH AT LEAST N \..'HIGH IS USED FOR 
C SCRATCH STORAGE, 
C AND 
C SIGMA CONTAINS THE TENSION FACTOR. THIS IS NON-ZERO AND 
C INDICATES THE CURVINESS DESIRED. IF AcSCSIGMAl IS VERY 
C LARGE (E.G. 50.) THE RESULTING CURVE IS VERY NEARLY A 
C POLYGONAL LINE. THE SIGN OF SIGMA INDICATES WHETHER 
C SLOPE IN FORMATION HAS BEEN INPUT OP NOT. If SIGMA IS 
C NEGATIVE THE END-POINT SLOPES WILL BE DETERMINED 
C INTERNALLY. A STANDARD VALUE FOR SIGMA IS APPROXIMATELY 
Clo IN ABSOLUTE VALUE. 
C ON OUTPUT--
C N,X,Y,SLPl,SLPN, ANO SIGMA ARE UNALTERED, 
C XP AND YP CONTAIN INFORMATION ABOUT THE CURVATURE Of THE 
C CURVE AT THE GI VEN NO DES, 
C AND 
C S CONTAINS THE POLYGONAL ARCLENGTH OF THE CURVE. 

INTEGER N 
REAL XCN), YCN), XPCN>, YPCN), TEMPCN), S, SIGMA 
OEGRAO = J.1415926535897932/180. 
NMI = N - I 
NPl a N + I 
DELXI • XC2l - Xe I l 
DELYI = YC2l - YC ll 
DELSl = SQRTCOELXl•DELXl+DELYl•DELYll 
DXl = OELXl/OELSl 
DYi = DELYl/DELSI 

C DETERMINE SLOPES If NECESSARY 
IF CSIGMA.LT.0.l GO TO 70 
SLPPI = SLPl•DEGRAD 
SLPPN = SLPN>t<DEGRAO 

C SET UP RIGHT HAND SIDES OF TPIDIAGONAL LINEAR SYSTEM FOR XP 
C AND YP 

10 XPC l l = DX! - COS<SLPPl l 
YPCll = DYi - SIN<SLPPll 
TEMPC I l = DELS l 
S • DELS l 
IF CN.EQ.2) GO TO 30 
DO 20 1=2,NMl 

DELX2 • XCI+ll - XCil 
OELY2 • YCI+ll - Y<ll 
DELS2 = SQRTCDELX2•DELX2+DELY2•DELY2l 
DX2 • DELX2/0ELS2 
DY2 = DELY2/DELS2 
XP<Il DX2 - DXI 
YPC!l • OY2 - DYi 
TEMPC I> • DELS2 
DELX I • DELX2 
OELY I = DELY2 
DELS l = DELS2 
OX I = DX2 
DYi • OY2 

C ACCUMULATE POLYGONAL ARCLENGTH 
S • S + OELSl 

20 CONTINUE 
30 XPCN) = COSCSLPPN> - OX! 

YP<Nl • SIN<SLPPNl - DYi 
C DENORMALIZE TENSION FACTOR 

SIGMAP • ABSCSIGMAl•fLOATCN-ll/S 
C PERFORM FORWARD ELIMINATION ON TRIDIAGONAL SYSTEM 

OELS = SIGMAP•TEMPCll 
EXPS • EXPCOELS> 
SINHS • .5.CEXPS-1./EXPSl 
SINHIN • l./CTEMPCll•SINHSl 
DIAGI • SINHIN•CDELS•·S•CEXPS+l./EXPS>-SINHSl 
OIAGIN = l./OIAGI 
XP<l> = OIAGIN•XPCll 
YPCll • OIAGIN•YPCI) 
SPOIAG • SINHIN•CSINHS-DELSl 
TEMPCll = OIAGIN•SPDIAG 
IF CN.EQ.2) GO TO 5e 
DO 40 1•2,NMI 

OELS • SIGMAP•TEMPCll 
EXPS • EXP< OELS l 
SINHS = ·S•CEXPS-1./EXPS> 
SINHIN = l ./CTEMPC l l*SINHS) 



COLLECTED ALGORITHMS (cont.) 

DIAG2 = SINHIN•<DELS•(, SHEXPS+l.!EXPS»-SINHS> 
ll!AGIN = l./CDIAGl+Dll\G2-SFLIAG•TEMPCl-l>l 
XPCI> = D!AGIN•CXPC!l-SPD!AG•XP<l-lll 
YP<I> = DIAGIN•<YPCl>-SPDIAG•YPCl-1» 
SPDIAG = S!NHIN•CS!NHS-DELS> 
TEMP<!> • DIAGIN•SPDIAG 
D!AGl • DIAG2 

40 CONTINUE 
50 DIAGIN = t./CDIAGl-SPLUIG•TEMPCNMl» 

XPCN> = DIAGIN•CXP<N>-SPDIAG•XPCNMl)) 
YP<N> = DIAGIN•<YP<Nl-SPDIAG•YPCNMl » 

C PERFOPM BACK SUBSTITUTION 
DO 60 I=2,N 

I BAK = NP 1 - I 
XP<IBAK> XP<IBAK> - TEMP<IEAKl•XP<IBAK+l> 
YP<IBAK> = YP<IBAK> - TEMP<!BAK>•YPC!BAK+l> 

60 CONTINt:E 
RETURN 

70 IF CN.~0.2> GO TO 80 
r:" IF NO SLOPES ARE GIVEN, l'SE SECOND OPDER INTERPOLATION ON 
C INPUT DATA FOP SLOPES AT ENDPOINTS 

C·ELS2 = oOP.Tc CX(3)-X(2) )••2+<Y<3>-Y<2> >••2> 
DELS12 = DELSI + DELS2 
Cl -C<DELSl2+DELSll/DELSl2/DELSl 
C2 = D'ELS12/DELS1/DELS2 
C3 = -DELS1/DELSl2/C'ELS~· 

SX = Cl•X<l> + C2•X<2> + C3•X<3> 
SY= Cl•YCl> + C2•Y<2l + C3•Y<3> 
SLPPl ~ ATAN2<SY,SX> 
DELNMl: = SQRT< <X<N-2l-X<NM1) J. ... 2+ <Y<N-2>-Y<NM I> >••2> 
DELN =.SQRT< <XCNMl l-X<Nl l••2+CY<NM1 >-Y<N> >••2> 
DELNN = DELNM 1 + DELN 
C 1 C DELNN•+DELN) /DELNN/ DEUJ 
C2 -DELNN/DELN/DELNMl 
C3 = DELN/DELNN/DELNMl 
SX = C:3*XCN-2> + C2•XCNMll + Cl•X<N> 
SY= c:HYCN-2> + C2•Y<NM1> + Cl•Y<N> 
SLPPN " ATAN2 C SY, SX > 
GO TO 10 

C IF ONLY Tl.10 POINTS AND NO SLOPES ARE GIVEN, USE STRAIGHT 
C LINE SEGMENT FOR CUP.VE 

80 XP< I) = 0. 
XPC2l = 0. 
YPC I> = e, 
YP( 2> !< 0. 
RETURN 
END 

SUBROt:TINE KURV2CT, XS, YS, N, X, Y, XP, YP, S, SIGMA> 
INTEGEF N 
PEAL T, XS, YS, X(N), YCN), XP<NJ, YPCN>, S, SIGMA 

THIS SUBROUTINE PERFORMS THE MAPPING OF POINTS IN THE 
INTERVAL C0.,t.) ONTO A CURVE IN THE PLANE. THE SUBROUTINE 

C KURVl SHOULD BE CALLED EARLIER TO DETEPMINE CERTAIN 
C NECESSARY PARAMETERS. THE RES UL TING CUP.VE HAS A PARAMETR! C 
C REPP.ESENTATION BOTH OF •~OSE COMPONENTS ARE SPLINES UNDER 
C TENSION AND FUNCTIONS OF THE POLYGONAL ARCLENGTH PARAMETEP. 

ON INPUT- -
T CONTAINS A REAL VALUE OF ABSOLUTE VALUE LESS THAN OR 
ECl'AL T'.) 1; TO BE MAPPED TO A PO INT ON THE CURVE. THE 

C SIGN OFT IS IGNORED AND THE INTERVAL <0.,1,) IS :-!APPED 
C ONTO THE ENT!P.E CURVE. IF T IS NEGATIVE THIS INDICATES 
C THAT THE SUBROUTINE HAS BEEN CALLED PREVIOUSLY 0:1 TH ALL 
COTHER INPUT VARIABLES UNALTE".EDl AND THAT THIS VALUE OF 
C T EXCEEDS THE PREVIOUS VALUE IN ABSOLUTE VALUE. V!TH 
C SUCH INFOR~ATION THE SU~ROUTINE IS ABLE TO MAP THE POINT 
C MUCH MORE RAPIDLY. THUS IF THE USER SEEKS TO MAP A 

SEQUENCE or POINTS ONTO THE SAME CURVE, EFFICIENCY IS 
GAINED BY ORDERING THE VALUES INCREASING IN MAGNITUDE 
AND SETTING THE SIGNS OF ALL BUT THE FIRST, NEGATIVE, 
N CO:-JTAINS THE Nl':1BER 0 F POINTS 1.:HI CH "'ERE INTERPOLATED 
TO DETERMINE THE CURVE, 
X AND Y ARE ARRAYS CONTA!:-11:-JG T8E X- AND Y·COOl'DINATES 
OF THE INTEP.POLATED POINTS, 
XP AND YP ARE THE ARRAYS OUTPUT FROM KU?V2 CONTAINING 
CURVATURE lNFORMATION, 

C S CONTAINS THE POLYGONAL ARCLENGTH OF THE CL'RVL 
c SIGMA CONTAINS THE TENSION FACTOR <ITS SIGN rs IGNORED>. 
C THE PARAMETERS N,X,Y,XP,YP,S,AND SIGMA SHOULD BE INPUT 

UNALTERED FROM THE OUTPUT OF KURVl. 
ON OUTPUT--
XS AND YS CONTAIN T!-!E X-ANCY-COORDINATES OF THE IMAGE 
POINT ON THE CURVE. 

C T,N,X,Y,XP,YP,S, AND S!(iMA Al1E UNALTERED. 
C DENORMALIZE SIGMA 

SIGMAP = ABS<SIGMAl*FLOATCN-ll/S 
C STRETCH UNIT INTERVAL INTO ARCLENGTH DI STANCE 

TN = ABSCT•Sl 
C FOR NEGATIVE T START SEARCH ~'HERE PP.EVIOUSLY TERMINATED, 
C OTHERWISE START FROM BEGINN!MG 

IF cT.LT.0.l GO TO 10 
r 1 = 2 
XS = X< 1 l 
YS • Y< 1 > 
SUM = 0. 
IF <T.LE.0.J RETURN 

10 CONTINL'E 
C DETERMINE INTO ·~!CH SEGMENT TN IS MAPPED 

DO 30 I• I 1, N 
DELX = X <I l - l< <I - I l 
DEL Y = Y < l l - Y < I - I ) 
DELS " SORT<DELX•DELX+DELY•DELYl 
IF CSUM+DELS-TNl 20, 40, 40 

20 SUM • SUM + DELS 
30 CONTINUE 

IF ABSCTl rs GREATER THAN 1., RETUP.N TERMINAL POINT ON 
CURVE 

XS • XCN) 
YS • YCNl 
RETURN 

C SET UP AND PERFORM INTERPOLATION 
40 DELI • TN - SUM 

DEL2 • DELS - DELI 
EXPSI • EXP<SIGMAP•DELI> 
SINHDI • .S•<EXPSl-1./EXPSl> 
EXPS • EXPCSIGMAP•DtL2l 
SINHD2 • • S•CEXPS-1./EXPS l 
EXPS • EXPSl•EXPS 
SI NHS • • s•<EXPS-1. IEXPSl 
XS • CXPCil•SINHDl+XP<I-ll•SINHD2l/5INHS + 

476-P 3- 0 

,. CCX<l>-XPCill•DELI+<X<l-ll-XP<I-l>:i•DEL2l/DELS 
YS • <YP<ll•SINHDl+YP<I-l>•SINHD2l/SINHS + 

• < < Y <I l -YP< Ill* DEL 1 + < Y< r - 1 l -YP< I - I) :1 •DEL2 l I DELS 
I 1 = I 
RETURN 
END 

SUBROUTINE KURVPlcN, X, Y, XP, YP, TEMP, S, SIGMA> 
INTEGER N 

C THISR~~~R~~~~~Ey~~iR~i~~~,T~~<~~~A~~~~~~l~E~is~~~~ATO 
C COMPUTE A SPLINE UNDER TENSION FORMING A CLOSED CUPVE IN 
C THE PLANE AND PASSING THROUGH A SEQUENCE OF PAIRS 
C <X<l>,Y(l)), ••• ,<X<Nl,Y<Nl). FOR ACTUAL COMPUTATION OF 
C POINTS ON THE CURVE IT IS NECESSARY TO CALL THE SUBPOUTINE 
C KUl"lVP2. 
C ON !NPUT--
C N IS THE NUMBER 0 F POINTS TO BE INTERPOLATED <N •GE. 2 l, 
c x IS AN ARRAY CONTAINING THE N X-COOP.DINATES or THE ' 
C POINTS, 
CY IS AN ARRAY CONTAINING THEN Y-COORDINATES OF THE 
C POINTS, 
C XP,YP ARE AP.RAYS OF LENGTH AT LEAST './, 
C TEMP IS AN ARRAY 0 F LENGTH AT LEAST 2•N ~'HI CH IS US ED 
C FOR SCRATCH STORAGE, 
C AND 
C SIGMA CONTAINS THE TENSION FACTOR. THIS IS A NON-ZEP.O 
C QUANTITY <WHOSE SIGN IS IGNORED> WHICH INDICATES THE 
C CURVINESS DESIRED. IF ABS<SIGMAl IS VERY LARGE <E.G. 50. 
C l THE RESULTING CURVE IS VERY A POLYGON• A STANDARD 
C VALUE FOR SIGMA IS APPROXIMATELY 1. IN ABSOLUTE VALUE. 
C ON OUTPUT--
C N,X,Y, AND SIGMA ARE UNALTERED, 
C XP AND YP CONTAIN INFORMATION ABOUT THE CURVATURE OF THE 
C CURVE AT THE GI VEN NO DES, 
C AND 
c s CONTAINS THE POLYGONAL ARCLENGTH or THE CURVE. 

NM 1 = N - 1 
NPl = N + 1 

SET UP RIGHT HAND SIDES OF TRIDIAGONAL <WITH CORNER 
ELEMENTS> LINEAR SYSTEM FOP. XP AND YP 

DELXl = X<2> - X<.ll 
DELYI = YC2l - Y< 1 l 
DELSI • SQRT<DELXl•DELXl+DELYl•DELYll 
DX! • DELXl/DELSt 
DYl • DELYl/DELSl 
XP( 1) = DX 1 
YP<ll = DYl 
TEMP< t l = DELS I 
S = DELSl 

IP 1 = I + I 
I F C I • EQ. N l I P 1 = 1 
DELX2 • X<IPll - X<l> 
DELY2 = Y<IPll - Y<ll 
DELS2 " SQRT<.DELX2•DELX2+DELY2•DE1.Y2> 
DX2 • DELX2/DELS2 
DY2 = DELY2/ DELS2 
XP<ll = DX2 - DXl 
YP<!l • DY2 - DYl 
TEMP<ll • DELS2 
DELX t • DELX2 
DELYl • DELY2 
DELS 1 • DELS2 
DX 1 • [;X2 
DY 1 = DY2 

C ACCUMULATE POLYGONAL ARCLENGTH 
S • S + DELS 1 

10 CONTINUE 
XPC 1 l • XP< 1 l - DX 1 
Y P < 1 l • Y P < I l - DY I 

C DENORMALIZE TENSION FACTOR 
SIGMAP = ABSCSIGMAl•FLOATCNl/S 

C PERFORM FORWARD ELIMINATION ON TRIDIAGONAL SYSTEM 
DELS • SIGMAP•TEMP<N> 
EXPS • EXPCDELSl 
SINHS • .S•<EXPS-I./EXPSl 
SINHIN • l./(TEMPCNHSINHSl 
DIAGl • S!NHIN•<DELS•.S•<EXPS+l./EXPSl-SINHSl 
DIAGIN • l./DIAGI 
SPDIGI • S!NHIN•<SINHS-DELSl 
SPDIAG = 0. 
DO 20 l•l,N 

DELS • SIGMAP•TEMP<Il 
EXPS • EXP<DELSl 
SINHS • .S•<EXPS-1.tEXPSl 
S!NHIN • l.l<TEMP<ll*Sl:-JHSl 
DIAG2 • SlNHIN•<DELS•C.S•<EXPS+!.IEXPSl>-SINHSl 
IF <I • EO. N l GO TO 3 0 
DlAG!N • l./CDIAGl+DIAG2-SPDIAG•TE:MP<!-l)) 
XP<I> • DIAGIN•<XP<ll-SPDIAG•XPCl-lll 
YP<ll • DIAGIN•<YP<ll-SPDIAG•YP<J-lll 
TEMP<N+Il = -DIAGIN•TEMP<NMl+ll•SPD!AG 
IF <1.EQ. l> TEMP<NPll = -DIAGIN•SPD!Gl 
SPDIAG • SINHIN•<SINHS-DELS> 
TEMP<!> • DlAGIN•SPDIAG 
DIAGI • DlAG2 

20 CONTINUE 
30 TEMP<NMI> " TEMP<N+NMI> - TEMP<NMll 

IF <N.EQ.2> GO TO 50 
C PERFORM FIRST STEP OF BACK SUBSTITUTION 

DO 40 1 •3,N 
IBAK • NPI - l 
XP<!BAK> • XP<IBAK> - TEMP<IBAK>•XPC!BAK+ll 
YP<IBAK> • YP<IBAKl - TEMP<IBAKl•YP<!BAK+ll 
TEMP<IBAK> • TEMP<N+IBAKl - TEMP<IBAKl•TEMP<IBAK+ll 



COLLECTED ALGORITHMS (cont.) 

40 CONTINUE 
50 XP<N> • 

* <XP(N)-SPOIGl•XP<l>-SPDIAG•XP<NMl>>l<DIAGl+OIAG2+SPOIGl•T 
* EMP< I >+SPDIAG•TEMP<NMI >) 

YP<N> • 
* <YP(N > -SPDI G l•YP (I> -SPDI AG•YPCNM I>)/ C DIAG I +DIAG2+SPDI G l•T 
* EMPCl>+SPDIAG•TEMPCNMI)) 

C PERFORM SECOND STEP OF BACK SUBSTITUTION 
DO 60 I • I , NM I 

XPCI> • XPCI> + TEMPCl>•XPCN) 
YPCI > " YPCI > + TEMP<I HYP<N> 

60 CONTINUE 
RETURN 
END 

Sl1EROUTINE KURVP2CT, XS, YS, N, X, y, XP, YP, s, SIGMA> 
INTEGER N 
REAL T, XS, YS, XCN), YCN), XPCN), YPCN>, S, SIGMA 

C THIS SUBROUTINE PERFORMS THE MAPPING OF POINTS IN THE 
c INTERVAL (0,, 1.) ONTO A CLOSED CURVE IN THE PLANE. THE 
C SUBROUTINE KUP.VPI SHOULD BE CALLEO EARLIEF. TO DETERMINE 
C CERTAIN NECESSARY PARAMETERS, THE RESULTING CURVE HAS A 
C PARAMETRIC REPRESENTATIONBOTH OF WHOSE COMPONENTS APE 
C PERIODIC SPLINES UNDER TENSION ANO FUNCTIONS OF THE POLY
C GONAL ARCLENGTH PARAMETER. 
C ON INPUT--
C T CONTAINS A REAL VALUE OF ABSOLUTE VALUE LESS THAN OP. 
C EQUAL TO 1. TO BE MAPPED TO A POINT ON THE CUP.VE. THE 
C SIGN OFT IS IGNORED ANO THE INTERVAL c0.,1.> IS MAPPED 
C ONTO THE ENTIRE CLOSED Cl'RVE, IF T IS NEG~1TIVE THIS 
C INDICATES THAT THE SUBROUTINE HAS BEEN CAL.LED PREVIOUSLY 
C CWITH ALL OTHER INPUT VARIABLES UNALTERED) AND THAT 
C THIS VALUE OF T EXCEEDS THE PREVIOUS VALUE: IN ABSOLUTE 
·c VALUE. WITH SUCH INFORMATION THE SUBROUTINE IS ABLE TO 
C MAP THE POINT MUCH MORE RAPIDLY• THUS IF 1'HE USER SEEKS 
C TO MAP A SEQUENCE OF POINTS ONTO THE SAME CURVE, 
C EFFICIENCY IS GAINED BY ORDERING THE VALUES INCREASING 
C IN MAGNITUDE AND SETTING THE SIGNS OF ALL BUT THE FIRST, 
C NEGATIVE, 
C N CONTAINS THE NUMBER OF POINTS \'HICH !JERE INTERPOLATED 
C TO DETERMINE THE CURVE, 
C X AND Y ARE ARRAYS CONTAINING THE X- ANO Y-COORDINATES 
C OF THE INTERPOLATED POINTS, 
C XP AND YP ARE THE ARRAYS OUTPUT FROM KURVPI CONTAINING 
C CURVATURE INFORMATION, 
C S CONTAINS THE POLYGONAL ARCLENGTH OF THE CURVE, 
C SIGMA CONTAINS THE TENSION FACTOR <ITS SIGN IS IGNORED>. 
C THE PARAMETERS N,X,Y,xp,yp,s AND SIGMA SHOULD BE INPUT 
C UNALTERED FROM THE OUTPUT OF KURVPJ. 
C ON OUTPUT- -
C XS AN!) YS CONTAIN THE X- AND Y-COORDINATES OF THE IMAGE 
C POINT ON THE CUR'JE. 
c T,N,x .. y,xp,yp,s AND SIGMA ARE UNALTERED· 
C DENORMALIZE SIGMA • 

SIGMAP = ABSCSIGMA>•FLOAT<N>/S 
C STRETCH UNIT INTERVAL INTO ARCLENGTH DISTi"INCE 

TN • ABSCT•S> 
C FOR NEGATIVE T START SEARCH WHERE PREVIOUSLY TERMINATED, 
C OTHERWISE START FROM BEGINNING 

IF· CT.LT, 0, ) GO TO I 0 
I I .. 2 
SUM • 0, 

10 IF CI I. EQ, I l GO TO 50 
C DETERMINE INTO "1HICH SEGMENT TN IS MAPPED 

DO 30 l•I l,N 
DELX • X < I l - X ( I - I ) 
DELY • YCil - YCI-1> 
DELS • SQRTCDELX•DELX+DELY•DELY> 
IF <SUM+OELS-TN> 20, 40, 40 

20 SUM ,. SUM + DELS 
30 CONTINUE 

I = I 
!Ml = N 
DELS • S - SUM 
GO TO 50 

40 !Ml " ! - I 
C SET UP AND PERFORM INTERPOLATION 

50 DELI = TN - SUM 
DEL2 " DELS - DEL I 
EXPSI • EXPCSIGMAP•DELI> 
SINHDI = .S•CEXPSl-1./EXPSll 
EXPS = EXPCSIGMAP•DEL2> 
SINHD2 • .5•CEXPS-l./EXPSl 
EXPS " EXPS I •EXPS 
SINHS • .S•CEXPS-1,/EXPSl 
XS • CXPCI>*SINHDl+XP<IMI >•SINHD2)/SINHS + 

* CCX<I>-XPCI>>•DELl+CXCIMl>-XPCIMl>>•DEL2)/DELS 
YS" CYPCI>•SINHDl+YPCIMl>•SINH02>1SINHS + 

* CCYCI>-YPCl>>•DELl+CYCIMl>-YP<IMl>>•DEL2>/0ELS 
I I • I 
RETURN 
E:ND 

476-P 4- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithim 477 

Generator of Set-Partitions to 
Exactly R Subsets [G7] 
Gideon Ehrlich [Recd. 11 Dec. 1972 and 26 Feb. 1973] 
Department of Applied Mathematics, The Weizmann 
Institute of Science, Rehovot, Israel 

Key Words and Phrases: partitions, subset generation, 
permutations 

CR Categories: 5.39 
Language: Algol 

Description 
Purpose. Procedure PARTEXACT produces, by successive 

calls, a sequence of all S(n.r) partitions of a set of /1 distinct ele
ments into exactly r mutually exclusive subsets. (S(11,r) is the Stirling 
number of the second kind, see 11 J.) We assume that /1 2 r > 2. 

There is no distinction of order: neither within subsets nor 
among them. We assume the elements to be numbers I, 2, ... , 11. 
(If this is not the case, we just index the elements.) We also assume 
that we have a sequence of r numbered cells in which the subsets 
are located. The first cell contains the number I (together with the 
whole subset to which 1 belongs), then each cell contains the mini
mal element not contained in the preceding cells. Partitions are 
represented by an address-array, a, of /1 components. Every j is 
located in the cell numbered a(}). It follows that: 

1. a(!) = 1, 

2. a(}) _::::; min (max a(m) + 1, r). 
Ill <J 

After each call to PARTEXACT we receive a new address-array, 
a, which differs from the old one in, at most, two components. A 
new partition is received from the old one by transferring s from 
the os cell to thens cell, and if 11 r£. 0, then we have also to transfer u 
from the ou cell to the nu cell. Together with the last a we will get 
i = I, and we must not call PARTEXACTagain. 

The variah!cs. 11. r, k, z are global integers; p[2:11], t[l :11] are 
global integer arrays; a [I : 11] is an integer array. The space required 
by PARTEFACT is thus 311 approximately. 

lnitia!i:atio11. One can initiate PARTEXACT using the fol
lowing block: 

begin integer i; 
k:=n-r+I; 
for j = 1 step I until k do a[J] : = p[/] : = l ; 
for/ : = k + I step I until 11 do a[/] : = I + j - k; 
i := k; t[k] := k - 1; t[k-1] := O; z := 1 

end 

a defines the first partition. In the case 11 = r we get i = 1, 
and we stop immediately. The variables must not be changed be
tween calls. 

PARTEXACT has the important feature of being loopless, so 
the computation time of the new partitions is uniformly bounded. 
There is no dependence on /1 (or r). The computation time of the 
whole sequence is thus a linear function of its length s(n,r). It is 

477-P 1- 0 

to be noted that much computation time is saved, provided the 
main program deals not with the entire newly generated partition 
but with the changed element(s) only. 

For r = 2, G RAY2 [2] has to be used with "O" and "l" speci
fying the first and the second cells, respectively. The initial address 
vector [A = (0, 0, ... , 0) j must not be used. Together with the last 
partition GRAY2 will set i = 1 (for the first time). 

Algorithm details. z and k are the minimal numbers such that 
a(k + 1), a(k-t2), ... , a(11) are z + 1, z + 2, ... , r, respectively, 
a(I), a(2), ... , a(i-1) are not changed until a(i) takes all available 
values: that is, if i > k then no other value but its present one, 
else, all values between I and min(max,,, <; a(m) + 1, r). All those 
values are ordered in a sequence starting at 1 and ending at 2 
("a 1-2 path") or vice versa ("a 2-1 path"). Each sequence can 
be illustrated as moving a route of i along all available cells each 
time visiting one new cell. 

Each of the seven labels ONE ... SEVEN, appearing in 
PARTEXACT, deals with a special segment of one of the two paths. 
It moves i to the appropriate new cell. ONE deals with the first 
move of an element initially located in the first cell. The roles of 
the other labels are illustrated in Figures I and 2. Each of the arrows 
describes the effect of the appropriate label. 

If i enters the cell z + I, we transfer k + 1 from that cell to 
the first one (from which it starts a 1-2 path). On the other hand, 
if the move of i empties its old cell, we transfer k to that cell. For 
each i, p(i) denotes the segment of the i's path according to which i 

Fig. I. 1-2 path. 

6 

Fig. 2. 2-1 path. 

4 

7 7 7 
n~r-. 

is moved. After each move of i, i + 1 moves a whole new route. 
After each move of i -t 1, i -t 2 moves a whole new route, and so 
on. Between two successive paths of i there: will be a single move of 
somej < i. 

t and i contain the information about the queue of elements 
to be moved. If i completes a path, then NOGA updates t and i. 



COLLECTED ALGORITHMS (cont.) 

Otherwise, OF RA does the job. Full explanations about t, its up
dating, and a description of the whole method are included in [3]. 

References 
1. Even, S. Algorithmic Combinatorics. Macmillan, New York, 
1973, Ch. 3. 
2. Ehrlich, G. GRA Y2-a binary reflected Gray Code Generator. 
(to be published). 
3. Ehrlich, G. Loopless algorithm for generating permutations 
combinations and other combinatorial configurations. J. ACM 
20 (July 1973), 500-513. 

Algorithm 
procedure PART EXACT (a, s, os, ns, u, ou, 1111, i); 

integer array a; 
integers, os, ns, u, ou, nu, i; 

begin 
switch L : = ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN; 
s := i; os := a[s]; u := O; 
go to L[p[i]]; 

ONE: 
ns := a[i] := z := 2; p[i] := 7; 
if i = k then 
begin 

u := k := k +I; ou := a[ul; nu:= a[u] :=I; 
p[k] = 6 

end; 
goto NOGA; 

TWO: 
ns : = a[i] : = z : = z - I ; 
comment The old cell of i was emptied; 
u := k;ou := a[u];11u := a[k] := z + J;k := k - l; 
if z = 2 then 

begin p[i] : = 7; go to NOGA end; 
p[i] :== 3;gotoOFRA; 

THREE: 
11s :=al;]:= a[i] - I: 
if 11s ,c. 2 then go to OFRA; 
p[i] : = 7; go to NOGA; 

FOUR: 
u := k; ou := a[u]; 11u := a[u] := z; 

z:=z-l;k:=k-1; 
FIVE: 

ns : =' a[i] : = 1 ; p[i] : = 6; 
NOGA: 

if i ==, k then begin i = 1[i]; go to EX IT end; 
if 1[i] < 1 then 

begin if -tfi] ~ i - I then 1[i-1l : = tfi]; t[i] : = i - I end; 
ifi ~ k - 1 thenbegin t[k] := k - I; t[k-1] := -i - 1 end; 
t[i+ 1] : = t[i]; i: = k; 
go to EXIT; 

SIX: 
if z == r then 

begin ns: = a[i] : = r; p[i] : = 3 end; 
else 
begin 

ns: = a[i] : = z : = z + 1; p[i] : = 2; 
u : = k : = k + 1; ou : = a[u]; llll : = a[k] : = 1; p[k] : = 6 

end; 
go to OFRA; 

SE,,EN: 
ns : == a[i] : = a[i] + 1; 
if 11s ~ z then 
begin 

if z = r then p[i] : = 5 
else 
if a[i] = z + 1 then 

begin 
comment i enters the cell of k + 1 ; 
z : = z + I; p[i] : = 4; 

477-P 2- 0 

u : = k : = k + I; 011 : = a[11]; nu : = a[k] : = l; 
p[k] := 6 

end 
end; 

OFRA: 
if i = k then go to EXIT; 
t[k]:==k-1; 
if i ,c. k - I then t[k- 1] = - i; 
i: = k; 

EXIT: 
end PARTEXACT 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 478 

Solution of an Overdetermined 
System of Equations in the ti 
Norm [F4] 
I. Barrodale and F.D.K. Roberts, !Recd. 4 Aug. 1972 
and 8 May 1973] 
Department of Mathematics, University of Victoria, 
Victoria, B.C., Canada 

Key \Vords and Phrases: I 1 approximation, / 1 norm, over
determined system of equations, linear programming, simplex method 

CR Categories: 5.13, 5.41 
Language: Fortran 

Description 
The algorithm calculates an /1 solution to an overdetermined 

system of m linear equations in /1 unknowns, i.e., given equations 

.L.:;'~1 a,,j Xj c= h, for i = I, 2, ... 'm, Ill ~ II, 

the algorithm determines a vector x = lx;l which minimizes the 
sum of the absolute values of the residuals 

e(x) = L:';~ 1 lb; - L7=1 a,,i xi I. ( l) 

A typical application of the algorithm is that of solving the 
linear /1 data fitting problem. Suppose that data consisting of m 

points with co-ordinates (t;, y,) is to be approximated by a linear 
approximating function a1¢1 (t) + cr2¢ 2 (t) + · · · + a,,¢,, (t) in 
the /1 norm. This is equivalent to finding an /1 solution to the system 
of linear equations 

L;'~1 <Pi (t,)O'; = y; for i = 1, 2, ... , 111. 

If the data contains some wild points (i.e. values of the dependent 
variable that are very inaccurate compared to the overall accuracy 
of the data), it is advisable to calculate an Ii approximation rather 
than an /2 (least-squares) approximation, or an /_,, approximation. 

The algorithm is a modification of the simplex method of linear 
programming applied to the primal formulation of the /1 problem. 
A feature of the routine is its ability to pass through several simplex 
vertices at each iteration. The algorithm does not require that the 
matrix la;.1! satisfy the Haar condition, nor does it require that it 
be of full rank. Complete details of the method may be found in 
[l ]. Computational experience with this and other algorithms indi
cates that it is the most efficient yet devised for solving the /1 

problem. 
The parameters M and N represent the number of equations 

and number of unknowns respectively. M2 and N2 should be set to 
M + 2 and N + 2 respectively. The simplex iterations are carried 
out in the two dimensional array A of size (M2,N2). Initially the 
coelllcients of the matrix [ a1.;l should be stored in the first M rows 
and first N columns of A, and the right hand side vector lbd should 
be stored in the array B. These values are destroyed by the routine. 
TOLER is a real variable which should be set to a small positive 
value. Essentially the routine regards any quantity as zero unless 

478-P 1- 0 

its magnitude exceeds TOLER. Jn particular, the routine will not 
pivot on any number whose magnitude is less than TOLER. 
Computational experience suggests that TOLER should be set 
to approximately 10-zdi3 where d represents the number of decimal 
digits of accuracy available (typically we run the routine on an 
IBM 370 using double precision (16 decimal digits) with TOLER 
set to 10- 11). On exit from the routine, the array X contains an 
11 solution (x1l and the array E contains the residuals 
lb; - L7=1 a1.J x1l. The array S is used for workspace. The fol
lowing information is stored in the array A on exit from the routine: 

A(M+l,N+l), the minimum value of (1), i.e. the minimum sum 
of absolute val~es of the residuals. 
A(M+1,N+2)_.:_the rank of the matrix ja;, 1l. 
A(M+2,N+l)-exit code with the value 1 if a solution has been 

calculated successfully, and 2 if the calculations are terminated 
prematurely. This latter condition occurs only when rounding 
errors cause a pivot to be encountered whose magnitude is 
less than TOLER, and in this event all output information 
pertains to the last completed simplex iteration. This condition 
does not occur too frequently in practice, and then only with 
a large ill-conditioned problem. Since an/, solution is not nec
essarily unique, the routine attempts to determine if other 
optimal solutions exist. An exit code of 1 indicates that the 
solution is unique, while an exit code of 0 indicates that the 
solution almost certainly is not unique (this uncertainty can 
only be resolved by a close examination of the final simplex 
tableau contained in A: we do not c:onsider such an examina
tion to be warranted in practice). A solution may be nonunique 
simply because the matrix lai,Jl is not of full rank. 

A(M+2,N+2)--number of iterations required by the simplex 
method. 

References 
1. Barrodale, T., and Roberts, F.D.K. An improved algorithm for 
discrete /1 linear approximation. SIAM J. Numer. Anal. 10, 5 (1973). 
839-848 

Algorithm 
SUBROUTINE LI CM,N, M2, N2,A, B, TOLEP, x, E, S l 

C THIS SUBROUTINE l'SES A MODIFICATION OF THE SIMPLEX METHOD 
C OF LINEAA PROGRAMMING TO CALCULATE AN LI SOLl'TION TO AN 
C OVER-DETERMINED SYSTEM OF LINEAR EQUATIONS. 
C DESCRIPTION OF PARAMETERS. 
C M NUMBER OF EQUATIONS· 
C N NUMBER OF UNKNOl.WS CM.GE.NJ. 
C M2 SET EQUAL TO M+2 FOR ADJUSTABLE DIMENSIONS. 
C N2 SET EQUAL TO N+2 FOR ADJUSTABLE DIMENSIONS. 
C A T .. 'O DIMENSIONAL REAL AP.RAY OF SIZE CM2,N2l. 
C ON ENTP.Y, THE COEFFICIENTS OF THE MATRIX MUST BE 
C STORED IN THE FIRST M ROWS AND N COLUMNS OF A· 
C THESE VALUES ARE DESTROYED BY THE SUBROUTINE· 
C B ONE DIME~SIONAL REAL ARRAY OF SIZE M· ON ENTRY, B 
C MUST CONTAIN THE RIGHT HAND SIDE OF THE EQUATIONS. 
C THESE VALUES ARE DESTROYED BY THE SUBROllTINE· 
C TOLER A SMALL POSITIVE TOLERANCE. EMPIRICAL EVIDENCE 
C SUGGESTS TOLER•l0••<-D•213l WHERE D REPRESENTS 
C THE NUMBER OF DECIMAL DIGITS OF ACCURACY AVALABLE 
C <SEE DESCRIPTION>. 
C X ONE DIMENSIONAL REAL ARRAY OF SIZE N. ON EXIT, THIS 
C ARRAY CONTAINS A SOLUTION TO THE LI PROBLEM. 
C E ONE DIMENSIONAL REAL ARRAY OF SIZE M. ON EXIT, THIS 
C ARRAY CONTAINS THE RESIDUALS IN THE EQUATIONS. 
C S INTEGER ARRAY Of SIZE M USED FOP. WORKSPACE. 
C ON EXIT fROM THE SUBROUTINE, THE ARRAY A CONTAINS THE 
C FOLLOWING INFORMATION. 
C ACM+l,N+ll THE MINIMUM SUM OF THE ABSOLUTE VALUES OF 
C THE RESIDUALS· 
C ACM+l,N+2> THE RANK OF THE MATRIX Of COEFFICIENTS. 
C ACM+2,N+ll EXIT CODE WITH VALUES. 
C 0 - OPTIMAL SOLUTION loJHICH IS PROBABLY NON-
C UNIQUE CSEE DESCRIPTION>• 
C I - UNIQUE OPTIMAL SOLUTION· 
C 2 - CALCULATIONS TERMINATED PREMATURELY DUE TO 
C ROUNDING ERRORS. 
C ACM+2,N+2> NUMBER OF SIMPLEX ITERATIONS PERFOP.~ED. 

DOUBLE PRECISION Sl'M 
REAL MIN, MAX, ACH2,N2>. XCN), ECM>. BCM> 
INTEGER OUT, SCH> 
LOGICAL STAGE, TEST 



COLLECTED ALGORITHMS (cont.) 

C BIG MUST BE SET EQUAL TO ANY VERY LAP.GE REAL CONSTANT. 
C ITS VALUE HERE IS APPROPRIATE F'OR THE IBM 370. ~ 

DATA BIG/ 1. E75/ 
C INITIALIZATION. 

Ml • M + I 
NI • N + I 
DO 10 Jml,N 

A<M2,J> = J 
X<J> • 0. 

1111 CONTINUE 
DO 40 l• I ,M 

A.<I,N2> • N + I 
A.Cl.NI> • BCI> 
IF' CBCl>.GE.111.> GO TO 30 
DO 20 J• I ,N2 

ACI,J> • -ACI,J> 
20 CONTINUE 
30 EC I> • 8. 
40 CONTINUE 

C COMPUTE THE MARGINAL COSTS. 
DO 6111 J•l,NI 

SUM • 0.D0 
00 50 l• 1,H 

SUH = SUH + ACI,J> 
50 CONTINUE 

llCHl,J> = SUH 
61!1 CONTINUE 

C STAGE l. 
C DETERMINE THE VECTOR TO ENTER THE BASIS. 

STAGE • • TRUE. 
KOUNT • 0 
KR • I 
KL = I 

7fJ MAX • -1. 
DO 80 J•KR,N 

IF' <ABSCACH2,J>>.GT.N> GO TO 80 
I) • ABS CA CH I , J > > 
ff CD.LE.MAX> GO TO 81!1 
MAX • D 
IN = J 

80 CONTINUE 
IF' <ACMl.IN>.GE.l!I.) GO TO 101!1 
DO 90 I,.1,H2 

ACI.IN> • -ACI,IN> 
90 CONTINUE 

C DETERHXNE THE VECTOR TO LEAVE THE BASIS. 
100 K " 0 

DO I I 0 l •KL, H 
D • ACl.IN> 
IF' CD.LE.TOLER> GO TO 111!1 
I< • K + I 
ISCK> • ACl,Nl>ID 
S<K> • l 
'rEST • .TRUE. 

110 CONTINUE 
12111 IF CK.GT.0> GO TO 130 

TEST • • FALSE. 
GO TO 150 

130 HIN • BIG 
DO 140 I•l,K 

IF CBCI>.GE.HIN> GO TO 140 
J • l 
HIN• BC!> 
OUT = SC I> 

140 CONTINUE 
BCJ) • BCK> 
SCJ> • SCK> 
K • K - I 

C CHECK FOR LINEAR DEPENDENC~ IN STAGE l • 
150 IF' <TEST .QR •• NOT.STAGE> GO TO 170 

DO 160 l•l,M2 
D • AC! 1KR> 
ACl1KR) • ACl,IN> 
ACI, IN> • D 

160 CONTINUE 
KR • KR + I 
GO TO 260 

170 IF' CTEST> GO TO 180 
ACM2,NI> • 2. 
GO TO 350 

180 PIVOT • ACOUT.IN> 
IF CACMl1IN>-PIVOT-PIVOT.LE.TOLER> GO TO 201!1 
DO 191!1 J•KR,N I 

D • ACOUT,J> 
ACHl,J> • ACMl,J) - D - D 
ACOUT,J> • -D 

190 CONTINUE 
ACOUT,N2> • -ACOUT,N2) 
GO TO 120 

C PIVOT ON ACOUT.IN>-
200 DO 210 J•KR,NI 

IF CJ.EQ. IN> GO TO 211!1 
ACOUT,J> • ACOUT,J>/PlVOT 

210 CONTINUE 
DO 230 l•l,Ml 

IF c1.EQ.OUT> GO TO 230 
D • ACl.IN> 
CO 220 J•KR,N I 

IF' (J.EQ. IN> GO TO 220 
ACl,J> • ACI,J> - D•ACOUT,J> 

·220 CONTINUE 
230 CONTINUE 

DO 240 1" t,Mt 
IF' Cl.EQ.QUT> GO TO 240 
ACI,IN> • -A(I,IN)/PIVOT 

240 CONTINUE 
AC 0 UT, IN l = I • /Pl VO T 
D • A<OUT,N2> 
ACOUT,N2> • ACM2,INl 
ACM2, IN> • D 
KOUNT = KOl'NT + I 
IF' <.NOT.STAGE> GO TO 270 

C INTERCHANGE ROWS IN STAGE I• 
KL • KL + I 
DO 2 50 J=KR, N2 

D • ACOUT,J> 
ACOUT,J> = ACK.QUNT,Jl 
ACKOUNT,J> • D 

250 CONTINUE 
260 IF' CKOUNT+KR.NE.NI> GO TO 70 

C STAGE II. 
STAGE• .fALSE. 

C DETERMINE THE VECTOR TO ENTER THE BAS{S. 
270 MAX • -BIG 

DO 290 J•KR,N 
D = ACMI ,J) 
IF' co. GE. 0. > GO TO 280 
IF' CD.GT.C-2.)) GO TO 290 
D " -D - 2. 

280 IF' CD.LE.MAX> GO TO 290 
MAX • D 
IN " J 

290 CONTINUE 
IF' <MAX.LE.TOLER> GO TO 310 
IF' CACMl,!Nl.GT.0.> 'GO TO 100 
DO 300 l•l,M2 

ACX.IN> • -A<I.IN> 
300 CONTINUE 

ACMl.IN> • ACMl,INl - 2. 
GO TO 100 

C PREPARE 0 UT PUT. 
3 10 L • KL - I 

DO 330 l•l,L 
IF' CACl,Nl>·GE.0·> GO TO 330 
DO 320 J•KR,N2 

ACI,J> • -ACl,Jl 
320 COt:JT INUE 
330 CONTINUE 

ACM2,NI > = 0. 
IF' <KR.NE. I> GO TO 350 
DO 340 J•l,N 

D • ABSCA<Ml,J> > 
IF' CD.LE.TOLER .QR. 2.-D.LE.TOLER> 

340 CONTINUE 
ACM2,Nl > • l • 

350 DO 380 lsl,M 
K • AC 1,N2> 
D • ACl,N l > 
IF' CK.GT.0> GO TO 360 
K • -K 
D • -D 

360 IF' CI.GE.KL> GO TO 370 
XCK> = D 
GO TO 380 

3 70 K = K - N 
ECK> • D 

380 CONTINUE 
ACM2,N2> • KOUNT 
ACMl,N2l • NI - KR 
SUM " 0. D0 
DO 390 I•KL,M 

SUH " SUM + AC I ,NI> 
390 CONTINUE 

ACMl,Nl> • SUM 
RETURN 
END 

Footnote to A/goritlzm 478 

478-P 2- 0 

GO TO 350 

The major portion of the computation performed by the above 
subroutine is transforming the two-dimensional array A at each 
iteration. We have experimented with a modified code which trans
forms the columns of A, one at a time, by passing each column to 
a second subroutine which involves only one-dimensional arrays. 
Savings in time of about 25 to 40 percent are normally achieved by 
this modification. This is because Fortran stores two-dimensional 
arrays columnwise. 

To implement this modification in the above subroutine, the 
user should: (i) delete the eight lines immediately following state
ment number 20 up to and including statement number 22; (ii) re
place these eight lines by 

DO 22 J = KR,Nl 
IF(J.EQ.IN) GO TO 22 
CALL COL (A (l,J),A(l,IN),A(OUT,J),Ml,OUT) 

22 CONTINUE 

and (iii) include the following subroutine 

SUBROUTINE COL (Vl,V2,MLT,Ml,10UT) 
REAL VI (Ml),V2(Ml),MLT 
DO 1 I=l,Ml 

IF(l.EQ.IOUT) GO TO 1 
Vl (1) = Vl (l)-V2(1)*MLT 
CONTINUE 

RETURN 
END 



COLLECTED ALGORITHMS (cont.) 

Remark on Algorithm 478[F4] 

Solution of an Overdetermined System of Equations in 
the /1 Norm [I. Barrodale and F.D.K. Roberts, Comm. 
ACM 17 (June 1974), 319-320] 
Fred N. Fritsch and Alan C. Hindmarsh [Recd 23 
Sept. 1974], Numerical Mathematics Group, Lawrence 
Livermore Laboratory, University of California, 
Livermore, CA 94550 

This note is to point out an error in the" Footnote to Algorithm 
478." To ccrrespond to the published listing, the statement numbers 
in (i) of the second paragraph ofthefootnoteshouldbe210 and230, 
rather than 20 and 22. To be consistent with the published statement 
numbering, we would also recommend that statement number 22 
be changed to 220 in the three places it occurs in the replacement 
coding of (ii). 

478-P 3- 0 



COLJLECTED ALGORITHMS FROM CACM 

Algorithm 4 79 

A Minimal Spanning Tree 
Clustering Method [Z] 
R. L. Page [Recd. 18 Feb. 1972, 8 Feb. 1973, and 29 Mar. 
1973] 
Department of Mathematics and Computer Science, 
Colorado State University, Fort Collins, CO 80521 

Key Words and Phrases: clustering, pattc~rn recognition. feature 
selection, minimal spanning trees 

CR Categories: 3.63, 5.39, 5.5 
Language: Fortran 

Descriptfion 
Zahn 12] describes a method for automatically detecting clusters 

in sets of points in N-space. The method is based on the construction 
of the minimal spanning tree of the complete graph on the input set 
of points. The motivation for using the minimal spanning tree in
cludes some evidence (cited in 12]) that it is related to human per
ception of dot pictures in two dimensions, but the method is appli
cable in any dimension. 

Advantages of the method are that it requires little input other 
than the data points, it is relatively insensitive to permutations in 
the order of the data points, and the clusters it produces in two di
mensions closely parallel clusters detected visually by humans when 
the data is displayed as a dot picture. 

Storage requirements increase linearly with the 11, the number of 
points. The minimal spanning tree is constructed using an algorithm 
due to Prim and Dijkstra as implemented by Whitney 11 ]. The time 
needed is approximately proportional to 11 2. (Time also increases 
slowly with N.J Whitney's algorithm is repeated here because we 
need to keep some information about the tree structure which hi1s 
algorithm does not retain in a convenient form. 

The basic idea is to detect inherent separations in the data by 
deleting edges from the minimal spanning tree which are significantly 
longer than nearby edges. Such an edge is called inconsistent. Zahn 
suggests. the following criterion: an edge is inconsistent if (I) its 
length is more than f times the average of the length of nearby 
edges. and (2) its length is more than s standard deviations larger 
than the average of the lengths of nearby edges (standard deviation 
computed on the lengths of nearby edges). The real numbers /and·.\· 
may be adjusted by the user. The question of determining which 
edges are "nearby" is also answered by the user. We will say point 
Pis nearby point Q if point Pis connected to point Q by a path in 
the minimal spanning tree containing d or fewer edges (d is an in
teger determined by the user). 

Deleting the inconsistent edges breaks up the tree into several 
connected subtrees. The points of each connected subtree are the 
members of a cluster. 

Use o{ the proKram. There are two steps involved in clustering 
a point set using this Fortran implementation of Zahn's algorithm. 

Step I. Call the subroutine GROW to construct the minimal 

Funds for computer time used in development of this algorithm 
were provided by National Science Foundation Grant GJ561. 

479-P 1- 0 

spanning tree of the point set. GROW needs four parameters: CJ) an 
array of real numbers specifying the point set; (2) an integer specify
ing the dimension of the space in which the points lie; (3) an integer 
specifying the number of points in the set; and (4) a logical value. 
true if the user would like a description of the minimal spanning 
tree to be printed on unit 6, and false otherwise. The array of param
eter (I) is treated as if it were a matrix (stored by columns) in which 
each column represents ~ point in the input point set. To be more 
specific, the array must be arranged so that its (K-l)*D/MEN + 
/th value is the /th component of the Kth vector in the point set. 
(DJ MEN stands for the dimension of the space in which the points 
lie.) 

Step 2. Call the subroutine CLUSTR to determine the clusters 
in the point set. CLUSTR needs six parameters: (I) the integer d de
fining the term "nearby"; (2) the real number /described above; (3) 

the real numbers described above; (4) an array to be used for out
put; (5) the declared length of the output array; and (6) a logical 
value, true if the user desires a description of the clusters determined 
to be printed on unit 6, and false otherwise. 1f parameter (5) is zero, 
the output array (parameter (4)) will not be used. Otherwise, the 
output array, which we call C here, will be filled with integers as 
follows: the first element will be the number of clusters detected; the 
remaining elements will be arranged in blocks of varying length, 
each block describing one cluster the first element in each block 
being the number of points in the cluster, and the remaining ele
ments of the block being the labels of the points in the cluster (a 
point's label will be its relative position in the input point set; thus 
the first point in the input has label I, the second, label 2, etc.). 

Once step I has been completed for a particular point set, step 
2 may be repeated with different parameters without repeatmg 
step I. 

Restrictions. (I) As written, the program will handle only 100 
data points, but that can be easily changed by increasing the dimen
sions of three arrays in GROW and five arrays in CLUSTR (see 
program for directions). (2) The first parameter in CLUSTR must 
not be larger than 18 .. This too can be easily changed by increasing 
the dimension of two a~rays in CLUSTR (see program). (3) Blank 
common is used to store the minimal spanning tree. 

Tests. The program has been tested on a CDC 6400 with several 
different input point sets of varying size and dimension, both artifi
cially generated and real data. The artificially generated data in
cluded three two dimensional point sets with two. four, and five 
clusters and one three-dimensional point set with eight clusters as 
well as some higher-dimensional, larger point sets used for timing 
analysis. Time to run GROW increases like 112 ; time to run CLUSTR 
normally increases like 11, but in the worst case increases like 11 2• 

References 
1. Whitney, V.K. M. Algorithm 422 Minimal spanning tree. 
Comm. ACM 15, 4 (Apr. 1972), 273-274. 
2. Zahn, C.T. Graph-theoretical methods for detecting and 
describing gestalt clusters. IEEE Trans. 011 Computers, C-20 
(1971), 68-86. 

Algorithm 
C TO CLUSTER A POI~T SET USING THIS ALGORITHM, TVO THINGS 
C NEED TO BE DONE. <I) BUILD THE MINIMAL SPANNING TPEE BY 
C CALLING GROI<', AND <2> DELETE ITS INCONSISTENT BRANCHES BY 
C CALLING CLUSTR. ONCE STEP CI l HAS BEEN DONE, STEP <2> CAN 
C BE REPEATED OVER A.'JD OVER ltlTH DIFFERENT PARAMETEFS. 
C SEE THE BEGINNINGS OF GRO\.' AND CLttSTR FOP EXPLANATIONS OF 
C THE PAP.AM ET ER S. . 
C CURRENTLY, THE ARRAYS ARE DIMENSIONED TO HANDLE l'P TO 100 
c POINTS. TO CHANGE THIS. SIMPLY CHANGE ':HE SIZE. or ':HE 
C ARl<AYS MST. NIT, ANC UI IN GPOV AS C!flECTED EEl.O\.' THEIR 
C DECLARATIONS. Al.SO, CHA.'lGE THE LENGTHS OF 



COLLECTED ALGORITHMS (cont.) 

c THE ARRAYS EDGE ST, EDGE PT, AVE, se, AND NUMNEI AS 
C DIRECTED iN THE SUBROUTINE CLUSTP.. 11\J ADDITIOl\J, If THE 
C PARAMETER. D IN CLt:STP ~·ILL BE LARGER THAN 18, CHANGE THE 
C LENGTHS Ot THE ARRAYS NEIG ST AND NEIG PT AS DIRECTED· 

SUBROUTINE GROl<CDATA, DIMEN, NUMPTS, PRINT> 
INTEGE~ DIMEN, NUMPTS 
DIMENSION DATA< I> 
LOGICAL PRINT 

THIS St:EROUTINE COMPUTES THE MINIMAL 5PAl\JNING TPEE or THE 
COMPLETE GRAPH ON THE Nl'M PTS POINTS IN AP.PAY DATA 
EACH POINT IS A VECTOR \'ITH D!MEN COMPONENTS STOP.Er; IN 
CONTIGt:Ol'S LOCATIONS IN THE ARRAY CATA. SPEC!f!CALLY, 
DATA< CK-l>•DIME:ll +! l IS .THE !-TH COMPONENT OF THE K-TH 
VECTO!'. THE ARRAY DATA MAY CONTAIN NUMEEFS IN El THEE 
INTEGER OR FLOATING POINT FORMAT AS LONG AS THE FORMAT IS 
CONSISTENT ~'!TH THE TYPE SPECIFICATION or '!'HE PARAMETERS 
IN THE FUNCTION DIST. 
IF THE PARM1ETER PP.I NT HAS THE VALVE • TRUE., THEN A 
A DESCP.IPTION OF '!'HE Mll\JIMAL SPAl\JNING TREE IS PRINTED ON 

C UNIT 6. EACH NODE IS LABELED VITH AN INTEGER INDICA'!'ll\JG 
CITS RELATIVE POSITION IN THE APRAY DATA. 

INTEGER DIM, N, MSTC800>. LOC< I l, NERC I l, NXTC I> 
REAL WTC I> 
EQUIVALENCE CMST,LOC,NBR,VT,NXT> 
COMMON DIM• N, MST 
INTEGER LASTPT, FREE, PT 

c MST <ALIAS t.oc. NER, \<T, NXT> IS A DESCRIPTION OF THE 

C MINIMAL SPANNING TREE. 1 T CONTAll\JS ONE LI ST FOP. EACH 'JODE. 
c THE POINTERS ro THE HEADS OF THESE LISTS ARE STOP.EC IN THE 
c FIRST N=l\JUM PTS LOCATIONS or MST AND GO BY THE l\JA'1E MST. 
C THE FIRST ELEMENT OF EACH LIST CONSISTS OF FOP?. FIELDS 
C STORED IN CONTIGUOUS ~OP.OS OF MST. EACH FIELD IS CALLED EY 
C A NAME WHICH IS AN ALIAS OF MST. 
C FIELD I: LOCATION IN DATA OF THE NODE CLOC> 
C FIELD 2: NAME OF NEIGHBOPll\JG NODE CNBP> 
C FIELD 3: ~EIGHT OF THIS BRANCH CVTl 
C FIELD 4: POINTER TO l\JEXT l\JEIGHBOP OR END MAPK20 CNXT> 
C EACH ADDITIONAL ELEMENT OF THE LIST CONSISTS OF THREE 
C FIELDS. FIELD I AEOVE IS 0!1ITTED. 
C THE LENGTH OF THE APP.AY MST MVST BE AT LEA!T 8•N • 
C THE MINIMAL SPANNING TREE JS COMPl'TED USING THE ALGOP!THM 
C OF PRIM AND DIJKSTRA AS IMPLEMENTEC BY ~·HITl\JEY <CACM 15, 
C APR 1972>. 
C EACH COLUMN OF NIT IS A PAIR CN!TCl.I>.NITC2.!l.l=l,NITPl 
C DENOTING A NODE NOT CYETl IN THE TREE ANC ITS NEAFEST 
C NEIGHBOR [N THE Ct:RRENT TREE. UICI> IS THE LENGTH OF THE 
C EDGE CNJTCl,!J,NITC2,J)), THE LENGTH OF THE APPAY l'l A'JD 
C THE NllMSEP OF COLUMNS OF NIT CANNOT EE LE!S THA'-l 'J, 

INTEGER N!TC2, 100> · 
REAL U!Cl00l 
DIM = .DIMEN 
N • NUMPTS 

C COMPUTE MINIMAL SPANNING TREE VS!l\JG ALGORITHM OF VH!TNEY 
C INITIALIZE NODE LABEL ARRAYS A'JC SET UP LIST FOP NODE N=KP 

N!TP = N - I 
KP = N 
KPDATA 2 CKP-ll•CIM + I 
DO 10 l =I, N 1 TP 

I DAT A = C l - I l * D I M + I 
N!T<l.Il = 1 
U IC 1 l = DI ST< DA TAC 1 DAT Al, DATA< KPDATA>. DIM l 
NITC2.I l = KP 

! 0 CONT I Nl'E 
FREE = · N + I 
MSTCKPl = FPEE 
LO.CCFPEEl = <KP- I >•DIM + I 
FREE = FREE + I 
NXTCFFEE+2> = 0 

C UPDATE LABEL OF NODES NOT YET ll\J TPEE· 
20 KPOATA = CKP-ll•CIM + I 

DO 3 e I • I , NI T P 
I DAT A = C N 1 TC I. I > - I H CI M + I 
D = C!STCCATACIDATAJ,DATA<KPDATA>,CIM> 
! F C t:I C I J. LE. D l GO TO 3 0 
t: 1C1 l = D 
N!TC2, I> = KP 

J~ CONT!Nl'E 
C FIND NODE Ol'TS!DE TREE NEAREST TO TF.EE 

UK = l'I c I l 
DO t10 l 2 I , N 1 T P 

IF Cl' IC I l. GT• UK l GO TO 40 
L'K = Ul CI> 
K = I 

40 CON.TlNUE 
C ACD NEW EDGE TO MST 
C ADC NE!GHBOP TO LIST Of NODE N!Tc2,K> 
C CHANGE END OF LIST MAPK TO POINT TO l\JEXT l\JE!GHEOP 

PT= LASTPTOJ!TC2,Kll 
NXTCPTl = FFEE 

C ENTER NAME OF NE! GHBOR 
NER~FPEE> = N!TCl,Kl 

CENTER \,"EIGHT OF THIS ERAl\JCH <OFFSET PICKS l'P 1."r FIELD> 
l<'TCFREE+ I l = L'l CKl 

C PVT IN ENC OF LIST MARK COFFSET PICKS UP PO!NTEP FIELD> 
NXTCFPEE•2> = 0 
FPEE = °FREE + 3 

NEV NODE--9REATE ITS NE!GHBOF LIST 
SET VP HEAD PO!NTEP 

NODE= .NITC l,KJ 
MSTCNODEl = FPEE 

CENTER LOCATION OF THIS l\JODE IN DATA 
LOCCFPEEl = Cl\JODE-l>•D!M + I 

C ENTER NAME OF NE! GHBOPING NODE CO FF SET Pl CKS \ 1P NH Fl ELD> 
NERCFREE+I> = N!TC2,K> 

CENTER \-'EIGHT OF THIS ERANCH <OFFSET PICKS l'P \.'T FIELD> 
••TCFREE•21 = t:lCKl 

CENTER END OF LIST MARK COfFSET PICKS UP POINTER FIELD> 
NXTCFREE•3> = 0 
FREE = FREE + it. 
KP• NIT< l,K> 

C DELETE NEV TREE NODE FPOM ARPAY NIT 
U!CKl = lll<N!TP> 
NIT<l,Kl • NITCl,N!TPJ 
NITC2,Kl = NITC2,N!TPl 
NITP = NITP - I 

C THE MST IS FINISHED WHEN IT CONTAINS ALL NOCES 
IF CNITP.NE.0l GO TO 20 
IF CPPINTl CALL PP.TREE 
RETl'RN 
END 

479-P 2- o 

SUBROl:TINE CLUSTRCD, FACTOR, SPREAD, C, CLEN, Pl'INTl 
INTEGER o, GLEN, C<CLEN> 
REAL FACTOR, SPREAD 
LOGICAL PRINT 

C THIS SUBROl'TINE FINDS THE CLUSTEPS OF A POINT SET USING 
C A MINIMAL SPANNING TREE CLUSTERING METH.JC OF ZAHN. THE 
C MINIMAL SPANNING TREE. COMPUTED BY SUBP.'.lUTINE GPO\.'. l S 
C STORED IN BLANK COMMON. , 
C THE ZAHN ALGORITHM FINDS CLl'STEPS. BY DELETING INCONS!STtNT 
C EDGES FROM THE Ml NI MAL SPANN I NG TREE, AIV I NCON S 1 STENT EDGE 
C BEING ONE 1.'HOSE \.'EIGHT IS S!GNlflCANTLY LARGER THAN THE 
C AVERAGE >'El GHT OF NEARBY EDGES. 
C NEARBY MEANS CONNECTED TO THE EDGE IN iUESTION SY A 
c PATH CONTAINING D OR Fn1EP EDGES. 
C SIGNIFICANTLY LARGER MEANS 
C WEIGHT .GT. FACTQP. * 4VERAGE 
C AND \.'El GHT • GT. AVERAGE + SPREAD * STANDAPD DEVIATION 
C WHERE THE AVERAGE A'JD STANCARD DEVIATION ARE COMPUTED ON 
C THE WEIGHTS OF NEARBY EDGES. 
C THE OUTPUT VECTOR C DESCRIBES THE C~USTERS DETERMINED. 
C IT IS ARRANGED IN BLOCKS, EACH BLOCK DESCRIBING ONE 
C CLUSTER. THE FIRST ELEMENT IN EACH BLOCI< IS THE NUMBER 
C OF NODES IN THE CLUSTER. THE REMAINING .ELEMENTS ARE THE 
C LABELS OF THE NODES IN THE CLUSTER, THE LABEL INDICATING 
C THE RELATIVE POSITION OF THE NODE IN TH'.E ARRAY DATA. THE 
C FIRST BLOCK STARTS AT CC2l· . 
C C< I l IS THE NUMBER, OF CLUSTERS FOUND BY THE ALGORITHM· 
C THE VALUE OF C LEN SHOULD BE THE TRUE SIZE OF 
C THE ARRAY C. IT IS USED TO PREVENT INVALID SUBSCRIPTS. 
C IF C LEN IS ZERO, THE ARRAY C \JILL NOT 13E USED· 
C IF THE PARAMETER PRINT HAS THE VALUE .TRUE., CLUSTERS 
CARE PRINTED OUT ON UNIT 6. 

INTEGER EDGESTCl01), EDGELN, EDGEPT(l0ll 
REAL AVECl00>. SQCl00J, SUPP.WT, \J 
INTEGER NUMNEICl00l 
INTEGER NEIGSTC20>, NEIGLN, NEIGPTC20l 

C THE ARRAY EDGE ST <EDGE STACK> IS A STACK OF NODES USED TO 
C DIRECT THE SEARCH THROUGH THE TREE FOR J:NCONS I STENT EDGES. 
C I TS LENGTH <EDGE L.N l CAN GROW AS LARGE llS ONE MORE THAN 
C THE NUMBER OF NODES IN THE TREE. 
C THE ARRAY EDGE PT C EDGE PO INTERS l IS A STACK OF PO INTERS 
C TO THE NEXT UNEXAMINED NEIGHBORING NODE OF THE NODE IN THE 
C SAME POSITION IN EDGE ST. THUS THE LENGTH OF EDGE PT IS 
C ALWAYS THE SAME AS TH~T cir EDGE ST. 
C THE ARRAY NEIG ST <NEIGHBOR STACK> IS A STACK OF NODES 
C USED TO DIRECT THE AVERAGING OF THE WEIGHTS OF NEAP.BY 
C EDGES. ITS LENGTH <NEIG LN> CAN GROW AS LARGE AS D+2. 
C THE ARRAY NEIG PT IS USED IN CONJUNCTION WITH NEIG ST. ITS 
C LENGTH CAN GROW AS LARGE A D+2. 
C THE ARRAYS AVE AND SQ ARE USED TO EXPEDITE THE CALCULATION 
C OF AVERAGE WEIGHTS. SPECIFICALLY, AVE<Il STORES THE SUM OF 
C THE WEIGHTS OF EDGES EXTENDING FROM THE I -TH NODE AND 
C SQC I l STORES THE SUM OF THE SQUARES. SIMILARLY, NUMNEI CI> 
C STORES THE NUMBER OF NEIGHBORS OF THE t-TH NODE. THUS EACH 
C OF THESE ARRAYS MUST BE AS LONG AS THE NUMBER OF NODES, 

INTEGER FINDCN, A, B, DLESSI 
INTEGER CLS, I NCLS CI l, PARENT< I), BAKIJRD, EEGCL~ 

EQU 1 VALENCE C IN CLS, ED GEST l, C PARENT, EDGEPT I 
INTEGER CP, OTHEND ' 
INTEGER DIM, N, MST< I J, LOC<l J, NBRC I l, NXTC I I 
REAL »TC I l 
EQUIVALENCE CMST,LOC,NBR,IJT,NXTJ 
COMMON DIM, N, MST 
IF CPRINTJ WRITE C 6,99998> D, FACTOR, SPREAD 
DLESS I • D - I 

COMPUTATION SECTION 
SUM BRANCH WEIGHTS OFF EACH NODE <DEPTH I) 

DO 20 NODE•l,N 
NUMNEI <NODE> • I 
K 2 MSTCNODEl 
AVECNODE> • WTCK+2l 
SQ <NO DE> • .>'TC K+2 l* •2 
K • NXTCK+31 

10 IF CK.EQ.01 GO TO 20 
AVECNODE> 2 AVECNODEl + WTCK+ll 
SQCNODE> • SQCNODE> + >'TCK+ I >••2 
NUMNEI CNODEI • NUMNEI CNODE> + 1 
K 2 NXTCK+2l 
GO TO 10 

2e CONTINUE 
INITIALIZE ECGE STACK >'ITH NODE I SVRROUIVDED BY ITS F.lRST 
TWO NEIGHBORS. SINCE THE TOP TWO ELEMENTS OF THE STACK 

C INDICATE THE DIRECTI0:-.1 OF TRAVEL ALOl\JG A BRANCH, THE 
SEARCH l.'ILL FIRST BE DIRECTED AWAY FROM NODE 1 IN THE 
DIRECTION OF !TS FIRST NEIGHBOR. \.'HEN ,ALL. THE TPEE IN THAT 
DIRECT IO:-.! 1 S SEARCHED, THE SEARCH ~'ILL P'~OCEDE A~'AY FPOM 

CITS FIRST NEIGHBOR TO»ARD NODE J, 
C THE EDGE PT STACK IS USED TO KEEP TRACK OF THE NEIGHBORS 
C OF THE CORRESPONDING NODE IN EDGE ST »H!CH HAVE ALREADY 
C BEEN SEARCHED. EDGE PTC I> POINTS TO TH'.S LOCATIOl\J OF 
C EDGE STCI+IJ IN THE LIST OF NEIGHBORS OY EDGE STCll 

EDGELN 2 3 
K 2 MSTCI> 
EDGESTC2l = LOCCKl/DlM + I 
EDGESTCIJ • NBRCK+ll 
EDGESTC3l NBRCK+ I> 
EDGEPTC 1 l " FINDCNC EDGES TC I>, EDGEST(:?J l 
EDGEPTC2l = K + I 
EDGEPTC3> -1 

C CLIMB TREE TO NEXT UNTESTED BRANCH 
30 CALL CL! MB C EDGE PT. ED GEST, EDGELN, N :0 

IF CEDGELN.LE.21 GO TO 70 
CHECK THE EDGE BETWEEN ~ODE EDGE STCEDGE LN -ll AND 
NODE EDGE ST<EDGE LNl FOR INCONSISTENCY. 

A = EDGEST C EDGELN- I> 
B • EDGESTCEDGELN> 



COLLECTED ALGORITHMS (conit.) 

C SUM 1.'EI GHTS Of ALL BRANCHES NEARBY BRANCH A--8 
NEARBY = 0 
AV = 0. 
STDDEV = 0. 

c INITIALZE NEIG ST TO SUM \..'EIGHTS HEADING orr NODE E 
NEIGLN = 2 
NEIGST<lJ = A 
NEIGPTCI> = EDGEPT<EDGELN-ll 
NEIGST<2l = 8 
NEIGPTC2> =-I 
ASSIGN 50 TO OTHEND 

C GO OL'T TO DEPTH D- I ALONG BRANCHES :-JOT YET ADDED 
40 CALL CLIMS<NEIGPT, NEIGST, NEIGLN, DLESSI> 

C ADD V.'EIGHTS Of BRANCHES OH THE TOP NODE LESS THE \.'EIGHT 
C Of THE BRANCH SL'PPORTING IT 

K ~ NEIGPTC:-JEIGLN-1> 
SUPP\..'T = VTCK+ I> 
K ~ NEIGST<NEIGLN> 
AV = AV + AVECK> - SUPPVT 
STDDEV = STDDEV + SQCKJ - SUPPVT••2 
NE1'IR8Y =·NEAP.BY+ NUMNEICK) - I 

\..'HEN DEPTH Of STACK RETURNS TO 2, ALL BRANCH WEIGHTS Off 
TH IS END HAVE BEEN ADDED 

If CNEIGLN·LE.2> GO TO OTHEND, (50 •. 60> 
NEIGLN = NEIGLN - I 
GO TO 40 

C INIT!ALZE NEIG ST TO SUM \..'EIGHTS HEADING Off NODE A 
50 NEIGLN • 2 

NEIGSTCI) = 8 
NEIGPTCIJ = fINDCN<S,AJ 
NEIGST<2> = A 
:-JEIGPTC2J =-I 
ASSIGN 60 TO OTHEND 
GO TO 40 

C TEST BRANCH A--8 FOR INCONSISTENCY. 
60 AV = AV/fLOAT<NEARSY> 

STDDEV = SQRTCA8S<STDDEV/FLOAT<NEAR8Y>-AV••2>>. 
K = EDGEFT < EDGELN - I > 
V.' = '...'T ( K+ I) 
EDGELN = EDGELN - I 
IF (\..'.LE.AV+SPREAD•STDDEV .QR. \..',LE.FACTOR•AV> GO TO 30 

C BRANCH A--8 IS INCONSISTENT. DELETE IT. 
NBR<KJ = -IASS<NSR<Kl> 
K = NEIGPTCI) 
NBR<KJ = -IABS<NSR<K>) 
GO TO 30 

C OUTPL'T SECT ION 
C WE COLLECT THE CLUSTERS AS fOLLO\..'S: 1. START \..'ITH FIRST 
C NODE. 2. THROW IN ITS NEIGHBORS. 3. THROV IN NE!GH80P5 
C Of NEIGHBORS UNTIL NO NEV ONES CAN BE FOLINO. 4, EACH 
C TIME A DELETED BRANCH IS ENCOUNTERED, PUT OTHER END IN A 
C LIST Of UNUSED NODES <AT TOP Of ARRAY IN CLSJ, 5, V.'HEN 
CA FULL CLUSTER IS COLLECTED , OUTPUT IT. 6. START AGAIN 
c AT STEP 2 1-'!TH A NODE FROM THE LI ST or UNUSED NODES. 

70 NUM IN • 0 
CL.S = 0 
CP = I 
K = MST<IJ 
NXTCLS = N 
INCLSCNXTCLSJ = LOC<KJ/CIM + I 
PARENT<NXTCLSJ = 0 
8AKIJP.D = 0 

C START CLUSTER \..'!TH NEXT AVAILABLE UNUSED NODE 
80 CLS = CLS + I 

NUMIN • NUM!N + I 
SEGCLS • NUM!N 
NXTCN • NUM!N 
NODE • INCLS<NXTCLSl 
INL!ST • PARENT<NXTCLSJ 
INCLS<NUMIN> = NODE 
NXTCLS = NXTCLS + I 

C LET rC POINT TO FIRST NEIGHBOR OF NODE 
90 K • MST<NODE> + I 

C ADD NE:! GHSOR TO CLUSTER AND RECORD IT ANCESTRY 
100 NXTNBR • NBR<K> 

IF CNXTNSR.L,T.0> GO TO 110 
IF <NXTNBR.EQ.SAK\..'RD> GO TO 120 
NlJMIN " NUMIN + I 
INCLS<NUM!NJ = NXTNSP. 
PARENT<NUMINl • NODE 
GO TO 120 

C THIS NEIGHBOR IS IN A DIFFERENT CLUSTER--ADD TO UNUSED 
110 NXTNSR = -NXTNSR 

If <NXTNSR.EQ.!NL!ST> GO TO 120 
NXTCLS • NXTCLS - I 
INCLSCNXTCLSJ = NXTNBR 
PARENT<NXTCLSJ • NODE 

C GET NEXT NEIGHBOR 
120 K • NXTCK+2J 

IF CK.NE.0> GO TO 100 
C ADD LIST Of NEIGHBORS Of NEXT ELEMENT Of THIS CLUSTER 

NXTCN • NXTCN + I 
IF <NXTCN.GT.NUMIN> GO TO 130 
NODE • INCLS<NXTCNl 
SAJ<IJRD • PARENTCNXTCNl 
GO TO 9 0 

C END Of CLUSTER--DO OUTPUT 
130 CALL STORE<NUMIN-SEGCLS+ I, C, CP. GLEN> 

If <PRINT> WRITE (6,99999> CLS 
DO 140 I•BEGCLSoNUMIN 

If <PRINT> l.'RITE <6,99997> INCLS<Il 
CALL STORECINCLS<IJ, C, CP, CLEN> 

140 CONTINUE 
IF CNUMIN.LT.N> GO TO 80 
CP • 0 
CALL STORE<CLS. Co CP, GLEN> 
CALL fIXMST 
RETURN 

99999 FORMAT<IH0/8H0CLUSTER, I5, 12H CONSISTS Ofl 
99998 f0RMATC44HITHE TREE HAS BEEN CLUSTERED SEARCHING TO A 

• 8HDEPTH or. I3/l IX. 28HINCONSISTENT EDGES HAVE BEEN. 
• 27H DETERMINED SY A FACTOR Of, Gll•4/llX, 10HAND A SPRE, 
.. 6HAD or. GI 1.4, 21H STANDARD DEVIATION~.) 

99997 FORMAT< 10X, 4HNODE, I 5) 
E.ND 

REAL FUNCTION DISTCA, 8, N> 
INTEGER N 
REAL A<N>, B<N> 

479-P 3-

C THIS FUNCTION COMPUTES THE \..'EIGHT Of THE BRANCH BET\..'EEN 
C NODE A AND NODE 9, IT SHOLlLC SE \.'RITTEN TO SL'IT THE DATA. 
C THE TYPE DECLARATION Of A AND 8 SHOULD MATCH THE DATA· 
C THIS VERSION COMPUTES THE USUAL EUCLIDEAN DISTANCE. 

DIST• <A<l>-8<1»••2 
DO 10 I •2, N 

DIST• DIST+ <ACl>-8<1»••2 
10 CONTINUE 

DIST • SIRT<D!STl 
RETURN 
END 

SUBROUTINE CL!MSCPOINTR, STACK, LN, D> 
INTEGER POINTR<l), STACK<!>, LN, D 
INTEGER SPACE<2>, MST<l>, NSR<l>, NXT<l> 
EQUIVALENCE <MST,NSR,NXT> 
COMMON SPACE, MST 

STARTING FROM THE NODE ON TOP or THE STACK. CLIMB OUT 
TO DEPTH DOR TO A TERMINAL NODE, \..1HICHEVER OCCURS FIRST 

10 IF <LN.EQ.D+2l RETURN 
K a POINTRCLN> 
If <Kl 20, 30, 40 

SET POINTE~ TO FIRST NEIGHBOR Of TOP NODE 
20 NODE • STACK<LN> 

POINTRCLN> • MSTCNODE> + I 

GO TO 50 
C SACK DO\.IN FROM TERMINAL NODE 

30 LN = LN - I 
C CLIMB OUT ON NEXT NEIGHBOR If POSSIBLE 

40 PO!NTRCLN> = NXTCK+2> 
If CPOINTR<LN>.F.Q,0) RETURN 

C CHECK DIRECTION 
50 K = POINTR(LN> 

NEIGHS• IABS<NSRCK>> 
If CNEIGHS.EQ.STACKCLN-l>J GO TO 40 

C CLIMB OUT ON NEIGHBORING NOD!:: 
• L

0

N = LN + I 
STACKCLN> =NEIGHS 
POINTRCLNJ = - I 
GO TO I 0 
END 

INTEGER FUNCTION LASTPTCNODE> 
THE VALUE Of THIS FUNCTION POINTS TO THE EN~ or THE LIST 
Of NEIGHBORS Of NODE. 

INTEGER SPACE<~>. MSTCI), NXTCI> 
EQUIVALENCE <MST,NXTJ 
COMMON SPACE, MST 

C OFFSET PICKS UP POINTER FIELD 
. LASTPT • MSTCNODE> + 3 

10 If <NXT<LASTPT>.EQ.0) RETURN 
LASTPT = NXTCLASTPT> + 2 
GO TO 10 
END 

INTEGER FUNCTION f!NDCN<A, 8> 
INTEGER A, 8 
INTEGER SPACEC2), MSTCI), NoRCI), NXTCI) 
EQUIVALENCE CMST,NER,NXTl 
COMMON SPACE, MST 

C THIS FUNCTION LOCATES NODE 8 IN THE LIST Of NEIGHBORS Of A 
C Off SET Pl CKS UP NE! GHSOR fl ELD 

f!NDCN = MST<A> + I 
10 IF CIA8S<N8RCfINDCN>J.EQ,9J RETURN 

f!NDCN = NXTCFINDCN+2> 
If <fINDCN.NE.0> GO TO 10 
\.:RITE <6,99999> 8, A 

99999 FORMAT< 5H0NODE, I 3, 26H IS NOT A NE! GHSOP 01' NODE. 13> 
RETURN 
END 

SUBROUTINE STORE<VALUE, ARRAY, LOC, N> 
INTEGER VALUE, ARRAY<NJ, LOC, N 

THIS SUBROUTINE IS USED TO STORE VALUES INTO THE ARRAY 
>'HICH IS THE FOURTH PARAMETER Of CLUSTR. 

IF CN.EQ.0> RETURN 
LO C = LO C + I 
I f < LO C, GT, N > GO TO I 0 
ARRAY<LOC> = VALUE 
RETURN 

10 WRITE <6,99999J VALUE 
99999 FORMATC41H THE ARRAY USED TO STORE A DESCRIPTION Of/3H TH, 

• 30HE CLUSTERS IS NOT LONG ENOUGH /ISH ::TS NEXT VALUE, 
• l IH SHOULD BE , 110> 

RETURN 
END 

SUBROLrlNE PRTREE 
THE DESCRIPTION Of THE MINIMAL SPANNING TREE PRINTED HERE 
LABELS EACH NODE SEQUENTIALLY AS IT OCCURS IN DATA 

INTEGER DIM, N, MST<!>. LOCCIJ, NBR<l>, NXT<ll 
REAL \..'T <I> 
EQUIVALENCE <MST,LQC,NSR,VT,NXTl 
COMMON DIM, N, MST 
DO 20 NODE•l,N 

\.:RITE (6,99999J NODE 
K = MSTCNODE> + I 

10 IJRIT.E <6,99998> NBR<K>• >'T<K+l> 
K = NXTCK+2l 
If CK.NE.0> GO TO 10 

20 CONTINUE 
RETURN 

0 



COLLECTED ALGORITHMS (cont.) 479-P 4- R2 

99999 roRrtATl~H8NODL IJ/16H NUGHl:IORS AR[I H.S. Magnuski [Recd 19 July 19741 Stanford Elec
tronics Laboratories, Stanford University, Stanford 

CA 94305 

99998fORl'tAf<1ex. AiKNOD[. IS. IAIH AT DISTANCl • GI 1.4) 
[ND 

SUBROUTINE f'IXMST 
INTEGER DIM. N. i'IST<I>. N81'Hll, NXT<I> 
EQUIVALENCE CMST.NBR.NXT> 

The implementation of this algorithm assumes that both 
real and integer variables occupy the same amount of storage, 
which is not true of many Fortran systems. The algorithm 
assumes that real array WT and integer array MST are exactly 
the same length, and intermixes floating point and integer vari
ables in creating the linked lists contained in these arrays. The 
simplest (but not best) solution is to ddine array WT in its own 
common block. The correct solution requires rewriting of the 
algorithm so that the linked lists 'tan properly handle floating 
point numbers. 

COMMON DIM. N. MST 
DO 20 1•1,N 

K • MST< I > • I 
18 NBR<K> • IABS<NBRCK>> 

K • NXT<l<-2> 
If <K.N£.0J GO TO 10 

28 CONTINUE 
RETURN. 

£ND 

Remark on Algorithm 479 [ZJ 
[Prof. Page informs me that he has a revised version which 

follows the suggestion of the last sentence above. -L.D.F. j 
A Minimal Spanning Tree Clustering Method 
[R.L. Page, Comm. ACM 17 (June 1974), 321-323] 

ACM Transactions on Mathematical Software, Vol. 2, No. l, March 1976, Pages 110 -111 

REMARK ON ALGORITHM 479 

A Minimal Spanning Tree Clustering Method [Z] 
[R.L. Page, Comm. ACM 17, 6(June 1974), 321-323] 

G.M. White, S. Goudreau, and J.L. Legros [Recd 5 Aug. 1975] 
Computer Science Department, University of Ottawa, Ottawa, Ont. Canada 
KIN 6N5 

The algorithm as given generally yields a large number of clusters contaiining 
only one point. These are not likely to be of much use. Clusters not containing at 
least MIN PT S points can be eliminated by making the following changes to the 
subroutine CLVTR. 

1. The first statement should read 

SUBROUTINE CLUTR(D,FACTOR,SPREAD,C,CLEN,PRINT,MINPT8) 

2. The statement beginning IF(PRINT) following the COMMON statement 

COMMON DIM, N, MST 

should be removed. 

3. The following statements should be inserted immediately after the COMMON 
statement: 

IF(MINPTS.LE.N) GO TO 5 
C(l) == 0 
RETURN 

5 IF(PRINT) WRITE(6,99998)D,FACTOR,SPREAD 
IF(PRINT) WRITE(6,99996)MINPTS 

99996 FORMAT(lHb, lOX, 39HMINIMUMbNUMBERbOFbPOINTSbPERbCLUST.ERb 
* IS,I9) 

4. Statement number 130 should be replaced by the following: 

130 IF((NUMIN-BEGCLS+l).LT.MINPTS) GO TO 150 
CALL STORE (NUMIN -BEGCLS+ 1, C, CP, CLEN) 

5. The statement following statement 140 should be replaced by 

GO TO 160 
150 CLS == CLS-1 
160 IF(NUMIN.LT.N) GO TO 80 

With these changes, the program will produce the same results as the original 
program if MINPTS is set equal to 1 at the point of invocation. 



COLLECTED ALGORITHMS (cont.) 479-P 5- 0 

The algorithm with the above modifications has been tested successfully using 
G and H (opt= 2) level Fortran compilers on an IBM 360/65 under o.s. level 21.8. 
With this configuration, the qualifications mentioned by Magnuski [1] are not 
applicable. 

The program has been used to detect artificially generated clusters superimposed 
upon a background of noise and to detect stars in nuclear emulsions. The algorithm 
seems particularly well suited for identifying nuclear events in three dimensions 
using data obtained :automatically from emulsions by flying spot scanners. 

REFERENCES 

[l] MAGNUSKI, H.S. Remark on Algorithm 479. Comm. ACM 18, 2(Feb. 1975), 119. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 480 

Procedures for Computing 
Smoothing and Interpolating 
Natural Splines [El] 

Tom Lyche* and Larry L. Schumakert [Recd. 18 Oct. 
1971and9 Apr. 1973] 
Department of Mathematics, The University of Texas 
at Austin, Austin, TX 78712 

*Supported in part by Grant DA-ARO(D)-31-124-61050, Army 
Research Office, Durham, and National Science Foundation Grant 
GP-23655. 
t Supported in part by Grant USAFOSR 69-18128. 

Key Words and Phrases: approximation, interpolation, spline, 
natural spline, spline smoothing 

CR Categories: 5.13 
Language: Algol 

procedure SPLINECOEFF (m,n,X, Y, W,C,q,S,eps,mach,maxit,fail); 
value m,n,maxit; integer m,n,q,maxit; real S,eps,mach; 
array X, Y, W,C; label fclil; 

oeomment 1. The purpose of this procedure is to generate the coeffi
cients /c;/i" in the representation 

s(x) = t CiB;(x) (1) 

of a natural spline of degree 2m - 1 (in terms of a local basis 
{ Bi(x) Jin) for the splines which solve certain data smoothing and 
interpolation problems. lt is based on algorithms described in [2]. 
To describe the problems, let m and n be integers (m,n"?:_ 1) and 
suppose { x; Ii", { y, Ii" and { w; l i" are prescribed real numbers, with 
xi <x2< · · · <x,. and w;>O, i= 1,2, ... ,n. Suppose p>O and S>O. 
For appropriately smooth /we define 

J(J') = L: (J<m)(x)) 2dx (2) 

E(J') = f wi(y;-f(x;))2. (3) 
i=i 

The spline interpolation problem is 

minimize J(f) subject to E(f) = 0. (4) 

We can solve either of two data smoothing problems: 

minimize [J(f)+pE(f)] (5) 

or 

minimize J(f) subject to E(f) 5:_S. (6) 

In all cases, the solutions are certain natural splines of degree 

480-P 1- 0 

2m - I with knots {x;Jin which can.always be represented in the 
form (1). We assume that /1 ~ 2m, in which case the solutions 
are unique, and there is a convenient basis (B,(x) Ji". 

Determining the led i" in problem (4) involves setting up and 
solving a system of /1 equations with a 2m - 1 banded matrix. 
Similarly (5) leads to a system with a 2m + 1 banded matrix. 
Solving problem (6) depends on the fact that for small S there is 
a unique p = p(S) such that the solution of (5) for this p is the 
solution of (6). The parameter p(S) js the unique positive solu
tion of 

t'·(p) = E(sp) = S, (7) 

where Sp is the solution of (5) corresponding to p. Equation (7) 
is solved by Newton's method applied to 

r-i(p) = s-~. (8) 

Then (6) is solved approximately in the sense that a splines is de
termined so that 

I E(s) -SI < epsyli; (9) 

comment 2. We describe the parameters of SPLINECOEFF. The in
tegers m and n must sa ti sf y m "?:. I, /1 "?:. 4m- I. The real arrays 
X[l :11], Y[ l :11], and W[l :11] must :mtisfy X[l] < · · · <X[n] and 
W[ij >0, i= l,2, ... ,11. The.integer q has nonnegative values. In case 
q = 0, the procedure solves (4)-i.e. produces the coeffiCients of 
the natural interpolating spline (I) of degree 2m - 1 with knots 
at the X[ij 's. The coefficients are returned in the array of real num
bers Cll :11]. 

If q = I, problem (5) is solved with smoothing parameter 
p : = S, a specified positive real number. Again the coefficients 
are returned in array C. Finally, if q = 2 the iterative process 
described in comment 1 is carried out to determine a splines sat
isfying (9). Sand eps must be positive real numbers. The param
eter maxit should be a positive integer specifying the maximum 
number of iterations desired in solving (8). 

The parameter mac/1 is to be the largest machine number such 
that l + mach = l: It is machine dependent, of course. The 
label fail is for the purpose of exiting from SPLINECOEFF if cer
tain situations arise (e.g. if maxit is exceeded). These are explained 
in detail in comments 7, 11, and 15; 

comment 3. SPLINECOEFF calls on four other procedures called 
BANDET, and BANSOL, ENDBASIS, MIDBASJS. It is as
sumed these procedures are defined in the driver program-we de
scribe their bodies later. The driver program should provide two 
arrays for workspace, namely, XXR,XX[l :n,I :2m]; 

begin 
integer k,kl; k : = m+m; kl : = k--1; 
begin 

integer a,i,j,l,il ,i2,m1 ,m2,r, v,g,I 1 /2; 
real F,FF,fl,s2,p,d,h,hl; 
array E,B,BWE[l :11,-m:m],LB[I :11,l :m],NIK,T[O:nJ,Z,U[l :k]; 
integer array INT (1 :11]; 
I : = n; a : = k + k; r : = if n >a then a else 11; 
for j := 1step1 until k do 
begin 

I:= /-1; r := r-1; 
for i : = 1 step 1 until I do 

XX[i,j] := X[i+J]-X[i]; 
for i : = 1 step 1 until r do 

XXR[i,j] := XX[11-i-J+l,j]; 
end); 



COLLECTED ALGORITHMS (cont.) 

B 

for i := 1step1 until n do 
for j: = -m step 1 until m do 

B[i,j] := O; 
comment 4. The array B is to contain the values of Bi(x;), 

where Bi(x) are the local basis elements of (1). There are es
sentially three kinds of basis functions, namely (see [2]) 

{

Q2m,i(X), i= 1,2, ... ,m 
B;(x) = /\f_2m,i(X), ~=m!l, ... ,11-m 

Q2m.i(X), l-n m+l, ... ,11. 
Let B = (Bj(X;)). Because of the SUJPport properties of 

the Bi(x), Bis 2m-1 banded and we may store it as follows: 

-m 1-m· 0 m-1 m 

f ~B,(x.) 7 ol B2(X2) 

n 0 Bn (Xn) 0 

Specifically, B;.i = B;+i(x;) = Bi.i+i for j 
1-i), ... ,min(m-1,11-i), i= 1,2, .. .,n; 

for/ : = 1 step 1 until k 1 do 
begin 

for j : = 1 step 1 until I - r do 
T[j] := XX[j,l-j]; 

T[I] := O; 
12 : = if I+ k 1 > /1 then n else I+ k I ; 
for j : = I+ 1 step 1 until 12 do 

T[j] : = XX[l,j-1]; 
END BASIS (k,l,11,T,XX,NIK); 
/1 : = if I > m then I else m; 
for j : = · 11 step 1 until /2 do 

B[l,j-m-l+lJ := NIK[j]; 
end leftpoints; 
for I : = k step 1 until 11- k do 
begin 

for j : = I - k 1 step 1 until I - 1 do 
T[j] : = XX[j,l - j]; 

T[/]:=0; 
for j := 1+1step1 untill+kl do 

T[j] : = XX[l,j-1]; 
MID BASIS (k,l,11,T,XX,NIK); 
for j : = I - k 1 step 1 until / - 1 do 

B[l,j+m-1] :=NIK[j]; 
end midpoints; 
for I: = 1 step 1 until k do 
begin 

for j : = 1 step 1 until I - 1 do 
T[j] := XXR[j,f-j]; 

T[/] := O; 
12 : = if I+ k 1 > n then 11 else I+ k 1 ; 
for j : = I+ 1 step 1 until /2 do 

T[j] : = XXR[l,j-1]; 
END BASIS (k,l,n,T,XkR,NIK); 
I 1 : = if I > m then I else m; 
for j : = / 1 step 1 until /2 do 

B[n-l+l,m+l-j-1]: =NIK[j] 
end rightpoints; 

max(l-m, 

comment 5. When q = 0 or if q was changed from 2 to 3 in 
attempting to do smoothing (see comment 9), the coefficients 
I c; j 1" of the interpolating spline are computed from the 
linear system BC = Y; 

480-P 2- 0 

interpol: 
if q = 0 V q = 3 then 

begin 
ml:= m-1; 
for i : = 1 step 1 until n do 
for j : = -ml step I until ml do 

BWE[i,j] := B[i,j]; 
goto linsol 

end; 
comment 6. For q = 1,2, or 4 (see comment 12) the C array 

is computed from the linear system 

(B+p-1E)C = Y, 

where 

E1j = wl 1
{j1j, 

min(n.i+m) 

(10) 

{j/i = fli II l/(x1-xi), J= 1, ... ,11, I =0 max(l,j-m) .. ., 
i-m11x (1. i-m) 

mi11(n,J+m), and 

l J, )= 1,2, ... ,m, 
fli = (-l) 111 (2m- 1) ! (~+m.:::~;m), !:m~~l, ... ,11-m, 

( 1) , 1-11 m+J, ... ,11. 

The (j's are the coefficients of certain divided differences. The 
array Eis 2m+ I banded and is stored in E in a form similar 
to B. The quantity dis an estimate for llEll1; 

fl : = -1; v : = k-1; ii : = 1; i2 : = m; d : = O; 
fori := 2step 1 untilmdo.fl := -/1 Xi; 
for i : = m+ 1 step l until v do fl : =fl Xi; 
for j : = I step l until n do 
begin 

if)>n-m then begin.fl:= -fl ;f :=/1 end 
else if) :::; m then/:= fl 
else/:= fl X XX[j-m,k]; 
ifj>m+I then ii := il+I; 
ifi2<ntheni2 := i2+1; 
for I : = ii step l until i2 do 
begin 

ff:= f; v := /-1; 
for i : = i1 step 1 until v do 

ff:= ff/ XX[i,1-ij; 
for i : = I+ l step 1 until i2 do 

ff:= -ff/XX[l,i-IJ; 
E[l,j-IJ := ff/W[l]; 
d: = d+abs(E[l,j-1]) 

end/; 
end E matrix; 
d := d/n; 
ml:= m; r := -1; s2 := sqrt(S); m2 := m-1; 
if q = 2 then p : = 10 X mach X d 
else if S < 10 X d X mach then 
begin 

q : = 7; goto fail 
end 
else p : = S; 
comment 7. The matrix Eis singular. Hence in the case q = 1, 

if p< 10 X mach X llEll1, the matrix (10) will be very close to 
singular since I\ Bil 1 ~ 1. In this case we exit and set q = 7; 

comment 8. If q = 2 we need to carry out the iteration de
scribed in comment 1. Since .r-1(p) in (8) is concave (see (3, 
4]), we want to choose the first guess p0 for Newton's method 
such that/-1(p0) <S-~. We choose p 0 = 10 X maclt X llEll1 
(see comment 7); 

11extit: 
comment 9. When p > d/10 mach, the matrix p-1l is consid

ered insignificant in (IO) and the smoothing problem (5) is re
placed by the interpolation problem. In this case we set q = 3; 

if p > d/10/mach then 



COLLECTED ALGORITHMS (cont.) 

begin 
q : = 3; goto interpol 

end; 
r := r+l; 
if r > maxit then 
begin q : = 6; goto fail; end; 
for i : = 1 step 1 until n do 
for j: = -m step 1 until m do 

BWE[i,j] := B[i,jJ+E[i,jJ/p; 
linso/: 

BANDET(BWE,LB,INT,11,ml); 
for i : = 1 step 1 until /1 do 

C[i] : = Y[i]; 
BANSOL(BWE,LB,C,INT,11,ml); 
if q < 2 V q = 3 then goto exit; 
comment 10. We now calculate F = f2(p) and check condi
tion (9); 
F := O;/ := m2; il := O; 
for i : = 1 step 1 until /1 do 
begin 

ifi>n-m2then/ := /-1; 
if il > -m2 then il : = il-1; FF:= - Ylil; 
for j : = il step 1 until I do 

FF:= FF+B[i,j] X C[i+J]; 
F := F+FFX FF X W[i]; T[i] :=FF; 

end; 
if abs(F-S) <eps X sqrt(n X abs(S) then 
begiri S : = F; goto exit end; 
comment 11. It may happen that the choice of {fl (see comment 

8) leads to sp0 with 1-1(sp0) >S-~. In this case we set q = 5 
and exit. 
This means the initial choice of S is too large; 

comment 12. In some cases the iteration may lead to sl' with 
.r-1(s") >S-~. (Because of the concavity of .r-1 this is theoreti
cally impossible.) We set q = 4 and exit. Sec also comment 
15; 

if F < S then 
begin 

if r = 0 then begin q = 5; goto fail end 
else begin q = 4; S : = F; goto exit end 

end; 
comment 13. We now compute FF= f(p) Xf'(p) and carry out 

one step of the Newton process; 
for i : = 1 step 1 until /1 do 

C[i] : = W[i] X T[i]; 
BANSOL (BWE,LB,T,INT,n,m); 
FF:= O;/ := m2; il := O; 
for i : = 1 step 1 until /1 do 
begin 

ifi > n-m2then/ := /-1; 
ifil>-m2thenil := il-1;/l := O; 
forj : = il step l until I do 

.fl := Jl+B[i,j] X T[i+J]; 
FF:= FF-C[i] X/l; 

end; 
p := p X (l +F X (s2--sqrt(F))/s2/FF); 
goto nextit; 

exit: 
end; 
comment 14. Choice of parameters. It is known that the condition 

number of the system BC = Y for spline interpolation in
creases at least exponentially with m (see de Boor [1]). It is also 
related to the spacing of the lxd1n. We have computed splines 
to order 20 (m = 10) with knot spacing 

maxi(X;+1-Xi) 
7r = 

min;(X;+1-xJ 

up to 1000, without difficulty. For many problems a choice of 

480-P 3- 0 

a small m is desirable-e.g. m = 2, 3 lead to cubic and quintic 
splines, respectively. The size of 1the parameter 11 is naturally 
limited by the storage capability of the machine and the time 
available for computation-it seems to have little or no effect on 
conditioning. 

The choice of I w;) 1 n and S for smoothing depends on the 
confidence we have in the data ly, Jin. It has been suggested [3] 
that Wi should be chosen as oy;- 2, where oy; is an estimate of the 
standard deviation of the ordinate y,. A practical upper bound 
for the choice of w; is (mach)- 2, where mach is defined in com
ment 2. If we have more confidence than this in the data, then it 
is probably accurate to machine word length, and we should set 
q = 0 and do interpolation rather than smoothing. When 
q = I, the choice of p (input through S) for problem (5) is 
problematical. There really is no dlependable scheme for choos
ing it (see the remarks in [4]) unkss more is known about the 
problem. For q = 2, it is recommended [3] that S be chosen 
in the interval /1 - (211)! ::; S ::; /1 + (211)!. The param
eters eps and maxit influence each other. For most applications 
it would seem that eps should not be too small-we often used 
10-1; 

comment 15. Summary of output after execution. After the execu
tion of SPLINECOEFF, the values of q,S provide information 
on the computation. If q = 0, I, 2, then computation pro
ceeded normally, and the desired coefficients are stored in array 
C. If q = 3 (see comment 9) interpolation instead of smooth
ing has been carried out (if the user insists on doing smoothing, 
S must be increased). If q = 4 (see comment 12) the program 
delivered the solution of problem (6) with the S returned in the 
output. (If the user insists on a solution of (6) with the pre
scribed S, then the problem can be rerun with a write statement 
providing the values of p and fin each iteration. Then an ap
propriate p can be estimated by interpolation and the program 
reentered with q = I.) If q = 5 (see comment 11), the user 
must either reduce S or consider doing a least squares fit. If 
q = 6, maxi! has been exceeded. If q = 7 (see comment 7), 
then the initial value of p prescribed for problem (5), i.e. q = l 
initially, is too small. The value of p can be increased or a least 
squares fit should be used; 

end SPLINECOEFF; 
real procedure SPLINED ER (v,X,l,C,111,11,arg); 

value v, I, m, 11, C, arg; 

integer v, I, m, 11; real arg; array X, C; 
comment 16. Given a splines of the form (l) with coefficients le, l1" 

SPLINED ER produces the value 5(vl(arg) of the vth derivative of 
s for the argument arg. 

s<v>(arg) is computed by evaluating certain local basis splines 
corresponding to degree 2m - v. The procedures MIDBAS/S 
and END BASIS are used here. Then s<vl(arg) is a linear combina
tion of these quantities with coefficients le;"> l ~-,,(see [2, Lemmas 
5.1 and 5.2]). The cf"> are computed from the c,'s by certain re
cursions, carried out by procedure CV below; 

comment 17. We note that s< 2111 -o is piecewise continuous with pos
sible discontinuities at the knots lxd1". The procedure always re
turns s( 2111- 1l(x1+) if called with arg = x,. a knot; 

comment 18. We describe the parameters of SPLl!vEDER. The in
tegers m and /1 and the array X[l :11] are as in procedure SPLINE
COEFF. The array C[l :11] is the output of SPLINECOEFF. The 
integer v must satisfy 0 ::; v ::; 2m -- 1. The real number arg and 
the integer I satisfy 1 ::; I ::; /1 - 1 and X[/] ::; arg < X[I + 1]; 

begin 
integer k; k : = m + m - v; 

begin 
array T, NIK[0:11],Z, QIK, PIK[O:k]; reals; 
integer i,}, il, i2, pvl, qv/, rvl, mv, lu, ll, 12; 
procedure CV(C, X, r, s, n, m, v); valuer, s, n, m, v; 
integer r, s, n, m, v; array C, X; 
comment 19. CV computes le/"> I:-,. It should be noted that 



COLLECTED ALGORITHMS (cont.) 

CV is a recursive procedure; 
begin 

integ1er j, rl, sl; 
if v ,= 0 then goto exit else if v ~ m thEm 
begin 

CV(C, X, r, s+l, n, m, v-1); 
for j : = r step 1 until s do 

C[j] : = if j ~ m - v then - C[j] 
else if j ~ n - m then 

end 
else 
begi111 

(C[j+ lJ-CUJ)/(X[m+jJ-X[j--m+v]) 
else C[j+ll 

r1 : = if r > 1 then r - 1 else 1 ; 
sl : = if s < n + v - 2 X m then s •~lse s - 1; 
CV(C, X, rt, sl, n, m, v-1); 
ifs = n + v - 2 X m then C[s] : = O; 
for j : = s step - 1 until r do 

C[j] := (C[jJ-CU-1])/(Xl/+2Xm-v]-X[j]) 
end; 

exit: 

vim: 

end CV; 
comment 20. The numbers pv/ and qvl give the range of c<vl's 

corre:sponding to nonzero basis elements in the expansion of 
s<vl(arg); 

if v < m then 
begin 

pv/ : = if/ < m then 1 else I - m + 1 ; 
qv/ : = if /1 < I + m then /1 - v else I + m - v; 

end 
else 
begin 

pv/ : = if I < k then 1 else I - k + I ; 
qvl : = if I < /1 - k then I else /1 - k; 

end; 
C[O] : =, O; 
CV(C, X, pvl, qvl, 11, m, v); 
s := O; 
if v < m then goto vim; 
for j : =: pvl step 1 until qvl + k do 

T[j] := abs(arg-X[j]); 
MID BASIS (k, I, n, T, XX, NIK); 
for j : == pvl step 1 until qvl do 

s := s + C[j] X NIK[jJ; 
goto exit; 

if I < k then 
begin 

for j : = 1 step I until I + k do 
T[j] : = abs(X[j]-arg); 

ENDBASIS (k, I, 11, T, XX, NIK); 
for j : = pvt step 1 until qvl do 

s:= s + Cfj]XNIK[j+m-1]; 
end else 
if I > n - k then 
begin 

for j : = 1 step 1 until n - I + k + 1 d.o 
T[.i] := abs(arg-X[n-j+l]); 

/1 :=:if arg > X[/] then n - I else /1 -- I + 1; 
ENDBASIS (k, 11, 11, T, XXR, NIK); 
for j : = pvl step 1 until qvl do 

s := s + C[j] X NIK[n+m-v-j]; 
end 
else 
begin 

for j : = I - k + 1 step 1 until I + k do 
T[j] := abs(X[j]-arg); 

MIDBASIS (k,l, n, T, XX, NIK); 
for j : = pv/ step 1 until qv/ do 

end; 
exit: 

s := s + CU] X NIK[i-k+ml; 

for i : = 1 step 1 until v do 
s := s X (m+m-i); 

splineder: = s 
end inner block 

end splineder; 
procedure MIDBASIS (k, I, n, T,XX, NIK); 

value k, I, n; integer k, I, 11; array T, XX, NIK; 

480-P 4- 0 

comment 21. This procedure implements case I of [2]. It computes 
the value of certain normalized B-splines N~ .k(arg) at an arg which 
enters indirectly through the array T via TU] == lx[i] - arg\. 
After execution NIK[j] contains N~.k(arg),j = max(l,1+1-k), 
... ,I; 

begin 
integer i,j, il, i2; 
NIK[/]:= 1; N/K[l+lJ := O; 
ii : = i2: =I; 
for i : = 2 step 1 until k do 
begin 

if i ~ I then 
begin 

il := i1 - 1; N/K[ll] := O; 
end; 
if /1 - i < I then i2 : = i2 - 1; 
for j : = il step 1 until i2 do 

end; 

NIK[j] : = T[j] X NIK[j]/XX[j, i-11 + T[i+jJ X 
NIKfJ+ 111xxu+1, i-11; 

end midbasis; 
procedure ENDBASIS (k, I, 11, T, XX, NIK); 

value k, I, n; integer k, I, n; array T, XX, NIK; 
comment 22. This procedure implements case II of [2] to compute 

the quantities (7.4) of [2J at an argument arg which enters through 
the array T as in comment 21; 

begin 
integer i,j, k 1, /I, /2; real tempi, temp2; 
array Q[O:k, -1: k+l]; 
kl:= k-1; 
for i : = 0 step 1 until k do 
for j : = J - 2 step 1 until I + i do 

Q[i,j] : = O; 
Q[l,/] := 1/XX[l, l]; Q[O, -1] := T[2]/XX[l, l); 
for i : = 2 step 1 until k do 
begin 

for j : = I step I until i 2 do 
begin 

tempi : = TU+ lj 
Q[i,j] := Q[i-2,j-2] + (templ+T[j]))<Q[i-2,j-lj + 
templ X tempi X Q[i-2,jJ; 

end; 
if i > I then 
begin 

tempi:= T[i]; temp2 :=tempi Xtempl/XX[l, i-1];· 
Q[i, i-lj := Q[i-2, i-3] + (templ+T[i-l]-temp2) X 
Q[i-2,i-2] + temp2XQ[i-2,i-1]; 

end; 
/ 1 : = if i > I then i else I; 
12 : = if I + i - 1 > /1 - 1 then /1 - 1 ,else I + i - 1; 
for j: = /1 step 1 until /2 do 

Q[i, j] : = (Tl/-i+ll X Q[i-1,j-lJ+TU+lJ X Q[i-1,j])/ 
XXU-i+ 1, i]; 

end i; 
if I > 1 then NI K[l - 1] : = 0; 
for j : = I step 1 until kl do 



COLLECTED ALGORITHMS (cont.) 

NIK[j] := Q[k,J]; 
12 : = if k + I - 1 > /1 - I then n - 1 else k + I - 1; 
for j: = k step 1 until /2 do 

NIK[j] := Q[k,J] X XX[j-k+l, k]; 
end ENDBASIS; 
procedure BAND ET (A, B, INT, n, m); · 

value 11, m; integer n, m; array A, B; integer array INT; 
comment 23. BANDET decomposes the 2m + 1 banded n X n 

matrix A in an upper triangular matrix A and a lower triangular 
matrix B u":ing Gaussian elimination with complete pivoting. De
tails of the interchanges are stored in the array INT. The arrays are 
dimensioned as follows A[l :11, -m:m], B[l :11, I :m], /NT[l :n]. 
For further details see [5]; 

begin 
integer i,J, k, I; real x; 
l := m; 
for i : = 1 step 1 until m do 
begin 

for j : = 1 - i step 1 until m do 
A[i,j-1] := A[i,j]; 

/:=/-1; 
for j : = m - l step 1 until m do 

A[i,JI : = O 
end i; 
I:= m; 
for k : = 1 step 1 until n do 
begin 

x := A[k, -ml; i := k; 
if I < n then I : = l + 1 ; 
for j : = k + 1 step I until l do 

if abs(A[j, -m]) >abs(x) then 
begin x := A[J, -ml; i := j end; 

INT[k] := i; 

if i ~ k then 
for j·: = -m step 1 until m do 
begin 

x ;= A(k,J]; A[k,JI : = A[i,j]; A[i,J] : = x 
end}; 
for i : = k + 1 step I until I do 
begin 

x :=Ali, -m]!A[k, -ml; B[k, i-k] := x; 
for j : = I - m step I until m do 

A[i,J-11 := A[i,j] - x X A(k,J]; 
A[i, m] := 0 

end i 
end k 

end BANDET; 
procedure BAN SOL (A, B, C, INT, 11,m); 

value n, m; integer n, m; array A, B, C; integer array INT; 
comment 24. The parameters A, B, INT, n, and m come from 

BANDET. BANSOL solves the system decomposed by BANDET 
with right-hand side C. The solution is returned in I C[i] l 1" (see 
[5]); 

begin 
integer i,j, k, I; real x; 
l := m; 
for k : == 1 step I until n do 
begin 

i := INT [k]; 
if i ~ k then 
beginx := C[kl; C[k] := C[il; C[i] := xend; 
if I < /1 then I : = I + 1 ; 
for i : = k + 1 step 1 until I do 

C[i] := C[i] - B[k, i - kl X C[k] 
end k; 
l := -m; 
for i : = n step - 1 until 1 do 

begin 
x := C[i];j := i + m; 
for k : = 1 - m step 1 until I do 

x := x - A[i, k] X C[k + j]; 
C[i] := x/A[i, -m]; 
if I < m then I : = I + 1 

end i 
end BANSOL; 

480-P 5- 0 

Acknowledgme11t. We wish to thank Harold Eidson for useful 
suggestions and for checking the algorithm. The referees were also 
very helpful. 

References 
1. de Boor, C. On calculating with 8-splines. J. Approx. Th. 6 
(1972), 50-62. 
2. Lyche, Tom, and Schumaker, Larry L. Computation of 
smoothing and interpolating natural splines via local bases. 
SIAM J. Numer. Anal. IO (1973), 1027-1038. 
3. Reinsch, C.H. Smoot ·.,g by splin1e functions. Numer. Math. 
10 (1967), 177-183. 
4. Reinsch, C.H. Smoothing by splin1:! functions, IL Numer. 
Math. 16 (1971), 451-454. 
5. Martin, R.S., and Wilkinson, J.H. Solution of symmetric and 
unsymmetric band equations and the calculation of eigenvectors 
of band matrices. Numer. Math. 9 (1967), 279-301. 
6. Woodford, C.H. An algorithm for data smoothing using spline 
functions. BIT JO (1971), 501-510. 



COLLECTED ALGORITHr\tlS FROM CACM 

Algorithm 481 

Arrow to Precedence l'retwork 
Transformation [H] 
Keith C. Crandall [Recd. 15 Jan. 1973] 
Department of Civil Engineering, University of Cali
fornia, Berkeley, CA 94 704 

Key Words and Phrases: critical path, networks, precedence 
networks 

CR Categories: 3.23, 5.40 
Language: Fortran 

Description 
Purpose. Many of the recent application programs in the area 

of critical path scheduling and resource allocation are written for 
the precedence networking convention [l, 2, 3]. Since only a few of 
these programs accept networks defined by the arrow· convention 
directly, a method of transforming arrow conven1lion networks into 
precedence convention is required. This algorithm generates the re
quired transformation by producing a list of followers for each non
dummy arrow activity. New labels are produced for each trans
formed activity and replace the (i - j) labels associated with arrow 
networks. (The new label is actually the activity input sequence 
value, but this can easily be modified to any desired notation by 
using the input sequence value as a subscript to any array contain
ing the desired notation.) 

The logic used in the transformation can also be utilized to 
produce a list of precedecessors if they are desirable. (This order is 
required by IBM [3] but is performed internally.) The role of arrays 
(II and JJ) would be reversed and the array (ILOC) would refer 
to (JJ) vice (//). 

Method. The values of the arrow (i - j) labels are utilized to 
trace the followers of a particular activity. Activities which have an 
(i) label corresponding to the (}) label of the activity under evalua
tion are logical followers. The major problems rest with the arrow 
DUMMY activities. These activities are not really followers but 
indicate instead addition nodes that precede log1ical followers. The 
transformation routine recursively traces all possible following 
nodes and determines the input sequence number of all logic 
followers. 

To perform this search with the minimum storage required the 
following procedure is utilized. First the arrays (II, JJ, NLOC) are 
filled by scanning the description of the arrow network and storing 
in input order the converted value of the (i) label into array (//); 
the converted value of the (j) label into array (JJ); and finally the 
array (NLOC) contains the input sequence .value. To aid in deter
mining which activities were dummies, the· last two arrays (JJ, 
NLOC) have their values set negative when the corresponding ac
tivity was a dummy. Since the minimization of storage was a goal, 
all incoming (i - }) labels were converted into a numerical sequence 
starting with one.The algorithm indicates the required modification 
if this is undesirable. (The actual conversion. method is described 
in the routine HASH.) Once the arrays are filled, the transformation 
routine can be called. 

Routine (TRNFRM) first sorts the array (//) into ascending 

481-P 1- 0 

order, maintaining the same correspondence of each element in 
array (NLOC). A sequential scan is then performed on the sorted 
array (II), and the array is overlayed by an array, (l'LOC), contain
ing pointers to the beginning of each different (i) value in the sorted 
array. That is element (1) of the new array points to the start of 
the value ( 1) in the sorted array; element ( 10) to the start of ( 10), 
and so forth. Finally the array (JJ) is scanned sequentially and the 
nonnegative values become subscripts to the pointer array (ILOC). 
This yields the beginning location and number of activities that 
had an (i) label equal to the current (j) value. The values stored in 
(NLOC) are the input sequence numbers of the followers. If the 
follower was a DUMMY, (NLOC) negative, a recursive search is 
performed for additional followers. 

Finally for each nonnegative entry in (JJ), the description is 
retrieved from the scratch tape and the activity and its followers are 
output. 

Test Results. Testing was performed by two additional programs 
which are also included in the algorithm listing in case they are 
desired. Routine (TEST) reads the arrow network filling the arrays 
(II, JJ, NLOC) as described. Routine (HASH) performs the re
quired conversion to the (i - j) labels during this process. 

Tests include networks with sequential dummies and other 
unusual conditions. In each case tried, the transformation was cor -
rect. The inefficiency of the bubble up sort could adversely affect 
very large networks and an alternative would be to pre-sort the 
arrow network and eliminate the sorting portion. The following 
table indicates execution time versus number of activities for tests 
run on a CDC 6400. 

Execution Times for Various Networks Tested 
Number of Execution 
activities 
16 
44 
177 
461 
677 

time in sec. 
0.42 
1.68 
2.08 
5.81 

10.76 

The routine does not test for logical errors in the arrow net
work such as loops, so these would be transformed without change 
into the precedence notation. 

References 
1. Fondahl, John W. A non-computer approach to the critical 
path method. Tech. Rep. No. 9, Dep. of Civil Engineering, 
Stanford U., Stanford, Calif., 1962. 
2. Baker, Wilson C. Spread and leveJ CPM. Tech. Rep. No. 56, 
Dep. of Civil Engineering, Stanford U., Stanford, Calit., 1967. 
3. IBM, Project Management System. Application description 
manual (H20-0210), 1968. 

Algorithm 
(Note: A sample driver is included to help clarify the use of 

this alg0rithm-L.D.F.) 
C THIS IS THE TEST PROGRAM FOR THE TRANSFORMATION ALGORITHM. 
C IT READS THE ARROW NETWORK DESCRIPTION AND ESTABLISHES 
C THE INPUT ARRAYS FOR THE ROVT!NE <TP.NFRM). 
C IT IS LIMITED TO 700 ACTIVITIES IN ARROW NOTATION. 
C THE ROUTINE <HASH> IS UTILIZED TO CREATE A SEQUENTIAL 
C NUMBERING. 
C THE ROUTINE CTRNFRM> CREATES THE ACTUAL TRANSFORMATION. 
C TAPE<2> -A BINARY SCRATCH TAPE <FILE> WITH ALL DATA TO 
C BE INCLUDED t;.1 ITH THE TRANSFORMED ACTIVITIES.NOTE- CHANGE 
C STMT 140 TO CORRESPOND WITH ACTUAL DATA STORED. 
C TAPE<4> -A BINARY SCRATCH TAPE FOR TRA~SFERING THE TRANS
C FORMED DATA BACK TO THE MAIN PROGRAM FOR PRINT OUT, OR ANY 
C OTHER USE. THE DATA IS IN THE FORM CI,M,FOLl WHERE I IS 



COLLECTED ALGORITHMS (cont.) 

C THE NEW ACTIVITY LABEL AND M IS THE NUMBER Of fOLLOVERS 
C AND FOL IS AN ARRAY CONTAINING THE LABELS Of THE M 
C FO:...LOW'ERS ••• 

INTEGE"l 11<700), JJ<700>, NLOC<700>, ACT<2>, DUMMY, 
* HASH, fOL<50> 

DATA DUMMY/SHDUMMY/, IBLNK/IH I 

C READ JN ARROW ACTIVITIES ACCORDING TO CURRENT FORMAT. 
99999 F0'."1.MAT C 1 Hl, l 3H IN!"l'T ORDER, 6X, SHLABEL SX, 4HDESC, 

* 71-!"1.IPTIQN, 12X, 3HDURl 
99998 FO"tMAT<2A4, 2Al0, 13, JX, I6l 
99997 FORMAT<Il4, 4X, A4, lH-, A4, 3X, 2Al0, 16l 
99996 FOR~ATClHl, 19HTRANSFORMED NETWORK//l4H LABEL DESCR, 

* 6J-iIPTION, 10X, 3HDUR, 3X, 9HFOLLO\i.'ERS> 
99995 FORMATClH, 17, 2X, 2Al0, 14> 
99994 FO"\MATClH+, 36X, 15I5/C37X, 1515)) 

WRITE C6,99999l 
NACT = 0 
NTAPE2 = 0 

10 READ CS,99998> I, J, ACT. IDUR 
C FORMAT C99998l VILL VARY FOR INDIVIDUAL NEEDS. 
C THE TEST FOR END OF DATA IS A BLANK CARD. 

IF CI.EQ.IBLNKl GO TO 30 
NACT = NACT + 1 

C LIST THE ARROW DATA fO"\ REFERENCE. 
!,;RITE C6,99997l NACT, I, J, ACT, IDUR 

C CONVERT THE ALPHANUMERIC I-J LABELS INTO SEQ!JENTIAL 
C NUMERIC. CROUTINE HASH PERFORMS THIS TASK. l 
C STORE THE CONVE"!TED LABELS IN THE AP.RAYS Cl! AND JJ), 
C NOTE. THE VALUE STORED IN ARRAY CJJ) IS ALSO SAVED AS 
C VARIABLE J TO ALLOV IT TO BE USED AT STMT 20 ~ITHOUT AN 
C ARRAY REFERENCE. 

IICNACTl = HASHC!l 
J = HASHC J l 
JJCNACTl = J 

C STORE THE INCOMING IN~UT SEQUENCE VALUE IN ARRAY <NLOC> 
NLOCCNACTl = NACT 

C EXAMPLE OF USEP. CREATED LABELING, SEE ALSO COMMENTS AFTER 
C STMT 140 IN ROUTINE TRNFP.M. 

LABLSCNACTl=CONCATENATION OF INPUT CI-Jl 
THE CONCATENATION IS PEP.FORMED IN ACCORDANCE VITH VALID 

C FORTRAN FOR THE COMPILER IN USE. 
C TEST FOP. A DUMMY ACTIVITY AS IT WILL NOT BE TRANSFORMED. 

IF CACTCll.EQ.DUMMYl GO TO 20 
C SAVE ON TAPE <2> ALL !NFORMATION RELATING TO THE ACTIVITY 
C JUS7 READ THAT IS TO BE ASSOCIA"'ED '-'ITH THE TRANSFORMED 

ACTIVITY.CFOP. THE EXAMPLES ONLY THE DESCRIPTION AND DUR 
ARE SAVED,ACTVAL USERS VILL HAVE INDIVIDUAL REQUIREMENTS> 

NTAPE2 = NTAPE2 + I 
'-'RITE C2l ACT, IDUR 
GO TO 10 

IF AN ACTIVITY WAS A DUMMY, SO NOTE BY SETTING THE 
C LOCATION AND JJ LABEL VECTORS NEGATIVE. 

20 NLOC<NACT> = -NACT 
JJ CNACT l = -J 

C RETURN FOR NEXT INP~T ACTIVITY. TRANSFER WILL BE MADE TO 
C STMT 30 WHEN LAST INPUT IS RECOGNIZED. 

GO TO 10 
30 RE'.J IND 2 

CALL THE TRANSFORMATION ROUTINE.,DESCP.IPTION Of INPUT 
C ARRAYS IS FOUND IN THE <TRNFRMl ROUTINE. 

CALL TRNFRMCNACT, II, JJ, NLOCl 
PRINT OUT THE TRANSFORMED N£TVORK ••• 

'-'RITE (6, 99996 l 
DO 40 N=l,NTAPE2 

C RECOVER THE REQUIRED DATA RELATING TO THE TRANSFORMED 
C ACTIVITY FROM TAPEC2l AND TAPE (4). 

~EAD C2l ACT, !DUR 
READ C4l I, M, FOL 
"'RITE C6,99995l I, ACT, !DUR 
IF CM.LE.0> GO TO 40 
~RITE (6,99994) CfOL<MMl,MM=l,M> 

421 COOT INUE 
STOP 
END 

IN·TEGER FUNCTION HASH<Nl 
C THIS ROUTINE CONVERTS THE ALPHANUMERIC ARROW LABELS INTO A 
C SEQUENTIAL N\JMEF!!C EQUIVALENT. THE MAXIMUM NUMBER Of 
C SEPARATE ACTIVITY LABELS IS 500 FOR THIS TEST PACKAGE· 
C THE ACTUAL INCOMING LABEL IS STOF!ED IN AP.RAY CHOLDl AND 
C THE SEQUENTIAL NUMERIC EQUIVALENT IS STORED IN AP.RAY 
C CSAIJEl 
C VARIABLE CN\JMl PROVIDES THE SEQUENTIAL NUMBERS. 

INTEGER llOLDC500J, SAVECS00l 
DATA NUM/0/, HOLD/500•0/ 

C USE A MODIFIED HASHING ROUTINE TO FIND AND ~TORE THE 
C EQUIVALENT VALUES· 
C NN IS A HASHED VALUE FOR THE IN?UT VARIABLE N. 
99999 FORMAT C34H EXCEEDED THE EVENT TABLE CAPAC ITYl 

N~ = MOD<IABS<Nl68719476736l.375) 
10 DO 20 I=NN,500 

C THE ARRAY <HOLD> IS EXAMINED STARTING IJITH THE HASHED 
C VALUE, IF THE ARRAY ELEMENT CONTAINS THE INPUT VARIABLE N, 
C TRANSFER IS MADE TO STMT 40 AND THE EQUIVALENT SEQUENTIAL 
c NUMBER rs RECALLED FROM ARRAY CSAVEl. IF THE ARRAY ELEMENT 
C CONTAINS A ZERO.TRANSFER IS MADE TO STMT 30 AND A 
C NUMERICAL 
C EQUIVALENT IS ASSIGNED. THE SEARCH Of <HOLD> CONTINUES 

C UNTIL AN OPEN ELEMENT IS FOUND •. • 
If CHOLD<Il.EQ.Nl GO TO 40 
IF CHOLDCIJ.EQ.0J GO TO 30 

20 CONTINUE 

481-P 2- 0 

C IF NO OPEN ELEMENT IJAS FOUND AND NN=l THERE ARE NO OPEN 
C ELEMENTS IN THE ENTIRE ARRAY. IF NN IS NOT EQUAL TO 1, SET 
C IT TO 1 AND SEARCH LOWER PART OF CHOLDJ,,. 

IF CNN.EQ.l l GO TO 60 
NN = 1 
GO TO 10 

FOUND A NEW LABEL-GIVE IT AN EQUIVALENT SEQUENTIAL NUMBER 
3 0 HOLD C I l = N 

NUM = NUM + 1 
!IJ/\L = NUM 
SAVECil = !VAL 

TRANSFER TO STMT 50 AND SAVE A REDUNDANT RECALL FROM 
<SAVE> 

GO TO 50 
40 !VAL= SAVEC!l 
50 HASH = IVAL 

RETURN 
AN ERROR MESSAGE IS GENERATED IF THE NUMBER OF EVENTS 
EXCEEDS THE DIMENSION ALLOIJED. 

60 WRITE C6,99999l 
STOP 
END 

SUBROUTINE TRNFRMCNACT, II, JJ, NLOC> 
CALL DATA IJAS STORED IN THE ARRAYS C!l-JJ-NLOCl BY THE 
C CALLING ROUTINE AND COMFORMS TO THE FOLLOVING DESCPIPTION 
C CNACTl -THE NUMBER OF ARROV ACTIVITIES INCLUDING DUMMIES. 
C CII> -AN ARRAY OF CONVERTED -I- LABELS STORED IN THE ARROW 
C NETWORK INPUT ORDER.REFER TO THE COMMENTS AFTER STMT 140 
C IF USER GERERATED LABELS ARE DESIRED.SEE ALSO COMMENTS IN 
C MA IN ROUTINE. 
C CJJl -AN ARRAY LIKE CIIl FOR -J- LABELS EXCEPT THAT THE 
C VALUE IS NEGATIVE FOR ALL DUMMY ACTIVITIES. 
C INLOCl -AN ARRAY INDICATING IN°\JT OP.DER.CA SEQUENTIAL LIST 
C SUCH THAT THE ABSOLUTE VALUES WOULD RANGE FPOM ONE TO NACT 
C > NOTE- THE VALUE STORED IN CNLOC> IS NEGATIVE ~HEN THE 
C CORRESPONDING ARROV ACTIVITY VAS A -DUMMY- · 
C TAPEC4l -A BINARY SCRATCH TAPE FOR TRANSFER!NG THE TRANS
C FORMED DATA BACK TO THE MAIN PROGRAM FOP PRINT OUT, OP ANY 
C OTHER USE. THE DATA IS IN THE FORM <I,M,FOLl VHEP.E I IS 
C THE NEIJ ACTIVITY LABEL AND M IS THE NUMBER OF FOLLOVERS 
C AND FOL IS AN ARRAY CONTAINING THE LABELS OF THE M 
C FOLL0\i.1ERS ••• 
C STORAGE FOR THE AP.RAYS IS ALSO SPECIFIED IN THE CALLING 
C PROGRAM. 

INTEGER I!Cll, JJCll, NLOC<ll 
INTEGER STACK<50l, FOLC50J 

C THE DIMENSION STAMENTS FOR CII-JJ-NLOC> MUST BE MODIFIED 
C FOR USE VITH SOME FORTRAN COMPILERS. 
C DIMENSIONS ON STACK AND FOL LIMIT THE NUMBEP Of FOLLOVING 
C ACTIVITIES TO 50. 
C STATEMENT FUNCTION TO PROVIDE OVERLAYING AP.RAY Clll VITH 
C ARRAY CILOCJ.REFER TO THE VARNING AFTER ST~T 30,IF A 
C SEPERATE ARRAY CILOCl IS UTILIZED THE STATEMENT FUNCTION 
C WOULD BE DELETED. 
99999 FORMATC41H THE fOLLOIJING ACTIVITY APPEARS TO HAVE M, 

* 22HORE THAN 50 fOLLOVERS l 
99998 f0RMATC41H SUSPECT THE FOLLOWING ACTIVITY IS INVOLV, 

* 41HED IN A NETWORK LOOP - CHECK INPUT DATA. /IS> 
ILOCC!l = IlCil 

REWIND TAPE 4 FOR TRANSFER OF TRANSFORMED DATA. 
P.E\i.' IND 4 

C PLACE THE ARRAYS CII-NLOCl IN ASENDING ORDER USING Clil 
C AS THE SORT VARIABLE. <THIS IS A BUBBLE UP SOP.T.l 

LIMIT = NACT - 1 
DO 20 M=l,LIMIT 

LL = M + 1 
DO 10 N=LL,NACT 

IF CI!CMJ.LE.IICNl> GO TJ 10 
I HOLD I I CNl 
I I CNl 
I I CM> 
I HOLD 

I I CM) 
!HOLD 
NLOC CN J 

N:...OCCNl NLOCCMl 
NLOCCMl IHOLD 

10 CONTINUE 
20 CONTINUE 

REPLACE THE ARRAY CIIl WITH AN INTEGER POINTER SUCH THAT 
C THE CK TH> ELEMENT OF THE POINTER POINTS TO THE FIRST 
C LOCATION IN THE SORTED ARRAY CI!> VHICH CONTAINS THE VALUE 
C <Kl.THE POINTER ARRAY VILL BE CALLED CILOCl SINCE IT 
C INDICATES THE BEGINNING OF SORTED ARROW NODES CAP.RAY Ill 
C AND THESE NODES ARE NORMALLY REFERRED TO AS CI> NODES. 
C THE VARIABLE CNl IS SET TO THE MINIMUM VALUE IN ARRAY <Ill 
C N IS ALSO A VARIABLE THAT INDICATES THE CURRENT VALUE 
C UNDER INVESTIGATION IN ARRAY C!I>. 
CL IS A POINTER TO THE AP.RAY CILOCJ,INDICATING THE LOCATION 
C Of THE NEXT ELEMENT.IN ADDITION~ ALSO INDICATES THE NEXT 
C SEQUENTIAL NUMBER,AND IS USED TO FIND THE END NODES.<NODES 
C WHERE THERE EXISTS NO -I- IN THE CI-J> 0 A1RS,AND THERE-
C FORE NO ENTRY IN THE SORTED <II> ARRAY •• ) 

N = 1 
L = 2 
DO 50 Io:2,NACT 



COLLECTED ALGORITHMS (cont.) 

IF <IIC!).EQ.N) GO TO 50 
N "' I I< I) 

30 IF <N.EQ.L) GO TO 40 
C THIS TEST FINDS THE REFERENCES TO THE END NODE WHICH WILL 
C NOT BE IN THE SORTED ARRAY OF <I> NODES. 
C WARNING -- ALTHOUGH INPUT ORDER IS NOT NORMALLY IMPORTANT 
C REFERENCE TO END NODES,THAT IS <l-J) PAIRS WITH -J- EQUAL 
C TO AN END NODE,SHOULD BE POSITIONED IN THE LATER PORTION 
C OF THE INPUT DATA.THIS RESTRICTION CAN BE ELIMINATED BY 
C USING A SEPARATE ARRAY FOR <ILOC>· 
C II<L> IS SET TO ZERO TO INDICATF. THAT NODE -L- IS AN END 
C NODE IN THE ARROW INPUT NETWORK· 

II<L> = 0 
L = L + 1 
GO TO 30 

C STORE THE SUBSCRIPT VALUE OF THE ARRAY <II> IN TO THE 
C OVERLAYED ARRAY <:LOG>· 

40 I I< L) = I 
L = L + 1 

50 CONTINUE 
C SET THE NEXT LOCATION OF THE POINTER TO CNE PAST THE LAST 
C ACTIVITY NUMBER. 

MAXLST = L - 1 
I I< L > = NACT + 1 

C FOR ALL NON DUMMY ACTIVITIES.TRANSFORM THE ARROW LOGIC 
C CONSTRAINTS INTO THE PRECEDENCE NOTATION BY GIVING THE 
C ACTIVITY A LABEL EQUAL TO ITS INPUT ORDER,THEN LIST ALL 
C TRANSFORMED FOLLO~ERS. 

DO 1 60 I= 1 , NACT 
L = 0 
M =' 0 

C L INDICATES THE LENGTH OF THE STACK AND M IS THE NUMBER OF 
C FOLLOWERS.rHE STACK IS USED TO RECURSIVELY TRACE ALL 
C DUMMIES TO FIND LOGICAL FOLLOWERS. 

N " JJ<I> 
IF N IS NEGATIVE THE ARROW ACTIVITY WAS A DUMMY. 

IF CN.LE.0l GO TO 160 
60 LOG = N 

IF :LOC.GT.MAXLST> GO TO 110 
C LOC HAS fl VALTJE EQUAL TO THE -J- LABEL OF' ACTIVITY l'NDER 
C TRANSFORMATION. ILOCR POINTS TO THE BEGINNING OF THAT SAME 
C VALUE IN THE SORTED ARRAY <II>.WHEN CLOC> EXCEEDS THE 

VALUE OF 1MAXLST> THE -J- LABEL ON THE ARROV NETWORK VAS 
THE END NOUE,THEREFORE THERE ARE NO FOLLOWERS. 

ILOCR = ILOC1LOC> 
IF CI..OCR.LE.0> GO TO 110 

C IF ILOCR IS NEG rq ZERO THE ACTIVITY HAS NO FOLLO~ERS. 

70 LOG = LOC + 1 
NN = ILOCCLOC> - ILOCR 

CNN INDICATES THE NUMBER OF ELEMENTS IN ARRAY <II> WITH THE 
C VALUE. 

IF <NN.LE.0l GO TO 70 
DO 100 LOOP=l,NN 

LOGS = NLOC<ILOCRJ 
XF <LOCS.EQ.0J GO TO 90 
IF <LOCS.GT.0> GO TO 80 

C LOCS NEGATIVE INDICATES A DUMMY AND THESE ARE HELD IN THE 
C STACK FOR LATER CONTINUED SEARCH OF FOLLOWERS. 

L = L + 1 
lF <L.GT.50> GO TO 130 
STACK<L> = -LOCS 
GO TO 90 

80 M = M + 1 
C A FOLLOWER HAS BEEN FOUND.ST"ORE IT IN THE ARRAY <FOL>. 

XF <M.GT.50) GO TO 120 
FOLCMJ = LOCS 

C INCREASE THE POINTER TO NEXT POTENTIAL FOLLOWER. 
90 1LOCR = ILOCR + 1 

100 CONTINUE 
110 IF <L.LE.0> GO TO 140 
IF CL> IS NON-ZERO.THERE ARE DUMMY LIN~AGES TO BE CONSIDER 
ED. <Nl WILL INDICATE FIRST OF THESE AND THE SEARCH FOR 
FOLLOWERS WILL CONTINUE. 

K STACK<L> 
N ·= I ABS < J J < K > ) 
L = L - 1 
GO TO 60 

ERROR MESSAGES IF DIMENSIONS EXCEEDED- L00° ASSUMED· 
120 WRITE (6,99999> 
130 WRITE (6,99998> I 
140 WRITE C4l I, M, FOL 

C IF USER LABELS ARE USED THEY WOULD BE RETRIEVED THUSLY --
C I = LABLSCIJ 
C DO 150 LOOP=l,M 
C !SUB = FOLCLOOP> 
C FOL<LOOP> = LABLS<ISUB> 
C 150 CONTINUE 
C WHERE LABLS WOULD BE AN ARRAY PASSED IN THE ARGUMENT LIST 

160 CONTINUE 
REWIND 4 
RETURN 
END 

481-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 482 

Transitivity Sets [G7] 
John McKay and E. Regener* [Recd. 21 May 1973] 
School of Computer Science, McGill University, Mon
treal, Quebec, Canada 

Key Words and Phrases: transitivity, sets 
CR Categories: 5.39 
Language: Algol 

Let P = IP1, P2, ... , Pk I be a set of k permutations on the set 
11 = 11, 2, ... , n). The transitivity set containing i (or orbit of i) 
under P is the set of images of i under the action of products of 
elements of P. This procedure computes these orbits. 

On entry, im[i,j] is assumed to contain the image of i under 
Pj, for i = 1, 2, ... , n andj = 1, 2, ... , k. The procedure numbers 
the orbits consecutively starting at 1. On exit ind[i] contains the 
number of the orbit to which i belongs. The orbits appear in order 
in orb[l :n]. In orb the first element of each orbit is tagged negative. 
If only one permutation is input, the array orb contains it (tagged) 
in disjoint cycle form on exit. 

The, algorithm, which involves no searching, is related to one 
for finding a spanning tree of a graph [I]. The set P need not, in 
general, generate a group--it is sufficient that it generate a semi
group on n. 

References 
1. Cannon, J. Ph.D. Th., Sydney U., Sydney, N.S.W., Australia, 
1969. 

Algorithm 
procedure orbits (ind, orb, im, 11, k); 

value 11, k; integer n, k; 
integer array ;,1d, orb, im; 

begin 

a: 

integer q, r, s, j, nt, ns, norb; 
for j : = 1 step I until n do indl/] : = O; 
norb := O; ns := 1; 
for r : = 1 step 1 until /1 do if ind[r] = 0 then 
begin 

norb : = norb + 1; ind[r] : = norb; 
nt : = ns; orb [ ns] : = - r; s : = r; 

ns: = ns + 1; 
for j : = 1 step 1 until k do 
begin 

q : = im[s,j]; 
if ind[q] = 0 then 
begin 

nt : = nt + 1; orb[nt] : = q; ind[q) : = norb 
end 

end; 
if ns ~ nt then 
begin s : = orb[ns]; go to a end 

end 
end 

* Now at Faculte de Musique, University de Montreal, Mon
treal, P.Q., Canada. 

482-P 1- 0 



COLL18:CTED ALGORITHMS FROM CACM 

Editors' noh~: Algorithm 483 described here is available 011 mag11etic 
tape from the Departmellf of Computer Science, U11iversity of 
Colorado, Boulder, CO 80302. The cost for the tape is $16.00 (U.S. 
and Canada) or $18.00 (elsewhere). ff' the user sends a small tape 
(wt. less than J lb.) the algorithm will be copied on it and retumed to 
him at a charge of$10.00 (U.S. only). All orders are to he prepaid 
with checks payable to ACM Algorithms. The algorithm is recorded 
as one file of BCD 80 character card images at 556 B.P.l., even 
parity, 011 seven track tape. We will supply algori.rhms at a density of 
800 B.P.l. if requested. Cards for algorithms are sequenced starting 
at JO and incremented by JO. The sequence member is right justUied in 
column 80. Although we will make every attempt to insure that the 
algorithm conforms to the description printed here, we cannot guaran
tee it, nor can we guarantee that the algorithm is correct.
L.D.F. and A.K.C. 

Algorithm 483 

Masked Three-Dimensional 
Plot Program with Rotations 
[J6] 
Steven L. Watkins [Recd. 26 March 1973] Applied 
Research Laboratories, The University of Texas at 
Austin, Austin, TX 78712 

Key Words and Phrases: plotting, three-dimensional plotting 
CR Categories: 4.41 
Language: Fortran 

Description 
PLOT3D will accept three-dimensional data in various forms, 

rotate it in three-space, and plot the projection of the resulting 
figure onto the x-y plane. Those lines or portions of lines which 
should be hidden by previous lines are masked. 

Each call to PLOT3D causes one line to be plotted. A line con
sists of a sequence of points in three-space which will be connected 
using linear interpolation between adjacent points. This sequence 
of points is specified by three sequences of real numbers, the x, y, 
and z components of each point. Each of these sequences of real 
numbers can be specified either as being equally spaced, and there
fore denoted by an initial value and an increment, or as being con
tained in a real array. There is no restriction that any of the three 
component sequences be either increasing or decreasing, and the 
number of points may change between successive calls. 

The masking technique used by PLOT3D is based on two 
premises: (1) lines in the foreground (positive z direction) are 
plotted before lines in the background; and (2) a line or portion of 
a line is masked (hidden) if it lies within the region bounded by 
previously plotted lines. Masking is then achieved by maintaining 
a visible maximum function and a visible minimum function. Those 
portions of each line falling within the region bounded by these 
functions are considered to be hidden. Any line which exceeds user 

483-P 1- 0 

Fig. 1. 

PHI 1lil = ;j'j.[, 'lff rp 

PH l - ~XJO , r1 1 iif : H 

.I' 

PHJ 1ss.u THETR 10,u l'Hl '[1,[' 

specified limits is truncated without the loss of the plotter origin. 
A call to PLO T3D before initiating a new figure can be used to 
simulate a line drawn at the bottom of the paper; therefore, only 
those portions of each line lying above all previous lines will be 
drawn. 

The data are transformed by a three-dimensional rotation de
termined by two user specified angles. PLO T3D assumes a right
hand coordinate system with x running the length of the paper, y 

running across the width, and z coming out of it. The figure is 
first rotated by an angle of e degrees clockwise about the x-axis. 
The resultant figure is then rotated by an angle of e5 degrees about 
its y-axis. The plotted figure is the projection of this final figure 
onto the x-y plane. Figure I demonstrates rotations about the 
vertical or y-axis, and Figure 2 demonstrates rotations about the 
horizontal or x-axis. Warning: Some rotations will alter the fore
ground/background relationships between the lines, and thus the 
order in which they should be plotted to avoid violating the first 
masking premise. 

As an option, the coordinates of the vertices of the figure and 



COLLECTED ALGORITHMS (cont.) 

the projection of these vertices onto the y = 0 plane of the figure 
will be returned in a user supplied array. This information can then 
be used to put a frame on the figure, as is done in the example 
program, or to connect the endpoints of each line, or to plot axes, 
etc. 

Crosshatched figures are easily obtained as is demonstrated by 
the example program which generated Figure 3. Some perspective 
can be achieved by modifying the data scaling parameters between 
successive calls. PLOT3D attempts to minimize plotter movement 
by beginning at the alternate end of successive lines. A more de
tailed description of the parameters is contained in the comments 
at the beginning of the program listing. 

This routine was developed at the Applied Research Labora
tories on their Control Data Corporation 3200 computer system. 
The following system routines were utilized: 

IROUND(X) returns the rounded integer value of its floating 
point· argument. 

IPLOT(IX, IY, J) moves the pen to the point (IX, IY) where: 
IX is the number of plotter increments along the length of the 

paper from the origin 
IY is the number of plotter increments across the width of 

the paper from the origin 
J is the pen status 

2 -lower pen before moving 
3 -raise pen before moving 
If J is negative, the origin will be reset at (IX, IY). 

Fig. 2. 

PHI 20.0 PHI - JS.CJ THETR 335.0 

-----. 
15 .[J THETA = -290 .O 

F'Hl 15.0 THETR = 245.0 

f'Hl = 15.[J Trl[TR 155.0 PHI = 15.0 THETA = 200.0 

483-P 2- 0 

Fig. 3. 

Algorithm 
(A sample driver has been included to illustrate the use of this 

algorithm- -L.D.F. and A.K.C.) 

THIS PROGRAM GENERATES AN EXAMPLE OF A CROSSHATCHED 
FIGl!RE. THAT rs. ONE FIGl!RE ~HOSE LINES RUN PARALLEL TO 
THE X-AXIS OVERLAYED BY ANOTHER FIGl!P.E WHOSE LINES f't'N 

C PARALLEL TO THE Z-AXIS. THE Fl"NCTION IS A PRODUCT TO TVO 
C SINC <I.E. SINFCX)/Xl FUNCTIONS. 

DIMENSION MASK<2000), VERTEXC16>, OUTBUFC61>, Z<61l 
FIRST FIGURE 
GENERATE DATA P.CNNING PARALLEL TO X-AXIS 

DO 20 NLINE=l,61 
EEAMV = SINC< 15.e•SINF<<3~NLINE-93>•e.e17453293>> 
DO llZ NPOINT=l,61 

Ol!TBUF<NPOINT> = 
BEAMV•SINCC7.5•SINF<<3•NP 3>•0.017453293>> + 

0.25 
10 CONTINUE 

C PLOT EACH LINE AS IT IS COMPUTED 
CALL PLOT3DC10, 0.0, Ol'TB':JF, 0.0, 0.t, 4.!i''• -0.1, 

* NLINE, 61, -45., -45., 5,.z, 3.0, 10.0, !'!ASK, 0l 
20 CONTINUE 

C SECOND FI Gl'RE 
C GENERATE ARRAY OF Z-COMPONENTS 

DO 30 NLI NE= l, 61 
Z<NLINE> = -IZ.l*CNLINE-1> 

30 CONTINlTE 
C GENERATE DATA RUNNING PARALLEL TO Z-AXIS 

DO 5e NLI NE= I. 6 I 
X = 0.l•<NLINE-1> 
EEAMV = SINC<7.5•SINF<<3•NLINE-93>•e.017453293>> 
DO 40 NPOINT=l,61 

OUTEl!F<NPOINT> = 
* BEAMV•SINCC15.0•SINF<<3•NPOINT-93>•e.017453293ll + 

* 0.25 
40 CONT I Nl'E 

C PLOT EACH LINE AS IT IS COMPl!TED 
CALL PLOT3DC1011, X, OUTBt.'F, z. 0.0, 4.0, 1.0, 
NLINE, 61, -45,, -45., 5.,~. 3.0, 10.0, MASK, VERTEX> 

50 CONTINUE 
C DRAW A FRAME ON THE FI Gl'PE 

CALL FRAMER<3, VERTEX, MASK) 
STOP 
END 

SUBROUTINE PLOT3D<IVXYZ, XDATA, YDATA, ZDATA, XSCALE, 
* YSCALE, ZSCALE, NLINE, NPNTS, PHI, THE'rA, XPEF, 
* YREF, XLENTH, MASK. VERTEX> 

C MASKED 3-DIMENSIONAL PLOT PROGRAM WITH ROTATIONS 
C THIS ROUTINE \..'ILL ACCEPT 3-DIMENSIONAL DATA IN VARIOUS 
C FORMS AS INPUT, ROTATE IT IN 3-SPACE TO ANY ANGL!':'. 
C AND PLOT THE PPOJECTION OF THE RESULTING FIGURE ONTO THE 
C XY PLANE· LINEAR INTERPOLATION IS LTSED EEn'EEN DATA 
C POINTS. THOSE LINES OF A FI GUP.E: VHI CH SHOL'LD EE HI ODEN EY 
C A PREVIOUS LINE ARE MASKED. 
C THE MASKING TECHNIQUE l'SED BY THIS ROUTINE IS EASED ON 
c n·o PREMISES -
C LINES IN THE FOP.EGROLND <POSITIVE Z CIPECTION> 
C ARE PLOTTED BEFORE LINES IN THE BACKGROUND. 
C A LINE OP. PORTION OF A LINE IS MASKED <HIDDEN> IF 
C IT LIES \.'ITHIN THE PEGION BOUNDED EY PP.E\TIOl'SLY 



COLLECTED ALGORITHMS (cont.) 

C PLOTTED LINES. 
C EACH CALL TO PLOT3D CAl'SES O!'JE LINE OF A FI Gl'PE TO EE 
C PLOTTED· 
C T\l'O PARAMETERS OF THE PLOTTEP. ARE SET :rn THE INITIAL CALL 
C FOR EACH FIGl'RE -
C CPIPI> IS THE NUMBER OF PLOTTER INCREMENTS PER INCH. 
C CNYPI > IS THE NUMEER OF INCREMENTS AVAILAELE ACROSS THE 
C VIDTH OF THE PAPER CY-DIRECTION>· 
C VHEN A NEW FIGURE IS INITIATED, THE PLOTTEP ORIGIN IS SET 
C AT THE BOTTOM OF THE PAPER EY PLOT3D AND SHQULD NOT EE 
C MOVED UNTIL THE FIGUF.E IS COMPLETED· 
C INPUT PARA~ETERS -
C CIVXYZ> IS A FOUR DIGIT DECIMAL INTEGER WHICH IS USED TO 
C SELECT VARIOUS INPl'T/OTTTPUT OPTIONS. THESE DIGITS. I!'J 
C DECREASING ORDER OF MAGNITUDE. VILL BE REFERFED TO AS V, 
C X. Y • AND Z:, 
C IF V .NE• 0. THE VERTICES OF T~:!: CURRENT F'IGl'RE ANC THEIR 
C PROJECTION ONTO THE Y=0 PLANE. WILL EE STORED IN A 16 
C ENTRY REAL ARRAY C VERTEX l • AND \..'I LL BE l'PDATED AS EACH 
C LINE IS PLOTTED· THESE COORDINATES ARE IN INCHES A."ID 
C RELATIVE TO THE CURRENT PLOTTER ORIGIN. THE X Y PAIPS 
C ARE ORDERED SO THAT THE FIRST PAIR COORESPONDS TO THE 
C FIRST POINT OF THE FIGURE. THE SECOND PAIR COOPESPONDS 
C TO THE LAST POINT OF THE FIRST LINE. AND 1'HE FOLLOY.'ING 
C PAIRS APE OP.DEPED IN A CIRCULAR FASHION. THE PAIRS ON THE 
C Y=0 PLANE OF THE FIGURE. THEN FOLLO\..' IN THE SAME ORDER· 
C IF V•0, THE VERTEX PARAMETER IS IGNORED. EUT SHOULD NOT 
C BE DELETED 
C IF X=0, THE X-COMPONENTS OF THIS LINE ARE ASSUMED TO BE 
C E~UALLY SPACED. AND ARE COMPUTED BY 
C XCil=XDATA+CI-1 >•XSCALE 
C WHERE CXDATAl IS THE INITIAL VALl!E IN INCHES AND CXSCALE> 
C IS THE SPACING BEn'EEN POINTS IN INCHES· IF X •NE. 0, THE 
C X-COMPONENTS OF THIS LINE APE READ FROM A.'\J AF.RAY AND 
C MODIFIED BY 
c 
c 
c 

XCil=XDATACil•XSCALE 
WHERE CXSCALEl IS A SCALE FACTOR. 
THE SAME RELATIONS HOLD FOR THEY-COMPONENTS. THAT rs. IF 

C Y•0 
C YCil•YDATA+CI-tl•YSCALE 
C AND IF Y .NE. 0 
C YCil=YDATACil•YSCALE 
C IF Z=0, THE Z-COMPONENTS OF THIS LINE ARE ALL:ASSl'MED TO 
C BE EQUAL. AND ARE COMPUTED BY 
C ZCil=ZDATA+CNLINE-ll•ZSCALE 
C WHERE CNLXNEl IS SOME INTEGER ASSOCIATED VITH THIS LINE· 
C IF Z .NE. 0, AGAIN WE HAVE 
C ZCil=ZDATACil•ZSCALE 
C \.:HEN CNLINEl IS EQUAL TO ONE. IT INDICATES THE BEGINNING 
C OF A NEW FIGURE. A CALL TO PLOT3D VITH <NLINEl EQUAL TO 
C ZERO BEFORE INITIATING A NE\." FIGURE SIMUL1~TES A LINE DRA\.'N 
C AT THE BOTTOM OF THE PAGE. THEREFORE ONLY THOSE PORTIO!'JS 
C OF A LINE LYING ABOVE ALL PREVIOUS LINES ICI LL BE PLOTTED. 
C ALL OTHER PARAMETERS ARE I GNOP.ED ON SUCH '~ CALL• 
C CNPNTSl IS THE NUMBER OF POINTS ON THIS LlNE, AND MAY EE 
C ALTERED FROM LINE TO LINE. 
C <PHil AND CTHETAl APE THE TY.10 ANGLES <IN DEGREES> l'SED TO 
C SPECIFY THE DESIRED· 3-DIMENSIO!'JAL ROTATION. THE FOLLOY.'ING 
C TWO DEFINIATIONS OF THESE ROTATIONS ARE EQUIUALENT -
C IN TERMS OF ROTATIONS OF AXES. THE INITIAL SYSTEM OF AXES. 
C XYZ, IS ROTATED BY A."l ANGLE <PHI l COUNTEPCLOCK\,'I SE ABOUT 
C THE Y-AXIS. AND THE RESULTANT SYSTEM IS L.ABELED THE TUV 
C AXES. THE TUV AXES ARE THEN ROTATED BY AN ANGLE CTHETA> 
C COUNTERCLOCKWISE ABOUT THE T-AXIS, AND THIS FINAL SYSTEM 
C IS LABELED THE PQR AXES. THE PLOTTED FI GUPE .IS THE 
C PROJECTION Of THE ORIGINAL FIGURE ONTO THE PQ-PLANE· 
C IN TERMS Of ROTATIONS OF COQPDINATES, THE FIGURE IS fIPST 
C ROTATED BY A."l ANGLE <THETA> CLOCK\.' I SE ABOUT THE X-AXI s. 
C THE RESULTA."lT FIGURE IS THEN ROTATED BY ~NANGLE CPHil 
C CLOCKWISE ABOUT ITS Y-AXIS. THE PLOTTED FIGURE IS THE 
C PROJECTION Of THIS FINAL FIGURE ONTO THE XY-PLANE. 
C WARNING. SOME ROTATIONS WILL ALTER THE FOREGROUND/ 
C BACKGROUND RELATIONSHIPS BETWEEN THE LINES. AND 
C THUS THE ORDER IN ~HIGH THEY SHOULD BE PLOTTED. 
C CXP.EF> AND CYREF> ARE THE COORDINATES, IN INCHES, 
C RELATIVE TO THE PLOTTER ORIGIN, TO EE USED AS THE OPIGIN 
C Of THE FI Gl'RE. 
C CXLENTH> IS THE LENGTH, IN INCHES. TO WHICH THE PLOT IS 
C RESTRICTED· ANY POINT \,'HIGH EXCEEDS THIS LIMIT, OP THE 
C LIMITS OF THE PAPER I!'J THEY DIRECTION CNYPI>, VILL BE 
C SET TO THAT LIMIT. 
C <MASK> IS AN INTEGER ARP.AY Of 2•XLENTH•PIPI ENT::'IES \..'HIGH 
C IS USED TO STORE THE MASK. THE CONTENTS OF THIS ARRAY 
C SHOULD NOT BE ALTERED DURING THE PLOTING Of ANY GIVEN 
C FIGURE. 
C ALL PARAMETERS EXCEPT C:1ASK> AND CVEPTEX> APE PETt'FNED 

l'NCHANGED· 
BEH'EEN ANY T•/O CALLS FOP THE SAME FI GlJF.E, ANY PAPAMETEP 
CAN BE MEANINGFULLY CHANGED EXCEPT <XLENTHJ, <MASK), AND 

C <VERTEX). 
INTEGER HIGH. OLDHI, OLDLO\c 
DIMENSION XDATA<t), YDATA< l >, ZDATA< l), MASK< l >, 

* VERTEXCll 
DATA INI"', JVXYZ, SPHI, STHETA/-1, -1, -1"1lE99, 

* -t.12JE99/ 
INITIALIZATION PROCEDURES 
IN! TIALIZATIOtl P!"OCEC'CRE FOR A NE\.' fl GUPE 

C TEST FOR SPECIAL MASK MODIFYING CALL 
IF CNLINE.EQ.e> GO TO 550 

DETEEMINE IF INITIALIZATION IS REQl'IF.ED 
I f < N LI NE • NE • l > G 0 TO 2 0 

C SET PLOTTER PARAMETERS 
PIPI 10e.e 
NYPI = 1090 

483-P 3-

C RESET PLOTTER ORIGIN TO BOTTOM Of PLOT PAGE 
I = NYPI + 100 
CALL IPLOTC0, -I, -3> 

C COMPUTE LENGTH OF PLOT PAGE IN INCREMENTS 
LIMITX • XLENTH•PIPI + 0.5 
I = LIMITX + LIMITX 

0 

INITIALIZE MASKING ARRAY OVER THE LENGTH Of iHE PLOT PAGE 
DO 10 K= t. I 

MASKCK> = INIT 
10 CONTINUE 

INIT = -I 
C SET THE NECESSARY INDICATORS FOR THE FIRST LINE OF A NE\,• 
C fl GURE 

INCI =-I 
I = 0 

C INPUT TYPE AND VERTEX INITI~IZATION 
C DETERMINE If INITIALIZATION IS REQUIRED 

20 IF CJVXYZ.EQ.IVXYZ> GO TO 70 
c SET INDICATORS FOR TYPES Of INPUT DATA AND SAVING vrnT'I CES 

JVXYZ = IVXYZ 
INDZ I 
INDY = I 
INDX = I 
INDV = I 
If <JVXYZ.LT• 1000> GO TO 30 
INDV = 2 
JVXYZ = JVXYZ - 1000 

30 IF CJVXYZ.LT. 100) GO TO 40 
INDX = 2 
JVXYZ = JVXYZ - 100 

40 IF CJVXYZ.LT.10) GO TO 50 
INDY = 2 
JVXYZ = JVXYZ - 10 

50 If CJVXYZ.LT· I> GO TO 60 
INDZ = 2 

60 JVXYZ = IVXYZ 
C ROTATION INITIALIZATION 
C DETERMINE IF INITIALIZATION IS REQUIRED 

70 IF CPHI.EQ.SPHI ·AND. THETA.EQ.STHETA> GO TO 80 
C COMPUTE ROTATION FACTORS 

SPHI = SINFC0.0174532925•PHil 
CPHI = COSF<0.0174532925•PHil 
STHETA = SINf<0.0174532925•THETA> 
CTHETA = COSF<0.0174532925•THETA) 
Al I CPHI 
A13 -SPHI 
A21 STHETA•SPHI 
A22 • CTHETA 
A23 = STHETA•CPHI 
SPHI = PHI 
STHETA = THETA 

C PROCESSING PROCEDURES 
C SET FLAG TO MOVE THROUGH THE DATA ARRAYS IN THE OPPOSITE 
C DIRECTION 

80 INCI = -INCI 
SET INDICATOR TO THE FIRST POINT TO BE PROCESSED 

If CI.NE.0> I= NPNTS +I 
C LOOP TO PROCESS EACH POINT IN THE DATA ARRAYS 

DO 530 K=t,NPNTS 
C DATA CALCULATION 

I = I + !NCI 
GO TO C90,t00), INDX 

90 X = XDATA + CI-l>•XSCALE 
GO TO 110 

100 X = XDATACI>•XSCALE 
110 GO TO C 120.130>, INDY 
120 Y = YDATA + CI-l>•YSCALE 

GO TO 140 
130 Y = YDATACI>•YSCALE 
140 GO TO <150.160), INDZ 
150 Z = ZDATA + CNLINE-l>•ZSCALE 

GO TO 170 
160 Z = ZDATA<I>•ZSCALE 

C DATA ROTATION 
170 XXX = All•X + A13•Z + XREF 

xx = xxx 
IX= IROUNDCXX•PIPI> 
YYY = A21•X + A23•Z + YREF 
YY = YYY + A22•Y 
IY = IROUNDCYY•PIPI> 

C RESTRICT FIGURE TO PLOT PAGE 
IF CIX.LE.0l IX = I 
IF CIX.GT.LIMITX> IX= LIMITX 
If CIY.LT.10) IY = 10 
IF CIY. GT.NYPI> IY = NYPI 
If CK.NE. I) GO TO 250 

C CLOG> IS THE POSITION OF THE PREVIOUS POINT \..'ITH RESPECT 
C TO THE MASK 
C +l ABOVE THE MASK 
C 0 WITHIN THE LIMITS OF THE MASK 
C -I BELOW THE MASK 
C PROCEDURE FOR INITIAL POINT Of EACH LINE 
C LOCATE INITIAL POINT WITH RESPECT TO THE MASK THEN 
C UPDATE THE MASK 

LO!,.' = IX + IX 
HIGH = LO \J - I 
MLOW = :1ASKCLOW> 
MHIGH = MASK<HIGH> 
IF <MHIGH-IY> 200, 210. 18e 

180 IF <MLO~'-IY> 190. 230, 220 
190 LOCOLD = 111 

GO TO 240 
200 MASKCHIGH> = IY 

IF CMLOV.EQ,-1) .MASK<LOV> IY 



COLLECTED ALGORITHMS (cont.) 

21e LOCOLD = +l 
GO TO 240 

220 , MASK<LOW> = IY 
230 LOCOLD = -1 

C MOVE THE RAISED PEN TO THIS INITIAL POINT 
240 CALL IPLOTCIX, IY, 3> 

JX = IX 
JY = IY 
!YREF = IY 

C STORE VERTICES IF REQUESTED 
IF <INDV.EQ.!l GO TO 530 
INDEX = INCI + 6 
VERTEX<INDEX> = XX 
VERTEX<INDEX+ll = YY 
VERTEX<INDEX+8l = XXX 
VERTEX<INDEX+9l = YYY 
I F < N LI NE , NE , 1 l GO TO 5 3 0 
VERTEXCll =XX 

. VEF.TEXC2l = YY 
VERTEX C 9 l = XXX 
VERTEX< 10> = YYY 
GO TO 530 

C SPECIAL CASE \..~ERE CHANGE IN X COORDINATE IS ZERO 
C A SPECIAL PROVISION IS MADE AT TH[S POINT SO THAT A LINE 
C VILL NOT MASK ITSELF AS LONG AS THE X COORDINATE REMAINS 
C CONSTANT 

250 IF <IX.NE.JX) GO TO 260 
JY = !Y 
GO TO 280 

C COMPUTE CONSTANTS FOP. LINEAR INTERPOLATION 
260 YINC = FLOAT<IY-JYJ/ABS<FLOAT<IX-JX>> 

INCX = CIX-JXl/IABS<IX-JY.) 
YJ = JY 

C PREFORM LINEAR INTERPJLATION AT EACH INCREMENTAL STEP ON 
C THE X AXIS 

270 JX JX + INCX 
YJ = YJ + YINC 
JY = IROL1ND<YJ> 

C LOCATE THE CURRENT POINT VITH RESPECT TO THE MASK AT THAT 
C POINT THEN PLOT THE INCREMENT AS A FUNCTION OF THE 
C LOCATION OF THE PREVIOUS POINT WITH RESPECT TO ITS MASK 

LOI.' = JX + JX 

280 
290 

C THE 
300 

c THE 
310 

THE 
320 

PLOT 
330 

c PLOT 
340 

c PLOT 
350 

c PLOT 
360 

C PLOT 
370 
380 
390 

400 

410 

420 
PLOT 
430 

c PLOT 
440 

c PLOT 
450 
460 
470 

480 

490 

500 
c PLOT 

510 

HIGH = LOW - 1 
MLOW = MASK<LOV> 
MHIGH = MASK<HIGH> 
IF <MHI GH-JY> 300, 300, 290 
IF CMLOl.'-JYl 310, 320, 320 

CURRENT POINT IS ABOVE THE MASK 
LDC = + 1 
IF CLOCOLDl 360, 370, 430 

CURRENT POINT IS WITHIN THE MASK 
LDC = 0 
IF <LOCOLDl 340, 350, 330 

CURRENT POINT IS BELOW THE MASK 
LO C = - 1 
IF <LOCOLD> 510, 450, 440 

FROM ABOVE THE MASK TO WITHIN THE MASK 
IF <MHIGH.LE.~YREF> CALL IPLOT<JX, MHIGH, 2> 
GO TO 350 

FROM BELOW THE MASK TO WITHIN THE MASK 
IF CMLQW.GE.IYREF> CALL IPLOT<JX, MLQW, 2> 

FROM WITHIN THE MASK TO WITHIN THE MASK 
CALL IPLOT<JX, ,JY, 3> 
GO TO 520 

FROM BELOW THE MASK TO ABOVE THE MASK 
IF <MLOI..'- IYREF> 370, 380, 380 

FROM WITHIN THE MASK TO ABOVE THE MASK 
IF <MHIGH-IYREf) 400, 390, 390 
CALL IPLOT<JX, MLOW, 2> 
CALL IPLOT<JX, MHIGH, 3> 
GO TO 430 
IF <MHIGH.EQ,-1) GO TO 430 
OLDHI = HIGH - 2•INCX 
IF <MASK< OLDHI > -JY) 420, 420, 410 
CALL IPLOT<JX, JY, 3> 
GO TO 430 
CALL IPLOT<JX-INCX, MASKCOLDHI>, 3> 

FROM ABOVE THE MASK TO ABOVE THE MASK 
MASK CHI GH> = JY 
IF <MLOW.EQ,-1) MASKCLOW> = JY 
CALL IPLOT<JX, JY, 2> 
GO TO 520 

FROM ABOVE THE MASK TO BELOW THE MASK 
IF CMHIGH-IYREF> 460, 460, 450 

FROM WITHIN THE MASK TO BELOW THE MASK 
IF C MLO W-1 YREF> 4 70, 4 70, 480 
CALL IPLOT<JX, MHIGH, 2> 
CALL IPLOT<JX, MLOW, 3> 
GO TO 510 
OLDLOW = LOW - 2•INCX 
IF CMASKCOLDLOl..1)-JY> 490, 500, 500 
CALL IPLOTCJX, JY, 3> 
GO TO 510 
CALL IPLOT<JX-INCX, MASK<OLDLOV>, 3> 

FROM BELOW THE MASK TO BELOW THE MASK 
MASKCLOI..') = JY 
CALL !'"'LO'!'<Ji-, JY, 2) 

520 IYREF = JY 
LOCOLD = LDC 
IF CJX.NE.!Xl GO TO 270 

530 CONTINL'E 
C RA! SE PEN 

CALL IPLOT<JX, JY, 3> 

C STORE VERTICES IF REQUESTED 
IF CINDV.EQ.1> GO TO 540 
INDEX = -!NCI + 6 
VERTEX<INDEX> = XX 
VERTEXCINDEX+ll YY 
VEP.TEXCINDEX+8) = XXX 
VERTEXCINDEX+9) = YYY 
IF CNLINE.NE. l> GO TO 540 
VERTEXC3> = XX 
VERTEXC4> = YY 
VERTEX C 1 I l XXX 
VERTEXC12l = YYY 

540 I = I - I 
C RETURN TO CALLING PF.OGRAM 

RETVRN 

483-P 4- 0 

C OPTION TO MODIFY THE MASKING TECHNIQUE TO EE l'SED ON THE 
C FOLLO'-'ING FIGl'RE SO AS TO PLOT JNLY A50VE ALL PP.E\.'IOl'S 
C LINES. 

550 !NIT = 0 
RETL1RN 
END 

SUBROUTINE FRA~ERCIHCOR, VERTEX, MASK> 
C ROUTINE TO PLOT A FP.AME ON THE PROJECTION OF A 
C 3-DIMENSIONAL FIGVRE AS DP.AVN BY PLOT3D. 
C INPUT PARAMETERS -
C IHCOR NUMBER OF THE VERTEX OF THE FIGURE WHICH 
C APPEARS TO BE FURTHEST IN THE BACKGROUND 
C CMINl'S l DIRECTION>. 
C VERTEX ARRAY CONTAINING THE COORDINATES OF THE 
C VERTICES OF THIS FIGURE AS RETURNED FROM 
C PLOT3D ON THE LAST CALL· 
C MASK ARRAY CONTAINING THE MASK FOR THIS FIGVRE 
C AS RETl'RNED BY PLOT3D ON THE LAST CALL. 
C THE VERTICES OF THE FRAME ARE NUMBERED < 1-4> IN THE SAME 
CORDER AS THEIR COORDINATES APPEAR IN VERTEX. 
C THE MASK ARRAY IS ALTERED BY THJS ROUTINE, 
C BUT THE PLOTTER ORIGIN IS NOT MOVED· 

DIMENSION VERTEX< 1 >, MASK< I), ARRAY< l 4> 
I = 2•IHCOR 
IF CI.LT.2> I = 2 
IF CI.GT.8> I = 8 

THE VERTICES WHICH MAY BE HIDDE~J 

ARE DRAl..N BY A CALL TO PLOT3D. 
ARRAYCl> VERTEX< I-I> 
ARRAY<8> VERTEX< I> 
ARRAYC2> VERTEX<!+?) 
ARRAYC9> VERTEX<I+8l 
ARRAYC4) ARRAYC2) 
ARRAYCll) = ARRAYC9l 
ARRAYC6> = ARRAY<2> 
ARRAYC13> = ARP.AY(9) 
ARRAY<?> =ARRAY< ll 
ARRAYC14l = ARRAYC8l 
I = I - 2 
IF CI.EQ,0> I = 8 
ARRAYC3> = VEP.TEXCI+7) 
ARRAYCl0> = VERTEXCI+8l 
I = I + 4 
IF CI.GT.8> I = I - 8 
ARRAYC5) = VERTEXCl+?l 
ARRAYCl2> = VERTEXCI+8> 
CALL PLOT3DCl10, ARRAY, ARR~.YC8), 0.0, 1.0, 1.0, 0.0, 

* 2, 7, 0.0, 0.0, 0.0, 0.0, 0.0, MASK, 0> 
THE REMAINING VERTICES ARE DRAWN BY CALLS TO PLOT. 

CALL PLOTCVERTEXCI-1), VERTEXCI>, 3> 
I = I - 2 
DO l 0 J= 1, 3 

I = I + 2 
IF (J,EQ.10> I = 2 
CALL PLOTCVEP.TEX<I+?), VERTEXCI+SJ, 2) 

10 CONTINUE 
CALL PLOT<VEP.TEXCI-1>. VEP.TEY.CI>. 2> 
I = I - 2 
IF CJ.EQ,0> I = 8 
CALL PLOT<VERTEX<I-1>, VERTEX<!>, 3> 
CALL PLOTCVERTEXCI+7), VERTEXCI+8>, 2> 
RETURN 
END 



COLLECTED ALGORITHMS (cont.) 

ACM Transactions on Mathematical Software, Vol. 1, No. 3, September 1975. 

REMARK ON ALGORITHM 483 

Masked Three-Dimensional Plot Program with Rotations [J6] 
[S. L. Watkins, Comm. ACM 17, 9 (Sept. 1974), 520-523] 

Robert Feinstein [Recd ~28 April 1975] 
The Marine Biomedical Institute, The University of Texas Medical Branch at 
Galveston, 200 University Boulevard, Galveston, TX 77550 

In the sample main program of Algorithm 483, line 13 should read: 

* BEAMV*SINC(7.5*SINF( (3*NPOINT--93) *0.017453293)) + 
Further, the algorithm docs not define -subroutine PLOT which is called by 
FRAMER. Whereas IPLOT accepts coordinates in increments, PLOT accepts 
coordinates in in_phes. 

I have modified this algorithm to run on a PDP 11/45-GOULD 5000 and would 
be happy to supply a listing to anyone who desires it. 

483-P 5- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 484 

Evaluation of the Modified 
Bessel Functions Ko(z) and 
Ki(z) for Complex Arguments 
[SI 7] 
Keith H. Burrell [Recd. 30 Mar. 1972] California Insti
tute of Technology, Pasadena, CA 91109 

Work supported by the Atomic Energy Commission under 
contract AT(04-3)767. 

Key Words and Phrases: Bessel functions, Hankel functions, 
modified Bessel functions, Gauss- Hermite quadrature 

CR Categories : 5.12 
Language: Fortran 

Description 
fllfroduction. This procedure evaluates the real and imaginary 

parts of the modified Bessel functions Ku(z) and K1(z) for values 
of the complex argument z = x + iy in the half plane x ~ 0. (The 
notation Kn(z) is fairly standard; the exact definition of the func
tion is given in [I]). 

Methods for the published algorithm. Many previous methods 
of calculating these functions have simply used the series expansion 
for arguments z of small magnitude (i.e. I z I ~ 11) and the asymp
totic expansion for larger arguments. Rewriting eqs. 9.6.11 and 
9.7.2 of [1] in a form more suitable for recursive computation, the 
series expansion may be expressed as 

Ko(z) = L t 0;(z)(z/2)2i/(j!)2 
j~O 

1/z - z/2L f1J(z)(z/2)2i /(}!)2, 
j~O 

/no -(ln(z/2) + y), 
fo(}-1) + 1/i, j > 0, 
[lo;+ 1/(2) + 2)]/(j + 1), j ~ 0, 

(I) 

(2) 

where y = 0.577 ... is Euler's constant; the asymptotic expansion 

Editors' note: Algorithm 484 described here is available on magnetic 
tape from the Department of Computer Science, University of 
Colorado, Boulder, CO 80302. The cost for the tape is $16.00 (U.S. 
and Canada) or $18.00 (elsewhere). ff the user sends a small tape 
(wt. less than 1 lb.) the algorithm will be copied 011 it and returned to 
him at a charge of $10.00 (U.S. only). All orders are to be prepaid 
with checks payable to ACM Algorithms. The algorithm is recorded 
as one file of BCD 80 character card images at 556 B.P.l., even 
parity, 011 seven track tape. We will supply algorithms at a density of 
800 B.P.l. if requested. Cards for algorithms are sequenced starting 
at JO and incremented by JO. The sequence number is rif.(ht justified in 
column 80. Although we will make every attempt to insure that the 
algorithm conforms to the description printed here, we cannot guaran
tee it, nor can we guarantee that the algorithm is correct.-L.D.F. 
and A.K.C. 

484-P 1- 0 

may be written as 

Kn(z) ~ (iz) 
· e-•[ano + Gni/ 1 !(8z) + a.~2/2 !(8z) 2 + ana/3 !(8z)3 + · · · ] 

ko = -1, k; = k1-i -8), 

Goo = 1, ao; = (ki - 4)ao( ;-1J, 

Gto 1, a1j = kjGt(j-1)· 

Methods based solely on these expansions tend to be ineffi
cient because of the large number of terms in the series that must 
be evaluated when I z I gets as large as 10. Further, they are of 
limited accuracy due to the loss of significant digits in summing 
the series when y « x and x ,(, 5. To overcome these difficulties, 
the integral representation developed by Hunter [2] can be used. 

K,.(z) = ,/7r['/(r(n+!)(2z)n) 1:00 

e-- 12t 2"(2z+12)n-~ dt, 
(3) 

I arg z I < 7T'. 

Hunter suggests evaluation of this integral by means of the trape
zoidal rule, which is well suited to integrands of this type, but one 
can achieve equivalent accuracy with fewer evaluations of the 
integrand by using Gauss-Hermite quadrature [3]. 

To have a fast, accurate algorithm, the functions must be 
evaluated by different methods in different regions of the complex 
plane. Owing to the singularity at the origin for Kn(z), only the 
series expansions will be useful near z = 0. For moderate values of 
I z I, the integral representations will be the most useful, while for 
I z I large, calculation of the asymptotic expansions will be faster 
than that of the integrnl. To decide exactly where each method 
should be used and how good the resulting algorithm is, one must 
be able to assess th~ speed and accuracy of each method. This 
could be done from first principles; but since close estimates of the 
error tend to involve considerable mathematical labor, I thought 
it easier to write a test algorithm which, although very slow, would 
evaluate Ku(z) and K1 (z) quite accurately. 

Test algorithm. For I z I < 3, the test algorithm uses the series 
expansions; otherwise, the integral representation in eq. (3) is 
evaluated using the trapezoidal rule. To find the error in this 
algorithm, consider first the truncation error caused by stopping 
after 11 terms of the series in eqs. (1) and (2). 

Using the integral representation (eq. 9.6.17 in [I]) 

K 0(z) = -l/7r L" d0e'c'"8 [y +In (2z sin20)] 

and the identities 

Ko'(z) = -K1(z) and 
n-1 I 

e' = 'L zm;mi + zn/(n-oi f d10--fr·-1e1
• 

m=O Jo 
it is easy to show that 

n-1 

K0(z) = L fo;(z)(z/2) 2i/(j!) 2 + Tun(z) and 
j-0 

n-1 

K1 (z) 1/z - z/2 L f1;(z)(z/2) 2i /(i!)2 + T1n(z) where 
i-0 

I .. 

- z2n / ( 7r(2n- 1) !) 1 dt(l - f )2n-1 i dOetz.,osD 

( y +In (2z sin2 0)) 



COLLECTED ALGORITHMS (cont.) 

I 11" 

T1n(z) = z2n+l/(7r(211+l)!) f dt(l-t)211-H f dOetzco,9 

0 0 

· (1 + (2n+2+zt cos O)(J+ln (2z sin2 0)). 

At least four terms in each sum are taken by the test algorithm, 
thus 

IT (z) I < yl"i_ e" It (z) ~2'{3)-::'. I ''Y + ln(2z) I + ln4 
0

" - 2 on (11!) 2 I to,.(z) I 

..;; I (z/2)2n+t I I T1,.(z) I S -
2
- ex t1,.(z) 0z!)"2 

(I z 1+211+2)(1 'Y+ln(2z) l+ln4)+1 

2(n+l) I to,.(z)+l/(211) I 
Evaluation <:ontinues in the test program until I t 0,.(z)(z/2)2"(n!)-2/ 

Ko(z) I < 10-17 and I t1,.(z)(z/2)2n+l(11!)-2/K1(z) I < 10-17 , Thus, 
defining 8o(z) and 81(z) to be the absolute values of the relative 
errors in the computation of Ko (z) and K1 (z), we obtain the limits 
8o(z) S 1.115 X 10-1• and 81 (z) s 1.278 X 10- 1•. 

The errors in evaluating eq. (3) by the trapezoidal rule have 
been analyzed by Hunter [2]. Expressing the trapezoidal rule as 

i oo [1 00 J 1 F(t) dt 0= h -F(O) + L F(rh) - - E(h) 
2 r~t 2 

(4) 

he obtains bounds for Eu(z, h) and E1(z, h), the errors in Ku(z) and 
K1(z), respectively. The test algorithm uses h = 0.25. For this, 
Hunter's formulas yield I Eo(z, h) I s 3.047 X 10-18 and I E1(z, h) I 
s 4.008 x 10-18. 

By taking 32 terms in the sum in eq. (4), the truncation error 
can be made much smaller than the E,.(z, h), so that 8 0(z) s 4.236 X 
10-18 and 81 (z) s 5.435 X 10-11 • (Round-off error is not a problem 
for the test algorithm. The series is not subject to it for I z I s 3.0, 
and all the terms in the sum in eq. (4) have the same sign.) 

Results of testing. The goal was to make the published algorithm 
accurate to a few parts in 1010 . On this scale, the test algorithm 
can be viewed as exact, at least for purposes of computing the 
modulus of the relative errors. Using the test algorithm, the pub
lished algorithm was found to be most efficient if the series are 
used for I z I < 4.3; the integrals in eq. (3), evaluated with 15 point 
Gauss-Hermite quadrature, are used for 4.3 _::::; I z I s 14.0; and 
the asymptotic expansions are used otherwise. 

During the check runs to find these points of division, it was 
noticed that the number of terms needed in the series could be 
predicted approximately by two simple functions of I z I. With this 
in mind, the error expression for the asymptotic expansions (eq. 
9.7.2 in [l]) was used to generate a similar function for these ex
pansions. By predicting the number of terms needed, instead of 
making convergence tests in the loops that sum the expansions, an 
appreciable reduction in the number of computations can be 
achieved. This amounts to a 30 percent saving, for example, for 
the series expansions. 

The most extensive test runs were done for z = pe•<P having 
the values </> = 0°(5°)90° and p = 0.1, 0.5(0.5) 120.0. Another 
test run with p = 0.1, 0.5(0.5)30.0 verified that 

by checking the values </> = -90°(5°)90°. A!ll tests were made 
using double precision arithmetic on an IBM 370/155. They showed 
that 

8o(z) S 3.55 X 10-10 and 
81(z) S 3.93 X 10-10 • 

Finally, it should be noted that the algoritlhm actually returns 
the values of exKo(z) and e"Kh). For I z I large, I K,,(z) I --..., 
e-x ( 7r /2 I z I)~ so that such a return expands th1~ range of I z \ over 
which this procedure may be used. 

484-P 2- 0 

References 
1. Abramowitz, M., and Stegun, I.A. (Eds.) Handbook of Mathe
matical Functions. Applied Math. Series 55, National Bureau of 
Standards, U.S. Gov. Print. Off., Washington, D.C., 1964. 
2. Hunter, D.B. The calculation of certain Bessel functions. 
Math. Comp. 18 (1964), 123-128. 
3. Salzer, H.E., Zucker, R., Capuano, R. Tables of the zeros 
and weight factors of the first twenty Hermite polynomials. J. 
Res. Nat. Bur. Standards 48 (1952), 111-116. 

Algorithm 

SUBROUTINE KZ.EONE<X, y, RE0, IM0, "lEI, !Mil 
C THE VARIABLES X AND Y ARE THE REAL AND IMAGINARY PAP.TS OF 
C THE ARGUMENT OF THE FIRST TWO MODIFIED BESSEL FUNCTIONS 
C OF THE SECOND KIND,K0 AND Kl. RE0, IM0,REI AND !Ml GIVE 
C THE REAL AND IMAGINARY PARTS OF EXPCXl•K0 AND EXP<Xl•Kl, 
C RESPECTIVELY. ALTHOUGH THE REAL NOTATION USED IN THIS 
C SUBROUTINE MAY SEEM INELEGANT WHEN COMPARED WITH THE 
C COMPLEX NOTATION THAT FORTRAN ALLO\..'S, THIS VERSION '"HINS 
C ABOUT 30 PERCENT FASTER THAN ONE WRITTEN USING COM?LEY 
C VARIABLES. 

DOUBLE PRECISION X, Y, X2, Y2, RE0, IM0, REI, !Ml, 
*RI, R2, Tl, T2, Pl, P2, RTERM, !TERM, EXSQC8J, TSQC8l 

DATA TSQCll /0.2JD0/, TSQC2l /3.1930363:l920635D-l/, 
* TSQC3l /l.29075862295915D0/, TSQC4l 
* /2.95837445869665D0/, TSQC5l /5.40903159724444D2J/, 
* TSQC6l /8.80407957805676D0/, TSQC7l 
*/I .34685357432515Dl/, TSQC8l /2.02499163658709Dl/, 
* EXSQCll /0.564100308726400/, EXSQC2l 
* /0.4120286874989D0/, EXSQC3l /0.1584889157959D0/, 
* EXSQC4l /0.3078003387255D-l/, EXSQC5l 
* /0.2778068842913D-2/, EXSQC6l /0.1000044412325D-3/, 
* EXSQC7) /0.1059115547711D-5/, EXSQC8l 
* /0.1522475804254D-8/ 

C THE ARRAYS TSQ AND EXSQ CONTAIN THE SQUARE OF THE 
C ABSCISSAS AND THE WEIGHT FACTORS USED IN THE GAUSS
C HERMITE QUADRATURE. 

R2 = X•X + Y•Y 
IF CX.GT.0.0D0 ,QR. R2.NE.0.0D0l GO TO 10 
WRITE <6,99999) 
RETURN 

10 IF <R2.GE.l.96D2l GO TO 50 
IF <R2.GE. l .849Dl l GO TO 30 

C THIS SSCTION CALCULATES THE FUNCTIONS USING THE SERIES 
C EXPANSIONS 

X2 X/2.0D0 
Y2 Y/2.0D0 
Pl = X2•X2 
P2 = Y2•Y2 
Tl = -<DLOG<Pl+P2l/2.0D0+0.5772156649015329D0l 

C THE CONSTANT IN THE PRECEDING STATEMENT IS EULEP•S 
C CONSTANT 

T2 = -DATAN2CY,Xl 
X2 = PI - P2 
Y2 = X•Y2 
RTERM = I • 0D0 
!TERM = 0.0D0 
RE0 = Tl 
I M0 = T2 
T I = T I + 0 • 5 D0 
REI = TI 
IMI = T2 
P2 = DSQRT<R2> 
L = 2.106D0•P2 + 4.4D0 
IF CP2.LT.8,filD-ll L = 2.129D0•P2 + 4.0D0 
DO 20 N=l,L 

PI = N 
P2 = N•N 
RI = RTERM 
RTERM = CRl•X2-ITERM•Y2l/P2 
!TERM = <Rl•Y~+ITERM•X2l/P2 
Tl = Tl + 0.5D0/Pl 
RE0 = RE0 + Tl•RTERM - T2•ITERM 
IM0 = IM0 + Tl•ITERM + T2•RTERM 
PI = PI + I • 0D0 
Tl = Tl + 0.5D0/Pl 
REI =REI + CTl•RTERM-T2•ITERMl/Pl 
IMI = IMI + CTl•ITERM+T2•RTERMl/Pl 

20 CONTINUE 
RI = X/R2 - 0.5D0•<X•REl-Y•1Mll 
R2 = -Y/R2 - 0.5D0•<X•IMl+Y•REll 
Pl = DEXPCXl 
RE0 Pl•RE0 
IM0 = Pl•IM0 
REI = Pl•Rl 
I Ml = PI •R2 
RETURN 

C THIS SECTION CALCULATES THE FUNCTIONS USING THE INTEGRAL 
C REPRESENTATION, EQN 3, EVALUATED WITH 15 POINT GAUSS-
C HERMITE QUADRATURE 

30 X2 2.0D0•X 
Y2 2.0D0•Y 
RI Y2•Y2 
Pl DSQRT<X2•X2+Rl > 
P2 DSQRTCPl+X2l 
TI EXSQ <I l/ <2 .0D0•Pl l 



COLLECTED ALGORITHMS (cont.) 

RE0 Tl•P2 
IM0 Tl/P2 
RE.I 0.000 
IM] 0.000 
DO• 40 N=2,8 

T2 X2 + TSQCN> 
Pl = DSQRTCT2•T2+Rl > 
P2 = OSQRTCPl+T2> 
Tl = EXSQCN>/Pl 
RE0 = RE0 + Tl•P2 
IM0 = IM0 + Tl/P2 
Tl = EXSQCN>*TSQCNl 
RE 1 = RE I + T 1 *P2 
lMI : IMl + Tl/P2 

40 CONTINUE 
T2; = -Y2*IM0 
REI = RE1/R2 
R2 = Y2*IMl/R2 
RTERM = l.4142135623730900*DCOS<Y> 
tTERM = -1.4142135623730900•DSIN<Y> 

THE COD-JSTANT IN THE PREVIOUS STATEMENTS IS,Of COURSE, 
SQRT<2•0>. 

!M0 = RE0•ITERM + T2•RTERM 
RE0 = RE0•RTERM - T2•ITERM 

. Tl = REl•RTERM - R2•ITERM 
T2 = REl*ITERM + R2•P.TERM 
P.El = Tl•X + T2•Y 
IM! = -Tl•Y + T2•X 
RETUP.N 

THIS SECTION CALCULATES THE FUNCTIONS USING THE 
ASYMPTOTIC EXPANSIONS 

50 RTlRM = 1 .000 
!TERM = 0.000 
RE0 l • 000 
'IM0 0.0.Q.0 

RE 1 = 1 • 000 
IM 1 = 0. 000 
P 1 = 8. 000•R2 
?2 = DSQRT <R2 > 
L = 3.91D0+8.12Dl/P2 
RI = l. 000 
R2 = 1.000 
~1 = - 8 
K = 3 
DO 60 N=l,L 

M = M + 8 
K = K - M 
RI fLOATCK-4l•Rl 
R2 = fLOAT<K>•R2 
Tl = fLOATCN>•Pl 
T2 = RTERM 
RTERM = CT2•X+ITERM•Yl/Tl 
!TERM= C-T2•Y+ITERM•Xl/Tl 
RE0 RE3 + Rl•RTERM 
IM0 ~ IM0 + Rl•ITERM 
REI = P.El + R2•RTEP.M 
IMl = !Ml + R2•ITERM 

60 CONT!Nl.:E 
Tl = DSQRTCP2+X> 
T2 = -Y/Tl 
?l = 8.862269254527580-1/?2 

C THIS CONSTANT IS SQRTCPil/2.0, '-'ITH PI=J.14159 ... 
RTERM = Pl•DCOSCY> 
!TERM = -Pl•DSINCY> 
R l = RE0•RTERM - !M0• !TERM 
R2 = RE0•ITERM + IM0•RTEPM 
RE0 = Tl •RI - T2•P2 
IM0 = Tl•R2 + T2•Rl 
RI = RE!•RTERM - !Ml•!TERM 
R2 = REI•ITEP.M + !Ml•P.TERM 
REI= Tl•Rl - T2•R2 
IMI = Tl•R2 + T2•Rl 
RETURN 

99999 FOR:>!AT C42H ARGUMENT OF THE BESSEL FUNCTIONS IS ZERO, 
* 35H OR LIES HJ LEFT HALF COMPLEX PLA~JE> 

END 

484-P 3- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 485 

Computation of g-Splines via a 
Factorization Method [E2] 
Harold D. Eidson and Larry L. Schumaker !Recd. 19 
Oct. 1972] Department of Mathematics and Center for 
Numerical Analysis, University of Texas, Austin, TX 
78712 

This work was supported in part by AFOSR-69-1812-C. 

Key Words and Phrases: approximation, spline approximation 
CR Categories: 5.13 
Language: Fortran 

Abstract 

Fortran subroutines are presented for the purpose of computing 
and evaluating K-splines interpolating Hermite-Sirkoff data. The 
subroutines are based on a factorization method for computing 
,!,"-Splines discussed by Munteanu and Schumaker (Matlr. Comp. 27 
(1973), 317--325). 

Description 
I. /11troductio11. In the following we present subroutines for 

calculating polynomial spline functions solving Hermitc-Birkhoff 
(HS) interpolation problems. The subroutines are based on algo
rithms described in [9]. 

We begin by reviewing the definition of an HB-interpolation 
problem. Let N ~ 2 and x1 < x2 < · · · < x N be prescribed. 
Suppose for each}, 1 s j s N,. that z; is a positive integer, IM1.J < 
/M2.j < · · · < /M,1.i are positive integers, and Yi.J, Y2.j, ... , Y'i·i 
are prescribed real numbers. The HB-interpoliation problem is to 
determines such that 

s(1M,i-ll(x1) = Y1.j, i = l, 2, ... , z;,} = ·1, 2, ... , N. (I) 

We see that z; describes the number of derivatives prescribed at x; 
while the vector (/M1.;, ... , IM:;.J) describes which derivatives. 
If z; = 1, j = 1, ... , N, we have a simple interpolation problem~ 

We are concerned with solving HS-interpolation problems 
with polynomial splines. Let M be an integer, M ~ /M,

1
,j, j = 

l, 2, ... , N. Then (cf. [4]) there exists a function s satisfying (I) 
a~ . 

s<2Ml(t) = 0, XJ < t < XJ+1, j = 1, 2, ... , N- 1; (2) 

Editors' note: Al,1,"orithm 485 described here is available 011 magnetic 
tape from tire Department of Computer Science, University of 
Colorado, Roulder, CO 80302. Tire cost for tire tape is $16.00 (U.S. 
and Canada) or $18.00 (elsew/1ere). It the user sends a small tape 
(wt. less that 1 lb.) tire al,l,"oritlrm will be copied 011 it and returned to 
/rim at a charge of $10.00 (U.S. only). All orders are to be prepaid 
witlr checks payable to ACM Algorithms. Tire al,l,"orithm is recorded 
a.~ 01w file of BCD 80 character card inta,l,"es at 556 B.P.I., eve11 
parity, 011 seven track tape. We will supply algorithms at a density of 
800 B.P.I. tf requested. Cards for algorithms are sequenced starting 
at JO and incremented by JO. The sequence number is right Justified in 
colun111 80. Although we will make every attempt to insure that the 
al,l,"orithm conforms to the description printed here, we cannot guaran
tee it, nor cw1 we guarantee tlrat the algorithm 'is correct.-L.D.F. 

and A.K.C. 

485-P 1- 0 

(3) 

s(C<Jf-Il(-x,oo); (4) 

s(2.V-ll(x;+) = s<2.i1-n(x1-), (5) 

IC ! I, ... , M\ \ IIM1.1, ... , IM,1 .il 
j = l, 2, ... 'N. 

The function s is called a g-spline. It is a polynomial spline of 
degree 2M - I; i.e. it is piecewise a polynomial of degree 2M - I. 
The way in which the pieces tic together is described by (4) and 
(5). 

If the only polynomial of degree M - I which solves the 
homogeneous HB-interpolation problem (i.e. satisfies (I) with zero 
right-hand side) is the identically zero polynomial, then we say 
the HB-problem is M-poised. ht this case there is a unique ,!,"-spline 
of degree 2M-1 solving the HB-problem (I). We consider con
structing g~splines only for M-poised HS-problems. 

Given an M-poised HS-interpolation problem, the unique 
g-spline interpolant s satisfying (1)-(5) can be represented as 

1
/)1(/), f S X1 

s(f) = ' P1(t), Xj-1 < t ·s X;, j - 2, 3, ... ' N, 
PN+i(t), t > XN, 

(6) 

where for j = I, 2, ... , N, p 1 (I) is a polynomial of the form 

2 Jf 

PJ(t) = I: Cu(t ,.... x1)1-1 and (7l 
1~1 

.'11 

PN+1(t) = L C1,N (t - XN)l-1. (8) 
l~I 

For later use we introduce the notation C1 = (Ci.1, ... , C2M. 1 )r. 
Several algorithms were discussed in 19] for computing the cocffi 
cients ! C1•1 l t!f f"." 1 of s. We give a subroutine GSF below which 
implements Method 3 of [9]. We also include a function GVAL for 
evaluating s or its various derivatives (For a sketch of the organiza
tion of these algorithms, see Section 2 below.) 

2. Or,1,"m;ization of tire al,l,"oritlrms. GSF consists of: (i) a forward 
march during which certain matrices U x, V x, and Ax are set up for 
K = 2, 3, ... , N - 1; (ii) the solution of a 2M-syste'm for CN; and 
(iii) a backward march in which the C N-1, C N-2, ... , Ci are com
puted recursively. This proceeds as follows. With appropriate 2M X 
2M Taylor matrices TB x and Z x X 2M matrices INTCON x, the 
interpolating conditions (I) at X(K) can be written as INTCON K 

TBx+1Cx+1 = Bx. Similarly with 2M - Zx X 2M matrices 
SMOCON x the smoothing conditions (5) at X(K) can be written 
as SMOCONKCx· = SMOCONx113K+1CK+1· Finally, the end 
conditions (3) at X(I) and X(N) can be written as ENIJCON1 
TB1C2 = D1 and ENIJCON NCN = lJ N· To compute U2, V2, and 
A2 the matrix 

[ 

SMOCON2 

INTCON1TB1 

ENDCON1TB1 

is triangularized by TRIS YS to the form 

[
U2 Vi J [ C2 J l A2] 
0 W2 TB2Ca = I Dz . 

To get Va, Va, Aa we triangularize 

[

SMOCONa -SM0
0

CONa][ Ca ]--[BO···] 
INTCON2 TB2 • 

TBaC, D 
W2TB2 0 2 



COLLECTED ALGORITHMS (cont.) 

to the form 

[ v03 Va] [ Ca ] [Aa] 
Wa TBa C4 = D:i 

Continuing yields U x, V x, Ax for K = 2, 3, .. ., N - 1. Then the 
system 

[

-INTCON. N-1TBN-1 ][- ] [BN-1] 
WN-1 TBN-1 DN-1 

CN = 
INTCONN EN 

ENDCONN DN 

is solved for CN using TR/SYS and back substitution. In the back
ward march C N-1, C N-2, .. ., c~ are obtained successively from the 
stored arrays Ux, Vx, AK via the recursion UxCx = -VKTBK· 
CK+t + Ax, where TBK is another 2M-Taylor matrix. Since U x 
is upper triangular, to determine C x we perform a matrix multiplica
tion and a back substitution. Finally we set the first M components 
of C1 equal to the first M components of TB1C2, and the last M 
components to zero. 

The organization of GVAL is very simple. First a simple search 
is performed to determine the integer KNOT such that X KN o r-1 < 
T -~ X KNOT· Then Homer's scheme is used to evaluate the (/D-1)-th 
derivative of the polynomial PxNor. 

3. Numerical Experience. Table I below shows the results of 
using GSF to compute a cubic spline interpolating simple data and 
of using G VAL to evaluate it (and its derivatives) at various points. 
The table should be of use in verifying that the subroutines are 
operating correctly on the reader's machine. The data in Table I 
is taken from Greville [3, p. 20]. 

Table II below shows the results of using GSF and GVAL on 
simple, Hermite, and Hermite-Birkhoff interpolation problems. 
For comparison, we give the maximum interpolation error, 

max max I Yij - :/ 1Mi1--1l(x1) I, 
1<;)5,N 15,i5,.:-j 

the root mean square error 

( 

N Zj I N )~ ~~[Yi) - s<IM,;-ll(x1)J2 ~ Zj ' 

and the relative central processing times for each interpolation 
problem. 

Tables I and II were computed on the CDC 6600 at The Uni
versity of Texas, Austin. In addition to these examples, we tested 
the subroutines on a wide variety of simple, Hermite, and HB 
interpolation problems for 1 s M s 10, 2 s N s 100. We tested 
data from standard functions as well as random data with equally 
spaced and unequally spaced knots with knot mesh ratios (u = 
max (x;+1 - x;)/min (XJ+i -- x 1)) up to u = 104. The results were 
comparable in accuracy with the procedures in [8] for computing 
simple interpolating splines and the subroutines in 12] for computing 
g-splines. For small M(M 0= 2,3) GSF and GV AL are as fast or 
faster than these other algorithms; for larger M the reverse is usually 
true. 

4. Discussion. The subroutines presented below can be applied 
to compute g-splines interpolating HB-data whenever the HB
interpolation problem is M-poised. The question of when an HB 
problem is M-poised is a difficult one, and has been the subject of 
intensive research recently. For a survey of results, sec Karlin/ 
Karon /6]. An obvious necessary condition for M-poisedness is 
that I:,~1 z; ~ M. For Hermite interpolation problems (IMl.i 0= 

1, .. ., IM, . . = z1 - 1), thisisalsosufficient. For simple interpola
tion (z1 = ;j~ all)), this reduces to N ~ M. For nonpoised HB
interpolation problems, the subroutines may or may not produce 
g-splines interpolating the data. Thus the algorithm cannot be used 
as a test for M-poisedness. 

There are a large variety of algorithms in the literature for com
puting splines interpolating simple data (cf. [7, 10] and references 
therein). In this special case the subroutines given here can be 
simplified \see Eidson [I]). There are few practical schemes for 

485-P 2-

Table I. Cubic Spline Interpolating Simple Data 

DATA 

9)1 (M = 2, N Values of the spline 

Xj Yi s(t) 

266.8 1250 273.16 1346.2 
283.5 1500 303.16 1782.9 
300.9 1750 323 .16 2073.l 
318.0 2000 373. 16 2706.4 
355.9 2500 423.16 3254.7 
399.2 3000 473. 16 3749.0 
500. l 4000 523. 16 4209.3 
555.7 4500 573.16 4655.2 
612.0 5000 

l'ablc Jr. G-'\plinc ln1erpolanh for Variou'\ Type<; of Da1a 

Input data 

Type of N xi z) /M, 1 Y,, 
data j ~ l(l)N j" l(l)N J ~ l(l)N 

~/ (t) s" (t) 

15.076 - .02575 
14.614 .03996 
13.992 - .06902 
11. 665 - .03218 
10.357 - .02148 
9.481 - .01359 
8.998 - .00574 
8.884 -.00047 

Results 

M Maximum RMS Time of 
inter- inter- compu-
polation polation tat ion 

(sec) 

2 7.1(-15) 2.7(-15) .260 
Simple 50 j/.12 I, i ~ 1 ,;n x,, i ~ 1 3 7.1(-15) 4.5(-15) 608 

Hermite 10 expU/5) 

Hermite-
Hirkhotf 40 1/IO 

4 1.1(-14) 6.0(-15) 1.198 

Ji, i ~ 1 sin x,, i ~ I 2 2.0(-14) 6.6(-15) .040 
\2,i~2 cosx,.i~2 3 1.1(-14) 5.4(-15) .095 

{

1 i ~ I 
), I = 2 
5, j ~ 3 

4 1.4(-14) 1.4(-09) .200 

5 88(-09) 1.4(-09) 1.543 

0 

computing g-splines (see [2, 5] and references therein). The only 
other subroutines we know of for g-splines are those in [2] based on 
local support bases. The algorithms underlying the subroutines 
given here are valid also for Lg-splines, see [9], and for EH B-data 
(see [4, 9]). We hope to prepare subroutines for the more general 
case. 

Ack11owledgme11ts. We wish to thank the referees for their 
extremely thorough consideration of our paper, and for several 
helpful suggestions. 

References 
1. Eidson, Harold D. Computation of interpolating splines via a 
factorization method. CNA report, to appear. 
2. Eidson, Harold D., and Schumaker, L.L. Computation of 
g-splines via local bases. CNA report, Center for Numerical 
Analysis, U. of Texas, Austin, 1972, to appear. 
3. Greville, T.N.E. Dara fiffing by spline functions. MRC report 
893, U. of Wisconsin, 1968. 
4. Jerome, J.W., and Schumaker, L.L. On Lg-splines, J. Approx. 
Th. 2 (1969), 29-49. 
5. Jerome, J.W., and Schumaker, L.L. Local bases and compu
tation of g-splines. Methoden und Verfahren der Mathematische 
Physik 5 (1971), 171-199. 
6. Karlin, S., and Karon, J.M. On Hermite-Birkhoff interpola
tion. J. Approx. Th. 6 (1972), 90-115. 
7. Lyche, T., and Schumaker, L.L. Computation of smoothing 
and interpolating natural splines via loc:al bases. SIAM J. Numer. 
Anal. 10 (1937), 1027-1038. 
8. Lyche, T., and Schumaker, L.L. ALGOL procedures for 
computing smoothing and interpolating natural splines. Comm. 
ACM 17, 8 (Aug. 1974), 465-469. 
9. Munteanu, M.J., and Schumaker, L.L. On a method of 
Carasso and Laurent for constructing interpolating splines. 
Math. Comp. 27 (1973), 317-325. 
10. Schumaker, L.L. Some algorithms for the computation of 



COLLECTED ALGORITHMS ( con1t.) 

interpolating and approximating spline functions. In Theory and 
Application of Spline Functions, Academic Press, New York, 
1968, pp. 87-102. 

Algorithm 

SUBROUTINE GSFCN, M, x, Y, Z, IM, c, IDET> 
c INPUT N.M.X.Z.IM.Y--
c N IS A POSITIVE INTEGER GIVING THE NUMBER OF KNOTS 
C M IS A POSITIVE INTEGER DETERMINING THE DEGREE 
C 2•M-l OF THE SPLINE 
C X IS AN ARRAY OF REAL NUMBERS WITH 
C XCl>.LT.XC2>.LT ..... LT.XCN) 
C Z IS AN ARRAY OF INTEGERS SUCH THAT 
C 0.LT.ZCl>.LE.M, l•l,2, ••• ,N 
C IM IS AN INTEGER ARRAY WITH 
C I • LE. MC 1, J l. LT ••••• LT. IMC Z CJ l, J >.LE. M, 
C J•l,2, •• ,,N. Y IS AN ARRAY OF REAL NUMBERS 
C OUTPUT C,IDET--
C THE COLUMN VECTOR CCl.J), •••• cc2•M,J) CONTAINS THE 
C COEFFICIENTS OF THE SPLINE IN THE INTERVAL XCJ-1) 
C TO XCJ), IDET IS SET TO ZERO If A SING 11LAR SYSTEM 
C IS ENCOUNTERED OTHER~.' I SE, IDET IS I. 
c THE SUBROUTINE GSFCN.M.x,y,z,1M.C.IDET> COMPUTES 
C THE COEFFICIENTS OF THE INTERPOLATING G-SPLINE. THE 
c PARAMETERS N.M.x,y,z, AND IM ARE INPUT. N AND M 
C ARE THE POSITIVE INTEGERS OF SECTION I VHICH GIVE 
C THE NUMBER OF X S AND DETERMINE THE DEGREE OF THE 
C SPLINE, RESPECTIVELY. X MUST BE AN ARRAY OF REAL 
C NUMBERS WITH XCI l .LT.XC2) .LT•,., .LT.XCNl AND Z IS 
CAN ARRAY OF POSITIVE INTEGERS NONE OF WHICH SHOULD 
C EXCEED M. X CONTAINS THE POINTS WHERE HB-DATA IS 
C PRESCRIBED AND Z DESCRIBES THE NUMBER OF PIECES OF 
C DATA AT EACH SUCH POINT. IM IS AN INTEGtR AP.RAY 
C WITH 
c 
c 
c 
c 

J= I, 2, ••• ,N. 
THE J TH COLUMN OF IM IS A LIST OF ~HIGH 

DERIVATIVES <SHIFTED UP BY ll ARE SPECIFIED AT 
C XCJ), THE DATA FOR THE HB-INTERPOLATION PROBLEM IS 
CENTERED IN THE ARRAY y, YCl,J) SHOULD CONTAIN THE 
C VALUE ASSIGNED TO THE IMCl,J)-1 ST DERIVATIVE OF 
C THE SPLINE EVALUATED AT XCJ), THE PARAMETERS C 
C AND IDET ARE OUTPUT OF GSF. AFTER EXECUTION, THE 
C ARRAY C WILL CONTAIN THE COEFFICIENTS OF THE 
C SPLINE. IN PARTICULAR, THE COLUMN VECTOR 
c CCl,J), ••• ,cc2•M.J) CONTAINS THE COEFFICIENTS OF 
C THE POLYNOMIALS PCJl DESCRIBED BY EQUATIONS C6), 
C J•1,2, ••• ,N+l • SUBROUTINE GSF CALLS ON SUBROUTINE 
C INTCON,SMOCON, AND TRISYS WHICH MUST BE LOADED WITH 
C THE MAIN PROGRAM. 

INTEGER Z, ZK 
DIMENSION XCl00), YC4.100), ZCl00>, IMC4,100), 

• c ( 8, 100) 
DIMENSION DCl2,17), UVC8.17.100> 
DOUBLE PRECISION SUM 

C INITIALIZE CONSTANTS 
IDET • I 
M2 = 2•M 
M2P I = M2 + I 
M2M I = M2 - I 
M4 = 4•M 
M4P I = M4 + 
NMI = N - I 

C GENERATE FACTORIALS FOR TAYLOR MATRIX 
CCI.I>= 1.0 
DO 10 J•2,M 

JMI = J - I 
CCl,J) = FLOATCJMl>•CCl,JMll 

10 CONTINUE 
C BEGIN FORWARD MARCH 

ZK = ZC I) 
MMZ = M - ZK 
M2MZ = M2 - ZK 

C SET UP INTERPOLATION MATRIX AT XCI> 
CA.LL INTCONCI, ZK, M2, IM, D> 

SET END CONDITIONS AT XCll 
IF CMMZ.NE.0> CALL SMOCONC-1, ZK, M, M2, M4Pl, 

* IM, D> 
C BEGIN K LOOP 

DO 250 K•2,N 
KM I = K - I 
LZK = ZK 
ZK = ZCK> 
LMMZ = MMZ 
MMZ = M - ZK 
M2MZ = M2 - ZK 
'.13MZ = ~12MZ + M 
H = X C KM l > - X C K) 

C TAYLOR MATRIX RIGHT MULTIPLICATION 
IROll' = M2MZ 
IF (K.EQ.N> IRO\.' = M 
DO 20 l=l ,M 

MU = IROl/ + I 
D C MU , l ) = D C I , l > 

20 CONTINUE 
DC I, M2P l l = I • 0 
DO 90 I =2, M2 

IMI = I - I 

30 

DO 40 J=l,IMI 
DO 30 11 = l, M 

DCII,J> = D<II,Jl•H 
CONTIN!JE 

40 CONTINUE 
D < I , M2 P I l = I • 0 
IF (2.GT. !Ml l GO TO 60 
T = DC1,M2Pl) 
DO 5 0 I I= 2, I '11 

IJ = D C I I , 1'!2 P 1 l + T 

T = DC I I, :-12 P 1 l 
DCII.112°1) = V 

50 CONTINUE 
60 DO 80 J=l.~ 

SUM = 0.0 
DO 70 I I= l, I 

485-P 3- 0 

SUM= SUM+ DCJ,!Il*DCII,M2Pl l 
70 CONTINUE 

MU = IP.Q<,.• + J 
DCMU,Il SUM 

80 CONTINUE 
90 CONTINUE 

ON LAST STEP JUMP TO SET INTERPOLATION CONDITIONS 
IF CK.EQ.NJ GO TO 240 

C SET UP SMOOTHING MATRIX AT XCKl 
CALL SMOCONCK, ZK, M, M2, M4Pl, IM, Dl 
DO 11 0 I= l IM 

DO 100 J=M2Pl,M4 
MU = M2MZ + I 
D ( MU I J ) = 0 • 0 

100 CONTINUE 
l 10 CONT INL'E 

C ADJUST RHS OF SYSTEM TO CORRESPOND l'ITE DIFFERE'.'JT 
ZCKl 

IF CLMMZ.EQ.0l GO TO 162 
IF CLZK-ZKl 130, 130, 120 

120 II = M2 + LMMZ + l 
JJ = - I 
III = M3MZ + 1 
GO TO 140 

l 30 I I = M2 
JJ = +I 
I I I = M2MZ + LZK 

140 DO 150 I=l,LMMZ 
MU = I I I + I •JJ 
NU = I I + I •JJ 
DCMU,M4Pl) = DCNU,M4Pl) 

150 CONTINUE 
C FILL IN INTERPOLATION DATA 

160 DO 170 I=l,LZK 
J = I M ( I , KM I ) 
MU = :12MZ + I 
D (MU, M4 p 1 ) = y ( I I KM I ) I c ( 1 , J ) 

170 CONTINUE 
C TRIANGULARIZE SYSTEM AT ZCK) 

CALL TRISYSCD, M4Pl, M3MZ1 M2, IDETl 
IF CIDET> 190, 180, 190 

1 80 RETURN 
FILL UV MATRIX 
190 DO 210 I=l,M2 

DO 200 J=l,M4Pl 
UVCI,J,K) = DCI,J> 

200 CONTINUE 
210 CONTINUE 

C COUPLE M-ZCKl ROVS WITH INTERP CONDITIONS AT NEXT 
C STEP 

220 
230 

C SET 
240 
250 
END 
SET 

IF CMMZ.EQ.0> GO TO 240 
DO 230 I=l,MMZ 

DO 220 J=l,M2 
LAMDA = Z:K + I 
MU = M2 + I 
NU = M2 + J 
DCLAMDA,Jl DCMU,NU> 

CONTINUE 
CONTINUE 

UP INTERPOLATION MATRIX AT X<Kl 
CALL INTCON<K, ZK, M2, IM, D> 

CONTINUE 
OF K LOOP 
END CONDITIONS AT XCNl 
IF CMMZ.NE.0l CALL SMOCOfJC-N, ZK, M, M2, M2Pl, 

* IM, Dl 
C FILL IN INTERPOLATION DATA AT XCN-1) 

DO 260 l•l,LZK 
J = I M ( I , NM I > 
MU = M + I 
DCMU,M2Pll = YCI.NMll/CCJ,J) 

260 CONTINUE 
ADJUST RHS TO CORRESPOND WITH ZCNl DATA 

IF CL~MZ.EQ.0l GO TO 280 
DO 270 I=l,LMMZ 

M'.J = M + LZK + I 
Ntl = M2 + I 
Dc1r_1,M2Y'l l = D<Nl',t~4"1 l 

270 CONTINUE: 
C FILL INTER 0 0LATION DATA AT X<IJ> 

280 DO 290 I=l,ZK 
J = IM< I, N l 
DCl1M2Pl > = Y<I,NJ/CCl,JI 

290 CONTINUE 
C TRIANGtJLA'<IZ:E "1ATRIX SYSTE!'1 AT XCNl 



COLLECTED ALGORITHMS (cont.) 

CALL TRISYSCD, M2Pl, M2, M2, IDET> 
IF C:IDET.EQ.0) "lETUF~~J 

BACK SOL'IE FOR C<N> 
I = M2°1 
DO 320 II=l,M2 

IPI I 
I ·= I - 1 
SlW = 0.0 
IF <IP! .GT.M2> GO TO 310 
DO 300 J=I?! ,M2 

SUM = SUM + DCI,J>•C<J,N> 
300 CONT INL'E 
310 v:=-SUM+DCJ,M2Pll 

CC!,Nl = V/DCI,Il 
320 CONTINUE 
END FORWARD MAP.CH 
BEG IN BACK\.JARD MARCH 

K = 'N 
BEGIN KB LOOP 

DO 430 KB=2 ,N 
KP 1 = K 
K = K - 1 
lK = lCKl 
H = XCKJ - XCKPI l 

C TAYLOR MATRIX LEFT Ml!L.,.lPLICATION 
DO 330 l=l,M2 

330 

340 

DC!,!)= 1.0 
CONT IN1J:::: 
D(~l~1M4"'1 > = C<M2,l<?l > 
DO 3 7 :2! I= I , M2M1 

·I? I = I + 1 
T = C < M2, K"' 1 ) *DC 1 , M2 l 
M2Ml = M2 - I 
DO 342 Il=l,M2:-11 

J = M2 - 11 

CO'.IJTINUE 
D ( I , M4"' 1 l = T 

T = I .0 
IF <IP! .GT.M2Ml l GO TO 360 
DO 350 ll=IP1,M2Ml 

DC!,!)= DC!,!!) 
DCl,Jil = T 
T = D<l,Il + D<l,II> 

3 50 'co:-i: l NUE 
362 D<l,M2> = T 
370 CONTINUE 
IF K = I JUMP OUT TO DETERMINE CCI> 

IF CK!J.EG:.N> GO TO 440 
DO 390 l=l,M2 

C SET U? ?HS OF SYSTEM FO< C<K> 
SUM = 0. 
DO 380 J=!,M2 

MU = M2 + J 
SUM = SUM + l!'-1(J,MU,K>•DCJ,M4Pl > 

383 CONT!'.IJUE 
UV<I,M4°1,K> = -SUM+ UV<J,M4Pl,K> 

39<1 CONT !N'JE 
C BACK SOU.VE FOR COEFFS C<Kl USING TP.!ANGTJLAP "A'CT OF 
C UV<IO 

l = M2Pl 
DO 4 2 0 I I= I , M2 

' I? 1 = I 
I = I - I 
S U~l = 0. 0 
IF < IP 1 • GT. M2 l GO T 0 4 1 0 
DO 400 J=l!"'l,M2 

S1.'M = SIJM + !'\l(J,J,K>•C<J,K) 
40·<1 CONT !NUE 
410 V = -SUM+ UV<l,M4Dl,K) 

CCI.Kl V/UV<I,J,K> 
420 COtJTIN'JE 
430 CONT HJ'JE 
END KJ LOOD 
SET COEFFICIENTS CCI) 
4ti0 DO 453 I=l,M 

:1U = M + I 
CCMU,K> = 0.e 
C < I , K l = D < l , M4 P 1 l 

450 CONTIN1!E 
C END BACK~ARD MARCH 

:lETU?!N 
END 
~;UBROUT INE l!\ITCON CK, lK, M2, If'., Dl 

C FILLS !NTE"lPOLATION MATRIX AT XCKJ HSING 
C INFORMATION OBTAINED FROM ARRAYS l<K> AND lMCJ,K> 

INTEGER lK 
DIMENSION D<l2,17), IMC4,100l 
DO 20 I=l,Z:K 

DO 10 J= 1, M2 
D<I,J> = 0.0 

10 CONTINUE 
II = IM<I,K> 
D<I,11) = 1.0 

20 CONTINUE 
RETU'iN 
END 
Sl'3'::0UTINE SMOCONCKK, ZK, M, M2, ICOL, IM, DJ 

C FILLS SMOOTHING MATRIX AT KNOTS 2 THROUGH N-1 
C AND TP.E END CONDITIONS AT K = l,N 

INTEGER ZK 
DIMENSION D< 12, 17), IMC4, 100> 

C IF KK IS NEGATIVE THEN SET END CONDITIONS 
K = IABS<KK> 
IF CKK.LT.0) GO TO 140. 

C SMOOTHING FIRST M DERIVATIVES 
DO 20 I=l ,M 

DO 10 J= 1, M2 
DUM = 0.0 
IF <I.EQ.J) OUM 1.0 
D <I ,J > = OUM 

10 CONTINUE 
20 CONTINUE 

IROt,.1 = M 
IDUP = 1 

C SMOOTHING HIGHER DERIVATIVES 
30 IF CZK.GE.M> GO TO 80 

J = M 
I = ZK 

40 IF <IMCI,K>-J> 60, 50, 60 
50 J = J - 1 

I = I - 1 
IF <I.LT.!) I = I 
IF <J> 80, 80, 40 

60 IROW = IROW + 1 
DO 70 I I= I, M2 

D<IRO\J,II> = 0.0 
70 CONTINUE 

J = J - 1 
MU = M2 - J 
D<IRO\,',MU> t.0 
IF CJ) 80, 80, 40 

80 GO TO (90, 120), IDUP 
90 M2MZ = M2 - ZK 

DO I l 0 I= 1, M2 MZ 
D <I, I COL> = 0. 0 
DO 100 J=l,M2 

MU = M2 + J 
DCI,MU> = -DCI,Jl 

100 CONTINUE 
1 10 CONTINUE 

RETURN 
120 MMZ = M - ZK 

DO 1 30 I= 1, MMZ 
MU = MM + I 
D<MU,ICOL> = 0.0 

130 CONTINUE 
RETU"l.N 

C SET END CONDITIONS 
140 I RO t,.' = ZK 

IDUP = 2 
MM = ZK 
I F ( K • E Q • I > MM = M2 
GO TO 30 
END 
SUBROUTINE TRISYSCD, N. L, M2. IDET> 

485-P 4- 0 

C TRIANGULA"l.IZATION OF NON-SQUARE MATRIX USING LU 
C DECOMPOSITION WITH PIVOTING 

10 

20 

30 

40 

50 

60 
70 

80 
90 

100 

I 10 
120 

DIMENSION DC12,17l 
DOUBLE PRECISION SUM 
I DET = 1 
DO 1 50 K= 1, M2 

KP 1 = K + 1 
KM! = K - I 
PIVOT = 0.0 
DO 40 I=K,L 

IF CKMl .EQ.0) GO TO 20 
SUM = 0.0 
DO 10 J=l ,KMl 

SUM = SUM + D<I,J>•D<J,Kl 
CONTINUE 
DCI,K> = -SUM + D<I,Kl 
T = ABS< D <I, Kl l 
IF CT-PIVOT l 40, 40, 30 
PIVOT = T 
IPIV = I 

CONTINUE 
IF <PIVOT> 60, 50, 60 
IDET = 0 
RETURN 
IF CIPIV-K> 70, 90, 70 
DO 80 J=l,N 

T = DCK,J> 
D<K,Jl = D<IPIV,J> 
D<IPIV,Jl = T 

CONTINUE 
T = DCK,Kl 
I F < KP 1 - L > I 0 0 , 1 0 0 , I 2 0 
DO I 1 0 I =KP 1, L 

DCI,K> = D<I,K>/T 
CONTINUE 
IF (KM! .EQ.0 .QR. KPI .GT.Nl GO TO 150 

DO 140 J=KPl,N 
SUM = 0.0 
DO I 3 0 I= 1 , KM I 

SUM = SUM + DCK,Il•DCI,J> 
130 CONTINUE 

D<K,J> = -SUM + DCK,J) 
140 CONTINUE 
150 CONTINUE 

LAST = L - M2 
IF CLAST.EQ.0> GO TO 190 
K = M2 
M2P I = M2 + 1 



COLLECTED ALGORITHMS (cont.) 

DO 1 80 l = 1, LAST 
K = K + 1 
DO 170 J=M2?1,N 

SUM = 0.lll 
DO 1 6 0 I I = 1 , M2 

SUM= SUM+ DCK,II>•DCII,J> 
160 CONTINUE 

DCK,J> = -SUM + DCK,J) 
170 CONTINUE 
180 CONTINUE 
190 RETUt:\N 

END 
FUNCTION GVALCT, ID, N, M, x, C> 

c INPUT T,ID,N,M.x.c 
c THE PAt:\AMETERS N.M.x.c At:\E AS IN GSF AND 
C COMPLETELY DESCRIBE THE G-SPLINE. 
C T IS A REAL NUMBER AND ID A POSITIVE lNTEGEP.. 
C GVAL PRODUCES THE ID-1 ST DERIVATIVE Of THE SPLINE 
C AT T. GVAL AUTOMATICALLY P~ODUCES Ill IF ID.GT.M•2 

DIMENSION XC111l0>. CC8.llll0>. S<8> 
IORD = 2•M 
IF CID.GT.IORD> GO TO 130 

C BINARY SEARCH FOR KNOT SUCH THAT 
C XCKNOT-1>.LT.TCKNOT> 

KNOT = 1 
IF CT-XCKNOT)) 70, 70, 10 

llll KNOT = N 
IF CT-XCKNOT>) 20, 60, 60 

211l KUP = N 
KLO = 1 

30 IF CCKUP-KLO>.EQ.1) GO TO 711l 
KNOT = CKUP+KL0)/2 
IF CT-XCKNOT>> Siil, ?Ill, 40 

40 KLO = KNOT 
KNOT = KUP 
GO TO 30 

50 KUP = KNOT 
GO TO 30 

C EVALUi~TION Of THE SPLINE 
60 IORD = M 

IF CID.GT.IOP.D> GO TO 130 
70 Y = T - XCKNOT> 

IORDl = IORD + 1 
C SET UP SPLINE COEFFICIENTS 

DO 80 I=l,IOP.D 
MU = IORDl - I 
S CI) = CC Mll, KNOT) 

80 CONTINUE 
C HORNERS SCHEME 

DO 100 K= 1, ID 
IORD = IOt:\Dl - K 
DO 90 I=2.IOP.D 

SCI> = SCI-l>•Y +SCI> 
90 CONTINUE 

100 CONTINUE 
FAG"!" = 1.0 
I F < I D • EQ • 1 > GO T 0 1 2 0 
IDM 1 = ID - 1 
DO 110 I=l,IDMl 

FACT= FACT•FLOATCI> 
110 CONT INllE 
1211l GVAL = SCIORD>•FACT 

RETURN 
130 GVAL = 0.0 

RETURN 
END 

485--P 5- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 486 

Numerical Inversion of 
Laplace Transform [D5] 
Francoise Veillon [Recd. 26 Sept. 1972] 
Mathematiques Appliquees Informatique, U niversite de 
Grenoble, B. P. 53, Cedex 53, 38 Grenoble-Gare, France 

Key Words and Phrases: Laplact. transform inversion 
CR Categories: 5.16 
Language: Algol 

Description 
This work forms part of a thesis presented in Grenoble in 

March 1972. Improvements made to the Dubner and Abate algo
rithm for numerical inversion of the Laplace transform [1] have led 
to results which compare favorably with theirs and those of Bell
mann [2], and Stehfest [3]. The Dubner method leads to the ap
proximation formula: 

f(t) = 2ea 1/T[!Re(F(a) J 

+ f Re(F(a + ikrr/T) )cos(krrt/T)], (I) 
k~1 ' 

where F(s) is the Laplace transform of/(!) and a is positive and 
greater than the real parts of the singularities off(t). 

Definition of the calling parameters. Assume that/(t) is a func
tion which has real values and that F(s) is its Laplace transform. The 
procedure laplaceinverse calculates, for a programmer-chosen set of 
values oft, the corresponding values of f(t). The parameters are as 
follows: 

rflf is a real procedure with two parameters which are, respec
tively, real part of sand imaginary part of s. Its value is the real part 
of F(s). 

ntf is the number of values of t for which we want to calculate 
f(t). 

tf is a one-dimensional array, the bounds of which are 1 and 
ntf It contains the values oft. 

naf is the number of values taken by the parameter a (see eq. 
(1)). In the following examples, nafis equal to 5. 

af is a one-dimensional array, the bounds of which are 0 and 
naf - 1. At the time of the call this array must contain the values of 
a. In the following examples, these values are, in order: 1.15, 1.20, 
1.25, 1.30, 1.35. These values have been experimentally chosen as the 
best over the whole set of functions that have been calculated (ap
proximately 30, as different as possible), but they are not the best for 
each particular function. 

iterf is 1 /8 of the number of terms considered in the infinite 
sum of the approximation formula, eq. (1). In the example, iterf is 
equal to 8. 

resultatf is a one-dimensional array, the bounds of which are 1 
and 11~/: At the end of the procedure it contains the ntf values of f(t). 

ecri is a procedure with one real parameter (time). It must print 
the value of the parameter, an error message (see later) and be 
written with local conventions. 

486-P 1- 0 

A few examples of functions which have been calculated by 
means of this procedure, and then compared with other methods are 
given in Tables I and II. 

Outline of the method. The program !first evaluates f(t) using eq. 
(l) for n~fvalues of a. The sum in eq. (1) is evaluated in iterf groups 
of eight terms by the E-algorithm (procedure epsalgor) which cor
responds to an iteration of the Aitken t12 process. This accelerates 
the convergence of the sum. The grouping of terms by eight results in 
either using fewer calculations for the same results or, for the same 
volume of calculations, using more terms in the sequence of the 
partial sum, and consequently obtaining better precision. It also 
smooths this sequence. If iterf is equal to eight, this leads to the use 
of 64 terms in the sum. That is satisfactory to proceed with the E-al
gorithm. 

If nafis different from one (and greater than three, otherwise the 
spline approximation is meaningless), then the program fits to the 
n~f estimates of f(t) a cubic spline S(a) whose second derivatives 
vanish at the endpoints. The spline representation employs second 
derivatives, and the system of linear equations satisfied by these 
derivatives is solved using the double-sweep method. 

We want an a such that1(t) is the least dependent on a. The pro
gram then attempts to find an a for which S'(a) = 0. If no such a 
exists, then the program attempts to find one for which S' (a) is 

Table I. 

f(t) 
f(t) = y'Tir f(t) f(t) Laplace-

exact Stehfest Dubner* inverse 

1 0.56419 0.56555 0.73172 0.56419 
2 0.39894 0.39912 0.40035 0.39894 
3 0.32574 0.32655 0.26343 0.32573 
4 0.28209 0.28278 0.28286 0.28209 
5 0.25231 0.25174 0.29365 0.25231 
6 0.23033 0.22989 0.22~01 0.23033 
7 0.21324 0.21322 0.18062 0.21324 
8 0.19947 0.19956 0.20112 0.19947 
9 0.18806 0.18814 0.21609 0.18806 

10 0.17841 0.17796 0.17650 0.17841 
* The Dubner method has been performed with aT = 10 and 

500 terms for the sum. 

Table II. 

f(t) 
f(t) = e-112 f(t) Laplace-

exact Bellmann inverse 

4 .140186 0.126174 0.120527 0.126174 
2.501126 0.286329 0.288195 0.286329 
1.643438 0.439675 0.439084 0.439675 
1.085084 0.581269 0.581308 0.581269 
0.693147 0.707107 0.707318 0.707107 
0.412298 0.813712 0.813401 0.813712 
0.214821 0.898157 0.898482 0.898158 
0.085541 0.958131 0.957847 0.958135 
0.016048 0.991008 0.992205 0.992015 



COLLECTED ALGORITHMS ( co111t.) 

minimum. Using this a, the program evaluates/(!) from eq. (1) (un
less the chosen a is among the original set of values of a) to obtain 
the final approximation. As it is not possible to calculate the best a 
for an unknown function, the values of a have been experimentally 
chosen so as to give the best global result over a set of about thirty 
known Jfunctions, as different as possible. 

Although it is very rare, a zero divide may occur in procedure 
epsalgor because of the division between two terms which may be
come equal. Then the program calls the procedure ecri and jumps 
to the next value oft. The value off(t), which has not been evaluated 
because of this, will be zero. 

It must be said that the algorithm can be applied only to func
tions whose inverses are expected to be reasonably smooth. 

Implementation. This program has been run on an IBM/360 
computer, using compiler Funder Operating System, version 18.6. 
The computing time per t-value, irrespective of the time needed to 
evaluate Re(F(s)), is 0.7 sec. The number of calls of procedure rflf 
is less than or equal to ntf(naf - 1) (8 X iterf + 1). The object 
module size is about l 5K bytes. The effective memory occupied dur
ing the execution step is 66K bytes. 

References 
1. Dubner, H., and Abate, J. Numerical inversion of Laplace 
transforms and the Finite Fourier Transform. J. ACM 15, 1 (Jan. 
1968), 115-123. 
2. Bellmann, R., Kalaba, R., and Lockett, J. Numerical Inversion 
of the Laplace Transform. American Elsevier, New York, 1966. 
3. Stehfest, H. Algorithm 368. Numerical inversion of Laplace 
transform. Comm. ACM 13, 1 (Jan. 1970), 47-49. 
4. Veillon, F. Quelques methodes nouvelles pour le calcul nu
merique de la transformee inverse de Laplace. Th. U. de 
Grenoble, Mar. 1972. 

Algorithm 
procedul!'e /aplaceinverse (rflf,tf,ntf,af,naf,iterf,resultatf,ecri); 

real procedure rflf; real array tf,af,resu/ta~f; procedure ecri; 
integer iterf,ntf,naf; 

begin 
procedure epsalgor (eps, 11eps, resuleps, teps); 
array eps, resuleps; integer neps; real teps; boolean boo!; 
begin 

fin: 

array epstamp[l: neps - l]; integer i,j, k; 
for i : = 1 step 1 until neps 2 do resuleps[i] : = 0.0; 
for i : = 1 step 1 until neps - 1 do 
begin 

i:feps[i + 1] = eps[i]then 
begin ecri(teps); boo/ : = true; go to fin; end; 
epstamp[i] : = 1.0/(eps[i + 1] - epsfi]) 

end; 
resu/eps[l] := eps[neps]; 
k := 2; 
for j : = ne ps - 2 step - 1 until 1 do 
begin 

for i : = 1 step 1 untilj do 
begin 

eps[i] : = epstamp[i]; 
if epstampf i + 1] = epstamp[i] then 
begin ecri(tps); boo/:= true; go to fin; end; 
epstamp[i] := eps[i+l] + 1.0/(epstamp[i+l] 
epstamp[i]); 

end; 
if (k+2) X 2 k then resu/eps[(k+ 2) +lJ : = epstamp[j]; 
k := k + 1 

end; 

end epsalgor; 
procedure /aplinv (rflg,tg, iterg,ag,resultatg); 
real procedure rflg; real tg,resu/tatg,ag; 
integer iterg; 
begin 

486--P 2- 0 

real somme; integer i,j; 
real array ftah[0:8Xiterg], ep[l : iterg], resu/ep[l : iterg+2]; 
for i : = 0 step 1 until 8 X iterg do 

ftab[i] : = rf1g(ag,iX3.1415926536/(8.0:><tg)); 
somme : = 0.0; 
for i : = 1 step 1 until iterg do 
begin 

for j : = 1 step 1 until 8 do 
somme : = somme + ftab[j + 8 X (i-1)] X cos((j + 8 X 
(i-1)) x 3.1415926536/8.0); 

ep[i] : = somme 
end; 
epsa/gor (ep,iterg,resulep,tg); 
if ..., boo/ then 

resultatg: = 2.0 X exp(agXtg)/(8.0Xtg) X (resulep 
fiterg+ 2] + 0.5 X ftab[O]); 

end laplinv; 
procedure coefsplinetrois (11,x,y,m); 
value n,x,y; integer n; array x,y,m; 
begin 

integer i; array d[l : 11-l]; real a,b,c,e; 
for i : = 11- 1 step - 1 until 1 do 
begin 

a:=xfi+l] - x[i];b:=x[i] - x[i-1]; 
c:=y[i+l] - y[i];e:=y[i] - y[i-l]; 
if i = /1 - 1 then 
begin 

dfi] : = (x[H l] x[i-1])/3.0; m[i] : = c/a - e/b 
end 
else 
begin 

d[i] : = (l2Xd(i+ 1) X (x[H 1]-x[i-l])-aXa)/(36X 
d[i+ l]); 
m[i] := c/a - e/b - a X m[i+l]/(6.0 X d[i+l]) 

end 
end; 
m[O] := m[n] := 0.0; 
for i : = 1 step 1 until 11 - 1 do 

if i = 1 then m[i] : = m[i]/d[i] 
else 
m[i] : = (6Xm[i]- (x[i]-x[i-1]) Xm[i--1 ])/(6 X d[i]) 

end coefsplinetrois; 
boolean boo/, booll, boo/2; 
real delta, al, bl, cl, zero, xl, x2, dzero, v, u; 
integer i,j; 
real array x, m, z[O:naf-1]; 
real array y[O:naf]; 
for i : = 1 step 1 until ntf do 
begin 

boo/ : = false; resultatf[i] : = 0.0; 
for j : = 0 step 1 until 11af - 1 do 
begin 

x[j] : = af[j]/tf[i]; 
/aplinv (rflf, tf[i], iterf, x[j], y[j]); 
if ..., boo! then resultatf[i] : = y[j] 
else 
go toe; 

end; 
if naf ~ 1 then 
begin 

coefsplinetrois (naf-1, x, y, m); u : = 0.0; 
for j : = 0 step 1 until naf-2 do 
begin 

al:= (m[j+l] - m[j))/6.0/(xU+I] - xfj]); 
bl := (m[j] - 6.0 X al X x[j])/2.0; 
cl := (y[j+l] - y[j])/(xU+I] - ."([j]) - al X 

(xfj] X x[j] + xU+l] X xU+l] + x[j] X 
xU+l]) - bl X (x[j] + x[j+l]); 

delta:= bl X bl - 3.0 X al X cl; 
booll : = false; boo/2 : = false; 



COLLECTED ALGORITHMS (cont.) 

if delta ~ · 0.0 then 
begin 

if al = 0.0 then 
begin 

if bl ,e 0.0 then 
begin x2 : = -cl/2.0/bl; boo/2 : = true end; 

end 
else 
begin 

begin 
ifzl/] < zU+l] then 
begin u: = xU]; v: = zU] end 
else 
begin u := xU+l]; v := zU+ll end; 

end 
else 
if v > zU+l] then 
begin v: = zU+ 1]; u: = xfj+ lJ end; 
zero : = -bl/3.0/al; 

486-P 3- Rl 

xl : = (-bl + sqrt(bl X bl - 3.0 X al X cl))/ 
al/3.0; 

x2: = (-bl - sqrt(bl X bl - 3.0 X al X cl))/ 
al/3.0; 

dzero : = abs ((3.0 X al X zero + 2.0 X bl) X 
zero + cl); 

if (x[j] :'.S; zero /\ zero < x[J-t- 1] /\ dzero < z[j]) then 
boo/I : = true; boo/2 : = true; begin u : = zero; v : = dzero end 

end 
end; 
if boo/1 th~n 
begin 

end; 
i := O; 

if (xU] ~ xl /\ xl < xU+ 1]) then u : = xl 
end 

if u = xU] then resultatf[i] : = YU] 
else 
if u < xfj+ 1 ]then 
begin else 

if boo/2 then 
begin 

/aplinv (rflf, tf[i], iterf, u, y[naf]); 

if (x[j]) ::::; x2 /\ x2 < xU+ 1]) then u : = x2 
if -, boo/ then resu/tatf[i] : = y[naf] 
else 

end 
end; 

resultatf[i] : = yl/]; 
end 

if -, booll /\ -, boo/2 V u = 0.0 then 
for j : = 0 step 1 until naf-2 do 

else 
if j < naf-2 then 

begin 
ifj = Othenz[j]:=abs((J.O X al X x[j] + 2.0 X 

bl) X xfj] + cl); 

begin j : = j + 1 ; go to I end 
else 
if u = xU+ 1] then resultatf{i] : ==' YU+ 1] 

end; z[j+ll :=abs ((3.0 X al X xU+ll + 2.0 X bl) X 
xfi+ 1] + cl); e: 

end ifj = 0 then 
end /aplaceinverse; 

ACM Transactions on Mathematical Software, Vol. 2, No. 4, December 1976, Pat:!'.' 3\15 :l%. 

REMARK ON ALGORITHM 486 

Numerical Inversion of Laplace Transform [D5] 
[F. Veillon, Comm. ACM 17, 10 (Oct. 1974), 587-589] 

Henk Koppelaar and Peter Molenaar [Recd 12 Feb. 1976 and 11 May 1976] 
Department of Psychology, Division MPS, State University of Utrecht, Oudenoord 
6, Utrecht, The Netherlands. 

The following changes were made in the algorithm: 
( 1) Within the body of the procedure epsalgor the last call of ecri was changed 

to read: ecri( teps) . 
(2) Within the body of the procedure coefsplinetrois the assignment to d[i] was 

changed to read: d[i] := (12Xd[i+l]X, etc. 
( 3) Tests show the increasing inaccuracy of the approximation by Laplace

inverse if t gets in the vicinity of zero. In fact if t = 0, overflow occurs at various 
places. The first spot where it occurs is after declaration of coefsplinetrois in the inner 
do-loop: 

for j : = 0 step 1 until naf -1 do begin 
x[j] := af[J]/tf[i] 

if t = tf[i] is zero for some i. In order to avoid this overflow, one may compute 
Laplaceinverse at t ~ 0 or insert in the algorithm the precaution: if tj[i] = 0 
then begin ecri (tf[i]); go to e end: 

for j : = 0 step 1 until naf-1 do begin 
if tf[i] = 0 then begin ecri (tf[i]); 
go to e end; x[j] := af[j]/if[i] 



COLLECTED ALGORITHMS (cont.) 

Though this precaution prevents overflow, it is appropriate to add a comment in 
the heading of Laplaceinverse concerning problems if t = 0. Also, in the description 
of the algorithm a warning against t = 0 is necessary. 

(4) In the heading of the procedure epsalgor the declaration boolean bool; was 
erased. 

With these modifications the algohthm Laplaceinverse was translated for the 
CDC-6500 using the Control Data Algol 3 compiler. 

The program was used on the following five tests, computing the inverse of 
F(s), s ·= a, + ib, which is f(t), while the program is supplied with Re { F(s)}: 

Test F(s) f(t) Re {F(s)} 

a l/vs l/v(t7r) v[(a+p)/2]/p, p = v[(a2+b2)] 
b l/(s+0.5) exp (-t/2) (0.5+a)/ ((0.5+a)2+b2) 

c s/ (s2+1) 2 (IV2) sin (t) a(x2+4b2{1-b2) )/ (x2+4b2(a2) )2, 
x = a 2-b2+1 

d 1/ (s2+s+l) Wv3)exp (-t/2)sin(t/ (2/ v3)) x/(x2+y2), x = a2-b2+a+1, 
y = b(2a+l) 

e s-1 exp(-25s) U(t-25) exp(-25a) (aXcos(25b )-bXsin(25b) )/ 
(a2+b2) 

Except for tests b and e the results were accurate to about four decimal places. 
Fort ~ 0.01 the results for test b were accurate to about two decimal places, while 
test e showed accuracy to only one decimal place at t ~ 25. 

ACM Transactions on Mathematical Software, Vol. 3, No. I, March 1977. Page-Ill 

REMARK ON ALGORllrHM 486 

Numerical Inversion of Laplace Transform [D5] 
[Francoise Veillon, Comm. ACM 17, 10 (Oct. 1974), 587-589] 

Francoise Veillon [Recd 21 April and 30 July 1976) 
Mathematiques Appliquees Informatiquc, U.S.M.G. B.P. 53, 38041 Grenoble, 
France 

A significant improvement in efficiency can be obtained by using call by value 
rather than call by name where appropriate. Thus the following three changes are 
suggested: 

( 1) value tf, ntf, af, naf, iterf; 
inserted between the heading of the procedure laplaceinverse and its specifica·
tions. 

(2) value eps, neps, teps; 
inserted between the heading of the procedure epsalgor and its specifications. 

(3) value tg, iterg, a.g; 
inserted between the heading of the procedure laplinv and its specifications. 

As the procedures needed to evaluate Re(F(s)) and the true values of the re·
sults are the responsibility of the user, two kinds of tests have been performed: 

(a) The modifications ( 1) , ( 2) , and ( 3) are included in the procedure laplacein--
verse. 

(b) Calls by value are also used in the user supplied function rflf. (Call by value 
is used in only three of the seven true value functions because it is not worthwhile 
using it when the parameter is referred to only once.) 

The computing times (in seconds) arc given in Table I. They concern the calcu-· 
lation of ten t-values for seven functions; the last column, to the right, concerns 
the mean time for one t-value. 

486-P 4- Rl 



COLLECTED ALGORITHMS (cont.) 

The programs were run on an IBM/360/67 computer, usmg an F compiler, 
under Operating System MVT, version 20.1/asp 2.6. 

Table I 
tl: Computing time needed to evaluate Re(F(s)). 

t2: Computing time irrespective of the time needed to evaluate Re(F(s)). 
t3: Computing time pert-value irrespective of the time needed to evaluate Re(F(s)). 

Full Computing 
computing time time tl 

No call by value 61.99 28.18 
Call by value only in laplace- 48.42 28.18 

inverse 
Call by value in laplacein- 41.16 20.92 

verse and user supplied f unc-
tion rflf 

Computing 
time t2 

33.81 
20.24 

20.24 

Computing 
time t3 

0.48 
0.29 

0.29 

486-P 5- 0 



COl,LECTED ALGORITHMS FROM CACM 

Algorithm 487 

Exact Cumulative Distribution 
of the Kolmogorov-Smirnov 
Statistic for Small Samples 
[S14] 
John Pomeranz [Recd. 13 Mar. 1973] 
Computer Sciences Department, Mathematical Sciences 
Building, Purdue University, West Lafayette, IN 47907* 

Key Words and Phrases: Kolmogorov-Sniirnov test, K-S statistic, 
goodness-of-fit testing 

CR Categories: 8.1, S.S 
Language: Fortran 

Description 
Thi! algorithm calculates the exact cumulative distribution of 

the two-sided Kolmogorov-Smirnov statistic: for samples with few 
observations. The general problem for·. which the formula is needed 
is to assess the probability that a particular sample comes from a 
proposed distribution. The problem arises specifically in data 
sampling and in discrete system simulation. Typically, some finite 
number of observations are available, and some underlying dis
tribution is being considered as characterizing the source of the ob
servations. 

The statistic used here simply measures the maximum deviation 
between the proposed distribution and the empirical distribution 
derived from the sample. Elementary rules for calculating this devia
tion can be found in, e.g. Knuth [4, p. 41], Brunk [2, p. 267], or 
Miller and Freund [5, p. 222]. Simply put, let SN(x) be the fraction 
of the N observations which are less than x. L:t F(x) be the proposed 
cumulative distribution of the source. L!t 

KN = vN x max I SN(X) - F(x) '· 
x 

Usually KN is called a two-sided Kolmogorov-Smirnov statistic. 
Omitting the absolute value signs gives a one-sided statistic. For 
computational ease we let DN = KN/ vN be 1lhe observed deviation, 
unweighted by v N. 

The inputs to the function are the sample size N and a critical 
value D. The function value is the exact probability PrlDN < D) = 
PrlKN < D.,/Nj. 

The formulas used in the function are obtained directly from 
Durbin [3, formulas (23) and (24) ]. To validate ttie function, an
other was coded using matrices determined by Pomeranz [7], and 
the two were identical to eight decimal places. Then the function was 
used to generate Birnbaum's Table 1 [1, pp. 428-30] for D = 1/N, 
2/N, ... , J/N, J =min IN, 15l, 1 5 N 5 10). Eighfentriesdiffered 
by 10-ti, apparently from roundoff error [1, p. 440]. The final test 
was of Miller's Table 1 [6, pp. 113-15] of critical values in the ex
treme tail for 1 5 N 5 100. (Miller's approximation is based on the 
one-sided statistic with doubled tail probabilities, which is accurate 

•Present address: A.T. Kearney, Inc., 100 South Wacker Drive, 
Chicago, IL 60606. 

487-P 1- 0 

in the extreme tail.) Newton's method was used to determine the 
values of D, which yield cumulative probabilities of .8, .9, .95, .'JS 
and .99, for each N. Miller's entries agreed within one in the fifth 
decimal place for probabilities other than .8 and within four in the 
fifth decimal place for the .8 probability. This supports Miller's 
claim (6, p. 120] and further allows the use of the column a = .10 
(P = .80) in his Table 1 when an error in D of 4 X 10-ti is acceptable. 
However, the two-sided statistic and the one-sided statistic [4, p. 44] 
are significantly different outside the tail. For example, with a 
sample size of 10, Pr{K10 < .54l is approximately .12, but at the 
same critical value for the one-sided statistic, the cumulative proba
bility is .50. 

Finally, using a CDC 6500, values were computed up to N = 

140. The major limitation is the magnitude of the exponent re
quired to represent NN. Rearranging sums produced no changes. 

References 
1. Birnbai.:m, Z.W. Numerical tabulation of the distribution of 
Kolmogorov's statistic for finite sample size. J. Amer. Stat. 
Assoc. 47, 259 (Sept. 1952), 425-4]. 
2. Brunk, H.D. An Introduction to Mathematical Statistics. Ginn 
and Company, Lexington, Mass., 1960. 
3. D1.,1rbin, J. The probability that the sample distribution 
function lies between two parallel straight lines .. Ann. Math. 
Statist. 39, 2 (Apr. 1968), 398-411. 
4. Knuth, Donald E. The Art of Computer Programming 
Volume 2/Seminumerical Algorithms. Addison-Wesley, Reading, 
Mass., 1969. 
S. Miller, Irwin, and Freund, John E. Probability and Statistics 
for Engineers. Prentice-Hall, Englewood Cliffs, N.J., 1965. 
6. Miller, Leslie H. Table of percentage points of Kolmogorov 
statistics. J. Amer. Stat. Assoc. 5, 273 (Mar. 1956), 111-21. 
7. Pomeranz, John E. Exact values of the two-sided Kolmogorov
Smirnov cumulative distribution for finite sample size. Tech. 
Rep. 88, Computer Sciences Department, Purdue U., Feb. 1973. 

Algorithm 

REAL FUNCTION PKS2CN1 DJ 
n;TEGE,, ~l 

C N IS TifE SAMPLE SIZ:E USED. 
REAL D 

CD IS THE MAXIMUM MAGNITUDE COF THE DISCREPANCY 
C BEnTEEN THE EMPIRICAL AND PROPOSED DISTRIBUTIONS> 
C IN EITHER THE POSITIVE OR NEGATIVE DIRECTION. 
C PKS2 IS THE EXACT PROBABILITY OF OBTAINING A 
C DEVIATION NO LARGER THAN D. 
C THESE FORMULAS APPEAR AS C23> AND C24l !Iv 
C J. DURBIN• THE PROBABI~ITY THAT THE SAMPLE 
C DISTRIBUTION FUNCTION LIES BE'!VEE.N '!VO PARALLEL 
C STRAIGHT LINES. ANNALS OF MATHEMATICAL STATISTICS 
C 39, 2CAPRIL 1968)1398-411· 

DOUBLE PRECISION QCl41J, FACTCl41), SUM, CI, 
* FT, FU, FV 

I F C N • EQ • I ) G 0 TO 9 0 
HJ = FLOATCN> 

NDT c IFIXC2.+FND) 
IF CNDT.LT. I> Go· TO 100 
ND = IF IX C FN D) 
NDD = MIN0C2+ND,N) 
NDP=ND+I 
NDDP = NDD + I 
FACTCI) = 1. 
CI = I• 
DO 10 I= I, N 

FACTCI+ll = fACTCI>•CI 
CI = CI + I• 

10 CONTINUE 
QC f) = I. 
IF CNDD.EQ.0) G~ TO 50 
Cl = I• 
DO 20 I= I, N DD 

QCI+I > = CI••IIFACTCl+I > 
Cl = CI + I. 

20 CONTINUE 
IF CNDP.GT.N) GO TO 80 



COLLECTED ALGORITHMS (cont.) 

FU = FLOAT<NDPJ - FND 
JMA,X = IDINT<FVJ + I 
DO 40 l=l\[JP,NDD 

SUM = e. 
FT = FND 
K,. I 
FU = FV 
DC' 30 J= J ,JMAX 

SUM = SUM + FT••<J-2)/FACT<Jl•FU••KI 
FACTCl<+I > 

FT = FT + I. 
Fll " n1 - I• 

· K = I< - I 
30 CONTINUE 

Q (I+ I l = 0 <I+ I ) - 2 • • FN 0• SUM 
JMAX" = JMAX + I 
FV • FV + I, 

40 ,~')NTHIUE 

IF CNDD.~Q.~) GO TO 80 
50 DO 70 JaNDDPoN 

~.UM = e. 
SIGN = I· 
FT " 2· •FND 
DO Ml J=l,NDT 

tT=rT-1· 
I< ,. I - J + I 
SUM = SUM + SIGN•t.T••JIFACTCJ+I l•Q<Kl 
SIGN = -SIGN 

60 CONTINUE 
Q <I+ I) = SUM 

7flo CON·TINUE 
80 PKS2 = ~<N+ll•FACTCN+J)/fN••N 

flETUP.N 
90 PKS2 = 2·•0 - J, 

RETURN 
HH! Pl'S2 = 0. 

SE TURN 
END 

SU!3POUT n: t:: PP.FAC 
DOUBLE·PP.ECJSION PFC4140> 
DI l"i LN S l OJI: llXA C 4 > 
COMl·iON DX, DXA, Pf, J 
D/\TA I /I/ 
DO .10 J= J, 4 

IF CDXA<J).l:Q.OX> RETURN 
I ill CONTINUE 

J "' I 
l = I + I 
Ir <I, Ht• SJ 
UXA CJ) = DX 
PF cJ, I> = I. 
DO '.'!0 X=2• 38 

PH J, X > = <Pf CJ, I\ - I >•DX> I FL OA TC K- I > 
20 CONTI l\UE 

RETURN 
END 

rUt~CTION CEIL<X> 
IF CX.GE.0.) GO TO 10 
I = -X· 
C£1 L = - I 
RETURN 

10 I = X + .c;c;c;99999 
CEIL = I 
RETURN 
t:rJG 

487--P 2~ Rl 

rll~'CTION PKSCN, EPSJ 
C CALCULATi THL CUMULATIVE DISTRIBUTION OF THE 
C HOLMOGCP.OV-5"1 I RNOV STAT! ST! C USING THE. FORMULAS OF 
C JOHN PO~iE.!1ANZ, EXACT VALUES Ot THE. TWO- SI OED 
C KOLMOGOROV- SMI~OV CUMULATIVE DISTHicUTION FOR 
C FINITE SAMPLE SIZE· TECHl.ICAL REPORT NUMUER 881 
C COMPUTER SCI ::NCES DE.PAflTMEJ';T, PURDUL UN HERS! TY, 
C tE.URUARY 1973. 

DOUBLE PRECISION PFC4,411:), UC40), VC40l 
DOUULE PRECI 5101..; SU!'-1 
D!MEll'SI ON DXA<4> 
COMMCN DX, DXA1 Pf, L 
PATA MNP /40/ 
Fl\ = N 
RN= l./FN 
K = EPS•F~ + ·00000001 
FK = K 
IF CABS<FK-EPS•FN>·GT .. ~ll:l:Hl0001> GO TO 10 
l\ = K - I 
rK = E 

10 CONTINUE 
DEL = EPS - FK•RN 
XUP = RN - DEL 
XLO • DEL 
IF <ABSCXUP-XLOl·LT •• 00000001 > XUP = XLO 
XPREV = 0. 
DO 20 J:J ,MNP 

UC)): 0. 
20 CONTINUE 

lJCK•I) = I• 
!MIN = -l< 

30 X = AMINICXUP,XLO> 
IF ex.GT. ,999999) x = J. 
DX = X - XPF!l::V 
JMIN = CEJL<<X-EPSl•fN- 0 00000001> 
Ir CADS<FLUATCJMIN>-<X-EPS>•FN>.LT 00 00000001> 

• JMIN = JMIN + I 
JMAX = <X+EPS>•FN + ·00000001 
IF CABS <FLOAT<JMAX > - C X+ EP SJ •rN >·LT•• Ckl00000 I) 

• JMAY = JMAX - I 
JMAX • JMAX - JMIN + I 
CALL PnFAC 
DO 60 J=l1MNP 

SUM = 0. 
IF CJ .G T.JMAX > GO TO 50 
I = I 

40 IP = J - I + I + JMIN - !MIN 

SUM= SUM·+ U<l>•PfCLo!P) 
I = I + I 
IF C<IMJrJ+IJ.L~ .• (JMIN+J)) GO TO 40 

51'1 V CJ> = SUM 
60 CONTINUE 

DO 7 0 I= I, MNP 
UCI> = VCI> 

70 CONTINUE 
!MIN = JMIN 
XPl!EV = X 
IF (X.EQ.XUP> XUP = XUP •·RN 
IF cX.EQ.XLO> XLO = XLO • nN 
IF ex.Lr. I.) GO TO 30 
DO 80 I= I 1N 

LICl<+J) "UCl<+l>•FLOAT<J> 
80 CONTINUE 

PXS = UC!<+ I) 
RETURN 
EtJD 

ACM Transactions on Mathematical Software, Vol. 2, No. l, March 1970, Pa1e 111 

REMARK ON ALGORITHM 487 

Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for Smalll 
Samples [S14] 
[J. Pomeranz, Comm. ACM 17, 12 (Dec. 1974), 703-704] 

Subroutine PRF AC, function subprogram CEIL, and function subprogram 
PKS, which were published as a part of Algorithm 487, were test routines that 
were inadvertently printed along with the main algorithm. 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 488 

A Gaussian Pseudo-Random 
Nurr1ber Generator [(i5] 
Richard P. Brent [Recd. 9 Nov. 1973, and 19 Dec.1973] 
Computer Centre, Australian National University, 
Canberra, Australia 

Key Words and Phrases: random numbers, pseudo-random num
bers, Gaussian distribution, normal distribution 

CR Categories: 5.39, 5.5 
Language: Fortran 

Description 
Introduction. Successive calls to the Fortrnn function GRAND 

return independent, normally distributed pseudo-random numbers 
with zero mean and unic standard deviation. It is assumed that a 
Fortran function RAND is available to generate pseudo-random 
numbers which are independent and uniformly distributed on 
(0, 1). Thus, GRAND may be regarded as a fonction which converts 
uniformly distributed numbers to normally distributed numbers. 

Outline of the method. GRAND is based on the following algo
rithm (Algorithm A) for sampling from a distribution with density 
function/(x) = K exp (-G(x)) on [a, b), where 

0 ~ G(x) ~ 1 (1) 

on [a, b), and the function G(x) is easy to compute: 

Step 1. If the first call, then take a sample u from the uniform dis
tribution on [O, 1); otherwise u has been saved from a previous 
calL 

Step 2. Set x - a + (b - a)u and u0 - G(x). 
Step 3. Take independent samples u1, u2, ... from the uniform 

distribution on [O, 1) until, for some k ?:: 1, uk-1 ~ Uk. 

Step 4. Set u - (uk - uk-1)/(l - Uk-1). 
Step 5. If k is even go to Step 2, otherwise return x. 

The reason why Algorithm A is correct is explained in Ahrens 
and Dieter [2], Forsythe [4], and Von Neumann [6]. The only 
point which needs explanation here is that, at Step 4, we can form 
a new uniform variate u from uk-1 and uk , thus avoiding an extra 
call to the uniform random number generator. This is permissible 
since at Step 4 it is clear (from Step 3) that (uk - Uk-1)/(1 -
Uk-1) is distributed uniformly and independent of x and k. (The 
fact that it is dependent on uk is irrelevant.) 

Let ai be defined by (2/rr)4 J:i exp (- it2)dt = 2-i for 
i = 0, 1, .... To sample from the positive normal distribution 
(Algorithm B), we may choose i ~ 1 with probability 2-; (easily 
done by inspecting the leading bits in a uniformly distributed 
number) and then use Algorithm A to generate a sample from 
[ai-1 , ai), with G(x) = !(x2 - aL). It is easy to verify that 
condition (1) is satisfied, in fact 

! (a, 2 -- a~-1) < log (2). (2) 

Finally, to sample from the normal distribution (Algorithm 
C), we generate a sample from the positive normal distribution 
and then attach a random sign. 

Comments on the method. The algorithm is exact, apart from 
the inevitable effect of computing with floating-point numbers 

488-P 1- 0 

with a finite word-length. Thus, the methoct is preferable to meth
ods which depend on the central limit theorem or use approxima
tions to the inverse distribution function. 

Let N be the expected number of calls to a uniform random 
number generator when Algorithm A is executed. If the expected 
value of k at Step 3 is £, and the probability that k is even is P, 
then N = E + NP, so N = E/(1 - P). From Forsythe [4, eq. 
(11)], E = (b - a)-1 fabexp (G(x))dx and 

I - P = -· -
1
- (b exp (-G(x)) dx, so 

b - a )a 

N = ib exp (G(x)) dx / ib exp (-G(x)) dx. (3) 

From (3) and the choice of ai , the expected number of calls to a 
uniform random number generator when Algorithm C is executed is 

t 2-i rai exp (t(x 2 
- a~-1)) dx I lai exp (-!(x2 

- aL)) dx 
i 

1 Ja;-1 ai-1 
~ 1.37446. (4) 

This is lower than 4.03585 for the algorithm given in Forsythe [4]. 
or 2.53947 for the improved version (FT) given in Ahrens and 
Dieter [2]. It is even slightly lower than 1.38009 for the algorithm 
FL, of [2], and FL, requires a larger table than Algorithm C. 
Thus, Algorithm C should be quite fast, and comparable to the best 
algorithms described by Ahrens and Dieter [l]. The number (4) 
could be reduced by increasing the table size (as in the algorithms 
FL4, FL", and FL6 of [2]), but this hardly seems worthwhile. 
Exact timing comparisons depend on the machine and uniform 
random number generator used. (If a very fast uniform generator 
is used, .then Step 4 of Algorithm A may take longer than generat
ing a new uniform deviate.) 

The loss of accuracy caused by Step 4 of Algorithm A is not 
serious. We may say that log2 (1 - uk_1)-1 "bits of accuracy" are 
lost, and in our application we have, from (2) and Step 3 of Algo
rithm A, log (2) > uo > · · · > uk-1 , so the number of bits lost is 
less than log2 (1 - log (2))-1 < 2. 

Test results. If x is normally distributed then u = 
(271")-i f~,., exp (- !t2) dt is uniformly distributed on (0, 1). 
Hence, standard tests for uniformity may be applied to the trans
formed variate u. Several statistical tests were performed, using a 
Univac 1108 with both single-precision (27-bit fraction) and double
precision (60-bit fraction). For example, we tested two-dimensional 
uniformity by taking 106 pairs (u, u'), plotting them in the unit 
square, and performing the Chi-squared test on the observed num
bers falling within each of 100 by 100 smaller squares. This test 
should show up any lack of independence in pairs of successive 
uniform deviates. We tested one-dimensional uniformity similarly, 
taking 106 trials and subdividing (0, 1) into 1,000 smaller intervals. 
The values of x2 obtained were not significant at the 5 percent level. 
It is worth noting that the method of summing 12 numbers dis
tributed uniformly on (-1/2, 1/2) failed the latter test, giving 
x~99 = 1351. (The probability of such a value being exceeded by 
chance is less than 10--11.) 

Naturally, test results depend on the particular uniform gen
erator RAND which is used. GRAND will not produce independent 
normally distributed deviates unless RAND supplies it with inde
pendent uniformly distributed deviates! For our tests we used an 
additive uniform generator of the form Un = Un-1 + Un-121 (mod 2w) 
with w = 27 or 60 (see Brent [3] and Knuth [5]), but a good linear 
congruential generator should also be adequate for most applica
tions. 



COLLECTED ALGORITHMS (cont.) 

Comparison with Algorithm 334. The fastest exact method 
previously published in Communications is Algorithm 334 [7J. 
We timed function GRAND, subroutine NORM (a Fortran transla
tion of Algorithm 334), and function RAND (the uniform random 
number generator called by GRAND and NORM). The mean 
execution times obtained from 500,000 trials on a Univac 1108 
were 172, 376 and 59 µsec respectively. Since NORM returns two 
normally distributed numbers, GRAND was effectively 9 percent 
faster than NORM. Based on comparisons in [2}, we estimate 
that the saving would be greater if both routines were coded in 
assembly language, for much of the execution time of NO RM is 
taken up in evaluating a square-root and logarithm which are 
already coded in assembly language. 

GRAND requires about 1.38 uniform deviates per normal de
viate, and NORM requires 4/ir + 1/2 ~ 1.77. Thus, we may es
timate that if a uniform generator taking U µsec per call were used, 
the time per normal deviate would be (91 + l.38U) µsec for 
GRAND and (83 + 1.77U) µsec for NORM. Hence, GRAND 
should be faster for U ~ 20. 

References 
1. Ahrens, J.H., and Dieter, U. Computer methods for sampling 
from the exponential and normal distributions. Comm. ACM 15, 
10 (Oct. 1972), 873-882. 
2. Ahrens, J.H., and Dieter, U. Pseudo-random Numbers 
(preliminary version). Preprint of book to be published by 
Springer, Part 2, Chs. 6-8. 
3. Brent, R.P. Algorithms for Minimization Without Derivatives. 
Prentice-Hall, Englewood Cliffs, N.J., 1973, pp. 163-164. 
4. Forsythe, G.E. Von Neumann's comparison method for 
random sampling from the normal and other distributions. Math. 
Comp. 26, 120 (Oct. 1972), 817-826. 
5. Knuth, D.E. The Art of Computer Programming, Vol. 2. 
Addison-Wesley, Reading, Mass., 1969, pp. 26, 34, 464. 
6. Von Neumann, J. Various techniques used in connection with 
random digits. In Collected Works, Vol. 5, Pergamon Press, New 
York, 1963, pp. 768-770. 
7. Bell, J.R. Algorithm 334, Normal random deviates. Comm. 
ACM 11, 7 {July 1968), 498. 

Algorithm 

FUNCTION GRAND<N> 
C EXCEPT ON THE FIRST CALL GP.AND RETUF.N S A 
C PSEUDO-RANDOM NUMBER HAVIIVG A GAUSSIAN CI• E. 
C r;CPMALl DISTRIBUTION '.JITH ZERO MEAN AND UNIT 
C oTANDAPD DEVIATIOt,;. THUS, THE DENSITY IS FCX) 
C EXP<-0·5*X**2l/SQRT<2·0*PI). THE FIRST CALL 
C INITI!\.LIZES GRAND AND RETURNS ZERO. 
C THE PARAMETER N IS DUMMY. 
C CRAt>L CALLS A FUtiCTION P.AND, MD IT IS ASSUViED THAT 
C SUCCESSIVE CALLS TO RA1'iDC0l GIVE INDEPENDENT 
C '"'SEUDO- RAt;uOM tJUl":BERS DISTClIBUTED UNHORi·iLY ON (0, 

C J ), POSSI!:iLY J1;CLUDING 0 <BUT NOT J) • 
C THE :1ETPOD USED \..'AS SUGGESTED BY VON NEUMAN!\!, Al\!D 
C IMPRClJED BY FCRSYTHE, AHRENS, DIETER ANG BRENT· 
c or; THE AVEP.AGE TEERE Af:E J.37746 CALLS OF RAl'iD FOR 
C EACH CALL OF GRAND. 
C 'IA~f\IlvG - DIMENSIO!~ AND DE1TA STATHiE.NTS BELOW ARE 
C MACHHJE-DEPENDH.'T. 
C DIMENSION OF D ~;UST BE AT LEAST THE !>UMBER OF BITS 
c ff THE r "ACTI Otl OF A FLOATING-Porrn NUMBER. 
c THUS, or' MOST MACHINES THE DATA STATH<EillT BELOW 
C CAN BE TRUt;CATED. 
C IF THE INTEGRAL OF SQRT(2.0/PI>*EXP<-0·5•X*•2l FROM 
C A<I> TO INFHJITY IS 2**<-IJ, THEN D<I> = A<I) -
C A< I-J >, 

DIMENSION DC60) 
DA TA D < l ) , D < 2 >, D < 3), DC 4 >, DC 5 ) , DC 6), D < 7 ) , 

* D(8), DC9), D<J0), DCJJ), DCJ2J, DCJ3), 
* D(J4), DCl5), D<J6), D<J7), DCJ8), DCJ9), 
* Dc20), DC2J), D<22>. DC23), DC24J, DC25), 
* DC26), DC27), D<28), DC29), DC30), DC3J), 
* D<32) /0.674489750,0.475859630,0.38377Jl64, 
* 0.3286JJ323,e.291142s21,e:.263684322, 
• 0.242508452,0.225567444,0·2! J634J66, 
* e. !99924267,0. J899J0758,0. l8J225J8J, 
* 0.J7360J400,0.J66841909,0.J60796729. 
* 0.JS53497J7,0.J50409384,0.J45902577, 
• 0.r4i110e:33,e:.J37963J74,0.J3444J762, 
* 0 • I 31 17 2 l 50, 0. J 28 I 25965, 0. J 25279090, 
* e:. !22610883,0. !20103560,0. J !7741707, 
* 0. I 1551 J892,0· I J 3402349,0. J J 1402720, 
* 0.109503852,0.J076976J7/ 

488-P 2- 0 

DATA DC33), DC34), DC35), DC36), D<37), DC38>, 
• DC39), D<40>, DC4l ), Dc42), DC43), DC44), 
* DC45), DC46), 0(47), Dc48), D(49), Dc50), 
* D<51 ), DC52), DC53), 0<54), D<55), DC56), 
* DC57), D<58), DC59), DC60) 
• /0. J 0597 6772, 0 .10433484), 0. J 027660 J 2, 
* e:. J0J265052·0·099827234·0·098448282· 
* 0.097l24309.0-095851778,0·094t2746J, 
* 0.093442407.0·09231 J909,e:.09J2J5482. 
* 0.090156838·0-089133867,0.088!446J9, 
* 0-087187293·0·086260215·0·085361834, 
* 0.084490706·0·083645487.0·082824924, 
* 0.082021841,0.08J2531t2,0.es0q99s44, 
• 0.019766932,e.019053521,0.07835878J, 
* 0d1'7768J899/ 

END OF MACHJNE-DEPEr;DENT STATEMENTS 
U MUST BE PRESERVED BETWEEN CALLS. 

DATA U /3d:l/ 
c INITIALIZE DISPLACEMEr>T A Ar;D cour;TER I. 

A = 0·0 
I = 0 

C H:CREMENT COUNTER AND DISPLACEMENT IF LEADING BIT 
C OF U IS ONE. 

J0U=U+U 
IF cu.LT·l·0> GO TO 20 
U = U - I .0 
I = I + J 
A= A - D<I> 
G 0 TO J 0 

C FORM W UNIFORM ON 0 ·LE.\./ .LT. DCI+J) FROM u. 

c FOP.M v = e.5*((W-Al**2 - A**2>· NOTE THAT 0 .J.E. v 
C • LT. LOG ( 2) • 

V = lo/•(0.5>'<1·1-A> 
C GENERATE NEl.f UN IF ORM U. 

30 U = P.ANDC0) 
C ACCEPT 1·1 AS A RANDOM SAMPLE IF V .LE· U. 

IF <V·LE.Ul GO TO 40 
C GENEHATE RANDOM V. 

V = RAND<0> 
C L 0 OP IF U • GT • V. 

IF cu.GT.VJ GO TO 30 
C REJECT t.l AND FORM A NEW UNIFORM U FHOM V AND U. 

U = (lJ-U)/(J.0-Ul 
G 0 TO 2e: 

C FORM NEW U CTO BE USED ON NEXT CALL> FROM U AND V. 
40 U = <U-V)/CJ.0-V> 

C USE FIRST BIT OF U FOH SIGN, RETURN NORMAL VARIATE. 
u = u + u 
IF <U·LT.1.0) GO TO 50 
u = u - I .!3 
GRAND = w - A 
RETURN 

50 GRArJD = A - VI 
HE TURN 
END 



COLL,ECTED ALGORITHMS FROM CACM 

Algorithm 489 

The Algorithm SELEC~~T-f or 
Finding the ith Smallest of n 
Elements [M 1] 
Robert W. Floyd [Recd 26 Sept. 1974] 
Computer Science Department, Stanford University, 
Stanford, CA 94305 
and 
Ronald L. Rivest, M.l.T. Project MAC, 
545 Technology Square, Cambridge, MA 02139 

Key Words and Phrases: selection, medians, quantiles 
CR Categories: 5.30, 5.39 

Language: Algol (not strictly Algol 60) 

Descriptio111 
SELECT will rearrange the values of array segment X[L : R] 

so that X[K] (for some given K; L ~ K ~ R) will contain the 
(K-L+l)-th smallest value, L ~ I~ K will imply X[I] ~ X[K], 
and K ~ I ~ R will imply X[/J ~ X[K]. While SELECT is thus 
functionally equivalent to Hoare's algorithm FIND [I], it is sig
nificantly faster on the average due to the effective use of sampling 
to determine the element T about which to partition X. The average 
time over 25 trials required by SELECT and FIND to determine the 
median of /1 elements was found experimentally to be: 

II 1500 
SELECT 89 ms. 
FIND 104 ms. 

1000 5000 
-----

141 ms. 493 ms. 
197 ms. 1029 ms. 

10000 

877 ms. 
1964 ms. 

The arbitrary constants 600, .5, and .5 appearing in the algorithm 
minimize execution time on the particular machine used. SELECT 
has been shown to run in time asymptotically proportional to 
N + min (l,N - /), where N = L - R + 1 and I = K - L + 1. 
A lower bound on the running time within 9 percent of this value 
has also been proved [2]. Sites [3] has proved SELECT terminates. 

The neater Algol 68 construct: 
while (boolean expression) do (statement) 
is used here instead of the Algol 60 equivalen1t: 
for dummy l while (boolean expression) do (statement) 

References 
1. Hoare;, C.A.R. Algorithm 63 (PARTITION) and Algorithm 65 
(FIND), Comm. ACM 4 (July 1961;, 321. 

489-P 1- 0 

2. Floyd, Robert W., and Ronald L. Rivest. Expected time 
bounds for selection. Stanford CSD Rep. No. 349, Apr., 1973). 
3. Sites, Richard. Some thoughts on proving clean termination of 
programs. Stanford CSD Rep. 417, May 1974. 

Algorithm 
procedure SELECT (X,L,R,K); 

value L,R,K; integer L,R,K; array X; 
begin 

integer N,I,J,S,SD,LL,RR; real Z, T; 
while R > L do 
begin 

if R - L > 600 then 
begin 

comment Use SELECT recursively on a sample of size S 
to get an estimate for the (K-L+ 1)-th smallest element 
into X[K], biased slightly so tliat the (K-L+ I )-th 
element is expected to lie in the smaller set after partition
ing; 

N: = R - L + 1; 
l:=K-L+I; 
Z := ln(N); 
S : = .5 X exp(2XZ/3); 
SD:= .5 X sqrt(ZXSX(N-S)/N) X sign(l-N/2); 
LL:= max(L,K-IXS/N+SD); 
RR:= min(R,K+(N-1) X S/N+SD); 
SELECT(X,LL,RR,K) 

end; 
T := X[K]; 
comment The following code partitions XIL : RI about T. It 

is similar to PARTITION but will run faster on most ma
chines since subscript range checking on I and J has been 
eliminated.; 

I:= L; 
J := R; 
exchange(X[LJ,X[KJ); 
if X\R] > T then exclzange(X[R],X[L]); 
while I < J do 
begin 

excha11ge(X[I],X[JJ); 
/:=I+ l;J:= J- 1; 
while X[ /] < T do I : = I + 1 ; 
while X[ J] > T do J : = J - I ; 

end; 
if X[L] = T then exclwnge(X[LJ,X[J]) 

else begin J : = J + I; exchange(X[JJ,X[RJ) end; 
comment Now adjust L, R so they surround the subset con 

taining the (K-L+l)-th smallest element; 
if J ~ K then L : = J + 1 ; 
if K S J then R J - 1 ; 

end 
end SELECT 



COLLECTED ALGORITHMS (cont.) 

ACM Transactions on Mathematical Software, Vol. 3, No. 2, September 1976. Pages 301-304 

REMARK ON ALGORITHM 489 

The Algori.thm SELECT-for Finding the 'ith Smallest of n Elements [Ml] 
[R.W. Floyd and R.L. Rivest, Comm. ACIII 18, 3 (:March 1975), 173.l 

Theodore Brown [Recd 2, Oct. 19751 
Department of Computer Science, Queens College of the City of New York, 
Flushing, NY 11:367 

Algorithm 489, SELECT, is an effcctiw algorithm for finding the kth smallest of n 
clements. The authors, Floyd and HivC'st, have analyzed its properties in a com
panion paper [l]. 

The description of the algorithm given here is different from that given by Floyd 
and Rivest [l] and is truer to the actual implementation. The description, further
more, leads to a simple modification 0f the algorithm that, as is shown, improves its 

performance for finding values near the median. It is also shown that a small con
stant multiplying the standard deviation term is beneficial. Finally, a basic error in 
Floyd and Rivcst's analysis is pointed out. 

SELECT can be vie,ved as a descendant of FIND [3], an earlier algorithm for 
finding the kth smallest clement. A major component of SELECT is au improved 
coding of the partitioning algorithm PARTITION [3] used by FIND. This also is 
the partitioning algorithm used by the familiar QUICKSORT [3]. The partitioning 
\Vorks by dividing then clC'mcnts into tv,:o parts: those greater than a chosen element 
and those less than it. (Equality is ignored here. The analyses are based on uniquely 
valued clements.) In FIND (and in SELECT) the partitioning is rcapplled re
peatedly to the partition that contains the required kth smallest clement until this 
value is determined. 

FIND chooses the partitioning clement randomly from the available candidates. 
The improved pPrformance of SELECT is based on the use of a sample of the avail
able candidates to determine the partitioning clement. As described in the following 
paragraphs, thr jth smallest of the sample, say S <i) (found by recursively calling 
SELECT), is chosen so as to reduce the subsequent size of the required partition. 

Writing the kth smallest of the original n clements as X<k>, for a sample of size 
s(n) = s the probability that the jth smallest sample value is the ith smallest of the 
original n is 

I) { s - . l - ci--1) cn-i)/(n) . r (j) - X(ij - j-1 s-j s , (1) 

as j - 1 C'lements of the sample must be less than x < i) and s - j greater. The ·mean 
and variance for this distribution arc, respectively, 

µ u> = J ( n + 1 ) I ( s + 1) C 2) 

<Iu>
2 = j(s - j + 1) (n + 1) (n - s)/(s + 1) 2(s + 2) (3a) 

:::; Hn + l)(n - s)/s. (3b) 

Equation (2) can be interpreted as the mean size of the partition of the n elements 
which contains S <i> and the values smaller than it. 

Floyd and Rivest [I] suggest a value for j of u = µ(k) - 2d(n)<I(k) if k > n/2 or 
v = µ<kl + 2 d(nkck> if k :::; n/2, d(n) a slowly increasing function of n ((In n) 112 

is used). They suggest this value for j to make sure that the kth smallest falls in the 
partition either greater than u (if u is used) or less than v (if v is used). A better 
criterion is to keep the partition that will contain the k-th as small as possible. Their 
stated criterion is contrary to this for very small k, values of k near n, and for values 
of k near the median; for intermediate values of k, their criterion is consistent with 
this one. 

Noticethatfrom cq. (1), Pr {Sul 2'.:x<k>l = 1 fork S j.Soforverysmall va1ucs of 
k, it docs not pay to choose j > k (or for k near n, j < k). The coded version of 

489-P 2- 0 



COLLECTED ALGORITHMS (cont.) 

Table I. Times (in msec) To Find 
Median SELECT 

N 

500 
1,000 
5,000 

10,000 

Algorithm 
489 

89 
141 
493 
877 

Our 
Fortran 
version 

44 
89 

363 
666 

Difference 

45 
52 

130 
211 

SELECT takes care of these conditions in the MIN and MAX functions. Notice too 
that when finding a median it pays to choose j = µ(k) = s/2. Any other choice will 
cause k to be most likely in the larger partition. 

In fact, for any j it never pays to choose a value of u less than s/2 or a value of v 
greater than s/2. It is proposed that the calculation of u and v be modified to µ<k> + 
2d(n)f(n)cr (k) and µ<k> - 2d(n)f(n)cr Ck) , respectively, withf(n) a function that mono
tonically goes to zero from each side of the median. We used a linear function, re
placing the SIGN function in the coded calculation of SD by the factor (2 X I/N -
1). 

A Fortran version of SELECT was written for an XDS Sigma 7. Table I compares 
the times published by Floyd and Rivest il} Algorithm 489 with those obtained here. 
Unfortunately, Floyd and Rivest only give times for finding a median. Notice, 
however, that not only is our version faster but that it gives proportionately better 
results for larger n. Our Fortran program was run first with no modification, then 
with the proposed modification. Figure 1 shows the timing of our Fortran version of 
SELECT without the modification (labeled 1) and with the proposed modification 
(labeled 2). As expected, the most substantial improvement occurs at the median. 

Additional improvement was obtained by reducing the size of d(n). This is true 
for several reasons. For n = 5000, d(n) = 2.9. With a normal approximation, the 
probability that k is more than 5.8 stand~rd deviations away from the mean is less 
than 10-6

• This is a much stricter bound than required, and can be substantially 
reduced without adverse effects. One does not need to be so careful that the kth 
smallest element docs not end up in the smaller partition. Even if the kth smallest 
ends up in the larger partition but near the boundary, the reduced problem can be 
done efficiently. This can be seen in Figure 1. Furthermore, the algorithm's use of 
the bound (3b) in place of the true deviation overestimates the true standard devia
tion. Floyd and Rivest recognized this and used a 0.5 multiplier for the standard 
deviation in the coded version. It was found that a multiplier of 0.1 produced even 
better results. The modified standard deviation with a 0.1 multiplier gave the results 
labeled 3 in Figure 1. 

Floyd and Rivest [1] :assert that their choices of s(n), u, and v make the probabil
ity of o(l/n) that k will fall in the partition less than u if u is used or in the partition 
greater than v if v is used. This is incorrect. It is not possible for any u or v for 
their choice of s(n). Even the choice of v = S<1l or u = S<al is not adequate, for 
from eq. (1), 

Pr{Scll > X(x)} = (n:;k)/(:) = (n - sh/(nh, 

where (n) k = n(n - 1) ... (n - k + 1), is clearly not o(l/n). The best choice of 
s(n) is an open question. The sorting; method of Frazier and McKellar [2] has simi
larities to SELECT-it uses sampling and the partitioning of PARTITION [2]. 
Frazier and McKellar suggest a sample of O.ln for their procedure. No appreciable 
change in the times resulted from using this sample size. The values differed by less 
than 10 percent. Further experiments showed that the modifications made here 
made the running time of SELECT rather insensitive to changes in the parameters 
that Floyd and Rivest [1] suggest tuning for the particular computer: the sample 
size and the cutoff point below which the algorithm docs not do sampling. 

489 p 3 0 



COLLECTED ALGORITHMS (cont.) 

700 

600 
2 

n•IO 000 

3 

500 

• 
!400 ., 
-~ .... 

300 
----2 n•!5000 

~---3 

200 

100 

.In .2n .3n .4n .5n 
k-th small eat 

Fig. 1 

ACKNOWLEDGMENT 

'I'he author acknowledges the help of Robert Pfeffer in writing the timing routine. 

REFERENCES 

1. FLOYD, R.W., AND RIVEST, ILL. Expected time bounds for selection. Comm. ACM 18, 3 
(March 1975), 165-172. 

2. FRAZIER, W.D., AND McKELLAR, A.C. Samplesort: A sampling approach to minimal :storage 
tree sorting. J. ACM 17, 3 (July 1970), 496-507. 

3. Ho,\RE, C.A.R. Algorithm 63, PARTITION; Algorithm 64, QUICKSORT; and Algorithm 
65, FIND. Comm. ACM 4, 7 (July 1961), 321-322. 

489-P 4~ 0 



COLI,ECTED ALGORITHMS FROM CACM 

Algorithm 490 

The Dilogarithm Function 
of a Real Argument [S22] 
Edward S. Ginsberg* [Recd 22 June 1973] 
Department of Physics, University of Massachusetts 
at Boston, Boston, MA 02125 
and 
Dorothy Zaborowski t 
Information Processing Center, Massachusetts Institute 
of Technology, Cambridge, MA 02139 

Key Words and Phrases: dilogarithm 
CR Catt~gories: 5.12 
Language: Fortran 

Description 
The dilogarithm function [ 1-3 ], defined by 

LMx) = - r (l/z) In (I - z) dz, 
.I 0 

(l) 

occurs in several different applications in physics and engineering, 
ranging from quantum electrodynamics, to network analysis, to the 
thermodynamics of ideal ferromagnets, to the structure of polymers. 
A new function subroutine is developed which computes the diloga
rithm function of a real argument to an accuracy of a few parts in 
1015 . This program was designed to be included ini the usual package 
of library subprograms relied upon by most users. It employs an 
alternative computational approach to a previously published 
algorithm [4]. 

The dilogarithm function is real for real argument x ::; 1 and 
complex for x > 1. However, the imaginary part of the dilogarithm 
is just an ordinary logarithm, -tirln(x), when x > 1, which does 
not require special means for computation. Therefore, the following 
algorithm and comments are concerned only with the computation 
of the real part of the dilogarithm function for real argument. 

Briefly, the method consists of transforming the usual series 
definition 

00 

Liz(x) = L (x»/n2), Ix I ::; 1, (2) 
l 

into a more highly convergent power series by means of partial 
fractions. The identity 

I l (I 2 l ) 
11(1_1_+_1_)-(n--t- 2) = 2 ~ - n +I+ n + 2 (3) 

*This work was supported by NSF grant GP 29705. t Present 
address: 54 Dwight Street, Boston, MA 02118. 

490-P 1- 0 

leads immediately to the relation 

(I + 4x + x 2)Liz(x) = 4x2 L (xn/[n(n + l)(n + 2))2) 
1 

23 
+ 4x + 4 x2 + 3(1 - x2) In (I - x), 

(4) 

lxl::; I. 

This equation permits the evaluation of Li2(x) for I x I ::; 1 using 
a series which converges like xn/n6 instead of xn/n2• Of course, more 
partial fractions can be employed to increase the rate of convergence 
even further, but then the resulting equation for Liz(x) is not so 
simple. The "optimal" number of partial fractions is a question 
requiring further study. 

By the use of well-known functional identities, it is possible to 
relate the real part of Li2(x), for any real argument, to values of the 
function in the restricted range 0 < x ::; !. With x = !, the maxi
mum relative error in Li2(!) after only 25 terms from eq. (4) is 
roughly 

~ G) 25 (~) 6 ~ 10-16. 

In many cases, far fewer terms are actually needed to achieve this 
relative accuracy. The various ranges of argument and the corre
sponding identities used in the Fortran program listing below are: 

. for x ~ 2 
Re[Li2(x)] = 7r2/3 - Hin x)2 - Li2(1/x), 

for 2 > x > 1 
Re[Li2(x)] = 7r2/6 - (In x)(ln(x - 1) - !In x) 

+ Li2(l - 1/x), 

for 1 > x > ! 
· Li2(x) = 7r2/6 - (In x)ln(l - x) - Li2(1 - x), 

for 0 > x ~ - 1 
Li2(x) = -![ln(l - x)]2 - Li2(x/(x - 1)) 

for -1 > x 
Li2(x) = 7r2/6 - !ln(l - x)[2 X ln(-x) - ln(l -: x)] 

+ Li2(l/(l - x)). 

The inherent limitations of floating point arithmetic forced 
certain modifications and are the only serious sources of error. For 
example, when I x I is small, the argument of the natural logarithm 
in eq. (4) is close to unity. The error in DLOG (the library subpro
gram) then determines the accuracy of DILOG. It was found that 
for 0 < Ix I ::; 10-2, the original series, eq. (2), with eight terms, 
provided 16-place accuracy. Also excluded is a small region around 
xo ~ 12.595 .. .,1 which is a zero for the real part of the dilogarithm. 
,Here, a Taylor series is used for the calculation. The relative accu
racy of DILOG suffers accordingly, because the closer x is to xo, 
the more significant figures are lost in computing the difference 
(x/xo) - 1 used in the expansion. (In addition, the value of xo 
probably cannot be expressed exactly in floating point or hexa
decimal form.) It is possible to recoup some relative accuracy by 
computing (x/xo) - 1 to higher than machine precision [5]. How
ever, this would require calculating x 0 to more significant figures 
than presently known. 

The most accurate tables [2] (nine decimal places) published 
thus far are not adequate to check the values computed by DILOG. 

1 The best value for xo obtained by the authors so far is 
12.5951703698450184 .... 



COLLECTED ALGORITHMS (cont.) 

Instead, the program was tested at a selection of arguments for 
separate ranges of x as follows: 

(a) For certain special arguments, the dilogarithm function 
can be expressed entirely in terms of elementary functions. These 
are: 1, -1, 2, !, 2 + q, 1 + q, q, 1 - q, -q, and -1-q, where 
q = !((5)4 - 1). For example, Li2 (1) = 7r2/6, and Li2 (q) = -ln2q + 
7r2/10. 

(b) For values of Ix I close to unity, DILOG can be checked 
against a Taylor series expansion. Most of the discrepancy for this 
class of argument is associated with the computation of 1 - x 
when xis near unity. 

(c) For very small values of x, an exact calculation by hand is 
practical with eq. (2). 

(d) For very large values of x, an exact hand calculation for 
the difference Li2(x) - Li2(-x) is possible. In this case, of course, 
there is cancellation between the two terms so that fewer than 16 
places of accuracy are to be expected in evaluating the difference. 
(Since Li2 (x) --+ - ! ln2I x I, for I x I --+ oo , the values shown in the 
table below for Li2(x) - Li2(-x) are consistent with 16-place 
accuracy for DILOG.) 

It can be seen that the worst case in the table represents a rela
tive error of only 2.4 parts in 1015 • Thus, 15 to 16 significant figures 
are correct, representing a slight gain over Kolbig's algorithm 
[4]. Moreover, a test on an IBM 370/165 of the time required for 
1,000 calls to DILOG, for randomly generated arguments of abso
lute value less than 100, revealed that the present algorithm is 
twice as fast as Kolbig's (0.21 vs. 0.43 sec). 

SELECTED VALUES OF CILOG FCR VARIOUS ARGUMENTS 
SPECIAL VALUES EXPRESSIBLE IN ELEMEllHRY TERMS 

x 
0.10000000000000000+0 l 

-0.10000000000000000+01 
0.20000000000000000+01 
0. 5 0000000000000000+00 
0. 261B0339B87't98950+ 0 l 
0.16180339887498950+01 
0.61803398874989480+00 
o.38196601125010520+00 

-o. 61803398874989480+ 00 
-0.16180339887498950+01 

ARGUMENTS CLOSE TO UNITY 
x 

0.10000100000000000+01 
o. 99999000000000000+00 
0.10000000001000000+01 
0.99999999990000000+00 
0.10000000000000010+01 
0.99999999999999900+00 

-0.99999000000000000+00 
-0.10000100000000000+01 
-0.99999999990000000+00 
-0.1000.0000001000000+0 l 
-0.99999999999999900+00 
-0.10000000000000010+01 

VERY SMAlL ARGUMENTS 
x 

0.10000000000000010-01 
o. 9999"1999999999900-02 

-o. 9999:9999999999900-02 
-0.1000.ouooooooooo lO-o l 

0.10000000000000000-04 
-0.10000000000000000-04 

0.10000000000000000-09 
-0.10000000000000000-09 

0.10000000000000000-14 
-0.10000000000000000-14 

0.10000000000000000-29 
-o. 10000000000000000- 29 

VERY LARGE ARGUMENTS 
x 

0.10000000000000000+03 
0.10000000000000000+06 
0.10000000000000000+11 
0.10000000000000000+ 16 
0.100000000000001)00+31 

DILCG(XI 
0.16449340668482260+01 

-0.82246703342411300+00 
Oa246740ll002723370+01 
o.58224052646501230+00 
0.2400329686379S660+01 
0.24186901038761120+01 
0.15539561953174130+00 
0.42 64C8806 l6209610+0C 

-0.54219121645069340+00 
-0.12185252606861280+01 

CILCGIXI 
Oal645C591~5502232C+Ol 
0.1644808936992~260+01 
0.164493406~2508070+01 
o.16449340644456410+01 
0.16449340668482580+01 
0.16449340668481910+01 

-0.822460101~4265020+00 

-0.82247396488626100+00 
-0.82246703335479830+00 
-0.82246703349342740+00 
-0.82246703342411240+00 
-0.82246703342411350+00 

DILCGIXI 
0.10025111740139110-01 
0.10025111740139080-01 

-0.9975ll04900e35260-02 
-0.99751104900835450-02 

o. l C000025000111110-04 
-0.99999750001111100-05 

o.100000000002scooo-09 
-0.99999999997500000-10 

0.10000000000000000-14 
-0.99~~99999-9~99970-15 

o. l 0000000000000000-n 
-o.1cooooooooocooooo-29 

OILOGIXl-CILCGl-XI 
o.49148019783144580+01 
0.49347822005446640+01 
Oa493480Z2003446200+0l 
0.49348022005445960+01 
0.49348022005445390+01 

Ct<ECI< 
0.16449)40668482260+01 

-0.82246703342411320+00 
0.246740110027 2 3390+0 l 
0.58224C52646501250+00 
0.24003&';68637~9670+01 
C.24186~010 38761140+0 l 
0.75539561953174140+00 
0 .4264C 880616209610+00 

-0. 5421q12164 506~340+00 
-0.12185252606861300+01 

CHCI< 
c.16450591955022340+0 l 
0 .16448089369929260+01 
0.16449340692508110+01 
0.16449340644456410+01 
O.l64493406684e262D+Ol 
0.16449340668481910+01 

-0.82246010194265020+00 
-0.82247396488626150+00 
-0.82246703335479850+00 
-0. 822461033'193" 2790+00 
-o. 82246 7C33424 l 12 50+00 
-0.82246703342411390+00 

CHCI< 
C.1002511174013~100-0l 

0.10025ll l7401H080-0l 
-0.9975ll04900e3526o-02 
-0.99751104900835460-02 

0.10·000025000111110-04 
-0.9~999750001111100-05 

o.1ooooooooco2soooo-09 
-0.9~9999~9997500000-10 

0.10000000000000000-14 
-0.99999999999999970-15 

o.1oooooooocooooooo-29 
-o.1ooooocoooooooooo-29 

Ct-ECK 
0.49148019783144570+0 l 
0 .4934 7e2200 54467SO+O l 
0.493480220034467SO+Ol 
0.49348022005446770+01 
0.49348022005446790+01 

Author Ginsberg would like to acknowledge the hospitality of 
the Center for Theoretical Physics at M.I.T. Both authors are 
indebted to W.J. Cody of Argonne National Laboratory for sug
gesting many improvements to the original program. 

References 
l. Lewin, L. Dilogarithms a11d Associated Functions. MacDonald, 
London, 1958. 

490-P 2- 0 

2. Mitchell, K. Phil. Mag. 40, (1949), 351-368. 
3. Abramowitz, M., and Stegun, I.A., Eds. Handbook of 
Mathematical Functions, etc. Nat. Bur. Stand. App. Math. Ser. 
#55, Supt. of Documents, U.S. Gov. Print. Off. 1964. 
4. Kolbig, K.S. Collected Algorithms from CACM, 327-P 1-0. 
5. Paciorek, K.A. Collected Algorithms from CACM, 385-P 1-0. 

Algorithm 

DOUBLE PRECISION FUNCTION DILOGCX) 
C REAL PART OF THE DILOGARITHM FUNCTION FOR A REAL 
C ARGUMENT. REF. NO. l=L• LEYIN, •DILOGARITHMS + 
C ASSOCIATED FUNCTIONS• 
C CMAC··DONALD1 LONDON, 1958) • 
C NUMERICAL CONSTANTS USED JlRE CCN)•CNCN+l)CN+2>>*•2 
C FOR N" I TO 30, CPI**2)/3,,~l.289868 ••• , 
C CPI**2)/6,,l.644394•••• AND ZERO OF DILOG ON THE 
C POSITIVE REAL AXIS, X0=12.59517••• 

DOUBLE PRECISION A. 81 BY1 c, c1, c2, c3, C4, 
* OX, DY, TEST, W, x, >:0, y, Z 

DIMENSION CC311J) 
DATA CC I>. CC2>. CC3>. CC4>. CCS>~ CC6>. CC7>. 

* CC8>. CC9>. CC 10>. CC: 11>. CC 12>. C< 13), 
* cc 14), cc 15), cc 16), cc 17), cc 18>· cc 19>. 
* CC211J>. CC2 I), CC22>. CC23>. CC24), CC25>. 
* CC26), CC27), CC28), CC29>• CC30> 
* /36.011J,576.D0,36.02,L44.D21441.021112896.D01 
* 254016.Dl1J15184.D219801.D2, 17424.02,2944656~001 
* 4769856.00174529.02, 112896.021166464.02, 
* 23910s16.00,33002596.D01467856.02.636804.D21 
* 853776.021I12911876.D01 147476736.001 19044.041 
* 24336.D413080025.D21386358336.D01480661776.D01 
* 5934096.0217273809.oe,8856576io21 

IF CX.GT.12.600) GO TO 10 
IF CX.GE.12·5900> GO TO 100 
IF CX.GE.2.011J> GO TO 10 
IF CX.GT.1.00) GO TO 20 
IF CX.EQ.t.00) GO TO 30 
IF CX.GT •• 500) GO TO 40 
IF CX.GT.{.0-2> GO TO 50 
IF CX.LT.-1.00> GO TO 60 
IF CX.LT.-l~D-2> GO TO 70 

C DILOG COMPUTED FROM REF. NO. 1, P.2441 EQCI>. 
DILOG = X*Cl·D0+X*C·2500+X*Cl~D0/9.00+X* 

* C625.0-4+X*(4.0-2+X*<:l·D0/36.00+X*Cl.D0/ 
* 49.00+X/64.00}>>>>>> 

RETURN 
C DILOG COMPUTED FROM REF. NO. 1, P.244, EQC6), 
C AND DESCRIPTION OF THIS ALGORITHM, EQC4>. 

10 Y = 1.001x 
BY = -1.00 - Y•C4.00+Y> 
DILOG = 3.28986813369645287D0 -

* .5D0*DLOGCX>•*2 + CY*(4.D0+5.75Dl1J•Y>+3.D0* 
* ( 1. Dl1J+Y) *CI• D0-Y) •DLOG C [. 00-Y> >/BY 

IF CDI1.0G+4.D0•Y.EQ.D:tLOG) RETURN 
GO TO 80 

C DILOG COMPUTED FROM REF. NO. I• P.2441 EQC7) WITH 
C X" I IX + EQC6) 1 AND DESCRIPTION OF THIS Al.GORI THM, · 
C EQC4>. 

20 Y = 1.D11J - 1.D01x 
DX • DLOGCX> 
BY = !.D0 + Y•C4.00+Y) 
DILOG " 1.64493406684322643D0 + 

* DX*<·SD0*DX-DLOGCX-!.D0>> + 
* CY•C4.D0+S.75D0•Y>-3.Dl1J*ClaD0+Y>•DX/X>IBY 

GO TO B0 . 
C DILOG COMPUTED FROM REF. NO• 11 P.244, EQ(2). 

30 DILOG = 1.64493411J6684822643D0 
RETURN 

C DILOG COMPUTED FROM REF. NO. 1, P.244, EQC7>, 
C AND DESCRIPTION OF THIS ALGORITHM, EQC4). 

40 y = 1.00 - x 
DX " DLOGCX> 
BY = -1.00 - Y*C4.00+'() 
DILOG = !.64493406684822643D0 - DX*DLOGCY) + 

* CY*C4.Dl1J+5.75D0*Y>+3.Dl1J•Cl·Dl1l+Y>*DX•X>IBY 
tGO TO 80 

C DILOG COMPUTED FROM DESCRIPTION OF THIS ALGORITHM, 
C EQ(4) 

50 y " x 
BY = la00 + Y•C4.D0+Y> 
DILOG = CY•C4.00+5.75011l*Y>+3.D0•Cl·Dl1l+Y)* 

* (!.D0-Y>•DLOGCl·D0-Y>>IBY 
GO TO 80 

C DILOG COMPUTED FROM REF. NO. 11 p.245, EQC 12> WITH 
C X=-X, AND DESCRIPTION OF THIS ALGORITHM, EQC4). 

60 Y = 1.001c1.00-x> 
DX = DLOGC-X> 
DY = DLOGCY) 
BY = 1.00 + Y•C4.D11J+Y) 
DILOG = -J.6449340668482264300 + 

* .SD0•DY*CDY+2.D0•DX> + CY*C4.Dl1J+5.75Dl1J•Y> 
* +3a Dlll*C 1. D0+Y) *CI. D.0-Y> * CDX+DY> >/BY 

IF CDlLOG+4.D0•Y·EQ.IllLOG> RETURN 
GO TO 80 

C DILOG COMPUTED FROM REF. NO. 1, p.244, EQC8), 
C AND DESCRIPTION OF THIS iU.GORITHM, EQC4>. 

70 Y • X/CX-1.00) 
DX • DLOGcl.D0-X> 
BY • -l·D0 - Y•C4.D0·~Y> 



COLLECTED ALGORITHMS (cont.) 

DILOG • CY•C4.D0+5.75D0•Y>-3.D0•Cl.D0+Y>• 
* <1·00-Y>•DX>/BY - .5D0•DX•DX 

80 B = 4.D0•Y•Y/BY 
DO 90 N• l1-:l0 

B = B•Y 
A = B/C~OJ> 

TEST • DlLOG 
DILOG • DILOG + A 
IF CDILOG.EQ.TEST> RETURN 

90 CONTINUE 
RETURN 

C DILOG COMPUTED FROM TAYLOR SERIES ABOUT ZERO OF 
C DILOG~ X0. 

100 X0 = 12·595170369845018400 

Y = X/X0 - 1.00 
z = 1.00111.595170369845018400 
IJ = Y*Z 
Cl = C3.D0•X0-2.D0>/6.D0 

490 P 3 RI 

C2. cc11.D0•X0-IS.D0)•X0+6.D0)/24.D0 
C3 • CCC5·Dl•X0-104.D0>•X0+84.D0>•X0-24.00)/ 

• 12.01 
C4 = CCCC274.D0•X0-77.Dl>•X0+94.Dl)•X0-54.DI>* 

* X0+12.01)/72.DI 
DILOG = Y•CJ.D0-Y•C.SD0-Y•Cl.D0/3.D0-Y* 

* c.25D0-Y•<·2D0-Y/6.D0>>>>>•DLOG<Z> -
* W•X0•Y•<·5D0-W•CC1-W•CC2-W•CC3-W•C4>>>> 

RETURN 
END 

ACM Transactions on Mathema1~ical Software, Vol. 2, No. 1, March 1976, Page 112 

REMARK ON ALGORITHM 4 90 

The Dilogarithm Function of a Real Argument [S22] 
[E.S. Ginsberg and D. Zaborowski, Comm. ACM 18, 4 (April 1975 ), 200-202] 

Robert Morris [Recd 11 July 1975] 
Bell Laboratories, Murray Hill, NJ 07974 

The necessary value for the zero of the dilogarithm function is 

12.5951703698450161286398965 ... 

to 25 decimal places, all correct. The value given in Algorithm 490 is in error in 
the last two digits. 

The identity stated for values of x less than -1 is incorrect and should read 

Li'J. ( x) = - 7r2 I 6 - !ln ( 1 - x) [2 x In ( - x) - ln ( 1 - x) J + Li2 ( 1 I ( l - x) ) . 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 491 

Basic Cycle Generation [H] 
Norman E. Gibbs [Recd 13 July 1971] 
Department of Mathematics, College of William and 
Mary, Williamsburg, VA 23185 

This work was partially supported by NASA under Grant 
NGL-47-006-058. 

Key Words and Phrases: Graph, basic cycle, fundamental 
1:ycle, spanning tree, vertex adjacency matrix 

CR Categories: 5.32, 3.24 
Language: PL/I 

Description 
The PL/I procedure BAS/C_GENERATOR is an implementa

tion of Paton's algorithm [I] for finding a set of basic (fundamen
tal) cycles of a finite undirected graph from its vertex adjacency 
matrix. 

The input parameters to the procedure are: 
( 1) A modified form of the vertex adjacency matrix, called A 

(see assumption 3 below). 
(2) The number of vertices of the graph, called N. 
(3) The number of edges of the graph, called EDGES. 
The output of the procedure is an array of bit strings, called B. 

The jth bit of B, is 1 if and only if the ith basic cycle contains the 
edge labe1cd j. 

The following assumptions are made by the procedure: 
(1) The graph is finite, connected, undirected, and without 

loops or multiple edges. 
(2) The vertices are labeled 1, 2, ... , N. 
(3) The vertex adjacency matrix A has an edge table coded into 

its lower triangular part. The following PL/I code could be used 
to generate the table: 

E = O; 
DO I = 2 TON; 

DO J = 1 TO I - 1 ; 
IF A(I, Jfl = 0 THEN 

DO; 
E = E + 1; 
A(I, J) = E; 

END; 
END; 

END; 

(4) A is not the vertex adjacency matrix of a tree. 
The algorithm is: 

Step I. Let vertex 1 be the root of the spanning tree. Start forming 
the spanning tree by placing all edges of the form I I, WI into 
the tree. At the same time, place all vertices W into a push
down list called STACK. 

Step 2. Let Z be the last vertex added to ST ACK (i.e., the top of 
the stack). If STACK is empty, then stop. If STACK is not 
empty, then remove Z from STACK and go to step 3. 

Step 3. Consider all edges ;z, WI which have not been examined. 

491-P 1- 0 

If all edges have been examined, go to step 2. Othcrwise, for 
each edge (Z, WI do the following;: 
(a) If W is in the tree, generate the basic cycle formed by 
adding {Z, WI to the tree and repeat step 3. 
(b) If Wis not in the tree, add (Z, WI to the tree, Wto STACK, 
and repeat step 3. 

For details on the algorithm and the production of the basic 
cycles, Paton's original paper should b1~ consulted. This paper also 
discusses two other algorithms for basic cycle generation and con
tains performance statistics. 

BAS/C_GENERATOR has been implemented using the 
IBM PL/I F-level compiler (version 5.1) and has been tested on 
approximately 200 graphs. 

Reference 
I. Paton, K. An algorithm for finding a fundamental set of cycles 
of a graph. Comm. ACM 12, 9 (Sept. 1969), 514-518. 
Algorithm 

BASIC_GENERATOR: 
PROCEOURf (A,N,FDGES,~I; 

I* RASIC_GENFRATOR GENE-RATES A 5ET OF RASIC (FlJNl)A"1FNTAl I 
CYCLES FRO~ THE VERTFX ADJACENCY MATRIX OF A CO'llNECTF~ 
UNDIRECTED GRAPH WITHOUT LnCPS nR "1ULTIPLE FDGFS. TYF 
PROCFDURF IS A PL/I l~PLFMENTATION OF KEITH PAT0f\l'S 
ALGORITHM OESCRIBEO IN CAC"1 12, q ISFPTl-'1'H'R lq691, 
514-5lB. *I 

DECLARE 
(A(•,•),N,EDGESI OINARY FIXFD CL5,0I, 
IH*I ~IT (fDGE51, 
RASIC BINARY FIXED 115,01 INITl1ll (O), 

T B I T ( N I I NIT I AL ( ' 0 ' B 1 , 
STACK CONTRf'LLED BINARY FIXFD ( [5,0 ), 
<z.w,JI BINAQY FIXED 115,0), 
PRE V IN I ~IN ARY F IX E 0 < l c;, 0 I IN I T I Al ( ( NI 0 I ; 

I* A IS ANN RY N VERTEX aDJACENCY MATRIX nF THE GPAPH. 
THE LOWER TRIANGUL ..... R P•lRTll1N CONTAIN<; Af\I EDGF 
TABLE. IF J)K AND A(J,Kl=~, THFN EUGF M J01NS 
VERTICES J ANO K IN THF GRAPH. IF A(J,K),=0 AND 
J>K THFN A(K,Jl=I. THE UPPFFI TRIA'llGULAR PART OF A 
IS UESTROYED IN THE PQOCFSS, RUT CAN RE F•SILY 
RECflVERfD FR0'"1 THE U1WfR TRIA!\IGULAR PART. (INPlJT) 

N IS THE NUMBER OF Vf<HICES IN THF G!?&.PH. (INPIJTI 
EDGES IS THE NU'1BER OF FDGES IN THF GRAPH. llNPUTI 

~WILL BF THE SET OF BASIC CYCLES GE'llfRATFD. THE 
K T"i 'IIT 'lF BIJI IS I IF A''lD 1JNLY IF THE J TY 
~ASIC CYCLE CONTAINS THE [OGE: L1\l'IEl.EO K tn 1JTPUTI. 

l:l&.SIC IS lJSFO TO INDFX THf RASIC f.YCLES 1\5 THEY Ai'[ 
GFNFRA TF!l. 

T IS USEO TO KEEP TRACK OF THE VERTICES CURRF!\ITLY 
IN THF SPANNl!\IG TFIEE. 

5TACK IS A PUSHDOWN LIST USE11 TO HOLU THE VEPTICES fJF 
THE SPANNING TREE WHICH HAVF NOT YFT nrEN 
l'.XA"INEO. 

l IS THE VERTEX nF THE SPANNING TREE CURRFNTLY BFING 
FXA"11NEO. 

w IS USED TO FINO EDGES WHICH CONNECT TO l. 
PRFV IS AN APRAY U5EO IN THF PFIODUCTION OF THE SA~IC 

CYCLFS. IF PQ.FV(Kl=J TflEN (K,JJ J<; AN EOG[ 'II- THE 
TRFE t~ I TH J Nt:AR F.R THE RO(")T. *I 

I* INITIALIZATION SECTION--NOTE THAT VERTEX l IS ALW,YS 
THF ROOT. 

ll= '0' B; 
SUR ST R ( T , l , l I =' l' B; 
ALLllCATf' STACK; 
STACK=O; 
i\LLOCATE STACK; 
STACK=l; 

NEW_l: 
Z=STACK; 
IF l=O THEN RFTURN; 
FL SE: 

DO; 
FRF:E ~TACK; 

Otl W=7 TO N; 
IF A(MIN!Z,wl.~AX!Z,wll=l TtiEN 

on: 
IF SUBSTR!T,w,11 THFN 

*I 

I* THE EDGE CONNECTl~G Z AND W CREATES A AA'ilC CYCLE. *I 



COLLECTED ALGORITHMS (cont:.) 

DO; 
BASIC=BASIC+l; 
SlJBSTR (B( AAS TC l ,A( MAXI W ,P'REVI WI I, 

'1 IN I W, PR F. VI WI I I , l I=' l 'B; 
SUR STRI Bl BA<:;I CI ,A( MAX ( z ,10 ,Ml NI z ,w I I, 

11=. t. f\; 
A (MIN I z, WI , MAX ( z, WI I =O; 
J=l; 
00 WHILE(J,=PREVIWll; 

SUBSTRIRIAASTCl,AIMAX(PREVIJl,JI, 
MINIPREVIJl,Jll,l)•'l'B; 

J=PREVIJI: 
FND; 

ENn; 
EI.SE 

I* THE EDGE r.nNNFCTING l AND W SHOULD BE PLACED IN THf 
TREE. *I 

ENO; 
END: 

Ofl; 
PRF.VIWl=Z; 
SUF\STRIT,W,ll='l'B; 
ALLOCATE STAr.K; 
STACK=W: 
A ( '1 IN I z, WI , MAX I z, W I I= 0; 

ENO; 

GO ro NEw_l; 
END; 

END BAS!C_GENERATnR; 

491-P 2- 0 



COLLECTED ALGORITHMS FROM CACM 

Algorithm 492 
Generation of All the 
Cycles of a Graph from a 
Set of Basic Cycles [H] 
Norman E. Gibbs [Recd 13 July 1971] 
Department of Mathematics, College of William and 
Mary, Williamsburg, VA 23185 

This work was partially supported by NASA under Grant 
NGL-47-006-058. 

Key Words and Phrases: basic cycle, cycle, graph 
CR Categories:S.32, 3.:24 Language: PL/I 

Description 
The PL/I procedure CYCLE_GENERATOR is an implemen

tation of Gibbs' algorithm [1] for finding all the cycles in a graph 
from a set of basic cycles. 

The input parameters are: 
(1) An array of bit strings B, where the jth bit of B, is 1 if and 

only if the ith basic cycle includes the edge labeled j. 
(2) The number of basic cycles, called BASIC. 
(3) The number of edges in the graph, called EDGES. 
The output from the procedure consists of: 
(I) An array of bit strings Q, where thejth bit of Q; is 1 if and 

only if the ith cycle contains the edge labeled j. 
(2) The number of cycles, called CYCLES. 
The algorithm is: 

Step 1. Set C = IB1J, Q = C, D = R = 0, i = 2. If BASIC = 1, 
stop. 

Step 2. For all TE Q, if T n B, = 0, then set D = D U IT E9 Bi), 
otherwise set R = R U I T E9 B, I . (A E9 B = A U B 
An B). 

Step 3. For all U, V E R, if U c V, set D = D U I VI and R 

R - !VJ. 
Step 4. Set C = C U R U I B;), Q = C U D, R = 0, i = i + l. 
Step 5. If i > BASIC, stop. C is the set of all cycles. If i ::s; BASIC, 

go to step 2. 
In CYCLLGENERATOR, C = IQ(/): QFLAG(l) = 'O' Bl, 

D = Q - C, and R = IQ(LOWER), Q(LOWER+l), .. . , 
Q(UPPER)j. The procedure assumes that BASIC> 0 and that the 
dimension of Q is 28 Asic - l. CYCLE__GENERATOR has been 
implemented using the IBM PL/I F-level compiler (version 5.1) 
and has been tested on approximately 200 graphs. 

Reference 
1. Gibbs, N. E. A cycle generation algorithm for finite 
undirected linear graphs. J. ACM 16, 4 (Oct. !969), 564-568. 

Algorithm 
CYCLE_GENERATOR: 
P ROCEUURE I 8, RAS IC, Q ,CYCLES, F DGE SI ; 
I* CYCLE_GENERATOR GENERATES ALL THE CYCLES ~F A GRAPH 

FROM A SET OF RASIC (FUNnAME~TALl CYCLES. THI\ 
PROCEDURE IS A PL/I IMPLEMENTATION OF NORM GIR6S' 
ALGORITHM FOR GENERATING •LL THE CYCLES OF A GRAPH 
WHICH APPEARED IN JACM lb, 4 (lJCTORER lqo91, 564-5bfl. */ 

OECLAl{E 
I BI • l , 0 I * I I BI T I E DC ES l , 
IBASIC,CYCLES,EOGESI BINARY FIXED ( 15,0I, 
OFLAGl2••BAS!C-ll RIT Ill INITJALl(2**BASIC-lllll'O'BI, 
(QINDEX,I,J,K,UPPER,LOWERI BINARY FIXED 115,0t; 

492-P 1- 0 

I* B IS THE SET OF BASIC CYCLES WHERE THE K TH ~IT OF 
BIJI IS l IF ANO ONlY IF EDGE K l'i AN ELEMENT IJF 
THE J TH BASIC CYCLE. llNPUTI. 

Q IS THE SET OF ALL CYCLES GENERATED. THE K TH HIT 
OF QIJI IS l IF ANO ONLY IF EDGE K IS AN tLEMENT 
OF THE J TH CYCLE. IOUTPUfl. 

BASIC IS THE NUMBER OF BASIC CYCLES IN B. (BASIC > Ol. 
I INPUT I. 

CYCLES IS THE NUMBER OF CYCLES GENERATED. IOUTPUTI. 
EDGES IS THE NUMBER OF EDGES IN THE GRAPH. llNPUTI. 
QFLAG IS A LOGICAL ARRAY USED TO MARK EDGE-DISJ~INT 

UNIONS OF CYCLES. 
OTHER IDENTIFIERS ARE USED AS COUNTERS OR POl~TERS. *I 

I* INITIALIZATION STEP. THE PROCEDURE ASSUMES THAT 
BASIC>O. *I 

Qlll=Blll; 
IF BASIC=l THEN 

DO; 
CYCLES=BASIC; 
RETURN; 

ENO; 
I* FORM ALL LINEAR COMBINATIONS OF THE BASIC CYCLES IN Q.•/ 

00 1=2 TO BAS IC; 
LOWER=2•• I l-l I; 
UPPER=2••I-l; 

I* IF Bl I I INTERSECT QIQINDEX l IS EMPTY, THEN THE SYMMETRIC 
DIFFERENCE OF Bill AND QIQINOEXl IS THE UNION OF DIS
JOINT CYCLES ANO THE APPROPRIATE ELEMENT OF QFLAG IS 
SET TO 1 1'8. OT~ERWISE THE SYMMETRIC DIFFERENCf IS 
PLACED INTO A SET I INDEXED RY LOWER AND UPPER) FOR 
FURTHER TESTING. *I 

DO QINDEX=l TO LOWER-1; 
IF Bill & Q(QINDEXI THEN 

on; 
Q(UPPERl=IBI ll IQIQ!NDEXI Jl:hBI 11 l,QIQINOEXI l; 
UPPER=UPPER-1; 

ENO; 
ELSE 

DO; 
QI LOWER I = IB I 11 I QI QI NOE X l 11; I, B I I I I ,0 I 0 I NOE X I I ; 
QFLAGILOWERl='l'B; 
LOWER=LOW ER+ l; 

ENO; 
OILOWERJ:BI 11; 
ENO; 

I* WE NOW TEST THE SET OILOWERJ, OILOWER+l), ••• ,OIUPPERI 
TO SEE IF ANY ELEMENT OF THIS SET PROPERLY CONTAINS 
ANY OTHER ELEMENT. IF SO, THE CONTAINING ELEMENT IS 
MARKED AS THE EDGE-DISJOINT UNION OF CYCLES ANO THE 
APPROPRIATE ELEMENT OF QFLAG JS SET TO 'l'B. *I 

00 J•LOWER+l TO 2**1-2; 
00 K=J+l TO 2••1-1; 

IF QFLAGIJI THEN GO TO NEXT_J; 
ELSE IF QFLAGIKl THEN GO TO NEXT_K; 
IF IQIJllQIKll=Q(JI THEN OFLAGIJl='l'B; 
ELSE IF (Q(JllOIKll=QIKI THEN QFLAGIKl='l'B; 

NEXT_K: 
ENO; 

NEXT_J: 
END; 

END; 
I• BEFORE RETURNING, WE WANT TO MOVE ALL THE CYCLES (THOSE 

ELEMENTS OF Q FOR WHICH QFLAG IS 'b 1 BI TO 0111, 0121, 
•••• OICYCLESl AND SET CYCLES EQUAL TO THE NUMBER OF 
CYCLES IN Q. *I 

CYCLE S=O; 
HOUSEKEEPING: 

DO l=l TO 2**BASIC-l; 
IF QFLAG(IJ THEN GO TO NEXT_!; 
ELSE 

oo; 
QICYCLES+ll=OI 11; 
CYCLES=CYCLES+l; 

ENO; 
NEXT_!: 

ENO HOUSEKEEPING; 
ENO CYCLE_GENERATOR; 


