
Collected Algorithms from ACM

Volume I
Algorithms 1 -220

A collection of the first 220 ACM Al:gorithms, including Certifications,
Remarks, and Translations from the Algorithms Department

of Communications of the ACM, 1960-1963.

1980

A Publication of the Association for Computing Machinery, Inc.
1133 Avenue of the Americas
New York, New York 10036

Submittal of an algorithm for publication in the Collected Algorithms From ACM
implies that unrestricted use of the algorithm within a computer is permissible.
General permission to copy the algorithm in fair use, but not for profit, is granted
provided ACM's copyright notice is given and reference Is made to this publication,
its date of issue, and to the fact that copying is by permission of the Association for
Computing Machinery.

Price: ACM members $25; others $35. Prices subject to change without notfoe. For
latest prices refer to the current ACM Publications Catalog available free of charge
from ACM Order Department, P.O. Box 64145, Baltimore, MD 21264.

ISBN: 0-89791-017-6

Copyright© 1980, Association for Computing Machinery, Inc.

The algorithms and other items in this compilation are all excerpted from copyrighted ACM publications
unless otherwise noted.

Preface

The Algorithms department of Communications of
the ACM (CACM) was established. in February 1960,
with J. H. Wegstein as editor, for the purpose of publish
ing algorithms, consisting of procedures and programs,
in the Algol language. In 1975 the publication of ACM
algorithms material was transferred to A CM Transac
tions on Mathematical Software (TOMS). A wide variety
of algorithms have been published and many of them
have been used heavily-either in original form or as
translated into other languages. Recognizing the general
acceptance of the algorithm material published in
CACM and TOMS, the Association for Computing Ma
chinery (ACM) has collected and reprinted the algo
rithms to make them more readily accessible and more
serviceable to a larger group of users.

This collection contains the first 220 algorithms pub
lished in the Algorithms department of CACM from
1960 to 1963.

Algorithms 1-220 were originally published as re
ceived-without any refereeing whatever. Many of these
have since been certified and/or corrected by their au
thors or by other contributors.

To facilitate the updating and. to make this volume
convenient to use, an understanding of the page num
bering scheme for the algorithms is helpful. The page

designation is in a three-part format: the left part is the
algorithm number; the middle part is the page number
within the algorithm (the first page of each algorithm is
Pl); and the right part is the number of the revision of
that page. All sheets in the original, or first, insertion of
an algorithm have "O" for the right part. The first
revision of a page will have a page number having the
left and middle parts identical with those on the page to
be replaced, but the right part will be "R l" instead of
"O." The second revision of the same page would read
R2, and so on. For example, 123-P2-Rl would mean the
first revision of page 2 of Algorithm 123.

Information on submitting algorithms for publication
may be found in the introductory section located in the
front of the current loose-leaf collection. Included in this
material is a cumulative index to all the algorithms
published since 1960 as well as the ACM Algorithms
Policy, which guides the publication of all algorithms
submitted to ACM.

Webb Miller
ACM Algorithms Editor

Department of Mathematics
University of California, Santa Barbara

Santa Barbara, CA 93106

COLLECTED ALGORITHMS FROM. CACM

1. QUAD!
R. J. Herbold
National Bureau of Standards, Washington 25, D. C.

comment Quad! is useful when integration of several func
tions of same limits at same time using same
point rule is desired. The interval (a,b) is di
vided into m equal subintervals for an n-point
quadrature integration.pis the number of func
tions to be integrated. Wk and Uk are normalized
weights and abscissas respectively, where
k==I,2,3,· · · ,n. Uk must be in ascending order.
P(B,j) ==: (c) is a procedure which must be sup
plied by the programmer. It evaluates (c) the
function (as indicated by j) for B. Ii is·the result
of integration for function j.;

procedure Q'uadI (a,b,m,n,p,wk,uk,P(B,j) ==: (c)) ==: (Ij)

be~n

QuadI:

LI

L2

L3:

for

for

begin

for

begin

for

begin

h :== (b-a)/m

j :== I(l)p ; Ii :== 0

A :== a-h/2

i :== I (I)m

A :== A+h

k :== 'l(l)n

B :== A+(h/2)Xuk

j :== I(I)p

P(B,j) ==: (c)

Ii :== li+wkXc

end LI

end 1..3

for j :== I (I)p

Ii :== (h/2)Xli

return

integer (j ,k,i)

end Quad I

end L2

1-P 1- 0

COLLECTED ALGORITHMS FROM CACM

2. RooTFINDER
J. Wegstein
National Bureau of Standards, Washington 25, D. C.

comment

procedure
begin
Root

Hob:

end

This procedure computes a value of g=x satis
fying the equation x = f (x). The procedure calling
statement gives the function, an initial approxi
mation a;;CO to the root, and a tolerance
paramater E for determining the number of sig
nificant figures in the solution. This accelerated
iteration or secant method is described by the
author in Communications, June, 1958.;
Root(f(), a, E) ==: (g)

b : = a ; c : = f (b) ; g : = c
if (c=a) ; return
d := a b := c e := c
c := f (b)
g := (dXc-bXe)/(c-e-b+d)
if (abs((g-b)/g) ~E) ; return
e : = c ; d : = b ; b : = g ; go to Hob

CERTIFICATION

2. RooTFINDER, J. Wegstein, Communications ACM,
February, 1960

Henry C. Thacher, Jr.,* Argonne National Labora
tory, Argonne, Illinois

Rootfinder was coded for the Royal-Precision LGP-30 Com
puter, using an interpretive floating point system with 28 bits
of significance. The translation from ALGOL was made by hand.
Provision was made to terminate the iteration after ten cycles
if convergence had not been secured.

The program was tested against the following functions:

(1) f (x) = (x + 1)1/s (Root == 1.3247180)
(2) f(x) = tan x
(3.a) f(x) = 211"a + tan-1 x (a = 1, 2, 3, 4)
(4.a) f (x) = sinh ax (a = -1.2, -0.5, 0.5, 1.2)

Selected results were as follows:

f(x) a Xk-1 Xk
1 1.3 10-7, 10-s 1.3247233 1.3258637 (1)

1 1.3 10-6 1.3247165 (1)
-

2 5 10-a -.4674691 - .36021288 (1, 2)
2 4 10-a +.84880381 +.69496143 (1, 2)
3.1 1 10-6 7.7252531
3.2 2 10-6 14.066155
3.3 3 10-6 20.371026
3.4 4 10-11 26.665767

(1) No convergence after 10 iterations. Underlined figures are in
correct.

(2) For this function, f'(O) = 1; so c6nvergence is not to be ex-

2-P 1- 0

pected at this root. However, the algorithm did not find
any other root.

It should be noted that the convergence criterion used fails
for a zero root. The provision to terminate after a given number
of cycles is therefore essential. Also, double precision is desirable.

*Work supported by the U. S. Atomic Energy Commission.

REMARK ON ALGORITHM 2
ROOTFINDER (J. Wegstein, Communications ACM,

February, 1960)
HENRY C. THACHER, JR.,* Argonne National Laboratory,

Argonne, Illinois

Yk - Y (yk-2 - Y)f"
---·-·--y = 2(f' 1) + (.)f" + O(Yk-1 - Y)a Yk-1 - - Yk-1 - Yk-:1

where Y is the desired root, and the derivatives f' and f" are
evaluated there. Convergence is thus second order, provided that
I f" I I Yk-1 - y I < 2 I f I - 1 1.

The algorithm is, however, somewhat unstable numerically be
cause of the factor f (Yk-1) - f(Yk-2) -- yk ... 1 + Yk-2 in the de
nominator.

Experience has shown that the minimum for E is about one
half the precision being used. Provision to indicate when round
off errors are causing random oscillations of g would be a desirable
addition.

The criterion used for terminating the iteration renders the
algorithm unsuitable for a zero root. A preliminary test for a
zero root would be desirable. In addition, the algorithm should
include provision for exit after a stated number of iterations.

Algorithm 15 appears to offer advantages along these lines.

*Work supported by the U.S. Atomic Energy Commission.
This algorithm has the convergence factor .

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON
National Physical Laboratory, Teddington;

Algorithms 2, 15, 25 and 26 were all concerned with the cal
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the nei~:hbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a w1ell-conditioned method of
evaluation quite a strict convergence c1riterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple
diagonal matrices T having tii - a; , t;+1.i = b;+1 , t;,;+1 =
c i+l . As an extreme case I took a1 = a2 = · · · = ao == Cl. a& =

''"'· ·i~"

COLLECTED ALGORITHMS (cont.)

a1 = · · · = a10 = 1, au = 2, bi = 1, Ci = 0 so that the func
tion which was being evaluated was x5 (x - l)0 (x ·- 2). In spite
of the multiplicity of the roots, the answers obtained using float
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 2-44

, Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the me~hod of evaluation which was used, the two
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 2-42 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 2-7 would have been necessary and the mul
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler
ance for / Xr+1 - x, / as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
:~hould b~ necessary. The great power of rootfinders of this type
11s that, smce we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
motfinder so that it finds the zeros of x = f (x) since the true func
tion x - f (x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (-x + tan x) were used with a
~~eneral zero finder then, provided the method of evaluation was,
for example

x = n'll" + y
~ - y5 -
3 30

tan x - x = -n'll" + ------
cosy

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co
sine routines, this could be evaluated as

(sin y - y) - y(cos y - 1)
-n'll"+

1 + (cosy - 1)

:rnd the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re
striction to 10 (Certification 2) is rather unreasonably small.
]for example, the direct evaluation of xeo - 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton's method, starting
with x = 2. If the time for evaluating the der~vative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and qua,dratic inter
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is us~
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
84, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
rO respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in
cireasing order. This presumably was the case in Certification 3
when the roots of xs + 7x4 + 5xa + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-

2-P 2- 0

precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = -6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE
[1] J. H. WILKINSON. The evaluation of the zeros of ill-conditioned

polynomials Parts I and II. N1tm. Math. 1 (1959), 150-180.

COLLECTED ALGORITHMS FROM CACM

3. SOLUTION OF POI,YNOMIAL EQUATION BY BAIRSTOW
HITCHCOCK METHOD
A. A. Grau
Oak Ridge National Laboratory, Oak Ridge, Tenn.

procedure

BAIRSTOW

comment

begin
integer
array
BAIRSTOW

step:

(n, a[], epsO, epsl, eps2, eps3, K) =:
(m, x[1, y[], nat[], ex[]) ;
The Bairstow-Hitchcock iteration is used to find
successively pairs of roots of a polynomial
equation of degree n with coefficients ai
(i = 0, 1, · · ·, n) where ao is the constant term. On
exit from the procedure, mis the number of pairs
of roots found, x[i] and y[i] (i = 1, · · ·, m) are a
pair of real roots if nat[i]=l, the real and imagi
nary parts of a complex pair if nat[i] == -1, and
ex[i] indicates which of the following conditions

was met to exit from the iteration loop in finding
this pair:

l. Remainders, rl, rO, become absolutely less
than epsl.

2. Corrections, incrp, incrq, become absolutely
less than eps2.

3. The ratios, incrp/p, incrq/q, become ab
solutely less than eps3.

4. The number of iterations becomes K.
In the last case, the pair of roots found is not
reliable and no further effort to find additional
roots is made. The quantity eps 0 is used as a
lower bound for the denominator in the expres
sions from which incrp and incrq are found.;

(i, j, k, nl, n2, ml)
(b, c[O : n+ l])
for i := O(l)n ; bi :- ai
bn+1 := 0 ; n2 := entire((n+l)/2)

nl := 2Xn2
for ml :== 1 (l)n2 ; begin p := 0
fork:= l(l)K ; begin
for i := O(l)nl ; Ci :== bi
for j := nl-2, nl-4 ; begin
for i := O(l)j ; begin
Ci+l := Ci+l - p X Ci

Ci+2 := Ci+2 - q X Ci end end
r0 := C0 1 ; rl := Cn1-1
sO := Cn1-2 ; sl := Cnt-3

vO := -q X sl ; vl := sO - sl X p
detO := vl X sO - vO X sl
if (abs(detO) <epsO) ; begin

q := 0

p := p+l ; q :== q+l go to step end
detl : = sO X r 1 - s l X rO
det2 :=;ox vl -vOX sl
incrp := detl/detO ; incrq :== det2/det0
p : = p + incrp ; q : == q + incrq
if (abs (rO) < epsl) ; begin
if (abs (rl) < epsl) ; begin
exm1 : = 1 ; go to next end end
if (abs (incrp) < eps2) begin
if (abs (incr.q) < eps2) ; begin

next:

out:

end end

3-P 1- 0

exm1 : = 2 ; go to next end end
if (abs (incrp/p) < eps3) ; begin
if (abs (incrq/ q) < eps3) ; begin
exm1 : = 3 go to next end end end
eXm1 := 4
S := p/2 T := 82 - q
if (T ~ 0) ; begin T : = sqrt (T)
natm1 := 1 ; Xm1 := s + T

Y ml : = S - T end
if (T < 0) ; begin na.tm1 : = -1

Ym1 :== sqrt(-T) end
if (eXm1 := 4) ; go to out
for j := 0(1) (nl-2) begin
bj+l :...;. bj+l - p x bj
bi+2 := bi+2 - q X b; end
nl := nl - 2 ; if (nl < 1)
begin m := ml ; retlllrn end
if (nl < 3) begin
ml : = ml + 1 ; eXm1 : = 1
p := bi/bo ; q := bdbo
go to next end

Xm1 := 8

CERTIFICATION

3. SOLUTION OF POLYNOMIAL EQUATION BY BAIRSTOW
HITCHCOCK METHOD, A. A. Grau, Communications
ACM, February, 1960.

Henry C. Thacher, Jr.,* Argonne National Labora
tory, Argonne, Illinois.

Bairsto.w was coded for the Royal-Precision LGP-30 computer,
using an interpretive floating point sys.tern (24.2) with 28 bits of
significance. The translation from ALGOL wae made by hand.

The following minor corrections were found necessary.
a. det 2 := .rO X vl - vO X sl should he det 2 := rO X vl

- vO X rl
b. S := p/2 should be S := -p/2 ..
After these were made, the program ran smoothly for the fol

lowing equations:

x 4 - 3x 3 + 20x2 + 44x + 43 = 0 x == - .97063897 ::!:; l.0058076i

x == -2.4706390 ::!:; 4.6405330i

xs - 2x5 + 2x4 + x 3 + 6x2 - 6x + 8 = 0

x ·= 0.50000000 ::!:; 0.86602539i

x· •= 1.0000000 ± 1.0000000i

x ·= 1.5000000 ::!:; 1.3228756i

x5 + x4 - 8x s - 16x2 + 7x + 15 = 0

x = .000000005, ** - 0.99999999

x = 3.0000000, 0.99999999

x == -2.0000000 ::!:; l .OOOOOOOi

With the equ,a.tion x6 + 7x 4 + 5x 3 + (ix2 + 3x + 2 = O conver
gence was slotw, and full accuracy was :not obtained. However, the

COLLECTED ALGORITHMS (cont.)

equation with reciprocal roots, 2x6 + 3x4 + 6x3 + 5x2 + 7x +
1 = 0, converged rapidly.

*Work supported by the U. S. Atomic Energy Commission.
** Spurious zero real roots are introduced for equations of odd

order.

CERTIFICATION OF ALGORITHM 3
SOLUTION OF POLYNOMIAL EQUATIONS BY

BAIRSTOW HITCHCOCK METHOD (A. A. Grau,
Comm. ACM, February, 1960)

,JAMES 8. VANDERGRAFT

:Stanford University, Stanford, California

. Bairstow was coded for the Burroughs 220 computer using the
Burroughs ALGOL. Conversion from ALGOL 60 was made by hand
on a statement-for-statement basis. The integer declaration had
to be extended to include n, k, n, NAT, EX, and the corrections
noted in the certification by Henry C. Thacher, Jr., Communica
tions ACM, June, 1960, were incorporated.

By selecting the input parameters carefully, all branches of
the routine were tested and the program ran smoothly. The fol
lowing polynomials equations were solved:
:~6 - 14x4 + 49x2 - 36 = 0, x = ± 1.0000000

x = ± 1.9999998
x = ± 3.0000001

,,s - 30x6 + 273x4 - 820x2 + 576 = 0, x = ± 1.0000000
x = ± 2.0000000
x = ± 2.99!>9999
x = ± 4.0000001

Several minor errors were found in the certification by Mr.
Thacher. The constant term in the first polynomial should be 54
instead of 43, the second pair of roots for that polynomial should
be + 2.470639 ± 4.6405330 i, and the second pair of roots for the
second polynomial should be -1.0 ± i.

REMARKS ON ALGORITHMS 2 AND 3 (Comm;
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

.J. H. WILKINSON

National Physical Laboratory, Teddington.
Algorithms 2, 15, 25 and 26 were all concerned with the cal

culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to. find the zeros of triple
diagonal matrices T having tii = ai , ti+1.i = bi+1 , t;.i+i =
Ci+1 . As an extreme case I took a1 = a2 = · · · = a,5 = 0, a6 =
a1 = · · · = a10 = 1, au = 2, bi = 1, Ci = 0 so that the func
tion which was being evaluated was x5 (x - 1)6 (x - 2). In spite
of the multiplicity of the roots, the answers obtained using float
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 2-44 . Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of tlhe quadratic.
This is because the method of evaluation which was used, the two-

3-P 2- 0

te,rm recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of ~42 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 2-7 would have been necessary and the mul
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler
ance for I Xr+1 :-- Xr I as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
~hould be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f (x) since the true func
tion x - f (x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (-x + tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

x = n7r + y

tan x - x = - n11" +
t _yo - ...
3 30

cosy

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co
sine routines, this could be evaluated as

(sin y - y) - y(cos y - 1)
-n7r + . ----

1 + (cosy - 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x60 - 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton's method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is us<>
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
84, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms ;3 and 25 have tolerances on
the size of the function and on the size of the remainders r 1 and
rO respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in
creasing order. This presumably was the case in Certification 3
when the roots of x5 + 7x4 + 5xa + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = -6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original

COLLECTED ALGORITHMS (cont.)

polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE
[1] J. H. WILKINSON. The evaluation of the zeros of ill-conditioned

polynomials Parts I and II. Num. Math. 1 (1959), 150-180.

CERTIFICATION OF ALGORITHM 3
SOLUTION OF POLYNOMIAL EQUATION BY

BARSTOW-HITCHCOCK (A. A. Grau, Comm. ACM
Feb. 1960)

JOHN HERNDON

Stanford Research Institute, Menlo Park, California

Bairstow was transliterated into BALGOL and tested on the
Burroughs 220. The corrections supplied by Thatcher, Comm.
ACM, June 1960, were incor.porated. Results were correct for
equations for which the method is suitable. x4 - 16 = 0 is one
of those which gave nonsensical results. Seven-digit results were
obtained for 12 test equations, one of which was x6 - 2x6 + 2x4 +
x3 + 6x2 - 6x + 8 = 0.

3-P 3- 0

COLLECTED ALGORITHMS FROM CACM

4. BISECTION RotJTINE
S. Gorn
University of Pennsylvania Computer Center
Philadelphia, Pa.

comment

procedure
begin
Bisec:
a:

First val:
Succ val:
Sec val:
Midpoint:
Reg 8:
Precision:

Reg 71:

end Bisec

This procedure evaluates a function at the end-points
of a real interval, switching to an error exit (fools
exit) FLSXT if there is no change of sign. Otherwise
it finds a root by iterated bisection and evaluation
at the midpoint, halting if either the value of the
function is less than the free variable E or two suc
cessive approximations of the root differ by less
than El. E should be chosen of the order of error in
evaluating the function (otherwise time would be
wasted), and El of the order 'of desir1:ld accuracy. d
must not be less than two units in the last place
carried by the machine or else indefinite cycling will
occur due to round-off on bisection. Although this
method is of 0 order, and therefore among the slow
est, it is applicable to any continuous function. The
fact that no differentiability conditi1ons have to be
checked makes it, therefore, an 'old work-horse'
among routines for findinJ?; real roots which have
already been isolated. The free variables yl and y2
are (presumably) the end-points of an interval within
which thete is an odd number of roots of the real
function F. a is the temporary exit for the evalua
tion of F.;
Bisec(yl, y2, E, El, F(), FLSXT) =: (x)

i := I' ; j := 1 ; k := 1
f :== F(x) ; if (abs(f) ;;i! E)
go to 'YI

x ::= y2
return

i : == 2 ; fl : = f ; x : = y 1 go to a

if (sign(f) = sign(fl)) ; go to 8j ; go to 7/k

j := 2 ; k := 2
x := yl/2 + y2/2 · ; go to a

y2 == x
if (abs(yl - y2) ~ d) ; go to 'Midpoint
return
yl := x ; go to Precision
integer (i, j, k)
swiich 'Y := (First val, Succ val)
switch 8 : = (FLSXT, Reg 8)
switch .,, : = (Sec val, Reg 7/)

CERTIFICATION OF ALGORITHM 4
BISECTION ROUTINE (S. Gorn, Comm. ACM,

March 1960)
PA'ITY JANE RADER,* Argonne National Laboratory,

Argonne, Illinois
B1sEc was coded for the Royal-Precision LGP-30 computer,

using an interpretive floating point system (24.2) with 28 bits of
significance.

The following minor correction was found necessary.

4-P 1- 0

a: go to 'YI should be go to 'Yi

*Work supported by the U. S. Atomic Energy Commission.
After this correction was made, the program ran smoothly for

F (x) = cos x, using the following parameters:

Y1 Y2 Results

0 1 .001 .001 FLSXT
0 2 .001 .001 1.5703
1.5 2 .001 .001 1.5703
1.55 2 .1 .1 1.5500
1.5 2 .001 .1 1.5625

These combinations test all loops of the program.

* Work suprorted by the U. S. Atomic Energy Commission.

COLLECTED ALGORITHMS FROM CACM

5. BESSEL FUNCTION I, SERIES ~XPANSION
Dorothea S. Clarke
General Electric Co., FPLD, Cincinnati 15, Ohio

comment

procedure
begin
I:
if
if

STRT:
if
for

HRE:
for

SURE: if
begin

end

Compute the Bessel function In (X) when n and X
are within the bounds of the series expansion.
The procedure calling statement gives n, X and an
absolute tolerance o for determining the point at
which the terms of the summation become insig
nificant. Special case: Io (0) = 1;
l(n, X, o) =:(ls)

s : = 0 sum : = 0
(n 7" 0) ; go to STRT
(X = 0) begin Is := return end
summ := J ; go to SURE
sfac := 1
(s = 0) ; go to HRE
t := 1 (1) s
sfac := sfac X t
snfac : = sfac
t := s + 1 (1) s + n
snfac := snfac X t
summ :=sum+ (X/2)n+2X8 /(sfac X snfac)
(o < abs (summ - sum))
s := s + 1 ; sum := summ ; go to STRT end
Is : = summ ; return

5-P 1- 0

COLLECTED ALGORITHMS FROM CACM

6. BESSEL FUNCTION I, ASYMPTOTIC EXPANSION

Dorothea S. Clarke
General Electric Co., FPLD, Cincinnati 15, Ohio

comment

procedure
begin
I:

Repeat:

if
begin

end

Compute the Bessel Function L,(X) when n and X
are within the bounds of the asymptotic expansion.
The procedure calling statement gives n, X and an
absolute tolerance o for determining the point at
which the terms of the summation become in
significant;
I(n, X, o) =: (IA)

r : = 1 ; pe : = (4 X n 2 - 1) I (8 X X)
sum:= - pe

r :== r + 1
p~ := pe X ((2 X n) 2 - (2 X r - 1) 2) / (r X 8 XX)
(ii <abs (pe))
sum := sum+ (-1)• X pe ; go to Repeat end
IA := (1 + sum) X (exp(X) /sqrt (2 X 7r X X))

return

6-P 1- 0

COLLECTED ALGORITHMS FROM CACM

7. EucLIDIAN ALGORITHM

Robert Claussen
General Electric Co., Cincinnati 15, Ohio

comment

procedure
begin
EUC:
if
begin
if
begin

here:
comment

if
begin
begin

integer
end

Every pair of numbers a, b not both zero have a
positive greatest common divisor: gcd;
EUC (a, b) = : (gcd)

(a - 0)
gcd := b
(b - 0)

return end

gcd :- a return end
r2 :==a
rl := b
g :== r2/rl
Assumption is made that truncation takes place
in the above statement;
r :== r2 - rl X g
(r = 0)
gcd : - rl ; return end
r2 := rl
rl := r
go to here end
{ 2:)

7--P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 8
EULER SUMMATION
3 (May 1960), 318 P. NAUR

procedure euler (fct, sum, eps, tim) ; value eps, tim
integer tim ; real procedure fct ; real sum, eps
comment euler computes the sum of fct(i) for i from zero up t.o
infinity by means of a suitably refined euler transformation. The
summation is stopped as soon as tim times in succession the abso
lute value of the terms of the transformed series are found to be
less than eps. Hence, one should provide a function fct with one
integer argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in the case
of a slowly convergent or divergent alternating series
begin integer i, k, n, t ; array m[0:15] ; rea]I mn, mp, ds
i : == n : == t : == 0 ; m[O] : = fct(O) sum : = m[0]/2
nextterm: i : = i+l ; mn : == fct(i)

fork:= 0step1 until n do
begin mp : = (mn+m[k])/2 ; m[k] · - mn

mn : == mp end means
if (abs(mn) <abs(m[n]));\ (n<15) then

begin ds : = mn/2 ; n : = n+l m[n] : =
mn end accept

else ds : = mn ;
sum : = sum + ds ;
if abs(ds) <eps then t : = t+J else t : = 0
if t <tim then go to nextterm

end eu]er

CERTIFICATION OF ALGORITHM 8
EULER SUMMATION [P. Naur et al. Comm. ACM

3, May 1960)
HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.
•Work supported by the U.S. Atomic Energy Commission

The body of euler was tested on the LGP-30 computer using the
Dartmouth SCALP translator. No errors were detected.

The program gave excellent results when used to derive the co
efficients for the expansion of ln (l+x) in shifted Chebyshev poly
nomials from the first ten terms of the power series. For n == O, 1,
2, 3, 4, the coefficient of x' in the power series was multiplied by
the coefficient of T,,,*(x) in the expression of x' in terms of the
T,,,*(x). The product, for i = 1, 2, · · · , 10 was used asfct(i) in the
program. Results for n = 0 were as follows:

jct(i) ds sum

1 +o. 50000000
2 -0.18750000 +0.07812500 +0.3281250
3 +o .10416667 +0.05729166 +0.3854167
4 -0.068359375 -0. 005940758 +0.3794759
5 +0.049218750 -0.001928713 +0.3'.775471
6 -0.037597656 -0.001357019 +0.3'761900
7 +o. 029924665 +0.0001742393 +0.3'763642
8 -0.024547577 +o. 0000511311 +0.3'164212
9 +o. 020001842 +o. 0006395427 +0.3764607

10 -0.017619705 -0. 0000055069 +o. 3'164551
True Value1 +0.3764528129

8-P 1- 0

Errors less than 0.2 X 10-6 were also found for n = 1, 2, 3, 4, 5,
6, 7, 8 and 9.

This technique appears to be a useful supplement to direct
telescoping (Algorithms 37 and 38) and to the methods recom
mended by Clenshaw1, for slowly convergent power series.

1 Clenshaw, C. W., Chebyshev Series for Mathematical Functions.
National Physical Laboratory Math Tables, Vol. 5, London,
H.M.S.O. (1962).

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 9 RUNGE-KUTTA INTEGRATION
3 (May 1960), 318 P. NAUR
procedure RK(x,y,n,FKT,eps,eta,xE,yE,fi) ; value x,y
integer n ; Boolean fi ; real x,eps.,eta,xE array
y,yE ; procedure FKT ;
comment : RK integrates the system Yk'=fk(x,y1 ,y2 , ... , Yn)
(k= 1,2, ... ,n) of differential equations with the method of Runge
Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values x and y[k] for x and the un
known functions Yk(x). The order n of the system. The procedure
FKT(x,y,n,z) which represents the system to be integrated, i.e.
the set of functions fk . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which repre
sents the solution at x=xE. The Boolean variable :fi, which must
always be given the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh
points Xo , X1 , ... , Xn , then the procedure must be called repeat
edly (with x=xk, xE=Xk+i. for k=O, 1, ... , n-1) and then the
later calls may occur with fi=false which saves computing time.
The input parameters of FKT must be x,y ,n, the output parameter
z represents the set of derivatives z[k]=h(x,yll], y[2], ... , y[n])
for x and the actual y's. A procedure comp enters as a non-local
identifier
begin

array z,yl,y2,y3[1:n] ; real xl,x2,x3,H ; Boolean out
integer k,j ; own real s,Hs ,
procedure RKlST(x,y,h,xe,ye) ; real x,h,xe ; array

y,ye
comment : RKlST integrates one single RUNGE-KUTTA

with initial values x,y[k] which yields the output
parameters xe=x+h and ye[k], the latter being the

solution at xe. Important: the parameters n, FKT, z
enter RKlST as nonlocal entities

begin
array w[l:n], a[1:5] ; integer k,j
a[l] : = a[2] : - a[5] : = h/2 ; a[3] : - a[4] : = h
xe := x ;
for k : = 1 step l until n do ye[k] : - w[k] : = y(kJ
for j : = 1 step 1 until 4 do
begin

FKT(xe,w,n,z)
xe := x+a[j] ;
for k : = 1 step 1 until n do
begin

w(k] : = y[k]+a[j]Xz[kl ;
ye[k] : - ye[k] + a[j+l]Xz[k]/3

end k
end j

end RKlST
Begin of program:

if fi then begin H : = xE- x ; s : - 0 end else H : = H~
out : == false ;

AA: if (x+2.0lXH-xE>O)==(H>O) then
begin Hs : = H ; out : = true H : = (xE-x)/2

end if
RKlST (x,y,2XH,xl,yl)

BB: RKlST (x~y,H,x2,y2) ; RK1ST(x2,y2,H,x3,y3)
for k : '""' 1 step 1 until n do

9-P 1- 0

if comp(yl[k],y3[k],eta)>eps then go to CC ;
comment : comp(a,b,c) is a function designator, the value

of which is the absolute value of the difference of the
mantissae of a and b, after the exponents of these
quantities have been made equal to the largest of the ex
ponents of the originally given parameters a,b,c

x : = x3 ; · if out then go to DD ;
for k : = 1 step 1 until n do y[k] : == y3[k]
if s=5 then begins:= 0 ; H: == 2XH end if
s : = s + 1 ; go to AA ;

CC:H:=0.5XH; out:;,.,fals~; xl:=x2
for k : * 1 step 1 until n do yl [k] : == y2[k]
go toBB

DD: fork:= 1step1 until n do yE[k] : = y3[k]
end RK

8 This RK-program contains some new ideas which are related
to ideas of S. GILL, A process for the step-by-step integration of
differential equations in an automatic computing machine, Proc.
Camb. Phil. Soc. Vol. 47 (1951) p. 96; and K FROBERG, On the
solution of ordinary differential equations with digital com
puting machines, Fysiograf. Sallsk. Lund, Forhd. 20 Nr. 11 (1950)
p. 136-152. It must be clear, however, that with respect to com
puting time and round-off errors it may not be optimal, nor has it
actually been tested on a computer.

CERTIFICATION OF ALGORITHM 9 [D2]
RUNGE-KUTTA INTEGRATION [P. Naur et al.,

Comm. ACM 3 (May 1960), 318]
HENRY C. THACHER, JR. (Recd. 28 July 1964 and 22 Nov.

1965)
Argonne National Laboratory, ·Arg<mne, Ill.

Algorithm 9 was transcribed into the hardware representation
for CDC 3600 ALGOL and run successfully. The following procedure
was used for the global procedure comp:
real procedure comp (a, b, c); value a, b, c; real a, b, c;
begin integer AE, BE, CE;

integer procedure expon(x); real x;
comment This function produces the base 10 exponent of x;
expon : = if x = 0 then -999 else

entier (.4342944819 X ln(abs(x)) + 1);
comment The number -999 may be replaced by any number

less than the exponent of the smallest positive number handled
by the particular machine used, for this algorithm assumes
that true zero has an exponent smaller than any nonzero
floating-point number. Users implementing real procedure
comp by machine code should make sure that this condition
is satisfied by their Program;

AE :=- expon(a); BE:• expon(b); CE:== expon(c);
if AE <BE then AE :- BE; if Al~< CE then AE :- CE;
comp:= abs(a - b)/10 j AE

end

COLLECTED ALGORITHMS (cont.)

This has the advantage of machine independence, but is highly
inefficient compared to machine code.

The procedure was tested using the two following procedures
for FKT:
1>rocedure FKT (X, Y, N, Z); real X; integer N; array

Y,Z;
(~omment (dyi/dx) = Zi = Y2, (dy2/dx) = z2 = -yi . With

Yi (O) = 0, Y2(0) = 1, the solution is Y1 = sin x, Y2 = cos x;
begin Z [1] := Y [2]; Z [2] := - Y [1] end;
J>rocedure FKT (X, Y, N, Z); real X; integer N; array

Y,Z;
c~omment (dyi/dx) = 1 + Y12• For Y1(0) = 0, y(x) = tan x;

Z [1] := 1+ Y[l]j2;
The RK procedure was used to integrate the differential equa

tions represented by the first FKT procedure from x = 0(0.5)7.0,
with eps = eta = 10--e, and with Yi(O) = 0, Y2(0) = 1. The actual
sfop size h was .0625 for most of the range, but was reduced to
.03125 in the neighborhood of x = krr/2, where one or the other of
the solutions is small.

The computed solutions at x = 7.0 were: Yi = 6.5698602746
)(10-1, y2 = 7.5390270246 X 10-1, with errors -5.71 X 10-7 and
4:.48 X 10-1 , respectively.

Results for the second differential equation are summarized in
Table I below.

The efficiency of the procedure would be increased slightly on
most computers by changing the type of the own variable s from
real to integer.

The error is estimated by comparing the results of successive
pairs of steps with that of a single double step. This is somewhat
more time-consuming than the Kutta-Merson process presented
in Algorithm 218 [Comm. ACM 6 (Dec. 1963) 737-8]. However,
the criterion for step-size variation in Algorithm 9 which effec
tively applies an approximate relative error criterion, eps, for
!:YI > eta, and an absolute error criterion eta X eps, for IYI < eta,
a1ppears superior when the solution fluctuates in magnitude.

TABLE I [ALG. 9]

x = 0.5 x = 1,0
'1

hmin Absolute error Relative error hmin Absolute error

10-7 10-a .03125 -1 x lQ-9 -2 x lQ-9 .03125 9 X 10-s
10-5 10-a .125 -5 x 10-7 -9 x 10-7 .0625 8 x 10-7

10-a 10-a .25 -1 X 10-5 -2 x 10-11 .25 -2 x 10-4

9-P 2- 0

x ... 1.5

Relq,tive error hmin Absolute error Relative error

6 X 10-s .00390625 -1 x 10-a -8 x 10-
5 x 10-7 .0078125 -2 x 10-4 -1x10-

-1 x 10-4 .03125 -3 x 10-2 -2 x 10-

COLLECTED ALGORITHMS FROM CACM

10. EVALUATION OF THE CHEBYSHEV POLYNOMIAL Tn(X)
BY RECURSION
G. M. Galler
National Bureau of Standards, Washington 25, D. C.

comment

real procedure
real
begin real

This procedure computes the Chebyshev
polynomial Tn(X) = cos (n X cos-1(X)) for
any given real argument, X, and any order, n,
by the recursion formula below;
Ch(n, X)
X :; integer n ;
a, b, c ; integer i
a :=• 1 ; -b := X ,
if n = 0 then c : = a else if n = 1 then
c := b else for i := 2 step 1 until n do
begin c : = 2 X X X b - a ;

a := b ; b := c
end
Ch:= c
end

CERTIFICATION OF ALGORITHM 10
CHEBYSCHEV POLYNOMIAL Tn(x) (Galler, Comm.

ACM, June, 1960)
JOHN HERNDON
Stanford Research Institute, Menlo Park, California

When transliterated into BALGOL and tested on the Bur
roughs 220, Ch(n, x) gave better than 7-digit accuracy for n = 0,
1, 4, 8 and x = .01, .2, .7. It gave answers when x > 1 which cor
responded to the value of the series with x substituted.

10-P 1- 0

COLLECTED ALGORITHMS FROM CACM

11. EVALUATION OF THE HERMITE POLYNOMIAL Hn(X)

BY RECURSION

G. M. Galler
~ational Bureau of Standards, Washington 25, D. C.

comment

real procedure
integer
begin real

This procedure computes the Hermite poly
nomial
Hn(X) = (-l)n X eX2 X (dn/dX 0 (e-X2

)) for any
given real argument, X, and any order, n, by
the recursion formula below;
He(n, X) ;
n ; real X ;
a, b, c ; integer i
a := 1 ; b := 2X
if n = 0 then c : = a else if n = 1 then
c := b else for i := 1 step 1 until n-1 do
begin c : = 2 X X X b - 2 X i X a ;

end
He:= c
end

a := b ; b := c

11-P 1- 0

COLLECTED ALGORITHMS FROM CACM

12. EVALUATION OF THE LAGUERRE POLYNOMIAL Ln(X)

BY RECURSION

G. M. GALLER

National Bureau of Standards, Washington 25 D. C.

comment

real procedure
integer
begin real

This procedure computes the Laguerre poly
nomia,l
Ln(X) = eX X (dn/dXn(Xn X e-X)) for any
given real argument, X, and any order, n, by
the recursion formula below;
La(n, X) ,
n ; real X ;
a, b, c ; integer i ;
a := 1 ; b := 1 - X ;
if n = 0 then c : = a else if n = 1 then
c := b else for i = 1 step 1 until n-1 do

begin c : = (1 + 2 X i - X) X b - (i i 2) X a
a := b ; b := c

end
La :== c
end

12-P 1- 0

COLLECTED ALGORITHMS FROM CACM

13. EVALUATION OF THE LEGENDRE POLYNOMIAL Pn(X)
BY RECURSION
G. M. Galler
National Bureau of Standards, Washington 25 D. C.

comment This procedure computes the Legendre poly
nomial
Pn(X) = (1/(2n X nl)) X dn/dXn(X2 - l)n for
any given real argument, X, and any order, n,

real procedu1~e
by the recursion formula below;
Le(n, X) ;

integer
begin real

n ; real X ;
a, b, c ; integer i ;
a := 1 ; b := X ;
if n = 0 then c : = a else if n = 1 then
c := b else for i := 1 step 1 until n-1 do

begin c := b XX+ (i/(i + 1)) X (XX b - a)
a := b ; b := c

end
Le:= c
end

CERTIFICATION OF ALGORITHM 13
LEGENDRE POLYNOMIAL Pn(x) (Galler, Comm.

ACM, June 1960)
JORN HERNDON
Stanford Research Institute, Menlo Park, California

When transliterated into BALGOL and tested on the Burroughs
220, Le(n, x) gave 7-digit accuracy for n = 0, 1, 4, 9 and X = .01,
.2, .7' 1.9' 5.0.

13-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 14
COMPLEX EXPONENTIAL INTEGRAL
A. Beam
National Bureau of Standards, Washington 25, D. C.
procedure

comment

begin

BACK:

end

EKZ(x,y,k,E,u,v,n) ; real x,y,k,E,u,v ;
integer n ;

EKZ computes w(z,k) == u +iv = zke• i"° e-tdt/tk

from the continued fraction representation found
in H. S. Wall, Continued Fractions, Chap. 18 (D.
Van Nostrand, New York, 1948). Input parameters
are x, y, k, and E where z=x+iy. Successive con
vergents are computed as follows: For n = 2, 3, 4,
· .. , Dn = z/(z + M X Dn-1), Rn =
(Dn - l)Rn-1 1 Cn = Cn-1 + Rn , where M is
k + (n-2)/2 or (n-1)/2 according to whether n
is even or odd, and D1 = R1 = C1 == 1. Computa
tion is stopped when Cn and Cn-1 agree to the sig
nificance specified by E. The corresponding index
n is available after use of the procedure. This
method is valid in the entire complex plane except
for the origin and the negative real axis. Conver
gence is too slow to be practical for I z I < .05.
Also for some range within the half-strip I y I < 2,
x < 0 (this range depends on k). The method is
valid for complex k, but only real k is considered
in this procedure;
real tl, t2, t3, M, K, c, a, d, b, g, h, El ;

integer m ;
comment R = a+ ib, D = c +id, C = g + ih

d : = Ej2 ;
u:=c:=a:=l ; v:=d:=h:=O
n:=l; K:=k-1;

g:=u; h:=v; n:==n+l;
m:=n+2,

if 2 X m = n then M : = m + K else M : = m
tl:==x+Mxc; t2:=y+MXd

t3 : == t1 j2 + t2j2 ;
c : = (x X t1 + y X t2) /t3 ;

d : = (y x t1 - xx t2)/t3
tl : = c ·- 1 ; t2 : = a ;

a:=aXtl-dXb; b:=dXt2+t1Xb
u:==g+a; v:-h+b;
if (aj2 + bj2)/(uj2 + vj2) > d then go to

BACK
EKZ

CERTIFICATION OF ALGORITHM 14
COMPLEX EXPONENTIAL INTEGRAL (A. Beam,

Comm. ACM, July, 1960)
P. J. RADER AND HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois
EKZ was programmed by hand for the Royal-Precision LGP-30

computer, using a 28-bit mantissa floating-point interpretive sys
tem (24.2 modified). To facilitate comparison with existing tables
<National Bureau of Standards Apolied Mathemat.i~R Series 51

14-P 1- 0

and 37), the rea1 and imaginary parts of Ek(ZJ were computed
from u and v. Results are shown in the following table. In all
cases, the values agreed with tabulated values within the toler-
ance spe~ified.

x y k n
1 X 10-s 1.0 1 10-1 7
1 X 10-s 1.0 1 10-2 14
1 X 10-s 1.0 1 10-a 24
1 X 10-s 1.0 1 10-4 37
l X 10-s 1.0 1 10-0 52
1 X 10-s 1.0 1 10-6 70
1 X 10-8 1.0 1 10-7 90
1 X 10-s 1.0 1 10-s 114
1 X 10-s 2.0 1 10-6 37
1 X 10-s 3.0 10-s 26
1 X 10-s 4.0 1 10-6 21

1.0 1 X 10-s 1 10-6 40
1.0 1.0 1 10-s 34
1.0 2.0 1 10-6 26
1.0 3.0 1 10-6 21
2·0 1 X 10-s 10-6 23
2.0 1.0 10-6 22
2.0 2.0 1 10-6 20
2.0 3.0 1 10-s 17
3.0 1 X 10-s 1 10-0 17
3.0 1.0 1 10-6 17
3.0 2.0 1 10-6 16
3.0 3.0 1 10-6 15
4.0 0.0 0 10-6 20
4.0 0.0 1 10-s 15
4.0 0.0 2 10-6 16
4.0 0.0 3(1)U 10-s 17
4.0 0.0 15, rn 10-a 16

It thus appears that the algorithm gives satisfactory accuracy,
but that in certain ranges of the variabl,es, the time required may
be excessive for extensive use.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 15
ROOTFINDER II (Modification of Algorithm 2. RooT

FINDER, J. Wegstein, Communications ACM, February,
1960)

HENRY C. THACHER, JR.,* Argonne National Laboratory,
Argonne, Illinois

procedure ROOT II (f, a, eps, n, g, c, m); integer n, m;
real procedure f; real a, eps, g, c;

comment ROOT II computes a value of g = y satisfying
the equation y = f(y). The iteration will con
verge to Y providing that at some time in the
iteration a g is reached such that abs(g - Y) X
abs(d(df/dy)/dy) < 2 X abs((df/dy) - 1),
where the derivatives are evaluated at Y.
Input includes (1) f·, a procedure for computing
f (y), (2) a, an initial approximation to the
root, (3) eps, a tolerance for the relative error
in g, and (4) n, a maximum number of itera
tions to be performed. Output includes: (1) g,
the required root, (2) c = f (g) -- g, (3) m, a
parameter indicating the success of the pro
cedure. If the tolerance was not met, m < 0.
I m - 1 I gives the number of times that the
correction tog exceeded the preceding one, an
indication of instability.

begin integer j; real b, d, h;

comment

m := 1; if f(O) = 0 then begin g := O;
go to return end ·'-' -

else g := f(a); b := d := c := a - g;
if c = 0 then go to return else
for j := 1step1 until n do begin c := f(g) - g;
if (abs(c/g) < eps then go to return else h .-

b/c;
if h < 0 V h > 2 then m : = m + 1 else
d := d/(h - 1); b := c; g :== g + d end

iteration
if the system is known to be stable, the if clause
·of the last statement can be omitted;

m := - m return end

*Work supported by the U. S. Atomic Energy Commission.

CERTIFICATION OF ALGORITHM 15
ROOTFINDER II (Revision by Henry C. Thacher, Jr.,

Communications ACM, August, 1960)
HENRY C. THACHER, JR.,* Argonne National Laboratory,

Argonne, Illinois
The revision of ROOTFINDER suggested in the preceding

remark was programmed by hand for the Royal Precision LGP-30
computer, using a 28-bit mantissa floating point interpretive
system (24.2).

The program was tested for the following equations:
(1.k) f (y) = arc tan y + kn- (k = 0, 1, 2, 3, 4, 6, 8)

(2) f (y) = (y
3 + 1)

1
'
3
} These both have the root 1.3247180428

(3) f (y) = y 3 - 1

(4.k) f (y) = sinh akY} (1 2 _ o 5 ,,, ·= o 5 .v. == 1 2)
a1 == - . , a11 - - • , ~a • · , -. •

(5.k) f (y) = cosh akY

15-P 1- 0

Typical results of these tests were as follows.

f(y) a g [f(g-1) - g_i) x 107 Remarks

1.0 10-s 1. 0000 0.0000000 0.00
1.1 10-s 3.1415 4. 4934094 0.15
1.2 10-s 6. 2832 7. 7252518 0.60
1.3 10-s 9. 4248 10. 904122 0.00
1.4 10-s 12.5664 14.066194 0.00
1.6 10-s 18. 8496 20. 371303 0.60
1.8 10-s 25.1327 26.666054 0.60
1.2 10-·s 1.3 1. 3247179 0.00
1.2 10-s 0.5 1.3247179 0.00
3 10-9 9.0 4.4804900 197. 74 x 107} Diverged 2 times, not con·

10-9 5.0 1. 3482797 . 51x107 verged after 20 iter .
10-9 3.0 1.3247180 0.0 Converged in less than 20 iter.
10-9 2.0 Diverged 2 times. Term. with

h = 1.
10-9 1.1 1. 3247180 1384.2<1 Diverged 9 times. Converged

after 20 iter.
10-9 1.0 Terminated when g became 0.
10-9 0.8 1. 3247180 0.00 Diverged 4 times. Conv. in

less than 20.
10-9 0.6 1. 6161598 4.39 x 107 Diverged 2 times. No conv.

after 20.
4.k 10-9 1.0 0.00000000 O.OOOOOOIJu For all k.
5.1. 5.4 10-s 1.0 0.09179585 0. 793.X 107 Diverged 7 times. No conv.

after 20 iter.
5.2, 5.3 10-s t.O 1.11787755 0.037

Function (3) is of particular interest, since it does not converge
for most algorithms. With the Wegstein iteration, convergence
was obtained, or would have been obtained with a few more itera-
tions for a wide range of initial guesses.

* Work supported by the U. S. Atomic Energy Commission.

REMARK ON ALGORITHM 15
ROOTFINDER II (Henry C. Thacher, Jr., Comm.

ACM, August 1960)
GEORGE E. F.oRSYTHE AND JoHN G. HERRIOT, Stanford

University, Stanford, California

As pointed out by Lieberstein (Comm. ACM, January 1959,
p. 5), this algorithm is precisely the Newton method of chords or
the scant method applied to g(x) - f(x) - x - 0. Thus conver
gence is not of second order but rather (for simple roots) of order
!<v'5 - 1) - 1.618, as shown by Jeeves (Comm. ACM, August
1958, pp. 9-10). In the first portion of the algorithm b, c, d, should
be set equal tog- a instead of a-gin order to be consistent with
the iteration portion. Doing this will usually cut down the number
of iterations. Not only is a preliminary test for a zero root de
sirable but the possibility that g may be zero at any stage of the
iteration should be considered in writing the return criterion. The
possibility that h - 1 should also be checked and appropriate ac
tion taken. Algorithm 26 takes ca.re of these matters and also
corrects some minor errors in Algorithm 15. This method is cer
tainly not the best rootfinder that could be written.

COLLECTED Al.f;ORITHMS (cont.)

REMARKS ON ALGORITHMS 2 AND ~ (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, ~ovembcr 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting fac~or on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple
diagonal matrices T having tii = ai, ti+1.i = bi+i , hi+1 =

Ci+1 . As an extreme case I took a1 = a2 = · · · = as = 0, aa =
a1 = · · · = a10 = 1, au = 2, bi = 1, Ci = 0 so that the func
tion which was being evaluated was x6 (x - 1)5 (x - 2). In spite
of the multiplicity of the roots, the answers obtained using float
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 2-44 _ Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was rnmd, the two
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 2-·12 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 2--7 would have been necessary and the mul
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler
ance for I Xr+1 - x, I as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should. be necessary. The great power of rootfinders of this type
is that:, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
root.finder so that it finds the zeros of x = f (x) since the true func
tion x - f (x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Ce.rti
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (-x +tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

x = Il11" + y

~ - y6 -
3 30

tan x - x = -n11" + ------
cosy

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co
sine routines, this could be evaluated as

(sin y - y) - y(cos y - 1)
-n11"+

1 + (cosy - 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = O. As regards the number of iterations needed, the. re
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x60 - 1 is well cond_itioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed .to find the root x = 1. Similarly
a very large number are needed for Newton's method, starting
with x i::: 2. If the i;ime for evaluating the derivative is about the

15-P 2- 0

same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton. . . .

In all of the algorithms, including that for Bairstow, it is USE'

ful to have some criterion which limits the permissible change
from one value of the independent va:riable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
84, that abs(fprt) < abs(x2 X 10), but here the limitation. is
placed on the permissible increase in the value of the function
from one step to.the next. Algorithms a and 25 have tolerances on
the size of the function and on the size of the remainders rl and
rO respectively. They are very difficult tolerances to assign. si~ce
these quantities may take very small values without our w1shmg
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in
creasing order. This presumably was the case in Certification 3
when the roots of x6 + 7x4 + 5x3 + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polyno.mial_ were
found very accurately and convergence was very fast usmg smgle
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = -6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
Polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE
[1] J. H. WILKINSON. The evaluation of the zeros of ill-conditioned

polynomials Parts I and II. Num. Math. 1 (1959), 150-180.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 16
CROUT WITH PIVOTING
GEORGE E. FORSYTHE

Stanford University, Stanford, California

real procedure INNERPRODUCT(u,v) index (k) start (s)
finish : (f) ;

values, f; integer k, s, f; real u, v;
comment INNERPRODUCT forms the sum of u(k) X

begin

v(k) for k = s, s+l, ... , f. Ifs > f, the value
of INNERPRODUCT is zero. The substitution
of a very accurate inner product procedure
would make CROUT more accurate;

real h;
h := 0; fork := s step 1 until f doh := h -1- u X v;
INNERPRODUCT := h

end INNERPRODUCT;

procedure CROUT (A, b, n, y, pivot, INNERPRODUCT);
value n; array A, b, y, pivot; integer n, pivot;
real procedure INNERPRODUCT;

comment This is Crout's method with row interchanges, as

begin

formulated in reference [1], for solving Ay = b
and transforming the augmented matrix [A b]
into its triangular decomposition LU with all
L[k, kl = 1. If A is singular we exit to 'singular,'
a non-local label. pivot[kl becomes the current
row index of the pivot element in the k-th
column. Thus enough information is preserved
for the procedure SOLVE to process a new
right-hand side without repeating CROUT.
The accuracy obtainable from CROUT would
be much increased by calling CROUT with a
more accurate inner product procedure than
INNERPRODUCT;

integer k, i, j, imax, p; real TEMP, quot;
fork := 1 step 1 until n do

1: begin
TEMP:= O;
for i := k !!}tep l ~mtil n <\o

!.!: begin
A[i, kl := A[i, kl - INNERPRODUCT(A[i,p), A[p, k],

p, 1, k-1);
if abs(A[i, k]) > TEMP then

3: begin
TEMP := abs(A[i, k]); imax := i
end 3

end 2;
pivot [kl : = imax;
comment We have found that A[imax, k] is the largest

pivot in column k. Now we interchange rows k and imax;
if imax ';;6- k then

4: begln for j := 1 step 1 until n do
5: begin

TEMP := A[k,jl; A[k, j) := A[imax,j);
A[imax,jl := TEMP

end5;
TEMP:= b[k); b[k) := b[imaxl; b[imax] :=TEMP

16-P 1- 0

end 4;
comment The row interchange is done. We proceed to the

eliminfl,tion;
if A[k, kJ = 0 then go to singular;
for i := k+l step 1 until n do
begin.quot := 1.0/A[k, k]; A[i, k] .- quot X A[i, k]

end;
for j := k+l step 1 until n do

A[k, j) := A[k,j] - INNERPRODUCT(A[k, p],
A[p,j], p, 1, k-1);

b[k] := b[k] - INNERPRODUCT(A[k,p], b[p], p,
1, k-·1)

end 1;
comment T-he triangular decomposition is now finished,

and we do the back substitution;
fork := n step -1until1 do

y[k] := (b[kl - INNERPRODUCT(A[k,p], y[p), p,
k+l, n)/A[k, kl

end CROUT;

procedure SOLVE (B, c, n, z, pivot, INNERPRODUCT);
value n; array B, c, z, pivot; integer n, pivot;
real procedure INNERPRODUCT;

comment SOLVE assumes that a matrix A has already heen

begin

transformed into B by CROUT, but that a new
column c has not been processed. SOLVE solves the
system Az = c, and the output z of SOLVE is pre
cisely the same as the output y of the procedure
statement CROUT (A, c, n, y, pivot, INNER
PRODUCT). However, SOLVE is faster, because
it does not repeat the triangularization of A;

integer · k; real TEMP;
fork := 1step1 until n do
begin

TEMP := c[pivot[k]]; c[pivot[k]] := c[k]; c[k] .
TEMP; c[kl := c[k) - INNERPRODUCT(B[k, p],
c [p], p 1, k - 1)

end;
fork := n step -1until1 do

z[kl := (c[k] - INNERPRODUCT(B[k,p], z[p], p,
k+l, n)/B[k, k]

end SOLVE

REFERENCE

[1) J. H. WILKINSON, theory and practice in linear systems, pp.
43-100 of JoHN W. CARR III (editor), Application of Advanced
Numerical Analysis to Digital Computers, (Lectures given at
the University of Michigan, Summer 1958, College of En
gineering, Engineering Summer Conferences, Ann Arbor,
Michigan (1959]).

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 16
CROUT WITH PIVOTING (G. Forsythe, Commum:ca-

tions ACM, September, 1960)
GEORGE E. FORSYTHE
Stanford University, Stanford, California

QUERY

Perhaps the most basic procedure for an ALGOL library
of matrix programs is an inner product procedure. The pro
cedure Innerproduct given on page 311 of [1) is fairly difficult
to comprehend, and probably poses great difficulties for most
translating routines. I merely copied its form in writing a modi
fied inner product routine for [2].

My query is: How should one write an inner product pro
cedure in ALGOL?

REFERENCES

1. PETER NAUR (editor), J. W. BACKUS, ET AL., Report on the
algorithmic language ALGOL 60, Comm. Assoc. Comp.
Mach. 3 (1960), 299-314.

2. GEORGE E. FORSYTHE, CROUT with pivoting in ALGOL
60, Comm. Assoc. Comp. Mach. 3 (1960), 507-508.

REMARK ON ALGORITHM 16
CROUT WITH PIVOTING (G. E. Forsythe, Comm.

ACM, 3 (Sept. 19f>O), 507-8.)
HENRY C. THACHER, JR.,* Argonne National Labora

tory, Argonne, Illinois

This procedure contains the following errors:
a. In SOLVE, the expression

c[k) : = c[k] - INNERPRODUCT
(B[k, p], c[p], p 1, k - 1)

should read:
c[k] := c[k] - INNERPRODUCT

(B[k, p], c[p], p, 1, k - 1)
b. In CROUT, the specification part should read:

array A, b, y ; integer n ; integer array pivot
c. In SOLVE, the specification part should read:

array B, c, z ; integer n ; integer array pivot
The efficiency of the algorithm will be improved by the follow

ing changes:

by

a. In the elimination phase of CROUT, replace
for i == k + 1 ~tep 1 until n do
begin quote:= 1.0/A[k, k] A[i, k] :=quot XA[i, k] end

quot := 1.0/A[k, k] ; for i := k + 1step1 until n do
A[i, k] := quot XA[i, k]

b. Omit INNERPRODUCT from the formal parameter list
in both CROUT and SOLVE, and declare INNERPRODUCT
either locally, or globally. This avoids any reference to INNER
PRODUCT in the calling sequence produced by a compiler.

It is also to be noted that a minor modification of CROUT
allows it to be used to evaluate the determinant of A.

All of these suggestions are included in a later algorithm.

*Work supported by the U. S. Atomic Energy Commission.

16-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 17
TRDIAG
c. F. SPRAGUE III
General Atomic Division of General Dynamics Corp.,

San Diego, California

procedure
value n;
comment

begin array

for
begin

f'or

cend trdiag

trdiag (a,b,c,d) order : (n) result : (x);
array a, b, c, d, x; integer n;
this procedure gives the solution to the tri-

diagonal system of linear algebraiic equations:
a1X2 + b1X1 + d1 = 0
aiXi+l + biXi + CiXi-1 +di= 0, i = 2,3, ... 'n-1
bnXn + CnXn-1 + dn = 0.
This method is often used to obtain solutions to

second order difference equations;
gamma [1 : n-1]; integer i; real y;

gamma [1] := -a[l]/b[l];
x[l] := -d[ll/b[l];
i := 2 step 1 until n-1 do
y = b[i] + c[i] X gamma [i - 1];
gamma [i] := -a[i]/y; x[i] := -(c[i] X x[i-1]

+ d[i])/y end;
x[n] := -(c[n] X x[n-1] + d[n])/(b[n] + c[n]

X gamma [n-1]);
i := n step -1 until 2 do
x[i - I] := x[i] X gamma [i - 1] + x[i - I]

17-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 18
RATIONAL INTERPOLATION BY CONTINUED

FRACTIONS
R. w. FLOYD

Armour Research Foundation, Chicago, Illinois

comment This procedure fits tom given points (Xi , Yi) a con-
tinued fraction in the form

a1+(x-x1)/(a2+ (x-x2)/(aa+ (x-x3)/ • • • (x-Xm-1)/am)) · · ·))
It also simplifies the continued fraction to a rational functioP
(No+N1x+ · · · +N d!egXdeg)/(Do+D1x+ · · · +DdcgXdea:),
where deg is at most m + 2;

procedure confr(m,x,y,a,N,D);
real array x,y,a,N,D; integer m;
begin real aa, xx, T; integer i, j, k; real array P,Q[O: m + 2.

switch sw := swl, sw2;
for j := 1step1 until m do
begin aa := y[j]; xx := x[j];

for i := 1step1 until j-1 do
aa := (xx-x[i])/(aa-a[i]); aLll .- aa

end;
k := 1; P[O] := 1; Q[OJ := a(lJ;
mult : for j := 1step1 until m + 2 do P[j] := QLlJ := O;
for i := 2 step 1 until m do
begin for j := i + 2 step -1until1 do

begin T := a[i] X Q[j] - x[i-1] X P[j] + P[j-1];
PLiJ := Q[j]; QLll := T

end; T := a[i] X Q[O] - x[i-1] X P[O];
P[O] := Q[OJ; Q[O] := T

end; go to sw[k];
swl : for j := Ostep 1untilm+2do N[j] := Q[j];

k := 2; P[O] := O; Q[O] := 1; go to mult;
sw2 : for j := 0 step 1 until m + 2 do DLl] := Q[j]

end procedure

CERTIFICATION OF ALGORITHM 18
RATIONAL INTERPOLATION BY CONTINUED
FRACTIONS

[R. W. Floyd, Comm. ACM., Sept. 1960]
HENRY c. THACHEH, JR.:f.

Reactor Engineering Div., Argonne National Lab.,
Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission

The body of procedure confr was tested with the ALGOI, trans-
lator system written for the LGP-30 computer by the Dartmouth
College Computer Center. No syntactical errors were found in the
procedure body, except for a missing semicolon after the array
delcaration. The translated algorithm gave satisfactory results
when tested on values of (4x + 1)/ (x + 4) at any three of the points
x = 1, 2, 3, 4. When all four points were used, a division overflow
occurred in the statement for i := 1 step 1 until j-1 do aa :=

(xx - x[i])/(aa-a[i]); which forms the reciprocal differences. An
overflow of this type will occur whenever y[j] is approximated to
high accuracy by one of the continued fractions based only on the
points x[i], i = 1, 2, · · · , k with k less than j. Unless i = j-1, the
difficulty may be overcome by setting aa equal to the largest real
representable in the computer whenever division overflow would

18-P 1- 0

occur. vvnen i = j-1, the difficulty is irretrievable, and the data
points must be reordered.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 19
BINOMIAu COEFFICIENTS
RICHARD R. KENYON

Computing Laboratory, Purdue University, Lafayette,
Indiana

·comment

integer procedure
lnteger
begin

end

This procedure computes binomial coeffi
cients Cm n = n!/m!(n - m) ! by the re
cursion formula Ci+1 == (n - l)CN(i + 1)
starting from Con = 1
C(m, n) ;
m, n ;
integer i, a, b
a:= 1 ;
if 2 X m > n then b := n - m else

b := m ;
for i := 0 step 1 until b do
begin a := (n - i) X a + (i + 1) end
C :=a
Binomial Coefficients

REMARK ON ALGORITHM 19
RINOMIAL COEFFICIENTS (Richard R. Kenyon,

Comm. ACM, Oct. 1960)
BICHARD STECK

Armour Research Foundation, Chicago 16, Ill.

The for clause of Algorithm 19 should read:

for i := 0 step 1 until b-1 do

With this correction the algorithm was certified on the Armour
Research Foundation UNIVAC 1105.

The recursion formula stated in the comment should read:
Ci+1 = (n-i) Ci'/(i+l).

CERTIFICATION OF ALGORITHM 19
BINOMIAL COEFFICIENTS [Richard R. Kenyon,

Comm. ACM Oct., 1960]
RICHARD GEORGE*

Particle Accelerator Div., Argonne National Lab., Ar
gonne, Ill.
*Work supported by the U.S. Atomic Energy Commission.

This procedure was tested on the LGP-30, using the compiler
ALGOL-30 from Dartmouth College Computation Center. The fol
lowing changes were found necessary:
(1) Within the comment, the line

:should be

Ci'+1 = (n - i)Cin/(i + 1)

(2) The line defining the iteration loop
fol" i : = 0 step 1°until b do

should be
for i := 0 step 1 until b-1 do

(3) The sequence
end C :=a end

should be
end; C :=a end

19-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 20
REAL EXPONENTIAL INTEGRAL
S. PEAVY
:Kational Bureau of Standards, Washington 25, D.C.

real procedure
comn1ent

begin

Expint (x) ; real x ;
·-Ei(-x) = f: (e-u/u) du is computed for
x > 0 by approximation formulas. For
0 < x < 1 the approximation is from E. E.
Allen, Note 169, MTAC 56, pg 240 (1954).
The second approximation formula is for
l ~ x < oo and is from C. Hastings, Jr.,
"Approximations For Digital Computers"
(Princeton University Press, Princeton,
New Jersey, 1955). The absolute error
E(x) is IE(x)I < 2 X 10-7 for 0 < .x < 1
and le(x) I < 2 X 10-s for 1 ~ x < oo ;
real y, w, z ;
if x < 1 then
2: :== ((((.00107857 x x - .00976004) x x

+ .005519968) x x - .24991055) x x
+ .99999193) X x - .57721566 - ln(x)

t,Jse begin
y :== (((x + 8.5733287401) x x

+ 18.059016973) x x + 8.6347608925) x x
+ .2677737343 j

w := (((x + 9.5733223454) x x
+ 25.6329561486) x x
+ 21.0996530827) x x + 3.9584969228

2: := exp (-x) /x X (y/w) end
Exoint :== z end

REMARK ON ALGORITHM 20
REAL EXPONENTIAL INTEGRAL (S. Peavy, Comm.

ACM, October 1960)
s. PEAVY
National Bureau of Standards, Wa~hington, D. C.

A printing error has been called to our attention by J. A.
Beutler of E. I. duPont de Nemours and Co. Lines 15 through 17
of Algorithm 20 should read
z :== ((((.00107857 x x - .00976004) x x

+ .05519968) x x - .24991055) x x
+ .99999193) X x - .57721566 - ln (x)

*Work supported by the U. S. Atomic Energy Commission.

CERTIFICATION OF ALGORITHM 20
REAL EXPONENTIAL INTEGRAL (S. Peavy, Comm.

ACM, Oct. 1960)
WILLIAM J. ALEXANDER* and HENRY C. THACHER, JR.*
Argonne National Laboratory, Argonne, Illinois

Expint (x) was programmed for the LGP-30 computer, using
both a 78 floating-point compiler (ACT III) and a~ SS floating
point interpretive code (24.2). Constants e:iven to more than 78

20-P 1- 0

(or to 88 for the 24.2 program) were rounded to 78 (or 88).
After changing the constant .0055199158 to .05519968, both pro

grams gave acceptable accuracy over the range tested.
The 88 (24.2) program was compared with the 9D values given

for -Ei(-x) in Mathematical Tables Project, Tables of Sine,
Cosine, and Exponential Integrals, Volu.me II (1940) for the
set of values x = 0.1 (0.1)1.0(1.0)10.0. The largest discrepancy found
was -16 X 10-s for x = 0.1. For x greater than 1, all values tested
were good to 88.

For computing real values of the exponential integral, this
algorithm is much faster than EKZ (Algorithm 13). For x < 1,
the ratio of speeds was of the order of :20.

*Work supported by the U.S. Atomic Energy Commission.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 21
BESSEL FUNCTION FOR A SET OF INTEGER

ORDERS
w. BoRscH-SuPAN
National Bureau of Standards, Washington 25, D. C.

procedure BESSELSETINT (x, n, E, J) ; value x, n, e ;
real x, e ; integer n ; real array J ;

comment: This procedure computes the values of the Bessel
functions Jp(X) for real argument x and the set of all integer
orders from 0 up ton and stores these values into the array J,
whose subscript bounds should include the integers from 0 up
to n. n must be nonnegative.

The computation is done by applying the recursion formula
backward from p = k down top= 0 as described in MTAC 11
(1957), 255-257. k is chosen to yield errors less than l0-5

approximately after the first application of the recursion. The
recursion is repeated with a larger k until the difference be
tween the results of the two last recursions doesn't exceed the
given bound e > 0. The steps in increasing k are chosen in
such a way that the errors decrease at least by a factor of
approximately 10-5 • There is no protection against overflow.

begin real dist, recO, reel, rec2, sum, max, err ;
integer k, p ; Booleans ; real array Jbar[O:n]
if x = 0 then
begin J[O] := 1 ; for p := 1step1- until n do J[p] := O

go to Exit
end
dist : = if abs(x) ~ 8 then 5 X abs(x) j (l/3) else 10 ;
k := entiei: ((if abs(x) ~ n then abs(x) else n) +dist) + 1
s := fa]se ;

Rec: recO := 0 ; reel := 1 ; sum := O ;
for p := k step -1 until 1 do
begin J[if p > n + 1 then n else p - l] := rec2 :=

Z X p/x X reel - recO ;
if p = 1 then sum := sum+ rec2
else if p + 2 X 2 ~ p then sum : =

sum + 2 X rec2 ;
recO : == reel ; reel : == rec2

end recursion ;
Norm: for p := 0step1 until n do J[p] :== J[p]/sum

ifs then
begin max : == 0 ;

for p := 0 step 1 until n do
begin err := abs (J[p] - Jbar[p)) ;

if err > max then max : == err
end maximum error ;
if max ~ e then go to Exit

end then
else s := true ;
for p :== 0 step 1 until n do Jbar[p] := J[p]
k : == entier (k + dist)
go to Rec

Exit: end BESSELSETINT

21-P 1- 0

CERTIFICATION OF ALGORITHM 21 (S17]
BESSEL FUNCTION FOR A SET OF INTEGER

ORDERS
(W. Borsch-Supan, Comm. ACM 3 (Nov. 1960), 600]

J. STAFFORD (Recd. 16 Nov. 1964)
Westland Aircraft Ltd., Saunders-Roe Division, East

Cowes, Isle of Wight, Eng.
If this procedure is used with a combiD.ation of a moderately

small argument and a moderately large order, the recursive evalu
ation of rec2 in the last line of the first column can easily lead to
overflow. This occurred, for instance, in trying to evaluate
J1o(O.Ol).

The following alterations correct this:
(i) Declare a real variable z and an integer variable m;
(ii) After line rec insert:

z := MAX/4 X abs (x/k);
comment MAX is a large positive number approaching in

size the largest number which can be represented. The nu
merical value of MAX/4 is written into the procedure;

(iii) At the end of the first column insert:
if abs(rec2) > z then
begin

reel :== recl/z; rec2 :== rec2/z; sum :== sum/z;
form := n step -1 until p - 1 do J[m] := J[m]/z

end;
With these alterations the procedure was run on a National

Elliott 803, for x = -1, 0, 0.01, 1, 10 and n == 0, 1, 2, 10, 20. The
~esults agreed exactly with published seven-place tables.

[See also Algorithm 236, Bessel Functions of the First Kind
(Comm. ACM 7 (Aug. 1964), 479) which is not restricted to inte
ger values. Although it is a much more complicated program,
Algorithm 236 is slightly faster than Algorithm 21 as corrected, at
least in some cases.-Ed.]

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 22
RICCATI-BESSEL FUNCTIONS OF FIRST AND

SECOND KIND
H. 0SEH

National Bureau of Standards, Washington 25, D. C.

procedure RICCATIBESSEL (x, n, eps, S, C)
value x, n, eps ;
real x, eps; integer n; real array S, C

comment: RICCATIBESSEL computes Sk(x) == (11"x/2)t Jk+t(x)
and Ck (x) = - (11"x/2)t Y k+t (x) for real x ~ 0 and all integer
values of k from 0 through n with a prescribed (absolute)
accuracy eps. The computation is done by using the recursion
relations of the cylinder functions. For abs(x) > n both Sk(x)
and Ck(x) are computed by using the recursions for ascending
orders. For n > abs(x) the functions Sk(x) are obtained by
using the recursion in descending orders. (See STEGUN
ABRAMOWITZ, MTAC 11, 1957, 255-257). Reaching out two
different intervals beyond the order n, the two -.,rectors Sk1(x)
and Sk 2 (x) are checked if the maximum component of their
difference meets the tolerance eps. If this is not the case a
maximum of 10 iterations is set up to achieve the required
absolute accuracy. Initial values SkmBX and Skmax-1 for the
backward iteration are computed from the corresponding
values Ckmax-1 and Ckmax· No check of accuracy is done in
case n < abs (x). Both Ck (x) and Sk (x) are affected in this
case by errors of the same order of magnitude as the sub
routines for sin (x) and cos (x) ;

begin real rl, r2, r3, r4, r5, r6, step, ace, max, a, b, dl, d2
integer i, k, I, imax · .
real .array W[o:n]
switch P := initial, improve
ace: = 106

step: = 1o3
imax: = 10

' comment: These constants may be chosen differently, but
caution has to be taken because of overflow. ace sets an
initial iteration to give roughly a 6-place accuracy.
Subsequent iterations should improve the result to 3 more
places each

i := 1 ;
if x = 0 then go to exitl
if n < abs(x) then

easel: begin rl := -sin(x) ; r2·:- r4 := C[O] := cos(x)
r5 := S[O) := sin(x) ;
for k : == 1 step 1 until n do
begin C[k) :== r3 :-= (2Xk-1) X r2/x - r1

S[k) := r6 :- (2Xk,-1) X r5/x - r4
rl := r2 ; r2 :- r3
r4 : = r5 ; r5 : = r6

end k ; go to finish
end easel ;

case2: l := 1 ; rl :- -sin(x) ; r2 :- C[O] :- cos(x)
Cork := 1 step 1 until n do
begin C[k] := r3 :=- (2Xk-l) X r2/x - rl

rl := r2
r2 := r3

end
a :== n

loop: fork := I+n step 1 until if abs(x) ~ 11

then 12+a else 2Xa+l do
begin r3 := (2Xk-1) X r2/x -- rl ;

22-P 1- 0

if abs(r3/C[n]) > ace then go to S
rl := r2
r2 := r3
comment: This loop is most liable to cause

overflow
end loop
k :== if abs(x) ;;ii 11 then 12+a dse 2Xa + 1
r2 := rl

S: r6 := x j 2/(4Xk j 2Xr2)
r5 :== 1/r3
go to P[l]

initial: fork := k step·-1 until 2 do
begin W[if k>n+2 then n else k·-2] := r4 :=

(2Xk-1) X r5/x - r6
r6 := r5
r5 := r4

end
dl := r5/x - r6
d2 := if abs(W[O]) ~

abs(dl) then sin(x)/W[O] else:~ cos(x)/dl
for k := 0 step 1 until n do

W[k] :- d2XW[k]
ace : ... step X ace
l :== 2
a :- a + step i (1/3)
r2 :== C[n]
rl :== C[n-1)
go to loop ;

improve:. fork :- k step -1until2 do
begin S[if k > n+2 then n else k-2] := r4 :=

(2Xk-1) X r5/x-r6
r6 := r5
r5 :== r4

end k
di :== r5/x - r6
d2 :== if abs(S[O]) ~.

abs(dl) then sin(x)/S[O) else cos(x)/dl
max := 0 ;
fork :== 1step1 until n do
begin S[k] := d2XS[k]

end

b :== abs(S[k] - W[kl) ,
if b >max then max :- b

if max < eps then go to finish ;
for k := 0step1 until n do W[k] := S[k]

ace : - step· X itc~

if i fl: imax then go to f'xit2 ;
i - i+l ; a :- a+ stiep t (1/3) ;
r2 :== C[n] ; rl :- C[n-1] ; go to loop

exitl: go to finish ; comment: x == 0 ;
exit2: go to finish ;

comment: maximum number of iterations reMhed
finish: end RICCATIBESSEL .

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 22 [Sl 7]
JUCATTI-BESSEL FUNCTIONS OF FIRST AND

SECOND KIND [H. Oser, Comm. ACM 8 (Nov.
1960), 600]

'THOMAS BRAY (Recd. 9 Mar. 1970)
Boeing Scientific Research Laboratories, Seattle, WA

98124

:KEY WORDS AND PHRASES: Ricatti-Bessel functions, Bessel
functions of fractional order, spherical Bessel functions
CR CATEGORIES: 5.12

The procedure was translated into FORTRAN IV and run on
an IBM 360/44 using double precision arithmetic (15 significant
decimal digits). One error was discovered in the algorithm. The
tenth line following the line with the label "improve" reads:

fork := 1step1 until n do

This line should read:

fork := 0 step 1 until n do

The results Sk(x)/x and -Ck(x)/x were computed using this cor-
1rection and compared with Tables 10.1, 10.2 and 10.5 of [lJ. The
results agreed to the number of digits given in the tables for:

x k

0.1 0(1)8
0.5 0(1)8
1.0 0(1)20
2.0 0(1)8
5.0 0(1)50
7 .5 0(1)8

10.0 0(1)50
50.0 0(1)100

100.0 0(1)100
REFERENCES:

1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of Mathematical
Functions. Appl. Math. Ser. 55, Nat. Bur. Stand:ards US Govt.
Print. Off., Washington, D.C., 1964.

22-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 23
MATH SORT
"\VALLACE FEURZEIG
Laboratories for Applied Science, University of Chicago,

Chicago, Ill.

procedure MATHSOilT (INVEC, OUTVEC, TOTEVEC,
n, k, SETFUNC) ; value n, k

array INVEC, OUTVEC ;
integer array TOTEVEC ;
integer procedure SETFUNC

integer n, k ;
begin comment MATHSORT is a fast sorting algorithm which

produces a monotone rearrangement of an arbitrarily ordered
set of n numbers (represented by the vector INVEC) by a
surprising though familiar device. The resultant sorted set is
represented by the vector OUTVEC. The key field, i.e. the
ordered set of bits (or bytes) on which the sort is to be done,
is obtained by some extraction-justification function den"oted
SETFUNC. The key field allows the representation of k pos
sible values denoted 0, 1, ... , k-1.

The procedure determines first of all the exact frequency
distribution of the ~et with respect to the key, i.e. the number
of elements of INVEC with key field value precisely equal to
j for all j between 0 and k-1. The cumulative frequency dis
tribution TOTEVEC [i] = :Ef-o (Number of elements of
INVEC with key value = j) is then computed for 0 ;al i ;al k-1.
This induces the direct assignment (storage mapping func
tion) of each element of INVEC to a unique cell in OUTVEC.
This assignment (like the determination of the frequency
distribution) requires just one inspection of each element of
INVEC. Thus the algorithm requires only 2n "look and do"
operations plus k-1 additions (to get the cumulative fre
quency distribution).

The algorithm can be easily and efficiently extended to
handle alphabetic sorts or multiple key sorts. To sort on
another key the same algorithm is applied to each new key
field with the new INVEC designated as the last induced
ordering (i.e. the current OUTVEC). The algorithm has been
used extensively at LAS on binary as well as decimal machines
both for internal memory sorts and (with trivial modification)
for large tape sorts ;
for i := 1step1 until n do

TOTEVEC[SETFUNC(INVEC[i])] : = TOTEVEC
[SETFUNC(INVEC[i])] + 1

for i := 1step1 until k-1 do
TOTEVEC[i] := TOTEVEC[i) + TOTEVEC[i-1)

for i := 1step1 until n do
begin OUTVEC[TOTEVEC[SETFUNC (INVEC[i))]]

:= INVEC[i]
TOTEVEC[SETFUNC(INVEC[i))] : =

TOTEVEC[SETFUNC(INVEC[i]) I 1
end

end MATHSORT.

23-P 1- 0

CERTIFICATION OF ALGORITHM 23
MATHSORT ("\Vallace ·Feurzeig, Comm. ACM, Nov.,

1960)
RUSSELL "\V. RANSHAW
University of Pittsburgh, Pittsburgh, Pa.

The MA THSORT procedure as published was coded for the
IBM 7070 in FORTRAN. Two deficiencies were discovered:

1. The TOTVEC array was not zeroed within the procedure.
This led to some difficulties in repeated use of the procedure.

2. Input vectors already in sort on non sort fields were unsorted.
That is, given the sequence

31, 21, 32, 22, 33,
Mathsort would produce, for a sort on the IO's digit:

22, 21, 33, 32, 31,
which is definitely out of sequence.

The following modified form of the procedure corrects these
difficulties. Note thP. transformation of symbols.

procedure MATHSORT (I, 0, T, n, k, S); value n, k;
array I, O; integer array T; integer procedure S;
integer n, k;

begin for i := 0 step 1 until k - 1 do T[i] := O;
for i := 1step1 until n do T[S(l[i])] := T[S(l[i))] + 1;
for i := k - 2 step -1 until 0 do T[i] := T[i] +
T[i + 1];
for i := 1step1 until n do

begin O[n + 1 - T[S(l[i])]] := I[i];
T[S(l[i])] : = T[S(l[i])] - 1;

end
~nd MATHSORT.

Using the MATHSORT procedure ten times and having the
procedure S supply each digit in order, 1000 random numbers of
10 digits each were sorted into sequence in 31 seconds. The method
of locating the lowest element, interchanging with the first ele
ment, and continuing until the entire liist has been so examined
yielded a complete sort on the same 1000 random numbers in 227
seconds. Using the Table-Lookup-Lowei3t command in the 7070
yielded 56 seconds for the same set of random numbers.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 24
SOLUTION OF TRI-DIAGONAL LINEAR EQUA

TIONS
B. LEAVENWORTH

American Machine & Fmµidry Co., Greenwich, Conn.

procedure TRIDAG (n, A 11 B, C, D) ; integer n ;
array A, B, C, D ;
comment: This procedure1 finds the solution of an n X n. system

of linear equations whose matrix is in tridiagonal form, that
is, ail - 0 for Ii - j I ~ 2. Parameters are: the main diagonal
Bp, the diagonal just bell>w Ar, the diagonal just above Cr,
the right-hand side D: (where p - 1, . . . , n and r, - 1, ... ,
n - 1) and the matrix order n. The solution vector replaces
the input vector D and the vector B is also destroyed in the
process

begin
real w integer j ;
D[l] :- D[l]/B[l] ; w :- B[l)
for j :- 2step1 until n do

begin B[j - 1) :- C[j - l]/w w :- B[jJ - AU - lJ
X B[j -1) ;

D[j) :- (D[j) - A[j - 1) X D[j - l])/w end
for j : - 1 step 1 until n - 1 do

D[n - j) :- D[n - j) - B[n - j) X D[n - j + 1)
end TRIDAG

1 D. W. PEACEMAN AND H. H. RACHFORD, JR., l'he Numerical
Solution of Parabolic and Elliptic Differential Equations, Journal
of the Soc. for Ind. and Applied Math. Vol. 3 March 1955.

24-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 25
REAL ZEROS OF AN ARBITRARY FUNCTION
B. LEAVENWORTH

American Machine and Foundary Co., Greenwich, Conn.

procedure ZEROS(n, C, FUNCTION, m, epl, ep2, ep3, eta)
integer n, m ; real epl, ep2. ep3, eta ; array C ;
procedure FUNCTION ;
comment: This procedure finds the real zeros of an arbitrary

function using Muller's method1· 2 and is adapted from a
FORTRAN code by Frank. 8 Each iteration determines a zero
of the quadratic passing through the last three function
values. Parameters include the number of roots desired n.
If Ci is zero, starting values are -1, 1, 0 respectively. If
C; = fJ then the starting values are .9fJ, l.l{J, fJ. The procedure
FUNCTION (rt, frt) must be supplied to evaluate the func
tion value frt, given the argument rt. m is the maximum
number of iterations permitted. epl is the relative conver
gence criterion on successive iterates. ep2 is the absolute
convergence criterion on the function value. eta is the spread
for multiple roots, that is, if !rt - C 11 < ep3 where C 1 is a
previously found root, then rt is replaced by rt + eta ;

begin integer L, jk, i, mm ; real p, pl, p2, xO, xl, x2, rt,
frt, fprt, d, dd, di, h, bi, den, dn, dm, tern

switch S : Sl, 82, 83, 84 ;
for L := i step 1 until m do
begin jk := 0 if C[L] == 0 then go to initial else
go to assign

initial: p := -1 pl := 1 ; p2 := 0 ; go to start ;
assign: p := .~ X C[L] ; pl :- 1.1 x C[L] ; p2 :== C[L)
start: rt := p ; go to fn ;
enter: go to S[if jk < 4 then jk else 4)
Bl: rt := pl ; xO := fprt ; go to fn
82: rt : = p2 ; xl : = fprt ; go to f n ;
S3: x2 := fprt ; h := if C[L] == 0 then -1

else -.1 X C[L] ; d := -.5 ;
loop: dd : = 1 + d ; bi : = xO X d j 2 - xl X dd j 2 X x2 X

(dd + d) ;
den : = bi i 2 - 4 X x2 X d X ddX (xO X d - (xl X dd) + x2)
if den ~ 0 then den :== 0 else den :- sqrt(den) ;
dn := bi + den ; dm := bi-den ;
if abs(dn) ~ abs(dm) then den :=- dm else den :=- dn
if den == 0 then den : = 1 ;
di :== -2 X x2 X dd/den ; h :- di X h rt :- rt+ h
go to if abs(h/rt) < epl then call else fn

34: if abs(fprt) < abs(x2 X 10) then
~gin xO := xl ; xl :=- x2 ; x2 :- fprt ; d := di
go to loop end else begin di :== di X .5 ; h :- h X .5
rt := rt- h ; go to fn end ;

fn: jk := jk + 1 ; if jk < m then mm :- 1 else mm :- 0
call: FUNCTION (rt, frt) ; if~ - 1 then go to compute

else go to root ·
compute': f prt :- frt' ;

for i := 2 step 1 until L do
begin tern:== rt- C(i- 1) ; if abs(tem) < ep3 then go to
change else fprt : - fprt/tem end

test: if abs(frt) < ep2 /\ abs(fprt) < ep2 then go to root
else go to enter :

25-P 1- 0

change: rt :== rt+ eta ; jk :- ik- 1 ; go to fn
root: C[L] :- rt end L
end ZEROS

1 D. E. MULLER, A Method for Solving Algebraic Equations
Using an Automatic Computer, MTAC 10 (1956).

2 W. L. FRANK, Finding Zeros of Arbiitrary Functions, J. ACM
6 (1958).

1 W. L. FRANK, RWGRT, General Root Finder 704 FoRTRAN
Source Language Subroutine SHARE Distribution 11' 635. Param
eters used by Frank are: epl - lo-4,"ep2 == 10-111, ep3 - 10-20,
eta == 10-1•

REMARK ON ALGORITHM 25
REAL ZEROS OF AN ARBITRARY FUNCTION

(B. Leavenworth, Comm. ACM, November 1960)
ROBERT M. COLLINGE

Burroughs Corporation, Pasadena, California

On attempting to use this algorithm, I discovered the two fol
lowing errors:

(1) The line following the SWITCH ·statement should read:
for L := 1 step 1 until n do ,

(2) The line starting with the label loop: should read:
loop: dd 1 + d ; bi = xO X d j 2 - xl X dd j 2

+ x2 X (dd + d) ;
With these two modifications incorporated the algorithm was
translated into the language of the Burroughs Algebraic Com
piler and has been used successfully on the Burroughs 220 Com
puter.

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960)., ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, T-eddington.
Algorithms 2, 15, 25 and 26 were all concerned with the cal

culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is thie condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple
diagonal matrices T having t;; = a; , ti+1.; == b;+1 , ti.;+1 =
c i+i . As an extreme case I took a1 = a2 == · · • == a6 = O, a.a ==
a1 = · · · = a10 == 1, au == 2, b; == 1, c; == 0 so that the func
tion which was being evaluated was x1'(x - l)6(x - 2). In spite
of the multiplicity of the roots, the am1wers obtained using float
ing-point arithmetic with a 46-bit mantissa had errors no greater
than ~44 • Results o(similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.

COLLECTED ALGORITHMS (cont.)

This is because the method of evaluation wmch was used, the two
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 2-42 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 2-·7 would have been necessary and the mul
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler
ance for I Xr+1 - Xr / as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f (x) since the true func
tion x - f (x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight.-Thus, in Certi
fication 2 (June 1960)' the calculation of the zeros of x = tan x
was attempted. If the function (-x + tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

x = n71' + y

~ - y6 -
3 30

tan x - x = -n71' +· -----·
cosy

the multiple zeros at x = 0 could be found as accurately as any
()f the others. With a slight modification of common sine and co
sine routines, this could be evaluated as

(sin y -:- y) - y(cos y - 1) -n71' + ·-...:_---'-------'=---...:_ __

l + (cosy - 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x60 - 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1 Similarly
a very large number are needed for Newton's method, starting
with x = 2. If the time for evaluating the derivative is about the
s:ame as that for evaluating the function (often it is much longer),
then linear interpolati9n is usually faster, and quadratic inter-
polation much faster, than Newton. .

In all of the algorithms, including that for Bairstow, it is us~
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
S.!, that abs(fprt) < abs(x2 X 10), but here the limitation is
pllaced on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the r~mainders rl and
rO respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This elimin:ites the loss
of accuracy which may occur if the factors are not found in in
creasing order. This presumably was the case in Certification 3
when the roots of x6 + 7x• + 5x3 + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single
precision, but the roots ~merged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = -6.35099 36103 and the spurious zero were found first,

25-P 2- 0

the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
oolynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE
(1] J. H. WILKINSON. The evaluation of the zeros of ill-conditioned

polynomials Parts I and II. Num. Math. 1 (1959), 150-180.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 26
ROOTFINDER III (Modification of Algorithm 15.

Rootfinder II, Henry C. Thacher, Jr., Comm. ACM,
August 1960)

JoHN G. HERRIOT, Stanford University, Stanford, Cali
fornia

procedure ROOT III (f, a, eps, n, g, c, m) integer n, m
real procedure f ; real a eps g c ·

comment ROOTIII computes a' val~e ~f g ::: y satisfying the
equation y = f(y). The iteration will converge to Y providing
that at some time in the iteration a g is reached such that
abs(g - Y) X abs(d(df/dy)/dy) < 2 X abs((df/dy) - 1),
where the derivatives are evaluated at Y. Input includes:
(1) f, a procedure for computing f(y), (2) a, an initial ap
proximation to the root, (3) eps, a tolerance for the relative
error in g, and (4) n, a maximum number of iterations to be
performed. Output includes: (1) g, the required r~ot, (2)
c = f (g) - g, (3) m, a parameter indicating the success of
the procedure. If the tolerance was not met m < 0. The num
ber lml - 1 gives the number of times that the correction to g
exceeded the preceding one. If f(y) - y has the same value
for two successive approximations to g, then h = 1, and we
exit to "alarm", a, nonloc~l label. Alarm should provide a
means of deciding whether g is an acceptable root or not.

begin integer j ; real b, d. h ;
m := 1 · j ·= 0 · c ·= O ·
if f(O) =

1

0 then b~gin° g := O ,
go to return end
g := f(a) ; b := d := c := g - a
if c = 0 then go to return
for j := 1 step 1 until n do
begin c := f(g) - g ;

if abs(c) ~ abs(g) X eps then go to return
h := l)/c ;
if h = 1 then go to a111.rm ;

if h > 0 A h < 2 then m : = m + 1
d : = d/ (h - 1) ; b : = c ; g : = g + d

end iteration
m . - - m ; return : end

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, NoveMber 1960)

J. I-I. WILKINSON

National Physical Laboratory, Teddington.
Algorithms 2, 15, 25 and 26 were all concerned with the cal

culation of zeros of arbitrary functions by successive linear or
quadratic· interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be meL, even
when the function has multiple roots.

26--P 1- 0

For example, a real quaoratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple
diagonal matrices T having tii = a; :• h+-1.; = b;+1 , ti.i+i =

c.i+i . As an extreme case I took a1 = n2 = · · · = a6 = 0, as =
a1 = · · · = a10 = 1, au = 2, bi = 1, c; = 0 so that the func
tion which was being evaluated was x6 (x - 1)0 (x - 2). In spite
of the multiplicity of the roots, the.answers obtained using float
ing-point arithmetic with a 46-bit mantissa had errors no greater
than Z-44 • Results of similar accuracy have been obtained for the
sa~e _problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two
term recurrence relation for the leading principal minors is a
very well-conditioned method of evaluation. Knowing this, i was
able to set a tolerance of Z-42 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 2-7 would have been necessary and the mul
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler
ance for I Xr+1 - x, I as well as the rela,tive tolerance condition.
It is undesirable that the preliminary detection of a zero root
~hould b~ necessary. The great power of rootfinders of this type
is that,_ sm?e we are not saddled with the problem of·calculating
the d~nv~t1ve, we _have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
root finder so that it finds the zeros of x == f (x) since the true func
tion x - f (x) is arbitrarily separated into two parts. The formal
adv~ntage of using this formulation is very slight. Thus, in Certi
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (-x + tan x) were used with a
general zero finder then, provided the method of evaluation was
for example '

x = n11" + y

~--¥~_ ...
3 30

tan x - x = -n11" +
cosy

the multiple zeros at x == 0 could be found as accurately as any
of the others. With a slight modification of common sine and co
sine routines, this could be evaluated as

(sin y - y) - y(cos y - 1)
-n11"+

1 +(cosy - 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x:so - 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerabk
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton's method, startini!
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually fa:~ter, and quadratic inter
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is usf>:
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next ll]. This
condition is met 'to some extent in Algorithm 25 by the condition
84 that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3; and 25 have tolerances on

COLLECTED ALGORITHMS (cont.)

the size of the function and on the size of the remainders rl and
rO respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in
creasing order. This presu·mably was the case in Certification 3
when the roots of x5 + 7x4 + 5xa + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = -6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
o~iginal polynomial [1]. ~

REFERENCE
[1] J. H. WILKINSON. The evaluation of the zeros of ill-conditioned

polynomials P"rts I and II. Nnm. Math. 1 (1959), 150--180.

26-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 27
ASSIGNMENT
ROLAND SILVER

MIT Lincoln Laboratory,* Lexington, Massachusetts

procedure Assignment(d, n, x) ; value n ; inlegcl' n
array d ; integer ar1·ay x ;

comment: Assignment determines that permutation x of the
integers [I: n] for which the sum (i : = 1 (1)n) of
the elements d[i, x[i]] of the n X n matrix d is a
minimum. n ;;:; 2. For more complete information
see: An Algorithm for the Assignment Problem,
Roland Silver, Comm. ACM, Nov. 1960, p. 005

begin
switch Switch:= NEXT, Ll, NEXT!, MARK ;
array a[l:n, l:n] ;
integer array c[l:n], cb[l:n], lambda[l:n], mu[l:n],

r[l:n], y[l:n] ;
integer cbl, el, clO, i, j, k, l, rl, rs, sw
comment:

INITIALIZF. ;
for i := 1 step 1 until n do

begin min := d[i, 11 :

for j := 2 step l until n do if d[i, j] < min Lhen miu
:= d[i, j] ;

for j := 1step1 until n do a[i, j] := d[i, j] - min
end i ;

for j := 1step1 until n do
begin min : = a[l, j]
for i := 2 step 1 until n do if a[i, j] < min then min

:= a[i, j] ;
for i := 1step1 until n do a[i, j] := a[i, j] - min
end j

for i := 1step1 until n do x[i] := y[i] := 0
for i := 1step1 until n do

begin

for j := I ·step 1 until n do
begin

if a[i, j] ~ 0 V x[i] ~ 0 V y[j] ~ 0 then go to J l
x[i] := j ; YLi] := i

Jl: end j
end i ;

START: comment: Start labeling

11:
LABEL:

J2:

rl := cl := 0 ; rs := 1
for i := 1step1 until n do

begin mu[i] := lambda[i) := 0
if x[i] ~ 0 then go to 11
rl := rl + 1 ; r[rl] := i ; mu[i] := -1
end i ;

co111ment: Label and scan
i:=r[rs]; rs:=rs+l
for j := 1step1 until n do

begin if a[i, j] ~ 0 or lambda[j] ~ 0 then go
to J2 ;

lambda[j] := i ; cl :== cl + 1 ; c[cl] := j
if y[j] = 0 then go to MARK
rl := rl + 1 ; r[rl] :"" y[j] ; mu[y[j]] := i
end j

if rs ;;;:; rl then go to LABEL
comment:

RENORMALIZE ;
sw := 1 ; clO :=cl ; cbl := 0 ;
for j := 1step1 until n do

begin if lambda[j] ~ 0 then go to J3
cbi := cbl + 1 ; cb[cbl] := j

J3: end j
min := a[r[i], cb[i]] ;
for k : = 1 step 1 until rl do

begin

27-P 1- 0

for 1 : = 1 step 1 until cbl do if a[r[k], cb[l]] ;;;:; min
then min := a[r[k], cb[l]]

end k ;
for i := 1 step 1 until n do

begin if mu[i] ~ 0 then go to 12
for l := 1step1 until clO do a[i, c[I]] := a[i, c[l]] +min
go to 13 ;

I~: for l : = 1 step I until cbl do
begin a[i, cb[l]) := a[i, cb[l]) - min

go to Switch[sw] ;
NEXT: if a[i, cb[l] ~ 0 V lambda[cb[I]] ~ 0 then go to Ll

lambda[cb[lll : = i
if y[cb[l]] = 0 then

begin j := cb[l] sw := 2 go to Ll end
cl := cl+ 1 c[cl] := cb[l] ;
rl := rl + 1 r[rl] := y[cb[l]]

Ll: end l ;
C3: end i

go to Switch[sw + 2] ;
NEXTl : if clO = cl then go to LABEL

for i := clO + 1step1 until cl do mu[y[c[i]]] := c[i]
go to LABEL ;

MARK: comment: mark new column and permute
YLll :- i :- lambda(j] ;
if x[i) - 0 then begin x[i] : • j ; go to

START end ;
k :- j ;· j :- x[i] ; x[i] :- k ;
go to MARK
end Assignment

•Operated with supportllfrom the U. S. Army, Navy and Air
Force.

{NOTE: The reader should distinguish between the letter
and the figure l, both of which appear in the above al

gorithm.-Ed.]

CERTIFICA 'T'ION OF ALGORITHM 27
ASSIGNMENT [Roland Silver, Comm. ACM, Nov. 1960]
ALBERT NEWHOUSE

University of Houston, Houston, Texas
The ASSI6NMENT algorithm was translated into MAD and

successfully run on the IBM 709/7094 after the following correc
tions were made:

COLLECTED ALGORITHMS (cont.)

AH references to array a and d refer to the same array, i.e.
change all a[i, j] to d[i, j]. Furthermore:
(a) 3rd line after LABEL: comment: Label and scan;

should read
begin if d[i, j] ~ 0 V lambda [j] ~ 0 then go

(b) first line after J3: end j;
should read

min := d[r[J], cb[l]];
(c) line I2:

should read
I2: for l : = 1 step 1 until cbl do

Since there is no provision made for this algorithm to end the
following additions were made:
0) in the integer declaration add the variable: flag
(2) first line after ST ART: comment:

add the line
flag := n;

(3) first line before l1: end i;
change to read

rl := rl + 1; r[rl] := i; mu[i] ·= -1; flag :=flag - 1
(4) add a line after l1 : end i;

if flag = n then go to FINI;
(5) change the last line of the algorithm to read:

FINI: end Assignment
In nrder to obtain the minimum value of the L:i.=1 aixi (in the

following called total) the following additions may be made:
Add a real variable total and

(A) new line after INITIALIZE;
total := O;

(.l~) new line after the first end i;
total : = total + min;

(C) new line after the first end j;
total : = total + min;

(D) after the line end k; after J3: end i:
add the line

totnl := total + (rl+cbl-n) X min;

CERTIFICATION OF ALGORITHM 27
A.SSIGNMENT [Roland Silvers, Comm. ACM 3, Nov.

1960].
ROBERT D. WITTY

Burroughs Corp., Detroit, Mich.

Assignment was successfully run on the Burroughs B5000 using
Burroughs exliended ALGOL 60.

Input Array
60 0 0 76 0 0

0 40 18 0 60 24
60 16 2 4 0 40
0 27 18 3 55 75
0 40 62 16 11 53

28 4 10 84 0 16

Bolution Vector: X(6, 4, 3, 1, 5, 2)

The following changes were made in the algorithm prior to its
euccessf ul run:

FROM MIN : = a[r[i], cb[i]];
m MIN : = a[r[l], cb[l]J;_

F'ROM if X[i] = O then begin X[i] : = J;
go to ST ART end;

1'0 if X[i] = 0 then begin X[i] : = j;
for i : = 1 step 1 until N do begin if X[i] == 0 then go

to START;
end; go to EXIT; end;

27-P 2- 0

FROM end ASSIGNMENT
TO EXIT: end; ASSIGNMENT

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 28
LEAST SQUARES FIT BY ORTHOGONAL POLY

NOMIALS
JOHN G. MACKINNEY

General Kinetics Incorporated, Arlington 6, Virginia

procedure LSFIT (f, xl, xm, m, k, alpha, beta, sigma, s, p) ;
value xl, xm, m, k ; real xl, xm integer

m, k ;
real array f, alpha, beta, sigma, s, p ;

comment LSFIT accepts m values of the function f at equal
intervals of the abscissa from xl through xm, and obtains in
p[O] through p[k] the coefficients of the best polynomial ap
proximation of deg:ree k or less (least squares) as programmed
by George E. Forsythe, Journal SIAM 6, no. 2, June 1957,
with only minor variations. The output values alpha [l:k],
beta [O:k], ands [O:k] enable the user to make final adjust
ments to the results, according to the statistic sigma [O:k].
LSFIT uses the procedure POL YX (a, b, c, d, n) to trans
form its results from the interval (-2, 2) to the interval (xl,
xm) ;

begin integer i, j ; real dummy, x, xone, deltax, delsq,
omega, lastw, thisw ;

real array cthisp, cpoly [O:k], clastp [-l:k],
lastp, thisp [l:m]

BoolE".an swx
comment Initialization ;

swx. :-= true ; beta [O] :- clastp [0] :- clastp [-1] :-
delsq :- omega :- 0 ;

cthisp [0] :- 1 ; thisw : - m
for i :- 1step1 until m do
begin delsq : - delsq + f [i]j2 ;

thisp [i] :- 1 ; lastp [i] :- 0
omega :- omega + f[i] end ;

s [O] :- cpoly [0] : =- omega/thisw ;
delsq :- delsq - s (0) X omega ;
sigma (0) :- delsq/{m-1) ;

comment Transformation of abscissa ; i : - m + 2 ;
if 2Xi - :m then deltax :- 4/(m - 1) else deltax :-

4/:m ; xone :- -2 ;
comment Main Computation loop ;

for i :- 0 step 1 until k-1 do
begin dummy :- 0 ; x :- xone
1: for j :- 1step1 until m do
begin dummy :- dummy + x X thisp U] t 2
x :- x + deltax end ;
2: alpha [i + l] :- dummy/thisw

lastw· :- thisw ;
thisw :- omega:- 0 ;

x :- xone ;
3: for j :- 1atep1 until m do
begin dummy :- beta (i] X lastp [j]

lastp (j] :- thisp Ul ;
thisp ij] :- (x - alpha (i + 1]) X thiep (j]

-dummy ;
thisw : - thisw + thisp U) l 2 ;
omega :- omega + f U] X thisp (j)
·x :- x + deltax end ;

4: beta (i + l] :- thisw I lastw ;
s[i + 1) :- omega/ thisw ;

28-P 1- 0

delsq : - delsq - s(i + l] X omega
sigma [i + l] :- delsq I (m - i - 1) i
if swx then go to 6 ;
5: cpoly [i + 1] :- 0 ; go to 9 ;

comment Termination of main loop when higher power will
not improve fit ;

6: if sigma [i + l] <sigma. [i] then go to 7
swx :- false ; go to 5 ;

comment Recursion for polynomial coefficients ;
7: for j :=- 0 step 1 until i do

begin dummy : - clas·tp [j] X beta (i]
clastp Ul :- cthisp Ul ;

cthisp Ul :- clastp U - 1] - alpha (i + l] X cthisp (j] - dummy
cpoly [j] :- cpoly [j] + s· (i + l] X cthis:p Ul end

8: cpoly (i + 1] :- s (i + 1]
cthisp [i + 1] :- 1 ;
9: clastp (i + 1] :- 0 end of main

computation loop, transformation of polynomial follows
begin real a, b ;
a :- deltax X (m - 1) I (xm - d)
b :- xone - a X xl ;
POL YX (a, b, cpoly, p, k) end

end of LSFIT

REMARK ON ALGORITHM 28
LEAST-SQUARES FIT BY ORTHOGONAL POLY

NOMIALS (John G. MacKinney, Comm. ACM 3
(Nov. 1960))

D. B. MACMILLAN

Knolls Atomic Power Laboratory, General Electric Co.,
Schenectady, N. Y.

The algorithm obtains the coefficients of the fitted polynomial
of lowest degree such that an increase in. the degree would cause an
increase in the statistic sigma (sigma squared in Forsythe's nota
tion). A significant decrease in sigma, as one goes from a fitted
polynomial to one of higher degree, indlicates that the increase in
degree causes an improvement in the fit to the function underlying
the data, rather than merely following more closely the random
variations about that function introduced by the physical meas
urement process.

If one of the orthogonal polynomials, say the one of ith degree,
is missing from the underlying function, and some of the orthog
onal polynomials of higher degree arE1 present, then the fitted
polynomial of ith degree will not be a rieal improvement over that
of (i - 1)-th degree, but higher order fitted polynomials will be
a real improvement. For example, in one of our recent routine
problems the coefficient of the second degree orthogonal poly
nomial wa1:1 quite small, and the first few values of sigma, starting
with sigma (1), were .255, .264, .062, .046, .048. The algorithm would
have chosen the first degree fitted polynomial as "best", but the
third and fourth degree fitted polynomials were clearly better
than it.

COLLECTED ALGORITHMS (cont.)

This loophole may be plugged by modifying the algorithm so it
computes the coefficients of the polynomial of lowest degree i for
which it is true that

sigma (i + 1) ~ sigma (i)

and that
sigma (j) ~ .6 sigma (i)

(.6 was chosen arbitrarily).

j = i+2, i+3, ... ' k,

REMARK ON ALGORITHM 28 [E2]
LEAST SQUARES FIT BY ORTHOGONAL
POLYNOMIALS [John G. MacKinney, Comm. ACM 3

(Nov. 1960), 604]
G. J. MAKINSON (Recd. 30 Sept. 1965, 29 Aug. 1966 and

7 Nov. 1966)
University of Liverpool, Liverpool 3, England

There are three errors in the published procedure.

Line 32 i := m + 2; should read i := m + 2;

Line 56 delsq/(m-i-1); should read delsq/(m-i--2);
Line 69 ; is missing from end of statement cpoly[i+l] := s[i+lJ;

Three improvements can be made to the procedure. In the case
of equally spaced points, it is possible to center them about the
origin; all alphas are then zero. This is achieved by replacing the
1:itatements on lines 32, 33, and 34 by deltax := 4/(m-1);
wne := -2; All statements involving alphas can then be re
vised.

Another improvement can be made by deleting the two state
ments on line 37 and all of lines 38, 39, and 40. These statements
:are completely redundant.

The third improvement is to rewrite line 71 to read

clastp[i+l] := O; 9: end of main

instead of

9: clastp[i+l] := 0 end of main

28-P 2- RI

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 29
POLYNOMIAL TRANSFORMER
JOHN G. MACKINNEY

General Kinetics Inc., Arlington 6, Virginia.

procedure POL YX (a, b, c, d, n) ; value a, b, n ; integer
n ; real a, b ;

real array c, d ;
comment POLYX computes coefficients dO, dl, ... , dn of the

transforme1d polynomial p(t) given cO, cl, ... ,
en of p(x) where x - at+ b ;

begin integer i, j, k ; real array z, w [O:n] ;

end

w[O] :- z[O] :- 1 ; d[O] :- c[O] ;
for i : - 1 step 1 u:ntil n do

begin w[i] :- l ; z[i] :- b X z[i - 1)
d[O] :- d[O] + c[i] X z[i]

end of initialization ;
for j :- 1step1 until n do

begin w[O] :- w[O] X a ; dUJ :- cU] X w[O]
k :- 1 ;

for i :- j + 1step1 until n do
begin w[k] :- a X w[k] + w[k- 1)

dUJ :- dU] + c[i] X w[k] X z[k)
k :•• k + 1 end

end of POL YX polynomial transformer

29-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 30
NUMERICAL SOLUTION OF THE POLYNOMIAL

EQUATION
K. w. ELLENBERGER

Missile Division, North American Aviation, Downey,
California

-procedure ROOTPOL (n, a, L, F, u, v, CONV)
value n, a, L, F ; integer L, F, n ;
array a, u, v, CONV ;

comment The Bairstow and Newton correction formulae are
used for a simultaneous linear and quadratic itera,ted synthetic
division. The coefficients of a polynomial of degree n are given as
a; (i = O, i, ... , n) where an is the constant term. The coeffi
cients are scaled by dividing them by their geometric mean.
The Bairstow or Newton iteration method will nearly always
converge to the number of figures carried, F, either to root
values or to their reciprocals. If the simultaneous Newton and
Bairstow iteration fails to converge on root values or their
reciprocals in L iterations, the convergence requirement will be
successively reduced by one decimal figure. This program antici
pates and protects against loss of significance in the quadratic
synthetic division. (Refer to "On Programming the Numerical
Solution of Polynomial Equations," by K. W. Ellenberger,
Commun. ACMS (Dec. 1960), 644-647.) The real and imaginary
part of each root is stated as u[i] and v[i], respectively, together
with the corresponding constant, CO:~Vi, used in the con
vergence test. This program has been used successfully for over
a year on the Bendix Gl5-D (lntercard System) and has recently
been coded for the IBM 709 (Fortran System);

begin integer i, j, m ; array h, b, c, d, e[-2 :n]
real t, K, ps, qs, pt, qt, s, rev, r ;

ROOTPOL: b_1 := b_2 := c_1 :- c_2 := cL1 := cL2 :== e_1 :==
e_2 := 0 ;

for j :== 0 step 1 until n do hi :== ai ; t := 1 ;
K :=}OF ;

;Z,ROTEST: if h n == 0 then
begin Un :== 0 ; Vn :== 0 j CONVn .- K

n : = n - 1 ; go to ZROTEST
end ;

INIT: if n == 0 then go to RETURN ;
ps :== qs :== pt :== qt :== s :== 0
rev : = 1 ; K : = IOF ;

if n = 1 then
begin r :== - hi/ho ; go to LINEAR
end ;
for j := 0 step 1 until n do
begin
if hi = 0 thens := s else s := s + log(abs(hj))
end ; s :== s10 ;

for j := 0 step 1 until n do hi :- hs/s ;
if abs (hi/ho) < abs (hn_ifhn) then

REVERSE: begin t := -t ; m :- entier ((n+l)/2)
for j :== 0 step 1 until m do
begin S ·= hl ; hj := hn--j j jn--i := S

end
end ;
if qs ~ 0 then
begin p := ps q := qs go to ITERATE

end ;
if hn-2 = 0 then
begin q := 1 ; p := -2
end else

30 P I 0

begin q := h/hn-2 ; p := (hn-1 - q X hn-a)/hu-t
end ;
if n...; 2 then go to QADRTIC ; r :=== 0 ;

ITERATE: for i := 1step1 until L do
begin

RAIRSTOW: for j := 0 step 1 until n do
begin bi := hi - p X bi-1 - q X bi-2

Cj := bj-p X Cj-l - q X Cj-2
end ;
if n n-1 = 0 then go to BNTEST
if b n-1 = 0 then go to BNTEST
if abs (hn_ifbn-1)<K then go NEWTON

bn := hn-q X bn-2 ;
BNTEST: if bn = 0 then go to QADRTIC ;

if K < abs (hn/bn) then go to QADRTIC
NEWTON: for j : = 0 step 1 until n do

begin d; := h; + r X di-1 ; ei :=- di + r X ei-1
end ;
if dn = 0 then go to LINEAR ;
if K <abs (hn/dn) then go to LINEAR

Cn-1 := -p X Cn-2-q X Cn-3
S := c!_2 - Cn-1 X Cn-3 j

if s=O then
begin p := p - 2 ; q := q X (q + 1)
end else
begin p := p + (bn-1 X Cn-2 - bn X Cn-a)/s

q := q + (-bn-1 X Cn-1 + bn X Cn-2)/s
end.;
if en-l = 0 then r := r-1 else r := r - dn/en-1
end ; ps := pt ; qs := qt pt := p ;

qt:= q ;
if rev < 0 then K := K/10 ; rev = -rev

go to REVERSE ;
LINEAR: if t < 0 then r := 1/r ; Un := r ; Vu := 0

CONVn := K ; n := n-1
for j := 0 step 1 until n do hi := di
if n = 0 then go to RETURN

go to BAIRSTOW ;
QADRTIC: if t < 0 then

begin p := p/q ; q := 1/q
end ;
if 0 < (q - (p/2)2) then
begin Un := Un-1 := -p/2

s := sqrt (q - (p/2) 3) Vn := 8

Vn-1 := -S

end else
begins := sqt ((p/2)2) - q)
ifp < 0 then Un := -p/2 + s

else Un:= -p/2-s ; Un-1 := q/Un
Vn := Vn-1 := 0

end ; CONY n := CONV n-1 := K ;
n := n-2 ;
for j := 0 step 2 until n do hi := bJ
go to !NIT

RETURN: end

COLLECTED ALGORITHMS (cont.)

CERTIFICATIOX OF ALGOlUTHM 30
~UMERICAL SOLUTIO~ OF THE POLYNOMIAL

EQUATION (K. W. Ellenberger, Comm. AC.M, Dec.
1960)

WILLIAM J. ALEXANDER

Argonne Xational Laboratory,* Argonne, Ill.

IWOTPOL was coded by hand for the LGP-30 using the ACT-III
Compiler with 24 bits of significance. The following corrections
were found necessary.
(a) b_, := b_2 := C_J :== c_2 := d_J := d_2 := e-1 := e-2 := 0

should be
b_1 := b_2 := C-1 := c_2 := d_1 := e_1 := h_1 := 0

(b) m : = en tier ((n + 1) /2) should be
m := entier ((n - 1)/2)

(c) jn-i := s should be hn-i := s
(d) q : = h/hn-2 should be hn/hn-2
(e) cj : = bi - p X Ci - l - q X Ci-2 should be

Ci : = bi - p X Ci-1 - q X Ci-2
(f) if nn-l = 0 then go to BNTEST should be

if hn_1 = O then go to BNTEST
(g) s : = sqrt (q - (p/2) 3) should be

s : = sqrt (q - (p/2)2)
(h) for j := 0 step 2 until n do hi:= bi should be

for j := 0step1 until n do hi:= bi
(i) go to BAIRSTOW should be go to ITERATE

The following correction was found necessary in the given
example (Refer to "On Programming the Numerical Solution of
Polynomial Equations," by K. W. Ellenberger, Cornm. ACM 3,
Dec., 1960):

f (x) = (.10098), 108 x4 - (.98913) 106 x2 + (.19QOO) 106 x +
(.10000) 10 1 = 0 should be
f (x) = (.10098) 108 x4 - (.9891:3) 106 x3 - (.10990) 106 x2 +
(.10000) 106 x + (.10000) 10 1 = 0

With these corrections the results obtained agree with those
given in the example.

For equations of higher order it was found necessary to avoid
repeated scaling of the reduced equation in order to prevent
floating point overflow. The range on the exponent in the ACT III
system is -32 ~ e ~ 31.

Further floating point overflow difficulties were experienced
when certain coefficients in the reduced equation became small
but not zero. The following additions were made to avoid this
fault:
(a) for j : = 0 step 1 until n do hi : = di was replaced by

for j := 0 step 1 until n do begin if abs (hi/di) < K then
hi := di else hi := 0 end

(b) for j := 0 step 1 until n do hi := bi was replaced by
for j := 0 step 1 until n do begin if abs (hi/bi) < K then
hi := bi else hi :== 0 end

With the above changes the following results were obtained:
x4 - 3 x3 + 20 x2 + 44x + 54 = 0

x = - .9706390 ± l .005808i
x = 2.470639 ± 4.640533i

x6 - 2 x6 + 2 x4 + x3 + 6x2 - 6x + 8 = 0
x = - .9999999 ± .9999999i
x = 1.500000 ± 1.322876i
x = .5000002 ± .8660251i

x5 + x4 - 8x3 - 16x2 + 7x + 15 = 0
x = 3.000001
x = -2.000000 ± l.OOOOOli
x = - . 9999997
x = .9999998

* Work supported by the U. S. Atomic Energy Commission

30-P 2- RI

CERTIFICATION OF ALGORITHM 30
NUMERICAL SOLUTION OF THE POLYNOMIAL

EQUATION [K. W. Ellenberg;er, Comm. ACM 3
(Dec. 1960), as corrected in the previous Certification
by William J. Alexander, Comm. ACM 4 (May 1961)]

KALMAN J. COHEN

Graduate School of Industrial Administration, Carnegie
Institute of Technology, Pittsbuq~h, Pa.

The ROOTPOL procedure originally published by Ellenberger
as corrected and modified by Alexander was coded for the Bendix
020 in 20-GATE. Some serious errors were found in the third and
fourth lines above the statement labelled "REVERSE" in Ellen
berger's Algorithm which were not mentioned in Alexander's
Certification. First, the function "log" is not a standard function
in ALGOL 60; it is clear from the context, however, that Ellenberger
intends this to be the logarithm function to the base 10. Second,
Ellenberger's Algorithm failed to divide the accumulated sum of
the logarithms by n+l before taking the antilogarithm.

The correct, and slightly simplified, manner in which the third
and fourth lines above the statement labelled "REVERSE"
should read is:

if hi ~ 0 thens := ln(abs(hi))
end; s := s/(n+l); s := exp(s);

With these corrections, the numerical results obtained essen
tially agree with those reported by Alexander.

CERTIFICATION OF ALGORITHM 30 [C2]
NUMERICAL SOLUTION OF THE POLYNOMIAL

EQUATION [K. W. ELLENBERGER, Comm. ACM
3 (Dec. 1960), 643]

JoHN J. KoHFELD. (Recd. 31 Aug. 1964, 18 Nov. 1964 and
10 Nov. 1966)

Computing Center, United Technology Center, Sunny
vale, Calif. 94088
The ROOTPOL procedure was found to use the identifiers p, q,

without declaring them. They should be declared real.
The first ALGOL statement in Cohen's Certification [Comm.

ACM 5 (Jan. 1962), 50] which reads:

if h1 ~ 0 thens := ln (abs(h;))

should read:

if h; ~ 0 thens := ln (abs(h;)) + s.

The next line could be simplified to read:

end; s := exp(s/(n+l));

The above corrections, as well as Algorithm 30 itself, are in
publication language ALGOL. In order to translate the algorithm
to reference language ALGOL, which is now used in CACM, 10'
would need to be replaced by 10 i F, and h; would need to be re
placed by h [j].

With these corrections and those contained in Alexander's
Certification [Comm. ACM 4 (May 196,1), 238], Ellenberger's Al
gorithm was adapted to B-5000 ALGOL and stlccessfully executed
on the Burroughs B-5000 computer at United Technology Center.
The results from the four examples used by Alexander are given
below.

COLLECTED ALGORITHMS (cont.)

Example 1

(1.0098)107x4
- (9.8913)105x 3 - (1.0990)105x2 + 105x + 1 = O.

The roots are:
x = -0.201080185406
x = 0.149521622653 ± 0.163989609283i
x = (-9.99989011230)10-G.

Example 2

x4 - 3x 3 + 20x2 + 44x + 54 = 0
x = 2.47063897001 ± 4.64053316164i
x = -0.970638970010 ± 1.00580758903i

Example 3

x' - 2x6 + 2x4 + x 3 + 6x2
- 6x + 8 = 0

x = -0.999999999990 ± 1.000000000000i
x = 1.500000000000 ± 1.32287565553i
x = 0.500000000000 ± 0.866025403780i

P.Jxample 4
x5 + x4 - 8x3 - 16x2 + 7x + 15 = 0

x = 3 .00000000000
x = -2.00000000000 ± 1.00000000003i
x = -0.999999999990
x = 1.000000000000

These results agree substantially with those given in Alexander's
Certification.

30-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 31
GAMMA FUNCTION
RoBERT M. CoLLINGE

Burroughs Corporation, Pasadena, Ca1ifornia

real procedure Gamma (x); real x;
comment For x in the range 2 S x S 3 an approximating poly

nomial is used. In this range the maximum absolute error E(X)
is I c::(x) I < 0.25 X 10 ·1 • For x > 3 we write r(x) = (x-1) (x-2)
... (x-n)r(x-n) where 2 S (x-n) S 3, and for x < 2 we write

l'(x+n)
r(x) = ------------ where 2 S (x-n) S 3. For x = O

x(x+l) ... (x+n-1) ~
or a negative integer r(x) is set eaual to a large value 1050 •

begin
real h, y;
h : = 1.0; y : = x;

Al: if y = 0 then h := 1050
else if y = 2.0 then go to A2
else if y < 2.0 then begin
h := h/y; y := y + LO; go to Al end
else if y ~ 3.0 then begin
y : = y - 1.0; h : = h X y; go to Al end
else begin y := -~,r - 2.0;
h := (((((((.0016063118 x y + .0051589951) x y

+ .0044511400) x y + .0721101567) x y
+ .0821117404) x y + .4117741955) x y
+ .4227874605) X y + .9999999758) X h end;

A.2: Gamma := h end Gamma.

CERTIFICATIOK OF ALGORITHM ~~1
GAMMA FUl\CTIOK [R. M. COLLIKGE, Comm.

ACM, .Feb. 61]
PETER G. BEHRENZ

Mathematikmaskinniimnden, Stockholm, Sweden

GAMMA was successfully run on F ACIT EDB using F ACIT

ALGOL 1, which is a realization of ALGOL 60 for FACIT EDB.
No changes in the program were necessary. The relative error
was as stated in the comment of GAMMA about 10-s.

CERTIFICATION OF ALGORITHM 31
GAMMA FUNCTION [R. M. Collinge, Comm. ACM,

Feb. fH]
PETER G. BEHRENZ

Mathematikmaskinnamnden, Stockholm, Sweden

GAMMA was successfully run on F ACIT EDB using F ACIT·

ALGOL 1, which is a realization of ALGOL 60 for FACIT EDB.
No changes in the program were necessary. The relative error
was as stated in the comment of GAMMA about 10-a

31-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 32
MULTINT
R. DoN FREEMAN JR.

Michigan State University, East Lansing, Michigan
real procedure MULTINT (n, Low, Upp, Fnnev, s, P, u, w);

value n;
real procedure Low, Upp, Funev; array s, u,
w; integer n;

comment MUI.TINT will perform a single, double, triple, ... ,
T-order integration depending on whether n=l, 2,. . ., T. The
result is:

!

Upp(l) !Upp(2, X1)
MULTINT = Funev(l, x1) dx1 Funev(2,x1,x2) d.x2 ...

Low(l) Low(2, x1)

f Upp(n,xi, ... ,Xn-1)
Funev(x1, ... 1xn) dxn
Low(n,xi, ... ,Xn-1)

The variable of integration is x[j]. j = 1 refers to the outermost
integral, j =n, the innermost integral. The code divides each
interval equally into s[j] subintervals and performs a P-point
Gaussian integration on each subinterval with weight func
tions w[k[j]] and abscissas u[k[j]]. Pis the size of the arrays of
weight functions and abscissas and must be provided by the
main code along with these arrays.

Since the values x[l], x[2], ... , x[n], are stored in an array, as
are a, b, c, d, r, it is necessary to substitute an integer for the
upper bound T of these arrays before the program is executed.
This means, for example, if 3 is substituted for T, then the
procedure will not do a 4th order integral unless it is retrans-
lated with T ~ 4. -

The valu~s of the lower and upper bounds and functions must
of course be specified at the time of use. If each of these con
stituted a separate procedure, it would require writing and
translating 3n different procedures. This is eliminated by group
ing them into Low, Upp, and Funev which compute the lower
and upper bounds and value of the functions respectively in
each of the jth integrals. Since these are each essentially a col
lection of "subprocedures," the first' statement of each should
be a switch directing the code to the "subproceclure" which is
used in the jth integral. Note that, for example, Low(3,x) is
formally a function of x[l], x[2], ... , x[T]; this is done merely
because it is more convenient to make Low(j ,x) formally a func
tion of the whole array x for all j. Actually of course Low(3, x)
would be a function of x[l] and x[2] only;

begin real array a, b, c, cl, r, x[l :T];

setup:

sum:

integer array k, h[l:T]; real f; integer j, m;
for j :=1step1 until T do

x[j] := 0.0;
m := 1;
r[n+l] := d[n+ll := 1.0;
for j := m step 1 until n do
begin

a[j] := Low(j,x);
b[j] := Upp(j,x);
d[j] .- (b[j]- a[j J)/s[j];
c[j] := a[j] + 0.5 X d[jj;
x[j] := c[j] + 0.5 X d[j] X u[lj;
r[j] := 0.0;
h[j] : == k[j] : == 1; end;
j :== n;
: = Funev(j ,x);

32-P 1- 0

r[j] :== r[j] + r[j+lj X d[J-1-1] X f X w[k[j II;
if (k[j] < P) th.en go to labk;
if (h[j] < s[j]) then go to labh;
j :== j-1;
if (j == 0) then go to exit;
go to sum;

labh: h[j] := h[j] + 1;
c[j] :== a[j] + (h[j] - 0.5) X d[jj;

k[j] := 1;
go to initalx;

labk: k[j] ::z k[jj + l;
initalx: x[j] := c[j] + 0.5 X d[j] X u[k[j]];

if (j = n) then go to sum;
m :=j+l;
go to setup;

exit: MULTINT := r[l] X d[l] X 0.5 j n; end

CERTIFICATION OF ALGORITHM 32
MULTINT [R. Don Freeman, Comm. ACM, Feb. 1961]
HENRY c. THACHER, JR.*

Reactor Engineering Div., Argonne National Laboratory,
Argonne, Ill.
*Work supported by the U. S. Atomic Energy Commission.

The procedure was transc"ribed into the ACT-III language for
the LGP-30 computer, and was tested on the integrals:

1 1 1 1

(l) 1111 k[cos u - 7u sin u

- 6u2 cos u + u 3 sin u] dw dx dy dz = sin k

where u = kwxyz, and

(2)

r1 r~ j'yl-x2-Y2
__ d_z_d_y_d_x __

Jo Jo o x2 + Y2 + (z - k) 2

The ALGOL procedures for the second integral are:

real procedure Low (j,x);
Low:=;:: O;
real procedure Upp(j,x); comment z == x[3], y == x[2], x ==

x(l);
begin
integer i; real temp;
temp :== 1.0;
for i := j-1 step - 1 until 1 do
temp : = temp - xfj] X xfj];
Upp := sqrt(temp)
end;
real prQcedure Funev(j,x);
comment Tbe real parameter k is global;
Funev ==if j < .. 3then1.0else1/(x[l]Xx[1J+x[2]Xx[2]+(x[3]-k)

-i 2) j

The first integral was tested only with s[j] = 1, and with various
Gaussian formulas for integrals over the interval (-1,+1). Re
sults were as follows:

COLLECTED ALGORITHMS (cont.)

k

true
p = 2
p = 3
p = 4
p = 5

w/2

1.0000000
0.993704
1.000032
0.999999
1.000000

0.0000000
--0. 0333603

0.0000848
0.0000001

--0. 0000002

3w/2

-1.0000000
+0.020166
-1.061651
-0.998407
-1.000028

0.0000000
6.881490

-0.597419
+0.0027035
-0.0007857

For the second integrnl, two values of s = s[l] = s[2] = s[3]
were used, and two values of 7J, Results were as follows:

s

k

true

p = 2
p = 3

1./2

11 . 46027376
1 2

5.454460 11.838651
9.361666 12.408984

1.10609687
1 2

1.0368770 1.1184305
1.1343551 1.1094278

The effect of the pole at (0,0,k) is obvious.
For the algorithm to run in any compiler, the semicoton follow

ing x[T]; in the fourth line above the end of the comment must be
deleted. The array bounids on the arrays rand d must be increased
to [1 : T+l].

For a system which permits variable array bounds, the intro
duction of the integer T appears superfluous. For such a system,
T may be replaced by n throughout with a probable gain in effi
ciency. For most translators, the presence of undefined elements
in an array will not cause difficulties, provided these elements do
not appear in an expression before they are assigned a value.

The statement "for j := 1step1 until T do x[j] := 0.0;" is thus
superfluous. The semicolon before the end which precedes the
label "sum" also appears unnecessary.

In spite of these minor corrections, the algorithm appears to be
extremely convenient for multiple quadratures over arbitrary
regions using the Cartesian product of any explicit one-dimen
sional formula (and not merely a Gaussian formula) for inte
grating over the range [-1,1]. If endpoints are used in the formula,
it will, of course, repeat the calculation for each section of the
range.

REMARKS ON ALGORITHM 32 [Dl]
lVIULTINT [R. Don Freeman, Jr., Comm. ACM 4

(Feb. 1961), 106]
AND
CERTIFICATION OF ALGORITHM 32 [Henry C.
Thacher, Jr., Comm. ACM 6 (Feb. 1963), 69]
K. s. KoLBIG
Data Handling Division, European Organization for

Nuclear Research (CERN), 1211 Geneva 23, Switzer
land

KEY WORDS AND PHRASES: numerical integration, multi
dimensional integration, Gaussian integration

CR CATEGORIES: 5.16

The real procedure MULTINT was corrected according to the
certification. It was then compiled on a CDC 3800 computer and
tested on the second integral given in the certification. It became
apparent that

32-P 2- Rt

(i) Equation (2) of the certification should read

1
1 1yl-x21yl-x2-y2 dz dy dx

-1 -~ -v':l=-x2-y2 X
2 + Y2 + (z - k)2

= 7r (2 + G ·- k) log I ~ ~ ~ I)
(2)

It should be noted that the right-hand side of equation (2)
as printed in the certification does not correspond either to the
original limits or to those given above.

(ii) the statement

Low:= O;

in the real procedure Low should be replaced by

Low := -Upp(j, x);

(iii) the second line of the for statement in the real procedure
Upp should read

temp := temp - x[i] X x[i];

After making these corrections, it is possible to obtain results
corresponding to a permuted version of the table given in the
certification, which should be replaced by the following:

k ! 2

true 11.46027375 1.10609686
1 2 2

P=2 5.454466 9.361670 1.0368787 1.1184317
p = 3· 11.838664 12.408983 1.1343568 1.1094294

In addition, since several compilers require specifications, it
would be desirable

(i) to change the last specification in the heading of MULTI NT
to read

integer n, P;

(ii) to insert the specifications

integer j; arraLy x;

in the heading of the real procedures Low, Upp, and Funev.
Some of these additions were necessary in order to ensure

correct results with the compiler used for the tests.

COLLECTED ALGORITHMS . FROM CACM

ALGORITHM 33
FACTORIAL
M. F. LIPP

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

real procedure Factorial (n) ;
value n ; integer n ;

comment This procedure makes use of the implicitly defined
recursive property of Algol to compute nl;

begin Factorial := if n = 0 then 1. else nX Factorial (n-1)
end

33-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 34
GAMMA FUNCTION
M. F. LIPP

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

real procedure Gamma (x) ; real x ;
comment This procedure generalizes the recursive factorial

rou~ine, finding r(l +x) for reasonable values of x. Accuracy
vanishes for large x(jxj > 10) and for negative x with small
fractional parts. For x being a negative integer the impossible
value zero is given;

begin test: if x < 0 then go to minus else if x < 1 then
hegin integer i ; real y ; array a (1 :8] ;

a [1] . - - .57719165 ·
a (2] .- .98820589 ; 'a [3] := -.89705694
a [4] .- .91820686 ;
a (5] .- -.75670408 ; a [6] := .48219939
a [7] . - - .19352782 ;
a [8] := .03586834; y :=a [1];

for i := 2 step 1 until 8 do y := y X x + a [i] ·
Gamma : = y encl hastings . '
else Gamma:= x X Gamma (x-1) · go to endgam·
minus: if x = -1 then Gamma : = 'o else '
Oamma := Gamma (x+l) / x ;
cndgam : encl gam

REMARK ON ALGORITHM 34
GAMMA FUNCTION [M. F. Lipp, Comm. ACM 4

(Feb. 1961))
MARG AH.ET L. .JOHNSON AND WARD SANGRF~N

Computer Applications, Inc., San Diego, Calif.

The coefficients used in the calculation of the Hasting's poly
nomial are used in reverse order. The algorithm should have
a[l]=-.19352782; a[2]= .48219939; a[3]= - .75670408;
a[4]= .91820686; a[5]= - .89705694; a[6]= .98820589;
a[7]= - .57719165; a[8]=: 1.0;
y= .03586834;
for i := 1step1 until 8 do y := yXx+a[i];.

Fvrther, since Gamma (x)=r(l+x), the divisor x in the
statement labeled· minus should be x-tl.

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION

[M. F. Lipp, Comm. ACM 4. (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2

[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL

34--P l~ RI

ARGUMENT
[William Holsten, Comm. ACM 5 (Mar. 1962), 166]

ALGORITHM 221 [814]
GAMMA FUNCTION

(Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 (S14]
LOGARITHM OF GAMMA FUNCTION

(M. C. Pike and I. D. Hill, Comrn. ACM 9 (Sept. 1966),
684]

M. C. PIKE AND I. D. HILL (Recd. 12 Jan. 1966)
Medical Research Council's Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and M both use the same Hastings approxima
tion, accurate to about 7 decimal places. Of these two, Algorithm
54 is to be pref erred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines

if x = 0 then begin RGR := O; go to EXIT end
and

if x = 1 then begin RGR := 1; go to EXIT encl
:-;hould each be followed either by a semicolon or preferably by an
else.
(3) The lines
if x = 1 then begin RGR := l/y; go to EXIT encl

and
ifx < - 1 then begin y := y Xx; go to CC end

should each be followed by a semicolon.
(4) The lines

BB: if x = -1 then begin RGR := O; go to EXIT encl
and

ifx > -1 then begin RGR := RGAM(x); ~o to EXIT end
should be separated either oy else 01· by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer i and reall array B[O: 13] in RG AM
are in the wrong place; they should come immediately after

begin real z;

With these modifications (and the replacement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput
ing time, being twice as fast as 291 at x = 1, but this advantage
decreases steadily with increasing x so that at x = 7 the speeds are
about equal and then from this point on ~?91 is faster-taking only
about a third of the time at x = 25 and about a tenth of the time
flt x = 78. These timings include taking the exponential of log
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete bet.a function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 35
SIEVE
T. C. Woon
JRCA Digital Computation and Simulation Group, Moores

town, New Jersey

1nocedure Sieve (N max) Primes: (p) ;
integer Nmax; integer array p ;

comment. Sieve uses the Sieve of Eratosthenes to find all prime
numbers not greater than a stated integer Nmax
and stores them in array p. This array should be
of dimension 1 by entier (2 X N max/ fo (N max))

begin integer n, i, j
p[l] := 1 ; p[2] := 2 ; p[3] := j :== 3 ;
for n := 3 step 2 until Nmax do

begin i := 3 ;
Ll: go to if p[i] S sqrt (n) then al else a2 ;
al: go to if n/p[i] = n + p[i] then bl else b2
b2: i : = i + 1 go to Ll
a2 : p [j] : = n ; j : = j + 1
bl: end end

CERTIFICATION OF ALGORITHM 35
SIEVE (T. C. Wood, Comm. ACM, March 1961)
P. J. BROWN
University of North Carolina, Chapel Hill, N. C.

SIEVE was transliterated into GAT for the UNIVAC 1105
and successfully run for a number of cases.

The statement:
go to if n/p[i] = n + p[i] then bl else b2;

was changed to the statement:
go to if n/p[i] - n + p[i] < .5/Nmax then bl else b2;

Roundoff error might lead to the former giving undesired results.

CERTIFICATION OF ALGORITHM 35
SIEVE [T. C. Wood, Comm. ACM. Mar. 1961]
J. S. HILLMORE
Elliott Bros. (London) Ltd., Borehamwood, Herts.,

England

The statement:
go to if n/p[i] = n + p[i] then bl else b2;

was changed to the st,atement:
go to if (n + p[i]) X p[i] = n then bl else b2;

This avoids any inaccuracy that might result from introducing
nlal arithmetic into the evaluation of the relation.

The modified algorithm was successfully run using the Elliott
ALGOL translator on the National-Elliott 803.

35-P I-RI

REMARKS ON:

ALGORITHM 35 [Al]
SrnvE [T. C. Wood, Comm. ACllf 4 (Mar. 1961), 151]
ALGORITHM 310 [AI]
PRIME NUMBER GENERATOR 1 [B. A. Chartres·T

C01nm. ACM 10 (Sept. 1967), 569]
ALGORITHlVf 311 [Al]
PRIME NUMBER GENERATOR 2 [B. A. Chartresr

Comm. ACM 10 (Sept. 1967), 570]

B. A. CHARTRES (Recd. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

The three procedures ·sieve(m,p), sievel(m,p), and sieve2(rn,p),
which all perform the same operation of putting the primes less
than or equal t:o m into the array p, were tested and compared for
speed on the Burroughs B5500 at the University of Virginia. The
modification of Sieve suggested by J. S. IIillmore [Comm . .:lC.M 5
(Aug. 1962), 438] was used. It was also found that Sieve could be
speeded np by a factor of 1.95 by avoiding the repeated evaluation
of sqd (n). The modification required consisted of declaring an
integer variable s, inserting the statement s : = "Sqrt(n) immedi
ately after i := 3, and replacing p[i]Ssqrt(n) by p[i]Ss.

The running times for the computation of the first 10,000 primes
were:

Sieve (Algorithm 35)
Sieve (modified)
sievel

845 sec
434 sec
220 sec

sieve2 91 sec

The time required to compute the first k primes was found to be,
for each algorithm, remarkably accurately represented by a power
law throughout the range 500 S k S 50,000. The running time of
Sieve varied as ku0, that of sievel as kL 53 , and that of 8ieve2 as
kL 35• Thns the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, it should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolation past
this point (there is no reason known why it should be), it would
take about 12 hours to find the first million primes.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 36
TCHEBYCHEFF
A. J. GIANNI

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

procedure tchebycheff (t, x, m, .f) ;
real array t, x ; integer .f, m ;
comment given a set of m+l values of x stored in a o:ie

dimensional array whose subscripts run from 0
thru m :tt least, construct a table of tn(x), n =
0, 1, · · · ,t and store it in the two-dimensional
array t, where you find tn(x[m]) as t[n, ml ;

begin integer i, k, n ; ·
fo1· k := 0 step 1 until m do begin t[O, k] := 1
t[l, k] := x[k] end ;
for n := 2 step 1 until .f do for i = 0 step

until m do
t[n, i] := 2 X x[i] X t[n - 1, i] - t[n - 2, i]

end tcheby

36-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 37
TELESCOPE 1
K. A. BRONS

RCA Advanced Programming Group, Pennsauken, N. J.
procedure Telescope 1 (N, L, eps, limit, c) ; value limit, L ;

integer N ; real L, eps, limit ; array c
comment: Telescope 1 takes an Nth degree polynomial approxi

N

start:

exit:

mation L CkXk to a function which was valid to
k=O

within eps ~ 0 over an interval (O, L) and reduces
it, if possible, to a polynomial of lower degree,
valid to within limit > 0. The initial coefficients
Ck are replaced by the final coefficients, and the
deleted coefficients a:re replaced by zero. The ini
tial cps is. replaced by the final bound on the error.
N is replaced by the degree of the reduced poly
nomial. N and eps must be variables.

This procedure computes the coefficients given in
the Techniques Department of the ACM Com
munications, Vol. 1, No. 9, from the recursion
formula

k·L·(2k - 1)
-ak·2(N + k - l)·(N - k + 1)

begin integer k ; array d[O:N]
if N < 1 then go to exit ; d[N] := -c[N]
fork := N step - 1 until 1 do
d[k - 1] := -d(k] X L X k X (k - 0.5)/

((N + k - 1) X (N - k + 1))
if eps + abs (d[O]) < limit then
begin eps : = eps + abs (d [O])
fork:= N step - 1until0 do c[k] :== c[k] + d[k] ;
N : = N - 1 ; go to start end ;
end

CERTIFICATION OF ALGORITHM 37
TELESCOPE 1 [K. A. Brons, Comm. ACM, Mar., 1961]
HENRY c. THACHER, JR.*

Reactor Engineering Div., Argonne National Lab.,
Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission.

The body of Telescope 1 was compiled and tested on the LGP-30
using the ALGOL 60 translator system developed by the Dartmouth
College Computer Center. No syntactical errors were found, and
the program ran satisfactorily. The 10th degree polynomial ob
tained by truncating the exponential series was telescoped using
lim! = .1 10 - 2 and L = 1.0. The result was N = 3, eps =
.210300510 - 3, and coefficients + .9997892, - .9930727, + .4636493,
- .1026781. The error curve for the telescoped polynomial was
computed for x = 0(.02)1.0. The error extrema were bounded by
eps to within 0.5%. The discrepancy is within the range of input
conversion and round-off error.

37-P 1- 0

CERTIFICATION OF ALGORITHM 37
TELESCOPE 1 [K. A. Brons, Comm. ACM, Mar. 1961]
JAMES F. BRIDGES

Michigan State University, East Lansing, Mich.

This procedt1re was tested on the CDC 160A, using 160A FoR
TRAN. The 10th degree polynomial obtained by truncating the
series exp (-x) was telescoped using L = 1 and lim = 0.001. The
result was N = 3, eps = 0.2106186210 - 3 and coefficients
+0.99978965, -0.99307236, +0.46364955, -0.10267767. The error
curve was computed for x = 0(0.02)1.0 and no error exceeded eps,
the worst error being 2% of eps less than eps.

This result is in close agreement with that of Henry C. Thatcher.
Jr. in his Certjfication (Comm. ACM, Aug. 1962). Mr. Thatcher
has pointed out that he inadvertantly referred to the series for
exp (-x) as the "exponential series" thereby inferring the posi
tive series exp (+x). There is also a typographical error in his eps.
It should be +0.210350510 - 3.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 38
TELESCOPE 2
KA. BRONS

RCA Advanced Prog:rarnrning, Pennsauken, N. J.
procedure Telescope 2 (N, L, eps, limit, c) ; value limit, L

integer N ; real L, eps, limit ; array c
comment Telescope 2 takes an Nth degree polynomial a.p

N

start:

proximation L ckxk to a function which was
k=O

valid to within eps z 0 over an interval (--L, L)
and reduces it, if possible, to a polynomial of
lower degree, valid to within limit >0. The initial
coefficients Ck are replaced by the final coefficients,
and deleted coefficients are replaced by zero. The
initial eps is replaced by the final bound on the
error, and N is replaced by the degree of the re
duced polynomial. N and eps must be variables.

This procedure computes the coefficients given in
the Techniques Department of the ACM Com
munications, Vol. 1, No. 9, from the recursion
formula

k·L2(k - 1)
ak-2 ==

- ak (N + k - 2) · (N - k + 2)

begin integer k ; real s ; array d[O: NJ
if N < 2 then go to exit ; d[N] := -c[N]
fork := N step - 2 until 2 do
d[k - 2) := -d[k] X L j 2 X k X (k - 1)/

((N + k - 2) X (N - k + 2))
if (N/2) :- entier (N/2) = 0 then s .- d[O] else

s := d[l]/N
if eps + abs(s) < limit then begin

eps := eps + abs(s)
fork := N step - 2 until 0 do

c[kj := r[k] + d[k]
N : = N - 1 ; go to start end

exit: end

CERTIFICATION OF ALGORITHM 38
TELESCOPE 2 [K. A. Brons, Comm. ACM, Mar., 1961]
JAMES F. BRIDGES

Michigan State University, East Lansing, Mich.
This procedure was tested on the CDC 160A using ltiOA FOR

TRAN. The 10th degree polynomial obtained by truncating the
series expansion of exp (+x) was telescoped using L = 1.0 and
lim = 0.001. The result was N = 4, eps = 0.5915994910 - 3 and
~oefficients +t.0000447, +0.99730758, +0.49919675, +0.17734729,
+0.043793910. Errors were calculated for x = -1.0(0.02)1.0. The
only error to exceed cps was at x = 1.0 and was within 0 .6% of eps.

38--P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 39
CORRELATION COEFFICIENTS WITH MATRIX

MULTIPLICATION
p APKEN SASSO UNI

Burroughs Corporation, Pasadena, California

procedure NORM (x) number of rows: (m) number of columns:
(n) normalized output: (y) standard deviations:
(s)

value m, n ; integer m, n ; array x, y, s ;
comment Given an observation matrix [xJ consisting of ob

servations Xii on a population, NORM will cal
culate

begin

l: begin

2: begin

Yii =
X;j - Xj

·. If: (Xij - Xj)2 v i-1

and the standard deviations

.for i = 1, · · ·, m

j = .1, ·• ·, n

where Xi is the mean of observations on the j-th
factor ,

integer i, j real r, h, c, b •;
r := sqrt (m) ; for j := 1 step 1 ·Until n do
h := 0 ,
for i := 1 step 1 until m do
h := h + x[i, j] ; h := h/m ; b := 0
for i := 1 step 1 until m do
c := x[i, j] - h ; b := b + cj 2 ; y[i, j] := c
end 2
b := sqrt (b) ;
for i := 1 step 1 until m do
y[i, j] := y[i, j]/h ; s[j] := b/r
end .l
end NORM

comment The normalization is now completed, a:n,d. we are
ready to compute the correlation matrix , .

procedure TRANSMULT (y) number of rows: (m) number of
columns: (n) symmetrical square ma.trix result:
(z)

value

comment

begin

hear;in

m, n ; integer m, n ; array y, z

This procedure multiplies two matrices, the first
being the transpose of the second. The result is a
symmetrical matrix with respect to the main diag
onal, therefore only the lower part of it, including
the main diagonal, is computed. The upper halfis
obtained by equating corresponding elements;

integer i, j, k ; real h
for j := 1 step 1 until n do
for i := j step 1 until n do
h := 0

' fork := 1 step 1 until m do
h := h + y[k, 1) x y[k, j]
if i -;;C j then z Ll, i] . - .h
end i

z[i, j) := h

39-P 1- 0

end TRANSMULT. lz] is the squart:: matrix of the
correlation coefficients of the initial observation
matrix [x]

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 40
CRITICAL PATH SCHEDULING
B. LEAVENWORTH

American Machine & Foundry Co., Greenwich, Conn.

procedure CRITICALPATH (n, I, J, IHJ, ES, LS, EF, LF, TF,
FF) ;

integer n ; integer array I, J, DIJ, ES, LS, EF, LF, TF,
FF ;

comment: Given the total number of joos n of a project, the
vector pair h , Jk representing the kth job, which is thought
of as an arrow connecting event h to event Jk(h < Jk,
k = 1 · · · , n), and a duration vector (DIJ)k, CRITICAL
p A TH determines the earliest starting time (ES)k , latest
starting time (LS)k , earliest completion time (EF)k , latest
completion time (LF)k , the total float (TF)k , and the free
float (FF)k . I1 must be 1 and the h , J k must be in ascending
order. For example, if the first three jobs are labelled (1, 2),
(1, 3), (3, 4), then the I, J vectors are (1, 1, 3) and (2, 3, 4)
respectively. The critical path is given by each arrow whose
total float is zero. The following non-local labels are used for
exits: outl - h not less than J k ; out2 - Ik out of se
quence ; out3 - h missing;

begin
integer k, index, max, min ; integer array ti, te [l:n]
index := 1 ;
fork := I step 1 until n do
begin

if I[k] ;;;;; J[k] then go to outl ;
if I[k] < index then go to out2 ;
if I[k]" > index /\ I[k] ~ index + 1 then go to out3
if I[k] = index + 1 then index : = I[k]

C: end ;
for k := 1 step 1 until n do

ti[k] := te[k] := 0 ;
fork := 1 step 1 until n do
begin

max := ti[I[k]] + DIJ[k] ;
if ti[J[k]] = 0 V ti[J[k]] < max then
ti[J[k]] := max ;

A: end ti ;
te[J[n]] := ti[J[n]l ;
fork := n step -1 until 1 do

begin
min := te[J[k]] - DIJ[k] ;
if te[I[k]] = 0 V te[I[k]] > min then
te[I[k]] := min ;

B: end te ;
fork := 1 step l until n do
begin

end

ES[k] := ti[I[k]] ;
LS[k] := te[J[k]] - DIJ[k]
EF[k] := ti[I[k]] + DIJ[k]
LF[k) : = te[J[k]) ;
TF[k] :== te[J[k]] - ti[I[k]] - DIJ[k]
FF[k] := ti[J[k]) - ti[I[k]] - DIJ[k]

end CRITICALP ATH

40-P 1- 0

REFERENCES
(I) JAMES E. KELLEY, JR. AND MoRGAN R. WALKER, "Critical

Path Planning and Scheduling," 1959 Proceedings of the
Eastern Joint Computer Conference.

(2) M. C. FRISHBERG, "Least Cost Estimating and Scheduling
- Scheduling Phase Only,'' IBM 650 Program Library
File No. 10.3.005.

CERTIFICATION OF ALGORITHM 40
CRITICAL PATH SCHEDULING (B. Leavenworth,

Comm. ACM, Mar. 1961)
NEAL P. ALEXANDER

Union Carbide Olefins Company, South Charleston,
West Virginia

The Critical Path Scheduling algorithm was coded in FoRTRAN
for the IBM 7070. The following changes were made:

(a) ti [k] := te [k] := O;
should be

ti [k] := O;
te [k] := 9999;

(b) if te [I[kl] = 0 V te [I[k]] > min then
should bP

if te [I[k]l > min then
This change permits a value of 0 to be calculated forte [Ilk]] and
remain as the minimum value.

In the statement
if ti [J[k]] = 0 V ti [J[k]] < max then

the part of the statement "ti [J[k]] = 0" is redundant and can be
omitted.

CERTIFICATION OF ALGORITHM 40
CRITICAL PATH SCHEDULING [B. Leavenworth,

Comm. ACM (Mar. 1961)]
LARS HELLBERG

Facit Electronics AB, Solna, Sweden.

The Critical Path Scheduling algorithm was transliterated into
F ACIT-ALGOL-1 and tested on the F ACI1' EDB. The modificatiomi
suggested by Alexander [Comm. ACM (Sept. 1961)] were included.
Results were correct in all tested schedules.

CERTIFICATION OF ALGORITHM 40
CRITICAL PATH SCHEDULING [B. Leavenworth,

Comm. ACM 4 (Mar. 1961), 152; 4 (Sep. 1961), 392;
fJ (Oct. 1962), 513]

lRvIN A. HqFFMAN (Recd 7 Feb. 1964)
Woodward Governor Co., Rockford, Ill.

The Critical Path Scheduling algorithm was coded in FAST for
the NCR315. The modifications suggeS'~ed by Alexander [Comm.
ACM 4 (Sept. 1961)] were included. Results were correct in all
tested cases. However, the example of the J, J vectors given in

COLLECTED ALGORITHMS (cont.)

the comment is incorrect, as it would cause the exit out3 - Ik
missing.

[EDITOR's NOTE. There are also two semicolons which should
be removed from the comment of Algorithm 40.-G.E.F.]

40-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 41
EVALU.ATIO~ OF DETERMINANT
J OSI<~F G. SOLOMON

RCA Digital Computation and Simulation Group, Moores
town, New .J Prscy

real procedure Detel'minant (A,n);
real array A; integer n;
comn1enl This procedure evaluates a determinant bv triangu-

larization; .

begin real Product, Factor, Temp; array B[l : n. 1 : n],

integer

for

begin

C[J : n, 1_: n];
Count, Sign, i, j, r, y;
Sign : = 1; Product : = 1;
i : = l step 1 until n do for j : = 1 step l until

n do
B[i,jj := A[i,j]; C[i,j] := A[i,j] end;

for r := 1step1 until n-1 do
begin Count : = r-1;

zerocheck: if Bfr,r] ~ 0 then go to resume;

for
begin

hegin

begin
for

if Count < n-1 then Count .- Count + 1
else go to zero;
y := r step 1 until n do
Temp := B[Count+l,y); B[Count+l,y] :=

il[Count,y]; B[Count,y] := Temp end;
Sign : = - Sign; go Lo zerochcck;

zero: Determinnnt : = 0; go to return;
resume: for i : = r+ 1 step 1 until n do

Factor : = C[i,r] I C[r,r];
for j := r+l step 1 until n do
B[i,jL := Bti,j] - Factor X C [r,j] end end;
i := r+l step 1 until n do
for j := r+l step l until n do C[i,j] := B[i,j]

end;
for i : = 1 step 1 until n do Product : = Product

X B[i,i]; Determinant := Sign X Product;
return: end

ALGORITHM 41, REVISION
EVALUATION OF DETERMINANT [Josef G. Solo
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J. J
BRUCE H. FREED

Dartmouth College, Hanover, N. H.
real procedure determinant (a,n);
real arrav a; integer n; value a,n;
comment This procedure evaluates a determinant by triangu-

larization;
begin real product, factor, temp;
array b[l :n,1 :n];
integer count, ssign, i, j, r, y;
ssign : = product : = 1 ;
for i := I step 1 until n do
for j := 1 step I untH n do
b[i,i] := a[i,j];
for r := 1step1 until n-1 do

41-P 1- 0

begin count := r-1;
zerocheck: if b[r,r] r!= 0 then go to resume;
if count < n-1 then count := count +:t else go to zero;
for y := r step 1 until n do
begin temp := b[count+l,y];

b[count+l,y] := b[count,y];
b[count,y] := temp end;

ssign : = - ssign;
go to zerocheck;
zero: determinant : = 0; go to return;
resume: for i : = r+ 1 step 1 iintil n do
begin factor := b[i,r]/b[r,r];
for j := r+l step 1 until n do
b[i,j] := b[i,j] - factor X b[r,j] end end;
for i := 1 step 1 until n do
product : = product X b[i,i];
determinant : = ssign X product;
return: end

CERTIFICATION OF ALGORITHM 41
EVALUATION OF DETERMINANT [.Josef G. Solo
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J.]
BRUCE H. FREED

Dartmouth College, Hanover, N. IL
When Algorithm 41 was translated into SCALP for running on

the LGP-30, the following corrections were found necessary:
1. In the "y" loop after "B[Count,y] Temp" and before the

"end" insert
"Temp := C[Count+l,y];
C[Count +1,y] := C[Count,y];
C[Count,y] := Ternp"

2. "Sign" is an ALGOL word when uncapitalized. However,
many systems (if not all) do no1~ recognize the difference
between small and capital letters. For this reason "Sign"
was changed to "ssign" for the LGP-30 run (and in the
revision which follows later).

The following addition might be made in the specification as a
concession to efficiency: "value A ,n;".

The following changes might be made to make the Algorithm
less wordy:

1. for "Ssign : = 1 ; Product : = 1;"
put "Ssign := Product := 1 ;"

2. for "begin B[i,j] := A[i,i]; C[i,j] := A[i,j] end;"
put "B[i,j] := C[i,j] := A[i,i];"

3. for "begin B[i,j] := B[i,j] - Factor X C[r,j] end end;"
put "B[i,jJ := B[i,j] - Factor X C[r,j] end;"

The above corrections and changes were made and the progrnn:
was run with the correct results, as follows:

(

10.96597 35.1076l> 96.72356)
A = 2.35765 -84.11251> .87932

18.24689 22.1357!) 1.11123

Determinant = .15:273131006

Hand calculation on a desk calculator gives the value of the de
terminant for the above matrix as 152,731.3600.

COLLECTED ALGORITHMS (cont.)

(

1.0 3.0 3.0 1.0)
A = 1.0 4.0 6.0 4.0

1.0 5.0 10.0 10.0
1.0 6.0 15.0 20.0

Determinant = .99!)999910+00

The above matrix, being a finite segment of Pascal's triangle, has
determinant equal to 1.000000000.

(

0.0 0.0 0.0)
A = 5.0 9.0 2.0

7.0 5.0 4.0
Determinant = .000000010 +oo

This is, of course, exactly correct.
Finally, one major change can be made which does away with

several instructions· and reduces variable storage requirements
by n2. This change is the complete removal of matrix C from the
program. It is extraneous.

The revised Algorithm was translated into'ScAJ,P and run on
the LGP-30 with exactly the same results as above.

'fhe revised Algorithm 41 follows.

HK\L-\RK O>: H E\'ISfO:\ OF ALGORITHM 41
EVAIXATIO>: OF DETERl\UNANT [Josef G. Solomon,

Comrn. ACM 4 (Apr. 1901), 176; Bruce H .. Freed,
Comm. ACM 6 (Sept. 1963), 520]

LEo .T. HO'l'EXBEIW (Recd 7 Oct. 63)
Box 2-100, :102 ~Iemorial Dr., Cambridge, .Yiass.

While desk-checking the program· an error was found. For ex
ample, the algorithm as published would.have calculated the value
zero as t lw determinant of the matrix

The error lies in the search for a nonzero element in the rth column
of the matrix b.

Editor's Xote. Apparently the best general determinant evalu
ators in this section are imbedded in the linear equation solvers
Algorithm 4:3 [('onun. ACM 4 (Apr. 1961), 176, 182; and 6 (Aug.
l9(m, 445] and Algorithm 135 [Comm. ACM 5 (Nov. 1962), 553,
4557]. They search each column for the largest pivot in absolute
value. Algorithm 41 searches only for a nonzero pivot in each
column, and will therefore fail for the matrix

[

2-I 1 1]
1 1 2
1 1 1

if t » s, for a machine withs-bit floating point.
It is hoped that soon a. good determinant evaluator will be

published to take the place of Algorithm 41.-G. E. F.

CERTIFICATION OF:
ALGORITHM 41 [F3]
EVALUATION OF DETERMINANT

[.Josef G. Solomon, Comm. ACM 4 (Apr. 1961), 171]
ALGORITHM 269 [F3]
DETERMINANT EVALUATION

[Jaroslav Pfann and Josef Straka, Comm. ACM 8
(Nov. 1965), 668]

A. BERGSON (Recd. 4 Jan. 1966 and 4 Apr. 1966)

41 P 2 Rl

Computmg Lab., Sunderland Technical College,
Sunderland, Co. Durham, England

Algorithms 41 and 269 were coded in 803 ALGOL and nm on a
National-Elliott 803 (with automatic floating-point unit).

The following changes were made:
(i) value n; was added to both Algorithms;

,(ii) In Algorithm 269, since procedure EQUILIBRATE is only
called once, it was not written as a procedure, but actually written
into the procedure determinant body.

The following times were recorded for determinants of order 1\T
(excluding input and output), using the same driver program and
data.

N T1 T2
Algorithm 41 Algorithm 269

(minutes)

10 0.87 0.78
15 2.77 2.18
20 6.47 4.78
25 12.47 8.99
30 21.37 14.98

From a plot of ln(T1) against ln(N) it was found that

Similarly,

T2 = 0.00153N2·w.

From a plot of Ti against T2, it was found that Algorithm 2()9
was 30.8 percent faster than Algorithm 41, but Algorithm 41
required less storage.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 42
INVERT
T. C. Woon
RCA Digital Computation and Simulation Group.

Moorestown, New .Jersey

procedure Invert (A) order: (n) Singular: (s) Inverse: (Al);
array A, Al; integer n,s, value n;

comment This procedure inverts the square matrix A of order
n by applying a series of elementary row operation to the matrix
to reduce it to the identity matrix. These operations when
applied to the identity matrix yield the inverse Al. The case
of a singular matrix is indicated by the value s : = 1;

begin comment .augment matrix A with identity matrix;
array afl :n, 1 :2 X n]; integer i,j;
for i := 1 step 1 until n do
for j : = 1 step 1 until 2 X n do
if j ~ n then a[i,jj := A[i,j] else
if j = n+l then a[i, j] := 1.0 else a [i,j] ·= 0.0;
comment begin inversion;
for i := 1step1 until n do

begin integer k, f, ind; j := f := i; ind := s := O;
Ll: if a[l,j] = 0 then

begin ind := l; if t < n then begin t := e + l;
go to Ll end

else begin s : = 1 ; go to L2 end
end;

if ind = 1 then for k := 1 step 1 until 2 X n do
begin real temp;

temp : = a[f ,k);
a[f ,k] : = a [i,k];
a[i,kl := temp end k loop;

for k : = j step 1 until 2 X n do
a[i,k] := a[i,k] / a[i,j];

for f := 1step1 until n do
if l >'6- i then for k : = 1 step 1 until 2 X n do

a[f,k] := a[l,k] - a[i,k] X a[l,j);
end i loop;
for i := 1 step 1 until n do
for j := 1 step 1 until n do

Al[i,j] := a[i,n+j];
L2: end of procedure

CERTIFICATION OF ALGORITHM 42
INVERT (T. C. Wood, Comm. ACM, Apr .. 1961)
ANTHONY w. KNAPP AND PAUL SHAMAN

Dartmouth College, Hanover, N. H.

INVERT was hand-coded for the LGP-30 using machine lan
guage and the 24.0 floating-point interpretive system, which car
ries 24 bits of significance for the fractional part of a number and
five bits for the exponent. The following changes were found
necessary:

(a) if j = n+l then a[i, j) := 1.0 else a[i, j] := 0.0;
should be
if j = n+i then a[i, j] := 1.0 else a[i, j] := 0 O;

(b) for k := j step 1 until 2 X n do
a[i, k] := a[i, kl/a[i, j];

should be
fork := 2 X n step -1 until i do

a[i, k] := a[i, k)/a[i, i];

42-P 1- 0

(c) ifl >'6- i then fork:= 1step1 until 2 X n do
a[l, k] := a[l, k] - a[i, k] X a[l, j];

should be
if l >'6- i then fork:= 2 X n step --1 until i do

a[l, k] := a[l, k] - a[i, k] X a[l, i];

Given these changes, j becomes superfluous in the second i loop,
and the other references to j may be changed to references to i.

INVERT obtained the following results:
The computer inverted a 17-by-17 matrix whose elements were

integers less than ten in absolute value. When the matrix and its
inverse were multiplied together, the la!'l~est nondiagonal element
in the product was - .00003. Most nondiagonal elements were less
than .00001 in absolute value.

INVERT was tested using finite segments of the Hilbert matrix.
The following results were obtained in the 4 X 4 case:

16.005 -120.052 240.125 -140.082
-120.052 1200.584 -2701.4:07 1680.917

240 .126 -2701. 411 6483 .401 - 4202. 217
-140. 082 1680. 920 -4202. m 9 2801. 446

The exact inverse is:
16 -120 240 -140

-120 1200 -2700 1680
240 -2700 6480 -4200

-140 1680 -4200 2800
INVERT was also coded for the LGP-30 in machine language

and the 24.1 extended range interpretive system. This system,
which uses 30 significant bits for the fraction, obtained the follow
ing as the inverse of the 4 X 4 Hilbert matrix:

16.000 -120.001 240.001 -140.001
-120.001 1200.006 -2700.015 1680.010

240.001 -2700.016 6480.037 -4200.024
-140.001 1680.010 -4200.024 2800.016

The program coded in the 24.0 interpretive system successfully
inverted a matrix consisting of ones on the minor diagonal and
zeros everywhere else.

REMARKS ON ALGORITHM 42
INVERT [T. C. Wood, Comm. AC.M, Apr. 1961]
P. NAUR

Regnecentralen, Copenhagen, Denmark

INVERT cannot be recommended since it does not search for
pivot and therefore will give poor accuracy. This is confirmed by
the figures quoted by Knapp and Shaman in their certification
{Comm. ACM 4 (Nov. 1961), 498]. The results obtained by them
using 30 significant bits for the fraction may be compared directly
with those obtained using INVERSION II (Algorithm 120) and
gjr with the GIER ALGOL system (see certification below). In
verting the 4 X 4 segment of the Hilbert matrix, the largest error
in any element is found to be:

COLLECTED ALGORITHMS (cont.)

Subsmrpts Error

INVERT (Knapp and Shaman)
INVERSION II} (see certification of
gjr Alg. 120)

3,3
3,3
4,3

0.037
0.0306
0.00010

In view of this basic shortcoming of Algorithm 42, it is un-
necessary to report on other features of it. ·

CORRECTION TO EARLIER REMARKS ON AL
GORITHM 42 INVERT, ALG. 107 GAUSS'S lVlETHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, 38-40.]
P. NAUR

Regnecentralen, Copenhagen, Denmark

George Forsythe, Stanford University, in a private communi
cation has informed me of two major weaknesses in my remarks on
the above algorithms:

1) The computed inverses of rounded Hilbert matrices are com
pared with the exact inverses of unrounded Hilbert matrices, in
stead of with very accurate inverses of the rounded Hilbert
matrices.

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such matrices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub
stantiate the claims I have made for them.

To obtain a more valid criterion, without going into the con
siderable trouble of obtaining the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Maximum deviation from elements of the unit matrix

Order INVERSION II gjr Ratic

2 -1.4910-8 -1.4910-8 1.0
3 -4.7710-7 -8.3410-7 0.57
4 -9.5410-6 -3.4310-5 0.28
5 -7 .3210-4 -4.5810-4 1.6
6 -1.6110-2 -1.4210-2 1.1
7 -5.7810-l -5.4710-l 1.1
8 -1.2010-2 -1.38101 8.7
9 -4. 91iol -2.22101 2.2

This criterion supports Forsythe's criticism. In fact, on the
basis of this criterion no preference of INVERSION II or gjr can
be made.

The calculations were made in the GIER ALGOL system, which
has floating numbers of 29 significant bits.

42-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 43
CROUT WITH PIVOTING II
HENRY C. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

real procedure INNERPRODUCT (u,v) index : (k) start : (s)
finish : (f) ;

value s, f; integer k, s, f ; real u, v ;
comment INNERPRODUCT forms the sum of u(k) X v(k) for

k = s, s+l, ... , f. Ifs > f, the value of INNERPRODUCT is
zero. The substitution of a very accurate inner product proce
dure would make CROUT more accurate;

comment INNERPRODUCT may be declared in the head of
any block which includes the block in which CROUT is de
clared. It may be used independently for forming the inner
product of vectors;

begin
real h;
h := O; fork:= sstepl untilfdoh := h+u Xv;
INNERPRODUCT := h

end INNERPRODUCT;
procedure CROUT II (A, b, n, y, pivot, <let, repeat)
comment This procedure is a revision of Algorithm lti, CrouL

With Pivoting by George E. Forsythe, Comm. ACM 3, (19130)
507-8. In addition to modifications to improve the running of
the program, and to conform to proper usage, it provides for
the computation of the determinant, det, of the matrix A. The
solution is obtained by Crout's method with row interchanges,
as formulated in reference [l], for solving Ay = band transform
ing the augmented matrix [A b] into its triangular decomposi
tion LU with all L(k,k) = l. If A is singular we exit to 'singular,'
a nonlocal label. pivot (k) becomes the current row index of
the pivot element in the k-th column. Thus enough information
is preserved for the procedure to process a new right-hand
side without repeating the triangularization, if the boolean pa
rameter repeat is true. The accuracy obtainable from CROUT
would be much increased by calling CROUT with a more accu
rate inner product procedure than INNEJlPRODUCT.

The contributions of Michael F. Lipp and George E. Forsythe
by prepublication review and pointing out several errors are
gratefully acknowledged;

comment Nonlocal identifiers appearing in this procedure are:
(1) The nonlocal label 'singular', to which the procedure exits
if <let A=O, and (2) the real procedure 'INNERPRODUCT'
given above;

begin

value n; array A, b, y; integer n; integer array
pivot; real <let; Boolean repeat;

integer k, i, j, imax, p; real TEMP, quot;
<let : = 1 ; if repeat then go to 6;
for k := 1 step 1 until n do

1: begin
TEMP:= O;
for i : = k step 1 until n do

2: begin
A[i,k] : = A[i,k] - INNERPRODUCT (A[i,p], A[p,k],

p, 1, k-1);
if abs(A[i,k)) > TEMP then

3: begin
TEMP : = abs(A[i, k]); imax : =

end 3
end 2;
pivot [k] . - imax;

43-P 1- 0

comment We have found that A[imax, k] is the largest pivot in
column k. Now we interchange rows k and imax;

if imax -:;t. k then
4: begin <let : = - det; for j : = 1 slep 1 unlil n do
5: begin

TEMP : = A[k,j]; A[k,j] . -· A[imax, j]; A[imax, j]
.- TEMP

end 5;
TEMP . - b[k]; b[k] : = b[imax]; b[imax] : = TEMP
end 4;
comment The row interchange is done. We proceed

to the elimination;
if A[k,k] = 0 then go to singular;
quot : = 1.0/ A[k,k]; ·
for i . = k+l step 1 until n do
l\fi,k] : = quot X A[i,k];
for j : = k+l step 1 until n do

A[k,j] : = A[k,j] - INNERPROUUCT (A[k,p]
A [p ,j], p, 1, k - 1) ;

b[k] : = b[k] - INNERPRODUCT (A[k,p], b[p]
p, i, k-:-1)

end 1 ; go t() 7;
comment The triangular decomposition is now finished,

and we skip to the back substitution;
6: begin comment This section is used when the formal

parameter repeat is true, indieating that the matrix A
has previou::ily been decomposed into triangular form by
CROUT II, with row interchanges specified by pivot,
and that it is desired to solve the linear system .with a
new vector b, without repeating the :riangularization;

for k : = 1 step 1 until n do
begin

TEMP:= b[pivot[k]]; b[pivot[k]] : = b[k]; b[k]: =

TEMP; b[k] . - b[k] INNERPRODUCT
(A[k, p], b[p], p, 1, k-1) end;

end 6;
7: for k : = n step - 1 until 1 do
8: begin if -, repeat then det : == A [k ,k] X <let;

y[k] : = (b[k] - INNERPRODUCT (A[k,p], y[p], p,
k+l, n)/A[k,k]

end 8;
end CROUT II;

REFERENCE:

(1) J. H. WILKINSON, Theory and practice in linear systems. In
John W. Carr III (editor), Application of Advanced Nu
merical Analysis to Digital Computers, pp. 43-100 (Lectures
given at the University of Michigan, Summer 1958, College
of Engineering, Engineering Summer Conferences, Ann
Arbor, Michigan [1959]).

*Work supported by the U. S. Atomic Energy Commission.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 43
CROUT II (Henry C. Thacher, Jr., Comm. ACM, 1960)
HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

CROUT II was coded by hand for the Royal Precision LGP-30
P,Omputer, using a 28-bit mantisa floating point interpretivo
system (24.2 modified).

The program was tested against the linear system:

27.3941 1.9827 7.3757
A=

f 12.1719
8.1163 23.3385 9.8397 4.9474 b ==

6.6355~
6.1304 l 3.0706 13.5434 15.5973 7.5172 4.6921J

3.0581 3.1510 6.9841 13.1984 2.5393

with the following results:

12.171900 27.394100 1.9827000 '/ .37 569991
A'= 0.25226957 6.6327021 15.097125 ti.6565352

0.25124262 -0.56260107 14.979620 14.527683
0.66680633 0.76468695 -0.20207132 -1.3606142

6.6354999
3.0181653 0.14691771 b' ==
2.5702026 pivot == [;

ro.1sm1~ 1
y = 0.11257482

-0.082780734 l 0 .060840712

det = -1645.4499. All elements of Ab - y were less than 10-1 in
magnitude. Identical results were obtained with the same b,
and repeat true. With the same band the last row vector of A
replaced by (19.1927, 33.4409, 25.1298, 5.2811), i.e. A 4, j = A 1 j,

+ 2A 2, j - 3A 3, j, the results were:
det = 0.10924352 X 10-a,
y = (0.29214425 X 108, -0.12131172 X 108, 0.72411923 X 107,

-0.51018392 x 107)

Failure to recognize this singular matrix is due to roundoff, eithei
in the data input or in the calculation.

*Work supported by the U.S. Atomic Energy Commission.

CERTIFICATION OF ALGORITHM 43
CROUT II [Henry Thacher, Jr., Comm. ACM (1960),
176]
c. DOMINGO AND F. RODRIGUEZ-GIL

Universidad Central, Caracas, Venezuela
CROUT II was coded in PUC-R2 and tested in the IBM-1620.

'.I'wo types of INNERPRODUCT subroutines were used. The first
one finds the scalar product in fixed-point arithmetic to jncrease
accuracy, using an accumulator of 32 digits. The siecond one uses
ordinary floating-point with eight significative figures.

Using a unit matrix as right-hand side, a 6 X 6 segment of Hil
bert matrix was inverted. The inverse was inverted again.

The m~ximum difference between this result and the original
Regment of Hilbert matrix was:

Using fixed-point INNERPRODUC 8.2426 X 10-4

(Value of determinant. 4. 7'i137088 X 10-18)

Using floating-point INNERPRODUC 3.014016 X 10-2

(Value of determinant 4.4050721 X 10-18)

Two typographical errors were observed in the algorithm:

43-P 2- 0

The statement:

b[k] := g[k] - INNERPRODUCT (A[k,p], b[p], p,i,k-1)

should be:

b[k] := b[k] - INNERPRODUCT (A[k,p], b[p], 1,k-1)

The statement:

y[k] := (b[k] - INNERPRODUCT (A[k,p],y[p],p,k+l,n)/A[k,k]

should be:

y[k] :== (b[k] - INNERPRODUCT (A [k,p], y[p], p,k+l,n))/A[k,k]

Storage may be saved eliminating the array y and using instead
the array b, in which the solution is formed.

A previous certification of this algorithm [Comm. ACM 4,
4 (Apr. 1961), 182] was tested again with the same results. Two
errors were detected in the certification: The row that must re
place the last row of A in order to obtain a singular matrix must be:

19,1927 33.4409 -251298 -5.2811

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 44
BESSEL FUNCTIONS COMPUTED RECURSIVELY
MARIA E. w OJCICKI

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

procedure Bessfr(N, FX, LX, Z) Result: (J, Y);
value LX, FX, N;
real FX, LX, Z; real array J, Y; integer N;

comment Bessel Functions of the first and second kind, Jp(X)
and Yp(X), integral order P, are computed by recursion for
values of X, FX ~ X ~ LX, in steps of Z. The functions are
computed for values of P, 0 ~ P ~ N. M[SUBJ, the initial
value of P being chosen according to formulae in Erdelyi 's
Asymptotic Expa!tsions. The computed values of Jp(X) and
Yp(X) are stored as column vectors for constant argument in
matrices J, Y of dimension (N +1) by entier ((LX - FX)/Z + l);

begin real PI, X, GAMMA, PAR, LAMDA, SUM, SUMl;
integer P, SUB, MAXSUB;

PI : = 3.14159265;
GAMMA :== .57721566;
PAR :== 63.0 - 1.5 X ln (2 X PI);
MAXSUB := entier ((LX - FX)/Z);

begin real array JHAT [O:N, O:MAXSUB];
integer arruy M[O:MAXSUB];

SUB :== O;
for X := FX step Z until LX do

begin if (X > O) /\ (X < 10) then M [SUBJ :== 2 X entier (X) + 9
else

begin real ALOG;
ALOG := (PAR - 1.5 X ln (X))/X;
M [SUB] :== entier (X X (exp (ALOG) + exp

(-ALOG))/2) end;
if N > M [SUBJ then

begin for P :== M [SUB] + 1 step 1 until N do
J [P, SUBJ :== O end;
JHAT [M [SUBJ, SUBJ:= 10 i (-9);

comment Having set the uppermost jp(X) to a very small
number we are now Jll;Oin~ to compute all the jp(X) down to
p ==,O;

for P := M [SUBJ step -1 until 1 do
JHAT [P-1, SUBJ := 2 X P/X X JHAT [P, SUBJ -JHAT

[P+l, SUBJ;
SUM := SUMl := O;
for P := 2 step 2 until (M [SUBJ + 2) do
SUM:== SUM+ JHAT [P, SUB];
LAMDA := JHAT [0, SUBJ+ 2 X SUM;
for P := 0 step 1 until N do
J [P, SUBJ := JHAT [P, SUBJ /LAMDA;

comment Jp(X) have been computed t>y use of Jp(X);
for P :== 2 step 2 until (M [SUBJ + 2) do
SUMl := SUMl + (-1) X (-1) j P + J [2 X P, SUBJ

/2/P;
Y [O, SUBJ:= 2/PI X (J [O, SUB] X (GAMMA+ ln(X/2))

+ 4 X SUMl);
for P := 0 step 1 until (MlSUB]-1) do
Y [PH, SUBJ :== (-2/PI/P + J [P+l, SUBJ X Y [P,

SUB])/J [P, SUBJ;
SUB : = SUB + 1 end end end

44-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 45
INTEREST
PETER Z. INGERMAN

University of Pennsylvania, Philadelphia, Pa.

procedure monpay (i, B, L, t, k, m, tol, goof)
comment This procedure calculat.P!' the periodic payment

necessary to retire a loan when the interest rate on the loan
varies (possibly from period to period) as a function of the a.s
yet-unpaid principal.

The formal parameters are: i, array identifier for the vector
of interest rates; -B, array identifier for the minimum amounts
at which the corresponding i applies; -L, the amount to be
borrowed; -t, the number of periods for which the loan is to
be taken out; - k, the number of different interest rates (and
upper limit for vectors i and B); -m, the desired periodic pay
ment; -tol, the allowable deviation of m from some ideal;
and goof, the error exit to use if convergence fails. The only
output parameter is m. For further discussion, see Comm.
ACM 3 (Oct. 1960), 542;

begin array h, S [l:k, l:t], M, X [l:k];
integer array T, a, b [1: k];
integer p, q, r, sa, sb, I, ib, mb, nb;
comment This section sets up the procedure;
for p := 1step1 until k do
begin for q : = 1 step 1 until t do

begin hp,q := ipq;
Sp.q := (hp,q - 1)/(ip - 1) end;

if p = 1 then xp := 0 else Xp := BP x (ip-l - ip)j
Mp := L X (hp.t/Sp.t) end;

sa := sb := ib := mb := O; nb := t;
for p := 1 step 1 until k do
begin av : = entier (BP+i/MP+1 + 0.5) - sa;

sa := sa + ap;
T P : = bp : = entier (BP+i/MP - 0.5) - sb;
sb := sb + bp;
if bp > mb then
begin ib := p; nb := nb - mb; mb := bp end
else nb := nb - bp end;

T;b := nb;
I:= l;
for p := 1 step 1 until k do

I:= IX (ap - bp + l);
comment Having counted the number of possible iterations

and established a set of trial values for the T n's, a trial m is
found;

D:=l; E:=F:=O;
newm: for p : = 1 step 1 until k do

begin D := D X hp.Tp;
u := 1;
if p F 1 then for q .- 1 step 1 until p - 1

do U := U X hq,Tqj
E := E + Sp.Tp X u;
v := O;
if p F 1 then for r := 1step1 until p

do v := v + x.;
F : = F + u X v end;

m : = (L X D + F) /E;
comment Now find out whether m is good enough
q := l; F := D := O;

45-P 1- 0

for p := 1step1 until t do
begin get F: F := (D + m - E)/(l + iq);

if Bq+1 ~ F then D := F else q :== q + 1;
if D F F go to get F end;
if abs (D - L) ~ tol then go to exit;

comment If not within tolerance, adjust T n's and try
again;

p := O;
redo: p : = p + 1 ;

if p F ib then
begin if T P ~ ap then

begin Tib := Tib + Tp - bp
Tp := bp end end

else begin
Tp:=Tp+l;
T;b := Tib - l;
p := k end;

if p = k then I : = I - 1 else go to redo;
go to if I > 0 then newm else goof;

exit: end monpay;

CERTIFICATION OF ALGORITHM 45
INTEREST [Peter Z. Ingerman, Comm. ACM Apr. 1961
and Oct. 1960]
CARL B. w RIGHT

Dartmouth College, Hanover, N. H.
INTEREST was translated into Dartmouth College Computa

tion Center's "Self Contained ALGOL Processor" for the Royal
McBee LGP-30. When using SCALP, memory capacity is severely
limited and thus it was necessary to run this program in two
blocks. Block I ended with the computation of I, and Block II
started with the "newm" loop. After making the changes listed
below, test problems using up to three interest rates and up to 18
time periods were used with the following results:

Final
Loan Periods Interest Rates Payments Balance• Tolerance

$100.00 1 0.05 $105.00 $0.00 $0.25
1800.00 10 0.03 211.01 0.05 4.50
875.65 8 0.08 to 500.00

0.05 over 500.00 139.78 -1.49 2.19
14750.00 18 0.06 to 5000.00

0.05 to 10,000.00
0.04 over 10,000.00 1201.70 10.;)u 36.88

* Hand calculation.

It is noted that in each case the final balance is within the pre
scribed tolerance (0.0025 of the loan).

In the following corrections bracketed subscripts replace
ordinary subscripts and exponentiation is represented by j
rather than superscript.

The following corrections should be made in the Note on In
terest in the October, 1960, issue of Comm. ACM:

1. Definition of B[n]: Replace "minimum" by "maximum".
Replace "i[n]" by "j[n-1]".

2. Define B[k+l] iii L.
3. Definition of K[n]: Replace "B[n]" by "B[n+lJ".
The following corrections were found necessary in the proce

dure:

COLLECTED ALGORITHMS (cont.)

l. The upper limit of the vector Bis k+l, not k. It is not neces
sary to change the upper limit of the I-vector. (See correction 4
below.)

2. D, E, F, u, v were not declared and must be declared as real.
3. In the array declaration replace "M[l :kJ" by "M[l :k+lJ".
4. As j approaches 0, i approaches 1 and lim (h/S) = 1/t. Thus

for j[k+IJ = 0, i[k+lJ = 1, and M[k+lJ = L/t. Thus after
M[pJ := L X (h[p,t]/S[p,tJ) end;

'insert
M[k+lJ := L/t; B[k-tlJ := L;
5. In the conditional statement following computation of b[p],

replace "> " by "~ ".
6. In same conditional statement, next line, "rnb := bp" should

read "rnb := b[pJ".
7. D := 1; E := F := O;

newm: for p : = 1 step 1 until k do
should be changed to

newm: D : = 1; E : = F : = 0;
for p := 1 step 1 until k do

8. begin get F: F :== (D+m-E)/(l+i[q]);
if B[q+IJ ~ F then D := F else q := q + l;
if D .;e F go to get F end;

should be changed to read as follows:
begin get F: F := (D+m)/i[q];

if B[q+IJ ~ F then D := F else
begin if q < k then q : = q + 1 else D : = F end;
if D .;e F then go to get Fend;

Note that the "then" in the last line was omitted from the original
procedure.

9. In the "redo" loop insert a semicolon after the statement
T[ibJ := T[ibJ + T[p] - b[pJ;

10. In the "redo" loop, next line, omit the second "end".
11. In the "redo" loop,

p := k end;
should he changed to

p := k end end;

45-P 2- ·o

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 46
EXPONENTIAL OF A COMPLEX NUMBER
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure EXPC (a, b, c, d); value a, b; real a, b, c, d;
comment This procedure computes the number, c+di, which

is equal to e<a.+bi);
begin c : = exp (a);

d : = c X sin (b) ;
c : = c x cos (b)

end EXPC;

CERTIFICATION OF ALGORITHM 46
EXPONENTIAL OF A COMPLEX NUMBER (J. R.

Herndon, Comm. ACM 4 (Apr., 1961), 178)
A. P. RELPH

Atomic Power Div., The English Electric Co., Whetstone,
England

Algorithm 46 was translated using the DEUCE ALGOL compiler,
no corrections being'required, and gave satisfactory results.

46~P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 47
ASSOCIATED LEGENDRE FUNCTIONS OF THE

FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS

JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure LEGENDREA (m, n, x, r); value m, n, x, r;
integer rn, n; real x, r;

comment This procedure computes any Pnm(x) or Pn01 (ix) for
n an integer less than 20 and m an integer no larger than n.
The upper limit of 20 was taken because (42) ! is larger than
1049

• Using a modification of this procedure values up to n=35
have been calculated. If Pnm(x) is desired, r is set to zero. If
r is nonzero, Pnm(ix) is computP.d;

begin
integer i, j; array Gamma [1:41];
real p, z, w, y ;
if n = 0 then

begin p := l;
go to gate end;

if n < m then
begin p := O;
go to gate end;

z:=l;w:=z;
if n=m then go to main;
for i : = 1 step 1 until n-m do

z:=xXz;
main: Gamma [1] := 1;

for i := 2 step 1 until n+n+l do
begin Gamma [i] := w X Gamma [i-lJ;
w := w+l end;

w := 1; y := w/(x Xx);
if r=O then

begin y := -y;
w := -wend;

if x=O then
begin i := (n-m)/2;
if (i+i) ~ (n-m) then

begh; p. := O;
go to gate end;

p := Gamma [m+n+ll/(Gamma [i+ll X Gamma
[m+H-1]);

go to last end;
j := 3; p := O;
for i : = 1 step 1 until 12 do

begin if (n-m+2)/2 < i then go to last encl;
p := p + Gamma [n+n-i-i+3l X z/(Gamma

[i] X Gamma [n-i+21 X Gamma [n-i-i
m+j]);

z := z X y end;
last: z := 1;

for i := step 1 until n do
z := z+z;

p := p/z;
if r ~ 0 then

begin i := n-n/4;
if 1 < i then

p := -pend;

if m = 0 then go to gate;
j := m/2; z := abs(w+x X x);
if m ~ (j+j) then

begin z : = sqrt (z);
j :=mend;

for i : = step 1 until j dlo
p := p X z;

gate: LEGENDREA := p
end LEGENDREA;

47-P 1- Rt

CERTIFICATION OF ALGORITHM 47
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY ARGU
MENTS [John R. Herndon, Comm. ACM, Apr. 1961]
RICHARD GEORGE*

Argonne National Laboratory, Ar~~onne, Ill.
• Work supported by United States Atomic Energy Commission.

This procedure was programmed in FoRTRAM for the IBM 1620
and was tested with a number of real arguments. A few errors were
detected:

1. In the following sequence the end must be removed:

begin if (n - m + 2) /2 < i then go to last end;

2. In these, the lower bound of 1 is needed:

for i : = step 1 until n do
for i : = step 1 until j do

3. There are four places where integ;er arithmetic is clearly in
tended and we must substitute the symbol + for the symbol/.

In addition, it might be mentioned that the statement

if n = m then go to main;

could be omitted from the ALGOL program without harm, thougb.
the FORTRAN version requires it. Here:, and elsewhere in the pro
cedure, one might make an equivalen1~ but more succinct state
ment. With change in style, the variable j could be eliminated.

CERTIFICATION OF ALGORITHM 47 [S16]
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS [John R. Herndon, Comm. ACM 4

(Apr. 1961), 178]
S. M. COBB (Recd. 6 Feb. 1969, 12 May 1969 and 9 July

1969)
The Plessey Co. Ltd., Roke Manor, Romsey, Hants,

England

KEYWORDS AND PHRASES: Leg,endre function, associated
Legendre function, real or imaginary arguments
CR CATEGORIES: 5.12

This procedure was tested and run on the I.C.T. Atla.CJ com
puter.

COLLECTED ALGORITHMS (cont.)

In addition to the errors mentioned in the certification of August
1963 [2] the following points were noted.

I. The requirement that when n <mp := 0 must take prece
dence over p : = 1 when n = 0. Hence the order of the first two
if statements must be interchanged.

2. Most computers fail on division by zero. Hence the state
ment beginning if x = 0 then and ending with go to last
end; should be inserted between w := 1; and y := w/(xXx).

3. When x = 0, if the argument of the Legendre function is to
be considered as real p must be multiplied by (-l)i. This is
achieved by inserting after the statement beginning p : = Gamma
[m+n+ll the if statement

if r then p := p X (-1) ji;

(For a change in the meaning of r see item 5 below.)
4. After the label last in the compound sta.tement begin

ning if r rt= 0 the statement i := n - n+4; is wrong. This
should read

i : = n - 4 X (n+ 4);

5. Since r is used only as an indicator it is better that it be
declared as Boolean. It can then be given the value true if the
argument of the Legendre function is x and false if it is ix. The
following program changes are then necessary. The st~tement
beginning

if r = 0 then

becomes

if r then

The statement beginning

if r rt= 0 then

becomes

if l r then

6. Computing time can be saved in several ways. First we
should declare a'nother integer k and set it equal to n - m. The
first statement of the procedure· is then

k := n - m;

The next statement will begin

if k < 0 then

(This replaces if n < m then whose position has been changed
in accordance with item 1 above.)
n - m is then replaced by k in the lines
for i ,- 1 step 1 until n - m do

and

if (i+l) rt= (n-m) then

Removing j as suggested in the previous certification leaves it
free to be set to k + 2. This req nires the following modification:
instead of the unnecessary statement if n = m then go to main
put

j := k + 2;

In the statement beginning if x = 0 then replace the line

begin i .- (n-m) + 2;

by

begin i := j;

In the for loop beginning for i : = 1 step l until 12 do a
farther small saving in computer time could be achieved by setting
k to n - i. The loop thus becomes

for i : = 1 step 1 until 12 do
hegin if j + 1 < i then go to last;

k := n - i;

47-P 2- 0

p := p + Gamma[2Xk+3] X z/Gamma[i] X Gamma[k+2l X
Gamma[k-i-m+3]);

z := z x y
end

For real argument the program was tested as follows.

(i) x = 0(0.1)1, m = 0(1)3, n = 0(1)3
(ii) x = 1.2(0.2)2.8, m = 0(1)2, n = 0(1)2
(iii) m = 0, n = 9, x = 0(0.2)1, 2(2)10.

For imaginary argument we used

x = 0(0.2)2, m = 0(1)2, n = 0(1)2.

Checking for real argument was carried out where possible
using [1], agreement being obtained in all cases to the maximum
number of figures available, which varied between 6 and 8. For all
other cases [3] had to be used, giving only a 5 figure check

REFERENCES:
1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of mathe

matical functions. AMS 55, Nat. Bur. Stand. US Govt. Print
ing Off., Washington, .D.C., 1964.

2. GEORGE, R. Certification of Algorithm 47. Comm. ACM 6
(Aug. 1963), 446.

3. MoRsE, P. M., AND FESBACH, H. Methods of Theoretical
Physics Pt. II. McGraw Hill, New York, 1953.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 48
LOGARITHM OF A COMPLEX NUMBER
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure LOGC(a, b, c, d); value a, b; real a, b, c, d;
comment This procedure computes the number, c+di, which

is equal to loge(a+bi);
begin c :=sqrt (a X a+ b X b);

d := arctan (b/a);
c := log (c);
if a < 0 then d := d+3.1415927

end LOGC;

CERTIFICATION OF ALGORITHM 48
LOGARITHM OF A COMPLEX NUMBER (J. R.

Herndon, Comm. ACM 4 (Apr., 1961), 179)
A. P. RELPH

Atomic Power Div., The English Electric Co .. Whetstone,
England

Algorithm 48 was translated using the DEUCE ALGOL compiler,
aft~r certain modifications had been incorporated, and then gave
satisfactory results.

The original version will fail if a = O when the procedure for
arctan is entered. It also assumes that -?r/2<d<3?r/2, whereas the
principal value for logarithm of a complex number assumes
-71"<d~7r.

Incidentally, the ALGOL 60 identifier for natural logarithm is In,
not log.

The modified procedure is as follows:

procedure LOGC (a,b,c,d); value a,b; real a,b,c,d;
comment This procedure computes the number c + di which is

equal to the principal value of log, (a + bi). If a == O then c is
put equal to -1o47 which is used to represent "- infinity";

begin integer m ,n
m := sign (a); n := sign (b);
if a = 0 then begin c := -1o47;

end;

d := 1.5707963 X n;
f~O to k

c : = sq rt (a X a + b X b);
c:=ln(c);
d := 1.5707963 X (1-m) X (l+n-nXn) + arctan (b/a);

k: end LOGC:

REMARK ON ALGORITHM 48
LOGARITHM OF A COMPLEX NUMBER [John R.

Herndon, Cornm. ACM 4 (Apr. 1961)]
MARGARET L. JOHNSON AND WARD SANGREN
Computer Applications, Inc., San Diego, Calif.

Considerable care must be taken in using the arc tan function.
In Algorithm 48 two such difficulties are ignored. First. it is
nece.ssary, because of a resulting division by zero, to deal sepa
rately with the case where the rear part of the complex number
is zero. Second, if the real part of the complex number is negative

48-P 1- 0

and the argument of the logarithm is to have a value between
-?rand 11" then the action depends upon the sign of the imaginary
part of the complex number. For clarity the following procedure
exhibits in sequence the alternatives: ·
procedure LOGC (a, b, c, d); value :i, b; real a, b, c, d;
comment This procedure computes the number c+di which is

equal to log. (a+bi). It is assumed that the arctan has a value
between -7r/2 and 7r/2.

begin if a>O then begin THETA := O; go to SOL end;
if a<O/\b!i;;O then begin THETA := 3.1415927;

go to SOL end;
if a<O/\b<O then begin THETA := -3.1415927;

go to SOL end;
if a=O/\b=O then begin c := d := O;

go to RETURN end;
if a=O/\b>O then begin c := l:n(b); d := 1.570963;

go to RETURN end;
if a=O/\b<O then begi~ c := h1(abs(b));

d : = 1.570963; go to RETURN end;
SOL: d := arctan (b/a) +THETA;

c := sqrt(aXa+bXb);
c := ln(c);

RETURN: end LOGC

REMARK ON REMARKS ON ALGORITHM 48 [B3]
LOGARITHM OF A COMPLEX NUMBER [John R.

Herndon, Comm. ACM 4 (Apr. Hl61), 179; 5 (Jun. 62),
347; 5 (JUL 62), 391]

DAVIDS. CoLLENS (Recd. 24 Jan. 1964 and 1Jun.1964)
Computer Laboratory, The University, Liverpool 3,

England
This procedure was designed to compute log.(a+bi), namel}

c+di, and although some very necessary precautions about its
use have already been stated, some points seem to have escaped
notice. In particular, A. P. Relph [Comm. ACll{, June 1962, 347].
remarked that if a = 0, then c becomes '-infinity', but this is only
the case if b = 0 also. Margaret L. Johnson and Ward Sangren
[Comm. ACM, July 1962, 391] conceded that a= b =Owasa special
case, but wrongly gave zero as the result. The only reasonable way
of dealing with this case is to exit to some nonlocal label and to
let the user decide whether to terminate his program or to assign
particular values to c and d. The obviou~ ,ralues to use here are, for
c, a negative number, larger than the largest which would be given
by the procedure, and possibly zero for ci!. (In an implementation
where Z-129 is the smallest representable nonzero number, the
largest negative value of c possible is --89.416.) Finally, in the
Johnson-Sangren version of the procedure, the last conditional
statement should read

if a = 0 /\ b < 0 then begin 1~ :== ln(abs(b));

d :== -1.570963; go to RETURN end;

the omission of the minus sign in the original being probably
typographical in origin.

COLLECTED ALGORITHMS FROM ACM

ALGORITHM 49
SPHERICAL NEUMANN FUNCTION
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure SPHBEN (r ,x); value r ,x; ~ real r ,x;
comment This procedure computes the spherical Neumann

function (r/2x)lNrt-112(x). Infinity is represented by 1047
;

begin real z, g, t;
if x=O then

begins :== 10 j 47;
go to gate

end;
s :- -cos (x)/x;
if r = 0 then

go to gate;
t :- sin (x)/x;
for g : == 1 step 1 until r do

begin z := s;
s :=- s X (g+g-1)/(x-t):
t :== z

end;
gate: SPHBEN := s
end SPHBEN;

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Page 295.

REMARK ON ALGORITHM 49

Spherical Neumann Function
[J.R. Herndon, Comm. A.CM 4, 4 (April 1961), 179]

John P. Coleman [Recd 17 February 1978]
Department of Mathematics, University of Durham, Durham, England

There is a typographical error in this algorithm. The line

s := s x (g + g - J)/(x - t);

should read

s := s X (g + g - 1)/x - t;

The algorithm providc~s ov~rflow protection only when x = 0. Overflow will still
occur for x very close to zer.o. The range of values of x for which overflow occurs
will depend both on the vaiue of r and on the largest number the machine can
hold.

49-P 1- Rl

COLLECTED ALGORITHMS FROM CACM

ALGORI'I'HM 50
I:\VERSE OF A FIKITE SEGMENT OF THE

HILBERT MATRIX
.JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure INVHILBERT (n,S); value n; real n;
real array S;

comment This procedure computes the elements of the inverse
of an n X n finite segment of the Hilbert matrix and stores them
in the array S;

begin real i, j, k;
S[l, l] = n X n;
for i := 2 step 1 ~intil n do

begin
S[i, i] := (n+i-1) X (n-i+l)/((i-1) X (i-1));
S[i, i] := S[i-1, i-1] X S[i, i] X S[i, i]

end;
for i := 1step1 until n-1 do

begin
for j := i+l step 1 until n do

begin
k := j-1;
S[i, j] := -S[i, k] X (n+k) X (n-k)/(k X k)

end
end;

for i := 2 step 1 until n do
begin S[i, i] := S[i, i]/(i+i-1);

for j := 1step1 until i-1 do
begin S[j, i] := S(j, 1]/(i+j-1);

S[i, j] := S[j, i]
end

end
end INVHILBERT;

CERTIFICATION OF ALGORITHM 50
lNVERSE OF A FINITE SEGMENT OF THE HIL

BERT MATRIX: [J. R. Herndon, Comm. ACM 4
(Apr. 1961)]

B. RANDELL

Atomic Power Division, The English Electric Co., Whet
stone, England
INVHILBERT was translated using the DEUCE ALGOL com

piler and the following corrections being needed.
l.. S(l, 1] = n X :n, replaced by S[l, 1] := n X n;
2. S[j, i] := S(j, 1]/(i + j - 1)
replaced by S[j, i] := S[j, i]/(i + j - 1)
The compiled program, which used a 20 bit mantissa floating point
notation then produced the following 4 X 4 segment

16.0
-120.0

240.0
-140.0

-120.0
1200.0

-2700.0
1680.0019

240.0002
-2700.0

6480.0
-4200.0

-140.0
1680.0019

-4200.0
2R00.0039

50-P 1- 0

REMARKS ON AND CERTIFICATION OF AL
GORTHM 50

INVERSE OF A FINITE SE:GMENT OF THE
HILBERT MATRIX [J. R. Herndon, Comm. ACM,
Apr. 1961]

P. NAUR

Regnecentralen, Copenhagen, Denmark
In addition to inserting the corrections indicated by B. Randell

[Comm. ACM 5 (Jan. 1962), 50], we have modified and simplified
the algorithm as follows:

1. The types of n, i, j and k have been changed to integer.
This saves roundoff operations in subscripts.

2. Explicit multiplications have been replaced by squaring.
This saves code length and execution time, at least in a compiler
like ours for the GIER.

3. Repeated references to subscripted variables have been
eliminated, partly with the aid of an a.dditional simple working
variable, w, partly by using; simultaneous assignments.

4. An unnecessary begin end pair hHs been removed.
In total, these changes, in addition to reducing the code length,

have increased speed by a factor of 1.6.
The resulting algorithm is as follows:

procedure INVHILBERT(n,S);
value n; integer n; real array S;
comment ALG. 50: This procedure computes the elements of

the inverse of an n X n finite segment of the Hilbert matrix and
stores them in the array S. The Hilbert matrix has the elements
HILBERT[i,j] = 1/(i+j-1). The segments of this are known
to be increasingly ill-conditioned with increasing size;

begin integer i, j, k; real w;
w := S[l,1] := nj2;
for i := 2 step 1 until n do w := S[i,i] := w X ((n+i-1) X

(n-i+l)/ (i-l)j2)j2;
for i := 1step1 until n-1 do for j := i+l step 1 until n do

begin
k := j-1;
S[i,jJ := -S[i,k] X (n+k) X (n-k)/kj2
end;

for i := 2 step 1 until n do for j := 1step1 until i do
S[i,j] := S[j,i] := S[j,i]/(i+j-1)·

end INVHILBERT;

Both the original vljrsion and the :above improved. one have
been run successfully on the GIER All.GOL system (30-bit man
tissa). The test program included:

(a) Output of the 4 X 4 matrix, to be compared with the results
of Randell [loc. cit.]. Results:

16 .000000 -120 .000000 240.000000 -140.000000
-120 .000000 1200 .000000 - 2700 .000000 1680 .000000

240 .000000 - 2700 .000000 6480.000000 - 4200 .000000
-140.000000 1680.000000 -4200.000000 2799.999977

(b) For n : = 1 step 1 until 15, the inverse of the segment was
calculated by INVHILBERT and multiplied by the segment of
the Hilbert matrix, and the result was compared with the unit
matrix. The maximum error was divided by the largest element of
the inverse to form a relative error. Some of the results, which
wP.re entirely satisfactory throughout, are given below:

COLLECTED ALGORITHMS (cont.)

Order
Element of
max error

3 Sf3,3]
6 S[2,4]
9 8(2,8]

12 S~5,9]
15 S[l,12]

abs (max error)
1 jJ!j,5Jfiifiii/:J1 Relative error

2.3810-7
4.3910-3
1.24102
1.54106
1.061011

1. 92102 1.2410-9
4.41io6 9.9610-10
1.221011 1.0110-9
3.661015 4.2110-10
1.151020 9.2210-10

(c) The time for a call of the
found as follows:

r~vised INVHILBERT was

n

5 0. 2 seconds
10 0.6
15 1.3

50-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 51
ADJUST INVERSE OF A MATRIX WHEN AN

ELEMENT IS PERTURBED
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure ADJUST (n, d, i, j, A, B); value i, j, n, d;
integer i, j, n; real d; real array A, B;

comment If then X n matrix A=M-1 and a change, d, is made
in the i, j-th element of M this procedure will calculate the
corrected matrix for M-1 by adjusting matrix A. The adjusted
matrix is stored in B;

begin integer r, s;
real t;
t := d/(ALi, i] X d+l);
for r := 1step1 until n do

begin for s := 1 step 1 until n do
B[r, s] = A[r, s] - t X A[r, i] X Aj, s] end

end ADJUST

CERTIFICATION OF ALGORITHM 51
ADJUST INVERSE OF A MATRIX WHEN AN

ELEMENT IS PERTURBED (John R. Herndon,
Comm. ACM 4 (Apr. 1961)]

RICHARD GEORGE*

Argonne National Laboratory, Argonne, Ill.
This procedure was programmed in FORTRAN and reduced to

machine code mechanically. It was run on the Argonne-built
computing machine, GEORGE. A :floating-point routine was used
which allows maximum accuracy to 31 bits.

The procedure was tested for matrices with n ranging from
2 to 10. For each value of n, there were 20 successive trials; each
trial consisted of a random perturbation of a randomly selected
element of the matrix M, followed by a use of ADJUST, followed
by the matrix multiplication N := B·M. For each trial, the
adjustment was evaluated by computing

sum:= {t t N[i,j]L -n.
1.•-1 1-1 J

For random perturbations between -1.0 and + 1.0, the value
of sum never exceeded 2.010-8.

There are two typographical errors present:

B[r,s]-A[r,s]-tXA[r,i]XAj,s] end

should be

B[r,s] :- A[r,s]---tXA[r,i]XALl,sl end

*Work supported by the U. S. Atomic Energy Commission.

51-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 52
A SET OF TEST MATRICES
JOHN. R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure TESTMATRIX (n,A); value n; integer n;
real array A;

comment This procedure places in A an n X n matrix whose
inverse and eigenvalues are known. The n-th row and the n-th
column of the inverse are the set: 1, 2, 3, ... , n. The matrix
formed by deleting the n-th row and the n-th column of the
inverse is the identity matri~x of order n -1;

begin integer i, j;
realt,c,d,f;
c := t x (t+l) x (t+t-5)/6;
d := 1/c;
A[n, n] := -d;
for i := 1 step 1 until n-1 do

begin f := i;
A[i, nl := d X f;
A[n, i] : == A[i, n];
A[i, i] :== d X (c-f X f);
for j :== 1 step 1 until i-1 do

begin t :== j;
A[i, j] := -d X f X t;
A[j, i] := A[i, j]

end
end

end TESTMATRIX;

CERTIFICATION OF ALGORITHM 52
A SET OF TEST MATRICES (J. R. Herndon, Comm.

ACM, Apr. 1961)
~. E. GILBERT

University of California at San Diego, La Jolla, Calif.
The statement

c :== t x (t+l) x (t+t-5)/6;
was changed. to

c :== n X (n+l) X (n+n-5)/6;
to make the inverse have the form described in the algorithm. The
algorithm was translated to FORTRAN and tested with a matrix
eigenvalue program on the CDC 1604 computer at UCSD.

The eigenvalues for the 20 X 20 test matrix are:
1. 1.000000
2. 1.000000

19. .01636693
20. - .02493833

REMARK ON ALGORITHM 52
A SET OF TEST MATRICES (John R. Herndon, Comm.

ACM, Apr. 1961)
G. H. DUBAY

University of St. Thomas, Houstonl Tex.

52-P 1- 0

In the assignment statement
c :== tX (t: + l)X (t + t - · 5)/6; (a)

the t is undefined. A suitable definitif,.n would be provided by
preceding (a) with t := n;

REMARKS ON AND CERTIFICATION OF
ALGORITHM 52

A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM, Apr. 1961]

P. NAUR

Regnece~tralen, Copenhagen, Denmark

In addition to inserting the correction indicated by H. E.
Gilbert [Comm. ACM (Aug. 1961), 339] the algorithm was simpli
fied by using the simultaneous assignment and by eliminating the

local variables t and f. The resulting algorithm is as follows:

procedure TESTMATRIX(n,A);
value n; integer n; real array A;
comment ALG. 52: This procedure places in A an n X n matrix

whose inverse and eigenvalues are known. The nth row and the
nth column of the inverse are the set: 1, 2, 3, ... , n. The matrix
formed by deleting the nth row and the nth column of the in
verse is the identity matrix of order n-1;

begin integer i,j; real c,d;
c :== n X (n+l) X (n+n-5)/6;
d := 1/c;
A[n,n] :== -d;
for i :== 1 step 1 until n-1 do

begin
A[i,n] :== A[n,i] :== d X i;
A[i,i] :== d X (c-ij2);
for j :== 1step1 until i-1 do A[i,j] :== A[j,i] :== -d X i X j
end

end TESTMATRIX;

This version of the algorithm was successfully run in the GIER
ALGOL system together with the inversion procedures INVER
SION II and gjr (see Certification of Algorithm 120 below). From
the figures produced by INVERSION II it looks as if the determi
nant of these matrices is given by 6/(n(n+1)(5-2n)), which is
also the value of the element A [n,n]. For n > 3 the absolutely
greatest element is A[l,1] == 1 + A[n,n].

CERTIFICATION OF ALGORITHM 52
A SET OF TEST MATRICES [J. R. Herndon, Comm.

ACM, Apr. 1961]
J. s. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The algorithm was corrected as recommended by H. E. Gilbert

in his certification [Comm. ACM, Aug. 1961] and then successfully
run using the Elliott ALGOL translator on the National-Elliott 803.
The matrices so generated were used to test the matrix inversion
procedure GJR given by H. R. Schwarz in his arlicle "An Intro
duction to ALGOL" [Comm. ACM, Feb. 1962).

COLLECTED ALGORITHMS (cont.)

ADDITIONAL REMARKS ON ALGORITHM 52
A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM (Apr. 1961), 180]
P. NAUR

Regnecentralen, Copenhagen, Denmark

From an inspection of the results of eigenvalue-finding algo
rithms I conclude that all but two of the eigenvalues of TEST
MATRIX are unity while the two remaining are given by the ex
pressions 6/(pX (n+l)) and p/(nX (5-2Xn)) where

p = 3 +sqrt ((4Xn-3) X (n-1) X 3/(n+l)).
These expressions have been used for the determination of ab
solute errors of the eigenvalues calculated by JACOBI, Algorithm
85, and Householder Tridiagonalisation, etc. as reported below.
They were also used to calculate the following table (using GIER
ALGOL, with 29 significant bits):

n Determinant Eigenvalues Differing from unity

3 - .500 000 00 .224 744 87 -2.224 744 9
4 - .100 000 00 .153 112 89 - .653 112 89
5 - . 040 000 000 .113 238 08 - .353 238 08
{) - . 020 408 163 .088 290 570 - .231 147 71
7 - . 011 904 762 .071 428 571 - .166 666 67
8 - .001 575 75~r 6 .059 386 081 - .127 567 90
9 - .005 128 205 2 .050 422 549 - .101 704 60

10 - .003 636 363 6 .043 532 383 - . 083 532 383
11 - .002 673 796 8 .038 097 478 - . 070 183 039
12 - .002 024 291 5 .033 718 770 - . 060 034 559
13 - .001 569 858 7 .030 128 103 - .052 106 125
14 - .001 242 23() 0 .027 139 206 - .045 772 747
15 - .001 000 000 0 .024 619 013 - .040 619 013
16 - .000 816 993 47 .022 470 157 - . 036 359 046
17 - . 000 676 132 52 .020 619 902 - . 032 790 288
18 - . 000 565 930 96 .019 012 916 - .029 765 605
19 - .000 478 468 90 .017 606 429 - .027 175 807
20 - . 000 408 163 27 .016 366 903 - . 024 938 332

The figure.;; for n = 20 agree very well with the results quoted by
H. E. Gilbert in his certification [Comm. ACM 4 (Aug. 1961), 339].

52-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 53
NTH ROOTS OF A COMPLEX NUMBER
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure NTHROOT (n, r, u, REAL, UNREAL); value
n, r, u; integer n;
real r, u; real array REAL, UNREAL;

comment This procedure computes then roots of the equation
xn = r+ui. The real parts of the roots are stored in the vector
REAL []. The imaginary parts are stored in the corresponding
locations in the vector UNREAL [} ;

begin integer nl, n2; real en, th, s, th 1;
REAL [n] := O;
en := l/Ii;
if u=O then

begin s : = (abs(r)) f en;
th:= O;
go to main end;

if r=O then
begins := (abs(u)) t en;
th : = 1.5707963;
if u < 0 then

th:= -th
go to main end;
s := (r X r+u Xu) t (en/2);
th:= arctan (u/r);

main: if r < 0 then
th := th + 3.1415926;

th :- en X th;
thl := 6.2831853 X en;
for n2 : = 1 step 1 until n do

begin REAL [n2] : == s X cos (th);
UNREAL [n2] := s X sin (th);
th == th+th 1 end

end NTHROOT;

REMARK ON ALGORITHM 53
Nth ROOTS OF A COMPLEX NUMBER (John R.

Herndon, Comm. ACM 4, Apr. 1961)
C. w. NESTOR, JR.

Oak Ridge National Laboratory, Oak Ridge, Tennessee
A considerable saving of machine time for N ~ 3 would result

from the use of the recursion formulas for the siue and cosine in
place of an entry into a sine-cosine subroutine in the do loop
associated with the Nth roots of a complex numbor. That is, one
could use

sin (n + 1)8 - sin n9 cos8 + cos n9 sin9
cos (n + 1)8 - cos n8 cos8 - sin n9 sin8,

at the cost of some additional storage.
We have found this procedure to be very efficient in problems

dealing with Fourier analysis, as suggested by G. Goerzel in
chapter 24 of Mathematical Method8 for Digital Computers.

53-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 54
GAMMA FUNCTION FOR RANGE 1 TO 2
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure Q(x); value x; real x,
comment This procedure computes r(x) for 1 ~ x ~ 2. This is

a reference procedure for the more general gamma function
procedure. r(x) = Q(x-1);

begin Q := (((((((0.035868343 X x - 0.19352782) X x
+ 0.48219939) x x - 0.75670408) x x
+ 0.91820686) x x - 0.89705694) x x
+ 0.98820589) x x - 0.57719165) x x + 1.0

end Q;

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION

[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 fS14]
GAMMA FUNCTION FOR RANGE 1 TO 2

(John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 (814]
RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

[William Holsten, Comm. ACM 5 (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION

(Walter Gautschi, Comm. ACM 7 (Mar. 1964), 1L!3]
ALGORITHM 291 (S14]
LOGARITHM OF GAMMA FUNCTION

(M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966),
684]

M. C. PIKE AND I. D. HILL (Recd. 12 Jan. 1966)
Medical Research Council's Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and M both use the same Hastings approxima
tion, accurate to about 7 decimal places. Of these two, Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines

if x = 0 then begin RGR : = 0; go to EXIT end
and

if x = 1 then begin RGR : = 1; go to EXIT end
should each be followed either by a semicolon or preferably by an
else.
(3) The lines

if x = 1 then begin RGR := l/y; go to EXIT end

54--P 1- RI

and
if x < - 1 then begin y := y Xx; ~:o to CC end

'"ould each be followed by a semicolon.
\4) The lines

BB: if x = -1 then begin RGR := O; go to EXIT end
and

if x "> -1 then heJ!'in RGR := RGAM(x): go to EXIT end
should be separated either by else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer i and real array B[O: 13] in RGAM
are in the wrong place; they should come immediately after

begin real z;

With these modifications (and the repiacement of the drray B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma functi-0n it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput
ing time, being twice as fast as 291 at x = 1, but this advantage
decreases steadily with increasing x so that at x = 7 the speeds aTe
about equal and then from this point on 291 is faster-taking only
about a third of the time at x = 25 and about a tenth of the time
at x = 78. These timings include taking the exponential of log
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

COLLECTED ALGORITHMS FROM· CACM

ALGORITHM 55
COMPLETE ELLIPTIC INTEGRAL OF THE FIRST

KIND
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure ELLIPTIC l(k); value k; real k;
comment This procedure computes the elliptic integral of the

first kind K(k, 7r/2);
begin real t;

end

t := 1-k x k;
ELLIPTIC t : = (((0.032024666 >< t +

0 .054555509) x t
+ 0.097932891) x t + 1.3862944)
- (((0.010944912 x t + 0.060118519) x t
+ 0.12475074) X t + 0.5) X log (t)

ELLIPTIC 1;

CERTIFICATION OF ALGORITHM 55
COMPLETE ELLIPTIC INTEGRAL OF THE FIRST

KIND [John R. Herndon, Comm. ACM, Apr. 1961)
and

CERTIFICATION OF ALGORITHM 149
COMPLETE ELLIPTIC INTEGRAL [J. N. Merner,

Comm. ACM, Dec. 1962]
HENRY c. THACHER, JR.*

Reactor Eng. Div., Argonne National Laboratory,
Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission.

The bodies of Algorithm 55 and of the second procedure of
Algorithm 149 were tested on the LGP-30 computer using SCALP,
the Dartmouth "LOAD-AND-GO" translator for a substantial sub
set of ALGOL 60. The floating-point arithmetic for this translator
carries 7+ significant digits.

In addition to modifications required because of the limitations
of the ScALP subset, the following need correction:.

In Algorithm 55:
1. The constant 0.054555509 should be 0.054544409.
2. The function log should be ln.

In procedure ELIP 2 of Algorithm 149, the statement a : = c
should be a : = C.

The parameters of Algorithm 149 are related to the complete
elliptic integral of the first kind by: K == aXELl.P(a, b) where
the parameter m == k2 ... 1 - b/a.

The maximum approximation error in Algorithm 55 is given by
Hastings as about 0.610·-6. In addition there is thEi possibility of
serious cancellation error in forming the complementary param
eter t = 1 -k X k. Fork near 1, errors as great as 4 significant
digits were sustained. In these regions, the complementary
parameter itself is a far more satisfactory parameter.

The accuracy obtainable with Algorithm 149 is limited only by
the arithmetic accuracy and the amount of effort which it is
desired to expend. Six-figure accuracy was obtaine:d with 5 appli
cations of the arithmetic-geometric mean for a == 1000, b == 2,
~nd with one application for a - 500, b - 500.

55-P 1- 0

Neither algorithm is satisfactory fork == 1. The behavior for
Algorithm 55 will be governed by the error exit from the logarithm
procedure. Under these circumstances, Algorithm 149 goes into an
endless loop. Algorithm 149 may also go into an endless loop of the
terminating constant (10-8 in the published aigorithm) is too
small ·for the arithmetic being used. For the ScALP arithmetic it
was found necessary to increase this tolerance to 5.0io-7. The
resulting values of the elliptic integrals were, however, accurate
to within 2 in the 7th significant digit (6th decimal).

The relative efficiency of the two algorithms will depend
strongly on the efficiency of the square-root and logarithm sub
routines. With most systems, Algorithm 55 will provide sufficient
accuracy, and will be more efficient: If a square-root operation or
a highly efficient square-root subroutine is available, Algorithm
149 may well be the better method.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 56
COMPLETE ELLIPTIC INTEGRAL OF THE

SECOND KIND
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure ELLIPTIC 2(k); value k; real k:

comment This procedure computes the elliptic integral of the ·
second kind E(k, 1r/2);

begin real t;
t := 1 - k x k;
ELLIPTIC 2 := (((0.040905094 X t +

0.085099193) x t
+ 0.44479204) x t + 1.0 - (((0.01382999 x t
+ 0.08150224) X t + 0.24969795) X t) X log (t)

end ELLIPTIC 2;

CERTIFICATION OF ALGORITHM 56 [S21]
COMPLETE ELLIPTIC INTEGRAL OF THE

SECOND KIND
[J. R. Herndon, Comm. ACM 4, (Apr. 1961), 180]

GERHARD MEIDELL LARSSEN (Recd. 9 Aug. 1965)
Institut filr Statik und Dynamik der Luft- und Raum

fahrtkonstruktionen mit Rechengruppe der Luftfahrt,
Technische Hochschule, Stuttgart, Germany

Algorithm 56 was run on a UNIVAC 1107 using the UNIVAC 1107
ALGOL 60 compiler (dated January 25, 1965). The single-precision
floating-point arithmetic of this translator carries eight significant
digits.

Two syntactical errors were removed from the algorithm:
1. The line

ELLIPTIC 2 := (((0.040905094 X t +
was changed to

ELLIPTIC 2 := ((0.040905094 X t +
2. The function log was changed to Zn.
In addition, the statement

t := 1-k x k

was removed from the algorithm and the complementary parame
ter itself used as input to the procedure:

real :procedure ELLIPTIC 2 (t); value t; real t;

to avoid cancellation error for values of k near 1. [While the use
of t as input parameter is good computationally, the name of the
procedure is then slightly misleading.-J.G.H.]

Several values of the complete elliptic integral of the second
kind were computed for 1 ~ t > 0. The maximum error was found
to be about, 710-7, compared with A. M. Legendre, Tafeln der
Elliptische,n N ormalintegrale, Stuttgart, 1931. For t == 0 an error
axit from the Zn routine takes place.

56-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 57
BER OR BEI FUNCTION
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure BERBEI (r, z); valuer, z; real r, z;
comment This procedure computes ber(z) if r is set equal to

zero. bei(z) is produced if r equals 1.0;
begin

real s, k, c, f, t;
if r = 0 then

s :== 1
else

s := (z X z)/4;
k := s;
f := z X z;
f := f x f;
for c := 2 step 2 until 100 do

begin
if s = s + k then

go to gate;
t := (c+r) X (c+r-1);
k := -0.0625 x k x f/(t x t) j
s := s+k end;

gate: BERBEI := s
end BERBEI;

CERTIFICATION OF ALGORITHM 57
BER OR BEI FUNCTION [J. R. Herndon, Comm. ACM

4 (Apr. 1961)]
A. P. RELPH

The English Electric Co. Whetstone, England

Algorithm 57 was translated using the DEUCE ALGOL compiler.
No corrections were required, and the results were satisfactory.

CERTIFICATION OF ALGORITHM 57
BER OR BEI FUNCTION [John R. Herndon, Comm.

ACM, Apr. 1961]
HENRY c. THACHER, JR.*

Reactor Engineering Div., Argonne National Lab.,
Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission.

The body of Algorithm 57 was tested on the LGP-30 using the
ALGOL 60 translator developed by the Dartmouth College Com
puter Center. No syntactical errors were found. For z == O.l(0.1)1.0,
with a 7+ significant decimal arithmetic routine, the program
gave results with errors less than 5 (and for z = 1(1)5 less than 12)
in the seventh digit. For large values of z, serious cancellation
errors may occur. For example, for z = 20, more than 2 decimals
of significance can be lost in this way.

57-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 58
MATRIX INVERSION
OoN ALD COHEN

Burroughs Corporation, Pasadena, Calif.

procedure invert (n) array: (a);
comment matrix invi>rsion by Gauss-Jordan elimination;

valuen;
array a; integer n;

begin
array b, c [l:n]; integer i, j, k, t, p;
integer array z [1: n];

for j := 1step1 until n do zLi] := j;
for i : = 1 step 1 until n do begin
k : = i ; y : = a [i, i] ; t : = i - 1 ; p : = i + 1 ;
for j : = p step 1 until n do begin
w := a[i, j]; if abs(w) > abs(y) then begin
k : = j ; y : = w end end;
for j : = 1 step 1 until n do begin
c[j] := a[j, k]; a[j, k] := a[j, i];
a[j, i] := -c[j]/y; b[j] :== a[i, j] := a[i, j]/y end
a[i, i] := l/y; j := z[i]; z[i] := z[k]; z[k] := j
fork := 1step1 until t, p step 1 until n do
for j : = 1 step 1 until (, p step 1 until n do
a[k, j] :== a[k, i] - b[j] X c[k] end; t :== 0 ;

back: t := t + l; k := z[t]; if t ~ n then begin
for j : == t while k :F- j dC:. begin
for i := 1step1 until n do begin
w : == a[j, i]; a[j, i] : == a[k, i]; a[k, i] : = w end
go to back encl
end invert.

CERTIFICATION OF ALGORITHM 58
MATRIX INVERSION (Donald Cohen, Comm. ACM 4,

May 1961)
RICHARD A. CONGER

Yalem Computer Center, St. Louis University, St.
Louis, Mo.

Invert was hand-coded in FORTRAN for the IBM 1620. The
following corrections were found necessary:

The statement ak.J :- ak.i - bi X Ck shoul,d be

The statement go to back shoul,d be changed to

i : = z k ; z k : - z i ; z i : = i ; go to back

After these corrections were made, the program was checked by
inverting a 6 X 6 matrix and then inverting the result. The second
result wae equal to the original matrix within round-off.

58-P 1- 0

CERTIFICATION OF ALGOHJTHM 58
MATRIX INVERSION [Donald Cohen, Comm. ACM,

May, 1961]
RICHARD GEORGE*

Particle Accelerator Div., Argonne National Lab.,
Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission.

This procedure was programmed in FoRTRAN and reduced to
machine code mechanically. It was run on the Argonne-built com
puting machine, GEORGE. A floating~poi][lt routine was used which
allows maximum accuracy to 31 bits.

There are a number of errors of various types:
(1) There are eight begin's and only seven end's.
(2) The line

a[k, j] := a[k, i] - b[j] X c[k] end;

should be

a[k, j] := a[k, j] - b(j] X c[k] end;

(3) The permutation of rows of the inverted matrix and permu
tation of elements of the integer array z must be carried out simul
taneously. This algorithm fails to do this, and consequently the
'matrix at the time of exit from the procedure is left in a permuted
condition.
(4) The algorithm permits the statement

k := z[l];

to be executed even though the declarations place an upper limit
of non the integer array z, and the test for l ~ n has not yet been
made. Obviously, Mr. Cohen's compiling system would allow an
out-of-bounds array look-up. One could c~asily incorporate into an
ALGOL compiler a guard against such illilcit array references, and
therefore the published algorithm might be considered machine
dependent.
(5) This algorithm requires 3n2 divisions, most of which are un
necessary. By inserting the statement

y := 1.0/y;

at the proper place, one may accomplish the obvious· economy
of reducing this to only n divisions plus 2n2 multiplications.
(6) If a matrix should be singular (or nearly so), some pivot
element will be zero (or very small), and a test should be made,
with provision for a jump to ALARM, a non-local label.
(7) The identifiers w and y should be dleclared within this pro
cedure, to avoid trouble.
(8) This algorithm omits calculation of the determinant of the
matrix. This could be computed with very little extra effort.

The revised algorithm was then tested on the LGP-30 com
puter, using ALGOL-30, a small subset of ALGOL. Within .the re
.strictions of this subset, the program worked ~1:1.tisfactorily on test
ma.t ices.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 58
MATRIX INVERSION [Donald Cohen, Comm. ACM,

May, 1961]
GEORGE STRUBLE

University of Oregon, Eugene, Oregon

For the last seven lines, beginning with a[k, j] :== a[k, i], substi
tute:
a[k, j] := a[k, j] - b[j] X c[k] end;
l := O;
back: l := l+l;
again: k : = z[l];
if k :;t. l then

begin for i := 1 step 1 until n do
begin w := a[l, i];

a[l, i] := a[k, i];
a[k, i] w end;

z[l] := z[k];
z[k] := k;
go to again end;

else if l :;e. n go to back
end invert

REMARK ON ALGORITHM 58
MATRIX INVERSION [D. Cohen, Comm .. ACM,

May 61]
PETER G. BEHRENZ

.Matematikmaskinnmanden, Box 6131, Stockholm 6,
Sweden

invert was run on F ACIT EDB using F ACIT-ALGOL 1. Some
changes in the procedure had to be made:

1. y and w had to be declared in the procedure-body as real
y, w;

2. The la$t part of the procedure starting with l : = O; which
should interchange the matrix rows did not work correctly, even
with the corrections proposed by R. A. Conger [Comm. ACM,
June 62]. We propose the following code:

for l : = 1 step 1 until n do begin
k : = z[l]; for j : = l while k :;t. j do begin
for i : = 1 step 1 until n do begin , · .
w : = a[j, i]; a[j, i] : = a[k, i]; a[k, i] : = wend;
i : = z[k]; z[k]:,,,;, z[j]; k: = z[j]: = i end encl end invert

If the matrix a is singular, the value of the pivot element y
will once be zero or very nearly zero and division by zero would
occur in the course of the calculation. It woulld therefore be
advantageous to introduce an· empirical tolerance parameter
epsilon into the procedure.

To calculate the determinant of the matrix a it il3 only necessary
to put three more statements into the code. With these augmenta
tions invert should read:

procedure invert (n, a, epsilon, determinant);
value n, epsilon; real epsilon, determinant;
array a; integer n;
begin real y, w; integer i, j, k; l, p;
array b, c[l:n]; integer array z[l:n];
determinant : = 1;

followed by the same code as•before until:
y : = w end end;
determinant : = y X determinant;
if k :;e. i then determinant : = -determinant;
if abs (y) < epsilon then go to singular;

followed by the same code as before with the changes mentioned
in the certification by R. A. Conger [Comm. ACM, June 62] and

58-P 2- 0

the changes given above. singular should be a nonlocal label
in the main program.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 59
ZEROS OF A REAL POLYNOMIAL BY RESULTANT

PROCEDURE
E. H. BAREISS and M.A. FISHERKELLER

Argonne National Laboratory, Argonne, Ill.

procedure RES (n, c, alpha, mu, re, im, rt, gc) ; value n,
c, alpha ; integer n, alpha ; integer array
mu ; array c, re, im, rt, gc ;

comment RES finds simultaneously all zeros of a polynomial of
degree n with real coefficients, Ci (j = 0, . . . n), where Cn
is the constant term. The real part, rei, and imaginary part,
imi, of each zero, with corresponding multiplicity, mui ~and
remainder term, rti, (i = 1, ... , n), are found and a poly
nomial with coefficients gci (j = 0, ... , n), is generated from
these zeros. Alpha provides an option for local or nonlocal
selection of M, the number of root-squaring iterations, and
delta and epsilon, acceptance criteria. If alpha = 1, these
parameters are assigned locally. If alpha = 2, M, delta and
epsilon are set equal to the global parameters Mp, deltap,
and epsilonp, respectively. In cases where zeros may be found
more than once, the superfluous ones are eliminated by fac
torization. The method has been described by E. H. Bareiss
(J. ACM 7, Oct. 1960, pp. 346-386). ;
begin integer M ; real delta, epsilon ; switch U : ==
Ul, U2 ;
go to U [alpha];

Ul: M := 10 ; delta:= 0.2 ; epsilon := 10-s ;

U2:

START:

SYNTHETIC
DIV:

gotoSTART ;
M : = Mp ; delta : = deltap ; epsilon : =
epsilonp ;
begin integer CT, nu, nuc, beta, m, j, jc, k,
i, p ; Boolean ROOT ;
real X, Y, GX, rp ; array a, ac [O:n, O:M],
R, Re, t [O:n],

s [~l:n], ag [-2:n], rh, q, G, F [1:2Xn]
switch S := Sl, S2 ; switch T :=Tl, T2
switch JI := Vl, V2 ;
real procedure min (u, v) ; real u, v ;

min :=if u ~ v then u else v
real procedure SYND (W, Q, I, T)
integer I ; real W, Q ;

arrayT ;
begins [-1) := 0 ; s [OJ := T [O] ; for
m := 1step1 until I do

s (m] := T [m] - W•s [m - 1) - QXs
[m-2) ;
if Q = 0 then SYND : = abs (s[I]) else

SYND :== abs (W/2Xs [I - 1) + s[I])
endSYND ;
CT :== beta :·= 1 ; for j :== 0 step 1 until
ndoa [j,O] := c(j] ;

SQUARING begin .integer el ; real h ; for m :=
OPERATION: 1 step 1 until M do

begin for j : = 1 step 1 until n do
begin h := 0 ; for el :== 1 step 1 until
min (n - j, j) do

h :=- + ~-1) j el X a [j - el,m - l] X a
(j +el - 1) ;

RD:

1:
2:

3:
Tl:

RESULTANT:

T2:

59-P 1- 0

a[j,m] :== (-1) j j X (a [j, m - l] j
2 + 2Xh) end end end ;

for j := 0 step 1 until n do R [j] := (-1) j
jXa [j, M - 1) j 2/a [j,M] ;

j := 0 ; nu := 1
if (1 - delta ~ R [j]) /\ (R Lil ~ 1 + delta)
then
begin rp := (a [j ,M]/a [j - nu, M]) j (1/(2 j
MXnu)) ;
go to T [beta] end ;
nu:= nu+ 1 ;
j := j + 1 ; if j
else go to RD ;
nu:= 1 ; goto2

n then go to S [beta]

rh [CT] := rp ; X :== rp +epsilon X rp
Y : = X + epsilon X rp ;
fork:= Ostep 1 until n dot [k] :=abs (c[k])

F [CT] := SYND (Y,O,n,t) - SYND
(X,O,n, t)
G [CT] := SYND (rh [CTJ,O,n,c) ; if
F [CT] > G [CT] th•en

begin ROOT := trme ; q [CT] := O ;
CT:=CT+l ; F[CT]:=F[CT-l]end;
rh [CT] := -rp ; G [CTI := SYND (rh
[OTJ,O,n,c) ;
if F [CT] > G [CT] then begin ROOT : =
true ; q [CT] : = O ; CT : = CT + 1 ;
F [CT]:= F [CT - 1) e:nd ; if nu= 1 then
goto2 ;
q [CTI : = rp j 2 ; nuc : = nu ; j c : = j

tor j := 0 step 1 until n do
begin Re [j] := R [j] ; ac [j,M] :=a [j,M]
end ;
begin real h ; array b [-l:n + 1,
-l:n + 1), A [l:n],

r [O:n, O:n], CB [-l:n + lI
b [-1,0] := CB [-1) :== CB [n + 1) := O
for j := 0 step 1 until n do
CB [j] := c(j] ; b [O,.O] := 1 ; for k :=
1step1 until n do
begin b [k, -1) := 0 ; for j :== 0 step 1
until kdo

b [k + l,jI := b [k,j - 1) - q [CT] X b
[k-1,j] ;
b [k + 1, k + 1] : == h : == 0 ; for j : =
n - k step -1 until 0 do
h := h +(CB [j]XCB [k +j] - CB{j -1]
XCB[k+j + 1)) X q[CT] j (n - k - j) ;
A [k] := (-1 j kXh ; for j := 0 step
1 until k - 1 do

begin r [O,j] := 0 ; r [k,j] := r [k - 1,j] +
A [k] X b [k,j)end ,

r [k,k] :== A[k] end ; beta := 2 ; for
j := 0step1 until n. do
a [j ,OJ := r [n,j] e11Ld ; go to SQUAR
ING OPERATION ;

if (rp/2) .j 2 $; q {CT] then go to 3 ; rh
[CT]:- rp ;
G [CT] := SYND (rh [CT], q [CT], n,c) ;

COLLECTED ALGORITHMS (cont.)

82:

81:

MULT:

IT:

Vl:
V2:

E:
D:

if F [CT] > G [CT] then
begin CT : = CT + 1 ; F [CT] : = F
[CT - l] ; q [CT] := q [CT - 1] end ;
rh [CT] :=-rp ; G [CT]:= SYND [rh [CT],
q [CT], n,c) ;
if F [CT] > G [CT] then begi[n CT : = CT
+ 1 ; F [CT] : = F [CT - 1] ;
q [CT]:= q [CT- l]end ; goto3 ;
for j := 0 step. l until n do begin a [j ,M] :=

ac[.i,M] ;
R [j] : ='Re [j] end ; j : = j c ; beta : = 1 ;
if ROOT then go to 3 else

nu:= nuc ; gotol ;
ag [-2] := ag [-1] := 0 ; ~tg [O] := 1
for j := 1step1 until n do
ag [j] : = 0 ; k : = 1 ; i : = n ; m : = 1
for j := 0 step 1 until n do

t [j] := c [j] ;
mu [m] := 0 ; p := if q [k] = 0 then 1
else 2 ;
GX := SYND (rh [k], q [k],i,t) ; if F [k]
:> GX then
begin for j : = 1step1 until n do

ag [j] := ag [j] - rh [k] X :ag [j - 1] + q
[k] X ag [j - 2] ;
mu [m] := mu [m] + p ; i := i - p ;
for j := 0 step 1 until i do
t [j] := s [jl ; go to IT end else if
mu [m] o;C 0 then begin
rt [ml := G [k] ; go to V [pl end else
go to D ;

re [m] : = rh [kl ; im [ml : = 0 ; go to E ;
re [ml := rh [k]/2 ; im [ml :== sqrt (q [kl -
re [ml j 2)
m := m + 1
k : = k + 1 ; if k ~ CT /\ m ;;;;; n then go to
MULT ;
for j := 0step1 until n do gc Ul := ag [j] end
end RES

59-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 60
ROMBERG INTEGRATION
F.L.BAUER
Gutenberg University, Mainz, Germany

real procedure rombergintegr (fct, lgr, rgr, ord)
value fgr, rgr, ord ;
real fgr, rgr; integer ord ; real procedure fct ;
comment rombergintegr is the value of the integral of the

function fct between the limits (gr and rgr, calculated by the
algorithm of Romberg with an error term of the order
2Xord+2, ord~O Computation time will rou~hly be doubled
when ord is increased by 1;

begin
real array t[l : ord+l];
real f, u, .n
integer f, h, j, n ;
(:= rgr-fgr ;
t[l] := (fct(fgr)+fct(rgr))/2
n := 1 ;
for h := 1step1 until ord do

begin u := 0 ;
m := f/(2Xn) ;
for j := 1step2 until 2Xn-1 do

u := u+fct(fgr+jXm)
t[h+ll := (u/n+t[h])/2 ;
f := 1
for j := h step -- 1until1 do

begin f := 4Xf ;
t[j] := t[j+lJ+(tLl+lJ-tLi])/(f-1)

end ;
n := 2Xn

end ;
rombergintegr := t[l]Xf

end

CERTIFICATION OF ALGORITHM 60
ROMBERG INTEGRATION (F. L. Bauer, Comm.

ACM, June, 1961)
HENRY c. THACHER, JR.*
Argonne National Laboratory, Argonne, Ill.

*Work supported by the U. S. Atomic Energy Commission.

This procedure was translated to the ACT III compiler lan
guage for the Royal Precision LGP-30 computer. This system pro
vides 7+ significant decimal digits. The program was used to
integrate xn between the limits 0.01 and 1.1, and between the
limits 1.1 and 0.01. The results in Table I were obtained. The
pole at 0 for negative n affords a test of the reliability of the
method when the higher derivatives of the integrand are large.
The agreement between integrations in the forward and backward
directioris is an indication of the effects of round-off error.

It is apparent that the procedure gives results well within the
noise level for the positive powers, and that even the effect of a
closely adjacent singularHy for the negative powers can be over
come.

The flexibility of the algorithm would be improved by adding
to the formal parameters a procedure, check, to decide if sufficient

n

True Value
Order 1
Order 2
Order 5
Order 10

,,

True Value
Order 1
Order 2
Order 5
Order 10
Order 12

0

1.0900000
1.0899997
1.0899997
1.0899991

-1

-4.7004831
-19.641125
-10.656929
. -4.9017805
-4.7004402

60-P 1- 0

+u +12 -1

.26555932

.57076812

.30614608

.26555693

-- . 26555932 4.7004831
19.641113
10.656923
4.9017590
4.7002345

--.57076842
-- . 30614626
-- .26555818

-s

. 25000000X 108
18 .166655 x 108

8.47777.19 x 1()8
1. 0408634 x 108

. 25000715x108

. 24999291x1()8

-s

-18.166667 XlOS
- . 25000000X 108

-8.4777766 XlOS
-1. 0408640 x 1()8

- .25000727XlOS
- .25001311X 108

accuracy had been obtained without carrying through the entire
iteration. A possible form for this procedure would be:

procedure check (tl, t2, f, exit);
real tl, t2;
label exit;
integer f;

begin if abs ((t2 - tl) X f) / t1 < tolerance/\ f > minimum order
then go to exit end.

The global variables tolerance, which ii~ the maximum relative
difference between apJ:>roximations of increasing order, lf.11d the
minimum acceptable order should be selected by the programmer
for the exigencies of the problem. A check of this sort is clearly
not as sound as an a priori estimate of thE1 necessary order, but is
frequently an acceptable expedient.

The Romberg quadrature algorithm is analyzed in the follow
ing references:

Romberg, W. Vereinfachte immerische Integration. Det·
Kongelinge Norske Videnskaber Sefokab Forhanillinger $8,
(1955), 30-36.

Stiefel, E., and Rutishauser, H. H.emarques concernant
}'integration numerique. Comptes Rendus Acad. Seil (Paris)
6, (1961)' 1899-1900.

CERTIFICATION OF ALGORITHM 60
ROMBERG INTEGRATION (F. L. Bauer, Comm.

ACM, June 1961)
KARL HEINZ BUCHNER
Lurgi Gesellschaft fur Mineraloltechnik m.b.H., Frank

furt, Germany

Since August 1961, the Rombert Integl'ation has been success
fully applied in FORTRAN language to various problems on an
IBM 1620. Due to its elegant method and the memory saving
features, the Romberg Integration has succeeded other methods
in our program library, e.g., the Newton-Cotes integration of
order 10.

Reference is made to Stiefel, Numerische Matherma.tik (Teubner
Verlag. Stuttgart). Stiefel discusses in hill book various methods
of numerical integration including the Romberg algorithm.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 60
ROMBERG INTEGRATION (F. L. Bauer, Comm.

ACM, June 1961)
KARL HEINZ BUCHNER
Lurgi Gesellschaft fur Mineraloltcchnik m.b.H., Frank

furt, Germany

Since August 1961, the Rombert Integration has been success
fully applied in FoRTRAN language to various problems on an
IBM 1620. Due to its elegant method and the memory saving
features, the Romberg Integration has succeeded other methods
in our program library, e.g., the Newton-Cotes iintegration of
order 10.

Reference is made to Stiefel, Numerische Matherrnatik (Teubner
Verlag. Stuttgart). Stiefel discusses in his book various methods
of numerical integration including the Romberg algorithm.

REMARK ON ALGORITHM 60 [Dl]
ROMBERG INTEGRATION [F. L. Bauer, Comm.

ACM 4 (June 1961) 255; 5 (Mar. 1962), 168; 5 (May
1962), 281]

HENRY C. THACHER, JR.* (Recd. 20 Feb.1964 and 23 Mar.
1964)

Argonne National Laboratory, Argonne, Ill.
•Work supported by the U.S. Atomic Energy Commission.

The Romberg integration algorithm has been m1ed with great
success by many groups [1, 2], and appears to be among the most
generally reliable quadrature methods available. It is, therefore,
worth pointing out that it is not entirely foolproof, and that a sig
nificant class of integrands exists for which the extrapolated values
are poorer estimates of the integral than the corresponding
trapezoidal sums.

The validity of the Romberg procedure depends upon the possi
bility of expanding the error of the trapezoidal rule in powers of
h2, where his the stepsize. One expansion of this type is the Euler
Maclaurin sum formula. An alternative expression may be ob
tained from the Fourier series expansion. The coefficients of h2

r in
the Euler Maclaurin formula are proportional to the difference of
the values of the (2r+ 1)-th derivative at the two ends of the range.
Thus, any integral for which the odd derivatives of the integrand
either vanish or are equal at the limits will not be: improved by
Romberg extrapolation. Among the commoi;i. examples of 'such
integrals are integrals of periodic functions over a period and
integrals for which the derivatives vanish at both limits. An exam
ple of the last type is the integral approximation to the modified
Hankel function [3], e"'Kp(x) == f fl ezO-cosh 1>cosh (pt)dt, where L is
taken so large that the contribution of the integral from L to co

may be neglected. Several other examples are given. under the
heading "Exceptional cases" by Bauer, Rutishauser and Stie
fele [7]. This paper is among the most extensive discussions of
the Romberg method in English.

The algorithm also fails when the expansion of the error term
contains other powers of h along with the even ones. Rutishauser
[4] discusses estimating integrals of the form gf(x) dx ==
f~(<P (x)/vx) dx. If such integrals are estimated by tlb.e trapezoidal
rule, assigning the value 0 to f (0), the error may be expressed in
the form L:cJi2k + vh L d,Ji,k. Although the standard Romberg
extrapolation fails when applied to this sequence of estimates,
Rutishauser presents a modified procedure which is effective.

The extrapolation is also invalid when the integrand is discon
tinuous, although this exception is trivial from the computational
standpoint.

60-P 2- 0

It has also been pumted out [5, bJ that the Romberg procerlure
may amplify round-off errors. The losses, while significant, do not
appear prohibitive for most applications.

REFERENCES:
1. THACHER, H. C., JR. Certification of algorithm 60. Comm.

ACM 5 (Mar. 1962), 168.
2. BUCHNER, K. H. Certification of algorithm 60. Comm. ACM 5

(May, 1962) , 281.
3. FETTIS, H. E. Algorithm 163, modified Hankel function.

Comm. A l!M 6 (Apr. 1963), 161.,..2; 6 (Sep. 1963), 522.
4. tlUTISHAUSER, H. Ausdehnung des Rombergschen Prinzips.

Numer. Math. 5 (1963), 48-54.
5. McKEEMAN, W. M. Personal communication, Sept. 1963.
6. ENGELI, M. · Personal communication, Jan. 1964.
7. BAUER, F. L., RuTISHAUSER, H., AND STIEFELE, E. New as

pects in numerical Quadrature. Proc. Symp. Appl. Math 15,
1963, 199-218.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 61
PROCEDURES FOR RANGE ARITHMETIC
ALLAN GIBB*

University of Alberta, Calgary, Alberta, Canada
begin

procedure RANGESUM (a, b, c, d, e, f);
real a, b, c, d, e, f;

comment The term "range number" was used by P. S. Dwyer,
.Linear Compuwtions (Wiley, 1951). Machine procedures for
range arithmetic were developed about 1958 by Ramon Moore,
"Automatic Error Analysis in Digital Computation," LMSD
Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi
sion, Palo Alto, California, 59 pp. If a ~ x ~ band c ~ y ~ d,
then RANGESUM yields an interval [e, f] such that e ~ (x + y)
~ f. Because of machine operation (truncation or rounding) the
machine sums a+ c and b + d may not provide safe end-points
of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine arithmetic. 'The body of ADJUSTSUM will be de
pendent upon the type of machine for which it is written and so
is not given here. (An example, however, appears below.) It
is assumed that ADJUSTSUM has as parameters real v and w,
and integer i, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representation of a number.
The output ADJUSTSUM provides the left end-point of the
output interval of RANGESUM when ADJUSTSUM is called
with i = -1, and the right end-point when called with i == 1.
The procedures RANGESUB, RANGEMPY, and RANGEDVD
provide for the remaining fundamental operations in range
arithmetic. RANGESQR gives an interval within which the
square of a range number must lie. RNGSUMC, PNGSUBC,
RNGMPYC and RNGDVDC provide for range arithmetic with
complex range arguments, i.e. the real and imaginary parts
are range numbers;
begin

e : = ADJUSTSUM (a, c, -1);
f: = ADJUSTSUM (b, d, 1)

end RANGESUM;
procedure RANGESUB (a, b, c, d, e, f);

real a, b, c, d, e, f;
comment RANGESUM is a non-local procedure;
begin

RANGESUM (a, b, -d, -c, e, f)
end RANGESUB;
procedure RANGEMPY (a, b, c, d, e, f);

real a, b, c, d, e, f;
comment ADJUSTPROD, which appears at the end of this
procedure, is analogous to ADJUSTSUM above and is a non
local real procedure. MAX and MIN find the maximum and
minimum of a set of real numbers and are non-local;
begin

real v, w;
if a < 0 , \ c ~ 0 then

1: begin
v: == c; c: =a:; a:- v; w: = d; d := b; b :- w

end 1;
if a~ 0 then

2: begin
if c ~ 0 then

3:begin
e : = a X c; f : = b X d; go to 8

end 3;
e:=bXc;
ifd ~ Othen

4: begin
f : = b X d; go to 8

end4;
f : = a X d; go to 8

5: end 2;
ifb > Othen

6: begin
ifd > Othen
begin

e :- MIN(a X d, b X c);
f : = MAX (a X c, b X d) ; go to 8

end6;
e : = b X c; f : = a X c; go to 8

end 5;
f :=a Xe;
ifd ~ Othen

7: begin
e : = b X d; go to 8

end 7;
e := a X d;

8: e := ADJUSTPROD (e, -1);
f := ADJUSTPROD (f, 1)

end RANGEMPY;
procedure RANGEDVD (a, b, c, d, e, f);

real a, b, c, d, e, f;

61-P 1- 0

comment If the range divisor includes zero the program
exists to a non-local label "zerodvsr". RANGED VD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;
begin

if c ~ 0 /\ d ~ 0 then go to zerodvsr;
ifc < Othen

1: begin
ifb > Othen

2: begin
e : = b/ d; go to 3

end 2;
e :- b/c;

3: if a ~ 0 then
4: begin

f : == a/c; go to 8
end4;
f :== a/d; go to 8

end 1;
if a< 0 then

5: begin
e : == a/c; go to 6

end 5;
e:-a/d;

6: if b > 0 then
7: begin

f : - b/c; go to 8
end 7;
f :- b/d;

COLLECTED ALGORITHMS (~ont.)

8: e := ADJUSTQUOT (e, -1); t := ADJU8TQUOT (f,1)

end RANGEDVD;
procedure RANGESQR (a, b, e, f);

real a, b, e, f;
comment ADJUSTPROD is a non-local procedure;
begin

if a < 0 then

1: begin
if b < 0 then

2: begin
e : = b X b; f : = a X a; go to 3

end 2;
e : = 0; m : = MAX (-a, b) ; f : = m X m; go to 3

end 1;
e : = a X a; f : = b X b;

3: ADJUSTPROD (e, -1);
ADJUSTPROD (f, 1)

end RANGESQR;
p1·ocedure RNGSUMC (aL, aR, bL, bU, cL, cR, dL, dU, eL,
eR, fL, fU);

real aL, aR, bL, bU, cL, cR, dL, dU, eL, eR, fL, fU;
comment Rangesum is a non-local procedure;
begin

RANGESUM (aL, aR, cl., cR, eL, eR);
RANGESUM (bL, bU, dL, dU, fL, fU)

end RNGSUMC;
procedure RNGSUBC (aL, aR, bL, bU, cL, cR, dL, dU, eL,
eR, fL, fU);

real aL, aR, bL, bU, cL, cR, JL, dU, eL, eR, fL, fU;
comment RNGSUMC is c1, non-local procedure;
begin

RNGSUMC (aL, aR, bL, bR, -cR, -cL, -dU, -dL, eL, eR,
fL, fU)

end RNGSUBC;
p1·ocedure RNGMPYC (aL, aR, bL, bU, cL, cR, dL, du, e.L,
eR, fL, fU);

real aL, aR, bL, bU, cL, cR,.dL, dU, eL, eR, fL, fU;
comment RANGEMPY, RANGESUB, and RANGESUM are
non-local procedures;
begin

real Ll, Rl, L2, R2, L3, R3, L4, R4;
RANGEMPY (aL, aR, cL, cR, Ll, Rl);
RANGEMPY (bL, bU, dL, dU, L2, R2);
RANGESUB (Ll, Rl, L2, R2, eL, eR);
RANGEMPY (aL, aR, dL, dU, L3, R3);
RANGEMPY (bL, bU, cL, cR, L4, R4);
RANGESUM (L3, R3, L4, R4, tL, fU);

end RNGMPYC;
procedure RNGDVDC (aL, aR, bL, bU, cL, cR, dL, dU, eL,
eR, fL, fU);

real aL, aR, bL, bU, cL, cR, dL, dU, eL, eR, fL, fU;
comment RNGMPYC, RANGESQR, RANGESUM, and
RANGEDVD are non-local procedures;
begin

realLl,Rl,L2,R2,L3,R3,L4,R4,L5,R5;
RNGMPYC (aL, aR, bL, bU, cL, cR, -dU, -dL, Ll, Rl, L2,
R2);
RANGESQR (cL, cR, L3, R3);
RANGESQR (dL, dU, L4, R4);
RANGESUM (L3, R3, L4, R4, L5, R5);
RANGEDVD (Ll, Rl, L5, R5, eL, eR);
RANGEDVD (L2, R2, L5, R5, fL, fU)

end RNGDVDC
end

61-P 2- 0

EXAMPLE

·real procedure CORRECTION (p); real p;
comment CORRECTION and the procedures below are in
tended for use with single-precision normalized floating-point
arithmetic for machines in which the mantissa of a floating-point
number is expressible to s significant figures, base b. Limitations
of the machine or requirements of the user will limit the range of
p to bm ~ I p I < b 0 +i for some integers m and n. Appropriate
integers must replace s, b, m and n below. Signal is a non-local
label. The procedures of the example would be included in the
same block as the range procedures above;
begin

integer w;
for w : = m step 1 until n do

1: begin
if (b j w ~ abs (p)) /\ (abs (p) < b j (w + 1)) then

2: begin
CORRECTION := b j (w+l-s); go to exit

end 2
end 1;
go to signal ;

exit: end CORRECTION;
real procedure ADJUSTSUM (w, v, i); integer i;

real w, v;
comment ADJUSTSUM exemplifies a possible procedure for use
with machines which, when operating in floating point addition,
simply shift out any lower order digits that may not be used. No
attempt is made here to examine the possibility that every digit
that is dropped is zero. CORRECTION is a non-local real pro
cedure which gives an upper bound to the magnitude of the error
involved in the machine representation of a number;
begin

real r, cw, cv, er;
r: = W + Vj

if w = 0 V v = 0 then go to 1 ;
cw : = CORRECTION (w);
cv: = CORRECTION (v);
er : = CORRECTION (r);
if cw = cv /\ er ~ cw then go to 1;
if sign (i X sign (w) X sign (v) X sign (r)) = -1 then go to 1;
ADJUSTSUM: = r + i X MAX (cw, cv, er); go to exit;

1: ADJUSTSUM : = r;
exit: end ADJUSTSUM;
real procedure ADJUSTPROD (p, i); real p; integer i;
comment ADJUSTPROD is for machines which truncate when
lower order digits are dropped. CORRECTION is a non-local real
procedure;
begin

if p X i ~ 0 then
l: begin

ADJUSTPROD : = p; go to out
end 1;
ADJUSTPROD : = p + i X CORRECTION (p);

out: end ADJUSTPROD;
comment Although ordinarily rounded arithmetic is preferable
to truncated (chopped) arithmetic, for these range procedures
truncated arithmetic leads to closer bounds than rounding does.

*These procedures were written and tested in the Burroughs
220 version of the ALGOL language in the summer of 1960 at
Stanford University. The typing and editorial work were done
under Office of Naval Research Contract Nonr-225(37). The author
wishes to thank Professor George E. Forsythe for encouraging
this work and for assistance with the syntax of ALGOL 60.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 62
A SET OF ASSOCIATE LEGENDRE POLYNOMIALS

OF THE SECOND KIND*
JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

comment This procedure places a set of values of Qnm(x) in the
array Q[] for values of n from 0 to nmax for a particular value
of m and a value of x which is real if ri is 0 and is purely imaginary,
ix, ortherwise. R[] will contain the set of ratios of successive
values of Q. These ratios may be especially valuable when the
Qnm(x) of the smallest size is so small as to underflow the machine
representation (e.i;z:. lO~l if 10-51 were the smallest representable

number). 9.9 X 1045 is used to represent infinity. Imaginary
values of x may not be negative and real values of x may not be
smaller than 1.

Values of Qnm(x) may be calculated easily by hypergeometric
series if x is not too sma.11 nor (n - m) too large. Qnm(x) can be
computed from an appropriate set of values of Pnm(x) if xis near
1.0 or ix is near 0. Loss of significant digits occurs for x as small as
1.1 if n is larger than 10. Loss of significant digits is a major diffi
culty in using finite polynomial representations also if n is larger
than m.· However, QLEG has been tested in regions of x and n
both large and small;
,,..·ocedure QLEG(m, nmax, x, ri, R, Q); value m, nmax, x, ri;

real m, nmax, x, ri; real array R, Q;
begin real t, i, n, qO, s;

n := 20;
if nmax > 13 then

n := nmax + 7;
if ri = 0 then

begin if m = 0 then
Q[O] : == 0.5 X log((x + 1)/(x - '1))
else

begin t ;= -1.0/sqrt(x X x-1);
qO :-0;
Q[O] := t;
for i : = 1l!itep1 until m do

begin s : == (x+x)X (i-l)Xt
X Q[O]+ (3i-iX i-2) X qO;
qO := Q[O];
Q[O] : = send end;

if x = 1 then
Q[O] : = 9.9 j 45;

R[n + I] : = x - sqrt(x X x - 1);
for i : = n step -1 until 1 do

R[i] : == (i + m)/((i + i + 1) X x
+(m - i - 1) X R[i + 1]);

go to the end;
if m - 0 then

begin if x < 0.5 then
Q[O] : = arctan(x) - 1.5707963 else
Q[O] : == - arctan(l/x)end else

begin t : == 1/sqrt(x X x + 1);
qO := O;
Q[O] :- t;
for i : == 2 st:FP 1 until m do

begin s : -1 (x + x) X (i - 1) X t X Q[O]
+ (3i + i X i - 2) X qO;

qO: = Q[O];
Q[O] : = send end;

R[n + 1] : = x - sqrt(x X x + 1);
for i : == n step - 1 until 1 do

62-P 1- 0

R[i] : = (i + m)/((i - m + 1) X R[i + 1]
-(i + i -j.l) Xx);

for i : = 1step2 until nmax do
R[i] : = - R[i];

the: for i : = 1step1 until nmax do
Q[i] : = Q[i - 1] X R[i]

end QLEG;

* This procedure was developed in part under the sponsorship
of the Air Force Cambridge Research Center.

REMARK ON ALGORITHM 62
A SET OF ASSOCIATE LEGENDRE POLYNOMIALS

OF THE SECOND KIND (John R. Herndon, Comm.
ACM 4 (July, 1961))

JOHN R. HERNDON

Stanford Research Institute, Menlo Park, California

In regard to Algorithm 62 in Communications of the ACM, t~o
errors were found:

The 14th line of the procedure
for i : = 1 step 1 until m do

8hould read
for i : - 2 step 1 until m do

The 35th line
+ (3i - iXi - 2)Xq0

should read
+ (3i - i X i - 2) X qO

The procedure QLEC was developed from the standard recur
rence formula

(n + m - l)Q~-2 == (2n - 1) ·x·Q~~1 - (n - m)Qnm.
Invert and multiply by (n + m - l)Q':-1 .

Q':-1 (n + m - 1)

Q':-2 - (2n - l)·x - (n - m)Qnm/Q':-1'

or

Rm (n + m - 1)
n-l - (2n - 1)-x - (n -· m)Rnm ·

Analysis (and testing) shows that, for n large, this infinite con
tinued fraction need only be carried to about eight terms for eight
digit accuracy if the final term is evaluated with the asymptotic
:value derived by setting

R':-1 ,,. Rn"', lim Rnm - X :I:: v'X2='!,
n-+OO

the minus sign being chosen since in ge1tleral Qnm < Q':-i . The
formulas pertaining to purely imaginary parameters follow read
ily. ·The value of

1 x + l
QoD(x) - 2 Iog. x - 1:'

COLLECTED ALGORITHMS (cont.)

while

and

-1
Qo1(x) = _ r::;;--'1"

vx2
- 1

Other values are derived using the ratios Rnm(x) and/or the re
currence formula

2(m - l)x m-1 (() m-2
Qnm = - V Qn + n - m + 2) n + m ·- 2 Qn .

x2 - 1

The derivation of the expression for Qo0 (ix) is not triivial and pro
ceeds as follows:

Thus

and

1 ix + 1 1 [x2
- 1 2x J i·Qo0(ix) = -log.-.-.-= - log. --- + ---·

2 ix - 1 2 x2 + 1 a;2 + 1

ea+ib == ea. eib == ea cos .b + i sin b.

-2x
tan b = --

1 - x2

Q0°(ix) = (arctan x - 7r/2)i.

62-P 2- · 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 63
PARTITION
c. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure partition (A,M,N ,I,J); value M,N;

array A; integer M,N,I,J;
comment I and J are output variables, and A is the array (with
subscript bounds M:N) which is operated upon by this procedure.
Partition takes the value X of a random element of the array A,
and rearranges the values of the elements of the array in such a
way that there exist integers I and J with the following properties:

M ~ J < I ~ N provided M < N
A[R] ~ X for M ~ R ~ J
A[R] = X for J < R < I
A[R] ~ X for I ~ R ~ N

The procedure uses an integer procedure random (M,N) which
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two
parameters;
begin real X; integer F;

F : = random (M,N); X: = A[FJ;
I:=M; J:=N;

up: for I : = I step 1 until N do
if X < A [I] then go to down;

I:= N;
down: for J: = J step -1 until M do

if A[J]<X then go to change;
J := M;

change: if I < J then begin exchange (A[IJ, A[J]);
l:=I+l;J:=J-1;
go to up

end
else if I < F then begin exchange (A[IJ, A[F]);

l:=I+l
end

else if F < J then begin exchange (A[F], A[J]);
J:=J-1

end;
end partition

CERTIFICATION OF ALGORITHMS 63, 64, ()5
PARTITION, QUICKSORT, FIND [C. A. R. Hoare,

Comm. ACM, July 1961]
J. 8. HILLMORE

Elliott Bros. (London) Ltd., Boreharnwood, Herts.,
England

The body of the procedure find was corrected to read:
begin integer I, J;
if M < N then begin partition (A, M, N, I, J);

end find

if K ~ I thenfind (A, M, J, K)
else if J ~ K thenfind (A, I, N, K)
end

and the trio of procedures was then successfully run using the
Elliott ALGOL translator on the National-Elliott 803.

The author's estimate of l(N-M)ln(N-M) for the number of

63-P 1- 0

exchanges required to sort a random set was tound to be correct.
However, the number of comparisons was generally less thar..
2(N-M)ln(N-M) even without the modification mentioned
below.

The efficiency of the procedure quicksort was increased by:
changing its body to read:
begin integer I, J;
if M < N-1 then begin partition (A, M, N, I, J);

quicksort (A, M, J);
quicksort (A, I, N)
end

else if N -M = 1 then begin if A [NJ < A [M] then
exchange (A [M], A [N])

end
end quicksort

This alteration reduced the number of comparisons involved in
sorting a set of random numbers by 4-5 percent, and the number
of entries to the procedure partition by 25-30 percent.

CERTIFICATION OF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, [Comm. ACM,
July 1961]
B. RANDELL AND L. J. RUSSELL

The English Electric Company Ltd., Whetstone, England
Algorithms 63, 64, and 65 have been tested using the Pegasus

ALGOL 60 Compiler developed at the De Havilland Aircraft Com
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, as space is needed for the organi
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in
formation which records the progress of the partitioning and
sorting.

A misprint ('if' for 'if' on the line sta.rting 'else if J ~ K then
· · · ') was corrected in Algorithm 65 (Fi111d), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Partition produces as
output two integers J and I such tha.t elements of the array
A[M:N] which lie between A[J] and A[l] are in the positions that
they will occupy when the sorting of th4:} array is completed, Find
should cease to make further recursive activations of itself if K
fulfills the condition J < K < I.

Therefore the conditional statement. in the body of Find was
changed to read

if K ~ J then find (A ,Ill ,J ,K)
else if I ~ K then find (A :I ,N ,K)

With this change the procedure worked satisfactorily.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 64
QUICKSORT
c. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer 'M,N;

comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M-N) In
(N -M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer I,J;

if M < Nth.en begin partition (A,M,N ,I,J);
quicksort (A,lVC,J);
quicksort (A, I, N)

end
end quicksort

CERTIFICATION OF ALGORITHMS 63, 64, 65
PARTITION, QUICKSORT, FIND [C. A. R. Hoare,

Comm. ACM, July 1961]
J. s. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The body of the procedure find was corrected to read:

begin integer I, J;
if M < Nth.en begin partition (A, M, N, I, J);

if K ~I then.find (A, M, J, K)

end find

else if J ~ K then.find (A, I, N, K)
end

and the trio of procedures was then successfully run using the
Elliott ALGOL translator on the National-Elliott 803:.

The author's estimate of i(N-M)In(N-M) for the number of
exchanges required to sort a random set was found to be correct.
However, the number of comparisons was genera.Hy less than
2(N-M)In(N-M) even without the modification mentioned
below.

The efficiency of the procedure quicksort was increased by
changing its body to read:
begin integer I, J;
if M < N-1 then begin partition (A, M, N, I, J);

quicksort (A, M, J);
quicksort (A, I, N)
end

else if N -M = 1 then ,begin iif A[N] · < A {MJ th4m
exchange (A[M], A[N])

end
end quicksort

This alteration reduced the number of comparisons involved in
;sorting a set of random numbers by 4-5 percent, and the number
of entries to the procedure partition by 25-30 percent.

64-P 1- 0

CERTIFICATION OF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, [Comm. ACM,
July 1961]
B. RANDELL AND L. J. RUSSELL

The English Electric Company Ltd., Whetstone, England
Algorithms 63, 64, and 65 have been tested using the Pegasus

ALGOL 60 Compiler developed at the De Havilland Aircraft Com
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, as space is needed for the organi
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in
formation which records the progress of the partitioning and
sorting.

A misprint ('if' for 'if' on the line starting 'else if J ~ K th.en
... ') was corrected in Algorithm 65 (Find), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Partition produces as
output two integers J and I such that elements of the array
A[M:N] which lie between A[J] and A[J] are in the positions that
they will occupy when the sorting of the array is completed, Find
should cease to make further recursive activations of itself if K
fulfills the condition J < K < I.

Therefore the conditional statement in the body of Find was
changed to read

if K ~ J then find (A,M,J,K)
else if I~ K then find (A,l,N,K)

With this change the procedure worked satisfactorily.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 65
FIND
C. A. R. HOARE

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure find (A,M,N,K); value M,N,K;
array A; integer M,N,K;

comment Find will assign to A [K] the value which it would
have if the array A [M:N] had been sorted. The array A will be
partly sorted, and subsequent entries will be faster than the first;
begin integer I,J;

if M < N then begin partition (A, M, N, I, J);
if K~ I then find (A,M,I,K)
else if J~K then find (A,J,N,K)
end

end find

CERTIFICATION OF ALGORITHMS 63, 64, 65
PARTITION, QUICKSORT, FIND [C. A. R. Hoare,

Comm. ACM, July 1961]
J. S. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The body of the procedure find was corrected to read:
begin integer I, J; .
if M < N then begin partition (A, M, N, I, J) ;

end find

if K ~ I thenfind (A, M, J, K)
else if J ;:;i K thenfind (A, I, N, K)
end

and the trio of procedures was then successfully run using the
Elliott ALGOL translator on the National-Elliott 803.

The author's estimate'of !(N-M)ln(N-M) for the number of
exchanges required to sort a random set was found to be correct.
However, the number of comparisons was generally less than
2(N-M)1n(N-M) even without the modification mentioned
below.

The efficiency of the procedure quicksort was increased by
changing its body to read:
begin integer I, J;
if M < N-1 then begin partition (A, M, N, I, J);

quicksort (A, M, J);
quicksort (A, J, N.)
end

else if N - M = 1 then begin if A [NJ < A [M] then
exchange (A [M], A [N])

end
end quicksort

This alteration reduced the number of comparisons involved in
sorting a set of random numbers by 4-5 percent, and the number
of entries' to the procedure partition by 25-30 percent.

65-P I- 0

CERTIFICATION OF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, [Comm. ACL11,
July 1961]
B. RANDELL AND L. J. RUSSELL

The English Electric Company Ltd., Whetstone, England
Algorithms 63, 64, and 65 have been tested using the Pegasus

ALGOL 60 Compiler developed at the De Havilland Aircraft Com
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, a'S space is needed for the organi
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in
formation which records the progress of the partitioning and
sorting.

A misprint ('if' for 'if' on the line stairting 'else if J ;;;;.! K then
· · -') was corrected in Algorithm 65 (Fillld), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Partition produces as
output two integers J and I such tha.t elements of the array
A[M:N] which lie between A[J] and A[J] are in the positions that
they will occupy when the sorting of the array is completed, Find
~hould cease to make further recursive activations of itself if K
fulfills the condition J < K < I.

Therefore the conditional statement in the body of Find was
changed to read

if K ~ J then find (A,M',J,K)
else if I ~ K then find (AJ,N,K)

With this change the procedure worked satisfactorily.

ALGORITHM 66
INVRS
.JOHN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure Invrs (t) size : (n); value n; real a1·ray t; inte·
ger n;

comment Inverts a positive definite symmetric matrix t, of
order n, by a simplified variant of the square root method. Re
places the n(n+l)/2 diagonal and superdiagonal elements of t
with elements of t-1 , leaving subdiagonal elements unchanged.
Advantages: only n temporar~ storage registers are required, no
identity matrix is used, no square roots are computed, only n
divisions are performed, and, as n becomes large, the number of
multiplications approaches n3 /2;
begin integer i, j, s; real anay vfl:n-1]; real y, pivot;
for s : = 0 step 1 until n-1 do
begin pivot : = 1.0/t[l,1];

begin pivot : = 1.0/t[l,1];
comment If t[l,1] ~ 0, tis not positive defi
nite;

end;

for i: = 2 step 1 until n do v[i-1] := t[l, i];
for i : = 1step1 until n-1 do

begin t[i,n]: = y: = -v[i] X pivot;
for j : = i step 1 until n-1 do
t[i, j] : = t[i + 1, j + 1] + vLll X y
end;

t[n,n] : = -pivot

comment At this point, elements of t-1 occupy
the original array space but with signs reversed,
and the following statements effect a simple re
flection;

for i : = 1 step 1 until n do
for j : = i step 1 until n do t[i,j J : = -t[i,j]

end Invrs

CERTIFICATION OF ALGORITHM 66
INVRS (J. Caffrey, Comm. ACM! July 1961)
B. RANDELL, c. G. BROYDEN.

Atomic Power Division, The English Electric Company,
Whetstone, England.
INVRS was translated using the DEUCE ALGOL Compiler, and

needed the following correction.
The repeat of the line,

begin pivot := 1.0/t[l, 1];
was deleted.

The compiled program, which used a 20 bit mantissa floating
point notatio·n, was tested using Wilson's matrix

5 7 6 5
7 10· 8 7
6 8 10 9
5 7 9 10

and gave results

67.9982
-40. 9991
-16.9996

9.9997

-40.9991
2419995
9.9997

-5.9998

-16.9995
9.9997
4.9998

-2.9999

66-P 1- 0

9.9997
-5.9998
-2.9999

1.9999

(The output routine completed the symmetric matrix)

INVRS will in fact invert non-positive symmetric matrices, the
only restriction appearing to be that the leading minors of the
matrix must be non-zero. The variable T[l, 1] takes as its succes
sive values ratios of the (r + l)th to the r th leadng minors of the
matrix, and if it becomes zero the variable 'pivot' cannot be com
puted.

The following matrix, for which the successive values of T[l, 1]
were +2, -2, -1, -0.6, +5 gave results correct to one unit in the
fifth significant figure.

2 -3 -1 4
-3 2 -4 3 -2

1 -4 -3 2 4

-1 3 2 -2 -3
4 -'2 4 -3 2

CERTIFICATION OF ALGORITHM 66
INVRS (J. Caffrey, Comm. ACM, July 1961)
JOHN CAFFREY

Palo Alto Unified School District, Palo Alto, California

INVRS was translated using the Burroughs 220 Algebraic
Computer (BALCOM) at Stanford University, using 8-digit floating
point arithmetic. The misprint noted by Randell and Broyden
(Comm. ACM, Jan. 1962, p. 50) was corrected, and the same
example (Wilson's 4 X 4 matrix) was used as a test case. The
resulting inverse was:

68. 0000 -41. 0000
25.0000

-17.0000
10.0000
5.0000

10.0000
-6.0000
-3.0000

2.0000
It may also be useful to note that the determinant of the matrix

may be obtained as the successive product of the pivots. That is,
if 11 (= T(l, 1)) is the ith pivot of a matrix of order n,

determinant = Ilf ti .
For the above input example,

determinant = 1.0
Randell and Broyden's observation concerning the apparent

limitation of INVRS to positive definite cases is correct: That is,
any nonsii;i.gular real symmetric matrix (positive, indefinite, or
negative) may be inverted using this algorithm. The original
INVRS should therefore be modified as follows:

if pivot = 0 then go to singular;
Randell and Broyden's second example (of order 5) was also

used as a test case, with the resulting inverse:
- . 0000 . 9999 . 0000 . ()()()()

1.5333 - .7333 - .1333
- . 8666 -1. 0666

-1.4666

determinant = -14.999999

.9999

.7999
- .5999
- .1999

.2000

COLLECTED ALGORITHMS (cont.)

An attempt to invert the inverse of the 4 X 4 segment of the
Hilbert matrix, as presented by Randell (Comm. ACM, Jan.
1962, p. 50), yielded the following results:

.9999 .4999 .3333
.3333 .2499

.1999

.2499

.1999

.1666

.1428
determinant = 6048020.6

66-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 67
CRAM
.ToHN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure CRAM (n, r, a) Result: (f); value n,, r; integer
n, r; real array a, f;

~omment CRAM stores, via an unspecified input procedure
READ, the diagonal and superdiagonal elements of a. square sym
metric matrix e, of order n, as a pseudo-array of dimension
l:n(n + 1)/2. READ (u) puts one number into u. Elements e[i, j]
a.re addressable as a[c + j], where c = (2n - i) (i - 1)/2 and c[i + 1]
may be found as c[i] + n - i. Since c[l] = 0, it is simpler to develop
a. table of the c[i] by recursion, as shown in the sequence labelled
"table". Further manipulation of the elements so stored is illus
trated by premultiplying a rectangular matrix f, of order n, r, by
the matrix e, replacing the elements off with the new values, re
quiring a temporary storage array v of dimension l:n;
begin integer i, j, k, m; real array v[l:n]; reals;

integer array c[l:n];
table: j : = - n; k : = n + 1; for i : = 1 step 1 until n do

begin
j : = j + k - i ; c [i] : = j end;

load: for i : = 1 step 1 until n do
begin for j : = i step 1 until n do READ (v[j]); m : =
c[i];
fork : = i step 1 until n do a[m + k] : = v[k] end;

premult: for j : = 1 step 1 until r do
begin for i : = 1 step 1 until n do

begins : = 0.0;

end
end CRAM

for k : = 1 step 1 until i do
begin m := c[k]; s := s + :a[m + i]

Xf[k, j] end;
fork:= i + 1step1 until n do

s: = s + a[m + k] X f[k, j]; v[i] = s
end;
(or k : = 1 step 1 until n do f [k, j J = v[k]

CERTIFICATION OF ALGORITHM 67
CRAM (J. Caffrey, Comm. ACM 4 (July 1961), 322)
A. P. RELPH

Atomic Power Div., The English Electric Co., Whetstone,
England

CRAM was translated using the DEUCE ALGOL compiler with
the following corrections:

V[i] = S was changed to V[i] : = S
f[k,j J = V[k] was changed to f[k,j J : = V[k]

It is quicker not to use the table of the C[i] in the "load"
sequence and instead use the following sequence:

load: m := n X (n+l)/2;
for i : = 1 step 1 until m do READ (a[i]);

67-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 68
AUGMENTATION
H. G. RICE

Computer Sciences Corp., Palos Verdes, Calif.
real procedure Aug(x,y); value x,y; integer x,y;
comment This algorithm makes use of the implicitly defined re

cursive properties of ALGOL procedures to compute the augment
of x by y, using the basic technique of incrementation by unit
step size;

begin Aug := if x = 0 then (if y > x then (Aug(y - 1, x) + 1)
else y)

else Allg(x - 1, y + 1) end Aug

CERTIFICATION OF ALGORITHM 68
AUGMENTATION (H. G. Rice, Comm. ACM, Aug.

1961)
L. M. BREED

Stanford University, Stanford, Calif.

AUGMENTATION was transliterated into BALGOL for the
Burroughs 220, and proved successful in a number of test cases.
However, the following algorithm has exactly the same effect and
is considerably simpler:
real procedure Aug(x, y); value x, y; integer x, y;
begin if x<O then L : go to L else Aug := x+y end Aug

68-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 69
CHAIN TRACING
BRIAN H. MAYOH

Regnecentralen, Gl. Carlsbergvet. 2, Copenhagen.

procedure CHAIN tracing (iteration counter, number of
identifiers, number of identifier links, final linkage
matrix, couples);

Boolean array final linkage matrix;
integer array couples;
integer iteration counter, number of identifieirs, number of

identifier links;
begin comment This procedure is given a list of pairs of inte

gers, the second being related to the first in some way. It finds
those pairs of integers which are related to each other if the
relation is transitive. It is supplied with,
couples a matrix whose bound pair list is [l: 2, 1: number of

identifier links] where couples (2, i] is related to couples
(1, i] in some way.

final linkage matrix a matrix whose bound pair list is
[l: number of identifiers, 1: number of identifiers] and into
which the procedure puts true if the second subscript
expression is an integer which is related to the integer
corresponding to the first subscript expression, if the
relation is irreflexive then the diagonal entries of this
matrix are false.

iteration counter a place for the procedure to put the
length of the longest chain it finds. CHAIN tracing can be
applied to any system which can be represented by a Turing
machine by letting the integers in couples correspond to
the Turing machine states. Two integers j, k are related if
there is an input symbol which causes state j to change to
state k. If the Turing machine always stops whatever the
sequence of input symbols, then its final linkage matrix
will have false for all leading diagonal entries;

integer i, j;
Boolean array working linkage matrix [l:number of identi

fiers, 1 :number of identifiers];
Boolean procedure PROGRESS;

begin PROGRESS := false;
for i : = 1 step 1 until number of identifiers

do for j : = 1 step 1 until number of identifiers
do begin if Working linkage matrix [i, j] = -, Final

linkage matrix [i, j] then PROGRESS := true;
Final linkage matrix [i, j] := Working linkage
matrix [i, j]

end of comparison
end of PROGRESS;

BEGIN OF PROGRAM:
for iteration counter : = -1, 0, iteration counter + 1 while

PROGRESS
do for i : = 1 step 1 until number of identifier links

do for j : = 1 step 1 until number of identifiers
do begin if iteration number = -1

thenFinal linkage Matrix [couples [1, ii], j]
:= Working linkage Matrix [couples [1, i], j]
:= coup.Jes t2, il = j

else Working linkage Matrix [couples [1, i], j]
:= Working linkage Matrix [couples (1, i], j]
V Working linkage Matrix lcouples [2, i], j];

end of setting one linkage
end of CHAIN tracing;

69-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 70
INTERPOLATION BY AITKEN
CHARLES J. MIFSUD

General Electric Co., Bethesda, Md.
procedure AITKEN (x, f, n, X, F); real array x, f;

integer n; real X, F;
comment If given Xo ,x1, ... Xn, n+l abscissas and also given

f (xo), f (x1), ... f (xn), n + 1 functional values, this procedure
generates a Lagrange polynomial, F(X) of the nth degree so that.
F(xi) = f(xi). Hence, for any given value X, a functional value
F(X) is generated. The procedure is good for either equal or
unequal intervals of the Xi. Aitken's interative scheme is used
in the generation of F(X). Since the f array is used for tem
porary storage, as the calculation proceeds its original values
are destroyed;

begin integer i, j, t;
for j := 0 step 1 until n-1 do

begin t := j+l
for i := t step 1 until n do

f [i l : = ((X- x [j]) x f [i] - (X-x [i]) x f Ll]) I
(x[i] -x[j]) end

F := f [n]
end

CERTIFICATION OF ALGORITHM 70
INTERPOLATION BY AITKEN [C. J. Mifsud, Comm.
ACM 4 (Nov. 1961)]
A. P. RELPH

The English Electric Co., Whetstone, England

Algorithm 70 was translated using the DEUCE ALGOL compiler
and gave satisfactory results after semicolons had been added to

t := j+l to make it t := j+l;

and (x[i]-x[j]) end to make it (x[i]-x[j]) end;

The identifier t can be eliminated and the algorithm shortened
by the following changes:
Replace begin integer i, j, t;
Replace t := j+l;

for i : = t step 1 until
ndo

by begin integer i, j;
by for i := j+l step 1 until

n do

70-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGUJ:UT hM 71
PERMUTATION
R. R. CoVEYOU AND J. G. SULLIVAN

Oak Ridge National Laboratory, Oak Ridge, Tenn.

procedure PERMUTATION (I, P, N);
value I, N; integer N; integer array P; boolean I;
comment This procedure produces all permutations of the

integers from 0 thru N. Upon entry with I = false the pro
cedure initializes itself producing no permutation. Upon each
successive entry into the procedure with I == true a new
permutation is stored in P[O] thru P[NJ. When the process has
been exhausted a sentinel is set:
P[O]: -1,
N 2:: O;

begin
integer i; own integer array x[O:N];
if-, I then
begin for i := 0step1 until N-1 do x[i] := O; x[N] := -1;

go to E end;
for i := N step -1until0 do begin if x[i];;Ci then go :to A;

x[iJ := 0 end;
P[O] := -1; go to E;

A: x[i] := xli]+l; P[OJ := O;
for i : = 1 ·step 1 until N do

begin P[i] := P[i-x[i)]; P[i-x[i]] := i end;
E: end PERMUTATION

CERTIFICATION OF ALGORITHM 71
PERMUTATION (R. R. Coveyou and J. G. Sullivan,

Comm. ACM, Nov. 1961)
P. J. BROWN

University of North Carolina, Chapel Hill, N. C.
PERMUTATION was transliterated into GAT for the UNI

VAC 1105 anll successfully run for a number of cases.

CERTH'ICATION OF ALGORITHM 71
PERMUTATION (R. R. Coveyou and J. G. Sullivan,

Comm. ACM, Nov. 1961)
J. E. L. PECK AND G. F. SCHRACK

University of Alberta, Calgary, Alberta, Canada
PERMUTATION was translated into FoRTRAN for the IBM

1620 and it performed satisfactorily. The own hllteger array
x[O :n] may be shortened to x[l :n], provided corresponding cor
rections are made in the first two for statements.

However, PERMUTE (Algorithm 86) is superior to PERMU
TA TION in two respects.

(1) PERMUTATION, using storage of order 2n, is designed to
permute the specific vector 0, 1, 2, · · · , n - 1 rather than an
arbitrary vector. Thus storage of order 3n is required to permute
an arbitrary vector. PERMUTE, in contrast, ouly needs storage
of order 2n to permute an arbitrary vector.

(2) PERMUTE is built up from cyclic permutations. The
number -of permutations actually executed internally (the re
dundarit ones are suppressed) by PERMUTE is asymptotic to

71-P 1- 0

(e - l)n ! rather than n !. In spite of this, PERMUTE is dis
tinctly faster (1316 against 2823 seconds for n = 8) than PERMU
TATION. If tn is the time taken for all permutations of a vector
with n components, and if rn = tn/ntn-1, then one would expect
rn to be close to 1. Experiment with small values of n gave the
following results for r n .

n
PERMUTE

PERMUTATION

6
0.96
1.10

Is there yet a faster way to do it?

7
0.99
1.13

8
1.00
1.12

See also: C. Tompkins, "Machine Attacks on Problems whose
Variables are Permutations", Proceedings of Symposia in Applied
Mathematics, Vol. VI: Numerical Analysis (N. Y., McGraw-Hill,
1956).

CERTIFICATION OF ALGORITHM 71
PERMUTATION [R. R. Coveyou and J. G. Sullivan,

Comm. ACM, Nov. 1961]
J. s. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The algorithm was successfully run using the Elliott ALGOL

translator on the National-Elliott 803. The integer array x was
made a parameter of the procedure in order to avoid having an
own array with variable bounds.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 72
COMPOSITION GENERATOR
L. HELI~ERMAN AND s. OGDEN

IBM-Product Development Laboratory, Poughkeepsie,
N.Y.

procedure comp (c, k); value k; integer array c;
integer k;

comment Given a k-pMt composition c of the positive integer n,
comp generates a consequent composition if there is one. If
comp operates on each consequent composition after it is found,
all compositions will be generated, provided that 1, 1, ... , 1,
n-k-f-1 is the initial c. If c is of the form n-k+l, 1, 1, ... , 1,
there is no consequent, and c will be replaced by a k vector of
O's. Reference: John Riordan, An Introduction to Combi
natorial Analysis, John Wiley and Sons, Inc., New York, 1958,
Chapter 6;

begin integer j; integer array d [l :k];
if k = l then go to last;
for j :== 1step1 until k do d [j] :== c Lll - 1;

test: if dLiJ>O then go to set;
j :== j-1;
go to if j = 1 then last else test;

set: d [j] :== O;
d lj - l] :== d [j - 1] + 1;
d [k] :== c Ll l - 2; -
for j : = l step 1 until k do c Ll J : = d [j] + l;
go to exit;

last: for j := l step l until k doc [j] := O;
exit: end comp

CERTIFICATION OF ALGORITHM 72
COMPOSITION GENERATOR [L. Hellerman and S.

Ogden, Comm. ACM, Nov. 1961]
D. M. COLLISON

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
After

for i :== 1 step 1 until k do d[j] := c[j]-1;
the statement

; := k;
should be inserted (see ALGOL 60 report, para 4.6.5). With this
alteration, the algorithm was successfully run using the Elliott
ALGOL translator on tb.e National-Elliott 803.

72-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 73
INCOMPLETE ELLIPTIC INTEGRALS
DAVID K. JEFFERSON

U. S. Naval Weapons Laboratory, Dahlgren, Virginia
J>rocedure ellint (k, phi, E, F);
value k, phi;
i~eal phi, F, k, E;
comment ellint computes the value of the incomplete elliptic

integrals of the first and secon~ kinds, F(phi, k) and E(phi, k),
where phi is in radians. If I k I > 1 or I· phi I > ·r/2, E and F
will be set equal to 100,000,000, otherwise they will contain the
computed integrals. For the formulation of this procedure, see
DiDonato, A. R., and Hershey, A. V., "New Formulae for
Computing Incomplete Elliptic Integrals of the First and
Second Kind", J. ACM 6, 4 (Oct. 1959);

lbegin real kp, sinphi, n, cosphi;
real array H [1:2], A [1:2], sigma [1:4], L [1:2], M [1:2],

N [1:2), T [1:2], del [1:4];
sigma [1] := sigma [2] := sigma [3] :=sigma [4] := O;
H [1] := 1;
n := O;
sinphi := sin(phi);

if abs (k X sinphi) :::; tanh (1) then go to small els~: if abs (k) ~
1 /\ abs(phi) :::; ?r/2 then go to large;
E := F := 100000000;
go to stop;

small: A [1] := phi;
step 1 : n : = n + 1;

cosphi : = cos (phi);
E := (2 X n-1) /(2 X N);
H [2) : = E X k j 2 X H [1];
A [2] :=EX A [1] - sinphi j (2 X n-1) X cosphi /(2 X n);
del [1] := H [2] X A [2];
del [2] := -kj2 X H [1] X A [2] /(2 X n);
sigma (1] := sigma [1] + del [1];
sigma [2] : = sigma [2] + del [2];
H [1] := H [2];
A [1] := A [2];

if abs ((sigma [1] + del [1]) - sigma [1]) > 0 /\ phi X sinphi
j (2 X n) ~A [2] then go to step 1;

F := phi +sigma [1];
E :=phi+ sigma [2];
go to stop;

large: kp :=sqrt (1-kj2);
A [1] := 1;
L [1] := M [1) := N [1] := O;

step 2: n := n+l;
E := (2 X n-1) /(2 X n);
F := abs (k) X sqrt (1-sinphi j 2) X (1-k j 2 X sinphi

12) r ((2 x n-1) /(2 x n));
H [2] :=EX H [1];
A [2] := E12 X kp12 X A [1];
L [2] :== L [1] + 1 /(n X 2 X n-1));

M [2] := (M [1] - F X H [2]) X ((2 X n+l) /(2Xn+2))12 X
kp!2;

73-P 1- 0

N [2] : = (N [1] - Ii' X H (1]) X E X (2 X n + 1) X kp 1 2 / (2 X
n+2);

del [1] := M [2] - A [2] X L [2];
del [2] := N [2] - EX kp 12 X A [1] X L [2] + kp 12 X A [1]

/((2 X n) j2);
del [3] := A [2];
del [4] := (2 X n+l) X A [2] /(2 X n+2);
sigma [1] := sigma [1] + del [1];
sigma [2] := sigma [2] + del [2];
sigma [3] := sigma [3] + del [3];
sigma [4] := sigma [4] + del [4];
H [1] := H [2];
A [1] :=A [2];
L [1) := L [2];
M (1] := M [2];
N [1] := N [2];
if abs ((sigma [1] + del [1]) - sigma [1]) > 0 then go to step 2;
T [1) := In (4 /(sqrt (1 - k 12 X sinphi j 2) +abs (k) X sqrt(l-

sinphi j 2))) ;
r [2] :=abs (k) X sqrt ((1-sinphi j2) /(1-kj2 X sinphi j2));
F := T [1) X (l+sigma [3]) + T [2] X ln (.5 + .5 X abR (k X

sinphi)) +sigma [1];
E := (.5 + sigma [4]) X kp j 2 X T [1] + 1-T [2] X (1-abs

(k X sin phi)) + sigma 12);
stop: end

CERTIFICATION OF ALGORITHM 73
INCOMPLETE ELLIPTIC INTEGRALS (David K.

Jefferson, Comm. ACM, Dec. 1961)
DEAN c. KRIEBEL

U. S. Naval Weapons Laboratory, Dahlgren, Virginia

This algorithm was originally code<! in N ORC machine language
and K. Pearson's incomplete elliptic integral tables of the first
and second kind generated. (See DiDonato, A. R., and Hershey,
A. V., "New Formulae for Computing Incomplete Elliptic Inte
grals of the First and Second Kind", J.ACM 6, 4 (Oct. 1959)).

The algorithm was coded for the MAD Compiler exactly as
written in ALGOL and run on an IBM 7090. Forty cases were com
puted with K ranging from 0° to 90° and PHI ranging. from 0° to
90°. The results contained eight significant digits which agreed
with the DiDonato and Hershey tables to within 0 to 2 units in the
8th digit. (This may be attributed to the decimal to binary, binary
to decimal input-output conversion used with a binary computer
as compared to straight decimal computation on the NoRC.)

CERTIFICATION OF ALGORITHM 73
INCOMPLETE ELLIPTIC INTEGRALS [David K.

Jefferson, Comm. ACM 4, Dec. 1961]
NOELLE A. MEYER

E. I. du Pont de Nemours & Co., Wilmington, Del.
Ellint was hand-coded in FORTRAN for the IBM 7070. The follow

ing corrections were made
The statement

E := (2Xn-1)/(2XN);
should be

COLLECTED ALGORITHMS (cont.)

E := (2Xn-l)/(~XnJ;
The statement

F := abs(k) X sqrt(l--sinphij2) X (1-kj2Xsinphij2) j
((2Xn-1)/(2Xn));

should be
F := (abs(k)Xsqrt(I-sinphi j 2) X

(I-k j 2Xsinphi j 2) j (n- .5))/(2Xn)
The statement

£[2] := L[l] + 1/(nX2Xn-1));
should be

£[2] := L[l] + (I/(nX (2Xn-1));
In order to accommodate negative cp the following changes were

made:
The statement

ifabs((sigma[I]+del[I])-sigma[I]) > O /\phi X sinphi j
(2Xn) ~ A [2] then go to step 1;

was changed to
if abs((sigma[I]+del[I])-sigma[I]) >O/\abs(phiXsinphi j (2Xn))

~ abs(A [2]) then go to step 1;
Also the following was inserted before the last statement

(stop: end)

if phi < 0 then go to wait else go to stop;
wait: F := -F;

E := -E;
The revised algorithm yielded satisfactory answers when com

pared with the DiDonato and Hershey tables. Differences occurred
in the eighth significant digit as shown in the following difference
tables.

DIFFERENCE TABLES

F-TABLE
8 (in degrees)

(in d~rees) 0 30 60 90

0 0. 0. 0. 0.
30 -1 X 10-s -1 x 10-s -1 x 10-s -3 X 10-s
60 1 X 10-s 1 x 10-s 2 x 10-s -3 X 10-s
90 0. 2 x 10-s 6 x 10-s o.

E-TABLE
0 0. 0. 0. o.

30 -1 X 10-s -1 X 10-s -1 x 10-s -1 X 10-s
60 X 10-s 1 X 10-s -7 x 10-s 3 X 10-s
90 0. 0. 1 x 10-s 0.

CERTIFICATION OF ALGORITHM 73
INCOMPLETE ELLIPTIC INTEGRALS [David K

Jefferson, Comm. ACM Dec. 1961]
R. P. VAN DE RIE'r
Mathematical Centre, Amsterdam

The algorithm contained three misprints:
The 26th line of the procedure

E := (2 X n-1)/(2 X N);
should read

E: = (2 X n-1)/(2 X n);
The 46th line of the procedure

i 2) i ((2 X n-1)/(2 X n));
should read

i 2) l ((2 X n-1)/2)/(2 X n);
The 49th line of the procedure

L [2] := L [4] + 1/(n X 2 X n-1));
should read

L [2] := L [1] + 1/(n X (2 X n-1));

73-P 2- 0

The program was run on the Xl computer of the Mathematical
Centre. For phi = 45°, k = sin(l0°(10'')180°), E and F were calcu
lated. The result contained 12 significant digits.

Comparison with a 12-decimal table of Legendre-Emde (1931)
showed that the 12th digit was affected with an error, at most
4 units large. After about 10 minutes of calculation (i.e. more
than 100 cycles) no results were obtained fork = sin 89°, phi = 1°
and the calculation was discontinued.

REMARKS. As phi is unchanged during the calculation, we
placed the statement cos phi : = cos (phi) in the beginning of the
program, to be certain that the cosine was not calculated 30 or
more times. Moreover, in the expression for T[l] and T[2], sqrt
(I-sin phi j 2) was replaced by cos phi, so that loss of significant
figures does not occur.

The expression 2 X n was changed in a new variable, to
obtain a more rapid program.

REMARK ON ALGORITHM 73
INCOMPLETE ELLIPTIC INTEGRALS [David K

Jefferson, Comm. ACM (Dec. Hl61)]
DAVID K. JEFFERSON

U. S. Naval Weapons Laboratory, Dahlgren, Virginia
In regard to Algorithm 73, two errors were found:

The 34th line of the procedure

F := abs(k) X sqrt (I-sinphi i 2)

X (1-k i 2 X sinphi i 2) i ((2 X n-1)/(2 X n));

should read

F := abs(k) X sqrt (I-sinphi i 2)

X (1-k i 2 X sinphi i 2) j ((2 X n-1)/2)/(2 X n);

The 37th line

£[2] := L[l] + I/(n X 2 X n-1));

should read

£[2] := L[l] + 1/(n X (2 X n-1));

In addition, efficiency is improved by interchanging lines 13
and 14:

Step 1 : n : = n+ 1 ;
cosphi := cos(phi);

can be replaced by
cos phi : =cos (phi) ;

Step 1: n := n + 1;

COLLECTED ALGORITHMS ·FROM CACM

ALGORITHM 74
CURVE FITTING WITH CONSTRAINT8
J. E. L. PECK,

University of Alberta, Calgary, Alberta, Canada
procedure Curve fitting (k,a,b,m,x,y,w,n,alpha,beta,s,sgmsq,xO,

gamma,c,z,r);
comment This procedure finds, by the method of least squares

the polynomial of degree n, k ~ n < k+m, whose graph con~
tains (a1 , b,), · · · , (akbk) and approximates (x1 , y1), · · . ,
(xm, Ym), where Wi is the weight attached to the point (xi , Yi).
The details will be found in the reference ci+~d below, where a
similar notation is used. A nonlocal label "error" is assumed;
value a, x, y, w; integer k, m, n, r; real xO, gamma; array

a, b, x, y, w, alpha, beta, s, sgmsq, c, z;
begin integerii,j; array wl[l :k]; real p, f, lambda;
comment We shall first define several procedures to be used

in the main program, which begins at the label START;

procedure Evalue (x, nu);
comment This procedure evaluates f - s0p0 + s1p1 + · · · +

s.,p.,, where P-1(x) - 0, Po(x) = 1, fJo = 0 and Pi+1(x)
= (x - ai)Pi(x) - fJ;P;-1(x), i - 0, 1, · · · , v-1. The value of
p.,(x) remains in p;
real x; integer nu;
begin real pO, temp; integer i; pO := O; p :=• 1; f := s[OJ;

for i :- 0 step 1 until nu-1 do
begin temp := p;
p :- (x-alpha[i]) X p-beta[i] X pO;
pO : ... temp; f :== f + p X s[i+IJ ·end i

end EveJue;

proccdurrc Coda (n, c);
comment This procedure finds the e's when c0 -l- c1x + · · · +

CnXn == SoPo(x) + · · · + SnPn(X);
integer n; array c;
begin integer i,r; real tl,t2; array pm,p[O:nJ;

for r : == 1 step 1 until n do
c[r] := pm[r] := p[r] := O;

pm[O] :== O; p[O] :== 1; c[O] :- s[O];
for i :=- 0 step 1 until n-1 do

begin t2 :- O;
for r := 0 step 1 0;ntil i+l do

begin t1 := (t2-alpha[i] .. x p[r]-beta[i] X pm.[rJ)/lambda;
t2 :=- pm[r] :=- p[r]; p[r] :== tl;
c[r] :- c[r] + t1 X s[i+lJend r

end i
end Coda;

procedure GEFYT (n,nO,x,y,w,m);
comment This is the heart of the main program. It computes

the ai,{Ji,s1,a1=, using the method of orthogonal polynomials, as
described in the reference;
integer n,nO,m; array x,y,w;
begin real dsq,wpp,wppO,wxpp,wyp,temp;

integer i,j,freedom; array p,pO[l:m]; boolean exact;
if n-n<f > m V n < nO then go to error;
beta[nOJ :- dsq := wpp :== O; exact :- n-nO ~ m-1;
for j :- 1step1 until m do

begin p[j] :- l; pO[j] := O; wpp :- wpp + w[j];
if -, exact then dsq :== dsq + w[j] X y[j] X y[j] end initialise;

74-P 1- 0

for i : = nu step 1 until n do
begin freedom:= m-1-(i-nO); wyp := wxpp :== O;
for j := 1 step 1 until m do

begin temp :== w[j] X p[j];
if i < n then wxpp := wxpp +temp X x[j] X p[j];
if freedom~ 0 then wyp := wyp +temp X y[j] end j;

if freedom ~ 0 then s[i] : = wyp/wpp;
if-, exact then begin dsq := dsq - s[i] X s[i] X wpp;
sgmsq[i] : = dsq/freedom end if;
if i < n then begin alpha[i] := wxpp/wpp; wppO := wpp;
wpp := O;
for j := 1step1 until m do

begin temp := (x[j]-alpha[i]) X p[j] - '-~ta[i] X pO[j];
wpp : = wpp + w[j] X temp X temp;
pO[j] := p[j]; p[j] := temp end j;

beta[i+l] := wpp/wppO end if
end i

end GEFYT;
START: for j := 1step1 until k do

begin wl[j] := 1; a[j] = (a[j]-xO)/gamma end j;
GEFYT (k,O,a,b,wl,k);
comment This finds the polynomial of degree k-1 whose graph

contains (a1,b1),· · · ,(a1o,b1) supplying the o:;,{Ji,Si, 0 5 i 5 k;
begin real rho; rho : = 0;

for j := 1step1 until m do
begin rho : = rho + w[j];
x[j] := (x[j] - xO)/gamma end j; rho := m/rho;

comment The factor pis used to normalize the weights. We shall
now put Sk = 0 in order to evaluate Pk(x) and the polynomial of
degree k-1 simultaneously;

s[k] := O; -
for j := 1step1 until m do

begin Evalue (x[j J,k) ;
if p = 0 then go to error;
y[j] := (y[j] - f)/p;
w[j] := w[j] x p x p x rho end j

end rho;
comment We have now normalized the weights and adjusted

the weights and ordinates ready for the least squares approxi
mation;

GEFYT (n,k,x,y,w,m);
comment The coefficients ai,fJi, 0 ::;; i < n, and Si, 0 "$; i ~ n

are now ready. The polynomial may be evaluated for x =- z1,z2,
· · · ,zr, but the variable must be adjusted first. Note that we
may evaluate the best polynomial of lower degree by decreas
ing n;
begin real x;

for j : == 1 step 1 until r do
begin x :- (z[j]-xO)/gamma;
Evalue (x,n); comment the values of ZJ and f" should now be

printed; end j ; ·
comment We may now adjust the coefficients for scale and then

find the coefficients of the power series c0 + c1x + · · · + cnxn -
SoPo(X) + · · • + SnPn(X);

for i :== 0 step 1 until n-1 do
begin alpha[i] :- alph~[i] X gamma + xO;
beta[i] := beta[i] X gamma end i; lambda:= gamma;

Coda (n,c);
comment We may now re-evaluate the polynomial from the

power series;
for i := 1step1 until r do

COLLECTED ALGORITHMS (cont.)

begin x: :- z[j]; f :- c[n];
for i :- n-1 step -1 until 0 do

f : == f x x + c [iJ;
comment the values of x and f should now be printed; end j
end x

end Curve fitting
REi''ERENCE: PECK, J. E. L. Polynomial curve fitting with

constraint, Soc. Indust. Appl. Math. Rev. (1961).

CERTIFICATION OF ALGORITHM 74
CURVE FITTING WITH CONSTRAINTS [J. R

Peck, Comm. ACM, Jan. 62]
KAZUO !SODA

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan

Algorithm 74 was hand-compiled into SOAP Ila for the IBM
650 an'd run successfully with no corrections except the case in
which the origin (0, 0) are given as both a constraint and a sample.

74-P 2~ 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 75
FACTORS
J. E. L. PECK,

University of Alberta, Calgary, Alberta, Canada

procedure factors (n,n.,u,v,r,c);
collllllent This procedure finds all the rational linear factors of

the polynomial aoxn + a1xn- 1 + · · · + an-1X + an, with integral
coefficients. An absolute val~e procedure abs is aBsumed;

value n,a; integer r,n,c; integer array a,u,v;
begin collllllent We find whether p divides a0 , 1 :s; p S laol and

q divides an, 0 S q S Ian!. If this is the case we try (px ± q);
integer p,q,aO,an;
r := O; c := 1; comment r will be the number of linear factors

and c the common constant factor;
TRY AGAIN: aO := a[O]; an:= a[n];
for p := 1 step 1 until abs(aO) do

begin if (aO + p) X p = aO then
begin comment p divides a 0 ;

for q := 0 step 1 until abs(an) do
begin if q = 0 V (an + q) X q = an then

begin comment q divides an (or q = 0) .. If p q we
may have a common constant factor, therefore; if q
> 1 /\ p = 1 then
begin integer j ;
for j := 1step1 until n-1 do

if (a[j] + q) X q ~ a[j] then go to NO CONSTANT;
for j := 0 step 1 until n do

a[j] := a[jj/q;
c := c X q; go to TRY AGAIN
end the search for a common constant factor;

NO CONSTANT:
begin comment try (px - q) as a factor;
integer f,g,i; f := aO; g := 1;
comment we try x = q/p;
for i := 1step1 until n do

begin g := g X p; f := f X q + a[i] X g
end evaluation;

if f = 0 then
begin comment we have found the factor (px - q);
r := r + l; u[r] := p; v[r] := q;
comment there are now r linear factors;

begin comment we divide by (px ·- q);
integer i,t; t := O;
for i := 0 step 1 until n do

begin a[i] := t := (a[i) + t)/p; t := t X q
end i;

n := n - 1
end reduction of polynomial. Therefore;

go to if n = O then REDUCED else TRY AGAIN
erld discovery of px - q as a factor. But

if we got this far it was not a factor so try px + q;
q := -q; if q < 0 then go to NO CONSTANT
end trial of px ± q,

end q divides an and
end of q loop.

end p divides a 0 , also

end p loop, which means;
REDUCED: if n = 0 then

begin c : = c X aO; aO : = 1
end if n = 0

75--P 1- 0

end factors procedure. There are now r (r > 0) rational linear
factors (uix - V;), 1 < i < r, and the reduced polynomial of
reduced degree n replaces the original. The common constant
factor is c. Acknowledgments to Clay Perry.

CERTIFICATION OF ALGORITHM 75
FACTORS [J.E. L. Peck, Comm. ACM 5 (Jan. 1962)]
A. P. RELPH

The English Electric Co., Whetstone, England

Algorithm 75 was translated using the DEUCE ALGOL eompiler
and gave satisfactory results after the following corrections had
been made:

begin if q=OV(an+q)Xq=an then
begin if q>l/\p=l then

was changed to
begin if q~l then go to NO CONSTANT;

if (an+q)Xq=an then
begin if p = q then

begin c := cXaO; aO :=
end

was changed to
begin c := cXa[O]; a[O] .- 1;
end

There are now r (r>O) rational linear factors (u; x-v;),
l<i<r,

was . changed to
If r>O there are now r rational linear factors (u;x-v;), l~i~ r,

CERTIFICATION OF ALGORITHM 75
FACTORS [J. E. L. Peck, Comm. ACM, Jan. 1962]
J. s. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The following changes had to be made to the algorithm:

(1) For if q > 1 /I. p = 1 then
put if q > 1 /I. p = q then

(2) For begin c := c X aO; aO := 1 end
put begin c := c X a[O]; a[O] := 1 end

(3) For if q = 0 V (an + q) X q = an then
put if (if q = 0 then true else (an + q) X q = an) then

This change is necessary to ensure that the term (an + q) is not
evaluated when q = 0.

The algorithm, thus modified, was successfully run using the
Elliott ALGOL translator on the National-Elliott 803.

COLLECTED ALGORITHMS (cont.)

To return to the state (p= 1, q=U) after every factor or constant
is found is inefficient. This can be avoided by substituting a[O]
and a[n] for the identifiers aO and an respectively. The procedure
then becomes:
procedure factors (n, a, u, v, r, c); value n, a;

integer array a, u, v;
integer r, n, c;
begin integer p, q;

r := O; c := 1;.
ZERO: if a[n]=O then

end

begin r := r+l; u[r] .- 1; v[r] := O; n ·= n-1;
go to ZERO

end;
for p : = 1 step 1. until abs (a[O]) do
begin if (a[O]+p)Xp=a[O] then

begin for q : = 1 step 1 until abs (a[n]) do
begin if q=l then go to NO CONSTANT;

TRY AGAIN: if (a[n]+q)Xq=a[n] then
begin integer j;

for j := 0 step 1 until n-1 do
if (a.[j]+q)Xq;iea[j] then go to
NO CONSTANT;

for j := 0 step 1 until n do
a[j] := a[j]/q;

c := cXq; go to TRY AGAIN
end;

XO CONSTANT· begin integer f, g, i; f := a[O];
g := 1;

end
end

end;

for i := 1 step 1 until n do
begin g := gXp;

f := fXq+a[i]Xg
end;
if f=O then
begin r := r+l; u[r] := p;

v[r] := q;
begin integer i, t; t := O;

for i := 0 step 1 until n do
begin a[i] := t := (a[i]+t)/p;

t := tXq
end;
n := n-1

end
go to if n=O then REDUCED

else NO CONSTANT
end;
q := -q; if q<O then go to NO

CONSTANT
end

REDUCED: if n=O then
begin c .- cXa[O]; a[O] := 1
end

75-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 7o
SORTING PROCEDURES
IVAN FLORES

Private Consultant, Norwalk, Connecticut

comment The following ALGOL 60 algorithms are procedures for
the sorting of records stored within the memory of the computer.
These procedures are described in detail, flow-charted, com
pared, and contrasted in "Analysis of Internal Computer Sort
ing" by Ivan Flores [J. ACM 8 (Jan. 1961)). Although sorting is
usually a business computer application, it can be described
completely in ALGOL if we stretch our imagination a little.
Sorting is ordering with respect to a key contained within the
record. If the key is the active record, the sorting is trivial. A
means is required to extract the key from the record. This is
essentially string manipulation, for which no provision, as yet,
has been made in ALGOL. We circull}ambulate this difficulty by
defining an integer procedure K(I) which "creates" a key
from the record, I. ALGOL does provide for ma,chine language
code substitutions, which is one way to think. of K(I). This
could be more accurately represented by using the string nota
tion proposed by Julien Green ["Remarks on ALGOL and Sym
bol Manipulation," Comm. ACM 2 (Sept. 1959), 25-27). The
function sub ($,i,g) represents the procedure, K(I). $ corre
sponds to the record I, i corresponds to the starting position of
the key and g corresponds to the length of the kuy. Both i and g
are values which must be specified when the sort procedure is
called for as a statement instead of a declaration.

Another factor, which might vex some, is tha1; the key might
be alphabetic instead of numeric. Then, of course, K(I) would
not be integer. It would, however, be string when such is defined
eventually. Note, also, that keys are frequently compared. This
is done using the ordering relations ">" for "greater than,"
etc. These are not really defined in the ALGOL statement [NAUR,
PETER, ET AL. "Report on the Algorithmic Language ALGOL
60". Comm. ACM S (May 1960), 294-314). They can simply be
defined so that Z > Y > · · · > A > 9 > · · · > 1 > 0. Also the
assignment X[i] : = z should be interpreted as "Assign the key
'z' which is larger than any other key." For any sort procedure
(l,N,S), "I" is the set of unsorted records, "N" is their num
ber, and "S" the sorted set of records.

Caution, these algorithms were developed purely for the love
of it: No one was available with the combined knowledge of
sorting and ALGOL to check this work. Hence each algorithm
should be carefully checked before use. I will be glad to answer
any questions which may arise;

Sort insert (l,N ,S); ·value N; array l[l: NJ, S[l: NJ;
integer procedure K(I); integer N;
begin integer i, j, k;

S[l] := l[l];
for i : = 2 step 1 until N do begin

for j := i - 1, j - 1 while K(l[iJ) > K(S[j]) do
for k : = i step - 1 until j + 1 do

S[k] := S[K - 1];
S[j + 1) := l[i] end end

Sort count (l,N,S); value N; arrar l[l:N], S[l:N];
integer procedure K(I); integer N;
begin integer array C[l: NJ; integer i ,j ;

for i := 1step1 until N do C[i] := O;
for i := 2 step 1 until N do

for j :== 1 step 1 until i - 1 do
if K(l[i]) > K(l[j]) then C[i] := C[i] + 1
else C [j] : == C [j] + 1 ;

for i := 1 step 1 until N do
S[C[i]] := l[i] end

76-P 1- 0

Sort select (l,N,8); value N; array l[l:N], ~[l:N];
integer procedure K(I); integer N;
begin integer i,j,A,h;

for i : = 1 step 1 until N do begin
h := K(l[l]);
for j := 2 step 1 until N do
if h > K(l[jJ) then begin h :- K(l[j]); A :- j end;
S[i] := I[A];
l[A] : = z end end

Sort select exchange (l,N); value N; array l[l: NJ;
integer procedure K(I); integer N;
begin integer h,i,j,H; real T;

for i : = 1 step 1 until N do begin
H := K(l[i]); h := i;

end

for j :== i + 1 step 1 until N do
if K(l[j)) < H then begin
H := K(l[j]); h := j end

T := Iri]; l[i] := l[h]; I[A] := Tend

Sort binary insert (l,N,S); value N;· array I[l:N], S[l:Nj;
integer procedure K(I); integer N;
begin integer i,k,j,l;

if K(l[l]) < K(l[2]) then begin
S[l] := 1[1]; S[2] := 1[2] end
else begin S[l] :== 1[2]; 8(2) := l[l] end;

start: for i : = 3 step 1 until N do begin
j : - (i + 1) + 2;

find spot: fork:= (i + 1) + 2, (k+ 1) + 2whilek > ldo
if K(l[i]) < K(S[j]) then j :== j - k
else j : - j + k;

if K(l[i]) ~ K(S[j]) then j := j - l;
move items: for 1 ;= i step - 1 until j do

enter this
one:

S[l + l] :- S[l];

S[j] :== l[i] end end

Sort address calculation (l,N ,S,F); value N;
array S[l:M], l[l:N]; integer procedure F(K), K(l);
integer N,M;

begin integer i,j,G,H,F,M;
M :- entier(2.5 X N)
for i :- 1 step 1 until M do S[i] - O;

Adclress: for i : == 1 step 1 until N do begin
F :== F(K(l[i]));
if S[F] - 0 then begin S[F] :- I[i];

go to NEXT end
else if K(S[F]) > K(l[i]) then go to SMALLER;

LARGER: for H :- F, H + 1 while K(S[H]) < K(l[i]) do
for G := H, G + 1 while K(S[G]) ~ 0 do
for j := G step -1 until H + 1 do

S[j] :- S[j - 1];
S[H] :-= I[i]; go to NEXT;

SMALLER: for H :- F, H - 1 while K(S[H]) > K(l[i]) do

COLLECTED ALGORITHMS (cont.)

NEXT:

for G := H, G - 1 while K(S[G]) ~Odo
for j : = G step 1 until H - 1 do

S[j] = S[j + 1];
S(HJ := I[i];

end end

Sort quadratic select (I,N,S); value N; array I[l:N], S[l:N];
integer procedure K(I); integer N;

begin integer i,j,k,C,D,J,M;
integer array C[l:M], D[l:M];
array I[l:M, l:M];

Divide inputs: M := entier (sqrt (N)) + 1; j := k := 1;
for i : = 1 step 1 until N do begin

I[j,k] := I[i]; k := k + l;
if k > M then begin k := 1;

j : = j + 1 end end
Fill up inputs: I[j,k] :== z; · k := k + 1;

if k > M then begin k : = 1 ; j : = j + 1 end
if j :$ M then go to Fill up inputs;

Set controls: for j : == 1 step 1 until M do begin
C [j] : = K (I [j, 1]) ; D [j] : = 1 ;
for k = 2 step 1 until M do

if C[j] > K(I[j,k]) then hegin
C[j] := K(l[j,k]); D[j] := k end end;

i := 1;
Find least: C := C[l]; D := D[l]; J := l;

for j := 2 step 1 until M do
if C > C[j] then begin C := C[j];

l> := D[j]; J := j end;
Fill file: S[i] := I[J,DJ; i := i + 1; I[J,D] := z;

if i == N + 1 go to STOP;
Reset controls: for j := J do begin

C[j] :== K(l[j, 1]); D[j] := 1;
fork := 2 step 1 until M do

if C[j] > K(I[j,k]) then begin C(j] :==
K(I[j,kJ; D[j] := k end end;

go to Find least;
STOP: end

Presort quadratic selection (I,N ,S); value N;
array I[l:N], S[l:N]; integer procedure K(I); integer N;

begin integer i,j,k,C,J,M;
integer array C[l:M], D[l:M];

array I[l:M,l:M];
Divide inptits: M :== entier (sqrt(N)) + 1; j :== k := 1;

for i : = 1 step 1 until N do begin
I[j,k] := I[i]; k := k + 1;
if k > M then begin k := l;

j := j +lend end
Fill up inputs: I[j,k] := z; k := k + 1;

if k > M then begin k : == 1; j == j + 1 end
if j S M then go to Fill up inputs;

First sort: for j :== 1step1 until M do
sort Belect exchange (l[j,k],M);

Set controls: for j : == 1 step 1 until M do begin
C[j] := K(I[j,1]); D[j] :== 1 end

i :== 1;
Find least: C :== C[l]; J := 1;

for j : == 1 step 1 until M do
if C > C[j] then begin C := C[j];

J := j end;
Fill file: S[i] :== l[J,D[J]]; i :== i + 1;

if i == N + 1 go to STOP
Reset control: for j : == J do begin

DUJ := D[j] + 1;
if D[j] > M then C[j] ·= z else C[jJ ·==

K(I[j, D[j]]) end
go to Find least;

STOP: p,n..f

76-P 2- 0

Sort binary merge (l,N,S); value N; array l[l::N];
integer procedure K(I); integer N;
begin real array S[l.:NJ;
integer array A(O:l, O:J[a]J, B[O:l, O:K[b]], Aloc[O:l, O:J[a]],

Bloc[O:l, O:K[b]J, J[O:l], K[O:l], j[O:l], k[O:l];
integer a,b,i,j,k;

distribute: a := b := j[O] := j[l] := 1;
for i : = 1 step 1 until N do begin

if K(I[i]) < K(I[i-1] then
if a = 1 then a. : = 0 else a : == 1 ;

A[a, j[a]] : = K(l[i]); Aloc[a, j[a]] : = i;
j[a] := j[a] + l end;

J[O] := j[O]; J[l] := j[l];
next sort: begin a := b := j[O] := j[l] := k[O] :=

two inputs:

single step:

switch file:
check rollout:

rollout:

interchange files:

output:

k[l] := 1;

if A[l, j [1]] :$ A[O, j [OJ] then a
a:= O;

B[b, k[b]] := A[a, j(a]];
Bloc[b, k[b]] := Aloc[a, j(a]];

j[a] := j[a] + 1;- k[b] := k[b] + 1;

1 else

if A[a, j [a]] :2: A[a, j [a] - 1] then go to two
inputs else

if a = 1 then a : = 0 else a : = 1;
B[b, k[b]] := A[a, j [a]];

Bloc[b, k[b]J := Aloc[a, j[a]J;
j[aj := j[a] +1; k[lo] := k[b] + 1;
if A[a, j[a]] :2: A[a,, j[a] - 1) then go to

single step;
if b = 1 then b : == 0 else b : = 1;
for a := 0, 1 do

if j[a] = J[a] then go to rollout;
go to two inputs;
B[b, k[b]] : = A[a, j [a]];

Bloc[b, k[b]] :=Aloe [a, j[a]];
k[bj := k[b] + 1; ii[a] := j[aj + 1;
if j [a] = J[a] then 1iro to interchange files;
if A[a, j[a]] < A[a, j[a] - lj then

if b = 1 then b : = 0 else b : = 1 ;
go to roll out;
K[O] := k[O]; K[l] :== k[l];
if K[O] = 1 then go to output end
for b := 1, 0 do begin

for k[b] := 1 ste1> 1 until K[b] do begin
A[b, k[b]] :== B[b, k[b]];

Aloc[b, k[b]] := Bloc[b, k[b]];
J[b] := K[b] end end

go to next sort;
for i := 1 step 1 until N do

S[ij :=- I[Bloc[O, i]J;
end

REMARK ON ALGORITHM 76
SORTING PROCEDURES (Ivan Flores, Comm .. ACM

5, Jan. 1962)
B. RANDELJ,

Atomic Power Div., The English Electric Co., Whetstone,
England

The following types of errors have been found in the Sorting

COLLECTED ALGORITHMS (cont.)

Procedures :
I. Proe~dure declarations not starting with proc-edure.
2. Bound pair list given with array specification.
3. = used instead of : =, in assignment statements, and in a for

clause.
4. A large number of semicolons missing (usually after end).
5. Expressions in bound pair lists in array declarations depend-

ing on local variables.
6. Right parentheses missing in some procedure statements.
7. Conditional statement following a then.
8. No declarations for A, or z, which is presumably a misprint.
9. In several procedures attempt is made to use the same identi

fier for two different quantities,· and sometimes to declare an
identifier twice in the same block head.

10. In the Presort quadratic selection procedure an array, de
clared as having two dimensions, is used by a subscripted variable
with only one subscript.

11. At one point a subscripted variable is given as an actual
parameter corresponding to a formal parameter specified as an
array.

12. In several of the procedures, identifiers used as formal
parameters are redeclared, and still assumed to be available as
parameters.

13. In every procedure K is given in the specification part, with
a parameter, whilst not given in the formal parameter list.

No attempt has been made to translate, or even to understand
the logic of these procedures. Indeed it is felt that such a grossly
inaccurate attempt at ALGOL should ne·ver have appeared as an
algorithm in the Communications.

76-P 3- 0

COLLECTED ALGORITHMS FROM CACM

.ALGORITHM 77
INTERPOLATION, DIFFERENTIATION, AND IN

TEGRATION
p A UL :E. HENNION

Grumman Aircraft Engineering Corporation, Bethpage,
L. I., New York

real procedure A VINT (nop, jt, xarg, xlo, xup, xa, ya);
value nop, jt, xarg, xlo, xup; real xarg, xlo, xup;
integer nop, jt; real array xa, ya;

comment This procedure will perform interpolation, differen
tiation, or integration operating upon functions of one vari
able which over part or all of the interval of interest are ade
quately described by a di-parabolic fit.

The routine was originally programmed as an open subrou
tine for the IBM 704 in FoRTRAN II and occupied 323 memory
locations. It is based upon a Lagrange interpolation scheme
specialized for averaged second order parabolas. The tech
nique finds the slope of a function numerically defined at
points 1, 2, 3 and 4 by fitting a parabola through the points
1 2 3 and another parabola through the points 2, 3, and 4.
'fh; sl~pe then, at point 2, is the average analytical derivative
of the two parabolas, i.e. the coefficients of the parabola
through points 1, 2 and 3 (a1x22+b1x2+c1) and the coefficients
of the parabola through points 2, 3, and 4 (a2x22+b2x2+c2)
are determined by applying Lagrange's equations as shown be
low. The arithmetic mean of these coefficients a = (a1+a2)/2,
b = (b1+b2)/2, c = (c1+c2)/2 are used to supply the slope
in the interval from 2 to 3, namely (2ax + b).

The interpolation is calculated in similar fashion, except the
final formula is that a parabola (ax2 + bx + c).

The integration is performed likewise by a curve fitting
process, e.g. the integral between any two points say 2 and 3
is the average integral of the two parabolas between the inde
pendent coordinate limits for points 2 and 3. The averaging
process is done for each interval along the abscissa as the
results obtained are accumulated to evaluate the definite
integral.

Applying Lagrange's equations, the coefficients a, b, and c
may be found by defining: Ti= Yi/llr-1. i'*i (Xi - Xi) where
y = f(x), n = 3, j = 1, 2, · · · , n, then a = Li-1 T; ,
b = .L:i-1 Til:i-1. jri xi , c = .L:i-1 T;Ilf-1. j"i xj ;

begin real ca, cb, cc, a, b, c, syl, syu, terml, term2, term3, da,
dif, sum;

integer jm, js, jul, ia., ib;
start: switch alpha := Ll, Ll, L12; switch beta :== L9,

L5, L6;
switch gamma :== LlO, Lll; switch delta := LS,

LS, L13;
comment For interpolation, differentiation or integration set

jt = 1, 2, or 3 respectively;
go to alpha [jt];

Ll : if xarg ~ xa [nop] then go to L2;
if xarg ~ xa [nop-1) then go to L2;
if xarg ~ xa [1] then go to L3;
if xarg ~ xa [2] then go to L3; go to L4;

L2:
L3:

comment
L4:

comment
L5:

L6:

L7:
LS:
L9:

comment
LlO:

comment
Lll:

comment
L12:

Ll6:
comment

Ll3:

L14:

L15:

comment

term:
comment

exitl:
exit2:
exit3:
exit:

jm := nop-1; js := 1; fJ:o to term;
jm := 2; js := 1; go to term;
Locate argument;

77-P 1 0

for ia := 2 step 1 until nop do begin
if xa [ia] > xarg then go to L7; jm := ia end;
Before loop.is complete xarg ~ xa [ia];
ca : = a; cb : = b; cc : = c; j s : = 3; i m : =

jm+l; go to term;
a := (ca+a)/2; b := (cb-rb)/2; c := (cc+c)/2;

go to L9;
js := 2; go to term;
go to beta [js];
go to gamma [jt];
Interpolation, jt = 1;
da : = a X xarg j 2 + b >< xarg + c; go to exitl;
Differentiation, jt = 2;
dif : = 2 X xarg + b; go to exit2;
Integration, jt = 3;
sum := O; syl := xlo; jul := nop 1;

ib: = 2;
for jm : = ib step 1 until 1ul do begin;
Lagrange formulae;
terml : = ya [jm - 1]/((xa [.jm - 1] - xa[jm]) X

(xa[jm - 1] - xa[jm + 1]));
term2 : = ya [jm]/((xa [jm] - xa [jm - 1]) X

(xa[jml - xa [jm + 1]));
term3: =ya [jm + l]/((xa [jm + 1] - xa [jm - 1]) X

(xa [jm + 1] - xa [jm]));
a : = terml + term2 + te rm3;
b : = - (xa [jm] + xa [jm + 1]) X terml - (xa

[jm - 1] + xa [jm + 1]))< term2 - (xa [jm - 1] +
xa [jm]) X term3;

c : = xa [jm] X xa [jm + 1] X terml + xa [jm - 1) X
xa [jm + 1] X term2 + xa [jm - 1] X xa [jm] X
term3; go to delta [jt];

if jm ~ 2 then go to Ll4;
ca : = a; cb : = b; cc : == c; go to L15;
ca : = (a + ca)/2; cb : = (b + cb)/2; cc · -

(c + cc)/2;
syu : = xa [jm];
sum : = sum +ca X (syu i 3 - syl i 3)/3 + cb X

(syu j 2 - syl i 2)/2 + cc X (syu - syl);
ca:= a; cb := b; cc:== c; syl := syuend;
End of loop on [jm] index;
sum : = sum + ca X (xup i 3-syl i 3)/3 + cb X

(xup i 2-syl i 2)/2 + cc X (xu.p - syl); go
to exit3·;

ib : = jm; jul : = ib; go to Ll6;
The results for interpolation, differentiation, and

integration are da, dif, 2md sum respectively;
AVINT: = da; go to exi1;;
A VINT : = dif; go to exit;
AVINT : = sum;
end

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 77
A VINT (Paul E. Hennion, Comm. ACM 5, Feb., 1962)
VICTOR E. WHITTIER

Computations Res. Lab., The Dow Chemical Co., Mid
land, Mich.

A VINT was transliterated into BAC-220 (a dialect of ALGOL-58)
and was tested on the Burroughs 220 computer. The following
minor errors were found:
1. The first statement follov.·~ng label Lll should read:

dif := 2 X a X xarg + b;
2. The semicolon(;) at the end of the line beginning with the label

L16 should be deleted.
3. There appears to be a confusion between "l" (numeric) and

"l" (alphabetic) following label Ll2. This portion of the
program should read:
Ll2: sum:=O; syl:=xlo; jul:=nop-1; ib:=2;

After making the above corrections the procedure was tested for
interpolation, differentiation, and integration using e"', log X, and
sin X in the range (1.0 ~ X ~ 5.0). Twenty-one values of each of
these functions, evenly spaced with respect to X and accurate to
at least 7 significant digits, were tabulated in the above range.
Then the procedure was tested. The following table indicates ap
proximately the accuracy obtained:

N1tmber of Significant Digits
Function Interpolation Di_fferentiation Integration

e"' ~4* ~2 ~4
log X ~4* ~2 ~3

sin X ~4* ~2 ~4
* Except for interpolation between the first two points in the

table.

The above results are quite reasonable in view of the relatively
large increment in X. Tests using smaller increments in X and un
even spacing of X were also satisfactory.

It was also discovered that for integration the following re
strictions must be observed:

1. xlo ~ ~a (1).
2. xup ~ xa (nop).

REMARK ON ALGORITHM 77
INTERPOLATION, DIFFERENTIATION, AND IN
TEGRATION [P. E. Hennion, Comrn. ACJIJ, Feb., 1962]
P. E. ffFJNNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT [V. E. Whittier, Comrn. ACM, June,
1962] that restrictions on the upper and lower limits of integration
existed, i.e., (1) xlO ~ xa (l), (2) xup ~ xa(nop). To remove
these restrictions the following two changes should be made.

1. Before line Ll6: and after the statement ib : = 2; place the
following code:

for ia : = 1 step 1 until nop do begin
ifxa(ia)~xlOthengotoL17; ib:=ib+l; end;

l.,17: ju 1 := nop + 1; for ia ;= 1step1 until nop do begiu
ju 1 :=ju 1 - 1; ifxa(ju 1) > xup end; ju 1 :=ju 1 - l;·

2. Change line £13: to read:
Ll3: if jm ~ ib then go to L14;

77-P 2- 0

REMARK ON ALGORITHM 77
INTERPOLATION, DIFFERENTIATION, AND IN

TEGRATION [P. E. Hennion, Comm. ACM 5, Feb.
1962]

P. E. HENNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT (V. E. Whittier, Comm. ACM,
June, 1962) that restrictions on the upper and lower limits of inte
gration existed, i.e., (1) xlo ~ xa(l), (2) xup ~ xa(nop). To remove
these restrictions the following two changes should be made.

1. Replace the two lines starting at line £12: and ending after
the statement ib := 2; with the following code:

Ll2: sum := O; syl := xlo; ib := 2, 1ul := nop;
for ia := 1step1 until nop do begin
if xa [ia] ~ xlo then go to Ll7; ib := ib + 1; end;

Ll 7: for ia : = 1 step 1 until nop do begin
if xup ~ xa (jul] then go to £18; jul : = jul - 1; end;

Ll8: jul := jul - 1;

2. Change line £13: to read
L13: if jm ~ ib then go to £14;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 78
RATIONAL ROOTS OF POLYNOMIALS WITH IN-

TEGER COEFFICIENTS
c. PERRY

University of California at San Diego, La Jolla, California

comment This ALGOL. procedure, named ratfact, for finding.
rational roots of polynomials with integer coefficients is a
pedagogical example illustrating the use of the fo~ statement
described in section 4.6.3. Also, an extension suggested by
J. Peck of the well-known polynomial evaluation by nesting,
i.e. Homer's method, is used. The polynomial f(x) =ao + a1x+
· · · +anx0 with integer coefficients and with aoan~O has a
lowest term rational root p/q if and only if a0q 0 + a 1q 0 -

1p +
· · · +a0 -1q p 0

-
1 + a 0 p 0 = 0, also q must be a factor of an and

p a factor of a0 • Procedure RATFACT outputs the nonzero
rational roots p/q by execution of the procedure whose formal
name is print. The output procedure uses the string whose formal
name is format for control of the output format;

procedure ratfact (a, n, print, format);
integer array a[O:n]; integer n; procedure print; string

format;
begin integer i, p, q, ~. t, f, g;
p loop: for p := 1 step 1 until abs (a[O]) do

begin comm.ent if pis not a factor of a [O] or q is not a factor
of a[n] then skip to the end of the loop for advance in. the
respective for list;
if a[O] '¢ (a[O]+p)Xp then go to 1
else q loop: for q :·= 1 step 1 until abs (a[n]) do

begin if a(n] ~ (a[n]+ q)Xq then go to 2
else
begin comm.ent root test and print;

comm.ent start polynomial evaluation;
f := g :== a[O]; t := p;
for i := 1step1 until n do
begin r := a[i]Xt;

f :- fXq+r;
g := -gXq+r;
t := tXp;

end polynomial evaluation;
comm.ent computing r saves one subscript

evaluation;
if f =0 then print (format, p, q);
if g=O then print (format,-p, q);
comm.ent print is the formal name of the procedure

to be used to output the variables in the format
specified by the string whose formal name is format;

end root test. and print;
2: end q loop;

1: end p loop;
end ratfact, without overflow test.

78-P 1- 0

REMARK ON ALGORITHM 78
RATIONAL ROOTS OF POLYNOMIALS WITH

INTEGER COEFFICIENTS [C. Perry, Comm. ACM,
Feb. 1962]

D. M. COLLISON

Elliott Bros. (London) Ltd., Borehamwood, Hert.s.,
England
The algorithm was successfully run using the Elliott ALGOL

translator on the National-Elliott 803. It was noticed that a
multiple rational root will only be printed once by the procedure.

CERTIFICATION OF ALGORITHM 78.
RATFACT (C. Perry, Comm. ACM 5, Feb. 1962)
M. H. HALRTEAD

Navy Electronics Laboratory, San Diego, Calif.

RATFACT was copied in the Navy Electronics Laboratory
International ALGOL Compiler, NELIAc, and tested on the UNI

VAC M-490 Countess and the CDC 1604. Polynomials of order 2
through 6 were tested. No corrections were found necessary. It
was noted that a polynomial whose coefficients included a com
mon factor would produce superfluous values of p/q, in which
this fraction was indeed a root, but one in whiCh p and q contained
a common factor.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 79
DIFFERENCE EXPRESSION COEFFICrnNTS
THOMAS P. GIAMMO

Space Technology Laboratories, Inc., Los Angeles, Cali
fornia

procedure dicol (k, n, xp, xtab, coef);
value k, n; integer k, n; real xp;
array xtab, coef;
comment dicol produces the coefficients for the n ordinates

(corresponding to the abscissae, xtab) in the n~point finite
difference expression for the k-th derivative evaluated at xp.
The method used is to determine the analytic expression for
the k-th derivative of each coeffl.cient in then-point Lagrangian
interpolation formula and evaluate it at xp. Note that k=O
will produce the Lagrangian interpolation coeffi.cients them
selves;

begin integer array xuse [l : n-1); real factk, sum, denom,
part;

integer i, terms, j, m, high; ..
factk := 1.0; for i := 2 step 1 until k do factk .- iXfactk;
terms := n-k-1; if terms<O then go to Z;
for j := l step 1 until n do
loop: begin sum := O; denom := 1'.0; part := l.0;

for i := 1 step 1 until n do
if i ~ j then denom := denomX (xtab [j] - xt.ab [i]);
if terms = 0 then go to Y;
m := l; high := l;

A: if (high = j) V (xtab [high] = xp) then
Al: begin high := high + 1; go to A end Al;
if high >.n then A2: begin m := m·-1; if m>O

then ·

A3: begin high := xuse [m]+l; go to A end A3;
go to X end A2;
xuse [m] := high; m := ni+l;
if m ~terms then begin high : = high + 1; go to

A end;
for i : - 1 step 1 until terms do

part :- partX (xp - xtab [xuse [i]]);
sum : == sum + part; :dl : = terms; part : == 1.0;
high := xuse [terms]+ l; go to A;

Y: sum := 1.0;
x~ coef [j] := sum X factk/denom end loop;

go to EXIT;
Z: for i :== 1 step l•until n do coef [i] := O;
EX°IT: end dicol

CERTIFICATION OF ALGORITHM 79
DIFFERENCE EXPRESSION COEFFICIENTS

[Thomas Giamo, Comm. ACM, Feb. 1962]
EVA s. CLARK
University of California at San Diego, La Jolla, California

The procedure was translated into Fo:RTRAN and run on the
CDC 1604. Reasonable accuracy was obtained fork = 0, 4 ~ n ~ 12.
F'or increasing n and increasing k, the accuracy diminished. It was
found that the execution time increased rapidly as n was increased.
Fork = 0, the following results were obtained:

n

4
6
8

10
12

79-P 1- 0

Approximate Number of Machine Operations

1.3 x 103

6.9 x 103

3.8 x 104
1.8 x 105

8.6 x 106

The author indicated in a letter that the procedure was de
veloped for use with small n and small k.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 80
RECIPROCAL GAMMA FUNCTION OF REAL

ARGUMENT
WILLIAM HOLSTEN
University of California at San Diego, La Jolla, California
real procedure RGR(x); real x; real procedure RGAM;
comm~nt Procedure RGAM computes the real reciprocal

Gamma function of real x for -1 < x < 1, utilizing Homer's
method for polynomial evaluation of the approximation poly
nomial. RGR extends the range of RGAM by use of the formui1;1e
(1) 1/Gamma(x-1),=(x-1)/Gamma(x) for x<-1,
(2) 1/Gamma(x+l)= 1/xXGamma(x) for x<l.;
begin real y;

if x = O.then begin RGR := O; go to EXIT end
if x = 1 then begin RGR : = 1; go to EXIT end
if x < 1 then go to BB;
y := 1;

AA: x := x - l; y := y X x; if x > 1 then go to AA;
if x = 1 then begin RGR := l/y; go to EXIT end
RGR := RGAM(x)/y; go to EXIT;

BB: if x = -1 then begin RGR := O; go to EXIT end
if x > -1 then begin RGR := RGAM(x);

go to EXIT end
y .:= x;

CC: x := x + l; if x < -1 then begin y := y X x;
go to CC end

RGR := RG.AM(x) X y;
EXIT: end RGR;

real procedure RGAM(x); real x; integer i;
real array B[0:13];

comment The algorithm for this routine was adapted from
"University of Illinois Digital Computer, Auxiliary Library
Routine B-17-328", by John Ehrman. Reference may also be
made to Algorithm 34, dated February, 1961. Approximation
accuracy is ±z-a&.;

begin real z;
B[O] := 1.00000 00000 00; Bf 1] := - .42278 43350 92;
Bf 2] := -.23309 37363 65; B[3] := +.191091101162;
B[4] := ._ .02455 24908 87; B[5] := - .01764 5242118;
B[6) := + .00802 32781 13; B[7) := - .00080 43413 35;
B[8) := - .00036 08514 96; B[9] := + .00014 56243 24;
BflO) := -.000017527917; B[ll] := -.0000026257.21;
B[l2] := + .00000 13285 54; B[13] := - .00000 01812 20;
z: = B[13];
for i := 12 step -1 until 0 doz := z X x + B[i];
RGAM := z X x X (x + 1)

end RGAM;

REMARKS ON:
ALGORITHM 34 (814]
GAMMA FUNCTION

[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [814]
GAMMA FUNCTION FOR RANGE 1 TO 2

[John R. Herndon, Comm. ACM 4 (Apr. 1961), 1801

80-P 1- Rl

ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

[William Holsten, Comm. ACM 5 (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION

[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION

[M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966),
684]

M. C. PIKE AND I. D. HILL (Recd. 12 Jan. 1966)
Medical Research Council's Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and 54 both use the same Hastings approxima
tion, accurate to about 7 decimal placeB. Of these two, Algorithm
54 is to be pref erred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines

if x = 0 then begin RGR : = 0; go to EXIT end
and

if x = 1 then begin RGR : = 1; go to EXIT end
should each be followed either by a semicolon or preferably by an
else.
(3) The lines

if x = 1 then begin RGR := 1/y; go to EXIT end
and

if x < - 1 then begin y := y Xx; go to CC end
should each be followed by a semicolon.
(4) The lines

BB: if x = -1 then begin RGR :== O; go to EXIT end
and

if x > -1 then begin RGR := RGA.M(x); go to EXIT end
should be separated either by else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer i and real array B[O: 13) in RG AM
are in the wrong place; they should come immediately after

begin real z;

With these modifications (and the repla~ement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput
ing time, being twice as fast as 291 at x = 1, but this advantage
decreases steadily with increasing x so that at x = 7 the speeds are
about equal and then from this point on 291 is faster-taking only
about a third of the time at x = 25 and about a tenth of the time
at x = 78. These timings include taking the exponential of log-

COLLECT£D ALGORITHMS (cont.)

gamma.
For many applications a ratio of gamma functions is required

(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

80-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 81
ECONOMISING A SEQUENCE 1
BRIAN H. MAYOH .

Digital Computer Laboratory, University of Illinois,
Urbana, Ill.

procedure ECONOMISER 1 (desired property, costs, n, C);
array costs; integer n;

Boolean procedure desired property;
Boolean array C;

begin comment Given a finite, monotonely increasing
sequence of positive numbers, looked upon as prices, ECONO
MISER 1 selects the cheapest subsequence with a given prop
erty. The formal parameters are: Desired property, a function
designator to answer the question: Does the subsequence held
in array C possess the required property? n is (number of ele
ments in the sequence) + 1. Costs is an array of size [1 :n].
Costs[l] to costs[n-1] hold the numbers of the sequence and
costs[n] is any arbitrary number greater than the sum of a.11
other elements of costs. C is an array of the same size and indi
cates a subsequence by the rule: C[i] = element i of the original
sequence is in the subsequence. At exit from ECONOMISER 1,
C indicates the cheapest subsequence. It is supposed that the
original sequence has the desired property.;
integer d, j, k, l; real i;
for j := 1step1 until n do C[j] := j = 1; ·d := O;
reenter: d := d+l;
INSIDE: begin own real array prices fl:d];

own Boolean array alternatives[l:d, l:n];
procedure ENTER SUCCESSORS;
begin k := n-1;

A: if -, C[kJ then
ht:~gin ·k := k-1; go to A end;
for j := 1step1 until n do
begin alternatives[t,j]

:= j ¢ k /\ j ¢ k-1 • C(j];
if alternatives[t,j] then
i := i + costs[j)

end;
B: k := k-1;

go to if k = o· then find cheapest
else if C[k] then (if k=l then

find cheapest else B)
else if k=l then E

else if C[k-1] then D
else find cheapest;

D: C[k-1] :=- false;
E: C[k] :== true; go to reenter

end of ENTER SUCCESSORS;
i :== O; for j := 1 step 1 until n do

:= O;

begin alternatives[d,j] ·- C(j]; if C[j] then
i :== i + costs[j]

end; pri'ces[d] :- i;
find cheapest: i :== O; for j := l step 1 until d do

begin if prices[j] < i then
begin t :=- j; i :- prices[!] end

end;

for j := 1 step 1 until n do
CLl] := alternatives[t,j];
if .., desired property then

ENTER SUCCESSOR8
end of INSIDE;

end of ECONOMISER 1 ·

81-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 82
ECONOMISING A SEQUENCE 2
BRIAN H. MA YOH

Digital Computer Laboratory, University of Illinois,
Urbana, Ill.

procedure ECONOMISER 2 (desired property, costs, n, C, r,
Reject list); Boolean procedure desired property;
integer n, r; array costs; Boolean array R~eject list;

begin comment In some applications of ECONOMISER 1, it
is simple to establish that some subsequences are redundant in
the sense that any sequence containing them is certainly not
the cheapest subsequence with the desired property. For such
applications ECONOMISER 2 avoids all unnecessary calls of
desired property. The new formal parameters are: r a variable
whose value is initially 0 and is increased by 1 every time that
desired property discovers a new redundant subsequence.
Reject list an array of size [l:r,l:n]. Reject list [a,bJ carries the
answer to: Is element b of the original sequence in the ath
redundant subsequence found by desired property?;
real i; integer d, j, k, t; Boolean gapfilled, first time;
procedure INSIDE (entrymaker); Boolean entrymaker:
begin own real array prices[l:d];

own Boolean array alternatives[l:d,l:n];
procedure ENTER SUCCESSORS;
begin integer c; Boolean array ssq[l:n];

for j :-= 1step1 until n do ssq[j] := C[j];
c :== n-1;

A: if-, ssq[c] then begin c := c-1; go to A end:
C[c] :- false; Cfc+l] := true;
INSIDE (true);
gap.filled : - true;

B: c :- c-1;
go to if c==O then F else if ssq[c] thtm

(if c-1 then F else B) else if c= 1 then
E else if ssq[c-1] then D else F;

D: ssq[c-1] :- false;
E: for j := 1step1 until n do C[j) :- ssq[j) • jrEc;

INSIDE (true);
F: end of ENTER SUCCESSORS;
if entrymaker then
begin for j := 1 step 1 until r do

begin fork :=- 1step1 until n do
begin if -, C[k] /\ Reject list[j ,k) then

go to G end;
ENTER SUCCESSOR~; go to H;

G: end;
i :- O; if gap.filled then d :- d+l;
for j :- 1 step 1 until n do
begin altematives[if gapfilled then

d else l, j] :• C[j];
if C[j] then i :- i + costs[j)

end; prices[if gapfilled then d else t] :- i
~nd; if first time V -, entrymaker then
begin i :- O; gapfilled :- first time :=- false;

for j :- 1step1 until d do
begin if prices[j] < i then

begin l :- j; i :- prices[l] end
end;

for j := I step 1 until n do
C[j] := alternatives[t,j);

if desired property then go to found;
ENTER SUCCESSORS; go to reenter
end;

H: end of INSIDE;
for j := 1step1 until n do C[j] :== j==l;
d : - 0; first time : = gapfilled : == true;

reenter: INSIDE (first time);
found:·
end of ECONOMISER 2;

82-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 83
OPTIMAL CLASSIFICATION OF OBJECTS
BRIAN H. MAYOH

Digital Computer Laboratory, University of Illinois,
Urbana, Ill.

nrocedure OPTIMUM COVERING FINDER (Pattern, popu
lation, set number, set prices, chosen sets, bounds, overflow);
Boolean array Pattern, chosen sets; integer population,
set number, bounds; array set prices; label overflow;

begin comment The number of objects in some given set is
given by population. The procedure is given a classificatior.i of
these objects by a collection of overlapping subsets. A cost
is assigned to each subset. Then OPTIMUM COVERING
FINDER selects the cheapest subcollection such that every
object is contained in at least one of the subsets of the sub
collection. set prices[i] carries the cost of subset i. Pattern
is an array of size [1: set number ,1: population] such that Pat
tern{a,b] & does subset a include object b. chosen sets[i] finally
carries the answer to the question: Is set i in the cheapest
subcollection? The programmer must restrict the amount of
space available to the procedure by setting bounds. From ex
perience bounds - set number j 2 suffices to avoid most alarm
exits to overflow.;
Boolean array C[l:population], D[l:bounds, l:population],

R, S[l:bounds,l:set number];
integer a, b, d, r, s;
Boolean procedure HA VE WE A COVERING;
begin procedure ADD to (Q,q,f); integer q;

real f; Boolean array Q;
begin if q=bounds then go to overflow else q :- q+l;

for a := 1 step 1 until set number do Q[q,a] := f
end; for a : = 1 step 1 until population do '

C[a] :- false;
for a : == 1 step 1 until set number do
begin if chosen sets[a] then

for b :- 1 step 1 until population do
C[b] :- C[b] V Pattern[a,b]

end; for a :=- 1 step 1 until population do
begin if-, C[a] then go to E end;
go to found;

E: ford := 1step1 until s do
begin for b :- 1step1 until population do

begin if C[b] /\ -. D[d,b] then go to try another end;
ADD to (R, r, chosen sets[a]);
for b :- 1step1 until set number do
begin if chosen sets[b) /\ -, S[d,b] then

ADD to (R, r, S[d,a] V a-b)
end; go to F;

try another:
end of for statement labelled E;
ADD to (S, s, chosen sets[a]);
for a : = 1 step 1 until population do D[s,a] :- C[a];

F: HA VE WE A COVERING :- false
end; r : - s : - 0;
.ECONOMISER 2 (HA VE WE A COVERING, set prices,

set number, r, R, chosen sets);
found: end

83-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 84
SIMPSON'S INTEGRATION
p A UL E. HENNION

Giannini Controls Corporation
Astromechanics Research Division, Berwyn, P~~nn.
real procedure SIM (n, a, b, y);
value n, a, b; real a, b; integer n; array y;
comment This is a method for obtaining the approximate value

of the definite integral of a continuous function when the in
tegral cannot be evaluated in elementary functions. Given
y = f(x) and the f~ y dx to be evaluated. Plot the curve f(x),
and divide [a, b] evenly into n equal parts, erecting the ordi
nates Yo, Y1 , · · · , Yn . Then the approximate value of the
definite integral by Simpson's rule states that:

l b f(x) dx = b - a (y0 + 4y1 + 2y2 + · · · + 4Yn-l + Yn);
a 3n

hegi n real s; integer i ;
s := (y[O] - y[n])/2;
for i := 1 step 2 until n :-- 1 dos := s + 2 X y[iJ + y[i+lJ;
SIM := 2 X (b - a) X s/(3 X n)

end

CERTIFICATION OF ALGORITHM 84
SIMPSON'S INTEGRATION [P. E. Hennion, Comm.

ACM 5 (Apr. 1962)]
A. P. RELPH

The English· Electric Co., Whetstone, England
Simpson's Integration was translated using the DEUCE ALGOL

compiler and, wit.h no corrections, gave satisfactory results.
It is not stated in the comment that integer n needs to be even.

REMARK ON ALGORITHM 84
SIMPSON'S INTEGRATION [Paul E. Hennion. Comm,.

ACM, Apr. 1962]
RICHARD GEORGE*

Particle Accelerator Div., Argonne National Lab.,
Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission.

In performing integration by the use of Simpson's rule, it is well
known that the interval [a, b] must be divided evenly into n equal
parts, and that it is essential for n to be an even number.

In the published algorithm, there is neither a comment on this
important restriction, nor a programmed test for the parity of n.
It is therefore a potential trap for the unwary programmer.

84-P 1- 0

CERTIFICATION OF ALGORITHM 84
SIMPSON'S INTEGRATION [P. E. Hennion, Comm.

ACM, Apr. 62]
PETER G. BEHRENZ

Matematikmaskinnamnden, Stockholm, Sweden
SIM was successfully run on F ACIT EDB using F ACIT-ALGOL

1, which is a realization of ALGOL 60 for FACIT EDB. No changes
in the program were necessary. To test SIM some polynomials
were integrated.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 85
JACOBI
THOMAS G. Ev ANS

Bolt, Beranek, and Newman*, Cambridge, Mass.

* This work has been sponsored by the Air Force Cambridge
Research Laboratories, OAR (USAF), Detection Physics Lab
oratory, under contract AF 19(628)-227.

procedure JACOBI (A, S, n, rho);
value n, rho; integer n; real rho; real array A, S;
comment This procedure finds all eigenvalues and eigenvectors

of a given square symmetric matrix by a modified Jacobi (itera
tive} method (cf. J. Greenstadt, "The determination of the charac
teristic roots of a matrix by the Jacobi method," in Mathematical
MetHods for Digital Computers, A. Ralston and H. S. Wilf, eds.).
JACOBI is given a square symmetric matrix of order n stored in
the array A. The initial contents of the array Sare immaterial,
as Sis initialized by the procedure. At exit the kth column of the
array S contains the kth of then eigenvectors of the given matrix,
and 'the diagonal element A[k, k] of the array A is the corre
sponing kth eigenvalue. The parameter rho is the "accuracy
requirement" introduced in the above reference, where a de
tailed flow chart of the method is given. The significance of rho is
that the iteration terminates when, for every off-diagonal ele
ment A[i, j), abs (A[i, j]) < (rho/n) X norml, where norml is a
function only of the off-diagonal elements of the original matrix;

begin real norml, norm2, thr, mu, omega, sint, cost, intl, vl,
v2, v3;
integer i, j, p, q, ind;
comment Set array S = n X n identity matrix;
for i := 1 step 1 until n do

f01· j := 1 step 1 until i do
if i = j then S[i, j] := 1.0
else S[i, j] := S[j, i] := 0.0;

comment Calculate initial norm (norml), final norm (norm2),
and threshold (thr);
intl := 0.0;
for i :=2 step l until n do

for j : = step 1 until i-1 do
intl := intl + 2.0 X A[i, j] T 2;

nonnl := sqrt (intl); norm2 :== (rho/n) X norml;
thr := norml; ind := O;

main: thr := thr/n;
comment The sweep through the off-diagonal element~ be

gins here;
mainl: for q : = 2 step 1 until n do

for p := 1 step 1 until q-1 do
if abs (A(p, q]) ~ thr then
begin ind := l; vl :== A(p, p}; v2 := A[p, q];

v3 := A[q, q}; mu := 0.5 X (vl-v3);
omega := (if mu = 0.0 then 1 else sign (mu)) X

(-v2)/sqrt(v2T2 + muT2);
sint := omega/sqrt(2.0 X (1.0 + sqrt(l.O -

omega T2))) ;
cost : = sqrt (1.0 - sintf2);
for i : =: 1 step 1 until n do
begin intl :,_,, A[i, p] X cost - A[i, q] X sint;

A[i, q} := A(i, p] X sint + A[i, q) X cost;
A(i, p} := intl;
intl '.== S[i, p] X cost - S[i, q} X sint;

85-P 1- 0

S[i, q) := S[i, p] X sint + S[i, q] X cost;
S[i, p] := intl

endi
for i := step 1 until n do

begin A[p, i] := A[i, p]; A[q, i] := A[i q] end.;
A[p, p] := vl X costT2 + v3 X sintj2 2.0 X

y2 X sint X cost;
A[q, q] := vl X sintT2 + v3 X costT2 + 2.0 X

v2 X sint X cost;
A[p, cil := A[q, p} := (vl - v3) X sint X cost +

v2 X (costT2 - sintj2)
end;

comment Now test to see if current tolerance exceeded and,
if not, whether final tolerance reached;

if ind == 1 then begin ind :== O; go to mainl end
else if thr > norm2 then go to main

end JACOBI

CERTIFICATION OF AI.GORITHM 85
JACOBI [T. G. Evans, Comm. AC.M", Apr. 1962]
J. s. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,.
England

The statement
omega := (if mu = 0.0 then 1 elee sign (mu))

X (- V2)/sqrt(V2 i 2+mit T 2);
was changed to
omega := if mu = 0.0 then -1.0 else - sign (mu)

X V2/ sqrt (V2 j 2+mu i 2);
When mu = 0, the original statement reduces to

omega:= -V2/sqrt (V2 T 2);
and a truncation error in the evaluation of the square root can
make the magnitude of omega slightly greater than unity. As a
result, an error stop occurs during execution of the next statement
when an attempt is made to evaluate sqrt (1 - omega i 2).

In its modified form the algorithm has been successfully run
using the Elliott ALGOL translator on the National-Elliott 803.
Matrices of order up to fifteen have heen solved, yielding eigen
values and eigenvectors with an overall. accuracy of seven decimal
olaces.

CERTIFICATION OF ALGORITHM 85
JACOBI [Thomas G. Evans, Comm. ACM (Apr. 1962),
208]
P. NAUR

Regnecentralen, Copenhagen, Denmark

We have first run this algorithm in the GIER ALGOL system with
the following corrections included:

1. The change given by J. S. Hillmore [Comm. ACM 6 (Aug.
1962), 440] with capital V changed to v ..

COLLECTED ALGORITHMS (cont.)

2. The 4th for clause corrected to read:

for j := 1 step 1 until i - 1 do

:~. The last for clause corrected to read:

for i := 1 step 1 until n do

On closer examination we have found, however, that a signifi
cant number of superfluous operations could be eliminated in the
innermost loop by :rewriting the two for statements at the center
of the algorithm as a single for.statement, to read as follows:

cost := sqrt (1-sint i 2);
for i := 1 step l untH n do

begin if i -,6. p /\ i -,6. q then
begin intl := A[i,p]; mu := A.[i,qJ;
A[q,i] := A[i,q] := intl X sint +mu X cost;
,'1[p,i] := A[i,p] := intl X cost - mu+ sint
end;

intl := S[i,p]; mu := S[i,q];
S[i,q] := intl X sint +mu X cost;
S[i,p] := intl X cost - mu X sint
end;

A [p,p] := vl X cost i 2 + v3 X sint j 2 - 2 X v2 X s£nt X cost;

This revision is particularly advantageous in systems having a
comparatively slow subscript mechanism, such as GIER ALGOL,
hecauRe it eliminates more than 3 out of 8 references to subscripted
variables.

JACOBI has been tried with two different sets of matrices hav
ing known eigenvalues. In both cases a test program was set up to
find the range of errors of the eigenvalues computed by JACOBI.
In addition, the relations Av - A.v = 0 (A is the given matrix, v
an eigenvector, and A. the corresponding eigenvalue) and A - (ST)
IJAMBDA S = 0 (Sis the matrix having the eigenvectors as col
umns and ST its transpose, and LAMBDA is the diagonal matrix
of the eigenvalues) were used as checks. The test matrices were
TESTMATRIX calculated by the revised algorithm 52 given in
Comm. ACM 6 (Jan. 1963), 39, and the following matrix suggested
by Mr. H.B. Hansen:

HBH TESTMATRIX [i,i] = HBH TESTMATRIX [i,i]
=n+l--j jG;i

having the eigenvalues 0.5/(1 - cos ((2Xi-l)Xpi/(2Xn+l))).
The results were as shown in Table 1 (GIER ALGOJr, works with

floating numbers of 29 significant bits).
The compil"e time for the program which produced one of these

tables was about 40 seconds. Run times were as follows:

Rlto

io-3

I0-5

n

5
10
15

5
10
15

5
6
7
8

10
15

TEST~1¥R.fx~Lg~i;2 HBH
Rf.vised algo-
rithm HBH

TESTMATRIX 'IESTMATRIX
(seconds) (seconds)

3
22
70

3 5
5 41 29

13 148 99

4 7 6
5 12
5 18
5 25

13 38
22 116

85-P 2- 0

From these figures it looks as if T.ESTMATRIX, Algorithm 52,
is atypical as far as solution by means of JACOBI is concerned.
The much higher accuracy obtained for this matrix as compared
with the HBH matrix points in the same direction.

For further comparison it may be mentioned that the algo
rithms publiRhed by J. H. Wilkinson [Xum. Math. 4 (1962), 351-
376] also have been tested successfully with GIER ALGOL. Wilkin
son's algorithms reduce the matrix to tridiagonal form by means
of Householder's method and use Sturm sequences to find the
eigenvalues and inverse iteration to find the eigenvectors. In GrnR
ALGOL this method is about 1.3 times as fast as JACOBI for the
range of matrices considered here. JACOBI has the advantage
that the eigenvectors are properly orthogonal, even in the case of
multiple eigenvalues, and also has a much simpler logic. On the
other hand if only some of the eigenvalues and/or eigenvectors are
sought Wilkinson's algorithms will often offer much higher speed
than JACOBI, which always finds them all.

COLLECTED ALGORITHMS (cont.) 85-P 3- 0

TABLE 1

HBH TESTMATRIX
------------------------- --·--------

Range of true errors of eigenvalues Range of deviations from relation
Av - lambda v = 0

Range of deviations from relation
A - (ST) LAMBDA S = O

Order error[j] j error[j] ,~!~~t Vector Error !!:;, Vector Error !~e,;t Vector Error ~!~t Vector Error

----------·--------- --------

rho= 1.010-3

5 1 -1.110-6 3 5.210-8 1 1 -1.710-4 3 2.010-4 1 -2.510-4 5 5 1.010-4
lO 9 -7 .910-5 8 3.510-5 7 2 -3.310-3 6 6 3.010-3 1 1 -4.210-3 6 7 3.210-3
15 15 -9.210-5 12 3.710-5 6 3 -1. 710-3 11 13 1. 710-3 9 15 -1.510-3 8 9 1.810-3

rho = 1.010-5

5 -1.110-6 3 6.010-8 2 5 -1.310-7 5 2 4.110-8 1 2 -l .610-7 4 5 4 .510-8
10 -1.210-5 2 2.210-7 7 3 -2.710-5 2 8 2.210-5 7 7 -2.410-5 2 8 2.310-5
15 -3.510-5 4 3.910-7 11 9 -6.410-6 7 2 4.810-6 11 12 -5.310-6 12 12 4.710-6

rho = 1.010-8
---·----·-----------------·-------~------------------------

5 -1.110-6 3 6.010-8 2 5 -1.310-7 4 2 6.5io-9 2 2 -1.310-7 4 4 3.010-8
10 -1.210-5 2 2.210-7 1 10 -1.110-6 4 2 6.410-8 1 2 -5. 710-7 9 9 8.210-8
15 -3.510-5 4 3.910-7 14 -3.410-6 4 2 3.910-7 2 2 -1.310-6 15 15 8.910-8

TESTMATRIX, Algorithm 52
·----~---------- -----------------··----

Range of true errors of eigenvalues Range of deviations from relation
Av - lambda v = O

Ra1e of deviations from relation
- (ST) LAMBDAS= o

-------------------------------·

Order j crror[j] error[j] Ele- Vector Error Ele- Vector Err er Ele- Vector Error Elt- Vector Error ment ment ment ment
--------·----

rho = 1.010-5
-------------------------·-----

5 4 -1.010-8 .0 5 5 -3.310-8 5 4 4.310-8 5 5 -5.110-8 4 4 3.910-8
10 8 -1.110-8 4 .0 7 7 -1.210-8 9 6 1.310-8 7 8 -5.lio-9 6 6 2.010-8
15 13 -1.110-8 6 .o 14 14 -9.310-9 10 10 9.410-9 8 9 -1.910-9 10 10 1.310-8

rho= 1.010-8
---··-----------------------·

3 3 -7 .510-9 3.710-9 3 1 -2.810-9 2 2 9.310-9 1 3 .o 2 1.910-8
4 4 -5.610-9 3 .0 2 2 -4.510-9 3 4 3.310-9 2 2 .0 2 3 9.310-9
5 4 -1.010-8 .0 5 4 -4.910-9 4 4 5.810-9 1 1 -7 .510-9 3 4 7 .510-9
6 4 -4.710-9 4 .o 4 3 -2.810-9 5 4 3.610-9 1 6 -2.310-10 4 5 9.310-9
7 4 -5.110-9 5 .o 6 6 -2.810-9 4 4 3.410-9 5 7 -1.210-10 5 6 7 .510-9
8 7 -7 .510-9 5 .0 5 5 -6.010-9 5 6 3.210-9 8 8 -1.210-10 7 7 9.310-9
9 6 -4.410-9 7 .0 6 5 -5. lio-9 7 6 3. 210-9 5 5 -7 .510-9 8 8 1.510-8

10 8 -1.510-8 8 .o 8 9 -9.310-9 9 7 7 .210-9 6 7 -2.310-9 9 9 2.010-8
11 10 -7 .510-9 1 .o 9 10 -6.510-9 8 11 3 .010-9 1 1 -3.110-9 8 8 7 .510-9
12 8 -5.010-9 11 .o 10 6 -7 .610-9 10 8 2.410-9 6 6 -1.710-8 4 4 1.310-8
13 12 -1.110-8 10 .o 10 11 -6.910-9 12 10 9.110-9 7 7 -3.010-8 12 12 3.210-8
14 10 -1.510-8 4 .0 13 13 -l. lio-8 10 10 6. 710-9 9 10 -3.510-9 6 6 1.710-8
15 13 -1.110-8 6 .0 14 14 -1.110-8 11 10 3 .510-9 8 9 -3.010-9 6 11 7 .51-0-9

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 86
PERMUTE
J. E. L. PECK AND G. F. SCHRACK

University of Alberta, Calgary, Alberta, Canada

vrocedure PERMUTE (x, n);
array x; integer n;
comment Each call of PERMUTE executes a permutation of

the first n components of x. It assumes a nonlocal Boolean
variable 'first', which when true causes the procedure to initial
ise the signature vector p. Thereafter 'first' remains false until
after n l calls;

begin own integer array p[2:n]; integer i, k;
if first then
begin for i := 2 step 1 until n do

p[i] : = i; first : = false
end initialise;
fork := 2 step 1 until n do

begin integer 'Km; real t;
t := x[l]; km := k - 1;
for i : = 1 step 1 until km do

x[i] := x[i+l!;
x[k] := t; p[k] := p[k] - 1;
if p[k] ;:e 0 theri go to EXIT;
p[k] := k

end k;
first : = true;

EXIT: end PERMUTE

CERTIFICATION OF ALGORITHM 86
PERMUTE [J. E. L. Peck and G. F. Schrock, Comm.

ACM, Apr. 1962]
D. M. COLLISON

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The algorithm was successfully run using the Elliott ALGOL

translator on the National-Elliott 803. Values of n used were 0, 1,
:~. 3, 4.

86-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 87
PERMUTATION GENERATOR
JOHN R. Ho WELL

Orlando Aerospace Division, Martin Marietta Corp.,
Orlando, Florida

procedure PERMUTATION (N, K);
value_K, N; integer K; integer-array N;
co:mm.ent This procedure generates the next permutation in

lexicographic order from a given permutation of the K marks
0, 1, · · ·, (K-1) by the repeated addition of (K-1) radix K.
The radix K arithmetic is simulated by the addition of 9 radix
10 and a test to determine if the sum consists of only the original
K digits. Before eaeh entry into the procedure the K marks
are assumed to have been previously specified either by input
data or as the result of a previous entry. Upon each such entry a
new permutation is stored in N[l] through N[K]. In case the
given permutation is (K-1), (K-2), · · · , 1, 0, then the next
permutation is taken to be 0, 1, · · · , (K - 1). A FORTRAN
subroutine for the IBM 7090 has been written and tested for
several examples;

begin integer i, j, carry;
for i := 1 step 1 until K do

if N [i] - K + i ~ 0 then go to add;
for i := 1step1 until K do N[i] := i - 1;
go lo exit;

add: N[K] := N[K] + 9;
for i := 1 step 1 until K-1 do

begin if K > 10 then go to B;
carry := N[K-i+lJ+lO; go to C;

B: carry := N[K-i+-l]+K;
C: if carry = 0 then go to test;

N[K-i] := N[K-i] + carry;
N[K-i+l] := N[K-i+ll -10 X carry

end i;
test: for i := 1 step 1 until K do if N[i] - (K - 1) > O

then go to add;
for i := 1step1 until K-1 do

for j := i-t-1 step 1 until K do
if N[i]--N[j] = 0 then go to add;

exit:. end PERMUTATION GENERATOR

CERTIFICATIOK OF ALGORITHM 87
PERMUTATIOl\ GENERATOR [.John R. llow<'ll,

Comm. ACM, Apr. 19G2]
D. M. COLLISOX

Elliott Bros. (London) Ltd., Borchamwood, Hcrts.,
England
The array N was removed from the value list in order that the

permutations might be available outside the procedure. The
algorithm was then run successfully with the Elliott ALGOL trans
lator on the National-Elliott 803. It was rather slower than
Algorithm 86.

87-P 1- Rt

CERTIFICATION OF ALGORITHM 87
PERMUTATION GENERATOR [John R. Howell,

Comm. ACM (Apr. 19G2)]
G. F. SCHRACK and M. SmMRAT
University of Alberta, Calgary, Allb., Canada

PERMUTATION GENERATOR was translated into FORTRAN
for the IBM 1620 and it performed satisfactorily. The algorithm
was timed for several smµJl v1\lues of n. For purpm~es of comparison
we include the times (in seconds) for PEUMULEX (Algorithm
10~).

n 3

PERMUTATION GENERA .. TOR II 3
PEH,_MULEX --

4 5

41 558
3 6

6 7

37 278

AH can be seen from this table, PERMUTATION GENERATOR is
considerably slower. It. is probable that one could speed up
PERMUTATION GENERATOR to a great extent by rearranging
the algorithm in such a manner that the digits of a number to a
certain base are permuted rather than the elements of a· sequence.

REMARKS ON:

ALGORITHM 87 [G6]
PERMUTATION GENERATOR

[John R. Howell, Comm. ACM 5 (Apr. 1962), 209]
ALGORITHM 102 [G6]
PERMUTATION IN LEXICOGRAPHICAL ORDER

[G. F. Schrak. and M. Shimrat, Comm. ACM 5 (June
(1962), 346]

ALGORITHM 130 [G6]
PERMUTE

[Lt. B. C. Eaves, Comm. ACM 5 (Nov. 1962), 551]
ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN
LEXICOGRAPHICAL ORDER

[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. ORD-SMITH (Recd. 11 Nov .. 1966, 28 Dec. 1966 and
17 Mar. 1967)

Computing Laboratory, University of Bradford, Engla.nr}

A comparison of the published algorithms which seek to genera;.
successive permutations in lexicographic order shows that Algo·
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, l">erm,
Comm. ACM 5 (Aug. 1962), 434], therie appears to be room for im
provement. Theoretically a "best" lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 20~t

COLLECTED ALGORITHMS (cont.)

ALGORITHM 87 is very slow.

ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been c1ertified before.
We find that, certainly for some forms of vector toi be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that 11tbeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 /\ B[k] < B[m] is true for
.at least one of the relevant values of k. In particula:r when matrix
A is set up by A[i] := i; for each i the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
tn is the time for complete generation of n! permut:rttions. Times
nre sealed relative to ts for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The a,ctual time ts
for Algorithm 202 on this machine was 100 seconds. r,. has the
usual definition Tn = tn/(n·tn-1).

TABLE I

Algorithm ta tr ta re I • t'7 1-'s
87 118 - - - --- -

102 2.1 15.5 135 1.03 1.08 1.1
130 - - - - -- -
202 1.7 12.4 100 1.00 1.00 1.00

87-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 88
EVALUATION OF ASYMPTOTIC EXPRESSION

FOR THE FRESNEL SINE AND COSINE INTE
GRALS

JORN L. CUNDIFF

Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNEL (u) Result: (frcos, frsin); value
(u);

comment This procedure evaluates the Fresnel sine and cosine
integrals for large u by expanding the anymptotic series given
by

S(u) == - - --= 1 - - + -- - · · · 1 cos (x) [' 1·3 1·3·5·7 J
2 V 27rx . (2x)2 (2x) 4

sin (x) [!.- _ 1·3·5+1-3·5·7·9 _ ···]
V27rX 2x (2x)3 (2x)6

snd

C(u) =!_sin (x) f"1 1·3 1·3·5·7 J
2 ~ L - (2x)2 + (2x)4 - · · ·

- cos~--[_!_ - 1·3·5 + 1·3·5·7·9 - .,.]
v'211"x 2x (2x)3 (2x) 5

in which x = 7rU
2 /2. Reference: PEARCEY, T. Table of the Fresnel

Integral to Six Decimal Places. The Syndics of the Cambridge
University Press, Melbourne, Australia (1956).;

begin pi := 3.14159265;. arg := pi X (u j2)/2; temp := 1;
argsq := 1/(4 X (arg j 2)); term :- -3 X argsq;
series := 1 +term; N := 3;

first: if temp = series then go to second; temp := series;
termi : = term;
term := -termi X (4 X N - 7) X (4XN - 5) X (argsq);
if abs(term) > abs(termi) then go to second;
series : = temp + term; N : == N + 1; go to first;

second: series2 : == ! X arg; temp : == 0; term : == series2;
N :== 2;

loop: if series2 = temp then go to exit; termi :== term;
term := -termi X argsq X (4XN -5) X (4XN-3);
if abs(term) > abs(termi) then go to exit;
temp : = series2; series2 : == temp + term;
N : = N + 1; go to loop;

exit: if u < 0 then half := -i else half :- !;
frcos := half+ (sin(arg) X series - cos(arg) + series2)/
(pi X u);
frsin :.== half - (cos(arg) X series2 + sin(arg) X series)/
(pi X u)

end FRESNEL;

88-P 1- 0

REMARK ON ALGORITHMS 88, 89 AND 90
EVALUATION OF THE FRESNEL INTEGRALS

[J. L. Cundiff, Comm. ACM, May 1962]
MALCOLM. D. GRAY

The Boeing Co., Seattle, Wash.
While coding these algorithms in FORTRAN for the IBM 7094,

modifications were required (both in the formulation and in the
language) before execution with any degree of speed and accuracy
could be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(u). This error is
contained in Algorithm 88 in the formula

1 sin (x)
C(u) = 2 - y27rx [] - ...

The first minus sign above should be a plus sign.
After the necessary modifications were made, the three al

gorithms were found to be too large and uneconomical for our
usage. A single algorithm, incorporatin~: these three procedures,
was written and is in current usage in a computer program which
requires several thousand evaluations of each Fresnel integral.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 89
EVALUATION OF THE FRESNEL SINE INTEGRAL
JOHN L. CUNDIFF

Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNELSIN (u) Result: (frsin); value u;
comment This algorithm computes the Fresnel sine integral

defined by,

S(u) - Lu sin Trt2/2 dt,

by evaluating the series expansion

where x == Tru2/2. Reference: PEARCEY, T. Table of the
Fresnel Integral to Six Decimal Places. The Syndics of the
Cambridge University Press, Melbourne, Australia (1956).;

begin Pi2 := 1.5707963; x := Pi2 x (u j 2); frsin := x/3;
frsqr := x j 2; N := 3; term :== (-x X frsqr)/6;
frsini : == frsin + term/7;

Loop: if frsin = frsini then go to exit; frsin : =: frsini;
term:= -term X frsqr/((2XN-1) X (2XN-2));
frsini := frsin + term/(4XN-1); N := N + 1;
go to Loop;

exit: frsin : = frsini X u
end FRESNELSIN;

REMARK ON ALGORITHMS 88, 89 AND 90
EVALUATION OF THE FRESNEL INTEGRALS

[.J. L. Cundiff, Comm. ACM, May 1962)
MALCOLM D. GRAY

The Boeing Co., Seattle, Wash.
While coding these algorithms in FoRTRAN for the IBM 7094,

modifications were required (both in the formulation and in the
llnnguage) before execution with any degree of speed :ind accuracy
could be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(u). This error is
1wntained in Algorithm 88 in the formula

1 sin (x)
C(u) = - - --= [] - .. · .

2 v2n

The first minus sign above should be a plus sign.
After the necessary modifications were made, the three al

g;orithms were found to be too large and uneconomical for our
usage. A single algorithm, incorporating these three procedures,
was written and is in current usage in a computer progratn which
requires several thousand evaluations of each Frei:mel integral.

89-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 90
EVALUATION OF THE FRESNEL COSINE INTE

GRAL
JOHN L. CUNDIFF

Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNELCOS (u) result: (frcos); value (u);
comment This algorithm computes the Fresnel cosine integral

defined by

C(u) == cos ~ dt, l
'U t2

0 2

by evaluating the series expansion

where x = 7rU2/2. Reference: PEARCEY, T. Table of the Fresnel
Integral to Six Decimal Places. The Syndics of the Cambridge
University Press, Melbourne, Australia (1956).;

begin pi2 :== 1.5707963; x :== pi2 X (u j 2); frcos ·== 1;
xsqr :== x j 2; N :== 3; term :=- -xsqr/2;
frcoi := 1 + (term/5);

loop: if frcoi =.frcos then go to exit; term :== -term X
xsqr/((2XN-2 X (2XN-3)); frcos := frcoi; frcoi :==
frcos + term/(4XN-3); N := N + 1; go to loop:

exits: frcos := u X frcos
end FRESNELCOS;

REMARK ON ALGORITHMS 88, 89 AND 90
EVALUATION OF THE FRESNEL INTEGRALS

[J. L. Cundiff, Comm. ACM, May 1962]
MALCOLM D. GRAY

The Boeing Co., Seattle, Wash.
While coding these algorithms in FoRTRAN for the IBM 7094,

modifications were required (both in the formulation and in the
language) before execution with any degree of speed and accuracy
could be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(u). This error is
contained in Algorithm 88 in the formula

1 sin (x)
C(u) = 2 - y271"X [] - ... ·

The first minus sign above should be a plus sign.
After the necessary modifications were made, the three al

gorithms were found t.o be too large and uneconomical for our
usage. A single algorithm, incorporating these three procedures,
was written and is in current usage in a computer program which
requires several thousand evaluations of each Fresnel integral.

90-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 91
CHEBYSHEV CURVE-FIT
ALBERT NEWHOUSE
University of Houston, Houston, Texas

procedure CHEBFIT(m, n, X, Y) ~ integer m, n; array X, Y;
-comment This procedure fits the tabular function Y(X) (given

n

as m points (X' Y)) by a polynomial p = L A. x•. This •-o
polynomial is the best polynomial approximation of Y(X) in
the Chebyshev sense. Reference: STIEFEL, E:. Numerical
Methods of Tchebycheff Approximation, U. of Wisc. Press (1959),
217-232;

begin array X[l :m], Y[l :m], T[l :m], A[O:n], AX[l :n+2J,
AY[l :n+2], AH[l :n+2J, BY[l :n+2J, BH[l :n+2l;

integer array IN [l:n+2J; real TMAX, H; integer i,
j, k, imax;

comment Initialize;
k := (m-1)/(n+l);
for 1 := 1 step 1 until n+l do IN [i] := (i-l)Xk + 1;
IN[n+2J := m;
START: comment Iteration begins;
for i := 1 step 1 until n+2 do

begin AX[i] := X[IN[i]J;
AY[i] := Y[IN[i]];
AH[i] := (-1) j (i-1)

end i;
DIFFERENCE: comment divided differences;
for i := 2 step 1 until n+2 do

begin
for.j := i-1step1 until n+2 do
begin BYUJ := AYLl];

BHLlJ := AHLlJ
end j;
for j := i step 1 until n+2 do
begin AYLlJ := (BYUJ -BY[j-1])/

end j;
end i;

_(AXLlJ -AX[j-i+l]);
AHLl] := (BH[j] -BH[j-1])/

(AX[j] -AX[j-i+l])

H := -AY[n+2J/AH[n+2J;
POLY: comment polynomial coefficients;
for i := 0 step 1 until n do

begin A[i] := AY[i] +AH[i) XH;
BY[i] := 0

end i;
BY[l] := 1; TMAX := abs(H); imax := IN[l];
for i := 1 step 1 until n do

begin
for j := 0 step 1 until i-1 do

begin
BY[i+l-j] := BY[i+l-j] -BY[i-j] XX[IN[i]J;
A[j] := A[j] +A[i] XBY[i+l-j]
end j;

end i;
ERROR: comment compute deviations;
for i := 1 step 1 until m do

begin T[i] -:= A[n];

91-P 1- 0

for j := 0step1 until n do T[i] := T[i] X[i] +A[n-j];
T[i] := T[i] -Y[i];
if abs(T[i]) < TMAX then go to Ll;
TMAX := abs(T[i]);
imax := i

Ll: end i;
for i := 1step1 until n+2 do

begin
if imax < IN[i] then go to L2;
if imax = IN[i] then go to FIT end
end i;

L2: if T[imax] X T[IN[i]] < 0 then go to L3;
IN[i] := imax;
go to START;

L3: if IN[l] < imax then go to L4;
for i := 1step1 until n+l do IN[n+3-i] := IN[n+2-i];
IN[i] := imax;
go to START;

L4: if IN[n+2J < imax then go to L5;
IN[i-2) := imax;
go to START;

L5: for i := 1step1 until n+l do IN[i] := IN[i+lJ;
IN[n+2J := imax;
go to START;

FIT: end CHEBFIT

CERTIFICATION OF ALGORITHM 91
CHEBYSHEV CURVEFIT [A. Newhouse, Comm.

ACM, May 1962]
ROBERT p. HALE
University of Adelaide, Adelaide, South Australia

The ca:EBFIT algorithm was translated into FORTRAN and
successfully run on an IBM 1620 when the following alterations
were made:
(a) 2nd line after

comment Initialize;
should read
for i: = 1step1 until n+l do JN[i]: = (i-1) X k + 1;

(b) 2nd and 3rd lines after
Poly: comment polynomial coefficients;

should read
begin A[i]: = AY[i+l] + AH[i+l] X H; BY[i+ll : = 'O

REMARKS ON ALGORITffM 91
CHEBYSHEV CURVE FIT [A. Newhouse, Comm.

ACM 5 (May 1962), 281; 6 (April 1963), 167]
PETER NA UR (Recd. 27 Sept. 1963)
Regnecentralen, Copenhagen, Denmark

In addition to the corrections noted by R. P. Hale [op. cit.,
April 1963] the following are necessary:

1. The arrays X, Y, and A cannot be declared to be local within
the procedure body.

2. The identifier A must be included as a formal parameter.

COLLECTED ALGORITHMS (cont.)

:3. It should be noted that the X[i] must form a monotonic
sequence.

·1. comment cannot follow the colon following a label. This
occurs in four places.

5. The end following go to FIT must be removed.
fn addition, a large number of details can be made more concise

and unnecessary operations can be eliminated. Also, it seems
desirable to produce the maximum deviation as a result.

CERTIFICATION OF ALGORITHM 91 [E2]
CHEBYSHEV CURVE-FIT [Albert Newhouse Comm.

ACM 5 (May H)62), 281; 6 (April 1963), 167; 7 (May
1964), 296]

J. BooTHROYD (Recd. 15 May 1967 and 5 Sept. 1967)
University of Tasmania, Hobart, Tasmania, Australia.

In addition to the corrections noted by R. P. Hale [oP. CIT.,

April 1963] and P. Naur [oP. CIT., May 1964], the following changes
are necessary:

1. The first statement should be k := entier((m-1)/(n+l))
2. A semi-colon should precede label Ll.

With ~these changes the pro.cedure ran successfully using Elliott
503 ALGOL.·

Although this procedure is an implementation of a finite algo
rithm, roundoff errors may give rise to cyclic changes of the
reference set causing the procedure to fail to terminate.

Algorithm 318 [J. Boothroyd, Chebysh'ev Curve-Fit(Revised),
Comm.ACM 10 (Dec. 1967), 801] avoids this cycling difficulty, uses
less than half the auxiliary array space of Algorithm 91 and, on
test, appears to be at least four times as fast.

91-P 2- RI

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 92
SIMULTANEOUS SYSTEM OF EQUATIONS AND

MATRIX INVERSION ROUTINE
DEREK JOHANN Ro EK

Applied Physics Laboratory of Johns Hopkins University,
Silver Spring, Maryland

procedure SIMULTANEOUS (U, W, C, X, B, n, kount, eps,
absf) ,

array U, W, C, X, B ; integer n, kount ;
real eps; real procedure absf;

comment This procedure solYes the problem Ux := b for the
vector x. It assumes the problem written in the form x'U' := b',
where ' denotes transpose. The procedure is completed in n
cycles and may be iterated kount times (kount ;;ii 6). The trans
pose of U is in U[,] and the row vector b' is in B. The integer n
is the dimension of U, and the solution row vector x' is in X.
The matrix C is a check of accuracy. It should have b' in its
first row, the first element b1 of b' along its main diagonal,
and zeros elsewhere. The real number eps checks to see how close
the actual result is to this theoretical one. Also if we let b' : =

(1, 0, · · · , 0), then this procedure finds the inverse W[,] of U.
The function absf finds the absolute value of its argument. The
procedure chooses the column vectors of U as the row vectors of
W in the 0th cycle of the first iteration. For all subsequent itera
tions, the row vectors of W, computed at the nth cycle of th£
last iteration, are the row vectors of W in the (Ith cycle

begin integer i, j, k, p ; real bh, bl, Z ;
for j := 1 step 1 until n do

for i := 1 step 1 until n do Wu, i] := U[i, j];
81: for j := 1step1 until n do

for i := 1 step 1 until n do C[i, j] := 0 ;
for j := 1 step 1 until n do

begin fork := 1step1 until n do
begin C[j, j] := C[j, j] + W[j, k] X U[k, j] end;
if j = 1 then Z := B[j]/C[j, j] else Z := l/C[j, j];
fork := 1 step 1 until n do

begin X[k] := Z X W[j, k];
W[j, k] := X[k]

end k;
for k := 1 step 1 until n do

begin if k = j then go to 82 else
for p := l step 1 until n do

C[k, j] := C[k, j] + U[p, j] X W[k, p];
if j = 1 then bh : = B [j] else bh : = 1 ;
if k = 1 then bl := B[j] else bl := O;
for p := 1step1 until n do
begin X[p] := bh X W[k, p] + (bl - C[k, jJ) X
W[j, p];

W[k, p] := X[p]
end p;

S2: if k = j /\ j = n then go to S3
end k;

end j;
83: for j := step 1 until n do

if absf (absf (C[j, j]) - absf (B[lJ)) > eps th,en go Lo 84;
go to 86;

S4: if kount > 0 then go to 85 else go to S6;
85: kount := kount - l;

go to Sl;

86: for j := step 1 until n do
X[j) := W[l, j];

87: end SIMULTANEOUS

92-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 93
GENERAL ORDER ARITHMETIC
MILLARD H. ·PERSTE:IN

Control Data Corp., Palo Alto, Calif.

procedure arithmetic (a, b, c, op);
integer a, b, c, op;
comment This procedure will perform different order arithmetic

operations with band c, putting the result in a. The order of the
operation is given by op. For op = 1 addition is performed. For
op = 2 multiplication, repeated addition, is done. Beyond these
the operations are non-commutative. For op = 3 exponentiation,
repeated multiplication, is done, raising b to the power c. Beyond
these the question of grouping is important. The innermost
implied parentheses are at the right. The hyper-exponent is
always c. For op = 4 tetration, repeated. exponentiation, is
done. For op = 5, 6, 7, etc., the procedure performs pentation,
hexation, heptation, etc., respectively.

The routine was originally programmed in FORTRAN for the
Control Data 160 desk-size computer. The original program
was limited to tetration because subroutine recursiveness in
Control Data 160 FORTRAN has been held down to four levels in
the interests of economy.

The input parameter, b, c, and op, must be positive integers,
not zero;

begin own integer d, e, f, drop;
if op = 1 then
begin a : = b + c; go to 1
end if op = 2 then d : = 0;
else d : = 1 ; e : = c; drop : = op - 1 ;
for f := 1step1 until e do
hegin arithmetic (a, b, d, drop);

d :=a
end;

1: end arithmetic

CERTIFICATION OF ALGORITHM 93
GENERAL ORDER ARITHMETIC [Millard H. Per

stein, Comm. ACM (June 1962)]
RICHARD GEORGE

Particle Accelerator Div. Argonne National Laboratory,
Argonne, Ill.
Algorithm 93 was programmed for the IBM 1620, using

"FORTRAN-recursion" (i.e., generous use of the copy rule). The
program ran without any modifications and was tested through
tetration. Further levels were available, but were too time
consuming to reach.

93-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 94
COMBINATION
JEROME KURTZBERG

Burroughs Corp., Burroughs Laboratories, Paoli, Pa.

procedure COMBINATION (J, N, K); value N, K; integer
arrayJ; integerN,K;

comment This procedure generates the next combination of N
integers taken Kat a time upon being given N, Kand the pre
vious combination. The K integers in the vector J(l) · · · J(K)
range in value from 0 to N - 1, and are always monotonically
strictly increasing with respect to themselves in input and
output format. If the vector J is set equal to ~1ero, the first·
combination produced is N -K, · · · , N -1. That initial combina
tion is also produced after 0, 1, · · · , N -1, the last; value in that
cycle;

begin integer B, L;
B := 1:

mainbody: if J(B)~B then begin A := J(B) - B-1;
for L := l step 1 until B do J(L) := L +A;
go to exit end;

if B = K then go to initiate;
B := B + 1; go to mainbody;

initiate: for B := 1step1 until K doJ(B) := N - K - 1 + B
exit: end COMBINATION

CERTIFICATION OF ALGORITHM 94
COMBINATION [J. Kurtzberg, Comm. ACM, June 1962]
RONALD w .. MAY

University of Alberta, Calgary, Alberta, Canada
Algorithm 94 was translated into FORTRAN for the IBM 1620

and run successfully with no corrections. The variable A, how
ever, has not been declared.

CERTIFICATION OF ALGORITHM 94
COMBINATION [J. Kurtzburg, Comm. ACM, June,

1962]
R. E. GRENCH*

Reactor Eng. Div., Argonne National Laboratory,
Argonne, Ill.
*Work supported by U.S. Atomic Energy Commission
Four changes were required in the algorithm.

l. The last sentence in the comment should read: That initial
combination is also produced after 0, 1, · · · , .K-1, the last
value in that cycle;

2. The integer A was declared;
il:. Parentheses were replaced by brackets in the embscript ex

pressions;
4:. A semicolon was inserted at the end of the initiate statement.

After the above changes were made the body of Algorithm 94
was tested on an LGP-30 computer using the Dartmouth College
ALGOL-30 translator. The body tested satisfactorily and the time
required to generate one J when K - 5 and N = 15 WfLS 30 seconds.

Various tests should be included if this algorithm is to be used
a.s a orocedure. These tests might include a statement to check if

94-P 1- 0

.K > N and if the initial value of J is correct These two possi
bilities were investigated and it was found that improper J's are
generated.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 95
GENERATION OF PARTITIONS IN PART-COUNT

FORM
FRANK STOCKMAL

System Development Corp., Santa Monica, Calif.

procedure partgen(c,N,K,G); integer N ,K; integer array c;
Boolean G;

comment This procedure operates on a given partition of the
positive integer N into parts ~ K, to produce a consequent
partition if one exists. Each partition is represented by the
integers c[l] thru c[K], where c[j] is the number of parts of the
partition equal to the integer j. If entry is made with G = false,
proc~dure ignores the input array c, sets G = true, and pro
duces the first partition of Nones. Upon each successive entry
with G =true, a consequent partition is stored in c[l] thru c[K].
For N = KX, the final partition is c[K] = X. For N = KX+r,
1 ~ r ~ K-1, final partition is c[K] = X, c[r] = 1. When entry
is made with array c = final partition, c is left unchanged and G
is reset to false;

begin integer a,i,j;
if -, G then go to first;
j := 2;
a:= C[l];

test: if a < j then go to B;
c[j] := 1 + c[j];
c[l] := a - j;

zero: for i := 2 step 1 until j - 1
do c[i] := O;
go to EXIT;

B: if j = K then go to last;
a := a+ j X c[j];
j := j + 1;
go to test;

first: G := true;
c[l] := N;
j := K + l;
go to zero;

last: G := false;
EXIT: end partgen

95-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 96
ANCESTOR
ROBERT w. FLOYD

Armour Research Foundation, Chicago, 1ll

procedure ancestor (m, n); value n; integer n; Boolean
array m;

comment Initially m [i, j] is true if individual i ii.s a parent of
individual j. At completion, m [i, j] is true if individual i is an
ancestor of individual j. That is, at completion m[i, j] is true
if there are k, l, etc. such that initially m[i, kJ, m[k, l], · · ·, m[p, j]
are all true. Reference: W ARSHALL, S. A theorem on Boolean
matrices, J.ACM 9(1962), 11-12;

begin
iinteger i, j, k;
for i :== 1 step 1 unti1 n do
for j : == 1 step 1 until n do
iif m [j, iJ then
for k : == 1 step 1 until n do
ff m [i, kJ then
m [j, kJ :== true
end ancestor

CERTIFICATION OF ALGORITHM 96
ANCESTOR [Robert W. Floyd, Comm. ACM, .June, 1962]
HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission

The body of this procedure was tested on the LGP-·30 using the
Dartmouth translator. After inclosing conditional statements in
begin end brackets (apparently necessary for this translator),
the procedure operated satisfactorily for the following matrices:

n=5, Time: 8'15"

FTTFF
FFFFT
FFFTF
FFFFT
FFFFF

FTTTT
FFFFT

- FFFTT
FFFFT
FFFFF

n = 6, Time: 13'15"

FTTFFF
FFFTFF
FFFFTF
FFFFFT
FFFFFF

FTTTTT
FFFTFT

- FFFTFT
FFFFFT
FFFFFF

n = 9, Time 31 '2"

FTTFFFFFF
FFFFTFFFF
FFFTTFFFF
FFFFFFFFT
FFFFFTTFF
FFFFFFFTF
FFFFFFFTF
FFFFFFFFF
·FFFFFTTFF

FTTTTTTTT
FFFFTTTTF
FFFTTTTTT
FFFFFTTTT

- FFFFFTTTF
FFFFFFFTF
FFFFFFFTF
FFFFFFFFF
FFFFFTTTF

96-P 1- 0

The correctness of these results was confirmed by inspection
of the network diagrams.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 97
SHORTEST PATH
ROBERT w. FLOYD

Armour Research Foundation, Chicago, Ill.

procedure shortest path (m, n); value n; integer n; array m;
comment Initially ni[i, j] is the length of a direct link from

point i of a network to point j. If no direct link exists, m [i, j] is
initially 1010. At completion, m [i, j] is the length of the shortest
path from i to j. If none exists, m [i, j) is 1010. Reference: WAR
SHALL, S. A theorem on Boolean matrices. J,ACM 9(1962), 11-12;

begin
integer i, j, k; r~al inf, s; inf := 1010;
for i := 1 step I until n do
for j := I step I until n do
if m [j, i] < inf then
for k := 1 step I until n do
if m fi, k] < inf then
begins := m [j, i] + m [i, k];
ifs < m [j, k] then m [j, kJ := s
end
end shortest path

97-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 98
EVALUATION OF DEFINITE COMPLEX LINE

INTEGRALS
JOHN L. PFALTZ

Syracuse University Computing Center, S;yracuse, N. Y.

procedure COMPLINEINTGRL(A, B, N, RSSUM);
valueA,B,N; realA,B,N; arrayRSSUM;

comment COMPLINEINTGRL approximates the complex line
integral by evaluating the partial Riemann-Stieltjes sum
L:7-1 f(zk)[Zi - Zt-d where a ~ t ~ b and Zk E (zi-1 , z1). The
programmer must provide 1) the procedures GAMMA(T, Z) to
calculate z(t) on r, and FUNCT(Z, F) to calculate function
values, and 2) the end points A and B of the parametric interval
and N the number of subintervals into which [a, b] is to be
partitioned;

begin integer I; real T, DELT; real array ZT, ZTL, DELZ,
ZK, PART[l:2]; RSSUM[l] := 0.0; RSSUM[2] := 0.0;
DELT := (B - A)/N; T :=A;

line: GAMMA(T, ZT);
if T = A then go to next;
for I := ~ step 1 until 2 do
begin

DELZ[I] := ZT[I] - ZTL[I]; end;
for I := 1 step 1 until 2 do
begin

ZK[I] := ZTL[I] + DELZ[I]/2.0; end;
FUNCT(ZK, FZ);
PART[l] := FZ[l] X DELZ[l] - FZ[2] X DELZ[2];
PART[2] : = FZ[l] X DELZ[2] + FZ[2] X DELZ[IJ;
for I := 1 step 1 until 2 do
begin

RSSUM[I] := RSSUM[I] +PART[!]; end;
if T < B - (0.25 X DELT) then go to next else go to

exit;
next: for I : = 1 step 1 until 2 do

begin
ZTL[I] : = ZT[I]; end;

T := T + DELT;
go to line;

exit: end COMPLINEINTGRL.

98-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 99
EVALUATION OF JACOBI SYMBOL
STEPHEN J. GARLAND AND ANTHONY w. KNAPP

Dartmouth College, Hanover, N. H.

procedure Jacobi (n,m,r); value n,m;
integer n, m, r;
comment Jacobi computes the value of the Jacobi symbol (n/m),

where mis odd, by the law of quadratic reciprocity. The param
eter r is assigned one of the values -1, 0, or 1 if mis odd. If m
is even, the symbol is undefined and r is assigned the value 2.
For odd m the routine provides a test of whether m and n are
relatively prime. The value of r is 0 if and only if m and n have
a nontrivial common factor. In the special case where mis prime.
r = -1 if and only if n is a quadratic nonresidue of m;

begin
integers;
Boolean p, q;
Boolean procedure parity (x); value x; integer x;

comment The value of the function parity is true if x is
odd, false if xis even;

begin
parity := x + 2 >< 2 '¢ x

end parity;
if-, parity (m) then begin r := 2; go to exit end;
p := true;
loop: n : = n - n + m X m;

q := false;
if n ~ 1 then go to done;

even: if --, parity (n) then
begin

q :=--, q;
n := n + 2;
go to even

end n now odd;
if q then if parity ((mj2 - 1)+8) then p := -, p;
if n = 1 then go to done;
if parity ((m-1) X (n-1} + 4) then p := --, p;
s := m; m := n; n := s; go to loop;

done: r := ifn = 0 then 0 else ifp then 1 else -1;
exit: end Jacobi

REMARK ON ALGORITHM 99
EVALUATION OF JACOBI SYMBOL [S. J. Gar

land and A. W. Knapp, Comm. ACM 6, June 1962]
RONALD w. MAY

University of Alberta, Calgary, Alberta, Canada

One syntactical error was found in this procedure. It occurs
in the. second if statement following the label even. The state-
ment

if q then if parity ((mj2-1)+8) then
p := -, p;

might be changed as follows.
if q then go to CHECK;

next 1: if n = 1 then go to done;
CHECK: if parity ((mi 2 - 1) + 8) then

P := -, Pi
go to next l;

99-P 1- 0

The two statements begmnmg with CHECK could be inserted
before the label done and after the.statement go to loop;,

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 100
ADD ITEM TO CHAIN-LINKED LIST
PHILIP J. KIVIAT

United States Steel Corp., Appl. Research Lab., Monroe
ville, Penn.

procedure inlist (t,info,m,list,n,first,flag,addr,listfull);
integer n,m,first,flag,t; integer array info,list,a.ddr;
comment inlist adds the information pair {t,info} to the chain-

link structured matrix list (i,j), where tis .an order key ~ 0, and
info(k) an information vector associated with t. info(k) has di
mension m, list(i,j) has dimensions (n X (m+3)). flag denotes
the head and tail of list(i,j), and first contains the address of the
first (lowest order) entry in list(i,j). addr(k) is a vector con
taining the addresses of available (empty) rows in list(i,j).
Initialization: list(i,m+2) = flag, for some i ~ n. If list(i,j) is
filled exit is to listfull;

begin integer i, j, linkl, link2;
Q: if addr [lJ = O; then go to listfull; i : = 1;
1: if list [i,lJ ~ t

then begin if list [i,2J ~ 0 then begin linkl := m+2;
link2 : = m +3; go to 2 end; else begin if
list [i,m+2J = flag then begin i := flag;
linkl := m+3; link2 := m+2; go to 3 end;
else begin i := i+l; go to 1 end end end;

else begin linkl := m+3; link2 := m+2 end;
2: if list li,link2J ~ flag

then begin k := i; i :=list [i,link2J;
if (link2 = m+2 /\ list [i,lJ ~ t) V

(link2 ~ m+2 /\ list [i,lJ > t) then go to 4;
else go to 1 end;

else begin list [i,link2] := addr [1] end;
3: j : = addr [lJ; list [j,linklJ : = i;

list [j,link2] := flag; if link2 = m+2 then
first := addr [IJ; go to 5;

4: j : = addr [l]; list [j,linkl J : = list [i ,linkl];
list [i ,linkl J : = list [k,link2] : = addr ll J;
list (j ,link2] : = i;

5: list (j,1] := t; for i := 1step1 untiJ m do
list [j,i+lJ :=info [i]; for i := 1step1 until n-1 do
addr [i] := addr [i+lJ; addr fnl := 0

end inlist

100-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 101
REMOVE ITEM FROM CHAIN-LINKED LIST
PHILIP J. KIVIA.T

United States Steel Corp., Appl. Res. Lab., Monroeville,
Penn.

procedure outlist (vector ,m,list,n,:6.rst,flag,addr);
integer n,m,first,fiag; integer array vector,list,addr;
comment outlist removes the first entry (information pair with

lowest order key) from list(i,j) and puts it in vector(k);
begin integer i;
for i :== 1step1 until m+l do vector[i] :=list lfirst,i];
for i := n-1 step -1until1 do addr [i+IJ := addr [i];
addr [1 J : == first;
if list [first,m+3J = flag then

begin list [l,m+2J :== flag; first :== 1;
for i :== 1 step 1 until n do addr [iJ := i end;

else begin first := list [first,m+3J;
list [first,m+2J :== flag end;
for i :== 1 step 1 until m+3 do list [a<ldr [1], i] :== 0
end outlist

101-P 1- 0

~OLLECTED ALGORITHMS FROM CACM

ALGORITHM 102
PERMUTATION IN LEXICOGRAPHICAL ORDER
G. F. SCHRACK AND M. SHIMRAT
University of Alberta, Calgary, Alberta, Canada

procedure PERMULEX(n,p);
integer n; integer array p;
comment Successive calls of the procedure will generate all

permutations p of 1,2,3,· · · ,n in lexicographical order. Before the
first call, the non-local Boolean variable 'flag' must be set to
true. If after an execution of PERMULEX 'flag' is false
additional calls will generate further permutations--if true ali
permutations have been obtained; '

begin integer array q[l:nJ; integer i, k, t; Boolean flag2;
if flag then

begin for i := 1 step 1 until n do
p[iJ : = i; flag2 : = true; flag : = false;
go to EXIT
end initialize;

if flag2 then
begin t := p[nJ; p[nJ := p(n-lJ; p(n-lJ := t;
flag2 : = false; go to EXIT
end bypass;

flag2 := true; for i := n-2 step -1 until 1 do
if p[iJ < pfi+lJ then go to A;
flag : = true; go to EXIT;

A: fork := 1 step 1 until n do q[kJ := O;
for k : = i step 1 until n do q[p[kJJ : = pfkJ;
fork := p(iJ + 1 step 1 until n do
if q[kJ ~ 0 then go to B;

B: p[i] := k; q[k] := O;
fork := 1 step 1 until n do
if q[k] '¢ 0 then begin i := i + 1; p[iJ := q(kJ end
else if i ~ n then go to EXIT;

EXIT:
end PERMULEX

REMARKS ON:

ALGORITHM 87 [G6]
PERMUTATION GENERATOR

[John R. Howell, Comm. ACM 5 (Apr. 1962), 209)
ALGORITHM 102 [G6]
P:ERMUTATION IN LEXICOGRAPHICAL ORDER

[G. F. Schrak and M. Shimrat, Comm. ACM 5 (June
(1962), 346)

ALGORITHM 130 [G6]
P:ERMUTE

[Lt. B. C. Eaves, Comm. ACM 5 (Nov. 1962), 551)
ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN
LEXICOGRAPHICAL ORDER

[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517)

102-P 1- RI

R. J. ORD-SMITH (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)

Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM 5 (Aug. 1962), 434], there appears to be room for im
provement. Theoretically a "best" lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.

ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell,f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > O /\ B[k] < B[m] is true for
at least one of. the relevant values of k. In particular when matrix
A is set up by A[i] := i; for each i the Boolean expression above is
false on ~he first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
tn is the time for complete generation of n ! permutations. Times
are scaled relative to ts for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time t8

for Algorithm 202 on this machine was 100 seconds. Tn has the
usual definition Tn = ln/(n·tn-1).

TABLE I

Algorithm te t1 t.s re r1 1-'8
87 118 - - - - -

102 2.1 15.5 135 1.03 1.08 1.1
130 - - - - - -
202 1.7 12.4 100 1.00 1.00 1.00

COLLECTED ALGORITHMS FROM CACM

ALGO.lUT.HlVl 103
SIMPSON'S RULE INTEGRATOR
Guy F. KuNcIR
UNIV AC Division, Sperry Rand Corp., San Diego, Calif.

procedure SIMPSON (a, b, f, I, i eps, N);
value a, b, eps, N; · integer N;
real a, b, I, i, eps; real procedure f;

comment This procedure integrates the function f(x) using a
modified Simpson's Rule quadrature formula. The quadrature is
performed over j subintervals of [a,bJ forming the total area I.
Convergence in each subinterval of length (b-a)/2n is indicated
when the relative difference between successive three-point and
five-point area approximations

Aa.; == (b-a) (go + 4g2 + g4)/(3·2n+l)
Ao,; = (b-a)(go + 401 + 202 + 4ga + 04)/(3·2"+2)

is less than or equal to an appropriate portion of the over-all
tolerance eps (i.e., l(Ao,; - Aa,;)/A&.; I~ eps/2nwith n ~ N).
SIMPSON will reduce the size of each interval until this con
dition is satisfied.

Complete integration over [a,b] is indicated by i = b. A value
. a ~ i < bis indicates that the integration was terminated, leav

ing I the true area under fin [a,i]. Further integration over li,bJ
will necessitate either the assignment of a larger N, a larger eps,
or an integral substitution reducing the slope of the integrand in
that interval. It is recommerided that this procedure be used
between known integrand maxima and minima.;

begin integer m, n; real d, h; array g[0:4], A[0:2], S[l:N, 1:3J;
I := i := m :== n := O;
g[OJ := f(a);
g[2J := f((a + b)/2);
g[4J := f(b);
A[O] := (b - a) X (g[O] + 4 X g[2] + g[4])/2;

AA: d := 2jn; h :== (b - a)/4/d;
g[lJ := f(a + h X (4 X m +1));
g[3J := f(a + h X (4 X m + 3));
A[l] :== h X (g[O] + 4 X g[l] + g[2]);
A[2] : == h X (g[2J + 4 .x g[3J + g[4J);
if abs (((A[l] + A[2]) - A[O])/(A[l] + A[2])) > eps/d

then begin m : = 2 X m; n : = n + 1;
if n > N then go to CC;
A[O] := A[l]; S[n,1] := A[2J;
S[n,2J := g[3]; S[n,3] :== g(4J;
g[4J := g[2]; g[2] :== g[lJ; go to AA

end
else begin I :== I+ (A[l] + A[2J)/3;

m : = m + 1; i : = a + m X (b - a) /d;
BB: if m = 2 X (m + 2) then

begin m : = m + 2; n : = n - 1; go to BB end
if (m ¢. 1) V (n ¢. O) then

begin A[O] := S[n,1]; g[O] := g[4];
g[2J :== Sln,2J; g[4] :== S(n,3J; go to AA end

end
CC: end SIMPSON

103-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 104
REDUCTION TO JACOBI
H. RuTISHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure m21 (n, a, b, c, inform); value n;
integer n; array a, b, c; procedure inform;
comment.: m21 transforms symmetric bandmatrix

(a[l] b[l] c[l]

I b[l] a[2] b[2] c[2]___ 0
c[l] b[2] a[3] b[3]

.....___
.....___

c[2k
.....___

........... '- c[n--2]

l a[n-1] b[n--1] 0

"-c[n-2] b[n-1] a[n]

represented by the arrays a, b, c by orthogonal transformation
to Jacobi form which is represented by the arra.ys a, b. The
method is described in H. RuTISHAUSER, "On Jacobi rotation
patterns," to appear in Proc. Symposium in Experimental
Arithmetic, Chicago, Apr. 12-14, 1962, Sect. 5. Note that decla
rations must be given for the arrays a, b, c with subscripts
ranging from 1 to n. Also procedure inform must be declared.
It may serve to use the Jacobi rotations occurring inside m21
also for other purposes;

begin
real p, g, d, s;
integer k, j;
b[n] := c[n] := c[n-1]: = O;
fork := 2 step 1 untiJ n-1 do
begin

for j := k step 2 until n-1 do
begin

if k=j then
begin

p := sqrt(b[k-l]j2 + c[k-l]j2);
if p=O then go to ex;
d := b[k-1]/p;
s :== -c(k-1]/p;
b[k-1] :== p;
c[k-1] := 0

end k=j
else

begin
p := sqrt(c[j-2]j2+gi2);
if p = 0 then go to ex;
d := c(j-2]/p;
s := -g/p;
c[j-2] := p;
p := dXb[j-1]-sXc[j-1];
c[j-1] := sXb[j-l]+dXc[j-1];
b[j-1] := p

end j;¢:k;
common: g := 2Xb[j]XdXs;

p := a[jJXdXd-g+a[j+l]XsXs;
b[j] := (a[j]-a[j+l])XdXs+b[j]X(dXd-sXs);
a[j+l] := a[j]XsXs+g+a[j+lJX4Xd;
a[j] := p;
p := dXc[j]-sXb[j+l];
b[j+l] := sXc[jJ+dXb[j+l];

c[j] := p;
g := -sXc[j+l];
c[j+l] := dXc[jHJ;
inform (n, j, d, s);

104-P 1- 0

comment: The Jacobi rotation which has been performed
in this turn of the j-loop is A := UT AU with

0

U= d 8

-s d
0 1

1

where the d's and s's are located at the crosspoints of
rows and columns j and j + 1;

end j;
ex: end k
end m21

COLLECTED ALGORITHMS FROM CACM

ALGOlUTHM 105
NEWTON MAEHLY
F. L .. BAUER AND J. STOER

.Johannes Gutenberg-Univ~rsitat, Mainz, Germany
procedure Newton Maehly (a, n, z, eps);

value n, eps;
array a, z;
integer n;
realeps;
comment The procedure determines all zeros z[l:n] of the

polynomial p(x) := aro1 x xjn + ... + a[n] of order n, if p(x)
has only real zeros which have to be all different. The zeros
z[i] are ordered according to their magnitude: z[l]>z[2]>
· · · >z[n]. The approximations for each zero will be improved
by iteration as long as abs(xl-xO) >eps X abs(xl) holds
for two successive approximations xO and xl;

begin Teal aa, pp, qq, xO, xl;
integer i, m, s;
array b, p, q[O:n-1];
procedure Horner(p, q, n, x, pp, qq);

value n, x;
array p, q;
real pp, x, qq;
integer n;

begin real s, sl;
integer i;
s := sl := O;
for i := 0 step l untiJ n-1 do
begins := sxx+p[i]; sl := slXx+q[i]; end;
pp := sxx+p[n]; qq := sl;
end;
p(O] := aa :== a[O]; xO := pp := O; s := sign(a[O]);
for i := 1 step 1 until n do

if s X a[i] <0 then
begin if pp=O then pp := i;

if xO<abs(a[i]) then xO := abs(a[i]);
end;

xO := if pp=O then 0 else l+exp(ln(abs(xo/aa))/pp);
comment xO is a first appro:Ximation for the largest zero which

may be printed out at this point of the program;
for i := 0step1 until n-1 do b[i] :== (n-l)Xa[i];
form :== 1 step 1 uhtil n do

begin
iteration:
Horner (a, b, n, xO, pp, qq); xl :- xO-pp/qq;
if abs(xl-xO)>epsXabs(xl) then
be~in xO :- xl;

comment xO is the la.st approximation for the zero
being improved, which may be printed out at this
point;

go to iteration;
end;

z[m) :- xl; .
comment z(m] :- xl is the mth zero of the polynomial;
pp :- b[O] :- b[O] - a.a; q[O] :- pp;
if m<n then

beJlin for i :- 1 step 1 until n-1 do
begin pp :- p[i] :- xlXp[i-lJ+a(i);

pp :- b[i] :- b(i)-pp;
q[i) :- xlXqU-ll+pp;

105-P 1- 0

end;
Horner (p, q, n-1, xl, pp, qq);

xO :== xl-pp/qq;
comment xO .is a first approximation for the

end
end

next zero;

end Newton Maehly;

CERTIFICATION OF ALGORITHM 105
NEWTON MAEHLY [F. L. Bauer and J. Stoer, CoMM.

ACM, July 1962]
JOANNE KONDO

Burroughs Corp., Pasadena, Calif.
Algorithm 105 was successfully run OICl Burroughs 220 computer

after the following correction had been made:
for i := 0 step 1 until n - 1 do b[i] := (n-1) X a[i]

changed to
for i := 0 step 1 until n-1 do b[i] := (n-i) X a[i].

The followmg polynomials were tested for real roots using this
algorithm:

polynomial

(1) x3 - 2x2 - 5x + 6
(2) x6 - 15x4 + 85x3 - 225x2 + 27 4x - 1~~

epsilon

0.0000001
0.000001

accuracy
10-s
10-6

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 106
COMPLEX NUMBER TO A REAL POWER
MARGARET L. JOHNSON AND "'W"ARD SANGREN
Computer Applications, Inc., San Diego, California
procedure POWC (x, y, w, A, B); value x, y, w;

real x, y, w, A, B; ·
comm.ent This procedure takes a complex number (x+iy) to

a real power w. The result is A+iB= (x+iy)w. This procedure
must be used with caution because although it iEJ formally cor
rect, it may not give the desired results. For example, if w is a
reciprocal integer it does not follow that the desired power
(a root) will be calculated;

begin real THETA, PHI, R;
if x>O then begin THETA :== 0.0; go to SOL 1 end;
if x<O/\y~O then begin THETA :== 3.1415927;

go to SOL 1 end;
if x<O/\y<O then begin THETA := 3.1415927;

go to SOL 1 end;
ifx=O/\y==OthenbeginA :== B :== 0.0; goto RETURN end:
if x=O/\y<O then begin PHI:= 1.5707963; go to SOL 2 end;
if x=O/\y>O then begin PHI := -1.5707963;

go to SOL 2 end;
SOL 1: PHI := arctan (y/x)+THETA;
SOL 2: R :== sqrt (xXx+yXy);

R := exp (wXln(R));
A:= RXcos (wXPHI);
B := RX sin (wXPHI);

RETURN: end POWC

REMARK ON ALGORITHM 106
COMPLEX NUMBER TO A REAL POWER [Mar

garet L. Johnson and Ward Sangren, Comm. ACM
5, Jul. 1962]

GRANT. w. ERWIN, JR.
The Boeing Co., Renton, Wash.

The comment "if Wis a reciprocal integer it does not follow
that the desired power (a root) will be calculated" might better
read "if W is the reciprocal of an integer N, the procedure will
calculate an nth root, but possibly not the particular nth root
desired. E.g. w = l, x == -1, y == 0 uields A == !, B' == h/3 rather
than the simpler A == -1, B == 0."

The comment should be made that it iS assumed that the arctan
function yields a result between -?r /2 and 7r /2.

The following four corrections should be made:
(1) if x<O /\ y < 0 then begin THETA: = 3.1415927;

shoul,d read :

(2)
shoul,d read:

(3)
shoul,d read:

(4)
should .read:

···THETA: == -3.14159241';

go to RETURN end:

go to RETURN end;

if x == 0 /\ y<O • ..

if x - 0 /\ y>O .. ·

if x - 0 /\ y > 0

if x - 0 /\ y < 0 ...

106-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 107
GAUSS'S METHOD
~AY W. Cou~Ts
University of Missouri, Columbia, Mo.

procedure gauss (u, a, y);
real array a, y; real temp; integer u;
comment This procedure is for solvmg a system ot

linear equations by successive elimination of the un
knowns. The augmented matrix is a and u the number of
unknowns. The solution vector is y. If the system hasn't
any solution or many solutions, this is indicated by go
to stop;

begin
integer i, j, k, m, n;
n := O;

ckO: n := n+l;
fork := n step 1 until u do if a[k, n]:;o60 then go to ckl;
go to stop;

ckl: if k=n then go to ck2;
form :- n step l until u+l do

begin
temp : =· a[n, m]; a[n, m] : = a[k, m]; a[k, m] : == temp

end;
ck2: for j := u+l step-1 until n do a[n, j] :- a[n, j]/a[n, n];

for i := k+l step 1 until u do
for j := n+l step 1 until u+l do
a[i, j] := a[i, j]-a[i, n]Xa[n, j];
if n:;o6u then go to ckO;
for i := u step-l until 1 do

begin
y[i] := a[i, u+l]/a[i, i];
fork := i-1 ste1>-l until 1 do
a[k, u+l] := a[k, u+l)-a[k, i]Xy[ij

end end;

REMARK ON ALGORITHM 107
GAUSS'S METHOD [J. W. Counts, Comm. ACM,

July 1962]
P. NAUR

Regnecentralen, Copenhagen, Denmark
Algorithm 107 cannot be recommended since it does not search

for pivot and therefore will yield poor accuracy (cf. Remarks on
Algorithm 42 above).

CORRECTION TO EARLIER REMARKS ON AL
GORITHM 42 INVERT, ALG. 107 GAUSS'S METHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, 38-40.]
P. NAUR

Regnecentralen, Copenhagen, Denmark
George Forsythe, Stanford University, in a private communi

cation has informed me of two major weaknesses in my remarks on
the above algorithms:

1) The computed inverses of rounded Hilbert matrices are com-

107-P 1- 0

pared with the exact inverses of unrouncled Hilbert matrices m
stead of with very accurate inverses of the rounded Hilbert
matrices.

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such matrices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub
stantiate the claims I have made for them.

To obtain a more valid criterion, without going into the con
siderable trouble of obtaining the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Order

2
3
4
5
6
7
8
9

Maximum deviation from elements of tlie 1mi"t matrix

INVERSION II

-1.4910-8
-4.7710-7
...:...9.5410-6
-7.3210-4
-1.6110-2
-5.7810-l
-1.2010-2
-4.91101

gjr

-1.4910-8
-8.3410-7
-3.4310-5
-4.5810-4
-1.4210-2
-5.4710-l
-1.38101
-2. 22101

Ratic

1.0
0.57
0.28
1.6
1.1
1.1
8.7
2.2

This criterion supports Forsythe's cr.iticism. In fact, on the
.basis of this criterion no preference of INVERSION II or gjr can
be made.

i The calculations were made in the Gnrn ALGOL system, which
has floating numbers of 29 significant bit:3.

COLLECTED ALGORITH.:MS FROM CACM __________; __ ~

ALGOlt!THM 108
DEFINITE EXPONENTIAL INTEGRALS A
YURI A. KRUGLYAK

Kharkov State University, Kharkov, U.S.S.R., AND
DONALD R. WHITMAN
Case Institute of Technology, Cleveland; Ohio

real procedure As (n, b); value n, b; integer n; · real b;
comment: This procedure· computes a value. of integral

An-i (1, b) == J~ xn-1exp(-bx) dx for any given positive integer, n,
and any positive real parameter, b, by the recursion formula
An(l, b)==A0 (1, b)+(n/b)An.;-1(1, b) with Ao(l, b)==exp(-b)/b;

begin integer m; real db; real array a[l:n];
a[l] :==exp (-b)/b;

if n==l then go to exit;
comment integral a[l]==Ao(l, b) was evaluated;

db :== 1/b;. for m :== 2 step 1 until n do a[in] ·==
a[lJ+dbX (m-l)Xa[m-1];.

comment integral a[n]==An-1 (1, b) was evaluated;
As : == a[nJ end As;

CERTIFICATION OF ALGORITHM 108
DEFINITE EXPONENTIAL INTEGRALS A [Yuri

A. Kruglyak and Donald R. Whitman, Comm. ACM 5
(July 1962)]

YURI A. KRUGLYAK

Kharkov State University, Kharkov, U.S.S.R. and
DONALD R. WHITMAN
Case Institute of Technology, Cleveland, Ohio

Integrals An(l,b) == J~ xnexp(-bx)dx occur in physical problems
involving spheroidal coordinates, particularly in quantum chem
istry calculations. This algorithm was programmed for the Bur
rough's 220 computer using Burrough's Algebraic Compiler. The
program was used to compute tabl~s of An (1,b) in the ranges
n==0(1)15, and b==0.01(0.01)30.14. For exampie, for n==0(1)15, and
b==0.25 and b==24.0, the results below were obtained. These are
compared with the results (columns 3 and 5) obtained by James
Miller, John M. Gerhauser, and F. A. Matsen [Quantum Chemistry
Integrals and Tables, University of Texas Press, 1959].

b=O. 25 (Miller b-24.0 (Miller
n b=0.25 et al.) b=24.0 et al.)

0 .31152031, 01 . 31152031322856, 01 . 15729727' -11 .15729727267830, -11
.15576015, 02 .15576015661428, 02 .16385132, -11 . 16385132570656, -11
.12772332, 03 . ffi72332842371, 03 .17095154,-11 .17095154982051, -11

3 .15357950, 04 .15357951442168, 04 .17866621, -11 .17866621640586,-11
4 . 24575835, 05 . 24575837510601, 05 .18707497 ,-11 .18707497541261,-11
5 . 49151976, 06 . 49151986541516, 06 .19627122, -11 .19627122588926, -11
6 .11796476, 08 .11796479885167' 08 . 20636507' -11 . 20636507915061, -11
7 .33030132, 09 .33030143989988, 09 .21748707 ,-11 . 21748708743056,-11
8 . 10569642. 11 .10569646079911, 11 . 22979295' -11 .22979296848848. -11
9 .38050711, 12 . 38050725887992' 12 . 24346962' -11 . 24346003586148. -11

10 .15220284, 14 . 15220290355200' 14 . 2587 4294' -11 . 2587 4295428724' -11
11 . 66969248, 15 . 66969277562880, 15 . 27588778, -11 . 27588779339328' -11
12 . 32145238, 17 .32145253230182, 17 . 29524115' -11 . 29524116937494,-11
13 .16715523, 19 .16715531679695, 19 .31721955,-11 . 31721957275639' -11
14 . 93606928, 20 . 93606977 406291, 20 . 34234200, -11 . 34234202345285' -11
15 . 56164156, 22 . 56164186443775, 22 .37126102,-11 . 37126!_23733633' -11

The accuracy is at least six significant figures over the entire
range. This accuracy is completely satisfactory for all quantum
chemical calculations.

108-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 109
DEFINITE EXPONENTIAL INTEGRALS B
YURI A. KRUGLYAK

Kharkov State University, Kharkov, U.S.S.R., AND

DONALD R. WHITMAN

Case Institute of Technology, Cleveland, Ohio
real procedure Bs(n, a); value n, a; integer n; real a;
comment This procedure computes a value of the integral

Bn-1(a)-f!~ x"-1 exp(-ax)dx for any given positive integer, n,
and any real parameter, a. If I a I< alim an expansion of
exp(-ax) is used, otherwise the recursion formula B"(a) ==
[(-l)"ea-e-0 +nBn-1 (a)]/a with bo(a) -2 sinh(a) /a is used. The
value of a.lim depends upon the highest n appearing in the
calculations and upon the maximum errors in the last significant
digits in the library procedures. For example, we have used
alim-8 for nmu==16 with gamma-lXl0-8• The intrinsic func
tion mod(E1 , Es) which requires two integer arguments, is the
conventional modulus;

begin integer m; real alim, delta, gamma, r, epsilon,
s, k, a2, omega, da, jp, jm, ql, q2; real array
b[l:n]; if a-o then

Ll: .begin if mod(n-1, 2)-0 then
L2: begin b[n] :== 2/n; go to exit end L2;
comment integral b[n] = Bn-1(0) for odd n was evaluated;

b[n] := O; go to exit end Ll;
comment integral b[n] = Bn-1(0) for even n was evaluated;

if abs(a) alim then
L3: begin delta := gamma; if mod(n-1, 2)==0 then
L4: begin r := 2/n; epsilon :- rXdelta; s :- r;

k := O; a2 := aj2;
Even: k :-= k+2;

r :- rXa2X (n+k-2)/(kX (k-l)X (n+k));
s := s+r; if r>epsilon then go to Even;
b[n] :- s+r;

go to exit end L4;
comment integral b[n]-Bn-1(a) for odd n and I a I <alim was

evaluated;
r :== 2Xa/(n+l); omega :- abs(rXdelta);

s := r; k :=- 1;
a2 := aj2;

Odd: k :- k+2;
r :== rXa2X (n+k-2)/(kX (k-l)X (n+k));

s :- s+r; if a.bs(r)>omega then go to Odd;
b[n] :- -(s+r); go to exit end L3;

comment integral b[n]-Bn-1(a) for even n and I a l<alim was
evaluated;

da :== 1/a; jp := daXexp(a); jm :- (daj2)/jp;
b[l] := jp-jm;

if n=l then go to exit;
comment integral b[l] - Bo(a) for I a li.i:;alim was evaluated;

ql :- -1; q2 :== 1; form:- 2 step 1 until n do
LS: begin b[m] :== qlXjp-jm+q2X1laXb[m-1];

ql :- -ql; q2 :- q2+1 end LS;
comment integral b[n]-Bn-1(a) for integer ni.i:;2 and I a ji.i:;alim

was evaluated;
exit: Bs :- b[n] end Bs;

109-P 1- 0

CERTIFICATION OF ALGORITHM 109
DEFINITE EXPONENTIAL INTEGRALS B [Yuri A.

Kruglyak, D.R. Whitman, Comm. ACM 6 (July 1962)]
YURI A. KRUGLYAK

Kharkov State University, Kharkov, U.S.S.R., and
DONALD R. WHITMAN

Case Institute of Technology, Clev~eland, Ohio

Integrals B .. (a) = f-:::_~ X"exp(-ax)dx occur in physical problems
involving spheroidal coordinates, particularly in quantum chem
istry calculations. This algorithm was :programmed for the Bur
roughs-220 computer using a Burroughs Algebraic Compiler. The
program was used to compute tables of B .. (a) in the ranges
n==0(1)15, and a==0.00(0.01)32.54. For example, for n=0(1)15 and
a=0.25, and a==24.0 the results below were obtained. These are
compared with the results (columns 3 and 5) obtained by James
Miller, John M. Gerhauser, and F. A. Matsen [Quantum Chemistry
Integrals and Tables, University of Texas Press, Austin, 19S9].

a-0.25 (Miller
n a-0.25 et al.) 111-24.0

a=24.0 JMiller
et .)

0 . 20208984, 01 • 20208985344663 • 01 . 11037134, 10 • 110371342208, 10
1 - .16771064, 00 - .16771066117520. 00 -.10577253, 10 - . 105772536282. 10
2 .67921322, 00 • 67921324506375, 00 .10155696, 10 .101556964184, 10
3 - .10074584, 00 - .10074585827159, 00 - . 97676725, 09 - . 976767216847. 09
4 .40806479, 00 • 40896480211998, 00 .9·4091887, 09· • 9400i8880936, 09

5 -. 72008754,-01 - . '72008756636929. -01 -.110768866, 09 - . 907688654174, 09
6 .29268836, 00 . 292681!37517905. 00 • ~17679129, 09 • 8769ii258533, 09
7 - . 56030292. -01 - .56030294023170,-01 - • E14798262, 09 - • 847982638338, 09
8 .22792911, 00 .22792912573392, 00 . Ei2105258, 09 • 821052542631, 09
9 - • 45856272, -01 - .ii856272976462,-01 -. i'9581870, 09 - • 796818718590, 09

10 .18664760, 00 .18ii6476i544688, 00 • i'7212229, 09 • 772122289331, 09
11 - . 38809718, -01 - . '38800fl.9373731, -01 - . i'4982404, 09 - . 749824039467. 09
12 .15803198, 00 .15803200452627. 00 • i'2880141, 09 . 728801402343, 09
13 -.33640562,-01 - . 33640563670387. -01 - • i'0894600. 09 ".'"". 708945995807. 09
14 .13702696, 00 • i'i702696892367. 00 . ti9016158, 09 .690161591189, 09
15 - . 29686662. -01 - . 29686663616401, -01 - . ,17236245, 09 -.672362427~. 09

The accuracy is at least six significant figures in the ranges
mentioned above. This accuracy is enough for the majority of
quantum chemistry calculations. ·

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 110
QUANTUM MECHANICAL INTEGRALS OF

SLATER-TYPE ORBITALS
YURI A. KRUGLYAK

Kharkov State University, Kharkov, u:s.S.R., AND

DONALD R. WHITMAN

Case Institute. of ·Technology, Cleveland, Ohio

real procedure INTSOLI (n, r, za, ab, As, Bs) Result:
(s; il, i2, i3); value n,· r, za, zb; integer n; real r, za, zb;
real array a[1:8], b[l:g], G[1:2Xn]; integer anay bc[1:2Xn,
1 :2Xn]; real procedure As, Bs;

comment Procedure INTSOLI computes the quantum mechan-
ical integrals s = (1/l~ioo 11/l~fo) (overlap integral),

il = (1/l~~oo I Za * /rai 11/l~~o) (exchange integral),
i2=(1/l~~oo I Zb*/rb;, 11/l~'oo) (coulomb integral),

and . i3=(1/l~~o I Za*/rai 11/l~fo) (coulomb integral).
Here 11/l~'zm) is a Slater-type orbital of electron 1(centered on
atomic nucleus a. The integer n is the effective principal quan
tum number with values 1, 2, 3 and 4. Za*=zci and Zb*=zb
are effective nuclear charges. rbi is the distance of electron
i from nucleus b. The input parameter r is the distance be
tween the two centers a and b. All physical quantities ·are
given in atomic units;

begin integ~r q, t, c, m;
real g, zsa, zsb, ks, p, pt, lilya, s, kl, exc, il, pppt,
k2, sue, i2, pmpt, ptmp, k3, i3;
bc[l, 1) := bc[2, 1] := bc[2, 2] := 1;

for q := 3 step 1 until 2Xn do
:L6: begin bc[g, 1] := 1; fort := 2 step 1 until g-1 do

bc[q, t] := bc[q-1, t-l]+bc[q-1, t];
bc[q, q] := 1 end L6;

1comment binomial coefficients bc[q, t]=<~=~) were computed

using the recursion formula (i) -c~=D+(q~ 1);
:procedure As(n, b) Result: (a[n]); value n, b;; integer n;

real b;
,comment procedure As computes a value of integral An-i(l, b)

[see Algorithm 108, "Definite Exponential Inte
grals A," by Yuri A. Kruglyakand D .. R. Whitman,
Comm. ACM (July 1962)]. Any identifier occurring
within the As is specified to be local to the As;

begin integer m; real db; a[l] := exp(.-b)/b;
if n=l then·go to exitAs; db := 1/b;
for m :== 2 step 1 until n do a[m] := a[l] +
dbX (m-l)Xa[m-1]

exitAs: end As;
procedure Bs(n, a) Result: (b[n]); value n, a;; integer n;

real a;
comment procedure Bs computes a value of integral Bn_1 (a)

[see Algorithm 109, "Definite Exponential Inte
grals B" by Yuri A. Kruglyak and D.R. Whitman,
Comm. ACM (July 1962)]. Any identifier occurring
within the Bs is specified to be local to the Bs;

begin integer m; real alim, delta, gamm:~, r, epsilon,
s, k, a2, omega, da, up, jm, ql, q2;
if a=O then begin if mod(n-1, 2)=0
then begin b[n] := 2/n; go to exitBs end;

110-P 1- 0

b[n] := O; go to exitBs end;
if abs(a)<alim then begin delta := gamma;

comment we have used alim=8 and gamma-1x10-·s;
if mod(n-1, 2)=0 then begin r := 2/n;

epsilon := rXdelta;
s := r; k := O; a2 := aj2;

Even: k := k+2;
r .- rXa2X (n+k-2)/((kX (k-l)X (n+k));

s := s+r; if r>epsilon .then go to Even;
b[n] := s+r;

$0 to exitBs end; r := 2Xa/(n+l);
omega := abs(rXdelta);

s : = r; k : = 1; a2 : = a j2;
Odd: k := k+2;

r := rXa2X (n+k-2)/(kX (k-l)X (n+k));
s := s+r; :if abs(r)>omega then go to Odd;

b[n] :,,,; - (s+r); go to exitBs end; da := 1/a;
jp := daXexp(a);

jm := (daj2)/jp; b[l] := jp-jm;
if n=l then go to exitBs;

ql :== -1; q2 := 1; for m :== 2 step 1 until n
do begin b[m] := q1Xjp-jm+q2XdaXb[m-1];
ql := -ql; q2 := q2+1 end

exitBs: end_ Bs;
g :== 1; form :=.1step1 until 2Xn dog := g/m;

G[2Xn] := g;
comment 1/(2n}!=G[2Xn] was evaluated;

zsa ·:= za/n; zsb :== zb/2; ks := (r/2)j(n+3)X
(2X.zsa)j(n+l/2)Xzsbj(5/2)XG[2Xn]j(l/2);
p : = rx (zsaj-zsb) /2;

pt := rX (zsa-zsb)/2;
for c := 1step1 until n+3 do

ABSI: begin As(c, p) Result: (a[c]);
Bs(c, pt) Result: (b[c])

end ABSI;
S: lilya := O; form := 0 step 1 until n do lilya :=

lilya+bc[n+l, m+l]X (a[n-m+2]X (b[m+IJ+
b[m+3])-b[m+2]X (a[n-m+l]+a[n-m+3]));
s := ksXlilya;

11: kl :== ksX2Xza/r; exc := O;
form :== 0 step 1 until n-1 do

exc := exc+bc[n, m+l]X (a[n-m+llX (b[m+IJ+
b[m+3])-'-b[m+2]X (a[n-m]+a[n-m+2]));
i1 := klXexc;

12: pppt := p+pt; k2 := (r/2)j(2Xn)X (2Xzsa)j
(2X n + 1) XzsbX G[2X n];
for c := 1step1 until 2Xn do

BA2: begin As(c, ·pppt), Result: (a[c]);
Bs(c, pppt) Result: (b[c])

end BA2; sue := O;
form :== 0 step 1 until 2Xn-1 do

sue := sue+bc[2Xn, m+l]Xa[2Xn-m]Xb[m+ll;
i2 := k2Xsue;

13: pmpt := p-pt; ptmp := .:._pmpt;
k3 := (r/2)j4X2XzaXzsbj5;

for·c :== 1 step 1 until 4 do
AB3: begin As(c, pmpt) Result: (a[c]);

Bs(c, ptmp) Result: (b[c])
end AB3; i3 := k3X (a[2]X (b[IJ+2Xb[3])-b[2]X

(a[1]+2Xa[3])+a[4]Xb[3]-a[3]Xb[4]) end
INTSOLI;

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 110
QUANTUM MECHANICAL INTEGRALS OF

SLATER-TYPE ORBITALS [Yuri A. Kruglyak and
Donald R. Whitman, Comm. ACM 5 (July 1962)]

YuRI A. KRUGLYAK

Kharkov State University, Kharkov, U.S.S.R. and
DONALD R. WHITMAN

Case Institute of Technology, Cleveland, Ohio

This procedure was written and tested in the Burroughs 220
version of the ALGOL language in the spring of 1961 at Case Insti
tute of Technology. The program was used to compute tables of
quatnum mechanical integrals s, il, i2, and i3 in the ranges:
r(A) = o.64(0.02) 1.40(0.10)3.10; zb * == 0.25(0.50)3. 75, 3.9o, 4.25,
4.55, 4.75, 5.20, 5.25; Z,.*=0.7, 1.0 for n=l; 1.3(1.0)3.3 for n=2;
0.2, 2.2(1.0)4.2 for n=3; and 0.2, 2.2, 3.2 for n=4. The table at
the right shows typical results compared with values from Inte
graltaf eln zur Quantenchemie by H. Preuss (Springer-Verlag, 1957),
Zweiter Band. Accuracy is at least six significant figures in the
ranges mentioned above. This is ample for the overwhelming
majority of quantum chemistry calcnlations.

Certification of INTSOLI

Input Preuss' Result

K. and W. Result

n r za zb Notation

0.5 0.1
1 5 0. 5 0.2 B 0.14841691 [la 3b) 0.148417

4.5 4.0
1 1 4.5 8.0 8 0.35203437 [la 3b) 0.352034

10 10
2 1 20 20 s 0.250321:33Xl0-1 [2a 3b) 0.250321XlO-I

0.5 0.1
I 5 0.5 0.2 il 0.22058816 5[a-1 I la 3b) 0.220588

4.5 4.0
1 1 4.5 8.0 il 0.96587055 l[a-: I la 3b) 0.965871

10 10
2 1 20 20 ii 0. 58102500Xl0-t l[a-1 I 2a 3b) 0.581025Xl0-1

-~------ -
0.5 0.5

1 1 0.5 0.2 i2 0.44818080 l[b-J I la la) 0.448181
0.5 0.5

1 5 0.5 0.2 i2 0. 97641725 5[b-1 I la la] 0.976417
10 10

2 1 20 20 i2 0. 999995:30 t [b-1 I 2a 2aJ o.1ooooox101
-----~-~-- -

0.5 0.5
1 1 10 i3 0.262174:32 l[b-1 I 3a 3a) 0.262174

5 5
1 1 10 10 i3 0.110930l1X10t l[b-1 I 3a 3a) 0.110929Xl01

10 10
1 1 10 20 i3 0.103001:37X10t l[b-1 ! 3a 3a) 0.103001 x101

Table
No.

23

30

40

59

66

76

41

·15

58

41

50

58

110-P 2:- 0

COLLECTED ALGORITHMS FROM CACM
'--~

ALGOKLTHM 111

MOLECULAR-ORBITAL CALCULATION OF
MOLECULAR. INTERACTIONS

Yum A. KRUGLYAK

Kharkov State Dniversity, Kharkov, U.S.8 .. R., AND

DoN ALD R. \V HITMAN

Case Institute of Technology, Cleveland, Ohio

real procedure SOLI(n, za, zh, rem, coef2, rl, El, drl, drkl,
ace, accl, rk2, rkl, dr2, asy, rk3, dr3, As, Bs, RESULT) Result:
(ra, Ep, Em, ca, ca2, cb, cb2, DEa, DEb, s, il, i:2,· i3, haa, hab,
hbb); value n, za, zb, rem, coef2, rl, El, drl, rkl, drkl; ace,
accl, rk2, dr2, asy, rk3, dr3; integer n, rem; J"eal otherwise;
real uray a[l :8], b[l :8], G[l :8], zsap (1 :9], rp[l :8], ans[l :rem];
real procedure As, Bs, RESULT;

comment This procedure calculates a one-electron approxima··
tion to the energy of interaction of molecular species by the
use of the molecular-orbital (MO) method with a linear com
bination of Slater-type orbitals (LCSTO). The wave function
used is I <P)=<'a 11/t~oo)+cb I 1/t~10 \where I 1/t~1m) is a STO centered
on nucleus a. The effective principal quantum number n takes
the integral value 1, 2, 3 or 4. The Hamiltonian ·used iB: Xab=
-!i/2-Za*lra-Zb*/rb+Za*Zb*/Rab. Here Za*. and Zb* are
effective nuclear charges, r" and rb the distances of the electron
from nucleus a and b, and Rab is the distance between nuclei
a and b. The calculations are in atomic units, while the output
ra is in Angstroms and DEa and DEb are in kcal/gm-ion. Ab
breviations of the following type are used: Za = Za *, ra=
Rab(A), haa=(l/t~oo J Xab 11/t~oo), DEa=D(a, b+electron), el=
(1/t~oo I -!i/2-Za*/ra J 1/t~oo). The values of coefl and
coef2 are 627.71 ·(kcal/gm-ion) and 0.5291A, respectively.
rl, El, drl, dr2, dr3, ace, accl, and asy are control parameters.
The accuracy of the calculations (ace, accl) is lXl0-6• The

initial values of Rab and l!L are· conveniently: ;l =0.4(A), and
El=lOO(a.u.). The steps are: drl=O.l, dr2=0.4, and dr3=0.0l,
all in Angstroms. asy is -1x10-3 (a.u.);

begin integer q, t, c, m, f; real otherwise;
procedure As(n, b) Result: (a[n]); value n, b; integer n;

real b;
comment any identifier occurring within the As is specified

to be local to the As;
begin integer m; real db; a[l] := exp(-b)/b;

if n=l then go to exitAs; db := l/b;
for m := 2 step 1 until n do a[m] :== a[lJ+dbX

(m-l)Xa[m-1]
exi tAs: end As;
procedure Bs(n, a) Result: (b[n]); va]ue n, a; integer n;

comment

begin

Even:

rea] a;
any identifier occurring within the Bs is specified

to be local to the Bs;
integer m; real otherwise; if a=O 1then begin if

mod(n-1, 2)=0 then begin b[n] := 2/n;
go io exitBs end; b[n] := O; go to exitBs end;
if abs(a) <alim then begin delta. := gamma;
if mod(n-1, 2)=0 then begin r := 2/n;

epsilon := rXdelta; s := r; . k := O; a2 :== aj2;
k := k+2; r := rXa2X (n+k-2)/(k(k-l)(n+k));

s := s+r; if r>epsilon then go to Even;
b[n] := s+r; go to exitBs end;

r :- 2Xa/(n+l): omega := abs(rXdelta);

111-P 1- 0

s := r; ~:=l; a2 := af2;
Odd: b= k+2; r := rXa2X (n+k-2)/(k(k-l)(n+k));

.. s. := s+r; if abs(r)>omega then go to Odd;
b[n] := -(s+r); go to exitBs

end; da := l/a; jp := da.Xexp(a);
jm := (daj2)/jp; b[l] :- jp-jm;

if n=l then go to exitBs; ql := -1; q2 := I;
· for m : = 2 step 1

until n do begin b[m] := qlXjp-jm+
q2XdaXh[m-:--l];

ql := -:ql; q2 :="= .q2+1 end
exi tBs : end Bs ;
procedure Result (coefl) ; re-al coefl ;
comment RESULT computes Ep, Em, ca, ca2, cb, cb2, DEa,

DEb, s, il, i2, i3, nn, haa, hab, hbb. Important:
RESULT and any identifier occurring within the
RESULT enter SOL! as nonlocal entities;

begin r := raXbr; rp[l] := r; for c := 2 step 1 until
n+4 do rp[c] := rp[c-l]Xrp[l]; p := rXsum;
pt := rXdif; ks := rp[n+3]Xzss;
for c:= 1 step 1 until n+3 do begin 4s(c, p)
Result: (a[c]); Bs(c, pt) .Result: (b[c]) end;
lilya := O; form := 0 step 1 until n do lilya :=
lilya+bc[n+l, m+l]X (a[n-m+2JX
(b[m+l1+b[m+3])-b[m+2JX (a[n-m+lJ
+a[n-m+3])); s := ksXlilya: lil2 := 2Xs;
kl := ksXza/r; exc := O; for m := 0 step 1
until n-1 do exc := exc+bc[n, m+l]X (a[n
m+lJX (b[m+lJ+b[m+3])-b[m+2]X (a[n-mJ+
a[n-m+2])); il := klXexc; pppt := p+pt;
k2 := rp[2Xn]Xzsbd; for c := 1 step 1 until
2Xn do begin As(c, pppt) Result: (a[c]);
Bs(c, pppt) Result: (b[c]) end; sue := O;
form := 0 step 1 untiJ 2Xn-l do sue :=
sue+bc[2Xn, m+l]Xa[2Xn-m]Xb[m+lJ;
i2 := k2Xsue; pmpt := p-pt;
ptmp .- -pmpt; k3 := rp[4]Xz5;
for c := 1 step 1 until 4 do begin As(c, pmpt)
.Result: (a[c]); Bs(c, ptmp) Result: (b[c]) end;
i3 := k3X (a[2]X (b[lJ+2Xb[3])-b[2]X (a[lJ+2X
a[3])+a[4]Xb[3]-a[3]Xb[4]);

conunent Two-center integrals s, il, i2, and i3 were computed
[see Algorithm 110, "Quantum Mechanical Integrals of Slater
Type Orbitals," by Yuri A. Kruglyak and D. R. Whitman,
Comm. ACM (July 1962)]; nn := zz/(2Xr); e2pnn := e2+nn;
haa :- el-e2+nn; hbb := e2pnn-i3; hab := e2pnnXs-il;
den .- 2-sXli12; bsr := haa+hbb-habXli12;
root := sqrt(bsrj2-2XdenX (haaXhbh-habj2));
Ep := (bsr+root)/den; Em := (bsr-root)/den;
ans[f] := Em; DEa := coef1X(e2-Em);
DEb := coeflX (el-Em); Emhaa :== Em-haa;
Emhbb :=. Em-hbb; ES := EmXs; habmES :== hab-ES;
caDcbl :- habmES/Emhaa; cbDca2 :== habmES/Emhbb;
if abs(Emhaa)>abs(Emhbb) then begin col := caDcblj2;
cb2 :== 1/(l+li12XcaDcbl+col); ca2 := cb2Xcol;
ca := sqrt(ca2); ch :== ca/caDcbl go to NATA end;
co2 := cbDca2j2; ca2 := l/(l+li12XcbDca2+co2);
cb2 :== ca2Xco2; ca := sqrt(ca2); ch := caXcbDca2

NATA: end RESULT;
Begin of program: bc[l, 1) := bc[2, 1] := bc[2, 2] :== 1;

for q := 3 step 1 until 8 do begin bc[q, 1) := l; for t :== 2

COLLECTED ALGORITHMS (cont.)

step 1 until q--1 do bc[q, t] :== bc[q-1, t-l]+bc[q-1, t];
bc[q, q] :== 1 end;

IZM: g :== 1; form :== 1 step 1 until 2Xn dog :== g/m;
G [2Xn]:==g; ·zsa :== za/n; zsap[l) :== zsaX2;
for c :== 2 step 1
until 2Xn+l do xsap[c] := zsap[c-l]Xzsap[l);
D := zsap[2Xn+l)XG[2Xn]; DS := sqrt(D);
el := -zsap[2]X0.125X (4Xn-3)/(2Xn-1);
zsb := zbX0.5; sum := zsa+zsb; dif := zsa-zsb;
zsl;>5 := zsbj5; zss := DSXsqrt(zsb5);
zsbd :== zsbXD; z5 := 2XzaXzsb5; zz := zaXzb;
e2 :== - (zsbj2)/2; br := 0.5/coef2; f := 1;
ans[l] := El; ra :== rl;

KOM: ra := ra+drl; if ra>rkl then ra :== ra+drkl;
f := f+l; RESULT (coefl); if ans [f]-ans[f-1];;;;;
ace then hegin if ra>rk2 then go to IZM;
go to KOM end; ansf := ans[f]; dl := ra;

CLEV: ra := ra+dr2; RESULT (coefl); if el<e2 then
begin if Em-el~ asy /\ra < rk3 then go to CLEV;
go to KHAH. end; if el~e2 then begin if Em-e2;;;;;
asy /\ra < rk3 then go to CLEV; go to KHAR end;

KHAR: ra := dl; ans[f-1] := ansf;
CASE: ra := ra-dr3; f := f+l; RESULT (coefl);

if ans[f)-ans[f-l]~accl then go to CASE;
go to IZM end SOLi;

111-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 112
POSITION OF POINT RELATIVE TO POLYGON
M. SHIMRAT

University of Alberta, Calgary, Alberta, Canada
J!JooJean procedure POINT IN POLYGON (n, x, y, xO, yO);
value n, xO, yO; integer n; array x, y; real xO, z,O;
uomment if the points (x[i], y[i]) (i = 1, 2, · · · , n) are-in

this cyclic order-the vertices of a simple closed polygon and
(xO, yO) is a point not on any side of the polygon, then the pro
cedure determines, by setting "point in polygon" to true,
whether (xO, yO) lies in the interior of the polygon;;

begin integer i; Boolean b;
.x[n + 1) := x[l]; y[n + 1) := y[l]; b := true;
for i :'= 1 step 1 until n do

if <v < vliJ = v > v[i + in "
xO - x[i] - (yO - y[i]) X (xfi + 1) - x[i])/(y[i + 1) - yli]) <0

then b := .., b;
POINT IN POLYGON := .., b;

•md POINT IN POLYGON

CERTIFICATION OF ALGORITHM 112
POSITION OF POINT RELATIVE TO POLYGON

[M. Shimrat, Comm. ACM, Aug. 1962]
RICHARD HACKER

The Boeing Co., Seattle Wash.

The Boolean procedure POI NT IN POLYGON was programmed
in FORTRAN ~or the IBM 7090. The algorithm gave satisfactory
results except for a case such as the following:

Let the polygon points be: (0, O), (1, 0), (2, 1), (1, 2), (0, 2).

In this case the procedure would not detect that the point (1, 1)
is in the polygon. However, the correct result was obtained by
ohanging:

if (y<y(i) as y > y[i+l])/\

to read:

if (yO~y[i] !!Iii! yO > y[i+l l) /\

112-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 113
TREESORT
ROBERT w. FLOYD

Computer Associates, Inc., Woburn, Mass.

procedure TREESORT (UNSORTED, n, SORTED, k); value
n, k;

integer n, k; array UNSORTED, SORTED;
conunent TREESORT sorts the smallest k elements of the n

component array UNSORTED into the k-component array
SORTED (the two arrays may be the same). The number of
operations is on the order of 2 X n + k X log2(n). The number
of auxiliary storage cells required is on the order of 2 X n. It is
assumed that procedures are available for finding the minimum
of two. quantities, for packing one real number and one integer
into a word, and for obtaining the left and right half of a packed
word. The value of infinity is assumed to be larger than that of
any element of UNSORTED;

begin integer i, j; a.rray m[1:2 X n - 1];
for i := 1step1 until n do m[n + i - 1] := pack (UNSORTED

[i], n + i - 1);
for i : = n - 1 step -· 1 until 1 do m[i] : = minimum (m[2 X i],

m[2 Xi+ 1]);
for j := 1step1 until k do

begin SORTED lil := left half (m[l]); i := right half (m[l]);
m[i] := infinity;

for i := i + 2 while i > 0 do m[i] := minimum (m[2 X i], m[2 X
i + 1))

end
end TREESORT

113-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 114
GENERATION OF PARTITIONS WITH CON-

STRAINTS
FRANK STOCKMAL

System Development Corp., Santa Monica; Calif.
procedure GP GENERATOR (N, K, H, p, F, .Z); integer

N, K, H; integer array p; Boolean F, Z;
,comment GP GENERATOR generates a partition of N into K

parts, no part greater than H. Each part~tion is represented by
the array of parts p[l] thru p[K], where p[l] ~ p[2] !;; · · · ~ p[K].
Initial entry is made with F = true and Z = trm' if parts = 0
are allowable, or F = true ~nd Z = false if only nonzero parts
are desired. Upon initial entry, procedure ignores the input
array p, sets F = false; and generates the initial parti
tion. · Subsequent calls made with F = fa1sc' will cause
procedure to operate upon the input partition to produce
another partition if one exists, so that all possible unpermuted
partitions with the specified constraints will be produced if GP
GENERATOR is allowed to operate upon its previous output.
When this scheme is followed, and initial entry is made with
F = true, Z = true, K = N, H = N, all possible un
permuted partitions of N will be produced. Upon generating
the last partition, procedure resets F to true. The input param
eters are restricted as follows: K ~ 1, H ~ 1, p[l] ~ p[2]
~ · · · ~ p[KJ. For Z = true, N is restricted to the range
0 ~ N ~ KH, and for Z = false, K ~ N ~ KH. A call should
not be made with p[l] - p[K]° < 2 and F = false;

begin integer a, b, i, j, q, r;
if F then go to first;
a := p[l] - p[2] - 2; j := 2;

test: if p[l] - p[j] ~ 2 1;hen go to divide;
a : = a - 1 + j X (p [j] - p [j + 1]) ; j : = j + 1 ; go to test;

first: if Z then go to alpha;
a:= N - K; p[KJ := O; go to beta;

alpha: a:= N; p[K] := -1;
b·eta: F := false; j := K;
divide: b := 11- 1 - p[j]; q := entier (a/b); r :=a - b X q;

for i := 1step1 until q do p[i] := H;
if q = K then go to last;
for i : = q + 1 step 1 until j do p[i] : = 1 + p[j];
p[q + 1] := r + p[q + 1];
if p[l] - p[KJ ~ 2 then go to exit;

,last: F := true;
exit: ·end CP GENERATOR

114-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 115
PERM
H. F. TROTTER

Princeton University, Princeton, N. J.
procedure PERM (x, n); value n;
integer n; array x;
comment This algorithm was inspired by the procedure

PERMUTE of Peck and Schrack (Algorithm 861 Comm. ACM
Apr. 1962) and performs the same function. Each call of PERM
changes the order of the first n components of x, and nl succes
sive calls will generate all n! permutations. A nonlocal Boolean
variable 'first' is assumed, which must be true when PERM is
first called, to cause proper initialization. The first call of PERM
makes 'first' false, and it remains so (unless changed by the
external program) until the exit from the (n!)th call of PERM.
At that time x is rest.ored to its original order and 'first' is made
true.

The excuse for adding PERM to the growing pile of permuta
tion generators is that, at the expense of some extra own storage,
it cuts the manipulation of x to the theoretical minimum of n!
transpositions, and appears to offer an advantage in speed. It
also has the (probably useless) property that the permutations
it generates are alternately odd and even;

begin own integer array p, d[2: n]; integer k, q; real t;
ifjirst then initialize:
begin fork : == 2 step 1 until n do

begin p[k] :== O; d[k] :== 1 end;
first : == false

end initialj.ze;
k := O;
INDEX: p[n] :== q :== p[n] + d[n];

if q = n then
begin d[n] :== -1; go to LOOP end;
if q ~ 0 then go to TRANSPOSE;
d[n] := 1; k := k + 1;
LOOP: if n > 2 then begin

comment . Note that n was called by value;
n := n - 1; go to INDEX end LOOP;

Final e,xit: q : == 1 ; first : == true;
TRANSPOSE: q :== q + k; t :== x[q];

z[q] :- x[q + 1]; x[q + 1] :== t
end PERM:

CERTIFICATION OF ALGORITHM 115
PERM [H. F. Trotter, Comm. ACM (Aug. 1962)]
G. F. SCHRACK

University of Alberta, Calgary, Alb., Canada
PERM was translated into FORTRAN for the IBM 1620 and it

performed satisfactorily. Timing tests were carried out under the
same conditions as for PERMUTATION (Algorithm 71) and
PERMUTE (Algorithm 86).

115-P 1- 0

PERM is indeed the fastest permutation generator so far en
countered. For n = 8, PERM is 25% faster than PERMUTE
(989 against 1316 sec.). The values for r" are (for a definition of
rn, see Certification of Algorithm 71, Comm. ACM, Apr. 1962):

n 6 i 8

rn .92 .95 .98

CERTIFICATION OF ALGORITHM 115
PERM [H. F. Trotter, Comm. ACM, Aug. 1962]
E. s. PHILLIPS

Michigan State University, East Lansing, Mich.
PERM was translated into FORTRAN for the CDC 160-A, and

it performed correctly. For n = 8, this method requires 2822
seconds. For comparison, Algorithm St:I, PERMUTE, was trans
lated and run on the same machine, requiring 3710 seconds as
opposed to 1316 when run on an IBM 1620.

COLLECTED ALGORITHl\IIS FROM CACM

ALGORITHM 116
COMPLEX DIVISION
ROBERT L. SMITH

Stanford University, Stanford, Calif.

procedure complexdiv (a, b, c, d) results: (e, f);
value a, b, c, d; real a, b, c, d;
comment complexdiv yields the complex quotient of a + ib

divided by c + id. The method used here tends to avoid arith
metic overflow or underflow. Such spills could otherwise occur
when squaring the component parts of the denominator if the
usual method were used;

begin real r, den;
if abs (c) ~ abs (d) then
begin r := d/c;

den := c + r X d;
e := (a+ b X r)/den;
f := (b - a X r)/den;

end
else
begin r := c/d;

den := d + r X c;
e :=·(a X r + b)/den;
f := (b X r - a)/den;

end
end complexdiv

116-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 117
MAGIC SQUARE (EVEN ORDER)
D. M. COLLISON

Elliott Brothers (London) Limited, Borehamwood, Herts.,
England

procedure magiceven (n, x); value n; integer array x; in·
, teger n;

comment the method of Devedec for even n is described in
"Mathematical Recreations" by M. Kraitchik, pp. 150-2. Enter
with side of square n to produce a magic square of the integers
1 - n j 2 in x, where n ;;;;; 4;

begin integer a, b, n2, nn; Boolean p, q, r;
n2 : = n + 2; nn : = n X n;
begin

procedure alpha (p, q, a, h); value p, q, a, h; integer p, q, a;
Boolean h;

Comment pattern 0/0/0/ · · ·
begin integer r;

for r : = p step 1 until q do begin
x[r, a] := if h then (a X n - n + r) else (nn - a X n +
1 + n - r); h := -,h end;

end alpha;
procedure beta (p, q, a, h); value p, q, a, h; integer p, q, a;

Boolean h;
comment pattern 1 - 1 - 1 - · · · ;

begin integer r;
for r : = p step 1 until q do begin

x[r, a]:= ifh then [nn - a X n + r) else (a X n + 1 - r);
h := -, h end;

end beta;

procedure gamma (p, q, a, h); value p, q, a, h; integer p, q, a;
Boolean h;

-eomment pattern/-/-/- · · · ;
begin integer r;

for r : = p step 1 until q do begin
x[r, a] := if h. then (nn - a X n + n - r + 1) else (a X n

+ 1 - r) ; h : = .., h end;
end gamma;
comment program begins;
p := q :== (n - (n + 4) X 4 = 0); r :==true;
for a :== 1step1 until (n2 - 1) do begin

beta (1, a - 1, a, r); alpha (a, n2 - 1, a, true);
x[n2, a] := if q then (nn - a X n + n2 + 1) else (nn - a X

n + n2);
alpha (n2 + 1, n, a, .., q);
q : = -, q; r : = .., r end;

alpha (1, n2 - 1, n2, -, p); alpha (n2 + 2, n, n2, false);
gamma (1, n2 - 1, n2 + 1, p); gamma (n2 + 2, n, n2 + 1, true);
q :== p; r :== true;
for a : = (n2 + 2) step 1 until n do begin

beta(l,n-a,a,q); x[n-a-f-1,a] :=aXn-a+l;
beta (n ·-a+ 2, n2 - 1, a, true);
if r then for b := n2, n2 + 1 do x[b, a] := nn - a X n +
n-b+l
else begin x[n2, a] := nn - a X n + n2;

x[n2 + 1, a] :=a X n - n2 + 1 end;
beta (n2 + 2, a - 1, a, -, r); alpha. (a, n, a, true);
q : == -, q; r : = -, r end;

117.;.p 1- 0

for a : = n2, n2 + 1 do for b : = n2, n2 + 1 do
x[b, a] := if p then (a X n - n + b) el:se (nn - a X n + n -

b + 1);
if -, p then begin

for a:== n2, n2 + 1 do x[n2 - 1, aJ :==a>< n - n2 + 2;
for b := n2, n2 + 1 do x[b, n2 + 2~ := n)(n2 - 2 X n +bend;

end end magiceven

CERTIFICATION OF ALGORITHMS 117 AND 118
MAGIC SQUARE (ODD AND, EVEN ORDERS)

[D. M. Collison, Comm. ACM, Au~;. 1962]
·D. M. COLLISON

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

Both algorithms were checked and timed, using a special ALGOL
program, with the Elliott ALGOL translator on the National
Elliott 803. The procedure for odd·orders was the slower:

Procedure Si;e of Square Time

Odd order 9 10 sec.
19 45 sec.

Even order 10 7 sec.
20 23 sec.

Because of the different methods used and the length of the even
order procedure it was decided not to combine the two. The
i:;mallest square of even order generated is given below:-

13 3 2 16
8 10 11 5

12 6 7 9
1 15 14 4

CERTIFICATION OF ALGORITHMS 117 AND 118
MAGIC SQUARES (EVEN. AND ODD ORDERS)

ru. M. Collison, [Comm. ACM, Aug. 1962)
P. NAUR

Regnecentralen, Copenhagen, DenmB~rk
MAGICEVEN needed the following correction: Within the

body of procedure beta a left square brncket: ... then [nn ...

should be .cha~ged to a left parenthesis: ... then (nn ...
With this correction it has run successfully in the GIER ALGOL

system. The squares of even orders from 4 to 20 were generated
and checked for magicity in rows and columns, but not in
diagonals.

The algorithm contains _11 pairs of superfluous parentheses (10
of which are in conditional expressions) and if the assignments to
n2 and nn are moved to the place just following "end gamma;"
the inner block becomes unnecessary.

MAGICODD ran without correction i111 GIER ALGOL and pro
duced a few reasonable-looking squares.

Run times are as follows:
Procedure Size of square Time

Magicodd 9 0.6 sec
19 2.5 sec

Magiceven 10 0.9 sec
20 2.3 sec

COLLECTED ALGORITHMS (cont.)

CERTIFICATIONS OF ALGORITHMS 117 and 118
MAGIC. SQUARE (ODD AND EVE!\T ORDERS)

[D. M. Collison, Comm. ACM, Aug. 1962]
K. M. BOSWORTH

I.C.T. Ltd., Blyth Road, Hayes, Middlesex, England
The statement within the Booleon procedure beta should be

changed from

x[r,a] := if h then [nn-aXn+r) else (a;Xn+l-r);
to

x[r,aJ := if h then (nn-aXn+r) else (aXn+l-r);

The procedures were then tested on magic squares of order
3 to 17 inclusive without fault.

117-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 118
MAGIC SQUARE (ODD ORDER)
D. M. COLLISON

Elliott Brothers (London) Limited, Borehamwood, Herts.,
England

procedure magicodd (n, x); value n; integer n; integer
array x;

comment for given side n the procedure generates a magic
square of the integers 1 - n i 2. For the method of De la
Loubere, see M. Kraitchik, "Mathematical Recreations," p.
149. n must be odd and n ~ 3;

begin integer i, j, k;
for i := 1 step 1 until n do

for j := 1step1 until n do x[i, j] := 0;
i := (n + 1) + 2; j := n;
for k : = 1 step 1 until n X n do begin

ifx[i, j] r!: 0 then begin i := i - 1; j := j - 2;
if i < 1 then i : = i + n; if j < 1 then j : = j + n end;

x[i, j] := k;
i : = i + 1; if i > n 1th en i : = i - n;
j : = j + 1 ; if j > n then j : = j - n;
end;

end magicodd

CERTIFICATION OF ALGORITHMS 117 AND 118
MAGIC SQUARE (ODD AND, EVEN ORDERS)

[D. M. C911ison, Comm. ACM, Aug. 1962]
D. M. COLLISON

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
Both algorithms were checked and timed, using a special ALGOL

program, with the Elliott ALGOL translator on the National
Elliott 803. The procedure for odd orders was the slower:

Procedure Si=e of Square Time

Odd order 9 10 sec.
19 45 sec.

Even order 10 7 sec.
20 23 sec.

Because of the different methods used and the length of the even
order procedure it was decided not to combine the two. The
smallest square of even order generated is given below:-

13 3 2 16
8 10 11 5

12 6 7 9
1 15 14 4

CERTIFICATION OF ALGORITHMS 117 AND 118
MAGIC SQUARES (EVEN AND ODD ORDERS)

[D. M. Collison, [Comm. ACM, Aug. 1962]
P. NAUR

Regnecentralen, Copenhagen, Denmark
MAG ICEVEN needed the following correction: Within the

body of procedure beta a left square bracket: ... then [nn ...

118-P l~ 0

should be changed to a left parenthesis: ... then (nn ...
With this correction it has run successfully in the GIER ALGOL

system. The squares of even orders from 4 to 20 were generated
and checked for magicity in rows and columns, but not in
diagonals.

The algorithm contains 11 pairs ofsuperfluous parentheses (10
of which are in conditional expressions) and if the assignments to
n2 and nn are moved to the place just following "end gamma;"
the inner block becomes unnecessary.

MAG ICODD ran without correction in GIER ALGOL and pro
duced a few reasonable-looking squares.

Run times are as follows:
Procedure Size of square Time

Magicodd 9 0.6 sec
19 2.5 sec

Magiceven 10 0.9 sec
20 2.3 sec

CERTIFICATION OF ALGORITHM 118
MAGIC SQUARE (ODD ORDER) [D. M. Collison,

Comm. ACM, Aug. 1962]
HENRY c. THACHER, JR.*

Reactor Engineering Div., Argonne National Lab.,
Argonne, Ill.
*Work supported by the U. S. Atomic Energy Commission.

The body of the procedure magicodd was tested on the LGP-30
using the Dartmouth ALGOL 60 translator. No syntactical errors
were found. The procedure generated odd-order magic squares
satisfactorily. For orders up to 9, times w1ere as follows (including
output on the Flexowriter):

Order

3
5
7
9

Time(sec)

171
422
804

1285
The 3 X 3 square was:

4
9
2

3 8
5 1
7 6

CERTIFICATIONS OF ALGORITHMS 117 and 118
MAGIC SQUARE (ODD AND EVEN ORDERS)

[D. M. Collison, Comm. ACM, Aug. 1962]
K. M. BOSWORTH

I.C.T. Ltd., Blyth Road, Hayes, Middlesex, England
The statement within the Booleon p1'0Cedure beta should be

changed from

x[r,a] := if :,'h then (nn-aXn+r) else (aXn+l-r);
to

x[r,a] := i'f/h .then (nn-aXn+r) 4else (aXn+l-r);

The procedures ·were then tested on magic squares of order
3 to 17 inclusive without fault.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 119
EVALUATION OF A PERT NETWORK
BURTON EISENMAN AND MARTIN SHAPIRO

United Nuclear Corp., White Plains, N. Y.
procedure pert (nmax, i, j, te, st, _emax, l, es, at);
•mmment An algorithm describill'g an iterative procedure for

evaluating a PERT network that permits the use of arbitrarily
ordered activities and event identifiers such that an upper
triangular matrix type of solution is unnecessary.

It has been observed by investigations of PERT networks,
that an N X N matrix whose rows are designated a:3 predecessor
and whose columns are designated as successor events, has an
entry in the (i, })-element representing the activity time re
quired in going from event i to event j. By elementary transfor- ·
mations, the matrix is transformed generally into an upper
triangular matrix. The resultant upper triangular matrix is well
ordered (i.e. any activity time appearing in a column is not
dependent upon those activity times which appear in columns
to the right of it).

This precise manipulation generally demands considerable
running time. By direct evaluation not requiring a collection of
elementary transformations, it is possible to evaluate the net
work with considerable reduction of running time;

integer nmax, emax;
real st;
integer array i, j, l;
real array te, es, at;
comment Given the total number of activities, mnax, the pre

ceding and succeeding event identifiers, in and in , the cor
responding expected time, te, for each activity, and the starting
time, st, of the network, this procedure computes the early start
and late finish times, es. and at. , for each event, l. , in the net
work;

begin
p•rocedure scan (e, t, l);
integer e, t;
integer array l;
comment Given the number of events, e-1, contained thus far

in vector array, l, and an event identifier in or in , stored in t,
this procedure scans the existing array, l, to determine whether
~he event should be added to the list or not. If it is to be added,
it becomes l. and e replaces the event identifier. If it is not
added, k replaces the event identifier.;

begin
integer

begin
begin

e1rld
end;

k;
if e - 1 then go to add;
fork := e-1 step -1 until 1 do
if t -= l[k) then
t := k;
go to out

a.dd: l[e] := t;

oiit:
end scan;

t :- e;
e:=e+l;

integer
real

begin

end;

n, e, s, t, k;
a, x;
e := l;
for n. : = 1 step 1 until nmax do
t := f[n];
scan (e, t, l);
j[n] :.= t;
t := i[n);
scan (e, t, l);
ifn] := 't

119-P 1- 0

comment By means of the switch, s, we will either compute the
activity times, at., and transfer the values to the early start
vector, es, , or we will compute at, ~ithout any transfer process,
in which case the late finish times will be obtained.;
emax := e - l;

sl:

s2:
begin
begin
bl:

b2:

ll:
l2:
end
end;

begin
begin
begin

s3:

end;

"nd;

begin

end;

l3:
end;

gl:

begin

end;

s := l;
~ := st;
k := emax;
for e : = 1 step 1 until emax do
at[e] := a;
for n := 1 step 1 until nmax do
if l[i[n]] > 0 then
switch s := bl, b2;
x := abs (at[i[n]]) + te[n];
if x > abs (at[j[n]]) then go to ll;
go to 12;
x := abs (at[i[n]]) - te[n];

if x < abs (at[j[n]]) then
at[j[n]) := - x;

for e : = 1 step 1 until emax do
if l[e] < 0 ihen
if at[e] < 0 then
l[e] : = abs (l[e]);
k:=k+l;
at[e] := abs (at[e]);

go to l3

go to 13

if at[e] ~ 0 then
l[e] := - l[e];
k:=k-1;
go to l3

go to s3;

if k ~ 0 then go to s2;
switch s := gl, g2;
s := 2;
for n =·= 1 step 1 until nmax do
t :-= i[n];
i[n] := j[n];
f[n] := t

COLLECTED ALGORITHMS (cont.)

a:= O;
for e : = 1 step 1 until emax do

begin es[e] := at[e];

end;

l[e] := abs (l[e]);
if at[e] > a then
a:= at[el

go to sl;
g2: fore := 1 step 1 until emax do

l[e] : = abs (l[e]);
end pert

CERTIFICATION OF ALGORITHM 119 [H]
EVALUATION OF A PERT NETWORK [Burton Eisen

man and Martin Shapiro, Comm. ACM 5 (Aug. 1962),
436]

L. STEPHEN CoLES (Recd. 10 Nov. 1964 and 7 Dec. 1964)
Carnegie Institute of Technology, Pittsburgh, Pa.

The procedure was tested on a CDC-G20, using the ALGOL

compiler developed by Carnegie Tech. Before compilation was
possible, the following modifications were required in order to
make it a correct ALGOL 60 procedure.

1. Insert after the end of scan
switch sw2 := gl, g2;

2. Modify comment 'BY means of the switch, s, · · ·
to read

comment By means of the switches, swl and sw2, · · ·
3. Modify begin switch s := bl, b2;

to read
begin switch swl := bl, b2; go to swl [s];

4. Modify switch s := gl, g2;
to read

go to sw2 [s];
With these changes the procedure was operated successfully on a
number of small test problem3.

119-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 120
MATRIX INVERSION II
RICHARD GEORGE*

Particle Accelerator Division Argonne National Labora
tory Argonne, Illinois
*Work supported by the U.S. Atomic Energy Commission.

procedure INVERSION II (n, a, epsilon, ALARM, delta);
comment This is a revision of Algorithm 58. It accomplishes in

version of the matrix a, with the result stored in matrix a. The
order of the matrix is n. If in the process of calculating, any
pivot element has an absolute value less than epsilon, there
will be a jump to the non-loc'al label ALARM. The variable delta
will contain the value of the determinant of the original matrix
on normal exit, zero or a very small number on exit to ALARM.;

value n;
array a;
real epsilon, delta;
integer n;
begin

array b, c[l :n]; real w, y;
integer array z[l:n]; integer i, j, k, l, p;
delta := 1.0;
for j := 1 step 1 until n do

z[j] := j;

for i := 1 step 1 until n do
begin

k := i; y := a[i, i]; l := ·i-1; p := i+l;
for j := p step 1 until n do

begin
w := a[i, j];

if abs(w) > abs(y) then
begin

k := j;

y := w
end;

end;
delt,a := delta X y;
if abs (y) < epsilon then go to ALARM;
y := i.o I y;
for j := 1 step 1 until n do

begin
c[j] := a[j, k];
a[j, k] := a[j, i];
a[j, i] := - c(j] X y;
bfj] := a[i, j] := a[i, j] X y

end;
a[i, i] := y;
1° := z[i];
z[i] := z[k];
z[k] := j;

for k : = 1 step 1 until l, p step 1 until n do
for j := 1 step 1 until l, p step 1 until n do

a[k, j] := a[k, j] - b[j] ~ c[k]
end;

for i := 1 step 1 until n do
begin

REPEAT: k := z [i];
if k=i then go to ADVANCE;
for j := 1 step 1 until n do

begin
w :=a [i, j];
a [i, j] := a [k, j];
a [k, j] := w

end;
p := z [i];
z [i] := z [k];
z [k] := p;
delta : = - delta;
go to REPEAT;

ADVANCE: end;
end

120--P 1- 0

CERTIFICATION OF ALGORITHMS 120 AND
MATRIX INVERSION BY GAUSS-JORDAN

INVERSION II [R. George, Comm. ACM Aug. 1962]
and gjr [by H. Rutishauser, quoted by H. R. Schwarz 1

Comm. ACM Febr. 1962]
P. NAUR

Regnecentralen, Copenhagen, Denmark
These two procedures were compared using the GIER ALGOL

system (30 bits for the normalized mantissa including sign). The
following changes (in part dictated by the requirements of the
compiler) were included:

INVERSION II: (1) Epsilon was included in the value part.
(2) The specification label ALARM was added.

gjr: (1) The value part: value n, eps was inserted. (2) The
second a in the formal parameter part was taken out.

With these changes both procedures ran smoothly through the
compiler. In order to obtain a comparison each of them was tested
as follows: With a given, rather large value of epsilon the pro-
cedure was called to invert a segment of the Hilbert matrix. Upon
alarm exit, the value of epsilon was divided by 10 and a fresh call
was made. In this way an estimate of the largest permissible
epsilon was obtained. When the inverse had been obtained, that
element of it which was most in error was found through a com
parison with the accurate inverse as calculated by means of
INVHILBERT (Algorithm 50, see certification above). A relative
error was obtained through division by the largest element of the
accurate inverse.

This process was carried out for segments of the Hilbert matrix
of orders 2 through 15. For orders above 9, the results of the in
version are dominated by errors. Below 9 we obtained the follow
ing output:

Inversion by INVERSION II
Maximum error Maximum error

Order eps Determinant Subscr. Error Relative

2 10-2 8. 33333331 o-2 2,2 2.9810-8 2.4810-9
3 10-3 4.629628410-4 2,2 5.0lio-5 2.6lio~7

4 lo-4 1.653431410-7 3,3 3.0610-2 4. 7210-6
5 lo-5 3. 749000110-12 4,4 1.38101 7. 7210-5
6 lo-7 5. 36018751 o-18 5,5 5. 78103 l.3lio-3
7 I0-8 4. 84855291 o-25 5,.5 3. 70105 2. 7710-3
8 I0-10 1.522100010-33 6~6 3.33109 7.8410-l

Similarly we got for gjr, and the ratio of errors of the two
procedures:

COLLECTED ALGORITHMS (cont.)

Inversion by gjr Ratio of errors
Maximum error Maximum error IN VERSION II

Order e'fJs Subscr. Error Relatif!e togjr

2 10-2 2,1 2.9810-8 2.4810-9 1.0
3 10-3 2,2 2.86io-6 1.4910-8 18
4 10-4 4,3 1.0710-4 1.6510-8 290
5 10-6 4,4 2.48 1.3910-5 5.6
6 10-7 5,5 4.05103 9.1810-4 1.4
7 10-8 5,5 4.32106 3.2410-2 .086
8 10-10 7,7 5.55107 1.3lio-2 60

Although the superiority of gjr, which searches for the pivot
in both columns and rows, over INVERSION II, which only
searches in the next column, is well brought out in the last column
of the second table the behavior for n = 7 is curious and ought to
be confirmed elsewhere.

As a further test both procedures were ·used to invert the
matrices produced by Algorithm 52, TESTMATRIX (see certifi
cation above). Again, the error of the inverse was found by a
comparison with the known inverse. The comparison of the two
procedures was made for orders 2 through 23 and revealed a sur
prisingly small difference of accuracy. Typical output was as
follows:

Jl..ocation and size of max. error Ratio of errors
INVERSION II gjr INVERSION II

Order Subscr. Error Subscr. Error to gjr

5 5,5 8.9410-8 5,5 8. 9410-8 1.00
10 10,10 3. 7610-6 10,10 3.5210-6 1.07
15 15, 15 2 .. 1210-5 15,15 1. 7810-5 1.19
20 20,20 6.8bo-5 20,20 6. 7110-5 1.02

The relative errors of the determinants calculated by INVER
SION II increased slowly with n, reaching 2.310-7 for n = 24.

Typical execution times were found as follows:

Order INVERSION II gjr

5 2 seconds 3 seconds
10 5 8
15 16 17
20 53 57

However, it should be noted that owing to the automatic
segmentation of the program into drum tracks in GIER ALGOL
the execution time mi~y vary somewhat from one program in which
a procedure is used to another. The above times do not, in fact,
refer to the same program.

CORRECTION TO EARLIER REMARKS ON AL
GORITHM 42 INVERT, ALG. 107 GAUSS'S METHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, :38-40.]
P. NAUR

Regnecentralen, Copenhagen, Denmark

George Forsythe, Stanford University, in a private communi
cation has informed me of two major weaknesses in my remarks on
the above algorithms :

J) The computed inverses of rounded Hilbert matrices are com
pared with the exact inverses of unrounded Hilbert matrices, in
stead of with very accurate inverses of the rounded Hilbert
matrices.

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such ma trices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub
stantiate the claims I have made for them.

120-P 2- 0

To obtain a more valid criterion, without going into the con
siderable trouble of obtaining the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Maximum deviation from elements of the unit matrix
------------~--~

Order INVERSION II gjr Ratic

2 -1.4910-8 -1.4910-8 1.0
3 -4.7710-7 -8.3410-7 0.57
4 -9.5410-6 -3.4310-5 0.28
5 -7.3210-4 -4.5810-4 1.6
6 -l.6lio-2 -1.4210-2 1.1
7 -5.7810-l -5.4710-l 1.1
8 -1.2010-2 -1.38101 8.7
9 -4.91101 -2.22101 2.2

This criterion supports Forsythe's criticism. In fact, on the
basis of this criterion no preference of INVERSION II or gjr can
be made.

The calculations were made in the GIER ALGOL system, which
has floating numbers of 29 significant bits.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 121
NORMDEV
DAVID SHAFER

University of Chicago, Chicago, Il1.
procedure NormDev(Random,A,x);

procedure Random; real A ,x ;.
comment 'NormDev' uses (1) a procedure 'Random(y)' as

sumed to produce a random number, 0 < y < 1, and (2) the
constant A = sqrt(2/pi) X integral [0:1] exp(-·xj2/2)dx, to
produce a positive normal deviate 'x';

begin real Yi
Random (x) ; if x > A then go to large;
x := x/A;
1: Random(y); if y < exp(-xj2/2) then go to EndND;

Random(x); go to 1;
large: x := (x - A)/(1 - A);
2: x := sqrt(l - 2 X log(x));

Random(y); if y < 1/x then go to EndND;
Random(x); go to 2;

EndND: end

CERTIFICATION OF ALGORITHM 121 fG5]
NORMDEV

[David Shafer, Comm. ACM 5 (S~pt. 1962), 482]
M. C. P1KE (Recd. 3 May 1965)
Statistical Research Unit of the Medical Research Coun

cil, U. Co~lege Hospital Medical School, London.
Algorithm 121 has the following error: The line

2: x :=sqrt (l - 2 X log (x));
should read

2: x := sqrt (l - 2 X ln (x));
With this correction N ormD~v has been run successfully on the
JCT Atlas computer with the Atlas ALGOL compiler.

121-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 122
TRIDIAGONAL MATRIX
GERAIW F. DIETZEL
Burroughs Corp., Pasadena, Calif.
procedure 'l'RIDIAG (n,A,U);
integer n; array A,U;
comment This procedure reduces a real symmetric matrix A of

order n to tridiagonal form (UT)AU (UT= transpose of U) by
a sequence of at most (n-1) (n-2)/2 binary orthogonal trans
formations. Also, the matrix U is calculated. [Cf. W. Givens,
"Numerical computation of the characteristic values of a real
symmetric matrix,'' Report ORNL157 4 (1954), Oak Ridge Nat.
Lab., Tenn., and D. E. Johansen, "A modified Givens method
for the eigenvalue evaluation of large matrices," J. ACM 8, 3
(1961)];

begin real fact,cl ,c2,locl ,loc2,temp; integer i,j,jl ,j2,j:3,j4,nl;
comment Set array U = identity matrix of order n;
for i := 1 step 1 until n do
begin

for j := i+l step 1 until n do U[i,j] .- U[j,i] = O;
U[i,i] := 1.0

end;
comment The reduction of the matrix A begins here. Only the

upper triangular elements of A are used in the computation;
nl := n - 2;
for i := 1 step 1 until nl do
begin

jl : = i + 1 j j2 : = i + 2 j
for j : = j2 step 1 until n do
begin
if A[i,j] = 0 then go to lab;
fact : = 1 / sqrt(A [i,j1Jt2 + A [i,j]j2);
cl :=fact X A[i,jl]; c2 :=fact X A[i,j];
locl := A[jl,jl]; loc2 := A[}l.,j];
A[jl,jl] := clj2 X locl + 2.0 X cl X c2 X loc2 + c2j2 X

A[j,j];
A[il,j] := -cl X c2 X.locl + (clj2 - c2j2) X loc2 +cl X

c2 X A [j,j];
A[j,j] := c2j2 X locl - 2.0 X cl X c2 X loc2 + clj2 X

A[j,j];
j3:=j+l;
for k : = j3 step 1 until n do
begin

temp := A(jl,k];
A[jl,k) := cl X temp + c2 X A[j,k);
A[j,k] := -c2 X temp + cl X A[j,k]

end;
j4:=j-l;
for k : = .i2 step 1 until j4 do
begin

temp := A[jl,k];
A[jl,k] := cl X temp+ c2 X A[k,j];
A.[k,j] := -c2 X temp + cl X A[k,j)

end;
A[i,jl) := cl >(A[i,jl) + c2 X A[i~j];

A[i,j] := O;
fork := 1 step 1 until n do

122-P 1- 0

begin
temp := U[k,jl];
U[k,jl] := cl X temp + c2 X U[k,j];
U[k,j] .- -c2 X temp + cl X U[k,j]

end;
lab: en~

end;
for i := 1 step 1 until'>'!, do

for j := i+l step l until n do
A[j,i] := A[i,j]

end TRIDIAG

CERTIFICATION OF ALGORITHM ~22
TRIDIAGONAL MATRIX [Gerard F. Dietzel, Comm.

ACM 5 (Sept. 1962), 482]
PETER NA UR (Recd 27 Sept. 63)
Regnecentralen, Copenhagen, Denmark

TRI DI AG needed the following corirections:
l. Insert k among the local integers to read:

integer i, j, jl, j2, j3, j4, nl, k;
~. At the end of line 5 of the procedure body, insert the colon to

read U[j, i] : = O;
3. Change the round parenthesis to a square bracket following

fork : = j3 · · · to read temp : =• A[jl, k];

With these corrections the algorithm worked satisfactorily with
the GIER ALGOL system. As a test it was tried with the following
matrix:

HBH TESTMATRIX[i, i) = HBH T"BSTMATRIX[i, j]

=n+l-j (j ~ i)

(cf. the Certification of Alg. 85, Cmnm. ACM 6 (Aug. 1963), -l-17).
As a check the resulting matrix was rc>tated back again, using the
resulting U-matrix, and the largest deviation of any element from
the original was found.

For comparison the figures obtained by using the algorithms
given by Wilkinson in Numerische Mcwhematik 4 (1962), 354-376,
may be used. Wilkinson's algorithms u:se Householder's method of
obtaining the tridiagonal form. It should be noted that the devi
ations given in the table below for Householder's method refer to
the final result of obtaining the eigenvalues and vectors, and not
only the tridiagonal form, and thus include error contributions
from a rather longer chain of calculations than the ones given for
'J'JUDJAG. The times, however, only refer to the tridiagonalisa
tion process in both cases.

n=5 n=lO n=15

Largest deviation
TRI DI AG, l .410 - 7 7.010 - 7 2.410 - ()
householder tridiagonalisativn 1.410 - 7 1.310 - 6

Time of execution, in GIER

ALGOL, seconds
TRI DI AG 2 7 34
householder tridiagonalisation 4 10

These figures clearly demonstrate the superiority of the House
holder process. Since, in addition, the Householder method in the
form given by Wilkinson uses much less storage for variables,
Algorithm 122 cannot be recommended.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 123
REAL ERROR FUNCTION, ERF(x)
J\fARTIN CRAWFORD AND ROBERT TECHO
Georgia Institute of Technology, Atlanta, Ga.

1·eal procedure Erf(x); real x;
comment cI>(x) = Erf(x) = (2/y';)J~ e-u2 du can be computed

by using the recursive relation for derivatives with cl>1(x) =
(2/y';;:)e-"'2 , where ct><n>(x) = -2xc1><n-1>(x) - 2(n-2)c1><n-2>(x),
for n = 2, 3, · · · . The Taylor's series expansions of cl>(ak) are
taken about k+l points on the interval 0 '< ak;;;;; x and summed
to get cl>(x);

begin real A, U, V, W, Y, Z, T; integer N;
Z : = 0; 1 : if x ':;(:. 0 then

begin if 0.5 < abs (x) then A := - sign (x) X 0.5
else A := - x;
U := V := 1.12837917 X exp(-xj2); Y := T := - V X

A; N := 1;
:i:: if abs(T) ~ IO- 10 then
begin N:=N+l; W:=-2XxXV-2XUX(N-2);

T := T X W X A/(V X N);
U : = V; V : = W; Y : = Y + T; go to 2 end;
Z : = Z + Y; x : = x + A; go to 1 end;
Erf := Z end Erf

CERTIFICATION OF ALGORITHM 123
REAL ERROR FUNCTION, ERF (x) [Martin Craw

ford and Robert Techo, Comm. ACM, Sept. 1962]
HENRY c. THACHER; JR.* .
Argonne National Laboratory, Argonne, Ill.

•Work supported by the U.S. Atomic Energy Commission.

The body of Erf(x) was tested using the Dartmouth SCALP
compiler for the LGP-30. For x = 0(0.01)0.3, the reimlts agreed
with tabulated values to 8 in the 7th decimal place, and for x =
0.4(0.2)1.6 the error was less than 1 in the 6th decimal. These
results are compatible with the roundoff errdr in the arithmetic
used. The computing time increased rapidly (by a fac~tor of more
than 10) as x increased from 0.01to1.6.

The following comments should be considered by users of the
algorithm:
1. The parameter x should be called by value, both to allow the

use of expressions, and also to avoid destruction of the actual
parameter.

2. The constant 10-10 in statement 2 determines the accuracy of
the computation. Its value should be adjusted to the arithmetic
being used, and the accuracy required. A machine-independent
test could be made by substituting if Y - T = Y then · · · .

3. For large x, the error function is more efficiently calculated
from the Laplace continued fraction for erfc(x). Algorithm 180
is based on this method.

123-P 1- 0

REMARK ON ALGORITHM 123
ERF(x) [Martin Crawford and Robert Techo, Comm.

ACM, Sept. 1962]
D. IBBETSON
Elliott Brothers (London) Ltd.
Elstree Way, Borehamwood, Herts., England

(1) The specification value x; was added to allow x to be an
expression and to prevent side effects.

(2) The algorithm was then modified to give the Gaussian
integral (1/V211')f:_., exp(-iu2) du by

(a) changing its name to Gauss (x),
(b) insertingx := X*0.70710678; immediately before Z := O; ,

and
(c) changing the final statement to

Gauss :=· (Z+l)/2 end Gauss
(3) The algorithm with the above changes was tested on a

National Elliott 803 computer using the Elliott-ALGOL translator
with 10-8 substituted for 10-10. It was found to produce wrong
answers when x = ±1 (corresponding to Erf(±l/y'2)) giving
0.5 ± 0.3467899 iflstead of 0.5 ± 0.3413447.

REMARK ON ALGORITHM 123
ERF(x) [Martin Crawford and Robert Techo, Comm.

ACM 5 (Sept. 1962), 483; 6 (.June 1963), 316; 6 (Oct.
1963), 618]

STEPHEN P. BARTON AND JoHN F. WAGNER (Recd 2 Dec. 63)
General Telephone and Electronics Laboratories, Bayside,

New York

This algorithm may err when the Taylor series expands about a
rn~>t of the nth-order Hermite polynomial; one such error has
already been noted [Remark on Algorithm 123, D. Ibbetson,
Comm. ACM 6 (Oct. 1963), 618]. The difficulty springs from the
Taylor-series truncation criterion, which assumes that the magni·
tude of successive· terms in the Taylor series decreases. This is not
always so, as may be seen by relating

(n ~ 1)

to the Hermite polynomial Hn(x), which can be defined as

Therefore

As a result, ct><n>(x) vanishes when xis a root of Hn-1(x) and the
Taylor series may be terminated prematurely.

The algorithm was translated into FoRTRAN II and run on a
Scientific Data Systems 910 computer (39-bit mantissa) with the
following changes:

COLLECTED ALGORITHMS (cont.)

(1) The argument was decremented by 0.25 ra.ther than 0.5.
(2) The truncation criterion for abs (T) was 10-12 rather than

10-10.

Errors, detected for x = l/v2 and x = 2.652, were traced to the
above described premature truncation of the relevant Taylor
series. These arguments correspond to the roots of H2(x) and
H7(X).

The program was therefore modified to sum a fixed number of
terms, with special attention to the difficulties that might arise
when expanding about roots of Hn(x). In particular, in Algorithm
123, line 9, the coefficient, An/n!, of the nth term in the Taylor
expansion, is obtained via the intermediate step of dividing the
(n-1)-term, T, by the (n-1)-derivative, V. The possibility of
dividing by V = 0 when the Taylor expansion takes place about
roots of Hn-2(x) was avoided by modifying thl'l program to com
pute coefficients directly from the recursion relation,

An/n! = [An-1/(n-l)!][A/n].

In selecting the number of terms to be included in each Taylor
series, consideration should also be given to the size of the stand
ard decrement (specified as 0.5 in line 3 of Algorithm 123), for it
is the combination of these two parameters which largely deter
mines the accuracy and running time. A brief survey suggested
that at least 10-digit accuracy could be obtained if a decrement of
0.4 were employed with 16 terms in each Taylor series; this resulted
in an average running time of about 3.5 seconds per computation
for arguments in the range 0 ;:;; x ~ 5.0.

REFERENCE: H. MARGENAU and G. M. MURPHY, The Mathe
matics of Physics and Chemistry, pp. 119, 122. D. van Nostrand,
1943.

REMARKS ON:
ALGORITHM 12.3 [S15]
REAL ERROR FUNCTION, ERF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION-
LARGE X

[Henry C. Th_acher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAJ["'

123-P 2- RI

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. HILL AND S. A. JOYCE (Recd. 21 Nov. 1966)
Medical Research Council,
Statistical Research Unit, 115 Gower Street, London

W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found :

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < 10-10 was changed to Y - T = Y
both these amendments being as suggested in [1].

(iii) The labels 1 and 2 were changed to Ll and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.
(v) The extra statement x := 0.707106781187 X x was made

the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := -0.56418958/x/exp(v) wa8 changed to

T := -0.564189583548 X exp(-·v)/x. This is faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.

(ii) The extra statement x : = 0.1'07106781187 X x was made .
as in (v) of Algorithm 123.

(iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was :2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).

(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14].
The results were accurate to 9 significant figures for x < 8,

but to only 8 significant figures for :i: = 10 and x = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 j m/(480Xsqrt(2X3.14159265)) was changed to

10 j m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to

m := 2 X n; for i := 1 step 1 until m do.
(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) j 2 X 0.125.
(iv) if i = 2 X n - 1 was changed to if i = m - 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to

b I (15 .03976964 78 x n) .

COLLECTED ALGORITHMS (cont.)

Tests were made with m = 7 and m = 11 with the following
results:

Number of significant Number of decimal

x
figures correct places correct

m = 7 m = 11 m = 7 m= 11

-0.5 7 11 7 11
-1.0 7 10 7 10
-1.5 7 10 8 10
-2.0 7 9 8 10
-2.5 6 9 8 11
-3.0 6 7 8 9
-4.0 5 7 10 11
-6.0 2 1 12 10
-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To :ask for 11 sig
nificant figures is stretching the machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at x = 0.8.

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

abs(x) x > 0 e upper x > 0 ~upper

0.5 1 1
1.0 1 2

1.5 21&(5) 2
2.0 25&(0) 4
3.0 0 0

4.0 2 3
6.0 6 0
8.0 14 0

·-·

10.0 23 0
20.0 35 0

"Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
t,he figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Adas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

123-P 3- 0

abs(x) x > 0 a upper x > 0 ¢upper

1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely to be much the same on
other machines.

INS1'RUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(x)
123 180 181 209 226

m = 7
--- ------------

0.5 58 8 97
1.0 65C 8 176
1.5 164 128 127 9 273

-------~-
2.0 194 78 90 8 387
2.5 252 54 68 10 515
3.0 42 51 9 628

4.0 27 39 9 900d
6.0 15 30 6 1400d
8.0 9 28 7 2100d

10.0 10 25 5 2700d
20.0 9 22 5 6500d
30.0 9 9 5 10900d

a Readings refer to x > 0 = upper.
b Readings refe.r to x > 0 ¢ upper.

272

--
24
24
25

24
24
25
--

25
16
18

16
16
16

25 24
29 29
35 35

39 39
131 44
97 50

67 44
49 23
44 11

38 11
32 11
11 11

0 Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.
d 100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. THACHER, HENRY C. JR. Certification of Algorithm 123.
Comm. ACM fl (June 1963), 316.

COLLECTED ALGORITHMS (cont.)

2. IBBETSON, n. Remark Oil Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

:~. BARTON, STEPHEN P., .\ND WAGNER, JonN F. Hemark 011

Algorithm 123. Comm . .t1C11I 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

123-P 4- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 124
HANKEL FUNCTION
LUIS J. SCHAEFER
Purdue University, West Lafayette, Ind.

procedure HANKEL(N,X,H); value N,X; integer N;
real X; array H;

comment This procedure evaluates the complex valued hankel
function of the first kind for real argument X and integral order
N and assigns it to H. The individual Bessel- and Neuman-func
tion series are not evaluated separately. Both the real and
imaginary parts are generated from the same terms;

begin real K, P, R, A, S, T, D, L; integer Q;
A := R := 1; H[l] := H[2] := S := O;
for Q : = 1 step 1 until N do begin R : = R >< Q; S : = S +

1/Q end; D := R/N;
R := 1/R; K := XX X/4; P := (X/2)jN; T := ln(K) +

1.1544313298631 ;
for Q := 0, Q+l while Q~NVL~H[2J do
begin L := H[2]; H[l] := H[l] + AXKXR;

H[2] := H[2] + AX (RXKX (T-S) - (if Q<N then D/P
else 0));

A := AXK/Q; R := -R/(Q+N); S := S+l/Q + 1/(Q+N);
ifQ<N then D := D/(N-Q)

end; H[2] : = H[2] X .31830989
end

CERTIFICATION OF ALGORITHM 124 [S17]
HANKEL FUNCTION [Luis J. Schaeffer, Comm. ACM 5

(Sept. 1962), 483]
GEORGE A. REILLY (Recd. 5 Oct. 1964 and 4 Nov. 1964)
Westinghouse Research Laboratories, Pittsburgh, Pa.

This procedure, after modification, was run on the B-5000 using
B-5000 ALGOL. Values obtained checked with US National Bureau
of Standards Handbook of Mathematical Functions, Applied Mathe
matics Series 55, US Government Printing Office, Washington,
D.C. 1964.

For N = 0, 1 and 2, accuracy was to 10 decimalEi for X < 8.0. It
deteriorated to 6 decimals for 8 < X < 17.5. For 3 ~ N ~ 9 ac
curacy was to the 5 decimals of the tables.

Some changes proved necessary to make the algorithm run.
Since the algorithm is short and the changes are involved, the
algorithm is restated here. Note that a test for n zero argument
X is included in the body of the procedure since H[2] ought to be
minus infinity when X = 0.
procedure HANKEL (N, X, H); value N, X; integer N;

real X; array H; ,
begin real K, P, R, A, S, T, D, L; integer Q;

ifX =Othen
begin comment In this case H[2] is minus infinity. M denotes

the largest number which can be represented. in the machine.
The numerical value of M is to be written into the

procedure:
H[2] := -M;
H[l] :=if N = 0then1 else O;
go to exit

end;

A := R := 1; HllJ := H[2] := S := O;
if N = 0 then begin R : = 1; S : = D : = 0 end
else
begin for Q : = 1 step 1 until N do

124-P 1- 0

beginR :=RX Q; S := S + 1/Qend; D := R/N
end;
R := 1/R; K := X X X/4; P := K t N; T := ln (K) +

1.1544313298631;
comment The last constant is 2 X gamma, Euler's constant;
for Q : = O, Q + 1 while Q ~ N V L ~ H [2] do
begin L := H[2]; H[l] := H[l] + A X R;

H[2] := H[2] +AX (RX(T-S) - (ifq<NthenD/PelseO));
A := A X K/(Q+l1; R := -R/(Q+N+l);
S.~= S + 1/(Q+l) + 1/(Q+N+l);

ifQ + 1 < NthenD := D/(N-Q-1);
end;
P := (X/2) j N; H[l] := H[l] X P; H[2] := 0.318309886184

X H[2] X P; .
comment The multiplicative constant is 1/Pi;

'3Xit:
end HANKEL

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 125
WEIGHTCOEFF
H. RuTISHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure weightcoeff (n,q,e,eps,w,x); value n; real eps;
integer n; array q,e,w,x;

comment Computes abscissae Xib and weight coefficients Wi for
a Gaussian quadrature method Jo w(x)f(x) dx ~ .Li-1 wif(xi),

b

where f 0 w(x) dx = 1 and w(x) ~ 0. The method requires the order
n, a tolerance eps and the 2n-1 first coefficients of the continued
fraction

[
b w(~) dx =

1
!J _ [¥-1 _ ~l _ ~21 _ e21 _ ...

0 z- x z 11 lz Ii lz
to be given, the latter as two arrays q[l:n] and e[l:n-1] a.11 com
ponents of which are automatically positive by virtue of the con
dition w(x) ~ 0. The method works as well if the upper bound b
is actually infinity (note that b does not appear directly as param
eter!) or if the density w(x) dx is replaced by da(x) with a mono
tonically increasing a(x) with at least n points of variation. The
tolerance eps should be given in accordance to the machine ac
curacy, e.g. as 10-10 for a computer with a ten-digit mantissa. The
result is delivered as two arrays w[l :n] (the weight coefficients)
and x[l:n] (the abscissae). For a description of the method see
H. Rutishauser, "On a modification of the QD-algorithm with
Graeffe-type convergence" [Proceedings of the IFIPS Congress,
Munich, 1962].;
begin

integer k;
Boolean test;
realm, p;
array g[l:n];
procedure red (a,f,n); value n; integer n; array a,f;

comm.ent subprocedure red reduces a heptadiagonal matrix
a to tridiagonal form as described in the paper loc. cit. Since
the bulk of the computi~g time of the whole method is spent
in this subprocedure, it would pay to write it in machine
code.;

begin
real c; integer j,k;
fork := 1step1 until n-1 do
begin

for j := k step 1 until n-1 do
begin

c := -f(j] X a(j,"l]/a(j,2];
a(j,7] := O;
a[i+l,2] := a[i+l,2] + c X a(j,5];
a[j,1] := a(j,1] - c X f[.i]Xa(j,4];
a[j,6] := a(j,6] - c X a[.i+l,l];
a[j+l,3] := a(j+l,3] - c X a[j+l,6];

end j;
for ·.i := k step 1 until n-1 do
begin

c := -f(j] X a(j,4]/a[j,l];
a[j,4] := O;
a[j+l,l] := a(j+l,l] + c X a(j,6];
afi+l,6] := a[.i+l,6] + c X 0 a[j+l,3];
a[j,5] := a(j,5] - c X a(j+l,2];

ali+l,O] := a[j+l,O] - c X a[j+J,5J;
end j;
for j := k+l step 1 until n-1 do
begin

c := -a[j,3]/a[j-1,6];
a[j,3] := O;
d[.i,6] := a[j,6] + c X a[j,l];

125-P 1- 0

a[j-1,5] := a[j-1,5] - c X f[jj X f[j] X a(j,O];
a(j,2] := a[j,2] - c X f[j] X f[j] >< a[.i,5];
a[j,7] := a(j,7] - c X f[j] X a[j+l,2];

end j;
for j := k+l step 1 until n-1 do
begin

c := -a[j,O]/a[j-1,5];
a[j,O] := O;
a[.i+l,2] := a[.i+l,2] + c X f[j] X a[j,7];
a[j,5] := a[j,5] + c X a[j,2];
a[j,l] := a(j,1] - c X f[j] X f[j] X a[j,6];
a[j,4] := a[j,4] - c X f(j] X a[j+l,1];

end j;
end k;

end red;
procedure qdgraejj'c (n,h,g,f); value n;

integer n; ari·ay h,g,f;
comment Subprocedure qdgraeff c computes for a given

finite continued fraction

_!J ~ ~ ~1 ~
j(z) = lz - [1 - lz - [1 - ... - fl

another one, the poles of which are the squares of the poles of
f(z). However qdgrae.:fJe uses not the coefficients q1 , · • · , q.,
and e1 , · · · , e,._1 of f(z), but the quotients

{
fk = qk+if qk} (k := 1,2, ... ,n-1)
Uk = ek/qk+1

and thehk = tn(abs(qk)) (k := 1,2,· · ·,n), and the results are
delivered in the same form. Procedure qdgraeffe can be used
independently, but requires subprocedure red above;

begin
integer k; array a[O:n,0:7];
g[n] := f[n] := O;
fork := 1 step 1 until n do
begin

a[k-1,4) := a[k-1,5] := 1;
a[k,1] := a[k,2] := 1 + g[k] X f[k];
a[k,6] := a[k,7] := g[k];
a[k,OJ := a[k,3] := O;
comment The array a represents the heptadiagonal

matrix Q of the paper loc. cit., but with the modifications
needed to avoid the large numbeirs and with a peculiar
arrangement.;

end k;
a[n,5] := O;
red(a,f,n);
fork := 1 step 1 until n do

h[k] := 2 X h[k] + ln(abs(a[k,1] ·x a'[k,2]));
comment A saving might be achieved by economizing the
log-computation in the range .8 ;:;i x ;:;i 1.2;

fork := 1step1 until n-1 do
begin

COLLECTED· ALGORITHMS (cont.)

.f[k] := f[k] X f[k] X a[k+l,2] X a[k+l,1]/(a[k,l] X a[k,2]);
g[k] := a[k,5] X a[k,6]/(a[k+l,1] X a[k+l,2])

end k;
end qdgraeffe;

I.l: x[l] := q[l] + e[l];
fork := 2 step 1 until n do
begin

g[k-1] := e[k-1] X q[k]/x[k-1];
x[k] := q[k] + (if k=n then 0 else e[k]) - g[k-1];
g[k-1] := g[k-1]/x[k];
w[k-1] := x[k]/x[k-1];
x[k-1] := tn(x[k-1]);

end k;
x[n] := tn(x[n]); ·

L2: p := 1;
L25: begin

test := true;
fork := 1 step l until n-1 do

test := test /\ abs(g[k] X w[k]) < eps;
if test then go to L3; ~
qdgraeffe (n,x,g,w);

end;
p := 2 x p;
go to L25;
comment What follows is a peculiar method to compute

the wdrom given ratios gk = Wk+i/Wk such that 1-:k'-1 Wk = 1,
but the straightforward formulae to do this might well
produce overflow of exponent.;

La: w[l] := m := O;
fork := 1 step 1 until n-1 do
begin

w[k+l] := w[k] + tn(g[k]);
if w[k] > m then m := w[k];

end k;
fork := 1 step 1 until n do w[k] := exp(w[k]-m);
m := O;
fork := 1 step 1 until n do m := m + w[k];
fork := 1step1 until n do begin w[k] := w[k]/m;

x[k] := exp(x[kl/p) end;
end weightcoeff

125-P 2- 0

COLLECTED I ALGORITHMS FROM CACM

ALGORITHM 126
GAUSS' METHOD
.TAY w. COUNTS

University of Missouri, Columbia, Mo.

procedure gauss (u,a,y);
real array a,y; integer u;
comment This procedure is for solving a system of linear equa

tions by successive elimination of the unknowns. The augmented
matrix is a and u is the number of unknowns. The solution vector
is y. If the system hasn't any solution or many solutions, this is
indicated by the go to error where error is a label outside the
procedure.;
begin

integer i,j,k,m,n;
n := O;

ckO: n:=n+l;
fork := n step 1 until u do if a[k,n] ~ 0 then go to ckl;
go to error;

ckl: if k = n then go to ck2;
form := n step 1 until u+l do

begin
temp := a[n,m]; a[n,m] := a[k,m]; a[k,m] := temp

end;

ck2: for j := u + 1 step -1 until n do a[n,j] := a[n,i]/a[n,n];
for i := k + 1step1 until u do
for i : = n + 1 step 1 until u + 1 do
a[i,jJ := a[i,j] -· a[i,n] X a[n,j];
if n~u then go to ckO;
for i := u step -1until1 do

begin
y[i] := a[i,u + 1]/a[i,i];
fork := i - 1 step -1until1 do
a[k,u + 1) := a[k,u + 1] - a[k,i] X y[i]

end end;

126-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 127
OR THO
PHILIP J. WALSH

National Bureau of Standards, Washington, D. C.

1uocedu~e ORTHO(W,Y,Z,n,fri,m,p,r,ai,aui,mw(,zei,X,DEV,
COF,S'PD,CV, VCV,gmdt,Q,Q2,E,EP,A,GF,ENF);

value n,m,p,r,ai,aui,mui,zei;
:r·eal fn,gmdt;
array W,Y,Z,X,DEV,COF,S'PD,CV,VCV,Q,Q2,E,EP,A,GF,ENF;
integer n,m,p,r,ai,aui,zei,mui;
switch at := atl,at2; switch ze := zel, ze2;
switch au:= aul,au2; switch mu:= mul, mu2, mu3;
comment ORTHO is a general purpose procedure which is

capable of solving a wide variety of problems. For a detailed
discussion of the applications listed below and other applica
tions, see (1) Philip Davis and Philip Rabinowitz, "A Multiple
Purpose Orthonormalizing Code and Its Uses," J. ACM 1
(1954), 183-191, (2) Philip Davis, "Orthonormalizing Codes in
Numerical Analysis," in J. Todd (Ed.), A Survey of Numerical
Analysis, Ch. 10 (McGraw-Hill, 1962), (3) Philip Davis and
Philip Rabinowitz, "Advances in Orthonormalizl.ng Computa
tion," in F. L. Alt (Ed.), Advances in Computers, Vol. 2, pp .. 5&-
133 (Academic Press, 1961), (4) Philip J. Walsh and Emilie V.
Haynsworth, General Purpose Orthonormalizing Code, SHARE
Abstr. $850. APPLICATIONS: (a) orthonormalizing a set of
vectors with respect to a general inner pr"oduct, (b) least squares
approximation to given functions by polynomial approximations
or any linear combination of powers, rational functions, trans
cendental functions and special functions, such as those defined
numerically by a set of values, (c) curve fitting of empirical data
in two or more dimensions, (d) finding the best solution in the
l.s.s. to a system of m linear equations inn unknowns (n~m),
(e) matrix inversion and solution of line:..tr systems of equations,
(f) expansion of functions in a series of orthogonal functions,
Ruch as a series of Legendre or Chebyshev polynomials.

The following information must be supplied to the procedure.
(We are considering here the approximation feature of the pro
cedure.)
n the number of components per vector (excludin~; augmenta

tion)
m the number of vectors used in the approximation. For a

polynomial fit of degree t, set m=t+l.
p the number of augmented components per vector. A feature

of this procedure is that once the approximating vectors
nave been orthonormalized, they may be used in approxi
mating r functions without repeating the orthonormali
zation procedure on the original approximating vectors.

r the number of functions to be approximated.
ai a switch control concerning the approximating vectors.

With ai = 1, the procedure selects the first n components
of the first row of [ZJ, supplied by user. The i powers of
these values are computed and stored into working loca
tion [X], i=O(l)m-1. This is the usual set up for a poly
nomial fit. With ai=2, the procedure selects the first n
components of the first m rows of [Z] supplied by user and
stores them into working location [X].

aui a switch control concerning augmentation on the approxi
mating vectors. If p=O, this switch is ignored. With
aui =I. regular augmentation is applied to the vectors in

127-P 1- 0

[X]. p zeros are stored after the nth component of the first
m rows of [X]. The (n+i)th component is replaced by
1.0, i=l (l)m. With aui=2, special augmentation is ap
plied to the vectors in [X]. The p components located after
the nth component of the first m rows of [Z] supplied by
the user augment [X].

zei a switch control concerning augmentation on the functions
to be approximated. If r=O, this switch is ignored. With
zei = 1, regular augmentation is applied to the functions
during the calculation. The n components of the first r
rows of [YJ supplied by user will be augmented hy p zeros
when moving [Y] to [X]. With zei=2, special augmenta
tion is applied. The first n components of the first r rows
of [Y] are the functional values supplied by user. The next
p components of the first r rows of [Y] are special values
also supplied by user.

mui a switch control concerning weights. [W] is an n X n real,
positive definite, symmetric matrix of weights. It is gen
erally diagonal and often the Identity matrix. mui = 1
when [WJ=ln , the matrix [W] need not be supplied.
mui=2 when [W] is.diagonal, but not In . The procedure is
supplied the n diagonal elements of [W], but stored in the
first row of matrix (W]. mui=3 when the full weighting
matrix is supplied to the procedure.

The following list of matrix arrays is given to aid the user in
determining the number of components and vectors in the input
and results. W[l:n,l:n], Y[l:r,l:n+p], Z[l:m,l:n+p],
X[l :m+l,l :n+pJ, DEV[l:r,1 :n], COF[l :r,1 :p], STD[l :r],
CV[l:p+l,l:p), VCV[l:r,l:p+l,l:p], Q[l:r,l:m+l], Q2, E,
EP[l:r,l:m], A[l:m,l:p], GF[l:m+rJ, ENF[I:m].

The results of the procedure are stored in the following loca
tions. The user must be sufficiently familiar with the theory to
know which results are relevant to his application of the pro
cedure. All vectors are stored row-wise in the matrices listed
below.

x
DEV
COF
STD
CV

vcv

gmdt
Q
Q2
E
EP
A

orthonormal vectors
deviations
coefficients
standard deviations
covariance matrix, stored in upper triangular form.

The (p+l)st row contains the square root of the
diagonal elements of the matrix.

variance-covariance matrices, stored in upper triangu
lar form with the (p+l)st rows containing the square
root of the diagonal elements. There are r such
matrices, the first subscript running over the r values.

Gram determinant value
Fourier coefficients
squared Fourier coefficients
sum of the squared residuals
residuals
a lower triangular matrix used to calculate the co

variance matrix. CV = A' A.
GF Gram factors

ENF norms of the approximating vectors;
begin

integer npp, npm, ml, n2, m2, rl, rbar, p2, bei rhi i18 gai sii i
i, dei, mui, elzl, elz2, k, thi, ali, omi, nii; ' ' ' ' ' '

array PK,XP[l:n+pJ, QK[l:m+lJ;
real denom,sum,dk2,dk,fi,ss,ssq;
switch be := beI, be2; switch rh .- rhl,rh2; switch ga :=·

COLLECTED ALGORITHMS (cont.)

gal,ga2;
switch si := sil,si2; switch de := del,de2; switch nu .-

nul,nu2;
switch th := thl,th2,th3; switch al := all,al2;
switch om := oml,om2;
npp := n+p; npm := n+m; ml:= m-1; n2 := n+l; m2 := m+l;
rl := O; rbar := r; p2 := p+l; denom :=if n=m then 1.0
elsesqrt(n-m);bei :== rhi := il8 := l;
if (p~O) then gai := sii := 2 else gai := sii := 1;
boxl: go to at[ai];

atl: for j := 1 step 1 until n do begin
X(2,j) := Z(l,j); X[l,j] := 1.0 end;
for i : = 2 step 1 until ml do begin
for j := 1 step 1 until n do
X[i+l,j] := X[i,j] X X[2,j] end; go to box2;

at2: for i : = 1 step 1 until m do begin
for j := 1 step 1 until n do
X[i,j] := Z[i,j] end;

box2: if p=O then go to box3 else go to au[aui];
aul: for i : = 1 step 1 until m do begin

for j := n2 step 1 until npp do
X[i,j] := 0.0; X[i,n+il := 1.0 end; go to box3;

au2: for i := 1step1 until m do begin

box3:
box4:
box5:

box6:

for j := n2 step 1 until npp do
X[i,j] := Z[i,j] end;
dei := nui := elzl := elz2 := k := 1;
thi := 1;
ali := omi := 1; if p=O then go to box6 else
for j := 1 step 1 until p do PK[n+il := 0.0;
go to mu[mui];

mul: for i := 1step1 until n do PK[i] := X[k,i];
go to box7;

mu2: for i := 1step1 until n do
PK[i] := X[k,i] X W[l,iJ; go to box7;

mu3: for i := 1step1 until n do begin sum := 0.0;
for j := 1 step 1 until n do sum .- sum + X[k,j] X
W[i,j]; PK[i] := sum end;

box7: go to om[omi];
oml: for i := 1 step 1 until k do begin sum := 0.0;

for j : = 1 step 1 until npp do
sum := sum+ PK[j] X X[i,j]; QK[i] := sum end;
go to box8;

om2: dk2 : = 0.0; for i : = 1 step 1 until npp do
dk2 := dk2 + PK[i] X X[k,i];

box8:
del:

box8a:

bux8b:
de2:

box8c:

dk := sqrt(dk2);
GF[i18] := dk; il8 := i18 + 1;
for i := 1 step 1 until npp do
X[k,i]. := X[k,i]/dk;
omi := 1; go to box6;
go to de[dei];
elzl := -elzl; if elzl<O then go to box8b else
go to· box8a;
for i := 1step1 until k-1 do
QK[i] := -QK[i]; QK[k] := 1.0;
for i := 1 step 1 until npp do begin
sum := 0.0; for j := 1step1 until k do
sum :=sum+ X[j,i] X QK[j];
XP[i] := sum end; go to box9;
ENF[i18] := sqrt (QK[k]); go to box8a;
clz2 := -elz2; if elz2<0 then go to box8c else
go to box8a;
for i := 1step1 until m do begin
Q[rl,i] := QK[i]; Q2[rl,i] := QK[i] X QK[i] end;
Q[rl,m2] := QK[m2]; E[rl,l] := Q[rl,m2]-Q2[rl,l];
for j := 2 step 1 until m do
E[rl,j] := .E:[rl,j-1] - Q2[rl,j);
Ji := 1.0;
for i := 1step1 until m do begin

127-P 2- 0

if (fn-Ji)>O.O then begin if E[rl,i]<O.U then begin
EP[rl,i] := -sqrt(abs(E[rl,~i])/(fn-Ji)); go to box8d;
end
else EP[rl,i] := sqrt(E[rl,i]/(fn-Ji));
go to box8d; end else E(rl,1'.] := -1.0;

box8d: Ji := fi+l.O; end go to bo:r8a;
box9: gototh[thi];

thl: for i : = 1 step 1 until npp do
X[k,i] := XP[i]; go to boxlO;

th2: for i := 1step1 until n do
DEV[rl ,i] : = X P[i];
for i := 1 step 1 until p do
COF[rl,i] := -XP[n+i]; thi := 3; go to thl;

th3: go to boxll;
boxlO: go to al[ali];

all: omi := ali := 2; go to box6;
al2: if k<m then begin k := k+l; go to box4; end

else go to boxl2;
boxll: go to nu[nui];

nul: nui := 2; go to boxl4;
nu2: ss := dk/denom; ssq := ss >< ss;

STD[rl] := ss; go to boxl4;
boxl2: go to be[bei];

bel: for i : = 1 step 1 until m do begin
for j := 1 step 1 until p do
A[i, j] := X[i, n + j) end;
gmdt := 1.0; for i := 1 step 1 until m do
gmdt := gmdt X (GF[i]/ENF[i]);
gmdt := gmdt X gmdt; dei := bei := thi := 2;
k := k + l; go to box13;

be2: go to boxll ;
boxl3: go to ga[gai];

gal: go to boxll ;
ga2: for i : = 1 step 1 until p do begin

for j : = i step 1 until p do begin
sum := 0.0;
for nii := 1 step 1 until m do
sum := sum+ A[nii, i] X A[nii, j];
CV[i, j] := sum end end;
for i := 1 step 1 until p do
CV[p2, i] := sqrt(CV[i, i]); gai := 1; go ·to boxll;

box14: go to rh[rhi];
rhl : if rbar = 0 then go to final else rbar : = rbar -1 ;

rl := rl + 1; thi := rM := 2; go to ze[zei];
zel: for i := 1 step 1 until n do

X[m2, i] := Y[rl, i];
for i := 1 step 1 until p do
X[m2, n+il := 0.0; go to box5;

ze2: for i := 1 step 1 until npp do
X[m2, i] := Y[rl, i]; go to box5;

rh2: go to si[sii];
sil: go to rhl;
si2: for i := 1step1 until p do begin

for j := i step 1 until p d4[)
VCV[rl, i, j) := ssq X CV[i, j) end;
for i := 1 step 1 until p d4[)
VCV[rl, p2, i] .- ss X CV[p2, i]; go to rhl;

final: end or tho

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 127 [F5]
ORTHO [Philip J. Walsh, Comm. ACM 5 (Oct. 1962)]
IAN BARRODALE (Recd. 22 Aug. 1966)
Department of Mathematics, University of Victoria,

Victoria, B.C., Canada

KEY WORD AND PHRASES: orthogonalization, approximation
CR CATEGORIES: 5.13, 5.17, 5.5

Algorithm 127 contains the following errors.
1. A begin must appear between the 6th and 7t.h lines, i.e. im·

mediately after the integer specification and before the switch
declaration. The begin following the comment and preceding
the integer declaration must be removed.

2. In the second integer declaration the identifiers mui, elzl,
elz2 should be nui, e1z1, e1z2, respectively.

3. The section of the statement labeled atl that reads X (2, j) : =
Z(l, j) should read X[2, j] := Z[l, j].

4. Following the statement labeled box&l there should be a
semicolon between end and go to boxSa.

5. The formal parameter f n is not defined or mentioned in the
comment. It appears in the program between the labels box8c
and box&l. If Jn is put equal ton the array EP then contains un·
biased estimates of the m standard deviations.

We have not needed the generalized definition of an inner prod
uct [l, p. 348] but have often required n (number of components
per vector) to be large. We thus replaced the array W[l :n, 1 :n] by
an array W[l :n] which necessitat,ed the removal of the switch list
element mu3 from the 8th line, also an alteration to the line before
the statement labeled mu3 and the removal of the three lines be
ginning with the statement labelled mu3. Consequently that part
of the program that appeared in the six lines beginning with the
statement labeled mu2 and ending with the statement labeled
box7 then read as follows:

mu2: for i := 1 step 1 until n do
PK[i] := X[k, i] X W[i];
box7: go to om[omi];

After the above modifications and correctionis had been in
cluded the program ran successfully on an English Electric KDF9
computer using both the Whetstone ALGOL compiler and the
Kidsgrove ALGOL compiler, these codes being proper subsets of
ALGOL 60.

Some of the problems used in testing Algorithm 127 were from
approximation theory as applied to boundary value problems of
elliptic type. For one such problem linear approximating functions
were used in which most of the coefficients of the best approxima
tions are zero. The computed values of the standard deviations
sometimes differed by more than 10 percent from both the true
values and the unbiased estimates. We also solved the Dirichlet
problem described by Davis [1, p. 369]. The set of coefficients ob
tained for the approximating .function agreed only to the third
decimal place with those given in [l]. All our calculations were in
single-precision floating-point arithmetic.

Rice [2, p. 325] has recently noted that once the Gram-Schmidt
orthogonalization method loses orthogonality it produces almost
identical vectors. However, Algorithm 127 includes a correcting
device which gives a second and better estimate to the true value
of an orthonormal vector once the value obtained by Gram
Schmidt is known. Thus although Rice's modifications were in
cluded in the program we have not noticed any significant differ
ences in computational behaviour.

REFERENCES:
1. DAVIS, P. J. Orthonormalizing codes in numerical artalysis. In

Survey of Numerical Analysis, J. Todd (Ed.), McGraw-Hill,
New York, 1962, pp. 347-379.

2. RICE, J. R. Experiments on Gram-Schmidt orthogonalization.
Math. Comput. 20 (Apr. 1966), 325-328.

127-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 128
SUMMATION OF FOURIER SERIES
M. WELLS

University of Leeds, Leeds 2, England*

*Currently with Burroughs Corp., Pasadena, Calif.

procedure Fourier (X, r, w, n, A, B);
value n; real X, w, A, B; integer r, n;
comment Fourier sums a one-dimensional Fourier series,

using a recurrence relation described by Watt [Computer
J. 1, 4 (1959) 162]. The parameters are the coefficients X, which
are selected by r, w, the argument and n the total number of
terms in the series. On exit A = L:,:.:-01 X,.cos(rw) and
B = 'L,:.'.::i Xrsin(rw). Fourier is particularly efficient
where Xr = 0 for all r > some r1 and Xr ':F- 0 for all r ;;:;; r1 .;

begin real t, tr, trl, cosw2;
trl := O; cosw2 :=· 2 X cos(w);
for r := n-1 step -1 until 0 do
begin if X ':F- 0 then go to term end search for nonzero term;
tr := O; go to all zeroes;

term: tr := X; for r := r-1 step -1 until 0 do
begin t := tr X cosw2 + X - trl; trl := tr; tr := t end

recurrence;
all zeros: A := tr - trl X cosw2/2; B := trl X sin(w)
end Fourier series

CERTIFICATION OF ALGORITHM 128 [C6]
SUMMATION OF FOURIER SERIES [M. Wells, Comrn.

ACM 5 (Oct. 1962), 513]
HENRY C. THACHER, JR.* (Recd. 18 Mar. 1964)
Argonne National Lab., Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission

The body of Fourier was transcribed for the Dartmouth SCALP
translator for the LGP-30 computer. After uniformizing the spell
ing of zer_os (lines 5 and 9 in the procedure. body), the program
compiled and ran without difficulty.

In the procedure statement for Fourier, the actual parameter
corresponding to X should be an expression depending on the
actual parameter corresponding to r.

The SCALP program was tested for the finite series:

n~l sin ((n - l)w/2)
A = L., cos rw =' . () cos (nw/2) + 1

r-o sm w/2

n-l • sin ((n - l)w/2) .
B = L sm rw = . () sm (nw/2)

r=o sm w/2

for w = 0.1, 0.2, 0.5and1.0, and for n = 1(1)51. Although the algo
rithm appears to be numerically correct, the results showed evi
dence of serious numerical instability, particularly for small
values of w. For w '== 0.1, and n = 51, the error in A was .00109,
and in B, - .00231. Since the largest A for n < 51 is 10.5, and the
largest B about 20, the best result obtainable with the 7 + signifi
cant digit arithmetic of the SCALP system is about .00001. For
comparison, a program summing the same series using a forward
recurrence based on the addition .formulas for the sine and cosine
gave errors of .00012 and - .00018. It was, however, only about
half as fast.

128-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 129
MINI FUN
v. w. WHITLEY

Signal Missile Support Agency, White Sands Missile
Range, N. Mex.

procedure MINIFUN (ti, bl, eps, n, ncnt, fmin, xmin, kl,
GFUN);

value tl, bl, eps, n, ncnt; integer n, ncnt, kl; real fmin;
real procedure GFUN; array tl, bl, eps, xrnin;

comment MINIFUN is a subroutine to find the minimum of a
function of n variables, using the method of steepest descent.
Input is:
1. tl(i), i = 1,2, · · · , n, the upper limits of the search region
2. bl(i), i = 1,2, · · · , n, the lower limits of the search region
3. eps(i), i = 1,2, · · · , n, the convergence criteria. The func

tion must be a minimum in the region I :x(i) - xmin(i) I
;£ epsli)

4. n, the number of variables (the dimension of the arrays)
5. ncnt, the maximum number of iterations. The routine

searches for a minimum until I x(i) - xmin(i) I ;£ eps(i)
for all i, or until icnt = ncnt, whichever happens first.

Output is:
1. fmin, the minimum value of the function
2. xmin(i), i = 1, · · · , n, the point at which the minimum

occurs
3. kl, an error code

If kl = 1, a minimum has been found within the specified
number of iterations and the minimum is less than all
valuas of the function at the centers of the planes forming
the boundary of the epsilon-cube

If kl = 2, Ax(i) ~ eps(i) but a new minimum has been found
If kl = 3, ncnt has been exceeded without ~x(i) ~ eps(i).

In this case, a test is made to see if the current minimum
is a minimum in the epsilon-cube.

MINIFUN has been written as a FORTRAN II subroutine and is
available from the SMSA Computation Center. It should be
noted that the FORTRAN II deck has been tested only on some
relatively simple functions of two variables, such as GFUN
(x,y) = ~os(xy). The writer does not claim that the algorithm
has been thoroughly tested;

begin integer j, i, icnt, k; real w, dmax, alamb, ft;
array wnew [l:n], xt[l:n], xlb[l:n], xub [l::n],

delx[l:n], d12x[l:n], xmin[l:n], x[l:n, 1:·4], g[l:n, 1:4],
dxmin[l:n], d2xmn[l:n];

comment start looking for a minimum at mid.point of region;
for j : = 1 step 1 until n do

begin wnew[j] := (tl[j] + bl[j])/2; xt[j] :=: wnewl.i];

end;

xub[j] := tl(j]; xlb(j] := bl[j]; delx[j] .- (xub[j]
- xlb[j])/5;

d12x(j] := delx[j]j2; xmin[j] := xt[j]

fmin := GFUN (xmin);
for j := 1step1 until n do

begin w := xtfj]; for i := 1step1until4 do
begin x(j, i] := xlb[j] +ix delx[j];

xt[j] := x[j,i]; g[j,i] := GFUN(xt);
end;
xt[j] := w;
dxmin[j] := (g(j,3] - g[j,2])/delx[j];
d2xmn[j] := (g(j,4] - g[j,3] - g[j,2] + g[j,l])/d12x(j]

129-P 1- 0

end;
comment first and second difference quotients have been com

puted;
icnt := O; dmax := dxmin[l]; k := 1;

nustep: for j : = 2 step 1 until n do
begin if abs(dmax) < abs(dxmn[j]) then

begin dmax := dxmin[j]; k := j
end;

end;
alamb := dxmin[k]/d2xmn[k); w := xt[k] - alamb;

comment a new coordinate has been computed for the variable
having the largest first partial derivative. It will be checked to
see if the new point still lies within the region and search will
continue;·
if w < bl[k] then w := bl[k] else ifw > tl[k] then w := tl[k];
xt[k] := w;. ft := GFUN(xt);
if ft < fmin then go to check else

restart: if xt[k] < wnew[k] then go to lbdchk
else if xt[k] = wnew[k] then go to stnubds
else if tl[k] > xt[k] then go to nupbds
else xt[k] := 1.5 X wnew[k];

nupbds: xub[k] .- tl[k]; xlb[k] := 2 X xt[k] - tl[k]; go to
newde1;

stnubds: xlb[k] .- xt[k] - 0.5 X wnew[k]; xub[k] := xt[k] +
0.5 X wnew[k];

newde1: delx[k] := 0.2 X (xub[k] - xlb[k]); d12x[k] := delx[k]j2;
for i := 1 step 1 until 4 do

begin.x[k,i] :~ xlb[k] + i X delx[kJ; w := xt[k];
xt[k] := x[k,i]; g[k,i] := GFUN(xt); xt[k] := w

end;
dxmin[k] := (g[k,3] - g[k,2])/delx[k];
d2xmn[k] := (g[k,4] - g[k,3] - g[k,2] + g[k,1])/dl2x[k];
icnt := icnt + 1;
if icnt > ncnt then go to outed else go to nustep;

lbdchk: if xt[k] ~ bl[k] then xt[kl := 0.5 X wnew[kj

else xlb[k] := bl[k]; xub[k] := 2.0 X xt[k] - bl(k];
go to newdel ;

check: fmin := ft; xmin[kJ := xt[kJ;
for j : = 1step1 until n do if delx[j] > eps[j]then go to restart;

recheck : for j : = 1 step 1 until n do
begin w := xmin[j]; xmin[j] ;;= w + eps[j]; ft := GFUN

(xmin);
if ft < fmin then go to set2; xmin[j] := w - eps[j];
ft := GFUN(xmin); if ft < fmin then go to set2; xmin(j]

:= w
end;

if kl < 3 then kl := 1; go to bgend;
set2: kl := 2; go to bgend;
outed: kl: ==3; go to recheck;
bgend: end MINIFUN;

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 129 MINIFUN
MINIFUN [V. W. Whitley, Comm. ACM, Nov. 1962]
E. J. WASSCHER

Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-N etherlands

Some errors found in Algorithm 129 MINIFUN [Comm. ACM,
Nov. 1962] are given below.

In addition, the way "steepest descent" is used to compute
the minimum of a function of n variables is not entirely satis
factory. The method for computing first derivatives may be im
proved in two ways:

1. Instead of computing f(x+hi-f(x) it is better to take

f(x+h)-f(x-h)

2
h--. As f(x-h) has been computed by MINIFUN

this does not give rise to extra computations.
2. In MINIFUN the choice of h seems rather deliberate. In

deed, his taken as .2 X (xub-xlb), where xub and xlb are variable
bounds of x. In the beginning of the program these bounds are
put equal to the fixed bounds bl and ub; afterwards in the itera
tion process they should tend towards each other, and in the limit
they p"rovide the minimum. So especially when a good approxima
tion to the minimum is unknown, bl and ub have to be taken well
apart from each other, which means that his rather large. At the
limit, however, his very small. It is better to take h in such a way
that the nominator f(x+h)-f(x-h) attains an appropriate value.

As the method used by MINIFUN is the Newton-Raphson
method applied to the first derivatives, convergence is not always
secured-especially since first and second partial derivatives are
estimated with numerical methods.

It should be noted that the test on end of program is not correct.
For a further possible decrease of the function one has not to look
in the direction of the coordinate axes but in the direction of the
steepest descent.

ALGOL descriptions of some "steepest descent" programs which
were written in the symbolic code of the Philips computer Pascal
[cf. H.J. Heijn and J. C. Selman, IRE Trans. ECJO (June 1961),
175-183] are given in Algorithms 203, 204 and 205.

CORRECTIONS OF MINIFUN:
Printing errors: The line below label nustep should read:

begin if abs(dmax) <abs (dxmin [j]) then
The label 1 bdchk should be lbdchk
In comment MIN/FUN: kl=2: a new minimum has not

been found.
The label nustep should be placed before the statement:

dmax : = dxmin[j]; The declaration of xmin should be removed
from the blockhead of the procedure body. The 2-dimensional
arrays x[l :n, 1 :4] and g[l :n, 1 :4] can be replaced by a real x and a
I-dimensional array g[l :4] respectively.

An improvement could be the insertion of the statement

kl := l;

just before the label nustep.
I am having considerable trouble with the obviously important

part played by the array wnew, although it does not change after
being set in the first statement of the program. Furthermore it
seems to me that wnew plays a double r61e: first the component
wnew[k] is the value of xt[k] before an iteration on xt[k]. But then
one should insert another statement after label nustep:
wnew[k] := xtlk]; Secondly wnew[k] is to be understood as half
the distance between upper and lower bound tl[k] and bl[k], which
is only true when bl[k] = 0.

Convergence of delx[j] to 0 is only achieved when xlb[k] and
xub[k] are tending towards each other. This indicates that wnewfkl

129-P 2- 0

should go to O too. (See statements atter label stnubds.)
The following modifications could remove these objections

(starting with the line above label restart) :
if ft < fmin then go to check 4~lse xt[k] := wnew[kl;

restart: if xt[k] < wnew[k] then go to tbdchk;
if xt[k] = wnew[k] then go to 11tnubds;
if xt[k] < tl[k] then go to nupbds;
xt[k] := 0.5 X (wnew[k] + tl[kJ);

nupbds: xub[k] := tl[k]; xlb[k] := 2 X xt[k] - tl[k]; go to
newdel;

stnubds: xlb[k] := xt[k] - 0.5 X (wnew[k] - xlb[k]);
xub[k] := xt[k] + 0.5 X (wnew[k] - xlb[k]); (etc.)

lbdchk: if xt[k] = bl[k] then xt[k] := 0.5 X (wnew[k] + bl[k]);
xlb[k] := bl[k]; xub[k] := 2: X xt[k] - blfk]; go to
newdel; (etc.)

COLLECTED ALGORITHMS FROM. CACM

ALGORITHM 130
PERMUTE
Lt. B. c. EA YES

U.S.A. Signal Center and School, Fort Monmouth, N. J.

procedure PERMUTE (A, n, x)
array A; integer n, x;
comment Each entry into PERMUTE generates the next per

mutation of the first n elements of A. If A is read as a number
(A [1]A [2] · · · A [n]), each generation is larger than the last:
n := 4, x := 1

A[l] 1 1 1 8 8 8
A[2] 1 8 8 1 1 8
A[3] 8 1 8 l 8 1 P

. 4!
ermutat10ns =

2121
A [4] 8 8 1 8 1 1 end

Identical elements in A reduce the number of permutations. The
array should be ordered before the first call on PERMUTE.
Integer x specifies the first elements whose order should be pre
served : n : = 4, x : = 3

A [1] 1 l 1 4
A[2] 2 2 4 1
A[3] 3 4 2 2

4!
Permutations - 3!

A [4] 4 3 3 3 end
Before the first call on PERMUTE for a given array, first
should be made true. If more is true, then PERMUTE was able
to give another permutation;

begin array B[l:n]; integer f, i, k, m, p; real r; own real t;
if first then t : = A [x]; first : = false;
for i := 1step1 until n do B[i] := O;
for i := n step -1until2 do

begin if A[i] > t/\A[i] > A[i - 1] then go tofind; end;
more : = false; go to exit;

find: fork := n step -1 until i do
begin if A[k] > t/\A[k] > A[i -1] then

begin B[k] := A[k]; m := k; end; end;
fork := n step -1 until i do

begin if B[k] > 0 /\B[k] < B[m] then
begin B[m] := B[k]; f := k; end; end;

r := A[i - 1]; A[i - 1] := B[m]; A[f] :=, r;
schell: p : = i - 1; m : = n - p;

comp:

for m : = m/2 - .4 while m > 0 do
begin k : = n - m;
for f : = p + 1 step 1 until k do

begin i := f;
if A[i] > A[i + m] then

begin r := A[i + m]; A[i + m] :== A[i];
A[i] := r; i := i - m;
if i ~ p + 1 then go to comp;
end end end schell;

exit. end PERMUTE

REMARKS ON:

ALGORITHM 87 [G6]
PERMUTATION GENERATOR

[John R. Howell, Comm. ACM 5 (Apr. 1962), 209)
ALGORITHM 102 [G6]
PERMUTATION IN LEXICOGRAPHICAL ORDER

130-P 1- RI

[G. F. Schrak and M. Shimrat, Comm. ACM 5 (June
(1962), 346]

ALGORITHM 130 [G6]
PERMUTE

[Lt. B. C. Eaves, Comm. ACM 5 (Nov. 1962), 551]
ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN
LEXICOGRAPHICAL ORDER

[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. ORD-SMITH (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)

Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM 5 (Aug. 1962), 434], there appears to be room for im
provement. Theoretically a "best" lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.

ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 /\ B[k] < B[m] is true for
at least one of the relevant values of k. In particular when matrix
A is set up by A[i] := i; for each i the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
tn is the time for complete generation of n ! permutations. Times
are scaled relative to ts for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time ts
for Algorithm 202 on this machine was 100 seconds. rn has the
usual definition rn = tn/(n·tn-1).

TABLE I

Algorithm ta /7 Is re
_,7 I rs

87 118 - - - - -
102 2.1 15.5 135 1.03 1.08 1.1
130 - - - - - -
202 1.7 12.4 100 1.00 1.00 1. 00

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 131
COEFFICIENT DETERMINATION*
v. H. SMITH AND M. L. ALLEN

Georgia Institute of Technology, Atlanta 13, Ga.
* This procedure pertains to research work sponsored in part

by NSF Grant G-7361.

procedure DET (n, G, H);
array G, H; integer n;
comment Given the first n coefficients of the power series

G(z) = g1 + g2z + gaz2 + · · · + gnzn-i + · · · , and H(z) = hi +
h2z + haz2 + · · · + hnzn--i + · · · , this procedure determines the
coefficients d, , i = 1, ·· · · , ~n, of the power series which is the
expansion of the quotient H(z)/G(z). It is assumed that g1 ~ 0.
The arrays G and H initially contain the coefficients of G(z) and
H (z), respectively. The integer n is the number of known coeffi
cients in the expansion of G(z) and H(z). At the conclusion, H,
contains the coefficient di . The procedure may also be useful in
calculating residues for certain complex functions. Suppose
F(z) = H(z)/G(z) is a complex valued function of a complex
variable and that F has a pole of order mat z = b, where H(z) =

Lk'-1 hk(Z - b)k-1, G(z) = Lk'-1 gk(Z - b)k+m-i, and g1 ~ 0,
hi ~ 0. The required residue at z = b is dm where

D(z) = [t hh - b)k-1
] / [t gh - b)k-1

]

k-l k-l

= t d;(z -- w-•.
i-l

For more on this, one is referred to Einar Hille, "Analytic Func
tion Theory, Vol. I," Ginn and Co., 1959, pages 242-244;

begin integer i, j, n; real alpha, beta;
alpha :=· 1/G[l];

for j :- 1 step 1 until n do
begin beta := alpha X H[j];

for i : = j + 1 step 1 until n do
H[i] : = H[i] - (beta X G[i -:-- j + 1)) end;

for j := 1 step 1 until n do
H[j] := H[j] X alpha;

end DET

131-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 132
QUANTUM MECHANICAL INTEGRALS OVER

ALL SLATER-TYPE INTEGRALS
J. c. BROWNE

The University of Texas, Austin, Tex.
real procedure: allslater (p,q,pe,qe,np,nq,lp,lq,mp,mq,na,nb)

internuclear distance: (r);
real pe,qe,r; integer p,q,np,nq,lp,lq,mp,mq,

na,nb;
comment The Slater-type orbitals frequently used in quantum

mechanical calculations on atoms and molecules are defined as
p = k(np,pe) rnP-le-<P•)r Y';':(o, </>),where k(np,pe) is a normal
ization constant, Y1m(O,</>) is a spherical harmonic with the
phase convention [Y1m(0,<1>)]* = (-l)mY!m(O,</>), np is a positive
integer, lp is an integer, lp < np, mp is an integer, - lp ~ mp
~ lp; and pe is a real positive constant. Algorithm 110, Y. A.
Kruglyak and D. R. Whitman (Comm. ACM, July 1962) serves
to compute integrals over certain operators of a quite restricted
class of Slater-type orbitals, np ~ 4, lp = 1, mp = 0. The algo
rithm given here will compute all integrals of thtJ form

f Pc(r:c)qc<J,T
which can be expressed in terms of the simple An(b) and Bn(a)
functions. The subscript c denotes either of the two nuclei of
a diatomic molecule. These integrals include all those one-elec
tron integrals necessary for a conventional energy calculation
on a diatomic molecule. In the arguments of £illslater p and q
are numerical designations for the respective orbitals. p and q
are even or odd as they respectively are associated with the
"left," a, nucleus or "right," b, nucleus of a dia~tomic molecule.
Global arrays, fact 1, of factorials and binom, of binomial co
efficients are assumed. We first define some procedures utilized
by alls later. The main program begins at the label set;

begin real norm, r2, alpha, beta, s, clp, clq, bpci;
integer nsum, lsum, peven, qeven, podd, godd, limitp, limitq,
g, h, i, j, nlp, nlq, lmp, lmq, gama, gamb, aidaa, aidab, gam,
aida, num2; real array avalues [0:21], bvalues[0:21]; real p1·0·
cedure cl, bpc,. modulus;

real procedure cl (l,m,j); value l,m,j, integei· l,m,j;
begin cl:= ((-l)jj)X factl[2X(l - j)]/((2jl) X factl

[l-2Xj_:.m]X
factl [l - j]X factl [j])

end cl;
real procedure bpc(i, j, k); value i,j,k, integer i,j,k;

begin real t; integer m; t := O;
form := 0 step 1 until k do
begin t := t + ((-1) j (k - m)

X binom [i, mJ X binom [i, k - m]
end

end bpc;
real procedure modulus (i, j); value i, j; integer i, j;

begin modulus := 1 -abs(i + j) X j
end modulus;

procedure avector (b, nmax, avalues); value b, nmax;
real b; integer nmax; real array avalues;;

begin integer m;
avalues[O] = exp(-b)/b;
if nmax = 0 then go to exit;
for m = 1 step 1 until nmax do
begin avalues[m] = .avalues(O] + <m/b) X avalues[m - l]
end;

132-P 1- 0

exit: end avector;
procedure bvector(a nmax, bvalues); value a, nmax; real a;

integer nmax; real array bvalues; real procedure modulus;
comment This procedure computes a sequence of values for the

integral, Bn(a) = f-~ xne-a"'dx, for n = 0 ton = nmax. If a ~
alim then Bo(a) is computed and upward recursion is used to
generate the higher n values. If a < alim then Bnmax(a) is com
puted by series expansion and downward recursion is used to
generate the smaller n values. alim is determined within the
program by a simplification of a result of Gautschi (J. ACM 8,
21 (1961)). Gautschi has made an analysis of the recursive pro
cedures for the Bn(a) which could be taken as a model for workers
in molecular quantum mechanics;
begin real fxx, fxy, numerator, denom, sum, factor!, tsum

factor2, t, aa; integer m,mn;
begin if abs(q,) ~ ((nmax+nmax/6+3)/2.3) then

up: begin fxx := exp(a);
fxy := l/fxx;
bvalues [O] := (fxx-fxy)/a;
for m : = 1 step 1 until nmax do

begin fxx : = - fxx;

end;

bvalues[m] := (fxx-fxy + m X
bvalues[m-1])/a

go to exit;
end up;

down: begin aa := axa;
if modulus (nmax, 2) ;;<f0 then

setodd: begin numerator : = nmax + 2;
sum := a/numerator;
factor! := -2;
f acto-r2 : = 3;
go to compute;

end setodd;
seteven: begin numerator : = nmax + 1;

sum := I/numerator;
factor! : - factor2 : = 2;

end seteven;
comp.ute: begin denom : *' numerator + 2;

t :=sum;

recur:

t := ((((t/factor2)Xaa)
I (f actor2- l)) X numerator)
/denom;

tsum := t +sum;
if (sum-tsum)=O then
begin bvalues[nmax] := sum X factor!;

go to recur;
end;

begin f actor2 : = factor2 + 2;
numerator : = denom;
sum := tsum;

go to compute;
end compute;
begin fxx := exp(a);

fxy := l/fxx,·
mn := nmax -1;
if modulus(nmax, 2) ;;<f 0 then
fxx := -fxx;
for m : == mn step -1 until 0 do
begin fxx = -fxx;

COLLECTED ALGORITHMS (cont.)

end;

bvalues[m] := (fxx+fxy + a X
bvalues[m+I])/(m+l);

end
end recur;

end down;

exit: end bvector;
set: begin if (mp + mq) ~ 0 then

begin alls later : == 0 .0; go to exit end ;
set: begin norm : = sqrt (((2X pe) j

(2Xnp+l) X (2Xlp+l) X factl[lp-mpJ X (2Xqe)j
(2Xnq+l) X (2Xlq+l) X factl[lq-mq])/(factl [2X
np] X factl[lp+mp] X fact1[2Xnq] X factl[lq+mq] X
4));

nsum := np+nq;
lsum := lp+lq;
r2 := r/2;
norm := norm X (r2j(nsum+l+na+nb));
alpha := r2 X (pe+qe);
beta : = r2 X (((- 1)j p) X pe + ((- 1)j q) X qe) ;
num2 := 2;
avector (alpha, nsum, avalues);
bvector (beta, nsum, bvalues) ;
peven : = modulus (p+ 1,2) ;
qeven := modulus (q+I,2);
podd := modulus (p,2);
qodd := modulus (q,2);
limitp := (lp-mp) +num2;
limitq := (lq-mq) +num2;
s := O;

end set;
sum: begin for g := 0 step 1 until limitp do

begin clp := cl(lp,rnp,g);
for h : = 0 step 1 until limitq do
begin clq := cl(lg,mq,h);
nlp := np-lp+2Xg-l;
nlp := nq-lq+2Xh-1;
lmp. := lp-mp-2Xg;
lmp := lq-mq-2Xh;
gama := nlp X peven + nlq X qeven +1 +na;
gamb := nlp X podd + nlq X godd +1 +nb;
aidaa : = lrnp X peven + lmq X qeven;
aidab : = lmp X podd + lmq X qodd;
gam = gama + gamb;
aida = aidaa + aidab;
for i := 0 step 1 until gam do
begin bpci :== bpc(gama, gamb, i);
for j : = 0 step 1 until aida do
begin
s := s+ clp X clq X bpci X
bpc(aidaa, aid.t1b, j) X
avalues [nsum+na+nb-i- j]
X bvalues[lsum -2 X (g+h) +i-j];
end
end
end
end;

alls later : = s X norm;
end sum;

exit: end;
end alls later;

132-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 133
RANDOM
PETER G. BEHRENZ

Mathematikmaskinnamnden, Stockholm, Sweden
real procedure RANDOM (A, B, XO);
value A, B, XO;
real A, B;
integer XO;

comment RAN DOM generates a rectangular distributed
pseudo-random number in the interval A < B. XO is an integer
starting-value. The first time RANDOM is used in a program
XO should be a positive odd integer with 11 digits, XO < 236 =
34 359 738 368. The following times RANDOM is used, XO should
be XO = 0. The mathematical method used is Xn+1 = 5 Xn
(mod 235

). This sequence has period 233). RANDOM was suc
cessfully run on F ACIT EDB using FA CIT-ALGOL 1, which
is a realization of ALGOL 60 for F ACIT EDB, except for the
declarator own, which is not included in FACIT-ALGOL 1.
To test RANDOM, we computed 1/N L Xn and 1/N L Xn 2

in the interval 0,1 for N = 500, 1000, 5000. The starting
valuc was XO = 28 395 423 107. The results were 0.50625,
0.48632, 0.50304 and 0.34304, 0.31681, 0.33469. Theoretically
one expects 0 .50000 and 0 .33333;

begin
iinteger M35, M36, M37;
own integer X;
ilf XO ~ 0 then begin
X := XO; M35 := 34 359 738 368; M36 := 68 719 476 736;
M37 := 137 438 953 472 end; X := 5 X X;
i.f X ~ M37 then X := X - M37;
if X ~ M36 then X : = X - M36;
if X ~ M35 then X : = X - M35;
RANDOM := X/M35 X (B - A) + A end

REMARK ON ALGORITHM 133
RANDOM (P. G. Behrenz, Comm. ACM, Nov. 1962)
PETER G. BEHRENZ

Matematikmaskinnamnden, Box 6131, Stockholm 6,
Sweden
Replace th~ declarations in the body of the procedure,

integer M35, M36, M37; own integer X;
by:

own integer X, M35, M36, M37;
The sequence of 233 random numbers contains about 15 numberb

which are not really random numbers. For details, see R. W.
Hamming, Numerical Methods for Scientists and Engineers,
p. 384 [McGraw-Hill. 1962].

133-P 1- 0

REMARK ON ALGORITHM 133
RANDOM [Peter G. Behrenz, Comm. ACM 11, Nov.

1962]
DONALD L. LAUGHLIN

Missouri School of Mines and Metallurgy, Rolla, Missouri

Algorithm 133 was translated into FORTRAN II for the IBM
1620 and run successfully. The starting value was changed to
21 348 759 609 and significant results followed.

For N = 500 and 1000, the resulting values were: 0.4990157688,
0.4986269653 and 0.3318717863, 0.3290401482.

CERTIFICATION OF ALGORITHM 133
RANDOM [Peter G. Behrenz, Comm. ACM, Nov. 1962]
JESSE H. POORE, JR.

Louisiana Polytechnic Institute, Ruston, La.
Algorithm 133 was transliterated into FoRTRAN II for the IBM

1620 computer. A monitor program performed the test indicated in
·Algorithm 133 on the generated numbers.

Results of the test are shown in the following chart. The nota
tion used is identical to that used in the algorithm.

Xo
t

N"T.Xn
t

NT.X2,.

.4986480931 .3280561242 N = 500
13543288579 .4840396640 .3141520616 N = 1000

.4996829627 .3321160892 N = 5000

.4971414796 .32979905;88 N= 500
24376589411 .4997720126. .3326801987 N = 1000

.4986380784 .3319949173 N = 5000

.4962408228 .3339214302 N= 500
34359738367 .4974837457 .3335720239 N = 1000

.4929612237 .3253421270 N == 5000

.5313808305 .3691599122 N= 500
11324679915 .5167083685 .3498558251 N = 1000

.5043814637 .3383429327 N = 5000

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 134
EXPONENTIATION OF SERIES
HENRY E. FETTIS

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure SERIESPWR(A, B, P, N);
comment This procedure calculates the coetficients B[il for

the series (f(x))P = g(x) ,,;,, 1 + L B[i] Xx ii, (i = 1, 2, · · · , N)
given the coefficients of the series f(x) = 1 + LA[i] X x i i.
P may be any real number;

value A, P, N;
array A, B;
integer N;
begin integer i, k;
real p, s;

B[l] := PX A[l];
for i := 2 step 1 until N do
begins := O;

fork := 1 step 1 until i-1 do
S := s + (PX [i-k] - k) X B[k] X A[i-k];
B[i] := PX A[i] + (s/i)
end for i;

end SERIESPWR

CERTIFICATION OF ALGORITHMS 134 AND 158
EXPONENTIATION OF SERIES [Henry E. Fettis,

CoMM. ACM, Oct. 1962 and Mar. 1963]
HENRY c. THACHER, JR.

Reactor Engineering Div., Argonne National Laboratory
Argonne, Ill.

Work supported by the U.S. Atomic Energy Commission.

The bodies of SERIESPWR were transcribed for the Dart
mouth ScALP processor for the LGP-30 computer. In addition to
the modifications required by the limitations. of this translator,
the following corrections were necessary:
1. Add "real P;" to the specifications.
2. Delete "p," from 1ihe declarations in the procedure body.
3. (134 only) Replace "S" by "s" and [i-k] by "(i-k)" in the

statement S := s + · · · .
4. (158. only) Changes last sentence of comment to "Setting

P := 0 gives the coefficients for ln(f(x)). In this series, the
constant term is 0, instead of 1 as elsewhere;"

5. (158 only) Add the identifier P2 to the declared real variables.
6. (158 only) Make the first statements read:

''if P = 0 then P2 := 1 else P2 := P;
B[l] := P2 X A[l];

7. (158 only) Make the statement of the fork loop read

"S := S+(PX(i-k)-k) X B[k] X A[i-k];"

8. Change the last statement to

"B[i] : = P2 X A [i] + S/i end for i;

In addition, the following modifications would improve the
efficiency of the program :
1. Remove A from the value list.

134-P 1- 0

2. Omit the statement B[l] := P X A[l]; (P2XA[l] in 158
according to correction 6) and change the initial value of i
in the statement following from 2 to 1.

When these changes were made, both procedures produced the
first ten coefficients of the series for (exp(x)) i 2.5 from the first
t.en coefficients of the exponential se:ries. The procedures were
also used to generate the binomial coefficients by applying them
+o (l+x)P, for P = 2.0, and 0.5000000. Algorithm 158 was also
tested with P := O for l+x and for the series expansions for
(sin x)/x, cos x, and exp x. In. all caBes, the coefficients agreed
with known values within roundoff.

COLLECTED. ALGORITHMS FROM CACM

ALGORITHM 135
CROUT WITH EQUILIBRATION AND ITERATION
WILLIAM MARSHALL McKEEMAN*

Stanford University, Stanford, Calit
*This work was supportedin part by the Office of Naval He

search under contract N onr 225(37).

procedure LINEARSYSTEM (A) order:(n) right-hand sides:(B)
number of right-hand sides: (m) answers: (X) determinant: (det,
ex) condition of A :(cnr);

integer n, m, ex; real det, cnr; real array A, B, X;
comment, LINEAR SYSTEM uses Crout's method with row

equilibration, row interchanges and iterative improvement
for solving the matrix equation AX = B where A is n X n and
X and B are n X m. As special cases one sees that: form ~ O,
only the determinant of A is evaluated, for m = 1, the algo
rithm solves a system of n.equations inn unknowns, form = n
and B = the identity matrix, the algorithm inverts A.

If the algorithm breaks down for a singular or nearly singular
matrix A, exit to a non-local label "singular" is provided. Five
auxiliary procedures: EQUILIBRATE, GROUT PRODUCT
RE SI DUALS and SOL VE are declared with app~opriate com~
ments after the end of this procedure. This code is the result of
the joint efforts of G. Guthrie, W. McKeeman, Cleve Moler,
Margaret Salmon, Alan Shaw and R. Van Wyk. It was written
following ideas presented by J. H. Wilkinson ns a visiting lec
turer in Professor George E. Forsythe's class in Advanced Nu
merical Analysis at Stanford, 1962;

begin integer anay pivot [l:n]; integer i, i, k; real mx;
real arra;r LU[l:n, l:n], y, res, mult[l:n];
comment, remove approp:riate factors from the rows of A ... ;
EQUILIBRATE(A, n, mult);
comment ... and save the result for the eventual computation
of residuals during iteration;
for i := 1step1 until n do

for j := 1 step 1 until n do LU[i,i] := A[i,i];
comment, decompose the matrix into triangular factors;
GROUT(LU, n_, pivot, det);
comment, assuming that there was no exit to "singular",
evaluate the determinant in the form det X (10.0 j ex);
for i := 1step1 until n do y[i] := LU[i,i] X mult[i];
det := det X .PRODUGT(y,1,n,ex);
comment, now begin to process right-hand sides;
fork := 1 step 1 until m do
begin integer i, count, limit; real normy, kr;

kr := k;
comment, scale the right-hand side;
for i := 1step1 until n do res[i] := B[i,k] := B[i,k]/mult[i];
comment, store the first approximation and its L(l) norm;
normy := O;
SOLVE(LU, n, res, pivot, y);
for i := 1 step 1 until n do
begin

normy := normy + abs(y[i]);
Xfi,k] := yli]

end;
comment, enter the iterating loop. The iteration is termi

nated on the integer "limit" which itself is determined on
the basis of the success of the first iteration ancl a machine
dependent real number designated here by "eps". For
"eps", the programmer must insert the _largest real num-

ber such that eps + 1.U = 1.0 ;
for count : = · 1, 2 step 1 until limit do
begin integer i; real t;

135-P 1- 0

comment~' compute the residuals of the solution y;
RESIDU ALS(A,n,B,k,X,res);
comment ... and find the next increment to the solution;
SOLVE(LU,n,res,pivot,y);
comment, set up termination conditions;
if count = 1 then
begin real normdy;

normdy := O;
for i := 1step1 until n do normdy := normdy+abs(y[i]);
if normdy = 0 then begin cnr : = 1.0; go to enditer end;
t := normy/normdy;
comment, The quantity II A II· II A-1 11 (spectral norm)

is called the condition number of the matrix A. It is
a measure of the difficulty in solving the input equation
and appe~rs naturally in error bounds for the solution
(see ·wilttinson [3]). cnr is a direct measure of the
error and experimentally approximates the condition
number;

cnr := ((kr - 1.0) X cnr + 1.0/(eps X t))/kr;
if t < 2.0 then go to singular;.
limit := ln(eps)/ln(l.O/t);

end;
comment, store the new approximation;
fori := 1 step 1 until n do Xfi,k] :== Xfi,k] := X[i,k] +yli];

end iteration;
enditer:

end right-hand sides
end LINEAR SYSTEM;
procedure EQUILIBRATE (A) order:(n) multipliers:(mult);
integer n; real array A, muit;
comment, scaling the rows of the matrix A to roughly the same

maximum magnitude (here, dividing by the largest element)
allows the procedure GROUT to select effective pivotal elements
for the Gaussian decomposition of the matrix. The iterating
procedure will converge to the solution for the equilibrated
matrix rather than the input matrix. If the matrix is badly
conditioned then the solution is sensitive to perturbations in
the input and the scaling division must be done not by the
largest element but rather by the power of the machine number
base (2 and 10 for binary and decimal machines, respectively)
nearest the largest element so as to avoid rounding errors.
Equilibration is discussed in reference [3] p. 284;

begin integer i; real mx;
for i := 1step1 until n do
begin integer i;

mx := 0.0; comment, find the largest element;
for i := 1step1 until n do

ifabs(A[i,k]) > mxthenmx := abs(Ali,k]);
if mx = 0.0 then go to singular;
comment, now store the multiplier and scale the row;
mult[i] := mx; comment := base j ex for exact scaling;
if mx ~ 1.0 then

for i :== 1 step 1 until n do A [i,i] := A [i,il/mx
end

end EQUILIBRATE;

COLLECTED ALGORITHMS (cont.)

procedure CROUT (. .A) order:(n) pivots :(pivot) interchanges :l8g).
integer n; integer :array pivot; real array A; real sg;
comment, this is Crout's method with row interchanges as

formulated in reference (1) for transforming the matrix .tl into
the triangular decomposition LU with all the L[k,k] = 1.0.
pivotlkl stores the index of the pivotal row at the k-th stage of
the elimination for use in the procedure SOLVE;

begin integer i, j, k, imax, p; real t, quot;
.real procedure I Pl (A.) extra term: (t) length: (f);
integer f; r.eal t; real array A.; C'omment non-local .i, j, k;
comment, !Pl forms a row by column inner product of A,

namely the sum of A.(i,pJ X A[p,kJ for p :=- 1, 2, ... , f, and
then adds the extra term t. If f < 1, the value of I Pl is t.
This procedure is the inner loop of the algorithm. The pro
grammer can expect a substantial advantage from substi
tuting a faster and more accurate inner product here;

begin real sum; integer p;
sum :• t;
for p :- 1 step 1 until f do sum ::a sum + A.[i,pJ X .4.[p,k];
IPl :- sum

end !Pl;
sg :- 1.0;
comment, k is the stage of the elimination;
fork :• 1 step 1 until n do
begin

t := O;
for i :== k step 1 until n do
hegin comment, compute L. Note that the first calls on I Pl
are empty;

A[i,k) :- -JPl(A., -.4[i,k],k-l);
if abs(A.[i,k}) > t then

begin t := abs(A[i,kJ) ~ imax :::a i end
end;
if t ,.. 0 then go to singular;
comment, A.[imax,kJ is the largest element in the remainder

of column k. Interchange rows if necessary and record the
ch:inge;

pivotlk] := imax;
if imax ~ k then
hegin

sg := -sg;
for j := 1 step 1 until n do
hegin

t :=- A.[k,j];A[k.il := A[im.ax,j];A[imax,j] :='
end

encl;
comment, compute a column of multipliers;
quot :- 1.0/A[k,k];
for i := k+l step 1 until n do A.[i,k] := A.[i,k] X quot;
comment, and compute a row of U;
for j := k+l step 1 until n do

A(k,il := -JPl(.-t,-.tl[k,j],k-1)
end

end CROUT;
real procedure PRODUCT (factors) st.art :(s) finish :(f)

exponent :(ex);
integer s,f,ex; real array factors;
comment. PRODUCT multiplies the numbers stored from index

s through f inclusive in the array "factors", preventing ex
ponent overflow. The answer is normalized so that 1.0 > abs
(PRODUCT) ~ 0.1. The exponent appears in ex;

hcgin integer i; real p, pl;
ex := O; p := 1.0;
for i := s step 1 until f do
begin

pl : = factors UI;
if ab.s(pl) < 0.1 then begin pl = 10.0 X pl; ex ex-1

end;

p:-pXpl;

if p == 0 then begin ex:= O; go to fin end;
1: if abs(p) < 0.1 then

135-P 2- 0

begin p := p X 10.0; ex: = ex-1; go to 1 end;
2: ifabs(p);;;;l.O then

begin p := p/10.0; ex := ex+ 1; go to 2 end;
end;
fin: PRODUCT :== p

end PRODUCT;
procedure RESIDUA.LS (.4) ordor:(n) right-hand sides:(B)

column of B :(k) approximate solution :(X) residuals :(res);
integern, k; real array A, B, X, res;

comment, RESIDUALS computes b - Ay where b is the kth
column of the dght-hand side matrix Band y is the kth column
of X;

real procedure I P2 (A) row: (i) order:(n) approximate
solution :(X)

column :(k) extra therm :(t);
integer i, k, n; real t real array A, X;
comment, IP2 forms the inner product of row i of the matrix

.4 and column k of the solution matrix X, then adds the
single term t. It is essential tha.t I P2 be an "accumulating"
or double precision inner product as discussed in ref ere nee
[3] p. 296. The value of I I'2 is the rounded single precision
result of the double precision arithmetic. The body of the
procedure is left undefined;

begin integer i;
for i :s: 1 step l until n do

res(il :- -lP2(A,i,n,X,k,-B[i,kJ)
end RESIDUALS;
procedure SOLVE (A) ordcr:(n) right-hand si<.~e:(b) pivots:

(pivot) answer:(y);
integer n; integer array pivot; reall array A, b, y;
comment, SOLVE prncesses a right-hand side b and then back

solves for the solution y using the LU decomposition provided
by CROUT;

begin integerk, p; real t;
fork :- 1 step 1 until n do
hegin

t := b[pivol[k]]; blpivot[k]] := b[k];
for p := 1step1 until k-1 dot:= t - .-l[k,pJ X b[p];'
b[kJ := t

end ... having modified b by L inverse;
comment, DO\\' the back solution for y;
fork : = n step -1 until 1 <lo
begin

t := b[kl;
for p := k+l step l until n dot.-- t - il[k,pJ X y[p];
y[kl := t

end backsolution
end SOLVE

REFEREl\CES

1. GEORGE E. FORSYTHE, Crout \Vilh Pivotin~. Algorithm lG.
Comm. ACM 3, 2 (S1·pt. 19t'i0), 60i.

2. DEREK JOHANN Hcit~K, Simultaneous System of Equation::; and
:\btrix Inversi1111 Huutint'. Algorithm 92. Comm. AC.1£ .j.

5 C\lay 19G2), 2Su.
3. J. H. WILKI:'.'iSO.\'., Error A.nalysi:> of Direct :\fothod~ of :\Ia.trix

Inversion,./. AC.ll 8. 3 (July 19Gl), 231-3:m.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 135
CROUT WITH EQUILIBRATION AND ITERATION

[William Marshall McKeeman, * Comm. ACM, Nov.
1962]

WILLIAM MARSHALL McKEEMAN,
Stanford University, Stanford, Calif.

* This work was supported in part by the Office of Na val Re
search under contract Nonr 225(37).

A BALGOL translation of the algorithm was tested for accuracy,
proper termination and running time on the Burroughs 220.
The exact inverse of the Hilbert segment of order 6 can be stored
in the 8-decimal-digit floating word of the B220 and! was used in
1Ghe accuracy and termination tests. The Hilbert segment Ha
is very ill-conditioned (for the spectral norm, 11 He II· II H-;i1 II =
1.3 X 107). Hence the number of iterations required should not
be taken as typical.

The [n,n] element (mathematically ·lr .090909 · · ·) is repre-
sentative of the behavior of the rest:

initial solution
J5.rst iteration
second iteration
third iteration
fourth iteration
fifth iteration

"exact" equilibration
(by powers of 10)

.092587535

.090877240

.090909695

.090909080

.090909091
terminated

equilibration by
largest el~ent in row

.094091506

.091498265

.091570311

.091568310

.091568365

.091568364
terminated

Conclusions: The iterating procedure terminated correctly,
or performed one extra iteration in each case. If the equilibration
procedure alters the data, the iteration will converge to the solu
tion for the altered matrix. If the matrix is ill-conditioned, as in
the case above, the equilibration may cost a great deal more than
iit gains. As a practical matter, a machine language substitute for
EQUILIBRATE which will not cause rounding of the data is
]probably the best course of action.

The running time is approximately proportional to n 3 as ex
pected. If for a given machine,µ. is the floating multiply time in
Beconds, one can expect that run time will be given by rt:= 1.3 X
'' X (n + 7) i 3 seconds for a call on LINEARSYSTEM with one
right-hand side.

The division of run time between the various phases of the
algorithm is as follows:

0 30
n-

ORDER OF MATRIX
REFERENCE<!

CR0UT
<IPU

40 50

l. SAVAGE AND LUKACS, Tables of inverses of finite segment of
the Hilbert matrix. In Olga Taussky (Ed.), Contributions to
the Solution of·Systems of Linear Equations and the Deter
mination of Eigenvalues, pp. 10&-108, Nat. Bur. Standards
Appl. Math. Series no. 39, U.S. Government Printing Office,
Wash., D.C., 1954.

13S-P 3- 0

REMARK ON ALGORITHM 135 [F4]
CROUT WITH EQUILIBRATION AND ITERATION

[W. M. McKeeman, Comm. ACM 5 (Nov. 1962), 555-
557, 559]

WILLIAM MARSHAL:C. McKEEMAN (Recd. 1 Apr. 1964)
Computation Center, Stanford University, Stanford,

Calif. .

The following corrections to the published algorithm are recom
mended:

1. Two lines above the bottom line of procedure SOLVE one
must change

y[k] := t to y[k] : = t/A[k,k]

2. In procedure EQUILIBRATE, all occurrences of the sub
script k must be changed to j.

3 .. The statement cnr: = 1.0 should be added at the start of the
body of procedureLINEARSYSTEM, so that cnrwill have a value
the first time it is used.

4. Line 19 from the end of LINEARSYSTEM should be changed
from

if normdy = 0 then begin cnr : = 1.0; go to enditer end;

to read

if normdy = 0 then go to enditer;

This correction makes sure that cnr retains a reasonable value in
case normdy should be 0 for some column.

5. The symbol "-" must be remo"(red from the parameter de
limiters in the declarations of procedures LINEARSYSTEM,
RESIDUALS and SOLVE.

6. Four lines above the bottom line of procedure LINEAR
SYSTEM, delete the first occurrence of X[i,k] : =

7. In the third line of the heading of procedure IP2, the parame
ter delimiter

) extra therm : (
should be changed to

) extra term : (

REMARK ON ALGORITHM 135 [F4]
CROUT WITH EQUILIBRATION AND ITERATION

[W. M. McKeeman, Comm. ACM 5 (Nov. 1962), 553-
555, 557; 7 (July 1964), 421]

LOREN P. MEISSNER (Recd. 21 Oct. 1964)
Lawrence Radiation Lab., U. of California, Berkeley.

1. The following error in the published algorithm is noted: The
procedure /Pl forms the sum of A[i, p] X A[p, k]; however, two
lines above the bottom line of procedure CROUT an attempt is
made to use I Pl to form the sum of A[k, p] X A[p, j].

A possible way of correcting this is to add a procedure IPla
which is identical with I Pl except that k is written for i and j
for k. Since the procedure is used of ten, making the correction in
this way is not unreasonable. A more extensive un.Pertaking would
be to modify CROUT to use a more general procedure such as
INNERPRODUCT [1].

2. The following comment is made in view of the reference to
this algorithm in a recent Editor's Note [2]: In the use of Algo
rithm 135 as a determinant evaluator, it may be well to set m, the
"number of right-hand sides" to 1 instead of zero and give an
arbitrary nonzero right-hand side such as (1, 0, 0, · · ·). This will
cause a calculation of the "condition," and possibly an exit to
singular, to call the user's attention to cases in which the deter
minant is nonsense.

COLLECTED ALGORITHMS (cont.)

REFERENCES:
1. FORSYTHE, G. E. Crout with Pivoting. Algorithm 16. Comm. ACM 3 (Sept.

1960), 507.
2. ROTENBERG, L. J. Remark on Revision of Algorithm 41. Comm. ACM r (Mar.

1964), 144.

135-P 4- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 136
ENLARGEMENT OF A GROUP
M. WELLS*

University of Leeds, England
*Currently with Burroughs Corporation, Pasadena, California

procedure Enlarge group (G, n, g, Abelian);
array G, g; integer n; Boolean Abelian;

comment This procedure combines the element g with the sub
group G, of n elements, to form a new group. The Boolean
Abelian has the value true if the group to which G1 and g belong
is Abelian. Two procedures, multiply and equal are assumed
to be declared: multiply (G[i]) by : (G[j]) to give : (G[k]) will set
the element Gk equal to the product of the elements Gi and Gj.
equal (G[i], G[j]) is a Boolean procedure whose value is true
if, and only if, the elements Gi and Gj are equal. On leaving the
procedure the enlarged group is in G, and n is equal to the
number of elements in the new sub-group G. The procedure
will function correctly if g is included in G on entry. It is prob
able that g and the elements of G will be arrays, and the pro
cedure body will, in practice, need to be altered considerably.
The procedure has been used successfully in connection with
problems of space-group theory;

begin integer i, j, k;
fo:-o i := 1 step 1 until n do
if equal (G[i], g) then go to not new generator;
n : = n + 1; G[n] : = g;
for i := n step 1 until n do
begin for j := 1 step 1 until n do
begin multiply (G[i], G[j], G[n+ 1]);

fork := 1 step 1 until n do
if equal (G[k], G[n+l]) then go to not new element 1;
n := n + 1;

not new element 1: if Abelian then go to take next element;
multiply (G[j], G[i], G[n+l]);
fork := 1 step 1 until n do
if equal (G[k], G[n+l]) then go to not new element 2;
n := n + 1;

not new element 2 : take next element:
end of j-loop;
end of i-loop;

not new generator: end of group enlargement

136-P 1-- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 137
NESTING OF FOR STATEMENT I
DAVID M. DAHM & M. WELLS*

Burroughs Corp., Pasadena, Calif.
*On leave of absence from the University of Leeds, England.

procedure Fors 1 (n, P);
value n; integer n; procedure P;
comment Fors 1 generates a nest of n for statements with the

procedure P at their center. Two non-local arrays I and U,
which give the value of the controlled variable and its upper
bound for each level are assumed to be declared;

begin integer j;
if n = 0 then P
else for j := 1 step 1 until U[n] do
begin J[n] :=j; Fors 1 (n-1,P) end end Fors 1

137-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGO.ltl THM 138
NESTING OF FOR STATEMENT II
DAVID M. DAHM & M. WELLS*

Burroughs Corp., Pasadena, Calif.
* On leave of absence from the University of Leeds, England .•

procedure Fors 2 (P);
procedure P;
comment Fors 2 performs the same function as Fors 1, but is

more economic of storage space. It is expected, however,
that Fors 1 would be more economic of time. The formal
parameter n is now replaced by the non-local integer n;

begin if n = 0 then P
else for J[n] := 1 step 1 until U[n] do
begin n := n-1; Fors 2 (P) end;
n := n + 1 end Fors 2

138-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 139
SOLUTIONS OF THE DIOPHANTINE EQUATION
.J. E. L. PECK

University of Alberta, Calgary, Alberta, Canada

procedure Diophantus (a,b,c); integer a,b,c;
comment This procedure seeks the integer solutions of the

equation ax + by = c, where the integers a,b,c are given. It
assumes a non-local iinteger M, which should be as large as
storage will allow, two nonlocal labels INDETERMINATE
and NO SOLUTION and two non-lo.cal Boolean variables
'general solution' and 'time permits' which are self explanatory.
It also assumes the procedmes abs, sign and print;

hegin integer n,r,s,d,i; integer array q[l :M];
n := i := O; d := s :== abs(a); r := abs(b);
comment d will become the greatest common divisor of a and b.

If b = 0 then d = I a I. The vector q will retain the successive
quotients in the Euclidean algorithm r i-1 = r iqi + r i+i ,

i = 1, 2, · · · , n, where 0 ~ r i+t < r i , ro = I a I, r1 = I b I,
and Tn+I = O;

for i : = i + 1 while r ~ 0 do
begin n := i; d := r; q[i] := s + d;
r := s - d X q[i]; s := d end This records the quotients and

the number n of divisions for use below;
if d = 0 then go to if c = 0 then INDETERMINATE
else NO SOLUTION; comment The case d = O occurs when

a2 + b2 = 0. If d now does not divide c then the equation can
not be solved so;

if (c + d) X d ~ c then go to NO SOLUTION;
if d ~ 1 then

begin a := a/d, b := b/d; c := c/d end, which removes
the common factor and reduces the equation to the case
where a and b are relatively prime;

begin comment We shal1 now find u1 and v1 in order to
express
1 = au1 + bv1 , using the relations r.,. = TiVi + Ti-1Ui ,
i = n, n-1, · · · , 1, Vn = 1, Un= 0, and Ti+t = -riqi + ri-l,
i = n-1, n-2, · · · , 1; integer u,v;

if n = 0 then
begin v .- O; u := 1 end, which takes care of the case

b = 0
else

begin v : = 1 ; u : := 0;
fori := n-1 step -1until1 do

begin integer t;
t := v; v := u -- v X q[i]; u :=
end i

end the case n ~ 0. It remains now to multiply the equality
1 = au1 + bv1 through by c;

begin integer xO, 110;
xO := c Xu X sign(a); yO := c Xv X sign(b); print (xO,yO);
comment If Xo ,yo is a particular solution then Xo ± ib,

110 =F ia, i=l,2, ... gives the general solution. Therefore;·
if general solution then

begin u := b; v := a;
A: print(xO + u, yO - v); print(xO-u, yO + v);
u := u + b; v := v +a;
if time permits then go to A
end general solution and

end solution.
end u,v

139-P 1- 0

end Uiophantus.

CERTIFICATION OF ALGORITHM 139 [Al]
SOLUTIONS OF THE DIOPHANTINE EQUATION

[J.E.L. Peck, Comm. ACM 5 (Nov. 1962), 556]
HENRY J. BowLDEN (Recd. 30 Sept. 1964 and 5 Nov. 1964)
Westinghouse Electric Corp., R&D Ctr., Pittsburgh, Pa.

Algorithm 139 was transcribed into Burroughs Extended ALGOL
after the following typographical error was corrected: On the
line following "if d ¢ 1 then" replace "a:= a/d," by"a := a/d;".

The cases shown in the table were tried., with the results shown
in columns 4 and 5. These solutions are correct, but perhaps not
too useful. Of course, a definition of "useful" in this context would
be rather subjective; in any case, the user can always obtain an
arbitrary solution "useful" for his purpose. We have chosen to
regard a small value of x as a criterion for usefulness, and obtain
this by inserting, just before "print (xO, yO)", the statements

c : = xO + b; xO : = xO - c X b; yO : = yO + c X a;
The following remarks have to do with matters of programming

taste rather than accuracy.
(a) A value part of form value a, b, c; should be inserted to

avo1J side effects:
(b) The results should be passed back to the calling program

for use by the caller. This requires the addition of two call-by
name parameters (xO, yO), and the removal of the declaration
integer xO, yO;. The provisions for printing the results should be
omitted.

(c) The procedure contains a deliberate possibility of an in
finite loop. This is unacceptable on mos1; operating systems and
should be omitted.

(d) The provision of an array (q) "as large as storage will
allow" is rather indefinite. The algorithm as given provides no
test to prevent exceeding this arbitrary size. The number of par
tial quotients in the Euclidean algorithm may be shown to be no
more than five times the number of decimal digits in the (largest
of the) coefficients a, b, c, so a size of five times the number of digits
in the largest integer to be considered ils sufficient.

The algorithm, modified as suggested above, gives the results
in columns 6 and 7 of the table below. The execution time on the
B-5000 was approximately 40 milliseconds.

origina1~ modified

a XO ::vo xO yO

1000 23 1046 -2092 91002 -22 1002
0 0 0 indeterminate

57 -103 47009 2209423 ll222234 73 -416
10 12 578 -289 289 -1 49
10 12 97 no solution

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 140
MATRIX INVERSION
P. z. INGERMAN

University of Pennsylvania, Philadelphia, Penn.
procedure invert (a) of order:(n) with tolerance:(eps) and

error exit :(oops);
value n, eps; array a; integer n; real eps; label oops;
co:mment This procedure inverts a matrix by using elementary

row operations. Although the method is not particularly good
for ill-conditioned matrices, the simplicity of the algorithm
and the fact that the inversion occurs in place make it useful
on occasion;

begin integer i;
for i := 1 step 1 until n do
begin integer j, k; real q;

q := a[i,i];
if abs(q)~abs(eps) then go to oops;
a[i,i] := 1;
if q:;Cl then fork := 1 step 1 until n do a[i,k] := a[i,k]/q;
for j := 1step1 until n do

if h~j then
begin q := a[i,i]; a(.j,i] := O;

fork :== 1 step 1 until n do
a[j,k) := a[j,k]-qXa[i,k] end end end

CERTIFICATION OF ALGORITHM 140
.MATRIX ~NVERSION [P. Z. Ingerman, Comm. ACM,
Nov. 1962]
RICHARD GEORGE*

Argonne National Laboratory, Argonne, Ill.
"Work supported by the United State9 Atomic Energy Commission.

Algorithm 140 was tested on the LGP-30, using SCALP, a load
and-go compiler from the Dartmouth College Computation
Center, and it was shown to be syntactically correct.

It is indeed a simple procedure. It is so simple because the
author has eliminated the very necessary search for largest ele
ments and the row interchanges. As a result, this procedure will
f'ail to invert many non-singular matrices. To be invertable by this
procedure, a matrix must be such that all of its leading diagonal
submatrices will have non-zero determinants.

One would do well to avoid this algorithm and use one (such
as 120) which employs the pivoting process.

140-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 141
PATH MATRIX
P. Z. lNGERMAN

University of Pennsylvania, Philadelphia, Penn.

procedure find path (a, n);
value n; Boolean array a; integer n;
comment This procedure is merely an Algol implementation

of the method of Warshall (JACM 9(1962), 11-12). Some ad
vantage is taken of the characteristics of the problem to in
crease the efficiency;

begin integer i, j, k;
for j := 1 step 1 until n do
for i := 1 step 1 until n do
ifa[i,j] /\ i¥-j then
fork := 1 step 1 until n do
a[i,k] := a[i,k]Va(i,k] end :findpath

141-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 142
'TRIANGULAR REGRESSION
w. L. HAFLEY AND J. s. LEWIS

Aluminum Company of America, Pittsburgh, Penn.

procedure trireg (n, nob, dep, pmax);
real pmax; integer n, nob, dep;
comment trireg is a multiple regression procedure which

develops and inverts only the upper triangular portion of a
correlation matrix of order n. The i,jth (i'5.j) matrix element
is r(c,+i) where the e's are cram numbers(ref. Algorithm 67,
J. Caffey, Comm. ACM 4, July 1961). dep < n dependent
variables are regressed simultaneously. Read (1.t) is an input
procedure for single elements. The input consists of nob ob
servations on n variables. The first dep variables are con
sidered dependent and the remaining n - dep are considered
independent variables. Independent variables are dropped
when the pivotal element exceeds pmax during the inversion.
Total variable storage is 14 + 3n + n(n+l)/2;

begin integer il, i2, i3, cl, c2, c3, df; integer array c[l:n];
. ~~al d, p, a; real array r[l:n(n+l)/2], v[l:n], m[l:n];
1mt1al: df: = O; for il : = 1 step 1 until n do m[ilJ : = O;

for il : = 1 step 1 until n(n+l)/2 do r[il] : = O;
input: for il : = 1 step 1 until nob do

begin for i2 : = 1 step 1 until n do Read (v[i2]);
cl : = O; for i2 : = 1 step 1 until n do

begin d: = v[i2J; m[i2]: = m[i2] + d;
for i3 : = i2 step 1 until n do
begin cl : = cl + 1; r[cl] : = r[cl] + v[i3J X d end

end i2;
end il;

ii:wrrelation: cl : == 1; a:== l/nob; for il : = 1 step 1 until n do
begin v[il} : = l/sqrt(r[cl]- (m[il]j2) ><a);

r[clJ : == 1; cl : == cl + n - il
end il;
cl : = 1; for il : = 1 step 1 until n clo
begind:=aXm[il]; p:=v[il]; cl:=cl+l;

m[ilJ : = d;
for i2 : - il + 1 step 1 until n do
begin r[clJ : == (r[clJ-dXm[i2]) X v[i2J X p;
end i2;

end il;
comment variable i may be dropped from the
regression by setting v, == 0 and df equal to the
number of variables dropped;

cram: il : == - n; i2 : == n + 1; for i3 : == 1 step 1 until n do
begin il : == il + i2 - i3; c[i3J : = il
end il;

inversion: for il : = dep + 1 step 1 until n do
begin cl : = c[ilJ; if v[ilJ rt= 0 then

begin p: • 1/r[cl+ilJ; if p >pm.ax then
begin df :- df + 1; go to YY end else

begin r[cl +ill : = p; for i2 : == 1 step 1
until il - 1 do

begin c2: == c[i2]; a : == p X r[c2-til];
for i3 : == i2 step 1 until n while i3 F= il do

142-P 1- 0

begin if i3 < il then
begin c3 : = c[i3]; d : == r[c3+il] end

else d : == -r[cl+l3];
r[c2+i3l : == r[c2+i3] + d X a

end i3;
end i2;
for i2 : == il + .1 step 1 until n do
begin a:= p X r[cl+i2]; c2 := c[i2];

for i3 : = i2 step 1 until n do
r[c2+i3] : = r[c2+i3] - a X r[cl+i3];

end i2;
ZZ: for i2 : = 1 step 1 until il - 1 do

begin c2: = c[i2+il]; r[c2] : = - p X r[c2]
end i2;
for i2 : = cl + il + 1 step 1 until n + cl do
r[i2] : = p X r[i2]

end
end else

YY: begin p: = O; r[cl+il] : = O; go to ZZ end
coeff: d :== l/(nob-n+dep-l+df); for il := 1 step 1 until

dep do
if v[il] rt= 0 then
begin a : = O; p : = l/v[il]; cl : = c[il]; for i2 : = dep

+ 1 step 1 until n do
begin if r[i2] '=;t!: 0 then

begin r[cl+i2] : = -r[cl+i2] X v[i2] X p; a . -
a + r[cl+i2] X m[i2]

end
end i2;
v[il] : == (2-r[cl+il]) X d/(v[il]j2)
comment: v[l:dep] now contains the mean square

deviations from regressions for the dependent vari
ables. The coefficients of determination R2 may be
obtained as r[cl+il] - 1;

r[cl+il] : = m[il] - a else
begin cl : = c[il]; for i2 . - cl + il step 1 until

cl + n do r[i2J : = 0
end

end
comment The r-array now contains the constants and coeffi

cients of regression, and the inverse of the correlation matrix of
the independent variables that have been kept. The following
example will help to locate the information in the r array.
Example: n = 6 dep = 3

I
r1 r2 ra 1r4 rr. re

r1 rs lrg r10 ru

r12 !r!!.2:~ !~-
r1e r11 r1s

r1& r2c

boa

:bu b21 b31
Jb12 b22 ba2

!b~3-~2~ ~~-
ru r12 ru

r22 r2a
r21 raa

The variances and covariances of the regression coefficients for
the jth dependent variable can be determined by-

Var (bi;) = r" X v; X vi 2

Covar (b,;b1<;) = ri" X v; X v, X v,.;
end trireg

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 143
TREESORT 1
ARTHUR F. KA.UPE, .JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 1 (UNSORTED, n, SORTED, k);
value n, k;

integer n, k; array UNSORTED, SORTED;
comment TREESORT 1 is a revision of TREESOR'P (AL

GORITHM 113) which requires neither the "packed" array m

nor the machine procedures pack, left half, right half, and mini
mum. The identifier infinity. is used as nonlocal real ;variable
with value greater than any element of UNSORTED;

begin integer i, j; array ml [1:2Xn-l];
integer array m2 [1:2Xn-1];

procedure minimum; if ml [2Xi] ~ ml[2Xi+ll then
begin ml [i] : = ml [2>< i]; m2[i] : = m2[2X i] end else
begin ml[i] : = m1[2Xi+lJ; m2[i] : = m2[2Xi+1J end mini

mum;
for i: = n step 1until2 X n - 1 do begin ml[i]: = UNSORTED

[i-n+ll; m2[i] : = i end
for i : = n - 1 step -1 until 1 do minimum;
for .i : = 1 step 1 until k do

begin SORTED [j] := ml[l]; i := m2[1]; ml[i] .- infinity;
for i : = i + 2 while i > 0 do minimum end

end TREESORT 1

143-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 144
TREESORT 2
ARTHUR F. KAUPE, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 2 (UNSORTED, n, SOR1'ED, k, ordered);
value n, k;

integer n, k; array UNSORTED, SORTED; Boolean proce
dure ordered;

comment TREESORT 2 is a generalized versiolll of TREESORT
1. The Boolean procedure ordered is to have two real argu
ments. The array SORTED will have the property that ordered
(SORTED[i], SORTED[j]) is true when j > 1: if ordered is a
linear order relation;

begin integer i, j; array ml [1:2Xn-l]; integer array m2
[1:2Xn-l];

procedure minimum; if ordered (ml[2Xi], ml[2Xi+l]) then
begin ml [i] : = ml [2X i]; m2[i] : = m2[2X i] end else
begin ml[i] : = ml[2Xi+lJ; m2[i] : = m2[2X·i+l] end mini

mum;
for i: = n step 1until2 X n - 1 do begin ml[i]: = UNSORTED

[i-n+l]; m2[i]: = i end
for i : = n - 1 step -1until1 do minimum;
for j : = 1 step 1 until k do

begin SORTED[j] : = ml[l]; i: = m2[1]; ml[i] : = infinity;
for i : = i + 2 while i > 0 do minimum end

end TREESORT 2

144-P I- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 145
ADAPTIVE NUMERICAL INTEGRATION BY

SIMPSON'S RULE
WILLIAM MARSHALL McKEEMAN*

Stanford University, Stanford, Calif.
* This work was supported in part by the Office of Na val

Research under contract N on4 225 (37).

real procedure Integral (F) limits: (a, b) tolerance: (eps);
real procedure F; real a, b, eps;
begin comment Integral will numerically approximate the

integral of the function F between the limits a and b by the
application of a modified Simpson's rule. Although eps is a
measure of the relative error of the result, the actual error
may be very much larger (e.g. whenever the answer is small
because a positive area cancelled a negative area). The pro
cedure attempts to minimize the number of function evalua
tions by using small subdivisions of the interval only where
required for the given tolerance;

integer level;
real procedure Simpson (F, a, da, Fa, Fm, Fb, absarea,est,eps);
real procedure F; real a, da, Fa, Fm, Fb, absarea, est, eps;
begin comment Recursive Simpson's rule;

real dx, xl, x2, estl, est2, est3, Fl, F2, F3, F4, sum;
dx := da/3.0; xl :=a+ dx; x2 := xl + dx;
Fl : = 4.0 X F(a+dx/2.0); F2: = F(xl);
F3 : = F(x2); F4 : = 4.0 X F(a+2.5Xdx);
estl : = (Fa+Fl+F2) X dx/6.0;
est2 : = (F2+Fm+F3) X dx/6.0;
est3 : = (.F3+F4+Fb) X dx/6.0;
absarea: = absarea-abs(est) + abs(estl) + abs(est2) + abs(est3);
sum : = estl + est2 + est3;
level : = level + 1;
Simpson : = if (a,bs(est-sum) ~ eps X absarea /\ est ;e 1.0) V

level ~ 7 then s:um
else Simpson (F, a, dx, Fa, Fl, F2, absarea, estl, eps/3.0)

+ Simpson (F, xl, dx, F2, Fm, F3, absarea, est2, eps/3.0)
+ Simpson (F, x2, dx, F3, F4, Fb, absarea, est3, eps/3.0);

level : = level -1 ;
end Simpson;
level : = 1; ·
Integral : = Simpson (F, b-a, F(a), 4.0 X F((a+b)/2.0), F(b),

1.0, 1.0, eps)
end Integral 13

CERTIFICATION OF ALGORITHM 145
ADAPTIVE NUMERICAL INTEGRATION BY
SIMPSON'S RULE [W. McKeeman. Comm. ACM,

Dec. 1962]
WM. M. MCKEEMAN

Stanford University, Stanford, Calif.
Suggested changes in the code:
1. Replace all occurrences of eps/3.0 by eps/1.1.
2. Replace level ~ 7 by level ~ 20.
3. The second parameter a in the final call of Simpson was

omitted; insert it.

145-P 1- 0

With the above cnanges, a BALGOL tr:1mslation of Integral :Oas
been tested successfully on a large number of functions. An 4:)X

ample of its behavior is given below:
Machine: Burroughs 220, 8 decimal digit :floating-point mantissa.
f(x) = 1.0/sqrt(abs(x)); which has a pole at the origin.
a = -9.0; b = 1000.0; correct answer = 206.0;

eps computer answer r4~lative error

0.1 200.22251 0.028
0.01 206.00226 0.0000107
0.001 206.00092 0.0000045
0.0001 205.99985 0.0000007

If the recursion was allowed to go thirty levels deep we found:

0.0001 206.00005 0 .. 0000002

The graph below shows the adaptive clustering of the points of
evaluation around the pole of the function (taken from the first
example above).

0

f(x) = 1.0/sqrt(abs(x))

100 200 300 400 500

Each vertical line represent1~ a point of
evaluation for the function during the
execution of the :..all:

integral(!, -9.0, 10000.0, 0.1);

REMARK ON ALGORITHM i45 [DI]
ADAPTIVE NUMERICAL INTEGRATION BY

SIMPSON1S RULE [William Marshall McKeeman,
Comm. ACM 6, (Dec. 1962), 604]

M. C. PIKE (Recd. 5 Oct. 1964 and 23 Nov. 1964)
Statistical Research Unit of the British Medical Research

Council, University College Hospital Medical School,
London, United Kingdom
This procedure was tested on the JCT Atlas computer and

found satisfactory after the following three modifications were
made.:
(1) add "real absarea;" on the line following "integer level;",
(2) add "absarea :- 1.0;" on the line following "level :== 1;",
(3) substitute

"Integral :== Simpson (F, a, b-a, /i'(a), 4.0XF((a+b)/2.0) 1

F(b), abaarea, 1.0, eps)"

COLLECTED ALGORITHMS (cont.)

for
"Integral := Si'lffpson (F, b-a, F(a), 4.0XF((a-h>J/2.0), F(b),

1.0, 1.0, eps) ".
These corrections are necessary since absarea appea,rs on the left
hand side of an assignment statement, namely, in line 10 of the
real procedure Simpson, and yet when Simpson is called in the
thirci to last line of the real procedure Integral the actual parame
ter for absarea is given as 1.0.

The author wishes t.o thank the referee for helpful suggestions.

145-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 146
MULTIPLE INTEGRATION
WILLIAM MARSHALL MCKEEMAN*

Stanford University, Stanford, Calif.
*This work was supported in part by the Office of Na val Re

search under contract N on4 225(37).

real procedure M ultiplelntegral (F) limits: (a, b) order: (n)
tolerance: (eps);

real procedure F; real array a, b; real eps; integer n;
begin comment F is a function of n variables which are stored

in an internal array x. Multiplelntegral approximates the
multiple integral of F bet.ween the n pairs of limits stored in
the parameter arrays a and b. For a mesh of k steps on each
axis, the number of function evaluations required for an
integral of nth order is approximately kjn. One consequence
is that the practical limit on n is quite small. Another is that
any inefficiency in the (undefined) procedure Integral will
reflect itself to the nth power in Multiplelntegral. The adap
tive procedure Integral is recommended;

real array x[l:n+l]; integer axis;
real procedure Integral (F) limits: (a, b) tolerance: (eps);
real procedure F; real a, b, eps;
begin comment The body of procedure Integral is left

undefined. For it one may substitute any procedure of the
same name that evaluates the integral of a function of a single
variable between the real limits a and b;

end I nlegral;
real procedure Ml(y); real y;
begin comment Recursive multiple integration;

x[axis] : = y;
axis : = axis -1 ;
MI : = if axis = 0 then F(x) else

Integral (Ml, a[axis], b[axis], eps/n);
axis : = axis +1;

end MI;
axis : = n + 1;
Multiplelntegral : = Ml(O)

end Multi plel ntegral

CERTIFICATION OF ALGORITHM 146
MULTIPLE INTEGRATION lW. M. McKccman,

Comm. ACM 5 (Dec. 1962), 604]
NIKLAUS WIRTH (Recd. 6 Jan. 1964)
Computer Science Div., Stanford U., Stanford, Calif.

Algorithm 146 was translated into a generalized ALGOL [cf. N.
Wirth, A generalization of ALGOL, Comm. ACM 6 (Sept. 1963),
547-554] and successfully run on the Stanford IBM 7090 computer.
Algorithm GO, Romberg Integration [Comm. ACM 4 (June 1961),
255; 5 (Mar. 1962), 168; 5 (May 1962), 281] was used for the real
procedure Integral.

The main disadvantage of Algorithm 146 is that the bounds of
the domain of integration must be constant, i.e. the domain
must always have the form of a rectangular hyperbox.

146-P 1- 0

COLLECfED ALGORITHMS FROM CACM

ALGORITHM 147
PSIF
D. AMIT

Ministry of Defense, Israel
real procedure psif(x, a, tan, Zn) exit: (errexit);
value x, a; label errexit; real procedure tan, Zn;
comment Computes the logarithmic derivative of the factorial

function defined by:

'11(x) = (x!)' = r'(x + 1) .
x! r(x + 1)

We make use of the expansion: (1) '11(x) = lnx + l/2x -
1/12x2 + 1/120x4 - 1/252x6 + E, (2) E < l/240x2 and of the re
cursion relation, (3) '11(x) = '11(x+n) - (1/(x+l)+ ... +1/(x+n)).
For x < -1 we use: (4) '11(-x) = 7rtan 7r(x+0.5) + 'l'(x-1).
The value of x is increased up to a. Then '1F is calculated by (3)
and (1). The error is then less than 1/240a8 ;

begin real psi, pei; psi : = 0;
if x > -1 /\ x ~ 0 then go to pos;
if x = 0 then begin psi : = -0.5772156649; go to exit end;

begin integer xl; xl : = x;
if x = xl then go to errexit end
comment psi is infinite;
pei : = 3.141592654; x : = -x - 1;

psi : = pei X tan(peiX (x+0.5));
pos: if x ~ a then go to large;

x : = x + 1; psi : = psi -1/x; go to pos;
large: begin real y; y : = 1/x;

psi : = psi + ln(x) + y/2-y i 2/12 + y i 4/120--y j 6/252;
exit: psif : = psi;
end psif

CERTIFICATION OF ALGORITHM 147
PSIF [D. Amit, Comm. ACkl., Dec. 62]
HENRY c. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission.

The following minor errors were noted in this algorithm:
a. (3) in the comment should read E < 1/240 x8•

b. The function tan is not a standard ALGOL function. It should be
declared, or replaced by sin ()/cos().

c. The block labelled large should be closed by inserting end im
mediately after 252.

The efficiency of the program would be improved by the follow
ing modifications:
a. Let the statement

if x = 0 then begin . . . end;

be the first statement of the procedure body.
b. Delete the condition x ~ 0 from the if clause,

if x > -1 /\ x ~ 0 then. . .

c. Delete the declaration of pei, and the assignment of the value
of 3.141592654 to pei in the statement

147-P 1- Rl

psi : = pei X sin(pei X (x+0.5))/cos(peiX (x+0.5));
replace pei by the value 3.141592654.

d. Replace the block labelled large by:
large: begin realy; x: = 1/x; y: = x Xx;
psi : = psi - ln(x) + x/2 - ((y/252-0.008333333333) X y +
0.08333333333) X y end;
With these changes, the body of the procedure was translated

and run on the LGP-30 compute1' using the Dartmouth SCALP
processor. The program was used to tabulate psif(x) for x = -1

(0.5)0(0.005)1.250. With a = 3.0 the results agreed with tabulated
values to within 3 in the 6th decimal place. This is considered
satisfactory, since one decimal place is lost in applying the recur
rence. Running time, including output on the Flexowriter and
eomputation of new values of the independent variable, averaged
about 30 seconds per value.

It should be observed that psif(x) is 'l'(x+l) as tabulated, for
example, by Jahnke-Emde-Losch.

CERTIFICATION OF ALGORITHM 147 [814]
PSIF [D. Amit, Comm. ACM 5 (Dec. 1962), 605]
RONALD G. PARSONS* (Recd. 7 Dec. 1966 and 5 Aug.

1969)
Stanford Linear Accelerator Center, Stanford University,

Stanford, CA 94305
*Present address: Department of Physics, The University of
Texas, Austin, TX 78712. Work supported by the US Atomic
Energy Commission.

KEY WORDS AND PHRASES: gamma function, logarithmic
derivative, factorial function, psi function

CR CATEGORIES.: 5.12

The following errors were noted in this algorithm in addition
to those noted by Thacher [2].

a. (4) in the comment should read "For -z < -1 we use: (4)
'11(-x) = 'l'(x-1) + 71' cot (7rZ)".
b. At the end of the first comment add: "Note that psif(z) •
'11(x) is i,b(x+l) as defined, for example, by Jahnke-Emde-Losch"
(see [1]).
c. The statement in the algorithm before the label pos should
read: psi := pei X cos (:peiXx)/sin (:peiXx); These errors caused
the procedure to give incorrect results for psif(x, a) for x < -1.
d. The arguments tan and ln should be deleted from the parameter
list and real procedure tan, ln; should be deleted from the speci
fication part of the procedure heading.

With these changes and those of Thacher, the ·procedure was
translated into Burroughs B5500 extended ALGOL and run on the
Stanford B5500. psif(x, a) was tabulated for x = -2.9(0.1)5.0
with a = 8.0 The results agreed with tabulated values to within
1/(24Qa8).

REFERENCES:
1. JAHNKE-EMDE-LoscH. Tables of Higher Functions (6th Ed.).

McGraw-Hill, New York, 1960.
2. THACHER, H. C., JR. Certification of Algorithm 147. Comm.

ACM 6 (Apr. 1963), 168.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 148
TERM OF MAGIC SQUARE
D. M. COLLISON

Elliott Brothers (London) Ltd., Borehamwood, Herts.
integer procedure magicterm (x, y,_ n); value x, y, n; integer

x, y, n;
comment for the magic square s[l:n, l:n], magicterm generates

the element s[x, y], where n > 2 and n is odd. De la Loubere's
method is used;

begin integer b, c;
b : == y - x + (n-1) + 2; c: = y + y - x;
if b ~ n then b : == b - n else if b < 0 then b : == b + n;
if c > n then c : == c - n else if c ~ 0 then c : = c + n;
magicterm : == b X n + c

end magicterm

CERTIFICATION OF ALGORITHM 148
TERM OF MAGIC SQUARE [D. M. Collinson, Comm.

ACM, Dec. 1962]
J. N. R. BARNECUT

University of Alberta, Calgary; Calgary, Alberta, Canada
MAG/CT ERM was translated into FORTRAN for the IBM 1620.

The procedure was tested for terms of squares up to order 13.
Correct results were obtained. For determination of complete
squares operating time was not significantly different from Al
gorithm 118.

0ERTIFICATION OF ALGORITHM 148
TERM OF MAGIC SQUARE [D. M. Collison, Comm.

ACM, Dec. 62}
DMITRI THORO

San Jose State Colle~~e, San Jose, Calif.
This algorithm was translated into FORTRAN and FoRGo for the

IBM 1620. No changes in the program were necessary. The ele
ments of magic square:3 of odd orders up to 15 were generated
satisfactorily.

148-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 149
COMPLETE ELLIPTIC INTEGRAL
J. N. MERNER

Burroughs Corp., Pasadena, Calif.

comment The following two procedures, along with a test
program were compiled and run by Peter Naur on the DISADEC
computer. Compilation time for the 9 pass compiler was less
than IO seconds. The elliptic integral of the form

[

1(
12 dt

0 v a2 COS2 t + b2 sin2 t

is evaluated by replacing a and b by their arithmetic and geo·
metric means, respectively. ELIP 2 is a nonrecmrsive proce
dure to accomplish the same thing;

real procedure ELI P 1 (a, b); value a, b; real a, b;
ELIP 1 : =if abs(a-b) <10 -8 X a

then 3.14159265/2/a
else ELIP 1 ((a+b)/2, sqrt (aXb));

real procedure ELI P 2 (a, b); value a, b; real a, b;
begin real C;
L: C:=-(a-1:-b)/2; b:=sqrt(aXb); a:=c;
if abs(a-b) <10 -8 X a then ELIP 2: = 3.14159:265/2/a
else go to L end

CERTIFICATION OF ALGORITHM 55
COMPLETE ELLIPTIC INTEGRAL OF THE FIRST

KIND [John R. Herndon, Comm. ACM, Apr. 1961]
and

CERTIFICATION OF ALGORITHM 149
COMPLETE ELLIPTIC INTEGRAL [J. N. Merner,

Comm. ACM, Dec. 1962]
HENRY c. THACHER, JR.*

Reactor Eng. Div., Argonne National Laboratory,
Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission.

149-P 1- Rl

The bodies of Algorithm 55 and of the second procedure of
Algorithm 149 were tested on the LGP-30 computer using ScALP,
the Dartmouth "LOAD-AND-Go" translator for a substantial sub
set of ALGOL 60. The floating-point arithmetic for this translator
carries 7+ significant digits.

In addition to modifications required because of the limitations
of the ScALP subset, the following need correction:

In Algorithm 55:
l. The constant 0.054555509 should be 0.054544409.
2. The function log should be ln.

In procedure ELIP 2 of Algorithm 149, the statement a : == c
should be a : - C.

The parameters of Algorithm 149 are related to the complete
elliptic integral of the first kind by: K == aXELIP(a, b) where
the parameter m = k2 == 1 - b/a.

The maximum approximation error in Algorithm 55 is given by
Hastings as about 0.610-6. In addition there is the possibility of
serious cancellation error in forming the complementary param
eter t - 1 -k X k. Fork near 1, errors as great as 4 significant
digits were sustained. In these regions, the complementary
parameter itself Is a far more satisfactory parameter.

The accuracy obtainable with Algorithm 149 is limited only by
the arithmetic accuracy and the amount of effort which it is
desired to expend. Six-figure accuracy was obtained with 5 appli
cations of the arithmetic-geometric mean for a == 1000, b = 2,
and with one application for a = 500, b = 500. ·

Neither algorithm is satisfactory fork - l. The behavior for
Algorithm 55 will be governed by the error exit from the logarithm
procedure. Under these circumstances, Algorithm 149 goes into an
endless loop. Algorithm 149 may also go into an endless loop of the
terminating constant (10-8 in the published algorithm) is too
small for the arithmetic being used. For the ScALP arithmetic it
was found necessary to increase this tolerance to 5.0io-7. The
resulting values of the elliptic integrals were, however, accurate
to within 2 in the 7th significant digit (6th decimal).

The relative efficiency of the two algorithms will depend
strongly on the efficiency of the square-root and logarithm sub
routines. With most systems, Algorithm 55 will provide sufficient
accuracy, and will be more efficient. If a square-root operation or
a highly efficient square-root subroutine is available, Algorithm
149 may well be the better method.

ACM Transactions on Mathematica.I Software, Vol. 4, 'No. 1, March 1978, Page 95.

REMARK ON ALGORITHM 149

Complete Elliptic Integral [821]
[J.N. Merner, Comm. ACM 15, 12 (Dec. 1962), 605]

Ove Skovgaard [Recd 18 October 1976 and 14 February 1977]
Institute of Hydrodynamics and Hydraulic Engineering, Technical University of
Denmark, DK-2800 Lyngby, Denmark

The text following the colon at the end of the fifth paragraph in [4] should read
as follows: K = aXELIPl(a,b) or K = aXELIP2(a,b), where m = k2 = 1
- (b/a)2•

A better procedure is given in [1, p. 86, procedure cell]. This procedure can for
some computers be made slightly more efficient by eliminating the last assignment
statement m : = m/2 in the loop, replacing the second assignment statement
m : = kc + m with m : = (kc + m) X .5 and replacing the last assignment state-

COLLECTED ALGORITHMS (coat.)

ment cell := pi/m with cell (pi/2)/m. Kotc the variable m should not be
confused with the parameter ni = k2 •

A more efficient, but less portable procedure is defined in [2] and implemented,,
for example, in the FUNP ACK package [3].

Reff RE NC ES

1. BuLIRSCH, IL Numerical calculation of elliptic integrals and elliptic functions. Numer.
Math. 7 (1965), 78-90. Prepublication for the planned volume of Special Functions of 1'.he
Handbook for Automatic Computation, Springer, Berlin.

2. CooY, W.J. Complete elliptic integrals. In Hart, J.F., et al., Computer Approximatimis.
Wiley, New York, 1968, pp. 150-154 and pp. 335-339.

3. CooY, W.J. The FUNPACK package of special function subroutines. ACM Trans. Mathe
matical Software 1, 1 (March 1975), 13-25.

4. THACHER, H.C., JR. Certification of Algorithm 149: Complete elliptic integral. Comm.
ACM 6, 4 (April 1963), 166-167.

149-P 2- 0

COLLECTED ALGORITHMfS FROM CACM

ALGORITHM 150
SYMINV2
H. RUTISHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland
procedure syminv2(a,n) result: (a) exit: (fail); value n; in-

teger n; array a; label fail;
comment syminv2 obtains inverse of a symmetric matrix a of

order n by a method which is similar to that given by Busing
and Levy [Comm. ACM 5 (1962), 4461 but requires no inter
changes of rows and columns nor storage space for an ad
ditional matrix Q, yet is numerically 'equivalent. The pro
cedure requires the upper triangular part of a to be given and
overwrites it by the upper triangular part of the inverse which
is again denoted by a. All pivots are chosen on the diagonal,
and if all further diagonal elements ~hich are eligible as
pivots vanish (this is impossible for a positive definite matrix
a) then exit through fail occurs;

begin
real bigajj;
integer i, j, k;
real array p, q[l :n];
Boolean array r[l :n];
for i := 1 step 1 until n do r[i] := true;

grand loop:
for i := 1 step 1 until n do
begin

search for pivot:
bigajj := O;
for j := 1 step 1 until n do
begin

if r(j] /\ abs(a(j,j]) > bigajj then
begin

bigajj := abs(a[j,j]);
k := j

end;
end;
if bigajj = 0 then go to fail;

preparation of elimination step i:
r[k] := false;
q[k] := 1/a[k,k];
p[k] := 1;
a[k,kJ := o;
for j := 1 step 1 until k-1 do
begin

p[j] := a[j,k];
qfj) := (if r[j) then -a[j,k) else a[j,k]) X q[k};
a[j,k) := 0

end;
for j := k+l step 1 until n do
begin

p[j] := if r(j] then a[k,j) else -a[k,j];
q[iJ := -a[k,iJ x q[k];
a[k,j) := 0

end;
elimination proper:

for j := 1 step 1 until n do

fork := j step 1 until n do
a[j,k) := a(j,kJ + p(jJ X q[kl

end grand loop
end syminv2

REMARK ON ALGORITHM 150

150-P 1- 0

SYMINV2 [H. Rutishauser, CoMM. ACM, Feb. 1963]
ARTHUR EVANS, JR.

Carnegie Institute of Technology, Pittsburgh, Pennsyl
vania

The identifier "a" appears twice in the procedure heading as
a formal parameter. It is not clear that this situation has any
meaning in ALGOL. Indeed, it is ~ot at all obvious how one might
translate the procedure. If the actual parameters corresponding
to the two formal parameters with the same identifier are different
there is no way for the translator (or for the reader) to distinguish
which 'a' is to be used. Further, it would take a detailed examina
tion of the published algorithm to determine how this situation
might be corrected. It is certainly not clear that it would be safe
merely to delete one occurrence of the formal parameter 'a', since
the operation of the algorithm might require that two separate
matrices be available.

REMARK ON ALGORITHM 150
SYMINV2 [H. Rutishauser, CoMM. ACM, Feb. 1963]
H. RUTISHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland
procedure syminv 2 (a, n) result : (a) exit : (fail); in-

dicates that the value of parameter "a" is changed by the com
puting process (the matrix a is changed into its inverse, whereby
the given matrix is destroyed). In any procedure call, the two
actual parameters corresponding to the two a's must be identical,
otherwise the action of the procedure will be undefined (by virtue
of the substitution rule). The user may also change the procedure
heading into syminv 2 (a, n) exit : (fail); · · · without changing
the effect of the procedure.

EDITOR'S NoTE: The ALCOR group has adopted the rule that
if the value of a parameter is changed by the execution of the
procedure, then the parameter should be listed twice. Although
the ALGOL 60 Report does not forbid listing a formal parameter
twice, it would appear that a compiler which thus restricts the
language could not accept some of the examples given rn the
ALGOL 60 Report.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 150
'3YMINV2 [H. Rutishauser, Comm. ACM 6 (Feb. 196:~),

67)
PETEH NAUH (Recd 27 Sept. 63)
Regnecentralen, Copenhagen, Denmark

8ince the translator refuses to run programs with more than one
occurrence of the same identifier in a formal parameter list, the
second a was taken out when this procedure was run with the
GIER ALGOL system [cf. also the discussion in Comm. ACM 6
(July 1963), 390]. Otherwise it ran smoothly. For testing the ac
curacy, segments of the Hilbert matrix were inverted and the
results multiplied by the original segment and compared with the
unit matrix. The largest deviation in any element was found to be:

Order Max. deviation from elements Order Max. deviati. -i from elements
of the unit matrix of the unit matrix

2 -1.4910-8 6 -7 .3210-3
3 -2.3810-'7 7 -3.5910-l
4 -1.5310-6 8 -2. 9510 I
5 ,-3.3610-·1 9 -1. 25io 1

These figures may be compared directly with the ones related
to Algorithms 120, INVERSION II, and gjr [Comm. ACM 6 (Aug.
1963), 445]. A comparison shows that all three algorithms yield
about the s::ime accuracy, with syminv2 ~eing the best in most
cases, however. This is not too surprising since the knowledge that
the matrix is symmetric ought to simplify the calculation con
siderably.

The lengths of the three procedures after translation are as
foHows:

syrninv2
INVERSION II
gjr

Numbtr of
GIER words

216
279
302

Execution times for syminv2 in GIER ALGOL are:
Order Time (sec)

5 1
10 3.5
15 10.5
20 23

This is about half the time of execution of INVERSION II or gjr.

150-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 151
LOCATION OF A VECTOR IN A LEXICO

GRAPHICALLY ORDERED LIST
HENRY F. w ALTER

United States Steel Corp., Applied Research Laboratory,
Monroeville, Penn.

iinteger pracedure WCATE (min, n, c, v, combinatorial);
'value v; integer min, n, c; integer array v;
ilnteger procedure combinatorial;
1~omment This procedure locates the position, U>CATE, of a

given vector in a list of vectors without searching the list. The
list consists of all the combinations of n consecutive digits taken
data time. Min is the smallest of then integers. Each vector
(combination) is written in ascending order from left to right,
as, for example, 378 and the vectors are listed lexicographically,
by which is meant, that, considered as d digit numbers, the
vectors are listed in ascending order. For example, with min= 1,
d = 3, and n = 6, the vectors in order are 123, 124, 125, 126, 134,
135, ... , 456. Given the vector, v = 356, the procedure locates
this vector as the 19th in the list;

begin integer i, r, max, part, whole;
r := 1; v [0] := min - 1; max := min - l+n;
for i := 0 step 1 until c-1 do
begin part := c - i - 1;

ask: if v[i+l] - v[i] > 1 then
begin whole := max - v[i] - 1;

r := r +combinatorial (whole, part);
v[i] := v[i] + l;
go to ask

end;
end;
locate := r

tmd;

151-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 152
NEXCOM
JOHN HoPLEY

Peat, Marwick, Mitchell & Co., London, England

procedure nexcom (clu;r,r, N, setcomplete, nullvector);
array char; integer N;
label setcomplete, nullvector;
comment char is a column vector containing N elements each of

which is either 1 or 0. Nexcom transforms char into another
vector containing the same number of l's and O's, but in a differ
ent sequence. Starting with char in the state of having 1 in each of
the element positions 1, ... , r and zeros elsewhere then repeated
application of nexcom generates all nCr patterns of char. The
procedure terminates if the presented vector char has l in each
of the positions N, N-1, ... N-r+l and zeros elsewhere. Termi
nation is indicated by exit through the formal label 'setcomplete'.
If char is the null vector then procedure exists through the
formal label 'nullvector';

begin integer n, p, m;
comment find the first 1 in char;
for n := 1step1 until N do if
char [n] = 1 then go to A;
go to nullvector;
comment how many adjacent l's;
A: p := O;
for m : = n + 1 step l until N do
if char [m] = 1then1) := p + 1 else go to B;
comment Have all combinations been generated;
B: if p + ii = N then go to setcomplete;
comment Set up next combination; char[n+p+lJ := l;
form:= n + p step - 1 until n do char [m) := O;
form:= 1step1 until p do char [m) := l;
end nexcom;

152-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 153
GOMORY
F. L. BAUER

Johannes Gutenberg-Universitat, Mainz, Germany
procedure Gomory (a, m, n) result: (a) exit: (no solution);

value m, n;
intege,,r m, n;
integer array a;
label no solution;

comment Gomory algorithm for all-integer programming. The
objective of this procedure is to determi~e the integer solution
of a linear programming problem with integer coefficients only.
The tableau-matrix a consists of m + 1 rows and n columns.
The top row of a is the objective row, the last column represents
the right-hand sides. The tableau-columns, with the exception
of the last column, have to be lexicographically positive. The
algorithm is finished if all entries in the last column, except the
top most entry, are nonnegative. Then the top most entry of
the last column represents the value of the objective function.
The other entries of the last column define the coordinates of
the optimal solution. There are always the same variables con
nected with the same rows. The exit no solution is used if a row
is found which has a negative entry in the last column, but
otherwise only nonnegative entries;

begin integer i, k, j, l, r;
real lambda;
integer array t[l:n-1], c[l:n];

1: for i := 1 step 1 until m do if a[i,n] < 0 then
begin r := i; go to 2 end;
go to end;

2: fork := 1 step 1 until n-1 do if a[r,k] < 0 then
go to 4;
go to no solution;

«1: l := k;
for j := k+l step 1 until n-1 do if a[r,j] < 0 then

begin i := O;
3: if a[i,j] < a[i,l] then l := j else

if a[i,j] = a[i,l] then
begin i := i+l; go to 3 end

end;
for j := 1 step 1 until n-1 do if a[r,jJ < 0 then

begin if a[O,l] =I= 0 then t[j] := entier(a[O,j]/a[O,l])
else t[j] : = 1

end;
lambda := abs(a[r,1]/tfl]);
for j := 2 step 1 until n-1 do if a[r,j] < 0 then

begin if abs(a[r,j]/t[i]) > lambda then
lambda := abs(a[r,j]/t[j]) end;

for j := 1 step 1 until n do if j=FZ then
begin cfj] := entier(a[r,j]/lambda);

if cfj] =I= 0 then
for i := 0 step 1 until m do a[i,j] := a[i,j] + c[j] X

a[i,l]
end;

go to 1;
4~nd: end;

153-P 1- 0

CERTIFICATION OF ALGORITHM 153
GOMORY [F. L. Bauer, Comm. ACM 6, Feb. 1963]
B. LEFKOWITZ AND D. A. D'EsoPo*
Stanford Research Institute, Menlo Park, California .

* Work supported by Office of Naval Research.

GOMORY was hand-coded in BALGOL for the Burroughs 220
and in FORTRAN for the CDC 1604. The following corrections should
be made:

The statement
lambda := abs(a[r,1]/t[l]);

should read
lambda := abs(a[r,l]/t[l]);

The statement
for j := 2 step 1 until n-1 do if a[r,j] < 0 then

should read
for j := 1step1 until n-1 do ifa[r,j] < 0 then

The following changes to Bauer's program were made to in
crease its efficiency and reduce storage requirements.

Change the statement
begin integer i, k, j, 1, r;

to read
begin integer i, k, j, 1, r, c, t;

Change the statement
real lambda;

to read
real lambda, lambd;

Delete the statement
integer array t[l: n-1], c[l: n];

Before the statement
for j := 1step1 until n-1 do if a[r,j] < 0 then

insert the statement
lambda := 1.0;

Change the statement
begin if a[O,l] ¢ 0 then t[j] := entier(a[O,j]/a[O,l])

to read
begin if a[O,l] ~ 0 i'hen t := entier(a[O,j]/a[O:lD

Change the statement
else t[i] := 1

to read
else t := 1

After the statement
else t[j] : = 1

insert the statements
lambd := -a[r,j]/t;
lambda : = if lambda < lambd then lambd else lambda;

Delete the statements starting with
lambda := abs(a[r,1]/t[l]);

up to and including
lambda := abs(a[r,jJ/t[j]) end;

Change the statement
hegin c[j] := entier (a[r, j]/lambda);

to read
begin c := entier(a[r,j]/lambda);

Change the statement
if c[j] ~ 0 then

to read
if c ¢ 0 then

Change the statement
for i := 0 step 1 until m do a[i,j] := ali,j] + c[j] X

to read

COLLECTED ALGORITHMS (cont.)

for i :== U step 1 until m do a[i,jj :== a[i,j] + c X
The "tie-breaking" procedure embodied in the three state

ments beginning at

3: if a[i,i] < a[i,l] then l :== j else

wil1 fail if the two columns being compared are identical. Although
this cannot happen on the first iteration, it may occur later. To

test for this condition change the two statements beginning wit'h

begin i : = i + 1; go to 3 end

to read
begin i := i + 1; if i > m then go to 31 else go to 3 end;
31:end;

The revised algorithm yielded satisfactory answers on a ten
equation-seven variable problem in 159 iterations and a 35-equa
tion 14-variable problem in 447 iterations.

The following comments may be helpful for preparing a problem
for GOMORY. The problem constraints must be stated in the
form:

Li ai;X; + s; = bi

where the Si are slack variables. The columns representing these
slack variables need not appear in the initial tableau-matrix a.

Since the only variables in the solution that will necessarily be
non-negative are the Si , any non-negativity constraints on the
other variables must be among the above equations (e.g. the con
straint Xj E;; 0 is represented by -xi + Sk = 0).

The size of the integers in the b vector substantially affects the
number of iterations.

The requirement that all but the last tableau-columns be lexi
cographically positive means that the first nonzero element in
these columns must be positive.

EDITOR'::: NoTE: Prof. Bauer wishes to indicate that for the
Algorithm 153, GOMORY, credit is due to Ch. Witzgall, who
wrote the draft.

153-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 154
COMBINATION IN LEXICOGRAPHICAL ORDER
CHARLES J. MIFSUD

Armour Research Foundation, ECAC Annapolis, Md.

procedure COM Bl (n,r ,1); integer n, r; integer array I;
comment The distinct combinations of the first n integers

taken r at a time are generated in I in lexicographical order
starting with an initial combination of the r integers 1, 2, · · · ,
r. Each call of the procedure, after the first, must have in I
the previous generated combination. The Boolean variable
first is nonlocal to COMB! and must be true before the first call.
Thereafter first remains false until all combinations have been
generated. When calling COMB! with I containing n - r +·1,
n - r + 2, · · · , n, I is left unchanged andfirst is set true;

begin integers, i;
if first then begin for i :- 1 step 1 until r do

J[j) :- i;
first :- false; go to EXIT end;

begin if J[r] < n then begin J[r] :- J[r] + 1; go to EXIT
end;

for i :- r step -1 until 2 do
if J(j-1] < n - r + i - 1 then

begin J[i-1) :- J(j-1] + 1;
for s :- i step 1 until r do

J[s] :== J[j-1) + s....:. (j-1); go to EXIT end end;
first : - true;

EXIT: end

CERTIFICATION OF ALGORITHM 154
COMBINATION IN LEXICOGRAPHICAL ORDER
[Charles J. Mifsund, Comm. ACM, Mar. 1963]
K. M. BOSWORTH

I.C.T. Ltd., Hayes, Middlesex, England
This procedure was tested

for r :- 1 step 1 until n with n - f)

with correct results.

154-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 155
COMBINATION IN ANY ORDER
CHARLES J. MIFSUD

Armour Research Foundation, ECAC Annapolis, Md.

procedure COMB2 (m.,M,n,r,s,S,TOTAL); integer array m,
M, S; integer n, r, s,TOTAL;

comment Each call of COM B2 generates a distinct combina
tion 8, (if possible) of then integer values of J taken r (r>l)
at a time if J consists of m[l] integers each equal to M[l], and
m[2] integers each equal to MI2], and so on, there beings integers
available. TOTAL must be set to zero before the first call of
COM B2 and thereafter TOT AL is increased by one after each
new combination is generated. To speed up the machine opera
tion arrange the s integers in M such that m[l] ~ m[2] ~ · · · ~
m[s];

begin integer i, j, t, p; own integer arrayJ[l:n], l[l:r]; own
Boolean first;

if TOT AL = O then begin
t := 1; p := O;
for j := 1step1 until s do

begin p := p + m[j];
for i := t step 1 until p do

begin J[i] : = M[j];
t : = t + 1 end end;

first : = true end;
1: COM Bl (n,r,l);

if first then go to EXIT;
if J[l] = 1 then go to 2 else go to 3;

2: for j := 2 step 1 until r do
if (J[lfj])=J[l[j]-1]) /\ (l[j]>l[i-1]+1) then go to 1;

go to 4;
3: if J[J[l]] = J[J[l]-·1] then go to 1 else go to 2;
4: for j := 1 step 1 until r do

S[j] := J[l[j]];
TOTAL:= TOTAL+ 1;

EXIT: end

CERTIFICATION OF ALGORITHM 155
COMBINATION IN ANY ORDER [Charles J. Mifsud,
Comm. ACM, Mar. 1963]
K. M. BOSWORTH

I.C.T. Ltd., Hayes, Middlesex, England

This procedure was tested using

m[l] = 4 m[2] = 3 m[3] = 2 m[4] = 2

M[l] = 4 M[2] = 7 M[3] = 9 M[4] = 16

and for r := 1 step 1 until s
It is correctly generated for r = 1 the four combinations 4, 7, 9,

16 as well as the ten combinations for r = 2, the eighteen com
bi~ations for r = 3, and the twenty-six combinations for r = 4.

Changes made due to compiler limitations were (i) systematic
changes of upper case letters where there was conflict due to having
only one case of letters, (ii) transfer of own declared variableA t.o
non-local variables, and (iii) integer labels to identifiers.

155-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 156
ALGEBRA OF SETS
CHARLES J. MIFSUD

Armour Research Foundation, ECAC Annapolis, Md.

procedure I NOUT (A ,n,SU M); real array A; integer n;
real SUM;

comment SUM = Li Ai - L2 AiA; + Ls A,A;Ak - · · · ±
A1A2 · · · An is formed where the symbols Li , L:2 , La , · · · ,
Ln-1 stand for summation of the possible combinations of the
numbers Ai , A2 , · · · , An taken one, two, three, · · · , (n-1)
at a time;
begin real j, part, T; integer i, r; integer :array l[l:n];
Boolean first;

r := SUM := O; j := - 1;
B: first := true; r := r + 1; part := O;
A: COM Bl (n,r,l);

if first then begin j : = -1 X j; part : = j X part;
SUM:= SUM+ part;
if r < n then go to B else go to EXIT end;

T := 1;
for i := 1step1 until r do

T := A[J[i]J X T;
part := part + T; go to A;

.EXIT: end

CERTIFICATION OF ALGORITHM 156
ALGEBRA OF SETS [Charles J. Mifsud, Comm. ACM,
Mar. 1963]
K M. BOSWORTH

I.C.T. Ltd., Hayes, Middlesex;· England

One eorrection required in this procedure is the systematic
change of label A to avoid conflict with the formal parameter
array A.

The procedure was then tested for n = 9 and Ai = i, i = 1,
· · · , n, producing the correct answer SUM = 1.

Two other tests with arbitrary values of Ai and n = 4 were also
correct.

156-P 1-- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 157
FOURIER SERIES APPROXIMATION
CHARLES J. MIFSUD

Armour Research Foundation, ECAC Annapolis, Md.

procedure FOURIER (N ,f ,a,b); . real array f, a, b; integer N;
comment Fourier determines 2N +1 constants ap (p=0,1 1 · · ,N),

bp (p = 1,2, · · · ,N) in such a way that the equations f n == l/2a0 +
L::-1 (a,, cos 2'11"np/(2N +1) + bp sin2'11"np/(2N +1)) are satisfied,
where thefn are given numbers. Thefn may be thought of as the
2N+l values of a functionf(x) at the points Xn = 2'11"n/(2N+l).
The method used to generate ap , b,, was formulated by G.
Goertzel in "Mathematical Methods for Digital Computers"
(John Wiley and Sons, Inc., 1960);

begin real array S, C[1:2], u[0:2J; real TEMP, pi;
integer p, i;
pi :== 3.14159265; C[2J :== l; S[2J := O;
C[lJ :== cos(2Xpi/(2XN +1));
S[lJ :== sin(2Xpi/(2XN +1));
for p :== 0 step 1 until N do

begin u[lJ :== u[2J :== O;
for i := 2 X N step -1until1 do

begin u[OJ :== f[iJ + 2 X C[2J X u[lJ - u[2J;
u[2J := u[IJ; u[lJ :== u[O]end;

a[pJ :== 2/(2XN+l) X (f[OJ+u[l]XC[2]-u[2]);
b[p] :== 2/(2XN+l) X u[lJ X S[2];
TEMP:= C[l] X C[2] - S[l] X St2l;
S[2] := C[l] XS[~]+ S[l] X C[2];
C[2J :== TEMP end end

REMARK ON ALGORITHM 157
FOURIER SERIES APPROXIMATION [C. J. Mifsud,
Comm ACM, Mar. 1963]
RICHARD GEORGE*

Argonne National Laboratory, Argonne, Ill.
This algorithm was written in FAP language for the 32-K IBM

704. It was tested on a sawtooth curve, and the sawtooth was
recreated by summing the expansion up through the 2N + 1 con
stants, with excellent results.

"' Work supported by the United States Atomic Energy Commission.

The arrays S, C and u are never referenced with a variable
subscript. For a saving of time, I suggest that simple variables
be used instead.

By declaring one additional real variable, one can bring the
phrase

2/(2 X N + 1)

outside of the for loops, because N does not change through the
procedure. This results in a saving of 4N +2 mult-ops.

157-P 1- 0

REMARK ON ALGORITHM lfi7
FOURIER SERIES APPROXIMATION [Charles J.

Mifsud, Comm. ACM, Mar. 1968]
GEORGE R. SCHUBERT*

University of Dayton, Dayton, Ohio
*Undergraduate research project, Comput,er Science Program, Univ. of

Dayton.

Algorithm 157 has been modified to J~t 2N data points and has
run successfully on the Burroughs 220 using BALGOL. With the
modifications, 2N constants ap (p==O, 1, · · · , N) and b,,
(p==l, 2, · · · , N-1) are determinedl such that the equation
fn = ao/2 + L::~/ (ap cos 'll"np/N+bv sin 'll"np/N) + aN/2 cos 1rn
is satisfied.

In the modified procedure, the second and third lines after the
integer declaration should read:

C[l] :== cos (pi/N);
S[l] : = sin (pi/N);
The second for statement should rend:
for i :== 2 X N-1 step -1 until 1 do
The lines containing the a and b coefficients should read:
a[p] :== (f[O]+u[l]XC[2]-u[2])/N;
b[p] :== (u[l]XS[2])/N;
REFERENCE: R. W. Hamming, Numerical Methods for Scientists

and Engineers, pp. 68-73 (McGraw-Hill, 1962).

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 158 (ALGORITHM 134, REVISED)
EXPONENTIATION OF SERIES
HENRY E. FETTIS

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure SERIESPWR (A,B,P,N); value A, P, N;
array A, B; integer N;

comment This procedure calculates the first N coefficients
B[i] of the series g(x) = f(x) j P given the first N coefficients
of the series

f(x) = 1 + L A[i] Xx j i (i=l,2,- ,·- ,N).

P may be any real number. Setting P := 0 gives the coefficients
for LN(g(x));

begin integer i, k;
real P, S;

if P = 0 then B[l] = A[lJ;
else B[lJ := PX A[lJ;

for i := 2step1 until N do
begin S := O;

for k : = 1 step 1 until i - 1 do
S := S + (PX(N-k)-k) X B[kJ X A[N-kJ;
B[iJ := PX A[i] + (S/i) .

end for i;
end SERIESPWR

CERTIFICATION OF ALGORITHM 158
EXPONENTIATION OF SERIES [H. E. Fettis, Comm.
ACM, Mar. 1963]
J. DENNIS LA WREN CE

Lawrence Radiation Laboratory, Livermore, Calif.

This procedure was translated into FORTRAN and run on the
Remington-Rand LARC Computer. Three changes are necessary.

(1) The last line of the comment should read
for the natural logarithm of J(x);

(2) The third line from the end should read

S := S+(PX (i-k)-k)XB[kJXA[i-k];

(This line was given correctly in algorithm 134 .)
(3) The second line from the end apparently should read

B[i] := A[i] := (S/i);

for the case P = 0 only. Probably the best way to incorporate
this is by making two changes :

(a) Change the if clause to read
if P == 0 then R := 1 else R := P; B[l] := R X A[l);

(b) Change the second line from the end to read

B[i] := R X A [i] + (S/i);

A large number of examples were run quite successfully; the
following give representative samples.

(1) (1+2x+3x2+0.5x8) 2 = 1+4x+10x2+13x8+llx4+3x6+0.25x6
(using A[4] := A[5] := A[6] := 0).

(2) Setting P : - 1 gives B[i] : = A [i].

158-P 1- 0

.. 1
(3) Letf(x) = ex= 1 + L: 7i xi and let P = ln2 = .693147181.

i-1 i.

" (ln2)'
Then g(x) = ~ = 1 + L -.,- x•. (See Table 1.) •-1 i.

(4) Let f(x)=ex and P=-1. Then g(x)=e-x. For P=O, ap
parently the constant term of g(x) should be zero instead of one.

TABLE 1

A[i) B[i]

1 1. 000000000 0.693147181
2 0.500000000 0.240226507
3 0 .166666667 0.055504109
4 0.041666667 0.009618129
5 0.008333333 0.001333356
6 O". 001388889 0.000154035
7 0.000198413 0.000015253
8 0.000024802 0.000001322
9 0.000002756 0.000000102

10 0.000000276 0.000000007

(5) Let f(x) =ex and P=O. Then g(x) =x.

(6) Letf(x)=i:x"and P=O. Then g(x)=ln(1-x")-ln(1-x)=

.. 1 I: : xi. (See Table 2.)
•-1 i

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

TABLE 2

A[i] B[i]

1.0 1 . 000000000
1.0 0.500000000
1.0 0.333333340
1.0 0.250000000
1.0 0.200000000
1.0 0 .166666670
1.0 0.142857140
1.0 0 .125000000
1.0 0.111111110
1.0 0 .100000000
1.0 0.090909100
1.0 0.083333330
1.0 0.076923080
1.0 0.071428580
1.0 0.000666660

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHMS 134 AND 158
EXPONENTIATION OF SERIES [Henry E. Fettis,

CoMM. ACM, Oct .. 1962 and Mar. 1963]
HENRY c. THACHER, JR.

Reactor Engineering Div., Argonne National Laboratory
Argonne, Ill.

Work supported by the U.S. Atomic Energy Commission.

The bodies of SERIESPWR were transcribed for the Dart
mouth SCALP processor for the LGP-30 computer. In addition to
the modifications required by the limitations of this translator,
the following corrections were necessary:
1. Add "real P;" to the specifications.
2. Delete "p," from the declarations in the procedure body.
3. (134 only) Replace "S" by "s" and [i-k] by "(i-k)" in the

statement S := s + · · · .
4. (158 only) Changes last sentence of comment to "Setting

P := 0 gives the coeffiCients for ln(f(x)). In this series, the
constant term is 0, instead of 1 as elsewhere;"

5. (158 only) Add the identifier P2 to the declared real variables.
6. (158 only) Make the first statements read:

''if P = 0 then P2 := 1 else P2 := P;
B[l] := P2 X A[l];

7. (158 only) Make the statement of the fork loop read

"S := S+(PX(i-k)-k) X B[k] X A[i-k];"

8. Change the last statement to

"B[i] := P2 X A[i] + S/i end for i;

In addition, the following modifications would improve the
efficiency of the program:
1. Remove A from the value list.
2. Omit the statement B[l] := P X A[l]; (P2XA[l] in 158

according to correction 6) and change the initial value of i
in the statement following from 2 to 1.

When these changes were made, both procedures produced the
first ten coefficients of the series for (exp(x)) i 2.5 from the first
ten coefficients of the exponential series. The procedures were
also used to generate t;he binomial coefficients by applying them
to (I+x)P, for P = 2.0, and 0.5000000. Algorithm 158 was also
tested with P := O for I+x and for the series expansions for
(sin x)/x, cos x, and exp x. In all cases, the coefficients agreed
with known values within roundoff.

158-P 2- 0

COLLECTED ALGORITHMS . FROM CACM

ALGORITHM 159
DETERMINANT
DAVID w. DIGBY

Oregon State University, Corvallis, Ore.
real procedure Determinant (X,n);
.value n; integer n; array X;
comment Determinant calculates th~ determinant of the n-by

n square matrix X, using the combinatorial de:finition of the
determinant. This algorithm is intended as an example of a
recursive procedure which is somewhat Jess trivial than Factorial
(Algorithm 33);

begin real D; integer i; Boolean array B[l:n];
procedure Thread (P,e,i);

value P, e, i; real P; integer e, i;
if i > n then D := D + PX (-1) j e else if P ~ 0 then

begin integer j, f;
.f := O;
for j := n step -1until1 do

if B[jJ then f := f + 1 else
begin

B[jJ := true;
Thread (PXX[i,jJ,e+f,i+l);
B[jJ := false;

end of loop;
end of Thread;

for i := 1 step 1 until n do
B[i] := false;

D := O;
Thread (1,0,1);
Determinant : = D;

end Determinant; -

CERTIFICATION OF ALGORITHM 159
DETERMINANT [David W. Digby, Comm. ACM,

March 1963]
ARNOLD LAPIDUS

Courant Institute of Mathematical Sciences, New York
University, New York, N. Y.

Algorithm 159 was translated into FoRTRAN II for the IBM
7090 as part of a test of FORTRAN subroutines designed to facilitate
the implementation of recursive procedures. As expected, the
numerical results were poor. For the Hilbert matrices Hn = (a1;),
a1; = 1/(i+j-1), results were as follows:

n

2
3
4
5

Det Hn (true)

8.333 333 3 (- 2)
4.629 629 6 (- 4)
1. 653 439 2 (- 7)
3.749 295 1 (-12)

Det Hn (computed by
Algorithni 159)

8.333 333 2 (- 2)
4.629 e,23 1 <- 4)
1.651 933 4 (- 7)

-2.910 383 0 (-11)

Determinants of order 4 and 6 with integer elements were also
evaluated. The algorithm gave full accuracy for these.

159-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 160
COMBINATORIAL OF M THINGS
TAKEN N AT A TIME
M. L. WOLFSON AND H. v. WRIGHT

United States Steel Corp., Monroeville, Penn.
integer procedure combination (m, n);
value n; integer m, n;
collllllent calculates the uumber of combinations of m things

taken n at a time. If n is less than half of m, then the program
calculates the combinations of m things taken m - n at a time
which is the exact equivalent of m things taken n at a time;

begin integer p, r, i;
p : == m - n;
if n < p then begin p : = n; n : = m - p end;
if p = 0 then begin r: = 1; go to exit end;
r:=n+I;
for i : = 2 step 1 until p do r : = (r X (n+i))/i;

exit : combination : = r
end combination

CERTIFICATION OF ALGORITHM 160
COMBINATORIAL OF M THINGS TAKEN N AT
A TIME [M. L. Wolfson and H. V. Wright, Comm. ACM,
Apr. 1963]
DMITRI THORO

San Jose State College, San Jose, Calif.

Algorithm· 160 was translated into FORTRAN II and FoRGO for
the IBM 1620. Correct results. were obtained for values of m up to
20.

CERTIFICATION OF ALGORITHM 160
COMBINATORIAL OF M THINGS TAKEN N AT

A TIME [M. L. Wolfson and H. V. Wright, Comm.
ACM, April 1963]

ROBERT F. BLAKELY

Indiana Geological Survey, Bloomington, Ind.

Algorithm 160 was translated into ALoo, a compiler for the
Control Data Corp. G-15 computer (formerly the Bendix G-15).

With the restriction that m ~ n ~ 0, correct results were ob
tained for all integer values of m and n, where 0 ~ m ~ 10. Several
other values were tested and all results were correct.

160-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 161
COMBINATORIAL OF M THINGS
TAKEN ONE AT A TIME, TWO AT A TIME,
UP TO N AT A TIME
H. V. WRIGHT AND M. L. WOLFSON

United States Steel Corp., Monroeville, Penn.

procedure combination vector (m, n, v);
integer m, n; integer array v;
collllllent calculates all combinations of m things taken from 1

ton at a time. The result is a vector, v, within which the first
element is the combination of m things taken 1 at a time, the
second element is the combinations of m things taken 2 at a time,
the third element taken 3 at a time, · · ·, and the nth element
taken n at a time.

begin integer i;
v[l] := m;
for i : = 2 step 1 until n do

v[i] : = (vli-1] X (m-i+l))/i;
•end combination vector

CERTIFICATION OF ALGORITHM 161
COMBINATORIAL OF M THINGS TAKEN ONE AT
A TIME, TWO AT A TIME, UPTON A'T A TIME
[H. V. Wright and M. L. Wolfson, Comm. ACM, Apr.
1963]
DMITRI THORO

San Jose State College, San Jose, Calif.
Algorithm 161 was translated into FORTRAN II and FoRGo for

the IBM 1620. Correct results were obtained for values of m up
to 20.

CERTIFICATION OF ALGORITHM 161
COMBINATORIAL OF M THINGS TAKEN ONE AT

A TIME, TWO AT A TIME, UP TO NAT A TIME
[H. V. Wright and M. L. Wolfson, Cornm. ACM,
Apr. 1963]

DAVID H. COLLINS

Indiana Geological Survey, Bloomington, Ind.

Algorithm 161 was translated into ALao, a compiler for the
Control Data Corp. G-15 computer (formerly the Bendix G-15).

With the restriction that m ~ n ~ 1, correct results were ob
tained for all integer values of m and n, where 1 ~ m = n ~ 15.
Several other values were tested (including cases where m ~ n)
and all results were correct.

161-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 162
XYMOVE PLOTTI~G
FRED G. STOCKTON

Shell Development Co., Emeryville, Calif.

procedurexymove (XZ, YZ,XN, YN); valueXZ, YZ,XN, YN;
integer XZ, YZ, XN, YN;
comment xymove computes the code string required to move the

pen of a digital incremental X,Y-plotter from an initial point
(XZ, YZ) to a terminal point (XN, YN) by the "best" approxi
mation to the straight line .between the points. The permitted
elemental pen movement is to an adjacent point in a plane
Cartesian point lattice, diagonal moves permitted. The eight
permitted pen movements are coded

l=+Y, 2=+X+Y, 3=+X, 4=+X-Y,

;) = -Y, 6 = ·-X-Y, 7 = -X, 8 = -X+Y.

The approximation is "best" in the sense that each point tra
versed is at least as near the true line as the other candidate
point for the same move.
xymove does not use multiplication or division.;

begin integer A, B, D, E, F, T, I, move;
comment code (J) is a procedure which returns a value of code

according to the following table:

J 1 2 3 4 5 6 7 8
code 1 2 3 2 3 4 5 4

J 9 10 11 12 13 14 15 16

code 5 6 7 6 7 8 1 8

plot (move) is a procedure which sends move to the plotter as a
plotter command.;

if XZ = XN A YZ = YN then go to return;
A:= XN - XZ; B: = YN - YZ; D: =A+ B; T: =
B-A; l:=O;
if B ~ 0 then I :: = 2;
if D ~ then I : = I + 2;
if T ~ 0 then I : = I + 2;
if A ~ 0 then I:= 8 - I else I:= I+ 10;
A:= abs(A); B := abs(B); F :=A+ B; D := 8- A;
if D ~ 0 then begin T : = A; D : = - D end else T : = B;
E := O;

repeat: A. : = D + E; B : = T + E + A ;

return:
end

if B ~ 0 then begin E : = A; move . - code(!);
F := F - 2 end
else begin E : = E + T; F : = F - 1 ;
move : = code(l-1) end;
plot (move) ;
if F > 0 then go to repeat;

162-P 1- 0

CERTIFICATION OF ALGORITHM 162
XYMOVE PLOTTING [FrP-d G. Stockton, Comm. ACM,
Apr. 1963]
WILLIAM E. FLETCHER

Bolt, Beranek and Newman Inc., Los Angeles, Calif.

The line in the body of the procedure which read:

if D ~ then I : = I + 2;

was corrected to read:

if D ~ 0 then I : = I + 2;

With this one change the body of the procedure was trans
literated into DECAL-BBN and successfully run on a PDP-1
computer utilizing the cathode ray tube output to display the
path of a simulated digital incremental plotter.

REMARK ON ALGORITHM 162 [J6]
XYMOVE PLOTTING [F. G. Stockton, Comm. ACM 6

(Apr. 1963), 161; 6 (Aug. 1963), 4~50]
D. K. CAVIN (Recd. 10 Feb. 1964)
Oak Ridge National Laboratory, Oak Ridge, Tenn.

The following modifications were made to Algorithm 162 to
decrease the average execution time. The last nine lines of Al
gorithm 162 are replaced by the following:

move:= code(l-1); I:= code(!);
repeat: A : = D + E; B : = T + E + A;

return:
end

if B ~ 0 then begin E := A; F := F - 2; plot(!) end
else begin E := E + T; F := F - 1; plot(move) end;

if F > 0 then go to repeat;

It is obvious that on any movement eontaining more than two
elemental pen movements the use of the code procedure in the
loop is redundant, since no more than two of the eight permitted
pen movements are necessary for the approximation of any line.
Therefore moving the call of the code procedure outside of the
basic loop reduces the execution time whenever the X, Y move
ment requires more than two elemental pen movements. The
procedures were coded in CODAP, the assembly language for
the CDC 1604-A, and this modified version was approximately
40 percent faster in the loop than the original version. The timing
comparisons used numbers in the range -2000 to 2000 with heavy
emphasis on the subrange -150 to 150. The typographical error
noted in the certification (Comm. ACM, August 1963) was cor
rected in both codes.

[A referee verifies that Algorithm 162 does indeed run, as
changed.-G.E.F.]

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 163
MODIFIED HANKEL FUNCTION
HENRY E. FETTIS

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure EXPK (P, X, E); real P, X, E;
c~omment this procedure calculates the modified Hankel Func

tion ezKp(x) to within a given accuracy E from the integral
representation:

ezKp(x) = ["° ez(l-corh t) cosh (pt)dt;
0 ~

begin real F, G, H, R, S, T, U, Y, Z, ZP;
R := 0.0;

H := 1.0;
iteration : begin

(} := R;
T := .5 X H;
S := O;
Z := exp(T);
U:=ZXZ;

integration: begin
Y: = XX (1- .5X (Z+l/Z));
if P = 0 then Z P : = 1
else Z P : = Z i P;
F: = .5 X exp(Y) X (ZP+l/ZP);
S:=S+F;
Z:=ZXU;
end;
if F ~ E then go to integration
else R : = H X S;
H := .5 X H;

end;
if abs (R-G) ~ Ethen go tojteration
else EXPK: = R

end EXPK

CERTIFICATION OF ALGORITHM 163
MODIFIED HANKEL FUNCTION [Henry E. Fettis,
Comm. ACM, Apr. 1963]
HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

Since this algorithm is a function declaration, the procedure
dleclara ti on should be:

r~al'procedure EXPK(D, X, E);

Otherwise, no syntactical errors were noticed.
The body of the procedure was translated and run on the

LGP-30 computer, using the Dartmouth SCALP system. Results for
E: = 0.0001, X = 0.1 (0.1)1.0, P = 0, 0.3333333, 0 .. 6666667 and
1.000000 agreed with values tabulated in Jahnke-Emde-Losch to
the 3-4D given in the tables, except for errors discovered in the
table of 2/rrK21a(x).

With X = 0, the program ended in floating-point overflow. The
algorithm itself, or the call of the procedure, should include a test
to insure that the variable is greater than eps, where eps is chosen
to prevent exceeding machine capacity.

163-P 1- .o

The algorithm was found to be excessively slow. Times on the
LGP-30 were of the order of 6 minutes. A considerable saving in
time could be realized by improving the quadrature formula, cur
rently the simple midpoint formula, repeated completely for
each iteration. A more effective method would be a modified
Romberg- algorithm. A procedure based on the latter approach is
being developed in this division.

* Work supported by the U. S. Atomic Energy Commission.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 164
ORTHOGONAL POLYNOMIAL LEAST SQUARES
SURFACE FIT
R. E. CLARK, R. N. KUBIK, L. P. PHILLIPS

The Babcock & Wilcox Co., Atomic Energy Div.,
Lynchburg, Va.

procedure surfacejit (x, u, y, w, z, nmax, mmax, imax, jmax)
result: (beta, phi, zcomp, minsqd, minsqdcomp, sumdifcornp,
rrw.xdif comp) ;

real array x, u, y, w, z, phi, beta, zcomp;
integer nmax, mmax, imax, jmax;
real minsqd, minsqdcomp, sumdifcomp, maxdifcomp;
comment this is a transliteration of an operating program writ

ten in Burroughs ALGOL for the B-220. It fits, in the least squares
sense, a polynomial function of two independent variables to
values of a dependent variable specified at points on a rectangu
lar grid in the plane of the independent variables. The use of
orthogonal polynomials leads to a particularly simple system of
linear equations rather than the ill-conditioned system which
arises from the usual normal equations. It also provides a meas
ure of the improvements resulting from each new term included
which further leads, in this algorithm, to an automatic selection
of a "best" degree polynomial function as determined by
Gauss' criterion. The initial normalization of the variables re
sults in significant reduction of round. off errors in many cases.
This algorithm is developed more fully in BAW-182. For a very
similar approach to' this and related problems see Cadwell,
J. H., "Least Squares Surface Fitting Program", The Computer
J. 3 (1961), 266 and Cadwell, J. H., and Williams, D. E., "Some
Orthogonal° Methods of Curve and Surface Fitting," The Com
puter J. 4 (1961), 260. A further reference is Gauss, C. F., "Theo
ria Combinationis Observationum Erroribus Minimis Obnoxial,"
Gauss W erke 4 (Gottingen 1873), 3-93. x[i] and y(j] are the inde
pendent variables, z[i, j] is the dependent variable. u[i] and
w[j] represent the weights corresponding to x[i1 and y[j], re
spectively. nmax is one more than the maximum degree of x to be
considered. mmax is one more than the maximum degree of y to
be considered. imax is the number of x's, and jmax is the number
of y's. beta[n, m] is a measure of the improvement resulting
from the inclusion of the xnymth term. phi[n, m] is the poly
nomial coefficient for the xnymth term. Note the degree of the
resulting polynomial may be less than the maximum degree
specified as a result of the application of Gauss' criterion.
zcomp is the computed dependent variable.

(

?;ulil·w[j]·z[i,312
- L beta[n,m]) 112

minsqd = "' . . n,m
imax·3max

(
:?; u[i} · w[j] (z[i, J1 - zcomp[i, j])2)112

minsqdcomp = '·' . .
imax·3max

:C I z[i, j} - zcomp[i, J1 I
sumdifcomp = ~··~1 ~~~~~~~~

imax·jmax

maxdifcomp =max I z(i,j) - zcomp((i,j) I
minsqd and minsqdcomp are equal if computation is exact. In
practice they will not be equal due to the imprecise nature of
calculation. A wide discrepancy indicates excessive errors in
calculation;

164-P 1- 0

begin
real array a, b, denpa[l:nmaxl, c, d, dimqa[l:mmax],

alpha[l: nm.ax, 1: mmax], p[l: nmax, 1: 1~max], q[l: mmax, 1: jmax],
pc[l:nmax, l:nmax], qc[l:mmax, l:mm:ax];

integer n, m, i, j, s, t, r;
real sumx, sumy, sumz, meanx, meany, meanz, numa, dena, denb,

numc, denc, dend, alph, sumzsq, gausscrit, trialgausscrit, betasum,
rescomp, poly;

comment normalization of variables;.
sumx: = sumy: = sumz : = 0.0;
for i : = 1 step 1 until imax do

sumx: = sumx + x[i];
meanx: = sumx/imax;
for i : = 1 step 1 until imax do

x[i] : = x[i] ·_ meanx;
for j : = 1 step 1 until jrnax do

sumy: = sumy + y[j];
meany : = sumy/ jmax;
for j : = 1 step 1 until jmax do

y[j] : = yfj] - meany;
for i : = 1 step 1 until imax do begin

for j : = 1 step 1 until jmax do
sumz : = sumz + z[i,j] end;

meanz : = sumz/(imax X jmax);
for i : == 1 step 1 until imax do begin

for j : = 1 step 1 until jmax do
z[i, j] : = z[i, j) - meanz end;

comment evaluate orthogonal polynomials;
numa: = dena: = 0.0;
for i : = 1 step 1 until imax do begin

p[l, il : = 1.0;
numa : = numa + u[i] X x[i];
dena: = dena + u[i] end;

a[2] : = numa/dena;
for i : = 1 step 1 until imax do

p[2, i] : = x[i] - a[2];
for n : = 3 step 1 until nmax do begin

numa : = dena : = denb := 0.0;
for i : = 1 step 1 until imax do bea:in

nurna: = numa + u[i] X x(i] X p[n-1} i 2;
dena : = dena + u[i] X p[n-1, i] j 2;
denb : = denb + u[i] X p[n-2, i] j 2 end;
a[n] : = numa/dena; b[n] : = dena/denb;
for i : = 1 step 1 until imax do

p[n, i] : = (x[i]-a[n]) X p[n-1, i.I - b[n] X p[n-2, i] end;
numc: = denc: = 0.0;
for j : == 1 step 1 until jmax do begin

q[l, j] : = 1.0;
numc : = numc + w[j] X y(j];
denc : = denc + w(j] end;

c[2] : = numc/denc;
for j : = 1 step 1 until jmax do

q[2, j) : = y(j] - c[2];
for m : == 3 step 1 until mmax do begin

numc: = denc: = dend: = 0.0;
for j : = 1 step 1 until jmax do begin

numc: = numc + w(j] X y[j] X q[m-1, j) j 2;
denc: = denc + w[j] X q[m-1, ill j 2;
dend: = dend + wl..f] X q[m-2, ii i 2 end;

c[m] : == numc/denc; d[m] : = denc/dend;
for i : - 1 step 1 until jmax do

COLLECTED ALGORITHMS (cont.)

q[m, j): = (y[j]-c[m]) X q[m-1, j] - d[mJ X q[m-2, j) end;
comment evaluate contribution of each orthogonal polynomial

to the minimization of the residuals;
for n : = 1 step 1 until nmax do begin

denpa[n] : = 0.0;
for i : = 1 step 1 until imax do
denpa[n] : = denpa[n] + u[i] X p[n, i] j 2 end;

form : = 1step1 until mmax do begin
denqa[m] : = 0.0;
for j : = 1 step 1 until jmax do

denqa[m] : = denqa[m] + w[j] X q[m, j] j 2 end;
for n : = 1 step 1 until nmax do begin

for m : = 1 step 1 until mmax do begin
alph : = 0.0;
for i : = 1 step 1 until imax do begin

for j : = 1 step 1 until jmax do
alph : = alph + u[i] X w[j] X z[i, j] X p[n, i] X q[m, j)

end·
alpha[n, m] :

1

= alph/ (denpa[n]Xdenqa[m]);
beta[n, n:z.] : = alpha[n, m] X alph; end end;

·~omment application of Gauss' criterion to determine the de
gree polynomial which yields the closest fit to the given data.
Gauss' criterion is, strictly speaking, applicable only to cases
where the weights u[i] and w[j) are unity;

mmzsq: = 0.0;
for i : = 1 step 1 until imax do begin

for j : = 1 step 1 until jmax do
sumzsq: = sumzsq + u[i] X w[j] X z[i, j] j 2 end;

~1:=t:=1;

for n : = 1 step 1 until nmax do begin
betasum : = 0.0;
for m : = 1 step 1 until mmax do begin

for r : = 1 step 1 until n do
betasum : = betasum + beta[r, m];

if betasum > sumzsq then trialgausscrit : = 0.0
else
trialgausscrit : = (sumzsq-betasum)/ (imaxXjrnax-nXm);
if n = 1 A m = 1 then gausscrit : = trialgausscrit;
if gausscrit = trialgausscrit then begin

if n X m < s X t then begin
s := n;
t : = m end end;

if gausscrit > trialgausscrit then begin
gausscrit : = trialgausscrit;
s := n;
t : = m end end end;

nmax:=s;
mmax := t;
minsqd: = (gausscritX (imaxXjmax-nmaxXmmax)/(:imaxXimax))

i H;
comment evaluation of orthogonal polynomial coefficients;
for n : = 1 step 1 until nmax do begin

pc[n, m] : = 1.0;
for s : = 1 step 1 until n - 1 do begin

pc[n, s] : = -a[n] X pc[n-1, s];
ifs F 1 then pc[n, s] : = pc[n, s] + pc[n-1, s--1];
ifs F n - 1 then pc[n, s] : = pc[n, s] - b[n] >< pc[n-2, s]

end end;
form:= 1step1 until mmax do begin

qc[m, m] : = 1.0;
for t : - 1 step 1 until m - 1 do begin

qc[m, t] : = -c[m] X qc[m-1, t];
if t F then qc[m, t] : == qc[m, tJ + qc[m-1, t-1);
if t F m - 1 then qc[m, t] : == qc[m, t] - d[m] X qc[m-2, t]

end end;
eomment evaluation of approximating polynomial coefficients;
for s : == 1 step 1 until nmax do. begin

for t : == 1 step 1 until mmax do begin
phi[s, t] : =- 0.0;

for n : == s step 1 until nmax do begin
for m : == t step 1 until mmax do

164-P 2-- 0

phi[s, t] : == phi[s, t] + alpha[n, m] X pc[n, s] X qc[m, t)
end end end;

comment evaluation of dependent variables using the approxi
mating polynomial;

minsqdcomp : = sumdifcomp : = maxidifcomp : = 0.0;
for i : = 1 step 1 until imax do begin

for j : = 1 step 1 until jmax do begin
zcomp[i, j] : = 0.0;
for s : = nmax step - 1 until 1 do begin

poly:= phi[s, mmax];
for t : = mmax - 1 step 1 until 1 do

poly : = poly X y[j] + phi[s, t];
zcomp[i, i] : = zcomp[i, j] X x[i] +poly end;

rescomp : = z[i, j] - zcomp[i, i];
zcomp[i, j) : = zcomp[i, jj + meanz;
minsqdcomp : = minsqdcomp + u[i] X w[i] X rescomp j 2;
sumdifcomp := sumdifcomp + abs(rescomp);
if abs (rescomp) > maxdijcomp then
maxdifcomp : = abs(rescomp) end end;

minsqdcomp.: =. (minsqdcomp/(im.ax X jmax)) j H;
sumdifcomp : = sumdijcomp/ (imax X jmax);
end surf acefit

CERTIFICATION OF ALGORITHM 164
ORTHOGONAL POLYNOMIAL LEAST SQUARES
SURFACE FIT [R. E. Clark, R. N. Kubik, L. P. Phillips,
Comm. ACM, April 1963]
C. V. BrrTERLI

Johns Hopkins Univ. Applied Physics Lab., Silver Spring,
Md.

The SURFACEFIT algorithm was translated into FORTRAN
and successfully run on an IBM 7094. It was necessary to make the
following corrections:

(a) 12th line after

comment evaluate orthogonal polynomials;

should read

numa := numa + u[i] X x[i] X p[n-1,i] j 2;

(b) 2nd line after

comment evaluation of orthogonal polynomial coefficients;

should read

pc[n,n] := 1.0;

(c) 12th line after

comment evaluation of orthogonal polynomial coefficients;

should read

if t ;:C 1 then qc[m,t] := qc[m,t] + qc[m-1,t-1];

(d) 8th line after

comment evaluation of dependent variables using the approxi
mating polynominal

should read

fort := mmax -1 step -1 until 1 do

The following function was used to generate data for checking
this algorithm:

for

and

z = 1 - x + y -..:. xy + x2 - y2

x == 0, 1, 2, 3, 4

y = 0, 1, 2,3,4

The resulting polynomial was :

COLLECTED ALGORITHMS (cont.)

z = x - 5y - xy + x2 - y2

which is correct for the normalized variables.
It should be pointed out in the comment for this procedure

that the resulting polynomial is in the normalized variables and
not the original variables.

164-P 3- o

_COLLECTED ALGORITHMS FROM CACM

ALGORITHM 165
COMPLETE ELLIPTIC INTEGRALS
HENRY C. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission.

procedure KANDE(ml, K, E, tol, alarm);
value ml, tol;
real ml, K, E, tol;
label alarm;
comment this procedure computes the complete elliptic inte-

J
.,,12 •

grals K(ml) =
0

(1 - (1 - ml) sin2P)-112 dP and E(ml) =
J:' 2

(1 - (1 - ml) sin2P)112 dP by the arithmetiic-geometric
mean process. The accuracy is limited only by the accuracy of
the arithmetic.

Except for the provision of tests for pathological values of the
parameter, the calculation of K is only a slight modification of
the second procedure of Algorithm No. 149 (Comm. ACM. 6
(Dec. 1962), 605). These integrals may also be approximated to
limited (6D) accuracy by Algorithms 55 and 56 (Comm. ACM. 4
(Apr. 1961), 180). Unless the square-root is exceptionally fast,
the latter algorithms are probably more efficient for 6D-accu
racy.

The complementary parameter, ml, is chosen as the inde
pendent variable, rather than the parameter, m, the modulus,
k or the mo~ular angle a, because of the possibility of serious
loss of significance in generating ml from the other possible
independent variables when ml is small and dK/dml is very
large. These variables are related by ml = 1 - m = 1 - k 2 =
cos2a.

The formal parameter, tol, determines the relative accuracy
of the result. To prevent entering a nonterminating loop, tol
should not be less than twice the relative error in the square
root routine. If ml ~ 0 or if ml > 1, the procedure exits to
alarm. K(O) = oo while E(O) = 1.00000000.

The body of this procedure has been tested using the Dart
mouth ScALP processor for the LGP-30. With tol = 510 - 7,
results agreed with tabulated values to within 3 in the seventh
significant digit;

begin real a, b, c, sum, temp;
integer fact;
if m 1 > 1 V ml ~ 0 then go to alarm;
a : = fact : = 1 ;
b : = sqrt(ml);
temp : = 1 - ml;
sum.:= O;

itlw: sum : = sum + temp;
c : = (a - b)/2;
.fact : = fact + fact;
temp : = (a+ b)/2;
b : == sqrt (a X b) ;
a:= temp;
;temp : = fact X c X c;
:if abs(c) ~ tot X a V temp > tol X sum then go to iter;
•gum:= sum+ temp;
K : = 3.141592654/(a + b);
4~omment pi must be given to the full accuracy desired;
B : = K X (1 - sum/2)

end

165-P 1- Rt

CERTIFICATION OF ALGORITHM 165 [S21]
COMPLETE ELLIPTIC INTEGRALS [Henry C.

Thacher Jr., Comm. ACM 6 (Apr. 1963), 163]
I. FARKAS (Recd. 1 Aug. 1968)
Dept. of Computer Science, University of Toronto,

Toronto, Ontario, Canada
KEY WORDS AND PHRASES: special functions, complete

elliptic integral of the first kind, complete elliptic integral of the
second kind

CR CATEGORIES: 5.12

One misprint and one semantic error were found in Algorithm
165:

1. The procedure heading
procedure KAN DE (ml,K,E,tol,alarm);

should read
procedure KANDE (ml,K,E,tol,alarm);

2. The second statement in the procedure body

a:= fact: = l;
should read

fact:= l;a: = l;
because fact and a are of different types.

Algorithm 165 was translated into FORTRAN IV on an IBM 7094-
II, whose single-precision mantissa has 27 significant bits (about
8 significant decimal digits). Because our SQRT program has a
relative accuracy of . 7510 - 8, tol was chosen 310 - 8. K and E were
generated for ml = (.01(.01)1.0) (to 27 bits) and the results ob
tained were compared with tables in [l). For ml = .01 E differed
by two units in the last place; for all other values of ml, the maxi
mum absolute error was one unit in the last place. The time taken
to activate KAN DE for the above 100 values of ml was 0.1 sec.

REFERENCE:

1. ABRAMOWITZ, M., AND STEGUN, I. A. (Eds.) Handbook of
Ma.thematical Functions. NBS Appl. Math. Ser. 55, US Govt.
Printing Off., Washington, D. C., 1964.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 166
MONTECARLO
R. D. RODMAN

Burroughs Corp., Pasadena, Calif.

procedure montecarlo (n, a, row, tol, mxm, inv, teBt, count);
value n, row, tol, mxm; integer n, row, mxm, count;
real tol; real array a, inv, teBt;
comment this procedure will compute a single row of the

inverse of a given matrix using a monte carlo technique.
n is the size of the matrix,~array a is the ·matrix, row indicates
which inverse row is to be computed, tol is a tolerance factor
and thus a criterion for terminating the process, mxm is 1000
times the maximum number of random walks to be taken
after which the process is terminated, array inv contains th~
inverse row, array test contains the innerproduct of inv with
the rowth column of a, count is the number of random walks
executed upon termination. real procedure RAN DOM must
be declared in the blockhead of procedure MONTE CARW
and generates a single random number between O and 1. Jf"
a is the matrix to be inverted, the absolute value of the largest
eigenvalue of the matrix I - a (I is the unit matrix) must be
less than one to assure convergence. This procedure is easily
adapted to finding a single unknown from a set of simultaneous
linear equations;

begin integer i, i, k, nwk, lastwalk, walk; real res, p, g;
real array sum[l:n], v[l :n, 1 :n];

start: p : - (n-l)/n X n;
for i : = 1 ste1> 1 until n do for j : - 1 step 1 until n do
v[i,j] : = if i ¢ j then -a[i,j]/p else (l-a[i,j])/p;
nwk :- 1000;
count : - res : - 0;
fork : - 1 step 1 until n do test [k] : == sum [k] : "" O;

startl : lastwalk : = row; g : = 1 ;
start2: walk : = (RANDOM/p) + 1;

if walk > n then go to stop;
g : = v[lastwalk,walk] X g; lastwalk : = walk;
go to start2;

stop: count:= count+ 1; sum[lastwalk] : = Bum[lastwalk] + g;
if count < nwk then go to startl;
fork : = 1step1 until n do inv[k] : = n X sum[k]/count;
for i : = 1 step 1 until n do for k : = 1 step 1 until n do
test[i] : = inv[k] X a[k, i] + test[i];
for i : = 1 step 1 until row-1, row+ 1 step 1 until n do
res : =- abs(test[i]) + res; res : ""' abs(test[row]-l) + res;
if res < tol then go to exit;
if count ~ 1000 X mxm then go to exit;
nwk : = nwk + 1000; res : = O;
fork : = 1 step 1 until n do test [k] : - O;
go to start! ;

exit: end of monte carlo inversion procedure

166-P 1- 0

REMARK ON ALGORITHM 166
MONTECARLO INVERSE [R. D. Rodman, Comm.
ACM, Apr. 1963]
R. D. RODMAN

Burroughs Corp., Pasadena, Calif.

The algorithm contained two errors:
(1) The line which reads

start: p : = (n-l)/n X n;
should read

start: p : = (n-l)/n j 2;
(2) The line which reads

start2: walk:= (random/p) + 1;
should read

start2: walk: = en tier ((random/p) + 1);
After making the preceding corrections, procedure montecarlo

was transliterated into EXTENDED ALGOL and run successfully
on the Burroughs B-5000. Convergence occurred in all cases where
the matrix sathlfied the conditions set down in the comment state
ment of the algorithm. It was found that convergence was quickest
and the routine most practical for matrices with eigenvalues small
relative to one.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED
DIFFERENCES
w. KAHAN AND I. FARKAS

Institute of Computer Science_, University of Toronto,
Canada

real procedure DVDFC(n,X, V,B, W); intege1·n;
real array X, V, B, W;

comment DVDFC ca.culates the forward divided difference
&f(X1 , X2, · · · Xn). n is an integer which takes the values
n = 1, 2, 3, · · · in turn. Xis a real array of dim~msion at least
n in which X[i] = Xi for i = 1,.2, · · · , n. The values Xi need
not be distinct nor in any special order, but once the array X
is chosen it will :fix the interpretation of the arrays B and V.
If X[l], X[2], · · · , X[n] are in monotonic order, then the effect
of roundoff upon any nth divided difference is no more than
would be caused by perturbing each f(X[i]) by n units at most
in its last significant place. But if the X's are not in mono
tonic order, the error can be catastrophic if some of the divided
differences are relatively large. V is a real array of dimension
at least n containing the values of the function f(X) and per
haps its derivatives at the point X,. V[i] = f"'(X,)/ml and
m = mi for i = 1, 2, 3, · · · , n. mi is the number of times that
the value of Xi has previously appeared in the array X. Bis
a real array of dimension at least n containing backward divided
differences. Before a reference to DVDFC is executed one should
have B[i] == &J(Xi, Xi+1, · · · , Xn-1) for i == 1, 2, · · · , n-1.
After that reference to DVDFC is executed one will :find B[1'.] =
&J(Xi, X.:+1, · · · , Xn-1, Xn) for i == 1, 2, · · · , n-1, n. When
n == 1 the initial state of B is irrelevant. W is a real array of
dimension (2 + m) at least, where mis the maximum value of
mi for i == 1, 2, · · · , n. Wis used for work space;

begin real DENOM; integer i, i, NK, NIN;
if n == 1 then go to Ll;
NK:==l;
for i : == 1 step 1 until n do
begin
if X[i] == X[n] then begin NK : - NK + 1;

W[NK] : - V[i] end
end i;
for i : - n step -1 until 2 do
begin W[l] : == B[i - 1]; B[i] : == W[2];
NIN : == if n - i + 2 < NK then n - i + 2 else N K;
for j: =NIN i5tep -1 until 2 do
begin
DENOM :- X[n] - X[i + i - 3];
if DENOM ¢ 0 then go to L2;

W(j] : == W(j + 1];
if NK - j - 1 ¢ 0 then go Cont;
NK:==NK-l;
go to Cont;

L2: W[j): == (W(j] - W(j - 1])/DENOM;
Cont: end j

end i;
B[l) : = W[2];
go to L3;

LI: B[l] : = V[l];
L3: DVDFC :- B[l]

end DVDFC

167-P 1- 0

The following program segment is an example of how DVDFC can
be used to construct a table of forward or backward differences.

for n : == 1 step 1 until N do
begin
X[n] : == • • • ; V[n] : == • • • ; F[n] : - DVDFC(n,, X, V, B, W)

end;
The array F can be used in FNEWT(z, N, X, F, R, D, E) or the

array Bin BNEWT(z, N, X, B, P, D, E). See algorithms "New
ton interpolation with forward (backwar.d) divided differences."

DVDFC has been written as a FORTRAN II function a.nd is avail
able from I.C.S., University of Toronto;

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED DIF

FERENCES [W. Kahan and I. Farkas, Comm.
ACM, Apr. 1963]

CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD

DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963]

CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH FORWARD

DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963.]

HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth SCALP compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola
tion polynomial based on fewer points, this is not true for Al
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to the procedure, and by
making the for statement read:

"for i :== N - deg step 1 until N do · · · "

The logic of the error estimate in Algorithms 168 and 169 is not
entirely clear. However, it appears that the estimate can be ad
justed for different precision of arithmetic by adjusting the con
stant 310-8 appropriately. For the SCALP arithmetic, this constant
was changed to ho-7.

The algorithms were tested on the examples given by Milne
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951) and by Milne [Numerical Calculus, p. 204, Princeton, 1949).
In both examples, Algorithm 167 reproduced the divided differ
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ-.
ences, values of the exponential function of its first two deriva
tives at x == 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

• Work supported by the U. S. Atomic Energy Comrnission.

COLLECTED ALGORITHMS (cont.)

TABLE A
---------·----~----------·-------------------··-··-- - - --------- ----- ---

n X[n] V[n] B[n] B[n-1] B[n-2]

----- ----

1 5.0 148.4132 148.4132
2 5.0 148.4132 148.4132 148.4132
3 6.0 403.4288 403.4287 255.0155 106.6023
4 6.0 403.4288 403.4287 403.4287 148.4132
5 5.0 74.20658 148.4132 255.0155 148.4132
6 6.0 201. 7144 403.4287 255.0155 148 .4132

The forward differences lie along the top diagonal.
Use of these results with BNEWT and with FNEWT gave the following results, for N = 6.

BNEWT

p D
---·----·- -·-----1-----

5.000000
5.500000
6.000000

148.4132
244.6973
403.4287

148 .4132
244.6924
403.4287

E R

.4567298 x 10-4 148.4132

. 4173722 x 10-4 244.6973

.2017143 x 10-4 403.4287

167-P 2- 0

B[n-3] B[n-4] B[n-5]

41.81091
41.81091 9.415191
53.30115 11.49023 2.075043

-----~-~

FNEW'.r

D E

148.4132 . 7 420658 x 10-5

244.6924 . 3078276 x 10-4

403.4287 . 7441404 x 10-4

COLLECTED ALGORITHM·s FROM CACM

ALGORITHM 168
KEWTON INTERPOL.A.TIO~ WITH
BACKWARD DIVIDED DIFFERENCES
W. KAHAN AND I. FARKAS

Institute of Computer Science, University of Toronto,
Canada

procedure B:VEWT(z, .V, X, B, P, D, E); value z, N;
real z, P, D, E; integer .Y; real array X, B;

comment X is a real array of dimensfon at least N in which
X[i] = Xi for i = 1, 2, 3, · · · , N. The values Xi need not be
distinct nor in any special order, but once the array Xis chosen
it will fix the interpretation of the array B. B ifl a real array of
dimension at least N and contains the backward divided differ
ences B[i] = &f(Xi, X;+i, · · · , XN) i = 1, 2, · · · , N. If two
or more of the values Xi are equal then some of the B's must
he confluent divided differences, see algorithm: "Calculation of
confluent divided differences." Pis the value of the following
polynomial in z of degree .V-1 at most, B(N) + (z-XN)·
(B(X-1) + (z-XN-i){B(X-2) + · · · + (z-X2)B(l) l · · · I!.
This polynomial is an interpolation polynomial which would,
but for rounding errors, match values of the function f(x) and
any of its derivatives that DFDFC might have been given. D
i~ the value of the derivative of P. Eis the maximum error in
P caused by roundoff during the execution of BNEWT. The
Prror eRtimate is based upon the assumption thnt the result of
each floating point arithmetic operation is truncated to 27 sig
nificant binary digits as is the case in FORTRAN programs on
the 7090. BN EWT has been written as a FORTRAN II subroutine
and is available from I.C.S., University of Toronto;

begin real zl; integer i;
P : = D : = E : = O;
for i : = 1 step l until V do
hegin
zl : = z - X[i];
D: = P + zl X D;
P : = B[i] + zl X P;
E : = abs(P) + E X abs(zl)
end;
E : = (1.5XE - abs(P))x:~io - S
end BNEW'l'

CERTIFICATIOX OF ALGORITHM 167
CALCl~LATIOX OF COXFLUEXT DIVIDED DIF

FEREXCES [W. Kahan and I. Farkas, Comm.
ACM, Apr. 19G3]

CERTIFICATIOX OF ALGORITHM 168
KEWTOX IXTERPOLATIOX WITH BACKWAHD

DIVIDED DIFFEREXCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 196:3]

CERTIFICATIOX OF ALGORITHM 169
KEWTOK IKTERPOLATIOX WITH FORWARD

DIVIDED DIFFEREXCES [W. Kahan and I.
Farkas, Conini. ACM, Apr. 1963.]

HEKRY C. THACHER, .Jn.*
ArgonnP. National Laboratory, Argonne, Ill.

168-P 1- 0

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth SCALP compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola
tion polynomial based on fewer points, this is not true for Al
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to thP procedure, and by
making the for statement read:

"for i := N - deg step 1 until N do · · · "

The logic of the error estimate in Algorithms 168 and 169 is not
entirely clear. However, it appears that the estimate can be ad
justed for different precision of arithmetic by adjusting the con
stant 310-8 appropriately. For the ScALP arithmetic, this constant
was chang~d to lio-7.

The algorithms were tested on the examples given by Milne
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Calculus, p. 204, Princeton, 1949].
In both examples, Algorithm 167 reproduced the divided differ
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ
ences, values of the exponential function of its first two deriva
tives at x = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

COLLECTED ALGORITHMS (cont.) 168-P 2- 0

TABLE A
------~-·--~-- - ···---------------

n X[n] V[n] B[n] B[n-1] B[n-2] B[n-3] B[n-4] B[n-5]

1 5.0 148.4132 148.4132
2 5.0 148.4132 148.4132 148.4132
a 6.0 403.4288 403.4287 255.0155 106.6023
4 6.0 403.4288 403.4287 403.4287 148.4132 41.81091
5 5.0 74.20658 148.4132 255.0155 148.4132 41.81091 '9.415191
6 6.0 201.7144 403.4287 255.0155 148.4132 53.30115 11.49023 2.075043

The forward differences lie along the top diagonal.
Use of these results with BNEWT and with FNEWT gave the following results, for N = 6.

BNEWT FNEWT

z

_ ___::___\ D E R I D E
I

5.000000 148.4132 148 .4132 . 4567298 x 10-4 148.4132 148.4132 . 7 420658 x 10- 5

5.500000 244.6973 244.6924 .4173722 x 10-4 244.6973 244.6924 . 3078276 x 10-4

6.000000 403.4287 403.4287 .2017143 x 10-4 403.4287 403.4287 . 7441404 x 10-4

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 169
NEWTON INTERPOLATION WITH
FORWARD DIVIDED DIFFERENCES
w. KAHAN AND I. FARKAS

Institute of Computer Science, University of Toronto,
Canada
procedure FNEWT(z, N, X, F, R, D, E); value z, N;

real z, R, D, E; integer N; real array X, F;
c:omment X is a real array of dimension at least N in which

X[i] = x, for i = 1, 2, · · · , N. The values x, need not be dis
tinct nor in any special order, but once the array X is chosen
it will fix the interpretation of the array F. F is a real array
of dimension at least N and contains the forward divided
differences F[i] = &J(X1 , X2, .. · , X,) i = 1, ~~' .. · , N. If
two or more of the values Xi are equal then some of the F's
must be confluent divided differences, see algorithm: "Calcu
lation of confluent divided differences." R is the value of the fol
lowing polynomial in z of degree N-1 at most, F(l) + (z-X1)·
{F(2) + (z-X2){F(3) + · · · + (z-XN-1)F(N)} .. · · }}. This
polynomial is an interpolation polynomial which would, but
for rounding errors, match values of the function f(x) and any
of its derivatives that DVDFC might have been given.Dis the
value of the derivative of R. E is the maximum error in R
caused by roundoff during .the execution of FNEWT. The
error estimate is based upon the assumption that the result of
each floating-point arithmetic operation is truncated to 27
significant binary digits as is the case in FORTRAN programs
on the 7090. FNEWT has been written as a FORTH.AN II sub
routine and is available from I.C.S., University of Toronto;

begin real zl; integer i;
R:=D:=E:=O;
for i : = N step -1 until 1 do
begin
zl : = z - X[i];
D := R + zl X D;
R : = F[i] + zlXR;
E : = abs(R) + abs(zl)XE
end;
E : = (1.5XE - abs(R))X310 - 8
end FNEWT

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED DIF

FERENCES [W. Kahan and I. Farkas, Conim.
ACM, Apr. 1963)

CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD

DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963)

CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH FORWARD

DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963.)

HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

169-P 1- 0

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth SCALP compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola
tion polynomial based on fewer points, this is not true for Al
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to the procedure, and by
making the for statement read:

"for i := N - deg step 1 until N do · · · "

The logic of the error estimate in Algorithms 168 and 169 is not
entirely clear. However, it appears that the estimate can be ad
justed for different precision of arithmetic by adjusting the con
stant 310-8 appropriately. For the ScALP arithmetic, this constant
was changed to l 10 - 7.

The algorithms were tested on the examples given by Milne
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Calculus, p. 204, Princeton, 1949].
In both examples, Algorithm 167 reproduced the divided differ
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ
ences, values of the exponential function of its first two deriva
tives at x = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

COLLECTED ALGORITHMS (cont.)

TABLE A

n X[n] V[n] B[n] B[n-1] I
5.~--i--~48.4132

·-·····- ---- - ----- ------------1

1
2
3
4
5
6

5.0 148.4132
6.o I 403.4288
6.0 I 403.4288
5.0

I
74.20658

6.0 201. 7144

148.4132
148.4132
403.4287
403 .4287
148.4132
403.4287

The· forward differences lie along the top diagonal.

148.4132
255.0155
403.4287
255.0155
255.0155

B[n-2]

106.6023
148 .4132
148.4132
148.4132

Use of these results with BNEWT and with FNEWT gave the following results, for N = 6.

BNEWT

B[n-3]

41.81091
41.81091
53.30115

B[n-4]

9.415191
11.49023

FNEWT

169-P 2- 0

B[n-5]

2.075043

----------------------------- ---------------------

5.000000
5.500000
6.000000

r /) E R D E
-----·---·--------- -------- -----------------1-------1---------1---------

148.4132
244.6973
403.4287

148 .4132
244.6924
403.4287

.4567298 x 10-4

.4173722 x 10-4

.2017143 x 10-4

148.4132
244.6973
403.4287

148.4132
244.6924
403.4287

. 7 420658 x 10- 5

.3078276 x 10-4

. 7441404 x 10-4

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 170
REDrCTION OF A MATRIX CONTAINJ[NG
POL YXOMIAL ELEMENTS
PArL E. HENNION

Giannini Controls Corp., Astromechanics Res. Div.,
Benvyn, Penn.

real procedure POLYMATRIX (A, NCOL, N, COE, NPl);
value A NCOL N; real array A; integer NCOL, N;

comment' this ~rocedure will expand ·a general determinant,
where each of the elements are polynomials in the Laplace com
plex variable. This program is useful for the investigation. of
dvnamic stability problems when using the transfer function
approach. The process is one of triangularization o~ ~ po!y
nomial matrix with real coefficients whereupon multiphcat10n
of the diagonal elements the determinant polynomial is formed.
The polynomial matrix as defined herein is a matrix whose
elements are polynomials of the form 2.:f =O aixi. When such a
matrix is triangularized, all elements below the main diagonal
are nulled. Then upon expanding, the nonvanishing terms are
those formed by the product of these diagonal elements. Hence
stability criteria may be checked by evaluating the roots of the
charact~ristic equation thus formed using some suitable root
extracting routine.

Consider the polynomial matrix with quadratic elements
(N = 2). In this case the three-dimensional input matrix A is
size A[l:NCOL, l:NCOL, l:M], where.NCO£ is the order of
the matrix and M = N X NCOL + 1. Here the first subscript
of A refers to the row, the second to the column, and the third
to the polynomial coefficient. Therefore, prior to entry the con
stant term of a general polynomial element is contained in
A [i, j, l], the linear term is contained in A [i, i, 2], and the
quadratic term in A[i, j, 3]. Upon completion of the routine, the
coefficients of the determinant polynomial are contained in
COE [l:M]. The constant coefficient being in COE [l], the linear
coefficient in COE [2], the quadratic coefficient in COE [3], etc.
The variable N Pl will specify the number of coefficients of the
determinant polynomial. In general N Pl #- M since some terms
may vanish during the expansion.

If the polynomials comprising the matrix elements are not
all of equal degree, set N prior to entry equal to the degree of
the highest ordered polynomial;

ll>egin real sa, sb; integer i, j, k, jl, j2, j3, j4, j5, j6, j7, jS, j9, jlO,
jU, NPl, M; array Cl[l:M], C2[l:M], COE[l:.M];
integer array MAT [l:NCOL, l:NCOL];

:1tart: M : = NXNCOL+l; for i : = 1 step until NCOL do
begin for j: = 1step1 until NCOL do begin MAT [i,j] : = O;
for k : = 1 step 1 until M do begin
if A[i, j, k];;eO then MAT [i, j]: = k; end end end; jl : = 1:

LO: j9 : = O; for i : = jl step 1 until NCOL do begin
if.MAT [i,jl] <0 then go to exit;
else if MAT [i, jl] =0 then go to Ll
elsej9:=j9+1; j3:=i;

Ll: end; if (j9-l)<O then go to exit
else if (j9-1)>0 then go to L2
else if (j3- jl) <O then go to exit
else if (j3-jl) =0 then go to Ll2
else for j : = jl step 1 until NCOL do
begin j2 : = MAX (MAT [j3,j], MAT [jl ,j]); j4 : == MA 1' [j3,j];
MAT [j3,j] : = MAT [jl, j]; MAT [jl,j] : = j4;

170 P I

for· k : = 1 step 1 until j'l, do
begin sa: =A [j3, j,k]; A[j3,j,k]: = A[jl, j, k];
A[jl j k] : = -sa; end end; go to £12;

L2: j3 ; = jl+l; for i : = j3 step 1 until NCOL do begin
L3: if (MAT[i,jl]) <O then go to exit

else if [MAT [i,jl]) =0 then go to LU
else if (MAT [jl,jl]) <O then go to exit
else if (MA T[jl ,jl]) = 0 then go to L4
else if (MAT [i,jl] -MAT (jl,jl]) ~ 0 then go to L5 else

L4: for j: = jl stepl until NCOL do begin
j2 : = MAX(MAT (jl,j], MAT [i, j]); j4 : = MAT [jl,j];
MAT (jl,j] : = MAT [i,j]; MAT [i,j] : = j4;
fork : = 1 step 1 until j2 do begin sa : = A [i,j,k];
A[i,j,k] : = ,A[il,j,k]; A[jl,j,k] : = -sa;
end end; go to L3;
comment Interchange row i with jl;

L5: j7 : = MAT [i,jl]; j5 : = MAT [jl,il]; j6 . - j7-j5;
sb : = A[i,jl,j7]/A(jl,jl,j5];
if (abs(sb)-4)<0 then go to L6
else if (j6) <O then go to exit
else if (j6) =0 then go to L4 else

0

L6: for j: = jl step 1 until NCOL do begin j5: =MAT [jl, j];
for k : = 1 step 1 until j5 do begin j7 : = k+i6;
if (j7-M) >0 then go to LlO else

L7: if (abs(A [i,j,j.7] -sbXA [jl,j,k])-210-S) ~O then go to LS
else A[i,j,j7] : = A[i,j,j7] -sbXA[jl,j,k];
go to L9;

LS: A[i,j,j7] : = O;
L9: end end;
LlO: for j : = .fl step 1 until NCOL do begin

j7 : = MAX(MAT [i,1'], MAT[il,i]+i6); MAT [i,i] : = 0;
fork:= 1step1 until M do begin if (A[i,j,k]);;eO then
MAT [i,j]: = k end end;

LU: end; go to LO;
Ll2: jl : = jl+l; if (jl-NCOL) <O then go to LO else

for j : = 1 step 1 until NCOL do begin
j2 : = MAT [j,j];
fork : = 1step1 until j2 do Cl [k] : = A [j,j,k];

Ll3: if (j-1)<0 then go to exit
else if (j-1) =0 then go to L14
else fork : = 1 step 1 until N Pl do C2[k] . - COE[k];
fork : = 1 step 1 until .M do COE[k] : = O;
if (j2) <O then go to exit
else if (j2) =0 then go to Ll5
else for k : = 1 step 1 until j2 do begin
for jlO : = 1 step 1 until N Pl do begin
jU := k+jl0-1;
COE[jU]:= COE[jU]+Cl [k]X C2[jl0];
end end; N Pl . - jU; go to Ll5;

Ll4: fork : = 1 step 1 until j2 do COE [k] . - Cl [k];
NPl : = j2;

L15: end;
exit: end POLY.MATRIX

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 170
REDUCTION OF A MATRIX CONTAINING POLY
NOl\UAL ELEMENTS [P. E. Hennion, Comm. ACM,
Apr. 1963]
p. E. HENNION
Giannini Controls Corp., Berwyn, Penn.

Four typographical errors were found upon reviewing the
procedure. The following corrections should be made:
(1) The increment for the for statement of line start:, should be 1.
(2) The colon at the end of the third line after line start:, should

be replaced by a semicolon.
(3) The semicolon at the end of the first line after line W:, may

be removed.
(4) The last statement of the first column should read:

MA.'l'[i,j] := k; end end;

CERTIFICATION OF ALGORITHM 170 [F3l
REDUCTION OF A MATRIX CONTAINING POLY

NOMIAL ELEMENTS [P. E. Hennion, Comm. ACM
6 (April 1963), 165; 6 (Aug. 1963), 450]

KAREN B. PRIEBE (Recd. 18 Dec. 1963 and 18 Feb. 1964)
Woodward Governor Co., Rockford, Ill.

Algorithm 170 was translated into FAST for the NCR 315 and
gave satisfactory results with the following corrections:

1. real procedure ... integer NCOL, N; should be replaced
by

procedure POLYMATRIX (A, NCOL, N, COE, NPl);
value NCOL, N; real array A, COE;
integer NCOL, N, N Pl;

2. At the end of the first comment add:
The global integer procedure MAX is assumed and furnishes the
maximum of two integers.

3. intege:r i, j, k, ... COE[l:M];
should be replaced by

integer i, j, k, jl, j2, j3, j4, j5, j6, 11, j8, j9, jlO, jll, M;
array Cl, C2[1:NXNCOL+I];

4. Immediately after start: the statement

NPl := N + l;

should be added, and the third line after start: i.e.,

fork : = 1 step 1 until M do begin

should be replaced by

for k : = 1 step 1 until N Pl do begj.n

5. The third line after LlO: i.e.,

for k : = 1 step 1 until M do ...

should be replaced by

fork : = 1 step 1 until 11 do ...

The last two changes simply shorten both of the indicated FOR
statements.

[EDITOR'S NoTE. In addition to the above corrections, we have
two comments on the Remark on Algorithm 170 by Hennion,
loc. cit., p. 450:

First, the semicolon at the end of the first line after LO MUST

be removed.
Second, correction (4) is irrelevant.

170-P 2- 0

The referee confir111s thali a transcript10n into Burroughs hx
tE>nded ALGOL of the program as corrected by Mrs. Priebe runs on
the B5000.-·G.E.F.]

COLLECTED ALGORITHMS FROM CACM

Note. There is no algorithm for the number 171.
Inadvertently this number was never assigned.

171-P 1- 0

COLLECTED ALGORITHMS FROM CACM

Note. There is no algorithm for the number 172.
[nadvertently this number was never assigned.

172-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 170
ASSIGN
0TOMAR HAJEK

Research Institute of Mathematical Machines, Prague,
Czechoslovakia

procedure assign (a) the value of : (b) with dimension (dim)
indices : (ind) bounds : (low, up) tracer : (j);

value dim; integer dfrn, 1:nd, low, up, j;
comment This procedure uses Jenseff's device (cf. ALGOL

Report, procedure Innerproduct) twice: the a, b may depend on
ind and also ind, low, up may depend on i;

he gin
.i : = dim;
for ind : = low step 1 until up do

ifdim>l
then

begin
assign (a, b, dim-1, ind,. low, up, j);
j: =dim

end
else a : = b

end assign;
comment The obvious use of "assign" is in assigning the value

of one array to another. The point here is that one procedure
declaration serves for all the dimensions used. In fact, the
dimension may even be a variable: thus a procedure essentially
identical with "assign" was used by the author in implementing
the recursive own process in an ALGOL compiler.

However, in addition to this, "assign" can have further
functiorn;, as illustrated below. The activation assign (a, (if
i=l then false else a) Vb;.;, 1, i, 1, n, j) will calculate the
join-trace of a Boolean 2-dimensional array b.
asHign (a;1.;2 , (if i.=1 then 0 else a;1,,:2) + b;1.i3 X C;3,i2,

3, 1'i , 1, if j = 1 then n else if j = 2 then m else p, j)
will assign to a the matrix product of b, c. It may be noticed that,
more generally, "assign" will perform all the tensor operations,
e.g. tensor multiplication, alternation, etc.

CERTIFICATIOX OF ALGOJUTHM in
ASSIGX [Otomar Hajek, Comm. ACM, .June 196:~)
R. S. ScowE~
English Electric Co. Ltd., Whetstone, Leicester, England

Algorithm 173 (AHSIGX) has been tested successfully using
the DEtTE ALGOL 60 compiler. The only changes necessary were
the addition of specifications for the formal parameters a, b
(]h:n:E A1,GoL ()0 compiler requires specifications for all formal
parameters).

The author's example, assign (a[i[l], i[2]], (if i[:J]=l then 0.0
eli.;e a[i[l], i[2J]) + b[i[l], i[3]] X c[i[3], i[2)], 3, i[j], 1, if i = 1
then n else if j = 2 then m else p, j);
did form the matrix product B X C and store it in .. 4.

The algorithm was also used to read a matrix into the computer
using the procedure call

assign (b[i[l], i[2]], read, 2, i[j], I,
if .i = 1 then n else p, j);

(read is a real procedure which takes the value given by the next
numbe1· on the input tape).

173-P 1- 0

These examples took about three times as long to run as the
simpler equivalent statements

for i := 1 step 1 until n do
for j := 1 step 1 until m do
begin

a[i, j) := 0.0;
fork := 1 step 1 until p do
a[i, j] := a[i, j] + b[i, k] X c[k, j]

end;
and

for j := 1 step 1 until p do
for i := 1 step 1 until n do
b[i, j] := read;

CERTIFICATIO:N OF ALGORITHM 173
ASSIGN [O. Hajek, Comm. ACM, July 1963]
Z. FILSAK and L. VRCHOVECKA

Research Institute of Mathematical Machines, Prague,
and Computing Center Kancelarske stroje, Prague

The algorithm was modified for input to the Elliott-ALGOL
svstem as follows. In Elliott-ALGOL, name-called parameters in
r~cursive procedures are prescribed. Luckily, the only parameter
which varies during the recursive call in the body of Assign is
called by value (it is the parameter dim which determines depth
of recursion). The body of Assign was replaced by (i) a procedure
declaration Ass(dim), whose body is that of the original Assign,
but with the recursive call of Assign replaced by that of Ass,
and (ii) a single statement, the activation of A.ss(dirn).

The resulting procedure was tested (on the ~ ational-~lliott
803 in the Computing Center), on a rather large set of examples,
including those described in the text following Algorithm 173.
It was found that in the last example, matrix multiplication,
indices i 1 and i 3 should be interchanged throughout.

X o changes of the algori thrn itself were necessary. It seems
that the modification described above, motivated by limitations
of Elliott-ALGOi,, also improve efficiency, at least for large di
mensions of the arrays concerned.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 174
A POSTERIORI BOUNDS ON A

ZERO OF A POLYNOMIAL*
ALLAN GIBB

University of Alberta, Calgary, Alberta, Canada
co:nnnent The procedures below make use of Algorithm 61,

Procedures for Range Arithmetic [Comm. ACM 4 (1961)]. It is
assumed that the procedures below and the range arithmetic
procedures are contained in an outer block and, therefore, that
the procedures are available as required. Together the proce
dures make possible an attempt to determine absolute bounds
on a zero of a polynomial given an initial estimate of the zero.
The procedures below are given for the complex case but may
readily be adapted for the real case;

procedure RngPlyC (N, A, Z, P);
co:nnnent RngPlyC finds bounds [Pl, P2] + i[P3, P4J on the

value of an nth degree polynomial l:k..o { [a,1c+1 , a41c+2]
+ i[aU:+a, a4.1:+4]}zk with complex range coefficients for a com
plex range argument z = [Zl, Z2l + i[Z3, Z4];

integer N; array A, Z, P;
begin integer K, J; array X, Y[l : 4];
P[l] := P[2] := P[3] := P[4] := O;
for K: = 4 X N step --4 until 0 do

begin for J: = 1step1until4 do X[JJ: = A[K+JJ;
RNGMPYC (P[l], P[2], P[3], P[4], Z[l], Z[2], Z[3], Z[4l, Y[l],

Y[2], Y[3], Y[4]);
RNGSUMC (Y[l], Y[2], Y[3], Y[4], X[l], X[2], X[3], X[4],

P[l], P[2J, P[3], P[4])
end

end;
procedure RngAbsC (A, C);
comment RngAbsC produces the range absolute value [Cl, C2J

of the complex range number [A I, A2] + i[A3, A4];
array A, C;
begin array B[l : 4];
RA.NGESQR (A [I], A[~!], B[l], B[2]);
RANGESQR (A [3], A [4], B[3], B[4]);
RANGESUM (B[l], B[2], B[3], B[4J, C[l], C[2]);
C[I] : = sqrt(C[l]);
C[2] : = sqrt(C[2J);
comment It is assumed that the accuracy of the sqrt routine

used is known and that the maximum error in sqrt(C) is ± K
X CORRECTIO.N(C). Kisto be replaced below by its appro
priate numerical value;

C[I] : = C[I] - K X CORRECTION (C[I]);
C[2] : = C(2J + K X CORRECTION (C[2J)
end;
procedure BndZrPlyC (N, ZOR, ZOJ, A, W,);
integer N; real ZOR, ZOJ; array A, W;
co:nnnent BndZrPlyC attempts to determine bounds [WI, W2]

+ i[W3, W4] on a zero of an N-th degree polynomial in z·with
complex range coefficients. It is assumed that an estimate
ZO = ZOR + iZOJ of the zero is available. The following
theorem is used. Assume f is regular at zo with f'(zo) ~ 0. Let
ho = -f(zo)/f'(zo), let .'1 be the region I z - zo I ~ r I ho I, and

* These procedures were developed under Office of Na val
Research Contract Nonr-225(37) at Stanford University. The
author wishes to thank Professor George E. Forsythe for assistance
with this work.

174-P 1- 0

assumethatfisregularin.'1. If,forsomer > 0, /f'(z) I~ (l/r).
I f'(zo) I for all z E .'1 then .'1 contains a zero of f(see [I], pp. 29-31);

begin integer I, J; array B[l:4XNL E, F, FP, D[1:4], A.F,
AFP, G[l:2];

real RH, RHS, NL, NR, R, RNL, RNR;
for I : = 1 step I until N do

begin J : = 4 X I;
RANGEMPY (I, I, A[J+I], A[J+2J, B[J-3], B[J-2]);
RANGEMPY (I, I, A[J+a], A[J+4], B[J-1), B[J])
end;

E[IJ: = E[2]: = ZOR; E[3J: = E[4]: = ZOJ;
RngPlyC(N, A, E, F);
RngAbsC(F, AF);
RngPlyC(N-1, B, E, FP);
RngAbsC(F P, AF P);
RANGEDVD(AF[IJ, AF[2], AFP[I], AF'P[2J, NL, NR);
R := 2;
I: RA.YGEMPY(R, R, NR, NR, RNL, RNR);
RANGESUM(ZOR, ZOR, -RNR, RNR, W[l], W[2J);
RANGESUM(ZOJ, ZOJ, -RNR, RNR, W[3], W[4J);
comment We have replaced the disk of the theorem by a square;
RngRlyC(i.\/-1, B, W, D);
RngAbsC(D, G);
if G[l] = 0 then go to failure!;
comment failure! and failure2 are non-local labels;
RANGEDVD(AF P[2], AF P[2], R, R, RH, RHS);
if G[l] < RHS then

begin R : = 2 X R;
if R > 1024 then go to f ailure2;
go to 1
end

end

comment The following procedure may replace BndZr PlyC
above;

procedure BndZrPlyC2 (N, ZOR, ZOJ:, A, W);
integer N; array A, W; real ZOR, ZOJ;
comment BndZrPlyC2 is similar to BndZrPlyC above. Th<'

theorem used here follows. If, in the disk I z - zo I ~ 2 I ho I we
have I f"(z) I ~ I f'(zo) 1/(2 I ho I), then there is a unique zero in
the disk (see [2, pp. 43-50];

begin integer I, J; array B[1:4XNJ, C[I:4XN-4], F, D, I',
S[l:4], X, T, Q, Y[I:2]; real V, VP, R, RL;

for I : = 1 step I until N do
hegi n J : = 4 X I;
RANGEMPY(I, I, A[J+I], A[J+2], B[J-3], B[J-2]);
RANGEMPY(l, I, A[J+3], A[J+4], B[J-1], B[J])
end;

for I : = 1 step 1 until N - I do
begin J : = 4 X I;
RANGEMPY(l, I, B[J+IJ, B[J+2], C'[J-3], C[J-2]),
RANGEMPY(l, I, B[J+3J, B[J+4], C[J-IJ, C[.J])
end;

D[ll := D[2] := ZOR;
D[3J: = D[4]: = ZOJ;
RngPlyC(N, A, D, F);
RngPlyC(N-1, B, D, P);
RnoAbsC (F, T) ;
RngAbsC(P, X);
if X[l] = 0 then go to failure!;

COLLECTED ALGORITHMS (cont.)

(lomment failure! and failure2 are non-local labels;
l~ANGEDVD(T[1J, T[2], X[l], X[2], Q[l], Q[2]);
RANGEMPY(2, 2, Q[2], Q[2], RD, R);
RNGSUMC(-R, R, -R, R, ZOR, ZOR, ZOJ, ZOJ,, W[l], W[2],

W[3], W[4]);
RngPlyC(N - 2, C, W, S);
RngAbsC(S, Y);
RANGEDVD(X[l], X[l], R, R, V, VP);
if Y[2J > V then go to failure2
~:nd

References :
1. GIBB, ALLAN. ALGOL procedures for range arithmetic. Tech.

Report No. 15, Appl. Math. and Statistics J,aboratories,
Stanford University (1961).

2. OSTROWSKI, A. M. Solution of equations and systems of equations.
Academic Press, New York, 1960.

174-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 175
SHUTTLE SORT
C. J. SHAW A~D T. N. TRIMBLE

System Development Corporation, Santa Monica, Calif.

procedure shuttle sort (rn, Temporary, N);
value m; integer rn; array N[l:m);
comment This procedure sorts the list of numbers N[l) through

N[m] into numeric order, by exchanging out-of-order number
pairs. The procedure is simple, requires only Temporary aH

extra storage, and is quite fast for short lists (say 25 numbers)
and fairly fast for slightly longer lists (say 100 numbers). For
still longer lists, though, other methods are much swifter. The
actual parameters for Temporary and N should, of course, be
similar in type;
begin integer i, j;
for i : = 1 step 1 until m - 1 do

begin

for j: = i step -1 until 1 do
begin
if N[j] s; N[i+l] then go to Test;

Exchange: Temporary : = N[j]; N[j] : = N[j+l];
N[j+ll :== Temporary; end of j loop;

Test: end of i loop
end shuttle sort

CERTIFICATIOl\ OF ALGORITHM 175
SHVTTLE SORT [C .. J. Shaw and T. l\. Trimble, Comm.

ACM, June 1963]
GEORGE R. SCHUBERT*

C niversity of Dayton, Dayton, Ohio
* Cnderi;;rnduate research project, Comµuter Science Program, Univ. of

Davton.

Algorithm 175 was translated into BALGoL and ran successfully
on the Burroughs 220. The following actual sorting times were
observed:

.\'umber of Items

25
50

100
250
500

Average Time (sec)

l.G
6.2

25.8
181
684

The algorithm can he extended so that the sort is made on one
array, while retaining a one-to-one correspondence to a second
array. This is done b~' inserting immediately before end of the j
loop the following:

Temporary : = Y[j]; Y[j] : = Y[j + I]; Y[j + I] : =:= Tempo
rary; where }'[kJ is the element to be associated with .V[k]. Other
variations are obviously possible.

175-P 1- 0

REMARK ON ALGORITHM 175
SHUTTLE SORT [C. J. Shaw and T. N. Trimble, Comm.

ACM 6, June 1963]
0. C. JUELICH

North American Aviation, Inc., Columbus, Ohio

The authors of this algorithm do well to remind the reader that
"Shuttle Sort" is not an efficient procedlure, except for lists of items
so short that they do not justify the housekeeping apparatus
needed by the usual sorting routines.

The algorithm as published is not free from errors. The state
ment

for j : = i step - 1 until 1 do
should be replaced by either:

for j : = m - 1 step - 1 until i do
or

for j : = 1 step 1 until m - i do
In the former case the process can be visualized as placing the

ith smallest element in place on the ith pass; in the latter the ith
largest element is put in place on the ith pass.

The label "Test" should precede thie delimiter "end of j loop"
rather than the "end of i loop". The algorithm can be slightly
accelerated by rewriting the body of the procedure·

begin integer i, j, j max;
i:=m-1;

loop : j max : = 1 ;
for j : = 1 step 1 until i do

begin
compare: if N[j] > N[j + 1) then

begin Exchange: Temporary : = N[j];
N[j] : = N[j + IJ;
N[j + 1) : = Temporary;
jmax:=j

end Exchange;
end of j loop;

i: = j max;
if i > 1 then go to loop;

end shuttle sort

The revised procedure body will eliminate redundant iterations
when some of the data is already orderied.

It was studied in this form by R. L. Boyell and the writer on
the 0RDVAC at Ballistics Research Laboratories, Aberdeen Proving
Ground, in 1955. For randomly ordered data the i-loop may be
expected to be executed about m-vm times.

REl\1ARK ON ALGORITHM l 7G
SHUTTLE SORT [C. J. Shaw and T. N. Trimble, Comm.

AC1\i 6 (.June 1963), 312; G. R. Schubert, Comm.
A.Gill 6 (Oct. 1963), 619; 0. C . .Juelich, Comm. ACM
fJ (Dec. 1963), 739]

OTTO C .. JUELICH (Recd. 18 Dec. 1963)
North American Aviation, 4300 E. Fifth Ave., Columbus,

Ohio
The appearance of Schubert's certification has caused me to

restudy the algorithm. What I supposed were errors amount to a
rearrangement of the order in which the comparisons are. carried

COLLECTED ALGORITHMS (cont.)

out. The efticiency ot the algorithm is not much affected by the
rearrangement, since the number of executions of the statements
labeled E:rchanue remains the same.

175-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 176
LEAST SQUARES SURFACE FIT
T. D. ARTHURS

The Boeing Company, Transport Division, Renton, Wash.

procedure SURF IT (F, z, W, m, n) answers: (a, e, rms);
integer m, n; real rms; array F, z, W, e;
procedure Invert, sqrt;
comment Given a set of m ordinates and the corresponding

values of n prescribed general functions, (fi), of one or more
linearly independent variables, this procedure fits the points,
in the least squares sense, with a function of the form aif1 + a2f2
+ ... + anfn where a, are the unknown coefficients. Also com
puted are the vectors of residuals (e;) and their lengths (rms).
Provisionis made for weighting the data points. Essentially, the
matrix equation FTWFa = FTWz is solved, where a isthevector
of unknowns, W is an m X m diagonal matrix of data point
weights, z is the vector of ordinate values and F is the
m X n matrix of corresponding function values. The availa
bility of a procedure Invert, which replaces a real matrix with
its inverse, is assumed;

begin integer i, j, k; real sqsum, g; array G[l:n, l:nJ;
comment G is working space for the inversion procedure;
sqsum := O;
for i := 1 step 1 until n do
for j := 1 step 1 until n do
begin G[i, j] : = O;

fork := 1 step 1 until m do
Gfi, i] : = G[i, j] + F[k, i] X F[k, i] X W[k]

end j;
Invert (G, n);
for i := 1 step 1 until n do
begin a[i] := O;

for j : = 1 step 1 until m do
begin g := O;

for k : = 1 step 1 until n do
g := g + G[i, kJ X F(j, k];
a,(1:] : = a[i] + g X z(j] X W(j]

end j
end i;
for i : = 1 step 1 until m do
begin e[i] = y[i];

for j : = 1 step I until n do
e[iJ := e[i] - a(j] X F[i, j];
sqsum : = sqsum + e[i] j 2

end i;
rms : = sqrt (sqsum/m)

end SURFIT

176-P 1- RI

Remark on Algorithm 176 [E2]
Least Squares Surface Fit [T.D. Arthurs, Comm.
ACM 6 (June 1963), 313]

Ernst Schuegraf [Recd. 1 Mar. 1971]
Department of Mathematics. St. Francis Xavier
University, Antigonish, Nova Scotia, Canada

Algorithm 176 contains one misprint. The line which reads:
begine[i] = y[i];

should read:
begin e[i] = zli];

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 177
LEAST SQUARES SOLUTION WITH CONSTRAINTS
.M. J. SYNGE

The Boeing Company, Transport Division, Renton, Wash.

procedure CONLSQ (A, y, w, n, m, r) results: (x) residuals:
(e, rms);

1real rms; integer n, m, r; array A, y, w, x, e; procedure
abs, SURFIT;

comment This procedure solves an overdetermined set of n
simultaneous linear equations in m unknowns, Ax = y. The
first r equations (r~m) are satisfied exactly and the remaining
n - r are satisfied as well'as possible by the method of least
squares. Each equation is assigned a weight from the vector w,
although the first r weights have no relevance. This procedure
may be used for curve or surface fitting when the approximating
function or its derivatives are required to have fixed values at a
number of points;

begin integer i, j, k, ii, ick; integer array ic[l:m];
array B[I:n-r, l:m-r]; real Amax;
for i : = 1 step 1 until r do
begin k : = 1; for j : = 2 step 1 until m do

begin if abs (A[i, j]) > abs (A [i, k]) then k : = j; end;
ic[i] : = k; Amax:= A[i, k]; for j: == 1step1 until m do
A[i, j]: = A[i, jJ/Amax; y[i] := y[i]/Amax;
for ii : = 1 step 1 until r do
begin if ii = i then go to skip; Amax:= A[ii, k];

for j : = 1 step 1 until m do
A[ii, j]: = A[ii, j] - A[i, j] X Amax;
y[ii] : = y[iiJ - y[iJ X Amax;

:~kip: end ii
end i;
ick : = r + 1; for j : = 1 step 1 until m do
begin k: = 1;

repeat: if j = ic[k] then go to next;
k : = k + 1 ; if r ~ k then go to repeat;
ic[ick] := j; ick := ick +I;

next: end k;
for i : = r + 1 step 1 until n do
begin for k : = 1 step 1 until r do

y[i]: = y[i] - y[k] X A[i, ic[kJ];
for j : = r + 1 step 1 until m do
begin B[i, j] : = A [i, ic[jJJ;

for k : = 1 step 1 until r do
B[i, jJ: = B[i, jJ - A[i, ic[k]] X A[k, ic[jjj

end j

end i;
SURFIT (B, y[r+I:n}, w[r+l:n], n - r, m - :r, x[r+I:mJ,

e[r+l :n], rms);
eomment The procedure SURF IT is called to solve the reduced

set of n - r simultaneous linear equations in m - r unknowns,
Bx2 = y2', which have no constraints; ·

for j : = r + 1 step 1 until m do x[ic[j]J : = x[j];
for j: = 1 step 1 until'r do
begin x[ic[j]] : = y[jJ;

for i : = r + 1 step l until m do
x[ic(j]J : = x[ic[j]J - A [j, ic[i]] X x(ic[iJJ

und j

cmd CONLSQ

177-P 1- 0

REMARK ON ALUURITHM 177
LEAST SQUARES SOLUTION WITH CONSTRAINTS

[Michael J. Synge, Comm. ACM, June 63]
MICHAEL J. SYNGE

The Boeing Co., Transport Division, Renton, Wash.
In row-reducing the constraint equations, CONLSQ does not

use full pivoting nor does it detect redundancy or inconsistency
of the constraints; it was felt that the constraints were likely
to be few in number and well-conditioned. However, these omis
sions may be made good by replacing the statement

ick := ick + I;

by

done: ick := ick + 1;

and substituting the lines below for the first seven lines of the
first compound statement of CONLSQ. If inconsistency is found,
the procedure exits to the nonlocal label inconsistent. A roundoff
tolerance, eps, is used in checking consistency, and some numerical
value (e.g. 10-6) should be substituted for it.

begin integer i, j, k, ii, ick, mr; integer array ic[l : m];
array B[l : n-r, 1 : m-rJ;

real Amax, Atemp;
for i := 1 step l until r do
begin k := 1; mr := i; Amax:= A[i, 1];

for ii := i step 1 until m do
begin for j : = 1 step 1 until m do

begin if abs(Amax G; abs(A[ii, j]) then go to nogo;
mr :=ii; k := j; Amax:= A[ii, j];

nogo: end j
end ii;
if abs(Amax) G; eps then go to allswell; mr := i;

test: if abs (y[mr]) G; eps then go to inconsistent else mr : = mr + 1;
if r ~ mr then go to test else r : = i - 1;
go to done;

allswell: for j : = 1 step 1 until r do
begin Atemp := A[mr, j]; A[mr, j] := A(i, j];

A[i, j] :=.Atemp/Amax
end j;
Atemp := y[mr]; y[mr] := y[iJ; y[i] := Atemp/Amax:

The Algorithm then continues with the line:
for ii := 1 step 1 until r do

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 178
DIRECT SEARCH
ARTHUR F. KA.UPE, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure direct search (vsi, X DELTA, rho, delta, S);

value K, lJELTA, rho, delta; integer K; <.trray psi;
real DELTA, rho, delta; real procedure S;

comment This procedure may be used to locate the minimum
of the function S of K variables. A 'discus~ion of the use of this
procedure may be found in: Robert Hooke and T. A. Jeeves,
'Direct Search' Solution of Numerical and Statistical Problems
[J. ACM 8, 2 (1961), 212-229]. The notation is essentially that
used in Appendix B of the cited paper. The exceptions being the
spelling of the Greek letters and the introduction of notation to
distinguish between the process of calculating a value of S and
the value itself-thus S (phi) and Sphi. A modified version of this
procedure acceptable to the BAC compiler for the Burroughs
205 and 220 computers has been prepared and run successfully;

begin real SS, Spsi, Sphi, theta; array phi [l:K]; integer K, k;
procedure E; for k : =, 1 step 1 until K do

begin phi [k] : = phi [k] + DELTA; Sphi : = S (phi);
if Sphi < SS then SS : = Sphi else

begin phi [k] : = phi [k] - 2 X DELTA; Sphi : = S(phi):
if Sphi < SS then SS : = Sphi else phi [k] : = phi [k] + DELTA

errd-E;
Start: Spsi : = S (psi);
1 : SS : = Spsi;
fork : = 1step1 until K do phi [k] : = psi [k]; E;
if SS < Spsi then begin

2: for k : = 1 step 1 until K do begin
theta : = psi [k];
psi [k] : = phi [k];
phi [k] : = 2 X phi [k] - theta end;

Spsi : = SS; SS : = Sphi : = S(phi); E;
if SS < Spsi then go to 2 else go to 1 end;

3: if DELTA 2:: delta then begin DELTA .- rho X DELTA;
go to 1 end end

REMARK ON ALGORITHM 178 [E4]
DIRECT SEARCH [Arthur F. Kau!Je, Jr., Comm. ACM
6 (June 1963), 313]
M. BELL AND M. C. PIKE (Recd. 15 Nov. 1965 and 22
Apr. 1966)
Institute of Computer Science, University of London,
London, England, and Medical Research Council's
Statistical Research Unit, London, England

Algorithm 178 has the following syntactical errors:
(1) The parameter list should read

(psi,K,DELTA,rho,delta,S).
(2) The declaration

integer K.k;
should read

integer k;
(3) An extra end bracket is required"immediately before end E;.

178-P 1- RI

The algorithm compiled and ran after these modifications had
been made but for a number of problems took a prodigious amount
of computing owing to a flaw in the algorithm caused by rounding
error. This flaw is in procedure E and may be illustrated by the
one-dimensional case. Let S(x) = 1.5 - x (x ~ 1.5), 3x - 4.5 (x>
1.5), and start at 0 with a step of 1. The first move puts psi [1] =
1, phi [1] = 2. The second move should then put phi [1] = 1 =
psi[l] resulting in a jump to label 1. On many machines, however,
E will put phi [1] = 1 + e (e>O and very small) so that direct
search begins to move away from 1 in very small steps. This is
clearly not desirable and may be avoided by altering the line

to
if SS < Spsi then go to 2 else go to 1 end;

if SS ;:::: Spsi then go to 1;
fork := 1step1 until K do
if abs (phi[k]-psi[k]) > 0.5 X DELTA then go to 2
end;

To accelerate the procedure, direct search should take advan
tage of its knowledge of the sign of its previous move in each of the
K directions. Take, for example, the one-dimensional case with
starting point zero and the minimum far out and negative; the
pattern moves will arrive there quite efficiently but each first move
of E on the way will be positive where:as the previous experience
of the search should lead it to suspect the minimum to be in the
opposite direction.

Finally, two changes which we have found very useful are (i)
some escape clause in the procedure to enable an exit to be made if
the procedure has not terminated after some given number of
function evaluations maxeval, with a Boolean converge taking the
value true in general but false if the procedure has terminated
through exceeding this number of function evaluations; and (ii)
taking Spsi into the parameter list where it is called by name so
that on exit Spsi contains the minimum value of the function.

With these modifications the procedure now reads:

procedure direct search (psi,K,Spsi,DELTA,rho,delta,S,converge,
maxeval);

value K,DELTA,rho,delta,maxeval; integ"'r K,maxeval;
array psi;

real DELTA ,rho,delta,Spsi; real procedure S; Boolean
converge;

comment This procedure locates the mi[nimum of the function S of
K variables. The method used is th:at of R. Hooke and T. A.
Jeeves ["Direct search" solution of numerical and statistical
problems, J. ACM. 8 (1961), 212-229] and the notation used is
theirs except for the obvious change:s required by ALGOL. On
entry: psi[l:K] = starting point of the search, DELTA '==
initial step-length, rho = reduction factor for step-length,
delta = minimum permitted step-length (i.e. procedure is termi
nated when step-length < delta), maxeval = maximum per
mitted number of function evaluations. On exit: psi[l:K] =
minimum point found and Spsi = value of S at this point,
converge = true if exit has been made from the procedure be
cause a minimum has been found (i.e., step-length < delta)
otherwise converge = false (i.e. maximum number of function
evaluations has been reached);

begin integer k,eval; array phi,s[l:K]; real Sphi,SS,theta;
procedure E;
fork := 1 step 1 until K do
begin phi[k] phi[k] + s[k]; SpM S(phi); eval .- eval

+ 1;

COLLECTED ALGORITHMS (cont.)

if Sphi < SS then SS : = Sphi else
begin s[k] := - s[k]; phi[k] := phi[k] + 2.0 >< s[k];

Sphi : ~ S (phi); eval : = eval + 1;
if Sphi < SS then SS : = Sphi else
phi[k] := phi[k] - s[k]

end
~ndE;

Start: fork := 1step1 until K do s[k] := DELTA;
Spsi : = S (psi); eval : = 1; converge : = true;

1: SS := Spsi;
fork := 1 step 1 until K do phi[k] := psi[k]; R;
if SS < Spsi then
begin

~l: if eval 2::: maxeval then
begin converge . - false;

go to EXIT
end;
fork := 1 step 1 until K do
begin if phi[k] > psi[k] = s[k] < 0 then s[k] := -s[k];

theta := psi[k]; psi[k] := phi[k]; phi[k] := 2 .. 0 X phi[k] -
theta

end;
Spsi :=SS; SS:= Sphi := S(phi); eval := eval + 1; E;
if SS 2::: Spsi then go to 1;
fork := 1 step 1 until K do

if abs(phi[k]-psi[k]) > 0.5 X abs(s[k]) then go to 2
end;

3:: if DELTA 2::: delta then
begin DELTA : = rho X DELTA;

fork := 1 step 1 until K do s[k] := rho X s[k]; go to 1
end;

EXIT:
end direct search

REMARK ON ALGORITHM 178 [E4]
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM

6 (June 1963), 313)
[as revised by M. Bell and M. C. Pike, Comm. ACM 9

(Sept. 1966), 684)
R. DE VoGELAERE (Recd. 4 Dec. 1967)
Department of Mathematics and Computer Center, Uni

versity of California, Berkeley, Calif. 94720

REY WORDS AND PHRASES: function minimization, search,
direct search

CR CATEGORIES: 5.19

The procedure does not exit, as specified, after maxeval (the
maximum number of) function evaluations.

The 3 statements eval : = eval + 1 should be interchanged with
the immediately preceding statement and replaced by a call to
the procedure test eval defined below. The statement labeled 2
should be deleted.

procedure test eval;
if eval < maxeval then eval : = eval + 1
else begin converge := false;
go to EXIT

end test eval

178-P 2- R2

REMARK ON ALGORITHM 178 [E4]
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM

6 (June 1963), 313); [as revised by M. Bell and M. C.
Pike, Comm ACM 9 (Sept. 1966), 684)

F. K.. TOMLIN AND L.B. SMITH (Recd. 17 May 1968, 9
Sept. 1968 and 30 June 1969)

Stanford Research Institute, Menlo Park, CA 94025, and
CERN, DD.Division, Geneva, Switzerland

KEY WORDS AND PHRASES: function minimization, search,
direct search
CR CATEGORIES: 5.19

The procedure DIRECT SEARCH, as modified by M. Bell and
M. C. Pike [1], does not always provide the determined minimum.
In addition, the maximum number of function evaluations per
mitted is almost always exceeded whenever the step-length is
greater than delta at the time the number of function evaluations
is great~r than or equal to maxeval. Finally, the label 3 is not
used.

To insure that the determined minimum is always provided,
the test on the number of evaluations should be moved to a point
where the minimum has been properly provided.

In [2] DeVogelaere remarks correctly that the procedure does
not exit as specified and gives changes which will indeed cause the
procedure to terminate when the number of function evaluations
exceeds the specified limit (and not some number of evaluations
later). However it is felt that DeVogelaere's solution to this
problem causes excessive testing. Therefore the test should be
performed after an exploratory move as in [1] but it should also
be performed when the step-length is reduced. This method of
testing violates the letter of the specified use of maxeval but not
the intent, which is to provide an escape from excessive calcula
tion.

To obtain the determined minimum, to provide a means for
reducing the number of function evaluations when step-length
is greater than delta, and to eliminate the unused label:

(1) The lines

2: if eval 2:::, maxeval then
begin converge : = false

go to EXIT
end;

should be removed.
(2) The line (16th line from the end of the procedure given

in [1])

fork := 1 step 1 until K do

should be changed to

2: fork := 1step1 until K do

(3) The line

Spsi :=SS; SS := Sphi := S(phi); eval := eval + 1; E;

should have the following code inserted after the statement
Spsi :=SS;

if eval 2::: maxeval then
begin

3: converge := false;
go to EXIT

end;

(4) The line

3: if DELTA ;;::: delta then

should be changed to

COLLECTED ALGORITHMS (cont.)

if DELTA ~ delta then

(5) The line
begin DELTA := rho X delta;

should be changed to

begin if eval > maxeval then go to 3 else
DELTA := rho X delta;
REFERENCES:

1. BELL, M., AND PIKE, M. C. Remark on Algorithm 178. Comm.
ACM 9 (Sept. ·rnt>6), 684.

2. DEVooELAERE, R. Remark on Algorithm 178. Comm. ACM 11
(July 1968), 498.

REMARK ON ALGORITHM 178 [E4]
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM

6 (June 1963), 313; as revised by M. Bell and M. C.
Pike, Comm. ACM 9 (Sept. 1966), 684]

LYLE B. SMITH* (Recd. 9 Sept. 1968)
Stanford Linear Accelerator Center, Stanford, CA 94;305

* Present address. CERN, Data Handling Division, 1211
Geneva 23, Switzerland

KEY WORDS AND PHRASES: function minimization, search,
direct search
CR CATEGORIES: .5.19

Algorithm 178, as modified by Bell and Pike [l], has been
used successfully by the author on a number of different problems
and in a variety of languages (e.g. Burroughs Extended ALGOL on
a B5500, SuBALGOL on an IBM 7090, and FORTRAN on the
IBM)360 series machines). A modification which has been found
to be useful involves tailoring the step size to be meaning{ ul for a
wide variation in the magnitudes of the variables.

As currently specified [l], each variable is incremented (or de
cremented) by DELT.A as a minimum is sought. For a function
such that the values of the variables differ by several orders of
magnitude at the minimum, a universal step size causes some pa
rameters to be essentially ignored during much of the searching
process. For example, if a function of two variables has a minimum
near (100.0, 0.1), a step size of 10.0 will be useful in minimizing with
respect to the first parameter, but it will be meaningless with re
spect to the second parameter until it has been reduced to near
0.01. On the other hand, a step size of 0.01 would be useful on the
second variable but on the first variable it would take an undesir
ably large number of steps to approach the minimum.

A modification to direct search which circumvents this scaling
problem involves the use of a different step size for each variable.
This is easily implemented since an array is already used to hold
the signed step size for each variable. The change is accomplished
by removing the statement labeled Start and replacing it by the
following statement:

Start: for k : = 1 step 1 until K do
begin s(k) :=DELTA X abs (psi(k));

ifs(k) = O.Othen s(k) :=DELTA;
end·

This chang~ sets the step size for each variable to DELTA times
the magnitude of the starting value, or if the starting value is 0.0
the step size is set equal to DELTA. Thus DELTA is the fraction
of the original ·value of each variable to be used as an initial step
size. Subsequent reductions in step size are handled correctly
without further modifications to the procedure.

As an example of the usefulness of the above modification, con
sider the functio11

178-P 3- 0

j(X1 , X 2 , Xa) = (X1 - 0.01)2 + (X:2 - 1.0) 2 + (X~ - 100.0)1

with a minimum at (0.01, 1.0, 100.0). The following table shows the
results of using direct search on this function with and without the
modified step size. The results were computed on an IBM 360/75
computer using single precision with rho = 0.1, delta =
0.001, DELTA = 0.2 for the modified 8tep size (giving 20 percent
of initial value for initial step size) and DELTA = [average magni
tude of initial guesses for the variablen] for the algorithm as pub
lished.

TABLE I. J =- (X1 - 0.01) 2 + (X2 - 1.0) 2 + (Xa - 100.0)2

Direct search
Modified direct

search

Direct search
Modified direct

search

DELTA
Number of
function

l!flaluations
Minimum
flalue off

Final valms of t~ fJariables

X1 I x, I x.

For initial values of (0.0, 0.0, 200.0):

153

112 I
0.841 :>< 10-710.00999995'0.999995110C.OOO

o.597 >< 10-1 o. 009999911!0. 999990,100. ooo

For initial values of (0.05, 5.0, 500.0):

I 168.35 I

I .2

174

75 I

o. 934 >< 10-7 10. 0100263 ,0. 998958 99. 9999

0.559 :>< 10-a 0.00999988 0.999998, 99.9992

Note that the modified method will tend to yield the same rela
tive accuracy for each parameter, wh1ereas with a fixed step size
direct search will tend to give the same absolute accuracy for all
parameters. In most cases a relative accuracy is probably more
desirable than an absolute accuracy.

REFERENCES
1. BELL, M., AND PIKE, M. C. Rema.jrk on algorithm 178. Comm

ACM 9 (Sept. 1966), 684.

~OLLECTED ALGORITHMS FROM CACM

ALGORITHM 179
INCOMPLETE BETA RATIO*
OLIVER G. LUDWIG
:Mathematical Laboratory and Department of Theoret

ical Chemistry, University of Cambridge, England
*Based in part on work done at Carnegie Institute of Tech

nology, Pittsburgh, Pennsylvania and supported by the Petroleum
Research Fund of the American Chemical Society and by the
National Science Foundation.

r1eal procedure incompletebeta (x, p, q, epsilon);
value x, p, q; real x, p, q, epsilon;
begin realfinsum, inf sum, temp, temp I, term, term I, qrecur, index;

Boolean alter;
comment This pro;edure evaluates the ratio B,,(p, q)/B1(p, q),

where B,,(p, q) = J0 tP-1(1-t)q-I dt, withO ~ x ~I and p, q > 0,
but not necessarily integers. It assumes the existence of a non
local label, alarm, to which control is transferred upon entry to
the proMdure withjnvalid arguments. Also assumed is a proce
dure to evaluate J

0
tPe-1 dt which is called factorial(p), (cf. e.g.

Algorithm 80, March, 1962);
if x > I V x < 0 V p ~ 0 V q ~ 0 then go to alarm;
if x = 0 V x = I then begin incompletebeta : = x; go to End end;
comment This part interchanges arguments if necessary to ob-

tain better convergence in the power series below;
if x ~ 0.5 then alter : = false else

begin alter : = true; temp : = p; p : = q; q : = temp; x ; =
I - x end;

comment This part recurs on the (effective) q until the power
series below does not alternate;

finsum : = O; term : = I; temp : = I - x; qrecur : =·index : = q;
for index : = index - I while index > 0 do

begin qrecur : = index;
term : = term X (qrecur+I)/(tempX (p+qrecur));
finsum : = finsum + term

end;
comment This part sums a power series for non-integral effec

tive q and yields unity for integer q;
in.fsum : = term : = I; index : = O;
comment In the following statement the convergence criterion

might well be altered to term > epsilon, since inf~:um > I al
ways, thus saving one divide per cycle at the cost, perhaps, of a
few more cycles;

for index : = index + I while (term/inf sum) > epsilon do
begin term : = term X x X (index-qrecur) X (p-t-index-1)/

(indexX (i;+index)); infsum : = infsum + term
end;

comment This part evaluates most of the necessary factorial
functions, minimizing the number of entries into the factorial
procedure;

ternp : = temp I : =factorial (qrecur-1);
term : = term I : =factorial (qrecur+p-1);
for index : = qrecur step I until (q-0.5) do

]begin temp I : = temp 1 X index;
term I : = term 1 X (index+p)

end;
comment This part combines the partial results into the final

one;
temp : = x i p X (infsumXterm/(pXtemp)+finsurnXterm IX
(1-x) i q/(qXtemp !))/factorial (p-1);

incompletebeta : = if alter then 1- temp else temp;
end: end incompletebeta

179-P 1- Rt

REMARK ON ALGORITHM 179 [S 14]
INCOMPLETE BETA RATIO [Oliver G. Ludwig, Comm.

ACM 6 (June 1963), 314]
M. C. PIKE AND I. D. HILL (Recd. 8 Oct. 1965 and 12

Jan. 1966)
Medical Research Council's Statistical Research Unit,

University College Hospital Medical School, London,
England
Algorithm 179 has the following two typographical errors:

(1) the line

if x < 0.5 then alter := false else

should read

if x < 0.5 then alter := false else

(2) the line

end:end incompletebeta

should read

End :end incompletebeta

With these changes Algorithm 179 ran successfully on the ICT
Atlas computer using Algorithm 221 [Walter Gautschi, Comm.
ACM 7 (Mar-. 1964), 143], to evaluate the factorials required. A
minor improvement might be to call epsilon by value.

As the algorithm stands, the permitted range of p and q is dic
tated by overflow problems associated with finding the values of
factorials. For most machines this will mean that p+q will have
to be less than about 70. In the statistical applications of this
algorithm which we describe below this restriction is very serious.
However, these factorials appear essentially only in the form of
ratios, and by making use of this fact the permitted range of p
and q can be enormously extended. This is most simply accom
plished by using the real procedure loggamma [Algorithm 291,
M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966), 684] modify
ing Algorithm 179 as foll owe: replace the instructions

to

temp := templ := factorial(qrecur-1);

temp := x i p X (infsumXterm/(pXtemp)+finsumXtermlX
(l~x) j q/(qXtempl))/factorial(p-1);

inclusive, by

temp := x i p X (infsumXexp(loggamma(qrecur+p)-loggamnia
(qrecur)-loggamma(p+l.O))+finsumX (1.0-x) i q
Xexp (loggamma(p+ q)-loggamma (p)--loggamma (q+ 1.0))) ; .

This also means that the declarations of templ and ter7r~l are not
required. For even moderately large values of p or q this will also
have the effect of speeding up the algorithm [see Remark on Al
gorithm 291, M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept.
1966)' 685].

The following real procedures use this algorithm to evaluate
three of the most frequently required statistical distribution func
tions.

COLLECTED ALGORITHMS (cont.)

real procedure Flail (k, fl, f2, epsilon);
value k, fl, f2, epsilon; real k, fl, f2, epsilon;
comment Flail evaluates the probability that a random variable

following an F distribution, on fl and f2 degrees of freedom, ex
ceeds a positive constant k;
Flail := incompletebela(f2/(f2+f1Xk), 0.5Xf2, 0.5Xfl, epsilon);

real procedure Sludenl(k, f, epsilon);
value k, f, epsilon; real k, f, epsilon;
comment Student evaluates the probability that the absolute

value of a random variable following a t distribution, on f de
grees of freedom, exceeds a positive constant k;

Student := incomplelebeta(f/(f+k i 2), 0.5Xf, 0.5, epsilon);
real procedure Binomial(k, n, p, epsilon);
value k, n, p, epsilon; real k, n, p, epsilon;
comment Binomial evaluates the probability that a random

variable following a binomial distribution, with parameters n
and p, takes a value greater than or equal to k;
Binomial := incornpletebeta(p, k, n-k+l.O, epsilon);

Remark on Algorithm 179 [Sl4]
Incomplete Beta Ratio
[Oliver G. Ludwig, Comm. ACM 6 (June 1963), 314]

Nancy E. Bosten and E.L. Battiste [Recd. I Sept. 1972
and 15 Mar. 1973]
IMSL, Suite 510/6200 Hillcroft, Houston, TX 77036

Description
Algorithm 179 (modified to include the remark by M .C. Pike

and I. D. Hill [l]) computes the Incomplete Beta Ratio using this
equation

lx(p q) = 1NF5_1:!_1v1_:_>;~'j_f!_s__~.!!] + x"· (_~ -x)q. I'(p+q) FINS UM
' · I'(PS) · I'(p+ 1) I'(p) · I'(q+ 1)

JNFSUM and FJNSUM represent two series summations de
fined as follows:

INFSUM = f, 0_::_PS~.~J' -~ where
i-0 p+i: i!'

(1-PS); = 1 [i=,0]

(l-PS)·(2--PS)· .. (i-PS) = r(l+i-PS) [i>O]
r(l-PS)

[qJ q·(q-O···(q-i+I) 1
and FJNSUM = L ----- ---

i~t (p-!-q-l)(p+q-2) .. ·(p-l-q-i) (1-x)>'

where [q] is equal to the largest integer less than q. If [q] = O•
then FJNSUM = 0. PS i:s defined as

PS = 1, if q is an integer; otherwise
= q - [q].

By rearranging Algorithm 179 so that scaling can be introduced,
the argument range of p and q can be extended and accuracy can be
improved.

Since 1:,(p, q) is a probability and, therefore, bounded [O, 1], and
INFSUM and FJNSUM are series having only positive terms, we
see that 1:,(p, q) is a collection of terms all of which are positive and
bounded in the range [O, I] if: (l) each term of INFSUM is multi
plied by (x" · r(PS + p))/(I'(PS) · r(p + I)); and (2) each term
of FINS UM is multiplied by (x"· (1-x)q · I'(p+q))/(I'(p) · l'(q+ l)).

179-P 2- Rl

Knowing this fact, we can apply a scaling procedure to the
algorithm. IN FS UM is a decreasing series. If the product of the
first term of JNFSUM and its multiplicative factor would under
flow, then the sum of this series could be set to zero and all calcu
lations involving underflow could be avoided. This is handled in
the modification of the algorithm given below. However, since
JNFSUM is a decreasing series, underflows may occur later in the
calculations. No attempt has been made to handle them here.

The second summation is more complicated. The series is
decreasing if q/((q + p - 1) (1 - x)) is less than 1. If an individual
term becomes less than 1.£-6 times the p1revious sum, calculation
can be legitimately terminated since no additivity is apparent. If
a term of the decreasing series is less than an arbitrarily small con
stant (EPS2), calculation is also terminated. This is done to pre
vent underflows in the later terms.

If the series is increasing, the first terms may underflow. In this
case a power of Et (machine precision - l.E-78 on the IBM 360/370)
may be factored from each term in FJNSUM (times its multiplier).
These terms cannot be added to the sum since they are less than
machine precision; however, they are usefu:t in retaining the accuracy
of the initial terms, which are then used recursively. By the nature
of the problem, we know that any term in FINSUM, times its
multiplier, must be less than or equal to 1, but we have factored
out powers of Et. Therefore, if a term of FINS UM becomes greater
than 1, we know that rescaling, by multiplying the term by Et , is
in order.

Testing on the IBM 360/195 has shown that, by rearranging
the calculations of the original Algorithm 179, and thus including
scaling, the input range of the algorithm can be greatly extended
with a high degree of accuracy.

MD BET A requires a double precision function DLGAMA
which computes the log of the gamma function. ACM Algorithm
291 may be used. MD BET A was tested against the SSP routine
BDTR given in the manual System/360 Scientific Subroutine Pack
age (360A-CM-03X) Version Ill Programmer's Manual, H20-0205.
MDBETA ran 3.5 times faster than BDTR with greater accuracy.
For example, in the case x = .5, p = 2000 and q = 2000, MD BETA
gave the correct result, .5, while BDTR gave an answer of .497026.
The IMSL subroutine, MDBJN, was used for an additional com
parison when p and q are integers. MDBIN maintains IBM 370/
360 single precision accuracy (approximately six significant digits).
Over the tests performed the maximum difference occurred in the
fifth significant digit when p and q were le:ss than 200. Three to four
significant digits of accuracy can be expected with p and q as large
as 2000.

Ack11owledgme11ts. The above ideas are the application of ideas
learned from the late Hirondo Kuki. Routine MDBETA·originated
from a code which resides in IMSL Library 1. We thank Wayne
Fullerton, from the University of California, Los Alamos Scientific
Laboratory, for refereeing the paper.

Algorithm

SUSROUTINE MDBETA(X, p, Q, PROB, I !:R>
C FUNCTION - INC0!'1PLETE BET~1 PROEAEILITY
C DISTRIBUTION FUNCTION
C USAGE - CALL MDBETA (X,P,Q,PROB,IER>
C PARAMETERS
C X - VALUE TO IJHICH Fl'NCTION IS TO BE INTEGRATED· X
C MUST BE IN THE RANGE Cl!!, I> INCLUSIVE.
C P - INPUT C IST> PAPA!'1ETER <MUST BE: GP.EATER THAN 0>
C Q - INPUT C2ND> PARA!'1ETER <MUST BE: G"l.EATER THAN 0>
C PROB - OUTPUT PPOBABILITY THAT A RAN[10!'1 VAPIABLE FROM A
C BETA DISTRIBUTION HAVING PAHAMETERS P AND Q
C IJILL BE LESS THAN OR EQUAL 1'0 X.
C !ER - ERROR PARAMETER.
C !ER • 0 INDICATES A NORMAL E:XIT
C !ER • I INDICATES THAT X IS NOT IN THE RANGE
C <0, I> INCLUSIVE.
C !ER • 2 INDICATES THAT P AN[)/OR Q IS LESS THAN
C OR EQUAL TO 0.

DOUBLE PRECISION PS, PX, Y, Pl, DP, INFSt:!'1, CNT, 1.'H, XE,
* DQ, C, EPS, EPSI, ALEPS, FINSUM, PQ, D4, EPS2, DLGAMA

C DOUBLE PRECISION Fl'NCTION DLGA:-!A
C MACHINE PRECISION

DATA EPS/ I. D- 6/
C SMALLEST POSITIVE NUMBER REPRESENTABLE

DATA EPSl/l.D-76/

COLLECTED ALGORITHMS (cont.)

c NATURAL LOG or EPSI I B. • XB/ ALE PS
INFSUM • 0. 00

179--P 3- RI

DATA ALEPSl-179.601600/
C ARBITRARILY SMALL NL~BER

DATA EPS2/l.D-50/
C FIRST TERM OF A DECREASING SERIES \/ILL UNDERFLO\I

IF <lB.NE.8> GO TO 99
c CHECK RANGES or THE ARGUMENTS

y • x
If CCX.LE.1.0> .AND. (X.GE.0.0)) GO TO 10
IER • 1
GO TO 1 l.10

10 If C<P.GT.0.0> .AND· cQ.GT.0.0)) GO TO 20
I ER • 2
GO TO 140

20 I ER • 0
I f C X • GT. 0. 5 l GO TO 3 0
INT • 0
GO TO i10

c 51./ITCH ARGUMENTS fOR MOP.E EfflCIENT USE or THE PO~'ER

C SERIES
30 INT • 1

TEMP • P
p • Q

Q • TEMP
y • 1. 00 - y

i10 If ex.NE. 0 •• AND. x.NE· 1.) GO TO 60
C SPECIAL CASE - XIS 0. OR 1.

50 PROE • 0.
GO TO 130

60 I B • Q

TEMP • IB
PS • Q - FLOATCIEl
If CQ.EQ.TEMPl PS• 1.00
DP • P
DQ • Q
PX • DP•DLOGCY>
PQ • DLGAMACOP+DQ>
Pl • DLGAMA<DP>
C • DLGAMAC DQ >
Oil • DLOGCDP>
If CY.GT.EPS> GO TO 70

C SPECIAL CASE - X IS CLOSE TO 0. OR 1,
XB • PX + PQ - Oil - P 1 - C
If CXB.LE·ALEPS> GO TO 50
PROB • OEXPCXB>
GO TO 130

C DLGAMA IS A fUNCTION l.IHICH CALCULATES THE DOUBLE
C PRECISION LOG GAMMA fUNCTION

70 XB • PX + DLGAMACPS+DP> - DLGAMA<PS> - 04 • Pl
C SCAl.lNG

INFSUM • OEXP<XB>
CNT • INFSUM•OP

C CNT \/ILL EQUAL OEXP<TEMP>•<l·00-PS>l•P•Y••llFACTORIALCI>
VH • e.eoe

80 \IH • \IH + I • 00
CNT • CNT•<VH-PS>*Yl\'H
XB • CNT I< OP+\.'H >
INFSUH • INFSUH + XB
If" CXB/EPS.GT.INfSUHl GO TO 80

C OLGAMA IS A FUNCTION WHICH CALCULATES THE DOUBLE
C PRECISIOl'I LOG GAMMA FUNCTION

90 FINSUM • 0.00
If COQ.LEolo00l GO TO 120
XB •PX+ OQ•OLOG<J.08-Yl + PQ - Pl - OLOGCDQl - C

C SCALING
IB • XB/ALEPS
If CIB.LT.8> IB • S
c. 1.oe1<1.D0-v>
CNT • OEXPCXB·fLOAT<IBl*ALEPSl
PS • DQ
\IH • OQ
Pl • <PS•C>l<DP+\IH-1·00>
XB • Pl•CNT
If <XB.LE.EPS2 .AND· PJ.LE.J.00> GO TO 129

I 90 l.IH • \IH - I • 00
If (\IH.LE·0·0DS> GO TO 120
If CPl.LE.J.DS .ANO. CNT/EPS 0 LE.f1NSUM> GO TO 120
CNT • CPS•C•CNT>l<DP+WH>
If <CNT.LE· loD8> GO .TO 119

c RESCA1'.E
IB • IB .•. I
CNT • CNT•EPS I

118- PS• IJH
If CIB.EQ,8> FINSUH • FINSUH + CNT
GO TO 100

128 PROB • FINSUM + INFSUH
138 If <INT, £Q, I> GO TO 140

PROB • 1.8 - PROB
TEMP • P
p • Q
Q • TEMP

140 RETURN
END

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976, Pages 207-208.

REMARK ON ALGORITHM 179

Incomplete Beta Ratio [814]
[O. G. Ludwig, Comm. ACM 6, 6(June 1963), 314]

Malcolm C. Pike and Jennie SooHoo [Recd 5 March 1975 and 11September1975]
School of Medicine, University of Southern California, 1840 North Soto Street,
Los Angeles, CA 90032

N. E. Bosten and T. J. Aird, International Mathematical and Statistical Libraries,
Inc., 7500 Bellaire Blvd., Houston, TX 77036.

This work was supported by the Virus Cancer Program, National Cancer Institute, Bethesda,
Md., under Grant PO ICA 17054-01 and Contract NOl-CP-53500.

Algorithm 179 (MDBETA) can be improved as shown.

1. Remove EPS2 from the double precision statement.

2. Remove the data statement and comment:

C ARBITRARILY SMALL NUMBER
DATA EPS2/l.D-50/

3. Remove the three statements preceding statement number 100:

Pl= (PS•C)/(DP+ WH-1.DO)
XB=PhCNT
IF(XB.LE.EPS2.AND.Pl.LE.1.DO) GO TO 120

4. After statement number 100, replace the following statements:

IF(Pl.LE.l.DO.AND. CNT /EPS.LE.FINSUM) GO TO 120
CNT = (PS•C•CNT) /(DP+ WH)

COLLECTED ALGORITHMS (cont.)

with the following:

PX=- (PS•C) /(DP+ WH)
IF(PX.GT.1.0DO) GO TO 105
IF(CNT /EPS.LE.FINSUM .OR. CNT.LE.EPSl/PX) GO TO 120

105 CNT=CNT•PX

The above changes eliminate the occurrence of underflow in the computation of
FINSUM and decrease the execution time of the algorithm with no apparent
change in accuracy.

5. Remove the statements and comment:

IF(Y.GT.EPS) GO TO 70
C SPECIAL CASE - X IS CLOSE TO 0. OR 1.

XB=PX+PQ-D4-Pl-C
IF(XB.LE.ALEPS) GO TO 50
PROB= DEXP(XB)
GO TO 130

6. Remove the statement number from:

70 XB=PX+DLGAMMA(PS+DP)-DLGAMMA(PS) - D4-Pl

179-~P 4- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 180
ERROR FUNCTION-LARGE X
HENRY c. THACHER, JE,.*
Argonne National Laboratory, Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission.

r•~al procedure erfL(x); value x; real x;
cor11ment This procedure evaluates the error function of real

argument, erf(x) ;;= (2/y;) lxe-u2
du by the Laplace continued

fraction for the complementary error function: erf(x) = I -
(1/(I+v/(1+2v/(1+3v/(1+···)))))/(y';x e"'

2
) where v = 1/

(2x2). Successive even convergents of the continued fraction are
evaluated, using an algorithm suggested by MaehJy, until the
full accuracy of the arithmetic being used is attained.

The continued fraction converges for all x > 0. For small x,
however, convergence may be excessively slow, and overflow
may occur. In this region, the Taylor series converges satis
factorily, and algorithms such as No. 123 are suitable.

For .c ;;;;; 0, the procedure calls the global procedure alarm.
The body of this procedure has been checked on the LGP-30

computer, using the Dartmouth Self Contained Algol Processor.
The program was used to tabulate erf(x) from 0.9(.1)5.0. The
maximum error was 2 X 10-6, which is explainable by roundoff
errors. The number of convergents calculated ranged from 36
for x = 0.9 to 2 for x ~ 3.3. Overflow occurred for x = 0.87;

begin integer m; real B min 2, B min 3, P, R, T, v, v2;
if x S 0 then alarm;
v: = x Xx;
T : = -0.56418958/x/exp(v);
comment The constant 0.56418958 · · · = 71"-112 , and should

be given to the full accuracy required of the procedure;
v : = 0.5/v;
P := v X T;
v2: = v X v;
T := T + 1;
m .:= O;
R : = B min 3 : = B min 2 : = 1;
for m : = m + 1 while T ~ R do

begin R := T;
B min 3: = v X (m-1) X B min 3 + B min 2
T := B min 2;
B min 2 : = v X m X B min 2 + B min 3;
7' := R - P/B min 2/T;
P: = m X (m+l) X v2 X P
end while;
erfL := T

end

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, ERF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

180-P 1- RI

ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION-
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. HILL AND S. A. JOYCE (Recd. 21 Nov. 1966)
Medical Research Council,
Statistical Research Unit, 115 Gower Street, London

W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found:

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < 10-10 was changed to Y - T = Y
both these amendments being as suggested in (1).

(iii) The labels 1. and 2 were changed to LI and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.
(v) The extra statement x := 0.707106781187 X x was made

the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in (2). There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate. .

ALGORITHM 180
(i) T := -0.56418958/x/exp(v) was changed to

T := -0.564189583548 X exp(-v)/x. This is faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.

COLLECTED ALGORITHMS (cont.)

(ii) The extra statement x := 0.707106781187 X x was made
as in (v) of Algorithm 123.

(iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).

(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14].
The results were accurate to 9 significant figures for x < 8,

but to only 8 significant figures for x = 10 and x == 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 i m/(480X.~qrt(2X3.14159265)) was changed to

10 i m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to

m := 2 X n; for i := 1 step 1 until m do.
(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) i 2 X 0.125.
(iv) if i = 2 X n -- 1 was changed to if i = m - 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to

b I (15.0397696478X n).

Tests were made with m = 7 and m = 11 with the following
results:

x

-----~-- ~--···------

-0.5
--1.0
--1.5
--2.0
--2.5
--3.0
-4.0
--6.0
--8.0

Number of significant
figures correct

m == 7 m = 11

7 11
7 10
7 10
7 9
6 9
6 7
5 7
2 1
0 0

Number of decimal
places correct

m = 7 m = 11

7 11
7 10
8 10
8 10
8 11
8 9

10 11
12 10
11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig
nificant figures is stretching the machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at x = 0.8.

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

180-P 2- 0

abs(x) X > 0 =: upptir x > 0 ~upper
-·

0.5 1 1
1.0 1 2

--
1.5 21"(5) 2
2.0 25"(0) 4
3.0 0 0

4.0 2 3
6.0 6 0
8.0 14 0

10.0 23 0
20.0 35 0

•Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the const:ant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

abs(x) x > 0 =upper x > 0 ~upper

1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely to be much the same on
other machines.

INSTRUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(x)
123 180 181 209

0.5 58 8
1.0 65° 8
1.5 164 128 127 9

2.0 194
2.5 252
3.0

4.0
6.0
8.0

10.0
20.0
30.0

78
54
42

27
15
9

10
9
9

90
68
51

39
30
28

25 I 22
9

8
10
9

9
6
7 ..

5
5
5

226 272
m : = 7

97 24
176 24
273 25

387 24
515 24
628 25

9()()d 25
14()()d 16
2l()()d 18

27()()d 16
65()()d 16

L0900d 16

304"

25
29
35

39

131
97

67
49
44

38
32
11

304b

24
29
35

39
44
50

44
23
11

11
11
11

COLLECTED ALGORITHMS (cont.)

" Readings ref er to x > 0 = upper.
b Readings refer to x > 0 ~ upper.
e Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.
"100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast ftnd
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 3;04 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

AcJcnowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. THACHER, HENRY C. Jn. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IBBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BARTON, STEPHEN P., ANu WAGNER, JOHN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

i). SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

180-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 181
COMPLEMENTARY ERROR FUNCTIOK

LARGE X
HENRY c. THACHEH, JR.*
Argonne National Laboratory, Argonne, Ill.

*Work supported by the U. S. Atomic Energy Commission.

real procedure erfcL(x); value x; real x;
comment This procedure evaluates the complementary error

function, erfc(x) = 1 - erf(x) = (2/ yl;) J: exp(-u2)du by
the J ... aplace continued fraction:

erfc(x) = (1/(I-t-v/(1+2v/(1+3v/(1+···)))))/(y;xei)
where v = 1/(2x2). Successive even convergents of the continued
fraction are evaluated, using an algorithm suggested by Maehly,
until the full accuracy of the arithmetic being used is attained.

The continued fraction converges for all x > 0. For small x,
however, convergence may be excessively slow, and overflow
and round-off accumulation may occur. In this region, the
Taylor series converges satisfactorily.

For x ~ 0, the procedure calls the global procedure alarm.
The body of this procedure has been checked on the LGP-30

Computer, using.the Dartmouth Self Contained Algol Processor,
for x = 1.2(0.1)5.0. Results were generally correct to 1 in the
6th significant digit, although a few errors were a8 large as 6
in that digit. The errors are believed to be due to round-off
only. The number of convergents calculated ranged from 46
for x = 1.2 to 10 for x = 5.0.

Overflow occurred for x = 1.183;
begin integer m; real B min 2, B min 3, P, R, T, v, v2;
if x ~ 0 then alarm;
v: = x Xx;
T : = 0.56418958/x/exp(v);
comment The constant 0.56418958 · · · = 'lr-112 , and should be

given to the full accuracy required of the procedure;
v : = 0.5/v;
v2 : = v X v;
P: = v X T;
rn: = R: = O;
B min 3 : = B min 2 : = 1 ;
for m : = m + 2 while R rf:. T do

begin R : = T;
B min 3 : = v X (rn-1) X B min 3 + B min 2;
T: = B min 2;
B min 2 : = v X m X B min 2 + B min 3;
T : = R - PI B m1:n 2/T;
P : = m X (m+l) X v2 X P
end while;
erfc L : = T

end

CERTIFICATION OF ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION-LARGE
X (Henry C. Thacher, Jr., Comm. ACM 6 (June 1963),

315]
I. CLAUSEN AND L. HANSSON (Recd. 20 Aug. 1964)
DAEC, Ris~, Denmark.

181-P 1- RI

The procedure erfcL was tested in GIER-ALGOL with 29 signifi
cant bits and the number-rangeabs(x) < 2 j 512 (approx. 1.310154).
The statement m := R := O; was corrected tom := O; R :=
O; [Because m and R are of different type; cf. Sec. 4.2.4 of the
ALGOL Report, Com?h. ACM 6 (Jan. 1963), 1-17.-Ed.] After this
the tests were successful. The procedure was checked a.o. for
x = 1.19 (-0.01) 0.72. The differences from table values increased
from io-8 at x = 1.1 to 710-8 at x = 0.75. Overflow occurred at
x = 0.71.

REMARKS ON:
ALGORITHM 123 [815]
REAL ERROR FUNCTION, IGRF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 1~0 [815]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION-
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [815]
GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. HILL AND S. A. JOYCE (Recd. 21 Nov. 1966)
Medical Research Council,
Statistical Research Unit, 115 Gower Street, London

W.C.l., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found:

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < io-10 was changed to Y - T = Y
both these amendments being as suggested in [1].

COLLECTED ALGORITHMS (cont.)

(iii) The labels 1 and 2 were changed to Ll and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710 ..
(v) The extra statement x := 0.707106781187 X x was made

the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
W4 without being any more accurate.

ALGORITHM 180
(i) T := -0.56418958/x/exp(v) was changed to

T := -0.564189583548 X exp(-v)/x. This is faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.

(ii) The extra statement x := 0.707106781187 X x was made
as in (v) of Algorithm 123.

(:iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).

(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14].
The results were accurate to 9 significant figures for x < 8,

but to only 8 significant figures for x = 10 and x = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

:\LGORITHM 226
(i) 10 j m/(480Xsqrt(2X3.14159265)) was chan~;ed to

10 j m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was chan1~ed to

m := 2 X n; for i := 1step1 until m do.
(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) j 2 X 0.125.
(iv) if i = 2 X n - 1 was changed to if i ,.,,; m - 1
(v) b/(6XnXsqrt(2X3.l4l59265)) was changed to

b I (15.0397696478X n).

Tests were made with m = 7 and m = 11 with the following
re1mlts:

Number of significant Number of decimal
figures correct places correct

x

m = 7 m = 11 m = 7 m= 11

-0.5 7 11 7 11
-1.0 7 10 7 10
-1.5 7 10 8 10
-2.0 7 9 8 10
-2.5 6 9 8 11
-3.0 6 7 8 9
-4.0 5 7 10 11
-6.0 2 1 12 10
-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig
nificant figures is stretching th(machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as accep~able.

181-P 2- 0

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at x = 0.8.

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

abs(x) x > 0 =upper x > 0 ~upper

0.5 1 1
1.0 1 2

·-·

1.5 21 6 (5) 2
2.0 256 (0) 4
3.0 0 0

-

4.0 2 3
6.0 6 0
8.0 14 0

~··-

10.0 23 0
20.0 35 0

a Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

abs(x) x > 0 =upper x > 0 ¢ upper

1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely· to be much the same on
other machines.

COLLECTED ALGORITHMS (cont.)

INSTRUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(x)

0.5
1.0
1.5

-----¥

2.0
2.5
3.0

4.0
6.0
8.0

10.0
20.0
30.0

123

58
65°

164
--

194
252

180

128
--

78
54
42

27
15
9

10
9
9

181

127

90
68
51

39
30
28

25
22
9

--·-

209 226
m = 7

8 97
8 176
9 273

8 387
10 515
9 628

9 900d
6 1400d
7 2100d

5 2700d
5 6500d
5 10900d

" Readings refer to x > 0 = upper.
b Readings refer to x > 0 ~ upper.

272

--
24
24
25

24
24
25

--
25
16
18

16
16
16

-

304a

25
29
35

39

131
97

67
49
44

38
32
11

24
29
35

39
44
50

44
23
11

11
11
11

~Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.
d 100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the fir.st
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Ackn<JWledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. THACHER, HENRY C. JR. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IBBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BARTON, STEPHEN P., AND WAGNER, JOHN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

181-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 182
NONRECURSIVE ADAPTIVE INTEGRATION
W. M. McKEEMAN AND LARRY TESLER
Stanford University, Stanford, Calif.

1~eal procedure Simpson(F) limits : (a, b) tolerance : (eps);
real procedure F; real a, b, eps; value a, b, eps;
begin comment A nonrecursive translation of Algorithm 145.

Note that the device used here can be used to simulate recursion
for a wide class of algorithms;
integer lvl;
switch return : = rl, r2, r3;
real array dx, epsp, x2, x3, F2, F3, F4, Fmp, Fbp,
est2, est3 [1:301, pval[1:30, 1:3];
integer array rtrn [1: 30];
real absarea, est, Fa, Fm, Fb, da, sx, estl, sum, Fl;
comment the parameter setup for the initial call;
lvl : = absarea : = est : = 0; da : = b - a;
Fa : = F(a); Fm : = 4.0 X F((a+b)/2.0); Fb : = F(b);
recur:

lvl : = lvl + 1; dx[lvl] : = da/3.0;
sx : = dx[lvl]/6.0; Fl : = 4.0 X F(a+dx[lvl]/2.0);
x2[lvl] : = a + dx[lvl]; F2[lvl] : = F(x2[lvl]);
x3[lvl] : = x2[lvl] + dx[lvl]; F3[lvl] : = F(x3[lvlJ);
epsp[lvl] : = eps; F4[lvl] : = 4.0 X F(x3[lvl]+dx[lvl]);
Fmp[lvl] : = Fm; estl : = (Fa+Fl+F2[lvl]) X s:i;;
Fbp[lvl] : = Fb; est2[lvl] : = (F2[lvl]+F3[lvl]+Fm) X sx;

est3[lvl] : = (F3[lvl]+F4[lvl]+Fb) X sx;
sum : = estl + est2[lvl] + est3[lvl];
absarea : = absarea - abs(est) + abs(estl) + abs(est2[lvl]) +

abs (est3[lvlJ);
if (abs(est-sum) :::;; epsp[lvl] X absarea) V (lvl~30) then
begin comment done on this level;

up : lvl : = lvl - l;
pval[lvl, rtrn[lvlJ] : = sum;
go to return [rtrn[lvl]J

end;
rtrn[lvl] : = l; da : = dx[lvl]; Fm : = Fl;
Fb : = F2[lvl]; eps : = epsp[lvl]/1.7; est : = esH;
go to recur; r I :
rtrn[lvl] : = 2; da : = dx[lvl]; Fa : = F2[lvli;
Fm : = Fmp[lvl]; Fb : = F3[lvl]; eps : = epsp[lvl]/1.7;
est : = est2[lvl]; a : = x2[lvl]; go to recur; r2:
rtrn[lvl] : = 3; da : = dx[lvl]; Fa : = F3[lvl];
Fm : = F4[lvl]; Fb : = Fbp[lvl]; eps : = epsp[lvl]/1.7;
est : = est3[lvl]; a : = x3[lvl]; go to recur; r3:
sum : = pval[lvl, I] + pval[lvl, 2] + pval[lvl, 3];
if lvl > 1 then go to up;

Simpson : = sum
end Simpson

182-P I- 0

CERTIFICATION OF ALGORITHM 182
NONRECURSIVE ADAPTIVE INTEGRATION [W.

M. McKeeman and Larry Tesler, Comm. ACM 6 (June
1963), 315]

HAROLD s. BUTLER (Recd 8 Nov. 1963; rev. 6 Dec. 1963)
Stanford Linear Accelerator Center, Stanford, Calif.

A BALGOL transliteration of Simpson has been prepared at
Stanford by its authors and it has been used in a number of prob
lems involving numerical integration. Its value was most strik
ingly displayed when it was utilized in a triple integral in which
the final integration was over a strongly peaked function that
spanned seven orders of magnitude. Simpson effectively minimized
the number of evaluations and completed ·the integration five
times faster than alternate schemes to subdivide the region of
interest. The values of the integral agreed with independent
calCulations well within the required tolerance.

The following changes should be made to the published
algorithm:

Line 13 should be changed to:
lvl : = O; absarea : = est : = 1.0; da : = b-a;

Line 17 should read:
sx : = dx[lvl]/6.0; Fl : = 4.0 X F(a + dx[lvlJ/2.0);

Line 20 should read:
epsp[lvl] : = eps; F4[lvl] : = 4.0 X F(x3[lvl] + dx[lvl]/2.0);

The condition of line 27 should be changed to:
if ((abs(est-sum) ~ epsp[lvl] x absarea) /\ (est ~ 1.0)) v

(lvl ~ 30) then

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 183
REDUCTION OF A SYMMETRIC BANDMATRIX

TO TRIPLE DIAGONAL FORM
H. R. SCHWARZ

Swiss Federal Institute of Technology, Zurich, Switzer
land

procedure bandred(a, n, m);
value n, m; integer n, m; array a;

comment bandred reduces a real and symmetric matrix of band
type (order n, a[i, k]=O for li-kl>m) by a sequence of orthog
onal similarity transforma:tions to triple diagonal form. The
procedure represents a generalization of the algorithm m21 by
H. Rutishauser. Due to symmetry only the upper part of the
band matrix must be given and these elements are denoted for
convenienceinthefollowingway:a[i,O] (i==l, 2, ···, n) repre
sents the diagonal element in the ith row, and a[i, k] (i=l, 2,
· · ·, n-k and k= 1, 2, · · ·, m) represents the generally nonzero
element in the ith row and the kth position to the right of the
diagonal. After completion of the reduction, the elements of the
symmetric triple diagonal matrix are given by a[i, O] (i=l, 2,
· · ·, n) and a[i, 1] (i=l, 2, · · ·, n-1);

begin integer r, k, i, j, p, rr; real b, g, c, s, c2, s2, cs, u, v;
for r := mstep -1 until2do ·
begin

for k : = 1 step 1 until n-r do
begin

for i: == k step r until n-r do
begin

comment This compound statement describes the rota
tion involving the ith and (i+l)st rows and columns
in order to reduce either a[i, rJ or the off-band element
g to zero, respectively. This rotation produces a new
off-band element g (in general different from zero) pro
vided i + r < n;

if j == k then
begin if a[j, r] == 0 then go to endk;

b : == -a[i, r-1)/a[i, rJ
end
else
begin if g == 0 then go to endk;

b : = -a[i-1, rJ/g
end;
s : = 1/sqrt(l + bXb); c : = b X s;
c2 : = c x Cj 82 : = 8 x 8j CB : == c x s;
i:=f+r-1;

cross elements:
u : == c2 X a[i, 0) - 2 X cs X a[i, 1] + s2 X a[i + 1, 0];
v : == s2 X a[i, O] + 2 X cs X a[i, 1) + c2 X a[i+l, O];
a[i, 1] : - cs X (a[i, OJ - a[i+l, O]) + (c2-s2) Xa[i, 1];
a[i, O] : = u; a[i+l, OJ : = v;

column rotation:
for p : == j step 1 until i - 1 do
begin

u : == c X a[p, i-p] - 8 X a[p, i-p+l];
a[p, i-p+ll : .;.. 8 X a[p, i-pJ + c X a[p, i-1.+lJ;
a[p, i-pJ : == u

end Pi
if j F- k then

a[i-1, r] : == c X a[j-1, r] - s X g;
row rotation:

rr : == if r :::; n - i then r else n - i;
for p : == 2 step 1 until rr do
begin

u : = c X a[i, p] - s X a[i+l, p-1];

183-P 1- 0

ari+l, p-1] : =: 8 X a[i, p] +I~ X a[i+l, p-1);
a[i, p] :== u

end p;
if i + r < n then

new· g: begin g : == -s X a[i+l, rj;
a[i+l, r] : = c X a[i+l, r]

end
end j;

endk: end k
end r

end bandred

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 184
ERLANG PROBABILITY FOR CURVE J~ITTING
A. COLKER

U. S. Steel Applied Research Laboratory
Monroeville, Penn.

procedure ERLANG (X, XO, M, V ARB, C, FACTORIAL, P);
value XO, M, VARS, C; integer C; real array X, P;
integer procedure FACTORIAL;
comment Computes the Erlang probability for the ith interval

by f~' f(x)dx - f~.:-i f(x)dx where f(x) = + [(Kµ)K/(K-I)IJ
· (x-x0)K-Ie-Kµ(x-xo> where µ = I/M, K = (M-Xo) 2VARS is
the upper boundary for the class intervals, Xo is the lower
boundary of the first class interval, Mis the mean of the Er
lang, VARS is the variance corrected by Sheppard's correction,
C is the number of class intervals and P, is the calculated
probability;

begin
integer I, J, K, F; real array XE[O : CJ;

for I := I step I until C do
XE[IJ : = X[IJ - XO;

XE[O] := O;
ME:= M- XO;
K := 0.5 + (MEj2)/VARS;
U := K/ME;
SP:= O;
for I := I step I until C do
begin

SUMI:= O;
SUM2 := O;
for J. := 0 step I until K - I do
begin

F :=FACTORIAL (J);
ZI := U X XE[l-IJ;

SUMI :=SUMI+ (ZijJ)/F;
Z2 := U X XE[IJ;

SUM2 := SUM2 + (Z2jJ)/F;
endJ;
P[I] :=SUMI X (EXP(-UXXE[l-IJ)) - SUM2

X (EXP(-UXXE[IJ));
SP := SP + P[IJ;

end I;
P[C+IJ := 1.0 - SP;

e.nd Erlang

184-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 185
NORMAL PROBABILITY FOR CURVE FITTING
A. COLKER

U.S. Steel Applied Research Laboratory
Monroeville, Penn.

procedure NORMAL (X, M, VARS, C, HASTINGS, P);
value M, VARS, C; integer C; real array X, P;
real procedure HASTINGS;
comment Computes the normal probabilities for the ith interval

by f~i f(x)dx - J~i-i f(x)dx where f(x) is Hastings' approxi
mation to the normal interval. Hastings' formula is

where ai = 0.0997~)268, a2 = 0.04432014, aa = 0.00969920,
a, = -0.00009862, and a5 = 0.00058155. The Xni are normalized
boundary values of x, where Xn• = (X,-M)/y'VARS, where
Mis the mean and VARS is the variance corrected by Sheppard's
correction, C is the number of class intervals and P, the calcu
lated probability;

begin
integer I; real array XN[l : CJ;
for I:= lstepluntiICdoXN[I] := (X[I]-M)/SQRT(VARS);
Pll] := 0.5 - HASTINGS (ABS(XN[l]));
for I := 2 step 1 until C do
begin

if
XN[I] < 0 then
P[I] :=HASTINGS (ABS(XN[l-11)) - HASTINGS

(ABS(XN[I])); else
begin

if (XN[I]>O) A (XN[I-1]<0)
then P[I] := HASTINGS (XN[I]) + HASTINGS

(ABS(XN[l--1])); else
P[I] :=HASTINGS (XN[I]) - HASTINGS (XN[l-1]);

end;
end I;
P[C+ll := 0.5 - HASTINGS (XN[C]);

end NORMAL

185-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 186
COMPLEX ARITHMETIC
R. P. VAN DE RIET

Mathematical Centre, Amsterdam, HQlland

procedure Complex arithmetic (a, b, R, r); value a, b; array
a, b,R, r;

comment This procedure assigns the value a3 + b2 to Rand the
value (a+ib)/(a-ib) to r, where a, b, R and r are complex
numbers. These two arithmetic expressions are of course fully
arbitrary. They serve only to demonstrate the use of the pro
cedures P, Q, S, T, J and U. With them one can build up any
arithmetic expression with complex variables, a13 easily as one
can form them with real variables in ALGOL 60 (As one sees
immediately these procedures can easily be extended for use in
quaternion arithmetic or general vector and tensor calculus).
We focus attention to the value call of the procedure-parameters,
which is essential. Furthermore, we notice that the depth or
height of the accumulator H is the number of right-handed
brackets placed one after another not counting the brackets

which occur in parameter-delimeters. It is perhaps superfluous to
mention that this procedure was tested on the XI computer of the
Mathematical Centre.;
begin integer i, k; array H[1:4,1:2];

integer procedure P(i, j); value i, j; integer i, j;
comment P forms the product of the ith and ;th element of H;
begin real a; k := k - 1; a := H[i, 1] X H[i, 1] - H[i, 2)

end;

X H[j, 2]; H[k, 2) :== H[i, 1] X H[j, 2] + l.l[i, 2) X
H[j, 1]; H[k, 1] : a; P := k

integer procedure Q(i, j); value i, i; integer i, j;
comment Q forms the qt1 'ltient of the ith and jth element of H;
begin real a, b; k :== k - 1; b := H[j, 1] j 2 + H[j, 21j2;

end;

a := (H[i, l]XH[j, 11+H[i, 2JXH[j, 21)/b;
H[k, 2] :=- (H[i, 2JXH[j, 1)-H[i, 11XH[j, 21)/b;
H[k, 11 := a; Q := k

integer procedure S(i, j); value i, j; integer i, j;
comment S forms the sum of the ith and jth element of H;
begin k := k - 1; H[k, I] := H[i, 11 + H[j, 1];

H[k, 21 := H[i, 2] + H[j, 2]; S :_= k
end;
integer procedure T(a); array a;
comment T assigns to the k+lth element of H the complex

variable a;
begin k := k + 1; H[k, l] := a[l]; H[k, 2] := a[2]; T := k

end;

integer procedure J(i, expi); integer i; real expi;
comment J assigns to the (k+l)th element of Ha complex

variable which is decomposed in real and imaginary part;
begin k :== k + l; i := l; H[k·, 11 := expi; i := 2;

H[k, 2] : = expi;
J :=k

end;
procedure. U (i, R); value i; integer i; array R;
comment U assigns to R .the ith element of H;
begin R[l] :== H[i, l]; R[2] := H[i, 2]; k := 0 end;
k := O; U(S(P(T(a))times:(T(a)))plus:(P(T(b))times:

(T(b))), R);

186-P 1- 0

comment (aXa) + (bXb) ==: R; U(Q(S(T(a)) plus:
(P(J(i, i-1)) times: (T(b)))) divided by: (S(T(a))
plus: (P(J(i, 1-i)) times: (T(b)))), r);

comment (a+(iXb))/(a+(-iXb)) =: r;
end Complex Arithmetic;

The contents of 'this Algorithm are published in the Technical
Note TN 27, Mathematical Centre, Nov. 1962.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 187
DIFFERENCES AND DERIVATIVES
R. P. VAN DE RIET

Mathematical Centre, Amsterdam, Holland
begin real h; integer i, k; ari;ay A[l : 50];
comment This program calculates, only to demonstrate the

procedures DELTA and DER, the third derivative of the expo
nential function with a sixth order difference scheme. We do
not propose to use these procedures in actual calculations, for
as we observed with the Xl computer of the Math. Centre, they
work, but very slowly as a consequence of the strong recursive
ness of the procedures. In actual programming one has to take
the trouble to write out the well-known formula of Gregory, or
for higher derivatives to multiply this formula a number of
times by itself, then one has to collect the same function-values.
All this trouble is taken over by the computer if one uses the
procedures described below. My purpose, however, in publishing
these procedures lies not in the numerical use but in a demon
stration of the flexibility of ALGOL 60, if one uses the recursive
ness property of procedures.;
real procedure SUM(i, h, k, ti); value k; integer i, k, h;

real ti;
begin reals; s:=O; fori:=hstepluntilkdos:=s+ti;

SUM:= s
end;
real procedure DELTA (N, k, kO, fk); value N, kO; real fk;
integer N, k, kO;
comment N is the order of the forward difference which is

calculated. from a set of function-values with equidistant
parameter-values;

begin integer i;

end;

DELTA : = if N = 1
then SUM (k, kO, kO+l, (-l)j(k+l-kO)Xfk)
else DELTA (1, i, kO, DELTA (N-1, k, i, fk))

real procedure DER (OR, N, h, k, kO, fk); value OR, N, h, kO;
real fk, h;

integer OR, N, k, kO;
comment OR is the order of the derivative, calculated from a

given set of function-values f (k), with equidistant parameter
values, the error is of the order h i (N + 1-0R), where his the
steplength.kO is the point where the derivative is calculated;

begin integer i;

end;

DER:= if OR= 1
then SUM(i, 1, N, DELTA (i, k, kO, fk)

x (-l)j(i+l)/i)/h
else DER(l, N+l-OR, h, i, kO, DER(OR-1, N-1, h,

k, i, fk))

for i := 1 step 1 until 50 do A[i] := exp(i/50);
for i := 1step1 until 25 do A[i] := DER(3, 6, .02, k, i, A[k])

end

The contents of this Algorithm are published in the Technical
Note TN 27, Mathema,tical Centre, Nov. 1962.

187-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 188
SMOOTHING l.
Ji'. RODRIGUEZ-GIL

Central University, Caracas, Venezuela

1,rocedure Smooth 13(n, x);
integer n;
:r·eal array x;
c::mnment This procedure uses Gram's first-degre«:i three-point

formulas, as described in Hildebrand's "Introduction to Nu
merical Analysis," Ch. 7, to smooth a series of n equally spaced
values. If the procedure is entered with less than ·~hree points,
control is transferred to a nonlocal label error;

begin real array xp[l : n]; integer i;
if n < 3 then go to error;
for i := 1step1 until n do xp[i] := x[i];
x[l] := 0.83333333 X xp[l] + 0.33333333 X xp[2] ·- 0.16666667

X xp[3];
for i := 2 step 1 until n - 1 do x[i] := (xp[i-l]+xp[i]

+ xp[i+l]) X 0,33333333;
x[n] := - 0.16666667 X xp[n-2] + 0.33333333 X xp[n-1)

+ 0.83333333 X xp[n]
e:nd Smooth 13

188--P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 189
SMOOTHING 2
F. RODRIGUEZ Gu,
Central University, Caracas, Venezuela

procedure Smooth 35(n, x);
integer n;
real array x;
comment This procedure is similar to Smooth 13, except that

Gram's third-degree five-point formulas are used, and that a
minimum of five points is needed for a successful application;

begin real array xp[l : n]; integer i;
if n < 5 then go to error;
for i := 1 step 1 until n do xp[i] := x[i];
x[l] := 0.98571429 X xp[l] + 0.05714286 X (xp[2]+xp[4])

- 0.08571429 X :i:p[3] - 0.01428571 X xp[5];
x[2] := 0.05714286 X (xp[1J+xp[5]) + 0.77142857 X xp[2]

+ 0.34285714 X :i;p[3] - 0.22857143 X xp[4]; ·
for i := 3step1 until n - 2 do x[i] := - 0.08571429 X (xp[i-2]

+xp[i+2]) + 0.34285714 X (xp[i-lJ+xp[i+l]) + 0.48571429
X xp[i];

x[n-1] := 0.05714286 X (xp[n-4]+xp[n]) - 0.22857143
X xp[n-3] + 0.311285714 X xp[n-2] + 0.77142857 X xp[n-1];

x[n] : = - 0.01428571 X xp[n-4] + 0.05714286 X (xp[n-3)
+xp[n-1)) - 0.08571429 X xp[n-2] + 0.98571429 X xp[n]

end Smooth 35

189-P 1- 0

COLLECTED ALGORITHMS FROM· CACM

ALGORITHM 190
COMPLEX POWER
A. P. RELPH

The English Electric Co. Ltd., Whetstone, England
procedure Complex power (a, b, c, d, n, x, y); value a, b, c, d, n;

real a, b, c, d, x, y; integer n;
comment This procedure calculates (x+iy) = (a-t-ib) j (c+id)

where i is the toot of -1. In the complex plane, with a cut along
the real axis from 0 to - oo, pis the sum of the principal value
of the argument of (a+ib) and 2n11" (n is positive, negative or
zero depending on the solution required). arctan is assumed to
be in the range -7r/2 to 7r/Z. The case n = 0, d = 0 is given by
Algorithm 106;

begin real p, r, v, w;
if a= 0 then begin if b = 0 then begin x := y := O;

go to Lend

end

else p : = 1.57079633 X
(sign(b)+4><n)

else begin p := 6.28318532 X n + arctan(b/a);
if a < 0 then begin if b ~ 0 then

end;

p := p + 3.14159265
else

p := p - 3.14159265
end

r := .5 X ln(aj2+bj2); v := c X p + d X r;
w := exp(cXr-dXp);
x : = w X cos (v) ; y : = w X sin (v) ;

L: end

190-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 191
HYPERGEOMETRIC
A. P. RELPH

The English Electric Co. Ltd., Whetstone, England

procedure Hypergeometric (al, a2, bl, b2, cl, c2, zl, z2) Results:
(sl, s2); value al, a.2, bl, b2. cl. c2, zl, z2; real al, a2, bl, b2,
cl, c2, zl, z2, sl, s2;

begin comment calculates the hypergeometric function
1F2(a, b, c, z) with complex parameters (a=al+ia2,
etc);

real d, yl, y2; integer n;
procedure comp mull (al, a2, bl, b2, cl, c2); value al,

a2, bl, b2; real al, a2, bl, b2, cl, c2;
begin comment calculates the product of the two

complex numbers (a1+ia2) and (bl+ib2)
where i is the root of -1;

end;

cl := al X bl - a2 X b2; c2 := a2 X bl +
al X b2

s 1 : = y 1 : = 1 ; s2 : = y2 : = 0;
for n : = 1 step 1 until 100 do
begin d := n X ((cl+n-l)j2+c2j2);

end;
L: end

comp mult (al+n-1, a2, yl/d, y2/d, yl, y2);
comp mull (yl, y2, bl+n-1, b2, yl, y2);
comp mult (yl, y2, cl+n-1, -c2, ul, y2);
comp mull (yl, y2, zl, z2, yl, y2);
if sl '= sl + yl As2 = s2 + y2 then go to L;
s 1 : = s l + y 1 ; s2 : = s2 + y2

CERTIFICATIOX OF ALGORITHMS 191 AND 192
HYPERGEOl\IETRIC AND CONFLUENT HYPER

GEOMETRIC [A. P. Relph, Comm. ACM 6 (.July
19()3), 388]

HENRY C. THACHER, JR.* (Recd 2 Dec. 1963)
Argonne K ational Laboratory, Argonne, Ill

•Work supported by the U.S. Atomic Energy Commission.

The bodies of these two procedures were transcribed for the
Dartmouth f-!cALP processor for the LGP-30 computer. Xo syn
tactical errors were found, and the programs gave results agreeing
within roundoff (7D) with tabulated values for the following spe
cial cases: 2F1 (0.5, 0.5; 1; k2) = (2/rr) K(k); 2F 1 (0.5, -0.5; I; k2) =
(2/rr)E(k) where Kand E are complete elliptic integrals of the first
and second kinds; 1F1(.5; l; iy) = J 0 (x), and with 1F 1(-l; 0.1; x);

JFi(-0.5;0.l;x), and 1F1(-0.5;0.5;x).
It should be observed that the function calculated by 191 is

2F1(a, b; c; z), not 1F2(a, b; c; z) as stated in the comment. These
programs evaluate the functions by direct summation of the hy
pergeometric series. They are, therefore, relatively general, but
inefficient. Precautions must also be taken against attempting to
compute outside the range of effective convergence of the seriei::.

191-P 1- Rt

Certification and Remark on Algprithm 191 (822]
Hypergeometric [A.P. Relph, Comm. ACM 6 (July
1963), 388]

Henk Koppelaar (Recd. 14 Sept. ll 973) Physical Labora
tory, Division: Atom Physics, Utrecht State University,
Utrecht, The Netherlands

The following changes were made irn the algorithm:
(a) The subroutine for complex multiplication was erased.
(b) In accordance with (a) and with the standard notation 2F1, the
heading and end of the procedure were changed to read
real procedure hyp2geom1 (a, b, c, z);
end hyp2geoml.
(c) Erasing the subroutine for complex multiplication caused us to
modify the algorithm further as follows.

real procedure hyp2geom1 (a, b, c, z);
value a, b c, z; real a, b, c,z;

begin
real s,y; integer i;
s:=y:=l;
for i : = 0 step 1 until 100 do
begin

y := y X ((a+i)/(c+i)) X (h+i) X z/(i+l);
ifs = s + y then go to exit; s : = s + y

end;.
exit:

hyp2geoml : = s
end hyp2geoml

The inefficiency of the original algorithm for real arguments, as
mentioned by Henry C. Thacher Jr. in his certification of it, is
largely reduced by these modifications, because they make a con
siderable reduction in the computational costs.

With these modifications. the algorithm was translated for the
CDC-6500 using the Control Data Algol 3 compiler and ran only
partially satisfactorily, as reported below.

The following two tests (a) and (b) were performed, using iden
tities 1 and 2 and Algorithm 160 [l] for the combinatorial(';:).
The identities are:

1. (1/B(ab)) (za/a)2F1(a, 1-b;a+l;z) = lz(a,b),

2. a X B(a, b) = (°+~- 1)- 1 , where

B(a, b) = J~ 1a-1(1-t)lr-ldt

is the complete beta function and

lz(a,b) = (1/B(a,b))f:·ra- 1(1 - t)1.-1dt

is the incomplete beta function, a 2:: l, b 2:: 1, and a, b integer.
Test (a). Computing(°+!-') X lryp2geoml (a, 1-b, a+l,

z) X z i a, gave correct results to 7 D., according [2], for the
following values of a, b and z.

b 7, a = 7(1)9 and z 0.61(0.01)0.97;
b 17, a 17 andz 0.13
b 17, a 17, 18 and z 0.14
b 17, a 17(1)19 andz 0.15
b 17, a 17(1)34 andz 0..50

The total computation time for this test using combinatorial and
hyp2geoml was less than 10 sec on the Control Data 6500 computer.

COLLECTED ALGORITHMS (cont.)

Test (b). The same test as test (a) was performed for the fol
lowing values of a, b, and z.

b = 17, a = 17(1)34 and z = 0.51(0.01)0.60.

The algorithm gave correct results to 5D, according [2].
For the values

b = 11, a = 17(1)34 and z = 0.61(0.01)0.8'9, the results be

came worse with increasing z. This error is due: to slower conver
gence of the series

2F1 (a, b; c; z) = f (a)n(b),J(c)n zn/n!
n-o

with increasing z a11d increasing b.
Pochhamnter's symbol means

(a),. = r(a+n)/I'(a).

More precisely we see

(1/B(a, b))(za/a) 2F1 (a, 1-b; a+1; z)

f e+:- 1
) ((a),. (1-b),./(a+l),.) zn+a/11!

n-o

From this expression it is clear that the rate of convergence of the
expansion by and large is dominated by the values of band z. This
explains why in test (a) for b = 7 the results remained accurate to
7D for increasing z, and also it explains why in test (b) for b = 17
the results became worse for increasing z.

References
1. Wolfson, M.L., and Wright, H.V. Combinatorial of Mthings
taken Nat a time. Comm. ACM 6, 4 (Apr. 1963), 161.
2. Pearson, K. (Ed.). Tables of the Incomplete Beta Function.
Cambridge U. Press, Cambridge, England, 1948.

191-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 192
CONFLUENT HYPERGEOMETRIC
A. P. RELPH
The English Electric Co. Inc., Whetstone, England
procedure Confluent hypergeometric (al, a2, cl, c2, zl, z2)

Result : (sl, s2); value al, a2, cl, c2, zl, z2;
realal,a2, cl, c2, zl, z2, sl, s2;

begin comment calculates the confluent hypergeometric func
tion lFl(a, c, z) with complex parameters
(a=a1+ia2, etc);

real d, yl, y2; integer n;
procedure comp mult (al, a2, bl, b2, cl, c2);

value al, a2, bl, b2; real al, a2, bl, b2, cl, c2;
begin comment calculates the product of the two

complex numbers (a1+ia2) and (bl+ib2)
where i is the root of -1;

cl : = al X bl - a2 X b2;
c2 : = a2 X bl + al X b2

end;
s l : = y 1 : = 1 ; s2 : = y2 : = 0;
for n := step 1 until 100 do
begin d := n X ((cl+n-l)j2+c2j2);

end;
L: end

comp mult (al+n-1, a2, yl/d, y2/d, yl, y2);
comp mult (yl, y2, cl+n-1, -c2, yl, y2);
comp mult (yl, y2, zl, z2, yl, y2);

if sl = sl + yl /\ s2 = s2 + y2 then go to L;
sl := sl + yl; s2 := s2 + y2

CERTIFICATIOX OF ALGORITHMS 191 AND 192
HYPERGEO:i.\IETRIC AND CONFLUENT HYPER

GEOMETRIC [A. P. Relph, Comm. ACM 6 (.July
1963), 388]

HENRY C. THACHER, JR.* (Recd 2 Dec. 1963)
Argonne National Laboratory, Argonne, Ill.

•Work supported by the U.S. Atomic Energy Commission.

The bodies of these two procedures were transcribed for the
Dartmouth SCALP processor for the LGP-30 computer. ::\'o syn
tactical errors were found, and the programs gave results agreeing
within roundoff (iD) with tabulated values for the following spe
cial cases: 2F1(0.5, 0.5; 1; k2) = (2/7r)K(k); 2F1(0.5,-0.5;l;k2) =
(2/7r)E{k) where Kand E are complete elliptic integrals of the first
and second kinds; iF1(.5; l; iy) = J 0 (x), and with 1F1(-l; 0.1; x);
1F1(-0.5; 0.1; x), and i1'\(-0.5; 0.5; x).

It should be observed that the function calculated by 191 is
2F1(a, b; c; z), not 1F2(a, b; c; z) as stated in the comment. These
programs evaluate the functions by direct summation of the hy
pergeometric series. They are, therefore, relatively general, but
inefficient. Precautions must also be taken against attempting to
compute outside the range of effective convergence of the series.

192-P 1...,. 0

COLLECTED ALGORITHl\'l~S~F~R~O~M--~C_A_C_M ____________________ ~

ALGORITHM 193
REVERSION OF SERIES
HENRY E. FETTIS

Aeronautical Research Laboratories, Wright-.Patterson Air
Force Base, Ohio

procedure SERIESRVRT (A, B, N);
value A, N; array A, B; integer N;
comment This procedure gives the coefficients B[i] for the series

x = y + ~B[i] X y i i (i=2, 3, · · · , n) when the coefficients
A [i] of the series y = x + ~A [i] X x j i are given. The procedure
uses successive approximations after writing YL+1 = x - ~B[i] X
YL ii (i=2, 3, · · · , L+2 and L=O, 1, · · · , N-2) starting with
Yo= x;

begin integer i, j, k, m;
array .Q, R [0 : NJ;
real s;
A.[1] := B[O] := O;
B[l] := l;
for k : = 1 step 1 until N - 1 do
begin B[k+lJ := O;

for i := 0 step 1 until k + 1 do
R[i] := O;
for j : = k + 1 step - 1 until 1 do
begin Q[O] := R[O] - A[J];

for i : = 1 step 1 until k + 1 do
Q[i] : = R[i];
for i := 0 step 1 until k + 1 do
begins := O;

form := 0 step 1 until i do
s := s + B[m] x Q[i-m];
R[i] := s

end for i;
end for j;
for i := 2 step 1 until k + 1 do B[i] := R[i]

end fork;
end SERIESRVRT

CERTIFICATION OF ALGORITHM 193
REVERSION OF SERIES [Henry E. Fettis, Comm.

ACM 5, 1962]
HENRY c. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.
*Work supported by the U.S. Atomic Energy Commission

The body of Algorithm 193 was tested on the LGP-30 using the
ALGOL 60 translator developed by the Dartmouth. College Com
puter Center. No syntactical errors were found. The program suc
cessfully found the first four coefficients for the series for ln(l+y)
from the first four coefficients of the series for y =• es - 1.

I 193-P 1- 0

COLLECTED ALGORITHMS FROM CACM

.ALGORITHM 194
ZERSOL
CARLOS DOMINGO

U niversidad Central, Caracas, Venezuela

procedure ZERSOL (h, YI, m, epsi, F, f, Z); real h, epsi, f;
array YI, Z; integer m; procedure F;

comment ZERSOL finds the simple zeros of the solution YI (YO)
of the set of m first order differential equations Yi = ·Fi(YO,
YI, · · · , Ym). h is the step of integration, epsi the error with
which the zeros are to be determined (assuming no error in the
process of integration). F(YS, i, v) is a procedure which calcu
lates the functions Fi, taking the arguments from the array
Y S and leaving the results in v. The search for zeros stops
when YO > f. The zeros are stored as elements of the array Z.
MR is a 4 X 4 matrix with the coefficients of a Runge-Kutta
method. For example MR may be row-wise 0.5, 1, 0.5, 0, 1 - a,
1 - a, 1 - a, 0.5, 1 + a, 1 +a, 1 +a, 0, l, i, 0.5, 0.5, where
a = sqrt(2);

begin real v, r, d; integer j, s, n, k; array Q[l:m], YS[O:m],
Y AL (O:m], YT[l:m], MR[1:4,1:4]; switch S := NOZ, ZER;
n := 1;

ford:= h while YI[O] ~/do
begin 8 := 1;

Rl: for j := 1 ste1, 1 until m do
begin Q[i] := 0.0; YS(j] := YI[;]; YT[i] := YI(j] end;

YS[O] := YI[O];
R2: fork := 1step1 until 4 do

begin YS[O] :'== YS[O] + MR[k, 4] X d;
for j := 1 step 1 until m do
beg~n F(YS,j,v); v := v X d;

r := MR[k,1] X v - MR[k,2]X Q(j];
YT[i] := YT(j] + r;
Q(j] ·:= Q(j] + 3.0 X r - MR[k,3] X v

end;
for i := 1step1 until m do YS(j) := YT[i]
end;

go to S(s);
NOZ: if sign(YI[l]) ;;E!: sign(YS[l]) then go to IT;

TR: for j := 0step1 until m do YI(j] := YS(j]; go toR2;
IT: s := 2;

for i := 0 step 1 until m do Y AL(j] :- YS(j);
ZER: d := d/2;

if d ~ epsi then go to STZ;
if sign(YI[l]) = sign(YS[l]) then go to TR else go toRl;

STZ: Z[n] := YI[O] := YI[O] + d; n := n + 1;

end;
end

for j := C step· 1 until m do YI(j] := Y AL(j]

194-P 1- 0

/

/

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 195
BANDSOLVE
DONALD H. THURNAU

Marathon Oil Co., Littleton, Colo.

procedure BANDSOLVE (C,N,M,V); value N,M; integer
N,M; real array C,V;

comment BANDSOLVE is effective in solving the matrix equa
tion AX = B when the matrix A is of large order and sparse
~uch that a narrow band centered on the main diai~onal includes
all the non-zero elements. Parameter N is the order of A, and M
is the width of the band, necessarily an odd number of elements.
BANDSOLVE is very efficient because it operates only on the
band portion of the matrix A, given in the N by M array C. The
band elements of a given row of A appear in the Elame row of C
but shifted such that elementA[i,j] becomes C[i,j-·i+ (M+l)/2].
All band elements whether zero or non-zero must be given. The
values of undefined elements of C, such as C[l,1] or C[N,M], are
irrelevant. The array V initially contains the vector B. After
solution, the array V contains the answer vector X. The con
tents of array Care destroyed during solution which is done by
Gauss elimination with row interchanges, followed by back sub
stitution;

begin integer JM,LR,I,PIV,R,J; real T;
LR := (M+l) + 2; .
for R := 1step1 until LR - 1 do

for I:= 1step1 until LR - R do
begin for J : = 2 step 1 until M do

C[R,J-1] := C[R,J];
C[R,M] :== C[N+l-R,M+l-l] := 0

end of row shifting and zero placement;
for I : = 1 step 1 until N - 1 do

begin PIV := I;
for R := I+ 1step1 until LR do

if abs(C[R,l])>abs(C[PIV,1]) then
PIV := R;

if PIV ~I then
begin T := V[J];

V[J] := V[PIV];
V(PIV] := T;
for J := 1step1 until M do

begin T : = C[I ,J];
C(I,J] := C[PIV,J];
C[PIV,J] := T

endJ
end of row interchange;

V[J] := V[l]/C[J,1];
for J := 2 step 1 until M do

C[l,J] := C[l,J]/C[l,1];
for R := I+ 1step1 until LR do

begin T :- C[R,1]
V[R] := V(R] - T X V[I];
for J : == 2 step 1 until M do

C(R,J-1] :- C[R,J] - TX C[I,J];
C(R,M] := 0

endR;
if LR ~ N then LR := LR + 1

end of triangularization;

V(N] :== V[N]/C[N,1];
JM:= 2;

for R :== N - 1 step -1until1 do
begin for J :== 2 step 1 until JM do

V[R] := V[R] - C(R, J] X V[R-HJ];
if JM ~ M then JM := JM + 1
end of back solution

end BANDSOLVE

Remark on Algorithm 195 [F4]

195-P 1- RI

BANDSOLVE [Donald H. Thurnau, Comm. ACM 6
(Aug. 1963), 441]

Ernst Schuegraf [Recd. 1 Mar. 1971]
Department of Mathematics, St. Francis Xavier
University, Antigonish, Nova Scotia, Canada

Algorithm 195 was transliterated into Fortran IV for the IBM
360/50. Various matrices with different values of N and M were
used. The execution time was recorded and the accuracy of the
results was checked.

Execution time [sec]

M = 11 M = 15 M = 21 M = 25
N = 50 .2 .7 1.1 1.9
N = 100 .6 1.6 2.5 4.2

The execution time shows the expected proportionality to
((M - 1) + 2)2 • N. (Note the definition of M!) When checking
the results, it was found that the algorithm failed for singular and
near singular matrices. To protect against this, it is recommended
to introduce a tolerance eps for a test on singularity and a label
fail. This requires the following changes in the procedure declara
tion:

procedure BANDSOLVE (C,N,M,V,eps,fai/);

It is necessary to insert the following statements in the blockhead
of the procedure:

real e ps; label fail;

After the statement piv : = r; insert:
if abs (C[piv, 1]) < eps go to fail;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 196
MULLER'S METHOD FOR FINDING ROOTS OF
AN ARBITRARY FUNCTION
ROBERT D. RODMAN

Burroughs Corp., Pasadena, Calif.

procedure MULLER (pl, p2, p3, mxm, nrts, epl, ep2, swl, sw2,
sw3, swr, rrt, irt);

value pl, p2, p3, mxm, nrts, epl, ep2, swl, sw2, sw3, swr;
integer mxm, nrts; boolean swl, sw2, sw3, swr;
real pl, p2, p3, epl, ep2; array rrt, irt;
begin comment procedure MULLER finds real and complex

roots of an arbitrary function. pl, p2, and p3 are starting values.
Roots nearest these points are found first. mxm is the maximum
number of iterations to be made in finding any one root. epl and
ep2 are specified as tolerance parameters. If ABS((Xi+1-X1)/
X.:+1) < epl or if the function value and modified function value
are both less than e212, a root has been found. If swl is true,
then each iterant of each root is printed. If sw2 is true, the
value of each root fm_md is printed. If sw3 is true, then, when
applicable, the complex conjugate of each root found is admitted
as a root. If swr is true, only real roots are found. rrt and irt
contain the real, and imaginary parts of each root found. Proce
dure function is the function generator and procedure com
plex performs necessary complex operations;

boolean bool; integer cl, rte, i, itc; real rxl, rx2, rx3, ixl,
ix2, ix3, rroot, iroot, rdnr, idnr, tl, itl, frroot, firoot, rfxl, rfx2,
rfx3, ijxl, ifx2, ifx3, rh, ih, rlam, ilam, rdel, idel, t2, it2, t3, it3, t4,
it4, rg, ig, rden, iden, rfunc, ifunc;

switch j := 'm2, m3, m4, m7, mil;
procedure function (reale, imag, reval, ieval);
value reale, imag; real reale, imag, reval,,ieval;
begin comment Coding for this procedure must be inserted at

compile time. reale and imag are the real and imaginary parts
of the dependent variable. reval and ieval, the real and imaginary
parts of the function;

end function;
procedure complex (a, ia, b, ib, k, c, ic);
value a, ia, b, ib, k; integer k;
real a, ia, b, ib, c, ic;
begin real temp; switch j : = mpy: dvd, sqt:

go to j[k];
mpy: c : = a X b - ia X ib; ic : = a X ib + ia X b; go to exit;
dvd: if (ib=O) /\ (b=O) then begin ic := O; c :== l;

go to exit end; temp :== b j 2 + ib i 2;
c := (aXb+iaXib)/temp; ic := (iaXb-aXib)/temp;
go to exit;

sqt: if (ia=O) /\ (a<O) then
begin c := O; ic := sqrt (-a) end
else if ia = 0 then
begin c := sqrt(a); ic := 0 end
else begin temp : = sqrt (a j 2+ia j 2) ;

c := sqrt ((temp+ a)/2);
ic := if (temp - a) < 0 then 0

else sqrt ((temp - a)/2) end;
if ((b+c) j 2 + (ib+ic) j 2) < ((b-c) j 2 + (ib-ic) i 2)
then begin c := b - c; ic := ib - ic end
else begin c := b + c; ic := ib + ic end;

exit : end of complex;
start: for i := l step 1 until nrts do rrt [i] := irt [i] :- O; rte := O;

mO: ixl := ix2 := ix3 :=cl, :== iroot :== itc := O;
rroot : = pl; bool : = false;

ml: cl; :==cl+ l; rdnr := l; idnr := O;
for i : = 1 step 1 until rte do

begin

196-P 1- 0

complex (rdnr, idnr, rroot-rrt [i], iroot-irt [i], 1, ti, itl);
rdnr := tl; idnr := itl

end;
function (rroot, iroot, ti, itl);
complex (ti, itl, rdnr, idnr, 2, frroot, firoot);
go to j[cl);

m2: rfxl : = frroot; ijxl : = fl root; rroot : = p2;
go to ml;

m3: rfx2 : = frroot; ifx2 : = firoot; rroot : = p3:
go to ml;

m4: rfx3 := frroot; ijx3 := firoot; r;d := pl;
rx2 := p2; rx3 := p3; rh := rx:3 - rx2;
ih :== ix3 - ix2;
complex (rh, ih, rx2- rxl, ix2- ixll, 2, rlam, ilam);
rdel := rlam + l; idel := ilam;

m9: if (rjx1=rfx2) /\ (rfx2=rfx3) /\ (ffxl=ijx2) /\ (ijx2=ifx3)
then begin rlam := l; ilam :=iO; go to m8 end;
complex (rjxl, ijxl, rlam, ilam, lj a, itl);
complex (rfx2, ifx2, rdel, idel, 1, t2,. it2);
t1 := tl - t2 + rjx3; itl := itl - it2 + ifx3;
complex (rdel, idel, rlam, ilam, 1, it2, it2);
complex (tl, itl t2, it2, 1, t3, it3);
complex (rfx3, ifx3, t3, it3, 1, tl,;itl);
tl := -4 x tl; itl := -4 x itl;
complex (rfx3, ijx3, rlam+rdel, ilcim+idel, 1, t2, it2);
complex (rdel j 2-idel j 2, 2Xrdel>Cidel, rfx2, ifx2, 1, t3, it3);
complex (rlam j 2-ilam i 2, 2XrlamXilam, rfx1 1 ifxl, 1,

t4, it4);
rg := t4 - t3 + t2; ig := it4 - it3 + it2;
if swr /\ ((rg i 2+tl) <0) then

begin rden := rg; iden := ig :=' 0 end
else complex (rg j 2-ig i 2+t1, 2XrgXig+it1, rg, ig, 3,

rden, iden);
complex (-2Xrfx3, -2Xifx3, rdd, idel, 1, tl, itl);
complex (tl, itl, rden, iden, 2, rla,m, ilam);

mS: itc : = itc + 1 ;
rxl := rx2; rx2 := rx3; rfxl := rfx2; rfx2 := rjx3;
ixl := ix2; ix2 := ix3; ifxl := ifx2; ifx2 := ifx3;
complex (rlam, ilam, rh, ih, 1, tl, itl);
rh : = tl; ih : = itl;

m6: rdel := rlam + 1; idel := ilam; rx3 := rx2 + rh;
ix3 := ix2 + ih; cl := 3; rroot := rx3;
iroot := ix3; go to ml;

m7: rfx3 : = frroot; ijX3 : = firoot;
function (rx3, ix3, rfunc, ifunc);
complex (rfx3, ifx3, rfx2, ifx2, 2, tl, itl);
if (tl i 2+itl i 2) > 100 then

begin rlam := rlam/2; rh :== rh/2; ilam := ilam/2;
ih := ih/2; go to m6 end;

if swl then ...
comment option to output iterant and associated function

values;
tl := rx3 - rx2; itl := ix3 - ix2;
complex (tl, itl, rx2, ix2, 2, t2, it2);

4COLLECTED ALGORITHMS (cont.)

if sqrt (t2 i 2+it2 i 2) ~ epl then go tofinl;
if (sqrt (rfx3 i 2+ifx3 i 2) ~ ep2) /\
(sqrt (rjunc i 2+ifuncj 2) ~ ep2) then go to fin ~:;
go to if itc ~ mxm then fin3 else m9;

J~nl : if sw2 then ...
•comment option to output root; go to ml2;
Jin2 : if sw2 then . . .
comment option to output root; go to ml2;
jin3 : if sw2 then . . .
comment no convergence, option to output last iterant;

bool : = true;
ml2: rt~ :=rte+ l; rrt[rtc] := rx3; irt[rtc] := ixa;

if rte ~ nrts then go to exit;
if (ABS(ix3) >epl) /\ sw3 /\ -., bool then

begin ix3 := -ix3; function (rx3, ix3, rfunc, ifunc);
rroot := rx3; iroot := ix3; cl := 4;
go to ml;

mll : if sw2 then ...
comment the complex conjugate of the last root found is accept

able. Option to output this root;
rte := rte+ l; rrt[rtc] := rx3; irt[rtc] := ix3

end else go to mO;
if rte < nrts then go to mO;

exit: end of procedure MULLER

CERTIFICATION OF ALGORITHM 196 [C5]
MULLER'S METHOD FOR FlNDING ROOTS OF
AN ARBITRARY FUNCTION [Robert D. Rodman,

Comm. ACM 6 (Aug. 1963), 442]
VIRGINIA W. WHITLEY (Recd. 11 Oct. 1966, 24 Feb. 1967

and 8 Sept. 1967)
]~nvironmental Research Corp., Alexandria, Va.

KEY WORDS AND PHRASES: equation roots, function zeros
CR CATEGORY: 5.15

The Algorithm. Algorithm 196 has been compiled in FoR
~l'RAN IV on the CDC-3600 and the IBM-7090 both in. single and in
double precision. The single precision versions used the system-
1mpplied complex arithmetic subroutines; the double precision
versions used subroutines agreeing as closely as possible with those
described in the IBJOB Manual [4]. Thus, the algorithm tested
differs from the published algorithm only in the complex square
:root subroutine.

There are five remarks to be made about Algorithm 196.

(1) As the Algorithm stands, if one of the values Pl, P2, or P3
is a root of the equation and if more than one root fa to be found,
then the procedure will fail with a 0/0 form in the computation of

rte

Fr(z) =) f(z)/ II<z-zi).
•-1

Our decision was to terminate the procedure with a message to the
user. The referee has suggested an alternative:

ml: rdnr := l; idnr := O;
for i := 1 step 1 until rte do

begin
if rroot = rrt [i] /\ iroot < irt [i] then
begin

if cl = 0 then Pl := rroot := 2 X rroot + 1::pl else
if cl = 1 then P2 := rroot := 2 X rroot + epl else
if cl = 2 then P3 := rroot := 2 X rroot + epl else
begin comment we have converged to a z1ero found pre

viously, we accept it without any test;

go tofinl;
end;

go to ml
end;

196-P 2- RI

complex (rdnr, idnr, rroot - rrt [i], iroot - irt [i], 1, tl,
ill); rdnr .- t1; idnr := itl

end;
cl := cl+ l;
function (rroot, iroot, tl, itl);

(2) The logical variable bool should be called by name in the
procedure statement and should be an array of the same dimension
as rrt and irt. Otherwise, unless sw2 is true, the user will not know
which of the "roots" satisfies the convergence criteria and which
was returned by default.

(3) The statement fin2 is unnecessary, since it is identical to
finl.

(4) Frank [l] states, "This procedure (Muller's method) works
readily for functions having simple roots. On the other hand, if
a function possesses multiple roots,~' then Fr(z) is indeterminate
when z approaches a~ which may already have been found. How
ever, even in this case the process has never failed. In fact, roots
of multiplicity six or more have been found successfully. This is
primarily due to the fact that multiple roots are found to much
less accuracy than simple roots and behave, in effect, like clustered
roots." In a private communication, Frank explained that the sub
routine described in [1] included steps which perturbed roots
already found, forcing them to behave like clustered roots. Frank's
remark is not true for Algorithm 196, as a simple test with (z-2)2,

requesting two roots, will demonstrate.

(5) The complex square root in procedure complex contains at
least two errors, not the least of which is that it fails to take ac
count of the location of the complex number whose root is being
computed. The referee has pointed out a second error: "The 5th
line after the line labelled sqt should be

c := sqrt((temp+a)/2) X sign(ia).

The construct if (temp-a) < U then 0 is unnecessary as the
Boolean expression cannot be true. Moreover, even with correc
tions the complex square root included is unsatisfactory because,
when ia is small, either temp - a or temp + a will be a difference
of two nearly equal numbers and loss of significance will occur."

It is suggested that the four lines beginning four lines below the
label sqt be replaced by

else begin temp:= sqrt((abs(a)+sqrt(aj2+iaj2))/2);
ic := .5 X ia/temp;
if a ;:::: 0 then c : = temp
else begin c := abs(ic);

ic := sign(ia) X temp
end;

end;
if ((b+c) i 2+(ib+ic) i 2) < · · ·

Under some systems, the case ia = -0 might cause problems.
With the possible exception of the case ia = -0, this coding will
choose the square root whose real part is positive.

Modifications to the Algorithim. Both the single and
double precision versions have been altered as suggested by Traub
[3, p. 212]:

2r
Z.:+1 = Zi - ~, ft, = f(z,;)

Pi.

Pi = Wi ± {w.:2 - 4/;f [z,' Zi-1' Zi-2}t

"'' = f[z.: ' Z.;-1] + (z, - Zi-i)f[z,' Zi-1 ' Z;-2]

[]
f[z, . z.:-1] - f[z.:-1 , z.:-2]

f Zi , Zi-1 , Zi-2 =
Z.: - Zi-2

COLLECTED ALGORITHMS (cont.)

Both Algorithm 196 and Traub's iteration function choose the
sign of the square root to maximize the modulus of the denomi
nator.

Although the two iteration functions are equivalent, Traub's
requires fewer operations (8 additions, 5 multiplications and
3 divisions compared to Muller's 10 additions, 15 multiplications
and 2 divisions), less storage and less computing time.

The behavior of the coded version of Traub's method differed
little from that of Algorithm 196. Given the same starting values,
both methods converged in the same number of iterations, even
though the first iterates were sometimes different. Example 1
compares Muller and Traub in single precision with double preci
sion. The difference between the first iterates in single precision
is the result of roundoff due to the fact that the initial function
values,j(Pl),f(P2), andf(P3), are very close together. In double
precision the two methods agreed to 17 significant figures (the
CDC-3600 carries approximately 24 decimal digits in double
precision).

Comparison of double versus single precision results OI). the same
machine and double versus double (single versus single) on two

Example 1. f(z) = z20 - 1

Pl = .1875 f(Pl) = - .999999999999997115799543 epl = .510 -6
P2 = .375 f(P2) = - .999999996975696621957785 ep2 = .510 -6
P3 = .5 f(P3) = - .999999046324683493750000 nrts = 2

CDC-3600
Iteration f(z)

l {Alg.196 8.959044683 -001 -8.890227259 -001
s.p. Traub 8.959064917 -001 -8.890177130 -001
d.p. 8.9590562323582572-001 -8.8901986473910256-001

2 {Alg.196 1.009184101 +ooo 2.006266970 -001
s.p. Traub 1.009182792 +ooo 2.005955638 -001
d.p. 1.0091833539604292+000 2.0060892685123016-001

3 {Alg.196 9.915438059 -001 -1.562027260 -001
s.p. Traub 9.915451528 -001 -1.561798028 -001
d.p. 9.9154457471920591-001 -1.5618964171373523-001

4 { Alg .196 9. 996899988 -001 -6 .181798671 -003
s.p. Traub 9.996900961 -001-6.179863674 -003
d.p. 9. 9969005435603457-001 -6 .1806941810976143-003

5 {Alg.196 9.999986299 -001 -2.740146010 -005
s.p. Traub 9.999986307 -001-2.738516196 -005
d.p. 9. 9999863036901786-001 -2. 7392263226776617-005

6 {
Alg.196 i.000000000 +ooo 3.492459655 -009

s.p. Traub 1.000000000 +ooo 3.492459655 -009
d.p. 1. 0000000001972048+000 3. 9440963812509629-009

196-P 3- 0

Example S. Acoustic Waveguide Function

sin (27rS)
/(z) -= P S + p cos (27r'S), p - 2.50

P - v(k' - z'), Re(P) < O; 8 = ,/[(z/E)1 - k1], Re(s) < O;
k - 0.0, E = 0.288; Pl = 0.0, P2 = 0.02, P3 = 0.04

Itera
tion

I• "+ iy /(1) - u + ifJ

1 0.67672247-010.44008261-02 0.24001462-00 0.49014466-01
2 0. 71677143-010.51274250-02 0.23259824-010.98558515-02
3 0. 72102452-010.53056952-020.20655826-03 0.19331276-07
4 0. 72106262-010.53092607-02 0.3'9539112-07 0.40978193-07

Example S. The SO Roots of Unity

Starting values at approximately 19, ~!7, and 35 degrees. Conju
gates accepted as roots. epl = ep2 == .~i10 - 7. Roots are at eirr110,

r = 0, · • · , 19.

Number
Root of

iterations

0 3 5
1 17 *
2 4 15
3 16 *
4 7 22
5 13 *
6 9 14
7 11 *
8 5 14
9 15 *

10 1 10
11 19 *
12 2 7
13 18 •
14 6 10
15 14 *
16 0 5
17 8 8
18 12 *
19 10 2

* Asterisk in column 3 indicates conjugate taken; i.e., z1 = !o,
za == z2, etc.

different machines have been made. In. every case differences can
be satisfactorily explained by (1) difforent BCD-binary conver
sion on different machines, (2) different word lengths, or (3) dif
ferences in library subroutines on the various machines.

Miscellaneous CoDllllents. Both versions of Muller's method
(Algorithm 196 and Traub's iteration :runction) have the advan
tage over other one-point-with-memory methods in that it is
possible to locate complex zeros using real starting values. There
is, of course, the possibility of spending unnecessary time doing
complex arithmetic. As a general purpose library routine, unless
one is looking for complex zeros, there are other iterative functions
that require less space and have the Bame order; there are also
others requiring less space and enjoying higher order, although
they usually involve computing derivat.ives. For our purposes, the
Traub version of Muller's method has proved quite satisfactory.

COLLECTED ALGORITHMS (cont.)

Example 2 is included to indicate the behavior of the Algorithm
using a non-algebraic function. With this function both Algorithm

196 and the Traub modification agreed exactly exeept for a dif
ference in the last digit in the first iterate.

Example 3 is included to show the order in which the 20 roots
of unity are found and the number of iterations required to attain
the specified accuracy. Values were checked against the NBS
Tables of Sines and Cosines to 15 Decimal P'laces. All but two roots
were correct to 9 significant figures; the remaining two were
correct to 8.

Acknowledgment. The support of this work by the Atomic
Energy Commission, Contract AT(29-2)-1163, is gratefully ac
knowledged.

REFERENCES:
1. FRANK, WERNER L. Finding zeros of arbitrary functions.

J. ACM 5 (1958), 154-160.
2. MuLLER, J?AVID E. A method for solving algebraic equations

using an automatic computer. MTAC 10 (1956), 208-215.
3. TRAUB, J. F. Iterative Methods for the Solution of Equations.

Prentice-Hall, Englewood Cliffs, N. J., 1964.
4. IBM Systems Reference Library. File No. '7090-27, Form

C28-6389-2. IBM 7090/7094 IBSYS Operating System. Version
13. IBJOB Processor.

196-P4- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 197
MATRIX DIVISION
M. WELLS

University of Leeds, Leeds, England

procedure Pos Div (b, c, m, n, solve);
value m, n, solve; array b, c; integer m, n; Boolean solve;
comment The matrix c, with m rows and n columns, is divided

by the positive definite matrix b, of order m, by the square root
method (see Fadeeva, V. N ., Computational Methods of Linear
Algebra, Chap 2, §10). The upper triangle of b is,replaced by
an upper triangular matrix N such that.N'N = b. The other
elements of bare undisturbed. The matrix c is replaced by b-1c.
The Boolean solve is used as a switch. If its value is true, then
it is assumed that an earlier entry to Pos Div has left the matrix
Nin place, and a further division of c by b takes place;

begin integer i, j, k;
real procedure dot (a, b, p, q);
value q; real a, b; integer p, q;
comment This is innerproduct, modified to define a function

designator;
begin real s; s := O;
for p := 1step1 until q dos := s +a X b;
dot := s end dot;
Start of program: if solve then go to back substitution;
for i := step 1 until m do
begin b [i, i] := sqrt (b[i, i] - dot (b[i,.i] j 2, 1, j, i - 1));

for j := i + 1step1 until m do
b[i,j] := (b[i,j] - dot (b[k,i], b[k,j], k, i-1))/b[i,i]

end formation of upper triangular matrix;
back substituton: for i := 1 step 1 until n do

begin for/:= 1step1 until m do
c[i,j] := (c[i,j] - dot (b[k,j], c[i,k], k, j-1))/b[i,j];

for j := m step -1 until 1 do
c[i,j] := (c[i,j] - dot (b[i,m+l-k], c[i,m+l-k], k, m-j))/

b[j,j]
end of double back substitution

end of Pos Div

CERTIFICATIOl\ OF ALGORITHM 19i
MATRIX DIVISION [M. Wells, Comm. ACM 6 (Aug.

1963), 443]

M. WELLS (Recd 18 Nov. n:~)
University of Leeds, Leeds, England

The procedure was tested on a Ferranti Pegasus, using the
ALGOL compiler developed by the de Havilland Aircraft Company
at Hatfield. The line a~fter the one labelled 'start of program'
should read

for i : = 1 step 1 until m do

(the first 1 was omitted).
The statement labelled back substitulon is incorrect, and should

read

back substitution: for j: = 1Ktep1 until n do
begin for i : = 1 step l until m do

c[i,j] : = (c[i,j] - dot (b[k,i), c[k,j), k,i-1))/b[i, ii;

197-P 1- 0

for i : = m step -1 until 1 do
c[i,j] := (c[i,j] - dot (b[i,m+l-k), c[m+l-k,j),k,m-i))/b[i,il

end of double back substitution

With these changes the program was operated successfully on
a number of small test problems. The procedure is only applicable
to symmetric positive definite matriceE1, and no systematic at
tempt has yet been made to assess the a·~curacy of the results.

The word 'symmetric' should be inserted before 'positive
definite' in the comment.

It is interesting to note that the original, incorrect version of
the procedure will divide one symmetric matrix by another, and
sa can be used for matrix inversion.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 198
ADAPTIVE INTEGRATION AND MULTIPLE
INTEGRATION
WILLIAM MARSHALL McKEEMAN

Stanford University, Stanford, Calif.

begin comment This program illustrates the declar0 tfon and
call of a procedure used to numerically approximate definite
integrals and multiple integrals. The integrand is an expression
substituted for the first formal parameter and must be a func
tion of the simple variable replacing the second formal pa
rameter. Multiple integration is accomplished by substituting
a complete call of Integral for the first formal parameter. Note
that in this case that the limits of integration on the inside calls
may be functions of the variable of integration on the outer
call. The parameter rule selects a Newton-Cotes formula which
matches a polynomial of degree = rule to the function in the
interval of integration .. (See Hamming, Numerfral Methods for
Scientists and Engineers, Sec. 12.2). In any case, the procedurb
integral adapts its step size to the function in seeking to mini
mize the number of function evaluations. The program has been
tested and run on a variety of functions using the ALGOL com
piler on the Burroughs B-5000.;

real procedure Integral (F) a function of the real variables: (x)
between limits: (a,b) polynomial degree: (rule) tolerance: (eps);

value a, b, rule, eps; integer rule;
real F, x, a, b, eps;
begin comment set up the parameters for the recursion before

calling the procedure NC;
switch net := Rl, R2, R3, R4, R5, R6, R7;
real array cf, fn [1 :rule+l];
integer k; real da, ab;
real procedure NC(F,x,a,da,fn,k,cf,rule,eps,es,ab,lvl);
value a, da., rule, eps, es, lvl; real array cf;
integer k, rule, lvl; real F, x, a, da, fn, eps, e~, ab;
begin comment NC is the adaptive heart of Integral;

real array fc[l:rule+l,l:rule+l], est, xx[l:rule+l];
integer i, j; real dx, int, ep;
real procedure SUM(term, index, upperlimit);
real term; integer index, upperlimit;
begin real t; t := O;

for index : = 1 step 1 until upperlimit do
t := t + term;

SUM:= t
end of SUM;
comment begin the integration by evaluating F on the mesh

points;
fork := 1step1 until rule+ 1 dofc[k;k] := fn;
dx := da/(ruleX (rule+l));
x :=a;
for i : = 1 step 1 until rule + 1 do

for j := 1step1 until rule do
begin

if.j = 1 then xx[i] := x;
if i ~ j then fc[i,j] := cf[j] X F;
x := x + dx;

end having done all necessary function evaluations;
for i := 1step1 until rule do

fc[i, rule+l] := fc[i+l)];
ep := eps/sqrt(rule+l);

198-P 1- 0

comment eps/\rule + 1) is the value to give an absolute
error bound of eps in the final answer. It proves too strict in
practice;

dx := dx X rule;
comment compute the integrals of the subintervals;
for i := l step 1 until rule + 1 do

est[i] := SUM(fc[i,j],,i,rule+l)Xdx;
ab := ab - abs(es) + SUM(abs(est[i]) ,i,rule+l);
comment ab is the area under abs(F). It is used in computing

the relative error upon which to terminate;
int := SUM(est[i],i,rule+l);
if lvl ~ 100/(rule+l) then go to error;
NC:= if abs(es-int) ~ eps X ab/\ es~ 1.0 then int

else SUM (NC(F:x,xx[i] ,dx,fc[i,J·] ,j,cf ,rule,ep,est[i], ab,Ivl + 1),
i,rule+l);

go to return;
error;· NC := int;

comment .abs(es - int) is the approximate error caused by
terminating the recursion. In most cases, termination at
this level will not adversely affect the accuracy of the result;

return:
end of NC;
comment now initialize the Newton-Cotes coefficients;
go to net [rule];
Rl: cf[l] := cf[2] := 1.0/2.0; go to compute;
R2: cf[l] := cf[3] := 1.0/6.0; c/[2] := 4.0/6.0;

comment Rl is trapezoidal rule, R2 is Simpson's rule;
go to compute;
R3: cf[l] := c/[4] := 1.0/8.0;

cf[2] := ~f[3] := 3.0/8.0; go to compute;
R4: cf[l] := cj[5] := 7.0/90.0;

cf[2] := cj[4] := 32.0/90.0;
cf[3] := 12.0/90.0; go to compute;

R5: cf[l] := c/[6] := 19.0/288.0;
cf[2] := cf[5] := 75.0/288.0;
cf[3] := cf[4] := 50.0/288.0; go to compute;

R6: cf[l] := cf[7] := 41.0/840.0;
cf[2] := cf[6] := 216.0/840.0;
cf[3] := cf[5] := 27.0/840.0;
cf[4] := 272.0/840.0; go to compute;

R7: cf[l] := cf[8] := 75.1/1728.0;
cf[2] := cf[7] := 357.7/1728.0;
cf[3] = cf[6] := 134.3/1728.0;
c/[4] := cf[5] := 298.9/1728.0;

compute: da := b - a;
fork := 0 step 1 until rule do
begin

x := a+ k X da/rule;
fn[k+l] := F X cf[k+l];

end;
ab := 1.0;

Integral := NC(F,x,a,da,fn[k],k,cf,rule,eps,1.0,ab,O);
end of Integral;
comment Now evaluate the integral of 1.0/sqrt(abs(x+y))

on the unit disk in the x,y-plane;
real x, y, answer;
answer := Integral(Integral(l.0/sqrt(abs(x+y)), x,

-sqrt(l.O-y j 2), sqrt(l.0-y i 2), 7, 0.001),y,-l.0,1.0,3,0.001);
end of program;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 199
CONVERSIONS BETWEEN CALENDAR DATE
AND JULIAN DAY NUMBER
ROBERT G. TANTZEN
Air Force Missile Development Center, Holloman AFB,
New Mex.

procedure JDA Y (d,m,y,j);
integer d,m,y,j;
comment JDA Y converts a calendar date, Gregorian calendar,

to the corresponding Julian day number j. From the given day
d, month m, and year y, the Julian day number j is computed
without using tables. The procedure is valid for any valid
Gregorian calendar date. When transcribing JDA Y for other
compilers, be sure that integers of size 3 X 106 can be handled;

begin integer c, ya;
if m > 2 then m : = m - 3

else begin m : = m + 9; y : = y - 1 end;
c :=y + 100; ya := y -100 X c;
j := (146097Xc)+4+ (1461Xya)+4+ (153Xm+2)+5+d+l721119

end JDAY

procedure JDATE (j,d,m,y);
integer j,d,m,y;
comment JDATE converts a Julian day number j to the corre

sponding calendar date, Gregorian calendar. Since j is an integer
for this procedure, it is correct astronomically for noon of the
day. JDATE computes the day d, month m, and year y, without
using tables. The procedure is valid for any valid Gregorian
calendar date. When transcribing JDATE for other compilers,
be sure that integers of si?.e 3 X 10s can be handled:

begin j := j - 1721119;
y := (4Xj-l) + 146097; j := 4Xj - 1 - 146097 X Yi

d:= j+4;
j := (4Xd+3) + 1461; d := 4Xd + 3 - 1461 X j;

d := (d + 4) + 4;
m := (5Xd-3) + 153; d := 5Xd - 3 - 153 X m;

d :=(d+5) + 5;
y : = 100 X y + j; if m < 10 then m : = m + 3

else begin m := m. - 9; y := y + 1 end;
end JDATE

procedure KDA Y (d,m,ya,k);
integer d,m,ya,k;
comment KDA Y converts a calendar date, Gregorian calendar,

to the corresponding serial day number k. From the given day
d, month m, and the last two decimals of the year, ya, the serial
day number k is computed without. using tables. The procedure
is valid from 1 March 1900 (k= 1) to 31 December 1999
(k = 36465). To obtain the Julian day number j (valid at noon)
use j = k + 2415079;

begin.if m > 2 then m := m - 3
else begin m := m. + 9; ya :=ya - 1 end;

k := (1461Xya) + 4-l-(153Xm+2) + 5 + d
end

procedure KDATE (k,d,m,ya);
integer k,d,m,ya;

199-P 1- 0

comment KDA 'l'E converts a serial day number k to the corre
sponding calendar date, Gregorian calendar. It computes day d,
month m, and the last two decimals of the year, ya, without
using tables. The procedure is valid f:rom k = 1 (1 March 00) to
k = 36465 (31 December 99) for any one century. For the 20th
Century the relation between k and theulian day number j

(at noon) is j = k + 2415079;
begin ya := (4Xk-l) + 1461; d := 4Xk - 1 - 1461 X ya;

d := (d+4) + 4; m := (5Xd-3) + 153;
d := 5Xd - 3 - 153Xm;

d := (d+5) + 5;
if m < 10 then m : = m + 3

else begin m := m - 9; ya :=ya+ 1 end;
end KDATE

CERTIFICATION OF ALGORITHM 199 [Z]
CONVERSIONS BETWEEN CALENDAR DATE AND

JULIAN DAY NUMBER [Robert G. Tartzen, Comm.
ACM 8 (Aug. 1963), 444].

DAVID K. OPPENHEIM (Recd. 10 J"ul. 64 and 27 Jul. 64)
System Development Corp., Santa Monica, Calif.

Algorithm 199 was translated into J ovIAL J3 and tested on the
Philco 2000. Input was generated with a random number generator
that produced uniformly distributed dates between the years
1583 and 2583. The results were checked for 50 different dates in
that range.

The procedures as written place unnecessary restrictions on
some of the parameters. Expressions cannot always be used as
inputs to the procedures. Also, the original input to JDA Y,
JDATE and KDAY will be modified dming the- operation of the
respective procedures. It should also be noted that in many im
plementations of ALGOL the use of parameters called by name may
be more expensive than those called by _value. Th~ call by name
is a far more powerful tool than is necessary for most of the pa
rameters of these procedures. For these reasons the following
changes are suggested:

1. In procedure JDA Y
change: integer d, m, y, j;
to: value d, m, y; integer d, m, y, j;

2. In procedure JDATE
change: integer j, d, m, y; to: valuej; integer j, d, m, y;

3. In procedure KDAY
change: integer d, m, ya, k;
to: valued, m, ya; integer d, mi, ya, k;

4. In procedure KDA TE
change: integer k, d, m, ya;
to: value k; integer k, d, m, ya;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 200
NORMAL RANDOM
RICHARD GEORGE*

Argonne National Laboratory, Argonne, Ill.
• Work supported by United States Atomic Energy Commission.

real procedure NORMAL RANDOM (Mean, Si,rma n);
procedure Random;
real Mean, Sigma;
integer n;
comment Random is assumed to be a real procedure which

generates a random number uniform on.the inte1rval (-1, +1).
The value of n should be -greater than 10, in order to approxi
mate the normal distribution with accuracy. However, very
large values of n will increase the running time. The use of
Mean and Sigma should be obvious. Reference: R. W. Ham
ming, Numerical Methods for Scientists and Engineers;

begin
integer i; real sum;
sum:= O;
for i := step 1 until n do

sum : = sum + Random;
NORMAL RANDOM:= Mean+ Sigma X sum X sqrt (3.0/n)

end NORMAL RANDOM

CERTIFICATION OF ALGORITHM 200 [G5]
NORMAL RANDOM

[Richard George, Comm. ACM 6 (Aug. 1963), 444]
M. C. PIKE (Recd. 3 May 1965)
Statistical Research Unit of the Medical Research Coun

cil, U. College Hospital Medical School, London.
Algorithm 200 has the following errors:

(1) The line
real procedure NORMAL RANDOM (Mean, Sigman);

sheuld be changed to
real procedure· NORMAL RANDOM (Random, Mean,

Sigma, n);
(2) The line

procedure Random;
should be changed to

real procedure Random;
With these corrections NORM AL RAN DOM has been run success
fully on the JCT Atlas computer with the Atlas ALGOL compiler.

200-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 201
SHELLSORT
J. B00THROYD

English Electric-Leo Computers, Kidsgrove, Staffs,
England

procedure Shellsort (a, n); value n; real array a; integer n;
comment a[l] through a[n] of a[l:n] are rearranged in ascending

order. The method is that of D. A. Shell, (A high-speed sorting
procedure, Comm. A CM 2 (1959), 30-32) with subsequences
chosen as suggested by T. N. Hibberd (An empirical study of
minimal storage sorting, SDC Report SP-982). Subsequences
depend on m1 the first operative value of m. Here m1 = 2k - 1
for 2k ~ n < 2k+1• To implement Shell's original choice of m1 =
[n/2] change the first statement tom := .n;

begin integer i, j, k, rn; real w;
fori := 1 stepi.unt:ilndom := 2 Xi - 1;
for m : = m + 2 while m ~ 0 do

begin k : = n - m;
for j := 1 step 1 until k do

begin for i := j step -m until 1 do
begin if a[i-t-m] ~ a[i] then go to i;

w := a[i]; a[i] := a[i-t-m]; a[i+ml := w;
end i;

1: end j
end m

end Shellsort;

CERTIFICATION OF ALGORITHM 201
SHELLSORT [J. BOOTHROYD, Comm. ACM 6 (Aug.

1963), 445]
M. A. BATTY (Recd 27 Jan. 1964)
English Electric Co., Whetstone, Nr. Leicester, England

This algorithm has been tested successfully using the DEUCE
ALGOL Compiler. When the first statement of the algorithm was
replaced by the statement

m :== n;
to implement Shell's original choice of m1 :== n/2, a slight increase
in sorting time was observed with most of the cases tested.

REMARK ON ALGORITHM 201 [Ml]
SHELLSORT [J. Boothroyd, Comm. ACM 6 (Aug. 1963),

445]
J. P. CHANDLER AND W. C. HARRISON* (Recd. 19 Sept.

1969)
Department of Physics, Florida State University, Talla

hassee, FL 32306

•This work was supported in part by AEC Contract No. AT
(40-1)-3509. Computational costs were supported in part by
National Science Foundation Grant GJ 367 to the Florida. State
Univ-ersity Computing Center.

201-P 1- RI

KEY WORDS AND PHRASES: sortilng, minima.I storage sort
ing, digital computer sorting
OR CATEGORIES: 5.31

Hibbard [1] has coded this method in a way that increases the
speed significantly. In SHELLSORT, each stage of each sift con
sists of successive pair swaps. The modification replaces each set
of n pair swaps by one "save,'' n - 1 moves, and one insertion.

Table I gives timing information for ALGOL, FORTRAN, and
COMPASS (assembly language) versions of SHELLSORT and the

TABLE I. SORTING TIMES IN SEcoN:os FOR 10,000 RANDOMLY
ORDERED NUMBERS ON THE CDC 6400 COMPUTER

Algorithm

SHELLSORT
SHELLSORT2

ALGOL

53.40
36.56

Soi~rCI Languag•

'FORTRAN

7.18
5.98

COMPASS

2.38
1.87

modified version (called SHELLSORT~~), for the CDC 6400 com
puter. The savings in time achieved by the modification are 32%,
17%, and 21%, respectively. The savings are greater than this
when vectors of more than one word ea.ch are being sorted.

The comparative execution times of the ALGOL and FORTRAN
versions, for these compilers, are quite interesting.

REFERENCES:
1. HIBBARD, T. N. An empirical study of minimal storage sort

ing. Comm. ACM 6 (May 1963), 205.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 202
GENERATION OF PERMUTATIONS IN LEXICO
GRAPHICAL ORDER
Mox-KoNG SHEN
Postfach 74, Munchen 34, Germany
procedure PERLE (S, N, I, E);
iinteger array S; integer N; Boolean I; label[E;
comment If the array S contains a certain permutation of the

N digits 1, 2, · · · , N before call, the procedure will replace
this with the lexicographically next permutation. If initializa
tion is required set the Boolean variable I equal true, which
will be changed automatically to false through the first call,
otherwise set I equal false. If no further permutation can be
generated, exit will be made to E. For reference see BIT 2
(1962)' 228-231;

begin integer j, u, w;
iif I then begin for j = 1 step 1 until N do S[j] := j;

I : = false; go to Rose
end;

w := N;
Lilie: if S[w] < S[w-l] then

begin if w = 2 then go to E;
w : = w - 1 ; go to Lilie

end;
u := S[w-1];
for j := N step -1 until w do
begin if S[j] > u then

1end;

begin S[w-1] := S(j];
S[j] : = u; go to Tulpe

end

'Tulpe: for j := 0 step 1 until (N-w-1)/2 + 0.1 do
begin u := S[N-j];

S[N-i] := S[w+il; S[w+i] := u
end;

Rose:
4:md PERLE

CERTIFICATION OF ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN LEXICO

GRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

RoGER W. ELLIOTT (Recd. 5 May 1965)
The University of Texas, Austin

The equal sign in the second line after the comment should be
replaced by a replacement operator. With this minor correction,
PERLE was translated into ALGOL for the CDC 1604. The follow
ing times for generating all of then I permutations of a given vector
of length n and the following values of r,. = t,./ntn-1 [See Comm.
ACM 6 (Apr. 1962), 209] were observed.

n

t,.(sec) .168
1.0

6

1.01
1.00

7.08 56.75
1.00 1.00

REMARKS ON:

ALGORITHM 87 [G6]
PERMUTATION GENERATOR

202-P 1- RI

[John R. Howell, Comm. ACM 5 (Apr. 1962), 209]
ALGORITHM 102 [G6]
PERMUTATION IN LEXICOGRAPHICAL ORDER

[G. F. Schrak and M. Shimrat, Comm. ACM 5 (June
(1962), 346]

ALGORITHM 130 [G6]
PERMUTE

[Lt. B. C. Eaves, Comm. ACM 5 (Nov. 1962), 551]
ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN
LEXICOGRAPHICAL ORDER

[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. ORD-SMITH (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)

Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM 6 (Aug. 1962), 434], there appears to be room for im
provement. Theoretically a "best" lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.

~LGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 /\ B[k] < B[m] is true for
at least one of the relevant values of k. In particular when matrix
A is set up by A'[i] := i; for each i the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
tn is the time for complete generation of nl permutations. Times
are scaled relative to ts for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time ts
for Algorithm 202 on this machine was 100 seconds. r,. has the
usual definition r,. = tn/(n·tn-1).

COLLECTED ALGORITHMS (cont.) 202-P 2- 0

TABLE I

Algorithm Is t1 la ,,
r1 I rs

--·-- ---------
87 118

102 2.1 15.5 135 1.03 1.08 1.1
130
202 1.7 12.4 100 1.00 1.00 1.00

COLLECTED ALGORITHMS FROM CACM

.ALGORITHM 203
:STEEP!
.E. J. W ASSCHER

Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-N etherlands

procedure ST EE Pl (lb, xs, ub, dx, xmin, fmin, n, eps, relax, dxmax,
eta, psi, pmax, zeta, FUNK);

'value dx, n, eps, relax, dxmax, eta, psi, pmax, zeta;
integer n;
real fmin, eps, relax, dxmax, eta, psi, pmax, zeta;
array lb, xs, ub, dx 1 xmin; real procedure FUNK;
comment STEEPI is a subroutine to find the minimum of a

differentiable function of n variables, using the method of
steepest descent. It mainly consistFi of three parts: (1) a sub
routine ATIVE, for computing the partial derivatives, (2) a
subroutine STEP, for computing the components of an array
xstep[l :n], which is a new approximation of xmin[l :n], (3) the
compound tail of the procedure body. Both subroutines are
only called for once, but by writing the program in this way it
is quite easy to change the flow of the program.

Significance of the parameters: lb (i), ub (i) are lower and
upper bounds for the independent variables. xs(i) is the starting
value for xmin(i). xmin(.i) is the computed ith component of
the minimum, fmin the value of the function in xmin. n is the
number of variables. eps is a small number which is a measure
of the desired accuracy-rather of fmin than of xmi:n(i). FUNK
(x) is the function to be minimized. The other parameters are
described in the comments on the three parts mentioned;

begin integ.;r j; real alpha, p; array xstep, dfdx, dfpr[l :nJ;
procedure ATIVE;
begin real beta, gamma, lambda; Boolean A, B;
comment 1. A useful estimate for the derivative is

f(x+dx)-f(x-dx)
2

dx , where dx should be small, but :not so small

that roundoff noise dominates. This may be achieved by taking

dx such that eta < I f(x+dxj~((x-dx) I. < 100 eta, where eta is

a measure for the relative roundoff error. When / f(x) / < 1 it is
better to replace the denominator by a constant. In the program
the parameter psi is used for this purpose. The components
dx(i) are used as a first guess. When the derivative is 0, the
program enlarges dx until dx > dxmax.

AT IVE computes dfdx[l :n] in xmin. The previously computed
partial derivatives dfpr[l :n] as well as relax are used for relaxa
tion purposes. See comment 3. The Boolean A is used when
x+dx or x-dx crosses the boundary ub or lb. In that case fmin
has to be recomputed afterwards. The Boolean B i13 of a some
what complicated nature. It may be seen that dx has· the char
acter of an own array for ATIVE. In the neighborhood of the
minimum this may have the following effect: A step in one
variable is taken such that f(x+dx) becomes equal to f(x-dx).
Then in the next call for ATIVE dx has to be doubled, etc. By
using the Boolean Bit is possible to keep dx constant near the
minimum.

A similar effect may occur in the large. When f(x) tends to a
constant for x tending to + oo and - '°, then for / x /large dx
has to be taken large. It is only possible to make dx smaller in
the neighborhood of the minimum by reducing da: after each

203-P 1- 0

call of ATIVE.
From the last two remarks one may deduce that the first

guess for dx(i) should be made with considerable care. Tabulat
ing the function near the starting point may be very helpful;

begin ATIVE: lambda := O;
for j := i step 1 until n do
begin
large: A := B := false; if xmin[j] + dx[j] > ub[jJ

then begin xmin[j] := ub[j] - dx[j]; A := true end
else if xmin[j] - dx[jJ < lb[j]

then begin xmin[11 := lb[jJ + dx[j]; A := true end;
small: xmin[j] := xmin[j] + dx[jJ; alpha:= FUNK (xmin);

xmin[j] := xmin[j] - 2 X dx(j]; beta := FUNK (xmin);
xmin[j] := xmin[j] + dx[j]; if A then fmin := FUNK

(xmin).;
A :=false;
if alpha - fmin > 0 /\beta - fmin > 0
then begin B := true; go to comp end;
gamma := abs((alpha-bet,a)/(if abs(fmin) < psi then

psi else fmin));
if gamma > 100 X eta then

begin dx[j] := .2 X dx[j]; go to small end;
if gamma < eta then

begin dx[j] := 2 X dx[j]; if dx[j] < dxmax then

go to large else dx[j] : = dxmax end
comp: dfdx[j] := (alpha-beta)/(2 X dx[j]);

lambda := lambda+ dfdx[j] i 2;
if -, B then dx[j] := .5 X dx[j]

end for; lambda : = sqrt (lambda);
for j := 1 step 1 until n do

dfdx[j] : = dfdx[j]/lambda
end procedure ATIVE;

procedure STEP;
comment 2. A step is taken in all variables at the same time.

The order of magnitude of the step in one variable should be
of the order of magnitude of this varial?le. To accomplish this
three weighting factors are given to the partial derivatives:

(
n (iJ/)2)-t 1) >.. = .L - (see subroutine ATIVE),

i=-1 iJxi

2) I Xi / , or when small, zeta,
3) a number p, which is put equal to 1 at the beginning of the

program and which tends to 0 at the minimum.
After a decrease of the function the step is accepted and p is
multiplied by 1.5. After an increase p is divided by 2. pmax
replaces p when p becomes greater than pmax;

begin for j := 1 step 1 until n do
begin alpha := (I-relax) X dfdx[j] +relax X dfpr[j];

xstepfj] : = xmin[j] - p X alpha X
(if abs (xmin[j]) < zeta then zeta else abs (xmin[j]));
dfpr[j] := alpha;
if xstep[j] > ub[j] then xstepfj] : = ub[jJ

else if xstep[j] < lb[j] then xstep[j] : = lb[j]
end for
end STEP;

COLLECTED ALGORITHMS (cont.)

comment 3. In the next part-the compound tail-the calls for
ATIVE and STEP are organized. The values 1.5 and .5 of the
factors of pare not very important. During the iteration p gets
an optimal value, which slowly varies. Only at the end p rapidly

tends to 0. The programme was tested on the functions Y
2

+l
x2+1

(x-y) 2-2
and () , the latter being the first one except for a rotation

:i:+y 2+2
of the xy-plane over ?r/4 radians. In the first case a "gutter"

coincides with the x-axis, while for x > 0 and I y I ~ 1 af)'. 0. ax
In the second case, where the gutter is along the line x=y, the
relaxation is especially interesting, because with relax = 0
(and pmax= 100) the iteration follows the gutter in an unstable
way. With starting values x= -14 and y=21 fromx=y=26 about
300 steps were taken along the gutter with p about .01. With
relax = .35 and prnax = .5 we had about 150 steps from x=y=23.
In the gutter itself relax = .85 gave the best results, but in that
case the gutter was reached at x=y=63.

Other parameter values were: zeta= psi= 1, dxrnax=lOO,
eta = 10-1 with cps = 10-s g:we f m'in in 10 figures correctly and
xmin [i] in 4 to 6 figures for various starting values of xs[i];

p := l;
for j := 1 step 1 until n do
begin xmin[j] := xs[j]; dfpr[j] .- 0 end; frnin .- FUNK

(xrnin);
deriv: A.TIVE;
next: STEP;

alpha := FU1VK (xstep);
if alpha < frnin then

hegin frnin := alpha; p := 1.5 X p;
if p > pmax then p := pmax;

for j : = I step I until n do xmin[j] : = xstep[j];
go to deriv end;

p := .6 x p;
if p > eps then go to next;
comment As p ha.s become smaller than eps thifl is the end of

STEEPI. The program ATIVE takes up rather a lot of computer
time by the way it chooses a value for dx (i). A thorough simpli
fication is obtained by taking dx(i) as 10 j - 3 X abs(xrnin[i]),
where again xmin[i] may be replaced by zeta. Further, at the
cost of some loss of accuracy, computing time is saved by taking
f(x+h)-f(x)
------h-- as an e8t1mate for the derivative. This program,

as far as it differs from STEEPl, is described in algorithm 204,
STEEP2. An interesting compromise between the two methods
is obtained by interchanging the computation of dx and dfdx in
.t TIVE of STEEPl and omitting the iteration on dx. This
routine ATIVE, which ha8 to be used in STEEJ->1, is given by
J. U. A. Haubrich in algorithm 205;

end STEEPI

CERTIFICATION OF ALGOIUTH-11 203 [E4]
STEEPl [E. J. Wasschcr, Comm. ACM 9 (Sept. 1963),

517J
PHILIP w ALLACK (Recd. 25 May 1964)
Republic Aviation Corp., Farmingdale, L. I., N. Y.

STEE PI was translated into FORTRAN IV and run on the IBM
7094. The program was tested on the function x4 + y4 - 1, with
starting values x = y = 1.5. Other parameter values were those
1-mggeHted in the body of the algorithm. After 17 steps the values
of the variables were ~r = .0180, y = .0191, and the function value
f1111·n = - .!)!)99999.

203-P 2- 0

1 feel that good programming practice requires that a count be
kept of the number of steps taken in STEEPl and the number of
iterations in ATIVE, with running checks on both these quantities
to control looping. Counters were set up for this purpose in the
version of the program I ran.

CERTIFICATION OF ALGORITHM 203 [E4]
STEEPl [E. J. Wasscher, Comm. ACM 6 (Sept. 1963), 517;

Comm. ACM 7 (Oct. 1964), 585]
J.M. VARAH (Recd. 30 July 1964)
Computation Center, Stanford University, Stanford, Calif.

Algorithm 203 was run on the B5000 at Stanford with the neces
sary modifications for Burroughs' Extended ALGOL. After some
testing, the following errors were found.

1. There is an extra begin in procedure ATIVE. The first
statement after the comment in this procedure should be changed
from

begin ATIVE: lambda := O;
to

lambda := O;
[It was the author's original intention that this begin be not in
bold-face but that it should be part of the label begin ATIVE
inserted to clarify the program.--Ed.]

Also, there is a missing semicolon in procedure ATIVE at the
end of the line preceding comp: and procedure STEP has an un
necessary begin-end block.

2. Because the domain of definition of the function FUNK
is bounded by the rectangular hyperbox lb[j] ~ x[j] ~ ub[i],
i = 1, 2, · · · , n, before giving a new direction in which to pro
ceed, the value of xmin is checked (in ATIVE, under large:). If,
for any;", xmin[j] is withindx(j] of the boundary, xmin[j] is changed
so that it is exactly dx[j] from the boundary. However, if the mini
mum value of FUNK occurs at just such a place (say right at the
boundary), then a step will be made from this new position back
to the boundary. Then the new xmin[i] will again be within dx[j]
of the boundary, so it is moved away, and so on forming a loop.
To correct this, the old value of xrnin[j] should be saved (inxstep(i],
for example) and below, when A is tested, the function value set
equal to the minimum of values at xmin and xstep. The author,
w~en A was true (i.e. when such a shift had been made), merely
set the function equal to the value at :xmin.

Specifically, this means changing the lines following large: to
A := B := false; if xrnin[j] + dx[fl > ub[j] thenj
begin

xstep[j] := xmin[i];
xmin[j] := ub[j] - dx[j]; A := true

end
else if xmin[J] - dx[j] < lb[.f] then
begin

xstep[j] := xmin[.i];
xmin[j] := lb[j] + dx[j]; A := true

end;
and the conditional statement involving A (3rd line after srnall :) to

if A then
begin

garnma := FUNK(xmin);
if fmin ~ gamma then xmin[j] := xstep[j]
else f min : = gamma

end;
3. Also in ATIVE, under cornp:, the derivative approximations

are all normalized after the for loop by division by lambda. How
ever, lambda will be zero if all dfdx[.iJ are zero to working accuracy.
So we should only divide by lambda when it is not zero.

COLLECTED ALGORITHMS (cont.)

Specifically, this means inserting the line
if lambda ~ 0 then

]before the third line from the end of procedure ATIVE.
With these corrections, the algorithm did run successfully.

It should also be mentioned that procedures ATIVR and STEP
could just as well be blocks with labels ATIVE and STEP rather
1~han procedures, with the calls on them changed to go to AT IVE
and go to STEP.

203-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 204
STEEP2
E. J. W ASSCHER

Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-N etherlands

procedure STEEP2 (lb, xs, ub, dx, xmin, fmin, n, eps, relax
dxmax, pmax, zeta, FUNK);

value dx, n, eps, relax, dxmax, pmax, zeta;
integer n;
real dx, fmin, eps, relax, dxmax, pmax, zeta;
array lb, xs, ub, xmin; real procedure FUNK;
comment dx should now be taken about 10 j - 3, dxmax could

be taken equal to 1. As the program is equal to STEEP! after
the declaration of the procedure ATIVE, the ALGOL description
is cut off there;

begin integer j; real alpha, p;
array xstep, dfdx, dfpr [1 :n];

procedure ATIVE;
begin real beta, lambda; lambda : = 0;

for j := 1 step 1 until n do
begin alpha : = dx X (if abs(xmin[j]) < dxmax

then dxmax else abs (xmin[j]));
if xmin[j] +alpha > ub[j] then alpha := -alpha;
xmin[j] := xmin[j] +alpha; beta := FUNK (xmin);
xmin[j] : = xmin[j] -- alpha;
dfdx[j) := (beta - fmin)/alpha;
lambda := lambda+ dfdx[j] j 2

end for; lambda := sqrt (lambda);
for j := l step 1 until n do dfdx[j] := dfdx[j]/lambda;

end procedure ATIVE

204-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 205
ATIVE
J. G. A. HAU:13RICH

Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-N etherlands
procedure ATIVE;
begin real beta, lambda; Boolean A;
comment This routine may replace ATIVE in STEEP!. The

significance of eta has slightly changed;
lambda : == 0;
for j :- 1step1 until n do
begin A :== false; alpha := dx[j];

if xmin[j] + alpha > ub[j] then
begin xmin[j] :== ub[j] - alpha; A := true end
else if xmin[j] - alpha < lb[j] then
begin xmin[j] :== lb[j] +alpha; A := true end;

xmin(j] := xmin[j] + dx(j]; alpha:= FUNK(xmin);
xniin[jJ := xmin[jJ - 2 X dx(jJ; beta := F'UNK(xmin);
xmin[jJ := xmin[j] + dx[j]; if A then frnin := FUNK

(xmin);
dfdx(j] := (alpha-beta)/(2 X dx[jJ);
lambda := lambda+dfdx[j] i 2;

if alpha - fmin > 0 /\ beta - fmin > 0 then go to end;
beta := abs((alpha-beta)/(if abs(fmin) <psi then 1)si elsefmin));
if beta > eta then dx[jJ : = .3 X dx[j] else
begin dx[jJ :== X d3x[i]; if dx(jJ > dxmax thendx(j]: == dxmaxend;
end: end for;
lambda :== sqrt (lambda);
for j : = 1 step 1 until n do dfdx(j] : == dfdx(j]/lambda
end procedure ATIVE

REMARK ON ALGORITHM 205 [E4]
ATIVE [J. G. A Haubrich, Comm. ACM 6 (Sept. 1963),

519]
E. J. WASSCHER (Recd. 23 Nov. 1964)
Philips Computer Center, N. V. Philips' Gloeilampen

fabrieken, Eindhoven, Netherlands
There is a misprint in this Algorithm. The first statement in

the fifth line from the end of the procedure ATIVE should read:
dx[jJ :== 3 x dx[j];

205-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 206
ARCCOSSIN
M1sAKO KoNDA

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan

procedure ARCCOSSIN(x) Result:(arccos, arcsin);
value x;
real x, arccos, arcsin;
comment This procedure computes arccos(x) and arcsin(x) for
-l~x~l. The constant ~27 depends on the word length and
relative machine precision,.. and may be replaced by a variable
identifier. Alarm is the procedure which messages that x is in
valid.
The approximation formula used here was coded for MUSA
SIN0-1 in its own language at the Electrical Communication
Laboratory Tokyo. This algorithm was translated into FAP and
successfully ran on an IBM 7090;

begin real A, xl, x2, a; integer r;
if abs(x) > 1
then go to A la rm
else if abs(x) > 2 j (-27)

then go to Ll
else begin arccos . - 1.5707963; go to L3

end;
Ll: if x = 1

then begin arccos : = 0; go to L3
end

else if x = - 1
then begin arccos := 3.1415926; go to L3

end
else begin A :== O; xl := x;

for r : = 0 step 1 until 26 do
begin if xl <O

then begin a := 1; x2 := 1-2 X xl j 2 end
else begin a := O; x2 := 2 X xl j 2 - 1 end;
A := A -1- a X 2 i (-r-1);
xl := x2

end;
arccos := 3.1415926 X A;
end;

L3: arcsin : = 1.570963 - arccos;
end ARCCOSSIN

REMARK ON ALGORITHM 206 [Bl]
ARCCOSSIN [Misako Konda, Comm. ACM 6 (Sept.

1963), 519]
HENRY J. BowLDEN (Recd. 30 Sept. 1964 and 5 Nov. 1964)
Westinghouse Electric Corp., R&D Ctr., Pittsburgh, Pa.

Algorith l 206 was transcribed into Burroughs Extended ALGOL
after correcting one typographical error, namely the value of
7r/2 in the statement labeled L3, which should be 1.5707963.

206-P 1- 0

Results were obtained for a selection o:f values of the argument
between 0 and 1. Accuracy is about 7 + decimal digits over the
entire range, by comparison with the tables of inverse sines in
[Handbook of Mathematical Functions, National Bureau of Stand
ards Applied Mathematics Series fl' 55, U.S. Government Printing
Off., Washington, D.C., June 1964, 203-212]. Average execution
time was 43 milliseconds.

The efficiency of the procedure could be significantly improved
by avoiding the computation of a X 2 l (-r-1). Powers of 0.5
may be accumulated within the loop, allid the modification of A
may be skipped entirely when a = 0. Actually, if efficiency is im
portant, procedures using the intrinsic arctan and the common
trigonometric identities are preferable. Such routines, on the
B-5000, give full machine accuracy (11-t significant figures) in
about 2 milliseconds execution time.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 207
STRINGSORT
,J. BOOTHROYD
English Electric-Leo Computers, Ltd.
Staffordshire, England

procedure stringsort (a, n); comment elements a[l] · · · a[n]
of a[1:2n] are sorted into ascending sequence using a[n+l] · · ·
a[2n] as auxiliary storage. Von Neumann extended string logic
is employed to merge input strings from both ends of a sending
area into output strings which are sent alternately to either
end of a receiving area. The procedure takes advantage of
naturally occurring ascending or descending order in the origi
nal data;

value n; integer n; array a;
begin integer d, i, j, m, u, v, z; integer array c[-1: 1];

switch p := jzl, str i; switch q := merge, jz2;
oddpass: i := 1; j := n; c[-1] := n + l; c[l] := 2 X n;
all pass: d : = 1 ; go to firststring;
merge: if a[i] ~ a[z]

then begin go to p[v];
jzl: if a[j] ~ a[z]

end

then ij: begin if a[i] ~ a[j]

end

then str j: begin a[m] := a[j];
j := j - 1 end

else str i: begin a[m] .- a[i]:
i :=· i + 1 end

else begin v : = 2; go to str i end

else.begin u := 2;
jz2: if a[j] ~ a[z]

then go to str j

end;

else begin d := -d; c[d] := m;
firststring: m := c[-dJ;

v := u := 1;
go to ij

end

z := m; m := m + d; if j ~ i then go to q[u];
if m > n + 1 then begin comment even pass; 1: : = n + 1;

j := 2 X n; c[-1] := l; c[l] ::= n; go to
allpass end

else if m < n + 1 then go to oddpass
end stringsort;

CERTIFICATION OF ALGORITHM 207 [Ml]
STRINGSORT [J. Boothroyd, Comm. A CM 6 (Oct. 1963),

615]
CHARLES R. BLAIR (Recd. 31 Jul. 1964)
Department of Defense, Washington 25, D. C.

STRINGSORT compiled and ran successfully wiithout correc
tion on the ALDAP translator for the CDC 1604A. The following
sorting times were observed.

Number of Items
10
20
50

100
200
500

1000
2000
5000

10000

207-P 1- 0

Time in Seconds
0.03
0.05
0.20
0.38
1.03
3.22
6.43

12.85
38.72
90.72

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 208
DISCRETE CONVOLUTION
WILLIAM T. FOREMAN, JR.

Collins Radio Co.
Newport Beach, Calif.

procedure Discrete Convolution (m, n, prs) result: (Conv);
integer m, n; real procedure prs; real array conv;
comment This procedure finds the probability distribution of

the sum of m independent variables, each with a known distribu
tion over the nonnegative integers. A real procedure prs with
results pr[k] is assumed to find each probability distribution in
succession. The maximum sum for which probabilities are
computed must be fixed by the user. The number of iterations
is roughly m2n/2. The procedure prs will in general depend on
additional parameters and should include the read-in of the
parameters for that distribution. It may include the selection
of one function from a set;

begin integer i, j, k, ixl, ix2;
real array prob (1 :2, O:m], pr(O:m];
i := 1; ixl := 1; ix2 := 2; prs (m) result: (pr);
for j := 0 step 1 until m do prob[ixl, j] := pr(j];
for i := 2 step 1 until n do

begin
if 1'.xl = 1 then begin ix2 : = 1; ixl : = 2 end

else begin ix2 : = 2; ixl ·: = 1 end
prs (m) result: (pr);
for j := 0 step 1 until m do
begin

prob[ixl, j) := O;
fork := 0 step l until j do

prob[ixl, j] .- prob[ixl, .i] + pr[k] X prob[ix2, .i-k]
end .i

end i;
for j := 0 step 1 until m do conv[j] := prob[ixl, .i]
end Discrete Convolution
comment The convolution of discrete probability series is

isomorphic to the multiplication of polynomials. A useful vari
ation is to omit the parameters i, n and have prs recognize
the end of input. A F'oRTRAN program using this procedure has
been run on the IBM 7090 to find the sum of queue lengths in a
teletype switching center, where messages arrived according
to the Poisson distribution and message lengths were distributed
negative-exponentially. The following was used as the prob
ability procedure;

procedure prs (m) result: (pr);
value m; procedure read;
real array pr; integer m;
begin real trafficrate, linespeed, rho; integer .i;

read (trajficrate, linespeed);
rho : = trajficrate/linespeed;
pr(O] : 1 - rho;
for j := 1 step until m do pr[.i] :== rho X pr[j-1]

end prs

208-P 1- 0

COLLECTED ALGORITHMS FROM CACM
·--

ALGORITHM 209
GAUSS
D. IBBETSON'
Elliott Brothers (London) Ltd.,
Elstree Way, Borehamwood, Herts., England
real procedure Gauss(x); value x; real x;
comment Gauss calculates (1/V27r)f:_~ exp(-!u2) du by means

of polynomial approximations due to A. M. l\Iurray of Aberdeen
University;

begin real y, z, w;
if x = 0 then z : = 0
else
be~in y := abs(x)/2;

if y ~ 3 then z : = 1
else if y < 1 then
begin w : = y X y;

z : = ((((((((0.000124818987 x w
-0.001075204047) x w +0.005198775019) x w
-0.019198292004) x w +0.059054035642) x 'W

-0.151968751364) x w +0.319152932694) x w
-0.531923007300) x w +0.797884560593) x y x 2

end
else
begin y : = y - 2;

z := (((((((((((((-0.000045255659 x y
+0.000152529290) x y -0.000019538132) x u
-0.000676904986) x y +0.001390604284) x y

end
end;

-0.000794620820) x y -0.002034254874) x y
+0.006549791214) x y -0.010557625006) x y
+0.011630447319) x y -0.009279453341) x y
+0.005353579108) x y -0.002141268741) x y
+0.000535310849) x y +0.999936657524

Gauss := if x > 0 then (z+l)/2 else (1-z)/2
end Gauss;

CERTIFICATION OF ALGORITHM 209
GAUSS [D. Ibbetson, Comm. ACM 6 (Oct. 1963), 616]
(Pvt.) G. W. GLADFELTER (Recd 4 Nov. 63)
RAI 7667701, 1st Inf. Battle Group U.S. Military Academy
(9822), West Point, N.Y.

The algorithm was translated into FoRTRAN for the GE 225 and
used to publish a table of the error function. No errors were found
in the algorithm and the table produced agreed with the published
tables at hand (6 significant figures).

CERTIFICATION OF ALGORITHM 209 [S15]
GAUSS [D. Ibbetson, Comm. ACM 6, Oct. 1963, 616]
M. c. PIKE

Statistical Research Unit of the Medical Research Council,
University College Hospital Medical School, London,
England
This procedure was tested on an Elliott 803 computer using the

209-P 1- RI

standard Elliott ALGOL compiler. The expression

2 X Gauss (x) - 1

was evaluated for x = 0(.01)6 and the answers checked with those
given in Tables of Probability Functions, vol. II, U.S. National
Bureau of Standards, Washington, D.C., 1942, where they are
given to 15 decimal places. There was a maximum error of 1 in
the 8th decimal place.

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, ERF(x)

[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION-LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [SI5]
COMPLEMENTARY ERROR FUNCTION-
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS

[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION

[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [SIS]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]
NORMAL CURVE INTEGRAL

[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. H1LL'AND S. A. JOYCE (Recd. 21 Nov. 1966)
Medical Research Council,
Statistical Research Unit, 115 Gower Street, London

W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALGOL compiler. The following amendments were made
and results found:

ALGORITHM 123
(i) value x; was inserted.

(ii) abs(T) < io-10 was changed to Y - T = Y
both these amendments bein~ as suggested in [1].

COLLECTED ALGORITHMS (cont.)

(iii) The labels 1 and 2 were changed to Ll and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.
(v) The extra statement x := 0.707106781187 X x w11s made

the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := -0.56418958/x/exp(u) was changed to

T := -0.564189583548 X exp(-v)/x. This is faster and also
has the advantage, when vis very large, of merely giving 0
as the answer instead of causing overflow.

(ii) The extra statement x := 0.707106781187 X x was made
as in (v) of Algorithm 123.

(iii) form := m + 1 was changed to form := m + 2. m+l
is a misprint, and gives incorrect answers.

The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).

(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative

to the amendment suggested in 14].
The results were accurate to 9 significant figures for x < 8,

but to only 8 significant figures for x = 10 and x = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 j m/(480Xsqrt(2X3.14159265)) was changed to

10 i m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to

m := 2 X n; :for i := 1step1 until m do.
(iii) - (iXb/n) j 2/8 was changed to - (iXb/n) i 2 X 0.125.
(iv) if i = 2 X n -- 1 was changed to if i = m - 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to

b/(15.0397696478Xn).
Tests were made with m = 7 and m = 11 with the following

results:

x

--·-·-· --------

--0.5
---1.0
--1.5
--2.0
--2.5
-·-3.0
-4.0
---6.0
-8.0

Number of significant
figures correct

m =: 7 m = 11
--

7 11
7 10
7 10
7 9
6 9
6 7
5 7
2 1
0 0

Number of decimal
places correct

m = 7 m= 11

7 11
7 10
8 10
8 10
8 11
8 9

10 11
12 10
11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig
nificant figures is stretching the machine's ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

209-P 2- 0

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at x = 0.8.

ALGORITHM 304
No modification was made. The errors i:n the 11th significant figure
were:

abs(x) x > 0 =upper x > 0 ¢upper

0.5 1 1
1.0 1 2

----------·-- ~--------··-

1.5 21 "(5) 2
2.0 25"(0) 4
3.0 0 0

4.0 2 3
6.0 6 0
8.0 14 0

10.0 23 0
20.0 35 0

•Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constlimt 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

abs(x) x > 0 =upper x > 0 ¢upper

1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas "Instruction Count," while evaluating the function 100
times. The figures are not directly applicable to any other com
puter, but the relative times are likely to be much the same on
other machines.

COLLECTED ALGORITHMS (cont.)

lNS'l'RUCTION CouNT FOR 100 EvALUA'l'WNS

Algorithm number

abs(x)
123 180 181 209 226

m = 7
-- -------- ----

0.5 58 8 97
1.0 65° 8 176
1.5 164 128 127 9 273

2.0 194 78 90 8 387
2.5 252 54 68 10 515
3.0 42 51 9 628

4.0 27 39 9 900d
6.0 15 30 6 1400d
8.0 9 28 7 2100d

10.0 10 25 5 2700d
20.0 9 22 5 6500d
30.0 9 9 5 10900d

"' Readings refer to x > 0 = upper.
b Readings refer to x > 0 ~ upper.

272

--
24
24
25

24
24
25
--

25
16
18

16
16
16

304"'

25
29
35

39

131
97

67
49
44

38
32
11

304b

24
29
35

39
44
50

44
23
11

11
11
11

0 Time to produce incorrect answer. A count of Jl20 would fit a
smooth curve with surrounding values.
d 100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the bes.t for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. THACHER, HENRY C. Jn. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IBBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BARTON, STEPHEN P., AND WAGNER, JOHN F'. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 14,5.

4. CLAUSEN, I., AND HANSSON, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SHEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

209-P 3- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 210
LAGRANGIAN INTERPOLATION
GEORGE R. SCHUBERT*

University of Dayton, Dayton, Ohio
•Undergraduate research project, Computer Science Program, Univ. of

Dayton.

procedure LAGRANGE (N, u, X, Y, ANS); real array X, Y;
integer N; real u, ANS;

comment This procedure evaluates an Nth degree Lagrange
polynomial, given N + 1 data coordinates, and u the value
where interpolation is desired. X is the abscissa array and Y
the ordinate array. ANS is the resultant value of the function
at u. The notation is that used in R. W. Hamming, Numerical
Methods for Scientists and Engineers, pp. 94-95 (McGraw-Hill
Book Company, Inc., 1962);

begin integer i, j; real L;
ANS:= 0.0;
for j := step 1 until N+I do

begin L := 1.0;
for i := step 1 until N+I do

begin if i ~ j then L :== L X (u-X[i})/(.X[j]-X[i])
end;

ANS:= ANS+ L X Y[i]
endend

210-P 1- RI

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 211
HERMITE INTERPOLATION
GEORGE R. SCHUBERT*

University of Dayton, Dayton, Ohio
•Undergraduate research project, Computer Science Program, Univ. of

n~~yton.

p1·ocedure HERMITE (n, u, X, Y, Yl, ANS); real array X, Y,
YI; .

integer n; real u, ANS;
comment This procedure evaluates a(2n+l)th degiree Hermite

polynomial, given the value of the function and its first deriva
tive at each of n + I points. X is the abscissa array, Y the
ordinate array, and Yl the derivative array. ANS is the interpo
lated value of the function at u. REFERENCE: R. W. Hamming,
Numerical Methods for Scientists and Engineers, pp. 96-97 (Mc
Graw-Hill Book Company, Inc., 1962);

be:gin integer i, j; real h, a;
A.NS:= 0.0;
for j : = I step I until n + 1 do

begin h := 1.0; a := 0.0;
for i : = 1 step I until n + 1 do

begin if i = j then go to out;
h :·= h X (u-X[i])j2/(X[j]-X[i])j2;
ci :=a+ 1.0/(X[j]-X[i]);

out: end;
A.NS := ANS + h X ((X[i]-u)X (2XaX Y[j]-Yl[j]) + Y[j])

end end

CERTIFICATION OF ALGORITHM 211
HERMITE INTERPOLATION [George R. Schubert,

Comm. ACM, Oct. 1963]
THOMAS A. DWYER

Argonne National Laboratory, Argonne, Ill.
The body of HERMITE was transcribed for the Dartmouth

ScALP processor for the LGP-30 computer and ran successfully
without corrections. It was tested using the error function and its
derivatives. Roundoff error in the LGP-30 began to appear for
values of n greater than 3. For n equal to 2 (third degree poly
nomial) the interpolated value agreed with· the function within
machine limitations (six significant figures) for steps in the
argument data of 0.005.

211-P 1- RI

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 212
FREQUENCY DISTRIBUTION
MALCOLM D. GRA y

The Boeing Co., Seattle, Wash.

procedure FREQUENCY (N, A, B, JUL, K, X, KA);
integer N, JUL; integer array KA; real A, B, K;
1·eal array X;
comment Given a set X of variables in some interval J = [a, b]

such that a ;:;;! minx, max x ;:;;! b, FREQUENCY determines the
frequency distribution of X over k equal, half open subintervals
of I. The interval I is transformed to the interval J = [O, k]
with unit subintervals by x' = (x;-a)/[(b-a)/k], i = l, 2, · · ·,
n, and considering x" = L X M, Land M integers. The value
L then immediately determines the subinterval and M is used
for boundary points. If JUL = 0, the subintervals are open
on the upper end, except the kth. On entry, the array KA is
assumed identically zero; on return, KA [i] contains the fre
quency of X in the ith subinterval;

begin integer i, L; real BAK, XP;
BAK := (B-A)/K;
for i : = 1 step 1 until N do begin

XP := (X[i]-A)/BAK;
L := entier (XP);
if X P = L then go to p2 else L : = L + 1 ; go to p5;

p2: if JUL = O then go to p3 else if L = 0 then L := L + 1;
go to p5;

p3: if X P -:;e. K then L : = L + 1;
p5: KA[L] := KA[L] + 1;

end;
end FREQUENCY

212-P 1- 0

COLLECTED ALGORITHMS . FROM CACM

ALGORITHM 213
FRESNEL INTEGRALS
MALCOLM D. GRAY

The Boeing Co., Seattle, Wash.

real procedure FRESNEL (w, S, C); value w; real S, C;
eomment FRESNEL computes the Fresnel sine and cosine in-

tegrals S(w) = J~ sin [(7r/2)t2] dt and C(w) = J~cos [(7r/2)t2] dt
using the series expansions

~ (- l)i+1x2i-1
S(w) = w f-:1 (4i - 1) (2i - 1) I and

oo (- l)i+ix2i-2

C(w) = w ~1 (4-i - 3)(2i - 2) !

for Jwj < V22/; and X =: 7rW2/2, and using the asymptotic series

S(w) = a - __!___ [P(x) ain (x) + Q(x) cos (.x)],
7rW

C(w) = a - __!___ [P(x) cos (x) - Q(x) sin (;i;)]
7rW

where Jwl ~ V22/7r, x = 7rW2/2,

~ (-l)i(4i - 5)1! - ~ (-i)H1(4i - 3)11
Q(x) = 1 - ~ (2)2i-2 ' P(x) - ~ (2x)2i-1 '

•-2 x •-1

and nil = n(n-2)(n-4)- · · 1. If w ~ 0, then a = !, or if w < 0,
then a= -=+

This algorithm is a translation of a F AP coded subroutine
currently in use on the IBM 7094 at the Boeing Company. The
F AP program yields the following errors when tested at 0.05
increments of x:

x t:.S t:.C

0.00, 1.00 <1 x 10- 7 <1 x 10-7

1.05, 8.65 <1 x 10-& <1 x 10-6

8.70, 10.30 3 x 10-6 2 x 10-6

10.35, 11.00 5 x 10-a 4 x 10-6

11.05, 12.15 <1 x 10-6 3 x 10-6

12.20, 15.00 <!:l x 10- 6 <1 x 10-6

where t:.8 and t:.C are the approximate average a.bsolute devi
ations (over the range) from the reference. The user must supply
S(w) = C(w) = ±!if w -t ± oo. REFERENCES: ALGORITHMS
88-90, J. L. Cundiff, Comm. ACM, May 1962; Born, M. and
Wolf, E., Principles of Optics, Pergamon Press (1958), pp.
369-431;

begin real x, x2, eps, term; integer n; epe := 0.000001;
x := w X w/0.6366198;
x2 := -x X x; if x ~ 11.0 then go to asyrnpt;
begin real frs, f rsi;

frs := x/3; n := 5; term := x X x2/6;
frsi := frs + term/7; .

loops: if abs(frs-frsi) ~ eps then go to send; frs := frsi;
term : = term X x2/n/ (n-1); frsi : = frs +term/ (n+n+ 1);
n := n + 2; go to loops;

send: 8 := frsi X w; end;

213 p 1 0

begin real frc, frci; .
frc := l; n := 4; term := x2/2; frci := 1 + term/~;

loopc: if abs(frc-frci) ~ eps then go to cend; frc := frci;
term:= term X x2/n/(n-1); frci := frc + term/(n+n+l);
n := n + 2; go to loopc;

cend: C := frci X w; end; go to aend;
asympt: begin real Sl, 82, half, temp; integer i;

x2 := 4 X x2; term := 3/x2; 81 := 1 +term; n := 8;
for i := 1 step 1 until 5 do begin n := n + 4;

term := term X (n-7) X (n-5)/x2; 81 := 81 + term;
if abs (term) ~ eps then go to next; end i;

next: for i := 1 step 1 until 5 do begin n := n + 4;
term := term X (n-5) X (n-3)/x2; 82 := 82 + term;
if abs(terrn) ~ eps then go to final; end i;

final: ifw < Othenhalf := -0.5elsehalf := 0.5; term:.= cos(x);
temp := sin(x); x2 := 3.1415927 X w;
C := half+ (tempX81-termX82)/x2;
8 := half - (termX81+tempX82)/x2;
end;

aend: end FRE8N EL

CERTIFICATION OF ALGORITHM 213 [S20]
FRESNEL INTEGRALS [M.D. Gray, Comm. ACM 6

(Oct. 1963), 617]
Malcolm Gray (Recd. 29 May 1964 and, revised, 11 June

1964)
Computer Science Div., Stanford U., Stanford, Calif.

(now at The Boeing Company, Seattle, Wash.)

Necessary changes to the algorithm are:
(1) in the first line, replace

real S, C; with real w, S, C;
(2) in the formula for P(x), replace (-i)i+1 with (-l)i+i
(3) the statement beginning

loopc: if abs(jrc-frci)
should read

loopc: if abs(jrc-;-frci)
(4) in the body, repVace the line

next: for i := 1step1 until 5 do begin n := n + 4;
with the lines

next: term := 82 := 0.5/x; n := 4;
for i := 1step1 u~til 5 do begin n := n + 4;

The procedure (with the above changes) was executed on the
Burroughs B5000 at Stanford University and gave results as
indicated in the algorithm.

Communications from Helmut Lotsch of the W. W. Hansen
Laboratories Stanford University, and from Harold Butler of
the Los Ala~os Scientific Laboratory, Los Alamos, New Mexico,
state that they found these same errors, and after the corrections
were made, similar results were obtained. Mr. Lotsch's work was
done on the B5000 and Dr. Butler's work was done on the IBM
7090.

COLLECTED ALGORITHMS FROM CACM

ALGORMITH 214
q-BESSEL FUNCTIONS ln(t)
J.M. s. SIMOES PEEtEIRA
Gulbenkian Scientific Computing Center, Lisbon, Portugal
procedure qBessel (t, q, n, j, s); integer n, j; real t, q, s;

arrays;
comment This procedure computes values of any q-Bessel func

tion In(t) for n integer (positive, negative or zero) by the use
of the well-known expansion

00 qik(k-l)+l(n+k)(n+K-:1) tn+2k
ln(t) = L =-------

k-0 - (q}A.(q)n+k

where lql < 1, (q)n = (l-q)(l-q2) • .. (1-qn), (q)o = 1 and
I/ (q)_n = 0 (n= 1, 2, 3, · · ·). (See L. Carlitz, The product of
q-Bessel functions, Port. Math. 21 (1962), 5-9.) Moreover, j
denotes the number of terms (at least 2) retained in the summa
tion, and s[i] stands for the sum of the first i+l terms of the
expansion. This procedure has been translated into FORTRAN

for the IBM 1620 and run successfully;
begin integer k, m, p; real c, u; m := abs(n); c := l; if

n = 0 then go to A ;
for p := 1step1 until m doc := c X '(I-qjp); if n < 0 then

go to B;
A: u := q j (nX (n-1)/2) X (tjn)/c; s[O] := u;
fork = 1 step 1 until j do
heginu := u X q j (n+2Xk-2) X (tj2)/((1-qjk)X (1-qj(n+k)));

s[k] := s[k-1] + u end;
B: u := qj((m-l)Xm/2) X t j (n+2Xm)/c; s[m] := tt;

for k : = m + 1 step 1 until j do
begin u := u X q j (n-t-2Xk-2) X (tj2)/((l-qjk)(l-qj(n+k)));

s[k] := s[k-1] + u end
end

REMARK ON ALGORITHM 214
q-BESSEL FUNCTIONS In(t) [J. M. $. Simoes Pereira,

Comm. ACM 6 (Nov. 1963), 662]
J. M. S. SIMOES P1mEIRA (Recd 6 Jan 1964)
Gulbenkian Scientific Computing Center, Lisbon, Portu

gal

Corrections:
1. Insert a dummy statement labeled C just before the final end.
2. Add a statement go to C just before the. label B.
3. Add a colon in the clause for k := 1 step 1 until} do ...

214-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 215
SHANKS
HENRY c. THACHER, JR.*
Ar-gonne National Laboratory, Argonne, Ill.

*Work supported by the U.S. Atomic Energy Commission
procedure Shanks (nmin, nmax, kmax, S);
value nmin, nmax, kmax;
integer nmin, nmax, kmax;
array S;
comment This procedure replaces the elements S[nmin] through

S[nmax-2Xkmax] of the array S by the e[kmax] transform of
the sequence S. The elements S[nmax-2Xkmax+lJ through
S[nmax-l] are destroyed. The e[k] transforms were discovered
by D. Shanks (J. Math. Phys. 34 (1955), 1-42). e[l] is equivalent
to the (delta) j 2 transformation. The e[k] transforms are par
ticularly valuable in estimating B in sequences which may be
written in the form S[n] = B + L a[iJ X q[i] j n (i=l, 2, · · · ,
k).

The transformation is carried out by the epsilon algorithm
(Wynn, P., M.T.A.C 10 (1956), 91-96). ALGOL procedures for
applying the algorithm to series of complex·terms are given by
Wynn (BIT 2 (1962), 232-255).

The body of this procedure has been tested using the Dart
mouth Self-Contained ALGOL Processor for the LGP-30 com
puter. It gave the following results on the sequence for the
smaller zero of the Laguerre polynomial, L[2](x):

n S(n] e(1](S(n]) e(Z](S(n])

0 0.0000000 0.5714285 0.5857432
1 0.5000000 0.5851059 0.5857854
2 0.5625000 0.5857318 0.5857861
3 0.5791016 0.5857816
4 0.5838396 0.5857859
5 0.5852172

e[J]1(S[n])

0.5857616
0.5857859
0.5857861

6 0.5856198 True Value 0.5857864375

These results are in satisfactory agreement with those given by
by Wynn (1956);

begin integer :j, k, limj, limk, two kmax;
real TO, Tl;
two kmax : = kmax + kmax;
limj : = nmax;

for j : = nmin step 1 until limj do
begin TO := O;
lim := :j - nmin;
if limk > two kmax then limk : - two kmax) limk : - limk - 1;
fork : = 0 step 1 until limk do

begin Tl := S [j-kJ - S [j-k-1];
if Tl¢ 0 then Tl := TO+ 1/Tl else
if S [j-kJ = 1099 then Tl := TO else

Tl :== 1099;
comment 1099 may be replaced by the largest number

representable in the computer;
TO := S [j-k-1];
S [i-k-1] :- Tl

end fork
end for j

end Shanks

215-P 1- 0

CERTIFICATION OF ALGORITHM 215
SHANKS [H. C. Thacher, Jr., Comm. ACM 6 (Nov.

1963), 662)
LARRY SCHUMAKER (Recd. 16 Dec. 63)
Computation Ctr., Stanford U., Stanford, Calif.

Algorithm 215 was coded in Extended ALGOL for the Burroughs
B-5000 and was tested on a large number of sequences. One ap
parent typographical error was noted. 'The statement lim : =

j - nmin should have read limk : = j - nmin. The following tables
were reproduced exactly: (a) tables on p. 5 and p. 33 of [l]; (b)
Table I on p. 95 of [2]; (c) Tables Ill and IV on p. 28 of [3].

REFERENCES:

1. SHANKS, D. Non-linear transformations of divergent and
slowly convergent sequences. J. Math. Phys. 34 (1955), 1-42.

2. WYNN, P. On a device for computing the em(Sn) transforma
tion. MTAC 10 (1956), 91-96.

3. WYNN, P. On repeated application of the E~algorithm. Chijfres
4 (1961)' 19-22.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 216
SMOOTH
RICHARD GEORGE*

Argonne National Laboratory, Argonne, Ill.
* Work supported by the U. S. Atomic Engergy Commission.

procedure SMOOTH (Data) which is a list of length: (n);
integer n; real array Data;
begin

comment This procedure accomplishes foUJ'th-order smooth
ing of a list using the method given by Lanczos, Applied
Analysis (Prentice-Hall, 1956). This algorithm requires only
one additional list for temporary storage;

real Factor, Top; integer Max I, I, J; array Delta [1 : n];
Factor := 3.0/35.0;
Max I:= n - 1;
for I : = 1 step 1 until Max I do

Delta [I] :=Data [I+l] - Data [I];
for J := 1 step 1 until 3 do

begin
Top := Delta [1];
Max!:= Maxl- 1;
for I : = 1 step 1 until Max I do

Deli.a [I] : = Deli.a [I+ 1] - Delta [I]
end;

Max I:= n - 2;
for I := 3 step 1 until Max I do

Data [I) : = Data [I] - Delta [I - 2) X Factor;
Data [1] := Data [1) + Top/5.0 + Deli.a [1) X Factor;
Data [2) := Data [2) - Top X 0.4 - Deli.a [1)/7.0;
Data [n) :=Data [n] - Delta [n-3)/5.0 +Deli.a [n-4) X Factor;
Dar.a [n-1] .- Data [n-1] + Deli.a [n-3) X 0.4 - Delta

[n-4)/7.0
end;

216-P 1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 217
MINIMUM EXCESS COST CURVE
w ILLIAM A. BRIGGS

Marathon Oil Co., Findlay, Ohio

procedure MINIMUM EXCESS COST CURV.E (nodes, links,
source, sink, I, J, crash, normal, slope, node, lij, ERROR);

value nodes, links, source, sink;
integer nodes, links, source, sink,·
integer array I, J, crash, normal, slope, node, lij,·
comment This procedure utilizes a network-type description of

a project to compute the minimµm cost involved in expedition
of the project completion date. Project tasks are identified and
completion order specified by the vector pair I, J, which contain
node numbers of the events starting and ending each task. The
tasks are parameterized within the vectors crash, normal, and
slope-which contain the crash or minimum task completion
times, the normal task completion times, and the increased cost
per unit decrease in task duration (the slope of the time-cost
curve), which must be a nonzero integer. The procedure initially
determines the normal-duration critical path, then successively
reduces the durations of the tasks with the flattest cost slope,
adjusting the critical path, until minimum durations are
reached. The FORD-FULKERSON labeling; technique is
utilized. Each task must proceed from a lower-numbered node
to a higher-numbered one-if not, exit to the nonlocal label
ERROR is made. Nodes should be numbered sequentially, start
ing at the initial event (source) and continuing to the final event
(sink). The maximum node number is equivalent to the value
nodes, while the value links denotes the total number of tasks.
The arrays are of dimensions I, J, crash, normal, slope,
lij [1: links] and node [1: nodes];

begin integer m, n, tb, nji, nij, ·lex, kf, nj, ni, ntv, ord, infinity,
temp;

integer array labl[l :nodes,1 :3], f[l :links,1:2];
comment infinity is herein used to represent the largest avail

able integer;
form : = 1 step 1 until links-1 do

if I[m] ~ J[ml V I[m] > l[m+l] V J[m] > J[m+l] then go
to ERROR;

if ![links] ~ J[links] then go to ERROR;
for n : = 1 step 1 until nodes do labl[n, 1] • ·- labl[n, 2) : =

labl[n, 3] : = node[n] : = O;
for m : = 1 step 1 until links do

begin f[m, l] : = f[m, 2] : = O;
temp : = node[I[m]] + normal[m];
if node [J[m]] < temp then node [J[m]] : = temp

end;
ntv := ord := O; tb := node[sink];

A: labl[source, 1] : = source; labl[source, 3] : = infinity;
for m : = 1 step 1 until links do

begin if labl[I[m], 1] = 0 then go to B;
if labl[J[m], l] ~ 0 then go to C;
nji : = node[J[mJ] - node[l[m]];
if nji ~ normal[m] then go to Al;
lex.:= slope[m] - f[m, l];
if lex ~ 0 then go to Al;
kf : = 1; go to A2;

Al: if nji ~ crash[m] then go to C;
lex : = infinity; kf : = 2;

A2: labl[J[m], l]: = I[m]; labl[J[m], 2): = kf;

if labl[I[m], 3] > lex then go to A3;
labl[J[m], 3] : = labl[I[m], 3]; go to A4;

A3: labl[J[m], 2] : = lex;

217-P 1- 0

A4: if J[m] = sink then go to D else go to C;
B: if labl[J[m], l] = 0 then go to C;

nij : = node[I[m]] - node[J[m]];
if nij -:;t. normal[in] V f[m, l] = 0 then go to Bl;
lex:= f[m, l]; kf: = -1; go to B2;

Bl: if nij -:;t. normal[m] V [m, 2] = 0 then go to C;
lex : = f[m, 2]; kf: = -2;

B2: labl[I[m], 1] : = J[m]; labl[I[m], 2]: = kf;
if [labl[J[m], 3] > lex then go to B3;
labl[I[m], 3) : = labl[J[m], 3]; go to B4;

B3: labl[I[m], 3] : = lex;
B4: if J[m) = sink then go to D;
C: end;

for n : = 1 step 1 until nodes do if labl[n, l] = 0 then
node[n) : = node[n] - 1;

F ;. for n : = 1 step 1 until nodes do labl[n, l] : = labl[n, 2] : =
labl[n, 3) : = O;

go to A;
D: if labl[sink, 3) = infinity then go to OUT;

ntv := ntv + labl[sink, 3]; nj := 1:1ink;
G: ni : = labl[nj, 1];

if labl[nj, 2] > 0 then go to Gl;
form : = 1 step 1 until links do if I[m] = nj /\ J[m] =

ni then f[m, -labl[nj, 2]] : = f[m, -labl[nj, 2]) +
labl[sink, 3);

Gl: for m : = 1 step 1 until links do if I[m] = ni /\ J[m] =
nj thenf[m, labl[nj, 2]] : = f[m, labl[nj, 2]] + labl[sink, 3];

if .ni = source then go to 0 UT;
nj : = ni; go to G;

OUT: form:= 1step1 until links do
begin lij[m] : = node[J[m]] - node[I[m]];

if Zij[m] > normal[m] the_n lij[m] : = normal[m)
end·

ord :,; (tb-node[sink]) X ntv; tb := node[sink];
if labl[sink, 3) = infinity then ntv : = infinity;

ANS: comment as control passes through here--
ord is the ordinate of the minimum project excess cost

curve at a total project duration of node[sink],
successive values of ord plotted versus node[sink] gener-

ate the minimum project excess cost curve.
node[l:nodes] contains the event times at each node
lij[l: links] contains the durations of each task
ntv is the slope of the cost curve back in time from total

duration node[sink].
these values should be printed in some readable form;

if ntv < infinity then go to F;
end MINIMUM EXCESS COST CURVE;

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 217 [H]
MINIMUM EXCESS COST CURVE [William A. Briggs,

Comm. ACM 6 (Dec. 1963), 737]
JoHN F. MuTH.(Recd. 26 Dec. 1967)
Michigan State University, East Lansing, MI 48823

KEY WORDS AND PHRASES: critical path scheduling, PERT,
cost/time tradeoffs, network flows

CR CATEGORIES: 3.59, 5.41.

Algorithm 217 was transliterated into FoRTRAN and successfully
rnn on the CDC 3600 system at Indiana University after the f'll
lowing changes were made:

(1) In the first Boolean expression of the program the term:
J[m] 2: J[m+l]

was replaced by the term:
(l[m] = l[m+l] /\ J[m] 2: J[m+l])

{2) The line :
A3: labl[J[m], 2] := lex;

was replaced by:
A3: labl[J[m], 3] := lex;

(3) In the statement labeled Bl, the symbols:
[m,2] = 0

were replaced by:
f[m, 2] = 0

(4) Two statements before the statement labeled A was replaced
by

ntvl := ntv := ord := 0
where ntvl was an additional integer variable. The third
statement before ANS was replaced by:

ord := (tb-node[sink]) X ntvl +ord; ntvl := ntv;

217-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 218
KUTTA MERSON
PHYLLIS M. LUKEHART*
Argonne National Laboratory, Argonne, Ill.

procedure KuttaMerson (n, t, y, eps, h, /ct, first);
~·alue n,' eps;
integer n;
real t, eps, h;
real array y;
Boolean first;

* Work supported by the U. S. Atomic Energy Commission.
procedure Jct;
comment This procedure int~rates the system of ordinary first

order differential equations y[i] == f[i](t, y[l], y[2], · · · y[n]) from
t = t tot= t + h by the Kutta'-Merson method (L. F'ox, Numeri
cal Solution of Ordinary and Partial Differential Equations,
p. 24, Pergamon Press, 1962). The working interval of calcula
tion is adjusted by the procedure so that the maximum absolute
error of the dependent variahles is less than eps. For optimum
error control, the equations should be scaled so ·that all de
pendent variables have ~ppro~imately the same magnitude.
Input variables for the ~rocedure are n, the number of equa
tions, t, initial value of ~he independent variable, y, array of
initial values of depend nt variables, eps, allowable error, h,
the total interval, jct, a procedure evaluating the derivatives,
and first, a Boolean vari ble which indicates whether the work
ing interval has been a justed to secure the desired accuracy.
On the initial call of he procedure for a given Eiystem, first
should be true. It ·wm be set false by the procedure J and the
proper working interv l determined. The procedure f ct has as
formal parameters th simple real variable t, and the real
arrays y and f. For i 1, 2, 3, · · · , nit must assign to f[i] the
value of the first deriv tive of y[i] appropriate to the values of t
and y. The body of t is procedure has been tested using the
Dartmouth SCALP co piler for the LGP-30 computer. For the
equation dy/dt == -2t 2 and input data t .= 1, y =' .5, h = 1,
eps = .0001, the avera e error was .000003 and the time was 30
min. For the linear b undary value problem d2y/dt2 = -1 -
(t2+l)y, y(±l) == 01 the maximum error was ,1()()()()()24 (L.
Collatz, The Numerical Treatment of Differential Equations, pp.
145, 225, Springer-Verlag, Berlin, 1960) and the time, 90 min.
More accuracy may be achieved by using a smaller value of eps;

hE,gin integer i, loc;
:real error;
array yO, yl, y2, JO, fl, f2[1 :n];
own integer ploc;
own real he;
Boolean increase;
i.f first then begin he : == h; ploc : == 1; first : == false end;
foe : = O;

ne::ct: f ct (t, yO, JO);
:for i : = 1 st~p 1 until n do
!~l[i] : = yO[i] + hc/3 X fO[i];
fct(t + hc/3, yl, fl);
for i : = 1 step 1 until n do
!~l[i] : = yO[iJ + hc/6 X /O(i] + hc/6 X /l[i];
fct(t + hc/3, yl, fl);
for i : == 1 step 1 until n do

218-P 1- 0

yl [i] : = yO[i] + hc/8 X fO[i] + 3 X hc/8 X fl [i];
fct(t + hc/2, yl, f2);
for i : = 1 step 1 until n do
yl [i] : = yO[i] + hc/2 X fO[i] 3 X hc/2 X fl [i] + 2 X he X

f2[iJ;
fct(t + he, yl, fl);
for i : == 1 step 1 until n do
y2[i] : = yO[i] + hc/6 X fO[i] + 2 X hc/3 X f2[i] + hc/6 X fl[i];
increase : = true;
for i : = 1 step 1 until n do
begin error : = abs(.2 X (yl[i] - y2[iJ));

comment To test on relative _error change this expression to
abs(.2 - .2 X y2[i]/yl[i]);

if error > eps then
begin he : = hc/2;

ploc : = 2 X ploc;
loc := 2 X loc;
go to next

end;
if error X 64 > eps then increase : = false

end i;

t : == t +he;
for i : = 1 step 1 until n do
yO[i] : = y2[i];
loc : = loc + 1 ; /

if Zoe < ploc /\ increase /\ lac = Zoe + 2 X 2 /\ ptoc > 1 then
begin he : = 2 X he;

loc : = Zoe + .2;
ploc : = ploc + 2

end;
go to next
end K uttaM er son

CERTIFICATION OF ALGORITHM 218 [D2]
KUTTA MERSON [Phyllis M. Lukehart, Comm. ACM

6 (Dec. 1963), 737]
KAREN BORMAN PRIEBE (Recd. 10 Feb. 1964)
Woodward Governor Company, Rockford, Illinois

Algorithm 218 was translated into FAST for the NCR 315 and
gave satisfactory results with the following corrections, if the
equations were scaled as recommended in the comment of the
original algorithm. Ignoring this scaling can lead to results that
do not aatisfy the intended error criterion.
1. procedure K uttaM er son (n, t, y, eps, h, Jct, first,· x);
instead of

procedure KuttaMerson (n, t, y, eps, h, jct, first);
2. real array y, x;
instead of

. real array y;

3. if first then begin for i : = 1step1 until n do yO[i] : = y[iJ;
he:= h;

instead of
if first then begin he : = h;

COLLECTED ALGORITHMS (cont.)

4. if Zoe < ploc then
begin
if increase /\ Zoe
begin

he : = 2 X he;
Zoe : = Zoe + 2;
ploc : = ploc + 2

end;
go to next

end;

(loc+2) X 2 /\ ploc > 1 then

for i : = 1 step. 1 until n do x[i] : = yO[i];
end K uttaM er son

instead of
if Zoe < pZoc /\ increase · · ·

end K uttaM er son

5. The following sentences should be added to the initial com
ment of the procedure:

The values of the dependent variables at t + h are placed in the
array x. Note that the values of t and first are changed as side
effects of the procedure. {As originally written, KutiaMerson
seemed unable to obtain the values of the solution at t or to trans
mit the values of the solution at t + h to the outside program!
Ed.)
6. Change array to array in the body of the procedure.

7. Insert after own integer ploc;

own array yO[l:n];

Delete yO from the existing array declaration.

REMARK ON ALGORITHM 218 [D2]
KUTTA-MERSON [Phyllis M. Lukehart, Comm. ACM 6

(Dec. 1963), 737}
G. BAYER (Recd. 25 Oct. 1965)
Technische. Hochschule, Braunschweig, Germany

Successive calls of Kutta Merson with.first = false do not reach
the upper bound t+h if the interval h is unequal to the interval
h of the first call with.first== true.

Proposed correction:
1) declaration real he, instead of own real he;
2) if first then begin for i : = 1 step 1 until n do yO[i] . - y[i];

he := h; pZoc := 1; first := false
end else he := h/ploc;

instead of if first then begin · · · end;

218-P 2- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 219
TOPOLOGICA.L ORDERING FOR PERT NET-

WORKS
ROBERT H. KASE

Atlantic Refining Co., Philadelphia, Penn.

procedure Topological Ordering (i, j, tri, n, ne);
integer n, ne; integer array i, j, tri;
comment Nodal points i and j represent activities in a PERT

network. n is the number of activities. tri is a tape record index
vector locating where additional data for each activity is stored.;

begin integer a, b; integer~array ni, nj, "event [l:n]; .
comment An event vector is set up containing ne events.

New nodal numbers ni and nj are assigned for all activities.;
ne : = ni[l] : = 1; event[l] : = i[l];
begin for a : = 2 step 1 until n do

begin for b : = 1step1 until ne do
if i[a] = event[b] then begin ni[a] : = b;
go to repeat 1 end;
end;

ni[a]: = ne: = ne + 1; event[ne]: = i[a];
repeat 1 : end;

begin for a : = 1 step 1 until n do
begin for b : = 1 step 1 until ne do
if j[a] = event[b] then begin nj[a] : = b;
go to repeat 2 end;
end;

nj : = ne : = ne + 1; event[ne] : = j[a];
repeat 2 : end;

begin integer t, bigtal; i.nteger array rank, con[l:ne];
comment Event ranking (topological ordering);
for a : = 1 step 1 until ne do

begin rank[a] : = 1; con[a] : = 0 end;

bigtal : = 1;
pass: t : = O;

for a : = 1 l!Jtep 1 until n do
begin if rank[nj[a]] ~ rank[ni[a]] then
rank[nj[a]] : = rank[ni[a]] + 1 else go to.fill;
if rank[nj[a]] > bigtal then
bigtal : = rank[nj[a]]; t : = 1

fill: con[rank[ni[a]]] : = con(rank[nj[a]]] : = 1
end;

if t ~ 0 then go to new;
fo.- a : = 1step1 until bigtal do

begin if con[a] = 0 then go to Loop end;

219-P 1- Rl

comment Loop should be a label of a procedure statement
which calls a subroutine to detect those events which may
be in a loop in the PERT network or the label of a print out
indicating that loop(s) exist in the network. In any case
a loop exists and further problem processing is impossible.;

for a : = 1step1 until bigtal do con[a] : = O;
go to pass;
comment Reassignment of a new nodal number, ni, to all

activities;
new: t : = 1:
for a : = 1step1 until bigtal do

begin for b : = 1 step 1 until ne do
if rank[b] = a then begin event[b] : = t; t : = t +I end
end;

for a : = 1 step 1 until n do ni[a] : = event[ni[a]]
end;
comment Using the new nodal number, ni, activities (i and j)

and their corresponding tri may now be arranged in topological
sequence with conventional sort routines. Sorting should be
done on ni.;

end

ACM Transactions on Mathematical Software, Vol. 3, No. 3, September 1977. Page 30:&

REMARK ON ALGORITHM 219

Topological Ordering for PERT Netvmrks

(R.H. Kase, Comm. ACM 6, 12 (Dec. 1963), 738-739]
Dennis Tenney [Rec 31 Jan. 1977 and 14 March 1976]
Knutson and Associates, 1700 North 55th St., Boulder, CO 80301.

ACM Algorithm 219 has been implemented successfully \Vi.th two necessary modifi
cations:

(1) change

end;
ni[a] := ne := ne +1; event[ne] := i[a];
repeat 1 : end;

to

n,i[a] := ne: = ne+l; event[ne] := i[a];
repeat 1 : end;
end;

(2) change

end;
nj := ne :c= ne+l; event[ne] := j[a];
repeat 2 : end ;

to
nj[a] := ne := ne+l; event[ne] := j[a];
repeat 2 : end;
end;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 220
GAUSS-SEIDEL
PETER w. SHANTZ
University of Waterloo, Waterloo, Ontario, Canada
procedure GAUSS-SEIDEL (n, A_, B, tol);

value n, tol; array A, B; real tol; integer n;
comment GAUSS-SEIDEL solves a system, Ax == B, of n

simultaneous linear equations inn unknowns. A is the matrix of
coefficients, B an inhomogeneous vector. The standard Gauss-
s "d 1 . . t h . . l d 'l I (i) (i-'l) I l e1 e iterative ec mque is emp oye unt1 Xx - xx < to
for all K, where xi> denotes the ith iterant of the unknown xx .
(Cf. Ralph G. Stanton, Numerical Methods for Science and Engi
neering, Ch. 8);

begin array X, Y[l:n]; integer i, j, K;
for i : = 1step1 until n do X[i] : = Y[i] : = O;

START: for i : = 1 step 1 until n do
begin Y[i] : = B[i];

for j : = 1 step 1 until n do
Y[i] : = if i == j then y[i] else

Y[i] -- A[i, j] X Y[jJ;
Y[i] : = Y[i]/ A [i, i]

end i;
comment Now test for convergence;

for K : = 1 step 1 until n do
if abs(Y[K] - X[K]) ~ tol then
begin for i : == 1step1 until n do

X[i] : == Y[i]; go to ST ART
end convergence test;

end GAUSS-SEIDEL

CERTIFICATION OF AND REMARK ON
ALGORITHM 220

GAUSS-SEIDEL [P. W. Shantz, Comm. ACM 6 (Dec.
1963), 739]

A. P. BATSON (Recd 6 Jan. 1964)
University of Virginia, Charlottesville, Va.
NIKLAUS WIRTH (Recd 6 Jan. 1964)
Computer Science Div., Stanford U., Stanford, Calif.

[EDITOR'S NOTE. Two substantially equivalent contributions
were received on the :same day, and so the editor has merged
them.-G.E.F.]

The following errors were detected.
1. The procedure cannot communicate the solution to the out

side block unless X (or Y) is made a parameter of the procedure.
2. The identifier GAUSS-SEIDEL may not contain a hyphen.
3. In the fourth line after the label ST ART change y[i] to

Y[i].
With the above errors corrected, GAUSS SEIDEL was suc

cessfully run on the Stanford 7090 computer in Wirth's Extended
ALGOL, and on the Virginia ALGOL compiler for the Burroughs
205.

The following improvements would be desirable.
1. A void repeated reference to the subscripted variable Y[i)

inside the j loop.

220-P 1- 0

2. Permit the user to initialize the a:rray X to an appropriate
value at the start of the iteration.

3. Modify tol to be a relative error, rather than an absolute
error.

4. Incorporate a guard against nonconvergence.

