Collected Algorithms from ACM

~ Volumel
Algorithms 1-220
A collection of the first 220 ACM Algorithms, including Certifications,

Remarks, and Translations from the Algorithms Department
- of Communications of the ACM, 1960-1963.

1980

A Publication of the Association for Computing Machinery, Inc.
1133 Avenue of the Americas
New York, New York 10036

Submittal of an algorithm for publication in the Collected Algorithms From ACM
implies that unrestricted use of the algorithm within a computer is permissible.
General permission to copy the algorithm in fair use, but not for profit, is granted
provided ACM’s copyright notice is given and reference is made to this publication,
its date of issue, and to the fact that copying is by permission of the Association for
Computing Machinery.

Price: ACM members $25; others $35. Prices subject to change without notice. For
latest prices refer to the current ACM Publications Catalog available free of charge
from ACM Order Department, P.O. Box 64145, Baltimore, MD 21264.

ISBN: 0-89791-017-6

Copyright © 1980, Association for Computing Machinery, Inc.

The algorithms and other items in this compilation are all excerpted from copyrighted ACM publications
unless otherwise noted.

Preface

The Algorithms department of Communications of
the ACM (CACM) was established in February 1960,
with J. H. Wegstein as editor, for the purpose of publish-
ing algorithms, consisting of procedures and programs,
in the Algol language. In 1975 the publication of ACM
algorithms material was transferred to ACM Transac-
tions on Mathematical Software (TOMS). A wide variety
of algorithms have been published and many of them
have been used heavily—either in original form or as
translated into other languages. Recognizing the general
acceptance of the algorithm material published in
CACM and TOMS, the Association for Computing Ma-
chinery (ACM) has collected and reprinted the algo-
rithms to make them more readily accessible and more
serviceable to a larger group of users.

This collection contains the first 220 algorithms pub-
lished in the Algorithms department of CACM from
1960 to 1963.

Algorithms 1-220 were originally published as re-
ceived—without any refereeing whatever. Many of these
have since been certified and/or corrected by their au-
thors or by other contributors.

- To facilitate the updating and to make this volume
convenient to use, an understanding of the page num-
bering scheme for the algorithms is helpful. The page

designation is in a three-part format: the left part is the
algorithm number; the middle part is the page number
within the algorithm (the first page of each algorithm is
P1); and the right part is the number of the revision of
that page. All sheets in the original, or first, insertion of
an algorithm have “0” for the right part. The first
revision of a page will have a page number having the
left and middle parts identical with those on the page to
be replaced, but the right part will be “R1” instead of
“0.” The second revision of the same page would read
R2, and so on. For example, 123-P2-R1 would mean the
first revision of page 2 of Algorithm 123.

Information on submitting algorithms for publication
may be found in the introductory section located in the
front of the current loose-leaf collection. Included in this
material is a cumulative index to all the algorithms
published since 1960 as well as the ACM Algorithms
Policy, which guides the publication of all algorithms
submitted to ACM.

Webb Miller

ACM Algorithms Editor

Department of Mathematics

University of California, Santa Barbara
Santa Barbara, CA 93106

COLLECTED ALGORITHMS FROM. CACM

1. Quanl
R. J. Herbold
National Bureau of Standards, Washington 25, D. C.

comment Quadl is useful when integration of several func-
tions of same limits at same time using same
point rule is desired. The interval (a,b) is di-
vided into m equal subintervals for an n-point
quadrature integration. p is the number of func-
tions to be integrated. wix and ux are normalized
weights and abscissas respectively, where
k=123,---,n. ux must be in ascending order.
P(B,j) =: (c) is a procedure which must be sup-
plied by the programmer. It evaluates (¢) the
function (as indicated by j) for B. I; is the result
of integration for function j.;

procedure Q‘us’dI (a,b,m,n,p,Wk,Uk,P(B,j) = (0)) =1 (I])

begin
QuadlI: h := (b—a)/m
for jr=1M)p ; I;:=0
A := a—h/2
for i:=1(1)m
L1 begin A := A+h
for k := 1(1)n
L2 begin B := A+ (h/2)Xux
for j = 1()p
L3: begin P(B,j) =: (¢)
I; := I;+wiXec end L3 ; endL2
end L1
for j = 1)p
I; := (h/2)XI;
return

integer (j,k,i)
end QuadIl

1-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

2. ROOTFINDER
J. Wegstein
National Bureau of Standards, Washington 25, D. C.

comment This procedure computes a value of g=x satis-
fying the equation x=f(x). The procedure calling
statement gives the function, an initial approxi-
mation a#0 to the root, and a tolerance
paramater € for determining the number of sig-
nificant figures in the solution. This accelerated
iteration or secant method is described by the
author in Communications, June, 1958.;
procedure Root(f(),a,e) =:(g)
begin
Root

]
)

b:=a ; c:=1(b) ; g:
if (c=a) ; return
d:=a ; bi=c¢ ; e:=¢

¢ := f(b)

g := (dXc—~bXe)/(c—e—b-d)
if (abs((g—b)/g)=e) ; return
e:=¢ ; di=b ; b:=g ;

Hob:

go to Hob
end

CERTIFICATION

2. RootrFINDER, J. Wegstein, Communications ACM,
February, 1960

Henry C. Thacher, Jr.,* Argonne National Labora-
tory, Argonne, Illinois

Rootfinder was coded for the Royal-Precision LGP-30 Com-
puter, using an interpretive floating point system with 28 bits
of significance. The translation from ArLgoL was made by hand.
Provision was made to terminate the iteration after ten eycles
if convergence had not been secured.

The program was tested against the following functions:

M) fx) = (x + 1) (Root = 1.3247180)
2) f(x) = tan x
(B.a) f(x) = 2re + tan™ x @=1,234)
(4.) f(x) = sinh ax (¢ = —12, —0.5, 0.5, 1.2)
Selected results were as follows:
£(x) o € Xk—1 Xk
1 13 107, 10~ 1.3247233 1.3258637)
1 13 10 T 13247165)
2 5 102 — 4674691 —.36021288 a,?2)
2 4 108 +.84880381 +4.69496143 (1, 2)
3.1 1 108 ‘ 7.725253_1_
3.2 2 1078 14.06615&
33 3 107 20371026
34 4 108 26.66@

(1) No convergence after 10 iterations. Underlined figures are in-
correct.
(2) For this function, f/(0) = 1; so ednvergence is not to be ex-

2-P1- 0

pected at this root. However, the algorithm did not find

any other root.
It should be noted that the convergence criterion used fails
for a zero root. The provision to terminate after a given number
of eycles is therefore essential. Also, double precision is desirable.

* Work supported by the U. S. Atomic Energy Commission.

REMARK ON ALGORITHM 2
ROOTFINDER (J. Wegstein, Communications ACM,
February, 1960)
Henry C. THACHER, JR.,* Argonne National Laboratory,
Argonne, Illinois
k=Y (ke —
Vier—=Y 2 — 1) 4 (yir — yeof”

where Y is the desired root, and the derivatives f’ and f’’ are
evaluated there. Convergence is thus second order, provided that
7 [y = Y <2]f ~ 1]

The algorithm is, however, somewhat unstable numerically be-
cause of the factor f(yx—1) — f(yx—2) — Yk + Yk-2 in the de-
nominator.

Experience has shown that the minimum for ¢ is about one
half the precision being used. Provision to indicate when round-
off errors are causing random oscillations of g would be a desirable
addition.

The criterion used for terminating the iteration renders the
algorithm unsuitable for a zero root. A preliminary test for a
zero root would be desirable. In addition, the algorithm should
include provision for exit after a stated number of iterations.

Algorithm 15 appears to offer advantages along these lines.

+ O(ya — Y)3

* Work supported by the U. S. Atomic Energy Commission.
This algorithm has the convergence factor

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
Tt is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-
diagonal matrices T having ti; = ai, tiyni = bin, tiin =

Cis1 . As an extreme case L took a1 = 8z = -+- = a; = Q, a; =

g,

COLLECTED ALGORITHMS (cont.)

a7 = - =ap=1 ay =2, bi=1, ¢ = 0so that the func-
tion which was being evaluated was x5(x — 1)5(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 274, Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 272 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low aceuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for | X.;1 — X: | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x + tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

XxX=nr+y
¥y
3 30
tanx - x = —nr + —m—m«—,
cos y

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(iny — y) — yleosy — 1)
1+ (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x% — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
84, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
10 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in-
creasing order. This presumably was the case in Certification 3
when the roots of x5 4 7x* 4 5x% + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-

—nwr +

2-P2- 0

precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial {1].
REFERENCE

[1] J. H. WiLkiNsoN. The evaluation of the zeros of ill-conditioned

polynomials Parts I and II. Num. Math. 1 (1959), 150-180.

COLLECTED ALGORITHMS FROM CACM

3 P1- 0
3. SoLuTiON OF PoLYNOMIAL KEQUATION BY BAIRSTOW- e;cn(u l:)= (2 ; /go) t<o next:;)end e]r)ld)
[if (abs (inerp/p eps. ; begin
Hrroncock Mernop if (abs (incrq/q) < eps3) ; begin

A. A. Grau
Oak Ridge National Laboratory, Oak Ridge, Tenn.

procedure

BAIRSTOW (n, a[l, eps0, epsl, eps2, eps3, K) =:
(m, x[1], y[], nat{], ex[]);
The Bairstow-Hitcheock iteration is used to find
successively pairs of roots of a polynomial
equation of degree n with -coefficients a;
(i=0,1, -+, n) where a, is the constant term. On
exit from the procedure, m is the number of pairs
of roots found, x{ilJand y[i] i =1,---,m) area
pair of real roots if natfi]=1, the real and imagi-
nary parts of a complex pair if nat[i]=—1, and
ex[i] indicates which of the following conditions
was met to exit from the iteration loop in finding
this pair:
1. Remainders, rl, r0, become absolutely less
than epsl.
2. Corrections, incrp, inerq, become absolutely
less than eps2.
3. The ratios, inerp/p, incrq/q, become ab-
solutely less than eps3.
4. The number of iterations becomes K.
In the last case, the pair of roots found is not
reliable and no further effort to find additional
roots is made. The quantity eps0 is used as a
lower bound for the denominator in the expres-
sions from which inerp and inerq are found.;

comment

begin
integer
array

BAIRSTOW

G,1], k, n1, n2, m1) ;

(b, ¢[0 : n+1]) ;

fori:=0(1)n ; b;:=a;

bai1 :=0 ; n2 := entire((n+41)/2)
nl := 2Xn2

for ml := 1(1)n2 ;

fork := 1(1)K ; begin

fori:=0(1)nl ; c¢;:=b;

for j := nl—2,nl1—4 ; begin

fori := 0(1)] ; begin

Cit1:= Cip1— p X €4

Cit2 1= Cip2 — g X ¢; end end

beginp :=0 ; q:=0

step:

10 :=¢n; ; rl:= cna

80 :=cn_2 ; sl:=cns

v0:= —qXsl ; vl:=s0—5s1Xp

det0 := v1 X 80 — v0 X sl

if (abs(det0)<eps0) ; begin

p:=p+1 ; q:=q+1 ; go tostep end

detl := 30 X rl — 81 X r0
det2 :=r0 X vl — v0 X sl
incrp :=: detl/det0 ; incrq := det2/det0

p:=p-+inerp ; q:=q-+inerq
if (abs (r0) < epsl) ; begin
if (abs (rl) < epsl) ; begin

eXm: :=1 ; go tonextendend
if (abs (incrp) < eps2) ; begin
if (abs (incrq) < eps2) ; begin

eXm1 := 3 ; go to next end end end

eXm1 = 4
next: S:=p/2 ; T:=8—qgq
if (T20) ; beginT :=sqrt (T)
natm; =1 ; Xm:=8S+T
Ymi := S — T end
if (T < 0) ; begin natm := —1 ; Xp :=8
Ym := 8qrt(—T) end
if (exm:1 :=4) ; go to out
for j := 0(1) (n1—2) ; begin
by 1= bju — p X by
bj+2 = bj+2 —qX bj H end
nl:=nl -2 ; if (nl <1)
out: begin m := ml ; return end
if (n1 <3) ; begin
ml:=ml+4+1 ; exm:=1
p:=biy/by ; q := ba/bo
go to next end
end end
CERTIFICATION

3. SovLuTioN oF PoryNomiaL EQUATION BY BAIRsTOW-
Hircacock MgerHOD, A. A. Grau, Communications
ACM, February, 1960.

Henry C. Thacher, Jr.,* Argonne National Labora-
tory, Argonne, Illinois.

Bairstow was coded for the Royal-Precision LGP-30 computer,
using an interpretive floating point system (24.2) with 28 bits of
significance. The translation from ArLcoL was;ma'de by hand.

The following minor corrections were found necessary.

a. det2 :=r0 X vl — vO X s1 should be det2 := 10 X vl

— vl Xrl

b. 8 := p/2 should be 8 := —p/2.

After these were made, the program ran smoothly for the fol-
lowing equations:

x4~ 3x3 4+ 20x2 +44x +43 =0 x = — 97063897 = 1.0058076i
‘ x = —2.4706390 + 4.6405330i
X6 —2x5 4+ 2x4 4+ x3+6x2 —6x+8=0
x = 0.50000000 %= 0.86602539i
x'= 1.0000000 = 1.0000000i
x = 1.5000000 = 1.32287561
x5 4 x4 — 8x3 — 16x2 4 7x +15 =0
x = .000000005,** — 0.99999999
x = 3.0000000, 099999990
x = —2.0000000 =+ 1.0000000i

With the equation x5 4 7x4 4 5x3 + 6x2 4 3x + 2 = 0 conver-
gence was slow, and full accuracy was not obtained. However, the

COLLECTED ALGORITHMS (cont.)

equation with reciprocal roots, 2x5 4 3x* + 6x3 4 5x2 + 7x +
1 = 0, converged rapidly.

* Work supported by the U. S. Atomic Energy Commission.
** Spurious zero real roots are introduced for equations of odd
order.

CERTIFICATION OF ALGORITHM 3
SOLUTION OF POLYNOMIAL EQUATIONS BY

BAIRSTOW HITCHCOCK METHOD (A. A. Grau,

Comm. ACM, February, 1960)
JAMES S. VANDERGRAFT
Stanford University, Stanford, California

Bairstow was coded for the Burroughs 220 computer using the
Burroughs Arcor. Conversion from ArLcoL 60 was made by hand
on a statement-for-statement basis. The integer declaration had
to be extended to include n, k, n, NAT, EX, and the corrections
noted in the certification by Henry C. Thacher, Jr., Communica-
tions ACM, June, 1960, were incorporated.

By selecting the input parameters carefully, all branches of
the routine were tested and the program ran smoothly. The fol-
lowing polynomials equations were solved:
x® — 14x* 4+ 49x® — 36 = 0, x = = 1.0000000

X =+ 1.9999998
x = =+ 3.0000001
x8 — 30x% + 273x* — 820x% 4+ 576 = 0, x = =+ 1.0000000

X = = 2.0000000
X = =+ 2.9999999
X = = 4.0000001

Several minor errors were found in the certification by Mr.
Thacher. The constant term in the first polynomial should be 54
instead of 43, the second pair of roots for that polynomial should
be + 2.470639 =+ 4.6405330 i, and the second pair of roots for the
second polynomial should be —1.0 + i.

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It 1s this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-

diagonal matrices T having tii = a;, tivni = by, tiig =
¢iy1 .- As an extreme case I took a; = a; = +-- = g5 = 0, a5 =
a7 = -+ =ap=1 an =2, bj=1, ¢; = 0so that the func-

tion which was being evaluated was x5(x — 1)5(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 27, Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-

3-P2- 0

term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 272 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for | Xe1 — X: | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x + tan x) were used with a
general zero finder then; provided the method of evaluation was,
for example

X=nr+y
¥ _y
3 "0
tan x — x = —ngx + ——m,
cos y

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(siny —y) — yleosy — 1)
14 (cosy — 1)

—nr 4

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x® — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
S4, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
0 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to aceept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may ocecur if the factors are not found in in-
creasing order. This presumably was the case in Certification 3
when the roots of x5+ 7xt 4 5x3 + 6x2 4 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original

COLLECTED ALGORITHMS (cont.)

polynomial. When either of the other two factors was found_ first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE

[1] J. H. WiLkinson. The evaluation of the zeros of ill-conditioned
polynomials Parts I and I1. Num. Math. 1 (1959), 150-180.

CERTIFICATION OF ALGORITHM 3

SOLUTION OF POLYNOMIAL EQUATION BY
BARSTOW-HITCHCOCK (A. A. Grau, Comm. ACM
Feb. 1960)

Joun HERNDON

Stanford Research Institute, Menlo Park, California

Bairstow was transliterated into BALGOL and tested on the
Burroughs 220. The corrections supplied by Thatcher, Comm.
ACM, June 1960, were incorporated. Results were correct for
equations for which the method is suitable. x* — 16 = 0 is one
of those which gave nonsensical results. Seven-digit results were
obtained for 12 test equations, one of which was x# — 2x% + 2x* 4
x*+6x2—6x+8 =0.

3-P 3-

0

COLLECTED ALGORITHMS FROM

CACM

4. BisectioN RotTINE
S. Gorn
University of
Philadelphia, Pa.

This procedure evaluates a function at the end-points
of a real interval, switching to an error exit (fools
exit) FLSXT if there is no change of sign. Otherwise
it finds a root by iterated bisection and evaluation
at the midpoint, halting if either the value of the
function is less than the free variable ¢ or two suc-
cessive approximations of the root differ by less
than el. ¢ should be chosen of the order of error in
evaluating the function (otherwise time would be
wasted), and el of the order of desired accuracy. el
must not be less than two units in the last place
carried by the machine or else indefinite cycling will
occur due to round-off on bisection. Although this
method is of 0 order, and therefore among the slow-
est, it is applicable to any continuous function. The
fact that no differentiability conditions have to be
checked makes it, therefore, an ‘old work-horse’
among routines for finding real roots which have
already been 1solated. The free variables yl and y2
are (presumably) the end-points of an interval within
which there is an odd number of roots of the real
function F. « is the temporary exit for the evalua-
tion of F.;

Bisec(yl, ¥2, ¢, el, F(), FLsXT) =: (x)

Pennsylvania Computer Center

comment

procedure
begin
Bisec: i=1 3 j
a: f:=F®x) ;
go to
i=2 ; fl:=f ; x:=yl ;
if (sign(f) = sign(fl)) ; goto§; ;
ji=2 ; k:=2

x 1= yl/2 + y2/2 -;
y2 i= x

if (abs(yl — y2) = el)
return

yl := x ; go to Precision
integer (i, j, k)

switeh v 1= (First val, Succ val)
switch & := (FLSXT, Reg 8)
switch 5 := (Sec val, Reg 1)
end Bisec

=1 ; k=1 ; x:1=1y2
if (abs(f) < ¢) ; return

g0 to o
go to 7y

First val:
Succ val:
Sec val:
Midpoint:
Reg 6:
Precision:

go to a
; ®o to Midpoint

Reg 7:

CERTIFICATION OF ALGORITHM 4
BISECTION ROUTINE (8. Gorn,
March 1960)
Parry JANE RaDER,* Argonne National Laboratory,
Argonne, Illinois
Bisec was coded for the Royal-Precision LGP-30 computer,
using an interpretive floating point system (24.2) with 28 bits of

significance.
The following minor correction was found necessary.

Comm. ACM,

4-P1- 0

a: go to v; should be go to v;

* Work supported by the U. 8. Atomic Energy Commission.
After this correction was made, the program ran smoothly for
F(x) = cos x, using the following parameters:

n y2 € a Results
0 1 .001 .001 FLSXT
0 2 .001 .001 1.5703
1.5 2 .001 .001 1.5703
1.565 2 .1 1 1.5500
1.5 2 .001 1 1.5625

These combinations test all loops of the program.

* Work suprorted by the U. 8. Atomic Energy Commission.

COLLECTED ALGORITHMS FROM CACM

5. BesseL Function I, SERIES K XPANSION
Dorothea S. Clarke
General Electric Co., FPLD, Cincinnati 15, Ohio

comment Compute the Bessel function I (X) when n and X
are within the bounds of the series expansion.
The procedure calling statement gives n, X and an
absolute tolerance & for determining the point at
which the terms of the summation become insig-
nificant. Special case: I,(0)=1;

procedure I(n, X, 3s) =:(s)

begin

1: s:=0 ; sum:=0

if (n=0) ; gotoSTRT

if (X=0) ; beginlIs:=1 ; return end
summ := | ; go to SURE

STRT: sfac :=1

if (s =0) ; goto HRE

for t:i=1()s
sfac ;= sfac X t

HRE: snfac := sfac

for =541 (1)s+n

snfac := snfae X t
summ := sum + (X/2)n*s/(sfac X snfac)

SURE: if (6 < abs (summ — sum))

begin s:=8+1 ; sum:=summ ; gotoSTRT end
Is ;= summ ; return

end

5-P1- 0

COLLECTED ALGORITHMS FROM

6. BesseL Funcrion I, AsymproTic EXPANSION
Dorothea S. Clarke
General Electric Co., FPLD, Cincinnati 15, Ohio

comment

procedure
begin

I:

Repeat:

if

begin

end

Compute the Bessel Function I,(X) when n and X
are within the bounds of the asymptotic expansion.
The procedure calling statement gives n, X and an
absolute tolerance & for determining the point at
which the terms of the summation become in-
significant;

I(n, X, 8) =: (IA)

r:=1 ; pe:=(@4Xn2—1)/8XX)

sum := — pe
r:=r+1
pei=peX (2Xn)2— 2Xr—1?2/{X8XX)
(8 < abs (pe))
sum := sum + (—1)* X pe ; go to Repeat end
IA ;= (1 + sum) X (exp(X) /sqrt 2 X = X X))

return

CACM

6-P 1-

0

COLLECTED ALGORITHMS FROM CACM

7. EucLIDIAN ALGORITHM
Robert Claussen
General Electric Co., Cincinnati 15, Ohio

comment

procedure
begin
EUC:

if

begin

if

begin

here:
comment

if
begin
begin

integer
end

Every pair of numbers a, b not both zero have a
positive greatest common divisor: ged;
EUC (a, b) =: (ged)

(a=0)

ged:=b ; returnend
(b =0)

ged:=a ; returnend
r2:=a

rl:=b

g:=r2/rl

Assumption is made that truncation takes place
in the above statement;
r:=r2—-rlXg

(r=20)

ged :=rl ; returnend
r2:=rl

rl:=r

go to here end

(2)

7P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 8
EULER SUMMATION
3 (May 1960), 318 P. NAUR

procedure euler (fct, sum, eps, tim) ; value eps, tim ;
integer tim ; real procedure fct ; real sum,eps ;
comment euler computes the sum of fet(i) for i from zero up to
infinity by means of a suitably refined euler transformation. The
summation is stopped as soon as tim times in succession the abso-
lute value of the terms of the transformed series are found to be
less than eps. Hence, one should provide a function fet with one
integer argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in the case
of a slowly convergent or divergent alternating series ;
begin integer i, k,n,t ; array m[0:15] ; real mn, mp,ds ;
it=n:=t:=0 ; m[0]:= fet(0) ; sum := m[0}/2 ;
nextterm: i := i+1 ; mn := fetd) ;

for k : = 0 step 1 until n do

begin mp := (mn+mlk])/2 ; mlk] := mn ;
mn = mp end means ;
if (abs(mn)<abs(m[n])) A (n<15) then
begin ds := mn/2 ; n:=n+l ; min]:=
mn end accept
elseds := mn ;

sum := sum + ds ;
if abs(ds) <eps then t := t+J elset :=0 ;
if t<tim then go to nextterm

end euler

CERTIFICATION OF ALGORITHM 8

EULER SUMMATION [P. Naur et al. Comm. ACM
3, May 1960]

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.
* Work supported by the U. S. Atomic Energy Commission

The body of euler was tested on the LGP-30 computer using the
Dartmouth SCALP translator. No errors were detected.

The program gave excellent results when used to derive the co-
efficients for the expansion of In (1+z) in shifted Chebyshev poly-
nomials from the first ten terms of the power series. Forn = 0, 1,
2, 3, 4, the coefficient of z¢ in the power series was multiplied by
the coefficient of T,*(z) in the expression of z* in terms of the
To*(x). The product, for ¢ = 1,2, -+- , 10 was used as fct(¢) in the
program. Results for n = 0 were as follows:

i Jet(3) ds sum
1 -+0.50000000 —_ i —_
2 —0.18750000 -+0.07812500 -+0.3281250
3 +0.10416667 +0.05729166 +0.3854167
4 -0.068359375 —0.005940758 +0.3794759
5 +0.049218750 —0.001928713 +0.3775471
6 —0.037597656 —0.001357019 -+0.3761900
7 +0.029924665 +0.0001742393 +0.3763642
8 ~0.024547577 +0.0000571311 +0.3764212
9 +-0.020607842 -+0.0006395427 +0.3764607
10 —0.017619705 —0.0000055069 +0.3764551

True Value! +0.3764528129.

8P1- 0

Errors less than 0.2 X 1075 were also found forn = 1, 2, 3, 4, 5,
6,7,8and9.

This technique appears to be a useful supplement to direct
telescoping (Algorithms 37 and 38) and to the methods recom-
mended by Clenshaw!, for slowly convergent power series.

1 Clenshaw, C. W., Chebyshev Series for Mathematical Functions.
National Physical Laboratory Math Tables, Vol. 5, London,
H.M.S.0. (1962).

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 9 RUNGE-KUTTA INTEGRATION
3 (May 1960), 318 P, NAUR

procedui-e RK(x,y,n,FKT,eps,eta,xE,yE,fi) ; value x,y ;

integer n ; Boolean fi ; real x,eps,eta,xE ; array
v,yE ; procedure FKT ;

comment RX integrates the system yi'=fi(X,71,¥25. .. » ¥n)
(k=1,2,... ,n) of differential equations with the method of Runge-

Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values x and y[k] for x and the un-
known functions yk(x). The order n of the system. The procedure
FKT(x,y,n,z) which represents the system to be integrated, i.e.
the set of functions fx . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which repre-
sents the solution at x=xE. The Boolean variable fi, which must
always be given the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh-
points Xo, X1, ..., Xa, then the procedure must be called repeat-
edly (with x=x¢, xE=xx,, fork=0,1,...,n—1)and then the
later calls may occur with fi=false which saves computing time.
The input parameters of FKT must be x,y,n, the output parameter
z represents the set of derivatives z[k]=1fy(x,yl1], y(2], ... , y[n])
for x and the actual y’s. A procedure comp enters as a non-local
identifier ;
begin

array z,y1,y2,y3[1:n] ; real x1,x2,x3,H

integer k,j ; own real s,Hs ;

Boolean out ;

procedure RKI18T(x,y,h,xe,ye) ; real x,h,xe ; array
y.ye |
comment, : RK1ST integrates one single RUNGE-KUTTA

with initial values x,y(k] which yields the output
parameters xe=x-+h and ye[k], the latter being the
solution at xe. Important: the parameters n, FKT, z
enter RK1ST as nonlocal entities

begin

array wll:n], a[l:5] ; integer k,j ;

afl] := a[2] := a[] 1= h/2 ; a[3]:=af4] :=h ;

xXe i= x ;

for k := 1 step 1 until n do yelk] := w[k] := yk] ;

forj:= 1 step 1 until 4 do
begin

FKT (xe,w,n,z) ;

xe i = x+alj] ;

fork := 1step 1 until n do

begin
wik] 1= ylki+ajlXz[k] ;
velk] : = yelk] 4 afj+1]Xz[k|/3
end k
end j

end RKIST
Begin of program:
if fithenbegin H: = xE—~x
out := false ;
AA: if x4+201XH-—-xE>0)=H>0) then

’

s:=0endelseH :=Hs ;

begin Hs := H ; out := true ; H := (xE—x)/2
end if ;
RKIST (x,y,2XH,x1,yl) ;

BB: RKIST (x,y,H,x2,y2) ; RKIST(x2,y2,H,x3,y3) ;

for k := 1 step 1 until n do

9P 1- 0

if comp(y1[k],y3(k],eta) >eps then go to CC ;
comment : comp(a,b,c) is a function designator, the value
of which is the absolute value of the difference of the
mantissae of a and b, after the exponents of these
quantities have been made equal to the largest of the ex-

ponents of the originally given parameters a,b,c ;

x 1= x3 ; if out then go to DD ;

for k := 1step 1 until ndo y[k] := y3[k] ;
ifs=5thenbegins:=0 ; H:=2XHendif ;
si=s+1 ; gotoAA ;)

CC: H:=05XH ; out:= false. ; xl:=x2 ;
fork := 1stepl until n do y1{k] : = y2[k] ;
goto BB ;

DD: for k : = 1 step 1 until n do yE[k] : = y3[k]

end RK

8 This RK-program contains some new ideas which are related
to ideas of 8. GiLL, A process for the step-by-step integration of
differential equations in an automatic computing machine, Proc.
Camb. Phil. Soc. Vol. 47 (1951) p. 96; and E. FrROBERG, On the
solution of ordinary differential equations with digital com-
puting machines, Fysiograf. Sdllsk. Lund, Foérhd. 20 Nr. 11 (1950)
p. 136-152. It must be clear, however, that with respect to com-
puting time and round-off errors it may not be optimal, nor has it
actually been tested on a computer.

CERTIFICATION OF ALGORITHM 9 [D2]

RUNGE-KUTTA INTEGRATION [P. Naur et al,
Comm. ACM 3 (May 1960), 318]

Henry C. THACHER, JR. (Recd. 28 July 1964 and 22 Nov.

1965)
Argonne National Laboratory, Argo»nne, I

Algorithm 9 was transcribed into the hardware representation
for CDC 3600 ALgoL and run successfully. The following procedure
was used for the global procedure comp:
real procedure comp (a,b, ¢); valuea,b,c; reala,b,c;
begin integer AE, BE, CE;
integer procedure expon(z); real z;
comment This function produces the base 10 exponent of z;
expon := if z = 0 then —999 else
entier (4342044819 X In(abs(z)) + 1);

comment The number —999 may be replaced by any number
-]ess than the exponent of the smallest positive number handled
by the particular machine used, for this algorithm assumes
that true zero has an exponent smaller than any nonzero
floating-point number. Users implementing real procedure
comp by machine code should make sure that this condition
is satisfied by their program;

AFE := expon(a); BE := expon(b); CE := expon(c);

if AE < BE then AE := BE; if AE < CE then AE := CE;

comp := abs(a — b)/10 T AE

end

COLLECTED ALGORITHMS (cont.) R S o ' 9-P2- 0

This has the advantage of machine independence, but is highly
inefficient compared to machine code.
The procedure was tested using the two following procedures
for FKT:
vrocedure FKT (X, Y, N, Z); real X; integer N; array
Y, Z;
comment (dy/dx) = 21 = Y2, (dy/dx) = 22 = —y, . With
1(0) = 0, ¥2(0) = 1, the solution isy; = sinzx, Y2 = coszx;

begin Z [1]:=Y [2]; Z[2] := —Y [1] end;
procedure FKT (X, Y, N, Z); real X; integer N; array
Y, Z,

comment (dy,/dz) = 1 + y. For :(0) = 0, y(x) = tanx;

Z 1] :=14+Y[N2;

The RK procedure was used to integrate the differential equa-
tions represented by the first FKT procedure from 2 = 0(0.5)7.0,
with eps = eta = 1078, and with 4,(0) = 0, y.(0) = 1. The actual
step size h was .0625 for most of the range, but was reduced to
.03125 in the neighborhood of # = kx/2, where one or the other of
the solutions is small.

The computed solutions at = = 7.0 were: y; = 6.5698602746
X 1074, yo = 7.5390270246 X 107, with errors —5.71 X 1077 and
4.48 X 1077, respectively.

Results for the second differential equation are summarized in
Table I below.

The efficiency of the procedure would be increased slightly on
most computers by changing the type of the own variable s from
real to integer.

The error is estimated by comparing the results of successive
pairs of steps with that of a single double step. This is somewhat
more time-consuming than the Kutta-Merson process presented
in Algorithm 218 [Comm. ACM 6 (Dec. 1963) 737-8]. However,
the criterion for step-size variation in Algorithm 9 which effec-
tively applies an approximate relative error criterion, eps, for
ly] > eta, and an absolute error criterion eta X eps, for Jy| < eta,
appears superior when the solution fluctuates in magnitude.

TABLE I [ALG. 9]

x =05 z =10 ’ . z =15
K hmin Absolute error | Relative error hmin l Absoluie error | Relative error hmin Absolute error | Relative error
10~ 1073 .03125 -1 X107 | —2 X 107 .03125 9 X 1078 6 X 1078 | .00390625 | —1 X 108 | —8 X 1078
105 10-3 125 -5 X 1077 | —9 X 1077 .0625 8 X 107 5 X 1077 || .0078125 -2 X 10| —-1 X 10°®
108 102 .25 -1 X 1078 | —2 X 10-8 .25 —2 X 1074 -1 X 10| .03125 -3 X107 | -2 X 10-°

COLLECTED ALGORITHMS FROM CACM

10. Evavuarion or THE CHEBYSHEV PoLyNomiaL T, (X)
BY RECURsION
G. M. Galler
National Bureau of Standards, Washington 25, D. C.

comment This procedure computes the Chebyshev
polynomial Tn(X) = cos (n X cos~}(X)) for
any given real argument, X, and any order, n,
by the recursion formula below;

real procedure Ch(n, X) ;

real X ; integern ;

begin real a,b,c ; integeri ;
a:=1 ;b:=X ;
if n = 0 then ¢ := g else if n = 1 then
¢ := b else for i := 2 step 1 until n do
begin ¢ ;=2 X X X b —a ;

a:=Db ; b:=c¢

end
Ch:=c¢

end

CERTIFICATION OF ALGORITHM 10

CHEBYSCHEV POLYNOMIAL T.(x) (Galler, Comm.
ACM, June, 1960)

JouN HERNDON

Stanford Research Institute, Menlo Park, California

When transliterated into BALGOL and tested on the Bur-
roughs 220, Ch(n, x) gave better than 7-digit accuracy for n = 0,
1,4,8 and x = .01, .2, .7. It gave answers when x > 1 which cor-
responded to the value of the series with x substituted.

0P 1- 0

COLLECTED ALGORITHMS FROM CACM

11. EvavvatioN oF THE HERMITE Porynomian H,(X)
BY RECURSsION
G. M. Galler
National Bureau of Standards, Washington 25, D. C.

comment This procedure computes the Hermite poly-
nomial
Ha(X) = (1) X eX* X (d7/dX"(e~%")) for any
given real argument, X, and any order, n, by
the recursion formula below;

real procedure He(n, X) ;

integer n ; real X ;

begin real a,b,c ; integeri ;
a:=1 ; b :=2X
if n = 0 then ¢ := g else if n = 1 then

¢ := b else for i := 1 step 1 until n—1 do

begin ¢ ;=2 X X Xb—-2XiXa ;
a:=b ; b:i=c¢

end

He :=¢

end

11-P 1-

0

COLLECTED ALGORITHMS FROM CACM

12. EVALUATION OF THE LAGUERRE PoLyNOMIAL Ly,(X)
BY RECURSION
G. M. GALLER
National Bureau of Standards, Washington 25 D. C.

comment This procedure computes the Laguerre poly-
nomial
La(X) = eX X (dv/dX~(X= X eX)) for any
given real argument, X, and any order, n, by
the recursion formula below;
real procedure La(n, X) ;
integer n ; real X ;
begin real a,b,c ; integeri ;
a:=1 ; b:=1-X ;
if n = 0 then ¢ := 3 else if n = 1 then
¢ := b else for i = 1 step 1 until n—1 do
begin ¢c:= (142X i—-X)Xb—-3G012)Xa ;
a:=Db ; b:=c¢
end
La :=¢
end

12-P 1-

0

COLLECTED ALGORITHMS FROM CACM

13. EVALUATION OF THE LEGENDRE PorLyNomian P,(X)
BY RECURSION
G. M. Galler
National Bureau of Standards, Washington 25 D. C.

comment This procedure computes the Legendre poly-
nomial
Pa(X) = (1/(2* X nl)) X d=/dX~(X2 — 1) for
any given real argument, X, and any order, n,
by the recursion formula below;
real procedure Le(n, X) ;
integer n ; real X ;
begin real a,b,c ; integeri ;
a:=1 ; b:=X ;
if n = 0 then ¢ := g else if n = 1 then
¢ := b else for i := 1 step 1 until n—1 do
begin ¢:=b XX+ (G/(4+1) X XXb—a) ;
a:=b ; b:i=c¢
end
Le := ¢
end

CERTIFICATION OF ALGORITHM 13

LEGENDRE POLYNOMIAL P.(x) (Galler, Comm.
ACM, June 1960)

JouN HErRNDON

Stanford Research Institute, Menlo Park, California

When transliterated into BALGOL and tested on the Burroughs
220, Le(n, x) gave 7-digit accuracy forn =0,1,4,9and X = .01,
2,.7,19,5.0. .

13-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 14
COMPLEX EXPONENTIAL INTEGRAL

A. Beam

National Bureau of Standards, Washington 25, D. C.

procedure

comment

begin

BACK:

end

EKZ(x,y,k,,u,v,n) ; real x,yk,euv ;
integer n ;

00
EKZ computes w(z,k) = u + iv = z"e'f e~tdt/tk
z

from the continued fraction representation found
in H. 8. Wall, Continued Fractions, Chap. 18 (D.
Van Nostrand, New York, 1948). Input parameters
are X, ¥, k, and ¢ where z=x-+iy. Successive con-
vergents are computed as follows: Forn = 2, 3, 4,
] Dn = Z/(Z + M X Dn—-l), Rn =
(Do = DRuay, Cu = Cui + Ry, where M is
k + (n—2)/2 or (n—1)/2 according to whether n
is even or odd, and D, = R, = C; = 1. Computa-
tion is stopped when C, and C,_, agree to the sig-
nificance specified by e. The corresponding index
n is available after use of the procedure. This
method is valid in the entire complex plane except
for the origin and the negative real axis. Conver-
gence is too slow to be practical for [z | < .05.
Also for some range within the half-strip |y | < 2,
x < 0 (this range depends on k). The method is
valid for complex k, but only real k is considered
in this procedure;
real t1,t2,t3, M, K, c,a,d, b, g, h, el ;
integer m ;
commentR=a+ib, D=c¢+id, C=g+1ih ;
el 1= €2 ;
ui=ci:=a:=1 ; vi=d:=b:=0 ;
n:=1 ; K:=k -1 ;
g:=u ; hi=v ; ni=n+1 ;
m:=n-+2 ,
if2Xm=nthenM:=m+ KelseM:=m ;
tl:i=x+MXe ; t2:=y+MXd ;
t3 1= t112 + t212
ci= (x Xtl4+yXt2)/t3 ;
d:= (y X tl —x X t2)/t3 ;
tl:=e¢c—1 ; t2:=13a ;
a:=aXtl—dXb ; b:=dXt24+tlXb ;
u:=g-+a ; vi=h+b ;
if (al2 + b12)/(u]2 + vi2) > ¢l then go to
BACK ;
EKZ

CERTIFICATION OF ALGORITHM 14
COMPLEX EXPONENTIAL INTEGRAL (A. Beam,
Comm. ACM, July, 1960)
P. J. Raber anp Henry C. THACHER, Jr.*
Argonne National Laboratory, Argonne, Illinois
EKZ was programmed by hand for the Royal-Precision LGP-30
computer, using a 28-bit mantissa floating-point interpretive sys-

tem (24.2 modified). To facilitate comparison with existing tables
(National Bureau of Standards Applied Mathematics Series 51

14-P 1-

0

and 37), the rea: and imaginary parts of Ex(z) were computed
from u and v. Results are shown in the following table. In all
cases, the values agreed with tabulated values within the toler-

ance specified.

X
X

bk b ek ek et ek et e fmd ek

X
X
X
X
X
X
X
X
X
X
1.
1.
1.
1.
2.
2.
2.
2.
3.
3.
3.
3.
4.
4.

4.
4.
4.

10-¢
10-3
1078
10-3
10-8
10-#
10-8
10—
10-#

—
9
o

OOOOOOO@OOOOOO§
®

0
0
0

]

Zoooboboboooo

|
oo

|
]

coocowbmXww—=XwiomX b s e e e e

e e e
OOOOOOOB}'OOOOOOO
@

0.0

DO b O ret b e b ek e et et b e el b bl bl b ped e b e e et et e DY

314
15, 16

€
107t
1072
1073
10
107®
10-¢
1077
10~8
10-¢
1078
1078
106
10-¢
10-¢
10-¢
106
107¢
1078
10-¢
10-¢
10-¢
1078
1076
10-8
1078
1078
1078
107¢

n
7
14
24
37
52
70
90
114
37
26
21
40
34
26
21
23
22
20
17
17
17
16
15
20
15
16
17
16

It thus appears that the algorithm gives satisfactory accuracy,
but that in certain ranges of the variables, the time required may

be excessive for extensive use.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 15

ROOTFINDER II (Modification of Algorithm 2. Root-
FINDER, J. Wegstein, Communications ACM, February,
1960)

Henry C. THACHER, JR.,* Argonne National Laboratory,
Argonne, Illinois

procedure ROOT II (f, a, eps, n, g, ¢, m); integer n, m;
real procedure f; real a, eps, g, c;
comment ROOT II computes a value of g = y satisfying

the equation y = f(y). The iteration will con-
verge to Y providing that at some time in the
iteration a g is reached such that abs(g — Y) X
abs(d(df/dy)/dy) < 2 X abs((df/dy) — 1),
where the derivatives are evaluated at Y.
Input includes (1) f, a procedure for computing
f(y), (2) a, an initial approximation to the
root, (3) eps, a tolerance for the relative error
in g, and (4) n, & maximum number of itera-
tions to be performed. Output includes: (1) g,
the required root, (2) ¢ = f(g) — g,) m, a
parameter indicating the success of the pro-
cedure. If the tolerance was not met, m < 0.
|m — 1] gives the number of times that the
correction to g exceeded the preceding one, an
indication of instability. ;
begin integer j; real b, d, h;
m := 1; if f(0) = 0 then begin g := 0;
go to return end .-
else g :=f(a); b:=d:i=c:=a—g;
if ¢ = 0 then go to return else
for j := 1step 1 until n do begin ¢ := f(g) — g;
if (abs(c/g) < eps then go to return else h :=
b/c;
ifh<0V h>2thenm :=m+ I else
d :=4d/th — 1); b:=¢; g :=¢g + d end
iteration
if the system is known to be stable, the if clause
" of the last statement can be omitted;
m := — m return end

comment

* Work supported by the U. S. Atomic Energy Commission.

CERTIFICATION OF ALGORITHM 15
ROOTFINDER II (Revision by Henry C. Thacher, Jr.,
Communications ACM, August, 1960)
Henry C. THACHER, JR.,* Argonne National Laboratory,
Argonne, Illinois
The revision of ROOTFINDER suggested in the preceding
remark was programmed by hand for the Royal Precision LGP-30
computer, using a 28-bit mantissa floating point interpretive
system (24.2).
The program was tested for the following equations:
(1.k) f(y) = arctany + kr k=0,1,2,3,4,6,8)
@ 1) = (0 + D™ ppece both have the root 1.3247180428
@) fy)=y" -1

(4.k) f(y) = ginh oky - — = = 0.5 =12
6.k f(y) = coshozky} (= =12, oy = =05, aa = 0.5, cu = 12)

15P1- 0
Typical results of these tests were as follows.
f(y) € a g [f(g-) — g-1] X 107 Remarks
1.0 10-8 1.0000 0.0000000 0.00
1.1 108 3.1415 4.4934094 0.15
1.2 10-8 6.2832 7.7262518 0.60
1.3 1078 9.4248 10.904122 0.00
1.4 1078 12.5664 14.066194 0.00
1.6 1078 18,8496 20.371303 0.60
1.8 1078 25.1327 26.666054 0.60
L2 108 1.3 1.3247179 0.00
1.2 10-¢ 0.5 1.3247179 0.00
3 100 9.0 4.4804900 197.74 X 10" Diverged 2 times, not con-
3 100 5.0 1.3482797 .51 X 107 verged after 20 iter.
3 1079 3.0 1.3247180 0.0 Converged in less than 20 iter.
3 10~ 2.0 Diverged 2 times. Term. with

h=1

3 10~ 1.1 1.3247180 1384.24 Diverged 9 times. Converged
after 20 iter.

3 10~¢ 1.0 Terminated when g became 0.

3 100 0.8 1.3247180 0.00 Diverged 4 times. Conv. in
less than 20.

8 107® 0.6 1.6161598 4.39 X 107 Diverged 2 times. No conv.
after 20.

4.k 10~ 1.0 0.00000000 0.0000000u For all k.

5154 108 1.0 0.09179585 0.793:X 107 Diverged 7 times. No conv.

after 20 iter.

5.2,6.3 107® 1.0 1.11787755° 0.037

Function (3) is of particular interest, since it does not converge
for most algorithms. With the Wegstein iteration, convergence
was obtained, or would have been obtained with a few more itera-
tions for a wide range of initial guesses.

* Work supported by the U. S. Atomic Energy Commission.

REMARK ON ALGORITHM 15

ROOTFINDER II (Henry C. Thacher, Jr., Comm.
ACM, August 1960)

GeorGE E. ForsYTHE AND JounN G. Herrrior, Stanford
University, Stanford, California

As pointed out by Lieberstein (Comm. ACM, January 1959,
p. 5), this algorithm is precisely the Newton method of chords or
the scant method applied to g(x) = f(x) — x = 0. Thus conver-
gence is not of second order but rather (for simple roots) of order
4(v/6 — 1) = 1618, as shown by Jeeves (Comm. ACM, August
1958, pp. 9-10). In the first portion of the algorithm b, ¢, d, should
be set equal to g— a instead of a— gin order to be consistent with
the iteration portion. Doing this will usually cut down the number
of iterations. Not only is a preliminary test for a zero root de-
sirable but the possibility that g may be zero at any stage of the
iteration should be considered in writing the return criterion. The
possibility that h = 1 should also be checked and appropriate ac-
tion taken. Algorithm 26 takes care of these matters and also
corrects some minor errors in Algorithm 15. This method is cer-
tainly not the best rootfinder that could be written.

COLLECTED ALGORITHMS (cont.)

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM , August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WiLkINsoN

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-
diagonal matrices T having tii = ai, tigi = by, tiia =
Ciy1 . As an extreme case I took a; = a, = -+ = a3 = 0, a5 =
a7 = .-+ =3, =1, a; =2, b;=1, c¢; = 0so that the fune-
tion which was being evaluated was x5(x — 1)5(x — 2). In spite
of the:multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 2. Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 27 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for | Xry1 — X: | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should: be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x 4+ tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example ‘

XK= nr+y
r_oy_ ..
3 30
tanx — x = —nr +
cos y

the multiple zeros at x = 0 could be found as accura?ely as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(siny — y) — ylecosy — 1)
14 (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x =:0. As regards the number of iterations needed, thef re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x* — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Simila.rly
a very large number are needed for Newton’s method, starting
with x = 2. If the vime for evaluating the derivative is about the

—~nr +

5-P2- 0

same as that for evaluating the function (often 1t 1s much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton. o
In all of the algorithms, including that for Bairstow, it 1s use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the conditio_n
84, that abs(fprt) < abs(x2 X 10), but here the limitation' is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
r0 respectively. They are very difficult tolerances to assign sir'lce
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the 1(.)s5
of accuracy which may occur if the factors are not found in in-
creasing order. This presumably was the case in Certification 3
when the roots of xb 4 7x* - 5x% -+ 6x2 4 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].
REFERENCE

[1] J. H. WiLkinson. The evaluation of the zeros of ill-conditioned
polynomials Parts 1 and 1I. Num. Math. 1 (1959), 150-180.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 16

CROUT WITH PIVOTING

GEORGE E. FORSYTHE

Stanford University, Stanford, California

real procedure INNERPRODUCT (u,v) index : (k) start : (s)
finish : (f);

value s, f; integer k, s, f; real u, v;
comment INNERPRODUCT forms the sum of u(k) X
v(k) for k=s,s+1,...,f. If s > f, the value
of INNERPRODUCT is zero. The substitution
of a very accurate inner product procedure
would make CROUT more accurate;
begin
real h;

h:=0; fork :=sstepluntilfdoh :=h 4 u X v;
INNERPRODUCT := h
end INNERPRODUCT;

procedure CROUT (A, b, n, y, pivot, INNERPRODUCT);
value n; array A, b, y, pivot; integer n, pivot;
real procedure INNERPRODUCT;
comment This is Crout’s method with row interchanges, as
formulated in reference [1], for solving Ay = b
and transforming the augmented matrix [A b]
into its triangular decomposition LU with all
Lik, k] = 1. If Aissingular we exit to ‘singular,’
a non-local label. pivot[k] becomes the current
row index of the pivot element in the k-th
column. Thus enough information is preserved
for the procedure SOLVE to process a new
right-hand side without repeating CROUT.
The accuracy obtainable from CROUT would
be much increased by calling CROUT with a
more accurate inner product procedure than
INNERPRODUCT;
begin
integer k, i, j, imax, p; real TEMP, quot;
for k := 1 step 1 until n do

1: begin
TEMP := 0;
fori := k step 1 until n do
2 begin
Alfi, k] := Ali, k] — INNERPRODUCT(Ali,p], Alp, k],
b, 1; k_]-);
if abs(A[i, k]) > TEMP then
3: begin
TEMP := abs(Ali, k]); imax :=1i
end 3
end 2;

pivot[k] := imax;
comment We have found that Aflimax, k] is the largest
pivot in column k. Now we interchange rows k and imax;
if imax # k then
4: begin for j := 1 step 1 until n do

5: begin
TEMP := Alk,jl; Alk, j] := Alimax,j];
Afimax,j] := TEMP
end 5;

TEMP := blk]; blk] := b[imax]; blimax] := TEMP

16-P 1- 0

end 4;
comment The row interchange is done. We proceed to the
elimination;
if Alk, k] = 0 then go to singular;
for i := k+1 step 1 until n do
begin quot := 1.0/A[k, k]; Al[i, k] := quot X Ali, k]
end;
for j := k+1 step 1 until n do
Alk, jl := Alk,j] — INNERPRODUCT (Alk, pl,
A[p3J]: p, 1: k—l)y
blk] := blk] - INNERPRODUCT (A[k,p], blp], p,
1, k—1)
end 1;
comment The triangular decomposition is now finished,
and we do the back substitution;
for k := nstep —1 until 1 do

ylk] := (b(k] —~ INNERPRODUCT(A[k,p], ylpl, p,
k+1, n)/Alk, k]
end CROUT;

procedure SOLVE (B, ¢, n, z, pivot, INNERPRODUCT);
value n; array B, c, z, pivot; integer n, pivot;
real procedure INNERPRODUCT;

comment SOLVE assumes that a matrix A has already been

transformed into B by CROUT, but that a new
column ¢ has not been processed. SOLVE solves the
system Az = ¢, and the output z of SOLVE is pre-
cisely the same as the output y of the procedure
statement CROUT (A, ¢, n, y, pivot, INNER-
PRODUCT). However, SOLVE is faster, because
it does not repeat the triangularization of A;
begin
integer k; real TEMP;
for k := 1 step 1 until ndo
begin
TEMP' := c¢[pivot(k]};
TEMP; clk] :=
clpl, p1, k — 1)
end;
for k := n step —1 until 1 do
z[k] := (clk] — INNERPRODUCT(Bk,p], zlpl, p,
k+1, n)/Bik, k]
end SOLVE

c[pivot[k]] := clk]; clk] :=
c[k] — INNERPRODUCT(BIk, pl,

REFERENCE

[1] J. H. WiLkinsoN, theory and practice in linear systems, pp.
43-100 of Joun W. Carr III (editor), Application of Advanced
Numerical Analysis to Digital Computers, (Lectures given at
the University of Michigan, Summer 1958, College of En-

- gineering, Engineering Summer Conferences, Ann Arbor,
Michigan [1959]).

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 16

CROUT WITH PIVOTING (G. Forsythe, Communica-
tions ACM, September, 1960)

GEORGE E. FORSYTHE

Stanford University, Stanford, California

QUERY

Perhaps the most basic procedure for an ALGOL library
of matrix programs is an inner product procedure. The pro-
cedure Innerproduct given on page 311 of [1] is fairly difficult
to comprehend, and probably poses great difficulties for most
translating routines. I merely copied its form in writing a modi-
fied inner product routine for [2].

My query is: How should one write an inner produet pro-
cedure in ALGOL?

REFERENCES

1. PETer NaUR (editor), J. W. Backus, ET AL., Report on the
algorithmic language 'ALGOL 60, Comm. Assoc. Comp.
Mach. 3 (1960), 299-314.

2. GEorGge E. ForsyTHe, CrouT with pivoting in ALGOL
60, Comm. Assoc. Comp. Mach. 3 (1960), 507-508.

REMARK ON ALGORITHM 16

CROUT WITH PIVOTING (G. E. Forsythe, Comm.
ACM, 3 (Sept. 1960), 507-8.)

Henry C. THAacCHER, Jr.,* Argonne National Labora-
tory, Argonne, Illinois

This procedure contains the following errors:
a. In SOLVE, the expression '
elk] := c[k] — INNERPRODUCT
(Blk, pl,elpl,p 1,k — 1)
should read:
clk] := cfk] — INNERPRODUCT
(Blk, pl, elpl, p, 1, k — 1)
b. In CROUT, the specification part should read:

array A, b,y ; integer n ; integer array pivot ;
c¢. In SOLVE, the specification part should read:
array B, ¢, z ; integer n ; integer array pivot ;

The efficiency of the algorithm will be improved by the follow-
ing changes:

a. In the elimination phase of CROUT, replace

for i := k + 1 step 1 until n do
begin quote := 1.0/A[k, k] ; Al k]:= quot XA[i,klend ;
by
quot, := 1.0/Alk, k] ; fori := k + 1 step 1 until n do
Ali, k] := quot XA[i, k] ;

b. Omit INNERPRODUCT from the formal parameter list
in both CROUT and SOLVE, and declare INNERPRODUCT
either locally, or globally. This avoids any reference to INNER-
PRODUCT in the calling sequence produced by a compiler.

It is also to be noted that a minor modification of CROUT
allows it to be used to evaluate the determinant of A.

All of these suggestions are included in a later algorithm.

* Work supported by the U. S. Atomic Energy Commission.

16-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 17

TRDIAG

C. F. Spracugr II1
General Atomic Division of General Dynamics Corp.,
San Diego, California

procedure
value n;
comment

begin array
for

begin

for

end trdiag

trdiag (a,b,c,d) order : (n) result : (x);

array a, b, ¢, d, x; integer n;

this procedure gives the solution to the tri-
diagonal system of linear algebraic equations:

X+ bixi+di =0

aXip +bixi+eixia+di =0, i=23,--- ,n—1

bnxn + CnXn—1 + dn = 0

This method is often used to obtain solutions to
second . order difference equations;

gamma [l : n—1]; integeri; realy;
gamma [1] := —all]/b[l];

x[1] = —d[t]/b[1];

i:= 2 step 1 until n—1 do

y = bli] + ¢[i] X gamma [i — 1];

gamma [i] := —alil/y; x[] := —(e[i] X x[i—1]
=+ dfil)/y end;
x[n] := —(c[n] X x[n—1] + d[n])/(b[n] + c[n]

X gamma [n—1]);
i := n step —1 until 2 do
x[i — 1] := x[i] X gamma [i — 1] + x[i — 1]

17-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 18

RATIONAL INTERPOLATION BY CONTINUED
FRACTIONS

R. W. Froyp

Armour Research Foundation, Chicago, Illinois

comment This procedure fits to m given points (x;, yi) a con-
tinued fraction in the form
art(x—x1)/ @2+ (X—X2)/(8s+ (X—X3) /+ + * (X—Xm1)/Bm)) - +))
It also simplifies the continued fraction to a rational function
(No+Nix+- - - +Ngegxdeg) /(Do+Dyx+ - - - +Dgogxdes),
where deg is at most m + 2;
procedure confr(m,x,y,a,N,D);
real array x,y,a,N,D; integer m;
beginreal aa, xx,T; integeri,j,k;
switch sw := swl, sw2;
for j := 1step 1 until m do
begin aa := y[j]; xx := x[j];
fori := 1step 1 until j—1 do
aa :=(xx—x[i])/(aa—ali]); al[j] := aa
end;
k:=1; P[0] :=1; Q[0] := a[l];
mult : for j := 1 step 1 until m = 2 do P[j] := Q[j] := 0;
for i := 2 step 1 until m do
begin for j := i + 2 step —1 until 1 do
begin T := afi] X Q[jl — x[i—1] X P[j] + P(j—1};
Pfj] := QU5 Q] := T
end; T := afi] X Q[0] — x[i—1] X P{0];

real array P,Q[0 :m + 2

P[0] := Q[o}; Q[0} := T
end; go to swik];
swl : for j := Ostep 1 untilm + 2do NJj] := Q[j];
k:=2; P[0]:=0;Q[0] :=1; gotomult;

sw2 :for j := O step 1 until m + 2 do D[j] := Q[j]
end procedure

CERTIFICATION OF ALGORITHM 18
RATIONAL INTERPOLATION BY CONTINUED
FRACTIONS
[R. W. Floyd, Comm. ACM., Sept. 1960)
Henry C. THACHER, Jr.*
Reactor Engineering Div., Argonne National Lab.,

Argonne, Il
* Work supported by the U. S. Atomic Energy Commission

The body of procedure confr was tested with the ALGoL trans-
lator system written for the LGP-30 computer by the Dartmouth
College Computer Center. No syntactical errors were found in the
procedure body, except for a missing semicolon after the array
delearation. The translated algorithm gave satisfactory results
when tested on values of (4z + 1)/(x + 4) at any three of the points
z = 1, 2, 3, 4. When all four points were used, a division overflow
occurred in the statement for ¢ := 1 step 1 until j—1 do aa :=
(zz — =zli])/(ea—alZ]); which forms the reciprocal differences. An
overflow of this type will occur whenever y[;j] is approximated to
high accuracy by one of the continued fractions based only on the
points z[¢], 2 = 1,2, --. , k with & less than j. Unless ¢ = j—1, the
difficulty may be overcome by setting aa equal to the largest real
representable in the computer whenever division overflow would

18-P 1- 0

occur. wnen ¢ = j—1, the difficulty is irretrievable, and the data
points must be reordered.

COLLECTED ALGORITHMS FROM CACM
: 19-P1- 0

ALGORITHM 19 ‘ ' ‘ shoutd be
BINOMIATIs COEFFICIENTS for i := 0 step 1 until b—1 do
RicuArp R. KENvoN ' o ®) The sequence end C:=a end
Computing Laboratory, Purdue University, Lafayette, g .. b0 ‘ o
Indiana end; C:=a end
comment This procedure computes binomial coeffi-
cients Cn" = n!/m!(n — m)! by the re-

cursion formula Ciyy = (n — 1)Ci"/G + 1)
starting from Co* = 1
integer procedure C(m, n) ;

?

mteger m,n j
begin integeri,a, b ;
a:=1 ;
if2 X m > n thenb := n —m else
b:=m ;

fori := 0 step 1 until b do
begin 2 := (n —1i) X a + (i 4+ 1) end

C:=a
end Binomial Coefficients
REMARK ON ALGORITHM 19

RINOMIAL COEFFICIENTS (Richard R. Kenyon,
Comm. ACM, Oct. 1960)

Bicuarp STECK

Armour Research Foundation, Chicago 16, Ill.

The for clause of Algorithm 19 should read:
for i := 0 step 1 until b—1 do

With this correction the algorithm was certified on the Armour
Research Foundation Univac 1105.
The recursion formula stated in the comment should read:
Clv = (n—1) Ci"/(i+1).

CERTIFICATION OF ALGORITHM 19

BINOMIAL COEFFICIENTS [Richard R. Kenyon,
Comm. ACM Oct., 1960]

RicHARD GEORGE*

Particle Accelerator Div., Argonne National Lab., Ar-
gonne, Tl

* Work supported by the U. 8. Atomic Energy Commission.

This procedure was tested on the LGP-30, using the compiler
ALGoL-30 from Dartmouth College Computation Center. The fol-
lowing changes were found necessary:

{1) Within the comment, the line

Cia = (m— DCr/GE+ 1)
should be
Ciu=(m—)C@E+ 1)

(2) The line defining the iteration loop
for i := 0 step 1°until b do

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 20

REAL EXPONENTIAL INTEGRAL

S. PEavy '

National Bureau of Standards, Washington 25, D.C.

real procedure
comment

Expint (x) ; realx ;
—Ei(—x) = f: (e"v/u) du is computed for
x > 0 by approximation formulas. For
0 < x < 1 the approximation is from E. E.
Allen, Note 169, MTAC 56, pg 240 (1954).
The second approximation formula is for
1 € x< o and is from C. Hastings, Jr.,
‘““Approximations For Digital Computers”
(Princeton University Press, Princeton,
New Jersey, 1955). The absolute error
e(x)is le(x)| <2 X 107for0 < x < 1
and le(x)] <2 X 108%forl £ x < o ;
real y, w,z ;
if x < 1 then
z = ((((00107857 X x — .00976004) X x
+ .005519968) X x — .24991055) X x
+ .99999193) X x — .57721566 — In(x)
else begin
y := (((x -+ 8.5733287401) X x
+ 18.059016973) X x + 8.6347608925) X x
+ 2677737343 ;
w = (((x + 9.5733223454) X x
+ 25.6329561486) X x
+ 21.0996530827) X x + 3.9584969228 ;
z := exp (—x) /x X (y/w) end
Expint := z end

begin

REMARK ON ALGORITHM 20

REAL EXPONENTIAL INTEGRAL (8. Peavy, Comm
ACM, October 1960)

S. PEAVY

National Bureau of Standards, Washington, D. C.

A printing error has been called to our attention by J. A.
Beutler of E. I. duPont de Nemours and Co. Lines 15 through 17
of Algorithm 20 should read
z = ((((.00107857 X x — .00976004) X x

+ :05519968) X x — .24991055) X x
+ .99999193) X x — .57721566 — In (x)

* Work supported by the U. S. Atomic Energy Commission.

CERTIFICATION OF ALGORITHM 20

REAL EXPONENTIAL INTEGRAL (S. Peavy, Comm.
ACM, Oct. 1960)

WiLLiaM J. ALExanDER* and HeNrRy C. THACHER, JRr.*

Argonne National Laboratory, Argonne, Illinois

Expint (x) was programmed for the LGP-30 computer, using
both a 78 floating-point compiler (ACT III) and an 8S floating-
point interpretive code (24.2). Constants given to more than 78

20-P1- O

(or to 8S for the 24.2 program) were rounded to 78 (or 8S).

After changing the constant .005519968 to .05519968, both pro-
grams gave acceptable accuracy over the range tested.

The 88 (24.2) program was compared with the 9D values given
for —Ei(—x) in Mathematical Tables Project, Tables of Sine,
Cosine, and Exponential Integrals, Volume II (1940) for the
set of values x = 0.1(0.1)1.0(1.0)10.0. The largest discrepancy found
was —16 X 10~ for x = 0.1. For x greater than 1, all values tested
were good to 8S.

For computing real values of the exponential integral, this
algorithm is much faster than EKZ (Algorithm 13). For x < 1,
the ratio of speeds was of the order of 20.

* Work supported by the U.S. Atomic Energy Commission.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 21

BESSEL FUNCTION FOR A SET OF INTEGER
ORDERS

W. BORSCH-SUPAN
National Bureau of Standards, Washington 25, D. C.

procedure BESSELSETINT (x,n,¢,J) ; valuex,n,e ;
real x,e¢ ; integern ; real arrayJ ;

comment: This procedure computes the values of the Bessel
functions J,(x) for real argument x and the set of all integer
orders from 0 up to n and stores these values into the array J,
whose subseript bounds should include the integers from 0 up
ton. nmust be nonnegative.

The computation is done by applying the recursion formula
backward from p = k down to p = 0 as described in MTAC 11
(1957), 255-257. k is chosen to yield errors less than 107°
approximately after the first application of the recursion. The
recursion is repeated with a larger k until the difference be-
tween the results of the two last recursions doesn’t exceed the
given bound ¢ > 0. The steps in increasing k are chosen in
such a way that the errors decrease at least by a factor of
approximately 10~5. There is no protection against overflow. ;

begin real dist, recO, recl, rec2, sum, max, err ;
integer k, p ; Booleans ; ‘real array Jbar{0:n] ;
if x = 0 then
begin J[0] :=1
go to Exit
end ;
dist := if abs(x) = 8 then 5 X abs(x) T (1/3) else 10 ;
k := entier ((if abs(x) Z n then abs(x) else n) + dist) +1 ;
s := false ;
recd:=0 ; recl:=1 ; sum:=0 ;
for p := k step —1 until 1 do
begin J[if p > n + 1 then n else p — 1] := rec2 :=
2 X p/x X recl — rec0 ;
if p = 1 then sum := sum -+ rec2
else if p + 2 X 2 # p then sum :=
sum + 2 X rec2 ;

; forp:=1stepluntilndo J[p]:=0 ;

recO := recl ; recl := rec2
end recursion ;
Norm: for p := 0 step 1 until n do Jp] := J[p)/sum ;
if s then
begin max := 0 ;
for p := O step 1 until n do
begin err := abs (J[p] — Jbar[p]) ;
if err > max then max := err
end maXximum error ;
if max £ ¢ then go to Exit
end then
else s := true ;
for p := 0stepl until n do Jbar[p] := Jp] ;
k := entier (k + dist) ;
go to Rec
Exit: end BESSELSETINT

21-P 1- O

CERTIFICATION OF ALGORITHM 21 [S17]
BESSEL FUNCTION FOR A SET OF INTEGER
ORDERS
[W. Borsch-Supan, Comm. ACM 3 (Nov. 1960), 600]
J. StarrorDp (Recd. 16 Nov. 1964)
Westland Aireraft Ltd., Saunders-Roe Division, East
Cowes, Isle of Wight, Eng.

If this procedure is used with a combination of a moderately
small argument and a moderately large order, the recursive evalu-
ation of rec2 in the last line of the first column can easily lead to
oveérflow. This occurred, for instance, in trying to evaluate
J10(0.01).

The following alterations correct this:

(i) Declare a real variable z and an integer variable m;
(ii) After line rec insert:
2z :=MAX/4 X abs (z/k);
comment MAX is a large positive number approaching in
size the largest number which can be represented. The nu-
merical value of MAX/4 is written into the procedure;
(iii) At the end of the first column insert:
if abs(rec2) > z then
begin
recl := recl/z; rec2 := rec2/z; sum := sum/z;
for m := n step —1 until p — 1 do J[m] := J[m]/z

end;

With these alterations the procedure was run on a National-
Elliott 803, forx = —1,0,0.01, 1,10 and n = 0, 1, 2, 10, 20. The
-esults agreed exactly with published seven-place tables.

[See also Algorithm 236, Bessel Functions of the First Kind
(Comm, ACM 7 (Aug. 1964), 479) which is not restricted to inte-
ger values. Although it is a much more complicated program,
Algorithm 236 is slightly faster than Algorithm 21 as corrected, at
least in some cases.—Ed.]

COLLECTED ALGORITHMS FROM CACM

22-P1- 0

ALGORITHM 22 » loop: for k := 1+4n step 1 until if abs(x) = 11
RICCATI-BESSEL FUNCTIONS OF FIRST AND then 12+a else 2Xa+1 do

., begin 3 := 2Xk—-1) X r2/x -rl ;
SECOND KIND if abs(r3/C[n]) > acc then go to S ;

H. OsEr =12 ;
National Bureau of Standards, Washington 25, D. C. 2 =13 ;
comment: This loop is most liable to cause
procedure RICCATIBESSEL (x, n, eps, 8, C) ; overflow ;
value x, n, eps ; end loop ;
real x, eps; integer n; real array 5, C ; k := if abs(x) = 11 then 124+a ¢lse 2Xa + 1 ;
comment: RICCATIBESSEL computes Sk(x) = (mx/2)} Jia(x) r2:=rl ;
and Cg(x) = — (mx/2)} Yi3(x) for real x = 0 and all integer S: 6 := x T 2/(4Xk T 2X1r2) ;
values of k from 0 through n with a prescribed (absolute) rd = 1/13 ;
accuracy eps. The computation is done by using the recursion go to P[l] ;
relations of the cylinder functions. For abs(x) > n both Si(x) initial: for k := k step —1 until 2 do
and Cx(x) are computed by using the recursions for ascending) begin WI[if k>n+2 then n else k—2] := r4 :=
orders. For n > abs(x) the functions Si(x) are obtained by @2Xk—1) X r5/x — 16 ;
using the recursion in descending orders. (See STEGUN- :=r15 ;
ABramowitz, MTAC 11, 1957, 255-257). Reaching out two 15 i=r4
different intervals beyond the order n, the two vectors Si!(x) end ;
and Sc2(x) are checked if the maximum component of their dl :=rb/x — 16 ;
difference meets the tolerance eps. If this is not the case s d2 := if abs(W[0]) =
maximum of 10 iterations is set up to achieve the required abs(dl) then sin(x)/W(0] else cos(x)/dl ;
absolute accuracy. Initial values Simsx 8nd Simax—1 for the for k := 0 step 1 until n do
backward iteration are computed from the corresponding Wik] := d2XW[k] ;
values Cimax—t 80d Cimax. No check of accuracy is done in acc = step X acc ;
case n < abs(x). Both Cy(x) and Si(x) are affected in this l:i=2 ;
case by errors of the same order of magnitude as the sub- a:=a -+ step T (1/3) ;
routines for sin (x) and cos (x) ; 2 := Cin] ;
begin real rl, 12, 13, 4, 15, 16, step, ace, max, a, b, d1, d2 ; rl ;= C[n—1] ;
integer i, k, 1, imax ; ' go to loop ;
real array Wlo:n] ; improve: . for k := k step —1 until 2 do
switch P := initial’ improve ; begin S[if k > n+2 then n else k—2] =14 =
ace: = 16 ; @2Xk—1) X r5/x—~16 ;
step: = 103 ; b :=r5 ;
imax: = 10 ; r5 = r4
comment: These constants may be chosen differently, but end k ;
caution has to be taken because of overflow. acc sets an dl :=r5/x — 16 ;
initial iteration to give roughly a 6-place accuracy. d2 := if abs(S[0]) = -
Subsequent iterations should improve the result to 3 more abs(dl) then sin(x)/S[0] else cos(x)/dl ;
places each ; max := 0 ;
ii=1 ; for k := 1 step 1 until n do
if x = 0 then go to exitl ; begin S(k] := d2XS[k] ;
if n < abs(x) then b := abs(Sk] — W[k]) ;
casel: begin rl:= —sin(x) ; r2:=r4:= C[0] := cos(x) ; if b > max themmax :=b
r5 := 8[0] := sin(x) ; end ; i
for k := 1 step 1 until n do if max < eps then go to finish ;
begin Clk} := 13 := 2Xk—1) X 12/x —rl ; for k := Ostep ! until ndo W[k := S[k] ;
Sk} := 16 := 2Xk—1) X r5/x —r4 ; acc := step X ace ;

:,i : :.g ' ﬁ : :2 ; ‘if i z imax then go to exit2 ;
endk ; go to finish imitl ; a:=a+stepl(1/3) ;
end casel ;] r2 :=C[n] ; rl:=C[n—1] ; go toloop ;
case2: l:=1 ; rl:= —gin(x) ; r2:= C[0] := cos(x) ; eX}tl: go to ﬁn}sh ; comment:X =10 ;
for k := 1 step 1 until n do exit2: go to finish .; . . . hed -
begin Clk] := 13 := @Xk—1) X 2/x — 1l ;) comment : maximum number of iterations reached ;
& finish: end RICCATIBESSEL

rl ;=12
2 ;=13
end ;
a:=n ;

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 22 [817]

RICATTI-BESSEL FUNCTIONS OF FIRST AND
SECOND KIND [H, Oser, Comm. ACM 8 (Nov.
1960), 600]

Tuaomas Bray (Reed. 9 Mar. 1970)

Boeing Scientific Research Laboratories, Seattle, WA
98124

KEY WORDS AND PHRASES: Ricatti-Bessel functions, Bessel

functions of fractional order, spherical Bessel functions
CR CATEGORIES: 5.12

The procedure was translated into FORTRAN 1V and run on
an IBM 360/44 using double precision arithmetic (15 significant
decimal digits). One error was discovered in the algorithm. The
tenth line following the line with the label ‘‘improve’’ reads:

for k := 1 step 1 until n do
This line should read:
for k :=0 step 1 until » do

The results Sk (z)/z and — Cx(x)/z were computed using this cor-
rection and compared with Tables 10.1, 10.2 and 10.5 of [1]. The
results agreed to the number of digits given in the tables for:

x k
0.1 0(1)8
0.5 0(1)8
1.0 0(1)20
2.0 08
5.0 0(1)50
7.5 0()8
10.0 0(1)50
50.0 0(1)100
100.0 0(1)100

REFERENCES:
1. ABramowirrz, M., aNp StrGUN, I. A. Handbook of Mathematical
Functions. Appl. Math. Ser. 55, Nat. Bur. Standards US Govt.
Print. Off., Washington, D.C., 1964.

22 P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 23

MATH SORT

WaLLace FEURZEIG

Laboratories for Applied Science, University of Chicago,
Chicago, Ill.

procedure MATHSORT (INVEC, OUTVEC,
n, k, SETFUNC) ; valuen,k ;
array INVEC, OUTVEC ;
integer array TOTEVEC ;
integer procedure SETFUNC ;
integer n, k ;
begin comment MATHSORT is a fast sorting algorithm which
produces a monotone rearrangement of an arbitrarily ordered
set of n numbers (represented by the vector INVEC) by a
surprising though familiar device. The resultant sorted set is
represented by the vector OUTVEC. The key field, i.e. the
ordered set of bits (or bytes) on which the sort is to be done,
is obtained by some extraction-justification function denoted
SETFUNC. The key field allows the representation of k pos-
sible values denoted 0,1, ... , k—1.

The procedure determines first of all the exact frequency
distribution of the set with respect to the key, i.e. the number
of elements of INVEC with key field value precisely equal to
j for all j between 0 and k—1. The cumulative frequency dis-
tribution TOTEVEC [i] = Z}_o (Number of elements of
INVEC with key value = j) is then computed for0 i < k—1.
This induces the direct assignment (storage mapping func-
tion) of each element of INVEC to a unique cell in OUTVEC.
This assignment (like the determination of the frequency
distribution) requires just one inspection of each element of
INVEC. Thus the algorithm requires only 2n ‘“look and do”
operations plus k—1 additions (to get the cumulative fre-
quency distribution).

The algorithm can be easily and efficiently extended to
handle alphabetic sorts or multiple key sorts. To sort on
another key the same algorithm is applied to each new key
field with the new INVEC designated as the last induced
ordering (i.e. the current OUTVEC). The algorithm has been
used extensively at LAS on binary as well as decimal machines
both for internal memory sorts and (with trivial modification)
for large tape sorts ;
for i:=1stepluntilndo

TOTEVEC[SETFUNC(INVECIi])] := TOTEVEC
[SETFUNC(NVEC[D]+1 ;
for i:= lstepluntilk—1do
TOTEVEC]i] := TOTEVEC][i] + TOTEVEC[i—1] ;
for i:= lstepluntilndo
begin OUTVEC[TOTEVEC[SETFUNC(INVECIi)I
:= INVECH{] ;
TOTEVEC[SETFUNC(INVECI[i])] :=
TOTEVEC[SETFUNC(INVEC{])] — 1 ;
end

end MATHSORT.

TOTEVEC,

23-P1- 0O

CERTIFICATION OF ALGORITHM 23

MATHSORT (Wallace Feurzeig, Comm. ACM, Nov.,
1960)

RusseLL W. RansHAW

University of Pittsburgh, Pittsburgh, Pa.

The MATHSORT procedure as published was coded for the
IBM 7070 in ForTrAN. Two deficiencies were discovered:
1. The TOTVEC array was not zeroed within the procedure.
This led to some difficulties in repeated use of the procedure.
2. Input vectors already in sort on nonsort fields were unsorted.
That is, given the sequence
31, 21, 32, 22, 33,
Mathsort would produce, for a sort on the 10’s digit:
22, 21, 33, 32, 31,
which is definitely out of sequence.
The following modified form of the procedure corrects these
difficulties. Note the transformation of symbols.

procedure MATHSORT (I, O, T, n, k, S); value n, k;
array I, O; integer array T; integer procedure S;
integer n, k;
fori := Ostep 1 until k — 1 do T[i] := 0;
fori := 1step 1 until n do T[S(I[i])] := TISI]] + 1;
for i := k — 2 step —1 until 0 do Tli] := T[] +
T{ + 1}
fori := 1 step 1 until n do

begin O[n 4+ 1 — TSN := Ifi];

TSAGD] := TSAGD] - 1;

begin

end
end MATHSORT.

Using the MATHSORT procedure ten times and having the
procedure S supply each digit in order, 1000 random numbers of
10 digits each were sorted into sequence in 31 seconds. The method
of locating the lowest element, interchanging with the first ele-
ment, and continuing until the entire list has been so examined
yielded a complete sort on the same 1000 random numbers in 227
seconds. Using the Table-Lookup-Lowest command in the 7070
yielded 56 seconds for the same set of random numbers.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 24

SOLUTION OF TRI-DIAGONAL LINEAR EQUA-
TIONS

B. LEAVENWORTH

American Machine & Foundry Co., Greenwich, Conn.

procedure TRIDAG (n, A\B,C,D) ; integern ;

array A,B,C,D ;

comment: This procedure! finds the solution of an n X n system
of linear equations whose matrix is in tridiagonal form, that
is, aj; = 0 for [i — j| = 2. Parameters are: the main diagonal
B,, the diagonal just below A,, the diagonal just above C,
the right-hand side D: (wherep=1,... ,nandr =1, ...,
n — 1) and the matrix -order n. The solution vector replaces
the input vector D and the vector B is also destroyed in the
process ;

begin
real w ; integerj ;
Dl1] := D[1Y/B[1] ; w := B[1] ;
for j := 2 step 1 until n do

begin Bfj — 1] := C[j — 1]/w ; w:= B[j]— Aj — 1]
X B[j —1] ;
D[j] := (Dljl — Alj — 1} X D[j — 1])/w end ;
for j := 1step 1l untiln — 1do
Din —jl:=Dln—jl - Bn=j] X Dln—j+1]
end TRIDAG

1D. W. PeacemaN aNp H. H. Racurorp, Jr., The Numerical
Solution of Parabolic and Elliptic Differential Equations, Journal
of the Soc. for Ind. and Applied Math. Vol. 3 March 1955.

24-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 25

REAL ZEROS OF AN ARBITRARY FUNCTION
B. LEAVENWORTH

American Machine and Foundary Co., Greenwich, Conn.

procedure ZEROS(n, C, FUNCTION, m, epl, ep2, ep3, eta) ;

integer n, m ; realepl, ep2, ep3, eta ; array C ;

procedure FUNCTION ;

comment: This procedure finds the real zeros of an arbitrary
function using Muller’s method! * and is adapted from a
FORTRAN code by Frank.? Each iteration determines a zero
of the quadratic passing through the last three function
values. Parameters include the number of roots desired n.
If C; is zero, starting values are —1, 1, 0 respectively. If
C; = g then the starting values are .98, 1.18, 8. The procedure
FUNCTION((rt, frt) must be supplied to evaluate the func-
tion value frt, given the argument rt. m is the maximum
number of iterations permitted. epl is the relative conver-
gence criterion on successive iterates. ep2 is the absolute
convergence criterion on the function value. eta is the spread
for multiple roots, that is, if [rt — C;| < ep3 where C, is a
previously found root, then rt is replaced by rt + eta ;

begin integer L, jk, i, mm ; real p, pl, p2, x0, xi, x2, rt,

frt, fprt, d, dd, di, h, bi, den, dn, dm, tem ;

switch 8 : S1, 82, 83, 84 ;
for L := i step 1 until m do
begin jk :=0 ; if C[L] = 0 then go to initial else
go to assign ;

initial: p:=—-1 ; pl:=1 ; p2:=0 ;

assign: p:= 9XC[L] ; pl:=11%XC[L] ;

start: rt = p ; go to fn ;

enter: go to S[if jk < 4 then jk else 4] ;

Bl: rt:=pl ; x0:=fprt ; gotofn ;

82: rt:=p2 ; xl:=fprt ; gotofn ;

S3: x2:=fprt ; h:=if C[L] = 0 then —1
else —.1 X C[L] ; d:= -5 ;

loop: dd :=14d ; bi:=x0X d12— x1 X dd12 X x2 X

(dd + d) ;

go to start
p2:=C[L] ;

den:=biT2 -4 X x2XdXddX(x0X d— (x1 Xdd) +x2) ;

if den < 0 then den := 0 else den := sqrt(den) ;
dn := bi 4 den ; dm := bi—den ;
if abs(dn) < abs(dm) then den := dm else den := dn ;
ifden = O thenden :=1 ;
di:=—2Xx2X dd/den ; h:=diXh ;
go to if abs(h/rt) < epl then call else fn ;
34: if abs(fprt) < abs(x2 X 10) then
begin x0 :=x1 ; xl :=x2 ; x2:= fprt
go to loop end else begin di := di X .5 ;
rt:=rt—~h ; gotofnend ;
fn: jk:=jk+1 ; ifjk < m then mm := 1 else mm := 0 ;
call: FUNCTION(rt, frt) ; if mm = 1 then go to compute
else go to root ;
compute: fprt := frt ;
for i := 2 step 1 until L do
begin tem := rt— C[i— 1] ; if abs(tem) < ep3 then go to
change else fprt := fprt/tem end
test: if abs(frt) < ep2 A abs(fprt) < ep2 then go to root
else go to enter

rt:=rt+h ;

; di:=di ;
h:=hX . ;

25-P1- 0O
change: rt :=rt+eta ; jk:=jk—1 ;gotofn ;
root: C[L] := rt end L
end ZEROS

1D. E. MuLLER, A Method for Solving Algebraic Equations
Using an Automatic Computer, MTAC 10 (1956).

*W. L. Frank, Finding Zeros of Arbitrary Functions, J. ACM
5 (1958).

2 W. L. Frang, RWGRT, General Root Finder 704 FORTRAN
Source Language Subroutine SHARE Distribution # 635. Param-
eters used by Frank are: epl = 1078, ep2 = 107%, ep3 = 1072,
eta = 1073,

REMARK ON ALGORITHM 25

REAL ZEROS OF AN ARBITRARY FUNCTION
(B. Leavenworth, Comm. ACM, November 1960)

RoBErT M. COLLINGE

Burroughs Corporation, Pasadena, California

On attempting to use this algorithm, I discovered the two fol-
lowing errors: .
(1) The line following the SWITCH statement should read:
for L := 1 step 1 until n do
(2) The line starting with the label loop: should read:
loop: dd = 14+d ; bi=x0Xd72—x1 XddT2
+ x2 X (dd + d) ;
With these two modifications incorporated the algorithm' was
translated into the language of the Burroughs Algebraic Com-
piler and has been used successfully on the Burroughs 220 Com-
puter.

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-
diagonal matrices T having tii = ai, tips = by,
ciy1 . As an extreme case I took a; = a; = --- = g, = 0, as =
ag=---=ga;=1, an =2, b; =1, ¢; = 0so that the func-
tion which was being evaluated was x%(x — 1)8%(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 274, Results of similar acecuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.

ti.i+1 =

COLLECTED ALGORITHMS (cont.)

This is because the method of evaluation wnich was used, the two-
term recurrence relation for the leading principal minors, is @
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 27 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for | x;41 — x: | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x - tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example :

X=nr+Yy
¥y
3
tan x — x = —nr + ———,
cos y

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co-
gsine routines, this could be evaluated as

(siny — y) — y(cosy — 1)
I+ (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x® — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1 Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadraﬁ,ic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
S4, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
10 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in-
ereasing order. This presumably was the case in Certification 3
when the roots of xf - 7xt 4 5x3 + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found ﬁrst,

—nr +

25-P 2- 0

the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE

1] J. H. WiLkINsoN. The evaluation of the zeros of ill-conditioned
polynomials Parts I and II. Num. Math. 1 (1959), 150~180.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 26

ROOTFINDER III (Modification of Algorithm 15.
Rootfinder II, Henry C. Thacher, Jr., Comm. ACM,
August 1960)

Joun G. HEerrior, Stanford University, Stanford, Cali-
fornia

procedure ROOTIII (f, a, eps, n, g, ¢, m) ;
real procedure f ; real a, eps, g, ¢ ;
comment ROOTIII computes a value of g = y satisfying the
equation y = f(y). The iteration will converge to Y providing
that at some time in the iteration a g is reached such that
abs(g — Y) X abs(d(df/dy)/dy) < 2 X abs((df/dy) — 1),
where the derivatives are evaluated at Y. Input includes:
(1) f, a procedure for computing f(y), (2) a, an initial ap-
proximation to the root, (3) eps, a tolerance for the relative
error in g, and (4) n, a maximum number of iterations to be
performed. Output includes: (1) g, the required root, (2)
¢ = f(g) — g, (3) m, a parameter indicating the success of
the procedure. If the tolerance was not met m < 0. The num-
ber [m| — 1 gives the number of times that the correction to g
exceeded the preceding one. If f(y) — y has the same value
for two successive approximations to g, then h = 1, and we
exit to ‘‘alarm”, & nonlocal label. Alarm should provide a
means of deciding whether g is an acceptable root or not. ;
begin integer j ; realb,d, h ;
m:=1 ; j:=0 ; c:=0 ;
if f(0) = 0 then beging :=0 ;
go to returnend ;
g:=1f@a) ; bi=d:=c:=g—a ;
if ¢ = 0 then go to return ;

integer n, m ;

for j := 1 step 1 until n do

begin ¢ := f(g) — g ;
if abs(c) < abs(g) X eps then go to return ;
h := h/c ;

if h = 1 then go to alarm ;
ifh>0Ah<2thenm:=m+1 ;

d:=d/th—1) ; b:=¢c ; g:=g+d
end iteration ;
m := — m ; return : end

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the ecal-
culation of zeros of arbitrary functions by successive linear or
quadratic.-interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

26-P1- 0

For example, a real quaaratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-
diagonal matrices T having tii = ai, tiqii = bip, tiig =
€iy1 . As an extreme case I took a; = a; = -+« = a3 = 0, a5 =
a;= --- =ap=1, an =2, bi =1, ¢; = 080 that the func-
tion which was being evaluated was x5(x — 1)5(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 27, Results of similar aceuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-
term recurrence relation for the leading principal minors, is
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 27 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for | X1 — X: | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of:calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x == f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x + tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

»
]
5
+
«

tanx — x = —nw + —————,

the multiple zeros at x = 0 could be found as accuraf;ely as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(siny —y) — yleosy — 1)
14 (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x* — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Simila.rly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton. .

In all of the algorithms, including that for Bairstow, 1t 18 use
ful to have some criterion which limits the permissible ¢change
from one value of the independent variable to the next 1. T}lis
condition is met to some extent in Algorithm 25 by the con.ditm.n
S84 that abs(fprt) < abs(x2 X 10), but here the limitatmn‘ is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on

—nr +

COLLECTED ALGORITHMS (cont.)

the size of the function and on the size of the remainders rl and
r0 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in-
creasing order. This presumably was the case in Certification 3
when the roots of x5 4 7xt -4 5x% + 6x%2 + 3x +- 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].
REFERENCE

[1] J. H. WiLkinson. The evaluation of the zeros of ill-conditioned
polynomials Ports 1 and II. Num. Math. 1 (1959), 150-180.

26-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 27

ASSIGNMENT

RoLAND SILVER

MIT Lincoln Laboratory,* Lexington, Massachusetts

procedure Assignment(d, n, x) ; value n ;
array d ; integer array x ;

comment: Assignment determines that permutation x of the
integers [1:n] for which the sum (i := 1(1)n) of
the elements d[i, x[i]] of the n X n matrix d is a
minimum. n 2 2. For more complete information
see: An Algorithm for the Assignment Problem,
Roland Bilver, Comm. ACM, Nov. 1960, p. 605 ;

integer n

begin
switch Switch := NEXT, L1, NEXT1, MARK ;
array afl:n, 1:n] ;
integer array c[l:n], e¢b[l:n], lambda[l:n], mu[l:n],
r[l:n}], y[1:n] ;
integer cbl, el, cl0, i, j, k, 1, rl, 15, sw
comment:
INITIALIZF ;
for i := 1 step 1 until n do
begin min := d[i, 11

for j := 2 step 1 until n do if d[i, j| < min thea min
=4[, j]
for j := 1 step 1 until n do afi, j] := dfi, j] — min
end i ;
forj := | step 1 until ndo
begin min := all, j] ;
for i := 2 step 1 until n do if afi, j] < min then min

= ali, j] ;
for i := 1step 1 until n do afi, j] := ali, j| — min
end j ;
for i := 1step 1 until n do x[i} := y[i} :=0 ;
for i := 1 step 1 until n do
begin
for j := 1step 1 until n do
begin
if afi, j] = 0V x[i] # 0 VV y[j] £ 0 then go to JI ;
x(i] == j ; yl] =i
J1: endj ;
endi ;

START: comment: Start labeling ;
rl:=cl:=0 ; rs:=1 ;
fori := 1 step 1 until n do

begin muli] := lambdali] := 0 ;
if x[i] # O then go to Il ;
rl:=rl+1 ; rlrll:=i ;

I1: endi ;

LABEL: comment: Label and scan ;
i:t=rls] ; rs = +4+1 ;
for j := 1 step 1 until n do

begin if ali, j] # 0 or lambdafj] ¢ 0 then go
to J2

lambdalj] :=1 ; el:=¢cl+1 ;

if y[jl = 0 then go to MARK ;

li=rl+1 ; rlrlf:=y[l ; muly{ll =i

J2: endj ;

muli} ;= —1

clelf i=j ;

27-P1- 0

if rs < rl then go to LABEL ;

comment
RENORMALIZE ;
sw:=1 ; cl0:=¢l ; cbl:=0 ;
for j := 1 step 1 until n do
begin if lambdafj] # 0 then go to J3
cbl := ¢bl + 1 ; cblebl] :=)
J3: end j ;
min := afrfi], ebli]] ;
for k := 1step ! until rl do
begin
for 1 := 1 step 1 until cbl do if afr[k], cb[l]] £ min
then min := alr(k], cb(l]]
end k ;
fori:= 1 step 1 until n do
begin if muli] ## 0 then go to 12 ;
for | := 1'step 1 until ¢l0 do ali, ¢[ll] := ali, ¢[l]] + min ;
go to I3 ;
12: forl := 1 step | until cbl do
begin ali, cbl]] := ali, ¢cb[l]] — min ;
go to Switch[sw] ;

NEXT: ifali, cb{l] 0\ lambdalcb[l]] # 0 then go to L1 ;
lambdaleb[l]] := 1 ;
if ylcb(ll]] = 0 then
begin j := cb[l] ; sw:=2 ; goto Ll end ;
cl:=cl+1 ; clel] :=cb[l] ;
rl:=rl +1 ; rfl] := yleb[l]] ;
L1: end] ;
3: endi ;
go to Switchlsw + 2] ;
WEXT1: if cl0 = ¢l then go to LABEL ;
fori := cl0 4 1 step 1 until ¢l do mufy[c[i]]] := c[i] ;
go to LABEL ;
MARK: comment: mark new column and permute ;

ylj] := i := lambdafj] ;

if x[i] = 0 then begin x[i}] := j
START end ;

k:mj ; jo=x[i]

go to MARK

end Assignment

* Operated with support ¥rom the U. 8. Army, Navy and Air
Force.

[NotE: The reader should distinguish between the letter
and the figure 1, both of which appear in the above al-
gorithm—Ed.}

; 8o te

; x[i]i=k ;

CERTIFICATION OF ALGORITHM 27
ASSIGNMENT [Roland Silver, Comm. ACM, Nov. 1960]
ALBERT NEWHOUSE
University of Houston, Houston, Texas

The ASSIGNMENT algorithm was translated into MAD and

successfully run on the IBM 709/7094 after the following correc-
tions were made:

COLLECTED ALGORITHMS (cont.)

All references to array « and d refer to the same array, i.e. FROM
change all a[¢, j] to d[Z, j]. Furthermore: T0
{a) 3rd line after LABEL: comment: Label and scan;

should read
begin if dfz, j] # 0 \/ lambda [;] # 0 then go
(b) first line after J3: end j;
should read
min = d[r[1], ¢b[1]];
{¢) line I2:
should read
12: for] := 1 step 1 until cbl do

Since there is no provision made for this algorithm to end the

following additions were made:
(1) in-the integer declaration add the variable: flag
(2) first line after START: comment:
add the line
fag := n;
(3) first line before 71: end 7;
change to read
rl = rl+41; r[rl] :=14; mult] := —1; flag := flag — 1
(4) add a line after I1: end i;
if flag = n then go to FINI;
(6) change the last line of the algorithm to read:
FINI: end Assignment

In nrder to obtain the minimum value of the) i.i ai; (in the
following called total) the following additions may be made:

Add a real variable tofal and
(A) new line after INITIALIZE;

total := 0;
(13) new line after the first end ¢;
total := total + min;
(C) new line after the first end j;
total := total + min;
(D) after the line end k; after J3: end 7:
add the line
total = total + (ri4cbl—n) X min;

CERTIFICATION OF ALGORITHM 27

ASSIGNMENT [Roland Silvers, Comm. ACM 3, Nov.
1960]. -

RoBert . WIiTTY

Burroughs Corp., Detroit, Mich.

Assignment was successfully run on the Burroughs B5000 using
Burroughs extended ALaor 60.

Inpul Array
60 0 0 76 0 O
0 40 18 0 60 24
60 16 2 4 0 40
0 27 18 3 55 75
0 40 62 16 11 53
28 4 10 8 0 16

Solution Vector: X (6,4, 3,1, 5, 2)

The following changes were made in the algorithm prior to its
successful run:

FROM MIN := alr[z], cb[]];
70 MIN := a[r[l], ¢b[1]];
FROM if X[i] = 0 then begin X[i] : = j;
: go to START end;
T0 if X[i] = 0 then begin X[i] : = j;
for i := 1 step 1 until N do begin if X[i] = 0 then go
to START;
end; go to EXIT; end;

end ASSIGNMENT
EXIT: end; ASSIGNMENT

27-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 28

LEAST SQUARES FIT BY ORTHOGONAL POLY-
NOMIALS

JoBN G. MACKINNEY

General Kinetics Incorporated, Arlington 6, Virginia

procedure LSFIT (f, x1, xm, m, k, alpha, beta, sigma, s, p)
value x1, xm, m, k ; real xl1, xm ;
mk ;
real array f, alpha, beta, sigma, s, p ;
comment LSFIT accepts m values of the function f at equal
intervals of the abacissa from x1 through xm, and obtains in
p[0] through p[k] the coefficients of the best polynomial ap-
proximation of degree k or less (least squares) as programmed
by George E. Forsythe, Journal SIAM &, no. 2, June 1957,
with only minor variations. The output values alpha [1:k],
beta [0:k], and s [0:k] enable the user to make final adjust-
ments to the results, according to the statistic sigma [0:k].
LSFIT uses the procedure POLYX (a, b, ¢, d, n) to trans-
form its results from the interval (—2, 2) to the interval (x1,
xm) ;
begin integer i, j ; real dummy, x, xone, deltax, delsq,
omega, lastw, thisw ;
real array cthisp, cpoly [0:k], clastp [—1:k],
lastp, thisp [l:m] ;
Boolean swx ;
comment Initialization ;
swx. := true ; beta [0] := clastp [0] := clastp [—1] :=
delsq := omega := 0 ;
cthisp [0] :=1 ; thisw :=m ;
fori := 1step 1 until m do
begin delsq := delsq + f[ilf2 ;
thisp [i] ;= 1 ; lastp [i] :=0 ;
omega := omega + f[i] end ;
8 [0] := cpoly [0] := omega/thisw ;
delsq := delsq — 8 [0] X omega ;
sigma [0] := delsq/(m—1) ;
comment Transformation of abscissa ; i = m + 2 ;
if 2Xi = m then deltax := 4/(m — 1) else deltax :==
4/m ; xone :m —2 ;
comment Main Computation loop ;
fori := Ostep 1l untilk—1do
begin dummy := 0 ; X := xone ;
1: for j := 1 step 1 until m do
begin dummy := dummy + x X thisp j112 ;
X := X + deltax end ;
2: alpha [i + 1] := dummy/thisw ;
lastw := thisw ;
thisw ;= omega := 0 ;
X = Xxome ;
3: forj := 1stepl until mdo
begin dummy := beta [i] X lastp [i} ;
lastp {j] := thisp [j] ;
thisp [j] := (x — alpha {i + 1)) X thisp [j]
—dummy ;
thisw := thisw + thisp [[112 ;
omega := omega + f [j] X thisp j] ;
X 1= x + deltax end ;

H
integer

28-P1- 0

4: beta [i + 1] := thisw /lastw ;
sli + 1] := omega / thisw ;
delsq := delsq — s[i + 1] X omega ;
sigma [i +1) ;= delsq / (m —i—1) ;
if swx then go to 6 ;
5: cpolyli+1]:=0 ; goto9 ; .
Termination of main loop when higher power will
not improve fit ;
6: if sigma [i + 1) < sigma [i] thengo to7 ;
swx := false ; gotad ;
Recursion for polynomial coefficients ;
7: forj := 0 step 1 until i do
begin dummy := clastp [j] X beta [} ;
clastp {j] := cthisp [j] ;
cthisp [j] := clastp [j — 1] — alpha [i + 1) X cthisp [j] — dummy ;
cpoly [j] := epoly [j] + s fi + 1] X cthisp [jlend ;
8: cpoly [i + 1] := s [i + 1]
cthisp i + 1] :=1 ;
9: clastp [i + 1] := 0 end of main
computation loop, transformation of polynomial follows ;
begin real a, b ;
a := deltax X (m — 1)/ (xm — x1) ;
b := xone — a X x1 ;
POLYX (a, b, cpoly, p, k) end
end of LSFIT

comment

comment

REMARK ON ALGORITHM 28

LEAST-SQUARES FIT BY ORTHOGONAL POLY-
NOMIALS (John G. MacKinney, Comm. ACM 3
(Nov. 1960))

D. B. MacMiILLAN

Knolls Atomic Power Laboratory, General Electric Co.,
Schenectady, N. Y.

The algorithm obtains the coefficients of the fitted polynomial
of lowest degree such that an increase in. the degree would cause an
increase in the statistic sigma (sigma squared in Forsythe’s nota-
tion). A significant decrease in sigma, as one goes from a fitted
polynomial to one of higher degree, indicates that the increase in
degree causes an improvement in the fit to the function underlying
the data, rather than merely following more closely the random
variations about that function introduced by the physical meas-
urement process.

If one of the orthogonal polynomials, say the one of ith degree,
is missing from the underlying function, and some of the orthog-
onal polynomials of higher degree are present, then the fitted
polynomial of sth degree will not be a real improvement over that
of (¢ — 1)-th degree, but higher order fitted polynomials will be
a real improvement. For example, in one of our recent routine
problems the coefficient of the second degree orthogonal poly-
nomial was quite small, and the first few values of sigma, starting
with sigma (1), were .255, .264, .062, .046, .048. The algorithm would
have chosen the first degree fitted polynomial as “best’, but the
third and fourth degree fitted polynomials were clearly better
than it.

COLLECTED ALGORITHMS (cont.)

This loophole may be plugged by modifying the algorithm so it
computes the coefficients of the polynomial of lowest degree i for
which it is true that

sigma (i + 1) > sigma (i)
and that
sigma (j) > .6 sigma (i) j =i+42,i+3, -+, k,
(.6 was chosen arbitrarily).

REMARK ON ALGORITHM 28 [E2]

LEAST SQUARES FIT BY ORTHOGONAL

POLYNOMIALS [John G. MacKinney, Comm. ACM 3
(Nov. 1960), 604]

G. J. MaxinsoN (Recd. 30 Sept. 1965, 29 Aug. 1966 and
7 Nov. 1966)

University of Liverpool, Liverpool 3, England

There are three errors in the published procedure.
Line 32 7 := m + 2; should read ¢ := m =+ 2;
Line 56 delsq/(m—i—1); should read delsq/(m—7—2);
Line 69 ;is missing from end of statement cpolyli+1] := s{i+1];
Three improvements can be made to the procedure. In the case
of equally spaced points, it is possible to center them about the
origin; all alphas are then zero. This is achieved by replacing the
statements on lines 32, 33, and 34 by deltaz := 4/(m—1);

zone := —2; All statements involving alphas can then be re-
vised.

Another improvement can be made by deleting the two state-
ments on line 37 and all of lines 38, 39, and 40. These statements
are completely redundant.

The third improvement is to rewrite line 71 to read

clasip[i+1] :=0; 9: end of main
instead of

9: clastp[i+1] := 0 end of main

28-P 2- R1

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 29

POLYNOMIAL TRANSFORMER

Joun G. MACKINNEY

General Kinetics Inc., Arlington 6, Virginia

procedure POLYX (a,b,c,d,n) ; valuea,b,n ; integer

n ; real a, b ;
real array ¢, d ;
comment POLYX computes coefficients d0, d1, ... , dn of the
transformed polynomial p(t) given ¢0, ecl, ...,

cnof p(x) wherex = at +b
begin integer i, j,k ; real arrayz, w [0:n] ;
wi0] ;= z[0] :=1 ; d[0] := ¢[0] ;
for i := 1 step 1 until n do
begin wii] := 1 ; z[i] := b X z[i — 1] ;
d[0] := d[0] + cli} X zli]
end of initialization ;
for j := 1 step 1 until n do
begin wi[0] := w[0] X a ; d[j] := e[j] X w[0] ;
k:=1 ;
fori := j 4 1 step 1 until n do
begin wlk] := a X wlk] + wk — 1] ;
dfj} := d[jl + elil X wik] X z[k] ;
k:=k +1end
end
end of POLYX polynomial transformer

29-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION

K. W. ELLENBERGER ‘

Missile Division, North American Aviation, Downey,
California

procedure ROOTPOL (n, a, L, F, u, v, CONV) ;
valuen, a, L, F ;integer L, F,n ;
array a, u, v, CONV ;
comment The Bairstow and Newton correction formulae are

used for a simultaneous linear and quadratic iterated synthetic
division. The coefficients of a polynomial of degree n are given as
a; i=0,1,...,n) where a, is the constant term. The coeffi-
cients are scaled by dividing them by their geometric mean.
The Bairstow or Newton iteration method will nearly always
converge to the number of figures carried, F, either to root
values or to their reciprocals. If the simultaneous Newton and
Bairstow iteration fails to converge on root values or their
reciprocals in L iterations, the convergence requirement will be
successively reduced by one decimal figure. This program antici-
pates and protects against loss of significance in the quadratic
synthetic division. (Refer to “On Programming the Numerical
Solution of Polynomial Equations,” by K. W. Ellenberger,
Commun. ACM 3 (Dec. 1960), 644-647.) The real and imaginary
part of each root is stated as u[i] and v[i], respectively, together
with the corresponding constant, CONV;, used in the con-
vergence test. This program has been used successfully for over
a year on the Bendix G15-D (Intercard System) and has recently
been coded for the IBM 709 (Fortran System); o

begin integeri, j,m ; array h,b, ¢c,d,e[—2:n] ;

real t, K, ps, gs, pt, qt, s, rev, r ;

ROOTPOL: by :=b_si=c.:=cp:i=d;:=d_;:= e.; :=
ez :=0 H
for j:=0stepluntiln doh;:=a; ; t:=1 ;
K := 10F ;
ZROTEST: ifh, = 0 then
beginu, ;=0 ; vo:= 0 ; CONV, := K ;
n:=n-—1 ; gotoZROTEST
end ;
INIT: if n = 0 then go to RETURN ;
ps = g8 :=pt ;= qt =8 :=0 ;
rev:=1 ; K:=10F ;
if n = 1 then
beginr := — hi/hy ; go to LINEAR
end ;
for j := 0 step 1 until n do
begin
if h; = 0 thens := s else s := s + log(abs(hj))
end ; s := s ;)
for j := Ostep 1l untilndo h; :=hy/s ;
if abs (hi/he) < abs (h,_1/h,) then
REVERSE: begint := —t ; m := entier ((n+1)/2) ;
for j := 0 step 1 until m do
begin s := h; ; bh;:= hn; ; :jo.j:=8
end
end ;

if gs = 0 then

beginp :=ps ; q:=qs ; go to ITERATE

ITERATE:

RAIRSTOW:

BNTEST:

NEWTON:

LINEAR:

QADRTIC:

RETURN:

beginp :=p —2 ;
end else
beginp := p + (bny X €nz — by X cuos)/s

end ;

30-P1- 0O

end ;
ifh, 2 = 0 then
begin q := 1
end else -
beginq:=h/h, 2 ; p:= (haor— qX has)/hacs
end
if n = 2 then go to QADRTIC ; r:=0 ;
fori := 1step 1 until L do
begin .
for j := 0 step 1 until n do
beginb; := h; — p X b;.; — q X bj_2 ;
¢j i= bj—p X ¢;j—1 — q X ¢;_2
end ;
if n,; = 0 then go to BNTEST ;
if by_1 = 0 then go to BNTEST ;
if abs (h,_1/bn1)<K then go NEWTON ;
bn = ha—q X baz ;

p = ~2

if by = 0 then go to QADRTIC ;

if K < abs (hn/b,) then go to QADRTIC

?

for j := 0 step 1 until n do .
begind; := h;j+r X d;, ; e;:= dj+r X ej
end ;

if dy = 0 then go to LINEAR ;

if K < abs (h,/d,) then go to LINEAR ;

Ca-1i= —P X €p2—q X Cn-z ;
8 != Cp_2 — Cp_1 X Cn_3 ;
if s=0 then

q:=qX(g+1)

q:i=q + ('—bﬂ—l X Cn-1 + bn X Cn—z)/s

end
ife,1 =0thenr:=r—lelser :=r — dn/es_:
end ; ps:=pt ; gs:=qt ; pt :=p ;
qt :=q
if rev < 0 then K := K/10 ; rev = —rev ;
go to REVERSE
ift<Othenr:=1/r ; up:=r1 ; v,:=0 ;
CONV,:=K ; n:=n-—1 ;
for j := O stepluntilndo h; :=d; ;
if n = 0 then go to RETURN ;
go to BAIRSTOW ;
if t < 0 then
beginp :=p/q ; q:=1/q
end ;
if 0 < (q — (p/2)?) then
beginu, = u, := —p/2 ;
8 :=sqrt (@ — (p/2)®) ; Va:i=s ;
Vp.1 = —8§
end else
begin s := sqt ((p/2)%) — q) ;
ifp<Othenu,:= —-p/2+s
elseun := —p/2—s ; unp, := Q/u. ;

Va 1= Vp1 =0

CONV, := CONV,, := K ;
n:=n-2 ;

for j := 0 step 2 until n do h; := b;
go to INIT ;

end

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION (K. W. Ellenberger, Comm. ACM, Dee.
1960)

WiLLiam J. ALEXANDER

Argonne National Laboratory,* Argonne, Ill.

ROOTPOL was coded by hand for the LGP-30 using the ACT-III
Compiler with 24 bits of significance. The following corrections
were found necessary.

(@) by i=ba:i=c i=coi=d,i=ds:=¢e :=e:=0
should be
by:=bai=c:=cg:=d:=e_;:=h_;:=0

(b) m := entier ((n + 1)/2) should be
m := entier ((n — 1)/2)

(€) jn—j =8 shouldbe ha_j:=s

(d) q := h/h,» should be hy/h,

() ¢j:=b;—pXe;—1—qXej_s should be
cj:=bj—pXej1—qXcj2

(f) ifn,_; = 0 then go to BNTEST should be

if h,_y, = 0 then go to BNTEST
(g) s sqrt (q —.(p/2)3) should be
s 1= sqrt (q — (p/2)?)
(h) forj := Ostep2 untilndo h; := b;
for j := Ostep 1 until ndo h; := b;
(1) go to BAIRSTOW should be go to ITERATE

'

should be

The following correction was found necessary in the given
example (Refer to “On Programming the Numerical Solution of
Polynomial Equations,” by K. W. Ellenberger, Comm. ACM 8,
Dee., 1960):

f(x). = (.10098), 108 x* — (.98913) 10° x* + (.10000) 10® x +
(.10000) 10! = 0 should be

f(x) = (.10098) 108 x* — (.98913) 108 x® — (.10990) 10¢ x® +
(.10000) 10® x + (.10000) 10! = 0

With these corrections the results obtained agree with those
given in the example.

TFor equations of higher order it was found necessary to avoid
repeated scaling of the reduced equation in order to prevent
floating point overflow. The range on the exponent in the ACT III
system is —32 £ ¢ £ 31.

Turther floating point overflow difficulties were experienced
when certain coefficients in the reduced equation became small
but not zero. The following additions were made to avoid this
fault:

(a) for] := Ostepl untilndo h; :=d; was replaced by
for j := 0 step 1 until n do begin if abs (h;/d;) < K then
h; := djelse h; := 0 end
(b) forj := Ostep l untilndo h; := b; was replaced by
for j := 0 step 1 until n do begin if abs (h;j/b;) < K then
h; := bj else h; := 0 end
With the above changes the following results were obtained:
xt—3x+20x2+4x + 54 =0
x = —.9706390 4 1.005808i
x = 2.470639 + 4.640533i
xf—2x54+2x 4 x346x2—-6x+8=0

x = —.9999999 + .9999999i

x = 1.500000 + 1.322876i

x = .5000002 4= .8660251i
x84 xt —8x3 —16x2 4+ 7Tx 4+ 16 =0

x = 3.000001

x = —2.000000 <= 1.000001i

x = —.9999997

x = .9999998

* Work supported by the U. 8. Atomic Energy Commission

30-P 2- R1

CERTIFICATION OF ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION [K. W. Ellenberger, Comm. ACM 8
(Dec. 1960), as corrected in the previous Certification
by William J. Alexander, Comm. ACM 4 (May 1961)]

Karman J. CoHEN

Graduate School of Industrial Administration, Carnegie
Institute of Technology, Pittsburgh, Pa.

The ROOTPOL procedure originally published by Ellenberger
as corrected and modified by Alexander was coded for the Bendix
G20 in 20-GATE. Some serious errors were found in the third and
fourth lines above the statement labelled “REVERSE’ in Ellen-
berger’s Algorithm which were not mentioned in Alexander’s
Certification. First, the function ‘“log” is not a standard function
in ALGOL 60; it is clear from the context, however, that Ellenberger
intends this to be the logarithm function to the base 10. Second,
Ellenberger’s Algorithm failed to divide the accumulated sum of
the logarithms by n+1 before taking the antilogarithm.

The correct, and slightly simplified, manner in which the third
and fourth lines above the statement labelled “REVERSE”
should read is:

if h; # 0 then s := In(abs(h;))
end; s :=s/(n+1); s := exp(s);

With these corrections, the numerical results obtained essen-
tially agree with those reported by Alexander.

CERTIFICATION OF ALGORITHM 30 [C2]

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION [K. W. ELLENBERGER, Comm. ACM
3 (Dec. 1960), 643]

Joun J. KourFeLp (Recd. 31 Aug. 1964, 18 Nov. 1964 and
10 Nov. 1966)

Computing Center, United Technology Center, Sunny-
vale, Calif. 94088
The ROOT POL procedure was found to use the identifiers p, g,

without declaring them. They should be declared real.

The first ALgon statement in Cohen’s Certification [Comm.
ACM & (Jan. 1962), 50] which reads:

ifh; = 0 then s := In (abs(hy))
should read:

if h; # 0 then s := In (abs(h;)) + s.
The next line could be simplified to read:
end; s := exp(s/(n+1));

The above corrections, as well as Algorithm 30 itself, are in
publication language ALGowr. In order to translate the algorithm
to reference language ArcoL, which is now used in CACM, 107
would need to be replaced by 10 T F, and h; would need to be re-
placed by & [j].

With these corrections and those contained in Alexander’s
Certification [Comm. ACM 4 (May 1961), 238], Ellenberger’s Al-
gorithm was adapted to B-5000 ArLcoL and successfully executed
on the Burroughs B-5000 computer at United Technology Center.
The results from the four examples used by Alexander are given
below.

COLLECTED ALGORITHMS (cont.)

Ezxample 1

(1.0098)10°z* — (9.8913)10%x® — (1.0990)10%z% 4+ 105z + 1 = 0.
The roots are:
z = —0.201080185406
0.149521622653 + 0.1639896092837
(—9.99989011230)107¢,

x
z
Example 2

zf — 328 4 202 + 442 4 54 = 0

2z = 2.47063897001 4 4.64053316164¢
= —0.970638970010 = 1.00580758903%

Ezxample 3
28— 25+ 220+ 23+ 622 — 62+ 8 =0
z = —0.999999999990 =+ 1.000000000000:
z = 1.500000000000 £ 1.32287565553¢
z = 0.500000000000 -+ 0.866025403780:

I

Ezxample 4
bt — 83— 1622+ 7x+15=0
z = 3.00000000000
z = —2.00000000000 == 1.00000000003¢
r = —0.999999999990

z = 1.000000000000

These results agree substantially with those given in Alexander’s

Jertification.

30-P 3-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 31

GAMMA FUNCTION

RoBeErt M. COLLINGE

Burroughs Corporation, Pasadena, California

real procedure Gamma (x); real x;
comment For x in the range 2 < x < 3 an approximating poly-
nomial is used. In this range the maximum absolute error e(x)
is | e(x) | <0.25 X107 For x > 3 we write I'(x) = (x—1)(x—2)
..(x—=n)I'(x—n) where 2 < (x—n) < 3, and for x < 2 we write
— I(}_—i—_n)_ where 2 < (x—n) < 3. Forx = 0
x(x+1)...(x+n—1) _
or a negative integer I'(x) is set eaual to a large value 10%,
begin
real h, y;
h:=10; y:=x;
Al: if y = 0 then h := 10%
else if y = 2.0 then go to A2
else if y < 2.0 then begin
h:=h/y; y:=y 4+ 10; goto Al end
else if y > 3.0 then begin
y:=y —10; h:=hXy; gotoAl end
else beginy := v — 2.0;
h o= (((((((.0016063118 X y + .0051589951) X y
- .0044511400) X y + .0721101567) X y
-+ .0821117404) X y + .4117741955) X vy
- .4227874605) X y -+ .9999999758) X h end;
A2: Gamma := h end Gamma.

T(x) =

CERTIFICATION OF ALGORITHM 31

GAMMA FUNCTION [R. M. COLLINGE, Comm.
ACM, Feb. 61}

PETER G. BEHRENZ

Mathematikmaskinnimnden, Stockholm, Sweden
GAMMA was successfully run on FACIT EDB using Facrr-

AvrcoL 1, which is a realization of ALcon 60 for FACIT EDB.

No changes in the program were necessary. The relative error
was as stated in the comment of GAMMA about 10,

CERTIFICATION OF ALGORITHM 31

GAMMA FUNCTION [R. M. Collinge, Comm. ACM
Feb. 61]

PerER G. BEHRENZ

Mathematikmaskinnimnden, Stockholm, Sweden
GAMMA was successfully run on FACIT EDB using Facrr-

AvrcoL 1, which is a realization of AraoL 60 for FACIT EDB.

No changes in the program were necessary. The relative error
was as stated in the comment of GAMMA about 108

’

31-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 32

MULTINT

R. Do~ FrEEMAN JR. _

Michigan State University, East Lansing, Michigan

real procedure MULTINT (n, Low, Upp, Funev, s, P, u, w);
value n;
real procedure Low, Upp, Funev;
w; integer n v

comment MULTINT will perform a single, double, triple,...,

array s, U,

T-order integration depending on whether n=1, 2,..., T. The
result is:
Upp Upp(2, x1)
MULTINT = f {unev(1, x1) dxy f Funev(2 xl,X2) dxs ...
) xl
Upp(n,Xi,--+/Xa-1)

Funev(xi,...Xs) dXa
, Low(n,X1,...,Xn-1)

The variable of integration is x[j]. j=1 refers to the outermost
integral, j=n, the innermost integral. The code divides each
interval equally into s[j] subintervals and performs a P-point
Gaussian ‘integration on each subinterval with weight func-
tions w(k[j]] and abscissas ulk[j]]. P is the size of the arrays of
weight functions and abscissas and must be provided by the
main code along with these arrays.

Since the values x[1], x[2],..., x[n], are stored in an array, as
are a, b, ¢, d, r, it is necessary to substitute an integer for the
upper bound T of these arrays before the program is executed.
This means, for example, if 3 is substituted for T, then the
procedure will not do a 4th order integral unless it is retrans-
lated with T > 4.)

The values of the lower and upper bounds and functions must
of course be specified at the time of use. If each of these con-
stituted a separate procedure, it would require writing and
translating 3n different procedures. This is eliminated by group-
ing them into Low, Upp, and Funev which compute the lower
and upper bounds and value of the functions respectively in
each of the jth integrals. Since these are each essentially a col-
lection of ‘‘subprocedures,” the first statement of each should
be a switch directing the code to the ‘‘subprocedure’ which is
used in the jth integral. Note that, for example, Low(3,x) is
formally a function of x[1], x[2],..., x[T}]; this is done merely
because it is more convenient to make Low(j,x) formally a func-
tion of the whole array x for all j. Actually of course Low(3, x)
would be a function of x[1] and x[2] only;

begin real array a, b, ¢, d, r, x[1:T];

integer array k, h[1:T]; real f;

for j :=1 step 1 until T do

x[j] :=

m :=1;

r[n+1] := dn+1] :=

for j := m step 1 until n do

begin
afj] :
blj] :
dfj] :
cljl :
x[j] :
rfj] :
h{jl :
ji=mn;

sum: f := Funev(j,x);

integer j, m;

setup:

Low (j,x);

Upp(j,x);

(b(jl— aljl/slil;

aljl + 0.5 X dfjl;

efjl + 0.5 X dfj] X u[1];
0.0;

k(j] := 1; end;

[/ |

32P1- 0

rfj] i= r{jl + rli+1 X djj+1] X £ X wlk{j]};
if (k[j] < P) then go to labk;
if (h[j] < 8[j]) then go to labh;
=j—1;
1f (j = 0) then go to exit;
go to sum;
labh: h[j] := hfj] + 1;
cfj] := aljl + (h[j] — 0.5) X dljl;
k[j] = 1;
go to initalx;
labk: kfj] := k[j}] + 1;
initalx: x[j] := c[j] + 0.5 X dfj] X ulkfjll;
if (j =n) then go to sum;
= j+1;
: go to setup; .
exit: MULTINT := rl] X d[l] X 05T n; end

CERTIFICATION OF ALGORITHM 32

MULTINT [R. Don Freeman, Comm. ACM, Feb. 1961]

Henry C. THACHER, JR.*

Reactor Engineering Div., Argonne National Laboratory,
Argonne, Il
* Work supported by the U. 8. Atomic Energy Commission.

The procedure was transcribed into the ACT-III language for

“the LGP-30 computer, and was tested on the integrals:

) _{L"{f klcos w — Tu sin u

— 6u? cos u + udsin u] dw dzr dy dz = sin k

where u = kwzyz, and

f f e / e dzdyds
&+ P+ @ — k)

e (oebfi-),

The ALcoL procedures for the second integral are:

real procedure Low (j,z);

Low := 0;

real procedure Upp(j,z); comment z = z[3], y=1=z[2], z =
z(1);

begin

integer ¢; real temp;

temp := 1.0;

for ¢ := j—1 step — 1 until 1 do

temp := temp — z[j] X =lj];

Upp := sqri(temp)

end;

real procedure Funev(j,r);
comment The real parameter k is global
Funey := if j < 3 then 1.0 else 1/@IXz1]+z[2]Xz[2]+ (1[3]
12);
The first integral was tested only with s[;j] = 1, and with various
Gaussian formulas for integrals over the interval (—1,41). Re-
sults were as follows:

COLLECTED ALGORITHMS (cont.)

k x/2 x 3x/2 2r
true 1.0000000 0.0000000 —1.0000000 0.0000000
p=2 0.993704 --0.0333603 +0.020166 6.881490
p=3 1.000032 0.0000848 —1.061651 —0.597419
p=4 0.999999 0.0000001 —0.998407 +0.0027035
p=25 1.000000 --0.0000002 —1.000028 —0.0007857
For the second integral, two values of s = s[l] = s§[2] = s[3]

were used, and two values ~f p. Results were as follows:
& 1/2 2
true 11.46027376 1.10609687
8 1 2 1 2

2 5.454460 11.838651
3 9.361666 12.408984

1.0368770 1.1184305
1.1343551 1.1094278

p
p

The effect of the pole at (0,0,k) is obvious.

For the algorithm to run in any compiler, the semicolon follow-
ing z{T']; in the fourth line above the end of the comment must be
deleted. The array bounds on the arrays r and d must be increased

ol :T+1].

For a system which permits variable array bounds, the intro-
duction of the integer 7 appears superfluous. For such a system,
T may be replaced by n throughout with a probable gain in effi-
ciency. For most translators, the presence of undefined elements
in an array will not cause difficulties, provided these elements do
not appear in an expression before they are assigned a value.

The statement ‘“for j := 1 step 1 until 7 do z[j] := 0.0;” is thus
superfluous. The semicolon before the end which precedes the
label “‘sum’’ also appears unnecessary.

In spite of these minor corrections, the algorithm appears to be
extremely convenient for multiple quadratures over arbitrary
regions using the Cartesian product of any explicit one-dimen-
sional formula (and not merely a Gaussian formula) for inte-
grating over the range [—1,1]. If endpoints are used in the formula,
it will, of course, repeat the calculation for each section of the
range.

REMARKS ON ALGORITHM 32 [D1]

MULTINT [R. Don Freeman, Jr., Comm. ACM /4
(Ieb. 1961), 106]
AND

CERTIFICATION OF ALGORITHM 32 [Henry C.

Thacher, Jr., Comm. ACM 6 (Feb. 1963), 69]

K. S. KoLBic

Data Handling Division, European Organization for
Nuclear Research (CERN), 1211 Geneva 23, Switzer-
land

KEY WORDS AND PHRASES: numerical integration, multi-
dimensional integration, Gaussian integration
CR CATEGORIES: 5.16

The real procedure MULTINT was corrected according to the
certification. It was then compiled on a CDC 3800 computer and
tested on the second integral given in the certification. It became
apparent that

32-P 2- Rl

(i) Equation (2) of the certification should read

f f 1i—=? f T—z2—y dz dy dz
1—z2 V1- P 3?2 + y’ + (z — k>2

- (o e

It should be noted that the right-hand side of equation (2)
as printed in the certification does not correspond either to the
original limits or to those given above.

(ii) the statement

2

Low := 0;
in the real procedure Low should be replaced by

Low := —Upp(j, x);
(iii) the second line of the for statement in the real procedure
Upp should read

temp := temp — z[z] X z[7];

After making these corrections, it is possible to obtain results
corresponding to a permuted version of the table given in the
certification, which should be replaced by the following:

k . 2
true 11.46027375 1.10609686

s 1 2 1 2
P =2 5.454466 9.361670 1.0368787 1.1184317
P =3 11.838664 12.408983 1.1343568 1.1094294

In addition, since several compilers require specifications, it
would be desirable

(i) to change the last specification in the heading of MULTINT
to read

integer n, P;
(i1) to insert the specifications
integer j;

array z;

in the heading of the real procedures Low, Upp, and Funev.
Some of these additions were necessary in order to ensure
correct results with the compiler used for the tests.

CACM

COLLECTED ALGORITHMS FROM

ALGORITHM 33
FACTORIAL
M. F. Lipp
RCA Digital Computation and Simulation Group,
Moorestown, New Jersey
veal procedure Factorial (n) ;
value n ; integer n ;
comment This procedure makes use of the implicitly defined
recursive property of Algol to compute n!;
begin Factorial := if n = 0 then 1. else nX Factorial (n—1)
end

33-P1- 0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 34

GAMMA FUNCTION

M. F. Lier

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

real procedure Gamma (x) ; real x ;

comment This procedure generalizes the recursive factorial
routine, finding I'(14x) for reasonable values of x. Accuracy
vanishes for large x([x] > 10) and for negative x with small
fractional parts. For x being a negative integer the impossible
value zero is given;

begin test: if x < 0 then go to minus else if x < 1 then

begin integer i ; real y; array a [1 8] ;
a [1] := —.57719165 ;
a [2] 1= 98820580 ; a [3] := —.80705694 ;
a [4] := 91820686 ;
a [5] 1= —.75670408 ; a [6] := .48219939 ;
a [7] := —.19352782 ;
a [8] := .03586834 ; v := a [1];
fori ;= 2stepluntil8doy :=y X x 4+ a [i] ;
Gamma := y end hastings
else Gamma := x X Gamma (x—~1) ; go to endgam;
minus: if x = —1 then Gamma := 0 clse

Gamma := Gamma (x+1) / x ;
endgam : end gam

REMARK ON ALGORITHM 34

GAMMA TUNCTION [M. F. Lipp, Comm. ACM }
(Feb. 1961)]

MARGARET L. JouNsoNn AND WARD SANGREN

Computer Applications, Inc., San Diego, Calif.

The coefficients used in the calculation of the Hasting’s poly-
nomial are used in reverse order. The algorithm should have
a[l]=—.19352782; a[2]=.48219939; a[3]=—.75670408;
a[4]=.91820686; a[b]= —.89705694; a[6]=.08820589;
a[7]=—.57719165; a[8]=1.0;
y=.03586834;
for i := 1step 1 until 8 do y := yXx+ali];

Further, since Gamma (r)=T(1+z), the divisor z in the
statement labeled minus should be z+1.

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION
[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2
[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL

34-P 1- R1

ARGUMENT
[William Holsten, Comm. ACM & (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION
[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION
[M. C. Pike and 1. D. Hill, Comm. ACM 9 (Sept. 1966),
684]
M. C. Pixe anp I. D. Hirn (Reed. 12 Jan. 1966)
Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and 54 both use the same Hastings approxima-
tion, aceurate to about 7 decimal places. Of these two, Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines
if = 0 then begin RGR := 0; go to EXIT end
and
if = 1 then begin RGR := 1; go to EXIT end
should each be followed cither by a semicolon or preferably by an
else.
(3) The lines
if + = 1 then begin RGR := 1/y;
and
ifr < — 1then beginy :=y X z; go to CC end
should each be followed by a semicolon.
(4) The lines
BB: if x = —1 then begin RGR := 0; go to EXIT end
and
if + > —1 then begin RGR := RGAM (2); go to EXIT end
should be separated either py else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer 7 and real array B[0:13] in RGAM
are in the wrong place; they should come immediately after
begin real z;

go to EXIT end

With these modifications (and the replacement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of coroput-
ing time, being twice as fast as 291 at z = 1, but this advantage
decreases steadily with increasing z so that at z = 7 the speeds are
about equal and then from this point on 291 is faster—taking only
about a third of the time at = 25 and about a tenth of the time
at £ = 78. These timings include taking the exponential of log-
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 35

SIEVE

T. C. Woop

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

procedure Sieve (Nmax) Primes: (p) ;

integer Nmax; integer array p ;

Sieve uses the Sieve of Eratosthenes to find all prime
numbers not greater than a stated integer Nmax
and stores them in array p. This array should be
of dimension 1 by entier (2 X Nmax/fn (Nmax)) ;

begin integer n,i,j ;

comment

plll:=1 5 pR]:=2 ; pBl:=j:=3 ;
for n := 3 step 2 until Nmax do
begin i:=3 ;

)
Ll: go to if p[i] < sqrt (n) then al else a2 ;
al: go to if n/pfi] = n + pli] then bl else b2 ;

b2:i:=i+1 ; gotoLl ;
a2:plili==mn ; ji=j+1 ;
bl: end end

CERTIFICATION OF ALGORITHM 35
SIEVE (T. C. Wood, Comm. ACM, March 1961)
P. J. BrowN

University of North Carolina, Chapel Hill, N. C.

SIEVE was transliterated into GAT for the Univac 1105
and successfully run for a number of cases.

The statement:

go to if n/p[i] = n + p[i] then bl else b2;
was changed to the statement:

go to if n/pli] — n + pli] < .5/Nmax then bl else b2;
Roundoff error might lead to the former giving undesired results.

CERTIFICATION OF ALGORITHM 35
SIEVE [T. C. Wood, Comm. ACM. Mar. 1961]
J. S. HiLLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The statement:
go to if n/p[i] = n + p[] then bl else b2;
was changed to the statement:
go to if (n + pli]) X plil = n then b1 else b2;

This avoids any inaccuracy that might result from introducing
real arithmetic into the evaluation of the relation.

The modified algorithm was successfully run using the Elliott
ALcoL translator on the National-Elliott 803.

35-P 1- R1

REMARKS ON:

ALGORITHM 35 [A1]

Sieve [T. C. Wood, Comm. ACM 4 (Mar. 1961), 151]

ALGORITHM 310 {A1] .

PRIME NUMBER GENERATOR 1 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 569]

ALGORITHM 311 [A1]

PRIME NUMBER GENERATOR 2 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 570]

B. A. CuarTrES (Recd. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia -

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p),
which all perform the same operation of putting the primes less
than or equal to m into the array p, were tested and compared for
speed on the Burroughs B5500 at the University of Virginia. The
modification of Sieve suggested by J. S. Hillmore [Comm. ACM &
(Aug. 1962), 438] was used. It was also found that Steve could be
speeded up by a factor of 1.95 by avoiding the repeated evaluation
of sgrt(n). The modification required consisted of declaring an
integer variable s, inserting the statement s := sqrt(n) immedi-
ately after i := 3, and replacing p[i]<sgrt(n) by pli]<s.

The running times for the computation of the first 10,000 primes
were:

Steve (Algorithm 35) 845 sec
Steve (modified) 434 sec
stevel 220 sec
steve2 91 see

The time required to compute the first & primes was found to be,
for each algorithm, remarkably accurately represented by a power
law throughout the range 500 < k& < 50,000. The running time of
Sieve varied as k9, that of sievel as k5%, and that of sieve2 as
k1%, Thus the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, it should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolation past
this point (there is no reason known why it should be), it would
take about 12 hours to find the first million primes.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 36

TCHEBYCHEFF

A.J. GiaNNI

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

procedure tchebycheff (t, x, m, £) ;
real array t,x ; integer {,m ;
comment given a set of m-1 values of x stored in a one-
dimensional array whose subsecripts run from 0
thru m at least, construct a table of ta(x), n =
0, 1, ---,£ and store it in the two-dimensional
array t, where you find ta(x[m]) as t[n, m] ;
begin integer i, k, n
for k := 0 step 1 until m do begin t[0, k] :=1 ;
t[1, k] := x[k] end ;
for n := 2stepl until{do fori =0 step 1
until m do
thn, i} := 2 X x[i] X tln — 1,1i] — t[n — 2, i]
end tcheby '

36-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 37

TELESCOPE 1

K. A. Brons

RCA Advanced Programming Group, Pennsauken, N. J.

procedure Telescope 1 (N, L, eps, limit,¢) ; valuelimit,L ;
integer N ; real L, eps, limit ; array ¢ ;
comment: Telescope 1 takes an Nth degree polynomial approxi-
N

mation 2. ewx*to a function which was valid to
k=0

within eps > 0 over an interval (0, L) and reduces
it, if possible, to a polynomial of lower degree,
valid to within limit > 0. The initial coefficients
cx are replaced by the final coefficients, and the
deleted coeflicients are replaced by zero. The ini-
tial eps is replaced by the final bound on the error.
N is replaced by the degree of the reduced poly-
nomial. N and eps must be variables.

This procedure computes the coefficients given in
the Techniques Department of the ACM Com-
munications, Vol. 1, No. 9, from the recursion
formula

k-L-(2k — 1) .
TR ON+k—D(N—k+1

; array d[0:N] ;
d[N] := —¢[N] ;

A1 =

begin integer k

if N <1 then go to exit ;

for k := N step — 1 until 1 de

dk — 1] := —dk] X L X k X (k — 0.5)/
(N+k—-1)XN-=-k+1) ;

if eps + abs (d[0]) < limit then

begin eps := eps + abs (d{0]) ;

fork := Nstep — 1untilOdo c[k] := c[k] 4+ d[k];

N:=N—-1 ;gotostart end ;

exit: end

start:

CERTIFICATION OF ALGORITHM 37

TELESCOPE 1 [K. A. Brons, Comm. ACM, Mar., 1961]

HenNry C. THACHER, JR.*

Reactor Engineering Div.,
Argonne, Il

Argonne National Lab.,

*Work supported by the U. 8. Atomic Energy Commission.

The body of Telescope I was compiled and tested on the LGP-30
using the ALcoL 60 translator system developed by the Dartmouth
College Computer Center. No syntactical errors were found, and
the program ran satisfactorily. The 10th degree polynomial ob-
tained by truncating the exponential series was telescoped using
lim = 1, — 2 and L = 1.0. The result was N = 3, eps =
.21030059 — 3, and coefficients -+.9997892, —.9930727, +-.4636493,
— .1026781. The error curve for the telescoped polynomial was
computed for z = 0(.02)1.0. The error extrema were bounded by
eps to within 0.5%. The discrepancy is within the range of input
conversion and round-off error.

37-P1- 0

CERTIFICATION OF ALGORITHM 37
TELESCOPE 1 [K. A. Brons, Comm. ACM, Mar. 1961]
James . Bripges

Michigan State University, East Lansing, Mich.

This procedure was tested on the CDC 160A, using 160A For-
TRAN. The 10th degree polynomial obtained by truncating the
series exp (—z) was telescoped using L = 1 and lim = 0.001. The
result was N = 3, eps = 0.21061862,y — 3 and coefficients
+0.99978965, —0.99307236, +0.46364955, —0.10267767. The error
curve was computed for x = 0(0.02)1.0 and no error exceeded eps,
the worst error being 2%, of eps less than eps.

This result i$ in close agreement with that of Henry C. Thatcher.
Jr. in his Certification (Comm. ACM, Aug. 1962). Mr. Thatcher
has pointed out that he inadvertantly referred to the series for
exp (—x) as the ‘“‘exponential series” thereby inferring the posi-
tiveseries exp (-+z). Thereisalsc atypographical error in his eps.
It should be +0.2103505,0 — 3.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 38

TELESCOPE 2

K. A. Brons

RCA Advanced Programming, Pennsauken, N. J.

procedure Telescope2 (N, L, eps, limit,¢) ; valuelimit,L ;
integer N ; real L, eps, limit ; array c¢ ;
comment Telescope 2 takes an Nth degree polynomial ap-

N
proximation » cyx* to a function which was
k=0

valid to within eps > 0 over an interval (L, L)
and reduces .it, if possible, to a polynomial of
lower degree, valid to within limit >0. The initial
coeflicients ck are replaced by the final coefficients,
and deleted coefficients are replaced by zero. The
initial eps is replaced by the final bound on the
error, and N is replaced by the degree of the re-
duced polynomial. N and eps must be- variables.
This procedure computes the coefficients given in
the Techniques Department of the ACM Com-
munications, Vol. 1, No. 9, from the recursion

formula
_ k-Lrk — 1) .
T TN k- (N -k+2)
begin integer k ; real s ; array d{0: N] ;
start: if N < 2 then go to exit ; d[N] := —c[N] ;
for k := N step — 2 until 2 do
dik — 2] = —dk] X LT2X k X (k — 1)/

IN+k-2)X N -k+2) ;

if (N/2) — entier (N/2) = 0 then s := d[0] else
s 1= d[1}/N ;

if eps + 2bs(s) < limit then begin
eps := eps + abs(s) ;

for k := N step — 2 until 0 do
clk] := clk] + d[k] ;

N:=N-1 ; go tostart end ;

exit: end

CERTIFICATION OF ALGORITHM 38
TELESCOPE 2 [K. A. Brons, Comm. ACM, Mar., 1961]
James F. BRIDGES

Michigan State University, East Lansing, Mich.

This procedure was tested on the CDC 160A using 160A For-
TRAN. The 10th degree polynomial obtained by truncating the
series expansion of exp (+z) was telescoped using L = 1.0 and
lim = 0.001. The result was N = 4, eps = 0.59159949,, — 3 and
coefficients +1.0000447, +0.99730758, +4-0.49919675, --0.17734729,
+0.043793910. Errors were calculated for z = —1.0(0.02)1.0. The
only error to exceed cps was at z = 1.0 and was within 0.6% of eps.

38-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 39
CORRELATION COEFFICIENTS WITH MATRIX
MULTIPLICATION '

PAPKEN Sassoun: ‘

Burroughs Corporation, Pasadena, California

procedure NORM (x) number of rows: (m) number of columns:
(n) normalized output: (y) standard deviations:
s)

value m,(r)l ; integer m, n ; array X, y, 8 ;

comment Given an ohservation matrix [x] consisting of ob-
servations xi; on a population, NORM will cal-
culate

Xij — Xj .
fori=1,---,m

YVij = T e .
m
1/2 (xij — %) i=1,+9n
il

and the standard deviations

/ 1
20 (xiy — %))
=l
8. = R —
m

where X; is the mean of observations on the j-th

factor ;
begin integer i, j ; realr, h, ¢, b :;

r :=sqrt (m) ; for j := 1 step 1 -until n do
1: begin h:=0 ; : :
for i := 1 step 1 until m do
h:=h+x[i,jl ; h:=h/m ; b:=0 ;
fori := 1 step 1 until m do :
2: begin c:=x[i,j]—h ; b:=b+4+et2 ; yhij :=¢
end 2 ;
b := sqrt (b) ;
for i := 1 step 1 until m do
yli, il == yli, j¥/b 5 s[i]:= b/r
end 1
end NORM ;
comment The normalization is now completed, and we are
ready to compute the correlation matrix . ;.
procedure TRANSMULT (y) number of rows: (m) number of
columns: (n) symmetrical square matrix result:
(z) o :
value m, n ; integer m, n ; array y, z ;
comment This procedure multiplies two matrices, the first
being the transpose of the second. The result is a
symmetrical matrix with respect to the main diag-
onal, therefore only the lower part of it, including
the main diagonal, is computed. The upper half is
obtained by equating corresponding elements;
begin integer i, j,k ; realh ;
for] := 1 step 1 until n do
for i :=) step 1 until n do
begin h:=0 ;
for k := 1 step 1 until m do
h :=h + ylk, il X ylk, j1 ; -zfi, jl :=h ;
ifi # j then z[j,i] := h :
end i “

39-P1- 0

erid TRANSMULT. |z] is the square matrix of the
correlation coefficients of the initial observation
matrix [x]

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 40

CRITICAL PATH SCHEDULING

B. LEAVENWORTH

American Machine & Foundry Co., Greenwich, Conn.

procedure CRITICALPATH (n,1,J, D1J,ES, LS, EF, LF, TF,
FF) ;

integer n ; integer array I, J, D1J, ES, LS, EF, LF, TF,
FF

comment: Given the total number of jobs n of a project, the

vector pair Ii , Jx representing the kth job, which is thought

of as an arrow connecting event Ix to event Ji(Ix < Ji,

k =1 ---,n), and a duration vector (DIJ), , CRITICAL-

PATH determines the earliest starting time (ES)i , latest

starting time (LS)y , earliest completion time (EF)x , latest

completion time (LF)x, the total float (TF)x , and the free

float (FF), . I, mustbel and the I; , Jx must be in ascending

order. For example, if the first three jobs are labelled (1, 2),

1, 3), (3, 4), then the I, J vectors are (1, 1, 3) and (2, 3, 4)

respectively. The critical path is given by each arrow whose

total float is zero. The following non-local labels are used for

exits: outl — Iy not less than Ji ; out2 — Iy out of se-
quence ; out3d — Iy missing;

begin
integer k, index, max, min ; integer array ti, te [l:n] ;
index :=1 ;
for k := 1 step 1 until n do
begin

if Ilk] = J{k] then go to outl ;
if I’k] < index then go to out2 ;
if I[k]'> index A I[k] = index + 1 then go to out3 ;
if ITk] = index + 1 then index := I[k] ;
C: end ;
for k := 1 step 1 until n do
tilk] := te[k] := 0 ;
for k := 1 step 1 until n do
begin
max := ti[I[k]] + DIJ[k] ;
if ti[J[k]] = 0 V ti[J{k]] < max then

ti[J[k]] := max ;
A: end ti ;
te[J[n]] := tilJ[n]] ;
for k := n step —1 until 1 do
begin

min := te[J[k]] — DIJ[k] ;
if te[Ilk]] = 0 V te[I[k]] > min then
te[Ik]] := min ;

B: endte ;
for k := 1 step 1 until n do
begin
ES[k] := ti[I(k]] ;
LS[k] := te[J[k]] — DIJk] ;
EF([k} := ti[I[k]] + DIJ[k] ;
LF[k] := telJ[k]] ;
TFk] := te[J[k]] — ti{I[k]] — DLJ[k] ;
FR[k] := ti{J{k]] — ti[I[k]] — DLJ[k]
end

end CRITICALPATH

40-P 1- 0

REFERENCES
(1) James E. KeLLEY, Jr. AND MoreaN R. WaLkER, “Critical-
Path Planning and Scheduling,” 1959 Proceedings of the
Eastern Joint Computer Conference.
(2) M. C. FrisuBeRG, ‘“Least Cost Estimating and Scheduling
— Scheduling Phase Only,” IBM 650 Program Library

File No. 10.3.005.

CERTIFICATION OF ALGORITHM 40

CRITICAL PATH SCHEDULING (B. Leavenworth,
Comm. ACM, Mar. 1961)

NEeAL P. ALEXANDER

Union Carbide Olefins Company, South Charleston,
West Virginia

The Critical Path Scheduling algorithm was coded in FORTRAN
for the IBM 7070. The following changes were made:
(a) ti[k] := te [k] := 0;

should be
ti [k] := 0;
te [k] := 9999;
(b) if te [I[k]] = 0 V te [I[k]] > min then
should be

if te [I[k]] > min then
This change permits a value of 0 to be calculated for te {Ilk]] and
remain as the minimum value.
In the statement
if ti [Jk}]] = 0 V ti [Jk]] < max then
the part of the statement ““ti [J[k]] = 0’’ is redundant and can be
omitted.

CERTIFICATION OF ALGORITHM 40

CRITICAL PATH SCHEDULING [B. Leavenworth,
Comm. ACM (Mar. 1961)]

Lars HELLBERG

Facit Electronics AB, Solna, Sweden.

The Critical Path Scheduling algorithm was transliterated into
FaciT-ALgoL-1 and tested on the Facir EDB. The modifications
suggested by Alexander [Comm. ACM (Sept. 1961)] were included.
Results were correct in all tested schedules.

CERTIFICATION OF ALGORITHM 40

CRITICAL PATH SCHEDULING [B. Leavenworth,
Comm. ACM 4 (Mar. 1961), 152; 4 (Sep. 1961), 392;
6 (Oct. 1962), 513]

IrviN A. HorrMaN (Recd 7 Feb. 1964)

Woodward Governor Co., Rockford, Il1.
The Critical Path Scheduling algorithm was coded in Fast for

the NCR315. The modifications suggested by Alexander [Comm.

ACM 4 (Sept. 1961)] were included. Results were correct in all
tested cases. However, the example of the I, J vectors given in

COLLECTED ALGORITHMS (cont.) ‘ 40-P 2- 0

the comment 1s incorrect, as it would cause the exit out3 — I
missing.

[EpiTor’s NoTe. There are also two semicolons which should
be removed from the comment of Algorithm 40.—G.E.F.]

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 41
EVALUATION OF DETERMINANT
JosgF G. SoL.omon

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

real procedure Determinant (A,n);

real array A; integer n;

comment This procedure evaluates a determinant by triangu-
larization;

begin real Product, Factor, Temp; array B[l : n.1: n},
Cli:n,1:n];

3

integer Count, Sign, i, j, r, y;
Sign := 1; Produet := 1;
for i :=1stepl until n do forj := 1 step 1 until
n do
begin Bli,jl := A[,jl; Cli,jl := Ali,j} end;
for r := 1 step 1 until n—1 do
begin Count := r—1;

zerocheck: if Br,r] 5= 0 then go to resume;

if Count < n—1 then Count := Count + 1

else go to zero;

for y :=r step 1 until n do

begin Temp := B[Count+1,y]; B[Count+1,y] :=
B[Count,y]; B[Count,y] := Temp end;

Sign := — Sign; go 1o zerocheck;
zero: Determinant := 0; go to return;
resume: for i := r+1 step 1 until n do
begin Factor := Cli,»]/ Clr,r];
for j := r+1 step 1 until n do
begin Bli,jl := Bii,j] — Factor X C [r,j] end end;
for i := r+1 step | unlil n do
for j := r+1 step 1 until n do Cli,j] := Bli,j]
end;
for i :=1step 1 until n do Product := Product
X Bli,il; Determinant := Sign X Product;
return: end

ALGORITHM 41, REVISION

EVALUATION OF DETERMINANT [Josef G. Solo-
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J]

Bruce H. Freep

Dartmouth College, Hanover, N. H.

real procedure determinant (a,n);

real arrav a; integer n; value a,n;

comment This procedure evaluates a determinant by triangu-
larization;

begin real product, factor, temp;

array b(l:n,1:m];

integer count, ssign, i, j, 1, ¥;

ssign = product := 1;

for i := 1 step 1 until » do

for j := 1 step 1 until n do
bli,7] := ali,j];
for r := 1 step 1 until n—1 do

41-P 1- 0
begin count := r—1;
zerocheck: if b[r,r] £ 0 then go to resume;
if count < n—1 then count := count +1 else go to zero;

for y := r step 1 until n do

begin temp := blcount+1,y];
blcount+1,y] := blcount,yl;
blcount,y] := temp end;

ssign 1= —ssign;

go to zerocheck;

zero: determinant := 0; go to relurn;
resume: for i := r-+1 step 1 until n do

begin factor := blz,r]/b[rr];

for j := r41 step 1 until = do

bli,7] := bli,j] — factor X b[r,j] end end;
for i := 1 step 1 until »n do

product := product X b[i,i];

determinant := ssign X product;

return: end

CERTIFICATION OF ALGORITHM 41
EVALUATION OF DETERMINANT ([Josef G. Solo-
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J.]

Bruck H. FreeD

Dartmouth College, Hanover, N. H.

When Algorithm 41 was translated into Scarp for running on

the LGP-30, the following corrections were found necessary:

1. In the “y’ loop after “‘B[Count,y] := Temp’ and before the
“end”’ insert

“Temp := C[Count+1,y];
Cl{Count +-1,y] := C[Count,yj;
ClCount,y] := Temp”

2. “Sign” is an ALcorL word when uncapitalized. However,
many systems (if not all) do not recognize the difference
between small and capital letters. For this reason “Sign”
was changed to “ssign’’ for the LGP-30 run (and in the
revision which follows later).

The following addition might be made in the specification as a

concession to efficiency: ‘‘value A,n;”.

The following changes might be made to make the Algorithm

less wordy:

1. for ““Ssign := 1; Product := 1;”

put “‘Ssign := Product := 1;”

2. for “begin B[i,j] := Ali.j]; C[i,J]

put “B[i,j] := C[,j] := Ali,j];"

3. for “begin B[¢,j] := B[i,j] — Factor X C[r,j] end end;”

put “Bli,j] := Bfi,j] — Factor X C[r,j] end;”

The above corrections and changes were made and the program

was run with the correct results, as follows:

i= A[z,j] end;”

10.96597 35.10765 96.72356
A =\ 235765 -—84.11256 87932
18.24689 22.13579 1.11123

Determinant = .1527313:006

Hand calculation on a desk calculator gives the value of the de-

. terminant for the above matrix as 152,731.3600.

COLLECTED ALGORITHMS (cont.)

1.0 30 30 10
1.0 40 6.0 4.0
1.0 5.0 100 10.0
1.0 6.0 150 20.0

Determinant = .999999%0-00

The above matrix, being a finite segment of Pascal’s triangle, has
determinant equal to 1.000000000.

0.0 0.0 0.0
A=1{50 90 20 Determinant = .0000000:10 400
70 50 4.0

This is, of course, exactly correct.

¥inally, one major change can be made which does away with
several instructions and reduces variable storage requirements
by n2. This change is the complete removal of matrix C from the
program. It is extraneous.

The revised Algorithm was translated into*ScarLe and run on
the LGP-30 with exactly the same results as above.

The revised Algorithm 41 follows.

-

REMARK ON REVISION OIF ALGORITHM 41

EVALUATION OF DETERMINANT [Josef G. Solomon,
Comm. ACM 4 (Apr. 1961), 176; Bruce H. Freed,
Comm. ACM 6 (Sept. 1963), 520]

Lreo J. Rorexsere (Reed 7 Oct. 63)

Box 2400, 362 Memorial Dr., Cambridge, Mass.
While desk-checking the program-an error was found. For ex-

ample, the algorithm as published would:have calculated the value
zero as the determinant of the matrix’

000

1
0
0
0

- O
(= =]
OO =

The error lies in the search for a nonzero element in the rth column
of the matrix 5. -

Editor’'s Note. Apparently the best general determinant evalu-
ators in this section are imbedded in the linear equation solvers
Algorithm 43 [Comm. ACM 4 (Apr. 1961), 176, 182; and 6 (Aug.
1963), 445] and Algorithm 135 [Comm. ACM § (Nov. 1962), 553,
557]. They search each column for the largest pivot in absolute
value. Algorithmn 41 searches only for a nonzero plvot in each
column, and will therefore fail for the matrix

27t 1 1
1 1 2
1 11

if £ > s, for a machine with s-bit floating point.
It is hoped that soon a good»determinant evaluator will be
published to take the place of Algorithm 41.—G. E. F.

CERTIFICATION OF:
ALGORITHM 41 [F3]
EVALUATION OF DETERMINANT
[Josef G. Solomon, Comm. ACM 4 (Apr 1961), 171]
ALGORITHM 269 [F3] 4
DETERMINANT EVALUATION
[Jaroslav Pfann and Josef Straka, Comm. ACM 8
(Nov. 1965), 668]
A. Berason (Recd. 4 Jan. 1966 and 4 Apr. 1966)

41 P.2 RI

Computing Lab., Sunderland Technical College,
Sunderland, Co. Durham, England

Algorithms 41 and 269 were coded in 803 ALGOL and run on a
National-Elliot{ 803 (with automatic floating-point unit).

The following changes were made:

(1) value n; was added to both Algorithms;

(ii) In Algorithm 269, since procedure EQUILIBRATE is only
called once, it was not written as a procedure, but actually written
into the procedure determinant body.

The following times were recorded for determinants of order N
(excluding input and output), using the same driver program and
data.

T T,
Algorithm 41 Algorithm 269
(minutes)

10 . 0.87 0.78
15 2.77 2.18
20 6.47 4.78
25 12.47 8.99
30 21.37 14.98

From a plot of In(T}) against In (V) it was found that
T: = 0.00104N292,
Similarly,
Ty = 0.00153N27,

From a plot of Ty against T%, it was found that Algorithm 269
was 30.8 percent faster than Algorithm 41, but Algorithm 41
required less storage.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 42

INVERT

T. C. Woop

RCA Digital Computation and Simulation Group.
Moorestown, New Jersey

procedure Invert (A) order: (n) Singular: (s) Inverse: (Al);
array A, Al; integer n,s,valuen;
comment This procedure inverts the square matrix A of order
n by applying a series of elementary row operation to the matrix
to reduce it to the identity matrix. These operations when
applied to the identity matrix yield the inverse Al. The case
of a singular matrix is indicated by the value s := 1;
begin comment augment matrix A with identity matrix;
array a[lin, 1:2 X n]; integeri,j;
for i := 1 step 1 until n do
forj := 1stepl until 2 X ndo
if] = n then afi,j] := Alij] else
if j = n+1 then ali, j] := 1.0 else a [i,j] := 0.0;
comment begin inversion;
for i := 1 step 1 until n do
integer k, £, ind; j := £ := i;
L1: if a[f,j] = 0 then
begin ind := 1; if { < n then begin { := { + 1;
go to L1 end
else begin s := 1;
end;
if ind = 1 then for k := 1 step 1 until 2 X n do
begin real temp;
temp := a[fk];
alfk] := a [ik];
afi,k] := temp end k loop;
for k := j step 1 until 2 X n do
afi,k] := ali,k] / ali,jl;
for £ := 1 step 1 until n do
if { 3 i then for k := 1 step 1 until 2 X n do
a[f,k] := alfk] — alik] X a[f,j];
end 1 loop;
fori := 1 step 1 until n do
for j := 1 step 1 until n do
Alfi,j] := alip+jl;
L2: end of procedure

begin ind := s := 0;

go to L2 end

CERTIFICATION OF ALGORITHM 42
INVERT (T. C. Wood, Comm. ACM, Apr., 1961)
AnxtHONY W. KNAPP AND PAUL SHAMAN
Dartmouth College, Hanover, N. H.

INVERT was hand-coded for the LGP-30 using machine lan-
guage and the 24.0 floating-point interpretive system, which car-
ries 24 bits of significance for the fractional part of a number and
five bits for the exponent. The following changes were found
necessary :

(a) ifj = n+1 then afi, j] := 1.0 else ali, j] := 0.0;
should be
if j = n+i then afi, j] := 1.0 else afi, j] := 00;

42-P1- 0

(b) for k := j step 1 until 2 X n do
ali, k] := afi, kl/ali, ji;
should be
for k := 2 X n step —1 until i do
afi, k] := ali, kl/afi, i];

(¢) ifl #ithen fork := 1stepluntil2 X ndo
afl, k] := a[l, k] — afi, k] X a[l, jI;
should be
if 1 5 i then for k := 2 X n step —1 until i do
all, k] := all, k] — al[i, k] X a[l, i];

Given these changes, j becomes superfluous in the second i loop,
and the other references to j may be changed to references to i.

INVERT obtained the following results:

The computer inverted a 17-by-17 matrix whose elements were
integers less than ten in absolute value. When the matrix and its
inverse were multiplied together, the largest nondiagonal element
in the product was —.00003. Most nondiagonal elements were less
than .00001 in absolute value.

INVERT was tested using finite segments of the Hilbert matrix.
The following results were obtained in the 4 X 4 case:

16.005 —120.052 240.125 —140.082
—120.052 1200.584 —2701.407 1680.917
240.126 —2701.411 6483.401 —4202.217
—140.082 1680.920 —4202.219 2801.446
The exact inverse is:
16 —120 240 —140
—120 1200 —2700 1680
240 —2700 6480 —4200
—140 1680 —4200 2800

INVERT was also coded for the LGP-30 in machine language
and the 24.1 extended range interpretive system. This system,
which uses 30 significant bits for the fraction, obtained the follow-
ing as the inverse of the 4 X 4 Hilbert matrix:

16.000 —120.001 240.001 —140.001
—120.001 1200.006 —2700.015 1680.010
240.001 —2700.016 6480.037 —4200.024
—140.001 1680.010 —4200.024 2800.016

The program coded in the 24.0 interpretive system successfully
inverted a matrix consisting of ones on the minor diagonal and
zeros everywhere else.

REMARKS ON ALGORITHM 42

INVERT [T. C. Wood, Comm. ACM, Apr. 1961}
P. Naur

Regnecentralen, Copenhagen, Denmark

INVERT cannot be recommended since it does not search for
pivot and therefore will give poor accuracy. This is confirmed by
the figures quoted by Knapp and Shaman in their certification
[Comm. ACM 4 (Nov. 1961), 498]. The results obtained by them
using 30 significant bits for the fraction may be compared directly
with those obtained using INVERSION II (Algorithm 120) and
gjr with the GiER ALcoL system (see certification below). In-
verting the 4 X 4 segment of the Hilbert matrix, the largest error
in any element is found to be:

COLLECTED ALGORITHMS (cont.)

Subscripls Error

INVERT (Knapp and Shaman) 3,3 0.037
INVERSION II\ (see certification of 3,3 0.0306
gjr Alg. 120) 4,3 0.00010

In view of this basic shortcoming of Algorithm 42, it is un-
necessary to report on other features of it.

CORRECTION TO EARLIER REMARKS ON AL-
GORITHM 42 INVERT, ALG. 107 GAUSS’S METHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, 38—40.]

P. Naur

Regnecentralen, Copenhagen, Denmark

George Forsythe, Stanford University, in a private communi-
cation has informed me of two major weaknesses in my remarks on
the above algorithms:

1) The computed inverses of rounded Hilbert matrices are com-
pared with the exact inverses of unrounded Hilbert matrices, in-
stead of with very accurate inverses of the rounded Hilbert
matrices.

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such matrices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub-
stantiate the claims I have made for them.

To obtain a more valid eriterion, without going into the con-
siderable trouble of obtaining ‘the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in-
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Maximum deviation from elemenis of the unil matrix

Order INVERSION 11 2jr Ratic
2 —1.49;0—8 —1.49,0—8 1.0
3 —4.7710—7 —8.34,0—7 0.57
4 —9.54,0—6 —3.4310—5 0.28
5 —7.3210—4 ~4.5810—4 1.6
6 —1.6110—2 —1.42,0—2 1.1
7 —5.7810—1 —5.47,0—1 1.1
8 —1.20,0—2 —1.38401 8.7
9 —4.,91;01 —2.22101 2.2

This criterion supports Forsythe’s criticism. In fact, on the
basis of this criterion no preference of INVERSION II or gjr can
be made.

The calculations were made in the GIER ALGoL system, which
has floating numbers of 29 significant bits.

42-P 2-

0

COLLECTED

ALGORITHMS FROM CACM

ALGORITHM 43

CROUT WITH PIVOTING 1I

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

real procedure INNERPRODUCT (u,v) index : (k) start : (s)

finish : (f);

value s, f; integer k, s, f; real u, v;

comment INNERPRODUCT forms the sum of u(k) X v(k) for
k =s,s4+1,...,f If s > f, the value of INNERPRODUCT is
zero. The substitution of a very accurate inner product proce-
dure would make CROUT more accurate;

comment INNERPRODUCT may be declared in the head of
any block which includes the block in which CROUT is de-
clared. It may be used independently for forming the inner
product of veetors;

begin

real h;

h:=0; fork:=sstepluntilfdoh:=h+u X v;

INNERPRODUCT := h

INNERPRODUCT;

procedure CROUT 1II (A, b, n, y, pivot, det, repeat)

comment This procedure is a revision of Algorithm 16, Crout
With Pivoting by George . Forsythe, Comm. ACM 3, (1960)
507-8. In addition to modifications to improve the running of
the program, and to conform to proper usage, it provides for
the computation of the determinant, det, of the matrix A. The
solution is obtained by Crout’s method with row interchanges,
as formulated in reference [1], for solving Ay = b and transform-
ing the augmented matrix [A b] into its triangular decomposi-
tion LU with all L(k,k) = 1. If A is singular we exit to ‘singular,’
a nonlocal label. pivot (k) becomes the current row index of
the pivot element in the k-th column. Thus enough information
is preserved for the procedure to process a new right-hand
side without repeating the triangularization, if the boolean pa-
rameter repeat is true. The accuracy obtainable from CROUT
would be much increased by calling CROUT with a more accu-
rate inner product procedure than INNERPRODUCT.

The contributions of Michael F. Lipp and George E. Forsythe
by prepublication review and pointing out several errors are
gratefully acknowledged;

comment Nonlocal identifiers appearing in this procedure are:
(1) The nonlocal label ‘singular’, to which the procedure exits
if det A=0, and (2) the real procedure ‘INNERPRODUCT’
given above;

end

value n; array A, b, y; integer n; integer array
pivot; real det; Boolean repeat;
begin
integer k, i, j, imax, p; real TEMP, quot;
det := 1; if repeat then go to 6;
for k := 1 step 1 until n do
1: begin
TEMP := 0;
fori := k step 1 until n do
2: begin
Afi,k} := A[i,k] — INNERPRODUCT (Ali,p], Alp,kl,
P, 17 k—l)y
if abs(Afi,k]) > TEMP then
3: begin

TEMP : = abs(Afi, k]); imax :=1i

443-P1- 0

end 3
end 2;
pivot [k] : = imax;
comment We have found that Afimax, k] is the largest pivot in
column k. Now we interchange rows k and imax;
if imax # k then

4: begin det : = — det; forj := 1step 1 until n do
5: begin
TEMP := A[k,jl; Alk,j] := Alimax, j]; Alimax, j]
.= TEMP
end 5;
TEMP := blk]; blk] := bl[imax]; blimax] := TEMP

end 4;
comment The row interchange is done. We proceed
to the elimination;
if Alk,k] = 0 then go to singular;
quot : = 1.0/Alkk]; "
for i .= k+1 step 1 until n do
Ali,k] ;= quot X Alik];
for j := k41 step 1 until n do
Alk,j] := ALk,j] — INNERPRODUCT
A[p)-]]! p, 1: k_l))
b(k] := blk] — INNERPRODUCT (A[k,p], bip!
D, i, k—-l)
end 1; go to7;
comment The triangular decomposition is now finished,
and we skip to the back substitution;

6: begin comment This section is used when the formal
parameter repeat is true, indicating that the matrix A
has previously been decomposed into triangular form by
CROUT 1II, with row interchanges specified by pivot,
and that it is desired to solve the linear system with a
new vector b, without repeating the ‘viangularization;

for k : = 1 step 1 until n do

(Alk,p]

begin
TEMP : = b[pivot[k]]; b[pivot{k]]:= blk]; bik]:=
TEMP; blk] := blk] — INNERPRODUCT
(Alk, p}, blp], p, 1, k—1) end;
end 6;
7: for k := nstep — 1 until 1 do
8: begin if — repeat then det := Alkk] X det;
ylk] := (blk] — INNERPRODUCT (Alk,pl, ylpl, p,
k+1, n)/Alk,k]
end 8;

end CROUT 1II;

REFERENCE:

(1) J. H. WiLkinsoN, Theory and practice in linear systems. In
John W. Carr III (editor), Application of Advanced Nu-
merical Analysis to Digital Computers, pp. 43-100 (Lectures
given at the University of Michigan, Summer 1958, College
of Engineering, Engineering Summer Conferences, Ann
Arbor, Michigan {1959]).

* Work supported by the U. 8. Atomic Energy Commission.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 43

CROUT II (Henry C. Thacher, Jr., Comm. ACM, 1960)
Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

CROUT II was coded by hand for the Royal Precision LGP-30
computer, using a 28-bit mantisa floating point interpretivo
system (24.2 modified).

The program was tested against the linear system:

120719 27.3941 1.9827 7.3757 6.6355

A= | 81163 233385 08397 49474] b = |6.1304
3.0706 13.5434 15.5073 7.5172 4.6921
3.0581 3.1510 6.9841 13.1984 2.5303

with the following results:

12171900 27.394100 1.0827000 7.3756099
A/ | 025226057 66327021 15.007125 5.6565352
= | 025124262 —0.56260107 14.979620 14.527683
0.66680633 0.76468695 —0.20207132 —1.3606142
6.6354099 1 0.15929120

) 3.0181653 |3 0.14691771
b 2.5702026 pivot = |, = l0.11257482
—0.082780734 4 0.060840712

det = —1645.4499. All elements of Ab — y were less than 10-7 in
magnitude. Identical results were obtained with the same b,
and repeat true. With the same b and the last row vector of A
replaced by (19.1927, 33.4409, 25.1298, 5.2811),i.e. A4,j = A 1],
4+ 2A 2,j — 3A 3, j, the results were:
det = 0.10924352 X 1073,
y = (0.29214425 X 108, —0.12131172 X 108, 0.72411923 X 107,
—0.51018392 X 107)
Failure to recognize this singular matrix is due to roundoff, eithei
in the data input or in the calculation.

* Work supported by the U.S. Atomic Energy Commissinn.

CERTIFICATION OF ALGORITHM 43

CROUT 1II [Henry Thacher, Jr., Comm. ACM (1960),
176]

C. Domingo aND F, RopR1GUEZ-GIL

Universidad Central, Caracas, Venezuela

CROUT 1I was coded in PUC-R2 and tested in the IBM-1620.
Two types of INNERPRODUCT subroutines were used. The first
one finds the scalar product in fixed-point arithmetic to increase
accuracy, using an accumulator of 32 digits. The second one uses
ordinary floating-point with eight significative figures.

Using a unit matrix as right-hand side, a 6 X 6 segment of Hil-
bert matrix was inverted. The inverse was inverted again.

The maximum difference between this result and the original
segment of Hilbert matrix was: :

Using fixed-point INNERPRODUC. 8.2426 X 10—
(Value of determinant..................... 4.7737088 X 10718)

Using floating-point INNERPRODUC. 3.014016 X 1072
(Value of determinant. 4.4950721 X 10718)

Two typographical errors were observed in the algorithm:

43-P2- 0

The statement:

blk] := glk] — INNERPRODUCT (4 [k,p], bp], p,i,k—1)
should be:

b[k] := blk] — INNERPRODUCT (A[k,p], blp}, 1,k—1)
The statement:

ylk] := (b[k] — INNERPRODUCT (A [k,p], ylp], p.k+1,n)/Alk k]

should be: '
ylk] := (b[k] — INNERPRODUCT (Alk,pl, ylpl, p.b+1,n))/Alk k]

Storage may be saved eliminating che array y and using instead
the array b, in which the solution is formed.
A previous certification of this algorithm {Comm. ACM 4,
4 (Apr. 1961), 182] was tested again with the same results. Two
errors were detected in the certification: The row that must re-
place the last row of 4 in order to obtain a singular matrix must be :
19,1927 33.4409 —251298 . —5.2811

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 44

BESSEL FUNCTIONS COMPUTED RECURSIVELY

Maria E. Woucickr

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

procedure Bessfr(N, FX, LX, Z) Result: (J, Y);
value LX, FX, N;
real FX,LX,Z; real array J, Y; integer N;
comment Bessel Functions of the first and second kind, Jp(X)
and Yp(X), integral order P, are computed by recursion for
values of X, FX £ X = LX, in steps of Z. The functions are
computed for values of P, 0 < P < N. M[SUB], the initial
value of P being chosen according to formulae in Erdelyi’s
Asymptotic Expansions. The computed values of Jp(X) and
Yp(X) are stored as column vectors for constant argument in
matrices J, Y of dimension (N+1) by entier (LX — FX)/Z 4+ 1);
begin real PI, X, GAMMA, PAR, LAMDA, SUM, SUMI;
integer P, SUB, MAXSUB;
PI := 3.14159265;
GAMMA := .57721566;
PAR :=63.0 — 1.5 X fn (2 X PI);
MAXSUB := entier (LX — FX)/%);
begin real array JHAT [0:N, 0:MAXSUB]J;
integer arrey M[0:MAXSUBJ;
SUB := 0;
for X := FX step Z until LX do
begin if (X > 0) A (X < 10) then M [SUB] := 2 X entier (X) + 9
else
begin real ALOG;
ALOG := (PAR — 1.5 X {n (X))/X;
M [SUB] := entier (X X (exp (ALOG) + exp
(—~ALOG))/2) end;
if N > M [SUB] then
begin for P := M [SUB] + 1 step 1 until N do
J [P, 8UB] := 0 end;
JHAT M [SUB], SUB] := 10 T (-9);
comment Having set the uppermost Jp(X) to a very small
number we are now going to compute all the J»(X) down to
P =.0;
for P := M [SUB| step —1 until 1 do
JHAT [P—1, SUB] := 2 X P/X X JHAT [P, SUB] —JHAT
{P+1, SUBJ;
SUM := SUM1 := 0;
for P := 2 step 2 until (M [SUB] + 2) do
SUM := SUM + JHAT [P, SUBJ;
LAMDA := JHAT [0, SUB] + 2 X SUM;
for P := 0 step 1 until N do
J [P, SUB] := JHAT [P, SUB] /LAMDA;
comment Jp(X) have been computed by use of jp(X);
for P := 2 step 2 until (M [SUB] =+ 2) do
SUM1 := SUMI1 + (—1) X (=1) 1 P + J [2 X P, SUB]

/2/P;
Y [0, SUB] := 2/PI X (J [0, SUB] X (GAMMA + n(X/2))
-+ 4 X SUM1);

for P := 0 step 1 until (M|SUB]-1) do

Y [P+1, SUB] := (—~2/PI/P + J [P+1, SUB] X Y [P,
SUB))/J [P, SUBJ;

SUB := SUB + 1 end end end

4P 1- ¢

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 45

INTEREST

PETER Z. INGERMAN

University of Pennsylvania, Philadelphia, Pa.

procedure monpay (i, B, L, t, k, m, tol, goof)

comment This procedure calculates the periodic payment
necessary to retire a loan when the interest rate on the loan
varies (possibly from period to period) as a function of the as-
yet-unpaid principal.

The formal parameters are: i, array identifier for the vector
of interest rates; —B, array identifier for the minimum amounts
at which the corresponding i applies; —~L, the amount to be
borrowed; —t, the number of periods for which the loan is to
be taken out; —k, the number of different interest rates (and
upper limit for vectors i and B); —m, the desired periodic pay-
ment; —tol, the allowable deviation of m from some ideal;
and goof, the error exit to use if convergence fails. The only
output parameter is m. For further discussion, see Comm.
ACM 3 (Oct. 1960), 542;

begin array h, S [1:k, 1:t], M, X [1:k];
integer array T, a, b [1:k];
integer p, q, 1, sa, sb, I, ib, mb, nb;
comment This section sets up the procedure;
for p := 1 step 1 until k do
begin for q := 1 step 1 until t do
begin hp,q 1= ip9;
8p.q 1= (hp,q — 1)/(ip — 1) end;
if p = 1 then X, := 0 else X, := B, X (i1 — ip);
M; := L X (hp.t/Sp.s) end;
sa := 8b :=ib := mb := 0; nb :=
for p := 1 step 1 until k do
begin a, := entier (Bp;1/Mpi1 + 0.5) — sa;
84 = 8a - ap;
Ty := bp := entier By /M, — 0.5) — sb;
sb 1= sb 4+ byp;
if b, > mb then

begin ib := p; nb := nb — mb; mb := bp end
else nb := nb — b, end;

Ty := nb;

I:=1;

for p := 1 step 1 until k do

I:=1IX (ap — by +1);

comment Having counted the number of possible iterations
and established a set of trial values for the T,’s, a trial m is

found;
D:=1; E:= F
newm: for p :=
begin D
u

1= 0;
step 1 until k do
D X hp Tpj

1;

5% 1 then for ¢ := 1 step 1 until p — 1
t=u X hq1q;

+ Sp.me X u;

Ty

if

LITELE
XGP&T e

1 step 1 until p
=v + X;;
+ u X v end;
D + F)/E;
Now find out whether m is good enough
=D :=0;

u
E
0;
1 then for r :
v
F

==

= (L
comment
q:=1;

]

45-P1- O

for p := 1 step 1 until t do.
begin get F: F := (D + m — E)/(1 + iq);
if By1 =2 Fthen D := Felseq := q + 1;
if D # F go to get F end;
if abs (D — L) = tol then go to exit;
comment If not within tolerance, adjust T.’s and try
again;
p:=0;
redo:p :=p + 1;
if p # ib then
begin if T, = a, then
begin T, := T, + Ty, — by
Ty := by end end
else begin
Ty :=Tp + 1;
T := Tip — 1;
p := k end;
if p =kthenI:=1 — 1 else go to redo;
go to if I > 0 then newm else goof;
exit: end monpay;

CERTIFICATION OF ALGORITHM 45

INTEREST [Peter Z. Ingerman, Comm. ACM Apr. 1961
and Oct. 1960]

CarL B. WrigHT

Dartmouth College, Hanover, N. H.

INTEREST was translated into Dartmouth College Computa-
tion Center’s ‘““Self Contained ALGOL Processor’’ for the Royal-
MecBee LGP-30. When using ScALP, memory capacity is severely
limited and thus it was necessary to run this program in two
blocks. Block I ended with the computation of I, and Block II
started with the “newm’ loop. After making the changes listed
below, test problems using up to three interest rates and up to 18
time periods were used with the following results:

Loan Periods Interest Rates Payments Bf;a”::c‘ Tolerance
$100.00 1 0.056 $105.00 $0.00 $0.25
1800.00 10 0.03 211.01 0.05 4.50

875.65 8 0.08 to 500.00

0.05 over 500.00 139.78 —1.49 2.19
14750.00 18 0.06 to 5000.00
0.05 to 10,000.00
0.04 over 10,000.00 1201.70 10.50 36.88

* Hand calculation.

It is noted that in each case the final balance is within the pre-
seribed tolerance (0.0025 of the loan).

In the following corrections bracketed subscripts replace
ordinary subscripts and exponentiation is represented by T
rather than superseript.

The following corrections should be made in the Note on In-
terest in the October, 1960, issue of Comm. ACM:

1. Definition of B[r]: Replace ‘“‘minimum’ by “‘mazimum’.
Replace ““j[n]”’ by “jin—1]".

2. Define Blk+1] = L.

3. Definition of K[n]: Replace “B[n]” by “Bn-+1]".

The following corrections were found necessary in the proce-
dure:

COLLECTED ALGORITHMS (cont.)

1. The upper limit of the vector B is k+1, not k. It is not neces-
sary to change the upper limit of the I-vector. (See correction 4
below.)

2. D, E, F, u, v were not declared and must be declared as real.

3. In the array declaration replace “M|[1:k]”’ by “M[1:k+1]".

4. As j approaches 0, 7 approaches 1 and lim (h/S) = 1/¢. Thus
for jlk+1] = 0, {[k+1] = 1, and M[k+1] = L/t. Thus after

_ Mp] := L X ([p,i)/S[p,t]) end;
insert
Mk+1) := L/t; Blk+1] := L;

5. In the conditional statement following computation of b[g],
replace ‘>’ by “="’.

6. In same conditional statement, next line, “mb := bp’’ should
read “mb := b[p]”’.

7.D:=1; E:=F :=0;

newm: for p := 1 step 1 until £ do
should be changed to
newm: D :=1; E:=F :=0;
for p := 1 step 1 until k do
8. begin get F: F := (D+m—E)/(1+i[q);
if Blg+1] 2 F then D := F else ¢ := ¢ + 1;
if D # F go to get F end;
should be changed to read as follows:
begin get F: F := (D+m)/ilq};
if Bl¢g+1] = F then D := F else
begin if ¢ < k then ¢ := ¢ + 1 else D := F end;
if D # F then go to get F end;
Note that the ““‘then” in the last line was omitted from the original
procedure.
9. In the “redo’ loop insert a semicolon after the statement
T'[zb] := Tfd] + Tp] — blpl;
10. In the ‘““redo’’ loop, next line, omit the second ‘“‘end’.
11. In the ‘‘redo” loop,

p := k end;
should be changed to
p := k end end;

45-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 46

EXPONENTIAL OF A COMPLEX NUMBER
Joun R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure EXPC (a, b, ¢, d); value a, b; reala,b,c, d;
comment This procedure computes the number, ¢+di, which
is equal to e®*PD,
begin ¢ := exp (a);
d := ¢ X sin (b);
¢c:=c¢ X cos (b) -
end EXPC; :

CERTIFICATION OF ALGORITHM 46

EXPONENTIAL OF A COMPLEX NUMBER (J. R
Herndon, Comm. ACM 4 (Apr., 1961), 178)

A. P. RevpH

Atomic Power Div., The English Electric Co., Whetstone,
England

Algorithm 46 was translated using the DEucrE ALgoL compiler,
no corrections being required, and gave satisfactory results.

46-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 47

ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS

Joun R. HErNDON

Stanford Research Institute, Menlo Park, California

procedure LEGENDREA (m, n, x,r); valuem, n, x, r;
integer m, n; real x, r;
comment This procedure computes any P,m(x) or P,»(ix) for
n an integer less than 20 and m an integer no larger than n.
The upper limit of 20 was taken because (42)! is larger than
10%. Using a modification of this procedure values up to n=35
have been calculated. If P,m(x) is desired, r is set to zero. If
r is nonzero, P,™(ix) is computed;
begin
integer i, j; array Gamma [1:41];
real p, z, w, y;
if n = 0 then
begin p := 1;
go to gate end;
if n < m then
begin p := 0;
go to gate end;
z 1= 1;w:= z;
if n=m then go to main;
fori := 1 step 1 until n—m do
z 1= X X z;
Gamma (1] := 1;
for 1 := 2 step 1 until n+n+1 do
begin Gamma [i} := w X Gamma [i—1];
w = w+1 end;
w:=1; y:=w/(x X x};
if r=0 then
begin y := —y;
w = —w end;
if x=0 then
begin i := (n—m)/2;
if (i+i) # (n—m) then
begiz p := 0;
go to gate end;
p := Gamma [m+n+1]/(Gamma [i+1] X Gamma
[m+i+1]);
go to last end;
i=3; p:=0;
for i := 1 step 1 until 12 do
begin if (n—m+42)/2 < i then go to last end;
p := p + Gamma [n+n—i—i+3] X z/(Gamma
[i] X Gamma [n—i+2] X Gamma [n—i—i—
m+jl};
z := 2z X y end;
last: z := 1;
for i := step 1 until n do
z := z+tz,;
p := p/z;
if r # 0 then
begin i := n—n/4;
if 1 < i then
P := —p end;

main:

47-P 1- R1

if m = 0 then go to gate;

j = m/2; z := abs(w+x X x);

if m # (j+j) then
begin z := sqrt (z);
) := m end;

for i := step 1 until j do
p:=p Xz

gate: LEGENDREA :=p
end LEGENDREA;

CERTIFICATION OF ALGORITHM 47
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY ARGU-
MENTS [John R. Herndon, Comm. ACM, Apr. 1961]
Ricuarp GEORGE*

Argonne National Laboratory, Argonne, IIL
* Work supported by United States Atomic Energy Commission.

This procedure was programmed in ForTraM for the IBM 1620
and was tested with a number of real arguments. A few errors were
detected :

1. In the following sequence the end must be removed:

begin if (n — m + 2)/2 < 7 then go to last end;
2. In these, the lower bound of 1 is needed:

for ¢ := step 1 until n do
for 7 := step 1 until j do
3. There are four places where integer arithmetic is clearly in-

tended and we must substitute the symbol -+ for the symbol /.
In addition, it might be mentioned that the statement

if n = m then go to main;

could be omitted from the ALcoL program without harm, though
the ForTRAN version requires it. Here, and elsewhere in the pro-
cedure, one might make an equivalent but more suceinet state-
ment. With change in style, the variable j could be eliminated.

CERTIFICATION OF ALGORITHM 47 [S16]
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS [John R. Herndon, Comm. ACM 4
(Apr. 1961), 178]
S. M. Coss (Recd. 6 Feb. 1969, 12 May 1969 and 9 July
1969)
The Plessey Co. Ltd., Roke Manor, Romsey, Hants,
England
KEYWORDS AND PHRASES: Legendre function, associated

Legendre function, real or imaginary arguments
CR CATEGORIES: 5.12

This procedure was tested and run on the I.C.T. Atlas com-
puter.

COLLECTED ALGORITHMS (cont.)

In addition to the errors mentioned in the certification of August
1963 [2] the following points were noted.

1. The requirement that whenn < m p := 0 must take prece-
dence over p := 1 when n = 0. Hence the order of the first two
if statements must be interchanged.

2. Most computers fail on division by zero. Hence the state-
ment beginning if x = 0 then and ending with go to last
end; should be inserted between w := 1; andy := w/(xXz).

3. When z = 0, if the argument of the Legendre function is to
be considered as real p must be multiplied by (—1):. This is
achieved by inserting after the statement beginning p := Gamma
[m4+n+1] the if statement

if r then p :1= p X (—=1) T4
(For a change in the meaning of r see item 5 below.)

4. After the label last in the compound statement begin-
ning if r # 0 the statement ¢ := n — n+4; is wrong. This
should read

i:=n—4X (n+4);

5. Since r is used only as an indicator it is better that it be
declared as Boolean. It can then be given the vilue true if the
argument of the Legendre function is z# and false if it is sz. The
following program changes are then necessary. The statement
beginning

if r = 0 then

becomes

if r then

The statement beginning
if r % 0 then

becomes

if 7] 7 then

6. Computing time can be saved in several ways. First we
should declare another integer k& and set it equal to n — m. The
first statement of the procedure’is then

k:=mn—m;
The next statement will begin
if £ < 0 then

(This replaces if n < m then whose position has been changed
in accordance with item 1 above.)

n — m is then replaced by k in the lines

for 7 := 1 step 1 until n — m do

and

if +1) # (n—m) then

Removing j as suggested in the previous certification leaves it

free to be set to k + 2. This requires the following modification:

instead of the unnecessary statement if n = m then go to main
put
ji=k+ 2

In the statement beginning if x = 0 then replace the line
begin ¢ := (n—m) + 2;
by
begin 7 := j;

In the for loop beginning for ¢ := 1 step 1 until 12 do a

further small saving in computer time could be achieved by setting
k to n — 7. The loop thus becomes

for ¢ := 1 step 1 until 12 do
begin if j + 1 < ¢ then go to las(;
ki=n—1

47-P 2- 0

p := p + Gamma[2Xk+3] X z/Gammali] X Gammalk+2] X
Gammalk—i—m+3]);

z2:=2 XY

end

For real argument the program was tested as follows.

(i) =z =00.1)1,m=0(1)3,n=0(1)3
() = =120.2)2.8, m = 01)2, n = 0(1)2
(i) m = 0, n = 9, z = 0(0.2)1, 2(2)10.

For imaginary argument we used
z = 00.2)2, m = 01)2, n = 0(1)2.

Checking for real argument was carried out where possible
using {1], agreement being obtained in all cases to the maximum
number of figures available, which varied between 6 and 8. For all
other cases [3] had to be used, giving only a 5 figure check.

REFERENCES:

1. ABramowirz, M., anp STEGUN, I. A. Handbook of mathe-
matical functions. AMS 55, Nat. Bur. Stand. US Govt. Print-
ing Off., Washington, D.C., 1964.

2. GEorGE, R. Certification of Algorithm 47. Comm. ACM ¢
(Aug. 1963), 446,

3. Morsg, P. M., ano FesBacH, H. Methods of Theoretical
Physics Pt. II. McGraw Hill, New York, 1953.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER

Jorn~n R. HErRNDON

Stanford Research Institute, Menlo Park, California

procedure LOGC(a, b, ¢, d); value a, b; real a, b, ¢, d;
comment This procedure computes the number, c+di, which
is equal to log.(a-+bi);
begin ¢ := sqrt (a X a + b X b);
d arctan (b/a);
c := log (¢);
ifa < 0 then d := d+43.1415927
end LOGC;

Wy

CERTIFICATION OF ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER J. R.
Herndon, Comm. ACM 4 (Apr., 1961), 179)

A. P. Revpu

Atomic Power Div., The English Electric Co.. Whetstone,
England

Algorithm 48 was translated using the DEucE ArcoL compiler,
after certain modifications had been incorporated, and then gave
satisfactory results.

The original version will fail if @ = 0 when the procedure for
arctan is entered. It also assumes that —r/2<d <3x/2, whereas the
principal value for logarithm of a complex number assumes
—r<dST.

Incidentally, the ALcow 60 identifier for natural logarithm is In,
not log.

The modified procedure is as follows:

procedure LOGC (a,b,c,d); valuea,b; reala,b,c,d;
comment This procedure computes the number ¢ + di which is

equal to the principal value of log, (a + bi). If @ = 0 then ¢ is

put equal to —1047 which is used to represent ‘“— infinity’’;
begin integer m,n

m := sign (a); n := sign (b);

if & = 0 then begin ¢ := —1047;

d := 1.5707963 X n;

go to k
end;
c:=sqrt(a X a4+ b X b);
¢ :=In (¢);
d := 1.5707963 X (1—m) X (14+n—nXn) + arctan (b/a);
k: end LOGC;

REMARK ON ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER [John R.
Herndon, Comm. ACM (Apr. 1961)]

MARGARET L. JoHNsON AND WARD SANGREN

Computer Applications, Inc., San Diego, Calif.
Considerable care must be taken in using the arctan function.

In Algorithm 48 two such difficulties are ignored. First it is

necessary, because of a resulting division by zero, to deal sepa-

rately with the case where the real part of the complex number
is zero. Second, if the real part of the complex number is negative

48-P 1- 0

and the argument of the logarithm is to have a value between

—x and = then the action depends upon the sign of the imaginary

part of the complex number. For clarity the following procedure

exhibits in sequence the alternatives:

procedure LOGC (a,b,c;d); value a,b; reala,b,c,d;

comment This procedure computes the number ¢+4d¢ which is
equal to log. (a+¥7). It is assumed that the arctan has a value
between —=/2 and =/2.

begin if >0 then begin THETA := 0; go to SOL end;
if a<0Abz0 then begin THETA := 3.1415927;
go to SOL end;
if a<0Ab<0 then begin THETA := —3.1415927;
go to SOL end;
if a=0Ab=0 then begin ¢ := d := 0;
go to RETURN end;)
if a=0Ab>0 then begin ¢ := In(b); d := 1.570963;
go to RETURN end; .
if a=0/Ab<0 then begin ¢ := In(abs(b));
d := 1.570963; go to RETURN end;
SOL: d := arctan (b/a) + THETA;
¢ := sqrt(aXa+bXb);
¢ := In(c);

RETURN: end LOGC

REMARK ON REMARKS ON ALGORITHM 48 [B3]
LOGARITHM OF A COMPLEX NUMBER [John R.
Herndon, Comm. ACM 4 (Apr. 1961), 179; § (Jun. 62),
347; 6 (Jul. 62), 391]
Davip S. CorrENs (Recd. 24 Jan. 1964 and 1 Jun. 1964)
Computer Laboratory, The University, Liverpool 3,
England
This procedure was designed to compute log.(a+b7), namely
c+di, and although some very necessary precautions about its
use have already been stated, some points seem to have escaped
notice. In particular, A. P. Relph {Comm. ACM, June 1962, 347].
remarked that if ¢ = 0, then ¢ becomes ‘—infinity’, but this is only
the case if b = 0 also. Margaret L. Johnson and Ward Sangren
[Comm. ACM, July 1962, 391] conceded that a = b = 0 was a special
case, but wrongly gave zero as the result. The only reasonable way
of dealing with this case is to exit to some nonlocal label and to
let the user decide whether to terminate his program or to assign
particular values to c and d. The obvious values to use here are, for
¢, a negative number, larger than the largest which would be given
by the procédure, and possibly zero for d. (In an implementation
where 2-12 is the smallest representable nonzero number, the
largest negative value of ¢ possible is --89.416.) Finally, in the
Johnson-Sangren version of the procedure, the last conditional
statement should read

ifa = 0 Ab < 0 then begin ¢ := In(abs(h));
d := —1.570963; go to RETURN end;

the omission of the minus sign in the original being probably
typographical in origin.

COLLECTED ALGORITHMS FROM ACM

49-P 1- R1
ALGORITHM 49 end;
SPHERICAL NEUMANN FUNCTION 8T e b/
JouN R. HERNDON go to gate;
Stanford Research Institute, Menlo Park, California t 1= sin (x)/x;
’ ’ ‘ f := 1step 1 til r d
real procedure SPHBEN (r,x); value r,x;: real rx; o]l;egginz ;s=e:- am e
comment This procedure computes the spherical Neumann s =8 X (é +g—1)/(x—1):
funetion (v/2%)!N;.12(x). Infinity is represented by 10%; b=z

begin real z, g, t; end;

if x=0 then ' gate: SPHBEN :=s

begin s := 10 1 47; end SPHBEN;

go to gate

ACM Transactions on Mathematical Software, Vol. 4, No. 3, September 1978, Page 295.

REMARK ON ALGORITHM 49

Spherical Neumann Function
[J .R. Herndon, ‘Comm. ACM 4, 4 (April 1961), 179]

John P. Coleman [Recd 17 February 1978]

Department of Mathematics, University of Durham, Durham, England

There is a typographical error in this algorithm. The line
s=sX(g+g—1)/(x—1)

should read ‘ .
s=sxX(g+g—-ND/x—-¢

The algorithm provides overflow protection only when x = 0. Overflow will still
occur for x very close to zero. The range of values of x for which overflow occurs
will depend both on the value of r and on the largest number the machine can
hold.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 50

INVERSE OIF A [IINITE SEGMENT
HILBERT MATRIX

Joun R. HErRNDON

Stanford Research Institute, Menlo Park, California

OI' THE

procedure INVHILBERT (n,S);
real array S;
comment This procedure computes the elements of the inverse
of an n X n finite segment of the Hilbert matrix and stores them
in the array S;
begin real i, j, k;
Sf1, 1) = n X n;
for i := 2 step 1 until n do
begin
8[i,i] := (p+i—1) X (n=i+1)/(G~-1) X (i~-1));
S[i, i} := 8[i—1, i—1] X 8[i, i] X 8[, i]
end;
fori := 1step 1 until n—1 do
begin
for j := i+1 step 1 until n do
begin
k :=j—1;
S, j] := —=8[i, k] X (n+k) X (n—k)/(k X k)
end
end;
for i := 2 step 1 until n do
begin S[i, i} := S[i, i]/G+i—1);
for j := 1 step 1 untili—1 do
begin S(j, i] := 8(, 1)/(i+j-1);
S[i, i1 := 8, il

value n; real n;

end
end
end INVHILBERT;

CERTIFICATION OF ALGORITHM 50

INVERSE OF A FINITE SEGMENT OF THE HIL-
BERT MATRIX [J. R. Herndon, Comm. ACM 4
(Apr. 1961)]

B. RaNDELL

Atomic Power Division, The English Electric Co., Whet-
stone, England
INVHILBERT wuas translated using the DEUCE ALGOL com-

piler and the following corrections being needed.

1. S[1, 1] = n X n, replaced by S[1, 1] := n X n;

2. 8[j, 1] :=8G,1)/G+) -1

replaced by S[, i] := 8, il/G+j — 1)

The compiled program, which used a 20 bit mantissa floating point

notation then produced the following 4 X 4 segment

16.0 —120.0 240.0002 —140.0
-120.0 1200.0 —2700.0 1680.0019
240.0 —2700.0 6480.0 —4200.0
—140.0 1680.0019 —4200.0 2800.0039

50-P 1- 0

REMARKS ON
GORTHM 50

INVERSE OF A FINITE SEGMENT OF THE
HILBERT MATRIX [J. R. Herndon, Comm. ACM,
Apr. 1961]

P. Naur

Regnecentralen, Copenhagen, Denmark

AND CERTIFICATION OF AL-

In addition to inserting the corrections indicated by B. Randell
[Comm. ACM 6 (Jan, 1962), 50], we have modified and simplified
the algorithm as follows:

1. The types of n, 7, j and k have been changed to integer.
This saves roundoff operations in subseripts.

2. Explicit multiplications have been replaced by squaring.
This saves code length and execution time, at least in a compiler
like ours for the Gier. .

3. Repeated references to subscripted variables have been
eliminated, partly with the aid of an additional simple working
variable, w, partly by using simultaneous assignments.

4. Arn unnecessary begin end pair has been removed.

In total, these changes, in addition to reducing the code length,
have increased speed by a factor of 1.6.

The resulting algorithm is as follows:

procedure INVHILBERT (n,S);

value n; integer n; real array S;

comment ALG. 50: This procedure computes the elements of
the inverse of an n X n finite segment of the Hilbert matrix and
stores them in the array S. The Hilbert matrix has the elements

HILBERT[Z,j] = 1/(z+j—1). The segments of this are known

to be increasingly ill-conditioned with increasing size;
begin integer ¢, j, k; real w;

w = S[1,1] := nl2;
for i := 2 step 1 until n do w := 8[3,7] := w X ((n+i—-1) X
(n—i+1)/G—1)12)12;
for 7 := 1 step 1 until n—1 do for 7 := i+1 step 1 until n do
begin

k= j—1;

S[Z,5] := —=8[i,k] X (n+k) X (n—k)/k12

end;
for { := 2 step 1 until n do for j := 1 step 1 until i do

8[i,5] := 8lj¢] := 8[53)/(G+i—1)
end INVHILBERT;

Both the original version and the above improved. one have
been run successfully on the Gier Arcon system (30-bit man-
tissa). The test program included:

(a) Output of the 4 X 4 matrix, to be compared with the results
of Randell [loc. cit.]. Results:

16.000000 —120.000000 240.000000 —140.000000
—120.000000 1200.000000 —2700.000000 1680.000000
240.000000 —2700.000000 6480.000000 —4200.000000
—140.000000 1680.000000 —4200.000000 2799.999977

(b) Forn := 1 step 1 until 15, the inverse of the segment was
calculated by INVHILBERT and multiplied by the segment of
the Hilbert matrix, and the result was compared with the unit
matrix. The maximum error was divided by the largest element of
the inverse to form a relative error. Some of the results, which
were entirely satisfactory throughout, are given below:

COLLECTED ALGORITHMS (cont.)

Element of 1 argest element of
Order max error abs (max error) INVHILBERT Relative error
3 S13,3] 2.3810—7 1.92;02 1.24,0—9
6 S[2,4] 4.39,0—3 4.41,,6 9.96,0—10
9 S(2,8] 1.24,42 1.22,,11 1.01,,—9
12 S15,9] 1.54166 3.661015 4.21,,—10
15 S[1,12] 1.06,011 1.15,020 9.22,0—10

(c) The time for a call of the revised INVHILBERT was
found as follows:

.2 seconds
.6 ‘
.3

13

GO o R
-0 O

50-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 51

ADJUST INVERSE OF A MATRIX WHEN AN
ELEMENT IS PERTURBED

Jonn R. HErNDON

Stanford Research Institute, Menlo Park, California

procedure ADJUST (n,d,i,j, A, B); valuei,j, n,d;
integer i, j, n; real d; real array A, B;
comment If the n X n matrix A=M~! and a change, d, is made
in the i, j-th element of M this procedure will calculate the
corrected matrix for M~ by adjusting matrix A. The adjusted
matrix is stored in B;
begin integer r, s;
real t;
t = d/(Alj, i] X d+1);
for r := 1 step 1 until n do
begin for s := 1 step 1 until n do
Blr, 8] = Alr, 8] — t X Ar, i] X Aj, s] end
end ADJUST

CERTIFICATION OF ALGORITHM 51

ADJUST INVERSE OF A MATRIX WHEN AN
ELEMENT IS PERTURBED [John R. Herndon,
Comm. ACM 4 (Apr. 1961)]

Ricuarp GEORGE*

Argonne National Laboratory, Argonne, Ill.

This procedure was programmed in ForTRAN and reduced to
machine code mechanically. It was run on the Argonne-built
computing machine, GEORGE. A floating-point routine was used
which allows maximum accuracy to 31 bits.

The procedure was tested for matrices with n ranging from
2 to 10. For each value of n, there were 20 successive trials; each
trial consisted of a random perturbation of a randomly selected
element of the matrix M, followed by a use of abjusT, followed
by the matrix multiplication N := B-M. For each trial, the
adjustment was evaluated by computing

sum := {‘Z': fi N[i,j]} —n.

For random perturbations between —1.0 and +1.0, the value
of sum never exceeded 2.0,0—8.
There are two typographical errors present:

Blr,;s]=A[rs]—tXA[r,i]X Aj,s] end
should be
Bilr,s] := Alrs]—tXAJr,i]XA[j,8] end

* Work supported by the U. 8. Atomic Energy Commission.

51-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 52

A SET OF TEST MATRICES

Jonn.R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure TESTMATRIX (n,A);
real array A;
comment This procedure places in A an n X n matrix whose
inverse and eigenvalues are known. The n-th row and the n-th
column of the inverse are the set: 1, 2, 3, ... , n. The matrix
formed by deleting the n-th row and the n-th column of the
inverse is the identity matrix of order n—1;

value n; integer n;

begin integer i, j;
real t, ¢, d, f;
¢ =t X (t+1) X (t+t—5)/6;
d:= 1/e;
Aln, n] := —d;
for i := 1 step 1 until n—1 do
begin f := i;

Afli,n} :=d X f;

Aln, i] := A[i, n];

Afli,i] :=d X (e—f X f);
for j := 1 step 1 until i—1 do

begin t := j;)
Al j] = —d X f X t;
Alfj, 1] := Alfi, j]
end
end

end TESTMATRIX;

CERTIFICATION OF ALGORITHM 52
A SET OF TEST MATRICES (J. R. Herndon, Comm.
ACM, Apr. 1961)
H. E. GiLBERT
University of California at San Diego, La Jolla, Calif.
The statement
c:=t X (t+1) X (t+t-5)/6;
was changed.to
¢:=n X (n+l1) X (n+n—5)/6;
to make the inverse have the form described in the algorithm. The
algorithm was translated to FORTRAN and tested with a matrix
eigenvalue program on the CDC 1604 computer at UCSD.
The eigenvalues for the 20 X 20 test matrix are:
1. 1.000000

19. 01636693
20. —.02493833

REMARK ON ALGORITHM 52

A SET OF TEST MATRICES (Johr: R. Herndon, Comm.
ACM, Apr. 1961)

G. H. Dusay

University of St. Thomas, Houston, Tex.

52-P1- 0

-+ In the assignment statement

¢i=tX({t+ X+ t--5)/6; (a)
the ¢ is undefined. A suitable definiti¢zn would ‘be provided by
preceding (a) with t := n;

REMARKS ON AND CERTIFICATION OF
ALGORITHM 52

A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM, Apr. 1961]

P. Naur »

Regnecentralen, Copenhagen, Denmark

In addition to inserting the correction indicated by H. E.
Gilbert [Comm. ACM (Aug. 1961), 339] the algorithm was simpli-
fied by using the simultaneous assignment and by eliminating the

local variables ¢ and f. The resulting algorithm is as follows:
procedure TESTMATRIX (n,A);

value n; integer n; real array A;
comment ALG. 52: This procedure places in 4 an n X n matrix
- whose inverse and eigenvalues are known. The nth row and the
nth column of the inverse are the set: 1, 2, 3, ..., n. The matrix
formed by deleting the nth row and the nth column of the in-
verse is the identity matrix of order n—1;
begin integer ¢,j; real ¢,d;

¢:=nX (n+1) X (n+n—5)/6;

d = 1/c; :

Alnn] := —d;

for ¢ := 1 step 1 until n—1 do
begin

Alin] = Alni] :=d X i

Aliid] :=d X (c—1i12);

for j := 1 step 1 until i—1 do Al:,j] := Alj,i]] ;= —d Xt X j
end

end TESTMATRIX;

This version of the algorithm was successfully run in the Gier
ALgGoL system together with the inversion procedures INVER-
SION II and gjr (see Certification of Algorithm 120 below). From
the figures produced by INVERSION II it looks as if the determi-
nant of these matrices is given by 6/(n(n+1)(5—2n)), which is
also the value of the element A{n,n]. For n > 3 the absolutely
greatest element is A[1,1] = 1 + Al[n,n].

CERTIFICATION OF ALGORITHM 52
A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM, Apr. 1961]
J. 8. HiLLmoRrE
Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The algorithm was corrected as recommended by H. E. Gilbert
in his certification [Comm. ACM, Aug. 1961] and then successfully
run using the Elliott ALGoL translator on the National-Elliott 803.
The matrices so generated were used to test the matrix inversion
procedure GJR given by H. R. Schwarz in his awsicle ‘“An Intro-
duction to ArcoLr’’ [Comm. ACM, Feb. 1962].

COLLECTED ALGORITHMS (cont.)

ADDITIONAL REMARKS ON ALGORITHM 52
A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM (Apr. 1961), 180]

P. Naur

Regnecentralen, Copenhagen, Denmark

From an inspection of the results of eigenvalue-finding algo-
rithms I conclude that all but two of the eigenvalues of TEST-
MATRIX are unity while the two remaining are given by the ex-
pressions 6/(pX (n+1)) and p/(nX (6—2Xn)) where

p =3 + sqrt (dXn—-3) X (n—1) X 3/(n+1)).
These expressions have been used for the determination of ab-
solute errors of the eigenvalues calculated by JACOBI, Algorithm
85, and Householder Tridiagonalisation, etc. as reported below.
They were also used to calculate the following table (using GIER
ALGOL, with 29 significant bits):

n Determinant Eigenvalues Differing from unity

3 —.500 000 00 .224 744 87 —2.224 744 9

4 —.100 000 00 .153 112 89 —.653 112 89
5 —.040 000 000 .113 238 08 —.353 238 08
6 —.020 408 163 .088 290 570 —.231 477
7 —.011 904 762 .071 428 571 —.166 666 67
8 —.007 575 757 6 .059 386 081 —.127 567 90
9 —.005 128 205 2 .050 422 549 —.101 704 60
10 —.003 636 363 6 .043 532 383 —.083 532 383
11 —.002 673 796 8 .038 097 478 —.070 183 039
12 —.002 024 291 5 .033 718 770 —.060 034 559
13 —.001 569 858 7 .030 128 103 —.052 106 125
14 —.001 242 236 0 .027 139 206 —.045 772 747
15 —.001 000 000 O .024 619 013 —.040 619 013
16 —.000 816 993 47 .022 470 157 —.036 359 046
17 —.000 676 132 52 .020 619 902 —.032 790 288
18 —.000 565 930 96 .019 012 916 —.029 765 605
19 —.000 478 468 90 .017 606 429 —.027 175 807
20 —.000 408 163 27 .016 366 903 —.024 938 332

The figures for n = 20 agree very well with the results quoted by
H. E. Gilbert in his certification [Comm. ACM 4 (Aug. 1961), 339].

5-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 53

Nta ROOTS OF A COMPLEX NUMBER

Jou~n R. HErnNDON

Stanford Research Institute, Menlo Park, California

procedure NTHROOT (n, r, u, REAL, UNREAL); value
n, r, u; integer n;
real r, u; real array REAL, UNREAL;
comment This procedure computes the n roots of the equation
x® = r-+ui. The real parts of the roots are stored in the vector

REAL []. The imaginary parts are stored in the corresponding
locations in the vector UNREAL [1;
begin integer nl, n2; real en, th, s, th 1;
REAL [n] := 0;
en := 1/n;
if u=0 then
begin s := (abs(r)) 1 en;
th := 0,

go to main end;
if r=0 then
begin 8 := (abs(u)) 1 en;
th := 1.5707963;
if u < 0 then
th := —th
g0 to main end;
s:= (r X r+u X u) T (en/2);
th := arctan (u/r);
main: if r < 0 then
th := th + 3.1415926;
th := en X th;
thl := 6.2831853 X en;
for n2 := 1 step 1 until n do
begin REAL [n2] := 8 X cos (th);
UNREAL [n2] := s X sin (th);
th = th+th 1 end
end NTHROOT;

REMARK ON ALGORITHM 53

Nth ROOTS OF A COMPLEX NUMBER (John R.
Herndon, Comm. ACM 4, Apr. 1961)

C. W. NESTOR, JR.

Oak Ridge National Laboratory, Oak Ridge, Tennessee

A considerable saving of machine time for N = 3 would result
from the use of the recursion formulas for the sine and cosine in
place of an entry into a sine-cosine subroutine in the do loop
associated with the Nth roots of a complex number. That is, one
could use

sin (n + 1)0 = sin nd cosf + cos nf sing
cos (n + 1)8 = cos nd cosd — sin nd sind,
at the cost of some additional storage.
We have found this procedure to be very efficient in problems
dealing with Fourier analysis, as suggested by G. Goerzel in
chapter 24 of Mathematical Methods for Digital Computers.

33-P 1-

0

COLLECTED ALGORITHMS FROM CACM
54-P 1- R1
ALGORITHM 54 and
ifz < — 1 then beginy :=y X z; go to CC end

GAMMA FUNCTION FOR RANGE 1 TO 2
Joun R. HERNDON
Stanford Research Institute, Menlo Park, California

real procedure Q(x); value x; real x,

comment This procedure computes I'(x) for 1 £ x < 2. This is
a reference procedure for the more general gamma function
procedure. IT'(x) = Q(x—1);

begin Q = (((((((0.035868343 X x — 0.19352782) X x
+ 0.48219939) X x — 0.75670408) X x
+ 0.91820686) X x — 0.89705694) X x
+ 0.98820589) X x — 0.57719165) X x + 1.0
end Q;
REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION

[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2

{John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

[William Holsten, Comm. ACM 5 (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION

[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION

[M. C. Pike and 1. D. Hill, Comm. ACM 9 (Sept. 1966),

684]
M. C. Pike anp 1. D. Hizr. (Reed. 12 Jan. 1966)
Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and 54 both use the same Hastings approxima-

tion, accurate to about 7 decimal places. Of these two, Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines
if z = 0 then begin RGR := 0; go to EXIT end
and
if z = 1 then begin RGR := 1; go to EXIT end
should each be followed either by a semicolon or preferably by an
else.
(3) The lines

if z = 1 then begin RGR := 1/y; go to EXIT end

*ould each be followed by a semicolon.
) The lines
BB: ifz = —1 then begin RGR := 0; go to EXIT end
and)
if 2 > —1 then begin RGR := RGAM (z): . go to EXIT end
should be separated either by else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer ¢ and real array B[0:13] in RGAM
are in the wrong place; they should come immediately after
begin real z;

With these modifications (and the repiacement of the a/rray B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput-
ing time, being twice as fast as 291 at'x = 1, but this advantage
decreases steadily with increasing z so that at z = 7 the speeds are
about equal and then from this point on 291 is faster—taking only
about a third of the time at z = 25 and about a tenth of the time
at x = 78. These timings include taking the exponential of log-
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 55

COMPLETE ELLIPTIC INTEGRAL OFF THE FIRST
KIND

Joun R. HErNDON

Stanford Research Institute, Menlo Park, California

real procedure ELLIPTIC 1(k); value k; real k;
comment This procedure computes the elliptic integral of the
first kind K(k, 7/2);

begin real t;
t:=1-k X k;
ELLIPTIC 1 := ({(0.032024666 X t 4+
0.054555509) X t
+ 0.097932891) X t -+ 1.3862944)
— (((0.010944912 X t + 0.060118519) X t
+ 0.12475074) X t + 0.5) X log (t)
end ELLIPTIC 1;

CERTIFICATION OF ALGORITHM 55

COMPLETE ELLIPTIC INTEGRAL OF THE FIRST
KIND [John R. Herndon, Comm. ACM, Apr. 1961]
and

CERTIFICATION OF ALGORITHM 149

COMPLETE ELLIPTIC INTEGRAL [J. N. Merner,
Comm. ACM, Dec. 1962]

Henry C. THACHER, JR.*

Reactor Eng. Div., Argenne National Laboratory,

Argonne, Il
* Work supported by the U.S. Atomic Energy Commission.

The bodies of Algorithm 55 and of the second procedure of
Algorithm 149 were tested on the LGP-30 computer using ScaLp,
the Dartmouth ‘“LoAD-AND-GO’’ translator for a substantial sub-
set' of ALgoL 60. The floating-point arithmetic for this translator
carries 7- significant digits.

In addition to modifications required because of the limitations
of the ScaLp subset, the following need correction:

In Algorithm 55:

1. The constant 0.054555509 should be 0.054544409.
2. The function log should be In.

In procedure ELIP 2 of Algorithm 149, the statement a := ¢
should be ¢ := C.

The parameters of Algorithm 149 are related to the complete
elliptic integral of the first kind by: K = aXELIP(a, b) where
the parameter m = k% = 1 — b/a.

The maximum approximation error in Algorithm 55 is given by
Hastings as about 0.60—6. In addition there is the possibility of
serious cancellation error in forming the complementary param-
eter t = 1 —k X k. For k near 1, errors as great as 4 significant
digits were sustained. In these regions, the complementary
parameter itself is a far more satisfactory parameter.

The accuracy obtainable with Algorithm 149 is limited only by
the arithmetic accuracy and the amount of effort which it is
desired to expend. Six-figure accuracy was obtained with 5 appli-
cations of the arithmetic-geometric mean for @ = 1000, b = 2,
and with one application for a = 500, b = 500.

55-P1- 0

Neither algorithm is satisfactory for ¥ = 1. The behavior for
Algorithm 55 will be governed by the error exit from the logarithm
procedure. Under these circumstances, Algorithm 149 goes into an
endless loop. Algorithm 149 may also go into an endless loop of the
terminating constant (0—8 in the published algorithm) is too
small ‘for the arithmetic being used. For the ScaLp arithmetic it
was found necessary to increase this tolerance to 5.00—7. The
resulting values of the elliptic integrals were, however, accurate
to within 2 in the 7th significant digit (6th decimal). '

The relative efficiency of the two algorithms will depend
strongly on the efficiency of the square-root and logarithm sub-
routines. With most systems, Algorithm 55 will provide sufficient
accuracy, and will be more efficient. If a square-root operation or
a highly efficient square-root subroutine is available, Algorithm
149 may well be the better method.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 56

COMPLETE ELLIPTIC INTEGRAL OF THE
SECOND KIND

Joun R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure ELLIPTIC 2(k); value k; real k:
comment This procedure computes the elliptic integral of the -
second kind E(k, =/2);
begin real t;
t:=1—-k Xk;
ELLIPTIC 2 := (((0.040905094 X t +
0.085099193) X t
+ 0.44479204) X t + 1.0 — (((0.01382999 X t
+ 0.08150224) X t + 0.24969795) X t) X log (t)
end ELLIPTIC 2;

CERTIFICATION OF ALGORITHM 56 [S21]
COMPLETE ELLIPTIC INTEGRAL OF THE
SECOND KIND
[J. R. Herndon, Comm. ACM 4, (Apr. 1961), 180]
GEruEARD MEDELL LARSSEN (Reed. 9 Aug. 1965)
Institut fir Statik und Dynamik der Luft- und Raum-
fahrtkonstruktionen mit Rechengruppe der Luftfahrt,
Technische Hochschule, Stuttgart, Germany

Algorithm 56 was run on a UNivac 1107 using the Univac 1107
AvrcoL 60 compiler (dated January 25, 1965). The single-precision
floating-point arithmetic of this translator carries eight significant
digits.

Two syntactical errors were removed from the algorithm:

1. The line

ELLIPTIC 2 := (((0.040905094 X t +
was changed to
ELLIPTIC 2 := ((0.040905094 X ¢ -+

2. The function log was changed to In.
In addition, the statement

t:=1-kXk

was removed from the algorithm and the complementary parame-
ter itself used as input to the procedure:

real procedure ELLIPTIC 2 (); value t; real {;

to avoid cancellation error for values of & near 1. [While the use
of ¢ as input parameter is good computationally, the name of the
procedure is then slightly misleading.—J.G.H.]

Several values of the complete elliptic integral of the second
kind were computed for 1 > ¢ > 0. The maximum error was found
to be about, 710—7, compared with A. M. Legendre, Tafeln der
Elliptischen Normalintegrale, Stuttgart, 1931. For ¢ = 0 an error
exit from the In routine takes place.

56-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 57

BER OR BEI FUNCTION

Joun R. HErnNDON

Stanford Research Institute, Menlo Park, California

real procedure BERBEI (r, z); valuer, z; real r, z;
comment This procedure computes ber(z) if r is set equal to
zero. bei(z) is produced if r equals 1.0;

begin

real s, k, ¢, f, t;

ifr = 0 then

8 =1
else

8 = (z X z)/4;

-t
R

z
f X f;
for ¢ := 2 step 2 until 100 do
begin
ifs = 8 4+ k then
go to gate;

(e+r) X (e+r—1);)
—0.0625 X k X £/(t X t);
s+k end;

t

k

s
gate: BERBEI := s
end BERBEI;

CERTIFICATION OF ALGORITHM 57

BER OR BEI FUNCTION [J. R. Herndon, Comm. ACM
4 (Apr. 1961)]

A. P. RerpH

The English Electric Co. Whetstone, England

Algorithm 57 was translated using the Deuce ALeoL compiler.
No corrections were required, and the results were satisfactory.

CERTIFICATION OF ALGORITHM 57

BER OR BEI FUNCTION [John R. Herndon, Comm.
ACM, Apr. 1961])

Henry C. THAcHER, JR.*

Reactor Engineering Div., Argonne National Lab.,
Argonne, Il

* Work supported by the U. S. Atomic Energy Commission.

The body of Algorithm 57 was tested on the LGP-30 using the
ALGoL 60 translator developed by the Dartmouth College Com-
puter Center. No syntactical errors were found. Forz = 0.1(0.1)1.0,
with a 74 significant decimal arithmetic routine, the program
gave results with errors less than 5 (and for z = 1(1)5 less than 12)
in the seventh digit. For large values of z, serious cancellation
errors may occur. For example, for z = 20, more than 2 decimals
of significance can be lost in this way.

57-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 58

MATRIX INVERSION

DonaLp CoHEN

Burroughs Corporation, Pasadena, Calif.

procedure invert (n) array: (a);

comment matrix inversion by Gauss-Jordan elimination;
valuen;
array a;

begin
array b, ¢ [1:n]; integeri,j,k, ¢, p;
integer array z [1:n];

for j := 1 step 1 until ndo z[j] := j;

fori:= 1 step 1 until n do begin

k:=i; y:=af,i]; £:=1—1; p:=i+1;

for j := p step 1 until n do begin

w := ali, j]; if abs(w) > abs(y) then begin

k :=j; y := w end end;

for j := 1 step 1 until n do begin

C[]] = &[j, k]; &[j, k] := &[j, 1];

afj, il := —ecljl/y; blil := afi, jl := ali, jl/y end ;

afi,il := /y; j:=zll; 2zli] := zlk]; zlkl:=j ;

for k := 1 step 1 until £, p step 1 until n do

for j := 1step 1 until ¢, p step 1 until ndo

alk, j] := alk,i] — bljl X c[k]end; £:=0 ;

t:= ¢+ 1; k:=z{]; if { < nthen begin

for j := { while k # j do begin

fori := 1 step 1 until n do begin

w:= alj,il; alj,i] := alk,i]; alk,i]l:= wend ;

go to back end

end invert.

integern;

back:

CERTIFICATION OF ALGORITHM 58

MATRIX INVERSION (Donald Cohen, Comm. ACM 4,
May 1961)

Ricaarp A. CONGER

Yalem Computer Center, St. Louis University, St.
Louis, Mo.

Invert was hand-coded in ForTraN for the IBM 1620. The
following corrections were found necessary:
The statement ax,j := ax,; — b; X ¢k should be

aL,j := akj — b; X cxk
The statement go to back should be changed to
i:=12x; 2x:=12;; 2;:=1; go to back

After these corrections were made, the program was checked by
inverting a 6 X 6 matrix and then inverting the result. The second
result was equal to the original matrix within round-off.

58-P1- ©

CERTIFICATION OF ALGORITHM 58

MATRIX INVERSION [Donald Cohen, Comm. ACM,
May, 1961]

RicearpD GEORGE™

Particle Aceelerator Div.,
Argonne, Il

Argonne National Lab.,

* Work supported by the U. S. Atomic Energy Commission.

This procedure was programmed in FoRTRAN and reduced to
machine code mechanically. It was run on the Argonne-built com-
puting machine, GEORGE. A floating-point routine was used which
allows maximum accuracy to 31 bits.

There are a number of errors of various types:

(1) There are eight begin’s and only seven end’s.
(2) The line

alk, jl := alk, 3] — blj] X clk] end;
should be
alk, j1 := alk, j] — blj] X c[k] end;

(3) The permutation of rows of the inverted matrix and permu-
tation of elements of the integer array z must be carried out simul-
taneously. This algorithm fails to do this, and consequently the
‘matrix at the time of exit from the procedure is left in a permuted
condition.

(4) The algorithm permits the statement

k= z[l];

to be executed even though the declarations place an upper limit
of n on the integer array z, and the test for I £ n has not yet been
made. Obviously, Mr. Cohen’s compiling system would allow an
out-of-bounds array look-up. One could easily incorporate into an
AvraoL compiler a guard against such illicit array references, and
therefore the published algorithm might bé considered machine
dependent.

(6) This algorithm requires 3n? divisions, most of which are un-
necessary. By inserting the statement

y := 1.0/y;

at the proper place, one may accomplish the obvious economy

.of reducing this to only » divisions plus 2n2 multiplications.

(6) If a matrix should be singular (or nearly so), some pivot
element will be zero (or very small), and a tést should be made,
with provision for a jump to ALARM, a non-local label.

(7) The identifiers w and y should be declared within this pro-
cedure, to avoid trouble.

(8) This algorithm omits calculation of the determinant of the
matrix. This could be computed with very little extra effort.

The revised algorithm was then tested on the LGP-30 com-
puter, using ALGor-30, a small subset of ALgoL. Within the re-
strictions of this subset, the program worked catisfactorily on test
mat-ices. .

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 58
MATRIX INVERSION [Donald Cohen, Comm. ACM,
May, 1961]
GEORGE STRUBLE
University of Oregon, Eugene, Oregon
For the last seven lines, beginning with alk, j] :== alk,], substi-
tute:
alk, 51 := alk, 5] — bli] X ¢[k] end;
l:=0;
back: 1:= I4+1;
again: k := z[l];
if k£ ## [then
begin for i := 1 step 1 until n do
begin w := all, 7];

afl, 7] := alk, ©1;
alk, 7] := w end;
2[l] = z[k],

zlk] :
go to agaln end;
else if | # n go to back
end invert

REMARK ON ALGORITHM 58

MATRIX INVERSION [D Cohen, Comm. ACM,
May 61]

PETER G. BEHRENZ

Matematikmaskinnméinden, Box 6131, Stockholm 6,
Sweden

invert was run on Facit EDB using Facit-Avcor 1. Some
changes in the procedure had to be made:

1. y and w had to be declared in the procedure-body as real
y’ w;
2. The last part of the procedure starting with ! := 0; which
should interchange the matrix rows did not work correctly, even
with the corrections proposed by R. A. Conger [Comm. ACM,
June 62]. We propose the following code:

for | := 1 step 1 until n do begin

k := 2[l]; for j := [whilek # j do begin

for i := 1 step 1 until n do begin' =~

w = alj, {]; alj,] := alk, i]; alk, 7] := wend;

i = z[k]; 2[k]:= z[}; k:= 2z[j] := i end end end invert

If the matrix a is singular, the value of the pivot element y
will once be zero or very nearly zero and division by zero would
oceur in the course of the ecalculation. It would therefore be
advantageous to introduce. an empmcal tolerance parameter
epsilon into the procedure.

To calculate the determinant of the matrix @ it is only necessary
to put three more statements into the code. With these augmenta-
tions invert should read:

procedure invert (n, a, epsilon, determinant) ;
value n, epsilon; real epsilon, delerminant;
array ¢; integer n;
begin real y, w; integer 1, j, k; I, p;
array b, c{l:n]; integer array z[l:n];
determinant i = 1; o
followed by the same code as*before until:
y := wend end;
determinant : = y X delerminant;
if k = 7 then determinant : = —determinant;
if abs (y) < epsilon then go to singular;
followed by the same code as before with the changes mentioned
in the certification by R. A. Conger [{Comm. ACM, June 62] and

the changes given above.

in the main program.

58-P2- 0

stngular should be a nonlocal label

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 59

ZEROS OF A REAL POLYNOMIAL BY RESULTANT
PROCEDURE

E. H. Barerss and M. A. FISHERKELLER

Argonne National Laboratory, Argonne, Il

procedure RES (n, ¢, alpha, mu, re, im, rt, ge) ;
¢, alpha ;
mu

comment

value n,

integer n, alpha ; integer array

; array c, re, im, rt, g¢
RES finds simultaneously all zeros of a polynomial of
degree n with real coefficients, ¢; (j = O, ...

n), where ¢,

is the constant term. The real part, re; , and imaginary part,
im; , of each zero, with corresponding multiplicity, mu; , and

remainder term, rt;, (i = 1, ..
nomial with coefficients gc; (j = O, ...

., n), are found and a poly-
, n), is generated from

thesé zeros. Alpha provides an option for local or nonlocal
selection of M, the number of root-squaring iterations, and
delta and epsilon, acceptance criteria. If alpha = 1, these
parameters are assigned locally. If alpha = 2, M, delta and
epsilon are set equal to the global parameters Mp, deltap,
and epsilonp, respectively. In cases where zeros may be found
more than once, the superfluous ones are eliminated by fac-
torization. The method has been described by E. H. Bareiss
(J. ACM 7, Oct. 1960, pp. 346-386). ;

begin integer M

U1, u2 ;

; real delta, epsilon ; switch U :=

go to U [alphal;

Ul:
U2:

START:

SYNTHETIC
DIV:

SQUARING

OPERATION:

M:=10 ; delta:=0.2 ; epsilon := 1078 ;
go to START

M := Mp ; delta := deltap ; epsilon :=
epsilonp ;

begin integer CT, nu, nuc, beta, m, j, je, k,
i,p ; Boolean ROOT ;

real X, Y,GX, rp ; array a, ac [0:n, 0:M],
R, Rc,,g [0:n],

s [=1:n), ag [-2:n], th, q, G, F [1:2Xn] ;
switch S := 81,82 ; switchT:=T1,T2 ;
switch V := V1, V2 ;
real procedure min (u,v) ; realu,v ;

min :=ifu < vthenuelsev ;
real procedure SYND (W, Q, I, T) ;
integerI ; realW,Q ;

array T ;
begin 5 [~1} := 0 ; 8 [0] := T [0] ; for
m := 1step 1 until T do

8 [m] := T [m] — Wss [m — 1] — QXs
[m—2] ;
if Q = 0 then SYND := abs (s[I]) else

SYND := abs (W/2Xs [I — 1] + s[I])
end SYND ;

CT := beta :=1 ;
ndea [j,0] := cfj] ;
begin integer el ;
1 step 1 until M do
begin for j := 1 step 1 until n do

begin h := 0 ; for el := 1 step 1 until
min (n — j, j) do

h:= +(-1) TelXalj— el,m— 1}]Xa
G+e —1] ;

for j := 0 step 1 until

real h ; for m :=

RD:

RESULTANT:

T2:

59-P1- 0

alj,m] :=(-1) T jX (@fjm—1} 1
2 + 2Xh) end end end ;
for j := Ostep 1l until ndo R [j] := (—1) 1
iXafj,M—1] 1 2/a [j,M] ;
ji=0 ; nu:=1 ;
if 1 — delta < R[D A R [j] = 1 + delta)
then
beginrp := (a [j,Ml/a[j —nu,M]) T (1/(2 1
MXnu)) ;
gotoT [betalend ;
ni:=nu-+1 ;
j:=j3j+1 ; ifj = n then go to S [beta]
elsegotoRD
nu:=1 ; goto2 ;
rh [CT] :=rp ; :==rp + epsilon X rp ;
Y :=X+epsilon Xrp ;
fork := Ostep 1l untilndo t [k] := abs (c[k]) ;
F [CT] := SYND (Y,0,n,t) — SYND
(X,O,n,t) H
G [CT] := SYND (rh [CT],0,n,c) ; if
F[CT] > G[CT] then

begin ROOT := true ; q [CT] := 0 ;
CT:=CT+1 ; F[CT]:=F{CT ~ 1llend ;
rh [CT] := —rp ; G [CT] := SYND (th
[€T],0,n,¢) ;

if F [CT] > G [CT] then begin ROOT :=

true ; q[CT]:=0 ; CT :=CT +1 ;
FI[CT]:=F[CT —1lend ; ifnu =1 then
goto2 ;

q[CT}:=rp T2 ;

for j := Ostep 1 until n do

begin Re [j] := R [j1 ; ac [j,M] := a [j,M]

end ;

begin real h ;

—1:n + 1], A [1:n],
r[0:n,0:n],CB [—1:n + 1] ;

b [-1,00 :=CB[-1]:=CB[n+1]:=0 ;

for j := Ostep 1 until ndo

nuc :=nu ; je:=j ;

array b [-lin + 1,

CB [j] := ¢[j] ; b[0,0} ;=1 ; for k :=
1 step 1 until n do
begin b [k,—1] :=0 ; for j := 0 step 1
until k do
bk+1,jl:=blk,j—1~-q[CT]XDb
k—1,j] ;
bk+1,k+1:=h:=0 ; forj:=

n — k step —1 until 0 do
h:=h+ (CB[jIXCB [k +j] -CBfj —1]
XCBk+j+1) XqICT]I T m—k —j) ;
Alk] :=(-1 7T kXh ; forj := O step
1 until k — 1 do
beginr [0,j] :=0 ;
Ak} Xblk,jlend |,
r [k,k] := Alklend ;
j :=0step 1 until ndo

rlk,jl:=rfk —1,j]+

beta :=2 ; for

a [j,0] := r [n,jjend ; go to SQUAR-
ING OPERATION ;
if (rp/2) 1 22 q {CT] then go to 3 ; rh
[CT):=rp ;

G [CT} := SYND (rh [CT], q [CT], n,e) ;

COLLECTED ALGORITHMS (cont.)

52

Si:

MULT:

IT:

Vi:
V2:

D:

if F [CT] > G [CT] then
begin CT := CT + 1 ; F [CT] := F
[CT — 1] ; qICT] := q [CT — 1] end ;
rh [CT]:=—rp ; G[CT]:=8YND [rh [CT],
q[CT], n,e) ;
if F [CT] > G [CT] then begin CT := CT
+1 ; FICT]:=F[CT-1] ;
q[CT]:=q[CT —1jend ; goto3d ;
for j := 0 step.1 until n do begin a [j,M] :=
ac [j,M] ;
Rjl:=TReljlend ; j:=jc ; beta:=1 ;
if ROOT then go to 3 else

nu:=nuc ; gotol ;
ag [—2] := ag [-1] := 0 ; ag [0] := 1 ;
for j := 1 step 1 until n do
agljl:=0 ; k:=1 ; i:=n ; m:=1 ;
for j := 0 step 1 until n do

thil:=eclil ;
mu [m} :=0 ; p:=if q [k] = O then 1
else2 ;
GX := SYND (rh ik}, q [k],i,t) ; if F [k]
> GX then
begin for j := 1step 1 untilndo

ag [jl := ag il —rh (kI X aglj — 1] +q

k] Xaglj—2] ;
mumj:=mufml+p ; i:=i—-p ;
for j := 0 step 1 until i do

t [j] := 8 [jl ; go to IT end else if

mu [m] # 0 then begin
rt [m] := G [k] ; go to V [p] end else
goto D ;
rem]:=rh(k] ; imm]:=0 ; gotoE ;
re [m] := rh (k]/2 ; im [m] := sqrt (q [k] —
re[m] T2) ;
m:=m-+41 ;
k:=k+1 ; ifkCT Am g nthengoto
MULT ;
for j := Ostep 1 until ndo ge [j] := ag[jlend
end RES

59-P 2-

0

COLLECTED ALGORITHMS

FROM CACM

ALGORITHM 60

ROMBERG INTEGRATION

F. L. Bavuer

Gutenberg University, Mainz, Germany

real procedure rombergintegr (fct, fgr, rgr, ord) ;
value fgr, rgr, ord
real {gr, rgr; integer ord ; real procedure fct ;
comment rombergintegr is the value of the integral of the
function fet between the limits £gr and rgr, calculated by the
algorithm of Romberg with an error term of the order
2Xord+2, ord20 Computation time will roughly be doubled
when ord is increased by 1;
begin
real array t[1 : ord+1};
real £, u, m ;
integerf, h, j, n ;
£ = rgr—{gr ;
t[1] := (fet(fgr)-+fct(rgr))/2 ;
n:=1 ;
for h := 1step 1 until ord do
begin u := 0 ;
m := £/(2Xn) ;
for j := 1 step 2 until 2Xn—1 do
u := u+fet(fgr+jXm) ;
th+1] := (u/n+th])72 ;
fi=1 ;
forj := hstep — 1 until 1 do
begin f := 4Xf ;
tG] = tli+11+@h+11-tGD/(E-1)
end ;
n:=2Xn
end ;
rombergintegr := t[1]X{
end

CERTIFICATION OF ALGORITHM 60

ROMBERG INTEGRATION (F. L. Bauer, Comm.
ACM, June, 1961)

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

* Work supported by the U. S. Atomic Energy Commission.

This procedure was translated to the ACT III compiler lan-
guage for the Royal Precision LGP-30 computer. This system pro-
vides 74 significant decimal digits. The program was used to
integrate z» between the limits 0.01 and 1.1, and between the
limits 1.1 and 0.01. The results in Table I were obtained. The
pole at 0 for negative n affords a test of the reliability of the
method when the higher derivatives of the integrand are large.
The agreement between integrations in the forward and backward
directions is an indication of the effects of round-off error.

1t is apparent that the procedure gives results well within the
noise level for the positive powers, and that even the effect of a
closely adjacent singularity for the negative powers can be over-
come.

The flexibility of the algorithm would be improved by adding
to the formal parameters & procedure, check, to decide if sufficient

60-P 1- 0

TABLE I. INTEGRATION OF [o:t1 a"dz AND [V zrdx

o 0 +12 - +12 -1
True Value 1.0900000 .26555932 --.26555032 4.7004831
Order 1 1.0899997 .57076812 --.57076842 19.641113
Order 2 1.0899997 .30614608 --.30614626 10.656923
Order 5 1.0899991 .26555603 - .26556818 4.9017590
Order 10 4.7002345

” -1 -5 -5
True Value —4.7004831 .25000000% 108 —18.166667 X108
Order 1 —10.641125 18.166655. X10° —.25000000 108
Order 2 —10.656029 8.4777719 X10° —8.4777766 X108
Order 5 —4.9017805 1.0408634 X10® —1.0408640 X10°
Order 10 —4.7004402 .25000715X10° —.25000727X 108
Order 12 .24999201X10° —.25001311 108

accuracy had been obtained without carrying through the entire
iteration. A possible form for this procedure would be:

procedure check (t1, t2, f, exit);
real t1, t2;
label exit;
integer f;
begin if abs ((t2 — t1) X f) / t1 < tolerance A f > minimum order
then go to exit end.

The global variables tolerance, which is the maximum relative
difference between approximations of increasing order, and the
minimum acceptable order should be selected by the programmer
for the exigencies of the problem. A check of this sort is clearly
not as sound as an a priori estimate of the necessary order, but is
frequently an acceptable expedient.

The Romberg quadrature algorithm is analyzed in the follow-
ing references:

Romberg, W. Vereinfachte numerische Integration. Det-
Kongelinge Norske Videnskaber Selskab Forhandlinger 28,
(1955), 30-36.

Stiefel, E., and Rutishauser, H. Remarques concernant
P’integration numerique. Comptes Rendus Acad. Scil (Paris)
252, (1961), 1899-1900.

CERTIFICATION OF ALGORITHM 60

ROMBERG INTEGRATION (F. L. Bauer, Comm.
ACM, June 1961)

KarL HEINZ BUCHNER

Lurgi Gesellschaft fur Mineraloltechnik m.b.H., Frank-

furt, Germany

Since August 1961, the Rombert Integration has been success-
fully applied in ForTrAN language to various problems on an
IBM 1620. Due to its elegant method and the memory saving
features, the Romberg Integration has succeeded other methods
in our program library, e.g., the Newtcn-Cotes integration of
order 10.

Reference is made to Stiefel, Numerische Mathermatik (Teubner
Verlag. Stuttgart). Stiefel discusses in his book various methods
of numerical integration including the Romberg algorithm,

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 60

ROMBERG INTEGRATION (F. L. Bauer, Comin.
ACM, June 1961)

KarrL Heinz BUCHNER

Lurgi Gesellschaft fur Mineraloltcchnik m.b.H., Frank-
furt, Germany

Since August 1961, the. Rombert Integration has been success-
fully applied in ForTrAN language to various problems on an
IBM 1620. Due to its elegant method and the memory saving
features, the Romberg Integration has succeeded other methods
in our program library, e.g., the Newton-Cotes integration of
order 10.

Reference is made to Stiefel, Numerische Mathermatik (Teubner
Verlag. Stuttgart). Stiefel discusses in his book various methods
of numerical integration including the Romberg algorithm.

REMARK ON ALGORITHM 60 [D1]

ROMBERG INTEGRATION [F. L. Bauer, Comm.
ACM 4 (June 1961) 255; 5 (Mar. 1962), 168; 5 (May
1962), 281] . '

HenrY C. THACHER, JR.* (Recd. 20 Feb. 1964 and 23 Mar.
1964)

Argonne National Laboratory, Argonne, Il
* Work supported by the U. S. Atomic Energy Commission.

The Romberg integration algorithm has been used with great
success by many groups [1, 2], and appears to be among the most
generally reliable quadrature methods available. It is, therefore,
worth pointing out that it is not entirely foolproof, and that a sig-
nificant class of integrands exists for which the extrapolated values
are poorer estimates of the integral than the corresponding
trapezoidal sums, .

The validity of the Romberg procedure depends upon the possi-
bility of expanding the error of the trapezoidal rule in powers of
h?, where h is the stepsize. One expansion of this type is the Euler-
Maclaurin sum formula. An alternative expression may be ob-
tained from the Fourier series expansion. The coefficients of 2% in
the Euler Maclaurin formula are proportional to the difference of
the values of the (2r+1)-th derivative at the two ends of the range.
Thus, any integral for which the odd derivatives of the integrand
either vanish or are equal at the limits will not be improved by
Romberg extrapolation. Among the common examples of such
integrals are integrals of periodic functions over a period and
integrals for which the derivatives vanish at both limits. An exam-
ple of the last type is the integral approximation to the modified
Hankel function [3], e*K,(z) = [§ e=a—cosh vcosh (pt)de, where L is
taken so large that the contribution of the integral from L to «
may be neglected. Several other examples are given under the
heading “Exceptional cases” by Bauer, Rutishauser and Stie-
fele [7]. This paper is among the most extensive discussions of
the Romberg method in English. .

The algorithm also fails when the expansion of the error term
contains other powers of h along with the even ones. Rutishauser
[4] discusses estimating integrals of the form [$f(z) dz =
[4(p (z)/+/x) dz. If such integrals are estimated by the trapezoidal
rule, assigning the value 0 to f(0), the error may be expressed in
the form D _eh® -+ +/h 2 dit%. Although the standard Romberg
extrapolation fails when applied to this sequence of estimates,
Rutishauser presents a modified procedure which is effective.

The extrapolation is also invalid when the integrand is discon-
tinuous, although this exception is trivial from the computational
standpoint.

60-P 2- 0

It has also been pouinted out |5, 6] that the Romberg procedure
may amplify round-off errors. The losses, while significant, do not
appear prohibitive for most applications.

REFERENCES:

1. Tuacuer, H. C., Jr. Certification of algorithm 60. Comm.
ACM & (Mar. 1962), 168.

2. BucHNER, K. H., Certification of algorithm 60. Comm. ACM &
(May, 1962), 281.

3. Ferris, H. E. Algorithm 163, modified Hankel function.
Comm. ATM 6 (Apt. 1963), 161-2; 6 (Sep. 1963), 522

4. RuTisHAUSER, H. Ausdehnung des Rombergschen Prinzips.
Numer. Math. 5 (1963), 48-54.

5. McKeeman, W. M. Personal communication, Sept. 1963.

6. EngeLi, M. Personal communication, Jan. 1964.

7. BAuER, F. L., RuTisHAUSER, H., AND STieErELE, E. New as-
pects in numerical quadrature. Proe. Symp. Appl. Math 15,
1963, 199-218,

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 61

PROCEDURES FOR RANGE ARITHMETIC
Arvan Gise*

University of Alberta, Calgary, Alberta, Canada

begin

procedure RANGESUM (a, b, ¢, d, e, f);

real a,b,c,d,e,f;
comment The term ‘‘range number’’ was used by P. S. Dwyer,
Linear Computations (Wiley, 1951). Machine procedures for
range arithmetic were developed about 1958 by Ramon Moore,
‘“‘Automatic Error Analysis in Digital Computation,”” LMSD
Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi-
sion, Palo Alto, California, 59 pp. If a S x S bandec Sy 2 d,
then RANGESUM yields an interval [e, f] such thate = (x + y)
< {. Because of machine operation (truncation or rounding) the
machine sums a + ¢ and b + d may not provide safe end-points
of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine arithmetic. The body of ADJUSTSUM will be de-
pendent upon the type of machine for which it is written and so
is not given here. (An example, however, appears below.) It
is assumed that ADJUSTSUM has as parameters real v and w,
and integer i, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representation of a number.
The output ADJUSTSUM provides the left end-point of the
output interval of RANGESUM when ADJUSTSUM is called
with i = —1, and the right end-point when called with i = 1.
The procedures RANGESUB, RANGEMPY, and RANGEDVD
provide for the remaining fundamental operations in range
arithmetic. RANGESQR gives an interval within which the
square of a range number must lie. RNGSUMC, PNGSUBC,
RNGMPYC and RNGDVDC provide for range arithmetic with
complex range arguments, i.e. the real and imaginary parts
are range numbers;
begin

e := ADJUSTSUM (a,c, —1);

f := ADJUSTSUM (b, d, 1)
end RANGESUM;
procedure RANGESUB (a, b, c,d,e,f);

real a,b,c,d,e,f;
comment RANGESUM is a non-local procedure;
begin

RANGESUM (a, b, —d, —c, e, f)
end RANGESUB;
procedure RANGEMPY (a, b, c, d, e, f);

real a, b, ¢, d, e, f;
comment ADJUSTPROD, which appears at the end of this
procedure, is analogous to ADJUSTSUM above and is a non-
local real procedure. MAX and MIN find the maximum and
minimum of a set of real numbers and are non-local;

begin

real v, w;

if a<0Acz0then

1: begin
vime; ci=a; at=v; wi=d; d:=b; bi=w
end 1;

if a20 then

61-P 1-

2: begin
if ¢ 2 0 then
3:begin
e:=aXe;f:=bXd;goto8
end 3;
e:=bXe;
ifd 2 O then
4: begin
f:=bXd; goto8
end 4;
f:=aXd; goto8
5: end 2;
ifb > 0 then
6: begin
ifd > O then
begin
e:= MIN@ X d,b X e);
f:= MAX(a X ¢,b X d);
end 6;
e:=Db Xe;
end 5;
f:=aXe;
ifd = 0 then
7: begin
e:=bXd; goto8
end 7;
e:=a X d;
8: e:= ADJUSTPROD (e, —1);
f := ADJUSTPROD (1, 1)
end RANGEMPY;
procedure RANGEDVD (a, b, ¢, d, e, f);
real a, b, c, d, e, f;
comment If the range divisor includes zero the program
exists to a non-local label ‘“zerodvsr’’. RANGEDVD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;
begin
ifc £0Ad 2 0 then go to zerodvsr,
ifc < 0then
1. begin
ifb > 0 then
2: begin
e = b/d; goto3
end 2;
e:=b/c;
3: if a = 0 then
4: begin
f:= a/c;
end 4;
f:=a/d; go to 8
end 1;
if a < 0 then
5: begin
e := a/c;
end 5;
e = a/d;
if b > 0 then
begin
f:= b/c;
end 7;
f:= b/d;

golo8

f:=aXc; goto8

go to 8

go to 6

~ >

goto8

0

COLLECTED ALGORITHMS (cont.)

8: e := ADJUSTQUOT (e, —1); t:= ADJUSTQUOT (f,1)
end RANGEDVD;
procedure RANGESQR (a, b, e, f);
real a, b, e, f;
comment ADJUSTPROD is a non-local procedure;
begin

if a < 0 then
1: begin
if b < 0 then
2: begin
e:=bXb; f:=aXa; goto3
end 2;
e:=0; m:=MAX (-a,b); f:=mX m; goto3
end 1;

e:=aXa; fi=bXb;
3: ADJUSTPROD (e, —1);
ADJUSTPROD (f, 1)

end RANGESQR;
procedure RNGSUMC (al, aR, bl, bU, cL, ¢R, dL, dU, eL,
¢R, {L, fU);

real al,, aR, bL, bU, cL, ¢R, d1, dU, eL,, eR, {L, {U;
comment Rangesum is a non-local procedure;
begin

RANGESUM (aL, aR, eT,, cR, el,, eR);

RANGESUM (bL, bU, dL, dU, {L, fU)
end RNGSUMC;
procedure RNGSUBC (aL, aR, bL, bU, cL, cR, dL, dU, eL,
eR, L, fU);

real al, aR, bL, bU, ¢, ¢cR, dL, dU, el,, eR, fL, {U;
comment RNGSUMC is a non-local procedure;
begin

RNGSUMC (aL, aR, bL, bR, —cR, —cL, —dU, —dL, eL, eR,

fL, fU)
end RNGSUBC;
procedure RNGMPYC (al,, aR, bL, bU, ¢L,, cR, dL, dU, eL,
eR, fL, {U);

real al,, aR, bL, bU, cL, cR, d1,, dU, eL, eR, {L, fU;
comment RANGEMPY, RANGESUB, and RANGESUM are
non-local procedures;
begin

real L1, R1, L2, R2, L3, R3, L4, R4;

RANGEMPY (aL, aR, cL, ¢R, L1, R1);

RANGEMPY (bL, bU, dL, dU, L2, R2);

RANGESUB (1.1, R1, L2, R2, eL, eR);

RANGEMPY (2L, aR, dL, dU, L3, R3);

RANGEMPY (bL, bU, cL, cR, L4, R4);

RANGESUM (L3, R3, L4, R4, iL, fU);
end RNGMPYC;
procedure RNGDVDC (al, aR, bL, bU, eL, cR, dL, dU, eL,
eR, fL, {U);

real al,, aR, bL, bU, cL, ¢cR, dL, dU, eL, eR, fL, fU;
comment RNGMPYC, RANGESQR, RANGESUM, and
RANGEDVD are non-local procedures;
begin

real L1, R1, 1.2, R2, L3, R3, L4, R4, L5, R5;

RNGMPYC (al, aR, bL, bU, cL, ¢R, —dU, —dL, L1, R1, L2,

R2);

RANGESQR (cL, ¢R, L3, R3);

RANGESQR (dL, dU, 14, R4);

RANGESUM (L3, R3, L4, R4, L5, R5);

RANGEDVD (L1, R1, L5, R5, eL, eR);

RANGEDVD (L2, R2, L5, RS, fL, fU)
end RNGDVDC

end

61-P 2- 0

EXAMPLE

real procedure CORRECTION (p); real p;

comment CORRECTION and the procedures below are in-
tended for use with single-precision normalized floating-point
arithmetic for machines in which the mantissa of a floating-point
number is expressible to s significant figures, base b. Limitations
of the machine or requirements of the user will limit the range of
p to b™ < |p| < br*! for some integers m and n. Appropriate
integers must replace s, b, m and n below. Signal is a non-local
label. The procedures of the example would be included in the
same block as the range procedures above;

begin

integer w;

for w : = m step 1 until n do
1: begin

if b Tw.=abs(p) A (abs (p) <b T (w-+1)) then
2: begin
CORRECTION :=b { (w+1—s); go toexit
end 2
end 1;
go to signal;

exit: end CORRECTION;
real procedure ADJUSTSUM (w, v,1i); integeri;

real w, v;
comment ADJUSTSUM exemplifies a possible procedure for use
with machines which, when operating in floating point addition,
simply shift out any lower order digits that may not be used. No
attempt is made here to examine the possibility that every digit
that is dropped is zero. CORRECTION is a non-local real pro-
cedure which gives an upper bound to the magnitude of the error
involved in the machine representation of a number;
begin

real r, cw, cv, cr;

r:= w4 v;

ifw=0V v =0then gotol;

cw := CORRECTION (w);

cv := CORRECTION (v);

cr := CORRECTION (r);

ifcw = ¢v A cr £ cw then go to 1;

if sign (i X sign (w) X sign (v) X sign (r)) = —1 then go to 1;

ADJUSTSUM := r + i X MAX (cw, cv, cr); go to exit;
1: ADJUSTSUM :=r;
exit: end ADJUSTSUM;
real procedure ADJUSTPROD (p,i); real p; integeri;
comment ADJUSTPROD is for machines which truncate when
lower order digits are dropped. CORRECTION is a non-local real
procedure;

begin
if p X i £ 0 then
1: begin
ADJUSTPROD := p; go to out
end 1;

ADJUSTPROD := p + i X CORRECTION (p);
out: end ADJUSTPROD;
comment Although ordinarily rounded arithmetic is preferable
to truncated (chopped) arithmetic, for these range procedures
truncated arithmetic leads to closer bounds than rounding does.

* These procedures were written and tested in the Burroughs
220 version of the ALGOL language in the summer of 1960 at
Stanford University. The typing and editorial work were done
under Office of Naval Research Contract Nonr-225(37). The author
wishes to thank Professor George E. Forsythe for encouraging
this work and for assistance with the syntax of ALGOL 60.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 62

A SET OF ASSOCIATE LEGENDRE POLYNOMIALS
OF THE SECOND KIND*

Joun R. HERNDON

Stanford Research Institute, Menlo Park, California

comment This procedure places a set of values of Q™ (x) in the
array Q[] for values of n from 0 to nmax for a particular value
of m and a value of x which is real if ri is 0 and is purely imaginary,
ix, ortherwise. R[] will contain the set of ratios of successive
values of Q. These ratios may be especially valuable when the
Q.™(x) of the smallest size is so small as to underflow the machine
representation (e.g. 107 if 10~% were the smallest representable

number).. 9.9 X 10% is used to represent infinity. Imaginary
values of x may not be negative and real values of x may not be
smaller than 1.

Values of Q.™(x) may be calculated easily by hypergeometric
series if x is not too small nor (n — m) too large. Q.™(x) can be
computed from an appropriate set of values of P,=(x) if x is near
1.0 or ix is near 0. Loss of significant digits occurs for x as small as
1.1 if n is larger than 10. Loss of significant digits is a major diffi-
culty in using finite polynomial representations also if n is larger
than m. However, QLEG has been tested in regions of x and n
both large and small;
procedure QLEG(m, nmax, x, ri, R, Q);

real m, nmax, x, ri;
begin real t, i, n, q0, s;

value m, nmax, x, ri;
real array R, Q;

n = 20;
if nmax > 13 then
n = nmax -+ 7;
if ri = 0 then
begin if m = 0 then
QI0} := 0.5 X log((x + 1)/(x —'1))
else
begin t .= —1.0/sqrt(x X x — 1);
q0:=0;
Q0] : = ;
fori:= 1step 1 until m do
begin s = (x+x)X({i—-1)Xt
X Q014+ @i—ixXi—2)X q0;
q0 : = Q[0];
Q0] := 8 end end;
if x = 1 then
Q0] : = 9.9 1 45;

Rln +1]:=x — sqrt(x X x — 1);

for i:= nstep —1 until 1 do
Ri]:= (+m)/(i+i+1)Xx
+(m —i-1) X Rli +1]);

go to the end;

ifm = 0 then

begin if x < 0.5 then
Q0] : = arctan(x) — 1.5707963 else
Q[0] : = — arctan(l/x)end else

begin t := 1/sqrt(x X x + 1);

q0 := 0;

Q0] : = t;

for i := 2stpgp 1 until m do
begins :=| (x + x) X (i — 1) X t X Q[0]
+@i+iXi—2)Xq0;

62-P1- 0

q0 := Q[0];
Q0] : = s end end;
Rin+1]:=x — sqrt(x X x + 1);
for i:= nstep — 1 until1do
Rii] i:= G + m)/(G — m + 1) X R[i + 1]
—({+i+4=1) X x);
for i:=1step 2 until nmax do
Rli] : = — RIil;
the: fori:= 1step 1l until nmax do
Qli} := Qli — 1] X Ri}
end QLEG;

* This procedure'was developed in part under the sponsorship
of the Air Force Cambridge Research Center.

REMARK ON ALGORITHM 62 _

A SET OF ASSOCIATE LEGENDRE POLYNOMIALS
OF THE SECOND KIND (John R. Herndon, Comm.
ACM 4 (July, 1961))

Joun R. HErNDON

Stanford Research Institute, Menlo Park, California

In regard to Algorithm 62 in Communications of the ACM, two
errors were found:

The 14th line of the procedure
fori:= 1 step 1 until m do
should read
fori:= 2 step 1 until m do
The 35th line
+ @i — iXi — 2)Xq0
should read
+@i—iXi—2) Xq0

The procedure QLEC was developed from the standard recur-
rence formula
m+m-—1Q%.= 2n — 1)-2:Q7a — (n — m)@u™
Invert and multiply by (n + m — 1)Q%_, .

Qs - n+m-—1)
QR @2n—1-z— (n— mQ"/Qn’
or
. n+m-—1)
n—1

“Cn—Dz— (- mBr

Analysis (and testing) shows that, for n large, this infinite con-
tinued fraction need only be carried to about eight terms for eight-
digit accuracy if the final term is evaluated with the asymptotic
value derived by setting
R34 = R.,m, lim R™ = gk /22 — 1,
n—>w

the minus sign being chosen since in general Q. < Qn_; . The
formulas pertaining to purely imaginary parameters follow read-
ily. The value of

1 z+1
Qz) = 5103- o

COLLECTED ALGORITHMS (cont.)

while
QP (x) = 2-Q(z) — 1,
and

—1
Qi x) = \/7—-—_—1-

Other values are derived using the ratios R,™(z) and/or the re-

currence formula

- _2(m — Dz
Qs = Vi —1

The derivation of the expression for @ (¢z) is not trivial and pro-

v . 2 —
t.x+1=llog.[z 1-|--
z 2

ceeds as follows:

1
. 06 — L T
1-Q(ix) . 21‘?&% —1 2241
e3tih = ¢o.¢b = ¢4 cos b + ¢ sin b,
Thus

—2z
— 2

tan b =
an 1
and

Qo (tx) = (arctan & — x/2)1.

@+ (n—m+ 2+ m—2)Q

2z
2241

m—2
noe

]

62-P 2-.

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 63

PARTITION

C. A. R. Hoagre

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure partition (A,M,N,I.J); value M,N;
array A; integer M,N,I.J;
comment [and J are output variables, and A is the array (with
subscript bounds M:N) which is operated upon by this procedure.
Partition takes the value X of a random element of the array A,
and rearranges the values of the elements of the array in such a
way that there exist integers I and J with the following properties:
M =J<I=< NprovidedM < N
AR} = XforMsR=z=J
ARj=XforJ<R <1
ARl Zz Xfor IS RN
The procedure uses an integer procedure random (M,N) which
chooses equiprobably a random integer F between M and N, and
also a procedure exchange, which exchanges the values of its two
parameters;
begin real X; integer F;
F := random (M,N);
I:=M; J:=N;
up: for I : = I step 1 until N do
if X < A [I] then go to down;

X := A[F];

I:=N;
down: forJ:=J step —1 until M do
if A[J]<X then go to change;
J:=M,;
change: if I < J then begin exchange (A[I], AJ]);
I:=14+1;J:=17J —1;
go to up
end
else if I < T then begin exchange (A[Il, A[F]);
I:=1+4+1
end
else if F < Jthen begin exchange (A[F}, A[J));
J:=J -1
end;
end partition

CERTIFICATION OF ALGORITHMS 63, 64, 65

PARTITION, QUICKSORT, FIND [C. A. R. Hoare,
Comm. ACM, July 1961]

J. 8. HiLLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The body of the procedure find was corrected to read:
begin integer 1, J;
if M < N then begin partition (A, M, N, I, J);
if K < I then find (A, M, J, K)
else if J £ K then find (4, I, N, K)
end
end find
and the trio of procedures was then successfully run using the
Elliott ArgoL translator on the National-Elliott 803.
The author’s estimate of $(N—M)1n(N—M) for the number of

63-P1- 0

exchanges required to sort a random set was tound to be correct.
However, the number of comparisons was generally less than
2(N—M)In(N—M) even without the modification mentioned
below.
The efficiency of the procedure quicksort was increased by
changing its body to read:
begin integer I, J;
if M < N—1 then begin partition (A, M, N, I, J);
quicksort (A, M, J);
quicksort (A, I, N)
end
else if N—M = 1 then begin if A[N] < A[M] then
exchange (A[M], A[N])
end
end quicksort
This alteration reduced the number of comparisons involved in
sorting a set of random numbers by 4-5 percent, and the number
of entries to the procedure partition by 25-30 percent.

CERTIFICATION OF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, {Comm. ACM,
July 1961]

B. RanpeLL anNDp L. J. RusseELL

The English Electric Company Ltd., Whetstone, England

Algorithms 63, 64, and 65 have been tested using the Pegasus
AvrgoL 60 Compiler developed at the De Havilland Aireraft Com-
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com-
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, as space is needed for the organi-
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in-
formation which records the progress of the partitioning and
sorting.

A misprint (‘if’ for ‘if’ on the line starting ‘else if / < K then
-++’) was corrected in Algorithm 65 (Find), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Peartition produces as
output two integers J and I such that elements of the array
A[M: N] which lie between A[J] and A[I] are in the positions that
they will occupy when the sorting of the array is completed, Find
should cease to make further recursive activations of itself if K
fulfills the condition J < K < I.

Therefore the conditional statement in the body of Find was
changed to read

if K < J then find (4,M,J.K)
else if I £ K then find (4.I,N,K)

With this change the procedure worked satisfactorily.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer M,N;

comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;

begin integer 1,J; :
if M < N then begin partition (A,M,N,I1,J);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

CERTIFICATION OF ALGORITHMS 63, 64, 65

PARTITION, QUICKSORT, FIND [C. A. R. Hoare,
Comm. ACM, July 1961]

J. 8. HiLLMORE

Elliott Bros.
England

(London) Ltd., Borehamwood, Herts.,

The body of the procedure find was corrected to read:
begin integer I, J;
if M < N then begin paritition (A, M, N, I, J);

it K £ I thenfind (A, M,J, K)

else if J £ K thenjfind (4,1, N, K)

end
end find
and the trio of procedures was then successfully run using the
Elliott AvgoL translator on the National-Elliott 803.

The author’s estimate of $(N—M)1n(N—M) for the number of
exchanges required to sort a random set was found to be correct.
However, the number of comparisons was generally less than
2(N—M)In(N—M) even without the modification mentioned
below.

The efficiency of the procedure quicksort was increased by
changing its body to read:
begin integer I, J;
if M < N—1 then begin partition (A, M, N, I,J);
quicksort (A, M, J);
quicksort (A, I, N)
end
else if N—M = 1 then begin if A[N] < A{M] then
exchange (A[M], A[N])
end
end quicksort
This alteration reduced the number of comparisons involved in
sorting a set of random numbers by 4-5 percent, and the number
of entries to the procedure partition by 25-30 percent.

64-P 1- 0

CERTIFICATION OF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, [Comm. ACM,
July 1961]

B. RanperL anxp L. J. RusseLL

The English Electric Company Ltd., Whetstone, England

Algorithms 63, 64, and 65 have been tested using the Pegasus
ALcoL 60 Compiler developed at the De Havilland Aircraft Com-
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com-
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, as space is needed for the organi-
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in-
formation which records the progress of the partitioning and
sorting.

A misprint (‘if’ for ‘if’ on the line starting ‘else if / £ K then
-+ -*) was corrected in Algorithm 65 (Find), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Partition produces as
output two integers J and I such that elements of the array
A[M:N] which lie between A[J] and A[I] are in the positions that
they will occupy when the sorting of the array is completed, Find
should cease to make further recursive activations of itself if K
fulfills the condition J < K < I.

Therefore the conditional statement in the body of Find was
changed to read

if K < J then find (4,MJ,K)
else if I < K then find (4,1,N,K)

With this change the procedure worked satisfactorily.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 65

FIND

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure find (A,M,N K); value M,NK;

array A; integer M,N K;
comment Find will assign to A [K] the value which it would
have if the array A [M:N] had been sorted. The array A will be
partly sorted, and subsequent entries will be faster than the first;

begin integer [J;
if M < N then begin partition (A, M, N, I, J);
if K<1I then find (AM,LK)
else if J<K then find (A,J,N,K)
end
end find

CERTIFICATION OF ALGORITHMS 63, 64, 65

PARTITION, QUICKSORT, FIND [C. A. R. Hoare,
Comm. ACM, July 1961]

J. S. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The body of the procedure find was corrected to read:
begin integer 1, J; :
if M < N then begin partition (A, M, N, 1,J);

if K = I then find (4, M, J, K)

else if J £ K thenjfind (A,I, N, K)

end
end find
and the trio of procedures was then sueccessfully run using the
Elliott AreoL translator on the National-Elliott 803.

The author’s estimate of #(N—M)1n(N—M) for the number of
exchanges required to sort a random set was found to be correct.
However, the number of comparisons was generally less than
2(N—M)In(N—M) even without the modification mentioned
below.

The efficiency of the procedure quicksort was increased by
changing its body to read:
begin integer I, J;
if M < N—1 then begin partition (A, M, N, I1,J);

quicksort (A, M, J);
quicksort (A, I, N)
end
else if N—M = 1 then begin if A[N] < A[M] then
exchange (A[M], A[N))
end
end quicksort

This alteration reduced the number of comparisons involved in
sorting a set of random numbers by 4-5 percent, and the number
of entries to the procedure partition by 25-30 percent.

65-P1- 0

CERTIFICATION OF ALGORITHMS 63, 64 AND 65,
PARTITION, QUICKSORT, AND FIND, [Comm. ACM,
July 1961]

B. RanpeLL AND L. J. RUSSELL

The English Electric Company Ltd., Whetstone, England

Algorithms 63, 64, and 65 have been tested using the Pegasus
AvrcoL 60 Compiler developed at the De Havilland Aircraft Com-
pany Ltd., Hatfield, England.

No changes were necessary to Algorithms 63 and 64 (Partition
and Quicksort) which worked satisfactorily. However, the com-
ment that Quicksort will sort an array without the need for any
extra storage space is incorrect, as space is needed for the organi-
zation of the sequence of recursive procedure activations, or, if
implemented without using recursive procedures, for storing in-
formation which records the progress of the partitioning and
sorting.

A misprint (‘if’ for ‘4if’ on the line starting ‘else if / < K then
--+’) was corrected in Algorithm 65 (Find), but it was found that
in certain cases the sequence of recursive activations of Find
would not terminate successfully. Since Partition produces as
output two integers J and I such that elements of the array
A[M:N] which lie between A[J] and A[I] are in the positions that
they will occupy when the sorting of the array is completed, Find
should cease to make further recursive activations of itself if K
fulfills the condition J < K < I. ’

Therefore the conditional statement in the body of Find was
changed to read '

if K < J then find (4,M,J,K)
else if I £ K then find (4,I,N K)

With this change the procedure worked satisfactorily.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 66

INVRS

JoHN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure Invrs (t) size : (n);
ger n;
comment Inverts a positive definite symmetric matrix t, of
order n, by a simplified variant of the square root method. Re-
places the n(n+1)/2 diagonal and superdiagonal elements of t
with elements of t, leaving subdiagonal elements unchanged.
Advantages: only n temporary storage registers are required, no
identity matrix is used, no square roots are computed, only n
divisions are performed, and, as n becomes large, the number of
multiplications approaches n¥/2;
begin integer i, j, s; real array vil:n—1]; real y, pivot;
for s : = 0 step 1 until n—1 do
begin pivot := 1.0/t[1,1];
begin pivot := 1.0/t[1,1];
comment If t[1,1] £ 0, t is not positive defi-
nite;
for i : = 2 step 1 until n do v[i—1] := t{1, i];
fori:= 1step 1 until n—1 do
begin t[i,n] : = y := —vli] X pivot;
forj := istep l untiln—1do

tli, jl i=tli 4+ 1,7 +11 + vl X ¥

value n; real array t; inte-

end;
t[n,n] : = —pivot

end;
comment At this point, elements of t~! occupy
the original array space but with signs reversed,
and the following statements effect a simple re-
flection;

fori:= 1step 1 until n do

for j : = istep 1 until n do tfi,j] := —t[i,j]

end Invrs

CERTIFICATION OF ALGORITHM 66

INVRS (J. Caffrey, Comm. ACM: July 1961)

B. RanpeLL, C. G. BROYDEN.

Atomic Power Division, The English Electric Company,
Whetstone, England.

INVRS was translated using the Deuce ALcorL Compiler, and
needed the following correction.
The repest of the line,
begin pivot := 1.0/t[1, 1];
was deleted.
The compiled program, which used a 20 bit mantissa floating
point notation, was tested using Wilson’s matrix

5 7 6 5
7 10~ 8 7
6 8 10 9
5 7 9 10

and gave results

66-P 1- 0
67.9982 —40.9991 —16.9995 9.9997
—40.9991 24:9995 9.9997 —5.9998
—16.9995 9.9997 4.9998 —2.9999
9.9997 —5.9998 —2.9999 1.9999

(The output routine completed the symmetric matrix)

INVRS will in fact invert non-positive symmetric matrices, the
only restriction appearing to be that the leading minors of the
matrix must be non-zero. The variable T[1, 1] takes as its succes-
sive values ratios of the (r 4+ 1)th to the r th leadng minors of the
matrix, and if it becomes zero the variable ‘pivot’ cannot be com-
puted.

The following matrix, for which the successive values of T(1, 1]
were +2, —2, —1, —0.6, +5 gave results correct to one unit in the
fifth significant figure.

2 -3 1 -1 4
-3 2 —4 3 -2
1 -4 -3 2 4
-1 3 2 -2 -3
4] 4 -3 2

CERTIFICATION OF ALGORITHM 66

INVRS (J. Caffrey, Comm. ACM, July 1961)

JouN CAFFREY

Palo Alto Unified School District, Palo Alto, California

INVRS was translated using the Burroughs 220 Algebraic
Computer (BaLcoM) at Stanford University, using 8-digit floating-
point arithmetic. The misprint noted by Randell and Broyden
(Comm. ACM, Jan. 1962, p. 50) was corrected, and the same
example (Wilson’s 4 X 4 matrix) was used as a test case. The
resulting inverse was:

68.0000 —41.0000 ~—17.0000 10.0000
25.0000 10.0000 —6.0000

5.0000 —3.0000

2.0000

It may also be useful to note that the determinant of the matrix
may be obtained as the successive product of the pivots. That is,
if & (=T(1, 1)) is the ¢th pivot of a matrix of order n,

determinant = []7 ¢« .
For the above input example,
determinant = 1.0

Randell and Broyden’s observation concerning the apparent
limitation of INVRS to positive definite cases is correct: That is,
any nonsingular real symmetric matrix (positive, indefinite, or
negative) may be inverted using this algorithm. The original
INVRS should therefore be modified as follows:

if pivot = 0 then go to singular;

Randell and Broyden’s second example (of order 5) was also

used as a test case, with the resulting inverse:

—.0000 .9999 .0000 .0000 .9999
1.5333 —.7333 —.1333 .7999

- .8666 —1.0666 —.5999

—1.4666 —.1999

.2000

determinant = —14.999999

COLLECTED ALGORITHMS (cont.) 66-P 2- 0

An attempt to invert the inverse of the 4 X 4 segment of the
Hilbert matrix, as presented by Randell (Comm. ACM, Jan.
1962, p. 50), yielded the following results:

.9999 .4999 .3333 .2499
.3333 .2499 .1999
.1999 .1666
.1428
determinant = 6048020.6

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 67

CRAM

JoHN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure CRAM (n, r, a) Result: (f); value n, r; integer
n, r; real array a, f;
comment CRAM stores, via an unspecified input procedure
READ, the diagonal and superdiagonal elements of a square sym-
metric matrix e, of order n, as a pseudo-array of dimension
1:n(n + 1)/2. READ (u) puts one number into u. Elements eli, j]
are addressable as ale + j], wherec = (2n — i)(i — 1)/2and c[i + 1]
may be found as ¢[i] + n — i. Since c[1] = 0, it is simpler to develop
a table of the c[i] by recursion, as shown in the sequence labelled
“table’’. Further manipulation of the elements so stored is illus-
trated by premultiplying a rectangular matrix f, of order n, r, by
the matrix e, replacing the elements of f with the new values, re-
quiring a temporary storage array v of dimension 1:n;
begin integer i, j, k, m; real array vil:n]; real s;
integer array c[l:n];
table: j:= —n; k:=n+1; fori:= 1step | until n do
begin
ji=j+k—1i; clij:=] end;
load: fori:= 1stepluntilndo
begin for j : = i step 1 until n do READ (v{j}); m :=
cli];
for k : = istep 1 until n do a[m 4 k] : = v[k] end;
premult: forj := 1stepl until rdo
begin for i := 1 step 1 until n do
begin s : = 0.0;
for k := 1step 1 untilido
begin m := c[k]; s := s + alm + i]
Xflk, j] end;
for k : =1 + 1 step 1 until n do
s:=s+am+ k] X flk,jl; vfil=s
end;
for k : = 1 step 1 until n do f[k, j] = v[k]
end
end CRAM

CERTIFICATION OF ALGORITHM 67

CRAM (J. Caffrey, Comm. ACM 4 (July 1961), 322)

A. P. RELPH

Atomic Power Div., The English Electric Co., Whetstone,
England

CRAM was translated using the DEUCE ALGoL compiler with
the following corrections:
VIi] = 8 was changed to V[i] := S
flk,j] = VIk] was changed to flk,j] := Vk]
It is quicker not to use the table of the Cl[i] in the “load”
sequence and instead use the following sequence:
load: m :=n X (n+1)/2;
fori:= 1 stepl until m do READ (ali]);

67-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 68

AUGMENTATION

H. G. Rice

Computer Sciences Corp., Palos Verdes, Calif.

real procedure Aug(x,y); value x,y; integer x,y;

comment This algorithm makes use of the implicitly defined re-
cursive properties of ALGOL procedures to compute the augment
of x by y, using the basic technique of incrementation by unit
step size;

begin Aug := if x = 0 then (if y > x then (Aug(y — 1,x) + 1)
else y)

else Aug(x — 1,y + 1) end Aug

CERTIFICATION OF ALGORITHM 68

AUGMENTATION (H. G. Rice, Comm. ACM, Aug.
1961)

I.. M. BREED

Stanford University, Stanford, Calif.

AUGMENTATION was transliterated into BALGOL for the
Burroughs 220, and proved successful in a number of test cases.
However, the following algorithm has exactly the same effect and
is considerably simpler:
real procedure Aug(x, y); valuex,y; integerx,y;
begin if x<0 then L : go to L else Aug := x+y end Aug

68-P 1-

0

COLLECTED ALGORITHMS FROM CACM

69-P 1- 0

ALGORITHM 69 end of setting one linkage
CHAIN TRACING end of CHAIN tracing;

Brian H. Mavyon

Regnecentralen, Gl. Carlsbergvet. 2, Copenhagen.

procedure CHAIN tracing (iteration counter, number of
identifiers, number of identifier links, final linkage
matrix, couples);
Boolean array final linkage matrix;
integer array couples;
integer iteration counter, number of identifiers, number of
identifier links;
begin comment This procedure is given a list of pairs of inte-
gers, the second being related to the first in some way. It finds
those pairs of integers which are related to each other if the
relation is transitive. It is supplied with,
couples a matrix whose bound pairlist is [1:2, 1:number of
identifier links] where couples [2, i] is related to couples
[1, i] in some way.
final linkage matrix a matrix whose bound pair list is
[1:number of identifiers, 1:number of identifiers] and into
which the procedure puts true if the second subscript
expression is an integer which is related to the integer
corresponding to the- first subscript expression, if - the
relation is irreflexive then the diagonal entries of this
matrix are false.
iteration counter a place for the procedure to put the
length of the longest chain it finds. CHAIN tracing can be
applied to any system which can be represented by a Turing
machine by letting the integers in couples correspond to
the Turing machine states. Two integers j, k are related if
there is an input symbol which causes state j to change to
state k. If the Turing machine always stops whatever the
sequence of input symbols, then its final linkage matrix
will have false for all leading diagonal entries;
integer 1, j;
Boolean array working linkage matrix {1:number of identi-
fiers, 1:number of identifiers];
Boolean procedure PROGRESS;
begin PROGRESS := false;
fori := 1 step 1 until number of identifiers
do for) := 1 step 1 until number of identifiers
do begin if Working linkage matrix [i, j} = — Final
linkage matrix [i, j] then PROGRESS := true;
Final linkage matrix {i, j] := Working linkage
matrix [i, j]
end of comparison
end of PROGRESS;
BEGIN OF PROGRAM:
for iteration counter := —1, 0, iteration counter + 1 while
PROGRESS
do for i := 1 step 1 until number of identifier links
do for j := 1 step 1 until number of identifiers
do begin if iteration number = —1
thenFinal linkage Matrix [couples [1, i], j]
:= Working linkage Matrix [couples [1, i}, j]
:= couples {2, i] = j
else Working linkage Matrix [couples [1, i}, j]
:= Working linkage Matrix [couples [1, i}, j]
V Working linkage Matrix |couples [2, 1], i];

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 70
INTERPOLATION BY AITKEN
CHARLES J. MI1FsuDp

General Electric Co., Bethesda, Md.

procedure AITKEN (x,f,n, X, F); real array x, {;
integer n; real X, F;
comment If given % ,X;,...X., n+1 abscissasand also given
f(x0), f(x1),...f(xa), n+1 functional values, this procedure
generates a Lagrange polynomial, F(X) of the nth degree so that.
F(xi) = f(xi). Hence, for any given value X, a functional value
F(X) is generated. The procedure is good for either equal or
unequal intervals of the xi. Aitken’s interative scheme is used
in the generation of F(X). Since the f array is used for tem-
porary storage, as the calculation proceeds its original values
are destroyed;
begin integer i, j, t;
for j := 0 step 1 until n—1 do
begin t := j+1
for i := t step 1 until n do
fli] := (X=x [j]) X f [i] — X—x [i]) X {[j})/
(x[i] =x[j]) end
F := f [n]

end

CERTIFICATION OF ALGORITHM 70
INTERPOLATION BY AITKEN [C. J. Mifsud, Comm.
ACM 4 (Nov. 1961)]

A. P. ReLpu

The English Electric Co., Whetstone, England

Algorithm 70 was translated using the DEUCE ALGoL compiler
and gave satisfactory results after semicolons had been added to

t:=j+1 tomakeit t := j+1;
and (x[i]—x[j]) end to make it (x[i}—x[j]) end;

The identifier ¢ can be eliminated and the algorithm shortened
by the following changes:
Replace begin integer i, j,t; by begin integer i, j;
Replace t := j+1; by fori:= j+1 step 1 until
for i := t step 1 until n do
n do

70-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 71

PERMUTATION

R. R. Coveyou anD J. G. SULLIVAN

Oak Ridge National Laboratory, Oak Ridge, Tenn.

procedure PERMUTATION (I, P, N);

value I, N; integer N; integer array P; boolean I;

comment This procedure produces all permutations of the
integers from O thru N. Upon entry with I = false the pro-
cedure initializes itself producing no permutation. Upon each
successive entry into the procedure with I = true a new
permutation is stored in P[0] thru P[N]. When the process has
been exhausted a sentinel is set:

Po] : —1,
N 20
begin

integer i; own integer array x[0:N];

if - I then

begin fori := 0 step 1 until N—1do x[i] :=0; x[N]:= —1;
go to E end;

fori := N step —1 until 0 do begin if x[i]5<i then go to A;
x[i] := 0 end;

P[0] := —1; go to E;

A: x[i] := x[|il41; P[0] := 0;
fori := 1step 1 until N do
begin Pfi] := P[i—x[i]]; P[i—x[i]] := i end;
E: end PERMUTATION

CERTIFICATION OF ALGORITHM 71

PERMUTATION (R. R. Coveyou and J. G. Sullivan,
Comm. ACM, Nov. 1961)

P. J. Brown

University of North Carolina, Chapel Hill, N. C.

PERMUTATION was transliterated into GAT for the Uni-
vac 1105 and successfully run for a number of cases.

CERTIFICATION OF ALGORITHM 71

PERMUTATION (R. R. Coveyou and J. G. Sullivan,
Comm. ACM, Nov. 1961)

J. E. L. PEck anp G. F. ScHRACK

University of Alberta, Calgary, Alberta, Canada

PERMUTATION was translated into ForTRAN for the IBM
1620 and it performed satisfactorily. The own integer array
x[0:n] may be shortened to x[1:n], provided corresponding cor-
rections are made in the first two for statements.

However, PERMUTE (Algorithm 86) is superior to PERMU
TATION in two respects.

(1) PERMUTATION, using storage of order 2n, is designed to
permute the specific vector 0, 1, 2, --- , n — 1 rather than an
arbitrary vector. Thus storage of order 3n is required to permute
an arbitrary vector. PERMUTE, in contrast, only needs storage
of order 2n to permute an arbitrary vector.

(2) PERMUTE is built up from eyclic permutations. The
number of permutations actually executed internally (the re-
dundant ones are suppressed) by PERMUTE is asymptotic to

71-P 1- 0

(¢ — n! rather than n!. In spite of this, PERMUTE is dis-
tinctly faster (1316 against 2823 seconds for n = 8) than PERMU-
TATION. If t, is the time taken for all permutations of a vector
with n components, and if ry, = t,/ntn_ , then one would expect
ra to be close to 1. Experiment with small values of n gave the
following results for r, .

n 6 7 8
PERMUTE 0.96 0.99 1.00
PERMUTATION 1.10 1.13 1.12

Is there yet a faster way to do it?)

See also: C. Tompkins, “Machine Attacks on Problems whose
Variables are Permutations’’, Proceedings of Symposia in Applied
Mathemaitics, Vol. VI: Numerical Analysis (N. Y., McGraw-Hill,
1956).

CERTIFICATION OF ALGORITHM 71

PERMUTATION [R. R. Coveyou and J. G. Sullivan,
Comm. ACM, Nov. 1961]

J. S. HILLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The algorithm was successfully run using the Elliott ALcown
translator on the National-Elliott 803. The integer array = was
made a parameter of the procedure in order to avoid having an
own array with variable bounds.

COLLECTED ALGORITHMS FROM

ALGORITHM 72
COMPOSITION GENERATOR
L. HELLERMAN AND S. OGDEN

IBM-Product Development Laboratory, Poughkeepsie,
N.Y.

procedure comp (¢, k); value k; integer array c;
integer k;
comment Given a k-part composition ¢ of the positive integer n,
comp generates a consequent composition if there is one. If
comp operates on each consequent composition after it is found,
all compositions will be generated, provided that 1, 1, ..., 1,
n—k-1 is the initial ¢. If ¢ is of the form n—k+1,1,1,...,1,
there is no consequent, and ¢ will be replaced by a k vector of
0’s. Reference: John Riordan, An Iniroduction to Combi-
natorial Analysis, John Wiley and Sons, Inc., New York, 1958,
Chapter 6;
begin integer j; integer array d [1:k];
if k = 1 then go to last;
for j := 1lstep luntil kdo d [j] :=c¢ [j] — 1;
test: if d[j]>0 then go to set;
i=i-1
go toifj = 1 then last else test;
set: d[j] := 0;
dlj—1]:=d - 1]+ 1;
d k] :=c[j] — 2;
for j := 1step 1 until kdo ¢ {j] := d[j] + 1;
go to exit;
last: forj := 1step 1 untilkdoc [j] :=0;
exit: end comp

CERTIFICATION OF ALGORITHM 72

COMPOSITION GENERATOR [L. Hellerman and S.
Ogden, Comm. ACM, Nov. 1961]

D. M. CorLisoN

Elliott Bros. (London) Ltd.,, Borehamwood, Herts.,
England

After
for j := 1 step 1 until k do d[j} := ¢[j]-1;
the statement
ji=k;
should be inserted (see ALeoL 60 report, para 4.6.5). With this
alteration, the algorithm was successfully run using the Elliott
AvrgoL translator on the National-Elliott 803.

CACM

72-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS

Davip K. JEFFERSON

. 8. Naval Weapons Laboratory, Dahlgren, Vlrgmla

procedure ellint (k, phi, E, F);
value k, phi;
real phi, F, k, E;
comment ellint computes the value of the incomplete elhptxc
integrals of the first and second kinds, F(phi, k) and E(phi, k),
where phi is in radians. If | k| > 1 or | phi| > #/2, Eand F
will be set equal to 100,000,000, otherwise they will contain the
computed integrals. For the formulation of this procedure, see
DiDonato, A. R., and Hershey, A. V., “New Formulae for
Computing Incomplete Elliptic Integrals of the First and
Second Kind”’, J. ACM 6, 4 (Oct. 1959);
begin real kp, sinphi, n, cosphi;
real array H [1:2], A [1:2], sigma [1:4], L
N [1:2], T [1:2), del [1:4];
sigma [1] := sigma [2] := sigma [3] := sigma [4] := 0;
H[1] :=
n := 0;
sinphi := sin(phi);
if abs (k X sinphi) < tanh (1) then go to small else if abs (k) <
1 A abs(phi) < 7/2 then go to large;
E := F := 100000000;
go to stop;
small: A [1] := phi;
stepl: n:=n+41;
cosphi := cos (phi);
E:= (2 X n-1) /(2 X N);
H2] :=E X kT2 X H[1];
A [2] ;= E X A [1] — sinphi T (2 X n—1) X cosphi /(2 X n);
del [1] := H [2] X A [2];
del 2] := kT2 X H[1] X A[2] /(2 X n);
sigma [1] := sigma [1] + del [1];
sigma (2] := sigma [2] + del [2];
H [1] := H 2];
All]l:= Af2];
if abs ((sigma [1] + del [1]) — sigma [1]) > 0 A phi X sinphi
1(2X n) > A [2] then go to step 1;
F := phi + sigma [1];
E := phi + sigma [2];

[1:2], M [1:2],

go to stop;
large: kp := sqrt (1-k12);
Afl] :=1;
L[1] := M[1] := N [1] := 0;
step 2: n := n41;

E:= (2Xn-1) /@2 X n);
F := abs (k) X sqrt (1—sinphi 12) X (1—k712 X sinphi
12)1(2X n—1) /2 X n));

H2] := EX HIJ;

AR2]l:=ET2X kpt2X A[1];

Li21:=L{1141/(n X 2 X n-1));
MEl:=MII-FXH[2) X (2 X n+l) /2 X n+2)) T2 X

kp12;

73-P1- 0

N[@2:=Ni-FXH[O)XEX @Xn+l) XkpT2/2X
n+32);

del [1] :=M [2] — A [2] X L [2];

del 2] :=N[2l - EXkpt2XAIXLE2I+kpt2 X All]
/(2 X n) 12);

del [3] := A [2];

del [4] := (2 X n+1) X A [2] /(2 X n+2);

sigma [1] := sigma [1] 4 del [1];

sigma [2] := sigma [2] + del [2];

sigma [3] sigma [3] + del {3];

sigma [4] sigma, [4] 4 del [4];

H (1} := H [2];

Al]:= A2};

L 1] := L [2];

M 1] := M [2];

N [1] := N [2];

if abs ((sigma [1] + del [1]) — sigma [1]) > O then go to step 2;

T [1] :=In (4 /(sqrt (1 — k12 X sinphi {2) + abs (k) X sqrt(1—
sinphi T 2)));

T [2] := abs (k) X sqrt ((1—sinphi 12) /(1—k12 X sinphi T2));

F:=T[1] X (1+sigma [3]) + T [2] X In {5+ .5 X abs (k X
sinphi)) 4+ sigma [11;

E := (.5 + sigma [4]) X kp12 X T [1] + 1T [2] X (1—abs

(k X sinphi)) + mgma 21;

end

VU

stop:

CERTIFICATION OF ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS (David K.
Jefferson, Comm. ACM, Dec. 1961)

DEean C. KRIEBEL

U. 8. Naval Weapons Laboratory, Dahlgren, Virginia

This algorithm was originally coded in Norc machine language
and K. Pearson’s incomplete elliptic integral tables of the first
and second kind generated. (See DiDonato, A. R., and Hershey,
A. V., “New Formulae for Computing Incomplete Elliptic Inte-
grals of the First and Second Kind”’, J.ACM 6, 4 (Oct. 1959)).

The algorithm was coded for the MAD Compiler exactly as
written in ALGoL and run on an IBM 7090. Forty cases were com-
puted with K ranging from 0° to 90° and PHI ranging from 0° to
90°. The results contained eight significant digits which agreed
with the DiDonato and Hershey tables to within 0 to 2 units in the
8th digit. (This may be attributed to the decimal to binary, binary
to decimal input-output conversion used with a binary computer
as compared to straight decimal computation on the Norc.)

CERTIFICATION OF ALGORITHM 73
INCOMPLETE ELLIPTIC INTEGRALS [David K.

Jefferson, Comm. ACM 4, Dec. 1961]
NoeLLE A. MEYER
E. I. du Pont de Nemours & Co., Wilmington, Del.

Ellint was hand-coded in ForTRAN for the IBM 7070. The follow-
ing corrections were made

The statement

= @Xn—1)/2XN);

should be

COLLECTED ALGORITHMS (cont.)

E := 2Xn—-1)/ZXn);
The statement,
F := abs(k) X sqri(l—sinphi T2) X (1—kT2Xsinphi 12) 1
(@Xn—1)/2Xn));
should be
F := (abs(k)Xsqrt(l—sinphi 1 2) X
(1—kT2Xsinphi12) T (n—.5))/(2Xn)
The statement
L[2] := L[1] 4+ 1/(nX2Xn—1));
should be
L2] := L[1] + (1/(nX 2Xn~1));
In order to accommodate negative ¢ the following changes were
made:
The statement
if abs((sigma(l]+-del[l]) —sigmall]) > 0 A phi X sinphi T
(2Xn) > A[2] then go to step 1;
was changed to
if abs((sigma(l1]4-del[l]) —sigma(l)) >0Aabs (phiX sinphi T (2Xn))
> abs(A[2]) then go to siep 1;
Also the following was inserted before the last statement

(stop: end)
if phi < 0 then go to wait else go to stop;
wait: F := —F,

E := —F;

The revised algorithm yielded satisfactory answers when com-
pared with the DiDonato and Hershey tables. Differences occurred
in the eighth significant digit as shown in the following difference
tables.

DIFFERENCE TABLES
F-TABLE

6 (in degrees)

. e
(in degrees)

0 30 60 90
0 0. 0. 0. 0.

- 30 —1 X 1Ww?® —1X 108 —1X 108 —3 X 10°®
60 1 X 1078 1 X 1078 2 X 1008 -3 X 1078
90 0. 2 X 1078 6 X 1078 0

E-TABLE
0 0 0. 0. 0.
30 -1 X 107% —1 X 1078 —1 X 10~® —1 X 107
60 1 X 108 1 X 1078 -7 X 10°8 3 X 1078
90 0 0 1 X 108 0.

CERTIFICATION OF ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS [David K
Jefferson, Comm. ACM Dec. 1961]

R. P. vax pE Rier

Mathematical Centre, Amsterdam

The algorithm contained three misprints:
The 26th line of the procedure
E:=(2Xn-1)/2 X N);
should read
E:=(2Xn-1)/(2X n);
The 46th line of the procedure
1217 ((2X2-1)/2 X n));
should read
T2) 1 ((2Xn-1)/2)/2 X n);
The 49th line of the procedure
LPl:=L}+1/(n X 2 X n—1));
should read
L2]:=L[1]4+1/(n X 2 X n-1));

3-P2- 0

The program was run on the X1 computer of the Mathematical
Centre. For phi = 45° k = sin(10°(10°)180°), E and F were calcu-
lated. The result contained 12 significant digits.

Comparison with a 12-decimal table of Legendre-Emde (1931)
showed that the 12th digit was affected with an error, at most
4 units large. After about 10 minutes of calculation (i.e. more
than 100 cycles) no results were obtained for k = sin 89°, phi = 1°
and the calculation was discontinued.

REMARKS. As pht is unchanged during the calculation, we
placed the statement cos pht : = cos (pht) in the beginning of the
program, to be certain that the cosine was not calculated 30 or
more times. Moreover, in the expression for T[1] and T'{2], sqri
(1-sin phi T 2) was replaced by cos phi, so that loss of significant

figures does not occur.
The expression 2 X n was changed in a new variable, to

obtain a more rapid program.

REMARK ON ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS [David K
Jefferson, Comm. ACM (Dec. 1961)]

Davip K. JEFFERSON

U. S. Naval Weapons Laboratory, Dahlgren, Virginia

In regard to Algorithm 73, two errors were found:
The 34th line of the procedure

F := abs(k) X sqrt (1 —sinphi T 2)
X 1=k T 2X sinphe T 2) T (2X n=1)/2 X n));
should read
F = abs(k) X sqrt (1—sinphi T 2)
X A-k 72X sinpht T2) T ((2X n—=1)/2)/(2 X n);
The 37th line
L2]:= L1+ 1/(n X 2 X n—1));
should read
Li2] := L1] 4+ 1/(n X (2 X n—1));

In addition, efficiency is improved by interchanging lines 13
and 14:
Step1: n := n-t1;
cosphi 1= cos(phi);
can be replaced by
cosphi:=cos(phi);
Stepl: n:=n 4 1;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 74

CURVE FITTING WITH CONSTRAINTS
J. E. L. PEck,

University of Alberta, Calgary, Alberta, Canada

procedure Curve fitting (k,a,b,m,x,y,w,n,alpha,beta,s,sgmsq,x0,
gamma,c,z,r) ;
comment This procedure finds, by the method of least squares,
the polynomial of degree n, k < n < k+m, whose graph con-
tains (a1, b, .-+, (axbr) and approximates (xi, yu), :--,
(Xm, Ym), Where w; is the weight attached to the point (x; , y;i).
The details will be found in the reference cited below, where a
similar notation is used. A nonlocal label “‘error’’ is assumed;
value a, X, y, w; integer k, m, n, r; real x0, gamma; array
a, b, x, y, w, alpha, beta, s, sgmsq, ¢, z;
begin integerii,;j; array wl[l:k]; real p,f, lambda;
comment We shall first define several procedures to be used
in the main program, which begins at the label START;

procedure Evalue (x, nu);
comment This procedure evaluates f = gopy + sip1 + --- -+
8Py, Where p_i(x) = 0, po(x) = 1, By = 0 and piu(x)
= (x — a;)pi(x) — Bipia(x), i=0,1,---, »—1. The value of
py»(x) remains in p;
real x; integer nu;
begin real p0, temp; integeri; p0:=0; p:=1; f:=s[0];
for i := 0 step 1 until nu—1 do
begin temp := p;
p := (x—alphali]) X p—betali] X p0;
pO := temp; f :=f+ p X s[i+1]endi
end Evalue;

procedure Coda (n,c¢);
comment This procedure finds the ¢’s when ¢p 4 exx + -+ +
€nX® = 8oPo(X) + *++ + BaPa(X);
integer n; array c;
begin integeri,r; real t1,t2; array pm,p[0:n];
forr := 1step 1 until n do
¢[r] := pmlr] := plr] := 0;
pm[0] := 0; p[0] :=1; ¢[0] := s[0];
for i := 0 step 1 until n—1 do
begin t2 := 0;
for r := O step 1 until i+1 do
begin tl1 := (t2—alpha[i].X p[r]—beta[i] X pm[r])/lambda;
t2 1= pmir] := plxl; plr] := t1;
e[r] := ¢[r] + t1 X s[i+1)end r
end i
end Coda;

procedure GEFYT (n,n0,x,y,w,m);

comment This is the heart of the main program. It computes
the «i,81,81,0%, using the method of orthogonal polynomials, as
described in the reference;
integer n,n0,m; array Xx,y,w;
begin real dsq,wpp,wpp0,wxpp,wyp,temp;

integer i,j,freedom; array p,p0(1:m}; boolean exact;

if n—n6 > m V n < n0 then go to error;

beta[n0] := dsq := wpp := 0; exact := n—n0 > m—1;

for j := 1 step 1 until m do
begin pfj] := 1; pO[j] := 0; wpp := wpp + wlj];
if — exact themdsq := dsq + w[j] X y[j] X ylj] end initialise;

74-P 1- 0

for i := nu step 1 until n do
begin freedom := m—1—(i—n0); wyp := wxpp := 0;
for j := 1 step 1 until m do
begin temp := wij] X pljl;
if i < n then wxpp := wxpp + temp X x[j] X plj};
if freedom > 0 then wyp := wyp + temp X y[j] end j;
if freedom > 0 then s[i] := wyp/wpp;
if — exact then begin dsq := dsq — sfi] X s[i] X wpp;
sgmsqli] := dsq/freedom end if;
if i < n then begin alphali] := wxpp/wpp; wpp0 := wpp;
wpp := 0;
for j := 1 step 1 until m do
begin temp := (x[j]—alphali]) X p[j] — “etali] X pO[j];
wpp := wpp + w(j] X temp X temp;
pO[i] := pljl; plj] := temp end j;
betali4+1] := wpp/wpp0 end if
end i

end GEFYT;

START: forj := 1stepl untilk do

begin wl[j] :=1; a[j] = (a[j]l—x0)/gamma end j;

GEFYT (k,0,a,b,wl k);

comment This finds the polynomial of degree k—1 whose graph
contains (ai,b1),- -+, (ar,bx) supplying the «;,8i,8;, 0<i<k;
begin real rho; rho := 0;

for j := 1 step 1 until m do
begin rho := rho + wlj];
x[j] := (x[j] — x0)/gamma end j; rho := m/rho;

comment The factor p is used to normalize the weights. We shall
now put 8x = 0 in order to evaluate pik(x) and the polynomial of
degree k—1 simultaneously;

s[k) := 0;

for j := 1 step 1 until m do
begin Evalue (x[j],k);
if p = 0 then go to error;
vlil == i) — ©)/p;
wlil := w[jl X p X p X rho end j

end rho;

comment We have now normalized the weights and adjusted
the weights and ordinates ready for the least squares approxi-
mation;

GEFYT (n,k,x,y,w,m);

comment The coefficients @;,8;, 0 £i<n,ands;, 0<i<n
are now ready. The polynomial may be evaluated for x = z,2s,
«++,2, but the variable must be adjusted first. Note that we
may evaluate the best polynomial of lower degree by decreas-
ing n;
begin real x;

for j := 1 step 1 until r do
begin x := (z[j]—x0)/gamma;
Evalue (x,n); comment the values of z; and f should now be

printed; end j;

comment We may now adjust the coefficients for scale and then
find the coefficients of the power series ¢ + e1x + -+ + coX® =
8po(X) + +++ + 8apa(X);

fori := 0 step 1 untiln—1do
begin alphafi] := alphali] X gamma + x0;
betali] := betali] X gamma end i; lambda := gamma;

Coda (n,c);

comment We may now re-evaluate the polynomial from the
power series;

for j := 1 step 1 until r do

COLLECTED ALGORITHMS (cont.)

begin x := z[j]; { := ¢[n];
for i := n—1 step —1 until 0 do
f:=1fX x4+ cli];

comment the values of x and f should now be printed; endj

end x
end Curve fitting

ReseRENCE: PECE, J. E. L. Polynomial curve fitting with
constraint, Soc. Indust. Appl. Math. Rey. (1961).

CERTIFICATION OF ALGORITHM 74

CURVE FITTING WITH CONSTRAINTS [J. F.
Peck, Comm. ACM, Jan. 62]

Kazvo Isopa .

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan :
Algorithm 74 was hand-compiled into SOAP IlIa for the IBM

650 and run successfully with no corrections except the case in
which the origin (0, 0) are given as both a constraint and a sample.

74-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 75

FACTORS

J. E. L. PEck,

University of Alberta, Calgary, Alberta, Canada

procedure factors (n,a,u,v,r.c);
comment This procedure finds all the rational linear factors of
the polynomial aex® + aix*! + .- + a,1x + a,, with integral
coefficients. An absolute value procedure abs is assumed;
value n,a; integer rn,c; integer array a,u,v;
begin comment We find whether p divides a;, 1 < p < |ao| and
q divides a,, 0 < q < [aa|. If this is the case we try (px = q);
integer p,q,a0,an;)
r:=0; c:=1; comment r will be the number of linear factors
and ¢ the common constant factor;
TRY AGAIN: a0 := a[0]); an := a[n];
for p := 1 step 1 until abs(a0) do
begin if (a0 <+ p) X p = a0 then
begin comment p divides a,;
for q := 0 step 1 until abs(an) do
begin if ¢ = 0V (an + q) X q = an then
begin comment q divides a, (or q = 0). If p = q we
may have a common constant factor, therefore; if q
>1Ap=1then
begin integer j;
for j := 1 step 1 until n—1 do
if (a[j] + q) X q # a[j] then go to NO CONSTANT;
for j := 0 step 1 until n do
aljl := aljl/q;
c:=c¢ X q; goto TRY AGAIN
end the search for a common constant factor;
NO CONSTANT:
begin comment try (px — q) as a factor;
integer f,gi; f := a0; g :=1;
comment we try x = q/p;
for i := 1 step 1 until n do
beging :=gX p; f:=fX q+4+afi]Xg
end evaluation;

if f = 0 then
begin comment we have found the factor (px — q);
r:=r-+1; ufr] :=p; vlr] :=q;

comment there are now r linear factors;
begin comment we divide by (px — q);
integer i,t; t :=0;
for i := 0 step 1 until n do
begin ali] := t := (afi] 4+ t)/p;
end i;
n:=n-—1
end reduction of polynomial. Therefore;
go to if n = 0 then REDUCED else TRY AGAIN
erid discovery of px — q as a factor. But
if we got this far it was not a factor so try px + q;
q := —q; ifq < 0 then go to NO CONSTANT
end trial of px + q,
end q divides a, and
end of q loop.
end p divides a,, also

t:=tXq

75-P1- 0

end p loop, which means;

REDUCED: ifn = 0 then
begin ¢ := ¢ X a0; a0 :=1
endifn =0

end factors procedure. There are now r (r > 0) rational linear
factors (uix — v;), 1 <i < r, and the reduced polynomial of
reduced degree n replaces the original. The common constant
factor is ¢. Acknowledgments to Clay Perry.

CERTIFICATION OF ALGORITHM 75
FACTORS [J. E. L. Peck, Comm. ACM § (Jan. 1962)]
A. P. RELPH

The English Electric Co., Whetstone, England

Algorithm 75 was translated using the DEUCE ALGoL compiler
and gave satisfactory results after the following corrections had
been made:

begin if =0V (an+q)Xq=an then
begin if g>1Ap=1 then
was changed to
begin if <1 then go to NO CONSTANT;
if (an+q)Xq=an then
begin if p=q then

begin ¢ := ¢Xa0; a0 :=1

end ‘
was changed to

begin ¢ := ¢Xa[0]; al0] := 1;

end

There are now r (r>0) rational linear factors (u; x—vj),
1<i<r,
was .changed to
If r>0 there are now r rational linear factors (uix—v;),1Si=r,

CERTIFICATION OF ALGORITHM 75

FACTORS [J. E. L. Peck, Comm. ACM, Jan. 1962]

J. 8. HiLLMORE .

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The following changes had to be made to the algox;ithm:

(1) For ifg>1Ap =1then
put ifg>1Ap = qthen
(2) For beginc := ¢ X a0; a0 := 1 end
put begin ¢ := ¢ X al0]; a[0} := 1 end
@3) For if¢g=0V (an + ¢) X ¢ = an then
pul if (if ¢ = 0 then true else (an + ¢) X ¢ = an) then

This change is necessary to ensure that the term (an + ¢) is not
evaluated when ¢ = 0.

The algorithm, thus modified, was successfully run using the
Elliott ALcoL translator on the National-Elliott 803.

COLLECTED ALGORITHMS (cont.)

To return to the state (p=1, ¢=0) after every factor or constant
is found is inefficient. This can be avoided by substituting a[0]
and a[n] for the identifiers 20 and an respectively. The procedure
then becomes:
procedure factors (n, a, u, v, r,¢); valuen, a;

integer array a, u, v;
integer r, n, c;
begin integer p, q;

r:=0; ¢:=1;
ZERO: if a[n]=0 then

begin r := r+1; ur] :=1; vir] ;= 0; n := n—1;
go to ZERO .
end;

for p := 1 step 1 until abs (a[0]) do
begin if (a[0]+p)Xp=a[0] then
begin for q := 1 step 1 until abs (a[n]) do
begin if =1 then go to NO CONSTANT;
TRY AGAIN: if (a[n]+q)Xq=a[n] then
begin integer j;
for j := 0 step 1 until n—1 do
if (a[j]+q)Xqsa[j] then go to
NO CONSTANT;
for j := 0 step 1 until n do

afj] := aljl/q;
¢ :=cXq; go to TRY AGAIN
end;
NO CONSTANT: begin integer f, g,i; f := a[0];
g:=1

for i := 1 step 1 until n do
begin g := gXp;
f:= fXq+alilXg
end;
if f=0 then
begin r := r+1; ulr] := p;
vlr] := g;
begin integer i, t; t := 0;
for i := 0 step 1 until n do
begin ali] := t := (a[i]4+t)/p;

t 1= tXq
end;
n:=n-—1

end

go to if n=0 then REDUCED
else NO CONSTANT

end;
q := —q; if q<0 then go to NO
CONSTANT
end
end
end
end;

REDUCED: if n=0 then
begin ¢ := c¢Xa[0]; a[0] := 1
end
end

75-P 2-

0

COLLECTED ALGORITHMS

FROM CACM

ALGORITHM 76

SORTING PROCEDURES

Ivan FLORES ,

Private Consultant, Norwalk, Connecticut

comment The following ALGoL 60 algorithms are procedures for
the sorting of records stored within the memory of the computer.
These procedures are described in detail, flow-charted, com-
pared, and contrasted in ‘‘Analysis of Internal Computer Sort-
ing”’ by Ivan Flores [J. ACM 8 (Jan. 1961)]. Although sorting is
usually a business computer application, it can be described
completely in ArcoL if we stretch our imagination a little.
Sorting is ordering with respect to a key contained within the
record. If the key s the active record, the sorting is trivial. A
means is required to extract the key from the record. This is
essentially string manipulation, for which no provision, as yet,
has been made in ArLcoL. We circumambulate this difficulty by
defining an integer procedure K(I) which ‘‘creates’ a key
from the record, I. AvrcoL does provide for machine language
code substitutions, which is one way to think of K(I). This
could be more accurately represented by using the string nota-
tion proposed by Julien Green [“Remarks on ALgoL and Sym-
bol Manipulation,” Comm. ACM 2 (Sept. 1959), 25-27]. The
function sub (§,i,g) represents the procedure, K(I). $ corre-
sponds to the record I, icorresponds to the starting position of
the key and g corresponds to the length of the key. Bothiand g
are values which must be specified when the sort procedure is
called for as a statement instead of a declaration.

Another factor, which might vex some, is that the key might
be alphabetic instead of numerie. Then, of course, K(I) would
not be integer. It would, howevér, be string when such is defined
eventually. Note, also, that keys are frequently compared. This
is done using the ordering relations ‘> for ‘‘greater than,”
etc. These are not really defined in the ALgoL statement [NAUR,
PETER, ET AL. ‘“Report on the Algorithmic Language aLcon
60”’. Comm. ACM 8 (May 1960), 294-314]. They can simply be
definedsothat Z>Y > «-- > A>9> .- > 1> 0. Also the
assignment X[i] := z should be interpreted as ‘‘Assign the key
‘2z’ which is larger than any other key.’’ For any sort procedure
(I,N,S), “I” is the set of unsorted records, “N’’ is their num-
ber, and ““S’’ the sorted set of records.

Caution, these algorithms were developed purely for the love
of it: No one was available with the combined knowledge of
sorting and ALGOL to check this work. Hence each algorithm
should be carefully checked before use. I will be glad to answer
any questions which may arise;

Sort insert (I,N,S); ‘value N; array I[1:N], S[{1:N];
integer procedure K(I); integer N;
begin integer i, j, k;
S[1] := I[1];
for i := 2 step 1 until N do begin
forj :=1i—1, j— 1while K(I[i]) > K(8[j]) do
for k := i step — 1 until j + 1 do
Sik] := S[K — 1];
Sj + 1] := 1[i] end end
Sort count (I,N,S); value N; array I[1:N], 8[1:N];
integer procedure K(I); integer N;
begin integer array C[1:N]; integeri,j;

Sort select (I,N,S); value N;

Sort select exchange (I,N);

76-P 1- 0

for i := 1 step 1 until N do CJi] := 0;
fori := 2 step 1 until N do
for j := 1step 1 untili — 1 do
if K(I[i]) > K(I[j]) then C{i] := C[i] + 1
else C[j] := C[j] + 1;
fori := 1step 1 until N do -
S[C[i]] := I[i] end
array I[1:N], S[1:N];
integer procedure K(I); integer N;
begin integer i,j,A)h;
for i := 1 step 1 until N do begin
h = K(I[1]);
for j := 2 step 1 until N do
if h > K(I[j]) then begin h := K(I[j]); A := j end;
Sli] := I[A];
I[A] := z end end

value N; array I[1:N];
integer procedure K(I); integer N;
begin integer h,i,j,H; real T;
for i := 1 step 1 until N do begin
H := KIfi]); h:=i;
for j := i + 1 step 1 until N do
if KX(I[j]) < H then begin
H:= K(I[j]); h:=jend
T := If); I[i] := I[h]); I[A] := T end
end

Sort binary insert (I,N,8); value N; array I[1:N], S[1:N};
integer procedure K(I); integer N;
begin integer i,k,j,I;
if K(I[1]) < K(I[2]) then begin
S[1] := I[1]; S[2] := I[2] end
else begin S[1] := I[2]; S[2] := I[1] end;

start: for i := 3 step 1 until N do begin
ji= (041 + 2
find spot: fork :=(1i+1) + 2,(k+1) +2whilek> 1do

if K(I[i]) < K(S[j]) thenj :=j — k
else j := j + k;
if K[} > K(S[j]) then j :=j — 1;
forl ;= istep — 1 until j do
Sl + 1] := S[1];

move items:

enter this
one: S[j] := I[i] end end

Sort address calculation (ILN,S,F); value N;
array S[1:M], I[1:N]; integer procedure F(K), K(I);
integer N,M;
begin integer i,j,G,H,F.M;
M := entier(2.5 X N)
for i := 1 step 1 until M de S[i] = 0;
for i := 1 step 1 until N do begin
F := FKI{);
if S[F] = 0 then begin S[F] := I[i];
go to NEXT end
else if K(S[F]) > K(I[i]) then go to SMALLER;
for H := F, H + 1 while K(S[H]) < K(I[i]) do
for G := H, G + 1 while K(S[G]) = 0do
for j := G step —1 until H + 1 do
8[j] = 8(i — 1J;
S[H] := I[i]; go to NEXT;
for H := F, H — 1 while K(S[H]) > K(I[i]) do

Address:

LARGER:

SMALLER:

COLLECTED ALGORITHMS (cont.)

for G := H, G — 1 while K(S[G]) # 0 do
for j := G step 1 until H — 1 do
S(jl = 8[j + 1I;
S[H] := I[il;
NEXT: end end

Sort quadratic select (I,N,S);
integer procedure K(I);

Divide inputs:

Fill up inputs:

Set controls:

Find least:

Fill file:

Reset controls:

STOP:

Presort quadratic selection (I,N,S);
array I{1:N], S[1:N];

Divide inputs:

Fill up inputs:

First sort:

Set controls:

Find least:

Fill file:

Reset control:

STOP:

value N;
integer N;
begin integer i,j,k,C,D,J,M;

integer array C[1:M], D[1:M];
array I[1:M, 1:M];
M := entier (sqrt (N)) + 1; j:=k :=1;
for i := 1 step 1 until N do begin
Ifj k] = If{i]; k:=k+1;
if k > M then begin k := 1;
ji=]+ 1endend

1(j k] := =k+1;

if k > M then begink :=1; j:=j+ 1lend

if j £ M then go to Fill up inputs;

for j := 1step 1 until M do begln

Clil := K, 1)); DIj] :=

for k = 2 step 1 until M do

if C[j] > K([j,k]) then hegin

array I[1:N], S[1:N];

Cli] := K{[j,kD); DI[j] := k end end;
1:=1;
= C[1l]; D:=D[1}; J:=1;
for j := 2 step 1 until M do
if C > Cfj] then begin C := C[j];
D :=D[j]; J:=]jend;
S[] :=1J,D]; i:=1i+1; IJ,D]:=z;
ifi = N 4 1 go to STOP;
for j := J do begin
Cljl := K{(j, 1); D] := 1;

for k := 2 step 1 until M do
if C[j] > K(j,k]) then begin C[j] :=
K(I[j,k]; DJj] := k end end;
go to Find least;
end

value N;
integer procedure K(I);
begin integer i,j,k,C,JM;
integer array C[1:M], D[1:M]};
array I{1:M,1:M];
M := entier (sqrt(N)) +1; j:= k :=
for i := 1 step 1 until N do begin
Ifj,k] = 1li]; k:=k +1;
if k > M then begin k := 1;
j:=]+ 1lend end
I[j k] := z; =k+1;
if k > M then begin k := =j+1end
if j < M then go to Fill up inputs;
for j := 1 step 1 until M do
sort select exchange (Ifj,k],M);
for j := 1 step 1 until M do begin
C[i] := K(1[j,1]); DI[j] := 1 end
im=1;
=C[l]; J:=1;
for) := 1 step 1 until M do
if C > CJj} then begin C :=
J :=] end;
Slil := IJ,DJI; 1:=1+41;
ifi = N + 1 go to STOP
for j := J do begin
D] := D] + 1;
if D[j] > M then C[j]
K(I[j, D{jI]) end
go to Find least;
end

integer N;

Clil;

;= z else C[j] :=

76-P 2- 0

Sort binary merge (I,N,S); value N; array 1[1:N];
integer procedure K(I); integer N;
begin real array S[1:N];
integer array A[0:1, 0:J[a]], B[0:1, 0:K[b]], Aloc[0:1, 0:J{all,
Bloc[0:1, 0:K[b]], J[0:1], K[0:1], j[0:1], k[0:1];
integer a,b,i,jk;
distribute: a:=b = j[0] := j1] :=
for i := 1 step 1 until N do begin
if K(I[i]) < K(I[i—1] then
ifa = 1lthena :=0elsea :=1;
Ala, j[a]] := K(I[i]); Alocla, j[a]] := i;
ila] :="jla] + 1 end;

J[0] := j[o}; J{1] := j{i];
next sort: begin a := b := j[0] := j[1] := k[0] :=
k[‘1] 1=
two inputs: if All, j{1]] £ A[0, j[0]] then a := 1 else
a:=0;

Bib, k[b]] := Ala, jla]l;
Bloc[b, k([b]] := Aloe{a, j[a]l;

jla] := jla] + 15. k[b] := k{b] + 1;

if Afa, jla]] > Ala,][a] — 1] then go to two
inputs else

ifa =1 then a :—Oelsea =1

single step: Blb, k[b]] := A[a, jlall;

Bloc[b, k[b]] := Aloc(a, j[al];
jlal := jla] —I—l k{b] := k[b] + 1;
if Ala, j[a]] > Ala, jla] — 1] then go to

single step;
ifb=1thenb :=0elseb :=
for a := 0,1 do

if j(a] = J[a] then go to rollout;
go to two inputs;

Bib, k{b]] := Ala, jla]l;

Bloc[b, k[b]] := Aloc {a, j[a]];
kib] := k[b] + 1; jla] := jla] + 1;
if j[a] = J[a] then go to interchange files;

. if Afa, j[a]] < Ala, jla] — 1] then
ifb=1thenb :=0elseb :=
go to rollout;
K[0] := k[0]; K[1] := k[1];
if K[0] = 1 then go to output end
“for b := 1, 0 do begin
for k[b] := 1 step 1 until K[b] do begin
Alb, k[b]] := B[b, k[b]];
Aloe[b, k[b]] := Bloc[b, k[b]};
© Jlb] := K[b] end end
go to next sort;
for i := 1 step 1 until N do
S[i] := I{Bloc[0, i]];

end

switch file:
check rollout: .

rollout:

interchange files:

output:

REMARK ON ALGORITHM 76
SORTING PROCEDURES (Ivan TFlores, Comm. ACM

5, Jan, 1962)

B. RANDELL
Atomic Power Div., The English Electric Co., Whetstone,

England

The following types of errors have been found in the Sorting

COLLECTED ALGORITHMS (cont.)

Procedures:

1. Proc¢:dure declarations not starting with procedure,

2. Bound pair list given with array specification.

3. = used instead of :=, in assignment statements, and in a for
clause.

4. A large number of semicolons missing (usually after end).

5. Expressions in bound pair lists in array declarations depend-
ing on local variables.

6. Right parentheses missing in some procedure statements.

7. Conditional statement following a then. -

8. No declarations for 4, or z, which is presumably a misprint.

9. Inseveral procedures attempt is made to use the same identi-
fier for two different quantities,” and sometimes to declare an
identifier twice in the same block head.

10. In the Presort quadratic selection procedure an array, de-
clared as having two dimensions, is used by a subscrupted variable
with only one subscript.

11. At one point a subscripted variable is given as an actual
parameter corresponding to a formal parameter specified as an
array.

12. In several of the procedures, identifiers used as formal
parameters are redeclared, and still assumed to b(- available as
parameters.

13. In every procedure K is given in the specification part, with
a parameter, whilst not given in the formal parameter list.

No attempt has been made to translate, or even to understand
the logic of these procedures. Indeed it is felt that such a grossly
inaccurate attempt at ALGoL should never have appeared as an
algorithm in the Communications.

76-P 3-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION

PauL E. HENNION

Grumman Aircraft Engineering Corporation, Bethpage,
L. 1., New York

real procedure AVINT (nop, jt, xarg, xlo, xup, xa, ya);
value nop, jt, xarg, xlo, xup; real xarg, xlo, xup;
integer nop, jt; real array xa, ya;
comment This procedure will perform interpolation, differen-
tiation, or integration operating upon functions of one vari-
able which over part or all of the interval of interest are ade-
quately described by a di-parabolic fit.

The routine was originally programmed as an open subrou-
tine for the IBM 704 in ForTrAN II and occupied 323 memory
loecations. It is based upon a Lagrange interpolation scheme
specialized for averaged second order parabolas. The tech-
nique finds the slope of a function numerically defined at
points 1, 2, 3 and 4 by fitting a parabola through the points
1, 2, 3, and another parabola through the points 2, 3, and 4.
The slope then, at point 2,is the average analytical derivative
of the two parabolas, i.e. the coefficients of the parabola
through points 1, 2 and 3 (a;x:2+bix:+e¢1) and the coefficients
of the parabola through points 2, 3, and 4 (a2X2?+boxs+c3)
are determined by applying Lagrange’s equations as shown be-
low. The arithmetic mean of these coefficients a = (a;+a;)/2,
b = (bi+bs)/2, ¢ = (ci+4c2)/2 are used to supply the slope
in the interval from 2 to 3, namely (2ax + b).

The interpolation is calculated in similar fashion, except the
final formula is that a parabola (ax? + bx + ¢).

The integration is performed likewise by a curve fitting
process, e.g. the integral between any two points say 2 and 3
is the average integral of the two parabolas between the inde-
pendent coordinate limits for points 2 and 3. The averaging
process is done for each interval along the abscissa as the
results obtained are accumulated to evaluate the definite
integral.

Applying Lagrange’s equations, the coefficients a, b, and ¢
may be found by defining: T; = y;/[[, i%; (X; — Xi) where
y=£fx), n=3 j=12--,n, thena = 2L Ti,
b= i T, i Xiy, €= 2o Til [5 X ;

begin real ca, cb, cc, a, b, ¢, syl, syu, terml, term2, term3, da,
dif, sum;
integer jm, js, jul, ia, ib;
start: switch alpha := L1, L1, L12; switch beta := L9,
L5, L6;
switch gamma := L10, L11; switch delta := L8,
L8, L13;
comment For interpolation, differentiation or integration set
jt = 1,2, or 3 respectively;
go to alpha [jt];
L1: if xarg > xa [nop] then go to L2;
if xarg > xa [nop—1] then go to L2;
if xarg < xa [1] then go to L3;
if xarg < xa [2] then go to L3; go to L4;

L2:

L3:
comment

L4:

comment

Lb5:

L6:

L7:
L8:
19:
comment
L10:
comment
Lil:
comment
L12;

L16:
comment

L13:

L14:

L15:

comment

term:
comment

exitl:
exit2:
exit3:
exit:

77-F 1- 0

jm := nop—1; js:=1; go to term;

jm := 2; js :=1; go to term;

Locate argument;

for ia := 2 step 1 until nop do begin

if xa [ia] > xarg then go to L7; jm := ia end;

Before loop_is complete xarg < xa [ial];

ca := a; cb := b; ce := ¢; js := 3; im :=
jm+1; go to term;

a := (ca+a)/2; b := (cb+Db)/2; ¢ := (cet+c)/2;
go to L9;

js := 2; go to term;

go to beta [js];

go to gamma [jt];

Interpolation, jt = 1;

da :=a X xarg T 2 4+ b X xarg + ¢; go to exitl;

Differentiation, jt = 2;

dif := 2 X xarg + b; go to exit2;

Integration, jt = 3;

sum := 0; syl := xlo; jul := nop — 1;
ib:=2;

for jm := ib step 1 until iul do begin;

Lagrange formulae;

terml := ya [jm — 1]/((xa [jm — 1} — xa[jm]) X
(xal[jm — 1] — xa[jm + 1]));

term2 := ya [jm]/((xa [jm] — xa [jm — 1]) X
(xafjm] — xa [jm + 1]));

term3 : = ya [jm + 1]/((xa [jm + 1] — xa [jm -~ 1]) X

(xa [jm + 1] — xa [jm]));
a = terml 4+ term2 -+ term3;
b := —(xa [jm] + xa [jm + 1]) X terml — (xa

[jm — 1] + xa [jm + 1]) X term2 — (xa [jm — 1] 4+
xa [jm]) X term3;

¢:=xa[jm] X xa [jma + 1] X terml + xa [jm — 1] X
xa [jm + 1] X term2 + xa [jm — 1] X xa [jm] X
term3; go to delta [jt];

if jm # 2 then go to L14;

ca:=1a; cb:=Db; cc:=¢c; go toLl5;

ca := (a + ¢a)/2; cb 1= (b 4+ ¢b)/2; cc :=
(e + ce)/2;

syu := xa [jm];

sum : = sum + ca X (syu T 3 — syl 13)/3 +cb X
(syu T 2 — syl T 2)/2 + ce X (syu — syl);

ca:=a2a; cb:=Db; cc:i=c¢; syl := syuend;

End of loop on [jm] index;

sum := sum + ca X (xup T 3-syl T 3)/3 + ¢cb X
(xup T 2-8yl T 2)/2 + cc X (xup — syl); go
to exit3;

ib := jm; jul :=ib; go to LI16;

The results for interpolation, differentiation, and
integration are da, dif, and sum respectively;

AVINT := da; go to exit;

AVINT := dif; go to exit;

AVINT := sum;

end

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 77

AVINT (Paul E. Hennion, Comm. ACM 5, Feb., 1962)

Vicror E. WHITTIER

Computations Res. Lab., The Dow Chemical Co., Mid-
land, Mich.

AVINT was transliterated into BAC-220 (a dialect of ALGOL-58)
and was tested on the Burroughs 220 computer. The following
minor errors were found:

1. The first statement following label L11 should read:
dif := 2 X a X xarg + b;

2. The semicolon (;) at the end of the line beginning with the label
116 should be deleted.

3. There appears to be a confusion between 1’ (numeric) and
“1’ (alphabetic) following label L12. This portion of the
program should read:

L12: sum := 0; syl := xlo; jul :=mnop — 1; ib :=2;

After making the above corrections the procedure was tested for
interpolation, differentiation, and integration using ¢*, log X, and
sin X in the range (1.0 £ X = 5.0). Twenty-one values of each of
these functions, evenly spaced with respect to X and accurate to
at least 7 significant digits, were tabulated in the above range.
Then the procedure was tested. The following table indicates ap-
proximately the accuracy obtained:

Number of Significant Digits

Function Interpolation Diflerentiation Integration
e® =4* =2 =4
log X =4* =2 =3
sin X >4* 22 =>4

* Except for interpolation between the first two points in the
table.

The above results are quite reasonable in view of the relatively
large increment in X. Tests using smaller increments in X and un-
even spacing of X were also satisfactory.

It was also discovered that for integration the following re-
strictions must be observed:

1. xlo = xa (1).

2. xup = xa (nop).

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION [P. E. Hennion, Comm. ACM, Feb., 1962]
P. E. HenNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT [V. E. Whittier, Comm. ACM, June,
1962] that restrictions on the upper and lower limits of integration
existed, i.e., (1) 210 £ za (1), (2) 2up = za(nop). To remove
these restrictions the following two changes should be made.
1. Before line L16: and after the statement b := 2; place the
following code:
for ta := 1 step 1 until nop do begin
if za(ia) = 210 then go to L17; b :=1b + 1; end;

L17: jul :=nop + 1; for ia ;= 1 step 1 until nop do begix:
Jul = jul —1;

2. Change line L13: to read:
L13: if jm # i{b then go to L14;

ifza(jul) > zupend;jul := jul —1;

77-P 2- 0

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION [P. E. Hennion, Comm. ACM 5, Feb.
1962]

P. E. HeEnniON

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT (V. E. Whittier, Comm. ACM,
June, 1962) that restrictions on the upper and lower limits of inte-
gration existed, i.e., (1) zlo < 2a(l), (2) zup = za(nop). To remove
these restrictions the following two changes should be made.

1. Replace the two lines starting at line L12: and ending after
the statement ¢b := 2; with the following code:

L12: sum := 0; syl := zlo;ib := 2, jul := nop;
for ia := 1 step 1 until zop do begin
if 2a [{a] = xlo then go to L17; b := ib + 1; end;
L17: for ia := 1 step 1 until nop do begin
if zup = za [jul] then go to L18; jul := jul — 1; end;
L18: jul := jul — 1;
2. Change line L13: to read
L13: if jm = ¢b then go to L14;

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 78

RATIONAL ROOTS OF POLYNOMIALS WITH IN-
TEGER COEFFICIENTS ‘

C. PERRY '

University of California at San Diego, La Jolla, California

comment This Avcor procedure, named ratfact, for finding
rational roots of polynomials with integer coefficients is a
pedagogical example illustrating the use of the for statement
described in section 4.6.3. Also, an extension suggested by
J. Peck of the well-known polynomial evaluation by nesting,
i.e. Horner’s method, is used. The polynomial f(x)=a, + a,;x+
«++ Fanx? with integer coefficients and with aca,0 has a
lowest term rational root p/q if and only if a,q™ + a.q*'p +
<o« Fanaq p*! + a,pt= 0, also g must be a factor of a, and
p a factor of a,. Procedure RatracT outputs the nonzero
rational roots p/q by execution of the procedure whose formal
name is print. The output procedure uses the string whose formal
name is format for control of the output format;
procedure ratfact (a, n, print, format);
integer array al0:n]; integer n; procedure print; string
format; .
begin integer i, p, q, 1, t, f, g;
p loop: for p := 1 step 1 until abs (2{0]) do
begin comment if p is not a factor of a [0] or q is not a factor
of a[n] then skip to the end of the loop for advance in the
respective for list;
if a[0] # (a[0]+p)Xp then go to 1
else q loop: for q := 1 step 1 until abs (a[n]) do
begin if aln] # (a[n]+ q)Xq then go to 2
eise
begin comment root test and print;
comment start polynomial evaluation;
f:=g:=al0]; t:=p;
fori := 1step 1 until n do
begin r := ali]Xt;
f := fXq+r;
g := —gXq+r;
t 1= tXp;
end polynomial evaluation;
comment computing r saves
evaluation;
if =0 then print (format, p, q);
if g=0 then print (format,—p, q);
comment print is the formal name of the procedure
to be used to output the variables in the format
specified by the string whose formal name is format;
end root test and print;
2: end q loop;
1: end p loop;
end ratfact, without overflow test.

one subscript

78-P 1- 0

REMARK ON ALGORITHM 78

RATIONAL ROOTS OF POLYNOMIALS WITH
INTEGER COEFFICIENTS [C. Perry, Comm. ACM,
Feb. 1962]

D. M. CoLLisoN ,

Elliott Bros. (London) Ltd., Borechamwood, Herts.,
England
The algorithm was successfully run using the Elliott ArcoL

translator on the National-Elliott 803. It was noticed that a
multiple rational root will only be printed once by the procedure.

CERTIFICATION OF ALGORITHM 78.
RATFACT (C. Perry, Comm. ACM 5, Feb. 1962)
M. H. HaLsTEAD

Navy Electronics Laboratory, San Diego, Calif.

RATFACT was copied in the Navy Electronics Laboratory
International Arcor Compiler, NeLiac, and tested on the Uni-
vac M-490 Countess and the CDC 1604. Polynomials of order 2
through 6 were tested. No corrections were found necessary. It
was noted that a polynomial whose coefficients included a com-
mon factor would produce superfluous values of p/gq, in which
this fraction was indeed a root, but one in which p and g contained
a common factor.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 79

DIFFERENCE EXPRESSION COEFFICIENTS

Twaomas P. Giammo

Space Technology Lahoratories, Inc.,
fornia

Los Angeles, Cali-

procedure dicol (k, n, xp, xtab, coef);
value k, n; integer k, n; real xp;
array xtab, coef;
comment dicol produces the coefficients for the n ordmates
(corresponding to the abscissae, xtab) in the n-point finite
difference expression for the k-th derivative evaluated at xp.
The method used is to determine the analytic expression for
the k-th derivative of each coefficient in the n-point Lagrangian
interpolation formula and evaluate it at xp. Note that k=0
will produce the Lagrangian interpolation coefficients them-
selves;
begin integer array xuse [1
part;
integer i, terms, j, m, high;
factk := 1.0; for i := 2 step 1 until k do factk := iXfactk;
terms := n—k—1; if terms<0 then go to Z;
for j := 1 step 1 until n do)
loop: begin sum := 0; denom := 1.0; part := 1.0;
for i := 1 step 1 until n do
if i # j then denom := denomX (xtab [j] — xtab [i]);
if terms = 0 then go to Y;
m :=1; high := 1; ‘
A: if (high = j)V/(xtab [high] =
Al: begin high := high + 1;

: n—1]; real ?actk, sum, denom,

xp) then
go to A end Al;

if high >.n then A2: begin m := m~1; if m>0
then ' ’

A3: begin high := xuse [m]+1; go to A end AS3;

go to X end A2; i

xuse [m] := high; m := m+1;

if mSterms then begin hlgh = high 4+ 1; go te
A end;

fori := I step 1 until terms do
part := partX (xp — xtab [xuse [i]]);

sum := sum + part; m := terms; part:= 1.0;

high := xuse [terms] + 1; go to A;
Y: sum := 1.0;
X: coef [j] := sum X factk/denom end loop;

go to EXIT;

Z: fori := 1step leuntil n do coef [i] := 0;
EXIT: end dicol

CERTIFICATION OF ALGORITHM 79

DIFFERENCE EXPRESSION COEFFICIENTS
[Thomas Giamo, Comm. ACM, Feb. 1962]

Eva S. CLARK

University of California at San Diego, La Jolla, California
The procedure was translated into FORTRAN and run on the

CDC 1604. Reasonable accuracy was obtained fork = 0,4 S n £ 12.

For increasing n and increasing k, the accuracy diminished. It was

found that the execution time mcreased rapidly as » was increased.
For k = 0, the following results were obtained:

79-P1- 0

2

Approxvimate Number of Machine Operations

4 1.3 X 108
6 6.9 X 10?
8 3.8 X 104
10 1.8 X 10
12 8.6 X 10

The author indicated in a letter that the procedure was de-
veloped for use with small #» and small k.

COLLECTED ALGORITHMS FROM

ALGORITHM 80

RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

Wirriam HoLsTEN

University of California at San Diego, La Jolla, California

real procedure RGR(x); real x; real procedure RGAM;
comment Procedure RGAM computes the real reciprocal
Gamma function of real x for —1 < z < 1, utilizing Horner’s
method for polynomial evaluation of the approximation poly-
nomial. RGR extends the range of RGAM by use of the formulae
(1) 1/Gamma(z—1)=(z—1)/Gamma(z) for z<—1,
(2) 1/Gamma(z+1)= 1/zXGamma(z) for z<1.;
begin real y;

if x = 0.then begin RGR := 0; go to EXIT end
if x = 1 then begin RGR := 1; go to EXIT end
if x < 1 then go to BB;
yi=1;
AA: Xx:=x—1; y:=y X x; if x > 1 then go to AA;
if x = 1 then begin RGR := 1/y; go to EXIT end
RGR := RGAM(x)/y; go to EXIT;
BB: if x = —1 then begin RGR := 0; go to EXIT end
if x > —1 then begin RGR := RGAM(x);
go to EXIT end
Y= X;
CC: x:=x+ 1; if x < —1 then beginy := y X x;
go to CC end
RGR := RGAM(x) X y;
EXIT: end RGR;

real procedure RGAM(x);
real array B[0:13];

comment The algorithm for this routine was adapted from
“University of Illinois Digital Computer, Auxiliary Library
Routine B-17-328"", by John Ehrman. Reference may also be
made to Algorithm 34, dated February, 1961. Approximation
accuracy is 273, ;

begin real z;

real x; integer i;

B[0] := 1.00000 00000 00; B[1] := —.42278 43350 92;
B[2] := —.23309 37363 65; B[3] := +.19109 11011 62;
B[4] := —.02455 24908 87; B[5] := —.01764 52421 18;
B[6] := +.00802 32781 13; B[7] := —.00080 43413 35;
B[8] := ~.00036 08514 96; B[9] := +.00014 56243 24;
Bf10] := —.00001 75279 17; B[l1] := —.00000 26257.21;
B[12] := +-.00000 13285 54; B{13] := —.00000 01812 20;
z: = B{13];
for i := 12 step —1 until 0 do z := z X x + Biil];
RGAM =z X x X (x+ 1)

end RGAM;

REMARKS ON:

ALGORITHM 34 [S14]
GAMMA FUNCTION
[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [814]
GAMMA FUNCTION FOR RANGE 1 TO 2
[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]

CACM
80-P 1- R1
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION OF REAL

ARGUMENT

[William Holsten, Comm. ACM 5 (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION

[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION

[M. C. Pike and 1. D. Hill, Comm. ACM 9 (Sept. 1966),

684]
M. C. Pixe anD L. D. Hini (Recd. 12 Jan. 1966)
Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School,
London, England

Algorithms 34 and 54 both use the same Hastings approxima-

tion, accurate to about 7 decimal places. Of these two, Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:)
(1) RGAM should be in the parameter list of RGR.
(2) The lines
if z = 0 then begin RGR := 0; go to EXIT end
and
if z = 1 then begin RGR := 1; go to EXIT end
should each be followed either by a semicolon or preferably by an
else.

(3) The lines

if 2 = 1 then begin RGR := 1/y; go to EXIT end
and
ifz < — 1 then beginy := y X z; go to CC end

should each be followed by a semicolon.
(4) The lines
BB: if z = —1 then begin RGR := 0; go to EXIT end
and
if £ > —1 then begin RGR := RGAM (z); go to EXIT end
should be separated either by else or by a semicolon and this
second line needs terminating with a semicolon.
(5) The declarations of integer ¢ and real array B[0:13] in RGAM
are in the wrong place; they should come immediately after
begin real z;

With these modifications (and the replacement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput-
ing time, being twice as fast as 291 at « = 1, but this advantage
decreases steadily with increasing z so that at z = 7 the speeds are
about equal and then from this point on 291 is faster—taking only
about a third of the time at x = 25 and about a tenth of the time
at = 78. These timings include taking the exponential of log-

COLLECTED ALGORITHMS (cont.)

gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

80-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 81

ECONOMISING A SEQUENCE 1

Brian H. Mayon

Digital Computer Laboratory, University of Illinois,
Urbana, Il

procedure ECONOMISER 1 (desired property, costs, n, C);
array costs; integer n;
Boolean procedure desired property;
Boolean array C;
begin comment Given a finite, monotonely increasing
sequence of positive numbers, looked upon as prices, ECONO-
MISER 1 selects the cheapest subsequence with a given prop-
erty. The formal parameters are: Desired property, a function
designator to answer the question: Does the subsequence held
in array C possess the required property? n is (number of ele-
ments in the sequence) + 1. Costs is an array of size [l:n].
Costs[1] to costs[n—1] hold the numbers of the sequence and
costs[n] is any arbitrary number greater than the sum of all
other elements of costs. C is an array of the same size and indi-
cates a subsequence by the rule: C[i] = element 7 of the original
sequence is in the subsequence. At exit from ECONOMISER 1,
C indicates the cheapest subsequence. It is supposed that the
original sequence has the desired property.;
integer d, j, k, {; reali;
for j := 1 step 1 until ndo C[j] :=j) = 1; -d := 0;
reenter: d := d+1;
INSIDE: begin own real array prices [1:d];
own Boolean array alternatives{l:d, 1:n];
procedure ENTER SUCCESSORS;
begin k := n—1;
A: if — Clk] then
begin k := k—1; go to A end; i:=0;
forj := 1step 1 until ndo
begin alternatives|{,j]
=j#kAjk-1=C[jl;
if alternatives[(,j] then
© 1= 14 costs[j]
end;
B: k:=k-1;
go to if k = 0 then find cheapest
else if C[k] then (if k=1 then
find cheapest else B)
else if k=1 then E
else if Clk—1] then D
else find cheapest;
D: Clk—1] := false;
E: Clk] := true; go to reenter
end of ENTER SUCCESSORS;
i:=0; forj:=1step 1 until n do
begin alternatives[d,j] := C[jl; if C[j] then
i:=1i - costs[j]
end; prices[d] := i;
find cheapest:
begin if prices[j] < i then
begin ¢ := j; i := prices[{] end
end;

i:=0; forj:=1stepluntildde

for j := 1 step 1 until n do
C[j] := alternatives[(,j];
if — desired property then
ENTER SUCCESSORS
end of INSIDE;
end of ECONOMISER *-

81-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 82

ECONOMISING A SEQUENCE 2

Brian H. Mavou

Digital Computer Laboratory, University of Illinois,
Urbana, Il

procedure ECONOMISER 2 (desired property, costs, n, C, r,
Reject list); Boolean procedure desired property;
integer n, r; array costs; Boolean array Reject list;
begin comment In some applications of ECONOMISER 1, it
is simple to establish that some subsequences are redundant in
the sense that any sequence containing them is certainly not
the cheapest subsequence with the desired property. For such
applications ECONOMISER 2 avoids all unnecessary calls of
desired property. The new formal parameters are: r a variable
whose value is initially 0 and is increased by 1 every time that
desired property discovers a new redundant subsequence.
Reject list an array of size [1:r,1:n]. Reject list [a,b] carries the
answer to: Is element b of the original sequence in the at
redundant subsequence found by desired property?;
real i; integer d, j, k, £; Boolean gapfilled, first time;
procedure INSIDE (entrymaker); Boolean entrymaker:
begin own real array prices[l:d};
own Boolean array alternatives[l:d,1:n];
procedure ENTER SUCCESSORS;
begin integer ¢c; Boolean array ssq[l:n];
for j := 1 step 1 until n do ssqlj] := C[j];
¢ :=n—1;
A: if — ssqfc] then begin ¢ := ¢—1;
Clc] := false; C[c-+1] := true;
INSIDE (true);
gapfilled := true;
B: ¢ :=c¢c—1;
go to if ¢=0 then F else if ssqc] then
(if c=1 then F else B) else if c=1 then
E else if ssqlc—1] then D else F;
D: ssqlc—1] := false;
E: forj := 1step 1 until n do C[j] := ssq[j] = j=c;
INSIDE (true);
F: end of ENTER SUCCESSORS;
if entrymaker then
begin for j := 1 step 1 until r do
begin for k := 1 step 1 until n do
begin if — C[k] A Reject list[j k] then
go to G end;
ENTER SUCCESSORS; go to H;
G: end;
i:= 0; if gapfilled then d := d-+1;
for j := 1 step 1 until n do
begin alternatives[if gapfilled then
d else ¢, j] := Cl[j];
if C[j] then i := i + costs{j]
end; prices[if gapfilled then d else ¢] := i
end; if first tinie \/ — entrymaker then
begin i := 0; gapfilled := first time := false;
for j := 1 step 1 until d do
begin if prices{j] < i then
begin ¢ := j; i := prices[{] end
end;

go to A end:

for j := 1 step 1 until n do
C[j] := alternatives[!,j];
if desired property then go to found;
ENTER SUCCESSORS; go to reenter
<. end; :
H: end of INSIDE;
for j := 1 step 1 until n do Cfj] := j=1;
d := 0; first time := gapfilled := true;
reenter: INSIDE (first time);
found:’
end of ECONOMISER 2;

82-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 83

OPTIMAL CLASSIFICATION OF OBJECTS

Brian H. Mayon

Digital Computer Laboratory, University of Illinois,
Urbana, Ill.

nrocedure OPTIMUM COVERING FINDER (Pattern, popu-
lation, set number, set prices, chosen sets, bounds, overflow);
Boolean array Pattern, chosen sets; integer population,
set number, bounds; array set prices; label overflow;
begin comment The number of objects in some given set is
given by population. The procedure is given a classification of
these objects by a collection of overlapping subsets. A cost
is assigned to each subset. Then OPTIMUM COVERING
FINDER selects the cheapest subcollection such that every
object is contained in at least one of the subsets of the sub-
collection. set prices[i] carries the cost of subset 7. Pattern
is an array of size [l1:set number,1:population] such that Pat-
tern{a,b] = does subset a include object b. chosen sets[¢] finally
carries the answer to the question: Is set ¢ in the cheapest
subcollection? The programmer must restrict the amount of
space available to the procedure by setting bounds. From ex-
perience bounds = set number 1 2 suffices to avoid most alarm
exits to overflow.;
Boolean array C[l:population], D{l:bounds, 1:population],
R, S{1:bounds,1:set number};
integer a, b, d, r, s;
Boolean procedure HAVE WE A COVERING;
begin procedure ADD to (Q,q,f); integer q;
real f; Boolean array Q;
begin if g=bounds then go to overflow else q := q-+1;
for a := 1 step 1 until set number do Q[q,a] := f
end; for a := 1 step 1 until population do

Cla] := false;
for a := 1 step 1 until set number do
begin if chosen sets[a] then
for b := 1 step 1 until population do
Clb] := C[b] V Pattern[a,b)
end; for a := 1 step 1 until population do
begin if — C[a] then go to E end;
go to found;
E: for d := 1 step 1 until s do
begin for b := 1 step 1 until population do
begin if C[b] A -~ D[d,b] then go to try another end;
ADD to (R, r, chosen sets[a]);
for b := 1 step 1 until set number do
begin if chosen sets|b] A — S[d,b] then
ADD to (R, r, S{d,a] V a=Db)
end; go to F;
try another:
end of for statement labelled E;
ADD to (8, s, chosen sets[a]);
for a := 1 step 1 until population do D(s,a] := Cla];
F: HAVE WE A COVERING := false
end; 1 := 5§ :=(;
ECONOMISER 2 (HAVE WE A COVERING, set prices,
set number, r, R, chosen sets);
found: end

83-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 84

SIMPSON’S INTEGRATION

Pavr E. HEnNION

Giannini Controls Corporation

Astromechanics Research Division, Berwyn, Penn.

real procedure SIM (n, a, b, y);

value n, 2, b; real a, b; integer n; array y;

comment This is a method for obtaining the approximate value
of the definite integral of a continuous function when the in-
tegral cannot be evaluated in elementary functions. Given
y = {(x) and the J'E y dx to be evaluated. Plot the curve f(x),
and divide [a, b] evenly into n equal parts, erecting the ordi-
nates yo, yi, -, ¥o. Then the approximate value of the
deﬁbnit.e integral by Simpson’s rule states that:

b —
f f(x) dx = E‘E(YD +4y1 + 2y2 + - + 4y + Ya);

a

begin real s; integer i;

s := (y[0] — y[n])/2;

fori:= lstep2untiln — l1dos :=s+ 2 X yli] + y[i+1];
SIM := 2 X (b — a) X s/(3 X n)
—

end

CERTIFICATION OF ALGORITHM 84

SIMPSON’S INTEGRATION [P. E. Hennion, Comm.
ACM 5 (Apr. 1962)]

A. P. RELrH

The English’ Electric Co., Whetstone, England

Simpson’s Integration was translated using the DEUCE ArLaoL
compiler and, with no corrections, gave satisfactory results.
It is not stated in the comment that integer n needs to be even.

REMARK ON ALGORITHM 84

SIMPSON’S INTEGRATION [Paul E. Hennion. Comm.
ACM, Apr. 1962]

RicHARD GEORGE*

Particle Accelerator Div.,
Argonne, Il ,
* Work supported by the U. S. Atomic Energy Commission.

Argonne National Lab.,

In performing integration by the use of Simpson’s rule, it is well
known that the interval [a, b] must be divided evenly into n equal
parts, and that it is essential for n to be an even number.

In the published algorithm, there is neither a comment on this
important restriction, nor a programmed test for the parity of n.
It is therefore a potential trap for the unwary programmer.

84-P1- 0

CERTIFICATION OF ALGORITHM 84
SIMPSON’S INTEGRATION [P. E. Hennion, Comm.
ACM, Apr. 62]
Perer G. BEHRENZ
Matematikmaskinndmnden, Stockholm, Sweden
SIM was successfully run on FACIT EDB using FaciT-ArGcoL
1, which is a realization of ALcoL 60 for FACIT EDB. No changes

in the program were necessary. To test SIM some polynomials
were integrated.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 85

JACOBI

Taomas G. Evans

Bolt, Beranek, and Newman*, Cambridge, Mass.

* This work has been sponsored by the Air Force Cambridge
Research Laboratories, OAR (USAF), Detection Physies Lab-
oratory, under contract AF 19(628)-227. .

procedure JACOBI (A, S, n, rho);

value n, rho; integer n; real rho; real array A, S;

comment This procedure finds all eigenvalues and eigenvectors
of a given square symmetric matrix by a modified Jacobi (itera-
tive) method (cf. J. Greenstadt, “The determination of the charac-
teristic rools of a mairiz by the Jacobi method,” in Mathematical
Metliods for Digital Computers, A. Ralston and H. S. Wilf, eds.).
JACOBI is given a squaresymmetric matrix of order n stored in
the array A. The initial contents of the array S are immaterial,
as Sis initialized by the procedure. At exit the k*® column of the
array S contains the kt® of the n eigenvectors of the givennmatrix,
and ‘the diagonal element Alk, k] of the array A is the corre-
sponing kth eigenvalue. The parameter rho is the ‘“‘accuracy
requirement’’ introduced in the above reference, where a de-
tailed flow chart of the method is given. The significance of rhois
that the iteration terminates when, for every off-diagonal ele-
ment Ali, j},abs (Ali, j]) < (tho/n) X norml, where norml is a
function only of the off-diagonal elements of theoriginal matrix;

begin: real norml, norm2, thr, mu, omega, sint, cost, intl, vi,
v2, v3;
integer i, j, p, q, ind;
comment Set array S = n X n identity matrix;
for i := 1 step 1 until n do

for j := 1 step 1 until i do

ifi = j then S[i, j] := 1.0

else S[i, j] := 8j, i] := 0.0;
comment Calculate initial norm (norml), final norm (norm2),
and threshold (thr);
intl := 0.0;
for i :=2 step 1 until n do

for j := step 1 until i—1 do

intl := intl 4 2.0 X Ali, j] T 2;

norml := sqrt (intl); norm2 := (rho/n) X norml;
thr = norml; ind := 0;

main;: thr := thr/n;
comment The sweep through the offi-diagonal elements be-
gins here;
mainl: for q := 2 step 1 until n do

for p := 1 step 1 until q—1 do
if abs (Alp, q]) = thr then
begin ind := 1; vl := Alp, pl; v2 := Alp. ql;
v3 := Alq, q]; mu := 0.5 X (v1-—-v3);
omega = (if mu = 0.0 then 1 else sign (mu)) X
(—v2)/8qrt(v212 + muf2);
sint := omega/sqrt(2.0 X (1.0 4+ sqrt(1.0 —
omegal2)));
cost := sqrt (1.0 — sintf2);
for i := 1 step 1 until n do
begin intl := Ali, p] X cost — Afi, q] X sint;
Afi, q) := Ali, p] X sint + Ali, q] X cost;
Ali, p] := intl;
int1 := S[i, p] X cost — 8ii, q] X sint;

85-P1- 0

S[i, q] := S[i, p] X sint + S[i, q] X cost;

S[i, p] := intl
end}
for i := step 1 until n do

begin Alp,i] := Ali,pl; Alq,i] := Aliq] end;
Alp, p] := vl X cost]2 + v3 X sint]2 — 2.0 X
v2 X sint X cost;
Alqg, q] := vl X sintf2 + v3 X cost]2 4+ 2.0 X
v2 X sint X cost;
Alp, 4] := Alq, p] := (vl — v3) X sint X cost +
v2 X (cost]2 — sint12)
end;
comment Now test to see if current tolerance exceeded and,
if not, whether final tolerance reached;
if ind = 1 then begin ind := 0; go to mainl end
else if thr > norm2 then go to main

end JACOBI

CERTIFICATION OF ALGORITHM 85

JACOBI [T. G. Evans, Comm. ACM, Apr. 1962]

J. 8. HiLLMORE

Elliott Bros. (London) Ltd.,
England

Borehamwood, Herts.,.

The statement

omega = (if mu = 0.0 then 1 else sign (mu))
X (—V2)/sqri(V2 1 2+mu T 2);
was changed to
omega := if mu = 0.0 then —1.0 else — sign (mu)
X V2/sqrt (V2 T 24mu 1 2);
When mu = 0, the original statement reduces to
omega := —V2/sqrt (V27 2);
and a truncation error in the evaluation of the square root can
make the magnitude of omega slightly greater than unity. As a
result, an error stop occurs during execution of the next statement
when an attempt is made to evaluate sqri (1 — omega T 2).

In its modified form the algorithm has been successfully run
using the Elliott ArLcoL translator on the National-Elliott 803.
Matrices of order up to fifteen have been solved, yielding eigen-
values and eigenvectors with an overall accuracy of seven decimal
places.

CERTIFICATION OF ALGORITHM 85

JACOBI [Thomas G. Evans, Comm. ACM (Apr. 1962),
208] '

P. Naur '

Regnecentralen, Copenhagen, Denmark

We have first run this algorithm in the Gier ALGOL system with
the following corrections included:

L. The change given by J. 8. Hillmore [Comm. ACM 5 (Aug.
1962), 440] with capital V changed to ».

COLLECTED ALGORITHMS (cont.)

2. The 4th for clause corrected to read:
for j := 1 step 1 until ¢ — 1 do
3. The last for clause corrected to read:

for ¢ := 1 step 1 until n do

On closer examination we have found, however, that a signifi-
cant number of superfluous operations could be eliminated in the
innermost loop by rewriting the two for statements at the center
of the algorithm as a single for statement, to read as follows:

cost := sqrt (1—sint T2);
for 7 := 1 step 1 unti! n do
begin if ¢ # p A\ 7 # ¢then
begin intl := A[¢,p]; mu = Ali,q];
Algzi] = Ali,q] := intl X sint + mu X cost;
Alp,i] = Ali,p] := tnil X cost — mu + sint
end;

intl := Sle,pl; mu := Sli,q];
Sli,g] := indl X sint + mu X cost;
Siz,p] := tntl X cost — mu X sint

end;
Alp,pl i= vl X cost T 2+ w3 X stnt T 2 —2 X v2 X stnt X cost;

This revision is particularly advantageous in systems having a
comparatively slow subscript mechanism, such as GiEr ALcoL,
hecause it eliminates more than 3 out of 8 references to subseripted
variables.)

JACOBI has been tried with two different sets of matrices hav-
ing known eigenvalues. In both cases a test program was set up to
find the range of errors of the eigenvalues computed by JACOBI.
In addition, the relations Av — Av = 0 (.1 is the given matrix, v
an eigenvector, and A the corresponding eigenvalue) and A — (S7')
LAMBDA S = 0 (S is the matrix having the eigenvectors as col-
umns and 87" its transpose, and LAMBDA is the diagonal matrix
of the eigenvalues) were used as checks. The test matrices were
TESTMATRIX ecalculated by the revised algorithm 52 given in
Comm. ACM 6 (Jan. 1963), 39, and the following matrix suggested
by Mr. H. B. Hansen:

HBH TESTMATRIX [j,i] = HBH TESTMATRIX [,j]
=n+1-y

having the eigenvalues 0.5/(1 — cos ((2Xi—1)Xpi/(2Xn+1))).
The results were as shown in Table 1 (GIER ALGoL works with
floating numbers of 29 significant bits).
The compile time for the program which produced one of these
tables was about 40 seconds. Run times were as follows:

iz

Original algorithm Revised algo-

TESTMATRIX ALG, 52 HBH rithm HBH
TESTMATRIX TESTMATRIX
Rho ” (seconds) (seconds)

10—3 5 3

10 22

15 70

10—5 5 3 5

10 5 41 29

15 13 148 99

10— 8 5 4 7 6
6 5 12
7 5 18
8 5 25

10 13 38

15 22 116

85-P2- 0

From these figures it looks as if TESTMATRIX, Algorithm 52,
is atypieal as far as solution by means of JACOBI is concerned.
The much higher accuracy obtained for this matrix as compared

~ with the HBH matrix points in the same direction.

‘For further comparison it may be mentioned that the algo-
rithms published by J. H. Wilkinson [Num. Math. 4 (1962), 354~
376] also have been tested successfully with GiEr ALcoL. Wilkin-
son’s algorithms reduce the matrix to tridiagonal form by means
of Householder’s method and use Sturm sequences to find the
eigenvalues and inverse iteration to find the eigenvectors. In GiEr

" ALGoL this method is about 1.3 times as fast as JACOBI for the

range of matrices considered here. JACOBI has the advantage
that the eigenvectors are properly orthogonal, even in the case of
multiple eigenvalues, and also has a much simpler logic. On the
other hand if only some of the eigenvalues and/or eigenvectors are
sought Wilkinson’s algorithms will often offer much higher speed
than JACOBI, which always finds them all.

COLLECTED ALGORITHMS (cont.)

TABLE 1

HBH TESTMATRIX

85-P 3- 0

Range of true errors of eigenvalues

Range of deviations from relation
Av — lambda » =

Range of deviations from relation
A — (ST)LAMBDA S =0

Order .]' error(;j] i error[j] gﬁ:;t Vector Error 53& Vector Error ﬁg;t Vector Error ﬁii_,' Vector Error
rho = 1.03p—3
5 1 —1.1,,—6 3 5.20—8 1 1 —1.710—4 1 3 2.010—4 1 1 —2.510—4 5 5 1.010—4
10 9 —~7.9,-5 8 3.510—5 7 2 —3.310—3 6 6 3.010—3 1 1 —4.2,0—3 6 7 3.210—3
15 156 —9.2),—5 12 3.710—5 6 3 —1.710—3 11 13 1.7:50—3 9 15 —1.510—3 8 9 1.8;0—3
rho = 1.0yp—5
5 1 —1.1,,—6 3 6.0,0—8 2 5 —1.3:10—7 5 2 4.1;0—8 1 2 —1.610—7 4 5 4.510—8
10 1 —1.20—5 2 2.210—-7 7 3 —2.70—56 2 8 2.210—5 7 7 —2.4i0—5 2 8 2.310—5
15 1 —3.510—5 4 3.90—7 |11 9 —6.410—6 7 2 4.8,0—6 | 11 12 —5.310—6 12 12 4.710—-6
rho = 1.0;0—8
5 1 —1.1,0—6 3 6.0,0—8 2 5 —1.310—7 4 2 6.510—9 2 2 —1.310—7 4 4 3.010—8
10 1 —=1.20—5 2 2.2,0—-7 1 10 —1.1,0—6 4 2 6.410—8 1 2 —5.710—7 9 9 8.210—8
15 1 —3.510—5 4 3.910-7 1 14 —3.410—6 4 2 3.910—7 2 2 —1.310—6 15 15 8.910—8
TESTMATRIX, Algorithm 52
Range of true errors of eigenvalues Range :f, ‘ff‘ii,‘inﬁl‘;’a‘: Zrt;morelation Ran e_of(g?;iitlixoMnngoAeria(t’ion
Order j crror(j) j error[j) fel;'[Vector Error rféf;t Vector Errer ,ﬂ;‘, Vector Error ’EBI:;! Vecior Error
rho = 1.04p—5
5 4 —1.0,0—8 1 .0 5 5 —3.310—8 5 4 4.3:0—8 5 5 —5.1;0—8 4 4 3.910—8
10 8 —1.1,,—8 4 .0 7 7 —1.210—8 9 6 1.310—8 7 8 —5.110—9 6 6 2.010—8
15 13 -—-1.1,,—8 6 .0 14 14 ~9.350—9 10 10 9.410—9 8 9 —1.910—9 10 10 1.310—8
rho = 1.0,—8
3 3 —=7.5,0—9 1 3.70—9 3 1 —2.810—9 2 2 9.310—9 1 3 .0 1 2 1.910—8
4 4 —5.6,0—9 3 .0 2 2 —4.50—9 3 4 3.310—9 2 2 .0 2 3 9.310—9
5 4 —1.0,0—8 1 .0 5 4 —4.9;0—9 4 4 5.810—9 1 1 —7.510—9 3 4 7.510—9
6 4 —4.7,—9 4 .0 4 3 —2.810—9 5 4 3.610—9 1 6 —2.310—10 4 5 9.310—9
7 4 —5.1;4—9 5 .0 6 6 —2.810—9 4 4 3.410—9 5 7 —1.2:0—10 5 6 7.510—9
8 7 —=7.510—9 5 .0 5 5 —6.0:0—9 5 6 3.210—9 8 8 —1.240—10 7 7 9.310—9
9 6 —4.4,,—9 7 .0 6 5 —5.110—9 7 6 3.210—9 5 5 —7.510—9 8 8 1.510—8
10 8 —1.5,—8 8 .0 8 9 —9.310—9 9 7 7.210—9 6 7 —2.310—9 9 9 2.010—8
11 10 —7.50—9 1 .0 9 10 —6.510—9 8§ 11 3.010—9 1 1 —3.110—9 8 8 7.510—9
12 8 —5.0,0—9 11 .0 10 6 —7.610—9 10 8 2.410-9 6 6 —1.710—8 4 4 1.3:0—8
13 12 —-1.1,,—8 10 .0 10 11 —6.910—9 12 10 9.1,0—9 7 7 —3.0:0—8 12 12 3.210—8
14 10 —1.50—8 4 .0 13 13 —1.1,,—8 10 10 6.710—9 9 10 —3.510—9 6 6 1.7,0—8
15 13 —-1.1;,—-8 6 .0 14 14 —1.1,0—8 11 10 3.510—9 8 9 —3.010—9 6 11 7.510—9

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 86

PERMUTE

J. E. L. Peck anp G. F. ScHrACK

University of Alberta, Calgary, Alberta, Canada

procedure PERMUTE (x, n);
array X; integer n;
comment FEach call of PERMUTE executes a permutation of
the first n components of x. It assumes a nonlocal Boolean
variable ‘first’, which when true causes the procedure to initial-
ise the signature vector p. Thereafter ‘first’ remains false until
after n! calls;
begin own integer array p[2:n]; integeri, k;
if first then
begin for i := 2 step 1 until n do
pli] :=1i; first := false
end initialise;
for k := 2 step 1 until n do
begin integer ‘;{m; real t;
t = x[1]; km :=k — 1;
for i := 1 step 1 until km do
x[i] 1= x[i+1];
x[k} := t; plk] := pik] — 1;
if plk] > 0 then go to EXIT;
plk] := k
end k;
first := true;

EXIT: end PERMUTE

CERTIFICATION OF ALGORITHM 86

PERMUTE [J. E. L. Peck and G. F. Schrock, Comm.
ACM, Apr. 1962]

D. M. Coruison

Elliott Bros. (London) Ltd., Borchamwood, Herts.,
England ‘
The algorithm was successfully run using the Elliott ArLcor

translator on the National-Elliott 803. Values of n used were 0, 1,
2,3, 4.

86-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 87
PERMUTATION GENERATOR
Joun R. HoweLL

Orlando Acrospace Division, Martin Marietta Corp.,
Orlando, Florida

procedure PERMUTATION (N, K);

value K, N; integer K; integer array N;

comment Thls procedure generates the next permutation in
lexicographic order from a given permutation of the K marks
0,1, ---, (K—1) by the repeated addition of (K—1) radix K.
The radix K arithmetic is simulated by the addition of 9 radix
10 and a test to determine if the sum consists of only the original
K digits. Before each entry into the procedure the K marks
are assumed to have been prevmusly specified either by input
data or as the result of a previous entry. Upon each such entry a
new permutation is stored in N[1] through N[K]. In case the
given permutation is (K—1), (K—2), ---, 1, 0, then the next
permutation is taken to be 0, 1, --- , (K — 1). A FORTRAN
subroutine for the IBM 7090 has been written and tested for
several examples;

begin integer 1, j, carry;
for i := 1 step 1 until K do

if Nli] — K + i 5 0 then go to add;

fori := 1 step 1 until K do N[i] := i — 1;
go to exit;

add: N[K] := N[K] + 9;

for i := 1 step 1 until K—1 deo
begin if K > 10 then go to B;

carry := N[K—i+1]+10; go to C;
B: carry := N{K—i+1]+K
C: if carry = 0 then go to test;

N[K—i] := N{K~i] + carry;
N[K—i+1] := N[K—i+41] =10 X carry
end i;
test: for i := 1 step 1 until K do if Njij - (K - 1) >0
then go to add;
fori := 1step 1 until K—1 do
for j := i41 step 1 until K do
if N[i]=N[j] = 0 then go to add;
exit: " end PERMUTATION GENERATOR

CERTIFICATION OF ALGORITHM 87

PERMUTATION GIENERATOR [John R.
Comm. ACM, Apr. 1962]

D. M. CoLrLison

Elliott Bros. (London) I.itd., Borchamwood, Herts.,
England

Howell,

The array N was removed from the value list in order that the
permutations might be available outside the procedure. The
algorithm was then run successfully with the Elliott ALcoL trans-
lator on the National-Elliott 803. It was rather slower than
Algorithm 86.

87-P 1- R1

CERTIFICATION OF ALGORITHM 87 :

PERMUTATION GENERATOR [John R. Howell,
Comm. ACM (Apr. 1962)]

G. F. Scurack and M. SHIMRAT

University of Alberta, Calgary, Alb., Canada
PERMUTATION GENERATOR was translated into Fog{TRAN

for the IBM 1620 and it performed satisfactorily. The algorithm
was timed for several small values of n. For purposes of comparison

we include the times (1n scconds) for PERMULEX (Algorithm

102).

n 3 4 5 6 7

PERMUTATION GENERATOR | 3 41 558 — —
PERMULEX | — 3 6. 37 218

As can be seen from this table, PERMUTATION GENERATOR is
considerably slower. It is probable that one could speed up
PERMUTATION GENERATOR to a great extent by rearranging
the algorithm in such a manner that the digits of a number to a
certain base are permuted rather than the elements of a sequence.

REMARKS ON:

ALGORITHM 87 [G6]

PERMUTATION GENERATOR
[John R. Howell, Comm. ACM 6 (Apr. 1962), 209]

ALGORITHM 102 [G6]

PERMUTATION IN LEXICOGRAPHICAL ORDER
[G. F. Schrak and M. Shimrat, Comm. ACM 5 (June
(1962), 346)

ALGORITHM 130 [G6]

PERMUTE ‘
[Lt. B. C. Eaves, Comm. ACM 5 (Nov. 1962), 551]

ALGORITHM 202 [G6]

GENERATION OF PERMUTATIONS IN

LEXICOGRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. Orp-SmiTH (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)
Computing Laboratory, University of Bradford, Englan

A comparison of the published algorithms which seek to genera+.
successive permutations in lexicographic order shows that Algo-
rithm 202 is the most efficient. Since, however, it is more than twice
a8 slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM & (Aug. 1962), 434], there appears to be room for im-
provement. Theoretically a ‘best” lexicographic algorithm
should be about one and a half times slower than Algorithm 115,
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452}
which is twice as fast as Algorithm 202.

COLLECTED ALGORITHMS (cont.)

ALGORITHM 87 is very slow.
ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 A Bik] < B[m)] is true for
at least one of the relevant values of k. In particular when matrix
A isset up by A[z] := 7; for each ¢ the Boolean expression above is
false on the first call.)

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
l» is the time for complete generation of n! permutations. Times
are scaled relative to I for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time 5
for Algorithm 202 on this machine was 100 seconds. r, has the
usual definition r, = {./(n-ta—).

TABLE I
Algorithm io tr 13 e l . ’ T
s7 | us - | -1 = | = —
102 2.1 15.5 135 1.03 1.08 1.1
130 — —_ — — - —
202 1.7 12.4 100 1.00 1.0 1.00

87-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 88

EVALUATION OF ASYMPTOTIC EXPRESSION
FOR THE FRESNEL SINE AND COSINE INTE-
GRALS

JouN L. CunpIFF

Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNEL (u) Result:
(w);

comment This procedure evaluates the Fresnel sine and cosine
integrals for large u by expanding the anymptotic series given

(frcos, frsin); value

by
1 cos (@) [-3 1:3:57
S =~ — — - —— puti i A
2T Ve [@t ey]
_Sn @1 135 13579
\/.2—,,; 2z (2x)3 2zt
and
1 sin (2) [1-3 1-3-5-7
Clu) == — 1 - 22 ..
Y73 V2 | (2z) + (2x)*]

_cos@F1 185 18579
Vore |20 (22 @

in which z = 7u?/2. Reference: PEarcey, T. Table of the Fresnel
Integral to Siz Decimal Places. The Syndics of the Cambridge
University Press, Melbourne, Australia (1956).;

begin pi := 3.14159265; arg := pi X (u12)/2; temp :=1;
argsq := 1/(4 X (argt2)); term := —3 X argsq;
series := 1 4+ term; N := 3;
first: if temp = series then go to second; temp := series;
termi := term;
term := —termi X @ X N —7) X 4XN — 5) X (argsq);
if abs(term) > abs(termi) then go to second;
series := temp + term; N := N + 1; go to first;
second: series2 := } X arg; temp := 0; term := series2;
N := 2;
loop: if series2 = temp then go to exit; termi := term;
‘ term := —termi X argsq X (4XN-5) X 4XN-3);
if abs(term) > abs(termi) then go to exit;
temp := series2; series2 := temp - term;
N := N+ 1; go to loop;
exit: if u < 0 then half := —4% else half := };
frcos := half + (sin(arg) X series — cos(arg) -+ series2)/
(pi X u);
frsin := half — (cos(arg) X series2 + sin(arg) X series)/
(pi X u)

end FRESNEL;

8P 1- 0

REMARK ON ALGORITHMS 88, 89 AND 90

EVALUATION OF THE FRESNEL INTEGRALS
{J. L. Cundiff, Comm. ACM, May 1962]

Mavcoim D. Gray

The Boeing Co., Seattle, Wash.

While coding these algorithms in ForTran for the IBM 7094,
modifications were required (both in the formulation and in the
language) before execution with any degree of speed and accuracy
could be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(u). This error is
contained in Algorithm 88 in the formula

1 sin (z)
Clu) = 5~ Vorz

The first minus sign above should be a plus sign.

After the necessary modifications were made, the three al-
gorithms were found to be too large and uneconomical for our
usage. A single algorithm, incorporating these three procedures,
was written and is in current usage in a computer program which
requires several thousand evaluations of each Fresnel integral.

I 1-

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 89

EVALUATION OF THE FRESNEL SINE INTEGRAL

JonN L. CunpIFr

Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNELSIN (u) Result: (frsin); value u;

comment This algorithm computes the Fresnel sine integral
defined by,

U
S) = f sin 72/2 di,
0

by evaluating the series expansion

3 5 7
S(z) = pLl A
r |3 7-3! + 11-5¢ 15-7! +

where z = wu?/2. Reference: Pearcey, T. Table of the
Fresnel Integral to Siz Decimal Places. The Syndics of the
Cambridge University Press, Melbourne, Australia (1956).;
begin Pi2 := 1.5707963; x := Pi2 x (ut2); frsin := x/3;
fraqr := x12; N := 3; term := (—x X frsqr)/6;
freini := frsin + term/7;
Loop: if frsin = freini then go to exit; frsin := frsini;
term := —term X frsqr/(2XN—1) X (2XN-2));
frsini := frsin + term/(4XN-1); N := N 4 1;
go to Loop;
exit: frsin := frsini X u
end FRESNELSIN;

" REMARK ON ALGORITHMS 88, 89 AND 90

EVALUATION OF THE FRESNEL INTEGRALS
[J. L. Cundiff, Comm. ACM, May 1962]

MavrcoLm D. Gray

The Boeing Co., Seattle, Wash.

While coding these algorithms in ForTRAN for the IBM 7094,
modifications were required (both in the formulation and in the
language) before execution with any degree of speed and sccuracy
eould be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(u). This error is
contained in Algorithm 88 in the formula

1 sin (2)
Cu) = 3~ Vs

The first minus sign above should be a plus sign.

After the necessary modifications were made, the three al-
gorithms were found to be too large and uneconomical for our
usage. A single algorithm, incorporating these three procedures,
was written and is in current usage in a computer program which
requires several thousand evaluations of each Fresnel integral.

[1=---

89-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 90

EVALUATION OF THE FRESNEL COSINE INTE-
GRAL

Joun L. CuNDIFF

Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNELCOS (u) result: (frcos); value (u);
comment This algorithm computes the Fresnel cosine integral
defined by

bt 2
Clw) = f cos — dt,
o 2

by evaluating the series expansion

2 z? z* z8
cw = 4/% 1 - X 4 = _
@ 4/,:[52T oa 1me T]'

where z = 7u?/2. Reference: PearcEy, T. Table of the Fresnel
Integral to Siz Decimal Places. The Syndics of the Cambridge
University Press, Melbourne, Australia (1956).;

begin pi2 := 15707963; x := pi2 X (u12); freos := 1;
xsqr := x72; N := 3; term := —xsqr/2;
freoi := 1 4 (term/5);

loop: if frcoi =.frcos then go to exit; term := —term X
x8qr/(@XN—2 X (2XN-38)); frcos := freoi; freoi :=
freos + term/(4XN-3); N := N + 1; go to loop:

exits: frecos := u X frcos

end FRESNELCOS;

REMARK ON ALGORITHMS 88, 80 AND 90

EVALUATION OF THE FRESNEL INTEGRALS
[J. L. Cundiff, Comm. ACM, May 1962]

Marcoum D. Gray

The Boeing Co., Seattle, Wash.

While coding these algorithms in ForTRAN for the IBM 7094,
modifications were required (both in the formulation and in the
language) before execution with any degree of speed and accuracy
could be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(u). This error is
contained in Algorithm 88 in the formula

1 _ sin (z)

The first minus sign above should be a plus sign.

After the necessary modifications were made, the three al-
gorithms were found to be too large and uneconomical for our
usage. A single algorithm, incorporating these three procedures,
was written and is in current usage in a computer program which
requires several thousand evaluations of each Fresnel integral.

[]—---.

90-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 91

CHEBYSHEV CURVE-FIT

ALBERT NEWHOUSE

University of Houston, Houston, Texas

procedure CHEBFIT(m, n, X, Y); integerm,n; arrayX,Y;
comment This procedure fits the tabular function Y(X) (given

as m points (X, Y)) by a polynomial P = D A4; X¢. This
e~

polynomial is the best polynomial approximation of Y(X) in
the Chebyshev sense. Reference: StiereL, E. Numerical
Methods of Tchebycheff Approximation, U. of Wise. Press (1959),
217-232;
begin array X[1:m], Y[1:m], T[1:m], A[0:n], AX[1:n-2],
AY[1:n+42], AH[1:n+2], BY[1:n+2], BH[l:n+2];
integer array IN [1:n+42]; real TMAX, H; integer i,
j, k, imax;
comment Initialize;
k := (m—1)/(n+1);
for 1 := 1 step 1 until n+1 do IN [i] := (i—1)Xk + 1;
IN[n+2] := m;
START: comment Iteration begins;
fori := 1 step 1 until n+2 do
begin AX[i] := X[IN[i]];
AYI[i] := Y[INI[il};
AH[i) := (-1 T @{~-1)

end i;
DIFFERENCE: comment divided differences;
for i := 2 step 1 until n+42 do

begin

for.j := i—1 step 1 until n42 do
begin BY[j] := AY]j];
BHJ[j] := AHJj]
end j;
for j := i step 1 until n+42 do
begin AY[j] := (BY[j] —BY[j—1])/
(AX[] —AX[—i+1D);
AH[j] := (BH[j] —BH[j—-1])/
(AX[j] —AX[j—i+1])
end j;
end i;
H := —AY[n+2]/AH[n+2];
POLY: comment polynomial coefficients;
for i := 0 step 1 until n do .
begin Afi] := AY][i] +AH[i] XH;
BY[i] := 0
end i;
BY[l] := 1; TMAX := abs(H);
fori := 1 step 1 until n do
begin
for j := 0 step 1 until i—1 do
begin
BY[i+1-j] := BY[i+1—j} —BY[i—j] XX[IN[il};
Afj] := A[j] +Ali} XBY[i+1-]]
end j;
end i;)
ERROR: comment compute deviations;
for i := 1 step 1 until m do
begin T[i] := A[n];

imax := INJ[1};

91-P 1- 0

for j := 0 step 1 until n do T[i] := Tfi] X[i} +A[n-jl;
T[] := ThH] —Y[il;

if abs(T[i]) < TMAX then go to L1;

TMAX := abs(Tf[]);

imax := i
L1: end i;
for i := 1 step 1 until n+2 do
begin

if imax < IN[i] then go to 1.2;
if imax = IN[i] then go to FIT end
end i;
L2: if Tfimax] X T[IN[i]] < 0 then go to L3;
IN[i] := imax;
go to START;
L3: if IN[1] < imax then go to L4;
fori := 1 step 1 until n+1 do IN[n43—i] := IN[n+2-i];
IN{i] := imax;
go to START;
T4: if IN[n+2] < imax then go to L5;
IN[i—2] := imax;
go to START;
L5: fori := 1 step 1 until n+1 do IN[i] := IN[i+1];
IN[n+2] := imax;
go to START;
FIT: end CHEBFIT

CERTIFICATION OF ALGORITHM 91
CHEBYSHEV CURVEFIT [A. Newhouse, Comm.
ACM, May 1962]
RoBERT P. HALE
University of Adelaide, Adelaide, South Australia
The CHEBFIT algorithm was translated into ForTRAN and
successfully run on an IBM 1620 when the following alterations
were made:
(a) 2nd line after
comment Initialize;
should read
fori := 1step 1l until n+1do IN[i}:= (i—1) X k + 1;
(b) 2nd and 3rd lines after
Poly: comment polynomial coefficients;
should read
begin A[{] := AY[i+1] + AH[i+1] X H; BY[li+1]:=10

REMARKS ON ALGORITHM 91
CHEBYSHEV CURVE FIT [A. Newhouse,
ACM 5 (May 1962), 281; 6 (April 1963), 167]
PeTEr Naur (Recd. 27 Sept. 1963)
Regnecentralen, Copenhagen, Denmark

Comm.

In addition to the corrections noted by R. P. Hale [op. cit.,
April 1963] the following are necessary:

1. The arrays X, Y, and A cannot be declared to be local within
the procedure body.

2. The identifier A must be included as a formal parameter.

COLLECTED ALGORITHMS (cont.)

3. It should be noted that the X[¢] must form a monotonic
sequence.

4. comment cannot follow the colon following a label. This
oceurs in four places.

5. The end following go to FIT must be removed.

In addition, a large number of details can be made more concise
and unnecessary opcrations can be eliminated. Also, it seems
desirable to produce the maximum deviation as a result.

CERTIFICATION OF ALGORITHM 91 [E2}

CHEBYSHEV CURVE-FIT [Albert Newhouse Comm.
ACM & (May 1962), 281; ¢ (April 1963), 167; 7 (May
1964), 296]

J. BooraroyDp (Recd. 15 May 1967 and 5 Sept. 1967)

University of Tasmania, Hobart, Tasmania, Australia.

In addition to the corrections noted by R. P. Hale [op. cIT.,
April 1963] and P. Naur [op. ciT., May 1964], the following changes
are necessary:

1. The first statement should be k := entier((m—1)/(n+1))
2. A semi-colon should precede label L1.

With these changes the procedure ran successfully using Elliott
503 ALgoL.

Although this procedure is an implementation of a finite algo-
rithm, roundoff errors may give rise to cyclic changes of the
reference set causing the procedure to fail to terminate.

Algorithm 318 [J. Boothroyd, Chebyshev Curve-Fit(Revised),
Comm.ACM 10 (Dec. 1967), 801] avoids this cycling difficulty, uses
less than half the auxiliary array space of Algorithm 91 and, on
test, appears to be at least four times as fast.

91-P 2- RI

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 92 86:

SIMULTANEOUS SYSTEM OF EQUATIONS AND

MATRIX INVERSION ROUTINE 8T

DereEx JoHaNN Roek
Applied Physics Laboratory of Johns Hopkins University,
Silver Spring, Maryland

procedure SIMULTANEOUS (U, W, C, X, B, n, kount, eps,
absf) ;

array U, W, C, X, B ; integer n, kount

2

real eps; real procedure absf;

comment This procedure solves the problem Ux := b for the
vector x. It assumes the problem written in the form x'U’ := b/,
where ’ denotes transpose. The procedure is completed in n
cycles and may be iterated kount times (kount = 6). The trans-
pose of U is in U[,] and the row vector b’ is in B. The integer n
is the dimension of U, and the solution row vector x’ is in X.
The matrix C is a check of accuracy. It should have b’ in its
first row, the first element b; of b’ along its main diagonal,
and zeros elsewhere. The real number eps checks to see how close
the actual result is to this theoretical one. Also if we let b’ :=
@, 0, ---, 0), then this procedure finds the inverse W[,] of U.
The function absf finds the absolute value of its argument. The
procedure chooses the column vectors of U as the row vectors of
W in the Otk cycle of the first iteration. For all subsequent itera-
tions, the row vectors of W, computed at the nt* cycle of the
last iteration, are the row vectors of W in the (th cycle ;

begin integer i, j, k, p ; real bh, bl, Z ;
for j := 1 step 1 until n do

S1:

for i := 1 step 1 until n do W[}, i] := U[i, j];
for j := 1 step 1 until n do
for i := 1 step 1 until n do C[j, j] := 0

for j := 1 step 1 until n do

S2:

begin for k := 1 step 1 until n do
begin C[j, j] := C[j, j] + W[j, k] X Ulk, j] end;
if j = 1 then Z := BIjl/Clj, j] else Z := 1/C[j, jl;
for k := 1 step 1 until n do
begin X[k] := Z X W}, kl;
Wi, k] := X[k]
end k;
for k := 1 step 1 until n do
begin if k = j then go to 52 else
for p := 1 step 1 until n do
Clk, j] := CIk, jl + Ulp, j1 X Wik, pl;
if } = 1 then bh := B[j] else bh :
if k = 1 then bl := BJj] else bl :
for p := 1 step 1 until n do
begin X[p] := bh X W[k, p] + (bl — C[k, j}) X

ki

0;

Wi, pl;
Wik, p] := X][p]
end p;
ifk = j Aj = n then go to 83
end k;
end j;

for j := step 1 until n do
if absf (absf(C[j, j]) — absf(B[1])) > eps then go Lo 84;
go to S6;
if kount > 0 then go to S5 else go to 56;
kount := kount — 1;
go to S1;

for j := step 1 until n do
Xfi] = WL, j];
end SIMULTANEOUS

92-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 93

GENERAL ORDER ARITHMETIC
MiLLarp H. PERSTEIN

Control Data Corp., Palo Alto, Calif.

procedure arithmetic (a, b, ¢, op);

integer a, b, ¢, op;

comment This procedure will perform different order arithmetic
operations with b and ¢, putting the result in . The order of the
operation is given by op. For op = 1 addition is performed. For
op = 2 multiplication, repeated addition, is done. Beyond these
the operations are non-commutative. For op = 3 exponentiation,
repeated multiplication, is done, raising b to the power ¢. Beyond
these the question of grouping is important. The innermost
implied parentheses are at the right. The hyper-exponent is
always c. For op = 4 tetration, repeated exponentiation, is
done. For op = 5, 6,7, etec., the procedure performs pentation,
hexation, heptation, etc., respectively.

The routine was originally programmed in ForTRAN for the
Control Data 160 desk-size computer. The original program
was limited to tetration because subroutine recursiveness in
Control Data 160 ForTRAN has been held down to four levels in
the interests of economy.

The input parameter, b, ¢, and op, must be positive integers,
not zero;

begin own integer d, e, f, drop;
if op = 1 then
begina :=b+4¢; gotol
end if op = 2 then d := 0;
elsed :=1; e :=c¢;drop:=o0p — 1;
forf := 1step 1 until edo
hegin arithmetic (a, b, d, drop);
d:=a
end;
1: end arithmetic

CERTIFICATION OF ALGORITHM 93
GENERAL ORDER ARITHMETIC [Millard H. Per-
stein, Comm. ACM (June 1962)]
RicHARD GEORGE
Particle Accelerator Div. Argonne National Laboratory,
Argonne, IIL
Algorithm 93 was programmed for the IBM 1620, using
‘““FoRTRAN-recursion” (i.e., generous use of the copy rule). The
program ran without any modifications and was tested through
tetration. Further levels were available, but were too time-
consuming to reach.

93-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 94

COMBINATION

JEROME KURTZBERG

Burroughs Corp., Burroughs Laboratories, Paoli, Pa.

- procedure COMBINATION (J, N, K);
array J; integer N, K;

comment This procedure generates the next combination of N
integers taken K at a time upon being given N, K and the pre-
vious combination. The K integers in the vector J(1) --- J(K)
range in value from 0 to N — 1, and are always monotonically
strictly increasing with respect to themselves in input and

value N, K; integer

output format. If the vector J is set equal to zero, the first-

combination produced is N—K, ---, N—1. That initial combina-
tion is also produced after 0,1, --- , N—1, the last value in that
cycle;

begin integer B, L;

B:=1:
if J(B)2B then begin A := J(B) — B—1;
forL :=1stepluntilBdo J(L) := L 4+ A;
go to exit end;
if B = K then go to initiate;
B := B - 1; go to mainbody;
forB :=1stepluntilKdoJ(B):=N-K—-1+B
end COMBINATION

mainbody:

initiate:
exit:

CERTIFICATION OF ALGORITHM 94
COMBINATION [J. Kurtzberg, Comm. ACM, June 1962]
Ronawp W. May

University of Alberta, Calgary, Alberta, Canada

Algorithm 94 was translated into ForTRAN for the IBM 1620
and run successfully with no corrections. The variable 4, how-
ever, has not been declared.

CERTIFICATION OF ALGORITHM 94
COMBINATION [J. Kurtzburg, Comm. ACM, June,
1962]
R. E. Grencu*
Reactor Eng. Div.,
Argonne, IIL
* Work supported by U. S. Atomie Energy Commission
Four changes were required in the algorithm.

1. The last sentence in the comment should read: That initial
combination is also produced after 0, 1, --- , K—1, the last
value in that eycle;

2. The integer A was declared;

3. Parentheses were replaced by brackets in the subscript ex-
pressions;

4. A semicolon was inserted at the end of the initiate statement.

After the above changes were made the body of Algorithm 94
was tested on an LGP-30 computer using the Dartmouth College

ALGovr-30 translator. The body tested satisfactorily and the time

required to generate one J when K = 5 and N = 15 was 30 seconds.

Various tests should be included if this algorithm is to be used
as a procedure. These tests might include a statement to check if

Argonne National Laboratory,

94-P1- 0

K > N and if the initial value of J is correct These two possi-
bilities were investigated and it was found that improper J’s are
generated.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 95

GENERATION OF PARTITIONS IN PART-COUNT
FORM

FRANK STOCKMAL

System Development Corp., Santa Monica, Calif.

procedure partgen(c,N,K,G); integer N,K; integer array c;
Boolean G; ‘

comment This procedure operates on a given partition of the
positive integer N into parts £ K, to produce a consequent
partition if one exists. Each partition is represented by the
integers c{[1] thru ¢[K], where c[j] is the number of parts of the
partition equal to the integer j. If entry is made with G = false,
procedure ignores the input array c, sets G = true, and pro-
duces the first partition of N ones. Upon each successive entry
with G = true, a consequent partition is stored in c[1] thru ¢[K].
For N = KX, the final partition is ¢[K] = X. For N = KX+,
1 = r £ K—1, final partition is ¢[K] = X, ¢[r] = 1. When entry
is made with array ¢ = final partition, c is left unchanged and G
is reset to false;

begin integer a,i,j;

if = G then go to first;

=2
a = C[1];

test: if a < j then go to B;
cfil := 1+ efjl;
c(l] := a — j;

zero: fori:= 2step l until j — 1
do cfi] := 0;
go to EXIT;

B: if] = K then go to last;
a:=a+j X eljl;
i=i+1
go to test;

first: G := true;
cf[l] := N;

i =K+ 1;
go to zero;

last: G := false;
EXIT: end partgen

95-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 96

ANCESTOR

RoseErT W. FLOYD

Armour Research Foundation, Chicago, 1l

procedure ancestor (m, n); value n; integer n; Boolean
array m;

comment Initially m [¢, j] is true if individual ¢ is a parent of
individual j. At completion, m [Z, j] is true if individual 7 is an
ancestor of individual j. That is, at completion m[z, j] is true
if there are k, , ete. such that initially m[Z, k], m[k, I}, - - -, m[p, j]
are all true. Reference: WarsnALL, S. A theorem on Boolean
matrices, J.ACM 9(1962), 11-12;

begin

integer 1, j, k;

fori := 1 step 1 until n do

for j := 1 step 1 until n do

if m [j, i] then

for k := 1 step 1 until n do

if m [i, k] then

m [j, k] := true

end ancestor

CERTIFICATION OF ALGORITHM 96
ANCESTOR [Robert W. Floyd, Comm. ACM, June, 1962]
Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

* Work supported by the U.S. Atomic Energy Commission

The body of this procedure was tested on the LGP-30 using the
Dartmouth translator. After inclosing conditional statements in
begin end brackets (apparently necessary for this translator),
the procedure operated satisfactorily for the following matrices:

#=S5, Time: 815"

FTTFF FTTTT
FFFFT FFFFT
FFFTF — FFFTT
FFFFT FFFFT
FFFFF FFFFF
= 6, Time: 13'15”
FTTFFF FTTTTT
FFFTFF FFFTFT
FFFFTF — FFFTFT
FFFFFT FFFFFT
FFFFFF FFFFFF
n =9, Time 31'2”
FTTFFFFFF FTTTTTTTT
FFFFTFFFF FFFFTTTTF
FFFTTFFFF FFFTTTTTT
FFFFFFFFT FFFFFTTTT
FFFFFTTFF FFFFFTTTF
FFFFFFFTF FFFFFFFTF
FFFFFFFTF FFFFFFFTF
FFFFFFFFF FFFFFFFFF
FFFFFTTFF FFFFFTTTF

9%-P 1- 0

The correctness of these results was confirmed by inspection
of the network diagrams.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 97

SHORTEST PATH

RoserT W. FLOYD

Armour Research Foundation, Chicago, IiL

procedure shortest path (m,n); valuen; integern; array m;

comment Initially m[i, j] is the length of a direct link from
point ¢ of a network to point ;. If no direct link exists, m [4, ;] is
initially 110. At completion, m [, j] is the length of the shortest
path from ¢ to j. If none exists, m [4, 7] is 1010. Reference: War-
SHALL, 8. A theorem on Boolean matrices. J, ACM 9(1962), 11-12;

begin

integer i, j, k; realinf, s; inf := 1010;

fori := 1 step 1 until n do

for j := 1 step 1 until n do

if m [j, i] < inf then

for k := 1 step 1 until n do

if m [i, k] < inf then

begin s := m [j, il + m [i, k];

if s < m [j, k] then m [j, k] := s

end

end shortest path

97-P- 1-

0

COLLECTED ALGORITHMS FROM CACM

98P 1- 0

ALGORITHM 98 :

EVALUATION OF DEFINITE COMPLEX LINE
INTEGRALS

JoHN L. PraLTz

Syracuse University Computing Center, Sy]racuse, N. Y.

procedure COMPLINEINTGRL(A, B, N, RSSUM);
value A, B, N; real A, B,N; array RSSUM;
comment COMPLINEINTGRL approximates the complex line
integral by evaluating the partial Riemann-Stieltjes sum
St fle)ze — zex] where @ S ¢t < band 2 € (20 , 2). The
programmer must provide 1) the procedures GAMMA(T, Z) to
calculate z(t) on T, and FUNCT(Z, F) to calculate function
values, and 2) the end points 4 and B of the parametric interval
and N the number of subintervals into which [a, b] is to be
partitioned;
begin integer I; real T, DELT; real array ZT, ZTL, DELZ,
ZK, PART[1:2]; RSSUM([1] := 0.0; RSSUMI2] := 0.0;
DELT := (B — A)/N; T := A;
line: GAMMA(T, ZT);
if T = A then go to next;
for I := ? step 1 until 2 do
begin
DELZ(I] := ZT[I] — ZTL{I]; end;
for I := 1 step 1 until 2 do
begin
ZK[I]) := ZTL[I] + DELZ[1]/2.0; end;
FUNCT(ZK, FZ);
PARTI[1] := FZ[1] X DELZ[1] — FZ[2] X DELZ[2];
PART]2] := FZ[1] X DELZ[2] + FZ[2] X DELZ[1];
for I := 1 step 1 until 2 do
begin
RSSUMI[I] := RSSUM[I] + PART{I]; end;
if T < B — (0.25 X DELT) then go to next else go to
exit;
next: for I := 1 step 1 until 2 do
begin
ZTL[I] := ZT(I]; end;
T := T + DELT;
go to line;
exit: end COMPLINEINTGRL.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 99

EVALUATION OF JACOBI SYMBOL
STEPHEN J. GARLAND AND ANTHONY W. KNAPP
Dartmouth College, Hanover, N. H.

procedure Jacobi (n,m,r);
integer n, m, r;
comment Jacobicomputes the value of the Jacobi symbol (n/m),
where m is odd, by the law of quadratic reciprocity. The param-
eter r is assigned one of the values —1, 0, or 1 if m is odd. If m
is even, the symbol is undefined and r is assigned the value 2.
For odd m the routine provides a test of whether m and n are
relatively prime. The value of 7 is 0 if and only if m and n have
a nontrivial common factor. In the special case where m is prime.
r = —1if and only if # is a quadratic nonresidue of m;
begin
integer s;
Boolean p, q;
Boolean procedure parity (x); value x; integer x;
comment The value of the function parity is true if x is
odd, false if x is even;
begin
parity := x + 2 X 2 # x
end parity;
if — parity (m) then beginr := 2;
p := true;
loop: n:=n—n-+ m X m;
q := false;
if n £ 1 then go to done;
if — parity (n) then
begin
q:= "4q;
n:=n -+ 2;
g0 to even
end n now odd;
if q then if parity ((m]2 — 1)< 8) then p := — p;
if n = 1 then go to done;
if parity ((n—1) X (n—1) + 4) thenp := - p;

value nm;

go to exit end;

even:

§:=m; m:=n; n:=8; go toloop;
done: r:=if n = 0 then 0 else if p then 1 else —1;
exit: end Jacobi

REMARK ON ALGORITHM 99
EVALUATION OF JACOBI SYMBOL [S. J. Gar-

land and A. W. Knapp, Comm. ACM 6, June 1962]
RonaLp W. May
University of Alberta, Calgary, Alberta, Canada

One syntactical error was found in this procedure. It occurs
in the second if statement following the label even. The state-
ment

if ¢ then if parity ((n12—1)+8) then
P = - p;

might be changed as follows.
if ¢ then go to CHECK;
if n = 1 then go to done;
if parity (m 72 — 1) + 8) then

P = p;
go to next 1;

next 1:
CHECK:

9-P1- 0

The two statements beginning with CHECK could be inserted
before the label done and after the statement go to loop;,

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 100

ADD ITEM TO CHAIN-LINKED LIST

Privte J. KiviaT ,

United States Steel Corp., Appl. Research Lab., Monroe-
ville, Penn.

procedure - inlist (t,info,m list,n,first,flag,addr listfull);
integer n,m,first,flag,t; integer array info,list,addr;
comment inlist adds the information pair {¢,info} to the chain-
link structured matrix list (¢,7), where ¢ is an order key = 0, and
info(k) an information vector associated with t. info(k) has di-
mension m, list(¢,j) has dimensions (n X (m+3)). flag denotes
the head and tail of list(7,7), and first contains the address of the
first (lowest order) entry in list(s,5). addr(k) is a vector con-
taining the addresses of available (empty) rows in list(i,;).
Initialization: list(¢,m+2) = flag, for some i = n. If list(¢,5) is
filled exit is to listfull;
begin integer i, j, linkl, link2; :
0: ifaddr[l] =0; then go tolistfull; i:=1;
1: iflist fi,1] <t
then begin if list [i,2] > 0 then begin linkl := m--2;
link2 := m+3; go to2end; else begin if
list [i,m+2] = flag then begin i := flag;
linkl := m+3; link2 := m+2; go to 3 end;
else begini := i+1; go to 1 end end end;
else begin linkl := m+3; link2 := m+2 end;
2: if list [i,link2] 5 flag
then begin k :=i; i := list {i,link2];
if (link2 = m+42 A list [i,1] < t) V
(Iink2 # m+42 A list [i,1] > t) then go to 4;
else go to 1 end;
else begin list [i,link2] := addr [1] end;
3: j = addr [1]; list [j,linkl] := i;
list {j,link2] := flag; iflink2 = m+2 then
first := addr [1]; go to 5;
4: j := addr [1]; list [j,link1] := list [i,link1];
list [i,link1] := list [k,link2] := addr [1];
list [j,link2] := i;
5: list [j,1] := t; fori := 1 step 1 until m do
list [j,i+1] := info [i]; fori := 1 step 1 untiln—1 do
addr [i] := addr [i+1]; addrn] :=0
end inlist

100-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 101

REMOVE ITEM FROM CHAIN-LINKED LIST

Purvip J. Kiviat

United States Steel Corp., Appl. Res. Lab., Monroeville,
Penn.

procedure outlist (vector,m list,n,first,flag,addr);
integer n,m,first,flag; integer array vectorlist,addr;
comment outlist removes the first entry (information pair with
lowest order key) from list(¢,7) and puts it in vector(k);
begin integer i;
fori := 1 step 1 until m+1 do vector{i] := list |first,i];
fori := n—1 step —1 until 1 do addr [i+1] := addr [i];
addr [1] := first;
if list [first,m+3] = flag then
begin list [1,m+2] := flag; first := 1;
for i := 1 step 1 until n do addr [i] := i end;
else begin first := list [first,m+3];
list [first,m+2] := flag end;
for i := 1 step 1 until m+3 do list [addr [1],i] := 0
end outlist

101-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 102

PERMUTATION IN LEXICOGRAPHICAL ORDER
G. F. ScHRACK AND M. SHIMRAT

University of Alberta, Calgary, Alberta, Canada

procedure PERMULEX(n,p);

integer n; integer array p;

comment Successive calls of the procedure will generate all
permutations p of 1,2,3,- - - ,n in lexicographical order. Before the
first call, the non-local Boolean variable ‘flag’ must be set to
true. If after an execution of PERMULEX ‘flag’ is false,
additional calls will generate further permutations—if true, all
permutations have been obtained;

begin integer array g[l:n]; integer i, k, t; Boolean flag2;

if flag then
begin for i := 1 step 1 until n do
pli] :=i; flag2 := true; flag := false;
go to EXIT
end initialize;

if flag2 then

begin t := pln]; pln] := pln—1]; phn—1] := t;
flag2 := false; go to EXIT
end bypass;

flag2 := true; fori := n—2 step —1 until 1 do
if pfi} < pli+1] then go to A;

flag := true; go to EXIT;
A: for k := 1 step 1 until n do q[k] := 0;
for k := i step 1 until n do q[p[k]] := p[k];
for k := p[i] + 1 step 1 until n do

if q[k] # 0 then go to B;
B: pfi] := k; q[k] := 0;
for k := 1 step 1 until n do
if q[k] # 0 then begini := i+ 1; pli] := q[k] end
else if i = n then go to EXIT;
EXIT:
end PERMULEX

REMARKS ON:

ALGORITHM 87 [G6]

PERMUTATION GENERATOR
[John R. Howell, Comm. ACM & (Apr. 1962), 209]

ALGORITHM 102 [G6]

PERMUTATION IN LEXICOGRAPHICAL ORDER
[G. F. Schrak and M. Shimrat, Comm. ACM 6 (June
(1962), 346]

ALGORITHM 130 [G6]

PERMUTE
[Lt. B. C. Eaves, Comm. ACM & (Nov. 1962), 551]

ALGORITHM 202 [G6] ‘

GENERATION OF PERMUTATIONS IN

LEXICOGRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

) 102-P 1- R1

R. J. Orp-Smit (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)
Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo-
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM & (Aug. 1962), 434], there appears to be room for im-
provement. Theoretically a ¢best” lexicographic algorithm

should be about one and a half times slower than Algorithm 115.

See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.
ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 A Blk] < B[m]is true for
at least one of the relevant values of k. In particular when matrix
A is set up by A[i] := 7; for each ¢ the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
i, is the time for complete generation of n! permutations. Times
are scaled relative to {5 for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time
for Algorithm 202 on this machine was 100 seconds. r, has the
usual definition 7o = tn/(n-fs-1).

TABLE 1
Algorithm 73 t & g l 44 ' s
87 118 —_ — — — —
102 2.1 15.5 135 1.03 1.08 1.1
130 —_ — — — — —
202 1.7 12.4 100 1.00 1.00 1.00

COLLECTED ALGORITHMS FROM CACM

103-P1- 0

ALGORI'THM 103

SIMPSON’S RULE INTEGRATOR

Guy F. KuNcir

UNIVAC Division, Sperry Rand Corp., San Diego, Calif.

procedure SIMPSON (a, b, f, I, i eps, N);
value a, b, eps, N; " integer N;
real a, b, I, i, eps; real procedure f;

comment This procedure integrates the function f(z) using a
modified Simpson’s Rule quadrature formula. The quadrature is
performed over j subintervals of [a,b] forming the total area I.
Convergence in each subinterval of length (b—a)/2" is indicated
when the relative difference between successive three-point and
five-point area approximations

As; = (b—a)(go + 492 + g2)/(3-2*1)
As; = (b—a)(go + 4g1 + 2g2 + 4g: + g4)/(3-2772)
is less than or equal to an appropriate portion of the over-all
tolerance eps (i.e., |(4s.; — As,;)/As.; | < eps/2* with n £ N).
SIMPSON will reduce the size of each interval until this con-
dition is satisfied. :
Complete integration over [a,b] is indicated by 7 = b. A value

. a £ 1 < bisindicates that the integration was terminated, leav-
ing I the true area under fin [a,7]. Further integration over [¢,b]
will necessitate either the assignment of a larger N, a larger eps,
or an integral substitution reducing the slope of the integrand in
that interval. It is recommended that this procedure be used
between known integrand maxima and minima.;

begin integer m, n; real d,h; array g[0:4], A[0:2], S[1:N, 1:3];

I:i=i:=m:=n:=0;

gl0] := f(a);

gl2] := f((a + b)/2);

gl4] := f(b); .

Al0] := (b — a) X (gl0] + 4 X gl2] + gl4])/2;

AA: d:=2Mn; h:= (b — a)/d/d;
gl :=f(a +h X 4 X m+1));

gl3] := f(a + h X (4 X m + 3));
All] := h X (gl0] + 4 X gl1] + ¢l2]);
Al2] := h X (gl2] + 4 X g3] + gl4]);

if abs (((A[1] + Al2]) — Al0])/(Af1] 4+ Al2])) > eps/d
then begin m := 2 X m;n:=n + 1;
if n > N then go to CC;
Al0] := All]; S[n,1] := Al2];
8[n,2] := g3]; Sn,3] := gl4];
gl4] := gl2]; ¢l2] := gl1]; o to AA
end
else begin I := I + (A[1] 4 A[2])/3;
m:=m-+1; i:=a+mX (b —a)/d;
BB: ifm =2 X (m + 2) then
beginm :=m <+ 2; n:=n-—1; gotoBBend
if (m # 1) V (n # 0) then
begin A[0] := S[n,1]; g[0] := gl4];
gl2] := 8in,2]; gl4] := S[n,3]; go to AAend
end

CC: end SIMPSON

COLLECTED ALGORITHMS FROM

ALGORITHM 104

REDUCTION TO JACOBI

H. RUTISHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure m2! (n, a, b, ¢, inform); value n;

integer n; array a, b, ¢; procedure inform;
comment: m2! transforms symmetric bandmatrix
(all] B[] ef1])
B[] al2] b2 ef2] o |
1] b2l af8] B8] TS
cl2) ~ c[n—2]
0 ~— afn—1] bln-1]

~~c[n—2] bln—1] a[n]

represented by the arrays.a, b, ¢ by orthogonal transformation
to Jacobi form which is represented by the arrays a, b. The
method is described in H. RUTISHAUSER, “On Jacobi rotation
patterns,” to appear in Proc. Symposium in Experimental
Arithmetic, Chicago, Apr. 12-14, 1962, Sect. 5. Note that decla-
rations must be given for the arrays a, b, ¢ with subscripts
ranging from 1 to n. Also procedure inform must be declared.
It may serve to use the Jacobi rotations occurring inside m21
also for other purposes;

begin
real p, g, d, s;
integer k, j;
b[n] := ¢[n] := ¢[n—1): = 0;
for k := 2 step 1 until n—1 do
begin
for j := k step 2 until n—1 do
begin
if k=j then
begin
p := sqrt(bk—1]12 + c[k—1]12);
if p=0 then go to ex;
d := blk—1}/p;
s 1= —clk—1]/p;
blk—1] := p;
ck—1] := 0
end k=j
else
begin
p := sqrt(c[j—2]12-+g12);
if p = 0 then go to ezx;
d := c[j—2]/p;
s 1= —g/p;
c[j—2] := p;
p := dXb[j—1]—sXeclj—1];
c[j—1] := sXb[j—1]+dXc[j—1];
b[j—1] := p
end j=k;
common: g = 2XDb[j]XdXs;
p := afj|XdXd—g+a[j+1]XsXs;

blj] := (aljl—alj+1])XdXs+b[j]X ([dXd—sXs);
alj+1] := alj]XsXs+g+alj+11XdXd;

alj] := p;

p := dXel[jl—sXb[j+1];

blj+1] := sXeljl+dXbli+1];

CACM
| 104-P 1- 0

cfjl := p;

g 1= —sXelj+1];

efj+1] := dXe[j+1];

inform (n, j, d, s);

comment: The Jacobi rotation which has been performed
in this turn of the j-loop is 4 := UTAU with

where the d’s and s’s are located at the crosspoints of
rows and columns j and j +1;
end j; ’
ex: end k
end m21

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 105

NEWTON MAEHLY

F. L. Bauer anp J. StToER

Johannes Gutenberg-Universitit, Mainz, Germany

procedure Newton Maehly (a, n, z, eps);

value n, eps;

array 8, 2;

integer n;

real eps;

comment The procedure determines all zeros z[l:n] of the
polynomial p(z) := af0] X zfn + --- + a[n] of order =, if p(x)
has only real zeros which have to be all different. The zeros
z[t] are ordered according to their magnitude: z[1]>2z[2]>
-+->z[n]. The approximations for each zero will be improved
by iteration as long as abs(xl1—z0)>eps X abs(zl) holds
for two successive approximations z0 and z1;

begin veal aa, pp, qq, x0, x1;

integer 1, m, s;

array b, p, q0:n—1];

procedure Horner(p, q, n, x, pp, qq);
value n, x;
array p, q;
real pp, X, qq;
integer n;

begin real s, sl;
integer i;
8 := 8l := 0;
for i := 0 step 1 until n—1 do

begin s := sXx+pli]; sl := slXx+q[i]; end;

pp := sXx+p[n); qq := sl;

end;

pf0] := aa := a[0); x0 := pp := 0; s := sign(a[0]);

for i := 1 step 1 until n do
if 8 X a[i]<0 then
begin if pp=0 then pp := i;
if x0<abs(a[i]) then x0 := abs(ali]);
end;
%0 := if pp=0 then 0 else 1+exp(In(abs(xo/aa8))/pp);
comment 20 is a first approximation for the largest zero which
may be printed out at this point of the program;
fori:= 0step 1l until n—1do bfi] := (n—1)Xali};
for m := 1 step 1 uhtil n do
begin
iteration:
Horner (a, b, n, x0, pp, qq); x1 := x0—pp/qq;
if abs(x1—x0)>epsXabs(xl) then
begin x0 := x1;
comment z0 is the last approximation for the zero
being improved, which may be printed out at this
point;
go to iteration;
end;
z{m] := x1;
comment z[m] := zl is the mth zero of the polynomial;
pp := b[0] := b[0] — aa; q[0] := pp;
if m<n then
begin for i := 1 step 1 until n—1 do
begin pp := pli] := x1Xpli—1]+a(i);
pp := bli] := b(i)—pp;
qli] := x1Xgqli—114pp;

105-P 1- O

end;

Horner (p, q, n—1, x1, pp, qq);
%0 := x1-pp/qq;

comment z0 is a first approximation for the
next zero;

end
end
end Newton Maehly;

CERTIFICATION OF ALGORITHM 105
NEWTON MAEHLY [F. L. Bauer and J. Stoer, Comm.
ACM, July 1962]
JoanNE Konpo
Burroughs Corp., Pasadena, Calif.
Algorithm 105 was suceessfully run on Burroughs 220 computer
after the following correction had been made:
for 7 := 0 step 1 until n — 1 do b[i] := (n—1) X aft]
changed to
for ¢ := 0 step 1 until n—1 do b[z] := (n—1) X alt].
The following polynomials were tested for real roots using this
algorithm: :

polynomial epsilon accuracy
1) 28 ~ 222 — 5z + 6 0.0000001 1078
(2) 25 — 152 + 852% — 22522 + 274x — 120 0.000001 1078

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 106

COMPLEX NUMBER TO A REAL POWER
MARGARET L. JoHNSON AND WARD SANGREN
Computer Applications, Ine., San Diego, California

procedure POWC (x, y, w, A, B); value x, y, w;
real x,y, w, A, B; ’)
comment This procedure takes a complex number (z+4y) to
a real power w. The result is A+iB=(z-iy)*. This procedure
must be used with caution because although it is formally cor-
rect, it may not give the desired results. For example, if w is a
reciprocal integer it does not follow that the desired power
(a root) will be calculated;
begin real THETA, PHI, R;
if x>0 then begin THETA := 0.0; go to SOL 1 end;
if x<0Ay20 then begin THETA := 3.1415027;
go to SOL 1 end;
if x<0Ay<0 then begin THETA := 3.1415927;
go to SOL 1 end;
if x=0Ay=0then begin A := B :=0.0; goto RETURN end:
if x=0Ay <0 then begin PHI := 1.5707963; go to SOL 2 end;
if x=0Ay>0 then begin PHI := —1.5707963;
go to SOL 2 end;
SOL 1: PHI := arctan (y/x)+THETA;

SOL 2: R := sqrt (xXx+yXy);
R := exp (wXIn(R));
A := RXcos (wXPHI);
B := RXsin (wXPHI);

RETURN: end POWC

REMARK ON ALGORITHM 106

COMPLEX NUMBER TO A REAL POWER [Mar-
garet L. Johnson and Ward Sangren, Comm. ACM
8, Jul. 1962]

Grant W. ErwiNn, Jr.

The Boeing Co., Renton, Wash.

The comment “if W is a reciprocal integer it does not follow
that the desired power (a root) will be ealculated” might better
read ‘if W is the reciprocal of an integer N, the procedure will
calculate an nth root, but possibly not the particular nth root
desired. E.g. w =}, 2 = —1,y = O uields A = 4, B = /3 rather
than the simpler A = —1, B = 0.”

The comment should be made that it is assumed that the arctan
function yields a result between —=/2 and /2.

The following four corrections should be made:

(1) if <0 A ¥ < 0 then begin THETA : = 3.1415927;

should read:
.-« THETA: = —3.1415927;
(2) go to RETURN end:
should read:
go to RETURN end;
3) ifz=0Ay<0---
should read:
ifx=0Ay>0:--
(€)) ifz=0Ay>0
should read:

fz=0Ay <0

106-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 107

GAUSS’S METHOD

Jay W. Counts

University of Missouri, Columbia, Mo.

procedure gauss (u, 8, y);
real array a, y; real temp; integer u;
comment 7This procedure is for solving a system of
linear equations by successive elimination of the un-
knowns. The augmented matrix is a and u the number of
unknowns. The solution vector is y. If the system hasn’t
any solution or many solutions, this is indicated by go
to stop;
begin
integer i, j, k, m, n;
n = 0;
ck0: n := n+1;
for k := n step 1 until u do if alk, n]>0 then go to ckl;
go to stop;
ckl: if k=n then go to ck2;
for m := n step 1 until u+1 do
begin
temp := a[n, m];
end;
ck2: for j := u+1 step—1 until n do a[n, j] := a[n, j}/a[n, n];
fori := k+1step 1l untilu do
for j := n+1 step 1 until u+1 do
8[i,j] = a[i,j]-—-a[i, n]xa[n! j];
if n#u then go to ck0;
for i := u step—1 until 1 do
begin
yli] := ali, ut+1)/afi, il;
for k := i—1 step—1 until 1 do
alk, u+1] := alk, u+1]—alk, i]Xy[i]

end end;

a[n, m] := alk, m]; a[k, m] := temp

REMARK ON ALGORITHM 107

GAUSS’S METHOD [J. W. Counts, Comm. ACM,
July 1962]

P. Naur

Regnecentralen, Copenhagen, Denmark
Algorithm 107 cannot be recommended since it does not search

for pivot and therefore will yield poor accuracy (ef. Remarks on
Algorithm 42 above).

CORRECTION TO EARLIER REMARKS ON AL-
GORITHM 42 INVERT, ALG. 107 GAUSS’S METHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, 38—40.)
P. Naur
Regnecentralen, Copenhagen, Denmark

George Forsythe, Stanford University, in a private communi-
cation has informed me of two major weaknesses in my remarks on

the above algorithms:]
1) The computed inverses of rounded Hilbert matrices are com-

107-P 1- O

pared with the exact inverses of unrounded Hilbert matrices, 1n-
stead of with very accurate inverses of the rounded Hilbert
matrices. o

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such matrices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub-
stantiate the claims I have made for thera.

To obtain a more valid criterion, without going into the con-
siderable trouble of obtaining the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in-
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Maxi deviation from el ts of the unit mairix
Order INVERSION I1 gir Ratic
2 —1.49,,—8 —1.49;,—8 1.0
3 —4. 7707 —8.3410—7 0.57
4 ~9.5410—6 . —3.43,—5 0.28
5 —7.3210—4 —4.5810—4 1.6
6 —1.614,—2 —1.42,0—2 1.1
7 —5.78;0—1 —5.4710—1 1.1
8 —1.2010—2 - —1.38;01 8.7
9 —4.91;01 —2.22401 2.2

This criterion supports Forsythe’s criticism. In fact, on the
basis of this criterion no preference of INVERSION II or gjr can
be made.

The calculations were made in the Gier ALcoL system, which
has floating numbers of 29 significant bits.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 108

DEFINITE EXPONENTIAL INTEGRALS A
Yur! A. KruGLYAK

Kharkov State University, Kharkov, U S.8.R., AND
DonaLp R. WaITMAN

Case Institute of Technology, Cleveland Ohlo

real procedure As (n, b); value n, b; mteger n; real b;
comment: This procedure computes a value of integral
Ana(l,)= f 1 7 lexp(—bx) dx for any given positive integer, n,
and any positive real parameter, b, by the recursion formula
An(l,)= A0, b)+ (n/b) Anaa(l, b) with Ao(1, b)=exp(—b)/b;
begin . integer m; real db; real array a[l:in];
a[l] := exp (=b)/b;
if n=1 then go to exit;
comment integral a[l]=4,(1, b) was evaluated ;
db := 1/b; for m := 2 step 1 untll n do aim] :=
. a[1]+db>< (m—1)Xa[m— 1J;,
comment integral a[n]=4._,(1, b) was evaluated;
: As := a[n] end As;

CERTIFICATION OF ALGORITHM 108

DEFINITE EXPONENTIAL INTEGRALS A [Yuri
A. Kruglyak and Donald R. Whitman, Comm. ACM &
(July 1962)]

Yur: A. KRUGLYAK

Kharkov State University, Kha,rkov, U.S.8.R. and

Donarp R. WaITMAN

Case Institute of 'l‘echnology, Cleveland Ohio

Integrals A,(1,b)=]7 zmexp(—baz)dz oceur in physical problems
involving spheroidal coordinates, particularly in quantum chem-
istry calculations. This algorithm was programmed for the Bur-
rough’s 220 computer using Burrough’s Algebraic Compiler. The
program was used to compute tables of A,(1,b) in the ranges
n=0(1)15, and 5=0.01(0.01)30.14. For example, for n=0(1)15, and
5=0.25 and b=24.0, the results below were obtained. These are
compared with the results (columns 3 and 5) obtained by James
Miller, John M. Gerhauser, and F. A. Matsen [Quantum Chemistry
Integrals and Tables, University of Texas Press, 1959].

b=0.25 (Miller b=24.0 (Miller
b=0.25 et al.) b=24.0 ot al.)

.31152031, 01 .31152031322856, 01 .15729727,—11 .15720727267830,—11
-18576015, 02 .16576016661428, 02 .16386132,—11 .16385132670656,—11
.12772332, 03 .12772332842371, 03 .17095154,—11 .17095164082051,—11
.15357950, 04 .535795i442ms 04 .17866621,—11 .17860621640586,—11
.24576835, 05 .24575837510601, 05 .18707497,—11 .18707497541261,~11
.49151976, 06 .40151086541516, 06 .10627122,—11 .19627122588926,—11
.11796476, 08 .11796470885167, 08 .20636507,—11 .20636507915061,—11
-33030132, 09 .33030143089988, 00 .21748707,—11 .21748708743056,—11
. 10569642, 11 .10569846070911, 11 .22979295,—11 .22970206848848,—11
.38050711, 12 50725887992, 12 .24346062,—11 .24346963586148,—11
10 .15220284, 14 220290355200 14 .25874204,—11 .25874205428724,—11
11 .66969248, 15 0277562880, 15 .27588778,—11 .27588779339328,~11
12 .32145238, 17 45253230182 17 .20524115,—11 .205634116037494,—11
13 .16715523, 19 .16715631679695, 19 .31721955,—11 31721057275639,—11
14 .03606928, 20 .03606977406201, 20 .34234200,—11 .34234202345285,—11
15 .56164156, 22 .56164186443775, 22 .37126102,—11 .37126103733633,~11

o9

©ouDL WD~ 3

&

I|~

212

The accuracy is at least six significant figures over the entire
range. This accuracy is. completely satisfactory for all quantum
chemical calculations.

108-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 109

DEFINITE EXPONENTIAL INTEGRALS B
Yurt A. KRUGLYAK

Kharkov State University, Kharkov, U.S.8.R., AND
Donarp R. WHITMAN

Case Institute of Technology, Cleveland, Ohio

real procedure Bs(n, a); value n, a; integer n; real a;

comment This procedure computes a value of the integral
B.1(a) =[] 21 exp(—az)dz for any given positive integer, n,
and any real parameter, a. If |a |<alim an expansion of
exp(—azx) is used, otherwise the recursion formula B,(a)=
[(=D)re—e*+nB, 1(a)]/a with be(a)=2 sinh(a)/a is used. The
value of alim depends upon the highest n appearing in the
calculations and upon the maximum errors in the last significant
digits in the library procedures. For example, we have used
alim=28 for #max=16 with gamma=1X10-8. The intrinsic func-
tion mod(E, , E:) which requires two integer arguments, is the
conventional modulus;

begin integer m; real alim, delta, gamma, r, epsilon,
8, k, a2, omega, da, jp, jm, ql, q2; real array
b[l:n]; if a=0 then
L1: begin if mod(n—1, 2)=0 then
L2: begin b[n] := 2/n; go to exit end L2;
comment integral b[z] = B, 4(0) for odd n was evaluated;
b[n] := 0; go to exit end L1;
comment integral b[n] = B, ;(0) for even n was evaluated;
if abs(a) alim then
L3: begin delta := gamma; if mod(n—1, 2)=0 then
L4: begin r := 2/n; epsilon := rXdelta; s := r;
k :=0; a2 := af2;
Even: k 1= k42;
r := rXa2X (n+k—2)/(kX (k—1)X (n+k));
8 := s-r; if r>epsilon then go to Even;
b[n] := s+r;
go to exit end L4;
comment integral b{n]=B,(a) for odd n and |a |<alim was
evaluated;
r := 2Xa/(n+1); omega := abs(rXdelta);
s:=r; k:=1;
a2 := af2;
Odd: k ;= k42;
r := rXa2X (n+k~2)/(kX (k—1)X (n+k));
8 := s+4r; if abs(r)>omega then go to Odd;
b[n] := —(s8+r); go to exit end L3;
comment integral b[n]=B,_;(a) for even n and | a [<alim was
evaluated;
da := 1/a; jp := daXexp(a); jm := (dal2)/jp;
b(1} := jp—jm;
if n=1 then go to exit;
comment integral b[1] = By(a) for |a |2alim was evaluated;

ql := —1; q2:=1; form := 2 step 1 until n do
L5: - begin blm] := qlXjp—jm+q2x¥aXbm~—1];

ql 1= —ql; q2 := q2+1 end L5;
comment integral b[n]=B,_(a) for integer n22 and | a |Zalim
was evaluated;
exit: Bs := b[n] end Bs;

109-P1- O

CERTIFICATION OF ALGORITHM 109

DEFINITE EXPONENTIAL INTEGRALS B [Yuri A.
Kruglyak, D. R. Whitman, Comm. ACM & (July 1962)]

Yurt A. KruGLYAK

Kharkov State University, Kharkov, U.S.8.R., and

Donarp R. WHiTMAN

Case Ingstitute of Technology, Cleveland, Ohio

Integrals B.(a)= [} zrexp(—azx)dz occur in physical problems
involving spheroidal coordinates, particularly in quantum chem-
istry calculations. This algorithm was programmed for the Bur-
roughs-220 computer using a Burroughs Algebraic Compiler. The
program was used to compute tables of B.(a) in the ranges
n=0(1)15, and ¢=0.00(0.01)32.54. For example, for n=0(1)15 and
a=0.25, and a=24.0 the results below were obtained. These are
compared with the results (columns 3 and 5) obtained by James
Miller, John M. Gerhauser, and F. A. Matsen [Quantum Chemisiry
Integrals and Tables, University of Texas Press, Austin, 1959].

a=0.25 (Miller a=24.0 (Miller
a=0.25 ot al.) a=24.0 etal) .
20208984, 01 .20208985344653, 01 .11037134, 10 . 110371342208, 10

—.16771064, 00 ~.16771066117520, 00 —.10577253, 10 —.105772536282, 10

n

0

1

2 .67021322, 00 .67921324506375, 00 .10155696, 10 .101556964184, 10
3 —.10074584, 00 —.10074585827189, 00 —.97676725, 09 —.976767216847, 09
4 .40806479, 00 .40896480211998, 00 .94001887, 09° .940018885036, 09
5 —.72008754,—01 —.72008756636929,—01 —.00768866, 09 —.007688654174, 09
6 .20268836, 00 .20268837617005, 00 .E7670129, 09 .876921258533, 09
7 -.56030202,—01 —.56030204023170,—01 --.§4798262, 09 —.847982638338, 09
8 .22792011, 00 .22792012573392, 00 .§2105258, 09 .8210562542631, 09
9 —.45856272,—01 —.4B856272075462,—01 —.79581870, 09 —.795818718590, 09
10 .18864760, 00 .18664761544688, 00 .77212229, 09 .772122289331, 09
11 —.38809718,~01 --.38800719373731,~01 ~—.74982404, 09 —.749824039467, 09
12 .15803198, 00 .15803200452627, 00 .72880141, 09 .728801402343, 09
13 —.33640562,—01 —.33640563670387,—01 —.70894600, 09 —.708045085807, 09

.13702696892367, 00 .€9016158, 09 .690161591189, 09

14 .13702696, 00
~.20686663616401, —01 —.€7236245, 09 --.872362427583, 09

16 —.20686662,—01

The accuracy is at least six significant figures in the ranges
mentioned above. This accuracy is enough for the majority of
quantum chemistry calculations. -

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 110

QUANTUM MECHANICAL INTEGRALS OF
SLATER-TYPE ORBITALS

Yurr A. KRUGLYAK

Kharkov State University, Kharkov, U.S.S.R., aND

Donarp R. WHITMAN

Case Institute, of Technology, Cleveland, Ohio

real procedure INTSOLI (n, r, za, ab, As, Bs) Result:

(s; 11, i2, i3);

value n, r, za, zb; integer n; real 1, za, zb;

real array a[l:8], b[1:8], G[1:2Xn]; integer array bc[l:2Xn,

1:2Xn];

real procedure As, Bs;

comment Procedure INTSOLI computes the quantum mechan-

ical integrals s= (llfnoo [¥hio)

and

(overlap integral),
il= (th.oo | Zo*/rai I\bm) (exchange integral),
i2=(\l/noo | Z5*/xei W..oo) (coulomb integral),
i3= (¥4, | Zo*/tas | Y3 (coulomb integral).

"Here | ynim) is 8 Slater-type orbital of electron i centered on
atomie nucleus a. The integer n is the effective principal quan-
tum number with values 1, 2, 8 and 4. Z,*=za and Z*=2b
are effective nuclear charges 7y is the distance of electron
i from nucleus b. The input parameter r is the distance be-
tween the two centers a and b. All physical quantities ‘are
given in atomic units;

begin

comment

procedure

comment

begin

exitAs:
procedure

comment

begin

integer g, t, ¢, m;
real g, zsa, zsb, ks, p, pt, lilya, s, ki1, exe, i1, pppt,
k2, sue, i2, pmpt, ptmp, k3, i3;
be(l, 1) := be[2, 1] := be[2,2] :=1;
for q := 3 step 1 until 2Xn do
begin belg, 1] := 1; fort := 2 step 1 until g—1do
belq, t] := be[q—1, t—1]+belq—1, t];
belg, q] := 1 end L6;

binomial coefficients bclg, ¢]= (q—i) were computed

using the recursion formula (q) (tee l)+(q 1)

As(n, b) Result: (a[n]);
real b;

procedure As computes a value of integral 4, (1, b)
[see Algorithm 108, ‘‘Definite Exponential Inte-
grals A,” by Yuri A. Kruglyak and D. R. Whitman,
Comm. ACM (July 1962)]. Any identifier occurring
within the As is specified to be local to the As;

value n, b; integer n;

integer m; real db; a[l] := exp(—b)/b;
if n=1 then go to exitAs; db := 1/b;
for m := 2 step 1 until n do a[m] := afl] +
dbX (m—1)Xafm—1]
end As;
Bs(n, a) Result: (b(n]); value n, a; integer n;
real a;

procedure Bs computes a value of lntegral B, (a)
[see Algorithm 109, ‘“‘Definite Exponential Inte-
grals B’ by Yuri A. Kruglyak and D. R. Whitman,
Comm. ACM (July 1962)]. Any identifier occurring
within the Bs is specified to be local to the Bs;

integer m; real alim, delta, gamma, r, epsilon,
8, k1 8‘2: omega, da’) up,]m’ ql: q2
if a=0 then begin if mod(n—1, 2)=0
then begin b[n] := 2/n; go to exitBs end;

comment

Even:

0dd:

exitBs:

comment

ABSI:

I2:.

BA2:

13:

110-P 1- 0

b[n] := 0; go to exitBs end;

if abs(a)<alim then begin delta := gamma;
we have used alim=8 and gamma=1X1073;
if mod(n—1, 2)=0 then begin r := 2/n;

epsilon := rXdelta;
8 = r; k= 0; a2 := af2;
k := k+42;
r = rXxa2X(n+k—2)/(kXk—-1)X@m+k));

8 := s+r; if r>epsilon then go to Even;
bn] := s+r;
go. to. exitBs end; r :=
omega := abs(rXdelta);
s:=1; k:=1; a2 := al2;
= k+2;
r = rXa2X{@+k—2)/(kX (k—-1)X (n+k));
8 := s+4r; if abs(r)>omega then go to Odd;
b[n] := —(s+r); go to exitBs end; da :=
ip := daXexp(a);

2Xa/(n+1);

1/a;

jm = (daf2)/jp; b[l] := jp—jm;
if n=1 then go to exitBs;

ql := —1; g2 :=1; form := 2 step 1 until n
do begin b[m] := qlXjp—jm+4q2XdaxXb[m—1];
ql := —ql; 2 := ¢2+41 end

end Bs;

g:=1; form :=1stepluntil2Xndo g := g/m;
G[2Xn] :=

1/(2n)'=G[2Xn] was evaluated;

zsa := za/n; zsb := zb/2; ks := (r/2)I(n+3)X
(2% zsa)T(n+1/2) X zsb1(5/2) X G[2Xn]1(1/2);
p := rX(zsa+zsb)/2;

pt := rX(zsa—zsb)/2;
for ¢ := 1 step 1 until n+3 do

begin As(c, p) Result: (alel);
Bs(e, pt) Result: (blc])

end ABSI;

lilya := 0; for m := 0 step 1 until n do lilya :=
lilya+be[n+1, m+1]X (afn—m+4-21X (b{m-+1}+
blm+3])—b[m+2]X (a[n—m+1]+a[n—m+3]));
8 := ksXlilya;
1 := ksX2Xza/r; exc := 0;
for m := 0 step 1 until n—1 do

exc := exc+ben, m+1]X (a[n—m+1]X (b[m+1]+
b[m+3]) =b[m+2]X (a[n—ma]+a[n—m+2]));
il i= klXexc;

pppt := p+pt; k2 :=
(2Xn+1)XzsbX G[2Xn];
for ¢ := 1 step 1 until 2Xn do

begin As(c, pppt) Result: (afe]);
Bs(e, pppt) Result: (ble])

end BA2; sue := 0;
for m := 0 step 1 until 2Xn—1 do

(r/2)1(2Xn) X (2X z8a)]

sue := sue-tbe[2Xn, m+1]Xa[2Xn—m]Xbm+1];
i2 ;= k2Xsue;
pmpt := p—pt; ptmp := —pmpt;

= (r/2)14X2XzaX28b]5;
for'c := 1 step 1 until 4 do
begin As(c, pmpt) Result: (afc]);
Bs(e, ptmp) Result: (bfe])
end AB3; i3 := k3X (a[2]X (b[1]42Xb[3])—Db[2]X
(a[l]4+2Xa[3])+a[4]X b[3]—a[3]Xb[4]) end
INTSOLI;

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 110

QUANTUM MECHANICAL INTEGRALS OF
SLATER-TYPE ORBITALS [Yuri A. Kruglyak and
Donald R. Whitman, Comm. ACM 5 (July 1962)]

Yuri A. KruGLYAK

Kharkov State University, Kharkov, U.8.8.R. and

DonaLp R. WHiTMAN

Case Institute of Technology, Cleveland, Ohio

This procedure was written and tested in the Burroughs 220
version of the ALaoL language in the spring of 1961 at Case Insti-
tute of Technology. The program was used to compute tables of
quatnum mechanical integrals s, i1, ¢2, and ¢3 in the ranges:
r(A)=0.64(0.02)1.40(0.10)3.10; Zy*=0.25(0.50)3.75, 3.90, 4.25,
4,55, 4.75, 5.20, 5.25; Z,*=0.7,1.0 for n=1; 1.3(1.0)3.3 for n=2;
0.2, 2.2(1.0)4.2 for n=3; and 0.2, 2.2, 3.2for n=4. The table at
the right shows typical results compared with values from Inte-
graltafeln zur Quantenchemie by H. Preuss (Springer-Verlag, 1957),
Zweiter Band. Accuracy is at least six significant figures in the
ranges mentioned above. This is ample for the overwhelming
majority of quantum chemistry calculations.

Certification of INTSOLI

Input Preuss’ Result
K. and W. Result
nr za zb - Notation T;Ible
o.
0.5 0.1
15 05 0.2z [0.14841601 [ta 3b] 0.148417 23
4.5 4.0
11 4.5 8.0(s [0.35203437 [la 3b] 0.352034 30
10 10
2120 20 |s [0.25032133X10™! [2a 3b] 0.250321X1071 40
0.50.1
15 05 0.2][71 [0.22058816 5a1|1a 3b] [0.220588 59
4.5 4.0
11 45 8.0 i1 {0.968587055 1[a= | 1a 3b] |0.065871 66
10 10
2 1 20 20 [¢1]0.58102500X10"! 1fa1|2a 3b] |0.581025X107* 76
0.50.5
11 05 0.2([s2 0.44818080 b1 1a la] 0.448181 41
0.50.5
15 05 0.2[i2 (0.97641725 5[b71 | 1a 1a] 0.976417 15
10 10
21 20 20 |i2 (0.99999530 1[b1|2a 2a] [0.100000X10¢ 58
0.50.8
1110 1 i3 10.26217432 1{b1 (3a 3a] [0.262174 41
5 5
11 10 10 |23 [0.11003011X10¢ 1[b{3a 3a] |0.110929X10 50
10. 10
11 10 20 |43 |0.10300137X10! Hb1!3 3a] |0.103001%10! 58

110-P 2-

0

COLLECTED ALGORITEMS FROM CACM

ALGORITHM 111

MOLECULAR-ORBITAL CALCULATION OF
MOLECULAR INTERACTIONS

Yurr A. KRuGLYAK

Kharkov State University, Kharkov, U.S.S.R.; anp

DoxaLp R. WaiTMAN

Case Institute of Technology, Cleveland, Ohio

real procedure SOLI(n, za, zb, rem, coef2, r1, E1, drl, drkl,
ace, acel, rk2, rki, dr2, asy, rk3, dr3, As, Bs, RESULT) Result:
(ra, Ep, Em, ca, ca2, cb, cb2, DEa, DED, s, il, i2, i3, haa, hab,
hbb); value n, za, zb, rem, coef2, rl, El1, drl, rkl, drkl, ace,
accl, rk2, dr2, asy, rk3, dr3; integer n, rem; real otherwise;
real array a[l:8}, b[1:8], G[1:8], zsap [1:9], rp[1:8], ans[l:rem];
real procedure As, Bs, RESULT,;

comment This procedure calculates a one-electron approxima-
tion to the energy of interaction of molecular species by the
use of the molecular-orbital (MO) method with a linear com-
bination of Slater-type orbitals (LCSTO). The wave function
used is | ¢)=ca | Yhoo)+cs | Yoro', where | $hin) is a STO centered
on nucleus a. The effective principal quantum number » takes
the integral value 1, 2, 3 or 4. The Hamiltonian used is: 3Cqp=
~A[2=Z*ra—Z* 1o+ Zo*Zy* /R, . Here Z.,* and Z,* are
effective nuclear charges, r, and r, the distances of the electron
from nucleus @ and b, and R, is the distance between nuclei
a and b. The calculations are in atomic units, while the output
ra is in Angstroms and DEae and DEb are in keal/gm-ion. Ab-
breviations of the following type are used: Za = Z.*, ra=
Ra(R), haa= (%0 | Hus | ¢y, DEa=D(a, b+electron), el=
Whoo | ~A/2—Z.*/ra | Yaoo). The values of coefl and
coef2 are 627.71 *(keal/gm-ion) and 0. 5291.& respectively.
rl, El, drl, dr2, dr3, acc, accl, and asy are control parameters.
The accuracy of the calculatlons (ace, accl) 13 1X1078. The

initial values of Ry and K_ are conveniently: 71=0. 4(A), and
E1=100(a.u.). The steps are: dr1=0.1, dr2=0.4, and dr3=0.01,
all in Angstroms. asy is —1X1073 (a.u.);

begin integer q, t, ¢, m, f; real otherwise;

procedure As(n, b) Result: (a[n]); value n, b; integer n;
real b;

comment any identifier occurring within the As is specified
to be local to the As;

begin integer m; real db; a[l] := exp(—b)/b;
if n=1 then go to exitAs; db := 1/b;

for m := 2 step 1 until n do a[m] := a[l]4-dbX

(m—1)Xa[m-—1]

exitAs: end As;

procedure Bs(n, a) Result: (b[n]); value n, a; integer n;
real a;

comment any identifier occurring within the Bs is specified
to be local to the Bs;

begin integer m; real otherwise; if a=0 then begin if
mod(n—1, 2)=0 then begin bln] := 2/n;
go to exitBs end; b[n] := 0; go to exitBs end;
if abs(a)<alim then begin delta := gamma;
if mod(n—1, 2)=0 then begin r := 2/n;

epsxlon 1= rxdelta s:=r; k:=0; a2 := al2;

Even: = k+2; r:= rXa2><(n+k 2)/(k(k—1)(n-+k));

8 := s+r; if r>epsilon then go to Even;

b[n] := s+r; go to exitBs end;

r = 2Xa/(n+1); omega := abs(rXdelta);

NATA: I
Begin of program: be[l, 1) :=

111-P 1- 0

k:=1; a2 := al2;
0dd: ku— k+2; r:=rXa2X n+k-2)/(k(k—1)(@n+k));
"8 := s+r; if abs(r)>omega then go to 0Odd;
bn] := —(s+r); go to exitBs
end; da := 1/a; jp := daXexp(a);
jm = (daf2)/jp; b[l] := jp—jm;

8 1= T

if n=1 then go to exitBs; ql := —1; 2 := 1;
 form := 2step 1
until n do begin b[m] := qlXjp—jm+

g2XdaXb[m—1];
- ql := —ql; q2:= g2+1 end

end Bs; .

Result(coefl); recal coefl;

RESULT computes Ep, Em, ca, ca2, cb, c¢b2, DEa,
DEb, s, i1, 12, i3, nn, haa, hab, hbb. Important:
"RESULT and any identifier occurring within the
RESULT enter SOLI as nonlocal entities;

r := raXbr; rp[l] :=r; for ¢ := 2 step 1 until
n+4 do rple] := rple—1]Xrp[l]; p := rXsum;

“pt = rXdif; ks := rp[n+3]Xzss;
for ¢:= 1 step 1 until n+3 do begin As(c, p)
Result: (ale]); Bs(e, pt) Result: (ble]) end;
lilya := 0; for m := 0 step 1 until n do lilya :=
lilya+be[n+1, m+1]X (a[n—m+2]X
(b[m+1]4+b[m+3]) —b[m~+2]X (a[n—m+1]
+a[n—m-+3))); s := ksXlilya: 1i12 := 2Xs;
k1l := ksXza/r; exc := 0; for m := 0 step 1
until n—1 do exc := exc+be[n, m+1]X (a[n—
m+1]X (bfm+1}+b[m+3]) —b[m+2]X (a[n—m]+
aln—m+2])); i1 := klXexe; pppt := p+pt;
k2 := rp[2Xn]Xzsbd; for ¢ := 1 step 1 until
2Xn do begin As(c, pppt) Result: (afc]);
Bs(c, pppt) Result: (b[c]) end; sue := 0;
for m := 0 step 1 until 2Xn—1 do sue :=
sue+bef2Xn, m+1]Xa2Xn—m]Xb[m+1];
i2 := k2Xsue; pmpt := p—pt;
ptmp := —pmpt; k3 := r1p[4]Xz5;
for ¢ := 1 step 1 until 4 do begin As(c, pmpt)
Result: (alc]); Bs(e, ptmp) Result: (b[c]) end;
i3 := k3X (a[2]X (b[1]42Xb[3])—Db[2]X (a[l]+2X
a[3])+a[4]Xb[8]—a[3]XDb[4]);

corument Two-center integrals s, i1, 72, and i3 were computed

[see Algorithm 110, “Quantum Mechanical Integrals of Slater-

Type Orbitals,” by Yuri A. Kruglyak and ID. R. Whitman,

Comm. ACM (July 1962)]; nn := 22/(2Xr); e2pnn := e2-+nn;

haa := el—e2-+nn; hbb := e2pnn—i3; hab := e2pnnXxs—il;

exitBs:
procedure
comment

begin

den := 2-8X1il2; bsr := hsa+hbb—habX1il2;

root := sqrt(bsr{2—2XdenX (haaXhbb—hab12));

Ep := (bsr4root)/den; Em := (bsr—root)/den;
ans{f] := Em; DEa := coeflX(e2—Em);

DEb := coeflX(el—Em); Emhaa := Em—haa;
Emhbb := Em—hbb; ES := EmXs; habmES := hab—ES;
caDebl := habmES/Emhaa; cbDca2 := habmES/Emhbb;

if abs(Emhaa)>abs(Emhbb) then begin col := caDcb112;
cb2 := 1/(1+41i12XcaDcbl+col); ca2 := cb2Xcol;

ca := sqrt(ca2); cb := ca/caDcbl go to NATA end;
co2 := c¢bDca212; ca2 := 1/(1+1i12XcbDca2+co2);
cb2 := ca2Xco2; ca := sqrt(ca2); cb := caXcbDca2

end RESULT;

bel2, 1] := be[2, 2] := 1

for q := 3 step 1 until 8 do begin be[q, 1] :=1; for t := 2

COLLECTED ALGORITHMS (cont.)

step 1 until g—1 do belq, t] := be[q—1, t—1]+be[q—1, t);
belq, q] := 1 end;

IZM:

KOM:

CLEV:

KHAR:
CASE:

g:=1; form := 1 step 1 until 2Xn do g := g/m;
G [2Xnl:=g; 'zsa := za/n; zsap[l] := zsaX2;
for ¢ := 2 step 1

until 2Xn+1 do =xsap[c] := zsap[c—1]Xzsap[l];
D := zsap[2Xn+1]XG[2Xn]; DS := sqrt(D);
el := —zsap[2]X0.125X (4Xn—3)/(2Xn—1);

z8b := zbX0.5; sum := zsa-+tzsb; dif := zsa—zsb;
zsb5 = zsblh; zss := DSXsqrt(zsb5);
zsbd := zsbXD; 25 := 2XzaXzsbd; zz := zaXazb;
€2 := —(zsb12)/2; br := 0.5/coef2; f := 1;
ans[l] := El; ra :=rl; :

ra := ra+tdrl; if ra>rkl then ra := ra--drkl;
f:=1{+1; RESULT (coefl); if ans [f]—ans{f—1]=
acc then begin if ra>rk2 then go to IZM;
go to KOM end; ansf := ans[f]; dl := ra;

ra := ra-+dr2; RESULT (coefl); if el<e2 then
begin if Em—elSasy/Ara<rk3 then go to CLEV;
go to KHAR end; ifel=e2 then begin if Em—e2=
asy Ara<rk3 then go to CLEV; go to KHAR end;

ra := dl; ans[f—1] := ansf;

ra = ra—dr3; f := f41; RESULT (coefl);
if ans[f]—ans[f—1]<accl then go to CASE;
go to IZM end SOLI;

111-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 112

POSITION OF POINT RELATIVE TO POLYGON
~ M. SHIMRAT

University of Alberta, Calgary, Alberta, Canada
Boolean procedure POINT IN POLYGON (n, =, y, 20, y0);

value n, 20, y0; integer n; array z,y; real z0, y0;
comment if the points (z[¢], y[¢]) ¢ = 1, 2,.-+, n) are—in
this eyclic order—the vertices of a simple closed polygon and
(20, 0) is a point not on any side of the polygon, then the pro-
cedure determines, by setting ‘“point in polygon’ to true,
whether (20, y0) lies in the interior of the polygon;
begin integer 7; Boolean b;
zln 4+ 1] := 2[1]; yln + 1] :=y[l]; b := true;
for ¢ = 1step 1 until n do
if (y <yl =y>yli+1D A
20 — zli] — (0 — yld]) X (=li + 1] — zi])/ (wlé + 1] — yld]) <O
then b := 4 b;
POINT IN POLYGON := — b;
end POINT IN POLYGON

CERTIFICATION OF ALGORITHM 112

POSITION OF POINT RELATIVE TO POLYGON
[M. Shimrat, Comm. ACM, Aug. 1962]

RicuarD HACKER

The Boeing Co., Seattle Wash.

The Boolean procedure POINT IN POLYGON was programmed
in ForTrAN for the IBM 7090. The algorithm gave satisfactory
results except for-a case such as the following:

Let the polygon points be: (0, 0), (1, 0), (2, 1), (1, 2), (0, 2).

In this case the procedure would not detect that the point (1, 1)
is in the polygon. However, the correct result was obtained by
changing:

if (y<ylil = y > ylE+1IDA
to read:

if osyld] = y0 > yli+1DA

112-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 113

TREESORT

Rosertr W. Froyp

Computer Associates, Inc., Woburn, Mass.

procedure TREESORT (UNSORTED, n, SORTED, k); value
n, k;

integer n, k; array UNSORTED, SORTED;

comment TREESORT sorts the smallest k elements of the n-
component array UNSORTED into the k-component array
SORTED (the two arrays may be the same). The number of
operations is on the order of 2 X n 4 k& X logz(n). The number
of auxiliary storage cells required is on the order of 2 X x. It is
assumed that procedures are available for finding the minimum
of two quantities, for packing one real number and one integer
into a word, and for obtaining the left and right half of a packed
word. The value of infinity is assumed to be larger than that of
any element of UNSORTED;

begin integer 7, j; array m[1:2 X n — 1];

for ¢ := 1 step 1 until n do m[n + ¢ — 1] := pack (UNSORTED
fil,n+4—1);

for i := n — 1 step — 1 until 1 do m[i] := minimum (m[2 X i,
m[2 X i + 1]); :

for j := 1 step 1 until k do
begin SORTED [j] := left half (m{l]); i := right half (m[l1]);

m[i] := infinity;

fori := i + 2 while ¢ > 0 do m[i] := minimum (m[2 X 3], m[2 X
t + 1))

end

end TREESORT

113-P 1-

0

COLLECTED ALGORITHMS FROM CACM

114-P 1- 0

ALGORITHM 114

GENERATION OF PARTITIONS WITH CON-
STRAINTS .

FRANK STOCKMAL

System Development Corp., Santa Monica, Calif.

procedure CP GENERATOR (N, K, H, p, F, Z); integer
N, K, H; integer array p; Boolean F, Z;

comment CP GENERATOR generates a partition of N into K
parts, no part greater than H. Each partition is represented by
the array of parts p[1] thru p[K], where p[1] = p[2] 2 - -+ 2 p[K].
Initial entry is made with F = true and Z = true 1f parts = 0
are allowable, or F = true and Z = false if only nonzero parts
are desired. Upon initial entry, procedure ignores the input
array p, sets F = false, and generates the initial parti-
tion. Subsequent calls made with F = false will cause
procedure to operate upon the input partition to produce
another partition if one exists, so that all possible unpermuted
partitions with the specified constraints will be produced if CP
GENERATOR is allowed to operate upon its previous output.
When this scheme is followed, and initial entry is made with
F = true, Z = true, K = N, H = N, all possible un-
permuted partitions of N will be produced. Upon generating
the last partition, procedure resets F to true. The input param-
eters are restricted as follows: K =2 1, H = 1, p[l] = pl2]
Z «-+ 2 p[K]l. For Z = true, N is restricted to the range
0= N = KH, and for Z = false, K< N £ KH. A call should
not be made with p(1] — p[K] < 2 and F = false;

begin integer a, b, 7, j, ¢, 7;
if F then go to ﬁrst

=pll] —p2] - 2; j:=2;

test: if p[l] — plj] 2 2 then go to divide;
a:=a—14+;iX @l=pli+1)); j:=j+1; goto lest;

Sfirst: if Z then go to alpha;

=N — K; plK] :=0; go to beta;

alpha: a:=N; plK]:=—

beta: F := false; j:= K;

divide: b:=H — 1 — plj]; ¢ := entier (a/b); r:=a—>bXg;
for ¢ := 1 step 1 until ¢ do pfi] := H;
if ¢ = K then go to last;
fori := g+ 1stepluntil jdo p[s] := 1+ plj;
plg + 1] :=r + plg + 11;
if p[1] — p{K] = 2 then go to exil;

last: F := true;

exit: ‘end CP GENERATOR

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 115

PERM

H. F. TROTTER

Princeton University, Princeton, N. J.

procedure PERM (z, n); value n;

integer n; array T;

comment This algorithm was inspired by the procedure
PERMUTE of Peck and Schrack (Algorithm 86, Comm. ACM
Apr. 1962) and performs the same function. Each call of PERM
changes the order of the first » components of z, and n! succes-
sive calls will generate all n! permutations. A nonlocal Boolean
variable Yirst’ is assumed, which must be true when PERM is
first called, to cause proper initialization. The first call of PERM
makes %irst’ false, and it remains so (unless changed by the
external program) until the exit from the (n!)th call of PERM.
At that time z is restored to its original order and “irst’ is made
true.

The excuse for adding PERM to the growing pile of permuta-
tion generators is that, at the expense of some extra own storage,
it cuts the manipulation of z to the theoretical minimum of n!
transpositions, and appears to offer an advantage in speed. It
also has the (probably useless) property that the permutations
it generates are alternately odd and even;

begin own integer array p, d[2: n]; integerk, q; realt;
if first then initialize:
begin for k := 2 step 1 until ndo

begin plk] := 0; d[k] := 1 end;

first := false
end initialize;

k := 0;
INDEX: p[n] := q := p[n] + dn];

if ¢ = n then

begin d[n] := —1; go to LOOP end;

if ¢ % 0 then go to TRANSPOSE;

dinl :=1; k:=k+1;

LOOP: if n > 2 then begin

comment Note that n was called by value;
7 :=n — 1; go to INDEX end LOOP;
Final exit: q := 1; first := true;
TRANSPOSE: q:= q+ k; t:= zlql;
zlg] = 2lg + 1]; =lg+ 1] :=¢
end PERM:

CERTIFICATION OF ALGORITHM 115
PERM [H. F. Trotter, Comm. ACM (Aug. 1962)]
G. F. ScHRACK
University of Alberta, Calgary, Alb., Canada

PERM was translated into ForTraN for the IBM 1620 and it
performed satisfactorily. Timing tests were carried out under the
same conditions as for PERMUTATION (Algorithm 71) and
PERMUTE (Algorithm 86).

115-P1- 0

PERM is indeed the fastest permutation generator so far en-
countered. For n = 8, PERM is 259 faster than PERMUTE
(989 against 1316 sec.). The values for r, are (for a definition of
s , see Certification of Algorithm 71, Comm. ACM, Apr. 1962):

n 6 7 8
Tn .92 .95 .98

CERTIFICATION OF ALGORITHM 115
PERM [H. F. Trotter, Comm. ACM, Aug. 1962]
E. S. PuiLrips
Michigan State University, East Lansing, Mich.

PERM was translated into ForTraN for the CDC 160-A, and
it performed correctly. For n = 8, this method requires 2822
seconds. For ecomparison, Algorithm 86, PERMUTE, was trans-
lated and run on the same machine, requiring 3710 seconds as
opposed to 1316 when run on an IBM 1620.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 116

COMPLEX DIVISION

RoBerT L. SMITH

Stanford University, Stanford, Calif.

procedure complexdiv (a, b, ¢, d) results: (e, f);

value a, b, ¢, d; reala, b, c, d;

comment complexdiv yields the complex quotient of ¢ -+ b
divided by ¢ + id. The method used here tends to avoid arith-
metic overflow or underflow. Such spills could otherwise oceur
when squaring the component parts of the denominator if the
usual method were used;

begin real r, den;
if abs (¢c) = abs (d) then
begin r := d/c;

den := ¢+ r X d;

e := (a4 b X r)/den;

fi= (b —aXr)/den;

end

else

begin r := ¢/d;
den :=d+r Xec;
e :="(a X r+b)/den;
fi=((bXr—a)den;

end

end complexdiv

116-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 117

MAGIC SQUARE (EVEN ORDER)

D. M. CorLison

Elliott Brothers (London) Limited, Borehamwood, Herts.,
England

procedure magiceven (n, x); value n; integer array z; in-

© teger n;

comment the method of Devedec for even n is described in
“Mathematical Recreations” by M. Kraitchik, pp. 150-2. Enter
with side of square n to produce a magic square of the integers
1 —=n72inz, where n = 4;

begin integer a, b, n2, nn; Boolean p, ¢, r;

n2:=n+2; nn:=nXn;
begin

procedure alpha (p, ¢, a, h); value p, ¢, a, h; integer p, g, a;
Boolean h;

Comment pattern 0/0/0/ --- ;
begin integer r;
for 7 := p step 1 until ¢ do begin
z[r,a] == ifh then (@ X n — n + r) else (nn — a X n -
1+n—r); h:= —hend;
end alpha;
procedure beia (p, ¢, @, h); value p, ¢, a, h; integer D, ¢, a;
Boolean k;
comment patternl —1 -1 - ... ;
begin integer r;
for r := p step 1 until ¢ do begin
z[r,a] ;= ifhthen[nn —aXn-+r)else (@ X n 4+ 1 — 7);
h:= — h end;
end bela;
procedure gamma (p, q, a, h); valuep, g, a,h; integer p, q, @;
Boolean h;
comment pattern /—/—/— ... ;
begin integer r;
for r := p step 1 until ¢ do begin
z[r,al := ifhthen (nn —aXn+n—r+ 1else @Xn
+1—=7); h:= = h end;
end gamma;
comment program begins;
pi=q:=m—(n+4) X4=0);r:= true;
for a := 1 step 1 until (n2 — 1) do begin
beta (1,0 — 1,a,7); alpha (@, n2 — 1, a, true);
z[n2, a] := if g then (nn — a X n + n2 + 1) else (nn — a X
n + n2);
alpha (n2 + 1, n, a, = q);
g:= =-4q; 7r:= —rend;
alpha (1, n2 — 1, n2, — p); alpha (n2 + 2, n, n2, false);
gamma (1, n2 — 1,72+ 1, p); gamma (n2 + 2, n, n2 + 1, true);
g :=p; 7r:= true;
for a := (n2 4 2) step 1 until n do begin
beta (I, n —a,a,q); zln —a+1l,al:=aXn—-a+1;
beta (n— a + 2,n2 — 1, a, true);
if r then for b := n2, n2 + ldoz,a]:=nn —aXn -+
n—=0b+1
else begin z[n2, a] :=nn — a X n + n2;
zn2+ 1,a]l :=a X n—n2+ 1lend;
bete (n2 42,0 — 1,a, -~ 1); alpha (a, n, a, true);
q:=-4¢; 7= -7end;

117-P 1- 0O

fora :=n2,n2+ 1do ford :=n2,n2+ 1 do
z[b,a] :=if pthen (a X n — n + b) else (nn —a X n -+ n —
b+ 1);
if — p then begin
fora:=n2,72+ ldoz[n2 — 1,0l :=aX n—n2+2;
forb:=n2,72+ ldozb,n2+2l:=n X 02 —2X n + b end;
end end magiceven

CERTIFICATION OF ALGORITHMS 117 AND 118
MAGIC SQUARE (ODD AND, EVEN ORDERS)
[D. M. Collison, Comm. ACM, Aug. 1962]

‘D. M. CoLLISON

Elliott Bros.
England

(London) Ltd., Borehamwood, Herts.,

Both algorithms were checked and timed, using a special ALcoL
program, with the Elliott ArLcoL translator on the National-

- Elliott 803. The procedure for odd-orders was the slower:

Procedure Size of Square Time
0Odd order 9 10 sec.
19 45 sec.
Even order 10 7 sec.
20 23 sec.

Because of the different methods used and the length of the even
order procedure it was decided not to combine the two. The
smallest square of even order generated is given below:—

13 3 2 16
8 10 11 5
12 6 7 9

1 15 14 4

CERTIFICATION OF ALGORITHMS 117 AND 118

MAGIC SQUARES (EVEN. AND ODD ORDERS)
fD. M. Collison, [Comm. ACM, Aug. 1962]

P. Naur

Regnecentralen, Copenhagen, Denmark

~ MAGICEVEN needed the following correction: Within the
body of procedure beta a left square bracket: . .. then [nn . ..
should be changed to a left parenthesis: . . . then (nn . ..

With this correction it has run successfully in the GiEr ALgoL
system. The squares of even orders from 4 to 20 were generated
and checked for magicity in rows and columns, but not in
diagonals.

The algorithm contains 11 pairs of superfluous parentheses (10
of which are in conditional expressions) and if the assignments to
n2 and nn are moved to the place just following “end gamma;”
the inner block becomes unnecessary.

MAGICODD ran without correction in GIER ALGoL and pro-
duced a few reasonable-looking squares.

Run times are as follows:

Procedure Size of square Time

Magicodd 9 0.6 sec
19 2.5 sec

Magiceven 10 0.9 sec
20 2.3 sec

COLLECTED ALGORITHMS (cont.)

CERTIF ICATIONS OF ALGORITHMS 117 and 118
MAGIC SQUARE (ODD AND EVEN ORDERS)

[D. M. Collison, Comm. ACM, Aug. 1962]
K. M. BosworTH
I.C.T. Ltd., Blyth Road, Hayes, Middlesex, England

The statement within the Booleon procedure befa should be
changed from N : ’

zfr,al = if b then [rn—aXn+r) else (aXn+1-—7);

to : .
z[r,a] := if h then (nn—aXn+r) else (aXn+1—7r); |

The procedures were then tested on magic squares of order
8 to 17 inclusive without fault.

117-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 118

MAGIC SQUARE (ODD ORDER)

D. M. Corrison

Elliott Brothers (London) Limited, Borehamwood, Herts.,
England

procedure magicodd (n, x);
array z;

comment for given side n the procedure generates a magic
square of the integers 1 — n 1 2. For the method of De la
Loubére, see M. Kraitchik, “Mathematical Recreations,” p.

149. »n must be odd and n = 3;
begin integer 1, j, k;

value 7n; integer n; integer

for i := 1 step 1 until n do
for j := 1 step 1 until n do z[, 7] := 0;
ti=(n+4+1)+2; j:=mn;

for k := 1 step 1 until n X n do begin

ifz(i, j] > Othen begini :=7—1; j:=;—2;
ifi <ltheni:=1i+4n; ifj<1thenj:=j-+ nend;
zli, j] = k;
t:=4i+1; ifi>ntheni:={— n;
ji=j+1; ifj>nthenj:=j— n;
end;
end magicodd

CERTIFICATION OF ALGORITHMS 117 AND 118

MAGIC SQUARE (ODD AND, EVEN ORDERS)
[D. M. Collison, Comm. ACM, Aug. 1962]

D. M. CorrisoN

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
Both algorithms were checked and timed, using a special ALcoL

program, with the Elliott ArncoL translator on the National-
Elliott 803. The procedure for odd orders was the slower:

Procedure Size of Square Time
0Odd order 9 10 sec.
19 45 seec.
Even order 10 7 sec.
20 23 sec.

Because of the different methods used and the length of the even
order procedure it was decided not to combine the two. The
smallest square of even order generated is given below:—

13 3 2 16
8 10 11 5
12 6 7 9
1 156 14 4

CERTIFICATION OF ALGORITHMS 117 AND 118

MAGIC SQUARES (EVEN AND ODD ORDERS)
[D. M. Collison, [Comm. ACM, Aug. 1962]

P. Naur

Regnecentralen, Copenhagen, Denmark

MAGICEVEN needed the following correction: Within the
body of procedure beta a left square bracket: ... then [nn . ..

N8P 1- 0

should be changed to a left parenthesis: . . . then (nn . ..

With this correction it has run successfully in the Gier ALcoL
system. The squares of even orders from 4 to 20 were generated
and checked for magicity in rows and columns, but not in
diagonals.

The algorithm contains 11 pairs of superfluous parentheses (10
of which are in conditional expressions) and if the assignments to
n2 and nn are moved to the place just following “end gamma,;”
the inner block becomes unnecessary.

MAGICODD ran without correction in GIER ArcoL and pro-
duced a few reasonable-looking squares.

Run times are as follows:

Procedure Size of square Time

Magicodd 9 0.6 sec
19 2.5 sec

Magiceven 10 0.9 sec
20 2.3 sec

CERTIFICATION OF ALGORITEM 118
MAGIC SQUARE (ODD ORDER) [D. M. Collison,
Comm. ACM, Aug. 1962]
Hexry C. THACHER, JR.*
Reactor Engineering Div.,
Argonne, Il
* Work supported by the U. S. Atomiec Energy Commission.

The body of the procedure magicodd was tested on the LGP-30
using the Dartmouth AngoL 60 translator. No syntactical errors
were found. The procedure generated odd-arder magic squares
satisfactorily. For orders up to 9, times were as follows (including
output on the Flexowriter):

Argorne National Lab.,

Order Time(sec)
3 171
5 422
7 804
9 1285
The 3 X 3 square was:
8
1
6

N O
-~ Or W

CERTIFICATIONS OF ALGORITHMS 117 and 118

MAGIC SQUARE (ODD AND EVEN ORDERS)
[D. M. Collison, Comm. ACM, Aug. 1962]

K. M. BosworTH

1.C.T. Ltd., Blyth Road, Hayes, Middlesex, England

The statement within the Booleon procedure beta should be
changed from

zlr,a] := if b then n—aXntr) else @Xn+1l—r);
to
z[r,a] := if’h then (an—aXn-+r) eclse (@Xn+1-7);

The procedures -were then tested on magic squares of order
3 to 17 inclusive without fault.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 119

EVALUATION OF A PERT NETWORK
BurToN EISENMAN AND MARTIN SHAPIRO
United Nuclear Corp., White Plains, N. Y.

procedure pert (nmaz, 1, j, te, st, emaz, I, es, at);

comment An algorithm describing an iterative procedure for
evaluating a PERT network that permits the use of arbitrarily
ordered activities and event identifiers such that an upper
triangular matrix type of solution is unnecessary.

It has been observed by investigations of PERT networks,
that an N X N matrix whose rows are designated as predecessor
and whose columns are designated as successor events, has an
entry in the (7, j)-element representing the activity time re-

quired in going from event to event j. By elementary transfor-

mations, the matrix is transformed generally into an upper
triangular matrix. The resultant upper triangular matrix is well
ordered (i.e. any activity time appearing in a column is not
dependent upon those activity times which appear in columns
to the right of it).

This precise manipulation generally demands considerable
running time. By direct evaluation not requiring a collection of
elementary transformations, it is possible to evaluate the net-
work with considerable reduction of running time;

integer nmaz, emax;

real si;

integer array ¢, j, [;

real array e, es, al;

comment Given the total number of activities, nmaz, the pre-
ceding and succeeding event identifiers, ¢, and j,, the cor-
responding expected time, te, for each activity, and the starting
time, st, of the network, this procedure computes the early start
and late finish times, es, and at, , for each event, [, , in the net-
work;

begin

procedure scan (e, ¢, 1);

integer e, i;

integer array [;

comment Given the number of events, e—1, contained thus far
in vector array, I, and an event identifier 7, or j, , stored in ¢,
this procedure scans the existing array, I, to determine whether
the event should be added to the list or not. If it is to be added,
it becomes I, and ¢ replaces the event identifier. If it is not
added, & replaces the event identifier.;

begin

integer k;

if ¢ = 1 then go to add;
for k := e¢—1 step —1 until 1 do

begin if ¢ = l{k] then

begin t:=k;
go to out

end

end;

add : le] :=t;
t:=e¢;
e:=¢-+ 1;

out:

end scan;

119-P 1- 0

integer n,e, s, k;

real a, z;

e:=1;

for n.:= 1 step 1 until nmaz do
t:= jnl;

scan (e, t, 1);

iln] == ¢;

t := i[n];

scan (e, ¢, 1);

ifn) :=1t

begin

end;

comment By means of the switch, s, we will either compute the
activity times, af, , and transfer the values to the early start
vector, es, , or we will compute af, without any transfer process,
in which case the late finish times will be obtained.;
emazxr = e — 1;

8:=1;
q 1= 8f;
8l: k := emox;
for ¢ := 1 step 1 until emaz do
atle] := a;
§2: for n := 1 step 1 until nmaz do
begin if I[{[n]] > 0 then
begin switch s := bl, b2;
bl: z := abs (at[i[n]]) + te[n];
if z > abs (at[j[n]]) then go to l1;
go to [2;
b2: z := abs (atfi[n]]) — te[nl;
if z < abs (atlj{n]]) then
1 alfj[n]] 1= — z;
12:
end
end;
for e := 1 step 1 until emar do
begin if l[¢] < 0 then
begin if atfe] < 0 then
begin le] := abs (l[e]);
k:=k+1;
$3: atle] := abs (atfe]);
go to I3
end;
go to I3
end;
if atle] = 0 then
begin lle] := — llel;
k:=Fk-—1,;
go to 3
end;
go to 83;
13:
end;
if £ > 0 then go to 82,
switch 8 := g1, ¢2;
gl: §:=2
for n := 1 step 1 until nmax do
begin t := i[n];
i[n] := jln};
in] = ¢

end;

COLLECTED ALGORITHMS (cont.)

a:=0;

for ¢ := 1 step 1 until emax do
begin esle] := atle];

le] := abs (l[e]);

if atle] > a then

a .= atle]

end;
go to sl;

g2: for ¢ := 1 step 1 until emaz do
lle] := abs (lle]);

end pert

CERTIFICATION OF ALGORITHM 119 [H]

EVALUATION OF A PERT NETWORK [Burton Eisen-
man and Martin Shapiro, Comm. ACM 6 (Aug. 1962),
436] .

L. StepHEN CoLEs (Recd. 10 Nov. 1964 and 7 Dec. 1964)

Carnegie Institute of Technology, Pittsburgh, Pa.

The procedure was tested on a CDC-G20, using the ArcoL
compiler developed by Carnegie Tech. Before compilation was
possible, the following modifications were required in order to
make it a correct ALGoL 60 procedure.

1. Insert after the end of scan

switeh sw2 := ¢1, ¢2;

2. Modify comment By means of the switch, s, ---

to read
comment By means of the switches, swl and sw2, - --

3. Modify begin switch s := bl, b2;

to read
begin switch swl := bl, 2; go to swl [s];

4. Modify switch s := g1, g2;

to read

go to sw2 [s];
With these changes the procedure was operated successfully on a
number of small test problems.

119-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 120

MATRIX INVERSION II

Ricaarp GrorGe*

Particle Accelerator Division Argonne National Labora-
tory Argonne, Illinois .
* Work supported by the U. S, Atomic Energy Commission.

procedure INVERSION II (n, a, epsilon, ALARM, delta);

comment This is a revision of Algorithm 58. It accomplishes in-
version of the matrix a, with the result stored in matrix a. The
order of the matrix is n. If in the process of calculating, any
pivot element has an absolute value less than epsilon, there
will be a jump to the non-local label ALARM . The variable delta
will contain the value of the determinant of the original matrix
on normal exit, zero or a very small number on exit to ALARM .;

value n;

array a;

real epsilon, della;

integer n;

begin
array b, c[l:n]; real w, y;
integer array z[l:n]; integer i, j, k, [, p;

delta := 1.0;
for j := 1 step 1 until » do
z[j] := 35
for i := 1 step 1 until » do
begin
k=1t y:=ali,i]; | :=11=1; p:=1i+l;
for j := p step 1 until n do
begin
w = ali, jl;
if abs(w) > abs(y) then
begin
k= j;
Y= w
end;
end;

delta := delta X y;
if abs(y) < epstlon then go to ALARM;
=1.0/y;
for j := 1 step 1 until » do
begin
¢ljl := alj, k;
alj, k] := alj, il;
alj, 1} := — clil X y; .
b[]] = a[l) il = a[i) .7] Xy
end;
ali, @] := y;
= zli];
z[i] := z[k];
zlk] = 3;
for k := 1 step 1 until /, p step 1 until » do
for j := 1 step 1 until [, p step 1 until » do
alk,] := alk, j1 — b[5] X clk]
end;

for ¢ := 1 step 1 until » do
begin
REPEAT: k := z [i];

if k=17 then go to ADVANCE;
for j := 1 step 1 until n do

120P1- 0

begin
w:=a i, jl;
ali, j] = a [k, il;
gk, j] :=w
end;
p =2z [
2 2] i=z [k];
2 [k] := p;
delta := — delta;
go to REPEAT;
ADVANCE: end;
end

CERTIFICATION O ALGORITHMS 120
MATRIX INVERSION BY GAUSS-JORDAN

INVERSION II [R. George, Comm. ACM Aug. 1962]
and gjr [by H. Rutishauser, quoted by H. R. Schwarz,
Comm. ACM Febr. 1962]

P. Naur

Regnecentralen, Copenhagen, Denmark

AND

These two procedures were compared using the GiEr ALeoL
system (30 bits for the normalized mantissa including sign). The
following changes (in part dictated by the requirements of the
compiler) were included:

INVERSION II: (1) Epsilon was included in the value part.
(2) The specification label ALARM was added.

gjr: (1) The value part: value 7, eps was inserted. (2) The
second ¢ in the formal parameter part was taken out.

With these changes both procedures ran smoothly through the
compiler. In order to obtain a comparison each of them was tested
as follows: With a given, rather large value of epsilon the pro-

cedure was called to invert a segment of the Hilbert matrix. Upon
alarm exit, the value of epsilon was divided by 10 and a fresh call
was made. In this way an estimate of the largest permissible
epsilon was obtained. When the inverse had been obtained, that
element of it which was most in error was found through a com-
parison with the accurate inverse as calculated by means of
INVHILBERT (Algorithm 50, see certification above). A relative
error was obtained through division by the largest element of the
accurate inverse.

This process was carried out for segments of the Hilbert matrix
of orders 2 through 15. For orders above 9, the results of the in-
version are dominated by errors. Below 9 we obtained the follow-
ing output:

Inversion by INVERSION II

Maximum error Maxtmum error

Order eps Determinant Sutscr. Error Relative

2 10—2 8.333333310—2 2,2 2.9810—8 2.4810—9
3 10—3 4.629628410—4 2,2 5.0li10—5 2.6110—7
4 10—4 1.653431410—7 3,3 3.0610—2 4.7210—6
5 10—5 3.749000110—12 4,4 1.38101 7.7210—5
6 10—7 5.360187510—~18 5,5 5.78103 1.3110—3
7 10—8 4.8485529:10—25 5,5 3.70105 2.770—-3
8 10—10 1.522100010—33 6,6 3.33109 7.8410—1

Similarly we got for gjr, and the ratio of errors of the two
procedures:

COLLECTED ALGORITHMS (cont.)

Inversion by gjr Ratio of errors

Maximum error Maximum error INVERSION I1

Order eps Subscr. Error Relative togjr

2 10—2 2,1 2.9810—8 2.4810—9 1.0

3 10—3 2,2 2.8610—6 1.4910—8 18

4 10—4 4,3 1.0710—4 1.6510—8 290

5 10—6 4,4 2.48 1.3910—5 5.6

6 10—7 5,5 4.05103 9.1810—4 1.4

7 10—8 5,5 4.32106 3.2410—-2 .086

8 10—10 7,7 5.55107 1.3110—2 60

Although the superiority of gjr, which searches for the pivot
in both columns and rows, over INVERSION II, which only
searches in the next column, is well brought out in the last column
of the second table the behavior for n = 7 is curious and ought to
be confirmed elsewhere.

As a further test both procedures were 'used to invert the
matrices produced by Algorithm 52, TESTMATRIX (sce certifi-
cation above). Again, the error of the inverse was found by a
comparison with the known inverse. The comparison of the two
procedures was made for orders 2 through 23 and revealed a sur-
prisingly small difference of accuracy. Typical output was as
follows:

Location and size of max. error Ratio of errors

INVERSION IT gjr INVERSION II
Order Subscr. Error Subscr. Error to gjr
5 5,5 8.9410—8 5,5 8.9410—8 1.00
10 10,10 3.7610—6 10,10 3.5210—6 1.07
15 15,15 2.1210—5 15,15 1.7810—5 1.19
20 20,20 6.8110—5 20,20 6.7110—5 1.02

The relative errors of the determinants calculated by INVER-
SION II increased slowly with n, reaching 2.310—7 for n = 24.
Typical execution times were found as follows:

Order INVERSION II gjr
5 2 seconds 3 seconds
10 5 o« g8 «
15 16 “ 17 “
20 53 “ 57 «“

However, it should be noted that owing to the automatic
segmentation of the program into drum tracks in GIER ALGOL
the execution time may vary somewhat from one program in which
a procedure is used to another. The above times do not, in fact,
refer to the same program.

CORRECTION TO EARLIER REMARKS ON AL-
GORITHM 42 INVERT, ALG. 107 GAUSS’S METHOD,
ALG. 120 INVERSION II, AND gjr [P. Naur, Comm.
ACM, Jan. 1963, 38-40.]

P. Naur

Regnecentralen, Copenhagen, Denmark

George Forsythe, Stanford University, in a private communi-
cation has informed me of two major weaknesses in my remarks on
the above algorithms:

1) The computed inverses of rounded Hilbert matrices are com-
pared with the exact inverses of unrounded Hilbert matrices, in-
stead of with very accurate inverses of the rounded Hilbert
matrices.

2) In criticizing matrix inversion procedures for not searching
for pivot, the errors in inverting positive definite matrices cannot
be used since pivot searching seems to make little difference with
such matrices.

It is therefore clear that although the figures quoted in the
earlier certification are correct as they stand, they do not sub-
stantiate the claims I have made for them.

120-P 2- 0

To obtain a more valid criterion, without going into the con-
siderable trouble of obtaining the very accurate inverses of the
rounded Hilbert matrices, I have multiplied the calculated in-
verses by the original rounded matrices and compared the results
with the unit matrix. The largest deviation was found as follows:

Maximum deviation from elements of the unit matrix

Order INVERSION II gjr Ratic
2 —1.49,0—8 —1.49,0—8 1.0
3 —4.7710—7 —8.34,,—7 0.57
4 —9.54,0—6 —3.4310—5 0.28
5 —7.3210—4 —4.58,,—4 1.6
6 —1.61;0—2 —~1.42,,—2 1.1
7 —5.7810—1 —5.47,0—1 1.1
8 —1.2010—2 —1.38;,1 8.7
9 —4.91,01 —2.2201 2.2

This criterion supports Forsythe’s eriticism. In fact, on the
basis of this criterion no preference of INVERSION IT or gjr can
be made.

The calculations were made in the GIEr ALGOL system, which
has floating numbers of 29 significant, bits.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 121

NORMDEYV

DAvVID SHAFER

University of Chicago, Chicago, Ill.

procedure NormDev(Random,A x);
procedure Random; real A,z;
comment ‘NormDev' uses (1) a procedure ‘Random(y)’ as-
sumed to produce a random number, 0 < y < 1, and (2) the
constant 4 = sqrt(2/pi) X integral [0:1] exp(—x12/2)dx, to
produce a positive normal deviate ‘z’;
begin real y;
Random(z); if x > A then go to large;
T = x/A;
1: Random(y); ify < exp(—x12/2) then go to EndND;
Random(z); go to 1;
large: z := (x — A)/(1 — A);
2: z = sqrt(l — 2 X log(z));)
Random(y); ify < 1/z then go to EndND;
Rondom(z); go to 2;
EndND: end

CERTIFICATION OF ALGORITHM 121 [G5)

NORMDEYV
[David Shafer, Comm. ACM & (Sept. 1962), 482]

M. C. Pixe (Recd. 3 May 1965)

Statistical Research Unit of the Medical Research Coun-
cil, U. College Hospital Medical School, London.
Algorithm 121 has the following error: The line

2:x :=sqrt (1 — 2 X log (z));
should read

2:z =8t (1 — 2 X In (2));
With this correction NormDev has been run successfully on the
ICT Atlas computer with the Atlas ALcoL compiler,

121-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 122
TRIDIAGONAL MATRIX
GERARD F. DiETZEL

Burroughs Corp., Pasadena, Calif.

procedure TRIDIAG (n,A,U);
integer n; array A,U;
comment This procedure reduces a real symmetric matrix A4 of
order n to tridiagonal form (UT)AU (UT = transpose of U) by
a sequence of at most (n—1)(n—2)/2 binary orthogonal trans-
formations. Also, the matrix U is calculated. [Cf. W. Givens,
“Numerical computation of the characteristic values of a real
symmetric matrix,” Report ORNL1574 (1954), Oak Ridge Nat.
Lab., Tenn., and D. E. Johansen, “A modified Givens method
for the eigenvalue evaluation of large matrices,” J. ACM 8, 3
(1961)1;
begin real fact,cl,c2,locl,loc2,temp; integer ¢,5,51,i2,j3,74,n1;
comment Set array U = identity matrix of order n;
for 1 := 1 step 1 until n do
begin
for j := i+1 step 1 until n do U[Z,j] := Ulj,i] = 0;
Uk,z] := 1.0
end;
comment The reduction of the matrix A begins here. Only the
upper triangular elements of A are used in the computation;
nl :=n — 2;
for 7 := 1 step 1 until nl do

begin
li=14+1; 2:=1+2;
for j := ;2 step 1 until n do
begin

if Ali,5] = O then go to lab;

fact .= 1/ sqrt(Afi,j1112 + A[,5112);

¢l := fact X Afi,j1]; ¢2 := fact X Ali,j];

locl := Aljl,51]; loc2 := Aljl,j];

Ali1,71] := €172 X locl + 2.0 X ¢l X ¢2 X loc2 + ¢212 X

Ald);

Af1,7] := —cl X ¢2 X.locl + (c112 — ¢212) X loc2 + ¢l X
c2 X Alj,ik;

Alf,5] 1= €212 X locl — 2.0 X ¢l X ¢2 X loc2 + ¢112 X
Al

Bi=i+1

for k := j3 step 1 until » do

begin .

temp := A(j1,k};
Afjlk] := ¢l X temp 4+ ¢2 X Alj,k];

Al k] := —c2 X temp + ¢1 X Alj k]
end;
A:=jj—-1;
for k := j2 step 1 until j4 do
begin

temp = Aljl,k];
Alj1k] := ¢l X lemp + c2 X Alk,jl;

Afk,7] := —c2 X temp + c1 X Alk,j]
end;
Alif1] := ¢l X A[l,71] + ¢2 X Al#34];
Alz,j] := 0;

for k := 1 step 1 until n do

122-P1- O

begin
temp := Ulk,jll;
Ulk,j1] := ¢l X temp + ¢2 X Ulk,jl;
Ulk,i] := —¢2 X temp + ¢l X Ulk,j]
end; '
lab: end
end;

for i := 1 step 1 until 7 do
for j := 141 step 1 until n do
Alsi] = Ali,6)
end TRIDIAG

CERTIFICATION OF ALGORITHM 122

TRIDIAGONAL MATRIX [Gerard F. Dietzel, Comm.
ACM 5 (Sept. 1962), 482]

PeTER NAaUr (Recd 27 Sept. 63)

Regnecentralen, Copenhagen, Denmark

TRIDIAG needed the following corrections:
1. Insert k among the local integers to read:
integer ¢, j, 71, 52, j3, j4, nl, k;
2. At the end of line 5 of the procedure body, insert the colon to
read Ulj, 7] := 0;
3. Change the round parenthesis to a square bracket following
fork := 53 --- toread temp := A[jl,k];

With these corrections the algorithm worked satisfactorily with
the GIER ALGOL system. As a test it was tried with the following
matrix:

HBH TESTMATRIX|j, :]| = HBH TESTMATRIX[i, j]
=n+1-7y Gz

(cf. the Certification of Alg. 85, Comm. ACM 6 (Aug. 1963), 447).
As a check the resulting matrix was rotated back again, using the
resulting U-matrix, and the largest deviation of any element from
the original was found.

For comparison the figures obtained by using the algorithms
given by Wilkinson in Numerische Mauhematik 4 (1962), 354-376,
may be used. Wilkinson’s algorithms use Householder’s method of
obtaining the tridiagonal form. It should be noted that the devi-
ations given in the table below for Householder’s method refer to
the final result of obtaining the eigenvalues and vectors, and not
only the tridiagonal form, and thus include error contributions
from a rather longer chain of calculations than the ones given for
TRIDIAG. The times, however, only refer to the tridiagonalisa-
tion process in both cases.

Largest deviation
TRIDIAG,
householder tridiagonalisation
Time of execution, in GIER
ALcGoL, seconds
TRIDIAG 2 7 34
householder tridiagonalisation 1 4 10

T.do—7 7.000—7 2.40—6
1.40—7 1.30—6

These figures clearly demonstrate the superiority of the House-
holder process. Since, in addition, the Householder method in the
form given by Wilkinson uses much less storage for variables,

Algorithm 122 cannot be recommended.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 123

REAL ERROR FUNCTION, ERF(x)
MARTIN CRAWFORD AND ROBERT TEcHO
Georgia Institute of Technology, Atlanta, Ga.

real procedure Erf(z); real z;

comment &(z) = Erf(z) = (@/v/m /3 e du can be computed
by using the recursive relation for derivatives with ®'(z) =
(2/v/me=*, where ®®™ (z) = —2d*D(z) — 2(n—2)d0 2 (z),
for n = 2, 3, -+ . The Taylor’s series expansions of ®(a:) are
taken about k41 points on the interval 0 < a; < z and summed
to get ®(z);

begin real A, U, V,W,Y,Z T; integer N;
Z :=0; 1: ifz # 0 then
begin if 0.5 < abs (r) then A := — sign (z) X 0.5
else A := — z;
U:=V := 112837917 X exp(—2z12); YV :i=T:= -V X
A; N :=1;
2: if abs(T) = 10— 10 then
begin N :=N+1; W:i=—2XaeXV —2X%XUX (N=2);
T:=TXWX A/(V X N);
U=V, Vi=W; Y:=Y+T; goto?2end;
Z:=Z+Y;, z:=x2+ A; gotolend;
Erf := Z end Erf

CERTIFICATION OF ALGORITHM 123

REAL ERROR FUNCTION, ERF (x) [Martin Craw-
ford and Robert Techo, Comm. ACM, Sept. 1962]

HeNRY C. THACHER; JR.*

Argonne National Laboratofy, Argonne, IIl.
* Work supported by the U. 8. Atomic Energy Commission.

The body of Erf(x) was tested using the Dartmouth SCALP
compiler for the LGP-30. For 2 = 0(0.01)0.3, the results agreed
with tabulated values to 8 in the 7th decimal place, and for z =
0.4(0.2)1.6 the error was less than 1 in the 6th decimal. These
results are compatible with the roundoff error in the arithmetic
used. The computing time increased rapidly (by a factor of more
than 10) as z increased from 0.01 to 1.6.

The following comments should be considered by users of the
algorithm:

1. The parameter z should be called by value, both to allow the
use of expressions, and also to avoid destruction of the actual
parameter.

2. The constant 10—10 in statement 2 determines the acecuracy of
the computation. Its value should be adjusted to the arithmetie
being used, and the accuracy required. A machine-independent
test could be made by substituting if ¥ — 7" = Y then --.

3. For large r, the error function is more efliciently calculated
from the Laplace continued fraction for erfc(z). Algorithm 180
is based on this method.

123-P 1- O

REMARK ON ALGORITHM 123

ERF(z) [Martin Crawford and Robert Techo,
ACM, Sept. 1962]

D. IsBETSON

Elliott Brothers (London) Ltd.

Elstree Way, Borehamwood, Herts., England

Comm.

(1) The specification value x; was added to allow z to be an
expression and to prevent side effects.
(2) The algorithm wag then modified to give the Gaussian
integral (1/4/27) [exp(—$u2) du by
(a) changing its name to Gauss (),
(b) inserting x := 2+0.70710678; immediately before Z :=0; ,
and
(¢) changing the final statement to
Gauss :=-(Z+1)/2 end Gauss
(3) The algorithm with the above changes was tested on a
National Elliott 803 computer using the Elliott-ALGOL translator
with 1—8 substituted for j,—10. It was found to produce wrong
angwers when r = =1 (corresponding to Erf(41/4/2)) giving
0.5 == 0.3467899 instead of 0.5 == 0.3413447.

REMARK ON ALGORITHM 123

ERF(z) [Martin Crawford and Robert Techo, Comm.
ACM 6 (Sept. 1962), 483; 6 (June 1963), 316; 6 (Oct.
1963), 618]

StEPHEN P. BArRTON AND JOHN F. WAGNER (Recd 2 Dec. 63)

General Telephone and Electronics Laboratories, Bayside,
New York

This algorithm may err when the Taylor series expands about a
root of the nth-order Hermite polynomial; one such error has
already been. noted [Remark on Algorithm 123, D. Ibbetson,
Comm. ACM 6 (Oct. 1963), 618]. The difficulty springs from the
Taylor-series truncation eriterion, which assumes that the magni-
tude of successive terms in the Taylor series decreases. This is not
always so, as may be seen by relating

nz1)

Hn) (.’C)

to the Hermite polynomial H.(z), which can be defined as

Holz) = (—1)es* jzﬂ ().

Therefore
P (.’B) = (1) € an—l(z)'
\/"

As a result, " (z) vanishes when z is a root of H,.(z) and the
Taylor series may be terminated prematurely.

The algorithm was translated into ForTRAN II and run on a
Scientific Data Systems 910 computer (39-bit mantissa) with the
following changes:

COLLECTED ALGORITHMS (cont.)

(1) The argument was decremented by 0.25 rather than 0.5.

(2) The truncation criterion for abs (T) was 10712 rather than
10-10,

Errors, detected for x = 1/4/2 and z = 2.652, were traced to the
above described premature truncation of the relevant Taylor
series. These arguments correspond to the roots of H:(x) and
Hq(z).

The program was therefore modified to sum a fixed number of
terms, with special attention to the difficulties that might arise
when expanding about roots of Hx(z). In particular, in Algorithm
123, line 9, the coefficient, A"/n!, of the nth term in the Taylor
expansion, is obtained via the intermediate step of dividing the
(n—1)-term, T, by the (n—1)-derivative, V. The possibility of
dividing by ¥V = 0 when the Taylor expansion takes place about
roots of H._2(z) was avoided by modifying the program to com-
pute coefficients directly from the recursion relation,

Annl = [A%1/(n—1)[A/n].

In selecting the number of terms to be included in each Taylor
series, consideration should also be given to the size of the stand-
ard decrement (specified as 0.5 in line 3 of Algorithm 123), for it
is the combination of these two parameters which largely deter-
mines the accuracy and running time. A brief survey suggested
that at least 10-digit accuracy could be obtained if a decrement of
0.4 were employed with 16 terms in each Taylor series; this resulted
in an average running time of about 3.5 seconds per computation
for arguments in the range 0 < z £ 5.0.

REFERENCE: H. MarcENau and G. M. MurprHY, The Mathe-
matics of Physics and Chemistry, pp. 119, 122. D. van Nostrand,
1943.

REMARKS ON:

ALGORITHM 123 [S15]

REAL ERROR FUNCTION, ERF(z)
[Martin Crawford and Robert Techo Comm. ACM §
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION—LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION—
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15}
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

123-P 2- R1

ALGORITHM 304 [S15]

NORMAL CURVE INTEGRAL
[I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. Hin anp S. A. Jovce (Reed. 21 Nov. 1966)

Medical Research Council,

Statistical Research Unit, 115 Gower Street, London
W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALaoL compiler. The following amendments were made
and results found:

ALGORITHM 123

(i) value z; was inserted.

(ii) abs(T) < 10—10 was changedto ¥ — T =7
both these amendments being as suggested in [1].

(iii) The labels 1 and 2 were changed to L1 and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.

(v) The extra statement z := 0.707106731187 X z was made
the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except z = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := —0.56418958/x/exp(v) was changed to
T := —0.564180583548 X exp(—v)/z. This is faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.
(ii) The extra statement z := 0.707106781187 X z was made.
as in (v) of Algorithm 123.
(iii) for m := m + 1 was changed to form :=m 4 2. m+1
is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative
to the amendment suggested in [4].
The results were accurate to 9 significant figures for z < 8,

but to only 8 significant figures for 2 = 10 and z = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 T m/(480Xsqrt(2XX3.14159265)) was changed to
10 T m X 0.000831129750836.
(ii) for i := 1 step 1 until 2 X n do was changed to
m := 2 X n; for i :=1step 1l until m do.
(iii) —(@Xb/n) T 2/8 was changed to —(Xb/n) T 2 X 0.125.
(iv) ifi =2 X n — 1 was changed to ifi=m —1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to
b/(15.0397696478 X n).

COLLECTED ALGORITHMS (cont.)

Tests were made with m = 7 and m = 11 with the following
results:

Number of significant Number of decimal
z figures correct places correct
m =7 m = 11 m =7 m = 11
—-0.5 7 11 7 11
-1.0 7 10 7 10
-1.5 7 10 8 10
—2.0 7 9 8 10
—2.5 6 9 8 1
-3.0 6 7 8 9
—4.0 5 7 10 1
—6.0 2 1 12 10
—-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig-
nificant figures is stretching the machine’s ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,

but was only 5 decimal places at x = 0.8,

ALGORITHM 304 '

No modification was made. The errors in the 11th significant figure
were:

abs(z) z > 0 = upper z> 0 = upp'er
0.5 1 1
1.0 1 2
1.5 212(5) 2
2.0 252(0) 4
3.0 0 0
4.0 2 3
6.0 6 0
8.0 14 0
10.0 23 0
20.0 35 0

» Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

123-P 3- ¢

abs(z) z > 0 = upper z > 0 = upper
1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas “Instruction Count,’” while evaluating the function 100
times. The figures are not directly applicable to any other com-
puter, but the relative times are likely to be much the same on
other machines.

InsTrRUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(z)
123 | 180 | 181 | 209 226 272 | 304= | 304°
m=17
0.5 58 8 97 24 25 24
1.0 65¢ 8 176 24 29 29
1.5 | 164 | 128 | 127 9 273 25 35 35
2.0 | 194 78 90 8 387 24 39 39
2.5 | 252 54 68 10 515 24 131 44
3.0 42 51 9 628 25 97 50
4.0 27 39 9 9004 25 67 44
6.0 15 30 6 14004 | 16 49 23
8.0 9 28 7 21004 | 18 44 1
10.0 10 25 5 27004 16 38 11
20.0 9 22 5 65004 | 16 32 11
30.0 9 9 5 | 109004 | 16 11 11

s Readings refer to ¢ > 0 = upper.

b Readings refer to £ > 0 = upper.

¢ Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.

4100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations. '
REFERENCES:

1. Taacaer, HEnrY C. Jr. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

COLLECTED ALGORITHMS (cont.) 123-P 4- 0

9. IeBETSON, D). Remark on Algorithm 123. Comm. ACM 6
(Oet. 1963), 618. :

3. BarToN, STEPHEN P., AND WAGNER, Joun F. Remark on
Algorithm 123, Comm. ACM 7 (Mar. 1964), 145.

4, CLaUSEN, I., AND Hansson, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SuErPARD, W. E. The Probabilily Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 124

HANKEL FUNCTION

Luis J. ScHAEFER

Purdue University, West Lafayette, Ind.

procedure HANKEL(N,X H); value N,X;
real X; array H;
comment This procedure evaluates the complex valued hankel
function of the first kind for real argument X and integral order
N and assigns it to H. The individual Bessel- and Neuman-func-
tion series are not evaluated separately. Both the real and
imaginary parts are generated from the same terms;
begin real K, P, R, A, 8, T, D, L; integer @;
A:=R:=1; H[]:= H[2]:=8 :=0;
forQ := 1step 1l until N dobegin R :=R X Q; 8 :=8 +
1/Q end; D := R/N;
R :=1/R; K := X X X/4;
1.1544313298631 ;
for Q := 0, Q+1 while Q=N VL=H[2] do
begin L := H[2]; H[l] := H[1] + AXKXR;
H[2] := H[2] + AXBXKX(T—-8) — (if Q<N then D/P
else 0));)
A:=AXK/Q; R:=—R/Q+N); 8:=8+1/Q+1/@Q+N);
if Q<N then D := D/(N—-Q)
end; H(2] := H[2] X .31830989
end

integer N;

P := (X/2)IN; T := In(K) +

CERTIFICATION OF ALGORITHM 124 [S17]

HANKEL FUNCTION [Luis J. Schaeffer, Comm. ACM &
(Sept. 1962), 483) ,

GeorGE A. RErLuy (Recd. 5 Oct. 1964 and 4 Nov. 1964)

Westinghouse Research Laboratories, Pittsburgh, Pa.

This procedure, after modification, was run on the B-5000 using
B-5000 Arcovn. Values obtained checked with US National Bureau
of Standards Handbook of Mathematical Functtons, Applied Mathe-
matics Series 55, US Government Printing Office, Washington,
D.C. 1964.

For N = 0, 1 and 2, accuracy was to 10 decimals for X < 8.0. It
deteriorated to 6 decimals for 8 < X < 17.5. For 3 < N £ 9 ac-
curacy was to the 5 decimals of the tables.

Some changes proved necessary to make the algorithm run.
Since the algorithm is short and the changes are involved, the
algorithm is restated here. Note that a test for a zero argument
X is included in the body of the procedure since H[2] ought to be
minus infinity when X = 0.

procedure HANKEL (N, X, H); value N, X; integer N;
real X; array H;

beginreal K, P,R, A, 8, T, D, L; integer@; -
if X =0then

begin comment In this case H[2] is minus infinity. M denotes
the largest number which can be represented in the machine.
The numerical value of M is to be written into the
procedure:
H[2] := —M;
H[l] :=if N = 0thenlelse0;
go to exil
end;

124-P 1- 0

A:=R:=1; H|lj:=H[2] :=8:=0;
if N=0thenbeginR :=1; S:=D:=0end
else

begin for := 1 step 1 until N do
beginR :=RXQ; S:=S8S+1/Qend; D:=R/N
end;
R :=1/R; K:=X X X/4;
1.1544313298631; .
comment The last constant is 2 X gammae, Euler’s constant;
forQ :=0,Q+ 1whileQ < N VL= HI[2]do
begin L := H[2]; H[):= H[1]+ A X R;
Hi2]:= H[2] 4+ A X (RX(T—S8) — (if ¢g<N then D/P else0));
4 = A X K/@@+1); R := —R/Q+N+1);
S8:=8 + 1/@+1) + 1/@+N+1);
ifQ+4+ 1< N thenD := D/(N—-Q—1);
end; :
P:= (X/2) 1 N; H[l]:= H[1] X P; HI[2] := 0.318309886184
X H[2] X P; .
comment The multiplicative constant is 1/Pi;
oxil:

end HANKEL

P:=K1{N; T:=IknK)+

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 125

WEIGHTCOEFF

H. RuTisHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure weighicoeff (n,q,e,eps,w,x); value n; real eps;
integer n; array g,e,w,r;
comment Computes absclssae i and weight coeflicients w; for

a Gaussmn quadrature method f 0o w@)f(x)dz =~ Z,_l wif (),

where f o w(&) dr = 1 and w(z) = 0. The method requires the order
n, a tolerance eps and the 2n—1 first coefficients of the continued

fraction
=
A)

to be given, the latter as two arrays ¢[l1:n] and e[l:n—1] all com-
ponents of which are automatically positive by virtue of the con-
dition w(x) = 0. The method works as well if the upper bound b
is actually infinity (note that b does not appear directly as param-
eter!) or if the density w(z) dr is replaced by da(zx) with a mono-
tonically increasing a(z) with at least n points of variation. The
tolerance eps should be given in accordance to the machine ac-
curacy, e.g. as 10— 10 for a computer with a ten-digit mantissa. The
result is delivered as two arrays w[l:n] (the weight coefficients)
and xz[l:n] (the abscissae). For a description of the method see
H. Rutishauser, “On a modification of the QD-algorithm with
Graeffe-type convergence’’ [Proceedings of the IFIPS Congress,
Munich, 1962].;
begin
integer k;
Boolean fest;
real m, p;
array g[l:n];
procedure red (a,f,n); value n; integer n; array a,f;
comment subprocedure red reduces a heptadiagonal matrix
a to tridiagonal form as described in the paper loe. cit. Since
the bulk of the computing time of the whole method is spent
in this subprocedure, it would pay to write it in machine
code.;
begin
real ¢; integer jk;
for k := 1 step 1 until n—1 do

begin
for j := k step 1 until n—1 do
begin
Cc = _f[]] X a[j;’]/a[jyz];
aly,7] := 0;

alj+1,2] := alj+1,2] + ¢ X alj,5];
als,1] := alj,1] — ¢ X flilXali4l;
al[j,6] := a[7,6] — ¢ X alj+1,1];
alj+1,3] := a[j+1,3] — ¢ X alj+1,6};

end j;
for j := k step 1 until n—1 do
begin
¢ 1= —fl5] X alj,4l/als,1];
alj4] := 0;

alj+1,1] := alj+1,1] + ¢ X al5,6];
alj+1,6] := alj+1,6) + ¢ X-alj-+1,3];
alj,5] := alj,6] — ¢ X alj+1,2];

125-P1- O

alj+1,0] := alj+1,0] — ¢ X alj+1,5];

end j;
for j := k+1 step 1 until n—1 do
begin

¢ := —alj,31/ali—1,6];

alj,3] := 0;

alj,B] := alj,6] + ¢ X alj,1]

alj—1,5] := a[j—1,5] — ¢ X flj] X fli] X alj,0};
alj,2] := al5,2] — ¢ X flj] X fli] X al5,5};

alj,7] := al5,7] — ¢ X fli] X ali+1,2];

end j;
for j := k+1 step 1 until n—1 do
begin

¢ := —alj,0]/alj—1,5];

alj,0] := 0

alj+1,2] := al[j+1,2] + ¢ X fl5] X al5,7];
alj,5 := alj,5] + ¢ X alj,2];
afj,1] = alj,1] — ¢ X flj] X fli] X al4,6]
a[jy4] : a[j’4] —cX f[]] X a[]+1)1];
end j;
end k;
end red;
procedure gdgraefle (n,h,g,f); value n;
integer n; array h,g,f;
comment Subprocedure g¢dgraeffe computes for a given
finite continued fraction

Y e e @ G
O

another one, the poles of which are thé squares of the poles of
f(z). However gdgraeffe uses not the coefficients ¢, -+ , qu
and e; , -+ , ex_s of f(z), but the quotients

{fk - qk“/qk} & :=12,---,n—1)
gk = €/ Qrs1

and the h; = fn(abs(qw)) (k :=1,2,---,m), and the results are
delivered in the same form. Procedure gdgraeffe can be used
independently, but requires subprocedure red above;
begin
integer k; array a{0:7n,0:7];
gln] = fin] :=
for k := 1 step 1 until » do
begin
alk—1,4] := alk—1,5] :=
alk,1] := alk,2] : y[k] X flk];
alk,6} := alk,7] :
alk,0] := alk,3] :
comment The array a represents the heptadiagonal
matrix @ of the paper loc. cit., but with the modifications
needed to avoid the large numbers and with a peculiar
arrangement.;
end k;
a[n,5] = 0;
red(a,f,n);
for k := 1 step 1 until n do
hlk] := 2 X hik] + tn(abs(alk,1] X alk,2]));
comment A saving might be achieved by economizing the
log-computation in the range .8 < =z £ 1.2;
for k := 1 step 1 until n—1 do
begin

1+
glkl;
0;

[II

COLLECTED- ALGORITHMS (cont.)

flk] := fik] X flk] X alk+1,2] X alk+1,1}/(alk,1] X alk,2]);
glk] := alk,5] X alk,6)/(@lk+1,1] X alk+1,2])

end k;

end qdgraeffe;

IL1:

12:
1.25:

L3:

end

z[1] := ¢1] + ell];
for k := 2 step 1 until n do
begin
glk—1] := elk—1] X qlk]/zlk—1];
z[k] := qlk] + (if k=n then 0 else ¢[k]) — glk—1];
glk—1] := glk—1]/z[k};
wlk—1] := z[k]/z[k—1];
zlk—1] := fn(zk—1]);
end k;
zln] = fn(zxn]); -
pi=1;
begin
test := true;
for k := 1 step 1 until n—1 do
test 1= test /\ abs(glk] X wlk]) < eps;
if test then go to L3;-
qdgraeffe (n,z,g,w);
end;
p:=2Xp;
go to L25;
comment What follows is a peculiar method to compute
the wy from given ratios g, = wiy1/ws suchthat 3 p; wy = 1,
but the straightforward formulae to do this might well
produce overflow of exponent.;
w(l] :=m := 0;
for k := 1 step 1 until n—1 do
begin
wlk+1] 1= wlk] 4+ n(glk]);
if wk] > m then m := wlk];
end k;
for k := 1 step 1 until n do wlk] := exp(wlk]—m);
m = 0;
for k := 1 step 1 until »n do m := m 4+ wlk];
for k := 1 step 1 until n do begin w[k] := wlk)/m;
z[k] := exp(z[k]/p) end;
wetghtcoeff

125-P 2-

0

COLLECTED ' ALGORITHMS FROM

CACM

ALGORITHM 126

GAUSS’ METHOD

Jay W. CounTts

University of Missouri, Columbia, Mo.

procedure gauss (u,a,y);

real array a,y; integer u;

comment This procedure is for solving a system of linear equa-
tions by successive elimination of the unknowns. The augmented
matrix is a and is the number of unknowns. The solution vector
is y. If the system hasn’t any solution or many solutions, this is
indicated by the go to error where error is a label outside the
procedure.;

begin
integer ¢,j,k,mn;
n = 0;

ckO: n:=mn+1;
for k := n step 1 until u do if alk,n] > 0 then go to ckl;
go to error;
ckl: ifk = n then go to ck2;
for m := n step 1 until u+1 do
begin
temp := a[n,m]; aln,ml := alk,m]; alk,m] := temp
end;
ck2: for j := u + 1 step —1 until »n do aln,j] := aln,jl/aln,n];
for ¢ := k 4 1 step 1 until » do
for j := n + 1 step 1 until « 4 1 do
ali,jl := ali,j] — ali,n] X aln,jl;
if nu then go to ck0;
for ¢ := u step —1 until 1 do
begin
yl] = ali,u + 1l/ali,7];
fork := i — 1 step —1 until 1 do
alk,u + 1} := alk,u + 1] — alk,i] X yli]

end end;

126-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 127

ORTHO

PrIue J. WaLsa

National Bureau of Standards, Washington, D. C.

procedure ORTHOW,Y ,Z n,fn,m,p,r ai aui,mui,zei, X ,DEV,
COF,8TD,CV,VCV ,gmdt,Q,Q2,E,EP,A,GF,ENF);

value n,m,p,r,at,aut,mui,zes ;

real fn,gmdt;

array W,Y,Z,X,DEV ,COF ,8TD,CV,VCV,Q,Q2,E,EP,AGF ENF;

integer n,m,p,r,ai,aui,zet,mus ; .

switch at := atl,0i2; switch ze := zel, ze2;

switch au := aul,qu2; switch mu := mul, mu2, mu3;

comment ORTHO is a general purpose procedure which is
capable of solving a wide variety of problems. For a detailed
discussion of the applications listed below and other applica-
tions, see (1) Philip Davis and Philip Rabinowitz, ‘A Multiple

Purpose Orthonormalizing Code and Its Uses,” J. ACM 1

(1954), 183-191, (2) Philip Davis, ““‘Orthonormalizing Codes in

Numerical Analysis,” in J. Todd (Ed.), A Survey of Numerical

Analysis, Ch. 10 (McGraw-Hill, 1962), (3) Philip Davis and

Philip Rabinowitz, ““‘Advances in Orthonormalizing Computa-

tion,” in F. L. Alt (Ed.), Advances in Computers, Vol. 2, pp. .56~

133 (Academic Press, 1961), (4) Philip J. Walsh and Emilie V.

Haynsworth, General Purpose Orthonormalizing Code, SHARE

Abstr. #850. AprrLicATIONS: (a) orthonormalizing a set of

vectors with respect to a general inner product, (b) least squares

approximation to given functions by polynomial approximations
or any linear combination of powers, rational functions, trans-
cendental functions and special functions, such as those defined
numerically by a set of values, (c¢) curve fitting of empirical data
in two or more dimensions, (d) finding the best solution in the

l.s.5. to a system of m linear equations in n unknowns (n=m),

(e) matrix inversion and solution of lineur systems of equations,

(f) expansion of functions in a series of orthogonal functions,

such as a series of Legendre or Chebyshev polynomials.

The following information must be supplied to the procedure.
(We are considering here the approximation feature of the pro-
cedure.)

n the number of components per vector (excluding augmenta-
tion)

m the number of vectors used in the approximation. For a
polynomial fit of degree ¢, set m=t41.

p the number of augmented components per vector. A feature
of this procedure is that once the approximating vectors
nave been orthonormalized, they may be used in approxi-
mating r functions without repeating the orthonormali-
zation procedure on the original approximating vectors.

r the number of functions to be approximated.

ai a switch control concerning the approximating vectors.
With ai=1, the procedure selects the first » components
of the first row of [Z], supplied by user. The 7 powers of
these values are computed and stored into working loca-
tion [X], 4=0(1)m—1. This is the usual set up for a poly-
nomial fit. With ai=2, the procedure selects the first n
components of the first m rows of [Z] supplied by user and
stores them into working location [X].

aui a switch control concerning augmentation on the approxi-
mating vectors. If p=0, this switch is ignored. With
aui=1, regular augmentation is applied to the vectors in

127-P 1- 0

[X]. p zeros are stored after the nth component of the first
m rows of [X]. The (n+i)th component is replaced by
1.0, i=1(1)m. With aui=2, special augmentation is ap-
plied to the vectors in [X]. The p components located after
the nth component of the first m rows of [Z] supplied by
the user augment [X].
zei a switch control concerning augmentation on the functions
to be approximated. If r=0, this switch is ignored. With
zei=1, regular augmentation is applied to the functions
during the calculation. The n components of the first r
rows of [Y] supplied by user will be augmented by p zeros
when moving [¥] to [X]. With zet=2, special augmenta-
tion is applied. The first n components of the first r rows
of [Y] are the functional values supplied by user. The next
p components of the first » rows of [Y] are special values
also supplied by user.
mui a switch control concerning weights. [W]is an n X n real,
positive definite, symmetric matrix of weights. It is gen-
erally diagonal and often the Identity matrix. mui=1
when [W]=1I,, the matrix [W] need not be supplied.
mui=2 when [W] is.diagonal, but not I,, . The procedure is
supplied the n diagonal elements of [W], but stored in the
first row of matrix [W]. mui=3 when the full weighting
matrix is supplied to the procedure.

The following list of matrix arrays is given to aid the user in
determining the number of components and vectors in the input
and results. Wilin,l:n], Y[lirlin+pl, Z[l:m,l:n+p],
X{l:im+1,1:n+p]l, DEVI(l:rl:n],- COF{l:rl:p], STD{l:r],
CVIl:p+1,1:p], VCV[l:rlip+1,1:p], Q:rl:m+1), Q2, E,
EP[L:r,1:m], All:m,1:p], GF[1:m+r], ENF[1:m].

The results of the procedure are stored in the following loca-
tions. The user must be sufficiently familiar with the theory to
know which results are relevant to his application of the pro-
cedure. All vectors are stored row-wise in the matrices listed
below.

X orthonormal vectors

DEV deviations

COF coeflicients

STD standard deviations

CV covariance matrix, stored in upper triangular form.
The (p-+1)st row contains the square root of the
diagonal elements of the matrix.

VCV variance-covariance matrices, stored in upper triangu-
lar form with the (p+1)st rows containing the square
root of the diagonal elements. There are r such
matrices, the first subscript running over the r values.

gmdt Gram determinant value

Q Fourier coefficients -

Q2 squared Fourier coeflicients

E sum of the squared residuals
EP residuals
A a lower triangular matrix used to calculate the co-

variance matrix. CV = A4’4.
GF Gram factors

ENF norms of the approximating vectors;

begin
integer npp, npm, ml, n2, m2, rl, rbar, p2, bei, rhi, 118, gai, sii, ¢,

J, det, mus, elzl, elz2, k, thi, ali, omi, niz;
array PK,XP[l:n+p], QK[l:m+1];
real denom,sum,dk2,dk,fi,ss,ssq;
switch be := bel, be2; switch rh := rhl,vh2; switch ga =

COLLECTED ALGORITHMS (cont.)

gal,ga2;

switch si := s§i1,512; switch de := del,de2; switch nu :=
nul,nu2;

switch th := thl,th2,ih3; switch al := all,al2;

switch om := oml,om2;

npp = n+p;npm := n+m;ml := m—1;n2 := n41;m2 := m+1;
rl :=0; rbar :=7r; p2:= p+1;denom := if n=m then 1.0
else sqrt(n—m); bei :== 7hi := {18 := 1;
if (p><£0) then gai := sit := 2 else gat := sit := 1;
boxl: go to atlaz];
atl: forj := 1 step 1 until n do begin
X(2,5) := Z(1,j); X[1,5] := 1.0 end;
for ¢ := 2 step 1 until ml do begin
for j := 1 step 1 until n do
X[i+41,5] := X[i,j1 X X[2,i] end; go to box2;
at2: for i := 1 step 1 until m do begin
for j := 1 step 1 until n do
X[i,7] := Z[1,j] end;
box2: if p=0 then go to bor3 else go to aulaut];
aul: for i := 1step l until m do begin
: for j := n2 step 1 until npp do
X[z,j] :=0.0; X[z,n+i]:=1.0end; go to bozx3;
au2: for ¢ := 1 step 1 until m do begin
for j := n2 step 1 until npp do
Xli,jl := Z[i,j] end;
box3: det := nui := elzl := ¢l22 :=k := 1;
box4: tht := 1;
box5: ali := omt :=1; if p=0 then go to boz6 else
for j := 1 step 1 until p do PK[n+j] := 0.0;
box6: go to mulmutl;
mul: for i := 1 step 1 until n do PK[z] := Xk];
go to box7;
mu2: fori := 1 step l until n do
PK[i] := X[ks] X W[1,{]; go to box7;
mu3: for i := 1 step 1 until n do begin sum := 0.0;
for j := 1 step 1 until n do sum := sum + X[k,jl X
Wlz,7l; PK[7] := sum end;
box7: go to omlomi];
oml: for i := 1 step 1 until k do begin sum := 0.0;
for j := 1 step 1 until npp do
sum := sum -+ PK[j| X X[i,j]; QKI[i] := sum end;
go to boz8;
om2: dk2 := 0.0; for ¢ := 1 step 1 until npp do
dk2 = dk2 4+ PK[7] X X[k,z2];
dk := sqri(dk2);
GF[:18] := dk; 18 := 718 4+ 1;
for 7 := 1 step 1 until npp do
X[k,i) := X[k,i]/dk;

omi :=1; go to bozb;

box8: go to delder];

del: elzl := —elzl; if ¢l21<0 then go to box8b else

go to box8a;

box8a: fori := 1stepl untilk—1do
QK] := —QK[); QKIk] := 1.0;
for 7 := 1 step 1 until npp do begin
sum := 0.0; for j := 1stepl untilk do
sum = sum + X[j,7] X QKljl;
XP[i] := sum end; go to box9;

box8b: ENF[i18] := sqrt (QK[k]); go to box8a;

de2: elz2 := —el22;
go to box8a;
for ¢ := 1 step 1 until m do begin
QIrli) := QK[il; Q2[rl,i] := QKI[i] X QK[i] end;
Q[r1,m2] := QK[m2]; E[r1,1] := Q[r1,m2]—Q2[r1,1];
for j := 2 step 1 until m do
E[r1,5] := Elrl,j—1] — Q2[rl,5];
fi = 10;
for 7 := 1 step 1 until m do begin

if €122<0 then go to boz8c else

box8c:

127-P 2- O

if (fn—fi)>0.0 then begin if E[r1,i]<0.0 then begin

EP[r1,i] := —sqrt(abs(E[r1,i))/(fn—fi)); go to box8d;
end

else EP[rl,i] := sqrt(E[rl,i]/(fn—fi));

go to bor8d; end else E[rl,z] := —1.0;

box8d: fi := fi+1.0; end go to box8a;
box9: go to thlthi];
thl: for i := 1 step 1 until npp do
X[k,2] := XP{]; go to bozlD;
th2: fori := 1 step 1 until n do
DEVIrli] := XP[];
for 7 := 1 step 1 until p do
COF[r1,i] := —XPln+i); thi := 3; go tothl;
th3: go to boxll;
boxl0: go to allali];
all: omi :=ali := 2; go to bozb;
al2: if k<m then begin k := k+1;
else go to borl2;
boxll: go to nulnuil;
nul: nui :=2; go to bozrl4;
nu2: ss := dk/denom; ssq := ss X 8s;
STDirl] := ss; go to boxl4;
boxl2: go to belber];
bel: fori := 1 step 1 until m do begin
for j := 1 step 1 until p do
Alz, 7] := X[i, n + j] end;
gmdt :=1.0; for i := 1 step 1 until m do
gmdt := gmdt X (GF[{]/ENF[{]);
gmdt = gmdt X gmdt; dei := bei := thi := 2;
E:=k+1; go to boxl3;
be2: go to boxll;
boxl3: go to galgail;
gal: go to borll;
ga2: fori := 1 step 1 until p do begin
for j := 7 step 1 until p do begin
sum := 0.0;
for nii := 1 step 1 until m do
sum = sum + Alnit, 1] X Alnit, jl;
CV[i, jl] := sum end end;
for ¢ := 1 step 1 until p.do
CVIip2,] := sqrt(CV[i, 7]); gai := 1; go to boxll;
bozxl4: go to rhlrhi];
rhl: if rbar = 0 then go to final else rbar := rbar —1;
rl =711 4+ 1; thi := rht := 2; go to ze[zet];
zel: for 7 := 1 step 1 until »n do
X[m2, 7] := YIrl, 7];
for ¢ := 1 step 1 until p do
X[m2, n+1] := 0.0; go to bozb;
ze2: for ¢ := 1 step 1 until npp do
X[m2, 7] ;= Y[rl, 7{]; go to boxb;
rh2: go to si[sii];
stl: go to rhl;
§i12: for i := 1 step 1 until p do begin
for j := i step 1 until p do
VCVIrl, 1, j] := ssq X CV[i, j] end;
for ¢ := 1 step 1 until p do
VCVIrl, p2, 7] := ss X CV[p2, i];
final: end ortho

go to bord; end

go to rhl;

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 127 [F5]

ORTHO [Philip J. Walsh, Comm. ACM 6 (QOct. 1962)]

Ian BarroDALE (Reed. 22 Aug. 1966)

Department of Mathematics, University of Victoria,
Victoria, B.C., Canada

KEY WORD AND PHRASES: orthogonalization, approximation
CR CATEGORIES: 5.13, 5.17, 5.5 :

Algorithm 127 contains the following errors.

1. A begin must appear between the 6th and 7th lines, i.e. im-
mediately after the integer specification and before the switch
declaration. The begin following the comment and preceding
the integer declaration must be removed.

2. In the second integer declaration the identifiers mut, elzl,
elz2 should be nuz, elzl, el22, respectively.

3. The section of the statement labeled atl that reads X (2, j) :=
Z(1, j) should read X(2, j1 := Z[1, jl.

4. Following the statement labeled box8d there should be a
semicolon between end and go to boz8a.

5. The formal parameter fn is not defined or mentioned in the
comment. It appears in the program between the labels boxz8c
and box8d. If fn is put equal to n the array EP then contains un-
biased estimates of the m standard deviations.

We have not needed the generalized definition of an inner prod-
uct [1, p. 348] but have often required n (number of components
per vector) to be large. We thus replaced the array W{l:n, 1:n] by
an array W[l:n] which necessitated the removal of the switch list
element mu3 from the 8th line, also an alteration to the line before
the statement labeled mu3 and the removal of the three lines be-
ginning with the statement labelled mu3. Consequently that part
of the program that appeared in the six lines beginning with the
statement labeled mu2 and ending with the statement labeled
box7 then read as follows:

mu2: for ¢ := 1 step 1 until n do

PK[i] := X[k, i] X W[];
box7: go to om[omi];

After the above modifications and corrections had been in-
cluded the program ran successfully on an English Electric KDF9
computer using both the Whetstone ArLaoL compiler and the
Kidsgrove ALGoL compiler, these codes being proper subsets of
AvrgoL 60.

Some of the problems used in testing Algorithm 127 were from
approximation theory as applied to boundary value problems of
elliptic type. For one such problem linear approximating functions
were used in which most of the coefficients of the best approxima-
tions are zero. The computed values of the standard deviations
sometimes differed by more than 10 percent from both the true
values and the unbiased estimates. We also solved the Dirichlet
problem described by Davis [1, p. 369]. The set of coefficients ob-
tained for the approximating .function agreed only to the third
decimal place with those given in [1]. All our calculations were in
single-precision floating-point arithmetic.

Rice [2, p. 825] has recently ncted that once the Gram-Schmidt
orthogonalization method loses orthogonality it produces almost
identical vectors. However, Algorithm 127 includes a correcting
device which gives a second and better estimate to the true value
of an orthonormal vector once the value obtained by Gram-
Schmidt is known. Thus although Rice’s modifications were in-
cluded in the program we have not noticed any significant differ-
ences in computational behaviour.

REFERENCES:

1. Davis, P. J. Orthonormalizing codes in numerical analysis. In
Survey of Numerical Analysis, J. Todd (Ed.), McGraw-Hill,
New York, 1962, pp. 347-379.

2. Ricg, J. R. Experiments on Gram-Schmidt orthogonalization.
Math. Comput. 20 (Apr. 1966), 325-328.

127-P 3- O

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 128

SUMMATION OF FOURIER SERIES
M. WELLs

University of Leeds, Leeds 2, England*

* Currently with Burroughs Corp., Pasadena, Calif.

procedure Fourier (X, r, w,n, A, B);
value n; real X, w, A, B; integerr, n;
comment Fourier sums a one-dimensional Fourier series,
using a recurrence relation described by Watt [Computer
J. 1, 4(1959) 162]. The parameters are the coefficients X, which
are selected by r, w, the argument and » the total number of

terms in the series. On exit A = > o X.cos(rw) and
B = 373 X.sin(rw).” Fourier is particularly efficient

where X, = 0 for all r > somer, and X, 0 forall r £ r; .;
begin real ¢, ir, irl, cosw?2;
trl := 0; cosw2 := 2 X cos(w);
for r := n—1 step —1 until 0 do
begin if X 5 0 then go to term end search for nonzero term;
tr := 0; go to all zeroes;
term: tr := X; forr := r—1 step —1 until 0 do
begin ¢ := ir X cosw2 + X — trl; trl := tr; r := t end
recurrence;
all zeros: A := tr — trl X cosw2/2; B := trl X sin(w)
end Fourier series

CERTIFICATION OF ALGORITHM 128 [C6]
SUMMATION OF FOURIER SERIES [M. Wells, Comm.
ACM 5 (Oct. 1962), 513]
HeNnrY C. THACHER, JR.* (Reed. 18 Mar. 1964)
Argonne National Lab., Argonne, Ill.
* Work supported by the U.S. Atomic Energy Commission

The body of Fourier was transcribed for the Dartmouth ScaLp
translator for the LGP-30 computer. After uniformizing the spell-
ing of zeros (lines 5 and 9 in the procedure body), the program
compiled and ran without difficulty.

In the procedure statement for Fourier, the actual parameter
corresponding to X should be an expression depending on the
actual parameter corresponding to r.

The ScaLP program was tested for the finite series:

n—1 : .
A=) cosrw= an ((n__l)ﬂ cos (nwy/2) + 1
=0 sin (w/2)
_ =L _sin ((n — Dw/2) .
B = r_Zo sin rw = ey w/2) sin (nw/2)

forw = 0.1,0.2,0.5 and 1.0, and for n = 1(1)51. Although the algo-
rithm appears to be numerically correct, the results showed evi-
dence of serious numerical instability, particularly for small
values of w. For w = 0.1, and n = 51, the error in A was .00109,
and in B, —.00231. Since the largest 4 for n < 51 is 10.5, and the
largest B about 20, the best result obtainable with the 74 signifi-
cant digit arithmetic of the ScaLp system is about .00001. For
comparison, a program summing the same series using a forward
recurrence based on the addition formulas for the sine and cosine
gave errors of .00012 and —.00018. It was, however, only about
half as fast.

128P 1- 0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 129

MINIFUN

V. W. WaITLEY

Signal Missile Support Agency, White
Range, N. Mex. ' '

procedure MINIFUN (i1, bl, eps, n, nent, fmin, xmin, kl,
GFUN);
value {1, b1, eps, n, nent; integer n, nent, k1; real fmin;
real procedure GFUN; array {1, bl, eps, xmin;
comment MINIFUN is a subroutine to find the minimum of a
function of n variables, using the method of steepest descent.

Input is:

1. @), ¢=12, -, n, the upper limits of the search region

2. b1(@),z =12, -+, n, the lower limits of the search region .

3. eps(®),1 =12, ..., n, the convergence criteria. The fune-
tion must be a minimum in the region | x({) — zmin() |
=< epsit) :

4. n, the number of variables (the dimension of the arrays)

5. ment, the maximum number of iterations. The routine
searches for a minimum until | 2(?) — zmin(z) | < eps(Q)
for all 7, or until ent = nent, whichever happens first.

Output is:

1. fmin, the minimum value of the function

2. zmin(t), ¢ =1, ---, n, the point at which the minimum
oceurs

3. k1, an error code

If k1 = 1, a minimum has been found within the specified
number of iterations and the minimum is less than all
values of the function at the centers of the planes forming
the boundary of the epsilon-cube

If k1 = 2, Az (i) S eps(z) but a new minimum has been found

If k1 = 3, ncnt has been exceeded without Az(z) = eps(7).
In this case, a test is made to see if the current minimum
is a minimum in the epsilon-cube.

MINIFUN has been written as a ForTraN II subroutine and is
available from the SMSA Computation Center. It should be
noted that the ForTraN II deck has been tested only on some
relatively simple functions of two variables, such as GFUN
(x,y) = cos(zxy). The writer does not claim that the algorithm
has been thoroughly tested;

begin integer j, 1, icni, k; real w, dmaz, alamb, ft;
array wnew [1:n)], zt[l:n], z1b[1:n], zub [1:n],
delx[1:n], d12x[1:n], zmin{l:n], z[L:n, 1:4], g[l:n, 1:4],
dxmin[l:n], d2zmn[l:in];

comment start looking for a minimum at midpoint of region;

for j := 1 step 1 until » do

Sands Missile

begin wnew[j] := (t1[j] + bl[7])/2; =tlj] := wnewl[sl;
zublj] = 1 xlb[_;‘] := bl[jl; delz[j]l := (zublj]
— z1b[i1)/5;

d12z[5] = delz[f112; zmin[j] := xt[j]
end;
fmin := GFUN (zmin);
for j := 1 step 1 until n do
begin w := zt{j]; fori := 1step 1 until 4 do
begin x[j, t] := 21b[j] + ¢ X delz(j];
zt[f] := zl5,i]; glijg] := GFUN (xt);
end;
wt[s] 1= w;
dzmin(j] := (gli,3] — gls,2])/delzls];
d2xmnlj] = (gl5,4] — ¢li,3] — ¢13,2] + glj,1])/d12x(5]

129-P 1- 0

end;
comment first and second difference quotients have been com-
puted;
tent 1= 0; dmax = demin(l]; &k = 1;
nustep: for.j := 2 step 1 until n» do
begin if abs(dmaz) < abs(dzmn[j]) then
begin dmazx := dxminlj]; k := 3
end;
end;
alamb := deminlk]/d2zmnlk]; w := zit[k] — alamb;
comment & new coordinate has been computed for the variable
having the largest first partial derivative. It will be checked to
see if the new point still lies within the region and search will
continue;
if w < bl[k] then w := bl[k] else if w > {1]k] then w := t1[k];
ztlk] := w; - ft := GFUN(xt);
if ft < fmin then go to check else
restart: if xt[k] < wnewlk] then go to 1bdchk
else if zt[k] = wnew[k] then go to stnubds
else if {1[k] > zi[k] then go to nupbds
else zt[k] := 1.5 X wnewlk];
nupbds: xublk] := (1[k]; z1blk] =
newdel ;
stnubds: x1b[k] :=
0.5 X wnewlk];
newdel: delz[k] := 0.2 X (xublk] — z1b[k]); dl12z[k] := delz[k]T2;
for ¢ := 1 step 1 until 4 do
begin z(k,i] := z1blk] + ¢ X delzfk]; w := zxtlk];
2tlk] = zlk,7]; glk,i] := GFUN(xt); ztlk] := w
end;
daminlk] := (glk,3) — glk,2])/delx[k];
d2zmnlk] = (glk,4] — g[k,3] — glk,2] + glk,11)/d12z[k];
ient 1= tent + 1; .
if iecnt > nent then go to oulced else go to nustep;
1bdchk: if xt[k] = b1lk] then xt[k] := 0.5 X wnewlk|
else z1b[k] := bllk]; zublk] := 2.0 X =zt[k] — bllk];
go to newdel ;
check: fmin = ft; zminlk] := ztlk];
for j := 1step 1 until n do if delz[j] > eps[j] then go to restart;

2 X ztlk] — t1lk]; go te

ztlk] — 0.5 X wnew[k]; zublk] := ;ct[k] +

recheck: for j := 1 step 1 until n do
begin w := zminlj]; zminli] := w + epsljl; ft := GFUN
(xmin);
if ft < fmin then go to set2; zmin[j] := w — eps[il;
ft := GFUN (zmin); if ft < fmin then go to sel2; rminlj)

=w

end;
if k1 < 3 then k1l := 1; go to bgend;
set2: kl := 2; go to bgend;
outcd: kl: =3; go to recheck;
bgend: end MINIFUN;

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 129 MINIFUN
MINIFUN [V. W. Whitley, Comm. ACM, Nov. 1962]
E. J. WaAsscHER

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

Some errors found in Algorithm 129 MINIFUN [Comm. ACM,
Nov. 1962] are given below.

In addition, the way ‘‘steepest descent’’ is used to compute
the minimum of a function of »n variables is not entirely satis-
factory. The method for computing first derivatives may be im-
proved in two ways:

1. Instead of computing is better to take

fath)~f@) ;,
h

fﬁi"%{ﬂ. As f(z—h) has been computed by MINIFUN

this does not give rise to extra computations.

2. In MINIFUN the choice of h seems rather deliberate. In-
deed, k is taken as .2 X (zub—=z1b), where xub and z1b are variable
bounds of z. In the beginning of the program these bounds are
put equal to the fixed bounds b1 and uwb; afterwards in the itera-
tion process they should tend towards each other, and in the limit
they provide the minimum. So especially when a good approxima-
tion to the minimum is unknown, bl and ub have to be taken well
apart from each other, which means that A is rather large. At the
limit, however, h is very small. It is better to take A in such a way
that the nominator f(z+h)—f(x—h) attains an appropriate value.

As the method used by MINIFUN is the Newton-Raphson
method applied to the first derivatives, convergence is not always
secured—especially since first and second partial derivatives are
estimated with numerieal methods.

It should be noted that the test on end of program is not correct.
For a further possible decrease of the function one has not to look
in the direction of the coordinate axes but in the direction of the
steepest descent.

ALcoL deseriptions of some ‘‘steepest descent’’ programs which
were written in the symbolic code of the Philips computer Pascal
[ef. H. J. Heijn and J. C. Selman, IRE Trans. EC10 (June 1961),
175-183] are given in Algorithms 203, 204 and 205.

CorrecTiONS oF MINIFUN :

Printing errors: The line below label nustep should read:

begin if abs(dmaz) <abs (dzmin [j]) then

The label 1 bdchk should be lbdchk

In comment MINIFUN: kl1=2: a new minimum has not
been found.

The label nustep should be placed before the statement:
dmaz := dxmin[j]; The declaration of xmin should be removed
from the blockhead of the procedure body. The 2-dimensional
arrays z[1:n, 1:4] and g[l:n, 1:4] can be replaced by a real z and a
1-dimensional array g[1:4] respectively.

An improvement could be the insertion of the statement

kl :=1;

just before the label nustep.

I am having considerable trouble with the obviously important
part played by the array wnew, although it does not change after
being set in the first statement of the program. Furthermore it
seems to me that wnew plays a double réle: first the component
wnewlk] is the value of xt[k] before an iteration on zt[k]. But then
one should insert another statement after label nusiep:
wnewlk] := xtlk]; Secondly wnew[k] is to be understood as half
the distance between upper and lower bound ¢1[k] and b1[k], which
is only true when bl[k} = 0.

Convergence of delz[j] to 0 is only achieved when z1b{k] and
zub[k] are tending towards each other. This indicates that wnewlkl

129-P 2- 0

should go to 0 too. (See statements atter label stnubds.) .
The following modifications could remove these objections

(starting with the line above label resiart): »

if ft < fmin then go to check else zt[k] := wnewlk];

if zt[k] < wnew[k] then go to lbdchk;

if xt[k] = wnew[k] then go to sinubds;

if zt[k] < t1k] then go to nupbds;

xtk] := 0.5 X (wnewlk] + {1[k]);

restart:

nupbds: xublk] := t1[k]; z1blk] := 2 X zt[k] — tl{k]; go to
newdel ;
stnubds: z1b[k] := wztlk] — 0.5 X (wnewl[k] — z1b[k]);
zublk] := =ztlk] + 0.5 X (wnew[k] — 21b[k]); (ete.)
Ibdchk: if zi[k] = bl[k] then zt[k] := 0.5 X (wnew[k] + bi[kl);

z1b[k] := bl[k]; =zublk] := 2 X =tlk] — bl{k]; go to

newdel; (ete.)

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 130

PERMUTE

Lt. B. C. Eaves

U.8.A. Signal Center and School, Fort Monmouth, N. J.

procedure PERMUTE (A, n, x)

array A; integer n, z;

comment Each entry into PERMUTE generates the next per-
mutation of the first n elements of A. If A is read as a number
(AM]A[2] --- An]), each generation is larger than the last:

n:i=4z:=1
All] 11188 8
Al2] 1 8811 8 . 4!
Af3) 8 1818 1 Permutations = 3B
A4} 8 8 1 8 1 1 end

Identical elements in 4 reduce the number of permutations. The -

array should be ordered before the first call on PERMUTE.
Integer x specifies the first elements whose order should be pre-

served: n =4,z := 3
All] 1 11 4
Al2] 2 2 41 . 41
A[3] 3 4 2 2 Permutations = 3
Al4] 4 3 3 3 end

Before the first call on PERMUTE for a given array, first
should be made true. If more is true, then PERMUTE was able
to give another permutation;

begin array Bl:n]; integer f,1,k, m, p;
if first then t := Alzx]; first := false;
for 1 := 1 step 1 until n do B[¢] := 0;
for i := n step —1 until 2 do

begin if A[f] > tAA[{] > A — 1] then go to find; end;

more := false; go to erit;

find: for k := n step —1 until ¢ do

begin if Ak] > tAAk] > Az —1] then

real r; own real ;

begin Bik] := A[k]; m := k; end; end;
fork := n step —1 until 7 do
begin if Bk] > 0 AB[k] < B[m] then
begin B[m] := Blk]; f := k; end; end;
ri= A[t — 1]; Al — 1] := B[m]; Alf] := r;
schell: p =7 —1;m:=n— p;
for m := m/2 — .4 while m > 0 do
begink := n — m;
for f := p + 1 step 1 until k£ do
begin ¢ = f;
comp: if A[z] > A[{ + m] then

begin r := A[t + m];
Altl i=r;0 := 4 — m;
if7 = p + 1 then go to comp;
end end end schell;

exil. end PERMUTE

All + m] = A[];

REMARKS ON:

ALGORITHM 87 [G6]
PERMUTATION GENERATOR
[John R. Howell, Comm. ACM 6 (Apr. 1962), 209]
ALGORITHM 102 [G6]
PERMUTATION IN LEXICOGRAPHICAL ORDER

130-P 1- R1

[G. F. Schrak and M. Shimrat, Comm. ACM 6 (June
(1962), 346]
ALGORITHM 130 [G6]
PERMUTE
[Lt. B. C. Eaves, Comm. ACM & (Nov. 1962), 551]
ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN
LEXICOGRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. Orp-Smute (Reed. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)
Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo-
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM & (Aug. 1962), 434], there appears to be room for im-
provement. Theoretically a “best” lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452}
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.
ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows,

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 A Blk] < B[m]is true for
at least one of the relevant values of k. In particular when matrix
A is set up by A[z] := 7; for each ¢ the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
t. is the time for complete generation of n! permutations. Times
are scaled relative to s for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time s
for Algorithm 202 on this machine was 100 seconds. r, has the
usual definition r, = /(N tu-1).

TABLE I
Algorithm te t7 13 76 rr T8
87 118 — — — — —
102 2.1 15.5 135 1.03 1.08 1.1
130 — - — — — —
202 1.7 12.4 100 1.00 1.00 1.00

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 131
COEFFICIENT DETERMINATION*
V. H. Smrra AND M. L. ALLEN

Georgia Institute of Technology, Atlanta 13, Ga.

* This procedure pertains to research work sponsored in part
by NSF Grant G-7361.

procedure DET (n, G, H);

array G, H; integer n;

comment Given the first n coefficients of the power series
GR)=g+gz+ g2+ - + gzt + .-+, and H(z) = lh +
hoz + Rsz? + - -+ 4+ haz"1 4 - .- | this procedure determines the
coefficients d; , 2 = 1, -+ , n, of the power series which is the
expansion of the quotient H(z)/G(z). It is assumed that g > 0.
The arrays G and H initially contain the coefficients of G(z) and
H(z), respectively. The integer n is the number of known coeffi-
cients in the expansion of G(z) and H(z). At the conclusion, H;
contains the coefficient d; . The procedure may also be useful in
calculating residues for certain complex functions. Suppose
F(z) = H(2)/G(z) is a complex valued function of a complex
variable and that F has a pole of order m at z = b, where H(z) =
2 he(z — b, G@) = Xige(z — b1, and g1 # 0,
hi # 0. The required residue at z = b is d where

D() = [i‘, hi(z — b)"“‘]/[z gu(z — b)"":|
kw1 kw1

=3 die - b

joml

For more on this, one is referred to Einar Hille, ‘“Analytic Func-
tion Theory, Vol. I, ”” Ginn and Co., 1959, pages 242-244;
begin integer ¢, j, n; real alpha, bela;
alpha = 1/Gl1];
for j := 1 step 1 until n do
begin bela := alpha X Hljl;
for 7 := j + 1 step 1 until n do
HUE) := H[i} — (beta X Gli — j + 1]) end;
for j := 1 step 1 until n do
H[j) := HIj] X alpha;
end DET

131-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 132

QUANTUM MECHANICAL INTEGRALS OVER
ALL SLATER-TYPE INTEGRALS

J. C. BRowNE

The University of Texas, Austin, Tex.

real procedure: allslater (p,q,pe,qe,np,ng,lp,lg,mp,mqmna,nd)
internuclear distance: (r);
real pe,ge,r; integer p,g,np,ng,lp,lgmp,mg,
na,nb;

comment The Slater-type orbitals frequently used in quantum
mechanical calculations on atoms and molecules are defined as
p = k(np,pe) rvle=wer Y77(9, ¢), where k(np,pe) is a normal-
ization constant, Yim(8,¢) is a spherical harmonic with the
phase convention [Yi"(0,8)]* = (—1)»Y1"(8,4), np is a positive
integer, Ip is an integer, Ip < np, mp is an integer, — Ip = mp
< lp; and pe is a real positive constant. Algorithm 110, Y. A.
Kruglyak and D. R. Whitman (Comm. ACM, July 1962) serves
to compute integrals over certain operators of a quite restricted
class of Slater-type orbitals, np = 4, Ip = 1, mp = 0. The algo-
rithm given here will compute all integrals of the form

S pe(ree)gedr

which can be expressed in terms of the simple 4.(b) and B.(a)
functions. The subscript ¢ denotes either of the two nuclei of
a diatomic molecule. These integrals include all those one-elec-
tron integrals necessary for a conventional energy calculation
on a diatomic molecule. In the arguments of allslater p and ¢
are numerical designations for the respective orbitals. p and ¢
are even or odd as they respectively are associated with the
“left,” a, nucleus or “right,’”” b, nucleus of a diatomic molecule.
Global arrays, fact 1, of factorials and binom, of binomial co-
efficients are assumed. We first define some procedures utilized
by allslater. The main program begins at the label set;

begin real norm, 12, alpha, beta, s, clp, clq, bpei;
integer nsum, lsum, peven, geven, podd, godd, limitp, limilq,
g, h, i, 5, nlp, nlq, lmp, lmq, gama, gamb, aidaa, aidab, gam,
aida, num2; real array avalues (0:21], bvalues[0:21]; real pro-
cedure cl, bpe, modulus;

real procedure cl(l;m;); value I;m,j, integer lm,j;
begin cl = ((=DTHX factl2X (@ — HI/(@N) X factl

[I—2X j—m]X
Jactl[l — j1X factl[5])
end cl;

real procedure bpc(i, j, k); value 7,5k, integer 7,j,k;
begin real ¢; integer m; [:= 0;
for m := 0 step 1 until £ do
begin t :=t + ((=1) T (k — m)
X binom [¢, m] X binom [j, k — m]
end
end bpc;
real procedure modulus (¢, j); valuez, j; integer i, j;
begin modulus := 1 —abs(z + j) X j
end modulus;
procedure avector (b, nmaz, avalues); value b, nmaz;
real b; integer mmaz; real array avalues;
begin integer m;
avalues[0] = exp(—b)/b;
if nmazr = O then go to exit;
for m = 1 step 1 until nmaz do -
begin avaluesim] = avalues[0] 4+ (m/b) X avaluesim — 1]
end;

132-P 1- 0

exit: end avector;
procedure bveclor(a nmaz, bvalues); value a, nmazr; real a;

integer nmax; real array bvalues; real procedure modulus;

comment This procedure computes a sequence of values for the

integral, B.(a) = S'_1 zre~%%dz, forn = 0 ton = nmaz.If @ =
alim then Bo(a) is computed and upward recursion is used to
generate the higher n values. If ¢ < alim then Bume:(a) is com-
puted by series expansion and downward recursion is used to
generate the smaller n values. alim is determined within the
program by a simplification of a result of Gautschi (J. ACM 8,
21 (1961)). Gautschi has made an analysis of the recursive pro-
cedures for the B, (a) which could be taken as a model for workers
in molecular quantum mechanics;
begin real frzr, fry, numerator, denom, sum, factorl, tsum
factor2, t, aa; integer m,mn;
begin if abs(a) = ((nmaz+nmax/6+3)/2.3) then
up: begin fxz := exp(a);
' fry = 1/faz;
bovalues [0] := (fxx-fry)/a;
for m := 1 step 1 until nmaz do
begin frx := — frz;
bvalues(m] := (fzz—fzy + m X
bualuesm—1))/a
end;)
go to exit;
end up;
down: begin aa := aza;
if modulus (nmazx, 2)0 then
setodd: begin numeralor := nmazx + 2;
sum = a/numerator;
factorl := —2;
factor2 := 3;
go to compule;
end setodd;
seteven: begin numerator := nmaz + 1;
sum = 1/numerator;
factorl := factor2 := 2;
end seteven;
compute: begin denom := numerator + 2;
t = sum; -
t = ((((¢/factor2)Xaa)
/(factor2—1)) X numerator)
/denom;
tsum = t 4+ sum;
if (sum—tsum)=0 then
begin bvalues[nmaz] := sum X factorl;
go to recur;
end;
begin factor2 := factor2 + 2;
numerator := denom;
sum = t{sum,
go to compule;
end compule;
recur: begin fxxz := exp(a);
Jry 1= 1/fxz;
mn = amax —1;
if modulus(nmaz, 2) # 0 then
frx 1= —fxx;
for m := mn step —1 until 0 do
begin frx = —jfrz;

COLLECTED ALGORITHMS (cont.) 132-P 2- 0

bvaluesim] := (fzxz+fzy + a X
bvalues[m+1})/(m+1);
end
end recur;
end down;
end;
exil: end bvector;
sel: begin if (mp + mq) = 0 then
begin allslater := 0.0; go to exit end;
set: begin norm = sqrt (((2Xpe)?T
@2Xnp+1) X @XIp+1) X factl{lp—mp] X (2Xge)T
(2Xng+1) X @Xlg+1) X factllg-mql)/(factl[2X
np] X factl[lp+mp] X factl2Xng] X factlllg+mq] X
4));

nsum = np-+ng,
lsum = lp+lq;
r2 1= r/2;

norm = norm X (r2](nsum-+1-+na-+nb));
alpha 1= 12 X (pe+qe);

beta 1= r2 X (((—=1)Tp)Xpe + ((—1)Tq) X ge);
num?2 = 2;

avector (alpha, nsum, avalues);

bvector (beta, nsum, bvalues);

peven := modulus (p+1,2);

qeven := modulus (¢+1,2);

podd := modulus (p,2);

qodd := modulus (g,2);

Limitp 1= (Ip—mp) +num?2;
limitg := (lg—mq) +num2;
s = 0;

end set;

sum: begin for g := 0 step 1 until limitp do
begin clp := cl(lp,mp,g);
for b := 0 step 1 until limitq do
begin clq := cl(lg,mq,h);
nlp = np—Ilp4+2Xg—1;

nlp := ng—Ilq+2Xh—1;
lmp. := lp—mp—2Xg;
Imp := lg—mq—2Xh;

gama = nlp X peven 4+ nlq X qeven +1 +na;

gamb = nlp X podd + nlg X godd +1 +nb;
aidaa := lmp X peven + lmq X geven;
aidab = lmp X podd + lmq X qodd;

gam = gama -+ gamb;
atda = aidaa + aidab;
for i := 0 step 1 until gom do
begin bpci := bpc(gama, gamb, 7);
for j := 0 step 1 until aide do
begin
s 1= s+ clp X ¢clg X bpei X
bpe(aidaa, aidab, j) X
avalues[nsum—+na+nb—i—j]
X bvalues(lsum —2 X (g+h) +i—jl;
end
end
end
end;
allslater := s X norm;
end sum;
exil: end;
end allslater;

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 133

RANDOM

PerEr G. BEHRENZ
Mathematikmaskinnimnden, Stockholm, Sweden

real procedure RANDOM (A, B, X0);

value 4, B, X0;

real A, B;

integer X0;

comment RANDOM generates s rectangular distributed
pseudo-random number in the interval 4 < B. XO0is an integer
starting-value. The first time RANDOM is used in a program
X0 should be a positive odd integer with 11 digits, X0 < 2% =
34 359 738 368. The following times RANDOM is used, X0 should
be X0 = 0. The mathematical method used is Xnn = 6 Xin
(mod 2%), This sequence has period 2%¥). RANDOM was suc-
cessfully run on FACIT EDB using FACIT-ALGOL 1, which
is a realization of ALGOL 60 for FACIT EDB, except for the
declarator own, which is not included in FACIT-ALGOL 1.
To test RANDOM, we computed 1/N Y. X, and 1/N > X2
in the interval 0,1 for N = 500, 1000, 5000. The starting-
value was X0 = 28 395 423 107. The results were 0.50625,
0.48632, 0.50304 and 0.34304, 0.31681, 0.33469. Theoretically
one expects 0.50000 and 0.33333;

begin

integer M35, M36, M37;

own integer X;

if X0 # 0 then begin

X 1= X0; M35 := 34 359 738 368; M36 := 68 719 476 736;

M37 := 137 438 953 472 end; X := 5 X X;

if X 2 M37 then X := X — M37;

if X 2 M36 then X := X — M36;

if X 2 M35then X := X — M35;

RANDOM := X/M35 X (B — A) + 4 end

REMARK ON ALGORITHM 133
RANDOM (P. G. Behrenz, Comm. ACM, Nov. 1962)
PerErR G. BEHRENZ
Matematikmaskinndmnden, Box 6131, Stockholm 6,
Sweden
Replace the declarations in the body of the procedure,
integer M35, M36, M37; own integer X;
by:
Y own integer X, M35, M36, M37;

The sequence of 238 random numbers contains about 15 numbers
which are not really random numbers. For details, see R. W.
Hamming, Numerical Methods for Scientists and Engineers,
p- 384 [McGraw-Hill. 1962].

133-P1- 0

REMARK ON ALGORITHM 133

RANDOM [Peter G. Behrenz, Comm. ACM 11, Nov.
1962]

DoxaLp L. LAUGHLIN

Missouri School of Mines and Metallurgy, Rolla, Missouri

Algorithm 133 was translated into FORTRAN II for the IBM
1620 and run successfully. The starting value was changed to

21 348 759 609 and significant results followed.
For N = 500 and 1000, the resulting values were: 0.4990157688,

0.4986269653 and 0.3318717863, 0.3200401482.

CERTIFICATION OF ALGORITHM 133
RANDOM ([Peter G. Behrenz, Comm. ACM, Nov. 1962}
JEssE H. Poorg, Jr.
Louisiana Polytechnic Institute, Ruston, La.

Algorithm 133 was transliterated into ForTraN II for the IBM
1620 computer. A monitor program performed the test indicated in
-Algorithm 133 on the generated numbers.

Results of the test are shown in the following chart. The nota-
tion used is identical to that used in the algorithm.

Xo Iivzx,. }sz2,,
4986480931 .3280561242 N = 500
13543288579 .4840396640 .3141520616 N = 1000
4996829627 .3321160892 N = 5000
.4971414796 . 3297990588 N = 500
24376589411 .4997720126 . . 3326801987 N = 1000
4986380784 .3319949173 N = 5000
.4962408228 .3339214302 N = 500
34359738367 .4974837457 3335720239 N = 1000
.4929612237 . 3253421270 N = 5000
. 5313808305 . 3691599122 N = 500
11324679915 .5167083685 . 3498558251 N = 1000
.5043814637 . 3383429327 N = 5000

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 134
EXPONENTIATION OF SERIES
Henry E. FerTis

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure SERIESPWR(A, B, P, N);
comment This procedure calculates the coetficients B[i] for
the series (f(x))? = g(x) =14 >, Bli] Xz14,(i=1,2, --- ,N)
given the coefficients of the series f(z) = 1 + D Al] X z 1 4.
P may be any real number;
value A, P, N;
array A, B;
integer N;
begin integer ¢, k;
real p, s;
B[l] := P X A[l};
for 7 := 2 step 1 until N do
begin s := 0;
for k := 1 step 1 until i—1 do
8= s+ (P X [i—k] — k) X Blk] X AL—Fk];
Bli] := P X Ali] + (s/7)
end for 7;

end SERIESPWR

CERTIFICATION OF ALGORITHMS 134 AND 158

EXPONENTIATION OF SERIES [Henry E. Fettis,
Comm. ACM, Oct. 1962 and Mar. 1963]

Henry C. THACHER, JR.

Reactor Engineering Div., Argonne National Laboratory
Argonne, Il

Work supported by the U.S. Atomic Energy Commission.

The bodies of SERIESPWR were transcribed for the Dart-
mouth ScaLp processor for the LGP-30 computer. In addition to
the modifications required by the limitations of this translator,
the following corrections were necessary:

1. Add ‘“real P;” to the specifications.
2. Delete ““p,” from the declarations in the procedure body.
3. (134 only) Replace “S” by ““s”” and [i—k] by ““(i—k)”’ in the
statement S ;=3 + ... |
4. (158 only) Changes last sentence of comment to “Setting
P := 0 gives the coefficients for in(f(z)). In this series, the
constant term is 0, instead of 1 as elsewhere;”’
- (158 only) Add the identifier P2 to the declared real variables.
. (158 only) Make the first statements read:
“if P =0 then P2 :=1 else P2 := P;
B[1] := P2 X All];
7. (158 only) Make the statement of the for & loop read

o

“8 1= S+ (PX(E—k)—k) X Blk] X A[s—k];”
8. Change the last statement to
“Bli] := P2 X Ali{] + 8/i end for ¢;
In addition, the following modifications would improve the

efficiency of the program:
1. Remove A from the value list.

134-P1- 0

2. Omit the statement B[l] := P X A[l]; (P2XA[l] in 15§
according to correction 6) and change the initial value of ¢
in the statement following from 2 to 1.

When these changes were made, both procedures produced the
first ten coefficients of the series for (exp(z)) T 2.5 from the first
ten coefficients of the exponential series. The procedures were
also used to generate the binomial coefficients by applying them
*o (14+x)?, for P = 2.0, and 0.5000000. Algorithm 158 was also
tested with P := 0 for 1+z and for the series expansions for
(sin z)/z, cos =, and erxp z. In all cases, the coefficients agreed
with known values within roundoff.

COLLECTED. ALGORITHMS FROM CACM

ALGORITHM 135

CROUT WITH EQUILIBRATION AND ITERATION
WiLriaMm MarsHALL McKEEMAN*

Stanford University, Stanford, Calif.

* This work was supported.in part by the Office of Naval Re-
search under contract Nonr 225(37).

procedure LINEARSYSTEM (A) order:(n) right-hand sides:(B)
number of right-hand sides:(m) answers:(X) determinant:(det,
ex) condition of A:(cnr);

integer n, m, ex; real det, cnr; real array A, B, X;

comment, LINEAR SYSTEM wuses Crout’s method with row
equilibration, row interchanges and iterative improvement
for solving the matrix equation AX = B where 4 isn X n and
X and B are n X m. As special cases one sees that: for m < 0,
only the determinant of A is evaluated, for m = 1, the algo-
rithm solves a system of n equations in n unknowns, for m = n
and B = the identity matrix, the algorithm inverts A.

If the algorithm breaks down for a singular or nearly singular
matrix 4, exit to a non-local label “‘singular’ is provided. Five
auxiliary procedures: EQUILIBRATE, CROUT, PRODUCT,
RESIDUALS and SOLVE are declared with appropriate com-
ments after the end of this procedure. This code is the result of
the joint efforts of G. Guthrie, W. McKeeman, Cleve Moler,
Margaret Salmon, Alan Shaw and R. Van Wyk. It was written
following ideas presented by J. H. Wilkinson as a visiting lec-
turer in Professor George E. Forsythe’s class in Advanced Nu-
merical Analysis at Stanford, 1962;

begin .integer array pivot [l:n]; integer ¢, j, k; real mx;
real array LU[l:n, 1:n], y, res, mult{l:n];
comment, remove appropriate factors from the rows of 4... ;
EQUILIBRATE(A, n, mult);)
comment ... and save the result for the eventual computation
of residuals during iteration;
for ¢ := 1 step 1 until n do

for j := 1 step 1 until n do LU{Z,j] := Ali,j];
comment, decompose the matrix into triangular factors;
CROUT (LU, n, pivot, det);
comment, assuming that there was no exit to ‘‘singular’’,
evaluate the determinant in the form det X (10.0 T ex);
for 7 := 1 step 1 until n do y[z] := LU[Z,Z] X multlil;
det := det X PRODUCT (y,l,n.ex);
comment, now begin to process right-hand sides;
for k := 1 step 1 until m do
begin integer %, count, limit;

kr = k;

comment, scale the right-hand side;

for ¢ := 1 step 1 until n do res[i] := Bli,k] := B[i,kl/multli];

comment, store the first approximation and its L(1) norm;

normy = 0;

SOLVE(LU, n, res, pivot, y);

for i := 1 step 1 until » do

real normy, kr;

begin
normy := normy + abs(y[i]);
Xl k] := ylil

end;

comment, enter the iterating loop. The iteration is termi-
nated on the integer ‘“limit”’ which itself is determined on
the basis of the success of the first iteration and a machine-
dependent real number designated here by ‘“‘eps”. For
“eps’?, the programmer must insert the largest real num-

135-P1- 0

ber such that eps + 1.0 = 1.0 ;
for count :='1, 2 step 1 until l\mit do
begin integer 7; real #;
comment; compute the residuals of the solution y;
RESIDUALS(An,Bk,X res);
comment ... and find the next increment to the solution;
SOLVE(LU ;n,res,ptvot,y) ;
comment, set up termination conditions;
if count =1 then
begin real normdy;
normdy := 0;
for i := 1step 1 until # do normdy := normdy-+-abs(y[i]);
if normdy = 0 then begin cnr := 1.0; go to enditer end;
t := normy/normdy;
comment, The quantity || 4 ||-]| A~ || (spectral norm)
is called the condition number of the matrix 4. It is
a measure of the difficulty in solving the input equation
and appears naturally in error bounds for the solution
(see ‘Wilkinson [3]). cnr is a direct measure of the
error and experimentally approximates the condition
number;
enr = ((kr — 1.0) X cnr + 1.0/(eps X 1)) /kr;
if ¢ < 2.0 then go to singular;,
limit := In(eps)/In(1.0/t);
end;
comment, store the new approximation;
fori := 1step 1 until ndo X[i k] := X[k] := X[i,k] +yli];
end iteration;
enditer :
end right-hand sides
end LINEAR SYSTEM ;
procedure EQUILIBRATE (A) order:(n) multipliers:(mult);
integer n; real array A, mult;
comment, scaling the rows of the matrix A to roughly the same
maximum magnitude (here, dividing by the largest element)
allows the procedure CROUT to select effective pivotal elements
for the Gaussian decomposition of the matrix. The iterating
procedure will converge to the solution for the equilibrated
matrix rather than the input matrix. If the matrix is badly
conditioned then the solution is sensitive to perturbations in
the input and the scaling division must be done not by the
largest element but rather by the power of the machine number
base (2 and 10 for binary and decimal machines, respectively)
nearest the largest element so as to avoid rounding errors.
Equilibration is discussed in reference [3] p. 284;
begin integer 7; real mzx;
for ¢ :='1 step 1 until n do
begin integer j;
mz := 0.0; comment, find the largest element;
for j := 1 step 1 until n do
if abs(A[,k]) > mx then mz = abs(A[3,k]);
if mz = 0.0 then go to singular;
comment, now store the multiplier and scale the row;
mult[i] := mr; comment := base T ex for exact scaling;
if mz # 1.0 then
for j := 1step 1 until n do A[i,j] := Ali,j]/mz
end :

end EQUILIBRATE;

COLLECTED ALGORITHMS (cont.)

procedure CROUT (A) order:(n) pivots:(pivot) interchanges:(sg).
integer n; integer array pivol; real array A: real sg;
comment, this is Crout’s method with row interchanges as
formulated in reference {1] for transforming the matrix A into
the triangular decomposition LU with all the L{kk] = 1.0.
pivottk] stores the index of the pivotal row at the k-th stage of
the elimination for use in the procedure SOLVE;
begin integer 17, j, k, imaz, p; real (, quot;
.real procedure /Pl (4) extra term:(¢) length:(f);
integer f; real ¢; real array 4; comment non-local 7, j, k;
comment, IP1 forms a row by columr inner product of A,
namely the sum of A(i,p] X Alpk]forp := 1,2, ..., f, and
then adds the extra term ¢. If f < 1, the value of IP1 is ¢.
This procedure is the inner loop of the algorithm. The pro-
grammer can expect a substantial advantage from substi-
tuting a faster and more accurate inner product here;
begin real sum; integer p;
sum := {;
for p := 1 step 1 until f do sum := sum + A[{,p] X Alpk];
IP1 := sum
end IPl;
sg = 1.0;
comment, k is the stage of the elimination;
fork := 1 step 1 until n do
begin
{ = 0;
for ¢ := [step 1 until n do
begin comment, compute L. Note that the first calls on IP1
are empty;
Ali k] := —IP1(4, - Ali klk-1);
if abs(Ali k]) > ¢ then
begin ¢ := abs(A[{ k]); imaz := 7 end
end;
if ¢t = 0 then go to singular;
comment, 4[imazk]is the largest element in the remainder
of column k. Interchange rows if necessary and record the
change;
pivotlk] := i{maxzx;
if tmaz # % then

begin
sg = —sg;
for j := 1 step 1 until n do
begin
t := Alk,jl; Ak.j] = Alimaz, j1; A[imaz, j] := ¢
end
end;

comment, compute a column of multipliers;
quot 1= 1.0/Afkk};
for ¢ := k41 step 1 until n do A[{ k] := A[i,k] X quot;
comment, and compute a row of U;
for j := k+1 step 1 until n do
Alk,j) = —IP1(A,— Ak,j]k—1)
end
end CROUT,;
real procedure PRODUCT (factors) start:(s) finish:(f)
exponent:(ex);
integer 3,fer; real array factors;
comment, PRODUCT multiplies the nuinbers stored from index
s through f inclusive in the array “factors’’, preventing ex-
ponent overflow. The answer is normalized so that 1.0 > abs
(PRODUCT) z 0.1. The exponent appears in ex;
begin integer i; real p, pl;
ez :=0; p:= 10;
for i := s step 1 until f do
begin
pl := factors [i};
if abs(pl) < 0.1 then begin pl = 10.0 X pl; ez
end;

1= er—1

135-P 2- 0O

p:i=p X plj
if p = 0 then bhegin ex := 0; go tofin end;
1: if abs(p) < 0.1 then
begin p := p X 100; exr: = ex~1; go to 1 end;
2: ifabs(p)21.0 then
begin p := p/10.0;
end;
fin: PRODUCT :=p
end PRODUCT;
procedure RESIDUALS (A) order:(n) right-hand sides:(B)
column of B:(k) approximate solution:(X) residuals:(res);
integer n, k; real array A, B, X, res;
comment, RESIDUALS computes b — Ay where b is the kth
column of the right-hand side matrix B and y is the kth eolumn
of X;
real procedure IP2 (4) row: (z) order:(n) approximate
solution:(X)
column:(k) extra therm:(¢);
integer i, k, n; real ! real array 4, X;
comment, I P2 forms the inner product of row 7 of the matrix
A and column k of the solution matrix X, then adds the
single term ¢. It is essential that I P2 be an “‘accumulating’’
or double precision inner product as discussed in reference
[3] p. 296. The value of I1P2 is the rounded single precision
result of the double precision arithmetic. The body of the
procedure is left undefined;
begin integer 7;
for i := 1 step 1 until n do
regli} 1= —1P2(A,1,n,X k,— Blik])
end RESIDUALS;
procedure SOLVE (A) order:(n) right-hand side:(b) pivots:
(pivot) answer:(y):
integer n; integer array pivol; real array 4, b, y;
comment, SOLVE processes a right-hand side b and then back-
solves for the solution y using the LU decomposition provided
by CROUT;
begin integer k, p; real (;
for k := 1 step | until n do
hegin
t := b[pivotlkl]]; blpivot(k]] := blk];
for p := lstep l untilk—1ldo ¢ :=t — Alk,p] X blpl;”
blk] =t
end .. having modified b by L inverse;
comment, now the back solution for y;
for k := n step —1 until 1 do
begin
t := blk];
for p := k41 step l untilndo t := ¢ — Alk,p] X ylpl;
ylk] =t
end backsolution
end SOLVE

REFERENCES

1. Grorce E. Forsyrug, Crout with Pivoting. Algorithm 186,
Comm. ACM 3, 2 (Sept. 1960), 507.

2. Derex Jonany Rork, Simultaneous System of Equations and
Matrix Inversion Routine. Algorithm 92. Comm. ACM 35,
5 (May 1962), 286.

3. J. H. WiLkiNsox, Error Analysis of Direct Methods of Matrix
Inversion, /. ACY 8.3 (July 1961), 281-330.

ex := exr 4+ 1; goto?2end;

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 135

CROUT WITH EQUILIBRATION AND ITERATION
[William Marshall McKeeman,* Comm. ACM, Nov.
1962]

Wirniam MarsHALL McKEEMAN,

Stanford University, Stanford, Calif.

* This work was supported in part by the Office of Naval Re-
search under contract Nonr 225(37).

A BavLgow translation of the algorithm was tested for aceuracy,
proper termination and running time on the Burroughs 220.
The exaet inverse of the Hilbert segment of order 6 can be stored
in the 8-decimal-digit floating word of the B220 and was used in
the accuracy and termination tests. The Hilbert segment Hs
is very ill-conditioned (for the spectral norm, || He ||-|| H3 || =
1.3 X 107). Hence the number of iterations required should not
be taken as typical.

The [n,n] element (mathematically & = .090909 ---) is repre-
sentative of the behavior of the rest:

“exact” equilibration equilibration by

(by powers of 10) largest element in row

initial solution .092587535 094091506
first iteration .090877240 .091498265
second iteration 090909695 .091570311
third iteration .090909080 091568310
fourth iteration .090909091 .091568365
fifth iteration terminated .091568364

terminated

Conclusions: The iterating procedure terminated correctly,
or performed one extra iteration in each case. If the equilibration
procedure alters the data, the iteration will ¢onverge to the solu-
tion for the altered matrix. If the matrix is ill-conditioned, as in
the case above, the equilibration may cost a great deal more than
it gains. As a praectical matter, a machine language substitute for
EQUILIBRATE which will not cause rounding of the data is
probably the best course of action.

The running time is approximately proportional to n® as ex-
peeted. If for a given machine, u is the floating multiply time in
seconds, one can expect that run time will be given by ¢ := 1.3 X
X (0 + 7) 1 3 seconds for a call on LINEARSYSTEM with one
right-hand side.

The division of run time between the various phases of the
algorithm is as follows:

@ 100 ~Fverything else
- -
- _
a L
e 50 | EQUILIBRAT
= s 2 lterations (IPD
8 -
é 0 i 1) N 1 - -]
10 20 30 40 50
n -
ORDER OF MATRIX
REFERENCE:

1. Savaee aND Lukacs, Tables of inverses of finite segment of
the Hilbert matrix. In Olga Taussky (Ed.), Contributions to
the Solution of-Systems of Linear Equations and the Deter-
mination of Eigenvalues, pp. 105-108, Nat. Bur. Standards
Appl. Math. Series no. 39, U. 8. Government Printing Office,
Wash., D.C., 1954.

135-P 3- 0

REMARK ON ALGORITHM 135 [F4]

CROUT WITH EQUILIBRATION AND ITERATION
[W. M. McKeeman, Comm. ACM 6 (Nov. 1962), 555—
557, 559]

WiLniam MarsHAL, McKEEMAN (Reed. 1 Apr. 1964)

Computation Center, Stanford University, Stanford,
Calif.

The following corrections to the published algorithm are recom-
mended:

1. Two lines above the bottom line of procedure SOLVE one
must change

ylkl :=¢ to ylk] := t/Alkk]

2. In procedure EQUILIBRATE, all occurrences of the sub-
seript k must be changed to j.

3. The statement ¢nr : = 1.0 should be added at the start of the
body of procedure LINEARSYSTEM, so that cnr will have a value
the first time it is used.

4. Line 19 from the end of LINEARSYSTEM should be changed
from

if normdy = 0 then begin cnr := 1.0; go to enditer end;

to read
if normdy = 0 then go to enditer;

This correction makes sure that cnr retains a reasonable value in
case normdy should be 0 for some column.

5. The symbol ‘-’ must be removed from the parameter de-
limiters in the declarations of procedures LINEARSYSTEM,
RESIDUALS and SOLVE.

6. Four lines above the bottom line of procedure LINEAR-
SYSTEM, delete the first occurrence of X[i,k] : =

7. In the third line of the heading of procedure 7 P2, the parame-
ter delimiter

) extra therm:(
should be changed to
) extra term:(

REMARK ON ALGORITHM 135 [F4]

CROUT WITH EQUILIBRATION AND ITERATION
{W. M. McKeeman, Comm. ACM & (Nov. 1962), 553
555, 557; 7 (July 1964), 421]

LoreN P. MEissNER (Recd. 21 Oct. 1964)

Lawrence Radiation Lab., U. of California, Berkeley.

1. The following error in the published algorithm is noted: The
procedure IP1 forms the sum of A[Z, p] X Alp, k]; however, two
lines above the bottom line of procedure CROUT an attempt is
made to use IP1 to form the sum of A[k, p] X Alp, jl.

A possible way of correcting this is to add a procedure IPla
which is identical with IP1 except that k is written for ¢ and j
for k. Since the procedure is used often, making the correction in
this way is not unreasonable. A more extensive ungdertaking would
be to modify CROUT to use a more general procedure such as
INNERPRODUCT {1)].

2. The following comment is made in view of the reference to
this algorithm in a recent Editor’s Note [2]: In the use of Algo-
rithm 135 as a determinant evaluator, it may be well to set m, the
‘“number of right-hand sides” to 1 instead of zero and give an
arbitrary nonzero right-hand side such as (1, 0, 0, ---). This will
cause a calculation of the ‘‘condition,” and possibly an exit to
singular, to call the user’s attention to cases in which the deter-
minant is nonsense.

COLLECTED ALGORITHMS (cont.) 135-P4- 0

REFERENCES:
1. Forsyrug, G. E. Crout with Pivoting. Algorithm 16. Comm. ACM 3 (Sept.
1960), 507.
2. RorenBeERG, L. J. Remark on Revision of Algorithm 41. Comm. ACM 7 (Mar.
1964), 144.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 136
ENLARGEMENT OF A GROUP
M. WeLLs*

University of Leeds, England
* Currently with Burroughs Corporation, Pasadena, California

procedure Enlarge group (G, n, g, Abelian);
array G, g; integer n; Boolean Abelian;
comment This procedure combines the element g with the sub-
group @, of n elements, to form a new group. The Boolean
Abelian has the value true if the group to which G and g belong
is Abelian. Two procedures, multiply and equal are assumed
to be declared : multiply (G[Z]) by : (Gl5]) to give : (G[k)) will set
the element Gy equal to the product of the elements G; and Gj.
equal (Q[i], G[j]) is a Boolean procedure whose value is true
if, and only if, the elements G; and G; are equal. On leaving the
procedure the enlarged group is in G, and = is equal to the
number of elements in the new sub-group G. The procedure
will funetion correctly if ¢ is included in @ on entry. It is prob-
able that g and the elements of G will be arrays, and the pro-
cedure body will, in practice, need to be altered considerably.
The procedure has been used successfully in connection with
problems of space-group theory;
begin integer 1, 7, k;
for ¢ := 1 step 1 until n do
if equal (G[i], g) then go to not new generator;
n:=n++1; Q] :=g;
for i := n step 1 until n do
begin for j := 1 step 1 until n do
begin multiply (G[7], G[7], Gln+1]);
for k := 1 step 1 until » do
if equal (G[k], Gln+1]) then go to not new element 1;
n:=n -4 1;
not new element 1: if Abelian then go to take next element;
multiply (Glj], Glil, Gln+11);
for k := 1 step 1 until n do
if equal (G[k], G[n+1]) then go to not new element 2;
n:=n-4+1;
not new element 2: take next element:
end of j-loop;
end of i-loop;
not new generator: end of group enlargement

136-P 1-

0

COLLECTED ALGORITHMS FROM CACM

137-P 1- 0

ALGORITHM 137

NESTING OF FOR STATEMENT I
Davip M. Daum & M. WrLLs*
Burroughs Corp., Pasadena, Calif.

* On leave of absence from the University of Leeds, England.

procedure Fors 1 (n, P);

value n; integer n; procedure P;

comment Fors 1 generates a nest of n for statements with the
procedure P at their center. Two non-local arrays I and U,
which give the value of the controlled variable and its upper
bound for each level are assumed to be declared;

begin integer j;
if n = 0 then P
else for j := 1 step 1 until Uln] do
begin I{n] :=j; Fors1 (n—1,P) end end Fors 1

COLLECTED ALGORITHMS FROM CACM

138-P1- 0

ALGORITHM 138
NESTING OF FOR STATEMENT II
Davip M. Daum & M. WELLs*
Burroughs Corp., Pasadena, Calif.
* On leave of absence from the University of Leeds, England. .

procedure Fors 2 (P);

procedure P;

comment Fors 2 performs the same function as Fors 1, but is
more economic of storage space. It is expected, however,
that Fors 1 would be more economic of time. The formal
parameter n is now replaced by the non-local integer =;

begin if n = 0 then P
else for I[n] := 1 step 1 until Uln] do
begin n := n—1; Fors 2 (P) end;
n :=n + 1 end Fors 2

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 139

SOLUTIONS OF THE DIOPHANTINE EQUATION
J. E. L. Prck

University of Alberta, Calgary, Alberta, Canada

procedure Diophantus (a,b,c); integer a,bc;

comment This procedure seeks the integer solutions of the
equation ax + by = c, where the integers a,b,c are given. It
assumes a non-loeal integer M, which should be as large as
storage will allow, two nonlocal labels INDETERMINATE
and NO SOLUTION and two non-local Boolean variables
‘general solution’ and ‘time permits’ which are self explanatory.
It also assumes the procedures abs, sign and print;

begin integer n,r,5,d,i; integer array q[1:M];

noi=1¢:=0; d:=3s:= abs(a); r := abs(b);

comment d will become the greatest common divisor of a and b.

If b = 0thend = |a|. The vector ¢ will retain the successive
quotients in the Kuclidean algorithm 7., = 7 + 7441,
t=1,2-,n where0 S ripy <r;,mo=|al,mn =]bl,

and 7,y = 0;
for ¢ := 7 + 1 while r ¢ 0 do
beginn :=14; d:=r; ¢l]:=s+d;
ri=38—dXqlil; s:=dend This records the quotients and
the number n of divisions for use below;
ifd = 0 then go to if ¢ = 0 then INDETERMINATE
else NO SOLUTION; comment The case d = 0 oceurs when
a* + b* = 0. If d now does not divide ¢ then the equation can-
not be solved so;
if (¢ + d) X d # ¢ then go to NO SOLUTION;
ifd 5 1 then
begin a := a/d, b := b/d; ¢ := c¢/d end, which removes
the common factor and reduces the equation to the case
where a and b are relatively prime;
begin comment We shallnow find %, and »; in order to

express
1 = au; + bv:, using the relations r. = rw; + riu: ,
t=nmn=1 -, Lun=1 u,=0, andriy = —7rqi + i1,
1 =n~1,n-2---,1; integer u,;

if n = 0 then
begin v := 0; u := 1 end, which takes care of the case

b=20
else

begin v :=1; wu := 0;
for i := n—1 step —1 until 1 do
begin integer t;
ti=v; vi=u—-vXqltlu:=1
end ¢
end the case n # 0. It remains now to multiply the equality
1 = au; + bv; through by c;
begin integer 20, 0;
20 1= ¢ X u X sign(a); %0 :=c X v X sign(b); print (x0,40);
comment If xo 0 is a particular solution then =z = b,

Yo F da, 1=1,2, ... gives the general solution. Therefore;-

if general solution then
begin u := b; v := q;
A:print(@0 4+ u, yO — v); print{(x0—wu, y0 + v);
w:i=u+b; v:=0v+4a;
if time permits then go to A
end general solution and

end solution.

end u,»

139-P 1- O

end Diophantus.

‘CERTIFICATION OF ALGORITHM 139 [Al]
SOLUTIONS OF THE DIOPHANTINE EQUATION
[J.E.L. Peck, Comm. ACM & (Nov. 1962), 556]
Henry J. BowLpEN (Recd. 30 Sept. 1964 and 5 Nov. 1964)
Westinghouse Electric Corp., R&D Ctr., Pittsburgh, Pa.

Algorithm 139 was transeribed into Burroughs Extended ALgoL
after the following typographical error was corrected: On the
line following “‘if d > 1 then’ replace ‘“‘a := a/d,” by “a := a/d;”.

The cases shown in the table were tried, with the results shown
in columns 4 and 5. These solutions are correct, but perhaps not
too useful. Of course, a definition of ‘‘useful’’ in this context would
be rather subjective; in any case, the user can always obtain an
arbitrary solution ‘“‘useful’”’ for his purpose. We have chosen to
regard a small value of x as a criterion for usefulness, and obtain
this by inserting, just before ‘“‘print (20, y0)”’, the statements

ci=20 + b; 20:=20—¢ Xb; y0:=9y0+ ¢ X q;

The following remarks have to do with matters of programming
taste rather than accuracy.

(a) A value part of form value a, b, ¢; should be inserted to
avoid side effects:

(b) The results should be passed back to the calling program
for use by the caller. This requires the addition of two call-by-
name parameters (z0, y0), and the removal of the declaration
integer 20, y0;. The provisions for printing the results should be
omitted.

(¢) The procedure contains a deliberate possibility of an in-
finite loop. This is unacceptable on most operating systems and
should be omitted.

(d) The provision of an array (¢) “as large as storage will
allow’’ is rather indefinite. The algorithm as given provides no
test to prevent exceeding this arbitrary size. The number of par-
tial quotients in the Euclidean algorithm may be shown to be no
more than five times the number of decirnal digits in the (largest
of the) coefficients a, b, ¢, 80 a size of five times the number of digits
in the largest integer to be considered is sufficient.

The algorithm, modified as suggested above, gives the results
in columns 6 and 7 of the table below. The execution time on the
B-5000 was approxinately 40 milliseconds.

original modified
a [¢ %0 0 %0 40
1000 23 1046 —2092 91002 —22 1002
0 0 0 indeterminate
57 —103 47009 2209423 1222234 73 —416
10 12 578 —289 289 -1 49
10 12 97 no solution

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 140

MATRIX INVERSION

P. Z. INGERMAN

University of Pennsylvania, Philadelphia, Penn.

procedure invert (a) of order:(n) with tolerance:(eps) and
error exit:(oops);
value n, eps; array a; integer n; real eps; label oops;
comment This procedure inverts a matrix by using elementary
row operations. Although the method is not particularly good
for ill-conditioned matrices, the simplicity of the algorithm
and the fact that the inversion occurs in place make it useful
on occasion;
begin integer 7;
for i := 1 step 1 until » do
begin integer j, k; real ¢;
q = aligl;
if abs(q) Sabs(eps) then go to oops;
alii} := 1;
if g1 then for k := 1 step 1 until n do a[i,k] := a[i,k]/q;
for j := 1 step 1 until n do
if i) then
begin ¢ := alj,i]; alj,7] := 0;
for k := 1 step'1 until » do
alj,k] := aljk]—qXalt,k] end end end

CERTIFICATION OF ALGORITHM 140

MATRIX INVERSION [P. Z. Ingerman, Comm. ACM,
Nov. 1962]

RicHArRD GEORGE*

Argonne National Laboratory, Argonne, Ill.

* Work supported by the United States Atomic Energy Commission.

Algorithm 140 was tested on the LGP-30, using Scavrp, a load-
and-go compiler from the Dartmouth College Computation
Center, and it was shown to be syntactically correct.

It is indeed a simple procedure. It is so simple because the
author has eliminated the very necessary search for largest ele-
ments and the row interchanges. As a result, this procedure will
fail to invert many non-singular matrices. To be invertable by this
procedure, a matrix must be such that all of its leading diagonal
submatrices will have non-zero determinants.

One would do well to avoid this algorithm and use one (such
as 120) which employs the pivoting process.

140-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 141

PATH MATRIX

P. Z. INGERMAN

University of Pennsylvania, Philadelphia, Penn.

procedure find path (e, n);

value n; Boolean array a; integer n;

comment This procedure is merely an Algol implementation
of the method of Warshall (JACM 9(1962), 11-12). Some ad-
vantage is taken of the characteristics of the problem to in-
crease the efficiency;

begin integer 7, j, k;
for j := 1 step 1 until n» do
for 7 := 1 step 1 until » do
if ali,j] A\ 257 then
for k := 1 step 1 until n do
alt,k] := a[Z,k]Vals,k] end findpath

141-P 1- 0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 142

TRIANGULAR REGRESSION

W. L. HarLeEY aND J. S. LEwIs

Aluminum Company of America, Pittsburgh, Penn.

procedure (rireg (n, nob, dep, pmazx);
real pmaz; integer n, nob, dep;
comment {rireg is a multiple regression procedure which
develops and inverts only the upper triangular portion of a
correlation matrix of order n. The ¢,5th (=< j) matrix element
is 7(cs+7) where the ¢’s are eram numbers (ref. Algorithm 67,
J. Caffey, Comm. ACM 4, July 1961). dep < = dependent
variables are regressed simultaneously. Read () is an input
procedure for single elements. The input consists of nob ob-
servations on n variables. The first dep variables are con-
sidered dependent and the remaining n — dep are considered
independent variables. Independent variables are dropped
when the pivotal element exceeds pmax during the inversion.
Total variable storage is 14 + 3n + n(n-+1)/2;
begin integer il, 12, i3, cl, ¢2, ¢3, df; integer array c[l:n];
real d, p, a; real array r[l:n(n+1)/2], v[l1:n], m[l:n];
initial: df := 0; for 71 : = 1 step 1 until n do m[il] : = 0;
for 71 : = 1 step 1 until n(n+1)/2 do r[il1] : = 0;
for i1 := 1 step 1 until nob do
begin for i2 : = 1 step 1 until n do Read (v[:2]};
¢l :=0; fori2:=1step 1l until n do
begin d : = v[s2]; m[i2] : = m[i2] + d;
for i3 := {2 step 1 until » do
begincl :=cl +1; rlcl]:= rlcl] + v[¢3] X d end
end 12;
end 71;
correlation: ¢l:=1; qa:=1/nob; foril:=1 step luntilndo
begin v[i1] := 1/sqri(r[cl]— (m[i1]12) X a);
rlell :=1; el:i=¢cl+n—1l
end 71;
cl:=1;
begind := a X m[il]; p := v[il];
mlil] 1= d;
for ¢2 : = i1 4 1 step 1 until n do
begin r[cl] : = (rlcl]—dXm[i2]) X »[2] X p;
end 2;
end 71;
comment variable ¢ may be dropped from the
regression by setting »; = 0 and df equal to the
number of variables dropped;
tli= —~mn; 2:=n-41; fori3:=1stepl until ndo
begin 71 := 11 + 42 — ¢3; ¢[¢3] := il
end 171;
inversion: for i1 := dep + 1 step 1 until n do
begin cl : = ¢[il]; ifv[Zl] # 0 then
begin p := 1/r[c1+141]; if p > pmaz then
begindf :=df 4 1; go to YY end else
begin r[cl1+il] := p; for 12 := 1 step 1
until 711 — 1 do
begin c2 : = ¢[i2]; a:= p X r[c2+11];
for i3 : = i2 step 1 until n while i3 » ¢1 do

input:

for 71 := 1 step 1 until » do
¢l :=¢cl + 1;

cram:

142-P 1- 0

begin if :3 < 71 then
begin ¢3 := ¢[23]; d := r{c3+71] end
else d : = —rfc1+13];
rfe2+13).:= r[c2+23] +d X a
end 13;
end :2;
for 12 := {1 + .1 step 1 until n do
begina := p X rlc1+42]; ¢2:= c[i2];
for i3 : = 72 step 1 until » do
r[e2413] : = r[c2+13] — a X rlc1+143];

end 2;

ZZ: for i2 : = 1 step 1 until i1 — 1 do
begin ¢2 : = c[i2+1i1]; r[c2] := — p X r[c2]
end 72;

for i2 := cl + i1 + 1 step 1 until » + cl1 do
r[i2] 1= p X r[i2]
end
end else
YY:beginp := 0; r[cl+il]l :=0; gotoZZ end
coeff: d := 1/(nob—n-+dep—I+df); for il := 1 step 1 until
dep do
if v[71] # 0 then
begina := 0; p:= 1/v[i1];
+1 step 1 until n do
begin if 7[i2] 7 0 then
begin r[c1+2] = —r[c1+412] X 9[£2] X p; a :=
a + rle1+12] X m[:2]
end
end ¢2;
v[il] 1= (2—r[cl+41]) X d/(v»[71]12)
comment: v[l:dep] now contains the mean square
deviations from regressions for the dependent vari-
ables. The coeflicients of determination R? may be
obtained as r[cl+:1] — 1;
rlel+41] : = mlil] — a else
begin ¢l := c[il]; for 72 :=
¢l +ndorfi2]:=0
end
end
comment The r-array now contains the constants and coeffi-
cients of regression, and the inverse of the correlation matrix of
the independent variables that have been kept. The following
example will help to locate the information in the r array.

cl 1= c[il]; for 12 := dep

cl + 71 step 1 until

Example: n =6 dep =3
TyTe Ty (T4 Ts Te bo 1b11 bar b
T7 78 11'9 Tio Tl o2 :blz bz baz
T T3 T T bos 1bus bas bas_
Tie v T8 ril ri 713
T T2c r22 r23
ra 733

The variances and covariances of the regression coefficients for
the jth dependent variable can be determined by—
Var (b;;) = % X v; X v;?
Covar (biibei) = r* X v; X vi X v;
end trireg

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 143

TREESORT 1

Artaur F. Kavurg, Jr.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 1 (UNSORTED, n, SORTED, k);
value n, k;

integer n, k; array UNSORTED, SORTED;

comment TREESORT 1 is a revision of TREESORT (AL-
GORITHM 113) which requires neither the ‘“‘packed’’ array m
nor the machine procedures pack, left half, right half, and mini-
mum. The identifier infinily is used as nonlocal real wariable
with value greater than any element of UNSORTED;

begin integer i, j; array ml {1:2Xn—1];
integer array m2 [1:2Xn—1];

procedure minimum; if ml [2X1] £ m1[2Xi+1] then
begin ml[i] : = m1(2X1]; m2[:] : = m2[2X1i] end else
begin m1[i] : = m1[2Xi+1]; m2[E] 1= m22Xi+1] end mini-

mum;

for i := nstepl until 2 X n — 1 do begin ml[¢] : = UNSORTED
[{—n+1]; m2[] := i end

for i := n — 1 step —1 until 1 do minimum;

for j := 1 step 1 until £ do
begin SORTED [j] := ml(1]; 1 := m2[l]; ml[] := infinity;

for ¢ : = 1 + 2 while 7 > 0 do minimum end
end TREESORT 1

143-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 144

TREESORT 2

ArtHUR F. KAUPE, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 2 (UNSORTED,n,SORTED,k, ordered);
value n, k; .
integer n, k; array UNSORTED, SORTED; Boolean proce-
dure ordered;
comment TREESORT 2 is a generalized version of TREESORT
1. The Boolean procedure ordered is to have two real argu-
ments. The array SORTED will have the property that ordered
(SORTEDi), SORTEDIj]) is true when j > i if ordered is a
linear order relation;
begin integer 7, j; array ml [1:2Xn—1]; integer array m2
[1:2Xn—1];
procedure minimum; if ordered (m1{2X3), m1[2)Xi+1]) then
begin ml[i] : = ml[2X:]; m2[i] : = m2[2X 7] end else
begin ml[i] : = ml{2Xi+1); m2[i] := m2[2Xi+1] end mini-
mum;
for i := nstepluntil 2 X n — 1 do begin m1[i] : = UNSORTED
[{—n+1]; m2[) := 7 end
for ¢ :=n — 1 step —1 until 1 do minimum;
for j := 1 step 1 until k do
begin SORTEDIj] : = ml[l]; ¢ := m2[l]; mlli] := infinity;
for i := ¢ + 2 while 7 > 0 do minimum end
end TREESORT 2

144-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 145

ADAPTIVE NUMERICAL
SIMPSON’S RULE

WirLiaM MarsHaLL McKEEMAN*

Stanford University, Stanford, Calif.
* This work was supported in part by the Office of Naval
Research under contract Non4 225(37).

real procedure Integral (F) limits: (a, b) tolerance: (eps);
real procedure F; real a, b, eps;
begin comment Integral will numerically approximate the
integral of the function F between the limits a and b by the
application of a modified Simpson’s rule. Although eps is a
measure of the relative error of the result, the actual error
may be very much larger (e.g. whenever the answer is small
because a positive area cancelled a negative area). The pro-
cedure attempts to minimize the number of function evalua-
tions by using small subdivisions of the interval only where
required for the given tolerance;
integer level;
real procedure Simpson (F, a,da, Fa, Fm, Fb, absarea,est,eps);
real procedure F; real a, da, Fa, Fm, Fb, absarea, est, eps;
begin comment Recursive Simpson’s rule;
real dz, z1, 22, estl, esi2, est3, F1, F2, F3, F4, sum;
dr := da/3.0; zl1 :=a + dzx; 22 := z1 + dz;
Fl1:= 4.0 X F(a+dz/2.0); F2:= F(zl);
F3:=F(22); F4:= 4.0 X F(a+2.5Xdz);

INTEGRATION BY

estl := (Fa+F1+F2) X dz/6.0;
est2 i = (F2+Fm+F3) X dz/6.0;
estd := (F3+F4+Fb) X dz/6.0;

absarea : = absarea-abs(est) + abs(estl) + abs(esi2) + abs(est3);
sum := estl 4 est2 + est3;
level : = level + 1;
Simpson : = if (c0s(est-sum) S eps X absarea A\ est = 1.0) \VV
level = 7 then sum
else Simpson (F, a, dz, Fa, F1, F2, absarea, estl, eps/3.0)
+ Simpson (F, z1,dx, F2, Fm, F3, absarea, est2, eps/3.0)
+ Simpson (F, 22, dx, F3, F4, Fb, absarea, est3, eps/3.0);
level : = level —1;
end Simpson;
level :=1;
Integral : = Simpson (F, b-a, F(a), 4.0 X F((a+b)/2.0), F(b),
1.0, 1.0, eps)
end Integral 13

CERTIFICATION OF ALGORITHM 145
ADAPTIVE NUMERICAL INTEGRATION BY
SIMPSON’S RULE [W. McKeeman. Comm. ACM,
Dee. 1962]
WM. M. McKEEMAN
Stanford University, Stanford, Calif.
Suggested changes in the code:
1. Replace all occurrences of eps/3.0 by eps/1.7.
2. Replace level 2 7 by level = 20.

3. The second parameter a in the final call of Simpson was
omitted; insert it.

145-P 1- 0

With the above changes, a BaLeowu translation of Integral nas
been tested successfully on a large number of functions. An ex-
ample of its behavior is given below:

Machine: Burroughs 220, 8 decimal digit floating-point mantissa.
f(z) = 1.0/sqrt(abs(z)); which has a pole at the origin.
a = —9.0; b= 1000.0; correct answer = 206.0;

eps computer answer [relative error
0.1 200.22251 0.028
0.01 206.00226 0.0000107
0.001 206.00092 0.0000045
0.0001 205.99985 0.0000007

If the recursion was allowed to go thirty levels deep we found:

0.0001 206.00005 0.0000002

The graph below shows the adaptive clustering of the points of
evaluation around the pole of the function (taken from the first
example above).

f(x) = 1.0/sqrt(abs(x))

0.21
011
\
0.0 Z.
M LTI T T T T T %7
0 100 200 300 400 500 600 700 800 900 1000 10000

Each vertical line represents a point of
evaluation for the function during the
execution of the all:

integral (f, —9.0, 10000.0, 0.1);

REMARK ON ALGORITHM 145 [D1]

ADAPTIVE NUMERICAL INTEGRATION BY
SIMPSON’S RULE [William Marshall McKeeman,
Comm. ACM 6, (Dec. 1962), 604]

M. C. Pike (Recd. 5 Oct. 1964 and 23 Nov. 1964)

Statistical Research Unit of the British Medical Research
Council, University College Hospital Medical School,
London, United Kingdom

This procedure was tested on the ICT Atlas computer and

found satisfactory after the following three modifications were
made:
(1) add “real absarea;” on the line following “integer level;’’,
(2) add “absarea := 1.0;’ on the line following ‘‘level := 1;,
(3) substitute

“Integral := Simpson (F, a, b—a, F(a), 4.0XF((a+b)/2.0),

F(b), absarea, 1.0, eps)’’

COLLECTED ALGORITHMS (cont.)

for
“Integral := Simpson (F, b—a, F(a), 4.0XF((a+v)/2.0), F{}),
1.0, 1.0, eps)’’.
These corrections are necessary since absarea appears on the left-
hand side of an assignment statement, namely, in line 10 of the
real procedure Simpson, and yet when Simpson is called in the
third to last line of the real procedure Iniegral the actual parame-
ter for absarea is given as 1.0.
The author wishes to thank the referee for helpful suggestions.

145-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 146
MULTIPLE INTEGRATION
WiLLiaM MarsaaLn McKEEman*

Stanford University, Stanford, Calif.
* This work was supported in part by the Office of Naval Re-
search under contract Non4 225(37).

real procedure MultipleIntegral (F) limits: (a, b) order: (n)
tolerance: (eps);
real procedure F; real arraya, b; real eps; integern;
begin comment F is a function of n variables which are stored
in an internal array z. MultipleIntegral approximates the
multiple integral of F between the n pairs of limits stored in
the parameter arrays a and b. For a mesh of k£ steps on each
axis, the number of function evaluations required for an
integral of nth order is approximately kTn. One consequence
is that the practical limit on = is quite small. Another is that
any inefficiency in the (undefined) procedure Integral will
reflect itself to the nth power in MwultipleIntegral. The adap-
tive procedure Integral is recommended;
real array z[l:n+1]; integer axis;
real procedure Integral (F) limits: (a, b) tolerance: (eps);
real procedure F; real a, b, eps;
begin comment The body of procedure Integral is left
undefined. For it one may substitute any procedure of the
same name that evaluates the integral of a function of a single
variable between the real limits a and b;
end Inlegral;
real procedure MI1(y); real y;
begin comment Recursive multiple integration;
rlaxis] 1= y;
arts = axts —1;
MI := if axis = 0 then F(z) else
Integral (M1, alaxvs], blaxis], eps/n);

aris 1= axis +1;
end MI;
axis := n + 1;

MultipleIntegral := MI(0)
end MultipleIntegral

CERTIFFICATION OF ALGORITHM 146
MULTIPLE INTEGRATION [W. M. McKeceman,
Comm. ACM 6§ (Dec. 1962), 604]
Nikraus WirtH (Reed. 6 Jan. 1964)
Computer Science Div., Stanford U., Stanford, Calif.
Algorithm 146 was translated into a generalized AvLgoL [ef. N.
Wirth, A generalization of ALGOL, Comm. ACM 6 (Sept. 1963),
547-554] and successfully run on the Stanford IBM 7090 computer.
Algorithm 60, Romberg Integration [Comm. ACM 4 (June 1961),
255; & (Mar. 1962), 168; 5§ (May 1962), 281] was used for the real
procedure Integral.
The main disadvantage of Algorithm 146 is that the bounds of
the domain of integration must be constant, i.e. the domain
must always have the form of a rectangular hyperbox.

146-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 147

PSIF

D. Amir

Ministry of Defense, Israel

real procedure psif(z, a, tan, In) exit: (errerit);

value z, a; label errexit; real procedure fan, In;

comment Computes the logarithmie derivative of the factorial
function defined by:

o< @Y D@+

z! =I‘(x+1)'

We make use of the expansion: (1) ¥(z) = Inx + 1/22z —
1/1222 + 1/120x* — 1/2522% + ¢, (2) ¢ < 1/240z% and of the re-
cursion relation, 3) ¥ (z) = ¥(z+n) — (1/(x+1)+...+1/(z+n)).
For 2 < —1 we use: (4) ¥(—2) = wian =(2z+0.5) + ¥(z—1).
The value of z is increased up to a. Then ¥ is calculated by (3)
and (1). The error is then less than 1/240a3;

begin real psi, per; pst = 0;

ifxt > —1 Az £ 0 then go to pos;

if z = 0 then begin psi : = —0.5772156649; go to erif end;
begin integer z1; zl := z;
if z = z1 then go to errexit end
comment psi is infinite;
per = 3.141592654; © := —2x — 1;

pst := pet X tan(peiX (x+0.5));
pos: if x = a then go to large;

ri=zx + 1; pst:i= pst —1/x; go to pos;
large: begin realy; y := 1/r;

st 1= psi + In(x) + y/2—y T 2/12 + y 1 4/120—y T 6/252;
exit: psif := psi; ‘
end psif

CERTIFICATION OF ALGORITHM 147

PSIF [D. Amit, Comm. ACM., Dec. 62]

Henry C. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, Ill.

* Work supported by the U. S. Atomic Energy Commission.

The following minor errors were noted in this algorithm:
a. (3) in the comment should read ¢ < 1/240 28.
b. The funection fan is not a standard ArcoL function. It should be
declared, or replaced by sin ()/cos().
¢. The block labelled large should be closed by inserting end im-
mediately after 252.
The efficiency of the program would be improved by the follow-
ing modifications:
a. Let the statement
if z = 0 then begin . . . end;
be the first statement of the procedure body.
b. Delete the condition z = 0 from the if clause,

ifz> —1 Az # 0then. ..

¢. Delete the declaration of pet, and the assignment of the value
of 3.141592654 to pei in the statement

147-P 1- R1

pst i = pet X sin(per X (z40.5))/cos(peiX (z40.5));
replace pei by the value 3.141592654.
d. Replace the block labelled large by:

large: beginrealy; z:=1/x; y:=2 X z;

pst t= psit — In(z) + 2/2 — ((y/252—0.008333333333) X y +

0.08333333333) X y end;

With these changes, the body of the procedure was translated
and run on the LGP-30 computer using the Dartmouth Scarp
processor. The program was used to tabulate psif(z) forxz = —1
(0.5)0(0.005)1.250. With ¢ = 3.0 the results agreed with tabulated
values to within 3 in the 6th decimal place. This is considered
satisfactory, since one decimal place is lost in applying the recur-
rence. Running time, including output on the Flexowriter and
computation of new values of the independent variable, averaged
about 30 seconds per value.

It should be observed that psif(z) is ¥ (z+1) as tabulated, for
example, by Jahnke-Emde-Losch.

CERTIFICATION OF ALGORITHM 147 [S14]

PSIF [D. Amit, Comm. ACM 6 (Dec. 1962), 605]

RonaLp G. Parsons* (Recd. 7 Dec. 1966 and 5 Aug.
1969)

Stanford Linear Accelerator Center, Stanford University,
Stanford, CA 94305

* Present address: Department of Physics, The University of
Texas, Austin, TX 78712. Work supported by the US Atomic
Energy Commission.

KEY WORDS AND PHRASES: gamma function, logarithmic
derivative, factorial function, psi function
CR CATEGORIES: 5.12

The following errors were noted in this algorithm in addition
to those noted by Thacher [2].

a. (4) in the comment should read “For —z < —1 we use: (4)
V(—gz) = ¥(@—1) + = cot (zx)".

b. At the end of the first comment add: ‘“Note that psif(z) =
¥(z) is ¢(z+1) as defined, for example, by Jahnke-Emde-Losch”
see [1]).

c(. TlEeDstatement in the algorithm before the label pos should
read: psi := pei X cos (peiXx)/sin (peiXz); These errors caused
the procedure to give incorrect results for psif(z, a) for z < —1.
d. The arguments tan and In should be deleted from the parameter
list and real procedure fan, In; should be deleted from the speci-
fication part of the procedure heading.

With these changes and those of Thacher, the ‘procedure was
translated into Burroughs B5500 extended ALcoL and run on the
Stanford B5500. psif(¥, a) was tabulated for z = —2.9(0.1)5.0
with ¢ = 8.0 The results agreed with tabulated values to within
1/(240a8).

REFERENCES:

1. JaeNke-Empr-Losce. Tables of Higher Functions (6th Ed.).
MecGraw-Hill, New York, 1960.

2. THacHER, H. C., Jr. Certification of Algorithm 147. Comm.
ACM 6 (Apr. 1963), 168.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 148

TERM OF MAGIC SQUARE

D. M. Corrison

Elliott Brothers (London) Ltd., Borehamwood, Herts.

integer procedure magicterm (z,y, n); value z, y, n; integer
z, Y, n;

comment for the magic square s[1:n, 1:n], magicterm generates
the element glz, y], where n > 2 and n is odd. De la Loubére’s
method is used;

begin integer b, c;
bi=y—z4+ (n-1)+2; ci=y+y—az;
ifb=2nthenb:=b—nelseifb <Othenbd :=b + n;
ifc>nthenc:=¢ —nelseifc S Othenc:=¢ + n;
magicterm 1= b X n+ ¢

end magicterm

CERTIFICATION OF ALGORITHM 148

TERM OF MAGIC SQUARE [D. M. Collinson, Comm.
ACM, Dec. 1962]

J. N. R. Barnecutr

University of Alberta, Calgary; Calgary, Alberta, Canada
MAGICTERM was translated into ForTrAN for the IBM 1620.

The procedure was tested for terms of squares up to order 13.

Correct results were obtained. For determination of complete

squares operating time was not significantly different from Al-
gorithm 118.

CERTIFICATION OF ALGORITHM 148

TERM OF MAGIC SQUARE [D. M. Collison, Comm.
ACM, Deec. 62]

Dwrtrr THORO

San Jose State College, San Jose, Calif.

This algorithm was translated into ForTraN and Forao for the
IBM 1620. No changes in the program were necessary. The ele-
ments of magic squares of odd orders up to 15 were generated
satisfactorily.

148-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 149

COMPLETE ELLIPTIC INTEGRAL

J. N. MERNER

Burroughs Corp., Pasadena, Calif.

comment The followirig two procedures, along with a test
program were compiled and run by Peter Naur on the DISADEC

computer. Compilation time for the 9 pass compiler was less
than 10 seconds. The elliptic integral of the form

f"“ dt
b Va*cos®t+ b?sin?¢

is evaluated by replacing a and b by their arithmetic and geo-
metric means, respectively. ELIP 2 is a nonrecursive proce-
dure to accomplish the same thing;
real procedure ELIP 1 (a, b); valuea, b; real a, b;
ELIP 1 := ifabs(a—b) <10 —8 X a
then 3.14159265/2/a
else ELIP | ((a+b)/2, sqrt (aXb));
real procedure ELIP 2 (a,b); valuea,b; reala,b;
begin real C;
L: C:= (a+b)/2; b := ggrt (axXd); a:= ¢;
if abs(a—b) <10 —8 X @ then ELIP 2:= 3.14159265/2/a
else go to L end

CERTIFICATION OF ALGORITHM 55

COMPLETE ELLIPTIC INTEGRAL OF THE FIRST
KIND [John R. Herndon, Comm. ACM, Apr. 1961]
and

CERTIFICATION OF ALGORITHM 149

COMPLETE ELLIPTIC INTEGRAL [J. N. Merner,
Comm. ACM, Dec. 1962]

Henry C. THACHER, Jr.*

Reactor Eng. Div., Argonne National Laboratory,

Argonne, Ill.
* Work supported by the U.S. Atomic Energy Commission.

149-P 1- R1

The bodies of Algorithm 55 and of the second procedure of
Algorithm 149 were tested on the LGP-30 computer using Scavp,
the Dartmouth ‘‘LoAD-AND-GO’’ translator for a substantial sub-
set of ALgoL 60. The floating-point arithmetic for this translator
carries 7+ significant digits.

In addition to modifications required because of the limitations
of the ScaLp subset, the following need correction:

In Algorithm &5:

" 1. The constant 0.054555509 should be 0.054544409.

2. The function log should be In.

In procedure ELIP 2 of Algorithm 149, the statement a := ¢
should be a := C.

The parameters of Algorithm 149 are related to the complete
elliptic integral of the first kind by: K = aXELIP(a, b) where
the parameter m = k* = 1 — b/a.

The maximum approximation error in Algorithm 55 is given by
Hastings as about 0.610—6. In addition there is the possibility of
serious cancellation error in forming the complementary param-
eter { = 1 —k X k. For k near 1, errors as great as 4 significant
digits were sustained. In these regions, the complementary
parameter itself is a far more satisfactory parameter.

The accuracy obtainable with Algorithm 149 is limited only by
the arithmetic accuracy and the amount of effort which it is
desired to expend. Six-figure accuracy was obtained with 5 appli-
cations of the arithmetic-geometric mean for a = 1000, b = 2,
and with one application for @ = 500, b = 500.)

Neither algorithm is satisfactory for k = 1. The behavior for
Algorithm 55 will be governed by the error exit from the logarithm
procedure. Under these circumstances, Algorithm 149 goes into an
endless loop. Algorithm 149 may also go into an endless loop of the
terminating constant (w—8 in the published algorithm) is too
small for the arithmetic being used. For the ScaLp arithmetic it
was found necessary to increase this tolerance to 5.00—7. The
resulting values of the elliptic integrals were, however, accurate
to within 2 in the 7th significant digit (6th decimal).

The relative -efficiency of the two algorithms will depend
strongly on the efficiency of the square-root and logarithm sub-
routines. With most systems, Algorithm 55 will provide sufficient
accuracy, and will be more efficient. If a square-root operation or
a highly efficient square-root subroutine is available, Algorithm
149 may well be the better method.

ACM Transactions on Mathematical Software, Vol. 4, 'No. 1, March 1978, Page 95.

REMARK ON ALGORITHM 149
Complete Elliptic Integral [921]

[J.N. Merner, Comm. ACM &, 12 (Dec. 1962), 605]

Ove Skovgaard [Recd 18 October 1976 and 14 February 1977]
Institute of Hydrodynamics and Hydraulic Engineering, Technical University of

Denmark, DK-2800 Lyngby, Denmark

The text following the colon at the end of the fifth paragraph in {4] should read

as follows: K =

— (b/a).

aXELIP1(a,b) or K

aXELIP2(ab), where m = k2 = 1

A better procedure is given in [1, p. 86, procedure cell]. This procedure can for
some computers be made slightly more efficient by eliminating the last assignment

statement m :=

m/2 in the loop, replacing the second assignment statement

m 1= ke + m with m := (k¢ + m) X .5 and replacing the last assignment state-

COLLECTED ALGORITHMS (cent.) _ ' 149-P 2-

ment cell := pi/m with cell := (pi/2)/m. Note the variable m should not be
confused with the parameter m = 2.

A more efficient, but less portable procedure is defined in [2] and implemented,.
for example, in the FUNPACK package [3].

REPERENCES

1. Buiirscr, R. Numerical calculation of elliptic integrals and elliptic functions. Numer.
Math. 7 (1965), 78-90. Prepublication for the planned volume of Special Functions of the
Handbook for Automalic Computation, Springer, Berlin.

2. Copy, W.J. Complete elliptic integrals. In Hart, J.F., et al., Computer Approximations.
Wiley, New York, 1968, pp. 150-154 and pp. 335-339.

3. Copy, W.J. The FUNPACK package of special function subroutines. ACM Trans. Mathe-
matical Software 1, 1 (March 1975), 13-25.

4. Taacuer, H.C., Jr. Certification of Algorithm 149: Complete elliptic integral. Comm.
ACM 6, 4 (April 1963), 166-167.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 150

SYMINV2

H. RuTisHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure syminv2(a,n) result: (a) exit: (fasl); value n; in-

teger n; array a; label fail;

comment syminv2 obtains inverse of a symmetric matrix a of
order n by a method which is similar to that given by Busing
and Levy [Comm. ACM § (1962), 446} but requires no inter-
changes of rows and columns nor storage space for an ad-
ditional matrix @, yet is numerically ‘equivalent. The pro-
cedure requires the upper triangular part of @ to be given and
overwrites it by the upper triangular part of the inverse which
is again denoted by a. All pivots are chosen on the diagonal,
and if all further diagonal elements which are eligible as
pivots vanish (this is impossible for a positive definite matrix
a) then exit through fail occurs;

begin
real bigajj;
integer ¢, j, k;
real array p, ¢[l:n];
Boolean array r[l:n];

for i := 1 step 1 until n do r[i] := true;
grand loop:
for 7 :=1 step 1 until » do
begin
search for pivot:
bigajj 1= 0;
for j := 1 step 1 until n do
begin
if r[j] A abs(alj,i]) > bigaji then
begin
bigajj := abs(ali,i]);
k:=j
end;
end;

if bigajj = 0 then go to fail;
preparation of elimination step <:

r[k] := false;
glk} := 1/alk k];
plk] := 1; .
afk k] := 0;
for j := 1 step 1 until k—1 do
begin
pljl := aljk];
qls} := Gf r[j] then —alj k] else aljk]) X ¢[k);
aljk} :=0
end;
for j := k-1 step 1 until » do
begin
pls] 1= if r[;] then alk,j] else —alk,j];
qli] = —alk,j1 X qlk];
alk,j] := 0
end;

elimination proper:
for j := 1 step 1 until n» do

150-P 1- O

for k := j step 1 until n do
alj k] := aljk] + pli] X qlk]
end grand loop
end syminv2

REMARK ON ALGORITHM 150

SYMINV?2 {H. Rutishauser, Comm. ACM, Feb. 1963]

ArtHUR EvANS, JR.

Carnegie Institute of Technology, Pittsburgh, Pennsyl-
vania

The identifier ‘‘a’’ appears twice in the procedure heading as
a formal parameter. It is not clear that this situation has any
meaning in AraoL. Indeed, it is not at all obvious how one might
translate the procedure. If the actual parameters corresponding
to the two formal parameters with the same identifier are different
there is no way for the translator (or for the reader) to distinguish
which ‘a’ is to be used. Further, it would take a detailed examina-
tion of the published algorithm to determine how this situation
might be corrected. It is certainly not clear that it would be safe
merely to delete one occurrence of the formal parameter ‘a’, since
the operation of the algorithm might require that two separate
matrices be available.

REMARK ON ALGORITHM 150

SYMINV2 [H. Rutishauser, Comm. ACM, Feb. 1963]
H. RurisHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure syminv 2 (a, n) result : (a¢) exit : (fail); --- in-
dicates that the value of parameter “a’’ is changed by the com-
puting process (the matrix a is changed into its inverse, whereby
the given matrix is destroyed). In any procedure call, the two
actual parameters corresponding to the two a’s must be identical,
otherwise the action of the procedure will be undefined (by virtue
of the substitution rule). The user may also change the procedure
heading into syminv 2 (a, n) exit : (fail); - without changing:
the effect of the procedure.

Epitor’s Note: The ALCOR group has adopted the rule that
if the value of a parameter is changed by the execution of the
procedure, then the parameter should be listed twice. Although
the ArcoL 60 Report does not forbid listing a formal parameter
twice, it would appear that a compiler which thus restricts the
language could not accept some of the examples given in the
ALaoL 60 Report.

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 150

SYMINV2 [H. Rutishauser, Comm. ACM 6 (Feb. 1963),
67]

PeETER NAUR (Reed 27 Sept. 63)

Regnecentralen, Copenhagen, Denmark

Since the translator refuses to run programs with more than one
occurrence of the same identifier in a formal parameter list, the
second a was taken out when this procedure was run with the
GIER ALGoL system [cf. also the discussion in Comm. ACM 6
(July 1963), 390]. Otherwise it ran smoothly. For testing the ac-
curacy, segments of the Hilbert matrix were inverted and the
results multiplied by the original segment and compared with the
unit matrix. The largest deviation in any element was found to be:

Order Max. deviation from elements Order Maz. deviati. v from elements
of the unit matrix of the unit matriz

2 —1.4910—8 6 —7.3210—3

3 —2.3810—7 7 —3.5910—-1

4 —1.5310—5 8 —2.9510 1

5 —3.3610—4 9 —1.2610 1

These figures may be compared directly with the ones related
to Algorithms 120, INVERSION 11, and gjr [Comm. ACM 6 (Aug.
1963), 445]. A comparison shows that all three algorithms yield
about the same accuracy, with syminv2 being the best in most
vases, however. This is not too surprising since the knowledge that
the matrix is symmetric ought to simplify the calculation con-
siderably.

The lengths of the three procedures after translation are as
follows:

Number of
GIER words
syminv2 216
INVERSION II 279
qir 302
kKxecution times for syminv2 in GIER ALGOL are:
Order Time (sec)
5 1
10 3.5
15 10.5
20 23

This is about half the time of execution of INVERSION II or gjr.

150-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 151

LOCATION OF A VECTOR IN A LEXICO-
GRAPHICALLY ORDERED LIST

Henry F. WALTER

United States Steel Corp., Applied Research Laboratory,
Monroeville, Penn.

integer procedure LOCATE (min, n, ¢, v, combinatorial);

value v; integer min, n, ¢; integer array v;

integer procedure combinatorial;

comment This procedure locates the position, LOCATE, of a
given vector in a list of vectors without searching the list. The
list consists of all the combinations of n consecutive digits taken
d at a time. Min is the smallest of the n integers. Each vector
(ecombination) is written in ascending order from left to right,
as, for example, 378 and the vectors are listed lexicographically,
by which is meant, that, considered as d digit numbers, the
vectors are listed in ascending order. For example, with min = 1,
d = 3, and n = 6, the vectors in order are 123, 124, 125, 126, 134,
135, ..., 456. Given the vector, v = 356, the procedure locates
this vector as the 19th in the list;

begin. integer <, r, maxz, part, whole;
r:=1; v [0] := min — 1; max := min — 14+n;
for i := 0 step 1 until c—1 do
begin part :=c¢c — 1 — 1;

ask: if v[t+1] — v[{] > 1 then
begin whole := max — v[{] — 1;
r = r + combinatorial (whole, part);

v[Z] := ole] + 1;
go to ask
end;
end;
locate := r

end;

151-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 152

NEXCOM

Jou~n HorLEY

Peat, Marwick, Mitchell & Co., London, England

procedure nexcom (char, N, setcomplete, nullvector);

array char; integer N;

label setcomplete, nullvector;

comment char is a column vector containing N elements each of
which is eithér 1 or 0. Nexcom transforms char into another
vector containing the same number of 1’s and 0’s, but in a differ-
ent sequence. Starting with char in the state of having 1 in each of
the element positions 1, ..., r and zeros elsewhere then repeated
application of nexcom generates all "Cr patterns of char. The
procedure terminates if the presented vector char has 1 in each
of the positions N, N—1, ... N—r+1 and zeros elsewhere. Termi-
nation is indicated by exit through the formal label ‘setcomplete’.
If char is the null vector then procedure exists through the
formal label ‘nullvector’;

begin integer n, p, m;

comment find the first 1 in char;

for n := 1 step 1 until N do if

char [n] = 1 then go to 4;

go to nullvector;

comment how many adjacent 1’s;

A: p:=0;

form := n + 1 step 1 until N do

if char [m] = 1 then p := p + 1 else go to B;

comment Have all combinations been generated;

B: if p + 7 = N then go to seicomplete;

comment Set up next combination; char[n+p-+1] := 1;

for m := n + p step — 1 until n do char [m] := 0;

for m := 1 step 1 until p do char [m] := 1;

end nexcom;

152-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 153

GOMORY

F. L. Bauer

Johannes Gutenberg-Universitit, Mainz, Germany

procedure Gomory (a, m, n) result: (a) exit: (no solution);
value m, n;
integer m, n;
integer array a;
label no solution;

comment Gomory algorithm for all-integer programming. The
objective of this procedure is to determine the integer solution
of a linear programming problem with integer coefficients only.
The tableau-matrix a consists of m + 1 rows and n columns.
The top row of a is the objective row, the last column represents
the right-hand sides. The tableau-columns, with the exception
of the last column, have to be lexicographically positive. The
algorithm is finished if all entries in the last column, except the
top most entry, are nonnegative. Then the top most entry of
the last column represents the value of the objective function.
The other entries of the last column define the coordinates of
the optimal solution. There are always the same variables con-
nected with the same rows. The exit no solution is used if a row
is found which has a negative entry in the last column, but
otherwise only nonnegative entries;

begin integer i, k, 7,1, r;

real lambda;
integer array t[l:n—1], ¢[l:n];

1: for i := 1 step 1 until m do if a[7,n] < 0 then
begin r := 7; go to 2 end;
go to end;

2: for k := 1 step 1 until n—1 do if a[r,k] < 0 then
go to 4;
go to no solution;

4: l:=k;
for j := k+1 step 1 until n—1 do if afr,j] < 0 then

begin 7 := 0;

3: ifafi,j] < afi,l] then] := j else
if ali,j] = ali,l] then
begin ¢ := i+1; go to 3 end
end;
for j := 1 step 1 until n—1 do if a[r,j| < 0 then
begin if a[0,l] &= 0 then ¢[j] := entier(al0,51/a0,l])
else [j] :=1
end;
lambda := abs(alr,1]/t[1]);
for j := 2 step 1 until n—1 do if ar,j] < 0 then
begin if abs(a[r,71/tlj]) > lambda then
lambda := abs(alr,j1/t[;]) end;
for j := 1 step 1 until n do if j+! then
begin c[j] := entier(alr,jl/lambda);
if c[j] & O then
for 7 := 0 step 1 until m do a[¢,j] := alz,7] + cli] X
alz,l]
end;
go to 1;
end: end;

153-P 1- O

CERTIFICATION OF ALGORITHM 153
GOMORY [F. L. Bauer, Comm. ACM 6, Feb. 1963]
B. Lerrkowrrz anp D. A. D’Esoro*®

Stanford Research Institute, Menlo Park, California .
* Work supported by Office of Naval Research.

GOMORY was hand-coded in Bavgown for the Burroughs 220
and in ForTRAN for the CDC 1604. The following corrections should
be made:

The statement

lambda := abs(alr,1]/H1]);
should read

lambda = abs(a[r,l}/11]);
The statement

for j := 2 step 1 until n—1 do if a[r,j] < 0 then
should read

for j := 1 step 1 until n—1 de if a[r,j] < 0 then

The following changes to Bauer’s program were made to in-
crease its efficiency and reduce storage requirements.

Change the statement

begin integer 7,%,;,1,r;
to read

begin integer ¢,k,j,1,7,¢,t;
Change the statement

real lambda;
to read

real lambda, lambd;
Delete the statement

integer array t[1: n—1}, c[l: n];
Before the statement

for j := 1 step 1 until n—1 do if al[r,;] < 0 then
insert the statement

lambda := 1.0;
Change the statement

begin if al0,l] # 0 then i[j] := entier(al0,51/a[0,1])
to read

begin if a[0,l] % 0 then ¢ := entier(al0,5]/al0,1])
Change the statement

else 7] :=1
to read
elset ;=1
After the statement
else {[7] := 1
insert the statements
lambd := —alr,s1/t;

lambda := if lambda < lambd then lambd else lambda ;
Delete the statements starting with
lambda := abs(alr,1]/{1]);
up to and including
lambda := abs(alr,]/tl5]) end;
Change the statement
begin c[j] := entier (alr, jl/lambda);
to read
begin ¢ := entier(alr,j]/lambda);
Change the statement
if c[j] # 0 then
to read
if ¢ # 0 then
Change the statement
for 7 := 0 step 1 until m do alZ,j] := ali,5] + ¢[j] X
to read

COLLECTED ALGORITHMS (cont.)

for i := U step | until m do al7,j} := al7,j] + ¢ X
The ‘‘tie-breaking’’ procedure embodied in the three state-
ments beginning at

3:if a[7,7] < alZ,l] then | := j else

will fail if the two columns being compared are identical. Although
this cannot happen on the first iteration, it may occur later. To

test for this condition change the two statements beginning with
begin 7 :=7 4+ 1; go to 3 end

to read
begin 7 := ¢ + 1; if 7 > m then go Lo 31 else go to 3 end;
31: end;

The revised algorithm yielded satisfactory answers on a ten
equation-seven variable problem in 159 iterations and a 35-equa-
tion 14-variable problem in 447 iterations.

The following comments may be helpful for preparing a problem
for GOMORY. The problem constraints must be stated in the
form:

205 @i + s = b;

where the s; are slack variables. The columns representing these
slack variables need not appear in the initial tableau-matrix a.

Since the only variables in the solution that will necessarily be
non-negative are the s; , any non-negativity constraints on the
other variables must be among the above equations (e.g. the con-
straint z; = 0 is represented by —z; + sx = 0).

The size of the integers in the b vector substantially affects the
number of iterations.

The requirement that all but the last tableau-columns be lexi-
cographically positive means that the first nonzero element in
these columns must be positive.

ipiTOR’s NoTE: Prof. Bauer wishes to indicate that for the
Algorithm 153, GOMORY, credit is due to Ch. Witzgall, who
wrote the draft.

153-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 154

COMBINATION IN LEXICOGRAPHICAL ORDER
CHARLES J. M1Fsup

Armour Research Foundation, ECAC Annapolis, Md.

procedure COMB1 (n,r,I); integer n, r; integer array I;
comment The distinet combinations of the first n integers
taken r at a time are generated in I in lexicographical order
starting with an initial combination of the r integers 1, 2, --- ,
r. Each call of the procedure, after the first, must have in I
the previous generated combination. The Boolean variable
Jirst is nonlocal to COM B1 and must be true before the first call.
Thereafter first remains false until all combinations have been
generated. When calling COMB1 with I containing n — » +-1,
n —r+2, - ,n,Iis left unchanged and first is set true;
begin integer s, j;
if first then begin for j := 1 step 1 until r do
1] := 4;
first ;= false; go to EXIT end;
begin if I[r] < n then begin I[r] := I[r] + 1; go to EXIT
end;
for j := r step —1 until 2 do
if I[j—1] <n—r+4+ j— 1then
begin I[;—1] := I[j—1] + 1;
for s := j step 1 until r do
I[s) :=I|j—1] + 8 = (j—1); go to EXIT end end;
first := true;
EXIT : end

CERTIFICATION OF ALGORITHM 154
COMBINATION IN LEXICOGRAPHICAL ORDER
[Charles J. Mifsund, Comm. ACM, Mar. 1963]

K. M. BosworTH

I.C.T. Ltd., Hayes, Middlesex, England

This procedure was tested
for r := 1 step 1 until n withn = 6

with correct results.

154-P 1-

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 155

COMBINATION IN ANY ORDER

CrARLES J. MIFsuD

Armour Research Foundation, ECAC Annapolis, Md.

procedure COMB2 (m,Mmn,s,S,TOTAL); integer array m,
M, S; integer n, r, s,TOTAL;
comment Each call of COMB2 generates a distinct combina-
tion 3, (if possible) of the » integer values of J taken r (r>1)
at a time if J consists of m[1] integers each equal to M[1], and
m([2] integers each equal to M|[2], and so on, there being s integers
available. TOT AL must be set to zero before the first call of
COMB2 and thereafter TOT AL is increased by one after each
new combination is generated. To speed up the machine opera-
tion arrange the s integers in M such that m[l] 2 m[2] = --- =
mls]; '
begin integer 7, j, {, p; own integer array J[l:n], I[l:7]; own
Boolean first;
if TOTAL = 0 then begin
t:=1; p:=0;
for 7 := 1 step 1 until s do
begin p := p + m[j];
for 7 := t step 1 until p do
begin J[Z] := M[j];
t:=1t-+1end end;
first := true end;
1: COMBI1 (n,rlI);
if first then go to EXIT;
if I[1] = 1 then go to 2 else go to 3;
2: for j := 2 step 1 until r do
if (JIGN=JI[1-11) A ([[1>I[j-1]+1) then go to 1;
go to 4;
3: if J{I[1]] = J{I[1]—1] then go to 1 else go to 2;
4: for j := 1 step 1 until r do
8[51 = JU[51);
TOTAL := TOTAL + 1;
EXIT: end

CERTIFICATION OF ALGORITHM 155
COMBINATION IN ANY ORDER [Charles J. Mifsud,
Comm. ACM, Mar. 1963}

K. M. BoswoRTH

I.C.T. Ltd., Hayes, Middlesex, England

This procedure was tested using
mll] =4 mi2] =3 m3] =2 ml4] =2
Ml =4 M[2]=7 MB]=9 M4] =16

and for r := 1 step 1 until s

It is correctly generated for r = 1 the four combinations 4, 7,9,
16, as well as the ten combinations for 7 = 2, the eighteen com-
binations for » = 3, and the twenty-six combinations for r = 4.

Changes made due to compiler limitations were (i) systematic
changes of upper case letters where there was conflict due to having
only one case of letters, (ii) transfer of own declared variables to
non-local variables, and (iii) integer labels to identifiers.

155-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 156

ALGEBRA OF SETS

CHARLEs J. MiFsup

Armour Research Foundation, ECAC Annapolis, Md.

procedure INOUT (An,SUM); real array A; integer n;
real SUM;
comment SUM = Zl A;‘ - Zz A.iAj + Zs A;A,‘Ak R~]
A1As -+ A, is formed where the symbols D 1, Y., D, e,
2 n-1 stand for summation of the possible combinations of the
numbers 4,, Az, -+, A, taken one, two, three, --- , (n—1)
at a time; .
begin real j, part, T'; integer i, r; integer array I[l:n];
Boolean first;
ri:=8UM :=0; j:=—1;
B: first := true; r :=r 4+ 1; part := 0;
A: COMB1 (n,r]);
if first then begin j := —1 X j; part := j X part;
SUM := SUM + part;
if r < n then go to B else go to EXIT end;
T :=1;
for 7 := 1 step 1 until r do
T := A[IE X T;
part := part + T; go to A;
EXIT: end

CERTIFICATION OF ALGORITHM 156

ALGEBRA OF SETS [Charles J. Mifsud, Comm. ACM,
Mar. 1963]

K. M. BosworTH

1.C.T. Ltd., Hayes, Middlesex; England

One correction required in this procedure is the systematic
change of label A to avoid conflict with the formal parameter
array A.

The procedure was then tested for n = 9and As =4, ¢ =1,

-, n, producing the correct answer SUM = 1.

Two other tests with arbitrary values of A7 and n = 4 were also
correet.

156-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 157

FOURIER SERIES APPROXIMATION

CHARLEs J. Mrirsup

Armour Research Foundation, ECAC Annapolis, Md.

procedure FOURIER (N,f,a,b); realarrayf,a,b; integerN;
comment Fourier determines 2N +1 constants a, (p=0,1,---,N),
b, (=1,2,---,N) in such a way that the equations f, = 1/2a, +
> a-1(ap cos 2xnp/ 2N +1) + b, sin2xnp/(2N+1)) are satisfied,
where the f, are given numbers. The f, may be thought of as the
2N +1 values of a function f(z) at the points z, = 2rn/(2N+1).
The method used to generate a,, b, was formulated by G.
Goertzel in “Mathematical Methods for Digital Computers”
(John Wiley and Sons, Inc., 1960);
begin real array S, C[1:2], u[0:2]; real TEMP, pi;
integer p, 7;
pi 1= 3.14159265; C[2] :=1; S[2] := 0;
Cl1] := cos(@X pi/(2XN+1));
S[1] := sin(@X pi/(2XN+1));
for p := 0 step 1 until N do
begin u[l] := u[2] := 0;
for i := 2 X N step —1 until 1 do
begin u[0] := f[i] + 2 X C[2] X u[l] — u[2];
uf2] 1= u[l]; w[l] := u[0]end,;
a[p] := 2/2XN+1) X (fl0]4»[1]X C[2]—u[2]);
blp] := 2/@XN+1) X ull] X S[2];
TEMP := C[1] X C[2] — S[1} X 8[21;
8[2] := C[1] X 8[2] + S[11 X C[2];
C[2] := TEMP end end

REMARK ON ALGORITHM 157

FOURIER SERIES APPROXIMATION [C. J. Mifsud,
Comm ACM, Mar. 1963]

RicHARD GEORGE*

Argonne National Laboratory, Argonne, IIL

This algorithm was written in FAP language for the 32-K IBM
704. It was tested on a sawtooth curve, and the sawtooth was
recreated by summing the expansion up through the 2N + 1 con-
stants, with excellent results.

* Work supported by the United States Atomic Energy Commission.

The arrays S, C and u are never referenced with a variable
subscript. For a saving of time, I suggest that simple variables
be used instead.

By declaring one additional real variable, one can bring the
phrase

2/(2X N +1)

outside of the for loops, because N does not change through the
procedure. This results in a saving of 4N+2 mult-ops.

157-P 1- 0

REMARK ON ALGORITHM 157

FOURIER SERIES APPROXIMATION [Charles J.
Mifsud, Comm. ACM, Mar. 1963]

GEeorGE R. ScHUBERT*

University of Dayton, Dayton, Ohio

* Undergraduate research project, Computer Science Program, Univ. of
Dayton.

Algorithm 157 has been modified to fit 2V data points and has
run successfully on the Burroughs 220 using Bareon. With the
modifications, 2N constants @, (p=0, 1, --- , N) and b,
(p=1, 2, --- , N—1) are determined such that the equation
fn = /2 + Zf_‘,‘l‘ (ap cos mnp/N+b, sin mup/N) + an/2 cos =n
is satisfied.

In the modified procedure, the second and third lines after the
integer declaration should read:

C[1] := cos (pi/N);

S|1] := sin (pi/N);

The second for statement should read:

fori := 2 X N—1 step —1 until 1 do

The lines containing the a and b coefficients should read:

alp] = (fl0O]4+u1IXC[2]—u{2])/N;

blp] := (u[lIXS8[2])/N;

REFERENCE: R. W. Hamming, Numerical Methods for Scientists
and Engineers, pp. 68-73 (McGraw-Hill, 1962).

COLLECTED ALGORITHMS FROM CACM

158-P 1- 0O

ALGORITHM 158 (ALGORITHM 134, REVISED) PR _
EXPONENTIATION OF SERIES (3) Letf(z) = ¢* = 1+ E T and let P = In2 = .693147181.
HenrY E. FETTIS

. . r o (In2)f |
Aeronautical Research Laboratories, Wright-Patterson Theng(z) =2° =1+ El o (See Table 1.)
Air Force Base, Ohio (4) Let f(x)=¢" and P=—1. Then g(z)=e"*. For P=0, ap-
procedure SERIESPWR (A,B,P,N); value 4, P, N; parently the constant term of g(z).should be zero instead of one.

array A, B; integer N;
comment This procedure calculates the first N coefficients
BIz] of the series g(z) = f(z) T P given the first N coefficients TABLE 1
of the series

f@ =142 Al Xz i (@=12-,—N).

Ali] Bli)

P may be any real number. Setting P := 0 gives the coefficients 1.000000000 0.693147181

for LN (g(z)); 0.500000000 0.240226507
begin integer ¢, k; 0.166666667 0.055504109
real P, S; 0.041666667 | 0.009618129

0.008333333 0.001333356
0001388889 0.000154035
0.000198413 0.000015253
0.000024802 0.000001322
0.000002756 0.000000102
0.000000276 0.000000007

if P = 0 then B[1] = A[l];
else B[l] := P X A[l};
for 7 := 2 step 1 until N do
begin S := 0;
fork := 1 step 1l until¢ — 1 do
S =8 + (PX(N—k)—k) X B[k] X AIN—k];
B[] := P X A[:] + (8/7)
end for 7; (6) Let f(z)=¢® and P=0. Then g(z)=xz.
end SERIESPWR

O © 0T U W N

et

(6) Letf(z)= i zrand P=0. Then g(z)=In(l—2*)—In(l—2x)=

im0

n 1 .
CERTIFICATION OF ALGORITHM 158 2, ;' (Sce Table 2)
EXPONENTIATION OF SERIES [H. E. Fettis, Comm.
ACM, Mar. 1963]
J. DENNIS LAWRENCE TABLE 2

Lawrence Radiation Laboratory, Livermore, Calif. Al B
This procedure was translated into FORTRAN and run on the
Remington-Rand Larc Computer. Three changes are necessary. 1 1.0 1.000000000
(1) The last line of the comment should read 2 1.0 0.500000000
for the natural logarithm of f(z); 3 1.0 0.333333340
(2) The third line from the end should read 4 1.0 0. 250000000
. . 5 1.0 0.200000000
8 := S+ (PX (G—k)—k)XB[kIX A[i—k]; 6 1.0 0.166666670
(This line was given correctly in algorithm 134.) 7 1.0 0.142857140
(3) The second line from the end apparently should read 8 1.0 0.125000000
9 1.0 0.111111110
Bli] := AR] := (8/1); 10 1.0 0.100000000
for the case P = 0 only. Probably the best way to incorporate 1 1.0 0.090909100
o . 12 1.0 0.083333330
this is by making two changes:
. 13 1.0 0.076923080
(a) Change the if clause to read 14 1.0 0.071428580
if P=0thenR ;= lelseR := P; B[l] := R X A[l]; 15 1'0 0'066666660
(b) Change the second line from the end to read : :

Bli] := R X A[i] + (8/4);

A large number of examples were run quite sucecessfully; the
following give representative samples.

1) A+2z+3224+0.523)2 = 14+42+102241328+ 1124+ 3254-0.2548
(using A[4] := A[5] := A[6] := 0).

(2) Setting P := 1 gives B[i] := A[].

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHMS 134 AND 158

EXPONENTIATION OF SERIES [Henry E. Fettis,
Comm. ACM, Oct. 1962 and Mar. 1963]

Henry C. THACHER, JR.

Reactor Engineering Div., Argonne National Laboratory
Argonne, Il
Work supported by the U.S. Atomic Energy Commission.

The bodies of SERIESPWR were transcribed for the Dart-
mouth ScaLp processor for the LGP-30 computer. In addition to
the modifications required by the limitations of this translator,
the following corrections were necessary:

1. Add “real P;” to the specifications.

2. Delete “p,” from the declarations in the procedure body.

3. (134 only) Replace ‘S’ by ‘s’ and [i—k] by “(¢—k)’’ in the
statement S := s + --- .

4. (158 only) Changes last sentence of comment to ‘‘Setting
P := 0 gives the coefficients for in(f(z)). In this series, the
constant term is 0, instead of 1 as elsewhere;”’

5. (158 only) Add the identifier P2 to the declared real variables.

6. (158 only) Make the first statements read:

“if P =0 then P2 :=1 else P2 := P;
B[l] := P2 X A[l];
7. (158 only) Make the statement of the for k loop read

“S = S+ (PX(E—k)—k) X Blk} X Ali—k];”
8. Change the last statement to
“Blz] := P2 X Ali] + S/7 end for i;

In addition, the following modifications would improve the

efficiency of the program:

1. Remove A from the value list.

2. Omit the statement B[l] := P X A[l]; (P2XA[l] in 158
according to correction 6) and change the initial value of ¢
in the statement following from 2 to 1.

When these changes were made, both procedures produced the
first ten coefficients of the series for (exp(x)) T 2.5 from the first
ten coefficients of the exponential series. The procedures were
also used to generate the binomial coefficients by applying them
to (1+x)f, for P = 2.0, and 0.5000000. Algorithm 158 was also
tested with P := 0 for 14z and for the series expansions for
(sin x)/z, cos z, and exp z. In all cases, the coefficients agreed
with known values within roundoff.

158-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 159

DETERMINANT

Davip W. DieBY

Oregon State University, Corvallis, Ore.

real procedure Determinant (X,n);
value n; integer n; array X;
comment Determinant calculates the determinant of the n-by-
n square matrix X, using the combinatorial definition of the
determinant. This algorithm is intended as an example of a
recursive procedure which is somewhat less trivial than Factorial
(Algorithm 33);
begin real D; integer 7; Boolean array B[l:n];
procedare Thread (P,e,i);
value P, ¢, 7; real P; integer ¢, ¢;
ifi >nthenD :=D+ P X (—1) T eelseif P % 0 then
begin integer j, f;
fi=0;
for j := n step —1 until 1 do
if B[j] then f := f + 1 else
begin
B[j] := true;
Thread (PX X[i,jl,e+f,i+1);
B[j] := false;

end of loop;
end of Thread;
for 7 := 1 step 1 until » do
B[z] := false;

D := 0;

Thread (1,0,1);

Determinant := D;
end Determinant;)

CERTIFICATION OF ALGORITHM 159

DETERMINANT {David W. Digby, Comm. ACM,
March 1963]

ArnNoLp LaPiDUS

Courant Institute of Mathematical Sciences, New York
University, New York, N. Y.

Algorithm 159 was translated into ForrranN II for the IBM
7090 as part of a test of FORTRAN subroutines designed to facilitate
the implementation of recursive procedures. As expected, the
numerical results were poor. For the Hilbert matrices H, = (ai;),
ai; = 1/(z+j—1), results were as follows:

Det H, (computed by

n Det Hy (true) Algorithm 159)

2 8.333 3333 (— 2) 8.333 3332 (— 2)
3 4.629 629 6 (— 4) 4.629 623 1 (— 4)
4 1.653 439 2 (— 7) 1.651 933 4 (- 7)
5 3.749 295 1 (—12) —2.910 383 0 (—11)

Determinants of order 4 and 6 with integer elements were also
evaluated. The algorithm gave full accuracy for these.

159-P 1-

0

COLLECTED ALGORITHMS FROM

CACM_

ALGORITHM 160

COMBINATORIAL OF M THINGS
TAKEN N AT A TIME

M. L. WovLrson aNDp H. V. WriGHT

United States Steel Corp., Monroeville, Penn.

integer procedure combination (m, n);
value n; integer m, n;
comment calculates the uumber of combinations of m things
taken » at a time. If n is less than half of m, then the program
calculates the combinations of m things taken m — n at a time
which is the exact equivalent of m things taken n at a time;
begin integer p, 7, i;
pi=m—n;
ifn < pthenbeginp i=n; n:=m— pend;
if p = 0 then begin r := 1; go to exit end;
ri=mn+41;
fori :i=2stepluntil pdor := (r X (n+1))/¢;
exit: combination := r
end combination

CERTIFICATION OF ALGORITHM 160
COMBINATORIAL OF M THINGS TAKEN N AT
A TIME [M. L. Wolfson and H. V. Wright, Comm. ACM,
Apr. 1963]
Dwmirrr THORO
San Jose State College, San Jose, Calif.

Algorithm- 160 was translated into ForTran II and Forao for

the IBM 1620. Correct results were obtained for values of m up to
20.

CERTIFICATION OF ALGORITHM 160

COMBINATORIAL OF M THINGS TAKEN N AT
A TIME [M. L. Wolfson and H. V. Wright, Comm.
ACM, April 1963]

RoserT F. BLAKELY

Indiana Geological Survey, Bloomington, Ind.

Algorithm 160 was translated into ALgo, a compiler for the
Control Data Corp. G-15 computer (formerly the Bendix G-15).

With the restriction that m = n = 0, correct results were ob-
tained for all integer values of m and n, where 0 < m < 10. Several
other values were tested and all results were correct.

160-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 161

COMBINATORIAL OF M THINGS

TAKEN ONE AT A TIME, TWO AT A TIME,
UP TO N AT A TIME

H. V. WricHT AND M. L. WoLFsoN

United States Steel Corp., Monroeville, Penn.

procedure combination vector (m, n, v);

integer m, n; integer array v;

comment calculates all combinations of m things taken from 1
to n at a time. The result is a vector, v, within which the first
element is the combination of m things taken 1 at a time, the
second element is the combinations of m things taken 2 at a time,
the third element taken 3 at a time, -+-, and the nth element
taken n at a time.

begin integer 7;
v[l] : = m;
for i := 2 step 1 until n do

oli] 1= (wlE—11 X (m—i+1))/7;

end combinalion vector

CERTIFICATION OF ALGORITHM 161
COMBINATORIAL OF M THINGS TAKEN ONE AT
A TIME, TWO AT A TIME, UP TO N AT A TIME
[H. V. Wright and M. L. Wolfson, Comm. ACM, Apr.
1963]
Dwmitr1 THORO
San Jose State College, San Jose, Calif.

Algorithm 161 was translated into ForTraN II and Foreo for

the IBM 1620. Correct results were obtained for values of m up
to 20.

CERTIFICATION OF ALGORITHM 161
COMBINATORIAL OF M THINGS TAKEN ONE AT
A TIME, TWO AT A TIME, UP TO N AT A TIME
[H. V. Wright and M. L. Wolfson, Comm. ACM,
Apr. 1963]
Davip H. CoLLINS
Indiana Geological Survey, Bloomington, Ind.
Algorithm 161 was translated into ALco, a compiler for the
Control Data Corp. G-15 computer (formerly the Bendix G-15).
With the restriction that m = n = 1, correct results were ob-
tained for all integer values of m and n, where 1 £ m = n < 15.
Several other values were tested (including cases where m = n)
and all results were correct.

161-P 1-

0

COLLECTED

ALGORITHMS FROM CACM

ALGORITHM 162

XYMOVE PLOTTING

Frep G. STOCKTON

Shell Development Co., Emeryville, Calif.

procedure zymove (XZ,YZ,XN,YN); valueXZ,YZ,XN,YN;

integer XZ, YZ, XN, YN;

comment zymove computes the code string required to move the
pen of a digital incremental X,Y-plotter from an initial point
(XZ, YZ) to a terminal point (XN, YN) by the “best’’ approxi-
mation to the straight line between the points. The permitted
elemental pen movement is to an adjacent point in a plane
Cartesian point lattice, diagonal moves permitted. The eight
permitted pen movements are coded

l=+4Y, 2=4X+Y, 3=+4X, 4=
5=-Y, 6=-X-Y, 7= -X, 8

+X-,

-X+7Y.
The approximation is ‘best’’ in the sense that each point tra-
versed is at least as near the true line as the other candidate
point for the same move.
xymove does not use multiplication or division.;

begin integer A, B, D, E, F, T, I, move;

comment code (J) is a procedure which returns a value of code
according to the following table:

J 1 2 3 4 5 6 7 8
code 1 2 3 2 3 4 5 4
J 9 10 11 12 13 14 15 16
code 5 6 7 6 7 8 1 8

I

plot (move) is a procedure which sends move to the plotter as a
plotter command.;
if XZ = XN AYZ = YN then go to return;
A:=XN—-XZ; B:=YN-YZ; D:= A+ B;
B—A4; I:=0;
if B=0thenl:=2;
ifD 2z thenl =1+ 2;
if7’2z0then!l:=1+42;
ifA=20thenl:=8—1Telsel:= 1+ 10;

7:=

A:i=abs(A); B:=abs(B); F:=A+B; D:=B— 4;
ifD=0OthenbeginT:=A; D:= —DendelseT := B;
B = 0;

repeal: A:= D4+ E; B:=T+ E+ A;

if B =2 0 then begin E := A; move := code(I);
F:=F — 2end
elsebegin E := E+ T; F:=F — 1;

move ;= code(I—1) end;
plot(move);
if F > 0 then go to repeat;
return:
end

162-P 1- O

CERTIFICATION O ALGORITHM 162

XYMOVE PLOTTING [Fred G. Stockton, Comm. ACM,
Apr. 1963]

Wirttiam E. FLETCHER

Bolt, Beranek and Newman Inc., Los Angeles, Calif.

The line in the body of the procedure which read:
if Dz then!l =1+ 2;
was corrected to read:
if D= Othen! =1+ 2;

With this one change the body of the procedure was trans-
literated into DECAL-BBN and successfully run on a PDP-1
computer utilizing the cathode ray tube output to display the
path of a simulated digital incremental plotter.

REMARK ON ALGORITHM 162 [J6]

XYMOVE PLOTTING {F. G. Stockton, Comm. ACM 6
(Apr. 1963), 161; 6 (Aug. 1963), 450]

D. K. Cavin (Reed. 10 Feb. 1964)

Oak Ridge National Laboratory, Qak Ridge, Tenn.
The following modifications were made to Algorithm 162 to

decrease the average execution time. The last nine lines of Al-
gorithm 162 are replaced by the following:

move := code(I—1); I := code(I);
repeat: A =D+ E;B:=T+ E + 4;
if B2 Othen begin E := A; F := F — 2; plot(I) end
elsebegin E := E + T; F := F — 1; plot(move) end;
if F > 0 then go to repeat;
return:
end

It is obvious that on any movement c¢ontaining more than two
elemental pen movements the use of the code procedure in the
loop is redundant, since no more than two of the eight permitted
pen movements are necessary for the approximation of any line.
Therefore moving the call of the code procedure outside of the
basgic loop reduces the execution time whenever the X, ¥ move-
ment requires more than two elemental pen movements. The
procedures were coded in CODAP, the assembly language for
the CDC 1604-A, and this modified version was approximately
40 percent faster in the.loop than the original version. The timing
comparisons used numbers in the range —2000 to 2000 with heavy
emphasis on the subrange —150 to 150. The typographical error
noted in the certification (Comm. ACM, August 1963) was cor-
rected in both codes.

[A referee verifies that Algorithm 162 does indeed run, as
changed —G.E.F.]

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 163

MODIFIED HANKEL FUNCTION

Hexry E. Ferris »

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure EXPK (P, X, E); real P, X, E;

comment this procedure calculates the modified Hlankel Fune-

tion e*K,(x) to within a given accuracy E from the integral
representation:

@
e Ky(x) = f e*(-coth 0 cosh (pt)dt;
0
beginreal F,G,H,R,S8,T,U,Y, Z,ZP;

R := 00;
H:=1.0;
ileration: begin

G:=R;

T:=.5X H;

S:=0;

Z 1= exp(T);

U:=2X Z;

integration: begin
Y:=X X (1-.5X(Z+1/%));
if P = 0 then ZP :=1
else ZP := 7 1 P;
F:= 56X exp(Y) X (ZP+1/ZP);
S:=8+F;
Z:=2ZXU;
end;
if F 2 E then go to integration
elseR := H X 8;
H:=.5X H;
end;

if abs (R—G) = E then go to steration
else EXPK: =R
end EXPK

CERTIFICATION OF ALGORITHM 163
MODIFIED HANKEL FUNCTION [Henry E. Fettis,
Jomm. ACM, Apr. 1963]

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

Since this algorithm is a function declaration, the procedure
declaration should be:

real'procedure EXPK(D, X, E);

Otherwise, no syntactical errors were noticed.

The body of the procedure was translated and run on the
LGP-30 computer, using the Dartmouth ScaLp system. Results for
E = 00001, X = 0.1(0.1)1.0, P = 0, 0.3333333, 0.6666667 and
1.000000 agreed with values tabulated in Jahnke-Emde-Losch to
the 3-4D given in the tables, except for errors discovered in the
table of 2/7Ky;5(x).

With X = 0, the program ended in floating-point overflow. The
algorithm itself, or the call of the procedure, should include a test
to insure that the variable is greater than eps, where eps is chosen
to prevent exceeding machine capacity.

163-P 1- 0

The algorithm was found to be excessively slow. Times on the
LGP-30 were of the order of 6 minutes. A considerable saving in
time could be realized by improving the quadrature formula, cur-
rently the simple midpoint formula, repeated completely for
each iteration. A more effective method would be a modified
Romberg algorithm. A procedure based on the latter approach is
being developed in this division.

* Work supported by the U. 8. Atomic Energy Commission.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 164

ORTHOGONAL POLYNOMIAL LEAST SQUARES
SURFACE FIT

R. E. Cragxk, R. N. Kusik, L. P. PuiLLips

The Babeock & Wilcox Co., Atomic Energy Div.,
Lynchburg, Va.

procedure surfacefit (z, u, y, w, 2, nmax, mmax, imazx, jmax)
result: (beta, phi, zcomp, minsqd, minsqdcomp, sumdifcomp,
mozdifcomp);

real array z, u, y, w, 2, phi, beta, zcomp;

integer nmazx, mmaz, imaz, jmaz;

real minsqd, minsqdcomp, sumdifcomp, mazxdifcomp;

comment this is a transliteration of an operating program writ-
ten in Burroughs Arcow for the B-220. It fits, in the least squares
sense, a polynomial function of two independent variables to
values of a dependent variable specified at points on a rectangu-
lar grid in the plane of the independent variables. The use of
orthogonal polynomials leads to a particularly simple system of
linear equations rather than the ill-conditioned system which
arises from the usual normal equations. It also provides a meas-
ure of the improvements resulting from each new term included
which further leads, in this algorithm, to an automatic selection
of a “best’’ degree polynomial function as determined by
Gauss’ criterion. The initial normalization of the variables re-
sults in significant reduction of round. off errors in many cases.
This algorithm is developed more fully in BAW-182. For a very
similar approach to this and related problems see Cadwell,
J. H., “Least Squares Surface Fitting Program’’, The Computer
J. 8 (1961), 266 and Cadwell, J. H., and Williams, D. E., “‘Some
Orthogonal Methods of Curve and Surface Fitting,”” The Com-
puter J. 4 (1961), 260. A further reference is Gauss, C. F., ““Theo-
ria Combinationis Observationum Erroribus Minimis Obnoxial,”’
Gauss Werke 4 (Gottingen 1873), 3-93. z[i] and y[5] are the inde-
pendent variables, z[¢, j] is the dependent variable. u[s] and
w(s] represent the weights corresponding to z[¢] and y[j], re-
spectively. nmaz is one more than the maximum degree of z to be
considered. mmaz is one more than the maximum degree of y to
be considered. imazx is the number of z’s, and jmaz is the number
of y's. bela[n, m} is a measure of the improvement resulting
from the inclusion of the z"ymth term. phi[n, m] is the poly-
nomial coefficient for the z*y™th term. Note the degree of the
resulting polynomial may be less than the maximum degree
specified as a result of the application of Gauss’ criterion.
zcomp is the computed dependent variable.

Y ulilwlil-zl6,7 — Y beta [n,m])”2

0 7

minsqd = - -
imaz-jmax

minsgdcomp = ("’

2 ulil-wljl(els, 51 — zcompli, jl)’)"’
imazx -ymazx

>: | 2l¢,] — zcompli, 3] |
sumdifcomp = =

imazx jmax

mazdifcomp = maz | 2@, j) — zcomp((, 7) |
minsqd and minsgdcomp are equal if computation is exact. In
practice they will not be equal due to the imprecise nature of
calculation. A wide discrepancy indicates excessive errors in
calculation;

164-P 1- O

begin

real array a, b, denpall:nmazl, ¢, d, denga[l:mmazl],
alphall:nmaz, l:mmazl, p[l:nmaz, 1iimaz], q(l:mmaz, 1:jmaz},
pell: , 1: 1, qell: , Limmaz];

integer n,m,1,5,8,¢,71;

real sumz, sumy, sumz, meanz, meany, meanz, numa, dena, denb,
nume, denc, dend, alph, sumzsq, gausscrit, trialgausscrit, betasum,
rescomp, poly;

comment normalization of variables;

sumx 1= sumy := sumz := 0.0;

for 7 : = 1 step 1 until imax do
sumz : = sumz + z[t];

meanx = sumx/imaz;

for i := 1 step 1 until imazx do
z[i] : = z[i] — means;

for j : = 1 step 1 until jmar do
sumy := sumy + yljl;

meany := sumy/jmaz;

for j := 1 step 1 until jmaz do
ylil : = ylj] — meany;

for 7 : = 1 step 1 until ¢max do begin
for j := 1 step 1 until jmar do
sumz := sumz + z[7,j] end;
meanz : = sumz/(tmax X jmaz);
for ¢ : = 1 step 1 until imar do begin
for j : = 1 step 1 until jmaz do
z[z, j1 : = z[¢, §] — meanz end;
comment evaluate orthogonal polynomials;
numa : = dena := 0.0;
for i : = 1 step 1 until imaz do begin
pll, 7} := 1.0;
numa : = numa + ul[t) X z[Z];
dena : = dena + u[i] end;
al2] : = numa/dena;
for 7 : = 1 step 1 until imaz do

pl2, i} 1= z[i] — al2];
for n : = 3 step 1 until nmaz do begin
numa := dena : = denb := 0.0;
for i := 1 step 1 until {maz do begin
numa ;= numa + uli] X zl] X plr—1} T 2;
dena 1= dena + uli] X pln—1,4] T 2;
denb : = denb + uli] X pln—2,7] T 2 end;
aln] : = numa/dena; b[n] := dena/denb;
for i : =1 step 1 until imax do
pln, 1] : = (zli]—aln]) X pln—1,] — bln} X pln—2, il end;
numc : = denc := 0.0;
for j : = 1 step 1 until jmaz do begin
qll, 5] := 1.0;
nume : = numec + wlj]l X ylsl;
denc : = denc + wl[j] end;
¢[2] : = numc/denc;
for j := 1 step 1 until jmar do
ql2, 1 := yli] — cl2];
for m := 3 step 1 until mmaez do begin
nume = denc := dend : = 0.0;
for j : = 1 step 1 until jmez do begin
nume : = numc + wlj] X y[j] X glm—1, 51 T 2;
denc : = denc + wlj] X qlm—1,3] T 2;
dend := dend + wijl X ¢[m—2, j] 1 2 end;
clm] : = numec/denc; d[m] : = denc/dend;
for j : = 1 step 1 until jmax do

COLLECTED ALGORITHMS (cont.)

glm, 5] : = (ylil—clm]) X ¢glm—1, j] — d[m] X ¢[m—2, j] end;
comment evaluate contribution of each orthogonal polynomial
to the minimization of the residuals;
for n := 1 step 1 until nmazr do begin
denpaln] := 0.0;
for ¢ : = 1 step 1 until imaz do
denpaln] : = denpaln} + uli]l X pln, 7] T 2 end;
for m := 1 step 1 until mmax do begin
denga[m] := 0.0; ‘
for j : = 1 step 1 until jmax do
dengalm] := denga[m] + wlj] X ¢im, j1 T 2 end;
for n := 1 step 1 until nmaxr do begin
for m := 1 step 1 until mmaz do begin
alph := 0.0;
for 7 := 1 step 1 until imaz do begin
for j := 1 step 1 until jmax do
alph := alph + ulf] X wlj] X 2[¢, j1 X pln, 7] X ¢lm, 5]
end;
alpha(n, m] : = alph/(denpaln]Xdengalm]);
betafn, m} : = alphaln, m] X alph; end end;
comment application of Gauss’ criterion to determine the de-
gree polynomial which yields the closest fit to the given data.
Gauss’ criterion is, strictly speaking, applicable only to cases
where the weights u[¢] and w(j] are unity;

sumzsq = 0.0;
for ¢ : = 1 step 1 until imax do begin
for j : = 1 step 1 until jmar do

sumzsq : = sumzsq + ult] X wlf] X z[7, 51 T 2 end;
si=1:=1;
for n := 1 step 1 until nmaz do begin
betasum : = 0.0;
for m : = 1 step 1 until mmazr do begin
for r : = 1 step 1 until n do
betasum : = betasum + betalr, m];
if betasum > sumzsq then trialgausserit : = 0.0
else
trialgausserit : = (sumzsq—betasum)/(imazX jmaxz—nXm);
if n = 1 Am = 1 then gausscrit : = trialgausscrit;
if gausscrit = trialgausscrit then begin
if n X m < s X t then begin
s i=m;
t:= m end end;
if gausscrit > trialgausscrit then begin

gausscrit : = trialgausscrit;

si=m;

t := m end end end;
nmaz i = 8;

mmax 1= 1;
minsqd : = (gausscritX (tmazx X jmax—nmazx X mmaz)/ (imex X jmaz))
T %
comment evaluation of orthogonal polynomial coefficients;
for n : = 1 step 1 until nmaz do begin
pcln, m] 1= 1.0;
for s : = 1 step 1 until n — 1 do begin
peln, 8] 1= —aln] X peln—1, sl;
if s ## 1 then peln, 8] : = pcn, s] + peln—1, s—-1];
if s % n — 1 then pcn, s] : = peln, s] — bln] X pcln—2, s]
end end;
for m : = 1 step 1 until mmaz do begin
gelm, m] : = 1.0;
for t := 1 step 1 until m — 1 do begin
geclm, 1] : = —c[m] X gelm—1, t];
if ¢ # then gc[m, ¢] : = gc[m, t] + gc[m—1, t—1];
if t # m — 1 then gc[m, t] := gclm, t] — d[m] X gc[m—2,]
end end;
comment evaluation of approximating polynomial coefficients;
for s := 1 step 1 until nmar da begin
for ¢ : = 1 step 1 until mmaz do begin
phils, t] : = 0.0;

164-P 2- 0

for n := s step 1 until nmaz do begin
for m : = ¢ step 1 until mmax do
phils, t] : = phils, t] + alphaln, m] X pcln, s] X gclm, &}
end end end;
comment evaluation of dependent variables using the approxi-
mating polynomial;

minsqdcomp : = sumdifcomp : = maxidifcomp := 0.0;
for ¢ := 1 step 1 until imax do begin
for j : = 1 step 1 until jmax do begin

zcompli, j] 1= 0.0;
for s : = nmax step — 1 until 1 do begin
poly : = phils, mmaz];
for { : = mmaz — 1 step 1 until 1 do
poly : = poly X ylil + phils, t];
zcomplz, j1 : = zcompls, ;1 X z[¢] + poly end;
rescomp := zli, j] — zcomplt, jl;
zcompli, 71 1= zcompli, 7} + meanz;
minsgdcomp : = minsqdcomp + u[z] X wlj] X rescomp T 2;
sumdifcomp := sumdifcomp + abs(rescomp);
if abs (rescomp) > maxdifcomp then
mazdifcomp : = abs(rescomp) end end;
minsqdcomp . : = . (minsgdcomp/ (tmazx X jmaz)) TY4;
sumdifcomp : = sumdifcomp/(imaz X jmax);
end surfacefit

CERTIFICATION OF ALGORITHM 164
ORTHOGONAL POLYNOMIAL LEAST SQUARES
SURFACE FIT [R. E. Clark, R. N. Kubik, L. P. Phillips,
Comm. ACM, April 1963]

C. V. BITTERLI

Johns Hopkins Univ. Applied Physics Lab., Silver Spring,
Md.

The SURFACEFIT algorithm was translated into ForTrRAN
and successfully run on an IBM 7094. It was necessary to make the
following corrections:

(a) 12th line after

comment evaluate orthogonal polynomials;
should read
numa = numa + ult] X zlz] X pln—1,71 T 2;
(b) 2nd line after
comment evaluation of orthogonal polynomial coefficients;
should read
peln,n] := 1.0;
(¢) 12th line after
comment evaluation of orthogonal polynomial coefficients;
should read
if ¢t # 1 then qcm,t] := gcfm,t] + gelm—1,t—1];
(d) 8th line after

comment evaluation of dependent variables using the approxi-
mating polynominal

should read
for ¢t := mmaz —1 step —1 until 1 do

The following function was used to generate data for checking
this algorithm:

z=1—z+y—-azy+a®—y
for z=20,1,23,4
and y=0,123,4

The resulting polynomial was:

COLLECTED ALGORITHMS (cont.)

2=z -5y —zy + 2 — y?
which is correct for the normalized variables.
It should be pointed out in the comment for this procedure

that the resulting polynomial is in the normalized variables and
not the original variables.

164-P 3-

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 165

COMPLETE ELLIPTIC INTEGRALS

Henry C. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, Ill.

* Work supported by the U.S. Atomic Energy Commission.
procedure KANDE(ml, K, E, tol, alarm);

value ml, tol;

real ml, K, E, tol;

label alarm;

comment this procedure computes the complete elliptic inte-
grals K(ml) = f; ? 1 — (1 — ml) stn%)"V2dv and E(ml) =
f;n 1 — (1 — ml) sin»)V? dv by the arithmetic-geometric-
mean process. The accuracy is limited only by the accuracy of
the arithmetic.

Except for the provision of tests for pathological values of the
parameter, the calculation of K is only a slight modification of
the second procedure of Algorithm No. 149 (Comm. ACM. &
(Dec. 1962), 605). These integrals may also be approximated to
limited (6D) aceuracy by Algorithms 55 and 56 (Comm. ACM. 4
(Apr. 1961), 180). Unless the square-root is excepfionally fast,
the latter algorithms are probably more efficient for 6D-aceu-
racy.

The complementary parameter, ml, is chosen as the inde-
pendent variable, rather than the parameter, m, the modulus,
k or the modular angle «, because of the possibility of serious
loss of significance in generating ml from the other possible
independent variables when ml is small and dK/dml is very
large. These variables are related by ml =1 —m =1 — k2 =
cos’x.

The formal parameter, tol, determines the relative accuracy
of the result. To prevent entering a nonterminating loop, tol
should not be less than twice the relative error in the square
root routine. If ml < 0 or if ml > 1, the procedure exits to
alarm. K(0) = « while E(0) = 1.00000000.

The body of this procedure has been tested using the Dart-
mouth ScaLp processor for the LGP-30. With tol = 5, — 7,
results agreed with tabulated values to within 3 in the seventh
significant digit;

begin real a, b, c, sum, temp;
integer fact;
ifml>1Vml 50 then go to alarm;
a:l= fact :=1;
b := sqri(ml);
temp 1= 1 — ml;

sum.:= 0;
iler: sum := sum + temp;
c:i= (a — b)/2;

fact : = fact + fact;
temp := (a + b)/2;
bi=sgrt (@ X b);
a .= lemp,;
temp i = fact X ¢ X ¢;
if abs(c) = tol X a V temp > tol X sum then go to iter;
sum := sum + lemp;
K := 3.141592654/(a + b);
comment p¢ must be given to the full accuracy desired;
E:=KX (1 — sum/2)
end

165-P 1- R1

CERTIFICATION OF ALGORITHM 165 [S21]

COMPLETE ELLIPTIC INTEGRALS [Henry C.
Thacher Jr., Comm. ACM 6 (Apr. 1963), 163]

I. Farkas (Recd. 1 Aug. 1968)

Dept. of Computer Science, University of Toronto,
Toronto, Ontario, Canada

KEY WORDS AND PHRASES: special functions, complete
elliptic integral of the first kind, complete elliptic integral of the
second kind

CR CATEGORIES: 5.12

One misprint and one semantic error were found in Algorithm
165:
1. The procedure heading

procedure KANDE (ml,K E tolalarm);
should read
procedure KANDE (mlK,E tol,alarm);
2. The second statement in the procedure body

a := fact: = 1;
should read
fact: = 1;a: = 1;

because fact and g are of different types.

Algorithm 165 was translated into FORTRAN IV on an IBM 7094-
II, whose single-precision mantissa has 27 significant bits (about
8 significant decimal digits). Because our SQRT program has a
relative accuracy of .75, — 8, fol was chosen 3,y — 8. K and E were
generated for ml = (.01(.01)1.0) (to 27 bits) and the results ob-
tained were compared with tables in [1]. For ml = .01 E differed
by two units in the last place; for all other values of ml, the maxi-
mum absolute error was one unit in the last place. The time taken
to activate KANDE for the above 100 values of ml was 0.1 sec.

REFERENCE:

1. ABramMowirz, M., anp StecuN, I. A. (Eds.) Handbook of
Mathematical Funciions. NBS Appl. Math. Ser. 55, US Govt.
Printing Off., Washington, D. C., 1964.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 166
MONTECARLO

R. D. Ropmawn

Burroughs Corp., Pasadena, Calif.

procedure montecarlo (n, a, row, tol, mam, inv, test, count);
value n, row, tol, mzm; integer n, row, mxm, count;
real tol; real array a, inv, test;
comment this procedure will compute a single row of the
inverse of a given matrix using a monte carlo technique.
n is the size of the matrix,.array a is the matrix, row indicates
which inverse row is to be computed, tol is a tolerance factor
and thus a criterion for terminating the process, mam is 1000
times the maximum number of random walks to be taken,
after which the process is terminated, array inv contains the
inverse row, array fest contains the innerproduct of inv with
the rowth column of a, count is the number of random walks
executed upon termination. real procedure RANDOM must
be declared in the blockhead of procedure MONTE CARLO
and generates a single random number between 0 and 1. If
a is the matrix to be inverted, the absolute value of the largest
eigenvalue of the matrix I — a (I is the unit matrix) must be
less than one to assure convergence. This procedure is easily
adapted to finding a single unknown from a set of simultaneous
linear equations;
begin integer i, j, k, nwk, lastwalk, walk; real res, p, g;
real array sum{l:n], v[l:n, 1:n];
start: p:= (n—1)/n X n;
for: := 1 step 1 until ndo for j : = 1 step 1 until n do
v[i,i] = if ¢ » j then —ali,j]/p else (1—ali,j])/p;
nwk : = 1000;
count := res := 0;
for k := 1 step 1 until n do fest [k] := sum [k] : = 0;
startl: lastwalk := row; g :=1;
start2: walk := (RANDOM/p) + 1;
if walk > n then go to stop;
g := v[lastwalk,walk] X g; lastwalk : = walk;
go to start2;
stop: count:= count + 1; sumllastwalk] : = sum(lasiwalk] + g;
if count < nwk then go to startl;
for k : = 1 step 1 until n do nvik] : = n X sumlk]/count;
for i := 1step 1 until n do fork : = 1 step 1 until n do
test[z] 1 = inv[k] X alk, 7] + test[7];
for i := 1 step 1 until row—1, row+1 step 1 until n do
res ;= abs(test[i]) + res; res : = abs(testirow]—1) + res;
if res < {ol then go to exil;
if count 2 1000 X mzm then go to ezxit;
nwk = nwk + 1000; res := 0;
for k := 1 step 1 until n do test [k] : = 0;
go to starll;
exit: end of monte carlo inversion procedure

166-P 1- 0

REMARK ON ALGORITHM 166

MONTECARLO INVERSE [R. D. Rodman, Comm.
ACM, Apr. 1963]

R. D. Ropman

Burroughs Corp., Pasadena, Calif.

The algorithm contained two errors:
(1) The line which reads
start: pi= (n—1)/n X n;
should read
start: p:= (n—1)/n T 2;
(2) The line which reads
start2: walk := (random/p) -+ 1;
should read
start2: walk: = entier ((random/p) + 1);

After making the preceding corrections, procedure montecarlo
was transliterated into EXTENDED ALGOL and run successfully
on the Burroughs B-5000. Convergence occurred in all cases where
the matrix satisfied the conditions set down in the comment state-
ment of the algorithm. It was found that convergence was quickest
and the routine most practical for matrices with eigenvalues small
relative to one.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 167

CALCULATION OF CONFLUENT DIVIDED

DIFFERENCES

W. Kauan anp I. Farkas

Institute of Computer Science, University of Toronto,
Canada,

real procedure DVDFC(n,X,V,B,W); integern;
real array X, V, B, W,
comment DVDFC ca.culates the forward divided difference
Af(X,, X2, - X;). n is an integer which takes the values
n=1223, - inturn. X is a real array of dimension at least
n in which X[¢] = X, for¢ =1,2, -+ ,n. The values X, need
not be distinct nor in any special order, but once the array X
is chosen it will fix the interpretation of the arrays B and V.
If X[1], X[2], --+ , X[n] are in monotonic order, then the effect
of roundoff upon any nth divided difference is no more than
would be caused by perturbing each f(X[i]) by » units at most
in its last significant place. But if the X’s are not in mono-
tonic order, the error can be catastrophic if some of the divided
differences are relatively large. V is a real array of dimension
at least n containing the values of the function f(X) and per-
haps its derivatives at the point X;. V[i] = f»(X;)/m! and
m = m;fori =1,2,3,--+ ,n. m;is the number of times that
the value of X; has previously appeared in the array X. B is
a real array of dimension at least n containing backward divided
differences. Before a reference to DVDFC is executed oné should
have Bli] = Af(X;, Xep1, o0, Xn) fori = 1,2, -+, n—1.
After that reference to DVDFC is executed one will find B[i] =
AfXs , Xiya o0, Xar, Xo) fori =1,2,-++ , n—1, n. When
n = 1 the initial state of B is irrelevant. W is a real array of
dimension (2 4) at least, where 7% is the maximum value of
m;fori=1,2,-+- ,n. W is used for work space;
begin real DENOM; integer i, j, NK, NIN;
if n = 1 then go to LI;
NK :=1;
for i := 1 step 1 until = do
begin
if X[7] = X[n] then begin NK := NK + 1;
WINK] := V[i] end
end 7;
for i : = n step —1 until 2 do
begin W[1] : = B[i — 1]; B[] := W[2];
NIN :=if n — i 4+ 2 < NK then n — i + 2 else NK;;
for j := NIN step —1 until 2 do
begin
DENOM := X[n] — X[+ 7 — 3];
if DENOM 3 0 then go to L2;
Wil 1= Wi + 1;
if NK — j — 1 3 0 then go Cont;
NK := NK - 1;
go to Cont;
L2: W[j]l:= (W[j] — W[; — 1])/DENOM;
Cont: end j
end 7;
B[1] : = W[2};
go to L3;
L1: B[l]:= V[i];
L3: DVDFC := B[l1]
end DVDFC

167-P 1- 0

The following program segment is an example of how DVDFC can
be used to construct a table of forward or backward differences.

for n := 1step 1 until N do

begin

X[n] i= -+ ; VIrl:= ---; Fn]:= DVDFC(n, X, V, B, W)
end;

The array F can be used in FNEWT(z, N, X, F, R, D, E) or the
array Bin BNEWT(z, N, X, B, P, D, E). See algorithms ‘New-
ton interpolation with forward (backward) divided differences.”

DV DFC has been written as a ForTraN II function and is avail-
able from I.C.8., University of Toronto;

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED DIF-
FERENCES [W. Kahan and I. Farkas, Comm.
ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD
DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH FORWARD
DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963.]
Henry C. THACHER, JR.*
Argonne National Laboratory, Argonne, Ill.

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth Scarp compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola-
tion polynomial based on fewer points, this is not true for Al-
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to the procedure, and by
making the for statement read:

‘“for 4 := N — deg step 1 until Ndo :-+

The logic of the error estimate in Algorithms 168 and 169 is not
entirely clear. However, it appears that the estimate can be ad-
justed for different precision of arithmetic by adjusting the con-
stant 310—8 appropriately. For the ScaLp arithmetic, this constant
was changed to 1u—7.

The algorithms were tested on the examples given by Milne-
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Calculus, p. 204, Princeton, 1949].
In both examples, Algorithm 167 reproduced the divided differ-
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ-
ences, values of the exponential function of its first two deriva-
tives at z = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

* Work supported by the U. 8. Atomic Energy Commission.

COLLECTED ALGORITHMS (cont.)

167-P 2-

TABLE A
n X[n] Vin] B(n} Bln—1} B[n—2] B{n—3] Bn—4] B[n—5]
1 5.0 148.4132 148.4132
2 5.0 148.4132 148.4132 148.4132
3 6.0 403.4288 403.4287 255.0155 106.6023
4 6.0 403.4288 403.4287 403 .4287 148.4132 41.81091
5 5.0 74.20658 148.4132 255.0155 148.4132 41.81091 9.415191
6 6.0 201.7144 403.4287 255.0155 148.4132 53.30115 11.49023 2.075043
The forward differences lie along the top diagonal.
Use of these results with Bvewr and with Fngwr gave the following results, for N = 6.
BNEWT FNEWT
z
P D E R D E
5.000000 148.4132 148.4132 .4567298 X 10— 148.4132 148.4132 7420658 X 10-3
5.500000 244.6973 244 .6924 4173722 X 10 244.6973 244.6924 .3078276 X 10—
6.000000 403 .4287 403.4287 .2017143 X 10— 403 .4287 403 .4287 .7441404 X 107

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 168

NEWTON INTERPOLATION WITH

BACKWARD DIVIDED DIFFERENCES

W. Kanan anp 1. FArRkas

Institute of Computer Secience, University of Toronto,
Canada

procedure BNEWT(z, N, X, B, P, D, E); value z, N;
real z, P, D, E; integer N; real array X, B;

comment X is a real array of dimension at least N in which
X[l = X for¢ = 1,2,3,--+, N. The values X; need not be
distinet nor in any special order, but once the array X is chosen
it will fix the interpretation of the array B. B is a real array of
dimension at least N and contains the backward divided differ-
ences Bli] = Af(X:, X1, ,Xn) ©=1,2,--- , N.If two
or more of the values X; are equal then some of the B’s must
be confluent divided differences, see algorithm: ‘“‘Calculation of
confluent divided differences.”” P is the value of the following
polynomial in z of degree N—1 at most, B(N) + (z—Xuy)-
[BIN=1) + =Xy){B(N=2) + < + (z=Xo)B1)} --- }}.
This polynomial is an interpolation polynomial which would,
but for rounding errors, match values of the function f(z) and
any of its derivatives that DV DFC might have been given. D
is the value of the derivative of P. E is the maximum error in
P caused by roundoff during the execution of BNEWT. The
error estimate is based upon the assumption that the result of
each floating point arithmetic operation is truncated to 27 sig-
nificant binary digits as is the case in FORTRAN programs on
the 7090. BNEWT has been written as a ForTraN II subroutine
and is available from I.C.S,, University of Toronto;

begin real z1; integer i;

P:=D:=F:= 0

for i := 1 step 1l until .V do
begin

zl 1=z — X[i;

D:= P + 21 X D;

P := Bli] + 21 X P;

E := abs(P) + E X abs(z1)
end;

E:= (15XE — abs(P))X3,y — 8
end BNEWT

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONILUENT DIVIDED DIFE-
FERENCES [W. Kahan and I. I'arkas, Comm.
ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD
DIVIDED DIFFERENCES [W. Kahan and I.
I'arkas, Comm. ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH IFORWARD
DIVIDED DIFFERENCES [W. Kahan and I.
Trarkas, Comm. ACM, Apr. 1963.]
Hexry C. THACHER, JR.*
Argonne National Laboratory, Argonne, Il

168-P 1- 0

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth ScaLp compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola-
tion polynomial based on fewer points, this is not true for Al-
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to the procedure, and by
making the for statement read:

‘“for i := N — deg step 1 until N do --- ”’

The logic of the error estimate in Algorithms 168 and 169 is not_
entirely clear. However, it appears that the estimate can be ad-
justed for different precision of arithmetic by adjusting the con-
stant 31—8 appropriately. For the ScarLp arithmetic, this constant
was changed to 110—7.

The algorithms were tested on the examples given by Milne-
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Caleulus, p. 204, Princeton, 1949].
In both examples, Algorithm 167 reproduced the divided differ-
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ-
ences, values of the exponential function of its first two deriva-
tives at x = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

COLLECTED ALGORITHMS (cont.) 168-P 2- 0
TABLE A
% Xin] Vinl Bin] Bn—1} B[n—2] B[n—-3] Bln—4] B{n—5]
1 5.0 148.4132 148.4132
2 5.0 148.4132 148.4132 148.4132
3 6.0 403.4288 403.4287 255.0155 106.6023
4 6.0 403 .4288 403.4287 403.4287 148.4132 41.81091
5 5.0 74.20658 148.4132 255.0155 148.4132 41.81091 9.415191
6 6. 201.7144 403.4287 255.0155 148.4132 53.30115 11.49023 2.075043
The forward differences lie along the top diagonal.
Use of these results with Bvewr and with FNewr gave the following results, for N = 6.
BNEWT FNEWT
2z -
P D E R D E
5.000000 148.4132 148.4132 4567298 X 10— 148.4132 148.4132 7420658 X 10°3
5.500000 244 .6973 244 6924 4173722 X 10 244.6973 244 .6924 .3078276 X 10—
6.000000 403 .4287 403.4287 .2017143 X 10 403.4287 403 .4287 .7441404 X 10—

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 169

NEWTON INTERPOLATION WITH

FORWARD DIVIDED DIFFERENCES

W. Kanan anp I. FArgas

Institute of Computer Science, University of Toronto,
Canada

procedure FNEWT(z2, N, X, F, R, D, E); value 2, N;
real 2z, B, D, E; integer N; real array X, F;

comment X is a real array of dimension at least N in which
X[:] = Xifori =1,2,-+ , N. The values X; need not be dis-
tinct nor in any special order, but once the array X is chosen
it will fix the interpretation of the array F. F is a real array
of dimension at least N and contains the forward divided
differences F[z] = Af(X,, X2, -, X:) 2=1,2,--- ,N. If
two or more of the values X; are equal then some of the F’s
must be confluent divided differences, see algorithm: ‘““Caleu-
lation of confluent divided differences.”’ R is the value of the fol-
lowing polynomial in z of degree N—1 at most, F(1) 4+ (z—X))*
{F2) + =X)IFB) + -+ + @—Xy_)F(N)} --- }}. This
polynomial is an interpolation polynomial which would, but
for rounding errors, match values of the function f(z) and any
of its derivatives that DV DFC might have been given. D is the
value of the derivative of R. E is the maximum error in R
caused by roundoff during the execution of FNEWT. The
error estimate is based upon the assumption that the result of
each floating-point arithmetic operation is truncated to 27
significant binary digits as is the case in FORTRAN programs
on the 7090. FNEWT has been written as a ForTraN II sub-
routine and is available from I.C.S., University of Toronto;

begin real z1; integer 7;

R:=D:=FE:=0;

for i := N step —1 until 1 de

begin

2l 1=z — X[i];

D:=R+ 21 X D;

R := F[i] + zIXR;

E := abs(R) + abs(z21)XE

end;

E:= (1.5XE — abs(R))X310 — 8

end FNEWT

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED DIF-
FERENCES [W. Kahan and I. Farkas, Comm.
ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD
DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH FORWARD
DIVIDED DIFFERENCES [W. Kahan and I
Farkas, Comm. ACM, Apr. 1963.]
Henry C. THACHER, JR.*
Argonne National Laboratory, Argonne, Ill.

169-P 1- 0

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth ScaLp compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola-
tion polynomial based on fewer points, this is not true for Al-
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to the procedure, and by
making the for statement read:

“for 7 ;= N — deg step 1 until N do --- ”’

The logic of the error estimate in Algorithms 168 and 169 is not
entirely clear. However, it appears that the estimate can be ad-
justed for different precision of arithmetic by adjusting the con-
stant 310—8 appropriately. For the ScaLp arithmetie, this constant
was changed to 110—7.

The algorithms were tested on the examples given by Milne-
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Calculus, p. 204, Princeton, 1949].
In both examples, Algorithm 167 reproduced the divided differ-
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ-
ences, values of the exponential function of its first two deriva-
tives at ¢ = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

COLLECTED ALGORITHMS (cont.) 169-P 2- 0

TABLE A
" Xin) Vin) Bln] " Bln—1] Bln—2] Bln—3] Bln—4] Bln—5]
1 5.0 148.4132 148.4132
2 5.0 148.4132 148.4132 148.4132
3 6.0 403.4288 403.4287 255.0155 106.6023
4 6.0 403.4288 403 .4287 403.4287 148.4132 41.81091
5 5.0 74.20658 148.4132 255.0155 148.4132 41.81091 9.415191
6 6.0 201.7144 403.4287 255.0155 148.4132 53.30115 11.49023 2.075043

The forward differences lie along the top diagonal.
Use of these results with Byvewr and with FNeEwr gave the following results, for N = 6.

BNEWT FNEWT
Z —
r D) R D E
5.000000 148.4132 148.4132 4567298 X 10~ 148.4132 148.4132 . 7420658 X 1073
5.500000 244.6973 244 .6924 .4173722 X 10~ 244.6973 2446924 3078276 X 107
6.000000 403.4287 403 .4287 2017143 X 10 403.4287 403 .4287 .7441404 X 10

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 170

REDUCTION OF A MATRIX CONTAINING
POLYNOMIAL ELEMENTS

Patn E. HeExnNiON

Giannini Controls Corp., Astromechanics Res. Div.,
Berwyn, Penn.

real procedure POLYMATRIX (A, NCOL, N, COE, NP1);
value A, NCOL, N; real array A; integer NCOL, N;

comment this procedure will expand a general determinant,
where each of the elements are polynomials in the Laplace com-
plex variable. This program is useful for the investigation of
dvnamic stability problems when using the transfer function
approach. The process is one of triangularization of a poly-
nomial matrix with real coefficients whereupon multiplication
of the diagonal elements the determinant polynomial is formed.
The polynomial matrix as defined herein is a matrix whose
elements are polynomials of the form Y_.Y_, a:z’. When such a
matrix is triangularized, all elements below the main diagonal
are nulled. Then upon expanding, the nonvanishing terms are
those formed by the product of these diagonal elements. Hence
stability criteria may be checked by evaluating the roots of the
characteristic equation thus formed using some suitable root
extracting routine.

Consider the polynomial matrix with quadratic elements
(N = 2). In this case the three-dimensional input matrix 4 is
size A[1:NCOL, 1:NCOL, 1: M}, where. NCOL is the order of
the matrix and M = N X NCOL + 1. Here the first subscript
of A refers to the row, the second to the column, and the third
to the polynomial coefficient. Therefore, prior to entry the con-
stant term of a general polynomial element is contained in
AlZ, j, 1], the linear term is contained in A[Z, 7, 2], and the
quadratic term in A[z, 7, 3]. Upon completion of the routine, the
coefficients of the determinant polynomial are contained in
COE [1:M]. The constant coefficient being in COE (1], the linear
coefficient in COE [2], the quadratic coefficient in COE [3], ete.
The variable N P1 will specify the number of coefficients of the
determinant polynomial. In general NP1 = M since some terms
may vanish during the expansion.

If the polynomials comprising the matrix elements are not
all of equal degree, set N prior to entry equal to the degree of
the highest ordered polynomial;

begin real sa, sb; integer <, j,k, j1, 52, j3, 74, 55, 76, 57, 58, 79, 510,
j11, NP1, M; array Cl{1:M], C2[1:M], COE[1:M);
integer array MAT [1:NCOL, 1:NCOL];
start: M := NXNCOL+1; for i := 1 step until NCOL do
begin for j : = 1 step 1 until NCOL do begin MAT [i,7] : = 0;
for k := 1 step 1 until M do begin
if AlZ, j, k1520 then MAT [¢,j] :=k; endendend; jl:=1:
LO: 79 :=0; fori:= jl step 1 until NCOL do begin
if MAT [:,j11<0 then go to exit;
else if MAT [7, j1] =0 then go to L1
else ;9 := j9+1; ;3 := 1;
L1: end; if (j9—1)<0 then go to exit
else if (79—1)>0 then go to L2
else if (j3—;1) <0 then go to erit
else if (j3—;1)=0 then go to L12
else for j : = jl step 1 until NCOL do
begin j2 : = MAX(MAT 53,51, MAT [51,5]);
MAT [53,7] := MAT [11, 5];

j& 1= MAT [;3,5];
MAT [51,5] : = j4;

170-P 1- 0

fork : = 1 step 1 until j2 do
begin sa 1= A4 3, j,k]; Alj3,5,k] 1= Aljl, j, kl;
Aljl,5)k] := —sa; end end; go to L12;
L2: j3 := j141; for i := j3 step 1 until NCOL do begin
L3: if (MATI[i,1])<0 then go to exit
else if [MAT [7,/1])=0 then go to L11
else if (MAT [71,71])<0 then go to exit
else if (MATI[j1,/11)=0 then go to L4
else if (M AT [i,71] —-MAT [51,71]) = 0 then go to L5 else
L4: for j := jl step 1 until NCOL do begin
32 t= MAX(MAT [j1,jl, MAT [3, j]); 74 1= MAT [j1,5];
MAT (51,51 := MAT li,j; MAT [i45] := j4;
for k := 1 step 1 until ;2 do begin sa : = Ali,jk];
A[l,].,k] = A[jlij’k]; A[J]-;j)k] = —sa;
end end; go to L3;
comment Interchange row ¢ with j1;
L5: j7 := MAT [i,511; 35 := MAT [51,i1];
sb 1= A{i,j1,571/ A[j1,51,55];
if (abs(sb)—4)<0 then go to L6
else if (j6) <0 then go to ezt
else if (j6)=0 then go to L4 else
L6: for j:= jl step 1 until NCOL do begin j5 : = MAT [j1, j];
for k := 1 step 1 until j5 do begin ;7 := k+;6;
if (j7—M)>0 then go to L10 else
L7: if (abs(Al7,7,i7] —sbX Alj1,7,k]) —2,p—8) =0 then go to L8
else Alf,7,77) := Ali,5,j7] —sbX A[51,7%];

76 1= j1—35;

go to L9;
L8: Ali,5,57] := 0;
L9: end end;
L10: for j := jl step 1 until NCOL do begin

57 := MAX(MAT [i,j}, MAT[j1,j1456); MAT [i,5] := 0,
for k := 1 step 1 until M do begin if (A[7,jk])=0 then
MAT [4,7] := k end end;

L11: end; go to LO;
L12: j1 := j141; if (j1—NCOL)<0 then go to LO else
for j := 1 step 1 until NCOL do begin

72 1= MAT l5,5];

fork := 1step 1 until j2do C1[k] : = Alj,jkl];
L13: if (j—1)<0 then go to exit

else if (j—1)=0 then go to L14

else for k : = 1 step 1 until NP1 do C2[k] : = COElk];

for k : = 1 step 1 until M do COE[k] := 0;

if (j2)<0 then go to erit

else if (j2) =0 then go to L15

else for k : = 1 step 1 until ;2 do begin

for j10 : = 1 step 1 until NP1 do begin

11 := k+4710-1;

COE[j11):=COE[j11]+4C1[k] X C2[510];

end end; NPl := jll; go to L15;

L14: for k := 1 step 1 until ;2 do COE [k] : = C1 [k];
NP1 := j2;

L15: end;

exit: end POLYMATRIX

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 170
REDUCTION OF A MATRIX CONTAINING POLY-
NOMIAL ELEMENTS [P. E. Hennion, Comm. ACM,
Apr. 1963|
P. E. HEnNION
Giannini Controls Corp., Berwyn, Penn.

Four typographical errors were found upon reviewing the
procedure. The following corrections should be made:
(1) The increment, for the for statement of line start:, should be 1.
(2) The colon at the end of the third line after line start:, should

be replaced by a semicolon.

(3) The semicolon at the end of the first line after line LO:, may

be removed.
4) The last statement of the first column should read:

MATI[i,7] := k; end end;

CERTIFICATION OF ALGORITHM 170 [F3]

REDUCTION OF A MATRIX CONTAINING POLY-
NOMIAL ELEMENTS [P. E. Hennion, Comm. ACM
6 (April 1963), 165; 6 (Aug. 1963), 450]

KareN B. PrieBe (Recd. 18 Dec. 1963 and 18 Feb. 1964)

Woodward Governor Co., Rockford, Ill.

Algorithm 170 was translated into Fast for the NCR 315 and
gave satisfactory results with the following corrections:
1. real procedure ... integer NCOL, N ; should be replaced
by
procedure POLYMATRIX (A, NCOL, N, COE, NP1);
value NCOL, N; real array A, COE;
integer NCOL, N, NP1;
2. At the end of the first comment add:
The global integer procedure M AX is assumed and furnishes the
maximum of two integers.
3. integer<,j,k, ... COE[1:M]};
should be replaced by
integer 1, j, k, 71, j2, j3, j4, j5, 36, j7, j8, 79, 10, 11, M;
array C1, C2[1:NXNCOL+1]};
4. Immediately after siart: the statement

NPl :=N 4+ 1;
should be added, and the third line after start: i.e.,
for k : = 1 step 1 until M do begin
should be replaced by
for k := 1 step 1 until NP1 do begin
5. The third line after L10: i.e.,
fork := 1stepl until M do ...

should be replaced by
for k : = 1 step 1 until ;7 do ...

The last two changes simply shorten both of the indicated ror
statements.

[EpiTor’s NoTE. In addition to the above correetions, we have
two comments on the Remark on Algorithm 170 by Hennion,
loc. cit., p. 450:

First, the semicolon at the end of the first line after LO musT
be removed.

Second, correction (4) is irrelevant.

170-P 2- 0

The referee confirus thav a transcription into Burroughs lix-
tended ALcoL of the program as corrected by Mrs. Priebe runs on
the B5000.—G.E.F.]

COLLECTED ALGORITHMS FROM CACM

171-P 1- O

Note. There is no algorithm for the number 171.
Inadvertently this number was never assigned.

COLLECTED ALGORITHMS FROM CACM

172P 1- 0

Note. There is no algorithm for the number 172.
[nadvertently this number was never assigned.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 173

ASSIGN

Oromar HAJEK

Research Institute of Mathematical Machines, Prague,
Czechoslovakia

procedure assign (a) the value of : (b) with dimension : (dim)
indices : (¢nd) bounds : (low, up) tracer : (j);

value dim; integer dim, ind, low, up, 7;

comment This procedure uses Jensen’s device (cf. ALcon

Report, procedure Innerproduct) twice: the a, b may depend on
ind and also ind, low, up may depend on j;
begin
7= dim;
for ind := low step 1 until up do
it dim > 1
then
begin
assign (a, b, dim—1, ind, low, up, j);
ji=dim
end
elsea := b
end assign;
comment The obvious use of “assign’’ is in assigning the value
of one array to another. The point here is that one procedure
declaration serves for all the dimensions used. In fact, the
dimension may even be a variable: thus a procedure essentially
identical with ‘“‘assign’’ was used by the author in implementing
the recursive own process in an ALGoL eompiler.

However, in addition to this, ‘“assign” can have further
functions, as illustrated below. The activation assign (@, (if
i=1 then false else a) V b..;, 1, 7, 1, n, j) will calculate the
join-trace of a Boolean 2-dimensional array b.
assign (@5, , (if %=1 then 0 else ai.z,) + biiy X Ciga,

3,7;,1,if j =1 then n else if j = 2 then m else p, j)
will assign to a the matrix product of b, ¢. It may be noticed that,
more generally, “assign’’ will perform all the tensor operations,
e.g. tensor multiplication, alternation, etc.

CERTIFICATION OIF ALGORITHM 173

ASSIGN [Otomar Hajek, Comm. ACAM, June 1963)

R. 8. ScoweEx

Snglish Electric Co. Ltd., Whetstone, Leicester, Kngland

Algorithm 173 (ASSIGN) has been tested successfully using
the DEUCE ALGoL 60 compiler. The only changes necessary were
the addition of specifications for the formal parameters e, b
(DeveE ALGOL 60 compiler requires specifications for all formal
parameters).

The author’s example, assign (a[¢[1], 7{2]], (if i[3]=1 then 0.0
else ali[1]. 2[2])) + bL(1], 431} X cl#(3], <[2]], 3, i[;}, 1, if j = 1
then n else if 7 = 2 then m else p, j);

did form the matrix product B X C and store it in A.

The algorithm was also used to read a matrix into the computer
using the procedure call

assign (b(¢[1], Z[2]], read, 2, 7[j], 1,

if 7 =1 then n else p, j);

(read is a real procedure which takes the value given by the next
number on the input tape).

173-P 1- 0

These examples took about three times as long to run as the
simpler equivalent statements
for i := 1 step 1 until n do
for j := 1 step 1 until m do
begin
ali, j1 = 0.0;
for it := 1 step 1 until p do
alz, i1 1= alt, 5] + bz, k] X clk, 5]
end;
and
for j := 1 step 1 until p do
for 7 := 1 step 1 until n do
bli, j] := read;

CERTIFICATION OF ALGORITHM 173

ASSIGN [O. Héjek, Comm. ACM, July 1963]

Z. Tiusak and L. VRCHOVECKA

Research Institute of Mathematical Machines, Prague,
and Computing Center Kanceldtské stroje, Prague

The algorithm was modified for input to the Elliott-ALcoL
system as follows. In Elliott-ALGoL, name-called parameters in
recursive procedures are prescribed. Luckily, the only parameter
which varies during the recursive call in the body of Assign is
called by value (it is the parameter dim which determines depth
of recursion). The body of Assign was replaced by (i) a procedure
declaration Ass{dim), whose body is that of the original Assign,
but with the recursive call of Assign replaced by that of Ass,
and (ii) a single statement, the activation of Ass(dim).

The resulting procedure was tested (on the National-Flliott
803 in the Computing Center), on a rather large set of examples,
including those described in the text following Algorithm 173.
It was found that in the last example, matrix multiplication,
indices ¢; and 73 should be interchanged throughout.

No changes of the algorithm itself were necessary. It seems
that the modification deseribed above, motivated by limitations
of Elliott-ALcoL, also improve efficiency, at least for large di-
mensions of the arrays concerned.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 174
A POSTERIORI BOUNDS ON A
ZERO OF A POLYNOMIAL*
ArpaN GiBB
University of Alberta, Calgary, Alberta, Canada

comment The procedures below make use of Algorithm 61,
Procedures for Range Arithmetic [Comm. ACM 4 (1961)]. It is
assumed that the procedures below and the range arithmetic
procedures are contained in an outer block and, therefore, that
the procedures are available as required. Together the proce-
dures make possible an attempt to determine absolute bounds
on g zero of a polynomial given an initial estimate of the zero.
The procedures below are given for the complex case but may
readily be adapted for the real case;
procedure RngPlyC (N, A, Z, P);
comment RngPlyC finds bounds [P1, P2] + i[P3, P4] on the
value of an nth degree polynomial Zioo {[@urs1, Gars2)
+ i[@ukss, aarpa]}2® with complex range coefficients for a com-
plex range argument z = [Z1, Z2] + i{Z3, Z4];
integer N; array A, Z, P;
begin integer K, J; array X, Y[l : 4];
Pl1]:= P[2] := P[3] :== P[4] : = 0;
for K := 4 X N step —4 until 0 do
begin for J := 1 step 1 until 4 do X[J] : = A[K+J];
RNGMPYC (PI1], P2}, P[3], Pl4], Z[1], Z12], Z[3], Z[4], Y[1],
Y[2], Y3], Y[4D;

RNGSUMC (Y[11, Y[2], YI[3], Y[4], X[1], X[2], X[3], X[4],
P}, P[2], P[3], P[4]

end

end;

procedure RngAbsC (4, C);

comment EngAbsC produces the range absolute value [C1, C2]
of the complex range number [41, A2] 4 i[A43, A4];

array A, C;

begin array B[l : 4];

RANGESQR (A[1], A[2], B11), BI2D);

RANGESQR (A[3], A[4], B3], B{4));

RANGESUM (B[l1], B[2], B[3], B[4], C[1l, CI2]);

C[1] : = sqre(C[1]);

C[2] : = sqre(CI2));

comment It is assumed that the accuracy of the sqrt routine
used is known and that the maximum error in sqri(C) is = K
X CORRECTION (C). K is to be replaced below by its appro-
priate numerical value;

C[1] := C[1] — K X CORRECTION (C[1]);

C[2] := C[2] + K X CORRECTION (C[2))

end;

procedure BrndZrPlyC (N, ZOR, Z0J, A, W,);

integer N; real ZOR, ZOJ; array A, W;

comment BndZrPlyC attempts to determine bounds [W1, W2]
-+ i[W3, W4] on a zero of an N-th degree polynomial in z'with
complex range coefficients. It is assumed that an estimate
Z0 = ZOR + iZOJ of the zero is available. The following
theorem is used. Assume f is regular at zo with f'(z0) # 0. Let
ho = —f(20)/f'(20), let A be the region |z — zo | = 7 | ho |, and

* These procedures were developed under Office of Naval
Research Contract Nonr-225(37) at Stanford University. The
author wishes to thank Professor George E. Forsythe for assistance
with this work.

174-P 1- 0

assume that f is regular in A. If, for some r > 0, [f'(2) | = (1/7).
| f'(z0) | for all z e A then A contains a zero of f(see [1], pp. 29-31);
begin integer I, J; array B[l1:4XN], E, F, FP, D[1:4], AF,
AFP, G[1:2];
real RH, RHS, NL, NR, R, RNL, RNER;
for I : =1 step 1 until N do
begin J := 4 X I;
RANGEMPY (1,1, A[J+1)}, AlJ+2], BlJ—3], BlJ-2]):
RANGEMPY (I, 1, A[J+3], A[J+4], Bl/-1], B[J))
end;
E[l]:= E[2]:= ZOR; E[3):= E[4] := Z0J;
RngPlyC(N, A, E, F);
RngAbsC(F, AF);
RngPlyC(N—1, B, E, FP);
RngAbsC(FP, AFP);
RANGEDVD(AF(1], AF(2], AFP[l], AFP[2], NL, NR);
R:=2;
1: RANGEMPY (R, R, NR, NR, RNL, RNR);
RANGESUM (ZOR, ZOR, —RNR, RNR, W[1], W[2]);
RANGESUM (Z0OJ, ZOJ, —RNR, RNR, W[3], W[4));
comment We have replaced the disk of the theorem by a square;
RngRIyC(N—1, B, W, D);
RngAbsC(D, G);
if G[1] = 0 then go to fazlurel;
comment fatlurel and failure2 are non-local labels;
RANGEDVD(AFP(2], AFP2], R, R, RH, RHS);
if G[1] < RHS then
begin R := 2 X R;
if B > 1024 then go to failure2;
gotol
end
end

comment The following procedure may replace BndZrPlyC
above;

procedure BndZrPlyC2 (N, ZOR, ZOJ, A, W);

integer N; array A, W; real ZOR, ZOJ,;

comment BndZrPlyC2 is similar to BndZrPlyC above. The
theorem used here follows. If, in the disk [z — 2o | £ 2 | ho | we
have [f7(2) | £ | f'(20) |/(2 | ko |), then there is a unique zero in
the disk (see [2, pp. 43-50];

begin integer I, J; array B[l1:4XN]|, C[1:4XN—-4], F, D, P,
8[1:4], X, T,Q, Y[1:2]; real V, VP, R, RL;

for I := 1 step 1 until N do
begin J :=4 X I;
RANGEMPY (I, 1, A[J+1], AlJ+2], B[J-3], BlJ-2]);
RANGEMPY (I, I, A[J+3), AiJ+4], BlJ—-1}, BlJ])
end;

for] :=1stepluntil N — 1 do
beginJ :=4 X [;
RANGEMPY(, I, B[J+1], BlJ+2], C[J-3], ClJ-2]),
RANGEMPY (I, I, B[J+3], BlJ+4], ClJ—1], ClJ])
end;

D(l| := D[2] : = ZOR;

D3] := D[4] : = ZOJ;

RngPlyC(N, A, D, F);

RngPlyC(N—1, B, D, P);

RngAbsC(F, T);

RngAbsC(P, X);

if X[1] = 0 then go to failurel;

COLLECTED ALGORITHMS (cont.) 174-P 2- 0

comment failurel and failure2 are non-local labels;

RANGEDVD(T[1], T[2], X[1], X[2], Q[1], Q[2]);

RANGEMPY (2, 2, Q[2], Q[2], RL, R);

RNGSUMC(—R, R, —R, R, ZOR, ZOR, ZOJ, ZOJ, W[1], W|2],
W3], Wi4D);

RngPlyC(N - 2,C, W, 8);

RngAbsC(8, Y);

RANGEDVD(X[1], X[1], R, R, V, VP);

if Y[2] > V then go to failure2

end

References:
1. GiBB, ALLAN. ALGOL procedures for range arithmetic. Tech.
Report No. 15, Appl. Math. and Statistics Laboratories, S
Stanford University (1961).
2. OstrowsKl, A. M. Solution of equations and systems of equations.
Academic Press, New York, 1960.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 175

SHUTTLE SORT

C. J. Suaw axp T. N. TrRiMBLE

System Development Corporation, Santa Monica, Calif.

procedure shuttle sort (m, Temporary, N);

value m; integer m; array N[l:m];

comment This procedure sorts the list of numbers N[1] through
N{m] into numeric order, by exchanging out-of-order number
pairs. The procedure is simple, requires only Temporary as
extra storage, and is quite fast for short lists (say 25 numbers)
and fairly fast for slightly longer lists (say 100 numbers). For
still longer lists, though, other methods are much swifter. The
actual parameters for Temporary and N should, of course, be
similar in type;
begin integer ¢, j;

for i :=1step 1 until m — 1 do
begin
for j := 7 step —1 until 1 do
begin
if N[7] £ N[j41] then go to Test;
Exchange: Temporary := N[jl; N[j] := N{j+1];
N[j+1] := Temporary; end of j loop;
Test: end of 7 loop

end shuttle sort

CERTIFICATION OF ALGORITHM 175

SHUTTLE SORT [C. J. Shaw and T. N. Trimble, Comm.
ACM, June 1963]

Georce R. ScHUBERT*

University of Dayton, Dayton, Ohio

* Undergraduate research project, Computer Science Program, Univ. of
Dayton.

Algorithm 175 was translated into BaLcoL and ran successfully
on the Burroughs 220. The following actual sorting times were
observed :

Number of Items Average Time (sec)

25 1.6

50 6.2
100 25.8
250 181
500 684

The algorithm can be extended so that the sort is made on one
array, while retaining a one-to-one correspondence to a second
array. This is done by inserting immediately before end of the j
loop the following:

Temporary 1= Y[j]; Ylj]:= Y[+ 1]; Y[+ 1] := Tempo-
rary; where Y[k] is the element to be associated with N [k]. Other
variations are obviously possible.

175-P 1- 0

REMARK ON ALGORITHM 175

SHUTTLE SORT [C. J. Shaw and T. N. Trimble, Comm.
ACM 6, June 1963]

0. C. JueLicH

North American Aviation, Inc., Columbus, Ohio

The authors of this algorithm do well to remind the reader that
“Shuttle Sort’’ is not an efficient procedure, except for lists of items
so short that they do not justify the housekeeping apparatus
needed by the usual sorting routines.

The algorithm as published is not free from errors. The state-
ment

for j := ¢ step — 1 until 1 do
should be replaced by either:

for j :=m — 1 step — 1 until 7 do
or

for j := 1 step 1 until m — ¢ do

In the former case the process can be visualized as placing the
+th smallest element in place on the 7th pass; in the latter the ¢th
largest element is put in place on the 7th pass.

The label ““Test’”’ should precede the delimiter ‘“‘end of j loop”’
rather than the ‘“end of ¢ loop’’. The algorithm can be slightly
accelerated by rewriting the body of the procedure-

begin integer 7, j, j max;
ti=m — 1;
loop: jmax :=1;
for j := 1 step 1 until 7 do
begin
compare: if N[j] > N[j + 1] then
begin Exchange: Temporary := NJjl;
N{jl = N{j + 1};
N[j + 1] : = Temporary;
jmaz 1= j
end Exchange;
end of j loop;
1 t= j mazx;
if ¢ > 1 then go to loop;
end shuttle sort

The revised procedure body will eliminate redundant iterations
when some of the data is already ordered.

It was studied in this form by R. L. Boyell and the writer on
the Orpvac at Ballistics Research Laboratories, Aberdeen Proving
Ground, in 1955. For randomly ordered data the ¢-loop may be
expected to be executed about m—+/m times.

REMARK ON ALGORITHM 175

SHUTTLE SORT [C. J. Shaw and T". N. Trimble, Comm.
ACM 6 (June 1963), 312; G. R. Schubert, Comm.
ACM 6 (Oct. 1963), 619; O. C. Juelich, Comm. ACM
6 (Dec. 1963), 739]

Orro C. JuenicH (Reed. 18 Dec. 1963)

North American Aviation, 4300 E. Fifth Ave., Columbus,
Ohio

The appearance of Schubert's certification has caused me to
restudy the algorithm. What I supposed were errors amount to a
rearrangement of the order in which the comparisons are carried

COLLECTED ALGORITHMS (cont.) 175-P2- 0

out. The efficiency ot the algorithm is not much affected by the
rearrangement, since the number of executions of the statements
labeled Exchange remains the same.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 176
LEAST SQUARES SURFACE FIT
T. D. ARTHURS

The Boeing Company, Transport Division, Renton, Wash.

procedure SURFIT (F, z, W, m, n) answers: (a, e, rms);
integer m, n; real rms; array F, z, W, e;
procedure Invert, sqri;
comment Given a set of m ordinates and the corresponding
values of n prescribed general functions, (f;), of one or more
linearly independent variables, this procedure fits the points,
in the least squares sense, with a function of the form a.fi + asf,
+ ...+ anf. where a; are the unknown coefficients. Also com-
puted are the vectors of residuals (e;) and their lengths (rms).
Provision is made for weighting the data points. Essentially, the
matrix equation F"WFa=F"Wzis solved, where a is the vector
of unknowns, W is an m X m diagonal matrix of data point
weights, z is the vector of ordinate values and F is the
m X n matrix of corresponding function values. The availa-
bility of a procedure Inver{, which replaces a real matrix with
its inverse, is assumed;
begin integer ¢, j, k; real sgsum, g; array GQ[lin, 1:n];
comment G is working space for the inversion procedure;
sgsum = 0,
for z := 1 step 1 until » do
for j := 1 step 1 until » do
begin G[z, j] : = 0;
for k := 1 step 1 until m do
Gli, jl 1= GL, j1 + Flk, 1] X Fk, j] X Wk}
end j;
Invert (G, n);
for 7 := 1 step 1 until n do
begin a[i] := 0;
for j : =1 step 1 until m do
begin g : = 0;
for k : = 1 step 1 until » do
g:= g+ Gli, k] X F[j, k];
ali] 1= ali] + g X 2[j] X WLj]
end j
end z;
for i := 1 step 1 until m do
begin e[t] = y[i);
for j := 1 step 1 until » do
el7] := elt] — als] X F[z, j];
sqsum := sqsum + e[i] T 2
end 7;
rms := sqrt (sqgsum/m)
end SURFIT

176-P 1- R1

Remark on Algorithm 176 [E2]
Least Squares Surface Fit [T.D. Arthurs, Comm.
ACM 6 (June 1963), 313]

Ernst Schuegraf [Recd. 1 Mar. 1971]
Department of Mathematics. St. Francis
University, Antigonish, Nova Scotia, Canada

Xavier

Algorithm 176 contains one misprint. The line which reads:
begin eli] = yli];

should read:
begin e[i] = z|i];

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 177

LEAST SQUARES SOLUTION WITH CONSTRAINTS
M. J. SYNGE

The Boeing Company, Transport Division, Renton, Wash.

procedure CONLSQ (A, y, w, n, m, r) results: (z) residuals:
(e, rms);
real rms; integer n, m, 7;
abs, SURFIT;
comment This procedure solves an overdeterminéd set of n
simultaneous linear equations in 7 unknowns, Az = y. The
first r equations (r<m) are satisfied exactly and the remaining
n — r are satisfied as well*as possible by the method of least
squares. Each equation is assigned a weight from the vector w,
although the first » weights have no relevance. This procedure
may be used for curve or surface fitting when the approximating
function or its derivatives are required to have fixed values at a
number of points;
begin integer ¢, j, k, it, ick; integer array ic[l:m];
array B(l:n—r, 1:m~—r]; real Amazx;
for 7 := 1 step 1 until r do
begin k :=1; for j:= 2 step 1 until m do
begin if abs (Alz, j]) > abs (A[¢, k]) then k := j; end;
ield) :=k; Amax := Ali, k]; for j:= 1 step 1 until m do
Ali, 7] 1= Al jl/Amaz; yli] := ylil/Amaz;
for ii : =1 step 1 until r do
begin if iz = ¢ then go to skip;
for j := 1 step 1 until m do
Alit, j) 1= Alii, j1 — AlL, 5] X Amaz;
ylie] 1 = ylid] — yli] X Amaz;

array A, y, w, z, e¢; procedure

Amaz 1= Alii, kl;

skip: end it
end 7;
wck:=r+1; forj:=1 stepl until m do
begink :=1;

repeat: if j = iclk] then go to next;
k:=k-+1; ifr 2 k then go to repeat;
zefick] 1= j; dck 1= ick + 1;

next: end k;

for i :=r + 1 step 1 until n do
begin for k : = 1 step 1 until r do
yli] : = ylé] — ylk] X AlZ, delkl];
for j :=r + 1 step 1 until m do
begin B[, j] i = A[i, iel5]l;
for k := 1 step 1 until r do
B[z, j] i = B[z, j] — Al iclk]] X Alk, ie[5)|
end ;
end 7;
SURFIT (B, ylr+1:nl, wlr+lin], n —r, m —
elr+1:n], rms);
comment The procedure SURFIT is called to solve the reduced
set of n — r simultaneous linear equations in m — r unknowns,
Bz; = y,’, which have no constraints;
for j:=r + 1 step 1 until m do z[ic[j]] : = z[j];
for ;:= 1 step 1 until’r do
begin z[ic[j]] : = yli];
for i :=r + 1 step 1 until m do
zlic[7l] : = zlicli]] — Al7, dele]] X zlic[e]]
end j
end CONLSQ

r, z[r+1:m],

177-P 1- 0O

REMARK ON ALGORITHM 177

LEAST SQUARES SOLUTION WITH CONSTRAINTS
[Michael J. Synge, Comm. ACM, June 63]

MicuAEL J. SYNGE

The Boeing Co., Transport Division, Renton, Wash.

In row-reducing the constraint equations, CONLSQ does not
use full pivoting nor does it detect redundaney or inconsistency
of the constraints; it was felt that the constraints were likely
to be few in number and well-conditioned. However, these omis-
sions may be made good by replacing the statement

ick 1= ick + 1;
by
done: ick := ick + 1;

and substituting the lines below for the first seven lines of the
first compound statement of CONLSQ. If inconsistency is found,
the procedure exits to the nonlocal label inconsistent. A roundoff
tolerance, eps, is used in checking consisteney, and some numerical
value (e.g. 107%) should be substituted for it.

begin integer i, j, k, ¢, ick, mr;
array B[l : n—r, 1 : m—r];
real Amazx, Alemp;
for 7 := 1 step 1 until r do
begink :=1; mr :=14; Amax := A[Z, 1];
for i 1= ¢ step 1 until m do
begin for j := 1 step 1 until m do
begin if abs(Amazx = abs(A[iZ, j]) then go to nogo;
mr :=1i; k:=j; Amazx := Al j];
nogo: end j
end 77;
if abs(Amaz) = eps then go to allswell; mr := i;
test: if abs(y[mr]) 2 eps then go to inconsistent else mr := mr 4 1;
if r = mr then go to test elser :=17 — 1;
go to done;
allswell: for j := 1 step 1 until r do
begin Atemp := Almr, jl; Almr, j] := Al1, jl;
Alz, j] :=. Atemp/Amaz
end j;
Atemp = ylmr];

integer array ic[l : m];

ylmr] := y[z]; y[] := Atemp/Amazx:

The Algorithm then continues with the line:
for 77 := 1 step 1 until » do

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 178

DIRECT SEARCH

ArtaHUR F. KaUPE, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure direct search (psi, X . DELTA, rho, delta, S);
value K, DELTA, rho, della; integer K; array psi;
real DELT A, rho, delia; real procedure S;
comment This procedure may be used to locate the minimum
of the function 8 of K variables. A discussion of the use of this
procedure may be found in: Robert Hooke and T. A. Jeeves,
‘Direct Search’ Solution of Numerical and Statistical Problems
/. ACM 8, 2 (1961), 212-229]. The notation is essentially that
used in Appendix B of the cited paper. The exceptions being the
spelling of the Greek letters and the introduction of notation to
distinguish between the process of caleulating a value of S and
the value itself —thus S(phs) and Sphi. A modified version of this
procedure acceptable to the BAC compiler for the Burroughs
205 and 220 computers has been prepared and run successfully;
begin real S8, Spsi, Sphi, theta; array phi [1:K]; integer K, k;
procedure E; for k : = 1 step 1 until K do
begin phi [k] : = phi [k] + DELTA; Sphi : = S(phi);
if Sphi < SS then SS : = Sphi else
begin phi [k] : = phi (k] — 2 X DELTA; Sphi := S(phi):
ifSphi < SS then S8 : = Sphi else phi k] : = phi [k] + DELTA
end—#;
Start: Spsi : = S(pst);
1: 88 := Spsi;
for k£ := 1 step 1 until K do phi (k] : = psi [k]; E;
if 8§ < Spsi then begin
2: fork := 1 step 1 until K do begin
theta : = psi [k];
pst [k] 1= phi [k];
phi [k] 1 = 2 X phi [k] — theta end;
Spsi :=88; 88 := Sphi := S(phi); E;
if 8§ < Spsi then go to 2 else go to 1 end;
3: if DELTA > delta then begin DELTA := rho X DELTA;
go to 1 end end

REMARK ON ALGORITHM 178 [E4]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313]

M. BeLr aANp M. C. Pikg (Recd. 15 Nov. 1965 and 22
Apr. 1966)

Institute of Computer Science, University of London,
London, England, and Medical Research Council’s
Statistical Research Unit, London, England

Algorithm 178 has the following syntactical errors:
(1) The parameter list should read
(psi,K,DELT A ;rho,della,S).
(2) The declaration
integer K.k;
should read
integer k;
(3) An extra end bracket is required’immediately before end E;.

178-P 1- R1

The algorithm compiled and ran after these modifications had
been made but for a number of problems took a prodigious amount
of computing owing to a flaw in the algorithm caused by rounding
error. This flaw is in procedure E and may be illustrated by the
one-dimensional case. Let S(z) = 1.5 — z(x < 1.5), 3z — 4.5 (>
1.5), and start at 0 with a step of 1. The first move puts ps [1] =
1, phi [1] = 2. The second move should then put pht [1] = 1 =
pst[1] resulting in a jump to label 1. On many machines, however,
E will put pht [1] = 1 + e (¢>0 and very small) so that direct
search begins to move away from 1 in very small steps. This is
clearly not desirable and may be avoided by altering the line

if SS < Spsi then go to 2 else go to 1 end;
to
if SS > Spst then go to 1;
for k := 1 step 1 until K do
if abs (philk]-psilk]) > 0.5 X DELTA then go to 2
end; .

To accelerate the procedure, direct search should take advan-
tage of its knowledge of the sign of its previous move in each of the
K directions. Take, for example, the one-dimensional case with
starting point zero and the minimum far out and negative; the
pattern moves will arrive there quite efficiently but each first move
of E on the way will be positive whereas the previous experience
of the search should lead it to suspect the minimum to be in the
opposite direction.

Finally, two changes which we have found very useful are (i)
gsome escape clause in the procedure to enable an exit to be made if
the procedure has not terminated after some given number of
function evaluations maxeval, with a Boolean converge taking the
value true in general but false if the procedure has terminated
through exceeding this number of function evaluations; and (ii)
taking Sps? into the parameter list where it is called by name so
that on exit Spsi contains the minimum value of the function.

With these modifications the procedure now reads:

procedure direct search (psi,K ,Spsi,DELT A rho,delta,S,converge,

mazeval) ;

value K,DELTA jrhodelta,mazeval; integer K maxeval;
array psi;

real DELTA rhodelia,Spsi; real procedure S; Boolean
converge;

comment This procedure locates the minimum of the function S of
K variables. The method used is that of R. Hooke and T. A.
Jeeves [““Direct search’ solution of numerical and statistical
problems, J.-ACM. 8 (1961), 212-229] and the notation used is
theirs except for the obvious changes required by ALGOL. On
entry: psi[l:K] = starting point of the search, DELTA =
initial step-length, 7h0 = reduction factor for step-length,
delta = minimum permitted step-length (i.e. procedure is termi-
nated when step-length < dellta), mazeval = maximum per-
mitted number of function evaluations. On exit: psi[l: K] =
minimum point found and Spsi = value of S at this point,
converge = true if exit has been made from the procedure be-
cause a minimum has been found (i.e., step-length < delta)
otherwise converge = false (i.e. maximum number of function
evaluations has been reached);

begin integer k,eval; array phi,s[l:K]; real Sphs,SS,theta;
procedure E;
for k := 1 step 1 until K do
begin philk] := philk] + s[k]; Sphi := S(phi);

+ 1;

eval := eval

COLLECTED ALGORITHMS (cont.)

if Spht < SS then 88 := Spht else
begin s(k] := — slk]; phtlk] := philk] + 2.0 X s[k];
Sphi := S(pht); eval := eval + 1;
if Sphi < 88 then 88 := Sphi else
philk] ;= philk] — s[k]
end
end E;
Start: for k := 1 step 1 until K do s[k] := DELTA;
Spst := S(pst); eval := 1; converge := true;
1: 88 := Spst;
for k := 1 step 1 until K do philk] := psilk]; E;
if 88 < Spst then
begin
2:if eval > mazeval then

begin converge := false;
go to EXIT
end;
for k := 1 step 1 until K do
begin if philk] > psilk] = s[k] < 0 then s[k] := —s[k];
theta := psilk]; psilk] := philk]; philk] := 2.0 X philk] —
theta 4 :
end;

Spsi := 88; 88 := Sphi := S(pht);
if 8S > Spsi then go to 1;
for k := 1 step 1 until K do
if abs(philk]—psi[k]) > 0.5 X abs(s[k]) then go to 2
end;
3:if DELTA > delta then
begin DELTA := rho X DELTA;
for k := 1 step 1 until K do s[k] := rho X slk];
end;
EXIT:
end direct search

eval := eval +1; E;

gotol

REMARK ON ALGORITHM 178 [E4]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313]

[as revised by M. Bell and M. C. Pike, Comm. ACM 9
(Sept. 1966), 684]

R. D VogeLAERE (Reed. 4 Dec. 1967)

Department of Mathematics and Computer Center, Uni-
versity of California, Berkeley, Calif. 94720

KEY WORDS AND PHRASES: funection minimization, search,
direct search
CR CATEGORIES: 5.19

‘The procedure does not exit, as specified, after mazeval (the
maximum number of) function evaluations.

The 3 statements eval := eval +1 should be interchanged with
the immediately preceding statement and replaced by a call to
the procedure test eval defined below. The statement labeled 2
should be deleted.

procedure lest eval;
if eval < mazeval then eval := eval 41
else begin converge := false;
go to EXIT

end test eval

178-P 2- R2

REMARK ON ALGORITHM 178 [E4]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313]; [as revised by M. Bell and M. C.
Pike, Comm ACM 9 (Sept. 1966), 684]

. K.-Tomun anp L. B. Smita (Reed. 17 May 1968, 9
Sept. 1968 and 30 June 1969)

Stanford Research Institute, Menlo Park, CA 94025, and
CERN, DD Division, Geneva, Switzerland

KEY WORDS AND PHRASES:

direct search
CR CATEGORIES: 5.19

function minimization, search,

The procedure DIRECT SEARCH, as modified by M. Bell and
M. C. Pike [1], does not always provide the determined minimum.
In addition, the maximum number of function evaluations per-
mitted is almost always exceeded whenever the step-length is
greater than delta at the time the number of function evaluations
is greater than or equal to mazxeval. Finally, the label 3 is not
used.

To insure that the determined minimum is always provided,
the test on the number of evaluations should be moved to a point
where the minimum has been properly provided.

In [2] DeVogelaere remarks correctly that the procedure does
not exit as specified and gives changes which will indeed cause the
procedure to terminate when the number of function evaluations
exceeds the specified limit (and not some number of evaluations
later). However it is felt that DeVogelaere’s solution to this
problem causes excessive testing. Therefore the test should be
performed after an exploratory move as in [1] but it should also
be performed when the step-length is reduced. This method of
testing violates the letter of the specified use of mazeval but not
the intent, which is to provide an escape from excessive calcula-
tion.

To obtain the determined minimum, to provide a means for
reducing the number of function evaluations when step-length
is greater than delta, and to eliminate the unused label:

(1) The lines

2: if eval > mazeval then
begin converge := false
go to EXIT
end; _
should be removed.
(2) The line (16th line from the end of the procedure given
in [1])
for k := 1 step 1 until K do
should be changed to
2: for k := 1 step 1 until K do
3) The line
Spst := 8S; SS := Sphi := S(phi); eval := eval + 1; E;
should have the following code inserted after the statement
Spst := 88;

if eval > maxeval then

begin
3: converge := false;
go to EXIT
end;

(4) The line
3: if DELTA > delta then
should be changed to

COLLECTED ALGORITHMS (cont.)

if DELTA > della then

(5) The line
begin DELTA := rho X delta;

should be changed to

begin if eval > mozeval then go to 3 else
DELTA := rho X delta;
REFERENCES:
1. BELL, M., anp Pixg, M. C. Remark on Algorithm 178. Comm.
ACM 9 (Sept. 1966), 684.
2. DEVoGELAERE, R. Remark on Algorithm 178. Comm. ACM 11
(July 1968), 498.

REMARK ON ALGORITHM 178 [E4]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313; as revised by M. Bell and M. C.
Pike, Comm. ACM 9 (Sept. 1966), 684]

LyiLe B. Smita* (Recd. 9 Sept. 1968)

Stanford Linear Accelerator Center, Stanford, CA 94305

* Present address. CERN, Data Handling Division, 1211
Geneva 23, Switzerland

KEY WORDS AND PHRASES:
direct search
CR CATEGORIES: 5.19

function minimization, search,

Algorithm 178, as modified by Bell and Pike [1], has been
used successfully by the author on a number of different problems
and in a variety of languages (e.g. Burroughs Extended ALGoL on
a B5500, SuBaLcorL on an IBM 7090, and ForTRAN on the
IBM /360 series machines). A modification which has been found
to be useful involves tailoring the step size to be meaningful for a
wide variation in the magnitudes of the variables.

As currently specified [1], each variable is incremented (or de-
cremented) by DELT A as a minimum is sought. For a function
such that the values of the variables differ by several orders of
magnitude at the minimum, a universal step size causes some pa-
rameters to be essentially ignored during much of the searching
process. For example, if a function of two variables has a minimum
near (100.0, 0.1), a step size of 10.0 will be useful in minimizing with
respect to the first parameter, but it will be meaningless with re-
spect to the second parameter until it has been reduced to near
0.01. On the other hand, a step size of 0.01 would be useful on the
second variable but on the first variable it would take an undesir-
ably large number of steps to approach the minimum.

A modification to direct search which circumvents this scaling
problem involves the use of a different step size for each variable.
This js easily implemented since an array is already used to hold
the signed step size for each variable. The change is accomplished
by removing the statement labeled Start and replacing it by the
following statement:

Start: for k := 1 step 1 until K do
begin s(k) := DELTA X abs (psi(k));

if s(k) = 0.0 then s(k) := DELTA;
end;
This change sets the step size for each variable to DELT A times
the magnitude of the starting value, or if the starting value is 0.0
the step size is set equal to DELTA. Thus DELT A is the fraction
of the original-value of each variable to be used as an initial step
size. Subsequent reductions in step size are handled correctly
without further modifications to the procedure.

As an example of the usefulness of the above modification, con-
sider the function

178-P 3- 0

F(Xy, Xz, Xs) = (X1 — 0.01)? + (X3 — 1.0)? 4 (X2 — 100.0)*

with a minimum at (0.0, 1.0, 100.0). The following table shows the
results of using direct search on this function with and without the
modified step size. The results were computed on an IBM 360/75
computer using single precision with rho = 0.1, delta =
0.001, DELTA = 0.2 for the modified step size (giving 20 percent
of initial value for initial step size) and DELTA = [average magni-
tude of initial guesses for the variables] for the algorithm as pub-
lished.

TABLE L f = (X: — 0.01)? + (X, — 1.0)® + (X, — 100.0)?

Final values of the variables

Number of Mini
DELTA | function snsmum
cvaluations | veiue of

X1 'X,lX.

For initial values of (0.0, 0.0, 200.0):

Direct search 66.6667 153 0.841 X 1077 |0.00999995'0.999995|10C. 000
Modified direct |
search .2 112 0.597 X 1077 |0.00999998;0.999990,100. 000

For initial values of (0.05, 5.0, 500.0) :

Direct search 168.35 174 0.934 X 1077 |0.0100263 [0.998058 99.9999
Modified direct
search .2 76 0.569 X 10-¢ |0.00999988|0.999998| 99.9992

Note that the modified method will tend to yield the same rela-
tive accuracy for each parameter, whereas with a fixed step size
direct search will tend to give the same absolute accuracy for all
parameters. In most cases a relative accuracy is probably more
desirable than an absolute accuracy.

REFERENCES
1. BeLL, M., anp Pikg, M. C. Remark on algorithm 178. Comm

ACM 9 (Sept. 1966), 684.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 179

INCOMPLETE BETA RATIO*

Ourver G. Lubpwic

Mathematical Laboratory and Department of Theoret-

ical Chemistry, University of Cambridge, England

* Based in part on work done at Carnegie Institute of Tech-
nology, Pittsburgh, Pennsylvania and supported by the Petroleum
Research Fund of the American Chemical Society and by the
National Science Foundation. ’

real procedure incompletebeta (x, p, q, epsilon);
value z, p, ¢; real z, p, q, epsilon;
begin real finsum, infsum, temp, temp 1, term, term 1, grecur, index;
Boolean aller;
comment This pro;:edure evaluates the ratio B.(p, ¢)/Bi(p, ¢),
where B, (p, q¢) = fo 771 (1—¢)91 dt, with0 < z < 1 and p, ¢ > 0,
but not necessarily integers. It assumes the existence of a non-
local label, alarm, to which control is transferred upon entry to
the procedure with invalid arguments. Also assumed is a proce-
dure to evaluate f o tPe~t dt which is called factorial(p), (cf. e.g.
Algorithm 80, March, 1962);
ifz>1Vz<0Vp=0Vqz=0then go to alarm;
ifz = 0/ 2 = 1 then begin tncomplelebeta : = x; goto Endend;
comment This part interchanges arguments if necessary to ob-
tain better convergence in the power series below;
if x £ 0.5 then alter : = false else
begin alter : = true; lemp :=p;, pi=¢q; q:=temp; x:=
1 — x end;
comment This part recurs on the (effective) ¢ until the power
series below does not alternate;
finsum :=0; term:=1; lemp:=1—x; gqrecur :=inder := ¢;
for index : = index — 1 while index > 0 do
begin grecur : = index;
term := term X (grecur+1)/(tempX (p+qrecur));
finsum := finsum -+ term
end;
comment This part sums a power series for non-integral effec-
tive ¢ and yields unity for integer ¢;
infsum 1= term :=1; index := 0;
comment In the following statement the convergence criterion
might well be altered to ferm > epsilon, since ¢nfsum > 1 al-
ways, thus saving one divide per cycle at the cost, perhaps, of a
few more cycles;
for indexr := index + 1 while (term/infsum) > epsilon do
begin term := term X z X (index-grecur) X (p-+index—1)/
(index X (g +index)); infsum : = infsum + term
end;
comment This part evaluates most of the necessary factorial
functions, minimizing the number of entries into the factorial
procedure;
temp := temp 1 := factorial (qrecur—1);
term ;= term 1 := factorial (grecur+p—1);
for index := grecur step 1 until (¢—0.5) do
begin temp 1 : = temp 1 X index;
term 1 1= term 1 X (index+p)
end;
comment This part combines the partial results into the fina]
one;
temp 1=z T p X (infsumXierm/(pXtemp)-+finsumXterm 1X
(1—z) T ¢/ (gX temp 1))/factorial (p—1);

179-P 1- R1

incomplelebeta : = if alter then 1—temp else temp;
end: end incompletebeta

REMARK ON ALGORITHM 179 [S 14]

INCOMPLETE BETA RATIO [Oliver G. Ludwig, Comm.
ACM 6 (June 1963), 314]

M. C. Pikk anp I. D. HiLL (Reed. 8 Oct. 1965 and 12
Jan. 1966)

Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School, London,
England

Algorithm 179 has the following two typographical errors:
(1) the line
if z < 0.5 then aller := false else
should read
if z < 0.5 then aller := false else
(2) the line
end:end incompletebeta
should read
End:end incompletebeta

With these changes Algorithm 179 ran successfully on the ICT
Atlas computer using Algorithm 221 [Walter Gautschi, Comm.
ACM 7 (Mar. 1964), 143], to evaluate the factorials required. A
minor improvement might be to call epsilon by value.

As the algorithm stands, the permitted range of p and g is dic-
tated by overflow problems associated with finding the values of
factorials. For most machines this will mean that p-¢ will have
to be less than about 70. In the statistical applications of this
algorithm which we describe below this restriction is very serious.
However, these factorials appear essentially only in the form of
ratios, and by making use of this fact the permitted range of p
and ¢ can be enormously extended. This is most simply accom-
plished by using the real procedure loggamma [Algorithm 291,
M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966), 684] modify-
ing Algorithm 179 as follows: replace the instructions

temp := templ := faclorial(grecur—1);
to

temp := z T p X (infsumXterm/(pXiemp)-+finsumXtermlX
(1—=) T ¢/(gXtempl))/factorial (p—1);

inclusive, by

temp :=x T p X (infsumXezp(loggamma(grecur+p)—loggamma
(grecur)—loggamma (p~+1.0))-+finsumX (1.0—z) T ¢
Xexp (loggamma(p+-q) —loggamma (p) —loggamma(g+1.0))) ;.

This also means that the declarations of templ and terml are not
required. For even moderately large values of p or ¢ this will also
have the effect of speeding up the algorithm [see Remark on Al-
gorithm 291, M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept.
1966), 685].

The following real procedures use this algorithm to evaluate
three of the most fréquently required statistical distribution func-
tions.

COLLECTED ALGORITHMS (cont.)

real procedure Flail (k, f1, f2, epsilon);

value k, f1, 2, epsilon; real k, f1, f2, epstlon;

comment Flail evaluates the probability that a random variable
following an F distribution, on f1 and f2 degrees of freedom, ex-
ceeds a positive constant k;
Ftail := incomplelebela(f2/(f2+f1Xk), 0.5Xf2, 0.5Xf1, epsilon);

real procedure Studeni(k, f, epsilon);

value k, f, epsilon; real k, f, epsilon;

comment Student evaluates the probability that the absolute
value of a random variable following a ¢ distribution, on f de-
grees of freedom, exceeds a positive constant k;
Student := incompletebeta(f/(f+k T 2}, 0.5Xf, 0.5, epsilon);

real procedure Binomial(k, n, p, epsilon);

value k, n, p, epsilon; real k, n, p, epsilon;

comment Binomial evaluates the probability that a random
variable following a binomial distribution, with parameters n
and p, takes a value greater than or equal to k;
Binomial := incompletebeta(p, k, n—k+1.0, epsilon);

Remark on Algorithm 179 [S14]
Incomplete Beta Ratio
[Oliver G. Ludwig, Comm. ACM 6 (June 1963), 314]

Nancy E. Bosten and E.L. Battiste [Recd. 1 Sept. 1972
and 15 Mar. 1973]
IMSL, Suite 510/6200 Hillcroft, Houston, TX 77036

Description
Algorithm 179 (modified to include the remark by M.C. Pike
and I.D. Hill [1]) computes the Incomplete Beta Ratio using this
equation
INFSUM -x?-T(PS+p) xr-(1—=x)7-U(p-+q) FINSUM
I'(PS)-T(p+1) r(p)-rig+1)

INFSUM and FINSUM represent two series summations de-
fined as follows:

L:(p,q) =

= (1-PS)p &

INFSUM =) — 2 where
0 Pt il
(1—-PS); =1 [i=0]
- ; _Pa+i=ps)
= (1= P$)-Q=PS)- (= PS) = — =™ (1>0)
el q-(g—1)---(g—i+1) i

and FINSUM = ,

_2(p-l-q—l)(p+q—2)'~~(p+q—i) (I—x)
where [g] is equal to the largest integer less than ¢. If [¢] = O
then FINSUM = 0. PS is defined as

PS = 1, if ¢ is an integer; otherwise
q — [q].

By rearranging Algorithm 179 so that scaling can be introduced,
the argument range of p and g can be extended and accuracy can be
improved.

Since I.(p, q) is a probability and, therefore, bounded (0, 1}, and
INFSUM and FINSUM are series having only positive terms, we
see that I,(p, q) is a collection of terms all of which are positive and
bounded in the range [0, 1] if: (1) each term of INFSUM is multi-
plied by (x» - I'(PS + p))/(T(PS) - I'(p + 1)); and (2) each term
of FINSUM is multiplied by (x7- (1 —x)2-T'(p+¢q))/(F'(p)-T'(g+1)).

il

179-P 2- R1i

Knowing this fact, we can apply a scaling procedure to the
algorithm. INFSUM is a decreasing series. If the product of the
first term of INFSUM and its multiplicative factor would under-
flow, then the sum of this series could be set to zero and all calcu-
lations involving underflow could be avoided. This is handled in
the modification of the algorithm given below. However, since
INFSUM is a decreasing series, underflows may occur later in the
calculations. No attempt has been made to handle them here.

The second summation is more complicated. The series is
decreasing if ¢/((¢ + p — 1) (1 — x)) is less than 1. If an individual
term becomes less than 1.E-6 times the previous sum, calculation
can be legitimately terminated since no additivity is apparent. If
a term of the decreasing series is less than an arbitrarily small con-
stant (EPS2), calculation is also terminated. This is done to pre-
vent underflows in the later terms.

If the series is increasing, the first terms may underflow. In this
case a power of ¢ (machine precision — 1.E-78 on the IBM 360/370)
may be factored from each term in FINSUM (times its multiplier).
These terms cannot be added to the sum since they are less than
machine precision; however, they are useful in retaining the accuracy
of the initial terms, which are then used recursively. By the nature
of the problem, we know that any term in FINSUM, times its
multiplier, must be less than or equal to 1, but we have factored
out powers of ¢ . Therefore, if a term of FINSUM becomes greater
than 1, we know that rescaling, by multiplying the term by ¢, is
in order.

Testing on the IBM 360/195 has shown that, by rearranging
the calculations of the original Algorithm 179, and thus including
scaling, the input range of the algorithm can be greatly extended
with a high degree of accuracy.

MDBETA requires a double precision function DLGAMA
which computes the log of the gamma function. ACM Algorithm
291 may be used. MDBETA was tested against the SSP routine
BDTR given in the manual System/360 Scientific Subroutine Pack-
age (3604-CM-03X) Version Il Programmer’s Manual, H20-0205.
MDBETA ran 3.5 times faster than BDTR with greater accuracy.
For example, in the case x = .5, p = 2000 and ¢ = 2000, MDBETA
gave the correct result, .5, while BDTR gave an answer of .497026.
The IMSL subroutine, MDBIN, was used for an additional com-
parison when p and g are integers. MDBIN maintains IBM 370/
360 single precision accuracy (approximately six significant digits).
Over the tests performed the maximum difference occurred in the
fifth significant digit when p and g were less than 200. Three to four
significant digits of accuracy can be expected with p and ¢ as large
as 2000.

Acknowledgments. The above ideas are the application of ideas
learned from the late Hirondo Kuki. Routine MDBET A4 -originated
from a code which resides in IMSL Library 1. We thank Wayne
Fullerton, from the University of California, Los Alamos Scientific
Laboratory, for refereeing the paper.

Algorithm

SUBROUTINE MDBETA(X., P, &, PROBE, IER)

FUNCTION -~ INCOMPLETE BETA PROEAEILITY
DISTRIBUTION FUNCTION
USAGE - CALL MDBETA (X,P,Q,PROB, IER)
PARAMETERS
x =~ VALUE TO WHICH FUNCTION IS TO BE INTEGRATED. X
MUST BE IN THE RANGE (@,1!) INCLUSIVE.
P = INPUT (1ST) PAPAMETER (MUST BE GREATER THAN ©)
Q - INPUT (2ND) PARAMETER (MUST BE GREATER THAN @)

PROB - OUTPUT PROBABILITY THAT A RANDOM VAPIABLE FROM. A
BETA DISTRIBUTION HAVING PARAMETERS P AND @
VILL BE LESS THAN OR EQUAL T0 X.

ERROR PARAMETER.

IER = @ INDICATES A NORMAL EXIT
IER = | INDICATES THAT X IS NOT IN THE RANGE
(@,1) INCLUSIVE.
IER = 2 INDICATES THAT P AND/OR Q IS LESS THAN
OR EQUAL TO @.
DOUBLE PRECISION PS, PX, Y, Pl, DP, INFSUM, CNT, WH, XE,
* D@, C., EPS, EPSl, ALEPS, FINSUM. PQ, D4, EPS2, DLGAMA
C DOUBLE PRECISION FUNCTION DLGAMA
C MACHINE PEECISION
DATA EPS/1.D-6/
C SMALLEST POSITIVE NUMBER REPRESENTABLE
DATA EPS1/1.D-78/

o000 000000
™
o
.

COLLECTED ALGORITHMS (cont.)

o o

a

oo

o

<

aa

o

NATURAL LOG OF EPS!

DATA ALEPS/-179.60816D0/
ARBITRARILY SMALL NUMBER

DATA EPS2/1.D-50/
CHECK RANGES OF THE ARGUMENTS

[}

179-P 3- R1

IB,= XB/ALEPS
INFSUM = 8.D0
FIRST TERM OF A DECREASING SERIES WILL UNDERFLOV
IF (IB.NE.®) 60 TO 9@
INFSUM = DEXP(XB)

Y =X CNT = INFSUM®DP
IF ((X.LE.1.,8) .AND. (X.GE.®.8>) GO TO 1@ C CNT VILL EQUAL DEXP(TEMP)#(1.D@-PS)I#PeYs#1/FACTORIAL(I)
IER = | VH = 0.08D0
GO TO 148 80 WH = WH + 1.D@
18 IF ((P.GT.8.8) .AND. (Q.GT.8.0>) GO TO 28 CNT = CNT#(VH-PS)®Y/WH
1ER = 2 XB = CNT/(DP+VH)
GO TO 140 INFSUM = INFSUM + XB
20 IER = 0 IF (XB/EPS.GT.INFSUM) GO TO 8@
IF (X.GT.2.5) GO TO 30 C DLGAMA 13 A FUNCTION VHICH CALCULATES THE DOUBLE
INT = @ C PRECISION LOG GAMMA FUNCTION
GO TO 40 9@ FINSUM = 8.D0

SWITCH ARGUMENTS FOR MOPE EFFICIENT USE OF THE POVER
SERIES
38 INT = 1
TEMP = P
P =Q
Q = TEMP
Y = 1.D8 - Y
48 IF (X.NE.B. +AND. X.NE.l.) GO TO 68
SPECIAL CASE - X IS 8. OR I.
5@ PROE = ©.

GO TO 130
6@ IB = Q
TEMP = IB

PS = Q - FLOAT(IB)
IF (C.EQ.TEMP) PS = 1.D@

o

IF (DQ.LE.|.D8) GO TO 2@

XB = PX + DQ#DLOG(1.D@-Y) + PG - Pl - DLOG(DQ) - C
SCALING

1B = XB/ALEPS

IF CIB.LT.8) IB = @

C = 1.D8/(1.DB-Y)

CNT = DEXP(XB-FLOAT(IB)®ALEPS)

PS = DG

VH = DQ

Pl = (PS#C)>/(DP+WH-1.D0)

XB = PI%CNT

IF (XB.LE.EPS2 .AND. PI.LE.1.D@) GO TO 120
18@ VH = VH - 1.D@

IF (VH.LE.0.0D2) GO TO 120

1IF (P1.LE.1.D® .AND. CNT/EPS.LE.FINSUM) GO TO 128

DP = P CNT = (PSwC#CNT)/ (DP+WH)
DR = Q 1F (CNT.LE.1.D®) GO TO 118
PX = DP#*DLOG(Y) C RESCALE
PQ = DLGAMA(DP+DQ) 1B = 1B~}
Pl = DLGAMA(DP) CNT = CNT#EPS)
C = DLGAMA(DQ) 118 PS = WVH
D4 = DLOG(DP) IF (1B.EQ.@) FINSUM = FINSUM ¢ CNT
IF (Y.GT.EPS) GO TO 78 GO TO 108

SPECIAL CASE - X 1S CLOSE TO ©. OR 1. 120 PROB = FINSUM + INFSUM
XB = PX + PQ - D4 - Pl - C 13 IF (INT.EQ.®) GO TO 1a@
IF (XB.LE<ALEPS) GO TO 5@ PROB = |.8 - PROB
PROB = DEXP(XB) TEMP = P
GO TO 13@ P =Q

DLGAMA 1S A FUNCTION WHICH CALCULATES THE DOUBLE Q = TEMP

PRECISION LOG GAMMA FUNCTION 14@ RETURN

70 XB = PX + DLGAMA(PS+DP) - DLGAMA(PS) - D4 = Pl END

SCALING

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976, Pages 207-208.
REMARK ON ALGORITHM 179

Incomplete Beta Ratio [814]
[O. G. Ludwig, Comm. ACM 6, 6(June 1963), 314]

Malcolm C. Pike and Jennie SooHoo [Recd 5 March 1975 and 11 September 19757
School of Medicine, University of Southern California, 1840 North Soto Street,
Los Angeles, CA 90032

N. E. Bosten and T. J. Aird, International Mathematical and Statistical Libraries,
Ine., 7500 Bellaire Blvd., Houston, TX 77036.

This work was supported by the Virus Cancer Program, National Cancer Institute, Bethesda,
Md., under Grant PO ICA 17054-01 and Contract N01-CP-53500.

Algorithm 179 (MDBETA) can be improved as shown.
1. Remove EPS2 from the double precision statement.

2. Remove the data statement and comment:

C ARBITRARILY SMALL NUMBER
DATA EPS2/1.D-50/

3. Remove the three statements preceding statement number 100:

P1=(PS«C)/(DP+WH —1.D0)
XB=PI1+«CNT
IF(XB.LE.EPS2.AND.P1.LE.1.D0) GO TO 120

4. After statement number 100, replace the following statements:

IF(P1.LE.1.D0.AND. CNT/EPS.LE.FINSUM) GO TO 120
CNT = (PS+C+CNT)/(DP+ WH)

COLLECTED ALGORITHMS (cont.) 179-P 4.

with the following:

PX =(PS+C)/(DP+WH)

IF(PX.GT.1.0D0) GO TO 105

IF(CNT/EPS.LE.FINSUM .OR. CNT.LE.EPS1/PX) GO TO 120
105 CNT =CNT*PX

The above changes eliminate the occurrence of underflow in the computation of
FINSUM and decrease the execution time of the algorithm with no apparent
change in accuracy.

5. Remove the statements and comment:

IF(Y.GT.EPS) GO TO 70

C SPECIAL CASE — X IS CLOSE TO 0. OR 1.
XB=PX+PQ-D4—-P1-C
IF(XB.LE.ALEPS) GO TO 50
PROB=DEXP(XB)
GO TO 130

6. Remove the statement number from:

70 XB=PX+DLGAMMA (PS+DP)-DLGAMMA(PS) — D4—-P1
o

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 180
ERROR FUNCTION—LARGE X
Henry C. THACHER, JB.*
Argonne National Laboratory, Argonne, Ill.
* Work supported by the U. S. Atomic Energy Commission.

real procedure erfL(z); value z; real z;
comment This procedure evaluates the error function of real

xz
argument, erf(z) = (2/ V) f e du by the Laplace continued

fraction for the complementary error functlon erf(x) =1 —
A/ (1+v/A+20/A+30/A+-)))))/(V/7z e") where v = 1/
(2z?). Successive even convergents of the continued fraction are
evaluated, using an algorithm suggested by Maehly, until the
full accuracy of the arithmetic being used is attained.)
The continued fraction converges for all x > 0. For small «,
however, convergence may be excessively slow, and overflow
may oceur. In this region, the Taylor series converges satis-
factorily, and algorithms such as No. 123 are suitable.
For & = 0, the procedure calls the global procedure alarm.
The body of this procedure has been checked on the LGP-30
computer, using the Dartmouth Self Contained Algol Processor.
The program was used to tabulate erf(z) from 0.9(.1)5.0. The
maximum error was 2 X 107%, which is explainable by roundoff
errors. The number of convergents calculated ranged from 36
forz = 0.9 to 2 for x 2 3.8. Overflow occurred for x = 0.87;
begin integer m; real Bmin2, Bmin3, P,R, T, v, v2;
if z < 0 then alarm; -
vi=z X x5
T := —0.56418958/x/exp(v);
comment The constant 0.56418958 ... = 7712 and should
be given to the full accuracy required of the procedure;
r= 0.5/v;
v X T
v X v,
T+1
0
Bmin3:=Bmin2:=1;
= m+1whlleT7éRdo
begin R := T}
Bmin3 := vX (m—1) X Bmin 3 + B min 2
T := B min 2
Bmin2:=vX m X Bmin2+ Bmin3;
T := R — P/B min 2/T;
P:=mX (m+1) X 2 X P
end while;
erfL :=T

end

v
P
v2 %
T:
m
R:
fo

r m

REMARKS ON:
ALGORITHM 123 [S15]
REAL ERROR FUNCTION, ERF(x)
[Martin Crawford and Robert Techo Comm. ACM &

(Sept. 1962), 483]

180-P 1- R1

ALGORITHM 180 [S15]
ERROR FUNCTION—LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION—
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GATUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]

NORMAL CURVE INTEGRAL
{I. D. Hill and S. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. Hinn anp 8. A. Jovce (Reed. 21 Nov. 1966)

Medical Research Council,

Statistical Research Unit, 115 Gower Street, London
W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALgoL compiler. The following amendments were made
and results found:

ALGORITHM 123

(1) value z; was inserted.

(ii) abs(T) < 10—10 was changedto Y — T =Y
both these amendments being as suggested in [1].

(iii) The labels 1. and 2 were changed to L1 and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.

(v) The extra statement z := 0.707106731187 X 2 was made
the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := —0.56418958/z/exp(v) was changed to
T := —0.564189583548 X exp(—v)/z. This is faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.

COLLECTED ALGORITHMS (cont.)

(ii) The extra statement z := 0.707106781187 X z was made
a8 in (v) of Algorithm 123.
(iii) form :=m 4 1 was changed to form := m + 2. m+1
is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(i1) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative
to the amendment suggested in [4].
The results were accurate to 9 significant figures for z < 8,
but to only 8 significant figures forz = 10 and z = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(1) 10 T m/(480X3qrt(2X3.14159265)) was changed to
10 T m X 0.000831129750836.
(ii) for 7 := 1 step 1 until 2 X n do was changed to
m = 2 X n; fori:=1step l until m do.
(iii) —-(EXb/n) T 2/8 was changed to —(iXb/n) T 2 X 0.125.
(iv) ifi =2 X n — 1 was changed to ifi =m — 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to
b/(15.0397696478 X n).

Tests were made with m = 7 and m = 11 with the following
results:

Number of significant Number of decimal
. Jfigures correct places correct
m =7 m = 11 m =7 m = 11
—-0.5 7 11 7 11
-1.0 7 10 7 10
—1.5 7 10 8 10
—2.0 7 9 8 10
—~2.5 6 9 8 11
--3.0 6 7 8 9
—4.0 5 7 10 11
-6.0 2 1 12 10
-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig-
nificant figures is stretching the machine’s ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.
The accuracy was 8 decimal places at most of the points tested,
but was only 6 decimal places at z = 0.8.
ALGORITHM 304

No modification was made. The errors in the 11th significant figure
were:

180-P 2- 0

abs(z) z > 0 = upper z > 0 # upper
0.5 1 1
1.0 1 2
1.5 218(5) 2
2.0 25(0) 4
3.0 0 0
4.0 2 3
6.0 6 0
8.0 14 0
10.0 23 0
20.0 35 0

* Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:)

abs(z) z > 0 = upper z > 0 # upper
1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas “Instruction Count,”” while evaluating the function 100
times. The figures are not directly applicable to any other com-
puter, but the relative times are likely to be much the same on
other machines.

InsTRUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(z)
123 | 180 | 181 | 209 226 272 | 304 3040
m =7
0.5 58 8 97 24 25 24
1.0 65¢ 8 176 24 29 29
1.5 | 164 |[128 | 127 9 273 25 35 35

2.0 | 194 78 90 8 387 24 39 39
2.5 | 252 b4 68 10 515 24 131 44

3.0 42 51 9 628 25 97 50
4.0 27 39 9 9004 | 25 67 44
6.0 15 30 6 14004 | 16 49 23
8.0 9 28 7.1 21004 | 18 44 1
10.0 10 25 5 27004 | 16 38 1
20.0 9 22 5 65004 | 16 32 1
30.0 9 9 5 | 10900¢ [16 11 11

COLLECTED ALGORITHMS (cont.)

» Readings refer to z > 0 = upper.

b Readings refer to z > 0 # upper.

¢ Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.

1100 times Instruction Count for 1 evaluation.

Optnion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. Taacuer, HeNrY C. Jr. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IBsBETSON, D. Remark on Algorithm 123. Comm. ACM ¢
(Oct. 1963), 618.

3. BartoN, STEPHEN P.; ANpD WaGNER, JoHN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

'S

. CravUSEN, L., AND HanssoN, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SuepparDp, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

180-P 3-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 181

COMPLEMENTARY ERROR FUNCTION—
LARGE X

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, IlL
* Work supported by the U. S, Atomic Energy Commission.

real procedure erfcL(z); value z; real z;
comment This procedure evaluates the complementary error
function, erfc(z) = 1 — erf(z) = (2/v/7) f:e.z:p(—u’)du by
the Laplace continued fraction:
erfe(z) = (1/@-+v/A+20/A+30/ A+)/ (V 7z e
where v = 1/(2z?). Successive even convergents of the continued
fraction are evaluated, using an algorithm suggested by Maehly,
until the full accuracy of the arithmetic being used is attained.
The continued fraction converges for all £ > 0. For small z,
however, convergence may be excessively slow, and overflow
and round-off accumulation may occur. In this region, the
Taylor series converges satisfactorily.
For z = 0, the procedure calls the global procedure alarm.
The body of this procedure has been checked on the LGP-30
Computer, using.the Dartmouth Self Contained Algol Processor,
for x = 1.2(0.1)5.0. Results were generally correct to 1 in the
6th significant digit, although a few errors were as large as 6
in that digit. The errors are believed to be due to round-off
only. The number of convergents calculated ranged from 46
forz = 1.2 to 10 forz = 5.0.
Overflow occurred for z = 1.183;
begin integer m; real Bmin 2, Bmin 3, P,R, T, v, v2;
if z € 0 then alarm;

vi=z Xz

T := 0.56418958/z/exp(v);

comment The constant 0.56418958 --- = =712, and should be
given to the full accuracy required of the procedure;

v := 0.5/v;

12 1= v X v;

P:=vX T}

m:=R =0

Bmind = Bmin2:=1;
for m:=m 4+ 2 whileR # T do

begin R := T}
Bmin3d:=v X (m—1) X Bmin 3 + B min 2;
T := B min 2;
Bmin2:=vX mX Bmin 2+ Bmin 3;

T :=R — P/Bmin2/T,
P:=mX (m+1) X2 X P

end while;

erfe L := T

end

CERTIFICATION OF ALGORITHM 181 [S15]

COMPLEMENTARY ERROR FUNCTION—LARGE

X [Henry C. Thacher, Jr., Comm. ACM 6 (June 1963),
315]

I. Crausen anp L. Hansson (Recd. 20 Aug. 1964)

DAEC, Risg, Denmark.

181-P 1- R1

The procedure erfcL was tested in GiER-ALgoL with 29 signifi-
cant bits and the number-range abs(z) < 2 7 512 (approx. 1.310154).
The statement m := R := 0; was corrected to m := 0; R :=
0; [Because m and R are of different type; cf. Sec. 4.2.4 of the
AraoL Report, Comt. ACM 6 (Jan. 1963), 1-17.—Ed.] After this
the tests were successful. The procedure was checked a.o. for
z = 119 (—0.01) 0.72. The differences from table values increased
from 10—8 at x = 1.1 to 7T10—8 at z = 0.75. Overflow occurred at
z = 0.71.

REMARKS ON:

ALGORITHM 123 [S15]

REAL ERROR FUNCTION, ERF(x)
[Martin Crawford and Robert Techo Comm. ACM &
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION—LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION—
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 {S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]

NORMAL CURVE INTEGRAL
{I. D. Hill and 8. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. Hiun anp S. A. Joxce (Reed. 21 Nov. 1966)

Medical Research Council,

Statistical Research Unit, 115 Gower Street, London
W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ALcoL compiler. The following amendments were made
and results found:

ALGORITHM 123
(i) value z; was inserted.
(i1) abs(T) < 10—10 waschangedto Y -~ T =Y
both these amendments being as suggested in [1].

COLLECTED ALGORITHMS (cont.)

(iii) The labels 1 and 2 were changed to L1 and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.

(v) The extra statement z := 0.707106731187 X z was made
the first statement of the algorithm, so as to derive the
normal integral instead of the error function,

The results were accurate to 10 decimal places at all points
tested except x = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, -as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
(i) T := —0.56418958/x/exp(v) was changed to
T := —0.564189583548 X exp(—v)/x. This is faster and also
has the advantage, when v is very large, of merely giving 0
as the answer instead of causing overflow.
(1) The extra statement z := 0.707106781187 X =z was made
as in (v) of Algorithm 123,
(iii) form := m + 1 was changed to form := m + 2. m+1
is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative
to the amendment suggested in [4].
The results were accurate to 9 significant figures for z < 8§,
but to only 8 significant figures for x = 10 and x = 20.

ALGORITHM 209 :
No modification was made. The results were accurate to 7 decimal
places.

ALGORITHM 226
(i) 10 T m/(480Xsqrt(2X3.14159265)) was changed to
10 T m X 0.000831129750836.
(i) for ¢ := 1 step 1 until 2 X n do was changed to
m := 2 X n; fori :=1 step l until m do.
(ii) —(#Xb/n) T 2/8 was changed to —(¢Xb/n) T 2 X 0.125.
(iv) if{ =2 X n — 1 was changed to ifi =m — 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to
b/(15.0397696478 X n).
Tests were made with m = 7 and m = 11 with the following
results:

Number of significant Number of decimal
. figures correct places correct
m =17 m = 11 m =7 m = 11
—-0.5 7 11 7 11
—-1.0 7 10 7 10
—1.5 7 10 8 10
-2.0 7 9 8 10
—2.5 6 9 8 11
—-3.0 6 7 8 9
—4.0 5 7 10 11
—6.0 2 1 12 10
—8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig-
pificant figures is stretching the machine’s ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

181-P 2- 0

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,
but was only 5 decimal places at 2 = 0.8.

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

abs(z) z > 0 = upper z > 0 = upper
0.5 1 1
1.0 1
1.5 215(5) 2
2.0 258(0) 4
3.0 0 0
4.0 2 3
6.0 6 0
8.0 14 0
10.0 23 0
20.0 35 0

* Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table IT of [5]. The errors in the 22nd
significant figure were:

abs(z) z > 0 = upper z > 0 = upper
1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas “Instruction Count,”” while evaluating the funection 100
times. The figures are not directly applicable to any other com-
puter, but the relative times are likely to be much the same on
other machines.

COLLECTED ALGORITHMS (cont.)

InsTRUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs ()
123 | 180 | 181 | 209 226 272 | 304* | 304®
m =7
0.5 58 8 97 24 25 24
1.0 65° 8 176 24 29 29
1.5 | 164 128 127 9 273 25 35 35

2.0 | 194 78 90 8 { 387 24 39 39
2.5 | 252 54 68 10 515 24 131 44

3.0 42 51 9 628 25 97 50
4.0 27 39 9 9004 | 25 67 44
6.0 15 30 6 14004 | 16 49 23
8.0 9 28 7 21004 | 18 44 11
10.0 10 25 5 27004 | 16 38 11
20.0 9 22 5 65004 | 16 32 11
30.0 9 9 5 | 109004 | 16 11 11

s Readings refer to x > 0 = upper.

b Readings refer to * > 0 # upper.

¢ Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.

4100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand caleulations.

REFERENCES:

1. Tuacger, HEnNrY C. Jr. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IBBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BarToN, STEPHEN P., AND WAGNER, JoHN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

4. CLAUSEN, I., AND HanssoN, L. Certification of Algorithm 181.
Comm. ACM 7 (Dec. 1964), 702.

5. SuEPPARD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

181-P 3-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 182

NONRECURSIVE ADAPTIVE INTEGRATION
W. M. McKEEMAN AND LArRrRY TESLER

Stanford University, Stanford, Calif.

real procedure Simpson(F) limits : (a, b) tolerance : (eps);
real procedure F; reala,b, eps; value a, b, eps;
begin comment A nonrecursive translation of Algorithm 145.
Note that the device used here can be used to simulate recursion
for a wide class of algorithms;
integer [vl;
switch return := rl, r2, r3;
real array dx, epsp, 22, 23, F2, F3, F4, Fmp, Fbp,
est2, est3 [1:30], pval[1:30, 1:3];
integer array rirn [1:30];
real absarea, est, Fa, Fm, Fb, da, sz, estl, sum, F1;
comment the parameter setup for the initial ecall;
Wl := absarea :=¢est :=0; da:=b— a
Fa := F(a); Fm := 4.0 X F((a+b)/2.0); Fb := F(b);
recur:
Wwl:= Wl +1; dz[lvl] := da/3.0;
st 1= dr[lvl]/6.0; Fl:= 4.0 X F(a+dz[ivl]/2.0);
22[Wl] := a + dz[lvl]; F2[Wl] := F@2[Wl));
23[Wl] : = 22[Wl] + dz[lvl]; F3[Wl] := F(x3[ll]);
epsp[lvl] : = eps; F4[lwl] : = 4.0 X F(@3[lvl]+dx[lol]);
Fmp[ll] := Fm; estl := (Fa+F14+F2[Wl]) X sz;
Fbop[lvl] := Fb; est2[ll] : = (F2[ll]+F3[lwl]+Fm) X sz;
est3[lvl] := (F3[ll]+F4[lvl]+Fb) X sz;
sum = estl + est2[lvl] + est3[lvl];
absarea := absarea — abs(est) + abs(estl) -+ abs(est2[lvl]) -+
abs (est3[lvl]);
if (abs(est—sum) < epsp[lvl] X absarea) \/ (Ivl>30) then
begin comment done on this level;
up ol i= Wl — 1
pvalllvl, rirnf[lvl]] := sum;
go to return [rirn[lvl]]
end;
rirn[ll] 1= 1; da := dz[ll]; Fm := F1l;
Fb := F2[lwl]; eps := epsp[lvll/1.7; est := estl;
go to recur; rl:
rirn[lol] 1= 2; da := dz[ll]; Fa := F2[ll];
Fm := Fmpl[lvl]; Fb := F3[ll]; eps := epsp[lvi]/1.7;
est 1= est2[ll]; a := 22|lvl]; go to recur; r2:
rirn{lvl] := 3; da := dz[lvl]; Fa := F3[ll);
Fm := F4[loll; Fb := Fbp[lvl]; eps := epsp[lvl]/1.7;
est 1= est3[ll]; a := z3[lvl]; go to recur; r3:
sum = pval[lvl, 1] + pvalllvl, 2] + pvalllvl, 3];
if Il > 1 then go to up;
Sitmpson = sum
end Simpson

182-P1- 0

CERTIFICATION OF ALGORITHM 182

NONRECURSIVE ADAPTIVE INTEGRATION [W.
M. McKeeman and Larry Tesler, Comm. ACM 6 (June
1963), 315]

Harowp S. ButLer (Recd 8 Nov. 1963; rev. 6 Dec. 1963)

Stanford Linear Accelerator Center, Stanford, Calif.

A BarcoL transliteration of Simpson has been prepared at
Stanford by its authors and it has been used in a number of prob-
lems involving numerical integration. Its value was most strik-
ingly displayed when it was utilized in a triple integral in which
the final integration was over a strongly peaked function that
spanned seven orders of magnitude. Simpson effectively minimized
the number of evaluations and completed ‘the integration five
times faster than alternate schemes to subdivide the region of
interest. The values of the integral agreed with independent,
calculations well within the required tolerance.

The following changes should be made to the published
algorithm:

Line 13 should be changed to:
Wl := 0; absarea := est := 1.0; da := b—a;
Line 17 should read:
sz 1= dz[lvl]/6.0; F1:= 4.0 X F(a 4+ dz[lvl]/2.0);
Line 20 should read:
epspllvl] 1= eps; FA[lvl] 1= 4.0 X F(z3[lvl] + dx[lvl]/2.0);
The condition of line 27 should be changed to:
if ((abs(est—sum) = epsp[lvl] X absarea) A\ (est = 1.0)) V
(lvl = 30) then

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 183

REDUCTION OF A SYMMETRIC BANDMATRIX
TO TRIPLE DIAGONAL FORM

H. R. ScawaRrz

Swiss Federal Institute of Technology, Ziirich, Switzer-
land

procedure bandred(a, n, m);
value n, m; integer n, m; array a;

comment bandred reduces a real and symmetric matrix of band
type (order n, alé, k]=0 for |i—k|>m) by a sequence of orthog-
onal similarity transformations to triple diagonal form. The
procedure represents a generalization of the algorithm m21 by
H. Rutishauser. Due to symmetry only the upper part of the
band matrix must be given and these elements are denoted for
convenience in the following way: alZ, 0] (=1, 2, ---, n) repre-
sents the diagonal element in the 7th row, and a[z, k] (=1, 2,
--+,n—k and k=1, 2, ---, m) represents the generally nonzero
element in the ith row and the kth position to the right of the
diagonal. After completion of the reduction, the elements of the
symmetric triple diagonal matrix are given by alz, 0] (i=1, 2,
-+, n)andaf?, 1] =1,2, .-+, n—1);

begin integerr, k, 1,5, p, rr; real b,g,c, s, c2, 82, cs, u, v;
for r:= mstep —1luntil2do

begin
for k := 1 step 1 until n— do
begin
for j := k step r until n—r do
begin

comment This compound statement deseribes the rota-
tion involving the <th and (+1)st rows and columns
in order to reduce either a[j, r] or the off-band element
g to zero, respectively. This rotation produces a new
off-band element g (in general different from zero) pro-
vided ¢ + r < n;

if 5 = k then

begin if a[j, r] = 0 then go to endk;
b:= _a[j: r—]]/a[j: r]

end

else

begin if g = 0 then go to endk;
b= —alj-1, rl/g

end;

s := 1/8grt(1 4+ bXb); ¢ :=b X s
c2:=c¢cXc¢ 82:=8Xsgcs8:=c¢Xs;
ti=j+r—1;
cross elements:
ui=c2Xa[,0] —2Xecs Xali, 1]+ 82 X alt + 1, 0};
vi=8§2Xalt,0] + 2 X ¢s X alt, 1] + ¢2 X afi+1, 0];
alt, 1] := ¢s X (alz, 0] — al[i+1, 0) + (c2—82) Xalz, 1];
alz, 0] := u; ali+1,0] := v;
column rotation:
for p := jstepluntil? — 1 do
begin
u i=c¢ X alp, i—p]l — s X alp, i—p+1};
alp, i—p+1]) i= 8 X alp, i—p] + ¢ X a[p, i—2+1}
alp, i—p]l i=u
end p;
if 7 # k then
alj~1,7]:=eX alj—1,7] - 8 X g;
row rotation:

183-P 1-

rri:=ifr <n — ithenrelsen — 7;
for p := 2 step 1 until rr do
begin
u = ¢ X ali, p] — 8 X a[i+1, p—1J;
ali+1, p—1] := 8 X ali, pl + ¢ X ali+1, p—1];
ali, p] := u
end p;
if i+ r < n then
new g: begin ¢ := —s X a[i+1, 7];
ali+1, r] := ¢ X aft+1, r]
end
end j;
endk: end k
end r
end bandred

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 184

ERLANG PROBABILITY FOR CURVE FITTING
A. CoLkER _

U. S. Steel Applied Research Laboratory

Monroeville, Penn.

procedure ERLANG (X, X0, M, VARS, C, FACTORIAL, P);
value X0, M, VARS, C; integer C; real array X, P;
integer procedure FACTORIAL;
comment Computes the Erlang probability for the ¢th interval
by [f@)de — [5~ f(z)dz where f(&) = + [(Ku)X/(K—1)1]
- (z—zo) T leKBE=%0) where p = 1/M, K= (M—X,):VARS is
the upper boundary for the class intervals, X, is the lower
boundary of the first class interval, M is the mean of the Er-
lang, VARS is the variance corrected by Sheppard’s correction,
C is the number of class intervals and P; is the calculated
probability;
begin
integer I,J, K, F; real array XE[0 : C];
for I := 1 step 1 until C do
XE[I] := X[I] — XO0;
XE[0] := 0;
ME := M — XO;
K := 05+ (ME{2)/VARS;

U := K/ME;
8P := 0;
for I := 1 step 1 until C do
begin
SUM1 := 0;
SUM2 := 0;
for J.:= 0 step 1 until K — 1 do
begin

F := FACTORI[AL (J);
Zl := U X XE[[-1];
SUM1 := SUM1 + (Z11J)/F;
Z2 := U X XE[I);
SUM2 := SUM2 -+ (Z2\J)/F;
end J;
P[I] := SUM1 X (EXP(—UXXEI[I-1])) — SUM2
X (BEXP(-UXXE[I]D));
8P := SP + P[I};
end I;
P[C+1] := 1.0 — 8P;
end Erlang

184-P 1-

0

COLLECTED ALGORITHMS FROM CACM

185-P 1- 0O

ALGORITHM 185

NORMAL PROBABILITY FOR CURVE FITTING
A. CoLKER

U. 8. Steel Applied Research Laboratory

Monroeville, Penn.

procedure NORMAL (X, M, VARS, C, HASTINGS, P);

value M, VARS, C; integer C; real array X, P;

real procedure HASTINGS;

comment Computes the normal probabilities for the 4th interval
by [f@)dz — i~ f(z)dx where f(z) is Hastings’ approxi-
mation to the normal interval. Hastings’ formula is

¢(Xni) = 31— (A+aXni+a X ni+aX nitaX ni+a:X)™

where a; = 0.00979268, a: = 0.04432014, a; = 0.00969920,
ax = —0.00009862, and a; = 0.00058155. The X,; are normalized
boundary values of X; where Xni = (X:i—M)/+/VARS, where
M is the mean and V ARS is the variance corrected by Sheppard’s
correction, C is the number of class intervals and P; the caleu-
lated probability;
begin
integer I; real array XN|1: C];
for I := 1step 1 until Cdo XN[I] := (X[I]—M)/SQRT(VARS);
P[1] := 0.5 — HASTINGS (ABS(XN[1]));
for I := 2 step 1 until C do
begin
if
XN{Il < 0 then
P[I] := HASTINGS (ABS(XN[I—-1])) — HASTINGS
(ABS(XNII]); else
begin
if (XN[I]>0) A (XN[I-1]<0)
then P[I] := HASTINGS (XNI[I]) + HASTINGS
(ABS(XN[I-1))); else
P[I} := HASTINGS (XN[I]) — HASTINGS (XN{I-1});
end;
end I;
P[C+1] := 0.5 — HASTINGS (XN|[C));
end NORMAL

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 186

COMPLEX ARITHMETIC

R. P. van pE Rier

Mathematical Centre, Amsterdam, Holland

procedure Complex arithmetic (a, b, R, r); value a, b;
a, b, R, r;
comment This procedure assigns the value a? + b2 to B and the
value (a+ib)/(a—ib) to r, where a, b, R and r are complex
numbers. These two arithmetie expressions are of course fully
arbitrary. They serve only to demonstrate the use of the pro-
cedures P, @, 8, T', J and U. With them one can build up any
arithmetic expression with complex variables, as easily as one
can form them with real variables in ArLaoL 60 (As one sees
immediately these procedures can easily be extended for use in
quaternion arithmetic or general vector and tensor calculus).
We focus attention tothe value call of the procedure-parameters,
which is essential. Furthermore, we notice that the depth or
height of the accumulator H is the number of right-handed
brackets placed one after another not counting the brackets
which occur in parameter-delimeters. It is perhaps superfluous to
mention that this procedure was tested on the X1 computer of the
Mathematical Centre.;
begin integer 7, k; array H[1:4)1:2];
integer procedure P(i, j); valuet, j; integer 7, j;
comment P forms the product of the ith and jth element of H;
beginreal a; k:=% — 1; a:= H[i, 1] X H[j 1] — H[;, 2]
X H{j, 2]; Hlk,2}:= H[s,1] X H[j, 2] + H[i, 2] X
Hij, 1]1; Hk,1] :=a; P:=k
end;
integer procedure (¢, j); valuei, j; integer %, 5;
comment @ forms the quntient of the ith and jth element of H;
begin reala,b; k:=k—1; b:=H[;, 1112+ H[j, 2]12;
a := (H{, 1IXH[j, 1]+H[:, 21X H[], 2])/b;
Hik, 2] := (H[:, 21X H[j, 1]-H[i, 11X H[j, 2])/b;
Hik, 1]l :=a; Q:=k
end;
integer procedure S(i, j); value?, j; integer 1, j;
comment S forms the sum of the ¢th and jth element of H;
begin k := k — 1; Hk, 1) := H[Z, 1] + H[j, 1];
Hik, 2} := H[:, 2]+ H[j,2]; S:=k
end;
integer procedure T'(a); array a;
comment T assigns to the k4-1th element of H the complex
variable a;
begin k := k + 1; Hlk, 1] := a[l]; HIk, 2] := a[2];
end;

array

T :=k

integer procedure J (i, expi); integer i; real expi;
comment J assigns to the (k+1)th element of H a complex

variable which is decomposed in real and imaginary part;
begin k :=k + 1; i:=1; Hlk, 1] := expi; i :=2;

Hlk, 2] :=-expt;
Ji=k

end;
procedure U(i, R); valuei; integeri; arrayR;
comment U assigns to B the ith element of H;
begin R[1] := H[:,1}; R[2] := HI[:,2]; k :=O0end;
k:=0; US(P(T(a))times:(T(a)))plus:(P (T (b))times:

T®N, B);

186-P 1- 0

comment. (aXa) + (bXb) =:R; U@ (T (a)) plus:
(P(J (¢, i—1)) times: (T'(b)))) divided by: (S(T(a))
plus: (P(J (¢, 1—1)) times: (T'(b)))), r);
comment (a+(tXb))/(@+(—iXbd)) =:7r;
end Complex Arithmetic;

The contents of ‘this Algorithm are published in the Technical
Note TN 27, Mathematical Centre, Nov. 1962.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 187

DIFFERENCES AND DERIVATIVES

R. P. van pE Rier

Mathematical Centre, Amsterdam, Holland

begin real h; integer i, k; array A[l : 50);

comment This program ecalculates, only to demonstrate the

procedures DELTA and DER, the third derivative of the expo-
nential function with a sixth order difference scheme. We do

not propose to use these procedures in actual calculations, for

as we observed with the X1 computer of the Math. Centre, they
work, but very slowly as a consequence of the strong recursive-
ness of the procedures. In actual programming one has to take
the trouble to write out the well-known formula of Gregory, or
for higher derivatives to multiply this formula a number of
times by itself, then one has to collect the same function-values.
All this trouble is taken over by the computer if one uses the
procedures deseribed below. My purpose, however, in publishing
these procedures lies not in the numerical use but in a demon-
stration of the flexibility of ALeow 60, if one uses the recursive-
ness property of procedures.;
real procedure SUM (i, h, k, ti); value k; integer i, k, h;
real l7;
begin reals; s:=0; for?:=hstepluntilkdos:=s+ i1;
SUM :=s
end;
real procedure DELT'A (N, k, k0, fk); value N, k0; real fk;
integer N, k, kO;
comment N is the order of the forward difference which is
calculated. from a set of function-values with equidistant
parameter-values;
begin integer ;
DELTA :=if N =1
then SUM (k, kO, k0+1, (—1)1(k+1—K0) X k)
else DELTA (1,4,%0, DELTA (N—1, k, <, fk))
end;
real procedure DER (OR, N, h, k, k0, fk); value OR, N, h, k0;
rveal fk, h;
integer OR, N, k, kO;
comment OR is the order of the derivative, calculated from a
given set of function-values f(k), with equidistant parameter-
values, the error is of the order h T (N-+1—OR), where h is the
steplength. 0 is the point where the derivative is calculated;
begin integer i;
DER := ifOR =1
then SUM (¢, 1, N, DELTA(i, k, kO, fk)
X (=V1E+1) /%) /h

else DER(1, N+1—OR, h, i, k0, DER(OR—1, N—1, h,

k, 1, Jk))
end;
for ¢ := 1 step 1 until 50 do A[:] := exp(2/50);
for 7 := 1 step 1 until 25 do A[Z] := DER(3, 6, .02, k, <, A[k])
end

The contents of this Algorithm are published in the Technical

Note TN 27, Mathematical Centre, Nov. 1962.

187-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 188

SMOOTHING 1.

¥. Ropricuez-GiL

Central University, Caracas, Venezuela

procedure Smooth 13(n, z);
integer n;
real array z;
comment This procedure uses Gram’s first-degree three-point
formulas, as described in Hildebrand’s ‘“Introduction to Nu-
merical Analysis,’”’ Ch. 7, to smooth a series of n equally spaced
values. If the procedure is entered with less than three points,
control is transferred to a nonlocal label error;
begin real array zp[l : n]; integer i;
if n < 3 then go to error;
for ¢ := 1 step 1 until n do zp[7] := z[:];
z[1] := 0.83333333 X xp[l] + 0.33333333 X zp[2] — 0.16666667
X zpl3l;
for 7 := 2 step 1 until » — 1 do zf¢] := (zpli—1]+=zpls]
+ zpli4-1]) X 0.33333333;
z[n] := — 0.16666667 X zp[n—2] + 0.33333333 X zp[n—1]
+ 0.83333333 X zp[n]
end Smooth 13

188-P 1

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 189

SMOOTHING 2

F. RopriguEz GiL

Central University, Caracas, Venezuela

procedure Smooth 35(n, x);
integer n;
real array z;
comment This procedure is similar to Smooth 13, except that
Gram’s third-degree five-point formulas are used, and that a
minimum of five points is needed for a successful application;
begin real array zp[l : n]; integer i;
if n < 5 then go to error;
for i := 1 step 1 until n do zplt]:= z[i];
z[1] := 0.98571429 X xp[l] + 0.05714286 X (zp[2]4-zpl4])
— 0.08571429 X 2p[3] — 0.01428571 X xp|5];
z[2] := 0.05714286 X (zp[ll+=zp[5]) + 0.77142857 X zp(2]
+ 0.34285714 X xp(3] — 0.22857143 X zpl4];
fori := 3step 1 untiln — 2do 2] := — 0.08571429 X (zp[i—2]
+zpli+2]) 4 0.34285714 X (zpli—1]4+apli+1]) + 0.48571429

X zpli];
z[n—1] := 0.05714286 X (zpln—4]+zp[n]) — 0.22857143

X zp[n—3] 4 0.34285714 X xp[n—2] -+ 0.77142857 X zp[n—1];
z[n] := — 0.01428571 X zp[n—4] + 0.05714286 X (zp[n—3]

+2zp[n—1]) — 0.08571429 X zp[n—2] + 0.98571429 X zp[n]
end Smooth 35

189-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 190

COMPLEX POWER

A. P. RELPH

The English Electric Co. Ltd., Whetstone, England

procedure Complex power (a,b,c,d, n,z,y); valuea,b,c,d, n;
reala, b, c,d, z,y; integer n;
comment This procedure calculates (z-+1iy) = (a-+ib) 1 (c+id)
where 7 is the root of —1. In the complex plane, with a cut along
the real axis from 0 to — «, p is the sum of the principal value
of the argument of (a+¢b) and 2nr (n is positive, negative or
zero depending on the solution required). arctan is assumed to
be in the range —x/2 to n/2. The case n = 0, d = 0 is given by
Algorithm 106;
begin real p,r, v, w;
ifa = 0 then begin if b = 0 then begin z := y := 0;
go to L end
else p := 157079633 X
(stgn(b)+4Xn)
end
clse begin p := 6.28318532 X n + arcltan(b/a);
if a < 0 then begin if b = 0 then
P = p + 3.14159265
else
p := p — 3.14159265
end
end;
B X n@l24b12); vi=c X p+d X r;
exp(ecXr—dXp);
w X cos(v); y:=w X sin(v);

r
w
x .

L: end

190-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 191

HYPERGEOMETRIC

A. P. RELrH

The English Electric Co. Ltd., Whetstone, lngland
procedure Hypergeomelric (al, a2, bl, b2, cl, ¢2, z1, z2) Results:

(s1, s2); valueal, a2, bl, b2. cl. ¢2, 21, 22; real al, a2, b1, b2,
cl, 2, 21, 22, 51, §2;

begin comment calculates the hypergeometric function
1F2(a, b, ¢, z) with complex parameters (a=al+ia2,

ete);
real d, y1,y2; integer n;

procedure comp mult (al, a2, b1, b2, cl, ¢2); value al,

a2, bl, b2; real al, a2, bl, b2, cl, ¢2;

begin comment calculates the product of the two
complex numbers (al+ia2) and (bl1+3b2)

where ¢ is the root of —1;
el :=al X bl — a2 X b2; ¢2 := a2 X b1 +
al X b2
end;
sl :=yl :=1; 82:=y2:=0;
for n := 1 step 1 until 100 do
begin d := n X ((c14+n—1)12+¢c212);

comp mult (al4+n—1, a2, yl/d, y2/d, yl, y2);

comp mult (y1, y2, bl4+n—1, b2, y1, y2);
comp mult (y1, y2, cl4n—1, —c2, yl, y2);
comp mull (yl, y2, 21, 22, y1, y2);

if s1 = sl + yl As2 = 52 + y2 then go to L;

sl :=s1 4+ yl; §2:=3s2 + 42
end;
L: end

CERTIFICATION OF ALGORITHMS 191 AND 192

HYPERGEOMETRIC AND CONFLUENT HYPER-
GEOMETRIC [A. P. Relph, Comm. ACM 6 (July
1963), 388)

Henry C. THACHER, Jr.* (Reed 2 Dec. 1963)

Argonne National Laboratory, Argonne, Il
* Work supported by the U.S. Atomic Energy Commission.

The bodies of these two procedures were transcribed for the
Dartmouth ScaLp processor for the LGP-30 computer. No syn-
tactical errors were found, and the programs gave results agreeing
within roundoff (7D) with tabulated values for the following spe-
cial cases: :F'1(0.5,0.5; 1; k%) = (2/x) K(k); 2F.(0.5, —0.5;1;k%) =
(2/m)E (k) where K and E are ¢omplete elliptic integrals of the first
and second kinds; 1F(.5; 1; 7y) = Jo(x), and with F,(—1;0.1; z);
1F1(=0.5;0.1; z), and F,(—0.5; 0.5; z).

It should be observed that the function calculated by 191 is
2Fi(e, b; ¢; 2), not |Fa(a, b; ¢; z) as stated in the comment. These
programs evaluate the functions by direct summation of the hy-
pergeometric series. They are, therefore, relatively general, but
inefficient. Precautions must also be taken against attempting to
compute outside the range of effective convergence of the series.

191-P 1- R1

Certification and Remark on Algorithm 191 [S22]
Hypergeometric [A.P. Relph, Comm. ACM 6 (July
1963), 388]

Henk Koppelaar (Recd. 14 Sept.. 1973) Physical Labora-
tory, Division: Atom Physics, Utrecht State University,
Utrecht, The Netherlands

The following changes were made in the algorithm:
(a) The subroutine for complex multiplication was erased.
(b) In accordance with (a) and with the standard notation .F;, the
heading and end of the procedure were:changed to read
real procedure hyp2geoml (a, b, ¢, z);
end hyp2geoml.
(c) Erasing the subroutine for complex multiplication caused us to
modify the algorithm further as follows.
real procedure hyp2geoml (a, b, c, z);
value a, be,z;real a, b, ¢, z;
begin

real 5,y; integer i;

si=y:=1;

for i := 0 step 1 until 100 do

begin

yi=y X ((a+d)/(c+i)) X (b+i) X z/(i+1);
ifs = s + ythengotoexit;s:=s + y

end;
exit:

hyp2geoml := s

end hyp2geoml

The inefficiency of the original algorithm for real arguments, as
mentioned by Henry C. Thacher Jr. in his certification of it, is
largely reduced by these modifications, because they make a con-
siderable reduction in the computational costs.

With these modifications the algorithm was translated for the
CDC-6500 using the Control Data Algol 3 compiler and ran only
partially satisfactorily, as reported below.

The following two tests (a) and (b) were performed, using iden-
tities 1 and 2 and Algorithm 160 [1] for the combinatorial (7).

The identities are:

1. (1/B(a b)) (z¢/a):Fi(a, 1 —b;a+1;z) = IL(a,b),
2. a X Bla,b) = (%1, where

B@, b) = [y 1r-1(1—ndr

is the complete beta function and

Lia,b) = (1/B(a,b) 3 e="(1 — piar

is the incomplete beta function,a > 1,5 > 1, and q, b integer.

Test (a). Computing (***™") X hyp2geoml (a, 1—b, a+1,
z) X z 1 a, gave correct results to 7D., according {2], for the
following values of a, b and z.

7,a = 71)9 andz 0.61(0.01)0.97;
17,a = 17 andz = 0.13
17,a = 17,18 andz = 0.14
17, @ = 17(1)19 andz = 0.15
17, a = 17(1)34 andz = 0.50

The total computation time for this test using combinatorial and
hyp2geom]1 was less than 10 sec on the Control Data 6500 computer.

o> >
[[]]

COLLECTED ALGORITHMS (cont.)

Test (b). The same test as test (a) was performed for the fol-
lowing values of a, b, and z.

b =17,a = 17(1)34 andz = 0.51(0.01)0.60.
The algorithm gave correct results to 5D, according [2].
For the values
b =17,a = 17(1)34 andz = 0.61(0.01)0.89, the results be-

came worse with increasing z. This error is due to slower conver-
gence of the series

(@, bc;7) = i (@ n(B)u/(€)n 22/

with increasing z and increasing b.
Pochhammer’s symbol means

(@)» = T(a+n)/T(a).
More precisely we see
(1/B(a, b))(z*/a) +F: (a, 1—b; a+1;2) =

i 1) (@) (1=b)u/(@-+1)a) z*3/n!

From this expression it is clear that the rate of convergence of the
expansion by and large is dominated by the values of b and z. This
explains why in test (a) for 5 = 7 the results remained accurate to
7D for increasing z, and also it explains why in test (b) for b = 17
the results became worse for increasing z.

References

1. Wolfson, M.L., and Wright, H.V. Combinatorial of M things
taken N at a time. Comm. ACM 6, 4 (Apr. 1963), 161.

2. Pearson, K. (Ed.). Tables of the Incomplete Beta Function.
Cambridge U. Press, Cambridge, England, 1948.

191-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 192
CONFLUENT HYPERGEOMETRIC
A. P. Revpu
The English Electric Co. Inc., Whetstone, England
procedure Confluent hypergeometric (al, a2, cl, ¢2, 21, 22)
Result : (s1, s2); value al, a2, cl, ¢2, 21, 22;
real al, a2, cl, ¢2, 21, 22, sl, s2;
begin comment calculates the confluent hypergeometric fune-
tion 1F1(a, ¢, 2z) with complex parameters
(a=al+7ia2, ete);
real d, y1, y2; integer n;
procedure comp mult (al, a2, bl, b2, cl, c2);
value al, a2, bl, b2; real al, a2, b1, b2, cl, c2;
begin comment calculates the product of the two
complex numbers (al47a2) and (b1+162)
where ¢ is the root of —1;
cl :=al X bl — a2 X b2;
2 :=a2 X bl + al X b2
end;
sl:=yl:=1; §2:=y92:=0;
for n := step 1 until 100 do
begin d :=n X ((c14n—1)12+4¢c212);
comp mult (al+n—1, a2, y1/d, y2/d, y1, y2);
comp mult (yl, y2, cl4+n—1, —c2, yl, y2);
comp mult (yl, y2, 21, 22, y1, y2);
if sl = s1 + ylAs2 = s2 + y2 then go to L;
sl :=38l + yl; 82 := 352 + y2
end;
L: end

CERTIFICATION OF ALGORITHMS 191 AND 192

HYPERGEOMETRIC AND CONFLUENT HYPER-
GEOMETRIC [A. P. Relph, Comm. ACM 6 (July
1963), 388]

Henry C. THacHER, JR.* (Reed 2 Dec. 1963)

Argonne National Laboratory, Argonne, Iil
* Work supported by the U.S. Atomic Energy Commission.

The bodies of these two procedures were transcribed for the
Dartmouth ScaLp processor for the LGP-30 computer. No syn-
tactical errors were found, and the programs gave results agreeing
within roundoff (7D) with tabulated values for the following spe-
cial cases: 2F1(0.5,0.5; 1; k%) = (2/x) K(k); 2F.(0.5,—0.5;1;k%) =
(2/m) E{k) where K and E are complete elliptic integrals of the first
and second kinds; 1F,(.5; 1; iy) = Jo(z), and with F;(—1;0.1; z);
1F1(—0.5;0.1; z), and F1(—0.5;0.5; z).

It should be observed that the function calculated by 191 is
Fi(a, b; c; 2), not \Fa(a, b; c; 2) as atated in the comment. These
programs evaluate the functions by direct summation of the hy-
pergeometric series. They are, therefore, relatively general, but
inefficient. Precautions must also be taken against attempting to
compute outside the range of effective convergence of the series.

192-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 193

REVERSION OF SERIES

Hex~ry E. Frrris

Aecronautical Research Laboratories, Wright-Patterson Air
Force Base, Ohio

procedure SERIESRVRT (A, B, N);

value A, N; array A, B; integer N;

comment This procedure gives the coefficients B[:] for the series
z =1y + ZBl] Xy 11 (¢=2,3, ---, n) when the coefficients
Al[7] of the seriesy = z + ZA[¢] X 2 1 ¢ are given. The procedure
uses successive approximations after writing yr.. = r — ZB[{] X
yL 11 (¢=2,3,---,L+2and L=0, 1, ... , N—2) starting with
Yo = ;

begin integer ¢, 7, k, m;
array @, R [0 : N];

real s;
All] := B[0] := 0;
B[l] :=1;

fork :=1step 1l until N — 1 do
begin Blk+1] := 0;
for ¢ := 0 step 1 until ¥ + 1 do
R[?] := 0;
for j :=k 4+ 1 step — 1 until 1 do
begin Q[0] := R[0] — A[j];
for i := 1 step 1 until &t + 1 do

Qli] := R[];
for ¢ := 0 step 1 until kt + 1 do
begin s := 0;

for m := 0 step 1 until 7 do
s 1= s + Blm] X Q[i—m];
R[i] := s
end for ¢;
end for j;
for ¢ := 2 step 1 until k + 1 do B[7] := R[7]
end for k;
end SERIESRVRT

CERTIFICATION OF ALGORITHM 193
REVERSION OF SERIES [Henry E. Fettis, Comm.
ACM 5, 1962]
Henry C. THACHER, JR.*
Argonne National Laboratory, Argonne, Ill.
* Work supported by the U. S. Atomic Energy Commission

The body of Algorithm 193 was tested on the LGP-30 using the
ALaoL 60 translator developed by the Dartmouth College Com-
puter Center. No syntactical errors were found. The program suc-
cessfully found the first four coefficients for the series for in(1+y)
from the first four coefficients of the series for y = ¢= — 1.

193-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 194

ZERSOL

CarrLos DoMINGO

Universidad Central, Caracas, Venezuela

procedure ZERSOL (h, YI, m, epsi, F, f, Z); real h, epsi, f;
array YI, Z; integer m; procedure F;

comment ZERSOL finds the simple zeros of the solution Y1(Y0)
of the set of m first order differential equations Yj = Fj(Y0,
Y1, ..., Ym). his the step of integration, epsi the error with
which the zeros are to be determined (assuming no error in the
process of integration). F(YS, 7, v) is a procedure which calcu-
lates the functions Fj, taking the arguments from the array
YS and leaving the results in ». The search for zeros stops
when Y0 > f. The zeros are stored as elements of the array Z.
MR is a 4 X 4 matrix with the coefficients of a Runge-Kutta
method. For example MR may be row-wise 0.5,1,0.5,0,1 — q,
1—-a,1—4¢,0514a,14a,1+a,0,4,4, 0.5,0.5 where
a = sqri(2);

begin real v, 7, d; integer j, §, n, k; array Q[l:m], Y8[0:m],
YAL [0:m], YT[1:m], MR[1:4,1:4]; switch S := NOZ, ZER;

ni=1;
for d := h while YI[0] 5 fdo
begin s := 1;

R1: for j := 1 step 1 until m do
begin Q[j] := 0.0; Y8[s]:= YI[f]; YT[j] := YI[j] end;
YS8[0] := YI0];
R2: fork := 1 step 1 until 4 do
begin YS[0] := YS[0] + MR[k, 4] X d;
for j := 1 step 1 until m do
begin F(YS,j,v); v :=v X.d;
r := MR[k,1] X » — MR[k,2]X Q[;];
YT(] o= YTU] + r;
Q5] := Q] + 3.0 X r — MR[k3] X v

end;

for j := 1 step 1 until m do Y8[j] := Y T[]
end;

go to S(s);

NOZ: if sign(YI[1]) = sign(YS[1]) then go to IT;
TR: forj:= 0step luntil m do YI[j] := Y8[j]; gotoR2;
IT: 8 := 2;
for j := 0 step 1 until m do YAL[j] :=YS[j];
ZER: d := d/2;
if d < epsi then go to STZ;
if sign(YI[1]) = sigr(YS[l]) then go to TR else go to R1;
STZ: Zn) := YI[0] := YI0Ol+d; n:=n+1;
for j := C step 1 until m do YI[j] := YAL[j]
end;
end

194-P 1-

0

COLLECTED ALGORITHMS FROM CACM
195-P 1-R1
ALGORITHM 195 VIN] := VIN]/CIN 1];
BANDSOLVE IM = 2;
DonaLp H. THURNAU for B := N — 1 step —1 until 1 do
. . . begin for J := 2 step 1 until JM do

Marathon Oil Co., Littleton, Colo. VIR] := VIR] — C[R, J] X V[R—1+J1;
procedure BANDSOLVE (C,N,M,V); value N,M; integer if JM =« M then JM :=JM + 1

N,M; real array C,V;
comment BANDSOLVE is effective in solving the matrix equa-
tion AX = B when the matrix A is of large order and sparse
such that a narrow band centered on the main diagonal includes
all the non-zero elements. Parameter N is the order of 4, and M
is the width of the band, necessarily an odd number of elements.
BANDSOLVE is very efficient because it operates only on the
band portion of the matrix 4, given in the N by M array C. The
band elements of a given row of A appear in the same row of C
but shifted such that element A4 [1,5] becomes C[z,;—i+ (M+1)/2].
All band elements whether zero or non-zero must be given. The
values of undefined elements of C, such as C[1,1] or C[N,M], are
irrelevant. The array V initidlly contains the vector B. After
solution, the array V contains the answer vector X. The con-
tents of array C are destroyed during solution which is done by
Gauss elimination with row interchanges, followed by back sub-
stitution;
begin integer JM,LR.I,PIV.RJ; real T;
LR := (M+1) + 2;
for R := 1 step 1 until LR — 1 do
for I := 1stepluntil LR — Rdo
begin for J := 2 step 1 until ¥ do
ClRJ-1] := C[RJ];
CIR,M] := CIN+1-RM+1—1] :=0
end of row shifting and zero placement;
for] := 1stepluntil N — 1do
begin PIV :=I;
for R := I + 1 step 1 until LR do
if abs(CIR,11)>abs(C[PIV,1]) then
PIV := R;
if PIV = I then
begin 7T := V[I];
V(I] := V[PIV];
VIPIV] := T;
for J := 1 step 1 until M do
begin T := C[IJ];
C[IJ] := C[PIV J];
CIPIVJ] :=T
end J
end of row interchange;
V(] := V{II/CII,1];
for J := 2 step 1 until M do
ClIJ] := ClIJ)/C(L1];
for R := I + 1 step 1 until LR do
begin 7' := C[R,1]
VIR] := VIR] — T X V[I];
for J := 2 step 1 until M do
C[RJ—-1] := C[RJ) — T X C[IJ};
CIR,M] := 0
end R;
if LR # N then LR := LR + 1
end of triangularization;

end of back solution
end BANDSOLVE

Remark on Algorithm 195 [F4]
BANDSOLVE [Donald H. Thurnau, Comm. ACM 6
(Aug. 1963), 441]

Ernst Schuegraf [Recd. 1 Mar. 1971]
Department of Mathematics, St. Francis
University, Antigonish, Nova Scotia, Canada

Xavier

Algorithm 195 was transliterated into Fortran IV for the IBM
360/50. Various matrices with different values of N and M were
used. The execution time was recorded and the accuracy of the
results was checked.

Execution time [sec]

M=1 M=15 M=21 M=25
50 2 7 1.1 1.9
100 .6 1.6 2.5 4.2

The execution time shows the expected proportionality to
((M — 1) + 2*-N. (Note the definition of M!) When checking
the results, it was found that the algorithm failed for singular and
near singular matrices. To protect against this, it is recommended
to introduce a tolerance eps for a test on singularity and a label
fail. This requires the following changes in the procedure declara-
tion:

procedure BANDSOLVE (C,N,M,V eps,fail);
It is necessary to insert the following statements in the blockhead
of the procedure:

real eps; label fail;
After the statement piv := r; insert:

if abs (Clpiv, 1)) < eps go to fail;

N
N

(I

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 196

MULLER’S METHOD FOR FINDING ROOTS OF
AN ARBITRARY FUNCTION

RoserT D. RopMAN

Burroughs Corp., Pasadena, Calif.

procedure MULLER (pl, p2, p3, mxm, nris, epl, ep2, swl, sw2,
sw3, swr, rri, irt);
value pl, p2, p3, mam, nrts, epl, ep2, swl, sw2, sw3, swr;
integer mam, nris; boolean swl, sw2, sw3, swr;
real pl, p2, p3, epl, ep2; array rri, irt;
begin comment procedure MULLER finds real and complex
roots of an arbitrary function. pl, 2, and p3 are starting values.
Roots nearest these points are found first. mam is the maximum
number of iterations to be made in finding any one root. epl and
ep2 are specified as tolerance parameters. If ABS((Xi1—X:)/
Xiy1) < epl or if the function value and modified function value
are both less than ep2, a root has been found. If swl is true,
then each iterant of each root is printed. If sw2 is true, the
value of each root found is printed. If sw3 is true, then, when
applicable, the complex conjugate of each root found is admitted
as a root. If swr is true, only real roots are found. rr¢ and ir¢
contain the real, and imaginary parts of each root found. Proce-
dure function is the function generator and proecedure com-
plex performs necessary complex operations;
boolean bool; integer cl, ric, ¢, itc; real rxl, rz2, rz3, ixl,
152, w3, rroot, iroot, rdnr, idnr, i1, itl, frroot, firoot, rfxl, rfx2,
rfx3, ifzl, ifx2, ifx3, rh, ik, rlam, ilam, rdel, idel, {2, i12, 3, it3, 4,
itd, rg, ig, rden, iden, rfunc, tfunc;
switeh j :="m2, m3, m4, m7, mll;
procedure function (reale, imag, reval, ieval);
value reale, tmag; real reale, imag, reval, teval;
begin comment Coding for this procedure must be inserted at
compile time. reale and imag are the real and imaginary parts
of the dependent variable. reval and Zeval, the real and imaginary
parts of the function;
end function;
procedure complex (a, 1a, b, b, k, ¢, ic);
value a, 7a, b, tb, k; integer k;
real a, 1a, b, ©b, ¢, ic;
begin real temp; switch j := mpy, dvd, sqt:
go to j[k];
mpy: c¢:=aXb—iaXib; ic:=aX ib-+ ia X b; go to exil;
dvd: if (1b=0) A (b==0) then begin ic := 0;¢ := 1;
gotoerilend;lemp :=b 1T 24 4b T 2;
¢ = (aXb+iaXib)/lemp; ic := (taXb—aXib)/iemp;
go to exit;
sqt: if (la=0) A (a<0) then
begin ¢ := 0; 4c := sqri (—a) end
else if 7a = 0 then
begin ¢ := sgri(@); ic := 0 end
else begin temp := sqrt (a12+ia12);
¢ = sqrt ((temp + a)/2);
i¢ := if (lemp — a) < 0 then 0
else sqrt {(temp — a)/2) end;
if ((b+¢)T 2+ (@b+ic)T 2) < ((b—c)T 2+ @Eb—ic) T 2)
then beginc := b — ¢; ic :=1b — icend
else beginc := b + ¢; ic := b + ic end;
exii: end of complex;
start: for i := 1 step 1 until nrisdo rrt [¢] := irt [£] := 0; rtc :=0;

196-P 1- 0

m0: izl := iz2 := 123 := cl, 1= iroot := tic ;= 0;
rroot 1= pl; bool := false;
ml: cl;:=cl+1; rdnr :=1; ddnr :=0;
for ¢ := 1 step 1 until ric do
begin
complex (rdnr, idnr, rroot-rrt [2], iroot-irt [i], 1, t1, 5£1);
rdnr = tl; idnr = il
end;
function (rroot, iroot, 11, itl);
complex (t1, itl, rdnr, idnr, 2, frroot, firoot);
go to jcl];

m2: rfxl := frroot; ifzl := firoot; rroot := p2;
go to ml;

m3: rfx2 := frroot; ifr2 := firoot; rroot := p3;
go to ml;

m4: 7fz3 := frroot; tifz3 := firoot; rxl := pl;
rz2 1= p2; rx3 := p3; rh := re3 — rx2;

th = 123 — i22;
complex (rh, th, rx2— rzl, i22— ixl, 2, rlam, itlam);
rdel := rlam + 1; idel := ilam;
m9: if (rfxl=1fz2) A (rfe2=rfz3) N\ (ifel=1f22) A\ (ifz2=1fx3)
then begin rlam := 1; dlam :={0; go tom8end;
complex (rfzl, ifzl, rlam, ilam, 1, i1, itl);
complex (rfx2, ifx2, rdel, idel, 1, 12, i12);
=il — {2 + rf23; <l := itl — 012 + ifx3;
complezx (rdel, idel, rlam, ilam, 1, 2, i12);
complex (11, itl 12, 482, 1, 3, 4t3);
complex (rfx3, ifx3, i3, it3, 1, t1, 4l);
tl ;= —4 X {1; 4t := —4 X 7t1;
complex (rfx3, ifz3, rlam-+-rdel, tlam+idel, 1, 12, it2);
complex (rdel T 2—idel T 2, 2X rdel X idel, rfz2, ifx2, 1, 3, it3);
complex (rlam12—ilam 12, 2XrlamXilam, rfzl, ifzrl, 1,
t4, i14);
rg = t4 — 13+ 12; g = itd — i3 + i12;
if swr A ((rg12+11)<0) then
begin rden := rg; iden := ig := 0 end
else complex (rgt2—ig1 2+, 2XrgXig+itl, rg, g, 3,
rden, iden);
complex (—2Xrfx3, —2Xifz3, rdel, idel, 1, 11, 1tl);
complex (t1, itl, rden, iden, 2, rlam, ilam);
m8: ite := itc + 1;
rzl 1= ra2; rx2 := rx3; rfxl 1= rfz2;
izl 1= 122; 22 = 123; ifzrl := if22;
complez (rlam, ilam, rh, ih, 1, 11, it1);
th := t1; th :=iil;
m6: rdel := rlam + 1; didel := ilam; rz3 := rz2 + rh;
123 1= 122 + th; ¢l := 3; rroot := rz3;
iroot := iz3; go to ml;
m7: rfx3 := frroot; ifz3 := firoot;
function (rz3, 123, rfunc, ifunc);
complex (rfx3, ifx3, rfx2, ifx2, 2, t1, itl);
if (1112+4112) > 100 then
begin rlam := rlam/2; rh := 1h/2;
th := th/2; go to mb end;
if swl then . . .
comment option to output iterant and associated function
values;
t1 := rx3 — rx2; tl 1= 123 — ix2;
complex (i1, itl, rz2, 122, 2, 12, it2);

rfx2 :
z2 :

rfz3;
ifz3;

tlam = ilam/2;

COLLECTED ALGORITHMS (cont.)

if sqrt (1212414217 2) = epl then go to finl;
if (sqrt (rfz3 1 2+if2312)Zep2) A
(sqrt (rfunc 1 2+ifunc | 2)<ep2) then go to fin 2;
go to if itc = mxm then fin3 else m9;
finl: if sw2 then . ..

comment option to output root; go to ml2;
fin2:if sw2 then . ..
comment option to output root; go to ml2;

fin3: if sw2 then ...
comment no convergence, option to output last iterant;
bool := true;
ml2: ric := rtc + 1; rrifric} := rad; irt[rtc] := dxB;
if rtc = nris then go to exit;
if (ABS(i23)>epl) A sw3 /A — bool then

begin 723 := —123; funclion (rz3, 123, rfunc, tfunc);
rroot = rx3; troot := 123; cl = 4;
go to ml;

mll: if sw2 then . ..
comment the complex conjugate of the last root found is accept-
able. Option to output this root;
ric 1= ric + 1; rri[ric] := rx3;
end else go to m0;
if rt¢ < nrts then go to mo0;
exit: end of procedure MULLER

iri[ric] := 23

CERTIFICATION OF ALGORITHM 196 [C5]

MULLER’S METHOD FOR FINDING ROOTS OF

AN ARBITRARY FUNCTION [Robert D. Rodman,
Comm. ACM 6 (Aug. 1963), 442]

Viraginia W, WHITLEY (Reed. 11 Oct. 1966, 24 Feb. 1967
and 8 Sept. 1967)

Environmental Research Corp., Alexandria, Va.

KEY WORDS AND PHRASES:
CR CATEGORY: 5.15

equation roots, function zeros

The Algorithm. Algorithm 196 has been compiled in For-
TRAN IV on the CDC-3600 and the IBM-7090 both in single and in
double precision. The single precision versions used the system-
suppljed complex arithmetic subroutines; the double precision
versions used subroutines agreeing as closely as possible with those
described in the IBJOB Manual [4]. Thus, the algorithm tested
differs from the published algorithm only in the complex square
root subroutine.

There are five remarks to be made about Algorithm 196.

(1) As the Algorithm stands, if one of the values P1, P2, or P3
is a root of the equation and if more than one root is to be found,
then the procedure will fail with a 0/0 form in the computation of

rie

Fi(2) =) f(2)/ H(z—-za-
Our decision was to terminate the procedure with a message to the
user. The referee has suggested an alternative:

ml: rdnr :=1; ddnr := 0
for ¢ := 1 step 1 until ric do

begin

if rroot = rrt [t] A iroot < irt [Z] then

begin
if cl = 0 then Pl := rroot := 2 X rroot + ¢pl else
if c1 = 1 then P2 := rroot := 2 X rroot 4+ epl else

if c1 = 2 then P3 := rroot := 2 X rroot 4+ epl else
begin comment we have converged to a zero found pre-
viously, we accept it without any test;

196-P 2- R1

go to finl;
end;
go to ml
end;
complex (rdnr, idnr, rroot — rrt [z}, troot — rt [4], 1, i1,
2l); rdnr = {1; ddnr := il
end;
cl :=cl + 1;
Sfunction (rroot, iroot, {1, ifl);

(2) The logical variable bool should be called by name in the
procedure statement and should be an array of the same dimension
as rrt and irt. Otherwise, unless sw2 is frue, the user will not know
which of the “roots’ satisfies the convergence criteria and which
was returned by default.

(3) The statement fin2 is unnecessary, since it is identical to
finl.

(4) Frank [1] states, “This procedure (Muller’s method) works
readily for functions having simple roots. On the other hand, if
a function possesses multiple roots, £, then F.(z) is indeterminate
when z approaches a ¢ which may already have been found. How-
ever, even in this casé the process has never failed. In fact, roots
of multiplicity six or more have been found successfully. This is
primarily due to the fact that multiple roots are found to much
less accuracy than simple roots and behave, in effect, like clustered
roots.”’ In a private communication, Frank explained that the sub-
routine described in [1] included steps which perturbed roots
already found, forcing them to behave like clustered roots. Frank’s
remark is not true for Algorithm 196, as a simple test with (z2—2)2,
requesting two roots, will demonstrate.

(5) The complex square root in procedure complexr contains at
least two errors, not the least of which is that it fails to take ac-
count of the location of the complex number whose root is being
computed. The referee has pointed out a second error: “The 5th
line after the line labelled sq¢¢ should be

¢ := sqri((temp—+a)/2) X sign(ia).

The construct if (temp—a) < 0 then 0 is unnecessary as the
Boolean expression cannot be true. Moreover, even with correc-
tions the complex square root included is unsatisfactory because,
when ¢ is small, either temp — a or temp + a will be a difference
of two nearly equal numbers and loss of significance will occur.”
It is suggested that the four lines beginning four lines below the
label sq¢ be replaced by
else begin temp := sqri((abs(a)+sgri(a T 2+1a 12))/2);
ic := .5 X ta/temp;
if a > 0 then ¢ := temp
else begin ¢ := abs(ic);
i¢c = sign(ia) X temp
end;
end;
if ((b+ec) T2+ (Eb+ic) T2) < ---
Under some systems, the case i = —0 might cause problems.
With the possible exception of the case <@ = —0, this coding will
choose the square root whose real part is positive.

Modifications to the Algorithim. Both the single and
double precision versions have been altered as suggested by Traub
{3, p. 212]:

2f;

(3

pi = wi = {w? — 4:f l2c, zi, 2ialt

fi = f(z.‘)

Zigl = 2 —

wi = flai, zead] + (20 — zi)flz, 201, 2i9]

flzs, 2ol — flzi, 200l
2y — Zi-2

flzi, 2im1, 2i-0] =

COLLECTED ALGORITHMS (cont.)

o, 2] = T It
Zi — 24

Both Algorithm 196 and Traub’s iteration function choose the
sign of the square root to maximize the modulus of the denomi-
nator.

Although the two iteration functions are equivalent, Traub’s
requires fewer operations (8 additions, 5 multiplications and
3 divisions compared to Muller’s 10 additions, 15 multiplications
and 2 divisions), less storage and less computing time.

The behavior of the coded version of Traub’s method differed
little from that of Algorithm 196. Given the same starting values,
both methods converged in the same number of iterations, even
though the first iterates were sometimes different. Example 1
compares Muller and Traub in single precision with double preci-
sion. The difference between the first iterates in single precision
is the result of roundoff due to the fact that the initial function
values, f(P1), f(P2), and f(P3), are very close together. In double
precision the two methods agreed to 17 significant figures (the
CDC-3600 carries approximately 24 decimal digits in double
precision). :

Comparigon of double versus single precision results on the same
machine and double versus double (single versus single) on two

Ezample 1. f(z) = 2® — 1

Pl = 1875 f(P1) = —.999999999990997115799543 epl = 5 —6

P2 = 375 F(P2) = —.999999996975696621957785 ep2 = .5y —6

P3 =5 f(P3) = —.999999046324683493750000 nris = 2
raied s o)

fury
n

Traub [8.959064917 —001{—8.890177130 —001
8.9590562323582572—001| — 8. 8901986473910256 — 001

p {Alg.l% 8.959044683 —001|—-8.890227259 —001

1.009184101 +000
1.009182792 +000]
1.0091833539604292+ 000

2.006266970 —001
2.005955638 —001
2.0060892685123016 — 001

[

d.p

s Alg.196
P Traub

d.p

—001/—1.562027260 —001

Traub

3 S‘p_{Alg.IQG 9.915438059
d

9.915451528 —001
9.9154457471920591 — 001

—1.561798028 —001
—1.5618964171373523 — 001

4lsp Alg.196 19.996899988 —001/—6.181798671 —003
| Traub (9.996900961 —001]|—6.179863674 —003
d.p. 9.9969005435603457 — 001/ —6.1806941810976143 —003
5ls Alg.196 9.999986299 —001{—2.740146010 —005
P\ Traub 19.999986307 —001(—2.738516196 —005
d.p. 9.9999863036901786—001| —2.7392263226776617 — 005
6ls Alg.196 {1.000000000 +000| 3.492459655 —009
P\ Traub |1.000000000 +000| 3.492459655 —009
d.p 1.00000000019720484-000| 3.9440963812509629 — 009

196-P 3- 0

Example 2. Acoustic Waveguide Function

f(z) = Pin—%—ts)+pcos 2=8), p = 2.50

P = 4/(k*— 2%, Re(P)<O0; S = +/[(z/e)* — k%, Re(s) <0;
k=00 ¢=0288; Pl=00, P2=0.02 P3=004
sm x4y S(s) = u 4 4v
Itera-
tion
x ¥ % v

0.67672247—01/0.44008261—02/0 . 24001462—00|0. 4901446601
0.71677143—01/0.51274250—020.23259824—01/0.98558515— 02
0.72102452—01(0.53056952 —02/0 . 20655826 —03(0.19331276 — 07
0.72106262—01{0. 53092607 —02|0.39539112—0710.40078193 —07

R O

Ezample 8. The 20 Roots of Unity

Starting values at approximately 19, 27, and 35 degrees. Conju-
gates accepted as roots. epl = ep2 = .50 — 7. Roots are at €771,

r=20,-,19
Number
Root r . of
iterations
0 3 5
1 17 *
2 4 15
3 16 *
4 7 22
5 13 *
6 9 14
7 11 *
8 5 14
9 15 *
10 1 10
11 19 *
12 2 7
13 18 -
14 6 10
15 14 *
16 0 5
17 8 8
18 12 *
19 10 2

» Asgterisk in column 3 indicates conjugate taken; i.e., 21 = 2o,
23 = Z , ete.

different machines have been made. In every case differences can
be satisfactorily explained by (1) different BCD-binary conver-
sion on different machines, (2) different word lengths, or (3) dif-
ferences in library subroutines on the various machines.

Miscellaneous Comments. Both versions of Muller’s method
(Algorithm 196 and Traub’s iteration function) have the advan-
tage over other one-point-with-memory methods in that it is
possible to locate complex zeros using real starting values. There
is, of course, the possibility of spending unnecessary time doing
complex arithmetic. As a general purpose library routine, unless
one is looking for complex zeros, there are other iterative functions
that require less space and have the same order; there are also
others requiring less space and enjoying higher order, although
they usually involve computing derivatives. For our purposes, the
Traub version of Muller’s method has proved quite satisfactory.

COLLECTED ALGORITHMS (cont.)

Example 2 is included to indicate the behavior of the Algorithm
using a non-algebraic function. With this function both Algorithm

196 and the Traub modification agreed exactly except for a dif-
ference in the last digit in the first iterate.

Example 3 is included to show the order in which the 20 roots
of unity are found and the number of iterations required to attain
the specified accuracy. Values were checked against the NBS
Tables of Sines and Cosines to 1§ Decimal Places. All but two roots
were correct to 9 significant figures; the remaining two were
correct to 8.

Acknowledgment. The support of this work by the Atomie
Energy Commission, Contract AT(29-2)-1163, is gratefully ac-
knowledged.

REFERENCES: .

1. Frank, WErRNER L. Finding zeros of arbitrary functions.
J. ACM 5 (1958), 154-160.

2. MuLLER, Davip E. A method for solving algebraic equations
using an automatic computer. MTAC 10 (1956), 208-215.

3. Traus, J. F. Iterative Methods for the Solution of Equations.
Prentice-Hall, Englewood Cliffs, N. J., 1964.

4. IBM Systems Reference Library. File No. 7090-27, Form
C28-6389-2. IBM 7090/7094 IBSYS Operating System. Version
13. IBJOB Processor.

AN

196-P4-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 197

MATRIX DIVISION

M. WeLLs

University of Leeds, Leeds, England

procedure Pos Div (b, ¢, m, n, solve);
value m, n, solve; array b, ¢c; integer m,n; Boolean solve;
comment The matrix ¢, with m rows and n columns, is divided
by the positive definite matrix b, of order m, by the square root
method (see Fadeeva, V. N., Computational Methods of Linear
Algebra, Chap 2, §10). The upper triangle of b is replaced by
an upper triangular matrix N such that N:N = b. The other
elements of b are undisturbed. The matrix ¢ is replaced by b~'c.
The Boolean solve is used as a switch. If its value is true, then
it is assumed that an earlier entry to Pos Div has left the matrix
N in place, and a further division of ¢ by b takes place;
begin integer ¢, j, k;
real procedure dot (a, b, p, ¢);
value ¢; real a, b; integer p, g¢;
comment This is innerproduet, modified to define a function
designator;
begin real s; s := 0;
for p := 1 step l until ¢do s := s + a X b;
dot := s end dot;
Start of program: if solve then go to back substitution;
for 7 := step 1 until m do
begin b [z, 7] := sqrt (b[i, i] — dot (b[7,7]12,1,7,¢ — 1));
for j := 7 4+ 1 step 1 until m do
ble,5] := (bli,j] — dot (blk,t], blk,5l, k, i—1))/bli,1]
end formation of upper triangular matrix;
back substituton: for i := 1 step 1 until n do
begin for j := 1 step 1 until m do
clé,j] := (clZ,5] — dot (blk,], cli k], k, 7—1))/bl3,5];
for j := m step —1 until 1 do
cli,g] = (c[i,5] — dot (Oli,m+1—k], cli,m+1-kl, k, m—3))/
bly,71
end of double back substitution
end of Pos Div

CERTIFICATION OF ALGORITHM 197
MATRIX DIVISION [M. Wells, Comm. ACM 6 (Aug.
1963), 443]
M. WeLLs (Recd 18 Nov. 63)
University of Leeds, Leeds, England
The procedure was tested on a Ferranti Pegasus, using the
ALGoL compiler developed by the de Havilland Aircraft Company

at Hatfield. The line after the one labelled ‘start of program’
should read

for ¢ := 1 step 1 until m do

(the first 1 was omitted).
The statement labelled back substituton is incorrect, and should
read

back substitution: forj:= 1stepl until ndo
begin for i := 1step | until m do
cli il i = (clt,i] — dot (blk,], clk,s], k,i—1))/bl3, il;

197-P1- 0

for 7 := m step —1 until 1 do
cli,j] := (e[i,5] — dot (b[i,m+1—kl, clm+1—k,jl, k,m—7))/blii]
end of double back substitution

With these changes the program was operated successfully on
a number of small test problems. The procedure is only applicable
to symmetric positive definite matrices, and no systematic at-
tempt has yet been made to assess the accuracy of the results.

The word ‘symmetric’ should be inserted before ‘positive
definite’ in the comment.

It is interesting to note that the original, incorrect version of
the procedure will divide one symmetric matrix by another, and
80 ean be used for matrix inversion.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 198

ADAPTIVE INTEGRATION . AND
INTEGRATION

WirLiaAM MARSHALL McKEEMAN
Stanford University, Stanford, Calif.

begin comment This program illustrates the declar~tion and
call of a procedure used to numerically approximate definite
integrals and multiple integrals. The integrand is an expression
substituted for the first formal parameter and must be a func-
tion of the simple variable replacing the second formal pa-
rameter. Multiple integration is accomplished by substituting
a complete call of Integral for the first formal parameter. Note
that in this case that the limits of integration on the inside calls
may be functions of the variable of integration on the outer
call. The parameter rule selects a Newton-Cotes formula which
matches a polynomial of degree = rule to the function in the
interval of integration. (See Hamming, Numerical Methods for
Scientists and Engineers, Sec. 12.2). In any case, the procedure
integral adapts its step size to the function in seeking to mini-
mize the number of function evaluations. The program has been
tested and run on a variety of functions using the ALgoL com-
piler on the Burroughs B-5000.;

real procedure Integral (F) a function of the real variables: (x)
between limits: (a,b) polynomial degree: (rule) tolerance: (eps);

value a, b, rule, eps; integer rule;

real F, x, a, b, eps;

begin comment set up the parameters for the recursion before
calling the procedure NC;

switch nct := R1, R2, R3, R4, R5, R6, R7;

real array cf, fn [L:rule+1];

integer k; real da, ab;

real procedure NC(F x,a.da,fn,k,cf ,ruleeps,es,ab,lvl);

value a, da, rule, eps, es, lvl; real array cf;

integer k, rule, 1v1; real F, z, a, da, fn, eps, es, ab;

begin comment NC is the adaptive heart of Integral;
real array fc[l:rule+1,1:rule+1], est, zx[l:rule+1];
integer ¢, j; real dr, int, ep;
real procedure SUM (term, index, upperlimit);

MULTIPLE

real term; integer index, upperlimit;
begin real t; ¢ := 0;
for index := 1 step 1 until upperlimit do
t =t 4 term;
SUM =t
end of SUM;
comment begin the integration by evaluating F on the mesh
points;

for k := 1 step 1 until rule 4 1 do fe[k,k] := fn;
dz = da/(ruleX (rule-+1));
= q;
for ¢ := 1 step 1 until rule + 1 do
for j := 1 step 1 until rule do
begin
if.j = 1 then zz[7] := z;
if 7 = j then feli,j] 1= ¢f[j] X F;
x =z -+ dx;
end having done all necessary function evaluations;
for ¢ := 1 step 1 until rule do
feli, rule+1] = fe[t+1,11;
ep = eps/sqri(rule+1);

198-P 1- 0

comment eps/(rule + 1) is the value to give an absolute
error bound. of eps in the final answer. It proves too striet in
practice;
dx = dx X rule;
comment compute the integrals of the subintervals;
for ¢ := 1 step 1 until rule + 1 do
est[t] := SUM (fc[¢,j],5,rule+1) Xdz;
ab 1= ab — abs(es) + SUM (abs(est[i]),z,rule+1);
comment ab is the area under gbs(F). It is used in computing
the relative error upon which to terminate;
int = SUM (est[z],i,rule+1);
if 191 = 100/(rule+1) then go to error;
NC := if abs(es—int) < eps X ab A es = 1.0 then in!
else SUM (NC (F .x,xx[i],dz,fcli,f],7,¢f ,rule,ep est[i], ab,1vl+1),
7,rule+1);
go to return;
error;: NC := int;
comment abs(es — int) is the approximate error caused by
terminating the recursion. In most cases, termination at
this level will not adversely affect the accuracy of the result;
return:
end of NC;
comment now initialize the Newton-Cotes coefficients;
go to nct [rulel;
R1: c¢f[1] := ¢f[2] := 1.0/2.0; go to compute;
R2: cf(l] := ¢fi3] := 1.0/6.0; cf[2] := 4.0/6.0;
comment Rl is trapezoidal rule, R2 is Simpson’s rule;
go to compute;

R3: cf(l] := cf[4] := 1.0/8.0;

¢f(2] := ¢f[3] := 3.0/8.0; go to compule;
R4: c¢f(1) := ¢f[6] := 7.0/90.0;

cf[2] := cf[4] := 32.0/90.0;

¢f[3] := 12.0/90.0; go to compute;
B5: cf[1] := ¢f[6] := 19.0/288.0;

¢fI2] := ¢f[6] := 75.0/288.0;

¢f[3] := ¢f[4] := 50.0/288.0; go to compuie;
R6: cf[1) := cf[7] := 41.0/840.0;

cf[2] := ¢f[6] := 216.0/840.0;

¢f[8] := ¢f[5] := 27.0/840.0;
cf[4] := 272.0/840.0; go to compute;
R7: cf[1] := ¢f[8] := 75.1/1728.0;
cf[2] := ¢f[7] := 357.7/1728.0;
cf[3] = ¢f[6] := 134.3/1728.0;
cfl4] := c¢f[5] := 298.9/1728.0;
compute: da := b — a;
for k := 0 step 1 until rule do
begin
z:=a + k X da/rule;
falk+1] := F X cflk+1];
end;
ab := 1.0;
Integral := NC(Fx,a,da,fnlklk,cf ,ruleeps,1.0ab,0);
end of Integral;
comment Now evaluate the integral of 1.0/sqri(abs(z-+y))
on the unit disk in the z,y-plane;
real 2, y, answer;
answer := Inlegral(Integral(1.0/sqrt(abs(z+y)), =,
—sqrt(1.0—y 12), sqrt(1.0—y 1 2), 7, 0.001),¥,—1.0,1.0,3,0.001);
end of program;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 199

CONVERSIONS BETWEEN CALENDAR DATE
AND JULIAN DAY NUMBER

RoBERT G. TANTZEN

Air Force Missile Development Center, Holloman AFB,
New Mex.

procedure JDAY (dm,y,5);
integer d,m,y,j;
comment JDAY converts a calendar date, Gregorian calendar,
to the corresponding Julian day number j. From the given day
d, month m, and year y, the Julian day number 5 is computed
without using tables. The procedure is valid for any valid
Gregorian calendar date. When transcribing JDAY for other
compilers, be sure that integers of size 3 X 10® ¢an be handled;
begin integer ¢, ya;
ifm > 2thenm :=m — 3
else beginm :=m + 9; y:=y — 1 end;
c:=y + 100; ya:=y —100 X c;
j 1= (146097 X ¢) +4- (1461 X ya) <+ 4+ (153X m+2) =+ 5+d+1721119
end JDAY

procedure JDATE (j,d,my);
integer j,dm,y;
comment JDATE converts a Julian day number j to the corre-
sponding calendar date, Gregorian calendar. Since j is an integer
for this procedure, it is correct astronomically for noon of the
day.JDATE computes the day d, month m, and year y, without
using tables. The procedure is valid for any valid Gregorian
calendar date. When transcribing JDATE for other compilers,
be sure that integers of size 3 X 10® can be handled:
begin j := j — 1721119;
y = (4Xj—1) + 146097; j:=4Xj— 1 — 146097 X y;
d:= j+ 4;
7= (4Xd+3) + 1461; d:=4Xd+ 3 — 1461 X j;
d:=({d-+4)+4;
m = (6Xd—3) + 153; d:=5Xd — 3 — 153 X m;
d :=(d+5) + 5;
y:=100X y+j; ifm<1l0thenm:=m+3
else beginm :=m — 9; y :=y + 1 end;
end JDATE

procedure KDAY (d,m,yak);

integer d,m,yak;

comment KDAY converts a calendar date, Gregorian calendar,
to the corresponding serial day number k. From the given day
d, month m, and the last two decimals of the year, ya, the serial
day number % is computed without using tables. The procedure
is valid from 1 March 1900 (k=1) to 31 December 1999
(k = 36465). To obtain the Julian day number j (valid at noon)
use § = k + 2415079;

begin if m > 2 then m :=m — 3

else beginm :=m + 9; ya := ya — 1 end;

k 1= (1461Xya) + 44-(153Xm+2) + 5+ d

end

procedure KDATE (k,d,m,ya);
integer k,d,m,ya;

199-P 1- 0

comment KDAI'E converts a serial day number k to the corre-
sponding calendar date, Gregorian calendar. It computes day d,
month m, and the last two decimals of the year, ya, without
using tables. The procedure is valid from &£ = 1 (1 March 00) to
k = 36465 (31 December 99) for any one century. For the 20th
Century the relation between k¥ and theulian day number j
(at noon) is j = k 4+ 2415079;
begin ya 1= (4Xk—1) + 1461; d := 4Xk — 1 — 1461 X ya;
d:= (d+4) + 4; m := (5Xd—3) + 153;
d:= 5Xd — 3 — 153X m;
d := (d+5) + 5;
if m < 10 then m := m + 3
else begin m := m — 9; ya := ya 4+ 1 end;
end KDATE

CERTIFICATION OF ALGORITHM 199 (Z]

CONVERSIONS BETWEEN CALENDAR DATE AND
JULIAN DAY NUMBER [Robert G. Tartzen, Comm.
ACM 8 (Aug. 1963), 444].

Davip K. OrrENHEIM (Recd. 10 Jul. 64 and 27 Jul. 64)

System Development Corp., Santa Monica, Calif.

Algorithm 199 was translated into JoviaL J3 and tested on the
Phileo 2000. Input was generated with a random number generator
that produced uniformly distributed dates between the years
1583 and 2583. The results were checked for 50 different dates in
that range.

The procedures as written place unnecessary restrictions on
some of the parameters. Expressions cannot always be used as
inputs to the procedures. Also, the original input to JDAY,
JDATE and KDAY will be modified during the operation of the
respective procedures. It should also be noted that in many im-
plementations of ALGOL the use of parameters called by name may
be more expensive than those called by value. The call by name
is a far more powerful tool than is necessary for most of the pa-
rameters of these procedures. For these reasons the following
changes are suggested:

1. In procedure JDAY

change: integer d, m, ¥y, j;

to: value d, m, y; integer d, m, y, j;
2. In procedure JDATE

change: integerj,d,m,y; to:
3. In procedure KDAY

change: integer d, m, ya, k;

to: value d, m, ya; integer d, m, ya, k;
4. In procedure KDATE

change: integer k, d, m, ya;

to: value k; integer k, d, m, ya;

value j; integerj,d,m,y;

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 200
NORMAL RANDOM
RicHARD GEORGE*

Argonne National Laboratory, Argonne, Ill.
* Work supported by United States Atomic Energy Commission.

real procedure NORMAL RANDOM (Mean, Sigma n);

procedure Random;

real Mean, Sigma;

integer n;

comment Random is assumed to be a real procedure which
generates a random number uniform on.the interval (—1, +1).
The value of # should be greater than 10, in order to approxi-
mate the normal distribution with accuracy. However, very
large values of n will increase the running time. The use of
Mean and Sigma should be obvious. Reference: R. W. Ham-
ming, Numerical Methods for Scientists and Engineers;

begin
integer 7; real sum;
sum := 0;
for 7 := step 1 until n do

sum = sum -+ Random;

NORMAL RANDOM := Mean + Sigma X sum X sqrt (3.0/n)

end NORMAL RANDOM

CERTIFICATION OF ALGORITHM 200 [G5]
NORMAL RANDOM
[Richard George, Comm. ACM 6 (Aug. 1963), 444]
M. C. Pixe (Recd. 3 May 1965)
Statistical Research Unit of the Medical Research Coun-
cil, U. College Hospital Medical School, London.

Algorithm 200 has the following errors:

(1) The line .

real procedure NORMAL RANDOM (Mean, Sigma n);
sheuld be changed to

real procedure NORMAL RANDOM (Random, Mean,

Sigma, n);

(2) The line

procedure Random;
should be changed to

real procedure Random;
With these corrections NORM AL RANDOM has been run success-
fully on the ICT Atlas computer with the Atlas ALaoL compiler.

200-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 201
SHELLSORT
J. BooTHROYD

English Electric-Leo Computers, Kidsgrove, Staffs,
England
procedure Shellsort (@, n); valuen; real array a; integer n;

comment a[l] through a{n] of a[l:n] are rearranged in ascending
order. The method is that of D. A. Shell, (A high-speed sorting
procedure, Comm. ACM 2 (1959), 30-32) with subsequences
chosen as suggested by T. N. Hibberd (An empirical study of
minimal storage sorting, SDC Report SP-982). Subsequences
depend on m, the first operative value of m. Here m; = 28 — 1
for 28 < n < 2¥1, To implement Shell’s original choice of m; =
[n/2] change the first statement to m := n;
begin integer ¢, j, k, m; real w;
fori := 1lstepiuntilndom :=2X 7 — 1;
for m := m + 2 whilem # 0 do
begink :=n — m;
for j := 1 step 1 until k do
begin for ¢ := j step —m until 1 do
begin if a[i+m] 2 a[i] then go to 1;
w = alz]; aff] := ali+m]; ali+m] = w;
end 7;
1:end j
end m
end Shellsort;

CERTIFICATION OF ALGORITHM 201
SHELLSORT [J. BOOTHROYD, Comm. ACM 6 (Aug.
1963), 445]
M. A. Barry (Recd 27 Jan. 1964)
English Electric Co., Whetstone, Nr. Leicester, England
This algorithm has been tested successfully using the Deuce
Avreor Compiler. When the first statement of the algorithm was
replaced by the statement
m = n;
to implement Shell’s original choice of m := n/2, a slight increase
in sorting time was observed with most of the cases tested.

REMARK ON ALGORITHM 201 [M1]

SHELLSORT [J. Boothroyd, Comm. ACM 6 (Aug. 1963),
445]

J. P. CaanpLER AND W. C. Harrison* (Recd. 19 Sept.
1969)

Department of Physics, Florida State University, Talla-
hassee, FL 32306

* This work was supported in part by AEC Contract No. AT-
(40-1)-3509. Computational costs were supported in part by
National Science Foundation Grant GJ 367 to the Florida State
University Computing Center.

201-P 1- R1

KEY WORDS AND PHRASES: sorting, minimal storage sort-
ing, digital computer sorting
CR CATEGORIES: 5.31

Hibbard [1] has coded this method in a way that increases the
speed significantly. In SHELLSORT, each stage of each sift con-
sists of successive pair swaps. The modification replaces each set
of n pair swaps by one ‘‘save,” n — 1 moves, and one insertion.

Table I gives timing information for ArgoL, FORTRAN, and
Compass (assembly language) versions of SHELLSORT and the

TABLE I. Sorting TiMES IN SECONDS FOR 10,000 RanpoMLY
ORDERED NUMBERS ON THE CDC 6400 CoMPUTER

Algorithm Source Language
ArgoL FORTRAN Compass
SHELLSORT 53.40 7.18 2.38
SHELLSORT2 36.56 5.98 1.87

modified version (called SHELLSORTZ), for the CDC 6400 com-
puter. The savings in time achieved by the modification are 329,
17%, and 21%, respectively. The savings are greater than this
when vectors of more than one word each are being sorted.

The comparative execution times of the ALgoL and FORTRAN
versions, for these compilers, are quite interesting.

REFERENCES:
1. HieBaRD, T. N. An empirical study of minimal storage sort-

ing, Comm. ACM 6 (May 1963), 206,

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 202

GENERATION OF PERMUTATIONS IN LEXICO-
GRAPHICAL ORDER

Mox-KoNG SHEN

Postfach 74, Miinchen 34, Germany

procedure PERLE (S, N, I, E);

integer array S; integer N; Boolean I; label E;

comment If the array S contains a certain permutation of the
N digits 1, 2, ---, N before call, the procedure will replace
this with the lexicographically next permutation. If initializa-
tion is required set the Boolean variable I equal true, which
will be changed automatically to false through the first call,
otherwise set I equal false. If no further permutation can be
generated, exit will be made to E. For reference see BIT 2
(1962), 228-231;

begin integer j, u, w; :

if I then begin for j = 1 step 1 until N do 8[j] := j;

I := false; go to Rose
end;
w = N;
Lilie: if S[w] < S[w—1] then

begin if w = 2 then go to E;
w:=w — 1; go to Lilie
end;
u = Sfw—1];
for j := N step —1 until w do
begin if S[;] > « then
begin S[w—1] := S[j];

8[j] := u; go to Tulpe
end

end;
Tulpe: for j := 0 step 1 until (N—w—1)/2 + 0.1 do

begin v := S[N—j];

S[N—j] := S[w+s]l; S[w+jl :=u

end;
Rose:
end PERLE

CERTIFICATION OF ALGORITHM 202 [G6]
GENERATION OF PERMUTATIONS IN LEXICO-

GRAPHICAL ORDER

[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]
RogeEr W. Erviorr (Recd. 5 May 1965)
The University of Texas, Austin

The equal sign in the second line after the comment should be
replaced by a replacement operator. With this minor correction,
PERLE was translated into ArcoL for the CDC 1604. The follow-
ing times for generating all of the n! permutations of a given vector

of length n and the following values of 7, = t./nt.—1 [See Comm.
ACM & (Apr. 1962), 209] were observed.

” 5 6 7 8
tn(sec) .168 1.01 7.08 56.75
Tn 1.0 1.00 1.00 1.00

202-P 1- R1

REMARKS ON:

ALGORITHM 87 [G6]

PERMUTATION GENERATOR
[John R. Howell, Comm. ACM & (Apr. 1962), 209]

ALGORITHM 102 [G6]

PERMUTATION IN LEXICOGRAPHICAL ORDER
[G. F. Schrak and M. Shimrat, Comm. ACM 6 (June
(1962), 346]

ALGORITHM 130 [G6]

PERMUTE
[Lt. B. C. Eaves, Comm. ACM & (Nov. 1962), 551]

ALGORITHM 202 [G6]

GENERATION OF PERMUTATIONS IN

LEXICOGRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. Orp-Smite (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)
Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo-
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM & (Aug. 1962), 434], there appears to be room for im-
provement. Theoretically a “best” lexicographic algorithm
should be about one and a half times slower than Algorithm 115,
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.
ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B[k] > 0 A B[k} < B[m]is true for
at least one of the relevant values of k. In particular when matrix
A is set up by A[7] := 7; for each ¢ the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
t. is the time for complete generation of n! permutations. Times
are scaled relative to ¢ for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time fs
for Algorithm 202 on this machine was 100 seconds. r. has the
usual definition r, = ta/(n+ta-1).

COLLECTED ALGORITHMS (cont.)

TABLE I

Algorithm ts

1] s 78 l 7

87 118 — - = — -
102 2.1 | 155 | 185 | 1.03 | 1.08 | 1.1
130 — - — | = - -
202 1.7 | 12.4 | 1200 | 1.00 | 1.00 | 1.00

202-P 2-

0

COLLECTED ALGORITHMS

FROM CACM

ALGORITHM 203

STEEP1

E. J. WaAsSCHER

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

procedure STEEPI (Ib, xs, ub, dx, xmin, fmin, n, eps, relaz, drmaz,
eta, psi, pmaz, zela, FUNK);

value dz, n, eps, relax, dxmaz, eta, psi, pmaz, zela;

integer n;

real fmin, eps, relax, demazx, ela, psi, pmax, zeta;

array lb, xs, ub, dz, xmin; real procedure FUNK;

comment STEEP1 is a subroutine to find the minimum of a
differentiable function of n variables, using the method of
steepest descent. It mainly consists of three parts: (1) a sub-
routine ATIVE, for computing the partial derivatives, (2) a
subroutine STEP, for computing the components of an array
zstep[l:n], which is a new approximation of zmin[l:n], (3) the
compound tail of the procedure body. Both subroutines are
only called for once, but by writing the program in this way it
is quite easy to change the flow of the program.

Significance of the parameters: [b(z), ub(z) are lower and
upper bounds for the independent variables. zs(z) is the starting
value for zmin(i). amin(Z) is the computed 7th component of
the minimum, fmin the value of the funetion in-zmin. = is the
number of variables. eps is a small number which is a measure
of the desired accuracy—rather of fmin than of 2min(z). FUNK
(z) is the function to be minimized. The other parameters are
deseribed in the comments on the three parts mentioned;

begin integer j; real alpha, p; array zstep, dfdz, dfpr[l:n];
procedure ATIVE;
begin real bela, gamma, lambda; Boolean A, B;
comment 1. A useful estimate for the derivative is
fa+dz) —f(x—da)
2dx
that roundoff noise dominates. This may be achieved by taking

dz such that eta < ﬁ_zz%@ < 100 eta, where efa is

a measure for the relative roundoff error. When | f(z)| < 1 it is
better to replace the denominator by a constant. In the program
the parameter psi is used for this purpose. The components
dz(7) are used as a first guess. When the derivative is 0, the
program enlarges dz until de > demaz.

, where dz should be small, but not so small

ATIVE computes dfdx[l:n] in amin. The previously computed
partial derivatives dfpr[l:n] as well as relax are used for relaxa-
tion purposes. See comment 3. The Boolean A is used when
z-+dx or x—dzx crosses the boundary b or Ib. In that case fmin
has to be recomputed afterwards. The Boolean B is of a some-
what complicated nature. It may be seen that dx has the char-
acter of an own array for ATIVE. In the neighborhood of the
minimum this may have the following effect: A step in one
variable is taken such that f(z+dz) becomes equal to f(z—dx).
Then in the next call for ATIVE dx has to be doubled, ete. By
using the Boolean B it is possible to keep dr constant near the
minimum.

A similar efféct may occur in the large. When f(z) tends to a
constant for x tending to 4 «-and — w0, then for | z | large dx
has to be taken large. It is only possible to make dz smaller in
the neighborhood of the minimum by reducing dz after each

203-P1- 0

call of ATIVE.
From the last two remarks one may deduce that the first
guess for dz () should be made with considerable care. Tabulat-
ing the function near the starting point may be very helpful;
begin ATIVE: lambda := 0;
for j := 1 step 1 until n do
begin
large: A := B := false; if amin[j] + dx[j] > ublj]
then begin zmin[j] := ub[j] — dz[j]; A := true end
else if zmin[j] — dz(j] < Ib[j]
then begin xmin[;] = Wb[] + dz[i]; A

:= true end;

small: xmin[j] := xmin[j] + dz[5]; alpha := FUNK (zmin);
zmin[j] := xminlj] — 2 X dz[j]; beta := FUNK (zmin);
amin[j] := azmin[j] + dzf[s]; if A then fmin := FUNK
(xmin);
A := false;

if alpha — fmin > 0 A beta — fmin > 0
then begin B := true; go to comp end;
gamma := abs((alpha—beta)/(if abs(fmin) < psi then
pst else fmin));
if gamma > 100 X eta then
begin dz{j] := .2 X dz[j];
if gamma < eta then
begin dz[j] := 2 X dz[j]; if dz[j] < demazr then
go to large else dz[j] := drxmaz end
comp: dfdz[j] := (alpha—beta)/(2 X dx[5]);
lambda := lambda + dfdz[7] T 2;
if = B then dz[j] := .5 X dz[j]
end for; lambda := sqrt (lambda);
for j := 1 step 1 until n do
dfdz(s] 1= dfdz[j]/lambda
end procedure ATIVE;
procedure STEP;
comment 2. A step is taken in all variables at the same time.
The order of magnitude of the step in one variable should be
of the order of magnitude of this variable. To accomplish this
three weighting factors are given to the partial derivatives:

— { of ** .
1A= (> (—)) (see subroutine ATIVE),

go to small end;

i=1 \ 0%
2) |xi |, or when small, zeta,
3) a number p, which is put equal to 1 at the beginning of the
program and which tends to 0 at the minimum.
After a decrease of the function the step is accepted and p is
multiplied by 1.5. After an increase p is divided by 2. pmaz
replaces p when p becomes greater than pmax;
begin for j := 1 step 1 until n do
begin alpha := (1—relaz) X dfdz[;] + relaz X dfprljl;
zstepls] := amin(j] — p X alpha X
(if abs(xmin[j]) < zeta then zeta else abs(zmin(s]));
dfpr(j] := alpha;
if zstep[s] > ub[j] then zstep[i] := ub[s]
else if xstep(j] < Ib[j] then zstep[j] := Ib[j]
end for
end STEP;

COLLECTED ALGORITHMS (cont.)

comment 3. In the next part—the compound tail—the calls for
ATIVE and STEP are organized. The values 1.5 and .5 of the
factors of p are not very important. During the iteration p gets
an optimal value, which slowly varies. Only at the end p rapidly
y*+1
2241

the latter being the first one except for a rotation

tends to 0. The programme was tested on the functions

(r—y)?—2
(z+4y)2+2’
of the zy-plane over =/4 radians. In the first case a ‘“‘gutter’’

and

3,
coineides with the z-axis, while for z > 0 and |y | 2 1 :92; § 0.

In the second case, where the gutter is along the line z=y, the
relaxation is especially interesting, because with relux = 0
(and pmazr=100) the iteration follows the gutter in an unstable
way. With starting values z=—14 and y =21 from z=y=26 about
300 steps were taken along the gutter with p about .01. With
relar = .35 and pmaz = .5 we had about 150 steps from r=y=23.
In the gutter itself relar = .85 gave the best results, but in that
case the gutter was reached at x=y=63.

Other parameter values were: zeta = psi = 1, drmax=100,
ela = 1077 with eps = 107® gave fmin in 10 figures correctly and
xminfi] in 4 to 6 figures for various starting values of zsz];

p =1

for 7 := 1 step 1 until » do

begin zinin(j] = zs[j]; dfprlj] = 0 end; fmin := FUNK
(xmin);

deriv: ATIVE,

next: STEP;

alpha := FUNK (xstep);

if alpha < fmin then

begin fmin := alpha; p := 1.5 X p;
if p > pmaz then p := pmazr;
for j := 1 step 1 until » do zmin(j] := zstep[s};
go to dertv end;

p =3 X p;

if p > eps then go to next;

comment As p has become smaller than eps this is the end of
STEEPI1. The program AT'IVE takes up rather alot of computer
time by the way it chooses a value for dz(7). A thorough simpli-
fication is obtained by taking dx(?) as 107 — 3 X abs(xmin[s]),
where again zmin[t] may be replaced by zeta. Further, at the
cost of some loss of accuracy, computing time is saved by taking
et =)

W

as far as it differs from STEEP1, is described in algorithm 204,
STEEP2. Aninteresting compromise between the two methods
is obtained by interchanging the computation of dxr and dfdr in
ATIVE of STEEP1 and omitting the iteration on dx. This
routine ATIVE, which has to be used in STEEP1, is given by
J. G. A. Haubrich in algorithm 205;

end STEEP1

as an estimate for the derivative. This program,

CERTIFICATION OF ALGORITHM 203 ([E4]

STEEP1 [E. J. Wasscher, Comm. ACM 9 (Sept. 1963),
517|

Puitip Warrnack (Reed. 25 May 1964)

Republic Aviation Corp., Farmingdale, L. I., N. Y.
STEEP1 was translated into ForTraN IV and run on the IBM

7094. The program was tested on the function x* + y* — 1, with

starting values r = y = 1.5. Other parameter values were those

suggested in the body of the algorithm. After 17 steps the values

of the variables were x = .0180, y = .0191, and the function value

Smin = —.9999999.

203-P 2- 0

I feel that good programming practice requires that a count be
kept of the number of steps taken in STEEP1 and the number of
iterations in ATIVE, with running checks on both these quantities
to control looping. Counters were set up for this purpose in the
version of the program I ran.

CERTIFICATION OF ALGORITHM 203 [E4]

STEEPL [E. J. Wasscher, Comm. ACM 6 (Sept. 1963), 517;
Comm. ACM 7 (Oct. 1964), 585]

J. M. Varau (Recd. 30 July 1964)

Computation Center, Stanford University, Stanford, Calif.

Algorithm 203 was run on the B5000 at Stanford with the neces-
sary modifications for Burroughs’ Extended Avncon. After some
testing, the following errors were found.

1. There is an extra begin in procedure ATIVE. The first
statement after the comment in this procedure should be changed
from

begin ATIVE: lambda := 0;
to

lambda := 0;
[It was the author’s original intention that this begin be not in
bold-face but that it should be part of the label begin ATIVE
inserted to clarify the program.—Ed.]

Also, there is a missing semicolon in procedure ATIVE at the
end of the line preceding comp: and procedure STEP has an un-
necessary begin-end block.

2. Because the domain of definition of the function FUNK
is bounded by the rectangular hyperbox b[j] < z[j] £ ubljl,
j=12 ..., n, before giving a new direction in which to pro-
ceed, the value of a#min is checked (in ATIVE, under large:). If,
for any j, zmin[j] is within dz[j] of the boundary, zmin[j] is changed
so that it is exactly dz[j] from the boundary. However, if the mini-
mum value of FUNK occurs at just such a place (say right at the
boundary), then a step will be made from this new position back
to the boundary. Then the new zmin[j] will again be within dz{j]
of the boundary, so it is moved away, and so on forming a loop.
To correct this, the old value of zmin[j] should be saved (in xstep[7],
for example) and below, when A4 is tested, the function value set
equal to the minimum of values at amin and zstep. The author,
when A was true (i.e. when such a shift had been made), merely
set the function equal to the value at xmin.

Specifically, this means changing the lines following large: to

A := B := false; if amin[j] + dz[j] > ub[j] then

begin

zsteplj] := zmin[jl;

zmin(j] := ub[j] — dz[j]; A := true
end
else if zmin(j] — dz[j] < Ib[j] then
begin

zstep[j] := xzman(j];

xzmin(j] := Ib[j] + dz[j]; A := trume
end;

and the conditional statement involving A (3rd line after small:) to
if A then
begin
gamma := FUNK (zmin);
if fmin = gamma then zmin[j] := zstep[j]
else fmin := gamma
end;

3. Alsoin ATIVE, under comp:, the derivative approximations
are all normalized after the for loop by division by lambda. How-
ever, lambda will be zero if all dfdx{j] are zero to working accuracy.
So we should only divide by lambda when it is not zero.

COLLECTED ALGORITHMS (cont.)

Specifically, this means inserting the line
if lambda # 0 then

before the third line from the end of procedure ATIVE.

With these corrections, the algorithm did run successfully.
It should also be mentioned that procedures ATIVE and STEP
could just as well be blocks with labels ATIVE and STEP rather
than procedures, with the calls on them changed to go to ATIVE
and go to STEP.

203-P 3-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 204

STEEP2

E. J. WasscHER

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

procedure STEEP2 (b, zs, ub, dz, zmin, fmin, n, eps, relax
dxmaz, pmox, zeta, FUNK);

value dz, n, eps, relaz, drmaz, pmaz, zela;

integer n;

real dz, fmin, eps, relox, demax, pmaz, zela;

array lb, zs, ub, zmin; real procedure FUNK;

comment dz should now be taken about 107 — 3, dzmax could
be taken equal to 1. As the program is equal to STEEP1 after
the declaration of the procedure ATIVE, the ALcoL deseription
is cut off there;

begin integer j; real alpha, p;
array zstep, dfdx, dfpr [1:n];

procedure ATIVE;

begin real bela, lambda; lambda := 0;
for j := 1 step 1 until n» do

begin alpha := dx X (if abs(zmin[j]) < dzmax
then drmox else abs (xmin[jl));
if zmin[j] + alpha > ublj] then alpha := —alpha;
zmin[j] := zmin(j] + alpha; beta := FUNK (zmin);
zminlj] := amin[j] — alpha;
dfdz[j] := (beta — fmin)/alpha;
lambda := lambda + dfdx[7] T2

end for; lambda := sqrt (lambda);
for j := 1 step 1 until n do dfdz[j] := dfdz[j]/lambda;

end procedure ATIVE

204-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 205

ATIVE

J. G. A. HauBrIiCH

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

procedure ATIVE,
begin real bela, lambda; Boolean 4;
comment This routine may replace ATIVE in STEEP1. The
significance of efa has slightly changed;
lambda := 0;
for j := 1 step 1 until » do
begin A := false; ealpha := dz[j];
if amin[j] + alpha > ublj] then
begin zmin[j] := ub[j] — alpha; A := true end
else if zmin[j] — alpha < Ib[j] then
begin azmin[j] := Ib[;] + alpha; A := true end;
zminlj] = xminlj] + dz[j]; alpha := FUNK (xmin);
amin(j] := zmin[j] — 2 X dz[j]; beta := FUNK (zmin);
zminfj] := axminlj] + dzlj]; if A then fmin := FUNK
(xmin); .
dfdz[j] := (alpha—beta)/(2 X dz[j]);
lambda := lambda-+dfdz[j] T2;
if alpha — fmin > 0 A beta — fmin > O then go to end;)
beta := abs((alpha—beta)/(if abs(fmin) <psithen psi else fmin));
if beta > ela then dz{j] := .3 X dz[j] else
begin dz{j] := X d3z[j]; ifdz[j] > dxmazx thendz[/]: = drmaz end;
end: end for;
lambda := sgrt (lambda);
for j := 1 step 1 until n do dfdx[j] := dfdz[j]/lambda
end procedure ATIVE

REMARK ON ALGORITHM 205 [F4]

ATIVE [J. G. A Haubrich, Comm. ACM 6 (Sept. 1963),
519]

E. J. WasscaER (Recd. 23 Nov. 1964)

Philips Computer Center, N. V. Philips’ Gloeilampen-
fabrieken, Eindhoven, Netherlands
There is a misprint in this Algorithm. The first; statement in

the fifth line from the end of the procedure ATIVE should read:
dz[j] := 8 X deljl;

205-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 206

ARCCOSSIN

Misako Konpa

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan

procedure ARCCOSSIN (z) Result:(arccos, arcsin);
value z;
real z, arccos, arcsin;
comment This procedure computes arccos(z) and arcsin(z) for
—1=z=1. The constant 2-7 depends on the word length and
relative machine precision, and may be replaced by a variable
identifier. Alarm is the procedure which messages that x is in-
valid.
The approximation formula used here was coded for MUSA-
SINO-1 in its own language at the Electrical Communication
Laboratory Tokyo. This algorithm was translated into FAP and
successfully ran on an IBM 7090;
begin real A, z1, 22, a; integer r;
if abs(z) > 1
then go to Alarm
else if abs(z) > 21 (—27)
then go to L1
else begin arccos := 1.5707963; go to L3

end;
Ll: ifz =1
then begin arccos := 0; go to L3
end
elseifzr = — 1
then begin arccos := 3.1415926; go to L3
end

else begin A := 0; =zl :=z;
for r := 0 step 1 until 26 do
begin if £1 <0
then begina :=1; 22 :=1-2 X z1 12 end
else begina :=0; 22:=2X z1 12 — 1 end;

A:=A4+aX2 T(-r—1);
zl 1= 22
end;
arccos := 3.1415926 X A;
end;

L3: arcsin := 1.570963 — arccos;
end ARCCOSSIN

REMARK ON ALGORITHM 206 [B1}

ARCCOSSIN [Misako Konda, Comm. ACM 6 (Sept.
1963), 519]

Henry J. BowLpeN (Recd. 30 Sept. 1964 and 5 Nov. 1964)

Westinghouse Electric Corp., R&D Ctr., Pittsburgh, Pa.
Algorith 1206 was transeribed into Burroughs Extended ALGoL

after correcting one typographical error, namely the value of
w/2 in the statement labeled L3, which should be 1.5707963.

206-P 1- O

Results were obtained for a selection of values of the argument
between 0 and 1. Accuracy is about 7+ decimal digits over the
entire range, by comparison with the tables of inverse sines in
[Handbook of Mathemalical Functions, National Bureau of Stand-
ards Applied Mathematics Series # 55, U.S. Government Printing
Off., Washington, D.C., June 1964, 203-212]. Average execution
time was 43 milliseconds.

The efficiency of the procedure could be significantly improved
by avoiding the computation of a X 27 (—r—1). Powers of 0.5
may be accumulated within the loop, and the modification of A
may be skipped entirely when a = 0. Actually, if efficiency is im-
portant, procedures using the intrinsic arctan and the common
trigonometric identities are preferable. Such routines, on the
B-5000, give full machine accuracy (11-+ significant figures) in
about 2 milliseconds execution time.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 207
STRINGSORT
J. Booruroyp

English Electric-Leo Computers, Ltd.
Staffordshire, England

procedure siringsort (@, n); comment elements afl] - .- a[n]
of a[l:2n] are sorted into ascending sequence using a{n-+1] - --
a[2n] as auxiliary storage. Von Neumann extended string logic
is employed to merge input strings from both ends of a sending
area into output strings which are sent alternately to either
end of a receiving area. The procedure takes advantage of
naturally occurring ascending or descending order in the origi-
nal data;

value n; integer n; array a;

begin integer d, 7, j, m, 4, v, 2; integer array c[—1:1];
switch p := jz1, str 7; switch ¢ := merge, j22;

oddpass: 7 :=1; j:=n; c¢[-1]:=n+ 1; ¢[l] ;=2 X n;

allpass: d :=1; go to firststring;

merge: if alt] = alz]

then begin go to p[v];
jzl: if als] = alz]
then zj: begin if aft] = afj]

then str j: begin a[m] := aljl;
ji=j—1lend
else sir 7: begin a[m] := ali]:
1:=1¢+ 1end
end
else begin v := 2; go to sir 7 end

end
else.begin u := 2;
j22: if alj] = alz]
then go to str j

else begin d := —d; c[d] := m;
firststring: m := ¢[—d];
vi=u . :=1;
go to 7j
end

end;
z:=m; m:=m--+d; ifj 2 ¢ then go to q[u];
if m > n + 1 then begin comment evenpass; 1 (= n + 1;
7 =2 X n; ¢[—-1] := 1; ¢[l] := n; go to
allpass end
else if m < n + 1 then go to oddpass
end stringsort;

CERTIFICATION OF ALGORITHM 207 [M1]

STRINGSORT [J. Boothroyd, Comm. ACM 6 (Oct. 1963),
615]

CHARLES R. Brair (Recd. 31 Jul. 1964)

Department of Defense, Washington 25, D. C.
STRINGSORT compiled and ran successfully without correc-

tion on the ALpap translator for the CDC 1604A. The following
sorting times were observed.

Number of Items
10
20
50
100
200
500
1000
2000
5000
10000

207-P 1-

Time in Seconds
0.03
0.05
0.20
0.38
1.03
3.22
6.43

12.85
38.72
90.72

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 208
DISCRETE CONVOLUTION
Wirtiam T. ForeEMAN, Jr.
Collins Radio Co.

Newport Beach, Calif.

procedure Discrete Convolution (m, m, prs) result: (Conv);

integer m, n; real procedure prs; real array conv;

comment This procedure finds the probability distribution of
the sum of m independent variables, each with a known distribu-
tion over the nonnegative integers. A real procedure prs with
results pr(k] is assumed to find each probability distribution in
succession. The maximum sum for which probabilities are
computed must be fixed by the user. The number of iterations
is roughly m2n/2. The procedure prs will in general depend on
additional parameters and should include the read-in of the
parameters for that distribution. It may include the selection
of one function from a set;

begin integer 1, j, k, ixl, 122;

real array prob [1:2, 0:m], pr[0:m];

g:=1; dxl :=1; 422 := 2; prs (m) result: (pr);

for 7 := 0 step 1 until m do problizl, jl := pr[jl;

for 7 := 2 step 1 until n do

begin
if irl1 = 1 then begin @22 := 1; 14zl := 2 end
else begin iz2 := 2; izl = 1 end

prs (m) result: (pr);
for j := 0 step 1 until m do
begin
problizl, j] := 0;
for k := 0 step 1 until j do
problizl, j] := problizl, 5] + pr[k] X probliz2, j—k]
end j
end 7;
for j := 0 step 1 until m do conv[j] := prodblizl, ;]
end Discrete Convolution
comment The convolution of discrete probability series is
isomorphic to the multiplication of polynomials. A useful vari-
ation is to omit the parameters i, » and have prs recognize
the end of input. A FORTRAN program using this procedure has
been run on the IBM 7090 to find the sum of queue lengths in a
teletype switching center, where messages arrived according
to the Poisson distribution and message lengths were distributed
negative-exponentially. The following was used as the prob-
ability procedure;
procedure prs (m) result: (pr);
value m; procedure read;
real array pr; integer m;
begin. real trafficrate, linespeed, rho; integer j;
read (trafficrate, linespeed);
rho := trafficrate/linespeed;
pr[0] : 1 — rho;
for j := 1 step until m do pr[j] := rho X pr[j—1]
end prs

208-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 209

GATUSS

D. IsBETSON,

Elliott Brothers (London) Ltd.,

Elstree Way, Borehamwood, Herts., England

real procedure Gauss(z); value z; real z;
comment Gauss calculates (1/4/2r) /" exp (—}u?) du by means
of polynomial approximations due to A. M. Murray of Aberdeen
University;
begin real y, 2z, w;
ifz = 0thenz :=0
else
begin y := abs(z)/2;
ify = 3thenz : =1
else if y < 1 then
begin w := y X y;

z = ((((((((0.000124818987 X w
—0.001075204047) X w +0.005198775019) X w
—0.019198292004) X w +0.059054035642) X w
—0.151968751364) X w +0.319152932694) X w
—0.531923007300) X w +0.797884560593) X y X 2

end
else
beginy :=y — 2;

z = (((CCCC(((—0.000045255659 X y
+0.000152529290) X y —0.000019538132) X %
—0.000676904986) X y —+0.001390604284) X y
—0.000794620820) X y —0.002034254874) X y
+0.006549791214) X y —0.010557625006) X y
+0.011630447319) X y —0.009279453341) X y
+0.005353579108) X y —0.002141268741) X y
+0.000535310849) X y +0.999936657524

end
end;
Gauss := if z > 0 then (z+1)/2 else (1—2)/2
end Gauss; '

CERTIFICATION OF ALGORITIIM 209

GAUSS [D. Ibbetson, Comm. ACM 6 (Oct. 1963), 616]
(Pvt.) G. W. GrapreLTER (Recd 4 Nov. 63)
RA17667701, 1st Inf. Battle Group U.S. Military Academy
(9822), West, Point, N.Y.

The algorithm was translated into FORTRAN for the GE 225 and
used to publish a table of the error function. No errors were found
in the algorithm and the table produced agreed with the published
tables at hand (6 significant figures).

CERTIFICATION OF ALGORITHM 209 [S15]

GAUSS [D. Ibbetson, Comm. ACM 6, Oct. 1963, 616]

M. C. PikE

Statistical Research Unit of the Medical Research Couneil,
University College Hospital Medical School, London,
England

This procedure was tested on an Elliott 803 computer using the

209-P 1- R1

standard Elliott ALGoL compiler., The expression
2 X Gauss () — 1

was evaluated for = 0(.01)6 and the answers checked with those
given in Tables of Probability Functions, vol. II, US. National
Bureau of Standards, Washington, D.C., 1942, where they are
given to 15 decimal places. There was a maximum error of 1 in
the 8th decimal place.

REMARKS ON:

ALGORITHM 123 [S15]

REAL ERROR FUNCTION, ERF(z)
[Martin Crawford and Robert Techo Comm. ACM &
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION—LARGE X
[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION—
LARGE X

[Henry C. Thacher Jr. Comm. ACM 6 (June 1963), 315]

ALGORITHM 209 [S15]
GAUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[8. J. Cyvin. Comm. ACM 7 (May 1964), 295]

ALGORITHM 272 [S15]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

[M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]

NORMAL CURVE INTEGRAL
[I. D. Hill and 8. A. Joyce. Comm. ACM 10 (June
1967), 374]

I. D. Hi-aANDp S. A. Jovce (Recd. 21 Nov. 1966)

Medical Research Council,

Statistical Research Unit, 115 Gower Street, London
W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas ArgoL compiler. The following amendments were made
and results found:

ALGORITHM 123
(i) value z; was inserted.
(ii) abs(T) < 10—10 was changedto Y — T =Y
both these amendments being as suggested in [1].

COLLECTED ALGORITHMS (cont.)

(iii) The labels 1 and 2 were changed to L1 and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.

(v) The extra statement z := 0.707106731187 X z was made
the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested except £ = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty [3], and any search for a method of doing so would
hardly be worthwhile, as the algorithm is slower than Algorithm
304 without being any more accurate.

ALGORITHM 180
() T := —0.56418958/x/exp(v) was changed to
T := —0.564180583548 X exp(—v)/z. This is faster and also
has the advantage, when » is very large, of merely giving 0
as the answer instead of causing overflow.
(ii) The extra statement z := 0.707106781187 X z was made
as in (v) of Algorithm 123,
(iii) for m := m + 1 was changed to form :=m + 2. m+1
is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(i) Similar to (i) of Algorithm 180 (except for the minus sign).
(ii) Similar to (ii) of Algorithm 180.
(iii) m was declared as real instead of integer, as an alternative
to the amendment suggested in |4].
The results were accurate to 9 significant figures for z < 8,
but to only 8 significant figures for x = 10 and v = 20.

ALGORITHM 209
No modification was made. The results were accurate to 7 decimal
places.

ALGCRITHM 226
(i) 10 T m/(480Xsqrt(2X3.14159265))
10 T m X 0.000831129750836.
(ii) for ¢ := 1 step 1 until 2 X n do was changed to
m =2 X n; for i := 1 step 1l until m do.
(iii) —(@Xb/n) T 2/8 was changed to
(iv) if¢=2X n — 1 waschanged to ifi =m — 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to
b/(15.0397696478 X n).
T'ests were made with m = 7 and m = 11 with the following
results:

was changed to

Number of significant Number of decimal
. Jigures correct places correct
m =17 m =11 m=17 m = 11
—-0.5 7 11 7 11
-1.0 7 10 7 10
—1.5 7 10 8 10
—2.0 7 9 8 10
—2.5 6 9 8 11
-—3.0 6 7 8 9
—4.0 5 7 10 11
—6.0 2 1 12 10
—8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig-
nificant figures is stretching the machine’s ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

—(EXb/n) T 2X 0.125.

209-P 2- 0

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places af, most of the points tested,
but was only 5 decimal places at x = 0.8,

ALGORITHM 304
No modification was made. The errors in the 11th significant figure
were:

abs(z) z > 0 = upper z > 0 & upper
0.5 1 1
1.0 1 2
1.5 212(5) 2
2.0 252(0) 4
3.0 0 0
4.0 2 3
6.0 6 0
8.0 14 0
10.0 23 0
20.0 35 0

» Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398942280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

abs(x) z > 0 = upper x> 0 = upper
1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0

Timings. Timings of these algorithms were made in terms of
the Atlas “Instruction Count,”” while evaluating the function 100
times. The figures are not directly applicable to any other com-
puter, but the relative times are likely to be much the same on
other machines.

COLLECTED ALGORITHMS (cont.)

InsTrUCTION COUNT FOR 100 EVALUATIONS

Algorithm number

abs(zx)
123 180 { 181 209 226 272 | 3042 304>
m =7
0.5 | 58 8 97 24 25 24
1.0 65° 8 176 24 29 29
1.5 | 164 | 128 | 127 9 273 25 35 35

2.0 | 194 78 90 8 387 24 39 39
2.5 | 252 54 68 10 515 24 131 44

3.0 42 51 9 628 25 97 50
4.0 27 39 9 9004 | 25 67 44
6.0 15 30 6 14009 | 16 49 23
8.0 9 28 7 21004 | 18 44 11
10.0 10 25 5 2700¢ | 16 38 11
20.0 9 22 5 65004 | 16 32 11
30.0 9 9 5 | 109001 | 16 11 11

s Readings refer to z > 0 = upper.

b Readings refer to & > 0 # upper.

* Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.

4100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduection
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while.

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.

REFERENCES:

1. Tuacuer, HEnry C. Jr. Certification of Algorithm 123.
Comm. ACM 6 (June 1963), 316.

2. IeBETSON, D. Remark on Algorithm 123. Comm. ACM 6
(Oct. 1963), 618.

3. BarTON, STEPHEN P., AND WagnNER, JouN F. Remark on
Algorithm 123. Comm. ACM 7 (Mar. 1964), 145.

4. CrausEN, I., AND HanssoN, L. Certification of Algorithm 181.
Comm. ACM 7?7 (Dec. 1964), 702.

5. SueppPaRD, W. F. The Probability Integral. British Association
Mathematical Tables VII, Cambridge U. Press, Cambridge,
England, 1939.

209-P 3-

0

COLLECTED ALGORITHMS FROM CACM

210-P 1- R1

ALGORITHM 210

LAGRANGIAN INTERPOLATION

GEORGE R. SCHUBERT*

University of Dayton, Dayton, Ohio
* Undergraduate research project, Computer Science Program, Univ. of

Dayton.

procedure LAGRANGE (N, u, X, Y, ANS); real array X, Y;
integer N; real u, ANS;

comment This procedure evaluates an Nth degree Lagrange
polynomial, given N + 1 data coordinates, and u the value
where interpolation is desired. X is the abscissa array and Y
the ordinate array. ANS is the resultant value of the function
at u. The notation is that used in R. W. Hamming, Numerical
Methods for Scientists and Engineers, pp. 94-95 (McGraw-Hill
Book Company, Inc., 1962);

begin integer 7, j; real L;
ANS := 0.0;
for j := step 1 until N+1 do

begin L := 1.0;
for i := step ! until N+41 do

begin if 7 # jthen L := L X (u—X[z])/(X[j]—X[Z])

end;
ANS := ANS + L X Y[j]

end end

COLLECTED ALGORITHMS FROM CACM

211-P 1- R1

ALGORITHM 211

HERMITE INTERPOLATION
GEORGE R. ScHUBERT*

University of Dayton, Dayton, Ohio

* Undergraduate research project, Computer Science Program, Univ. of
Dayton.

procedure HERMITE (n,u, X, Y, Y1, ANS); real array X, Y,
Yi;

integer n; real u, ANS;

comment This procedure evaluates a(2n+1)th degree Hermite
polynomial, given the value of the function and its first deriva-
tive at each of n -+ 1 points. X is the abscissa array, Y the
ordinate array, and Y1 the derivative array. ANS is the interpo-
lated value of the function at u. REFERENCE: R.W.Hamming,
Numerical Methods for Scientists and Engineers, pp. 96-97 (Mc-
Graw-Hill Book Company, Inc., 1962);

begin integer ¢, j; realh, a;
ANS := 0.0;
for j := 1 step 1 until » + 1 do

begin h := 1.0; a := 0.0;
for ¢ := 1 step 1 until » 4+ 1 do

begin if 7 = j then go to out;
b=k X (u—X[)12/(X[j]-X[ED12;
a = a + 1L.0/(X[{]-X[]);

out: end;
ANS := ANS + h X ((X[il-u)X @XaX Y[;]-Y1[i]) + ¥ [1])

end end

CERTIFICATION OF ALGORITHM 211

HERMITE INTERPOLATION [George R. Schubert,
Comm. ACM, Oct. 1963]

TroMmas A. DWYER

Argonne National Laboratory, Argonne, Ill.

The body of HERMITE was transcribed for the Dartmouth
ScaLp processor for the LGP-30 computer and ran successfully
without corrections. It was tested using the error function and its
derivatives. Roundoff error in the LGP-30 began to appear for
values of n greater than 3. For n equal to 2 (third degree poly-
nomial) the interpolated value agreed with the function within
machine limitations (six significant figures) for steps in the
argument data of 0.005.

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 212
FREQUENCY DISTRIBUTION
Marcorm D. GrAY

The Boeing Co., Seattle, Wash.

procedure FREQUENCY (N, A, B,IUL, K, X, KA);
integer N, IUL; integer array KA; real A, B, K;
real array X;
comment Given a set X of variables in some interval I = [a, b]
such that ¢ £ min z, max 2 £ b, FREQUENCY determines the
frequency distribution of X over k equal, half open subintervals
of I. The interval I is transformed to the interval J = [0, k]
with unit subintervals by 2’ = (z;—a)/[(b—a)/k], i=1,2, -,
n, and considering ' = L X M, L and M integers. The value
L then immediately determines the subinterval and M is used
for boundary points. If /UL = 0, the subintervals are open
on the upper end, except the kth. On entry, the array KA is
assumed identically zero; on return, KA4[i] contains the fre-
quency of X in the 7th subinterval;
begin integer 7, L; real BAK, XP;
BAK := (B—A)/K;
for ¢ := 1 step 1 until N do begin
XP := (X[z]1-A)/BAK;
L := entier (XP);
if XP = L then gotop2elsel :=L + 1; go to p5;
p2: if JUL = O then go to p3 élse if L = O then L := L + 1;
go to 15;
p3: if XP # K then L := L + 1;
p5: KA[L] := KA[L] + 1;
end;

end FREQUENCY

212-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 213
FRESNEL INTEGRALS
Marcorm D. Gray

The Boeing Co., Seattle, Wash.

real procedure FRESNEL (w, S, C); value w; real S, C;

comment FRESNEL computes the Fresnel sine and cosine in-
tegrals S(w) = f:," sin [(x/2)#?] dt and C(w) = j‘;"cos [(x/2)e2] dt
using the series expansions

(— 1)i+1x2z'—1

Sw) = Yo -

d
@ (= 1)i+1g2i-2

Cw) =w 2 G 9

for |w| < 4/22/x and x = rw?/2, and using the asymptotic series

8w) = a — — [P(2) sin (2) + Q) cos ()],
W

Clw) =a — L [P(z) cos (x) — Q(x) sin (v)]
)

where [w| 2 V/22/z, = = mw?/2,

Q@) =1— i (—1)ids — 5! . P = i (=2 i — 31

= (2z)%~2) (2x) 2—1 !

and nll = n(n—2)(n—4)---1.If w = 0, then ¢ = }, orif w < 0,
then o = —4.

This algorithm is a translation of a FAP coded subroutine
currently in use on the IBM 7094 at the Boeing Company. The
FAP program yields the following errors when tested at 0.05
inorements of z:

z AS AC
0.00, 1.00 <1 X 1077 <1 X 107
1.05, 8.65 <1l X 10°¢ <1 X 10°¢
8.70, 10.30 3 X 1078 2 X 1078
10.35, 11.00 5 X 107¢ 4 X 10°¢
11.05, 12.15 <1 X 10°¢ 3 X 1078
12.20, 15.00 <] X 1078 <1 X 10°¢

where AS and AC are the approximate average absolute devi-
ations (over the range) from the reference. The user must supply
S(w) = C(w) = 4% if w — . REFERENCEs: ALGORITHMS
88-90, J. L. Cundiff, Comm. ACM, May 1962, Born, M. and
Wolf, E., Principles of Optics, Pergamon Press (1958), pp.
369-431;

begin real z, 22, eps, term;
z = w X w/0.6366198;

integer n; eps := 0.000001;

12 := —z X z; if x = 11.0 then go to asympt;
begin real frs, frsi;
frs :=2/3; n :=5; term :=x X 22/6;

frsi := frs + term/7;

if abs(frs—frsi) = eps then go to send; frs := frst;
term = term X x2/n/(n—1); frsi := frs+ termn/(n+n-+1);
n:=n -+ 2; go to loops;

send: 8 := frst X w; end;

loops:

213-P 1- 0

begin real fre, frei;
fre := 1; n = 4; term := 22/2; frci := 1 + term/5;
loope: if abs(frc—frci) = eps then go to cend; frc := frei;
term := term X x2/n/(n—1); frei := frec + term/(n+n+1);
n:=mn+ 2; go to loopc;
cend: C := fret X w; end; go to aend;
asympt: begin real S1, 82, half, temp; integer 7;
22 := 4 X x2; term := 3/22; Sl :=1-+ term; n := 8§;
for ¢ := 1 step 1 until 5 do begin n := n + 4;
term = term X (n—T) X (n—>5)/x2; 81 := S1 + term;
if abs(term) < eps then go to next; end i;

next: for ¢ := 1 step 1 until 5 do begin n := n + 4;
term := term X (n—>5) X (n—38)/x2; 82 := 82+ term;
if abs(term) =< eps then go to final; end 7;

final: ifw < Othenhalf := —0.5elsehalf := 0.5; term := cos(x);

temp = sin(x); x2 := 3.1415927 X w;
C := half + (tempXS1—itermX82)/x2;
S := half — (termXS1+tempXS2)/x2;
end;

aend: end FRESNEL

CERTIFICATION OF ALGORITHM 213 [S20]

FRESNEL INTEGRALS [M.D. Gray, Comm. ACM 6
(Oct. 1963), 617]

Malcolm Gray (Reed. 29 May 1964 and, revised, 11 June
1964)

Computer Science Div., Stanford U., Stanford, Calif.
{(now at The Boeing Company, Seattle, Wash.)

Necessary changes to the algorithm are:
(1) in the first line, replace
real 8, C; with real w, S, C;

(2) in the formula for P(x), replace (—2)i*! with (—1)#
(3) the statement beginning

loope: if abs(fre—frei)
should read

loopc: if abs(frc—frei)
(4) in the body, replace the line

next: for ¢ := 1 step 1 until 5 do begin n := n 4 4;
with the lines

next: term := 82 := 0.5/z; n :=4;

for ¢ := 1 step 1 until 5 do begin n := n + 4;

The procedure (with the above changes) was executed on the
Burroughs B5000 at Stanford University and gave results as
indicated in the slgorithm.

Communications from Helmut Lotsch of the W. W. Hansen
Laboratories, Stanford University, and from Harold Butler of
the Los Alamos Scientific Laboratory, Los Alamos, New Mexico,
state that they found these same errors, and after the corrections
were made, similar results were obtained. Mr. Lotsch’s work was
done on the B5000 and Dr. Butler’s work was done on the IBM
7090.

COLLECTED ALGORITHMS FROM CACM

ALGORMITH 214

¢-BESSEL FUNCTIONS I.(t)

J. M. 8. S1M0ES PEREIRA

Gulbenkian Scientific Computing Center, Lisbon, Portugal

procedure ¢Bessel (¢, ¢, n, 7, s); integer n, j; real i, g, 8;
array S;

comment This procedure computes values of any ¢-Bessel fune-
tion I.(¢) for n integer (positive, negative or zero) by the use
of the well-known expansion

2, qREDH TR vtk gtk

L0 = Y oo

where |¢| <1, (g} = (1-¢)(1—g?) +-- (1=¢"), (g)o = 1 and
1/{(@-n = 0 (n=1, 2,3, ---). (See L. Carlitz, The product of
¢-Bessel functions, Port. Math. 21 (1962), 5-9.) Moreover, j
denotes the number of terms (at least 2) retained in the summa-
tion, and s[¢] stands for the sum of the first i-+1 terms of the
expansion. This procedure has been translated into ForTrAN
for the IBM 1620 and run successfully;

begin integer k, m, p; real ¢, u; m := abs(n); ¢ := 1; if
n = 0 then go to 4;

for p ;= lstepluntilmdoc :=c X (1—¢lp); ifn <0 then
go to B;

A ui= g7 aX0—-1)/2) X (Tn)/e; s[0] := u;

for k£ = 1 step 1 until j do

beginu :=u X ¢1 (n+2Xk—2) X (¢12)/((1—qTk) X A — gl (n+k)));
slk] := s[k—1] + u end;

B: u = gl((m=1)Xm/2) X t1 (n+2Xm)/e; sim] := u;

fork := m 4 1 step 1 until j do

begin u := u X ¢ (-+2Xk—2) X (t12)/(A—qtk) A—ql (n+k)));
sfk] := sfk—1] + u end

end

REMARK ON ALGORITHM 214

¢-BESSEL FUNCTIONS I,(f) [J. M. 8. Siméaes Pereira,
Comm. ACM 6 (Nov. 1963), 662]

J. M. 8. Sim0Es PeEreira (Recd 6 Jan 1964)

Gulbenkian Scientific Computing Center, Lisbon, Portu-
gal
Corrections:

1. Insert a dummy statement labeled C just before the final end.

2. Add a statement go to C just before the label B.
3. Add a colon in the clause for k := 1 step 1 until j do ...

214-P 1-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 215
SHANKS
Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Il
* Work supported by the U. S. Atomic Energy Commission

procedure Shanks (nmin, nmaz, kinaz, S);

value nmin, nmoz, kmaz;

integer nmin, nmaz, kmaz;

array 8;

comment This procedure replaces the elements S[nmin] through
S[nmax—2Xkmaz] of the array S by the e[kmax] transform of
the sequence S. The elements S[nmax—2Xkmax+1] through
S[nmaz—1] are destroyed. The e[k] transforms were discovered
by D. Shanks (J. Math. Phys. 34 (1955), 1-42). e[l]is equivalent
to the (delta) T 2 transformation. The e[k] transforms are par-
ticularly valuable in estimating B in sequences which may be
written in the form S[n] = B+ X a[{] X gli] Tn (=1,2, -+,
k).

The transformation is carried out by the epsilon algorithm
(Wynn, P.,, M.T.A.C 10 (1956), 91-96). ALcoL procedures for
applying the algorithm to series of complex-terms are given by
Wynn (BIT 2 (1962), 232-255).

The body of this procedure has been tested using the Dart-
mouth Self-Contained ArgoL Processor for the LGP-30 com-
puter. It gave the following results on the sequence for the
smaller zero of the Laguerre polynomial, L[2](z):

n Sin) e[11(Sn]) e[2])(S[n]) e[1)*(S[n])
0 0.0000000 0.5714285 0.5857432 0.5857616
1 0.5000000 0.5851059 0.5857854 0.5857859
2 0.5625000 0.5857318 0.5857861 0.5857861
3 0.5791016 0.5857816

4 0.5838396 0.5857859

5 0.5852172

6 0.5856198 True Value 0.5857364375

These results are in satisfactory agreement with those given by
by Wynn (1956);
begin integer j, k, limj, limk, two kmaz;
real T0, T'1,
two kmax := kmax + kmax;
limj 1= nmazx;
for j := nmin step 1 until limj do
begin T0 := 0;
lim := j — nmin;
if limk > two kmax then limk := two kmax) lUmk := limk — 1;
fork := O step 1 until limk do
begin T1 := 8 [j—k] — S [i—k—1];
if T1 7 0 then T1 := T0 + 1/T1 else
if S [j—k] = 1099 then T1 := T0 else
T1 := 1099;
comment 1099 may be replaced by the largest number
representable in the computer;
T0 := S [j—k—1}];
S [j—k-1] :=T1
end for k
end for j
end Shanks

215-P1- 0

CERTIFICATION OF ALGORITHM 215

SHANKS [H. C. Thacher, Jr., Comm. ACM 6 (Nov.
1963), 662]

LARRY ScHUMAKER (Recd. 16 Dee. 63)

Computation Ctr., Stanford U., Stanford, Calif.

Algorithm 215 was coded in Extended ALcoL for the Burroughs
B-5000 and was tested on a large number of sequences. One ap-
parent typographical error was noted. The statement lim :=
j — mmin should have read limk : = j — nmin. The following tables
were reproduced exactly: (a) tables on p. 5 and p. 33 of [1]; (b)
Table I on p. 95 of [2]; (¢) Tables IIT and IV on p. 28 of [3].

REFERENCES:

1. Suanks, D. Non-linear transformations of divergent and
slowly convergent sequences. J. Math. Phys. 34 (1955), 1-42.

2. WyYnN, P. On a device for computing the e.(S.) transforma-
tion. MTAC 10 (1956), 91-96.

3. WynN, P. Onrepeated application of the e-algorithm. Chiffres
4 (1961), 19-22.

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 216
SMOOTH
RicHARD GEORGE*
Argonne National Laboratory, Argonne, Il1.
* Work supported by the U. S. Atomic Engergy Commission.

procedure SMOOTH (Data) which is a list of length: (n);
integer n; real array Data;
begin
comment This procedure accomplishes fourth-order smooth-
ing of a list using the method given by Lanczos, Applied
Analysis (Prentice-Hall, 1956). This algorithm requires only
one additional list for temporary storage;
real Factor, Top; integer Maz I, I, J; array Delta [1 : n];
Factor := 3.0/35.0;
Moz I :=n — 1;
for I := 1step 1 until Max I do
Delta [I] := Data [I41) — Daia [I];
for J := 1 step 1 until 3 do
begin
Top := Delia [1];
Moz I := Max I — 1;
for I := 1 step 1 until Max I do
Delta [I] := Delta [I4+1] — Delta [I]
end;
Max I :=n — 2;
for.I := 3 step 1 until Maz I do
Data [I] := Data [I] — Delta [I—2] X Factor;
Data [1] := Data [1) + Top/5.0 + Delta [1] X Faclor;
Data [2] := Data [2] — Top X 0.4 — Delta [11/7.0;
Data [n] := Data [n] — Delta [n—3]/5.0 + Delta [n—4] X Factor;
Data [n—1] := Data [n—1] + Delta [n—3] X 0.4 — Della
[n—41/7.0

end;

216-P 1-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 217

MINIMUM EXCESS COST CURVE
WiLniam A. BRrigas

Marathon Oil Co., Findlay, Ohio

procedure MINIMUM EXCESS COST CURVE (nodes, links,

source, sink, I, J, crash, normal, slope, node, lij, ERROR);

value nodes, links, source, sink;

integer nodes, links, source, sink;

integer array I,J, crash, normal, slope, node, lij;

comment This procedure utilizes a network-type description of

a project to compute the minimum cost involved in expedition
of the project completion date. Project tasks are identified and
completion order specified by the vector pair I, J, which contain
node numbers of the events starting and ending each task. The
tasks are parameterized within the vectors crash, normal, and
slope—which contain the crash or minimum task completion
times, the normal task completion times, and the increased cost
per unit decrease in task duration (the slope of the time-cost
curve), which must be a nonzero integer. The procedure initially
determines the normal-duration critical path, then successively
reduces the durations of the tasks with the flattest cost slope,
adjusting the ecritical path, until minimum durations are
reached. The FORD-FULKERSON labeling technique is
utilized. Each task must proceed from a lower-numbered node
to a higher-numbered one—if not, exit to the nonlocal label
ERROR is made. Nodes should be numbered sequentially, start-
ing at the initial event (source) and continuing to the final event
(stnk). The maximum node number is equivalent to the value
nodes, while the value links denotes the total number of tasks.
The arrays are of dimensions I, J, crash, mormal, slope,
lij [L:links] and node [1:nodes];

begin integer m, n, tb, nji, nij, lex, kf, nj, ni, niv, ord, infinity,

A:

A

A

temp;

integer array labl[1:nodes,1:3)], f[1:links,1:2];

comment tnfinily is herein used to represent the largest avail-
able integer;

for m : = 1step 1 until links-1 do
if Ilm] = J[m)} V Ilm] > IIm+1] V J[m] > J[m—+1)] then go

to ERROR;
if I[links] = J[links] then go to ERROR;

for n := 1 step 1 until nodes do labl[n, 1] 1= labl[n, 2] :=
lablin, 3] : = node[n] : = 0;
for m := 1 step 1 until links do

begin f[m, 1] : = flm, 2] := 0;
temp : = node[Ilm]] + normallm];
if node [J[m]] < temp then node [J[m]] : = temp
end;
nty 1= ord := 0; b := node[sink];
labl{source, 1] : = source; labl[source, 3] : = infinily;
for m : = 1 step 1 until links do
begin if labl[I[m], 1] = 0 then go to B;
if labl{J[m], 1] # 0 then go to C;
njt : = nodelJ[m]] — node[I[m]];
if nji # normal[m] then go to Al;
lex : = slope[m] — flm, 1};
if lex < 0 then go to Al;
kf :=1; go to A2;
1: if nji # crash[m] then go to C;
lex := infinity; kf 1= 2;
2: labl[J[m]}, 1] : = I[m]; labl[Jlm], 2] : = kf;

A3:
A4:

B1:

B2:

Gl:

ouT:

ANS:

217-P 1- 0O

if labl[I[m], 3] > lex then go to A3;

labl[J[m], 3] : = labl[I[m], 3]; go to A4;
labl[J[m], 2] : = lex;

if J[m] = sink then go to D else go to C;

if labl{J[m], 1] = 0 then go to C;

nij = node[I[m]] — nodelJ[m]];

if n2j = normal[m] \/ flm, 1] = 0 then go to Bl;
lex := fim, 1]; kf:= —1; go to B2;

if nij = normal[m] \/ [m, 2] = 0 then go to C;
lex := flm,2); kf:i= —2;

labl[Ilm], 1] : = J(m]; labl[I[m], 2] : = kf;

if [labl[J[m], 3] > lex then go to B3;

labl[I[m], 3] : = labllJ{ml], 3]; go to B4;
labl[I[m], 3] : = lex;

if I[m] = sink then go to D;

end;
for n := 1 step 1 until nodes do if labl[n, 1] = 0 then
node[n] : = node[n] — 1;

for n : = 1 step 1 until nodes do labl[n, 1] : = labln, 2] : =
lablln, 3] := 0;
go to 4;
if labl[sink, 3] = infinity then go to OUT;
niv 1= nitv + labl[sink, 3]; nj := sink;
nt := labl[nj, 1];
if labl[nj, 2] > O then go to G1;
for m := 1 step 1 until links do if I[m] = nj A Jim] =
ni then flm, —labllnj, 2]] := fim, —labl[nj, 2]] +
labl[sink, 3];
for m := 1 step 1 until links do if Ilm] = ni A J[m] =
nj then flm, labl[nj, 2]] : = flm, labl[nj, 2]] + labl[sink, 3];
if ni = source then go to OUT;
nj := ni; go to@;
for m : = 1 step 1 until links do
begin lijim] : = nodel/[m]] — nodelI{m]];
if lzjlm]) > normal[m] then Iijim] : = normal[m]
end;
ord : = (th-node[sink]) X ntv; tb := node[sink];
if labl[sink, 3] = infinity then niv : = infinity;
comment as control passes through here—
ord is the ordinate of the minimum project excess cost
curve at a total project duration of node[sink],
successive values of ord plotted versus node[sink] gener-
ate the minimum project excess cost curve.
node(l :nodes] contains the event times at each node
15j[1: links] contains the durations of each task
nitv is the slope of the cost curve back in time from total
duration node[sink].
these values should be printed in some readable form;
if ntv < infinity then go to F;
end MINIMUM EXCESS COST CURVE;

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 217 [H]

MINIMUM EXCESS COST CURVE [William A. Briggs,
Comm. ACM 6 (Dec. 1963), 737]

Joun F. Murh. (Reced. 26 Dec. 1967)

Michigan State University, East Lansing, MI 48823

KEY WORDS AND PHRASES: critical path scheduling, PERT,
cost/time tradeoffs, network flows

CR CATEGORIES: 3.59, 5.41.

Algorithm 217 was transliterated into FORTRAN and successfully
run on the CDC 3600 system at Indiana University after the fol-
lowing changes were made:

(1) 1In the first Boolean expression of the program the term:
J[m] = Jim+1]
was replaced by the term:
UIm] = Ilm+1] A J[m] = J[m+1])

(2) The line:
A3: labl[J[m], 2] := ler;
was replaced by:
A3: labl[J[m], 3] := lex;

(3) In the statement labeled Bl, the symbols:
[m2] =0
were replaced by:
flm, 2] =0

(4) Two statements before the statement labeled A was replaced
by
nivl 1= nly := ord := 0
where ntvl was an additional integer variable. The third
statement before ANS was replaced by:
ord := (tb-node[sink]) X ntvl H+ord; ntvl := nlv;

217-P 2-

0

COLLECTED ALGORITHMS FROM CACM

ALGORITHM 218

KUTTA MERSON

Pryiris M. LUKEHART*

Argonne National Laboratory, Argonne, Ill.

procedure KuttaMerson (n, t,y, eps, h, fct, first);
value n, eps;

integer n;

real t, eps, h;

real array y;

Boolean first;

* Work supported by the U. 8. Atomic. Energy Commission.
procedure fei;
comment This procedure integrates the system of ordinary first-
order differential equations y[¢] = f{5](¢, y[L], ¥[2], - - - y[n]) from
t =ttot = ¢+ hby the Kutta-Merson method (L. Fox, Numeri-
cal Solution of Ordinary and Partial Differential Equations,
p. 24, Pergamon Press, 1962). The working interval of calcula-
tion is adjusted by the procedure so that the maximum absolute
error of the dependent variables is less than eps. For optimum
error control, the equations should be scaled so that all de-
pendent variables have approximately the same magnitude.
Input variables for the procedure are n, the number of equa-
tions, ¢, initial value of the independent variable, y, array of
initial values of dependént variables, eps, allowable error, h,
the total interval, fct, a/procedure evaluating the derivatives,
and first, a Boolean variable which indicates whether the work-
ing interval has been adjusted to secure the desired accuracy.
On the initial call of the procedure for a given system, first
should be true. It will be set false by the procedure, and the
proper working interval determined. The procedure fct has as
formal parameters the simple real variable ¢, and the real
arraysy and f. For¢ = 1, 2, 3, --- , n it must assign to f[¢] the
value of the first derivative of y[¢] appropriate to the values of ¢
and y. The body of this procedure has been tested using the
Dartmouth ScaLr compiler for the LGP-30 computer. For the
equation dy/dt = —2ty? and input data t = 1,y = 5,h = 1,
eps = .0001, the average error was .000003 and the time was 30
min. For the linear boundary value problem d2y/diz? = —1 —
©@+1)y, y(xl) = 0, the maximum error was .000002¢ (L.
Collatz, The Numerical Treatment of Differential Equations, pp.
145, 225, Springer-Verlag, Berlin, 1960) and the time, 90 min.
More aceuracy may be achieved by using a smaller value of eps;
begin integer i, loc;
real error;
array Y0, y1, 2, f0, f1, f2[1:n];
own integer ploc;
own real Ac;
Boolean increase;
if first then begin hc
loc 1= 0; .
next: fet(t, 90, f0);
for i := 1 stép 1 until » do
y1[i] : = yO[t] + he/3 X fO[il;
Jet(t + he/3, y1, f1);
for i : = 1 step 1 until n» do
yl[i] := yO[} + he/6 X fO[i] + he/6 X f1li];
Sfet(+ he/3, yi, f1);
for i := 1 step 1 until » do

= h; ploc :=1; first := false end;

218-P1- O

y1e] 2 = yO[i] + he/8 X fO[i] + 8 X he/8 X f1liL;
fet@t + he/2, yl, f2);
for ¢ := 1 step 1 until n do
y1[Z] := O[] + he/2 X fO[i] — 8 X he/2 X flli] + 2 X he X
F2[el;
Jet@ + ke, yl1, f1);
for 7 := 1 step 1 until 7 do
y2[7] 1= yO[i] + he/6 X fOli] + 2 X he/3 X f2[i] + he/6 X f1[i];
increase ;= true;
for ¢ := 1 step 1 until » do
begin error : = abs(.2 X (y1[z] — y2[¢]));
comment To test on relative error change this expression to
abs(.2 — .2 X y2[l)/ylli]);
if error > eps then
begin ke := he/2;
ploc := 2 X ploc;
loc := 2 X loc;
go to next
end;
if error X 64 > eps then increase : = false
end 7;
ti=1t+ he;
for ¢ := 1 step 1 until » do
YO[i] + = y2{i];
loc :=loc + 1; *
if loc < ploc N\ increase N lac = loc + 2 X 2 A pioc > 1 then
begin hc := 2 X he;
loc := loc + 2;
ploc : = ploc + 2
end;
g0 to next
end KutiaMerson

CERTIFICATION OF ALGORITHM 218 [D2]

KUTTA MERSON [Phyllis M. Lukehart, Comm. ACM
6 (Dec. 1963), 737]

KArReEN BormaN PrieEBe (Recd. 10 Feb. 1964)

Woodward Governor Company, Rockford, Illinois

Algorithm 218 was translated into Fast for the NCR 315 and
gave satisfactory results with the following corrections, if the
equations were scaled as recommended in the comment of the
original algorithm. Ignoring this scaling can lead to results that
do not satisfy the intended error criterion.

1. procedure KuttaMerson (n,t,y, eps, h, fct, first, x);
instead of

procedure KullaMerson (n, t, y, eps, h, fct, first);
2. real array y, z;
instead of

. real array y;

3. iffirst then begin for 7 : = 1 step 1 until n do y0[z] : = y[t];
he = h;
instead of
if first then begin hc : = h;

COLLECTED ALGORITHMS (cont.)

4. if loc < ploc then

begin
if increase A loc = (loc+2) X 2 A ploc > 1 then
begin
he 1= 2 X hc;
loc := loc + 2;
ploc 1= ploc + 2
end;
go to next
end;

for ¢ : = 1 step. 1 until n do z[z] : = y0[¢];
end KuttaMerson
instead of
if loc < ploc N\ increase - --
end KuttaMerson

5. The following sentences should be added to the initial com-
ment of the procedure:]

The values of the dependent variables at ¢ + & are placed in the
array z. Note that the values of ¢ and first are changed as side-
effects of the procedure. {As originally written, KuitaMerson
seemed unable to obtain the values of the solution at ¢ or to trans-
mit the values of the solution at ¢ + A to the outside program!—
Ed.}

6. Change array to array in the body of the procedure.

7. Insert after own integer ploc;
own array y0[1:n];

Delete y0 from the existing array declaration.

REMARK ON ALGORITHM 218 [D2]

KUTTA-MERSON [Phyllis M. Lukehart, Comm. ACM 6
(Dec. 1963), 737]-

G. Baver (Reed. 25 Oct. 1965)

Technische Hochschule, Braunschweig, Germany

Successive calls of Kutla Merson with first = false do not reach
the upper bound ¢-+# if the interval h is unequal to the interval
h of the first call with first = true.

Proposed correction:

1) declaration real he, instead of own real hc;
2) if first then begin for ¢ := 1 step 1 until = do y0[¢] := y[];
he :=h; ploc :=1; first := false
end else kc := h/ploc;
instead of if first then begin --- end;

218-P 2-

0

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 219

TOPOLOGICAL ORDERING FOR PERT NET-
WORKS

RoBErT H. KaSE

Atlantic Refining Co., Philadelphia, Penn.

procedure Topological Ordering (3, j, tri, n,ne);
integer n, ne; integer array 1, j, iri;
comment Nodal points ¢ and j represent activities in a PERT
network. » is the number of activities. tri is a tape record index
vector locating where additional data for each activity is stored.;
begin integer a, b; integer array ni, nj, event [1:n];
comment An event vector is set up containing ne events.
New nodal numbers n: and nj are assigned for all activities.;
ne :=ni[l} :=1; eveni[l]:= {[1];
begin for a : = 2 step 1 until n do
begin for b : = 1 step 1 until ne do
if i[a] = event[b] then begin nila] : = b;
g0 to repeat 1 end;

end;
nila] : = ne :=mne -+ 1; eventne]: = ifa];
repeat 1: end;

begin for a : = 1 step 1 until n do
begin for b : = 1 step 1 until ne do
if jla] = event[b] then begin nja] : = b;
go to repeat 2 end;
end;
nj = ne := ne + 1; eventne] : = jlal;
repeat 2: end;
begin integer ¢, bigtal; integer array rank, con[l:nel;
comment Event ranking (lopological ordering);
for a : = 1 step 1 until ne do
begin rankfa) : = 1; conla] := 0 end;

219-P 1-R1
bigtal : = 1;
pass: t:= 0;
for a : = 1 step 1 until » do

begin if rank[njlal] = rankinila]] then
rank[njlal] : = rankinila]l] + 1 else go to fill;
if rank(njla]} > bigtal then
biglal : = rank[njlal}; t:=1
fill: con[rankinilal]] : = con[rank[njlall] :=1
end;)
if t = 0 then go to new;
for a : = 1 step 1 until bigtal do
begin if conja] = 0 then go to Loop end;
comment Loop should be a label of a procedure statement
which calls a subroutine to detect those events which may
be in a loop in the PERT network or the label of a print out
indicating that loop(s) exist in the network. In any case
a loop exists and further problem processing is impossible.;
for a : = 1 step 1 until bigtal do conla] : = 0;
go to pass;
comment Reassignment of a new nodal number, nz, to all
activities;
new: t:=1:
for a := 1 step 1 until bigtal do
begin for b : = 1 step 1 until n¢ do

if rank[b] = a then begin event(b] :=t; t:=1t+1 end
end;

for a : = 1 step 1 until n do ni[a] : = event[nila]]

end;

comment Using the new nodal number, ni, activities (¢ and j7)
and their corresponding ¢ri may now be arranged in topological
sequence with conventional sort routines. Sorting should be
done on ni.;
end

ACM Transactions on Mathematical Software, Vol. 3, No. 3, September 1977. Page 308

REMARK ON ALGORITHM 219

Topological Ordering for PERT Networks

[R. H. Kase, Comm. ACM 6, 12 (Dec. 1963), 738-739]
Dennis Tenney [Rec 31 Jan. 1977 and 14 March 1976]
Knutson and Associates, 1700 North 55th St., Boulder, CO 80301.

ACM Algorithm 219 has been implemented successfully with two necessary modifi-

cations:
(1) change
end;
ntla] := ne := ne +1; eveni[ne] := i[a];
repeat 1: end;
to
nila] := ne : = net-1; event[ne] := <la];

repeal 1: end;
end;

(2) change
end;
nj := ne := ne+1; eveni[ne] := jlal;
repeat 2: end;

to

njlal := ne := ne+1; event[ne] := jlal;
repeat 2: end;
end;

COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 220

GAUSS-SEIDEL

PerEr W. SHANTZ

University of Waterloo, Waterloo, Ontario, Canada

procedure GAUSS-SEIDEL (n, A, B, tol);
value n, tol; array A, B; real {ol; integer n;
comment GAUSS-SEIDEL solves a system, Az = B, of n
simultaneous linear equations in n unknowns. 4 is the matrix of
coefficients, B an inhomogeneous vector. The standard Gauss-
Seidel iterative technique is employed until | :cjé) - a:,(,;_” | <tol
for all K, where :cg) denotes the ith iterant of the unknown zg .
(Cf. Ralph G. Stanton, Numerical Methods for Science and Engi-
neering, Ch. 8);
begin array X, Y[l:n]; integer<,j, K;
for? := 1step l until n do X[i] : = Y[} : = 0;
START: fori := 1 step 1 until »n do
begin Y[i] := Blil;
for j := 1 step 1 until » do
Y[i] := if ¢ = j then y[i] else
Y[l — Al4, j1 X Yl
Y] := Y[l/AlL,]
end 7;
comment Now test for convergence;
for K := 1 step 1 until n do
if abs(Y[K] — X[K]) > tol then
begin for ¢ : = 1 step 1 until n do
X{t] := Y[¢]; go to START
end convergence test;
end GAUSS-SEIDEL

CERTIFICATION OF AND REMARK ON
ALGORITHM 220

GAUSS-SEIDEL [P. W. Shantz, Comm. ACM 6 (Dec.
1963), 739]

A. P. Batson (Recd 6 Jan. 1964)

University of Virginia, Charlottesville, Va.

Nikravs WiRTH (Recd 6 Jan. 1964)

Computer Science Div., Stanford U., Stanford, Calif.

[EpiTor’s Note. Two substantially equivalent contributions
were received on the same day, and so the editor has merged
them.—G.E.F.]

The following errors were detected.

1. The procedure cannot communicate the solution to the out-
side block unless X (or Y) is made a parameter of the procedure.

2. The identifier GAUSS-SEIDEL may not contain a hyphen.

3. In the fourth line after the label START change y[i] to
Y[z].

With the above errors corrected, GAUSS SEIDEL was suc-
cessfully run on the Stanford 7090 computer in Wirth’s Extended
AvreoL, and on the Virginia Aracor compiler for the Burroughs
205.

The following improvements would be desirable.

1. Avoid repeated reference to the subscripted variable Y[i]
inside the j loop.

220-P1- O

2. Permit the user to initialize the array X to an appropriate
value at the start of the iteration.

3. Modify tol to be a relative error, rather than an absolute
error.

4. Incorporate a guard against nonconvergence.

