L7~ Unw

o prtisehn TS A

W SR | RN AN e TS W e = 5 SO R e R .

Running a microprogram

on RIKKE-MATHILDA

by

Flemming Wibroe

DAIMI MD-41
October 1980

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK.
Telephone: 06 — 12 83 55

oll

ISSN 0105-8525

Running a microprogram
on Rikke-Mathilda

This paper describes how to Load and execute
a microprogram on Rikke and Mathilda.

DAIMI MD-41, October 1980

Flemming Wibroe

Computer Science Department — T h—r‘ |

AARHUS UNIVERSITY —

Telephone: 06 — 12 83 55

Ny Munkegade — DK 8000 Aarhus C — DENMARK ﬂ-

Contents

1« Physical configuration eseseseceascesscecescsnccsancsnanssns 1

2. The MicCroprogram sseaecesasssssssssscsascancnsnnacnssacans
2.1. Preparation ceeceecescasacscscssacasansnnsnnnanancsns
2.2. Structure of the microprogram ceeeececaccasacsasssas

wrhn

icroprogramming Rikke .seceusceececsscnsncsccaancanasccas
1. BCPL=Library functionsS weeceacesaccascscsacaasanas
2. EXample eeeeeenceancssccscannnanccanccansascnnnsnnas
3

. Microcoded Llibrary functions ..eeceenccsnccancacnnas

3. M

~N O~

3
3
3.

4. Microprogramming Mathilda ceeeccecccesnccnascacnanncnnans
1. BCPL-Library functions wccececasscsscscensansananasns
2. Example cuaveecucaanccssncnnsnancsnsnascnsscnanncnnsas
3.

Microcoded Library functions ceceececencecennannns

£~ N oo oo

4
4
4

-

5. Interactive execution of a microprogram ..ececessasees 15
6. Restrictions on MiCroprograms eeecscescsccaasssssnanacs 16
Appendix

A. References c.ceeecesseseanccaansansscnancsacancnnsssannae 18

B. Mathilda mMONitor e..eseceacscsssasnssusssnasansannsnas 19

1. Physical configuration.

The machine configuration is as follows:

Configuration

wsa | | oco : oc| |oco
IA WideStore MSA
. 0A Rikke MainStore
Mathilda 32K 08 1A 32K
64bit 64=bit 16-bit [0A 16-bit
08 18
1K CS 18 ‘ | 0B | 2K CS

fig. 1.1.

Both Rikke and Mathilda are connected to a 32K 64-bit memory cal-
led WideStore(WS). Data is transferred between Rikke an WS through
8 16-bits dataports, 4 for reading and 4 for writing, where a
special writeoperation from Rikke allows writing of individual
16-bit groups in WS [61]. ’

Data is transferred between Mathilda and WS through 2 6é4-bits
dataports.

WS is controlled through 0C/0CD-ports on Rikke, and through
WSA/0CD-ports on Mathilda, details are given in [61.

Rikke and Mathilda <can communicate directly through 2 16-bits
dataports IB/0B.

Rikke is furthermore connected to a 32K 16-bits Local memory cal-
Led MainStore through IA/0A, where MSA is the address register.

The drawing in figure 1.1 does not represent the full physical
Rikke/Mathilda system. Rikke is also connected to other
I/0-devices, such as TTY, lineprinter, papertape and Disk-control-
ler, and the DEC-10-system, but for the purpose of this paper
these are left out.

2.1. Preparation.

Preparation of a microprogram for Rikke or Mathilda is done using
the assemblers and simulators on the DEC-10 [1].

The following example shows how to get the binary microprogram to
the Rikke file-system.

Assuming the DEC-10-file ADD.LUI is a source file of a micropro-
gram for Mathilda:
The assembler will produce 2 files:

ADD.LPT : a Llistning of the program
ADD.PTP : the binary microprogran

If the program is to be simulated on the DEC-10 instead of actual-
ly executed on Mathilda, the assembler will produce the file
ADD.MTS instead of ADD.PTP.

To be executed on Mathilda, the file ADD.PTP must now be transpor-
ted to the Rikke file-system, where it must reside in a directory
with the extension .MAT (e.g under the name ADD.MAT) [2].

This can be done in two ways:

1. Punch the file on the DEC-10 papertape puncher, and use the
command ‘'readptr ADD.MAT' to read it into a directory on
Rikke.

2. Use the transmission-system between DEC-10 and Rikke to
transmit the file. The transport must be initiated on both
machines:

on Rikke : readdec ADD.MAT
on DEC-10 : copy RIKOUT: = ADD.PTP/I

The "/I" after ADD.PTP is neccessary because of the DEC-10
file=format for binary files, and because the transmission
system can be used to send text-files too.

So we have:

ADD.LUI
assembler /- \ DEC-10
ADD.LPT ADD.PTP
|
| file-transmission
v
ADD.MAT Rikke

If the file is a microprogram for Rikke, it must be given the ex-
tension .MIC on Rikke. i

-3~

2.2. Structure of the microprogram-
The communication between a BCPL-program and a user microprogram
can be done through the Llibrary functions, described in the next
sections:

This standard communication demands the parameters to be setup in
a vector, pvec, and has the following conventions about entry and
exit from the user microprogram:

At entry:
LRCLRPI = pvec, the address of the parameter vector
DS = pvec!0 , 1. parameter
Vs = pvec!l , 2. parameter
At exit:
DS = result, the contents of DS is written back
to the caller
RB+1 must be used to return from the microprogram.
This indicates, that the value of RBP before
exit must be the same as at entry, so the RB-
stack must be used carefully.
The RA-stack can be used freely.
Origin:

To avoid overwriting of system-microcode the origins for user
microprograms must be greater than:

on Rikke : 1024 (decimal), 400 (hexadecimal)
on Mathilda : 100 (decimal), 64 (hexadecimal)

An example of a microprogram for Mathilda that obeys these rules
is the following ADD.LUI:

LOUISE VERSION 1.7. PDP-10 17 OCTOBER 1980 ADD.LUI PAGE 1

LINENO CS ADDRESS

0: hhkhkhkhkAhkhkhkhkkhkhkhkhkhhkhkhhhhhhhkhhkhhkrhkhhdhhkhdhhkhkhkhhkhh bk kb kkhkkkkkk
1: . ADD: PROGRAM TO ADD 2 INTEGERS

2: « 3-9-80 FLEMMING WIBROE

3: AEAKAAA A A AKX A AR A AR I A A A Ak A Ak Ak khkhk Ak hkhkhkkhhkhhkhkkhkhkhhhkhdhkhhkhhkxxk
4: *RADIX = 16

5: *ORIGIN = 109

6:

7: 109 ADD: LR:=DS ; ALF:=A+B ; - 1 PARAMETER

8: 10A AS:=VS ; ; - 2 PARAMETER

9: 10B DS:=AL ; H - DS=RESULT

10: 10¢C ; ;RB+1 . RETURN

11: .

12: dhkhkkkhkkhkhkkkhhkhkhhkhhkhkhkhhkhkhkhkhkhhkhkhkhhhhkhhhhhkhkhhkhkhkhkhhhkhkhkhkkhkkdx
13:

14: *ENTRY=ADD

A microprogram can either be loaded and called under control from
a user BCPL-program, or from an interactive system-program. The
interactive execution will be described in section [5]1, here we
describe how to handle a microprogram from a user BCPL-program.

The way in which microprograms are executed, differs somewhat on
Rikke and Mathilda, primarily because Rikke is host for
I/0-nucleus and the 0CODE-machine, and secondarily because of the
difference in datapath-width, 16-bit for Rikke and 64-bit for
Mathilda.

We start by describing how to run a microprogram on Rikke.

3.1. BCPL-library functions-

The Llibrary dis named "RCSLib.REL" and is located in directory
">SysAdmin>SysUser>RikCS", together with the GET-file
"RikHdr.GET". These 2 files must be Linked to CurrentDirectory
before use.

RCSLib contains the following functions:

SetupRikkeCSCsilencel
LoadRikkeCSCfilenamel
DefineRikkeEntryLentry,offset]
CallRikkeCSCentry,pvecl
ResetRikkeEntrylentry]
ResetRikkeCSL]

RikHdr.GET contains the globals corresponding to these functions,
200-210, and the manifests used to communicate the results of the
functions.

This routine must be called before any Lload of microcode to
initiate system—-tables etc. The wvalue of silence must be
NOSILENCE or SILENCE. If silence=SILENCE, the warnings reported
by any of the routines in RCSLib will be suppressed. The errors
detected by any of the routines will always be reported regard-
Less of silence.

LoadRikkeCSCfn3J
A function, which lLoads the microcode on file fn.MIC in Current-
Directory. If the microprogram contains any VALUE-statements,
these will be executed by LoadRikkeCS. .

The result of the function is:
NOTFOUND : fn.MIC is not in CurrentDirectory.
NOGOOD : an overwrite of existing microcode was attempted,

3.1

-5-

or format-error, sum-error or EOF on fn.MIC.

else an entry-point ‘'entry', which can be used by
CallRikkeCSCentry,pvecl

In any of the two first cases, LoadRikkeCS displays an ap-
propiate message on the console before returning.

In the current assembler [1] it is only possible to specify one
entrypoint by "*ENTRY=nn". If, in a large microprogram, an al-
ternative entrypoints is desired, this function can be wused to
define a new entrypoint to be nnt+toffset.

The result of DefineRikkeEntry is:

NOGOOD : offset does not specify an entrypoint insi-
de the microprogram, referenced by ‘'entry'

else as LoadRikkeCS.

Calls the microcode, identified by 'entry'. pvec is the address
of a communication-area in WideStore, which must be allocated
from the calling BCPL-program.

pvec!i must contain the 1i'th parameter to the microprogram
[2.21.

The result of CallRikkeCS is
NOGOOD : 'entry' does not identify a Loaded microprogram

else the result of the microprogram, i.e the contents
’ of DS upon exit.

ResetRikkeEntrylentryl
If 'entry' is the vresult from LoadRikkeCS[fnl, this routine
discards the microcode, specified by 'entry', i.e disables cal-
Lling of the microcode and allows lLoading of new microcode in the

same ControlStore locations.

ResetRikkelsld
Discards all Loaded microcode.

3.2. Example.

The following is an example of a program, which can lLoad and call
the program ADD.MIA. This program is a Rikke equivalent of ADD.LUI
[2.21].

RIKADD.BCPL:

get "SysHdr" // BCPL-Llibrary
get "RikHdr" // microcode Llibrary
manifest $(NUMBPARAMS = 2 $)
Let Start() be
$(S
Let add,pvec,res = 0,0,0
Load["RCSLib",CurrentDirectory] // Load the Llibrary

// initiate BCPL/microcode communication:
SetupRikkeCSCNOSILENCE]

/! load the microcode:

add:=LoadRikkeCSL"ADD"] // LlLoad ADD.MIC
switchon add into
$(sw

case NOTFOUND :

case NOGOOD : GiveUpL"load aborted"]

endcase

default : endcase // loaded ok

$)sw

// initiate pvec:
pvec:=NewVecCNUMBPARAMS-11
pvec!0O:=PromptNL"1. operand - "]
pvec!1:=PromptNL"2. operand - "1

// perform call:
res:=CallRikkeCSCadd,pvec]
if res=NOGOOD then GiveUp["call aborted"l

// display result:
OutFLConsole,"result of %N+%N = %ZN*n",pvec!0,pvec!1,res]

/! clean up
ReturnVeclpvec, NUMBPARAMS-11]
$)S

The Llibrary RCSLib.REL is loaded by the program RIKADD.BCPL, but
the load,addload,go construction, or the 'combine' program [21]
could be used instead.

3.2

-7-

Microcoded Llibrary functions can be used from a user microprogram
via the XTERNAL declaration [11].

On Rikke 2 functions are available, the entry-points are specified
in hexadecimal addresses:

WSREAD = 21 : read a 16-bit word from WideStore.
The address must be in AS,
the result is on IB.
Destroys: AS(15)S, 1B, IBD, ALF, 0OCD and OC.

WSWRITE

22 : write a 16-bit word to WideStore.
The address must be in AS,
and the value to write in LRLLROP].
Destroys: AS(15)S, 0B, 0BD, OCD and OC.

For both functions, the AS-address is a 16-bit-word address, as
used by the O0CODE-machine, so addresses passed as parameters from
a BCPL-program can be used immediately (remember WideStore is a
64=bit memory). WSREAD and WSWRITE will do the actual conversions
to 64-bit-word addresses and the selection of the correct port-
number.

This has as consequence, that WSREAD and WSWRITE only can be wused
in the O0CODE-machines address-space, the lowest half of WideStore,
64K 16-bits words, which equals 16K 64-bits words.

Routines to access the upperhalf of WideStore must be supplied by
the user microprograms.

The routines are called as subroutines, using the RA-stack, e.g
START: B

AS:=u.. ; RA! RN TN TITRTNTRT) ; R-WSREAD
CONTINUE: VS:=IB -

4. Microprogramming Mathilda-

The routines for loading and calling a microprogram 1in Mathilda
are basically identical to those of Rikke, however there are some
differences due to: -

- the asynchrounous operation of the calling and
the called processor
- the difference in datapath-width

Point 1 leads to a slightly different <calling-sequence, whereas
point 2 gives some complications, when communicating parameters
and results.

The Llibrary 1is named "MCSLib.REL" and is located in directory
">SysAdmin>SysUser>MatCS", together with the GET-file
"MatHdr.GET". These 2 files must be linked to CurrentDirectory
before use.

MCSLib contains the following functions:

SetupMatCSCsilencel
LoadMatCSLfilenamel
DefineMatEntrylentry,offsetl]
MatParVec[nl
SetMatParCpvec,i,v3,v2,v1,v0]
ReturnMatVec[pvec]
CallMatCSCentry,pvec]
ResetMatEntrylentryl
ResetMatCSC1]

InMat64Cbufl

OutMaté64Lbufl

MatDAL]

MatSAL]

MatDeadStartCl

MatHdr.GET contains the globals corresponding to these functions,"
110-130, and the manifests used to communicate the results of the
functions.

Before communicating, Mathilda must be deadstarted, see [2]. The
deadstart-loader loads the bootstrap-loader, and hands over con-
trol to this. After normalising Mathilda, the bootstrap-loader is
ready to load and execute another microprogram.

4.1

-9=

The purpose of this routine is to initjalise the communication
between Rikke and Mathilda, and to initialise the tables on Rik-
ke administering the Mathilda ControlStore. The value of silen-
ce must be NOSILENCE or SILENCE. ’

Before SetupMatCS is called, Mathilda must be deadstarted.

To establish a communication between Rikke and Mathilda, a
microprogrammed monitor, which can lLoad and execute user micro-
programs, must be loaded. SetupMatCS loads this communication
monijtor. .

The monitor contains microprogrammed Library functions as
described in section 4.3, and assures, that the conventions for
communication from section -2.2 are obeyed. The text of the cur-
rent (277/10-80) communication monitor can be found in appendix
Be.

As with SetupRikkeCS, silence=SILENCE suppresses the warnings
given by any of the routines in MCSLib, the errors are always
reported.

LoadMatCsCinl
A function, which Loads the microcode on file fn.MAT in Current-
Directory. If the microcode contains any VALUE-statements, these
will be executed by LoadMatCS.

The resutt of the function is:

NOTFOUND : fn.MAT is not in CurrentDirectory.
NOGOOD : an overwrite of existing microcode was attempted,
or format—-error, sum-error or EOF on fn.MAT

else an entry-point 'entry', which can be used by
CallMatCsCentry,pvecl

In any of the two first cases, LoadMatCS displays an‘éppropiate
message on the console before returning.

Delivers a vector, pvec, of size 4*n, such that pvec rem 4 = 0.

SetMatParfpyec,i,v3,v2,v1,y01
Equivalent to
$C let k = (i-1)*4
pvec! (k+3) ,pvec!(k+2),pvec!(k+1) ,pvec!k:=v3,v2,v1,v0
$)

Returns the vector allocated by MatParVec.

-10-

Calls the microcode identified by 'entry'. pvec is the address
of the communication area in WideStore as seen from Rikke:

Because of the difference in datapath-width on Rikke and Mathil-
da, this communication-area is treated in a special way:

1. Parameters are seen as 64-bits words from Mathilda, but
must be handled as 4 16-bits words from Rikke.

2. The address of a parameter is a 64-bits word address
from Mathilda and a 16-bits address from Rikke, so
rikaddress=4*mataddress.

3. As a consequence of this, each parameter, which must be
setup from Rikke, consists of 4 16-bits words, where the
address of the first word must be divisible by 4.

The call pvec:= MatParVec[nl allocates a communication vector in

WideStore of size 4*n, such that pvec rem 4 = 0.
The pvec must now be initialised as follows:

pvec!0 = bit 15...0 of 1. parameter
pvec!1 = bit 31..16 of 1. parameter
pvec!2 = bit 47..32 of 1. parameter
" pvec!3 = bit 63..48 of 1. parameter
pvecl!4 = bit 15...0 of 2. parameter
pvec!5 = bit 31..16 of 2. parameter
pvec!6 = bit 47..32 of 2. parameter
pvec!7 = bit 63..48 of 2. parameter

pvec!8 = bit 15...0 of 3. parameter

After the call CallMatCSCentry,pvecl, the conventions of section
2.2 means that upon entry to the microprogram

LR = pvec/4, the address of the parameter vector
DS = 1.parameter: pvec!3::pvec!2::pvec!1::pvec!O
VS = 2.parameter: pvec!7::pvec!6::pvec!5::pvec!s

CallMatCS(entry,pvec) does not wait for any result from the
Mathilda microprogram, it merely starts execution and waits only
for the Mathilda monitor to reply with an accept of the call to
ensure that the microprogram is started, and then returns to the
calling BCPL-program with the result ACCEPTED.

The result from the microprogram, the content of DS, can then be
obtained by calling InMatés4.

If ‘'entry' does not ijdentify a Loaded microprogram, or
pvec rem 4 \=0, NOGOOD is returned.

-11 -

If 'entry' is the result of LoadMatCSCfnl, this routine discards
the microcode, specified by 'entry', i.e disables calling of the
microcode and allows lLoading of new microcode in the same Con-
trolStore Llocations.

ResetMatCsSC]

Reads a 64-bit words, send from Mathilda through the direct con-
nection between Rikke and Mathilda, to the 4-word vector 'buf'
such that:

buf!0 = bit 15...0
buftt = bit 31..16
buf!2 = bit 47..32
buf!3 = bit 63..48

This routine is used after CallMatCS to wait for the result of
the Mathilda microprogram.

Note: Mathilda sends the word in 4 * 16-bits, so 'buf' need not
be divisible by 4, as with pvec.

Writes a 4*16-bits word to Mathilda through the direct connec-
tion 1in the same format as InMaté64. If Mathilda is not ready to
read from Rikke, Rikke will be hung up.

MatDAL]
A boolean functions, Mathilda Data Available, which is true, if
Mathilda has send a word to Rikke through the direct connection,

and Rikke has not read this value yet.

MatSAL]
A boolean function, Mathilda Space Available, which is true, if
Mathilda has read the Llast word send from Rikke through the

direct connection.

MatDeadStartll
If Mathilda- is 1in a welldefined state after having executed a
user microprogram, it can be deadstarted from a BCPL-program by
calling this vroutine, i.e unload the communication monitor and
the user microprograms, and return control to the bootstrap-

Loader.

This routine should be called upon normal exit from the user
BCPL-program.

4.1

-12-

4.2. Example-
The following is an example of a program,
the program ADD.LUIL2.21].

MATADD.BCPL:

get "SysHdr"
get "MatHdr"

manifest $(NUMBPARAMS = 2 $)

let Start() be
$(S
let add,res = 0,0
and pvec = 0
and buf = vec 3
Load["MCSLib",CurrentDirectory]

which can Lload and call

// BCPL-Llibrary
// microcode Llibrary

// Lload the Llibrary

// initiate BCPL/microcode communication:

SetupMatCSCNOSILENCE]

// load the microcode:
add:=LoadMatCSL"ADD"]
switchon add into
$(sw

case NOTFOUND

// Load ADD.MAT

case NOGOOD : GiveUpL"load aborted"]

endcase
default : endcase
$)sw

// dinitiate communication area:
pvec:=MatParVec[CNUMBPARAMS]

SetMatPar(pvec,1, 0
0

,0)
SetMatPar(pvec,2, 1)

,0.,1
.0,0,
/! perform call:

res:=CallMatCSCadd,pvec]
switchon res into

// Lloaded ok

// a vector of size 8

65536
1

// 1.par
/! 2.par

// Mathilda started

GiveUp['"system-error"l//should not occur

$(sw
case NOGOOD : GiveUp["call aborted"1]
endcase
case ACCEPTED : endcase
default :
endcase
$)sw

-13-

// wait for Mathilda

until MatDAL] do

$(
// Do some sensible work. This Loop need not be here,
// since InMaté4 will wait for Mathilda.

$)

// read the result
InMat64(buf) // the result in 'buf'

// display result:
OutFLCConsole,"result: ZU::%U::%U::%U*n",buf!3,buf!2,buf!1,buf!0]’

/! clean up:
ReturnMatVec(pvec)
MatDeadStart[l]

$)S

-14-

The following &4 functions are available 1in the standard com-
munication monitor, and can be used from the wuser microprograms

via the XTERNAL declaration. The addresses are given in hexa-
decimal:
WSREAD = 8 : read a 64-bit word from WideStore.

The address must be in AS,
the result is on IB.
Destroys: ALF, WSA, 0CD, IA

WSWRITE = 9 : write a 64-bit word to WideStore.
The address must be in AS,
and the value to write in LRLLROPI].
Destroys: ALF, WSA, 0CD, OA
RIKREAD = A : read a full 64-bit word send from
Rikke by OutMatés4.
The result is on AL.
Requires: LRIP=LROP
Destroys: CA, ALF, LRLLRPJ, IB
RIKWRITE = B ¢ write a full 64-bit word to Rikke,

to be recieved by InMatéé.
The value to write must be in VS.
Destroys: CA, VS, 0B

The AS-addresses for WSREAD and WSWRITE are 64-bits-word WideStore
addresses, so these two functions can be used to access the whole
WideStore.

The routines are called as subroutines, using the RA-stack as
described in section 3.3.

-15-

5. Interactive execution of a microprogram-

If the user only wants to Load and call a simple microprogram, i.e
a program which only communicate with the calling BCPL-program and
only give one value, a word, as its result, this can be done with
the programs "Rikke'" and "Mathilda".

They consists of respectively "RCSLib" and '"MCSLib" together with
some input/output routines, and a microprogram catalog.

The commands they accept are:

Load name : load a microprogram from file name.MIC (Rikke)
or name.MAT (Mathilda).

call name : call of the microprogram 'name'. The progranm
asks for the number of parameters and the
parameters. .
For Rikke, the parameters can only be given in

decimal.
For Mathilda they can be given as:
e.g
decimal : 102 16-bit
hexadec. H XA7B42C 64-bit
octal : 0713132 64-bit
binary : B101001 64-bit

The result of the microcode call is displayed in
decimal, and for Mathilda in hexadecimal too.

delete name : discards the microprogram 'name'. If 'name'=all
all Loaded microprograms are discarded.

list : gives a List of all callable microprograms.
help : type a help text on the Console.
end : terminate the program. In case of Mathilda, a

MatDeadStart[] will be executed.

The example-programs ADD.MIA and ADD.LUI can both be executed by
these two programs.

The two programs reside 1in SystemDirectory, and are invoked as
normal systemprograms by typing their name L[2].

-16-

6. Restrictions on microprograms.

When running a microprogram on Rikke or Mathilda, some rules about
the environment must be obeyed, especially on Rikke, since the
I/0-nucleus and the OCODE-machine both are microprogrammed
[31,C04]1, and therefore (possibly) uses the same registers, masks
etc. as the user microprogram.

Both Rikke and Mathilda must be lLeft in a normalised state, when
the user microprogram terminates. This means:

MACOI = LACOJ = LBCOJ = PALO] = NOMASK (11...111)
MAC11 = PAL1] = PBLOJ = FULLMASK (00...000)
MAP = LAP = LBP = PAP = PBP =0

BSS = PGS = CM

CUALF = A+B

If any of these are omitted, the processor (Rikke or Mathilda)
will probably die, when trying to execute the next microprogranm,
which on Rikke is the OCODE-machine itself.

On the other hand, the user microprograms may also assume, that
both Rikke and Mathilda are normalised, when entering the micro-
program.

On Mathilda a user microprogram can use all the resources in the
machine, the register groups, pointers etc, with the exceptions as
mentioned above, and assume that the values are unchanged, when
re-entering the microprogram from the BCPL-system, except for the
following, which are wused by the Library routines and the com-
munication monitor:

ALF CA 8 LRP LRI11
AS DS Vs ocC SA
IB IB 0A 0B
oCD WSA
on Rikke the user microprograms are more restricted. The

I/0-nucleus and the OCODE-machine uses some permanent resources,
and these must not be changed by the user microprograms. These
are:

WALO]D : the OCODE-machine registers
WAL1131-WAL131 used by I/O0-nucleus

WBLO1 : 0-15 = 0,1,2,3,,,14,-1 , the constants
wBL2] : used by the disk-controller -

wWBL4]1 - WBL71] used for OCODE-decoding

MB:5-9 used by the disk-controller

MB:12-14 used by I/0-nucleus and O0CODE-machine
LA:14-15, used by the OCODE-machine

-17-

MainStore:
MS: 0-256 used by I/0-nucleus

Apart from these, the I/O-nucleus and the 0CODE-machine uses some
resources, when running, so these <cannot be assumed to be un-
changed, when re-entering a wuser microprogram. The following
resources are not used, and can be assumed to be left unchanged by
the I/0-nucleus and the O0CODE-machine:

ALSG [5] - [151] AVDSG [5]1 - [151]
BSSG [51 - [153] BMSG [51 - [151]
CAsG [5]1 - [153] cBs6 [5]1 - [151]
LA [51 - [13] LB £51 - €151
MA £51 - [151] mMB [11 - [4]
PA £51 - 0151 PB . [51 - [151]
PMSG [5]1 - [153] PGS6 [51 - [151]
MSASGLS5]1 - [151 wB £81 - [151

The free WA-groups must not be wused wuncontrolled, since the
I/0-nucleus also uses these for device-records. If a WA-group is
needed, it must be allocated and deallocated by the calling
BCPL-program:

group := AllocDBL] // allocate
DeAllLocDBLgroupl // deallocate

For both Rikke and Mathilda, using VALUE-statements on any of the
above permanent resources or the resources concerning the nor-
malised machine, will of course have disastrous consequences too0.

Furthermore it should be noted, that VALUE-statements are executed
by LoadRikCS and LoadMatCS, see 3.1 and 4.1, and that this ex-
ecution uses some pointers and registers, when initialising the
register-group and pointers. :

This means, that all the microcode for a user microprogram should
be Lloaded, before calling any of the microcode, if the microcode
assumes any register—-group or pointer to be Left unchanged by the
BCPL-system.

-18-

C13:

[23:

£33:

C4d:

[6]:

[73:

[81:

I.H.Sgrensen, E.Kressel:
Rikke-=Mathilda microassemblers and simulators
DAIMI MD-28, December 1977

J.K.Kjergaard and Flemming Wibroe
The RIKKE-BCPL system
DAIMI MD-38, September 1980

E.Kressel, I.H.Sgrensen
The I/0-nucleus on RIKKE-1
DAIMI MD-21, October 1975

0.Sgrensen
The emulated OCODE-machine for the support of BCPL
DAIMI PB-45, April 1975

P.Kornerup,B.Shriver
A description of the MATHILDA system
DAIMI PB-52, September 1980

J.K.Kjergaard
The RIKKE-MATHILDA WideStore
DAIMI MD-42, November 1980

J.K.Kjergaard, I.H.Sgrensen
The RIKKE-BCPL compiler
DAIMI MD-36, August 1980

J.K.Kjargaard, I.H Sgrensen
The RIKKE editor
DAIMI MD=-37, August 1980

Appendix A

-19-

Appendix B: Mathilda mopitor

The following is the source text for the Mathilda communication
monitor as of 27/10-80. The text, and thereby the addresses is
Likely to change in the future, but the functions should remain
unchanged.

The source text of the Rikke and Mathilda bootstrap lLoaders can be
found in [11].

LOUISE VERSION 1.7. PDP-1C 27 OCTOBER 1980 12:38:53 LOADER.LUI PAGE 1

LINENO CS ADDRESS

0: HREAEREARE R Xxxk P KRR AR
1: .

2: . MATHILDA MICRO-PROGRAMS RUN-TIME ENVIRONMENT

3:

H 9-2-79 : Exec: LRLOJ unchanged, LRP=1

5z LR(1] = pointer to parameter vector

. 9-5-80 : MEMREAD,MEMWRITE: READ/WRITE DIRECTLY FROM WS
*

FRA R KRR KRR KA K AR TS KRR ARR R AR KRR A AR KRR KA KRR AR KA AR AR AR

*0=16
*x Akk kR AR A KRR AR KRR AR R KRR A AR KRR RE AR AR AR AR AR AR R AR AR AR AR K

. CONTROLSTORE LOAD MODULE

10 MATLOAD :

; RA! ; R-READ - START-ADDRESS
1M1 3 RAL, SA:=SB ; R=READ «LOAD=COUNT
12 : €8:=SB, RA! ; R-READ LFIRST WORD
13 NEWLOAD: AL ; 0C:=8US :
14 H CSLOAD ; SA
15 DS:=ALLOS; c8-1 R ; IF CB THEN RB+1 .RETURN TO EXEC
16 H RA! ; R-READ «NEXT WORD
17 ; :
18 ; ; R-NEWLOAD
* .

CONTROL AND PARAMETER TRANSFER MODULE.
UPON ACTIVATION OF USER HMICRO-PROGRAHS
LR POINTS TO THE PARAMETER VECTOR,
DS CONTAINS THE 1. PARAMETER
VS CONTAINS THE 2. PARAMETER

UPON TERMINATION OF A USER-SPECIFIED FIRMWARE FUNCTION
THE CONTENTS OF DS IS AUTOMATICALLY

WRITTEN "BACK" TO THE CALLING SYSTEM ROUTINE, AS

THIS CONTENTS IS ASSUMED TO BE THE RESULT OF THE
FUNCTION CALL

IR

19 XEC: ; LRPC ; IF KA THEN HERE
1A ; RAL, LRP+1 ; R-READ .START-ADDRESS
18 ; RAL, SA:=SB ; R-READ LPARAMETER VECTOR
1c L ;
10 S; RA! " ; R=WRITE «ACCEPT TO RIKKE
1E H RA! ; R-MEMRE AD <1 .PARAMETER
1F ; SETALF+1 :
20 ; RA! wHne G R-MEMRE AD L2.PARAMETER
21 ; i IF KA THEN HERE
22 ; RB! i SA LEXECUTE PROGRAM
23 vs:=Ds RA! i R-WRITE WRESULT TO RIKKE
24 ; ; R-EXEC LREADY AGAIN
KA KRR RAA KR AA KR AR * P KA KRR AR R
*P

Appendix B

-20-

LOUISE VERSICGI 1.7. PDP-10 27 OCTOBER 1980 12:38:57 LOADER.LUIL PAGE 2

LINENG CS ADDRESS
532 AR KRR KA KRR R KR KRR R R A AR AR KA R AN R KRRk AR AR KR ARk A R KRRk KRk KRRk k&K Kok Rk &R Kk Rk R kK kR
- LIBRARY ROUTINES

R LR L T L LTt

. READ A FULL €4 BIT WORD SEND FROM A BCPL PROGRAM ON RIKKE

25 READ: ; ALF: ALLOS ;

26 ; ch e ;

27 . ;

28 ALF:= ARB ; IF IBDA THEN HERE+1 ELSE HERE

29 CA=1, 1BA ; IF Ch THEN HERE+1 ELSE R-2

24 : P RA+1
EERRRR AR AR R xR AR R KRR ARk R KRR KR KRR R KRR KRR KRRk k KRR R AR R KRR A kAR kR
I WRITE A FULL 64 EIT WORD TC A BCPL PROGRAW ON RIKKE

26 . WRITE: ; chz= " 3

2¢ ; ; IF 0BSA THEN HERE+1 ELSE HERE

H VS,0B:=VS,<16; CA-1, 08A ; IF CA THEN RA+1 ELSE HERE-
Ty
. WIDESTGRE READ FUNCTION: IA:=WSCAS]

2E RERREAD ; SETALFE ; IF NOT CCSA THEN HERE

2F AL ; 5

30 ; ;

31 ; ; IF IADA THEN RA+1 ELSE HERE
E AR AR R AR AR AR AR AN AR FAAR AR AR KR AR AR AR
. WIDESTORE WRITE ROUTINE: WSCASI:=LR

32 REMWRITE : ; SETALFB ; IF NOT OCSA THEN HERE

33 AL ; WSA:=sB, 1 ; IF NOT OBSA THEN HERE

34 ; 0CA1, SETALFA ;

35 OA:zAL OARY 3 ORA+1
B . P * F—
. THESE ROUTINES A CALLABLE THROUGH A TABLE:
FAAERAR AR AKEK AR A AR A AR HKR AR *
*0=8

8 RIKREAD: ; e R=READ

B RIKWRITE: ; ; R-WRITE

A WSREAD : ; ; R=MEMREAD

[WSWRITE: : ; R-MEMURITE
*ak *akk KRR AHAR

*ENTRY = EXEC

T

ASSEMBLY CORRECT

Appendix B

Running a microprogram on Rikke-Mathilda

Micro Wibroe, Flemming.
Archives Running a microprogram on Rikke-Mathilda /
4-30 Flemming Wibroe.-- Aarhus, Denmark: Com-

puter Science Department, Aarhus Univer-
sity, 1980.
(DAIMI; MD-L1)

I. Title.

