
THE MATHILDA DRIVER,

A SOFTWARE TOOL FOR HARDWARE TESTING.

by

Eric Kressel

Ib Holm S~rensen

DAIMI MD-18

October 1975.

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE
Ny Munkegade • 8000 Aarhus C • Denmark

Phone 06·128355

1.

PREFACE

Sometimes it is easy to get the impression that testing the hard

ware of a computer is the task of an engineer in electronics and

no one else. This is not the case, however.

To encircle an error in a certain part of the machine, the engineer

requires various bit patterns to loop through the erroneous part with

out effecting too many surrounding sediorsof the hardware. This

usually impl ies writing compl icated programs in a restricted set of

the machine code (in order. to avoid using critical sections surroun

ding the part in error). This is a job for software people, not tech

nicians.

In the spring of 1975, the authors were to assist in the hardware

testing of Mathilda, a computer designed and built in the department

[1].

At this time, RIKKE-1 (a prototype machine of Mathilda, but with

a 16-bit word length) was in operation with an Operating System

written in BCPL [2J running on it. The I/o interface between Mathil

da and RIKKE-1 is extremely simple (a question of connecting them

with 2 cables} and our first task was to adjust the RIKKE-1 operating

system so it viewed Mathilda as a device. We were now able to ex

ploit the power of a higher level language for generating data and

control information to Mathilda. This possibility lead to the develop

ment of a software tool on RIKKE-1 to enable that the data generation

to and the flow of control of hardware test programs in Mathil da coul d be

entirely driven in an interactive fashion from RIKKE-1's console,

given that the test programs were structured suitably.

This approach to the testing of the hardware gave us many advantages,

for example:

• the micro code in Mathilda was short, simple to write and

used very few parts of the machine other than those of in

terest.

• the interactive way of working gave us immediate response,

and closing in sources of errors was more or less trivial.

2.

This manual describes the facilities of this software tool which we

have named the Mathilda Driver, and gives a list of the commands

applicable to it. We cannot describe how to hardware test Mathil-

da, because each test program has its own properties and they are

defined by the resource to be tested and through discussions between

programmers and techni cia ns on the spot. We hope, however, that

the Mathilda Driver is a tool so flexible that any test problem, no

matter how intricate, can be solved by using the facil ities provided

in the Driver in such a way that the test program in Mathilda may

be written in a very simple-minded fashion.

We assume the reader has read the references [1 J and [2J.

Tab I e of Contents

O. INTRODUCTION

1. MODE OF OPERATION

2. COMMAND STRUCTURE

3. CONTROL AND DATA GENERATION FEATURES

Description of various Buffers

Patterns

Bits

Masks

Comparison

Shifts

Micro Instruction Generation

ALU

Display

Loading Microprograms from RIKKE-1

4. TABLE OF SINGLE COMMANDS in alphabetic order

5. TECHNICAL DETAILS

6. CROSS REFERENCE INDEX

3.

page

4

4

4

5

8

15

16

Appendix A.

Appendix B.

Appendix C.

TheBootstrap Normalizer for Mathilda 18

The Read and Write Routines for Test Programs 20

An Example of a Test Program and the 21

Command Strings Used on it.

4.

o. INTRODUCTION

The Mathilda Driver [referred to as MD in the following] provides

control and data generation facit ities in RIKKE-l for the support

of the hardware testing of Mathilda. Mathilda m~y be completely driven

via commands from RIKKE-l's console, and the size and complexity

of the miclO code test programs in Mathilda are reduced to a minimum,

thus easing readabil ity and reducing design time of the micro code rou

tines in Mathi Ida.

1. MODE OF OPERATION

MD expects that the microprogram running in Mathilda has a specific

structure. A general example looks I ike:

address 1

address 2

address n

A: Read an address for a specific action

from RIKKE-l

goto specified address

Read any parameters from RIKKE-l

necessary for action.

Execute action

goto ·A

Ditto as address 1

Observe that the operator on RIKKE-l must know the precise struc

ture of the microprogram in Mathil da; e. g. the addresses of the various

actions, and the number of reads from RIKKE-l and writes to RIKKE-l.

Any kind of error in the command sequence from RIKKE-l may cause

a fatal deadlock in the communication between RIKKE-l and Mathilda.

This will usually require a complete restart of Mathilda and MD.

·2. COMMAND STRUCTURE

A command to MD consists of a I ist of singl e commands, separated

by del imiters if necessary. [Del imiters may be omitted if the resulting

concatenation of single commands cannot cause an ambiguous interpre

tation.]

5.

A single command consists of a letter, a double letter, or one of the

I atter followed by an integer or a bit pattern or both. An integer is

always interpreted as a decimal integer. A bit pattern is a sequence

of 0 1 sand 11 s. The pattern may be no longer than 16 bits.

A del imiter is inserted in the command string by typing VT on the

keyboard. A 1 $1 is echoed on the console. The command string is

terminated and immediately executed by typing two delimiters in suc

cession.

A single character in the command string may be deleted by typing

RUBOUT. The character is echoed on the console. An incomplete

command string may be deleted entirely by typing CTRLx. The promp

ting '*' is echoed on the console.

MD is equipped with 4 macro buffers. A command string may be in

serted into a macro; the macro may then be executed any number of

times required by the operator. If an error is detected during exe

cution, the operation is terminated. A macro definition may be called

within another macro definition, but recursive definitions, i. e. a

macro call ing itself, are not allowed.

3. CONTROL AND DATA GENERATION FEATURES

MD can manipulate buffers in different ways. A list of the buffers

contained in MD follows:

Output Buffer.

1 buffer, 64 bits wide, primarily used for sending data to Mathilda.

Control Buffer.

1 buffer, 64 bits wide, used for sending control information to Ma

thilda, i. e. pointer and function control. Only the 16 least signifi

cant bits are accessibl e.

Address Buffer.

1 buffer, 64 bits wide, used for sending sequencing information to

Mathilda. Only the 16 least significant bits are accessible.

6.

Add Buffer.

1 buffer, 64 bits wide, used to contain a 64 bit constant which may

be added to the Output Buffer during execution of a command sequence.

The addit ion is performed in groups of 16 bits [63-48, 47-32, 31-16,

15-0]. No carry is taken across the 16 bit bounds.

Input Buffer.

1 buffer, 64 bits wide, used to receive data from Mathilda.

External Register Buffer.

1 buffer, 16 bits wide, used to initialize Mathilda's External Register.

Scratch Buffers.

8 buffers, 64 bits wide, numbered ¢ through 7, used for various pur

poses, e. g. read, write, comparison, etc. The reader will get full

details in the list of single commands.

MD is equipped with the following data generation facilities:

Pattern Generat ion.

Any bit pattern, 0-16 bits wide, may be

1) copied across the 64 bits of the Output Buffer.

2) inserted at any bit position in the Output Buffer.

3) added in at any bit position of the Output Buffer.

B it Manipulation.

Any bit in the Output Buffer may be

1) inserted [the rest of the bits left untouched]

2) set [the rest cleared]

3) reset [the rest left untouched]

Mask Generation.

A mask generator, equivalent to the Post Mask Generator in Ma

thi Ida, is provided to work on the Output Buffer.

Compar i son.

The contents of the Input Buffer may be compared with the Output

Buffer or any of the scratch buffers. Depending on the result of the

7.

comparison, a choice between 2 different command string executions

is made.

Shift.

The contents of the Output Buffer may be shifted cycl ic through 64

bits either left or right. The contents of the External Register and

Control Buffers may be shifted left 0-15 bits (logically) during trans

miss ion to Mathi Ida. The actual contents are, left untouched.

Instruction Generation.

Any micro instruction for Mathilda may be generated with a simple

Micro Assembler included in MD. The operator specifies which field

in the instruction (i. e. f1, sl, etc.) he wishes to initialise followed,

by the code in decimal. The micro instruction is placed in the Out

put Buffer.

64 bit ALU.

MD is equipped with a 64 bit ALU, equivalent to the hardwired ALU

in Mathilda. It contains the same functions and operates in the same

fashion. A-input is always the Output Buffer, B-input may be any of the

Scratch Buffers, and the result is delivered in Scratch Buffer ¢. The

function of the ALU is specified in a separate command.

Display.

The contents of any buffer can be displayed either on the console or on

the pr inter.

Load.

MD can read binary paper tape micro programs generated by MARIA

in bootstrap loader format [i. e. default format], and transform them

to something readable for Mathilda. A special micro program, called the

Bootstrap-Normal izer, has been written to enabl,e the loading of such

programs from MD. This impl ies that test programs need not be con

fined to 16 words, but can use as many control store words as neces

sary. See appendix A for the source text of the Bootstrap-Normal izer.

8.

4. S INGLE COMMANDS

The following is I ist of the single commands provided in MD, with

a short description of each.

a=<n>

al = <n>

Load Address Buffer with <n>.

Load ALU function selector with <n>.

Any activation of the ALU in MD ,follo

wing this command will give the result

of the specified function. Possible func

tions are:

o A.
1 A V B
2 AV,B
3 -1
4 A + (A /\, B)
5 (A V B) + (A/\ -, B)
6 A+-,B
7 (A - B) -1
8 A + (A /\ B)
9 A+ B

10 (A V ,B) + (A /\ B)
11 (A /\ B) -1
12 A+ A
13 (A V B) + A
14 (A V, B) + A
15 A - 1
16 -, A
17 ,(A V B)
18 ,A /\ B
19 0
20 -, (A /\ B)
21 ,B
22 A NEQV B
23 A /\ -, B
24 -, A V B
25 AEQVB
26 B
27 A /\ B
28 All I j IS

29 A V -, B
30 A V B
31 A
32
33
34
35
36
37
38
39

ac

al <n>

bc <n>

bi <n>

bs <n>

c=<n>

c+

c-

cp<str1 > /<str2>

cp<n> <str1 > /<str2>

da

db

dc

de

di

dj

40
41
42
43
44
45
46
47

As functions

o - 15, plus 1,

e. g. 32: A + 1

39: A - B

9.

Load ALU function selector from Con

trol Buffer's 16 least significant bits.

Activate ALU with function given in ALU

function selector. A- input is Output

Buffer and B-input is Scratch Buffer

<n>. Result is delivered in Scratch

Buffer cp.
Clear bit <n> in Output Buffer. All other

b its left untouched.

Insert bit <n> [set bit <n>] in Output

Buffer. All other bits left untouched.

Set bit <n> in Output Buffer. All other

bits are cleared.

Load Control Buffer with <n>.

Increment Control Buffer.

Decrement Control Buffer.

Compare Input Buffer with Output Buffer.

If buffers are logically equivalent, exe

cute command string <str1>,otherwise

execute command string <str2>. Note:

<str2> must D.2! contain

any del imiters.

As command above, where Output Buffer

is exchanged with Scratch Buffer <n>.

Display Address Buffer on printer.

Display Output Buffer and Input Buffer,

in that order, on printer.

Display Control Buffer on printer.

Display External Register Buffer on

printer.

Display Input Buffer on Printer.

Display Control Buffer an.d Input Buffer,

in that order, on printer.

do

du

d<n>

e = <n>

e+

e-

f

h

Display Output Buffer on printer.

Display ALU function selector on

printer.

10.

Display Scratch Buffer <n> on printer.

Load External Register Buffer with <n>o

Increment External Register Buffer.

Decrement External Register Buffer.

Give form feed on printer.

Terminate execution of current command

string.

i <fieldl> ••• <fieldn>$ Create micro instruction in Output Buffer.

<fieldk> contains field description and

value to be inserted in field, and must

have the following format:

m<n>

<fd> = <m>$

<fd> may be wr itten as:

fl f3 vs bi (bisb)

s 1 s3

m2 m4

f2 f4

m3 as

ds ci (cisb)

be (enable) sc

bd af

bs at

The field specified by <fd> is then set

to the value <m>. <m> is masked to suit

the bit width of the field.

Load Mathi Ida with contents of binary

paper tape in RIKKE-l's reader. Paper

tape must be in Bootstrap Loader format

from MARIA, i. e. default format. MD

then transmits to Mathi Ida:

1) Load address in Control Store

2) Count of i nstructions-l

3) Instructions

4) Execution start address

Note: Contents of Address Buffer,

and Output Buffer are undefined after

execution of 'JI instruction.

Generate <n> l's in Output Buffer.

mc

oe

of

on<n>

o

11

11.

<n> 2:. 0, generate <n> O's, starting

at most significant bit, set

rest of bits to 1.

<n> > 63, generate 128 - <n> O's,

starting at least signifi

c;ant bit, set rest of bits
,

to 1.

Generate mask as above, but take contro.1

information from Control Buffer's 16

least significant bits.

Punch approximately 15 cm paper feed

[i. e. blank tape, no feed holes] on pun

cher.

Punch 8 frames with feedholes (no data]

on puncher.

Punch the integer <n> as 2 frames on

puncher; the 8 most significant bits first

followed by the 8 least significant btis.

Punch Output Buffer on puncher. The bits

of the buffer appear on the paper tape as

follows:

frameno. tape bitno.

1 15-8

2 7-0

3 31-24

4 23-16

5 47-40

6 39-32

7 63-56

8 55-48

[This format is equivalent to various mi

croloaders format for RIKKE-1 and Ma

thi Ida].

o<n>

oa

pc<p>

ps<n>, <p>

P i<l1>, <p>

pm

pm<n>

pb

pb<n>

pa

pa<n>

q

r

r<n>

rs

12.

Punch Scratch Buffer <n> [as aboveJ.

Punch 8 Scratch Buffers in the same

format as above on puncher, starting

with Scratch Buffer ¢ and ending with

Scratch Buffer 7.

Copy pattern <p> across Output Buffer.

<p> may be any combination of bits and

of length between 1 and 16 bits. <p> is

then repeated as many times in the Out

put Buffer as there is room for it.

Set pattern <p> in Output Buffer star

ting at bit position <n>o All other bits

are cleared.

Insert pattern <p> in Output Buffer,

starting at bit position <n>o All other

bits are left untouched.

Move pattern in Output Buffer to Add

Buffer.

Move pattern in Output Buffer to Scratch

Buffer <n>o

Move pattern in Add Buffer back to Out

put Buffer.

Move pattern in Scratch Buffer <n> back

to Output Buffer.

Add Add Buffer to Output Buffer. The

adding is performed in 16 bit groups

[63-48, 47-32, 31-16, 15-0J and no

carry is transported between the groups.

Add Scratch Buffer <n> to Output Buffer.

Terminate MD session and return to ope

ting system.

Read from Mathilda into Input Buffer.

Read from Mathilda into Scratch Buffer <n>o

Reset Input Flag in RIKKE-1 for Mathilda.

This instruction must be used with care.

If the Input Flag is reset already, an

input deadlock wi II occur.

s<n>

sc

ta

tb

tc

te

t i

tj

to

tu

t<n>

wa

wb

wc

wc<n>

we

we<n>

wC<n>

vm<str>

v?

13.

Shift Output Buffer cycl ic <n> positions.

if

<n> >0, execute left shift [i.e. from

least significant towards most

significant bitsJ.

<n> < 0, execute right shift [i. e. from

most significant towards least

significant bitsJ.

<n> = 0, no action

Shift Output Buffer as above, take control

from 16 least significant bit of Control

Buffer.

Disp lay Address Buffer on console.

Display Output Buffer and Input Buffer,

in tha t order, on console.

Display Constrol Buffer on console.

Display External Register Buffer on console.

Display Input Buffer on console.

Display Control Buffer and Input Buffer,

in that order, on console.

Display Output Buffer on console.

Display ALU function selector on console.

Display Scratch Buffer <n> on console.

Transmit Address Buffer to Mathilda.

Transmit Output Buffer to Mathi Ida.

Transmit Control Buffer to Mathilda.

Transmit Control Buffer, left shifted <n>,

.to Mathilda.

Transmit External Register Buffer to

Mathi Ida's External Register.

Transmit External Register Buffer, left

shifted <n>,to Mathilda's External Register.

Transmit Scratch Buffer <n> to Mathilda.

Define contents of Macro Buffer v to <str>.

The complete command string <str> defines v,

no other command than the definition is executed.

Display contents of Macro Buffer v on console.

v

v<n>

xm<str>

x?

x

x<n>

ym<str>

y?

y

y<n>

zm<str>

z?

z

z<n>

Execute Macro v once.

Execute Macro v <n> times.

14.

Define contents of Macro Buffer x to <str>.

Display contents of Macro Buffer x on console.

Execute Macro x once.

Execute Macro x <n> times.

Define contents of Macro Buffer y to <str>.

Display contents of Macro Buffer y on console.

Execute Macro yonce.

Execute Macro y <n> times.

Define contents of Macro Buffer z to <str>

D i sp I ay contents of Macro Buffer z on conso Ie.

Execute Macro z once.

Execute Macro z <n> times.

15.

5. TECHNICAL DETAILS

The Input Port B of Mathilda is connected to Output Port B, device

11 on RIKKE-1 in such a way that the 16 bits transmitted from RIK

KE-1 are input in the Input Port's least significant bits. This means

that the micro coded Read routine in Mathilda must read 4 times and

shift and logically OR the results together to comprise a full 64 bit

Mathilda data word. The current Standard Read Routine in Mathilda

does this and expects RIKKE-1 to send the 64 bit word in descending

bit order, i. e. first bits 63-48, .!.b.£!J. bits 47-32 etc. MD's transmit

routine is devised to do this. See appendix B.

The Output Port B of Mathilda is connected to the Input Port B, device

11, on RIKKE-1. As in the input case, only 16 least significant bits

may be transmitted. The current Write routine in Mathilda transmits

a 64 bit word in descending bit order, and MD's read routine is devised

to accept this. See appendix B.

The External Register of Mathilda is connected to Output Port B, de

vice 8, on RIKKE-1. When MD transmits to the External Register

Buffer, it sends the contents out on this I ine. There is no flag com

munication on this I ine, so logically speaking, Mathi Ida's External

Register is currently equivalent to RIKKE-1' s Output Port B device

buffer 8.

MD is not in the RIKKE-1 operating system's resident I ibrary, but

must be loaded and run as a user program.

6. CROSS REFERENCE INDEX

Address Buffer.

load

transmit

disp lay

Add Buffer.

load from Output Buffer

move to Output Buffer

add to Output Buffer

Contro I Buffer.

load

increment

decrement

transmit

transmit sh if ted

load ALU function selector with control

display

External Register Buffer.

load

increment

decrement

transmit

transmit shifted

display

Input Buffer.

read from Mathilda

compare with Output Buffer

compare with Scratch Buffers

display

Output Buffer.

create patterns

manipulate bits

16.

;:>age

8

13

9, 13

12

12

12

9

9

9

13

13

9

9, 13

10

10

10

13

13

9, 13

12

9

9

9, 13

12

9

ALU.

shift

set mask

create microinstruction

compare with Input Buffer

transmit

punch contents

display

move to other Buffers

set ALU function

activate ALU

disp lay function sel ector

Display Facilities.

Transmit Facilities.

Read Facilities.

Assembly Facilities.

Punch Faci I ities.

Macro Facilities.

Load Facilities.

Miscellaneous.

terminate command string execution

terminate MD session

give form feed to printer

17.

page

13

1 1

10

9

13

11

1O, 13

12

8

9

10, 13

9, 10, 13

13

12

10

11, 12

13, 14

10

10

12

10

18.

Appendix A.

43 REAO: ALF: -ALLOS, CA:-9733
44 AS:-AL,(16; ;R+2
45 LR:",lB; BSS:-CM, CA+I, IBA ;IF C A (3) THEN RA+I ELSE R-I
46 I ALF:-AilB, LRPC, ; I F IBDA THE N HERE-l ELSE HERE

47 WRITE: CA:-3
48 BSS:aCM ;UNLESS OBSA THEN HERE
49 YS,OB: .. YS,(16; CA-l, OBA; IF :::-A. THEN RA+l ELSE HERE-l

\0 .

20.

Appendix B.

LINENO
0:

***.
1 :
2 :
3:
4:
5 :
6:
7:
8 :
9:
10:
11:
12 :
13:
14 :
15 :

*0:101:0

16:
17:
18:
19 :
20:
21 :
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

M~RI~ VERSION MATHILDA - 4.1 25/07175 13.23.48.

CS ADDRESS

BOOTSTRAPLOADER AND NORMALIZER FOR MATHILDA

AT EX IT WE HAVE
MAIOI • LAIOI • LBIOI • PAIOI • NOMASK
MAl11 • PAl11 • PBIOI • FULLMASK
MAP - LAP • PAP • PBP • 0
LRP • 0
BSS • PGS • CM
RAP' RBP - 0
WAP AND WBP ARE UNCOUPLED
SCUALF IS SET TO A+B
KC AND KD ARE CLEARED .

••

0 I ALF:- ALLOS, PABC, LBPC
1 ALL1S1 MAPC, PAl-BUS, LAPC
2 MA:-ALL1S; LB:-SB, SCUALF+, LA:-S8
3 ALI MAP+1, RAPC, PB:-BUS, PAP+1
4 MA:-ALI IBA, RA! , PA:'BUS, R-READ
5 ALI SA:·SB, RA! R-REAO
6 AL; CB:-SB, RA! , PGS :,.CM, R+READ.
7 ALI RB! , OC:'BUS, KDC
8 CSLOAD, SL
9 RA! , R+REAO.
10 I CB-1, KCC, SA+1 UNLESS CB THEN RB.
11 ALI RBPC, SA:-SB SA
12 READ: I ALF: - ALLOS, CA:-9733
13 AS:'AL,<16; PAPC, MAPC R+2
14 LR:'IBI BSS:'CM, CA+1, UNCPLB, IBA IlF CII (31 THEN RA+1 ELSE HERE-1
15 ALF:· AilB, LRPC, UN C P LA ; IF !BOA THEN HERE-1 ELSE HERE

tv
0
OJ .

21.

Appendix C.

The test program given in this example tests the Loading Mask A re

gister group) LA. The LA mask) specified by the LA pointer) LAP,

is active when Working Register A, WA, is loaded from the shifted

bus.

The mask works as follows:

If bit i of the LA mask is 1 then

bit i of WA is bit i of the shifted bus.

If bit i of the LA mask is 0 then

bit i of WA is left unchanged.

We wi II now discuss the commands needed to test the LA mask register

group.

First of all, the Bootstrap-Normal izer microprogram must be dead

started into Mathilda.

Mathilda is ready to be loaded with the test program. The program

is set into RIKKE-1' s reader and the command

1$$

is typed on the console. Mathilda loads the program into it's control

store.

We are now interested in testing that the LAP pointer functions. This

is accomplished by filling a count in each register of the group while ad

justing the pointer, i. e. if LAP = 6, we fi II 6 into the register pointed

to by LAP. When we read the registers again we can check if this really

happened. As the physical register is built of 8 bit modules each having

their own pointer connection we wish to check that the pointer is cor

rect for all 8 bit modules so we want a count in 8-bit groups. We do

this by using the Add Buffer. We write:

pcOOOOOOO 1 $ pm$ $

This command sets 1 bit in each 8 bit group of the Output Buffer and

puts it in the Add Buffer as well. We define the macro that is to ini

tialise 1 register:

xm a = 21 $ we 12 $ wa $ wb $ $

(Please read the listing of the program while studying this macro).

22.

Why Iwe12"? Because when LAP loads it's input from the External

Register, it takes bits 15-12. The good hardware tester should al

ways have these pecul iar iti es in mind, and look them up every time -

never trust your memory.

We define a macro that loads a register and increments the Output

Buffer and the External Register.

ym x $ pa $ e + $ $

We are ready to load the masks. We write:

e = 0 $$
y 16 $$

The LA registers are now initialised with the count, and we define

a macro to read them and then we execute it.

zm a = 25 $ we12 $ wa $ r $ di $ e + $ $

e = 0 $$

z 16 $$

The output from the printer is analyzed to detect any errors.

We encourage the reader to visual i ze the rest of the test process -

or even try it!

I.INENO
0:
1 :
2 :
3 :

*0 ••

4 :
5 :
6':

0 •••

7 :
8 :
9:
10:
II :
12 :
13:

.0*.
14 :
15:
1.6 :
17:
18 :
19:
20:

* •• 0

21 :
22:
23:
24:
25:
26:
27:
28 :

*.0.
'29:
30:
31 :
32:
33:
34:
35:
36:
37:

38:
39:
40:
41 :
42:
43:
44:
45:
46:
47:

••••
48:
49:
50:
51 :
52:
53:
54:
55:
56:
57:

HARIA YERSION HATHII.DA - 4.1 25/07175 12.50. 10.

CS AOORESS

17
18
19
20

21
22
23
24

25
26
27
28
29

30
31
32
33
34
35

36
37
38
39
40
41
42

43
44
45
46

47
48
49

·ORG-17
·ENTRro!7

.I.AP TEST ,TEST I.AP FUNCTION ANO I.ASI,I.AS2 • I.A INPUT FUNCTION
••• 0 •••••••••••••••••••••••••••• _ ••••••••••••••••••••••• _ •••

SURT:

•

REAO:

WRITE:

;
WA:-AI.
WA;
AI.;

;
A I.;

\II A ;
WA:-ALI.IS;
ALLIS;
YS:-U;

WA:-ALLIS;
ALLIS;
YS:-WA;

;

WA:'ALLIS;
ALLIS;
YS:,WAI

AS:-AL,(16;
LR:-lB;

YS.OB: -YS.(16;

AI.F:-AI.I.OS

RA!

RA!
I.AP: -EX

LAP:-EX

RA!

LASI!-EX,
LAP:-SI

RA!

LAP:-U
LAS2:-LAP,
LAP:-S2

RA!

SA:-S8

Hr: -ALLOS,

BSS:'CM, CA+I,
ALr:-AilB, LR PC,

C A: - 3
BSS:-CM
CA-l.

I. A: - S 8

LA:-S8

LAPC

LA:-S8

LA:-S8

CA:"9733

IBA

OUI

IR -R H 0
; SA

; R-SURT

IR-WRITE
IR-SaRT

;R-WRITE
;R-saRT

LAP:

IR-HITE
;R-STHT

; R +2
; IF C A (3)
; I F IBOA

THU
THEN

RA+I ELSE R-I
HERE-l ELSE HERE

;UNLESS OBSA THEN HERE
H CA THEN RA+I ELSE HERE-I

tv
tv
OJ

REFERENCES

[1 J P. Kornerup, Bruce D. Shr iver:

A Description of the MATHILDA Processor

DAIMI PB-52, Department of Computer Science,

University of Aarhus, Denmark, july 1975.

[2J Er ic Kressel, Ib Holm S¢rensen:

The first BCPL System on RIKKE-1

DAIMI MD-17, Department of Computer Science,

University of Aarhus, Denmark, july 1975.

23.

Micro
Archives
5-l~

The Mathilda driver: a software tool for
hardware testing

Kressel, Eric.
The Mathilda driver: a software tool for

hardware testing / by Eric Kressel and Ib
Holm S~rensen.-- Aarhus, Denmark: Department
of Computer Science, Institute of Mathematics,
University of Aarhus, 1975.

(DAIMI; MD-1S)

I. Joint author. II. Title.

