Lechnical Newsletter No./0

AalPI-1ED SCIENCE DIVISION

APPLIED SCIENCE DIVISION
Technical Newsletter No. 10

October 1955

A Computation Seminar, sponsored by the International Business Machines
Corporation, was held in the IBM Department of Education, Endicott, New
York, from August 1 through August 4, 1955. Participating in this seminar
were 67 research engineers representing computing facilities which employ
IBM 650 Magnetic Drum Data Processing Machines. The formal papers of
the seminar are published in this Technical Newsletter so that the authors’
valuable information and experience may be shared as widely as possible.

The papers may be grouped into three general classifications. The first

few papers describe different systems which have been developed and used

for programming and operating the 650, including a wide variety of subroutines.
The second group of papers describes methods and programs for solving various
general classes of mathematical problems. The third group describes the use
of the 650 in many different fields of engineering and science. Also included
are descriptions of recently developed special attachments to the 650, which
provide for even greater flexibility, a partial listing of subroutines used by

650 customers, and a listing of typical 650 customer applications.

The authors of these papers have very generously agreed to make available
program card decks and other necessary information (flow charts, wiring
diagrams, etc.) so that other 650 customers may be able to use the same
procedures.

The International Business Machines Corporation wishes to express its
appreciation to all those who participated in this seminar.

Copyright, 1955, by International Business Machines Corporation
590 Madison Avenue, New York 22, New York

10.

11,

12.

13.

14.

15.

16.

CONTENTS

Symbolic Coding and Assembly for the IBM Type 650....u.veeeenneeveennnnns 5
R. E. Ruthrauff - Douglas Aircraft Company

Relative Programming for the IBM Type 650. .cvveturennereernennennennnnns 15
John T. Horner - General Motors Corporation

Development of a Floating Decimal Abstract Coding System (FACS)........c... 23}
Robert Bosak - Lockheed Aircraft Corporation

A General Utility System for the IBM Type 650. v vre s ererreneeeneneensenns 31
Mathematical Analysis Section, Missile Systems Division -
Lockheed Aircraft Corporation

A Selective Automonitoring Tracing Routine Called SAM.voovrrnvunnnn.. 49
A. R. Mandelin and K. D. Weaver - Chance Vought Aircraft,
Incorporated
The MIT Instrumentation Laboratory Automatic Coding 650 Program,.......... 63

R. H. Battin, R. J. O’Keefe and M. E. Petrick - Massachusetts
Institute of Technology

An Integrated Computation System for the IBM 650. vevereeeeeennnneennn. 80
C. K. Titus - Westinghouse Electric Corporation

Datamatic Corporation Library Routines for the 650.......cvvtevennnennnnnnn. 90
R. F. Clippinger and E. E. Comerford- Datamatic Corporation

An Automatic Method of Optimum Programming for the 650 Using the 650....... 95
Elmer F. Shepherd - John Hancock Mutual Life Insurance Company

A Note on Optimum Programming and the IBM Type 650 Operation
€008 USaEB. v v veettatteniecanenuoeeneeeoneeenecsesoensoensassonnoaneennas 105
Dura W. Sweeney - International Business Machines Corporation

Automatic Floating Decimal Arithmetic in the IBM Type 650. ... cvveeerenernnn. 108
George R. Trimble, Jr. and Dura W. Sweeney - International
Business Machines Corporation

Complex Arithmetic Routines for the IBM 650 Magnetic Drum Data
Processing Maching. .. .v.eeviionenneeenrnsnneneenaeenns e tat et eaaannnen 111
Tsai Hwa Lee - The Detroit Edison Company

Matrix Multiplication with the IBM 650.....c0vveeererenreerrrenrnnnnneennnn. 118
R. H. Morris and C. H. Remilen - Eastman Kodak Company

Determining the Eigenvalues of Matrices. .. .vvereeiirenrierrnrenerennnonnans 125
Mark Robinson - Bell Aircraft Corporation

Data Reduction of Telemetered Information on the IBM Type 650.........c..... 140
’ Essor Maso and Raymond C. Clerkin - Hughes Aircraft Company

The Determination of the Autocorrelation and Power Spectrum by
Use of the IBM Type 650, . ouveentinenneeecnnncsnscnssncens Ceceiecteiaaraaann 142
Essor Maso and William J. Drenick - Hughes Aircraft Company

17.

18

19.

20.
21.
22,
23.

24.

25.

26.

21.

28.

29.

30.

31.

32.

33.
34,

Numerical Solution of an Integral Equation Concerning Velocity Distribu-
tion of Neutrons ina Moderator.......cceeieeierieierennsestanocsennsssonns
D. B. MacMillan and R. H. Stark - Knolls Atormc Power
Laboratory, General Electric Company

Applications of the 650 Magnetic Drum Data Processing Machine at
Marquardt Aircraft Company.....ccceieerotetsinccsaercesessesssscoasasnnns
Richard A. DeSantis - Marquardt Aircraft Company

Determination of Critical Speeds in Rotating Systems by Means of
an IBM Type 650, .cccieeennuiersrecseascesnosssasnsssasassossanssnsnsane
Marshall Middleton, Jr. Westmghouse Electric Corporatlon

650 Processing of Mass Spectrometer Data.......ccccviiiiiiiaieitencnnases
B. R. Faden - International Business Machines Corporation

Calculation of Load Stability of an Electrical System.......cocviiveaniainns
J. E. Rowe - Union Carbide and Carbon Corporation

Computations of Unit Costs in Power Distribution...........c.cocceveriene.
J. C. English - E. I. duPont deNemours and Company

Antenna Pattern Calculations......vcereiinreneereecentncoctscsnssonsnens
S. G. Fleming and R. Habermann, Jr. - General Electric Company

Calculation of Piping System Expansion Stresses on the Type 650.............
Marilyn Alfieri, Pierce O’Neill and Burton Whipple - General
Dynamics Corporation

Catalytic Reformer Gas Plant Equilibrium Calculations............... ...
E. V. Merrick and R. B. Perry - Standard Oil Company (Ohio)

A Method for the Evaluation of Non-Linear Servo-Mechanisms by
Numerical Integration.ocvieeiteieeiiiieeiirneteccnasessncsnsscsananns
W. Barkley Fritz - Westinghouse Electric Corporation '

Application of the Type 650 to Fourier Synthesis in X-Ray Crystal
Structure AnalysSiS...eui.creeiceeeessesnseossesensoecansoassaasnsssosannsnns
Howard T. Evans, Jr. - United States Department of the Interior

The Transportation Problem.....cceeeeeetecerccseroceesoncsasnssssssnnssnn
Charles W. Swift and Stanley Poley - International Business
Machines Corporation

Indexing Accumulators for the IBM Type 650 MDDPM.c.cveveeenenccncnnes
George R. Trimble, Jr. and Dura W. Sweeney - International
Business Machmes Corporation

IBM Type 650 Magnetic Tape Attachment...........c oo iiiiiiiienieeraaeen
Dura W. Sweeney and George R. Trimble, Jr. - International
Business Machines Corporation
IBM Type 650 High Speed Storage Attachment...........ccieiiieieaiaiaaesn
Dura W. Sweeney and George R. Trimble, Jr. - International
Business Machines Corporation
List of Subroutines Used by 650 Customers........ccitieeerioeaiassnssoesea
List of Typical 650 Applications. .. u.vvreeenrernneeren searesnesnancssanses

Seminar Participants..... ... vviieiieieeieninninienienosnnsnnsiasssssnsens

161

270

271
279

SYMBOLIC CODING AND ASSEMBLY FOR THE IBM TYPE 650

R. E. Ruthrauff
Douglas Aircraft Company

The following describes a method of coding for the IEM Model 650 Computer which
employs symbolic rather than actual locations and addresses. The ideas presented
here are not original and represent merely a modification of symbolic coding
techniques developed and used by Douglas Aircraft Company, Inc., Santa Monica
Division, for the IEM Model 701, A logic is developed for coding and a program
is described which performs the agsembly into actual machine language.

CODING IN ACTUAL MACHINE LANGUAGE

The product of any coding technique for a computer must be the series of machine
language instructions which, when executed, perform the desired series of compu-
tations. The means of attaining this "actual® as it is called, are as diverse
as the functions of the companies currently using the 650. However, the problems
of these organizations may be grouped into two major categories:

1) Those organizations whose principel computing requirements are
the solution of a few extremely large problems which are modified
infrequently. The majority in this category are accounting type
problems,

2) Those companies engaged in the solution of many technical problems
subject to a variety of changes.

Coding in actual machine language presents many serious objections for organiza-
tions of the second type above. Among them are the following:

1) Changes are difficult to make.
2) Portions of the coding ceannot be easily relocated in memory.

3) It ig actual coding and as such represents a compromise between
feasible machine design and programming requirements. Since, of
course, machine design gets more than progremming does from the
compromise, actual coding is not an efficient means of programming.

Symbolic coding is an attempt to remedy these serious objections to actual coding
and has been used successfully by many users of the EDPM 700 series machines.

SYMBOLIC CQODING

In coding any problem for a stored program computer, the operations to be per-
formed consist of a sequence of subordinate computations, tests, data read-in,
and data read-out. These pieces or blocks are called regions and constitute
logical stages in the execution of & program. They may be the evaluation of
some specific arithmetic function, such as sin x. In addition, they may also
constitute the storage required by other regionse

For the purpose of coding these regions, a group of numbers commencing at 10 and

terminating at 99 is set aside. Numbers are then selected from this group by the
programmer and assigned to these regions: all subsequent references, of course,

must consistently employ these numbers. Since data storage regions are required

by all programs, these have been assigned the special region numbers 1, 2, 5, and
6 and will be discussed later.

Bech actusl instruction is completely determined by its actual location, actual
operation, and actual data and instruction address. Symbolically, it is
determined by location region, symbolic operation code, data address region,

and instruction address region. Obviously, some sequence must be specified
within each of these regions and, therefore, location sequence, data address
sequence and instruction address sequence are introduced. The symbolic operation
code is a three position alphabetic abbreviation.

A1l machine instructions may be grouped into one of the following categories:
1) Instructions which refer to data storage locations.
2) Instructions which refer to the location of other instructions.

3) Instructions whose addresses are a special function of the
operation performed.

4) Instructional constants: i.e. numerical constants which are entered
as part of the program deck.

Special region numbers are assigned to these categories as follows:

O - The use of O as either a data address region or instruction address
region indicates that the corresponding sequence is the actual
machine address (type 3 and 4 mentioned before). For example, the
instruction SR (shift right) 4 has a data address region of O and a
data address sequence of 4. Instructional constants are always
entered with data address region and instruction address region equal
to zero. Since 44 of a possible 100 operation codes are provided on
the 650, the operation bits of an instructional constant are handled
in a different manner., For these constants the symbolic code abbrevia-
tion is numeric rather than alphabetic and is indicated by the presence
of a zero in the first position of the field. This also serves to call
attention to the fact that this symbolic instruction is such a constant.
For example, pi at nine decimals is written as

Symbolic Operation - 031
Data Address Sequence - 4159
Instruction Address Sequence - 265/

with both address regions O.

1l -

Region 1 refers to the location of all temporary storage which may be
used by the coder, but is primarily reserved for the execution of sub-
routines (type 1 mentioned previously). The sequence within this
region designates the word of the region to be used. The first word
in this region has address sequence 0., For example, the instruction
RAL (Reset Add Lower) with a data address region of 1 and & data
address sequence of 5 causes the contents of the sixth word in region
1 to be placed into the lower accumulator.

This region is reserved for the storage of all data of a permanent
nature required by the coder in the execution of a given problem

(type 1 mentioned previously). The sequence designation within this
region is identical to that of region 1. However, the first two words
of region 2 are reserved for the storage of two important constants.
Region 2 sequence O contains a 1 in the instruction address units
position and region 2 sequence 1 contains a 1 in the date address units
position.

The use of 3 as either a data address region or instruction address
region indicates that this instruction refers to the location of
another instruction somewhere within the same region (type 2 above).
The sequence used with this address region designates the specific
instruction in that region. Example:

The instruction LDS (Load distributor) with a deta address
region of 3 and data address sequence of 17 causes the
instruction in this same region having a location sequence
number of 17 to be placed in the distributor.

This data address region could be the actual region number rather than
three. Three is used merely to facilitate a change in the region
number without changing all references to other instructions within
the same region.

The use of 5 refers to the read locations peculiar to the 650, and is
used for purposes of input. The sequencing is identical with that of
region 1,

This address region refers to the punch locations peculiar to the 650,
used by output routines. The sequencing is identical with that of
region 1,

In addition to these special regions a data address region or instruction
address region of 10 or larger is permissible if a reference is made to
an instruction in another region. However, by its very nature, a region
is independent and references beyond linkage instructions to these
regions are kept to a minimum,

The following example illustrates the use of symbolic coding in a simple
parameter study.

The problem consists of the followings

(Figure 1) Tables of the & parameters are given with the constants al , &
and s, which are to be used with the Es, All possible combinations of these
values are to be formed in the equations given and the corresponding results
with the specific choice of E S which gave those results are to be recorded on
the output card. The flow chart (Figure 2) gives the step-by-step procedure
followed in the execution of the program.

The problem begins by reading all necessary input data which consists of the
tables of & values, ~ ,6G , and_« . Since these tables may not be of the
same length, three additional pieces of information are furnished in the form
of &y imary 8NA 54”,,‘_. As the notation implies these are the last entries
in the £, , & , A tables. ‘

Once the input has been accomplished some preliminary computations are per-
formed and the locations of the first entries for each of these three tables
are reset, Then the first set of parameters is selected and the quantities

S, , Sa, and "’ are computed using the fixed point square root subroutine.
The result of this computation along with the £ 5 used is then punched in an
output card. A test is performed to determine whether the £a. value just used
was equal to the&yyalue., If it was not, the locatlon of the Lo value is
advanced by one and control is returned to thet portlon of the program which
selects the next set of & values., However, if the two quantities are equal,
the &_value is then reset to the location of the first &_ and a test is per-
formed on £4 to determine if it may be equal to £4p.. This procedure is
repeated on éi_thus generating all combinations of the & values. When all
such computations have been performed, the machine is instructed either to
stop or to return to read more input cards. The number appearing in the

lower right-hand corner of certain blocks in this diagram is the region number
which was arbitrarily assigned from the numbers 10 through 99. The flow chart
constitutes the master control region normally called region 10. Portions of
the flow diagram having no region number indicated are part of this region.

Prior to the coding, a layout of region 2, the permanent storage region, is
made and sequences are assigned to the quantities needed. The regions may
then be coded independently, the only information required being the location
of the quantities which are needed in region 2. These regions are then coded
by the programmer using the sheet shown in Figure 3. These coding sheets

are then submitted to keypunch where they are punched one instruction per card
with descriptive notes. Certain of the regions needed in the problem are
standard subroutines which are available in a permanent file. These are re-
produced with the appropriate region number for this problem. The entire
file of cards is now sorted to location region major, location sequence minor,
and listed on the 407 (Figure 4). At this point the final checking is per-
formed prior to the assembly.

EQUATIONS

ik

ijk

Tijk

G 2ik

T ijk

OUTPUT

F, G, /A
i=1,2, 3. N. E
o e “FINAL
i=1,2,3.. N, E
b ThenaL
K=1, 2, 3..... N E
’ © TCENAL

E E E
°l+ b|+ .

T

=\] (E°| -3 (Eol + Ebl + E‘u»z +(Eck _ E*’|

)2\

l-o-)L

FAijk + GBijk

FAltk - GFijk

GBijk

b E‘k Uik § 2k Tk

Figure 1

FLOW DIAGRAM

PRELIMINARY CALCULATIONS

12
PRE-SET LOCATIONS OF
E E, , ANDE
bl “

J

u.l'

AN

SELECT E.." eb|, AND E‘k

\

COMPUTE G, , G, Nl
L 2,k AND T

2

| PUNCH RESULT |

WAS CURRENT E_ EQUAL TOE
FINAL?

e o - - m b - e

——--3: FIXED POINT |
| t
15|¢--—-! SQUARE ROOT 7}/

YES

RESET LOCATION
OFE, TO E"l

J o

ADVANCE LOCATION

OFE, BY1

WAS CURRENT E; EQUAL TOE,
FINAL?

oy

YES

RESET LOCATION
OF E, TO Ebl

J no

ADVANCE LOCATION
OFE, BY1
I

—

WAS CURRENT E_ EQUAL TOE_

FINAL?

YES

e e o - m e e m amer e e e em o e o e 4 o e e o e e e wm am mm e e T e s e e e e e T e e e = e S e e e e

NO

ADVANCE LOCATION
OF Eck BY 1

10

[CODING SHEET — TYPE 650

FORM 28-8~121 (1-88)

PROGRAM NUMBER

570

JPFROGRAM TITLE

FReA HETEL Sruby

[JOB NUMBER

REGION TITLE

SPAASTER ConNTOL

/

PAGE

or 9

PREPARED BY

DATE

ICHECKED BY

SYMBOLIC CODING REMARKS
I Rl T B e 77 e
oi | xr| 3 K ;|
ro leos| 3| 21220l o |+ samwr ace para
2.20ens| 3l 31,2l ol |+ ser-ur For euw
31 |cos| 3| 9001 | 3 s |+
| |sps | 3 9, |zl s |e| rRes-ser £ 4 ApprEss
5 leos| 3| g070 | 3] 6! |+
t! |sps| 3| nil3| 921 |4| Pee-ser &= B soorsss
2! 1¢epS| 3| 9021 |3 81 |+
\ |sos| 3| 3113l 9\ +| PeF-ser = o 4s0RESS
9! |¢eos | Lo ol | 3 sor |+ |
0! |sos | ¢ A 3l i |+ woexwe = 4
i eps | Jol oB| 3| sz |+
/2_: Sd5 | 6 '3 3 /3: + | welkkVe £ 8
/3, l¢osilo|l i3] mls
14} |sbs | & 9 3] s |+| woexve E &
(51 1205 | 3 /5‘55 51 o |+l compurazon
/7! |RAL| ¢ 2] 3 /8! |+
/81 | s¢] 2 Is12] /91 |+
191 |75 | 3| a0i|3| 231 |¢| 7msr = A4
20! |RAL| 3 2. | 2| 2/ |+
2/l | ALl 2 v 3| 220 |+
22! |s7L | 3 9. |o| 80012l +
23, 1¢os|3| 001 [3] 241 |+
| 24| |sbs| 3 2! 12 25 |+
257 |leadl ¢ 3lz| 2¢, |+
26, | st |2 ¢l 3| 27 |+
27i |75 | 2| 28 |z| 3/1 |+ TEST £ 3
28\ 14| 3| u! | 3| 29' [+
L 29, | #Acl 2]l | 3] 2ol |+
30! |s7¢ |3 //5 3 b4+
) . I
] 1 1
(SslZH | 6 ol /720 |+ PunvcH# ReEscver
! ! I
! i !

Figure 3

5740
5760
5740
5740
570
570
5740

5740

5740
5740
5760
57s0
570
5740
5760
570

5740

570
5740
5740
570
5740
57600
5740
5760
5760
5700
5760
5740
570
5700
5740
5740
5740
5740
5740
570
5740
5740
5740
5740
5740
5760
5740
5740
5740

5740

5740
570
570
5760
5700
570
570
5740
5740

12

14

21

28

35

42

49

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1o
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

12
12
12
12
12
12
12
12
12
12
15
15
15
15

Qe
le
22
3e
4o
Sae
6e
Te
8
Se
10
11
12
13
14
15¢
1545
17
184
19
200
21e
220
23
240
25
26
27
28
29
30
31e
324
33
34
35,
36
37
38
900,
901,
902
Oe
Te
8e
G
10+
11,
11le2
12
9004
901
Qe
le
20
3e

HLT
LDS
LDS
LDS
LDS
LDS
SDS
LDs
SDS
LDS
SDs
LDS
SDS
LDS
SDS
LDs
PCH
RAL

SL

TS
RAL

AL
STL
LDS
SDs
RAL

SL

TS
RAL

AL
STL
LDS
SDS
RAL

SL

TS
RAL

AL
STL
LDS
LDS
LDS
SDS
LDS
SDS
RAU

AU
STU
STL
NOP
010
000
SDS
RAU

AV

AU

OO LVLOOOEAMNMNALLNNNLNNLLNNALBVLLLNVLLNICVLLLNLVLLVLNOOOLVLOOGCOCOWLLWLWLLWLWLWWLW

Oe
2
3e
900
Fe
901
11le
302
13

-
wm
[3

200
G

9
900
Te

284
11,
11e

301
11l

360
13,
13
1
3

124
901

360

2

VmMNNO LMV OWLONO

0
0

OO0 NO H WY

£ VLN

1l
Oe

=N

VWLLLOOOLLLLLLLLLLLLLWLLWLWBLLWBLLLLBLLLLLOWLLLLLLUPWLLWLWLWWLLWLWNOW

44
Se
Ge
Te
Be
9
104
11,
124
13
14,
154
O
17
18,
19
234
21le
220

8002
24,
250
260
270
31
29
304
9
32
334
349
35,
le
37
38,
e
100
12,
14,
7o
B
Qe
10
11,

112
124

0

0

80
le
26
3
4o

Figure 4

INPUT ALL DATA
SET=UP FOR RUN

PRE=-SET E A ADDRESS
PRE=SET E B ADDRESS
PRE=SET E C ADDRESS
WORKING E A
WORKING E B

WORKING E C
COMPUTE

TEST E A

TEST E B

TEST E C

COMPUTE SIGMA 1s 29

SUM E

& TAU

ASSEMBLY

The assembly program performs a translation from symbolic instructions into
actual machine instructions. The resulting program deck is then punched by
the computer seven instructions per card with a three digit card sequence
number and appropriate identification,

To perform an assembly, the assembly program cards are placed in the card hopper.
Immediately following this deck the symbolic instruction cards are entered.
These cards are keypunched one symbolic instruction per card and must be in sort
on location region major, location sequence minor. The computer performs a
sequence check during the read-in and stops if the cards are out of sort. In
addition, the symbolic code abbreviation is converted into the actual numeric
code on the read-in using the table look-up feature of the 650, As the cards
are read, each symbolic instruction is stored in two words of memory. These
words are constructed so as to facilitate table look-up in the case of a data
address, or an instruction address which refers to the location of another in-
struction. The last symbolic card is followed by a control card which contains
the following information.

1) A 7 digit identification number.

2) The card number which is to be punched on the first card of the
resulting program deck.

3) The actual location of the first symbolic instruction.

4) The origin of region 1,

5) The origin of region 2.

6) The origin of region 5.

7) The origin of region 6.
Items 4, 5, 6, and 7 may be assigned by the programmer or the assembly program.
The actual instructions which comprise the coding may begin in any location but
usually commence at actual location 0000. The origin of region 2 will then be
computed by the machine as the location of the first word beyond the last in-
struction in the coding. The origin of region 1 is chosen such that the highest
region 1 sequence number will be the actual location 1999,
After the control card is read, the origins of the regions are assigned or com-
puted as is necessary and the actual assembly begins. An error may be sensed

at this time if a reference is made to an instruction which cannot be found.
If no errors are detected, the machine tegins punching the finished program deck

13

14

after the completion of the entire assembly. A maximum of 720 instructions may be
assembled at one time.

ASSEMBLY TIME

The time required to perform an assembly having 720 instructions is given below:

Read-in of Assembly Program «4 minutes
Read-in of Symbolics 3.6 minutes
Assembly : 6.0 minutes
Punch~-out of Progrem Deck 1,3 minutes
TOTAL 11.3 minutes

Subsequent assemblies, of course, do not require that the assembly program be
re-entered.,

SPECIAL DEVICES

One-half time emitter for the read feed.

RELATIVE PROGRAMMING FOR THE IBM TYPE 650

John T. Horner
General Motors Corporation

A method of relative programming has been devised for the
IBM Type 650 Computer which facilitates programming of
engineering problems. All instructions and data are assigned
relative locations and commands are given by mnemonic alphabetical
character sets. A 650 Relative Program is used to read relative
instructions and punch a card set with actual instructions which
is the final problem program, ready for running and checking. Sub-
routines may also be referred to by the mnemonic commands and have
actual locations assigned by the Relative Program. Present
relative sub-routines include floating point arithmetic, matrix
floating point arithmetic, formation of elementary functions in
fixed point or floating point form, interpolate, differentiate
and quadrature sub-routines, and indexing and plotting sub-routines.
Additional sub-routines may be added as required.

General Features of System

The Allison Relative Programming System has been designed
to permit rapid and efficient preparation of engineering and
scientific problems for the Type 650 Computer. The specific
requirements for a system to accomplish these purposes are that
the system must be easy to learn, it must have wide application
and have sufficient flexibility to handle unusual problems and it
must use machine time economically. We consider that the last
two requirements are adequetely satisfied. The system 1is not,
however, readily learned by personnel untrained in computer
techniques but is easily mastered by experienced personnel.

The Relative Program for & problem is prepared by using
650 basic instructions in relative form. This is not a new
technique, it has been used for programming of IEBM 701, IEM 702,
Remington Rand Univac and other large and medium size computers.
An instruction, itself, has the following form:

Op Data Address Transfer Address
XX).0.0.0.¢ .0.0.0 ¢

but, to be completely defined, it must be assigned a location.
Since the location, data address and transfer address are
identical in form, referring ordinarily to storage locations
within the computer, these may be treated uniformly in assigning
relative locations. A relative location 1s defined by the
following form:

Aa.a XXX

15

16

where Aa.a called the deck number, consists of an alphabetical
character (or number) A followed by two numerical digits (or
alphabetical characters and XXXX is the relative location within
the deck. The starting relative deck location is 0000.

Figure 1 shows the Allison Relative Program Sheet for
650 Computer. Note that the relative instruction, consisting of
an instruction location, basic operation, data address and
transfer address has the same form as a basic computer instruction.
As an aid to memory, the operation codes which are considered to
be fixed and not relative are defined by their mnemonic equivalents,
Thus, (65) Reset Add to Lower Accumulator becomes: R ADD. Table 1
defines these basic instructions for programming use. Programming
using basic relative instructions is exactly the same as using
basic absolute instructions but is somewhat slower because there
are more numbers and characters to be written.

The power and flexibility of relative programming are due
to the use of functional operations or commands. The functional
command in the relative program automatically inserts a relative
transfer address., The location of the transfer address is the
start of a sub-routine which 1is entered and executed. Then the
program normally returns to the next sequential instruction as
determined by a program count. The functional command SETPC
(Set program count) is given at the beginning of a series of
functional commands. This command sets the program count to the
address of this instruction location. Each functional sub-routine
always exits through a program count sub-routine., This sub-routine
increases the program count by 1 and then transfers to the
corresponding location. The Allison library of functional sub-
routines has been designed such that many engineering problems:
can be programmed most efficiently using only functional commands.
For extensive logic, however, the use of basic instructions can
create a much more rapid and efficient program. The programmer
can elect to use basic instructions at any time in the program
and may return to the sequence of functional commands by giving
any functional command. '

Operation of Relative Program

Relative program cards are punched from the relative program
sheet in the order of the script. Notice that the "Remarks" are
also punched. '"Remarks" are entered for the following purposes:

a. To serve as an aid to memory. Appropriate comments
point out unusuzl features of the program or program devices, the
beginning and end of loops, and, in general, when actions are taken,

b. To serve as a guide to other programmers or engineers,
enabling them to use the program, if suitable, in another problem.
Thus each program has potential use as a library routine in
another problem.

Remarks can be written such that a problem is completely defined

by then. Each step in a program can be clearly related to the
corresponding step in an equation written in standard notation.

A 1isting of the relative program cards after the program is checked
enables programmers to modify or use the program without alteration
if suitable in other programs.

After preparing the relative program sheets, the programmer
decides on the final storage allocations of the program decks. He
enters the absolute starting location for each deck used in the
program on the relative program sheets. This information is stored
as a table in the relative program. Two other tables are also stored
in the relative program, a table of Basic Commands and a table of
Functional Commands. The relative program and tables are read into
the 650 followed by any number of relative program cards for the
problem. The relative program computes an absolute instruction, an
absolute location of the instruction and punches a program deck
sequentially numbered and containing the correct problem number.
Punch speed 1s 100 cards a minute.

As mentioned previously, functional instructions are actually
basic instructions and the functional command normally establishes
only a transfer location. Each functional command must use a basic
operation command which is established by the programmer., Most
functional commands use, however, only a limited number of basic
commands and-to enable the programmer to think in terms of the
operations to be performed instead of program details, additional
entries are added to the basic table, These are:

Added Basic Op. Equivalent Basic Op.
Blank R ADD
MIN R SUB
AB RADDA
MINAB RSUBA

Thus the command MIN MULT means "floating point multiply minus."
The command AB SQRT means "take the square root of the absolute
value", etc, Normally, any basic operation may be given as part of
a functional commend., Certain functional commands require however,
particular basic operations which are not suggested as logically
pertaining to the functional command. For these cases short sub-
routines are introduced which supercede the previously established
basic command (usually R ADD) and set the proper one. For example,
the functional table look-up sub-routine requires the basic operation
TLU, Instead of writing TLU TLU, we write Blank (= R ADD) TLU and
the basic operation TLU is then inserted.

To facilitate problem tracing, each functional instruction
is signed minus by the relative program.

17

18

Features of Functional Sub-Routines

Operands for all sub-routines are stored in the lower
accumulator by use of the basic commands R ADD, R SUB, RADDA

or RSUBA. The result after each functional command is executed

1s stored both in the lower accumulator and in a floating point
accumulator. There is one binary operation, the functional command
R ADD which stores the contents of the lower accumulator in the
floating point accumulator. If the operand of any operation is

the result of the previous step, the data address in the relative
program may be left blank and the relative program automatically
inserts the correct address (that of the lower accumulator).

The logical handling of operands as described permits wide
use of indexing for indexing operands. The operand of the
functional command INDEX is entered into the lower accumulator as
in any other functional command. The Index command then adds the
lower accumulator to the next sequential instruction as determined
by the program count and executes the altered instruction, without
changing the instruction to be indexed. By the insertion of one
basic step in the program, it is possible to create a command
which could be titled "Increase (or Decrease) Index (Temporarily)
and Index." A second basic instruction could permanently modify
the index before indexing. It is also possible to examine the
index and correct it before indexing. Other procedures may also
be devised depending on the need and imagination of the programmer,
Indexing 1is widely used in some of the functional commands and is
& powerful tool for programming a wide variety of problems.

Table 2 1ists the functional command programs which have
been prepared at the present time, These include, of course,
floating point arithmetic, floating point and fixed point elepmentary
function commands. It is probable that other more uncommon
functions such as Bessel's functions will be added if these are
required in a problem. Functional commands which are unusual are
the commands for floating point matrix arithmetic, the interpolate,
differentiate and quadrature commands and the fixed and floating
point plot commands.

Matrix arithmetic is handled logically in the same manner as
floating point arithmetic, The functional R ADD command is given
addressing the first matrix or A matrix. A binary command follows
addressing the B matrix and a store command is then given locating
the C matrix. This command may immediately be followed by another
binary matrix command., All matrix operands are indexable. The
commands perform the following matrix operations:

ADDM Add Matrix

A +B=C
Note: (C may replace A or B)

MULTM Post Multiply B by A
B+.-A=C

MULTS Multiply A by Scalar
BeA=A.B=2C
where B is a scalar. (C may replace 4).

INVRT Invert matrix A

The invert command forms A=l replacing the elements of A by
the inverted matrix. During the inversion, the determinant of A is
also formed for use if required. One or more sets of simultaneous
equations may be solved at the same time by the following commands:

Command Data Address
INVRT Loc (Acw)
MULTM Loc (Bew)
STORM Loc (Xew)

where: X = A’l B

Each control word has the form, e.g., R Loc ajj Cwvwhere R is
the number of rows, Loc ajj is the location of the first element of

the a matrix and C is the number of columns of the A matrix. The
largest matrix which may be inverted is 40 by 40 with these standard
instructions.

Interpolate, differentiate and quadrature command operate

on the columns of a matrix. Two commands are given, a STORC
(Store Control Word) command followed by the appropriate functional
command addressing the argument. The control word has the
following form:

Ca Locow Cg

Cp - Column number of argument

Cr -~ Column number of function

Loccw Location of matrix control word

19

20

After the command STORC 1s given any number of interpolate,
differentiate or quadrature commands may follow which use the
same argument and function columns for the same matrix. All
functions use the interpolation formula:

Y = aj +bgX =-X3) * c34(X - X1)2+ d1 X - Xi)3
<
X341 € X = X342

1=1,2 R -3

(If X>Xg_j, coefficients with the subscript R-3 are chosen
which causes extrapolation).

When a functional command is given, comparisons determine:

a. Whether or not the control word has changed. If so, new
controls are set,

b. If the control word has not changed, whether or not the
next argument X lies in the same interval, If so, previously
computed coefficients are used. If not, a search is made to find
the correct interval and new coefficients are computed. These
functional commands perform the following calculations:

INTPL Interpolate
Y =ay + by (X - X4) + (X - Xq)2 + 43X - X4)3
DIFF Differentiate

dY = by *+ 2¢i(X - Xg) + 3d3(X - X4)2
ax

STLOL Set Lower Limit

X1
[YaX = -(X3 - X,) [ai + bi(Xo - Xi)
+ ey (Ko - X1)2 + d1(Xo - Xi)%]
3 I

STUPL Set Upper Limit

This command causes several integrals to be summed as follows:

X Xy Xi+2 X14K X
i+
f YdX = Ydx + + ..-..4.{ YdX = KYdX.
X0 Xo i+1 Xi+K-1

(X 3 Xj45)

This sum is taken as the result and also used as the lower
limit, If another argument greater than the previous argument is
used in a STUPL command, the total value of the integraj:X is obtained.
Yax

(o]

These functional operations as described are used primarily
for rearranging data, eilther at the beginning of calculation or at
the end. For high speed running, where tables need to be consulted
many times in the course of calculation, the same type of interpolation
formula is used but coefficients are pre-computed and the 650 Table
Look-Up Instruction is used for high speed searching.,

: The command PLOT enables a programmer to plot computed results
on an IBM 407 Accounting Machine. It is possible to prepare plots
which may be accurately scaled for interpolation or rough plots
showing data trends. In starting a plot, the following information
must be stored: Yoy, Y7 - Yy, S, Plot Format \

where: Yo - ordinate origin

Y1-Yp height of ordinate
S scale factor or number of type bars selected

minus 1.
Plot Format - 8' X l X lxxxxxxxl |
pls| syml BIN coN

The P symbol 8 or O distinguishes the plot format from alphabetical.
or numerical information.

S - Space Conﬁfol.{o Space 1
8 Suppress Space

SYM - Symbol Control 1

2 X
*
5 o

BIN CON -~ Binary digits to determine Y print wheel location.

The argument X is read and stored in a selected location for
printing during the plot cycle. Each space on the 407 is then as an
increment of X. The function Y is now computed or selected and
addressed in the command PLOT. This command operates as follows:

P =/Y -¥)\.s
Y7 -Yp

P is rounded to an integer. The proper type bar is now selected by:

T

P-(n-1)S, an integral n being chosen to satisfy
the condition: 0

P-(n-1)S £ 8

A Ul

21

22

We define n as the band number. If n is 1, the first band is
plotted and: < <
Yo 2 Y =Y

If ¥ is outside the first band, the proper band is automatically
selected.

The maximum number of type bars controlled by the present plot
program is 101. After T is selected, it is converted to a binary
number which is used for selector pick up. The wiring for an 8
point plotter is shown below. An extension is made for the 64
point plotter,

1-8 2 - 80 4 - 800

To Type Wheel
3 59162 40

O J)O <7>ooo

5 oS H[|o! of of o

o 19 ¢ 9 9

Impulse

Operational Features of Absolute Program

As mentioned previously, the relative program produces an
absolute program which consists of a card deck with absolute
locations and instructions and in addition, the relative step.

The read program will automatically load any number of these cards
until interrupted by a control (Load) Card. A Check Punch program
is used for tracing. Check Punching is initiated by a set of
Sequence Control cards which cause the program to start in any
selected location, to either check punch or run at high speed and
then stop the sequence at any selected location. For basic
instructions, the Check Punch routine lists the contents of the
distributor, upper and lower accumulators together with the
instruction and its location. For functional instructions, contents
of the data address and contents of the floating point accumulator
are shown after the functional instruction is executed. Tracing is
controlled by signing instruction, + for basic, - for functional.
Any number of sequences may be scheduled, e.g., the program could
run at high speed to the beginning of a loop, the loop could be
check punched twice, high speed running could complete the loop

and then check punching can be resumed.

When checking is complete for a problem, instructions are
punched seven per card by the 650 into a sequenced deck. Title
cards and column heading cards may be read and punched by the 650,
The programmer may also control 407 format including page skips
and spacing selection enabling neat and readable presentation of
results,

23

24

Basic Op,

R ADD
R SUB
RADDA
RSUBA

ADD

ADDA
SUBA

RADDU
RSUBU
ADDU
SUBU

MULT
DIV R

SH RT
SH RD
SH LT
SH CT

STORE
STORU
LOAD

STORD

STORA
STORI

TLU

NO OP.

STOP

BRNZU

BRNZ

BRMIN

BROV

BRO1

BRO2
!

BRO9
BR10O

READ
PUNCH

NN NN NN N NN N
HEOON HHEHH O\O\O\O
HOHO N0\ 00~ 0\
N S s vt S S N ot N s Nt o

w M

AN A A A
FORO o0 FFO
N N RN I N P

RPN DOV WWW

~
2 ON
~

(00)
(01)

(L44)
(45)

BASIC 650 INSTRUCTIONS

Operation

Reset-Add to Lower
Reset-Sub from Lower

Reset-Add Abs. Value to Lower
Reset-Sub Abs. Value from Lower

Add to Lower

Sub from Lower

Add Abs Value to Lower
Sub Abs Value from Lower

Reset-Add to Upper
Reset-Sub from Upper
Add to Upper

Sub from Upper

Multiply
Divide
Divide-Reset Remainder

Shift Right

Shift and Round
Shift Left

Shift Left and Count

Store Lower
Store Upper
Load Distributor
Store Distributor

Store Lower Data Addr
Store Lower Instr Addr

Table Lookup
No Operation

Stop

Branch on Non-Zero in Upper
Branch on Non-Zero

Branch on Minus

Branch on Overflow

TABLE I

Optimum

Data Addr

P+3

P+l
P+
P+l

Optimum
Trans Addr

P+8

P+7+2(5-1)

P+8
P+8
P+6
P+6

pP+7
P+7

P+3+n

‘n(No. of tab arg)
P+

Pl

P+5
P+5
P+5
P+5

T 39ADId

(08 o8 G swwneo) 507 | Maa] 501 | ¥o3a [IvNoiLoNnd] Disve 01 | yo30
@131 LNV.LSNOD ¥aqy SNVAL - ¥aav v.iva NOILV¥3d0
SHUVNIY NOILLDNYLSNI NOILY201
"ON 39vd "ON W31803d
CalT-d ¥3LNdNOD 059 ¥0d

133HS NV YO0Ud JAILYTIIY NOSITIV

FUNCTIONAL COMMAND LIST

No.Wrds
Command Operation Deck No. 1in Deck Remarks
READ Read next card 01.0 150 Start location
PUNCH Punch card should be
MOVE Transfer data set 1850. Always
INDEX Index next step required
SETPC Set program count
INCPC Increase program count
- TR Unconditional transfer
TRM Transfer if minus
TRP Transfer if plus
TRO Transfer if zero
RADD Read No. into floating
point accumulator
EQUAL Store result
CPOFF Turn off check punch
Store program count
CPON Turn on check punch ’
Restore program count
ADD Floating point add 02.0 100 Should start
MULT Floating point multiply in locations
DIV Floating point divide XX00 or XX50
RDIV Reverse floating point divide
SQ Floating point square root
EXP Floating point exponential 03.0 175 02.0 required
LOG Floating point logarithm Should start
SIN Floating point sine in locations
CoS Floating point cosine , XX00 or XX50
ARCTN Floating point arc tangent A
ADDM Add matrix o4,0 110 02.0 required
MULTM Matrix multiplication Should start
MULTS Scalar multiplication t in locations
STORM Store matrix XX00 or XX50
INVRT Invert matrix o4.3 125 02.0 required
Should start
in locations
XX00 or XX50
STORC Store control word 05.0 230 02.0 required
INTPL Interpolate ‘
DIFF Differentiate
SETLO Set lower 1limit for 05.1 89 02.0
forward integration & 05.0 Tequired
SETUP Set upper limit
TLU Floating point table lookup 06.0 31 02.0 required
CHKPN Check Punch 07.0 60
26 .

TABLE TII

Functional Command List

FsQ Fixed point square root 08.0 175 Should start

FEXP Fixed point exponential in locations

FLOG Fixed point logarithm XX00 or XX50

FSIN Fixed point sine

FCOS Fixed point cosine

FARCT Fixed point arc tangent

FTLU Fixed point table lookup 09.0 37

PLOT Floating point plot 10.0 67 02,0 required

FPLOT Fixed point plot 11.0 50

ZTLU Floating point double TLU 15.0 71 02.0 required
06.0

27

28

DEVELOPMENT OF A FLOATING DECIMAL ABSTRACT CODING
SYSTEM (FACS)

Robert Bosak
Lockheed Aircraft Corporation

Before going into the methods and organization of the work that went
into the development of our Abstract Coding System, it might be well to
first explain what we mean by such a system. An Abstract Coding System,
or as it is sometimes called, a psuedo=code is the use of one machine to
simulate another, In some cases this is done in order to check out pro-
grams coded for one machine on some other machine, For example; using
the 7Ol to check out problems coded for the 70l before the 70L becomes
available. In our case the purpose was to make a fixed decimal machine
appear to the programmer as a floating decimal one.

Our planning for the 650 began in April of 195l with the formation
of a steering committee whose purpose was to make basic decisions in regard
to the optimum use of the machine. One of the earliest decisions was to
use floating decimal point operation whenever possible. OQur earlier exper-
ience had shown that this was by far the biggest step we could take to
increase the accuracy and ease of coding, It was apparent at this stage
of the development that our most important consideration would be one of
actual machine time. To speed up the subroutines as much as possible it
was decided that we would restrict the size and complexity of the list of
instructions in our Abstract Coding System. The arithmetic operations
finally decided upon were what we thought a minimal 1list, namely: add,
subtract, multiply, divide and negative divide as well as two branch
instructions ~- branch on minus and branch on relative zero., By June we
had a number of outlines of different systems to consider. The variation
among these systems was in regard to the word breakdown rather than to the
actual operations performed, To determine which of these systems was. the
best, portions of several problems were actually coded up in each system
and a qualitative study made as to which one was easiest to code and to
use and which one accomplished the most in the least number of instructions.
After these factors were weighed, we decided on a three address system.,

10§91 8 171615 b 3] 2J1]o0
0
¥ = B s

FACS COMMAND (ARITHMETIC)

| 10] 9l 81716]s5)ul3]2]1}o
Power NUMBER S

FLOATING DECIMAL NUMBER

Figure 1

Two of these addresses are full four digit numbers and generally indicate .
the addresses of the operands. The third address is a one digit nunber
indicating one of ten "result" storages. This digit is used as part of
the operation code in the instructions that do not require a third address.

At this point in the development the question arose as to the advisa=-
bility of including a multiply-add instruction in the list of commands,
Some of the members of the committee maintained that the frequency of its
usage did not warrant that it be included. Other members of the commit tee,
however, felt just as strongly that it did merit inclusion. To resolve
this argument a study was made to determine the frequency of occurrence
within a program of various arithmetic operations., This study was based
on problems that had been run on our Card Programmed Calculators, The re-
sults of this study are shown in Figure 2,

FREQUENCY OF OPERATIONS

OPERATION Jobl Job 2 Job 3 Average
Add (not including multiply-add) AL L1 .30 .19
Subtract A 15 .02 .10
Multiply (not including multiply-add) .30 .32 .19 .27
Negative Multiply .10 .OL .15 .09
Divide .05 .12 .01 .06
Negative Divide .00 .00 .00 .00
Mll‘biply-add) 28 . 26 . Bh o 29

Figare 2

The study conclusively bore out the contention that the multiply-add operation
was frequent enough to be one of the operations in our command list and, in
fact, was so frequent that two different versions of it were fimlly incorpor-
ated. Two other unexpected benefits were derived from this study -- the first
was that the negative-divide operation was dropped from the command list since
it appeared that it was rarely, if ever used and secondly, the relative fre-
quency of the various operations was used to determine which of the operations
were the most important to optimize,

In August, the final list of commands was frozen and coding was begun on
the subroutines making up the system. In doing the actual coding of these sub-
routines the committee, as such, did very little of the work. Instead, the
coding was used as training for the people in the department who had no previous
experience with stored program machines., Individual members of the committee,
however, did spend time in guiding the less experienced personnel and in
actually doing a considerable amount of trimming when it came time to pack the
subroutines together into a minimum amount of storage. In doing the detail
coding, speed of the operation was again our primary concern, Subroutines
were reworked in whole or in part several times in an attempt to cut down the
time. We went so far as to try to determine the optimum placement of the
machine language instruction after a multiplication. Several CFC problems
were investigated and a table showing the frequency of occurrence of sums of
miltiplier digits was constructed. The conclusions that were drawn from this
study were that the optimum placement of the next instruction varied consider-
ably from one problem to another and that the maximum difference between an

29

30

optimum and a non-optimum placement of the next machine language instruc-
tion was less than 2 milliseconds. Considering these results it was de-
cided to make multiplications and divisions convenient breaking points;
that is, the subroutine would be optimized up to a multiplication and the
next instruction placed so as to be optimum with respect to some other
portion of the program rather than to the multiplication itself. Another
device that was used to speed up the system is based on the fact that there
are locations for placement of data which are optimum as far as each of the

- abstract instructions is concerned. Realizing this, all of the subroutines

were constructed so that the optimum placement of data for one instruction
was the same or nearly so as for another instruction. We call these groups
of storages that are placed optimumly with respect to the system, preferred
storages. They vary somewhat from one instruction to another but always
include our ten result storages so that the result of one operation will
be placed optimumly for any future instruction referring to it.

By the end of November the system was complete and when we came to
Endicott the last of November we succeeded in checking out almost all of
the program., This was early enough so that we could transfer all of our
routine work to the 650 before the first machine was delivered in March.

While we were developing our system, our associates in the Missiles
System Division of the company, were preparing other subroutines that would
tie in with the FACS system. These subroutines were square root, logarithm,
antilogarithm, sine and cosine and arc tangent. These latter subroutines
were arranged so that they could be added to or left off of the rest of the
system as desired,

In using the FACS system for the last five months we have reached the
following conclusionss '

1. The command list is a well balanced one and has proven to be
easy to use.

2. In training new personnel no difficulty was encountered in
teaching the system except for one of the branch instructions
(the branch on relative zero instruction in which ease of
coding was sacrificed for speed)

3. 80 to 90% of our work now utilizes the FACS system with no com=
pulsion placed upon owr programmers to do so.

k. We do not intend to do any further development work for the 650
because of the imminence of our 704. However, if this were not
so the only further development that we would consider in regard
to the FACS system is to recode portions of it in order to increase
speed and/or compactness,

A GENERAL UTILITY SYSTEM FOR THE IBM TYPE 650

The Mathematical Analysis Section
Missile Systems Division
Lockheed Aircraft Corporation

THE MATERTAL CONTAINED HEREIN SHOULD ALLOW EFFECTIVE AND EFFICIENT USAGE OF
THE TYPE 650 WITHOUT DUPLICATION OF DEVELOPMENT OR MISDIRECTION OF PRIN-
CIPLES, THIS COLLECTION OF ROUTINES AND METHODS REPRESENTS AN OVERALL
PHILOSOPHY OF OPERATION WHICH HAS HAD GOOD SUCCESS IN ACTUAL OPERATION IN
AN ENGINEERING AND SCIENTIFIC APPLICATION, THESE ROUTINES HAVE BEEN USED
IN MUCH THEIR PRESENT FORM ON 6505 NUMBER 10 AND 37 AND WILL BE USED ON A
THIRD MACHINE DELIVERED AT THE END OF JULY 1955,

ALL OF THESE ROUTINES ARE OF THE TYPE COMMONLY KNOWN AS UTILITY . THIS MEANS
THAT THEY ARE APPLICABLE TO MOST PHASES OF ENGINEERING OR SCIENTIFIC COM-
PUTINGs gANY ARE EQUALLY SUITABLE FOR BUSINESS APPLICATIONS. THE STANDARD
CARD FORM®AND CONTROL PANELS DESCRIBED ARE VITAL TO INTEGRATED OPERATION OF
THIS SYSTEM, INITIAL ADOPTION OF THIS SYSTEM FOR LATER MODIFICATION SHOULD
PROVE TO BE A GREAT HELP TO NEW INSTALLATIONS,

THE DEVELOPMENT OF THE FLOATING DECIMAL ABSTRACTION WAS DONE JOINTLY BY THE
MATHEMATICAL ANALYSIS DEPARTMENTS OF BOTH THE GEORGIA DIVISION AND THE
MISSILE SYSTEMS DIVISION OF LOCKHEEDs THE ARITHMETIC PORTION IS DUE TO
GEORGIA AND THE SUBROUTINE PORTION TO MSDe LATER DEVELOPMENTS WERE MADE AT
MSD IN PACKAGING THE SYSTEM AND PUTTING TRACING UNDER CONTROL OF THE CON=-
SOLEs THEREFORE FACS AT GEORGIA AND_FLAIR AT MSD ARE SOMEWHAT DIFFERENT

IN OPERATIONs FOR THIS REASON THE ENTIRE SYSTEM IS PRESENTED HERE AS MSD
USES IT - DESPITE POSSIBLE DUPLICATION IN CERTAIN RESPECTS OF THE WORK
OF THE GEORGIA PEOPLE,

IT MAY BE NOTICED THAT THE MAJORITY OF THESE ROUTINES ARE NOT WHAT ARE COM-
MONLY TERMED ELEGANTs EXCESSIVE POLISHING WOULD NOT GAIN US VERY MUCH IN
MACHINE SPEED AND WOULD CERTAINLY LOSE EFFORT THAT HAD BETTER BE PUT TO
DOING USEFUL COMPUTING WORKe THESE ROUTINES WORK AND THEY WORK SUCCESS-
FULLYe THE MOST IMPORTANT THING IS THAT THEY ARE AVAILABLE TO ANYONE FOR
IMMEDIATE USEse CREDITS FOR THE VARIOUS ITEMS ARE AS FOLLOWS

ARITHMETIC FLAIR-FACS INCLUDING TRACE GEORGIA MATH ANALYSIS DEPT.
FLAIR COMPILATION AND EDITING ED DODGE

FLAIR SUB-ROUTINE SQUARE ROOT ROBERT BEMER

FLAIR SUB~ROUTINE LOG~ANTILOG IRENE BROWN AND JACK ANTCHAGNO
FLAIR SUB-ROUTINE SINE-COSINE ALBERT PODVIN

FLAIR SUB-ROUTINE ARCTANGENT CHARLES WIMBERLEY

MACHINE LANGUAGE TRACE USABLE WITH FLAIR RAY CIANCI

REGIONAL ASSEMBLY ROUTINE RAY CIANCI

PUNCH DRUM FROM & TO 8 DON JACKSON

PUNCH B8 EIGHTHS OF THE DRUM DON JACKSON

TYPE 407 UTILITY PANEL RICHARD MIDDLETON

TYPE 533 UTILITY PANEL RICHARD MIDDLETON

FIVE~-FIELD LOAD ROUTINE AND CARD FORM ROBERT BEMER

FLAIR TO FIXED DECIMAL ROUTINE ROBERT BEMER AND ELAINE GATTEN

1. Other companies may temporarily order the card form from IBM
in San Jose, California, if they so desire. 31

32

FIVE-FIELD LOAD ROUTINE

THIS TYPE 650 LOADING ROUTINE IS DESIGNED TO LOAD FIVE WORDS PER CARD IN
RANDOM ADDRESSESes THE FORMAT IS THAT LABELED NUMBER 1 ON THE STANDARD 650
CARD FORMe A FIVE=WORD CARD WAS CHOSEN ARBITRARILY TO EFFECT THE MOST
EFFICIENT LOADING WITH A MINIMUM OF RESTRICTIONSs THIS ROUTINE IS BELIEVED
TO BE THE SIMPLEST IN OPERATION AND CAN LOAD THE ENTIRE MEMORY IN 2 MINUTES,

A LOAD-IDENTIFICATION CARD CONTAINING THE SIX INSTRUCTIONS OF THE LOADING
ROUTINE MUST PREFACE ANY ROUTINEs 8000 IS SET TO 70 1901 XXXXe DEPRESS
THE COMPUTOR RESET AND PROGRAM START BUTTONSs PLACE THE ROUTINE IN THE
READ HOPPER OF THE TYPE 533 AND DEPRESS THE READ START BUTTONe THE LOAD=-
IDENTIFICATION CARD IS READ UNDER THE CONTROL OF 8000 AND THE NEXT INSTRUCT=-
ION WILL BE TAKEN FROM 1901¢ THIS INSTRUCTION IS ONE OF THOSE READ IN FROM
THE LOAD-HUB CARD AND CALLS FOR THE READING OF THE FIRST FIVE-FIELD LOADING
CARDs THE NEXT INSTRUCTION IS TAKEN FROM 1902 AND RANDOM LOADING PROCEEDS
BY SUCCESSIVE LOAD AND STORE DISTRIBUTOR COMMANDSe THE CYCLICAL PATTERN OF
LOADING IS EVIDENT BY TRACING THE INSTRUCTIONSs THE O AND 1 PARTS OF
THE STORE DISTRIBUTOR COMMANDS ARE EMITTED ON THE TYPE 533 PANELe THE DIA-
GRAM OF THE TYPE 533 UTILITY PANEL SHOWS THIS WIRING IN THE C READ POSITION,

THE ONLY RESTRICTION OF THIS SYSTEM IS THAT THE LAST INSTRUCTION LOADED IN
MEMORY IS THE FIRST TO BE OBEYED IN THE ROUTINE, THIS IS ACCOMPLISHED BY A
12 PUNCH IN THE UNITS POSITION OF THE A PART OF ANY OF THE FIVE FIELDSe
THIS PUNCH TRANSFERS A CO-SELECTOR WHICH REPLACES THE 1 PART OF THE STORE
DISTRIBUTOR COMMAND BY THE D PARTs THUS THE LAST INSTRUCTION IS LOADED
INTO ITS ADDRESS AND THE LOAD ROUTINE IS DISRUPTED SO THAT THIS INSTRUCTION
IS THE NEXT TO BE OBEYEDe THIS AUTOMATICALLY STARTS THE PROGRAM UPON COM-
PLETION OF LOADINGs TO RESTART THE PROGRAM ONCE IT HAS BEEN LOADED IT IS
NECESSARY TO USE ONLY THE LOAD=IDENTIFICATION CARD AND THE CARD CONTAINING
THAT FIRST INSTRUCTION TO BE OBEYEDe

LOAD~IDENTIFICATION CARD 12«PUNCH IN COLUMN 1
WORD 1 70 1951 1902+ WORD 5 . 69 1958 1957+
WORD 2 69 1952 1951+ WORD 6 69 1960 1959+
WORD 3 69 1954 1953+ WORD 7 10 8001 1965+
WORD 4 69 1956 1955+ WORD 8 35 0001 1966+

NOTE === WORDS 1 THRU 8 ENTER ADDRESSES 1901 TO 1908 RESPECTIVELY.
WORDS 7 AND 8 IN STORAGES 1907 AND 1908 ARE USED IN FLAIRe THEY MUST BE ON
THE LOAD-IDENTIFICATION CARD TO PRESERVE THEM IN CASE THE LOAD-IDENTIFICAT~
ION CARD IS USED AFTER FLAIR IS ALREADY ON THE DRUM,

A O D AND 1 ARE READ FROM EACH FIELD OF THE FIVE~FIELD LOAD CARD SO
THAT STORAGES 1951 THRU 1960 ARE FILLED AS FOLLOWS

A 0 D 1 A 0 D 1 A o D 1
1951 24 A, 1903 1955 24 Ag 1905 1959 24 As 1901
1952 0, Dy I 1956 03 Da Is 1960 Os Ds Is
1953 24 A, 1904 1957 24 A, 1906

1954 0, D, I, 1958 0, D, I,

SINCE THE I PART OF 8000 IS NOT USED IN THIS ROUTINE THESE FOUR POSITIONS
MAY BE USED AS EFFECTIVE SENSE SWITCHES BY SETTING THEM AT 8 OR 9 AND
INTERROGATING 8000 DURING THE ROUTINEs 8000 MAY ALSO BE SET EITHER + OR -
AND INTERROGATED FOR DECISIONe DO NOT ALTER THE SETTING OF 8000 SWITCHES
WITHOUT FIRST DEPRESSING THE PROGRAM STOP BUTTON

BUEEE [0) @ ® @ ®
DECK| geq. D | I DI pJ1 D [T p [T

NO. AOwﬁAowﬁAowﬂAOwﬁAOw”

oounonnnununonuuonnoannuoonoouuuuoouounoououoononouounoounuouonunnooooooononoono
23)45/6 70980 xznuvnsnuuznzlnnuzszszrmnw:uznu:su:ns:swu4143unsun<ussaus:mussssslsaswmszs:ussssnsuﬂnn 12173 14 75 75(77 78 19 80
lHIHlHIHlHIHIHIHIHIHIIIHIHIHIHIHIHIHIHlHIHIHIHiHIHIHI
[{IFIVE-FIELD LOADER ‘
2222222220222222)22220222202222)22(2 27 nrmTrrrIzzz2 220222 2122220222 2022220221222 22 222

33313333331333333333333333333333333,33333333333333333333333333333333333333 33333

FORM MSD 85611

CORPORATION

3504YNd - 1LNNW

A 0] oo V] A [0l | [=5) (» Y)
44u4u4uju4u4u4u4uru4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u 4541
5

55/5555555|5 555 55505555555555(5555555555
REGIONAL INSTRUCTION 3| FLAIR TRACE

66{6 66666666 GEG65'86655666556666BSBSGGEGBGEGGSEGSGGGBGGG 6666666666666/6666666665
11 11171

1117717017017 110117 77171777777777777777777777717777777777777777717777777777
0l D 8003 8002 8001 A _[O] D 8003 8002 8001
88(8888/8888888838/0060808588|383 8888838888[88833&88888BSB8888888888888888883888
MACHINE LANGUAGE TRACE

99999959999999995999999999999“T9_§9999999|9_919_§99999999999999599999999999839999
4

IIRILR N B LT RERTR TR |97ﬂ|21212]2‘252‘2)7!.’9)0”32131‘351‘373]3!“! l01!#-#5‘5:6118!950:5152515‘5555575!15!50'51‘?UG‘GSBSHEDE!JDH 727347575 7718 79 8¢
1472

(5]

LOCKHEED AIRCRAFT
SYSTEMS DIVISION

MISSILE
~eo e
=W eab
Ero oo
N

ayvo 069

DECK 033,401 PUNCH g EIGHTHS OF THE DRUM

THIS ROUTINE PUNCHES 8 EIGHTHS OF THE DRUM IN SUCH A FASHION THAT THE LIST
IS REPRESENTATIVE OF DRUM LAYOUT. 8 MAY VARY FROM 1 TO 84 PUNCHING STARTS
WITH THE CONTENTS OF o, TO OPERATE THIS ROUTINE '

le SET 8000 TO 70 1901 XXXX

2s PUT LOAD~IDENTIFICATION CARD IN FRONT AND LOAD DECK 033601

3« BEFORE DEPRESSING END~OF-FILE CHANGE CONSOLE TO 00 a 8

4o DEPRESS END=OF=FILE BUTTON

A 0 D I A o D I A 0 D I
0997 01 8000 8000 0912 69 8003 0913 0913 23 0991 0914
0914 16 8001 0915 0915 15 0990 0916 0916 10 0992 8002
0917 24 0978 0918 0918 22 0977 0919 0919 15 8003 8002
0920 24 0980 0921 0921 22 0979 0919 0923 24 0982 0924
0924 22 0981 0919 0926 24 0984 0927 0927 22 0983 0919
0929 24 0986 0930 0930 22 0985 0931 0937 10 8001 0938
0938 35 0008 0939 0939 44 0946 0940 0940 65 0991 0941
0941 16 0994 0942 0942 45 0943 0997 0943 20 0991 0944
0944 65 0996 0945 0945 15 0995 0916 0946 65 0995 0916
0990 69 0000 0917 0992 00 0050 0003 0993 00 0199 0012
0994 00 0000 0001 0996 00 0200 0000 0931 71 0977 0932
0932 16 0993 0933 0933 20 0995 0934 0934 30 0004 0936
0936 60 8002 0937 0911Y 65 8000 0912

PUNCHING 1S IN THE FIVE~FIELD LOADER FORM FROM THE C PUNCH OF THE TYPE
533 UTILITY PANEL,

DECK 033,02 PUNCH DRUM FROM o TO g

OPERATION INSTRUCTIONS FOR THIS ROUTINE ARE THE SAME AS FOR DECK 033,01,
PUNCHING IS ALSO ON THE FIVE-FIELD LOADER FORM BUT SEQUENTIAL ON EACH CARD.,

A 0 D I A 0 D I A 0 D 1
1911 69 1946 1912 1920 24 1930 1921 1939 46 1940 1941
1912 35 0004 1913 1921 21 1929 1945 1940 10 8001 1942
1913 22 1910 1914 1922 24 1932 1923 1942 10 1949 8003
1914 35 0002 1943 1923 21 1931 1945 1941 01 0000 0000
1943 60 8003 1915 1924 24 1934 1925 1945 10 8002 8003
1915 35 0004 1916 1925 21 1933 1945 1946 69 0000 0000
1916 15 1947 1917 1926 24 1936 1944 1947 00 0001 0002
1917 10 1948 8003 1944 21 1935 1937 1948 69 0000 1918
1918 24 1928 1919 1937 71 1927 1938 1949 00 0000 9992

1919 21 1927 1945 1938 11 1910 1939 1900Y 67 8000 1911

34

DECK 033,05 — MACHINE LANGUAGE TRACING ROUTINE

ALL MACHINE LANGUAGE COMMANDS ARE ANALYZED IN OPERATIONAL ORDERe THE LOCA~
TION ADDRESS - OPERATION CODE =~ DATA ADDRESS AND THE THEORETICAL CONTENTS
OF 8003-8002 AND 8001 ARE PUNCHEDs TWO SUCH INSTRUCTIONS ARE PUNCHED PER
CARDe LISTING OF THESE CARDS ENABLES STEP-WISE FOLLOWING OF THE RESULTS OF
AN ACTUAL PROGRAMe THE CARD FORMAT IS THAT LABELED NUMBER 2 ON THE
STANDARD 650 CARD FORMs : '

THE TRACING ROUTINE MAY BE STORED IN ANY TWO ADJACENT DRUM BANDSes THE
ATTACHED CODING IS LOCATED FROM 1200 TO 1299 THE ROUTINE MAY BE EITHER
PLACED ON THE DRUM PREVIOUSLY OR ACCOMPANY THE PROGRAM TO BE TRACEDs IN
EITHER CASE A TRACING CONTROL CARD MUST BE INSERTED IN THE PROGRAM DECK
BEYOND THE LOADING OF THAT INSTRUCTION WITH WHICH TRACING BEGINSs IF THE
TRACING CONTROL CARD 1S LOADED SEPARATELY A, CANNOT BE 800X NOR CAN THE
ORIGINAL INSTRUCTION IN A, CONTAIN 800Xe TRACING MAY START AT ANY PLACE
ALONG THE PROGRAMs THE PROGRAM CONTINUES AT MACHINE SPEED WITHOUT TRACING
AETER THE LAST ADDRESS TRACED IS REACHEDs SYMBOLS FOR THIS ROUTINE ARE
A, - ADDRESS OF FIRST INSTRUCTION TO BE TRACEDs
1, - THE INSTRUCTION AT ADDRESS Aze
6, - 1,18 SENT TO ADDRESS a3e USUALLY a3 = A1 HOWEVER IF a1 # Aa
TRACING WILL BEGIN WHENEVER THE ADDRESS A; 1S AGAIN INSTRUCTED.
THIS FEATURE FACILITATES LOOP TRACING
A, = ADDRESS OF LAST INSTRUCTION TO BE TRACED.

THE TRACING CONTROL CARD IS A FIVE-FIELD LOADERes - IT SHOULD CONTAIN THE
FOLLOWING THREE WORDS FOR USING ONLY MACHINE LANGUAGE TRACE.

A 0 D I A 0 D 1 A 0 D 1

1298 —=—Iy— 1299 65 ¢, Ay Ay 24 1284 1265
IT SHOULD CONTAIN THE FOLLOWING TWO WORDS WHEN TRACING IS TO BEGIN IN
FLAIR AND CONTINUE ALTERNATELY IN MACHINE LANGUAGE AND FLAIR.

A 0 D 1 A) D 1
1290 69 8000 1243 1677 16 1834 1239

If TRACING IS TO BEGIN WITH MACHINE LANGUAGE AND ALTERNATE WITH FLAIR ALL
FIVE OF THESE WORDS MUST BE ON THE TRACING CONTROL CARD WITH Ap = 1735s
COMPOSITE TRACING OF BOTH MACHINE LANGUAGE AND FLAIR COMMANDS IS UNDER THE
CONTROL OF THE HUNDREDS POSITION OF 8000Ds WHEN 8000 READS 70 1901 XXXX
TRACING WILL BE OPERATIVE IN MACHINE LANGUAGE UNTIL THE PROGRAM GOES TO
FLAIRe TRACING WILL NOT RESUME UPON RETURN TO MACHINE LANGUAGEs WHEN
8000 READS 70 1801 XXXX TRACING WILL CONTINUE THRU BOTH Me Le AND FLAIRe

A 0 D 1 A 0 D I A 0 D 1
1200 69 1249 1201 1229 22 1233 1218 1259 00 1227 1215
1201 23 1285 1202 1230 60 1282 1231 1260 71 1277 1237
1202 60 1282 1242 1231 15 1283 1232 1261 65 1254 8002
1203 19 1283 1204 1232 69 1284 1233 1262 99 9999 9999~
1204 46 1207 1205 1233 65 0000 1234 1265 20 1283 1266
1205 60 1282 1206 1234 24 1249 1235 1266 21 1282 1267
1206 15 1283 1211 1235 65 1233 1236 1267 65 1299 1268
1207 60 1283 1208 1236 30 0004 1287 1268 69 1258 1269
1208 19 1262 1209 1237 69 1221 1238 1269 23 1258 1270
1209 15 1282 1210 1238 24 1218 1240 1270 69 1273 1271
1210 14 1262 1211 1239 20 1249 1248 1271 22 1273 1272
1211 21 1278 1212 1240 69 1249 1241 1272 69 1298 1273
1212 20 1279 1213 1241 24 1285 1202 1273 24 0000 1274

MACHINE LANGUAGE TRACING ROUTINE =—-= CONTINUED

A 0 D 1 A 0 D I A 0 D 1
1213 69 1284 1214 1242 45 1203 1205 1274 24 1249 1275
1214 24 1280 1285 1243 97 1244 1245 1275 30 0004 1276
1215 24 1284 1216 1244 45 1293 1291 1276 20 1277 1287
1216 20 1283 1217 1245 65 1247 1246 1286 88 8080 0000
1217 21 1282 1225 1246 20 1218 1293 1287 69 1249 1288
1218 71 1277 1219 1247 00 0000 1237 1288 23 1281 1289
1219 69 1220 1222 1248 24 1283 1236 © 1289 16 1258 1290
1220 69 1221 1222 1250 39 9000 0000 1290 45 1293 1291
1221 71 1277 1219 1251 49 9000 0000 1291 65 1260 1292
1222 24 1218 1223 1252 89 9000 0000 1292 20 1218 1293
1223 69 1281 1224 1253 99 9000 0000 1293 65 1261 1294
1224 24 1277 1230 1254 65 1259 1200 1294 69 1249 1295
1225 65 1249 1226 1255 65 1259 1296 1295 84 1254 8002
1226 35 0004 1228 1256 65 1259 1200 1296 69 1249 1297
1227 65 1249 1228 1257 65 1259 1296 1297 22 1285 1201
1228 69 1233 1229 1258 00 0065 1735

DECK 033406 -~ REGIONAL ASSEMBLY ROUTINE

REGIONAL CODING 1S DESIRABLE FOR ABSTRACT SYSTEMSe INDEXED REGIONAL
ADDRESSES ARE ASSIGNED WHICH CAN BE CONVENIENTLY CONVERTED TO MACHINE
ADDRESSESs LONG PROGRAMS MAY BE BROKEN INTO SECTIONS WHICH MAY BE CODED
CONCURRENTLY AND SEQUENTIALLY AS IF STARTING AT ADDRESS 0000e EACH SECTION
IS ASSIGNED TO TRUE DRUM ADDRESSES WITH THE ASSEMBLY ROUTINE WHEN THE PRO-~
GRAMMING IS COMPLETEDs C2 0352 IS AN EXAMPLE OF A REGIONALLY CODED AD~
DRESSe (€2 1S THE ADDRESS INDEX AND 0352 1S THE ADDRESS WITHIN THE C2 REG-
IONe ALPHA-NUMERIC INDICES FROM A0~A9 TO HO-H9 ARE ALLOWABLE.

ONE REGIONAL INSTRUCTION IS PUNCHED PER CARDe. THE FORMAT IS NUMBER 4 OF
THE STANDARD 650 CARD FORMe THE LOCATIONS OF REGIONAL INSTRUCTIONS AND THE
REGIONS THEMSELVES DO NOT HAVE TO BE SEQUENTIALLY ORDEREDe A DUMMY IN-
STRUCTION WITH THE INDEX ADDRESS 10 MUST FOLLOW THE LAST INSTRUCTION OF
THE LAST REGION TO BE ASSEMBLED,

RELOCATION OF ANY INDEXED ADDRESS TO THE TRUE DRUM ADDRESS 1S ACCOMPLISHED
BY SPECIFYING THE INCREMENT BY WHICH THE ADDRESS PART IS TO BE ADJUSTED AND
THE LAST INDEXED INSTRUCTION TO BE SO ADJUSTEDe THE ASSEMBLY ROUTINE wILL
PUNCH THE DESIRED ASSEMBLED PROGRAM FROM THE <C POSITION OF THE TYPE 533
UTILITY PANEL ONTO THE STANDARD FIVE-FIELD LOAD CARD,

INSERT ADDITIONAL REGIONAL INSTRUCTIONS INTO A COMPLETED REGION BY ADDRESS—
ING AS MANY AS ARE NEEDED WITH THE SAME ADDRESS AS THE INSTRUCTION THEY
FOLLOWs PLACE THEM IN THE PROGRAM DECK IN THIS ORDERs CONTROL CARD INFOR-
MATION MUST BE ADJUSTED ACCORDINGLYe DELETION IS COMPARABLE TO INSERTION
EXCEPT THAT THE UNDESIRED INSTRUCTION CARDS ARE REMOVEDe THESE ALTERATIONS
AND EACH REGIONAL INDEX USED MUST BE REPRESENTED WITH CONTROL INFORMATION,
CONTROL WORDS ARE LOADED ON FIVE-FIELD LOADERS IN SEQUENTIAL ADDRESSES
STARTING WITH 1000e AN EXAMPLE OF AN ASSEMBLY CONTROL CARD IS

A 0 D 1 A 0 D 1 A o0 D I
1000 B2 0315 0100 1001 B5 0106 0500 1002 D3 0021 0620 ETC.

O IS THE ALPHA-NUMERIC ADDRESS INDEX OF THE REGION
D IS THE LAST REGIONALLY INDEXED ADDRESS OF THAT REGION
I IS THE INCREMENT TO BE ADDED TO ALL ADDRESSES IN THAT REGION

35

36

REGTONAL ASSEMBLY ROUTINE

CONTINUED

CARDS ARE PLACED IN THE TYPE 533 IN THE FOLLOWING ORDER

1,
2
3e
be
5.

A
0500
0501
0502
0503
0504

- 0505
0506
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0600
0536
0537
0538

0539
0810
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550

LOAD-IDENTIFICATION CARD

DECK 033406 =

STARTER CARD

REGIONALLY-~CODED PROGRAM

D
0807
0001
0817
0818
0819
0803
0559
0401
0401
0002
0816
0001
0807
0515
0817
0816
0580
0818
0401
0521
0522
0818
0802
0819
0819
0806
0819
0808
0401
1000
8003
0811
0809
0402
0782
8003
0812
0810
0403
1000
8003
0813
0812
0004
0402
8003
0821
0403
0004
0813

I
0501
0502
0503
0504
0505
0506
0508
0509
0510
0511
0512
0513
0514
0615
0516
0517
0518
0519
0520
0525
0641
0523
0524
0528
0526
0527
0528
0529
0530
8002
0532
0533
0534
0530
0603
0537
0538
0539
0530
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551

REGIONAL ASSEMBLY ROUTINE
ASSEMBLY CONTROL CARDS AS NEEDED
0500Y 65 0807 0501

A
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569

0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599

IN FIELD 1l

ONE INSTRUCTION PER

D
8003
0822
0811
0004
0401
0819
8003
0820
0777
0559
0806
0570
0570
0405
0566
0821
0822
0821
0822
0778
0570
0804
0574
0805
0559
0559
0777
0803
0559
0817
0401
0818
0559
0819
0803
0587
0802
0589
0802
0591
0802
0605
0801
0800
0779
0780
0801
0800
0781

1
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0568
0567
0642
0569
0642
0571
0572
0573
0577
0575
0576
0508
0578
0579
0508
0581
0582
0583
0584
0585
0586
0528
0588
0593
0590
0597
0592
0601
0594
0595
0596
0599
0598
0599
0600

A
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809

CARD

D
0801
0800
0783
0784
0801
0800
0785
0786
0777
0803
0559
0559
0803
0618
0802
0620
0802
0622
0802
0636
0801
0800
0779
0780
0801
0800
0781
0782
0801
0800
0783
0784
0801
0800
0785
0786
0777
0000
0404
1960
9999
0002
0777
0786
0787
0001
0000
1000
1000

0602
0603
0604
0607
0606
0607
0608
0609
0610
0611
0528
0616
0617
0641
0619
0624
0621
0628
0623
0632
0625
0626
0627
0630
0629
0630
0631
0634
0633
0634
0635
0638
0637
0638

0639

0640
0641
0500
0570
0000
9999
0000 .
0560
0571
0571
0000
0009
0531
0536

DECK 033,418 FLAIR TO FIXED DECIMAL ROUTINE

THIS ROUTINE TAKES A DECK OF LOAD HUB CARDS CONTAINING EIGHT FLAIR NUMBERS
OF THE FORM PP (XXXXXXXX AND CONVERTS THEM TO NINE~DIGIT FIXED DECIMAL
NUMBERSs THE POSITIONS OF THE DECIMALS ARE DETERMINED BY A LOAD HUB CON-
TROL CARD WHICH ALSO CONTAINS THE DECK NUMBERS

THE FIRST FIELD AAAAA 000 5B
THE SECOND THROUGH EIGHTH FIELDS 0000 0000 5B
WHERE

AAAAA 1S THE DECK NUMBER
B IS THE NUMBER OF WHOLE NUMBERS IN A NINE=-DIGIT FIELD

THE DECK IS PLACED INTO THE TYPE 533 IN THE FOLLOWING ORDER.
le LOAD-IDENTIFICATION CARD
2e¢ DECK 033,18
3s LOAD HUB CONTROL CARD
4¢ LOAD HUB DETAIL CARDS

THE DECK NUMBER IS SPLIT OFF FROM THE FIRST FIELD AND STORED IN 0077

A o D I A 0 D I A 0 D 1
0039 70 0042 0042 0017 11 8003 0025 0095 21 0001 0015
06042 60 0001 0011 0025 24 0077 0089
0011 30 0002 0017 0089 35 0002 0095

FIELDS ONE THROUGH EIGHT ON THE DETAIL CARDS ARE CONVERTED TO FIXED
DECIMAL AS SPECIFIED AND STORED IN 0078 THROUGH 0085 RESPECTIVELY.

A 0 D 1 A 0 D 1 A 0 D I
0015 70 0064 0064 0062 20 0067 0070 0021 16 0024 0030
0064 65 0067 0071 0070 16 0073 8002 0030 20 0033 0036
0071 15 0074 0029 0073 00 0050 0050 0036 65 0040 0009
0067 65 0050 0063 0013 18 0072 0027 0088 65 0091 0096
0061 65 0050 0063 0027 35 0004 0037 0096 16 0033 0038
0074 00 0001 0000 . 0037 46 0073 0041 0038 45 0064 0050
0029 20 0047 8002 0044 31 0001 0033 0050 69 0061 0014
0063 35 0002 0069 0041 15 0044 0049 0014 24 0067 0020
0069 21 0072 0075 0049 20 0009 0012 0020 71 0077 0015—PCH
0075 20 0040 0094 0012 65 0067 0021 0091 20 0085 0088
0084 65 0047 0062 0024 44 9972 9975

PUNCHING FOR THIS ROUTINE IS NOT ON THE TYPE 533 UTILITY PANEL

317

38

"ING.

TYPE 407 UTILITY PANEL

THIS PANEL WILL LIST THE FOUR TYPES OF CARDS WHOSE FORMATS ARE ON THE
STANDARD 650 CARD FORM, PRINTING OF THE SELECTED FORM AND APPROPRIATE
HEADING IS AUTOMATIC WITH THE 12 PUNCH IN COLUMN 3 5 7 OR 11les ALWAYS
TAKE A FINAL TOTAL BEFORE PRINTINGs PREFACE LIST DECKS BY A BLANK CARD.
THIS AUTOMATICALLY CAUSES A SKIP TO THE NEXT PAGE AND HEADS BEFORE PRINT-
PRINTING IS BASICALLY 50-10s THIS IS CONVENIENT FOR PRINTING DRUM
PUNCH=~OUT IN DRUM FORMATe THE FIVE~FIELD LOADERS LIST WITH a AND B 1IN
THE HEADING IF ALTERATION SWITCH 1 IS NORMAL, THE HEADING CONTAINS THE
NORMAL D AND I IF THIS SWITCH IS TRANSFERREDs

THE LOCKHEED 407S FOR MATHEMATICAL WORK HAVE SPECIAL TYPE WHEELS AS FOLLOWS

4=8 o 3-8 + 0-1 i)
0-4-8 8 0-3=-8 w 12 Y
11~-4-8 z 11-3-8 P
12-4~8 A 12-3-8 .

WIRING FOR THIS PANEL IS SHOWN ON A 407 BOARD DIAGRAM WHERE CONVENIENTs
OTHER WIRING IS LISTED BELOW BY TERMINALS ACCORDING TO THE DIAGRAM INDEXe

A59- 130
A63-AC52
A67~ C55
A78- J30
D57~ C10
E33~ Né64
E34- J55
F41-AG32
G65-AP79
G73~AW68
158~ S68
K30-~ B75
K53=AQ67
K57~ E1l1
L72- X27
" MO5~ V24
MO6~ V25
N42-BK18
N43~ ES6&
042~-BK15
043~ E53
046-BK16
047~ C38
048~ E54
050-BK17
051~ ES55
P66~ W06
P67~ 247
P68~ L10
P69~ L11
Q48~ R54
Q49~ R55
Q51- RS56
Q52- R59
Q53~ R57

Q54~ R58
R37- G64
R43~ R61
R44~ R62
R66-~AD4B
R67~ V17
R68~AZ76
R69=AZ77
R71-AW66
R72-~AW67
520~ P56
S26- P58
528~ R4T
$33- P59
$49~- P62
T02- P57
T06= Y50
T20~ Y43
T21- Y46
T22- Y49
T37- R49
T38- Y48
Z233-AB50
234-AB49
Z35-AB48
236~ 121
237~ J21
238-AQ05
239~ K21
Z240~A009
241-A040
242~-AW46
Z43~AZ245
Z244~A249
245-AZ60

249~ X25
250~ X18
251~ X04
252-BG78
AA33~-AK08
AA34~AK12
AA35-AK28
AA36= 120
AA37- J20
AA38-A004
AA39~ K20
AA40-A008
AA41-A039
AA42~AWLS
AA43~AZ 44
AA44-AZ 48
AA45~A759
AA46~ 105
AA52-BI39
AB33-~AF26
AB34-AF30
AB35-AF 40
AB36-AE20
AB37-AF20
AB38- H10
AB39~ H20
AB40- H30
AB41- H40
AB42~ G30
AB43~- G40
AB44=AE30
AB46~ACO5
AB47~ G11
AB52-BHT78
ACS51~ H70

-AD43-

AD13-AGO5
AD41~ 041
AD42— 045
049
AD&4~= N&41
AE45-AG06
AE46-AG31
AE4T-A129
AE48-AI31
AES50-AI08
AE51-A117
AE52-A121
AFO01-AI07
AF25-AK07
AF41— AQ03
AF42- AQ05
AF43- AO7
AF44~ All
AF45-AD14
AF46-AD24
AF4T7-AD28
AF48-AD30
AF49~AD38
AF50-AF02
AF51-AF12
AF52-AF16
AF59~- K68
AF63~ K61
AF6T7- H66
AF71~- K60
Al112- F42
AJ35- NT0
AJ35-~ K70
AK16~ H4l
A005- V36

AO06—~AF28
AO010- A31
AO11-AZ19
AO14-AZ24
A015-AZ228
A016-AZ29
AO18-AZ32
A021-AZ38
A024-BA01
A025- LO4
AQ26~AD4AT
AO027-AD49
A028~ M28
A029-AD51
AO30-AD46
A037~ A29
AO41-AJ32
AP04~AQ30
AP12-AZ21
AP13-AZ22
AP15-AZ30
AP19-AZ35
AP20-AZ36
AP23-BA02
AP24-BA03
AP67~ L31
AQO4~ V35
AQl0~- W31
AQ15-AR26
AQ25-AD45
AQ26- L13
AQ27~ L23
AQ28~AD50
AQ29-BA55
AQ31- W52

AQ36~ W39
AQ37=~ W40
AQ79~ R39
AT18-BA40
AZ46~AE28
AZ47-AE29
AZ65-AR14
AZ66-B154
AzZ67-B170
AZ68-BL60O
AZ69-B138
AZ71-BI39
AzZT72- V23
Az273- M15
AZT74-BA47
AZ75~ X06
AZ78-AC15
AZ79~-AC29
AzZ80-AHO9
BA69~BIT79
BA70-BIS58
BB66-BJ54
BB67=-BJT0
BB69=-BJT9
BB70~BJ58
BB71-BHT7
BB75-~ L70
BB76~ G19
BB77=~ G25
BI39-BH56
BL31~ X71
BL32~ X67
BL33~ X63
BL34- X59
BL40~ E57

39

Form 22-8275-5

Printed in U.S. A,

INTERNATIONAL BUSINESS MACHINES CORPORATION
ACCOUNTING MACHINE, TYPE 407, CONTROL PANEL DIAGRAM

yanpE e

s READING o
© 00 0 00 6 0000000 O0OCOGCO0O0O0 0O 000G 06000000 0 0 o
© 0 o 0 06 0 0 0 0 00 0 0 0 0 0 6 5 060 0 0000606006000 0 00
s N AM START
© 0 0 0 6 0 o 00 000 0 000 OGO 0 006 0° 9 0 0 0 0 0
Exi1 13 ::M
1 °
//// MA O-FLOW st
° o—0 om0 °
OMPARING ENTRY ATE Ext1] 70} ‘ off
© 6 06 0 0 0 0 0 0 6 0 0 06 6 0 0 0 0 0 o ono/fo o °
oND H roTLCT
06 0 0 0 o 6 o o 0 o ofo o o oo
so 6 00 Zuter sw ext onfon
rq.y) ° o o—o—0—0 oo
Q) SELEC IT COLUMN CONTROLLS7 #8G-
° o
o 13 20 S
. °
10 15 120 ¢ w
° o
I 20 51 2
°
N
o | (
ORAGE ENTRY - %
FM SK—T- EXIT
DITTTITIIIITITd iyl
CARD CYCLES 7 N .
o o o olla o o 0 ofle o o 0 o
HHHHH M i crmrn rem ||| € <
o—o | o—o || 2 ° o o o olo o o o o
TRANSFER PRINT ENTR 1~| <
© 0o 000060006 060600 0o o 0o 0 0 o o o oflsled o\o
sa 38) ‘0 s © M N \O L4 .Hc .Ha .Mx .Hx 'H .HL .H- -Hx
© o 00 0 0000 o000 o0 0 o o0 06 0 0 o0 o0 oflrlle o
. "0 ” 106 us 120 Y oz o
© 00 0 0 0 o o ° ° o o
Fel s 3 0SSR REN
o@ooooaﬁ o ed-e o o o
so
o o o °
03 " n .M, ,Hu .Ho .Hx .Hx m. .H_ oH. .H.
© ofo 0 0 0 06 0 0 0 o o °
B AGE EXiT ¢
LTI IIningtl :
° © 6 06 0 06 9 0 0 o
T c
1111 7 o o B e oo o o9 s 6 oo oo 6oocoooo0oocoooooo o
1Y H o o ° oﬁo»»»»»» 0 U W W | U0 U U U U U W U U U U5 S U U
DECIMAL ANCE—10
-1 o 0o olo of 6 06 0 o o o o a 0 0 0 0 6 @ 0 0 0 00 0 0 000 0 0 0 a
H H OLUMN $PUIT BALANC onttoL s
.. g ITIITIIL DIV I Uil Tl £
1 Siane - 3
o o o o 0o 0 0 0 0 0 0 0 0 © 0 0 6 0 0 0 0 0 O o ®
#A 48 68 38 G4 4C 6C 3C 8C 4D 4D 3D B0 6F B 6F 8 4G 3G 6H SH &1 &) 6K 4K 9
12 3 N Fs 7 a9 1o N1z 13 i 3233 34 3/ 36 v a8 39 & 3657 58 39 60 41 61 63 64 65 68 o7 o8 69 70 71 72 73 74 75 76 77 78 79 &0 3
© 0o 0o o 0o 06000 0000 O0©O0O0 OO0 OO0 0 0 0 O
© 0 00 06 00 06 0 0 0 0 o o o o o o o o o o

DAL D
H

T DAL [L2
]

o|lo o
o
o
o
o
o
oo o
°
°
o
o

11] Sl innyanip [o] g cgptatiiegezatgreaegeas
i T L o e e
M FHATCTRAITCE I Lt s
m Moouoooz n ” 2 Hhmwl

0
o o o © o o © o o
m:-« ;
oo

o o
8T cveues.
o o

CHANNEL 8 ENTRY

o)

av o o o o o o o o o o o
H H lTao ::203!@ AL YCLE
Aw] © +
N

24

com

REPEAT
. o—o
o-FLOW END

I

18]

O
R_V_MIDDLETON

”®

ar

@”3.::203@ T
o o ||az o o olo o o o o
27 N 2 N 29 N 20

o ol o o ofo o o o o{0 o 0 o olc o o b o

120 c < C

o ol 0 waoooo

| Jo0 o o |k @ &
lodo of s
o oo ° o0 0lo o oo o o |8
o o o o ogo o o olo o oho c || o o
0io o o olo o ojo o o o oo o o olo o oxo o o |¥| o o
ARY PUNCH ENT ERO PRINT CONT
© © 0 06 00 00606 600060006 0000606006060 06 0 0 ° > o
2 : 5 3 3 IBERERERESESRRRR i ARRERER NS R
© 0 0 0 0 0 6 6 6 b 6 6 0 6 0 6 0 60 60 0 6 0 0 0_g ° o o
AGE PUNCH oI

oooooooooooooooa;oooooo\v\loooo
l—unit ¢

11 113111
AR R N S R R RN ERE R R AR R A D
FURTEDRDRDRDRD P DRTEDPILTITRTRTLIEC

REPORT.

40

TYPE 407 UTILITY PANEL =-—

CONTINUED

$19- P51~ P46 U43- Y51~ Y52 AP17-A019-AZ33
S24- P48~ P54 V49~ R52- Q61 AP18-A020~AZ34
S34~ P53~ X46 V50—~ R53- Q62 AP21-~A022-AZ39
T36= P49~ W52 AP11-A012-AZ20 AP22-A023-AZ240
Q47~ P52- X45 AP14-A013-AZ23 BA66-BI135«BA67
S44~ P4T- P61 AP16-A017~AZ31 BB68-BI36-AZ70
T03- T19- T35~ W47 W43= W4b~ W45— Wa46— W51
$18- 539~ UO0l=- U22~ X43= P41 $27~- T08- T29- U10- U31- P43
$23= T25- U006~ U227~ Xb4~ P42 $32- T13= T34- U15- U36~ P44
TYPE 533 UTILITY PANEL
THIS PANEL WILL READ

12 INCOL 1 LOAD HUB CARDS

A READ OPEN FOR TEMPORARY WIRING

B READ REGIONAL INSTRUCTION CARDS

C READ FIVE-FIELD LOADER CARDS

THIS PANEL WILL PUNCH

A.PUNCH OPEN FOR TEMPORARY WIRING"

B PUNCH MACHINE LANGUAGE TRACE 10TH WORD IS 88808 00000
FLAIR TRACE 88808 08000
LOAD HUB CARDS FROM PUNCH WORDS 1 TO 8 88808 88000

C PUNCH FIVE-FIELD LOADER CARDS ‘

WIRING FOR THIS PANEL IS SHOWN ON A 533 BOARD DIAGRAM WHERE CONVENIENT.
OTHER WIRING IS LISTED BELOW BY TERMINALS ACCORDING TO THE DIAGRAM INDEXs

Z33- R10 Z239-AA10 W59-AL 45 AK44~ 142 528~ R41 $23= X35
234~ L21 240~ A33 W60~ Q50 AK45- M4l AA21-AC15 D22~ X40
235~ X14 221-AC10 W6l-AL 46 AK46~AD60 AN14- LOO
236- Y08 H&42~ W42 AM44~ Q45 AP59- D43 AL44~ W55
237- 202 K42~ V42 AM45~ Q49 AP61- R30 Y¥33- LO06
238~ 716 AM43~ X47 AM&6~ Q51 AQ61- 538 X21- V05

Y35~ UO5-AEOQ7
Y36=-ABO5~AF07

Y37-AB10~AGO7
Y38-AB15-AHO7

Y39-AB20-AI107
S41-AP60—-AR61

T42-AB60~ N4l
V4l— W41-AR55-AR60

AC03-AC08~AC13~-AC18~AD21
W21-AE01-AF01-AG01-AHO1-AJO1
AN13~ KQ7- KO08- K09~ LO7- LOB
V31i- K18- K19- K20- K21~ L20
V30- L14- L15- L16- K10~ L10O

W31- Y34~ L17- L18- L19
W30~ Y04-AC04-AC09-AC14~AC19
V21- V02-AC02-AC07-AC12~AC17-AC20

Y21-AE02-AF02~-AG02—-AH02-AJ02-AC05

CORRECT TYPE 533 PANEL SO WORD 5 OF B READ HAS A WORD LENGTH OF 2.

2 ¢ 2 ¢4 2 ¢ 3% 2 241 % 2 2 ¢

~

>

¥ €9 29 1 09 6 86 5 9 §5 ¥ 5 26 IS OS 6 S 2 9 S» vy 2 W Ov 6f BC € 9 S¢ v €€ T IS 00 62 B 42 92 S2 ¥z € 22 12 02 6 @ 4 8 & M € 2 0 O 6 8 L 9 § w § 7
VSN NI Q3LNINd
o 0o o o o oy o © 0 0 0 0 0 0 0O O O wl| O 0 0 0O 0O 0 O © O O 0O=0go—=e 06—9 o—e o—9 o9 4
NI N 08 T02N0O 130 29 — =0z 041802 130 98 | L B R
© 0o o 0o o0 o o og€o © 0 6 0 0 0 0 0 0 O o o0 o o o o 6 0 o o o *~—e o—o o—o oo ov
o8 11X3 49 O AULN3 130 28 W—] o 11X3 d9 HO AMIN3 130 28
© 0 o o o o o ozo © 0 0 0O 0 0O o o0 o0 o av O 0 ©0 0 0 0 0 0 0 OfO=0=0=0=0=0=0=0=0y40 e Oo—0 o0—¢ O o—e o«
13 S NI L0 08 mmmmmmmms AYIN3 130 08 8 d0 s T} e o O Sttt AHIND 130 08 © dO e 19 o ¢ 387ndMi vy ©] [} | S L |
o O o otlo O 0 0 0 O 0O 0 0 O O wl| O 0 0 0 0O © O O 0 o ooa—0|ololololololo - o—o "
——— <301 3x{35 3003 :M:?. :W 130 I0Y1N0D 130 98 tg=— 0% I04.N0D 130 98 €M M M OM ©
o o o o o 0O 0 O 0O 0O 0O 0O 0 0 o© e ©O 0O 0O O O O O O O OF0 090MO O340 O0OSOMO O o o o o "
| R I I e} 09 113 49 ¥O A¥INI 130 28 w— =05 LIX3 d9 ¥O AMINI 130 28 | S L L |
© 0 0o 0 0 0o o o o o O 0 0 0 0 0 06 0 0 ©o W/ o o o o0 0o o o o o offo.oroMo ofjo OofoMo o o o 0o 0o © w
[N N T T | 09 e AY LN 130 08 @ 0 s [e fee O e A¥1NT 130 08 © 4@ AMIND 321S QHOM
0O 0 0 0 0o 0 0 © Fo o O 0 0 0O 0O 0 0 0O O O w| o 0o o o o o o o o ofo o2omo oflo otomo ofloybosoeoBOLO Sov O |
l—ilzo..-.(!xOuz_ 0YINOD wemm— O ol T S11748 o 08LNOD 130 28 TG e— p—0c TOHLNGD 130 08 12 N 0V3Y LS¥!d O1L3IBVHJITY | V) xuéﬁm QYoM
oF 0Fo 0o o o © 0 0 0 0 0 0 0O o O v O 0o 0 o 0o o o o o offo¥ »> >0~ oF e s 7
quom 6 QuoMm 11X3 99 ¥0 A¥INI 130 28 =i =0t 11X3 ¢9 4O AHINI 130 08 OF QUOM == \\@o;J&l
oF »- 0Ff0 0 0 O e—t———e O \o 0O 0O 0o 0O 0 0o 0O 0o O o e 0O 0o 0 o o 0o o o o ofo¥ »- oF d o L
qyom cyom AN 130 00 © dQ s IG ol [O e 4 LN 130 08 @ dQ 8 quom
o3 " +—e |O0OF0O ©0 O O e—e—e—e o\ oo o 0 0 o 0 O O O O o © 0o 0 0 0o o o o o ofo¥ > » oFe o7
9 CuOM S Quom T041N0D 130 08 T} e I08LNOD 130 98 9 quom
o Fe - ©0Fo 0 0 O eo—eg—eo—e o\ oo o o 0o 0 O 0 O o O e © 0o 9 0o o o o O o ofof¥ g \ 4 oF b
v € Q4OM 11X3 d9 O AMINI 130 58 == [=—0 11X3 49 BO A¥INI 130 98 » quoM ~
o3 - 030 O O O e —eo—e——e & oo o o o o o o o o o v o 0 0 o o o o o o offo} oF b
2 Q¥OMm 2 LlIX3 39vHOols T QYoM AHINI 130 08 ®© 40 T — AYIN3 130 20 ® 40 quoMm AYINI 39VHOLS
© 0 0 0200 ©0 0 020;0 0 O O30 ogo o o o o 0o o o o ©° = 0O 0 0 o o o o o o ofojqo0 e} do @
¢ fJos sL oL 9 1 A @ @ 9
0O 0 O ONOJo o o oNo|lo o o oNo ofo o o o o © o o © o v ©o 0o 0o o o o o o o ofojofo oNo] o OoNO b
9t st 14 (49 e Jos [0s <v wlle|]s @ @«) @
0Olo O o olojo o 0 O0Olo|o o o olo Cgo © o © o o o o ©o o av O 0 0o 0 o o ¢© o o ofojojo lLojo lLo]o ev
SH0193135- 09 Yefor ¢ 3 <2 el n 580193135 -
oo o o c o o 0o o O o v ©O 0o o 0o o o o o o ofoago - o o
o8 Ol GIOM oo 6 s 8 B3 EFEY B 3nsnye IHsnug t w.m s foe Ol QYoM .
olqdlo - e—effolnoflo o o o o o 0o © o o H o o o o o o o o o offodo [} z
o3 UHOM ssd o5 9 OQ¥OMs» M RN NOWNOD wmoff s ¥ g fos QHOM g os 9
> > I o—e o—eo—e+—-oflolofo o o o o o o o A o o o o o o o o o offos ° ,
»g sc b QUOM ot € o e nwfe}y .]@Iﬁ 60 o s nfl v ¥ Q ssb QHOM os sz . e =
—o—e O o 0 o o o offop\ofo o o o e—e x o 0 o o o o 0o o o offo E‘lo o © 0 0 0 o o o0 9 o x
T . 5 a¥va W s e} S117dS NWN100 Q¥ 2l $¥019313s 3000 Oviymmmmminif] € 3 ¢ [pozs 51 v3 av: [
L, o X oNOgO=0g0=-0=0g0=0 O=nt—=0 0=0 O0=0 O=0goON cgojoffo o o 0d030 o o O 0o o o o090 J0 -
AM_U NM_ <m.v< 1SN8r 1 snNg 1 161 1 81 to X 121 ‘OM +Szlz
e Ozooso o= =0 O0=0 0=0 Dw [<] omo o o o oNo|lo o o oNojo o o _oNo > oNo ’
») [V51 f SNdw avay +y Myl 17 14 € z 1
o 0,0 ° ~— e—e O O O O O o+o o o o oloJo o o olo|Jo o o olo]o 10 "
otofr v s B8 ¢ © 15 w g 2 nfogo SY0193735~
0 ocgofo o a o o—e O O ojoflo o 0 o © o 0o © 0o 0O O O O O ©O O O O 0O O 1
Amv QHOM wfuinll éuum..bunk o fos st oL [1
ojege o *—e o o o ofojJofJo © o 0o 0o 0 o 0o o 0 O O O O © O O O O O B
sy wila |] 0T 6 1B Y V\um w o 12 nfa{afos [os sy w
olololulo o o o o e o o o o ofo ©o 0 0 0 0 0 0 0 0 0 © s
€ io;ﬂ 2 m 153135 - 00 — M o st o . % .
) ofo [© o o o o © ° o o o o o o oflo —~8 <9 o—0—txo—o—9 O
- 102 161 18T 14T 19T IST 6T €T 12T T o eI K 2 - 8 guvd Qv Tl
o o 0o o of\e—e 0 0o © 0 0o 0o O © o © o o 0o o o o offcgo o o/oY o / o o d/ 0cp0Fo o0 o o P
GI0H ¥019373s 107 L~ 0H ¥0123735 10
f © 0o o o o o o 0920 .z\o o o o o o o ©oDofjoFo o © 0470 V/o o/ﬁ 0oFo o o o N
° N
o o o © 0 o o | o0 o 6 6 5 o o onofoFe o o o © oNQ N\o opNoFo o o K
s gHOM »
WH o o o o o o a o 0o o 0 0o 0o o o oloffofo 0 o o 0 O O /Y o/«/ﬂ o o ———e—e il
0z — < 1 v q¥om
oF > - o o o o » © 0 0 0 0 0 O 0 ©0J0BO0OFJO O O O O—Px—t—o Y oF o/ﬂ L]
quom 1ix3 39vH0LS asoM AYINI 3OVYOL
0FJ0 0 0 0 O O O O O O,0Ff0 O O o o o o ofo o o 0 . o 0o o o o o o o oNofJoFo o o o o 2 o 030 o o -0 c o o o ¢
ayom QUOM ~—— u
0FJ0 0 0 0 0 0 0 0o o o]JoFo o o o o o o ofo o o " o o0 0o o o o 0o o olLofoFo © o o 0o 0 © o o oloFo o o o o o o o O O "
9 Quom s 1 qyom & Quom
0F0 0 00 o o o o o ofloFo o o o o o o o e o o o s 0 o o o o o o o o ofJoFo o © o o o o o o oloFo o o o 0 0o © © O O 9
s auom 11X3 37dN0J ONV nd 11X3 374009 GNY Nd 1 9 QyoM s
0fo 0o 0 0 0 0 0 o o ofloFo o o o o o o ofo ©c © 0 0 o 0 © © O 3 o o o o o o o o o ofoFo o 0 0 0 0 o 0 O OfoFo © © 0 O O O © O O 4
v quom ndaa ndaa * QuOM £a
00 0 0o 0 o o o o o oflojo o o © 0o o 0 ofo 0o 0o O O O O O O O 3 o 0o o o o o o o o offoFo o o o o o o o o olofFo o o o o o0 O o O O 3
Z quom v 11x3 35VN¥01S 123735 107 Ny x my SH0193138 10 2z quom v AMINI 39VHO, 1 QuoM
¢ 0 0 0 0 0 0 0 0 0 O 0 0 0 0 O O 0O O Og0=0g0 0 O O O O O O O O o o 0 0O 0 0O 0O 0O 0O O Ogo—Ogo O O O O O © O O O O O © O o O 0o o0 o0 ©0 e
o [13 oL $9 19 8 vONNd ff 08 [oL <9 19 Ja Aun3 g 08 SL oL €9 19
O 0 0 0 0o 0 0o 0o 0 0 o 0o o 0 0o 0 0 o o offo—ofo o o o o o o o o o 5 o o o o0 o o o o o offo—offo 0 0o 0 0 © 0 O O O O O 0 O O O o0 O O O 5
09 [os St 1 v Honna || 09 s os v 1w v AuNag 09 s os < w
O 0 0 0 0 0o 06 0 0 0 0 0 0o 0 o 0o 0 o o ofo=—offlc 0 0o 0o 0 © o 0o o © a o 0 0o 0 0o 0 o 0 0 o —oflo 0 0 0o o © 0 0 o 0 0 0 ©0 O O O O o O O 8
or : s€ of [+3 -1 W 1 gor € os 2 it Qvo1=_ O (54 ot 2 12
0 0 0 0O 0 0 0o 0O 0 0 0 0 0 0 0 0 o o o offo—=ofo © o 0o 0o 0 o © 0 o v 0 0 0o 0o 0o 0 0o 0 o o oo o o o o 0o o o o o 0o ©0 0o © O O O O O O v
Loz s v QuYD HONNd 1-Sman x oz ONIOVIN LSHI4 34 syt T § v ouyvo Oviy
¥ €9 Z9 19 09 66 8 IS SC S ¥ £ 2 S OS 6» 6y i 9 Sr ¥ S» 2r ¥ O 68 BC IL 9% SE € €F % 1L O 6Z 82 4 9 S »T §2 2 12 02 6 B 4 S § H © u 0 o 6 8 L 9 § ¥ € 2z 1
.
(ANIHOYW ONISSIDO¥d-VIVA WNNA DILINOYW 069 3dAL HLIM A3sN)
1ANVd TO¥INOD €€S 3IdAL ‘LINA HONNJ-avI¥ wwvn aevis

V$N v paulg n
1°£0Z9-2T "oN w0y N NOILY¥Od¥OD SINIHOVW SSINISNG 1YNOILYNYILNI . . E -

42

FLAIR = FLOATING ABSTRACT INTERPRETATIVE ROUTINE

ONLY A BRIEF SUMMARY OF THIS SYSTEM IS GIVEN HEREs IT IS INTENDED TO SHOW
DEVIATIONS FROM THE ORIGINAL SYSTEM AS PUBLISHED ELSEWHEREs A LISTING OF
THE INSTRUCTIONS AND CONSTANTS IS FURNISHED TOGETHER WI1TH ENOUGH DESCRIP=
TIVE MATERIAL TO OPERATE THE SYSTEM WITHOUT GOING INTO SPECIFIC DETAILe
DETAILED BREAKDOWNS OF THE INDIVIDUAL ROUTINES ARE AVAILABLE IN THIS SAME
FORMAT FOR THOSE INTERESTED OR HAVING A NEED TO ALTERe ADDRESS A REQUEST
TO THE MATHEMATICAL ANALYSIS SECTION =~ MISSILE SYSTEMS DIVISION LOCKHEED
AIRCRAFT CORPORATION - 7701 WCODLEY AVENUE - VAN NUYS CALIFORNIAs

FLAIR IS A PSEUDO-THREE~ADDRESS FLOATING POINT COMPUTING SYSTEM FOR USE
ON THE TYPE 650es NUMBERS ARE OF THE FORM

PP 4 XXXXXXXX WHERE PP IS 50 + THE ASSOCIATED POWER OF 10
ARITHMETIC COMMANDS ARE OF THE FORM

op a 8 WHERE @ AND B ARE FOUR DIGIT ADDRESSES
LOGICAL AND SUB-ROUTINE COMMANDS ARE OF THE FORM
or o B WHERE a AND B ARE FOUR DIGIT ADDRESSES

THE ¥ 1IN THE ARITHMETIC COMMANDS REPRESENTS THE UNITS DIGIT OF THE 10
RESULT STORAGES 0000 TO 0009s THESE ADDRESSES ARE A PART OF FLAIR AND
MAY BE USED ONLY FOR THIS TEMPORARY PURPOSEs THE BLOCK TRANSFER COMMAND
8Y FREES THEM FOR FURTHER USEs

THE FLAIR SYSTEM IS UNDER THE CONTROL OF THE WORD IN 1615 THE D PART

OF THIS WORD IS THE ADDRESS OF THE FLAIR COMMAND TO BE OBEYEDs COMMANDS
ARE OBEYED IN SEQUENTIAL ORDER EXCEPT AFTER TRANSFER COMMANDSs ENTER FLAIR
BY RESET ADDING A WORD 17 J 1735 TO 8003 AMD OBEYING 8003s J IS THE
ADDRESS OF THE FIRST FLAIR COMMAND TO BE OBEYEDe

THE ENTIRE SYSTEM OCCUPIES THE ADDRESSES FROM 1300 TO 1999 THE ARITH=-
METIC PORTION PLUS SQUARE ROOT AND ABSOLUTE VALUE OCCUPY THE ADDRESSES
FROM 1600 TO 1999 AND MAY BE USED IN THIS ABBREVIATED FORMe IF LESS THAN
THE FULL COMPLEMENT OF SUBROUTINES IS NEEDED = USE ARITHMETIC FLAIR PLUS
GROUPS OF STORAGES AS INDICATED.

LOG 1500 - 1599
ANTILOG 1450 - 1599
SINE AND COSINE 1350 = 1449
ARCTANGENT 1300 -~ 1499

TRACING IS UNDER THE CONTROL OF THE CONSOLEe SETTING THE HUNDREDS SWITCH
OF 8000D TO AN 8 CAUSES TRACINGe A 9 IN THIS POSITION CAUSES THE TRAC~
ING TO BE IGNORED AND FLAIR WILL RUN NORMALLYe THE MACHINE WILL STOP IF

A DIGIT OTHER THAN AN 8 OR 9 IS INADVERTENTLY SET IN THIS SWITCHe IF
THE PROGRAM IS IN FLAIR IT MAY BE RESTARTED BY

ls DEPRESSING PROGRAM RESET BUTTON
2e¢ SETTING THE SWITCH PROPERLY
3s TRANSFER TO 1735 FOR NEXT COMMAND

FLAIR =~ CONTINUED

FLAIR OPERATION SUMMARY ~ LOGICAL COMMANDS

00 - 06

01

02

03

04
05

NO OPERATIONe THE NEXT COMMAND OBEYED IS IN B

MACHINE STOPe IF PROGRAM START BUTTON IS
DEPRESSED THE NEXT COMMAND OBEYED 1S IN &8

NO OPERATIONe NEXT SEQUENTIAL COMMAND IS OBEYEDs

CONDITIONAL TRANSFER ON THE SIGN OF THE CONTENTS OF o
THE NEXT COMMAND OBEYED IS IN B8 1IF THE SIGN IS =
THE NEXT COMMAND OBEYED IS SEQUENTIAL IF THE SIGN IS +

CONDITIONAL TRANSFER ON RELATIVE ZERO -~ SEE DETAILED ITEM.

UNCONDITIONAL TRANSFER OUT OF FLAIRs THE NEXT COMMAND
OBEYED IS THE MACHINE LANGUAGE COMMAND IN a o IF THE
RETURN TO FLAIR 1S AT 1612 THE NEXT FLAIR COMMAND IS
SEQUENTIAL TO THE 05 COMMANDs IF THE RETURN IS AT 1792
IT IS FOUND IN B OF THE 05 COMMAND,

07 TO 09 NO OPERATIONe MACHINE STOP =~ THEN SEQUENTIAL COMMAND.

FLAIR OPERATION SUMMARY = ARITHMETIC COMMANDS

17
27
37
4%
57
67
TY
87

(&) ¢ (A + (Y)Y —= 7
(2) o« (MY + (B)Y —> 7%
(&Y + (B —— 7
(&Y - (@ —————> 7
(o) o (B) — > 7
-(a\ ® (ﬂ‘ —— Y

(&) — (By ——————» 7
(a+K) —— (84K) K MAY VARY FROM O TO ¥

FLAIR OPERATION SUMMARY =~ SUBROUTINE COMMANDS

90
21
92
93
94
95
96

97 70 99

MACHINE STOPS

9000
9001
9004
9005

‘\J(a\ >

SIN (¢ —m—m——————p
c0Ss (ay —mm
ARCTAN (o) ———
LOG (¢} —m———
ANTILOG (@) ——»
(e | -
NO OPERATIONe NEXT

ARGUMENT IN RADIANS
ARGUMENT IN RADIANS

OoaDDDHDDIDD

EQUENTIAL COMMAND IS OBEYEDs

SQUARE ROOT OF A NEGATIVE NUMBER :

SINE OR COSINE OF AN ANGLE GREATER THAN 100 RADIANS
LOG OF ZERO OR A NEGATIVE NUMBER

POWER OF 10 INDEX OUT OF RANGE

43

44

A

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

1340
1341

1342 -

1343
1344
1345
1346
1347
1348
1349

D

1416
1304
1867
0000
1357
1308
1909
1867
9999
1313

8003
1890
1876
4054

- 1876

0002
8003
1324
1326
1476

1876
1876
1375
1835
3298
9465
9085
1330
1836
8003

5909
1485
1835
1836
8003
8003
8003
1890
1396
0004

8003
1348
1899
1899
1899
1899
0000
8001
1861
0001

1374
1401
1322
1328
1361
1316
1312
1475
3329
1341

1486
1419
1909
0580~
1320
1321
1333
1484
1336
1386

1331
1329
1314
1338

5605~ -

3599
3351-
1335
1340
1337

8861~

1300
1339
1349
1342
1345
1343
1393
1302
1399

1347
1310
1317
1367
1452
1319
0047
1344
2288
1311

1350
1351
1352
1353

-1354

1355
1356
1357
1358
1359

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

FLAIR

0

00
46
22
60
00

46
00
65
46

61
46
16
19
24
15
15
10
45
00

46
14
19
35
20
09

36

.10

35

10
24
60
30
19
69
60
60
16
16

20
19
16
15
33
31
00
60

19

69

D

8334
1365
1805
1836
0000
8003
1410
0000
1417
1365

1890
1366
1416
1875
1867
8001
1369
1325
1446
0000

1835
1424
1875
0004
1890
9999
8003
0000
8003
0002

1383
1836
8003
0000
8001
1899
8003
8003
1354
1444

1893
1394
1395
1346
3333
4159
0000
8003
1890
1303

4000
1358
1408
1391
0007
1363
1411
0003
1843
1401

1377
1339
1422
1404
1420
1373
1323
1334
1843
0001

9001
1434
1426
1385
1307
9999
1384
1390
1435
1805

1387
1389
1440
0000
1436
1352
1494
1398
1359
1449

1448
1425
1400
1301
3333
2654
0008
1406
1419
1306

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

1440 -

1441
1442
1443
1444
1445
1446
1447
1448
1449

0

46
66
20
66
10
65
19
16
66
40

11
10
60
16
67
35
15
51
10
60

21
65
67
35
62
35
60

67
60

24

11
19
67
31
24
00
69
69

19
31
31
16
00
24
60
11
65
46

D

1403
1861
1861
8002
1407
1836
1409
6666
1861
0000

1744
1744
8003
1416
8002
0002
7079
1000
8001
8003

1875
8002
8002
0002
8318
0001
8003
8003
8003
8003

1835
1835
1437
1867
8003
0004
1890
0000
1441
1442

8001
0000
0000

1396

0300
1899
3002
1350
8003
1405

1362
1843
1414
1362
1412
1368
1380
8080~
1415
0000~

1974
1974
1372
1371
1423
1421
6327
0000
1376
1377

1378
1379
1381
1429
5307
1382
1433
1388
1443
1432

1439
1438
1370
1418
1392
1447
1397
0053
1445
1445

1364
1371
1413
1351
0000
1402
1377
1355
1356
1353

A

1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

0

00
46
60
10
19
60
11
16
35
15

10
10
19
19
06
16
02
20
65
35

60
60
60

60
46
09
10
10
19

19
20
19
69
60
65
19
10
65
22

60
10
60
00

35
35
15
35
21

D

7300
1554
8003
1856
1836
8003
5129
1714
0001
1462

1464
1466
1510
1510
6273
8002
5439
1873
8003
0004

8003
8003
8003
8001
8003
1360
6420
1586
1936
1836

1836
1836
1836
1536
8003
1416
1899
2001
8003
1893

1493
1744
8003
1750
1899
0001
0001
1450
0001
1856

0000
1459
1309
1948
1474
1873
2770
1469
1465
1467

1471
1472
1488
1498
1000
1524
0000
1526
1477
1529

1528
1479
1480
1495
1482
1332
0441
1592
1492
1553

1460
1490
1461
1489
1990
1374

1327

1545
1496
1546

1497
1499
1473
0000
1318
1455
1453
1454
1468
1578

FLAIR (Con't.)

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

1530
1531
1532

-1533

1534
1535
1536
1537
1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549

D

9432
1283
3176
5113
7096
9125
1201
3325
5499
7723

0000
5892
8489
9526
1188
6227
8107
1187
0957
4328

9999
1875
1875
1534
0005
1835
8003
1835
1836
1483

0000
1836
1535
1538
8002
0000
0000
1500
0000
8002

0002
1594
1544
0001
8002
0001
1805
1550
8002
1805

8234
0516
3771
8038
3589
0938
0839
4300
2586
7220

0000
5410
3190
2310
6430
7660
1700
2330
3440
2340

9990
1575
8001
1527
1487
1542
1481
1540
1478
1532

1572
1541
1489
1843
1491
1491
1491
1565
1598
1547

1549
1599
9005
8001
1843
1451
1893
1557
1458
1559

A

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599

0

52
60

10
16
20
84
46
19
67

10
15
60
21
30
69
64
09
64
65

19
60
60
02
60
30
46
69

15

35

30
30
22
11
11
01
21

19

30

~10

11
16
00
70

16

15
20
30

D

4900
8003
8001
1456
1463
1861
1500
1561
1861
8003

1936
1567
8003
1867
0001
1568
8002
3900
0000
8003

1573
8002
8002
8652
8002
0001
1584
1530
1744

"1582

0002
0001
0000
1836
1593
1893
0000
1893
1861
0002

1593
8002
8002
0000
6171
1867
8002
1510
1893
0005

0000
1558
1496
1470
1467
1564
1577
1525
1563
1457

1591
1523
1570
1521
1571
1522
1555
0000
1560
1576

1551
1579
1581
9655
1533
1531
1590
1583
1548
1588

1587
1537
0000
1543
1974
1589
0000
1596
1562
1595

1974
1597
1552
0052
1728
1574
1556
1566
1569
1585

45

46

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

1610
1611
1612
1613
1614

1615

1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

0

61
36
60
11
60
44
20
11
10
10

60
24
60
30
66
17
11
35
35
00

11
35
21
15
71
44
69
46
46
10

35
30
69
11
60
22
20
44
01
22

23
35
00
69
22
46

&4
30
00

8001
0000
8002
8003
8003
1609
1861
1861
1861
1613

8001
1615
1615
0002
0000
0000
1619
0004
0001
0000

8003
0002
1876
1876
1877
1629
1729
1634
1631
1633

0003
0002
1687
8003
1687
1897
0000
1643
0000
1895

1893
0002
0000
1615
1897
1848
1649
1601
0002
0001

1608
1622
1761
1611
1761
1610
1867
1616
1666
8003

8001
1618
8001
1672
1923
1735
1623
1732
1625
0010

1728
1777
1632
1631
1824
1630
1783
1631
1634
8003

1839
1637
1640
1694
1843
1617
1612
1843
1612
1648

1746
1747
0050
1638
1750
1849
1603
1602
1605
0000

A

1650
1651
1652
15653
1654
1655
1656
1657
1658
1659

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669

1670
1671
1672
1673
1674
1675
1676
1677
1678
1679

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

FLAIR (Con't.)

0

65
15
65
15
35
30
65
11
10
35

35
35

22

22
35
10
35
15
15

16
20
69
69
00
69
11
16
00
00

00
00
69
35
68
20
16
00
18
35

15
17
00
22
22
30

69
69
69

D

0000
1708
0000
1656
0003
0004
0000
1861
1861
0002

0002
0002
1867
1867
1867
0002
1619
0002
1721
1723

8001
1875
1780
1615
0000
1778
8003
1834
0000
0000

0000
0000
1636
0004
8003
1890
1692
0000
1642
0002

1893

1744
0008
1897
1897
0001
0001
1650
1751
1652

1659
1664
1665
1662
1663
1732
1689
1628
1627
1715

1668
1669
1720
1672
1670
1671
1623
1724
1682
1682

1827
1779
1783
1787
1612
1781
1786
8002
1792
1643

1643
1643
1740
1644
1691
1897
1755
0000
1798
1745

1647
1799
0000
1752
1655
1651
1653
1654
1654
1707

A

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

0]

69
69
35
35
65
46
20
35
65
46

65

69
69
00
20
22
60
10
17

16
65
67
65
21
35
16
64
30
65

65
21
69
35
46
69
65
60
65
20

22
35
65
45
00
20
46
21
67
60

1753
1704
0003
0001
0000
1738
1867
0003
0000
1762

1869
1714
1865
1766
0000
1869
1870
1890
1836
1878

8001
0000
8003
0000
1878
0002
1879
1881
0002
0000

0000
1836
1636
0004
1737
8000
1885
1890
1893
1893

1843
0004
1805
1792
0000
1899
1749
1853
8003
8001

1707
1707
1812
1810
1621
1710
1870
1716
1667
1763

1873
1719
1768
1770
0050
1722
1626
1796
1631
1833

1877
1725
1782
1667
1685
1731
1734
1602
1635
1641

1689
1739
1790
1693
1742
1891
1855
1795
1718
1748

8002
1801
1760
1612
0051
1754
1600
1706
1606
1607

A

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779

1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799

0

65
66
65

67
46

20
46
60

30
45
69
69
60
65
35

22

11

22
30
19
17
00
24
15
20
65
67

65
22
18
30
30
15
22
01

46

22
35
60
00
65
19
19

17
17

D

8003
0000
8003
0000
8003
1710
0000
1861
1712
1867

0004
1864
1865
1766
1867
8003
0000

1873
1873

1873
0001
1875
1836
0000
1882
1829
1881
0000
8003

0000
1835
1836
0004
0004
1788
1890
0000
0007
1792

1843
0004
1895
0001
8001
1899
1899

1853
1853

1660
1659
1661
1665
1711
1759
0025
1764
1713
1821

1773
1843
1868
1820
1772
1873
1690

1776
1828

1726
1727
1604
1857
0184
1846
1933
1684
1789
1688

1725
8001
1791
1694
1845
1705
1794
1792
0000
1612

1897
1851
8001
0000
1802
1765
1604

1757
1807

A

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

FLAIR (Con't.)

00
69
69
35
22
11
11

D

1756
1805
1805
1856
1837
0000
0008
1861
8003
1612

1614
8002
1815
8001
1867
0000
0003
1881
1881
1873

1873
1774
1612
1885
1880
1883
1881
1730
1832
0007

1835
1836
1835
1836
0000
0000
0000
0000
8003
1895

1793
1844

0000
0000
1898
0001
1853
8002
8002

1967
1758
1809
1811
1806
0000
1850
1814
1816
1813

1620
1819
1818
1871
1771
1769
1874
1624
1784
1826

1686
8003
1792
1841
1823
1863
8003
1683
1858
0000

1888
1743
1840
1741
0000
0000
0000
1825
1645
1648

8003
1847

0000
1775
1852
1808
8001
1657
1658

A

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859

1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

0

69
20
22
00
22
10
00
20
44
30

00
24
69
36
30

00
22

00

00
30
15
00
69
00
00
69
00
00

00
00
00
00
00
00
88

65

00
97
69
00

00
16
00
69
00

D

1892
1805
1856
0000
1892
1880
0000
1861
1612
0004

0000
1884
1885
0000
0000

0000
1873
0000

0000
0004
8001
0000
1837
0000
0000
1780
0000
0008

0000
0000
0000
0000
0000
0000
8080

8001

0000
1892
0000
0000

0000
1649
0000
0000
0000

1854
1709
1859
0000
1736
1646
0000
1717
1832
1872

0000
1837
1817
1838
1690

0000
1785
0000

0000
1831
1830
0000
1804
0000
0000
1733
0000
0000

0000
0000
0000
0000
0000
0000
8000

1896

0000
1646
1862
0000

0000
1803
0000
8002
0000

47

48

1900
1901
1902
1903
1504
1905
1906
1907
1908
1909

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

o

15

10
35

90
90
90
90
91
93
95

99

15
16
15
45
69
69
20
46
20
67

00
00
00
46
10
30
10
00
00
00

00
00
00
00

00
64
15
30
44

FLAIR (Con't.)

D

1856

8001
0001

1999
2999
4999
9999
9999
9999
9999
9999
9999

8001
8002
1744
1977
1427
1428
1861
1580
1835
8002

0000
0000
0000
1738
1899
0001
0000

0040

0030
0025

0020
0013
0010
0007
0006
0005
8001
1936
0002
1947

1

1922

1965
1966

9999
9999
9999
9999
9999
9999
9999
9999
9999

1983
1935
1949
1843
1430
1431
1315
5004
1539
1843

1612
1612
1612
1737
1921
1946
0000
0610
0830
0980

1210
1890
2420
3530
4150
5000
1900
1974
1843
1974

A

1950
1951
1952
1953
1954
1955
1956
1957
1958

1959

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

o]

D

I

24 1856 1968

1964
8001
8002
0000
8001
1978
8002
8003
8002

0001
0006
0003
8001
1893
1979

8001

1980
8002
0026

€002
0001

0004
8003
8001
8001
1744
1893
0001

1899
1899
8001
1899
8002
1899
1900
8001
1805
8003

1969
1920
1971
0000
1973
1970
1976
1934
1996

1978
1985
1992
1981
1948
8002
1986
9000
1989
1998

1987
1988

1993
1991
1972
1994
1999
1997
1995

1305
1963
1800
1984
1950
1961
1975
1908
1962
1907

A SELECTIVE AUTOMONITORING TRACING ROUTINE CALLED SAM

A. R. Mandelin and K. D. Weaver
Chance Vought Aircraft, Incorporated

RESUME

In order to reduce substantially the elapsed time and high cost of
checking out programs, & routine has been developed at Chance Vought Aircraft
which will automatically simulate manual check out procedures on the IBM 650.
This routine, which we call SAM (Selective Automonitoring Routine), uses a
control table furnished by the programmer to auto-interpret specified single
instructions and sequences of instructions of a program executed by the 650.
For each instruction monitored SAM punches out on a card the location of the
instruction, the instruction itself, and other items of information depending
on the instruction, such as the contents of the accumulator and distributor.

SAM has the following features:

a. It will monitor one or more instructions a specified number of
times in accordance with console settings or information in a
prestored table. Thus if a program loops many times, a
sequence of instructions in the loop may be monitored only once,
or twice, or as many times as desired.

b. Between monitored sequences, control is returned to the routine
being checked out, so that the instructions are executed at
normal speed. Execution of the program is slowed only for those
instructions which are monitored.

c. SAM will automatically cease to monitor for closed subroutines
which are entered by a negative load distributor instruction.
The subroutine is executed at normal maechine speed.

There are two versions of SAM, i.e., SAM-I and SAM-II. SAM-I will monitor
routines coded entirely in 650 machine language. SAM-II will monitor routines
coded in both machine langusge and the 2 and 8 interpretive system described in
IBM Technical Newsletter No. 8. SAM-I requires 221 storage locations exclusive
of the control table and SAM-II requires 291.

SAM CONTROL TABLES

A SAM control table is a series of words prestored sequentially in memory.

650 Word
I 1
Location Op DA E&
‘ Tl Nl Fl Ll
'I‘2 N2 F L2
Tn Nn Fn Ln

T
n+l 49

50

Each word in the table specifies a sequence of instructions to be monitored.
The location of each first instruction is an F and that of each last v
ingtruction an L. If only one instruction is to be monitored then L = F.
The number of times the sequence is to be monitored is specified by N. The
specified ranges must be in operational sequence and & sequence to be
monitored N times must be monitored N times before the next specified

seguence can be monitored.

table cards which have one entry per card. As the routine is checked out on

successive runs, cards may be removed from or added to the control table deck.
If a sequence is to be monitored first six times and then only once, two cards

with N =5and N =1 may be used, or an N = 6 card may be replaced with

an N = 1 card.

Monitoring may also be controlled from the 650 console either

without a loaded control table or in conjunction with a control table.

PRINCIPLE OF OPERATION

To check out a coded program,the routine to be checked, the 2 and 8
interpretive routine if required, the control table, and SAM are loaded into

memory.

The machine is instructed to begin in SAM and the following occurs:

The instruction at location F, is temporarily removed and
a SAM instruction is put in it§ place.

The address Ll is planted in SAM.

Control is then passed to the location of the first instruction
of the routine being checked. If this instruction is not at
location Fl itself, execution of the routine begins at

normal machine speed and proceeds without monitoring.

The first time the program being checked reaches the location

Fl SAM is re-entered and the original instruction at Fl is

replaced.
Monitoring is then started at location F,.
Monitoring ceases when location Ll is reached.

After the execution of the instruction at L1 arrangements

are made for monitoring the next sequence in the same manner
as in (a) and (b) above.

Control is returned to the instruction in the routine which
follows Ll'

The routine is executed at normal machine speed without
monitoring until the end of the program or until an instruction

at location F2 is reached.

The control table is loaded from a deck of control

The restrictions to be cbserved in the use of SAM are for the most part
obvious consequences of the principles of its operation. Once monitoring
begins with an instruction located at F it will continue until L is
reached. Thus there must not be a branch out of the sequence. There should
be no load card instruction although there may be normal non-branch read
card instructions. Also between the execution of an instruction at

Li and the arrival at Fi+l there must be no modification of the instruction

located at Fi+ Monitored sequences must be separated by at least one

1
unmonitored instruction. F and L instructions may not be interpretive
instructions. On instructions having the operation code 14 (i.e., divide
with remainder) the accumulator will be reset on the following two operations
with the results of the division. No arithmetic operation should occur for

two instructions and no reset operation for one.

FORMAT OF RESULTS

For each instruction monitored, SAM-I punches out eight 10-digit words
with sign over the units position as indicated on Slide 1.

Word 1. Address of instruction monitored. This is in the DA
position for the first instruction of a monitored
sequence or for a branch instruction. Otherwise, it
is in the IA position. Other positions are zeros.

Word 2. The instruction itself.

Word 3. Contents of upper accumulator after execution of the
instruction.

Word 4. Contents of lower accumulator (after).
Word 5. Contents of distributor (after).

Word 6. Zero.

Word 7. Zero.

Word 8. Identification word. This word contains the routine
number, the table entry count number, loop count number,
and card count number.

For each interpretive instruction monitored, SAM-II punches out on a card

eight 10-digit words with sign over the units position as follows:
Word 1. Address of the interpretive instruction monitored. This
will be in the DA position. Other positions zeros.

Word 2. The instruction itself or the first word of a two-word
instruction.

Word 3. Zero or the second word of a two word instruction.

Word 4. Contents of A address before execution of the interpretive
instruction.

51

52

Word 5. Contents of B address before execution or zero if no B
address.

Word 6. Contents of the C address after execution of the
instruction (for two-word interpretive instructions only.)

Word 7. Contents of the floating point accumulator K after
execution of an interpretive instruction.

Word 8. Identification word. This word contains the routine
number, the table entry count number, loop count number
and card count number.

For machine language instructions, SAM-II will monitor in the same manner as’
SAM-TI.

SUBROUTINES

SAM will not slow down the check out of a routine with unnecessary
monitoring of previously checked out subroutines. This is avoided by
specifying that entry to a subroutine must be made by using a negative load
distributor instruction, i.e., (-69 NI SR) where SR is the entry location of
the subroutine and NI is the location of the next instruction in the main
routine. Entry to the subroutine must be made from machine language and the
negative load distributor instruction must not immediately follow a (negative)
interpretive instruction.

OPERATIONAL EXPERIENCE

By monitoring single instructions a programmer can rapidly determine and
narrow down regions of error. Having determined these, he can then examine
his coding to find his mistakes. If he cannot locate the source of trouble,
he can have SAM trace all instructions within the suspected region of error.
With the proper preparation of the control tables the amount of check out
time on the 650 for each check out run should usually be no more than 10
minutes. The experience with the 650 at Chance Vought during the first month
of operation (650 was installed May 27) showed that the check out period
varied between 5 and 20 minutes with a 10 minute average. As the programmers
have had to consider and plan their work more thoroughly than they would have
had to using comsole monitoring, and as the information furnished by SAM was
better both in quantity and quality, the total elapsed time on check out has
been reduced to approximately 25% of the time that would have been necessary
using manual methods. At CVA we have planned our control panels so that in
no case is it necessary for us to change our control panel in a check out of
8 problem in order to be able to use SAM.

EXAMPLE 1

Slide 3 illustrates a simple hypothetical problem with its check points
and control table for the first check out run. Rl is the location of the
17 F2, and F5

the routine is run unmonitored. At Fl a single

first instruction of the routine, and F
tions. From Rl to Fl

card is punched out with all needed information. From this point, the rou-

key check point loca-

tine is run unmonitored until F2 is reached. At F2 the instruction is

monitored. From F2 the routine proceeds unmonitored to point b where it

branches to point a along path 1 and continues unmonitored to point F2.

The instruction at F, 1s monitored again. The above process is repeated,

2
going to point b to point a via path 2, and continuing until location
F2 is again reached. The third F2 value is punched and the routine now

proceeds unmonitored to point F,. F, 1is monitored and the routine continues

) 3

unmonitored to out.

The control table starts at location 1901,i (the i represents the regional
SAM translation tag) and ends at 1904,i. The operation part of the first
word is 0l, the data address Fl and the instruction address Ll = Fl' The
next two table values are fashioned in the same way except that the operation
part of 1902,1 is 03 in order to get the three check point values located at
F2. The last word in the table, which is all zeros, is a tag for SAM to indi-

cate that no further monitoring is required after F5'

EXAMPLE 2

Slide b4 illustrates a problem wherein it is desired to monitor completely
all instructions in the 15th loop. It should be noted immediately,that in our
illustration, the instructions in the loops 1 through 15 are all the same, but
are shown separate for purposes of illustration. The program starts at Rl.
Then it proceeds through point a +to point b where it branches around a loop
ending at b <fifteen times. After this, it proceeds through a series of in-
structions to out. The fourteen loops preceding the fifteenth are counted off
by taking a single instruction within the loop and monitoring it fourteen times.
This is done by the first word in our control table which has 14 in the opera-

tion part and F. equal to Ll' The fifteenth loop, which is to be monitored

1
completely, is then set up in the control table as the second word with Ol as

the operation part.

53

54

SAM-II LISTING

A listing of the instructions in the SAM-II routine is furnished. The
routine is in absolute address form with regional tags to facilitate its
translation or modification. Entry is at 1600 for control table operation
and 1653 for console operation. For console operation set the storage entry
switches to N F L . For control table operations the storage entry

switches must be set ' to 69 R 1600 where R is the location of the first

- e -

instruction of the routine being checked.

S8AM RESULT FORM

WORD 1L | WORD 2 | WORD 3 | WORD 4 | WORD 5 | WORD 6 | WORD 7 | WORD 8
8AM I or SAM II Result Result |Result
Machine Language |[Location |Instruc- [in Upper {in Lower |in Dis- Zero Identi-
Instruction tion Accum. Accum. tributor fication
SAM II Zero or C Zero or | Zero or|Value in
Interpretive Location (Instruc- [Instruc- |A Result B K Identi-
Instruction tion tion Result Result |Register|fication
SLIDE 1
SAM CONTROL TABLE
LoC. OP DA NI
Ty Nl Fl L1
T2 No Fa Ly
T N F L
n n n n
n+l 00 0000 0000
55

SLIDE 2

SAM SAMPLE WITH TABLE CONTROL
For First Check Out Run

IN
Ry
Fl = Ll
a LOC |JopP | D.A.| I.A.
F2 - La 1901,1 01 Fl Ll
2 |1
1902,1103 F2 L2
]] 1903,1|01 FB L5
. 190k4,1i lo0 | 0000| 0000
F, =L
b) 3
OuT
Flow Line
ANAA Group of Monitored Instructions
C—— Group of Unmonitored Instructions SLIDE 3
SAM SAMPLE WITH TABLE CONTROL
Illustrating How to Monitor
The 15th Loop
Ry
a
L2 LoC OP [D.A. | I.A.
. 1901,1 |1k F L,
2 st 1902,1 |01 |F, |L,
1903,1 [|00 | 0000 {0000
b

NOTE: The loops 1-15
are all the same but
are separate here for
purposes of illustration

@

56 SLIDE b

SAM 2 LISTING

LocC ABBR oP DA IA REMARKS

CD NO M

001 0 1600 01 STD 24+ 1603 01 1641 08 T1T2 STORE INST

002 9 1601 01 TEMP + SF FIRST MONITORED INST
003 9 1602 01 TEMP + SL LAST MONITORED INST
004 9 1603 01 TEMP + SM MODIFIED INST OR
005 9 01 TEMP + FIRST UNMONITD INST
006 9 1604 01 TEMP + ST TEMPORARY STORAGEl/2
007 9 1605 01 TEMP + SA NEXT INST ADDRESS
008 9 1606 01 TEMP + SP STORE CONSOLE ENTRY
009 0 1607 01 CONST 00+ 00600 00 0000 00 KO 00 0000 0000 1/2
010 0 1608 01 CONST 65+ 0000 0O 1667 07 K1 65 0000 ¢8/1 1/2
011 0 1609 01 CONST 00+ 0001 OO 0000 00 K2 00 0001 0000 1/2
012 0 1610 01 CONST 00+ 0000 0O 0001 00 K3 00 0000 0001 1/2
013 0 1611 01 CONST 00+ 0000 0O 0004 00 K4 00 0000 0004 1/2
014 0 1612 01 CONST 0O+ 0000 0O 0005 00 K5 00 0000 0005 1/2
015 0 1613 01 CONST 65+ 8001 00 1689 12 K8 65 8001 Al13/1 1/2
016 0 1614 01 CONST 65+ 1631 02 1689 12 K9 65 P5 Al3/1 172
017 0 1615 01 CONST 71+ 1627 02 1777 14 K10 71 Pl B1l8 172
018 0 1616 01 CONST 71+ 1627 02 1793 14 K11 71 Pl B25 1/2
019 0 1617 01 CONST 00+ 1768 14 1765 14 K12 00 Bl4 B13 1/2
020 0 1618 01 CONST 65+ 0000 00 1830 09 K13 65 0000 SB4/2 2
021 0 1619 01 CONST 65+ 1901 06 1646 08 K14 65 T1 T3/2 1/2
022 0 1620 01 CONST 69+ 1765 14 1600 01 K15 69 Bl3 Tl 1/2
023 0 1621 01 CONST Q0+ 0000 00 0069 00 K16 00 0000 0069 172
024 0 1622 01 CONST 69+ 0000 00 1782 14 K17 69 0000 B19/4 1/2
025 0 1623 01 CONST 00+ 00CO 00 1000 00 K27 00 0000 1000 1/2
026 0 1624 01 CONST 69+ 1616 01 1683 12 K28 69 K11 Aé/2 1/2
027 0 1625 01 CONST 69+ 1637 01 1683 12 K29 69 K31 A6/2 1/2
028 0 1626 01 CONST 71+ 1627 02 1779 14 K30 71 Pl B19 1/2
029 0 1637 17 STD 24+ 1635 02 1882 16 T11 STORE RETURN

030 0 1638 17 CONST 01+ 0220 00 1000 00 K6 01 0220 1000 2
031 0 1639 17 CONST 64+ 1680 06 1646 08 K7 64 T1 MINUS 0221 2
033 0 1837 03 CONST 65+ 0026 05 1689 12 K18 65 0026 Al3 2
034 0 1838 03 CONST 68+ 0000 00 1855 15 K19 68 0000 A5/2

035 0 1839 03 CONST 69+ 0000 00 1858 15 K20 69 0000 Q6/3 2
036 0 1840 03 CONST 65+ 0000 00 1864 15 K21 65 0000 Qlo 2
037 0O 1841 03 CONST 65+ 0001 00 1868 15 K22 65 0001 Gl1/4

038 0 1842 03 CONST 60+ 0029 05 0092 05 K23 60 0029 0092 2
039 0 1843 03 CONST 46+ 0025 05 8002 00 K24 46 0025 8002 2
040 0 1844 03 CONST 65+ 0029 05 1872 15 K25 65 0029 Q15 2
041 0 1845 03 CONST 46+ 0025 05 1673 12 K26 46 0025 Al

042 9 1627 02 PUNCH + Pl INST LOCATION

043 9 1628 02 PUNCH + P2 SAM 2 FIRST INST

045 9 1629 02 PUNCH + P3 SAM 2 2ND INST OR O
047 9 1630 02 PUNCH + P4 SAM 2 A FACTOR

049 9 1631 02 PUNCH + P5 SAM 2 B FACTOR OR O
051 0 1632 02 PUNCH 00+ 0000 00 0000 00 PSS SAM 2 C FACTOR OR 0
053 0 1633 02 PUNCH 00O+ 0000 OO 0000 00 P7 SAM 2 CONTENTS OF K
055 9 1634 02 PUNCH + P8 IDENTIFICATION

056 9 1635 02 PUNCH + P9 WASTEBASKET

057 9 1636 02 PUNCH 00+ 0800 00 0000 00 P10 PUNCH CONTROL INFORM
058 9 8000 00 CONSL 69+ R1 1600 01 T3T1l TABLE ENTRY

059 9 1640 08 TEMP + SN LOOP COUNT

060 0 1641 08 RAL 65+ 1645 08 1642 08 T2 FORM AND STORE

061 0 1642 08 SL 16+ 1639 17 1643 08 T2 IDENTIFICATION
062 0 1643 08 AL 15+ 1623 01 1644 08 T2 IN P8

57

CD NO

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
088
089
090
091
292
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

58

COO0O0O0CO0OOHWMOOOOONONOOO0OOOOOHOODOOOWMOO0ODOOO0LDOO0ODIDINODVOOOODDOOOOO K4

LOC

1644
1645
1646
1647
1648
1649
1650
1651
1652
8000
1653
1654
1655
1656
1657

1658

1659
1660
1661
1662
1663
1664
1665
1666
8001
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
8002
1688
1689
1690
1691
1692
1693
1694
1695

08
08
08
08
08
08
08
08
08
00
07
07
07
07
07
07
07
07
07
07
07
07
07
07
00
Q7

07
07
07
07
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
00
12
12
12
12
12
12
12
12

ABBR

STL
RAL
STL
BRNZ
LD
STD
LD
SRT
STU
CONSL
STD
STL
STU
LD
STD
LD
STD
RAL
STL
LD
SRT
STU
RAL
LD
RAL
BRNZ
STD
STL
STU
LD
STD
RAL
SL
BRNZ
RSABL
AL
STL
BRMIN
LD
STD
LD
STD
RAL
SL
BRMIN
SL
RAL
RAL
STL
SRT
AL
BRNZ
RAL
LD
STIA

opP

20+
65+
20+
45+
69+
24+
69—~
30+
21+
NI+
24+
20+
21+
69+
24+
69+

24+

65+
20+
69~
30+
21+
65+
69+
65+
45+
24+
20+
21+
69+
24+
65+
l6+
45+
68+
15+
20+
46+
69+
24+
69+
244+
65+
16+
46+
16+
65+
65+
20+
30+
15+
45+
65+
69+
23+

DA

1634
1901
1606
1650
1619
1645
1651
0002
1640
FI
1631
1630
1629
1638
1634
1625
1682
8C00
1606
1663
0007
1640
1645
1608
0000
1671
1631
1630
1629
1601
0000
1688
1602
1886
1640
1610
1640
1680
1626
1776
1616
1776
1688
1613
1688
1614
0000
0000
1628
0008
1621
1693
1617
1628
1603

02
06
01
08
01
08
o8

08

02
02
02
17
02
01
12
00
01
07
00
08

01
00
07
02
02
02
01
00
12
01
16
08
01
08
12
01
14
01
14
12
01
12
01
00
00
02
oo
01
12
01
02
01

SAM 2 LISTING

IA

1645
1646
1647
1648
1649
1878
1803
1652
1821
LI
1654
1655
1656
1657
1658
1659
1660
1661
1662
1803
1664
1665
1666
1781
1667
1764
1669
1670
1671
1672
1764
1674
1675
1676
1677
1678
1679
1682
1681
1886

1683

1886
1685
1686
1687
8002
1689
1689
1690
1691
1692
1711
1694
1695
1696

08
08
08
08
08
16
10

09

07
07
07
07
07
07
07
07
07
10
07
07
07
14
07
13
07
07
07
07
13
12
12
12
12
12
12
12
12
16
12
16
12
12
12
00
12
12
12
12
12
12
12

12

12

REMARKS

T2T3

T3 STORE TABLE ENTRY
T3T4

T4T9T5 END OF TABLE TEST
T9 RESET TI 7O T1
T9T8

T55A GO TO SUBROUTINE
T6 STORE N FOR

T6T7 LOOP COUNT

COCl1 CONSOLE ENTRY

Cl STORE PREVIOUS
C1 RESULTS

cicCz2

c2 SET IDENT

C2C3 IN P8

C3 SET OUT PUT
C3C4 CONNECTOR

C4 STORE CONSOLE
C4C5 IN SP

C55A GO TO SUBROUTINE
Cé6 STORE LOOP COUNT

c6C? IN SN
c7

Cc7

c7Cs8
C8T10/4T710/6

T10 STORE PREVIOUS
T10 RESULTS

T10

T10 RESTORE F INST
Ti0T11

Al TEST FOR LAST
AlAZ2 INSTRUCTION
A2ATA3

A3

A3

A3A4 CHECK LOOP COUNT

A4A5A6

A5 SET PUNCH CONN
AS5AT FOR LOOPING
A6 SET OUTPUT CONN

A6AT
A9 TEST FOR 8001
A9A10 INST

Al10A12A11

All

A11A13 STORE 8001 INST
A12A13 STORE INSTRUCTION
Al13Al4 IN P2

Al4

Al4A15 TEST FOR SUB
A15A16A24 ROUTINE ENTRY
Al6

Alé6 STORE MODIFIED
Al16A17 INST IN SM

SAM 2 LISTING

CD NO M LOC ABBR opP DA IA REMARKS

119 0 1696 12 RAABL 67+ 1628 02 1697 12 Al17

120 0 1697 12 LD 69+ 8003 00 1698 12 Al7 STORE NEXT INST
121 0 1698 12 STIA 23+ 1605 01 1699 12 A17A18 ADDRESS IN SA
122 0 1699 12 SLT 35+ 0004 00 1700 12 Al8

123 0 1700 12 LD 69+ 1688 12 1701 12 A1l8 STORE NEXT INST
124 0 1701 12 STDA 22+ 1688 12 1702 12 A18A1l9 ADDRESS IN Al2
125 0 1702 12 SRT 30+ 0003 00 1703 12 Al9

126 0 1703 12 sL 16+ 8002 00 1704 12 Al9 CHECK FOR BRANCH
127 0 1704 12 sSU 11+ 1611 01 1705 12 A19A20 INST

128 0 1705 12 BRNZU 44+ 1706 12 = 1708 12 A20A21A23

129 0 1706 12 SV 11+ 1612 01 1707 12 A21A22 CHECK FOR BRANCH
130 0 1707 12 BRNZU 44+ 1719 13 1708 12 A22B1AZ23 INST

131 0 1708 12 RAL 65+ 1617 01 1709 12 A23 MODIFY DATA ADD
132 0 1709 12 LD 69+ 1603 01 1710 12 A23 OF CURRENT INST
133 0 1710 12 STDA 22+ 1603 01 1878 16 A23T78 IF BRANCH INST
134 0 1711 12 RAL 65+ 1628 02 1712 12 A24 STORE SUBROUTINE
135 0 1712 12 LD 69+ 1688 12 1713 12 A24 RETURN

136 0 1713 12 STDA 22+ 1688 12 1714 12 A24A25

137 0 1714 12 LD 69+ 8003 00 1715 12 A25

138 0 1715 12 SRT 30+ 0004 00 1716 12 A25 STORE RETURN

139 0 1716 12 STIA 23+ 1605 01 1717 12 A25A26 LOCATION IN SA
140 0 1717 12 RAL 65+ 1620 01 1718 12 A26

141 0 1718 12 LD 69+ 1628 02 1710 12 A26A23/3 CHANGE RETURN
142 0 1719 13 RAABL 67+ 1628 02 1720 13 81

143 0 1720 13 SLT 35+ 0002 00 1721 13 Bl

144 0 1721 13 sSL 16+ 8002 0O 1722 13 Bl

145 0 1722 13 sU 11+ 1755 13 1723 13 B1B2 TEST FOR DIV INST
146 7 1723 13 BRNZ 45+ 1724 13 1729 13 B2B4ORB6B3

147 0 1724 13 RAU 60+ 1757 13 1725 13 B4

148 0 1725 13 SLT 35+ 0001 00 1726 13 B4

149 0 1726 13 AU 10+ 1629 02 1727 13 B4 RESTORE PREVIOUS
150 0 1727 13 AL 15+ 1630 02 1728 13 B4BS RESULTS

151 0 1728 13 LD 69+ 1631 02 1603 01 B5SM

152 0 1729 13 RAABL 67+ 1628 02 1730 13 B3

153 0 1730 13 LD 69+ 1756 13 1731 13 B3 STORE PREVIOQUS
154 0 1731 13 STDA 22+ 1603 01 1732 13 B3 ACC RESULTS
155 0 1732 13 RAL 65+ 1629 02 1733 13 B3 TEMPORARILY
156 0 1733 13 STL 20+ 1760 13 1734 13 B3 AND STORE MOD
157 0 1734 13 RAL 65+ 1630 02 1735 13 B3 INST IN SM

158 0 1735 13 STL 20+ 1761 13 1724 13 B3B4

159 0 1736 13 RAL 65+ 1737 13 1738 13 B6 TEST FOR NO OF
160 0 1737 13 CONST ©0CO+ 0000 0O 0001 00 B6B7 DIVISIONS

161 0 1738 13 BRMIN 46+ 1745 13 1739 13 B7B1188

162 0 1739 13 SL 16+ 1610 01 1740 13 B8BY REDUCT COUNT

163 0 1740 13 STL 20+ 1737 13 1742 13 B9B1O BY ONE

164 0 1741 13 STD 21+ 1632 02 1848 15 Bl6l SET P6 TO ZERO
165 0 1742 13 RAU 60+ 1760 13 1743 13 B10O RESTORE ACC

166 0 1743 13 AL 15+ 1761 13 1744 13 810 AND DIVIDE

167 0 1744 13 DIV 14+ 1762 13 1728 13 B10B5

168 0 1745 13 RAL 65+ 1759 13 1746 13 B11 SET CONNECTOR
169 0 1746 13 STL 204 1723 13 1724 13 B11B4

170 0 1747 13 STD 24+ 1762 13 1748 13 B1l2 STORE RESULTS
171 0 1748 13 STD 24+ 1631 02 1749 13 B12 TEMPORARILY
172 0 1749 13 STU 21+ 1629 02 1750 13 B12 AND FOR PUNCH
173 0 1750 13 STL 20+ 1630 02 1751 13 B12

59

SAM 2 LISTING

CD NO M LOC ABBR opP DA IA REMARKS

174 0 1751 13 LD 69+ 1610 01 1752 13 B12

175 0 1752 13 STD 244 1737 13 1753 13 B812

176 0 1753 13 LD 69+ 1758 13 1754 13 B12 SET CONNECTOR
177 0 1754 13 sSTD 24+ 1723 13 1792 14 B12B13/4

178 0 1755 13 CONST 00+ 0CO0 00 0014 00 K32 00 0000 0014
179 0 1756 13 CONST 14+ 0000 00 1747 13 K33 14 0000 B12/1
189 0 1757 13 CONST 10~ 0000 00 C000 00 K34 10 0000 0000 NEG
181 0 1758 13 CONST 45+ 1736 13 1729 13 K35 45 B6 B3

182 0 1759 13 CONST 45+ 1724 13 1729 13 K36 45 B4 B3

183 9 1760 13 TEMP + S1 CONTENTS P3

184 9 1761 13 TEMP + S2 CONTENTS P4

185 9 1762 13 TEMP + ' $3 DIST AFTER DIVISION
186 0 1763 13 CONST 00+ 1607 01 0000 00 K37 00 L/0/ 0000

187 0 1764 13 LD 69+ 1673 12 1637 17 T10T11

las 0 1765 14 STD 24+ 1631 02 1766 14 B13 STORE RESULTS
189 0 1766 14 STL 20+ 1630 02 1767 14 B13

190 0 1767 14 STU 21+ 1629 02 1792 14 B13B16

191 0 1768 14 RAL 65+ 1628 02 1769 14 Bl4 STORE NEXT INST
192 0 1769 14 LD 69+ 8003 00 1770 14 B1l4 LOC OF BRANCH
193 0 1770 14 STDA 22+ 1605 01 1771 14 B14B15 INST

194 0 1771 14 LD 69+ 1688 12 1772 14 B15 SET UP NEXT INST
195 0 1772 14 STDA 22+ 1688 12 1792 14 B15B13/4 ADDRESS

196 0 1773 14 RAL 65+ 1634 02 1774 14 B1lé6 INCREASE CARD
197 0 1774 14 AL 15+ 1610 01 1775 14 B1l6 COUNT BY 1

198 0 1775 14 STL 20+ 1634 02 1741 13 B1léBlél 2
199 7 1776 14 PCH 71+ 1627 02 1777 14 B17818/B19/B25/B28

200 0 1777 14 LD 69+ 1605 01 1778 14 B18 STORE INST LOC
201 0 1778 14 STD 24+ 1627 02 1673 12 B18Al IN P1

202 0 1779 14 RAL 65+ 1688 12 1780 14 B19 STORE FIRST

203 0 1780 14 LD 69+ 1622 01 1781 14 B19 UNMONITORED
204 0 1781 14 STDA 22+ 1635 02 8001 00 B19 INST IN SM

205 8 8001 00 LD 69+ 0000 0O 1782 14 B19

206 0 1782 14 STD 24+ 1603 01 1783 14 B19B20

207 0 1783 14 RAL 65+ 1634 02 1784 14 B20 RESET CARD CT TO
208 0 1784 14 SRT 30+ 0003 00 1785 14 B820 ZERO

209 0 1785 14 SLT 35+ 0003 00 1786 14 B20

210 0 1786 14 AL 15+ 1623 01 1787 14 B20 INCREASE LOOP CT
211 C 1787 14 STL 20+ 1634 02 1788 14 B20B21 BY ONE

212 0 1788 14 LD 69+ 1615 01 1789 14 B21 SET CONNECTOR
213 0 1789 14 STD 24+ 1776 14 1790 14 B21B22 TO B18

214 0 1790 14 RAL 65+ 1606 01 1791 14 B22

215 0 1791 14 LD 69~ 1821 09 1803 10 B22B23 SET RETURN ADD
216 0 1792 14 LD 69+ 1773 14 1637 17 B13T11

217 0 1793 14 RAL 65+ 1645 08 1794 14 B25 INCREASE TABLE
218 0 1794 14 AL 15+ 1609 01 1795 14 B25 INDEX BY ONE
219 0 1795 14 STL 20+ 1645 08 1796 14 B25B26

220 0 1796 14 LD 69+ 1615 01 1797 14 B26 SET CONNECTOR
221 0 1797 14 STD 24+ 1776 14 1798 14 B26B27 TO B18

222 0 1798 14 RAL 65+ 1688 12 1799 14 B27 STORE FIRST

223 0 1799 14 LD 69+ 1620 01 1800 14 B27 UNMONITORED
224 0 1800 14 STDA 22+ 1635 02 8001 00 B27 INST IN SM

226 0 1801 14 LD 69+ 1624 01 1802 14 B28 SET CONNECTOR
227 0 1802 14 STD 24+ 1682 12 1796 14 B28B26 TO B19

228 0 1803 10 STD 24+ 1635 02 1804 10 SAl1SA2 STORE FOR RETURN
229 0 1804 10 LD 694+ 8003 00 1805 10 sA2 STORE LOCATION

60

SAM 2 LISTING

CD NO M LoC ABBR op DA IA REMARKS

230 0 1805 10 STDA 22+ 1627 02 1806 10 SA2SA3 OF F IN P1

231 0O 1806 10 LD 69+ 1688 12 1807 10 SA3 SET upP Al2/1

232 O 1807 10 STDA 22+ 1688 12 1808 10 SA3S5A4

233 0 1808 10 SLT 35+ 0004 00 1809 10 SA4 STORE LOCATION
234 0 1809 10 STDA 22+ 1602 01 1635 02 SA4P9 OF L IN SL

248 0 1821 09 LD 69- 1878 16 1822 09 T7sB1

249 C 1822 09 STD 24+ 1635 02 1823 09 sB1 STORE FOR RETURN
250 0 1823 09 RAL 65+ 1606 01 1824 09 SB1SB2 LOAD Sp

251 ‘0 1824 09 LD 69+ 1832 09 1825 09 SB2 STORE LOCATION
252 0 1825 09 STDA 22+ 1832 09 1826 09 SB2SB3 OF F IN SB5/2
253 0 1826 09 LD 69+ 1672 07 1827 09 SB3 STORE LOCATION
254 0O 1827 09 STDA 22+ 1672 07 1828 09 SB3SB4 OF F IN T10/5
255 0 1828 09 LD 69+ 1618 01 1829 09 SB4 STORE FIRST

256 0 1829 09 STDA 22+ 1618 01 8001 00 SsSB4 MONITORED INST
257 8 8001 00 RAL 65+ L/F/ 1830 09 SB4 IN SF

258 0 1830 09 STL 20+ 1601 01 1831 09 SB4SB5S

259 0 1831 09 LD 69+ 1668 07 1832 09 SB5 REPLACE FIRST
260 1 1832 09 STD 24+ 0000 00 1833 09 SB55B6 INST

261 0 1833 09 SL le+ 1603 01 1834 09 sB6SB7? TEST FOR F EQUAL
262 0 1834 09 BRNZ 45+ 1635 02 1835 09 sB7P9SB8 TO R

263 0 1835 09 LD 69+ 1671 07 1836 09 sBs8 REPLACE INST
264 0 1836 09 STD 24+ 1603 01 1635 02 sB8P9 IN SM

265 0 1846 15 RAL 65+ 0029 05 1847 15 G1 COMPUTE INST LOC
266 0 1847 15 AL 15+ 1609 01 1849 15 G1G2

267 0 1848 15 STU = 21+ 1633 02 1776 14 B161IB17 SET P7 TO ZERO
268 0 1849 15 STU 21+ 1629 02 1850 15 G2G3 SET P3 TO ZERO
269 0 1850 15 STDA 22+ 1627 02 1851 15 G3G4 STORE LOC IN P1
270 0 1851 15 RAABL 67+ 8001 00 1852 15 G4 STORE LOC IN

271 0 1852 15 LD 69+ 1688 12 1853 15 G4 PROGRAM

272 0 1853 15 STDA 22+ 1688 12 1854 15 G4G5

273 0 1854 15 AL 15+ 1838 03 8002 00 G5 STORE INST IN P2
274 8 8002 00 RAL 65+ 0000 00 1855 15 G5

275 0 1855 15 STL 20+ 1628 02 1856 15 G5Gé6

276 0 1856 15 LD 69+ 1839 03 1857 15 Gé6 STORE FACTOR A
277 0 1857 15 STDA 22+ 1635 02 8001 00 Geé FOR PUNCHING
278 8 8001 N0 LD 69+ 0000 00 1858 15 Gé6

279 0 1858 15 STD 24+ 1630 02 1859 15 G6G7

280 0 1859 15 SLT. 35+ 0006 00 1860 15 G7

281 0 1860 15 sSu 11+ 8003 00 1861 15 G7G8 TEST FOR B ADD
282 O 1861 15 BRNZ 45+ 1862 15 1864 15 G8G9G10

283 0 1862 15 SRT 30+ 0002 00 1863 15 G9 IF B FACTOR STORE
284 0 1863 15 SL 16+ 1840 03 8002 00 G9 IN P5 / IF NOT
285 8 8002 00 RAL 65+ 0000 00 1864 15 G9G10 STORE ZERO

286 0 1864 15 STL 20+ 1631 02 1865 15 G10G1l1 STORE ZERO

287 0 1865 15 RAL 65+ 1627 02 1866 15 Gl1 LOAD NEXT INST
288 0 1866 15 AL 15+ 1841 03 8002 00 G11 AND STORE IN Pe
289 8 8002 00 RAL 65+ 0C00 00 1868 15 G11

290 0 1867 15 RAL 65+ 1763 13 1889 16 G613/2G13/3

291 0 1868 15 SLT 35+ 0002 00 1869 15 G11G12 TEST FOR SECOND
292 0 1869 15 BRNZU 44+ 1867 15 1870 15 G12G13/2G13/1 INST

293 0 1870 15 SRT 30+ 0002 00 1871 15 G13 STORE NEXT INST
294 0 1871 15 STL 20+ 1629 02 1889 16 G13/1

295 0 1872 15 LD 69+ 0057 05 1873 15 G15 STORE K IN P7 FOR
296 0 1873 15 STD 24+ 1633 02 1891 16 Gl1l5G15/1

297 0 1874 15 RAL 65+ 1634 02 1875 15 G16 INCREASE CD

61

SAM 2 LISTING

CD NO M LOC ABBR oP DA IA REMARKS

298 0 1875 15 AL 15+ 1610 01 1876 15 G166 CT BY ONE

299 0 1876 15 STL 20+ 1634 02 1877 15 Gl6G1l7

300 0 1877 15 PCH 71+ 1627 02 1846 15 G17Gl PUNCH RESULTS
301 0 1878 16 LD 69+ 1842 03 1879 16 T8 RESTORE INTERP
302 0 1879 16 STD 24+ 0026 05 1880 16 T8 INST

303 0 1880 16 LD 69+ 1843 03 1881 16 T8

304 0 1881 16 STD 24+ 0439 05 1895 16 T8

305 0 1882 16 LD 69+ 1844 03 1883 16 T11 SET INT ROUTINE
306 0 1883 16 STD 24+ 0026 05 1884 16 T11 FOR MONITORING
307 0 1884 16 LD 69+ 1845 03 1885 16 T11

308 0 1885 16 STD 24+ 0439 05 1893 16 T11

309 0O 1886 16 RAL 65+ 1688 12 1887 16 A7 CHECK FOR INT
310 0 1887 16 SL 16+ 1837 03 1888 16 A7A8 ROUT INE

311 0 1888 16 BRNZ 45+ 1684 12 1846 15 ABA9G1

312 0 1889 16 LD 69+ 1891 16 1890 16 G13/3

313 0 1890 16 STDA 22+ 1891 16 1842 03 G13/3K23

314 1 1891 16 LD 69+ 0000 00 1892 16 G15/1 STORE C OR ZERO
315 0 1892 16 STD 24+ 1632 02 1874 15 G15/1Gl6 IN Pé6

317 0 1893 16 LD 69+ 1898 16 1894 16 T11

318 0 1894 16 STD 24+ 0426 05 1635 02 T11Al

319 0 1895 16 LD 69+ 1897 16 1896 16 T8

320 0 1896 16 STD 24+ 0426 05 1719 13 T8B1

321 O 1897 16 CONST 22+ 0029 05 8001 00 K37 NORMAL BR EXIT
322 0 1898 16 CONST 22+ 0029 05 1899 16 K38 MOD BR EXIT

323 0 1899 16 RAL 65+ 0029 05 1810 11 G19 I MINUS ONE

324 0 1810 11 sL lé+ 1609 01 1811 11 G19

325 0 1811 11 STL 20+ 0029 05 1872 15 G19G15

M CODE - INDICATES THAT THE OPERATION CODE - DATA ADDRESS OR
INSTRUCTION ADDRESS OR ANY COMBINATION OF THESE 1S
TO BE MODIFIED

DA IS TO BE MODIFIED

IA IS TO BE MODIFIED

OP IS TO BE MODIFIED

DA - IA ARE TO BE MODIFIED

DA - OP ARE TO BE MODIFIED

IA - OP ARE TO BE MODIFIED

DA-~IA-OP ARE TO BE MODIFIED

8000 INSTRUCTION NOT ENTERED INTO 650
CODING IDENTIFICATION NOT ENTERED INTO 650

VOO ~NOWM PN

NOTE - CARDS APPARENTLY MISSING IN ABOVE ROUTINE WERE NOT
NEEDED IN SAM 2 BUT ARE USED IN SAM 1

62

THE MIT INSTRUMENTATION LABORATORY AUTOMATIC
CODING 650 PROGRAM

R. H. Battin, R. J. O’Keefe, and M. E. Petrick
Massachusetts Institute of Technology

I. Introduction

At the MIT Instrumentation Laboratory we are faced with a
situation which is undoubtedly not unique in the computing business.
From our many fields of activity come a wide variety of scientific
problems requiring machine computation; at the same time, our
staff of programmers is quite small indeed. Therefore, it is
necessary for the various engineers, with whom these problems
originate, to prepare their own programs for the machine. We have
always felt that many advantages might accrue from such an arrangement
if the problem of coding and mistake diagnosis could be considerably
simplified. Having then, as our prime objective, that of making
programming as natural and inartificial as possible, we have developed
a mnemonic general purpose floating decimal interpretive routine for
the IBM Type 650.

This routine consists of many arithmetical, functional and
logical operations and occupies approximately 1500 storage locations.
Approximately 350 of these storage registers are required by the
"read-in''routine which is used to translate the programmers program.
and enter it on the drum. This portion of the interpretive routine may
be used by the programmer to store data. Therefore, the programmer
has roughly 850 storage locations in which to store both his program and
data. These were chosen within the first one thousand drum storage locations
so that a three digit address is sufficient to specify the location of the
programmer's data.

Among the outstanding features of this routine is the mnemonic
coding system used in preparing programs. The ease with which pro-
gramming is accomplished may be illustrated by means of a few
examples.

1. To add the contents of storage locations 20l and 202 we write:
P201 A P202.

We use P for plus and M for minus to affect sign control on the factors
used in the various arithmetical and functional operations. Thus, if
we wished to subtract the contents of storage location 202 from the
contents of 201, we would write:

P201 A M202 .

63

64

2. The result of each computation is automatically stored in
location 000. To multiply the previously computed quantity by the
negative of the contents of storage location 201 and store the result

in register 203 we write:
M201 X P000 S 203.

3. To compute the sine of the quantity in storage location 202
and store the result in register 204 we write: :

SIN P202 S 204.

In all there are provided twenty-five possible arithmetical
operations and seven functional operations which are discussed in

‘more detail below. In addition to these there are sixteen so-called

"logical" operations which are used to control data input and output,
to facilitate conditional branching and cycling, to enable the programmer
to modify his own interpretive instructions and to facilitate checking
procedures. In general, the programmer will write his entire program
in this symbolic form. If he wishes to incorporate any normal non-
interpreted basic 650 instructions with his program, he writes, for
example:

BR650 250 .

The next instruction will be taken from register 0250 and it and
subsequent instructions are not interpreted. This mode of operation
continues until control is transferred back to the interpretive routine
by means of an appropriate instruction address.

II. The Read-In Program

The programmer prepares a program for the 650, using this
symbolic notation, on the form shown on page 12 . At the bottom
of this form is a summary of the various arithmetical operations
and the "correct' spelling of functional and logical mnemonic codes.
Each instruction is punched on a separate card. The last instruction
of every program must be FINIS. This must not only be the last
instruction executed but must also be physically located at the end
of the program deck. After the card containing the FINIS instruction
are placed cards containing the floating decimal data and basic 650
non-interpreted instructions, if any. These are punched six to a card
and are read into the machine under the control of the programmer!'s
program.

During the read-in phase each program card is read and con-
verted into a single ten-digit instruction, Since no alphabetical device
is employed, appropriate selector wiring is used to convert alphabetic
characters into numeric codes. A single instruction is dissected into
ten parts and enters the machine as ten separate words. The division
is as follows:

Word 1:
Word 2:
Word 3:
Word 4:
Word 5:
Word 6:
Word 7:
Word 8:
Word 9:

Word 10:

Card number

Entry point number

Sign of first operand
Location of first operand
First operation

Sign of second operand
Location of second operand
Second operation

Sign of third operand

Location of third operand

(cols. 1 - 5)
(cols. 6 - 7)
{col. 8)
(cols. 9 - 11)
(col. 12)
(col. 13)
(cols. 14 - 16)
(col. 17)
(col. 18)
(cols. 19 - 21)

The card number is used only for sequence checking so that
the machine will stop on read-in if the cards are out of normal sequence.
Entry point numbers are assigned by the programmer only to those
instructions which are referred to by the program itself as when

branching or modifying instructions.

When not used, these columns

are left blank and zeros are filled in by means of selector wiring.
The entry point artifice makes it unnecessary for the programmer to
know precisely where each instruction is being stored on the drum.
Thus, instructions may be added or removed from a program deck
without, in general, necessitating any alteration in the remainder of

the program.

The signs of the three operands enter the machine coded as an 8

for plus and a 9 for minus.

The distinction between arithmetical operations

and functional or logical operations is made in the Type 533 by means of

If Word 4 is negative, the numerical portion of the word |
is a unique code representing one of the functional or logical instructions.
The particular instruction is then determined by a table look-up operation.

selector wiring.

The first operation code stored in Word 5 has significance only

for arithmetical instructions.

No Operation: 88

Add: 99

There are four possibilities:

Multiply: 89

Divide : 98

The second operation code stored in Word 8 has significance for

arithmetical and functional operations.

Here, there are five possibilities:

65

66

No Operation: 888 Multiply: 898
Add: 998 Divide : 988
Store: 889

If the instruction calls for a functional operation, the second operation
code can be only No Operation or Store.

After the read-in program has translated each program card and
stored the coded instructions in consecutive locations, the entire program
is then searched to replace entry point numbers, counter numbers, etc.,
by actual drum addresses. When this has been accomplished, the
computer stops and a signal is provided to inform the operator that
computation is ready to begin.

The read-in routine is programmed so that the card reader will
operate at 200 cards per minute. This has been accomplished in part by
doing as much of the translating as possible on the control panel. The
entire selector capacity of a standard Type 650 is utilized for this purpose.

III. Instruction Form and the General Interpretation Routine

The various interpreted instructions are divided into three
catagories and are assembled in the machine by the read-in program.
They appear in storage in the following form:

Class I. Arithmetic (no store)

Instruction code

Sign of Operand A
Location of Operand A
Sign of Operand B
Location of Operand B

Class II. Arithmetic (store) and functional operation

Instruction code
Sign of Operand A
Liocation of Operand A
8 - Arithmetic
9 - Function
Storage Address

= —
8x X XXX p:4 XXX +

Class III. Logical operations

First address
Second address

9x xxx XXX O+

L ‘ 80r9}

Instruction
code

The general interpretation routine selects instructions in
sequence from consecutive storage locations. The sign of the
instruction separates Class I from Classes II and III instructions.
An 8 or 9 in the tenth digit position separates Clags II from Class III
instructions. An 8 or 9 in the fourth digit position of a Class II instruction
distinguishes between arithmetical and functional operations.

This particular catagorical break-down and instruction form was
selected so that the general interpretation routine would be as fast as
possible. Each class of instruction is handled as follows:

Class I: Operands A and B are stored in fixed locations with
appropriate signs and control is transferred to the relevant subroutine.

Class II: Operand A is stored with appropriate sign in a fixed
location and the address location for storing the computed result is inserted
in the data address portion of a certain instruction. Control is then
transferred to the relevant subroutine.

Class III: Controlis transferred immediately to the appropriate
subroutine. '

IV. Description of the Computer Operations

At the bottom of the programming form on page 12 is shown a
camplete list of the possible arithmetic operations. The factors A
and B may be selected from any storage locations with complete
freedom on the control of the algebraic sign. The factor K is the
result of the immediately preceding computation and has the address 000.
The result of each arithmetical and functional computation is always
automatically stored in this location. Sign control for the factor K is
possible only where indicated in the table of arithmetic operations.
For arithmetic computations involving three operands the first operation
indicated is always the first to be performed. Thus

AX B + K = (AX B) + K.

67

68

The various functional operations provided require but little
comment. Complete sign control on the argument is provided. The
only possible second operation is Store. Since the result of the computa-
Zion is also automatically stored in register 000, we need not store it
gain elsewhere if it is to be used only on the immediately following
instruction. In such a case the second operation and corresponding
location may be left blank.

A variety of logical operations are included so that flexibility
and versatility of programming may be achieved in the interpreted
mode of operation. Sample instructions describing these logical
operations follow.

1. Input and Output Control Operations
READ 200

The location specified must be the initial address of any band
of storage. The six floating decimal numbers on the data card are
read into the first six words of storage of the specified band. The
number form as it appears on the data card is as follows:

Mantissa
Exponent + 50

XXXXXXXX XX =

However, in the machine, the exponent and the mantissa are in the
reverse order. The word DATA is punched in columns 77-80 for

all cards containing floating decimal numbers. Cards which contain
basic 650 instructions have the numbers 650 punched in columns 78-380.

A six digit identification is read into the seventh word together
with a 50 exponent emitted from the control panel to form a floating
decimal identification which may be used at the programmer's discretion.
Words 8, 9, and 10 of the read band are left undisturbed by this operation.

PUNCH 200

The location specified must be the initial address of any band
of storage. The form of the output card is the same as that of an input
data card. The first six words of the punch band are punched as data
while the seventh word is punched as a six digit identification. The
eighth word is punched as a five digit card number so that output cards
may be ordered if desired.

2. Counters and Cycling Operations
RSCT 001 050

Ten counters are provided in the computer to facilitate cycling
operations. The instruction, Reset Counter (RSCT) in the example
above, resets counter number one to the value fifty. The cowmter
values are stored in locations 901-910 and may be used, for example,
to identify output cards.

BRCNT 003 005

The Branch and Count (BRCNT) operation is used to affect the
cycling, First, the value of counter number three is reduced by one.
If the counter value is now zero, no branching occurs and the next
instruction is taken in normal sequence. If the counter value is not
zero, the normal sequence of operations is broken and the next
instruction executed is the one having the entry point number 5.
Instructions are then taken in normal sequence from this point.

3. Branching Operations
BRNCH 006

The Branch (BRNCH) instruction causes the normal sequence
of instructions to be interrupted unconditionally, The next sequence
of orders begins with the instruction having the entry point 6.

BRMIN 225 004 BRNOZ 225 004

The two conditional branching instructions, Branch Minus
(BRMIN) and Branch Non-Zero (BRNOZ) , test the contents of storage
location 225. If the number tested is negative or different from zero,
respectively, the normal sequence of operations is interrupted and the
next instruction executed is the one having the entry point number 4.

BR650 250

The usefulness of this instruction is discussed at the end of the v
introduction,

TA 008
Quite often the programmer would like to incorporate, within his

main program, a subroutine consisting of interpreted instructions to
which he would branch from several different points in his main routine,

70

After executing the subroutine, he would then like to return to the
point in his main routine from which he branched, This may be
accomplished quite easily by means of the instruction Transfer
Address (TA). The method by which this is done may be seen from
the following example:

Main Program Sub-Program

. . . 01 TA 008
BRNCH 001 o o
.« . . 08 BRNCH 000
BRMIN 252 001

. - .

In this example we interrupt the main program at two different
points, each time branching to entry point L. The TA instruction then
causes the return address for the branch instruction located at entry
point 8 to be set so that control will be transferred back to the main
program to the point from which it left after execution of the subroutine,
The branch instruction at the end of the sub-program may be of either
the conditional or unconditional variety.

4. Instruction Modification Operations
AOL 005 ‘ AOR 005

The instructions Add One Left (AOL) and Add One Right (AOR)
are used to enable the programmer to modify his own interpreted
instructions. The effect of these operations is to increase by one the
left or right hand addresses of the instruction having the entry point 5.
For the case of ‘an arithmetic instruction having three operands, there
is no ambiguity since one of these addresses must be 000. Clearly,
we never wish to modify this address.

RSTL 005 RSTR 005

The instructions Restore Left (RSTL) and Restore Right (RSTR)
are used to restore the left or right hand addresses of the instruction
having the entry point 5 to the value originally assigned by the program-
mer. Since the machine must remember these original values, all
instructions referred to by Restore Operations are stored in their
original form at the end of the program. This is handled automatically
by the read-in program and need be of no concern to the programmer.

5. The Check Stop Operation
STOP 010

The Check Stop instruction (STOP) is used by the programmer to
aid in checking out his program. Any number of stop orders may be
placed throughout a program at convenient spots. They must be followed
immediately by an arithmetical or functional operation and be numbered
consecutively beginning with 010, Thus, if three stop orders are used,
the addresses must be 010, 01l and 012 but do not necessarily have to
appear in the program in that order.

Under normal operation the stop order will have no effect on the
computation. However, if the Address Selection Switches are set at 0010
and the Control Switch set at Address Stop, the machine will execute
the instruction immediately following the relevent stop order and then
stop computation. The two operands A and B and the results of the
computation will be stored in the upper and lower accumulator and the
distributor. Then, by means of the Display Switch, the programmer
may check these quantities. Because the sign of the two halves of the
accumulator must be identical, the order of the factors A, B, and K
cannot always be the same, There are three possible arrangements
and the order section of the program register indicates the appropriate
arrangement to the programmer according to the following code:

Code Upper Lower Distributor
00 : A B K
10 A K B
11 K B A

If the programmer is satisfied with the result, he may depress
the Program Start button and the computation will continue from that point,.

Because the Address Stop Switch is used with the STOP instruction,
the address set into the Address Switches must be one which is encountered
only during the STOP order. The read-in routine counts the number of
STOP instructions as the program cards are read and shifts the program
in storage by this amount. Storage locations 00l through 009 are used
to store some frequently used constants as indicated at the bottom of the
program form. Then beginning with register 010 a block of storage is
cleared to be used by the STOP instructions. After this the program is
stored consecutively and immediately following the FINIS instruction is
placed a duplicate set of those instructions referred to by RSTL and RSTR
operations. This is all handled automatically by the read-in program.
However, the programmer must be cognizant of these facts when planning
his data storage.

72

V. Programming Examples

We shall now illustrate the ease with which programs may be
prepared by means of a few examples. '

Example 1: Consider the problem of finding the root of the
transcendental equation

cosX = X

We shall program this as an iteration process using the well-known
Newton! s method. In general, to solve the equation

fx) = 0
it can be shown that if X, ig in approximation to the root,then
f (xi)
X, = X, - —
i+l i £1 (xi)

will be a better approximation. In our case
f(x) = cosx-X
so that

ST . T
sin x; + 1

As a criterion for stopping the iteration let us require that

-6

+ 1

An annotated program to solve this problem is shown on page 12 .
From this form program cards are prepared and listed on an IBM Type 402
tabulator. The programmer now has the opportunity to proofread and check
his program for error in analysis and punching. A copy of the proof for this
problem is reproduced below.

10 READ 100
20 POO9 S 127
30 o1 cCoS P127 S 100
40 SIN P127
50 PO0O1 A POOO
60 P100 A M127 D POOO
70 p127 A POOO S 102

80 P127 A MOOO

90 ABVAL POOO S 103
100 P10O2 S 127
i10 P101 A M103

120 BRMIN 000 001
130 PUNCH 100

140 FINIS

These cards are then read into the machine under the control
of the read-in program and computation begins. Six iterations were
required to obtain the desired accuracy with a total computation time
of six seconds not including the time required to read in the program.

Example 2: To illustrate the use of a few of the logical operations,
congider the problem of reading in 60 numbers into the machine and
storing them away in consecutive storage locations beginning with register
30l. Ten data cards are required and the following program will do the
job:

RSCT 001 010
02 RSCT 002 006
READ 200
01 P201 S 301
AOL 001
AOR 001
BRCNT co2 001
RSTL 001
BRCNT 001 002

Example 3: Two ten dimensional vectors are to be multiplied
together. The elements of the first vector are stored in locations 201-210
while those of the second are stored in 301-310. The following program
performs the multiplication and stores the result in register 350,

P201 X P301

RSCT 001 0009
01 P202 X P302 A POOO

AOL 001

AOR 001

BRCNT 001 001

POOO S 350

73

INSTRUMENTATION LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Page of
MITILAC 650 PROGRAM
Problem No. Written by Project No.
Description Root of cos x = x
Entry Operation Sign Location | O Location Functions and Logical Operations
Card Number Point pe
Number Sign Location p°r Sig Location v Sign Location Arithmetic Operations
1213456789101 12]1314 15|16 17|18 19| 20| 21 Remarks
olojofr]o RIE|A|D 1 |10]0 1076 —~ 101
0({0(0| 2|0 P|O|O|9 S 1127 | %9 = 0 — 127
0|0|0|3|0]|0|1]|C|O]|S PlI|2|7]S | |OlO| cos xg — 100
0/{0,0|4|0 S|I|N PlI[2]|7 sin xg
0|0|0|5|0 P|O|O|I |AIP]O|O|O 1 + sin xg
0|00 6|0 P[I |O|O[A|M]|I|2|7[D|P|O|O|O (cos xg - x0)/ (1+ sin xq)
0(|0|0| 7|0 P(I|2|7|AlP]O|O|0O|S 10|12 % — 102
0({0|0|8|0 Pl |2|7|AM]O|O|O Xg - X1
0|0|0]|9|0 A|B|V|IA|L|P|O|O|O|S 1103 |Ixg - x| — 103
0{0|1]0]0 Pll|O]|2 S| |112|7]|x — 127
o0|l}{l|O P{I1|O|I |[AIM|I O3 10-6 - |xg - %1 |
0|0|1|2]|0 B(RIM|I [N 0/0|0 0|0}
0|0(1]|3|0 PI/UIN|C|H 11010
001 4|0 FII'|IN|1]|S
Arithmetic Functional . Location . : :
Codes Codes Logical Codes of Constants Arithmetic Operations
P: Plus SIN READ AOL 001: 1 A+B AxK +B A+K+B
M: Minus cos PUNCH AOR 002: 2 A+B+K AxB-K K+A+B
A: Add ARCTN BRNCH TA 003: 3 A+B-K AxBxK A->B
X: Multiply SQRT BRMIN RSTL 004: 180/7 A+BxK AxB=+K A+K-B
D: Divide ABVAL BRNOZ RSTR 005: 5 A+KxB AxK+B A-K->B
S: Store EXP BRCNT RSCT 006: /2 A+B+K A+B AxK->B
LOG BR650 STOP 007: e A+K+B A+B+K A+K-»B
DIFEQ FINIS 008: = AxB A+B-K K+A->B
009: © AxB+K
IL- 124

74

V1. Checking Procedures
In Section IV we described the operation of the STOP instruction

and how it is used in checking out programs. A number of other procedures

have been devised for this purpose to facilitate checking which will now be
discussed.

One of the most common errors in programming occurs in arith-
metic operations which involve three operands. If none of the three
addresses is 000, the read-in program will translate this instruction
into a different order and not detect the error. To combat this, we have
wired our tabulator to check this kind of error when preparing a listing of
the program. Thus, if any instruction of this kind appears in a program,
the tabulator will print an asterisk beside it.

The read-in routine is designed to check for several kinds of
program errors during the read-in phase. The card number sequence
of program cards is checked and the machine will stop if the cards are
out of order. Also the spelling of functional and logical mnemonic codes
is checked. In most cases if information is punched in the wrong columns
of the card, this will be detected by the validity checking circuits of the
650 itself.

Several kinds of errors are checked while the actual computation
is being performed. The interpreted READ instruction checks the
numbering sequence of the data cards as they are read into the computer.
The machine will stop if the cards are out of order. Also the machine
will stop if instructed to take the square root of a negative number. In
this case the lower accumulator will contain the number whose square
root is called for and in the distributor will be the instruction itself, The
operation code in the program register will be 50 to indicate the reason
the machine stopped.

If a functio%il operation using a series computation has an operand
which exceeds 10™” in magnitude, the machine will stop. The argument
will be in the lower accumulator, the instruction in the distributor, and
a 40 in the operation section of the program register.

The most useful device available to the programmer for checking
out his program is the list mode of operation, When the read-in program
has translated all program cards, the machine stops. By a proper setting
of the storage entry switches, the programmer then has the option to have
each arithmetical and functional operation punched out on a separate card.
The programmer will then have a complete listing of just how his program
is functioning., By using this procedure in conjunction with the STOP
instructions, the programmer may alternate between the list mode and the

75

normal mode of operation at will. Each card that is punched while
listing contains the operation code, the addresses of the operands,
the operands themselves, and the result of the computation. On this
. and the following pages is shown a partial listing of the program for
Example 1 discussed in Section V. Because of paper size limitations
the listing from the tabulator is shown in this paper in two parts.

Operation L(A) L(B)_ L(C)
A POO9 S127
F2 P127 $100
F1 P127 S00O
A+B PO0O1 POO0O
A+B/C P10O M127 POOO
A+B P17 POOO s102
A+B P127 MOOO
F5 POOO $S103
A P102 S127
A+B P101 M103
F2 P127 $§100
F1 P127 $000
A+B P0OO1 POOO
A+B/C - P106O M127 POOO
A+B P127 POOO Ss102

A+ B P127 MOOO
F5 PO0OO $S103

67 0T9£96¥¢
6y 0T9€96%2
6% 06£9€0GL
65%£T9€96v2
0S OTLYIVS8I
6 860LYTIvS
6% 0£20£0¥S
6%%00666666
0S 0000000T
0S 0000000T
0S%0000000T
0S 0000000T
0S 0000000T
0S 0000000T
00 %

0S 00000007

1Insay

0S OTLYTVYPBT

0SS 000000O0T

D pueaadQ

6y 06£9¢£0SL
6vxe19¢96¥v2
06 000000CO0T
6% 860LYTVS8

0SS 0000000T

0SS 00000001

0§ 00000COT

0O 0%

g pueaadQ

6%
(0R°)
0§
6y
0S
0S
0¢S
vy
0s
0G =

00

0§
0S

00

0T9¢96%¢
0000000T
0000000T
0£20€0VS
0000000T
0000000T
0000000T
0000000T
0000000T
0000000T

0
00000000
0000000T
0000000T

0
0000000O0

V¥ pueaadp

77

78

VII. Differential Equations

A subroutine has been incorporated in our interpretive program
in an effort to simplify the problem of solving simultaneous differential
equations. The procedure used is due to S. Gill* and is essentially a
Runge-Kutta fourth order process. To use this routine the equations
to be solved must be of the form

dy;
dt

where i=l, 2,...,n. The programmer stores the initial values of the
dependent variables in consecutive locations beginning with register 827,
The initial value of t is placed in location 849 while the increment in t,
designated by h, is stored in register 949. (h/2 must also be placed in
register 899.) At the start of the program a block of storage beginning
with register 927 is cleared and is reserved to be used by the subroutine

to store the so-called "bridging q's'". The programmer then computes

the right hand sides of the differential equations fl’ fo, oy fn and

stores them consecutively beginning with register "8/ '72 The instruction

= fl(yl: yza coe yn i t)

- DIFEQ 002 004

is all that is required to initiate the subroutine. The second location of
the instruction is used to specify the number of differential equations to
be solved. The first location specifies the entry point corresponding to
that instruction which initiated the computation of the f's. This is needed
because, in the Gill routine, four sub-steps are required to advance the
integration by one time step h and the f's must be recomputed for each
of these sub-steps. This is all handled automatically by the DIFEQ
routine. After execution of the Differential Equations instruction, the
previous values of the dependent variables will be replaced by the new
values corresponding to h units of time later and t will be replaced by
t+h.

This technique will be clarified by an example. Suppose that the
following two differential equations together with the indicated initial
conditions are to be solved.

dyl dy2
e—— = y e = -y
dt 2 at 1
yi(0) = 0 y9(0) = 1

* A Process for the Step-by-Step Integration of Differential Equations

in an Automalic Digital Computing Machine , S. Gill, Proceedings ot

Cambridge Philosophical Society, Vol. 47, Part l.

Taking h = 0. 2, the following program will compute five values of ¥1

and Yo and punch five output cards:

~ < g
N o ot Y tmm
oo ‘o O o~ o 3=
o
non =20__ n mm nmpw
& S0 e~ BB G9Q
[oa o N« i« BRI A S mm £ o
5% o558 s 66 8”7
Q Q
nn nnunnnnn VLU H
&~ (N, NO N o RTo Nl ¢ s Navae i
N Q oo r~-~oM o
[¢ 290, NV OODODDLDOD o
wn DBDBANDLW [VaNdr n
w 2 i i (@R
o o (@] (@] OO
O o o o 1o e
o a
(=] [an]
(e} gl o p)

OO HOOONMH - O WAhOZ ~
CCoOo0OooCcvNRuULT=ZOZ
OCO00COO0OCONWWO—ODa—
cooncoaoaa0oaITIOoo o mu

i
Qo

OCCO0O00O0O0OCCOOOOCO0O
HRMNITNOV~OONOH QM TINY
AnRuR e Re Rk o B

79

80

AN INTEGRATED COMPUTATION SYSTEM FOR THE IBM 650

C. K. Titus
Westinghouse Electric Corporation

In order to utilize fully the IBM 650 in the pursuit of general
engineering problems, an integrated computation system has been set up
at the Air Arm Division of the Westinghouse Electric Corporation. Such
a set of procedures increases reliability and efficiency by standardizing
and integrating many of the details of computation. There will always be
a few special problems, of course, that still may best be treated on an
individual basis.

This system to be described is a further step in a continuing
expansion of the use of numerical techniques to aid in the Division's
primary task of developing, designing, and manufacturing airborne
electronic armament. Typical problems encountered are the computation of
fire-control pursuit courses by numerical integration and the study of
aircraft-autopilot stability by evaluating the system characteristic
equation and solving for its roots. The calculation of rader antenna and
lens configurations, radar detection probabilities, and power density
spectral analyses of experimental data are also representative problems.

This standardization of techniques, which has been developed and
is currently in use, has been extended to the following computation
phasess

1, Card Formats,

2. Loading Routine.

3. Program Checking Routines.
4o Floating=point Subroutines.
5. Interpretive Program,

6. Presentation of Results,

One of the basic problems in setting up such a system for the
IBM 650, since it is a card input and output machine, is the standard-
ization of the card formats. The type of loading routine used governs
the layout of the loading cards, The available word space is limited if
colums are set aside for card identification, which is a desirable
feature. Similarity in form between input and output cards will greatly
facilitate punching input data directly through the computer for output
identification. The output format must be compatible with the printing
requirements., The cards punched by storage unloading routines should
preferably be in the correct form for reloading.

Consideration of all of these aspects led to a choice of an
"all purpose" five-word-per-card standard at the Alr Arm Division,
The details of the format are presented in Table I. This basic card
is used for five major purposes: loading, data entry, result punching,
storage punch-out, and identification printing. The various features
will be discussed with the use to which they apply.

Primary in the decision to use this format was the development
of an individually assignable five-word-per-card loading routine. This
technique was developed as the result of an effort to utilize the wasted
pre-punched columns of the standard four-word routine. The program is
essentially the same, but the fundamental difference is that the in-
formation which formerly had to be pre-punched is emitted from the 533
control panel., Co-selectors, picked up by an X-punch in column 11,
channel the correct digits into the proper word-entry hubs. This wiring,
which requires no extra features on the panel, can be devised by anyone
familiar with IBM wiring procedures, and so is not illustrated here.

This method allows the full use of the ten-word input of the 650,
The five ten-digit words are read into Words 1 through 5, and the five
corresponding four-digit location addresses, packed with appropriate
constant information, enter Words 6 through 10. Since each of the words
thus requires only 14 columns on the card, the loading data occupies a
total of 70 columns, conveniently leaving ten columns for identification,
as indicated in Table I.

The loading routine, which requires only six words permanently
located in storages 199 through 1999, is presented in Table II. The
numbers in the brackets are those which are emitted. It is to be noted
that once the routine is on the drum, entry is through 1999, a number
easy to remember and to set into the console.

In order to load this routine, the program listed in Table III,
which is placed on two standard loading cards, can be used. The numbers
emitted from the control panel simultaneously with the first card are
superfluous; nevertheless zeros must be filled in the location addresses.
The second card, however, makes full use of this information so that, in a
sense, the loading routine loads itself,

In standardizing on the five-word loading routine, it was felt
that the sequential limitations of the seven- or eight-word methods
nullify their speed advantages. In addition, an element of confusion
is eliminated by using only one type of routine. It is believed, there-
fore, that the five-word technique represents an optimum compromise.

The purpose of the data-entry card, as distinguished from the
loading card, is to allow read=-in of data, under control of the program,
during the course of a computation. For this application, the same format
of Table I is used with the exception that the five location addresses are

81

82

TABLE I, IBM 650 "ALL PURPOSE"™ CARD FORMAT

Columns Function

1-6 Job number

7 - 10 Card number

7X Unconditional skip to next page
8% Conditional skip to next page
9X Double space

10X Single space

11X Loading card

12 Title card

13 - 52 Alphameric field, Title card
11 - 14 Word 1, Location

15 = 24 n Contents

24X " Sign

25 - 28 Word 2, Location

29 - 38 " Contents

38X " Sign

39 = 42 Word 3, Location

43 = 52 n Contents

52X " Sign

53 - 56 Word 4, Location

57 - 66 n Contents

66X n Sign

67 - 70 Word 5, Location

71 - 80 n Contents

80X n Sign

TABIE II. FIVE-WORD-PER-CARD LOADING ROUTINE
Location Instruction Data Locations
1999 70 1951 1994
1994 69 1951 1956 C(1951) = Wy
1956 [R4] L(wp) [1995]
1995 69 1952 1957 c(1952) = W,
1957 (24 L(wp) [1994]
1996 69 1953 1958 C(1953) = W3
1958 41 L(W3) [1997
1997 69 195% 1959 6(1954) = W,
1959 [24] L(W‘g) (1998
1998 69 195 1960 c(1955) = Ws
1960 [24] 1(W5) [1999
TABLE III. PROGRAM FOR PLACING LOADING ROUTINE ON THE DRUM
Location Instruction Data Locations
Console 8000 70 1951 1951
1951 69 1954 1952 C(1954) = 69 1951 1956
Card #1 1952 24 199/ 1955 c(1953) = 00 0000 0000
1955 70 1951 199/,
1994 69 1951 1956 €(1951) = 69 1952 1957
1956 [24] 1995 [1995]
1995 69 1952 1957 C(1952) = 69 1953 1958
1957 [24] 1996 (1996]
Card #2 1996 69 1953 1958 C(1953) = 69 1954 1959
1958 [24] 1997 [1997
1997 69 1954 1959 C(1954) = 69 1995 1960
1959 [24 1998 [199¢]
1998 69 1955 1960 €(1955) = 70 1951 1994
1960 (24 1999 [1999

83

84

left blank., The five words enter Words 1 through 5. To be available

for use in identification of results, the job number and card number
columns are also wired to enter Word 6. Although it would be possible

to read in as many as eight ten-digit words from a data card, the use of
five was chosen as standard in order to be compatible with the result
cards, which are restricted by printing requirements. Primarily, this
choice eliminates a very difficult bookkeeping situation in punching

data straight through the computer in order to have input values available
with the corresponding output values. The data card, then, and the
loading card, are the two methods available for entering information into
the computer under this integrated system.

An integrated computation system must also include routines to
aid in program checking. One of the most important of these for the 650
is the storage punch-out program because it allows the programmer to
examine his problem in detail at his desk rather than to use an excessive
amount of time at the console, Within a group just "graduated" from the
CPC, finding errors from a storage print-out is a new concept. The
programmers are used to checking their problem with a step-by-step detail,
the only method available on the CPC. Consequently there is a tendency
toward spending too much time at the console bscause of inefficient use
of step-by-step procedures such as the half-cycle feature, or a tracing
or auto-monitor routine. Such techniques, when judiciously used, can be
very effective, but finding errors from a storage print-out is a method
which should be assimilated for all-around efficient utilization of the 650,

In conjunction with the storage punch-out routine, a storage-erase
program is useful so that discrimination can be employed to punch out
only those registers which contain significant data. For this systen,
the erase routine places 8!'s in all locations except those containing the
subroutines. The choice of all 8's was based on the consideration that
this configuration is more unique than 9's or O's. It enables one readily
to discern, for instance, those quantities which have become zero as a
result of the calculations. This particular routine was written so that
it enters directly into the load routine, thus encouraging its use as a
preliminary step to loading.

Control of the punch-out routine is effected by setting the data-
address portion of the storage entry switches to the address of the first
instruction to be punched out. Following logically, the last location to
be punched is set on the instruction address switches, The program then
punches out the location and contents of all storage units within these
limits set on the console, bypassing those which contain all 8's, 1In a
manner analogous to the loading routine, the five words are punched from
Words 1 through 5, and their location addresses from Words 6 through 10,
making full use of the ten-word output of the 650,

4s was indicated previously, it is desirable to have the punch-
out card format in exactly the same form as the loading card. This
feature is very useful for "roll-back" or restart purposes. It is also
useful for obtaining a consolidated loading deck after many changes and

additions have been made to a given program., Use of the Word 10 control
information hubs and selector wiring on the control panel enables one,
under control of the program, to punch out in the correct loading form.

Another program checking aid, which has been briefly mentioned,
is the tracing, or auto-monitor, routine. The purpose of such routines
is to provide an instruction-by=-instruction punch-out of the arithmetic
details of each step. If properly used, these routines can be very
helpful. However, for the present, use of a tracing routine at the Air
Arm installation is being discouraged for two reasons: first, it is too
often badly misused, resulting in inefficient computer operation; and
second, the more general storage punch-out technique has certain advan-
tages which should be encouraged.

, For the majority of engineering calculations at this installation,
floating-point subroutines have been found to be almost indispensable.

The ability to eliminate scaling considerations and thus permit extensive
generality in programming has proven to be of considerable importance.
Consequently the integrated system includes floating-point subroutines

for all of the following functions which experience with the CPC has

shown to be frequently used in aircraft armament engineering calculations,

1, Ada 6. EIxponential

2. Subtract 7. Logarithm

3. Multiply 8., Sine

Lo Divide 9. Cosine

5. Square Root 10. Inverse Tangent

It is not within the purpose of this paper to consider these
subroutines in detail, but rather to show how they have been coordinated
with the system. In particular, because the 650 is a relatively medium-
size machine on the scale of present-day computers, it is important to
have calling sequences which are efficient in computing time and storage
space. Yet, flexibility is desirable also, in the form of being able to
call factors from any location, and to return to any location. 4s a
result of considering these requirements, a system of calling se-
quences listed in Table IV was evolved. There are two fundamental types,
corresponding to one- and two-operand routines, respectively. Although
these calling seguences were devised specifically for floating=-point
subroutines, their use is obviously not confired to this application,
The same forms would be used for any type of one- or two-operand sub-
routines,

Return from the subroutines is made by storing the next in-
struction in a locaticn (1875) which each subroutine refers to for its
last instruction. For two operands, the storage of the next instruction
must be done during the calling sequence; but for the one-operand type,
it is done within the individual routine., The results of all subroutines
are placed in the lower accumulator. Thus, for continuing calculations,
the RAL or RSL instruction can often be omitted, shortening the calling

85

TABLE IV. FLOATING-POINT CALLING SEQUENCES

Two Operand Type

General Form:

Location Instruction
OP DA I
=4 1 1D X = 2
X5 STD 18%5 =5
X 3 6 L(B) (= 4
o, LD L4) ¥
X5 Next Instruction
Specific Data:
Operation G 1.4
A+ B RAL 1850
A=-B RSL 1850
AxB RAL 1900
A x (-B) RSL 1900
A/B RAL 1950
A/ (-B) RSL 1950
Arc Tan A/B RAL 1600
Arc Tan &/(-B) RSL 1600
One=-Operand Type
General Form:
Location Instruction
oP DA Ta
<y 5 La) X,
043 Next Instruction
Specific Data:
Operation @ k2
+Ji (A= 0) BRAL 1800
Y-a (A =0) BRSL 1800
eh RAL 1650
o4 RSL 1650
In A (A>0) RAL 1550
In (-4) (A <0) BRSL 1550
Sine A RAL 1750
Sine (-4) RSL 1750
Cosine A RAL 1700

Cosine (=4) RSL 1700

sequence accordingly. Other arrangements of the two-operand calling
sequence are also possible. The inverse tangent function was written
as a two-operand routine in order to allow placement of the angle in the
correct quadrant, within the range O to 2497, Even if the factor "B" is
zero the routine gives the correct answer,

Another important floating-point routine concept that should be
standardized is that of providing automatic stops for operations that are
invalid. For the routines listed, stops have been provided for all the
following improper calculations:

1., Exceeding radix bounds on any operation.

2. Division by zero,

3. Square root of a negative number.

L+ ZLogarithm of a negative number, or zero.

5, Exceeding angular argument bounds on sine or cosine.

The stops are purposely coded to be of the improper storage-selection

type so that they cannot be bypassed. Each is numerically coded so that
the source of trouble can readily be determined., A4 further standardi-
zation that has been incorporated is the location of each subroutine

within a certain band on the drum. Thus, if storage space becomes critical,
omitting those routines which are not needed will free complete blocks of
instructions for other use. All of these described features have made this
floating-point system one which has proven very satisfactory.

In order to facilitate programming, it is often desirable to
formulate an interpretive program. Such a program was prepared for the
650 to work in conjunction with the floating-point routines. After
considerable study of the possibilities, it was found that the best
program technique seems to be one wherein the calling sequences, as
presented previously, are built up from the information furnished by the
interpretive instructions.

The system was kept simple by standardizing on a two-address code
for every operation., Thus for two operands the addresses specify the
location of WA and "B"; and storage in "C", when desired, is accomplished
by a separate transfer instruction. For one operand the addresses specify
mAM and "C", and thus the extra store instruction is not necessary. 1In
addition, the results of each operation are always placed in 0000, where
they can be called out for the next arithmetic operation, or for permanent
storage in the case of two operands.

Under this particular system only three extra interpretive in-
structions were added to the ten mathematical functions. These are the
transfer, the branch-on-minus (BRMIN), and the branch-on-non-zero (BRNZ)
instructions. Several useful features are provided in this system, such
as the ability to punch out a step=by-step detail through setting the
console to minus. In addition, by requiring that interpretive instructions
be negative, transfer to regular 650 operation can be effected by changing
to a positive instruction.

817

88

However, a detailed description of this program is not warranted,
because experience with it has not been satisfactory for two major reasons.
First, interpretation increases calculation time about 50 percent, as
compared with calling-sequence programming. Second, since one still has to
fall back to straight 650 programming for many bookkeeping cperations, the
system offers little advantage over calling-sequence coding. Adding more
interpretive bookkeeping instructions might improve this situation, but
would use too much storage and further slow the calculations. 4s a result,
the interpretive program has been more or less discarded.

Since the methods for entering data into the 650, checking pro=-
grams, and proceeding with engineering calculations have been discussed,
the final phase of presentation of the results remains to be considered.
The philosophy adopted for this phase has been that an answer is often
no better than its final printed form. Results from a simple calculation
presented neatly and well identified can be more impressive than weighty
computations poorly marked and printed in haphazard fashion. Of course,
this philosophy can be carried to such an extreme that it interferes with

~ system operation, but much can be done before approaching this limit.

Experience with the CPC has shown that printing results on
standard 8-1/2 by 11 sheets has marked advantages. It allows results to
be conveniently assembled in a standard three-ring binder for easy
consultation, and to be included directly, or in a one-to-one reproduced
form, in standard size reports. The sheets do not become dog-eared or
torn, or even loet, because they do not fit with other material. Conse~
quently, this goal was set for the 650, and was attained by using standard
tabulating forms which allow printing sidewise on 8-1/2 by 11 sheets. The
eleven-inch width conveniently allows printing of the four-digit card
number and five ten-digit words across one line. While it is true that a
wider form would permit up to seven words per line, the advantage of the
standard size outweighs the occasional advantage of seven words. Printing
of the card number with each line provides a ready check on the order of
the cardse.

Since the output of the 650 under this system is standardized at
five words per card, the format of the result card can be made compatible
with all card forms, resulting in the "all purpose® form presented in
Table I, The five output words are punched from Words 1 through 5 into
the five word-content fields on the card. A six-digit job number and a
four-digit card number are punched from Word 6. Punching of the card
number, or some other sequential information, is particularly important
with card output, so that if the cards get out of order before printing
they can easily be restored. From Word 10, control information in the
form of 8's placed in the proper locations by the program, causes X-punches
to be placed above the card number, for printing controls. This feature
permits direct control of the 402 printing by the 650 program.

In order to extend the idea of well-identified results, the full
alphameric features of the tabulator are employed. Provision for printing

titles and headings along with numerical results, without changing con-
trol panels, is made by the use of extensive selector wiring. For
instance, under this system, an X-punch in column 12 causes the next card
to be interpreted as a title card. The one-cycle delay is required in
order to be able to select zone impulses.

Spacing and skipping controls on the tabulator provide further
refinements in the printed output. By means of the X-punches above the
card number, the following four features can be controlleds:

1. Unconditional skip to next page.
2. Conditional skip to next page.
3. Double spacing.

4. Single spacing.

The conditional skip occurs only when printing is within a certain distance
from the bottom of the page, as determined by the carriage tape. This
feature is very useful to cause skipping only after a group of results

has been completely printed., These four controls, then, permit a con-
siderable flexibility in the form of the printed results.

For the purpose of printing storage punch-out cards, a separate
402 control panel is required, in order to tabulate the storage location
as well as its contents., The programmer is thus provided with an easy-to-
read listing of the location and contents of each of the storage units
punched out. Wide paper must be used to allow room for the extra in-
formation printed, but since such tabulations are usually destroyed once
the program is working, the former objections concerning paper size do not

apply.

With this description of the printed output standards, the
discussion of an integrated computation system for the IBM 650 is complete.
Techniques applicable to every phase of the use of this computer in
engineering calculations have been presented. Ideas for card formats,
loading routines, program checking aids, floating-point subroutines,
interpretive programs, and final presentation of results have all been
considered. The system is currently in use at the Testinghouse dir arnm
Division. It is hoped that this discussion will be of benefit to
personnel of similar IBM 650 installations.

89

90

DATAMATIC CORPORATION LIBRARY ROUTINES FOR THE 650

R. F. Clippinger and E. E. Comerford
Datamatic Corporation

Datamatic Corporation operates a rather unusual computing
service which programs, codes and solves a variety of problems coming
from any source. Consequently it has been forced to create a library of
routines to make it easy to locate routines in the 650, weed out coding errors,
watch the growth of errors and minimize the time to solve a problem.

Subroutines, directory and assembly program. As a method of

organizing the use of subroutines we have chosen that outline used by the group
with Turing of Manchester. A directory defines where each routine will be
placed in the machine. The assembly routine uses the directory to modify
the orders as they are read in so that they will work wherever placed. A
routine changing sequehce is used to pass from one routine to another and
keep track, by means of a link list, of the current status of the problem. A
word D, = Oo(iﬂi is associated with each subroutine S,.«; is the data address
and ‘}i is the instruction address. When the coder writes his code, he marks
some addresses by adding 4000 to the relative address (the relative address
is the address that would be used if the subroutine began in register 0). He
may mark other addresses by adding 2000 to the relative address. The input
routine then removes the marker and adds pi if the marker was 4000 and
if the marker was 2000. Consequently, by changing the single word Di one can
move the subroutine to an arbitrary position in the machine and one can move
its working space to an entirely different arbitrary spot in the machine. If
two or three people who are trouble shooting problems are sharing the use of
the machine, they can adjust their directories so as to avoid conflict and not
have to read-in their problems each time. Trouble-shooting routines, to be
described later, will make it possible for each of them to get several periods
of use of the machine within an hour.

The passage from one routine to a subroutine is affected by an
order in register S which loads the distributor with the contents of S + 1 and
transfers control to the routine changing sequence. The word in S + 1 has been

called by the Manchester group a False Line. As written by the coder it is
in the form 88 DiR’ where R is the relative entry point. Di defines which
subroutine is to be entered, and since the subroutine may do different things
depending on where it is entered, the relative entry determines what it
accomplishes.

At the time of reading the problem into the machine the assembly
routine deletes the 88, looks up the directory, adds 3 i to the relative entry
and creates the true entry. At the same time it uses the information that it
has concerning the location of the false line to create a return address so
that the false line in the machine is in the form 00, return point, true entry
to subroutine.

When the problem is being executed, the Routine Changing Sequence

uses the false line to create a link in a link list for later transfer of control
to the return point. If the subroutine requires parameters, they are placed
following the false line in positions S + 3, S + 4, etc. 8 parameters may be
used. The Routine Changing Sequence moves these parameters to registers
1 through 8, if the false line is negative. It then enters the subroutine.

On leaving the subroutine one simply goes to a different point
in the Routine Changing Sequence which uses the link list to return to the
proper place. At any time in the course of a problem one can tell which
subroutine he is in by examining the link list. Since the 650 keeps track
only of the order it is trying to execute and not the order that was done before
that, any derail leaves one in the embarrassing spot of not knowing where he
was. Under these circumstances, the link list is quite a help aided by the
state of the bound variables associated with the subroutines.

The assembly routine in addition to modifying addresses and
false lines creates a check sum for the routine being read in and compares it
with the check sum on an input card. Information being entered into the
machine by the assembly routine is preceded by a descriptive card which
gives the check sum, the directory number and tells how many orders and
numbers are to be inserted. Each card gives the relative address of the
second word on the card and how many words are to be put away. The 7
remaining words are useful words to be inserted into the machine. The
assembly program has been force programmed (that is optimum programmed)
so that the entire machine can be loaded in 2. 8 minutes. If the same routine
is to be used many times, it can be assembled once, read out by our post

91

92

mortem routine and after that read in, using absolute addresses. In this
case, the machine can be loaded in 1.5 minutes.
Trouble shooting routines. Stopand Punch. Stop and punch is

similar to codes available on other computers. The function of stop and punch
is to enable one to find out what is going on in the execution of the problem.

In using stop and punch the coder prepares a set of words of the form

Ai Bi Ni’ which are typed in successive word positions on successive cards.

A stop and punch marking routine will use these descriptive cards to plant
derails at A i and store the information Bi Ni' +When the problem is executed
the result will be that every time the control arrives at Ai’ Ni words will be
printed starting at B i The derails that were planted by the marking routine
can be removed by entering stop and punch at a different point. This routine
can be used in many ways. The first time a problem is run in the trouble-
shooting process a set of descriptive cards will make it print out key quantities
which enable one to deduce if certain segments of the code are correct.
Having corrected the coding errors that have been discovered, a second set
of stop and punch descriptive cards will enable one to punch out further
information to check whether the corrections have cleared up all the
difficulties. Printing associated with correct portions of code can thus be
by-passed. The program is not executed interpretively; consequently, it is
not slowed down very much by this trouble shooting mechanism.

A second use for stop and punch is for problem analysis. It may
be that a code is correct in the sense that it does what one asked it to do but
one may not have been sure how the numbers would behave. For example,
in solving a non-linear differential equation it is difficult to predict the growth
of the numbers. Without the use of stop and punch it is awkward to provide
for all printing which would be useful in this regard. And, in fact, one
cannot always predict what quantities one will want to see; With stop and
punch one can control the output of the computers with a twist of the wrist,
and this brings us to the third use of stop and punch. After one has complete
understanding of a problem, the code is correct, and one knows how the
numbers behave, he may still decide on a different output from what he had
originally planned. Stop and punch makes this possible without elaborate code
changes.

A Generalized Monitoring Routine. An interpretive program
used throughout the computing industry to locate trouble in desperate situations

is known as a monitoring or tracing routine. Such a routine prints out what
each order does every time the order is executed. The result is a wealth
of information which enables one to find any errors. However, it is extremely
wasteful since it is very slow. It is particularly wasteful on a machine like the
701 but it is bad enough on the 650. A simple generalization used in many
places consists of marking some of the orders so that one only prints out what
these orders do. However, it is usually not very important to see the results
of a specific order over and over as one goes around a loop. Such tracing
routines are therefore not very useful.

About eight years agoat the Computing Laboratory at Aberdeen
Proving Ground one of the authors introduced a different generalization,
which we call the code checker. The code checker prints out what every order
does the first time it comes to the order and never again. It is therefore much
faster than the tracing routine and much more economical of the programmer’s
time in looking through the output. We have such a code checker for the 650.
The specific code checker that we have written for the 650 is used as follows:
The coder prepares descriptive cards containing words in the form O Ci Ni €
or 80 Di O€ i A code checker marking routine uses these descriptive cards
to mark Ni orders starting at register Ci or the false line at Di' Ife i is minus
marks are inserted; if it is plus, marks are removed. One then inserts the
address of the first order in its program into a certain register and enters the
code checker, which then prints out for every marked order the address of the
order, the order, and the contents of the distributor and lower and upper
accumulators. If a false line is marked, the corresponding subroutine is also
code checked. If it is not marked, the subroutine is executed at full speed
and the routine changing sequence derails the problem back into the code
checker upon return from the subroutine. It is thus a simple matter to code
check any part of a problem which is causing trouble and not code check the
rest of it. These two trouble shooting routines give great flexibility and
enable one to trouble shoot problems using a minimum of 650 times. For 650
users having many different uses for the machine such routines are quite
important.

Automatic optimum programming. For problems involving

considerably more computer time than reading or punch time the 650 can be
made to go roughly twice as fast by placing the orders in the right position.

This can be done manually. George Trimble has prepared cards as aids to the

93

94

optimum programmer which many of you are using for this purpose. An
expert like George Trimble can perform this manual optimum programming
nearly as fast as random programming. For the rest of us it is handy to
make the 650 do it. Consequently, E. E. Comerford has written an optimum
programming routine which will force code a routine using 350 registers in
about 10 minutes. Using this routine, we are able to give our customers
more answers per dollar.

Our optimum programming routine is built around our assembly
program and structure of subroutines. One recognizes five different kinds of
words: numbers, ordinary orders, orders whose instruction address is made
up, orders whose data address is made up and false lines. To use the optimum
programming routine, one simply prepares descriptive cards which determine
how many of each class of words there are. A second kind of descriptive card
determines how many registers are to be used by the optimum programming
routine and which pieces of the code are to be improved first. The pieces
which are programmed first are programmed best because they have the
widest choice of registers. Also, the constants which are common to more
than one order are allocated for optimum timing in the first order in which
they appear. Consequently, one can speed up the inner loop of a multiple loop
induction by improving it before other sections of the program.

AN AUTOMATIC METHOD OF OPTIMUM PROGRAMMING
FOR THE 650 USING THE 650

‘ Elmer F. Shepherd
John Hancock Mutual Life Insurance Company

Optimum or minimum latency coding is a technique whereby data or
instructions are assigned drum locations in such a manner as to mini-
mize access time,

Optimum programming is accomplished manually by reference to an
optimum program table. This provides increments, based on the word
time required to carry out operations, to add to an address to deter-
mine the module of the next address, For instance, in order to deter-
mine where to locate a data address it is first necessary to determine
whether the location of instruction address is an odd or even number,
Reference is then made to a table by operation code and the increment
found is added to the location of instruction., With the module thus
formed, an array of all available locations of this module is consulted,
one selected, checked off and used as the data address. The instruction
address is determined in like manner, The manual technique accomplishes
coding one line at a time, The determination of the necessary repeti-
tive use of the same address (constants interim storage or branching) is
accomplished visually. Certain addresses, for read in words, punch
words table locations, distributions, etc., are, of course, specifically
assigned before coding is begun, The manual method is a slow process
exposed to large error.

Once coding has been accomplished, a deck of load cards is key
punched showing in each card the location of instruction or data and
the instruction or data,

The manual method, then makes use of the following elements,
io Specific assignment of address in advance.
2., Table lock up to determine module.

3. Consultation of an array for the determination of arbitrary
assignments,

4, Scanning or cross reference for necessary repetitive use of
previously assigned addresses.

In the machine method described here the same elements are pre-
sent.

Necessarily, specific addresses are coded as usual.

An optimum increment table is provided and stored in locations of
the 0950 band.

By storing two drum locations in each word, an array of all 2000
locations can be stored in 1000 words, All addresses of one module

95

96

may be stored in 20 consecutive drum locations. Drum locations 1000

to 1999 are reserved for the entire array. Any locations not available
for a particular program are stored as zeros. This is accomplished by
first storing zeros in locations (000 to 1999 (two load cards required)
and then selecting from a 2000 card load deck representing all locations,
the ones available for the particular program being made optimum,

The operation portion of an instruction is coded normally. In
order to accomplish cross reference pseudo addresses consisting of the
9000 series are used, A 9000 series address causes the machine to
select the best normal address available and store it in the drum loca-
ticn specified by the three low order positions of the pseudo address
if such drum location contains zeros, or to recall the address stored

" there if such drum location does not contain zeros. Drum locations

0100 to 0699 and 0000 are reserved for this purpose and are filled
with zeros, by two load cards, at the start of the process. Locations
5100 to 0699 provide 600 numbers for cross reference. A program may
be of considerable length, but since the instruction address of one
instruction is most frequently the drum location of the next following
instruction (as written) and this is the only cross reference, drum
location 0000 is assigned for the store and recall sequence, and is
filled with zeros after each recall., This diminishes the need to use
0100 to 0699 locations. As addresses are selected from the array in
1000 to 1999, they are replaced with zeros.

In the case of 800X addresses, equivalent drum locations must be
calculated to proceed to build the next following address module.
However, it is seldom necessary to carry such equivalent to the next
instruction since an 800X referred to instruction would most frequently
contain a normal data address., Drum locations 000! to 0099 are pro-
vided for storage and recall of equivalent 800X addresses if needed
and the two low orders of such addresses replace the two middle digits
of the 800X address. There is no objection to using 0f to 99 to expand
the 600 locations available, if not used for their reserved purpose.

Since the arbitrary assignment of a data address by a 9100 to 9699
code is the location address of data, the location addresses of data
can be recalled. Data can be any constant, interim storage or dummy
instruction. It is necessary to provide two recognition punches to
differentiate between programmed instructions and data., One such punch
indicates that the data address positions are to remain unchanged and
the other indicates that the instruction address portion is to remain
unchanged., For example - a constant or the segment of a dummy instruc-
tion which is not subject to change during the program. By use of 9000
series codes and the absence of these punches previously determined
address portions of dummy instructions can be recalled.

Having accomplished the coding, a deck of cards is prepared from
the code sheets, The machine is loaded to carry out the required

instructions to optimum program. The code deck is run with constants
at the end and a load deck for the problem is produced, It is possible
to feed the code deck in any desired block sequence as long as croas
reference addresses are suitably adjusted.

It is believed that this method is adaptable to the majority of
situations that will arise. It has the element of simplicity and is as
easy to use as sequential coding and in addition to saving time, elim-
inates many of the hazards inherent in manual optimum coding.

RULES for USING PSEUDO CODE

. A normal address is required as the drum location of the
first instruction.

2. Normal addresses may still be used where desired.

3. All arbitrary assigned data is referred to as 9100 to
9699,

4. 9000 may be used as the instruction address, or data
address if branch operation, whenever the next instruc-
tion referred to follows immediately in which case the
drum location of the following instruction is 9000. The
foregoing is, provided there is no other cross reference
to the latter instruction, 9100 to 9699 being required
in such case.

5. 800X are used normally, the only exception being when
the equivalent is required on a subsequent instruction,
in which case 801X to 899X are used.

917

98

II

II.

III.

Iv.

AUTOMATIC OPTIMUM PROGRAM

OPERATING PROCEDURE

A program is written in pseudo coding. Punching is done in
the following manner (no "R" punches necessary): -

Program Code = Col. t (also "X" if location is
8000 type)
69 0004 0003 = 11-20
24 = 21-22
8000 = 27-30
Segment codes = 41-42
Punch page number = 43-45
Pseudo drum location = 47-50

Pseudo inst. or Data = 51-60

A pre-punched card with program type code in col. f, block
number in cols. 2-4 and an "R" punch in col. 44 is manually
placed in front of each program block.

Constants and interim storage constitute the last two blocks.
Four instruction cards can be fed into the 650, and the words
1000 to 1999 which are to contain the addresses of available

locations (two to a word) and 0100 to 699 for reference
location storage - cleared to zeros.

There exists a deck of 2000 cards each one of which represents
a location from 0000 to 1999 to be made available for locations
of Optimum programming.

From this deck will be manually extracted cards for locations
that are to be usz:d for:

I, HRead words
2. Punch words
3. Tables

4, Distributions

v.

VI.

VII.

5. Constants with normal codes assigned.

6. Interim storage with normal ccdes assigned

7. Regular instructions with normal codes assigned

8. Where possible the 1950 band (or a band) for the storage

of a trace routine

The remainder represents available location words and are
loaded to fill in the words (or parts of words) 1000 to 1999
to be available for Optimum Programming.

A single load card contains the instruction necessary to cause
the 650 to punch out cards for locations still available after

new optimum coded load deck has been produced.

Cards are fed into the 650 in this order:

!. Optimum program load cards.

2. Zero restore cards from step III,

3. Available location cards from step IV,

4, Program detail cards from steps I and II.

5. Remaining available location card from step V.

Optimum coded load deck produced:

Program Code

Block Number

Item

69 0004 0003

24

Optimum drum location

8000

Optimum instructions or data
Segment‘codes (1f used)

Pseudo drum location

Cols.

2- 4
5- 7
11=20
21=-22
23-26
27-30
31-40
41-42

47-50

(X also for 8000
type locations)

(R ir 20)

(R in 30)

(R in 40)

99

100

VIII.

Pseudo instruction or data Cols., 51-60

(Note that the pseudo codes are preserved to make corrections
or changes, it is only necessary to change the pseudo coding
and run the deck again for a new deck of optimum coded load
cards.)

Cards with available locations after optimum cocding are
produced for reference and use.

OPTIMUM PROGRAMING for I.B.M. 650 USING THE 650

Read Words Punch Words
C| Block ¢l Block | Item
0901 g Number 0121 g Number | Number
0902 | 6 |9 X |X|X[X{X|X]|X|X 0728 | 6 |9 (XX | X|{ X|X|{X|X|X
0903 2|4|8|0|0}0 0729 2|4}(8|0]l0 0
Drum ' Developad
0904 Location 0730 Location
er- er~
ation ation
0905 : Code 0731 Code
Data Devsi:ged
0906 Address 0732 Address
Develo;
Instruction Inatrug:fon
0907 Address 0733 Address
Content of
0908 g8/8|8|8|8 0734 (0904)
X Col. | Code I Gw?rnql Contents | Contents of
R Col. 44 Block No. 0735 (0905)] of (0906) (0907)
R Col. 43 Modify D.A. Contents of
R Col. 41 D.A. segment 0736 (0908)
of constant
R Col. 42 I.A. segment of
constant

DEVELOPMENT of DRUM LOCATION

| 5
Read
3=
%
12 ‘g
Store n(0730)
word as 0
Extract Ref
Base #1 #! Address s
[}
8
® 3
. "
) 14 .AL o
.Store word Call ©
n (0730) ¢ out, word Ber gy ~
referr
B:ge ?ﬁ to Address
é;
Q,
it
[7p]
16 9
Store zero Store Drunm
in Loc, in
(0000) (0730}
To . 101
7

Block No. 6 not shown

OPTIMUM PROGRAMING FOR I.B.M. 650
DEVELOPMENT of DATA ADDRESS and INSTRUCTION ADDRESS

102 |

> (0903) in
- (0733) and
s Base 3#2 Address| to
< l
- 28 =5 26
Call out o8
" ero
Faze $2 increment *mt
29 V- S
> Form
Qﬁ—ﬂ m"! —@e—> Module
Y Address

Y
Increase
Base
by
36
Increase
Module
Address @9
Not zero
Base #2
7| replace
th zeros
40
31 S P Jﬁ\ Bgtore
g N se
ddress zerc Y ?|1n Ret i2
Address
© .l
Store
@ contents
as
Base #2

A3 53 54
Directed Store Ball
Ly| toas of read o Punch
7]words for [
{st time unchi

Transfer
@ Bas:
o
Base #I
48 >
Store 4

Y

e8 & Base #!

pase #1_|

49

Store ng(cgggf)
5] 2 (0906) n
5 &” 'l (0733) in
se

{/’%28-(%(

segment

0955

0973

OPTIMUM PROGRAMING for I.B.M. 650 ROUTINE TO PUNCH UNUSED LOCATIONS

are positions
| to 4 zer

Increase

57

Y

Count by |

Address
& Count

®

Store

positions

not zero
in (073

63
[' Punch

Replace
(8003)

rument

Sample Table

DA Function IA Function

2|0

0

0

51010013

B &

T,
e

Ll

with gero

- A

59 I,
Call word
specified
Sample Array (Module 47
Drum Loc, | Drum Loc.
94110 0O/l j4]7|0{11917
1942] 0 0j214/7]0/2/9,7

103

104

0
cards avail-
able locations

Fill___ 1
0000 to 0699
wit

New_Problem

Assemble

II

h zero

tex0"'v

aHOBIOQO

Imgeﬁta

Psedc
deck, | card

650
Read Punch

f{ '

1 F111 with sero cards, available
locations cards, instruction

| deck, pseudo code deck

Unit

A NOTE ON OPTIMUM PROGRAMMING AND THE IBM
TYPE 650 OPERATION CODE USAGE

Dura W. Sweeney
International Business Machines Corporation

As a part of the continuing analysis of the IBM Type
650 questions arose as to the relative usage of the various
operation codes and the effect of optimum programming
in achieving significant increases in computing speed.

An answer to the first question was gained by
‘tracing several programs and counting the various
operation codes executed by the computor in processing
these programs. Since a limited amount of machine
time was avallable only ten programs were traced.

These were chosen so that each was written by a
different coder to eliminate any bias in the habits

of the coder as to hils preference for using certain
operation codes. The programs were also chosen to
cover a wide range of applications in the commercial,
engineering, and scientiflc fields to eliminate any
bias 1n the needs of a program for certain operation
codes in a particular application. Approximately three
million executed operations were traced. The following
table shows the results of this investigation:

Operation % Used

Multiply
Divide

Shift

Store

Branch

Add

Table Look-Up
Read

Punch

= oE

OCOOWVWRNDH &~
° [] ©]

W 003 O OO

L -] L] o

105

106

These percentages do not include the instructlion
executions necessary to load the program. The only
input-output traced was the reading of data required
for the calculation and the punched results.

Now using these filgures and the times required
to execute these instructions for both serial coding
and optimum coding, an estimate for the average oper-
ation time can be made. Assume an average six diglt
multiplier and quotient and an average shift of four
positions.

For serial coding there will be an average of 24.5
word times for access to either the data or the next
instruction. Both of these access times are taken only
in the case of store and add operations, and slnce add
operations have some parallel compute time even this
is reduced three word times. The following table
gives the average number of word times to execute
the operations.

Operation Percent Optimum Serial
Multiply 4.7 TT .5 TT.5 + 24.5
Divide 1.9 117.5 117.5 + 24,5
Shift 11.5 10.5 10.5 + 24.5
Store 22.8 T+5 7.5 + 49.0
Branch 8.0 4.0 4,0 + 24.5
. 7:5 7.5 + 46,0

Add gg E

By crossmultiplying columns one and two and one and
three and dividing each by 98.6 the following times
result.

Optimum Coding: 13.0 word times (1.25 ms) per operation.
Serial Coding: 53.8 word times (5.17 ms) per operation.

This gives a ratio of 2:1L or 4.1 times as fast for
optimum coding over serial 1+25 coding.

Considering that data and instructions cannot always
be located in the best optimum locations, the next question
that arose was what had been or could be achieved. The
matrix inversion program written by R.W. DeSio was traced
during the inversion of a 10x10 matrix., This program uses

the interpretive floating point routines described in
Technical Newsletter #8 for floating point operations
and serial coding for the manipulation of the addresses
of the matrix elements. The program required the
execution of 154,000 instructions in 278 seconds.

This gives an average operation time of 1.81 ms.

Next a program was written to do matrix inversion
by the same method but the address arithmetic was
coded optimumly and the floating point operations were
included directly in the routine so that no interpretation
time was required. Thils program was traced during the
inversion of the same 10x10 matrix. Here, 49,000 in-
structions were executed in 71 seconds glving an average
operation time of 1.45 ms. This program required 3300
accesses to get or store the matrix elements in a 110
position serial array in drum storage.

It appears obvious then that optimum coding can
glve significant increases in speed. The first matrix
inversion program gives a ratio of 5.17 or 2.9 times
faster than serial coding. The 1.81 second program
gives a ratio of 2:17 or 3.6 times faster than serial
coding. From 1.5 the figures for optimum coding
versus serial coding, the ratio of 4.1 compared to
the ratio of 3.6, for the matrix inversion program,
indicates that in spite of the large number of accesses
to serially stored data a speed increase very close to
the maximum may be achieved.

107

108

AUTOMATIC FLOATING DECIMAL ARITHMETIC IN THE IBM
TYPE 650

George R. Trimble, Jr. and Dura W. Sweeney
International Business Machines Corporation

The present operations of the IBM Type 650 have proven
to be satisfactory for the great majority of problems which
it has solved. There are, however, many problems involving
lengthy, complex calculations which require extensive analysis
to determine the size and range of intermediate and final
quantities. This analysis and the subsequent scaling of
these quantities frequently requires a larger percentage
of the total time required to solve the problem than the
actual calculations.

Floating decimal arithmetic circumvents this difficulty
by tagging each number with a 2 digit characteristic. This
characteristic specifies where the decimal point should be.
Use of this technique virtually eliminates the need for scaling
numbers mentioned above.

Floating decimal numbers in the 650 look exactly like
fixed point numbers. The only difference between them is
the way in which the arithmetic unit interprets them when
a floating decimal operation is called for. Seven new in-
structions have been added to operate upon floating decimal
numbers. They are add, subtract, add absolute, subtract
absolute, multiply, divide and non-normalize add. Whenever
one of these operations is called for the numbers operated
upon are interpreted as follows:

(M, C)= .XXXXXXXX XX +
‘**—w————“’

)
M C Sign
of M

The mantissa, M, is eight decimal digits in length. The
decimal point of the mantissa lies to the left of the eighth
digit. The sign of the number 1s always assocliated with the
mantissa. Thus the range of the mantissa 1is

0.1€M<1.0

The exponent, e, is a two digit integer in the range
-50<€e <49

Since the sign 1s associated with the mantissa it cannot
be used to indicate the exponent sign. By adding 5C to the
exponent, a positive number, C, in the range

0&C= e + 50%99

is obtained. It is the two digit characteristic C that is
carried as a tag to specify where the decimal point of the
number really is.

To summarize then, the fixed point number, N, being
represented by the floating point number (M,C) is determined
by

N =Mx 10 0"
For example: 1.0 would be represented as 1000000051.

Since there is no difference between fixed and floating
decimal numbers, fixed point operations can be performed upon
floating decimal numbers if desired. For example, it 1is
possible to test the floating point number to determine
whether it is zero or non-zero; positive or negative. It
is simply up to the programmer to determine what he wishes
to do and to write the proper sequence of instructions to
perform that operation. Similarly the characteristic can be
separated from the mantissa by shifting and examined. It can
be modified by programming, or whatever else is desired can
be done. This facllity of operating upon numbers with either
type of arithmetic provides great flexibility.

, The following descriptions tell how each of the seven
new instructions function. Any operation which results in a
zero mantissa will force a zero exponent.

32, FA Floating Add.

The floating decimal number specified by the data address
is added to the floating decimal number in the upper accumu-
lator. The rounded result will be retained in the upper accunu-
lator. The lower accumulator is ignored for this operation
and will contain zeros after its completion.

33, FS VFloating Subtract..

The floating decimal number specified by the data address
is subtracted from the floating decimal number in the upper
accumulator. The rounded result will be retained in the upper
accumulator. The lower accumulator is ignored for this oper-
ation and will contain zero after its completion.

109

34, FD, Floating Divide.

The floating decimal number in the upper accumulator
1s divided by the floating decimal number specified by the
data address. The rounded quotient will be retained in the
upper accumulator. The lower accumulator is ignored for
this operation and will contain zero after 1ts completion.

37, FAAB, Floating Add Absolute.

The absolute value of the floating decimal number speci-
fied by the data address 1s added to the floating decimal
number in the upper accumulator. The rounded result will be
retained in the upper accumulator. The lower accumulator is
ignored for this operation and will contain zero after its
completion.

38, FSAB, Floating Subtract Absolute.

The absolute value of the floating decimal number speci-
fied by the data address is subtracted from the floating
decimal number in the upper accumulator. The rounded result
will be retained in the upper accumulator. The lower accumu-
lator is ignored for this operation and will contain zero
after its completion.

39, FM Floating Multiply.

The floating decimal number in the upper accumulator is
multiplied by the floating decimal number specified by the
data address. The rounded result is retained in the upper
accumulator. The lower accumulator 1s ignored for this
operation and will contain zero after its completion.

02, FASN, Floating Add, Suppress Normalization

This code operates exactly the same as 32 (FA) except that
the normalization, which occurs after adding the shifted numbers,
is suppressed. This makes it possible to attach the same
exponent to a group of numbers for fixed point output.

The times required to execute the above operations are
essentially the same as for corresponding fixed point operations.
Since multiply uses only an 8 digit multiplier it will be
faster than fixed point multiply. The add type operations will
vary in length depending upon the number of shifts required to
line up the decimal points or to normalize the sum. The minimum
time is approximately 1.0 ms. and the maximum 2.4 ms, a good
average 1is probably 1.7 ms. Thus, floating point add is about
half as fast as fixed point add when optimum programmed. Random
programming, of course, requires the same time for both types
of addition, namely, 5.2 ms.

110

COMPLEX ARITHMETIC ROUTINES FOR THE IBM 650 MAGNETIC
DRUM DATA PROCESSING MACHINE

Tsai Hwa Lee
The Detroit Edison Company

Introduction

Many machine computation problems require operations in complex
arithmetic rather than in real arithmetic. For example, complex arith-
metic is used in the steady-state and transient analysis of electrical
networks, and especially in the studies of the A-C power system. This
paper presents some programming aids tc use the 650 as if it were a com-
plex arithmetic machine instead of one processing ten digit factors.
Part I presents The Complex Arithmetic Interpretive Routine which pro-
vides twelve instructions. These include add, subtract, multiply,
divide, shift left, shift round, store complex accumulator, transfer of
complex number from memory to memory, sum of a block of complex numbers,
square of absolute value, vector-vector multiplication, and unconditional
transfer of control. This routine is optimumly coded.

Part II presents a complex arithmetic matrix inversion program
which makes use of the interpretive system., It is possible to obtain
the inverse of a matrix up to the order of 27 x 27.

Part I ~ The Complex Arithmetic Interpretive Routine

The complex arithmetic interpretive routine was designed so
that the programmer can use the 650 as if it were a machine that could
recognize and execute a list of twelve complex arithmetic instructions
besides the forty-four normal 650 instructions. This routine not only
makes the 650 a more versatile machine, but also facilitates coding
whenever it is necessary to perform complex arithmetic operations.

Complex instructions are tagged with a minus sign. A complex
instruction may be a one, two, or three-address operation., The operation
code occupies 2 digits, while the location of the address part occupies
L digits. The address specified refers to the real part of the factor
to be operated upon. The interpretive routine automatically selects the
imaginary part from the next memory location. Thus the real and imaginary
parts of a complex number will always be stored in successive memory
Jocations. ‘

The interpretive routine is entered by transferring control to
(0054). The instruction to be interpreted will be obtained according to
the instruction address counter (0157). If the instruction obtained is
plus, it will be executed as a normal 650 instruction, and subsequent
instructions will not be intervreted until the interpretive routine is
entered again., This is the rormal manner of leaving the interpretive
routine. If the instruction obtained is minus, the interpretive routine

111

112

will analyze it, obtain the real and imaginary factors specified, and
transfer control to the proper sub-routine. After the sub-routine is
executed, a new instruction will be obtained from the location next to
where the last instruction was obtained. Once the interpretive routine
is entered, the instruction address counter is incremented automatically.
Thus complex instructions are stored sequentially in the memory according
to the order of their execution.

For example, consider the following sequence:

Location Contents
n complex instruction (=)
n+l complex instruction (=)
n+2 complex instruction (=)
n+3 normal 650 instruction (+)

Instructions n, n+l, n+2 will be interpreted in sequence. n+3
is also interpreted but it is executed as a normal 650 instruction.
However, by this time, the instruction address counter has been incremented,
so that if the interpretive routine is entered again, the first instruction
to be interpreted will be obtained from location n+l.

The number form is as follows:
SXXXNNAAKKX + JoXxXxXIAKX = Ay + JA,

A1l the operations are designed to handle numbers with the
decimal point set at the extreme left. It is necessary to scale the numbers
so that the results will be less than one. If any answer should exceed one,
the machine will stoo. Also the condition IA|(|B| must be satisfied for
the divide operation A/B. The two shift instructions are for scaling
where the problem decimal point is different than the decimal point of
the interpretive routine (extreme left). Generally, multiplication is
followed by a shift left instruction, and division is preceded by a
shift round instruction. ‘

LIST OF INSTRUCTIONS FOR THE
COMPLEY. ARITHMETIC INTERPRETIVE ROUTINE

Estimated Time
(msec.)

20

h.
5.

Code Operations
00 A 0000 (€)= (1) Store complex accumulator
00 A 0001 BR (4) Unconditional transfer to (A)
0L AB (4) + (B)=>(C) Add
02 AB (4) - (B)=>(C) Subtract
03 AB (a) x (B)—(C) Multiply
ok A B (A) / (B)=>(c) Divide
05 A B (A)—>(B) Memory to memory transfer
M
06 AM :Ei (45)—(C) Block summation
M
0T AB 2 (Ai)x(Bi)-)(C) Vector-vector
oOMO i=1 multiplication
08 4 B |(A)|2-s>(B) Square of absolute value
09 A B Shift round (A) B positions, result in (C)
10A B Shift left (A) B positions, result in (C)
Notes: 1. (C) is complex arithmetic accumulator.

Instruction address counter (0157) = 11 n 0122
Transfer to (0054) to enter interpretive routine.
Complex instruction is tagged with minus sign.

Storage required for routine: (0000) to (0283)

28.3
26.4
L5.6
45.6
965
175k
60.2

36.2 + L3.2 M

50.6 + 115 M

93.8
79k
8L.2

113

114

Part II - Complex Arithmetic Matrix Inversion Program

This program uses the standard elimination method to obtain
the inverse of complex matrix. Basically, the original matrix is first
reduced to a triangular form and then to the unit matrix by successive
operations on rows. The same operations are applied to the unit matrix
simultaneously. When the original matrix is reduced to the unit matrix,
the unit matrix will be reduced to the inverse of the original matrix.
By augmenting the original matrix with a I matrix below it, no back
substitution is necessary and the inverse is obtained after n reductions.

The effect of the -I matrix is to transfer the pivot row after each
reduction to the n+l row.

Given the original matrix:

A1 Agp ¢ 0o Ay
A' ° :

A App o . Apn

Augment the matrix as follows:

A I
-I O

For example, the original matrix:

b B CIRSUIRINES PO
A1 A2 e oo Bpp O
Aml Apg e e e Apy O
L 0 ... 0 O

becomes the following matrix after the first reduction:

1l IA'lz e o o ,Atln 3 A'l,n""l
—_— — — —
0] |A'22 e oo Aloy H A'2,n+1 l
s ;|
0 l A'n+l,2 v e A'n+1,n ; A'n+1,n+1|

Two types of operations are performed in the reduction:

For the pivot row: A'yjy = Ay3/A17

For all other rows: A'lj = Aij - Ail A'lj

Note that the pivot row (except the pivot element) is trans-
lated to the n+l row. The next reduction will work on the matrix
enclosed by the rectangle with A'op as the pivot element., After n
reductions, the inverse of the original matrix will be obtained, This
is in effect a process of sliding, where the matrix being worked on slides
down along the main diagonzl one step each reduction.

In the 650 program, the elements of the matrix are stored by
TOW, €.8+5 A1]s A12 eee A1py Ay, Apo etc. Each element of the matrix
occupies two memory locations, the imaginary immediately following the
real., Thus 2n2 locations are required for storing the matrix, In
addition, 2n locations are needed for working storage in handling the
n+l row, The I and -I matrices are not stored, their effect is programmed.

Each reduction performs the follewing operations in sequence:

1. Operate on first row and store ir n+l row.
2. Operate on second row and store in first row,.
Alopg— B3
A'23__) Ayo etc,
3. Operate on third row and store in second row in a similar

manner. Operate on the fourth and remaining rows.
lie Transfer n+l to n row,

This procedure stores the reduced matrix in the same locations
as the original matrix. For example the new pivot row for the next
reduction is stored in the locations used by the previous pivot row.

The same program can be used in the second and subsequent reductions.

Furtnermore, the original matrix can be augmented with b
column vectors which are the constant terms of the linear equations.

The solution of the linear equations after n reductions will
result as well as the inverse.

“xl Xo ees X A'lu

The storage assignment is as follows:

A by by ... bmll

(0L55): Aqq, real component of pivot element.
(ohl1): (n} 0000 (b+n) n= order of matrix
b= number of column vectors.
b= 0 if there are no vectors,
(0300): Beginning of program; first instruction.
(0L10): End of program; last instruction. xx xxxx exit address.

The decimal point of the matrix elements is set as follows:
podPocosee '

115

116

The time required for inverting a 10 x 10 matrix is avproximately
5 minutes, and 92 minutes is required for the maximum size of 27 x 27.

Acknowledgments

1. To Ge Ry Trimble, Jr. of IBM, whose "A Metbod for Performing
Complex Arithmetic on the IBM Type 650", published in IBM Technical
Newsletter No. 8, forms the basis of The Complex Arithmetic Interpretive
Routine.

2. To Re W. DeSio of IBM. The logic of the Complex Matrix
Inversion Program is similar to the "Floating Decimal Point Matrix
Inversion Prcgram" written by Mr. DeSio.

[Provlem Hskp., |

P4

[ﬂskp. for each reduction[

—

Modify

Insts. for npx

Pivot Row: A{ 3= Ay /A 1—?N+1 Row
% element,

N FIN

TRC
N

FIN

Pivot Element:l/A;

Lﬁ§&p- for Agl4

2

FLOW DIAGRAM FOR MATRIX

INVERSION BY SLIDING

Hekp, for 1st col. of Ayl

3)

= Aiy - AaALY

odify insts, for next element

_N_FI¥ <::::z:::>

Hskp. for pivot col

ivot Col=z Aq1x(-1/A1))

Modify
Inst-

N FIN "lllll..

Hskpe. to move pivot rowi

Move P
Row to N Row

ivot Row from N4l

Modify
Inst,

Not FIN

- N FIN <: :>

Red
c.

Exit

NOTE:

3 Tallys Used
TRC - %raverse Row Count

RC « Row Count

RED C = Reduction Count

- —

117

118

MATRIX MULTIPLICATION WITH THE IBM 650

R. H. Morris and C. H. Remilen
' Eastman Kodak Company

Multivariate statistical problems such as multiple re-

_ gression analysis, least squares analysis, multivariate tests of

hypotheses, etc, require as a basic computation the multiplication
of a matrix by its own transpose.

In the classical least squares problem, for example, one
is given a n x s matrix A (nss) and a n x 1 vector y and is required
to find a s x 1 vector x of unknowns which best satisfy the matrix
equation:
Ax = y.

The best solution, in the least squares sense, is that which makes
the sum of the squares of the residuals & minimum,

x93 (y-Ax)'(y-Ax) = min.

As is well known, the solution is found by solving the normal
equations ’

A'Ax = A'y

and the residual sum of squares R is found by direct substitution,
or more easily,

R=y'y - x'A'y.

The quantities required as intermediates for the solution of the
problem are, then,

A'A, A'y, and y'y.

These are conveniently determined by considering the partitioned

matrix:
]
“[4]
]

and the product C, of B by its transpose:

c= B'B=f'A Ay

- e e -

Al y'y

The 650 routine to be described presupposes the internal storage
of B (the B matrix is usually augmented by an extra column consist-
ing of the row sums so as to provide a check on the computations),
it forms B'B, omitting those elements which may be obtained by
symmetry, repeats the calculation of any row which fails to check,
and leaves the matrix C stored in the machine for further computa-
tions.

The routine can also be used for multiplications such as
C= A B where A'A is not required, by loading B completely and
loading A one row at a time.

The restrictions on the matrix B for the multiplication:
C= B'B are:

1. Any element cjj of C must not exceed ten digits. Since
all calculations are done in fixed decimal, any element
bij of B must not exceed five digits. The number of digits
allowable in bjj will vary with number of products (n) to
be summed over.

2. The order, n x s, of B must satisfy s (n#*1) ¥ 1770. The
constants, and auxiliary storage for the load, unload and
B'B program decks consume the first 230 cells. Element
cij may be stored in location 0231, element b11 must be
stored in 0231+* s or further. Only storage enough for
one row of C is reserved. After the first row of C is
calculated we no longer need the first column of B and
because n ¥ s the second row of C may replace the first
column of B, etc. Thus, the elements of C "chase" the
data of B.

Matrix B will be entered with a crossfoot column of row
totals which will be used to check each row as it is calculated. In
the event that the check fails, the program will stop the machine.
However, programs are included in the appendix which will adjust the
routine so that it will recalculate the row. These programs were not
tested when this routine was checked out.

If the column totals are needed to "mean correct" matrix
C then a2 column of 1's should be included in B. Note that this "1"
should also be included in the check column.

The general operating procedure for making this calculation
is: 1. load the load-unload program
2. read a card that describes the next deck to be loaded. This
card contains the following data:
a. how many cards are to be loaded
b. how many instructions per card
c. 1into which location to start loading
d. to which location to go after completion of loading
3. The above card will describe matrix B which will be loaded in
successive cells in order by column,
L. read a card that describes the program B'B deck as in step 2.

119

120

5. load program deck

6. calculate B'B = C

7. read a card that describes next deck to load if C must be
further operated upon or read a card which describes how to
punch C. The punch routine is just the reverse of the load,
so this card must contain similar information.

The program for B'B = C is stored in locations 0099 to 0226.
The contents of each location is found in Appendix A. The 128 instruc-
tions are punched eight to a load card, the first fifteen cards being
permanent and the sixteenth card keypunched to identify the order of
the B matrix.

The keypunched card contains the following data:

n, the number of rows of B

s, the number of columns of B
. s, the number of columns of B
. location of bjy

. location of cjq

. stop code if check fails.

AN W O

The program deck and original data, punched eight instructions
or eight elements per card, load at the rate of 200 cards /min. assumlng
the whole drum is to be loaded with data, the maximum load time is l- min.
for data and instructions.

The B'B = C program is represented by the following block
diagram:

(1) Initialize instructions
with data from key- o1
punched card
(2) Test for completion o
B'B=C Calculate one
row of C.
out
B'B= ¢ |&
completed \4
(3) Check calculation
of this row of C
, error
[Ee3] ¢ |
VY checked
(k) Modify instructions to | |
: calculate the next row
of C

Appendix A shows a more detailed set of flow charts, Figures
1, 2, 3, 4. Each detailed block in Appendix A refers to locations of
instructions which are required.

The progran was checked out with a 42 x 33 matrix. The
calculate time for B'B=C was about 25 minutes. This matrix required
23,561 multiplications.

APPENDIX A

Figure 1 - Block diagram illustrates modifications to programs with

Prog 99-102

Prog 103-105

Prog 106-109

Prog 110-111

Prog 112-113

the location of element bjj and the location of cjj.

These locations are backed off the proper distance so that
all the elements' locations may be generated, locating the
first column the same as the rest.

Start

modifies prog 142 with the (location of byl)-1
(Multiply)

modifies prog 141 with the (location of byy)-1 +n
(Load multiplier)

modifies prog 143 with the (location of cy1)-1
(Add previous accumulation)

modifies prog 14k with the (location of cyy)-1
(Store accumulation)

modifies prog 152 with the (location of ciy)-1
(Location of pivotal element ckik)

Fig. 2 (prog 114)

121

122

APPENDIX A

Figure 2 - Block diagram illustrates the multiplication loops.

Prog 114-115

Prog 116-117

NZ

y

Aeg., check crossfoot

\
Prog 118-120)'

Prog 121-123
!

Prog 124-126

Prog 127-128
8oo1

Prog 129-130

Prog 131-13k4

Fig 3¢

(Prog 149)

Prog 1h1-1k2

pos

Prog 135-137
Prog 138-140

Prog 143

<

Prog 1kh

Prog 145-1L8

set up s' in location 225
(Remaining columns to multiply as pivot columns)

decrease s' by 1 and test. If zero, B'B is
complete; if non zero, there are more pivotal
columns.

(Crossfoot is not used as pivotal column)

decrease location of multiplier, prog 141, by n

increase location of product to be accumulated,
prog 143, by 1

increase location of product to be stored,
prog 1hl, by 1
reset to zero, the location to accumulate product

set up n in location 230
(Count number of multiplications within a column)

decrease s' by 1 (location 225) and test. If
negative, all columns for this row have been

-multiplied so check crossfoot, if positive,

there are more columns to be multiplied.

increase location of multiplier by 1, prog 14l
increase location of multiplicand by 1, prog 142
multiply two elements

add previous accumulation

store accumulation

decrease n by 1 (location 230) and test, if zero,
all multiplications for this column are complete,

so do another column; if non zero, there are more
multiplications within the column.

APPENDIX A

Figure 3 - Block diagram illustrates the subtraction loop to check
crossfoot of each row of C as it is completed.

Prog 149-151

8001 Prog 153

Prog 154-155

Prog 156-157

Prog 158-159

modify prog 152 with the location of the crossfoot
for the row to be checked

place value of crossfoot in an auxiliary storage
cell, location 29, to hold differences as each
elerent of row is subtracted out.

Set up s in location 226 to be called r
(Count total number of subtractions to be made)
NOTE: this is now one too high

set up s' in location 228 to be called r
(Used to locate location of column elements
to be subtracted out)

set up s'-1 in location 227 to be called rp
(Count number of row elements to be subtracted out)

modify prog 214 with location of the first element
to be subtracted out plus one

Prog 163-166

Z

Prog 167-168]_H'j
Z J -

Fig. e

Prog 200-203

neg.

Prog 160-162 [;i::'

Prog 204-206

Prog 207-209

Prog 210-212

Prog 213-21hL

i<

NZ

decrease ry by 1 (location 226) and test. If zero,
all subtractions have been made so check crossfoot
for zero balance; if non zero, there are more
elements to subtract out for this row

test location 229 for zero. If zero, start
another row, if non zero, stop machine or
recalculate row

stop or
hocation 169-184 (recalculate row)

decrease rp by 1 (location 227) and test. If

positive, subtract a row element, if negative,
calculate location of column element to be
subtracted out.

decrease location of column element to be
subtracted, prog 21k, by r3 (location 228)

increase r3 by 1 (Location 228)

decrease location of row element to be
subtracted out, prog 214, by 1

subtract element out of previous difference,
location 229

123

APPENDIX A

Figure 4 - Block diagram illustrates modifications of prograns in order
to calculate another row of C.

L

Prog 185-188 increase location of multiplier, prog 141
by 2n

Prog 189-191 v decrease location of multiplier, prog 14l
by n and modify prog 142 to give location
of multiplicand

.\ ,
Prog 192-19k4 decrease s' (location 221) by 1

(Remaining columns of symmetric matrix)

Prog 195-197 i:] decrease location of next product to be
accumulated, prog 143, by 1

Prog 196-199 decrease location of next product to be

stored, prog 144 by 1.

Fig. 2 (Prog 114)

124

DETERMINING THE EIGENVALUES OF MATRICES

Mark Robinson
Bell Aircraft Corporation

I. Eigenvalues and Tigenvectors

In applied mathematics, a problem that frequently occurs is that of
solving, for a given square matrix M, an equation of the type

(1) MV = AV,

‘where V is a vector and A is a scalar. It is obvious that if for some \, Vo
satisfies equation (1), then k Vo, where k is any constant also satisfies

the equation. In such a case A would be called an eigenvalue, (or characteristic
value, or root of the characteristic equation) of M and v, or k Vg would be
called an eigenvector corresponding to A. For purposes of counting, V, and

k Vo are considered to be the same eigenvector.

The first and most important theorem on the subject is that every square
matrix over an algebraically closed field has at least one eigenvalue and a
corresponding eigenvector. The proof follows from the theory of linear systems.
Equation (1) may be rewrittens

(2) (M=IA) V=0

For any given A, this has a nonetrivial solution if and only if the
determinant: IM-IX|- 0. Expanding the determinant by minors we get a polye
nomial in A of degree n called the characteristic equation of M¢ As the matrix
was assumed to be over an algebraically closed field this polynomial has n roots
one or more of wich maj be multiple roots, To each distinct root,)‘i , of the
characteristic squation corresponds at least one eigenvector, Vj.

If Ay, M3y oeoy N, are distinct eigenvalues and V;, Vp, ces, V, are
corresponding eigenvectors then the V; are linearly independent. If all n
eigenvaluss are distinct, then all of the eigenvectors are linearly independent
and as the characteristic equation of an n x n matrix has n roots, the eigen-
vectors of a matrix whose roots are distinct span the space over which it
operates, This is the case most commonly encountered in practice. Only two
other cases may occur: matrices with one or more multiple roots whose eigen=-
vectors span the space, and matrices whose eigenvectors do not span the space
upon which they operate. Some methods of obtaining eigenvalues may fail or
have excessive rounding error for one or both of these cases.

An operation that has considerable application is the change of basis in
the vector field over which a given matrix operates. Let a given vector V be

125

126

represented by the column X in one coordinate system and by Y in anether,
vhere the transformation is Y = CX. Then MX expressed in the Y coordinate
system becomes CMX = CMC™1CX = CMC"IY; that 1s M is transformed inte cMC~1,
If Vis an eigenvector of M, then CV is an eigenvector of cMe-1. Further, if
P(M) is a polynomial in M and if P(M)°X = O then P(CMC-1)°X = 0; for if

P(M) = za ¥, then P(cMC~1) = za,@1*c"1 and P(cMc-1)ecX = (za,oMKc™1) cx =
(za, GMK)oX = C(za,M¥)*X = C(0) = 0. For mtrices of a general type, this
transformation is most useful in reducing them to a simpler farm, as it dces
not. change the ei.genvalues. Note that as ths transformation is reversible a
vector which is not an eigenvector cannot be transformed into an eigenvector by
change of basis, which, of course, is intuitively obvious.

The change of basis may be used to transform a matrix to a form with zeros
below the main diagonal and also with every element mgy o= 0 if myy ¥ My ge The
process goes as follows: denote M by Mj; M; having an eigenvector Vy. ILst ¥y
be normalized so that the leading element is cne. If the leading element is
zero, rows and coelumns of M, may be interchanged. Let 01"1 be the matrix
obtained by replacing column 1 of the identity matrix by V3. Then clucl‘l has
Ay in the position (1,1) and zeros elsewhere in the first column, Let
Misl = Ciﬂici‘l where for i > 1 the Ci’l are chosen as below., Consider the
(n+lei) x (n+lei) matrix in the lower right hand corner of Mj. It has an
eigenvector in (n+l-~i) dimensional space. We may normalize it as before, Now
it may or may not be possible to add elements L)y 4g eee &y 4 to V; in such a
way as to make it an eigenvector for all of Mj. We want A3 4 ¢+ Zni_.l,:].vj.
N4y and similarly for the other «; . These equations have solutions except
where A = ‘;]5 (j (1) Where no solutions exist, we may put 4y = Oc Then Vy
with the & adjoined is used to replace the itth column of the identity matrix
to give Ci"lc Thus, the transfomation Mj,; = CiMici'l gives M; 1 with zeres
in the i'th column except on the diagonal which has Ay and above the diagonal
in cases where A = KJ; (3 #1)o. My,y is @ triangular matrix whose characteristic

n
eocuation is seen by inspection to be: i&]‘. ()«-)\i) = 0, Let P(Mml)' 11;€(Hn+1'1)\i)°

Then P(Mp,1)°X = O for any vector X. It is sufficient to show this for the
"basis" vectors, (1,0,0..,0), (0,1,0c.00) etco Let u; be the basis vecter
which has 1 for its i'th component and zercs elsewhere., Let p be the number
of A's above A; on the main diagonal and equal to Aj. Then P(M,,y) contains
the factor (Mml-Ikip*l. Now (Mp,y=I%3) uy is zero except possibly in those

positions, where XJ = Xi and j (1. This means for p = 0 the vector is
annihilated by (Mp,)1-I);), and hence by P(M,,j)e If we assume the annihilation
proven for p = k, then if p = k+1 multiplying by (Mp,)=IN) reduces w to a
sum of vectors which are annihilated by (Mp,)=IA;)K. Thus M,y satisfies its
characteristic equation. But M,,; is of the form cMc1 so P(M)Cy = O for all
i, and M also satisfies the characteristic equation. (Cayley-Hamilton theorem).

II. Various Methods of Solving the Eigenvalus Problem

We have programmed and tested at Bell Aircraft Corporation a great many
methods for finding the eigenvalues of matrices, The reason that we have used
so many methods is, of course, that so few methods have proven completely
satisfactery. Exeept for special methods for symmetric and Hermitian matrices,
mentioned in Section J below, all the methods have been tested and used on our
CPC or 650 or both,

A) Direct expansion by minors.

For small matrices, it is possible to expand M = IN by minors and

get the characteristic equation of M directly. This is probably the best
approach for 2x2 matrices and on the CPC for 3x3 matrices, It has been
programmed on the 650 for 3x3 complex matrices and it works quite satisfactorily,
but it uses so much storage for instructions, tﬁnt we plan to run many of our
3x3's by Danielewsky's method discussed below, For matrices of size Lxl and
higher, the method is too laborious for wide use as the number of operations
goes up about as n°n! , However, we once attempted this method for 5x5's on
the CPCs While this method is quite accurate when applied to the small size
ma trices for which it is suitable, it was not remarkably accurate when applied
to 5x5's, In all cases we solved the characteristic equation by Newton's method.

B) Another Method Using the Determinant

It is well known that it is easier to evaluate the determinant of a
large matrix of numbers (as opposed te a matrix of Polynomials) by elimination
than by minors, as elimination takes about n3/3 multiplications instead of about
ne . This technique has been applied to determinants of the fbrmIMk- IN at
Bell Aircraft Corporation, where we used elimination down the opposite diagonal,
to avoid dividing by polynomials in A, When the elimination was one half
complete, we shifted to direct evaluation of the coefficients of the characteristic
equation from the reduced matrix. We used this method for complex 5x5's with
moderate success on the CPC, but the rounding error was treacherous, and a

127

longthy checking process was found necessary te guarantee accuracy. We do
not eonsider it suitable for the 650 as it appears that the program would
take too many instructions.

C) Numerical Evaluation of Determinant

If one is given /\, as an unverified eigenvalue of M; a simple way
to check the value is to campute [M = TA | , usually by elimination,. This
has a number of variations. For example, we frequently improve the approxie
mation of A, as a root of M « IA| = P(A) = O by evaluating P(/\p) and setting
Ny =\, =(P(N)/ g)}\ A that is by Newton's method. However, if we have
only approximate values for the coefficients of P()A), then we may be able te
evaluate |M = I/\,| more accurately than P(A,). Thus, direct evaluation of
the determinant can be used to refine approximate eigenvalues. Also we may
replace dP/dA by:

(M =IA] = M1) /(A= /Y LA, =N\ 1s small,

Both of these methods have been used to check the results of the calculations

. b (.
of the type described in section B, If (Al "Ao) /)\max < 10°° (where xmax

is the largest computed eigenvalue) the root is accepted; otherwise the process
is repeated until this criterion is satisfied. Most reots are accepted at onee,
but occasionally roots close together give considerable difficulty.

A variation of the above method is being programmed for the 650 to
check the results of Danielewsky's method, and simultaneously obtain the eigen~
vecters. We have (M = I Ao) V = 0 where V may be written in the form
(%15 Xp5 eao, X .1s =1)o If we perform our elimination working down the main
diagonal we arrive at a matrix of the form:

1 0 o Xy]
01 0 X2
LO O 0 € |

where the x5 give the eigenvector and € times the divisors used in the
elimination is the value of the determinant, |M = IA,| + The quotient of
this by lo P'()‘o) will be used as an indi cation of the accuracy of the root,

128

D) A Method Using the Cayley-Hamilton Theorem

n k
The theorem: P(M) = 3 aM” =0 (where P(\) is the characteristie
k=0
polynomial |AI - M|) can be used to determine the a. Since the z:akmk.x =0

where X is any vector, repeated premultiplication of a vector by M yields the
set of vectors MkX, Denoting the it'th component of the k'th vector of the

set by b,, we have the set of equatioens: ‘2‘: b;,8, =03 and a_ is known to be 1,
ik k=0 ik'k o
If the matrix B is not too badly conditioned, the a, may be ocbtained from this

set,

This method is simple, easy to program, and occasionally gives good
results, It is treacherous with respect to rounding error as the matrix B
is seldom well conditioned. For example, if we have two equal eigenvalues then
B is singular, if some of the eigenvalues are much larger than others, then the
columns of B representing the higher powers of M will tend to lie in the same
general direction; B will be nearly singular if by accident the vector X is
chosen so that it has a nearly zero component in the direction of some eigenw
vector. As a result of the uncertainty about the accuracy of the results, we
have been forced to abandon this method.

- An extension of this method has been suggested, but not tried out,
so far as we know. Instead of taking one vector X, we may start with two or
more initial vectors and get a 2n x n or 3 n x n redundant set of equations
which ceuld be solved by a least equares process, This method may merit further
investigation, as it is one of the few that appear suitable for fixed decimal
type of operation,

E) Leverrier's Method

If we study the diagonalized or triangularized form of M, that is

oMC™Y, we observe that (MC=1)D = vy An where A, are the roots of the
20

o M
characteristic equation, But (CMC~1)™ = eMPCc=1l, that is the transformation of
M2, Now tfxe trace of M! is (=1) times the coefficient of A1 {1 the charac-
teristic equation of M" and is invariant under the transformation: Mn—qCMnC"‘l.

Thus the trace of M" = 3 lin. Now the coefficients ef a polynomial, a , are

symmetric functions of its roots: If we denote the trace of M" by S, vwe get

129

1

)

--l181+82
2
8y = - 1/3 (32 Sy + 3y s2 + 33) etc,

This method suffers from two major defects. In the first place, the
computation is lengthy, as the matrix must be raised to the nth. power,
requiring about n” multiplications. Also, in many cases, the rounding error
is very bad. 1In cases where all the eigenvalues are positive, the Si are all
positive but the ay alternate in sign. This means that after the first, each
a, is the difference between positive quantities, and quite frequently, the
small difference between large positive quantities. In aircraft flutter work
matrices with real positive eigenvalues are infrequently encountered but one
of ten meets complex matrices with the real parts of the eigenvalues positive
and large compared with the imaginary part. This is another method we were

forced to abandon.

F) Danielewsky's Method

1

The transformation Mi+1 = CiMiCi may be used to reduce a matrix in

such a way that the coefficients of the characteristic equation are obtained.
Take M; = M and let Ci”l be the matrix obtained by replacing the (i+l)st.

column of the identity matrix by the vector obtained by dividing the ith. column
of Mi by its (i+1)st. element., After this transformation M2 contains only zeros
in the first column except for row 2; the second column of MB is zero except in
its third element; and finally M, has zeros everywhere except for the last
column and the diagonal below the main diagonal. This process can fail only

if one or more of the "pivotal" elements is zero, We perform another set of
gimple transformations to reduce Mn to Frobenius standard form:

ey

O O O ¢ o o 0 -8

100...0 =a
_ 0 1 O e o o 0 "32
M = o o o o o o °

00.010 “‘n.z

0
00+.001 ~a _,

130

where a is the coefficient of li in the characteristic equation P(A) =
A" +°Z a, N = 0. To see this, consider P(N) / (A) = X1 .73 g\
i=0 i=0
(A, any root of P(A). As my be verified by miltiplying (x.xo)(xn-lzdixi),
ai = -xodi + di-].; ao = -xodoo Now nno {do ® o o o o n-2, 1} -
-3, do-al, oee di-l “8i5 eoey dn-2 a1 But,’ from the previous
statement, this is just equal to {-)‘odii « Hence, A is an eigenvalue of Hn,

and, since the transformation of M into M, did not affect the eigenvalues, it
is an eigenvalue of M. Consequently, P(A) is the characteristic equation of M,

As was bointed out earlier, this method fails only when the pivotal

" element is zero. However, the method can be extended to cover even these cases,
Suppose the pivotal of M; is zero, but there is a none-zeroc element belew it in
the i'th, column, and k'th. row, Then we may interchange thes (i1+1) st. row
with the k'th. row and also the (i+l)st. column with the k'th. column. This
does not disturb any of the zeros in the columns numbered less than i, and the
interchange of both rows and columns is another example of change of basis
which does not affect the characteristic equation.

In order to handle the case where the whole column is zero below the
main diagonal, we split the matrix, using an auxiliary theorem:

Let any square matrix M be mrtitioned as below so that A and D are

square principal minor matrices comtaining between them all the diagonal elements,

and let C = 0, than every eigenvalue of M is an eigenvalue of A or D.
]
M=
C D
Proof: Let m be the number of rows in A. Then every eigenvector of M falls
into one of two classes; (1) all elements after number m equal to zero, and
(2) all other cases. It is obvious that the eigenvectors of class (1) are
eigenvectors of A with the trailing zero!s omitted. If we take vectors of
class (2) and consider only the last (nem) elements, then they are eigenvectors
of D. Also with all of these vectors, there is associated the same root in both

M and A or D. The converse is also true., Obviously, an eigenvectoar of A is
an eigenvector of M (by adding zeros), Also if an eigenvalue of D is at the

131

132

same time an eigenvalue of A, it is therefore an eigenvalue of M. In the case
of an eigenvalue of D which is not one for A, we may transform M so that A is
in diagonal or triangular form as in part T without affecting matrices B, C
or Do Now, as in Part I, any eigenvector of the lower, right«hand corner may
be extended to an eigenvector of M (transformed) provided, as we assumed, that
the eigenvalue associated does not equal any of the upper lef‘b-hand diagonal

glementso

Using the above theorem, we see that when we carry out the reductions
of Danielewsky's method until we encounter a column which has all zeros below,
we may split the matrix and find the eigenvalues of part A and D separately.

A is already reduced to standard form for the characteristic equation and D

is of lower degree than M, even if the splitting occurs on the first column.
Therefore, if we reduce D as we had been reducing M, the process will terminate,
although we may have to split D several times., After splitting we have a
factorization of the complete characteristic polynomial.

This extended process appears difficult to apply directly on the 650.
Even if we neglect the problem of storing the extra instructions, we have the
old problem of digital computers: "what is a zero ?". Usually, when the true
answer is a zero, the computed answer will contain rounding error. In problems
that are carefully scaled, it is frequently possible to set a reasonable upper
bound for the rounding error, but in routine matrix work, scaling each matrix
would be laborious , and the results might not mean much, as the operation of

dividing a column by its pivotal element causes irregular and sometimes large

increases in the size of the numbers used,

We have adopted Danielewsky's method as our principal means of attacking
medium size matrices on the 650. We have run several hundred 5x5 complex matrices
with good results using our provisional program, and we are now adding checks on
the determinant, as outlined in Section C. We know that there are some matrices,
(for example, matrices with two or more equal roots, whose eigenvectors span
the space) that cannot be handled by this method, but we have been lucky enough
not to be presented with any of these,

G) The Power Method
If the characteristic vectors of M span the space, then any vector V
may be written: V = zaivi where the V; are eigenvectors of M. Hence, MPY =

Zaikpivie If one of the)‘i , say 11 has much larger absolute value than the

others, the term klpaIVi will dominate the others for large p, assuming of
course, that a; ¥ O, Thus, by repeatedly multiplying a matrix by an arbitrary
vector, we get an approximate eigenvector, which we can make as accurate as
available machine time will allow. It is customary to normalize each time by
dividing through by same element, frequently the last. Then the approximate
eigenvalue appears as the last component of the next product vector,

This method may be extended to find other eigenvectors in several ways,
Por example, if M is symmetric, its eigenvectors are or may be chosen orthogonal,
Thus, after V) is determined, we may choose a V such that VeVy; = 0o Then, the
component a3 = 0, so that ZaiXPVi approaches the vector corresponding to the
second largest A, Because of rounding error, it is usually necessary to re-
orthogonalize occasionally. This can bs extended to find all the roots and
corresponding vectors of a symmetric matrix. If M is not symmetric and we
have found one of its eigenvectors, we may reduce it as in Part I and consider
only the (n-l) x (n~l) lower right-hand corner. This process, when applied
repeatedly, reduces M to triangular form,

The convergence of this process depends upon |X1/le where Ay and
Ay are the two largest roots of P(N), When this ratio approaches one, conver-
gence becomes very poor. At one thére is no convergence. To accelerate conver-
gence quadratic or higher fomulas may be used, Take X and Y any two non-parallel
vectors. We assume that eigenvectors corresponding to eigenvalues other than
Al and Xz have been substantially eliminated from V. Then we solve the equation:

(sz)x + (MV)+X*p + VeXeq = 0

(M2V)Y + (MV)*Yep + VoYeq = O
for p and q. The roots of the equation A2 + P\ + q = 0 are approximate values
for the two largest eigenvalues kl and A,, We choose the smaller to eliminate,
We take as our new V, the quantity MoV - MMV, The cubic reduction is similar,

Except perhaps for ultra high speed machines, the pbwer method is too
slow to be practical except in special cases, Probably the most important of
these special cases is when only one or two of the eigenvectors are needed,

For example, some vibration problems are set up so that the reciprocals of the
Squéres of the frequencies are the eigenvalues of a matrix. An enginesr may be
interested in only the lowest two frequencies. These frequencies are often
well separated; for example, the vibration frequencies of a cantilever beam
have about the ratio 1:6.2:17.4. We have programmed this method for both the

133

134

650 and the CPC and use it for these special applicatiens.
H) An extension of the Power Method

Except as applied to symmetric matrices, the cemplete power method
has the reputation of being inaccurate, at least for the smaller values ocbtained
later in the process, The reason is that mest matrices have at least one pair
of eigenvalues nearly the same size, If lkl/hzlis 1.1 may take sixty or
seventy matrix vector multiplications to get three digit accuracy. Under these
circumstances there is a strong temptation to stop the iteration as soon as
a reasonably good value is obtained, This may be permissible for the first
two or three roots, but when the matrix has been reduced several times using
approximate eigenvectors, the roots of the lower right-hand corner are no
longer clese to the roots of the original matrix. At Bell Aircraft Corporation,
we have developed and t ested a method for getting around this difficulty.
Eésentially what we do is récogxxize that when we reduce with an approximate
eigenvector, we cbtain only épproximate geros, We save the whole matrix after
each reduction, including the terms near zero.

The process thus has three parts: find a reasonable approximation to
the eigenvector for the lower right-hand‘ corner matrix, extend this to an eigen-
vector for M;, and then reduce the whole matrix. When the process is complete
we have an "almost diagonal" matrix, that is a matrix whose elements on the
main diagonal are large campared with all others,

The approximate roots may now be improved by a simple iteration process.
If we want to improve Ap we take:

Vi,o =0 1 /4P Vpo=15 Apo ™y

(the second subscript is the number of the iteration).

Vi, i+l 'kﬁi mik’vk,j/*p,i”mii)i i£p

n
"p,341 T 13 Pp,ge1 7 2 i Tk, 341

The advantage of this last type of iteration is its very rapid con-
vergence. In the case of two equal diagonal elements we simply set the
corresponding v, equal to zero. However, it is clear that this method fails
for matrices whose eigenvectors do not span the space as these cannot be
reduced to diagonal form, The failure occurs when we try to extend the eigan-
vector of the lower right-hand corner to one for M.

This method has been testéd on the CPC. It is too laborious for

general use, but for medium-sized matrices, it is the most accurate we have

found, using a fixed number of digits,
J) Conjugate Gradient and Special Methods for Symmetric Matrices

In the past few years, there has been a great development of special
me thods for symmetric matrices; most of it by men who worked at one time or
another for the National Bureau of Standards,

The process for finding the characteristic equation is an extension of
the process of solving a linear system. Given AX = B, one takes an arbitrary
X, and sets ’

P, =T, ™ B = Axo

a; = (ry+p;)/(py Ap;)

xi-c-l =5t ;P

Tiel ™ T3 = % 45

Dy = (ry 4 ° Apy)/(pyApy)

+b

Piyi " T34 * 03Py

If the process can be carried out n steps, neglecting rounding error,
Xn 1s a solution, that is AX, = B, and r, = 0. The a; and hi can be used to
obtain the characteristic function as followss

RoﬁPotl

Rivy = By =MyPy

Pis1 "B + B4R P = P(d)

Although we have programmed this conjugate gradient method for the
solution eof simultaneous equations, we have not used it for eigenvalues because
most of our matrices are not of the right kind, However, it appears very
promising.

III. The Program Using Danielewsky's Method

We have in operation a program applying Danielswsky's method to the
solution of eigenvalue problems for 3x3 to 5x5 complex matrices. The work is
done in floating decimal using an interpretive routine prepared by Mr. Brucse
Blasdell of Bell Aircraft Corporation, This system uses an eight digit mantissa
and a twe digit exponent. To simplify coding and reduce storage requirements,

135

complex arithmetic subroutines were worked out for the operation, asb—k, 1/a—k
and a « k—a, which were the operations most used. The use of these subroutines
simplifies coding the main problem, but at some expense in speed,

There are many formulations of Danielewsky's method. For example, instead
of working with matrices that differ from the identity only by a column, we
may uge for C and c=1 matrices that differ from the identity only by a row.
This is equivalent to working on the transpose of M, and the choice appears
arbitrary. Again, equally arbitrarily, we might start with the last column,
to set all but one of its elements equal to zerc, instead of the first column,
Because our research on this problem was done on the CPC, the arbitrary choices
were made in such a way as to simplify CPC coding and card handling.

There is one respect in which our method differs from methods that I have
seen published., Usually the matrix ci-l is obtained by replacing the (i+l)th.
column in the identity matrix by the ith. column of Mj. We first divide this
column by its (i+l)th. element. The only change that this makes in C; is that
for the (i+1)th. diagonal element, instead of one we get (1/‘“i+1,i)' An
advantage of the usual method is that the final reduced matrix M, has 1t's on
the sub=diagonal, so the final multiplication by thesé elements is not needed.
We feel that our method is superior, however, as it is shorter, the coding
appears to be simpler, and rounding error should be less., The last factor was
decisive. The reason why our revision of Danielewsky's msthod should produce
less rounding error is that in the reduction: Mj y = cinici"l there are two
possible sources of error, the first is that C; may not be the exact inverse
of C and the second is the rounding error in the indicated calculation. Our
version eliminates the first source of error because C; is the exact inverse
of Cj_-l instead of a computed inverse. This should cut the per-step rounding

error in half,

The actual operations contained in the program are:
1) Compute V; = the i'th, column divided by its (i+l)st. element
2) Mj.V; and place answer in (i+1)st. column of My
ivl o, 10 v emd :
3) my i = Vi g,k 3 F

i+l = i
B (141),k T (A1) 0k

136

The first step 1s a loop, and steps 2) and 3) are both loops within loops.
The thres steps are iterated (n-l) times; the final step in the reduction to
Frobenius form is the multiplication by the subdiagonal elements.

Next, the roots of the characteristic enuation are obtained. Newton's
method is used and each root of the reduced equation is substituted back inte
the original equation fer cerrection and checking., In addition, the program
contains special parts to handle the particular problems of aircraft flutter,
We get M by dividing a given matrix by a diagonal matrix. We also compute
W, V, M and g, functions of each root. The whole existing program runs about
eight minutes per matrix,

There are at least two plausible methods of checking the results of the
program. The first is to add an (n+l)th. row to M, a check row whose elements
are the sums of the elements in their columns, For the product Mici'l the
check row remains a check rew. For the multiplication;ci(MiCi‘l) it is
necessary to augment C; by adding an (n+l)th. row and column, The latter is
zero except on the diagmal, which is one, and the former is zero except on
the diagonal and the (i+1)st. column which is the sum of the off-diagonal
elements in Cj. The product now contains a valid check row. Examination of
the check row after (n-1) reductions will locate gross errors, and give a rough
idea of the total rounding error in reduction., This check was used on our CPC
program. The check we plan for our 650 program is the direct one using the
determinant, which also gives the eigenvectors. We make this choice because
there is enough demand for the eigenvectors to justify the extra work involved,
Meamwhile we have been running the program without check, except that any value
questioned by the customer is checked on the CPC. So far we have run several
hundred cases without finding a serious errer,

V. The Modified Power Msthod

The extension of the power method described in II-H has been programmed
and tested on the CPC° For a calculation using a given number of digits, we
regard the method as the most accurate we have tried, One difficulty in
ana lysis of rounding errar is getting examples whose exact answers are known.

We constructed by hand an 8 x 8 matrix whose eigenvalues were complex integers.,
The example contained five and six digit numbers to ensure nomal rounding error
for multiplication. It was not weighted on the main diagonal and the largest
element wﬁs about ten times the largest eigenvalue. While no pair of roots were

137

138

clese in the complex plane, one set of three roots and another of two were
of similar absolute value. On the whole, we considered this matrix as a
moderately bad case. Using the modified power method, we cbtained the

eigenvalues to about seven digit accuracy.

We have not programmed this mrocess for the 650 because we regard
Danielewsky'!s method as suitable for matrices of order 5 or smaller; and
with double precision routines, we expect to use it for matrices of any order
within the capacity of the 650.

As both the modified power method and Danielewsky's methoed involve same
type of reduction, we might ask, "How can one be more accurate than the other?"
The answer is that the modified power method is essentially an elimination
process working down the main diagonal while Danielewsky's method t akes its
pivotal elements down the sub-diagonal. Most matrices arising from physical
problems tend to be weighted on the main diagonal which means the pivotal
elements of the power method tend to be large, while for Danielewsky's method
we usually seem to get at least one small one. Also when a matrix is reduced
by the power method, the elements normally become smaller and smaller as
the larger eigenvalues are eliminated first, while with Danielewsky's method
they gorw, as the coefficients of the characteristic equation tend to be large
compared to the individual roots.

The rounding error of the basic reduction process is easy to study for
the case of distinct roots. Let Mj,y = CiMiCi'l = KDK™! where D is the
diagonal matrix of eigenvalues. Let ﬂ1+1 be the computed matrix obtained from
the reduction using machine calculations and define € js1 ™ ﬁi+1 - Mi+1° Now

- ﬁ:’ul K=Da+ K1 éi+1K' If the €i+1 terms are small compared with the
differences between the }‘i , then the eigenvalues of D + k1€ 141 K depend

almost entirely on the diagonal terms, and hence the errors depend primarily
upon the diagonal terms of - €i+1K‘ It is possible to scale K, so that all
of its columns have length one. Then we get a bound for the errors in the

roots of: The square roots of the sum of the sgquares of the elements of 141

times the length of the rows in K"l corresponding to these roots. From this
it can be seen that the closer a matrix is to symmetric or diagonal, the less
is the rounding error in this reduction. The power method reduces a matrix to
a form which more and mare closely approaches diagonal, while Danielewsky's

method produces an unsymmetric form,

In principle, both methods may be improved by proper choice of pivotal
element. In Danielewsky's method the largest element in the T'th. column
which is below the main diagonal may be used., If the only large element lies
on the main diagonal this is not very helpful, In the power method we may
interchange rows and columns so that the largest element of the eigenvector
of the reduced matrix is the pivotal element, so the system is always well
conditioned in this respect. Frequently, vibration matrices come so arranged
naturally. We have done a limited amount of experimenting with the results
of interchanging rows and columns in Danielewsky's method with discouraging
results. It seems that frequently what is gained in one step, is lost on
succeeding steps, However, when we have added everything we want to our program,
if we have storage for more instructions, we may add the interchange of rows

and columns, to give protection in the rare case of extra bad luck.

VI. Conclusions

If trivial multiplications and divisions are avoided a matrix may be
reduced by Danielewsky'!s method using about n3 multiplications, Another
number of multiplications, usually smaller are needed to get the roots of
the polynomial. With the power method the number of operations is indeterminant.
However, if we assume twelve iterations per eigenvector, it comes out about
2n3 multiplications for reductions and hn3 for iterations. In addition, there

are the extra iterations at the end to refine the roots.

Now a double precision routine uses three single precision multiplications
to get a double precision product and from this point of view could be con-
sidered as three times as slow, and similarly for division. Therefore, for
matrices from 6x6 complex to 12x12, where we have a choice of single precision
power method or double precision Danielewsky, we plan to use double precision
and are programming routines using 18 digit numbers with a 2 digit exponent,

139

DATA REDUCTION OF TELEMETERED INFORMATION ON THE IBM TYPE 650

Essor Maso and Raymond C. Clerkin
Hughes Aircraft Company

One of the byproducts of all experimental work is the seemingly
endless amounts of data. The information may be recorded on paper tape,
‘magnetic tape, oscillographs or film. But somehow, if there happens to be a
computing facility in the area, the data eventually is placed on punched cards
and it becomes the task of the computer to reduce these numbers. The first
impulse one has is to run and hide and maybe the engineer will go away, but on
closer inspection it becomes clear that here is a job that although not glamorous,
i1s highly important and should be studied very carefully from all points of view.
Many engineers are waiting for these calculations, since they will be used in
further studies. One particular case in point is the job of reducing data for a
Hughes missile. Since the early part of 1952, Hughes Aircraft has been using
a system whereby telemetered information has eventually found its way to
punched cards. Just how this is done is not of immediate importance, but the
data is eventually punched from a 521 summary punch. The cards are brought
to the machine room for calculation and then returned to another facility for
automatic plotting. The data has usually been sampled at a rate of thirty
points a second on as many as twenty-eight channels. The early attempts at
data reductions generally involved calculations of the order Ax + B, Aand B
being parameters dependent on the particular channel being sampled and x the
value at a certain time t. Since the portion of the flight that was interesting
rarely exceeded five or six seconds and the number of channels involved usually was
around twenty, and in view of the simple linear calculations that were to be
performed, this problem was rather easily performed on a 604. It is of interest
at this point to note that prior to the use of the 604, a 602A was used and before
that a 602. However, as time passed the calculations became more and more
involved and the number of channels were increased to 28. At present the
equations used may take any one of the following six forms:

A(x-xl)+C

2. (xs-xl)+D(x-xl)+E+B
A(x-x)2 4B -%x) (x-x)+C(x -x)
3 1 TR L !
. (kg = Xy) ¥ D (X = %) ‘
h.A(x-ﬁ)z-ﬂ»B(xh-xL)(i-xl)+0(#h—iil)_2

(xé-x1)+])(x-xl)x2

140

A(xé-xl)-rc
(X--Jﬁl)*‘D(xé--'xl)+E+

b
6. 2 (1+f1- 5

whereb=Ax+Dxll+B

2
and C = E x +Fx+(}xx11-t-Hx +Ix2+J'

11 11

where the x without a subscript refers to the data point, the x with a subscript
refers to certain channels which are for reference purposes, and the remaining
letters are empirical constants. Needless to say that work on a 604 now became
almost prohibitive. However, since each card contained only one data point, it
wasn't economically feasible to use the 650 for these calculations since the input
time would slow the machine to a point where the total elapsed time of processing
would not be appreciably faster than the 604.

To overcome this problem, an old device was used. The data, as was
stated before, is punched on a 521 summary punch. By offset gangpunching, as
many as fourteen points may be placed on one card. Therefore, an entire frame
or twenty-eight channels may be punched on two cards. Every fourteenth card
may now be selected on a sorter and the card volume is decreased by one-
fourteenth. Directly following the input of the program instructions are a group
of special instruction cards that may change for each job run. These instructions
indicate which of the six types of calculations are to be performed on the various
channels. All of the identifying information for listing purposes is placed on the
detail cards. The output is also punched fourteen per card. This is easily
accomplished by placing two numbers in one storage location (since the numbers
never exceed four digits) and saving the sign in one of the numbers in word ten.
This involves the use of punch code selectors.

Comparative speeds indicate an over-all improvement in the neigh-
borhood of ten to one over the old system. Not enough work has been done as yet
to justify a more accurate estimate. The main increase in speed stems from the
elimination of the majority of the card handling as might be expected. Yet the
actual computing speedup is of the order of four to one.

From this example it becomes fairly evident that there are many other
problems in data reduction that will in time be transferred to our 650 for faster
and more varied analysis.

141

THE DETERMINATION OF THE AUTOCORRELATION AND POWER
SPECTRUM BY USE OF THE IBM TYPE 650

Essor Maso and William J. Drenick
Hughes Aircraft Company

The problem of estimating the power spectrum from the auto-
correlation, or more precisely the autocovariance, function starting from
a set of raw data has been of frequent occurrence at Hughes Aircraft
Company. In the past four and one-half years we have proceeded from
hand claculations to the use of the 402 tabulator and 602A calculating
punich, the CPC, and finally to our present use of the 650.

This method of determining the power spectrum of a discrete
stationary time series is due to John W. Tukey. It may be found in the
nSymposium on Applications of Autocorrelation Analysis to Physical
Problems", pp 47-67, Office of Naval Research.

Data is received in the form

Ty Jos YB, o o oy IN

then
- _ 1 X
Yy §F AN
xi.yi-y

We compute Ro’ R, R2, o s op Rm where m is some predetermined

number .

142

From these we calculate the apparent line powers Lo’ Ll’ L2, o o oy

Lm by the equations:

.1 52
I‘o 2m (Ro*Rm)* m p= Rp

-1 ‘
| 2 & phny . 1
Lh HRO# = pﬁsl Rp cos(m) + =R coshs

for 0< h<m
-1
! m 1 = 1P
L .H-[Rof(l) Rm] v = pE_l (-1) Rp

Now we have Lo’ Ll’ L2, “« o oy Lm‘

Next we calculate

U, = ShL +.46 Ly

U = SbL, +.23 (@, ;5 +L,,,) for0<k<m

+

U, = LI+ 6L

-1

Originally we found the autocorrelation function by a method known as
progressive digiting on the 402 tabulator. This was discovered to be faster and
more economical than 604 calculations. However, the power spectrum analysis
was done on the 604 at first and later was done on the CPC. The problems en~
countered on the CPC were the tedious card preparationand the equally tedious
card handling during the running of the problem. We were later able to speed
up the autocorrelation computations with the advent of the 407 tabulator, but
this was not a large scale improvement. The length of time from the arrival
of the data until the engineer had the final answers would at best be two days.
The actual computation would take two men one complete day working at top
‘speed.

143

144

Prior to the arrival of our 650 the code was written and then
checked out on a machine made available at Endicott, New York. The
exaraple or test case used at Endicott was one that took approximately

one day to compute by our old method This time was reduced to about
15 minutes on the 650. .

The optimum programming features were used throughout the
coding. We felt that this was necessary at least in the autocorrelation
portion of the program because of the repetitive nature of the problem.
The storage locations were allocated to allow for any number of input
items up to 1,000. In addition, we allowed for any number up to 100
lags in the autocorrelation. Since the maximum number of cards to be
punched would never exceed 100, we withheld punching until the end of
the entire calculation period. It is only fair to note that the methods using
the tabulator did not allow such large values of m and N.

An interesting observation made by Mr. Donald Criley of the
Los Angeles Applied Science Office of IBM indicated that by eliminating
the Fourier transformation and making a few minor changes in the
autocorrelation coding, the cross correlation may be found in a similar
fashion.

It should be mentioned that Tukey has given other methods of
estimating the empirical power spectrum and at present prefers a different
method of estimation rather than the U's given. These are given in his
unpublished manuscript "Measuring Noise Color". Alternative techniques
are discussed in the excellent paper of Ulf Grenander and Murray Rosenblatt,
"Comments on Statistical Spectral Analysis", Skandinavisk Aktuarietidskrift,
1953, parts 3-4, pp 182-202. All of these publications discuss statistical
tests of signification.

The use of the 650 in the autocorrelation and power spectrum
solutions has been very useful to manymembers of the Research and
Development Laboratories in radar and missile problems.,

NUMERICAL SOLUTION OF AN INTEGRAL EQUATION
CONCERNING
VELOCITY DISTRIBUTION OF NEUTRONS IN A MODERATOR

D. B. MacMillan and R. H. Stark
Knolls Atomic Power La.boratory1

Wigner and Wilkins2 have obtained an integral equation governing the
energy distribution of neuirons that are being slowed down uniformly through-
out the entire space by a uniformly distrituted moderator whose atoms are in
motion with a Maxwellian distribtution of velocitles. The effects of chemical
binding and of crystal reflection were ignored (to put it another way, the
moderator was assumed to be s monatomic gas.

The atomic number of the modorator appears as a parameter in the expression
for the kernel of the integral equation, In case the moderator is hydrogen,
cancellatione occur in that expression, and Wigner and Wilkins were able to
derive from the integral equation a differential equation having the same
solution as the integral equation. They solved that differential equation,
and discussed the solution.

For moderators other than hydrogen, we know of no differential equation
equivalent to the integral ecuation.

We wore asked (by members of the Theoretical Physics Staff at Knolls
Atomic Povwer Laboratory) to obtain numerical solutions to the integral equation
for other moderators. It is our purpose here to discuss numerical techniques we
are using in this problem, Our difficulties with this problem were all connected
with the evaluation of the error function. This function is usually evaluated
by means of a pover series around the origin, and an asymptotic serles for large
values of the argument. In the middle range of values of the argument the first
of these series converges very slowly end the second gives inaccurate values,
We used a continued fraction expansion in place of the asymptotic series. The
contimied fraction bridged the gzp nicely., Furthermore, 1t enabled us to
circumvent a cencellation of terms which would have made it difficult to obtain
sufficlent accuracy. In the discussion which followe, we emphasize the con-
glderations involved in the use of the contlmued fraction,

The integral equation given by Wigner angOWﬂkina is

(1) [_/(v) ¥ *((vé] N(v) = S(v) +j'P(v,———»v) N, OIV.

Here N(v) ig defined by the statement that N(v)dv equals the number of neutrons
per_cubic centimeter having a velocity between v and v + dv (N(v) = neutrong per
em.J per unit veloelty). V(v) is the probable rate of scattering collisions for
nevtrons at velocity v,¥ is the probable rate of neutron absorptions, and
P(v,~—> v) 18 the probable rate at which neutrons with velocity v, will be
scattered to velocity v. S(v) is o uniformly distributed source of neutrons.

1. The Knollec Atomic Power Laboratory ic operated by the General Electric
Company for the U. S. Atomic Energy Commission.

2, Wigner, E. P, and Wilkins, J, B, Jr., "Effect of the Temperatﬁ.re of the
Moderator on the Velocity Distribution of Neutrons with Numerical Calculations
for H as Moderator. AECD 2275.% Oak Ridge, 1949, 145

Thue, the equation is just a statement of equilidrium; the rate at which neutrons
of a given velocity disappear equals the rate at which they appear.

The kernel, P(v,—>v), is given by the formlas
2.,%
91 v (6 Vc -

_ 2v?)
@ P = O T o) e B)

| v e (B o) - enf e - Ip4)
when v, sV, and:
Pl—re) = 0" 7§ of Ope-Jpn) + of (Bsv + 5p0)
+ e({s ©f V)[a%(Qfsv,-ffv) - M{(ﬁfw, + vaj

wkew v, 2 V.
Ms! -
In these equations,d- = andf= %’;%‘ » where M 1g the ratio of the mass of
a moderator nucleus to the mass of a neutron, (5:,7:?,3'—— , Wwhere K is Boltzmann's
constant and T 1s the temperature of the moderator, -Sy erf, we mean the error function,

X <
w{(z)-—- :,%;fe’t/t
o

The. overall accuracy requirements for this problem are not severe, since the infinite
moderator postulated here 1s a poor approximation to the finite moderator reglons
that appear in practice. However, there are spectacular cancellations. The trouble
occurs in (3), in the term

(l;) C(ﬂ"w"‘ﬁ vY) [a,/(9[”""‘ _‘f/Av) _ ,,/7{@/5 v, + 5’@ V)]

Yor some values of v, and v, the evaluation of this results in numbers like:

(3)

/¢ x10°7] 91999 99999 99999 99979, — 99919 99999 49999 94919 99999 29999 15]

From our point of view, the prodlem was this: We were interested in obtaining
values of the kernel accurate to, say, four decimals, If there was a factor of the
order of 10'5. then we would have to obtain the error function accurate to nineteen
or twenty decimals, which would be a nuisance on a machine with ten-digit words.

V¥e used a continmed fraction expansion for the error function:

-x?
%) b= /—-"-———-[!
(wf 1 z+2’ >
. 2 4
= + _3
2z + 4

z+ e o °
146 “

velid for x>0.3 If we subgtitute this expression in the term in quegtion
wo get 2 22 213

B - AT - (o V.-y v) Bv, -/iv—-(e V|+TV)
(6) e AT j(a(w. Sfpv) — e G j(aﬂm/@v)

where we have used the notation

l |
jcx)‘ ﬁr’[z+/
2x + R

v+ 3
lr+

A short calculation, using the fact that Sy, >0, fv>0, and M21, shows that both
exponents in (5) are negative. This means that the two values of g(x) are
multiplied by mumbers less than 1; to insure, ssy, four decimals accuracy in
the velue of (3). we have only to get g(2) accurate to five decimale.

Fow g(x) converges rapidly for large z, and slowly for small .z, The series
expansion (around z0) of the error function converges rapidly for emall %, and
slowly for large . It turned out to be convenient, in terms of the magnitude of
intermediate quantities, to set (X/£[97 as the range of the program which evaluates
the series, We chose z'=/.9 as the boundary, and wrote a subroutine to evaluate
the error function by means of the series when the argument is smaller than 1,9,
and by means of the contirmued fraction when the argument is greater than 1.9.
Algo, we substityuted expression (6) for expression (U) in equation (3) whenever
(B*v*-£*v* 1.9 ~vhich ascured that the arguments of the function g(x) in (6)
would always be>l,9.

We studied the convergence of approximations to the contimued fraction by
means of numerical experiments., Finally we chose the expression

-

@)N—‘L'— z,‘,[
N T L
X + 3
ax+ .
. +é
X+ 7 l
2x+A

where the constant A was to be chosen to yleld adequate accuracy over the range
2> 1.9, By approximations involving additional terms and by numeri_,gial experimenta
we chose A=2,5, vhich gives a maximm error of less than 2 x 10"in that range.
(The elementary mathematical theory of continued fractions would use the
approximations obtained by setting A=0 or A= 8. These bracket_ }he value of the
infinite continued fraction, but differ from it by about 1 x 10 ,)

3. H, S. Wall, Continued Fractions, New York, 1948, p. 357.

147

148

After the computation of the matrix which represents the kernel, we use
the conventional iterative process,

N+l _ , — Nh l JV]
V0 = ol Sy + [P N7

to get from a first guess at the solution, No(v), to successively better
approximations to the solution, N'(v), N*(v), . . .

The computation of velues of the kernel is entirely (including all
subroutines) sequentially programmed. It tskee about two seconds per point,
or about half an hour for a 25 x 25 mesh, The iteration procedure is optimum
programmed, It takes about 1/30 second per point of the kernel, or abdbout
thirty seconds per iteration for a 25 x 25 mesh,

At the present time, only exploratory calculations have been made using
the program discussed here, Further calculations will be made, and rosults
will be pudlished later,

APPLICATIONS OF THE 650 MAGNETIC DRUM DATA PROCESSING
MACHINE AT MARQUARDT AIRCRAFT COMPANY

Richard A. De Santis
Marquardt Aircraft Company

The development of ramjet engines and the facilities for testing
these engines have reached a point where it is imperative that engine develop-
ment work be supplied with equipment and facilities for’quickly and efficieptly
recording and calculating large amounts of test data, and for providing de-
velopment engineers with an efficient tool for determination of engine design
and performance criteria.

The Marquardt Jet Laboratory has facilities for testing engines
ranging in size from 1 inch to several feet in diameter. Under various
conditions, altitudes may be simulated from sea level up to 100;000 feet,
temperatures up to 970°F, and fuel floﬁs up to several hundred gpm. During
a test run 80 channels of data may be recorded every 0.2 second. Typically,
these might represent 74 pressures at various stations throughout the engine
being tested, the remaining 6 being temperature and fuel flow readings. Thus,
‘for a test lasting 20 seconds, 8,000 data readings could be recorded. With-
in approximately 23 hours after completion of an engine test run, printed
lists of pressure ratios, combustion efficiencies, fuel/air ratios, Mach
numbers, etc. are available for engineering analysis by the Test Engineer.

- Figure No. 1 is a functional diagram of the data recording and

computing system incorporated at the Marquardt Aircraft Co.

149

r 2¢09/4

Stronde | M7oNASN YL

L o

MOTS 777

HIN S V. rﬂkﬁé@ -~ _m\w VYL

Sadr) IN /7 Y 4 2 SFSM j , { SIONCTS,

0S9 = - -~ <. TYLIOIT ~——YAUVLIWO): S L/

K81 RAVWIWNS " SILINOYW TS / M pr— SLIADT 347 [63 IS W7,

| _ -

X30NTSNPYL »

SENI'A | 27)8S 3

150

Referring to the diagram, the quantities of interest to be re-
corded during a test run are fed into transducers where the signals are
amplified. A commutator selects the d.c. voltages and transmits them to
an analog-to-digital converter, which emits digital pulses which are re-
corded on magnetic tape. After the test run, the magnetic tape is played
back into a summary punch which produces IBM cards on which the recorded
quantities are scaled from O - 999. For maximum resolution, the amplifi-

cation can be doubled or quadrupled. The cards are then loaded into the

650 where the numbers are entered into a cubic equation which simultaneously
applies an error correction and shifts the scale and range to correspond to
the measured quantities. On the next pass through the 650 the desired cal-

culations are performed. The fixed decimal system is read in the data pro-

cessing problem. A typical engine test run would produce 400 IBM cards,
each containing 20 data readings which would be completely processed on
the 650 in a period of approximately 2} hours.

In addition to its use as a data processing computer, thé IBM
650 is used at Marquardt Aircraft Co. for the solution of a wide range of
engineering design and performance problems. A typical problem is the
design of an axially symmetric, supersonic nozzle with continuous wall
curvature. Whereas the previous problem used a fixed decimal mode to com-
pute a large number of sums and quotients, this method employs a floating
decimal abstract interpretive routine (FLAIR) and involves circular and
inverse trigonometric functions, logarithms and exponentials, and an
iterative solution, by the difference method, of four simultaneous non-
linear differential equations.

Specifically, it is desired to calculate the shape of a nozzle

under the following conditions:

151

152

L .
E

|

|

|

|

[
1

I

l

N

|

|

|

A B D Dt

Figure 2 E!

Referring to Figure No. 2, the flow field is first specified
as being radial in Region II, bounded by the left and right characteristic
lines BC and DC. Flow through A-A', the throat, is assumed at sonié
uniform velocity, a condition frequently assumed in nozzle calculations
and closely attainable in practice. Finally, flow is specified as being
plane and parallel to tﬁe axis as it passes through D'E at the design
Mach number Mp'. The problem is to find the wall shape A'CE which will
transform the plane parallel flow at AA' to radial flow at BC, and the
radial flow at CD to plane parallel flow at D'E at the desigh Mach number.
D'E is also a left characteristic line and the acute angle at D' is
defined by ¢ = arc cot | M?If - 1. The exit radius is taken as unity,

the length of the nozzle is L, and the maximum wall angle W is obtained

_ at C, which is thus the point of inflection. With Mp', L and @ given,

enter a family of curves especially prepared for this purpose and determine

a value Mp. Enter the 650 with Mp', Mp,@w , and ¥ , followed by the

program deck. The solution begins with the follow:mg equations: (Ref.[.17])

(1) v = _‘"q_d :i" tow' x+| (M 'ﬂ M* -]

(2)

3+l —,}-'-
2(¥=1)
: ¥~ 2
+ —
3 T = L‘*‘ (‘ =)J_
M
' ¥-! W
w 4M = ZMK I+ S M K,=2T_ sz
A (y=0) T Mm*- ’ ’
T,-Ty
Adpg = (o] d’D = (LB + v
(5) N (N
Z(Me-! 2 (Mp =M
“b“"“i—%ﬁ—‘—_ wy = ¢D+_,"D&M o
M. = S Mg = —
B- 4% (d.'d:’) ‘ dat (2= D)

Equations (1) and (2) are readily seen to be one half the Prandtl-Meyer

expansion angle; equation (4) is valid for radial flow.

Now perform calculations tabulated as follows:

153

Use equation (1) to compute QD

2 oo e, Ve , Ve

[U Mq , Mg™

3 Ter, To, Lo
0 M% , M

) Ag , Lp, %y’

(-}
(*use Newton's method, with M = SV +Llag the first approximation)

2.
Note that L = by, + JMz -4

Let %(cﬂ = (M) o + 1
4 (Mg-1)
%(.d-) = - (D) MD + 'D) “p a
4 4 Z(M"- M)

(M" 4(M,-m,)

It can be seen that

L) <1 La) = Mg glads My glz)e Mo

Alap= O Fla) = My g'lay= My g'(a= 0

Hence, f(x) and g(x) are used to define M on AB and DD', respectively.

154

To obtain starting values on BC, select about 20 equally spaced values of

M between MB and My, and compute the corresponding values of ¥ and % using
(1) and (3). Then,

owm & = ‘oo (V —Vp) 8 = flow angle
T ceq © K Tp
- + K,.= d_ - —
ol - K' * * =] Kl
= T 5w ©
% K,

Compute CD in like manner, substituting
tom & = Taw (.\’o"")
The flow field is computed by the familiar method of characteristics, using
&\%:)\L dL cﬁ,u&.—.)\R dat
40 — AdM + B dx =0 46 + AdAM —B dd =0

(1left characteristic)
L

(right characteristic)

here)\"* _ \iM"—-l tam®]
VME1 5 tam D
. ym*-1
A - ¥-) 2
M1+ T M)
R ko & Yyrto; LAIM Y y=0
B T L (UREL fam) A B
Having b o, , WBL,M‘_ _ and mg,%g,‘kww%,l"\a

solve by iteration for tow 8
N ‘6”)

155

Yr-Yg + d-ﬂ)\p, -y -X\.

doyy = — —
e - 2y
(&) Vyn = B Ar —gr A = A g (do-da)
Na - A
% - —A—R BL+KL ek"'nLKR(MR—M\J +K|,—-BR(¢N'¢F~\'KR%L(¢~—tLQ
N =
| | AR ¥ -A—L-
M = BR“‘ e_ + —A-LML + -A_RMR +-é‘_(d.»—¢|,) + ER (a-m-dig_
N
Ar + AL
where
- L v _ R R
AN = Ji,(XLi—X"))\R= "i(Agi')\n)
A= L (AL+ A A= 4 (Ag+ A
-— \J
5, - t(ol+ o) Ba = % (B0 +)
— w

Solve equations (6) in the order given, using >_= >‘\. etc. on the first

iteration. On all other iterations, compute A, , A, , B, using the values
of toam ©.u, M, from the previous iteration.

To compute the flow net in Region I, start with the known points

on BC and by = &g ~ 0.1 (see Figure 3). Use by and &) to get by, then by

and ay to get b3, etc. Suppose b, is the first point which lies above the

tangent to the streamline at C. (This can be determined by testing the

slope of byC after each point by is computed.)
i 1

156

' Then determine a new streamline (wall) point S(x, y, tan & , M) by solving

il

fl

L .
1 R
“2"_‘ (>\ on + >\ m-.))\ w. Region IIT

@& - dn,

fow O, - Faw 8., G- dao

157

158

for x, y, tan B . Having thus determined s so that, simultaneously,

ad = &dy + C(1-8) by,

YRR L (1-8) Ym-

on® = b o B+ (1-0) Tanm Benes

this value of 8 can be used to determine

M =AM, + (1-0) M,
This method assumes that: (1) the characteristic line is straight between
b,1 and b, and (2) that x, y, tan © , and M vary linearly on this segment.

No apprecieble error is introduced by these assumptions.
Having x, y, tan © and M, compute K3x, K3y and © , vhere K3 is simply a
constant used to scale the dimensions up to the desired exit diameter.
Then punch a card containing K3x, K3y, © , M and Mp'.

This procedure is repeated using the left characteristic just
constructed, ¢; = by - 0.1, and the tangent to the streamline at s.

With apmpropriate substitutions, the same instructions can be
used to compute Region III, teking points a, = g, b1, €1,along
DD'E and constructing right characteristics. The results can be compared
with the theoretical values at A! (‘ o, 7:::) o, 1) and at
EL,1, O, My).

It can be seen from Figure 4, which describes the computation
procedure using the 650, that this entire program can be run with no
decision required by the operator, after one card is loaded, containing
Mp', Mp,@ , ¥, K3.

Depending, of course, upon the fineness of the flow net

constructed, the time required to design a nozzle by this method is

. approximately 2 hours.

LOAD CARD

My Mp W& & Ks

LOAD NMNEW
INSTRUCTIONS
AND COMSTAMNIS

FOR R&EGION IIT

COMPUTE

Xg,Xe, Xp, X0, Ve
Ma M, L
1), 8G2), K1, Kz

COMPYUTE POINTS
o

BC or CD

COMPUTE

FIGURE 4

THES& ARE STOR&D OM JHE DRuM
AMD ARE REPLACED ONE BY OwE AS
THE NEW POINTS AR&E COMPUTED.

X oV AD'E
s, c,’d,,....)

[enD PrROGRAM]

763 1 Ao
IS X % 0P |ESTIs XM REGIONT O] 75 x < Xp 7 LIS X < £ P |
Ao Yes YESs
{ LOAD NEW
~VuSsTRUCTIONS
| o X-Xp!
Vi1~
tarm Owo
A =MD
COMPUTE mfr &0
Y, tond, M, — M= F(x) or §(x)
O AD' £
COMPUTE

Ao

By (X, Yo, 1928,M)

ITERATION
* Ao
[n4s B, comverGep p————
§ YEs

1S Ry ABOVE TANGENT|

76 STREAMLINE?

} rés

COMPUTE NEW
POINT ON STREAMLING

-

PUNCH CARD

Kzx Kzy @ M My

159

160

In conclusion, two points should be noted. First, the
shortest possible nozzle can be desligned by this method with a given Mp'
and W , by choosing My = Mp'. This will introduce a discontinuity in
dM at xD', but experience has not indicated any serious difficulty.
g’eccond, W and Mp must be chosen so that @ < % V. This is to permit
expansion in Reglon I,

It has been shown how the IBM 650 computer is being used to
handle current problems at the Marquardt Airecraft Co. Its use will be
invaluable in reducing the time of ramjet engine development from the
preliminary design phase to its use as a power plant in support of our

national defense effort.

Reference [;1:] NACA TN 2711 "The Aerodynamic Design of High Mach
Number Nozzles utilizing Ax1symmetric
Flow with Application to a Nozzle of
Square Test Section" by Ivan E. Beckwith,
Herbert W. Ridyard, and Nancy Cromer -

DETERMINATION OF CRITICAL SPEEDS IN ROTATING SYSTEMS
BY MEANS OF AN IBM TYPE 650

Marshall Middleton, Jr.
Westinghouse Electric Corporation

Introduction

One of the most important problems in the design of large
electrical machines is the determination of the critical speeds or natural
frequency of vibratiomsof the rotating system. Coincidence of the normal
operating speed and critical speeds or any harmonic thereof, will produce
vibrations detrimental to the operatim of the machine. These vibrations
endanger the strength of the various structural elements and thus make
machine operation extremely hazardous. Excessive oil and gas sealing
gland wear, bearing surface fatigue, improper commutation, fretting corro-
sion at joints and fits are but a few of the injurious effects perpetrated
by excessive vibrations. To eliminate or minimize these vibrations, it is
necessary for the critical speeds to be sufficiently displaced from the
operating speed. Hence, it is imperative to know the location of the criti-

cal speeds and their position relative to the normal operating speed.

The rotating systems for which the critical speeds must be
determined vary in combination bf simply supported to multiple span systems
with or without overhanging extension on one or both ends. The physical
composition of the system greatly effects the critical speed. For instance,
the addition of a short overhanging shaft to a system which is simply sup-
ported at either end may change the location of the critical speed by as
much as 20 to 25 percent. The number of bearings and the flexibility in
the bearing mounts both effect the critical speed and must be considered

in the calculations.

An important factor contributing to the demagnification of
the amplitude of vibration which occurs at a critical speed is the damp-

ing produced by the oil film between the rotating system and the bearing

161

surface. This damping is present at all speeds but is most beneficial at
or near the critical speeds. Many of the large electrical machines built
today have normal operating speeds which lie between the first and second
critical speeds. The ease with which these machines cross over the first
critical may be attributed almost'exclusively to the oil film damping.

In order to obtain the location of the critical speed and
the amplitude of its associated vibrations with any degree of accuracy, it
is apparent that the physical composition of thevrotating system, the bear-
ing characteristic and the oil film damping must be simultaneously con-
sidered.

Computational Procedure

The critical speed vibrations of a rotating system may be
cansidered as a special case of forced beam vibrations. The exciting
force in this case is produced by any eccentricity or unbalance in the
rotating system. This force, however, is not constant but varies as the
square of the speed of rotation.

The method used to obtain the critical speeds is an exten-
sion of a Holzer type iteration., The rotating system is first broken up
into a large number of sections with constant diametrical moments of in-
ertia. For large machines, such as modern tandem compound turbine-genera-
tars, it is not uncommon to divide the rotating systems into 80 or more
sections. The numerical representation of the system consists of the length,
weight and areal inertia of every section. The location of the bearing with
respect to these sections, the flexibility constants of the bearings and
the weights at the bearings which contribute to the shearing force are also
required. When considering the oil film between the rotating system and
the bearing, an external force must be applied in order to supply the
energy absorbed by the damping.

Solutions of the problem is based on the standard deflection
coefficient equations, which express the deflection angle, 6, the displace-
ment, X, the moment, M, and the shear, S, at the n + 1lst position in terms

of those at the nth position.

162

O
L]

O+PS+0(M
n

nn nn

>
]

n+1 Xn+_/€non+1' ann',PnMn

Mn + 1 = Mn * J?n Sn
2= £.2
= LT
Sn + 1 Sn (g) wn + 1 Xn + 1
where
O(:-g- =/€——-——2 K=-——-——13 N
EI’ 2 EI° 3 KEI

The frequency of the forced vibration appears in the shear term, and the
shear term is contained in the other three equations.

To obtain the critical speed a trial frequency of vibration
is selected. Then a set of beginning conditions are established. If the
starting end consists of an overhanging extension, the initial moment and
shear terms are zero while the slope and deflection are carried as unknowns.
When starting at a bearing, the initial moment and deflection are zero with
the slope and shear as unknowns., The trial frequency, and the two beginning
conditions are substituted into the above equations. The slope, displace-
ment, shear and moment are then calculated at the end of the first section.
These conditions are in twrn used as initial conditions for the next sec-
tion ard the process repeated. When an intermediate bearing is encounter-
ed, a constraint is introduced in the form of a known force depending on
the spring constant and the deflection at the previous section. This pro-
vides one additional equation at that point and sets the deflection to a

value depending upon the spriﬁg constant of the bearing.

At the end of the last section, four equations are obtained
expressing the slope, deflection, moment and shear in terms of the initial
unknowns. An additional equation and unknown shear force were added for
each bearing encountered. A set of known conditions exist at this point.
If the system terminates in an overhanging extension, the shear and moment
mst be zero. When the system terminates in a bearing the moment is zero
and the déflection is proportional to the spring constant of the bearing.
With these conditions and the above results, a system of n simultaneous

equations are resolved. This sysﬁem of equations will have a non-trivial

163

164

solution only if the determinants of its coefficients are zero. Since the
coefficients contain the frequency, this determinant defines a polynmomial
in the frequency whose roots are the natural frequencies of vibrations.
Rather than finding the roots of the frequency polynomial, it is easier
to select trial frequencies until the value of the close out determinant
changes sign. The natural frequency of vibration then lies between those
two frequencies which produce sign reversal of the value of the close out

determinant.,

Because of the wide ranges in the magnitudes of the numbers
used in this problem, the floating decimal number system must be used. The
IBM floating decimal routine written by G. R. Trimble, Jr., was adopted.

The critical speed program deck consists of approximately five hundred in-
structions which are loaded into the 650, four instructions per card. The
selected value of frequency is set on the storage entry switches, After the
650 has completed the calculations, the value of the close out determinant
is located on the display lights. From this value, a new frequency is
selected and the process continued.

When the rotating system is extensive and must be divided
into a large number of sections, round off errors begin to produce erratic
results., In these cases it is desirable to close out at each bearing
thereby eliminating one unknown by the use of the constraint at that point.

Conclusions

To obtain an indication of the precision of the results, the
problem is run in the forward and backwards direction. The IBM 650 machine
time required to find a critical speed to within 0.1% is about 30 minutes.
This method of solution is not restricted to rotating systems. With slight
modifications, the same procedure may be applied to vibrations in jet en-

gines, bridges and other structures.

Bibliography

1. "Holzer Method for Forced-Damped Torsional Vibrations!" by I. W.
Spaetgens, Journal of Applied Mechanics, Trans. ASME, Vol. 72,
1950, page 59.

2. "Some Vibration Aspects oflubrication", by A, C, Hagg, Lubrication
Engineering, Vol. L, No. L, 1948, pages 166-169.

3. "Vibration Problems in Large Electrical Machines" Midwest Power Con-
ference, Proceedings, Vol. 13, 1951, pages 145-152.

1

650 PROCESSING OF MASS SPECTROMETER DATA

B. R. Faden
International Business Machines Corporation

At the IBM Data Processing Center in Los Angeles
we are processing mass spectrometer data for the Unlon
0il Company of California. The program was written to
the specifications furnished to us by Mr. W. C. Ferguson
of the Union 0il Company's Research Center at Brea,
Californla.

The application of the mass spectrometer with which
we are concerned is the quantitative chemical analysis
of mixtures of gases. The samples to be analyzed are
known to be made up of certain compounds; the problem
is to determine the proportion of each compound in the
mixture.

In the mass spectrometer the compounds are broken
up into ions, and the ions are subjected to an accelera-
ting voltage and to a magnetic field. The path followed
by an ion is determined by its mass, by the accelerating
voltage, and by the applied magnetic field. In this
application the instrument is focused for ions of a given
mass by changing the accelerating voltage, for a given
setting of accelerating voltage, ions of a given mass
are collected at the plate of the instrument and give a
current reading proportional to the number of lons of
the glven mass present in the sample. In spectroscopic
practice this current is called peak height.

A procedure designed to accommodate n constituent
compounds must record (at least) n peak heights corres-
ponding to n ionic masses. Let n such ionic masses be
chosen and identified by n numbers My, My...my, where
the m; are arranged sequentially according to the mass
valueS they denote but need not be the mass values them-
selves, since as we shall see, the actual masses of the
ions play no part in the computations.

The instrument is then calibrated for each compound
as follows. The compound is introduced into the instrument
at some particular pressure and readings are taken of the
peak helght for each mj. The peak height is linearly
proportional to the pressure, so that if the readings
observed are divided by the pressure, we obtain normalized
peak heights in milllamperes per micron. Let the
normalized readings for the j'th compound be denoted by
a4, that is, ajj is the normalized peak height which the
Jl

s
ﬁ% substance gives at mass number mj. 165

We have said that, for a given substance, the number
of ions of a glven mass is linearly proportional to the
pressure. This is also assumed true of the partial pressure
when the substance is mixed with others. Suppose now that
we introduce a mixture into the instrument and denote the
partial pressure of the j'th substance by y+ and denote the
peak height observed for mass 1 by vi. Theg the law of
partial pressures gives, as the equations for the amount
of each substance present.

Zaij V3 = V1
and the percentage of the j'th substance present is, of course,
xy =100 Y
Vg

The quantity &£ys should equal, within the limits of
experimental error, tﬂe total pressure of the sample. The
percentages xj are the chief desired results of the processing.

Since a great many mixtures of the same set of compounds
are to be analyzed, it is worthwhile to compute the inverse
of the calibration matrix ajj, and to determine the xj by
multiplying the peak height vector vy by the Inverse matrix.

The calibration matrix, aij, may be inverted with fully
adequate precision by Gaussian ﬁlimination, since it is

very well conditioned. Many of the masses observed are
chosen to be just the molecular weights of the constituent
compounds, and many of these substances undergo comparatively
1ittle disassociation. Hence, by ordering the rows of the
matrix by increasing masses and the columns by increasing
molecular weight, we get a very strongly diagonal matrix.
Furthermore, the matrix so arranged is very markedly upper
triangular. The molecules undergo some disassociation but
little or no, so to speak, agglutination, so there 1is

1ittle contribution to mass i from substances of molecular
weight less than i, and hence there are almost all zeros

to the left of the diagonal.

Since the need to invert a new calibration matrix
occurs infrequently and since the matrix 1s well conditioned
the matrix inversion part of the problem is very suitable
for a library routine, and our practice is to perform the
inversion using Mr. Dura Sweeney's routine, and convert
the results to fixed point for incorporation into the
program.

166

The rest of the work is not so well suited to a
utilization of a vector by matrix multiplication library
routine. The peak heights which form the multiplying
vector are only four digit numbers. A library routine
could not be expected to take full advantage of being
able to do the multiplication with single precision
fixed point arithmetic, and of the possibility of
optimization afforded by the small maximum number of
digits in the multiplier.

Since there are several special requirements to the
problem, and since increased speed is quite an important
factor when several hundred samples are to be processed,
1t seems well worth while to write a speclal program for
the entire processing of the samples. We have presently
in use two such programs, one for a twentieth order
calibration matrix and one for a twenty-seventh.

The instrument in use at the Union 0il Company's
Brea Research Center incorporates a Spectro-SADIC
connected to an IBM punch, so that the data is directly
recorded on punched cards and comes to us in that form,
with one peak height per card, n cards per sample. The
cards contain the mass identification number, mj, the
apparent net peak height or deflection, a multiplying
or scaling factor, the observed total pressure of the
sample, and the chemist number and sample number. The
650 program multiplies the apparent peak height by the
scaling factor to obtain the observed peak height, vi.
The observed total pressure does not enter the computations
but is punched on the 650 output cards and listed, for
comparison with the calculated pressure,

The program counts and sequence checks the cards.
If the cards are not in sequence by mass number, or if
the number of cards per case is other than n, the program
will skip over the calculation of percentages and punch a
special error card, so that the listing will indicate
that we were furnished an erroneous deck of cards for
that case.

One of the special requirements of the program is the
processing of what are called "check peaks". The nature
of the check peak computations 1is as follows. Suppose
that we have decided on n ionic masses at which to read
the n peak heights, and that we solve the equations for
these n peak heights to get the n partial pressures.
However, suppose that we have also calibrated the in-
strument for the peak heights for one or two extra ionic
masses, and suppose that we read also these extra peak
heights or check peak heights when observing the samples.

167

Then the following check on the accuracy of the
spectrometer run can be made. Multiply the solutions
found for the partial pressures by the calibration co-
efficients for the check mass. Now if the sample 1s
pure, that is, contains only the compounds calibrated for,
and if these compounds are yielding ion currents in the same
pattern and degree as they did under calibration conditions,
then this multiplication will give exactly the peak height
observed at the check mass. If there is an appreclable
difference from the calibration conditions, then there
will be a residual difference between the check peak
height so calculated and the check peak height observed,
and this residual is a measure of the general accuracy
of the spectrometer run.

The calculation of this residual may be incorporated
directly into the solution. Into the matrix to be inverted
is incorporated the calibration equation for the check
mass, and also incorporated is a column containing unity
in the check equation row and zeros in all other rows.

Then when this augmented system is solved, the solution
corresponding to the incorporated check column 1is th
desired residual. :

Since the columns of the calibration matrix are labeled
by the constituent compounds, 1t may be convenient to think
of the check column as corresponding to a fictitious substance.
The fictitious substance has the following mass spectrum:
at the check mass, a normalized peak height of unity; at
all other masses, a normalized peak height of zero. Then
the solution found for this column may be thought of as
the partial pressure of the fictitlous substance. Since
the fictitious substance glves unit peak height per unit
pressure, its calculated partial pressure is equal to its
contribution to the check peak height. Its contribution
to the check peak height is a measure of how much of the
peak height is not accounted for by the concentrations of
the real substances, and hence is the desired residual
peak height.

Two such check peaks are included in the n equations
in each of the programs so far written. The branch on m
equal to 02 or 17, which may be noted in the flow chart,
is for the purpose of transferring to punching location
the observed check peak heights, so that they may be
listed and compared with the calculated check peak residuals.
The observed peak heights at the other mass numbers are
not punched in the results.

168

The instrumentation set up as presently used produces
an extra card, identified by mass number Ol, in addition
to the n data cards. This card plays no part in the compu-
tations. The branch on m equals Ol shown on the flow chart
causes the program to ignore the data on this card.

There are several special requirements in connection
with the computation of total pressure. The partial pressures
for the check peak substances do not enter this summation.

It is desired to report the proportion of substances other
than air and water as percentages of total non-air/water,
non-check peak substances; and to report the proportion of
air and water as percentages of all non-check peak substances.
Because of inaccuracies in the experimental set up it is
possible for the calculations to yield some negative partial
pressures. These have no direct physical significance. A
summation including the negative values is made, however,

for comparison purposes. Accordingly, three summations

are performed as follows: We first form

Y, = Zyj, with J not equal to the check peak
substances.

All negative partial pressures, are then replaced by
zero, and we form,

Yy = Zyj, with J not equal to the check peak
substances, and

Y, = Zyj, with J not equal to the check peak
substances or water or air.

The peprcentages of water and air are then calculated
as percentages of Yp, and the percentages of the remaining
non-check peak substances are calculated as percentages of Y,.

The output is punched as follows: On all cards: sample
number and chemist number. On a header card: the observed
pressure and the computed pressures Yz and Yy; and the
observed check peak heights and the calculated check peak
partial pressures (the check peak residuals). On detail
cards: the calculated percentages. Our present punching
and listing practice calls for spreading this output over
one header card and five detail cards for both the 20'th
and 27'th order set ups. An example of a typical 20'th
order listing is attached to this write-up.

169

Since the elements of the observed peak height vector
are presented one per card, the program computes the con-
tribution to the twenty-seven partial pressures after each
card is read and adds each contribution to the sum of
previous contributions. This is block N of the flow chart,
and is the main arithmetic work of the program. An address
modification scheme is used to sweep the multiplication
down the rows of one column for each card, and then to
step from one column to the next on each feed cycle.

Block N comprises about 170 instructions.

Block K, which occurs on the first card of a new case,
resets the card count to zero, clears the locations in which
the y; are accumulated, and resets the address modification
words to the values required to start multiplication at the
first row and first column. Block F, which occurs only
for a card out of sequence, adds a spurious large number
to the card count, so that Block C will cause punching of
an error card at the end of the case. It is hoped that
the labeling of the remaining blocks on the flow chart
is reasonably self-explanatory.

The program for the 27'th order set up comprises all
told about 430 instructions and miscellaneous constants,
plus the n2 matrix elements, which are in a sense constants
of the program. We take about five minutes to load the
program and to run pre-computed test samples to check
the loading. The calculations then proceed at approxi-
mately 200 samples an hour for the 20'th order set up,
and 150 samples an hour for the 27'th order set up.

We like to think that these calculations provide a good
example of the high degree of speed and economy which can
be achieved when bulky repetitive calculations are routinized
to take advantage of automatic digital computing. In
conclusion we would like to express our thanks to NMr.
W. C. Ferguson and the Union 0il Company of Californmia
for their cooperation in working out this procedure with
us. : :

170

FLOW CHART

Attachment
r————'—'——"-—'w
; Z
load
program
A S — Q P N
read < card compute &
sample count y's :
— N T
yes B E
has case compute
changed ? (v2 & vi17
) N
yes
i is m
sort? _y_e_s_>_§ 01? no 02 or 177
l' et
o
N
vE
compute —--
Vi
/N
Vv e
I -' J K
compute »| compute & >|reset &
& punch Y! } punch x's clear
! -
T -
N/ punch
7| error
S

171

5135 WS 88°C S8 WHod

IV ANV ¥3ILVM NVHI 93HIO SHONV.ISINS

AHI A0 SHOVINZOYAL HHI J0 INAS HHI ST ANIT AAINI¥d ISV AHI NO ITASHY AYIHL HHL
'SHOVINIOYAd A LAJNOD HHL HYY 3OV HHI NO SUAIINAN HDNINIVINTY FH.L

"dN IINM JHL

NI QANIVIAXH SI SHAGINON VAL IDHHD HHL 40 ANV SHYNSSHYd AAILOAJNOD HHI J0 HNINVAN HHIL

‘NOILLVINYOANI IVHd MOEHD HHI H¥MV SYAGNAN DONINIVINTY HHI ‘SHYNSSHYd AALAJNOD HIV 9X
ANV VA ‘HYNSSAYd AAAYHESIO HHIL SI d ‘HEIWAN ASVO HHJI, SI NNNNN ‘YHINAN LSINHHO HH.I SI 00D
‘ LIA/LTEK gN/ZX gX/Vi/d NINNNN ejele)
"ONINVHN HSNIMOTTOL HHIL HAVH DNIISIT ATJNVYVS SIHL A0 ANIT dOL HHIL NO SYAIINAN HH.L

%000 - %6°66 , %6°9 ny %40 0°H
%0°0 auano], %0°0 9D Ay %0°0 sudzuag %0°0 %0s
%0°0 STHDU %H®0 s 2 o %0°1 otg*DOu %e*l OTH*Dr
%e*Z1 SHE) %2°0 - 0D %00 v %0*0 S*H
%9°0¢ SHZD %I®T 2N %8°8Y YHD %2y 3

% TONW AININOdJWOD % 1O LININOdWOD % 10N LNINOJWOD % JOI LNINOJWOD

SISATVNY d3L3INWO0HLDIdS SSYWN
LNIWLHVYdIA HOMVISIY

VINYOAITVDO 4O ANVYJWOD 110 NOINN

8L%0/¢10 g€c0/000 92/92/92 g2oay 116

172

CALCULATION OF LOAD STABILITY OF AN ELECTRICAL SYSTEM

J. E. Rowe
Union Carbide and Carbon Corporation .

Introduction

In the operation of electrical power systems emergency situationms,
termed faults, may arise which require rapid automatic switching equip-
ment to reroute power and/or drop part of the load to maintain system
stablllty, that is, return to steady state operating conditions. The
problem of transient load stability assumes e particularly important
role when the system 1s composed of large blocks of induction motors
operating close to the power limit such as those associated with AEC
production facilities.

The problems encountered in stability studies of thié typg are
varied and no attempt is made to give the engineering or developmental
aspects other than those of a historical nature. The Atomic Energy
Commission, Carbide and Carbon Chemicals Company, Westinghouse Electric
Corporation,; General Electric Company, and others have devoted consider=
able effort to the derivation of the equation representation of the
electrical system. The Westinghouse Corporation in particular pioneered
in the representation of the induction motor and the development of a
computing technique (I).

The classlcal method of solving transient stabllity problems has
been through the use of an AC Network Analyzer; however, due to the
size of the electrical systems and nature of the associated problems
there are definite advantages to the digital method. These advantages,

computing experience, particularly that on the 650, and time and cost

(1) Shankle, D. F., et al, "'ransient Stability Studies - I Synchronous
Machines", Power Apparatus and Systems, 16, 1563-80, (February 1955).

173

comparisons between digitel and network analyzer methods are given. In
addition a particular digital scheme based on the representation of the
power pystem by admittance constants and equatlon representation of
machines and fault busses in the system is discussed. A fault will be
considered as an abnormal voltage condition imposed simultaneously on
all three phases at the fault bus.

Mathematical Statement of Problem

The voltage of each machine (II) is represented by a differential
equation (III) which is dependent upon its characteristics and the system

admittance constants.

dE, (t) T
(1) _.a.l_:-.__... = [ai + lEOﬂsk(t:)] E (t) - 3 B 1,(t), k=1, ---y X,

%y
where
t = time as measured from the occurance of the fault,
N = total number of machines in the power system,

k = machine index (k = 1, ===, m represents induction motors,
k=m+ 1, ---, N represents synchronous machines,

a = time constant for motors, |

Q&bz oofor synchronéus machines,

Bk = reactance constant;

£ = -1,

The slip‘sk(t) and current ik(t) are defined by the following relations:

(II) A machine is used throughout to designate an induction motor, generator,
or synchronous condenser.

(III) Concordia, C., "Transient Stability Studies - I Synchronous and
Induction Machines - Discuesion", Power Apparatus and Systems,
16, 1578-79, (February, 1955).

174

(2) ds, (t) [dt = 7, ey (1)

(3.1) fak(t) = accelerating torque = TLk(t) - k(t),
(3.2) TLk(‘b) = load torque = ckD + sk(tz] y

(3.3) P,(t) = power = real component of E, (t) i;(t),
and

(3.4) B8 = I B0 Y

vhere

k =1, 2, «==, N,
e = constant dependent on mechine inertia,
Cp = constant dependent on load charscteristics

1* a

Kk X conjugate,

Ykn o Ynk = equivalent system admittance constant meesured
between machine k and point n in the system,
1<$n€N = machine index,
N+l n €4 = fault bus index.
Equation (3.4) introduces fault bus voltages En(t) for N+1€n 4q.
The equations for these voltages result from an epplication of Kirchhoff's

law around the fault busses and take the form of linear simultaneous

equations.
N
(4) Yeat, 1" Ywad,qf| | PO || 22 EnD () Yyi1,n
]] 1
i | ! = i
N

Equations (1), (2), and (3) ere reducible by differentiation and
subetitution to & single system of second order non linear differential
equations of order N. Alﬁhough such & reduction resulte in a more concise
msthematical statement, it obscures the approach to the solution. Accord~

ingly, equations (1) through (4) provide en edequate mathematical description

175

176

of the electrical Bystem.

Approximating the Differential System

In order to obtain & numerical solution to equations (1) through (4),
1t 18 necessary to approximate the derivatives in equations (1) and (2).
In the case of the induction motor, i.e., equation (1) for k = 1, -—«,m;
a first order forward difference approximation, dEk/dtstEk(t&At)- k(t) Y/

ie used, resulting in

(5.1) Ek(tﬂm‘.) =|:ék-l- + lemsk(t) + %E]At Ek(t) - J%At ik(t).

In the case of synchronous machines, i.e., equation (1) for k=mtl;-=-,N,
the representation

(5.2) E, (t+4%) = [Cos(lzoxAQk(t))+ J sin(mmmk(t)ﬂ Ek(t),

is used, where Ask(t)ﬂsdek = sk(t)dt,

Approximating the differential d@k_by the difference ABk has an
advantage over that used in (5.1) because it allows the use of a time
increment At two to four times as large for the same accuracy . It hss
the additional advantage of maintaining a constant voltage magnitude;
independent of the size of At.

The first order difference is used to approximate equation (2),
resulting in |
(6) 5, (t4at) = 7,Te (£)AG + 5, (%),

Equations {3) through (6) describe the transient behavior of a power
system, with the accuracy of the approximation in equations (5) and (6)
controlled with the cholce of At.

System Data and Camputing Procedure

Data for & study include the steady sﬁate véltage and slips for all

machinesy all constants; and system admittances. The admittance values

and constants are not time dependent but are subject to change when the
fault 1s applied or removed, when load is dropped in an effort to main-
tain stability, and when lines are reclosed to return this load to the
system.

Equation (4) is solved repeatedly as t takes on its incremental
values making 1t expedient to use matrix inverse methods. Predetermined
faults and load dropplngs permit all admittance matrix inverse calculations
to be made prior to a study; consequently these inverse elements become
data rather than the Y's of equation (4).

The first step in the calculation is to solve for Ek(t) from equation
(4), then by use of equations (3), ik(t), Pkﬂt), TLk(t), and Tak(t) are
evaluated in that order. These values are used to compute sk(tﬁat) and
Ek(t+At), k = 1,~--,N, from equations (5) and (6). The newly calculated
quantities sk(t+A$) and Ek(tht) replace the old values, and the entire
process 1s repeated. The calculations are contlinued until t = one second
or less, since the system's behavior can be predicted on the basis of its
behavior during this period. This procedure 1s summarized in the flow
chart shown in figure 1. |

Types of Problems and Programming Considerations

The analysis and determination of the design of a power system
require a computing program which is adaptable to a wide variety of net-
works. Our experience has ranged from a theoretical system consisting of
an infinite bus with one motor to a power network of ten equivalent induct-
ion motors, seventeen synchronous machines, and four fault busses represent-
ing a system load of 2200 MW. The latter involves approximately 2100 words
of data consisting of 961 admittances and approximately 100 associated

constants; all are vector quantities having both magnitude and direction.

177

178

These and the voltages and slips which must be retained from one 1teration
to the next, place unusual demands on the memory of the computer.
In order to reduce these memory requirements to the range of the 650
only the distinct nonzero admittances and their indices (kn) are stored.
The small number of these and the symmetry of the system reduce the 2100
word requirement of the above problem to approximately 3505‘ Since the
nonzero admittances occupy different locations in the network, the table
lookup feature of the 650 is used to locate the data. For example nonzero
admittances Ykn are stored in increasing order of kn. When the calculation
calls for a given admittance, k is compared with n. If k<n the machine
searches for Yine If k> n, the machine searches for Y ko thus taking
advantage of symmetry. If the table search does not reveal this admittance,
it 1s treated as zero and the calculation proceeds to the next instruction.
The forward facing methods result in equations (5.1) and (5.2). These
were used rather than higher order approximations to minimize the quantities
needed for each iteration. This representation also‘permitted a time Incre-
ment 6f .02 seronds for most studies. Motor torque 1s‘the calculation most
sensitive to the choice of At. This effect is 11'1us£rated by figure 6.
Test calculations indicate that time increments of .0l seconds during the
fault and .02 seconds after the fault determine the critical switching time
with an accuracy of .0l seconds.
Having established the equations to be solved, calculating time is
nminimized by the following:
1. Pseudo optimum program.
2. The matrix of Y's in equations (U4) are not functions of
time; therefore, the matrix inverse is entered as basis data.
3. Addition of complex numbers can be done directly in rec-
tangular form whereas in polar form they must be converted to rectangular,

requiring the use of a square root and sine-cosine routine.

All decisions, such as changing line conditions, etc., are inter-
preted by the computer and no operating or card handling is necessary.
Data which change in the course of a study are loaded initially in the
read hopper in the order in which they are needed, and reading is con-
trolled by the program.

Analysis of Results

The results of a single study for a large network conslst of approx-
imately 20,000 words. In order to analyze these data, the voltage, slip,
pover, torque, current, and identification associated with & machine at
time t are punched into one card. The cards are sorted and listed in
order by time under machine.

Stability is best Judged from the motor accelerating torques or
slips. Figures 2 through 5 are plots of these quantities; figures 2 and 3
indicating motor acceleration and return to equilibrium, and figures 4 and 5
indicating instability.

Comparisons With Other Methods of Solution

In solving stability problems on a network analyzer, it 1s necessary
to spend considerable time setting up a network analogy on the calculating
board, and should studiles for the same power system be required at a
later date, this setup procedure must be repeated. With the digital method,
once date are assembled they can be stored on cards or tapes, and studies
can be resumed at any future date with minimum effort. The network analyzer
method requires a group of engineers supervising the study, taking data, and
making analyzer settings. A procedure of this type necessarily introduces
error, and is costly from a standpoint of personnel and machine time. The
digital method can be carried on with one supervising engineer, one computer

supervisor and at most one operator. The time per study is two-five days

179

on the analogue computer, ten hours on the CPC and one hour and twenty
minutes on the 650 (based on At = .02 seconds). Digital methods in
general appear to have a coet advantage ranging from five to seven over
the énalogue method .

The 650 has distinct advantagee over the CPC in that calculating
time has been reduced by a factor of eight, card handling is virtually
eliminated, the sutomatic features eliminate operator errors, machine
errors do not go undetected, and costs per study have béen reduced by a
factor of four. In four months experience with the 650, thirty different
stabllity problems requiring forty hours of machine time were solved.
During this period there was evidence of only one error in calculation
sand it was detected by the computer.

Summary

A digital method for studying power network stability has maximum
utility when the computer has a large high speed memory, rapid input-
output, and logical orders which minimize data handling and operator
decisions. Experience has indicated that such & method is faster, less
expensive, more accurate, and more flexible than the analogue method.
The program as described fdr the 650 can be used to study any network
represented by admittance constants and equations (3) through (6).

Acknowledgement

The author is indebted to Mr. J. L. Gebbard, Jr., and Mr. P. E. Scott
for their cooperation in supplying the engineering information and as-
sembling data, and to Miss Barbara Boatman for her assistance in writing

the 650 code.

180

FLOW CHART

Increase
k byl

Clear drum Loed data : Cale. E_(t)
load oper. determined ! N+l$ ns a,
routine >4 by line >4(4). Store
and initial A conditions and punch
date
(1) (2) (3
4
Calculate
i) sk(t+At)us-
ing eqs.(2)
@—C kSm)—C}D fand (3)stors
intermediatd
(3) quantitice.
(%)
Y [
Calculate Calculate
Ep(t+At) Ep(t+At)
From (5.1) Froxtx;x (5.2)
‘ Store
Store fod
of
(6) (7 Calc.
Punch
HE(t) 55, () [|
Tay(t), Y Isciter.g.ting N
TLy(t) ,15(t) (11) +
P, (t) and
identifica-~
tion
(8)
(9)
Do line cond
C
(10)
Figure 1

181

g oam3Ttd

qIned SuTIesT) JI93JV SPUCISS UT SWL

6 g L° 9° g 1 ¢ o T 0
. og-
91 - 000¢06T L
91 - 000°06T g
AN 000°2¢L <
oT = 000°g9T i Ve ,
ot - 000“0g% ¢ ¢ oz-
¢oT- 000€021 2 /
N 90T~ ooofoghy T
\\ N JutaeaTo 92 8L dH AInbT °ON &
T / N , 3
m \\l Vi [¢]
Va 4 | / g
/ : , / - I e g . /z Y ot~ w.vf
N 4 SN 2
/ o NN /) ZERNRY 1A i
/ N A/ ‘NN ’ 5
N s N N D pd M
- //// [L1 1 \ N = ot
i N - VeV S o £
m \ // / \w\ A \\ I~ // ”” N . [0:2]
M \ / 9 P - N//l//uWA/1 - a8
ped] <EE% ;
LT) -~
— = q
/
N
N)4
NNl T
0%

(spuocoas gO°0 I93J8 PIIBITD qTney aseud ¢)

QELVOIONT ALIIIAVIS - TWLL °SA HOBHOL NILVEETIIOV HOIOW

182

MH

¢ °am3TJg

JTned 3uTIesT) I23JY SPUODSS UT SWL]
G f° ¢t

MO

(spuooess go*0 I9338 poxewdTo qInes aseyd ¢)
TCEILVOIANT XITTIEVIS - HWLL *SA dIIS HOIOW

Q¢
T R
= ™ G2
B
1 17
\\
1
— —1— 0°2
_\u\ H I S
\,UVAH |
~) o Y
TN 1 i L ——
. S P, Am moxﬂ
] - —— e~
L+ ~—rls 1|
] /] ST
l/AlvA _
Vﬁ/ l./// M
~__|] 01
. —~——
T 000061 L -~
T 00006t 9 I~ ra —
2870 000°2¢L 4 ~] G
¢L*o 000¢g9T 1 i
L6°T 000¢0gs ¢
¢ce 000° 02k 2
qr°2 000¢084 T
BUTIBITO 98 8§ JH °ATNbY * ON
0

183

(s) dr1g gusoxsd

 SmZPTd

3Tned SUTIBST) I99JV SPUODSS UT SWLL

mn m.o M.- mo mo .;o m- No nﬂt 0
\ TN _\ . 0e
/ //] / /
\ L \
\ / v
\ / \ B ore
RS~ P
e | \\‘\ l///./-/ _ = 1
SN AP 11/ DTN\ T B
~ —= — S g 7 = /V /\; N ~J m
\ ™~) P TN] iy >
/ e \ 1 / /Mn//r N " \% &
\ I~ \\\\\\) N\ [/ 4 m.
] / // A T2 /] @
\ / ®
=
/ 5
L1
/ _ 2
e}
o2 mw
/ \ ~
\ L= 000°D6T L
G- CO0* 06T 9
. ; 20T~ 000°2¢l S
17 ¢g- 000g9T a1
7 L= 000°0g¢ ¢
\ oT- 000¢ 02t 2
\ 9 - 000¢0gH T
N
SurxesTo 3B BL dH °ATnbH °ON on

(spuodas TT°0 1938 paxead 3(nel aseyd ¢)

QEALVOIQNT XITTIEVLSNI - EWLL °SA J0DYOL ONTIVHITEDIV HOIOW

184

¢ sandtq

3TRd FUTIeST) I99JY SPUODSg UT omWT]

m- w- . m. .:a m-
S
S
, = PR | .
g T T
//./
AR 06 p S
0z°2 000 06T 9 ISSS
o 000¢2¢L. Z = R
0g°1 0004g9T f e ,
121 000° 08¢ ¢ .~
HT°T 000° 02t 2 9
2g 0 000¢0gH T
UTIBSTO 98+S JH °*ATnbE °Of
——
T BN A
4 N\ |
Z]
“ /A
~L_| ~|
T L] 1 [< L
gl I L B — -
: —] — 1 4
//
// . L—1
I~
/./1

(spuooss 1T°0 I99J8 paxeaTo 3Tney aseud ¢)

MELYOTANT ALTITHVISNT - EWLL *SA dTIS Y0IOW

G'¢

o'c

G2

0°¢e

a1

185

(s) d11s ausoaad

0°T .

9 23T d

3B ButA1ddV 193JV SPUODSS UT SWLL

m' .T. m. mn .
9
//
#a =k9| N
\
3
//
N,
N
30°E1Y /,, Tt B
L ~-l N A N
0 b —— . / ’ \\ /7 "t
900 7 aSSNERWN T 1T =] TN
SN N AL NN
R L= RENAEN
—— —= _ NN N .
\\1 // U
N\
N
oc
oT
0

(spuooss 2T°0 I91J8 PoIesTd jTney oseyd mv

ANLL SNSYHIA YOTOW HATIISNAS XTIVOILIH)D HOA ENDHOL ONILVHITHOOV LNHOWHEL

(BL) enbaof Jur3BISTOODY FU8d.T9d

186

COMPUTATIONS OF UNIT COSTS IN POWER DISTRIBUTION

J. C. English
E. I. du Pont de Nemours and Company

At the Savannah Rlver Plant there are N areas, all of which use eleotnc'ity and
n of which produce electricity, Those areas which produce no electricity consume
electricity from the generating areas,

RESERVOIR
AREA

In the above diagram, Generating Areas 1, 2, ..., n may export excess electricity
to the reservoir area or they may import electricity from it, This is indicated
by the two-directional arrows, The non-generating areas must import their
electricity from the reservoir area., This is represented by the unidirectional
arrows, In any given month, all arrows are unidirectional,

The cost of generating electricity in any generating area will vary from month to
month, The charge for excess electricity to the reservoir area by any excess
generating area is the product of the quantity exchanged and the unit cost of
generation for that area, The charge to the consuming areas by the reservoir
area 1s the product of the quantity consumed by the area and the average cost per
unit of electricity to the reservoir area,

The Accounting Department of SRP is COHC?Bed with the accounting for this
electrical power, The proper cost codes‘”/must be charged and the amount charged

must be correct,

(1) Number designation to denote a group of people working on a
particular problem,

187

188

The quantities of raw material and of electricity used are readily determined
from meters and other measuring devices, Most overhead costs are also known,
But, because of the interdependence of the areas through the reservoir area,
the unit costs are not easily determined,

For each of the N areas there is a system of linear equations

expressing relationships among the various unit costs Us for that area., The

unit costs for an area may be the cost per unit of electricity generated, the

cost per unit of electrical distribution, the cost per unit of river water, etc,.
The Qij are quantities of electricity generated, electricity distributed, river
water used, etc, All these Q; are known since the quantities have been measured,
The unit costs U; are the unknowns which are desired, If all the X; were known
exactly, then the solution Uj could be obtained directly. The X;'s, which can be
termed overhead, are not constant but are functions of the unit costs of electrical
generation in the excess generating areas, The greater portion of the X;'s are
salaries and other overhead items,

While the values of the X;®s are not known exactly, they may be estimated reason-

ably well when the estimate is based upon the preceding months® values for the unit
cost of electrical generation,

If iterations\are performed on the Xj's, improved Uj result,‘ If the first guess
for the Xy's is moderately good, then the Uj converge rapidly.

The logical procedure used in solving this problem is:

1, A guess is calculated for those X;ts which are functions of the
unit costs of electrical generation, This calculation uses the
values of the unit costs of electrical generation from past
experience,

2o The systems of linear equations for those areas producing more
electricity than they use are solved using the assumed Xi's
from (1). This yields for each excess generating area an
approximate unit cost of electrical generation for that area,

3. The new X;'s are calculated from these new approximations to
the unit costs of electrical generation,

ho Again the system of linear equations for each excess generating
area is solved, This gives a better approximation to the unit
costs Uj for those areas,

5. From the new approximation to the unit costs of electrical gen~
eration, new X;'s are calculated, It has been found that these
last approximations to the X;'s are sufficiently accurate, so
that no further iterations are required,

6, At this point, every system of linear equations is solved with
the last approximation to the Xj's. Not only the unit costs of

electrical generation, but all unit costs for each of the N areas
are now considered, With these unit costs, the Accounting Depart-
ment has all the information required to account accurately for the
plant power,

Te As a check on the consistency of the data that has been processed,
the X;'s for each area are summed. Then EZICjUj is computed , where
J

Cy = :E:Qij as determined by the Accounting Department from their
i
original data, If in ;ﬁzg C;jUj’ there must have been an error
i
in the transcription of data.

8. The total cost for each area is computed by adding known quantities
to 22C.U..
j I
9« The total cost for all areas is obtained by summing costs for each
each area, This total should equal the total Power Departmsnt
expenditures plus inter-area transfers. (Sum of power exchanged
with the reservoir area),

10. In the near future, the Computations Group will go on with the
problem to show the distribution of power to the proper cost
codes for each area,

Before this power accounting problem was calculated on the IBM €50, the Accounting
Department maintained a suspense balance, The amount of this balance was the
difference between the book value of electricity and the amount the Accounting
Department had charged to the areas, Each month the previous month's suspense
balance was charged or credited to the various cost codes and each month a new
suspense balance was evolved to balance the books., The suspense balance is no
longer a necessity.

This problem was done in the floating decimal mode of operation, The N systems
of linear equations are solved using the floating decimal routine developed by
G. R. Trimble, Jr. and E. C. Kubie of the IBM Corp., and the matrix inversion
routine developed by R. W. DeSio also of the IBM Corpe

The computational procedure is outlined below.

The Accounting Department supplies the numerical values of the quantities of
excess electricity produced by the areas that generate an excess, At the outset
the machine tests to determine whether or not Generating Area 1 produced an
excess of electricity., If it did, the machine solves the system of equations for
Generating Area 1, and only the unit cost of electrical generation is maintained
in storage. If the area does not produce excess, the routine goes on to the next
area, The tests continue through the n generating areas after which the machine
punches the unit costs of electrical generation for each area,

Next, the routine calculates the unit cost of electricity m distributed by the
reservoir area, This unit cost is the weighted average of the cost of electricity
from all the excess generating areas, The total cost of transmission in the reser-
voir area is also calculated, This cost is made up of salaries, material, and

189

190

transmission losses, Finally, the unit cost of river water is calculated for the
reservoir area,

Now those X;'s which are functions of the unit costs of the reservoir area are
calculated, This brings us to (2) in the Flow Sheet. With these new values for
the X;'s, the routine is re-entered at (1). When the 650 has computed to point
(2) again, it is allowed to proceed normally. .

At this time, the X% are calculated for each of the N regions, after which each
of the N linear systems is solved for the unit costs. Each set of unit costs
UJ is punched as it is calculated,

Originally, the Accounting Department prepared the input numbers in floating
decimal form, Now they prepare the data with the decimal fixed, and a short
routine transferms the numbers into floating decimal form.

This work was done under contract AT(07-2)-1 with the United States Atomic
Energy Commission whose permission to publish is gratefully acknowledged,

191

TIoJSuedy,
vaIe-Ia3ujg
- snyep joog =
wo.nm\pmoo 183105 %,

m.mmonuo a.ﬁwmw.a wowm.nm yoes I07J
=s suo enba pIno
. Jueq 0+T. ﬁN.nu._.. PT zmT ¥ yound pue o o o ¢ ¥ gomd pue ke
n uw sjnduog "9 Z egnduwog (u) wegsLs aaTog (T) weisLs eaTog
(®ax® atoazssay) *yound pue swale °yound pue sesle *yound pue seals R
wos o3 Sy | *®aae yoes J07
*yound pue ¢p vci Sutgeasuald SuTtgersusd-uou o F pue <
‘N ‘W e3nduwog J03 °x sqnduog 203 Ty sqnduog ¢y ¢€y synduog e3nduoy
T utesqo 1 Tg ureqo
(u) weqsds eatog (1) weysds aafog
ON ON
sBale m:ﬁ,m&mcom.

8880X3 TT® =T g ° =1
103 T oung E &0 (o] Hv © o 0 @ e © o menm«o D sI

ONIILNNCOOV IS0D YaMOd Y04 IFFHS MOTI 059 WEI

192

ANTENNA PATTERN CALCULATIONS

S. G. Fleming and R. Habermann, Jr.
General Electric Company

The calculation procedure discussed is a direct method of obtaining the
far field antenna pattern from its aperture distribution. The shape of the far
field pattern, particularly the gain and nature of the side lobes is of interest
in many radar applications. Such patterns may be of the nature of the curve
sketched below where the high central lobe and one or more of the small side lobes
may be important. The magnitude is usually expressed in logrithmic units (decibels).

Magnitude

A
L}

O +
Angle

This pattern is obtained by integration of the Fourier integral of the
aperture signal distribution. However, practical antenna systems do not gen-
erally yield expressions which may be directly integrated. Thus, many methods
of solution using various measures for approximation have been proposed. A
higher measure of precision may be obtained in the procedure described here as it
involves only a direct numericdl integration which may be done with as much care
as is economically prudent.

Yy
Antenna

2

An arbitrary aperture plane xy is established at the face of the antenna,
and the linearly polarized signal phase and amplitude are expressed by:

Fx,) = £05y) o357

Generally the most important portion of the antenna far field pattern is
that in a small angular region about the z axis. The far field pattern in this

case is expressible as:
E(e,d) =Jﬁ/1 F(x,y) e 2n/A (x cos @ + y sin @) sin © dxdy
S

where A = wave length

It is sometimes convenient to normalize the situation to allow for com-
parison of related sizes of antenna of the same shape at different wave lengths.
This also permits scale change in a single axis with a known effect on the pattern.
The normalizing factors may be taken as the maximum dimension on each axis a and b.
Thus, we establish new scales

X a X b

Another substitution is made, in some cases, to reduce the trigonometric
operations

= 2%2 sin © cos @
v = 2%9 sin 6 sin @

The working form of the field expression is then

E(u,v) = a,b f/ £(X,¥)(cos § + j sin §) dxdy
where § = uX + VY + ¥(X,Y)

The far field pattern is obtained by direct numerical integration of the
preceding expression. The integration method used was the most elemental; dxdy
being replaced by AxAy and the integral becoming a double summation.

The interval size is determined by how fast the integrand changes its
slope. The magnitude and phase functions, f and ¥, at the aperture are gen-
erally smooth, The rapid variation arises from the alternation of the sine and
cosine terms due to the change in value of the uX and the vY¥ terms. Since the
integrand has a sine wave-type variation, the interval size is selected on the
basis that 14 points per cycle give one percent error and 20 points per cycle give
one-half percent error. A maximum error of one percent yields side lobes to 0.l
decibel, The result of the integration is the far field in its complex form.

E=g+ jh
To make the results useful, additional calculations are performed to get the
magnitude and phase of the field. It is desired to have it expressed as
E = Ae'
So, we must calculate
db. equivalent of A = 10 log (g2 + h2)

-1lh

B = tan 2

" We find this problem of particular interest as we have used several dif-
ferent computers over the years to handle various proposed antenna designs.

193

Experience on this problem started with the 602A. In this operation,
the £(X,Y) and ¥(X,Y) were first punched into cards and many duplicate decks of
cards were generated. From these the uX and vY products were calculated and [}
was formed for the various u and v values of interest. The sines and cosines
were formed from sorting in a table deck and second-order interpolating.

The 604 came along and yielded vast speed-up of the operations. When
machine modifications were completed, automatic sine and cosine calculations
were used to reduce handling and sorting.

The advent of the CPC cut out the mountain of intermediate calculation
result cards, Although the theoretical costs were higher than on the 604, the
simplification of the project with the reduced incidence of operator interven-
tion made this machine useful on the project. Again with this machine there
was still a considerable amount of card handling as the input hopper did not
hold all the instruction cards necessary.

The 650 has made this project fully automatic — the data and instructions
are read in, and in due time the results are punched out.

Other 650 applications in the antenna design area have been the calcula-
tion of the field due to multiple antennas and the calculation of aperture field
distribution.

With multiple antennas, superposition of the fields is done by adjusting
the individual complex field values for the proper phase relationships and adding.

The aperture distribution may be calculated by the magnitude versus angle
characteristic of the antenna feed. Various rays are established from the feed to
the reflector, and thence to the aperture plane.

|
]
ﬁb— Aperture Plane_

Feed

The magnitude at the aperture comes basically from the angle leaving the
feed and the phase is determined by the path length. As small differences in
the path length are large compared with the wave length, the calculation of
reflectance angle and path length require care in programming to preserve accuracy.
In eight-digit floating point, arithmetic results of sufficiently high precision
were obtained.

Many of our projects in this field were initiated by Charles C. Allen of
the General Engineering Laboratory of the General Electric Company. He has
published some results of these calculations, and they appear in the 1953 Convention
Record of the Institute of Radio Engineers.

194

CALCULATION OF PIPING SYSTEM EXPANSION STRESSES
ON THE TYPE 650

Marilyn Alfieri, Burton Whipple, and Pierce O’ Neill
General Dynamics Corporation

The basic theory needed to develop detailed calculation
programs for the evaluation of piping flexibility analysis on
the Type 650 Computer is contained in many sources of published
literature. The methods of solution presented in the M. W.
Kellogg Company manual (Reference 1) were used at Electric Boat
for hand calculations and, logically, have been used in the pro-
gramming for automatic computation.

METHOD OF SOLUTION

The Kellogg method is applicable to piping systems of any
shape or configuration, in a single plane or in space. The ap-
proach is not restricted to the elementary problem of lines fixed
at two ends, but can be used for any number or type of end fixa-
tions and intermediate constraints, such as guides, rollers, pivots,
links, etc. Constant stiffness throughout the system is not a re-
quirement; the line can be composed of pipes of various sizes,
thicknesses and elastic properties. The development is not con-
fined to a consideration of the deformations due to bending and
torsion alone, but permits the inclusion of the effects of tension,
compression and shear, where these are considered significant as in
the case of very stiff lines. The computation program described
herein does not include these direct force and shear effects but can
be easily modified to do so,

The pipe ends or anchors and the intermediate constraints are
termed load points. Complete fixation at a load point introduces
three restraining forces acting in the directions of the axis of
any orthogonal system of coordinates and an equal number of moments
rotating about these axis. Since this equals the number of restraints
required to maintain static equilibrium under any system of loading,
six unknowns are implied for a line with two fixed ends and each
additional load point will introduce six more unknowns. A lesser
degree of fixation at a load point will reduce the number of un-
knowns at that point. For example, a universal joint type of hinge
will prevent all translatory movement while not restraining any of
the possible angular movements and, accordingly, provides three
reactions. : : :

195

196

While the scope of the Kellogg calculating method is un-

' 1imited theoretically, certain restrictions become apparent in

programming a practical general solution for the 650. Branch
selection becomes quite involved if more than three load points
are considered since several varieties of line configuration are
then possible. A routine capable of calculating piping systems
with three anchors and no intermediate constraints or the equiva-
lent case of two anchors and one constraint was general enough to
satisfy our most pressing computing needs. Our initial effort has
been so directed. Elaborations on this basic routine plus modifi-
cation for special cases will subsequently be initiated.

The operating equations are established by considering one
end of the piping system as fixed and located at the origin of the
coordinate system. For a three anchor or branched line the origin
is usually placed at the end of the common branch. If the other
ends of the line are considered free of restraint against transla-
tory and angular displacement the system becomes a cantilever beam
fixed at the origin. When subjected to expansion the freed ends
will be translated to new positions. In order to bring the freed
end back into its original position (modified to include extraneous
movements of the origin anchor and end anchor) certain forces and
moments must be applied. The problem becomes that of finding the
forces and moments necessary to apply at the load point in order to
produce known deflections and rotations at the load point.

It is expedient to solve for the internal forces and moments
produced at the origin by the external loading instead of solving
for the latter directly. The contribution of each individual load
point to the total moments and forces at the origin are shown sepa-
rately to permit proper redistribution.

The equations for deflection and rotation at each load point
as finally developed, are in terms of the unknown forces and moments
at the origin with coefficients obtained by the summation of derived
shaped coefficients reflecting the flexibility characteristics of
each piece in the line and its location.

The solution of these simultaneous equations provides the in-
ternal moments and forces caused at the origin by each load pointe.
From these the internal moments and forces at any point in the line
may be determined and finally the stresses at the point.

CALCULATING PROCEDURE

The program for calculation on the Type 650 is broken down
into the three major phases or "runs" of required calculation;
computation of the equation coefficients, matrix solution of the
simultaneous equations, and computation of stresses and reactions

‘at required points in the line. For each problem to be solved a

complete deck of properly arranged program and data cards for all
three runs is processed in one continuous operation.

A detailed description of the required input data for each
run is provided in Appendix I. All input data cards and output
cards are similar. The first fifteen columns are assigned to
the various identifications required. Numerical data is punched
in the remainder of the card in either ten digit or five digit
fields as required.

The program flow chart, provided as Appendix II, shows in
detail the operations to be performed and the program selection
required for each of the three runs. A brief description of the
procedure for a three anchor or branch line follows:

RUN I - Calculation of Shape Coefficients

In setting up the piping system for calculation, a tri-axial
coordinate system is established with the origin at the common or
- "C" Branch anchor. All members, or parts of the line, are assigned
to planes parallel to the coordinate planes or in planes which may
be rotated about a coordinate axis to achieve this condition. The
necessary delineating data for each member together with factors
reflecting relative stiffness and flexibility is punched in a carde.

The twenty-one shape coefficients of the member, either
straight piece or elbow, are calculated and the results stored in
memory locations determined by the plane of the member. If no
plane rotation is required the results are transferred to the
memory locations where the summation of coefficients is accomplished.
When rotation is required the results go through the selected rotat-
ing routine before being transferred.

When the card for the last member in the line has been calcu-
lated we have stored in memory the elements above the diagonal of
a symmetrical square matrix of order twelve representing, when aug-
mented by a column vector of constant terms, our set of twelve
simultaneous linear equations. In Run II the constant terms are
provided and the matrix solution is accomplished.

Approximately 1650 instructions are required in the programming
of this Run.

RUN II - Matrix Solution

The constants for our simultaneous equations are derived from
the "restoring" rotations and deflections of the "A"™ branch and "B"
branch ends of the line. These "restoring™ movements are determined
from the thermal expansion of ths line and any extraneous movements
occurring at the branch end or at the origin. Each constant is the
product of the pipe stiffness, EI, and a rotation or deflection.

197

198

Each different combination of line temperature and anchor
movement establishes an operating condition of the line. An
"A" branch and a "B" branch data card provide the set of equation
constants for each such condition. The internal pressure for the
operating condition, required in the calculations of Run III, is
also read in and stored. A maximum of seven different conditions
can be treated for solution at the same time. The limitation
here is that of drum memory capacity.

A method of solution for simultaneous linear equations with
the same matrix of coefficients but different constant terms is
described by Eric V. Hankam, (Reference 2). The matrix (A) re-
sulting from Run I is augmented by the several column vectors (b)
of constant terms. A composite matrix is then formed by adding
an identity matrix (I) under matrix A and adding O-vectors under
each b-vector. Reduction of this composite matrix results in the
values of the unknowns appearing in the O-vector below the re-
spective b-vector.

‘ Due to the wide range of values expressing the equation co=-
efficients we convert to a floating decimal point number system
for the matrix reduction routine. The largest composite matrix
contains twenty-four rows and nineteen columns. We take advant-
age of the memory address system on the 650 by storing the matrix
elements in drum bands Ol to 19. The mantissa of the first element
is stored in OlOl with the exponent in 0151 and the last element
has the mantissa in 1924 with exponent in 1974. The row and column
location is thus easily defined. Note, however, that the address
indicates the column first and then the row. This is the opposite
of usual matrix element notation.

After the matrix solution has been performed the results are
converted back to fixed decimal numbers.

For each condition we now have the moments and forces at the
origin due to the "A"™ branch loads and the same for the "B" branch
loads. These are stored for use in Run III and also punched out on
cerds identified as to condition and branch. Corresponding moments
and forces for the two branches are summed for use in Run III as
common or M"C" branch reactions.

The progrém for this run requires about 500 instructions.

RUN III - Stress Calculation

A data card, for each point in the line at which stress is to
be evaluated, provides the necessary coordinate and dimensional
information. The moments at the point are obtained from the laws
of statics considering that part of the line which is located be-
tween the origin and the point investigated. The forces remain
the same throughout the system since intermediate constraints are
not being considered.

The bending moment in plane of bend, bending moment normal
to plane, and torsional moment are then calculated according to
the plane of the member containing the point. The stresses due
to these moments are computed and punched out.

From these stresses and the calculated longitudinal pressure
stress the combined stress following the Principle-Stress Theory
(Rankine) is obtained and punched out.

This routine is repeated for each operating condition of the
line before feeding the data card for the next point.

Approximately 350 instructions have been used in the program
for this Run.

REFERENCES

l. "Expansion Stresses and Reactions in Piping Systems",
Anon., M. W. Kellogg Company, (pub.), Jersey City,
N.J., 1941 (Now out of print, revised edition in
preparation)

2. "Linear Equations and Matrix Inversion"™, Eric V. Hankam,
IBM Technical Newsletter No. 3, December 1951, pp. 26=3L.

199

200

APPENDIX I

INPUT INFORMATION FOR EACH RUN IN PROGRAM

In addition to specific data noted below all data cards are code

punched for their particular run and for job identification.

Run I - Calculation of Shape Coefficients.

Each member in the line has one input data card providing
the following information. For straight members K=1,
@ =1, and R = L (length).

DIGITS DESCRIPTION
XX 1 to 99 - Piece number of member
X X, Y, or Z - Plane of member
X X, Y, or Z - Axis of rotation of plane
X S or E - Type of member, straight or elbow
X A, B, or C - Branch containing member
XX XXX | K - Flexibility factor for curved
member
X XXX Q -~ Relative stiffness factor
X, XXX R - Bend radius of elboﬁ or length
of straight
XX XXX (2) a, b - Coordinates of member in plane
XX XXX (3) c - Normal coordinate of plane
X XXXX a - Angle of Tangent to member
X XXXX P -~ Arc of curved members
X, XXXX Y - Angle of plane rotation

Run II - Matrix Solution

For each different combination of temperature, anchor move-
ments and pressure which establishes an operating condition
of the line one input data card for the "X

for the "B" branch provides the following information,

DIGITS
XX, XXX,
X, XXX, XXX, XXX. (1)

X, XXX, XXX, XxX. (1)
X, XXX, XXX, XXX, (1)
X, XXX, XXX, XXX, (1)
X, XXX, XXX, XXX, (T)
X, XXX, XXX, XXX, (1)
X, XXX, XXX, XXX, (1)
X, XXX, XXX, XXX, (1)
X, XXX, XXX, X¥X, (1)
X, XXX, XXX, XXX, (1)
X, XXX, XXX, XxX, (1)

X, XXX, XXX, XXX, (1)

px,
g,
p2,

AX,

AY

- BZ,

¢XB
oy
.,
AXB

AYg

DESCRIPTION

Operating pressure

Rotation equation constant, "A"
branch

Rotation equation constant, "A"
branch

Rotation equation constant, "A"
branch

Deflection equation constant,
"A" branch

Deflection equation constant,
"A"™ branch

Deflection equation constant,
TA™ branch

Rotation equation constant, "B"
branch

Rotation equation constant, '"B"
branch

Rotation equation constant, "B"
branch

Deflection equation constant,
"B" branch

Deflection equation constant,
"B" branch

Deflection equation constant,
"B" branch

" branch and ene

201

202

Run III - Stress Calculation

For each point in line at which moments and stresses
are to be calculated one input data card provides the
following information,

DIGITS DESCRIPTION
XX 1 to 99 -~ Point number
X X, Y, or Z - Plane of member containing
point
X A, B, or C = Branch containing point
XX XXX (2) Xy ¥y 2 ~ Coordinates of point
X XXXX a - Angle of tangent to point
XXX XX SM - Section modulus of pipe
XX XXX 0D - Outside diameter of pipe
X XXX t - Wall thickness of pipe
XX XXX B ~ Curved pipe stress intensi-

fication factor

FLOW _CHART FOR PROGRAM

APPENDIX II

Run I - Calculation of Shape Coefficients

56
6.

7.
8.
9.
10,

11.

(a) Load program for Run I

(b) Feed data card containing piece number, plane, axis
of rotation, type of member, branch containing member
and X, Q, R, a, b, ¢, a, 9, Y.

1.
>
3.
o

Feed Data Card

sin a
cos a
2 a

sin 2a

Straight

0= Ca

0= Cb
sin 2a _
Cab

COSZG

N

sin"a

N

COSQ,C

2
sin"e _ ¢

aa

bb

56
6.
7.

8.

9.
| 10,

1l.
12,

13.

|

Elbow

cos 2a
a+ 9
sin (a + ?)
cos (a + ¢)
2 (a + ¢)
sin 2 (a + 9)

cos 2 (a + ¢)

cos a - cos (a + @) = Ca

sin @ - sin (e + @) = Cy

203

14, l/h[}osz (a + ¢) - cos2a|= C_y
15. l/b.[sinz (¢ + @) = sin2ca= G

16. 9/2 -G=2C
17. o¢/2+G=2C

aa

bb

18, O = 5! 18. kqR“c_ = S}

19. © = §¢ 19. KQRC, = S}

20, QLC,, = 81, 20, KQRPC_, = Sl

21, ar’c, = 81 21. Kker’c_, = St

22, Qrlcy, = 8t 22, KQR’C,, = SI,

23, 0 =ul 23. 1.3 QR°C_= u}

2b, O = v! 2h. 1.3 QR°Cy= v!

25. QL3/12 = w! 25, 1.3 QR = w!

26, QL(1 +3.6C,,) =u 26, QR(KC,, + 1.3 C_) =u

27. QL(1 +3.6C.) =v 27. QR(KC_, + 1.3 Cp) = v

28. QL 3.6 C_, = w 28, QR C (K - 1.3) =w

29. QL =5 29. KQRg =5

| |
|

30, 5+ a+ 8! - =8
3. S+ b+ S} = 8y
32, S .ab+ 8! .b+ S .a+S =5,
33, S.a’+28!.a+8] = 5.
34 S+ b% 4258 . b+ Sh = Sy
35. u-a-w.b+u<'> = U,
36, Ve b=wea+u = v

o ()
37. uo:a2 + v-bz— 2weaeb + 2u! ea + 2vi.b + w!
° o

38. cu = cu

204

“w o oW o> > >
N-‘ﬁ—ﬁnﬁn‘ﬁnﬁu

>
§-o ﬁ-

o o =
>~

to
q
N =

o

N
N -

39. cv = cv

LO., cw = Ccw

L1, cu, = cuy

L2, cv, = cv,

L3, c?u = c%y

L. c2v = 02v

L5. cPw = c*w

L6, sin y

L7. cos v

L8, sinzy

L49. coszy

50. 2y

51. sin 2v

52, cos 2y

53. 1/2 sin 2y

|

Y Jlane Z Plane
=u = v
= 0 = W
= W =0
= cwW = - CcwW
= u, = cv
= ~cv ' = =V,
= 3 = u
=0 = 0
=-8, = ~cu
= 0 = cw
= 8y = u,
= v = 3

zZX o b
Bz} = ~Ccu : = =V, = =8,
Bzé = CW = =CW : = 0
c.! =W = s _+c*v = 8. +ctu
bo'd o} aa bb
Cx} = -cu, = -V, : = -(sab+c2w)
Coo = -cv, = -(sab+c2w) = -cu
Cy§ = sbb+02u =W, = saa+czv
Cyé = —(sab+c2w) = ~cug = -V,
Czé = saa+c2v ='sbb+czu = W,
|

Rot. @ X Rot.l @Y \ Rot, @ Z

For Rotatioﬁ About X=Axis

1. Axi = Axx

2. A! cos y = Aiz sin y = A

Xy xy

3. Aiz cos y + A;y siny = A

L B&X = Bxx |

5. B%Y cos y - B&z sin y = Bxy

6. .’Béz cos y + BiY sin y = sz

T A}y coszy + A;z sinzy - A§z gin 2y = Ayy

8. ‘5§z cos 2y + (A}Y— Al) 1/2 sin 2y = Ayz

9. ;Béx cos Yy = B;x gin y = Byx
10, Bl cos®y + B! sin’y - (Bl, + BL) 1/2 sin 2y = By
11, Bl cos®y - By sin®y + (Bl - By,) 1/2 sin 2y = By,
12, Al cos’y + A sin’y + AL sin 2y = A,

206

13.
14,
15.
16.
17.
18.
19.
20,
21,

1.
2
3
L.

O & 3 O
L

10.
11.
12,
13.
1.
15.
16.
17.
18,
19.

Bt
ZX

Béy

B!
22

Gt
XX

Ct
Xy

C!?
X7

C?
Yy

C?
Yz

C?
22

Xz

2%

cos y + B

coszy -
coszy +
= Cpy

cos Y -
cos y +

coszy +

cos 2y + (C§y - C1) 1/2 sin 2y = C

2 ' .2 ' . -
cos™y + ny sin®y + Cyz sin 2y = C

X

B?
V2

Bt
yy

Cxz
C!
xy

Ct
22

sin y
sinzy

. 2
sin®y

sin y

sin y

B
ZX

(B;Y - B!) 1/2 sin 2y = BZY

t |] 3 =
(BZy + Byz) 1/2 sin 2y B,,

C
xy

CXZ

. 2
s - C! sin 2y = C
in®y sin 2y

Yz

yZ

22

For Rotation about Y-Axis

cos®y + A siny + Al sin 2y = A_

cos y +

cos 2y + (A%Z - AL) 1/2 sin 2y = Ay

At
Yz

sin y = A

2

cos®y + B!, sin®y + (B, + B!) 1/2 sin 2y = B_

cos y +

Bt
zy

0052 - B1?

cos y -
coszy +
coszy -
cos y -
coszy +
coszy +

cos y +

cos 2y + (C! - C1.) 1/2 sin 2y = C,

= C
Yy

zX

At
Xy

Bt
vz

B?
VX

At
XX
B!
XZ
BY
Xy
Bix
C?
7%
C1
vz

sin vy = B

sin vy

sin vy

sin y
sin2y
sinzy
sin vy
sinzy
sinzy

sin y

]

+

-
=

xy

sin®y + (B!, - BL) 1/2 sin 2y = B__

A
vz

B
yx

B
vz

4 1 =
sz sin 2y Azz

(B}, - BL) 1/2 sin 2y

BZX

B

zy

(B}, + B!) 1/2 sin 2y = B,,
C%z sin 2y = CXX

C
Xy

2

207

20, C! cosy-C! siny =20

yz 5 xy 2 yz
21. C;Z cos"y + Cix sin®y - C;Z sin 2y = CZZ

For Rotation About Z-Axis

1. AL cos’y + AL sin®y - A, sin 2y = A
2. A}'cy cos 2y + (Al - A;ry) 1/2 sin 2y = Axy
3. A%z cos y - A;Z sin y = sz
be BI, coszy + B&Y sinzy - (B}'cy + B;x) 1/2 sin 2y = Box
5. Bl cos’y - BI sin®y + (Bl - B) 1/2 sin 2y = B,y
6., B! cosy - B}z sin y = B,
7 A}y coszy + AL sinzy + A;Y sin 2y = Ayy
8. A}z cos y + Al siny = Ayz
9. Bl cos?y - Bl sin®y + (BY, - B) 1/2 sin 2y = By,
10. B§Y coszy + Bl sinzy + (B}'cy + B}x) 1/2 sin 2y = Byy
11, B§z cos y + Bl siny = By,
12. Aéz - Azz
13. B! cosy - B;y siny = B_
14. Béy cos y + B! siny = Bzy
5. B, = Bzz
6. Gl coszy + C}Y sinzy - Ciy sin 2y = C
17. c;cy cos 2y + (C} - c;ry) 1/2 sin 2y = ny
18. Cl cosy - C§z sin v = C_,
19. C;Y coszy + Gl sinzy + Ciy sin 2y = ny
20, C}z cos y + C!_sin y = Cyz
21, C;z - sz

Sum and store the respective shape coefficients, A _ccceeces toO Cz

po.d
of all members in each branch. Also add the respective "C" branch

Z,

coefficients to the "A"™ branch and "B" branch coefficeints, Sub-

scripts denote branch.

208

ZAxxA
ZAxyA
ZszA
)I:BxxA
ZBxyA
LBxz)
ZAxxc
2Axyc
Eszc
LBxx

ZBxyc

Zszc

L0xx
ZnyA
EszA
LBxx

EByxc
ZBzxc
ZCxxc
Znyc

Xszc

[}

EAyyA
ZAyzA
EByxA
LByy,
ZByzA
ZAxyc
ZAyyc
ZAyzc
ZByxc

.EByyc

EByzc

chyA
ZCyzA
ZBxyé
ZByyc
ZBzyc

_Znyc

Enyc
ECyzc

42,10
11
42,12

LBzx,
ZBzyA
LBzz)
LAxz

ZAyzc
ZAzzc
ZBzxc
ZBzyc
EBZZC

ZszA
Zszc
ZByzc
ZBzzc
Zszc
ZCyzc

Zszc

266
8.67 ‘
268
a69
46,10
26,11
26,12

209

210

ZAxxB
ZAxyB
EszB
ZBxxB
ZBxyB
ZszB

ZCxxB

EnyB
EszB

47,10
47,11
a7,12

410,10
210,11
810,12

ZAyyB
ZAyzB
LByxp
LByyg
ZByzB

. ICyyp
Z'.CYZB

ags
a 89
ag,10
ag,11
ag,12

411,11
811,12

ZAzzB

499

ZBsz = a9’1o

LBzyp = a9,11

ZBzzB = a9’12

C
2%Zg

412,12

These are the 78 elements above the diagonal of a symmetrical

12 x 12 A-matrix.

Run II - Matrix Solution

(a)
(b)

= by 13
= Dby 13
" 3,13

b,13

= b5,13
= bg,13

Load program for Run II

Feed data cards and store

Py

Pryns Piyps PZyps Dpgps Ayps A2y,
Py, Piyps Plyps OXyps AYyps AZyp

Store for matrix solution in Run II after
card for last member has been calculated.

for each of N operating conditions of line.

Store B-Matrix Elements

2099

etc,

Pryy =

by 124N

etc.

gX g = b7,13 . .

pY,g = bg,13 . | .
¢ZlB = b9’13 e : .
Aiyp = 10,13 | o o :
Y15 = D17 13 B . e
AZyp = b13,13 BZ2B = P12,1 AZyp = P12, 124N

Solve matrlx for the moments and forces at the origin for each
condition,

M M

Xa) XB_
My Wy
MZA ’ MZB
F F

XA *B
F F

A B
F F

25 Zp

These 12 reactions for each condltlon are results, Store for use
in Run III and punch out. : :

Add "A" branch reactions to "B" branch reactions to obtain ngn
branch reactions for each condition.

ch) MﬁA:f M"‘B
e "Ny T My,
M

=M + Mz

Store these 6 reactions for each condition for use in Run III.

211

Run IITI - Stress Calculation.
(a) Load Program for Run III
(b) Feed data card containing stress point number,

plane and branch containing point and x, y, 2z,
a, SM, OD, t, and B.

! |

Common A B

For Point in Common Branch

10M +F .Z-F .Y=M§’C

Yo 20
2e M& + F o X = Fxc « Z = M}
3. +F oY"F .X=M'
ZC C yC 2

For Point in "A" Branch

lo Mx+Fy.Z-FZ.y=M}'C

A
2 o N[y + F Y X = FxA ° 2z = D’I;
. + F e b F) = M'
2 ZA x "7 " Ty, 7 e

For Point in "B" Branch

l' M + F 'Y Ld F ° = M,
XB YB 2 ZB y X

[} + F [- F [= !
2 M&B zg x Xg Z M&
. + . - . = !
3. M g FxB y FYB x = M

These three moments at a point for a condition are results. Store
for punch out.

e Sin a

5. cos a

212

l l

rX".Plane n"y".Plane n"Z".Plane

For Point in "X" Plane
6. Mi = M&
7. M; cos a - M; sin a = Mﬁ
8. M; sin o + M; cos a = MQ

For Point in "Y" Plane
6. M&‘ﬂ M&
7e M% cos a - Mé sin a = Mﬁ
8. Mi sin a + Mé cos a = MQ

For Point in "Z" Plane

6. CoM =M
7o M; cos a - M} sin a = My
8. M; sin @ + M! cos a = MQ
9. Py (0D-t)/ht = 8

0. 12 .,

11. CB Mv = Sv

12, CB Mﬁ = SH

13. C My/2 = 5,

W. s 2+5:2 =sp

15. SB - Sp

16. \(sg - sp)2 + (2 5))% = 5
17. Sg + 328p + 5, - Sc

p

Stresses S_, S,. S5 and Sc are results at a point for a condition.
Store for BuncH ouf.

If this is not last condition, return to Step 1 after branch selectien

and calculate same point for next condition.

If it is last condition feed data card for next peint, 213

CATALYTIC REFORMER GAS PLANT EQUILIBRIUM CALCULATIONS

E. V. Merrick and R. B. Perry
The Standard Oil Company of Ohio

The Process Engineering Division wished to calculate the
Catalytic Reformer Gas Plant products at design conditions end at a range
of operating conditions bracketing the design conditions. The results were
to be used for:) ' o

1. Current product planning work; and
2. Design specifications for future refinery expansions..

Figure I is a simplified flow diagram of the unit. It was designed
to produce both a gasoline product (catelytic reformate) and a heating product
(1PG), each of a desired quelity end yield at. the design operating conditions.
If these operating conditions are veried, it becomes necessary to calculate
the products obtained under the new conditions in order to see whether they
are still within the quelity end yield range desired.

The problem programmed here is the calculation of these products.
Initielly, a fecd stream M is taken into the first flash zone. This feed
consiste of a known quentity and composition of product, F, from the reactor
(not shown here), and an assumed quantity and composition for recycle, Ry,
as dictated by a fixed hydrogen requirement in Rj. The composition of F will
very eccording to the degree of hydrocracking used in the reactor section.

The vepor and liquid products (v1 end 11) at the Product Separetor
are then celculated through the use of equations 1, 2, and 3 of Table I.
The total recycle quantity R& is determined by the use of equation (4) and
compared with Rq. If not equal, Re is used es R, with & composition proportional
to V1, end the celculation is repeated through tke product separatore. C
Upon obteining & balance between the equilibrium in the Products
Seperator end Rj, we then proceed to calculating the rest of the unit.

The equilibrium celculation through the remaining two flash zones
is, of course, the same. However, the balancing of products in the unit
after flash zone 1 is complicated by the interdependence of Ry end R3. R2 and
R3 are assumed initially and V3 calculeted; these celculations must then pro-
ceed until the celculated Ro and R3 are constent quentities for each set of
operating conditions and so that Ry equals V3.

214

As can be seen, high-powered mathematics are not involved in this
problem; it is simply a voluminous aerithmetic problem, largely repetitive in
nature with a trisl-and-error approech used in assuming initial recycle quan-
tities (Ry, Rp, end RB)’ followed by equilibrium calculations in three sections
of the plant —- the Products Separator, the L. P, Flash Drum, and the Depropanizer
Reflux Drum. Meterial balance calculations are made et the depropanizer and at

the deethanizer. Here are used empiricel equations based on design conditions
(Teble I).

The problem was programmed in two parts:
Part I = Calculations through the Product Seperstor Section;

Part II - Balance of the plant - the celculations being continued
upon a basis of selected results from the Part I
calculetions.

Figure 2 is a block diagrem for the flow of calculations. When Figure 1
the simplified flow diagram of the Gas Plent, is compared with Figure 2, it is
clearly seen that our 650 progrem is in essence a simulation of operetions in
the Gas Plant.

Part I of the program used 422 instructions, 5 constants, and a
working area of 110 locations. A total of €0 cases were computed in 39 minutes,
The number of cases depended on veriations in Ty, P and F (Figure 1).

Part II used 599 imstructions, 13 constants, and & working area of
195 locetions. It is estimated that the 650 went through more than 75,000,000
operations to compute Part II. A total of 729 cases was computed in approxi-
mately €0 hours. The number of cases depended on variations of Ty and P, and
T3 end P3.

There were no programming difficulties once the problem was defined.
Some minor scaling problems, discovered in testing the program, were quickly
solved. Five decimals were used throughout the problem wherever possible, so
that accurascy was maintained to & finer degree than possible by hand calculations.
(Material balances check within 0.01% - See Table 1I).

The problem analysis end programming totalled approximately 425 man-
hours. The job breeskdown for this total is as follows:

Problem analysis - 19 %
Discussion and review - 18 %
Block Diagram - 6%
Coding - 23 %
Checking of routines - 2 %
Program testing on 650 - 14 %

We heve estimated that it would teke an engineering assistant
approximately 6000 hours to obtain by hand the results that the 650 has
given for this problem. In contrast, the 650 machine time totals less
thaen 61 hours.

b

215

TABLE I
Equations Used

Equilibrium Calculations

Kj Mj

= Vi ,
L/V* +Kj (1)
n .
évi =V (2)
1
M-V = L/V* (3)
- v
_I_t_l Determination
1 _ n
R1 = gvi
: () 4)
Vi

Where —
M= total mols/hr. of feed (F [or L] + R).
Mj = mols/hr. of each component in feed.
vi = mols/hr. of each component leaving flash zone as vapor.
Kj = equilibrium factor for each component in feed at the chosen
Temperature and Pressure.

- V = total mols/hr. of vapor in equilibrium.
L = total mols/hr. of liquid in equilibrium.
v1 = mols/hr. hydrogen in Vj.
ry = mols/hr. hydrogen in Ry (specified)

Equations Used in De-Cg and De-Cg Sections:

D+W=L=IL1+Lg-=-~=~- L. ()
D=a;Lj+aglg -=-~~ -~ a L (6)
W=Db L+ boliy- = = - - - b L (M

Where —

D = Overhead Product
W = Bottoms Product
L, = mols/hr. of each component in feed.

. = design constants, a +b, =1
b; to
i

*
216 Assumed value

TABLE II

Example: Material Balance Check

Normal Hydrocracking - Case No. 141

Mbols/Hour

Feed (F) | 2520. 0
Products:

Gl 1324.0

GZ 61.0

Sl 1062. 8

82 44.9

G3 27.5
Total 2520.2

.2/2520 < 0.01 %

217

218

FiGg. | -

CAT. REFORMER GAS PLANT

D PART I
&
A
Fe—-
Y
(FLASH ZonE 1]
PRODUCT
MiEF + Ry SEPARATOR
T,)
I
MY
L

- e ——— ——— [—— o — — — ———

(GASOLINE PRODUCT)

PART 1I >
Og(=Y,) B3(=Dy)
y ’F
Ry
Va(=Ry)
| FLASH ZONE 3 |
L.P. FLASH 0 DE-FROPANI ZER
My DRUM I REFLUX DRUM o
T,) T,) 2
PZ) K2 3 X3
2 P3)
DE-PRO- DE-ETHA-
L, PANIZER Ly NIZER
w W,
| 2
R3
v
5,(=4,) 52
(LP6)

219

= _x 174

SNOILY¥3LI oz ¥0 6!

d01S ¥oyw3

Y0LYNYdIS $10NA0¥d

SNOtLvy¥3LE 81 ¥o I

— dmm e e e Gwew e s

? By A
A a3 ¥+l viva
1h =y ()= oo 1 [
= W=lu+s LHYASR0D avIY
A 4 Ty
I 1yvd

INVId SYD 43IWYO43Y¥ LVD HYYOVIQ %3018 ¢ 3¥n9id

SNOILY¥3L! OZ -~ 81

HAY¥A HSYTd °d *1

SNOILY¥ILE g1 - 2)

»x+>\..

1
UER TR 3= "Z- w7
ity

fae >\._

Ty 1y

II Ldvd

G3NN11NOD - 2 3¥N9Id

L

220

$17n83¥ HINNd

SHNY¥A XNI43Y¥ ¥3ZINVAO¥d-3Q

SROILVHILI @) - I

?JT

»aw

FPLTN

oty

Ey + '

QINNILNOD

$NOILVHILI 02 - g

II 1¥vd

2 3yn9I4

221

222

A METHOD FOR THE EVALUATION OF NON-LINEAR SERVO-MECHANISMS
BY NUMERICAL INTEGRATION

W. Barkley Fritz
Westinghouse Electric Corporation

An early and interesting application of the IBM 650 computer, recently
installed at the Air Arm Division of the Westinghouse Electric Corporation, has
been the evaluation of non-linear servo-mechanisms by numerically solving the
differential equations for the dynamics of these systems. Discontinuities in
these servo systems are of particular interest. The mathematical models and
computational procedures are presented for the solution of two such problems,
each formulated by Dr. K. N. Satyendra of the Air Arm Division. The single-
step Runge-Kutta integrating procedure is used to integrate the equations.

This procedure is particularly efficient since it requires no special starting
values, makes no unreasonable demands on storage, and allows the integration
interval to be easily and automatically changed as required,

The first problem concerns the obtaining of a time history, as
affected by the non-linearity in the radome, of a servo-mechanism used in the
antenna drive of an airborne fire control system.

The equation to be solved may be expressed as follows:

)
8F wpty+ Hy e (x+ &
at2 (v dt) (d‘b)

At t = 0, y = dy/dt = O, Moreover, x may be constant or may be a
function of time, The problem is to integrate until y exceeds some y,

max’
Typical values of A and B, as they change with the dependent variable y,are
as follows:

A B
Oo¢y £ 1 0 -1
ley € 2 -1.5 0,5
2¢y ¢ 3 L.5 -2,5
3.y & 5 0 -1
Sey % 6 745 -2,5
bey & T -10.5 0.5
Ty < 9 0 -1

Under the assumptions that y(t) is continuously differentiable and x(t)
is known, an analytic solution can be given for each interval.
of these solutions at the change-over points requires the solution of a system

The matching

of transcendental equations for which the error can be controlled. This procedure
and another method based on interchanging dependent and independent variables

are possible alternatives to fairly strsightforward integrating procedure to be
described.

In order to get accurate starting values for the new equation to be

solved when y leaves one region to enter another, it is necessary to obtain

accurate values for t, dy/dt, x, and dx/dt, when ¥y equals the change-over value.
These values may be obtained by integrating at some convenient intervel until y

exceeds the change-over value. Then, returning to the step just before this y

value is exceeded, the integration step size is halved and again integrated.

y still exceeds the change-over value, return to the former results, halve the

integration interval, and repeat until the newly computed value of y is less
than the change-over value.

change-over value to within some €.

The procedure is illustrated in Figure 1.

The integration interval is once more halved, and
computation proceeds as indicated until the computed value of y is equal to the

I I1 ITI [\
Read in Read in Integrate by single| IV yes S¥4 +1 in no
program input datalsstep method; punch SV 4].;’yﬁmx? he same region
and ‘ i=0 results S y.?
constants 4
yes
i+ 11 VI VIII o VII _
T2 e B e
Storage : o8
X
Reset h to
original |«
value
Figure 1. Simplified Flow Diagram of Radome Non-linearity Frogram.

223

Tt has been pointed out that this procedure could give a very poor value
for t if dy/dt is small at the change-over point. Fortunately, this is not the
case in the physical problem actually solved by this technique; however, in general,
it would be best to replace this condition of box VII with some other relation.

An alternate method may be used for the regular step-by-step integration
as follows:
(1)

1. Integrate, obtaining values yj.q with a single step h.

| (2)
2, Integrate, obtaining values Yi+1/2s Tisl with two steps each at
the interval h/2,

3, Substitute these values in the Richardson extrapolation to zero
grid-size formula

(2) (1)
Ji41 © (2k Y541 = Yi+l)/(2k -1),

in which k is the order of the method used.

The value yj41 is then taken as the starting value for the new step
which proceeds as indicated, using the same discrimination procedure to determine
when the change-over value of y has been obtained. During the halving process, it
is unnecessary to use the Richardson formula as part of the procedure because of
the nearness to the change-over value of y and the fact that the new procedure
already involves a halving process. Either procedure can be used to integrate the
second order equation by using an assigned integration interval. Interpolation
might be used to obtain values of t, dy/dt, x, and dx/dt, for which y equals the
required change-over value. However, this procedure requires a knowledge of the
behavior of the solution to determine the type of interpolation to use as well as
the necessary special coding to perform the interpolation. The procedures out-
lined make use of an integrating process to approach the correct solution and
provide control over the accuracy obtained.

A second problem concerns equations that represent the dynamics of a

non-linear servo-mechanism with backlash, viscous damping, and coulomb friction.
Mathemati¢ally the problem can be stated as indicated in Figure 2.

224

(1) dzm _ (Dm+ge) zm+Kl (ymf g) t F-Kxx SZE _Zm

at T (It,) ‘ d

= = = de = QI = O:
At t =0, yy Ve raileT
2 .
Integrate (1) until By = qkd Y + qzdym + F changes sign. The sign of F
at2 dt
is the same as Wy
dt

Then integrate

dva - dz, - 4 .

T % Gt =7, Dzt F)
(2)

dy dz

mo_ _m_-_1

el ® I, (D, zp + Kyy - K5x)
until G = y, +,g changes sign.
Next, change the sign of b/2 in (1) as well as in the definition of G; and
let Yo replace y in By and Gi‘ The systems are again integrated as before
completing one cycle.

Figure 2.

Non-linear Servo with Becklash Equation.

Obviously Yps Yms Zps and zp are dependent variables with t the indepen-
dent variable. Values of Dy, Dy, Jp, Jp, K1, Ko, b/2, and F are given and remain

constant for each case,

In order to keep the emphasis on the solution techniques involved, the
engineering aspects of this servo mechanism with a forcing function will not be

discussed.

The complete computational procedure is illustrated by Figure 3.

225

I

Read in program,
initial conditions,
set ¥=¥, t =0,
h, -b/2 —» 1II,
Bj, Gy,

C=0,€

© e

11

Integrate (1) by
single step method
(second order),
punch results

II1

yesty

DOV

HIS Bivice

no

VI L

Is By » By4y positive?

Shift | Ji+l—=1i| .
- storage

yes

Is Bsy1 2 € 2

vyiz 4 MO

Use same input

Let (1/2) h-bh_@

.

yeS
l VIII |
»Reset h to original valueL(ZE)

X1 es
B8 15 G S G:.G X
— 1+ 1 €€ 2] i*¥i + 1 positive? Integrate (2) by single step
o no ethod (fourth order), punch
results
XIT N X1II . XIV _
Shift storage Is Gy , ,<€? Let 1/2)h —»h
yes use same input
e | o
Xv X XX
Set h to original value, Set up for Read in new parameters
shift storage new cycle, to introduce new case
-b/2 +1I,| |
@ Pset ¥F= 3'1 T

XVI

Set +b/2 =+ 11

1et y9= ¥y in Bi*_@

AVIT

C+1%C|flsC =0 7

yes

ase completed

Figure 3,

226

Simplified Flow Disgrem for Solution of Non-linear Servo with Backlash.

Each of these problems requires the solution of a series of differential
equations, each valid within a clearly defined region of one of the dependent
variables. The same type of integrating process is required in every case in order
efficiently to take care of the discontinuities present. The basically essential
feature is that the integrating procedure be of the single-step type, i.e., that
the integration of the system proceed from values of the variables at just one
preceding time step.

Among the possible single-step integration procedures is one that is
usually designated as the Runge-Kutta method. This method appears to be a
particularly attractive one. But after reading the objections presented by Milne
in his text, Numerical Solution of Differential Equations [1], it may be considered
desirable to try something élse., Milne first points out that each step requires
four substitutions into the differential equation (s) which, for complicated
equations, may demand an excessive amount of labor per step. Milne,in the second
place, notes the absence of any simple means for detecting machine failures or
for estimating the error.

This first objection is based on the assumption that omeis using a desk
computer to do the computation. Actually, the very "repetitiousness" of this
procedure is an advantage when using a reasonably fast automatic digital computer.

The second objection is a more serious one, however, and must be
answered in greater detail, The absence of built-in checks for machine errors is
not really very important when one is using a present-day automatic digital computer.
As for the estimate of computational error, Bieberbach { 2] has found an expression
which gives an upper bound for the error at a given step; however this estimate
requires, as does an improved bound by Lotkin {3] ,the computation of additional
quantities which do not already appear in the basic computation. Further, this
error is only a bound, and may force one to reduce the integration interval even
unnecessarily so that the computation time becomes excessive,

The procedure of extrapolation to zero grid size, as used to improve
the solution, has been shown by Gorn [L] effectively to transform any integrating
procedure into a new integration of one higher order at the cost of multiplying
the time approximately threefold. Whether this is practicable or not will depend
on such factors as the local situation, the machine time available, the accuracy
required, and the independent checks available. What is important is that the
error can be controlled in the Runge-Kutta procedure. Moreover, the method is
exceptionally efficient. Although care must be exercised in its use, its several
advantages require that it be given consideration as a general automatic computing
technique for integrating systems of differential equations, OSpecifically, these
advantages are:

1. No special starting procedure is required.

2. The integration formulas do not change when the step size must be
varied, as required by the problems just considered.

3. Only the values at the previous time step need to be stored,

2217

Bach of these advantages means a saving in coding time and machine space,
In fact, the Runge-Kutta procedure requires less machine storage than the methods
of Adams, Milne, or other procedures of this type. Putting this another way, the
IBM 650, or any automatic digital computer, can store the program for solving a
higher order system by using the Runge-Kutta procedure than it is capable of
storing by using methods which require the saving of values from a number of
previous integration steps.

It is important to point out that the Runge~Kutta method is a fourth
order method (k=4 in the previous notation); that is, the error excluding round-
off goes to zero as the fifth power of the step size. It is therefore equivalent
to approximating the solution locally on intervals of length h (the step size) by
polynomials of the fourth degree, Adams' and Milne's methods are equivalent in
this respect.

It should be mentioned that Gill [5] has modified the Runge-Kutta
procedure so that only three registers of storage per dependent variable are
required instead of the four required by the unmodified method. Gill's modi-
fication serves to emphasize the usefulness of the Runge-Kutta procedure,

To conclude, information on the stability of non-linear servo mechanisms
has in the past been obtained by graphical methods like the describing~function
technique as exemplified by the work of Johnson [6f] and others, Such graphical
methods fail to yield data on the transient behavior of the system as a whole,

The technique presented in this paper provides a powerful tool in the hands of
automatic control systems engineer since the complete time-history of the system,
both in its transient and in its steady state,can be accurately described. Finally,
the single-step integration, as exemplified by the Runge-Kutta procedure, has been
successful in solving several of these discontinuous problems and offers consider-
able promise of helping the engineer to exploit the digital computer for the more
effective design, development, and evaluation of airborne electronic control
equipment.

References:

1, Milne, W. E., Numerical Solution gﬁ Differential Equations, John Wiley & Sons,
Inc, (1953), p Th.

2. Bieberbach, L., Theorie der Differentialgleichungen, Dover, (19L6), p 5L.

3. Lotkin, M., "On the Accuracy of Runge-Kutta'sMethod", MTAC, Vol, V, (1951),
pp 128-133, :

h. Gorn, S., "The Automatic Analysis and Control of Computing Errors", J. SOC,
INDUST. APPL, MATH., Vol,.II, (195L), pp 69-81,

5. Gill, S., "A Process for the Step-by-Step Integration of Differential Equations
in an Automatic Digital Computing Machine", IROC. CAMB, PHILOS. SOC., Vol. L7,
L951), pp 96-108.

6. Johnson, E. C., "Sinusodial Analysis of Feedback Control Systems Containing
Non-Linear Elements", AIEE TRANS., Vol. 71, Pt. II, (1952), pp 169-81.

228

APPLICATION OF THE TYPE 650 TO FOURIER SYNTHESIS

IN X-RAY CRYSTAL STRUCTURE ANALYSIS

Howard T. Evans, Jr.
United States Department of the Interior

Abstract

The electron density p at a point (x,Y) in a crystal
lattice as proJected on a plane is given by

p(x,y) = -Sli % = F(h,k) cos2n(hxtky)
h k

for a centrosymmetric crystal, vhere F(h,k) is & function
of the diffraction intensity of the x-ray spectrum with
order indices h,k as produced by the crystal for a given
x-ray wavelength, and S 1s the area of the periodlc unit
cell of the crystal lattice. For practical purposes, the
Pourier synthesis must be evaluated at all the points of
a grid sufficiently fine to allow the electron density to
be mapped in detail. A complete progrem was evolved for
the type 650 which automatically computed the sum (which
may contain over 200 terms) at each point in turn to cover
5000 points of a 100 x 100 line grid. Such a program was
found to be unfeasible for this type of machine because of
its great length. Alternatively, a program was developed
based on the expanded form of the series:

S.p(x,y) = & £ Ay(hk) cos2rhx cos2rky - £ I Az(hk) sin2rhxsin2xky
: hk ,

hk

Each of the sbove summations is carried out in four parts
for which h,k are even-even, even-odd, odd-even and odd-odd
respectively, over one quarter of the cell in each dimension
(676 points). The results are punched with 13 sums on one

card, the cards merged and tabulated to extend the calculation

over the whole unit cell and obtain the printed report. The
computer program reads the A(hk) values from single-entry
cards (bracketed by lead and trailer cards) into a table on
the drum. Cosine values are stored in a table for which only
26 entries are required. By means of & series of loops the
values of

cos

C = ;Z.IA(h,k)lsin

Joxhx

are evolved for each k at 26 values of x, and stored in a
new table. The C values form the coefficients for the second

229

230

calculation

cos

Z C(x,k)
k Isin

2

which is initiated as soon as the C table is completed.
These final sums are punched in groups of 13 on cne card
as they are formed. Tests of the program indicated that
the type 650 will complete one series with 50 terms at

676 points in approximately 20-25 minutes, without optimum
programuing.

I. Introduction

The science of the deduction of the arrangement of
atoms in crystals from x-ray diffractlion deta depends on the
routine execution of large numbers of calculations based on
moderate amounts of experimental data. These calculations fall
into a number of well-defined groups, as follows:

1. Data preparation: the correction, scaling,
normalization and adjustment of experimentel data
for subsequent analysis. The body of experimental
data, which consists of the diffraction intensities,
may very from a hundred or less to several thousand.

2. Fourler synthesis: the synthesis of the electron
density in the crystal, or a function of it, from
the adjusted data.

3, Structure factors: the determination of theoretical
velues of the diffraction intensities from a given
model crystal structure.

. Least squares analysis: the refinement of the
accepted structure by least squares analysis of the
structure parameters based on the structure factor
function.

For a given crystal structure problem, the last three
types of computation may be repeated a considerable number of times
in an interative fachion. All crystal structure analyses will make
use of the same types of calculations, with only slight modification
from one problem to another. It is natural therefore, that consider-
able effort has been made in recent years by various laboratories
to adapt various IBM machine types to these calculations. With the
advant of the type 650, it is apparent that a far more powerful
computing instrument than has heretofore been generally available
will soon be accessible to many x-ray crystallographers.

The work to be described herein was initiated in
anticipation of the need for crystal structure computing programs
for the type 650. The Fourler synthesis, while not as important
to the science as least squares analysis, was programmed first
as a fair and well-defined example with which to test the capa-
bilities of the magnetic drum calculator.

II. The Fourier Synthesis Function

In a crystal structure the electron density at any point

may be expressed as a Fourier series:
@ 0 w0

p(x,y,z) = % £ 2 2 |F(h,k,1)| cos2n[hx+ky+lz+a(h,k,1)]

.00 ~00 ~0

hk1l

where p(x,y,z) = electron density at the point x,y,z;

v volume of the unit repeat cell of the
crystal;

F(h,k,1) = gtructure amplitude, function of diffraction
intensity;

h,k,L = orders of diffraction image (integers);

a(h,k,1) = phase angle associated with F(h,k,1);

X,¥,2 = coordinates of the point in question

expressed in fractions of the unit cell
edges.

This 1s the most general expression, but usually the crystal
has symmetry which allows certain simplifications. For example, if
the crystal has a center of symmetry, then for each atom at xd, yd, zJ

(origin a symmetry center), there will be an identical atom at - x ’
~¥, -2y, and the structure amplitude becomes real, with a(h,k,1)

restricted to 0 or 1/2. Further, it is frequently convenient to set
one index h,k or 1 equal to O, making p(x,y,z) independent of the
corresponding coordinate x,y or z, thus reducing the problem to a
two dimensional one. Nowadays, however, the solution of three-
dimensional non-centrosymmetric problems is becoming more and more
frequent.

In any case, a considerable amount of calculation is
involved since p(x,y,z) must be evaluated at a large number of points
in order to permit the electron density to be mapped in sufficient
detall for the purpose of the investigation. To obtain such a map,
it has long been customary to divide the unit cell edges into 60
parts each, thus forming a three dimensional grid of 216,000 points.
When symmetry is present, it may be necessary to compute p(x,y,z)
at only 1/2, 1/4, or 1/8 of these points. But each series will
contain several hundred or several thousand terms.

231

232

III. Adaptation of the Fourier Synthesis Problem
to the Type 650

In this early phase of the study the type 650 was programmed
to carry out a two-dimensional synthesis, in order to evolve a
procedure which can be readily extended to the third dimension.
The first effort resulted in a progrem designed to compute p(x,y)
at each point in turn beginning at 0,0. In all these tests, the
unit cell edge interval was 1/100th instead of 1/60th. The values
of p(x,y) were gathered and punched out 13 to a card. All possible
modifications required for the 17 different symmetry groups were
included in the program. Without giving any more detail, it will
suffice to say that the program was rejected because a simple
calculation showed that the synthesis of a 200 - term series at
5000 points would require approximately 150 hours continuous machine
time. The conclusion is that this approach to the problem is not
satisfactory for any magnetic drum calculator, unless results are
required for only a few specific points.

Recourse was then made to & procedure which has long been
used in hand methods of computation. The electron density is
expressed as follows:

0 oo
o(x,y) = -é- % T [A(h,k) cos2r(hxtky) + B(h,k) sin2x(hx+ky)]

- 00 «~00

hk
where S = area of unit cell in projection; and
A(h,k) + iB(h,k) = F(h,k).

When there is a center of symmetry, B(h,k) = 0 and the function
may be written:

o(x,7) = 2 £ £ [Ax(h,k) cos2ehx coserky - Ag(h,k) sin2ux sin2xky]

ot 8
wonM 8

vhere A; = A(h,k) + A(l;,k);
Ap = A(h:k) - A(E’k)'

Each summation is now carried out in two parts, with the results of
the first part being used as the coefficients for the second, e.g.:

(-]
c(x,k) = g Ay (h,k) cos2rthx;
h

8; = £ C(x,k) cos2rky

BOM 8

The series may conveniently be further separated into groups
according as h and k are odd or even. This procedure results

in the summation being required for only the first quadrant in
each dimension, or at 676 points for two dimensions (x = O to
0.25, y = 0 to 0.25). The various odd and even subsums may

then be combined with approprilate signs to expand the calculations
over the whole unit cell on the tabulator.

The procedurs for computation is as follows:
1. Determine A,(h,k) end Ax(h,k) (also By(h,k) and
Bzo(h,k) if ecrystal is noncentrosymmetrics.

2. Divide A;(h,k)(and each of the other groups of
coefficients) into four groups where h,k are
respectively even, even; even, odd; odd, even;
and odd, odd.

3. Feed one set of coefficient cards (say Aj(even, even))
in the type 650 and compute the subseries.

k. Punch out the results of the subseries on 52 cards
and read in the next set. Continue (automatically)
until all subseries are calculated.

5. Sort the sum cards and tabulate to produce the final
table of electron density values.

IV, The Type 650 Program

In computing the subseries at 676 points, the program
carries out the following operations:

1. Read in & lead card (indicating type of sum), the
coefficient cards carrying h, k and A(h,k), and a
trailer card (indicating end of group and initiating
calculation). h|k|A(h,k) stored in a table.

2. Compute the first sum (FAcos2rhx) in parallel for each
k, for 26 values of x in turn, and store the results
in s table.

3. Compute' the second sum (ECcos2rky) in parallel for
26 values of v using the coefficients stored in (2) -
and punch the result on two cards. Repeat this
calculation for 26 values of x, and return to (1).

233

Further details are listed below:

la. x snd y are initialized at O; h and k are initialized
at 0 or 1, according as they are even or odd respectively
(digital indication on lead card: 1l for even, even;
2 for even, odd; 3 for odd, even; L for odd, odd).

1b. Program set to calculate appropriate cosine-sine
combination (digital indication on lead card: 1 for
cos-cos; 2 for cos-sin; 3’for sin-cos; 4 for sin-sin).

2a. hx formed and cos [sin] 2rhx determined.

2b. A(hk) found by table look-up on hk. Table word is:
+ 1;ox00;oox. Sign is sign of A(h,k).
Ny S~
hk A(hk)
2c. Find partial sum (address 1900 + k) add A cos2rthx,
restore. Add 2 to k, return to (Ebs. At end of k,
add 2 to h, return to (2a).

24. At end of h, add 1 to x, transfer completed sums to
intermediate table, and return to (2a). At end of x,
continue to (3).

3a. ky formed and cos[sin]2nky determined.

%b. C(x,k) formed by table look-up on xk. Table word
is: + xox00xxxx. Sign is sign of C(x,k).
-

x k C(x,k)
3c. Find partial sum (address 1900 + x)S add C cosonky,

‘restore. Add 1 to x, return to (3b At end of x,
add 2 to k, return to (3a).

2d. At end of k, transfer completed sums for x = O to
0.12 to punch band (2 values per word), with series
indications, end punch. Repeat for x = 0.13 to 0.25.
Add 1 to y, return to (3a).
%e, At end of y, return to (1).
An overall block diagram is illustrated in Fig. 1.
The cosines and sines are evaluated By table look-up. All

angles 2rxhx and 2nky are formed as cycles (360~ = 1.00), whereof the
mantissa only is retained, varying from O to 0.99. Thus, with first

234

*8TgoqauLs ISTINOJ JOF SaTI9sqns aqndmoo o3 ¢ 069 2dA3 x0J wexdsIp HoOoTd *T 9In3Td

HONOA ¥

/
. G2°0 = »va.@
x 03

[| Tt0'0 POV
; Xem 38 X Vi@
so i x ges8y
{620 =X ¥ 39594 £ og
03 2D .
A T 0% 2 PRy T0°0 POV XYUZSOIY |y H+OOET UF
‘ _ WIO] . 84BTNENOOY
Lt
X+006T | 3 + Y
U umody < | —
l * ased X 03 q 03 2 POY] ‘Y #ou A 03
: TO°0 PPV X 39s9y 21015 ¢ POV
L1280
WwIoq . { G20 =x ‘ ¢ ssuEyo 4
\ IBaTO
- pue
XX £ EY 4 Iu
X 91983 JO Puy TT8TITU]]
a0 31983 D : T
NLL 09 sums
Iagsusay,
R V||
‘ aJxoa3g
SO0 putTqg ,
&7 wrog [€ XY 3999 fut— mmm mem . [

=

235

quadrant reduction, only 26 cosine values are required for the table.

The coefficient cards are sorted on h and k, k within h,
before being read into the machine. Only significant coefficients
are included. In step (2b), if no coefficient is present for the
given hk index, the next highest k is obtained, and the new k
substituted for the old in temporary storage. Thus, no computing
cycles are carried out for zero coefficients.

V. Tebulation of the Results

To obtain the final printed table of electron density
values, the punched results of the calculation of the various
gubseries as obtained from the type 650 must be reassembled and
tabulated. The entire output of cards if first separated (by
means of an indicating punch) into those carrying the results for
¥y = 0 to 0.12 and those for y = 0.13 to 0.25. Each of these decks
is then sorted on x (punched by the type 650 as an indication).
With an appropriate lead card, this deck will produce in the type
407, for example, any desired 16th section of the projected unit
cell. In the most general centrosymmetric case, there will be
eight subseries, or eight cards to be tabulated for each x value.
The extension of the summation over the various sections of the
unit cell is obtained by the proper control of sign of each card,
as controlled by the digit punches associated with odd and even
h and k, and cosine-sine combination. For the centrosymmetric
case, the eight subseries will be combined in eight different ways,
according to the scheme of Table I. This table can easily be
extended to include the noncentrosymmetric case.

While such a program has not yet been tested, it is obvious
 that the combination of the subseries can be most efficiently carried
out on the Type 650. The punched sums of the subseries would be sorted
together on x, fed back into the Type 650, which would then punch out
final totals. These could then be listed directly on the Type 4o7.

VI. Performance Tests

A synthesis of the electron density of the mineral
liebigite, CaglU02(C03)3.10Hz0, as projected on the xy plane, was
used as a test problem for the procedure described above. The
synthesis had previously been carried out (at 1/60th cell edge
intervals) by means of our present IBM system, using the types
602A and 407. The data consists of approximastely 200 F(h,k,0)
terms, which divide into 4 subseries of 50 terms each. It was
found that each subseries was completed in ebout 20-25 minutes
without optimum programming. With optimum programming it is
estimated that all four series can be calculated in somewhat less
than an hour. This rate is about 20 times that required by our
present system, or 10 times faster than a similar system based on
the type 604.

236

TABLE I

Subseries Combinations for Complete
Fourier Synthesis

Unit Cell
Section

H

Subseries

Cos-Cos
ev,ev ev,od od,ev od,od

Sin-Sin
ev,ev ev,od od,ev od,od

-t o
-t i
=t -3
-4 13

+ + - -
+ - - +
+ - - +
+ + - -

237

238

THE TRANSPORTATION PROBLEM

Charles W. Swift and Stanley Poley
International Business Machines Corporation
Introduction:

The transportation problem is essentially a special type linear
programming problem. Given certain specified requirements at various
destinations and amounts available at specific origins, an allocation of

~ the products over all possible routes is desired such that the total cost

of transporting the goods is minimized. In order to solve such a problem,
three variables must be known. First, it is essential that the amounts
made available at each of the origins be specified. Secondly, the demand
at each destination should be given. Finally, it is necessary to specify a
unit cost of shipping over each of the possible routes. Once provided

with this information, it is possible to determine the optimum allocation
of the products over the various routes or modes of transportation. Fur-
thermore, it is possible to obtain alternate optimum solutions, i.e., one
or more additional solutions which yield the same minimum total cost.

This description of the transportation problem makes obvious its
importance in the field of commercial applications. For this reason,
programs have recently been written by the IBM staff for the solution of
the transportation problem on IBM 701, 702, 704 and 650 Electronic Data
Processing Machines.

This report concerns itself with the application of the IBM 650
Magnetic Drum Calculator in obtaining a solution of the transportation
type linear programming problem. Section I concerns itself with the
preliminary mathematics involved in computing a minimum solution,
while Section II is devoted to a description of the input and output data
and other special features of the program.

Of interest to the programmer is the method used to solve the
transportation problem by the IBM 650 Magnetic Drum Calculator. The
iterative method employed is essentially the same as(f)he ¢“stepping stone’’
method proposed by A. Charnes and W. W. Cooper. 1 Al]l operations are
performed on a fixed-point basis, and all input data supplied by the pro-
grammer must be restricted to a maximum size of five digits. The latter is
imperative in view of the fact that all data is stored in the form of two such
five digit numbers per word on the magnetic drum. A further restriction
inherent in the present program is that the number of origins must be less
than 100, while the number of destinations plus the number of origins must
be less than 450. Consequently, the maximum size problem which the 650
is capable of processing is explicitly defined. v

Two important features of the program for the solution of the trans-
portation problem bear mentioning. The first is the option of having the 650

(I)A. Charnes and W. W, Cooper: ‘The Stepping Stone Method of Explaining
Linear Programming Calculations in Transportation Problems’’ - ‘‘Man-
agement Science,’’ October, 1954

compute an initial distribution or using an initial distribution which is
supplied by the programmer. The latter may be used provided that the
initial distribution is rot degenerate. Should this be the case, serious
consideration should be given to the former in view of the fact that the
program for computing the initial distribution enables the machine to
handle a degenerate case.

The second feature of importance to the programmer is that
necessary information may be punched out of memory at random intervals
specified by the programmer, so as to enable him to restart computing in
the event that one of the internal checks causes the machine to stop. This
has the effect of reducing the time lost due to machine error to the interval
covering operations since the last restart information was punched out of
memory.

Finally, in connection with the form of all input data, it should be
pointed out that all such data is entered into the machine in the same
punched form. The output, in this case the solution, is punched in a form
which renders it readily available for further processing on other IBM
machines. :

Section I: Preliminary Mathematics:

In order to illustrate the mathematics involved in solving a
transportation problem, an example will be proposed and a solution
arrived at according to the method programmed for the IBM 650 Mag-
netic Drum Calculator. As previously mentioned, this method is es-
sentially the ‘‘stepping stone’’ method, although some minor modifications
have been made in order to facilitate processing the problem on IBM Elec-
tronic Data Processing Machines.

Following the requirements specified in the introduction of this
report, let us assume that we have n = 3 origins from which we wish to
ship certain goods, and that the amount available at each of these origins
is 5 units, 60 units and 40 units respectively. Furthermore, let us assume
that there are m = 4 destinations to which we wish to ship these goods and
that the amount demanded at each of these destinations is 35 units, 10 units,
35 units and 25 units. One condition imposed on this problem is that the
total amount available must equal the total amount required. Table I shows
the initialization of the problem.

Finally, let us assume that we are provided with a cost matrix as
shown in Table II. Eachi (row), j (column) element represents the unit
cost required to ship from origin j to destination i. We have now fulfilled
the necessary and sufficient requirements for solving a transportation
problem. All the computations which follow are essentially made possible
by the information provided in Tables I and II below.

239

240

DN] 5 |60 |40

35

10

35

25 | cost atrix

Table I Table II

The first step in solving a transportation type linear programming
problem is to obtain an initial distribution. This distribution may be
computed from the information provided in Tables I and II, or it may be
supplied by the programmer. Since a given concern will undoubtedly be
operating on a relatively inexpensive basis, in many cases the initial
distribution will be supplied. If the given initial distribution is not
degenerate, it is preferable to use it as a starting point since the closer
the initial distribution is to the optimum solution, the less time required
to arrive at the minimal solution. However, if we assume for the present
ghzlilt the initial distribution is not given, we may proceed to compute it as

ollows:

Examining Table II, we commence by searching the first row of
the cost matrix and selecting the minimum cj;j element in that row. We
then proceed to the corresponding (i, j) position in Table I and enter in
that position the amount Dj or Sj, whichever is smaller. If the Dj re-
quirement is fulfilled, we proceed to the next row of the cost matrix and
repeat this procedure. Otherwise, we return to the cost matrix, select
the next minimum cjj in the same row and enter in the corresponding
(i, j) position in Table I either an amount equal to S; or what remains to
be filled at Dj, whichever is smaller. We continue in this same manner
row by row in the cost matrix until we have completed the last row. Once
we have reached this point, we should have the initial distribution, and the
example chosen here does yield such an initial distribution. However, there
is one case which we shall cover which does not yield a satisfactory initial

distribution and must, consequently, be treated in a slightly different manner.
Tables III and IV show the results of the above method for computing the

initial distribution. The values which are circled in the cost matrix represent
those minimum cjj’s which were used to compute Table III. The results in

cost matrix

Table III Table IV

Table III show that all the boundary conditions have been satisfied and
that, consequently, an initial distribution has been computed.

Close examination of Takle III reveals the fact that there are
(m + n -1) basis elements, If this condition is not satisfied, the problem
is said to be degenerate and steps must be taken to remedy this situation.
The example given below in Tables V and VI is degenerate in view of the
fact that the above method yields only four basis elements instead of the
required six elements.

5 5

4 4

1 1

1 1 cost matrix
Table V ' Table VI

The degenerate case may be handled as follows: We select an
€ > 0 and add ¢ to each of the Sj’s. We then add ne to D; and proceed in
exactly the same manner as above. If we choose € = .001, we obtain
Table VII, whereupon rounding, we conclude with Table VIII. There are
now two elements in the basis distribution which are zero. The problem is

241

still degenerate but, due to the positions these zeros occupy, we are able
to handle the problem and arrive at an optimum solution. If the problem
is originally degenerate, this implies that there exists an infinite number
of optimum solutions. We wish to arrive at one such solution and must,
therefore, formulate an initial distribution according to the prescribed
method above.

Table VII Table VIII

Having obtained an initial distribution in Table LI, we will now
proceed according to the flow chart shown in Figure I and obtain and
optimum solution, i.e., a solution which minimizes the total cost of
shipping. As shown in Figure I, there are four phases per iteration in
obtaining such a solution. Although the method should be considered in
its entirety, each of these will be covered separately for purposes of
clarification. Table IX is first constructed from Tables IIl and IV since,
with the exception of the cost matrix, it will be convenient to consider
only those elements which are directly related to the initial distribution.

i] Cij Xij ggfn
1 2] 18 | s 630
o L2] 28 | 10 280
3 |2 | 20 15 300
3 3| 2¢ | 2 480
s J1 | 20 | 5 100
s §3 | 2 20 440

Initial Distribution

949 Table IX

We are now in a position to proceed with the (uv) phase of the
program. We wish to compute a u; and a v; for each of the elements in
the basis table, i.e., there will be m u;’s dnd n 1 Vj ’s, such that:

(1) uj + Vj = ci]'

We start by assigning to u, an arbitrary value M. An initial pass is then
made through Table IX, the basis table, and u; or v; is computed depending
on whether or not a u or a v is available for any par]t1cu1ar i orj. Provided
we have not already completed the (u, v) table, a second pass is made through
the basis table. We continue to make passes through the basis table until

the (u, v) table is completed. Table X shows the completed (u, v) table for
our example The subscripts on the numbers indicate the pass on which they
were obtained.

Table X

For example, originally we started withi=1;j=2. We set
M = 100 so that u; = 100. This enabled us to compute v; from equation
(1), i.e., va=cj2 -y, vz = 18 - 100 or -82. We then proceeded to the
case where i = 2, j = 2 in the basis table. Since we first formed v;= -82,
this enabled us to compute up. In this manner, two passes through the
basis table were sufficient to complete the uv table.

We now pass to the (wjj) phase of the problem. For each cjj in
the cost matrix, we wish to compute a Wij which satisfies the following
relationship:

(2) Wij = Uj + Vj = Cyj

Table XI shows the results of these calculations, and gives us a maximum
Wig=4;1=2;7=3; and Cyy = 28,

243

244

M =4 and Py =V -4y, If the answer to the above question is ‘‘no;’

- Wij
Table X1

where the capital letter subscripts are used to denote the maximum wij.

— Following the completion of the (wj;) phase, we proceed next with
the4 table. We must first compute the elements shown in Table XII.
Each uj stands for the number of i entries in the basis table, while each
¥; stands for the number of j entries in the basis table. Thus, there is
one i = 1 entry, one i = 2 entry, two i = 3 entries, etc. and similarly for
the j’s there is one j = 1, three j = 2, etc. As in the uv table, there will
be m Uj’s and n vj’s. ,

Calculating 4] and} j is performed in the following manner:l We
irrst enter +1 in Table XII for& and 3. Proceeding in the order of the

basis elements, we pass through the (uj, Vj) part of Table XII asking our-

selves first, isuj = 1? If the answer is in the affirmative we set Vj’ =Tfj -1,

we ask if Vj ="1, For a positive answer, we set uy’ =uy -1, % =& -V,
and ¢¢=¥ .

_ For example, starting withi=1, j= 2 in the basis table, we see
that U, = 1. We, therefore, set U;’= u; and V4’ = V3 -1 or 2. We then set
U, =4=0and VW'y=V; -4, = o. As explained above, we follow a
similar procedure for the case where uj # 1 andvj= 1. In order to
obtain all the «’s, more than one pass %hrough the basis table will usually

be required. However, in this example, one pass was sufficient to com-
plete the/“ table.

1 .
The/l,(_i and'wj tables are first reset to zero.

>
Plary

1
==.¢; .H .:a H.&l
== e

P72
Table XIII Table XII

The first part of the final phase consists of selecting the minimum
xij corresponding to those,&’s which are +1. In our example, this minimum
X;; is X2z = 10 = ©. We now replace the element i = 2, j = 2; ¢cjj= 28 in the
bajsis table with the element I = 2; J = 3; ¢y; = 28. We then adjust those
‘xg’s for which & = +1 by + ©. This retaing the proper row and column
balance between the'S;’s and the Dj’ s as seen in Table XIV below.

35 35

5 60 40
N
HEIED

10 10

35 35

25 25

Table XIV

The program then transfers back to the (u,v) phase and passes
through the (wjj) phase. Now the maximum wj; is zero which implies that
the minimal soiution has been obtained. The total cost has been reduced
from 82,230 to g2, 190.

This essentially completes the mathematical description of the
iterative process. Generally, several iterations will be necessary be-
fore arriving at the minimal solution. The time required to solve such
a problem is obviously a function of the size of the problem and the num-
ber of iterations. The example above required approximately ten seconds
per iteration, while the m = 5 by n = 10 problem shown in the back of this
report required approximately 35 seconds per iteration.

245

246

Section II: Special Program Features:

The complete input deck both for the case where the initial distri-
bution is computed and for the case where the initial distribution is supplied
by the programmer is shown in Figure II. Deck A contains the necessary
loading routines and the program for computing the initial distribution.
Deck B contains the program for computing the minimum solution as does
Deck C. In addition to this, Deck C also contains the necessary loading

routines. All three decks are fixed and, therefore, require no alterations.
The programmer need only punch a card containing m and n, the cards
containing his Dj’s and §;’s, and his cost matrix. If the programmer
prefers to use his own initial distribution, he must also punch Zcx and

ZS on the same card containing m and n, and he must enter his initial dis-
tribution on the drum in the proper locations.

There are essentially three forms of output. The final solution is
punched on two separate card forms. The first card contains t, the itera-
tion count and the final cost, and is of the form indicated in Figure IVd.
There will also be m + n - 1 cards of the form indicated in Figure IVc, each
card containing one i, j, cjj, %j; element of the solution. In the event that
alternate optimum solutions are desired, I’, J’, and Cpys are punched on
cards of the form indicated in Figure IVb for each non basis element for
which wij is equal to zero. These cards will then become the input for
computing the alternate optimum solutions on a future run using a separate
program, to be completed soon.

The third classification of output is the restart information. If the
sign of the storage entry switches is negative, restart cards of the form
indicated by figure IVa will be punched at the end of the © phase of the
program. The i, j, cjj elements will first be punched, seven words per
card. Following these cards, the xjj elements will be punched two to a
word and seven words per card. In addition, t and the cost will be punched
on a card of the form indicated in Figure IVd. In the event that during the
modification check (see Figure I), a machine error is detected, the machine
stops and the programmer may then transfer to the restart procedure. The
restart deck is shown in Figure III and is loaded into the machine; control is
then transferred to the beginning of the uv phase. This enables the program-
mer to effectively reduce the amount of time lost due to machine error,

The program herein described is being modified so that the cost
matrix for small or medium sized problems, e.g., m = 60, n= 30, can
be entirely stored on the drum.

In way of conclusion, a transportation problem with m = 10byn= 5
has been solved and the results are shown on the last page of this report. The
time required per iteration of this problem was approximately 35 seconds.

Basic Flow Chart

Transportation Problem

Has the programmer spec-
ified an initial distribution ?

yes no.

\

Calculate the
initial distribution.

Machine

Error
STOP

Restart
Procedure

N (u,v) table.

,47 table

Modifv the distribution,

3 wii JPunch the
(Wij phlase. —"Oé *minir.nal

STOI*I_O'

Are alternate
optima desired ?

v

N———— Check the modification.

no error

F(——no___.

Is a restart punchout
desired ?

|

yes

I

Punch the restart cards

FIGURE I,

Punch alternate
optima cards.

1

STOP

247

Read once 4 ' ® ® indicates a blank card.
per
iteration.

v

1
1
|
|
]
]
]
|
|
|
|
l
1
Deck B |
]
® ! O
| - ! Ay
J mj mj
: | | Read once
| | :) pef'
: l | iteration.
1 t
|
1 @ ' L @
| }
c,.
f°1j : ‘13 J
® | ®
|
|
I 3 0
X : [(1.3, ¢45)
Direction of ! m,n, 2,C;.x::, 2, S.
card feed. . : Z lel‘],z J
|
|
|
Deck A : Deck C
|
|
{
[
|
1

Calculate Initial Distribution. | Given Initial Distribution.

FIGURE II: Description of the Input Deck.
248

Restart Procedure

Input Deck

@ indicates a blank card.

Read once
per
iteration

®
c
} 13 | Direction of
) card feed.

®
Cards punched ——-_"——“-———} (x,x)
by the restart
punch procedure v y (1,3, cij)

4

FIGURE III,

249

Output Form

(A) Restart punch out:

W1 W2 W3 W4 W5
control
word

i

Wp — (i, j, cij) or (x,x)

(B) Alternate Optima cards:

lank| I J Ci.a
1J

(C) Final Punch Out:

lank xij i,j, |Card
' Cij no.

(D) Cost card:

Pank t | Cost

FI GURE IV,

250

Final Solution for m = 10, n = 5 Transportation Problem

Showing the Decrease in Cost Per Iteration

No. Iterations T otal Cost

1 £4480

2 3950

3 3950

4 3950

5 3390

6 3390

7 3220

8 3220

9 3130

10 3090

11 3090

12 3070

Origin Destination Quantity Unit Cost

1 2 30 14
1 3 0 19
2 1 30 9
2 3 10 19
2 4 0 28
2 8 10 35
3 3 20 9
3 7 20 0
4 4 20 23
4 5 10 19
4 6 20 19
4 9 10 31
5 9 10 16
5 10 10 16

Note: See Table XV on the following page.

251

Table XV

252

INDEXING ACCUMULATORS FOR THE IBM TYPE 650 MDDPM

George R. Trimble, Jr. and Dura W. Sweeney
International Business Machines Corporation

General Description

Many problems require the same operations to be performed on
ordered arrays of data. When this 1s the case a large amount of
address arithmetic must be done to modify instructions so that
they will operate upon the proper data. Index registers are
devices which will automatically modify addresses and greatly
facilitate the necessary address arithmetic.

The Indexing Accumulators provided for the IBM Type 650 MDDPM
incorporate all of the characteristics usually found in index
registers plus the abllity to be used as separate accumulators.

As accumulators they may be used for accumulating small totals,
holding group multipliers, or as small high speed storage devices.
Programming is simplified, the number of instructions required

is reduced, and, therefore, programming errors are reduced. Since
fewer instructions are executed the problem solution time will be
less. Also, the logic of a program using Indexing Accumulators

is simpler than the logic for a corresponding non-indexed program.
This, of course, eases the burden on the programmer and tends
toward faster, more accurate programming.

Three Indexing Accumulators (I.A.) are provided for the 650.
Each I.A. contains four decimal digits and an associated algebraic
sign. Factors may be added to or subtracted from the contents
of an I.A., or new factors may be inserted in an I.A. by reset
add or reset subtract operations. It is possible to test each
I.A. for a zero or non-zero, or a positive or negative state by
means of branch operations. Each I.A. is addressable so that
its contents may be used as a factor in other operations. The
primary use of I.A. however, is to automatically modify addresses
of instructions.

Addresses of Indexing Accumulators

The addresses assigned to the I.A. are as follows:

I.A. Address
A 8005
B 8006
C 8007

253

These addresses may be used as the instruction address of any
instruction or as the data address of the following instructions:
- 00-02, 10-11, 14-19, 30-L49, 5k, 60-61, 64-69, 90-99. Use of
8005, 6, or 7 as the data address of any other operation will
cause a storage selection error. When one of these addresses
is used as an instruction address or as the data address of
a branch instruction, the next operation executed will be a
NO OP whose instruction address is the contents of the I.A.
addressed. For example, suppose I.A. A contains +1234 and the
operation 65 0100 8005 is given. Following the reset add as
specified by code 65, the operation 00 0000 1234 will be
executed. Thus, the contents of I.A. A specifies that the next
instruction is to be executed from location 1234.

8005, 6, or 7 may be used as the data address of the in-
structions 00-01, but nothing will happen since these ingtructions
do not use the data address. Since the shift instructions only
use the units digit of the data address an 8005, 6, or 7 data
address on codes 30, 31, 35, 36 causes normal shifting of 5, 6,
or 7 places respectively.

Use of 8005, 6, or 7 as the data address of any of the other
instruction will cause the contents of the I.A. to be used as a
factor in the operation. When used in this manner the four digits
of the I.A. will be in the four low order digits of a word which
has six zeros in the high order positions. For example, consider
the instruction 65 8006 1234, This instruction will cause the
contents of I.A. B to be reset added into the four low order
positions of the lower accumulator and zeros to be inserted else-
where. Since the addition is performed via the distributor, it
will also contain six zeros and the contents of I.A. B in the
four low order positions. Signs are manipulated just as with
any other word.

Automatic Address Modifiéation

The primary use of I.A. is to automatically modify addresses
by adding the contents of an I.A. to an address. Since the I.A.
can contain either positive or negative values, addresses can
be modified by adding to them or subtracting from them depending
on the sign of the I.A. Both data addresses and/or instruction
addresses can be modified by the contents of any I.A. or by two
different I.A.

254

It is necessary to tag each address by an indicator so that
the 650 may know which I.A. should be added to the address.
Addresses 2000 through 7999 have been reserved for this purpose.
A "Basic" drum address is defined to be one in the range 0000-
1999, 1In order to tag the basic drum address either 2000, 4000,
or 6000 is added to indicate that the contents of I.A. A, B, or
C respectively is to be added to the basic drum address. Tagging
of high speed storage addresses is accomplished by adding 200,
400, or 600 to the basic high speed storage address to indicate
the use of I.A. A, B, or C respectively.

The "Effective" address is that address which results after
a basic address has been modified by the contents of an I.A.
The following table lists all meaningful actual addresses and
the resulting effective addresses.

Actual Address Effective Address

0000-1999 0000-1999

2000-3999 0000-1999 + Contents of I.A.A

4000-5999 0000-1999 + Contents of I.A.B

6000-7999 0000-1999 + Contents of I.A.C

8000-8003 8000-8003

8005-8007 8005-8007

8010-8015 8010-8015

9000-9059 9000-9059

9200-9259 9000-9059 + Contents of I.A.A

9400-9459 9000-9059 + Contents of I.A.B

9600-9659 9000-9059 + Contents of I.A.C
The effective address determined as indicated in the above

table must be a meaningful address for the operation called for.
The following table lists the possible address that may be used
with each meaningful operation code.

Addresses Code Description

0000-1999 D Drum

8000-8003 A Arithmetic Unit and
Console Switches

8005-8007 I Indexing Accumulator

8010-8015 T Tapes

9000-9059 B Buffer

256

AU

SU

Not Used
Not Used
DIV

AL

SL

AABL
SABL
MPY

STL

STU

ST DA

ST IA

ST D
Not Used
Not Used
SET

ST BB
ST B
SRT

SRD

FA

FS

FD

SLT

SCT
FAAB
FSAB

M

BNZA
BMNA
BNZB
BMNB
BRNZU
BRNZ
BRMIN
BROV
BNZC

vlvlvivivivivivicivivl

Meaningful

Data Address

v Vv v v B

L A I I B T I

LI S A,

w W v v
“ -
ueRus)

wwwwwwmmwmwmﬁemmwee
losRue

LV " T I S " T IR I

wivivivivivivivivivivivivivivlviwiwiwiwiwly)
P N R IR
HHEHHHHHHHHHHAHHHHEHEHEHB

e EE

L L " T VR L DA I T I]

L TV I I

Name

No Operation
Stop

Floating Add Suppress Normalization

Read Check Tape Record
Read Tape Record

Read Alphanumeric Tape Record

Write Tape Record

Write Alphanumeric Tape Record

Load Buffer Block
Load Buffer

Add Upper
Subtract Upper

Divide

Add Lower

Subtract Lower

Add Absolute Lower
Subtract Absolute Lower
Multiply

Store Lower

Store Upper

Store Data Address
Store Instruction Address
Store Distributor

Set Buffer Address
Store Buffer Block
Store Buffer

Shift Right

Shift and Round
Floating Add
Floating Subtract
Floating Divide

Shift Left

Shift and Count
Floating Add Absolute
Floating Subtract Absolute
Floating Multiply
Branch Non Zero A
Branch Minus A
Branch Non Zero B
Branch Minus B
Branch Non Zero Upper
Branch Non Zero
Branch Minus

Branch Overflow
Branch Non-Zero C

BMNC
AA
SA
AB

BRNEF

RWD
WTM

’ Used

sed

’ﬁsed

o

\O OO~ OV = (0 D 1

Yoououoyg
b

Ubuougg
o e w
o s
A T B VR

Do
I
o

b 2 T "I VY

W e

“

Yobuuy

)

“ .
=R

.

w

-
-

v}
R
e s s
DI L S N
v e e ow o
welaslusley

Doubuoyg

-
“

> s
HHH
0w w

-

Branch Minus C

Addg A

Subtract A

Adg B

Subtract B

Branch Not End of File
Rewind

Write Tape Mark
Backspace

Add ¢

Subtract C

Reset Add Upper
Reset Subtract Upper

Divide Reset Upper

Reset Add Lower

Reset Subtract Lower

Reset Add Absolute Lower
Reset Subtract Absolute Lower
Load Distributor

Read (533)

Punch (533)

Read (407) /
Read Conditional (407)
Print (407)

Reset Adg A
Reset Subtract A
Reset Add B
Reset Subtract B
Table Look Up

Reset Add ¢

Reset Subtract C

Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit
Branch Distributor Digit

(@]

\O OO~ OWIT =0 D 1~

257

258

Address modificatio
to a bhasic

sum would be kept as
of the I.A. 18 negative,
Since subtract
a carry will always occur when the difference 1is positive.
above, any such carry
should result '

ion 1is accomp

in a "negat

will not be pecomplemented.
if the complement

selection error

Examples

Actual
Instruction

65 0123 012k
65 2123 012k
65 0123 6124
65 4123 412k
65 4123 6124

65 9215 8002
65 0123 9627
65 4015 012k

65 9210 012k

65 0123 412k
65 9615 9218
65 2123 012k

65 2123 0124

Contents of
A B

0223+ 0075;
0223+

0075~
0075~

0013+

2345+
1983+

7878+
1011~
1011-

111l-

address.
ting effect
carry would be 1ost and only the four low order
the effective address.
the address
1ished by adding the 10's complement

s are lost.
ive" address,

n is accomplished by adding the contents
If
ive address exceeds 9999, the

the contents of the I.A. is

digits of the
If the contents
1s modified by subtraction.

As
If indexing by subtraction
the complement result

This may result in a storage

I.A.
C

0062+
0062+

0062+

0015~

0015~

is not a2 meaningful address.

Indexed
Instruction Remarks

65
65
65
65
65

0123 0124 No indexing
0346 0124 Index D by A
0123 0186 Index I by c
0043 0049

0048 0186

Index D and I by B

Index D by B and
IbyC

9028 8002 Index D by A

65
65

65

0123 9012 Index IbyC

2360 causes storage
gselection error

2360 0124

65 0993 0124 D exer s 10,000

Car.. : y .ost

65 0123 8002 I becomes 8002
65

65

9000 8007 I pecomes 8007

gl12 0124 D becomes"negative“.
Complement gll2
causes Storage
Selection Error

9012 0124 D becomes "negative".
Complement 1s mean-
ingful, however.

65

Testing of Indexing Accumulators

The following are the operations by means of which the contents
of the indexing accumulators may be tested.

40 BNZA Branch Non Zero I.A.A

If I.A.A contains zeros the next instruction will be taken
from the location specified by the instruction address. If the
contents of I.A.A are not zero, the next instruction will be taken
from the location specified by the data address.

41 BMNA Branch Minus I.A.A

If the sign of I.A.A is plus the next instruction will be taken
from the location specified by the instruction address. If it is
minus the next instruction will be taken from the location specified
by the data address.

42 BNZB Branch Non-Zero I.A.B

If I.A.B contains zeros the next instruction will be taken
from the location specified by the instruction address. If the
contents of I.A.B are not zero, the next instruction will be
taken from the location specified by the data address.

43 BMNB Branch Minus I.A.B

If the sign of I.A.B 1is plus the next instruction will be taken
from the locations specified by the instruction address. If it is
minus the next instruction will be taken from the location specified
by the data address.

48 BNZC Branch Non-Zero I.A.C

If I.A.C contains zeros the next instruction will be taken from
the location specified by the instruction address. If the contents
of I.A.C are not zero, the next instruction will be taken from the
location specified by the data address.

49 BMNC Branch Minus I.A.C

If the sign of I.A.C is plus the next instruction will be taken
from the location specified by the instruction address. If it is
minus the next instruction will be taken from the location specified
by the data address.

259

Operations Upon Indexing Accumulators

The effective address of those instructions which operate
upon I.A. must be 0000-1999, 8000-8003, or 9000-9059. This
effective address specifies what the data is that is to be used
in the operation. If the effectlve address is in the range
0000-1999, the data used by the operation is the actual effective
address. If it is in the range 8000-8003, or 9000-9059, the
data used by the operation will be the four low order dilgits
and sign of the storage location specified by the address. The
meaning of these statements will become clear in the examples
which follow. The instruction address has its usual meaning.

50 AA Add to I.A.A

The data specified by the effective data address will be
added to the contents of I.A.A.

Examples
Actual Indexed Contents Contents Contents of
Instruction Instruction of I.A.A. of I.A.B. 8000-8003 or

Before After 9000-9059
50 0001 0123 50 0001 0123 0500+ 0501+
50 1623 0123 50 1623 0123 0500+ 2123+
50 2000 0123 50 0500 0123 0500+ 1000+
50 2156 0123 50 0656 0123 0500+ 1156+
50 4000 0123 50 011l 0123 0500+ 0611+ O011ll+
50 4265 0123 50 0154 0123 0500+ 0654+ 0111-

50 8002 0123 50 8002 0123 0500+ 1611+ TTTTT71111+
50 9007 0123 50 9007 0123 0500+ T277- 1111117777-
50 9407 0123 50 9004 0123 0500+ 1734+ 0003~ 0202021234+

50 2156 2123 50 0656 0623 0500+ 1156+

These examples show that it is possible to simply add a
constant (in the range 0000-1999) to A as in the first two examples,
to add A to itself as in the third example, to add A to itself and
to another constant (in the range 0000-1999) as in the fourth
example, to add B to A as in the fifth example, or B to A and to
another constant as in the sixth example. The next three examples
show how it is possible to add to A from the four low order positions
of a high speed storage location. The last example illustrates
how addresses are modified before the operation is executed. Thus
D and I are increased by 0500 before the contents of I.A.A are
modified.

260

As described previously the effective address must be of
type D,A, or B. The operations performed to obtaln this effective
address are exactly the same here as with any other kind of in-
struction. The rules regarding carries and complement (negative)
addresses still apply. The final addition to I.A.A is algebraic
however when the effective address is type A or B and all of the
normal rules regarding signs are true., If the effective address
is of Type D, this address is always treated as though it were
plus.

All of the other instructions which are described in the
following paragraphs operate in an analogous manner. Only a
few examples for each will be given. It is left as an exercise
for the reader to work out exactly what happens under each of
the many possible conditions. The general rules given above are
completely sufficient for working out any conceivable conditions.

52 AB Add to I.A.B

. The data specified by the data address will be added to the
contents of I.A.B.

58 AC Add to I.A.C

The data specified by the data address will be added to the
contents of I.A.C.

51 SA Subtract from I.A.A

The data specified by the data address will be subtracted
from the contents of I.A.A.

Examples
Actual Indexed Contents Contents Contents of
Instruction Instruction of I.A.A of I.A.B 8000-8003 or

v Before After 9000-9059
51 0001 0123 51 0001 0123 0500+ 0499+ |
51 2000 0123 51 0500 0123 0500+ 0000+
51 4250 0123 51 0125 0123 0500+ 0375 0125~
51 8000 0123 51 8000 0123 0500+ T390~ 1234567890+
51 9207 0123 51 9057 0123 0050+ T940+ 1234567890~

261

262

53 SB Subtract from I.A.B

The data specified by the data address will be subtracted
from the contents of the I.A.B.

59 SC Subtract from I.A.C

The data specified by the data address will be subtracted
from the contents of I.A.C.

The following operations are analogous to the previous group
except that the I.A. 1s reset to zero before the data is added or
subtracted into 1it.

80 RAA Reset Add to I.A.A

T.A.A will be reset to zero and the data specified by the data
address will be added to it.

Examples
Actual Indexed Contents Contents Contents of
Instruction Instruction of I.A.A of I.A.C 8000-8003 or

Before After 9000-9059
80 0000 0123 80 0000 0123 1234~ 0000+
80 1520 0123 80 1520 0123 1234~ 1520+
80 6000 0123 80 0175 0123 1234~ 0175+ O175+

- 80 6525 0123 80 0350 0123 1234~ 0350+ O175-

80 9027 0123 80 9027 0123 1234~ 5021~ 001212345021~

82 RAB Reset Add to I.A.B

I.A.B will be reset to zero and the data apecified by the
data address will be added to it.

88 RAC Reset Add to I.A.C

I.A.C will be reset to zero and the data specified by the
data address will be added to it.

81 RSA Reset Subtract from I.A.A

’ I.A.A will be reset to zero and the data specified by the
data address will be subtracted from it.

Examples
Actual
Instruction
81 1234 0123
81 7015 0123
81 7015 0123
81 9059 0123

Indexed
Instruction
81 1234 0123
81 1927 0123
81 0103 0123
81 9059 0123

Contents

of I.A.A
Before After
0527+ 1234~
0527+ 1927~
0627+ 0103~

0527+ 2301+

83 RSB Reset Subtract from I.A.B

Contents Contents of

9100-9059

0123012301~

I.A.B will be reset to zero and the data specified by the

data address will be subtracted from it.

89 RSC Reset Subtract from I.A.C

I.A.C will be reset to zeros and the data gpecified by the

data address will be subtracted from it.

263

IBM TYPE 650 MAGNETIC TAPE ATTACHMENT

Dura W. Sweeney and George R. Trimble, Jr.
International Business Machines Corporation

The Magnetic Tape Attachment for the 650 consists of
the following units:

1 Type 653 High Speed Storage Unit (Buffer) .
1 Type 652 Tape Control Unit.
1 to 6 Type 727 Magnetic Tape Drives.

The 653 High Speed Storage Unit is used as a buffer
between the magnetic tapes and the drum. It 1is not necessary
to transfer the data read from tape onto the drum, however.
In general, it will be better to operate on the data while
it remains in the buffer. In this manner records will be
read into the buffer, operated on while they are still in
the buffer, and written on an output tape, without ever
going into drum storage. :

Each of the tape drives has an address. They are 8010
through 8015. The address assigned to a tape drive is
controlled by a switch on the tape drive. Thus two tapes
can be assigned the same address for writing two identical
output tapes for checking purposes.

The T02-705 character code is used for recording infor-
mation on the tapes. Automatic translation from the 702-705
code to and from the 650 code is provided. Except for the
restrictions imposed on records by the fixed length numeric
words and 60 word buffer of the 650, the characteristics of
the magnetic tape records are jdentical with records recorded
by the T702-705. Both horizontal and vertical redundancy
checking are provided as well as the speed, density, and
capacity which characterize the 727 tape drive.

Nine new operation codes are provided to control the
magnetic tape functions. They are as follows:

03 RC (Read Check)

The next record on the tape specified by the data address
is read and a horizontal and vertical redundancy check is made.
Failure to pass these checks will cause an error indication.
Since this operation does not require reading the tape record
into the buffer, the contents of the buffer are not disturbed.

264

04 R (Read)

The next record on the tape specified by the data
address is read into the buffer, the first word entering
the word of the buffer to which the buffer ring had been set
by the previous program. Succeeding tape words will read
into succeeding buffer words until word 9059 has been filled
with the last tape word. All data read by this instruction
must be pure numeric data. The buffer ring will be left
set at 9000.

The lowest order diglt of each tape word has a zone
indication attached to it which is translated to be the
sign of the word read into the buffer. A "12" zone is
translated to plus, and an "11" zone 1s translated to minus.

The number of words read from the tape must be exactly
the number required to fi1ll the buffer from the position to
which it is set to the end of the buffer. More or less than
this number of words will cause an error stop.

Thus it 1s possible to have numeric tape records of 1,
2, 3, etc. up to 60 words in length. On a 2400 tape this
means that from 36,000 one word records (360,000 digits) to
7680 sixty word records(4,608,000 digits? can be recorded.

Examples

0100: 27 9000 0101 Set buffer ring at 9000

0101: O4 8010 0102 Read 60 numeric words from tape #1
into buffer words 9000-9059.

(More or less than 60 words will cause an error stop)

The buffer ring will be left set at 9000.

0100: 27 9045 0101 Set buffer ring at 9045

0101: O4% 8010 0102 Read 15 numeric words from tape #1
into buffer words 9045-9059.

(More or less than 15 words will cause an error stop).

The buffer ring will be left set at 9000.

05 RA (Read Alphanumeric)

Since the 650 is a strictly numeric machine, alphanumeric
and special characters cannot be read directly into it. In
order to read alphabetic and special characters into the 650
from cards it is necessary to convert these characters to a
two diglt numeric code which can be stored within the 650.
Similarly, when alphabetic and special characters are encountered
on tape, it 1s necessary to convert them to a two digit code
to enter them in the 650. Some indication must be given to
the 650 whenever such a character is encountered so that 1t
might know that this character must be converted to the two
digit code. It 1s not feasible to gilve such an indication
for each character read when the possibility of encountering
such characters exists. A more economical way of accomplishing
this 1s by giving an indication for a group of characters.

Thus 1if an alphanumeric group is encountered, all characters

within that group are converted to the two digit code. 265

266

An alphanumeric tape record used by the 650 has a
special form. It must be either 10, 20, 30, 40, 50, or
60 words in length. Such a record consists of from 1 to
6 blocks, each block containing ten words. Within each
block the tenth word is set aside as the control word.
This word indicates which of the remaining nine words are
numeric and which are alphanumeric. An eight in a particular
digit position of the control word indicates that the corres-
ponding word contains alphanumeric data. The absence of an
eight indicates that the corresponding word contalns pure
numeric data.

When a RA instruction is given, the buffer ring must
have previously been set to the beginning of a block (9000,
9010, etc., to 9050). Therefore, the length of an alpha-
numeric tape record is not variable by word as is a pure
numeric record, but must be some multiple of ten words in
length.

The data address of the RA instruction specifies the
tape drive to be activated. The first ten digits of the tape
record are read into the tenth word of the block to which the
buffer ring had previously been set. Digit ten of the control
word is ignored. Digit one is examined and if it 1is not an
elght the next ten digits on the tape are read into the first
word of the block. If it is an eight, however, the next
five characters are converted to ten digits and entered
into the first word of the block. Similarly, digit two
is examined, etc., through digit nine. At this point the
next control word is read from the tape into its position
and analyzed in the same way for each of the words in 1ts
block. This process 1s repeated for each block until the
last block has been read into 9050-9059.

The sign representation for words indicated by the
control word as being numeric 1s the same as the case where
a pure numeric record is read from tape. A word indicated
by the control word as being alphanumeric will always
appear as a positive word in the buffer.

As with numeric records, the number of characters read
from the tape must be exactly enough to fill the buffer from
the position to which it is set through 9059. More or less
than enough will cause an error stop. The buffer will be
left set at 9000 after this operation.

Examples:

Assume the tape record consists of four numeric records
followed by five alphanumeric records. This would be recorded
on the tape as follows:

0888880000 nnnnnnnnnnnnnNnNNNNNNNNINNNNINNNNNNNNNNNNNNAaaaaaaaaaaaaaaaaaaaaaaaaa

Control Four Numeric Records of 10 digits each Filve Alphanumeric Records
Word of five characters each.

exg—— (Direction of Tape Motion) |
A program to read this record is as follows:

0100: 27 9050 0101 Set buffer ring to 9050
010l: 05 8010 0102 Read tape record into words 9050-9059

The actual record on tape consists of 50 numeric characters
and 25 alphanumeric characters. The 25 alphanumeric characters
will be converted to 50 numeric characters making a total of
100 numeric characters read into the ten buffer words.

If a block is purely numeric it will consist of 100
numeric characters of which nine are used for control. If
a block is all alphanumeric it conslists of the ten numeric
digits in the control word and 45 alphanumeric characters.
The 45 alphanumeric characters will be converted to 90 numeric
digits making a total of 100 digits, for the block.

Numeric and alphanumeric words do not have to be assigned
to any particular positions in a block but they can be
arbitrarily intersperced. Thus word 1, 2, and 6 can be
numeric while 3, 4%, 5, 7, 8, and 9 are alphanumeric.

A record containing the maximum number of alphanumeric
characters would be recorded as 6 control words and 5% words
of alphanumeric data. Thus there would be 60 numeric digits
and 270 alphanumeric characters recorded on the tape. When
entered into the buffer the 270 alphanumeric characters would
be converted to 540 numeric digits and the total record length
would then be 600 digits. About 12,000 such records could be
recorded on a reel of tape, or about 3,240,000 alphanumeric
characters plus 72,000 control digits.

06 W (Write)

The W instruction 1s exactly analogous to the R in-
struction except that in this case a numeric record 1is
written on the tape specified by the data address. Writing
starts at the word to which the buffer ring had been set
and continues until the end of the buffer, Thus records
of from one to sixty words in length may be written depending
upon where the buffer ring is set. The buffer ring will be
left set at 9000 after this operation.

267

268

07 WA (Write Alphanumeric)

The WA instruction is exactly analogous to the RA 1in-
struction except that in this case an alphanumeric record 1s
written on the tape specified by the data address. The buffer
ring must have been previously set to the beginning of a block
(9000, 9010, etc. or 9050). The tenth word of each block is a
control word and specifies which of the remaining nine words
are numeric and which are alphanumeric. As in the RA an eight
indicates that the corresponding word 1s alphanumeric and no
eight indicates numeric data. If alphanumeric data 1s indicated
the ten diglts for that word are "compressed" to five alpha-
numeric characters for recording on the tape. The tenth or
control word of the block i1s written as the first word on the
tape, the remaining nine words written in sequence following
the control word. '

54 BRNEF (Branch No End of File)

An end of file condition is caused by occurrence of one of
the following:

1. Sensing a tape mark during reading (03, 04, 05).
2. %egsing)reflective end of tape marker during wrlting
06, 07

Occurrence of either of these conditions will turn on the
Input/Output Indicator for that tape unit and also turn on an
end of file indicator in the 650. This end of file indicator
can then be interrogated by the BRNEF instruction to see 1if
an end of file condition has been reached on any of the tapes.

If the end of file indicator is not on when it 1s interrogated
by the BRNEF instruction the next instruction will be taken from
the location specified by the data address. If the end of file
indicator is on when it 1s interrogated by the BRNEF instruction
the next instruction will be taken from the location specified
by the instruction address and the end of file indicator, and
the Input/Output indicator for that tape unit will be turned off.

Since there is only one end of file indicator which may
be turned on by any tape unlt it 1s necessary to interrogate
it after a tape unit is used and before the next tape read or
write instruction is given if there is the possibility of an
end of file condition occurring.

If the reflective end of tape spot causes an end of file
condition during writing, the record currently being written
will be fully recorded. A tape mark should then be written to
indicate the end of the file for reading. Successive write in-
structions may be given however to record another file on the
same tape if desired. Care must be taken to assure that such
a procedure will not cause the tape to be completely unwound
from its reel.

55 RWD (Rewingd)

The tape unit specified by the data address 1s rewound
to the "Load Point". The load point is determined by a
reflective spot placed at the beglnning of the tape.

56 WIM (Write Tape Mark)

A tape mark 1s written on the tape specified by the data
address.

57 BSP (Back Space)

The tape specified by the data address is backspaced one
record.

During reading the information being read is checked for
both horizontal and vertical redundancy. During writing the
echo pulses are similarly checked. Failure to pass these
checks will cause an error indication. All tape operations
except the BRNEF instruction require that the data address
be one of 8010-8015. Any other data address used with these
instructions will cause a storage selection error.

Tape reading and writing speeds are 10 milliseconds for
accelerate and decelerate time and .067 milliseconds time
to read or write one character. Thus it would take
10 + 60 X .067 + 270 X .067 = 32,11 milliseconds to read
or write a record containing 60 control digits and 270
alphanumeric characters.

If a tape read or write operation 1s given succeeding
program steps (not requiring a buffer reference or another
tape operation) will be executed in parallel with the read
or write operation. Any succeeding instruction which re-
quires a reference to the buffer or is another tape operation
Wwill cause an interlock so that the program will stop until

the tape read or write operation is complete before continuing.

Thus there could be 50 milliseconds of useful computation
time in parallel with the reading of a 600 digit tape record.

269

IBM TYPE 650 HIGH SPEED STORAGE ATTACHMENT

Dura W. Sweeney and George R. Trimble, Jr,
International Business Machines Corporation

The High Speed Storage attachment for the 650 is con-
tained in the Type 653 unit. It consists of 60 words, each
of 10 decimal digits and an algebrailc sign, of magnetic
core storage. Because of the extremely low access time
characteristic of magnetic core storage, it provides a
source from which data and instructions may be made
available. Since the access time for each of the 60
words is zero, the only time required for reference to
a word in the High Speed Storage Unit is the 96 micro-
seconds necessary to transfer the word to the arithmetic
or control unit.

The High Speed Storage (HSS) is also used as the
buffer for the Magnetic Tape Attachment for the 650. For
this reason the terms HSS and buffer are used indiscrimi-
nately throughout.

Each of the 60 words has a four digit address associated
with it by means of which the program can make reference
to these words as sources of data or instructions or as
destinations of results. These addresses are 9000 through
9059, Thus instructions may be executed from the High
Speed Storage Unit, (HSSU), data may be operated upon
from it, or intermediate and final results may be stored
in it. The speed at which the 650 executes a program can
be significantly increased by judicious use of the HSSU
and will greatly reduce the need for the technique of
optimum programming. Referring to the Sequence Chart
in the article on Optimum Programming in Technical
Newsletter #8 the effects of the HSSU on instruction
execution times can be easily determined. Wherever a
"Search for Data" or "Search for Next Instruction" segment
is indicated, simply eliminate that segment 1if a word in
the HSSU is referred to. For example, all of the "add"
type instructions (10, 11, 15, 16, 17, 18, 60, 61, 65, 66,
67, 68) require only é word times or 768 microseconds to
execute if everything is in the HSSU. The Branch Minus
(46) requires either 288 or 384 microseconds. Similarly,
times for each of the other operations can be determined.

270

In order to make efficient use of the HSS some means
for transferring blocks of Information between the HSSU
and the drum must be provided. Four new instructions are
included for this purpose. They provide an efficient method
of transferring data from one set of locations to another
and in addition permit a certain amount of editing of records
by deletion of words either at the beginning or end of the
record.

Magnetlic cores are static memory devices to which a
pulse must be applied to cause them to read in or out.
During a block transfer it is necessary to pulse the words
in the desired block consecutively causing them to read in
or out 1n sequence. The device which accomplishes this is
called a "Ring". Once the ring has been set to activate
a particular word of HSS it will automatically advance to
activate the next word, then the next, etc. until the complete
transfer has been effected. The buffer ring actually consists
of two rings, a ten position word ring and a six position
block ring. The simultaneous position of both of these rings
determine which of the 60 words the buffer ring is set to.
For this reason the buffer can be considered as logically
consisting of six-ten word blocks.

The following instruction allows the programmer to "Set"
the buffer ring at any desired word so that the block transfers
can be initiated starting with any of the 60 words.

27 SET (Set Buffer Ring)

The data address of the SET instruction must be one of the
addresses 9000 through 9059. The buffer ring will then be
set at the corresponding HSS word position. A data address
other than 9000-9059 will cause a storage selection error to
be indicated.

In addition, any instruction which refers to a word in
HSS either for datum or an instruction will cause the buffer
ring to be left set at that position.

Examples:

0560: 27 9023 0561 The buffer ring will be set
at position 9023. The next instruction will be taken from
location 0561. (Note that the instruction 27 9023 9012
would leave the buffer ring at 9012.)

0560: 15 G010 0561 The word in 9010 will be added

into the lower accumulator and the buffer ring will be left
set at position 9010.

271

272

The block transfer instructlions are as follows:
08 LBB (Load Buffer Block)

The data address of the LBB instruction must be one
of the drum addresses, 0000 through 1999. It specifies the
location of the first word on the drum to be transferred to
HSS. The first word of HSS transferred into 1s determined
by where the buffer ring is set. Successive words on the
drum are then transferred into successive words in HSS until
one of the followlng occurs:

1. The end of a buffer block is reached. The six
buffer blocks are 9000-9009, 9010-9019, 9020-9029,
9030-9039, 9040-9049, 9050-9059.

2. The end of a drum band is reached.

Words in HSS not transferred into will not be affected by this
operation. The buffer ring will be left set at the last word
position transferred into plus one. If the last word trans-
ferred into is 9059, however, the buffer ring will be left

set at 9000. If the data address of the LBB instruction 1s
not 0000-1999 a storage selection error will be indicated.

Examples:

0100: 27 9000 0101 Set buffer ring at 9000.
0101: 08 0500 0102 Transfer 0500-0509 to 9000-9009.
The buffer ring will be left set at 9010.

0100: 27 9016 0101 Set buffer ring at 0016.
0101: 08 0500 0102 Transfer 0500-0503 to 9016-9019.
The buffer ring will be left set at 9020.

0100: 27 9056 0101 Set buffer ring at 9056.
0101: 08 0500 0102 Transfer 0500-0503 to 9056-9059.
The buffer ring will be left set at 9000.

0100: 27 9000 0101 Set buffer at 9000.
0101: 08 0547 0102 Transfer 0547-0549 to 9000-9002.
The buffer ring will be left set at 9003.

In each of these examples the buffer ring was set
by means of the SET instruction. This will not always
be necessary in practice. The following examples illustrate
other ways of setting the buffer ring.

0100: 27 9000 0101 Set buffer ring at 9000.

0101: 08 0500 0102 Transfer 0500-0509 to 9000-9009.

0102: 08 0510 0103 Transfer 0510-0519 to 9010-9019.
In this example the second LBB instruction makes use of the
fact that the buffer ring has been left set at 9010 after
the first LBB instruction, The buffer will be left set at
9020 after the second LBB instruction.

0100: 69 9000 0101 Load Distributor from 9000.

0101l: 08 0500 0102 Transfer 0500-0509 to 9000-9009.
Since the Load Distributor instruction leaves the buffer ring
set at 9000 it is not necessary to use the SET instruction
prior to the LBB instruction.

28 STBB (Store Buffer Block)

The STBB instruction is exactly analogous to the LBB
instruction except that in this case data is transferred from
HSS to the drum instead of from the drum to HSS. Otherwise,
all of the rules and conditions described under the LBB in-
struction still apply.

09 LB (Load Buffer)

The LB instruction is similar to the LBB instruction
with one exception. The transfer of data continues until
one of the following occurs:

1. The end of the buffer is reached.
2. The end of a drum band 1is reached.

Thus while the LBB instruction is a 1 to 10 word block transfer

the LB instruction can cause as many as 50 words to be trans-
ferred from the drum to HSS.

273

274

Examples:

0100: 27 9000 0101 Set buffer ring at 9000.
0101: 09 0500 0102 Transfer 0500-0549 to 9000-9049.
The buffer ring will be left set at 9050.

0100: 27 9015 O0l01 Set buffer ring at 9015.
0101l: 09 0500 0102 Transfer 0500-0544 to 9015-9059.
The buffer ring will be left set at 9000.

0100: 27 9000 0101 Set buffer ring at 9000.
0101: 09 0523 0102 Transfer 0523-0549 to 9000-9026.
The buffer ring will be left set at 9027.

20 STB (Store Buffer)

The STB instruction is exactly analogous to the LB in-
struction except that in thils case data is transferred from
HSS to the drum. Otherwise, all of the rules and conditions
described under the LB instruction still apply.

Two other important features of the HSSU are the abillty
to perform TLU on the HSS and the ability to use one of the
addresses 9000 through 9059 as the data address of the valid
70 codes which control the operation of the Type 533 and
Type 407.

If the TLU operation has a 9000-0059 data address the
following rules apply:

1. The TLU operation will start at the word in HSS
specified by the data address. (Note that the
only time the TLU operation wlll start at 9000
1s 1f the data address is 9000.) For example
if the instruction 0100: 84 9036 0101 is given,
the TLU operation will start at 9036 and may
search from 9036 to 9059. The information stored
from 9000-G035 will not be searched.

2. The TLU operation considers the contents of the
distributor and that section of HSS to be searched
as positive. '

3. The address of the word whose contents are greater
than or equal to the contents of the distributor
(both considered positive) 1s inserted in the
data address positions of the lower accumulator.

4, The buffer rings are left setting at the
last word searched plus one.

For example, 1f the instruction 0100: 84 9036 0101
is given and the address of the number found

is 9043, then the address, 9043, will be inserted

in the lower accumulator and the buffer rings will

be left set at 904%4.

If the instruction 0100: 8% 9036 0101 is given
and the address of the number found is 9059, then

the address, 9059, will be inserted in the lower
accumulator and the buffer rings will be left set

at 9000.

5. If no number is found a storage selection indication
will be made.

6. Although the TLU operation may begin at any point
in HSS, the actual operation will not start until
the home pulse (address 0000, 0050, etc.) is passed
during a drum revolution.

For example:

Location Instruction TLU Operation Starts
o547 84 9036 0548 in 3 word times.
0561 84 9010 0562 in 39 word times.
0598 84 9022 0599 in 49 word times.

If any of the valid 70 codes (70, Tl, 75, 76, 77) has a
9000-9059 data address a load buffer block or store buffer
block transfer will be initiated starting at the 9000-9059
data address and at word one of the read, punch, or print
buffer and terminating at the end of the buffer block. The
information in the read, punch, or print buffer will be
transferred directly to or from the HSS without going through
general storage on the drum.

For example:

0100: 7O 9000 0101 Transfer 10 words of read buffer
to 9000-9009

0100: 71 9036 0101 Transfer 4 word (9036-9039) to
punch buffer words 1-4, words 5-10
are blank.

0100: TO 9012 9000 Transfer words 1-8 of read buffer
to 9012-8019. Take 9000 as location
of next instruction if non-load
card. Take 9012 as location of
next instruction if a load card.

275

276

There is a validity check made upon all information
read out of HSS. Therefore, there will be an additional
validity check performed on all information in the arith-
metic or control unit if it is brought from the HSS, and
there will be a validity check on all iInformation trans-
ferred to or from the HSS a. from or to the tape units

b. from or to general storage
on the drum

¢c. from or to the read, punch
or print buffers.

The time required for all transfer operations between
the drum and the HSSU is as follows:

1. A minimum of 3 word times between the location
of the instruction and the data address.

2. A minimum of (2+n) word times between the data
address and the location of the next instruction.
(n is the number of words transferred.)

LIST OF SUBROUTINES USED BY 650 CUSTOMERS

Bell Aircraft Corporation (Dr. M. Robinson)
Read in - punch out)
Floating decimal interpretive_routines
Floating decimal: sin, cos, eX, In,

log, arctan
Matrix operations

Bell Telephone Laboratories
(Mr. R. W. Hamming)
Solution of y'" - Ay' - Ay = B+2x(t) +2x'(t)
1 t
in the form Je "‘tx (®dt

Boeing Airplane Company (Mr. M. O. Post)

Floating decimal arithmetic

Fixed and floating decimal: sin, cos
arcsin, arccos, arctan, log, In, eX

Block move

Load 7 words/card

Punch 7 words/card

Load floating point data without
excess 50

Punch floating point without excess 50

Relocate instructions

Trace

Conversion of floating point fo fixed

C;l(rve fitting by least squares

A

Carbide and Carbon Chemicals Company

(Mr. J. E. Rowe)

2-3 dimensional Fourier synthesis

Check-change routine

Tracing routine

Input-output routines

Trimble’s interpretive floating point
routine extended to include sin, cos,
log, exp. etc.

Chance Vought Aircraft, Incorporated
(Mr. A. R. Mandelin)

SAM I

SAM I

SAM III - for double precision
arithmetic

Trigonometric functions (RAND approx.)
Translation

Block entry

Block punch-out (1/card through 7/card)
Block punch-out with word change
Matrix operations

Danielowsky (real and imaginery)

Mode shape removal routine

Detroit Edison Company (Mr. T. H. Lee)
Complex arithmetic interpretive routine
Complex matrix inversion
Cube root

Sinh, cosh, inverse sinh, inverse cosh

Conversion of polar coordinates to
Cartesian coordinates

Dump routine which permits reloading
by L1

Douglas Aircraft Corporation

(Mr. R. E. Ruthrauff)

Fixed point input (2 types) and
output (3 types)

Floating point input (2 types) and
output (3 types)

Fixed point: square root, sin, cos,
arcsin, arccos, arctan, K* (K=10,e),
log, In

Floating point interpretive: add,
subtract, multiply, divide, square
root, multiple operations

Matrix fixed and floating point

input input
add, sub add, sub
multiply multiply
transpose transpose
inversion
output
Assembly

Eglin Air Force Base (Mr. H. L. Adams)
Linear interpolation
eX (-36< x<8)
In (1+x) (0< x< 1) < A<
Arctan A/B —9999.?99999< g< 9999'?99999
In planning (5 decimal digit values):
trigonometric functions, logarithms,
exponentials

General Dynamics Corporation
(Mr. H. P. O’Neill)
10-digit floating decimal conversion
routine
12x12 symmetrical matrix augmented
by 7 vectors

General Electric Company

(Miss S. G. Fleming)

Floating point interpretive routine
using Trimble’s codes, plus sin,
cos, In, arctan -9 10

Machine language: In x (10 "=x< 1077),
eX (-20.'71x=23.0), sin x,
cos x (1x| <1010)

Least squares curve fitting

Automonitor for machine language

Automonitor for floating point
interpretive routines

Punch 8/card

Block transfer

2717

278

Clear drum to zero from locations A
through B

General Electric Company (Mr. W. H. Root)
General purpose floating point
Correlation matrix generation
Analysis of variance (expected by

January 1956)

General Electric Company

(Mr. G. W. Hobbs)

Fixed point routines (floating point in
progress but incomplete): input-output,
square root, sin, cos, arctan, log,
exponential, double precision

Automonitoring

Tracing

Dump block storage

Clear drum

International Business Machines
Corporation (Mr. J. A. Painter)
Reset entire drum to any desired
number

Card conversion - 701 octal to 701
decimal

Floating decimal complex arithmetic

Real and complex roots of algebraic
equations (use Lin’s method - if
fails, use Newton’s method)

La Place Transformation

International Business Machines
Corporation (Mr. B. R. Faden)
Load 1/card and 5/card
Punch-out all non-minus-zero

locations
Punch-out 5/card in form for loading
Drum clearing - clear to minus zero
Tracing
Statistical
Square root

Knolls Atomic Power Laboratory

(Mr. D. B. MacMillan)

Loading routine requiring serially
numbered cards and specially
identified final card

Punching routine to prepare the above

Automonitoring routine

Lockheed Aircraft Corporation

(Mr. R. W. Bemer)

General purpose floating decimal
system

Tchebysheif 5th order polynomial
through< 50 unequally spaced points

Utility routines :

Fourier analysis, 1000 points, Filon’s
method

McDonnell Aircraft Corporation

(Mr. T. M. Bellan)

Fixed and floating decimal arith-
metic: square root, sin, cos, In,
eX arctan

Complex arithmetic in floating
decimal: A+B—K, AxB—K, A/B—K,
K * AxB—K,

K —-c¢C
c - K Transfers

(K is the com-
plex accumulator)

Redstone Arsenal (Mr, P. W. Sage)
Interpretive subroutines for sin,
cos, arctan, log
10-digit fixed decimal
10-digit floating decimal
8-digit floating decimal (also, sub-
routine using 3 index registers)

United States Steel Corporation

(Mr. C. W. Zahler)

Fixed point: square root, cube root,
Va24+b2, Va2 -b2, eX, log, sin, cos,
tan, sinh, cosh, arcsin, arctan

Fixed point simplex method linear
program, maximum size
(m+1) (m+2) = 1650

University of Wisconsin

(Dr. A. W. Wymore)

Dual (single-address) 8-digit floating
decimal system including all usual
transcendental functions, Steiffel-
Hestenes linear systems solution

Dual (single-address) 18-digit floating
decimal system, basic operations
only. (Transcendental functions
available later this year.)

All possible simple correlations
among 10 5-digit signed variables,
mean and standard deviation of each
variable. (Factor analysis and
standard analysis of variance routine
available later this year.)

Westinghouse Electric Corporation

(Mr. M. Middleton)

Interpretive routine(code number in
parenthesis): transfer (00), add (01),
sub (02), multiply (03), divide (04),
eX (05), square root (06), In (07),
sin (08), cos (09), arctan (10), branch
on zero (11), branch on minus (12)

Fixed and floating point trace

LIST OF TYPICAL 650 APPLICATIONS

Mathematics

Algebraic equations - real and com-
plex coefficients

Applied probability functions

Complex polynomials

Eigenvalues

Extrapolated Liebmann iteration on
partial differential equation

Fourier analyses

Generation of tables of specialized
functions

Linear programming

Matrix calculations

Minimization of functions of two
variables _

Ordinary differential equations

Random number generation

Random walk

Simultaneous linear and nonlinear
equations

Simultaneous linear and nonlinear
differential equations

Statistics

Analysis of variance

Auto-correlation and power spectrum

Climatological statistical analysis

Least squares curve fitting

Multiple correlation

Multiple bivariate frequency dis-
tribution tables of weather elements

Quality control

Standard deviations and means

Physics

Atomic power studies

Gamma ray attenuation

Neutron absorption breakdown
Nuclear calculations - Kron’s method
Upper atmosphere research studies
X-ray crystal structure analysis

Aircraft Industry

Aeroelastic studies

Aircraft body and duct design

Armament systems evaluation

Bombing systems evaluation

Compressible flow studies

Data reduction - telemetered,
theodolite, wind tunnel

Drag chute calculations

Engine cooling

Engine performance calculations

Fire control pursuit course solutions

Flutter and vibration analyses

Flight trajectory calculations

Fuel cell pressure analysis

Guidance problems

Guided missile optmization studies

Heating studies

High-speed instrumentation conversion

Load calculations

Lofting

Mach senser frequency response

Nozzle design calculations

Optical system design

Power plant calculations

Radar equipment design

Radar detection probabilities

Radar echo studies

Radar parameters optimization

Radio interference

Radome studies

Servomechanism calculations

Shears and moments calculations

Sound pressure analysis

Standard airplane performance
calculations

Stress calculations

Wind tunnel balances computing

Chemical Engineering

Absorption analysis’

Crude oil evaluation

Flash vaporization :

Gas vapor cycle - performance
coefficient

Liquid - vapor equilibrium cal-
culations

Mass spectrometer analysis

Multi-source planar diffusion
problems

Pilot diffusion cascade data analysis

Pipeline design, stress analysis

Platformer gas plant calculations

Refinery production analysis

Tankage studies

Electrical Engineering
Circuit design
Circuit breaker design
Motor and generator engineering
studies:
Core losses
Critical shaft speeds
Stability studies
Transient studies
Power system design:
Economic operation
Loading and losses
Stability studies
Substation studies
Transient studies
Transformer design

279

280

PARTICIPANTS

Adams, Henderson L., Chief, Machine Branch, Applied Mathematics
Division, Directorate of Statistical Services, USAF, Eglin Air
Force Base, Florida

Ahlin, Jack T., Applied Science Special Representative for Petroleum
Industry, IBM Corporation, Houston, Texas

Alstad, Charles D., Chemical Engineer, The Dow Chemical Company,
Computations Research Laboratory, Midland, Michigan

Battin, Richard H., Assistant Director, Instrumentation Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts

Bellan, Theodore M., Supervisor, Department of Applied Mathematics,
McDonnell Aircraft Corporation, St. Louis, Missouri

Bemer, Robert W., Section Engineer, Mathematical Analysis Section,
Lockheed Aircraft Corporation, Van Nuys. California

Bilo, Stephen J., Technologist - Flutter and Vibration, Fairchild
Engine and Airplane Corporation, Hagerstown, Maryland

Bosak, Robert, Group Engineer, Mathematical Analysis Department,
Lockheed Aircraft Corporation, Marietta, Georgia

Brokate, Klaus, IBM Deutschland GMBH, Germany

Canfield, Donald B., Programmer, Bethlehem Steel Company, Bethlehem,
Pennsylvania

Clippinger, Richard F., Chief of Computing Services Department,
Datamatic Corporation, Waltham, Massachusetts

Clotar, Gill, American Optical Company, Worcester, Massachusetts

Coffin, Edward W., Acting Manager, IBM Washington Data Processing
Center, Washington, D. C.

Cohen, Marshall B., Junior Mathematician, Cornell Aeronautical
Laboratory, Incorporated, Buffalo, New York

Comerford, Emma E., Senior Programmer, Datamatic Corporation,
Waltham, Massachusetts

D’Arcy, Donald F., Head, Computation and Analysis Section, Carrier
Corporation, Syracuse, New York

De Carlo, Charles R., Director, Applied Science Division, IBM
Corporation, New York, New York

DeSantis, Richard A., Mathematical Engineer, Marquardt Aircraft
Company, Van Nuys, California

Doll, G. L., Applied Science Representative, IBM Corporation, Chicago,
Illinois

Drenick, William J., Mathematical Analyst, Weapons Systems Develop-
ment Laboratories, Hughes Aircraft Company, Culver City,
California ,

English, Julius C., Physicist, Computations Group, Savannah River
Laboratory, E. I. duPont de Nemours and Company, Augusta,
Georgia

Evans, Howard T., Physicist, U. S. Department of Interior, Geological
Survey, Washington, D. C.

Faden, B. R., Manager, IBM Data Processing Center, Los Angeles,
California

Fain, Charles G., (A/2c), Programmer, Directorate of Statistical
Services, USAF, Eglin Air Force Base, Florida

Flanagan, Joseph, Applied Science Representative, IBM Corporation,
Cambridge, Massachusetts

Fleming, Sarah G., Assistant in Charge of Digital Computers, Analytical
Engineering, General Electric Company, Schenectady, New York

Fogel, Gerald D., Supervisor, Automatic Computing Facility, Grumman
Aircraft Engineering Corporation, Bethpage, New Yor

Fritz, W. Barkley, Senior Engineer, Air Arm Division, Westinghouse
Electric Corporation, Baltimore, Maryland

Fullerton, Herbert P., Project Leader, General Electric Switchgear,
Philadelphia, Pennsylvania

Galvin, John C., Applied Science Division, IBM Corporation, New York,
New York

Garrett, John E., Section Chief, Mathematical Statistics Section, Olin-
Mathieson Chemical Corporation, New Haven, Connecticut

Graham, Jack N., (Jr.), Mathematical Analysis Branch, Machine
Computation Section, USAF, Directorate of Intelligence, Wash-
ington, D. C.

Green, Thomas H., Research Engineer, Shell Oil Company, Houston,
Texas

Greenberg, Sheldon,R., Mathematician, Collins Radio Company, Cedar
Rapids, Iowa

Groth, Valbert J., Staff Engineer, The Standard Oil Company of Indiana,
Whiting, Indiana

Hafner, Ralph, Head, Numerical Analysis Branch, U. S. Naval Ordnance
Plant, Indianapolis, Indiana

Hamming, Richard W., Member of Technical Staff, Bell Telephone
Laboratories, Chatham, New Jersey

Harris, William P., Computing Analyst, North American Aviation,
Incorporated, Columbus, Ohio

Heising, W. P., IBM Data Processing Center, New York, New York

Hobbs, George W., Engineer, Aeronautic and Ordnance Systems,
General Electrlc Company, Schenectady, New York

Horner, John T., Supervisor, Engineering Calculations, Allison D1v151on
General Motors Corporatmn Indianapolis, Indlana

Horton, T. R., Applied Science Division, IBM Corporation, Asheville,
North Carolina

Hunter, G. Truman, Assistant Director, Applied Science Division, IBM
Corporation, New York, New York

Kantner, Harold H., Supervisor, Mathematical Services Section, Armour
Research Foundation, Chicago, Illinois

Koll, R. T., Applied Science Division, IBM Corporation, New York, New
York

Krider, Leroy D., Mathematician, Naval Ordnance Laboratory, Silver
Spring, Maryland

Lee, Tsai H., Engineer, Systems, The Detroit Edison Company, Detroit,
Michigan

Lesser, Richard C., Director of Cornell Computing Center, Cornell
University, Ithaca, New York

Luke, John W., Field Manager, Applied Science Division, IBM Corpora-
tion, Los Angeles, California

MacMillan, Donald B., Mathematician, Knolls Atomic Power Laboratory,
General Electric Company, Schenectady, New York

Mandelin, Allan R., Computational Systems Engineer, Chance Vought
A1rcrait Incorporated Dallas, Texas

Maso, Essor, Mathematical Analyst, Weapons Systems Development
Laboratories, Hughes Aircraft Company, Culver City, California

Merrick, Elsie V., Group Engineer, The Standard Oil Company of Ohio,
Cleveland, Ohio

Middleton, Marshall, Senior Mathematician, Analytical Section, Westing-
house Electr1c Corporation, East Plttsburgh Pennsylvama

Oakford, Robert V., Lecturer - Industrial Engineering, Radio Laboratory,
Stanford Umversny, Stanford, California

O’Neill, Henry P., Supervisor, Computer Facility, Electric Boat Division,
General Dynamlcs Corporation, Groton, Connecticut

Painter, James A., Scientific Computation Laboratory, IBM Corporation,
Endicott, New York

Parks, John, Supervisor of Statistical Analysis, Trans World Airlines,
Incorporated, Kansas City, Missouri

281

282

Peiser, Alfred M., Head of Electronic Computing, M. W. Kellogg
Company, Jersey City, New Jersey

Perry, Olney R., Engineer, General Electric Company ANP Project,
Idaho Falls, Idaho

Poley, Stanley, IBM Data Processing Center, New York, New York

Post, Malcolm O., Research Engineer, Boeing Airplane Company,
Seattle, Washington

Reid, Eugene B., Senior Mathematician, Standard Oil Company of
California, San Francisco, California

Remilen, Charles H., Computer, Industrial and Scientific Computing
Section, Eastman Kodak Company, Rochester, New York

Rind, Rene L., IBM Corporation, France

Robinson, Mark, Programmer, IBM Unit, Dynamics Engineering, Bell
Aireraft Corporation, Niagara Falls, New York

Root, William H., Project Engineer, General Engineering Laboratory,
General Electric Company, Schenectady, New York

Rosett, Frank, Research Engineer, Analytical and Computing Group,
Vickers, Incorporated, Detroit, Michigan

Ross, Louis L., Assistant to Stress Analysis Head, The Babcock and
Wilcox Company, Barberton, Ohio .

Rowe, James E., Senior Mathematician, Carbide and Carbon Chemicals
Company, Oak Ridge, Tennessee

Ruthrauff, Robert E., Manager of Computing Department, Douglas Air-
craft Company, Incorporated, Tulsa, Oklahoma

Sage, Paul W., Mathematician, Redstone Arsenal, Huntsville, Alabama

Schacknow, Arnold B., Supervisor, Engineering Computing Section,.
Republic Aviation Corporation, Farmingdale, New York

Schricker, Otto, (¥r.), Chemical Engineer, Process Research Division,
Esso Research and Engineering Company, Linden, New Jersey

Sewell, George V., Test Engineer, IBM Testing Laboratory, Endicott,
New York

Shepherd, Elmer F., Technician, John Hancock Mutual Life Insurance
Company, Boston, Massachusetts

Shreve, Darrell R., Research Mathematician, Research Division, The
Carter Oil Company, Tulsa, Oklahoma

Smith, Robert L., (Jr.), Statistical Supervisor, Texas Agricultural
Experiment Station, Agricultural and Mechanical College, College
Station, Texas

Somerall, Leon H., Chief, Reduction Branch, USAF Weather Service,
Asheville, North Carolina

Sweeney, Dura W., Mathematical Planning Group, IBM Corporation,
Endicott, New York

Swift, C. W., IBM Data Processing Center, New York, New York

Thomsen, D. L., Applied Science Representative, IBM Corporation,
Philadelphia, Pennsylvania

Trimble, George R., (Jr.), Mathematical Planning Group, IBM Corporation,
Endicott, New York

Williams, Cleo B., Mathematician, Military Physics Research Laboratory,
University of Texas, Austin, Texas

Wrubel, Marshal H., Associate Professor of Astronomy, Indiana University,
Bloomington, Indiana v

Wymore, A. Wayne, Project Supervisor, Numerical Analysis Laboratory,
University of Wisconsin, Madison, Wisconsin

Zahler, Charles W., American Bridge Division, United States Steel
Corporation, Pittsburgh, Pennsylvania

INTERNATIONAL BUSINESS MACHINES CORPORATION

- 590 Madison Avenue, New York 22 N. Y. ,
Form No. 34-6711-0-5M-P o . <> Litho in U.S.A.

