VLSI Systems Design

1989 USER'S THE INFORMATION SOURCE FOR USERS OF ELECTRONIC DESIGN AUTOMATION TOOLS

MAAM

NFWE

MMMMMMM

NMAN

(INDIN)

NEWDO

This is the stuff reputations are built on.

A cell design with 200,000 gates. More than 1000 library elements. 2MB of memory. And sub-micron

HCMOS technology.

You can search high and low, but there's only one place in the world you can find a chip of such staggering complexity.

LSI Logic.

Designs like this are precisely why we're the #1 domestic ASIC supplier with more than 5,000 working cell and array-based designs in the field.

And why our Modular Design Environment (MDE)[™] software is the best foundation for building killer cells.

MDE is the industry's most advanced design software for ASICs. It arms you with the capability to build today's most sophisticated cellbased designs. Easily. And with the smallest possible die size.

Besides MDE, LSI Logic delivers more than 400 LSI and VLSI building

develop exactly the RAM or ROM your chip requires.

And if your application calls for lower densities, that's covered, too. Because LSI Logic has more cost-effective cell-based solutions than you can imagine.

No matter what kind of cell-based ASIC you

build, LSI Logic will deliver a fullytested prototype in as little as 4 weeks.

All in the production quantities you want, thanks to our advanced worldwide wafer fabrication, assembly, and test facilities.

So find out more about LSI Logic's Cell-Based ASICs by calling the sales office nearest you.

After all, we can help you make a killing.

LSI Logic Sales Offices and Design Resource Centers: Scottsdale, AZ 602-951-4560, Milpitas, CA 408-433-8000, San Jose, CA 408-248-5100, Irvine, CA 714-553-5600, Sherman Oaks, CA 818-906-0333, Denver, CO 303-756-8800, Altamonte Springs, FL 305-339-2242, Boca Raton, FL 407-395-6200, Norcross, GA 404-448-4898, Chicago, IL 312-773-0111, Bethesda, MD 301-897-5800, Waltham, MA 617-890-0161, Ann Arbor, MI 313-930-6975, Minneapolis, MN 612-921-8300, Edison, NJ 201-549-4500, Poughkeepsie, NY 914-454-6593, Raleigh, NC 919-872-8400, Worthington, OH 614-438-2644, Beaverton, OR 503-644-6697, Trevose, PA 215-245-4705, Austin, TX 512-338-2140, Dallas, TX 214-788-2966, Bellevue, WA 206-822-4384, Canada 403-262-9292, France 33-1-46212525, Israel 972-3-403741/6, Italy 39-96-51575, Japan 81-3-589-2711, Korea 82-2-785-1693, Netherlands 31-4120-30335, Scotland 44-506-416767, Sweden 46-8-903-4680, Switzerland 41-32-515441, United Kingdom 44-344-426544, West Germany 49-89-926903-0. © 1988 LSI Logic Corporation. Modular Design Environment and MDE are trademarks of LSI Logic Corporation.

A Supplement To

VLSI Systems Design

A CMP Publication EDITORIAL DIRECTOR Robert W. Henkel EDITOR-IN-CHIEF Roland C. Wittenberg SENIOR EDITOR Bob Cushman SOLID STATE EDITOR Roderic Beresford

WESTERN REGIONAL EDITOR David Smith

DIRECTORIES EDITOR Michelle A. Losquadro EDITORIAL ART Marie D'Ippolito, Design Director

Rob Klein, Associate Art Director Dawn Cammarata, Composition & Layout Laurie Kaufman, Cover Bob Powers, Esther Meteliz, Layout

EDITORIAL PRODUCTION

Tim Moran, Managing Editor, Operations Reinhardt Krause, Senior Writer Ingrid Atkinson, Directory Composition Deborah Porretto, Ass't Production Editor

MANUFACTURING Stephen Grande, Director of Manufacturing Marie Myers, Production Manager James Pizzo, Production Supervisor Jane Mahoney, Asst. Production Supervisor

PUBLISHER Norm Rosen

VLSI SYSTEMS DESIGN (ISSN 0279-2834) is published monthly with an extra issue in September and December by CMP Publications, Inc., 600 Community Drive, Manhasser, NY 11030, (516) 562-3000. VLSI SYSTEMS DESIGN is free to qualified subscribers. Subscriptions to others in the US: one year \$650.00, two years \$165.00, Europe, Central and South America: one year \$200.00, two years \$165.00, Europe, Central and South America: one year \$210.00, two years \$252.500. Axia, Australia, Israel and Africa: one year \$150.00, two years \$285.00 Second-class postage paid at Manhasset, NY and additrional mailing offices. POSTMASTER: Send address changes to VLSI SYSTEMS DESIGN, Box No. 2060, Manhasset, NY 11030. Copyright 1989, CMP Publications. Inc. All rights reserved.

> CMP ELECTRONICS GROUP Kenneth D. Cron Vice President/Group Publisher Electronic Buyers' News Electronic Engineering Times VLSI Systems Design

CMP PUBLICATIONS, INC. 600 Community Drive Manhasset, New York 11030 (516) 562-5000

Paddisher of: Electronic Buyers' News, Electronic Engineering Times, VLSI Systems Design, Computer Systems News, Computer Reseller News, VARBUSINESS, UNIX Today', InformationWEEK, CommunicationsWeek, CommunicationsWeck International, Business Travel News, Tour & Travel News, Long Island Monthly, HealthWeek

Michael S. Leeds, President Pearl Turner, Vice President/Treasurer Daniel H. Leeds, Vice President

Lilo J. Leeds, Gerard G. Leeds Co-Chairpersons of the Board

FEATURES

LOGIC SYNTHESIS AS A FRONT-END TOOL IN AN ASIC DESIGN ENVIRONMENT 4 Bryan Bell and Glenn Woppman

DESIGNING ASICs IN A KNOWLEDGE-BASED ENVIRONMENT 14 Earl Reinkensmeyer

DIRECTORIES

Directory of CAE Systems 20 Directory of Printed Circuit Board Layout Systems 36 Directory of IC Layout Systems 48

INTRODUCTION TO THE GUIDE

The past five years have witnessed the maturing of the design automation industry and its products. These products started as relatively crude tools for IC design that were not only difficult to operate, but also difficult to use without an extensive background in IC technology. However, today's tools have reached out to the system designer and other designers who are not necessarily knowledgeable in the IC arena, and who may be primarily interested in taking advantage of ASICs and standard VLSI chips without being required to learn their technologies in detail.

The tools continue to reach out for these system designers. Even the PCB-CAD tools, which predated the IC-CAD tools by many years, have moved from a relatively independent, design/manufacturing-based tool set to an integrated design environment that is more closely aligned with the systems engineer's requirements. The most touted benefit of today's design automation tools has been the ability of these tools to free up designers from many of the details of design. This fosters the designer's ability to quickly optimize their designs with many iterations of the overall system or any of its parts. For instance, electrical rule checking has freed the designer from the tedious and time-consuming task of checking thousands of gates for such rules as fan-in, fan-out, proper load terminations, and grounding of unused inputs. Design rule checking performs a similar function for the physical layout of the integrated chip or printed-circuit board.

Functions such as these are included in most of today's tools. In addition, this trend toward the embedment of more intelligence in tools over the past few years has encouraged an increased use of artificial intelligence and expert systems by design tool vendors. Two articles covering these topics have been included in this issue of our *User's Guide to Design Automation*. They both provide an overview of knowledge-based design environments and discuss such topics as logic synthesis and expert systems, but each author provides an overview that is based on his own company's (Texas Instruments or NCR Microelectronics) particular design environment.

As in the past, *VLSI's* guide has been designed to serve as a reference for both the ASIC designer and the systems engineer. The guide has complete and updated directories that list most of the design automation tools now available (together with their vendors) for three categories of products: CAE entry and analysis systems; integrated circuit layout systems; and printed circuit board layout systems.

- Roland Wittenberg

Great things happen when System HILO[™] is your simulation choice... *design and test efficiency soar!*

WINEDULITICA

GenRad has solved the common dilemmas of design and test groups...which simulation system to buy for IC design?...which for PCB design?...can the test group use it?...does it all work together?

Now, for the first time, your design and test people can work with a common, integrated simulation tool set, regardless of whether they're working on design verification or test development for integrated circuits or printed circuit boards.

With GenRad's System HILO, design verification and test development for both chips and boards can take place at the same time. And this means optimum working efficiency between your design and test people. The result is tremendous savings in time and money, as well as better designs and more comprehensive test programs.

The key to System HILO is a new, modular architecture. It lets your design and test people solve a broad range of chip and board problems that cannot be addressed with any single tool. It enables design to proceed in parallel with test development. Utilizing System HILO's Test Waveform Language, the test engineer can use the same simulation data as the designer. The test program can then be downloaded

and run without translation on GenRad's 275X board test systems. The result is faster, more comprehensive program development with maximum diagnostic effectiveness.

There are many more great aspects about this new simulation system from GenRad. Find out more by calling 1-800-4-GENRAD.

The difference in software is the difference in testTM

LESTER

LOGIC SYNTHESIS AS A FRONT-END TOOL IN AN ASIC DESIGN ENVIRONMENT

Bryan Bell and Glenn Woppman, Texas Instruments Inc., Dallas, Texas

ogic synthesis has become somewhat of an industry buzzword—conjuring up visions of high-level designs automatically converted into optimized gatelevel implementations. Rather than an esoteric design tool, synthesis is a key bridge between logic design and *ASIC* physical implementation.

Logic synthesis brings a set of key capabilities to ASIC logic design. It relieves systems engineers of implementation drudgery, permitting them to concentrate on design functionality. It also automatically provides logic minimization, gate optimization, and design-rule enforcement. Relieving engineers of these time-consuming tasks cuts design-turnaround time, and enables engineers to get products out the door faster while still maintaining quality control.

Logic synthesis also provides an interactive design front end to *ASIC* designers. One logic synthesis tool—the Logic Consultant from Trimeter Inc. (Pittsburgh, Pa.) will serve as a front-end design tool for engineers working with *TI*'s *ASIC*s. Since early 1988, *TI* designers have been working with Logic Consultant. This tool has given *TI* engineers a fast, reliable method to optimize its *ASIC* gate array and standard cell designs.

TI has developed two knowledge bases necessary for the Logic Consultant to serve as a design front end (Figure 1). One knowledge base accommodates the TGC100 Series 1-micron gate array family; the other serves the TSC500 1-micron standard cell family.

This software should solve one of today's major design problems—the conversion of *PLD*-based designs into *VLSI* logic. With the Trimeter Logic Consultant front end, engineers can directly convert *PLA*-based designs into *ASIC* gate-level designs that will be optimized for area, power, or speed constraints. This capability permits engineers to use *PALs* for prototypes and more efficient *ASIC* chips for production.

Designers will also be able to work at higher levels of abstraction. Instead of working at the gate or *ASIC* logicfunction level, they will be able to use logic equations, *PAL* equations, finite state machines, or truth tables to specify designs and improve productivity (Figure 2). Thus, the system designer can now concentrate on design functionality, passing off much of the implementation details to a software assistant such as the Logic Consultant. With this new tool, designers can try different design choices or rework a design automatically to meet different timing and area constraints.

LOGIC CONSULTANT

The idea behind logic-synthesis software such as Trimeter's Logic Consultant is straight-forward: Designs are converted into an intermediate generic form that can be logically minimized. This minimal form is then mapped onto a given *ASIC* technology library.

For design analysis, the Logic Consultant includes a schematic analyzer. With it, the designer can interactively specify and examine highlighted critical paths in a design. These paths can be chosen based on minimum pin-to-pin signal transitions.

A designer can try different tactics and then examine the results interactively for key critical signal paths. Additionally, the designer can also print out a schematic of the gate-level design for documentation or further analysis.

KNOWLEDGE BASES

Libraries are a collection point for design information. π 's 1-micron *ASIC* library has more than 461 elements in it, and π is working on an additional 71 complex functions. Many of the library's elements have been added at the request of π customers. This library forms a common knowledge pool, permitting designers to benefit from the experience of other engineers doing diverse designs.

To allow system designers to maximize their use of the ASIC library, TI has developed two knowledge bases (KBS) to supplement the Logic Consultant. The TSC500 Series KB is developed from TI's 1-micron standard-cell family while the TGC100 Series KB was developed from TI's 1-

Figure 1. The TI logic-synthesis design environment is shown here with its basic parts. The logic-synthesis function front end accepts inputs in most of the forms a design engineer would use—PALs, Booleans, truth tables, and finite state machines.

micron gate array family. The two knowledge bases comprise all the functionality that is offered in the corresponding *ASIC* libraries.

These knowledge bases form the technology platform for mapping generic designs into the given *TI* gate array or standard cell implementation. Engineers can enter their designs in a higher level form—such as logic equations, truth tables, or *PLD* equations—for conversion into *ASIC* gates. Alternatively, they can use standard schematics that will be converted into an intermediate form and then synthesized.

Logic synthesis allows engineers to design using generic gate types. The software design can be counted upon to optimize such a design by selecting more suitable library logic functions to meet area, timing, or power constraints. Done this way, design can become more of a two-step process—doing the top-level design, and then the technology-dependent implementation.

This approach will make it easier to move designs between different circuit technologies. The logic synthesizer is then responsible for implementing the design into a τI gate array or standard cell.

A final library advantage to using logic synthesis is that the designer is now freed up from the restrictions of the library itself. In effect, the designer can define his own soft macro elements or logic modules, and be secure in knowing that they are optimized for the given *ASIC* technology.

Figure 2. The Logic Consultant environment is shown here with its various possible inputs. Knowledge bases built around TI's TSC500 Series standard cell family and TGC100 Series gate array family are available to the designer.

THE PAYOFF-PAL CONVERSION

Few high-performance designs use discrete logic anymore. Instead, they tend to use either *VLSI* or *PLDS*. For example, the new Series 10000 workstation from Apollo Computer Inc. (*VLSI* Systems Design, August 1988, pg. 60) has almost no discretes.

In fact, many board-level designers find themselves using a *PAL*- or *PLD*-based design to test-market or prototype a product. With logic synthesis to handle the implementation details, they can easily shift their designs to more efficient, cost-effective gate arrays or standard cells when the product or design is stable.

However, the conversion of a *PAL* to an *ASIC* is not a trivial task. *PAL*s simplify design by providing a large number of sum-of-product terms to be handled in a minimal number of logic levels—two or three. Doing this with standard logic gates in *VLSI* can deepen the number of logic levels, increasing both the circuit area and the

delay time in traversing the logic.

A large function library, however, can minimize this effect by furnishing enough specialized circuits to avoid deepening the chain. Unfortunately, most designers are forced to do this conversion by hand. Such a conversion typically takes three to seven days for relatively simple *PLDs*, and longer for complex circuits.

Logic synthesis offers a perfect way out of this dilemma. For one thing, the software accepts high-level circuit descriptions; for another, it performs the lower level implementations automatically. And finally, it allows the designer to control the final implementation by specifying timing and area constraints.

PAL DESIGN EXAMPLES

TI regional technology centers have already been using the Logic Consultant to handle *PAL* conversions. In one system design, a *PAL* circuit (10-ns *TIBPAL* 16L8-10CN)

Trust S-MOS. Our ASICs won't leave you out in the woods.

Instead, we'll help you along the path to higher productivity.

Through high-volume, high-yield technology, our manufacturing affiliate Seiko Epson Corp. produces millions of ASIC devices each month.

S-MOS backs up that production with a dependable design program that provides back annotation simulation and fault grades every chip to help your designs succeed.

To keep costs low, there are no CPU simulation charges.

Our full line of ASICs are migratable from gate arrays into standard cells and beyond to our Compiled Cell Custom cell-based designs.

Our ASIC solutions span from 513 to 38,550 gates with technologies down to 1.2 micron (drawn).

To save you time, we can use your existing arrays as future building blocks.

Most ASIC products are available in plastic quad flat packs, pin grid arrays, plastic leaded chip carriers, small outline packages and plastic dual-in-line packages.

CIRCLE NUMBER 5

So if you're looking for an ASIC program that will get you out of the woods, call us. (408) 922-0200.

S-MOS Systems, Inc. 2460 North First Street San Jose, CA 95131-1002

The traditional approach to IC design.

The Cadence approach.

FINISH

How you play the game determines if you win or lose. And there's plenty at stake. Your design. Your product. Maybe even your company.

Traditional IC design is full of pitfalls and blind alleys. While there are plenty of good tools available, none of them really work well together.

There is a better approach.

Design Framework[™] architecture from Cadence. The first integrated design environment to support the entire IC design process. A system that lets you go from start to finish in one smooth, direct path.

Not a "shell," Design Framework architecture is a unified environment where all design tools share the same user interface and design database. So important details never get lost in transit. Or garbled in translation.

But Design Framework tools don't just passively coexist. They actively cooperate. As your design rolls along, you see the impact of every change. In real time. Catching and correcting errors as they're made. Eliminating the need to go back and start over.

The bottom line—you finish designs faster and more economically.

You get to market sooner. And put greater distance between you and your competition.

In fact, Design Framework architecture can boost your design productivity five times or more over the traditional approach.

Design Framework architecture also fits easily into your existing design environment. You can even couple tools you developed or bought from other vendors.

And it's all brought to you by Cadence. The IC design automation software tool leader. We'll be happy

to tell you more. Write or call for a copy of our IC Design Game Plan: Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, inside California: 1-800-672-3470, ext. 866, outside California: 1-800-538-8157, ext. 866.

Because in today's competitive environment playing by the old rules is a losing game.

Leadership by Design

STAR

was converted into *ASIC* gate logic using the Logic Consultant in less than 20 minutes—from *CUPL* file sourcefile input to schematic output. In contrast, it usually takes an *ASIC* designer a week to convert a single *PAL*, including quality control checks. Thus, by hand, the job would have been equivalent to some 40 man-weeks of engineering effort. Moreover, the logic synthesis process was efficient enough to replace 10-ns *PALs*, keep the overall timing, and still minimize the gate count.

In this case, the *CUPL* logic equation (Figure 3a) was converted into the Trimeter form (Figure 3b). The implementation was then performed running the equations against the $\tau\tau$ TSC500 Series standard-cell Knowledge Base. The converted logic was minimized for area, and

Figure 3. Part (a) of this figure shows the PAL CUPL specification before it is converted to Trimeter format (b).

the end-result was an automatically partitioned schematic.

In another design, a multiple *PAL* memory-management unit was converted into *ASIC* gates. The design supported multiple *TI* TMS320C25 *DSP* processors, each with local high-speed memory. Initially, the design had 11 *PALs*, mainly 16R4s and some 16L8s. The design was converted into *ASIC* logic and took up only about 350 gates.

In this case, the full conversion took three days. Most of that time was used to convert the *PAL* equations into the Trimeter input form. Additional time was needed to create a schematic representing all the converted *PALs*.

In a step-by-step process, each *PAL* was converted into equations and then synthesized. Next, the hierarchy of synthesized *PALs*, now converted to gates, was flattened and synthesized again into an integrated minimal design. The last synthesis step served to optimize the total circuit, eliminating redundancies and taking advantage of any shared equation paths.

For simpler *PALs*, the general conversion rule is that a single *PAL* takes about 50 gates to represent it in an *ASIC*. Thus, an 8,000-gate array can pinch-hit for up to 160 *PALs*, a significant savings in real estate.

Helping to reduce this *PAL*-to-*ASIC* gate count, as well as minimize delay time, is the use of the complex gate functions in the τt Library. These complex functions can substitute for multiple gates, and provide special drive capabilities as well as minimize delay. For example, τt 's TSC500 Series library has 51 complex Boolean functions for the synthesis software to build an optimal implementation.

The potential savings with optimized gate choices can be seen with the *TI* BF0035 logic function—a 7-input *AND*-*OR-AND-NOR* gate with a worse case delay of 8.3 ns. It takes up real estate equivalent to 2.25 gates. Yet the same function, done in random logic, would require 8.5 gates with far greater delay (19.6 ns). Thus, when the BF0035 can map into a circuit, it can result in significant saving in both area and delay.

This circuit can be made up from plain gates or from a collection of subfunctions. The Logic Compiler has "rules" that will map such circuit occurrences into the BF0035 should conditions warrant it.

HIGHER LEVEL

Another advantage to a logic synthesis front end is that it gives the systems designer the ability to reoptimize at a higher level. Optimized design modules, or sections, can be re-optimized as they are joined to take advantage of common terms or redundancies. At each level of integration, design optimization can be ensured.

Moreover, the design constraints can be re-explored for further optimizations. Critical signal paths can be evaluated across major portions of the design, and redone interactively.

This is an important aspect to the use of logic synthesis, because most of today's logic designs are not completely new designs. Instead, they are extensions of existing designs, or new products that try to make use of existing circuits.

Trying to design tomorrow's ASICs with yesterday's tools? Now there's ChipCrafter.

High-level compilers, configurable libraries, process independence, and logic synthesis make ChipCrafter designs efficient. Automatic place and route, buffer sizing, and timing analysis at your Mentor Graphics[™] workstation makes them easy, and as dense as hand-packed.

FREE. ASIC Estimating Kit.

What will it take to do your design with our cutting-edge design tool? Our free ASIC Estimating Kit lets you analyze design trade-offs, including performance and cost implications, in a variety of processes. Find out how ChipCrafter and Seattle Silicon chip away at design restrictions to deliver the next generation of ASICs. Call for your free kit: 1-800-FOR-VLSI ext. 500.

3075-112th Ave N.E., Bellevue, WA 98004, (206) 828-4422. Copyright 1988, Seattle Silicon. ChipCrafter is a trademark of Seattle Silicon Corp. Mentor Graphics is a trademark of Mentor Graphics Corporation.

CIRCLE NUMBER 6

Bridge the gap between the CAE/CAD systems you have. And the EDA environment you want.

With Valid's open approach to electronic design automation (EDA), you can build a standards-based hardware/software environment while continuing to use your existing tools.

When You Want More Capability, Not Just More CAE/CAD Systems.

Like so many companies today, you have probably automated most parts of the design process. And whether the tools you use address design capture, digital and analog verification, IC design, or PCB design, chances are that they came from multiple vendors.

Your Problem is Obvious.

How do you bring all these pieces together? And add new capability to keep pace with changes in

technology? All this without

sacrificing your existing investment in individual design systems?

The Practical Approach.

Our customers tell us there are three elements that affect practical expansion of their design capability. First migrate to standards — platforms, operating

systems, networking - to establish a foundation for tying all your tools together. From there you can upgrade the most critical parts of your design environment with the latest state-of-the-art tools, to handle new technologies and the demand for increased performance. And finally, you adopt open systems and emerging standards to attain the compatibility you want long-term in your EDA environment.

When You Want Standards.

All Valid design automation tools run on the most

popular industry standard platforms, including Sun-3 and Sun-4 workstation families. As well as VAX mainframes and VAX stations. All the

networking is

standard, too-

Ethernet, with TCP/IP

or DECnet protocols, NFS or LAVC.

When You Want A Full Line Of State-of-the-Art Tools.

Valid software addresses your critical design needs. Design capture that lets you design with hierarchy, to help manage complex design development, and automatically generate the flat documentation essential to manufac-

turing. High-accuracy IC and board-level simulation to ensure that your ASICs work on the board, not just in free space. An analog environment that combines breadboard, lab bench, and analysis tools. Chip and cell-level design and analysis for designing megachips. And PCB design and analysis for SMD and high-speed technologies.

When You Want To Attain Compatibility In Your EDA environment.

Every Valid tool is based on industry standards

and a recognized open architecture. This makes it easier for you to incorporate our advanced tools into your existing configurations. Through recognized standards, such as EDIF, and standard interfaces, such as GDS II, you can preserve the investment you have both in tools and designs

while you build the EDA environment you want in planned steps.

Valid wants you to be number one in your business. To find out how improving your EDA environment can help you get

there, call Valid today for a free brochure, 1-800-821-9441. In California call 408-432-9400, ext. 2311.

© 1988 Valid Logic Systems. Valid is a trademark of Valid Logic Systems. Other brands or product names are trademarks or registered trademarks of their respective holders.

DESIGNING ASICS IN A KNOWLEDGE-BASED ENVIRONMENT

Earl Reinkensmeyer, NCR Microelectronics, Fort Collins, Colo.

w that acceptable first-pass success rates have been realized, other *ASIC* success issues need to be addressed. These issues include design optimization, cost-effectiveness, design creativity, productivity, quality, and reliability. The key element essential to meeting these additional criteria is increasing the amount of knowledge and expertise available to the designer. This goal can best be achieved by working in a knowledge-based engineering environment based on artificial intelligence (*AI*) concepts.

Knowledge comes in three forms: 1) rules-based knowledge that can be automatically (algorithmically) applied to complete sequential analytical tasks such as chip partitioning, timing analysis, *DRC*, and *ERC*; 2) embedded-function-based knowledge that is implicit in *ASIC* macrocell libraries and cell compilers; and 3) reasoning-based knowledge that is accumulated through years of design experience and knowledge "capture," and is inferentially applied. We will consider the application of each kind of knowledge to *ASIC* design, explore commercially available tools that utilize that knowledge, and provide illustrative design examples.

LOGIC SYNTHESIS

Rules-based knowledge and embedded-functionbased knowledge can be combined to perform logic synthesis in the *ASIC* environment. Logic synthesis allows designers to input designs using a high-level design description language. It then applies expert knowledge to automatically generate the optimal logic implementation. This gives the designer unprecedented levels of design creativity while managing the cumbersome details necessary to ensure total specification-to-logic congruence.

Design synthesis tools free designers to take a more global and strategic approach to *ASIC* design. The heart of the design synthesis concept is the use of a high-level hardware description language (*HDL*) that allows the designer to take a more conceptual approach to *ASIC* design. The design synthesis tool then automatically handles implementation, ensuring that the final, optimized logic precisely matches the initial behavioral specification.

Early investigations in the use of high-level language descriptions were performed in universities and advanced development laboratories. In the late 1970s, Metalogic experimented with its Metasyn synthesis language, the first and perhaps only "pure" commercially available synthesis system generally considered to have been conceptually ahead of its time.

Following this early work came the development of the N. system-level design automation language from Endot Inc. (Cleveland, Ohio). Endot was recently acquired by Zycad Inc. (Minneapolis, Minn). This language allows register-transfer-level specification and simulation. Several similar commercial offerings have appeared.

The U.S. government also supports work in this area, most notably with its *VHSIC* hardware description language (*VHDL*). *VHDL* lays the framework for defining, simulating, and documenting digital designs, particularly those originating in *DOD*'s *VHSIC* program. The government's primary thrust here is not to mandate how design occurs but rather how it is documented, to allow multiple sourcing, re-engineering, technology sharing, and maintenance.

COMPARING LOGIC SYNTHESIS TOOLS

With any of the new generation of logic synthesis tools, designers do not have to manually place and interconnect hundreds or even thousands of high-level schematic symbols. They are free to take a more conceptual approach to *ASIC* design. They can explore design alternatives at the architectural level, rather than have to generate the actual logic-level schematic symbols to see if their ideas are feasible.

Using logic synthesis, functional descriptions can take several hours and a couple of pages of data to generate rather than the many weeks and many pages of data required for interconnecting schematic symbols. This doesn't count the schematic entry and verification that is also generally required for traditional *ASIC* design. This ability to enhance creativity early in the design process promises to have a significant impact on both chip- and system-level productivity.

A number of logic synthesis tools have recently been introduced. For example, the Genesil LogicCompiler from Silicon Compiler Systems (San Jose, Calif.) uses heuristic techniques. The techniques provide the user with the capability to configure combinational logic and optimize for either speed, gate count, or area by specification or circuit substitution. LogicCompiler can accept input from a netlist. It optimizes the design by automatically compiling the functionally optimized circuit into standard cells. These are not ordinary standard cells; they are fully parameterized, and they are tuned to maximum density for the specific fabrication process. Each cell is available in two basic configurations (minimum area or maximum drive), and each configuration has four performance-level choices. Using timing analysis, transistors can be individually sized along the critical path for further performance optimization. Automatic place and route algorithms then provide for maximum density by laying out the cells in horizontal rows and routing between them. The aspect ratio of the compiled cell can also be adjusted for best fit. These compiled parameterized cells can be combined with structured compiled functions within the Genesil design environment.

Synopsis Inc. (Mountain View, Calif.) recently added an HDL compiler to its Design Compiler logic synthesis system. This system uses the Verilog language from Gateway Design Automation (Westford, Mass.) to input hardware descriptions, or utilize netlist, equation, PLA, or truth table inputs. It is expected, however, that Synopsis will support additional HDLs. Circuits may be combinational or sequential, and may be specified in a hierarchical structure; the Design Compiler translates them automatically into gate-level circuit descriptions that are optimized for a particular vendor's library. The optimization process is controlled by the user through a design constraint control file (e.g. clock rate, maximum area, set-up time, hold time, loading, process, temperature, and voltage) that enables the user to trade-off circuit speed for area. Keep-out areas can be specified so that Design Compiler does not attempt to further optimize user-selected portions of the design. Synopsis embeds the transformation rules within the tool.

The Logic Synthesizer from *vLSI* Technology Inc. (San Jose, Calif.) provides output in a form that can be implemented as an optimized programmable logic array (*PLA*) structure within an *ASIC*, as well as in a netlist form for implementation as either a gate array or cell-based device. The Logic Synthesizer also offers automatic state assignment and optimization. Those two features can produce greater silicon efficiency and improved performance by making state assignments based on logic adjacency, reducing the time required to optimize and minimize the size of the logic produced. Logic Synthesizer automatically generates high-fault-coverage test vectors for the logic generated. It lets engineers specify *IC* designs in a high-level state transition language that

includes Boolean equations as input.

The Logic Consultant from Trimeter Technology Corp. (Pittsburgh, Pa.) uses both algorithmic and expert system technology for logic design optimization of gate arrays and standard cells. Logic Consultant first performs two-level and multilevel logic minimization on an input design, then considers a variety of alternative cell and macrocell selections and combinations for more efficient logic design implementation. After selecting the optimal combination of cells and macrocells that meet the design's timing and area requirements, the tool generates an output schematic for viewing and editing on the existing CAE system. Logic Consultant accepts five types of inputs: an initial logic schematic expressed in specific library component symbols, simulated to verify functional correctness; a set of Boolean equations representing combinational logic specifications; a verified logic schematic expressed in generic primitives; and a logic schematic implemented in TTL components.

FLEXIBLE SYNTHESIS TOOL

NCR's Design Synthesis tool is based on technology developed by Silc Technologies Inc. (Burlington, Mass.). Silc's system, called SilcSyn, is not limited to any particular design type or style, which makes it very flexible for an *ASIC* environment. It supports combinational and sequential logic as well as synchronous and asynchronous design requirements. When integrated with an *ASIC* library and design tools, it gives the engineer design flexibility while significantly increasing productivity.

With Design Synthesis, once the micro-architectural description has been completed using the high-level language, it is then simulated at the conceptual level until the designer is satisfied with the design's functionality. The iteration loop at this point is very tight: the designer simply changes the description and resimulates. This is considerably more efficient than the conventional schematic capture, netlist extraction, logic simulation, and edit schematic loop.

When the designer is satisfied with design functionality, the description is automatically synthesized into structural resources such as registers, adders, and multiplexers. *NCR*'s Design Synthesis automatically minimizes these resources algorithmically (using mathematical procedures) and heuristically (using "rules of thumb") to help achieve an efficient implementation. At this point, the design is both library- and technologyindependent.

After the design has been synthesized and minimized into generic, technology-independent logic elements, it must be mapped into a specific library that has been built in the specific technology of the *ASIC* vendor. In Design Synthesis, this "builder" incorporates knowledge-based rules entered by *NCR* to guide it in optimizing the mapping for several *NCR* libraries and technologies, including the 2.0- and 1.5-micron *CMOS* cell libraries. Some of these "good design practice" rules were taken from *NCR*'s Design Advisor. Another round of minimization is included in the mapping process, including replacement of certain logic configurations with more complex cells to improve speed and density.

NCR's builder also allows the designer to guide the synthesis and mapping task by specifying maximum logic depths for all or part of the design. Other rules incorporated into *NCR*'s builder minimize delays, and balance the loading of critical signals by name or by type. The designer can also specify various special input and output pad configurations required for their design by name or by type.

After the design has been implemented in a given library, schematic creation files are automatically generated to interface with standard schematic capture tools. The interface partitions the schematic based on the design architecture, schematic sheet size, and density requirements specified by the user.

THIS FIFO CONTROLLER	PERFORMS	THE	FOLLOWING
FUNCTION:			

WHEN FIFO-REQUEST (F_REQ) IS ASSERTED. DATA IS READ FROM THE FIFO IF THE FIFO IS NOT EMPTY. THE READ RE-SPONSE IS TO SET FIFO-READ (F_READ) AND PULSE DATA-STROBE (D_STROBE). WHEN THE FIFO IS EMPTY THE FIFO-EMPTY (F_EMPTY) SIGNAL IS SET.

WHENEVER THE FIFO IS NOT FULL AND DATA-AVAILABLE (D_AVAIL) IS SET THE READING OF 10 ADDRESS LOCA-TIONS WITH A COMPANION PULSE ON FIFO-WRITE (F_WRITE).

CONDITIONING ON PHASE, ALLOWING FOR SET-UP, ETC. COULD BE HANDLED WITH PHASE VALID OUTPUT ASSER-TIONS, DELAYING THE PULSE OCCURANCES, ETC. SINCE THIS WAS A FICTITIOUS SPEC. THOSE DETAILS WERE NOT ADDRESSED.

Figure 1. A plain-English description of a FIFO controller.

SYNTHESIZING A FIFO CONTROLLER

To illustrate the logic synthesis process, a *FIFO* controller example is presented in Figure 1 where a plain-English description is given. This is followed by its functional description in high-level hardware description language (Figure 2). Finally, a synthesized schematic representation is made. First the design is partitioned into functional blocks; for example, write-loop, input, reset, read-loop, and output. Second, the logic synthesizer then automatically generates a schematic-level implementation of each of the functional blocks.

NCR's Design Synthesis can be used to create major blocks of a design. The blocks can then be combined with other functions including analog, high-level functions such as core microprocessors, or compiled functions such as memory, using traditional schematic capture. Blocks designed using synthesis can be combined with other functions and simulated as an entire chip or system to ensure compliance with functional specifications.

FIFO_CONTROL.DESIGN COPYRIGHT 1988 NCR CORPORATION (CHIP FIFO CONTROL (DECLARE ::: INPUT, OUTPUT PADS, VARIABLES (\$SET BIT_LEN 16) (WORD-LENGTH \$BIT_LEN) (\$SET BIT__DOUBLE (\$TIMES \$BIT__LEN 2)) (PAD *F_EMPTY* (INPUT F_EMPTY FLOW-THROUGH)) (PAD *F_FULL* (INPUT F_FULL FLOW-THROUGH)) (PAD *D_VALID* (INPUT D_VALID RESET-BY RST)) (PAD *CLOCK* (INPUT CLK-IN NOT-CLOCKED)) (CLOCK CLK INTERNAL-DATA-AVAILABLE RISING-EDGE SOURCE CLK-IN CHIP-DEFAULT) (PAD *RST* (INPUT RST-IN NOT-CLOCKED)) (RESET RST FLOW-THROUGH SOURCE RST-IN) (PAD *RD__SEL* WORD-LENGTH 4 (OUTPUT RD_SEL STORED RESET-BY RST)) (PAD *D_AVAIL* (OUTPUT D_AVAIL STORED RESET-BY RST)) (PAD *D_STROBE* (OUTPUT D_STROBE UNSTORED)) (PAD *F__READ* (OUTPUT F__READ UNSTORED)) (PAD *F_WRITE* (OUTPUT F_WRITE UNSTORED)) (PAD *F_REQ* (INPUT F_REQ FLOW-THROUGH))) ;;; END OF GLOBAL DECLARATION ;;; DCM READ LOOP F_REQUEST CAUSES F_READ/DATA STROBE PULSE UNLESS FIFO IS EMPTY, THEN IT WAITS UNTIL NOT EMPTY AND REQUEST ACTIVE WHEN FIFO GOES EMPTY, CLEAR DATA AVAILABLE (DCM READ_LOOP (DECLARE (RESET-BY RST)) (PAR (IF (AND (NOT F_EMPTY) F_REQ) (PAR (SET F_READ 1) (SET D_STROBE 1))) (IF F_EMPTY (SET D_AVAIL 0))) (SET D_STROBE 0));;;END OF DCM READ_LOOP ;;; DCM WRITE LOOP ::: WHEN DATA_VALID GOES HIGH, WRITE SEQUENCE ::: OF 10 BYTES TO FIFO UNLESS FIFO FULL ;;; WHEN COMPLETE, SET D_AVAIL HIGH (DCM WRITE_LOOP (DECLARE (RESET-BY RST)) (\$LOOP FOR ADDRESS FROM 0 TO 9 BY 1 DO (WHILE (OR F__FULL (NOT D__VALID)) (WAIT)) (PAR (SET RD_SEL \$ADDRESS) (SET F_WRITE 1)) (SET F_WRITE 0) (SET D_AVAIL 1)) ;;END OF DCM WRITE_LOOP) ::: END OF CHIP

Figure 2. A functional description—in a high-level hardware description language—for the FIFO controller.

BENEFITS OF LOGIC SYNTHESIS

Ultimately, the biggest benefit of logic synthesis is the separation of conceptual design from actual structural implementation. This separation helps protect the design investment and provide migration to new or alternate implementations.

The logic synthesis concept also promotes reuse of design blocks within multiple designs and technologies. Customers can design proprietary macro functions or "standard part" equivalents not available from an *ASIC* vendor.

Training and experience will help users become even more comfortable with logic synthesis as they gain an understanding of the physical implications of a particular high-level language description. With this comfort will come quantifiable increases in design productivity, a higher percentage of first-pass success rates, and significantly reduced *ASIC* time-to-market schedules, along with intangible benefits of unprecedented levels of creative design freedom.

APPLYING REASONING-BASED KNOWLEDGE

We have seen how rule-based knowledge and embedded-function-based knowledge can be combined to perform logic synthesis in the *ASIC* environment. We will now consider how reasoning-based knowledge, accumulated through years of design experience and knowledge capture, is inferentially applied to provide design advice.

In discussing ASIC design success, reference is often made to "first pass success." Many CAE/CAD tool suites provided by semicustom *IC* vendors provide very high first-pass success rates "as designed." This means that the tools themselves accurately predict device function and performance, and rarely introduce errors. There is, however, still opportunity for the design engineer to introduce errors through misinterpretation, or misuse of the tools and their reports. It is also possible to have marginal areas in the design that the designer's CAE/CAD tool methodology does not detect, or for the engineer to use design practices that increase the likelihood of problems. Design advice tools address such pitfalls so that first-pass success is redefined as an ASIC that works as intended in the target system. This bottom line criterion is the key to the ultimate successful application of semicustom IC technology.

There are relatively few design advice tools on the market today, so it is difficult to make generalizations about their capabilities. However, in general, they automate design review, offer new opportunities to improve designs, and help solve problems that other *CAD* tools are not designed to detect.

Some design advice/optimization tools provide a framework for developing a design advice database, while others actually provide the knowledge-base itself. For example, Knowledge Consultant from Trimeter Technology Corp. (Pittsburgh, Pa.) takes the first approach, allowing you to incorporate your own design expertise into a knowledge base used by Trimeter's Logic Consultant for logic design optimization. To build or enhance an ASIC logic-design knowledge-base, Knowledge Consultant is used to draw an "antecedent circuit." This is a pattern of cells and macrocells that commonly appear in logic designs for the chip, using foundryspecific library component symbols. The designer then draws a "consequent circuit," a less obvious but faster or denser implementation of the antecedent circuit. Knowledge Consultant is then used to define any additional selection criteria that aid in determining the applicability of substituting the consequent circuit for the antecedent circuit. While Knowledge Consultant swaps cells based upon "captured knowledge," and therefore improves even pre-existing designs, it does not reason inferentially.

vLSI Technology Inc.'s Technology Design Assistant addresses the partitioning of logic and functions among *ASIC* chips. It applies algorithmic rules for optimum partitioning for power consumption, and aids the user in selecting between compiled cell, standard cell, or gate array methodologies. Information on packaging alternatives is provided. The design advice is based upon algorithmic calculation, not inferencing.

NCR's Design Advisor provides a comprehensive knowledge base together with inferencing capability. It combines an artificial-intelligence inference engine with knowledge derived from extensive *NCR* design experience and textbook knowledge. The resulting tool can be used by both junior-level and sophisticated circuit designers to optimize designs, avoid costly errors, simplify the design process, and broaden the designer's own knowledge. In many cases it may contribute to a saving of weeks or months in the design cycle.

The NCR Design Advisor can be used to perform regular automated design reviews, and can provide expert design advice at any point in the design process. The automation provided by the system also assists in managing the large number of details in creating highly complex designs, ensures all accepted design advice is applied consistently throughout the design, and allows "what-if" scenarios to be pursued and analyzed. Input to the system consists of a circuit description, which can be accessed at any point when an important portion of a design has been completed. This allows the designer to partition the design and apply the Design Advisor to either specific modules or the entire design.

Unlike traditional *CAD* tools that apply algorithmic solutions to numeric data, the Design Advisor behaves more like a human expert, performing heuristic processing on symbolic information. The system combines a database of design knowledge with an underlying multiparadigm reasoning system that allows it to analyze and recommend action related to generally accepted logic design principles, testability, timing analysis, cost effectiveness, and buffering and system interface requirements.

The inference engine used in the Design Advisor is based on the *PROTEUS* hybrid expert-system development tool created by the Microelectronics and Computer Technology Corp. (*MCC*) of Austin, Texas, a private-sector cooperative research venture of which *NCR* is a member. PROTEUS employs a logic-based truth maintenance system combined with a sophisticated framework for knowledge representation. This results in a powerful inference engine, on top of which *NCR* has built an extensive knowledge base. The knowledge base is derived from the collective human experience of circuit designers at both *NCR* and some of the company's customers. The *NCR* Design Advisor is the first commercial application of the *MCC PROTEUS* technology.

The Design Advisor knowledge base currently encompasses the domains of chip timing, synchronicity, testability, performance and *I/O*. in addition to other areas of overall design quality and manufacturability. A hierarchy of design attributes serves as a framework for the system's recommendations. It was compiled by analyzing typical mistakes that had caused unsatisfactory silicon prototypes in designs done by both junior and expert designers over the past several years. Additionally, *NCR* has incorporated knowledge related to the actual thought process of typical design engineers, as learned from a lengthy interview process. Each participant was asked to think aloud so that the logic train and approach could be recorded. From this information rules were formulated and critiqued by experts.

Based on *NCR* studies, almost two-thirds of the design problems generally found at the prototype stage will be detected by Design Advisor while they can still be easily remedied. As much as 70 percent of all timing-related problems were detected in the studies, and this often subtle area accounted for the majority of the observed problems missed by design engineers.

Design Advisor analyzes the design within the context of the knowledge base. When it identifies an error or the opportunity for a more optimal design implementation, it provides an error message and general guidelines for solving the problem. Also, unlike standard design rule checkers that simply flag errors, it features an explanation utility that shows the train of logic and the design occurrences that led to the suggestion. This allows the designer to learn from his errors and reduces the likelihood of repetition.

Design Advisor also checks the design for compliance with fundamental, successful design techniques, including rules for maintaining synchronous circuitry, and warns against hazardous timing practices. Additionally, suggestions for simple ways to minimize die size help the designer keep costs in line for when the product is in high-volume production.

CONTRADICTING AND OPPOSING ADVICE

The designer may not agree with the advice given. Advice delivered by Design Advisor can be rebutted in two ways. It can either be "contradicted" or "opposed."

The advice might be contradicted by the user because he does not agree with the reasoning that led to the advice that was delivered. The capability to contradict the system enables the designer to reason with the system regarding possible new information that may not have been initially available to the system. The system will reason with the designer—to the extent of the depth of knowledge relating to the rule that the system has tried to impose. The additional data, or knowledge, given by the designer during this dialog usually resolves the contradiction and adjusts the state of the knowledge base for that session. In the event that the designer himself has knowledge that the system does not have, and he is unable to resolve the contradiction logically by opposing the system, then the advice may simply be opposed by the user. Under this condition, the system accepts that the question has been resolved by information that was not explicitly available.

The system prompts the user to document reasons for opposing or contradicting the advice. The designer is expected to provide an explanation for his reasoning. This serves as valuable documentation to other designers using the system on the same design. Records of contradicted and opposed advice may also be brought to the attention of the expert team members who conduct the final design review. This offers two potential benefits. It will help the team to understand what problems were handled by the designer. It will also bring to the committee's attention advice that was delivered inappropriately by the system, or areas of the system's knowledge base, that can be effectively extended by applying this designer's method of dealing with the problem.

TESTING AND UPDATING THE KNOWLEDGE BASE

A tool that gives advice is no better than the rules it attempts to enforce. Its knowledge base must be tested and updated. Presently, the testing methodology for rules within an expert system is the subject of considerable research in artificial intelligence. Clear methodologies have not been established that are applicable to all cases. The testing activities for Design Advisor include some similarities to the testing that goes on for much conventional software. Namely, the system is run on cases designed so that every rule within the system will "fire," i.e. every element of knowledge will become active. Additional examples are generated to verify the proper interaction of one element of knowledge with another.

Who should update the knowledge base? Machine learning in artificial intelligence is another area of active, ongoing basic research. However, many of the problems involved with commercially fielding such systems have not been addressed. The Design Advisor learns through a controlled growth of the knowledge base in the hands of the developers at *NCR*. This assures that the knowledge is verified and relevant, and maintains consistency across all installations of the tool. The growth of the knowledge base does include information derived from customer experience.

Knowledge-based tools have finally arrived. They are available across a wide range of functions, from frontend to back-end, from circuit partitioning, to logic synthesis, to design advisement. Provided by a growing number of suppliers they will continue to impact *ASIC* design by improving engineering productivity, shortening time-to-market schedules, and lowering costs. They will free the engineer from drudgery to do what he does best: design creatively.

17 MIPS. 210K transistors. And one chance to get it right.

出版出了

To build the world's highest performance RISC microprocessor, AMD turned to Mentor Graphics IC layout tools.

It was a bold, ambitious project: build the fastest 32-bit μ P in existence. One delivering a 5X to 7X performance improvement over existing 32-bit processors.

So Advanced Micro Devices turned to Mentor Graphics' Chip Station[®] to get the Am 29000 into silicon in a single iteration. Why? Because Chip Station provided the most advanced capabilities available, yet could also emulate AMD's existing tools.

Sharpen your competitive edge.

Look inside Chip Station and you'll find features like advanced traversal capabilities that make moves through the hierarchy as simple as point and click. And polygon-based editing that prevents problems like self-intersecting data. Also, programmable stroke recognition, which immediately converts cursor movements into commands. And now, the industry's fastest VLSI color plotting solution.

Complete compatibility with your existing environment.

Chip Station's programmable user interface shortens your learning curve by emulating the commands of your current system. At the same time, Mentor Graphics helps you adapt to the rich feature set of Chip Station and graduate to a truly advanced IC layout methodology.

Structured Chip Design lets you represent cells symbolically so the organization and management of large designs is greatly simplified. And REMEDI™ expands DRACULA II™ LVS checks to include graphic correlation of errors in both schematics and layouts. AMD's new RISC-based, 32-bit Am 29000 microprocessor operates at a 25 MHz clock rate with a 40 ns instruction cycle time. It can bit a peak execution rate of 25 MIPS, with a sustained performance of 17 MIPS.

Mentor Graphics' IC design and layout tools have already earned a solid reputation for productivity on large, complex VLSI projects. As a result, we're the world's fastest growing supplier of IC layout systems.

It's all part of a vision unique to

Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll-free for an overview brochure and the number of your nearest sales office. **1-800-547-7390**

(in Oregon call 284-7357).

DRACULA II is a trademark of Cadence.

Asia Pacific Headquarters, Tokyo, Japan: Phone: 81-3-505-4800, Telex: 2427612 Middle East, Far East, Asia, South America, Mentor Graphics Corporation, International Department, Beaverton, Oregon, U.S.A.: Phone: 503-626-7000, Telex: 160577 Mentor Graphics Corporation, European Headquarters, Velizy, France: Phone: 33-1-39-46-9604, Telex: 696805 Mentor Graphics Corporation, North American Headquarters, Beaverton, Oregon: Phone: 503-626-7000, Telex: 160577.

Yourideas. Our e

Directory of CAE Systems

	System overview	Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries
ACCEL Technologies Inc. 7358 Trade St. San Diego, Calif. 92121	Tango \$495–\$3.5k IBM-PC	None	Tango-Schematic	N/s	Digital and analog
Ray Schnorr Vice President, Marketing (619) 695-2000					
Altera Corp. 3525 Monroe St. P.O. Box 58163 Santa Clara, Calif. 95052 E. Patrick Ellington Director of Marketing (408) 984-2800	PLDS - Encore \$7995 Programmable logic development system for Altera eras- able programmable logic devices PC AT, PS/2 (50–80), (MS-DOS)	Software con- trolled device programming card and master programming unit; device pro- gramming adapters	Hierarchical graph- ics editor Max- + Plus; LogiCaps	ASMILE state machine de- scription lan- guage; Bool- ean equations; truth table entry	TTL; Altera Macro- Function libraries
Analog Design Tools Inc. 1080 East Arques Ave. Sunnyvale, Calif. 94086 Fred James Director of Corporate Communications (408) 737-7300	Analog Workbench \$14.5k, software only; \$24k-\$62k, turnkey. Platforms: Sun 3 and 4 (UNIX, NFS); Apollo (AEGIS, Domain); (through Hewlett-Reakard) HP9000 (HP/UX): DEC VAX- station (VMS); IBM RT (AIX); also proprietary AnalogLink (RS-232) for all systems PC Workbench \$12k software, Opus coprocessor board (UNIX) and mouse. Platforms: IBM PC AT; Compaq 286, 386	None	Analog Workbench Circuit Editor; PC Workbench Circuit Editor	None	Basic device library: 50 (included with PC Workbench); standard device li- brary: 500; general device library: 1800 + as of fall 1988
Aptos Systems Corp. 5274 Scotts Valley Dr. Scotts Valley, Calif. 95066 John Roth Product Manager (408) 438-2199	RGRAPH \$5.2k PC AT with 1024 × 768 display (includes graphics card); schematic and PCB layout CRITERION I \$495, software only \$oftware for PC AT with 640 × 356 display	None	RGRAPH schemat- ic capture; CRITE- RION I schematic capture	None	TTL; CMOS; ECL; microprocessors; surface-mount; analog
CADAM Inc. 1935 N. Buena Vista St. Burbank, Calif. 91504 Alan Cohen Marketing Manager for CADAM Electrical Products (818) 841-9470	Interactive Design System \$65k—\$170k, software only IBM 4331 and up (VM/CMS, MVS, or VS1) Micro CADAM \$8k, software only Micro CADAM Cornerstone \$2995 software only PC AT (MS-DOS)	None	CADEX	None	2000 SSI/MSI TTL and ECL; 700 memory parts; 8000 schematic and PCB design symbols
Cadence Design Systems Inc. 555 River Oaks Pkwy. San Jose, Calif. 95134 L. Siegel Manager, Public Relations (408) 943-1234	CAE/CAT Tools \$13k, software only Apollo, Sun, DEC, UNIX, Ethernet, TCP/IP	None	Schematic capture	None	Standard logic gates for IC design
CAD Group Inc. 3911 Portola Dr. Santa Cruz, Calif. 95062 Gena Haas Marketing Communications Manager (408) 475-5800	SALT Software only: \$3.5k, all DOS operating systems; \$15k workstations; \$40k-\$60k, mainframes; \$80k-120k, super- mini and supercomputers PC/XT, AT (DOS); MicroVAX to VAX 8800 (VMS, UNIX); Cyber and Cray (NOS, COS, UNICOS, CTSS); Sun (UNIX); Apollo (AEGIS, DOMAIN IX)	IBM AT accelera- tor package in- cludes both hard- ware and software 5-MIPs performance	Interfaces to Scien- tific Calculations; Case Technology; OrCAD; CAECO	SALT Hard- ware Descrip- tion Language (SHDL, an en- hanced regis- ter-transfer language)	1500 SSI/MSI TTL and ECL; 72 LSI and VLSI; 100 + generic behavioral models
Cadnetix Corp. 5757 Central Ave. Boulder, Colo. 80302 Steve Sherwood Marketing Communications Manager (303) 444-8075	CDX-3000 PC schematic entry system \$4950 PC ATs and compatibles (standard DOS, Ethernet, PC NFS), optical mouse CDX-95xx and CDX-96xx Capture and Management Workstations \$14.9k Sun 3/50 and 3/60 (UNIX, Ethernet TCP/IP, NFS) CDX-95xx and CDX-96xx Digital and/or Analog Design Workstations \$32.9k Sun 3/50 and 3/60 (UNIX, Ethernet TCP/IP, NFS) CDX-81xx Design Capture and Management, Digital Design, Analog Design Environments \$10.8k	CATS dynamic hardware model- er (network re- source for simu- lation and physical modeling)	Hierarchical sche- matic capture	CADAT behav- ioral descrip- tion language (BDL)	2000 SSI/MSI TTL and ECL; 100 PLDs; 400 miscella- neous (primitives, CMOS); 1000 ana- log device models; hardware models: ASIC, ECL, TTL, CMOS, advanced functions

Design analysis		Design transfer		Additional capabilities		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments	
Susie simulator \$995	Susie/Tim simulator \$2490 Timing to 101 ns	ASCII, Tango, P- CAD, Calay, Racal, Applicon	N/s	Tango-PCB (\$595) Tango Route (\$495)	N/s	
Max + Plus Interactive Functional Simulator; Waveform Entry for specification of simulation VECTORS; Virtual Logic Analyzer to specify breakpoints and display output waveforms	Critical Path delay predictor	Altera design format	None	None	Design tools for MicroChannel interface; translation and optimization of designs with knowledge-based processing engine.	
SimuKit Simulator integration kit for access to user's own in-house simulators SPICE 2G.6 SPICE PLUS (enhanced SPICE 3) Circuit simulation, including time- and frequency- domain analysis SABER Behavioral Simulator mwSPICE Microwave Simulator	None	ASCII format	Not applicable	None	Parameter entry with subcircuits and a symbol editor; function generator and oscilloscope; frequency sweeper and network analyzer; dc meter; spectrum analyzer; statistical analysis; parametric plotting; power design module; stress analysis; IC design, power design, circuit design, and test development tool kits.	
PSPICE (MicroSim) Circuit simulator	None	gdsii; scicards; Tegas; silos; Ilogs; logi3; Spice	Not applicable	ICD-ONE, RGRAPH, and CRITERION II IC and PCB layout tools	None	
CADAM CADAT (enhanced CADAT) Switch-level, gate, fault, and behavioral simulator CATS (HHB Systems) Physical model simulation	None	CADAM; CADAT	None	Interactive Prance Cadam PCB layout	PCB thermal analysis; IPC350B output; 3D and solid model interface	
SILOS and HILO Logic and fault simulator SAGE Circuit simulator SCOAP Testability analyzer SPICE and HSPICE Circuit simulator interface	Timing analysis (Cadence)	EDIF	Sentry; GenRad; Advantest	IC layout design, automatic IC layout, IC floorplanning; design verification (DRC, ERC, LVS)	Module compilation; generalized simulation/test language; electrical rule checking; open simulation system	
SALT Switch, gate/functional, and behavioral simulator; concurrent timing verification/analysis; analog/digital mixed mode SHDL Behavioral model simulator	In SALT; dynamic timing analysis	SALT; SCICARDS; standard ASCII format	Sentry	None	Critical path analysis; transfers from other simulators to SALT; custom models; many interactive features	
CADAT Logic, switch-level, worst-case, behavioral, and fault simulator SABER Analog circuit simulation	CADAT: nominal and worst-case simulation incorporating set-up hold, pulse width, spike and race condition analysis	SPICE; CADAT; TEGAS; SCICARDS; EDIF 2.0; Verilog	Zehntel; GenRad; Factron; Marconi; HP	CDX-56000SP PCB layout stations; CDX- 75000XP Route Engine III	User has access to all network resources	

	System overview	Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries
Control Data Corp. 8100 34 Ave. S. PO Box 0 Minneapolis, Minn. 55440 R.L. Biggs Marketing Manager (612) 853-5255	MIDAS \$600k +, turnkey; \$75k +, software only CDC Cyber 180 (NOS, NOS/VE, HASP, X.25, Kermit)	Interface to Zy- cad logic and fault accelerators	Daisy; Mentor	N.2	Gate array families and standard glue logic
	Electronics Designer \$6k, software only PC/XT or AT with Hercules or EGA graphics boards; VAX; IBM; Cyber 800 or Cyber 205; any LAN	None	Electronics Designer er (Case Technology)	VERILOG	2000 MIL-SPEC- 1000 parts, (includ- ing TTL, CMOS, ECL, and micro- processors)
Daisy Systems Corp. 700 Middlefield Rd. PO Box 7006 Mountain View, Calif. 94039 Rich Dickerson Director of Corporate Communications (415) 960-6674	Advansys Series \$24k-\$89k Sun 386i; UNIX; NFS; Ethernet; TCP/IP; X Window System	MegaLOGICIAN, Personal Mega- LOGICIAN, Giga- LOGICIAN simu- lation accelerators; PMX (Physical Modeling Extension)	ACE	Daisy Behav- ioral Language (DABL)	4400 digital compo- nents: TTL, CMOS, ECL, memory, PLD, microprocessor; Mil-Spec library; 175 vendor-sup- plied ASIC libraries, 1215 analog devices
Data I/O Corp. FutureNet Division 10525 Willows Rd. NE Redmond, Wash. 98052 Michael-Radovich Public Relations Manager Data I/O Corp. (206) 881-6444	FutureNet FutureDesigner \$7.9k Mixed-mode design entry and logic synthesis: Sun; PC AT, PS/2 FutureNet DASH Schematic Designer \$3850 Schematic capture: Sun; PC AT, PS/2 ABEL \$1745 PLD design tool: Sun, PC, PS/2, VAX (VMS and UNIX), Apollo	Interfaces to CATS hardware modeler (HHB Systems), Zy- cad/SSC accelerators	DASH; schematic translators for Ana- log Design Tools, Computervision, Mentor, CBDS	ABEL/Gates	2300 + symbols, in- cluding TTL, ECL, CMOS, Intel, Motor- ola, discrete; librar- ies for 40 + ASIC vendors also are available
Electronics Software Products 18013 Sky Park Circle Irvine, Calif. 92714 Behrooz Shariati Western Technical Manager (714) 261-1777	USPICE; PC-USPICE CADAT LOGNET Software only; contact company for costs VAX (VMS, UNIX); IBM (MVS); Sun (UNIX); Apollo (AEGIS)	None	LOGNET (VLSI Automation)	None	7400/5400 TTL; MECL; 10K
EPIC Design Technology Inc. 2900 Lakeside Dr. Suite 205 Santa Clara, Calif. 95050 David Squires Director of Technical Marketing (408) 988-2944	TIMEMILL \$5K-\$20K, software only Sun; Apollo (UNIX); MicroVAX and VAX 8600 (Ultrix, VMS); Valid SCALDStar; PC-386; HP workstation PATHMILL \$4k-\$15k, software only Sun; Apollo (UNIX); MicroVAX and VAX 8600 (Ultrix, VMS); Valid SCALDStar; PC-386; HP workstation	None	GED (Valid Logic Systems) ECS (CAD/CAM Group)	C and TIME- MILL HDL (a superset of C)	7400 HCMOS, ALS, AS, FAST; LSI Logic 7k: 100; Raytheon ECL: 100; generic RAM, ROM, PLA
	VERIMILL \$30k, software only Sun; Apollo (UNIX)		CapFast (Phase Three Logic); NET- ED (Mentor); netlist interfaces to HSPICE, SILOS, VERILOG, TEGAS, HILO		

Design analysis		Design tra	ansfer	Additional capabilities		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments	
ASSIST Logic and behavioral simulator (including timing) BEV (Boolean evaluator) Zero-delay logic and behavioral simulator AFS (automatic fault simulator) Fault simulation and test vector gen. STAFAN (Statistical Fault Analysis) Probabilistic fault detection	PATH-TRACE	SYSCAP II.5; SPICE 2G6	Neutral format with post- processors for Sentry, Teradyne, Takeda-Raiken, and GenRad	LLS semicustom IC layout	Model generation; testability metric; routability metric; integrated database with configuration management; testability analysis tools supporting built-in test	
SALT (CAD Group) Switch- and gate-level simulator, dynamic timing analysis VERILOG (Gateway Design Automation) Behavioral simulator ASPEC Circuit simulator PREDICTOR (MSI) Reliability analysis (MIL-SPEC-217)	SCALD (with Case)	Netlist and drawing transfer to Mentor, and Prime Computervision	Fairchild Sentry; GenRad; others	PCB layout editor with links to host-based Vectron for automatic placement and routing	Job creation language ("JCL") generators; auto- dial and log-in; and auto- submit to network (Cyber 205, Cray); all analysis tools also on in-house host	
DSPICE (based on Berkeley SPICE) Circuit simulator Daisy Logic Simulator (DLS) Switch/gate/functional/physical modeling all integrated in one logic simulator MDLS (accelerated version of DLS) Megafault (concurrent) Fault simulation accelerator A/D Lab Analog-digital design environment	Daisy Timing Verifier (DTV)	TEGAS (Calma)	Sentry Series 7; Factron 800 series; GenRad GR160, GR180	Chipmaster full custom editor; Gatemaster automatic gate array placement and routing; Boardmaster PCB layout	PLDMaster with ABEL or LOG/IC compilers for PLD design and simulation; FrameMaker technical documentation software	
Interface to: SPICE, CADAT, Analog Design Tools, TEGAS	None	ABEL; Applicon; CADAM; Computer- vision; EDIF; Racal- Redac; SCICARDS; SPICE; TEGAS; Xilinx; over 50 others	Sentry; GenRad; IMS; Tektronix; over 10 others; PLDtest automatic test vectors for PLDs	Interfaces to CADAM, CBDS Applicon, Computervision, REDAC, Xilinx	PLDtest (automatic test- vector generation)	
USPICE, PC-USPICE Circuit Simulator CADAT (HHB Systems) Logic simulator, fault simulator, behavioral simulator, timing, worst-case	None	None	Sentry; GenRad	Edge IC graphics layout (NCA)	Wirewrap support	
TIMEMILL Mixed level simulator - switch (including layout extracted capacitance), gate, and functional	TIMEMILL: dynamic timing verifier for set- up, hold, edge-to- edge and pulse width verification; PATHMILL: mixed level critical path analyzer - switch (including layout extracted capacitance), gate, and functional; VERIMILL: static timing verifier, allows multiple clock cycles, cycle sharing and min-max analysis	N/S	Sentry	None	Netlist-compatible across all tools	

	System overview	Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries
Gateway Design Automation Corp. 2 Lowell Research Center Dr. Lowell, Mass. 01852 Pete Johnson Marketing Manager (508) 458-1900	VERILOG \$25k VERILOG-XL \$35k VERIFAULT-XL \$35k Software only VAX and MicroVAX (VMS); IBM (VM/CMS); Sun (UNIX); Apollo (AEGIS, UNIX); MIPS (UNIX)	None	Netlist interfaces to Daisy; Mentor; TDL; Valid; NDL; others supported by sche- matic vendor	VERILOG C- based behav- ioral language; VHDL	7400/5400 TTL; various ASIC libraries
Harris Semiconductor Custom IC Division P.O. Box 883 Melbourne, Fla. 32901 John Reeser Manager, Business Development (407) 729-5390	HARRIS ARCHITECT CMOS Digital Design Package Bipolar Analog Design Package CMOS Analog Design Package Cadence Design Framework Sun now, other UNIX workstations planned; software only or turnkey	Interface to CA- DAT accelerator	EDIF netlist, Daisy and Mentor interface schematics	CADAT BDL; VHDL being developed	HSC1000 library; HSC1000RH Rad Hard Library; 200 primitive and ma- crocell functions, RAM and ROM module compilers
GenRad Inc. Design Automation Products 510 Cottonwood Dr. Milpitas, Calif. 95035 Peter Denyer Marketing Manager (408) 432-1000	System HILO Logic Simulation Toolkit Software from approximately \$15k upwards depending on platform Computers supported include: VAX (VMS, Ultrix, or BSD 4.2); Sun (UNIX); Apolio (Aegis); HP-9000 (Unix); Inter- Pro (UNIX); IBM - CMS (mainframe), AUX (RT-PC); Har- ris (UNIX); Cray (UNICOS)	HICHIP (Physical device modeling system); Interface to ZyCAD accel- erators (via ZyCAD)	Interfaces available from most schemat- ic capture systems including Cadence, Case Technology, Computervision, Daisy, FutureNet, Hewlett-Packard, IBM, Intergraph, Mentor, P-CAD, Phase Three Logic, Racal-Redac, Silvar Lisco, Valid Logic, Viewlogic	GHDL (Gen- Rad hardware description language)	Over 5000 TTL, ECL, CMOS, and VLSI components; over 20 semicus- tom libraries from various manufactur- ers; HIGEN ASIC li- brary modeling tool; HI-LIB - PLD (PLD model characteriza- tion tool)
Hewlett-Packard Co. 19310 Pruneridge Ave. Building 49AV Cupertino, Calif. 95014 Customer Information Center (800) 752-0900	HP Electronic Design System Design capture, \$8200-\$17,850 (hw + sw) Design verification, \$15k-\$41k (hw + sw) HP 9000 series 300 workstations (HP-UX) and network- ing services	Interface to HI- CHIP hardware modeling system (GenRad)	Design Capture System (HP's Salt Lake City Operation)	Functional Modeling Lan- guage (FML— GenRad) and harware de- scription lan- guage (HDL for HICHIP)	>3000 digital parts: TTL, MOS, ECL, microprocessors, PLDs; 3500 analog symbols
HHB Systems 1000 Wyckoff Ave. Mahwah, N.J. 07430 Todd Westerhoff Marketing Manager (201) 848-8000	CADAT \$3K-\$100k +, software only VAX (UNIX, VMS); Sun (UNIX, NFS); Apollo (DOMAIN IX); IBM (MVS, DOS); Masscomp (UNIX); HP9000/series 300 (UNIX); Ethernet TCP/IP INTELLIGEN automated test generation Up to \$190k, software only Sun (UNIX, NFS); VAX (VMS, ULTRIX, Ethernet TCP/IP)	CATS logic/con- current fault ac- celeration sys- tems; OEM of Mach 1000 accel- erator (ZyCAD); CATS hardware modeler models 6000, 8000, 10,000	Interfaces to Men- tor; EDIF; TEGAS; FutureNet; Case Technology; PCAD; Cadnetix; Zuken; Computervision; Racal-Redac	Behavioral De- scription Lan- guage (BDL)	2500 SSI/MSI TTL and ECL; LSI Log- ic, SMC, VLSI Technology cell li- braries; Fairchild, NEC gate arrays; Quadtree VLSI li- braries; all Future Net libraries; Gould
Integrated Silicon Design Pty Ltd. 230 North Terrace Adelaide SA 5000 Australia A.R. Grasso Technical Manager + 61-8-223 5802	PHASE ONE PHASE TWO PHASE THREE Prices not specified VAX (VMS, UNIX), MicroVAX (VMS, Ultrix); Apollo 3000/4000 (DOMAIN IX); Sun 3/4 (UNIX); PC AT with EGA (MS-DOS, XENIX)	None	None	Integrated sys- tem specifica- tion language, used in the system simula- tor	None

Design analysis		Design transfer		Additional capabilities		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments	
VERILOG Behavioral, functional, gate, and switch simulator VERILOG-XL Accelerated gate and switch simulator (plus all VERILOG capability) VERIFAULT-XL Concurrent and distributed fault simulation	None	None specified	Through Test Systems Stra- tegies	None	TESTSCAN (ATPG and fault simulation for scan design systems); BITGRADE (fault simulation for BIST designs); VHDL support; remote graphics	
SLICE Circuit simulator CADAT (HHB Systems) Switch, gate, behavioral simulator TA (Cadence) Timing analyzer CADAT (HHB Systems) Fault and logic simulator CADAT (HHB Systems) Hardware modeler	TA timing analyzer provided by Cadence (worst-case delays, timing diagrams for selected nets may be displayed, auto-model generation is provided)	EDIF input, GDS II output	Sentry	IC layout from Cadence accepts Cadence and HDL inputs; capable of adding custom cells and macroblocks to design; generates routing parasitics	Automatic sizing of bipolar transistors; logic optimization for area or speed; synthesis of logic circuits from Boolean expressions; schematic creation from netlist; VGH200RH Rad Hard gate array and Rad Hard library from Silicon Compiler Systems	
HISIM Design verification simulator HITIME Dynamic timing analysis software HIFAULT High-performance fault simulation HITEST Computer-assisted test generation suite	Integral in HISIM Integral in HITIME Integral in HIFAULT	ASCII text files	To GenRad board test systems via HIPOST; to other test systems Strategies Inc. (TSSI)	None	EDIF 2.0 netlist reader; VHDL support	
Analog Workbench (Analog Design Tools) Circuit simulation, virtual instruments, and analysis HILO-3 Logic Simulator (GenRad) Behavioral, functional, gate, and switch simulation; logic and fault simulator; HICHIP physical modeler	In HILO-3	HP-generic; user- definable; SCICARDS; Racal- Redac RINF; Calay; Computervision, EDIF, HP printed circuit design system	HP 82000 IC verification system; HP3065 board testers; HP16500A logic analysis system	Graphics editors, IC layout analysis, IC symbolic layout and compaction (VTI and SDA Systems); automatic IC layout (VTI); CR 2000 hybrid IC design software (Zuken): Printed Circuit Design System (Hewlett- Packard)	Bundled design database language provides database access; bidirectional link with HP PLD design system; software link to transfer HP 64000 data to HILO-3 memory and micro- processor models	
CADAT 7.0 Behavioral, functional, gate, and switch simulator; hardware modeling; concurrent fault simulator; simulation acceleration	Worst-case timing simulation through CADAT	Mentor; EDIF; TEGAS; FutureNet; Case; PCAD; Cadnetix; Zuken	Standard interface to CADAT binary databases; Factron; ITG/CADIF; IMS	None	PALGEN PAL model generation; INTELLIGEN testability analysis and test generation for sequential scan or nonscan designs	
PROBE Circuit simulator SYSMOD Functional simulator using specification language	SYSMOD system simulation and timing analysis	SPICE; SIM (Berkeley); ISDL (internal format)	None	PLAN IC geometric editor; SYSGEN symbolic layout; SYMEDIT symbolic layout; SYSPLAN floorplanner; CHECK, NET, ELEC, SYSCHECK layout analysis	None	

	System overview	Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries
Intergraph Corp. 1 Madison Industrial Pk. Huntsville, Ala. 35805 Beverly Staley Electronics Marketing Engineer (205) 772-2000	Design Engineer \$21k +, turnkey Intergraph Clipper-based standalone workstation (UNIX V 5.3.1; XNS/Ethernet TCP/IP) tied to a VAX host Design Engineer PC \$3k, software only IBM/AT or compatible (PC-DOS 3.3)	Design Engineer interface to Zy- CAD's Mach 1000 hardware accelerator and IKOS 800 or 1900 hardware simulator and GenRad's HI- CHIP physical modeler	Design Engineer Design Engineer PC	Design Engineer: IKOS' TDL and system HILO HDL	Design Engineer and Design Engi- neer PC 4000 TTL, ECL, CMOS, memory, microprocessors, peripherals, dis- crete devices, ma- jor ASIC vendor libraries
LSI Logic Corp. 1551 McCarthy Blvd. Milpitas, Calif. 95035 Van Lewing Director of Software Marketing (408) 433-7204	System Integrator \$75k+, software only Sun 3, Sun 4 (UNIX, NFS); IBM 30xx (VM/CMS-compati- ble); VAX, MicroVAX (VMS, DECnet); Apollo 3000, DN570, DN580, 4000 (DOMAIN IX)	Interfaces to LSI Logic accelera- tors; ZyCAD LE and FE accelerators	LSED	Network de- scription lan- guage (NDL); hierarchical network de- scription lan- guage (HNDL); Behavioral Specification Language (BSL)	Gate-model librar- ies; behavioral li- braries in development
	Silicon Integrator From \$75k, software only Sun 3, Sun 4 (UNIX); IBM 30xx (VM/CMS-compatible); VAX, MicroVAX (VMS); Apollo 3000 DN570, DN580, 4000 (DOMAIN IX); vendor-supplied networks	Interfaces to LSI Logic accelera- tors (ACCELSI) for logic and/or fault simulation, ZyCAD LE and FE accelerators	LSED		
	Sun 3 (UNIX); vendor-supplied networks				
Matra Design Semiconductor 2895 Northwestern Pkwy. Santa Clara, Calif. 95051 Pradip Madan Vice President of Marketing and Sales (408) 986-9000	GATEAID PLUS/PC \$945, software only Compaq 386, PC/XT, AT; Telenet X.25 connection to MDS host	None	DRAFT (adapted from OrCAD)	Boolean equa- tion language and translator	Standard cells: TTL, CMOS SSI/MSI; PLDs
	GATEAID II gate array design system \$25k + , software only MicroVAX, VAX (VMS)	None	GED graphics editor	FML (GenRad)	Standard cells: TTL, CMOS SSI/MSI; bit-slice LSI; RAM blocks; multiplier; UART
	LSIntegrator (Silicon Compiler Systems Corp.) Price not specified Sun (UNIX)	None	LED graphics editor	L-Language	Standard cells: ALU; sequencer; RAM; datapath elements
Mentor Graphics Corp. 8500 S.W. Creekside Place Beaverton, Ore. 97005 Mohan Nair Marketing Director (503) 626-7000	Entry Station \$1995, software only PC/XT, AT Capture Station \$12.5k, turnkey Design Station \$23.7k, turnkey Idea Station \$33.7k, turnkey Apollo (AEGIS, UNIX; Domain, Ethernet TCP/IP, HASP, 3270, X.25)	HML hardware modeling system; Compute Engine accelerator; XSIM interface to ZyCAD	NETED/SYMED	Behavioral lan- guage models (extension of C and Pascal); VHDL product available first half 1989	1239 TTL; 123 ECL; 571 CMOS, 70 PLDs; 146 memory; 1800 ana- log; 85 HML; 109 generic library

Design analysis		Design tra	ansfer	Additional capabilities		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments	
Design Engineer CSPICE Analog circuit simulator with virtual test instrument interface and pole zero, statistical, worst-case, Monte Carlo, time domain, frequency domain, DC, temperature, noise, distortion, spectrum, and sensitivity analysis SYSTEM HILO HISIM Fault-free simulator HITME Dynamic timing analysis simulator HIFAULT Fault simulator HICHIP Hardware modeler HITEST Test vector generator KOS ASIC logic analyzer, logic simulation and fault simulation	Design Engineer System HILO - HITIME	Design Engineer HILO; user- reformatable ASCII netlist; Mitsubishi; SMOS and EDIF 2 0 0; FutureNet; Design Engineer PC CSPICE; HILO-3, Intergraph, Xilinx	Design Engineer and Design Engineer PC HIPOST (GenRAD 2270 series); Factron 303, 323, 330, 333; HP 3065; ESP model 7100; Marconi system 80	PCB Engineer, package libraries DIPs, SIPs, SMDs, automatic placement, automatic routing with blind/buried vias, on-line DRC and CAM; Tancell (Tangent Systems) automatic timing-driven cell-based IC layout	Hybrid Engineer for hybrid layout form thick/thin film hybrid circuits, Optronics, Gerber, and HP plotters	
Multichip gate-level simulator; multichip mixed behavioral/gate simulator ACCELSI Hardware-accelerated gate simulator	Path timing analyzer for multichip timing analysis	Network description language (NDL)	None	None		
LDS Single-chip gate simulator BSIM Single-chip behavioral/gate simulator All simulators handle detailed delay prediction; back annotation is supported for delay prediction for distributed delay values	Path timing analyzer for single-chip timing analysis	Network description language (NDL); hierarchical network description language (HNDL)	Ando; Sentry; Trillium	Layout integrator	Power analysis; automatic schematic generation from NDL netlist; logic synthesis; PAL synthesis; logic compilers; multiplier compilers; memory compilers; TESTLSI automatic test pattern generation	
None	None	None	None	None	None	
ARCIS Gate simulator	ARCIS timing analyzer; spike analyzer; WAVE waveform analyzer	ARCIS	Fairchild; ARCOP testability analyzer for 100% testability analysis	Proprietary	Bulletin board for data transfer and support	
HILO-3 (GenRad) Gate simulator	ARCIS timing analyzer; in HILO-3	ARCIS; HILO-3 format				
LSIM (Silicon Compiler Systems) Behavioral, gate, switch, and timing simulator	In L-ŞIM	None				
MSIMON MOS circuit simulator MSPICE Circuit simulator QUICKSIM Behavioral, functional, gate, and switch simulator QUICKFAULT Fault simulator New analog simulator and library available first	TVER; QUICKPATH (graphical critical path analyzer)	TDL; EDIF 200; SPICE; Computervision; ILOGS; NCA; SCICARDS; Racal- Redac; MASKAP; Valid; LOGCAP; GDS II and many other netlist outputs available	HP; GenRad; Advantest; Ando; Marconi; Sentry; Teradyne; ASIX; IMS; STS; Tektronix; Trillium; ASC II (through Test System Strate- gies Inc.)	Gate array layout; standard-cell layout; full- custom IC layout; PCB layout	PLD synthesis capability; ASIC vendor- independent designer; electronic packaging and thermal analysis; CASE tools; documentation	

	System overview		Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries	
MIETEC Raketstraat 62 1130 Brussels, Belgium J.Y. Peigne Communications Director (32) 2-728-1811	MIETEC design system Price not specified DAS 9100	None	SDS (Silvar-Lisco)	DAML	Standard-cell librar- ies, mixed digital- analog; CMOS; BiMOS	
Motorola Inc., Semicustom Division 1300 North Alma School Rd. Chandler, Ariz. 85224 Andy Graham DASG Manager (602) 821-4180	Design Verification Module \$7.5k, software only Mentor Idea Station, Daisy Logician, Personal Logician, Valid CAE Open Architecture CAD System \$50k + , software only Apollo 3xxx, 4xxx, Sun 3, Sun 4, VAX	None	Supports Mentor (NETED); Daisy (DED and GED); Valid	Verilog HDL hardware de- scription language	Motorola gate array libraries; 2-micron HCA62A series; HDC series of high- density CMOS arrays	
Omation Inc. 1210 East Campbell Rd. Richardson, Tex. 75081 John Hoskins Vice President of Marketing (214) 231-5167	SCHEMA II + \$495, software only SCHEMA-PCB integrated PCB layout \$975, software only SCHEMA-ROUTE autorouter \$750, software only IBM PC and compatibles (DOS)	None	SCHEMA II SCHEMA II +	None	Over 4000 unique symbols: standard TTL SSI/MSI; mem- ory; PALs; micro- processors; analog; discrete; CMOS; ECL; analog	
OrCAD Systems Corp. 1049 SW Baseline St. Suite 500 Hillsboro, Ore. 97123 Jim Edgerton Marketing Communications Manager (503) 640-9488	OrCAD/SDT III \$495, software only OrCAD/VST \$995, software only OrCAD/PCB \$1495, software only OrCAD/PLD \$495, software only OrCAD/MOD \$495, software only PC/XT, AT, PS/2 (MS-DOS)	None	OrCAD/SDT III (schematic cap- ture); OrCAD/PLD (PLD documenta- tion to SDT III)	OrCAD/PLD (procedural language for state machines)	3700 parts includ- ing 1700 TTL, 335 CMOS, 184 ECL, 300 microproces- sors and peripher- als, 660 PALs and memory, 320 dis- crete, 235 analog	
Personal CAD Systems Inc. 1290 Parkmoor Ave. San Jose, Calif. 95126 Terry Zimmerman Vice President, Marketing (408) 971-1300	Master Schematic \$1.5k, software only PC/XT, AT (DOS); HP Vectra; Olivetti; TI Professional; NEC PC-98XA; Ethernet, Novell software, 3Com	None	PCCAPS hierarchi- cal schematic cap- ture	None	More than 6000 parts including TTL, CMOS, ECL, micro- processors, mem- ory, analog	
Phase Three Logic Inc. 1600 NW 167 Pl. Beaverton, Ore. 97006 Karen Beall Director, Graphics CAE/CAD Systems (503) 645-0313	CFx000 \$395, software only (except for CF3550) PC AT or PS/2 with EGA/VGA card (MS-DOS, TCP/IP); Sun 3 (NFS, TCP/IP), Sun 4, Sun 386i, color or monochrome	Interfaces to HILO-3 (Gen- Rad); ZyCAD ac- celerators; HI- CHIP hardware modeling system (GenRad)	SCHEDIT schemat- ic editor	HILO-3 (GenRad)	2000 + parts in symbol library, in- cluding TTL, CMOS, ECL, micro- processors, support chips; GenRad sim- ulation model librar- ies; HILO models for MMI PALs	
Prime Computervision Division 100 Crosby Dr. Bedford, Mass. 01730 Product Marketing Manager (617) 275-1800	CADDStation \$55.3k, turnkey 68020-based workstations (UNIX, Ethernet, TCP/IP, NFS) Personal Engineer \$3.5k, software only IBM PC and compatibles (PC-DOS) Personal Engineer/CV386 \$11.5k, turnkey 80386-based PCs (MS-DOS 3.2)	CATS hardware modeling system (HHB Systems)	Schedit/Symed	HDL (GenRad); CADAT, BMI (HHB Systems) HDL	3000 TTL/ECL parts; 15 PLDs; 40 memory; 40 LSWLSI; 800 analog parts; 300 primitives for CADAT and Saber modeling; same libraries on Personal Engineer	
Quantic Laboratories Inc. Suite 200 281 McDermot Ave Winnipeg, Manitoba Canada R3B OS9 Richard Facia Marketing Manager (204) 943-2552 (800) 665-0235 (in U.S.)	GREENFIELD \$35k US and up, software only Sun 3 (UNIX): Apollo (Aegis, Domain); HP 9000/320, 350, 360 (HP UX): MicroVAX (VMS); VAX (VMS); Prime (Primos); Cray (Unicos)	None	Schematic capture	None	None	

Design analysis		Design tr	ansfer	Additional capabilities		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments	
ANASIM Circuit simulator DIGSIM	Under development	SDL (Silvar-Lisco); Daisy; Valid; Mentor	Sentry VII, 20, 21; Teradyne 300 series; NTDF (ITT-Alcatel)	IC layout (Calma and Computervision); DRC, ERC, CPA (MASKAP, ECAD); automatic IC	Silicon compilers; PLA, RAM, ROM module generators; switched- capacitor filter compiler	
DAML Behavioral simulator FLTSIM				layout (Silvar-Lisco)		
Fault simulator MIXSIM Mixed-mode (digital/analog) simulator		M.C.				
QUICKSIM (Mentor) Behavioral/gate simulator DLS (Daisy) Gate-level simulator Verilog XL Behavioral, gate, switch, simulator	MTA timing analysis; (NCR) Critical path trace static timing analysis	TDL; Logcap; EDIF 2.0	Tester- independent code	TANGATE sea of gates array layout (Tangent Systems); MERILYN-G gate array layout (Tektronix)	None	
Netlist to PSPICE, SPICE, Susic, P/C SILOS and others; Schema-silos to be released in early 1989	None	Cadnetix; Calay; Computervision; DataCon; FutureNet; Intergraph; PADS PCB; P-CAD; Racal- Redac; SCICARDS; SPICE; Tango-PCB; Telesis; Salt; and others	None	Schema-PCB and route plus interfaces to several other programs	Xilinix XACT and Intel IPLDs II interfaces; backward and forward annotation with full error checking, on-line ports browsing, real-time object editor, unlimited levels of hierarchy	
OrCAD/VST Functional gate simulator OrCAD/MOD PLD description module for VST SPICE shell is built into schematic capture package	In OrCAD/VST and OrCAD/MOD	Applicon Bravo and Leap; Algorex; Calay; Cadhetix; Computervision; DXF; EDIF; FutureNet; Integraph; MultiWire; PCAD; Salt; SPICE; SCICARDS; Racal- Redac; Telesis; Vectron; PADS; TANGO	None	OrCAD/PCB (printed circuit board layout with autorouter) Interface to Applicon; Algorex; Calay: Cadnetix; Computervision; FutureNet; Intergraph; PCAD; PADS; SCICARDS; Racal- Redac; Telesis; TANGO; Vectron	PLD programming tools, many library interfaces from third-party vendors, scalable text and objects, hierarchy, object editor, DeMorgan conversion, part rotation, on-line part browsing, keyboard macros, A through E size work sheets, SMT support on PCB layout	
PC-LOGS Behavioral, gate, and switch simulator P-SPICE Analog circuit simulator	None	EDIF; TEGAS; HILO; SPICE; CADAT; SCICARDS; Computervision; CBDS; Calay; Racal- Redac	None	SMT and thru-hole PCB layout; automatic PCB layout; CAM output; Gerber output; ECO; entry level and advanced packages	Hierarchy; on-line design rule checking; thermal analysis; extensive schematic features	
Berkeley SPICE (for Sun) PSPICE (for IBM PC AT) (MicroSim) Circuit simulator HILO-3 (GenRad) Behavioral, functional, and gate simulator; fault simulator	in HILO-3	Computervision Cadds4X and Cadds3; Racal- Redac; SCICARDS, PADS	HIPOST (GenRad)	CF/PCB integrated schematic design and PCB layout system	Symbol editor, compiler; programmable netlist library extraction; interactive waveform grapher; plotting program	
SPICE 2G.6 Circuit simulator HILO (GenRad) Logic and fault simulator SABER (Analogy Inc.) Circuit simulator CADAT 6 (HHB Systems) Behavioral, functional, logic, and switch simulator	DTV (Dynamic Timing Verifier)	CADDS 4X; HILO-3, SPICE 2G6, ELF; EDIF 2.0; PNL interface tools; Silvar Lisco GARDS	HILO-3 ATG (GenRad); CADAT 6	Autoboard SMT on the CADDStation system, production drafting, military specification drafting; PCB thermal analysis (Pacific Numerix)	Simulation grapher; programmable logic device design software; load checking routines; bill of materials generator; model generator design checker (rules based verifier)	
PHYLLIS Analog simulation of digital circuits SPICE compatible (SPICE not included)	None	ASCII format; SPICE files; EDIF 2.0; IGES	N/a	None	Magnetic and electric field analysis, field plots, SPICE input, board, cable, connector, hybrid, IC packaging analysis	

.

	System overview		Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries	
Racal-Redac Inc. 238 Littleton Rd. Westford, Mass. 01886 Dave DeMaria Director of Technical Marketing (508) 692-4900	VISULA CAE \$26k, software only VISULA CAE/CAD \$60k, software only VAXstation II (VMS); Apollo (UNIX); Sun (UNIX)	CATS hardware modeler and sim- ulation accelera- tor (HHB Systems)	VISULA SCM hier- archical schematic capture	In CADAT (HHB Systems)	2000 models (TTL, CMOS) up to LSI complexity; 200 + behavioral and hardware models	
	MAXI/PC \$995 CADSTAR \$4850 software only Integrated Logic Capture/PCB Design Compaq 366, IBM PC AT or compatible, IBM PS/2 (MS DOS) with EGA and high resolution graphics; Ungerman- Bass; Fox Research 10-Net; Excellon	None	REDLOG	None	Variable	
Royal Digital Systems Inc. 2855 Kifer Rd. Santa Clara, Calif. 95050 Ray U'ren Vice President (408) 980-9492	SCEPTER \$19,999/\$29,999, software only Sun (UNIX); Silicon Graphics	None	Intergraph; Case; SCICARDS, V.L FIN, OrCAD, P- CAD	None	2200, including TTL, LSTTL, CMOS, micropro- cessors and periph- erals, ECL, dis- crete, passive, analog	
Schlumberger CAD/CAM 2833 Junction Ave. Suite 200 San Jose, Calif. 95134 Brian Gardner Product Manager (408) 433-4880	BRAVO 3 Electronic Design \$10k-\$50k VAX (VMS), Sun (UNIX)	Interface to hard- ware modeler	Schematic capture	None	Numerous catalogs, including TI TTL, Motorola STTL, Mo- torola HCMOS, and Fairchild FAST	
Scientific Calculations Inc. 7796 Victor-Mendon Rd. P.O. Box H Fishers, N.Y. 14453 Douglas Spice Director of Marketing Services (716) 924-9303	SCIDESIGN \$3k CADAT PC/XT, AT MicroVAX/GPX (DOS 2.1; Kermit, DECnet- DOS communications)	CATS hardware modeler and sim- ulation accelera- tor (HHB Systems)	SCIDESIGN	In CADAT	+ 500 SSI/MSI TTL and ECL; generic PLA, RAM, and ROM models; 68000 and 2900 families	
Seattle Silicon Corp. 3075 112th Ave. NE Bellevue, Wash. 98004 Richard Ahlquist Marketing Manager (206) 828-4422	ChipCrafter ASIC Design System \$59k, software only Mentor Idea series (Apollo 3000, 4000) ChipCrafter ASIC Expert Option \$49k, software only Mentor Idea series (Apollo 3000, 4000) ChipCrafter IC Expert Option \$41k, software only Mentor Idea series (Apollo 3000, 4000)	Simulation accelerators (Mentor, ZyCAD)	Design entry through Mentor NETED	Joint develop- ment with JRS Research for VHDL interface	Standard cells; con- figurable SSI, MSI, PLA, RAM, ROM, FIFO, I/O; datapath compiler; logic syn- thesis for state ma- chines and random logic	
Silicon Compiler Systems Corp. 2045 Hamilton Ave. San Jose, Calif. 95125 Jeff Elias Marketing Manager (408) 371-2900	GENESIL \$125k, software only VAX, MicroVAX (ULTRIX); Apollo (DOMAIN IX); Sun (UNIX); Ethernet TCP/IP Logic Compiler \$23.5k, software only ATG \$49.5k, software only	Interfaces to Mach 1000 logic/fault accelerator	Interfaces to Mentor	None	Library of CMOS compilers; data- path, multiplier	
Richard Gordon Marketing Manager (201) 580-0102	GDT \$88k, software only Lsim \$49.5k, software only Ltime \$40k, software only Apollo (DOMAIN IX); DEC (ULTRIX); Sun (UNIX)	None	Led interactive schematic and lay- out editor	L language for VLSI; M lan- guage for be- havioral description	Lcompilers gener- ator libraries in- clude standard cells, PLA, RAM, ROM, datapath, memory, CRT con- troller, core microprocessor	

Design analysis		Design tr	ransfer	Additional capabilities		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments	
SPICE (Berkeley Version 2G6) Circuit simulator SABER 2.1 Analog system simulator CADAT 6.1 (HHB Systems) Behavioral, gate, and switch simulator:	in CADAT in SABER	CADAT 5.1; HILO; SPICE	Eaton Model 800; Sentry	VISULA PCB automatic layout	VISULA SCM on-line electrical rule checking; REDLOG/REDCAD waveform analysis	
concurrent fault simulator Interfaces to Personal CADAT Interfaces to PACSIM, PSPICE circuit simulators	In P-CADAT	Racal-Redac; HHB Systems	None	CADSTAR MAXI/PC Geometry editor; layout analysis; automatic placement and routing	REDSOFT customer support/software maintenance product	
N/s	N/s	AutoMate; SCICARDS; Calay; Cadnetics; Valid; Daisy; Mentor; FutureNet; Racal- Redac; Case	None	Automatic PCB layout, including SMD	Expert board, auto placement, auto-routing	
Logic Analysis (enhanced CADAT) Functional, logic, behavioral, and fault simulator	Timing simulation in CADAT	CADAT; SPICE; template to reformat for others	Factron; Sentry; GenRad	BRAVO 3 VLSI geometry editor; ECAD layout analysis; BRAVO 3 PCB layout editor; automatic placement and routing (Algorex)	PG and E-beam interfaces; photoplot, drill, insertion, mechanical 3D design, and analysis of PCBs	
SPICE Circuit simulator CADAT 6.1 Behavioral, gate, and switch; concurrent fault simulation	In CADAT	SCIDESIGN ASCII netlist data; CV3; SPICE; CADAT	Sentry	SCICARDS PCB geometry editor and automatic placement and routing	Complete database extraction and reformatting tools	
Interface to Mentor QUICKSIM	SSC static timing analyzer	Mentor; SILOS	Sentry	ChipCrafter ASIC Design System: Automatic place and route; layout view; automatic buffer sizing; automatic variable layout for different manufacturing processes ChipCrafter ASIC Expert Option: Adds foreign module integration; interactive layout; manual override of buffer sizing; polygon- level geometry view Chipcrafter IC Expert Option: Adds bidirectional translators for GDSII and CIF formats; LVS analysis tools; interfaces to Mentor ChipGraph and DRACULA DRC	ASIC operations provides verification, fabrication, packaging, test for prototypes and production volumes	
In GENESIL Functional logic simulator with switch-level option; interface to Mentor QUICKSIM	GENESIL timing analyzer	Mentor	N/s	Interactive and automatic IC layout tools; LogicCompiler: automatic layout of logically optimized standard cells	ATG: Automatic test pattern generation	
Lsim Behavioral, functional/gate, and switch simulation integrated with ADEPT circuit simulation; fault simulation (both serial and probabilistic); Lspice analog simulation	Ltime Timing Analyzer (in house); RC tree- based switch-level timing analysis	SPICE; EDIF	IMS; Sentry 7, 8, 20, 21; Advantest	Led IC layout, geometry editing, mask-level symbolic layout compaction, procedural layout, floorplanning; LRC electrical and design rule checking; Lextract database extraction routines; Lpar automatic placement and routing of standard cells and blocks	L Database Interface (Ldbi)	

-

	System overview	Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries
Silvar-Lisco 1080 Marsh Rd. Menio Park, Calif. 94025 Tony Wainwright (415) 324-0700	Design Entry \$6k + Logic Design System \$25k + System Design \$40k + Mixed Analog/Digital Simulation System \$25k + Switched Capacitor Simulation System \$23k + MicroVAX, VAX (VMS); PC AT, 43xx, 9370, 30xx (MS- DOS, VM/CMS); Apollo (AEGIS); Sun (UNIX); DECnet, Ethernet, Domain	Interface to HHB Systems simula- tion accelerator	Schematic Design System (SDS)	HELIX HHDL	4000 SSI/MSI TTL; 328 PLDs; 162 memory; 120 + LSI/VLSI (available through Quadtree); 70 miscellaneous CMOS; additional simulation libraries from Quadtree Corp.
Spectrum Software 1021 S. Wolfe Rd. Sunnyvale, Calif. 94086 Karen Burchfiel Customer Service Representative (408) 738-4387	MICRO-CAP II Electronic Circuit Analysis Program \$895 MICRO-CAP III Electronic Circuit Analysis Program \$1495 MICRO-LOGIC II Digital Circuit Simulation Program \$895 IBM PC/XT, AT or IBM PS/2 or fully compatible (DOS 3.0 and above)	None	Micro-Cap II, Micro- Cap III, and Micro- Logic II schematic capture	None	→200 for Micro-Cap II and Micro-Cap III; 200 elements for Micro-Logic II
Tanner Research 128 W. Del Mar Blvd. Pasadena, Calif. 91105 David Lipin Product Manager (818) 795-1696	Gatesim \$950, software only PC, XT, AT, 386, PS/2, or compatible Netlist Package \$200, software only PC, XT, AT, 386, PS/2, or compatible	N/s	Interface to OrCAD schematic capture	None	1200 cell vendor-in- dependent sche- matic library Mapping libraries available separately (\$200 each) for ASIC vendors: GE Solid State, Nation- al, NCR, Oki, TI, and customer owned standard cell layout library for customer-owned layout
Teradyne Inc. 321 Harrison Ave. Boston, Mass. 02118 Daryl Layzer Marketing Services Manager (LASER Version 6) (617) 482-2700 x2808	LASAR Version 6 Simulation Software \$15k+, software only VAX (VMS), Sun (UNIX); DECnet; NFS	DATASource hardware model- ing system	N/s	TML register- transfer lan- guage; LABEL behavioral language	3800 SSI/MSI TTL, ECL; generators for memory; 200 + LSI/VLSI; 40 + VLSI hardware models; gate array macrocells
Teradyne EDA 5155 Old Ironsides Dr. Santa Clara, Calif. 95054 Georgia Marszalek Director of Marketing Communications (408) 980-5200	AIDA Design System \$140k, turnkey Apollo (UNIX, Domain, Domain gateways: SNA, VAX, Ethernet, etc.); Sun 3 (UNIX, NFS)	AIDA simulator accelerators; in- terface to D300 hardware modeler	Vanguard Schemat- ic Design System	AIDA Design Language	Advanced CMOS gate array libraries: 100 + parts each
	Vanguard CAE Design System \$5k-\$25k, software only Vanguard Stellar CAE Design System \$5k-\$80k, software only PC/XT, AT (PC-DOS); VAX (VMS, DECnet); Sun (UNIX, NFS, PC NFS); Ethernet TCP/IP	Interface to Tera- dyne D300 hard- ware modeler	Vanguard Schemat- ic Design System	SCALD design language (Law- rence Liver- more National Lab)	5000 + parts: TTL, ECL, CMOS, PLDs, ASICs, and micro- processor families

Design analysis		Design tr	Design transfer Additional cap		
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments
HELIX Behavioral simulator CADAT (HHB Systems) Functional/gate simulator ANDI Switch simulator (mixed analog analysis) SWAP Switched-capacitor filter analysis	Simulation libraries for HELIX contain "intelligent" behavioral models that also perform timing checks; also timing analysis in CADAT	CADAT; SPICE; HILO; LOGCAP; TEGAS; SILOS; CBDS; SCICARDS; Racal-Redac; SUPER- COMPACT; SECMAI/OPTIMA	Sentry; GenRad; Advantest; Teradyne; IMS (through Test Systems Strategies Inc.)	Automatic gate-array and standard-cell layout; IC layout design; layout analysis; PCB placement and routing; (GARDS, Avant Gards, SCII, DVP, Princess, CAL-PC)	Design databases (both netlist and schematic) are portable between supported brands of hardware; EDIF support
Micro-Cap II Analog circuit simulator Micro-Cap III Analog circuit simulator Micro-Logic II Logic circuit simulator	Micro-Cap II: transient, ac, dc and Fourier, worst case, temperature stepping; Micro-Cap III: transient, ac, dc, and Fourier, worst case, monte carlo, parameter stepping, temperature stepping; Micro-Logic II: timing analysis	Micro-CAP II and Micro-Logic II: ASCII output; Micro-Cap III: ASCII output and output to SPICE netlist	Micro-Logic II: ASCII format	None	Notepad and built-in calculator included with Micro-Cap III; mouse support for Micro-Logic II and Micro-Cap III
GateSim Gate level timing simulator with automatic fault grading capability	Static timing analysis in GateSim	Flexible format translator produces HILO, TEGAS, and others (user-defined)	Flexible format translator produces HILO, TEGAS, and others (user- defined)	L-Edit hierarchical layout editor for ICs and PCBs; DRC and standard-cell place and route packages available for L- Edit	Tool set supports vendor independent design style with automatic mapping to any of several commercial ASIC vendors or to your own layout
LASAR Version 6 Behavioral, functional, and gate simulator; hardware modeling; fault simulator; automatic test pattern generation; interface to DATASource hardware modeling system	True worst-case timing analysis with common ambiguity removal	N/s	Teradyne L1xx, L2xx, J9xx; Computer Auto- mation 4700, 4900, Marathon; GenRad 197x, 2225, 2235; Hewlett-Packard DTS70; Sentry 7–21; also supported by Test System Strategies Inc.'s TDS system	None	CircuitMaker and CircuitBreaker for PLD modeling and ATPG
AIDA Transient Analysis Program Circuit simulator AIDA Logic Simulator Logic simulator with optional accelerators AIDA Fault Simulator and AIDA Fault Inferencer Fault simulators with optional accelerators	AIDA Timing Verifier	TEGAS Design Language (TDL); foundry-specific (contact company)	Foundry-specific (contact company)	None	AIDA automatic test pattern generator
Case/AIDA (AIDA) Logic and fault simulator CASE/LASAR Logic simulator Case/SPICE (Meta-Software, MicroSim) Circuit simulator Case/SILOS (SimuCAD) IC simulator Other simulator interfaces available	Timing Verifier	EDIF, TEGAS; SCICARDS; Racal- Redac; Telesis; CV- CADDS4X; CBDS; Cadnetix; Calay; Mentor; HP; Applicon SPICE; CADAT; LSI Logic; SILOS; SALT; ZyCAD; HILO	See Teradyne LASAR description	Interfaces to Cadnetix, Racal-Redac, Calay, SCICARDS, Academi	Documentation interfaces to Interleaf and Ventura Publishing; interfaces to ASK's MANMAN manu- facturing software; programmable electrical rule checker; graphics framework interface to third party tools; automatic PCB autorouter

	System overview		Design entry			
Vendor Contact	Product name, cost, and host	Applications hardware	Schematics	HDLs	Standard libraries	
Valid Logic Systems Inc. 2820 Orchard Pkwy. San Jose, Calif. 95134 Nancy Madison Director Product Marketing (CAE/IC CAD) (408) 432-9400	Design Entry System \$5.9k + Logic Design System \$9.9k + Design Validation System \$17.5k + ADvantage Analog Design System \$21.7k + RapidTEST Fault Simulation System \$17.5k VAX, VAXstation (VMS); Sun (UNIX); PC AT (UNIX); SCALDsystem (UNIX); Ethernet TCP/IP, DECnet, VAX- cluster (LAVC)	Realchip hard- ware modeler; Networked Real- chip; Realmodel hardware model- er; Realfast simu- lation accelerator, Realchip II	ValidGED; Transcribe	UCP C-based behavioral modeling language	4000 + TTL, ECL; 30 + PLDs; 60 + memory; 100 + LSI/VLSI; 100 + ASIC design kits; behavioral models from Logic Automa- tion and Quadtree; analog libraries	
Vamp Inc. 6753 Selma Ave. P.O. Box 411 Los Angeles, Calif. 90028 John Soluk Manager of Marketing	McCAD Schematics \$495, software only McCAD DACS \$295, software only Apple Macintosh 512, Macintosh Plus, Macintosh SE, Macintosh II; Apple Network	None	McCAD Schematics	None	200 + TTL; 100 dis- crete; 250 CMOS	
Viewlogic Systems Inc. 313 Boston Post Rd. West Marlboro, Mass. 01752 Sri Sriram Vice President of Marketing (508) 480-0881	Workview Series Software for ASIC, system, analog design 1000 series (80286), \$6k+; 2000 series (80286 "native mode"), \$6.3k+; 3000 series (80386 "native mode"), \$7.5k+; 5000 series (Sun), \$10k+; 7000 series (VAX), \$10k+	LM1000 hard- ware modeler; interface to ZyCAD	Viewdraw	VHDL	2000 + TTL; 100 + ECL; 100 + PLDs; 100 + memory; 50 + LSI/VLSI; 600 + analog; se- micustom libraries from more than 12 vendors including LSI Logic Corp., and VLSI Technol- ogy Inc.	
Visionics Corp. 3032 Bunker Hill Lane Suite 201 Santa Clara, Calif. 95050 Alex Wellins Public Relations Manager (800) 553-1177	EE Designer I \$895 EE Designer II \$1995 EE Designer III \$3995 EE Designer III/Extended \$5995 All are software only and all include autorouters; PC/XT, AT, PS/2, and compatibles	None	EE DESIGNER; ASCII, OrCAD; Schema; FutureNet	None	1000: TTL, CMOS, SMT, microproces- sor, discretes, analog	
VLSI Technology Inc. 1109 McKay Dr. San Jose, Calif. 95131 Bill Murray Tactical Marketing Manager (408) 434-3000	VLSI Express Systems \$30k-\$195k VAX (VMS); Apollo (AEGIS); HP series 9000, model 350 (UNIX); Sun 3 (UNIX), Sun 4	None	VTIschematic	Hierarchical Net List (HNL)	Portable gate array and standard-cell- compiler libraries for datapath logic synthesis, RAM, ROM, PLA	
Xerox 475 Oakmead Pkwy. Sunnyvale, Calif. 94086 Petros Xides CAE Product Division Manager (408) 737-4307	Expert Designer \$7k-\$12k Xerox 6085; Ethernet; XNS; TCP/IP	None	Expert Schematics (new hierarchical schematics for sys- tems design; draft- ing parts importation)	XDDL	1200 TTL, CMOS, and ECL symbols in schematic sym- bol library; 200 models in simula- tion model library	
ZyCAD Corp. Endot Products 1380 Willow Rd. Menlo Park, Calif. 94025 Susan Runowicz-Smith Product Marketing Manager (415) 321-8574	N.2 System Design Environment \$200k, software only MicroVAX to VAX 8800 (VMS, UNIX); Apollo (AEGIS), Sun (UNIX); CDC (NOS/VE); PC AT (GENIX); Ethernet TCP/IP	Interface to Zy- CAD logic accelerators	Netlist interface to Mentor	ISP'; HDL; ISP' to VHDL; translator	Custom library sup- port for system and subsystem entities through interfaces to workstations	

Design analysis		Design transfer Additional c			capabilities
Simulators and capabilities	Timing analysis	Netlist outputs	Test vector outputs	IC/PCB layout	Other tools, comments
ValidSPICE PRECISE circuit simulator (Electrical Engineering Software) ValidSIM Behavioral, logic, and switch simulator with timing analysis TIMEMILL (EPIC Design Technology) Mixed-level timing simulator and critical path analyzer RapidTEST Fault simulator	ValidTIME; TIMEMILL (EPIC Design Technology)	HDL; HILO-3; LOGCAP; MCLDL; SPICE; TEGAS5; CADDS; Calay; CBDS; Paragon; Racal-Redac; SCI- CARDS; Wirewrap; ILOGS; CLP; CADAM; SEL; SDL; SDIF; Applicon; LASAR	Teradyne: HP; GenRad; Zehntel; TSSI interfaces	IC layout editor; IC layout analysis; full-custom and standard-cell IC layout; Compose chip architecture environment; ALLEGRO interactive and automatic PCB layout	ValidPLD—automatic generation of timing and logic models; ValidEZLIB—creates new library components by modifying existing ones; DIAL—programming language for custom interface creation; Transcribe production documentation environment, plus netlist- driven schematic generation
McCAD DACS Circuit, logic, and behavioral simulator	In McCAD DACS	Computervision; Calay; Gerber; SCI- CARDS; McCAD	None	McCAD PCB-1, PCB-ST, and automatic routing tools	McCAD-to-Gerber translator module
VIEWSIM For behavioral, RTL, logic, switch, analog-level with timing VIEWSIM/AD (enhanced PSPICE) Mixed analog/digital simulator HILO (GenRad); TEGAS (Calma); LASAR (Teradyne); SILOS (SimuCAD); ZILOS (ZyCAD); PSPICE (MicroSim); SPICE (UC Berkeley); HSPICE (MicroSim); SPICE (UC Berkeley); HSPICE (Meta-Software); IG-SPICE (A.B. Associates); PRECISE (EEsof); ALLSPICE (Acotech); Touchstone (EESof)	None	CAE/CAD graphics: Computervision CADDs 4, 4X, CADDSTATION; Daisy; Mentor; Metheus; Prime EDMS; Valid PCB: Redac (Redboards, Cadet, Maxi, Mini); Redac (DSM6); Academi; Applicon; CADES; Cadnetix; Calay; CBDS; Computervi- sion; EDIF; Inter- graph; MERLYN; OmniCad; P-CAD; PRANCE; Redac RINF (Visula); SCI- CARDS; Valid/Telesis Simulators: Bolt; CADAT; Computervi- sion; MDL; Silvar-Lis- co; SDL PLD: Altera, MMI, Xilinx IC layout: Cadence	None	Configurable design rule checker; VIEWPLACE for critical placement; layout interface to CAD	Document processor merges text and graph- ics; electronic mail sys- tem; data management; 80386 simulation tools to support ASIC design beyond 30,000 gates; Pre-CAD PCB placement for PCB design; analog stress/manufacturability analysis; CAE interfaces
5 simulators: Logic, timing, ac, dc, transient analysis	Included in all products	ASCII	None	Direct translation from netlist to layout, DRC, connectivity check, autoplacement, fab drawings	Gerber, N/C drill, printers, plotters, high- resolution graphics
VTIsim Behavioral, gate, and transistor simulator VLSI Osim Behavioral and gate VTISPICE Circuit simulator	Timing Verifier	HNL netlist format	Sentry 10, 20	Sticks symbolic IC editor: automatic IC layout; cell compiler; datapath com- piler; state machine com- piler	None
Expert Logic Simulator Switch-level and logic simulation	None	LASAR; Computer- vision; Racal-Redac; SCICARDS; CADAT, HLO; EDIF; SPICE; user-definable data extractor	None	Expert PCB System board layout tools with SMD capability	Interfaces to VIEWPOINT (Xerox office automation system); IGES translator, it runs in the new environment as an application to Xerox VIEWPOINT; new tools for symbol creation
N.2 Mixed behavior/functional, register-transfer, gate simulator; software system simulator	None	Topology file in-house	User-created; test coverage tool	None	Stochastic performance analyzer; N.2 analysis environment; meta- assembler and retargetable linking loader; C behaviors, programs, and models can be linked; build tool for updating changes to models

Directory of Printed Circuit Board Layout Systems

Vendor Contact	System name, typical cost	Mainframe	Workstation	Software only	Hardware environment • System support • Memory support • Graphics support	• Design entry • Simulation	• ERC • DRC • Extraction	Output formats • Printer/plotter • Assembler • Tester; other
Academi Systems Inc. 2418 Armstrong St. Livermore, Calif. 94539 (415) 449-3294 Cynthia Peddie Vice President	Academi 56000 \$62.5k Academi 54000 \$39.8k	-	•	•	DEC with attached processors 1-MB main memory Tablet input; 19" display with 640 × 512 resolution	Case, FutureNet interfaces	Layout rule checker (batch) CAE interface for circuit extractor	Calcomp, DEC, HI, HP Generic NC interface —
Accel Technologies Inc. 7358 Trade St. San Diego, Calif. 92121 (619) 695-2000 Ray Schnorr Vice President of Marketing	Tango-PCB \$600 Tango-Route \$500 \$1k if bought together	-	-	•	 PC/XT, AT, PS/2 (DOS 2.X); local-area network 640-KB main memory and 2 disk drives Mouse input; CGA, EGA, VGA, Hercules, 640 × 480, 800 × 600, 1024 × 768, 16 color 	 Tango- Schematic; Omation, OrCAD, interfaces — 	Electrical rule checker with Tango-PCB and Schematic Design rule checker by Tango-Route	 HP-GL, DM-PL, Calcomp, IBM, Epson, Okidata, Toshiba printers, Gerber Excellon —
Aptos Systems Corp. 5274 Scotts Valley Dr. Scotts Valley, Calif. 95066 (408) 438-2199 John Roth President	CRITERION \$995 RGRAPH (with graphics coprocessor) \$6.7k		-	•	 PC AT, 80386-based PC; local-area-network 640-KB main memory and hard disk Mouse or digitizer input; 13" monitor with EGA (CRITERION); 19" monitor with 1024 × 768 resolution (RGRAPH) 	Aptos schematic capture; FutureNet, OrCAD, PCAD interfaces TÉGAS and PSPICE interfaces	Common node checker Layout rule checker	Calcomp, Epson FX series, Gerber, HI, HP, Zeta Excellon —
Automated Systems Inc. 4105 Sorrento Valley Blvd. San Diego, Calif. 92121 (619) 546-0024 Andy Chmielinski Manager, PranceGT Product Marketing	PranceGT \$90k		-	•	 DEC VAXstation 3500; ULTRIX/X windows; (no accelerators) 16-32-MB main memory and 280-MB hard disk Keyboard, mouse input; 19" color monitor; 8 plane graphics (GPX) 	Netlist from most popular schematic capture/CAE systems User interface based on X- windows standard utilizing pop-ups, pulldowns, dialogue boxes, etc.	On-line On-line and post-route -	• HPGL, Gerber • — • Excellon, Trudrill
Cadam Inc. 1935 N. Buena Vista St. Burbank, Calif. 91504 (818) 841-9470 Alan Cohen Electrical Products Marketing	IPC (Interactive Prance CADAM) \$116k per CPU				Any IBM mainframe or compatibles (VM or MVS) Standard memory Mouse or tablet input; IBM 5080 scopes or compatibles	Interface through CADEX CADAT; two-way netlist translation	Tolerance checker (batch and on-line) Layout rule checker CADEX circuit extractor; thermal analysis	Benson, Calcomp, Gerber, HP, Versatec Generic NC interface; APT Data; generic assembly interface Generic ATE interface
Cadisys Corp. 624 E. Evelyn Ave. Sunnyvale, Calif. 94086 (408) 732-1832 Paul Ling Customer Support Manager	AutoPCB \$1.5k-\$7.5k			•	 PC AT; PC-based network systems; Sun 3/386i (UNIX) 640-KB main memory and 10-MB hard disk Mouse or digitizer input; 15"/19" monitor with EGA, VGA 	 AutoSCHEMA (Cadisys); generic interface CADAT; SPICE; thermal analysis 	Electrical rule checker Design rule checker Circuit extractor	AutoCAD-supported graphics, printers, and plotters Excellon drill —

Initial placement tools Placement improvement tools Manual and automatic initial preplacement; rat's-nest display Automatic component, pin, and gate swapping	Routing tools Signal prerouting; priority, channel routing; compaction; re-entrant; 45°; keep-out zones	• Max board size • Layer count • Grid sizes • 32" × 32" • 64 • Any in 1-mil increments	Schematic libraries Library support Package libraries CAE interface New parts can be defined in metric units and mils; new library entries are formed for each package of each device All typical package types needed for basic design are included.	Surface-mount design support Flip-flop screen; flip components between sides instantaneously; blind and buried vias
 Manual preplacement; rat's-nest display Manual reconnection 	Signal prerouting; proprietary routing algorithm; re-entrant; 45° routing; keep-out zones; maze routing	 32" × 32" Now 19 layers: 6 signal, 1 power, 1 ground, 2 silkscreen, 2 assembly, 2 solder mask, 1 keep-out, 1 board outline, 1 connection, 1 title layer, 1 drill drawing Any in 1-mil increments 	 Analog, 1500 schematic symbols; digital, 1675 schematic symbols (in 15 libraries) New physical parts can be defined graphically; parts can be defined in mils only; new library entries are formed for each package of each device All typical packages needed, both thru-hole and surface-mount devices 	Large SMD library: flip components, dual silkscreen, assembly and solder masks layers
 Manual placement; rat's-nest display — 	Signal prerouting; priority, channel, maze, expert system routing; keep-out zones for wires	• 64" × 64" • 50 • 25, 50, 100 mils; fineline; microline; staggered	 Schematic symbols: TTL, 107; ECL, 77; CMOS, 130; analog, 71; discretes, 84; microprocessors, 84 New physical parts can be defined in metric units and mils; new library entries are formed for each package of each device Package options: passives, 2; DIPs, 256; SIPs, 256 	129 surface-mount schematic symbols and packages (J- lead and gull); blind and buried vias
 Floor planning; dual- sided; minimal crossing count; connectivity; minimum spanning; Z- axis swapping; rubberbanding rat's nest; flexible placement matrices; component orientation; component type differentiation Interactive and automatic swapping; Z- axis crossing minimization; component alignment 	Interactive and automatic maze search with optional display; interactive and automatic squeeze through/shove; auto- stringers; component/connector head start; pattern recognition; interactive and automatic rip-up/re- entrant reroute; intelligent diagonalization; via minimization and manufacturing cleanup; signal prerouting; keep-out zones; copper fill; ECL/high-speed rule adherence; layer polarization; simultaneous multilayer	 64"×64" 64 Any uniform, variable or non-uniform 	 Standard packaging User-extensible multi-user relational DBMS containing electrical, physical and geometric part attributes Standard package options (pin, gate) 	Dual-sided boards with extensive placement, editing, and viewing controls; ASI design service bureau database compatibility and design support
 Min-cut preplacement with user-specified restrictions; rat's-nest display and histograms Interactive and automatic component, pin, and gate swapping 	Signal prerouting; priority, maze, channel re-entrant router on any grid and 1–20 layers; compaction; rip-up; ECL design rules supported; keep-out zones	 Board size function of grid (50" × 50" board with 50-mil grid) 20 + up to 99 signal planes Any in 1-mil increments 	 Schematic symbols: discrete, 6500; digital, 2800; ANSI, 1200 New physical parts can be defined in metric units and mils; schematic and physical libraries are separate Package options: DIPs, 30; SMDs, 30; analog, 60 	Blind and buried vias; front and back surface mount; interactive swapping of components between sides
 Interactive; rat's-nest display; prompting under three strategies — 	Manual and automatic signal prerouting; memory bus router; hybrid channel/maze router; daisy-chain routing for ECL; compaction; re- entrant; 45° routing; keep- out zones for wires and vias	 60" × 60" No specified limit (24 auto routing plus 5 power) Gridless system, 1 mil increments 	 Schematic symbols: TTL, 3700; CMOS, 300; ECL, 350; analog, 400; PALs, 25; microprocessors, 35; connectors, 130 New physical parts can be defined in English or metric units; some physical parts may be defined in the library Package options: DIPs, 13; TOs, 10; DOs, 10; SMDs, 10; connectors, 130; cases, 5 	SMD footprints; blind and buried vias; components both sides of PCB

Vendor Contact	System name, typical cost	Mainframe	Workstation	Software only	Hardware environment • System support • Memory support • Graphics support	• Design entry • Simulation	• ERC • DRC • Extraction	Output formats • Printer/plotter • Assembler • Tester; other
Cadnetix Corp. 5757 Central Ave. Boulder, Colo. 80301 (303) 444-8075 Greg Skomp Manager of Marketing and Communications	CDX-50,000S \$69.9k CDX-5000S \$54k CDX-56,000SP \$89.9k	-	•		 Sun (UNIX); Ethernet 4-24-MB main memory and 141-327-MB formatted hard disk Mouse, keyboard input; bit-slice graphics processor; 19" color monitor with 1024 × 800 resolution 	Mentor, Scicards, Valid, FutureNet interfaces, and EDIF CDX digital design environment; enhanced SABER circuit simulator; simulation accelerator; physical modelor	 Electrical rule checker (on-line and batch) Design rule checker (on-line with ECL appli- cations) Complete board fabrication outputs, netlist 	 Calcomp, Gerber, HI, HP-GL Excellon; Amistar, Dynapert, Universal; EDIF, IGES, IPC-350, DQL Ditmco, Factron, GenRad, Integr-Test, Marconi, ATG interfaces, HP 3065
CAD Software Inc. Box 1142 Suite 6 Littleton, Mass. 01460 (617) 486-9521 N. Marsh	PADS-PCB \$1k-\$2.9k	-	-	•	 PC AT, 386, PS/2 512–640-KB main memory and 10–20-MB hard disk Mouse input; 12" or 19" display with EGA or GEM 	• PADS-CAE •	Schematic vs. layout, Air Gap Batch design rule checker	Gerber, HI, HP, and generic matrix plotter interface Excellon —
Calay Systems Inc. 16842 Von Karman Rd. Suite 100 Irvine, Calif. 92714 (714) 863-1700 Nancy J. Nykanen Marcomm Manager	PRISMA Contact Vendor for cost	-	•	-	 Sun Microsystems 327-MB 8-MB 	Case, Daisy, FutureNet, Mentor, PCAD, Viewlogic interfaces PACIFIC NUMERIX	On-line electrical rule checker Batch design rule checker; ECL checker	Calcomp CC907, Gerber 4000, HP-GL Excellon, Trudrill, generic drill interface; Fuji, Panasonic pick- and-place; Dynapert, Universal interfaces GenRad, Zehntel interfaces
Computamation Systems Ltd. 40 Lake St. Leighton Buzzard Bedfordshire LU7 8RX England Phone: (0525) 378939 J. Yelland	VUTRAX \$280–\$6k		-	•	 PC AT, 386, PS/2 512–640-KB main memory and 10–20-MB hard disk Mouse or digitizer input; single or dual screen; EGA, Metheus, Galaxy, CCG graphics 	VULTRAX SCH. 1/F to PSPICE -	Logical and physical-design rule checker	Gerber, DMP, HP-GL, HI Roland Emma, HP Laser, Excellon
Computervision Corp. 100 Crosby Dr. Bedford, Mass. 01734 (617) 275-1800 Barry Heller Manager, Electronic Product Marketing	Autoboard SMT CADDstation System \$52.9k		•		 668020 (UNIX); Ethernet TCP/IP, NFS 8–32-MB main memory, 170-MB hard disks, and 280-MB 8" SMD drive Mouse, keyboard; 19" display size with 1152×900×8 resolution 	Schematic Design (Computervision) CADAT logic simulation (HHB Systems); SABER circuit simulation (Analogy Inc.); thermal analysis (Pacific Numerix); HILO-3 (GenRad); SPICE 2G.6	On-line ERC On-line/batch DRC Keep in/keep out zones supported	 Gerber, Quest, Benson, Calcomp, Versatec, Hewlett- Packard Excellon, Posalaz, Siemens Marconi, Panasonic, Universal
Control Data Corp. 8100 34th Ave. South P.O. Box 0 Minneapolis, Minn. 55440 (612) 853-8390 John W. Barnes	ICEM Electronics \$14k-\$75k				 PC/XT, (MS-DOS); Cyber 910, (UNIX); TCP/IP 640-KB main memory and 4-MB hard disk (PC XT); 30-MB main memory and 70-MB hard disk (Cyber) Mouse input; 12"/17" monitor with 1024 × 700 × 8 resolution 	• ED-Schematics, ICEM DDN (CDC) • SALT (The CAD Group); ASPEC (CDC); SYSCAP (CDC)	 Batch electrical rule checker (CDC) On-line and batch layout rule checker (CDC); keep-out zones sup- ported Two way transfer to 3D drafting for packaging and mechanical analysis (fit, stress, thermal) 	 Calcomp, Gerber, HP, Versatec Excellon drill; generic NC format Fairchild, GenRad

Initial placement Placement Improvement	Routing tools	• Max board size • Layer count • Grid sizes	 Schematic libraries Library support Package libraries 	Surface-mount design support
 Constructive and min- cut preplacement, netlist-driven; rat's-nest display Simulated annealing; component, pin, and gate swapping; auto- matic decoupling capacitor assignment 	Signal prerouting; priority, maze, heuristic (for memory arrays), re-entrant router with up to 8 layers on any grid; rip-up; SMT; high-speed layout rule adherence; 45° routing; keep-out zones	 36"×48" 24 trace, 24 draft Any combination of grids on "plastic grid" 	 Schematic library: basic, 83 pads, 248 components, 298 shapes; CAE, 699; CAD, 2255 components; 74 TTL, 789; 54 TTL, 791 components; commercial CMOS, 235; military CMOS, 224 components; ECL, 75; advanced functions, 89; physical modeling, 55; ASIC libraries (LSI Logic, VLSI Technology, NEC Electronics, TI, Motorola, Hitachi, NCR, National Semiconductor) New physical parts can be defined in metric units and mils; separate library entry not required for each package option of each function. Package options: capacitors, 35; connectors, 23; discretes, 45; DIPs, 21; SIPs, 7; PGAs, 6 	Blind and buried vias; alternate shapes, automatic breakout generation
 Matrix; force-directed; rat's-nest display Component, pin, and gate swapping 	Signal prerouting; priority, maze re-entrant multilayer router with 1, 5, 10, 20, 25, or 50 grids; 45° routing; keep-out zones	• 32" × 32" • 30 layers • 1–1000 mils in 1- mil increments	 — Physical parts can be defined Approximately 1000 parts in 8-128 pins, DIPs, SMDs, and pin-grid arrays 	Blind and buried vias; standard and micro-size vias
 Force-directed; min- cut; constructive; proportional-space gridless algorithm; rat's- nest display — 	Optional Hardware acceleration	• 32″×32″ • 256 • .00001	 Schematic library: TTL, 1000; memory, 500; device, 250; analog, 350; ECL, 500; Intel, 200; Motorola, 200 New physical parts can be defined in metric units and mils; new library entries are formed for each package of each device Package options: rectangular, 28 or 32 pins; small- outline, 8, 14, 16, 20, 24; DIPs, 8, 14, 16, 20, 24, 28, 40; PLCCs, 44 or 68; zigzag, 16 or 20; various discretes, through-holes and connectors 	Flip-flip screen; double-sided boards; blind and buried vias, although not automatically
 Initial rat's-nest display Automatic placement; pin and gate swap facility 	Any signal priority multilayer auto router; any grid, 45° routing, keep-out zones, track necking	 32 × 32 16 layer 1-952 mils in 1-mil increments 	 Supplied Schematic and physical libraries can be defined in mil or metric DIPs: 4, 8, 16, 20, 22, 24, 28, 40; PLCC: any, SMSO/SMSO2 4-254, any outline user-definable for through or surface mount 	Double-sided, solder paste and resist for front and backside, blind and buried vias
Constructive Pairwise swapping; automatic pin and gate swapping	Single-layer, layer-pair, and simultaneous multilayer grids are supported; prerouting of signals; re-entrant maze router with extensions to reposition traces and vias; 45° routing; keep-out - zones at board and component level	• 39" × 39" (999 mm × 999 mm) • 20 signal; 10 power and ground • 1 mil	 New physical parts can be defined graphically or in ASCII; parts can be defined in metric units and mils; physical parts are attributes of the schematic or library entries that are formed for each package of each device—hierarchical within library (many components can use same package information) 	Blind and buried vias, dual-sided design capabilities
 Fully automatic, optimized to minimize congestion and/or force- directed; rat's-nest display Simulated annealing; automatic component, pin, and gate swapping 	Signal prerouting; priority, channel, maze re-entrant layer-pair router; compaction; keep-out zones	• 36" × 36" • 20 signal, 40 power ground • 0.1 mil and up	 Schematic libraries: TTL, 1200; CMOS, 500; ECL, 200; Intel/AMD, 200 New physical parts can be defined in metric units and mils; new library entries are formed for each package of each type Package options: DIPs, 50; discretes, 100; others, 100 	Blind and buried vias

Vendor Contact	System name, typical cost	Mainframe	Workstation	Software only	Hardware environment • System support • Memory support • Graphics support	• Design entry • Simulation	• ERC • DRC • Extraction	Output formats • Printer/plotter • Assembler • Tester; other
Daisy Systems Corp. 700 Middlefield Rd. Mountain View, Calif. 94039 (415) 960-0123 Jerry Harvel Marketing Manager	Boardmaster STAR Router \$22.5k-\$28.5k	Vax			 80286, 80386/DNIX, UNIXEthernet, TCP/IP, NFS, Sun 386i 4–16-MB main memory and 85–475-MB hard disks Mouse, tablet input; Daisy hardware, bit-map graphics; 15"/19" monitor with 1024 × 832 × 8 resolution 	• DED II, ACE (Daisy) • DLS, MDLS, DSPICE, ADLAB, VLAB (Daisy)	BoardMaster on-line and batch; layout schematic vs. consistency checker BoardMaster on-line and batch; keep-out areas Procedural interface	 Gerber, HP, Printronix, Versatec, Laser Excellon, Trudrill drill MultiWire interface, auto assy, ATE
Douglas Electronics Inc. 718 Marina San Leandro, Calif. 94577 (415) 483-8770 Dana Dotson Marketing Manager	Douglas CAD/CAM \$3k (Also available from Bishop Graphics)	-		•	 Apple Macintosh Plus/SE, Mac II; Apple Talk local-area network 1-MB main memory; 400-KB disk drive; hard disk optional Keyboard, tablet, mouse input; Apple monitor 	Schematic Digital simulation included	• • •	• Gerber; HI; HP-GL; ImageWriter, Laser- Writer • Excellon • —
Hewlett-Packard Co. 19310 Pruneridge Ave. Bldg. 49AV Cupertino, Calif. 95104-9826 (800) 752-0900 Customer Information Center	HP Printed Circuit Design System (HP PCDS) \$59k-\$95.5k	-	•	-	 HP300 + HP-UX; HP800 Server; IEEE- 802.3 LAN 8-MB main memory and 152–571-MB hard disk Mouse and tablet input; bit-mapped video bit-slice accelerator; 16", 19" monitor with 1280 × 1024 × 8 resolution 	Design Capture System (HP) Design Verification System, fault simulator, HICHIP hardware modeling system (HP)	 On-line and batch electrical rule checker (HP) Design rule checker (HP) — 	 HP-GL Excellon, Trudrill, generic drill interfaces; generic pick and place interfaces; ACI HP3065 board test family; EDIF, IGES, GERBER interfaces
IBM Corp. 1503 LBJ Freeway 6th Floor Dallas, Tex. 75234 (214) 406-7518 C.W. Liles CAD/CAM/CAE Marketing Programs Manager	Circuit Board Design System (CBDS) \$22k-\$27.3k (software only)	•	•	•	 System 370 architecture (9370, 43XX, 30XX) and RT System System 370: 8-MB main memory and 50-MB user hard disk; RT System: 8–16-MB main memory and 70-MB user hard disk Mouse, keyboard input; 5080 monitor (1024 × 1024) 	LOKI, netlist inputs HILO-3, HSPICE	 — On-line design rule checker Netlist extraction 	 Gerber G7000E Excellon, Neutral, Trudrill, standard insertion Fairchild, GenRad interfaces
Interactive CAD Systems 2352 Rambo Court Santa Clara, Calif. 95054 (408) 970-0852 Eddy Ozomaro President	PROCAD Xtra \$600-\$1.5k	-	-	•	 PC/XT, AT 640-KB main memory Mouse, digitizer, joystick input; 19" monitor with 2048 × 2048 resolution 	Schematic capture included SILOS, MDL; SPICE, HSPICE, LVS, FutureNet	ECAD, NCA software Layout rule checker	• Epson, Gerber, HI, HP Laser-Jet, HP-PL, Toshiba • —
Intergraph Corp. 1 Madison Industrial Park Huntsville, Ala. 35807 (205) 772-2000 Randy Anderson Product Marketing Manager	PCB Engineer \$35k-\$70k	-	•	-	 Intergraph 100, 200, 300 UNIX workstations, Ethernet network 6–80-MB main memory and 156-MB–4-GB hard disk Mouse, digitizer input; 15"/19" monitor with 1184 × 884 resolution 	Design Engineer or Design Engineer PC HILO-3; CSPICE, Zycad Mach 1000, and Ikos	 On-line and batch On-line and batch EDIF 	 Optronics, Gerber, HP, Cal-Comp, and Versatec Bridgeport, Dynapert, Excellon, Philips, Posalux, Sieb and Meyer, TDK, Trudrill, and Universal GenRad, Factron/Schlumberger, HP, Marconi, Zehntel, and ES*P; interfaces to wire wrap

Initial placement Placement improvement Force-directed; density and/or Manhattan distance is user- definable; fixed-pre- placement; rat's-nest display Pairwise swapping and multiple swaps with same shape (package), spread and improve	Routing tools Signal prerouting; priority, costed-maze re-entrant router on up to 16 layers; ECL layout rule adherence; on-line 45° routing; keep-out zones for wires and vias; 45° rip- up and reroute any grid	• Max board size • Layer count • Grid sizes • 32" × 32" • 255 (BoardMaster); 16 signal, 16 power (Star) • Gridless (BoardMaster); 10, 20, 25, 50, 42-16- 42, 40-20-40, 40-10-	 Schematic libraries Library support Package libraries Schematic symbols: 74TTL, 398; 54TTL, 398; 4000C, 194; 74HC, 203; 54HC, 175; ECL 10K/10KH/100K, 279/215/118; memory, 360; PLAs/PALs, 64; microprocessors, 232; semicustom devices, 54; basic library, 93 New physical parts can be defined in metric units and mils; new library entries are formed for each package using information extracted from the schematics. Package options: DIPs, 6–64 pins; SIPs, 8–12; pin-grid arrays, 68–132; discretes, 2–8; all through-hole and SMT 	Surface-mount design support SMT configurations same library as through-hole, blind and buried vias, auto via fan out for SMT
• Manual only, rat's-nest display • —		38-12-12-38 (Star) • 32" × 32" • 16 routing layers • 1–1000 mils in 1- mil increments	 Schematic libraries: TTL, CMOS, ECL, discrete New physical parts can be defined in mils only User-created 	Blind and buried vias; user-definable surface-mount devices, placement on both sides of board
 Constructive; force- directed placement by device classification; rat's-nest display, mixed-size placement; two-sided placement; automatic placement grid generation Force-directed pairwise relaxation; automatic pin and gate swapping 	Signal prerouting; maze re-entrant router on 4 layers; 45° routing; keep- out zones for wires and vias; rip-up and re-try routing; adaptive grid routing; autoconnect to buried planes (whole or split)	 45"×45" (.01 mil resolution), 450 cm×450 cm (.001 mm resolution) 128 layers (99 copper) User-defined grids 	 Schematic libraries: TTL, 2698; MOS, 576; ECL, 160; microprocessors and PLDs, 163 New physical parts can be defined; new library entries are formed for each package of each device Package options: 9000 total devices including DIPs, SIPs, SOICs, PLDs, discretes 	Blind and buried vias; SMD discrete device library; auto- connect to buried planes (whole or split); pad entry specification; primary, secondary board view (flip- screen); placement on both sides of board simul- taneously; routing to off-grid parts; support of metric or English units
 Constructive; force- directed placement with user-specified weights; rat's-nest display Automatic and interactive component, gate, and pin swapping across windows 	Signal prerouting; priority, channel re-entrant router on 4 layers; 45° routing; keep-out zones for wires and vias	● 60" × 60" board ● 99 layers ● 1 mil up	 Schematic symbols: 10,000 elements New physical parts can be defined in mils only: each symbol requires only one symbol in the database and multiple package versions are defined for it Package options: DIPs, SIPs, axial, radial, mechanical, pingrid arrays, SMDs, TAB 	Flip-flip screen; double-sided boards; hidden and buried via support; SMD, TAB package libraries; SMT CAM file interfaces and hybrid support
Manual placement; step and repeat (fixed placement); rat's-nest display with optimization Pin swapping	Signal prerouting; priority, channel, look-out re- entrant router on up to 25- layer pairs; compaction; some ECL compatibility; 45° routing; keep-out zones	 64"×64" Unlimited 1-mil resolution 	 Schematic libraries: TTL, 500; CMOS, 150; linear, 150; other, 50; microprocessors, 300; memories/PLD, 200 New physical parts can be defined in metric units and mils; new library entries are formed for each package of each device Package options: DIPs, 20; SIPs, 10; through-hole, 10 	Blind and buried vias
 CIP (Constructive Initial Placement) includes "what if" algorithms, force- directed; min-cut with autoplacement on both sides of the board; rat's- nest display generated for minimum length or ECL Component, pin, gate swapping, and histro- gram 	Signal prerouting; priority, channel, maze multilayer; memory; compaction; rip- up and re-route; ECL layout rule; 45° routing from pins and bends; 60° routing for memory	● 64"×64" ● 16 ● 1/10 mil (.0001)	 5000 plus TTL, CMOS, ECL, and analog Physical parts can be defined in metric or mil units; each device may refer to a single physical description DIPs, SIPs, SMDs, axial; radial; chip carriers 	Blind and buried vias; automatic placement on both sides of the board; automatic fan-outs; hybrid support

Vendor Contact	System name, typical cost	Mainframe	Workstation	Software only	Hardware environment • System support • Memory support • Graphics support	• Design entry • Simulation	• ERC • DRC • Extraction	Output formats • Printer/plotter • Assembler • Tester; other
Mentor Graphics Corp. 1940 Zanker Rd. San Jose, Calif. 95112 (408) 436-1500 Jim Behrens Director, PCB Marketing	BoardStation \$59.7k		•		 Apollo 3500, 4500 and 10,000 multiprocessor (AEGIS and UNIX); Compute Engine global accelerator; Domain/Idea series DBMS 4–128-MB main memory and 155–348-MB hard disk Keyboard, mouse input; 19" monitor with 1024 × 1280 × 4 resolution 	NETED (Mentor) QUICKSIM, MSPICE, MSIMON, mixed- mode simulator (Mentor)	 On-line electrical rule checker On-line design rule checker Circuit extractor with hierarchical expander; two- way open ASCII database 	 Calcomp, Gerber, HP, Versatec Excellon and Trudrill interfaces GenRad 227X, Zehntel 850 interfaces
Omation Inc. 1210 East Campbell Rd. Suite 100 Richardson, Tex. 75081 (800) 553-9119 (214) 231-5167 Jackie Williams Marketing Analyst	SCHEMA-PCB \$975-\$2575 SCHEMA II + \$495			•	 PC/XT, AT, 386, PS/2 and compatibles; COMPAQ; AT&T and Zenith 512-640k main memory; 576k expanded memory (LIM); 10/20-MB hard disk M/S compatible mouse; IBM EGA and VGA NEC GB-1, Video 7, Genoa and Super Genoa, and Paradise 	• SCHEMA II + • SCHEMA-SILOS	 Schematic design rule checking before the netlist is loaded to PCB: Floating inputs, nets with no driving source, nets with multiple driving sources, nets with more than one label, nets with more than one label, nets with a single pin, reference designators used two or more times; PCB DRC: Air Gap and electrical connectivity DRC 	 Gerber, HI, HP, matrix printers: IBM (5152, proprinter, Pro-XL24), Brother, EPSON (FX, MX, LQ), Okidata (M92, M93, M192, M193, M292, M293), C.ITOH 1550, Toshiba (PS321 and PS341) Excellon —
Personal CAD Systems Inc. (P- CAD) 1290 Parkmoor Ave. San Jose, Calif. 95126 (408) 971-1300 Sales Desk	Master Designer \$8.5k-\$14k Associate Designer \$3.9k-\$9.9k	•	-	•	 PC AT (MS-DOS 2.0+) 640-KB main memory and 20-MB secondary storage. 2-MB LIM Mouse, digitizer, keyboard inputs; 13"/19" monitor with CGA, EGA 	PC-CAPS (P- CAD) LOGS II (P- CAD)	On-line electrical rule checker On-line/batch design rule checker Netlist/circuit extractor	Bruning, Calcomp, C.Itoh, Epson, HI, HP, IBM-GTCO, Interleaf, Muto, Okidata, Seiko, TI, Gerber, more Component insertion NC drill
Racal-Redac Inc. 238 Littleton Rd. Westford, Mass. 01886 (508) 692-4900 Susan Cook Marketing Communications Manager	VISULA PLUS \$12k-\$60k		•	•	 Apollo; DEC; Sun; MIPS; Domain, Ethernet, DECnet, NFS Hardware platform dependent, 4 MB-32 MB Mouse or keyboard input; 15"/19" monitor; resolution h/w dependent 	 VISULA PLUS design entry CADAT; SPICE; SABER Pacific Numerix thermal analysis 	On-line and batch electrical rule checker On-line batch design rule checker and manufacturing checker	 Calcomp, Ferranti, Gerber, HP, Versatec Universal; Dynapert; Fuji; Excellon GenRad, Marconi, Zehntel; user-definable outputs
Royal Digital Systems Inc. 2855 Kifer Rd. Santa Clara, Calif. 95050 (408) 970-0909 A.V. Seshadri Vice President, Sales	Royal Digital Scepter Systems \$25k-\$40k	-			 Silicon Graphics workstations, Sun microsystems workstations, desktop, and file savers Depends on platform Depends on platform 	• Flexible— supports many popular schematic capture packages • P-SILOS; CADAT; P-SPICE; timing verifier	On-line and batch electrical rule checker Design rule checker Circuit extractor	 Gerber; ASCII; Calcomp pen plotters, HPGL formats Excellon; Universal; ASCII Fairchild; Zehntel; Everett Charles; ASCII interface

Initial placement Placement improvement	Routing tools	• Max board size • Layer count • Grid sizes	• Schematic libraries • Library support • Package libraries	Surface-mount design support
 Random; constructive; force-directed; two- sided; rat's-nest display Automatic and interactive component, gate and pin swapping; full automatic analog support; associative placement by area, device or from schematic 	Signal prerouting; priority, channel, maze, memory re-entrant layer pair router; compaction simulated through cost controls; ECL layout rule adherence; 45° routing; keep-outs for components, wires, and vias; automatic routing multiple wire widths, shove aside and combination grids	 100" × 100" 255 layers Automatic generation of grid from design rules, with 0.1 mil minimum in variable grid range; no limit to pin count or pins per net 	 Schematic symbols: 54TTL, 74TTL, 74HC, 54HC, HCT, ECL 10K and 100K, memory, PLDs, PALs, PLAs—3000 New physical parts can be defined in metric units and mils; symbols are automatically packaged during layout Package options: 90 	Blind and buried vias; user-definable surface-mount package and land- pattern libraries; simultaneous two- sided placement
Matrix; force-directed; rat's-nest display Component, pin, and gate swapping; auto placement	Minimum manual routing 1 mil; 10, 20, 25, 50 autorouting grids; 4 autorouting algorithms (memory, power/ground, horizontal vertical, maze/search algorithm with 8 passes with each pass handling connections in increasing difficulty with the last pass doing via reduce	• 32" × 32" • 30 layers • 1-1000 mils in 1- mil increments	 4800 total; TTL (54 and 74); CMOS (4000 and 7000); ECL (10K and 100K); memory; analog; microprocessors (Intel, Motorola, Zilog, and VLSI); discrete, graphical, IEEE New physical parts can be generated to the users specifications in both packages. 3500 parts: 8-128 pin DIPs, SMD, and pin grid array, SIPs 	The parts can be placed on the top or bottom layer with the pads distinguished with different colors; blind and buried vias in standard or micro sizes
Constructive (user- defined lattices); Kernighan-Mathaea min- cut; rat's-nest display, force vectors Simulated annealing; component and gate swapping, pin swapping	Signal prerouting; priority, maze re-entrant all-layer router; 45° routing; keep- out zones, fine line, analog, interstitial vias, trace hugging	 64"×64" 100 layers (including graphics and signal layers) 1 mil up, 1-mil increments 	 Schematic symbols: TTL; CMOS; linear; discrete; electromechanical; Intel microprocessors; Motorola microprocessors; SMT; 6000 + parts New physical parts can be defined in metric units and mils; physical parts are separate entries Package options: DIPs, SOICs, SMDs, SIPs, more 	Predefined footprints; blind and buried vias; extensive library; two-sided CAM interfaces
 Constructive; force-directed; min-cut; rat's-nest display; placement aids for both sides of board Simulated annealing; automatic gate and pin swapping 	Signal prerouting; 45% memory router; rip-up and retry push-aside router; keep-out areas; high- speed logic router; interactive autorouter	 5 meters × 5 meters 50 electrical layers, 200 documentation User definable in 1/100th-micron increments 	 Schematic symbols: TTL, CMOS, ECL, analog, PALS, microprocessors, connectors New parts can be defined in metric units and mils Package options: DIPs, SIPs, PGAs, SMDs, axial lead, hybrid dyes, user-definable 	User-definable pads; blind and buried vias; auto component mirror; SMT CAM interfaces; auto- placement on both sides; fine-line routing
Constructive; user- directed; rat's-nest display; expert system derives placement from knowledge base of 100 designs; automatic placement on both sides of board Component, gate, and pin swapping	Signal prerouting; channel router; finishing router with user-defined window; strategic compaction; ECL layout by net; re-entrant; 45° routing; keep-out zones; post process clearance and circuit verification available	 32" × 32" 20 signal layers; 256 documentation layers 1 mil and up in 1- mil increments (76.2 million grids in both X and Y direction), grids can be shown as points or lines in user-specified colors 	 Schematic symbols: TTL, 600; LSTTL, 300; CMOS, 700; ECL, 100; analog, 250; LSI, 600; nonpackageable symbol type New physical parts can be defined in metric units and mils; new library entries are formed for each package of each device Package options: DIPs, SIPs, SMDs, pin-grid arrays, axial, chip-on-board, hybrids 	Surface-mount packages and land- pattern libraries; blind and buried vias; open file format for SMT CAM file interfaces; automatic via depth control; hybrid design support

Vendor Contact	System name, typical cost	Mainframe	Workstation	Software only	Hardware environment • System support • Memory support • Graphics support	• Design entry • Simulation	• ERC • DRC • Extraction	Output formats • Printer/plotter • Assembler • Tester; other
Schlumberger CAD/CAM 4251 Plymouth Rd. P.O. Box 986 Ann Arbor, Mich. 48106 (313) 995-6000 Brian F. Barton Director of Electronics	Bravo 3 \$40k	•			 VAX (VMS); Sun (UNIX); Applicon Graphicstations; Ethernet, DECNet 5-MB main memory and 350-MB hard disk Mouse, tablet input; 19" Applicon monitor with up to 1536 × 1197 × 8 resolution 	 Applicon design capture CADAT; SPICE 	 High-speed electrical rule checker (batch) Design rule checker Circuit extractor 	 Generic plotter interface Generic assembly equipment interface Generic tester interface
Scientific Calculations Inc. 7796 Victor-Mendon Rd. Fishers, N.Y. 14453 (716) 924-9303 Douglas W. Spice Director, Marketing Services	SCICARDS \$25k-\$45k				 VAX (VMS); SC Design Station (UNIX); Ethernet, DECnet; Sun (UNIX) 6-MB main memory Mouse, keyboard input; 19" monitor with up to 1024 × 1024 resolution 	SCIDesign schematic capture CADAT simulation	 On-line electrical rule checker On-line design rule checker — 	 Benson, Calcomp, HP, Versatec Excellon; Universal GenRad, HP, Tektronix interfaces
Shared Resources Inc. 3047 Orchard Park San Jose, Calif. 95134 (408) 434-0444 Robert Wong Executive Vice President	Koloa PCB Design System \$50k-\$100k	-		•	 Elxsi; Multiflow; Prime; IBM 43xx; Apollo; Sun; VAX 2–4-MB main memory and 70-MB hard disk Mouse, keyboard input; 15"/19" monitor with 1280×1024×4 resolution 	Generic CAE interface Direct link to AIDA simulator	On-line and batch electrical rule checker Correct-by- construction layout	 Calcomp; Gerber; Versatec Excellon, Trudrill; Universal Faultfinder; GenRad; HP; Teradyne; Zehntel; Trace, most bare-board testers; Wirewrap
Tanner Research 128 W. Del Mar Blvd. Pasadena, Calif. 91105 (818) 795-1696 David Lipin Product Manager	L-Edit \$495 DRC Module \$400		-	•	 PC, XT, AT, 386, PS/2, or compatible 640k EGA, mouse input 	• N/s • N/s	• — • Optional design rule check module • —	 Epson dot matrix, HP-GL, postscript printers and phototypesetters, Gerber — —
Teradyne EDA 2141 Landings Dr. Mountain View, Calif. 94043 (415) 962-1440 Steve Chidester PCB Product Manager	(Case Technology) Vanguard PCB Design System \$5k-\$30k		•		 IBM PC 286, 386, and compatibles; Sun 3/260; MicroVAX 2000/GPX; Ethernet 4–16-MB main memory and 30–140-MB hard disk Mouse, keyboard input; EGA; Microfield Graphics monitor with 1280 × 1024 × 8 resolution 	• Vanguard (Case) • CADAT; SILOS; SALT; HILO; HSPICE; IG- SPICE; Touchstone; PSPICE; LDS; timing verifier	 Electrical rule checker from menu Consistency, keep-out checker, parameterizable design rule checker (Case) — 	 Gerber, HP Excellon drill; Universal pick-and- place; Techno insertion Zehntel interface

Initial placement Placement improvement	Routing tools	• Max board size • Layer count • Grid sizes	• Schematic libraries • Library support • Package libraries	Surface-mount design support
 Constructive and force-directed initial placement; rat's-nest display Component, pin, and gate swapping 	Signal prerouting; channel, maze, priority multilayer router on 5-, 10-, 20-, 25-, 50-, or 100-mil grid; compaction; rip-up; 45° routing; keep-out zones	 Any board size 32 layers Manual routing grid on any grid size 	 Schematic library: TI TTL, 1882; Motorola STTL, 280; Motorola HCMOS, 99; Intel microprocessors, 92 New physical parts can be defined in metric units and mils; new library entries are formed for each package of each device Package options: DIPs, 15; also flat packs, transistors, can- type ICs 	User-defined surface-mount land patterns; board can be viewed from any angle; double-sided boards; blind and buried vias
 Force-directed; rat's- nest display Simulated annealing; component, gate, and pin swapping 	Signal prerouting (all sizes); priority, channel, maze re-entrant router; ECL layout rule adherence; 45° routing; keep-out zones; 100% rip- up and retry	• 60" × 60" • 32 signal layers • Any from 1 mil up	 Schematic library: user-defined New physical parts can be defined in metric units and mils Package options: user-defined 	User-defined library for packaging and surface-mount land patterns; blind and buried vias; double- sided boards; SMT CAM file interfaces
 Manual preplacement; rat's-nest display Placement aids 	Priority routing with tuning; channel-like router; automatic trace centering; complete transmission line management; re-entrant; 45° routing; keep-out zones for wires and vias	 100" × 100" Essentially unlimited Any grid from 1 μm to 1"; up to 10 wires between pins 	 — New physical parts can be defined in metric units and mils; all attributes come from package library Package options: all TTL, ECL, and standard VLSI packaging; surface-mount packaging and surface-mount land patterns for most standard components 	Flip-flip screen; double-sided boards; hidden and buried via support
 Manual placement; step and repeat; hierarchical design editing — 	N/s	 65" by 65" depending on grid size selected 65,000 layers User-defined 	 DIP pad library supplied, hierarchical editor makes package library maintenance and generation easy 	N/s
• Ordered by connectivity and user filter; rat's-nest display • —	Signal prerouting; priority, channel, maze multilayer re-entrant router; compaction; rip-up; 45° routing; keep-out zones	 32" × 32" 20 layers simultaneous in router (it can do 256 layers) Variable in 1-mil increments 	 Schematic symbols: digital, 4000; analog, 500; other, 500 New physical parts can be defined in mils; new library entries are formed for each package of each device (normally parts are attributes) Package options: DIPs, SIPs, SMD, analog 	Blind and buried vias

					Hardware environment			Output formats
		٩	ion	only	System support		• ERC	Printer/plotter
		ıfram	kstat	ware	Memory support	Design entry	• DRC	Assembler
Contact	System name, typical cost	Mai	Noi	Soft	Graphics support	Simulation	Extraction	• Tester; other
Valid Logic Systems Inc. 2 Omni Way Chelmsford, Mass. 01824 (508) 256-2300 Katherine Gambino Director, Product Marketing, PCB Division	ALLEGRO From \$20k			•	 Sun 3/60, 3/110, 3/260, 4/110, 4/260; No special graphics hardware required; 8-MB memory (min.); 32-MB memory (max.); 19" color or mono monitor with 1152 × 900 resolution DEC 3200, 2000, or GPXII workstations running under VMS; 8-MB memory (min.); 32-MB memory (max.) Ethernet, DECnet networking support; NFS support 	• — • ValidSPICE PRECISE circuit simulator (Electrical Engineering Software); ValidSIM behavioral, logic, and switch simulator with timing analysis; TIMEMILL (EPIC Design Technology) mixed-level timing simulator and critical path analyzer; RapidTEST fault simulator	Electrical continuity checker Physical design rule checker Electrical analysis calculator to measure net impedance, capacitance, propagation delay, inductance and resistance on board layouts; wire delay extractor for input to digital simulation; SPICE model extractor for input to analog simulation	 Calcomp; HP; Versatec; Gerber and laser photoplot Excellon NC drill/route; universal inserters; generic ASCII interfaces can be modified by the user to create other post-processors CV CADDS 4X mechanical; SDRC IDEAS mechanical; PCB interfaces from SCICARDS, Calay, Redac Maxi, Cadnetix, Calma, Computervision; Intelligent Gerber-in
	ALLEGRO- REVIEW \$10k ALLEGRO-	-	_	•	 Sun 3/60; Sun 4/110; 8- MB memory (min.) DEC 3200 (VMS) or GPXII; 8-MB memory (min.) Color or mono Same as ALLEGRO 	Same as ALLEGRO Same as	Continuity checker Physical design rule checker Same as ALLEGRO Same as	Calcomp; HP; Versatec plotter support
	ENGINEER \$22k				REVIEW	ALLEGRO	ALLEGRO REVIEW, plus thermal analysis of PCB layouts; reliability rates of individual components and boards; noise margins and voltage/- temperature threshold shifts	
Vamp Inc. 6753 Selma Ave. Los Angeles, Calif. 90028 (213) 466-5533 J. Soluk Marketing Director	McCAD EDS-1 \$1.5k		-	•	 Macintosh, Appletalk 1–2-MB main memory and 20-MB hard disk Mouse, digitizer input; 19" monitor with 1024 × 780 × 8 resolution 	McCAD schematics McCAD DSIM; circuit simulation under development	• • •_	Apple; HI; HP Excellon; Allied Linotronic interface
Visionics Corp. 343 Gibraltar Dr. Sunnyvale, Calif. 94089 (408) 745-1551 Alex Wellins Director of Marketing	EE Designer III \$4k		-	•	 PC/XT, AT, PS/2 640-KB main memory up to 2 MB Mouse or digitizer input; CGA or EGA monitor, VGA, 1024 × 768, 1280 × 1024 	Visionics sche- matic capture; interfaces to Or- CAD and Omation Visionics logic and circuit simula- tion; interfaces to OrCAD and Omation	Electrical rule checker Design rule checker Circuit ex- tractor	• DM-PL; Epson; Gerber; HP-GL, Calcomp • Excellon •
Wintek Corp. 1801 South St. Lafayette, Ind. 47904 (317) 742-8428 Marcia Borton CAD Sales	smARTWORK \$2k	-	-	•	 PC/XT, AT (DOS 2.0+) 512-KB main memory Mouse input; CGA, EGA, VGA monitor 	Wintek schemat- ic capture	Layout vs. schematic con- sistency checker On-line design rule checker Circuit ex- tractors	• Epson; Gerber; IBM; HI; HP • Excellon; DAC; IPC- NC/349 •

Initial placement Placement improvement	Routing tools	• Max board size • Layer count • Grid sizes	• Schematic libraries • Library support • Package libraries	Surface-mount design support
 Board floorplanning feature supports layout partitioning and better control of placement of critical components; three different placement algorithms are optimized for IC, discrete, and gate array placements; DRC for auto-insertion clearances and height restrictions Pin and gate swapping 	An expert routing system utilizes costed maze, rip- up and retry, and push/shove routines to achieve high completion rates without requiring a hardware accelerator; special routing features are provided for ECL or high-speed nets, including automatic signal scheduling, automatic terminator assignment, and priority, daisy chain routing; routing supports 45° angles and a range of glossing features including trace centering between pins, via minimization, and jog elimination	 Boards as large as 6.8 miles on each side at 1 mil resolution can be supported in a single database 50 routing layers and unlimited data/drafting layers Database resolu- tion down to 0.00001 mil; metric and English unit support; regular and non uniform grids supported in any user defined size 	 4000 + TTL, ECL; 30 + PLDs; 60 + memory; 100 + LSI/VLSI; 100 + ASIC design kits; behavioral models from Logic Automation and Quadtree; analog libraries New physical parts can be defined in metric units and mils; a single device definition can be used for multiple package descriptions Symbol library contains over 100 package options: DIP, 8–64 pins; SIPs, 6–12; SOICs, 8–24; PLCCs, 20–68; pin-grid arrays, 68–172, 1/4–1-W resistors; capacitors; many connectors 	Double-sided boards; automatic blind and buried via selection by router; automatic pin es- cape generation; automatic test pad insertion for SMD devices; dual sided autoplacement
 Board floorplanning tools allow the engineer to partition the layout; automatic and interactive placement features permit complete or partial placement of critical components Pin and gate swapping provide for optimization of initial placement 	Critical signals can be interactively connected by the engineer, then fixed to prevent changes by the autorouter or layout designer using a complete ALLEGRO design system; after routing, any trace can be electrically analyzed or edited by the engineer using ALLEGRO- REVIEW	 Boards as large as 6.8 miles on each side at 1 mil resolution can be supported in a single database 50 routing layers and unlimited data/drafting layers Database resolu- tion down to 0.00001 mil; metric and English units support; regular and nonuniform grids supported in any user-defined size 	 4000 + TTL, ECL; 30 + PLDs; 60 + memory; 100 + LSI/VLSI; 100 + ASIC design kits; behavioral models from Logic Automation and Quadtree; analog libraries New physical parts can be defined in metric units and mils; a single device definition can be used for multiple package descriptions Symbol library contains over 100 package options: DIP, 8–64 pins; SIPs, 6–12; SOICs, 8–24; PLCCs, 20–68; pin-grid arrays, 68–172, 1/4–1-W resistors; capacitors; many connectors 	Dual-sided automatic placement; blind and buried via support
Manual only Rubber banding and rat's-nest display	Signal prerouting; priority routing; compaction; rip-up under development; re- entrant; 45° routing; keep- out zones	• 32" × 32" (manual); 16" × 16" (automatic) • 32 layers • 10, 20, 25, 50, 100, 125, 150, 156, and 200 mils	 Schematic symbols: basic set, optional additional libraries New physical parts can be defined in metric units and mils; physical parts are attributes of the schematic Package options: 3000 	Double-sided SMT boards; user- definable footprints
 Autoplacement based on board size, density, and routing require- ments; rat's-nest display (partial or complete) Manual component, gate, and pin swapping only 	Signal prerouting; priority, channel, maze multilayer router; keep-out zones; 45° routing; window options	• 32″ × 32″ • 36 layers • 1 mil	 Schematic symbols: TTL, CMOS, ROM, RAM, EPROM, PROM, analog, 200; additional 200-part library available New physical parts can be defined in metric units and mils Package types: DIPs, 2; SIPs, 1; discrete, 3; SMD, 1 	Surface-mount package included; component mirror, place on any layer
Manual placement only	Signal prerouting; maze layer-pair router; re- entrant; 45° routing; keep- out zones	 10" × 16" 2 signal layers, 2 soldermask layers, 1 silkscreen layer 50-mil grid 	 Schematic symbols: TTL, 294; CMOS, 148; ECL, 55; microprocessors, 144; miscellaneous, 74; ladders, 86; borders, 19 New physical parts can be defined in mils only Package options: footprints created individually 	-

1

Directory of IC Layout Systems

		2	Hardware configuration							
Company Contact	System name and configuration	Typical cost	CPU (operating system)	Main memory secondary storage	Graphics processor and memory	Display resolution size	Local-area network			
Andrew Tickle Associates 1222 Richardson Ave. Los Altos, Calif. 94022 (415) 965-9540 Andrew Tickle President	TURBO-CAD (software only)	\$30k- \$50k	VAX, PC AT, Silicon Graphics, Sun 3, Sun 4, 386i	Standard host configuration	Standard OEM	Standard OEM	Ethernet			
Aptos Systems Corp. 5274 Scotts Valley Dr. Scotts Valley, Calif. 95066 (408) 438-2199 John Roth Product Manager	ICD One (software and graphics card) DeskTop Cell Pro (software only)	\$5200 \$750	IBM or Compaq 286, 386 or compatibles	640 KB 20-MB disk minimum 9-track tape	Artist I series controller card EGA	1024 × 768 × 4 19" EGA monitor	3Com; GDS II interface via PC serial interface or Ethernet			
Cadence Design Systems Inc. 555 River Oaks Pkwy. San Jose, Calif. 95134 (408) 943-1234 L. Siegel Manager, Public Relations	Dracula (stand-alone workstation or host with attached stations)	\$35k– \$150k	MicroVAX with VMS or Ultrix; Apollo; Sun; MIPS	16 MB 300 MB plus disk	Apollo, DEC, Sun	1024×1024×4 1024×1024×8 15″–19″	Domain, DecNet, Ethernet, TCP/IP			
	EDGE: layout, PDV (Physical Design Verification), compactor, place and route SYMBAD: OED, PED, LVS, BPR, FP, SBB	\$25k- \$150k	DEC (Ultrix, VMS) Apollo (Domain) Sun (UNIX)	8 MB minimum 130 MB plus disk	DEC GPX 8-plane graphics Standard color graphics	864×1024 1024×1024 910×1152	Ethernet, DECnet Ethernet, Domain Ethernet			
Control Data Corp. 8100 34th Ave. South Minneapolis, Minn. 55440 (612) 853-5255 R.L. Biggs Marketing Manager	MIDAS/LAYOUT (host or cluster controller with attached workstations or graphics terminals)	\$250k (soft- ware)	CDC CYBER- 180 series (NOS)	8–16 MB 200 MB on line	Apollo processors and/or Orcatech 2000 processor 1 MB	512×512, 1024×1024 9″–14″	Domain			
Daisy Systems Corp. 700 Middlefield Rd. Mountain View, Calif. 94039 (415) 960-6586 Tom Flannery ChipMaster Product Manager	ChipMaster (stand-alone workstation) Advansys ChipMaster System (stand-alone)	\$52k- \$64k \$56k- \$67k	80386/287 (DNIX: UNIX 4.2 BSD enhanced) Sun 386i (UNIX)	8–16 MB, 140–327 MB disk, 60 MB QIC tape (on Sun 386i)	Am29116 bit- slice display controller X-window system on standard graphics h/w	1024×832 (×4 or ×8) 15" or 19" 1152×900×8 19"	Ethernet, TCP/IP, NFS			
EEsof Inc. 5795 Lindero Canyon Rd. Westlake Village, Calif. 91362 (818) 991-7530 Sandra Rochowansky Manager of Marketing Communications	MiCAD II (software only)	\$6.7k– \$11k	PC/XT, AT, or compatibles (MS-DOS 3.1) Apollo (Domain IX) Sun (Sun QS)	640K plus 2 MB above board 4 Mbyte	CGA, EGA 16 KB for CGA, 128 KB minimum EGA	$\begin{array}{c} 320 \times 200 \times 2 \\ (CGA); \\ 640 \times 350 \times 4 \\ (EGA) \end{array}$ $\begin{array}{c} 1280 \times 1024 \times 1 \\ 1024 \times 800 \times 4 \end{array}$	Ethernet			
			HP (HP-UX) VAX (VMS)							

		1/0	D formats Artwork database operations												
GDS I	GDS II	APL 860	APL 870	CIF	PG	EBES	Sizing	Scaling	Boolean	Design-rule checking	Extraction	ERC	Netlist compare	Front-end design tools	Symbolic layout and compaction; module generators
0	•	0	0	•	0	0	0	0	•	GDS I and CIF I/O; batch, on-line	Output dur- ing layout synthesis as SPICE netlist with parisitics included	0	•	Logic and cir- cuit synthesis; CMOS transis- tor-level netlist generation; Sil- var-Lisco SDS and CAL-MP in- terface	Automatic self-compact- ing layout; cell genera- tion; pad lay- out; RAM generator; netlist com- parison
0	•	0	0	0	0	0	•	•	0	Batch	Connectivity; R and C pa- rameters with circuit elements	•	•	CRITERION I schematic cap- ture; PSPICE circuit simulator	None
0			0	•				0		Batch, in- cremental, on-line, hierarchical	MOS, bipo- lar, CMOS connectivity with R and C parameters			SILOS and HILO (logic and fault simulator), SAGE (circuit simulator), SCOAP (testa- bility analyzer), SPICE and HSPICE (circuit simulator inter- face), Verilog netlist capability	None
0	•		0		0	0		•		Batch, in- cremental, on-line, hierarchical pattern rec- ognition	Connectivity transistor, R, and C pa- rameters		•	Same as above	Full-function polygon edi- tor with sym- bolic com- pactor, parameter- ized cells, procedural language and multi- window edit- ing
0	•	0	0	0	•	•	0	0	0	Batch, in- cremental, on-line	Capacitance parameters	•	0	Schematic cap- ture; MIDAS and other logic simulators; SPICE, ASPEC circuit simula- tors; Gateway test tools	None
0	•	•	0	•	•	•	•	•	•	On-line DRC; batch Dracula II	Connectivity; transistor, R, and C pa- rameters Automatic parameter in- sertion to simulator	•	•	DED II, ACE schematic cap- ture; DLS logic simulator; DSPICE circuit simulator	None
0	•	0	0	0	0	0	•		0	None	Pad patterns for chip and package- mounted de- vices, thin- film resistors, netlists to layout	0	•	TOUCHSTONE, Libra, and MWSPICE cir- cuit simulators	Automated netlist to lay- out transla- tion

Directory of IC Layout Systems (continued)

			Hardware configuration									
Company Contact	System name and configuration	Typical cost	CPU (operating system)	Main memory secondary storage	Graphics processor and memory	Display resolution size	Local-area network					
Emerald Design Systems Inc. 1043 N. Shoreline Mountain View, Calif. 94043 (415) 965-3300 Bob Greene Sales Manager	GEMstation SAPPHIRE TURBO-CAD (stand-alone workstation, host, or cluster controller with attached workstations or graphics terminals, or software only)	\$38k (system ware), \$45k (RISC system with soft- ware)	68020 MIPS, "RISC" UNIX V.3	4–32 MB 72 MB–1.1 GB disk 170 MB–9.6 GB	Silicon Graphics' proprietary Geometry Pipeline Hitachi	1280 × 1024 ×32 1024 × 768 × 32 19″	Ethernet TCP/IP, NFS, XNS					
IC Editors Inc. P.O. Box 5938 San Jose, Calif. 95150 (408) 971-2422 Donald Brandshaft President	ICED (software only)	\$99 5	PC/XT, AT, or compatible with mouse (MS-DOS 3.X)	640K, uses its own paging ICED pages to disk or EMS memory allowing up to 16 Mbytes to be used	EGA card with 128 KB or more RAM	640×350×8 11″–17″	GDS II and CIF interface via PC serial interface					
Integrated Silicon Design Pty. Ltd. 230 North Terrace Adelaide, SA 5000 Australia 61-8-223-5802 A.R. Grasso Technical Manager	Phase One VLSI Software Suite (software only) Phase Two VLSI Software Suite (software only) Phase Three VLSI Software Suite (software only)	Not specified	VAX, MicroVAX, Sun 3/4, Apollo 3000/6000, Hewlett- Packard 9000–300 PC AT/EGA	Not specified	Not specified	Not specified	Not specified					
Integrated Silicon Systems Inc. (ISS) P.O. Box 13665 Research Triangle Park, N.C. 27709 (919) 361-5814 Jim Poitras President Roger McPherson Denver, Colo., office (303) 666-0619 Lynda Muns Santa Clara, Calif., office (408) 562-6154	LTL-100/386 LTL-100/Sun	\$20k- \$30k \$20k- \$40k	386 Sun	4–16 MB 40–300 MB 8–16 MB 140–560 MB	Proprietary and standard Standard OEM	1024×1024×4 19″ 1100×900×8 19″	3COM, Ethernet, Sun, NFS					
Intergraph Corp. 1 Madison Industrial Pk. Huntsville, Ala. 35805 (205) 772-2000 Gary Staley Electronics Marketing Engineer	TANCELL (stand-alone workstation, or host or cluster controller with attached workstations or graphics terminals)	\$65k (work station)	Intergraph's Clipper-based stand-alone workstations (UNIX)	16 MB 150 MB	InterPro 32c 4 MB	1184×884 15″, 19″	IEEE-802.3 (Ethernet)					

		I/C) forma	its			Artwork database operations								
GDS I	II SOD	APL 860	APL 870	CIF	bd	EBES	Sizing	Scaling	Boolean	Design-rule checking	Extraction	ERC	Netlist compare	Front-end design tools	Symbolic layout and compaction; module generators
•	•	•	0		•	•	•	•		JADE "Instant Batch"	Output dur- ing layout synthesis as SPICE netlist with parisitics included (TURBO- CAD)	0	•	PC-based sche- matic capture; logic synthesis; circuit synthe- sis; CMOS tran- sistor-level net- list generation; timing analysis; support for Sil- var-Lisco's SDS and Cal-MP for- mats	Automatic, self-compact- ing layout, design-rule- driven; cell generation from Boolean or transistor descriptions; automatic pad layout; RAM gener- ator; symbol- ic editor; net- list compar- ison
0	•	0	0	•	0	0	0	•	0	1st quarter '89 Batch	None	0	O	None	None
0	0	0	0		0	0	•	•	0	Interactive; batch (whole de- sign or on a window)	Connectivity, substrate connection, length, width, area of drain and source, perimeter of drain and sources; ca- pacitance: active layers to substrate	•	0	Probe (in- house) full-volt- age-current cir- cuit simulation; system simula- tion and specifi- cation	Sticks editor; compaction; cell compila- tion from net- list
o		•	•	•	•	•				Interactive; batch (whole de- sign on an open struc- ture)	Available through C in- terface			None	CMOS cell compiler
0	•	O	0	0	0	0	0	O	0	Batch, in- cremental, on-line	R/C tree in- terconnect delay analy- sis, back an- notation	•	•	Schematic cap- ture: Intergraph Design Engi- neer, EDIF; log- ic simulation: HILO-3, TEGAS (TDL), ILOGS/ SILOS	Compactor type: batch and interac- tive

Directory of IC Layout Systems (continued)

			Hardware configuration								
Company Contact	System name and configuration	Typical cost	CPU (operating system)	Main memory secondary storage	Graphics processor and memory	Display resolution size	Local-area network				
Matra Design Semiconductor 2895 Northwestern Pkwy. Santa Clara, Calif. 95051 (408) 986-9000 Pradip Madan Vice President, Marketing and Sales	GATEAID PLUS/PC (software only) GATEAID II (software only)	\$945 \$95k	PC/XT, AT, 386 VAX 8600, 8650, 11/750, 11/780, or MicroVAX II (VMS)	640 KB min. Hard disk recommended 2 MB (minimum recommended) 200-MB disk	EGA, CGA, Hercules Tektronix 41XX series (or compatible)	640 × 480 640 × 480 × 4	None				
Mentor Graphics Corp. 8500 S.W. Creekside Pl. Beaverton, Ore. 97005 (503) 626-7000 Brain Kiernan Director of Corporate Communications	Chip Station (stand-alone workstation) Cell Station (stand-alone workstation) Gate Station (stand-alone workstation)	\$50k +	68020/68881 (12–33 MHz) (AEGIS or UNIX BSD 4.2/ System V)	4–32 MB 170-380 MB, 60- MB cartridge tape	Apollo Domain Series or Matrox Enhanced Graphics	1024 × 800 × 4 (DN3000); 1024 × 800 × 8 (DN3500/- DN4500); 1280 × 800 × 8 (Enhanced Graphics)	Domain or Ethernet TCP/IP				
MIETEC Raketstraat 62 1130 Brussels, Belgium (32) 2-728-1811 J.Y. Peigne Communications Director	Made (host or cluster controller with attached workstations or graphics terminals)	\$20k +	VAX 8530, VAX 750, MicroVAX II, VAXStation 2000 (VMS)	5+ MB 140+ MB	GPX, VAXstation 2000, Tektronix	480×640 1000×1200 19″	LAVC, Ethernet				
Schlumberger CAD/CAM 2833 Junction Ave. Suite 200 San Jose, Calif. 95134 (408) 433-4880 Brian Gardner Product Manager	Bravo 3 VLSI (stand-alone workstation or host with attached stations)	\$115k; \$15k (soft- ware); \$65k (work- station)	VAX (VMS), Sun (UNIX)	Standard VAX and Sun configurations	Proprietary and standard supported	Up to 1536 × 1157 color 19″	DECnet, Ethernet				
Scientific Calculations Inc. 7796 Victor-Mendon Rd. P.O. Box H Fishers, N.Y. 14453 (716) 924-9303 David Marini Vice President of Sales	MEDS (host with attached stations or software only)	\$50k (soft- ware)	VAX 11/780, 11/785, 8600, (VMS) MicroVAX II (VMS)	6 MB 500-MB disk 9 MB 213-MB disk	Megatek 7250 and VT100 64 KB	512×512×4 19″	Ethernet				
Silicon Compiler Systems Corp. 2045 Hamilton Ave. San Jose, Calif. 95125 (408) 371-2900 Richard Gordon Marketing Manager (201) 580-0102	GDT (software only)	\$88k software only	Sun (UNIX); Apollo (Domain IX); DEC (Ultrix)	4 MB minimum 12 MB for a 112K transistor design	Not specified 4 and 8 planes	1152 × 900 1280 × 1024 or 1024 × 864; 8-bit planes Varies; typically 13", 15", or 19"	Ethernet, Domain				
	Layout	\$30k software only	Sun (UNIX); Apollo (Domain IX); DEC (Ultirx)	4–32 MB 70-, 130-, and 474-MB disks 9-track and 20- or 40-MB ¼″ tape	Standard OEM graphics	1024 × 1024 × 8 1024 × 1024 × 4	Ethernet, TCP/IP, Domain				

		1/0) forma	ats				Artwork database operations							
GDS I	GDS II	APL 860	APL 870	CIF	bG	EBES	Sizing	Scaling	Boolean	Design-rule checking	Extraction	ERC	Netlist compare	Front-end design tools	Symbolic layout and compaction; module generators
0	•	0	0	0	•	0	0	0	•	Batch, on- line (limited)	R and C pa- rameters	•	•	Schematic cap- ture; logic simu- lation; graphical analyzer; layout extractor; testa- bility program; fault simulator	Sticks editor; user-defined SRAM com- pilers
0	•		0	•	•	•	•	•	•	Batch via Dracula II or III, interac- tive via Re- medi	Transistor type, size, and connec- tivity: Dra- cula, R, and C param- eters via Dracula	•	•	Schematic cap- ture is NETED; QUICKSIM log- ic simulator; MSPICE, MSI- MON circuit simulators	Device-level editing (Chip Station); con- nectivity- based editing and compac- tion (Cell Station); pro- cedural ac- cess toolkit for module generation
•	•	0	0	0	0	0	•	•	•	MASKAP; ECAD, batch, on- line	Transistor type, size, and connec- tivity: MAS- KAP; ECAD; capacitance	•	•	SDS, ACE, GED schematic capture; logic simulation; cir- cuit simulation; mixed-mode multilevel simu- lator	PLA, ROM, resistor, RAM, switch- ed-capacitor filter compil- ers
•	•	•	•	0	•	•	•	•	•	Interactive; ECAD, batch, incre- mental, hierarchical	Connectivity; transistor, R, and C pa- rameters	•	•	Design capture; logic analysis (based on CADAT); circuit analysis (based on SPICE)	Cell gener- ator runs off a netlist from a schematic
•	•	0	0	0	•	•	0	•	0	(Correct-by- construction approach)	Connectivity	0	0	(User interface)	Interactive symbol editor
0	•	0	0	0	0	0	•		0	Batch, on- line, hierar- chical	Transistor type, size, connectivity, capacitance, resistance stored in the L database- no extraction necessary	•	0	Interactive schematic and layout editor; mixed-mode analog and digi- tal logic simula- tor; behavioral- simulation; fault simulation; fault simulation; fault simulation; test test vector translation for Sentry and IMS	Mask-level symbolic lay- out; constraint graph com- paction; data- path compiler; CRT control- ler, core mi- croprocessor; RAM, ROM, PLA, random logic compil- ers
0	•	0	0	0	0	0	•	•	•	Batch, in- cremental, on-line, hierarchical	Connectivity; transistor, R, and C pa- rameters	•	•	Schematic cap- ture; mixed- mode simula- tion including behavioral, gate, switch, circuit, analog	Symbolic lay- out; automatic layout from circuit con- straint graph and vitual grid compaction

Directory of IC Layout Systems (continued)

				Hard	ware configuratio	n	
Company Contact	System name and configuration	Typical cost	CPU (operating system)	Main memory secondary storage	Graphics processor and memory	Display resolution size	Local-area network
Silvar-Lisco 1080 Marsh Rd. Menlo Park, Calif. 94025 (415) 324-0700 Tony Wainwright Vice President, Marketing	GARDS SCII PRINCESS DVP (All: stand-alone workstation, host or cluster controller with attached workstations or graphics terminals, or software only)	\$60k \$60k \$22k \$38k	VAXstation (VMS), IBM (VM/CMS), Apollo (AEGIS), Sun (UNIX)	4–16 MB 70–300-MB disk	Digital GPX and 4125, IBM 5080, Apollo, Sun	1024 × 1024 910 × 1152 (Sun) 19″	DECnet, Ethernet, Domain
Tangent Systems Corp. 2840 San Tomas Expwy. Suite 200 Santa Clara, Calif. 95051 (408) 980-0600	TANCELL (stand-alon? workstation, host or cluster controller with attached workstations or graphics terminals, or software only)	\$65k (work station)	Apollo (Domain), Intergraph InterPro 32C, 220 (UNIX); VAX, GPX (VMS); Sun (UNIX)	16 MB 150 MB	Intergraph InterPro 32C, 220; Apollo DN5xx, DN3000, DN4000; Sun 3, Sun 4	1280 × 1024 1024 × 1024 1024 × 800 1152 × 900	Ethernet, Domain, DecNet, TCP/IP
Rod Dudzinski Product Manager	TANGATE (stand-alone workstation, host or cluster controller with attached workstations or graphics terminals, or software only)	N/s	Intergraph InterPro 32C, 220 (UNIX); VAX, VAXstation (VMS); Sun (UNIX)	16 MB 150–300 MB	Intergraph InterPro 32C, 220; Apollo DN5xx, DN3000, DN4000; Sun 4	1280×1024 1024×1024 1024×800 1152×900	Ethernet, Domain, TCP/IP, DecNet
Tanner Research 128 W. Del Mar Blvd. Pasadena, Calif. 91105 (818) 795-1696 David Lipin Product Manager	L-Edit DRC module SCPAR module CMOS library Total (software only)	\$495 \$400 \$400 \$100 \$1395	PC/XT, AT 386 machine PS/2 or compatible (MS-DOS)	640K	Standard EGA with 256K	EGA 640×380	Any PC board network (e.g. Ethernet, Tops)
Valid Logic Systems Inc. 2820 Orchard Pkwy. San Jose, Calif. 95134 (408) 432-9400 Dirk Wauters Director, IC Product Marketing	Mask Design System, IC Design System, EDS-111 (stand-alone workstation or software only) GDSII/3200 (stand-alone workstation)	\$25k + \$84k	VAXstation II (VMS) Sun (UNIX) Data General MV7800 (ADS/VS)	5 MB 71 MB 5–8 MB 280 MB 4–14 MB 160–320 MB	GPX Sun graphics processor Proprietary bit- slice	-1025 × 864 color 19" 1152 × 900 color 19" 1280 × 1024 × 4 19"	DECnet, LAVC, Ethernet TCP/IP NFS, Ethernet TCP/IP Ethernet
VLSI Technology Inc. 1109 McKay Dr. San Jose, Calif. 95131 (408) 434-3000 Bill Murray Tactical Marketing Manager	VTitoois	\$20k- \$140k	VAX 760-8800, MicroVAX (VMS) Apollo (AEGIS) Sun 3, Sun 4 (UNIX)	16 MB 100 MB	AED or Tektronix 4115, 4125 Standard configurations Standard configurations	1280×767 1280×1024 1024×800 1280×1024 1152×910	DECnet, Ethernet TCP/IP, Domain

I/O formats							Artwork database operations								
GDS I	GDS II	APL 860	APL 870	CIF	PG	EBES	Sizing	Scaling	Boolean	Design-rule checking	Extraction	ERC	Netlist compare	Front-end design tools	Symbolic layout and compaction; module generators
		•			•					Batch, in- cremental, on-line, hierarchical	Connectivity; transistor, R, and C pa- rameters			SDS schematic capture; HELIX (behavioral) and ANDI/SWAP (mixed-mode) simulators; in- terface to CADAT, HILO, SPICE, and TSSI	Procedural language for module gen- eration (e.g., ROM, RAM, PLA)
0	•	0	0	0	0	0	0	0	0	Batch, in- cremental, on-line	Full param- eter extrac- tion of final routing	•	•	Netlist interface to HILO-3, TE- GAS (TDL), SI- LOS logic simu- lators, plus EDIF	None
0	•	0	0	0	0	0	0	0	0	Batch, in- cremental, on-line	Full param- eter extrac- tion of inter- connect	•	•	Netlist interface LEF; library in- terface DEF, GDSII	None
O	O	0	0	•	0	O		•	•	N/s	N/s	0	0	OrCAD sche- matic capture	Automatic standard-cell place and route; pad frame gen- eration; pad routing; CMOS stan- dard-cell lay- out library
•		0		•				•		Batch, in- cremental, on-line, hierarchical	Connectivity; transistor, R, and C pa- rameters	•		ValidGED sche- matic capture; ValidSIM logic simulator; PRE- CISE circuit simulator; TIMEMILL switch-level simulator and critical path analyzer	Symbolic in- terconnect editor, com- pactor, and floorplanner; placement and routing; MSI/SSI, FIFO, PLA, RAM, ROM, datapath, and other compilers
0	•	0	0	•	0	0	0	0	0	Batch, on- line	Connectivity; transistor and C pa- rameters	•	•	VTIschematic; VTIsim mixed- mode simulator; VLSI Qsim, Dai- sy and Mentor interfaces	Sticks, com- position, au- torouting, compaction; RAM, ROM, PLA, multipli- er, datapath, and other compilers

Enter the Knowledge-based

Cross the threshold into the Knowledge-based Engineering Environment (KE²), a world created by NCR specially for ASIC designers.

Here, the normal conventions of ASIC design are superseded.

Previously unthinkable deadlines are now routine.

Increased levels of quality are matched by decreased cost per gate.

Yesterday's integration impossibilities are mere keystrokes away.

And your control is absolute.

In ASICs, knowledge is power and with KE² tools and libraries, you command the knowledge amassed by hundreds of top ASIC designers over the past decade.

For example, our Design Synthesis[™] tool lets you design entire blocks without getting bogged down in implementation details. The system automatically generates correct and efficient logic specifications from your high-level language descriptions.

Design Advisor™ is an expert system that puts you in charge of a "team" of top ASIC design, test and production professionals that we "captured" in software. At your request, this "team" analyzes the design and reports back to you with comments and suggestions for your review.

ViTat[™], NCR's Static Timing Analysis Tool, compresses the time needed to analyze high performance designs by up to two months over pattern-driven simulations.

And there's much more, including function compilers, extensive libraries of digital/analog cells, MPU cores and supercells and the complete NCR ViSys[™] tool set.

Leave behind the ASIC design systems that restrain your capabilities and tether your imagination. Enter a world where there is more time, more power, more options. Where all your capabilities are multiplied.

A world all the more incredible because it's not an illusion, it's real.

For additional information on the Knowledgebased Engineering Environment, call the NCR Hotline **1-800-334-5454**. Or write, NCR Microelectronics, 2001 Danfield Court, Ft. Collins, CO 80525.

Engineering Environment.[™]

Creating value

LOGIC SYNTHESIS GIVES YOU MORE DESIGN CHOICES.

FutureNet® FutureDesigner™ gives you more choices than any other design entry software choices in how you enter your design, in target technologies, and in design output. And only Future-Designer uses logic synthesis to automatically turn your input choices into your output choices, optimizing and streamlining your design for the technology you select.

CHOOSE THE DESIGN ENTRY METHOD.

Only FutureDesigner lets you describe your design in the easiest, fastest, most natural way. You can enter some functions structurally, using DASH schematics. Others can be described behaviorally with any combination of truth tables, state diagrams, or high-level logic equations. Interactive verification and design rule checking help you catch errors up front, as you design.

CHOOSE THE TARGET TECHNOLOGY.

FutureDesigner is technology inde-

Choose the platform: FutureDesigner runs on 80386 and 80286 machines, IBM® personal computers, and the Sun-3 Series.

pendent. After you've described your design, you can choose any mix of TTLs, PLDs, LCAs, gate arrays, or other ASIC devices for implementation. It's also easy to migrate designs from one technology to another—for example, from TTL to PLD, PLD to LCA, or PLD to gate array.

CHOOSE THE OUTPUT FORMAT. With more than 100 DASH-Partners pro-viding a broad range of comple-

Data I/O Corporation 10525 Willows Road N.E., P.O. Box 97046, Redmond, WA 98073-9746, U.S.A. (206) 867-6899/Telex 15-2167 Data I/O Canada 6725 Airport Road, Suite 302, Missisauga, Ontario L4V IV2 (416) 678-0761 Data I/O Europe World Trade Center, Strawinskylaan 633, 1077 XX Amsterdam, The Netherlands + 31 (0)20-6622866/Telex 16616 DATIO NL Data I/O Japan Sumitomoseimei Higashishinbashi Bida, Br, 2-1-7, Higashi-Shinbashi, Minato-ku, Tokyo 105, Japan (33) 432-6991/Telex 2522685 DATIO J mentary products and services, Future-Designer's industry-standard format is accepted virtually everywhere. When you design with FutureDesigner, you'll have more choices in technologies, CAE systems, foundries, and service bureaus.

CHOOSE FUTUREDESIGNER WITH LOGIC

SYNTHESIS. With its unique logic synthesis capabilities, FutureDesigner reduces and factors your design, eliminating redundancy and improving efficiency. It optimizes for the particular technology you've selected, making the necessary speed/size trade-offs. Then it generates the schematics, net lists, or JEDEC files for programming PLDs. Automatically.

Call us today for more information. Find out why FutureDesigner is the design entry software of choice.

> 1-800-247-5700 Ext. 144

© 1988 Data I/O Corporation