600 Community Drive, Manhasset, New York 11030

1988 $50.00 Bulk Rate

Pos. taée
PAID

CMP
Publications
SYSTEMS DESIGN'S

DESIGN

AUTOMATION

The Information Source For Users
Of Electronic Design Automation Tools

A CMP PUBLICATION

“ASICs CREATE A
SET OF TEST PROBLEMS.
WE NEED A WHOLE NE

WHOLE NEW
DOESN’T THAT MEAN
TEST STRATEGY?”

IT SURE DOES.

[t’s easy to see that the tremendous potential of ASICs has
only just begun to be tapped. What's not so evident is the fact that
developing these unique ASIC devices carries with it some unprec-
edented test problems. Problems that traditional test approaches
and traditional ATE simply are not equipped to handle.

At ASIX Systems our focus has always been exclusively on
ASICs. From the start we recognized the unique ASIC test problems.
That’s why we took an entirely different approach to solving
these problems. For instance, we saw that adapting existing ATE
to fit the needs of ASICs didn’t make sense. Designing a totally
new, focused ASIC test system did. Test programs needed to be
automated, developed from the design data base, and simple to
change. The test system itself needed to be easy to use, designed
for its particular environment, and a cost-effective alternative to
the huge, expensive, complicated ATE.

TEST SOLUTIONS FOR THE WHOLE ASIC COMMUNITY.

Our unique perspective allowed us to understand that the
ASIC world is not Design Engineers, Test Engineers and Quality
Engineers performing separate functions. It's actually a
“community” of specialists whose tasks are intrinsically linked.
So we made sure that we could provide another crucial element.
Communication. In order to capture the vital time-to-market edge,
what ASIC designers and vendors really need is the opportunity
to use the same test programs and the same tester. Because when
both environments are working from a common frame of reference
there can be some real communication about test results. That's
awhole new way of looking at ASIC testing. That’s the ASIX-1
family of test systems.

ASIX-1: ASIC TEST SYSTEMS THAT MAKE SENSE.

This isn't the place to tell you everything the ASIX-1 family
has to offer. But here are a few things to think about: automatic,
menu-guided programming; data base management; ATE archi-
tecture and flexibility at an affordable cost; 256 true I/0 pins;
“zero footprint”; fully integrated PMU; automatic
calibration; simple fixturing; no cabling; .
high MTBF. Enough. You get the point. | & >
You really ought to see the ASIX-1 for
yourself. And the sooner the better.
ASIX Systems Corporation - 47338
Fremont Blvd « Fremont, CA 94538.

Ml
e

SH1 Lk
Lk

CALL: 1-800-FOR-ASIX

X

SYSTEMS
REAL ASIC TEST SOLUTIONS.

FROM THE REAL ASIC TEST COMPANY.
CIRCLE NUMBER 1

5 SYSTEMS DESIGN

I INTRODUCTION 5
INTRODUCTION TO THE GUIDE 8

Mike Robinson

EDA PUSHES TOWARD LOGIC SYNTHESIS 10

George Bouhasin

BUILD BETTER HARDWARE BY FOCUSING
it Miatre ON SOFTWARE 18

Special Projects Editor v
Mike Robinson Cindy Thames and Andrew S. Rappaport
Editor Emeritus

Roderic Beresford
Editor-At-Large

Stan Baker

Editors

David Smith (Western Region)
Ernest L. Meyer I
Editorial Assistant

Michelle A. Losquadro

Technical Advisers
John A. Darringer Jeffrey T. Deutsch Edward J.
McCluskey Alan F. Podell Daniel G. Schweikert

Susan L. Taylor
Editorial Production
e Askae P eler BENCHMARKING SCHEMATIC ENTRY SYSTEMS 30
it o ol Paul K. Filseth

Editorial Art

N By, D D A FIRST COURSE IN VHDL 40

Christine Catalano, Virginia Bassett. Layout

Manufacturing i
David Getlen, Dir. of Manufacturing David L. Barton

Jimes Pz, Productin Supervr SOFTWARE VS. HARDWARE MODELS
Vance Hicks, Coordinator

Publisher FOR SYSTEM SIMULATION 50

Norm Rosen
Ad Coordinator Pete Johnson
Tracy Renk

VLSI SYSTEMS DESIGN (ISSN 0279-2834) is pub-
lished monthly with an extra issue in May by CMP
Publications, Inc., 600 Community Drive, Manhas-
set, NY 11030. (516) 365-4600. VLSI SYSTEMS DE-
SIGN is free to qualified subscribers. Subscriptions to
others in the US: one year $60.00, two years $95.00; I
Canada and Mexico: one year $90.00, two years

$165.00; Europe, Central and South America: one

year $120.00, two years $225.00. Asia, Australia,
= 1ll PHYSICAL DESIGN 63
$285.00. Second-class {Requester) postage paid at

Manhasset, NY and additional mailing offices. POST-
MASTER: Send address changes to VLSI SYSTEMS

?F%ﬁ"éog(y’g;g& 685, CMP. Pubiiontions: 1oe. All LEAF CELL DESIGN 64
ights :
;l(l)g,ooorzz;zs of this issue printed. M.Y. Tsai and Stephen Wuu

E%?”“EZ‘:&‘%%“T“’ GRAPHICAL FLOORPLAN DESIGN
ronit ngineerin, imes
VLSI Systems Design OF CELL-BASED ICS 72

Ken Cron, Vice President/Publishing

Frank J. Burge, Vice President/Group Publisher
Norm Rosen, Group Marketing Manager Edmond Macaluso

CMP Publcations, ne. A RULES-DRIVEN APPROACH TO

Gerard G. Ixcd§. President ‘
Nichael S Lecds, Vie Prestent CIRCUIT BOARD DESIGN 80

sl il Joseph Prang and Katherine Gambino

2 DESIGN AUTOMATION GUIDE 1988

v

DIRECTORIES 95

DIRECTORY OF CAE SYSTEMS 96
DIRECTORY OF IC LAYOUT SYSTEMS 110

DIRECTORY OF PRINTED CIRCUIT BOARD LAYOUT
SYSTEMS 118

REFERENCES 129

GUIDE TO THE LITERATURE 130

VLSI SYSTEMS DESIGN SUBJECT INDEX,
19861987 133

ADVERTISERS’ INDEX 138

i.j

1988 DESIGN AUTOMATION GUIDE

Tektronix Deliversinteg

rated PCB Design
) Capture, Simulation, Layout and Manufacture.

When you're ready to fabricate
your boards, the Tektronix PCB division
provides you with automated manufac-
turing, on-time delivery and consistent
quality control.

"IN ASERIES

Tektronix

Its all part of Tektronix Aided Engineer-
ing. A family of integrated WorkSystems
addressing each area of your electronic
design cycle. From design capture,
verification and documentation to IC and
PCB layout. All running on industry-

SIS Engincering

Choosing the right PCB design
solution can be a challenge.

Especially when you
consider that today’s
dense, multilayer designs
combine digital and
analog technologies with
both through-hole and

Documentation

PRODUCT
CONCEPT

surface-mount packages.

The one sure way to
meet your design require-
ments is with the PCB
WorkSystem™

Developed by Tektronix
as part of Tektronix
Aided Engineering, the
PCB WorkSystem com-
bines design capture,
verification, documentation
and PCB layout into one
powerful solution.

Which means you get Designer’s
Database Schematic Capture, industry-
standard HILO-3"logic simulation and
MERLYN-P™ layout. All in the same
PCB design environment.

So you can capture your schematic,
simulate the circuit, fully place and route
your design, and then transfer CAM
output data to manufacturing.

The PCB WorkSystem also lets you
manage Engineering Change Order
iterations more efficiently. The
system’s automatic forward and back-
ward annotation tools ensure that your
schematic always matches your layout.

What's more, the system’s router
completely enforces flexible, user-defined
design rules, resulting in fully routed
designs that meet your manufacturing
requirements.

iR AR

- -

standard platforms from Apollo®
and DEC™
Best of all, it's from Tektronix. The name
you've always trusted to get the engi-
neering job done. So you're assured of
worldwide service, support and training.
To take advantage of Tektronix Aided
Engineering, contact your local Tektronix,
CAE Systems Divisions, sales office,
Or call 800/547-1512. Tektronix, CAE
Systems Division, PO. Box 4600,
Beaverton, OR 97076.

WorkSystem, DDSC, and MERLYN-P are trademarks of Tektronix, Inc
Apollo is a registered trademark of Apollo Computer, Inc

HILO is a registered trademark of GenRad, Inc
DEC is a trademark of Digital Equipment Corp.

CIRCLE NUMBER 4

Tektronix

COMMITTED TO EXCELLENCE

INTRODUCTION

INTRODUCTION TO THE GUIDE

Mike Robinson

EDA PUSHES TOWARD LOGIC SYNTHESIS

George Bouhasin, Mentor Graphics Corp.

When logic synthesis appears in electronic design automation systems, it will let
designers enter designs in the high-level format of their choice. The system will
break down these descriptions into a network of primitives and optimize the design
according to the designer’s specifications and goals.

BUILD BETTER HARDWARE BY FOCUSING ON SOFTWARE
Cindy Thames and Andrew S. Rappaport, The Technology Research Group

The interdependence of the hardware and software portions of increasingly complex
systems demands greater cooperation between hardware and software designers. A
further quantum step in hardware development will come about only when design-tool
suppliers address the challenges of concurrent hardware and software design.

1988 DESIGN AUTOMATION GUIDE 5

NOW YOUR RIGHT HAND
CAN KNOW WHAT
YOUR LEFT IS DOING.

Ever seem like your CAE and CAD
people are playing for different
teams? Especially when it time
to turn that hot new system
design into a working board?
Chances are its because your
design systems can't communicate
critical information from the
engineer to the layout designer.
So instead of a smooth handoff,
you get hand-to-hand combat.
But now theres a system that

streamlines the way CAE and
CAD teams work together.

Its Daisys BOARDMASTER"
The first automated system that
plays by the rules of real-world
system design.

Rules-driven PCB design puts

CAE and CAD on the same team.

With its rules-driven PCB design
environment, BOARDMASTER
gives engineers the flexibility to

specify key design rules in the
schematic. Rules for signal
priority. Ordering and termination
for ECL nets. Package types and
power definition. Pre-packaging
and pre-placement priorities. Pin
and gate swapping. And many other
important design considerations.
This critical information
becomes part of the design data-
base and is passed directly to
BOARDMASTER's powerful set

of PCB layout tools.
With these rules guiding the
process, layout designers can
concentrate on maximizing the
quality and manufacturability of
the layout without having to
second-guess the engineer’s
real intentions.

The most advanced tools for
today’s complex designs.

BOARDMASTERS rules-driven
methodology guides the most
advanced set of layout tools
available anywhere. Like 100%
autorouting, with separate
rip-up/reroute and manufacturing
passes to increase board yields
and reduce per unit costs.

Theres full support for advanced
technologies like SMD, ECL, analog
and ultra fine line designs. Plus
a variety of interfaces to photo-
plotters, N/C drill machines

and other
manufacturing
equipment. Theres even
a Sun-4™based routing accelerator,
so your team can spend less time
routing and more time exploring
design alternatives.
BOARDMASTER even takes
the frustration out of design
changes. Because its incremental
update capability processes only
the parts of the database that
need changing. Which keeps ECO
from becoming a four-letter word.

Get your hands on
BOARDMASTER and see
for yourself.

So if you'd like to get a grip
on better board design, put
BOARDMASTER to the test in
your next project. And give your
entire team a hand.

For a demonstration or
more information, call Daisy at:
1(800) 556-1234, Ext. 32.

In California: 1(800) 441-2345,
Ext. 32.

European Headquarters:
Paris, France (1) 45 37 00 12.
Regional Offices:

England (256) 464061;

West Germany (89) 92-69060;
[taly (39) 637251.

© 1988, Daisy Systems Corporation. BOARDMASTER is a trademark of Daisy Systems Corporation. Sun-4 is a trademark of Sun Microsystems, Inc.

TO THE GUIDE

Mike Robinson, VLSI Systems Design

mation has seen a number of changes, both eco-

nomic and technical. Although design automation
tools have been adopted by only a small fraction of the
design engineering community—indeed, most design-
ers have yet to move beyond schematic capture and logic
simulation—the existing technologies are now well es-
tablished among, and relatively well understood by,
those advanced users. This status reflects a phase in the
evolution of design automation: The industry seems to
have reached a first plateau of maturation. At such a
stage, the question, Just how many vendors can design
automation support? pushes itself to the fore. Conse-
quently, on the economic front, a number of mergers
have taken place in an already crowded field, and more
are likely to occur.

Meanwhile, two major directions in technology are
already clear. Logic synthesis, which converts a high-
level description of a logic function into a structural
description, has started to blossom. Initially confined to
programmable logic devices, logic synthesis has begun
to appear for gate arrays, and several products of this
type will likely sprout for both gate arrays and standard-
cell ics in 1988 or 1989. Further behind is the area of
computer-aided software engineering, or CASE. Although
everyone recognizes that software development is now
the major bottleneck in system design, and CASE has
been the subject of much talk for the last couple of years,
the technology is still in its infancy and is characterized
by scattered, essentially preliminary tools geared to gen-
eral software development, rather than true system-level
design and integration. So it seemed appropriate that
our introductory section be devoted to these two topics.

In “EDA Pushes toward Logic Synthesis,” Mentor
Graphics’ George Bouhasin looks at the needs of logic
synthesis, such as the incorporation of the rules of the
various design methodologies (gate arrays, standard
cells, pLDs) and processes (CMOS, ECL, and so on), the
inclusion of accurate and complete component libraries,
and the ability to consider both marketing goals and

T he year since our first User’s Guide to Design Auto-

INTRODUCTION

technical specifications. In doing so he paints a picture
of what an actual product may well look like.

In “Build Better Hardware by Focusing on Software,”
Cindy Thames and Andrew Rappaport of the Technol-
ogy Research Group assess the present status of both
hardware and software development for complex sys-
tems and argue that several trends, among them the
increasing system complexity spawned by the use of
vLsl and design automation tools, are forcing hardware
designers to take software development into consider-
ation as well. They examine the needs of software devel-
opment, especially for embedded software designed for
custom hardware, from a system perspective and look at
the emerging solutions.

THE FIRST STEPS

Our second section is devoted to logic design. Appro-
priately enough, it starts off with an article on the
most widely used tool, schematic entry programs,
which today typically represent the first step in CAE/
CAD. Paula Filseth, in “Benchmarking Schematic Entry
Systems,” chooses four popular programs—three from
CAE/CAD vendors and one from a major ASIC company—
and examines the features of each from a user’s point of
view, concentrating on those that make for ease of use.
She then gives the time required to enter a benchmark
LSl circuit with each system and presents an overall
evaluation of each.

Hardware description languages provide an alter-
native or supplement to schematic entry, giving a
designer the ability to describe and design very com-
plex components and systems using a high-level lan-
guage geared to that purpose. In the second article
under “Logic Design,” “A First Course in VHDL,” David
Barton of Intermetrics offers an introduction to the
federally sponsored vHSIC Hardware Description Lan-
guage, which seeks to aid designs done under the gov-
ernment’s Very High Speed Integrated Circuits program.

DESIGN AUTOMATION GUIDE 1988

Here Barton emphasizes the
areas of register-transfer de-
scriptions of behavior and
structural descriptions of
circuits.

Ideally, after a design has
been simulated, an engi-
neer will want to to see how
it works in its intended sys-
tem. For many systems that
means simulating a 32-bit
microprocessor or other LSI
or VLSI standard parts, or
both, and that poses the
problem of modeling these
complex devices. Gateway
Design Automation’s Pete Johnson evaluates the two
techniques for modeling complex components in “Soft-
ware vs. Hardware Models for System Simulation.” De-
scribing the trade-offs involved, Johnson shows that the
conventional wisdom, that software models are slower
than hardware models and are therefore most appropri-
ate for simulating devices not yet available in silicon, is
not always true.

IMPLEMETATION

Once a logic design is completed, it must be turned
into a physical design that is both correct and com-
pact—be it a chip or a printed circuit board (and of
course, if it is a chip, the circuit board it goes on will
have to be laid out and routed as well). Some of the tasks
involved in the physical design of chips and boards are
considered in Section III.

In virtually every methodology, leaf cells are the basic
units for building up an ic design. M.Y. Tsai and Ste-
phen Wuu of ECAD present a tutorial on leaf cell design,
entitled simply “Leaf Cell Design,” and give guidelines
for creating dense cells. They also describe how a sym-

bolic layout tool speeds the design process and makes
possible process independence, so that the leaf cell li-
brary can easily adapt to changes in technology.

Standard cells, blocks, and macros are built up from
leaf cells. Typically, a floorplan is the first step in a
semicustom chip design, serving as a general guide for
the layout of these larger units. In "Graphical Floor-
plan Design of Cell-Based Ics,” Tektronix's Edmond
Macaluso discusses the basics of floorplanning and de-
scribes a program that handles the various tasks in-
volved.

Our last article takes up the subject of printed circuit
board design. In “A Rules-Driven Approach to Circuit
Board Design,” Joseph Prang and Katherine Gambino,
form Valid Logic Systems, detail an expert-system layout
tool that enables the CAE engineer to specify implementa-
tion rules to the pcB designer, thereby integrating elec-
trical and physical specifications. A design example
helps clarify the methodology.

Concluding the guide are a directories section, provid-
ing detailed listings of systems for CAE, IC layout, and
printed circuit board layout, and a references section,
presenting a select guide to the literature and a subject
index to vLsI Systems Design for 1986—-1987.]

1988 DESIGN AUTOMATION GUIDE 9

EDA PUSHES TOWARD

LOGIC SYNTHESIS

George Bouhasin, Advanced Development, Mentor Graphics Corp., Beaverton, OR

hen a new design is first conceived, it is de-

scribed using high-level component blocks and

connectivity information. When it is first entered
into an electronic design automation (EDA) system, it is
defined as a network of low-level primitive design ele-
ments. Today, the process of converting the high-level
specification into the low-level structural representation
requires that the system architect delve inside each
block and partition elements manually until each block
is described at the primitive level. As shown in Figure 1,
the conversion consumes the majority of man-hours on
any typical design project.

Years ago, structural schematics were made up of
transistor primitives exclusively. In the era of ssi chips,
logic gates and registers were standard primitive ele-
ments. Primitive design files now contain a host of msI
and LsI parts. However, while primitives keep increasing
in complexity, system design structures also are becom-
ing larger and more complex. As a result, the task of
decomposing a high-level description into a primitive
network is not getting any easier. In fact, now that EpDA
systems have streamlined design analysis and automat-
ed physical layout, the front-end task of creating the
design file often consumes more design time than any
other phase of development.

There is widespread interest in EDA tools that can
automate design file creation, especially among system
designers who are more comfortable working at higher
levels of design description. The design methodology
that is slated to answer this demand is known as logic
synthesis. Today, logic synthesis tools are commercially
available for pLDs and are under development for gate
arrays and standard-cell ics. To deliver synthesis tools
that answer the pent-up demand of the entire i1c and
board design market will require an integrated solution,
one which results from close cooperation among major
EDA system suppliers, third-party software vendors, and
semiconductor manufacturers.

SYNTHESIS BUILDING BLOCKS

The principal requirement of a logic synthesis system
is the ability to take a high-level description and produce

a structural representation with little help from the
user. However, this ability is not in itself enough. The
synthesized schematic must also meet design goals oth-
er than the functional requirements outlined by the
high-level design description. Toward this end, the syn-
thesizer must be capable of making trade-offs among
factors such as cost, power requirements, and space
utilization.

Also, when selecting parts to include in the structural
schematic, the synthesizer should have access to an
expansive collection of parts libraries so that it can select
existing components rather than promote the need for
custom parts. Lastly, all major silicon technologies
should be supported by the synthesizer so that the most
appropriate process can be used to implement the
design.

Many of the components needed to build an integrated
design system with logic synthesis are already in place.
For example, system architects can already define their
high-level system components in one of a choice of
formats that is most natural to each particular block.
Schematic capture editors, now allow designs to be
described as high-level behavioral models, as well as
entered as schematic information.

Eventually, capture editors will be able to accept any
number of input description forms, including hardware
description language (HDL) models that define only func-
tion and connectivity, truth tables, Boolean equations,
state assignment tables, and algorithms (see Figure 2).
It is likely that some graphic input formats unlike those
now in use also will emerge. Additionally, it would be
advantageous to have graphic output, in the form of a
schematic display, for each component block at every
level in the hierarchy.

TECHNOLOGY TARGETING AND LIBRARIES

To automate the component selection process, logic
synthesizers must be able to target both the methodolo-
gy—PLD, gate array, standard-cell, full-custom, or off-
the-shelf standard components—and the intended pro-
cess—CMOS, ECL, gallium arsenide, and so forth. Each
methodology and process has its own idiosyncrasies,

10 DESIGN AUTOMATION GUIDE

1988

Product specification
and system design

Logic and
circuit design

35

30

5

T

Simulation and Physical Layout verification
verification layout and test
40
30
25
15
5 5

(@)

D Percentage of total project man-hours

D Percentage of total project CPU-hours

Today

Tomorrow

(b)

FIGURE 1. The system design process in terms of man-hours and CPU-hours (a) and today’s and tomorrow’s tools at Mentor

Graphics (b).

and a designer can work much more efficiently if they
are well understood. The same is true for a synthesis
system. Thus logic synthesizers are likely to include a
technology discriminator, a tool that selects among
available choices for methodology and process.

For this purpose, a logic synthesizer will include a
knowledge base that describes the rules of each meth-
odology and process technology that it supports. For
example, when synthesizing a design for a cM0s technol-
ogy, the system should understand the common rule of
thumb that logic can be minimized through the use of
inverted signals and complex gates. There are many
such rules that can be enforced using expert system
techniques. In fact, Trimeter Technologies, a Pitts-
burgh-based company, has already commercialized a
knowledge-capture tool for gate arrays. It also offers
knowledge bases for Asic product lines from such compa-
nies as LsI Logic Corp.

Of course, without accurate, complete component li-
braries, the synthesis process has nothing to target.
Fortunately, semicustom and standard-parts libraries
now provide a wealth of components that are supported
by semiconductor manufacturers and qualified by EDA
vendors. System architects can now pull models of stan-

dard parts, offered by a range of manufacturers, from
their network libraries to include in design schematics
and simulations.

Microprocessors and other more complex parts can be
represented with behavioral language models supplied
by the EDA system or written by third-party software
vendors such as Logic Automation and Quadtree. If the
VLSl parts are available in hardware, hardware modeling
libraries, such as Mentor Graphics’ HML, can be used to
generate a model for simulation quickly.

Asic designers now also have a range of library options.
Many asic foundries have ported their cell libraries to the
leading EDA systems; consequently, EDA vendors can of-
fer to designers a selection of gate array and standard-
cell libraries. It is important that synthesis tools have
access to libraries for all available design methodologies,
so that feasibility analyses can evaluate all possible im-
plementations to find the best method for a particular
design.

Feasibility analyses will be performed by expert-sys-
tem-based tools that consider marketing goals (pro-
duction, volume, time-to-first-prototype, price, and
the like) and technical specifications (power, perfor-
mance, temperature, and the like). These analyses can

1988 DESIGN AUTOMATION GUIDE 11

Market
specifications

Electrical
specifications

Parts
libraries

Simulation and
verification

FIGURE 2. An EDA system of the future with logic synthesis.

be “rule-of-thumb” analyses, giving recommendations
based on knowledge of good design practice and pre-
vious successful designs; alternatively, they may use
analysis tools in the tool suite to make more exact
comparisons.

For the expert systems to evaluate all those factors, the
type and breadth of information in component libraries
must be expanded. With ssI- and MslI-level catalog com-
ponents, for example, only the barest timing and power
specifications (usually worst-case numbers) are includ-
ed in timing models; more precise information would be
needed for logic synthesis. More complex chips may have
more timing data, but manufacturing data like volume
pricing, delivery schedules, and package types could be
used by an expert system to evaluate the impact of
employing the chips in production systems. The inclu-
sion of manufacturing data, and the development of the
tools to evaluate design trade-offs in terms of manufac-
turability, is just beginning.

Schematic m Algorithms

Data-flow
graphs

Waveforms

Technology-
targeting
expert
system

Schematic
generation

Layout
verification
and test

In the future, major semiconductor vendors will offer
AsIC library cells that are similar to today's standard
components. Vendors such as Intel and Motorola will
provide microprocessor core cells; chip makers in the
scientific-processing market will provide floating-point
processing cells; others may sell graphics controller
cells. System design would be more efficient if these
commercial cells were predesigned, modeled, and char-
acterized, and if they had the potential for multiple
sourcing at the physical layout stage. It is likely that they
will be offered alongside standard packaged parts, so
that system designers will always have the option of
designing either a traditional printed circuit board or,
in effect, a “silicon pcB.”

Another significant change for library users may be
the advent of huge dial-up databases for both cells and
standard parts. This type of service has just begun to
supplement the standard-component data books that
have lined designers’ bookshelves for decades. These

12 DESIGN AUTOMATION GUIDE 1988

part databases contain cross-references and some com-
ponent attributes like timing. Tomorrow’s databases
will have many more attributes, including size, cost, and
listings of supported simulation model libraries. There-
fore they may serve more as a reference than as a source.

When logic synthesis systems with their technology-
targeting capabilities are in place, designers will have an
effective means of querying these databases and taking
advantage of such detailed component information. Be-
cause the databases will be used as a reference, they will
not be as tightly linked to the design system as the
component libraries on the design system’s network.
Dial-up links will probably suffice.

The semiconductor foundries must take responsibil-
ity for the component libraries. They can either develop
and support the models themselves or contract with
outside vendors to develop them. Competitiveness will
go to those foundries that make the most information
about their parts available for the least cost. In addition,
the foundries have to broaden the types of information
that they provide, for the expert-system programs will
need detailed component and manufacturing data. Pric-
ing, reliability, availability, packaging, full temperature
and performance curves, as just a few examples, all may
be needed.

SYNTHESIZED DESIGN METHODOLOGY

In the era of logic synthesis, designers are likely to
have great flexibility in describing their systems. The
input description method will vary depending upon the
type of logic to be entered and the amount of detail the
user wants to provide. For example, it will be possible to
enter combinational logic blocks as a schematic, a Bool-
ean equation, or a truth table; in the same system, a
complex counter block may be entered as a state assign-
ment or a functional description.

Synthesis tools could then be used to translate these
descriptions into some number of high-level component
blocks that define system behavior. Designers may pre-
fer that the blocks be displayed in a schematic so that
they can verify the logic.

If simulation models were available for selected com-
ponents at each level, a high-level simulation of the
whole system could be performed early in the process.
Simulation could continue for subcircuits in the design
after the design has been partitioned into lower-level
primitives.

Synthesis should also afford the opportunity to cap-
ture the user’s design goals, which then would become
objectives that guide the synthesis process. For exam-
ple, if the overriding goal were to complete the design in
the shortest amount of time, the designer would want to
avoid the need to customize components. In this case,
the synthesizer could come closer to the ideal implemen-
tation if it could give preference to using existing parts—
even if they provide some superfluous logic—and treat
the classic design objective of minimizing the number of
logic elements as a secondary goal. Likewise, if perfor-
mance were the most critical design factor, the synthe-
sizer should allow extra logic to provide redundancy in

—

critical control paths (for instance, “look-ahead—carry™
circuitry).

Goal-capture tools should also support decision mak-
ing. Designers will need a means of collecting and orga-
nizing data so that they can run feasibility analyses on
prospective architectures and primitives. The amount of
information might otherwise be overwhelming: for ex-
ample, they may want to gauge the effect of processing
and design methodology options on not only the size,
power, and performance of their designs but also their
cost and time to market. For the same reason, designers
are likely to want synthesis tools to include expert-
system building capabilities, so that they can create
knowledge bases that contain their own design and
manufacturing experience.

Once a designer has selected a methodology and pro-
cess by working through his own feasibility analyses, or
using tools such as the technology discriminator, the
information will be available to synthesis tools for tech-
nology targeting. That is, the synthesizer can begin to
query part databases to retrieve components that are
based on the appropriate technology and that match the
user’'s design goals.

Logic synthesizers are likely
fo include a “‘technology
discriminator,”” a tool that
selects among available
choices for methodology
and process.

Block by block, the synthesizer can then replace lower-
level schematics with higher-level components. The de-
sign goals specified by the user can be applied either
component by component or at later stages on complet-
ed portions of the design. If the schematic components
that replace a higher-level logic block still present more
functionality than desired by the user, this level can be
further decomposed. The process will continue until
appropriate primitives are determined for the complete
design file.

Also, as each block is synthesized, the system might
build in resettable scan-test registers to ensure testabi-
lity. When such design-for-test architectures are imple-
mented, component test patterns for automatic test
pattern generation will have to be made available. Ideal-
ly, the semiconductor manufacturers that offer compo-
nents and models will also offer the test vectors.

As schematic information becomes more detailed, new
simulations and new, more accurate analyses of cost,
performance, power, and other design goals should be
run. After the logic synthesis step, the design can pro-
ceed to physical layout, where traditional structured
design methods are applied. Although the analyses may
seem to require enormous CpPU power, the new breed of

1988 DESIGN AUTOMATION GUIDE 13

2 MAY 2198

Compiled Cell Custom from S-MOS
saves you valuable ASIC design time.

With S-MOS’ new Compiled
Cell Custom program, you can cut up to
three months from your custom IC
design cycle.

Simply by pressing three buttons.

C.C. Custom automates the
design process by combining S-MOS'’
advanced LADS software with Tangent’s
Tancell” The program allows you to
create new designs based on standard

cells, our megacells, your megacells
or any combination.
You can mix and match more

than 300 standard macrocells simply by

doing the schematic capture and
simulation steps that you would do
for a gate array.

The circuit is then laid out and
routed automatically at our design
center. The system is timing driven, so

new user-defined macrocells will
match their simulations. The first time
and every time.

With a full custom design, you
typically have to wait half a year for the
first chip samples. C.C. Custom can
do it in 12-14 weeks with NRE charges
normally associated with standard
cells. Or about half what a full custom
would cost.

So you get your products to
market faster and more economically.

Since we produce our chips on
the 1.5 micron line of our affiliate,

or three buttons.

Seiko Epson, you will also benefit from
higher-speed operation and virtually
nonexistent failure rates. Seiko Epson
is one of the world’s most automated
and reliable CMOS manufacturers.
If you'd rather press three buttons
than spend three additional months de-

signing circuits, call us. (408) 922-0200.

SYSTEMS

A Seiko Epson Venture

S-MOS Systems
2460 North First Street
San Jose, CA 95131-1002

Tancell is a registered trademark of Tangent Systems

CIRCLE NUMBER 7

An expert system could use
manvfacturing data on
standard parts, like volume
pricing, delivery schedules,
and package types, to
evalvate the impact of
employing the chips in
production systems.

multiple-MiPs workstations seems to provide enough
processing power for the software requirements.

To aid the development of such design systems, third-
party software developers will probably help develop the
knowledge bases for particular applications. They
should, in the long run, continue to provide specialized
algorithms and translators to fill the niches in the spec-
trum of design applications.

TRUE SILICON COMPILATION

Logic synthesis is actually a subset of a more compre-
hensive future methodology, a methodology that re-
duces the development process to a matter of entering a
design concept as a high-level description and receiving
a physical layout in return. The next step in the evolu-
tion toward such “true silicon compilation” would be to
use logic synthesis tools at the front end and structural
synthesis through semicustom design methodologies at
the back end.

Although today’s silicon compilers automate much of
the low-level decision making necessary to translate a
schematic into silicon, they still require that a design be
described mostly at the structural level. Thus, from a
front-end standpoint, they are only somewhat more
automatic than other layout tools. Without logic synthe-
sis, designers must still demonstrate a high degree of
“silicon literacy” to build an ic. In contrast, once logic
synthesizers are available, all interaction with the EDA
system can be handled at a relatively high level. Then
tools that operate like current silicon compilers will be a
more attractive option for those designers looking for an
automatic solution to 1c design.

For the automatic solutions, the EDA system vendors
will be responsible for the design environment and anal-
ysis tools. They must also provide the interfaces to
sources of data that designer will need access to, such as
dial-up databases.

THE LOGIC SYNTHESIS PROVING GROUND

The major commercial market for design synthesis
now is in pLD design. Synthesis technology has evolved
more rapidly here because PLD combinational logic is
relatively simple and well constrained. Also, the task of

translating a conceptual design description into a PLD
format was a natural focus for automation, because it
took so long compared with the minimal time spent
programming the prototype once the logic was defined.

Most of the PLD minimization programs now available,
including the popular ABEL from Data 10, are based on
Expresso, a public-domain program developed at the
University of California at Berkeley. Expresso uses alge-
braic methods to automatically synthesize and optimize
combinational circuits. ABEL automates the pLD design
process by combining Expresso capabilities with ad-
vanced design capture methods that allow input de-
scriptions in many forms, including Boolean equations,
truth table, or state assignment table.

The next likely application area for commercial syn-
thesis tools will be gate array design. Today, there are
tools under development that attempt to synthesize the
multilevel logic commonly used in gate arrays (Brayton,
1986:; Brayton et al., 1986). Also, in the near term, state
machine tools that synthesize some sequential logic will
be applied to pLD and standard-cell designs. This work
will eventually be commercialized by vendors developing
logic synthesis systems.

Thus the pieces of the synthesis puzzle are beginning
to fall into place. According to the Technology Research
Group (1987), “the worldwide market for logic synthesis
will grow from virtually nothing in 1986 to roughly $200
million in 1990.” However, it will take a concerted effort
by EDA tool vendors, chip makers, and third-party soft-
ware suppliers to provide the integrated solution that is
needed. |

REFERENCES

Brayton, R.K. 1986. “Algorithms for Multi-Level Logic Synthe-
sis and Optimization,” 1BM Corp., Thomas J. Watson Research
Center, Yorktown Heights, Ny (paper submitted to the NaTo
Advanced Study Institute).

Brayton, R.K., et al. 1986. “Multiple-Level Logic Optimization
System,” IEEE International Confererence on Computer-Aid-
ed Design, Santa Clara, ca.

Technology Research Group. February 1987. “Logic Synthesis
Is New Opportunity in Design,” The Technology Research
Group Letter, Boston, MA.

ABOUT THE AUTHOR

George Bouhasin, the advanced devel-
opment manager at Mentor Graphics,
has 15 years of semiconductor experi-
ence in design, processing, test, produc-
tion, and marketing. In 1979 he helped
start California Devices Inc. of San Jose,
cA, where he developed the first no-chan-
nel gate array. In 1984, he cofounded a
silicon compilation company that was
later acquired by Mentor Graphics. Now,
in advanced development, his interests include logic synthesis
and the application of expert systems to cAe. He received his
BSEE from the University of Cincinnati.

16 DESIGN AUTOMATION GUIDE 1988

Chi
Chi
Array!

For High Speed with Low Power.

AMCC has the chips worth cheering about. When you need
the versatility of high speed with low power in a bipolar array,
our Q5000 Series Logic Arrays are the answer. They're designed
for logic applications requiring speed/power efficiency.

And they deliver.

Today'’s hi-rel commercial and military semicustom applica-

tions need high performance and proven reliability. And, our

Q5000 Series gives you both—without paying the power penalty.

Our newest bipolar series is comprised of five arrays. All
feature 4 levels of speed/power programmable macros and
over 600 MHz 1/O capability. One comes with 1280 bits of
configurable RAM.

05000 Series Key Features

AMCC Bipolar Logic Arrays
Flip/Flop F : >600 MH 5 A
e pat 1mw | mind, too. Mixed ECL/TTL /O

Speed/Power Product: 0.5pj compatibility. Your choice of
Equivalent Gates: 1300-5000| packaging. Full military screen-
1/0 Pads: 76-160| ing. AMCC's MacroMatrix®
Operating —55°Cto| design tools. And, unrivaled

Temperature Range: ~ +125°C| oystomer support.

CIRCLE NUMBER 21

/

To talk with an applications engineer about
your specific needs, in the U.S., call toll free
(800) 262-8830. In Europe, call AMCC
(U.K.) 44-256-468186. Or write, Applied
MicroCircuits Corporation, 6195
Lusk Blvd., San Diego, CA 92121.

(619) 450-9333.

ABetter Bipolar ArrayisHere.

AMES

BUILD BETTER HARDWARE
BY FOCUSING
ON SOFTWARE

Cindy Thames and Andrew S. Rappaport, The Technology Research Group Inc., Boston, MA

designers outdo each other to escape being stuck

with programming the embedded software. Indeed,
when dedicated programmers handle the embedded
software portion of a project, the hardware designers
tend to consider themselves relieved of any concern
about software. Software, however, is becoming a more
critical, complex, and time-consuming aspect of system
development, adding to the development difficulties
brought about by ever increasing hardware complex-
ities. Indeed, it has become the bottleneck in an increas-
ing number of system designs. Yet little has been done
so far to merge hardware and software design.

Designing the software portion of a hardware system
is tedious and error-prone, as well. Software program-
mers have to make do with the equivalent of slide rules
and drafting paper, while an array of sophisticated tools
running on powerful computers supports the develop-
ment of hardware. High-level languages simplify soft-
ware development, but going from assembly to a high-
level language is like going from transistor-level design
to TTL. Programmers involved in high-performance sys-
tem design do not have the equivalent of vLsI building
blocks that represent thousands instead of tens or hun-
dreds of primitive elements.

As designers use more VLSI for hardware design, and
design automation tools for hardware become more ef-
fective, the problems of programmers worsen. By con-
tributing to the development of more complex systems,
the growing use of vLsI increases the need for much more
complex software; and by speeding the development of
hardware, hardware-design tools increase the percent-
age of the total development effort required by software.
Lastly, the increasing use of custom vLsI made possible
by improving hardware-design tools recasts the hard-
ware-software development process into a much more

I n most electronics system design projects, hardware

interactive process than before.

Consequently, trends in the development of electronic
systems are forcing more hardware designers to become
involved with software development, either directly, as
programmers, or indirectly. That is, the interdepen-
dence of hardware and software portions of increasingly
complex systems demands greater cooperation between
hardware and software designers.

Interdependence also demands better tools. The lack
of automation for embedded-software development
holds up total system debugging and delays the time to
market for new electronics systems. The lack of a design
methodology that merges distinct hardware and soft-
ware design processes into an integrated whole (see
Figure 1) detracts from the overall benefit of existing
tools for hardware design.

The market for embedded-software development tools
will be integral to that for hardware-design tools. Hard-
ware-design automation suppliers must make every ef-
fort to draw in software-development aids—not only at
the point of system integration, which they are doing
now, but also as far back as system analysis. We project
that the market for electronic-design automation soft-
ware will reach $2 billion by 1990. The potential for tools
for creating software for these systems is at least as
great, although the market is developing much more
slowly. It will be, we believe, the next major growth
market in design automation, exceeding $200 million by
1991 and crossing the billion-dollar mark by 1997 (see
Figure 2).

A MOVING BOTTLENECK

Despite the limitations of some existing tools and the
immaturity of some recent ones, suppliers of hardware-

18 DESIGN AUTOMATION GUIDE

1988

Feedback
Hardware Hardware Hardware
specification =gy design el implementation
_ Electronic
il product

Software Software Software
specification s design Rl implementation

Hardware
specification

Hardware
implementation

Hardware
design

Feedback

Feedback Feedback

Software
design implementation

| CASE

~ Source: The Technology Research Group Inc.

FIGURE 1. In the present design process (a), hardware and software design are essentially separate. With software development
becoming increasingly complex and time-consuming, what is needed is an integrated design process (b).

(]

=

=

[

E Software

ks

[

>

[}

5.}

o

2

©

¢ Hardware
FIGURE 2. The projected market for software tools to aid in the T T T T
development of software for custom hardware. 1985 1986 1987 1988
FIGURE 3 (right). The moving bottleneck in electronic-system Source: The Technology Research Group Inc.
development.

1988 DESIGN AUTOMATION GUIDE 19

Only from OKI:

* Most complete ASIC building blocks.
* Most versatile design/package options.
* Most experienced ASIC technology.

Nobody but nobody puts ASIC technology

together like OKI Semiconductor can.

Ease into ASIC with OKI as your close
working partner—and you instantly
support your VLSI application with the
most comprehensive ASIC capabilities on
the world market today. Bar none.

From gate array, standard cell and full
custom chips to standard components
to integration to advanced board level
products, OKI alone puts you on the
leading edge of ASIC technology and its
complete implementation.

OKI: the totally logical choice.

Opt for OKI ASIC, and you open up your
options across the board. Only OKI now
offers the system designer the unique
security and entry ease that only a
proven track record in CMOS ASIC
problem-solving can provide. This his-
tory of performance built up since 1977
has produced the widest range of solid
building blocks yet: advanced ASIC prod-
ucts and packaging including surface-
mount, backed up with the most flexible
cell libraries, CAD/CAE design tools and
development aids.

As your working partner, OKI ASIC ex-
pertise is available to you at any stage of
the development process. We’ll help you
define system requirements, determine
the most cost-effective product solutions
and supply complete design software—
accessible at your own workstation or

then we take it from there: with high

volume fabrication, assembly and testing
completed in one of the world’s most
highly robotized manufacturing
facilities.

Compare
Total ASIC
Capabilities

Source ‘‘B”’
Source ‘‘C”’

Gate Arrays to 10K Gates
Standard Cells to 30K Gates
Full Customs - Lowest Cost
1.5 Micron Cell Library
Macro Cells

Bi CMOS

High Density
Surface Mount Packages

e o 0o 0 ¢ ¢ o ODKIASIC
™

Board Level Products

Supporting Standard Products

COB Technology
(Chip on Board)

CAD/CAE Design Support

Customer-Friendly
Design Interface

Regional Design Centers

Robotic Manufacturing

r-------------------

] Check out OKI ASIC data:

ASIC Solutions from OKI:
You can’t beat the logic!

VLSI 12/87

I Please rush complete technical data/specs
through our regional design centers. And [on OKI capabilities in:

B |
s‘ (

ot

CIRCLE NUMBER 8

"
C

() Gate Arrays
() Standard Cells
() Full Customs

) Please call: we have immediate requirements:

Name/Title

Company

Attach coupon to business card or ietterhead and return
to: ASIC Customer Service, OKI Semiconductor, 650 North
Mary Avenue, Sunnyvale, CA 94086. Tel: (408) 720-1900.

design automation tools have done a generally good job
addressing the critical bottlenecks that inspired the
current generation of electronic-design automation
tools. As aresult, the bottlenecks have moved (see Figure
3). A further quantum step in hardware development
will come about only when design tool suppliers meet the
challenges of concurrent hardware and software design.
In the meantime, hardware designers can begin to use
existing tools to bring software cognizance to the hard-
ware-development process.

The need for automation is more acute for the develop-
ment of embedded software than for any other type of

System opftimization is the
practical, obvious,
immediate reason for
hardware designers to care
about software develop-
ment. At a higher level, the
efficient production of
complex electronics products
requires balancing the needs
of hardware and software
development.

software development. Unlike commercial software
products and management information system (mis)
code, embedded software is often designed for hardware
with performance and functional characteristics not
fully defined or definable at the outset of software devel-
opment. This indefiniteness complicates software devel-
opment, putting hardware development, prototyping,
and debugging in the critical path—and with hardware
design in the critical path of software, and software in
the critical path of hardware, it is surprising that sys-
tems are ever completed.

Without concerted attention, the problem will get
much worse. The complexity of embedded software is
exploding. Respondents to a recent survey of software
programmers conducted by the Technology Research
Group in conjunction with L.F. Rothschild and Co.
(Technology Research Group, 1987) indicated that the
median length of an embedded software program was
10,644 lines of code in 1985 (see Figure 4). The median
length expected in 1989 is three times that: 30,394
lines. During the same period, the median length of
commercial applications code will grow from 11,087
lines to 18,069, according to the respondents. The medi-
an length of mis code will increase by only a few percent,
from 4,230 lines in 1985 to 4,380 in 1989.

Tools for software development—so-called computer-

FIGURE 4. The median Iength of software programs.

aided software engineering (CASE) tools—are beginning
to constitute a new industry, modeled in large part on
the electronic-design automation industry. Yet most of
these tools are structured for general software develop-
ment or, if targeted at applications involving custom
hardware, adapted from methodologies developed for mis
or commercial development. For the most part, suppli-
ers of CASE tools have not differentiated between prod-
ucts for embedded software for custom hardware and
those for software designed independent of hardware.

The complexity of designing real-time systems, the
difficulties of developing hardware and software concur-
rently, and the demand for reliability all compound the
difficulty of creating embedded software. This difficulty
is the hardware designer’'s challenge, as well as the
software developer’s job.

BLAME CUSTOM SILICON

The trend toward custom cpus, brought about in part
by better access to custom and semicustom silicon, is
breaking down the former division of labor for embed-
ded-software development. When hardware designers
used only standard cpus, they needed to concern them-
selves only with the embedded software programs writ-
ten in a standard cpU’s instruction set. Only cru design-
ers or developers of specialized processing systems
needed to develop microcode. That has been a small
group.

As custom and semicustom IC technology and better
hardware-design tools make custom processor design
easier and more economical, they put the ability to
design cpus into the hands of more hardware engineers
and make custom processor design appropriate for a
broader range of systems. That means that more hard-
ware engineers are facing the necessity of developing
microcode. The penetration of semicustom IC technology

22 DESIGN AUTOMATION GUIDE

1988

has expanded the purview of the system-level designer—
for both hardware and software. Just as semicustom is
turning system designers into part-time I1C designers, it
will turn them into part-time programmers.

Already, 18% of all cMOS gate array designs are used in
custom processor architectures. By 1990, that percent-
age will increase to 21% (Rappaport, 1987). Chips that
integrate several large LsI blocks will represent 34% of
cMmos array designs and more than 50% of cell-based
semicustom by 1990. Many of those will include core
microprocessors, often with customized instruction
sets or architectures. All will include software develop-
ment and verification using software as integral parts of
the chip design and verification process. Abundant
automation tools will help them design the chip, but
paltry ones will help them design the software.

Even for designers not directly charged with micro-
code or software development, increasing freedom to
create custom hardware architectures affects and is
affected by software development. Bit-slice systems are a
good example. Designers who use standard bit-slice
components have limited ability to optimize architec-
tures at a low level. The coarse granularity of standard
component design approaches imposes those limits.
They can optimize systems only within the resolution of
standard building blocks. vLsI components cut the cost

Without up-front analysis,
optimizing a system
becomes a lost cause: In
most projects, once
hardware and software
designs progress to a level
of detail sufficient for
combined simulation or
prototype verification, the
re-engineering required for
optimization is too costly or
time-consuming.

of hardware and facilitate the development of highly
complex systems, but because they are large standard-
function blocks that designers cannot alter, they reduce
the ability to optimize architectures.

Custom and semicustom vLSI increases the granular-
ity of design and optimization. Custom technologies free
designers to optimize architectures at a very low level,
enabling them to trade off hardware modifications to
simplify software or trade off software complexity to
speed hardware. A few years ago, altering software to
suit available hardware options was simpler and

FIGURE 5. Distribution of CMOS gate array and cell-based
designs, 1985 (a) and 1991 (b).

cheaper than the opposite. Now, altering hardware to
suit programming considerations is often easier, less
expensive, and more effective.

An efficient design process involves complex interac-
tions between high-level hardware and software design
to optimize trade-offs. Yet the present distinction be-
tween hardware and software design prevents such joint
analysis and design, for both technical and organiza-
tional reasons.

System optimization is the practical, obvious, imme-
diate reason for hardware designers to care about soft-
ware development. At a higher level, the efficient produc-
tion of complex electronics products requires balancing
the needs of hardware and software development. Elec-
tronic-design automation tools for hardware are giving
engineers the ability to experiment with circuit design.
That flexibility needs to be extended to embedded-soft-
ware design without creating havoc in the process of
designing the system.

The first step in optimizing either a system under
development or the development process is the effec-
tive partitioning of system elements between hardware

1988 DESIGN AUTOMATION GUIDE 23

10 Good Reasons
to Get our FREE

Gate Array Gateway Kit

NEC’s FREE Design Kit is Your 4. Cell utilization rates of 95%. 9. Local design support with

Gate Array Gateway to 5. Better than 95% first-time local FAEs and design
£ : success with engineering centers backed by a
- 8&?:6&;&0& - prototypes. satellite network of
2. Valid, Sun, Mentor, Dai 6. The most experienced comgairs for welkiinate
P] LOGICAN. Tektronix /CZyE’. manufacturing capability. COMmMuNICations Services.
%% HP 9000, FutureNet, MILA, 7. The widest choice of 10. The easiest translation of
"\ Calma TEGAS V. and HILO through-hole and surface- your ideas into silicon.
\ Dby kages.
\ compatibility. mount packages .
. 3. A powerful block library 8. The most effective way to NEC Electromcs InC.
with more than 170 macros. lower your system costs. 401 Ellis Street, P.O. Box 7241

Mountain View, CA 94039

Our gate arrays are your
gateway to higher system
performance. Call 800-632-3531
to browse through our

block library. FREE!

| WV
S NEC
: A\ \ ©Copyright 1987 by NEC Electronics Inc.

CIRCLE NUMBER 20

and software. Typically, partitioning of major systems is
done in an ad hoc way. Without tools for representing
and simulating hardware and software elements togeth-
er, developing an optimized specification for hardware
and software elements is impossible for systems of any
great complexity. In many systems, decisions about
which functions to implement in software and which to
build in hardware affect system cost and performance as
much as, or more than, the quality of implementation.
Indeed, without up-front analysis, optimizing a system
becomes a lost cause: In most projects, once hardware
and software designs progress to a level of detail suffi-
cient for combined simulation or prototype verification,
the re-engineering required for optimization is too costly
or time-consuming. As a result, many of the improve-
ments suggested by performance analyses done at the
implementation level are useful only as they influence
thinking about the next product. By the implementation
phase, it is too late to use performance and other analy-
ses to streamline the development process.

Increasing system speeds complicate even the problem
of prototype verification. In-circuit emulation tech-
niques are proving difficult to implement for 32-bit
processors running at clock rates of 25 MHz or more.
Those methods are being replaced by approaches that
combine simulation with observation of activity at de-
vice pins. Logic analysis is used to gather signal data
from prototypes: simulation is used to investigate inter-

Ideally, tools that furnish a
common starting point for
hardware and software
development also should
provide a framework for
incremental hardware-
software integration at
various levels of circuit and
code abstraction throughout
the development process.

nal device operation and perform many of the debugging
operations traditionally done in hardware. This method-
ology demands integration of hardware and software
development and debugging tools.

THE BEGINNINGS OF SOLUTIONS

Coping with the encroachment of software on the
hardware-development process requires several types
of tools. The first class of tools encompasses those that
furnish a common starting point for hardware and

software development, thereby allowing up-front anal-
ysis and intelligent partitioning. At the very least,
such tools formalize hardware and software specifica-
tions, minimizing the potential for discovering con-
ceptual errors late in the design process. Ideally, these
tools also should provide a framework for incremental
hardware-software integration at various levels of cir-
cuit and code abstraction throughout the development
process.

Structured design and analysis tools, the flagships of
major suppliers of CASE tools, have the potential of pro-
viding the framework for planning and partitioning.
They help software developers analyze the goals of sys-
tems under development and the architecture of the
software to implement those systems. These tools use
graphics to capture system and software specifications
at an abstract level and generate templates for designing
code blocks. However, as implemented now, these tools
do not feed software—let alone hardware—simulations.
They formalize software specifications but do little to aid
software development.

Similarly, some high-level hardware simulators al-
low behavioral definition of entire hardware systems
prior to implementation, but they do not link well to
either software-development or hardware-implemen-
tation processes. Ideally, structured analysis and de-
sign systems should feed compatible hardware and
software simulators, making possible interactive anal-
ysis of system specifications, designs, and partition-
ing strategies. The greatest promise so far for the
development of such tools appears to be the extension
of high-level software design and simulation tools to
include hooks for hardware description and programs
for hardware simulation.

For the most part, structured software-design tools
available are not yet up to the task. Not only do most not
yet support simulation, but they incorporate methodolo-
gies and support languages not suited to the design of
systems based on custom hardware. Analysis and de-
sign tools for embedded code need specification method-
ologies different from those of mis and commercial tools.
Structured techniques, even when enhanced for real-
time development, fall short of the requirements for the
complete, unambiguous, and concise representation of
complex real-time systems. Systems not designed for
developing real-time programs do not execute subsys-
tems concurrently or prioritize system reaction. Many
systems that do not require real-time extensions de-
mand assembly-language programming using instruc-
tion sets that are custom or, even worse, that change
during the development process. High-level design sys-
tems for these projects need languages much more flexi-
ble than those required for other types of programming.
The most appropriate tools for overall system develop-
ment will be those targeted specifically to concurrent
hardware-software design.

The second class of tools addresses the problem of
verifying hardware and software designs together at
various stages of design before hardware prototypes and
production code are complete. These tools include facili-
ties for downloading code into hardware simulation en-
vironments and for linking high-level models of incom-

26

DESIGN AUTOMATION GUIDE 1988

plete hardware and/or software elements to implementa-
tion-level models of completed system elements. Several
programs exist for mixed-level modeling of hardware,
but little work has been done to link these to mixed-level
software models. The best done so far in commercial
tools is the development of virtual microprocessor or
microcode development systems tied to low-level simula-
tors.

The problem with that approach is simulation speed.
Simulating a typical 100,000-gate processor that ex-
ecutes one instruction every four clock cycles, a simula-
tion accelerator performing 1 million events per second

Several programs exist for
mixed-level modeling of
hardware, but little work
has been done to link them
to mixed-level software
models. The best done so
far in commercial tools is
the development of virtval
microprocessor or microcode
development systems tied to
low-level simulators.

would evaluate 25 instructions per second. At that rate,
simulating one second of operation for a 1-mMIPS proces-
sor would take more than 10 hours. In systems employ-
ing standard microprocessors for which behavioral
models are available, this speed can be improved, but
the amount of real software simulation now practical is
still limited. Consequently, high-level system simulation
and effective, verifiable links from high-level design to
low-level implementation are more important. In the
absence of virtual development systems, designers could
make good use of a microprocessor development system
that can plug into hardware modelers.

The final class of tools includes those for synthesis
and optimization. Ultimately, high-level descriptions
will drive both hardware and software development.
Tools for hardware synthesis have already been demon-
strated, but they address microcode synthesis only to
varying degrees. Similarly, a few compilers exist for
compiling microcode from high-level descriptions, but
they do not address hardware synthesis at all. So simul-
taneous—or even automated iterative—hardware-soft-
ware optimization is not likely to be possible any time
soon.

The absence of synthesis tools creates an acute need
for programming aids for hardware developers. Hard-
ware designers developing microcode have different re-

quirements from mainstream programmers. Ideally,
they should be able to generate microcode and a high-
level description of desired instruction execution auto-
matically from a hardware design. Short of that. micro-
coding aids should help optimize performance. storage.
and resources. Even with microcode synthesis tools.
designers would still need code analysis tools that as-
sume that hardware architectures are changeable and
thus can be altered to optimize microcode. just as code is
typically altered to optimize hardware.

Suppliers dedicated to automating portions of the
embedded-software development task are just beginning
to emerge. The technology and the market now are
comparable to those for hardware-design automation
tools several years ago, when hardware designers used a
hodgepodge of instruments, programs. and methods to
assess and correct their designs at discrete points in the
process. Smart hardware designers will form the van-
guard of the move to automated, integrated code
development.]

REFERENCES

Rappaport, A.S. 1987. “The Pending Fragmentation of the
Semicustom 1c Market,” vLsi Systems Design’s Semicustom
Design Guide.

The Technology Research Group Inc. 1987. Software Develop-
ment Automation, Boston, MA.

ABOUT THE AUTHORS

Cindy Thames is the vice president and cofounder of the
Technology Research Group. She is responsible for the com-
pany’s publications, which include reports on studies of users
and potential users of advanced technologies for developing
electronic systems and components, as well as periodic reports
on the size and projected growth of markets for such technol-
ogies. Cindy was previously a senior editor at Electronic Busi-
ness magazine, specializing in product development issues.

Andrew S. Rappaport is the president
of the Technology Research Group,
where he oversees consulting and market
research into new electronic technol-
ogies. Since co-founding the organiza-
tion in 1984, he has consulted extensive-
ly on business development and strategic
planning issues for companies commer-
cializing such new technologies as hard-
ware and software design automation,
custom and semicustom Ics, and specialized test equipment
and instrumentation. He has six years’ electrical engineering
and management experience and spent two years as a senior
editor at EDN magazine. Andy studied electrical engineering and
political science at Princeton University and holds one patent.

1988 DESIGN AUTOMATION GUIDE 27

53.6 Reasons to Choose P-CAD
for CAE and PCB design.

e End-to-end PCB design Workstation performance ® 53.6% market share* ® New! SMT support

%
Ly
&

y r

#

To find out why 53.6% of
engineers using PC-based CAD
systems choose P-CAD® for
workstation level performance,
call toll-free:

800-523-5207 U.S.
800-628-8748 California

A—————— > Personal CAD Systems, Inc.

-ca 1290 Parkmoor Avenue
San Jose, California 95126 USA

PERSONAL CAD SYSTEMS INC. Telex: 371-7199 FAX: 408-279-3752

*Source: Dataquest, Inc.
P-CAD is a registered trademark of Personal CAD Systems, Inc.
Generation 2.0 is a trademark of Personal CAD Systems, Inc.

CIRCLE NUMBER 9

LOGIC DESIGN

30

40

BENCHMARKING SCHEMATIC
ENTRY SYTEMS

Paula K. Filseth

This article offers an unusual approach to evaluating different schematic capture
systems: Besides presenting the functional characteristics of four major schematic
capture systems, it benchmarks the systems’ efficiency in performing certain
operations in terms of keystroke counts, plus their speed in entering an LSI circuit.

A FIRST COURSE IN VHDL

David L. Barton, Intermetrics Inc.

The visic Hardware Description Language is rich in constructs for various levels of
hardware description. This introduction to the language focuses on register-
transfer descriptions of behavior and structural descriptions of circuits.

SOFTWARE VS. HARDWARE MODELING
FOR SYSTEM SIMULATION

Pete Johnson, Gateway Design Automation Corp.

Behavioral and physical modeling each can partially solve the modeling problem
posed by system-level simulation. This articles discusses the advantages and
disadvantages of both approaches and considers when each is appropriate.

1988 DESIGN AUTOMATION GUIDE

29

BENCHMARKING
SCHEMATIC ENTRY SYSTEMS

Paula K. Filseth, Fremont, CA

circuit design engineers to “build” and modify cir-
cuit diagrams on the terminal screen. Although the
details of an editor's makeup vary with the program, all
schematic editors execute three basic tasks. First, they
provide the circuit designer with symbols and com-
mands to be used for entering, creating, and modifying
circuit diagrams. Second, they save the finished dia-
gram by copying it from memory onto a disk so that it
can be retrieved later. Finally, the editors “netlist” the
finished design so the simulator can exercise the circuit.
For the purpose of this study, four popular editors
were selected for comparison. Three were general-pur-
pose editors: NETED/SYMED, from Mentor Graphics Corp.;
ACE, from Daisy Systems Corp.: and VALIDGED, from Valid
Logic Systems Inc. The fourth was a vendor-specific
schematic entry system: LSED, from LSI Logic Corp.
The study was conducted by interviewing design engi-
neers; by gathering information from specification
sheets, user’'s manuals, and tutorial publications: and
by actually using the editors.

Aschematic editor is the computer program used by

CRITERIA

We judge the most important criterion of an editor to be
its ease of use. Several factors determine how easy an
editor is to use and consequently how quickly designs can

be entered and modified. These factors include method of

command entry, techniques for general editing, group
operations, and movement within a design. Special fea-
tures also are considered part of the ease-of-use criterion.

Other important criteria are performance, predictabi-
lity, generality, and hardware platforms. The aesthetic
quality of schematics produced by the different editors,
though somewhat subjective, should also be considered.
Table 1 summarizes (somewhat subjectively) the fea-
tures of the four editors.

EASE OF USE

For command entry, all of the editors use a variety of

command styles, including text commands, menu selec-

tion, and single-key commands, but the importance of
each style varies from editor to editor. LSED primarily
uses single-key commands, with the most common com-
mands assigned to mouse keys. NETED/SYMED, VALIDGED,
and ACE all use menus to select most operations. NETED
SYMED uses hierarchical menus, whereas VALIDGED and
ACE have fixed menus that list only the most frequently
used commands. For less commonly used commands,
VALIDGED requires text commands: ACE provides pop-up
menus and forms.

General Editing

Circuit schematics consist primarily of component
symbols, lines that represent wires, and text. The main
commands are for adding, moving, copying, and delet-
ing these objects.

Adding symbols. The benchmarked editors all let the user
add a pre-existing symbol by typing a text command in
which the name of the symbol is specified. They all also
allow the user to copy a symbol immediately after adding it
without having to select a copy option, thus reducing the
time required for copying subcomponents.

LSED, VALIDGED, and ACE permit the engineer to “draw”
new symbols freehand. NETED/SYMED also lets the user
draw new symbols; however, he must exit the network
editor (NETED) and start up the symbol editor (SYMED)
before he can do so—an awkward arrangement that
costs the designer valuable time.

Adding wires. In some cases, the schematic editor must
be given some information about what path the wire
should take. This information can range from the location
of one or more intermediate points to a complete tracing
of the path.

Adding lines to symbols. Each editor allows diagonal lines
in symbols. They also allow circular arcs. VALIDGED requires
that the center of the circle on which the arc lies be
specified. This requirement slows down arc drawing
considerably, since the point must be found by trial and
error. The other editors let the user specify both end
points and an intermediate point anywhere on the arc.

Adding text. All the editors use text to specify the names of
parts and wires, to specify their properties, and for notes to
clarify the schematic for readers.

30 DESIGN AUTOMATION GUIDE

1988

Moving objects. All of the editors automatically move wires
attached to moved objects. Wires attached to components
in VALIDGED, LSED, and ACE not only will move with the
component, but also will retain their orthogonal struc-
ture. The resulting wire looks fine if the component has
been moved only a short distance; a longer move, howev-
er, may result in the new wire crossing over intervening
components. ‘Although NETED does reconnect wires, it
usually replaces horizontal and vertical wires with diag-
onal ones.

Copying objects. The user may copy any object on the
schematic by specifying which object is to be copied and
where the copy is to be placed. All four editors allow an
object to be copied several times in a row without requiring
that the copy operation be respecified each time.

Deleting objects. All four editors let the user perform
“group operations”; that is, the user may specify a group
of objects on a schematic and move, copy, or delete them
all at once. LSED and VALIDGED permit the user to select
groups by drawing arbitrary polygons around the ob-
jects in the group. These arbitrary polygons permit a
great deal of flexibility. NETED and ACE, on the other
hand, only let the user delete rectangular areas, desig-
nated by the specification of two opposite corners. When
an object is deleted on the LSED screen, any wires at-
tached to it also are automatically deleted; VALIDGED and
ACE will not delete such wires. NETED permits the user to
specify whether or not these wires are to be deleted.
Finally, VALIDGED assigns the group a name: for future
operations on the group, the user may select the group
by name instead of having to redraw the polygon.

Moving Around in a Design

When editing a schematic, the user must frequently
bring a different portion of the design onto the screen.
Five types of operations enable him to do so: diving into
a part, popping out of a part, zooming in, zooming out,
and panning (which centers the screen round a different
part in the schematic). In all the surveyed editors, the
part to edit or area to examine may be specified either by
description or by placing the cursor on an instance of
the desired part.

Special Features

Additional features include automatic wire routing, a
recovery (or “undo”) mechanism, buses, and windows.

Autorouting. LSED needs the fewest keystrokes for wiring,
because it inserts as many bends as necessary between the
source and destination of a route. LSED also allows the
engineer to route wires manually; that is, the engineer
may force the wire to take a certain path by specifying
points that it must pass through.

VALIDGED and ACE automatically provide L-shaped
routes (routes with one bend, or “jog”). Although these
programs require the engineer to put in intermediate
points, they will route to those points, putting one jog in
the wire if necessary. Furthermore, the engineer may
flip, or “toggle,” the wire if he wants it to bend in the
opposite direction.

Primary Menu/form | Single-key | Menu Menu
method of
command
entry
Ease of Good Good Poor Good
making
symbols
Connectivity | Fair Good Poor Fair
maintenance
after moves
Group shape | Box Polygon Box Polygon
Autorouting No Yes No No
Undo None Slow Fast Fast
Buses
Wires Yes Yes Yes Yes
Parts No Yes Yes Yes
Structure | Yes Yes No No
Operations Copying, Copying, Copying Clumsy
between wiring, wiring, copying
windows moving moving

TABLE 1. Features of the four editors surveyed.

Wiring with NETED/SYMED is slow because the engineer
must trace precisely the path he wants the wire to follow.

Undo. The undo operation is a recovery mechanism.
NETED will allow the user to undo the most recent modifi-
cation of the circuit; SYMED, however, will not. VALIDGED
and LSED both allow an arbitrary number of undo oper-
ations; however, VALIDGED's UNDO command is very fast,
whereas LSED’s is extremely slow. ACE does not offer an
undo operation.

Buses. All the editors allow the user to attach a piece of
text to a wire to indicate that the wire on the schematic
represents several wires in the circuit. All except ACE permit
the same thing to be done to a subcomponent. ACE-
generated schematics tend to be cluttered because repli-
cated parts must be drawn out in full.

LSED and ACE permit structured buses, which are buses
composed of subbuses. This feature enables the user to
treat several related buses and wires as a single bus.
Each subbus of a structured bus has a name that can be
used to make connections to that subbus.

Windows. All the editors let the user specify windows,
select a portion of a circuit in one window, and copy it into
another. With VALIDGED, this operation is somewhat
clumsy, involving writing the selected portion of the
circuit out to a disk file and reading it back into the
other circuit. LSED and ACE allow connections to be made
from an object in one window to an object in another.

1988 DESIGN AUTOMATION GUIDE 31

‘REAL-TIME’ SOLUTION
TO ASIC VERIFICATION

Tests Full Speed
At Up to 50 MHz
Across Entire Cycle.

or the first time, you can test
your VLSI prototype design at
real world operating speeds.

Thoroughly and easily. Across the

entire cycle. Without compromise.
Topaz is a totally-integrated ASIC

verification system that reduces

prototype characterization and fault
analysis time, while offering these
exclusive advantages:

e Full Data Formatting to 50 MHz
—for quick measurement of set-
up times and propagation delays.

¢ 256 1/0 Channels at Speed,
Without Multiplexing—for max-
imum performance and flexibility.

* Programmable Pattern Gener-
ation to 50 MHz—for initiation
of loops, branching and data
control.

ASIC design requires painstaking
accuracy. Verifying that design has
been neither fast nor easy. The time
available to get today’s increasingly-
complex ASICs to market continues
to contract, and the price of an
undetected error can be incredibly
costly.

With Topaz, you'll know your
design is right, and you'll know it
faster. CAE-LINK™ software permits
easy translation of simulator vectors
into ready-to-use test vectors. And,
our exclusive Meta-Shmoo™ soft-
ware allows you to quickly sweep
voltages and times at 500ps incre-
ments across an entire cycle, with-
out programming.

It acquires data with a minimum
of effort; and its ability to do graphic
error-bit mapping and multi-level
triggering gives it unequalled per-
formance in failure analysis.

Topaz is a cost-effective solution
to today’s high speed ASIC verifica-
tion needs, and the even higher
speeds you'll require tomorrow. Call
for complete details or your per-
sonal demonstration.

18902 Bardeen, Irvine, CA 92715
Phone: (714) 752-5215

DIAL TOLL FREE 1-800-HILEVEL
(In California 1-800-752-5215)

CIRCLE NUMBER 5 SEND LITERATURE
CIRCLE NUMBER 6 NEED DEMO

Adding parts 10 9 12 8
Wiring 12 4 12 12
Moving 6 4 8 6
Copying 6 5 8 6
Deleting 4 3 74 4
Text
commands
Naming 18/14 14 9/21* 12/8t
Properties | 27 14 21 12

Notes

Moving 22/12t

Copying 14 11 18 22/12%
Deleting 12 10 17 19
Diving in 6 3 8 4
Popping out 6 2 8 2
Zooming in 6 3 6 2
Zooming out 6 2 6 =
Panning 4 3 2 3

* On Mentor, attaching names to subparts is much simpler than
attaching names to other objects.

1 On Valid, naming several objects in a row takes fewer keystrokes
per object than naming just one.

1 On Valid, group moves and copies are simpler for a second
operation on the same group.

TABLE 2. Keystroke counts for common editing operations.

EASE-OF-USE BENCHMARK

In an effort to quantify subjective properties, a key-
stroke criterion was employed in our benchmark. Clear-
ly, the number of keystrokes or mouse commands re-
quired to perform a function is indicative of the time
required to learn and use a schematic entry system.

All editing operations consisted of four types of move-
ment or keystrokes: cursor positioning, typing, single-
key commands, and depression of mouse buttons.

A short experiment indicated that moving the mouse
and pressing its buttons took about the same amount of
time in all four systems. Pressing keyboard keys took
about twice as long as pressing mouse keys, because it

took time to find the desired key. Typing a piece of text
averaged about six times as long as pressing a mouse
key. Since each system uses a different set of move-
ments, the number of “equivalent mouse keystrokes”
required for each common operation was computed, for
comparison purposes, by analyzing the procedures that
the manuals specified for performing that operation. In
some cases, proficient users reported faster procedures
for performing certain operations, so those procedures
were used instead. Table 2 summarizes the number of
equivalent keystrokes for the four systems: LSED was a
clear winner, followed by VALIDGED, ACE, and NETED/
SYMED, in that order.

PERFORMANCE BENCHMARKS

The time required to enter a design on a particular
schematic entry system can be used to measure ease of
use and performance (execution time of various oper-
ations). Variables include the expertise of the operator
and the type of host.

The circuit in Figure 1, a simple 600-gate synchro-
nous design, was selected. It uses a 16-bit datapath and
a random-logic finite-state machine. The entries were
performed using release 5.02.02 of ACE running on a Logi-
cian-v, release 8 of VALIDGED on an $-32, release 6.2 of LSED
on a Sun-3/75, and release 5.1 of NETED/SYMED on an Apollo
DN420.

To obtain the performance benchmarks shown in Ta-
ble 3, an engineer proficient in the use of each system
entered the design. LSED again won the race, followed by
VALIDGED and NETED/SYMED. ACE came in last, taking over
four times longer than LSED. Interestingly, ACE required
substantially more time to enter the benchmark design
than did NETED/SYMED, even though ACE's overall key-
stroke count was lower. ACE's slow response to com-
mands contributed heavily to its poor overall time in
entering the benchmark design.

PREDICTABILITY

All four schematic editors gave users unpleasant sur-
prises at times.

ACE was described by users as a fairly unpredictable
program. The most serious problem is that, under cer-
tain circumstances, the wires in a bus are connected to
the wires in a bus pin of a submodule in a highly
counterintuitive order. Further, group operations yield
particularly unpleasant surprises and take much longer
than might be expected. For instance, copying a 14-part
group took ACE 60 seconds, as opposed to an average of
only 7 seconds for the other editors. But even worse, at
one point a copy never materialized at all, and the copy
command had to be re-entered. In another case, it ap-
peared with diagonal wires, one of which proved impos-
sible to delete.

The only predictability problem VALIDGED users report-
ed was that when text is entered, it is occasionally
attached to the wrong object. VALIDGED automatically

1988 DESIGN AUTOMATION GUIDE 33

When you need more

iz |
Create schematics faster with correct-by-construction Logic analyzer type display for interactive digital
design and on-line Electrical Rules Checking analysis using HILO-3®
e . | [

)ie/c 0000

000000

:
'r

-
-
D@D D

b

Begin PCB design with a feasibility check, then rely on a Power and ground planes are generated
Sfull suite of tools for autoplacement, high-completion automatically

autorouting, and design rule checking

Think Intergraph.

For more information or a demonstration, call your nearest
Intergraph representative. Call toll-free 1-800-826-3515
or (205) 772-2700. Call (31) 2503-66333 in Europe.

CIRCLE NUMBER 11

than a niche solution

Easy-to-use virtual instruments provide a familiar
interface for analog analysis using Intergraph’s
Cspice or ACS

A dedicated package for thick and thin film bybrid
design features automatic resistor generation and
automatic routing of chip and wire parts and SMDs

At Bottom

L

Reduce ASIC die size and improve yield with Tangent
Systems’ timing-driven layout, automatic design for
testability, and test pattern generation

64-bit mechanical design packages and electronic
publishing software round out a system for total
product development

INTERGRAPH

CIRCLE NUMBER 11

DONE

CK RESET

FIGURE 1. The benchmark design (entered using LSED).

attaches text to the closest object rather than requiring
the user to specify which object it is related to: in some
cases, that object is not what the user intends. Com-
mands to show text connections and to reattach text to
different objects do alleviate this problem, however.

The primary predictability problem with NETED/
SYMED is that SYMED does not work like NETED. For exam-
ple, SYMED cannot copy part of a symbol into another
symbol, it cannot rotate or flip objects, it cannot stretch
lines, and it cannot undo a deletion. These differences
frequently take new SYMED users by surprise.

Another SYMED problem is the existence of two distinct
grids, one finer than the other. Objects may be placed

anywhere on the fine grid but can be moved only in
increments equal to the coarse-grid spacing.

The most serious complaint about NETED was that
when wire segments and pins are placed on top of other
wires, they may be shorted together. Shorting is particu-
larly common when a part with wires connected to it is
rotated. The original connectivity of the circuit is
changed and must be corrected by hand. Users also
reported difficulty in creating small jogs in wires. The
wiring command tries to eliminate the bends completely
or to make them diagonal. Finally, the rule-checking
command gives many spurious warning messages, mak-
ing it difficult to find the real problems in the circuit.

36 DESIGN AUTOMATION GUIDE 1988

187:55

Minutes 259:45 63:05

Ratio 4.12 1.00 219

TABLE 3. Time required to enter the benchmark design.

Ease of use | Poor Good Poor Fair

Performance | Fourth First Third Second

Predictability | Poor Poor Poor Good

Machines Logician, Sun Apollo Valid-

IBM PC AT Station, 1BM

PC AT,
MicroVAX

Aesthetics Poor Good Poor Good

TABLE 4. General conclusions.

The worst surprise in store for LSED users is that the
program crashes on rare occasions. LSED has the ability
to undo a crash, so that crashes are not a disaster, but
they are a major irritation, since the undo operation can
take as long as 15 minutes to run. A much more com-
mon complaint was that since the DIVE INTO A PART com-
mand is the same key as the MODIFY TEXT command, the
two are confused if the cursor is too close to a piece of
text when the user tries to dive into a part. If the user is
looking at the keyboard instead of the screen, he may
not notice what is happening until he has typed several
commands onto the end of the piece of text. The SELECT
and CONNECT commands also are easy to confuse.

LSED users also complained that text is not clipped at
the screen borders. Instead, if a piece of text does not
entirely fit on the screen, it is not displayed at all.

GENERALITY, HARDWARE PLATFORMS, AESTHETICS

In addition to ease of use, the generality of a particular
editor must be considered. General-purpose CAE work-
stations support a variety of Asic vendors, as well as
standard families like the 7400 logic and 2900 bit-slice
families. Vendor-specific programs, such as provided by
LsI Logic, support only their (and their licensees’) AsIC
libraries. Clearly, all else being equal, a general-purpose
solution is preferable.

Currently, NETED/SYMED is hosted only on Apollo, and
LSED only on Sun workstations. ACE is available on Daisy
Systems’ own hardware, the Logician, and on a pc.
VALIDGED is available on four machines: the Microvax;
the pc AT; the Sun; and Valid’s own host machine, the

ValidStation.

The speed or ease of use of each editor was considered
most important: however, since a speedy editor that
turns out poorly executed or unreadable diagrams is no
asset to its user, consideration was also given to the
quality of the finished design. A panel of logic designers
reviewed the logic diagrams that each schematic editor
produced for the 600-gate benchmark.

ACE's designs were considered aesthetically poor. ACE
does not support bused parts. For instance, to invert a
16-bit bus, 16 inverter symbols are required; the other
editors will allow the engineer to use a single inverter
symbol and specify that it stands for 16 inverters. This
lack tends to make schematics generated on ACE look
cluttered and sometimes forces the designer to add extra
hierarchical levels to a design.

NETED/SYMED's designs also were rated as poor. Groups
of parts are replicated by placing them in a rectangle
called a “frame.” Parts that have been replicated in this
manner cannot be wired to parts outside the frame;
instead, wires inside and outside the frame are connect-
ed by being given the same name. It can therefore be
difficult to tell whether parts are connected.

Both vALIDGED and LSED received high ratings for aes-
thetic quality.

SUMMARY

Of the four systems analyzed, LsI Logic's LSED emerged
as a clear winner—not surprising, as it is three or four
years newer than NETED/SYMED and VALIDGED and in-
cludes many of the best features of its competition.
Unfortunately, it is available only with Ls1 Logic libraries.

VALIDGED came in second, NETED/SYMED third, and ACE a
distant fourth. All three have libraries available from
most of the asic vendors, including LsI Logic.

Finally, some cautionary notes. First, software is in a
constant flux, and the results shown here are probably
already out of date. Second, there are dozens of schemat-
ic entry systems; this article addresses only four. And
last, schematic entry is only a portion of a total cAE
system. In the end, a designer will select an integrated
package that will solve his problem, sometimes at the
expense of being “sole-sourced” and tied to one AsIC
vendor's silicon products. L]

ABOUT THE AUTHOR

Paula Filseth is currently a technical
writer at Gould Inc.’s Imaging and
Graphics Division in Fremont, ca. At 18,
Ms. Filseth completed the requirements
for a bachelor’s degree in communica-
tions from Stanford University. Now, two
years later, she has almost managed to
figure out the repayment schedule on her
various student loans. A fiction lover be-
ginning to despair of ever finding the
time to write the Great American Novel, Ms. Filseth has vowed
at least to produce the Great American Technical Manual.

1988 DESIGN AUTOMATION GUIDE 37

‘W!.iﬂ'"'o ;1_‘ —

Only Mentor Graphics has

brought a billion

gates to light.

Injust 5 years, over a billion gates have flowed
through our IDEA Series™ design automation
systems. And that's a very conservative estimate.

Which makes it seem all the more incredible
that, before we came along, almost all electronic
circuits were drafted and breadboarded by hand.

Since then, our schematic capture and simu-
lation tools have produced more circuits for

more products than any other elec-
tronic design automation vendor.

A claim only Mentor Graphics can make.

Along the way, we've pioneered schematic
capture and simulation tools that are now indus-
try standard. Like hierarchical design entry,
which allows efficient management of even the
largest designs. And MSPICE,” which brings real
interactivity and a graphics-oriented interface to
analog simulation.

At the same time, we've provided the depth
and power required to work with very large
designs. A macro language allows you to build a
highly customized interface, one suited specifi-

cally to your particular productivity needs. And
“case frames” allow very complex circuit pat-
terns to be expressed in just a few keystrokes.
For simulation, our QUICKSIM™ family brings
you logic, timing, and fault simulation in a single,
integrated package. Plus the ability to use a
mixture of modeling techniques, including
chip-based modeling with our Hardware Mod-
eling Library" And you can call upon our Com-
pute Engine" general-purpose accelerator to
enhance standard workstation performance.
Once your design is complete and verified,
our IDEA Series lets you express it in any
standard physical form: PCB, full-custom or
semicustom. We have a full set of layout tools
for each. All fully compatible with our front-
end tools.
As we head toward our next billion gates, we'd

like to make some of them yours. It's all part of a
vision unique to Mentor Graphics, the leader in
electronic design automation. Let us show you
where this vision can take you.

Call us toll free for an overview brochure and
the number of your nearest sales office.

Phone 1-800-547-7390
(in Oregon call 284-7357).

Sydney, Australia; Phone 02-959-5488 Mississauga, Ontario; Phone 416-279-9060
Nepean, Ontario; Phone 613-828-7527 Paris, France; Phone 0145-60-5151 Munich,
West Germany; Phone 089-57096-0 Wiesbaden, West Germany; Phone
06121-371021 Honyg Kong; Phone 0566-5113 Givatayim 53583, Israel; Phone
03-777-719 Milan, Italy; Phone 02-824-4161 Asia-Pacific Headquarters, Tokyo,
Japan; Phone 03-505-4800 Tokyo, Japan; Phone 03-589-2820 Osaka, Japan; Phone
06-308-3731 Seoul, Korea; Phone 02-548-6333 Spanga, Sweden; Phone
08-750-5540 Zurich, Switzerland; Phone 01-302-64-00 Taipei, Taiwan; Phone
02-7762032 or 02-7762033 Halfweg, Netherlands; Phone 02907-7115 Singapore;

Phone 0779-1111 Bracknell, England;
Phone 0344-482828 Livingston,

Scotland; Phone 0506-41222
Middle East, Far East, Asia,
South America; Phone
503-626-7000

A FIRST COURSE

IN VHDL

David L. Barton, Intermetrics Inc., Bethesda, MD

designed at the request of the vHsic Program Office

to provide a notation capable of the design and
description of very complex components and systems.
The final language, a result of efforts under both an
original government contract and a later standardiza-
tion drive by the IEEE, is a rich collection of constructs
for various levels of hardware description.

This article is an introduction to vHDL. It considers
two specific problem domains within the overall field of
hardware design and description. The first is register-
transfer descriptions of behavior. The second is struc-
tural descriptions of circuits, which we introduce with a
section on entities and architectures, the mechanisms
in vHDL for decomposing large descriptions. A third im-
portant problem domain is behavioral descriptions and
the mechanisms for describing relationships between
behaviors. This topic, along with other advanced lan-
guage features, will be covered in a future article.

Two subjects recur throughout the article in different
forms. Rather than try to explain them completely in
isolation, their importance will become apparent as
their effects on each problem domain emerge. The first
is the basic simulation cycle of VHDL. It is this cycle that
controls the resolution of signal values and the execu-
tion of the components of a hardware description. The
second is the idea of a “view” of the hardware descrip-
tion. A view of the description is a way of decomposing
the hardware description into parts, which may in turn
be further decomposed into parts. Several different
views are inherent in the definition of vHDL, and they will
be described as their roles in hardware design and
description become clear to the designer.

All of the examples and the information in this article
reflect the 1076/B version of VHDL, as published in the May
1987 Language Reference Manual. This version is the
subject of the standardization ballot in the IEEE. As a
normal part of the standardization process, changes are
being made in response to comments.

T he vHsic Hardware Description Language (VHDL) was

FIGURE 1. Situation depicted in (a) would be evaluated sequen-
tially as in (b) or concurrently, as in VHDL, as given in (c).

REGISTER-TRANSFER DESCRIPTIONS

A register-transfer description of hardware consists of
a series of Boolean logic expressions. Each operator
represents a gate or a series of gates in a hardware
realization. Such expressions are a convenient mecha-
nism for portraying the behavior of a hardware compo-
nent. VHDL supports simple register-transfer state-
ments, as well as timed, conditional, and guarded-
assignment statements.

The objects in the expressions are called signals, and
the expressions themselves are called signal assignment
statements. Names are given to the signals in the signal
declarations. An example describing a full adder is:

40 DESIGN AUTOMATION GUIDE 1988

signal x, y, cin, cout, sum: BIT;

sum <= X XOr y XOr cin;
cout <= (x and y) or (x and cin) or (y and cin);

The first statement identifies the objects that will appear
in the expressions and the following two statements
define the values of the outputs in terms of the inputs.

Such expressions also may operate upon bit vectors.
The following example implements a byte adder using
bit vectors:

signal x, y, cin, cout, sum: BIT_VECTOR (O to 7);
signal byte_cin, byte_cout: BIT;

cin (0) <= byte_cin;

sum <= X XOr y XOr cin;

cout <= (x and y) or (x and cin) or (y and cin);
cin (1 to 7) <= cout (0 to 6);

byte_cout <= cout (7);

The carry in and carry out bits for the entire byte adder
are represented by the signals “byte cin” and “byte_
cout.” The first line sets the first element of the carry in
array to the carry in of the entire byte adder. The second
two statements are just as in the previous example,
except that they operate upon entire arrays rather than
bits. The fourth line propagates the carry out values to
the proper carry in values. The last line sets the carry out
bit of the entire byte adder.

Each register-transfer expression is evaluated when-
ever one of the elements of the expression changes value.
The definition of the simulation cycle implies that this
evaluation proceeds in three steps: First, the expres-
sions are marked for evaluation; then the expressions
themselves are evaluated; and after all expressions are
evaluated, the values are reflected in the actual objects.
Thus, if two expressions are evaluated and the target of
one appears in the expression of the other, both expres-
sions are evaluated before either of the targets are updat-
ed. The order of evaluation has no effect on the final
values of the expressions (see Figure 1).

Signal assignment statements that share signals may
be said to be connected. In particular, when a signal
assignment statement’s target signal name (that is, the
name on the left side of the “< =" sign) appears in the
expression part (the right side of the assignment) of
another signal assignment statement, the first may be
said to “trigger” or “kick” the second. Data flow from
signal names occurring on the left-hand side of signal
assignment statements to signal names occurring in
expressions on the right-hand side of signal assignment
statements. Thus, in the example given above, the carry
information may be seen flowing through the first state-
ment, then from left to right (low to high elements of the
bit array) through the third and fourth statements, and
finally to “byte_out” in the fifth statement.

The expressions above are very similar to register
transfer expressions in other notations, although unlike
many notations, VHDL requires a separate signal declara-
tion statement. A separate declaration is an important
factor in eliminating elusive spelling errors during the
development process. The additional effort spent in de-
claring objects used in the expressions is well repaid in
reduction in debugging and correction efforts.

Timed Signal Assignment Statements

Real hardware does not evaluate expressions instanta-
neously. The designer should be able to easily and conve-
niently express the amount of time an expression will
take to be evaluated and have those times reflected in the
description.

Each expression in a series of signal assignment state-
ments may be followed by the key word after, followed by
a time. Adding timing information to the examples
above could yield the following expressions:

signal x, y, cin, cout, sum, strobe: BIT;

sum <= x xor y xor cin after 10ns;
cout <= (x and y) or (x and cin) or (y and cin)
after 15ns;

The timing information above states that the sum will be
available 10 ns after any of the inputs change and the
carry out 15 ns after any of the inputs change.

Given time delays, the order of actions in the execu-
tion of a signal assignment statement at a given time is
as follows: First, the values of all declared objects for that
time are determined; second, signal assignment state-
ments that contain objects whose values have changed
are marked for execution; and third, the expressions are
evaluated (in any order).

If no timing clause appears in the signal assignment
statement, then a time of O ns is assumed. However,
even if O ns is in the timing clause, all the statements
marked for execution are executed before the values of
any objects are updated. The notion here is that some
infinitesimal amount of time has passed, even if the
actual simulation time has not advanced. Such a simu-
lation cycle that does not cause the simulation time to be
advanced is called a delta cycle.

This model of execution allows the designer to write
signal assignment statements without regard to the
order of their execution. The simplicity of this situation
removes a great burden from the user of these state-
ments. No concern need be taken for the exact order of
the statements, but only for the values they produce.

Conditional and Selected Signal Assignment Statements

Hardware behavior is not always a direct Boolean
function of several variables. Although conditional situ-
ations may always be expressed as complex Boolean

FIGURE 2. Example of selected signal assignment statement.

1988 DESIGN AUTOMATION GUIDE 41

functions, such phrasing is often tedious. A more flexi-
ble notation for conditional situations is useful.

Two forms of signal assignment statement are de-
signed to provide a convenient notation in these situa-
tions. The first is called the conditional assignment
statement. It allows the use of conditional expressions to
filter the expressions that appear in the actual signal

assignment statement. An example is:

signal q, r, s: BIT:

q <= qwhen (r = '0’) and (s = '0’) else
'l’when (r = '1’) and (s = '0’) else
'0’when (r = '0’) and (s = '1’) else
UNDEFINED;

where “UNDEFINED" is a user-defined function. This state-
ment reflects the action of an Rs latch.

The second language structure is the selected signal
assignment statement, which allows the re-
sults of the expression to be selected by a
series of conditions based upon a single val-
ue. An example is given in Figure 2, where a
single expression embodies the function of
an eight-input inverted multiplexer.

Guarded Signal Assignment Statements

The various forms of the signal assignment
statement make the writing of Boolean ex-
pressions quick and easy. However, all of the
preceding examples apply to asynchronous
circuits and situations. There are two as-
pects to the expression of synchronous be-
havior: specification of the “clock” or enable
circuit, and the grouping of the circuits that are affected
by this enable. Both of these problems are solved by the
VHDL block statement. A block statement groups one or
more signal assignment statements into a related unit.
It also may contain an optional guard expression. This
guard is the specification of the enable circuit that
controls the operation of the synchronous circuit.

An example is given in Figure 3. This D flip-flop (encap-
sulated in the block statement labeled “flipflop”) will
reflect the value of “d” whenever the clock is high (equal
to 1). There is no need to place the clock directly in the

FIGURE 3. D flip-flop (a) represented with ‘‘guard” concept (b); VHDL code with block statement (c).

[E5R 8 N S B e B R B el

expression itself; the key word guarded identifies those
expressions that will not change value unless the guard
is true (“cLK” is high). Guards need not be only level-
sensitive; edge-sensitive guards are possible as well.

The block statement itself is the primary method of group-
ing different parts of a description in vHDL. With a few
technical exceptions, all the ways of decomposing de-
scriptions of behavior
into parts are equivalent
to different block
statements.

ENTITIES

We now tackle in ear-
nest the problem of divid-
ing a large hardware de-
scription into parts. A
description of a vLsI chip
may contain hundreds or
thousands of lines of
code. The ability to divide
descriptions into parts
and reuse the parts is
what makes vHDL different from many other hardware
description languages.

The basic unit of design description is called a design
entity. Any one entity may be reused many times within
the overall description. VHDL provides features that allow
the design entity to alter its behavior in its different
incarnations. Moreover, different implementations for a
design entity, corresponding to alternative physical real-
izations of a given function, may be used in different
portions of the description.

FIGURE 4. The use of generics to identify delay values.

The first step in setting up a design entity that will-
contain a number of signal assignment statements is
declaring what the entity will look like. An entity declara-
tion fixes the name of the entity and the names by which
other design entities will refer to the connections of the
entity. An example follows:

entity rs_flipflop is
port (r, s: in BIT; q: out BIT);
end rs_flipflop;

The name of this entity is “rs_flipflop” and its ports

42 DESIGN AUTOMATION GUIDE 1988

”

are called “r,” “s,” and “q.” Each port has an associated
mode, which identifies inputs and outputs. Not shown
is “inout,” which signifies a port that is both read and
written by the entity.

We must specify what the entity does in an architec-
ture description. A single entity may have several archi-
tectures describing different ways of realizing the entity.
An example architecture of the “rs_flipflop™ entity is:

architecture implementation_a of rs_flipflop is

begin
q <= qwhen (r = '0’) and (s = '0’) else
'l’when (r = '1’) and (s = '0’) else
‘0O’ when (r = '0’) and (s = 'l’) else
UNDEFINED;

end implementation_a;

Note that there is no signal declaration for “q,” “r,” and

“s.” The port clause in
the entity declaration
takes the place of this
signal declaration. Any
statement may appear in
an architecture, includ-
ing a block statement;
however, entities and ar-
chitectures may not be
declared inside other en-
tities and architectures.
The design entity
should be thought of as a
separate conceptual unit
on its own. In many
cases, this conceptual
unit will correspond to
an actual part in an as-
sembly. The pins of the
part are the ports. We will
examine the method of
connection in the next
section; for now, it is
enough to think of the
“level of abstraction” as
being about the same as
a part in a data book.
The design entity as
given above allows the
decomposition of any hardware design into parts. A
design entity has the effect of encapsulating part of the
description and making it “general,” in the sense that
the entity may be used whenever the function described
by this code is needed. Thus a design entity is somewhat
analogous to a subroutine in a software language.

Generics

Given that we wish to reuse a design entity whenever
practical, we need some means of providing information
to the design entity concerning parameters that may
change in the various uses of the entity, parameters like
delay and capacitance. The means of providing this
information to the design entity are called generic con-
stants, or just “generics.” Generics fulfill much the same

Component declaration

FIGURE 5. Scheme for structural descriptions in VHDL: compo-
nent instances are bound to entity/architecture descriptions.

role in design entities that parameters fulfill in subrou-
tines in software languages. Generic formals, which
appear in the entity declaration, may take on different
values in the different uses of the entity.

Consider the full-adder entity and architecture shown
in Figure 4. The names “sum_delay” and “carry_delay”
represent delay times that may be changed each time the
design entity is used. If no values are given by the user,
the default values in the expression inside the generic
clause will be used.

The existence of default values on the generic declara-
tions means that the user of the design entity need only
provide values for the formal generics if he wishes to
change the “normal” behavior of the design entity. Gen-
erics can be extremely powerful. For example, if a formal
generic appears in a conditional signal assignment
statement, the entire behavior of a design entity may be
changed by changing the
value of a generic.

STRUCTURAL
DESCRIPTIONS

After dividing a large
hardware description
into parts represented by
design entities, the ques-
tion of instantiating
these design entities
arises. The user has con-
siderable power to
change the behavior of
an entity using generics.
The method of structural
description must allow
the user to exercise this
power. Indeed, it would
be nice if a user could
give merely a general de-
scription of what a part
“looks like.” Any entity
that satisfies this general
description could later be
identified with the actual
part to be used in a spe-
cific hardware design.

These goals have been considered in the design of the
language features that allow structural description. The
concept of a component is introduced as the basic unit
of design implementation. The language is organized to
permit components to be declared and instantiated
within architecture descriptions. Then, a configuration
specification binds component instances to the design
entities and architectures that describe the desired
parts (see Figure 5).

At first glance, it might appear that a component
declaration serves the same purpose as an entity decla-
ration. However, there are good reasons to separate the
two. With local component declarations, the designer
can work from the top down—a component can be used
before it is actually in the library.

1988 DESIGN AUTOMATION GUIDE 43

open road
gets you

to market
faster.

DEC is a trademark of Digital Equipment Corporation. Apollo is a trademark of Apollo Computer. Sun is a trademark of Sun Microsystems. IBM is a trademark of Intemational Business Machines Corporation.

Our open road archi-
tecture means you can
choose the IC design
tools and hardware you
want, when you want
them, knowing that each
addition contributes syner-
gistically to the power of
your IC design system.

Our SYMBAD™ family of integrated layout tools
can take you from netlist to maximum density
layout from five to ten times faster than with con-
ventional tools. Design rule independent results
mean that creation of new layouts for changed
processes is almost instantaneous. A new layout
language captures your methodologies, converting
design expenses into assets. Our industry standard
DRACULA" family; interactively integrated with
SYMBAD, ensures that your silicon will work with

S
&Jg

-

good yield, the first time you
make it. DRACULAS established
hierarchical techniques verify
your full layout from five to ten
times faster than with conven-
tional methods.
o Take the fast lane to market
and enjoy our open road: an open database
and language for total control, an open chance to
use multiple artwork and netlist sources, the
open opportunity to work with all the popular
hardware choices (DEC, Apollo, Sun, IBM), and
the peace of mind of dealing with an industry
leader. Contact us today: ECAD, 2455 Augustine
Drive, Santa Clara, CA 95054. (408) 727-0264.
Western U.S. (408) 727-0264; Southwestern U.S. (714)
752-8451; Mid-America (214) 869-0033; Eastern US. (201) 494-
8881; Boston (617) 448-3543; United Kingdom 44-932-568544;
Japan 81-3-989-7881; France 33-1-64460531; West Germany
49-89-1782047; Asia 852-5-660136.

Optimizing time and space
CIRCLE NUMBER 12

Component Declarations and Instantiations

Given a number of components, eventually to be de-
scribed by design entities, we need to hook them up to
form a circuit. A component declaration describes the
component to be hooked up locally, inside a given design
unit. A component declaration of “and_gate” is:

component and gate port (a, b: in BIT; ¢ out BIT);

The actual use of a component is identified by a compo-
nent instantiation statement. A specific use (instance)
of the component “and_gate” in a component instantia-
tion statement is:

signal x, y, sl: BIT;
Al: and gate port map (x, y, sl);

The component instantiation statement states that there
is a specific instance of “and_gate” and that signals “x,”
“y,” and “s1” are connected to ports “a,” “b,” and “c.”

A full structural design entity is given in Figure 6. The
design entity in this example is the same as that in
earlier examples of the full adder. It is the architecture
that is different. Both architectures may be associated
with the same design entity. The exact architecture to be
used may be selected elsewhere, either when the compo-
nent is instantiated or by a separate configuration.

There are three lists used to hook up a component.
The ports in the design entity declaration are called
formal ports. The ports in the component declaration
are called local ports. The names in the component
instantiation statement, including both local signals
and formal ports of the design entity containing the
instantiation, are called actual ports.

This three-level hierarchy allows the separation of the
component declarations from the design entity declara-
tions. The connection between local ports and actual
ports is provided by the component instantiation state-
ment (in the clause preceded by the words port map,
called the port map aspect).

The separation of the component declaration from the
design entity declaration means that any design entity
that matches the overall description of the component
given in the component declaration can be used. The
exact specification of the entity to be used in the final
description is deferred. The ability to put off this deci-
sion allows the user to make overall decisions without
worrying about the specific chips to be used; he may try
several chips without changing the architecture.

It is worth remembering that no matter how many
“blocks within blocks within blocks™ are created by com-
ponent instantiation statements, it is the signal assign-
ment statements that actually specify the actions. The
final view consists of signal assignment statements,
encapsulated in design entities, connected by signals or
connected lines of signals and ports. Signal assignment
statements are the units of action and component in-
stantiation statements specify how the design entities
containing them are connected.

Generic Value Association
The previous section described how signal connec-

tions are made through ports. We also need to specify
what values will be associated with generic constants.

FIGURE 6. A full structural design entity.

This resolution of generic values is very similar to the
association of ports with signals. Consider the following
refinements to the “and gate” declaration and instan-
tiation of the example in Figure 6:

component and gate generic (delay: TIME);
port (a, b: in BIT; ¢ out BIT);
end component;

Al: and_gate generic map (5ns) port map (cin, s1, s2);

The similarity between the port map and the generic
map, and between their functions, is obvious.

Once again, actions are defined by signal assignment
statements. The generic values in the component in-
stantiation statement must eventually be reflected in a
signal assignment statement in order to have any effect
on the simulation.

Configuration Specifications

The binding between a component instance and a design
entity is accomplished by a configuration specification,
which identifies the entity and the architecture body of the
entity to be used. There also are means for connecting any
ports that have not been connected by the component
instantiation statement and for the resolution of any unre-
solved generic values. Building on the example above, a
configuration specification might appear as shown in the

following example. Here the configuration specification be-
gins with the key word for and ends with a semicolon:

component and gate generic (delay: TIME);
port (a, b: in BIT; ¢ out BIT);
end component;

for A1: and gate use entity TTL and (data flow and)
generic map (5ns);

Al: and_gate port map (cin, sl, s2);

The configuration specification states that, for the com-
ponent instantiation statement with label “A1” of the

46 DESIGN AUTOMATION GUIDE 1988

component “and_gate,” the design entity “TTL_and” will
be the actual design entity and the architecture “data_
flow_and” will be used as the implementation. The ge-
neric value, which is not resolved by the componernt
instantiation statement, will be 5 ns.

In place of the label “A1,” the key words all and others
are allowed. The key word all specifies all component
instantiation statements of a given component declara-
tion (specified by the name following the colon). The
others key word is the last in a series of configuration
specifications and denotes all component instantiation
statements not specifically appearing in another con-
figuration specification. In the case shown, the configu-
ration specification applies only to the component in-
stantiation statement with label “a1.” The other
instance of “and_gate,” as well as all the other state-
ments, are not affected. These may be bound elsewhere,
even outside of the given architecture description.

Information in a configuration specification may also
be given in a completely separate design unit, called a
configuration. Each component instantiation state-
ment in the entire design may be configured in a single
configuration. Each architecture and each block within
an architecture is identified by name in a hierarchical
structure called a block configuration. For each configu-
ration specification that would appear in an architec-
ture, a similar structure called a component configura-
tion appears in the configuration.

However, neither configuration specifications nor
configurations are necessary in order to simulate a de-
sign. In the absence of a configuration or a configura-
tion specification, the language assumes that the name
of the entity is the same as the name found in the
corresponding component declaration in the architec-
ture. The names of the ports must match, as must the
names of the generics. If all the names match, then no
configuration information is needed.

GENERAL BEHAVIORAL DESCRIPTIONS

When modeling extremely complex circuits behavior-
ally, signal assignment and component instantiation
statements can be cumbersome. A general method of
describing behavior is needed. The center of this meth-
od is the process statement. The process statement is
the true unit of action in VHDL; a signal assignment
statement is just a special case of a process statement.
With the VHDL process statement, the facilities of a gener-
al-purpose programming language are available to the
hardware designer.

In addition to most of the general-purpose structures
found in Ada, Pascal, or any other programming lan-
guage, VHDL includes mechanisms specialized for hard-
ware description. One example is the wait statement
that specifies that a process should suspend execution
until a simulation cycle when specified conditions are
met. Another example is the behavior of a multisourced
signal (called a bus in vHDL) which is defined by a
function that is specified in the declaration of the signal.
These and other advanced features of the language are
beyond the scope of this article. However, they will be
taken up in a future article.

—

CONCLUSION

This article has set forth some of the basic structures
of vHDL. It is an extremely rich language, with a variety of
language features for a variety of situations. Specific
features are designed to facilitate the description of
hardware behavior by means of Boolean expressions,
structural description, and algorithmic definition.

The presence of design entities allows a given installa-
tion to establish standard design practices. A given
installation may use a set of standard library units that
correspond to available hardware components. The ma-
jority of designers on a project will usually use a sinall
portion of the language features, while a small set of
technicians may write and assemble these standard
library units.

The language features governing design decomposi-
tion allow a large team to work on portions of a complex
design in isolation. Different parts of the design may be
connected just as any other component or set of compo-
nents would be connected. The configuration allows the
final measure of control, appropriately connecting un-
connected ports, resolving unresolved generic values,
and selecting the actual architectures to be used for the
various portions of the design.

The richness of VHDL entails some complexity. This
complexity can be controlled by selecting design prac-
tices within an installation that limit the number of
language features that need to be learned by the majority
of designers. In this manner the complexity of the actual
design can be controlled as well as the complexity of
learning a rich hardware description language. VHDL can
indeed be an asset in the hardware design process,
regardless of the size or nature of the hardware. 0

ACKNOWLEDGMENTS

The original suggestion for the overall format of this article
came from Dr. Al Gilman. Craig Brown, Rachael Rusting, Al
Gilman, and Roger Lipsett all have reviewed earlier versions of
this article and made valuable suggestions. The author grate-
fully acknowledges his debt to these people.

REFERENCE

vHDL Language Reference Manual, Draft Standard 1076/B.
May 1987. IEEg Computer Society Publications Department,
Los Angeles, ca.

ABOUT THE AUTHOR

David L. Barton is currently a princi-
pal language consultant at Intermetrics.
He is also currently enrolled in the php
program at the University of Maryland.
Barton is the designer of pLcB, a program-
ming language for use with a shared-
memory multiprocessor. His current re-
search interests include the formal
specification and verification of distrib-
uted programs. He received the ms degree
in computer science from the University of Maryland in 1984.

1988 DESIGN AUTOMATION GUIDE 47

Unleashing the Power
of Analog ASICs

...It’s about time!

Macrochip—The analog ASIC solution

Leading-edge system designs require
powerful IC solutions. As an analog cir-
cuit designer, you are challenged to
meet system requirements—per-
formance, miniaturization, reliability
and cost—on time
and within budget.
The solution—
Macrochip.

The benefits of true
semicustom analog

‘Lv e s ——
Jood \For | wtamkamocrovam1 1004

Ferranti Interdesign
brings all the benefits of true semi-
custom IC technology to analog circuit
designers, because the Macrochip, like
Gate Arrays, require customization of
only the metal mask to implement even
the most sophisticated analog design.
Your benefits—Assured performance,
design flexibility and low development
Costs.

Semicustom analog means powerful
reductions in both cost and turn-
around time

Integration of a typical analog Macro-

chip, from completed layout to proto-

types, starts at $1,800.00 with a turn-
around time of 4 weeks. Compare that
to standard cell or full custom!

Our broad selection of Macrochip arrays
will let you choose the chip that match-
es your circuit complexity without hav-
ing to pay for unused
silicon! The Result—
A cost effective solu-
tion from develop-
ment through produc-
tion.

Macrochip—A grow-
ing family

The Macrochip series now offers the
designer a family of gridded arrays with
various component counts and a repeat-
ed cell structure common to all arrays,
providing optimum array sizes for any
analog design, while permitting the
transfer of designs between arrays.

The present Macrochip family of nine
20V bipolar arrays with f; of 400MHz
(small NPNs) is expanding to include a
family of 40V bipolar arrays with a
selection of MOS capacitors and high
value implant resistors. This allows you
to use the Macrochip in a broad range

Schematic Capture using
FutureNet with Ferranti
Interdesign Symbol
libraries

of standard, as well as high-voltage,
low-current linear applications. Further
enhancements to the Macrochip family
will soon be available from Ferranti
Interdesign for even
higher-performance
linear applications.

Complete CAE sup-
port for Industry-
Standard work-
stations.

Macrochip is fully supported for
schematic capture, simulation and
layout with Ferranti Interdesign
libraries, using FutureNet®/PSpice™,
Analog Workbench™, PC Workbench™
or Mentor™ software. Ferranti Inter-
design libraries consist of extensive
Macrochip device symbols and Macro
subcircuit libraries, models for the
various versions of Spice and layout

Circuit Simulation using
PC Workbench with Fer-
ranti Interdesign Circuit
Models

databases—all provided to our cus-
tomers free of charge.

A continually expanding analog cell
library.

Another powerful feature of Macrochip
is our continually expanding Macro cell

FutureNet is a registered trademark of the FutureNet Corp. PSpice is a trademark of
the MicroSim Corp. Analog Workbench and PC Workbench are trademarks of Analog

Design Tools Inc. Mentor is a trademark of the Mentor Graphics Corp.

CIRCLE NUMBER 13

library. Predesigned analog circuit func-
tions such as op amps, comparators,
sample and hold circuits and timers give
you the flexibility to design hierarchic-
ally from sub-system level to transistor
level—whichever suits your circuit re-
quirements.

The power of experience.

Ferranti Interdesign brings the ex-
perience of over 2,500 analog integra-
tions to meet your analog ASIC re-
quirements. That’s more semi-custom
analog integrations than anyone in the
industry!

Let Macrochip unleash the power of
your system design today by contacting
a local sales representative, an Authorized

Analog Simulation using
MSpice on Mentor with
Ferranti Interdesign Cir-
cuit Models

Design Center, or call Ferranti
Interdesign direct at (408) 438-2900.
YN L
! "FREE OFFER 7
Macrochip Demo Diskette*
: For a visual demonstration illustrating the

| ease of analog semicustom using Macrochip,
| fill in the coupon below, and mail it to:

Ferranti Interdesign Inc.
1500 Green Hills Road
Scotts Valley, CA 95066

Name
Position

Company
Address.
City/State/Zip.
Country/Phone

*5 % "floppy disk—requires IBM PC or compatible with
1 EGA or better.

|
|
I
|
|
|
|
|
|
|
|
|

Soh!fions

in
Silicon

FERRANTI

Ferranti Interdesign Inc

MODELS FOR

&

SOFTWARE VS. HARDWARE

el i e

SYSTEM SIMULATION

Pete Johnson, Gateway Design Automation Corp., Westford, MA

D esigners of vLSI circuits have depended upon simu-
lation techniques for years, owing to the fact that it
is very difficult to breadboard an ic. Additionally,
the circuit building blocks that ic designers have used
have been of relatively low complexity—usually a few
logic gates or switches. This simplicity enabled simula-
tion models to be obtained easily, since gates and
switches are the traditional primitives of most logic
simulators.

The system designer using these ics at the printed
circuit board level, however, has not had such an easy
time. Models for a single ic can take months to generate.
For a board with a dozen or more complex chips, model
development requires a tremendous amount of effort. As
a result, most system designers either have not em-
braced system simulation or have attempted to simulate
“around the holes” by mimicking with stimuli the ac-
tions of the ics that had no simulation models.

Clearly, generating and maintaining models for the
thousands of comnplex Ics that systems designers can
choose from is a huge undertaking. Currently, two pri-
mary modeling techniques are being used: behavioral
and hardware modeling.

Behavioral modeling is a software representation of
the functions that a given design performs (or should
perform). It is used by ic designers in developing and
trying out new design ideas. For off-the-shelf compo-
nents, however, behavioral modeling is used to accu-
rately represent the operation of an existing component.

Generally, behavioral models are written in a high-
level programming language (like ¢ or Pascal) or in a
hardware description language (HDL) that has been de-
veloped exclusively to model hardware designs. HDLs
differ from general-purpose programming languages in
that they offer additional constructs to directly support
the description of hardware. For example, HDLs typically
offer additional data types such as register and wire that
can hold electronic values or key words to describe
asynchronous behavior like a signal changing. Figure 1
shows a small behavioral model of a 32-bit ALU that
demonstrates some of the features of a HDL.

In a system simulation, behavioral models would be

module alu(a__bus, b__bus, c__bus, control, clock);
input clock;
input [1:0] control;
input [31:0] a__bus, b__bus;
output [31:0] c_bus;

reg [32:0] c_—reg;
reg [31:0] a_reg, b__reg, c__bus;

always (@ (posedge clock)

begin
a_reg = a__bus;
b__reg = b_bus;
case (control [1:0])
2b 00:c_reg = a_reg + b_reg;
2b01:c_reg = a_reg — b__reg;
2b10:c_reg = a_reg & b__reg;
2b11:c_reg = a_reg |b__reg;
endcase
c_bus [31:0] = c—reg [31:0];
end
endmodule;

FIGURE 1. Example of a behavioral model written in an HDL: a
32-bit ALU.

mixed with other models of the rest of the components to
be simulated. If these additional components are de-
scribed at various levels of abstraction (such as gate or
switch representations of SsSI or MSI components), the
resulting simulation is called mixed-level.

Many large companies have developed behavioral mod-
els of components that they work with often. However,
this development requires a dedicated set of engineers
and is very expensive. Lately, third-party companies
have emerged that generate behavioral models of many
popular components. These companies can usually offer
a lower-priced model than could be developed internally,
since they can amortize the development cost over many
customers and simulators. Typically, prices range from
$500 to $6000.

An alternative to behavioral modeling is hardware

50 DESIGN AUTOMATION GUIDE 1988

Connection
to
simulator

FIGURE 2. Typical structure of a physical modeling system.

modeling. Also called physical modeling, this approach
uses the component itself to model its functionality in a
simulation. Typically, a hardware modeling system con-
sists of a set of dedicated hardware that a target chip can
be plugged into, as shown in Figure 2, plus the neces-
sary software. The simulator sends input data that is to
be evaluated to the modeling system, which applies that
data to the actual component and records the chip’s
response; the response is then sent back to the simula-
tor. Note that the hardware model usually supplies only
the functional information of the component’s response;:
software is required to supply timing information.
Hardware modelers are usually stand-alone systems
and are connected to a network, like Ethernet, or at-
tached directly to a workstation or hardware accelerator.

Neither behavioral models nor hardware models are
the ideal solution to every system design situation. How-
ever, understanding the advantages and disadvantages
of each type can help the designer determine which one
(or a combination of the two) best suits the design
requirements.

The advantages of behavioral models fall into three
main categories: flexibility, availability, and cost.

A behavioral model is extremely flexible. Since it is
entirely represented in software, it can be modified sim-
ply. Modifications that a designer may want to make
include adding more timing information (like minimum
and maximum delays or timing checks) or changing
operating conditions of the component (for example,
making a 12-MHz component a 16-MHz part).

Behavioral models are available as soon as they can be
encoded and tested. Usually, all that is needed to begin
development of a behavioral model is a standard data
book description of the component. There is no need to
actually have silicon for the component to develop the
model.

Finally, there are no hardware costs in developing or
using a software model. Since they are developed using

standard languages, they will run on the same computer
that the simulator is being run on.

The cost to develop these models, however, can be
large. Since the model is usually developed by someone
other than the ic designer, it takes time to understand
the complete operations of the component. Even once
the part is completely understood, the time required to
encode and test the model can be many months.

Also, once developed, behavioral models are difficult to
maintain. As the I1c vendor releases more formal data
books or introduces new versions of the component, the
model must be updated.

One final disadvantage of behavioral models is their
speed of evaluation. Although they are much faster than

Hardware models can
evalvate very quickly. If the
modeler is directly attached
to the simulator host, little

software overhead will be

incurred in evalvating a
hardware model.

a corresponding gate-level model, the evaluation time for
a single input change can be many milliseconds, even on
mainframe computers. For a design with a lot of compo-
nents and a large number of input changes, simulation
can take a long time.

Purchasing models from a third party can remove
some of these obstacles. A third party may already have a
particular component available or be in the process of
developing it. In that case, the designer may want to do a
make-versus-buy analysis. For complex components,
the purchase price will usually be less than the cost to
develop the model internally.

1988 DESIGN AUTOMATION GUIDE 51

Hardware models have their own set of advantages and
disadvantages. Typically, it takes only days to develop a
hardware model once the silicon is available. Timing infor-
mation is obtained from data books and can be entered in
advance. Thus both the cost and time are dramatically less
than for developing the corresponding behavioral model.

Also, hardware models can evaluate very quickly. If the
modeler is directly attached to the simulator host (in-
stead of over a network), little software overhead will be
incurred in evaluating a hardware model. Once the data
are presented to the model, the response time is usually
measured in nanoseconds.

There is, however, a significant cost to the hardware
modeler itself. Typically ranging from $35,000 to
$100,000 for a well-configured machine, this expense is
not needed for behavioral modeling.

The design group will try to amortize this cost over
multiple users and place the modeler on a network so
that multiple simulations can take advantage of it. Shar-
ing a hardware modeler reduces its performance advan-
tage over behavioral modeling, since networking soft-
ware must be executed and other network traffic must
be contended with for each evaluation of the component.

Additionally, hardware models limit the length of sim-
ulation for most of today's popular vLSI components,
owing to the dynamic nature of these chips. This same
property also dramatically increases the evaluation time
as the length of the simulation increases.

The evalvation speed at
which of a behavioral model
evalvates depends on many
factors: the speed of the
simulator and the host
computer, the efficiency of
the modeling language, and
even how well the model

is written.

Since simulation performance is a critical issue in
evaluating a design methodology, the next section ex-
plores in more detail the issue of speed of evaluation of
behavioral versus hardware models.

SPEED ISSUES

The speed at which a behavioral model evaluates de-
pends on many factors: the speed of the simulator and
the host computer, the efficiency of the modeling lan-
guage, and even how well the model is written. However,
the evaluation time will vary linearly with the length of
the simulation. A similar evaluation of a given part will
always take approximately the same amount of

10 0.00059 1.4
100 0.059 14
1,000 5.9 140
10,000 590 1,400
100,000 59,000 14,000

TABLE 1. Behavioral and hardware evaluation times for the
68000 microprocessor.

time, regardless of whether that evaluation occurs early
or late in the simulation.

The same cannot be said for most hardware models.
These components, which are typically referred to as
“dynamic,” require a minimum clock frequency to main-
tain their internal state. Since the simulator cannot
guarantee a minimum evaluation frequency, the hard-
ware modeler handles this problem by maintaining the
complete set of input evaluations. Each time the simula-
tor requests a new evaluation, the modeler replays the
entire evaluation history at a speed sufficient for the
component to maintain its internal state. Consequently,
each evaluation takes increasingly more time, as the
length of evaluations to be played back increases. This
increase is quadratic in nature, proportional to the
square of the number of evaluations.

A simple look at the preceding information could result
in the following assessment being made: For short simula-
tions, hardware models are faster than behavioral models;
whereas for longer simulations, behavioral models will be
faster. Though this statement is generally true, there are
many other factors that affect this relationship.

Although many of today’s popular components are dy-
namic in nature, some are not. A nondynamic (“static”)
component does not need the replay of the entire evaluation
history before each new evaluation, since it does not loose its
internal state. Consequently, as with behavioral models, the
evaluation time for these components changes linearly with
simulation time and in long simulations can be dramatically
less than for dynamic components.

The speed of the simulator host computer is also
important. Many designers use workstations for simula-
tion. The dramatic increase in their performance over
the last few years directly affects the evaluation perfor-
mance of behavioral models. Mainframe computers can
further boost the simulation performance. In contrast,
hardware modelers can be be speeded up only to the
maximum operating frequency of the component to be
modeled. Although this value, too, is rising, it is not
increasing as quickly as workstation cpu performance.

New behavioral modeling techniques are also improv-
ing the speed at which model evaluation is performed.
One of these techniques, called “bus-functional” model-
ing, reduces some of the accuracy and functionality of
the model, but it gives significantly higher performance.

52 DESIGN AUTOMATION GUIDE 1988

Custom performance,
QuickChip'turnaround.

Imagine.

The performance, speed and reliability of

Tektronix bipolar ICs. Plus technical

expertise in analog design second to
none. Together they cut a direct

. path to market without cutting

- quality for your new products.

8 That’s Tek’s
........... @ QuickCustom™ approach.

i It begins with a family of seven
QuickChip arrays to start the design pro-
cess. Within weeks you have analog or
analog/digital ASIC’s in hand that meet
your requirements.
Tek delivers the training, graphic
layout and simulation tools, plus access
to an experienced Tektronix IC Design
Engineer. You get the performance you
need at QuickCustom prices.

So call (800) 835-9433
ext. 100.

Get your hands on the semi-custom,
analog and analog/digital IC develop-
ment resources you'll need. Full custom
ICs are also available.

-‘.‘Pi\"«!"#'f.

WHAT ARE QUICKCHIPS?

Analog QuickChip family:
[[] 150—524 NPN Transistors

U fr typical to 6.5 GHz at 15V or
2.5 GHz at 65V.

Analog/Digital QuickChips:
[J Gate propagation delay: 400 ps
[J Digital function library

“-w e

»
¥
*
et

Tektronix:

COMMITTED TO EXCELLENCE

Cl RCLE i Copyright © 1987, Tektronix, Inc. All rights reserved. ICO-002B.

Thus these models can offer a fast, inexpensive way to
remove many design errors.

If multiple uses of a single component are required
within a design, using ‘a hardware modeler can slow
down the simulation, reduce the length of simulation, or
increase the cost of the hardware modeler. The reason is
that the multiple instances of the component must ei-
ther share the same physical memory of the hardware
modeler or else spend time in having to swap patterns in
and out of this memory, or multiple copies of the chip
must be used. In general, using multiple instances of a
behavioral model does not impose any of those penalties.

In either case, hardware accelerators cannot help vLSI
model evaluation performance. Since the accelerator
handles only gate- and switch-level evaluations, both
behavioral and physical models must be evaluated sepa-
rately (the behavioral models on an attached host, the
physical models on an attached hardware modeler). If
the amount of evaluation taking place in these models is
significant, then the accelerator is spending most of its
time waiting for evaluations. However, hardware model-
ing may be preferable when an accelerator is used, since
the user may be willing to dedicate a modeler and tightly
couple it to the accelerator.

DETERMINING THE OPTIMAL MODELING SOLUTION

Given the myriad of complexities, it is still possible to
determine which modeling technique offers better per-
formance under a particular set of constraints. A design-
er can evaluate the set of components to be modeled and
the available simulation tools to get a good idea which
technique(s) are preferable.

The main issues that need to be considered in this
evaluation are:

® Device complexity

e Modeling system performance

® Modeling system structure

® Logic simulator and host computer performance

Device complexity will determine the amount of evalu-
ation time required for a behavioral model; a model for
an 8085 microprocessor, for instance, will evaluate much
quicker than a model for a 68020. Complexity has much
less of an effect for hardware models.

The modeling system performance may limit the speed
at which the hardware model is evaluated. Many of
today’s popular components can operate faster than the
typical 16-MHz frequency of most of the available hard-
ware modelers.

The structure of the modeling system also will affect
evaluation performance. Some modeling systems save
evaluations from the simulator until a change is noted
in any of the specified strobe pins. For example, if a
single data pin has changed, the evaluation would not be
presented to the component. Once a strobe pin has
changed (such as a clock pin rising), the entire input set
is presented to the component for evaluation. This
method reduces the number of total evaluations per-
formed and so can reduce simulation times or lengthen
the simulation (since the simulation must end once the

Physical
modeler

Crossover
point

Time to evaluate

Behavioral
model

Number of vectors to component

FIGURE 3. Relative performance of behavioral and hardware
modeling.

available memory for evaluations has been filled).

A networked system will significantly slow down the
evaluation time, as will a system that allows a single
physical component to be shared by many users.

Finally, the speed of both the logic simulator and the
host is important. The simulator’s speed is directly relat-
ed to the evaluation speed of the behavioral model and
influences the evaluation of hardware models, since an
interface must be implemented. Note that in some logic
simulators a similar interface must be available for be-
havioral evaluation as well. The speed of the host com-
puter that the simulator is running on is likewise impor-
tant, in that faster cpu performance will decrease
behavioral evaluation times.

DESIGN EXAMPLE: SIMULATING THE 68000

The following design example concerns the simulation
of a Motorola 68000 microprocessor. This example uses
just the 68000, but evaluation times should be propor-
tional when the part is used in a complete system de-
sign. A behavioral model of the 68000 was generated in an
HDL and simulated with a mixed-level simulator on an
engineering workstation. As for the hardware modeler,
two different types were evaluated, making some as-
sumptions in an attempt to compare simulation times.

Simulating the 68000 with a behavioral model resulted
in a performance of approximately 7 instructions per
second on a 2-mips workstation. Since this performance
is linear, it can be extrapolated to any length of simula-
tion desired to compare it with that of a physical model-
ing system.

The first hardware modeling system analyzed is one
that presents each evaluation as it occurs. Thus a clock
edge or other strobing signal is not treated differently
from any other signal change. Typically, this type of
system produces about 2.3 evaluations per clock cycle of
the microprocessor. Assuming about 6 machine cycles
per 68000 instruction, that figure translates into 13.8

54 DESIGN AUTOMATION GUIDE 1988

CIRCLE NUMBER 10

Designers can determine
which modeling technique
offers better performance
under a particvlar set of
constraints. The main issves
to be considered are device
complexity, modeling system
performance, modeling
system structure, and logic
simulator and host computer
performance.

hardware evaluations per instruction. This modeler is
capable of applying 16 million evaluations per second.
Assuming no overhead in networking or other software,
the total evaluation time can be calculated for a given
number of instructions and compared with the time
needed for the behavioral modeler. Table 1 gives some
calculated simulation times for this hardware modeling
system and behavioral models executing on the 2-mips
workstation.

Note that the hardware evaluation time increases by
the square of the number of instructions (100 X in-
crease for each 10 X increase in instructions), whereas
the behavioral evaluation grows linearly. Note also that
at some point between 10,000 and 100,000 instruc-
tions, the behavioral evaluation time begins to be less
than the hardware evaluation time.

It can be shown that this crossover point—that is, the
number of instructions to be executed before the total
evaluation time for behavioral models is equal to the
total evaluation time for hardware models (see Figure
3)—is about 24,000 instructions (3400 seconds, or 57
minutes, of evaluation time). Thus simulations involv-
ing less than this amount will be faster using hardware
models, and simulations using more will be faster using
software models.

A modeler that applies one vector per machine cycle
would move this crossover point higher, since fewer
evaluations are being performed. In this case, the point
moves to 127,000 instructions. (This difference is about
5.3 times, which not coincidentally is the square of 2.3,
the ratio of the number of evaluations for the two hard-
ware modeling systems.)

Note that both of these are very long simulations. Even
24,000 instructions require about one hour of simula-
tion, and that assumes that there are no other models in
the design. For most simulations, therefore, the hard-
ware modeler will be faster.

Of course, if the modeler is networked. the crossover
point will move in the other direction. Even with the
faster modeler, adding in a network response time of 40
ms for each evaluation (20 ms in each direction), the

crossover point moves from 127,000 instructions to
about 91,000 instructions. For the slower modeler, the
point moves from 24,000 instructions to about 17,000
instructions.

The other way in which the point can be significantly
moved is by making the behavioral model run faster. The
same simulation running on a 10-Mirs workstation or
mainframe would move the two crossover points to
about 25,000 and 5,000 instructions for the faster and
slower modeler, respectively. Adding in the previously
defined networking overhead, the crossover points for
both systems become negative, meaning that even a
single instruction is faster behaviorally than with the
hardware modeler.

NONPERFORMANCE ISSUES

We have focused mostly on the performance issues
between hardware and behavioral models. There are, how-
ever, two other key issues that cannot be ignored in
deciding between these modeling techniques. The first is
simulation length. For most components (those that are
dynamic), simulation with a hardware modeler must end
once the available memory for evaluations has been filled,
as previously mentioned. For most hardware modelers,
this limitation ranges from 16K to 256K evaluations. This
length is probably sufficient for most simulations, but if
the user is planning on running very long simulations,
such as batch regression tests, the limit may be reached.
For behavioral modeling, there are no such limits.

The other major concern is the availability of models.
Assuming that the design group is unable to develop its
own internal models of complex components, the avail-
ability of models is dependent on outside resources. In
most cases, silicon will be available before a third-party
behavioral model. However, recently third-party vendors
have been striking up relationships with ¢ manufactur-
ers to deliver behavioral models before first silicon is
available.

SUMMARY

Both behavioral and physical modeling can partially
answer the system simulation modeling problem. How-
ever, neither technique is a solution by itself in all cases.
A user must carefully consider the alternatives in terms
of costs, performance, and length of simulation. Often,
however, availability will be the determining factor. []

ABOUT THE AUTHOR

Pete Johmnson, product marketing
manager, came to Gateway from Daisy |
Systems, where he was a marketing man-
ager for simulation and test tools in the
digital design automation division. He
spent six years at 1BM as a designer and a
design manager. Pete received his BSEE
from Clarkson University in Potsdam, Ny.

56 DESIGN AUTOMATION GUIDE 1988

ASIC Design Kits

ALID

The Best
Kept decret

¢
Word
Is Out!

Computer
simulation
charges

at foundry

$ (Thousands)

The word is out on
who has the best ASIC
solution.

If you're looking for a complete
and easy solution for ASIC
designs, you've come to the right
company.

When you're designing semi-
custom IC's, your biggest challenge
is to design them quickly and
accurately. To achieve this, you
need two things: The best CAE
design tools. And complete ASIC
Design Kits from the leading ven-
dors. Valid and its ASIC vendors
can provide you with both.

With
Valid

Without
Valid

75 75 78 73 56

% Gates Used

Valid makes it easy.

Valid's ASIC solutions allow you to
reap the benefits of designing with
ASIC devices while dramatically
reducing non-recurring engineer-
ing (NRE) costs and long develop-
ment cycles.

And you can ease into our solu-
tion. You use the same CAE tools
you would use to design with off-
the-shelf components. All Valid
tools, from schematic capture
through simulation to net list
generation, operate as easily on
ASIC designs as on designs that
include only standard components.

What's more, not only do all Valid
tools support ASIC design, but

all Valid platforms support ASIC
design, too. So you can design
with ASIC devices on the same
system you use for all your

other designs.

62

Valid offers plenty of
ASIC design support.

More than 97 design kits have
been developed by the leading
ASIC vendors to support our CAE
solutions. Each ASIC Design Kit is
fully qualified by the ASIC vendor
to ensure that the verification you
perform on your Valid workstation
will meet the requirements of

the vendor.

Moreover, Valid offers ASIC-specific
tools. For example, if your ASIC
needs include programmable
device support, then use ValidPLD™

P

It provides support for the full

spectrum of programmable devices.

ValidPLD is fully integrated with
industry-standard PLD tools, such
as ABEL™ CUPL™ and PALASM™
And you enter the program for
your device only once. In the for-
mat of your choice. ValidPLD then
automatically generates a graphical
representation and validation
models to be used with ValidGED™

Digita
3%

Graphics Editor, ValidSIM™ Inter-
active Logic Simulator, and
ValidTIME™ Timing Verifier.

If your ASIC needs run to silicon
compilation, Valid's silicon design
solution allows you to use silicon
compilation technologies from
within the same Valid environ-
ment. Our menu-driven silicon
compiler not only automatically
generates layout for you, but it
also simultaneously generates
schematic symbols and validation
models to be used with ValidGED,
ValidSIM and ValidTIME.

Design your ASIC devices
on industry-standard
platforms.

Valid's design validation software
features ValidGED and ValidSIM, a
simulator that can distinguish be-
tween ASIC and PC board valida-
tion needs. The software runs

on the VAXstation I Sun Work-
stations® IBM PC AT?" or on Valid's
own SCALDsystem® All of these
systems can be networked together,
using the industry-standard
Ethernet™ protocol TCP/IP.

You can configure the network of
your choice, mixing and matching
platforms to meet your company’s
needs. The same software runs on
all platforms, so you're not locked
into one. Nor do you have to
learn new application software

as you move from one platform
to another.

VALID

Valid Logic Systems
2820 Orchard Parkway
San Jose, CA 95134
(408) 432-9400

Telex 371 9004

Valid International
Valid House

39 Windsor Road

Slough, Berkshire SL1 2EE
United Kingdom

44 753 820101

Telex 847 318

Nihon Valid

Tokyu Building

2-16-8 Minami-Ikebukuro
Toshima-Ku, Tokyo 171
Japan

81 3 980 6421

Fax 981 877

ValidPLD, ValidGED, ValidSIM, ValidTIME, SCALDsystem
Realchip, Realmodel are trademarks of Valid Logic Systems
Incorporated. ABEL is a trademark of Data 1/0 Corporation
CUPL is a trademark of Assisted Technology Incorporated
PALASM is a trademark of Monolithic Memories Incorporated
UNIXis a trademark of A T.&T Bell Laboratories. IBM PC AT is
trademark of International Business Machines Corporation
VAXstation Il is a trademark of Digital Equipment Corporation
Ethernetis a trademark of Xerox Corporation. Sun Workstation
is aregistered trademark of Sun Microsystems, Incorporated

2268 11/87

5K

Valid helps you integrate
ASIC devices into
system-level designs.

Designing your ASIC device is
only one step in the design cycle.
Equally important is being able to
easily integrate the device into
your system level design and
verification. Valid's ASIC solution
handles every step of the system
integration process.

For example, after designing your
device, but before laying it out,
you need to ensure that the device
works within your target system
design. ValidSIM's estimated wire
delay handles this verification by
letting you estimate the effect of
wire delays before the chip is actu-
ally laid out. And, since ValidSIM
includes features for both PC
board and ASIC simulation, you
don't have to switch simulators
when you do a system level simu-
lation with your ASIC device.
Then, after your device has been
laid out, but before fabrication,
ValidSIM lets you simulate your

design with backannotated wire
delays. So you know the fabricated
device will work within your tar-
get system.

When you receive your first fabri-
cated ASIC devices, you can use
ValidSIM, augmented by either

of Valid's hardware modeling sys-
tems? Realchip™ or Realmodel’™ to
test the devices. Realchip or Real-
model enables ValidSIM to use the
real physical IC chip to model the
function of the device while it
obtains its timing information
from a user-specified file. So you
don’t have to wait for full-speed
parts to use the real devices in
your simulation.

Finally, after verifying the func-
tions of your devices, you can
continue to use it with Realchip
or Realmodel as the simulation
models for the remainder of your
system-level simulation.

ValidGED

ValidSIM

Realchip
Realmodel

* -
1S, Patent No. 4,590,581

ive you

B0
—
‘L
=
=
<
(=}
=
oy
Q .
S E
-
aw
k-
" —
.
2o
=
2
S
o
=
20
_—
‘O
=
=
(e
S
(=
oy
o .
S £
QH
>_'m
85
- —
g
2o
z S

Name

YES! I'd like more

in

Name

YES! ['d like more

Title

rma

Valid's ASIC solution.

Title

information about

alid's ASIC solution.

Company

%)
7]
5]
=
=
=
<<

Please have a Valid

Ce

O

City

Company

Address

%
=

=
-
’;J
Z
=
=%
Z
>

call me.

City

I'd like a demon-

[=ICT)

Zip.

State

Zip

State

1 like a demon

f Valid's

solution

Phone (

solution.

Phone (

spec
are

Tl =
EEEms
BERES
EoEzE
eE="2
Select your ASIC
technology from the
leading ASIC vendors.
—_— Today, ASIC Design Kits are And we're adding more all the
e —— <q = available for the following ASIC time. Because in our effort to offer
T 2 = vendors: the easiest, most complete solu-
B> AMCC Mitsubishi tion for ASIC design, we're cons-
- = AMD Motorola tantly working with ASIC vendors
—) o é AMI National to develop and qualify their
w o T
Ay ° = ASEA HAFO NCR Design Kits for Valid.
= | 2 AT&T IEC .
e = : = “)‘\['\}‘v(‘ Contact your Valid sales office for
= | = ad 2 (jl_(‘ i ()}\‘l] the most up-to-date list.
== = R Fairchild Phillips
D ; E g) E E Ferranti Plessey It's no longer a secret. Valid offers
D = =% ey O Fujitsu RCA the best ASIC solution in the
— = J:) = 8 5 Harris Ricoh industry. To get the whole story
(7] | e o
E 2| = 509 '§ o Hitachi SAGEM for your company, complete and
I = Q=0 3 Hughes SGS mail the attached reply card today
S lE zmEgo | ey
<) =2EHEQ o IMI Signetics
S = o < B
M =& S=2RS IMP SMC
IMSC Thomson-Mostek
LSI Logic Tl
Matra Harris Toshiba
MEDL VTI
Mietec
Sxa B
= B S
HiEE2T@ow
CRITn
o =) =
Z &S =
—
— -l &
e =
= o
=<
(9]
- =
9]
—_ o | A
w
A o | &
Z. by B,
Q0 <
— | &
E a %) f = -
o = < £ = = 8]
= | o ECER
f—ﬂ — XA -5 <
— I £
= wll = = <
Z| = Bb2 S o
D S e — =z o
o N 0 = SEHo™
2|2 ZES:
Qe B SE=2S8S

PHYSICAL DESIGN

64 LEAF CELL DESIGN
M.Y. Tsai and Stephen Wuu, ECAD Corp.

Leaf cells are built better by experienced designers following a set of guidelines than
by design automation tools, because the range of possible solutions is too great for
these tools. Such tools should aid the designer, not replace him, by preserving his

designs and design practices through symbolic design and a procedural layout
design language.

72 GRAPHICAL FLOORPLAN DESIGN OF CELL-BASED ICS
Edmond Macaluso, Tektronix CAE Sytems Division

This article describes the range of tasks necessary for floorplan design—editing
device specifications and placement; estimating area; creating and evaluating
assemblies; and performing placement, channel editing, and layout evaluations—
—and an interactive graphical floorplanning system that encompasses them.

80 A RULES-DRIVEN APPROACH TO CIRCUIT BOARD DESIGN

Joseph Prang and Katherine Gambino, Valid Logic Systems Inc.

Printed circuit board layout is conventionally driven by physical design paramters.
This article shows how an expert system can integrate the electrical specifications
with the physical requirements in accordance with rules specified by the CAE
designer during schematic capture.

1988 DESIGN AUTOMATION GUIDE 63

LEAF CELL DESIGN

M.Y. Tsai and Stephen Wuu, ECAD Corp., Santa Clara, CA

feasible to put millions of devices on a single chip.

Such capability presents designers with some chal-
lenges, the complexity of which can be controlled
through some simplifications. The best way to simplify
the problem is the “divide and conquer™” method (Mead
and Conway, 1980). Hierarchical design or other ap-
proaches based on regularity all build upon the same
basic building units, called leaf cells.

The composition of these cells and their relationships
to higher-level blocks has been the focus of numerous
papers and software tools (Hu and Kuh, 1985). However,
basic leaf cell design has for the most part been left in the
hands of layout and circuit designers. Till now almost all
leaf cell designs have been done through manual digiti-
zation. Because of the intricacy involved (too many pos-
sible solutions), leaf cell design is the most time-con-
suming task in the design process, regardless of the
design methodology used—gate array, standard-cell,
structured custom, or silicon compilation. Improve the
productivity in leaf cell design and you will have a major
impact on the difficulty of vLsI design.

Design rule independence is becoming almost as im-
portant as controlling complexity. AsiC designers do not
like being restricted to a single foundry, and they would
like to be able to “port” their designs from one fabrica-
tion process to another. Even within one fabrication
line, the rapid advance of silicon technology makes de-
sign rules obsolete within one or two years and invali-
dates existing successful designs.

Preservation of designs with design rule changes is a
key issue in the semiconductor industry. In the past it was
a problem without a solution. Redesign and relayout were
the only methods available to implement design rule
changes. Recent changes in cAD, however, make it possi-
ble to build a design-rule-independent leaf cell library
that can easily adapt to changes in technology.

Because lea