 Pulldown Predicate

. Imel'ceptmg Keyboard Intel'ruPts ;

Ly i 1688 I AR T TR T R P i S e e N P A N A RS T e N TR Y A S AR T T
- ¥
g B
i)

OML JAGNNN ANO ANNTOA « 8861 AIVIIIIA/AIVANY[¢ TYNINO[IOVIONVT ANV TIOT FH.L

XINHDALOY

22
iE
gg
3
h-A
3
-}
1
1
L]

Nobody ever said programming
PCs was supposed to be easy.
But does it have to be tedi-
ous and time-consuming, too?

know to program in your
favorite language.

~ GUIDES DATA

Not any more.

& In:’-;lantl Access Program
' e ® Memory-resident—uses just 71K.
NOt Simce the aI‘I‘lVal Of ® Full-screen or moveable half-screen

view, with pull-down menus.
® Auto lookup and searching.
®Tools for compiling your own databases.

the remarkable new program
in the lower right-hand corner.

Which is designed to save
you most of the time you're
currently spending searching
through thebooks and manuals
on the shelf above.

The Norton On-Line Pro-
grammer’s Guides are a quar-
tet of pop-up reference
packages that do the same
things in four different
languages.

Each package consists of
two parts: A memory-resident instant

ASSEMBLY (600K of data)

interrupts, error codes, FCB and PSP
fields, standard handles and more.

® ROM BIOS Calls: All ROM calls plus low
RAM usage.

addressing modes, flags, bytes per
instruction, clock cycles and more.

® MASM: Pseudo-ops and assembler
directives.

® Tables: ASCII chart, line-drawing charts,
keyboard scan codes and more.

BASIC (270K each database)
® [BM BASICA, Microsoft QuickBASIC
and TurboBASIC.
® Statements and Functions: Describes all
statements and built-in library functions.

m DOS Service Calls: AILINT 21h services,

® [nstruction Set: All 8088/86 instructions,

® Tables: Line-drawing characters, ASCII
chart,keyboard codes, error codes,
operators, etc.

C (600K each database)

® Microsoft C and Turbo C: Describes
language,including statements,
operators, data types and structures.

® Library Functions: Detailed
descriptions of all functions, from
abort () to write ().

® Preprocessor Directives: Describes
commands, usage and syntax.

u Tables: ASCII chart, line-drawing
characters, keyboard codes, error codes,
operators, etc.

PASCAL—Turbo (360K of data)

® Language: Describes statements,
syntax,operators, data types and
records.

® Library: Describes the library
procedures and functions.

® Tables: ASCII chart, line-drawing
characters, keyboard codes, error codes,
reserved words, etc.

access program. And a comprehensive,
cross-referenced database crammed
with just about everything you need to

(If you don’t believe us,you might want
to take a moment or two to examine the
data box you just passed.)

You can, of course, find most of this

Designed for the IBM" PC, PC-AT and DOS compatibles. Available at most software

%‘fe ual labor:

information in the books and manuals everything.
on our shelf. Which is why there’s a built-in com-
But Peter Norton—who’s written a piler for creating databases of your own.
few books himself—figured you'd rather And why all Guides databases are
have it on your screen. . compatible with the instant access pro-
In seconds. gram in your original package.
In either full-screen or moveable half- Soyou canadd morelanguages without
— ' spending a lot
more money.
To get
more informa-
tion, call your
dealer. Or
 AGuides ernce summary - Summay e cxpandson g?j,lr{’fggrt
top of the program you're working And you can select from a wide
on (shown in green). variety of information. 1-800-451-
screen mode. 0303 Ext. 40.
Popping up right next to your work. And ask
Right where you need it. for some

This, you're probably thinking,is pre- guidance.
cisely the kind of thinking that pro-

duced the classic Norton Utilities. h’ Py —
And you're right. ietvr m

But even Peter Norton can’t think of COMPUTING

dealers, or direct from Peter Norton Computing, Inc., 2210 Wilshire Blvd. #186, Santa Monica, CA 90403. 213-453-2361. Fax 213-453-6398, MCI Mail: PNCI ©1987 Peter Norton Computing

TURBO TECHNIX

The Borland Language Journal
January/February 1988
Volume I, Number 2

R
FEATURES

TURBO PASCAL

8 Replacing the Keyboard
Interrupt
Neil Rubenking

23 Forward Declarations in
Turbo Pascal
Allen]. Friedman

25 Skydiving and the Numerical
Methods Toolbox
Victor Mansfield

TURBO C

34 Floating Point in Turbo C
Roger Schlafly

43 Thinking in Turbo C
Bruce Webster

48 Using Turbo C
Reid Collins

54 Which Processor?
Juan Jimenez

60 Importing Reflex Databases
Kent Porter

TURBO PROLOG

72 Modifying the Pulldown
Predicate
Keith Weiskamp

85 The Tail Recursion Tiger
Michael Covington

92 Partners of a Sort
Alex Lane

TURBO BASIC

100 Using Random Files in
Turbo Basic
Ethan Winer

106 Converting .COM Files to
$INCLUDE Files
Bruce Tonkin

110 Drawing Ahead
Peter Aitken

BUSINESS LANGUAGES

116 Building On Quattro:
Introduction
Jeff Duntemann

123 PAL Procedures and
Procedure Libraries
Todd Freter

i
DEPARTMENTS

4 BEGIN: DOS, The
Understood
Jeff Duntemann

132 Binary Engineering:
“Go to, go to.”
Bruce Webster

136 Language Connections:
Monochrome Graphics in
Two Languages
Gary Entsminger

143 Tales from the Runtime:
Expanding Wildcard Support
Bill Catchings and
Mark L. Van Name

151 Archimedes’ Notebook:
Solving The Equation of State
for Ideal Gases
Namir Clement Shammas

155 BookCase: Turbo C: Memory-
Resident Utilities, Screen 1/0,
and Programming Techniques
Reviewed by Peter Aitken

156 Critique: TurboWINDOW/C
for Turbo C
Don Fletcher

158 Turbo Resources
159 Coming Up
160 Philippe’s Turbo Talk

8

Adding new keystrokes to your key-
board (or taking some away!) requires
replacing the PC keyboard interrupt
with an interrupt handler of your

own.

34
Expressing analog quantities in a dig-
ital world involves subtleties that the
integer world neatly avoids. Math co-
processors further complicate matters
for those who want their programs to
run under all machine environments.
Turbo C’s answers to these problems
are worth close study.

Fine-tuning the pulldown predicate
from the Turbo Prolog Toolbox pro-
vides text menu versatility with rela-
tively little effort.

100

Looking at a Turbo Basic disk file as a
collection of fixed-length records
divided into logical fields allows you
to read any record at random—with-
out reading sequentially through
those that come before it.

Cover:

The humble decimal point helps Turbo C
express quantities in the real world.
Photography by Mike Kirkpatrick.

2 TURBO TECHNIX January/February 1988

" .MoreM
" from Bléill%g

Turbo C T()OLS

Magic is easy with Turbo C TOOLS
in your bag of tricks. New Turbo C
TOOLS™ from Blaise Computing is a
library of compiled C functions that
allows you full control over the com-
puter, the video environment, and the
file system, and gives you the jump on
building programs with Borland’s new
C compiler. Now you can concentrate
on the creative parts of your programs.

The library comes with well-docu-
mented source code so that you can
study, emulate, or adapt it to your speci-
fic needs. Blaise Computing’s attention
to detail, like the use of function proto-
typing, cleanly organized header files,
and a comprehensive, fully-indexed
manual, makes Turbo C
TOOLS the choice for
experienced

software

TOOLS

developers as well as newcomers tot.

Turbo C TOOLS provides the sophisti- *

cated, bullet-proof capabilities needed
in today’s programming environment}
including removable windows, “side-
kickable” applications, and general
interrupt service routines written in C. o

The functions contained in Turbo C

TOOLS are carefully crafted to supple-
ment Turbo C, exploiting its strengths
without duplicating its library functions.

As a result you'll get functions written

predominantly in C, that isolate hard-
ware independence, and are small and
easy to use.

Turbo C TOOLS embodies the full spectrum
of general purpose utility functions that are
critical to today’s applications. Some of the
features in Turbo C TOOLS are:

¢ WINDOWS that are stackable and remov-
able, that have optional borders and a cursor
memory, and that can accept user input.
¢ INTERRUPT SERVICE ROUTINE sup-
port for truly flexible, robust and polite
applications. We show you how to capture
DOS critical errors and keystrokes.

¢ INTERVENTION CODE lets you devel-

¥ op memory resident applications that can

take full advantage of DOS capabilities.
With simple function calls, you can schedule
a Turbo C function to execute either when
a “hot key” is pressed or at a specified time.
¢ RESIDENT SOFTWARE SUPPORT lets
you create, detect, and remove resident util-

Jties that you write with Turbo C TOOLS.

¢ FAST DIRECT VIDEO ACCESS for
efficiency, and support for all monitors
including EGA 43-line mode.

¢ DIRECTORY AND FILE HANDLING
support let you take advantage of the DOS
file structure, including volume labels and
directory structure.

_ supports In addition to Turbo C TOOLS, Blaise
the Borland Computing Inc. has a full line of sup-
I TurboCcom- port products for Microsoft, Lattice
piler, requires and Datalight C, Microsoft Pascal
DOS 2.00 or and Turbo Pascal. Call —
later and is just today for details, and Tygst1w2Y
$120.00 make magic! 1 Enclosed ¥
\ O pleas®
1 CA resident
{ UPS shipP™e
‘k 1 Name*
W 1 Address
BLAISE COMPUTING INC. \ G cH
¥ 2560 Ninth Street, Suite 316 Berkeley, CA 94710 (415) 540-5441 Las=""

* printer control: user-de
£ generanon gene;alm

! LS PLUS $99.95
Scree do anagement including
EGA port DOS memory control: ISRs;

scheduled intervention code; and much more.

For Turbo Pascal.

Turbo POWER SCREEN

COMING SOON! General screen manage-
ment; paint screens; block mode data entry
or field-by-field control with instant screen
access. For Turbo Pascal.

Turbo ASYNCH PLUS $99.95
Interrupt driven support for the COM ports.
I/0 buffers up to 64K; XON/XOFF; up to
9600 baud; modem and XMODEM control.
For Turbo Pascal.

PASCAL TOOLS/TOOLS 2 $175.00

Expanded string and screen handling; graph- -
ics routines; memory management; general
program control: DOS file support and more.
For MS-Pascal.

C. TOOLS PLUS $175.00
Windows: ISRs; screen handling; multiple
monitors; EGA 43-line text mode; direct
screen access; DOS file handlmg ‘and more. ’
For MS and Lattice C vearsmn 3.00 and later.

LIGHT TOOLS ‘. 599 0§ Tk
Windows; ISRs: EGA 43- lme t@xt mode:

direct screen access; DOS file handling and

more. For the Datalight C compiler. -~

ASYNCH MANAGER - $17500 -~ =
Full featured interrupt driven support for the
COM ports. 1/0 buffers up to 64K : XON/
XOFF: up to 9600 baud; moden

XMODEM. For Cor MS

Text, formatter for all pro

O

in Turbo Pascal

EXEC " - 0
NEW VERSION! Pragmm chaining execu- £
tive. Chain one’ program fromanothergn dif-
ferent languages: specify.cor ndata areas;
less than 2K oi ovezh{sad

Zip-
State: —_— EXp- Dates

" Turbo C isa trademark of
Borland International.

TURBO TECHNIX
The Borland Language Journal

BEGIN

January/February 1988
Volume I Number 2

Publisher
Marcia Blake

Editor in Chief
Jeff Duntemann

EDITORIAL
Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

TECHNICAL CONSULTANTS

Brad Silverberg
David Intersimone
Roger Schlafly

DESIGN & PRODUCTION

Art Director
Karen Miner

Production Assistant
Annette Fullerton

Typesetting Manager
Walter Stauss

Typesetter/System Supervisor
Jeffrey Schwertley

Typesetters
Ron Foster
Jeanie Maceri

Photographer

Bradley Ream
Typesetting Traffic
Charlene McCormick
ADMINISTRATION

Purchasing
Brad Asmus

ADVERTISING

Advertising Sales Manager
John Hemsath
(408) 438-9321

Western Region
Janet Zamucen
(714) 858-0408

New England/Mid-Atlantic Regions
Merrie Lynch

Nancy Wood

(617) 848-9306

South Region
Megan Patti
(813) 394-4963

et’s not be so quick to

bury DOS. It may well be

the first and only operat-

ing system in history that
we truly understand.

What is the real value of an
operating system? Far more than
multitasking or a standard user
interface; it is the industry’s level
of knowledge about it. My ratio-
nale: What the OS can do, we
know how to do; what the OS can’t
do, we know how to work around.

My experience with minicompu-
ter operating systems provides a
good counterpoint: Back in my
Xerox days I had to deal with a
Honeywell OS called CP/6. Like
almost all minicomputer software,
it was needlessly convoluted and
virtually undocumented. With only
a couple of hundred installations
in the world, and only three at
Xerox, there were no easily
accessible gurus to provide help.
Honeywell may have had some
gurus tucked away somewhere, but
they pointedly wouldn't tell us
who they were. Let’s not even
think about a local equivalent to

DOS, The Understood

Jeff Duntemann

DOS is easily
the most document-
ed operating system
in history, where
documentation
is measured in
insight, not

shelf-feet.

Ray Duncan’s Advanced MS-DOS.
So no matter how powerful CP/6
may in fact have been, the only
way to gain access to that power
was by trial and error after relent-
less hunting through the impenet-
rable manuals.

DOS is easily the most docu-
mented operating system in his-
tory, where documentation is
measured in insight, not shelf-
feet.The ten-million-plus installed
base allows world-class explainers
like Peter Norton and Ray Duncan
to make a living explaining DOS
by way of books, and now Peter
Norton has distilled much of the
tough stuff into a memory-
resident green card called The

TURBO TECHNIX (1SSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 4585 Scotts Valley Drive,
Scotts Valley, CA 95066. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright ©1988 Borland International, Inc. All
rights reserved. No part of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a statement of our permis-
sion policy for use of listings appearing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECHNIX, 4585 Scotts Valle
Drive, Scotts Valley, CA 95066. Editorial and business offices: TURBO TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. Subscription rate is $49.95
per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is $10.00. Third class postage pending at Santa Cruz, CA. For subscription
service write to Subscriber Services, TURBO TECHNIX, 4585 Scotts Valley Drive, Scotts Valley, CA 95066. POSTMASTER: Send address changes to TUI O
TECHNIX, 4585 Scouts Valley Drive, Scotts Valley, CA 95066.

TURBO TECHNIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no
responsibility, however, for damages due to errors or omissions, and specifically disclaims any implied warranty of merchantability or fitness for a particular
purpose. The liability, if any, of Borland or any of the contributing authors of TURBO TECHNIX, for damages relating to any error or omission shall be
limited 1o the price of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential damages of any kind, even
if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prolog, Turbo Toolbox, Turbo Tutor, Turbo GameWorks, Turbo Lightning, Lightning Word Wizard, SideKick,
SuperKey, Eureka, Reflex, Quattro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland International, Inc. or its subsidiaries.

4 TURBO TECHNIX January/February 1988

Norton Guides. Having such refer-
ence works on hand, and having
professional explainers publishing
solid information on DOS all the
time, I'm confident that we know
exactly what DOS can do and
what it can’t.

Our hacker-level knowledge of
DOS goes far deeper than that.
The unappreciated liberty of tak-
ing a debugger to the OS (try that
in the mainframe/mini world!)
has allowed the wild-eyed among
us to discover things, like the DOS
BUSY flag, that take the edge off
of DOS’s famous reentrancy lim-
itations. Careful program design
won’t make DOS reentrant, but it
will allow us to design applications
that act as though DOS were re-
entrant, which from the end user’s
perspective is the same thing.

Contributing to our knowledge
of DOS is the fact that it rests on a
hardware platform known equally
well. If IBM had not published
the schematics and BIOS source
code for the original PC architec-
ture, we would be years behind in
discovering workarounds for
DOS’s weaknesses. Chaining onto
hardware-related system interrupts
like the timer tick (1CH) have
allowed DOS wizards like Lane
Ferris to build preemptive multi-
tasking into DOS applications
written in Turbo Pascal. (We'll be
providing much more on Lane’s
multitasking kernel in a future
issue.) The stellar LIM 4.0
Expanded Memory Specification
would not have come to pass so
well or so quickly if the PC’s bus
and memory architecture had
remained hidden behind legal
ramparts and 457-pin bed-of-nails
custom ICs. LIM 4.0 goes about 80
percent of the way toward freeing
DOS from the 640K barrier—
again, not by breaking the barrier,
but by making DOS act as though
it were breaking the barrier.

None of this would have hap-
pened had DOS only sold into a
few hundred thousand systems, or
if Microsoft and IBM had been
pathological secret-keepers from
the beginning.

With all that in mind, I'll ask
the question every industry pundit
has been lately asking in print:
How long will DOS last?

It will outlast OS/2.
My reasoning turns on the fol-

lowing issues:
® DOS can fake most of OS/2’s

important features even on
8088-based PCs. DOS can coex-
ist with software that multi-
tasks—anyone who has used
BackComm or Lotus Express
will have to admit that. LIM 4.0
and its successors will put as
much memory as we can afford
in the box, and DOS will be
faked into using it for pro-
grams and data.

What DOS can

do, we know how to
do. What DOS can’t
do, we know how to

work around.

If the faking is seamless
enough, who cares?

OS/2 has been designed for a
dead-end processor. The 80286
is an evolutionary side-trip;
essentially the chip that Intel
made while they were learning
how to make the 80386. It's only
about two-thirds there, with
incomplete hardware memory
management and an inability
to virtualize the 8086/8088.

By the time OS/2 comes into
wide use, Intel will most likely
be shipping their P9 CPU,
which does for the 386 what
the 8088 did for the 8086:
embed a powerful CPU in a
low-cost mass-market package.
If the P9 costs the same as a
286, why bother with the 286?
In six months that will be the
question to answer.

In a well-integrated 386-based
machine, DOS, plus a “hypervi-
sor,” like Windows/386 or PC
MOS-386, become pretty much
everything that OS/2 is: A

genuine multitasking OS with
all the memory it needs. Since
each task has its own copy of
DOS, reentrancy ceases to be
an issue. Virtual-86 partitions
are limited to 640K, but pro-
ducts like Qualitas’s 386-To-
The-Max will take 32-bit
extended memory and make it
act like LIM 4.0 expanded
memory. I have not yet tested
Windows/ 386, but my sources
indicate that it is as fully capa-
ble of providing a standard
user interface as OS/2’s Pre-
sentation Manager, and deadly
fast to boot. As 386-power
becomes more common, DOS
and Windows/386 will gradu-
ally melt together; no one will
buy one without the other.

® We will never know as much
about OS/2 as we do about
DOS. By its design, the kernel
is a black box, and will be
highly resistant to probings by
curious hackers. Hardware
memory protection is a devilish
thing to defeat. My hunch is
that the merely curious will stay
home—and much that we
know about DOS has come
from the merely curious.

Furthermore, DOS may in fact
outlast OS/3, or whatever the next
generation protected-mode 386
OS happens to be, simply by rid-
ing in its hip pocket through the
years. Knowing what we now
know about the market’s insist-
ence on upward compatibility, no
386 OS worth its pound of silicon
will go to market without being
able to run or emulate DOS as a
virtual-86 task.

Long after OS/2 has evolved
into OS/3 or OS/4, you'll still be
able to bring up Turbo Pascal
under DOS. For an operating sys-
tem, at least, a little learning is
dangerous—and a lot may well
mean eternal life. H

Opinions expressed in this column
are those of the editor and do not
necessarily reflect the views of
Borland International, Inc.

January/February 1988 TURBO TECHNIX

FOR THOSE
WHO WOULD
BE WRITERS

Your job is to weld ice and
iron.

Effective writing about pro-
gramming must span the con-
ceptual gulf between high tech-
nology that defies description
and the English language,
which must describe it. The job
is a dual one, requiring two sets
of skills developed in two sadly
divergent cultures. The seminal
British thinker C. P. Snow des-
paired of a bridge between
these two cultures, and while
Snow may have been reaching
higher than literate tutorials on
technology, I feel that he des-
paired too soon. Bridging those
cultures is what we do at

TURBO TECHNIX. If you have
the interest, we’d like you to join
us. Before you do, here are some
things to keep in mind:

Keep your topic focused. If you
can’t get your mental arms around
a concept, the concept is probably
too broad. Broad articles can
rarely be deep enough to serve
the TURBO TECHNIX readership.
“Programming the EGA” is too
broad. “Loading and Saving EGA
Text Fonts” is more like it. Zero in
close and give us the whole story.

Understand before you explain.
If a concept proves difficult to
explain, it may be because you
don’t fully understand it yet. Go
back to the manual. Bring up the
compiler and try a few twists on
the idea. Talk to your friends.
Know your topic inside and out,
and the discussion will flow more
easily.

Study the work of those who
succeed. What books and what
writers have helped you most? Go
back and read them again, not for
their content but for their

Lahey Computer Systems, Inc.
Sets a New FORTRAN Standard!

Introducing the latest addition to our line of FORTRAN Language Systems—
Lahey Personal FORTRAN 77.

What you Get With
Lahey Personal
FORTRAN 77:

Lahey Experience.
We are experts in designing
and implementing FORTRAN
Language Systems. Lahey
has been producing
mainframe implementations
since 1967 and a PC
FORTRAN (F77L) since 1984
In fact, F77L was named the
EDITOR'S CHOICE" among P
FORTRANs by PC Magazine. This
year span of specialization has been
incorporated into the design of our
revolutionary Lahey Personal FORTRAN 77

LAHEY SLASHES COMPILATION TIME.

ation times (in secor

for Whetstone Program (WHETS3H.FO!

Customer Support:

Our philosophy is that customer relationships begin, rather than end, at the
point of sale. Services include free technical support, electronic bulletin board
for fast service and information access, and newsletters to keep you up to

Purchasing the Lahey Personal FORTRAN 77 gives you our
FORTRAN experience, a feature loaded product, industry leading
compilation speed, and quality technical support; all for $95.

\
‘ date
\
\

International Representatives ada Barry Mooney & A

| Feature Loaded: \
e Full implementation of the

ANSI X3.9-1978 FORTRAN
Standard
Fast Compilation (see chart)
Popular Language
Extensions highlighted in the
1l manual
Source On-Line Debugger
English Diagnostics and
Warning Messages
LOGICAL"1, LOGICAL 4
INTEGER®2, INTEGER"4 |
REAL*4, REAL'8, and
DOUBLE PRECISION
COMPLEX*8, COMPLEX*16
Recursion
31-Character Names |
Trailing Comment
Cross Reference and Source
Listings ‘
64 KB Generated Code
64 KB Stack Storage |
64 KB Commons, Constants
and Saved Local Data
Math coprocessor |
requirement gives maximum
performance |
350 Page User Manual

SYSTEM REQUIREMENTS ‘
6K Ram MS-DOS (2.0 or later

Math Coprocessor Chip (8087 or 8028’

- %95

[
I Lahey is setting the

PC FORTRAN Standard \

TO ORDER ‘

1-800-548-4778

Te 8.
TELEX: 9102401256

methods. How have they organ-
ized their material? What details
have they included, and what
have they omitted? What are
their examples like? Do they use
short sentences or long? What
technical figures do they pro-
vide? There’s no sin in imitating
the successful.

Use your own voice. The best
technical writing carries the
imprint of a human being. Pres-
ent your explanations to the
readership as though you were
explaining it to a friend across a
desk. You don’t have to “ummm”
and “ahhh,” and the diction may
be more formal than ordinary
speech, but there’s little profit in
pushing it into third person pas-
sive. You wrote the program to
make BIOS calls; don’t say, “The
program was written to make
BIOS calls.”

These are broad principles to
ease your way into what we con-
sider the technical writer’s
mindset. The details involving
margins, word processor formats,
code listings, and so on have
been collected into The TURBO
TECHNIX Authors’ Guide, which
is yours for the asking. Call or
write for a copy. Read it tho-
roughly and mull it over.

That done, call and speak to
one of the editorial technical
staff about article concepts. We
do read unsolicited manuscripts,
but you have to keep in mind
that we have an entire year’s
worth of issues in progress here
at any given time. Someone else
already may have sold us the
concept you're thinking about.
Certainly offer your ideas, but
don’t be offended if we have to
say, “It's been done.” Ask what
we'd like to have but haven’t
assigned already. Somewhere
we’ll find a concept that gener-
ates some mutual excitement.

The goal is to make program-
ming comprehensible, even to
those who do not consider them-
selves programmers. Take up the
challenge. Ice welded to iron,
after all, produces light. W

—Jeff Duntemann

6 TURBO TECHNIX January/February 1988

You do the creative stuff.
We’ll write the code.

SYSTEM BUILDER $149% & REPORT BUILDER +129%
automate Turbo Pascal programming.

It’s a state-of-the-art program gen-
erator that automatically builds a
relational database application for
you in just seconds. You just paint
your screen and datafile layouts.

SO EASY. . . ideal for entry level “‘coders”
to produce relational database systems
without coding. (Entry level guide with
sample On-disk systems is provided.)
SO POWERFUL . . . it provides program-
ming professionals with more flexibility
and horsepower than any development
tool on the market (guide is provided.)

A e',IEH/CAH

REPORT BUILDER CYCLE:

Key in the report parameters on screen
Print your listings

* New report format for reference

* Report element layout

Key in the report data elements on screen
Report Builder automatically writes the
program code and links it to your datafile
Print your listing

* Report program source code listings
Compile the report builder code using the
Turbo Pascal™ compiler

Attach the new report module to your
system menu

SYSTEM BUILDER CYCLE:

Paint the menu screens
Paint the application screens
Define the datafile(s) on the screen

System Builder automatically writes the
program code and combines the datafiles
into a relational database

Print your listings

* Program source code listing ¢ Datafile
layouts e« Self-documenting program
(includes screen schematics)

Compile the System Builder code using
Turbo Pascal™ compiler

Start using the completed system

*System Builder will generate 2,000 lines of program code in approximately 6 seconds.

REPORT BUILDER FEATURES:

* Automatically generates Indented, Structured Source
Code ready for compiling Turbo Pascal (no program-
ming needed)

* Automatically interfaces to a maximum of 16 Datafiles
created with System Builder

* Supports Global Parameters such as Headings, Footers,
Lines Per Page, Print Size and Ad Hoc Sorting

* Produces reports containing an unlimited number of
Sub-Headings, Sub-Totals and Totals

* Page breaks on Sub-Totals

* Report Builder will generate Report Programs which
can contain Report Elements not just restricted to Data
Elements. Reports can also include Text Strings, Vari-
ables or Computed expressions containing references
from up to 16 Datafiles

* Use range input screens produced by System Builder to
allow End Users to select portions of a report as needed
(i.e. specific account ranges can be requested)

* Produces standalone Report Modules

* Easy-to-use Interface Program to access dBase Files

SYSTEM BUILDER PERFORMANCE
(Typical 10 screen 8 file/index application)

SYSTEM
TASK BUILDER DBASE IlI™
Planning and Design 60 minutes 60 minutes
Screen Painting 15 minutes 3 hours
Programming 2minutes 10 hours
Elapsed time to 1hourand 14 hours
completed system 17 minutes

“ROYAL AMERICAN Zhtpis Gypoatioi

SYSTEM BUILDER FEATURES:

* Automatically generates Indented, Structured, Copy
Book Source Code ready for compiling with Turbo
Pascal (no programming needed)

* Paint Application and Menu screens using Keyboard or
Microsoft Mouse™

* Finished Application screens all use System Builder’s

In-Line machine code for exceptional speed

Use fully prompted Screen Guidance Templates™ to

define up to 16 Datafiles per application, each record

having an Unlimited Number of fields

Define up to 16 Index Keys per application database

Paint functions include:

—Center, copy, move, delete, insert or restore a line,
Go straight from screen to screen with one keystroke

—Cut and paste blocks of text screen to screen

—Draw and erase boxes, Define colors and intensities

— Access special graphic characters and character fill

¢ Supports an unlimited number of memory variables

File Recovery Program Generator to make fixing of

corrupted datafiles an automatic process

Automatically modifies datafiles without loss of data

when adding/deleting a field

Menu Generator with unlimited Sub-Menu levels

Experienced developers can modify the System Builder

Develop systems for Floppy or Hard Disk

Modify System Builder’s output code to include Exter-

nal Procedures, Functions and Inline Code

Easy-to-use Interface to access ASCII and dBase Files

VARs, system integrators and dealers:
Your inquires are always welcome.

Call us at the numbers shown on coupon.

—;

Royal American Technologies
320 Harris Ave, Suite A
Sacramento, CA 95838

(800) 654-7766
In California (800) 851-2555

Please rushme _____ copies of SYSTEM
BUILDER at $149.95 per copy and
_____copies of REPORT BUILDER at
$129.95 per copy. I am enclosing $6.00
for postage and handling. Note: California
residents please add 6% sales tax.

Name

Address

City

State
Phone
Payment: [JCheck [JMoney Order
[J Cashiers Check [JAMEX

[OVISA [JMASTERCARD

Expiration date
Card Number

Zip

Signature

30-Day Money-Back Guarantee. Not copy
protected. $10 restocking fee if envelope is
opened.

System Requirements—System Builder/Report

Builder: IBM PC/XT/AT', or similar, with minimum

256K RAM, dual floppy drives, or hard disk, color

or monochrome monitor, MS2 or PC DOS' version
2.0 or later, Turbo Pascal Version 2.0 or later

(Normal, BCD or 8087 versions).

:Trademarks of International Business Machines Corp.

“Trademark of Microsoft Corp

. “Turbo Pascal is a registered trademark of Borland International '

"dBASE is a registered trademark of Ashton-Tate

-------------J

REPLACING
THE KEYBOARD
INTERRUPT

TURBO PASCAL

Capture the keystrokes that
DOS and BIOS throw away,
and hide the ones your
programs shouldn’t see.

Neil . Rubenking

When you hit a key on the PC keyboard, a
microprocessor in the keyboard itself
sends a signal to an I/O port in the PC.
The PC interprets the signal and takes
action. If you press a shift key, it notes the
TEATD shift state. If you press a non-shift keyj, it
puts information into the keyboard buffer. When
your program reads a key, it gets key code informa-
tion from this buffer. However, the keyboard signal
contains information that you can’t normally get. It
sends signals when any key is pressed or released,
and it sends signals for key combinations like Alt-
Home that the PC’s BIOS ignores. In order to get
this information, you have to intercept that keyboard
signal before the BIOS can get it.

When the keyboard sends a signal, it causes a
hardware interrupt; whatever else the PC is doing; it
spends a moment servicing the keyboard. Because
this interrupt could happen in the middle of another
process without waiting its turn, it is called an asynch-
ronous interrupt. The Hardware Keyboard Interrupt
is a routine in the BIOS that handles these signals
from the keyboard. At the start of the PC’s memory
map, there is a table of vectors (addresses) for such
BIOS routines called the interrupt vector table. The
Hardware Keyboard Interrupt routine is number 9 in
this table. When the keyboard sends a code, the PC
transfers control to the address stored in the INT 9
vector. (When a program calls for keyboard input, it
uses another keyboard interrupt, number 16H. In
this article, the phrase keyboard interrupt always refers
to Interrupt 9.)

The keyboard sends a signal telling exactly which
key was pressed (the make code), and also sends a
break code when a key is released. Every time you

continued on page 10

WIZARD

Bradley Ream

8 TURBO TECHNIX January/February 1988

(*ERROR.INC
This is the error handler for ALL the INT9 front end
demo programs*)

TYPE
string2 =
string4 = stringl[4];

stringl[2];

CONST
HexDigit : ARRAY[0..15]1 OF Char = '0123456789ABCDEF';

FUNCTION HexByte(B : Byte)
BEGIN

HexByte := HexDigit[B SHR 4]1+HexDigit[B AND $F];
END;

: string?;

FUNCTION Hex(I : Word) : string4;
BEGIN

Hex := HexByte(Hi(I))+HexByte(Lo(I));
END;

{$F+) PROCEDURE My Error; {$F-)
BEGIN
SetIntVec(Kbd_Int, Kbd_vec); {restore OLD INT9}
IF (ExitCode <> 0) OR (ErrorAddr <> NIL) THEN
BEGIN
Assign(Output,'');
ReWrite(OutPut);
WriteLn(#7);
IF ExitCode = $FF THEN
WriteLn('USER BREAK')
ELSE
BEGIN
WriteLn('Critical Error # ', HEX(ExitCode));
Write('AT PROGRAM LOCATION ');
WriteLn(HEX(seg(ErrorAddr-)),':',Hex(ofs(ErrorAddr~)));
END;
END;
ExitProc := Exit_Vec;
END;

{restore previous ExitProc)

PROGRAM Accel ;
USES Crt,Dos;

*)
(* This program demonstrates a method for *)
(* accelerating the motion of an arrow-key *)
(* controlled character on the screen. *)
(* If a "direction" key is held down, the *)
(* character moves in larger and larger Y
(* jumps, up to a preset "Speed Limit". *)
(* It's easy to set the SPEED back down to *)
(* 1 whenever a new direction is chosen -- *)
(* the catch is to reset it when the *y

(* SAME direction key is RELEASED.)
(* ==== *)

KR : Boolean = False;{KeyReleased FLAG)
Kbd_Int = 9;

VAR
Kbd_Vec, Exit_Vec : Pointer;

{$1 ERROR.INC)

INTERRUPTS
continued from page 8

press or release a key the Key-
board Interrupt receives a signal.
In most cases, the INT 9 routine
analyzes the key and puts the
result in the keyboard buffer.
However, the keyboard sends
more information than the BIOS
gives to your program. For exam-
ple, the BIOS doesn'’t tell you
when a non-shift key is released,
nor does it directly tell you when a
shift key is pressed. Also, it disre-
gards quite a few logical and use-
ful key combinations such as the
Alt-Shift of the numeric keypad
keys. To get this information, you
have to change the Keyboard
Interrupt Vector to point to an
Interrupt Service Routine (ISR) of
your own devising. There’s no
need to rewrite the whole BIOS
routine, because you can pass
control back to the original INT 9
when you've finished taking the
information you want. The signal
from the keyboard remains avail-
able until you send a particular
Reset code back to the keyboard.

DOS offers standard services to
fetch or change the value of any
interrupt vector. Turbo Pascal 4.0
includes a pair of routines that
call on these DOS services:
GetIntVec and SetIntVec. You can
create your own ISR in INLINE
code, save the old vector using
GetIntVec, and install your new
ISR with SetIntVec. Your routine
will intercept the keyboard’s sig-
nals and process them, then pass
the signals on to the BIOS. Your
routine can even prevent some
keys from reaching the BIOS, or
take over some of INT 9’s regular
functions. The four sample pro-
grams included with this article
demonstrate applications of this
technique.

THE DANGERS

Of course, as soon as you start
calling interrupts and inserting
INLINE machine code, you give
up portability. The very purpose

10 TURBO TECHNIX January/February 1988

of a language compiler is to allow
the programmer to write in a
high-level language and not worry
about what machine code the
compiler generates. When you put
INLINE machine code directly
into a program, you lose this
advantage. The possibilities for
error are much greater at the
machine-code level, and can have
much wider consequences. Also,
Terminate and Stay Resident pro-
grams (TSRs) such as SideKick
often trap INT 9 themselves in
order to be able to pop up on a
particular keypress. There is a
chance your program may be
incompatible with some TSRs, but
the results are worth the risk.

WHAT YOU MUST DO

Any program that contains an
interrupt handler has to be able to
perform a number of functions. It
must be able to change the appro-
priate interrupt vector to point to
the address of the new ISR, and it
must be able to retain the pre-
vious value of that vector. Your
program absolutely must restore
this value when it finishes. If a
program quits without restoring
the keyboard interrupt, the next
time you press a key the PC will
transfer control to the portion of
memory you have just vacated,
which now contains random
bytes. At this point you’ll probably
have to turn off the computer,
because the keyboard won’t
respond at all.

But what if your program
crashes? You still must restore the
interrupt even if the program fails.
Turbo Pascal 4.0 provides the exit
procedure facility for just such a
problem. The exit procedure gets
control when a program ends,
even if it crashes with a runtime
error. The exit procedure doesn’t
prevent a crash, nor does it allow
you to fix things and return to
your normal program logic, but it
does allow you to perform some
cleanup. If you restore the inter-
rupt in your error handler, you

continued on page 12

(* RELEASE -- if the latter, the typed *)

(* constant "KR" is set to TRUE (= 1). *y

(¢ *)

BEGIN

Inline(
$9C/ {PUSHF ;Save flags)
$E4L/$60/ {IN AL,$60 ;Read the keyboard port}
$A8/$80/ {TEST AL,%$80 ;Is the high bit set?)
$74/%05/ {JZ Press ;If not, skip to "Press")
$C6/%06/>KR/$01/ {(MOV BYTE PTR [>KR],+$01 ;If so, make KR TRUE)

{Press:)}

(* ==== *)
(* CHAIN to the regular INT 9 *)
(* = ==== %)
$9D/ {POPF ;Restore the flags)

PROCEDURE CLI; INLINE($FA); {(INLINE procedures are NICE!)
PROCEDURE STI; INLINE($FB);

PROCEDURE INT9_ISR(_Flags, _CS, _IP, _AX, _BX, _CX,

y, - = | DX,
_SI, _DI, _DS, _ES, _BP:word);

INTERRUPT;

(x %)
(* This procedure gets ahead of the normal *)
(* interrupt 9 and checks if the current *)
(* character is a KEYPRESS code or a KEY *)

$A1/>KBD_VEC+2/ (MOV AX, [>KBD_VEC+2] ;0ld vector seg to AX}
$88/$1E/>KBD_VEC/ {MOV BX, [>KBD_VEC] ;0ld vector ofs to BX}

$87/$5E/$0E/ {XCHG BX, [BP+$0E] ;Swap ofs W/ return address)
$87/$46/$10/ {XCHG AX, [BP+$10] ;Swap seg W/ return address}
$89/$EC/ {MOV SP,BP ;UNDO procedure's entry code)
$5D/ {POP BP)
$07/ {POP ES)
$1F/ {POP DS)
$5F/ {POP DI}
$5E/ {POP SI)
$5A/ {POP DX>
$59/ {POP CX>
$CB); {RETF ;in effect, JMP to old vector)
END;
FUNCTION KeyReleased : Boolean;
(42 *)
(* Returns the state of the flag *)
(* KR and resets it to FALSE *)
= 5]
BEGIN

CLI; (Don't want it changing DURING this!}
KeyReleased := KR;

KR := False;

STI; {(OK, can change now)}
END;
============x)

PROCEDURE Do_Demo;

c* *)
(* Here begins the DEMO procedure that uses *)
(* the ISR above. It responds to the four *)
(* arrows keys and to "U", “A", and "Q". *)
(* Move around with the arrow keys for a *)
(* while, and then hit "A" to engage the =)
(* Accellator. "U" will Unaccelerate the *)

(* arrow keys, and "Q" is the signal to *)
(* Quit. *)
(6 *)

January/February 1988 TURBO TECHNIX 11

CONST
UKey = #72; {SCAN codes for the arrow keys}
DKey = #80;
LKey = #75;
RKey = #77;
TYPE
direction = (Up, Down, Left, Right);
VAR
CRow, CCol : Byte;
accel : Boolean;
CH, CH2, Last_Arrow : Char;
M, Speed : Byte;
CONST
Speed Limit = 8;
Mark = #$E9;{theta character)
unmark = #3$20; (space character)}

Arrows : SET OF Char = [UKey, DKey, LKey, RKeyl;

PROCEDURE RevVideo;
BEGIN
TextColor(Black);
TextBackground(White);
END;

PROCEDURE initialize;
BEGIN
TextBackground(black);
clrSer;
RevVideo;
Write(' MOVE with 4 arrow keys.');
Write(' [Alccel, [Ulnaccel, [Qluit.');

Write(!' Speed: LYo
TextBackground(Black);
TextColor(White);
Speed =1z
CRow = 12;
cCol = 40;
Last_Arrow := #0;
Accel = False;
END;

PROCEDURE PutAChar(co, ro, fore, back : Byte; CH : char);
o *)
(* At location (co,ro), write character *)
(* CH with color specified by the fore- *)
(* and background attributes. *)
(* ———————————————— *)
BEGIN

TextColor(fore);

TextBackground(back);

GoToXY(co, ro);

Write(CH);
END;

PROCEDURE Move_Increment(D : direction);

(G)
(* Move the marker in the given direction *)
(* by as many spaces as the current SPEED. *)
(* If we hit the edge, beep and set speed *)
(* back to one. *)

PROCEDURE beep;

BEGIN
Sound(1000); Delay(50);
Sound(2000); Delay(50);
NoSound;

END;

INTERRUPTS

continued from page 11

avoid having a program crash
become a complete system crash.
Also, every unit in your program
can have its own exit procedure,
and all the exit procedures will
execute when the program ends.
The file ERROR.INC (Listing 1)
contains an exit procedure error
handler that all the example pro-
grams use.

The example programs I've
devised all intercept the INT 9
vector and replace it with one
pointing to a custom keyboard ser-
vice routine. The program logic
for each demo program runs as
follows:

1. Save the old interrupt vector
2. Install the new ISR

3. Save the old ExitProc

4. Enable the new ExitProc

5. Demonstrate the ISR

6. Reinstall the old interrupt

The last demo program, MoreKey,
is different from the others in that
all the interrupt code is in a sepa-
rate unit, but the sequence of
events it follows is the same.

SAMPLE USES

The simplest ISR just “tastes” the
signal from the keyboard port
before passing it on. For example,
the ISR in the sample program
Accel merely checks if the scan
code is a break code. If so, it sets a
flag. Then it passes control on to
the original INT 9.

The ISR in ShKey does a little
more work before handing over
control. It compares the received
scan code to the codes of the
seven shift keys. If a code
matches, it sets a flag. With this
routine, you can say, “Press any
key when ready,” and really mean
any key.

NoReboot prevents anyone
from rebooting the computer with
Ctrl-Alt-Del while the program is
running by suppressing the Del

12 TURBO TECHNIX January/February 1988

key. If it detects a Del, it resets the
keyboard without ever letting the
BIOS see the Del keystroke.

The three examples above are
subtle, nosing about the edges of
the BIOS interrupt. They steal a
little data, or prevent the BIOS
from doing its job. MoreKey, the
fourth sample, actually takes over
the function of the BIOS and
creates useful new key codes not
provided by the standard key-
board interrupt.

THE DEMO PROGRAMS

Accel. Listing 2 shows a sample
program that puts an accelerator
in your arrow keys. Many pro-
grams move a marker around the
screen using these keys. It can be
very tiresome to move from one
edge of the screen to the other
one space at a time. The auto-
matic accelerator causes the cur-
sor to move faster when the user
holds down a key. You can imple-
ment this fairly easily by keeping a
speed variable, and incrementing
it every time the key pressed is the
same as the previous key.

This almost works. However,
you need to be able to decelerate
when you get close to your desti-
nation. When the user takes their
finger off the key, you need to set
the speed back to minimum.

Every key produces a make code
when you press it and a break code
when you release it. The two
codes are identical except for the
highest bit, set to 0 for a make
code and 1 for a break code. The
ISR in ACCEL simply tests for a
break code—one with the high bit
set to 1—and sets the Boolean
typed constant flag KR to True if
it finds one.

Note the unusual procedure
declaration for procedure
INT9__ISR. This is an interrupt
procedure, a new feature of Turbo
Pascal 4.0. The keyword INTER-
RUPT tells 4.0 to save and restore
all the registers at the start and
end of this procedure. It also sets
the DS register to the main pro-
gram’s Data Segment, so you have

continued on page 14

BEGIN
{FIRST blank the old location }
PutAChar(CCol, CRow, white, black, unmark);

CASE D OF
Up : CRow := CRow-1;
Down : CRow := CRow+1;
Left : CCol := CCol-1;
Right : CCol := CCol+1;
END;

IF CRow < 2 THEN
BEGIN CRow := 2;
IF CRow > 24 THEN
BEGIN CRow := 24; speed :
IF CCol < 1 THEN
BEGIN CCol := 1;
IF CCol > 80 THEN
BEGIN CCol := 80; speed := 1; beep; END;
{NOW mark the new location
PutAChar(CCol, CRow, black, white, Mark);
END;

speed := 1; beep; END;

1; beep; END;

speed := 1; beep; END;

<

BEGIN
Initialize;
PutAChar(CCol, CRow, black, white, Mark);
REPEAT

REPEAT
CH := #0; CH2 := #0;
REPEAT UNTIL KeyPressed OR KeyReleased;
IF KeyPressed THEN
BEGIN
CH := ReadKey;
IF (CH = #0) AND KeyPressed THEN
CH2 := ReadKey
ELSE CH := UpCase(CH);
END
ELSE (A key was released}
speed := 0;
UNTIL ((CH IN ['A', 'U',
IF CH = #0 THEN
BEGIN
IF Accel THEN
IF CH2 = Last_Arrow THEN
BEGIN
{Key CH2 is being held down --
increase speed!)}
IF Speed < Speed_Limit THEN
Speed := Speed+1;

{procedure Do_Demo;)}

'Q']) OR (CH2 IN Arrows));

END
ELSE Speed := 1
ELSE Speed := 1;
GoToXY(79, 1); Write(speed);

Last_Arrow := CHZ;
CASE CH2 OF
UKey : FOR M := 1 TO speed DO

Move_Increment(Up);

DKey : FOR M := 1 TO speed DO
Move_Increment(Down);
LKey : FOR M := 1 TO speed DO

Move_Increment(Left);
FOR M := 1 TO speed DO
Move_lIncrement(Right);

RKey :

END;
END

January/February 1988 TURBO TECHNIX

13

ELSE
CASE CH OF
'A' : BEGIN
Accel := True;
RevVideo;
TextColor(Black+Blink);
GoToXY(59, 1); Write('ACCELERATED');
END;
'U' : BEGIN
Accel := False;
RevVideo;
GoToXY(59, 1); Write(' ;
END;
L L
END;
UNTIL CH = 'Q';
END;
BEGIN

CheckBreak := TRUE;
GetIntVec(Kbd_Int, Kbd_Vec); {save "old" INT9)
SetIntVec(Kbd_Int, @INT9_ISR); {install new)}
Exit_Vec := ExitProc; {save old ExitProc}
ExitProc := aMy_Error; {install new}
Do_Demo; {show yer stuffl}
{The interrupt vector gets RESTORED in the ExitProc}
END.

LISTING 3: SHKEY.PAS

PROGRAM Shift_Key_ Pressed;
uses crt, dos;

VAR

Kbd_Vec, Exit_Vec : pointer;
CONST

Kbd_Int = 9;

{$1 ERROR.INC)

PROCEDURE CLI; INLINE($FA); {INLINE procedures are NICE!)}
PROCEDURE STI; INLINE($FB);

CONST

(* Scan codes for seven shift keys *)

f
SC_LeftShift = 42;
SC_RightShift = 54;
sc_Ctrlshift = 29;
SC_AltShift = 56;
SC_NumLock = 69;
SC_ScrollLock = 70;
SC_CapsLock = 58;

SKP : Boolean = False;{ShiftKeyPressed flag}
which : Byte = 0;

PROCEDURE INT9_ISR(_Flags, _CS, _IP, _AX, _BX, _CX,

_IP, _AX, _BX, _ DX,
_SI, _DI, _DS, _ES, _BP:word);

INTERRUPTS
continued from page 13

access to program variables. Fig-
ure 1 shows the entry and exit
code Turbo Pascal generates for
an interrupt procedure.

50 PUSH AX

55 PUSH BX

51 PUSH cX

52 PUSH DX

56 PUSH SI

57 PUSH DI

1E PUSH DS

06 PUSH ES

55 PUSH BP

89E5 MOV BP,SP
81ECXXXX SUB SP,LocalSize
B8yyyy MOV AX,SEG DATA
8ED8 MOV DS,AX
{Body of procedure goes here)
89EC MOV SP,BP

5D POP BP

07 POP ES

1F POP DS

5F POP DI

5E POP SI

5A POP DX

59 POP CX

5B POP BX

58 POP AX

CF IRET

Figure 1. Entry and exit code for
interrupt procedures.

There is one catch. We just want
to peek at what the keyboard is
sending and then chain to the old
interrupt. This was a snap in
Turbo Pascal 3.0, because we
could store the old interrupt vec-
tor in the code segment by mak-
ing it a typed constant. A 3.0 pro-
gram always has one single code
segment, so we always knew
where the saved interrupt vector
was kept. In 4.0, a program can
have multiple code segments, and
you can’t store data in them. We
can store the old interrupt vector
in a variable of the new “generic
pointer” type, but we need access
to the data segment in order to
locate that variable. Before we
chain to the old interrupt, we have
to restore all the registers; after
doing this we no longer have
access to the main program’s data
segment.

continued on page 16

14 TURBO TECHNIX January/February 1988

Program in the fast lane with
Borland’s new Turbo Pascal 40!

ur new Turbo Pascal® 4.0 is so

fast, it's almost reckless. How

fast? Better than 27,000 lines
of code per minute. That's more than
twice as fast as 3.0 and the reason
why you need 4.0 today.

4.0 breaks the code barrier

No more swapping code in and
out to beat the 64K code barrier.
Designed for large programs, Turbo
Pascal 4.0 lets you use every byte
of memory in your computer.

4.0 uses logical units for
separate compilation
Pascal 4.0 lets you break up
the code gang into “units,” or
“chunks.”" These logical modules
can be worked with swiftly and
separately. Compiling and linking
these separate units happens in
a flash because your compiling
horsepower is better than 27,000
lines a minute.* And 4.0 also
includes an automatic project Make.

4.0 Highlights:
Compiles 27,000 lines per minute
Includes automatic project Make
Supports > 64K programs
Uses units for separate compilation
Integrated development
environment
Interactive error detection/
location
® [ncludes a command-line version

of the compiler

60-Day Money-back Guarantee**

“Run on an 8MHz IBM AT

**If within 60 days of purchase this product does not perform in accordance with our
claims, call our customer service department, and we will arrange a refund

All Borland products are trademarks or registered trademarks of Borland
International, Inc. Copyright ©1987 Borland International, Inc.

YES!

Registered owners have been notified by mail. If you are a registered Turbo Pascal user and have
not been notified of Version 4.0 by mail, please call us at (800) 543-7543. To upgrade if you
have not registered your product, just send the original registration form from your manual and

payment with this completed coupon to

Pascal 4.0 Upgrade Dept. Name

and the 4.0 Toolboxes

4.0 gives you an integrated
programming environment

4.0's integrated environment
includes pull-down menus and a
built-in editor. Your program output
is automatically saved and shown in
the output window. You can Scroll,
Pan, or Page through all your output
and know where everything is all the
time. Given 4.0's integration, you
can edit, compile, find and correct
errors—all from inside the integrated
development environment. We even
include a command line version of
the compiler.

BN VERSIDN

Compatibility with
Turbo Pascal 3.0

We've created Version 4.0 to be
highly compatible with Version 3.0
and included a conversion program
and compatibility units to help you
convert 3.0 programs to 4.0.

4.0 is all yours for only $99.95

4.0’s cursor automatically
lands on any trouble spot

4.0’s interactive error detection
and location means that the cursor
automatically lands where the error
is. While you're compiling or running
a program, you get an error message
and the cursor flags the error’s

location for you. 3 ; ;
i i Sieve (25 iterations)

Turbo Pascal 4.0 Turbo Pascal 3.0
Size of Executable File 2224 bytes 11682 bytes
Execution speed 9.3 seconds 9.7 seconds

Sieve of Eratosthenes, run on an 8MHz IBM AT

Since the source file above is loo small to indicate a difference in compilation speed we compiled our CHESS program from Turbo Gameworks to give you a true sense of how

much faster 40 really s!
Compilation of CHESS.PAS (56469 lines)

Turbo Pascal 4.0 Turbo Pascal 3.0
Compilation speed 12.1 seconds 35.5 seconds
Lines per minute 27119 9,243
CHESS PAS compiled on an 8 MHz 1BM AT
2

For the IBM PS/2" and the IBM® and
Compaq* families of personal computers and
all 100% compatibles

BORLAND

For the dealer nearest you,or to order now,

BI 11618 ~ - . INTERNATIONAL
Call (800) 543-7543
I want to upgrade to Turbo Pascal 4.0 Please check box(es) Suggested Retail
O Turbo Pascal 4.0 Compiler $ 99.95
O Turbo Pascal Tutor 69.95
O Turbo Pascal Database Toolbox 99.95
O Turbo Pascal Graphix Toolbox 99.95
O Turbo Pascal Editor Toolbox 99.95
O Turbo Pascal Numerical Methods Toolbox 99.95
O Turbo Pascal Gameworks 99.95

Total product amount

Borland International

4585 Scolts Valley Drive Ship Address

CA and MA residents add sales tax
In US please add $5 shipping and handling for each product

Scotts Valley, CA 95066
City

Outside US please add $10 shipping and handiing for each product

Zip

Telephone

State Total amount enclosed
() Please specify diskette size O 5%" O 3%"
Paymentt O VISA O MC O Check O Bank Draft

For the IBM PS/2™ and the IBM* and Compag® families of personal computers and all 100% compatibles.
This offer is limited to one upgrade per valid registered product. It is good until June 30, 1988. Not good with any

other offer from Borland. Please allow 4 to 6 weeks for delivery of Toolboxes.

Credit card expiration date: /.
o Traht) R S (R) S () [)) IS |

|

Upgradet

R R

s

|

39.95
19.95
29.95
29.95
29.95
29.95
29.95

|

Outside U.S. make payments by bank draft payable in U.S. dollars drawn on a U.S. bank. CODs and purchase orders

will not be accepted by Boriand

™o qualify for the upgrade price you must give the serial number of the equivalent product you are upgrading

Serial No.

INTERRUPT;
BEGIN
INLINE(C
$9C/ {PUSHF)
$E4/$60/ {IN AL,$60 ;read keyboard port)
$3C/<SC_CAPSLOCK/ {CMP AL, <SC_CAPSLOCK}
$74/%1F/ {JZ Was_Pressed}
$3C/<SC_LEFTSHIFT/ ({(CMP AL,<SC_LEFTSHIFT}
$74/%1B/ {JZ Was_Pressed)
$3C/<SC_RIGHTSHIFT/ {CMP AL,<SC_RIGHTSHIFT}
$74/%17/ {JZ Was_Pressed)
$3C/<SC_CTRLSHIFT/ {CMP AL,<SC_CTRLSHIFT}
$74/$13/ {JZ Was_Pressed)
$3C/<SC_ALTSHIFT/ {CMP AL,<SC_ALTSHIFT}
$74/$0F/ {JZ Was_Pressed}
$3C/<SC_NUMLOCK/ {CMP AL, <SC_NUMLOCK}
$74/%0B/ {JZ Was_Pressed)
$3C/<SC_SCROLLLOCK/ {CMP AL,<SC_SCROLLLOCK}
$74/%07/ {JZ Mas_Pressed}
* *)
(* IF you didn't jump by now, it wasn't a shift key *)
(* *)
$C6/$06/>SKP/$00/ (MOV BYTE PTR [>SKP],+$00 ;set SKP FALSE)}
$EB/$08/ {JMP SHORT To_Normal}
{Was_Pressed:)}

$C6/%$06/>SKP/$01/ (MOV BYTE PTR [>SKP],+$01 ;set SKP TRUE)}

$A2/>WHICH/ (MOV [>WHICH],AL ;remember WHICH key)
{To_Normal:}

(F *)

(* CHAIN to the regular INT 9 *)

(* ———————————————— *)

$90/ {POPF ;Restore the flags)

$A1/>KBD_VEC+2/ {MOV AX, [>KBD_VEC+2] ;0ld vector seg to AX}
$8B/$1E/>KBD_VEC/ {MOV BX, [>KBD_VEC] ;Old vector ofs to BX)

$87/$5E/3$0E/ {XCHG BX, [BP+$0E] ;Swap ofs w/ return address}
$87/%$46/$10/ {XCHG AX, [BP+$10] ;Swap seg w/ return address})
$89/%$EC/ {MOV SP,BP ;UNDO procedure's entry code}
$5D/ {POP BP)
$07/ {POP ES)
$1F/ {POP DS}
$5F/ {POP DI}
$5E/ {POP SI)
$5A/ {POP DX}
$59/ : {POP CX)
$CB); {RETF ;in effect, JMP to old vector}
END;
FUNCTION ShiftKeyPressed : Boolean;
(* ================== *)
(* Returns the value of flag variable SKP, *)
(* and resets it to FALSE %)
(4 *)
BEGIN

CLI; (Don't want it

changing DURING this!)

ShiftKeyPressed := SKP;

SKP := false;

STI; (OK, can change now)

END;

FUNCTION Read_SKP : Byte;

(* ==== %)
(* Returns the value of flag variable *)
(* "WHICH", and resets it to 0 *3
(* %)
BEGIN

CLI; (Don't want it
Read_SKP := which;
which := 0;

changing DURING ghis!)

STI; (OK, can change now}

END;

INTERRUPT
continued from page 14

INLINE wizard Lane Ferris
devised the solution to this prob-
lem. We play some tricks with the
stack. When Turbo Pascal 4.0
encounters an interrupt proce-
dure, it pushes all the registers
starting with AX and BX. That
means AX and BX are the last
registers to get popped when the
procedure ends. We copy the old
interrupt vector into AX:BX, then
exchange them with the segment
and offset of the return address
on the stack. The code that we use
to simulate the interrupt proce-
dure’s exit code leaves AX and BX
on the stack. Hence, when we do

DOS Ekeeps
track of the current
shift states using
two bytes in low

memory (addresses
0040:0017 and
0040:0018).

a RETF (far return), control
passes to the old interrupt, and
when it ends, control goes to the
original return address.

ShKey (Listing 3). DOS keeps
track of the current shift states
using two bytes in low memory
(addresses 0040:0017 and
0040:0018). Each bit in each of
these bytes indicates whether a
particular shift key is being held
down, or whether a shift lock is
active. When you press a shift key,
the BIOS updates these shift-state
bytes, but doesn’t put anything in
the keyboard buffer. Conse-
quently, the Turbo function
KeyPressed does not return True
when you press a shift key. The
ISR in ShKey checks each key
code received against the codes

16 TURBO TECHNIX January/February 1988

for Ctrl, Alt, Left Shift, Right Shift,
Caps Lock, Num Lock, and Scroll
Lock.

If it makes a match, it sets one
flag to say a key was pressed and
another to say which key it was. As
in Accel, after the program takes a
peek at what the keyboard is send-
ing, it passes control on to the reg-
ular keyboard interrupt vector.

The ShiftKeyPressed function
reads the flag and automatically
resets it to False. The Read__SKP
function reads which key it was,
and resets the which flag to zero.
Shift key presses do not stack up in
the keyboard buffer the way ordi-
nary keys do. If you press four
shift keys before the program is
ready to recognize one, only
the last will be recognized and
acted upon.

Picture what would happen if
the keyboard sent a key after the
ShiftKeyPressed function had
read the SKP flag but before
ShiftKeyPressed had zeroed SKP
out. Remember, this kind of inter-
rupt is asynchronous, so it can
happen any time, even between
those two statements. Another key
would come in through the ISR,
and the SKP flag would be set to
True, but the next program line
would set it to False. The new shift
key would get lost. In order to
avoid this kind of problem, we dis-
able interrupts during functions
ShiftKeyPressed and Read__SKP.
Turbo Pascal 4.0 has a new feature
that makes this easy. Note the calls
to procedures CLI and STI. These
procedures are INLINE directives,
and as such they are much like
macros in a macro assembler.
Wherever you use the name of an
INLINE directive, 4.0 directly
inserts the INLINE code it
defines. In this case, the proce-
dures simply disable interrupts at
the start of the functions and en-
able them again at the end.
NoReboot (Listing 4). If your pro-
gram is doing something impor-
tant, like updating files for
million-dollar transactions, you
may want to prevent anyone from
rebooting the computer. The ISR
in this program reads the

keyboard port and checks the
result against the scan code of the
Del key. When it finds a Del code,
it resets the keyboard port just as
the normal keyboard interrupt
does when it’s finished with a key.
This opens the keyboard to
receive the next key. In this case,
the ISR has to handle all the
housekeeping needed to end a
hardware interrupt. It sends an
End-of-Interrupt signal to the
Interrupt Controller chip and lets
the special Turbo Pascal 4.0 inter-
rupt procedure code finish off the
interrupt call. The regular key-
board interrupt never sees the Del
keystroke.

To suppress the Del key thor-
oughly, you have to catch both its
make code and its break code,
since either code can initiate a
reboot in combination with Ctrl
and Alt. The two codes differ only
in the highest bit; 1 for a break
code, 0 for a make code. You
could compare the received code
against both codes, but I chose
instead to ignore the highest bit
and make only one comparison.
Performing an arithmetic AND of
the code with 01111111 binary
(7FH) forces the highest bit to 0

and leaves the lower seven
unchanged.

There’s one problem with this
technique: certain RAM-resident
programs, such as SideKick, can
prevent it from working. Even
when NoReboot is running, you
can reboot by bringing up Side-
Kick first. Since the default activa-
tion key sequence for SideKick is
Ctrl-Alt, Ctrl-Alt-Del will usually
bring up SideKick and reboot the
computer. On the other hand,
SuperKey doesn’t interfere. If you
pop up SuperKey’s macro editor
over NoReboot, you'll find that
you cannot use the Del key. If you
seriously need to prevent reboot-
ing, you'll have to make sure Side-
Kick is not in the system.

MoreKey (Listing 5). There are
quite a few logical key combina-
tions that the BIOS keyboard
interrupt simply ignores. For
example, Ctrl-Left arrow is a valid
combination, but Ctrl-Up is not.
Alt-F1 works, but not Alt-Home.
continued on page 18

«* Hire a Profor
Your New Turbo 4.0

urn on the power of Turbo PROFESSIONAL 4.0, a library of more
than 300 state-of-the-art routines optimized for Turbo Pascal 4.0.
You'll have professional quality programs finished faster and easier.

Turbo PROFESSIONAL 4.0 includes complete source code,
comprehensive documentation and demo programs that
are powerful and useful. The routines include:

» Pop-up resident routines

G

¢ BCD arithmetic

» Virtual windows and menus

+ EMS and extended memory access

» Long strings, large arrays, macros,
and much more.

Turbo PROFESSIONAL is only $99.

Call toll free for credit card orders.

1-800-538-8157 extension 830
1-800-672-3470 extension 830 in CA

Satisfaction Guaranteed or your money back within 30 days.

TWR3%

TurboPower Software 3109 Scotts Valley Dr., Suite 122 Scotts Valley, CA 95066

For other information call 408-438-8608,
9 AM 10 5 PM PST. Shipping & taxes
prepaid for US and Canadian customers,

Turbo Pascal 4.0 is required. Registered
owners of Turbo Professional by Sunny
Hill Software may upgrade for $30.

Include your serial number. others please add $6 per item.

January/February 1988 TURBO TECHNIX 17

PROCEDURE Do_Demo;
VAR
CH : Char;
BEGIN
CirSer;
WriteLn(!' KEYBOARD INTERRUPT DEMO "Shift Keys"');
WriteLn(' ye
Writeln;
Write(' Press the various shift keys on the ');
WriteLn('keyboard. The normal "KeyPressed"');
Write(' function doesn''t notice these keys. ');
WriteLn('But the new "ShiftKeyPressed"');
WriteLn(' notices! Hit <Ctrl><Break> to quit.');
REPEAT
REPEAT UNTIL KeyPressed OR ShiftKeyPressed;
WHILE KeyPressed DO CH := ReadKey;
CASE Read_SKP OF
SC_LeftShift : WriteLn('Left Shift');
SC_RightShift : WriteLn('Right Shift');
SC_Ctrlshift : WriteLn('Control Shift');
SC_AltShift : WriteLn('Alt Shift');

SC_NumLock : WriteLn('Num Lock');
SC_ScrollLock : WriteLn('Scroll Lock');
SC_CapsLock : WriteLn('Caps Lock');
END;
UNTIL FALSE;
END;
BEGIN

CheckBreak := TRUE;
GetIntVec(Kbd_Int, Kbd_Vec); {save "old" INT9)
SetIntVec(Kbd_Int, QAINT9_ISR); {install new)

Exit_Vec := ExitProc; {save old ExitProc)
ExitProc := aMy_Error; {install new}
Do_Demo; {show yer stuff!)}
{old interrupt is restored by ExitProc}

END.

LISTING 4: NOREBOOT.PAS

PROGRAM No_Reboot;

Uses Crt, Dos;

CONST
D_Key = 83; (* SCAN code of the Del key *)
Kbd_Int = 9;

VAR
Kbd_Vec, Exit_Vec : Pointer;

{$1 ERROR.INC)

PROCEDURE INT9_ISR(_Flags, _CS, _IP, _AX, _BX, _CX, _DX,
_SI, _bI, _DS, _ES, _BP:word);

INTERRUPT;

* *)
(* This routine suppresses the key. *)
(* If it detects either a "make" or a *)
(* "break" from the key, it simply *)
(* resets the keyboard. Without *)
(* there's no way to enter <Ctrl><Alt> *)
(* so you can't reboot. *)
%= *)

INTERRUPTS
continued from page 17

MoreKey enables thirteen useful
new keys, all previously unrecog-
nized Alt-key combinations.
When you press an ordinary
key, the BIOS keyboard interrupt
inserts two bytes into the keyboard
buffer. These bytes are the ASCII
code for that key and the scan
code that produced it. For keys
that don’t have ASCII equivalents,
like the function keys and arrow
keys, it inserts ASCII code 0 fol-
lowed by an extended scan code.

When you press
an ordinary key,

the BIOS keyboard

interrupt inserts
two bytes into the

keyboard buffer.

Appendix E in the Turbo Pascal
4.0 Owner’s Handbook lists the key
codes returned by many special
key combinations. Unfortunately,
the list is not entirely correct. Any
key on that chart with a code
greater than 132 is only valid if
SuperKey is loaded. The BIOS
ignores them. MoreKey uses the
codes from this list for ten of its
new keys and extrapolates the list
for the other three. MoreKey
builds on the techniques intro-
duced in the other examples, and
adds the ability to insert key codes
in the keyboard buffer, just as the
BIOS INT 9 does.

MoreKey’s new keys are the Alt-
Shift of the 13 keypad keys—the
nine-key numeric pad itself, plus
Ins, Del, and the gray + and -
keys. However, there’s a catch—
normally you would use Alt plus
the keypad to enter special ASCII
codes. If you press Alt, type a
number on the keypad, and

18 TURBO TECHNIX January/February 1988

release Alt, the ASCII character
corresponding to that number
appears. This process interferes
with using the Alt keypad another
way. MoreKey solves the problem
as SuperKey does, by requiring
that you press Left Shift-Alt for
those special ASCII codes.

The first thing the MoreKey
ISR does is check the shift states
in the BIOS data area. The byte at
address 0040:0017 contains this
information. In this byte, the
eighth bit reflects the Alt state and
the second bit the Left Shift state;
if the bit is 1, the corresponding
shift state is on. If Alt is off, it
immediately passes control to the
regular keyboard interrupt. If both
the Alt and Left Shift states are
on, it also hands over control.
And if the received signal is a key-
board break code, or if it’s less
than the code for Home or
greater than the code for Del, it
gives control to the regular inter-
rupt right away.

Any keyboard signals that made
it through these tests are Alt plus
keypad codes. When one of these
codes is received, the keyboard is
reset so it can receive more keys
and deal with the received code.
The Turbo Pascal 4.0 Owner’s
Handbook extended codes for
these keys are the scan codes plus
67H, so that’s what you put into
the keyboard buffer, with a zero
for the ASCII code.

The code that does the buffer-
filling is almost identical to the
corresponding code in the BIOS,
except that it does not check for a
full buffer. It does the following:
puts the two bytes of key code into
the keyboard buffer at the loca-
tion marked by the buffer pointer
Tail; advances Tail by two bytes;
and if Tail points to the end of
the buffer, the code resets Tail to
the beginning. That's it.

MoreKey differs from the other
examples in that all of its interrupt

continued on page 20

BEGIN
INLINE(
$FB/ {STI ;Allow interrupts)
$9C/ {PUSHF ;Save the flags)
$E4L/$60/ {IN AL,$60 ;READ the keyboard port}
$24/$7F/ {AND AL,S$7F ;Mask off "break bit")
$3C/<D_KEY/ {CMP AL,<D_KEY ;Is it a "Del" key?)
$74/%$18/ {JZ GetOut ;1f so, throw it away)
(* *y
(* CHAIN to the regular INT 9 *)
(* *)
$90/ {POPF ;Restore the flags)
$A1/>KBD_VEC+2/ {MOV AX, [>KBD_VEC+2] ;0ld vector seg to AX}

$8B/$1E/>KBD_VEC/ {MOV BX, [>KBD_VEC] ;0ld vector ofs to BX}

$87/$5E/$0E/ {XCHG BX, [BP+$0E] ;Swap ofs W/ return address)
$87/%$46/%$10/ {XCHG AX, [BP+$10] ;Swap seg W/ return address)
$89/$EC/ {MOV SP,BP ;UNDO procedure's entry code)
$5D/ {POP BP)
$07/ {POP ES)>
$1F/ {POP DS}
$5F/ {POP DI}
$5E/ (POP SI)
$5A/ {POP DX}
$59/ {POP CX>
$CB/ {RETF ;in effect, JMP to old vector)
{GetOut:)}
$EL/$61/ {IN AL,$61 ;Read Kbd controller port}
$88/%$C4/ {MOV AH,AL)
$0C/$80/ {OR AL,$80 ;Set the "reset" bit and)
$E6/$61/ {OUT $61,AL ; send it back to control)
$86/$C4/ {XCHG AH,AL ;Get back control value}
$E6/$61/ {OUT $61,AL ; and send it too)
$90/ {POPF ;Restore the flags)
$FA/ {CLI ;No interrupts)
$80/$20/ {MOV AL,+$20 ;Send an EOI to the)
$E6/$20); {OUT $20,AL ; interrupt controller)
END;
(:::::::::::::)
{END INCLUDE >
{============x)
PROCEDURE Do_Demo;
VAR
L : STRING[80];
BEGIN
ClrScr;
WriteLn('KEYBOARD INTERRUPT DEMO "“REBOOT PROHIBITED"');
WriteLn(' Y
WriteLn;

Write('IF SideKick is not loaded, you ');
WriteLn('cannot reboot from within');
Write('this program. Try it! You can ');
WriteLn('enter text, but you cannot');
WriteLn('reboot. Enter a blank line to quit.');
WritelLn;
REPEAT

ReadLn(L);

WritelLn(L);
UNTIL L = '';

END;

BEGIN
CheckBreak := TRUE;
GetIntVec(Kbd_Int, Kbd_Vec); {save "old" INT9}
SetIntVec(Kbd_Int, QINT9_ISR); {install new)
Exit_Vec := ExitProc; {save old ExitProc)
ExitProc := aMy_Error; {install new}
Do_Demo; {show yer stuff!}
{Interrupt vector is RESTORED in the ExitProc)
END.

January/February 1988 TURBO TECHNIX

19

LISTING 5: MOREKEY.PAS

PROGRAM More_Keys;

(*
(*
(*
(*
(*
(*
(*
(*
(*

IN this example, the interrupt handler code *)
is completely contained in the UNIT called *)
"MOREKEYU". The unit's initialization part *)
installs the new interrupt, and its ExitProc *)

restores the original interrupt. This is Y
totally invisible to your program -- just *)
USE the unit and that's all! Yy

%)

USES Crt,Dos,morekeylU;

PROCEDURE Do_Demo;
VAR

CH, DH 3 Char;

BEGIN

ClrScr;
WriteLn('KEYBOARD INTERRUPT DEMO '"More Keys"');
WriteLn(' Ay
Writeln;
Write('Press various keys and combinations. ');
WriteLn('The <Alt> plus keypad combinations');
Write('now work as in Appendix K of the TURBO ');
WriteLn('3.0 manual. ALSO, the <Alt>+number');
Write('combinations are still available -- you ');
WriteLn('must press <Alt><LeftShift>+number.');
WriteLn('Hit <Esc> to end demo.');
WriteLn;
REPEAT
DH := #0;
CH := ReadKey;
IF (CH = #0) AND KeyPressed THEN
BEGIN
DH := ReadKey;
CASE DH OF
#174 : WriteLn('<Alt><Home>');
#175 : WriteLn('<Alt><Up>');
#176 : WriteLn('<Alt><PgUp>');
#177 : WriteLn('<Alt><GreyMinus>'); ({*)
#178 : WriteLn('<Alt><Left>');
#179 : WriteLn('<Alt><Center>'); %)
#180 : WriteLn('<Alt><Right>');
#181 : WriteLn('<Alt><GreyPlus>'); (*}
#182 : WriteLn('<Alt><End>');
#183 : WriteLn('<Alt><Down>');
#184 : WriteLn('<Alt><PgDn>');
#185 : WriteLn('<Alt><Ins>');
#186 : WriteLn('<Alt>');
(* ========= *)
(* NOTE: The three keys marked with a *)
(* {*) do NOT appear in the list in *)
(* Appendix K. However, the scan %)
(* codes are logical in relation to *)

(* those that do appear. xy
€x)
END;
END
ELSE
CASE CH OF

#8 : Write(#8,' ',#8);
#13 : Writeln;
#27 : ; {our QUIT signal)
ELSE Write(CH);
END;
UNTIL (CH = #27) AND (DH = #0);
{i.e., until you press <Esc>)}

END;

BEGIN

Do_Demo; {show yer stuff!)

END.

INTERRUPTS

continued from page 19

handling code is contained in a
unit. The unit is called MoreKeyU
(Listing 6), and it takes care of
everything. Any code you put
between a BEGIN..END pair at
the end of a unit is executed auto-
matically at the start of any pro-
gram that USES the unit. This
initialization section is where we
put the code to install the new
ISR. The exit procedure gets exe-
cuted at the end of any program
that USES the unit. We put the
code to restore the original inter-
rupt in the exit procedure. Hence
the main program MoreKey only
needs to put MoreKeyU in its
USES statement. Without any
further work, the ISR will be
installed at the start and removed
at the end of the program.

The

initialization

section is where we
put the code to
install the new ISR.

USING THESE ROUTINES IN
YOUR PROGRAMS

To incorporate the INT 9 ISR rou-
tines from the sample programs
into your own programs, follow
these steps:

1. Put the lines of the main pro-
gram body that precede
Do__Demo before the start of
your main program.

2. Mark the code between the
BEGIN INCLUDE and END
INCLUDE comments as a block
and press Ctrl-KW to write it to
a file under a name of your
choosing. These comments
bracket the ISR routine itself
and any of its essential declara-
tions. $INCLUDE the resulting
file in your program.

20 TURBO TECHNIX January/February 1988

3. Modify your own exit proce-
dure if you have one. Note:
The file ERROR.INC is
$INCLUDE-ed inside this block
(Turbo Pascal 4.0 allows nested
include files). If you already
have an exit procedure in your
program, eliminate the line
that $SINCLUDEs ERROR.INC
and put the line

SetIntVec(Kbd_Int, Kbd_vec);

at the end of your exit proce-
dure. This absolutely essential
statement restores the compu-
ter’s original INT 9 vector
before your program termi-
nates. If you fail to do this, your
system will come down hard as
soon as the next key is pressed.

If you follow these instructions,
the special keyboard functions
added by the ISR will be available
in your program. Of course, if you
choose to use MoreKey, it's much
simpler. Just put MoreKeyU in
your USES statement, and that’s
all you need do. You can convert
the other examples to units too, if
you wish.

Do be careful. The ISRs shown
in this article should be quite safe,
but there may be interactions with
RAM-resident programs or other
parts of your own program. Test
them carefully and satisfy yourself
that the routines work correctly in
your program. If you make a mis-
take in the INLINE code, the
results may be drastic. The key-
board may not respond, or you
may get the message “Memory
Allocation Error.” If this happens,
reboot and double check your
code.

WRITING YOUR OWN ISRs

If you’re not familiar with
assembly language, the safest way
to write a new ISR is to modify
one shown in the listings. You
may want to install a hardware
reset switch on your computer
before starting to work with ISRs,
because almost every error in an
ISR requires that you power down
the computer. A reset switch
allows you to do the equivalent of
continued on page 22.

LISTING 6: MOREKEYU

UNIT MoreKeyU; {More_Keys UNIT}

(*

-PAS

(* Demonstrates a method for enabling *)
(* handy key combinations that the BIOS *)

&)

(* normally throws away. *)

(* *)
Interface
USES Crt,Dos;

¢* *)

(* There's nothing at all in the INTERFACE *)

(* portion of this unit.

(* self-contained.

The initialization %)
(* code at the end loads the new Interrupt *)
(* Service Routine and the ExitProc puts)

It's completely *)

(* back the old interrupt. *)
(* ============ss=ss=zsssssssssssssssss==ss *)
Implementation
VAR
Kbd_Vec, Exit_Vec : Pointer;
CONST
ROM_Data = $0040; {Segment for ROM data about keyboard }
KB_Flag = $0017; (Offset for shift states 3
Head = $001A; (Offset for Kbd. buffer HEAD pointer)}
Tail = $001C; (Offset for Kbd. buffer TAIL pointer }
KeyBuf = $001E; (Offset for Keyboard buffer itself
BufEnd = $003E; (Offset for end of keyboard buffer)}
Kbd_Int = 9;

{$1 error.inc)

PROCEDURE INT9_ISR(_Flags, _CS, _IP, _AX, _BX, _CX, _DX,

INTERRUPT;
(*

“sI, DI, DS, _ES, _BP:word);

(* This ISR first checks if the <Alt> key *)
(* is pressed and the <LeftShift> is NOT *)
IF so, it grabs the scan code *)
(* waiting in the keyboard and checks if *)

(* pressed.

*)

(* it is a KEYPAD key. IF so, it clears *)
(* the keyboard and stuffs the keyboard *)
(* buffer with the value corresponding %)
(* to that key combination as listed in *)
(* Appendix K of the TURBO 3.0 manual. *)
* %)
(* If none of the special cases apply, it ¥*)
(* is a normal key, to be given to the %3
(* normal keyboard interrupt. 29,
*)

(* Sounds complicated, but the end result ¥*)
(* is that you can use the <Alt>+Keypad *
(* combinations in a program.
(* <Alt><Number> combinations (e.g., to *)
(* get char 219), you use <Alt><LeftShift> *)

If you want *)

(* <Number>, just as with SuperKey. %)

(® === ¥)

BEGIN

INLINE(
$FB/ {STI ;Allow interrupts)
$9C/ {PUSHF ;Save the flags)
$1E/ {PUSH DS ;Save the Turbo DSeg}
$E4/$60/ {IN AL,$60 ;Read the keyboard port)}
$88/$C1/ {MOV CL,AL}
$B8/>ROM_DATA/ {MOV AX,ROM_DATA}
$8E/$D8/ {MOV DS,AX ;Set DS to ROM_DATA segment}
$A0/>KB_FLAG/ {MOV AL, [>KB_FLAG]>
$A8/$08/ {TEST AL,$08 ;The 8 bit is ALT)
$74/%14/ {JZ Norm Key ;IF not alt, normal}
$A8/$02/ {TEST AL,$02 ;The 2 bit is L-Shift)

January/February 1988 TURBO TECHNIX 21

{Nor

$75/$10/ {INZ Norm_Key ;I1f L-shifted, normal}
$88/$C8/ {MOV AL,CL}
$3C/$80/ {CMP AL,$80 ;Is it a key-release?)
73/$0A/ JNB Norm_Key ;If so, treat as normal}
3¢/$47/ CMP AL,$47 ;Below Home is normal)
72/%06/ JB Norm_Key)

3C/$53/ CMP AL,$53 ;Above Del is normal)

TF/$02/ JG Norm_Key)
$EB/$19/ JMP $HORT Special_Key)
h Key:) ‘

TF it's not a spe¢ial k*y, just CHAIN to the oég interrupt)
1F/ POP 9S ;Restore TURBO &g)

90/ POPF ;Restore the flags)
$A1/>KBD_VEC+2/ {MOV AX, [>KBD_VEC+2] ;Old vector seg to AX}

$8B/$1E/>KBD_VEC/ (MOV BX, [>KBD_VEC] ;0ld vector ofs to BX)

$87/$5E/$0E/ {XCHG BX, [BP+$0E] ;Swap ofs w/ return address}
$87/$46/%$10/ {XCHG AX, [BP+$10] ;Swap seg W/ return address)
$89/$EC/ {MOV SP,BP ;UNDO procedure's entry code}
$50/ {POP BP)
$07/ {POP ES)
$1F/ {POP DS)
$5F/ {POP DI)
$5€/ {POP SI)
$5A/ {POP DX}
$59/ {POP CX>
$CB/ {RETF ;in effect, JMP to old vector)
{Spe¢ial_Key:)
50/ {PUSH AX ;Save the key we got)
£4/$61/ {IN AL,$61 ;Read Kbd controller port)
/$C4/ {MOV AH,AL)
t/$80/ {OR AL,$80 ;Set the "reset" bit and)}
£E6/361/ {ouT $61,AL ; send it back to control)
/$C4/ {XCHG AH,AL ;Get back control value)
$E6/$61/ {OUT $61,AL ; and send it too)
$58/ {POP AX)
$04/$67/ {ADD AL,$67 ;+67h makes it SuperKey code)
$84/$00/ {MOV AH,+$00 ;0 for Scan Code)
$86/$C4/ {XCHG AH,AL)
$8B/$1E/>TAIL/ {MOV BX, [>TAIL]}
$89/$07/ {MOV [BX],AX ;Put key in buffer)
$81/$C3/$02/$00/ {ADD BX,+$02 ;Advance tail pdinter)
$81/$FB/>BUFEND/ {CMP BX,>BUFEND ;IF at end of buffer)
$7C/$03/ {JL BufoK)
$BB/>KEYBUF/ {MOV BX,>KEYBUF ; set back to beginning}
{BufOK:)
$89/$1E/>TAIL/ {MOV [>TAIL],BX)
$80/$26/>KB_FLAG/$F7/ {AND BYTE PTR [>KB_FLAG] ,$F7)
{Turn off ALT flag)}
$1F/ {POP DS ;Restore TURBO DSeg)
$90/ POPF ;Restore the flags)
$FA/ CLI ;No interrupts)
$80/320/ MOV AL,+$20 ;Send an EOI to the}
$£6/$20); {OUT $20,AL ; interrupt controller)
END; 1
(* == *)
(* You _can_ end a UNIT with just an “END." *)
(* statement, but if you end it with a =)
(* “BEGIN..END." pair, the code between <)
(* that pair will be executed automatically *)
(* at the beginning of any program that *)
(* USES the UNIT. *)
(* =================s======)
BEGIN
CheckBreak := TRUE;

GetIntVec(Kbd_Int, Kbd_Vec);

{save "old" INT9)

SetIntVec(Kbd_Int, @INT9_ISR); {install new}

INTERRUPTS
continued from page 21

a power-down reboot without
actually turning off the power,
thereby avoiding electrical stress
on your system. When you'’re
developing a new ISR, always save
your code before you run it, or
else you may lose your work.

You might think it’s easier to
write your routines in Turbo Pas-
cal itself, rather than using
INLINE. In fact, it is dangerous.
The 4.0 Runtime Library is not
completely reentrant, though it is
more so than 3.0. DOS itself is not
reentrant, so any routines that call
on DOS services are not safe in
an ISR. The safest way to avoid
reentrancy problems is to stick to
INLINE code.

When you’re
developing a new
ISR, always save
your code before
you run it, or you
may lose your

work.

The PC keyboard sends a lot of
information to the BIOS, but the
BIOS throws some of it away.
Using Interrupt Service Routines
gives you access to this informa-
tion before the BIOS does. Use it
to your advantage. By keeping
your ISRs simple you avoid inter-
fering with the BIOS while gain-
ing information that would not
normally be available to your
program. W

Neil Rubenking is a professional Pas-
cal programmer and writer. He can be
found daily on Borland’s Compu-
Serve Forum answering Turbo Pascal
questions.

Exit_Vec := ExitProc; {save old ExitProc)
ExitProc := aMy_Error; {install new} Listings may be downloadedfrom
e CompuServe as KEYINT.ARC.
22 TURBO TECHNIX January/February 1988

FORWARD DECLARATIONS
IN TURBO PASCAL

When chicken calls egg and egg calls chicken, Pascal will

call foul —unless you use a forward declaration.

Allen J. Friedman

What is forward declaration, and why use
it?
The technique is controversial, running

. contrary to the style and spirit of the Pas-

cal language, but it can be very handy. In
this article we will look into the nature of
forward declaration, as well as discuss some reasons
for limiting the use of this technique.

Pascal was developed in reaction against the com-
mon programming practices widely used in other
older languages like FORTRAN and COBOL. Source
code could appear anywhere and subroutines could
be in any order, global variables could be created
and destroyed at will, data could be freely converted
from one data type to another, and nested chains of
GOTO statements snaked lazily around huge
programs.

These practices made life easy for some pro-
grammers, but they also caused maintenance and
reliability nightmares. Pascal, as it was originally
defined, was supposed to be pure, without the poten-
tial for such abuse. It forced programmers to docu-
ment, to declare, to keep things in their proper order
and therefore preserve some logical sense through-
out a program. But it was also a difficult language in
which to do useful work.

SQUARE ONE

FORWARD REFERENCING

Forward declaration was introduced as a way of satisfy-
ing what the Turbo Tutor documentation calls the
Great Underlying Rule of Pascal: All identifiers must
be declared before they are used. If your program
logic requires calling procedure P, but you have not
yet declared procedure P, you must use a forward ref-
erence or the program will not compile.

The classic example of forward reference is the
circular recursion problem. In short, circular recursion
means a situation in which two procedures call one
another. This is distinct from ordinary (and more
common) recursion, in which a single procedure
calls itself (see Figure 1). At first glance it looks like

both instances are infinite loops, but for simplicity’s
sake other parts of the required logic are not shown.
In a real situation, there must be a Boolean test
before each recursive or circularly recursive call so
that there is some way to halt the process when it
has gone on long enough.

In Figure 2 the two procedures P1 and P2 each
call the other, and there is no way of arranging them
in the source file in order to satisfy the Great Under-
lying Rule. Pascal demands that both P1 and P2 be
declared before they are used. The program as it is
given in Figure 2 will not compile, much less run.
Declaring P2 with the reserved word FORWARD, as
is done in Figure 3, solves this paradox and makes
the program compilable.

Because space is limited, this is not a particularly
compelling example of the use of forward declara-
tions. However, in real-world programming there are
cases where circular recursion is the best way to go,
and where the logic is complex enough to require
the use of forward declarations. In such situations,
the only alternative to forward declaration is another
programming language.

DEFINING DECLARATION

Note the technique used in forward declaration. We
actually declare P2 twice, once before it is first called
(by P1) as a forward reference, and then later when
we specify the procedure logic. The forward declara-
tion contains the full procedure or function header,
with the reserved word FORWARD added. The
second, or defining declaration contains only the
procedure name in its header, followed by the type
and variable declarations and the code block itself.
Note that the procedure’s parameters are not
declared a second time in the definition declaration.
This is similar to what is done in specifying a proce-
dure that exists in a separately compiled unit, where
the interface declaration of a procedure contains the
continued on page 24

January/February 1988 TURBO TECHNIX 23

TURBO PASCAL

DECLARATIONS
continued from page 23

parameter list, whereas the imple-
mentation declaration does not.
The first declaration allows the
compiler to accept P1’s call to P2,
as long as the forward reference is
eventually resolved later in the
same program block.
Programmers who learned Pas-
cal before encountering Turbo
Pascal will probably feel a bit
uneasy about all this. It seems like
having your cake and eating it too,
and we know about free lunches.
Forward reference is one of those
things, like GOTO, that have
been included in the language
because someone somewhere may
really need them, but you really
don’t expect it to happen to you.

IMPLEMENTING FORWARD
REFERENCES

Forward reference raises potential

program maintenance issues
because of having two declara-
tions, usually widely separated in
the source file. There can also be
problems due to the restricted
header in the actual declaration.
When the code block references
the procedure’s parameters, it
must use them exactly as they
appear in the header of the for-
ward declaration. Of course, good
programming style and program-
mer discipline can overcome
these objections, just as in the use
of GOTO.

Forward references do have
some implementation restrictions
under Turbo Pascal 4.0. A
forward-declared subprogram can-
not be an INLINE subprogram,
nor an interrupt procedure. The
defining declaration, however,
may be a machine-code external
subprogram. Finally, the defining
subprogram definition may not be
another forward declaration.

We have examined forward dec-
larations in some detail, and have
suggested situations in which they
might be useful. There are some
situations involving circular recur-
sion where clarity of the code is
actually enhanced by the use of

Recursion

~

Circular Recursion

Figure 1. Recursion and circular recursion.

{ This program WILL NOT compile >
PROGRAM Example_1;

VAR
y : integer;

PROCEDURE P1(VAR x : integer);

BEGIN
{ program logic that changes x)
If x > 0 Then P2(x);

END; ¢ P1)

PROCEDURE P2(VAR x : integer);

BEGIN
{ program logic that changes x }
If x < 0 Then P1(x);

END; (P2)

BEGIN { Example_1 }
{ ... program logic to set y }
P1Cy);

END. { Example_1)

Figure 2. Circular recursion without
forward declaration.

forward declaration. There are
potential problems in mainte-
nance and debugging caused by
forward references, but when
used with care and discipline, they
can be a valuable tool for solving
certain kinds of programming
problems. H

Allen J. Friedman is an independent
software consultant and freelance
writer living in Maine.

{ This program WILL compile... }
PROGRAM Example_2;

VAR
y : integer;

PROCEDURE P2(VAR x : integer);
Forward;
PROCEDURE P1(VAR x : integer);

BEGIN

If x > 0 Then P2(x);

{ program logic that changes x)}
END; { P1)

PROCEDURE P2;

BEGIN
{ program logic that changes x)}
If x < 0 Then P1(x);

END; (P2)

BEGIN { Example_2)
{ ... program logic to set y)
P1CY);

{ Example_2 »

Figure 3. Circular recursion with for-
ward declaration.

24 TURBO TECHNIX January/February 1988

SKYDIVING AND THE
NUMERICAL METHODS

TOOLBOX

Free-fall into easy numerical solution of terminal velocity
with a little help from Messrs. Newton and Raphson.

Victor Mansfield

Gabardine sleeves snapping against a
rush of wind, sunlight sparkling on a
colorful helmet and the fading roar of an
airplane engine may not sound very close
to computer programming, but a skydiv-
ing analysis easily demonstrates the sim-
ple yet elegant numerical algorithms in the Numeri-
cal Methods Toolbox.

PROGRAMMER

SKYDIVING EQUATIONS

Figure 1 shows a schematic of the forces acting on
you, the skydiver, falling under the gravity force, mg,
where m is the skydiver’s mass and g is the accelera-
tion due to gravity (32 feet/second/second or 9.81
meters/second/second). This force acts in what is

1 \/ Viscous friction force = kV?

+ _/ Skydiver

4\/ Gravity Force = mg

Figure 1. The dynamics of skydiving.

chosen to be the negative direction. The air rushing
past you provides a viscous friction force opposing
your downward motion. Experiments have shown
this friction force is approximated by £V where V is
your velocity relative to the air and k is a constant
depending upon the surface area you present to the
air. Constant k changes if you go into spread-eagle
position, increasing your friction, or if you pull your

arms and legs in (greatly reducing your friction) and
dive down head first.

Skydiving dynamics are governed by Newton'’s
beloved Second Law: F = ma, where F is the sum of
the external forces, m is the mass of the object, and a
is the acceleration. Acceleration is the time derivative
of the velocity, therefore:

If the forces are written explicitly with the proper
signs this becomes:

5o A
kV:—mg=m % (1)
Since the viscous friction force grows with the square
of the velocity, there is a critical terminal velocity for
which the gravitational force is exactly balanced by
the friction force. This means kV? = mg and
dV/dt = 0, or Vis constant at the terminal velocity,
V, . In other words, when the forces cancel there is
no acceleration and Vis constant at V, . At terminal
velocity, the left side of equation (1) is zero so we
can say:

mg = kV? @)
Combine equation (2) with equation (1) to eliminate
the constant k. The resulting equation can be easily
integrated over time to give:

“p(‘ i;;T‘ﬂ)" (3)
exp (— g‘-,gli>+1

Although I don’t do it here, you can complete the
analysis by integrating equation (3) over time to get
the distance fallen with time. For the present, it is
enough to examine V(¢ V). Notice as time ¢ goes to
infinity that equation (3) shows V going to —V/. In

V=Y

January/February 1988 TURBO TECHNIX 25

TURBO PASCAL

SKYDIVING

continued from page 25

other words, after enough time (we will find out what
“enough” means below), the viscous friction forces
build up enough to balance gravity and leave you
falling blissfully at the constant terminal velocity V
going to —V,.

We must have a measurement to find V,. An exhil-
arating downward velocity of —90 miles/hour = —40
meters/second is measured after five seconds of fall-
ing. Knowing this we plug V= —40 m/s, g = 9.81
m/s/s, and ¢ = 5 seconds into equation (3) to get

e (_ %) K 4)

98.1
exp | — N T

—40=VY,

ROOTS TO EQUATIONS IN ONE VARIABLE:
BISECTION
Equation (4) cannot be solved analytically for V, , but

it is a snap numerically. To start the process define a
function F(V)):

FV)y=V + 40 (5)

t ry)

Figure 2. F(V,) versus V,.

When F(V,) = 0 a root to equation (5) has been
found. This root is the numerical value of V, . Figure
2 shows a plot of F(V)) versus V,. As we will see, it is
good practice to get a rough plot of the function
before attempting to find its roots or zeros.

The simplest root-finding method is the bisection
iteration method. All the methods for finding roots in
Chapter 2 of the Numerical Methods Toolbox are
iterative. Although bisection is slow it cannot fail,
and for that reason alone it is valuable. From Figure
2 we see that the function must pass through zero
over some interval because it changes sign. The
bisection algorithm boils down to this: Evaluate the
function at the midpoint of the interval and examine
its sign. Replace whichever limit has the same sign as
the function at the midpoint with the midpoint. Each
iteration reduces by half the interval containing the
root. A formal statement of the algorithm to solve
equation (5) is shown in Figure 3. This simple algo-
rithm is implemented in Listing 1, taken from the
Numerical Methods Toolbox file BISECT.INC.

PURPOSE: Find a root for a user-specified function,
F(x), within a user-specified interval, [LeftEnd,
RightEnd], where F(LeftEnd) and F(RightEnd) are of
opposite signs. The user supplies the desired tolerance,
Tol, to which the root is found.

INPUT: LeftEnd, RightEnd, Tol, MaxIter
OUTPUT: Answer, fAnswer, Iter, Error
Step 1: Set Iter = 1. { Iteration variable. }
Step 2: While Iter < MaxlIter do Steps 3-6.
Step 3: MidPoint = (LeftEnd + RightEnd)/2.
Step 4: If F(MidPoint) = 0 or (RightEnd - LeftEnd)/
2 < Tol then OUTPUT (Answer =
Midpoint, fAnswer = F(Answer),
Iter, Error);
STOP. {Successful completion.}
Step 5: Iter = Iter + 1.
Step 6: If F(LeftEnd) F(MidPoint) > 0
then LeftEnd = MidPoint
else RightEnd = Midpoint.
Step 7: OUTPUT (Bisection failed after MaxIter)
{ Unsuccessful. }
STOP.

Figure 3. The bisection algorithm.

In the Toolbox the demonstration program
BISECT.PAS (not given here) calls BISECT.INC. For
all the 70-odd algorithms in the Numerical Methods
Toolbox, each algorithm is implemented in a sepa-
rate include file called by a demonstration program
that handles the I/0. The demo programs provide
for keyboard or file input, and screen, file, or printer
output. They also process error messages and check
for legal input.

To see just how simple it is to call the bisection
routines, I have included a simplified version of
BISECT.PAS, called BISECT2.PAS, in Listing 2. This
has all the bells and whistles removed so that it is
easier to see the essential root-finding mechanisms
at work.

For example, to use BISECT.INC to solve the pres-
ent problem, we only need to replace the Pascal
function TNTargetF as originally given in

26 TURBO TECHNIX January/February 1988

BISECT.PAS, with a Pascal function that evaluates
F(V,) of equation (5). This is done in BISECT2.PAS.
Then run the modified program to get the value of

V, . Figure 4 shows a sample session running
BISECTZ2.PAS to solve our problem.

B:\>bisect?2

Enter LeftEndpoint RightEndpoint separated by a space.

=75

Enter the tolerance (1E-8 suggested): 1e-8
Enter maximum number of interations
(100 suggested): 100

Error = 0

left endpoint:

right endpoint:

Tolerance:

Maximum number of iterations:

Number of iterations:
Calculated root:

Value of the function
at the calculated root:

28

B:\>

1.7000000000E+01
-7.5000000000E+01

1.0000000000E-08
100

-5.8201114371E+01

-7.6135620475E-08

Figure 4. A sample session using BISECT2.PAS.

Knowing V= —58.20 m/s we can plot equation (3)
as a function of time. Figure 5 shows how the skydiv-
er’s velocity evolves with time. Notice that after about
15 seconds this velocity levels off to a value indistin-
guishable from V] . Although I will not do it here, it

A
V=0.0 7

Velocity
(m/sec)

V=-40.0 B

" Terminal velocity

0.0 : -
Time (sec)

=

Figure 5. How the skydiver’s velocity evolves over time.
continued on page 28

LISTING 1: BISECT.INC
PROCEDURE Bisect(LeftEnd : Real;

RightEnd : Real;

Tol : Real;

MaxIter : Integer;

VAR Answer : Real;

VAR fAnswer : Real;

VAR Iter : Integer;

VAR Error : Byte);
e Lo e L L e R S L e T >
£ -
£ Turbo Pascal Numerical Methods Toolbox =5
£ (C) Copyright 1986 Borland International. -}
€= =3
{- Input: LeftEnd, RightEnd, Tol, MaxIter =)
{- Output: Answer, fAnswer, Iter, Error =)
. 98 =)
{- Purpose: This unit provides a procedure for finding a root -)
{- of a user specified function, for a user specified e
{ interval, [a,b), where f(a) and f(b) are of opposite -}
(- signs. The algorithm successively bisects the =¥
! interval, closing in on the root. The user must =
€= supply the desired tolerancg to which the root should -)
€= be found. =~
= =¥
{- Global Variables: LeftEnd : real! left endpoint <)
(- RightEng : real right endpoint =¥
{i=" Tol : real tolerance of error -2
= MaxIter : real max number iterations -}
(i Answer : real root of TNTargetF =
&= fAnswer : real TNTargetF(Answer) =3
€~ (should be close to 0) -)
<- Iter :integer number of iterations =2
L Error : byte error flags =)
{> it
e Errors: 0: No error 2
(- 1: maximum number of iterations exceeded -)
€= 2: f(a) and f(b) are not of opposite signs -}
(& 3: Tol <= 0 =P
< 4: MaxIter < 0 =%
£z =%
- Version Date: 26 January 1987 =)
€-)
(S E e i o o U Ao LR e e PR A EE e L R R >

CONST
TNNearlyZero = 1E-015; { If you get a syntax error here, }
{ you are not running TURBO-87.)
{ TNNearlyZero = 1E-015 if using the 8087 b
math co-procegsor. b
{ TNNearlyZero = 1E-07 if not using the 8087)
{ math co-procegsor. >
VAR
Found : Boolean;
PROCEDURE TestInput(LeftEndpeoint : Real;

RightEndpoint : Real;

Tol : Real;

MaxIter : Integer;

VAR Answer : Real;

VAR fAnswer : Real;

VAR Error : Byte;

VAR Found : Boolean);
e i s Sk i e e e b D U >
(- Input: LeftEndpoint, RightEndpoint, Tol, Maxlter =)
{- Output: Answer, fAnswer, Error, Found =3

continued on page 28

January/February 1988 TURBO TECHNIX 27

= =)
{- This procedure tests the input data for errors. If =y
(- LeftEndpoint > RightEndpoint, Tol <= 0, or Maxiter < 0, -)
{- then an error is returned. If one the of the endpoints -}
{- (LeftEndpoint, RightEndpoint) is a root, then Found=TRUE -}

{- and Answer and fAnswer are returned. =Y
e O o e e e s e s St >
VAR

yLeft, yRight : Real; (The values of function at endpoints.)
BEGIN

yLeft := TNTargetF(LeftEndpoint);

yRight := TNTargetF(RightEndpoint);

IF Abs(ylLeft) <= TNNearlyZero THEN

BEGIN
Answer := LeftEndpoint;
fAnswer := TNTargetF(Answer);
Found := True;
END;
IF Abs(yRight) <= TNNearlyZero THEN
BEGIN
Answer := RightEndpoint;
fAnswer := TNTargetF(Answer);
Found := True;
END;
IF NOT Found THEN { Test for errors)
BEGIN
IF yLeft*yRight > O THEN
Error := 2;
IF Tol <= 0 THEN
Error := 3;
IF MaxIter < O THEN
Error := 4;
END;
END; { procedure Tests)

PROCEDURE Converge(VAR LeftEndpoint : Real;
VAR RightEndpoint : Real;
Tol : Real;
VAR Found : Boolean;
MaxIter : Integer;
VAR Answer : Real;
VAR fAnswer : Real;
VAR Iter : Integer;
VAR Error : Byte);

{- Input: LeftEndpoint, RightEndpoint, Tol, Maxlter
{- Output: Found, Answer, fAnswer, Iter, Error -

{- This procedure applies the bisection method to find a -
{- root to TNTargetF(x) on the interval [LeftEndpoint, -
{- RightEndpoint]. The root must be found within MaxIter =
(- iterations to a tolerance of Tol. If root found, then it -
{- is returned in Answer, the value of the function at the -
{- approximated root is fAnswer (should be close to -
{- zero), and the number of iterations is returned in Iter.

VAR
yLeft : Real;
MidPoint, yMidPoint : Real;

PROCEDURE Initial(LeftEndpoint : Real;
VAR Iter : Integer;
VAR ylLeft : Real);

>
2
>
)
>
)

-2

SKYDIVING
continued from page 27

would be easy to integrate the function V(¢) from 0 to
15 seconds to see how far the skydiver falls in 15
seconds. This can be done with equal ease, either
analytically or with the Numerical Methods Toolbox.
In this time period the skydiver must fall around 600
meters (1970 feet) before reaching terminal velocity.
Most of the time you free-fall at terminal velocity
rather than accelerate.

FASTER CONVERGENCE: NEWTON’S METHOD

Even though this problem hardly strains the compu-
ter, 28 iterations were needed to get the required
accuracy using bisection. (The number of iterations
increases with the size of the interval, RightValue -
LeftValue, or with a smaller tolerance, TOL.) In
more involved problems, this much calculation could
be a problem. Although numerical methods for find-
ing roots to equations is still an active research topic,
Isaac Newton developed (without a PC!) one of the
most popular and efficient methods used today—
Newton’s method. (This method is also called the
Newton-Raphson method.) It has a simple geometric
interpretation.

Figure 6 shows a function, F(X), which has a root
at X = R. Let an estimate of the root be X,, which
equals the line segment OB. The value F(X,) is
labeled C and equals the line segment BC. The slope
of F(X) at X, is the tangent to the curve F(X) at that
point. The letter A labels the point where this

A

F(X)

‘B

R A S

o) X

Figure 6. A function F(X) with a root at X + R.

28 TURBO TECHNIX January/February 1988

tangent line intersects the X-axis. Let this intersec-
tion point be the next estimate of the root, X, ;,
which equals the line segment OA. This is obviously
a better estimate of R than X,. From the geometry of
Figure 6 we have

OA= OB — AB

or equivalently:

X1 =X,— AB (6)
By the definition of the tangent function we have:
tan(CAB) = B¢)

From Figure 6 we know that BC = F(X), and from
elementary calculus we know that the slope of the
line at point C equals tan(CAB). Thus equation (7)
becomes

FX,)

F(X) == ®)

where F’(X) is the standard notation for the
X-derivative of F(X). Finally, we can eliminate AB
from equations (6) and (8) to get

FX,)
_F,(Xn) (9)

)(n+4 =)(n

This is the heart of Newton’s method. A more formal
presentation of the algorithm is shown in Figure 7.

PURPOSE: Finding a root for a user-specified function,
F(x), with a user-specified initial approximation, Guess.
The method uses the derivative of the function to
rapidly converge to an approximate solution whose tol-
erance is specified by Tol.

INPUT: Guess, Tol, MaxIter
OUTPUT: Root, Value { = F(Root)}, Iter, Error
Step 1: Set Iter = 1. { Iteration variable. }
Step 2: While Iter < MaxIter do Steps 3-6.
Step 3: Root,_; Root, —F(Root,)/F’(Root,).
Step 4: If | Root,; — Root, | < Tol then
OUTPUT(Root, Value, Iter, Error);
STOP. {Successful completion.}
Step 5: Iter = Iter + 1.
Step 6: Root, = Root,+ ; .

Figure 7. Algorithm for Newton’s Method.

Newton’s method has much faster convergence
than the bisection method. In the present example,
with equivalent starting guesses, Newton’s method
required six iterations while bisection required 28.
When it is approaching a root, the number of signifi-
cant digits found with Newton’s method may double
at each iteration! However, it has obvious problems
where the function has a zero derivative. For exam-
ple, imagine trying to find the root R shown in

continued on page 30

{ Initialize variables.)

BEGIN
Iter := 0;
yLeft := TNTargetF(LeftEndpoint);
END; { procedure Initial)
FUNCTION TestForRoot(X, OldX, Y, Tol : Real) : Boolean;
{~roexrmemcrnonatesearmansssnam s s o mn e me R m s s s s S s >
(- These are the stopping criteria. Four different ones are i ¢
{- provided. If you wish to change the active criteria, simply -}

(- comment off current criteria (including the appropriate OR) -)
(- and remove the comment brackets from the criteria (including -}

{- the appropriate OR) you wish to be active. =
S e e e o S R e S o s S >
BEGIN
TestForRoot := e e)
(ABS(Y) <= TNNearlyZero) -Y=0 -)
5 =)
OR {= -)
(82 =)
(ABS(X - OldX) < ABS(OldX * Tol)) (- Relative change in X -}
{= =)
£- =3
& OR X)L =3
(G)y <%
(* (ABS(X - OldX) < Tol) *) {- Absolute change in X -}
C* o) I =)
(> OR *) €= =
* i =)
(* (ABS(Y) <= Tol) *) {- Absolute change in Y -}
EScescasais SRt aCRAEE e >
o s i e e R S S B R S SR R B
{- The first criteria simply checks to see if the value of the -2
{- function is zero. You should probably always keep this =)
(- criteria active. =5
= =)

{- The second criteria checks relative error in x. This criteria -)
{- evaluates the fractional change in x between interations. Note -)
(- x has been multiplied through the inequality to avoid divide =)

(- by zero errors. =y
< =3
{- The third criteria checks the absolute difference in x =)
{- between iterations. =
€ =)
{- The fourth criteria checks the absolute difference between -2
(- the value of the function and zero. -3
R R e e e L e e >

END; { function TestForRoot)

BEGIN { procedure Converge)
Initial(LeftEndpoint, Iter, ylLeft);
WHILE NOT(Found) AND (Iter < MaxIter) DO
BEGIN
Iter := Succ(Iter);
MidPoint := (LeftEndpoint+RightEndpoint)/2;
yMidPoint := TNTargetF(MidPoint);
Found :=TestForRoot(MidPoint, LeftEndpoint, yMidPoint, Tol);
IF (yLeft*yMidPoint) < O THEN
RightEndpoint := MidPoint
ELSE
BEGIN
LeftEndpoint := MidPoint;
ylLeft := yMidPoint;
END;
END;
Answer := MidPoint;
fAnswer := yMidPoint;
IF Iter >= MaxIter THEN
Error =13
END; { procedure Converge)}

BEGIN { procedure Bisect)

Found := False;

TestInput(LeftEnd, RightEnd, Tol, Maxlter, Answer,

fAnswer, Error, Found);

IF (Error = 0) AND (Found = False) THEN { i.e. no error)
Converge(LeftEnd, RightEnd, Tol, Found, MaxlIter,
Answer, fAnswer, Iter, Error);

END; { procedure Bisect)

January/February 1988 TURBO TECHNIX 29

SKYDIVING

'LISTING 2: BISECT2.PAS
14 o @

continued from page 29
PROGRAM Bi 12 % A oh. e .
i Figure 8 with an initial estimate of X, . The first

S it e 2| | attempt at improving the estimate of the root brings
(- Purpose: This program demonstrates the bisection routine with -) ou to X, then to X,. From there you go off into the
< ba ini f (48] odk > ; 2

7 a re minimum of calling code. = & 1Ini H
i ¥a 140 oBEloas S Error chebting oods. 3| | wild blue yond?r. The minimum of F(X) at XZ""" will
3 3 force the algorithm to oscillate about that point or go
(- Include files: BISECT.INC procedure Bisect - | | off into infinity. (Now you can see why it is good
£~ =X 1 i
e vaics iy e 3| | practice to get a rough plot of the function before
T O o e S S e e e e e e S e ST L e 5
VAR

LeftEndpoint, RightEndpoint : Real; (Endpoints of the region) ‘r

Answer, yAnswer : Real; { Root of F(X)) F(X)

Tol : Real; . { Tolerance)

Iter, Maxlter : Integer; { Number of iterations)

Error : Byte; { Flags something wrong}

f==ere HERE IS THE FUNCTION TO FIND A ROOT OF ------ b

FUNCTION TNTargetF(X : Real) : Real;
BEGIN

TNTargetF := -40.0+X*(1.0-Exp(-98.1/X))/(1.0+Exp(-98.1/X));
END; { function TNTargetfF }

{$1 BISECT.INCY { Load procedure Bisect)

BEGIN
{ Get necessary input.)
Error := 0;

WriteLn('Enter LeftEndpoint RightEndpoint seperated by a space.');
ReadLn(LeftEndpoint, RightEndpoint);

Writeln;
Write('Enter the tolerance (1E-8 suggested): ');
ReadlLn(Tol); / £
Write('Enter maximum number of interations (100 suggested): ');
ReadLn(MaxIter); O X() XZ XI
Bisect(LeftEndpoint, RightEndpoint, Tol, MaxIter, : 3 . el
e, Sidlie: Tk Frbys . T Figure 8. A function F(X) with a zero derivative at X,.
{ Give resulting output.) e @ .
Writeln; finding its roots.) In the Numerical Methods Toolbox
WriteLn('Error = ', Error); s s ke
Writeln('left endpoint: ':30, LeftEndpoint); implementation (Listing 3, RAP'HSON.INC).we 'have
WriteLn('right endpoint: ':30, RightEndpoint); an error message that appears if the derivative is
WriteLn('Tolerance: ':30, Tol); e d limit. MaxI
WriteLn('Maximum number of iterations: ':30, MaxIter); approaching z€ro, and an upper 1mut, axlter, to
Writeln; 3 3
Gl baog ns: S TeaasTinat Stk e the number 'of iterations that can be attempted. If
WriteLn('Calculated root: ':26, Answer); these conditions occur, approprlate €ITor messages
WriteLn('value of the function ':26);
WriteLn('at the calculated root: ':26, yAnswer); are gen'erated. i y .)
END. As with the bisection method, there is a simple
demo program for Newton’s method included with
BEGIN 1
R e T the Numerical Methods Toolbox. Program
Error := 2; C slope is zero) RAPHSONZ2.PAS can be easily modified to solve
B Nipnsseire Sheckiope 2 the function given in equation (5). Listing 4,
BRSCERURE Titlal(fusss + Redis RAPHSONZ2.PAS, shows the modified program.
Tol ' : Real; " .
fextter & nteger: Again, the function TNTargetF must be changed to
podico iy B evaluate the F(V)). Additionally, a second function
VAR OldDeriv : Real; must be provided, TNDerivF. This function evaluates
e et F’(Vi), the derivative of the function given in equa-
VAR Error : Byte); tion (5). A sample session running RAPHSONZ? is
given in Figure 9.
e m >
2- (I)nsut; g‘l";;s'0{3¢’ g?:);:’;v Found, Iter, Error -; MORE FROM CHAPTER 2 OF NUMERICAL
- Output: % ' ' i ' g i
¢) METHODS TOOLBOX
{- This procedure sets the initial values of the above =y .
(- variables. If OldY is zero, then a root has been -3 As powerful as Newton’s method is, there are many
{- Found and Found = TRUE. This procedure also checks =) 3 : vt 3 2
{- the tolerance (Tol) and the maximum number of iterations -} situations requiring ot'her techmques. The Numeri
(- (MaxIter) for errors. -3 cal Methods Toolbox implements several other algo-
(o oo e)

rithms that can handle most of the broad range of
root-finding problems encountered in the real world.
For example, in situations where it is difficult to cal-
culate the derivative of a function (as Newton’s
continued on page 32

30 TURBO TECHNIX January/February 1988

Sophisticated User Interfaces in Minutes!

w

Put maglc in your programs with ’ll ”

l/ The World’s Best Code Generator!

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop-
up menus, and pull-down menu systems. Overlay them. Scroll within them.

Users and critics say it all!...

“.. the best I've used ... The code that it generates is excellent, with every feature you
could conceivably desire. ... if you have problems, they give excellent technical advice
over the phone. ... It saves time, is flexible and produces screens which are state of the
art.” Sally Stott, Software Developer

“... the best screen generator on the market.” George Kwascha, TUG Lines, Nov/Dec 87

“... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turboMAGIC
is extremely flexible. ... [it] clearly offers the greatest variety of options.”
Jim Powell, Computer Language, Jun 87

“Fast automatic updating of dependent fields adds flair to your input screens. ...
turboMAGIC will be a blessing for programmers who would rather not write the user
interface for every program.” Neil Rubenking, PC Magazine, 24 Feb 87

“I'was impressed with the turboMAGIC package. ... the procedures created by turbo MAGIC
are well commented and easy to add to your own code.”
Kathleen Williams, Turbo Tech Report, May/Jun 87

“... definitely a recommended program for any Turbo Pascal programmer, novice or expert.”
Terry Lovegrove, Library Hi Tech News, Oct 87

ORDER your Magic TODAY! Only $199.
CALL TOLL FREE 800-225-3165 or 205-342-7026

sophisticated
software

£5

6586 Old Shell Road, Mobile, AL 36608
Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15.

continued from page 30
BEGIN »
Found := False; B:\>raphson2
é‘ef = 06 Initial Approximation to the root: -17
rror := 0;
OldX := Guess;
oldY := TNTargetF(OldX); Tolerance (> 0, suggested 1E-6): 1e-6
oldDeriv := TNDerivF(OldX);
R s L iy Maximum number of iterations (>= 0, suggested 100): 100
ELSE
CheckSlope(OldDeriv, Error);
IF Tol <= O THEN
Error = 0
Error := 3; : H
1F Max;ter < 0 THEN Number of iterations: 6
Error := 4; J Calculated root: -5.8201114685E+01
END; { procedure Initial) value of the function
FUNCTION TestForRoot(X, OldX, Y, Tol : Real) : Boolean; at the root: 0.0000000000E+00
R TR g ¢ Value of the derivative
e) of the function at the
{'= Thes? are the stopping criteria. Four dl:fferer_wt ones are <3 calculated root: -2.4257986428E-01
{- provided. If you wish to change the active criteria, simply -}
{- comment off the current criteria (including the preceding OR) -)
{- and remove the comment brackets from the criteria (including -) B:\>
{- the following OR) you wish to be active. =)
L D P R T QRN o e T e ? Figure 9. A sample session using RAPHSONZ2. PAS.
BEGIN
TestForRoot := e) method requires), the Secant method can often be
(ABS(Y) <= TNNearlyZero) é Y=0 jg used. It is similar to Newton’s method, but slower.
or < 3 There are also cases where the roots of real poly-
{ - . . .
(ABS(X - OldX) < ABS(OLdX*Tol)) (- Relative change in X - nomials are needed. Polyqomlals have multiple
” " iy b 2 roots, making it more efficient to factor out the root
*) ¢ - from the polynomial after it is found. This reduces
1 * - i - . .
S AR s e 2 & Mosolute change InX 3 1 | the degree of the polynomial (the highest power of
t or :; 2 ; the variable) and allows for more accurate and faster
C = = . .
o e by 2o basi i e - % root finding of the next root. The factoring (called
e e) deflation) is carried out for each root as it is found.
e A WA e Ny e R St o e e R »| | Sometimes the functions are complex, i.e., involving
{- The ffrsticriteria simply checks to see if the value ?f the b [he square root Of—l. Muner’s method can ﬁl’ld a
{- function is zero. You should probably always keep this > i i .
(- criteria active. -3| | possibly complex root to a complex function. Finally,
L 72) ..
(- The second criteria checks relative error in X. This criteria) 1t1s often necessary.to ﬁnd Complex and real roots to
(- evaluates the fractional change in X between interations.) a Complex polynomlal. The powerful and reliable
{- Note that X has been multiplied throught the inequality to =3 5 X 5
(- avoid divide by zero errors. | | Laguerre’s method (which also uses deflation)
« -) :
{- The third criteria checks the absolute difference in X) dOCS thlS. g h .
(- between iterations. - Each of these algorithms is carefully implemented
¢ ; SR .
(- The fourth criteria checks the absolute difference between =J %l’l Chapler 2 O.f [he Numerlcal MC[hOdS Toolbox and
& the value of the function and zero. 3| s called by a simple demonstration program that
o N L S = W e = e 3| | handles all I/O and error checking. The demo pro-
i € Stk TeatREENSH 3 grams are written so that very little coding is needed
to adapt it to your particular problem.
BEGIN { procedure Newton_Raphson)
Initial(Guess, Tol, MaxIter, OldX, OoldY, OldDeriv, F(GERONIMO)
Found, Iter, Error);
WHILE NOT(Found) AND (Error = 0) AND (Iter < MaxIter) DO EVer} Where roots are kl‘lown o eXISt’ 1t gS not always
BEGIN possible to find them with purely analytical methods.
It := 8§ It : . .
e et it Among other things, the Turbo Pascal Numerical
NewY := TNTargetF(NewX); Methods Toolbox provides numerical methods for
NewDeriv := TNDerivF(NewX); . a
Found := TestForRoot(NewX, OldX, NewY, Tol); finding roots. For any given problem, at least one of
S the methods will be appropriate. Finding your termi-
OlBery, = Anbativi nal velocity after jumping from an airplane is only a
IF NOT(Found) THEN . v e . . .
Checks Lope(0ldberiv, Error); single vivid example, if not an especially practical
Root b= OLaK; one—unless your lapheld computer skydives with
Value := Old;; you. n
Deriv := OldDeriv;
IF NOT(Found) AND (Error = 0) AND (Iter >= MaxIter) THEN
Error := 1; > v
- PP en e R — Victor Mansfield, a professor of physics and astronomy at
Colgate University, headed the team that built the Turbo
Numerical Methods Toolbox. His principle research inter-
ests are in theoretical astrophysics and the philosophy of
quantum mechanics.
Listings may be downloaded from CompuServe as
SKYDIV.ARC.

32 TURBO TECHNIX January/February 1988

LISTING 3: RAPHSON.INC

PROCEDURE Newton_Raphson(Guess : Real;

Tol : Real;
Maxlter : Integer;
VAR Root : Real;
VAR Value : Real;
VAR Deriv : Real;
VAR Iter : Integer;
VAR Error : Byte);

SR O o O e e T L Pl L ey R >
&= =)
{- Turbo Pascal Numerical Methods Toolbox L5
{- (C) Copyright 1986 Borland International. =)
$E =3
(- Input: Guess, Tol, MaxIter]
{- Output: Root, Value, Deriv, Iter, Error =)
- -
{- Purpose: This unit provides a procedure for finding a single -}
&= real root of a user specified function with a known -}
< continuous first derivative, given a user =2
e specified initial guess. The procedure implements =)
£ Newton-Raphson's algorithm for finding a single =)
(& zero of a function. =3
€= The user must specify the desired tolerance o
= in the answer. =
L -3
{- Global Variables: =)
& Guess : real; user's estimate of root =)
C- Tol : real; tolerance in answer =
- MaxIter : integer; maximum number of iterations =y
(& Root : real; real part of calculated roots =3
{- Value : real; value of the polynomial at root -)
{= Deriv : real; value of the derivative at root -)
£ Iter : real; number of iterations it took 5 |
{- to find root =3
L= Error : byte; flags if something went wrong =1
€= =3
{= Errors: 1: Iter >= Maxlter =¥
(- 2: The slope was zero at some point -2
£= 3: Tol <= 0 =)
{r 4: Maxlter < 0 =¥
L5 2
{- Version Date: 26 January 1987 =)
i =D
R o 2 S e ke e ol - i b b
CONST

TNNearlyZero = 1E-015; (If you get a syntax error here, you are)}
{ not running TURBO-87.)
{ TNNearlyZero = 1E-015 if using the 8087)

(¢ math co-processor. 3
{ TNNearlyZero = 1E-07 if not using the 8087)
{ math co-processor. }

VAR
Found : Boolean;
oldx, oldy, oldoeriyv,
NewX, NewY, NewDeriv :

{ Flags that a root has been Found)
Real; (Iteration variables)

PROCEDURE CheckSlope(Slope : Real;
VAR Error : Byte);

GRS TS S R g SRR SR S R SR >
{- Input: Slope)
{- Output: Error b ¢
{= <Y

{- This procedure checks the slope to see if it is -}
{- zero. The Newton Raphson algorithm may not be -}
(- applied at a point where the slope is zero.)

LISTING 4: RAPHSON2.PAS

PROGRAM Raphson2;

feimiEaat oo slem s SRk s ANE S S E R SR S SR R S S e S e A e R o b
A =3
{ Turbo Pascal Numerical Methods Toolbox =)
< (C) Copyright 1986 Borland International. =y
£= =)
{- Purpose: This sample program demonstrates the =%
{= Newton-Raphson algorithm. This program is very h
{- bare-boned; it contains no 1/0 checking. =)
G S
{- Include Files: RAPHSON.INC procedure Newton_Raphson =)
L =)
e Version Date: 26 January 1987 =)
Lo X
CES Rt T e T e LR e e e s e e e s L 3}
VAR

InitGuess : Real; { Initial approximation }

Tolerance : Real; { Tolerance in answer)}

Root, Value, Deriv : Real; { Resulting roots and other info }

Iter : Integer; { Number of iterations to find root)

MaxIter : Integer; { Maximum number of iterations)

Error : Byte; { Error flag >

OutFile : Text; { output file)

{erns=ce HERE IS THE FUNCTION ===rcs=c=e 7

FUNCTION TNTargetF(X : Real) : Real;

BEGIN

TNTargetF := -40.0+X*(1.0-Exp(-98.1/X))/(1.0+Exp(-98.1/X));

END; { function TNTargetF >

S e D O e I e 2

{rooe=an HERE 1S THE DERIVATIVE --------)

FUNCTION TNDerivF(X : Real) : Real;
VAR EE : Real;
BEGIN
EE := Exp(-98.1/X);
TNDerivF := (1.0-EE*(1.0+98.1/X))/(EE+1.0)+
98.1*EE*(EE-1.0)/(X*Sqr(EE+1.0));
END; { function TNDerivF)

{$1 RAPHSON.INC) { Load procedure Raphson)
BEGIN { program Newton_Raphson)
Write('Initial Approximation to the root: ');
ReadLn(InitGuess);
Writeln;
Write('Tolerance (> 0, suggested 1E-6): ');
ReadLn(Tolerance);
Writeln;
Write('Maximum number of iterations (>= 0, suggested 100): ');
ReadLn(MaxIter);
Writeln;

Newton_Raphson(InitGuess, Tolerance, MaxIter,
Root, Value, Deriv, Iter, Error);

Writeln;
WriteLn('Error = ', Error);
WriteLn('Number of iterations: ':30, Iter:3);
WritelLn('Calculated root: ':30, Root);
WriteLn('Value of the function':28);
WriteLn('at the root: ':30, Value);
WriteLn('Value of the derivative':28);
WriteLn('of the function at the':28);
WriteLn('calculated root: ':30, Deriv);
END. { program Newton_Raphson }

January/February 1988 TURBO TECHNIX 33

TURBO C

FLOATING POINT IN

TURBO C

Describe an analog world in a digital fashion —here’s what

happens beneath the surface.

Roger Schlafly

While computers see information only in
black and white, the world around us
exists in endless shades of gray. Mapping
the real world onto long lines of ones
and zeros is a difficult business, made all
YIZARD _ the more difficult by a need to ration the
binary bits that represent an analog quantity. Small is
fast, large is expensive, and as in many realms, there
are compromises to be made. The most effective tool
for mapping the analog onto the digital is the float-
ing point number.

Computers use floating point numerals to represent
the values that fall between the whole numbers. For
example: 2.3, -3.14159, and 1.02e10. Internally, such
numbers are represented as a mantissa and an expo-
nent. The number 20403.23 becomes 2.0403 X 10%, or
0.000012407 is 1.2407 X 10”. Thus the decimal point
“floats” to where the significant digits begin. The big
advantage to floating point is that it allows a fixed
amount of storage (usually four or eight bytes) to
represent a wide range of real numbers.

WIZARD

THE IEEE FLOATING POINT STANDARD

The IEEE standard for representing floating point
numbers specifies a 4-byte format, an 8-byte format,
and a 10-byte format. These are the formats used by
the Intel math coprocessors 8087, 80287, and 80387.
They are also the formats used by Turbo C, Turbo
Basic, and Turbo Pascal 4.0, as well as Turbo-87 Pas-
cal 3.0. (This article refers to the 8088 and 8087 for
simplicity, but the information in it holds true for the
8086, 80186, 80286, 80386, 80287, and the 80387.)

The floating point types in Turbo C are float and
double. Variables of type float are stored as IEEE
four-byte numbers. These are commonly referred to
as “single precision” in FORTRAN and other lan-
guages. The type double is for double-precision vari-
ables, and they are stored as IEEE eight-byte
numbers. Certain internal calculations are done in
still higher precision, storing temporary values in the
IEEE 10-byte format. The precisions of these formats
are summarized in Table 1.

FORMAT BYTES BITS SIGN MANTISSA EXPONENT
Single 4 32 I bit 23 bits 8 bits

Double 8 64 1bit 52 bits 11 bits

Extended 10 80 1 bit 64 bits 15 bits

FORMAT DECIMAL PRECISION RANGE

Single about 7 digits +34x108 10 +£34x10%
Double about 16 digits +18x10%% 0 +1.8 x 10%%
Extended about 19 digits +1x 102 10 +1 x 10492

Table 1. Floating point formats and their precisions.

TURBO C AND THE ANSI C STANDARD

Turbo C is a nearly complete implementation of the
ANSI C draft standard for the C language. The treat-
ment of floating point in the ANSI C standard is not
much different from the way people have always used
floating point in C, the main differences being in
prototypes, unary pluses, and long doubles.

Prototypes. In pre-ANSI C compilers, all floating
point numbers were converted to doubles in expres-
sions. Function arguments were always converted to
doubles before being pushed onto the stack. Even if
you tried to define a function taking an argument of
type float, as in

void foo(x)

float x;
s

f00(3.4);

the compiler would treat the argument as a double
anyway. The call foo(3.4) would push the eight-byte
representation of 3.4, and the function foo would

access it on the stack as an eight-byte double.
In ANSI C and Turbo C, functions are allowed to

34 TURBO TECHNIX January/February 1988

take four-byte floating point argu-
ments on the stack. The above
code is written:

void foo(float x)
Eons ¥

foo(3.4);

The prototype for foo declares
that its argument is of type float.
In the subsequent call to foo, the
compiler knows that the argument
3.4 is to be treated as a float con-
stant, and not a double constant.
As long as you put the necessary
prototypes at the beginning of
your file, which in this case is:

void foo(float x);

Turbo C checks all of the argu-
ment types. If they do not match
exactly, it either does the neces-
sary conversions or reports an
erTor.

Unary pluses. Like prototypes,
unary pluses are also new with
ANSI C. In a statement such as
x=a+ (b-c);

where x, a, b, and c are all dou-
bles, the definition of C explicitly
allows the C compiler to ignore
the parentheses and evaluate in a
different order, such as:

x = (a+b)-c;
or even,
x = (a -¢) +b;

This flexibility lets the compiler
do some optimization. The above
three statements would be
mathematically equivalent if infi-
nite precision were available, but
they are not equivalent when eval-
uated on the limited precision of
computers. In cases where the
values being manipulated are very
large, precision can be lost trying
to express the larger intermediate
results, even if the final value is
fully expressible in the available
precision. If b and c are nearly
equal the programmer might
place b — c in parentheses, on the
assumption that it would be evalu-
ated first, thus minimizing the
intermediate round-off errors.
This would have no effect, since
the chosen order of evaluation
cannot be guaranteed under
UNIX C. With ANSI C, however,
the programmer can guarantee it
continued on page 36

FLOATING POINT

continued from page 35

by using a unary plus before the
left parenthesis, as in:

x =a+ +b-c);

Long doubles. The third ANSI C
innovation is the long double
type. The exact size or format of
the floating point types are not
specified in the standard, but long
double is a floating point type at
least as big as double. The idea is
to implement floats as IEEE 4-byte
single precision, doubles as IEEE
8-byte double precision, and long
doubles as IEEE 10-byte extended
reals. Thus long doubles are used
for intermediate results where
high accuracy is required. In
Turbo C 1.5, long doubles are
implemented as IEEE 8-byte dou-
ble precision, the same as type
double, but future versions are
likely to use the 10-byte format.

ASSEMBLY LANGUAGE
INTERFACE

Real-valued functions in Turbo C
have a different calling conven-
tion from Microsoft C, Lattice C,
and all of the other C compilers.
Since this is the biggest incompati-
bility between Turbo C and the
other C compilers on an object
code level, it is worth explaining
what the differences are and why
they exist.

In Lattice C, doubles are
returned in the registers AX, BX,
CX, and DX. Microsoft C and
Turbo C functions may be
declared as cdecl or pascal
depending on whether you want
C-like or Pascal-like calling con-
ventions. cdecl is the default for
both compilers.

In Microsoft C, a double cdecl
function returns a pointer to the
double in the DX:AX registers, or
the DS:AX registers, depending
on the memory model. A double
pascal function also has an extra
pointer on the stack when called,
and the function must remove it
on exit. It is unclear why the extra
pointer is there; the other pascal
functions don’t have it and there
is nothing in the Microsoft docu-
mentation that discusses it.

In contrast, Turbo C returns
doubles on the top of the 8087
stack. The 8087 stack is assumed
to be clean when the call takes
place, and it is the responsibility
of the calling function to remove
the real value from the 8087 and
put it wherever it belongs. pascal
and cdecl functions return dou-
bles the same way. The Turbo C
convention is much more efficient
than that of Microsoft C or Lattice
C, because the 8087 is the natural
place to keep floating point
numbers. Consider this fairly typi-
cal code:

double square(double x)
{ return x*x;)

y = square(x) / 3.;

In Turbo C, y is computed by
pushing x onto the 8088 stack,
and calling square. Then square
loads x into the 8087, squares it,
and returns, leaving the result on
the 8087 stack. Next, y is obtained
by dividing the top of the 8087
stack by 3 and storing it.

In Microsoft C, the square func-
tion would have to do an FWAIT
to allow the 8087 to finish the
multiply, then store the result in a
static area of memory. After
returning, the double in that static
area of memory has to be
reloaded into the 8087. Lattice C
is even more inefficient because
there is no way to directly transfer
a real number between the 8088
and 8087 registers.

Besides being more efficient,
returning reals on the 8087 stack
gives greater accuracy. All of the
transcendental functions in the
Turbo C library are computed to
80 bits of precision. An expression
such as the conditional

if (sin(x)*cos(x)-sqrt(x) > 0.) ...

is calculated to the full 80 bits of
precision. Future versions of
Turbo C will have 10-byte IEEE
long doubles, so the full precision
may be saved in named variables
as well.

If no 8087 is present, it is emu-
lated, and double-precision quan-
tities are returned on the emulator
stack. If you only write programs
in C, you don’t need to know how

it works. However, if you want to
write Turbo C programs that call
assembly language routines to do
floating point arithmetic, and if
you want your programs to work
automatically whether there is an
8087 installed in the machine or
not, then you need to understand
how the emulator works.

THE 8087 EMULATOR

The emulator optimizes floating
point programs by imitating the
8087. Nearly everyone who has a
PC and cares about floating point
speed and accuracy buys an 8087.
Floating point programs should
therefore have inline instructions
to make efficient use of the 8087.
However, you also want your pro-
grams to be usable by people who
don’t have one. Therefore, Turbo
C generates code in such a way
that the 8087 can be emulated if it
is not there. At runtime, a library
routine tests for the presence of
the 8087. If one is found, inline
code is used; if no 8087 is found,
the 8087 instructions are emu-
lated. There is some overhead in
using an emulator, but it is a
penalty paid only by those who
don’t have an 8087.

So how can we have inline
floating point instructions and still
have programs that work without
an 80877 If things had been
planned properly, the 8088 would
always be aware of the presence
of an attached coprocessor. If it
tried to execute an 8087 instruc-
tion when the chip is not there,
then it would trigger a restartable
exception. Then the operating sys-
tem could have been written so
that at boot time it would deter-
mine if the 8087 is present, and if
not, load an appropriate emulator.
The emulator would then be a
software exception handler that is
capable of mimicking all of the
8087 instructions. When a pro-
gram encounters a floating point
instruction, then it would be exe-
cuted inline if the 8087 is present,
otherwise it would jump to the
exception handler, mimic the
instruction, and return to the pro-
gram to execute the next
instruction.

Unfortunately, the 8088 is not
smart enough to behave reason-
ably if the 8087 is absent, and

36 TURBO TECHNIX January/February 1988

there is no floating point excep-
tion handler software in DOS.
The 80286 was designed with the
capability to jump to an interrupt
handler if there was no attached
80287, but by the time the 80286
hit the market, the IBM PC and
DOS had become the standard
that software was obliged to
support.

Runtime detection and emu-
lation of the math coprocessor
orginated with Microsoft, who
wanted its languages to work
efficiently both with and without
the math coprocessor. The
scheme they developed built on
Intel’s earlier system, which
involved replacing the first two
bytes of a floating point instruc-
tion with a software interrupt
instruction. The interrupt pointed
to a handler that actually emu-
lated 8087 instructions.

Interrupt handling. In overview,
the Microsoft emulation works
like this: At compile/link time,
floating point instructions are
generated with software interrupt
opcodes in place of the first two
inline opcode bytes. At runtime, a
suite of emulation interrupt
handlers is installed. Then, a
library routine runs before the
application code itself takes con-
trol, and tests for the presence or
absence of the 8087, posting a flag
somewhere with the results. The
interrupt handler checks the flag,
and if an 8087 is present it
patches the two software interrupt
opcode bytes back to the equival-
ent 8087 inline floating point
instructions. Then it returns con-
trol to the beginning of the float-
ing point instruction it just
patched, executing the instruction
inline. Alternately, if the 8087 is
not present, the interrupt handler
mimics the 8087.

The result is fairly efficient if
the 8087 is present, as the first
time each generated floating point
instruction is executed there is the
extra overhead of going through
the interrupt handler, but each
subsequent execution of the same
instruction will execute the inline
8087 code and not jump to the
interrupt handler. This dual
sequence of events is illustrated in
Figure 1.

Now, in detail: Microsoft allo-
cates interrupts 34H through 3EH
for use by floating point emula-
tion. DOS does not use them.
During code generation, Turbo C
can follow two paths, depending
on whether the programmer
chooses to compile for inline 8087
code (thus requiring a math
coprocessor at runtime) or for

runtime emulation. If inline code
is the desired output, (using the
-f87 switch for the Turbo C
command-line compiler, or the
Options/Compiler/Code
Generation/Floating point toggle
set to 8087/80287 in the Turbo C
programming environment) ordi-
nary 8087 opcodes (beginning
with 9BH) are generated for float-
ing point instructions.

8087

INT 35H
hg;pdi,er o

9n

98| 07

8087

INT 35H
handler

If no 8087 is detected in the system, a software
interrupt transfers control to the interrupt
handler, which emulates the floating point oper-
ation. Control returns to the instruction fol-
lowing the software interrupt instruction.

If an 8087 is detected in the system, control is
passed to the software interrupt the first time the
code is executed. The software interrupt handler
patches the calling code, replacing the software
interrupt call with the equivalent native 8087
instruction. Any future execution of that code s
done directly by the coprocessor.

Figure 1. Floating point coprocessor emulation.

continued on page 38

January/February 1988 TURBO TECHNIX 37

FLOATING POINT
continued from page 37

For inline 8087 code, this is all
that happens. However, if emula-
tion is selected, the compiler adds
special fixup records to the .OB]
file so that the linker will convert
the floating point instruction
opcodes to software interrupt
opcodes at link time. The fixups
are associated with public sym-
bols. A Turbo C library module
contains the definitions. The cor-
rect values for these fixups are
given in Table 2.

If a floating point instruction
has a segment override prefix,
then sometimes two fixups are
needed for one floating point
instruction. All of the floating
point instructions are at least two
bytes long, except when an
FWAIT instruction stands alone
and is not the start of a floating
point instruction. The lone
FWAIT instruction is actually
emitted by the code generator as a
NOP FWAIT and fixed up to an
INT 3DH at link time with
FIWRQQ. At runtime, it is either
converted back to a NOP FWAIT
if an 8087 is present, or to a NOP
NOP if there isn’t one (see
Table 3).

MASM and the 8087. For pure C
programming there is no need to
bother with these details, since
Turbo C does it all for you, but
what if you have assembly lan-
guage files or inline assembler
code in your Turbo C files? Cur-
rently you are dependent on
MASM, Microsoft’s Macro
Assembler. As it turns out, MASM
does everything you need with an
inadequately documented

Floating point

Opcodes emitted

mnemonics Without emulation With emulation
FLD dword ptr [bx] 9BD907 CD3507
FLD dword ptr [bx+100H] 9BD9870001 CD35870001
FLD gword ptr [bx] 9BDDO7 CD3907
FLD gword ptr [bx+100H] 98DD870001 CD39870001
FLD gword ptr [sil 9BDDO4 CD3904
FLD qword ptr [si+100H] 9BDD840001 CD39840001
FLD qword ptr es:[si] 9B26DD04 CD3CDD04
FLD qword ptr es:[si+100H] 9B26DD840001 CD3CDD840001
FADDP 9BDEC1 CD3AC1
FMULP 9BDECY CD3AC9
FSTP ST(0) 9BDDD8 cD3908
FINIT 9BDBE3 CD37E3
FWAIT 9098 CD3D

To emulate a floating point instruction, the first two bytes of each instruction must be replaced by a
software interrupt. Standalone FWAIT is a special case. The 9BH byte is the FWAIT 8087 instruc-
tion. Because the code for INT CDH is two bytes long, the code generator must precede standalone

FWAIT instructions with a NOP (code 90H) to allow room to replace the FWAIT with a two-byte

software interrupt call.
Table 3. Emulation code generation.

command-line switch. The MASM
default is not to recognize any
8087 instructions. If you want it to
assemble 8087 instructions, you
must put a .8087 directive in your
ASM file or put a /R switch on
the command-line when assem-
bling your file. (For the one or
two 80287-specific instructions,
you must use the .287 directive in
your source code, because there is
no corresponding command-line
switch.) If you put a /E switch on
the command line instead, MASM
generates the fixups, with the pub-
lic names shown in Table 2, that
will convert the floating point
instructions to interrupts. If you
have inline assembler in your .C
files, Turbo C will EXEC out to
MASM from within the compiler,
with the /E switch set.

An alternative to MASM for
Turbo C inline assembler code is
the A86 shareware assembler,
which is available for download-
ing from CompuServe. A86

public FIARQQ, FIDRQQ, FICRQQ, FIERQQ, FISRQQ,
FIWRQQ
FIARQQ equ OFE32h ; fwait / ds:
FICRQQ equ 00E32h ; fwait / cs:
FIDRQQ equ 05C32h ; fwait / esc
FIERQQ equ 01632h ; fwait / es:
FISRQQ equ 00632h ; fwait / ss:
FIWRQQ equ 0A23Dh ; nop / fwait
public FJARQQ, FJCRQQ, FJSRQQ
FJARQQ equ 04000h ; esc nn --> ds:nn
FJCRQQ equ 0C000h ; @sc hn --> cs:bn
FJSRQQ equ 08000h ; esc nn --> ss:nn

Table 2. Emulator from the Turbo C Runtime Library Source.

supports emulated floating point
instructions, and is many times
faster than MASM.

If you have an 8087 and you do
not want the linker to change
your floating point code to inter-
rupts, you can create an assembler
file just like Table 2, but with the
public symbols equated to zero.

At runtime. Each Turbo C-
generated .EXE program tests for
the presence of the 8087 at start-
up, and installs interrupt handlers
for interrupts 34H through 3EH.
The exit() function restores these
interrupts to their previous vectors
before returning to DOS. If you
exit a program without going
through the exit() function, such
as with the Break key, or by abort-
ing during a critical error, then
the interrupts will not be restored.
It doesn’t matter in most everyday
situations, because DOS does not
use these interrupts. The scenario
for trouble would be this: A Turbo
C program does a spawn to
another program that has floating
point code and no critical error or
control-break handler; the user
breaks out of the spawned pro-
gram back to the parent program,
and then the parent program
attempts to execute floating point
instructions. The results would be
unpredictable (but almost cer-
tainly fatal to the parent program)
since the spawned program’s
interrupt handlers would still be
in place. You can avoid this situa-
tion by calling __fpreset after the
spawn but before executing

38 TURBO TECHNIX January/February 1988

GRAPHICALLY
YOURS,
TURBO C 1.5

The first major update of Turbo
C contains a number of impor-
tant enhancements. The most
visible of these is Turbo C 1.5’s
completely new video support.
This support closely parallels
the video support provided with
Turbo Pascal 4.0, and includes
an important new subsystem:
The Borland Graphics Inter-
face (BGI), a device-inde-
pendent graphics library with
loadable drivers for most major
graphics display devices.

Supported display devices
include the CGA, EGA, VGA,
MCGA, Hercules, ATT 400-line
Graphics Adapter, and the 3270
PC Graphics Adapter. The BGI
is viewport-based, and all draw-
ing coordinates are viewport-
relative. Most BGI parameters
(size of viewport, last point
addressed, etc.) can be queried
as to their current state. Draw-
ing functions include line, rec-
tangle, arc, circle, ellipse,
polygon, bar (filled rectangle),
pie-slice, and filled polygon. An
8 by 8 bit-mapped text font is
provided, as well as several
scaleable stroke fonts.

Turbo C 1.5 provides
enhanced text video support as
well, with text windows, text
block transfers between screen
and memory buffers, text mode
state query, and complete attri-
bute control.

Also new to 1.5 is Streams, a
highly portable means of han-
dling text and binary files that
is similar to file handling in
Turbo Pascal. A grep utility, and
TLIB, an object librarian, are
among the new utilities provid-
ing support for the compiler
and linker.

A 175-page bound addendum
to the Turbo C Reference Guide
summarizes these and other
changes, all intended to make
Turbo C the most powerful
system development tool you
can buy. B

any floating point instructions.
When first loaded into memory,
the floating point instructions in
the application all begin with soft-
ware interrupts in the range 34H
through 3EH. The first time any
instruction is executed, the soft-
ware interrupt passes control to
the interrupt handler. The inter-
rupt handler checks a flag that
indicates whether or not the
initial test discovered an 8087 in
the system. If no 8087 is installed,
the interrupt handler then emu-
lates the floating point instruction,
and returns control to the first
instruction after the modified float-
ing point instruction. However, if
an 8087 does exist in the system,
the interrupt handler “unpatches”
the software interrupt instruction
that invoked it back to the original
8087 inline floating point instruc-
tion. Then, it returns control to
the just-patched floating point
instruction, which executes inline.
This process is repeated for the
first execution of any floating
point instruction in the applica-
tion. However, once a floating
point instruction is patched, it exe-
cutes inline for all subsequent
executions, providing the full
speed of 8087 code execution.
The overhead of invoking the
software interrupt handler
happens only once per instruc-
tion, so it is relatively slight. The
only disadvantage is that code
generated in this way cannot be
written into ROM or EPROM.

LIMITATIONS OF THE
EMULATOR

The floating point emulator does
not support everything the
coprocessor does, and there are
certain limitations on its use,
explained below.

Denormals. These are special
numbers that are smaller than the
smallest normal number but still
larger than zero. Denormals are
expressed with a special bit encod-
ing and must be handled differ-
ently than normal numbers. The
smallest normal double that

is greater than zero is about

1.8 X 10" but there are denor-
mal doubles as small as about

1.0 X 10***. These denormals are
like fixed-point numbers with the

dec1mal po int at approximately

1.0 X 107%, so the smaller they
are, the fewer bits of precision
they have.

The advantage of having denor-
mals is demonstrated by the pro-
gram in Listing 1. Both x and y
are normal and have full preci-
sion in the double-precision for-
mat, but they are very small and
very close to each other, and their
difference is about 1.0 X 10,
which is smaller than can be nor-
mally represented. If this situation
occurred on an older computer
that did not use the IEEE floating
point format, you would have the
unpleasant situation in which the
difference would underflow to
zero even though the numbers
are not equal. As a result, code
like
if (x I=

could fail to produce the expected
results. Using denormals, the
IEEE standard requires that two
numbers be equal if and only if
their difference is actually zero.

The emulator supports denor-
mals for intermediate calculations,
but not for end results, because
denormals are converted to zeros.
Thus the above code would work
properly, but in the program given
in Listing 2, z should be a denor-
mal. If run on a machine with an
8087, z will be a denormal, but on
a machine without an 8087, z will
underflow to zero.

y)z=x/(x -Yy);

Floating point registers. The 8087
has eight floating point registers
that are intended to be used as a
stack, and that is how Turbo C
uses them. Normally, numbers are
pushed onto the top of the stack,
operations take place at the top of
the stack, and numbers are
popped off. For example, the
function in Listing 3 computes an
expression and leaves the result
on the top of the stack.

The 8087 also has instructions
that are not stack-oriented for
moving registers around. An
example is

FXCH ST(3), ST

which exchanges the contents of
register 3 with the top of the stack
continued on page 40

January/February 1988 TURBO TECHNIX 39

FLOATING POINT

continued from page 39

(register 0). It does the expected
thing whether or not register 3 is
empty. The emulator, however,
implements the registers as a true
stack, and empty registers do not
exist. Exchanges only work prop-
erly on nonempty registers. Regis-
ter wraparound is also not sup-
ported in the emulator.

Precision exception. The 8087
sets an exception flag if the result
of an operation is imprecise,
which includes the majority of
floating point calculations. For
example, 2.0 X 3.0 is calculated on
the 8087 with complete accuracy,
but computing 0.2 X 0.3 gives a
round-off error. Since 0.2 and 0.3
cannot be represented with com-
plete accuracy in a binary format
anyway, everyone expects that the
last bit may have required round-
ing. The emulator only sets the
flag bit when a floating point
number in the emulator is being
stored as an integer and rounding
is necessary.

The TC library function
__status87() returns the status
word of the 8087 chip, or the sta-
tus word of the emulator if no
8087 is present. Bit 5 of the status
word is the precision exception.
The following code will print a
message if the 8087 is present, but
not otherwise:

double x;

x = 0.2;

x *= 0.3;

if (_status87() & 0x20)
puts("Loss of precision.");

Infinities. Turbo C only supports
projective infinity. This is of no
importance to the vast majority of
programmers, but the 8087 can be
put into a special mode called
affine infinity, which distinguishes
between positive infinity and neg-
ative infinity. Future releases of
Turbo C are likely to support
affine infinity, since projective
infinity has been dropped from
the IEEE standard.

FWAIT. An FWAIT instruction
must precede each floating point
instruction, since an instruction
without the FWAIT, such as
FNINIT, cannot be emulated. The
FWAIT provides room in the

floating point instruction to patch
in the emulator’s software inter-
rupt invocation, as described ear-
lier. The Microsoft assembler puts
these in automatically. They are
not really necessary with the
80287, but if you want your pro-
grams to work interchangeably on
the 8087, using them is a good
idea.

ASSEMBLY LANGUAGE
EXAMPLE

Most people think that only a
masochist would write floating
point code in assembly language.
For the most part I agree, but
there are cases when it is worth-
while. Many floating point pro-
grams spend most of their time in
a few tight loops, so it might make
sense to write these tight loops in
assembly language. However, a
tight floating point loop could still
be spending most of its time in a
library routine. In that case you
can’t speed it up very much with-
out rewriting the library routine.
This option will soon be available
to the programmer, since the
Turbo C Runtime Library source
is to be released as a separate
product.

With Turbo C, you can improve

#include <float.h>

unsigned int fpstatus;

main(){
/* reset the 8087, leaving al
_control87(MCW_EM,MCW_EM);

both speed and accuracy by using
the floating point registers. Gains
will be achieved whether the 8087
is present or not. Consider a func-
tion to take the dot product of two
real vectors, each of length n. The
dot product of x[] and y[] is
defined by:

x[0] * y[0] + ... + x[n-11 * y[n-1]

(Remember that all arrays start at
0 in C, so a length n array has an
index running from 0 to n-1, not 1
to n.) A typical C function to calcu-
late it is given in Listing 4. Listing
5 shows a slightly smaller way to
code it that is no more efficient
and perhaps less readable.

On an 8 MHz IBM AT with an
80287, either of these functions
takes about 11 milliseconds to take
the dot products of vectors of
length 100. This can be coded
with inline assembler in Turbo C
(for the tiny- , small- , and
medium-memory models) as
shown in Listing 6.

This last version (Listing 6) is
more efficient because the varia-
ble sum is kept on the floating
point stack instead of in memory.
It takes about two-thirds the time
of the earlier versions (Listings 4
and 5) if a coprocessor is present,
or about three-quarters the time if

L exceptions masked */

/* do floating point work here */

/* now, check for masked exceptions

fpstatus = _status87();
if (fpstatus & SW_INVALID)

puts("Floating point error:

if (fpstatus & SW_ZERODIVIDE)

puts("Floating point error:

if (fpstatus & SW_OVERFLOW)

puts("Floating point error:

before proceeding */

invalid operation.");
zero divide.");

overflow.");

/* reset 8087 before doing more work */

_clear87();

/* do more floating point work here */

>

Figure 2. A simple floating point exception handler.

40 TURBO TECHNIX January/February 1988

a coprocessor is not present. It is
also more accurate, because the
floating point registers have
10-byte precision and doubles
only have eight. As a result, there
is less reason to be concerned that
round-off errors will accumulate
to a significant level.

If some future version of Turbo
C implements long doubles as
10-byte reals, then the extra preci-
sion could be obtained in C (with-
out resorting to assembler) by
merely declaring the variable sum
to be a long double.

FLOATING POINT
EXCEPTIONS

The C language does not specify
what happens with a floating
point exception (such as dividing
by zero); it is up to the compiler
implementer. The possible float-
ing point exceptions that are
caught by the 8087 are:

* Invalid operation

* Denormal operand
* Zero divide

* Overflow

* Underflow

* Inexact result

Of these, Turbo C traps only the
invalid operation, zero divide, and
overflow exceptions. (An early
release also trapped the denormal
operand and underflow excep-
tions.) If a program ever divides
by zero, or if a computation pro-
duces a number too large to be
represented in the eight bytes
allotted an IEEE real, an error
message appears on the screen
and the program aborts.

Such an exception need not be
fatal, though. The IEEE standard
provides for arithmetic with Infin-
ity and Not-a-Number (NaN), so
you can just let the 8087 divide by
zero and produce an infinity if
you wish. Figure 2 shows a pro-
gram that does this. Note that the
code in Figure 2 is not complete
and is given as an example only.

The other exceptions are not
worth checking for in most cases.
If a computation underflows, i.e.,
if the evaluated quantity gets too
close to zero to be distinguished
from zero within the eight bytes of

continued on page 42

* LISTING 1: DENORMAL.C

/* Listing 1: %/

double x,y;

main(){

x = 1.e-300;

y = x *(1. + 1.e-15);

if (x == y) puts("x == y"); else puts("x != y");

if (x - y==0.) puts("x - y = 0"); else puts("x - y I= Q");
i

/* Listing 13 %/

double x,y;

main(){

x = 1.e-300;

X%+ 1er15);

(x == y) puts('x == y"); else puts('x != y");

if (x - y==0.) puts("x - y = 0"); else puts("x - y 1= 0");
>

nn

Y
if

~ LISTING 3: SUMPROD.C

/* Listing 3: %/

double sum_of_prod(double a, double b, double ¢, double d)
/* returns a*b + c*d */

{

asm fld qword ptr a
asm fmul gword ptr b
asm fld qword ptr ¢
asm fmul qword ptr d
asm fadd

>

LISTING 4: DOT.C

/7% Listing 4: %/

double dot(int n, double *x, double *y)

{
int i;
double sum = 0.;
for ¢i = 0; i < n; +#1)
sum = sum + x[i] * y[i];
return sum;
¥

January/February 1988 TURBO TECHNIX 41

LISTING 5: DOT2.C
/* Listing 5: */
double dot(int n, double *x, double *y)
{
double sum = 0.;
while (n--)

sum += *x++ ¥ Kyiie
return sum;

LISTING 6: DOT3.C

/* Listing 6: */

double dot(int n, double *x, double *y)

{

asm fldz
_SI = x;
DI =y;
while (n--)
{

asm fld qword ptr [sil
asm add si,8
asm fmul gword ptr [di]
asm add di,8
asm fadd

>

LISTING 7: MATHERR.C

/* Listing 7: */

#include <math.h>
int cdecl matherr(struct exception *e)
{ return 1;2

FLOATING POINT
continued from page 41

an IEEE real, the 8087 just con-
verts it to a zero as the program-
mer presumably wants. The inex-
act result exception occurs on
almost every floating point opera-
tion, because there is almost
always some round-off error.
Denormals should not be a con-
cern in most programs either;
they have less precision than nor-
mals but they are so close to zero
it hardly matters.

Those Turbo C Runtime Library
math functions having arguments
out of range or other such errors
call the __matherr() function to
handle them. __matherr() in turn,
calls matherr(), which returns a
zero in its default incarnation,
causing __matherr to print a sim-
ple message and abort to DOS. To
perform custom error handling,
you simply rewrite matherr() to
handle the error and return a
nonzero value to __matherr. On a
nonzero value from matherr(),
__matherr() continues execution
without aborting. If you do not
want an error message on your
screen just because you tried to
take the square root of a negative
number, add the function in List-
ing 7 to one of your files. More
sophisticated error handling can
be obtained by examining the
struct whose address is passed to
matherr().

CONCLUSION

Floating point numbers are most
often used as a method of describ-
ing a thoroughly analog world in
digital fashion. A Turbo C
programmer who is aware of the
underlying theory of floating
point numerics will make the best
use of the considerable powers of
the 86-family of CPUs and their
math coprocessors. B

Roger Schlafly is in charge of scientific
and engineering products at Borland.
He is the author of Eureka: The
Solver and worked on floating point
support for Turbo C.

Listings may be downloaded from
CompuServe as CFLOAT.ARC.

42 TURBO TECHNIX January/February 1988

THINKING IN TURBO C

Until you learn to think in a language, you cannot hope to

become a virtuoso.

Bruce F. Webster

It's been argued that Pascal and C are
fairly similar. This contention is usually
supported by noting that both languages
. support loops, IF/THEN statements, sub-
routines (with parameters), pointers,
SQUAREONE records, and user-defined data types.
Some of the recent versions of BASIC are lumped in
there, too, since they often provide similar features.
Therefore, it should be very easy for someone profi-
cient in one of these languages to pick up another.

Nonsense. All three languages come from three
different directions, and whatever the superficial
similarities may be, the underlying philosophical dif-
ferences remain profound.

The goal of this article is to help you to under-
stand the mindset behind the C programming lan-
guage. If you're a Pascal (or BASIC) programmer,
and you approach C as being merely Pascal (or
BASIC) with different syntax, you're in for a lot of
frustration. If, on the other hand, you learn to think
in C, you'll be pleasantly surprised at just how effec-
tive a C programmer you can be.

FREEDOM OVER SECURITY

Programming in BASIC is like carving soap with a
plastic knife: there’s little chance of hurting yourself,
but it takes a lot of work to get the job done. Pro-
gramming in Pascal is like using a table knife: the
work is easier and faster, and the chances of slipping
and cutting yourself aren’t that much greater.
Programming in C is like using a double-edged razor
blade: the work is quick and intricate, and there’s a
much greater chance of bloody fingers.

C was developed by Dennis Ritchie at Bell Labora-
tories, in conjunction with his efforts to create the
UNIX operating system. C itself descended from a

chain of languages, including B, BCPL, and CPL.
The goal through this development chain was to
create a language that offered the structure and por-
tability of high-level languages (such as FORTRAN
and ALGOL), yet allowed the user the low-level sys-
tem access and freedom of assembly language.

The result—as documented in The C Programming
Language by Ritchie and Brian Kernighan—was a
language that, while appearing to be high-level, gave
you the freedom to hang yourself. Type and parame-
ter checking were nonexistent, implicit and explicit
type casting were allowed, heavy use of pointers was
almost essential, and any memory location was at
your disposal. On top of all that, the C compilers did
only minimal syntax checking; if you wanted to do a
thorough check of your program, you ran the source
code through a separate style- and syntax-checking
program called lint.

This was precisely the freedom needed for systems
programming, particularly for writing an operating
system. And that freedom is still the source of much
of the praise and most criticism of C. For novice
(and not-so-novice) C programmers, this freedom
can be deadly and frustrating, leading to bugs that
are difficult to track down. For skilled C pro-
grammers, it can be the life-saving difference, allow-
ing them to get in and do exactly what they need to
do without the language (and any arbitrary
restrictions thereof) getting in the way.

The C standard evolved as an attempt to increase
security while not limiting freedom. One example is
the function prototype, similar to a FORWARD dec-
laration in Pascal, which allows the compiler to
check the number of parameters and their types.
And some C compilers are doing considerably more
error checking during compilation, eliminating the
need for a separate lint program. Turbo C, for exam-

continued on page 44

January/February 1988 TURBO TECHNIX 43

TURBO C

FUNC() L
MAING
FUNC() S
2
T e .

Figure 1. main() and its functions.

THINKING IN TURBO C
continued from page 43

ple, does extensive checking, not
only for errors but also for poten-
tial errors—statements that are
syntactically correct but which
may have different results than
those intended.

CONCISENESS OVER
CLARITY

C programs lend themselves to
conciseness. This is due to the
rich, extensive set of operators,
and the loose definition of what
constitutes a statement. Briefly
put, C treats any expression fol-
lowed by a semicolon as a state-
ment. The expression doesn’t
have to do anything, or it may per-
form several tasks. Furthermore,
you can insert these expressions
in unexpected places, such as in
the three sections of a for
statement.

Because of this flexibility, C pro-
grammers can (and often do)
cram considerable work onto a
single line. Here’s a simple exam-
ple. Suppose you have three vari-
ables, a, b, and ¢, and you want to
assign to ¢ the maximum of a and

b. In Pascal, you'd probably write

this:

ifa>b
then ¢ :
else ¢

a
b;
In C, you could write a very sim-
ilar construct:
if (a>b)
c = a;
else
c =b; !
But there’s a more concise way to
write this in C:

c=(a>b)?2a:hb;
The construct

<exp1> ? <exp2> : <exp3>
is known as the conditional opera-
tor. The operator evaluates
<expl>; if the result is “true”
(nonzero), then it evaluates
<exp2> and assumes that value;
otherwise, it evaluates <exp3>
and assumes that value.
As another example, consider
the following piece of code:
indx = 0;
while ((line[indx++] =
toupper(getc(infile))) != EOF);

The while statement reads in a
series of characters from a pre-
viously opened file, converting the
alphabetic characters to upper-
case, and storing all characters
(whether converted or not) into
line, presumably an array of type

char. This continues until the
end-of-file is reached. Note that
the while expression does all the
work; there’s no actual statement
being executed in the while loop,
as would be required to accom-
plish anything in Pascal.

These are simple examples, but
others can be found in any good
(and many bad) C programs. The
resulting compactness has a major
advantage: it allows you to see
more of your program at a time .
on your screen. It also has a major
disadvantage: it can make your
program very hard to read.

FLEXIBILITY OVER FORM

Standard Pascal is a form-driven
language. A program follows a
fixed format: program header;
sections for labels, constants,
types, and variables; procedure
and function declarations, and
finally, the main program body.
Procedures and functions repli-
cate the main program format and
are often called subprograms for
that very reason. All identifiers
(labels, constants, types, variables,
procedures, and functions) must
be declared before they are used.
Turbo Pascal relaxes some of
those restrictions, allowing the
declaration sections (everything
between the program headers and
the main body) to be in any order
and to occur multiple times. In
either case, execution starts at the
first statement of the main body
and continues until the last state-
ment of the main body (or until a
Halt or Exit statement is exe-
cuted).

Standard BASIC (whatever that
is) has very little form: it’s just a
collection of numbered state-
ments. Execution starts with any
statement and freely flows to any
other statement. Variables can be
“declared” just by using them in a
statement. Some newer versions of
BASIC (such as Turbo Basic) elim-
inate line numbers, and add form
with control structures, true sub-
routines, and alphabetic labels.

44 TURBO TECHNIX January/February 1988

C is different from both Pascal
and BASIC. A C program is a col-
lection of declarations and func-
tions. Constants, variables, and
data types must be declared
before they are used, but there is
no inherent ordering beyond that.
Functions may be called by other
functions before being declared,
though that prevents parameter
checking. The main body of the
program is just another function;
it can appear anywhere in the
program and is distinguished by
having the special name main().
Think of functions as islands
floating in a sea of declarations:
no one island is in control of any
other, but you need a starting
point, which is main(). See
Figure 1.

There is also form within func-
tions. A function consists of a
function header (including
parameter declarations) and a
body. The header declares the
function, giving its data type, the
function name, and the names
and types of its parameters. The
body is just a compound state-
ment: a left (opening) brace, zero
or more local declarations, zero or
more statements, and a right (clos-
ing) brace. Pascal users will note
that the left and right braces
correspond to BEGIN and END
in Pascal.

Consider the sample program
in Listing 1. Execution of this pro-
gram begins with the function
main() being called by the operat-
ing system. main(), in turn, calls
three other functions: Isort,
dumplist, and Imax. The function
Isort, in turn, calls yet another
function, swap. Each time a func-
tion ends, control returns to the
function that called it. The pro-
gram ends when main() is done,
that is, when its last call to printf()
returns.

ADAPTABILITY OVER
CONSISTENCY

After you write a program in
Turbo Pascal or Turbo Basic, you

compile it and run it. Occasion-
ally, directives may include addi-
tional files, or enable and disable
certain compiler options, but the
source code that the compiler uses
remains pretty much as you

wrote it.

In contrast, the C language is
closely tied to the concept of a
preprocessor. The purpose of the
preprocessor is to create a copy of
your source code for the compiler
to use; the text is modified accord-
ing to the preprocessor com-
mands it contains. The #include
<file> command should be famil-
iar (and self-explanatory), but the
other commands provide capabili-
ties that you might not expect,
given a background in other
languages.

The fundamental idea of pre-
processor commands is macro sub-
stitution. A macro is a piece of text
that you can define and use
throughout your program. When
the preprocessor massages your
text immediately prior to compila-
tion, it substitutes the macro defi-
nition for the macro name.

Suppose you had the following
preprocessor command near the
start of your file:

#define NULL 0

This defines the macro NULL to
be equivalent to the text string 0.
Later in your program, you might
use NULL like this:

if (result == NULL) € ...)

When the preprocessor massages
your code it makes a literal substi-
tution, so that the compiler sees
the following:

if (result ==0) € ... X

If that were all that macros did, it
would be nice but not terribly
exciting. Macros, however, do
much more. Consider the
following:

#define

max(i,j) (¢i) > (j) 2?2 (i) = (i
If you used this macro in your
program, it might look like this:

¢ = max(a+2,b);

which the preprocessor would
convert to

c = (a+2) > (b) ? (a+2) : (b);

assigning to ¢ the maximum of a2
and b. If you look at the file
STDIO.H on your Turbo C distri-
bution disk, you'll find a number
of such macros already defined
for you. Keep in mind that while
max(i,j) looks like a function, it is
not a function but a single C state-
ment incorporating the condi-
tional operator explained earlier.

THINGS TO WATCH FOR

There are a number of common
pitfalls for novice C programmers.
Many of them are listed in the
Turbo C User’s Guide, but they bear
repeating here.

Beware of confusing the expres-
sions a = b and a == b. The first
expression assigns the value of b
to a, then a assumes the value of
b; the second compares a and b
and yields a 0 (false) if a and b are
not equal or a 1 (true) ifa and b
are equal. So, the statement

if ¢ta'b)..

is valid, but doesn’t do what you
might think.

Identifiers in C are case signifi-
cant, so that the variable names
indx, Indx, and INDX are all
separate and distinct identifiers.

All simple type parameters (int,
float, char, etc.) are pass-by-value.
If you want to do a pass-by-address,
(similar to a VAR parameter in
Pascal) then you must do it liter-
ally: pass the address, using the
address-of operator “&” on the
actual parameters. You must then
define the formal parameters as
pointers. For example, look at the
swap() function in Listing 1, then
look at the call to swap() inside of
Isort().

Speaking of which...when you
read values into variables using
scanf(), be sure to use the address-
of operator “&” as needed.

It’s very easy to get confused

continued on page 46

January/February 1988 TURBO TECHNIX 45

Y ol Demo sort program for THINKING IN TURBO C i1/
7 i =/
/* by Bruce Webster X7
* %/
/* Turbo C 1.5 7
Vi Last modified 11/20/87 */
/* .. */

#define LISTSIZE 100 /* define constant */

typedef int numlist [LISTSIZE]; /* define data type */
int Imax(numlist list, int count); /* declare functions */
void swap(int *i, int *j);
void lsort(numlist list, int count);
void dumplist(numlist list, int count);
/* .. */
£ main() */
/t .. */
main()
4
numlist list; /* declare array */
int count,i; /* declare variables */
count = 0;
do { /* get value from 1 to 100 */

printf("Enter # of items (1..%d):
scanf("%d",&count);
) while (count < 1 &% count > LISTSIZE);

", LISTSIZE);

for (i=0; i<count; i++) /* initialize array with */

list[i] = rand(); /* random values 7/
lsort(list,count); /* sort array *)
dumplist(list,count); /* print array on screen */
i = lmax(list,count); /* get max value in array*/

printf("The maximum value in the list is %d\n",i);
return(0);

)

/* .. */
/* end of main() e f
/* .. */
/* .. */
/* Ilmax() -- Returns the maximum value in an array */
/* Called only by main() */
/* .. */

int lmax(numlist list, int count)
{
int i,max;

THINKING IN TURBO C
continued from page 45

with pointers, especially when you
drag in arrays and strings, or
when you pass parameters
through several levels of function
calls. When in doubt, make
diagrams.

There are two ways to define
string: as a pointer to char or as a
char array. The first method does
not set aside any memory for the
string, but it does allow direct
assignment of string literals. The
second does set aside memory but
does not allow direct assignment;
you have to use the built-in func-
tion strcpy() instead.

Make sure you understand the
use of the “++” and “——" opera-
tors before using them. Beware of
using them with a variable that
appears two or more times in an
expression. Also, if you use one
with a pointer variable, be sure
you know whether it’s increment-
ing the pointer address or the
value to which the pointer points.

DIVING IN

This is all well and good, but how
do you take that first step, dipping
your toes into C? Coming from
BASIC or Pascal, you may find C
intimidating. For starters, write a
few simple programs. Don’t use
any global declarations (i.e., those
written outside of any function);
just set up your main function

main()
€

...some C declarations...

...some C statements...
>
and see what you can do. Declare
variables of different data types.
Practice reading data in from the
keyboard and writing it back out
to the screen. Try out each of the
statement types (assignment, for,
while, do..while, if, switch, etc.).
Become familiar with the com-
piler warnings and error messages
that you will invariably generate
the first few times.

Next, write a few functions

46 TURBO TECHNIX January/February 1988

(outside of main(), that is). Call
them from main(), and have them
call other functions. Practice pass-
ing parameters: int, float, char,
pointers, strings, arrays, structures,
and so on. Find out what you
need (and don’t need) to do in
order to pass-by-value. When you
get code that works, print out a
copy of it so that you can refer to
it later. Now, start using more of
the runtime library functions.
There are over 300 predefined
functions for you to use, all docu-
mented in the Turbo C Reference
Guide. Do some exploring; select
functions at random and write
programs that use them. If you're
really ambitious, keep writing pro-
grams until you've used each of
the functions at least once.

Finally, start writing your own
libraries. Collect useful functions
of your own devising into one file,
create a header file for it, and
store it where you can get to it
when you need to use it. At this
point, you'll realize just how com-
fortable you feel in C, and you'll
wonder why you were avoiding it
in the first place.

GO FOR IT

C is a powerful, popular language
that is fast becoming the standard
development language on mini-
and microcomputers. Proficiency
in C is a highly marketable skill,
but to gain that proficiency, you
need to understand the language
well. This article provides a start,
but the only sure method is to
write lots of code (and good code)

in C, on the language’s own terms.

Good luck, and happy coding. ®

Bruce Webster is a computer mercen-
ary living in the Rockies. He can be
reached at Jadawin Enterprises, P.O.
Box 1910, Orem, UT 84057; via
MCI MAIL (as Bruce Webster) or on
BIX (as bwebster.)

Listings may be downloaded from
CompuServe as THINKC.ARC.

max = list([0];
for (i=1; i<count; i++)
if (list[il > max)
max = list[il;
return(max);

/* swap() -- Swaps two integer values
/* Called only by Llsort()

void swap(int *i, int *j)
int temp;

temp = *i; *i = *j; *j = temp;

/* lsort() -- Sorts a numeric array in ascending order
Y find Uses selection sort algorithm
/% called only by main()

void Llsort(numlist list, int count)
{
int top,k,min;

for (top=0; top < count-1; top++) {
min = top;
for (k = top+1; k < count; k++)
if (list[k]l < listImin])
min = k;
if (min != top)
swap(&list[top] ,&list[min]);

I/ dumplist() -- displays a numeric array on the screen

/s called only by main()

void dumplist(numlist list, int count)
{
int i;

for (i=0; i<count; i++)
printf("%8d", list[il);
printf("\n");
3

*/
*/
*/

*/
*f
*7

January/February 1988 TURBO TECHNIX

47

TURBO C

USING TURBO C

Roll up your sleeves and take a practical course in power

programming.

Reid Collins

Borland International’s Turbo C has a
dual personality. For learning and tinker-
ing, it offers TC.EXE, an integrated
editor-compiler-linker that resembles the
integrated environment used by Turbo
SQUAREONE Pascal. For developers of large applica-
tions, Turbo C can also be used in a more traditional
command-line mode as TCC.EXE, permitting com-
piler and linker operations to be controlled by batch
command scripts and automatic program maintain-
ers. Both versions of the compiler are part of the
Turbo C package. This package includes an
enhanced MAKE program and other utilities that
give the serious program developer complete control
over the program development process.

To demonstrate Turbo C, we will develop two small
programs. The first, HELLO, is a single module pro-
gram and the second, CONCAT, is contained in two
modules. CONCAT may be used as a substitute for
the DOS TYPE command. First, we will examine
Turbo C as an integrated environment, then as a col-
lection of separate but related programs.

SQUARE ONE

A VERSATILE COMPILER

Turbo C is an optimizing compiler with numerous
options that permit developers to customize opera-
tion for specific requirements and personal prefer-
ences. Resulting object modules may be optimized
for speed or size. Other options available in the inte-
grated environment and on the standalone compil-
er's command line afford the developer wide latitude
in the selection of error-handling procedures,
memory model, target processor, and code-
generation features.

Turbo C supports the use of inline assembly lan-
guage code for those who need to program the “bare
metal.” It also permits inter-language calling with
Turbo Prolog and assembler routines. In addition,

you may select the standard Pascal parameter-
passing sequence to speed up function-calling times.
With the de facto C standard expressed in Ker-
nighan and Ritchie’s The C Programming Language
and the ANSI draft standard at its roots, Turbo C is
very compatible with the major C compilers currently
available for the IBM PC. Code written for Turbo C
can be compiled by Microsoft C, Lattice C, and most
other C compilers with little or no change to the
source code. The reverse is also true. Exceptions to
painless portability are restricted primarily to low-
level, machine-dependent routines that are not con-
strained by any standards, de facto or otherwise.

WHOLE > SUM (PARTS)

The primary components of the Turbo C integrated
development environment are contained in the
TC.EXE program file. By combining the functions of
a full-screen editor, an optimizing C compiler, a fast
linker, and a project-management utility into a single
program, Turbo C provides the sort of operational
synergy that comes of having all the right tools
instantly at hand.

Because of the close relationship of the environ-
ment’s components—the compiler and the editor,
for example—easy exchange of information and a
high level of interaction are possible. When errors
are detected by the compiler, information that identi-
fies source lines containing the errors is fed back to
the editor. You can quickly locate and correct offend-
ing source lines with the help of “point-and-shoot”
control from an error list. After selecting an error
from the list, you are returned to the editor with the
cursor at the problem line. Switching among the
Turbo C components is quick and easy.

Before using the integrated Turbo C environment,
you will need to do a small amount of configuration
work. The process is fairly painless because the
TCINST program and TC do all the bookkeeping.

48 TURBO TECHNIX January/February 1988

You just select options and type a
few responses. As a minimum you
should run TCINST to specify
Turbo C’s default directory. Then
start TC (Figure 1 shows the main
screen) and use the Options-
Environment menu to set up the
default paths to header files and
libraries. TCINST modifies the
TC.EXE file to reflect your
preferences.

TC attempts to read the Turbo
C configuration file, TCCON-
FIG.TC, at program start up. If the
file does not exist or if you wish to
change it, you can make selections
under the TC Options menu. You
provide values for various com-
piler, linker, and environment
variables, then select the Store
options entry to preserve the
values.

You will probably want to add
the Turbo C directory to your
PATH environment variable so
that the programs in it can be run
from anywhere in the directory
hierarchy. This is best done by
editing the line containing the
PATH command in AUTO-
EXEC.BAT. After saving the
change, run AUTOEXEC from
the DOS command line or reboot
the system. Either method will
write the new path specification
into the DOS environment.

HELLO THERE

To test the Turbo C installation
and configuration, create a simple
program source file, compile it,
and run it. Listing 1 is a variation
on the HELLO program, which is
the de rigueur C test program. This
version of the program uses the
low-level write function from the
standard runtime library instead
of the usual printf. The sizeof
operator calculates the number of
bytes in the message. Using write
results in a smaller executable
program (2120 bytes vs. 5760
bytes), because it doesn’t drag
unneeded formatting code into
the executable file.

Creating and editing the source
file with the built-in editor is easy.
To edit the file, go to the File
menu and select the Load entry.
Respond with the name
HELLO.C, which the editor will

adopt as the name of the current
file. The Turbo C editor is imme-
diately familiar to anyone who has
used other Borland language pro-
ducts. If the default commands
don’t suit you, change them by
using the Options-Editor menu.
After the source code has been
keyed in, save the file (Alt-F, then
S, for Save) and then compile it
(Alt-C to get the Compile menu
and select the Make EXE file
option). The default is a small-
model program optimized for
speed, but you can instruct the
compiler to use other models
and optimizations from the
Options-Compiler menu.

- The Turbo C
editor is imme-
diately familiar to
anyone who has
used other Borland
language products.

The resulting program can be
tested by using the Run selection
of the main menu (Alt-R). Because
a permanent copy of the program
is saved to disk, you can also leave
Turbo C (Alt-F, then Q, for Quit)
and run the HELLO program
from the DOS command line.

A TRIP TO THE PROJECTS

Our first example (HELLO.C) is a
simple, single-module program.
The program is contained in one
source file and the compiling and
linking steps are triggered by a
single command (Compile-Make
EXE file). More complex pro-
grams are often divided into
modules, with each module con-
taining one function or a small
collection of closely related func-
tions. How do we handle such
programs? Certainly there will be
additional work to do to keep
track of all the pieces of a pro-
gram. What happens if a change
is made to one of the source files?
Will it be necessary to recompile
the entire program? No, because

“project making” takes care of the
details.

The Turbo C integrated devel-
opment environment is as well
suited to the task of preparing
multi-module programs as it is to
preparing single-module pro-
grams. In fact, you still start the
process of compiling and linking
with a single command (Alt-R).
However, you become directly
involved in project making
because you create a project-
control file that lists the names of
all modules that comprise the pro-
gram. You only have to do this
once, (unless, of course, you
change the organization of the
program).

Project making takes the tedium
out of building complex programs.
When you invoke the Project fea-
ture of Turbo C directly (Alt-P) or
indirectly by selecting Compile or
Run, Turbo C takes a list of
module names from the project-
control file and makes sure that
each object file is current with
respect to its related source file.
When you edit a source file, the
modification date and time in the
file’s directory entry is set to the
date and time when the changes
are saved on disk. Assuming your
system clock is correct, Turbo C
compares the object file time to
the source file time and recom-
piles the source file if it's newer
than the object file. Only source
files that have been modified
since they were last compiled
need to be recompiled.

The following multi-module
example should help to clarify the
project-making process. Refer to
Figure 2 as you read this de-
scription.

The program CONCAT, short
for concatenate, can be used to
display the contents of ASCII text
files and to combine the contents
of several files into one by using
output redirection. The program
is produced from two source files,
CONCAT.C (Listing 2) and FILE-
COPY.C (Listing 3). In addition to
typing in the two source files, you
must create the file CONCAT.PR],
which is the list of filenames on
which the program is based. List-
ing 4 contains the text of

continued on page 50

January/February 1988 TURBO TECHNIX 49

LISTING 1: HELLO.C

#define STD_OUT 1

main()

{
static char msgll = { "Hello, World!\n" };
write(STD_OUT, msg, sizeof(msg));
exit(0);

B

LISTING 2: CONCAT.C

/**i***************

CONCAT

*
*
* Concatenate files. For each file named as an argument, CONCAT

* writes the contents of the file to standard output. Command-line
* redirection may be used to collect the contents of multiple files
* into a single file. This program is adapted for DOS from the

* Mcat" program presented in "The C Programming Language", by

* Kernighan and Ritchie, Prentice-Hall, 1978. Modifications include
* argv[0] processing for DOS and improved error handling.

*

*

*

*

*

*

Exitcodes (DOS ERRORLEVEL):
0 success
1 error opening a named file
2 1/0 error while copying

2 error closing a file
i************t*******t****t***********t*********i*************/

#include <stdio.h>

/* function prototype */
extern int filecopy(FILE *, FILE *);

main(argc, argv)

int argc;
char *argvl[]l;
{
int i; /* loop index */
FILE *fp: /* input file pointer */

static char progname([]l = { "CONCAT" }; /* program name */
/*

* Be sure that argv[0] is a useful program name. Under DOS 3.x
* and later, argv[0] is the program name. The program name is
* not available under earlier versions of DOS and is presented
* as a null string ("") by Turbo C.
*
if

(argv[0][0] == '\0')
argv[0] = progname;

/* if no filenames are given, use standard input */
if (arge == 1) {
if (filecopy(stdin, stdout) == EOF) {
perror(argv(0]); /* display the system error message */
exit(2);

USING TURBO C
continued from page 49

CONCATPR]. Each filename in
the project-control file may be
typed with or without a .C
extension.

Tell Turbo C to make the CON-
CAT project by going to the
Project menu, selecting Project
name, and entering CONCAT.PR],
then pressing Enter. Invoking
either the Run or Compile-Make
EXE file menu executes the
project-make feature. The results
of the project-make operation are
updated object files and an
executable program file.

The integrated linker, which is
responsible for combining all the
components of a program,
requires a set of instructions to tell
it the program name, the linkable
objects and libraries needed to
produce the program, and
whether to produce a MAP file.
The program name is taken from
the name of the project file. The
instructions are prepared by the
Turbo C project maker and are
stored in the file TPROJ.LNK
(Listing 5).

The first object in the list of
linkable objects is the C0S.OB]J file
(small model—other models use
different names). This is the run-
time startup module that each pro-
gram must have to set up correct
operating conditions and get
information from the DOS com-
mand line. On successive lines,
the link file lists two additional
object files, CONCAT.OB] and
FILECOPY.OB]J, that must be
linked. A “+” at the end of a line
indicates that the object list con-
tinues onto the next line.

The next two lines provide the
program and map file base names
to which the linker appends .EXE
and .MAP, respectively. The last
line is a list of library files that are
to be searched for modules that
resolve names found in the pro-
gram’s object modules. For exam-
ple, calls to fopen, exit, and other
functions are satisfied by the
linker when it includes copies of
the object code for the named
modules into the executable
module. The linker only copies
code that is needed from the

50 TURBO TECHNIX January/February 1988

File Edit Run Compile

Project Options Debug

Edit

Line 1
HELLO.C

Col 1

Hello, world */

finclude {(stdio.h>
[main()
{
printf ("Hello, world\n');

y
5

Compiling C:N\CNHELLO.C:

Fi-Help

F5-Zoon F6-Edit F9-Make

Insert Indent Tab C:HELLO.(

F1B-Main Menu

Figure 1. A Turbo C integrated development environment display.

libraries in an attempt to keep the
final program size to a minimum.
We have just used the integrated
development environment pro-
vided by Turbo C’s TCC.EXE pro-
gram to produce a multi-module
program. A contrasting view of the
world of C program development
is that each component of the C
programming system should be a
separate entity. One program is
used for editing, another for com-
piling, and yet another for linking.
Still other programs are used to
manage program development
and maintenance tasks. With
Turbo C, you can have it your way.
Let’s see how to use the
command-line mode.

THE N COMMANDMENTS

Moses had it easy. He only had to
deal with ten command(ment)s.
The Turbo C command-line com-
piler presents you with a mind
boggling array of command-line
options that effectively force (or at
least request) differing behavior
of the C compiler system. But fear
not, because you usually can get
by remembering just a few of
them. Most of the time, the

options are cast into commands in
batch files or makefiles where they
are invoked automatically.

The primary advantage of using
separate programs for editing and
compiling is that each can be eas-
ily replaced by another that per-
forms the same function in a way
that better suits a particular pro-
grammer’s needs. For example,
you can use your favorite program
editor instead of struggling to
learn the peculiarities of the one
provided with a vendor’s C system.
Although the vendor’s editor may
be perfectly acceptable, it may be
markedly different from the one

you know, making it uninviting to
use. With separate programs, you
can choose your editor.

The TCC program is the heart
of the Turbo C system. TCC is
comparable to the cc command
under UNIX. It is the control pro-
gram that can be used either to
compile a single C source file or
to orchestrate the process of com-
piling multiple modules. TCC’s
project management facilicy han-
dles calling the linker to combine
the modules into an executable
program. We will, however, use
TCC as a module compiler and
use a separate program, MAKE, to
manage the program preparation.
MAKE is described in the next
section.

The TLINK program is a stand-
alone linker. It is compatible with
the DOS linker, but because it has
few optional features, it is both
smaller and faster than most other
linkers. It produces standard DOS
.EXE files. When used to link tiny
model programs (all code and
data in a single 64K segment), the
resulting .EXE file can be con-
verted to .COM format. This
makes it possible to write DOS
device drivers and ROMable code
in C instead of assembler.

Some configuration of the
Turbo C command-line system is
appropriate. Listing 6, TUR-
BOC.CFG, contains a single line
that is read by TCC and TLINK. It
identifies the directories in which
to find header files and libraries.

continued on page 52

: [[concatc | [FiLECOPY.C
Source files — :
L main() filecopy/()
Compile steps Standard libraries
S [~ [CONCAT.OB]| [FILECOPY. :
Object files — fe t!
bject files i a0 OB]J Hlecopy() open() exit() O O O
| [y
> | |
Executable program { C%I;T(%AT'

Figure 2. Producing a multi-module p

rogram.

Jan

uary/February 1988 TURBO TECHNIX 51

>
2
else
/* process the named files one at a time */
for (i = 1; i < arge; ++i) (
/* attempt to open the source file */
fp = fopen(argvlil, "r");
if (fp == NULL) ¢
/* unable to open the file */
fprintf(stderr, "%s: cannot open %s\n",
argv([0]l, argv[il);
continue; /* look for more files */
>
else (
/* copy the current file to the standard output */
if (filecopy(fp, stdout) == EOF) {
perror(argv([0]);
exit(2);
>
/* close the current file */
if (fclose(fp) == EOF) (
fprintf(stderr, "%s: error closing %s\n",
argv([0l, argvlil);
exit(3);
>
)
)
exit(0);
b

© LISTING 3: FILECOPY.C

/**t***

® FI'EECOPY
*
* Copy the input stream to the output stream.

* copy is successful or EOF for any 1/0 error.
**/

Return 0 if the

#include <stdio.h>

int
filecopy(fin, fout)
EILE *fin; /* input stream pointer */
FILE *fout; /* output stream pointer */
{
int ch; /* holds ASCII characters and EOF */
int rcode; /* return code */
/*
* Copy input to output until end of file is reached
* or an I/0 error occurs.
*/
rcode = 0;
while ((ch = getc(fin)) != EOF)
if (putc(ch, fout) == EOF) {
rcode = EOF; /* output error */
break;
>
if (ferror(fin))
rcode = EOF; /* input error */
return (rcode);
)

USING TURBO C
continued from page 51

You should use the correct names
for your setup. The Turbo C man-
uals suggest putting all files in
directories starting with TURBOC
(e.g., C:\TURBOC), although
nothing in the software requires
it. I used C:\TC instead (less typ-
ing!) with no ill effects.

COOKING WITH MAKE

I say “cooking” with MAKE
because MAKE is a utility program
that reads a “recipe” for a pro-
gram, mixes and matches ingre-
dients, and produces a product.
Using MAKE, a separate program
that does much the same job as
the project-make feature of the
integrated development environ-
ment, you could become the “Gal-
loping Gourmet” of programmers.
MAKE implements a series of
instructions in an external data
file, usually called MAKEFILE, to
control the compilation of C
sources, the assembly of assembly
language sources, and the linking
of objects and library modules to
produce an executable program.
MAKE employs file date and time
stamps to determine which com-
ponents of a program need to be
remade.

To re-MAKE a program, simply
type MAKE at the DOS prompt in
the directory containing MAKE-
FILE. By default, MAKE looks for
the name MAKEFILE unless told
explicitly to use some other
filename.

Listing 7 is the makefile for the
CONCAT program. Any text that
follows a pound sign (#) on a line
is a comment. The MAKEFILE
begins with a statement of the rule
used by the TCC program to pro-
duce an object file from a C
source file. Then some symbolic
names are defined. Note that the
MDL name (memory model) is
required in the compiler rule but
has not yet been defined when
the rule is read. That’s okay with
the Turbo C MAKE command
because it will rescan the file as
needed to take care of such for-
ward references.

The remaining instructions tell

52 TURBO TECHNIX January/February 1988

MAKE to run the linker on the
specified objects and libraries.
The line

concat.exe: $(0BJS)

tells MAKE that the executable file
depends on the object files.
$(OBJS) expands to concat.obj
filecopy.obj when the line is
scanned. If either object file is out
of date (older than its related
source file), it will be recompiled.
If CONCAT.EXE is older than
either of the object files on disk
(or if CONCAT.EXE does not
exist), the program will be
relinked.

It is not
necessary with the

Turbo C MAKE

program to
describe the
dependencies of

each file
independently.

The last line shows the depen-
dencies of object files on source
files. It is not necessary with the
Turbo C MAKE program to des-
cribe the dependencies of each
file independently as it is with the
Microsoft MAKE program, for
example.

When developing major appli-
cations, you will probably find it
best to use the integrated develop-
ment environment (TC) for initial
design and experimentation. You
can then switch to the command
line mode for intense develop-
ment and project maintenance. At
that point, MAKE becomes an
indispensable tool in the quest to
keep a program up to date without
a lot of manual bookkeeping and
wasted time. W

Reid Collins is a computer program-
mer for a firm in the aerospace
industry.

Listings may be downloaded from
CompuServe as USETC.ARC.

LISTING 4: CONCAT.PRJ

concat
filecopy

LISTING 5: TPROJ.LNK

C:\TC\LIB\COS.O0BJ+

CONCAT.OBJ+

FILECOPY.OBJ

C:\TC\CONCAT\CONCAT

C:\TC\CONCAT\CONCAT/N/D/C/X

C:\TC\LIB\EMU.LIB C:\TC\LIB\MATHS.LIB C:\TC\LIB\CS.LIB

LISTING 6: TURBOC.CFG

-Le:\tc\lib -Ic:\tc\include

LISTING 7: MAKEFILE

makefile: program builder for CONCAT

rules
«c.obj?
tcc -c -m$(MDL) $<

symbolic constants

MDL = s

LIB = c:\tc\lib

SRCS = concat.c filecopy.c
0BJS = concat.obj filecopy.obj

instructions
concat.exe: $(0BJS)
tlink $(LIB)\cO$(MDL) $(OBJS), $*, , $(LIB)\c$(MDL)

$(0BJS): $(SRCS)

January/February 1988 TURBO TECHNIX

53

WHICH PROCESSOR?

Let your software determine what sort of engine is

under the hood.

Juan E. Jimenez

The success of Intel’s microprocessors, in
conjunction with the IBM Personal Com-
puter, has resulted in a proliferation of
machines with different but related
microprocessors, all running the same
YIZARD _ DOS operating system. This creates a
problem for developers who want to take advantage
of the newer CPUs such as the 80386, but still main-
tain compatibility with the 8088 and the 8086.

You can solve this problem by writing code that
only uses the standard 8086 instruction set, if such a
chip is resident in the computer where the program
is running. However, if the computer has a more
advanced microprocessor installed, then your pro-
gram should make use of an extended instruction
set.

But how do you identify the type of microproces-
sor in the computer? A few routines have appeared
in the past, but most of them were dependent on
obscure features and old chip design errors, and
were unnecessarily complex. Basing a software deci-
sion on a bug in a chip design is risky business
indeed—no CPU manufacturer should be expected
to maintain bugs in chip mask redesigns for the
benefit of programmers using the bugs as though
they were features. The methods I describe below all
depend on documented CPU features that are
unlikely to change as Intel refines its chip designs. I
am indebted to Mr. Jose Sanders, Intel Field Engi-
neering Representative for Puerto Rico and the
Caribbean, for providing the information upon
which this article is based.

I have written a simple routine called GETCPU
that identifies the 8088/86, 80188/186, 80286 or
80386 CPUs. Two different versions of GETCPU are
presented here: Listing 1 is for Turbo C, and Listing
2 is for Turbo Pascal 4.0. The two versions differ in
the calling requirements of the host high-level lan-
guage; the actual MASM logic that tests the CPU is
identical. Listing 3, WHATCPU.C, is a short program
that invokes GETCPU and prints out the name of

WIZARD

the CPU identified in the system. Listing 4,
WHATCPU.PAS, is an identical program written in
Turbo Pascal 4.0. Listing 5, WHATCPU.PR], is a
Turbo C project file for recompiling and relinking
WHATCPU.C. (In a sidebar to this issue’s “Language
Connections” column, Gary Entsminger describes
how to interface GETCPU to Turbo Prolog; Bruce
Tonkin describes the interface to Turbo Basic, in
“Converting .COM Files to $INCLUDE Files.”)

IDENTIFYING THE 80286/80386 CHIPS

Here’s how it works. The first test checks to see if we
are working with an 8088/86/188/186 chip, or one
of the more advanced 80286 or 80386 designs. The
test examines the flag register of the CPU (see Figure
1). If you look over Intel’s technical specifications for
these chips, you will see that bit 15 of the flag register
is undefined in all of these processors. However,
Intel documentation states that this bit is always 1 in
the case of the 8088/86/188/186 CPUs, and 0 in the
case of the 80286 and 80386. It cannot be forced to
the opposite state. In the first portion of the routine
we try to set the upper bit of the flag register to 1; if
we succeed, we know we have an 8088/86 or 80188/
86. If we don’t, we know we have either an 80286 or
an 80386.

If we determine that the CPU is not an 8088/86 or
an 80188/86, the second portion of GETCPU deter-
mines whether we are running an 80286 or 80386.
This is done by attempting to set bits 12, 13, and 14
of the flag register to 1s. These bits represent the
nested task flag (bit 14) and I/0 privilege level (bits
12 and 13). After a RESET, all three of these bits are
set to 0. On the 80286 these bits remain 0s, and can-
not be set to 1s while in real mode. However, on the
80386 these bits can be set to 1s while in real mode,
though doing so will have no effect. So, we try to set
the three bits to 1s, and if we can’t we know we have
an 80286. If the bits can be set successfully, we know
we have an 80386. In either case we are done and

continued on page 56

January/February 1988 TURBO TECHNIX 55

TURBO C

LISTING 1: C_

name C_GETCPU
page 55,132
title “C_GETCPU -- Determines Which INTEL CPU is Installed"

;
; This program determines which INTEL CPU is being used in the

; machine, whether it is an 8088/86, 80188/186, 80286 or 80386.

; It uses documented and supported differences in flag register bit
; configurations to determine whether the CPU is an 80286 or 80386,
; and differences in shifting using CL to determine if it is an

; 8088/86 or 80188/186. It is intended to be used as an external

; routine from Turbo C, and returns an integer result in the form

; the last three digits of the processor type, as depicted in the

; table below. This code is designed for the TINY/SMALL modem.

See page 254 of the Turbo C User's Guide for information on how
to modify this routine for other memory models.

The routine returns

1f the processor is

80386 386
80286 286
80188/186 186
8088/86 86

Declaration of the routine in Turbo C is:

int C_GETCPU();

To assemble:

MASM C_GETCPU,,,;

; Required by Turbo C for small memory model
segment byte public 'CODE'
assume cs:_TEXT ; Ditto

_TEXT

public _C_GETCPU ; Make sure Turbo C can get here
_C_GETCPU proc near ; Entry point for the subroutine

pushf ; Save flag registers, we use them here

xor ax,ax ; Clear AX and...

push ax ; ...push it onto the stack

popf ; Pop 0 into flag registers (all bits to 0),

pushf ; attempting to set bits 12-15 of flags to 0's

pop ax ; Recover the save flags

and ax,08000h
cmp ax,08000h
jz _8x_18x

; 1f bits 12-15 of flags are set to
; zero then it's 8088/86 or 80188/186

mov ax,07000h ; Try to set flag bits 12-14 to 1's
push ax ; Push the test value onto the stack
popf ; Pop it into the flag register
pushf ; Push it back onto the stack

pop ax ; Pop it into AX for check

and ax,07000h ; if bits 12-14 are cleared then

jz _286 ; the chip is an 80286

Protected
mode flags

151141312

Real mode flags

1109 8 7 65 4 3 210
TF| s Fl i Ll

8086/8088
Bit 80186/80188

0 — CF — Carry Flag

2 — PF — Parity Flag

4 — AF — Auxiliary Carry Flag

6 — ZF — Zero Flag

7 — SF — Sign Flag

8 — TF — Trap Flag

9 — IF — Interrupt Enable Flag
10 — DF — Direction Flag

11 — OF — Overflow Flag

12 — IOPL — 1/0 Privilege Level, bit 0 Flag
13 — IOPL — 1/0 Privilege Level, bit 1 Flag
14 — NT — Nested Task Flag

*Always 1 for 8086/88/186/188 Always 0 for 80286/386

80286/
80386

69000 ssssssecssssssecesRsessERERROORR S

Figure 1. The 86-family flag register

WHICH PROCESSOR

continued from page 54

can exit. Note that this may or may not work cor-
rectly in a protected mode environment like OS/2;
the methods described in this article were designed
and tested for use under DOS in real mode only.

DISTINGUISHING THE “STANDARD CHIPS”

Discriminating between an 8088/86 or 80188/86 is a
little more difficult. In this case, we use the SHL
(shift left) and CL with a count command. As it turns
out, the 8088/86 uses all the bits in CL to perform
the shift, allowing a shift value of up to 255. How-
ever, the 80188/86 only use the lowest five bits in CL
for the shift (as do the 80286 and 80386). Therefore,
we set AX to all 1s, then try to shift AX left 33 times.
In the 8088/86, we get a full 33-bit shift, leaving a
value of 0 in AX. In newer CPUs, though, attempting
to shift by 33 (100001 binary) amounts to a shift by
only 1, since bits 5 and higher in CL are ignored.

We simply check AX to see if it contains a value of
0. If it does, we have an 8088/86 and we can exit. If
we find a nonzero value, we have an 80188/86.

RETURNING THE PROCESSOR NAME

GETCPU passes the result back to the host language
as an integer. The integer value is 86 if we have an
8088/86, 186 for an 80188/186, 286 for an 80286, and
386 for an 80386. Note that no effort is made to dis-
tinguish between an 8088 and an 8086, or between
an 80188 and an 80186. The differences between the
members of these two closely related pairs of chips
lie almost entirely in the bus structure that interfaces
the CPU to the outside world. The 8088 and 80188
are essentially 8-bit parts with a 4-byte prefetch
queue, while the 8086 and 80186 are 16-bit parts

56 TURBO TECHNIX January/February 1988

; It's not a 286, so it must be an 80386
; (at least until the 80486 comes out...)

; Bye

8x_18x

mov ax,0FFFFh ; Set AX to all 1's

mov cl,33 ; Now we try to shift left 33 time. If it's

shl ax,cl ; an 808x it will shift it 33 times, if it's
; an 8018x it wil only shift one time

jnz _18x ; Shifting 33 times would have left all 0's
; if any 1's are left it in an 80188/186

mov ax,8 ; No 1's, it's an 8088/86

imp DONE

"C_GETCPU endp
_TEXT ends
end _C_GETCPU

LISTING 2: GETCPU.ASM

name GETCPU

page 55,132

title 'GETCPU.BIN --- Determines which INTEL CPU is installed’
; This program determines which Intel CPU is being used in the
; machine, whether it is an 8088/86, 80188/186, 80286 or 80386.
; 1t uses documented and supported differences in flag register bit
; configurations to determine whether the CPU is an 80286 or 80386, .
; and differences in shifting using CL to determine if it is an
; 8088/86 or 80188/186. It is intended to be used as an external
; routine from Turbo Pascal, and returns an integer result in the
; form of the last three digits of the processor type,
; as depicted in the table below.

; If the processor is

The routine returns

continued on page 58

with a 6-byte prefetch queue.

The instruction sets of the 8088 and the 8086 are
identical, as are the instruction sets of the 80188 and
80186. Although the members of the two pairs can be
distinguished from one another by testing the size of
the prefetch queue, there is little point in it for the
programmer if the instruction sets are the same.

In the best of all worlds, a CPU should be able to
tell an application program what it is in response to
a suitable query. The 386 (and, according to Intel, all
future 8086-family chips) have chip type and other
information placed in the general registers upon a
hardware reset. However, no BIOS that we know of
saves that information for later reference by applica-
tion software, so we cannot get at it for the time
being. I would encourage developers of future BIOS
software to consider the needs of programmers
whose code must run on all compatible chips, and
keep this chip-identifying information in a safe place
after a reset. W

Juan Jimenez is an independent computer consultant,
programmer, systems analyst, and hacker. He can be

reached at P.O. Box 9811, Santurce Station, Santurce, PR
00907.

Listings may be downloaded from CompuServe as
GETCPU.ARC.

TURBO C QUICK C LET'S C DESMET C DATALIGHT C ECO-C
LATTICE C MICROSOFT C AZTEC C COMPUTER INNOVATIONS C

p— - e e e e S R e S

NEW --- Limited time offer.

Peacock System's CBTREE
Object library for only $49!

Our FULL COMMERCIAL VERSION of CBTREE in object library format
is being offered for the amazingly low price of $49.

CBTREE provides you with easy to use functions that maintain key
indexes on your data records. These indexes provide you with fast,
keyed access, using the industry standard B+tree access method.

Everything you need to fully utilize CBTREE in your applications is
included. The CBTREE source code can be purchased later at any
time for the $50 difference. Example source programs and utilities are
included FREE.

CBTREE source library $99
Object library only $49

This limited time offer is simply too good to refuse. Peacock's standard
ROYALTY FREE, UNCONDITIONAL MONEY-BACK GUARANTEE,
AND FREE TECHNICAL SUPPORT applies to this offer.

To order or for additional information
1-800-346-8038 or write:

PEACOCK SYSTEMS, INC.
2108 GALLOWS ROAD, SUITE C
VIENNA, VA 22180

PEACOCK SYSTEMS. INC
Trademarks: Turbo C (Borland); Quick C (Microsoft); Let's C (Mark Williams); DeSmet C (DeSmet
Software); Datalight (Datalight); Lattice C (Lattice); Microsoft C (Microsoft); Aztec C (Manx Software);
Computer Innovations C (Computer Innovations); Eco-C (Ecosoft, Inc).

January/February 1988 TURBO TECHNIX 57

LISTING 3: WHATCPU.C

continued from page 58
joTirtsaxdespRyenrRTaEaENe s RN T R s K m RS e E R IR SRS AN = = VAt A e E R e S A S D R R A P OO A K E S XA ek L R ~
; Declaration of the routine in Pascal V4.0 is: /* WHATCPU.C - Turbo C program to show example of how to use the */
H /* C_GETCPU assembly language module. */
i {SL GETCPU) R T L DD e i
F function GETCPU : integer; external;
: #include <stdio.h>
; To assemble: int C_GETCPU();
; MASM GETCPU; main()
e e e e e T T T T e e e e 5 ¢
; Code segment begins here int CPU_Type; /* Receives result */
e i P S A e SR R e e s e AT Tt e CPU_Type = C_GETCPU(); /* Call the function *y
code segment para public 'COOE' printf("Processor is [80"); /* Print common msg *r
assume cs:code switch (CPU_Type) /* Depending on result */
public getcpu £ /* Print rest of msg i
B T e e Tt T e e e RS ALAR RS ESE AR S R m RS AR A S mT S B AneA case 386: printf("386");
; Actual id routine begins here break;
LSpat bl e A Sha s R e B e L N i A e e S case 286: printf("286");
getcpu proc near break;
pushf ; Save the flag registers, we use them here... case 186: printf("188/186");
xor ax,ax ; Clear AX and push it onto the stack break;
push ax case 86: printf("88/86");
popf ; Pop 0 into flag registers (all bits to 0), break;
pushf ; attempting to set bits 12-15 of flags to O's)
pop ax ; Recover the saved flags printf("I\n"); /* Terminate msg string */
and ax,08000h ; If bits 12-15 of flags are set to zero then)
cmp ax,08000h ; cpu is 8088/86 or 80188/86

jz _8x_18x

L s T e LISTING 4: WHATCPU.PAS
mov ax,07000h ; Try to set flag bits 12-14 to 1's
push ax ; Push the test value onto the stack
popf ; Pop it into the flag register PROGRAM WHATCPU:
pushf ; Push it back onto the stack 0d 2
pop ax ; Pop it into AX for check VAR
and ax,07000h ; If bits 12-14 are cleared then the chip is . 3 _
jz _286 : an 80286 CPUTYPE: integer;

{SL GETCPU)
___ FUNCTION GetCPU : integer; external;
BEGIN
CPUTYPE := GetCPU;
write('Processor is [80');
CASE CPUTYPE of

H 386: writeln('3861');
_2365 mov ax,286 ; Get the msg ready 286+ uriteln:'zabl');
ool DONE 186: writeln('188/86]1');
Pl RS SR RS SIS RS R S R SPURGRER UTSR SRE S RS St s S . i 1 1y.
; We know it is either an B088/86 or 80188/86, but which one is it? o ¢ WATEORIOREE Y
8x_18x: £AD.
mov ax,0ffffh ; Set AX to all 1's
mov cl,33 ; Now we try to shift left 33 times. If it's
shl ax,cl ; an 808x it will shift it 33 times, if it's - ;
; an 8018x it will only shift one time. LISTING 5: WHATCPU.PRJ
jnz _18x ; Shifting 33 times would have left all O's.
; 1f any 1's are left it's an 80188/186
l;l:; ;;.,‘:6 ; No 1's, it's an 8088/86 whatcpu
___ c_getcpu.obj

_18x: mov ax,186 ; Found a 1 in there somewhere, it's an 80188
; or an 80186

getcpu endp
code ends
end getcpu

58 TURBO TECHNIX January/February 1988

Turbocharge Your
Programming
With Turbo Basic!

| TURBO BASIC

IBM’ VERSION

urbo Basic® is the

BASIC compiler you've

been waiting for! It's a
complete development envir-
onment with an amazingly fast
compiler, a full-screen win-
dowed editor, pull-down
menus, and a trace debugging
system. We've also added
many innovative features
including binary disk files,
true recursion, and several
new compiler directives to
give you more control at com-
pile time. And your program
size isn't limited by 64K—
you can use all available
memory!

££ 'm extremely impressed
with Turbo Basic. It's fast, it
cooperates with resident key-
board handlers . . . it offers a
wealth of important new fea-
tures, and it costs only $99.
Ethan Winer, PC Magazine ’ ’

Giovanni Perrone quote, reprinted from PC Week, May 5th, 1987
Copyright 1987 Zift Communications Company. Ethan Winer quote,
reprinted from PC Mag, May 12th, 1987. Copyright 1987 Ziff Com-
munications Company. William Zachmann quote, reprinted from
Computerworld, May 4th, 1987 with permission

All Borland products are registered trademarks or trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Copyright 1987 Borland International BI-1156

££ Borland International’s
Turbo Basic is unquestionably
an outstanding software pro-
duct. It provides an efficient
and comprehensive BASIC
programming environment
at a very affordable price.

An excellent BASIC devel-
opment system with enhance-
ments that allow more effec-
tive programming.

Giovanni Perrone, PC Week

Turbo Basic sets a standard
for programming languages
on PCs that is the equivalent
of the first running of the
four-minute mile.

Corporate users of BASIC
will find Turbo Basic a tool
worth many times its cost and
a quantum improvement over
anything they have ever used.

William Zachmann, Computerworld ’ ’

A technical look at Turbo Basic

Context-sensitive help

Full recursion supported
Customizability of user interface and
editor

Full 64K for strings
Standard IEEE floating-point format
Floating-point support, with full

8087 (math coprocessor) integration.

Software emulation if no 8087
present

Program size limited only by availa-
ble memory (no 64K limitation)
EGA and CGA support

IBM Personal System/2 VGA and
MCGA 2- and 16-color support in
640 x 480 resolution

BORLAND

m Full integration of the compiler, edi-
tor, runtime libraries, and executa-
ble program, with separate windows
for editing, messages, tracing, linker
libraries, user interface, and execu-
tion in one compiler file

® Compile, runtime, and 1/0 errors
place you in source code where
error occurred

® Access to local, static & global

variables

New long integer (32-bit) data type

Full 80-bit precision

Pull-down menus

Full window management

For the dealer nearest you
or to order by phone

Call (800) 255-8008
in CA (800) 742-1133
in Canada (800) 237-1136

TURBO C

IMPORTING REFLEX

DATABASES

Hook into a Reflex database to give your Turbo C

application added flexibility

Kent Porter

Reflex, like most major application sys-
tems (Lotus 1-2-3, dBASE, Paradox, etc.)
has proprietary file structures. Instead of
simply writing data to a file, Reflex stores
control information at the start of the file,
followed by the data itself. Later, when
the file is read back in, Reflex uses the control infor-
mation to reconstruct labels, sort, and display the
data in its proper format. Thus, Reflex databases are
self-describing entities.

That is, they are if the receiving program knows
how to interpret the control information. In the
absence of this knowledge, the file is just a bunch
of gobbledygook; with it, the program rapidly and
efficiently processes the file’s contents. This article
takes us on a journey through the most important
Reflex data control structures, providing practical
information as well as a close look at the subtleties
of a major application system. We'll also develop a
program that prints out a Reflex database structure,
and show how to extract data from it, all using
Turbo C.

THE BIG PICTURE

A Reflex database consists of fixed and variable-
length structures in a preset order. As we’ll see later,
a system of pointers glues the whole thing together
and provides software paths for getting from place to
place. Here’s the overall structure of a Reflex data-
base file:

1. Header record

PROGRAMMER

a. General information

b. Section descriptors

c. Empty space to complete 512 bytes
2. Field directory

a. Sort specifications

b. Field name pool

c. Field descriptor table
3. Enumerated (“repeating”) text pools by field
4. Master record

5. Data records
6. Other sections (not of interest to programmers)

Some of the terms in this list might not be familiar.
Don’t worry; you'll know what they mean by the time
we've finished, and how each contributes to the over-
all structure.

GO TO THE HEAD OF THE FILE

Most of the Reflex file control information can be
described in terms of Turbo C structures. We'll pre-
sent them as we go along so that you can see what
each one contains. Later we’ll assemble all of them
into a file called REFLEX.H, which you can #include
at the start of any C program that accesses Reflex
databases.

The very first component of the file is a 66-byte
header record containing general information about
the database and the Reflex version that created it.
Figure 1 lists the header record structure.

Note that some of information is useful to pro-
grammers and some is not. For example, the three
“ver” fields (verViews, etc.) give version numbers for
the Reflex software components that created the
database. These will help future releases of Reflex
cope with old files but are of no value to your appli-
cation. On the other hand, some of the fields are
important.

The stamp([] field identifies the file as a Reflex
database. It contains the null-terminated character
sequence

3Q. 1 &a#S ! &&

which is fixed in all databases. Your program should
check this field for a match against a constant; if
unequal, you are not reading a Reflex file. The
fRecalc field normally contains a zero, indicating
that the file was recalculated before being saved. If it
contains a nonzero value, some of the data in the
file might not be correct, as in the case of a file
being modified and saved with Recalc turned off.

60 TURBO TECHNIX January/February 1988

#define RXID "3Q. ! &AHS ! &&"

typedef struct {

int hdrSz;

char stamp[12];

int dirty;

int verViews;

int verModels;

int verData;

int fRecalc;

char screenType;

char checkSum;

char reserved[38];

int sectionCt;

DFDESC dfSection[];
) DFHDR;

/* Reflex identifier */

/* file header structure */
/* size of file header = 512 */

/* identification = "3Q.!8&#$!8&" */
/* non-zero implies corrupt file */

/* view info version level */

/* modeling system version level */

/* raw data version level */

/* non-zero implies recalc necessary */
/* active screen type at file creation */

/* file checksum */
/* reserved for future use */

/* number of sections of type DFDESC */

/* section descriptors */

Figure 1. Reflex header record structure described in Turbo C.

typedef struct { /* data file section descriptor */
int dfType; /* section type code */
long dfAddr; /* start address in file (bytes) */
long dfLen; /* length (bytes) */
) DFDESC;

Figure 2. Descriptor node structure in Turbo C.

typedef struct {

unsigned fldType 2T
unsigned isAscending : 1;
unsigned fieldID $ 8

)} FLDSORTSPEC;

/* field sort spec */
/* used internally by Reflex */
/* sorting order */

/* field ID: index to field defin */

Figure 3. Turbo C field structure for sorting.

The sectionCt field contains a
value indicating how many section
descriptors follow the header
record.

Section Descriptors. A Reflex file
contains up to 12 sections—major
subdivisions—in addition to the
header record. The section
descriptors identify what and where
they are. Only three of the 12 are
mandatory and thus useful to pro-
grammers, with the rest (the View
Manager state, global filter, etc.)
being internal to Reflex.

Figure 2 lists the structure of the
descriptor node. One such 10-byte
node exists for each section pres-
ent in the file; they begin imme-
diately after the sectionCt field in
the header record. We need to pay
attention to nodes pertaining to
the data control and content sec-
tions of the file, as shown in
Table 1.

dfType SECTION

2 Field directory
9 Database master record
1 Data records

Table 1. The three mandatory section
descriptors in Reflex.

The three descriptors in Table 1
appear in every Reflex database.
Any of the other nine may or may
not be present.

Empty Space. The header node
occupies 66 bytes and each des-
criptor occupies 10. Therefore the
entire header record, which des-
cribes the database in general,
uses somewhere between 96 and
186 bytes, but its physical length is
512. What's in the rest? Nothing.
It’s reserved space.

DESCRIBING FIELDS

The field directory section contains
almost everything you need to
know about the file except its
actual data contents. It consists of
three major segments:

* Global sort specifications
* Field names
¢ Field descriptors

Global Sort Specs. Reflex lets you
sort on up to five fields, indepen-
dently, in either ascending (A to
Z) or descending (Z to A) order. A
precedence is assigned to each
field (key), such that the order of
Key 1 prevails over the order of
Key 2, and so on. The global sort
specs, located in the first 12 bytes
of the file starting at offset 512,
contain this information.

A 16-bit Turbo C bit field struc-
ture exists for each of the five pos-
sible sort keys, and Figure 3 shows
how it’s arranged. A sixth struc-
ture in the file contains the sort
spec terminator, which sets the
first two bit fields to binary 1s. A
terminator also appears after the
last valid sort spec. When sorting
on two keys, the first two struc-
tures show valid sort specs, a ter-
minator appears in the third and
sixth structures, and the fourth
and fifth contain garbage.

Precedence is indicated by the
order in which fields appear in
the specs. If Key 1 is field 4 and
Key 2 is field 2, then the first
record’s fieldID contains 4 and
the second contains 2. The third
is a terminator. The fieldID com-
ponent, then, is an index to the
appropriate entry in the field
directory table.

Up to this point, all the nodes
of the file have been of fixed
length, which makes for tidy pro-
gramming because you know with
certainty where things are. Not so
from now on. Enter the variable-
length record, which makes the
programmer’s life more interest-
ing and guarantees job security to
the venerable pointer.

Field Names. The field directory
table consists of three variable-
length nodes. Each begins with a
word indicating how many bytes
the node contains, followed
immediately by its contents. These
nodes are, in order, an index
directory, the name pool, and the
field descriptor table.

The index directory contains an
offset to the field name string

continued on page 62

January/February 1988 TURBO TECHNIX 61

REFLEX DATABASES
continued from page 61

within the pool. Since the field
descriptors (described later) con-
tain the same information, the
index directory is redundant. Con-
sequently, as you'll see in the
SHOWRXD.C program later, it’s
unnecessary to remember the
location of this index; simply use
the node length to skip past the
index to the actual name pool.

The field name pool contains
ASCIIZ (null-terminated text)
strings giving the names of the
Reflex data fields. The maximum
allowable length of a field name is
73 bytes plus the null terminator.
Consistent with the overall archi-
tecture of this section of the data-
base, the first word of the pool
indicates how many bytes the pool
occupies, including null
terminators.

Within Reflex, a data field is
identified by a relative number
starting at 0 and working upward
towards the total number of fields
in the database. The names within
the pool appear in field order, as
do the field descriptors.

When retrieving data from the
file, the text name of the field is
probably irrelevant and certainly
less important than knowing the
field number, but it’s vital when
examining the database structure.

Field Descriptors. The field des-
criptor table is an array of fixed-
length structures describing each
field in reference-number order.
While each descriptor occupies a
known length of 16 bytes, the
number of fields varies from one
file to another. As a result the
overall size of the table is variable.
That’s why the first word of the
table gives its length, which is cal-
culated as

n * sizeof (FLDDESC)

where n equals the number of
fields in the database. You can
work the length expression back-
wards (divide the table length by
the field descriptor size) to find
out how many fields there are, as
in:

fread (&tablen, sizeof(int), 1, db);
nflds = tablen / sizeof (FLDDESC);

Figure 4 lists the format of each
field descriptor within the table.

typedef struct {

HANDLE index;
HANDLE pool ;
) ETREC;

typedef struct (
unsigned nameOffset;
char dataType;
char precision;

unsigned fldOoffset;
ETREC etr;
unsigned isDescend : 1;
unsigned sortPos : 7;
char reserved;

)} FLDDESC;

/* decimal precision =

/* text table master structure */

/* pointer to index */
/* pointer to text pool */

/* field descriptor record */

/* offset of field name in name pool */

/* field type */
5 bits,

field formats = 3 bits */

/* offset of field in record */

/* repeating text info */

/* descending flag */

/* sort precedence */

/* not used */

Figure 4. Field descriptor master structure in Turbo C.

Note that this structure includes
the substructure ETREC, which
applies to enumerated or “repeat-
ing text” fields.

Within the field descriptor, the
nameOffset field gives an index to
the name pool pinpointing the
start of the ASCIIZ string that con-
tains the field name. It is this field
that makes the name pool index
redundant, as discussed earlier.

The dataType member of the
FLDDESC structure is an eight-bit
integer indicating the data type of
the field. Its permissible values are
listed in Table 2.

VALUE TYPE REMARKS
0 Untyped Field type not yet
determined
1 Text Stored in record

Offset into enumer-
ated text pool

16-bit Julian date
64-bit IEEE (Turbo C)
double

16-bit signed integer

2 Enum text

3 Date
4 Numeric

5 Integer

Table 2. Data types for the FLDDESC
structure.

The precision component is
actually a bit field, but it cannot be
defined as such because Turbo C
automatically allocates 16 bits to
bit fields, while precision is an
eight-bit element. Consequently,
“bit-fiddling” is necessary to
derive values from this element.
The first five bits indicate the
decimal precision for floating
point formats, while the remain-
ing three define the field format.

In Reflex, precision refers to the
number of digits following the
decimal point in a floating point
number. Reflex has options with

regard to floating point output, in
the format XXX.YYY...where the
Xs are some number of significant
digits and the Ys are fractional
values. Except for the general
numeric format, precision says
how many Ys can appear in
Reflex output. This has no bear-
ing on the internal file-retained
value of floating point numbers,
which are 64-bit IEEE-standard
formats compatible with Turbo C’s
double type. Legal precision
values are 0 through 15.

The format component (low
three bits) of the precision field
refers to the display format for a
field. The meaning depends on
the field’s data type. Table 3 lists
values for dates as well as other
numeric data.

Date Fields
VALUE MEANING
0 Default MM/DD/YY
1 MM/DD/YY
2 MM/YY
3 DD-Mon-YY
4 Mon-YY
5 Month DD, YYYY
Numeric Fields

VALUE FORMAT DISPLAY AS

0 General (See 3 below)

1 Fixed —XXX.YY

2 Scientific —X.YYYe+ZZ

3 General Fixed or Scientific for
width

4 Currency ($X,XXX.YY)

5 Financial (X, XXX.YY)

Table 3. Format component for the
display field.

The fldOffset member gives the
byte offset to the field within the

62 TURBO TECHNIX January/February 1988

data record,; which we will discuss
in more detail presently. For now,
you should know that a data
record contains a four-byte
header followed by a variable
number of elements actually
containing data. The fldOffset is
then calculated as four plus the
sum of the sizes of all preceding
fields within the data record. You
can ignore the isDescend and
sortPos elements, which merely
confirm the global sort specifica-
tions discussed earlier.

Three words appear after the
last field descriptor and before the
enumerated text fields. Pay no
attention to them; they are for
internal Reflex use and contain
the values 0x0013, 0x0001, and
0x0000. We mention them here
only for those who would reverse
the process described in this arti-
cle and write a Reflex file from a
Turbo C application.

Now let’s talk about enumerated
text fields.

REPEATING TEXT

Reflex is unusual among database
management packages in that it
lets you define text fields that con-
tain a predefined data set. An
example might be a personnel
application, in which everyone
belongs to some department: Mar-
keting, Engineering, Sales,
Accounting, etc. You could set up
these selections in advance and
then pick from among them using
the F10 (choices) key as you create
a new record. Reflex refers to
them externally as Repeating Text
(RT) and internally as Enumerated
Text (ET) fields. They get special
treatment in a Reflex database.
ET data are stored in reverse
order by field, after the three
constants following the field
descriptors. For example, if fields
3 and 7 contain Repeating Text
according to the /RF display in
Reflex, then the ET selections
appear as field 7, followed by field
3 in the database file. Since each
such field contains its own set of
selections, a separate text pool
exists for every ET field. You can
locate these nodes using the

ETREC pointers in the field
descriptors.

Consistent with the spirit of
Reflex’s variable-length records,
an ET node consists of:

* An integer showing the length
of the index.

* A variable-length index of inte-
gers giving the offset of each
repeating text string within the
following pool, relative to the
start of the pool. For example, if
the pool contains the entries

Marketing\0
Engineering\0
Accounting\0

(length 10)
(length 12)
(length 11)

then the index length is 6
because each of the three items
is two bytes long. The contents
of the index are 0, 11, and 24.

An integer giving the length of
the ET pool itself plus three
bytes for each entry (this is
required by Reflex). The total
length in this case is (10 + 3) +
(12 + 3) + (11 + 3) = 42 bytes.

The text data comprising the ET
pool.

When there are no repeating
text fields in a database (which is
most common), no space is set
aside for them.

The major section following the
enumerated text field selections is
the database master record.

MASTER RECORD

Despite its exalted name, the mas-
ter record is the simplest structure
in the entire Reflex database. It
contains two integers, and can be
found by using the dfAddr field in
the section descriptor (DFDESC
structure) whose dfType field con-
tains nine integers.

The first field in the master
record shows the total number of
data records in the file. The
second, which is of interest only
to Reflex itself, indicates the
number of records that have

typedef struct {
unsigned totalRecs;
unsigned filtRecs;
)} MASTREC;

passed the most recently applied
filter. Figure 5 lists a C structure
describing the master record.

DATA RECORDS: HOW MUCH
CONTROL INFORMATION IS
THERE?

There are a couple of ways to
determine the amount of control
information. The easiest is to treat
the unused 326 bytes following
the section descriptors as part of
the control information. Thus, the
header record occupies a fixed
512 bytes, the sort specs a fixed 12
bytes, and everything beyond that
is variable.

The second way is to find the
total size of the control informa-
tion by inspecting the dfAddr field
in the data records’ section de-
scriptor (dfType = 1), which is in
the third descriptor record. This
tells where the data records begin
as an offset from the start of the
file and thus accurately reflects
the size of all the control
information.

In the current releases of
Reflex, this value is a long, located
at offset 5CH (decimal 92) within
the file. You can use fseek() or
Iseek(), depending on which
Turbo C file access method you
select, to move the file pointer,
then read it into a variable that
will be used to allocate the
required space. After moving the
pointer, don’t forget to do two
things: recast the long read from
the file into an int or unsigned for
the call to malloc(); and reset the
file pointer to the start of the file
before attempting another read.

There’s a simple way to make
all this control information
instantly accessible to the pro-
gram: put it on the heap. Calcu-
late the size of the node as
described, allocate the space using
malloc(), and read that many bytes
from the file into the node. When
you finish doing this,

continued on page 64

/* data base master record */

/* total number of records in file */
/* # recs passing most recent global filter */

Figure 5. Reflex master record structure in Turbo C.

January/February 1988 TURBO TECHNIX 63

int
char
int
int
int
int
int
char
char
char
int

char
char

#define HANDLE
#define RXID

LISTING 1: REFLEX.H

typedef struct {
int dfType;
long dfAddr;
long dflLen;

) DFDESC;

typedef struct {

hdrSz;
stamp[12];
dirty;
verViews;
verModels;
verData;
fRecalc;
screenType;
checkSum;
reserved[38] ;
sectionCt;

DFDESC dfSection(];
) DFHDR;

typedef struct {
unsigned fldType
unsigned isAscending
unsigned fieldID

)} FLDSORTSPEC;

typedef struct {
HANDLE
HANDLE
) ETREC;

index;
pool;

typedef struct (
unsigned nameOffset;

dataType;
precision;

unsigned fldOffset;

typedef struct (
unsigned totalRecs;
unsigned filtRecs;
) MASTREC;

void far *
"3Q. ! &a#S! &&"

typedef FLDSORTSPEC SORTSPECI[6];

ETREC ete;

unsigned isDescend : 1;

unsigned sortPos : 7;

unsigned reserved : 8;
) FLDDESC;

/* reflex.h: structure definitions for Reflex data bases */

/* 32-bit pointer
/* Reflex identifier

/* data file section descriptor
/* section tytpe code

/* start addr in file (bytes)
/* length (bytes)

/* file header structure

/* size of file header = 512

/* identification = "3Q.!3a#$!8&&"

/* non-zero implies corrupt file

/* view info version level

/* modeling system version level

/* raw data version level

/* non-zero implies recalc necessary

/* active screen type at file creation

/* file checksum

/* reserved for future use

/* number of sections of type DFDESC
/* section descriptors

/* field sort spec

/* used internally by Reflex

/* sorting order

/* field ID: index to field defin

/* sort specs array

/* text table master structure
/* pointer to index
/* pointer to text pool

/* field descriptor record

/* offset of field name in name pool
/* field type

/* decimal precision = 5 bits,

field formats = 3 bits

/* offset of field in record

/* repeating text info

/* descending flag

/* sort precedence

/* not used

/* data base master record
/* total number of records in file

/* # recs passing most recent global filter

i
*/

L

*/
9

21
*
*/
LT

REFLEX DATABASES
continued from page 63

the file pointer has advanced to
the start of the data records them-
selves, and all the control infor-
mation is on the heap where the
program can address it directly.
The only thing that still needs
doing is to initialize pointers to
the various elements of the node.

SETTING UP THE POINTERS

The control information for a
Reflex database has seven major
entry points that must be assigned
pointers, plus a number of struc-
ture types that have already been
discussed. It’s also useful to have a
couple of work variables (work
and temp) for performing pointer
arithmetic. The #include file
REFLEX.H, shown in Listing 1,
defines the structures and
declares all the global variables
necessary to process Reflex data-
base control information.

It takes a lot of pointer arith-
metic to initialize the seven point-
ers to the control structure ele-
ments.

The #include file INPTRRXD.I
in Listing 2 shows the processes
for initializing the pointers. Note
that this is an inline file; simply
place the directive

#include <inptrrxd.i>

in your source file wherever you
want to initialize the control struc-
ture pointers. Before invoking it,
you must satisfy the following
conditions:

* Include REFLEX.H

* Allocate a node on the heap for
the control information

e Read the control information
into the node

* Set variables base and head to
point to the start of the node

The algorithms in INPTRRXD.I
set the requisite global pointers;
you can then use them in your
application.

DOCUMENTING A REFLEX
DATABASE

Reflex doesn’t include a utility for

printing out the characteristics of

a database. Consequently the pro-
continued on page 66

64 TURBO TECHNIX January/February 1988

It you ever
wanted to

take a crack
at assembly

language,

You probably already
know that assembly

the time.

simple steps, you can be
calling Macro Assembler

language subroutines subroutines from pro-
are the smartest way to grams written in your
get the fastest programs. favorite language.

But if the complexities Now that you’re writ-
of working in assembler ing the fastest programs,
made you think twice, Microsoft is giving you
here’s some good news. the fastest way to de-
We've made Microsoft® bug them. For the first
Macro Assembler Version time, we've added our
5.0 a lot easier to use. CodeView® debugger

We eased the learning to Macro Assembler.

With source code
and comments on your
screen, Microsoft Code-
View makes debugging pro-
grams containing assembly

process by giving you the best
support around. We com-
pletely revised our docu-
mentation. The new Mixed
Language Programming

Guide gives you step by step language subroutines a snap.
mstructions for linking your And you’ll be glad to know that you
assembly code with Microsoft don’t sacrifice any speed for all the ease of use.

QuickBASIC, C, FORTRAN,
Pascal and other languages. And

We took the fastest Macro Assembler on
the market and made it even faster.
you get a comprehensive refer- So what are you waiting for? Get your
ence manual with listings of the hands on Microsoft Macro Assembler and
instruction set and examples of each instruc- see what it’s like to break your personal
tion. We didn’t stop there, though. You also speed limit.

get an on-disk collection of templates - .
and examples. MMSO”
v 1 1 ! For ¢ informatio! for the name of yo >arest
. We've also dramatically simplified the M
high-level language interface. In just a few Alaska, (206) 882-8088. In Canada, call (416) 673-7638.

Microsoft, the Microsoft logo and CodeView are registered trademarks of Microsoft Corporation.

REFLEX DATABASES
continued from page 64

/* GLOBALS */

FILE *Lst; /* printer */ gram SHOWRXD.C in Listing 3
unsigned nflds; /* # field descriptors */ not only illustrates a pract_ical
unsigned base, temp; /* point of reference for control info */ licati fibe di X

int *work; /* for getting lengths from file */ apP lca.uon ot the lscu§51on up to
DFHDR *head; /* header record */ | | this point, but also provides a
DFDESC *descr; /* section descriptor table */ | [handy utility for Reflex users. You
SORTSPEC *sort; /* global sort specs table */ can use it to create a hardcopy
char *pool ; /* field name pool */ P

FLDDESC *dtable; /* field descriptor table */ document explaining the structure
fnt *etpool ; /* enumerated text pool */ of any Reflex database.

MASTREC *mast; /* master record */ To operate SHOWRXD.C, first

/* inptrrxd.i: initializes pointers to Reflex data base control

info entry points.

Assumes reflex.h has been #included and globals 'base' and
'head' have been initialized for stack operation.

This file is #included inline after loading the control
info onto the heap and before the application tries to use
the control info to do anything */

/* ---- initialize pointers to fixed sections
descr = (DFDESC*)(base + 66); /* section descriptors

sort = (SORTSPEC*)(base + head->hdrSz); /* sort specs
/* ---- initialize ptrs to variable sections
/* field name pool
work = (int*)((unsigned)(sort) + 11);
temp = (unsigned)(work) + *work + 4;
pool = (char*) temp;
/* field descriptor table
temp = (unsigned)(pool) - 2;
work = (int*)(temp);

temp += (unsigned)(*work + 4);
dtable = (FLDDESC*) temp;
/* calculate number of fields
work = (int*)(unsigned)(dtable) - 1;
nflds = *work / sizeof (FLDDESC);
/* enumerated text pool (point to first index length
temp += (unsigned) *work + 8;
etpool = (int*) temp;
/* master record
mast = (MASTREC*)(unsigned)((descr+1)->dfAddr + base - 1);

*/

*/

*7

27

compile it with Turbo C in the
small memory model, making the
executable file SHOWRXD.EXE.
Note: before doing this, place
REFLEX.H and INPTRRXD.I
(Listings 1 and 2, respectively) in
the \INCLUDE subdirectory
shown in your Turbo C Options/
Environment menu.

When the .EXE file exists, you
can run it for any Reflex database.
On the command line, type
SHOWRXD and hit the Enter key.
The program asks:

Name of Reflex database?

Type the filename, preceded by
the drive and path if necessary. If
you omit the .RXD filename
extension associated with Reflex
databases, the program automati-
cally appends it using Turbo C’s
fnsplit() and fnmerge() functions.
The listing in Figure 6 shows
the output of SHOWRXD.C for
Reflex database CUSTLIST.RXD,
a sample file included on the
Reflex package distribution disk.

FETCHING DATA FROM A
REFLEX FILE

Unlike SHOWRXD.C (Listing 3),
which reports the structure of any
Reflex database irrespective of its
actual contents, fetching data is
application-dependent. That is,
you need to know in advance
which database you want to pro-
cess, and which field(s) you want
to read.

The reasons are clear based on
the preceding discussion: The
structure of a Reflex database is
variable, and the contents of a
given field in one database might
be very different from those in the
same position in another
database.

As an example, Figure 7 con-
trasts two of the Reflex sample
files: MAILLIST.RXD and
CUSTLISTRXD. You can’t use the

66 TURBO TECHNIX January/February 1988

Control information for Reflex
data base CUSTLIST.RXD:
Total records 35
Filtered records 35
Number of fields 8

Header record contents:
Size of header 512
Reflex identifier 3Q. 1 &a#S!1 &&
Corruption indicator Clean
View version level 14
Modeling version lev. 4
Raw data version lev. 3

Recalc necessary No

Screen type IBM CGA
File checksum 25
Reserved field (38 bytes)
Section descriptors 12

Global sort specifications by
precedence:
Descending: Field Address

8 Field Descriptors:

Field name: Date
Data type: Date
Format: MM/DD/YY
Field offset 4

Field name: Rep
Data type: Text
Field offset é

Field name: Name
Data type: Text
Field offset 8

Field name: Address
Data type: Text
Field offset 10

Field name: City
Data type: Text
Field offset 12

Field name: State
Data type: Text
Field offset 14

Field name: Zip

Data type: Text
Field offset 16

Field name: Total Sales
Data type: Numeric
Precision 2

Format Fixed (-XXX.YY)

Field offset 18

Figure 6. Sample output of
SHOWRXD, which documents the
CUSTLIST database.

same application program to pull
mailing information from both
databases for two reasons:

1. The corresponding fields are in
different positions (i.e., Name is
field 0 in MAILLIST and field 2
in CUSTLIST).

2. The corresponding fields are of
different data types (i.e., ZIP
continued on page 68

LISTING 3: SHOWRXD.C

/* showrxd.c: Displays fixed information about Reflex data bases */
/* Written for small model of Turbo C by K. Porter */

/* INCLUDE FILES */

#include <stdio.h>

#include <string.h>

#include <dir.h>

#include <reflex.h> /* Separate Reflex structure definitions */

/* DEFINE CONSTANTS */
#define OUTDEV "PRN" /* output device */
#define EJECT 12 /* printer page eject */

/* LOCAL FUNCTION PROTOTYPES */

void showMast (char name[], MASTREC *mast);
void showHead (DFHDR *head);

void showSort (SORTSPEC *srt);

void showName (unsigned offset);

void showField (unsigned nf, FLDDESC *fld);

main ()

¢

char fname [MAXPATH] , /* filename */
drive [MAXDRIVE], dir[MAXDIR], /* components */
name [MAXFILE], ext[MAXEXT];

long fpos; /* file position */

unsigned - /* misc variable */

FILE *db; /* database file */

/* OPEN FILES */
d=0;

lst = fopen (OUTDEV, "w"); /* open output */
cputs ("\nName of Reflex data base? ");

gets (fname); /* get filename */
fnsplit (fname, drive, dir, name, ext); /* split filename */

if (!strlen (ext))
strcpy (ext, "“.RXD"); /* if no extension, make it ".RXD" */
fnmerge (fname, drive, dir, name, ext); /* and reassemble */
db = fopen (fname, "r");
if (db != NULL) ¢
setvbuf (db, NULL, _IONBF, 0); /* make file unbuffered */
/* ---- verify that file is open and a Reflex data base */
fseek (db, 88L, SEEK_SET); /* point to size of control info */
fread (&fpos, sizeof (long), 1, db); /* get it */
fseek (db, OL, SEEK_SET); /* repoint to start */
/* ---- put control info on the heap */
base = (unsigned) malloc ((unsigned) fpos); /* allocate node */
head = (DFHDR*) base; /* set header pointer */
d = fread (((char*)(base)), sizeof (char), ((int)(fpos)), db);
b
if (db==NULL || d==0) (/* error handler */
printf (“"Error accessing file %s\n", fname);
printf ("File is %s open, items read = %u\n",
(db==NULL ? "not" : "»), d);
exit (1);
) else
if (stremp (head->stamp, RXID) !=0) ¢
printf ("\n\nfFile %s is not a Reflex data base\n", fname);
exit (1); /* exit with condition code */
)

January/February 1988 TURBO TECHNIX 67

/* INITIALIZE POINTERS TO CONTROL INFO */
#include <inptrrxd.i>

/* SHOW INFORMATION ABOUT DATA BASE */
showMast (fname, mast);
showHead (head);
showSort (sort);
showField (nflds, dtable);

/* show master record
/* list header record
/* show global sort specs
/* show field descriptors

/* END OF JOB */
putc (EJECT, lst);
close (lst);
free (head);

8 7

/* eject page
/* close printer
/* deallocate heap space

End of main()
void showMast (char name[], MASTREC *mast) /* show master record
¢
fprintf (lst, "Control information for Reflex data base ¥s:\n",
name);

fprintf (lst, " Total records %d\n",
mast->totalRecs);
fprintf (lst, " Filtered records #*d\n",

mast->filtRecs);
fprintf (lst, " Number of fields
3 1%

%d\n", nflds);

void showHead (DFHDR *head)
¢
fputs ("\nHeader
fprintf (lst, "
fprintf (lst, "
fprintf (lst, "
(head->dirty)
fprintf (lst, "
fprintf (lst, "
fprintf ¢ lst, "

/* list header record

record contents:\n", lst);

Size of header %d\n", head->hdrSz);
Reflex identifier %s\n", head->stamp);
Corruption indicator %s\n",

? “Corrupt® : "Clean");
View version level
Modeling version level
Raw data version level

%»d\n", head->verViews)
%d\n", head->verModels
%d\n", head->verData);

fprintf (lst, " Recalc necessary %»s\n",
(head->fRecalc) ? "Yes" : "No");
fputs (" Screen type n. st):

switch (head->screenType) (
case 0: fputs ("IBM CGA", lst); break;

case 1: fputs ("Hercules", lst); break;

case 2: fputs ("IBM 3270 PC APA", lst); break;
case 3: fputs ("IBM EGA", lst); break;

case 4: fputs ("IBM PGC", lst); break;

case 5: fputs ("AT&T 6300 Series", lst); break;
case 6: fputs ("Sigma 400", lst); break;

case 7: fputs ("STB SuperRes 400", lst); break;
default: fputs("(Unknown)", Llst);

>
putc ('\n', lst);
fprintf (lst, " File checksum

fputs (" Reserved field (38 unused bytes)\n", lst);
fprintf (lst, " Section descriptors %d\n", head->sectionCt
JULNE ekt e s socansse o mde 7

b}/

.
’

);

#X\n", head->checkSum);

);

REFLEX DATABASES

continued from page 67
Maillist:
Fld# Name Type

0 Name Text

1 Address Text

2 City Text

3 State Text

4 ZIP Numeric
Custlist:
Fld# Name Type

0 Date Text

1 Rep Text

2 Name Text

3 Address Text

4 City Text

5 State Text

6 ZIP Text

7 Sales Numeric

Figure 7. Structures of two dissimilar

Reflex files.

is numeric in MAILLIST and
text in CUSTLIST).

Consequently, you have to write
programs to process specific data-
bases, and the only variability is
among Reflex databases that have
identical field attributes within the
domain of the application. That is,
if two files are identical within the
first n fields and the application
only processes those n fields (or
some subset of them), then the
database is sufficiently generalized
to process both files.

That’s a hair-splitting distinc-
tion. The general rule is that you
need a separate program for
extracting data from every Reflex
file unless you specifically know
otherwise.

First, set the file pointer to the
data records. The section descrip-
tor field (descr + 2)—>dfAddr
gives the offset of the data records
from the start of the file. The
records section itself begins with
an unsigned word used internally
by Reflex, with the first data
record following immediately.
Thus, use fseek() to point into the
file at the location given by:

(descr+2)->dfAddr + 2

A data record consists of four
sections: a word indicating the
length of the record (not counting
itself), a fixed-format record
header structure, a fixed-length
data section, and a variable-length
text pool.

The four-byte record header

68 TURBO TECHNIX January/February 1988

contains mostly reserved Reflex
information. Only the fourth byte
is potentially meaningful; it shows
how many fields in the record
actually contain data. Ordinarily
you can simply skip the header
and go directly to the fixed-length
data section.

The term fixed length is some-
what misleading. The data sec-
tion’s length is fixed for each
record within a given file, but its
length varies from one file to
another based on the number of
fields per record.

Every field is 16 bits long except
for untyped fields and numeric
(floating point), which is a 64-bit
IEEE-standard format compatible
with Turbo C’s double type. All
fields, except untyped fields, have
two special values representing
null and error. A null value shows
up as a blank cell on the Reflex
display, while an error value
causes Reflex to display the word
ERROR in the cell. The format
specifications for each type are

listed in Table 4.
TYPE REPRESENTATION
0 (untyped) No data stored

1 (text) 16-bit unsigned giving
offset into text pool at
end of record, measur-
ing from start of record
header.

Null: 0

Error: 1

16-bit unsigned giving
offset into ET pool in
field directory.

Null: 0

Error: 1

16-bit unsigned:
number of days since
12/31/1899

Null: 0

Error: OxFFFF
64-bit IEEE floating
point

Null: MSW = 0x7FFF
Error: MSW = 0x7FF0
16-bit signed integer
Null: 0x8000

Error: 0x8001

2 (ET)

3 (date)

4 (numeric)

5 (integer)

Table 4. Format for fixed-length data
in a record.

Thus, each field’s position
within the data section is offset
from the start of the header
record by four bytes plus the
aggregate length of all preceding
fields (see Table 5).

continued on page 70

void showSort (SORTSPEC *srt)
{

unsigned n, p;

FLDSORTSPEC *spec;

FLDDESC *fld;

/* show global sort specs

fputs ("\nGlobal sort specifications by precedence:\n", lst);
for (n=0; n<6; m+)
spec = srt + n; /* point to next sort spec
if (spec->fldType == Ox7F && spec->isAscending) {
if (spec == srt)
fputs (" (None)\n", lst);
break; /* quit on terminator (OxFF)
) else
if (spec->fieldID <= nflds) { /* show order
fprintf (lst, " %s Field ", (spec->isAscending)
? "Ascending: " : "Descending:");

i

*/

*/
2/

/* Note: We have to follow a chain of references

to find the field name. spec->fieldID gives
the field descriptor record #, whose first
field is an offset into the fieldname pool,
from which we can print the name */

fld = dtable + spec->fieldID;
p = fld->nameOffset;

/* point to field descr
/* get name offset in pool

showName (p); I* print it
5 >
b L EE LT EEEE %y
void showName (unsigned offset) /* print pool field name to lst
ghar *name;
name = (char *) pool + offset; /* node address of string

fputs (name, lst);
pute ¢ *\n*, lst);

b3 I O O U C xf

void showField (unsigned nf, FLDDESC *fld)

{ /* list field descriptors
FLDDESC *f;

unsigned n;

fprintf (lst, "\n%u Field Descriptors:",
for (n=0; n<nf; nk+) {

nt s
/* loop thru table for nf items

f=fld+ n; /* point to next descriptor
fputs ("\n Field name: u. st):
showName (f->nameOffset); /* list field name
fputs (" Data type: nisti);
switch (f->dataType) (/* show data type
case 0: fputs ("Untyped\n", lst); break;
case 1: fputs ("Text\n", lst); break;
case 2: fputs ("Repeating text\n", lst); break;
case 3: fputs ("Date\n", lst);
fputs (" Format: n lst);
switch (f->precision & 0x07) { /* date format
case 0:
case 1: fputs ("MM/DD/YY\n", lst); break;
case 2: fputs ("MM/YY\n", lst); break;
case 3: fputs ("DD-Mon-YY\n", lst); break;
case 4: fputs ("Mon-YY\n", lst); break;
case 5: fputs ("Month DD, YYYY\n", lst);

o
o
Ly

*/

*/

*/

7
L7

*/
*/

*/

January/February 1988 TURBO TECHNIX 69

REFLEX DATABASES

continued from page 69
>
FIELD TYPE OFFSET LENGTH braak; g
case 4: fputs ("Numeric\n", lst);
Ei 4 9 fprintf (lst, " Precision %d\n",
untyped 6 9 ((f->precision & 0xF8) >> 3));
Rieric 8 8 fputs (" Format wEitet):
e 16 9 switch (f->precision & 0x07) { /* numeric format */
case 0: fputs ("General\n", lst); break;
. " e et case 1: fputs ("Fixed (-XXX.YY)\n", lst); break;
Table 5. Field position within the case 2: fputs ("Scientific (-X.YYe+ZZ)\n", lst);
data section of a record. break;

case 3: fputs ("General\n", lst); break;

For example, if you want to case 4: fputs ("Currency ($X,XXX.YY)\n", lst);

3 break;
221?1 (r):gzrt(}ileﬁ?:tn;z?tchﬁeld fcriom case 5: fputs ("Financial (X,XXX.YY)\n", lst);
; € wor)
length at the start of the record, break;
then jump eight bytes and read 3 case 5: fputs ("Integer\n", lst); break;
the field into a variable of type fprintf (lst, " Field offset %u\n", f->fldoffset);
double. Skip to the next record by)
adding the record length to the Y /¥ memmem e */

file pointer, then doing an fseek()
on that result.

The data text pool is at the end ughﬁé 4: CUSTLIST.C
of the record. It exists only when ‘
the record contains nonnull and /* custlist.c: reports name and total sales from custlist.rxd */
nonerror text fields. If the user /* Written for small model of Turbo C by K. Porter */

has typed “Mary Smith” into the

only text field of the record, then £2 JNGLIRE FILES */

#include <stdio.h>

Mary’s name appears as an #include <string.h>
ASCIIZ string with the “M” in the #include <dir.h>
first byte position after the end of #include <reflex.h> /* Separate Reflex structure definitions */

the data section. The text field

ri . . * DEF *
within the data section contains a / INE CNSTANES -/

S #define outdev "PRN" /* report output device */
number indicating how many #define dbname "CUSTLIST.RXD" /* Reflex file to process */
bytes the “M” is offset from the #define EJECT 12 /* printer page eject */

start of the record header.

Note that there are no sequenc-
ing rules regarding the placement
of data text strings in the pool. Ifa | | /* GLOBAL INPUT FILE */
record has two text fields, the FILE *db;
string for field=2 might precede

/* LOCAL FUNCTION PROTOTYPE */
void report (void);

that for field=1. Also, no string is '23"\ O
referenced by more than one e fooas e
field. For every valid (nonnull, unsigned d; /* misc variable */

nonerror) text field, there is a

unique ASCIIZ string in the F5 OREN FILES 2/

. ; d=0;
vanable-lengtl.l poo}, even if two Ist = fopen (outdev, "W); /* open output */
or more have identical content. cputs ("\nGenerating sales report from Reflex data base:\n");
db = fopen (dbname, "r");
PUTTING IT TO WORK if (db 1= NULL) €
’ : . . setvbuf (db, NULL, _IONBF, 0); /* make file unbuffered */
Now let’s turn talk into action with /* ---- verify that file is open and a Reflex data base */
a program that reads the Reflex fseek (db, 88L, SEEK_SET); /* point to size of control info */
sample database CUSTLISTRXD fread (&fpos, sizeof (long), 1, db); /* get it */
and prints a report showing total fseek (db, OL, SEEK_SET);* /’l' re;f:oint t: s:art *y
: /* ---- put control info on the heap */
Easjess,rbglg%séogxg'iy: fr?li;;tin 4 base = (unsigned) malloc ((unsigned) fpos); /* allocate node */
. B~ head = (DFHDR*) base; /* set header pointer */
The first part of the program is d = fread (((char*)(base)), sizeof (char), ((int)(fpos)), db);

similar to SHOWRXD.C (Listing
3). The chief differences are that
it declares fewer variables and
functions, and it opens a constant
filename.

70 TURBO TECHNIX January/February 1988

Once the program has initial-
ized the control pointers as
described earlier, it calls the
report() function. This subpro-
gram implements the discussion
in the preceding section.

In particular, note the manipu-
lation of the fptr variable, which
serves as a point of reference for
the start of the record header.
During each iteration of the
loop—which repeats for every
record—{fptr is first set to point at
the record length. After perform-
ing fseek() and reading the
length, fptr advances two bytes so
that it points to the start of the
record header. All subsequent
pointer arithmetic offsets from the
value of fptr. The last instruction
in the loop advances fptr by the
current record length, so that it
moves to the next record and
repeats the process.

To run the program after com-
piling, just type CUSTLIST. (It
expects to find CUSTLIST.RXD in
the current directory.) The pro-
gram then prints out a report with
35 line items (records) showing
the customer name and the total
sales. If you want to redirect the
output to some other medium (a
disk file, for example), change the
definition of OUTDEYV and re-
compile. Similarly, you can add
pathname information to the defi-
nition of DBNAME when the
database is known to exist in a
specific subdirectory.

It’s not difficult to find your way
around a Reflex database once
you know how the pieces fit
together. This article takes the lid
off the most important aspects of
data organization in Reflex data-
bases, giving you the Turbo C
tools to document files and extract
data from them. W

Kent Porter is a professional writer
specializing in software. His latest
book, Stretching Turbo Pascal
(Simon & Schuster/Brady), is written
for experienced Turbo Pascal pro-
grammers. He’s now working on a
similar book for Turbo C users that
will appear next spring.

Listings may be downloaded from
CompuServe as READRX.ARC.

)
if (db==NULL || d==0) (/* error handler
printf ("Error accessing file %s\n", dbname);
printf ("File is %s open, items read = %u\n",
(db==NULL ? "not" : "") d);
exit (1);
) else
if (strcmp (head->stamp, RXID) !=0) (
printf ("\n\nfFile %s is not a Reflex data base\n", dbname);
exit (1); /* exit with condition code
>

/* INITIALIZE POINTERS TO CONTROL INFO */
#include <inptrrxd.i>

/* PRODUCE REPORT BY READING DATA BASE */
report ();

/* END OF JOB */

putc (EJECT, lst); /* eject page

close (Lst); /* close printer
free (head); /* deallocate heap space
3 e e e Endof main() =r-r=cm=scsiomasmetrvantscinn
void report (void) /* generate report
{
long fptr, text; /* file pointers: main and text pool
double sales; /* total sales field

unsigned recs;
int reclen, tofs, n;
char ch, name[80];

/* loop counter for # records
/* record length, text offset
/* character, string for text output

fputs ¢ SALES REPORT FROM CUSTLIST.RXD:\n", lst);
fptr = (descr+2)->dfAddr + 2; /* start of first record
for (recs = 0; recs < mast->totalRecs; recs++) {
fseek (db, fptr, SEEK_SET); /* point to next record
fread (&reclen, sizeof(int), 1, db); /* get length
fptr += 2; /* advance to start of header
fseek (db, (fptr + 8), SEEK_SET); /* skip to name field
fread (&tofs, sizeof(int), 1, db); /* get text offset
if (tofs < 2)
fprintf ("\n
else {

%s", (tofs) ? "ERROR" : "NULL");

text = fptr + tofs; /* point to name string
fseek (db, text, SEEK_SET); /* go to it
n=0;
do €
fread (&ch, sizeof(char), 1, db); /* get next char
name [n++] = ch;

)} while (¢ ch);
fprintf (lst, "\n %-30s", name);
fseek (db, (fptr + 18), SEEK_SET);

/* until null char
/* print name
/* skip to sales

fread (&sales, sizeof(double), 1, db); /* get data
fprintf (Llst, " %12.2fl", sales); /* print it
}
fptr += reclen; /* advance to next record

b
)

2

7

Wi
x7
LA
27
*/
*/
*/
&7

January/February 1988 TURBO TECHNIX 71

TURBO PROLOG

When making an axe handle
the pattern is not far off.
... We'll shape the handle
By checking the handle
. Of the axe we cut with—
PROGRAMMER Lu Ji Wan Fu (4th century A.D.)

The Turbo Prolog Toolbox provides a treasure chest
of tools for developing user interfaces. With the
tools, you can add better user interface features,
including pop-up, pull-down, and tree-type menus;
status bars for messages; and context-sensitive help.
Particularly useful is pulldown, a predicate that
allows you to create pull-down menus using a menu
bar. In this article, I'll show you step-by-step how the
pulldown tool works, and how you can modify it to
add two enhancements: automatic update of status
bar messages and a continuous scrolling feature for
pull-down menus. The first enhancement allows you

72 TURBO TECHNIX January/February 1988

to display instructional messages in a reverse video
status bar at the bottom of the screen as the user
moves around the menu system. The other enhance-
ment adds a continuous scrolling capability to pull-
down menus. Thus, when you are at the beginning
or end of a menu and attempt to move down or up,
the reverse video menu selector wraps around
instead of stopping. But, before we jump in and start
dissecting and modifying the pulldown tool predi-
cate, let’s discuss the basic operations of pull-down
menu systems and look at how the pulldown predi-
cate is used.

A TASTE OF PULL-DOWN MENUS

Pull-down menus consist of two components: a

menu bar, which is usually displayed horizontally
continued on page 74

Mode Explain

1ge base

| IFiring

Rule #3

January/February 1988 TURBO TECHNIX 73

PULLDOWN PREDICATE
continued from page 72

across the top of the screen, and
pull-down menus, which are dis-
played vertically under the menu
bar (see Figure 1). Each entry in
the menu bar has either an action
or a pull-down menu associated
with it. You can move around the
menu system by using one of the
arrow keys or you can press the

Specify a topic

Quit, does not have a pull-down
menu associated with it since its
menu list is empty.

The pulldown predicate takes
four parameters:
pul Ldown(ATTRIBUTE ,MENULIST,
CHOICE, SUBCHOICE)
The ATTRIBUTE defines the
foreground and background
colors that are to be used for each
of the windows (menus) in the
pull-down menu system. The

Figure 1. Sample pull-down menu created by the pulldown tool.

Enter key to select an item. If
you're at all familiar with the
Turbo Prolog or Turbo C environ-
ment, you're probably already an
expert on pull-down menus.

The pulldown tool provided
with the Turbo Prolog Toolbox
allows you to create pull-down
menus patterned after those used
in Turbo Prolog. A complete pull-
down menu system can be gener-
ated with just one call. For exam-
ple, the statement
pul ldown(7, [curtain(5,"Help Menu",

["System","Topic"]),
curtain(20,"Print Menu",
["Draft","Bold"]),
curtain(35,"Quit", [1)
1, CH, SUBCH).
creates a menu bar at the top of
the screen with the items Help
Menu, Print Menu, and Quit. Pull-
down menus are associated with
the first two items. The third item,

MENULIST contains the list of
strings for the pull-down menu
bar and the strings for their asso-
ciated pull-down menus. For
example, the item
curtain(5,"Help Menu", ["System",
"Topic"l)

creates an entry in the pull-down
menu bar called Help Menu at
column 5, and defines its pull-
down menu to contain the selec-
tions System and Topic. Note that
each entry in MENULIST is
represented as a complex object:

curtain(COL,STRING, STRINGLIST)

The term curtain is commonly
referred to as a functor in Turbo
Prolog. Using functors, we can
group different objects together to
create complex data structures.
One major benefit of program-
ming in Turbo Prolog is that it is
easy to create and modify these
data structures. In fact, such

structures can often be modified
without forcing you to rewrite
major sections of a program,
which is often the case with pro-
grams written in procedural
languages.

The last two arguments in pull-
down, CHOICE and SUB-
CHOICE, are output parameters
that contain the position of the
menu-bar cursor and the selection
from the vertical pull-down menu
associated with the menu-bar
item. These parameters are
returned when pulldown termi-
nates and thus can be used for
diagnostics and other purposes.

Using the pulldown tool is a
two-step process. First you define
the menu bar and the pull-down
windows for each entry in the
menu bar. Second, you define the
actions associated with each
option in the windows. When
pulldown is called, the main
clause takes control of your pro-
gram and interprets the keys that
you enter. If you select an item
from a menu by pressing the
Enter key, one of two things may
happen. If there is a pull-down
menu associated with the item you
have selected, then that menu is
displayed. If there is no pull-down
menu associated with the selec-
tion, an action, represented by
one of the user-defined pdwaction
clauses, is processed. Thus, when
you use pulldown, you must utilize
pdwaction to define an action for
each possible menu selection.

IMPLEMENTATION AND
INTERNALS

Internally, the operation of the

pul Ldown(ATTR,LIST,SLIST,CH1,CH2): -
makewindow(81,ATTR,ATTR,"",0,0,
3,80),
pdwlistlen(LIST,MAXCOL),
writepdwlist(ATTR,LIST),
pdwmovevert(0,0,ATTR,LIST),
changepdwstate(pdwstate(0,0,up,

0,0)),
repeat,
pdwstate(ROW,COL ,DOWN, MAXROW,
LEN),
readkey(KEY),
pdwkeyact(KEY ,ROW,COL,DOWN,
MAXROW, MAXCOL , LEN,
ATTR,LIST,SLIST,
CONTINUE),

CONTINUE=stop, removewindow,
pdwstate(ROW1,COL1,_, ,),!,
CH1=COL1+1,

CH2=ROW1.

Figure 2. Main clause for pulldown.

74 TURBO TECHNIX January/February 1988

pull-down menu tool is similar to
that of a case statement in a
procedural language. Figure 2
shows the main pulldown clause.

The calls to makewindow,
pdwlistlen, writepdwlist, and
pdmovevert generate the pull-
down menu bar or horizontal
menu. This menu is created using
Turbo Prolog’s built-in makewin-
dow, field__attr, and scr__char
predicates. The value used for the
window number is 81. Watch out!
If you use pulldown, don’t define
any windows with this number.

In general, putting up menus
takes some time: adjusting a lot of
coordinates, writing strings to a
window in different attributes, and
creating a menu selection bar.
Fortunately, to implement our sta-
tus bar messages, we don’t need to
modify any of the code used for
drawing and updating menus. If
you decide you want to modify
any of the internal menu attri-
butes, now you know where to
look.

The changepdwstate predicate
updates the current state of the
pull-down menu system. change-
pdwstate performs a retract and
an assert, then stores the pull-
down menu status in the dynamic
database. The declaration of this
database predicate is:

database
pdwstate(ROW, COL , SYMBOL ,ROW, COL)

Here the first two parameters con-
tain the current cursor position
(the row and column correspond-
ing to one of the defined menus).
The third parameter, SYMBOL,
contains the current state of the
menu system. Two different con-
ditions are supported: “up” and
“down.” The “up” condition indi-
cates that all of the pull-down
menus are not displayed, and
“down” indicates that a pull-down
menu is currently displayed
(active). The final two parameters
contain the dimensions of a menu
row and column to help control
the movement through the actual
pull-down menus.

The core of pdwstate is a short
loop that gets the current state of
the menu system, reads a key from
the user, and performs

continued on page 76

/* Listingl */

/* Pulldown window action corresponding to input key and
spul ldown
window state */

pdwkeyact(right,ROW, COL,up,MAXROW, MAXCOL ,LEN,ATTR,LIST,SLIST,cont): -
nextcol(COL,1,COL1,MAXCOL),
pdwmovevert(COL,COL1,ATTR,LIST),
setstatus(COL1,ROW,SLIST,up),
changepdwstate(pdwstate(ROW,COL1,up,MAXROW, LEN)).

pdwkeyact(right,ROW,COL,down, _,MAXCOL, ,ATTR,LIST,SLIST,cont):-
nextcol (COL,1,COL1,MAXCOL),
check_removewindow(ROW),
pdwmovevert(COL,COL1,ATTR,LIST),
makepdwwindow(COL1,ATTR,LIST,MAXROW1,LEN1, FIRSTROW),
setstatus(COL1,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW,COL1,down, MAXROW1,LEN1)).

pdwkeyact(left,ROW, COL ,up, MAXROW, MAXCOL , LEN,ATTR,LIST,SLIST,cont):-
nextcol (COL,-1,COL1,MAXCOL),
pdwmovevert(COL,COL1,ATTR,LIST),
setstatus(COL1,ROW,SLIST,up),
changepdwstate(pdwstate(ROW,COL1,up, MAXROW, LEN)).

pdwkeyact(left,ROW,COL,down, _,MAXCOL, ,ATTR,LIST,SLIST,cont):-
nextcol(COL,-1,COL1,MAXCOL),
check_removewindow(ROW),
pdwmovevert(COL,COL1,ATTR,LIST),
makepdwwindow(COL1,ATTR,LIST,MAXROW1,LEN1, FIRSTROW),
setstatus(COL1,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW, COL1,down, MAXROW1,LEN1)).

pdwkeyact(up,ROW, COL ,down, MAXROW, ,LEN,ATTR,PDWLIST,SLIST,cont):-
ROW>1,1!,
ROW1=ROMW-1,
field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
pdwindex(ROW1,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),
R=ROW1-1,
setstatus(COL,R,SLIST,down),
changepdwstate(pdwstate(ROW1,COL ,down,MAXROW, LEN)).

pdwkeyact(down,ROW, COL ,down, MAXROW, _,LEN,ATTR,PDWLIST,SLIST,cont):-
ROW<MAXROMW, !,
ROW1=ROW+1,
field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
INDX=ROW- 1, pdwindex(INDX,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),
setstatus(COL,ROW,SLIST,down),
changepdwstate(pdwstate(ROW1,COL,down, MAXROW,LEN)).

pdwkeyact(down,_,COL,up, _,_,_,ATTR,LIST,SLIST,cont):-
makepdwwindow(COL ,ATTR,LIST ,MAXROW1,LEN1, FIRSTROW),
setstatus(COL,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW,COL ,down,MAXROW1,LEN1)).

pdwkeyact(cr,_,COL,up,_,_, ,ATTR,LIST,SLIST,stop):-
makepdwwindow(COL,ATTR, LIST,MAXROW1,LEN1, FIRSTROW),
setstatus(COL,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW,COL,down,MAXROW1,LEN1)),
FIRSTROW=0,

January/February 1988 TURBO TECHNIX 75

CH=COL+1, SUBCH=0,
not(pdwaction(CH,SUBCH)).

CH=COL+1, SUBCH=ROW,
not(pdwaction(CH,SUBCH)),
check_removewindow(ROW) .

pdwkeyact(char(CHAR) ,ROW,COL,UP, _, , ,ATTR,PDWLIST,SLIST,stop):-
is_up(UP,ROW), !,
pdwlist_strlist(PDWLIST,STRLIST),
tryletter(CHAR,STRLIST,SEL),NEWCOL=SEL,
pdwmovevert(COL,NEWCOL ,ATTR,PDWLIST),
makepdwwindow(NEWCOL ,ATTR, PDWLIST ,MAXROW1,LEN1, FIRSTROW),
setstatus(NEWCOL ,ROW,SLIST,up),
setstatus(NEWCOL,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW, NEWCOL ,down,MAXROW1,LEN1)),
FIRSTROW=0,
CH=NEWCOL+1, SUBCH=0,
not(pdwaction(CH,SUBCH)).

pdwkeyact(char(CHAR),ROW, COL ,down, MAXROW, ,LEN,ATTR,PDWLIST,
SLIST, stop):-

ROW><0,
pdwindex(COL ,PDWLIST,curtain(_,_,LIST)),
tryletter(CHAR,LIST,SEL),ROW1=SEL+1,
field_attr(ROW,1,LEN,ATTR),
R=ROW-1,
pdwindex(R,LIST,OLDWORD),
intenseletter(ROW,1,ATTR,OLDWORD),
reverseattr(ATTR,REV), field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),
CH=COL+1, SUBCH=ROW1,
R2=ROW1-1,
setstatus(COL,R2,SLIST,down),
changepdwstate(pdwstate(ROW1,COL ,down, MAXROW,LEN)),
not(pdwaction(CH,SUBCH)),
removewindow.

check_removewindow(ROW),
setstatus(COL,ROW,SLIST,up),
changepdwstate(pdwstate(0,COL,up,0,0)).

LISTING 2: STPMEX.PRO
SRR R AR R IR KRR R AR IR R I AR R RH IR R R I IR KRR R AR AR A IR AR

Example using the pull-down menu tools with status
bar update.

******t**Q**t******'k/

include "tdoms.pro"

DATABASE
pdwstate(ROW, COL, SYMBOL ,ROW, COL)

include "tpreds.pro"
include "status.pro"
include "spul ldwn.pro" /* modified pull-down menu package */
Predicates

msg(ROW, COL, STRING)

PULLDOWN PREDICATE
continued from page 75

an action. In this respect, operat-
ing pulldown is similar to operat-
ing a simple state machine:
repeat,
pdwstate(ROW, COL ,DOWN, MAXROW, LEN),
readkey(KEY),
pdwkeyact (KEY,ROW, COL ,DOWN , MAXROW,
MAXCOL ,LEN,ATTR,LIST,
SLIST,CONTINUE),
CONTINUE=stop, ...

The valid input tokens are the left,
right, up, and down arrow keys;
the Esc key; the Enter key, and the
first highlighted letter of each
menu option. Therefore, the pull-
down menu tool contains a
pdwkeyact clause to handle every
combination of valid user input
and the current state of the menu
system. You can easily extend the
input processing capabilities, for
example adding a feature and
linking it to a function key, by
adding an additional pdwkeyact
clause.

ADDING STATUS BAR
MESSAGES

A useful programming tool is a
programmer’s work of art. Thus,
when modifying a tool, it is impor-
tant to exercise some sensitivity
and try to make changes that
reflect the internal structure of the
tool. In practice, most tools are
created out of other tools. This is
certainly true for the tools found
in the Turbo Prolog Toolbox.

The pulldown predicate uses
some internal tools for list manip-
ulation that are useful for imple-
menting our status bar update fea-
ture. In this section we’ll take a
close look at how we can enhance
the status bar by making a min-
imum number of changes and
using some of the internal tools
provided with pulldown.

Our first goal is to redefine the
call to the pull-down menu system.
Here we make use of Turbo Pro-
log’s compound object support.
The new call is:

76 TURBO TECHNIX January/February 1988

spul Ldown(ATTRIBUTE ,MENULIST,
STATLIST, CHOICE, SUBCHOICE)

and the definition of the new

parameter STATLIST is:
domains
STATITEM = stat(STRING,
STRINGLIST)

STATLIST = STATITEM*

Thus, an example for a status
message structure is:
stat("Select for help options",
["Help about the system",
"Help on files"])
The first string is the message dis-
played when the corresponding
option from the menu bar (hori-
zontal menu) is selected. The list
of strings, on the other hand,
includes the messages displayed
when traversing the options from
the accompanying pull-down
menu.

To completely implement the
status bar update feature we must
enhance the definition of two
existing predicates, add two new
predicates, and modify some of
the internal predicates used in
PULLDOWN.PRO.

The pulldown tool contains two
internal predicates for performing
list processing operations. The
first, pdwlistlen, determines the
length of the list of arguments
used in the pulldown call. The
second, pdwindex, returns the list
element at a specified position in
the list. In the predicates section,
pdwlistlen is defined as:
predicates

pdwlistlen(MENULIST,COL)
To add the needed support for
our status bar messages, we can
define two other pdwlistlen
predicates:
pdwlistlen(STATLIST,COL)
pdwlistlen(STRINGLIST,COL)
With these new definitions, we
can use the same code from the
pdwlistlen clause to determine the
length of the status list arguments
and also the length of a general
list of strings. The following is the
code for pdwlistlen:
pdwlistlen([1,0).
pdwlistlen([_|TI,N):-

pdwlistlen(T,X),

N=X+1.
We must also add a predicate defi-
nition for pdwindex:

continued on page 78

CLAUSES

/* After a menu item is selected, one of the corresponding actions
is chosen.
xf

/* The file pull-down menu options */

pdwaction(1,1):-msg(3,10,"Load file selected").
pdwaction(1,2):-msg(4,10,"Save file selected").
pdwaction(1,3):-msg(5,10,"Directory selected").
pdwaction(1,4):-msg(6,10,"Print selected").
pdwaction(1,5):-msg(7,10,"Copy selected").
pdwaction(1,6):-msg(8,10,"Rename selected").
pdwaction(1,7):-msg(9,10,"Operating system selected").

/* The Run menu */
pdwaction(2,0):-msg(3,25,"Run selected").
/* The Help pull-down menu options */

pdwaction(3,1):-msg(3,40,"Topic selected").
pdwaction(3,2):-msg(4,40,"Edit selected").
pdwaction(3,3):-msg(5,40,"Run selected").
pdwaction(3,4):-msg(6,40,"Options selected").
pdwaction(3,5):-msg(7,40,"Quick help selected").

/* The options pul l-down menu options */

pdwaction(4,1):-msg(3,44,"Screen selected").
pdwaction(4,2):-msg(4,44,"Printer selected").
pdwaction(4,3):-msg(5,44,"Mouse selected").
pdwaction(4,4):-msg(6,44,"Options macros").

/* The Quit menu */
pdwaction(5,0):-exit.

msg(R,C,S):-
makestatus(112,"Press any key"),
makewindow(1,7,7,"Message Window",R,C,5,30),
window_str(S),
readkey(_),

removewindow,

removestatus.
GOAL
/*

1 2 3 4 5 6
0123456789012345678901234567890123456789012345678901234567890123456785
Files Run Help Setup Quit
*
i

makewindow(1,7,0,"",0,0,24,80),
makestatus(112," Select with arrows or use first upper
case letter"),
spul ldown(7,
[curtain(5,"Files", ["Load","Save","Directory","Print",
"Copy", "Rename","Operating System"]),
curtain(20,"Run", 1),
curtain(35,"Help" , ["Select topic","Edit","Run",
"Options","Quick help"l),
, ["Screen","Printer", "Mouse",
"Macros"l),
curtain(é3,"Quit" Mok

curtain(48,"Setup"

January/February 1988 TURBO TECHNIX 77

[stat("Select for file options",

["Load a new file",
"Save Current file to disk",
"Wiew current directory",
"Print current file",
"Make a copy of current file",
“"Rename file",
"Execute DOS commands"]),

stat("Execute a program",[]),

stat("Select for help", ["Specify a topic",
“"Get help about the editor",
"Get help on running a program",
Get help on the systems options",
"Get the quick guide"]),

stat("Select to setup the system", ["Setup the screen",
“Setup the printer", "Setup the mouse",
"Setup macros"l),

stat("Select to exit the program", [1)

1
,CH,SUBCH),
write("\n CH = ", CH),
write("\n SUBCH = ",SUBCH),nl.

LISTING 3: SPULLDWN.PRO
SRR R ARk Rk

Turbo Prolog Toolbox
(C) Copyright 1987 Borland International.
modified by KJ Weiskamp to support:

1) Automatic status bar update
2) Continuos scroll inside pull-down menus

PULL DOWN MENU

The parameters are:
spul ldown(ATTRIBUTE ,MENULIST,STATLIST,CHOICE, SUBCHOICE)

where
ATTRIBUTE is used in all the windows
MENULIST is the text for the menus
STATLIST is the text for the status strings
CHOICE is the selection from the horizontal menu
SUBCHOICE is the selection from the vertical menu
(or zero if there is no vertical menu for

the CHOICE horizontal item)
******************t******************************'k*t************/

Vh L Include this database in your program ----
DATABASE
pdwstate(ROW, COL , SYMBOL ,ROW, COL)
include tooldom and toolpred
And provide the clauses for the pdwaction predicate

=/

DOMAINS

/* data structure for pull-down menu strings */
MENUELEM= curtain(COL,STRING,STRINGLIST)
MENULIST= MENUELEM*

PULLDOWN PREDICATE

continued from page 77

pdwindex(COL ,STATLIST,STATITEM)
And the code is:

pdwindex(0, [H|_1,H):-!.
pdwindex(N, [_|T],X):-
N1=N-1,pdwindex(N1,T,X).
Again, we do not have to modify
this code. But to understand how
this predicate works, we might
want to look at an example.
pdwindex is a general tool to
retrieve an element from a list of
elements. For example, in the call
pdwindex(2, ["one", "two","three",
“four], Str).
pdwindex binds the string
“three” with the variable Str. If
you're confused, keep in mind
that this tool assumes that the first
element of the list is element 0.

ADDING TWO PREDICATES

We have extended the definitions
of the needed internal predicates,
and we are now ready to imple-
ment the two new predicates, set-
status and checkargs. These are
defined as:

predicates
setstatus(COL,ROW,STATLIST,
SYMBOL)
checkargs(MENULIST,STATLIST)

setstatus is responsible for updat-
ing the status bar message. check-
args tests the arguments in the
new spulldown call to make sure
that the menu list arguments
match the status message argu-
ments. Let’s look at setstatus first
(see Figure 3).

setstatus(COL1,_,SLIST,up):-
pdwindex(COL1,SLIST,
stat(STR,_)),
changestatus(STR).

setstatus(COL1,_,SLIST,down):-
pdwindex(COL1,SLIST,
stat(_,LIST)),
listlen(LIST,LISTLEN),
LISTLEN=0,
pdwindex(COL1,SLIST,
stat(STR,_)),
changestatus(STR),!.

setstatus(COL1,ROW,SLIST,down):-
pdwindex(COL1,SLIST,
stat(_,LIST)),
pdwindex(ROW,LIST,STR),
changestatus(STR).

Figure 3. Clauses for setstatus.

78 TURBO TECHNIX January/February 1988

setstatus takes four parameters.
The first two, COL1 and ROW,
indicate the index position for the
corresponding status string in the
status list. Keep in mind that the
functor stat has two objects, a
string and a list of strings:

stat(STRING,STRINGLIST)

Also, the status argument itself is a
list of stat objects:
[stat(..+),; stat(..), statl...),

- s
Therefore, the COL1 argument
refers to the position or member
in the list of stat objects and the
ROW argument refers to the posi-
tion or member of a string in the
list of strings.

The third argument, SLIST,
contains the list of stat objects.
The last argument indicates the
current state of the menu system.
Therefore, we have one clause
that processes the pull-down
menus in the “up” state, and two
clauses to process the “down”
state. As shown, the “up” state is
simple to process. This action
involves finding the correspond-
ing message from the status list
and displaying the message by
using a call to changestatus—one
of the status bar predicates pro-
vided with the Turbo Prolog Tool-
box in STATUS.PRO.

Processing the “down” state is a
little more difficult. In this case,
we must first determine if there
are any members in the status
string list. A list of length equal to
zero indicates that the corre-
sponding pull-down menu bar
option does not have a menu
associated with it. Therefore, the
message bar is updated with a sta-
tus bar message and not a pull-
down menu message. If the list
has members, then the final
clause is executed and the appro-
priate message corresponding to
one of the options inside the pull-
down menu is displayed.

ERROR CHECKING

To guarantee that the status bar
messages work in harmony with
the menu system, we must verify
that the number of menu list argu-
ments is equivalent to the number
continued on page 80

/* data structure for status bar strings */
STATITEM= stat(STRING,STRINGLIST)
STATLIST= STATITEM*

STOP

stop(); cont()
PREDICATES

/* the modified pulldown predicate */
spul ldown(ATTR ,MENULIST,STATLIST, INTEGER, INTEGER)
pdwaction(INTEGER, INTEGER)

pdwkeyact (KEY,ROW, COL , SYMBOL , ROW, COL, COL ,ATTR, MENULIST,
STATLIST,STOP)

pdwmovevert (COL, COL,ATTR,MENULIST)

pdwindex(COL ,MENULIST,MENUELEM)

pdwindex(ROW, STRINGLIST, STRING)

/* add this predicate to support status bar strings */
pdwindex(COL,STATLIST,STATITEM)

makepdwwindow1(ROW, COL ,ROW,COL,ATTR,STRINGLIST,ROW)
makepdwwindow(COL ,ATTR,MENULIST ,ROW,COL ,ROW)
writelistp(ROW,COL,ATTR,STRINGLIST)
line_ver(ROW,ROW,COL)
Line_hor(COL,COL,ROW)
Lcorn(COL,CHAR)

rcorn(COL, CHAR)
pdwlistlen(MENULIST,COL)
pdwlistlen(STATLIST,COL)
pdwlistlen(STRINGLIST,COL)
writepdwlist(ATTR,MENULIST)
changepdwstate(DBASEDOM)
check_removewindow(ROW)
is_up(SYMBOL ,ROW)

nextcol (COL,COL,COL,COL)
intense(ATTR,ATTR)
intensefirstupper(ROW,COL,ATTR,STRING)
intenseletter(ROW,COL,ATTR,STRING)
pdwlist_strlist(MENULIST,STRINGLIST)
setstatus(COL,ROW,STATLIST,SYMBOL)
checkargs(MENULIST, STATLIST)

/* supports status strings */
/* suuports general string lists */

/* update status message*/
/* test arguments */

CLAUSES

/* draw pulldown window */
line_ver(R1,R2,C):-
R2>R1,!, R=R1+1,
scr_char(R1,C,'|"),
line_ver(R,R2,C).
line_ver(_,_,_).

line_hor(C1,C2,R):-
c2>c1,!, C=C1+1,
scr_char(r,C1,'-"),
line_hor(C,C2,R).

line_hor(_,_,_).

/* Make the pulldown window */
makepdwwindow(NO,ATTR,MENULIST,LISTLEN,MAXLEN, FIRSTROW): -
pdwindex(NO,MENULIST, curtain(CCOL,_,LIST)),COL=CCOL,
ROW=2,
listlen(LIST,LISTLENT),LISTLEN=LISTLEN1,
maxlen(LIST,0,MAXLEN),
makepdwwindowl (ROW, COL, LISTLEN, MAXLEN,ATTR, LIST, FIRSTROW).

January/February 1988 TURBO TECHNIX

79

/* makepdwwindowl(_,_,_,_,_,_,0):-keypressed,!. */
makepdwwindowl(¢_,_,0,_,_,_,0):-1.
makepdwwindow1 (ROW, COL, LISTLEN, MAXLEN,ATTR,LIST,1):-

NOOFROWS=LISTLEN+2, NOOFCOLS=MAXLEN+2,
adjustwindow(ROW, COL , NOOFROWS , NOOFCOLS, AROW,ACOL),
makewindow(81,ATTR,0,"", AROW,ACOL , NOOFROWS ,NOOFCOLS) ,
writelistp(1,MAXLEN,ATTR,LIST),
cursor(1,1),reverseattr(ATTR,REV), field_attr(1,1,MAXLEN,REV),
ENDROW=NOOFROWS-1,

ENDCOL=NOOFCOLS-1,

Line_hor(1,ENDCOL,0),

Line_hor(1,ENDCOL ,ENDROW),

line_ver(1,ENDROW,0),

Line_ver(1,ENDROW,ENDCOL),

scr_char(ENDROW,0,'L"),

scr_char(ENDROH,ENDCOL,'J'),

Lcorn(COL,LCORN), scr_char(0,0,LCORN),
RCOL=ACOL+ENDCOL,

rcorn(RCOL ,RCORN), scr_char(0,ENDCOL,RCORN).

/* draw pulldown window corners */
lecorn(0, ' }*) :- 1.
leorn(_, 't").

rcorn(79,'4%) :- 1.
rcorn(_,'t'). '

check_removewindow(0):-!.
check_removewindow(_): -removewindow.

is_up(up,_):-!.
is_up(_,0).

intense(ATTR,ATTR1):-
bitxor(ATTR,$08,ATTR1).

intensefirstupper(ROW,COL,ATTR,WORD): -
frontchar(WORD,CH,),
CH>='A', CH<='Z',l,scr_attr(ROW,COL,ATTR).
intensefirstupper(ROW,COL,ATTR,WORD): -
frontchar(WORD,_ ,REST),COL1=COL+1,
intensefirstupper(ROW,COL1,ATTR,REST).

intenseletter(ROW,COL,ATTR,WORD): -
intense(ATTR, INTENS),
intensefirstupper(ROW,COL, INTENS,WORD), !.
intenseletter(ROW,COL,ATTR,):-
intense(ATTR, INTENS),
scr_attr(ROW,COL, INTENS).

pdwlist_strlist([1,[1).
pdwlist_strlist([curtain(_,H,_)|RESTPDW], [H|RESTSTR]):-
pdwlist_strlist(RESTPDW,RESTSTR).

pdwmovevert(COL1,COL2,ATTR,LIST):-
pdwindex(COL1,LIST,curtain(POS1,WORD1,_)),str_len(WORD1,LEN1),
pdwindex(COL2,LIST,curtain(POS2,WORD2,)),str_len(WORD2,LEN2),
field_attr(0,POS1,LEN1,ATTR),
intenseletter(0,POS1,ATTR,WORD1),
reverseattr(ATTR,REV),
field_attr(0,P0S2,LEN2,REV),
intenseletter(0,P0S2,REV,WORD2),
cursor(0,P0S2).

setstatus(COL1,_, SLIST,up):-
pdwindex(COL1, SLIST, stat(STR,_)),
changestatus(STR).

PULLDOWN PREDICATE
continued from page 79

of status list arguments. We use a
clause called checkargs to do this:

checkargs(LIST,SLIST):-
pdwlistlen(LIST,S21),
pdwlistlen(SLIST,SZ2),
s21=522,!.

checkargs(_,_):-
makewindow(80,7,7,
“Error Window",K5,15,
4,45),
window_str("Menu list does not
match with Status
List™),
readkey(_),
removewindow,
exit.

If both arguments are of the same
length, everything proceeds
nicely. On the other hand, if their
lengths are not equal, we have a
serious problem and the program
stops. The second checkargs
clause puts up an error window to
display the error message. If we
must abort the program, we might
as well do it in style!

MODIFYING THE
PREDICATES

We’re now ready for the last step:
performing surgery on pulldown
and pdwkeyact. First, let'’s modify
pulldown. Figure 4 displays the
modified clause.

We change the name to
spulldown and add the parameter
SLIST. The second major change
consists of adding a call to

spul Lldown(ATTR,LIST,SLIST,
CH1,CH2):-
checkargs(LIST,SLIST),
makewindow(81,ATTR,ATTR, """,
0,0,3,80),

pdwlistlen(LIST,MAXCOL),

writepdwlist(ATTR,LIST),

pdwmovevert(0,0,ATTR,LIST),

changepdwstate(pdwstate(0,0,

uplolo))l

setstatus(0,0,SLIST,up),

repeat,

pdwstate(ROW, COL,DOWN , MAXROW,
LEN),

readkey(KEY);

pdwkeyact (KEY,ROW, COL ,DOWN,
MAXROW, MAXCOL , LEN,
ATTR,LIST,SLIST,
CONTINUE),

CONTINUE=stop, removewindow,

pdwstate(ROW1,COL1,_,_,),!,

CH1=COL1+1,

CH2=ROW1.

Figure 4. Modified form of pulldown.

continued on page 82

80 TURBO TECHNIX January/February 1988

RESIDENT EXPERT Pop-up Reference Guides...

ROV d . \nsc

responses
spawnlp(P_UAIT
! se (conn
revind

while (data_byte '= 'C’

data_byte -

while (data_byte !:

data_byt

"debug .con",

ROWSE ecodeN\decode .C
OMMAND INPUT ==p

freopen(dbug2.tmp", "

NULL)

MS-C Version 5.8

&& data_byte

getc(responses);

U ¥include (stdio.h>

- PREV ENTR

char #fgets(str,cnt,strean);

§ char wstr;
int cnt;
FILE #strean:

S, responses).
" &8 data_byte

getc(responses);

b OQUERVIEVN o

c:

siring, response

This function reads a string from

the input strean

specified by

sl (strean) and stores it in (str). The

Use One of Ours or Build Your Own!

THE POP-UP REFERENCE
REVOLUTION BEGINS

How much development time could you save if
you never had to open another PC language or
technical reference manual again? What if you
could just point at a compiler keyword, assembly
instruction, or function name on your screen and
with a keystroke have complete, authoritative
information about language syntax, operands,
parameters, examples, and much more?

INTRODUCING THE RESIDENT
EXPERT SYSTEM

A growing library of comprehensive, disk
resident reference guides about the PC and your
favorite PC languages. All available instantly
through our unique memory resident pop-up
access system.

VIRTUALLY EVERYTHING YOU
NEED TO KNOW

Each of our Compiler Reference Guides
contains virtually everything you need to know
to program with your preferred implementation
of your favorite language. Language syntax, all
library functions, compiler directives, and error
codes are thoroughly documented.

QOur PC Programmer’s Reference Guide
documents every PC (and AT) processor
instruction and every BIOS and DOS service
interrupt. You’ll also find tables of keyboard
codes, line drawing, ASCII, and IBM character
sets, and much more.

THE SPECIALIST’S LIBRARY

Your compiler is unique. That’s why our
reference guides are specialized...each one
designed for a particular vendor’s language
implementation.

NEW!!

RESIDENT EXPERT Compiler
Make your own Reference
Guides

QUICK DRAW ACCESS SYSTEM

Point-and-shoot...just place the cursor over any
term on your screen. Chances are we’ve got it
fully detailed in one of our data bases.

Fully cross indexed...if the instruction or library
function you're using isn’t quite right, our related
topics cross index can help you find a better one.

Multiple volumes on line...you can have one or
a dozen of our pop-up reference guides on
line...a complete library available instantly.

THE INFORMATION YOU
NEED..WHERE YOU NEED IT

Our pop-up shell varies its size and shape
dynamically, only taking as much space on your
screen as it needs and it never covers your
working area. You can see your work and our
reference data at the same time.

RESIDENT EXPERT Shell (¥) $19.95
(with PC-DOS/MS-DOS Reference Guide)

RESIDENT EXPERT Compiler. $39.95
(create your own Reference Guides!)

RESIDENT EXPERT Reference Guides

Borland Turbo C (v1.0)............ $19.95
Borland Turbo Pascal (v4.0)......... 19.95
Borland Turbo Prolog (v1.1)......... 19.95
Latticel @i Va) o A L 39.95
Mark Williams Let’s C (v4.0)........ 19.95
Microsoft G VS I0) or e se s i 39.95
Microsoft Quick C (v1.0)............ 19.95

PC Programmer’s Reference Guide . . . $39.95

*The RESIDENT EXPERT Shell is required
to access and display all Reference Guides....

SantaRita

For the location of your nearest Santa Rita
Software dealer, or to order direct, call us at
1-214-727-9217. We’d like to hear from you.

Santa Rita Software
1000 E. 14th Street, Suite 365
Plano, Texas 75074

The RESIDENT EXPERT System

Resident Expert is a trademark of The Santa Rita Company. Borland, Turbo C, Turbo Pascal, and Turbo Prolog are trademarks of
Borland International Inc. IBM and PC-DOS are trademarks of International Business Machines Corporation. Lattice C is a
trademark of Lattice Inc. LetsC is a trademark of Mark Williams Company. Microsoft and MS-DOS are trademarks of Microsoft
Corporation.

setstatus(COL1,_, SLIST,down):-
pdwindex(COL1, SLIST, stat(_,LIST)),
listlen(LIST,LISTLEN),
LISTLEN=0,
pdwindex(COL1,SLIST, stat(STR,_)),
changestatus(STR),!.

setstatus(COL1,ROW, SLIST,down):-
pdwindex(COL1, SLIST, stat(_,LIST)),
pdwindex(ROW,LIST,STR),
changestatus(STR).

checkargs(LIST,SLIST):-
pdwlistlen(LIST,S21),
pdwlistlen(SLIST,S22),
$21=822,!.

checkargs(_,_):-
makewindow(80,7,7,"Error Window",5,15,4,45),
window_str("Menu list does not match with Status list"),
readkey(_),
removewindow,
exit.

pdwlistlen([1,0).

pdwlistlen([_|T1,N):-
pdwlistlen(T,X),
N=X+1.

writepdwlist(_, [1).

writepdwlist(ATTR, [curtain(POS,WORD,)|T1):-
str_len(WORD,LEN),
field_str(0,POS,LEN,WORD),
intenseletter(0,POS,ATTR,WORD),
writepdwlist(ATTR,T).

writelistp(_,_,_,[1).

writelistp(ROW,LEN,ATTR, [H|T1):-
field_str(ROW,1,LEN,H),
intenseletter(ROW,1,ATTR,H),
ROW1=ROW+1,
writelistp(ROW1,LEN,ATTR,T).

pdwindex(0, [H|_1,H):-1.
pdwindex(N, [_|T],X):-N1=N-1,pdwindex(N1,T,X).

changepdwstate(T):-assert(T).

nextcol(0,-1,COL1,MAX):-COL1=MAX-1,!.
nextcol(COL,1,0,MAX):-COL=MAX-1,!.
nextcol (COL,DD,COL1,_):-COL1=COL+DD.

spul ldown(ATTR,LIST,SLIST,CH1,CH2):-
checkargs(LIST,SLIST),
makewindow(81,ATTR,ATTR,"",0,0,3,80),
pdwlistlen(LIST,MAXCOL),
writepdwlist(ATTR,LIST),
pdwmovevert(0,0,ATTR,LIST),
changepdwstate(pdwstate(0,0,up,0,0)),
setstatus(0,0,SLIST,up),
repeat,
pdwstate(ROW,COL ,DOWN, MAXROW, LEN),
readkey(KEY),
pdwkeyact (KEY,ROW, COL ,DOWN , MAXROW, MAXCOL , LEN,ATTR, LIST,

SLIST,CONTINUE),

CONTINUE=stop, removewindow,
pdwstate(ROW1,COL1, , ,),!,
CH1=COL1+1,
CH2=ROW1.

PULLDOWN PREDICATE
continued from page 80

checkargs. Finally, we add a call to
setstatus:

setstatus(0,0,SLIST,up)

This call initializes the menu sys-
tem by displaying the first mes-
sage from the status message list.

The final modifications consist
of adding calls to setstatus from
each of the pdwkeyact clauses.
This task is fairly straightforward.
Place the call immediately before
the call to changepdwstate in each
clause. Listing 1 shows the modi-
fied code.

ADDING CONTINUOUS
SCROLLING

In most respects, the pulldown
tool allows you to create pull-
down menu systems that are
almost identical to those found in
Turbo Prolog and Turbo C. Unfor-
tunately, the designers of pull-
down left out one feature: the
menu bar does not continue to
scroll around when it gets to the
top or bottom of a pull-down (ver-
tical) menu. In Turbo Prolog and
Turbo C, the menu continues to
scroll. If you get to the end of the
menu and hit a down arrow key,
the highlighted menu selection
bar advances to the first item in
the menu. Thus you can hold
down either the up arrow or down
arrow key and the menu selector
loops around. If you don’t believe
me, try it. Right now!

Fortunately this feature can eas-
ily be added. To implement this,
add two pdwkeyact clauses. The
first pdwkeyact clause handles the
case when a pull-down menu is
“down,” the menu selector bar
(reverse video bar) is positioned at
the first menu item, and the user
input is the up arrow key (see
Figure 5).

Note that the first pdwkeyact
clause uses the statement ROW =
1 to see if the menu bar is posi-
tioned at the first item. This clause
then determines the length of the
menu list using pdwlistlen. Once
the length is determined, the last
menu item is highlighted in
reverse video. Also, pdwkeyact
contains a call to setstatus to
update the status message.

82 TURBO TECHNIX January/February 1988

pdwkeyact(up,ROW, COL ,down,MAXROW, _,
LEN,ATTR,PDWLIST,SLIST,
cont):-
ROW=1,1!,
ROW1=ROW-1,
field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,
curtain(_,_,LIST)),
pdwindex(ROW1,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
pdwlistlen(LIST,LEN1),
reverseattr(ATTR,REV),
field_attr(LEN1,1,LEN,REV),
cursor(LEN1,1),
R=LEN1-1,
ROW2=LEN1,
setstatus(COL,R,SLIST,down),
changepdwstate(pdwstate(ROW2,COL,
down,MAXROW,LEN)).

Figure 5. Additional pdwkeyact
clause to add continuous scrolling

(‘up ”

The second pdwkeyact clause
handles the menu scrolling when
the menu selection bar is at the
end of the menu, as shown in
Figure 6.

pdwkeyact (down,ROW, COL ,down, MAXROW,
_,LEN,ATTR,PDWLIST,SLIST,
cont):-
ROW=MAXROW, ! ,
ROW1=1,
field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,
curtain(_,_,LIST)),
INDX=ROW-1,
pdwindex(INDX,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
reverseattr(ATTR,REV),
field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),
setstatus(COL,0,SLIST,down),
changepdwstate(pdwstate(ROW1,COL,
down, MAXROW, LEN)).

Figure 6. Additional pdwkeyact
clause to add continuous scrolling
“down.”

USING THE NEW TOOL
A sample program, given in List-
ing 2, shows you how to use the
new tool, spulldown. Listing 3 dis-
plays the complete spulldown tool.
The sample program creates a
pull-down menu system with five
items: Files, Run, Help, Setup, and
Quit. In this program, some of
these menu items are linked with
pull-down menus and some are
not. This allows you to see how
the tool operates in both of these
cases.

When using the new spulldown

continued on page 84

/*

pdwkeyact (up,ROW, COL ,down,MAXROW, _, LEN,ATTR, PDWLIST,SLIST,cont): -

pdwkeyact (down,ROW, COL ,down,MAXROW, _,LEN,ATTR,PDWLIST,SLIST,cont): -

Pulldown window action corresponding to input key and Pulldown
window state */

pdwkeyact(right,ROW, COL,up,MAXROW,MAXCOL ,LEN,ATTR,LIST,SLIST,cont):-

nextcol (COL,1,COL1,MAXCOL),
pdwmovevert(COL,COL1,ATTR,LIST),
setstatus(COL1,ROW,SLIST,up),
changepdwstate(pdwstate(ROW,COL1,up,MAXROW,LEN)).

pdwkeyact(right,ROW,COL,down, _,MAXCOL, ,ATTR,LIST,SLIST,cont):-
nextcol (COL,1,COL1,MAXCOL),
check_removewindow(ROW),
pdwmovevert(COL,COL1,ATTR,LIST),
makepdwwindow(COL1,ATTR,LIST ,MAXROW1,LEN1, FIRSTROW),
setstatus(COL1,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW,COL1,down, MAXROW1,LEN1)).

pdwkeyact(left,ROW,COL,up, MAXROW,MAXCOL , LEN,ATTR,LIST,SLIST,cont):-

nextcol(COL,-1,COL1,MAXCOL),
pdwmovevert(COL,COL1,ATTR,LIST),
setstatus(COL1,ROW,SLIST,up),
changepdwstate(pdwstate(ROW,COL1,up,MAXROW,LEN)).

pdwkeyact(left,ROW,COL,down,_,MAXCOL, ,ATTR,LIST,SLIST,cont):-
nextcol(COL,-1,COL1,MAXCOL),
check_removewindow(ROW),
pdwmovevert(COL,COL1,ATTR,LIST),
makepdwwindow(COL1,ATTR,LIST,MAXROW1,LEN1, FIRSTROW),
setstatus(COL1,0,SLIST,down),
changepdwstate(pdwstate(FIRSTROW,COL1,down, MAXROW1,LEN1)).

pdwkeyact(up,ROW, COL ,down,MAXROW, _,LEN,ATTR, PDWLIST,SLIST,cont):-

ROW>1,!,

ROW1=ROW-1,

field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
pdwindex(ROW1,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),

R=ROW1-1,

setstatus(COL,R,SLIST,down),
changepdwstate(pdwstate(ROW1,COL,down,MAXROW,LEN)).

ROW=1,1!,

ROW1=ROW-1,

field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
pdwindex(ROW1,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
pdwlistlen(LIST,LEN1),
reverseattr(ATTR,REV),field_attr(LEN1,1,LEN,REV),
cursor(LEN1,1),

R=LEN1-1,

ROW2=LEN1,

setstatus(COL,R,SLIST,down),
changepdwstate(pdwstate(ROW2,COL,down,MAXROW,LEN)).

ROW<MAXROW, !,

ROW1=ROW+1,

field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
INDX=ROW-1, pdwindex(INDX,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),

setstatus(COL,ROW,SLIST,down),
changepdwstate(pdwstate(ROW1,COL ,down, MAXROW,LEN)).

January/February 1988 TURBO TECHNIX

83

ROW=MAXROW, !,

ROW1=1,

field_attr(ROW,1,LEN,ATTR),
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
INDX=ROW-1, pdwindex(INDX,LIST,WORD),
intenseletter(ROW,1,ATTR,WORD),
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),

setstatus(COL,0,SLIST,down),
changepdwstate(pdwstate(ROW1,COL ,down,MAXROW,LEN)).

pdwkeyact(down,_,COL,up,_,_,_,ATTR,LIST,SLIST,cont):-
makepdwwindow(COL,ATTR, LIST,MAXROW1,LENT, FIRSTROW),
setstatus(COL,0,SLIST,down),

pdwkeyact(cr,_,COL,up, ,_,_ ,ATTR,LIST,SLIST,stop):-
makepdwwindow(COL,ATTR,LIST ,MAXROW1,LENT, FIRSTROW),
setstatus(COL,0,SLIST,down),

FIRSTROW=0,
CH=COL+1, SUBCH=0,
not(pdwaction(CH,SUBCH)).

CH=COL+1, SUBCH=ROW,
not(pdwaction(CH,SUBCH)),
check_removewindow(ROW) .

is_up(UP,ROW),!,
pdwlist_strlist(PDWLIST,STRLIST),
tryletter(CHAR,STRLIST,SEL),NEWCOL=SEL,
pdwmovevert(COL ,NEWCOL ,ATTR,PDWLIST),

setstatus(NEWCOL ,ROW,SLIST,up),
setstatus(NEWCOL,0,SLIST,down),

FIRSTROW=0,
CH=NEWCOL+1, SUBCH=0,
not(pdwaction(CH,SUBCH)).

SLIST,stop):-
ROW><0,
pdwindex(COL,PDWLIST,curtain(_,_,LIST)),
tryletter(CHAR,LIST,SEL),ROW1=SEL+1,
field_attr(ROW,1,LEN,ATTR),
R=ROW-1,
pdwindex(R,LIST,OLDWORD),
intenseletter(ROW,1,ATTR,OLDWORD),
reverseattr(ATTR,REV),field_attr(ROW1,1,LEN,REV),
cursor(ROW1,1),
CH=COL+1, SUBCH=ROW1,
R2=ROW1-1,
setstatus(COL,R2,SLIST,down),
changepdwstate(pdwstate(ROW1,COL ,down,MAXROW,LEN)),
not(pdwaction(CH,SUBCH)),
removewindow.

check_removewindow(ROW),
setstatus(COL,ROW,SLIST,up),
changepdwstate(pdwstate(0,COL,up,0,0)).

If a help system is used*/

pdwkeyact (down,ROW, COL ,down,MAXROW, ,LEN,ATTR,PDWLIST,SLIST,cont):~

changepdwstate(pdwstate(FIRSTROW, COL ,down,MAXROW1,LENT)).

changepdwstate(pdwstate(FIRSTROW, COL,down,MAXROW1,LEN1T)),

pdwkeyact(char(CHAR) ,ROW,COL,UP, , , ,ATTR,PDWLIST,SLIST,stop):-

makepdwwindow(NEWCOL ,ATTR, PDWLIST,MAXROW1, LEN1, FIRSTROW),

changepdwstate(pdwstate(FIRSTROW, NEWCOL ,down,MAXROW1,LEN1)),

pdwkeyact(char(CHAR),ROW,COL ,down, MAXROW, ,LEN,ATTR,PDWLIST,

PULLDOWN PREDICATE
continued from page 83

predicate, remember to include
the status-bar file, STATUS.PRO,
before including the file contain-
ing spulldown. If you don’t, Turbo
Prolog will scream at you because
of the undeclared clause, change-
status. You also must include the
file TPREDS.PRO. The spulldown
tool is stored in the file
SPULLDOWN.PRO.

spulldown IN ACTION

Believe it or not, even with the
modifications, the pull-down
menu system is still fast. In fact,
it's about as fast as the Turbo C
environment according to my
benchmarks. That’s right. I've
developed a set of benchmarks for
testing user interfaces, especially
pull-down menus. The major
benchmark consists of holding
down the right or left arrow key
and counting the number of times
the reverse video menu bar whips
across the screen. In my test, I dis-
covered that the Turbo C menu
system can be traversed 47 times
in 30 seconds; the test program
developed here did 50 cycles. The
test program, with status message
update, actually beat Turbo C—
but then again maybe the bench-
mark is unfair since Turbo C has
seven entries in its pull-down
menu bar and the test program
only has five. Now, if you don’t
think this is a practical bench-
mark, ask yourself when was the
last time you used the Sieve or
Dhrystone in a program.
Nevertheless, the Turbo Prolog
Toolbox is a great source of pro-
gramming gems. After modify-
ing pulldown, you might want
to add personal features to some
of the other tools. After all, there
is great satisfaction in conquering
a software tool and making it
your own. W

Keith Weiskamp is the editor-in-chief
of PC Al Magazine, and co-author
of the forthcoming book, Artificial
Intelligence Programming with
Turbo Prolog.

Listings may be downloaded from
CompuServe as PDOWN.ARC

84 TURBO TECHNIX January/February 1988

THE TAIL RECURSION TIGER

Given the right conditions, the Turbo Prolog compiler will
optimize your code for speed and efficiency.

Michael Covington

Pascal, BASIC, or C programmers who
start using Prolog are often dismayed to
find that the language has no FOR,
. WHILE, or REPEAT statements. That is,
there is no direct way to express iteration.
UAREORE _ Prolog allows only two kinds of repetition:
backtracking, in which multiple solutions are sought
for a single query, and recursion, in which a proce-
dure calls itself.

As it turns out, this doesn’t restrict the power of
the language. In fact, Turbo Prolog recognizes a spe-
cial case of recursion—called tail recursion—and
compiles it into an interative loop in machine lan-
guage. This means that although the program logic
is expressed recursively, the compiled code is as effi-
cient as it would be in Pascal or BASIC.

This article explores the art of coding repetitive
processes in Prolog. As we’ll see, recursion is in most
cases clearer, more logical, and less error-prone than
the loops that conventional languages use. But
before we explore recursion, let’s look at
backtracking.

SQUARE ONE

BACKTRACKING

When a procedure backtracks, it looks for another
solution to a query that has already been solved. A
clause that is capable of generating multiple solu-
tions is said to be nondeterministic. You can exploit
backtracking as a way to perform repetitive
processes.

Consider the program in Listing 1 (BAKTRAK.
PRO). The predicate country simply lists the names
of various countries, so that a goal such as

country(X)

has multiple solutions. The predicate print__
countries then prints out all of these solutions. It is
defined as follows:

print_countries:-
country(X),
write(X),
nl,
fail.
print_countries.

Look at the first clause. It says: “To print coun-
tries, find a solution to country(X), then write X and
start a new line, then fail.” By fail we mean “assume
that a solution to the original goal has not been
reached, so back up and look for an alternative.”
The built-in predicate fail always fails, but we could
equally well force backtracking by using any other
goal that would always fail, such as 5 =2 + 2 or
country(shangri__la).

The first time through, X is instantiated to eng-
land, which is printed. Then, when it hits fail, the
program backs up. There are no alternative ways to
satisfy nl or write(X), so the program looks for a dif-
ferent solution to country(X). The last time coun-
try(X) was executed, it gave a value to the previously
uninstantiated variable X. So before retrying this
step, Turbo Prolog de-instantiates X. Then it can
look for an alternative solution for country(X) and
instantiate X to a different value. If it succeeds, exe-
cution goes forward again and the name of another
country is printed.

Eventually, the first clause runs out of alternatives.
When this happens, execution falls through to the
second clause, which succeeds without doing any-
thing further. In this way the goal print__countries
terminates with success. Its complete output is:
england
france
germany
denmark
True
If the second clause were not there, print__countries
would terminate with failure, and the final message
would be False. Apart from that, the output would be
the same.

Backtracking is a good way to get all the alterna-
tive solutions to a goal. But even if your goal doesn’t
have multiple solutions, you can still use backtrack-
ing to introduce repetition. One way to do this is to
simply define the two-clause predicate:

continued on page 86

January/February 1988 TURBO TECHNIX 85

TURBO PROLOG

TAIL RECURSION

continued from page 85

repeat.

repeat :- repeat.

repeat is a nondeterministic
clause; it tricks Prolog’s

control structure into thinking it
has an infinite number of differ-
ent solutions. (Never mind how—
after we discuss tail recursion
you'll know why it works.) The
purpose of repeat is to allow back-
tracking ad infinitum.

Listing 2 (TYPEWRIT.PRO)
shows how repeat works. The
procedure typewriter accepts
characters from the keyboard and
prints them on the screen until
the user types Enter (ASCII code
13):
typewriter:-

repeat,

readchar(C),

write(C),

char_int(C,13).
It works as follows: Execute repeat
(which does nothing), then read a
character into the variable C, write
C and check whether the ASCII
code of Cis 13. If so, you're fin-
ished. If not, backtrack and look
for alternatives. Neither write nor
readchar generates alternative
solutions, so backtrack all the way
to repeat, which always has alter-
native solutions. Now execution
can go forward again, reading
another character, printing it, and
checking whether it is ASCII 13.

Note that the character C gets
de-instantiated when we backtrack
past readchar(C), which instan-
tiated it. De-instantiation is vital
when backtracking is used to
obtain alternative solutions to a
goal, but de-instantiation also
makes it hard to use backtracking
for any other purpose. The reason
is that although a backtracking
process can repeat operations any
number of times, it can’t
“remember” anything from one
repetition to the next. All variables
lose their values when execution
backtracks through the steps that
instantiated them. Therefore, it is
necessary to use the database to
store intermediate results (such as
the current value of the counter)
within a repeat loop.

RECURSION

This leads to the other way of
expressing repetition—recursion. A
recursive procedure is one that
calls itself. Recursive procedures
have no trouble keeping records
of their progress because coun-
ters, totals, and intermediate
results can be passed from each
iteration to the next as arguments.
The logic of recursion is easy to
follow if you allow yourself to
forget, for the moment, how com-
puters work. (Prolog is so different
from machine language that
ignorance of computers is often
an asset to the Prolog program-
mer.) Forget that the program is
trekking through memory
addresses one by one, and
imagine instead a machine that
can follow recipes like this one:

To find the factorial of a

number N:

If N is 1, the factorial is 1.

Otherwise, find the factorial of

N-1, then multiply it by N.

That is: To find the factorial of
3 you must find the factorial of 2,
and to find the factorial of 2 you
must find the factorial of 1. Fortu-
nately, you can find the factorial
of 1 without referring to any other
factorials, so the repetition doesn’t
go on forever. When you have it,
you multiply it by 2 to get the fac-
torial of 2, then multiply that by 3
to get the factorial of 3, and you're
done. The Prolog code for this is:
factorial(1,1).
factorial (X, FactX):-

Xz 1,

Y = X1,
factorial(Y,FactY),
FactX = X*FactY.

The second clause states X > 1
as a condition, so that at most
only one clause will apply for any
given number. Listing 3
(FACT1.PRO) shows the complete
program.

But wait a minute, you say. How
does the program execute factor-
ial while it’s in the middle of exe-
cuting factorial? If you call factor-
ial with X equal to 3, factorial
then calls itself with X equal to 2.
Does X then have two values, or
does the second one just wipe out
the first, or what?

The answer is that the compiler
creates a new copy of factorial so
that factorial can call itself as if it
were a completely separate proce-

dure. The executable code doesn’t
have to be duplicated, of course,
but the arguments and internal
variables do. This information is
stored in an area called a stack
frame, which is created every time
a procedure is called. When the
procedure terminates, the memory
occupied by its stack frame is
returned to the heap, and execu-
tion continues in the stack frame
that was previously being used.

Recursion has two advantages.
First, it can express algorithms
that can’t conveniently be
expressed any other way. Recur-
sion is the natural way to describe
any problem that contains within
itself another problem of the
same kind. Examples include tree
searches (a tree is made up of
smaller trees) and recursive sort-
ing (to sort a list, partition it, sort
the parts, and then put them
together).

Second, recursion is logically
simpler than iteration. Recursive
algorithms have the structure of
an inductive mathematical proof.
Our recursive factorial algorithm
above describes an infinite
number of different computations
by means of just two clauses. This
makes it easy to see that the
clauses are correct. Further, the
correctness of each clause can be
judged independently of the
other.

But recursion has one big draw-
back: it eats memory. Whenever a
procedure calls itself, the state of
execution of the calling procedure
has to be saved on the stack. This
means that if a procedure calls
itself 100 times, 100 different ver-
sions of its stack frame have to be
stored at once. The memory of
the IBM PC accommodates at
most 300 or 400 stack frames
(depending on the amount of
available memory, the number of
arguments being passed, whether
there are nondeterministic calls
within the recursive call, etc.) So
what do you do if you want to
repeat something more than 400
times?

TAIL RECURSION

There’s a special case in which a
procedure can call itself without
storing a stack frame. Recal<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>