
and more
Complete Table of Contents on Page 3

Also in this Issue
An Introduction to CP 1M, Part 3 by Jake Epstein, , , , , , , , , . , , Page 12
North Star Topics by Randy Reitz, , , , , , . , , , . , , .. , , . Page 18
Linear Programming - Part 2 by William Yarnall """"""" Page 24

AddrQ~~ina thQ Cursor, Part 2 bv Larry Stein ".,.,"""""'" Page 30
• Registered trademark of Digital Research

26 MEGABYTES . " , '~

¥ '\'" ~t

$4995. \.
\

"

Inn'~nl\l S-100 microcomputer systems can easily handle 1'QO million ";'
L.I"""uu~,,, Morrow Designs™ now offers the first 26 megbMte hard djsK. '

rT)emory for S-100 systems- the DISCUS M26™ Hard Dis~, Syslem,.
" 'It has 26 megabytes of useable memory (29 megabytes

dhformatted). And irs expandable to 104 megabyt~s. '\.
, The DISCUS M26™ system is delivered comp~~t~-

h 29 megabyte hard disk drive, controller, cabtes and QPE;lrating syste. \-for
,just $4995. Up to three additional drives can be added;\$4495 apiece.
) , The DISCUS M26'fM system features the Shugart SA4>08
W~irichester-type sealed media nord disk drive, in a handsome metal cabjQ,,'
. ith fan and power supply. , ~ } .~
t The single-bomrd 5-100 controller incorporates. intelli-

gence to supervise all data transfers, communicating with the CPU via I ~~ •

three I/O ports (command, status, and data). The controller has the abili to,
generate interrupts at the completion of each command to increase syste ': .-_
throughput. There is a 512 byte s~t6r buffer on-oocrd And each sector can ., e
ihdividually wrlte-protected for data base security., t\

" ' 'The operating system furnished with DISCUS M26™; ,
, sYstems is the widely accepted CP/M· 2.0. \ \ ~

N ""' ,," ,See the biggest, most cost-efficient memory ~ver intr,~'
, duced for' S-100 systems, now at your10cal computer shop. If uncvouoble , ~f ~

locally, write Morrow Designs~ 5~2 ~ Centr~I.Av~nue, Richmond, CA 948q4lr;\1~
Qr call (415) 524-2101, weekda 10-5 PaCifiC Time. . ./'\ . .

;/. ,r.
•• 'CP/M is a 6ademark of Digital Research,

/'

, ,'. <;i) MORROWDESIGNS™

Th.nker~™
".

Volume 1 Number 3

Editorial Correspondence should be sent
to: S-100 MICROSYSTEMS, BOX 1192,
Mountainside, NJ 07092.

STAFF
Sol Libes

publisher / editor

Russell Gorr
executive editor

Jacob Epstein
CP /M* editor

Jon Bondy
Pascal editor

Don Libes
assistant editor

Lennie Libes
Susan Libes

subscriptions/ office manager

S-100 MICROSYSTEMS is seeking articles
on S-100 software, hardware and applica
tions. Program listings should be typed on
white paper with a new ribbon. Articles
should be typed 40 characters/inch at 10
pitch. Author's name, address and phone
number should be included on first page
of article and all pages should be num
bered. Photos are desirable and should
be black and white glossy.

Commercial advertising is welcomed.
Write to S-100 MICROSYSTEMS, Box 1192,
Mountainside, NJ 07092, or phone Sol
Libes at 201-277-2063 after 4 PM EST.

*TMI(Digital Research

May / June 1980

IN THIS ISS(]E
An Introduction to CP/M, Part 3 0 •• 12

by Jake Epstein
North Star Topics 0 •••• 0 ••••• 18

by Randy Reitz
Linear Programming - Part 2 0 ••••• 24

by William Yarnall
Addressing the Cursor, Part 2 ... 0 •••••••••• 30

by Larry Stein
Is Your Computer Out of Sorts? 35

by Chris Terry
No More Waiting for Sorts ... 0 •••••• 0 •••••• 43

by Robert L. Sheffield

DEPARTMENTS
Editor's Page 0 •••• 0 •••• 0 •••• 0 •••••••• 4
News & Views 0 •••••• 0 •••• 10
Announcements 0 •••••••••••• 0 •••••• 10
Software Di rectory 0 ••••••••• 0 •••••• 34
Letters to the Editor 0 •• 0 • 0 ••••••••••• 48
New Products 0 ••••••••• 0 •••••••• 58
Advertiser Index .. 0 • 0 •••••••••••• 0 •••••••• 58

5-100 MICROSYSTEMS (USPS 529-530) is published six times
per year for $9.50 per year (U.S.A.) by LlBES, INC" 995
Chimney Ridge, Springfield, N.J. 07081. Controlled circula
tion postage paid at Westfield, N.J.
POSTMASTER: Send address changes to 5-100 MICRO
SYSTEMS, P.O. Box 1192, Mountainside, N.J. 07092.

Copyright © 1980 by Ubes, Inc.
All rights reserved, reproduction prohibited without permis
sion.

The
Editor's Page
by Sol Libes

The 8-100 Bus: Past, Present,
andFuture
Part I
By Sol Libes

This is the first of a two-part article
analyzing the S-100-based computer
systems picture. The S-100 bus is cur
rently the most widely used microcom
puter system bus and hence; I feel, is
deserving of an in-depth analysis of
where it came from, where it is present
ly, and what its future looks like. I
would like to thank the following in
dividuals who have spoken to me at
great length on this topic: Dr. Bob
Stewart, IEEEj Bill Godbout, Godbout
Electronics; George Morrow, Mor
rowlrhinker Toys; Steve Edelman,
Ithaca intersystems; and Larry Stein,
Computer Mart of New Jersey.

LATE IN 1974, Ed Roberts, then
President of a small Albuquerque,

New Mexico company by the name of
Micro Instrumentation and Telemetry
Systems (better kriown as MITS) called
Les Solomon, Technical Editor of
Popular Electronics magazine. Ed told
Les that he had designed a microcom
puter system using the new Intel 8080
microprocessor IC, and that MITS
wanted to produce it as a kit aimed at
hobbyists. MITS was than a small com
pany of about a dozen people who had
previously attempted, unsuccesfully,
to make and sell radio telemetry kits
for model rockets and programmable
calculator kits. Popular Electronics had

4

Reprinted, with permission, from March 17,
1980 issue of INFOWORLD, 530 Lytton Ave.,
Palo Alto, CA 94301 Subscription $ 18/yr.

helped Ed in promoting these failures
in the past; therefore, he turned to
them again with his new computer kit
project. Two earlier kits based on the
Intel 8008 microprocessor had met
with some limited acceptance." MITS,
in late 1974, wasdoing poorly, and the
microcomputer kit was, as Ed himself
later admitted "a sort of last hope."
Ed projected that they could sell 300

of these computer kits in 1975. Les
Solomon thought the project was
great and asked Ed to bring the work
ing prototype to New York City for a
demonstration and a photo session. PE
agreed to run a feature construction
type article, including schematic
diagrams. Ed, with Les' help, dream'nt
up a name for the computer. They
called it the "Altair 8800." Ed brought
the prototype unit to NYC, but
something happened in transit, and

Those interested in the early history of
Personal Computing (1964 to 1974)
should consult my article, "The First
Ten Years of Amateur Computing,"
which appeared in the July, 1978,
issue of Byte magazine.

the unit would not work. Les had
faith, and decided to run the article
anyway.

THE REST OF THE STORY is
pretty well known. The article

appeared in the January 1975 issue of
Popular Electronics, which was actual
ly published and distributed in
December, 1974. At the end of the ar
ticle it was mentioned-that MITS was
offering a parts kit for the Altair 880
for $395. At the time, Intel was charg
ing $350 for a single 8080 Ie. The
Altair price seemed like an absolute
steal. Further, MITS offered a com
plete PC board set for the Altair for
only $77, and a complete set of parts
(less the cabinet, power supply and
front panel switches) for only $189.
How cheap could you get?
It was like opening the flood gates.

Within one week after the article ap
peared, MITS had received 200 orders
for the Altair; later that year, they
received 300 orders in one afternoon.
By the end of February, they had 2000
orders and still all they had was one
prototype Altair. Working day and
night, with the phones constantly jam
med, they managed to ship some
board sets by early April; in May, they
started shipping complete kits.

S-100 MICROSYSTEMS

THE ALTAlR-6000 used a 100-
pin bus that was created by an

anonymous draftsman, who selected
the connector from a parts catalog
and arbitrarily assigned signal names
to groups of connector pins. Originally
known as the "Altair BUS," its name
was changed by other manufacturers
of compatible products to the "8-100
Bus." The Altair-8800 came with a
lK·RAM card and promises from
MITS of additional boards for I/O in
terfacing, memory expansion and. the
like. But the owners of Altairs were
desperate for these boards so that
they could get their systems to do
something.
This led to the introduction of 8-100

peripheral plug-in boards by other
suppliers. The first company to in
troduce these boards was a small
z-man operation in a 1,000 square foot
shop in Berkeley, California. Named
Processor Technology Company, it
was run by Gary Ingram and Bob
Marsh. Most of their boards were
designed by Lee Felsenstein, an in-
dependent electronics consultant.
Lee's designs included the 3P + S liD
board, which allowed the interfacing
of interminals, printers, etc., to the
Altair, and the VD~-l, an amazing
device which permitted the use of - a
television monitor to provide alpha
numeric and graphics output at very
low cost. PTCo also introduced RAM
and ROM boards, as well as a software
package (appropriately called
"Package #1") which made the Altair a
real computer rather than just a toy.
PTCo also experienced incredible
growth.

IN LATE 1975, Bill Gates, Paul
Allen, and some cohorts wrote a

small Basic language interpreter pro
gram in 8080 code with a cross
assembler on a large computer
system. They took a paper tape of the
program from their location in Seattle
down to MITS in Albuquerque, loaded
it into an Altair, and with only a few
patches, got it to work the same day.
Later, Bill and Paul formed MicroSoft,
Inc., to market their software directly.
The resuh was that by the end of
1975, a person oould build a CPU
mainframe· for a little over $1,000, to
which he could attach a terminal and
printer and run Basic, Assembler,
Debugger, and even do basic word

6

processing. This enabled MITS, during
1975, to seD about 8.000 AItair.s800
computers.
At the end of 1:915, Imsai Manufac

turing Corporation introduced their
own 8080 CPU Which also used the
same bus structUte and a similar
operator panel. More rugged r with a
larger power s1:lpply, it was con
sidered more professional than the
Altair so that, although it cost $100
more, it started to out-sell the Altair to
both hobbyists and professional users.
Imsai was also started as a garage-type
operation by Bob Millard, a consulting
electronics engineer.

OVER A DOZEN MORE 8-100
board vendors came onto the

scene in 1976. Cromemco (started in
Harry Garland's garage), building the
Dazzler," a color television controDer
for the Altair and Imsai computers.
TDL (Technical Design Labs - later to
become XITAN) started in mid 1976 in
Roger Amidom's basement with a Z-80
CPU card and a powerful monitor
software program. By the end of 1976,
there were a half dozen different
S-100 mainframes being sold, and
close to 30 suppliers of 8-100 plug-in
boards. Over 30,000 S-100 systems
were sold in 1976.
Meanwhile, MITS began thinking of

themselves as "the mM of the
microcomputer business." They began
to redirect their marketing to com
mercial and business users: and
started to set up a dealer network that
sold Altair products exclusively. They
introduced a system package for
business users.

BUl', MIT8 LEARNED the hard
way 'that there was a big dif

ference between a hobbyist system
and a business system. Now 'With over
100 employees, MITS was having dif
ficulty developing reliable memory,
liD, and disk storage systems. Even
worse; the development of business
software was proving an even more
formidable task than they had envi
sioned. By early 1977, Ed Roberts
realized that MITS did not have the
financial" wherewithall for the task.
FUrther, Imsai's better mainframe and
the new PTCo Sol computer (named
after Las Solomon), CrOmemco, and
TDL computers were h.wng an im
pact on the sales of the Ah8tr; An at-

tempt by MITS to broaden its product
line with an Altair-6800 computer was
a failure. In addition, several products
(e.g. a 4K dynamic RAM board) proved
very unreliable, and caused an in
credible number of returns to the fac
tory.

As MITS SOUGHT to move from
kits to assembled business sys

tems, they found that their production
problems, restrictive marketing
organization (limited to less than 60
dealers by early 1977), and the in
creased competition were causing
financial problems. TherefQl'e, in July
1977, Ed Roberts sold MITS to Partec
Computer Corp. Pertec, a ron
glomerate with high overhead, raised
the Altair prices, stopped all kit pro
<iuction, and ceased aU promotion to
the personal computer market,
Jmsai, PTCo, TOL, Cromemeo, North

Star, Vectorgr-aphics, and several
other $-100 computer system makers
were now selling systems through
over ,500 personal computer stores
world-wide. As Pertec smq(ht to turn
the Altair into a serious business
oriented system, a dark cloud ap
peared in the form of low-tost in
tegrated computer systems from Com
modore (PET) and R.adio Shack
(TR8-8O),- which had become '_vailable
by the end of 1977. By year-end,
Pertec gave up the ghost and ceased
production of aU Altair products.
Despite this event, over SO,()()o 8-100
systems were sold in 1971

As MO. BE AND MORE manufac
turers introduced 8-100 main

frames and peripheral pl~in boards,
it became apparent that compatIbility
problems were developing. In many
cases, 8-100 boards would operate in
some 8-100 systems and notin others.
The problems derived from the fact
that MITS had only loosely defined the
electrical specifications of the bus and
had left 19 of the 100 pins undefined.
.<\Iso, 8-100 manufacturers started to
took to the future. They realized that
some redesign of the S-l00 bus was re
quired to accommodate the new 16-bit
microprocessors and expanding
systems capabilities, i.e., multi
processing, higher speed operation,
and enhanced interrupt vectoring.
The result was that in mid 1978,

several companies (most notably Mer-

S-100 MICROSYSTEMS

ELI R21/0 ••• Th. 5·100 ROM,
RAM (, VO BOQrd

• S-100 BUS .3 Serial 1/0 Ports
• 2K ROM • 1 Parallel 1/0 Port
• 2K RAM • 4 Status Ports
• ROM Monitor (Operating System)

ELECTRONIC CONTROL TECHNOLOGY's R21/0 is an
S-100 Bus I/O Board with 3 Serial I/O Ports (UART's), 1
Parallel I/O Port, 4 Status Ports, 2K of ROM with Monitor
Program and 2K of Static RAM. The R21/0 provides a conven
ient means of interfacing several I/O devices, such as - CRT
terminals, line printers, modems or other devices, to an S-1 00
Bus Microcomputer or dedicated controller. It also provides for
convenient Microcomputer system control from a terminal
keyboard with the 8080 Apple ROM monitor containing 26
Executive Commands and I/O routines. It can be used in
dedicated control applications to produce a system with as few
as two boards, since the R21/0 contains ROM, RAM and I/O.
The standard configuration has the Monitor ROM located at
FOOO Hex with the RAM at F800 Hex and the I/O occupies the
first block of 8 ports. Jumper areas provide flexibility to change
these locations, within reason, as well as allow the use of
ROM's other than the 2708 (e.g. 2716 or similar 24 pin de
vices). Baud rates are individually selectable from 75 to 9600.
Voltage levels of the Serial I/O Ports are RS-232.

ELl'·
ELECTRONIC CONTROL TECHNOLOGY

8080 APPLE MONITOR
COMMANDS

A -Assign I/O
B - Branch to user routine A-Z
C - Undefined
D - Display memory on console in Hex
E - End of file tag for Hex dumps
F -Fill memory with a constant
G -GOTO an address with breakpoints
H -Hex math sum & difference
I - User defi ned
J -Non-destructive memory test
K - User defined
L - Load a binary format file
M - Move memory block to another

address
N -Nulls leader/trailer
o - User defined
P -Put ASCII into memory
Q - Query I/O ports: QI (N)-read I/O;

QO(N, V)-send I/O
R - Read a Hex file with checksum
S -Substitute/examine memory in Hex
T - Types the contents of memory in

ASCII equivalent
U -Unload memory in Binary format
V - Verify memory block against another

memory block
W - Write a checksummed Hex file
X - Examine/modify CPU registers
Y - 'Yes there' search for 'N' Bytes

in memory
Z - 'Z END' address of last RlW memory

location

Specializing in Quality Microcomputer Hardware
Building Blocks for Microcomputer Systems, Control and Test Equipment

card Cages, Power Supplies, Mainframes, CPU's, Memory, I/O

763 Ramsey Ave., Hillside, N.J. 07205

S-100 MICROSYSTEMS

(201) 888-8080

7

• les
Software for most popular8080/Z80' computer disk systems including NORTH STAR, ;COM, MICROPOLlS, DYNABYTE DB812
& DBBI4,EXIDY SORCERER, SD SYSTEMS, ALTAIR, VECTOR MZ, MECA, 8" IBM, HEATH H17 & H89, HELlOS,
''''SAI VDP42 & 44, REX, NYLAC, INTERTEC SUPER-BRAIN, VISTA VBO and V200, TRS-80' MODEL I and MODEL II, ALTOS,
OHIO SCIENTIFIC, DIGI-LOG, KONTRON PS180, IMS 5000 DISKETTE formats and CSSN BACKUP cartridge tapes.

CP/M" VERSION 2 FOR TRS·aO MODEL II NOW AVAILABLE

~/'t::::
o CP/M· FLOPPY DI~K OPERATING SYSTEM - Olgital

Research's operatmg system configured lor many
popular micro-computers and disk systems:
System Version Price
North Star Single Density 1.4 145/25 v
North Star Double Density 1.4 145/25
North Star Double/Quad 2.x 170/25
ICOM Micro-Disk 2411 1.4 145125
tCOM 3712 . . 1.4 170/25 v·
ICOM3812........... ..1.4 170125·
MilS 3202lAltair 8800 . . 1.4 145/25
HeathH8 + H17. . 1.4 145/258
HeathH891.4 145/2518
TRS-SO Model I . . 1.4 145/25 ®
TRS-SO Model II 2.x 170/25
Processor Technology Helios II .. 1.4 145/25
Cromemco System 3 1.4 145/25
Intel MDS Single Density. . .1.4 145/25
Intel MDS Single Density 2.x.. .170125
Intel MDS SOO Double Density .. ~.x 200/25
Intel MDS 230 Double Density 2.x 200/25
Micropolis Mod I . . . 1.4 145/25 v
Micropolis Mod II 1.4 145125 v
The following conligurations are scheduled lor re
leeseduring the first half 011980:
North Star Double/Quad + Corvus 2.x .. 250/25
North Star Horizon HD-l z.x 250/25
Ohio Scientific C3 a.x 200/25
Ohio Scientific C3-B . . 2.x 250/25
Ohio scienunc C3-C ax 250125
Micropolis Mod II 2.x 200/25
Mostek MDX STD Bus System z.x 350/25""
ICOM3e12 . .. 2.x 225/25'
ICOM 4511/Pertec 03000 z.x , .375/25 * +
TRS-eo Model II + Corvus. . .2.x 250/25

~ ~~o l?n~V!~~:r~!~~ ;~~~~~t~~;n~n~~~!~~:~!11a~ii~i~

lies: (2) Z80 relocating assembler, Zifog/Mostek mne
monics, conditional assembly and cross reference

:~~el;t~~ah~~it~:~ Wleli~.k~~~ .'~~~~r .~r~.d.u.C.i~i,;~$~O

o DISTEL - Disk based disassembler to Intel e080 or
TDL/Xitan Z80 source code, listing and cross refer-

~~~~ ~~~o~~te.1 .~r .. ~~~~i.t~~. ~~~~~:. :~~. :~~j';~ 
o DISILOG - As DISTEL to Zilog/Mostek mnemonic 
® files. Runs on zao only Sl5/$10 
o BMALleO Structured Macro Assembler Language - 
® Package 01 powerful general purpose text macro 

processor and SMAL structured language complier. 
SMAL is an assembler language with IF-THEN-ELSE, 
LOOP-REPEAT-WHILE, DO-END, BEGIN-END con 
structs .. $75/$15 ------------ o tiny C - Interactive Interpretive system lor teaching 

® structured programming techniques. Manual includes 
lull source listings. . . "05/$40 

OliOS C COMPILER - Supports most features of ten- 
8 guage, Including Structures, Arrays, Pointers, recur 
<D slve function evaluation, overleys. Includes linking 

~ 

loader, library manager, and library containing gen- 

~

eral purpose, file 110, and floating point functions, 

r lacks initializers, statics, floats and longs. Docu 
mentation includes "The C PROGRAMMING LAN- 
GUAGE" by Kernighan and Ritchie "25/$20 

o WHITESMITHS C COMPILER - The ultimate In evs 
® tems software tools. Produces faster code than a 
® pseudo-code Pascal with more extensive teenmee. 

Conforms to the full UNIX· Version 7 C language, de 
scribed by Kernighan and Ritchie, and makes even 
abte over 75 functions for performing 1/0, string 
manipulation and storage allocation. linkable to 
Microsoft REL liles. Requires 60K CP/M .... $es01$3O 

MICRO$O" 
o BASIC·aO - Disk Extended BASIC, ANSI compatible 
® with long variable names, WHILEl'NEND, chaining. 
® variable length Ii Ie records. . ... , ... $325/$25 
o BASIC COMPILER - Language compatible with 
@ BASiC-aD and 3-10 times faster execution. Produces 
® standard Microsoft relocatable binary output. In- 

cludes MACRO-80. Also linkable to FORTRAN·80 or 
COBOL -60 code modules . . . $350/$25 

o FORTRAN·eO - ANSI 66 (except for COMPLEX) plus 
@ many extensions. fncludes relocatable object com- 

@) ~:~eJe~j~~cgR~~ge[~e~b~:~~wilth .~~~~.g.e~ ::'~~/$i~S 

o COBOL-eO - Level 1 ANSI '74 standard COBOL plus 
® most of level 2. Full seqyenlial. relative, and in- 

@) f:NK;~~li~G~ub~o~p~~~.v~~a~~~~~iun~~t~· ~;fJ~g: 
CALL, COPY. SEARCH, 3-dimensional arrays, com 
pound and abbreviated conditions, nested IF. Power 
ful interactive screen-handling extensions. Includes 
compatible assembler, linking loader, and retccat 
able library manager as described under MACRO-SO 

.. $7001$25 
o MACRO-80 - 80aO/Zeo Macro Assembler. Intel and 
@ Zilog mnemonics supported. Relocatable linkable 

® ~~~u~'iS~~~i1i~i~S ~~b;l~rJe~~nager and Cr.o.s$14~i~~~ 

o XMACRO·86 - 8086 cross assembler. All Macro and 
® ut.ilily feature.s of MACRO-eO package. Mne,monics 

slightly modified from Intel ASM86. Compatibility data 
sheet available. . .$275/$25 

o EDIT-80 - Very last random access text editor for text 
@ with or without line numbers. Global and intra-line 

commands supported. File compare utility included. 
.... $89/$15 

6~:$1$'~' 
~priC.,srelleCldl'lrjb"IIOnOn8"alngleden'I!Ydl'k.lles 

II alormat Is leQuested which reculres Bdditional diskelles. 
a surcharge 01 S8. per addilional dlskelle will be added. 
A ,u'c~8'ge of $25 witt be added to, 101lw8r& un CSSN 
formal DC 3QOXL elrl,idge,. 

All Lifeboat programs require CPfM, unless otherwise stated. 

7=h=:~ 
o KBASIC - Microsoft Disk Extended BASIC with all 
<D KISS facilities, integrated by implementatio~ 01 nine 

additional commands in language. Package Includes 
KISS. REL as described above, and a sample mail 
list program . $585/$45 
To licensed users of Microsoft BASIC-80 (MBASIC) 

... $435/$45 

o XYBASIC Interactive Process Control BASIC - Full 
disk BASIC features plus unique commands to han 
dle bytes, rotate and shift, and 10 test and set bits. 
Available in Integer, Extended and ROMabie versions. 
Integer Disk or Integer ROMabie $295/$25 
Extended Disk or Extended ROMabie $3951$25 ------------- o BASIC UTILITY DISK - Consists of: (1) CRUNCH-14 

® - Compacting utility to reduce the size and increase 
the speed of programs in Microsoft BASIC and TRS- 
80 BASIC. (2) DPFUN - Double precision sub~outin.es 
for ccmpuunq nineteen transcendemal tuncucns In 
cluding square root, natural log, log base 10, sin, arc 
sin, hyperbohc sin, hyperbolic arc sin, etc. Furnished 
in source on diskette and cccumentancn ... $501$35 

o STRING/80 - Character string hendling plus routines 
® for direct CP/M BOOS calls from FORTRAN and other 

compatible Microsoft languages. The utility library 
contains routines that enable programs to chain to 
a COM file, retrieve command line parameters. and 
search file direclories with lull wild card facilities. 
Suppfied as linkable modules in Microsoft format. 

....... $951$20 
STRING/eO source code available separately $295/n.a. 

o T~E STRING BIT - FORT~AN character string han 
dhng. Routines to find, ftll, pack, move, separate, 
concatenate and compare cnaracter strings. This 
package completety eliminates the problems assc 
elated with character string handling in FORTRAN. 
Supplied with source . $651$15 

o VSORT - Versatile sort/merge system for fixed length 
® records with fixed or variable length fields. VSORT 

.. I can be used as a stand-alone package or loaded and 

~

('''1J called as ~ subroutine from CB.AStC-2. When. used as IV' _;:ra subroutine. VSORT maximizes the use of buffer 
/ space by saving the TPA on disk and restoring it on 

completion of sorting. Records may be up to 255 
bytes long with a maximum of 5 fields. Upper/lower 
case translation and numeric fields supported. 

.... $175/$20 
o CPM/374X - Has full range of functions to create or 

re-name an IBM 3741 volume, display directory infor 
mation and edit the data set contents. Provides full 
file transfer facilities between 3741 volume data sets 
and CP/M files. . .... $1951$10 

o BSTAM - Utility to link one computer to another also 
® equipped with BSTAM. Allows file transfers at lull 

data speed (no conversion to hex), with CRC block 
control check lor very reliable error detection and 
automatic retry. We use it! It's great! Full wildcard 
expansion to send * .COM, etc. 9600 baud with wire. 
300 baud with phone connection. Both ends need 
one. Standard and ®versions can talk to one another. 
....................................... $150/$5 ------------- O'WHATSIT?' Interactive data-base system using as- 
sociative tags to retrieve information by subject. 
Hashing and random access used lor fast response. 
Requires CBASIC-2 . . .$175/$25 

o CBASIC-~ Disk Extended BA~IC - Non-inte.racti.ve ~ :~~E';~~t~i~".;,Cut· K~~t~a~:s~a::~c~~i~~~ :~r~~~:et~ 
@ BASIC With pseudo-code comptrer and. ~un-I~me In- t sorted reporls with numerical summaries or mailing 

terpreter. Supports. l.ull file .control. chaining. mtecer labels. Comes with sample appficaticns. including 
and extended preCISIon venables, etc $120/$15 _ ...J1"! Sales Activity. Inven~ory, Payables, Receivables, lP~, Check Register. and Client/Patient Appointments, etc. 
MICRO FOCUS ~ Requires CBASIC-2. Supplied in source ... $295/$20 

o STANDARD CIS COBOL - ANSI '74 COBOL stand- '/ 0 GLECTOR - General Ledger option to SELEC!OR 
<D ard compiler fully validated by U.S. Navy tests to III-C2. I~terachve syslem provides fo~ customized 

ANSI level 1. Supports many features to level 2 in- COA. Unique chart of t~ansactlon types Insure proper 
cluding dynamic loading of COBOL modules and a double entry bookke~plng. Generates balance sheets. 
fuU·'SAM file lacility. Also, program segmentation. P&L statements and journals .. Two year re.c~rd allows 
interactive debug and powerful interactive extensions for statement of changes In unencrer position report. 
to support protected and unprotected CRT screen Supplied in source. Requires SELECTOR III-C2, 
formatting from COBOL programs used with any CBASIC-2 and 52K system. . 1250/$25 

• dumb terminal . . .. $8501$50 
o FORMS 2 - CRT screen editor. Output is COBOL data 
@ descriptions for copying into CIS COBOL programs. 

Automatical!y creates a query and update program 01 
indexed files using CRT protected and unprotected 
screen formats. No programming experience needed. 
Output program direclly compiled by CIS COBOL 
(standard) $200/$20 

~~ iMeedl 
EIDOS SYSTEMSC ~ . 

o KISS - Keyed Index Sequential Search. Offers com 
@ plete ~ulti-Keyed Index Sequential and Direct Ac 

cess hie management. Includes built-in uhlily rune 
tions for 16 or 32 bit arithmetic,string/integerconver 
sion and string compare. Delivered as a retocatable 
linkabte module In Microsoft format for use with 
FORTRAN-SO or COBOL-eO, etc. . $3351123 

o CBS - Configurable Business System is a compre 
® hensive set of programs for defining custom data 

~ 

tues and application systems without using program 
ming language such as BASIC, FORTRAN, etc. Mul- 

~ \6/7tiPle key fields for each data file are supported. Set-up 
\~ . program customizes system to user's CRT and printer. 

Provides fast and easy interactive data entry and 
retrieval with transaction proceuing. Reporl genera 
tor program does complex calculations with stored 
and derived data, record selection with multiple cri 
teria, and custom formats. Sample Inventory and mail 
Ing list systems included. No .uppor1 language re- 
quired . . $295/$25 

Prices and spec ilications subject to change without not ice. 

Ut.boat Assoclat.s, 2248 Broadway. N.Y .• N.Y. 10024 (212) 580.0082 Telex: 220501 

MICRO DATA BASE SYSTEMS 
o HOSS - Hierarchical Data Base System. COOASYL 

oriented with FilEs, SETs, RECORDs and ITEMs 
which are all user defined. ADD, DELETE, UPDATE. 
SEARCH, and TRAVERSE commands supported. SET 
ordering is sorted, FIFO, liFO, next or prior. One to 
many set relationship supported. Read/Write protec 
tion at the FILE level. Supports FILEs which extend 
over multiple lIoppy or hard disk devices. 

o MOBS - Micro Data Base System. Full network data 
base with all features of HDBS plus mufti-level Read/ 
Write protection tor FILE, SET, RECORD and JTEM. 
Explicit representation of one to one, one to many, 
many to many, and many to one SET relationships. 
Supports multiple owner and multiple record types 
within SETs. HOBS files are fully compatible. 

o MOBS-DRS - MOBS with Dynamic Restructuring Sys 
tem option which allows altering MOBS data bases 
when new ITEMs. RECORDs, or SETs are needed 
without changing existing data. 
HoBS-Z80 ver.lon $250/$40 
MDBS-Z80 version . $7501$40 
MDBS-ORS-Z80 version $e50/$50 

80eO Version available at $75, extra. 

~ 
(6 When I~~~~~~~~ ifs~~~Yb~I~~.Of the 

70 HDBS and MOBS manuals purchased alone come 
without specific language interface manuals. Manuals 
are available for the following Microsoft languages: 
11 MBASIC 4.51, 2) BASIC-80. 5.0, 3) Compiled 
8ASIC-BO or FORTRAN-BO, 4) C080L-80, 5) MACRO- 
80. . .$NA/$10 ------------- c:ztt:_~/I-o~ ClA-e- 
MICROPRO d0~! 

o SUPER-SORT I - Sort, merge, extract utility as ebsc 
@ lute executable prowam or linkable mooute in Micro 

soft formal. Sorts fixed or variable records with data 
in binary, BCD, Packed Decimal, EBCDIC. ASCII, 
lIoating & fixed point. exponential, field justified, etc. 
Even variable number of fields per record! . $225/$25 

o SUPER-SORT II - Above available as absolute pro- 
(9 gram only . . $175/$25 
o SUPER·SORT III - As II without SELECT/EXCLUDE 
@. . ... $125/$25 
o WORD-STAR - Menu driven visual word processing 
<D s.ystem lor use wilh standard ~~r.minals. Text to-mat- 

tlng performed on screen. sacutues for text paginate, 
page number, justify, center and underscore, User 
can print one document while simultaneously editing 
a second. Edit facilities include global search and 
replace. ReadlWrile to other text files, block move. 
etc. Reouires CRT terminal with addressable cursor 
positioning. . $445/$40 

o We'RD-STAR custcmreaucn Notes - For sophisticated 
users who do not have one of the many standard 
terminal or printer configurations In the distribution 
version 01 WORD-STAR . . ... NA/$95 

o WORD-MASTER Text Editor-In one mode has super 
@ set of CP/M's ED commands including global se~rch 

ing and replacing, forwards and backwards in "'e in 
video mode, provides full screen editor for users with 
serial addressable-cursor term ina! ..... $125/$25 

Solfware consists 01 the o"erating system, text edi 
tor, 8ssembler, debugger and other ufiU/es 10f lile 
managament and sysfam mainlananca. Complete set 
01 Digital Res.arch·s documMtation and additional 
implementation notes included. Systems mark3d • 0 PASCALlM" - Compiler generates P code from ex- 
and·· Include lirmware on 2708 and 2716. Systems . <D tended language, implementalion of standard. ~AS- 

::~Z:~ @ r:~~:r~d7he 5s~4~ci::~/!er~7~~~~, :t~~::: ~~.L~~~·e;~r~P~~\~s O:~~I~~e s~~g~~Nt~r~~g~e:~r~lt~~~:~ 
in this catalog. Systems marked v have minor variants ~provides con--:enient string handling capability with !~::!az:~ I~~' ~i~~t o~~;~r;~s~nterfacB 01 system. Calf or ~ ~::~~ei~~~~~~~. ~~u~!:~~~· ~;)~rx:~. 1,~~~;)~~~ 

o MP/M· - Intel MDS single density only (Documenta- 0 PASCALIz: - Z80 native code PASCAL compiler. Pro- 
tlon includes. CPIM 2.0 menuels) . . ... $300/$50 CD duces optimized,. ROMable re-entrant code. All Inter- 

lecing to CP/M IS through the support library. The 
package includes compiler, Microsoft Compatible re 
locating assembler and linker, and source fo~ all 
library modules. Variant records. slrings and direct 
I/O are supported. Requires 56K CPIM and ZSO CPU. 

.. $395/$25 
o PASCAL/MT - Subset of standard PASCAl. Gener 
@) ales ,ROMabie 8080 machine code. Symbolic debug o zor - zeo Monitor Debugger to break end examine ® Qer Included. Supports Interrupt. procedures. CP/~ 

® registers with standard ZiJog/Mostek mnemonic dis- .ftJl rue I/O and assembly language interface. Real van- 

~~::n~'~:~:::s: .$.3.5. ~.~~n. :~~~~~~ .~i~~ .Z.~~~S~IO ~~ ~~~~s ~:~d~r:~~oa~i~f~W~~n~~0~~~~i6~I~t, i~~I~~e~ 

o XAs~-:ee - Non-macro cross-assembler wi1~ nested fle;u~.,;. ~~~7c7~iO;A~;"gA~e~~~~~r~\~~~p:g~~;nf~~1 ;;~I~~~: 
conditionals and futt range 01 pseudo cperatlcns. As- 1;.~-rtJ;'T' lime package requires Digital Research's MAC. Re- 
~~~~~Is ~~~m ~~~~~~r.d. ~ot~.r~~~ .~~~~~~.~.$~~g/~~; ~ quires 32K $250/$30 

o ALGOL-60-Powerlul block-structured language com
piter featuring economical run-time dynamiC alloca
tion of memory. Very compact (24K total RAM) sys
tem implemenling almost art Algol 60 report features
plus many powerful extensions Including string han
dling direct disk address 110 etc. Requires ZeD
CPU ... $199/$20

~/=:::
o POL YVUE/ao - Full screen editor for any CRT with ® XY cursor positioning. Includes vertical and horizon

tal scrolling, interactive search and replace, auto
matic text wrap around for word processing, opera-

~~~:iV~or7;~~~eUI~~~~a~I~~~~.~: .I~~~, .. a.n.d.$;~~f$1e5 
o POLYTEXT/80 - Text formatter for word processing 
® applications. Justifies and paginates source text files. 

Will generate form letters with custom fields and 
conditional- processing. Support for Daisy Wheel 
printers includes variable pitch justification and mo- 
tion optimization. . $85{$15 

o TEXTWRITER III - Text formatter to justify and pagf- 0 POSTMASTER _ A comprebenslve package for mall 
8 rn~~J;t~~~Se~i~~ ~}h;Xld~~~~;~t:ec~ri~~i~~of~a~~~~~ @ list maintenance that IS completely ~enu driven. 

?~S ~efi ~r~a~~d cfr~~lfi'n feeJ~~~~n~e~~~i ~~ ~~hce~mfrl~~~ \ \ fY1 .• b ~~~~~~~o~~clu~er~el~it~r'~;?;~a~xti~aT~I~I~d~ndd ~;?ce~ 
Has facilities for sorted index, table of contents and \~ .. ~ AI provides neat letter~ on ~Ingle she,,:t or cont\nu- 

~g~n~~emi;:~~\i~~il~d~I~lcft~r/~~~~i~!SP~~~~:~\r!~: f"'/ C~~JI~~s .. ~.~~:~~I.b.I~. ~I:~. ~.~~. :I.I~~ ... :1:;$~~ 
...................................... $125/$20 _ _ _ _ _ _ _ _ _ _ _ _ _ STRUCTURED SYSTEMS GROUP 

GRAHAM-DORIAN SOFTWARE SYSTEMS 
o GENERAL LEDGER - An en-fine system; no batch 
(£) lng is required. Entries to other GRAHAM-DORIAN 
® accou~tlng packages are automalically posted. User 
t est~bllshes customized C.O.A. Provides transaction 

register, record of journal entries, trial balances and 
monthly closings. Keeps 14 month history. and pro 
vides comparison of current year with previous year. 
Requires CBASIC-2. Supplied in source ... $995/$35 

D ACCOUNTS PAYABLE - Maintains vendor list and 
@ check register. Performs cash flow analysis. Flexible 
® - writes checks to spe?ific vendor for certain rn 
t voices or can make partial payments. Automatically 

posts to GRAHAM·DORIAN General Ledger or runs as 
stand alone system. Requires CBASIC-2. Supplied in 
source .. $995/$35 

D ACCOUNTS RECEIVABLE - Creates trial balance re 
© ports, prepares statements, ages accounts and reo 
I!!i> ords invoices. Provides complete information describ- 
t ing customer payment activity. Receipts can be D STRUCTURED MICROPROCESSOR PROGRAMMING 

posted to different ledger accounts .. Entries auto- A~I - By the authors of SMAL/80. Covers structured pro 
matlca. IIy .uPdate GRAHAM-DORIAN General Ledger ~~Igramming, the 8080/8085 instruction set and the 
or runs as stand alone system. Hequires CBASIC-2. I~ SMALl80 language.. . . . . .. . $20.00 
Supplied In source. . ..... $995/$35 0 ACCOUNTS PAYABLE & ACCOUNTS RECEIVABLE- 

© ~~~~~~~ Sp~~~o~IMwith~~\~l~~~~rm~~x~eF~~:::f ~~eci ~ 1.1~1 /f CBASIC - By Osborne/McGraw-Hili ,$20 
@; State taxes. Prints payroll register, checks, quarterly llJV"D G.ENERAL LEDGER-CBASIC-By oebcme/Mca-ew- 
t reports and W·2 forms. Can generate ad hoc reports '------7HI11 $20 

c~~s~1~YS~;~~~dl~~t~r~u~d:h ~~iI.l.a.b.e.I~ .. ;:~u/~;~ * * * * * * * * 
HeartJ. 
Appetite. 

~~~~ -~AS/C~~/ 
PEACHTREE SO"WARE

o GENERAL LEDGER - Records details of all financial
© transactions. Generates a balance sheet and an in
t come statement. Flexible and adaptable design for

both small businesses and firms performing client
writeup services. Produces reports as follows: Trial
Balance, Transaction Registers, Balance Sheet, Prior
Year Comparative Balance Sheet, Income Statement,
Prior Year Comparative Income Statement and De
partment Income Statements. Interactive with other
PEACHTREE accounting packages. Supplied in
source code for Microsoft BASIC. $990/$30

o ACCOUNTS PAYABLE - Tracks current and aged
@ payables and incorporates a check writing feature.
t Maintains a complete vendor file with information on

purchase orders and discount terms as well as active
account status. Produces reports as follows; Open
Voucher Report, Accounts Payable Aging Report and
Cash Requirements. Provides input to PEACHTREE
General Ledger. Supplied in source code for Micro-
soft. BASIC. . $990/$30

o ACCOUNTS RECEIVABLE - Generates invoice regis
(Q ter and complete monthly statements. Tracks current
t and aged receivables. Maintains customer file includ-

ing credit information and account status. The cur
rent status of any customer account is instantly avail
able. Produces reports as follows: Aged Accounts
Receivable, Invoice Register, Payment and Adjust
ment Register and Customer Account Status Report.
Provides input to PEACHTREE General Ledger. Sup
plied in source code for Microsoft BASIC .$990/$30

o PAYROLL- Prepares payroll for hourly, salaried and
@ commissioned employees. Generates monthly, quar
t terly and annual returns. Prepares employee W-2's.

Includes tables for federal withholding and FICA as
well as withholding for all 50 states plus up to 20
cities from pre-computed or user generated tables.
Will print checks, Payroll Register, Monthly Summary
and Unemployment Tax Report. Provides input to
PEACHTREE General Ledger. Supplied in source
code for Microsoft BASIC. . .$990/$30

o INVENTORY - Maintains detailed information on
@ each inventory item including part number, oeecrlp
t tion. unit of measure, vendor and reorder data, item

activity and complete information on current item
costs, pricing and sales. Produces reports as follows:
Physical Inventory Worksheet, Inventory Price List,
Departmental Summary Report, Inventory Status Re
port, The Reorder Report and the Period-to-Date and
Year-to-Date reports. Supplied in source code for
Microsoft BASIC ... $1,190/$30

o MAILING ADDRESS - Keeps track of name and ad
(Q dress information and allows the selective printing of
t this information in the form of mailing lists or ad-

dress labels. Allows the user to tailor the system to
his own particular requirements. User-defined for
mat and print-out system uses a special format file
which tells programs how to print the mailing list or
address labels. Standard format files are included
with system. Automatic sorting of data uses indexed
file management routines which allow the name and
address information to be sequentially retrieved and
printed without file sorting. Supplied in source code
for Microsoft BASIC. . .. $790/$30

o INVENTORY SYSTEM - Captures stock levels, costs,
(Q sources, sales, ages, turnover, markup, etc. Trans
@; action information may be entered for reporting by
t salesman, type of sale, date of sale, etc. Reports

available both for accounting and decision making.
Requires CBASIC·2. Supplied in source ... $590/$35

o JOB COSTING - Designed for general contractors.
@ To be used interactively with other GRAHAM-DORIAN
@)accounting packages for tracking and analysing ex
t penses. User establishes customized cost categories

and job phases. Permits comparison of actual versus
estimated costs. Automatically updates GRAHAM
OORIAN General Ledger or runs as stand alone sys
tem. Requires CBASIC-2. Supplied in source $995/$35

Orders must specify disk
systems and formats e.c. North Star single,
double or quad density.
IBM single or 20/256,
Altair. Helios II.
Micropolis Mod I or II.
5V~" soft sector (Micro
iCOMISO Systems
Oynabytej, etc

Pnces FD_B_ New York.

th6'b.n6h~~ned~i~~t~~d

Manual cost applicable
against price of
subsequent software
purchase.

The sale of each
proprietary software
package conveys a
license lor use on one
system only

'''The So/twsre SUp6rmsrlfet is e trademarlf 0' U'eboat Associates

-; ~:.::::'
o APARTMENT MANAGEMENT SYSTEM - Financial
@ management system for receipts and security de
@! posits of apartment projects. Captures data on va
t cancies, revenues, etc. for annual trend analysis.

Daily report shows late rents, vacancy notices, va
cancies, income lost through vacancies, etc. Requires
CBASIC-2. Supplied in source $590/$35

o CASH REGISTER - Maintains files on daily sales.
© Files data by sales person and item. Tracks sales,
@) over-rlnqs, refunds, payouts and total net deposits.
t Requires CBASIC-2. Supplied in source ... $590/$35

o GENERAL LEDGER - Interactive and flexible system
t providing proof and report outputs. Customization of

COA created interactively. Multiple branch account
ing centers. Extensive checking performed at data
entry for proof, COA correctness, etc. Journal entries
may be batched prior to posting. Closing procedure
automatically backs up input files. Now includes
Statement of Changes in Financial Position. Requires
CBASIC-2 . . , $1250/$25

o ACCOUNTS RECEIVABLE - Open item system with
t output for internal aged reports and customer-crt

ented statement and billing purposes. On- Line En
quiry permits information for Customer Service and
Credit departments. Interface to General Ledger pro
vided if both systems used. Requires CBASIC-2 .
.................................... . $1250/$25

o ACCOUNTS PAYABLE - Provides aged statements
t of accounts by vendor with check writing for selected

invoices. Can be used alone or with General Ledger
and/or with NAD. Requires CBASIC-2 $1250/$25

o PAYROLL - Flexible payroll system handles weekly,
t bi-weekly, semi-monthly and monthly payrof periods.

Tips, bonuses, re-imbursements, advances, sick pay,
vacation pay, and compensation time are all part of
the payroll records. Prints government required peri
odic reports and will post to multiple SSG Genera!
Ledger accounts. Requires CBASIC-2 and 54K of
memory $1250/$25

o INVENTORY CONTROL SYSTEM - Performs control
t functions of adding and depleting stock items, add

ing new items and deleting old items. Tracks quantity
of items on hand, on order and back-ordered. Op
tional hard copy audit trail Is available. Reports in
clude Master Item List, Stock Activity, Stock Valua
tion and Re-order List. Requires CBASIC-2 $1250/$25

o ANALYST - Customized data entry and reporting eye
t tem. User specifies up to 75 data items per record.

Interactive data entry, retrieval, and update facility
makes information management easy. Sophisticated
report generator provides customized reports using
selected records with multiple level break-points for
summarization. Requires CBASIC·2 $250/$15

o LETTERIGHT - Program to create, edit and type let
ters or other documents. Has facilities to enter, dis
play, delete and move text, with good video screen
presentation. Designed to integrate with NAD for
form letter mailings. Requires CBASIC-2 .. $200/$25

o NAD Name and Address selection system - interac
tivemail list creation and maintenance program with
output as full reports with reference data or restricted
information for mail labels. Transfer system for ex
traction and transfer of selected records to create
new files. Requires CBASIC-2 $100/$20

o aSORT - Fast sort/merge program for files with fixed
record length, variable field length information. Up to
five ascending or descending keys. Full back-up of
input files created .. $100/$20

******** CONDIMENTS
D HEAD CLEANING DISKETTE-Cleans the drive Read/

Write head in 30 seconds. Diskette absorbs loose
oxide particles, fingerprints, and other foreign parti
cles that might hinder the performance of the drive
head. Lasts at least 3 months with daily use. Specify

,~I 5" or 8". 1101.1 Single sided $20 each/$55 for 3

I~ ~~I~~~ Si~~dK . ~'I~'~';~~~'I~~e' . ~~!2~nes~~~~:i:~~ort:
modify single sided 5V4" diskettes for use of second
side in single sided drives $12.50

o FLOPPY SAVER - Protection for center holes of 5/1
and 8/1 floppy disks. Only 1 needed per diskette. Kit
contains centering post, pressure tool and tough
7 mil mylar reinforcing rings for 25 diskettes.

NP* ~it;: ::::. · • • · • • · •• • • • • •••••.•. • ••• :li.i~
D PASCAL USER MANUAL AND REPORT - By Jensen

and Wirth. The standard textbook on the language.
Recommended for use by Pascal/Z, Pascal/M and
Pascal/MT users. . $10

D THE C PROGRAMMING LANGUAGE - By Kernighan
and Ritchie. The standard textbook on the language.
Recommended for use by BDS C, tiny C, and White
smiths C users. . .. $12

'CP/M and MP/M are trademarks of Digital Research.
zao is a trademark of Zilog, Inc.
UNIX is a trademark of Bell Laboratories.
WHATSIT? is a trademark of Computer Headware.
Electric Pencil is a trademark of Michaef Shrayer
Software.
TRS·80 is a trademark of Tandy Corp.
Pascal/M is a trademark of Sorcim.

tRecommended system configuration consists of 48K
CP/M, 2 full size disk drives, 24 x 80 CRT and 132
column printer.

®Modified version available for use with CP/M as im
plemented on Heath and TRS-80 Model I computers,

Ouser license agreement for this product must be
signed and returned to Lifeboat Associates before
shipment may be made.

CD ®This product Includes/eXcludes the language manual
recommended in Condiments.

row/Thinker Toys, Parasitic Engineer
ing, and Ithaca InterSystems) began
development, under the aegis of the
IEEE (Institute of Electrical &. Elec
tronic Engineers), of an S-100 Bus
Standard··, All in all, 1978 was
another glorious year for S-100 system
producers as nearly. 100,000 S-100
systems were manufactured.

THE YEAR 1979 WAS DISAS·
TROUS for three of the leading

S-100 manufacturers, A tight money
market combined with bad marketing
decisions and manufacturing prob
lems led to Imsai going bankrupt and
PTCo closing their doors (even though
they were financially solvent).
Polymorphics filed for bankruptcy but
was able to get additional financing, go
through reorganization, and by mid
year, turned around and came out of
bankruptcy. Imsai was purchased by
the Fisher-Freitas Corporation, who
have resumed manufacturing and
marketing of the entire Imsai product
line.
On the other hand, 1979 proved to

be another excellent year for most
S-100 system suppliers: six new S-100
mainframes ,were introduced, making
a total of 17 companies manufacturing
S-100 mainframes. Nearly 60 com
panies were manufacturing S-100
plug_.in boards, and over 140 com
pames offered S-100 software
packages. Although the increase in the
sales of S-100 hardware was signifi
cant in 1979, it was not the dramatic
100% to 200% increases of prior
years. On the other hand, S-100 soft
ware sales skyrocketed. Total number
and dollar figures are difficult to ob
tain, since so many manufacturers are
involved. However, there is little
doubt that presently, S-100 type com
puter systems are more widespread
than any other type of computer
system,

In the second, and concluding, part
of this article, I will analyze the pres
ent state and future prospects of the
S-100 marketplace. •

, • This proposed standard is 25 pages
long, nearing adoption, and has been
printed in Computer (July 1979) and
5·100 Microsystenis (Jan-Feb 1980)
magazines.

9

NEWS & VIEWS
by Sol Libes

S-1OO PASCAL MICROENGINE BOARD SET SOON
Digicomp Research Corp., Terrace Hill, Ithaca, NY

14850, will shortly start shipping an S-100 plug in
board set (two boards) using the Western Digital
PASCAL MICROENGINE'" chipset. It will directly
execute the UCSD'" P-code (version 111.0) and promises
7 to 12 times speedup over software PASCALs. A Z80
mpu is included to run CP/M'" and I/O. DRC is selling
pre-production units for $750 and the actual production
units to be available later this year should be twice this
price.

PL-1 COMPILER ANNOUNCED
Digital Research, the people who created CP/M"',

MP/M, etc., have announced a full implementation of
the PL -1 language for 8080/Z80 based systems. They
claim that the compiler will generate compiled code
which takes fewer bytes and runs faster than the same
program written in PASCAL.

FULL UNIX'" RUMORED
Microsoft has disclosed that they are very close to

signing a contract with Bell Laboratories to distribute
UNIX"'. It will include a C-compiler. They will write
versions to run on 8086, Z8000 and 68000 based
systems.

"'UCSD PASCAL is a trademark of the Regents of the
University of California.
"'CP/M is a trademark of Digital Research Corporation.
"'PASCAL MICROENGINE is a trademark of Western
Digital Corporation.
"'UNIX is a trademark of Bell Laboratories.

PASCAL NEWS
UCSD did do one thing to pacify all those PASCAL

owners and clubs whose software license was arbi
trarily terminated. It provided an offer to owners of
Version 1.4 of UCSD PASCAL an upgrade to Version II
at a charge of $95 instead of the usual $300. However,
clubs and owners received very short notice, about 4
weeks, and therefore the offer expired before several
clubs were able to notify their members.

Softech, the distributor of UCSD PASCAL, is
starting a national user's group for UCSD PASCAL.
They will distribute software (a la CP/M User Group)
and expect to publish a newsletter. They are talking
about a meeting of UCSD Pascal users sometime this
summer in La Jolla, CA.

Jim McCord, publisher of the UCSD PASCAL
HOBBY NEWSLETTER, has now released disk #3
(UB.3) of UCSD PASCAL software. You can get a copy
for $5 + disk or $9 if he supplies disk. Write to: Jim
McCord, 330 Vereda Leyenda, Goleta, CA 93017.

10

ANNOONCEMENTS

5th ANNUAL CALIFORNIA COMPUTER SWAP MEET
SUNDAY, JUNE 1st - 10 AM to 6 PM
Santa Clara County Fairgrounds, Gateway Hall
344 Tully Road (West on Tully Rd off 101)
San Jose, California

Selling Spaces: $25 & $55 (non-commercial)
$60 & $130 (commercial)

Admision: Free
Consignment Table: 8% fee
Free Literataure Table

For information call: John Craig (415) 324-2404
or write: Box 52, Palo Alto, CA 94302

3rd ANNUAL PERSONAL COMPUTER ARTS FESTIVAL
SATURDAY & SUNDAY - August 23 & 24
Philadelphia, PA
Call for computer musicians and artists to participate.
Write to:

PCAF'80, c/o Philadelphia Area Computer Society
Box 1954, Philadelphia, PA 19105

3rd ANNUAL PERSONAL COMPUTER FAIR
NOVEMBER 8 & 9
Pacific Science Center
Seattle, Washington
For information call: (206) 284-6109
or write: Northwest Computer Society, Box 4193,

Seattle, WA 98119

-----.---------------.~ # ~

: BACK ISSUES OF ,
S-100 MICROSYSTEMS :

Did you miss the previous issues of S-1 00 Micro- •
systems? They are still available. Vol. 1, No. 1 is.
already a collector's item; we only have a small supply.
which we expect will be exhausted by the end of April.
(we are considering reprinting it). :

The price is $2.00 each or $3.50 for both. Add.
$1.00 to cover postage and handling.

Vol. 1, No. 1 - Jan/Feb 1980
The IEEE S-100 Standard (complete)
An Introduction to CP/M, Part I
Modifying the SDS VDB-8024 Display Card
Computerized Bulletin Board Systems
An 8080 Disassembler (complete source code)

Vol. 1, No. 2 - March/April 1980 •
• North Star Topics, Part I
• Linear Programming in Pascal, Part I •
• Introduction to CP/M, Part II :
I Addressing the Cursor, Part I I
I S-100 Bus - New versus Old I
: Product Review - CGS-808 Color Graphics Board •
\ Tarbell Disk Controller Mods ,i ,----------------------

S-l 00 MICROSYSTEMS

NEW! TPM* for TAs-aO Model II Z80* D-Isk SOftware NEW! System/6 Package
Computer Design Labs

We have acquired the rights to all TOL software (& hardware). TOL software has long had the reputation of being the best in the
industry. Computer Design Labs will continue to maintain, evolve and add to this superior line of quality software.

Carl Galletti and Roger Amidon, owners.
Software with Manual/Manual Alone ---

All ofthe software below is available on any ofthe
following media for operation with a Z80 CPU using
the CP/M' or similar type disk operating system
(such as our own TPM').

for TR5-80' CP/M (Modell or II)
for 8" CP/M (soft sectored single density)
for 5V." CP/M (soft sectored single density)
for 5V." North Star CP/M (single density)
for 5V." North Star CP/M (double density)

BASIC I
A powerful and fast Z80 Basic interpreter with EDIT,

RENUMBER, TRACE, PRINT USING, assembly la,nguage
subroutine CALL, LOADGO f" ng"h.q}?PY to
move text, EXCHAN 11; error inter-
cept, se Ie SCII and binary
f It runs in a little over 12
K. choice for games since the precision

irnited to 7 digits in order to make it one of the
fastest around. $49.95/$15.

BASIC II
t<lr@ er
Iyi:fslight sacrifice

ost other Basics (even
ecision). $99.95/$15.

in
either fixed or variab eous
access to m Y command to
pr s urce code, global editing,
add Ions, and disk file maintenance capa-
bility hout leaving Basic (list, rename, or delete).
$179.95/$25.

ZEDIT
A character oriented text editor with 26 commands

and "macro" capabilityforstringing multiple commands
together. Included are a complete array of character
move, add, delete, and display function. $49.95./$15.

ZTEL
Z80 Text Editing Language - Not just a text editor.

Actually a language which allows you to edit text and
also write, save, and recall programs which manipulate
text. Commands include conditional branching, subrou
tine calls, iteration, block move, expression evaluation,
and much more. Contains36 value registers and 10 text
registers. Be creative! Manipulate text with commands
you write using Ztel. $79.95/$25.

TOP
A Z80 Text Output Processor which will do text

formatting for manuals, documents, and other word
processinq jobs. Works with any text editor. Does
justification, page numbering and headings, spacing,
centering, and much more! $79.95/$25.

MACRO I
A macro assembler which will generate relocateable

or absolute code for the 8080 or Z80 using standard
Intel mnemonics plus TDL/Z80 extensions. Functions
include 14 conditionals, 16 listing controls, 54 pseudo
ops, '11 arithmetic/logical operations, local and global
symbols, chaining files, linking capability with optional
linker, and recursive/reiterative macros. This assembler
is so powerful you'll think it is doing all the work for you. It
actually makes assembly language programming much
less of an effort and more creative. $79.95/$20.

MACRO II
Expands upon Macro I's linking capability (which is

useful but somewhat limited) thereby being able to take
full advantage of the optional Linker. Also a time and
date function has been added and the listing capability
improved. $99.95/$25.

LINKER
How many times have you written the same subroutine

in each new program? Top notch professional pro
grammers compile a library of these subroutines and
use a Linker to tie them together at assembly time.
Development time is thus drastically reduced and
becomes comparable to writing in a high level language
but with all the speed of assembly language. So, get the
new COL Linker and start writing programs in a fraction
of the time it took before. Linker is compatible with
Macro I & II as well as TDL/Xitan assemblers version 2.0
or later. $79.95/$20.

DEBUG I
Many programmers give up on writing in assembly

language even though they know their programs would
be faster and more powerful. To them assembly language
seems difficult to understand and follow, as well as
being a nightmare to debug. Well, not with proper tools
like Debug I. With Debug I you can easily follow the flow
of any Z80 or 8080 program. Trace the program one
step at a time or 10 steps or whatever you like. At each
step you will be able to see the instruction executed and
what it did. If desired, modifications can then be made
before continuing. It's all under your control. You can
even skip displaying a subroutine call and up to seven
breakpoints can be set during execution. Use of Debug I
can pay for itself many times overby saving you valuable
debugging time. $79.95/$20.

DEBUG II
This is an expanded debugger which has all of the

features of Debug I plus many more. You can "trap" (i.e.
trace a program until a set of register, flag, and/or
memory conditions occur). Also, instructions may be
entered and executed immediately. This makes it easy
to learn new instructions by examining reqisters/mernory
before and after. And a RADIX function allows changing
between ASCII, binary, decimal, hex, octal, signed
decimal, or split octal. All these features and more add
up to give you a very powerful development tool. Both
Debug I and II must run on aZ80 but will debug both Z80
and 8080 code. $99.95/$20.

ZAPPLE
A Z80 executive and debug monitor. Capable of

search, ASCII put and display, read and write to I/O
ports, hex math, breakpoint, execute, move, fill, display,
read and write in Intel or binary format tape, and more'
on disk $34.95/$15.

APPLE
8080 version of Zapple $34.95/$15.

SYSTEM/S
TPM with utilities, Basic I interpreter, Basic E compiler,

Macro I assembler, Deb,!g I depl,lgger, and ZEDIT text
editor.
Above purchased separately costs $339.75
Special introductory offer. Only $179.75 with coupon!!

ORDERING INFORMATION
Visa, Master Charge and C.O.D. O.K. To order call or

write with the following information. ale ._'.
1. Name of Product (e.g. Macro I) Il15O I
2. Media (e.g. 8" CP/M) L

3. Price and method of payment (e.g. C.O.D.) include
credit card info. if applicable.

4. Name, Address and Phone number.
5. ForTPM orders only: Indicate ifforTRS 80, Tarbell,

Xitan DDDC, SO Sales (5V4' or 8"). ICOM (5'14" or
8"), North Star (single or double density) or Digital
(Micro) Systems.

6. N.J. residents add 5% sales tax.

Manual cost applicable against price of subsequent
software purchase in any item except for the Osborne
software.

For information and tech queries call
609-599-2146
For phone orders ONLY call toll free

1-800-327-9191
Ext. 676
(Except Florida)

OEMS
Many COL products are available for licenSing to

OEMs. Write to Carl Galletti with your requirements.

* Z80 is a trademark of Zilog
* TRS-SO is a trademark for Radio Shack
* TPM is a trademark of Computer Design Labs. It is not
CP/M*

* CP/M is a trademark of Digital Research
Prices and specifications subject to change without
notice.

DEALER INQUIRIES INVITED.

COMPUTER
DESIGN
LABS 342 Columbus Avenue

Trenton, N.J. 08629

NEW!TPMno
II!

rTR5-S0 Model

TPM*
A NEW Z80 disk operation system! This is not CP/M*.

It's better' You can still run any prcqrarn which runs with
CP/M' but unlike CP/M* this operating system was
written specificallyforthe Z80' and takes full advantage
of its extra powerful instruction set. In other words its
not warmed over 8080 code! Available for TRS-80'
(Modell or II). Tarbell, Xitan DDDC, SO Sales "VERSA
FLOPPY", North Star (SD&DD), and Digital (Micro)
Systems. $79.95/$25.

SYSTEM MONITOR BOARD (SMB II)
A complete I/O board forS-1 OOsystems. 2 serial ports,

2 parallel ports, 1200/2400 baud cassette tape inter
face, sockets for 2K of RAM, 3-2708/2716 EPROM's or
ROM, jump on reset circuitry. Bare board $49.95/$20.

ROM FOR 5MB II
2KX8 masked ROM of Zapple monitor. Includes source

listing $34.95/$15.

PAYROLL (source code only)
The Osborne package. Requires C Basic 2.
5" disks $124.95 (manual not included)
8" disks $ 99.95 (manual not included)
Manual $20.00

ACCOUNTS PAYABLE/RECEIVABLE
(source code only)

By Osborne, Requires C Basic 2
5" disks $124.95 (manual not included)
8" $99.95 (manual not included)
Manual $20.00

GENERAL LEDGER (source code only)
By Osborne. Requires C Basic 2
5" disks $99.95 (manual not included)
8" disks $99.95 (manual not included)
Manual $20.00

C BASIC 2
Required for Osborne software. $99.95/$20.

AN INTRODOCTION
TO CP/M-Part 3

by
Jake Epstein

Box 571
Pittsfield, Ma. 01201

CCP FUNCTIONS
In this month's article, the third in a series on the

CP/M operating system, I will be discussing the
practical matter of console operation of CP/M. I have
also included a section on mass-storage configura
tions available to CP/M users.

Once the CP/M operating system is 'booted up',
the user has two options that can exercised. One is to
execute the various commands inherent in the CCP,
(CONSOLE COMMAND PROCESSOR). The other is to
execute a program that has been stored as a file on the
disk. While functioning in the CCP mode, the syntax of
CP/M, as discussed in Article II, will prevail, but once a
program is executed, then console syntax may change.

The 7 commands built into the CCP are shown in
Table 1:

TABLE 1 - CCP COMMANDS

FUNCTION

Erase a FCB in the directory
List files in the directory
Rename a file
Save memory image as a file
Type contents of a file
Load file in TPA then
execute code at 100h
Set user number, ver. 2.0
only

In the above list, functions that alter will change
contents of a disk, and thus, care must used when
exercizing commands that do so or data may be lost.
Once data has been erased, it cannot be recovered so
an important chore that users must do is make backup
copies of files that are important in case of accident or
mistake in command usage. More on this later.

Before explaining each built-in command, I will
first describe disk log-in commands. As described in
Article I, when the system is initially booted up, the
prompt A> appears. This indicates that as far as the

COMMAND TYPE

ERA
DIR
REN
SAVE
TYPE
(LOAD FILE
EXECUTE)
USER

Alter
Non-alter
Alter
Alter
Non-alter
Non-alter

Non-alter

12

operating system is concerned, the storage device
named A is online and ready to function as com
manded by the user via the CCP.ln the computer field,
two terms are used to describe I/O devices: LOGICAL
and PHYSICAL. Physical is a term referring to the
device as it actually ocurrs in the real world. Logical
refers to devices as they are seen by software. The
following list should clarify the differences.

PHYSICAL LOGICAL
8 inch floppy disk A:
5.25 inch floppy disk B:
1~00 bpi mag-tape C:
CRT CON
ASR 33 teletype LST
Paper tape RDR

When there are several physical devices of the
same type, then numbers are used beginning with O. In
other words, drive 0, drive 1, drive 2, and drive 3 would
be the physical devices in a computer system with 4
floppy disk units. On the other hand, when the the user
wants to access any of these via the operating system,
then the logical device name is used. The value of this
is that physical matters are taken care of by hardware/
software interfaces found in the operating system
leaving the user free to concentrate on other functions
that use the logical devices.

In CP/M 1.4, BOOS (BASIC DISK OPERATING
SYSTEM) and BIOS (BASIC INPUT/OUTPUT System)
both contain software that is dependent of disk type,
density, and size. As discussed last month, sector
skew is a function determined in BOOS thus CP/M for
5.25 inch disks will not function with 8 inch and vice
versa. Also, all disks in a system have to be compatible
with the mixing of disk types impossible. A big
advantage of CP/M 2.0 is that a section of BIOS
contains tables that are used to describe each physical
device in the system. Thus any number and/or type of
mass storage device could be utilized as long as

S·100 MICROSYSTEMS

hardware and software interfacing is implemented for
each device in the BIOS. The following mass storage
list is feasible with CP/M 2.0:

LOGICAL PHYSICAL APPROX
CAPACITY IN BYTES

A: Double density 500k
floppy disk 0

B: Double density 500k
floppy disk 1

C: Double density 150k
5 inch floppy

D: Hard disk 20meg
E: Single density 256k

floppy disk 0
F: Single density 256k

floppy disk 1

In the above list, there is an example of one
physical device, floppy disk 0, having two logical
names, A: and E:. This was done because dual density
floppy disk controllers can read/write in either single
or double density. This implementation gives a means
for easily transfering information from single to double
density or vice versa.

When using any version of CP/M, disk drives are
logged-in at the CCP by simply typing the logical name
followed by a colon and carriage return (cr). In the
above system, to log-in floppy disk 0 in single density
mode the following is typed:

A>E: User types E: (cr)
E: System response

When naming files, the logical device where the
file is located is indicated by placing the device name
in front of the file name:

B:STAT.COM File STAT.COM on device B:
If the logical device is not given, then the logged-in

device is used.
In this article, I will limit the discussion of other I/O

devices to just the console (logical-CON:) and the
hardcopy device (Iogical-LST:). When I discuss user
implementation of BIOS functions and advanced uses
of the STAT and PIP utility program, then I will describe
other physical-logical device pairings available in
CP/M.

In order to determine which files have fcb (file
control block) entries in the directory, the DIR com
mand is used. Inver. 1.4typing DIR(cr)will give a listing
of all the files that have fcbs. In ver 1.4 these files are
simply listed in order vertically on the console device.
In version 2.0, however, file names are listed in rows of
4 names on the console. By using file names, wild card
functions, and logical device names, the following
command string variations are possible:

DIR TEST. COM Find and list file name
DIR B:DDT.* List all files on device B: with primary

name DDT
DIR *.??M List all files that have M as last

character of secondary name
DIR E: List all files on E:

S-lOO MICROSYSTEMS

DIR A???COM Find COM files with primary name of4
characters with A as first character

In naming files, remember that secondary names
are not necessary, but primary names are. Also, one
space is used between names and commands. The
prompt, NO FILE, is printed when the DIR command
does not find a file or group of files. Finally, ver. 2.0
allows the user to designate files as SYS (System) files
so that when the DIR function is given, they will not be
listed in the directory. The ability to implement this
option is a function of the STAT utility program and will
be discussed later.

The TYPE function will read a specified file from a
disk and print it on the console device. Since console
devices interpret information sent to them as ASCII
data, only ASCII format files will give proper print
although any file type can be used. This function will
read and print an entire file up to the EOF (End of file)
delimiter which is cntr-z (1Ah) in CP/M. Wild card
functions are not permitted. Typing a 'space' while a
file is being listed will abort the TYPE function and
return control to the CCP. This is also true of the DIR
command.

The REN function is used to change the name of a
file. The command syntax is:

REN HELLO.COM=TEST.ASM

In this case, file name TEST.COM is changed to
HELLO.COM. Wild card functions are not allowed.

The ERA function is used to erase fcb entries in
the directory on a disk. The data itself is not erased but
the space that it occupies on the disk may be used
when other files are created at a later time. If a fcb is
removed, it is normally impossible to retrieve the data
unless directory information is stored elswhere. In a
later article I will discuss deciphering fcb information
so that the user can reconstruct files when directory
entries are lost. The ERA function uses wild cards so
the following variations are possible:

ERA *.ASM Erase all ASM files
ERA C:DUMP.COM Erase file on device C:
ERA TEST?* Erase all TEST files with extra

ERA *.*
character in primary name
Erase all files.

When using the *.* file name, the CCP will ask for
verification by typing 'ALL FILES (Y OR N)?' in which
case the user has to type Y for the function to occur.
Any other character causes the function to abort.

The SAVE command is used to store an image of
memory starting at location 100h, start of TPA
(Transient Program Area), as a COM file. Article I in this
series contains a description of the TPA. Although the
beginning location of the data to be saved is always
1 OOh, the user signifies the Size of the memory image.

CP/M uses three terms that signify differing
amounts of memory. The record as described in
previous articles is given as 12B (BOh) bytes and is
equal to the size of a single sector on a single density

13

floppy disk. A page of memory is equal to 256 (100h)
bytes and is thus two records In length. Remembering
that location 00h is a position, the first page of memory
is from OO-FFh, the second page is from 1 OO-200h and
so on. Thus in a computer whose address bus is 16
bits, (2 bytes), each page is addressed by all of 8 bit
combinations of the lower byte with one value of the
upper byte. Thus there are 256 pages in a 16 bit
machine. The term block is used to describe 2 records
or 256 bytes of data. Since block and page in this
context have the same value, it is important to
remember that page refers to memory addresses but
block refers to an amount of data. Page almost always
is equal to 256 but block as well as record can have
other sizes when working with different operating
systems. A final point is that when dealing with data in
these sizes as determined by hardware, the user is
working with physical concepts. Records, pages,
and/or blocks can take on differing values when one is
dealing in logical concepts. For example, a record in a
data base system could be made up of a person's
name, his/her pay scale, and address. This logical unit
may need one or more records of physical space on
disk.

The syntax of the SAVE command is as follows:

SAVE 12 D:HELP.TEX

In this case 12 is the number of blocks that are to
be saved, and is entered in decimal values. The user
has to convert hexadecimal locations into decimai
blocks. Only an even number of sectors are used, so
there will be times when even though one sector of
data needs to be saved, the file will be 2 sectors long.
Actually this does not prove to be wasteful of disk
space, because as discussed in Article II, the smallest
unit that can be handled by BOOS is a cluster of 8
sectors or 400h (1024) bytes. When working with
hexadecimal addresses, conversion from memory
locations to blocks of memory in decimal can be
accomplished using the following steps:

1: Round the final address in the memory to the
next highest page value. (xxOOh)

2: Subtract 100h. Page 0, OO-FFh, is not saved.
3. Convert the most signficant nibble to decimal

and then multiply by 16 (16 pages in 1000h).
4. Convert the second most significant nibble to

decimal and then add to value computed in 3.
5. The result is number of pages needed to save

memory image.
Here is example of a memory image from 1 OOh to

2E6Ah:

1: 2E6Ah := 2FOOh
2: 2FOOh - 100h := 2EOOh
3: 2h := 2 dec, 2 * 16 = 32
4: Eh := 14 dec, 14 + 32 = 46
5: 46 pages is the size of memory image

14

When using the SAVE function for files longer than
16k bytes, areas of the TPA will be destroyed when
using CP/M ver. 1.4 because the CCP uses this area
when building extension file control blocks (See Article
II). Thus only one SAVE can safely be done. CP/M 2.0
uses areas outside the TPA for this function allowing
multiple saves of the same memory image.

The final built-in command of the CCP is the LOAD
file and execute function. This function is implemented
by simply typing in the primary name of the file to be
loaded and then a carriage return. Only COM files will
work and any other file type will generate an error
prompt and the system will return to the CCP. The file is
loaded at 100h and then the computer jumps to this
location. Programs that are run can have differing
interactions with CP/M depending on their coding.
Programs can be totally independent or they can use
functions and subroutines available in BOOS and
BIOS via a group of SYSTEM calls. These functions will
be the topics of susequent articles on CP/M. Also, the
term transient program is often used for files as loaded
and executed in the TPA.

A function found only in CP/M 2.0 is USER. With
this command, the operator can specify a user number
of 0 to 15. The result of this is that only files as
previously stored under that number can be accessed
by the operator. Thus all the CCP commands are
effected. When the system is initially booted up, the
user number is 0 which is where files stored under ver
1.4 are found. To change the user number the following
is typed: USER <0-15>. To copy files from one area to
another, the PIP 2.0 utility is needed although the SAV
and USER functions can be used with memory images.
Last of all, the function ERA *.* will not erase the entire
directory in ver 2.0; the quickest way to erase the disk
is to use a utility such as a disk format program that
clears all sectors.

All input of the console is buffered in the 128 bytes
of memory from 80h to FFh as is disk I/O when the
system is at the CCP level. After a program is loaded,
the CCP will save all the information in the command
line excluding the original entry.

RUN TEST EMPTY.BAS $L HEX

would be stored as:

TEST EMPTY. BAS $L HEX

beginning at 81 h with the number of characters (21)
being stored at 80h.

The transient program can read up to 128
characters of information from this area using string
handling routines. Also, the second entry (TEST in the
example) is place at the default fcb location tfcb (5Ch)
while the third entry (EMPTY.BAS) is placed at tfcb +
16 (6Ch). Since the full fcb is 33 bytes long, the user
program must move the second file name. The use of
these functions will also be discussed with system
calls in a future article.

S·100 MICROSYSTEMS

CCP CONTROL CODE OPERATION
Since console I/O is buffered, the user can edit

text strings by typing control characters. The carriage
return code instructs the CCP to execute the com
mand string typed in just previous to it. If a (cr) is typed
when no other information has been input, then the
disk prompt is printed. Control codes are selected on
the keyboard of the console by first depressing the
control key and then the desired character. Certain
keyboards have function keys that are substitutes for
control codes. The control key functions by forcing bit

6 (40h) of the alphanumeric key depressed to zero,
thus only those codes that have bit 6 set (1) will be
effected:

CHAR- ASCII CONTROL
ACTER CODE CODE FUNCTION
M 100 1101 000 1101 CARRIAGE RET
J 100 1010 000 1010 LINE FEED
H 100 1000 000 1000 BACK-SPACE
I 100 1001 000 1001 TAB

The codes used by the CCP are shown in Table 2:

TABLE 2 - CCP CODES
CHARACTER FUNCTION KEY ASCII CODE FUNCTION
ctl-U 15h

eu-x 18h
RUBOUT (RUB) 7Fh
DELETE (DEL)

BACK-SPACE 08h ctl-H

ctl-R 12h

ctl-E 05h

ctl-M CR,RET ODh
RETURN

ctl-J LINE FEED OAh
LF

cu-e 03h
ctl-Z 1Bh

en-s 13h

ctl-P 10h

While in CCP mode, inputing ctl-C causes a 'warm
boot'. When this occurs, CP/M executes a routine in
BIOS that brings in the CCP and BOOS. If
implemented while in CCP mode, the net effect is that
the system logs in device A: and is ready to begin
operation as if the system was initially booted on
power up. Many transient programs implement a ctl-C
option to return to CCP mode so care must be used not
to execute this function accidently causing a loss of
work and/or data. Also, when programs return control
to CP/M, they usually do so by jumping to location 0 or
by using the reset system call of BOOS which directs
the computer via jumps to the warm boot routine in

S-100 MICROSYSTEMS

delete line from buffer but do not erase from console
screen; # is printed at end old line to indicated deleted
line
same as ctl-U but erases line from screen
delete last character in the console buffer but echo it
on screen (command string is typed backwords as
DEL is depressed
same as rubout but last character is deleted from
screen implemented as CCP function in ver 2.0; user
option installed in BIOS in ver 1.4
retype console buffer; used with DEL to give clear
display of string; # is printed at console at end of old
line before printing to indicate deleted text
breaks line at console by sending (cr)(lf) to console
without entering (cr) in console buffer; allows line of up
to 128 characters to entered on console that allows
lines of shorter length
(cr)(lf) sent to console then command string is inter
preted and executed by CCP
same as ctl-M

CP/M system reboot (see discusion below)
not a CCP function; used to indicate end of console
input in utility programs
used to stop printout to console during DIR, TYPE, or
similar functions in transient programs; typing any key
will cancel ctl-S
text printed on console device will also be printed on
list device; if function is active then ctl-P cancels effect

BIOS. When the warm boot function occurs or when a
new device is logged-in for the first time after a warm
boot, the disk is checked for read/write status. Using
the STAT utility, disks can be software protected, and
the CCP can also tell when a disk has been placed in a
drive that has been initialized with another disk. As a
result of both software write protection or swapping of
disks, an error code will be generated when data is
written to the disk. Thus whenever changing disks a
ctl-C must be typed. Also, a warm boot will not change
the contents of the TPA so that programs that have
been developed using one disk can be saved after
swapping disks in the same drive. When the CCP

15

cannot alter disk contents because of write protection
then the following statement is printed on the console:

BOOS ERROR ON A: R/O

A can be any logical device and R/O means Read
Only.

ONE, TWO or THREE DRIVES?
Many computer users when first researching

mass storage alternatives ask the quetion: 'How many
drives are needed for my application?' Although
alternatives can vary depending on application, my
experiences have given the following conclusions.
First of all, the two drive system is the minimal
configuration for intensive work. As mentioned above,
file duplication on different disks is a necessity for
protection against loss of data, but even though this
can be done with one drive, it can be quite time
consuming. The PIP (Peripheral Interchange Utility) is
used to copy files from one disk to another. In one drive
systems, two different floppy diskettes can be used by
swapping disks when required by the system. When
the system requires a change of disk, it will print the
command 'MOUNT B:' or 'MOUNT A:' depending on
whether information is to be read from A: or written to
B:. This procedure can be very confusing, and can be
costly when copying original files and errors occur. It
should be noted that this facility is implemented in
BIOS, and it mayor may not be present depending on
the BIOS in the system. Also, some BIOS' have this
function as an option during assembly of the BIOS
source code while other systems use the prompt
during system boot up of: 'HOW MANY DISK
DRIVES?'. With two or more storage devices, however,
file duplication using PIP is a simple chore.

Probably the best configuration in terms of num
ber of units is three. One of the areas needing more
development is multi-tasking software. Multi-tasking
hardware/software systems have the abiltity to per
form two or more functions at same time. This is
accomplished through procedures that allow routines
to share computer time. Several programs have been
developed that use multi-tasking, and for the most
part, these have been based on SPOOL or DESPOOL
functions. In the early days of computing, when
computers could only accomplish one task at a time,
having the computer spend time printing information
on list device or entering data from card readers could
be both expensive and/or problematical due to
scheduling considerations. A simple solution was to
write (SPOOL) the information to be printed on a mass
storage device which usually was magnetic tape;
hence the term SPOOL. At a later time, the information
could be printed (DES POOLED) onto a printer which
was either on-line (connected to and controlled by the
original computer) or off-line (not connected to the
original computer).

In CP/M programs, time that is spent while the
computer waits for input from the console is used to
output information on a disk file to the list device. This
can prove to be a great time saver in installations that

16

require a lot of printing. One problem, however, is that
the disk containing the file that is being printed cannot
be removed from its drive until completion of despool
ing. With a two drive system, this causes problems if
two disks are required for an operation, for even
though space on the despooling disk can be used, the
non-despooling disk is the only free disk. With the
three drive system, one drive can be dedicated as in
the above example while two drives are left free.

A second advantage of having three drives is that
one of the drives can be write-protected while the
other two are free for both reading and/or writing. This
allows the user to protect important files from possible
loss due to mistake or accident. Another point is that
one drive can be dedicated to holding the system
diskette and various utilities while the other two are
free for disk swapping.

A final advantage, and in my mind the most
important, is hardware backup. In situations where the
computer is a necessity for operation, failure of hard
ware can prove disasterous, and due to this, entire
computer manufactering firms have been built or
broken by the ability of users to get quick and effective
maintenance. At the present time, this is by far the
biggest problem in the microcomputer industry.
Although microcomputers have proven to be very
reliable, many tales have been circulating about failures
of equipment and days, weeks, and even months of
computer 'down' time. Since the disk unit is a device
with moving parts that can wear out or lose adjustment,
it is one of the first devices to fail and due to its nature
one of the most difficult to repair. With the three drive
system, if one drive malfunctions, then the other two
are still available while the third is off-line. In most
cases, the user will not need to alter hardware except
in that case where drive-Q (the SYSTEM drive) is
effected.

WHICH DISK SIZE, TYPE & DENSITY?
Another question commonly asked is: 'What size,

type, and/or density format do I need?' My opinion on
type of drive for most micro-computer installations, at
the start, is 8 inch single density format. The reason is
that this is the most time proven and standard media
for microcomputing. Other systems such as tape, hard
disk, and even 5.25 inch floppy disk although viable
have problems due to price, avaiability, capacity, and
most importantly, dependability. The reason I maintain
single density is that the standard in the industry for the
transferring of data is still single density. Although the
bugs seem to have been worked out of double density
hardware/software in the 8 inch drive, I suggest than
when purchasing or updating to this type system, that
it be thorougly tested before purchase and use. Users
should also beware that many disk drives are rated for
both single and double density use, so when pur
chasing a single density system, check the drives so
that update to dual density at a later time can be done
without change of drives, the most expensive com
ponent. Another consideration is that when pur
chasing dual density systems, (can perform single and

S-100 MICROSYSTEMS

double density operations), check the software and
documentaion for clearness and ease of single vs.
double density operation. Although 5.25 inch disks
have proven dependable, cost effective, and advan
tageous over larger devices in physical size and
weight, they have been used mostly in micro
computers or stand-alone devices such as smart
terminals or word processors. The 8 inch variety has
been used widely in the entire computer industry, and
when disk formats are standardized for the inter
change of data between different systems, the 8 inch
disk will probably be used.

HARD DISK SYSTEMS
Small, high capacity, cost effective hard disk

alternatives have developed quickly over the last year.
Also, S-100 controllers have appeared for older hard
disk designs. Capacities range from 5 megabyte on up
for single units with multi unit sytems controlled by
CP/M 2.0 getting into the 100 megabyte range. Of
importance to the average CP/M user is the fixed disk
alternatives that are becoming competitive with floppy
disks. Some floppy disk manufactures are building
units that are hard disks within 8 inch floppy disk
housings, have similar if not identical signal connec
tions, and have the same power requirements as their
flexible counterpart. As a result of this, the new idea is
to mix hard disks with floppies using one controller and
CP/M 2.0 software.

There are two reasons why these disks are cost
effective, smaller, and more energy efficient. One,
Winchester Technology, allows very high densities of
data per track and tracks per disk. Secondly and most
important to CP/M users is that the storage medium is
non-removable. This allows the manufacturer a lot
more mechanical freedom than in systems where
movement of the disk due to physical support becomes
a problem. As a result, these new 8 inch hard disks
although offering large capacity do not offer disk
backup. As long as the user does not use up his/her
disk space, need to transfer data on mass storage
media, need to get new data onto his/her disk systems,
or have an accident, hard disks are fine.

In other words, unless the media is removable,
having a second floppy is a necessity. Even if all or part
of the media is removable, CP/M software will still be
distributed on 8 or 5.25 inch floppy unless the software
distributor has hardware that is identical to the user's.
The real value of the hard disk is in using its storage
capacity to greatly expand computer memory. Since
data transfer on hard disks is much faster than floppies
and much larger files can be maintained, operations
such as searching and sorting or storage and retrieval
of system memory images become quite feasible on 8
bit and 16 bit (8086 or Z8000) CP/M systems. When
backup storage on floppy disk becomes a problem
due file length, then magtape units based on digital
cartridges become a feasible alternative and as disk
technology develops, this area will also expand.

S-100 MICROSYSTEMS

IN CONCLUSION
A few final remarks. If you are new to the mass

storage market, do not be afraid to buy now for fear that
your purchase will quickly become obsolete. Try to buy
equipment with the philosophy that if expansion is
needed at a later date, then hardware should be
supplemented rather than replaced. Microcomputer
equipment is like stereo equipment: once purchased
its resale value drops quickly, thus replacement can
prove quite costly. As far as obsolesence is concerned,
as long S-100 bus systems are used, the user has a
world of manufacturers and products to draw from. If
one device needs to be replaced, the entire system
need not be replaced. This philosophy is quite unique
to the S-100 industry for a great majority of manu
factures still viable today have survived because they
have used industry compatibility as a major marketing
point. The same can be said of CP/M and CP/M
compatible operating systems.

In the next article in this series, I will list the various
utility programs that are included by Digital Research
with CP/M and give a brief overview of the functions
they provide. I will also begin to describe the BIOS
giving its structure and possible modifications that the
user can implement.

APL
APL ©1979 Erik T_ Mueller
APL
APL
APL

SOFTRONICSAPL J.L.l""\. for the 8080/80851Z·80
APL is an interactive general-purpose programming language with
powerful primitive functions. SOFTRONICS APl runs under the CP/M"
operating system. It is 'ready-fo-go' in ASCII, using CP/M standard I/O.
The interpreter runs in a variety of character set configurations. In addi
tion to the standard ASCII mnemonic representations, it supports type
writer ond bit-pairing ASCII·APL character sets. It can run with user
supplied I/O drivers.

FEATURES:
• Most of the functions and operators of full APL, including n

dimensional inner and outer product, reduction, compression, general
transpose, reversal, take, drop. Execute and format.

• The interpreter resides in 30K bytes of memory, leaving remaining
memory for the workspace and disk operating system.

• Shared-variable mechanism for CP/M disk input and output, system
functions and variables, system commands.

• Abrams' descriptor calculus and shared data storage are the advanced
optimization techniques employed by the interpreter. This saves
memory space and execution time. Values are stored internally in a
variety of formats for efficient memory utilization.

• Optional driver program for video display with programmable character
generator.

$350 on CP / M* di sk ~~~~~~!:~:~
NJ residents please odd 5 % sale, tox.

$30 FOR USER'S MANUAL ALONE

SOFTRONICS 36 Homestead Lane
Roosevelt, N.J. 08555

• CPIM is a registered trademark of Digital Research

17

NORTH * STAR
TOPICS

by
Randy Reitz
26 Maple St.

Chatham Township, N.J. 07928

A General Purpose Permuted Keyword Index Program

I have been interested in PASCAL ever since the
August 78' BYTE magazine feature. I purchased
Kenneth L. Bowles's book Microcomputer Problem
Solving Using PASCAL some time later and quickly
became sold on the ease of expressing algorithms in
this language. By this time I had already been
experimenting with a "structured" language using Tom
Gibson's Tiny-c, so I knew that BASIC was a thing of
the past for me. When North Star announced the
availability of the UCSD PASCAL development system
for only $50 on their disk system, I couldn't resist any
longer. For $50, UCSD PASCAL on North Star has to
be one of the best software bargains ever offered. I'm
surprised that North Star wasn't swamped with orders.
This is one piece of good news that seems to travel
very slowly.

I was anxious to try out my "new" software toy; and
by this time I was all the way up to chapter 7 in Bowles's
book. There was a problem that caught my eye. The
problem had to do with removing "nolse'' words from a
character string in preparation for using the string in a
keyword in context -KWIC -program. I had seen this
type of index also called a permuted keyword index.
Since a title will be entered into the index once for each
keyword it contains, the title is permuted so the
keyword always starts in the same column. I always
wished I had such a program to keep track of all the
articles contained in the 5 monthly computer publi
cations I receive. It is very frustrating when I can
remember reading an article but have great difficulty
finding the publication. I decided it was time to apply
PASCAL power to build a permuted keyword index
program that I could use to easily search for articles in
my rapidly growing volume of computer publications.

A fully capable permuted keyword index system
can get quite complicated, so I wanted to decide on
some limited goals before I got carried away. Remem
ber, at this time I believed that my new PASCAL system
could express any algorithm with the greatest of ease.

18

Indeed it can, but no language can handle foggy
thinking by its programmer. I found just the simple
algorithm I was looking for in a personal filing system a
friend of mine was using at Bell Labs. Consider the
following data taken from the index of several BYTE
publications:

.Distributed_networks/Horton/78 11

.Graphic input of wheather.data/Smith/79 7
Quest;.games/Chaffee/79 7
.Subroutine.parameters;.data/Maurer/79 7
A spacecraft.simu1ator/Sirvak/79 11
The Inte1.8086;system design.kit/Ciarcia/79 11
The Cherry pro.keyboard/Parker/79 11

The title of the article, author and date of publication
are listed along with some unusual punctuation. The
punctuation is used to indicate the following:
1) A period is placed in front of a keyword
2) The author is enclosed in "slashes" (j).
3) The date of publication is always after the last j and

is in year month format.

All other punctuation is superfluous to the
algorithm. Since the ''filing system" for magazine
publications is constrained to be ordered by date, the
permuted keyword index program should produce an
alphabetically sorted listing of each keyword found in a
title (identified by a period) along with the remaining
title, author and date. If all of the keywords found are
listed left justified, you can simply scan down the list
for the keyword of interest and presto find all the
articles which contain this keyword in the title. This
simple idea can be extended to sort by author or date
as well. Also, since I was using a video terminal, I
wanted to add the capability to specify the range of
keywords, authors or dates that were displayed so I
could leisurely read the results before they disappeared
from the screen. The UCSD PASCAL program that

S-100 MICROSYSTEMS

follows implements this simple idea using the North
Star disk system that I am running on my "antique"
IMSAI 8080. I call it a general purpose permuted
keyword index program because I can easily think of
many more applications other than a magazine publi
cation index.

I must warn you that the program I am about to
describe must be considered unfinished. Also, since
this was my first PASCAL experience, I used as many
of the language features I could. You will find string
manipulation using the UCSD string intrinsics, record
data structures and pointers, sorting with binary trees,
variable arguments and more. All of the "modern" stuff
that makes PASCAL so much more exciting than
BASIC. Unfortunately the result isn't as "clean" as it
could be.

All PASCAL programs begin with a "program"
statement and a declaration of global variables:

PRaiRlIM I<WIC;
ccssr
N"'lO;
BLANKS=' (72 blanks here) ';

TYPE
INDEXEs=ARRAY(l •• N] OF INTEGER;
STRING1=STRING(l];
LINKS =AENTRY;
ENTRY =RECORD

STUFF : STRING;
RLINK,LLINK:LINKS

END;
VAR
LINE, LCW, HIGH
TITLE,AUTHOR,DATE,ABL,DBL
ERROR
F
PLOC,SLOC
I,J,NUM,SORT,MAX
ROOT

: STRING;
: STRING (72];
: BOOLEAN;
:TEXT;
: INDEXES;
: INTEGER;
:LINKS;

I find this part of structured programming the most
difficult to get used to. You have to have well laid out
plans to begin a program by defining all of the variables
and types. First, two constants are defined. I cheated
in the definition of the constant BLANKS since I can't
type 72 blanks in one of these columns. The next
section defines variable types. These items are called
type identifiers. They are not variables but are used to
define variables in the next section. The capability that
PASCAL offers to define variable types to suit the
needs of the algorithm is an extremely valuable feature
which I think sets PASCAL apart from the other
"modern" languages. The type identifier "INDEXES"
will be used to define variables that are arrays of 10
integers. "STRING1" will define variables that are
strings of only one character. In a strongly typed
language like PASCAL, a string of one character is
Quite different than a variable of type character. Finally,
"LINKS" will define a pointer type variable that points

S·100 MICROSYSTEMS

to a data structure of type record defined by "ENTRY".
Each variable of type "ENTRY" will contain "STUFF"
and two pointers to variables of the same type as
"ENTRY". This data structure elegantly implements a
linked list that will be used in a binary tree sort
algorithm.

The variables are defined next. The type STRING
is pecular to UCSD PASCAL. The default string length
is 80 characters but can be specified to any value less
than 256 using a number in brackets. The variable F is
of type ''TEXT'' which is a synonym for "ALE OF
CHARACTERS". The input data will be read from this
file. Finally, the variable ROOT will serve as the root of
the binary tree so it is of type "LINKS". All of these
variables are global and can be used by the main
program as well as all functions and procedures
defined below.

The next feature in a PASCAL program is the
definition of the functions and procedures used in the
program.

FUOCTIrn UPPERCASE (CH:CHAR) :CHAR;
BmIN
IF CH IN ('a' •• 'z'] THEN

UPPERCASE: =CHR (ORD (CH) - 32)
ELSE
UPPERCASE: =CH

END;

This function is used to be sure a character is
upper case ASCII only. Notice that functions which
return values must be given types just like variables.
Also notice the use of the set constant ('a' .. 'z'). The
meaning is self explanatory and is certainly preferable
to arithmetic comparisons. The ORD function is built in
and is similar to the BASIC ASC function. The CHR
function is similar to the BASIC CHR$ funciton.

PROCEDURE FINIR(PAT:STRING1; VAR S:STRING;
VAR WHERE: INDEXES; VAR CNT: INTEGER);

VAR J,CUoI:INTEGER;
BmIN

CLM:OO(); CNT:-<J; WHERE (1] :=0;
REPEAT

J:=POS(PAT,COFY(S,CUoI+l,LENGTH(S)-CUM));
CtM:=CUM-+J;
IF J>O THEN

BmIN
S[CtM] :=' ';
CNT:=CNT+l;
WHERE [CNT] : =CUM;
WHERE (CNT+l] :=0
END

UNTIL (J.sO) OR (CUoI=LENGTH (S))
END;

19

A subroutine which doesn't return any explicit
value is called a procedure. This procedure finds the
punctuation used to define keywords and the author.
When the punctuation defined in argument "PAT" is
found in argument "S", the punctuation is replaced by a
blank and the location is noted in the next argument
·WHERE". The final argument "CNT" returns the
number of punctuations found. Notice that this pro
cedure really returns values in three of it's four
arguments. That's why these arguments are prefixed
with ''V AR" to identify that they are to be passed to the
procedure by address rather than value. This may
seem overly tedious but PASCAL keeps you aware of
what variables a procedure is free to change and what
variables it can't change. In a long program, this
feature can help you to avoid those really hard to find
bugs. The procedure uses two local variables, "J" and
"CUM". Even though "J" is also a global variable since
it can only access the local variable. "POS" and
"COPY" are two built in UCSD string intrinsics. "POS"
returns the position of the first occurrence of the
pattern (first argument) in the second argument.
"COPY" returns a string which is a· copy of the first
argument starting with the character position defined
by the second argument for the number of character
defined by the third argument. For example,

PROCEDURE TRAVERSE (PTR: UNKS) ;
BmIN

IF (PTRA .LLINK<>NIL) AND (PTRA .SI'UFF>:Laol)
THEN TRAVERSE (PTRA • LLINK) ;

IF (PTRA .SI'UFF>=LCW) AND (PTRA .SI'UFF<HIGH)
THEN BmIN
WRITELN(PTRA • STUFF) ;
J:=J+l;
IF J>20 THEN

BmIN
J:=O;
WRITE ('Type <ret> to continue');
READLN
END

END;
IF (PTRA.RLINK<>NIL) AND (PTRA.SI'UFF<HIGH)

THEN TRAVERSE (PTRA • RLINK)
END;

PROCEDURE ENl'ER (NEW: LINKS) ;
¥hR THIS,NEXT:UNKS;
BmIN

NEWA .SI'UFF(l) : =UPPERCASE (NEWA • SI'UFF(l));
IF ROOT=NIL THEN RCXYr:=NEW
ELSE
BffiIN

NEXT:=RCXYr;
REPEAT

THIS:=NEXl';
IF NEWA .SI'UFF<=THISA .SI'UFF THEN

NEXT:=THISA.LLINK
ELSE

NEXT:=THISA.RLINK
UNTIL NEXT=NIL;
IF NeNA.STUFF<=THISA.SI'UFF THEN

THISA • LLINK: =NeN
ELSE

THISA.RLINK:=NEW
END

END;

The ~NTER procedure will take a data structure of
type "ENTRY" and link it into the appropriate node in
the binary tree. The binary tree is implemented using a
linked list data structure defined as type "ENTRY"
above. Each entry is a record which contains 3 items:
1) STUFF which is a string, 2) RLiNK which is a pointer
to the next "ENTRY" record with STUFF greater than
this record's STUFF and 3) LLlNK'which is a pointer to
the next "ENTRY" record with STUFF less than or
equal to this record's STUFF. The procedure works
with these pointers which are of type "LINKS".
PASCAL allows the items of a record to be accessed
using the construction "record variable.item variable".
I do not have any variables of type "ENTRY", which is
the record variable type. I only use pointers to these
record variables so I access the variables contained in
a record using the construction "pointer variable. item
variable". The ENTER procedure first makes sure the
first character of STUFF is upper case. Next, if ROOT is
empty, it will contain the special value NIL and will be
initialized to point to the NEW record. If ROOT contains
a valid pointer, the search of the tree is begun to find
the proper node for the NEW record. The search will
follow either the left link (LLlNK) or right link (RLlNK)
depending on the relationship between STUFF in the
NEW record and STUFF in the current (THIS) record.
UCSD PASCAL allows strings of different lengths to be
compared. The search continues until the end of the
tree is found (a pointer value of NIL). The NEW record is
entered by making the current (THIS) record point to
the NEW record.

The TRAVERSE procedure is used to retrieve in a
sorted fashion STUFF from the tree. This procedure is
really simple; but is difficult to understand if you are not
familiar with recursion. The main program below will
define the LOW and HIGH search strings and start
TRAVERSE at the ROOT of the tree. TRAVERSE
procedes down the left link (LLlNK) until it finds either
the end of the tree or a record with STUFF less than
LOW. Remember that STUFF was entered with lesser

STUFF: = 'TAKE THE BCYITLE WITH A METAL CAP';
PATTERN:='TAL'
WRITELN (POS (PATTERN, STUFF)) ;

will print 26. Also,

WRITELN (CO~ (STUFF ,POS ('B' ,SI'UFF) ,6»;

will print -BCYITLE-. The next t100 procedures
Unplement the binary tree:

20 S-100 MICROSYSTEMS

North Star Horizon-
COMPUTER WITH CLASS
The North Star Horizon computer can be found everywhere
computers are used: business, engineering, home - even the
classroom. Low cost, performance, reliability and software
availability are the obvious reasons for Horizon's popularity.
But, when a college bookstore orders our BASIC manuals,
we know we have done the job from A to Z.
Don't take our word for it. Read what these instructors have to
say about the North Star Horizon:

"We bought a Horizon not only for its reliability record,
but also because the North Star diskette format is the industry
standard for software exchange. The Horizon is the first computer
we have bought that came on-line as soon as we plugged it in,
and it has been running ever since!"

- Melvin Davidson, Western Washington University,
Bellingham, Washington

"After I gave a V2 hour demonstration of the Horizon
to our students, the sign-ups for next term's class in BASIC
jumped from 18 to 72."

- Harold Nay, Pleasant Hill HS, Pleasant Hill, California

"With our Horizon we brought 130 kids from knowing
nothing about computers to the point of writing their own Pascal
programs. I also use it to keep track of over 900 student files,
including a weekly updated report card and attendance figures."

- Armando Picciotto, Kennedy HS, Richmond, California
"The Horizon is the best computer I could find for my class.

It has an almost unlimited amount of software to choose from.
And the dual diskette drives mean that we don't have to waste
valuable classroom time loading programs, as with computers
using cassette drives."

- Gary Montante, Yqnocio Valley HS, Walnut Creek, Calif.
See the Horizon at your local North Star dealer.

NorthStar¥-
North Star Computers, Inc.
1440 Fourth Street
Berkeley, CA 94710
(415) 527-6950
TWX/Telex 910-366-7001

STUFF on the left link. When the trip down the left link
stops with a record with STUFF between LOW and
HIGH, the record is printed on the terminal. The global
variable J keeps track of the number of records printed
and stops at 20 so the CRT screen can be leisurely
read. Now TRAVERSE starts down the right leg if it
exists and if the STUFF down there is less than HIGH.
This defines a new "subtree" which is searched in
similar fashion. The resulting listing will have STUFF
sorted from low to high.

The final procedure creates a record and the
variable STUFF:

PROCEDURE CREATIT;
VAR P:LINI<S;
BEXHN

N&.'(P) ;
CASE SORT OF

1: TITLE:=CONCAT(COPY(LINE,PLOC[I]+l,
SLOC[I)-PLOC[I) ,COPY (LINE,
1,PLOC[I)) ;

2,3: IF LINE[l)=' , THEN
TITLE:=COPY(LINE,2,SLOC[I)
ELSE
T1TLE:=COPY(LINE,1,SLOC[1]);

END;
TITLE:=COPY(CONCAT(TITLE,BLANI<S),1,56);
AUTHOR: =COPY (L1NE,SLOC (1)+1,

(SLOC[2)-SLOC[1)-1);
IF LENGTH(AUTHOR»14 THEN

BEXi1N
AUTHOR:=COPY(AUTHOR,1,14);
ABL:=' ,
END
ELSE
ABL:=COPY(BLANKS,1,15-LENGTH(AUTHOR»;

DATE:=CONCAT('19',COPY(LINE,SLOC[2)+1,
LENGTH(LINE)-SLOC[2));

DBL:=COPY(BLANI<S,1,8-LENGTH(DATE»;
CASE SORT OF

1: P~ .SI'UFF:=CONCAT(TITLE,ABL,AllI'HOR,
, ',DATE);

2: P~ • STUFF: =CONCAT (AUTHOR,ABL,TITLE,
, , JllI.TE)·

3: P~ .STUFF;=CONCAT(DATE,CBL,TITLE,
ABL,AUTHOR)

END;
P~.LLINK:=NIL;
P~.RLINK:=NIL;
ENTER(P)

END;
(* Begin Main progran *)
BEGIN

ROOT: =NIL; J:~;
WRITE('Enter data file name ->');
READLN (LINE) ;
RESET (F,LINE) ;
REPEAT

WRITE ('Sort by 1) TITLE, 2) AUTHOR "
'or 3) DATE? Enter 1,2 or 3 ->');

READl.N(SORT)
UNTIL SORT IN [1,2,31;
READLN(F ,LINE);

22

WHILE Nor EOF(F) DO
BEXiIN
FIN[R(' /' ,LINE,SLOC,NLM);
ERROR: =NUM< > 2 ;
FINDR('.' ,LINE,PLOC,NUM);
ERROR:=ERROR OR (NLM~);
IF SORT IN [2,3) THEN NUM:=l;
IF NOT ERROR THEN

FOR 1:=1 TO NUM DO
BEXiIN
CREATIT;
J:=J+l
END

ELSE
BEXiIN
WRITELN('**BAD LINE**' ,CHR(7»;
WRITELN (LINE)
END;

READLN (F , LINE)
END;
WRITELN('Sort ccmplete with' ,J,

, records entered. Enter range',
, for output.');

REPEAT
WRITE('Low string «etx> to quit)->');
READLN (L~) ;
IF Nor EOF THEN

BEXiIN
L~[11:=UPPERCASE(L~[11);
WRITE('High string->');
READLN (HIGH) ;
IF NOT EOF THEN

BEXiIN
HIGH[l]:=UPPERCASE(HIGH[l);
J:~;
TRAVERSE (ROOT)
END

END
UNTIL EOF

END.

The main program asks for the name of the data
file and the type of sorting to do. Records are read from
the data file and the position of the two slashes are
saved in SLOC. The position of the periods are saved
in PLOC. The CREATIT procedure is called once if the
sort is by author or date. CREATIT is called for each
keyword if the sort is by title.

The CREATIT procedure creates a new record
with pointer in "P". If the sort is by title, the title is
permuted using the value of the index "I". Strings for
title, author and date are created with the proper
lengths. Then STUFF is put together depending on the
type of sort requested. Finally, ENTER is used to link
the new record into the tree.

The main program finishes by requesting the
values for the low and high strings. If control-C is not
entered, the first character of each string is converted
to uppercase and TRAVERSE is started at the ROOT.
You can repeatedly query the data by entering new low
and high strings. I have 56K of memory which will hold
one year's worth of a publication's titles.

If you try this program, I hope you will find it as
interesting and useful as I have.

S·100 MICROSYSTEMS

Hard dislc and hardtapeMcontrol
Up to 2400 Megabytes of
hard disk control for the
5-100 bus.
Konan's SMC-1 00 interfaces s-i 00 bus micro
computers with all hard disk drives having the
Industry Standard SMD Interface. It is available
with software drivers for most popular operating
systems. Each SMC-1 00 controls up to 4 drives
ranging from 8 to 600 megabytes per drive,
including most "Winchester" drives - - such as
Kennedy, Control Data, Fujitsu, Calcomp,
Microdata, Memorex, Ampex, and others.

SMC-100 is a sophisticated, reliable system
for transferring data at fast 6 to 10 megahertz
rates with onboard sector buffering, sector
interleaving, and DMA.

SMC-1 OO's low cost-per-megabyte
advanced technology keeps your micro computer
system micro-priced. Excellent quantity discounts
are available.

Konen's HARDTAPE™
subsystem ... very low cost
tape and/or hard disk
Winchester backup and more.
Konen's new DAT-1 00 Single Board Controller
interfaces with a 171/2 megabyte (unformatted)
cartridge tape drive as well as the Marksman
Winchester disk drive by Century Data.

The DAT-100 "hardtape" system is the only
logical way to provide backup for "Winchester"
type hard disk systems. (Yields complete hard
disk backup with data verification in 20-25
minutes.)

Konen's HARDTAPE™ subsystem is
available off the shelf as a complete tape and
disk mass storage system or an inexpensive tape
and/or disk subsystem.
Konan controllers and
subsystems support most
popular software packages
including FAMOS™, CP/M®
version 2.X, and MP/M.
Konan, first (and still the leader) in high
reliability tape and disk mass storage devices,
offers OEM's, dealers and other users continuing
diagnostic support and strong warranties. Usual
delivery is off the shelf to 30 days with complete
subsystems on hand for immediate delivery.

Call Konan's TOLL FREE ORDER LINE today:

800-528-4563
Or write to Bob L. Gramley

Konan Corporation, 1448 N. 27th Avenue
Phoenix, AI. 85009. TWX/TELEX 9109511552

CP/M'" is a registered trade name of Digital Research,
FAMOS™ is a trade name of MVT Micro Computer Systems.
HARDTAPE™ is a trade name of Kanan Corporation.

LINEAR PROGRAMMING
PART 2

by
W.M. Yarnall
19 Angus Lane

Warren, N.J. 07060

Setting Up & Solving A Problem

INTRODUCTION
In Part 1 , the UCSD PASCAL implementation of the

Revised Simplex Algorithm was presented, together
with the output from a sample problem. In this part, four
example problems will be taken up, one in each of the
four problem classes mentioned in Part 1:

*The PRODUCT MIX problem,

*The TRANSPORTATION problem,

*the DIET problem, and

*GAMING STRATEGY.

The program shown in Listing 1 of Part 1 (LIN EARP)
provides very voluminous output, including an echo of
all input data, as well as a list of the status of the
solution at each iteration.

For this part, since the problems are longer, we
prefer to suppress some of the output, leaving only the
data at the end of the problem. The program LlNPROG
we will use is derived from LlNEARP by deleting the
procedures PRINTC and PRINTD (lines 55 thru 90),
their references in lines 161 and 186, and three calls
on the procedure PRINTX in lines 189, 302, and 401.'
This will reduce the output to more manageable
proportions for publication.

In the solution of any problem by Linear Program
ming techniques, there are several necessary steps
(in common with any problem solution by any other
technique):

*ST ATEMENT OF THE PROBLEM -- what problem
do we wish to solve?

*GATHERING OF DATA -- what data are available
for the solution, and what are their values?

*FORMULATION OF THE MODEL -- construct the
equations describing the problem and its data.

*Enter the data into the data file, and run the
program.

When we take up each of the example problems,
we will discuss each of these four steps, include a
listing of the data file, and output from the computer
program.

GENERAL
The format of the data file, as can be seen by the

declarations of the program listing (see Listing 1, part
1) in lines 13-21, is a collection of records of variant
types. This file can be constructed using the EDITFILE
program shown in Listing 1. This program provides the
capability to build a new file, or to modify/list an
existing file. Upon execution of the program, you are
prompted by

EDIT: L(lST, B(UILD, M(ODIFY, Q(UIT (1.0)

and the program will wait for a command, followed by
(CR). A response of one of the letters L, B, M or Q will
proceed to execute the command; Q exits to the
PASCAL system. If a new file has been created (via the
B or M command), then the file is LOCKED onto the
disk. Each of the other commands prompts for the data
to be entered at each stage.

When the action is L(ist or M(odify, the program
will ask for a file name, and the record number at which
the requested action is to start. Record numbers begin
with 0 for the first record. If you are M(odifying a file, you
are also asked for the name of the new file -- which will
contain the results of the edit. Each record, starting
with 0, until the designated record, is copied from the
old file to the new file. Then the designated record is
printed out, and a prompt is given for the action to be
taken on the record. The options are:

K(EEP, C(HANGE, I(NSERT, D(ELETE.

If K or 0 is selected, the next record is displayed. If
C or I is selected, a new record is requested by
prompting for each element of the record. The first item
requested is the TAG. The valid values are:

24 S-100 MICROSYSTEMS

0- Must be the first record in the file.
It identifies the size of the problem.

1 - Optional. It provides the text to
name the problem

2 - Identifies a row name and index,
and the RHS data.

4 -Identifies a column name, index
and OBJ (objective) data.

6 - Identifies an element of the ABAR
matrix.

99 - Identifies the logical EOF.

Except for the first (TAG 0) and the last (TAG 99),
records may be in any order; it is recommended,
however, that they be grouped to make it easier to
proofread a listing to make sure your data are correct.

When B(uilding a file, the program continuously
prompts for a new record. The action is continued until
a TAG greater than 100is entered (as an escape). I use
999. In the other modes, the editor returns to its
command level when the end of the input file is seen.

EXAMPLE PROBLEMS
In each of the four areas, we will present the

problem, and carry thru the formulation of the model,
and provide listings of the data file and the program run
output. Now, on to the problems--

PROBLEM 1 -- A PRODUCT MIX PROBLEM
This problem is also sometimes called a pro
duction balance problem.

Problem Statement

A Manufacturer of a product with a very seasonal
demand decides to carry out an analysis of his pro
duction strategy to minimize production costs. You
volunteer to do the job on your home micro --

It appears that there are two alternatives: extra
help can be hired or overtime used (or both) to meet the
needs of high peak demand, laying off the extra help
when demand is slow, or an attempt may be made to
level the work force, and to stock the excess produced
during the slow demand periods.

Each of these alternatives has cost factors
associated with them; it is desired to minimize the
production cost. The Sales Department has analyzed
the demand for the product for the next year, and feels
that customer demand for each of six two-month
periods will be

Period 1 - 100 units
2 - 250 units (spring sales)
3 -100 units
4 - 200 units (early Christmas orders)
5 - 400 units (mail Christmas orders)
6 - 500 units (refills of stock at retail)

It has been determined that the cost of stocking a
unit of prior production in 2.0. (Note - all costs are given
in units of standard production unit costs). Workforce

S-100 MICROSYSTEMS

can be augmented by use of overtime, and by hiring of
temporary help. Because of the cost of hiring and
training, and the time-and-a-half overtime rule, each
unit of augmented production costs 1.75; moreover,
when personnel cutbacks are made, the cost of
decreasing production capacity by one unit is 1.25
(partly due to unemployment compensation). It is
estimated that the current work force can produce for
unit (1.0) cost. Since this is a new model, there is no
prior stock to start. (Note - we missed last year's
holiday sales because the computer-aided design
program didn't work too well.

Problem Formulation

The variables we will use are:
Xj - Quantity of standard production in period 1
Yj - Quantity of productive capacity increase at the

start of the i-th period
Zj - Units of productive capacity to be dropped, either

by layoff or discontinuation of overtime at the start
of period i

Sj - Units produced for stock during the i-th period, to
be used to fill orders during period (i+ 1).

The constraining equations are

X1 - S1 = 100
X2 + S1 - S2 = 250
X3 + S2 - S3 = 100
X4 + S3 - S4 = 200
Xs + S4 - Ss = 400
Xe + Ss = 500

for the production balance equations, and

-X1 + X2 - Y2 + Z2 = 0
-X2 + X3 - Y3 + Z3 = 0
-X3 + ~ - Y4 + Z4 = 0
-X4 + Xs - Ys + Zs = 0
-Xs + Xe - Ys + Zs = 0

for the manpower balance equations. These equations
reflect the fact that you can't have both a net increase
AND a net decrease in capacity for a production
period.

The cost function to be minimized is:
COST = 1.0*(sum of X's, i=1 to 6)

+ 1. 75*(sum of Y's, i=2 to 6)
+ 1.25*(sum of Z's, i=2 to 6)
+ 2.0*(sum of S's, i=1 to 5).

listing 2 shows the data file listing for this
problem. Rows 1 thru 6 are the sales constraints,
and rows 7 thru 11 are the manpower balance
constraints. These 11 values are the RHS of the
equations. Column data (TAG = 4) are the
objective (Cost) items: columns 1 - 6 are the X's,
columns 7 - 11 are the Y's, columns 12 - 16 are
the Z's, and columns 17 - 21 are the stocking
quatities. Since the equations above have unity
coefficients for the variables, only 1 or -1 will
show up in the non-zero elements of ABAR (TAG
6 items).

25

1
2
1
4
S
6
7
8 ,

18:
11:
12:
13:
14:
is:
16:
17:
18:
19:
2e:
21:
22:
23:
24:
2S:
26:
27:
28:
29:
38:
Jj.:
32:
33:
34:
lS:
36:
37:
38:
39:
48:
41:
42:
43:
44:
4S:
46:
47:
48:
4':
SS:
Si:
52:
Sl:
S4:
SS:
S6:
S7:
S8:
S,:
68:
61:
62:
63:
64:
6S: ,,:
67:
68:
69:
78:
71:
72:
73:
74:
7S:
76:
77:
78:
79:
88:

PROGRFII ED ITF ILL

'M'E
FREe - REalRD

CASE TAG: INTEGER OF
8: (NAPE:STRINGUlI NLN2:INTEGER)J
1: O£ADER: STRINGt 64 1)1
2: (Rtft£:STRINGt611 RIN>EX: INTEGER!
4: (0ft£:STRINGt611 Cllt)£)(: INTEG€R;
6: (R;S:INTEGER! T:RER..)I ,,: ()

9I>J

RHS:REfL)J
OBJ:RER..);

81
82
8l
84
as
86
81
88
89
98
91:
92:
93:
94:
95:
~:
97:
98: - ,,:

188:
181:
182:
183:
184:
lSS:
196:
187:
188:
109:
118:
111:
112:
113:
114:
its:
116:
117:
118:
1.19:
120:
121:
122:
123:
124:
12S:
126:
127:
128:
129:
138:
lJj.:
132:
ill:
134:
~:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
lSS:
lSi:
152:
lSl:
1S4:
lSS:
1S6:
1S7:
1S8:
lSS:
168:

,,: ;

EN)J (. CASE .)
IF J > 188 THEN J:-288;
INREC:-J

91>; (. llIREC .)

PROCEI>URE PRINT (F : FREe; N: INTEGER);
BEGIN
WRlTElN(' -»
WRJTElN(' REC'.N:4.' TAG:'.F. TAG; 5);
WITH F 00
CASE TAG OF
8: BEGIN

WR I TELN(' NAI'£: ' • NAI'IE);
WRlTElN(' NO ROoIS: '. Nl);
WRITELN(' NO co,s. -, N2)

91>;
1: BEGIN

WRlTElN(' HEADING:');
WRITELN(HEAOER)

EN);
2: BEGIN

WRITELN(' ROW: -, RNAME);
WRITELN(' INDEX: '.RINDEX);
WRITELN(' RHS: ',RHS)

EN);
4: BEGIN

WRlTElN(' COL: -, CNAI'IE),
WRITElN(' INCEX: ',CINOEX);
WRITELN(' OBJ: '.OBJ)

END;
6: WRITElN(' ABARt',R;', '.S. ']: '.T);

99: WRlTElN(' - lOGICAl.. EOF - ');
EN), (. CASE .)

WRlTElN(' ')
END; (. PRINT .)

PROCEDURE BUILD;
YAR N: INTEGER;

BEGIN
IIUTElN(' ');
WRITE(' BUILD WHAT FILE? -»
REAl)CNFIL);
REAOLN;
REWRITE(NEWF. NFIL>J
NFLAG : -TRI.£;
N:s8J
WHILE N < 188 00
BEGIN
N:-INREC;
IF N < 188 TIEN
BEGIN
NEWF •.•. : -NBUF;
PUT (NEWF)

END
END (. WHILE .)

END, (. BUILD .)

PROCEDURE LIST;
lIAR REC: INTEGER;

BEGIN
IF NOT OFLAG TIEN
BEGIN
WRIT£LN(' <»
WRlTE(' LIST IoKIT FILE? ')1
REA!)(Il=IL)J
WRIT£LN(' '),
REAOLN;
RESET(OLDF.Il=IL)J
OFLAG: .TRt£

EN),
WRITE(' STARTING AT IoHIT RE~? -»
REA!) (REC)J
REAOLN;
WRIT£LN(' ')1
5EE)(CQLOF, REC);
GET(OLDF)J
IoIfILE NOT EOF(QLOF) 00

YAR
QLOF. NEWF : FILE OF FREe;
0lIlF. IBF : FREe;
0FLfIG, NFLAG : BOOLEAN;
Il=IL NFIL : STRING;
EDITING : BOOLE~
COI'9IAN> : CHAR;.

FUCTION INREC : INTEGER;
YAR J: INTEGER;

BEGIN
WRlTE(' ENTER TAG -.»
READ(J)J
REAOLNJ
IBF. TAG: .J;
WITH IBF 00
CASE TAG Il=
8: BEGIN

WRITE(' PROGI*lI£ -»
READ (NAf£);
READLN;
WRlTE(' NO. ROWS -»
READ(Nl),
READLN;
WRlTE(' NO. ca.s -»
READ(N2),
REAOl.N

END,
1: BEGIN

WRITELN(' HEADER: -»
READ(HEAOER) ;
REAOl.N

END,
2: BEGIN

WRlTE(' ROW NAME ')J
READ (RNAI£);
READ4..N;
WRlTE(' ROW NO. -»
READ CR I NDEX) ,
REAOLNJ,
WRlTE(' RHS -»
READ(RHS) ,
REAOLN

EN);
4: BEGIN

WRlTE(' COL NAt£ r»
READ(CNAf£);
REAOLNJ
WRITE(' COL NO. ')J
READ(CI NCEX);
REAOl.N;
WRITE(' OBJ ')J
REA!) (OBJ),
REAOLN

EN>J
6: BEGIN

WRlTE(' ROW NO. -»
READ(R)J
REAOl.N;
WRlTE(' COL NO. ')J
READ(S)J
REAOl.N;
WRlTE(' ABfIR(R; S 1 ')J
READ(T>J
REAOLN

EN>J

Listing 1: Data File Editor Program

26 S-100 MICROSYSTEMS

1ji1:
ssa.
1j)l:
1j>4:
165:
1j;&:
1j;7:
168:
169:
179:
171.:
172:
173:
174:
175:
176:
177:
179:

BEGIN
08tJ' : aQU)F-;
WRlTE(REC:5,': -»
WITH OBUF 00
CASE TAG OF
9: WRITELN(TAG:l,NRME:8,Ni:7,N2:7);
1: WRITELN(TAG:l,' 'HEADER);
2: WRITELN(TAG:l,~:8,RINDEX:7,RHS:14:8);
4: WRITELN(TAG:l,CNAHE:8,CINDEX:7,OBJ:14:8);
6: WRITELN(TAG:l,' ROW', R:l.' COL.', s.s, T:14:8);

99: WRITELN(TAG:l,' LOGICAl. EOF');
END; (. CASE .)

REC : =REC+i;
GET<OLDF)

END (. WHILE .)
END; (. LIST .)

PROCEDURE I1OOIFY;

HAYDEN HAS THE BOOKS
FOR TOMORROW'S -"

[i)lliOOQ)Wl~lli~
New! S- 100 BUS HANDBOOK
(Bursky). Explains all the details af cam
monly available S-1 00 systems and how
they are organized Covers computer fun
dornentcls. basic electronics, and each
section of the computer. Schematic draw
ings and illustrations are provided for
reference. #0897-X, $12.95

New! DESIGNING
MICROCOMPUTER SYSTEMS
(Pooch and Chattergy). Describes three of
the most popular microcomputer families:
the Intel8080,Zilog Z80,and Motorola 6800
in terms of microprocessor architecture,
timing, control and clock signals, interrupt
handling, etc. Timing diagrams are included
as well as information on building micro
computersystems from kits. #5679-6, $8.95

New! PASCAL WITH STYLE:
Programming Proverbs
(Ledgard, Nagin, & Hueras). Introduces
superior methods for program design and
construction. Stresses overall program or
ganization and "logical thlnklnq." A special
chapter shows you how to use the top down
approach with PASCAL. Includes samples
of PASCAL proqrorns. #5124-7, $6.95

~Prosumers are those who measure their
personal success by their ability to inde
pendently produce goods and services for
and by themselves ... and their computers.

Available at your local computer store.
Or write to:

Hayden Book
Company, Inc.

50 Essex Street, Rochelle Pork, N.J. 07662

[J] Call (201) 843-0550, ext. 307
TO CHARGE YOUR ORDER TO:
Master Charge or Visa!

Minimum order is $ 1 0.00; customer
pays postage and handling.

27

179:
189:
181:
182:
1al:
184:
185:
186:
187:
1SS:
189:
199:
191:
192:
19l:
194:
193:
196:
197:
19S:
199:
299:
281:
292:
291:
284:
~:
296:
287:
299:
299:
219:
211:
212:
21l:
214:
215:
216:
217:
218:
219:
229:
221:
222:
22l:
224:
225:
226:
227:
228:
229:
2l9:
231:
2:12:
2D:
2l4:
2l5:
2l6:
2l7:
2lS:
2:19:
248:
241:
242:
20:
244:

lIAR REC, J: INTEGER; ANS: CHARi

BEGIN
IF OFLAG
THEN (* OLD FILE IS OPEN .)
SEEK(QLDF,9)

ELSE
BEGIN
WRITE(' I'Ia>IFY WHAT FILE? ');
REAI)(OFIL);
RESET(QLDF, OFIL);
OFLAG:=TRl£;
REAI>LN;

END;
WRITE(' NAME Of" NEW FILE? ');
REAI)(NFIL);
IF NFLAG
THEN
CLOSE(NEWF, LOCK)

ELSE
BEGIN
REWRITE(NEWF, NFIL);
NFLAG: =TRUE

END;
READLN;
WRITE(' STARTING AT WHICH RECORD? ');
REAI)(J);
READlN;
IF De Tl£N
FOR REC: =9 TO (J-1) 00
BEGIN
SEEK(OLDF, REC);
GET (QLDF);
IF NOT EOF(QLDF) THEN
BEGIN
NEIoF-: =OlDF-;
PUT(NEWF)

END
END;
REC:=J;
WHILE NOT EOF(OLDF) 00
BEGIN
SEEK(OLDF, REC);
GET (OLDF);
IF NOT EOF(QLDF) Tl£N
BEGIN
PRINT<OLDF-, REC);
WRITELN(' PROCESS THIS RECORO?');
WRITELN(' K(EEP, C(HANGE, I<NSERT, D(ELETE');
READ(ANS);
READLNi
CASE ANS OF
'K': BEGIN

NEI*'-: =OlDF-;
PUT(NEWF);
REC:=REC+1

END;
'C': BEGIN

J:=INREC;
IF J<199 Tt£N
BEGIN
NEIoF- : cfIllF;
PUT(HEIoF)";
REC:=REC+1

END ELSE REC: =REC+1
END;

S-} 00 MICROSYSTEMS

245
246
247
248
249
~
2M
~
~
~ EN>
2SS EN>
~ EN>
257 EN>;
258
2S9 BEGIN (* MAIN *)
268 : OFLAG: =FALSE;
261 : hFLAG: =FALSE;
262: EDITING:c~
263: ••• ILE EDITING 00
264: BEGIN
265: I.UTELN(' -»
266: WRITE(' EDIT: LOST, B<UILO, "(OOIFY, QWn [1.. e i ');
2b7 : READ (COtIt'IAND);
268: READLN;
269 : CASE COMI'tAfI) OF
278: 'L': LIST;
271: 'B': BUILD;
272: '"': I1OOIFY;
273: 'Q': EDITING:=FAl.SE;
274: END (* CASE *)

275: EN>, (* WHILE *)
276: IF NFLAG THEN CLOSE(NEIoF. LOCIO
277: EN>.

'D'.: REC:-REC+1;
'I': BEGIN

J:-INREC;
IF Jo.ee THEN
BEGIN
NEIoF~: -ta.F,
PUT(NEIoF)

END
EN>;

(* CASE *)

(* WHILE *)
(* I100IFY *)

CATCH THE
5·100 INC.
BUS!

LIST
PRICE

OUR
SPECIAL
CASH
PRICE

Godbout, Econoram XIV 16K Static
Ram w/Extended Addressing
4 MHz Assembled & Tested 349.00 298.00

Godbout Econoram X 32K 4 MHz
Static Memory Board - "Unkit" 599.00 512.00

S.D. Systems VDB 80x24 Video
Board Kit 370.00 309.00

S.D. Systems Z-80 Starter Kit w/PIO 340.00 275.00
Sanyo Video Monitor 9" 240.00 160.00
Intertec Intertube Terminal U/L Case

80x25 995.00 779.00
Subject to Available Quantities. Prices Quoted Include Cash Discounts.

Shipping & Insurance Extra.
We carry all major lines such as

S.D. Systems, Cromemco, Ithaca Intersystems, North Star,
Sanyo, ECT, TEl, Godbout, Thinker Toys, Hazeltine, IMC

For a special cash price, telephone us.

Hours:
Mon.-Fri.

10 A.M.-6 P.M.

Bus S - f [J [] 'I • n c •
Address 7 White Place

Clark, N.J. 07066
Interface 201-382-1318

28

EDIT: L(IST. B(UILD. I't (00 I FY. Q(UIT [1.. 8] L

LIST WHAT FILE?' BALANCE. DATA

STARTING AT !HIT RECMO? 8

8: 8 IIfU'RD 11 21
1: 1 PROOUCT ION Bfl..ANC£ EXAI1Pl.E
2: 2 SfLES1 1 188. see
3: 2 5fl..ES2 2 258. Bee
4: 2 Sff-ESl 3 188. see
S: 2 SALES4 4 290. Bee
6: 2 SALESS 5 488. Bee
7: 2 SALES6 6 see. eee
8: 2 BfL2 7 8. eeeee
9: 2 8fI..l 8 8. eeeee
18: 2 BAL4 9 8. eeeee
11 : 2 BAL5 sa e. eeeee
12: 2 BAL6 11 e. eeeee
13: 6 ROW 1 co, 1 1.. eeeee
14: 6 ROW 2 ca, 2 1.. eeeee
15: 6 ROW 3 ca, 3 1.. eeeee
16: 6 ROW 4 ce, 4 1.. eeeee
17: 6 ROW S ca.. S 1.. eeeee
18: 6 ROW 6 co, 6 1.. eBeee
19 : 6 ROW 7 COL 1 -1. 8eeee
20 : 6 ROW 7 ca, 2 1.. eeeee
21 : 6 ROW 8 ca, 2 -1.. eeeee
22: 6 ROW 8 co, 3 1.. eeeee
21: 6 ROW 9 ca, 3 -1.. eeeee
24: 6 ROW 9 COl. 4 1.. eeeee
2S: 6 ROW sa COL 4 -1.. eeeee
26: 6 ROW 1e ca, 5 1.. eeeee
27 : 6 ROW 11 co, S -1.. eeeee
28 : 6 ROW 11 ca, 6 1.. eeeee
29: 6 ROW 7 COl.. 7 -1.. eeeee
19: 6 ROW 8 COL 8 -1.. eeeee
31: 6 ROW 9 COL 9 -1. eeeee
12: 6 ROW 1e en, 18 -1.. eeeee
33 : 6 ROW 11 COL 11 -1.. eeeee
34: 6 ROW 7 ca.. 12 1.. eeeee
15: 6 ROW 8 COL 13 1.. eeeee
16 : 6 ROW 9 COL 14 1.. eeeee
37: 6 ROW sa COl.. 15 1.. eeeee
38 : 6 ROW 11 COl.. 16 1.. eeeee
39: 6 ROW 1 COL 17 -1.. eeeee
48: 6 ROW 2 COL 17 1.. eeeee
41: 6 ROW 2 COl.. 18 -1.. eeeee
42: 6 ROW 3 COl.. 18 1.. eeeee
43: 6 ROW 3 COl.. 19 -1.. eeeee
44 : 6 ROW 4 COl.. 19 1.. eeeee
4S : 6 ROW 4 COl.. 20 -1.. eeeee
46: 6 ROW :5 COl.. 20 1. eeeee
47: 6 ROW :5 COl.. 21 -1.. eeeee
48: 6 ROW 6 COl.. 21 1.. eeeee

49: 4 PROD1 1 1.. eeeee
58: 4 PROD2 2 1.. eeeee
51: 4 PROD3 3 1.. eeeee
52: 4 PROD4 4 1.. eeeee
53: 4 PRODS 5 1.. eeeee
54 : 4 PROO6 6 1.. eeeee
55: 4 HIRE2 7 1.. 7see8
56: •• HIREl 8 1.. 7Seee
57: 4 HIRE4 9 1.. 7S8BB
:58: 4 HIRES 1e 1.. 75eee
59: 4 HIRE6 11 1.. 7Seee
68: 4 FIRE2 12 1.. zseea
61: •• FIREl 13 1.. 2Seee
62: •• FIRE4 14 1.. 25eee
63: 4 FIRES 15 1.. 2S80e
64: 4 FIRE6 16 1.. 2seeB
6:5: 4 STOCKi 17 2. eeeee
66: 4 STOCI<2 18 2. eeeee
67: 4 STOCIO 19 2. eeeee
68: •• STOCK4 20 2. eeeee
69: •• STOCKS 21 2. eeeee
78: 99 LOGICAL EOF

EDIT: L<JST. S(UILO. I't(OOIFY. ccurr [1.. ai Q

Listing 2: Data File,
Product Mix Example

S-100 MICROSYSTEMS

then the total cost of this program is 2443.75 (units).
For the 1550 units produced and sold, the average
production unit costs are 1 .577. This is a minimum cost
for the assumptions made on the cost elements. Other
assumptions on stocking, hiring and firing costs would
give a different production program and cost.

If, for example, the storage costs were lower, a
more uniform production would have resulted. (Try it
yourself).

The output of the run is shown in Listing 3,
and shows that if the following production
strategy is used:

Period
2 3 4 5 6

Std. production 175 175 150 150 400 500
Produce for stock 75 50
Add capacity 250 100
Drop capacity 25

Listing 3: Product Mix
Program Run PROBLEM 2 -- A TRANSPORTATION PROBLEM

This type of problem is concerned with the ship
ment of goods from M sources to N destinations. The
ABAR matrix, X(i,j), has M*N columns and M+N rows.
X(i,j) then represents the amount shipped from the l-th
source to the Jth destination. Let us set up a problem
with three sources and four destinations.
Problem Statement

In this problem, we have 3 sources, with availabilities
of 6, 8 and 10 units respectively. We have 4 4
destinations with requirements for 4, 6, 8 and 6 units.
(Note that the total of the availabilities MUST equal the
total of the requirements; nothing is created or lost
enroute).

Costs of shipment of one unit, C(i,j), between
source i and destination j are:

C(1 ,1) = 1 C(1 ,2) = 2 C(1 ,3) = 3 C(1,4) = 4
C(2,1) = 4 C(2,2) = 3 C(2,3) = 2 C(2,4) = 0
C(3,1) = 0 C(3,2) = 2 C(3,3) = 2 C(3,4) = 1

Problem Formulation
The constraints on availabilities can be expressed

ENTER DATA FILE NAME -) BALANcE. DATA

PROG. NAME. BALPRO
Ill. ROWS 11
Ill. COLS = 21

START PH'ISE 1

ITERATION 1 OF 8fLPRI)
ITERATION 2 OF BALPRI>
ITERATION 1 OF BALPRI>
ITERATION 4 OF BALPRD
ITERATION 5 OF BALPRD
ITERATION 6 OF BALPRI>
ITERATION 7 OF BAI..PRD
ITERATION 8 OF 8fLPRI)
ITERATION 9 OF BfLPRD
ITERATION 18 OF BALPRD
ITERATION 11 OF BALPRD
END OF PHASE 1 FOR BALPRD AFTER 11 ITERAT·IONS

LIST & X ARRAYS

1 STOCKl 19 290. 898
2 STOCK4 28 l80. eee
1 PROO1. 1 175. eee
4. STOCK1 17 75. eeee
s HIREl 8 125. see
6 STOCKS 21 288. see
7 PR002 2 175. eee
8 PROO1 1 388. eee
9 PROO4 4 l80. eee

18 PRODS S lee. eee
11 PROO6 6 388. eee
12 ~1 II -3318. 7S
13 ~2 14 e. eooee

START PHASE 2

by:
X(1 ,1) + X(1 ,2) + X(1 ,3) + X(1 ,4) = 6
X(2,1) + X(2,2) + X(2,3) + X(2,4) = 8
X(3,1) + X(3,2) + X(3,3) + X(3,4) = 10

and for the requirements:
X(1 ,1) + X(2, 1) + X(3,1) = 4
X(1 ,2) + X(2,2) + X(3,2) = 6
X(1,3) + X(2,3) + X(3,3) = 8
X(1 ,4) + X(2,4) + X(3,4) =6

ITERAT-ION 1 OF BFLPRD
ITERATION 2 OF BALPRD
ITERATION 1 OF BALPRD
END OF PHASE 2 FOR BALPRO AFTER 1 ITERATION<'

LIST & X ARRAYS

1 STOCK1
2 FIREl
1 PROO1
4 STOCK1
:5 HIRES
6 HIRE6
7 PR002
8 PROO1
9 PROO4

18 PROOS
11 PROO6
12 ~1
13 ~2

19 :sa. eeee
13 :a eeee
1 175. eee

17 75.8898
18 2S8. eee
11 188.888
2 175. eee
1 150. eee
4 158. eee
5 488. eee
6 see. eee

II -2441.7S
304 -e. 88801788

The data file is shown in Listing 4, and the program
RUN output is shown in Listing 5.

We can see that Source 1 ships all 6 of its units to
Dest. 2, thereby filling 2's requirements. Source 2
ships 2 units to Dest. 3 and 6 to Dest. 4. Source 3 ships
4 units to Dest. 1, and 6 to Dest. 4. The total cost for the
problem is 28.

There are manual techniques available for solving
small transportation problems such as this more quickly
than through the use of the computer; when the
problem is only a little larger than this one, then the
computer is much faster.

PROOUCTlON 8fUlNCE EXAI'IPLE -Continued on Page 50-

S-l 00 MICROSYSTEMS 29

ADDRESSING THE CURSOR
by

Larry Stein
Computer Mart of New Jersey, Inc.

501 Route 27
Iselin, N.J. 08830

PART II - An Analysis of' the BASIC program presented in Part I

This is the second part of an article describing the
structure of a basic program, the first part being
published in the March /April 1980 issue of S-1OO
Microsystems. In the first part, I concentrated primarily
on the cursor positioning aspects of programming in
BASIC. In this part I will discuss some very specific
features of BASIC as well as some standards for
writing programs in BASIC.

The program being described was written in
Microsoft Basic version 4.51 and running under the
CP/M operating system version 2.0. Other BASICs
and operating systems may have different syntax and
different results. It is up to the reader to identify the
differences, if any, for himself/herself. However, the
general concepts probably apply to all programming,
in general.

This program allows the operator to specify a
mailing label of any size up to 66 characters wide by 20
lines deep, enter data into that label on a formatted
screen and then print out any number of these labels.
The program is very useful for club meeting notices, by
printing the information on pressure sensitive labels
and then applying the labels to the message side of a
postcard. The address side of the postcard can be
likewise addressed by using one of the many available
mailing label programs.

Most likely, when you sit down to write a program,
it is to perform specific function and you do not intend
to make it your life's work. However, any program worth
writing is worth writing with some structure, so that if
you need to go back to modify it, or if someone else
would like to use it, the job won't have to be started
from scratch.

This leads to the area of program comments. Each
routine or sub-routine within your program should have
a title with enough description so as to alert you where
to find all of the areas of the logic of the program. If you
look at the accompanying program, you will see one
method of titling subroutines. Now, you do not need to
make all the pretty boxes, but they do serve as targets
for your eyes as you scan down the listing looking for
some speCial routine within your program. 'Nuff said.

Within most programs there will be certain instruc
tions or sets of instructions, called subroutines, that
will be used more than just one time. These subroutines
should be identified within the program and whenever
they are required, they should be entered with a
GOSUB statement. The LABEL program described
here uses many such subroutines. The most frequently
used subroutine is the cursor positioning routine
located between lines 2170 and 2560. As you can see,
this subroutine is GOSUBed from lines 320, 330, 350
and many other places by the statement GOSUB
2320. This method of programming makes the program
shorter by not duplicating instructions and also easier
to change.

Let's now look at the program in some detail and
see some of the techniques employed.

Line 150 clears 2000 bytes of string space for the
program variables. BASIC normally allows a fixed
amount of string space, each version of BASIC allowing
a different number. If you do not know how much string
space is normally allowed, you can assign some
arbitrary amount, say 100, and if the program needs
more, you will get some message such as 'OUT OF
STRING SPACE' which alerts you to allocate more. Not
very scientific, but it works. If you want a more
scientific method, consult your BASIC manual for the
method of calculating string space.

Line 160 is a dimension statement for A$ and
contains a comment indicating that it is a dummy
statement. This is for reasons of consistency. Later in
the program, it is necessary to create the dimension of
A$ depending data being entered from the console
and we may do in more than one time. In order to
dimension an array that has been previously dimen
sioned, we must first ERASE the array. The first time
this is encountered, line 2680-2690 or line 3030-3040,
unless the array has already been dimensioned, an
error will occur.

Lines 170-260 will present the program title and
adjust the screen display depending upon the terminal
selected. Note that the SOL screen is only 64 charac
ters wide while the other two choices are 80 characters

30 S-l 00 MICROSYSTEMS

I

i

wide.
Line 220 is a special input statement that allows

the user to enter data from the keyboard without using
the return or enter key. This instruction accepts one
character (1) into the variable Z$. It can be used
whenever the programmer knows exactly how many
characters are needed from the console.

Lines 270-380 continue the program sign-on
messages.

Line 390 is called a program switch. The first time
the program encounters this statement, BG is equal to
0, therefore the program does not GOTO 490 and will
execute the following statements. Line 480 sets BG
equal to a 1, so that the next time line 390 is
encountered, it will skip the questions asked in lines
400-470. This is known as a one-time switch.

Lines 400-470 allow the user to define which
characters on the keyboard will be used to backspace,
forward space, insert and delete. Depending on the
terminal used, the operator may select any keys which
are convenient. These questions utilize the sub-routine
at line 2830 for data input because any characters are
allowed, including control characters which most
BASICs reject.

Lines 490-540 allow the user to select a label
previously stored on diskette or a standard label
defined elsewhere in the program. Note that all YES/NO
questions allow both upper or lower case answers.
Upper/lower case translations can be accomplished
using a more sophisticated subroutine (line 1280
converts Z$ to upper case), however for single character
entry, this method seems acceptable.

Line 600 uses the subroutine at 2620 to determine
the label size. The instructions from line 2620-2760
could have been inserted here at line 600 instead of
using the GOSUB; your preference.

Lines 660-720 will display the label format on the
screen depending on the size of the label you specify.
It will number the lines from 1 to the size specified and
will show the left and right boundaries of the label.

Lines 780-810 will display the current contents of
the label. On first input, these lines will be blank, but
later if the label is to be changed, these lines will re
display the current label for the A$ array.

Lines 820-990 are used to accept input from the
console into the proper line of the A$ array. Note that if
the input statements in lines 890-940 encounter certain
characters, namely those entered as the cursor moving
commands, special subroutines are executed to handle
the cursor moving and the aligning of the data in A$.
Also, in line 940 if a backspace character (ASCII value
8) or a delete character (ASCII value 127) are entered,
they will be ignored by the program. As valid characters
are entered, they are placed into the current line
buffer, L$, in the proper place. This is what allows the
user to use the forward and backward space instruc
tions and still maintain the correct data. When the data
is entered in its entirety, it is then placed into the
proper line of the array A$ in statement 1000.

Note: these 18 lines of code along with the
subroutines at 1860, 2050 and 2130 should be
completely studied to understand the operation of the

cursor moving aspects of the data entry of this program
if you wish to use this code in another program.

Lines 1040-1080 allow the user to make any
changes to the label by simply repositioning the cursor
to the beginning of the label, and going back to the
data entry routine at 660.

Lines 1140-1390 allow the user to save the label
on diskette for future use. The program stores the
labels on the diskette with the file suffix (.LAB). First,
the directory of the diskette selected is displayed,
showing those files which have the suffix (.LAB). Then
the user is asked to supply a new name. This name is
converted to upper case characters in line 1280.
When the label is stored on diskette, the first record of
the file contains the width and length of the label and
the remaining lines are the data entered into the label.

Lines 1450-1570 allow alignment of the labels by
printing X's.

Lines 1630-1700 print the number of labels
requested and ask if more labels are desired. If so,
either the same label or a different label can be printed.

Lines 1860-1900 keep the position of the data
within the current label line when using the backspace
and forward space keys. The screen position is
automatically adjusted in the data entry routine.

Lines 1960-1990 handle the end of line condition.
When the cursor is at the end of the label line, the only
allowable characters are the carriage return and the
backspace character.

Lines 2050-2160 handle the deletion and insertion
of characters into the label text. This is done by
readjusting the position within the current line and
redisplaying the line on the screen.

Lines 2170-2560 handle the cursor positioning.
This was described in detail in the previous article.

Lines 2620-2770 determine the label size. The
label parameters are stored in the variables WD, LN,
SK and NB. The variables WD and LN are also stored in
the disk file if the label is stored on the diskette, so
when the label is redisplayed, it is the correct size.
lines 2830-2870 provide for direct input from the

port of the computer. If the standard input statement in
BASIC is used, then no control characters will be
allowed as input. Since this program allows the insert,
delete, backspace and forward space characters to
be any characters, including control characters, some
other method of input had to be used. This must be
configured for the computer you are using. If you do not
know how to directly input from your computer, the
following routine may be substituted for lines 2830-
2870:

2830 IN$=INPUT$(1)
2840 IN=VAL(IN$)
2850 REM
2860 REM
2870 RETURN

The purpose for the REM at lines 2850 and 2860
are only to maintain the line numbering consistent.
They may be removed.

S-lOO MICROSYSTEMS 31

11/6/79 ************** 1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230

WILL WORK LATER 1240
OF THE FOT.LOWING:" 1250

1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490

TO USE FOR FORWARD SPACE "; 1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

10 REM
20 REM
30 REM
40 REM
50 REM
60 REM
70 REM
80 REM
90 REM
100 REM
110 REM
120 REM
130 REM
140 REM ***
150 CLEAR 2000
160 DIM A$(2) : REM DUMMY DIMENSION SO THAT ERASE
170 PRINT:PRINT "THIS PROGRAM IS DESIGNED FOR ANY
180 PRINT:PRINT "1 - LEAR SIEGLER ADM-3A"
190 PRINT:PRINT "2 - HAZELTINE 1500"
200 PRINT:PRINT "3 - SOL TERMINAL COMPUTER"
210 PRINT:PRINT "ENTER THE NUMBER OF THE ONE YOU ARE USING ";
220 Z$-INPUT$(l) :PRINT Z$
230 IF Z$-"l" THEN AM-l:WIDTH
240 IF Z$-"2" THEN AM-2:WIDTH
250 IF Z$-"3" THEN AM-3:WIDTH
260 GOTO 170
270 REM **
280 REM
290 REM
300 REM
310 REM **
320 Y-O:X-O:GOSUB 2320
330 Y-ll:X-14:GOSUB 2320
340 PRINT "DISKETTE LABEL
350 Y-15:X-32:GOSUB 2320
360 PRINT "LARRY STEIN"
370 FOR Z-l TO 1000:NEXT Z
380 Y-O:X-O:GOSUB 2320
390 IF BG-l THEN 490
400 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR BACKSPACE ";
410 GOSUB 2830:BS-IN:PRINT CHR$(BS)
420 PRINT "ENTER THE CHARACTER YOU WANT
430 GOSUB 2830:FS-IN:PRINT CHR$(FS)
440 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR INSERTING ";
450 GOSUB 2830:IT-IN:PRINT CHR$(IT)
4'60 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR DELETING ";
470 GOSUB 2830:DT-IN:PRINT CHR$(DT)
480 BG-l
490 PRINT "DO YOU WANT TO USE A PREVIOUSLY SAVED LABEL (YiN) ";
500 Z$-INPUT$(l) :PRINT Z$
510 IF Z$-"Y" OR Z$-"y" THEN 3280
520 PRINT "DO YOU WANT STANDARD PRODIGY LABELS (YiN) ";
530 Z$-INPUT$ (1) :PRINT Z$
540 IF Z$-"Y" OR Z$-"y" THEN 2930
550 REM **
560 REM
570 REM
580 REM
590 REM **
600 GOSUB 2620
610 REM **
620 REM
630 REM
640 REM
650 REM **
660 Y-O:X-O:GOSUB 2320
670 PRINT
680 FOR N-l TO LN
690 Y-N:X-l:GOSUB 2320
700 N$-STR$(N) :IF LEN(N$)-2 THEN N$-" "+N$
710 PRINT "LINE ";N$;" ";TAB(WD+14);""
720 NEXT N
730 REM **
740 REM
750 REM
760 REM
770 REM * *** * ** ** * * ** * * *** *** * *** * * * * 1,. * * *** * ** ** * * * ** * * * ** * ** * * *
780 FOR N-l TO LN
790 Y-N:x-12:GOSUB 2320
800 PRINT A$ (N)
810 NEXT N
820 FOR N-l TO LN
830 I-I
840 L$-A$(N)
850 FOR M-l TO WD
860 IF 1-0 THEN 880
870 Y-N:X-ll+M:GOSUB 2320
880 GOSUB 2830
890 IF IN-13 THEN M-WD:GOTO 990 : REM CARRIAGE RETURN
900 IF IN-BS THEN 1860 REM MOVE CURSOR TO THE LEFT
910 IF IN-FS THEN 1860 : REM MOVE CURSOR TO THE RIGHT
920 IF IN-DT THEN 2050 : REM DELETE CHARACTER
930 IF IN-IT THEN 2130 : REM INSERT CHARACTER
940 IF IN=8 OR IN=127 GOTO 880 : REM CHARACTERS TO BE NOT CONSIDERED
950 1-0 AT ALL
960 MID$(L$,M,l)=IN$
970 PRINT IN$;
980 IF M=WD THEN 1960
990 NEXT M
1000 A$(N)=L$
1010 PRINT
1020 NEXT N
1030 PRINT
1040 PRINT "DO YOU WANT TO MAKE ANY CHANGES (YiN) ";
1050 Z$=INPUT$(l) :PRINT Z$
1060 IF Z$="N" OR Z$="n" THEN 1140
1070 Y-O:X-O:GOSUB 2320
1080 GOTO 660

*********** PROGRAM NAME "LABELS"

*************** WRITTEN BY LARRY STEIN ******************

PROGRAM FOR DISKETTE LABEL PREPARATION

INITIALIZATION ROUTINE FOR SPECIFIC TERMINALS

80:GOTO 320
80:GOTO 320
64:GOTO 320

BEGINNING OF PROGRAM - TITLE

PREPARATION PROGRAM - NOVEMBER 6, 1979"

: REM SET FOR DELAY OF TITLE ON SCREEN

GET LABEL PARAMETER

DISPLAY LEFT SIDE OF SCREEN

GET LABEL INFORMATION

32

REM **
REM '
REM ' ROUTINE TO SAVE LABELS ON DISK
REM '
REM **
PRINT "DO YOU WANT TO SAVE THIS LABEL ON DISK (YiN) ";
Z$=INPUT$(l) :PRINT Z$
IF Z$="N" OR Z$="n" THEN 1450
PRINT "ENTER THE DRIVE ON WHICH LABEL IS TO BE STORED (A,B,C,D) ";
D$=INPUT$(l) :PRINT D$
D$=CHR$(ASC(D$) AND 'HDF)
IF D$["A" OR D$I"D" THEN 1170
D$=D$+":"
F$=D$+"'. LAB"
PRINT
FILES F$
PRINT:PRINT
PRINT "ENTER A FILE NAME *** NOT *** IN THE ABOVE LIST"
LINEINPUT "USE FILE NAME ONLY, NO EXTENSION ";Z$
FOR N=l TO LEN(Z$) :MID$(Z$,N,1)=CHR$(ASC(MID$(Z$,N,1» AND 'HDF) :NEXT N
F$=D$+Z$+" .LAB"
OPEN "O",l,F$
PRINT#l,WD$+","+LN$
FOR N=l TO LN
PRINT# 1, A$ (N)
NEXT N
CLOSE
PRINT
F$=D$+"'.LAB"
FILES F$
PRINT
REM **
REM '
REM ' ROUTINE TO ALIGN LABELS
REM '
REM **
PRINT "READY THE LABELS IN THE PRINTER AND PRESS RETURN ";
Z$=INPUT$(l) :PRINT
PRINT "DO YOU WANT TO ALIGN THE LABELS (YiN) ";
Z$=INPUT$(l) :PRINT Z$
IF Z$-"N" OR Z$="n" THEN 1630
FOR N-l TO LN
LPRINT STRING$(WD,88)
NEXT N
FOR N=l TO SK
LPRINT
NEXT N
PRINT "DO YOU NEED MORE ALIGNMENT (YiN) ";
Z$=INPUT$(l) :PRINT Z$:GOTO 1490
REM **
REM '
REM • ROUTINE TO PRINT LABELS
REM '
REM **
FOR M=l TO NB
FOR N=l TO LN
LPRINT A$ (N)
NEXT N
FOR N=l TO SK
LPRINT
NEXT N
NEXT M
PRINT "DO YOU WANT TO PRINT MORE LABELS (YiN) ".
Z$=INPUT$(l) :PRINT Z$
IF Z$="Y" OR Z$="y" THEN 1760
STOP
GOTO 1740
PRINT "DO YOU WANT TO PRINT THE SAME LABEL (YiN) ".
Z$=INPUT$(l) :PRINT Z$
IF Z$="N" OR Z$-"n" THEN 380
GOSUB 2750
GOTO 1040
REM **
REM' ,
REM ' ROUTINE TO MOVE CURSOR RIGHT AND LEFT
REM *
REM **
1=1
IF IN-BS AND M[II THEN M=M-l:GOTO 870
IF IN=FS AND M[WD THEN M=M+l:GOTO 870
1=0
GOTO 870
REM **
REM '
REM * ROUTINE TO HANDLE CURSOR AT END OF FIELD
REM' ,
REM ***********************************~********************
GOSUB 2830
IF IN=BS 'rHEN I=l :GOTO 870
IF IN$=CHR$(13) THEN 990
GOTO 1960
REM **********************-;.,*********************************
REM *
REM ' ROUTINE TO DELETE A CHARACTER
REM *
REM **
MID$(L$,M,WD-M+l)=MID$(L$,M+l,WD-M)+" "
PRINT MID$(L$,M,WD-M+l)
GOTO 870
REM **
REM '
REM ' ROUTINE TO INSERT A CHARACTER
REM •
REM **
Ll$=MID$(L$,M,WD-M)
MID$(L$,M,WD-M+l)=" "+Ll$
PRINT MID$(L$,M,WD-M+1)
GOTO 870

S-100 MICROSYSTEMS

2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720

REM * * '* '* ** 273 a
REM * * 2740
REM * UNIVERSAL CURSOR POSITIONING ROUTINE * 2750
REM * * 2760
REM * ** * * * * * * * * * * * * * * * * ** 277 a
REM * * 2780
REM * THE FOLLOWING INSTRUCTION CORRECTS FOR THE FACT THAT * 2790
REM 11 BASIC WILL OUTPUT A CR/LF AUTOMATICALLY, AFTER A * 2800
REM * CERTAIN NUMBER OF CHARACTERS ARE SENT TO THE SCREEN * 2810
REM * SINCE THESE CURSOR POSITIONING ROUTINES SEND MANY * 2820
REM * CHARACTERS TO THE SCREEN WITHOUT A CR, WE WILL * 2830
REM * ARBITRARILY SEND A CR (PRINT) TO THE SCREEN EACH TIME* ~~~g
REM * WE EXECUTE THIS ROUTINE 5 TIMES. *
REM * * 2860
REM * 2870
D=D+l:IF D=5 THEN D=O:PRINT ~:~~
ON AM GOTO 2390,2530,2460
REM * •• * ••••••••••••• * * * * * * ** * •••• * *. * * * ~ ~ ~g
:;~ : CURSOR POSITIONING FOR ADM-3A TERMINAL 2920
REM * * 2930
REM • *. * •••• * * * * * * * * *. * *. * *. *. * *. * * * * * * ** * *. * * * *. * •• * * ••• *. * 2940
IF Y+X=O THEN PRINT CHR$ (26) 2950
PRINT CHR$(27)+CHR$(61)+CHR$(32+Y)+CHR$(32+X), : RETURN 2960
REM ••• * * * * * * * •• * * •• * •• *. * * * * 1< * 1< 1<. * * * * •••• * * *. * *. * *. * •• * * * * * 2970
REM * * 2980
:~: CURSOR POSITIONING FOR THE SOL TERMINAL COMPUTER : ~~~~

~M y:;:~*;;;~*;;~~;*~:;;~~~;:.~ :;~;~** ***** ******** ** ***** * * ;~;~
PRINT CHR$ (27) +CHR$ (2) +CHR$ (Y-l) +CHR$ (27) +CHR$ (1) +CHR$ (X-I) , : RETURN
REM * •••• * * * * * * ** *. * *. *. *. *. * •• * •• *. 3030
REM * 3040
REM * CURSOR POSITIONING FOR HAZELTINE 1500 TERMINAL 3050
REM * 3060
REM '" * * * * * * * * *. * * * *. * •• * •• * •••• * •••••••••• * ••• * *. *. * * * * * * * *. 3070
IF Y+X=O THEN PRINT CHR$(126)+CHR$(28),:RETURN 3080
IF X [32 THEN X=X+96 3090
Y=Y+96 3100
PRINT CHR$(126)+CHR$(17)+CHR$(X-1)+CHR$(Y-l), : RETURN 3110

3120
3J.30
3140
3150
3160
3170

LINE INPUT "ENTER NUMBER OF LINES TO SKIP BETWEEN LABELS II ;SK$
SK=VAL(SK$)
LINEINPUT "ENTER TOTAL NUMBER OF LABELS TO BE PRINTED ";NB$
NB-VAL(NB$)
RETURN
REM • * •• * •• * *. *. * ••• *. * *. * •• * ••• *.1< *. * •• *. *. *. *. * ••• *. * * •• 1<.
REM *
REM *
REM *
REM * *. * * * *. * * *. * •••••• * *. * * * * •• * 1< * * * * •• *. * * * * •••• * * *. * * * •• *
OUT 29,1
WAIT 29,1,0
IN=INP(28)
IN$=CHR$ (IN)

ROUTINE FOR DIRECT INPUT FROM TERMINAL

RETURN :~ : * *. * * * •• *. * •• * * * *. * * •• * •• * *. * ••••••• * * * ** * * * * * * * * * * * * *:
ROUTINE TO GENERATE PRODIGY DISKETTE LABELS REM *

REM *
REM * * •• *. * * * * •• * ** * * *. * *. * *. * * ** * 1< "'. * * ** * * * * * * * * * * *. * * * * * * *
Y=O:X=O:GOSUB 2320
PRINT "ENTER DISKETTE NUMBER xxxx"; STRING$ (4,8) ;
LINEINPUT DS$
PRINT "ENTER UNIT NUMBER
LINEINPUT UN$
PRINT "ENTER DATE (MM/DD/YY) XX/XX/XX" ,STRING$ (8,8),
LINEINPUT DT$
PRINT "ENTER DEALER NAME
LINEINPUT DL$
IF LEN(DL$) 130 THEN PRINT "DEALER NAME TOO LONG !":GOTO 3000

XXXX" ,STRING$ (4,8) ,

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" ;STRING$ (30,8)

ERASE A$
DIM A$(8)
1\$(I)="PRODIGY SYSTEMS, INC."
A$(2)=" DISKETTE #"+05$+" UNIT #"+UN$+" DATE "+DT$
A$ (3) ="
A$ (4) =" DEALER: "+DL$
A$ (5) =" MASTER DISKETTE - RETURN IMMEDIATELY"
1\$ (6) ="
A$ (7) ="COPYRIGHT (C) 1979 PRODIGY SYSTEMS, INC."
A$ (8) =" ALL WORLDWIDE RIGHTS RESERVED"
LINEINPUT "ENTER TOTAL NUMBER OF LABELS TO BE PRINTED
NB=VAL(NB$)
WD$="40"
WD=VAL (WD$)
LN$="8 "

n ;NB$
REM • * *. * ** * * * * * * * * * * * *. * •• *. * ••••• * •• * ••• * *. * * •• * ** * •••• *. *
REM *
REM *
REM *
REM ••••••••••• *. * ••• * •• 1< * * * * ** *. * * *. * *. * * * *. ** *. * *. *. * * *. *.
LINEINPUT trENTER LABEL WIDTH (IN CHARACTERS) ";WD$
WD=VAL (WD$)
IF WDI65 OR WD[l THEN PRINT "LABEL WIDTH OUT OF RANGE (1-65) ":GOTO 2620
LINEINPUT "ENTER NUMBER OF PRINT LINES PER LABEL "i LN$
LN=VAL (LN$)
IF LNI20 OR LN[1 THEN PRINT "LABEL LENGTH OUT OF RANGE (1-20) ":GOTO 2650
ERASE A$
DIM A$ (LN)
FOR N""1 TO LN
A$ (N) =STRING$ (WD, 32)
NEXT N

ROUTINE TO DETERMINE LABEL SIZE

3180
3190
3200
3210
3220

LN=VAL(LN$)
SK$="I"
SK=VAL(SK$)
GOTO 1450
STOP

HEMM-103 DATA MODE
AND COMMUNICATIONS ADAPTER ~ ~S_.l~O~O~b~US com~p~a_t_i_b_le ~~~~ __ ~ __ ~ __ ~ ,~

HIGH QUALITY

Not a kit! (FCC registration prohibits kits)

FCC APPROVED
Both the modem and telephone system interface are

FCC approved, accomplishing all the required protective
functions with a miniaturized, proprietary protective
coupler.

WARRANTY
One year limited warranty. Ten-day unconditional

return privilege. Minimal cost, 24-hour exchange policy
for units not in warranty.

-50 dBm sensitivity. Auto answer. Auto originate. Auto
dialer with computer-controlled dial rate. 61 to 300 baud
(anywhere over the long-distance telephone network),
rate selection under computer control. Flexible, soft
ware-controlled, maskable interrupt system.

Potomac Micro-Magic, I
Write for brochure:
First Lincolnia Bldg., Suite B1
4810 Beauregard St.
Alexandria, Va. 22312

S-100 MICROSYSTEMS

ASSEMBLED & TESTED

plus shipping
& handling - mAO -

Call for further information:
VOICE: (703) 750-3727
MODEM: (703) 750-0930 (300 baud)

33

SOFTWARE DIRECTORY
In each issue of 5·100 MICROSYSTEMS we will have this
catalog listing of 5·100 system software. If you have a soft
ware package you are offering for sale and want to be
listed then send us the information in the format shown.
All information must be included. We reserve the right to
edit and/or reject any submission.

Program Name: APL
Hardware System: 808O/S085/ZS0 CP/M
Minimum Memory Size: 44K
Description: Implementation of most of the APL
functions and functions of full APL, including n
dimensional inner and outer product, reduction,
compression, general transpose, reversal, take,
drop; execute and format, system functions and
variables, system commands. Runs in either
ASC II or bit-pairing ASC II-APL character sets.
Can run with user-supplied I/O drivers. Shared
variable mechanism allows CP/M disk I/O. Uses
Abranis descriptor calculus and shared data
storage to save memory space and execution
time. Comes with optional driver program for
video display with programmable character
generator.
Release: October 19S0
Price: $350 (NJ residents add 5% sales tax)
Included with price: CP/M disk and Users
Manual
Author: Erik T. Mueller
Where to purchase it:

Softronics
36 Homestead Lane
Roosevelt, NJ OS555

Program Name: MDBS.DRS: A Dynamic Restruc
turing System for MOBS Data Bases
Hardware System: Z-SO, SOSO,6502
Minimum Memory Size: 19K plus approximately
3K for buffers (Z -SO)
23K plus approximately 3K for buffers (SOSO)
29K plus approximately 3K for buffers (6502)
Language: Written is assembly language; inter
faces with BASIC, COBOL, FORTRAN and
assembly language.
Description: MOBS. DRS is a system which can
be used to alter the structure of an existing
MOBS data base. Its primary use is to permit an
MOBS user to include new data fields in existing
data records, to define new data records or set
relationships in the data base or to delete
existing fields, records or sets from a data base.
These functions can all be performed without
the need to dump the data base contents and
reload it, saving much time for the data base
user.
Release: Currently available
Price: $100.00 (Manual only: $5.00)
Included with price: MDBS.DRS system and
manual with sample application program
Author: Micro Data Base Systems
Where to purchase it:

Micro Data Base Systems
PO Box 248
Lafayette, IN 47902

34

Program Name: Diagnostics I
Hardware System: CP/M 5" & S"
Minimum Memory Size: 24K
Language: Supplied as object only
Description: Comprehensive set of CP/M com
patible system check-out programs. Finds hard
ware errors in system, confirms suspicions, or
just gives system a clean bill of health. Tests:
Memory, Disk, CPU (SOSO/SOS5/ZSO), CRT, and
printer.
Release: now
Price: $50
Included with price: Complete user manual and
Discette.
Author: SuperSoft Associates
Where to purchase it: Direct from us or dealers
everywhere.

SuperSoft
Box 162S
Champaign, IL 61S20

Program Name: MOBS: A Full Network Data
Base Management System
Hardware System: Z-SO, SOSO, 6502
Minimum Memory Size: 17K plus approximately
3K for buffers. (Z-SO)
20K plus approximately 3K for buffers. (SOSO)
26K plus approximately 3K for buffers. (6502)
Language: Written in assembly language; inter
faces with BASIC, COBOL, FORTRAN and
assembly language.
Description: MOBS is a full network data base
system expressly designed for microcomputer
use. Details of physically storing, sorting, up
dating and retrieving data are handled by the
MOBS system, freeing the programmerfrom the
tedium and complexity of data management
tasks. The amount of data stored is limited only
by the amount of on-line disk storage available.
Up to 254 different types of data records may be
processed, each of which can contain up to 255
data fields. Read/Write access protection is
provided at the record, field and set levels. Use
of the MOBS system can significantly reduce
the cost of developing and maintaining data
oriented applications programs.
Release: Currently available
Price: $750.00 - $S25.OO (Manual only: $35.00)
Included with price: 260 page User's Manual,
MDBS.DDL Data Definition Language, MDBS.DMS
Data Management System and a sample program
Author: Micro Data Base Systems
Where to purchase it:

Micro Data Base Systems
PO Box 248
Lafayette, IN 47902

Program Name: Encode/Decode I & II
Hardware System: CP/M 5" & S" disks
Minimum Memory Size: 24K CP/M
Language: Supplied as object only
Description: Complete software security system
for CP/M. Transforms data stored on disk into
coded text which is completely unrecognizable.
Encode/decode supports multiple security
levels and passwords. A user defined combina
tion (one billion possible) is used to code and
decode a file. Encode/decode is available in
two versions: Levell provides a level of security
for normal use. Level II provides enhanced
security for the most demanding needs.
Release: Now
Price: $50/$100
Included with price: User manual and diskette
Author: SuperSoft Associates
Where to purchase it: Direct from us or dealers
everywhere

SuperSoft
Box 162S
Champaign, IL 61S20

Program Name: HDBS: An Extended Hierarchi
cal Data Base Management System
Hardware System: Z-SO, SOSO,6502
Minimum Memory Size: 17K plus approx. 3K
for buffers (Z -SO)
20K plus approximately 3K for buffers (SOSO)
26K plus approximately 3K for buffers (6502)
Language: Written in assembly language; inter
faces with BASIC, COBOL, FORTRAN and
assembly language.
Description: HDBS is a data base management
system similar to the MOBS system, except that
the data structures which can be handled by
HDBS are limited to hierarchics. For many appli
cations a hierarchical system will suffice. A
limited read/write protection is available in
HDBS at the data base file level. HDBS is
designed for use by hobbyists and applications
programmers with relatively straight-forward
data representation needs.
Release: Currently available
Price: $250.00 - $375.00 (Manual only: $35.00)
Included with price: 260 page User's Manual,
HDBS.DDL Data Definition Language, HDBS.DMS
Data Management System and a sample program
Author: Micro Data Base Systems
Where to purchase it:

Micro Data Base Systems
PO Box 248
Lafayette, IN 47902

S-1 00 MICROSYSTEMS

IS YOUR COMPUTER
OUT OF SORTS?

by
Chris Terry
324 E. 35th St.

New York, NY 10016

Use These Guidelines to Choose a Tonic For It -
the sorting method that best suits both your system and your application.

From time to time I get asked 'What is the best
sorting method?' If you search the literature, you find
hundreds of sorting methods, each of which has some
attraction and gains an ounce or two of efficiency for
particular types of data, but they all fall into a few
general classes, and all the methods in a given class
have similar general characteristics. Each class has
advantages and disadvantages of its own. Thus, in its
broad form, the question is almost meaningless. Best
from what point of view? Simplicity? Speed? Ease of
using the result? Economy of memory space? You
have to consider all these things, and more. There
really is no 'best' method that gives a clear-cut advan
tage under all circumstances and for all types of data
encountered.

Quite a number of articles on sorting have ap
peared in the personal computing journals, most of
which extol one, or perhaps two, sorting methods, and
there is an overwhelming mass of material in textbooks
and professional journals, but nobody in the personal
computing field has so far assembled in one place the
basic information that is needed to make an intelligent
choice of sorting algorithm. This article is an attempt to
plug that gap. It is not intended for end-users who buy
complete software packages -- one hopes that the
sort/merge routines included in such packages are
already optimized for the application. Rather, it is
intended for hobbyists who need a sort for their own
system or application programs but don't know how to
make a choice.

I have therefore chosen to test and compare five
common sorting algorithms, all of which are classed as
INTERNAL sorts -- that is, all of the items to be sorted
are available in main memory. Three of these methods
(Bubble, Shell-Metzner, and Heap) can be further
classified as exchange sorts; when two items are
compared and found to be out of order, they are
physically swapped. The Tree Sort does not swap

S-100 MICROSYSTEMS

items, but constructs (in a separate area of memory)
an ordered list of pointers to the original items. The
remaining method (Quicksort) is an example of a
partitioning sort. These terms will be explained later,
in the comments on the individual methods.

The general characteristics of these five methods
are summarized in Table 1. Table 2 lists execution
times for three file sizes in each method on an Altair
8800a (8080A CPU), an Apple II (6502 CPU), and a
TRS-80 (Z -80 CPU), using a number of different BASIC
interpreters.

The books and articles on sorting that I have found
most readable and most generally useful for my own
microcomputer applications are listed in the bibli
ography. Knuth, of course, is the classic source of
information. However, his approach is highly mathe
matical, and his programming examples are in MIX, an
assembly language for a hypothetical machine which
does not resemble any current microcomputer. If you
are not mathematically inclined, you will find Lorin's'
book much more readable and rewarding. It is written
(in beautiful and lucid English) ''for a programmer who
desires a complete but pragmatic knowledge of
sorting and sort systems, and does not wish to learn a
specific programming language, advanced statistics,
or a hypothetical machine in order to obtain that
knowledge." The book fully lives up to this promise. It
discusses all of the factors affecting sort performance,
as well as the mechanisms of both simple and complex
methods. The extremely clear descriptions are en
hanced by really excellent diagrams and trace exam
ples.

GENERAL CONSIDERATIONS
FILE SIZE. For small files with fewer than 50

records, execution speed may be less important than
simple coding. As file size grows, differences between
execution speeds become more noticeable and carry
more weight in the choice of method.

35

RECORD SIZE. If record size is large in compari
son to the sort key length, it may be worth while to build
a table containing only sort keys and pointers to the
associated records, and to sort this table instead of
the records. This procedure becomes worth while
when the time spent in building the key/pointer table is
significantly less than the time that would be spent in
moving large records around during the sort. Moving
large records may never present a problem in Z -80
machines which have an efficient block-move instruc
tion, but experimentation along these lines should
certainly be done if an 8080 machine is used.

RECORD ORGANIZATION. All of the methods
described, except the Tree sort, require that items to
be sorted should be of exactly the same length. A
single record of abnormal length can cause total
destruction of the file by the sort routine. If the file was
created from the keyboard, record length should be
checked by the computer before entering the sort, to
ensure that no invisible control characters crept in. If
variable-length records are to be sorted, the keys
MUST be extracted and put into a table for sorting.

LANGUAGE. The BASIC interpreters tested on
microcomputers are all abominably slow in sorting
(see Table 2). If the application program is written in
BASIC, IT SHOULD CALL A MACHINE-language sort
routine which will run the same algorithm 70-100 times
faster than the BASIC interpreter can do it. However, if
the sort routine must be written in BASIC, try to match
the sort method to the peculiarities of your BASIC
interpreter. For example, the Processor Technology
interpreter runs Tree sort about 4.5 percent faster than
Quicksort. Also, you may obtain some speed increase
by concatenating multiple statements per line, if your
interpreter allows this. For the sake of portability and
simplicity, no attempt was made to optimize the test
program in this way.

If your application must sort files with unknown or
very widely varying data distribution, Shell-metzner
may be better, although slower, because its perfor
mance is more consistent. Heapsort is said (by Knuth
and others) to be inefficient for small files; my ex
perimental timings do not support that idea, unless
"small" is taken to mean "less than 10 items" -- and for
such tiny lists Bubble is the obvious choice because of
its simple and compact coding.

MEMORY USAGE. Some methods, such as the
Tree sort and all insertion methods, require a work
space equal to or larger than the unsorted list. If the
available memory space is limited, such methods may
not be feasible for large files.

NATURE OF THE DATA. Some methods (notably
the Quicksort) are extremely sensitive to the distribu
tion of the data. If your application (like many of mine)
involves adding records to the end of a file and then
resorting the file, be very cautious in using Quicksort.
Versions that are optimized for randomly distributed
data become very slow when they encounter nearly
ordered data; versions that are optimized for nearly
ordered data become slow when they encounter
random data.

EXECUTION SPEED. Execution time for a given
sort run is determined by two groups of computer
operations: 1) Array/String compares and Array/String
exchanges, which have a non-linear relationship to file
size; and 2) overhead operations such as address
computation, or the addition, subtraction, and com
parison of simple variables, which have a linear rela
tionship to file size. In Table 1, overhead operations
are represented by the variable K. As file size in
creases, the linear increase in K has much less
influence on total run time than the exponential growth
of comparisons and exchanges.

Table 1. General Characteristics of Five Sorting ~Iethods
_==.==~~%#=S_S===S~=2=========Z2=2Z============_===================================

BASIC EXTRA SPEED PRINTING OF
:1ETHOD SP1TS'" WORK SPACE FACTOR OUTPUT R~-lARKS
=========~===.==s====~============x __ ===x==========_===============================
Bubble 8 1 record, K"'{N*"'2) Linear dump Intolerably slow for large

for swaps Very Slow of sorted files
list

Shell- 16 1 record, K*N"'log2 (N) Linear dump Very consistent and reli~ble
Metzner for swaps Fast of sorted -- no pathological cases

list

Heap 22 1 record, K"'N"'log2{N) Linear dump On small files «SO) may run
for swaps Very Fast of sorted slower than Shell-H, but

list ~enerallY faster on large
iles

Tree 65 Array for Super Fast; Print Too complex to be worth
N+log2{N) some BASICs routine while for small filesi
pointers run it must access excellent for lar~e f1les of

faster than original integers or for f les with
Quicksort records long or variable-length

from the records.
linkage
list

Quick 34 log2{N)+l Slow to Linear dump Very sensitive to data; best
Super Fast of sorted case approaches K*N, worst

list case approaches K*{N"''''2),
average around K"'10g2{N)

"'Executable statements only; does not include REMARKs

36 S-100 MICROSYSTEMS

Optimizing overhead code can give only small
increases in speed. Reduction of the exponential
factors is the only way to obtain a substantial speed
increase; it is more difficult to do, however, and
increases the complexity of the code. All of the work in
this field has been aimed at finding the best way to
accomplish a reduction of comparisons and exchanges
without nullifying the benefits by excessive code
complexity. To take the concrete example of a 200-
item file to be sorted by a Processor Tech BASIC
routine, 7.5 seconds gained by shifting from Shell
Metzner to Tree may not be worth the entry, checking,
and memory space entailed by 50 extra BASIC state
ments -- but for a list of 5000 items, the gain may be
several minutes, and so be worth while.

BASIC statements), but is also the most inefficient by a
whole order of magnitude. The execution time is
proportional to the SQUARE of the number of items to
be sorted, because each item is compared to every
other item, not once but many times. A bubble sort of
1000 numbers logged nearly half a million comparisons
and a quarter of a million swaps. Using a switch to
terminate the run after a pass in which no swaps took
place requires more code and only reduced execution
time by about 10 percent. There is no reason to use
this method for any list of more than 20 items, since the
Shell-Metzner sort, with only 16 BASIC statements,
can do the job 30-50 times as fast on a large computer
with a good BASIC interpreter, and at least 3-4 times
as fast on an 8080 with a merely moderate BASIC. The
only additional space required by the bubble sort is
enough to hold one record (or key) during swaps.

HEAPSORT. See Flow Chart 3. Knuth remarks
that this is a very inefficient method for small files,

THE FIVE METHODS
BUBBLE SORT. See Flow Chart 1. This is the

simplest of all sorts to implement (no more than 8

Table 2. Comparative Timings (in Second-s) for Sorting Methods on Various Machines
==
File SORTING METHOD
Size Bubble Heap Shell-M Tree Quick COQments
==~======================================-
Xerox Sigma 9, Xerox BASIC

1000 50.3 1.8 1.8 1.2 <1 Sigma 9 is the Xerox

2000 180.5 3.0 4.0 2.3 1.8 equivalent of IBM 370-158

3000 4.6 6.0 4.0 2.5

8080A, Processor Tech. Extended Cassette BASIC

50 25 14 14.5 12 14.5 This interpreter runs

200 403.5 75 74.5 67 72.5 Treesort 4.5% faster

400 179 177.5 149.5 156.5 than Quicksort.

8080A, BASIC-E Compiler/Interpreter, Thinker Toys Disk with CP/M

50 39 13 11 9 8

200 68 78 48 47

400 156 198.5 105 95

8080A, Machine-language Sort

210 1.5 Assembler S~mbol Table
containing 10
7-character strings

6502 Processor, APPLE Integer BASIC

50 19 12 8

200 316 59 57 Fastest microcomputer

400 146 130 BASIC tested.

Z-80 Processor, TRS-80 Level II BASIC

50 47 23 22 28 18

200 700 118 221 119 97 Slowest microcomputer

400 2867 269 346 256 230 BASIC tested.

NOTE:Xerox timings were measured by the program from the system
calendar/clock (resolution of 1 second). All other timings
were taken manually with a digital stop watch (resolution of 1 second).

S-lOO MICROSYSTEMS 37

lists. This array must be large enough to hold N+log2(N)
items, where N is the number of items to be sorted.
This is larger than the file itself if the items to be sorted
are integers; however, if the file contains records 100
bytes long the linked lists array becomes a much
smaller proportion of the entire space needed. The
method has the added advantage that the pointers in
the linked list array avoid the need to move the records
themselves. One possible disadvantage is that random
access to a given item is not possible after sorting; you
must start at the head of the linkage list and work
downward until the desired item is found. One possible
way around this would be to write the items, in sorted
order, to a new file. If stored on a disc, the DOS could
then give random access; if it must be resident in core,
the sorted file could overwrite the original unsorted
file, and a binary search could be used to find a given
item.

because the large numbers get moved to the left of the
array before being shifted to their final positions on the
right, but says that for large files it is nearly as fast as
the Quicksort. The implementation by Geoffrey Chase
which I tested confirms this for Processor Tech BASIC,
where Heap is about 12% slower than Quick. For the
other BASICs, the difference is 20-30%. The overhead
is not much greater than for the Shell-metzner (22
BASIC statements). The only additional space re-

eXIT

EX[r

quired is sufficient to hold one record (or key) during
comparisons/swaps. One big advantage of this
method is that execution time is guaranteed to be of
the order of N*log2(N), and the worst case time is not
very much longer than the best case time.

SHELL-METZNER SORT. See Row Chart 2. This
method, which requires only 16 BASIC statements to
implement, is my favorite. Although there are five
variables, the arithmetic is simple (no multiplication
and only one divide-by-2). For a full explanation of the
mechanism, refer to my article in Interface Age of
November, 1978. The only extra space required is
enough to hold one record (or key) during swaps. Here,
too, execution time is guaranteed to be of the order of
N*log2(N).

TREE SORT. The implementation which I tested is
by Richard Hart, who modified the Woodrum sort for
minimum number of comparisons and minimum number
of steps between comparisons. The coding is complex,
but execution goes like greased lightning in spite of a
very large overhead (65 BASIC statements, with quite
a few multiplications and divisions). There is an addi
tional overhead in the form of an array to hold linked

38 S· 1 00 MICROSYSTEMS

FI ()...., Chc.r(;-.3

J) (H) Array to A"U
~"",,-f,er.s s-.,. sort; •• ']
A is a. varil1b/e to
hold 1 ihl,.. avr;"j

S\.Ja..r·

N1 is .si:z.e o:f
a..d-;ve /;51""

L4"'~.er S",,·
ref1a.<fl. 5
'p""e>tf: •

QUICKSORT. The implementation which I tested
is by Steven Harrington. The overhead is moderate: 34
BASIC statements and an additional array to hold
pointers to the beginning and end of segments of the
main array that are to be individually sorted and then
merged. This is a partitioning sort, which works on the
premise that it is usually quicker (and never slower) to
sort M lists of N/M elements each than to sort one list
of N elements. Successive division of the list into
smaller and smaller segments is not just a question of
finding the center array position of the segment; for
best performance, the "pivot point" should, rather, be
the median value found in the segment. The accuracy
with which the pivot point selected corresponds to the
true median value is crucial to execution speed,
especially in early phases. An enormous amount of
work has been devoted to the search for the most
efficient partitioning methods, culminating in the 1978
publication of an algorithm by Dobosiewicz which is
reputed to run at least twice as fast as any previous
version of quicksort, and involves a complex and
elegant method of finding medians during early phases
of the sort.

The Harrington version has no such sophistication;
it merely picks the value at the center of the array as
the first pivot point. Even so, it generally runs faster
than any of the other methods tested.

The method used for partitioning affects not only
the AVERAGE execution time, but also the worst-case
time. KNUTH and HARRINGTON both caution that for
pathological cases, execution time will be of the order
of N**2, whereas for the average case the time is of the
order of N*log2(N)*K, where K is linearly proportional
to overhead operations; K for the Quicksort is often
considerably smaller than the K for other methods. For
the version tested, the pathological case is the con
catenation of two nearly ordered lists. If randomization
is introduced into the partitioning, then nearly ordered
lists become the best case and completely random
lists the worst case. The Dobosiewicz algorithm is
aimed at optimizing partitioning for average cases in
such a way that the average time factor approaches

8086 Boards
CPU with $650.
Vectored Interrupts
PROM-I/O $495.
RAM $395.
8K x 16/16K x 8

ANALOG Boards
AID 16 Channel, $495.
12 Bit, High Speed
DIA 4 Channel, $395.
12 Bit, High Speed

5-100 Boards
Video and/or Analog

Data Acquisition
Microcomputer Systems

S·100 MICROSYSTEMS

VIDEO
DIGITIZATION
Real Time Video $850.
Digitizer and Display
Computer Portrait
System $4950.

IIEclllAR •
INC.

The High Performance S·100 People
TECMAR, INC.
23414 Greenlawn. Cleveland,OH 44122
(216) 382-7599

39

:. o

C(>
.....•
o o
3
()
;:0 o
(/)
-<
(/)
-I
[TI
3
(/)

90 • XEROX BASIC CONVENTIONS 91 Ie '.'-'REM'
92· '&' concatenates multiple statements on a line
93· Array subscripts MUST start at I (not 0)
94· Multiple aSSignments are separated by a comma,
95 • e.g., Y6-1,Y7-5 OR C,S9-0
96· IF ••• TflEN must be followed by a line number
97· :' indicates a print image for PRINTUSING
100 • SORTTEST -- Tests sorting algorithms
101 • by Chris Terry 15 Feb 1979
102 •••••••••••••••• ~ ••••••••••••••••••••••••••••••
105 • ARRAYS: D hold list to be sorted
106 • F saves unsorted list for re-use
107 • B hold segment pointers for Quicksort
108 • L holds N+log2(N)+2 linkages for Tree sort 110 DIM D(2500) & DIM F(2500)
115 DIM B(IOO) & DIM L(2050)
116 •••
117 • File size and Sort selection
120 PRINT 'flOW MANY NUMBERS'TAB(O)
130 INPUT N~ & X2-LEN(N$)
135 IF N$-'. THEN 230
140 N-VAL(N$)
150 FOR X-I TO Jl
160 XlaRND(O) & X3-INT(Xl.10000)
170 D(X),F(X)-X3
180 NEXT X
190 PRINT 'BUBBLE (I), HEAP (2)l SHELL-METZNER (3),'
195 PRINT 'TREE (4), OR QUICK (,)'TAB(O)
200 INPUT Z
210 YI-TIM(I) & YI-Yl.3600
220 ON Z GOTO 240,400,700,1000,2000
230 STOP
240 •••••••••••••••••• BUBBLE SORT •••••••••••••••••••
245 C S9-0
250 FOR A-I TO N-I
260 FOR B-A+I TO N
265 C-C+I
270 IF D(A)<D(B) THEN 300
275 S9-S9+1
280 T-D(A) & D(A)-D(B)
290 D(B)-T
300 NEXT II
310 NEXT A
320 GOTO 4000
400 •••• ••• • •••••••• HEAP SORT ••••••••••••••••••••••••
402 • Implementation by G. Chase 405 C1S9-0
410 N -N
420 L-INT(N/2)+1
430 IF L-l THEN 470
440 L-L-l
450 A-D(Ll
460 GOTO 510
470 A-O(NI)
480 D(Nll-D(l)
490 NI-N!-!
500 I' IlI-I TH~N blo

510 J-L
520 I-J
530 J-2.J
540 IF J-NI THEN 580
550 IF J>Jll THEN 600
560 C-C+I & IF D(J)->O(J+l) THEN 580
570 J-J+I
580 C-C+I & IF A>D(J) THEN 600
590 D~I~-O(J) & GO TO 520 600 0 I -A & GOTO 430
610 0 I -A
620 GOTO 4000
700 ••••••••••••••• SHELL-METZNER SORT ••••••••••••••••
702 • Implementation by J. Grillo 705 C,S9-0
710 H-N
720 M-INT(M/2)
730 IF MaO THEN 4000
740 K-N-M
750 J-l
760 I-J
770 L-I#1
775 C-C+l
780 IF O(I)<-D(L) THEN 810
785 T-O(I) & D(I)-D(L) & D(L)-T
786 59-S9+1
790 I-I-M
800 IF 1->1 THEN 770
810 J-J+l
820 IF J>K THEN 720
830 GOTO 760
1000 ····***** •••• *.*TREE SORT •• *** ••• **.* •••••••
1002 • Implementation by R. Hart 1005 C S9-0
1020 Kl,I HI T2,T4-0
1030 J-N+l 1 .HEAO OF SEQUENCE 1
1040 L(I+1),L(I+J),K2-1
1050 IF N<-I THEN 1780& .NOTHING TO SORT -- EXIT
1060 SI-N & .NUMBER OF LEAVES
1070 ••••••• Climb the tree •••••
1080 IF SI<4 THEN 1140& .Low order twig value
1090 K2-K2·2 & *Total number of twigs
1100 Il2-S1/2
1110 SI-INT(B2)
1120 T4-T4+(B2-S1).K2
1130 GOTO 1070
1140 •••••••••• Initial cslculations •••••••••••
1150 T4-K2-T4 & .Number of low-order twigs
1160 B2-K2/2 & ·High bit value of binary counter 1170 ••••••••••• Next twiR •••••••••••• ~ ••
1180 IF KI-K2 THEN 1780& ~SORT COMPLETE -- EXIT
1190 Kl,TI-Kl+l & *Twig number
1200 BI-B2 & .High bit value
1210 T3-T2 & ·Pr~vious reflected twig number
1220 ••••••••••• Add 1 to reflected binary counter and carry ••
1230 Tl-T1/2
1240 IF INT(TI)<TI THEN 1300& .No more CArrt~A
1250 MI-MI+I r. "Numbor oC merges

C(l _.
o o
3: n
:;0 o
(/) -<
(/) ..-I rn
3:
(/)

1260 T2-T2-Bl
1270 BI-Bl/2 & *Next bit value
12S0 GOTO 1220
1290 *(CARRY ONE)
1300 *·**********"'Twig calculatlons********"'***'"
1310 T2-T2+Bl & "'Reflected twig number
1320 IF 51-2 THEN 1380& *2-twigs and 3-twi~s
1330 ****"'**"'*** 3-twigs and 4-twigs *"''''**l*",*",,,,**
1340 IF T3<T4 THEN 1390& *Low-order twig ()-twig)
1350 ****** 4-twig ********"'*
1360 MI--Hl & *Disengage number of merges 1370 GOTO 1460
1380 IF T3<T4 THEN 1440& *Low-order twig (2-twig)
1390 *********** 3-twig ***********
1400 HI-Ml+1 & * Number of merges
1410 1-1+1 & *Next Leaf
1420 L(1+01.LO+J)-1 & *Generate a leaf
1430 J-J+l *Next sequence head
1440 ******"'**** 2-twig ***********
1450 MI-Hl+l & *Number of merges
1460 1-1+1 & *Next leaf
1470 Ll,L(1+1),L(1+J)-1 & *Generate a leaf
1480 L9-J & *Head of older leaf (last line)
1490 J-J+l & *lIead of lates leaf (next two lines)
1500 1-1+1 & *Next leaf
1510 L2,L(I+1),L(I+J)-I & *Generate a leaf
1520 GOT a 1590
1530 * (~e q(e leaves)
1540 *****l******** Herge twigs and branches ************
1550 J-J-l & *Head of lates branch or twig
1560 L9-J-l & *lIead of older branch or twig'
1570 LI-L(1+L9) & *lIead of sequence 1
1580 L2-L (1+J) & *!lead of sequence 2
1590 C-C+l & IF D(Ll)<-D(L2) THEN 1660 & *Stay in sequence 1
1600 L(I+L9)-L2 & '" Switch to sequence 2
1510 L9-L2 & "'Top leaf in sequence 2
1520 L2-L(I+L9) & *Next leaf in sequence 2
1630 IF L2-L9 THEN 1710& *End of sequence 2
1540 C-C+l & IF D(Ll»D(L2) THEN 1610 & * Stay in sequence2
1550 L(I+L9)-Ll & *Switch to sequence 1
1560 L9-Ll & *Top leaf in sequence 1
1670 LI-L(I+L9) & *Next leaf in sequence 1
1680 1~ Ll<>L9 THEN 1590& *Not end of sequence
1690 L(I+L9)-L2 & *Switch to sequence 2)
1700 GOT a 1720
1710 L(I+L9)-Ll & *Switch to sequence
1720 HI-Ml-l & *Number of merges
1730 IF Ml>O THEN 1540
1740 IF HI-0 THEN 1170
1750 ******** Generate 2nd half of a 4-twig **********
1760 MI-1-Ml & *Re-engage number of merges
1770 GOTO 1460
17S0 *********** EXIT *************
1790 GOTO 4000
2000 **
2010 * QUICKSORT ROUTINE
2015 * Implementation by S.Harrington
2020 *Initialize begin and end pOinta to entire array
2030 L-l & C,S-O
2040 B(L)-N+l
2050 H-l
2060 *Set end of array segment
2070 J-Il(L)
20S0 *Set start of array segment
2090 I-M-l
2100 *If only 2 or 3 elements, then handle specially
2110 IF (J-M)<3 THEN 2350
2120 maINT((1+J)/2)
2130 *Find a large element among the small ones
2140 1-1+1
2150 IF I-J THEN 2250

:. _.

2160 IF D(I)<-D(Hl) THEN 2140
2170 *Fine a small element among the large ones
21S0 J-J-l
2190 IF ImJ THEN 2250
2200 IF D(J)a>D(Hl) THEN 2180
2210 *Swap elements
2220 T-O(I) & D(I)-D(J) & D(J)-T
2230 GOTO 2140
2240 *Array segment now divided; move compare element between 2250 IF I<Ml THEN 2270
2260 1-1-1
2270 IF JaMI THEN 2300
2280 T-D(I) & D(I)-D(Ml) & D(Ml)-T
2290 *Save starting point for segment of large elements 2300 L-L+l
2310 B(L)-I
2320 *Repeat Quicksort on segment of small elements
2330 GOTO 2070
2340 *Special handling for 1- and 2-element cases
2350 IF (J-M)<2 THEN 2390
2360 IF D(M)<D(M+l) THEN 2390
2370 T-D(~) & D(M)-D(M+l) & D(M+l)-T
2380 *Set begin and end points for segment of large elements 2390 M-B(L)+l
2400 L-L-l
2410 IF L>O THEN 2070
2420 *End of Sort; EXIT
2430 C-'-' & S9-'-' & GOTO 4000
2440 *** 4000 *END ROUTINE
4010 Y2-TIM(I) & Y2-Y2*3600
4020 13-Y2-Y 1
4030 IF Y3->1 tHEN 4050
4040 13-'<1'
4050 PRINT 'SORT TIME - 'Y3' SECONDS'
4060 IF C+S9<1 THEN4070
4065 PRINT 'COMPARISONS: 'C,'SWAPS: '59
4070 PRINT & PRINT
4080 PRINT 'WANT TO PRINT SORT RESULT'TAB(O)
4090 INPUT P$ & IF P$<>'y' THEN 4110
4100 W-l & GOSUB 4200
4110 PRINT 'WANT UNSORTED ARRAY'TAB(O)
4120 INPUT P$ & IF P$<>'Y' THEN 4140
4130 W-2 & GOSUB 4200
4140 PRINT 'RE-USE UNSORTED ARRAy'TAB(O)

4150 INPUT P$ & IF P$<>'Y' THEN 120
4155 * Copy array F into Array D
4160 FOR X-I TO N
4170 D(X)-F(X)
4180 NEXT X
4190 GOTO 190
4200 **
4210 * PRINT 1ST 100 ELEMENTS OF SORTED OR UNSORTED ARRAY
4220 L9-N+l
4230 FOR X-I TO 100 STEP 10
4240 IF W-2 THEN 4280
4250 IF Z-4 THEN 4300
4260 PRINTUSING 4370,D(X),D(X+l),D(X+2),D(X+3),D(X+4),D(X+5),O(X+6),D(X+7),D(X+S),D(X+9) 4270 GOTO 4350
42BO PRINTUSING 4370,F(X),F(X+l),F(X+2),F(X+3),F(X+4),F(X+5),F(X+6),F(X+7),F(X+B),F(X+9) 4290 GOTO 4350
4295 * Print Tree-sorted numbers
4300 FOR Y-l TO 10
4310 L9-L(I+L9)
4320 PRINT D(L9);
4330 NEXT Y
4340 PRINT
4350 NEXT X
4360 RETlJRN
4370 :sonn 10#6 I'" I"g "" "01 0',' "00 "" ""
4380 **

K*N (with a K between 3 and 6), and the worst-case
time factor does not exceed K*N*log2(N).

From curiosity, I tried two runs of the Harrington
version on a 1 ODO-element sorted array in which I had
manually disordered a few pairs of numbers. The
sorting time in each run was no more than double the
sorting time for a random array. Nevertheless, various
auth'Ois have produced abundant evidence that under
worst-case conditions Quicksort can run nearly as
slowly as a bubble sort. If you find that it consistently
runs slowly on the type of file that you most often sort,
introduce or remove randomization in the manner
suggested by Harrington.

THE TEST RUNS
To ensure portability, only DARTMOUTH BASIC

statements were used. Where possible, the code of
the original implementer was used without change;
where translation from his dialect was necessary, it
was done as straightforwardly as possible.

To provide comparison with a large machine, and
for ease of debugging, the first runs were made on a
Sigma 9 with a very powerful and efficient BASIC
interpreter -- The Sigma 9 is the Xerox equivalent of the
largest IBM System/370.

Table 2 summarizes the results of the timing tests I
have run on various machines, for various file sizes. It is
quite evident that most microcomputer BASIC inter
preters are pretty slow, and that a machine-language
sort routine would be advantageous for large files; my
article in Interface Age describes a machine language
Shell-Metzner sort routine that can handle strings or
integers with sort keys in any position. Although the
version published is limited to 255 items, I later
modified it to sort up to 65K strings or integers on
ao80/Zao machines, and the documentation is ade
quate to allow adaptation to other machines.

All runs listed in Table 2 were performed on an
array of random numbers generated by the test program.

The times shown are the Averages of several runs -- 10
runs per file size for each method in the case of the
Xerox Sigma 9 machine, and 3 runs per file size for
each method on all other machines. Times are shown
in seconds.

REFERENCES:

CHASE, Geoffrey. Heapsort. Creative Computing,
Nov/Dec 1977

DOBOSIEWICZ, Wlodzmierz. Sorting by Distributive
Partitioning. Information Processing Letters, Vol. 7
No.1, January 1978. (North-Holland Publishing Co.,
Netherlands).
GRILO, John P. A Comparison of Sorts. Creative

Computing Nov/Dec 1977.
HARRINGTON, Steven. Quicksort! Kilobaud /

42

Microcomputing, April, 1979.
HART, Richard. Tree Sort. Creative Computing,

Jan/Feb 1978.
KNUTH, Donald E. The Art of Computer Programming,

Volume 3: Sorting and Searching. Addison-Wesley,
1973.
LORIN, Harold. Sorting and Sort Systems. Addison

Wesley, 1975.
RERKO, Andrew J. Sorting Routines. Kilobaud No.

4, April 1977.
RICH, Robert. Internal Sorting Methods Illustrated

with PL/1 Programs. Prentice-Hall, 1972.
TERRY, Chris. A Generalized 8080 String Sorting

Routine. Interface Age, Nov 1978.

ACKNOWLEDGEMENTS

My sincere appreciation and thanks go to John
Grillo, whose lively article in Creative Computing
started me exploring a field that I have found completely
fascinating; to Bob St. Hilaire, of Dun & Bradstreet,
Inc., and Dave Zernoske of the New York Amateur
Computer Club, who did the TRS-80 runs; and to Rick
Auricchio (formerly of Dun & Bradstreet, now of Apple
Computer Co.) who did the Apple runs.

The original 256-colorimaging system with
high resolution video FRAME GRABBER
for the 8-100 bus.
Capture and digitize a video frame in 1/60 of a
second. Select the best resolution for your
application, from 256 to 1280 pixels
per 1V line. Display your digitized
or computer processed Image
with 256 gray levels or 256
colors on standard
B&W. NTSC or RGB
color 1V monitors.

FULL COLOR
GRAPHICS CIT-

Features:
• Highest possible quaUty 48OX512x8 digital video

Image presently available on the market
• Input capablUty from 1V camera or other sources
• Variety of synchronization" choices
• 2 selectable Yided AID conversion circuits
• Choice of 1. 2, 4. 8. 16 or 32 bits per pixel
• 32K·byte Image memory on the basic system
• 32. 64. 128 & 256K byte system capacity
• Ughtpen input
• Photographic bigger control input
• Software selectable system parameters
• Interfaces for TR5-80 and other processors
• Comprehensive line of accessories. monltors and
support software

SEND FOR FREE CATALOG

•
DIGITAL GRAPHIC SYSTEMS == 441 California Ave., Palo Allo, CA 94306 415/494-6088

S-100 MICROSYSTEMS

NO MORE WAITING
FOR SORTS

by
Robert L. Sheffield

4505 Apache Road
Boulder, CO 80303

You have a list of names to put in alphabetical
order. So you sit down at your favorite computer and
load your bubble sort routine (written in BASIC). You
enter the names you want alphabetized - about a
hundred, say. You enter the sort command. And you go
away and read the newspaper while you computer sits
there grinding away on your list of names. In 10 to 20
minutes you may have your list in RAM ready to print.

YOU DON'T HAVE TO TAKE IT ANY MORE!
My First Sort Routine

My wife Janet, who is into businesses, clubs, and
children's activities, always has lists of people's names
she wants to put in alphabetical order. Soon after I got
my Poly 88 up and running reliably enough to complete
a losing same of Star Trek, Janet had names of about
100 of her summer swim club members scattered in
random order over several lists. Could my computer
(she wanted to know) put her names in alphabetical
order? My son Bob (who knew BASIC) and I (who knew
the alphabet) sat down with Poly and, going by a
magazine article on sorting algorithms wrote a bubble
sort routine along with the other programming neces
sary to let Janet enter her names and print out the
alphabetized list.

Sure (I said) my computer could sort her list. She
entered her names and entered the command to sort.
Janet doesn't claim to be patient. It only took her a
couple of minutes to wonder where her alphabetical
list was. I consider myself to be very patient, but after a
few more minutes I was convinced Poly had somehow
failed. When I had tested the sorter with only a dozen
or so entries, Poly had finished immediately. To see
what was going on this time, I stopped the program and
looked at the sort area. It was sorting. We let it finish. It
took more than 15 minutes. When we ran it again
without stopping, it took just under 15 minutes. Janet
was happy enough. Knowing the sort would take a
while, she could start it and go do something else while
it ran.

I figure there had to be a better way. There is.
Trees. Binary trees.

S-100 MICROSYSTEMS

My Last Sort Routine
Rejoice! With the program on these pages, you

may never have to wait for a sort again. There isn't even
a sort command. You simply enter the things you want
alphabetized; as soon as you are through entering
them, list them - immediately - in alphabetical order!

This sample program is actually a utility program
that Janet now uses to create and maintain many of her
ordered lists. Look at the menu on lines 1200 through
1240. She may enter the things she wants ordered (1)
and delete them (4). She may list them, in ASCII code
order, on the CRT screen (2) or on the printer (3). And
she can save it away for another day - list, program,
BASIC,andall-totape (5). (I didn't have disks yet when
I wrote this program).

This particular version takes a lot of RAM. I allow
for 200 63-character entries requiring 12600 bytes for
the list itself. There are also 3 directory entries created
by the program for each of the 200 data entries. In my
8-digit precision BASIC, each directory entry requires
5 bytes; therefore the directory requires 3000 bytes.
All the other variables add another 500 bytes. The
source code as you see it here takes 9100 bytes, but
densely packed it only takes 2800 bytes. The total
RAM required then is 19000 bytes plus any required by
your BASIC and your save and print routines. You can
cut the whole thing down the size and number of data
entries allowed. For example, 100 20-character entries
would take 12300 less bytes in my BASIC than the 200
53-character version.

Binary Trees - Planting, Growing, and Climbing
This program is not really a sort program because

it does not sort anything. It just stores the user's
entries in the order he enters them, but as they come in
it makes a directory in the form of a binary tree. When it
lists the entries back at the terminal or on the printer, it
uses the directory to determine the order.

For example, look at Figure 1. Assume the list of
letters down the side - MNO, DEF, TUV, and so forth
are the entries to be alphabetized and that they are
entered in the order shown. The columns show what

43

the directory for each entry looks like after each of the
subsequent entries is entered. The 3 digits in each
column represent 3 indexes into the list of entries. The
indexes are 0 (for MNO) through 7 (for JKL). The first
digit in each directory element is the back pointer - that
is, the index of the entry that this entry is attached to.
The second digit is the low pointer - the index of the
next entry made which was lower alphabetically than
this entry. The third digit is the high pointer - the index
of the next entry made which was higher. Note that the
indexes start with 0 like BASIC counts.

Figure 2 shows graphically the logical organization
of the directory - the binary tree. It is called a binary tree
because there can be two branches from each node.
Each line which connects two boxes represents a low
or high pointer and a back pointer. The line between
DEF and GHI, for example, is DEF's high pointer and
GHl's back pointer. When you ask for a list, the
program first goes down the leftmost legs until it gets
to the end (ABC) and lists it. It then starts looking for a
right leg, listing each node as it works its way back up.
In this case, it finds a right leg after it lists DEF. It
follows the right leg only to the next node (GHI). It
would next go all the way down the leftmost legs from
this node, but their aren't any, so it lists the node and
checks for a right leg. And so on.

Anyway, you don't have to wait for a sort. The
program makes the directory so fast, as you make the
entries, you don't know it's happening. When you ask
for a list, it starts listing immediately. On the tube, the
list comes out slower than just a straight list WOUld, but
even with only three characters per entry, it comes out
faster than you can read it. On my printer, it comes out
just as fast as any other listing.

You may notice some slowing as you enter data
under certain circumstances. Janet was entering a list
the other day and noticed she was able to enter
several characters of an entry before the characters
began to appear on the screen. It so happened that the
lists she was entering from were already almost
completely alphal;letized. Now the response time from
the program as it is taking entries increases as the
depth of the tree increases. While it can branch at each
level and thereby avoid comparing the new entry with
most of the old entries, it must compare the new entry
with exactly one entry at each level until it finds a place
to attach the new entry. The worst thing you can do
from the standpoint of response time is to enter your
list either in alphabetical order or in the reverse of
alphabetical order. The effect would be to create a
very tall tree with no branches.

Planting the Tree
The data areas required to define and manage the

list and the directory are set up in lines 1040 through
1130 of the sample program. Une 1040 establishes
the space for the list - 200 entries of 63 characters
each. Une 111 is the directory - 200 entries (starting
with 0) with 3 pointers each (back pointer, low painter,

44

and high pointer). 11 gives the index for the next entry
coming in. It is easier to save it each time than to
calculate it. 12 is used to prevent overrunning the end
of the index. Lines 1070 through 1100 set up the input
record and provide for padding it with blanks. Lines
1120 and 1130 provide an easy way to delete an entry.
The program does not really delete an entry; it just
marks it deleted and then skips those marked deleted
when listing the entries in alphabetical order.

EXAt1Pl.£ IF DIRECTORY AFTER EACH ENTRY

--------INDEXES RELATED TO EACH ENTRY-------

: MNO : DEF : TUV : GHI QRS AFC: XYZ : JKL
: -0- : -1- : -2- : -3- -~- -5- -6- -7- , ,

E MNO:O 0 0:
N DEF 10 1 0:0 0 0:
T TUV:O 1 2:0 0 0:0 0 0:
R GHI : 0 1 2: 0 0 3: 0 0 0: 1 0 0:
I ORS:O 1 2:0 0 3:0 4 0:1 0 0:2 0 0:
E ABC :0 1 2:0 53:040:1 0 0:20 0:10 0:
5 XYZ:O 1 2:0 5 3:0 4 6:1 0 0:2 0 0:1 0 0:2 0 0:

JKL :0 1 2:0 53:0 4 6:1 0 7:2 0 0:1 0 0:20 0:30 0:

Growing the Tree
Lines 1450 through 1790 grow the tree. Lines

1450 through 1480 create the root when the user
enters his first entry. Line 1460 puts the entry in the list.
Line 1470 sets the next entry to be at index 1. The first
entry, of course, is at index 0, the way BASIC counts. In
figures 1 and 2, the first entry is the entry MNO. The
indexes relating to the MNO entry are all zeroes
because, being the "root" entry, it has no back pointer
to a previous entry and no other entries are yet
attached to it.

Lines 1490 through 1510 compare each new entry
with existing entries. Line 1490 causes the compari
sons to start with the first, or "root" entry. E1 (not the
same variable as dimensioned variable E1) will contain
the starting position of the next entry in the list to be
compared with the new entry less one. (BASIC starts
counting with one when it is counting characters in a
string.) Lines 1500 and 1510 do the comparison and
take the appropriate branch when the new entry is
either higher or lower than the old one it is being
compared with.

If the new entry is equal to the old entry, the
program drops through to lines 1520 through 1540.
These lines just turn off the deleted flag for the entry.
This has the effect of reinstating the entry if it had been
previously deleted. If it had not been deleted, the
deleted flag would already be off and the effect of
these lines would be to simply leave the list and the
index as is.

Lines 1580 through 1630 and lines 1670 through
1720 handle the situations where the new entry is
lower or higher, respectively, than the old entry. Take
the DEF entry in the example. Line 1500 compares
DEF with MNO, the root, and branches to line 1560
because DEF is less than MNO. Line 1580 calculates
the index of the old entry just compared - 0 since it is
the root and since the program just set E1 to 0 at line
1490. Line 1590 checks to see if the low pointer of

S-100 MICROSYSTEMS

MNO is 0 indicating that no entry lower than MNO has
as yet been entered. That is the case in this instance,
so the program branches to line 1620. Une 1620 puts
the index of the new entry from 11 - in this case, 1 - into
MNO's low pointer. Look at Figure 1. MNO's low
pointer (in the MNO column) after the DEF entry (in the
DEF row) is now a 1 indicating that there is now at least
one entry in the list lower than MNO and that one of
them is the one represented by index 1.

Line 1630 branches to the common routine -unes
1760 through 1790 - for adding the new entry to the list.
Line 1760 sets the new entry's back pointer - in this
case 0 since it is attached to the root. Line 1770 tacks
the new entry onto the end of the list. Line 1780
indicates the index of the next new entry. Line 1790
goes to set the next entry.

The entry of TUV works the same way except it
goes through line 1670 through 1740 instead of lines
1580 through 1630. In Figure 1, after TUV has been
entered, MNO's index has a high pointer of 2 indicating
that there is now at least one entry in the list which is
higher than MNO and that one of them is represented
by the index at 2.

Now let's see what happens when GHI is added.
Line 1490 starts the comparisons at the root, MNO.
Line 1500 finds GHllower than MNO and branches to
1560. Line 1590 this time finds that MNO's low pointer
is not 0 - that there is already an entry lower than MNO
in the list - and falls through to line 1600. Line 1600
calculates where this entry that is lower than MNO is in
the entry list and line 1610 branches to line 1500 for
another compare. Line 1500 compares GHI with the
entry lower than MNO which we know is DEF. Since
GHI is not lower than DEF, the program falls through to
line 1510. Line 1510 branches to line 1650 since GHI is
greater than DEF. Line 1680 finds that DEF's high
pointer is empty and goes to line 1710 where GHI's
index is put in DEF's high pointer and then to 1740
where GHI is added to the list. In Figure 1, row GHI,

GRAPHICAL REPRESENTATION OF THE DIRECTORY

A BINARY TREE

t---t
:MNO:
tt-tt , ,

t-------+ t-------t
:

t-t-t
:DEF:
tt-tt

t-+-t
:TUV:
tt-tt , ,

t---t +---t +---+ +---+ , , , ,
+-+-+ t-+-+ +-+-+ +-+-+
IABe: :GHI: :IARS: :XYZ:
t---+ t--tt +---+ +---+ , ,

t-+-+
IJKL:
+---+

Fisure 2

S·100 MICROSYSTEMS

column DEF, see that DEF's high pointer now shows 3
which is GHI's index. In column GHI, see that GHI's
back pointer is 1 which is DEF's index.

Climbing the Tree
Lines 2820 through 3150 find the entries in ASCII

code order and list them at the console or on the
printer. There are three rules for finding the nodes in
the binary tree in Figure 2 in the proper order:

1. If we came down from above, find the next node to
the left, if any.

2. If we came up from the left or there is no left pointer,
find the next node to the right, if any.

3. If we came up from the right or there is no right
pointer, go up unless we are at the root, in which
case quit.

There are two rules for determining whether it is time to
print a node:

1. If we came down from above and there is no left
pointer, print.

2. If we came up from the left, print.

The variable L 1 $ on line 2820 records where we
just came from. The variable E on line 2840 is the index
of the node we are at in the tree. To start the climb, L 1 $
is set to "A" indicating we are coming from above, and
E is set to 0 starting us at the root. Lines 2850 through
2880 take us from the root down to ABC following
search rule 1 above. Neither MNO nor DEF were
printed since at the time we passed them the circum
stances matched neither of the two print rules. At both
MNO and DEF there was a left pointer failing print rule
1, and at both we were coming down, not up from the
left as required by print rule 2. But at ABC we have just
come down from above and there is no left pointer, so
we should print it. Line 2850 finds that ABC has no left
pointer and branches to line 2890. Line 2890 finds that
we did not come up from the right. Since there was no
left pointer we could not have come up from the left.
That leaves that we came from above so we fall
through to line 2920. Lines 2920 through 3050 print
entries not marked deleted. Since there is no left
pointer, search rule 2 says look for a node on the right.
Lines 3060 through 3090 would find a node on the
right, but in this case there is none, so line 3060
branches us to line 3100. If we were at the root node
line 3100 would end the search in accordance with
search rule 3, since there is no right pointer. But since
we are not at the root, rule 3 and lines 3110 through
3140 back us up to DEF after setting L 1 $ to indicate we
are coming up from the left. This time line 2860 finds
we did not come from above and sends us to line 2890
which finds we did not come from the right either -
leaving that we must have come from the left - so we
~rint DEF in accordance with print rule 2. After the print,
line 3060 finds that there is a right pointer from DEF
and lines 3070 and 3080 find it and flag that we are
coming from above. At GHI line 2850 finds no left
pointer and line 2890 finds that we did not come from

45

the right leaving that we must have come from above,
and in accordance with print rule 1 we print GHI. Lines
3060 through 3090 find JKL in accordance with search
rule 2 and lines 2850 and 2890 cause it to print in
accordance with print rule 1. Lines 311 0 through 3150
work us all the way back up to MNO in accordance with
search rule 3. Notice that when we arrive at MNO, L 1 $
= L causing MNO to print. Lines 3060 through 3090
send us down the right leg from MNO in accordance
with search rule 2. The same things happen on the right
branch from MNO as happened on the left except that
when we get back to MNO this time, L1$ = R. When
line 2890 sees the R it branches to line 3100 which
finds we are at the root and quits the search in
accordance with search rule 3.

For those who understand decision tables, I offer
Figure 3 without comment to help clarify the tree
climbing process.

TREE a..IMBING DECISION TABLE

CONDITIONS RULES
------------- -------------------------------
From above Y Y Y Y Y Y Y N N N N N N N N Y
Left ?ointer Y N N N N N N - -
From risht N N N N N N N N N N N N N Y Y Y
Delet.ed - Y N Y N Y N Y N Y N Y N
Risht. point.er - Y Y N N N N Y Y N N N N
Top node Y Y N N - - y y N N Y N -

ACTIONS

Go left X - - - -
Print X - X - X - X - X - X
Go risht - X X - - X X - - - -
Quit - - - X X - - X X - - X - -
Go bacK - X X - X X - X -
Illipossible X

Fisure 3

Variations
There are many ways to improve on the sample

program. Most of the ones I was aware of when I
started this project would severely complicate the
basic message of the article - the way to a fast
alphabetical listing. Furthermore, this project would
become one of those never-ending ones were I to
follow where each idea or misgiving leads me. I will,
however, discuss briefly some of the more useful
variations and extensions that have occured to me as
the project has developed. Be warned that I have not
tested any of these ideas. You may find them useful.
You also may find they will not work.

Pruning the Tree
As indicated earlier, the program does not really

delete entries. When the routine at lines 2140 through
2420 determines what the user wants to delete, it
simply puts a "0" in the string 01 $ (defined in line 1120)

46

at the point corresponding to the position in the main
list of the entry to be deleted. When line 2930 in the list
output routine finds a "0" corresponding to an entry, it
skips listing that entry. This, of course, means that you
may find your list space used up even though you have
less than the allowable number of entries active. A way
to reclaim the space is to logically remove the index of
the deleted element and make that index available for
the next entry to be added. Suppose, for example, we
wanted to remove OEF from the structure shown in
Figure 2. We could do this by changing MNO's low
pointer to point to either ABC or GHI. Let's choose GHI,
for example. We complete rechaining by pointing
GHI's low pointer to ABC. If there had already been
something attached to GHl's low pointer we would
have traced down GHl's low pointer until we found an
empty one. This effectively removes OEF from the list,
but it does not make its space available for the next
entry. To do this would require complicating the tree
growing routine somewhat. First we would probably
initialize the entire list with blanks and insert each new
entry instead of just tacking on each new entry as the
sample program does. We would initialize the index
list so that each set of indexes pointed to the next set;
for example, in any as yet unused index, one of its
pointers, say the back pointer, could be used to point
to the next index. 11, the index of the next available
entry, would initially point to the start of the list. Each
time an entry is added, 11 would be updated with the
back pointer of the index used for the new entry. Now,
when we delete an entry, the value of 11 is put in the
back pointer of the index of the deleted entry and the
index of the deleted entry is put in 11.

The result is a chain of available entries starting
with the most recently deleted entry, passing through
all previously deleted entries in reverse order of their
deletion, to the first never-used space in the list, and
finally through to the end of the list. We would also
need a root pointer to provide for deleting the root
entry. The sample program assumes that the first entry
is always the root entry.

Multiple Lists with One Index
One binary tree directory can be used with any

number of lists. You can, for example, have a list of
names, a list of street addresses, and a list of cities,
states, and zip codes using one directory to tie them all
together. You then print or display any of or combina
tion of the lists ordered according to the index.

Multiple Indexes
Several binary tree directories can index the same

set of several lists allowing for ordering in as many
different ways as there are directories. Continuing the
example of the address list, you could have two
indexes, one by name and one by city and provide for
listing them in either order.

S-100 MICROSYSTEMS

1000REH - SORTER USING BINARY TREE DIRECTa'lY
1010REH
1020REH - EN1'RY LIST
1030REH
1040 DIM ElS (l;u,oO)
1050 II - 0
1060 1"2 - 199
1070 DIM E2S (63)
1080 DIM E3S (63)
1090 FOR I • 1 TO 7'.E3S
1100 E3 - LEN (E3S)
1110 DIM El (199.2)
1120 DIM D1 S (200)
1130 FOR I - 1 TO 10'\01S
1140REtt
11SOREH - PfUtIARY I£HJ CF f'lNCTIONS·
1160REtt
1170 PRINT DRS< 12)
1180 G05UB ='\ffiINT
1190 PRINT ·S£LECT:"
1200 PRINT· 1 ENTER DATA·
1210 PRINT· 2 DISPLAY ENTRIES ON SCREEN IN ALPHAOCTICAL ORDER· = PRINT· 3 PRINT ENTRIES IN AlPtIABETICAL ORDER·
1230 PRINT· 4 DELETE ENTRIES"
1240 PRINT • :5 SAVE TO TAF'E"
12SO INPUT • ->·.AS '-REtt - GET FU-CTION 5El...ECTION
1260 IF LEN< AS ><>1 TI-£N 1300 '-REtt - L£NGTIi NOT 1 IS Ef<ROR
1270 IF AS < ·1· TIiEN 1300 '-REtt - S£LECT LESS THAN 1. IS ERROR
12BO IF AS > .:5" TIiEN 1300 '-REtt - S£LECT t1OF<E THAN :5 IS E:Rfi'CR
1290 ON VAL(AS) GOTO 1340.1al0,1940,Zl20,.2~
1300 PRINT AS.· NOT VALID" '-REtt - saID ERROR I"ESSAGE
1310 G05UB Z761:) '-REtt - HQ..D SCREEN TO SHOW I"ESSAGE
1320 GOTO 11:50 '-REI1 - REDISPLAY MENU
1330REtt
1340REM - ENTER DATA TO BE Sa'lTED
13!5OREI1
1360 PRINT DRS< 12) '-REI1 - CLEAR Cl'.'T SCREEN
1370 PRINT ·ENTER 0i'E LINE (63 CHARACTERS) P£R ENTRY·
1380 IF I1 < 12+1 TIiEN 1420 '\REM - IF OUT CF SPACE •••
1390 PRINT ~OUT CF SPACE· '-REtt - ••• SEND MESSAGE ••••
1400 GOS:JB Z760 '\.REM - ••• HOLD SCREEN ••••
1410 COTO 11:50 '-REI1 "7 ••• AND REDISPLAY t£NU
1420 II'F.UT"·.E2S '-REtt - GET ENTRY
1430 IF E2$ ~ ". TIiEN 11:50 '-REtt - NUU.. ENTRY l"EAtolS DONE
1440 E2$ ~ E2S + 0$ '\REM - PAD RIGHT WITH BLANKS
14:10 IF 11 0 0 n£N 1490 '-REtt - IF THIS IS FIRST ENTRY •••
1460 E1S =- E.."""S '-REM - ••• Jl.JST PUT IT IN LIST,. •••
1470 11 - 1 '-REl1 - ••• Bl....It'P IN[£X, •••
1480 GOTO 1380 '\REM - ••• AND GET NEXT EN'TT<Y
1490 El - 0 '-REI1 - INI£X OF I£XT TO COti"ARE
lS00 IF E2$ < EU<E1+1.E1+E3) TIiEN 1:561:)
1:510 IF E2S > E1S<E1+1.E1+E3) TIiEN 16:50
1:520 E - (E1/E3) + 1 '-REtt - NEW SAME; JUST REINSTATE •••
1:530 DIS< E.E) = '-REI1 - ••• IT IF IT WHS DELE1"El ••••
1:540 GOTO 1380 '-REM - ••• AND GET USER'S I£XT ENTr,y
15l5OREI1 f~= - NEW EN1'RY LESS THAN PREVIOUS
1:580 E - E1/E3
1:590 IF El(E.l >-0 TIiEN 16.."'0
1600 El - El(E.l)*E3
1610 GOTO 1:500
1620 E1(E.l) = 11
1630 GOTO 1740
1640REtt
16:50REM - NEW EN1'RY GREATER THAN PREVIOUS
166ORE1t
1670 E-El/E3
1680 IF El(E.2 >-0 Tl£N 1710
1690 El - El(£,2) * E3
1700 GOTO 1:500
1710 El(E.2) - 11
1720 GOTO 1740
1730REH
1740REH - PUT NEW EN1'RY IN LIST

~~(11.0) _ E '-REI1 - POIHT TO PREVIOUS ENTRY
1770 El$ - ElS + E2$ ~ : ~'?~~ ~~Y
~ ~~ ~~ 1 '\REM _ GET NEXT EN1'RY FROtt usc:R

~~: _ DI5Pl.AY ENTRIES (101 SCREEN IN ALPHABETICAL OF<DER
182OREl'I
1830 IF 11 0 0 Tl£N 1870
1840 PRINT "NO ENTRIES TO
18:50 GOSUB Z761:)
1860 GOTO 11:50
1870 PRINT DRS< 12 ,.
18BO 01S - "0-
1890 GOSUB 2800
1900 PRINT ·END CF LIST' ".
1910 G05UB Z761:)
1'120 GOTO 11:50
193OREl1
1940REH - PRIHT ENTRIES IN AlPtIABETICAL ORDER
19!5OREH
196OIFII-OTI-£N!·NO ENTRIES
1970 IF 11 0 0 TI-£N 2010
1'180 PRINT "NO ENTRIES TO
1990 G05UB Z760
:1.000 GOTO 11:50
2010 PRINT DRS< 12"
21120 PRINT .1"LRH PRINTER
21130 GIJ6UI 3170
_ IF RlSO·R· Tl£N 11:50
20!50 01S - "".
2060 PRINT DRS< 17)0
21170 GIJ6UI 2800
_ PRINT DRS< 12).
21190 PRINT DRS< 19)
2100 GOTO 11:50

S-100 MICROSYSTEMS

'-REtt - LIST CF ENTRIES AS ENTERED
'-REtt - INI£X OF I£XT ENTRY
'-REtt - ttAX ~ OF ENTRIES
'-REtt - ENTRY FROM TEF<I11 NAL.
'-REI1 - _S TO FILL OUT E..~

E3$ + " • '\NEXT
'-REtt - CONSTANT LEN OF 1 ENTRY
'-REtt - DIRECTa'lY OF ENTRIES
'-REtt - • DEI.£TED" F1.AGS Fa'l EA ENT

DIS + " "'J£XT

'-REI1 - ~ CRT SCREEN
'\REl1 - PRINT TAF'E FIL£ NAME
'-REtt - OFFER 5El...ECTIOH

'-REI1 - INIEX OF COI'PARED EN1'RY
'-REtt - IF STILL LOWER ENTRy ••••
\,REl1 - ••• FIND START IN LIST .' ••
'-REI1 - ••• AND COI'F'AI'<E IT WITH NEW
'-REI1 - ELSE. POINT TO I'EW ENTRY •••
'\REM - ••• AND PUT IT IN LIST

:::=:: I~Jr ~~ ..
'-REI1 - ••• FIND START IN LIST •••
'\REM - ••• AND COI'F'ARE IT WITH NEW
'\REM - ELSE. POINT TO IE:W ENTRY •••
'\REM - ••• AND PUT IT IN LI ST

'\REM - IF NOTHING IN LIST •••
DISPLAY"'\REM - ••• SEND MESSAGE ••••

'\REM - ••• t«:L.D SCREEN, •••
'\REM - ••• AND REDISPLAY i'ENlI
'-REl1 EI...SEI' a....EAR SCREEN,. .•••
~ - ••• FLAG DXSPLAYLNG ••••
'\I£H - ••• DISPLAY LIST,. •••
'\REM - ••• TELL. USER IoE ARE DONE •••
~ - ••• t«JL.D SCREEN,. •••
'\REM - ••• AND REDISPLAY I"ENU

TO PRINT·~6O'GOT011:50
'\REM - IF NO ENTRIES IN LIST ••••

PRIHT-'\REJ1 - ••• TEl..l- USER ••••
'\REM - ••• HCL..D SCREEN,. •••
'\REM - ••• AND REDISPLAY I'ENU
~ - ELSE. a..EAR ~ •.•••

(101 AND ALIGN PAPER TO TOP OF PAGE"
'\REM - ••• _IT TIU. USER'S READY ••
'\REM - ••• (CLlIT IF 1£ WANTS TO" ••
'\AEJ1 - ••• Fl...AG PRINTING ••••
'\REM ••• START PRINTER ••••
'\REM ••• PRINT LIST ••••
'-REI1 - ••• EJECT LAST PAGE •••• ,
~ - ••• STOP PRIKTER ••••
'\REM - ••• AND REDI SPLAY I£HJ'

21101lElt
2120REH - IEL£TE ENTRIES
2130REH
2140 IF 11 0 0 TI-£N 2190 '-REtt - IF NO ENTRIES ••••
21:50 PRINT "NO ENTRIES TO 1EL£TE.'-REI1 - ••• TELL. USER ••••
2160 GOSUB Z760 '\REM - ••• HQ..D SCREEN ••••
2170 GOTO 11:50 '\REM - ••• AND REDISPLAY I'ENU
2180 PRINT 0«$(12)0 '\REM - ELSE. ~ SCREDI
2190 PRINT ·ENTER •.••• IQlE ~TER STRING FROM ENTRY TO IEL£TE"
2200 INPUT • ->",E2S '\REM - GET STRINe IN ENTRY TO IEL£TE
2210 IF E2S •• -" TI£N 11:50 '\REM - IlUIT IF USER WANTS TO
2220 PRINT ·S£ARDUNe FOR EN1'RY TO DELETE ••• •
2Z!O 10 - LEN < E2S) - 1 '\REM - GET END CF sn; TO c:otPARE
2240 FOR I - 1 TO LEN < ElS) - IO'-REtt - SE'AROi LIST Fa'l HATO!
2Z5O IF E2S - E1S< 1.1+10) Tl£N EXXT Z2a0'-REI1 - HATCH FOlJNIj
2260 NEX'T'\PftINT ·NOT FOLND" '\REM - IF NOT FOl.I'CD. SEND I"ESSAGE •••
ZZ70 COTO 2190 '\REM - ••• AND GET NEXT STRING
22BO I - INT< I/E3) '\REM - GET INIEX OF I'1ATO£D ENTRY
2290 10 - (I * E3) + 1 '\REM - FIND START CF I'IATO£D ENTRY
2300 PRINT ElS< IO.I0-t£3-1) '\REM - DISPLAY ENTRY TO DELETE
2310 IIFUT ·ENTER 'D' TO IJEL.ETE a'l RETI.JRH TO LEAVE AS IS -c-- .A$
2'.320 IF AS 0 -" TI£N 2380 '\REM - IF NOT TO t'ElETE ••••
2330 I _ I + 1 '\REM - ••• < GET IN1£)(IHTO F1.AGS)O •••
2340 IF DIS< 1.1) 0"0- TI£N 219O'-REtt - ••• IF ALREADY 1lEL£TED ••••
23:50 Dl sc: :I,. I) - • • '\.REJ'1 - ••• RESTCfiE ENTRy,. •••
2360 PRINT ·k£SllJ'ItED- '\.REJ1 - ••• ~ USER ••••
2370 GOTO 2190 '\REM - ••• NII) GET NEXT STRINe
2JBO IF AS 0 "0- TIiEN 2190 '\REM - IF NOT REa>GNlZED. ASK AGAIN
23'10 I - I + 1 '\REM - ELSE (1JEL.ETE)o INIEX F1.AGS
2400 DIS< J, I) - .0- '\REM - DELETE ENTRY
2410 PRINT .DELETED" '\REM - TELL. USER
2420 GOTO 2190 '\REM - GET NEXT STRINe
2430REtt
2440REH - SAVE TO TAF'E
24:50REH
246Q PRINT DRS< 12)0 '-REI1 - ~ SCREEN
2470 PRINT "NAME CF FILE TO SAVE IS ••
2480 GOSUB 322O'\ffiINT '-REI1 - NAME OF LAST FILE LOADED
2490 PRINT "IF NAME 01<. ENTER SPACE; ••
2:100 PRINT "TO 0iAtGE, ENTER NEW NAME' •
Zl10 PRINT ·TO IlUIT. RETI.JRH". =0 INPUT • ->".AS '\REM - GET USER' S CKlI~
2:530 IF AS - " " TIiEN;u,oO '\REM - IF NEW FIL£ NAME ••••
254<l AS - AS + " '\REM - ••• PAD NAME WITH BLANKS ••
=0 Fa'l I - 1 TO 8 '\REM - ••• LOAD NEW NAME IN •••
2:560 f'O(E 479:5+ I.A5Ct AS< I • I »'-REtt - ••• TAF'E FILE t£A[£f(••••
Z570 NEXT '\REM - ••• AND •••
Z5BO PRINT ·SAVINe ". '\REM - ••• CC»IFIRtt NEW •••
Z!9O G05UB 322O'\ffiINT '\REM - ••• NAME
2600 PRINT .1"LRH TAPE (loll •• '\REM - LET USER TLf<N TAPE ON
2610 COSUB 3170 '\REM - WAIT FOR READY SIGNAL
2620 IF Rl S-" R" Tl£N 2660 '-REI1 - IF USER NOT READy ••••
2630 PRINT ·NOT ~" '-REI1 - ••• _ HIM ••••
2640 G05UB Z761:) '\REM - ••• HQ..D SCREEN ••••
26SO GOTO 11:50 '-REI1 - ••• AND REDISF'LAY t£NU
2660 NooCALI..(+=.01440-TREE(0) >'-REtt - PUT IT AU.. ON TAPE
2670 IF N 0 1 Tl£N Z700 '-REI1 - IF FIL£ JUST DlM'1f'EIj ••••
2680 COSUB = '-REtt - ••• TELL. USER 1oE •••
2690 PRINT " SAVED" '\REM - ••• SAVED IT
2700 IF N <> 2 TIiEN 2730 '-REI1 - IF FILE JUST LOADED ••••
2710 GOSUB = '\REM - ••• Tal.. USER 1oE •••
2720 PRINT " LOAIED" '\REM - ••• LOADED IT
2730 G05UB 'Z76O '\REM - HDLD ~
2740 GOTO 11:50 '\REM - REDISPLAY I"EMJ
27S0REM
2700REH - HQ..D SCREEN UNTIL USER GI~ CONTI.H.£ SICNAL
2770REH
2780 INPUT .~ TO CONTIN..E ".XIS'-RETLf<N
2790REH
2BOOREH - DISPLAY OR PRIHT LIST IN ASCII a'lI£R
2B101lElt
2B2O LIS - "A" '\REM - FLAG ca1INe FRCI1 ABOVE
2B3O L. - 1 '\REM - SET LII£ COI.."ITER
2B4O E - 0 '\REM - INDEX OF FIRST ENTRY
2B:5O IF El(E. 1 >-0 TI£N :!890 '-REtt - IF Tl£RE' S A LOIoER ENTRY •••
2860 IF Ll SO· A" Tl£N:2890 '-REtt - ••• AND IoE CAME FRCI1 ABOVE ••
2870 E - El<E.l) '\REM - ••• FIND THE •••
2880 GOTO 28!50 '\REM - ••• LCIIooER EN1'RY
2890 IF Ll S-"R- TI-£N 3100 '\REM - IF FRIJI1 RIGHT. DON'T PRINT
2920 EO - E + 1 '\REM - INIEX INTO DELETE TAIL£
2v.!O IF D1s<EO.EO) - ·D" TI-£N 3060
2940 REM - IF EN1'RY NOT 1lEL£TED ••••
2950 EO - E * E3 '\REM - ••• FIND ENTRY TO SENI), •••
2960 PRINT E1S< EO+1.E0-t£3) '-REM - ••• SEND IT ••••
2970 L - L + 1 ~ - ••• COI..JIfT UtoES SEHT p •••
2990 IF 01SO·D" Tl£N 3020 '\REM - ••• IF DISPLAYING •••
2990 IF L < 10 TIiEN 3020 '\REM - ••• AND SCREEN F\.L.L. ••••
3000 G05UB Z7 6IJ '\REM - ••• HQ..D SCREEN •••
30 10 QJTO 3040 '\REM ••• AHD RESET PAGE. a'l •••
3020 IF 01SO·P" TI£N 3060 '\REM ••• IF PRINTINe •••
3030 IF L < :5:5 Tl£N 3060 '-REtt - ••• AND PAGE F\.L.L. ••••
3040 L _ 1 '\REM - ••• RESET LII£ ~ AND •• ,
30!50 PRINT DRS< 12) '\REM ••• GET NEXT SCREEN a'l PAGE
3060 IF El(£.2>-0 Tl£N 3100 '-REtt - IF ll£RE IS PI RIGHT LEG ••••
3070 E - El< E.2) '\REM - ••• FIND IT ••••
3080 LIS - ·A· '\REM - ••• FLAG FRIJI1 ~ ••••
3090 QJTO 28!50 '\REM - ••• AHD O£CK NEXT NODE
3100 IF E - 0 Tl£N RETI.JRH '\REM - IF AT TOP NODE. GlUIT
3110 IF E-E1(El< E.0),2) TI£N US-"R" ELSE U_L"
3120 IIElt - ELSE, FLAG IF IoE ARE (101 •••
3130 IIElt - ••• A RI GMT a'l LEFT LEG ••••
3140 E - El(E,O) ~ - ••• GET PARENT NODE, •••
31:50 QJTO 28!50 '\REM - ••• AHD O£CK IT OUT
31601IElt
3170REH - IMIT Fa'l '!£AD'(' OR 'QUIT' SI~
3lBOREH
3190 IIFUT "TYPE "R" wtEN !£AD'(a'l RETI.JRH TO QUIT ->" .RIS
3200~
3210REH
32201IElt - DI5Pl.AY ~ TAPE FILE NAME
3230REH
3240 Fa'l I - 1 TO 8
3Z5O PRINT Oft$(f'£EK< 479!5t- I)).
3260 NEXT
3270 RET1Rt

47

Lists on Disks
Those of you who have direct access mass storage

systems can build a binary tree directory to order a list
of record identifiers. This would allow you to order
records stored on your direct access device. You
could do "instant sorts" on large quantities of data.

Recursive Languages
Those of you who are lucky enough to be using

a high level language that supports recursion or who
are patient enough to code in assembler or machine
language can eliminate back pointers and the indica
tors telling which direction the tree climber came from
and all the code associated with them. Recursive tree
handling routines call themselves instead of looping to
the beginning of themselves. At each call, they save
their activation records - all values of variables at the
time of the call - in a push down stack. The index of the
node they are on is in the activation record. Each return
pops the activation record restoring the values it was
working with at that level. The program keeps track of
the node it was working with by the level it is at. It keeps
track of the direction it was coming from by the point of
the call and return. Recursive routines look much
neater - academics say more elegant - than the clumsy
loops and branches in the example.

Final Note
A simulated sort using a binary tree index is not the

answer for all sorting problems. Some applications
require that the entries really be sorted. Well, the
binary tree index can be used to really sort something
by Simply writing the records to storage instead of to
the printer or terminal. And it will be faster than most
methods for that purpose if the input is well disordered.
But take note: Not counting the index or the extra
program space, to do a real sort, the binary tree sort
will take nearly twice the space that a bubble sort will
take. That can be devastating for the microcomputer
owner.

But for many purposes the binary tree sort is
effective and provides much better overall response to
the user.

But most of all, it is fun to climb trees.

5·100 COMPUTERS
ATSENSIBLE PRICES

NORTHSTAR SPECIALIST
HAZELTINE,IMS,
TELEVIDEO, NEC,
ANADEX

BUSINESS
SOFTWARE

COMPUTERS BY
FREEPORT UTILITIES COMPANY

['!If! i 40 NORTH MAIN STREET
FREEPORT, NEW YORK 11520

VISA· (516) 379.2400

48

LETTERS TO
THE EDITOR

Sol:

Please publish the new number
for CBBS/Chicago. Randy is moving,
so a new number is necessary.
Effective 3/31/80, (312) 528-7141
will be disconnected, and the CBBS
installed at the new number:

(312) 545-8086

Ward Christensen
CACHE

Dear Sol & Russ:

I'm sure I am not alone when I say
that it's about time for a magazine
such as yours.
We do get a little tired of sifting

through TRS-SO, Apple, Pet, etc.
looking for something applicable to
our S-1oo systems.

Best of luck to you.

Lee Osborne
Orange, Calif.

Dear Mr. Libes:

Please enter my subscription to
S-1OO Microsystems, starting with
issue No.1, if possible. A check for
$7.50 is enclosed. Mailing address
is given above.

I would like to see an article
directed at a specific area that, I
suspect, impacts many of us. That
is, how can one buy new, state of
the art, S-1 00 boards with reason-
able confidence?

I have purchased most of my
hardware through a local dealer or
through a well established mail
order source. There are, however,
many new interesting boards using
the SOS6, 6809, color graphics,
and new CPU's waiting in the wings
which are advertized in the com
puter magazines. Local dealers
usually don't handle such items for
some time.

Perhaps your publication or some
unbiased and impartial person
would be willing to evaluate some
of these interesting items and in
dicate their availability, the response
olthe manufacturer, the difficulty of
getting them up and running, etc.
Perhaps the manufacturer would
supply a sample or a loan, in retum
for a review.

I suppose the bottom line is, who
is going to do this and how is he
going to get paid? Perhaps you or

your readers would have some
ideas.

Stanley W. Haskell
Arlington, Mass.

Dear Sirs:

Post haste enter my subscription
to your S-100 Microsystems for 3
yrs. so I can start dropping my
others as they have turned to TRS
etc. Newsletters. My check for 3
yrs. (21.50) enclosed.

John W. Neel
Apopka, Fla.

Dear Mr. Libes:

I recently subscribed to your
magazine in the hope that it WOUld,
in its concentration on the S-1OO,
deal with the information and 'need
to know' problem that I have been
experiencing in this area.
My cumulative frustrations were

the source of my expectations for
the first issue, unfortunately I re
ceived very little in the way of relief
when I received my first copy, hence
this letter.

For the sake of brevity my list of
'wants' follows.

1. I am only interested in products
which are tully compatible with the
new IEEE S-100 standard.
2. I need help in identifying specific
products and their manufacturers,
and in identifying from anyone
source those products which meet
the standard and those which do
not.
3. I need critical review information
on specific products and compari
sons within classes of product (e.g.
mainframes, memory boards, pro
cessor boards, etc.)
4. I need information on the future
direction of the IEEE S-1 00 product
industry, with future product inten
tions of individual companies.
5. I need software information par
ticularly in the Operating System/
Utilities areas, with feature com
parisons, family variant identifica
tion, and rational critiques.

One could go on, but no doubt
others will give you reactions in
other ways. For the moment then
my best wishes for your success in
filling a real need in the micro
spectrum.

Derek Grieves
Chestnut Hill, Mass.

S-100 MICROSYSTEMS

MIDWEST
AFFILIATION

OF
COMPUTER
CLUBS

&
FRANKLIN
UNIVERSITY
• CO-SPONSORS·

5th ANNUAL
COMPUTERFEST

3 Q Franklin University

O

~ 301 E. Rich Columbus, Ohio fD)
., JUNE 20-22 Lr
O~ • See the 'ate,ti" ,mall bu""e" • Bmw,e thmugh the ,.,ge. l1]

and personal computers flea market

? . Learn from stimulating seminars • Pre-register 1r
~ • Participate in technical work- • Park free in a convenient,
\oJ 1 shops location § ~
~ To Pre-register, send $3.50 to: ~

I COMPUTERFEST '80 ~
~ c/o Paul Pittinger
l'\.:) 215 Delhi Ave., Apt. J
~ Columbus, Ohio 43202 IF
~
''"0 "~ 1l ads lead to Columbus -Heart of the Midwest

Linear Programming -
Continued From Page 29

Listing 7: Diet Problem Run

EDIT: LUST, B(UILD, It<OD I FY, Q(UIT U. 8l L

LIST IHrr FILE? DIET. DATR

STARTING AT IoIiRT RECORD? e
8: 8 DIET 4 14
1: :1 DIET ~ EXAtFLE
2: 2 IISTR. :1 74.2eee
1: 2 PROT. 2 14. 7ge8
4: 2 CALC. 1 8. 140888)
5: 2 PHOS. 4 8. sseeee)
s. 4 C(Af 1 2. 48888
7: 4 OATS 2 2. S2eee
8: 4 I'IRIZE 1 2. 1_
9: 4 BRfW 4 2. 14888
18: 4 "IDOL. 5 2. 44888
11: 4 LINSO. 6 3. 82908
12: 4 COTTON 7 3. ~
11: 4 SOYI'L 8 3. 78888
14: 4 GLUl£N 9 2. 6998e
is: 4 GRITS 18 2. 54888
16: 4 EIISTR. 11 8. eeeee
17: 4 EPROT. 12 8. eeeee
18: 4 ECALC. 11 8. eeeee
19: 4 EPHOS. 14 8. eeeee
28: 6 ROW 1 COL 1 78. 6908
21: 6 ROW 1 COL 2 78. 1888
22: 6 ROW 1 COL 3 88. 1888
21: 6 ROW 1 COL 4 (;7. 2eee
24: 6 ROW 1 COL 5 78. 9988
2S: 6 ROW :1 COL 6 77. eeee
26: 6 ROW :1 COL 7 78. 6908
27: 6 ROW 1 COL 8 78. 5eee
28: 'ROW 1 COL 9 76. l888
29: 6 ROW 1 COL 18 84. seee
lB: 6 ROW 1 COL 11 -1. eeeee
11: 6 ROW 2 COL 1 6. seeee
12: 6 ROW 2 COL 2 9. 48888
33: 6 ROW 2 COL 3 8. seeee
34: 6 ROW 2 COL 4 11 7eee
~: 6 ROW 2 COL 5 16. 1eee
lEi: 6 ROW 2 COL 6 sa 4888
31 : 6 ROW 2 COL 7 l2. 8888
38: 6 ROW 2 COL 8 3~ 1998
19: 6 ROW 2 COL 9 21. l888
48: 6 ROW 2 COL 18 8. eeeee
41: 6 ROW 2 COL 12 -1. eeeee
42: 6 ROW 3 COL 1 8. 8288888)
43: 6 ROW 3 COL 2 8. 8988e08)
44: 6 ROW 3 COL 1 8. 8l88eee)
45: 6 ROW 1 COL 4 8. 149000)
46: 6 ROW 1 COL S 8. 890800e)
47: 6 ROW 1 COL 6 8. 419000)
48 : 6 ROW 1 COL 7 8. 2ee000)
49: 6 ROW 1 COL 8 8. 2688ee)
50: 6 ROW 1 COL 9 8. 4eeeee)
51: 6 ROW 1 COL 18 8. 228eoo)
S2 : 6 ROW 1 COL 13 -1. eeeee
S3: 6 RIJoj 4 COL 1 8. 270808)
54: 6 ROW 4 COL 2 8.14eee8)
ss. 6 ROW 4 COL 3 8. l80800)
S6: 6 ROW 4 COL 4 1. 290ee
S7: 6 ROW 4 COL 5 8.7100e8)
58: 6 ROW 4 COL 6 8. 860809"")
S9: 'ROW 4 COL 7 1. 22800
68: 6 ROW 4 COL 8 8. S90ee8)
61 : 6 ROW 4 COL 9 8. 82e808)
62: 'ROW 4 COL 18 8. 71eeee)
63: 6 ROW 4 COL 14 -1. eeeee
64: 99 LOGICAl.. ECF

ENTER DATA FILE Ift£ -) DIET. DATR

PROG. Ift£. DIET
I«l. R(II5 4
I«l. COLS 14

START PtflSE 1

ITERATION 1 OF DIET
ITERATION 2. OF DIET
ITERATION 3 OF DIET
ITERATION 4 OF DIET
ITERATION 5 OF DIET
EN> OF PKlSE 1 FOR DIET AFTER 5 ITERATIONS

LIST & X ARRAYS

1 EPHOS.
2 LINSI).
3 GRITS
4 ECALC.
5 11+1
6 1\+2

START PHASE 2

14
6
18
11
19
28

8.144282)
8. 3l211l)
8. S75411)
8. 122778)

-2. 71817
8. eeeeee63

ITERATION 1 OF DIET
ITERATION 2 OF DIET
ITERATION 1 OF DIET
ITERftTION 4 OF DIET
ITERftTIOH S OF DIET
EN> OF PHASE 2 FOR DIET AFTER 5 ITERATIONS

LIST & X ARRAYS

1 MIZE
2 GLUTEN
1 "IDOL
4 EPHOS.
; 1\+1
; ••• 2

3
9
5

14
19
28

8. 187718)
8. 17819S)
8.~)
8.0614213)
-2. 27988
-e. eeeeeelB

DIET PROBLEI'I EXRPIPLE

Listing 6: Data File For Diet
Problem

PROBLEM 4 -- GAMING STRATEGY
If you started here, go back to the beginning, and

start there. After all, I had to save a carrot to induce
reading this, didn't I?

In the theory of games, the principle characteristic
of a game is the PAYOFF MATRIX. It is the expression
of the gains of Player 1 for all combinations of his
possible plays and those of his opponent (Player 2).
We choose Player 1 (P1), and say we desire to
maximize his payoff; the variables are the playing
strategies which he and his opponent may select.
Usually, these strategies are given as a vector of
probabilities, since if his strategy is fixed, it's not a very
interesting game. As an example, in the game of calling
'heads' or 'tails' on the flip of a fair coin, there are two
'pure' strategies -- always calling 'heads' or always
calling 'tails'. We generally want to calculate the best
'mixed' strategy, in which the player uses each of the
pure strategies some fraction of the time. If the game
has two players, it is called a TWO-PERSON game. In
addition, if the sums of the wins and losses balance, it
is also called a ZERO-SUM game. A game of poker, in
which the 'house' cuts the pot, is NOT a Zero-Sum
game.

EDIT: LOST, BCUILD, "(ODIFY, Q(uIT [1. 0l Q

50 S·100 MICROSYSTEMS

Another parameter of the game is the value -- this
is the expected (in a statistical or probabilistic sense)
gains by P1 if both he and his opponent adopt their
optimal strategies. The game is 'fair' if this value is
zero; otherwise the game is said to be biased in favor
of one of the players.

If the payoff matrix is given by A, P1 selects a
strategy X = (X1 ,X2, .. .Xn), and P2 selects as his
strategy Y = (Y1 ,Y2, ... Yn), then the game's value, V, is
given by:

V=X*A*Y
where matrix multiplication is indicated.

Let us now examine a game, and ask 'is it fair?'. As
an example, let us use the 'skin game', which has the
following rules:

The two players are each provided with
an Ace of Clubs and an Ace of Diamonds. P1 is
also given the Deuce of Diamonds, and P2 the
Deuce of Clubs.

In the first move, P1 selects one of his
cards, playing it face down. P2 then selects
one of his cards, and the two cards are
compared with the following payoff -- P1 wins
if the suits match; P2 wins if they do not. The
amount of the payoff is the numerical value of
the card shown by the winner. If the two
Deuces are shown, however, the payoff is
zero.

From these rules, we can construct the payoff
matrix. P2's possible selections are shown across (the
top), and P1 's are shown at the (left) side:

AD AC 2C
AD 1 -1 -2
AC -1 1 1
20 2 -1 0

It can be shown that the optimum strategy, X, for
P1 is (0,3/5,2/5); for P2, his strategy, Y, is (2/5,3/5,0).
These strategies mean the P1 plays the Ace of
Diamonds never (0), the Club Ace 60% of the time, and
the Diamond Deuce 40% of the time. When we compute
V for this game, we find that its value is not zero -- it is
1/5, which means the game is not fair, but is 'rigged' in
favor of P1 (since the value is positive). We say that P1
has an advantage.

Problem Statement and Problem Formulation

Given a payoff matrix, A, and stragegies for the
players P1 : (X1 ,X2,X3) and P2 : (Y1 ,Y2,Y3), where the
strategies are expressed in terms of probabilities, then
the payoff, V, to P1 is:

X1 -X2 - 2X3
-X1 + X2 - X3

-2X1 + X2

= V if P2 selects Y1 ,
= V if P2 selects Y2, and
= V if P2 selects Y3.

S·100 MICROSYSTEMS 51

Listing 4: Data File Transportation
Problem Example

EDIT: L(IST, B(UILD, "(OOIFY, Q(UIT [~ 81 L

LIST IHIT FILE? TRANSPRT. DATR

STARTI ••• AT IHIT RE~? 8

8:
1:
2:
3:
4:
~:
6:
7:
8:
9:
18:
11:
12:
13:
14:
~:
16:
17:
18:
19:
29:
21:
22:
23:
24:
~:
26:
27:
28:
29:
39:
31:
32:
33:
34:
3:5:
36:
37:
38:
39:
48:
41:
42:
43:
44:
4~:

8 TRRNSP 7 11
1 TRRNSPORTRTJ(Jf f'R(B.E)'I EXRPf>lE
2 SHlPi 1
2 SHIP2 2
2 SHIPl 3
2 RECY1 4
2 RECY2 s
2 REevl 6
2 RECY4 7
4 C11 1
4 C12 2
4 co 1
4 C14 4
4 C2j_ :I
4 C22 6
4 C23 7
4 C24 8
4 Cli 9
~ C32 18
4 en 11
4 Cl4 12
6~ 1 COL 1
6~ 1 COL 2
6~ 1 COL 3
6~1COL4
6~ 2 COL s
6~ 2 COL 6
6~ 2 COL 7
6~ 2 COL 8
6~ 3 COL 9
6 ~ 3 COL 18
6~ 3 COL 11
6~ 3 COL 12
6~4COL1
6~ 4 COL S
6~ 4 COL 9
6~ SCOL 2
6~ SCOL 6
6 ~ S COL 18
6~ 6 COL 3
6RGI 6 COL 7
6 ROW I; CCL 11
6~ 7COL 4
6~ 7COL 8
6 ROW 7 COL 12

99 LOGICRL. EOF

6. eeeee
8. eeeee

18. eeee
4. eeeee
6. eeeee
8. eeeee
6. eeeee
~ eeeee
2. eeeee
3. eeeee
4. eeeee
4. eeeee
3. eeeee
2. eeeee
8. eeeee
8. eeeee
2. eeeee
2. eeeee
~ eeeee

~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
i. eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
~ eeeee
1. eeeee
1. eeeee
1. eeeee
1. eeeee
1. eeeee
1. eeeee
1. eeeee
1. eeeee

EDIT: L(IST, B(UILD, "(OOIFY, Q(UIT [1. el Q

Listing 5: Transportation Problem
Run

ENTER DATA FILE NfI'£ -> TRRHSPRT. DATR

PROG. NFI£. TRRlSP
NO. ROWS 7
NO. COLS 11

START ~ 1

lTERATI(Jf 1 OF TRANSP
lTERATI(Jf 2 OF TRANSP
lTERATJ ON 3 OF TRRNSP
lTERATI(Jf 4 OF TRANSP
lTERATI(Jf S OF TRANSP
lTERATI(Jf 6 OF TRANSP
lTERATI(Jf 7 OF TRRNSP
lTERATI(Jf 8 OF TRANSP
lTERATI(Jf 9 OF TRANSP
END OF PHASE 1 FOR TRANSP AFTER 9 ITERATIONS

52

LIST & X ARRAYS

1 01 9 4. eeeee
2 C22 6 8. eeeee
1 14 8. eeeee
4 co 3 8. eeeee
s C14 4 6. eeeee
6 C23 7 8. eeeee
7 C32 18 6. eeeee
8 ••.• 1 19 -52. eeee
9 ••.• 2 28 8. eeeee

START PHASE 2

lTERATI(Jf 1 OF TRRNSP
lTERAT I(Jf 2 OF TRRNSP
ITERATION 3 OF TRRNSP
END Of PHASE 2 FOR TRANSP flI':TER 3 ITERATIONS

LIST & X RRRRV5

1 01 9 4. eeeee
2 C12 2 6. eeeee
3 14 e. eeeee
4 03 11 6. eeeee
S C204 8 6. eeeee
6 C23 7 2. eeeee
7 C32 18 e. eeese
8 ••.• 1 19 -28. eooe
9 ••.• 2 28 e. eeeee

TRANSPORTATION PR08l.El1 EXAMPI:E

PROBLEM 3 -- THE DIET PROBLEM
Several models of the diet problem have been

constructed in the past, some with small success.
They all have in common that the minimum cost diet
consists mainly of only a few cheap food elements; the
diets would not appeal to very many. In fact, they have
been described as poor in variety even for a slave labor
camp. One may extend the model, including in the cost
factors such other considerations as taste, ethnic
preferences, and food fads. These extensions invari
ably increase the cost of the minimum-cost diet. One
area in which considerable success has been achieved,
however, is in the analysis of the minimum-cost feed
mixes for farm animals. The reason for this success is
probably due to the fact that they don't complain about
a monotonous diet.

Problem Statement
Our problem is to determine the minimum-cost mix

of feeds for dairy cattle. There are four nutrients
considered essential in the following minimum daily
amounts:

Digestible nutrients
Digestible protein
Calcium
Phosphorous

: 74.2Ibs/day
14.7 Ibs/day

: 0.14 los/day
: 0.55 Ibs/day

There are 10 commonly available feeds, with the
amounts (in Ibs) of nutrient, and the cost -- data in Table
1. Nutrient content is given in pounds per 100 Ibs. of
feed; cost is based on 100 Ibs.

S-100 MICROSYSTEMS

260 Tutorial: Design of Microprocessor Systems
(December 1979), John H. Carson

(262 pp.) $12.00/$16.00
This tutorial is intended for those in
volved in the design of microproces
sor-based systems. Presents the en
tire design effort, with emphasis on
system configuration, software devel
opment, and system testing. Stresses
the wide range of available micro
processor products and the develop
ment tools for microprocessor-based
design. Topics covered: review of mi
croprocessor-based systems, design
steps, testing and development tools,
design alternatives, and current
trends affecting design. Contains 23
reprints.

075 Tutorial: Software Design Techniques
(Second Edition, April 1977)
Edited by Peter Freeman and Anthony I. Wasserman

(294 pp.) $9.00/$12.00
Intended for both beginning and expe
rienced designers, this book contains
23 key papers as well as original
material explaining design concepts.
The contents include the following: in
troduction, framework of design, ele
ments of design techniques, design
tools, design methodologies, exam
ples, and an annotated bibliography.

259 Tutorial: Microcomputer System Design and
Techniques Carol Anne Ogdin

(432 pp.) $12.00/$16.00
The purpose of this anthology is to
capitalize on the programmer's expe
rience with systems and software in
order to introduce and clarify the dif
ferences among micros. The volume
is composed of 53 different papers
divided into seven topics, covering
micros and their applications, micro
processor architecture, microcom
puter buses and systems, storage
technology, inputloutput interfacing,
programming and languages, man
agement, and tools. Text is aimed pri
marily at programmers, analysts, and
technicians as well as system engi
neers and project managers who may
become responsible for or participate
in the implementation of microcom-
puter systems.

268 Tutorial: Software Design Strategies
(November 1979)
Edited by Glenn D. Bergland and Ronald D. Gordon

(430 pp.) $12.00/$16.00
This tutorial begins with the Jackson
design methodology and delves into
logical construction programs and
systems, as well as structured design
and stepwise refinement based on
functional decomposition. It displays
numerous methodologies and tech
niques and concludes with PSUPSA
structured documentation and analy
sis, program design languages, and
other tools for software design strat
egies. Contains 32 reprints, with ex
amples and exercises.

272 Microprocessors and Microcomputers
(Second Edition), Edited by Portia Isaacson

(298 pp.) $9.00/$12.00
Selected papers from COMPUTER,
organized and introduced by the tech
nical editor. Sections on architecture,
software, and applications include the
standard specification for S-100 bus
interface devices and special articles
on modular programming in PUM,
microprocessor networks, and micro
processors in automation and com
munications.

=== Return to: Order Desk, IEEE Computer Society, 5855 Naples Plaza #301, Long Beach, CA 90803===

ORDER MEMBER NON-MEMBER
NO. TUTORIAL TITLES OW PRICE PRICE

075 Tutorial: Software Design $9.00 $12.00
Techniques

259 Tutorial: Microcomputer System 12.00 16.00
Design and Techniques

260 Tutorial: Design of Microprocessor 12.00 16.00
Systems

268 Tutorial: Software Design 12.00 16.00
Strategies

272 Microprocessors and 9.00 12.00
M ic rocompute rs

Overseas purchases:
Remit U.S. dollars on U.S. Bank.
o Check Enclosed

o Bill Visa/BankAmericard

o Bill Master Charge

California residents add 6% sales tax _

o Bill me and add $3.00 billing charge _
Total _

Optional Shipping Charge _
(4th class, no charge)

Total _

Charge Card Number Expiration Date Signature

Name (please print) Member No.

Address

country City/State/Zip

Table 1
Nutrient content and cost of dairy feeds

No. Feed Nutr. Prot. Calc. Ph08. Cost
1 Com 78.6 6.5 0.02 0.27 $2.40
2 Oats 70.1 9.4 0.09 0.34 2.52
3 Maize 80.1 8.8 0.03 0.30 2.18
4 Bran 67.2 13.7 0.14 1.29 2.14
5 Middlings 78.9 16.1 0.09 0.71 2.44
6 Unseed Meal 77.0 30.4 0.41 0.86 3.82
7 Cottonseed Meal 70.6 32.8 0.20 1.22 3.55
8 Soybean Meal 78.5 37.1 0.26 0.59 3.70
9 Gluten 76.3 21.3 0.48 0.82 2.60
10 Hominy Meal 84.5 8.0 0.22 0.71 2.54

We need four additional variables (having no cost),
which represent excess nutrients in each of the four
categories. These 'slack' or dummy variables are
required because the four constraints on daily nutritional
requirements are given as "at least"; we need to
include them to convert the inequalities into equalities.

Problem Formulation

Let Xl through Xl 0 represent the amount of the ten
feeds shown in table 1 that are included in the mix, and
Xll thru X14 the amounts of excess nutrients. Then,

(78.6)*Xl + (70.1)*X2 + (80.1)*X3 + (67.2)*~
+ (78.9)*Xs + (77.0)*Xs + (70.6)*X7
+ (78.5)*Xs + (76.3)*Xe + (84.5)*XlO
- Xll = 74.2 (Digestible Nutrients)

(6.5)*Xl + (9.4)*X2 + (8.8)*X3 + (13.7)*~
+ (16.1)*X5 + (30.4)*Xs + (32.8)*X7
+ (37.1)*Xs + (21.3)*Xa + (8.0)*X10
- X12 = 14.7 (Digestible Protein)

(.02)*Xl + (.09)*X2 + (.03)*X3 + (.14)*~
+ (.09)*X5 + (.41)*Xs + (.20)*X7
+ (.26)*Xs + (.48)*Xa + (.22)*XlO
- X13 = 0.14 (Calcium)

(.27)*Xl + (.34)*X2 + (.30)*X3 + (1.29)*X4
+ (.71)*X5 + (.86)*Xs + (1.22)*X7
+ (.59)*Xs + (.82)*Xe + (.71)*Xl0
- X14 = 0.55 (Phosphorous)

The data file is shown in Listing 6. We use 6-
character abbreviations for the feeds and excess
nutrients. Listing 7 shows the program run, with the
following results (note that feed quantities are in units
of 100 Ibs.):

Three basic feeds are included -- 18.77 Ibs of
Maize, 17.02 Ibs of Gluten, and 58.53 Ibs of
Middlings. They provide 0.06141bs of Excess
Phosphorous, and the cost is $2.2798 for this
mix.

OK for cattle, I guess, but I wouldn't want to live on it.

54

There is no other mainframe that compares
with the performance and reliability of a TEl
mainframe. Its unique design enhances sub
stantially the reliability of any S-l 00 computer
system by providing high efficiency power,
brown out protection, line noise rejection and a
sophisticated high-speed bus packaged in a
durable enclosure.

TEl manufactures the broadest selection of S-
100 mainframes ... 8, 12 and 22 slot, desk top
and rackmount models. Whether your require
ments are standard or custom, TEl's extensive
manufacturing capacity and know-how can
solve your mainframe problems today!
Successful OEM's, system integrators and

computer dealers worldwide rely on TEl main
frames and enjoy a good night's sleep knowing
that their systems are still running. Call TEl to
day ... you too can enjoy agood night's sleep!

S·100 MICROSYSTEMS

OR\G\N~L" .. .,.\-\E

Personal
Computlng :

® 80
The Largest Personal Computing Show in 1980

Presents:
Personal Computing
and Small Business
Computer Show

August 21,22,23, 24th at the Philadelphia Ovic Center
• Major exhibits by the industries leading companies
• Thursday, Aug. 21st, Dealer Day 12 Noon to 6 P.M.
• Friday and Saturday, Aug. 22, 23rd -- 9 A.M. to 6 P.M.
• Sunday, Aug. 24th 10 A.M. to 5 P.M.
• Free Seminars • Robotics Contest • Antique Computer Display
• Special Seminars and Tutorials about Computer Music, Saturday, Aug. 23rd
• 3rd Annual Computer Music Festival, Saturday Evening, Aug. 23rd

(Computer Music Festival is sponsored by the Philadelphia Area Computer Society-Tickets on sale at show)

• Computer Visual Arts Festival, Sunday, Aug. 24th

r--~------------------------------------I t Advanced Registration t
t Saves Time & Money COMPANY NAME ,

, 0 Send __ Dealer-Retailer (4 days) NAME ,
~ Registrations at $10. each, $12. at door ~ I ~o;ThUrSday-SUnday, Aug. 21, 22, 23, STREET I
, 0 Send __ Regular Registrations (3 CITY STATE ZIP t
~ days) at $8. each, $10. at door for ~
: Friday-Sunday, Aug. 22, 23, 24 only. PHONE :
~ Advanced Registrations will be mailed late ~
, July - early August. No Advanced Registra- Send To: •
t tions accepted after Aug. 8th. PERSONAL COMPUTING 80 I
~ 0 Send Exhibitor infcrmation or Phone ~ L __ ~~~~ ~~~~~~~~~Ma~~din~~~~ J

Since P1 chooses his plays in some manner, not
yet known to us, we can say that P1 will gain, in these
cases, at least the value, V. These equations indicate
that P1 can maximize his gain by selecting a set of
plays (X1 ,X2,X3) which will maximize his payoff for any
choice that P2 may make. This is a classical problem
for linear programming, if we add one additional
constraint:

Listing 8: Data File
For Game Problem

EDIT: L(IST. B(UILD. "(OOIFY. Q(UIT [~ Bl L

LIST IHIT FILE? GAI'E. DATR

A=
3
-1
2

-2
4
2

-4
2
6

STARTING RT IHIT RECORD? 8

8: B GAtES 1 6
1: 1 GAtES STRRT£GY EXAI'A.E
2: 2 51 1 8. eeeee
1: 2 52 2 8. eeeee
4: 2 53 1 ~eeeee
5: 4 C1 1 -1. eeeee
6: 4 C2 :2 ~ eeeee
7: 4 Cl 1 -2. Be888
8: 4 C4 4 ~ eeeee
9: 4 cs 5 8. eeeee
18: 4 C6 6 8. eeeee
11: 6 ROW 1 COL 1 -!5. eeeee
12: 6 ROW 1 COL 2 !5. eeeee
13: 6 ROW 1 COL 4 ~ eeeee
14: 6 ROW 1 COL 5 -~ eeeee
15: 6 ROW 2 COL 1 -7. eeeee
16: 6 ROW 2 COL 2 1. eeeee
17: 6 ROW 2 COL 1 4. eeeee
18: 6 ROW 2 COL 4 ~ eeeee
19: 6 ROW 2 COL 6 -~ eeeee
28: 6 ROW 1 COL 1 ~ eeeee
21: 6 ROW 1 COL 2 ~ eeeee
22: 6 ROW 3 COL 3 ~ eeeee
23: 99 LOGICfL EOF

EDIT: L(IST. B(UILD. "(OOIFY. Q(UIT [~81 Q

X1 + X2 + X3 = 1
since we are defining the strategy in terms of the
probability that P1 makes anyone of the plays available
to him. Let us take a look at another game, with the
following payoff matrix:

We would like the answers to the following questions:
1. Is the game fair?
2. What strategy would P1 use if he desires to
maximize his gains (or minimize his losses)?

Our equations are:
3*X1 - *X2 + 2*X3 >= V
-2*X1 + 4*X2 + 2*X3>= V
-4*X1 + 2*X2 + 6*X3>= V

X1 + X2 + X3 = 1

We must convert the inequalities in the first three
equations to equalities by including 'slack' or dummy
variables.

Listing 9:
Sample Run of Game

3*X1 - X2 + 2*X3 - ~
-2*X1 + 4*X2 + 2*X3
-4*X1 + 2*X2 + 6*X3

X1 + X2.+ X3

=V
-X5 =V

-Xe=V
=1

ENTER DATA FILE NAI1E -) GAl'£. DATA

PROG. NAI'£. GAtES
II). RCMS 1
II). COLS 6

Take the first equation, since it is an equation for V, and
take it as a statement of our objective:

Maximize 3X1 - X2 + 2X3 - X4

and eliminate it from the equations above. Subtracting
this equation from the second and third equations, we
get our set of problem constraints:

Maximize 3*X1 - X2 + 2*X3 - X4

subject to
-5*X1 + 5*X2 + X4 - X5 = 0
-7*X1 + 3*X2 + 4*X3 + X4 - Xe = 0

X1 + X2 + X3 = 1

Since the standard form for the program is to minimize,
we convert our objective (multiply by -1) to give

Minimize -3*X1 + X2 - 2*X3 + ~
subject to the above constraints. We have a problem in
3 equations (rows) with six variables (columns) of
which 3 are slack variables.

The data file for this problem is shown in Listing 8,
and the program run in listing 9.

START PHASE 1

lTERATI~ 1 OF GPI£S
ITERATI~ 2 OF GPI£S
ITERRTI~ 3 OF GPI£S
EM> OF PHASE 1 FOR GAI'ES AFTER 1 ITERATIONS

LIST. x ARRAYS
1 C1 1 8.1lll33)
2 C2 2 8.111111)
1 Cl 1 8.111111)
4 1'1+1 18 ~ lllll
5 1'1+2 11 8. eeB99812

START PHRSE 2

lTERATION 1 OF GAI'1ES
EN> OF PHRSE 2 FOR GAtES AFTER 1 ITERATIONS

LIST •)(ARRAYS

1 C6 6
2 C2 2
1 Cl 1
4 1'1+1 18
5 1'1+2 11

GAtES STRATEGY E>RFl...E

4. eeeee
8. eeeee
~ eeeee
2. eeeee
-e. eeeee812

56 S-100 MICROSYSTEMS

P1 's strategy is that he should select play 1 (X1) 0%
of the time, play 2 (X2) 0% of the time, and play 3 (X3)
100% of the time. His payoff value (shown in the M + 1
row) is 2.0. A zero value would have indicated no bias,
but here, P1 has the game rigged. If the value here had
been negative, it would indicate bias toward P2.

If we wish to calculate the strategy and payoff for
P2, we would set up our equations using rows, instead
of columns of the payoff matrix as we did above. If we
did this, (and did not make any mistakes), we would
expect a change in sign of the computed game's value.

CONCLUSIONS
In general, the problems which can be solved by

Linear Programming techniques are those in which we
desire to optimize some quantity which is subject to
constraints. The suggested reading referenced in part
1 give hundreds of applications in which it has been
successfully used.

I am willing to provide these programs and data
files on North Star UCSD PASCAL disk. Anyone wishing
a disk may get it from me by sending a Postal Money
Order for $20 (US) to my address. This will cover cost of
disk and handling/mailing costs.

comput.r mart
of n.w J.r5.y

Computer Mort of New Jersey
501 Route 27

Iselin, N.J. 06630
(201) 263-0600

HOURS,
Open at 10 am,

Tuesday through Saturday
-_ c

S-lOO MICROSYSTEMS

the
microcomputer
people®
THE VITAL
INGREDIENT:
EXPERTISE
Before you buy your new
microcomputer, chances are
you have a lot of questions.
Important questions that
could mean the difference
between a working system
and a wasted system. The
vital Ingredient Is expertise.
The microcomputer people at
Computer Mart are expert at
answering your questions
and helping you put together
the best system for your
application. Whether It's for
business, the home, or the
laboratory, come see the
experts at Computer Mart
of New Jersey. We have the
vital Ingredient.

ADDRESSING THE CURSOR
Continued From Page 33

3230 REM * * * * * * * * *. *. * * * *** * * * •••• * •• *
3240 REM * *
3250 REM * ROUTINE FOR RETRIEVING LABELS FROM DISK
3260 REM *
3270 REM * * * * * * •• * * ****** * * * * * * * * * * * * * *** * * ************ * ** * * * * * * *
3280 PRINT "ENTER DRIVE ON WHICH LABEL IS STORED (A,B,C,D) ";
3290 Z$=INPUT$ (1) ,PRINT Z$
3300 Z$=CHR$ (MC (Z$) AND &HDF)
3310 IF Z$ ["A" OR Z$I "D" THEN 3280
3320 FS=Z$+" :*.LAB"
3330 PRINT
3340 FILES F$
3350 PRINT:PRINT
3360 PRINT "ENTER A FILE NAME FROM THE ABOVE LIST"
3370 LINEINPUT "USE FILE NAME ONLY, NO EXTENSION" .z s
3380 FOR N=l TO LEN(Z$) :MIO$(Z$,N,l)=CHR$(ASC(MID$(Z$,N,l» AND &HDF) :NEXT N
3390 F$=Z$+" .LAB"
3400 OPEN l'I",l,F$
3410 INPUTIl ,B$,C$
3420 WD$=B$,WD=VAL (WD$)
3430 LN$=C$,LN=VAL (LN$)
3440 ERASE A$
3450 DIM A$ (LN)
3460 FOR N=l TO LN
3470 LINEINPUT# 1,0$
3480 A$ (N) =D$+STRING$ (WD-LEN (D$) ,32)
3490 NEXT N
3500 CLOSE
3510 GOSUB 2730
3520 GOTO 660
3530 REM
3540 REM
3550 REM * * * * * * * **** * * * * ** ** * ** 1< *** * *** * ** * * * * * ** *** * * * * * * * * * ****
3560 REM * *
3570 REM * IN THIS LISTING, "I" MEANS "IS GREATER THAN
3580 REM * "[" MEANS "IS LESS THAN"
3590 REM *
3 6 0 0 REM ****** * * *** ** * * * * **** * ***** * ******** ********* **** * * * * * * *

If the above routine is used, then no control
characters may be used as input to this program.

Lines 2930-3210 are used to enter preformatted
labels for any special purpose. The program here uses
this label to prepare diskette labels for Prodigy
Systems, Inc. When the labels are prepared, certain
questions are asked to provide the variable
information.lfthe label is stored on diskette, when they
are recalled, the standard method of display is used.
Notice, when using this part of the program, the label
size is set to a width of 40 and a length of 8. You may
substitute any format of label here or delete this code
entirely. If you delete this section of the program, be
sure to delete the question at lines 520-540.

Lines 3280-3520 provide for reusing labels stored
on the diskette. This routine is essentially the same as
the routine for storing labels on the diskette in lines
1140-1390.

The remarks at the end of the program,lines 3550-
3600 may seem to be unnecessary. However, some
printers do not print the 'less than sign' «) and 'greater
than sign' (». This statement will show the characters
the way your printer will print them so that as you look
through the program listing, you can see what the
characters are. For example, if your printer prints a'>'
as a %, then by looking at the lines 3550-3600 you will
be able to see how a '>' is represented in the rest ofthe
program listing.

PROFESSIONAL 8080/Z80 SOURCE CODE
COMMUNICATIONS •• GRAPHICS •• LANGUAGE SYS

HAWKEYE GRAFIX •• 213/348-7909
23914 MOBILE •• CANOGA PARK •• CA •• 91307

57

NEW PROD(]CTS
Z-80 CPM Sottcard For Apple

Microsoft Consumer Products has announced
the Z-ao SoftCardN, a new plug-in processor for
the Apple II that allows the Apple to run software
written for Z-80 based computers.

In addition to the plug-in card, the SoftCard
package includes the two most widely used
microcomputer system software packages, the
CP/M operating system from Digital Research
and Microsoft Disk BASIC, ready to run on the
Apple II.
The SoftCard allows the user to use either the

Apple's 6502 processor or the Z-80 processor
as needed to run a program. A command is used
to switch between the two processors. The
SoftCard is compatible with existing Apple soft
ware and peripherals.
Versions of Microsoft's FORTRAN, COBOL

and BASIC Compiler for the Apple II with Z-80
SoftCard will be available separately. In addition,
CP/M applications software written for Z-80
based computers can be converted to run on the
Apple with minimal alteration.
The package includes the card, CP/M and

BASIC on diskette and full documentation.
Suggested retail price for the Z-ao SoftCard
with Microsoft BASIC and CP/M is $349.00. For
the name of the nearest dealer, contact Micro
soft Consumer Products, 10800 Northeast
Eighth, Suite 507, Bellevue, WA 98004. Tele
phone 206/454-1315.

S-100 Direct-Language Execution Processor
The DLX-1 0 from Alasda Computer Systems,

is a direct-language execution processor for S-
100 bus systems. It executes BASIC directly in
high-speed hardware from five to ten times
faster than 8080 systems or two to five times
faster than Z-80 systems. The DLX-10 is a
single-board computer that operates as an addi
tional processor on the S-1OO bus. It does not
replace the CPU but functions as a separate,
dedicated BASIC computer. It can boost an S-
100 bus microcomputer system into the perfor
mance range of a minicomputer. The DLX-1 0 is
recommended for scientific or business micro
computer systems which need increased speed
or precision.
The DLX-10 is built of high-speed bipolar

devices and uses a unique combination of hard
ware, firmware and state logic to provide extra-

ADVERTISER INDEX
Advertiser Page
Ackerman Digital System . 51
Computer Design Labs.•..•. . II
Computerfest·80/M.A.C.C. 49
Computer Mart of New Jersey•..•..•....... 57
Digital Graphic Systems•......•.... 42
Electronic Control Technology•..•..•..... 7
Freeport Utilities Co. 48
Godbout Electronics •60
Hayden Book Co••.•........ 27
Hawkeye Grafix•.•........... 57
I.E.E.E. Computer Magazine•..•..... 53
Ithaca Intersystems•..•............ 5
Konon Corp•........... 23
Llfeboat Associates•..•..•..•.... 8·9
Microcomputer Investor•..... 58
Morrow DesignslThinker Toys•..•...... 2
North Star•..•..•..... 21
Person. I Computinq-Bf)•..•..•..... 55
Potomac Micro-Magic•..•......•..•..... 25
S·IOO Inc•..•...•........... 28
5·100 Microsystems•..•......•..... 59
Softronics•..•..•...•..•... :. 17
Tee·Mor•..•..•......•..... 39
TEl Inc•..•......•..... 54

58

ordinary performance for small systems. As a
separate processor, it runs independently of the
main CPU and accesses memory as a DMA
device. It runs in parallel to the existing CPU and
accesses memory as a DMA device. It runs in
parallel to the existing CPU and does not inter
fere with existing software. It has a stack archi
tecture and utilizes high-speed on-board RAM
to hold intermediate computations.
The DLX-1 0 supports full-feature BASICs with

multi-dimensional arrays, string handling and
print formatting. BASIC source language pro
grams are first translated by software to relo
catable BASIC stack-machine object code. This
compact code is then executed by the DLX-10.
Typical one-byte operations are ''floating

multiply" and "string compare." Because the
computer directly executes many of these time
consuming operations, the DLX-10can execute
many programs faster than equivalent machine
language code for the 8080 or Z80. In addition,
the programs are more compact, thus permit
ting more efficient use of memory. Numbers are
represented as floating-point decimal. The pre
cision can be selected by the user to be from 2
digits to 20 digits plus exponent (1 0**±63). The
accuracy may be set to different values for
different programs.

Programmer productivity can be improved by
using the DLX-10. Because efficient programs
can be written is BASIC rather than assembly
language, the labor cost of programming, de
bugging and maintaining programs is drastically
reduced. The user does not need to retreat to
assembly language to satisfy performance
requirements.
Manufacturers of application-specific systems

can use the DLX-10 in their systems to provide
the power of a minicomputer in micro system.
This optional power boost extends the range of
price-performance options of microcomputer
systems. A custon option permits the object
code to be "scrambled" to provide built-in
protection for proprietary software.
The DLX -10 is available assembled at $1250

(quantity 1). It comes with software to run North
star BASIC or CBASIC. Delivery is 60-90 days
ARO. The manufacturer is Alasda Computer
Systems, 12759 Poway Road, Poway, CA 92064.
(714) 748-8640.

S-100 Card Adds Sound Dimension
The NOISEMAKER sound board by Ackerman

Digital Systems Inc, 110 North York Road, Suite
208, Elmhurst, Illinois 60126, generates sound
effects under software control.
The board provides six tone generators, two

noise sources, two envelope generators, and
four 8-bit I/O ports which are software controlled
using four switch selectable 8080 I/O addresses.
A multitude of sound effects and noises may be
created to add the sound dimension to graphics
and computer games. An on-board audio ampli
fier (0.2 watts) and breadboard area allows easy
interfacing of this product into any system.
Three I/O ports, the amplifier output, and the
supply voltage are brought out to a standard 44
pin plugboard connector.
The "Noisemaker" is available currently as a

blank, solder-masked printed circuit board with
the component layout silk screened in white. All
connector contacts are gold plated. Included
with the PCB is a parts list, schematic, construc
tion notes and information on how to use the A Y
3-8910.

P.C. Board and notes; $34.95. Add 50$ for
postage and handling.

Tl9900-16 bit S-100 Microcomputer System
A powerful Scientific/Business Microcom

puter based on the 16 bit TI9900 CPU and the S-
100 bus is announced by Interface Technology,
Box 745, College Park, MD 20740. This system
can be viewed as a high end personal computer,
or a small business/research system. Two ver
sions are presented; both feature a 9900 16-bit
CPU by Marinchip Systems, 32K bytes of
memory, and two 8 inch floppy disks. Included
as standard are a disk operating system, BASIC,
word processor software, Editor, assembler,
linker, and utilities. The scientific machine
features PASCAL and a floating point package
as standard. The business version substitutes
extended commercial BASIC, General Ledger,
Accounts Payable and Receivable, and Payroll.
A Network Operating System for multi-user
environments is available. The system is com
plete in one cabinet with power supply, fan, and
power line filter. Scientific system: $4495.
Business system: $4895. CRT and Printer,
additional/faster memory, Network Operating
System available at extra cost. Support of hard
disk available.

(THE JOURNAL OF THE MICROCOMPUTER INVESTORS ASSOCIATION

THE MICROCOMPUTER INVESTOR
INVESTORS WHO USE MICROCOMPUTERS

FOR AN INFORMATION PACKET, SEND ~2.00 TO:
MCIA, 902 ANDERSON DR., FREDERICKSBURG, VA 22401

BACK ISSUES ARE NOW AVAILABLE

I

5-100 MICR05Y5TEMr

THE ONLY MAGAZINE BY AND FOR S-100 SYSTEM USERS!

At last there is a magazine written exclusively for 5-1 00 system users. No
other publication is devoted to supporting 5-100 system users. No longer
will you have to hunt through other magazines for on occasional 5-100,
CP/M * or PASCAL article. Now find it all in one publication. Find it in S-1 00
MICROSYSTEMS.
Every issue of S-1 00 MICROSYSTEMS brings you the latest in the 5-100
world. Articles on applications, tutorials, software development, letters to
the editor, newsletter columns, book reviews, new products, etc. Material
to keep you on top of the ever changing microcomputer scene.

SOFTWARE
CP/M*

Assembler
BASIC

PASCAL
applications

and lots more

SYSTEMS
Cromemco
North Star

IMSAI
SOL

Polymorphlcs
and lots more

*TMK
Digital
Research

HARDWARE
8 bit & 16 bit CPUs

interfacing
hardware mods

bulletin board systems
multiprocessors
and lots more

S-100 MICROSYSTEMS
SUBSCRIPTION RATES
(effective May 1, 1 980)

ONE YEAR (6 issues)
Europe! Other

USA Canoda So. Amer. Foreign
$ 9.50 $12.50 $21.50 $23.50

TWO YEARS (12 issues)
$17.00 $20.00 $41.00 $45.00

TH REE YEARS (1 8 Issues)
$23.00 $26.00 $59.50 $65.00
Europe, So. America, and other foreign

sent air moil.
Payments must be in U.S. Funds.

BACK ISSUES
U.S.A., $2.50 each*, 3 for $6*

Foreign, add $1/issue
Subscriptions start with next mailing

r------------------------------r
Send me D 6 D 1 2 D 1 8 Issues
of 5-100

MIDfl 11 SYSTEMS
Send me the following
back issues

($2.50 each;
3 for s 7),

o 1-1 Jon/Feb 1980
o 1-2 Mar/Apr 1980
o 1-3 May/Jun 1980

Total enclosed $ _

Name _

Address _

Ci~----------------------------

State Zip _

CPU Make: Disk System Make: _

IT'S HERE. . . . •••
AND CPU BOARDS WILL

NEVER BE THE SAME ACAIN.
The comousro Dual Processor Board gives true 16 bit power

with an 8 bit bus, is downward compatible with the vast library
of 8080 software, is upward compatible with hardware and
software not yet developed, accesses 16 Megabytes of
memory, meets all IEEE 5-100 bus specifications, runs 8085 and
8086 code in your existing mainframe as well as Microsoft 8086
BASIC and sorcrm PASCALlMTM, and runs at 5 MHz for speed as
well as power.
The Dual Processor Board has two CPUs that "talk" to each

other; the 8088 CPU is an 8 bit bus version of the 808616 bit CPU,
while the 8085 is an advanced 8 bit CPU that can run existing
software such as CP/M.
Amazingly enough, all this flexibility won't break your

budget: introductory prices are $385 un kit, $495 assembled,
and $595 Qualified under the Certified system component
high-reliability program. Don't need 16 bit power yet? Then
select our single processor version which does not inlcude the
8088 for $235 unklt, $325 assembled, and $425 CSC.
The Dual Processor Board is built to the same stringent stan

dards that have established our leadership in 5-100 system com
ponents ... and starting June 1st, you'll be able to plug it into
your mainframe to experience computing power that, until
now, you could only dream about. CPU boards will truly never
be the same again.

THINKINC CRAPHIC5?
•••• THINK "SPECTRUM"

COLOR CRAPHICS BOARD.
The comousro spectrum board is actually three sophis

ticated products in one: a fast (5 MHZ), low power 8K x 8 IEEE
compatible memory board with extended addressing; an I/O
board with full duplex bidirectional parallel port (including
latched data along with attention, enable, and strobe bits),
capable of interfacing with kevboaros. joysticks, or similar
parallel peripherals; and a 6847-based graphics generator board
that can display all 64 ASCII characters. Put these together, and
you've got 10 modes of operation - from alphanumeric/semi
graphics in 8 colors to ultra-dense 256 x 192 full graphics. In
cludes a 75 Ohm RS-170 compatible line output and video out
put for use with FCC approved video modulators. Introductory
pricing Is $339 unklt, $399 assembled, and $449 Qualified
under the high-reliability CSC program. LOoking for graphics
software? subtoqic's 20 Universal Graphics Interpreter (normal
ly 535) is yours for $25 with the purchase of a spectrum board
in any configuration.

NO longer must you settle for B&W graphics, or stripped
down color graphics boards; starting June 1st, YOU'll be able to
plug one of the industry's most cost-effective and full-feature
color graphics boards into your 5-100 system.

OUTSTANDING COMPUTER PRODUCTS:
MEMORY MOTHERBOARDS •••• ~
All boards are static, run in 5 MHz systems, meet all IEEE stan

dards, include a 1 year limited warranty, and feature low power
consumption. Choose from unkit (sockets, bypass caps pre
soldered in oracei, assembled, or boards qualified under our
high-reliability Certified System Component (CSC) program (200
hour burn-in, 8 MHz operation, and extremely low power con
sumption.

unktt Assm esc BuSS & Notes Name

$169
$299
$329
$349
$339
$479
$599
$649
$649
nfa

$189
$349
$379
$419
$399
$539
$689
$729
$749
n/a

$239
$429
$479
$519
n/a
$649
$789
$849
n/a
$1050

Meet or exceed all IEEE 5-100 specs; with true active ter
mination, grounded Faraday shield, edge connectors for all
slots. Unkits have edge connectors and termination
resistors pre-soldered in place for easy assembly.
6 slot: $89 un kit, $129 assm.

12 slot: $129 unklt, $169 assm.
3 19 slot: $174 unklt, $214 assrn.

GODBOUT COMPUTER BOX $289 desktop, $329 rack
mount. With Quiet fan, dual AC outlets and fusenolder, line
filter, card guide, etc.
5-100 270B EROM BOARD $85 unklt. 4 independently
addressable 4K blocks. Includes support chips and manual,
but no EROMs.

5-100 ACTIVE TERMINATOR BOARD $34.50 kit. Plugs
into older, unterminated motherboards to improve per
formance.
5-100 MEMORY MANAGER BOARD $59 unklt, $85 assm,
$100 esc. Adds bank select and extended addressing to
older 5-100 machines to dramatically increase the available
memory space.

25 "INTERFACER I" 5-100 1/0 BOARD $199 un kit, $249
assm, $324 esc. Dual RS-232 ports with full handshake. On
board crystal tlrnebase, hardware UARTS, much more.

:SP PLUS 5 "INTERFACER •• " 1/0 BOARD $199 unklt,
$249 assm, $324 esc. Includes 1 channel of serial I/O (RS-232
with full handshake), along with 3 full duplex parallel ports
plus a separate status port.

PA5CAL/MTM + MEMORY SPECIAL PASCAL can give a
microcomputer with CPIM more power than many minis.
You can buy our totally standard Wirth PASeALlMTM 8"
diSkette, with manual and Wirth's definitive book on
PASCAL, FOR $150 with the purchase of any memory board.
Specify 2-80 or 8080/8085 version. PASCALlMTM available
separately for 5350.

Z-BOA CPU BOARD $225 unkit, $295 assm, $395 esc. Full
compliance with IEEE 5-100 bus standards, provision for ad
ding two EROMS, on-board fully maskable interrupts, power
on jump and clear, selectable automatic wait state inser
tion, IEEE extended auoressina, much more.

(cimpu Pro ™ from ~ffi@)®®l1!J1? 19J ELECTRONICS ~
Bldg. 725, Oakland Airport, CA 94614

Many of these products are
stocked by finer computer
stores world-wide, or write
us for further information if
there'S no dealer in your area.

8K sconoram= IIA
16K Econoram XIV
16K Econoram X-16
16K Econoram XIIIA-16
16K Econoram XV-16
24K Econoram XIIIA-24
32K Econoram X-32
32K Econoram XIIIA-32
32K Econoram XV-32
32K Econoram XI

5-100
5-100 (1)
5-100
5-100 (2)
H8 (3)
s-ioo (2)
5-100
5-100 (2)
H8 (3)
SBC/BlC

* Econoram is a trademark of Bill Godbout Electronics.
(1) Extended addressing 124 address lines). Addressable on 4K

boundaries.
(2) Compatible with all bank select systems rcromernco. Alpha Micro,

Etc.); addressable on 4K boundaries.
(3) Bank select option for implementing memory systems greater than

64K.

SPECIAL PRICE!
TRS-SO· -r er -II MEMORY
EXPANSION CHIP SET: S69!
We've done it again ... 8 low power, 250 ns 16K

dynamic RAMs at a trendsetting price. Don't be im
pressed with fancy packaging or four color ads; our
chip set gives all the performance you want at a price
you can afford. Offer good while supplies last. Add $3
for TR5-80 compatible DIP shunts and complete in
stallation instructions.

·TRS·80 is a trademark of the Tandy corporation.

TERMS: res I for shipping, excess refunded. VISA® I
Mastercharge® call our 24 hour order desk at (415) 562-0636. COD OK
with street address for UPS. Sale prices good through cover month of
magazine; other prices are subject to change without notice.

