

FALL 1985

IICP/M-86 ON OLDER S-100
COMPUTERS

IIIMACROTECH MI-286AND
COMPUPRO CPU 8085/88

III THE TELETEK SBC 86/87

I THE THUNDER 186 SBC

[9-.11 18I1rn'.
VOL. 1 NO.2

Editor
Jay Vilhena

Associate Editor
Robert Petersen

Business Manager
Linda Pereira

Advertising
Jay Vilhena

Technical Consultant
Steve Renshaw

Art Director
Joslyn L. Johanna

S-100 Journal is published quarterly by Octo-
plus Corporation, 2426Wade Avenue, Raleigh,
NC 27607.
Copyright © 1985by Octoplus Corporation.
All rights reserved.
Subscriptions: U.S.A.: $14.00 for 1 year,
$25.00 for 2 years. Canada, England, and
Mexico: add $3.00 per year. Other countries:
add $6.00 per year. Foreign payments must be
in U.S. currency. Send orders and payments to
S·lOO Journal, P.O. Box 12881, Raleigh, NC
27605.
Advertising: Contact S·lOO Journal Adver-
tising, P.O. Box 12881, Raleigh, NC 27605.
POSTMASTER: Send address changes to
S-lOO Journal, P.O. Box 12881, Raleigh, NC
27605.
Application to Mail at Second-Class Postage
Rates is pending at Raleigh, NC.

DUllill1!

2 EDITORIAL

4 NEW PRODUCTS

31 HOMEBREWING

33 BUG REPORT

6 EDITOR INTERFACE 44 READER I/O

45 BITS8696BUS

22 MULTIUSER OS 46 S-IOODIRECTORY

OUR COVER

The Macrotech MI-286 and the
CompuPro CPU 8085/88 offer
both 8- and 16-bit processing
capabilities. See pages 10 and 14 for
more about these CPU boards.

S-100 INTERNATIONAL TRADE ASSOCIATION

While mythomaniacs with ulterior
motives narrated the tales of S-100
demise, our systems have evolved
to outstanding levels of perform-
ance that very few micros, and not
all minis, can match. In addition,
S-100 machines continue to offer
the versatility and expandability
that is their most cherished
attribute.

Given all these advantages, it is
often difficult to understand the
factors that allot S-100 systems
such a small share of the micro-
computer market. It is easy (and
certainly satisfying) to accuse or
harass the dominant systems for
their bullheaded takeover of the
market, but to us belongs the ulti-
mate blame. The S-100 industry
has flatly failed to communicate to
the vast majority of potential com-
puter buyers what we are about
and why an S-100 system is the
better investment. We remain shy,
and one way or another justify our
fear of competing head-on with
the alphas in the pack.

S-100 suppliers compete in the
market at two levels. At one level,
which I will call level A, is the com-
petition among these suppliers
themselves for a share of the 5-100
market. This is a historical type of
competition whose importance has
long vanished. At the other level,
I'll call it level B, is a more general
competition for a share of the
microcomputer market. This is
where the action is. It determines
how S-100 companies will perform
in the years ahead.

Many S-100 companies continue
to direct their efforts to level A.
They either lack the resources to
enter the larger picture or fail to
develop the proper means of doing

so. Other companies have seen
the rainbow pot and slosh awk-
wardly at level B, succeeding only
because the pot is so immense
that a few stray coins will make a
pauper rich.

A third group has become aware
of a third alternative, level X.

S-100 companies lack market
identity. We watch puzzled as the
producers of mediocre systems,
often priced thousands of dollars
above ours, gorge themselves in
the core of the pot while our high-
performance systems gather the
crumbs. It is the game of the name.
The microcomputer consumer,
like scores of other consumers,
buys by name, often understanding
little of the substance that goes
with the name. S-100 companies
have understood this. They have
stretched their resources to buy a
name. Some became engulfed in
long quests for the ultimate name.
Others went under. It hasn't
worked.

Level X, like level B, belongs in
the mainstream of microcomputer
competition. It seeks to take over
a significant portion of the core of
the pot. And it has the resources
to do it. Level X has a market
name. The name is simple, re-
spected, and seasoned. Level X
has the financial resources to pro-
mote the name in grand scale. The
name is S-100.

This fall at COMDEX, an event
of historical importance took place.
Thirty-five representatives of S-100
and S-100-related companies met
to discuss level X. Level X is the
cooperative promotion of the
S-100 bus. While individual com-
panies may lack enough name
recognition to significantly pene-

trate the market, this need not be
so when resources are combined.
At this level, advertising could be
accomplished in a scale that would
place the S-100 bus in the main-
stream of the microcomputer and
supermicro worlds. The key re-
sides in promoting the S-100 bus
itself as a symbol of quality, per-
formance, modularity, wide sup-
port, infinite upgrading possibili-
ties, and nonobsolescence. These
are certainly the qualities that the
user/consumer looks for. The
S-100 bus already offers these
qualities. Now we need to advertise
them.

At the COMDEX meeting, the
S-100 INTERNATIONAL TRADE
ASSOCIATION (SITA) was cre-
ated. A committee was formed to
direct the early stages of activity,
seek charter memberships, and
organize a new meeting of all the
charter members. This meeting,
to take place early this spring, will
decide organizational details and
discuss specific S-100 promotional
strategies.

S-100 Journal salutes and en-
dorses the creation of SITA. Over
a dozen S-100 manufacturers have
already joined, and we urge all
other S-100 companies to join this
association and take part in the
spring meeting. For more informa-
tion write to SITA, P.O. Box 28270,
Raleigh, NC 27611.

If you are an S-100 user, write to
the manufacturers that you buy
from and urge them to join and
support SITA. You'll be doing your
part to guarantee that latest-
technology S-100 products con-
tinue to be introduced.

And keep an open eye, for great
days lie ahead ...

Jay Vilhena

2 5-100 JOURNAL, VOL. 1 NO.2

The ~OEI:)
An 8 User System

This powerful system based on the Motorola 68000
offers eight RS-232C ports, 512K bytes of Dynamic
RAM, 20 megabytes of hard disk storage with fast and
reliable voice coil seek, 1.2 megabytes of floppy disk
storage, programmable realtime clock, time of day clock
with battery back up, and encryption for software pro-
tection. In spite of its compactness this system offers
expandability in several respects. Within the same
chassis RAM memory may be expanded to 2 mega-
bytes and disk storage to 86 megabytes. If more disk
storage is desired the SCSI bus is available to go to
other disk and tape storage subsystems.

Software is also NOEL's forte. It can run the well
known Alpha Micro AMOSl operating system, the fast
and efficient Mirage multiuser multitasking operating
system from England, the realtime 0/S-9 operating sys-
tem, CP/M-68K and the FORTH environment. The com-
pilers available include APl, several versions of ex-

tended Basic, lattice C, Whitesmith's C, Fortran 77, and
Pascal. Applications range the gamut from the very gen-
erallike accounting packages, spread sheets and word
processors to the very specific such as a marine dis-
tributor software package, laboratory pathology system,
and veterinary office management system.

It Grows and Grows And Grows
In-chassis upgrade options include:

$4,999

List Prices

NOEL

·68010 processor

$1,199
•68020 processor (with The Powerhouse Board 'M)
·68881 floating point unit (with The Powerhouse Board 'M)

•86 Megabyte of hard disk storage (28ms avg seek)

$249

$1,499

•second 1.2 Megabyte floppy disk drive

•20 Megabyte streamer tape unit $999

$1,199

·60 Megabyte streamer tape unit $2,499

•2 Megabytes of RAM memory

Out-o'-chassis upgrade options include:

•16 additional card slots

•16 Megabytes of RAM memory

•170 Megabyte of hard disk storage (18ms avg seek) (any number of units)

Call or write for our free catalog:

Inner Access Corporation
P.O. Box 888· Belmont, CA 94002· (415) 591-8295· Telex 494-3275 INNACC

$99

FAll 1985 3

al!. pradll.l.

ill!~.f.l

PARA DYNAMICS
INTRODUCES VERTICAL
ENCLOSURE
An elegant 50-amp tower enclosure, Model 5820-S,
is now available for S-100 systems from Para
Dynamics. The 5820-S features a 20-slot, 696-
standard motherboard, adjustable termination, front
panel LEOs to indicate bus and drive voltages, and
3-position key switch.

This enclosure is specially suited for larger multi-
user systems, providing plenty of power for up to 20
S-100 boards and a wide assortment of 8" and 5~"
disk drives. An advanced cooling design forces air
between the boards. The 5820-S lists for $1495.

F or additional information contact Para
Dynamics, 7895 E. Acoma Dr., Scottsdale, A2
85260. Telephone (602) 991-1600.

Z8001 BOARD AVAILABLE
FROM WA Y ENGINEERING
The Super 2-10 is an IEEE 696 S-100 board that
utilizes the 28001 16-bit processor. The 2-10 oper-
ates at 10 MHz and addresses 16 megabytes of
RAM. Additional on-board functions include two
serial ports, 32K of phantom EPROM, and up to 3
selectable wait states.

The Super 2-10 operates with standard S-100
static RAM or, for greater clock speeds, with a
special piggy-back 512K dynamic RAM board.
Combinations of the two types of RAM are also
supported.

The monitor EPROM boots 79 FIG FORTH upon
power-on or reset. Way Engineering also offers
CP/M-8000 with BIOS for the Super 2-10. The
BIOS is written in C and assembler and can be
modified by the user.

The Super 2-10 costs $995 in single quantity. The
CP/M-8000 is $350 and includes the C language.
Contact Way Engineering Inc., 2011 Tulip Tree
Lane, La Canada - Flintridge, CA 91011. Telephone
(213) 245-1480.

4 5-100 JOURNAL, VOL. 1 NO.2

NEW AFFORDABLE 8-USER
SYSTEM FROM INNER ACCESS
Inner Access Corporation has
announced the NOEL, a multiuser
system that runs several operating
systems, including AMOS, Mirage,
0/S-9, CP/M-68K, and FORTH.
A wide range of compilers and
applications packages are available
for this system.

The NOEL is 68000 based and
offers eight serial ports, 512K bytes
of Dynamic RAM, 20-megabyte
hard disk, 1.2 megabytes of floppy
storage, time-of-day clock, and a
large array of upgrade options.

This compact system runs at 8
MHz and meets IEEE-696 specifi-
cations. It sells for $4999. Contact
Inner Access Corporation, PO
Box 888, Belmont, CA 94002.
Telephone (415) 591-8295.

L/F TECHNOLOGIES
OFFERS CONCURRENT
DOS
L/F Technologies (formerly IMS International) now
offers its 1600 series of S-100 systems with Con-
current DOS, the popular multiuser, multitasking
operating system from Digital Research. The 1600
systems with Concurrent DOS, featuring RAM-
disk, 1 megabyte of RAM, and 24-meg Winchester,
start at $6495.

L/F Technologies has also introduced a back-up
power source, the L/F-Power, specially configured
for the company's hardware products. L/F-Power
supplies up to 1 hour of DC voltage directly to the
system, eliminating the process of DC to AC recon-
version used in external back-up systems.

A related product, the L/F-Power-II, offers a
similar integral back-up power supply for L/F Tech-
nologies' terminals.

For more information, contact L/F Technologies,
2800 Lockheed Way, Carson City, NV 89701. -
The New Products section is compiled from press

releases and other information supplied by manufac-
turers. Only press releases on 5-100 products and peri-
pherals are considered for publication. High-quality
photographs are welcome. Press releases should be
dated and should include prices. Send to New Products,
5-100 Journal, P.O. Box 12881, Raleigh, NC 27605.

FAll 1985 5

For those coming in now, Editor
Interface is the column where I an-
swer questions and publish letters
concerning (mainly) the contents and
orientation of the magazine. We like
to receive your comments and sug-
gestions for improving 5-100 Journal.
Send letters to Editor Interface,
5-100 Journal, P.O. Box 12881,
Raleigh, NC 27605. Please print or
type your letters.

Our magazine is growing at a fast
pace. With your support, we will be
around for a long long time, and, best
of all, so will 5-100 systems. We will
continue to improve 5-100 Journal to
make it your second best investment.
Second only to your 5-100 machine,
of course.

But let's get on with the mail:

First Issue Comments

Hope next issues look as good as the
first!

R. V. Peringer
Orange, California

Glad to know that you liked it. We
will keep 5-100 Journal looking good.
Besides esthetics, we are also con-
cerned about increasing the amount
and quality of the information
provided. • Jay

Finally! A place to stand against
the blue fungus. For sheer spite, you
should send a copy of that first edi-
torial to IBM "for informational pur-
poses only" of course.

S. Shumaker
Vacaville, California

We've heard that a few people do
not share your enthusiasm about our
magazine. But, we know who they
are. And, with a little imagination, we
can also figure out where they live.

• Jay

In Search of S-100 Info

I received the first issue of the
S-100 Journal with interest and plea-
sure. You invited reader comments;
here are some.

I would like to see some articles or
be referred to some literature on
computer design with the IEEE 696
buss. Sol Libes and Mark Garetz'
book "Interfacing to S-100/IEEE 696
Microcomputers" is excellent, but
when one searches for the books
they suggest as foundation, one finds
they are out of print. Search as I may,
I have found very little published
on S-100 computer design. I have
never seen 'The S-100 Bus Hand-
book" in a B. Dalton bookstore. I will
specifically request it from them, and
I will write to Micro/Systems, using
the address in the article on the 68000.

I have always been a little puzzled
why the S-100 buss is not used more
widely, at least by old circuit design
engineers like myself who have lately
gotten into micros. It seems to offer
one an opportunity to concentrate on
the computer circuits that are of
interest without having to build up all
the supporting equipment. I have de-
signed and built all the power supplies
I ever want to! Perhaps the lack of
S-100 technical literature is part of
the reason for the" ... lost ground in
the press," as you say. Good docu-
mentation still is a problem in a major
part of the microcomputer business.

Because I am more familiar with
the 8085 series and newer Intel chips,
I hope you will have some future
articles feature them.

I look forward to your future
issues!

Eliot C. Payson
Littleton, Colorado

I expect that 5-100 Journal will be
able to provide a lot of needed infor-
mation about the 5-100 bus and
5-100 products. In the future, we
may even consider publishing some

5-100 books, if we locate interested
authors.

I checked with the local B. Dalton,
and they still stock the "5-100 Bus
Handbook." Sol Libes is trying to
reprint "Interfacing to S-100/IEEE 696
Microcomputers." If he succeeds,
we'll make it available through 5-100
Journal.

No doubt that the Intel line will be
addressed often in our pages. • Jay

MS-DOS, UNIX, BIOS and A/D

I was very glad to get my copy of the
"Journal" - because most, if not all,
microcomputer magazines seem to
be very much oriented toward the
IBM-PC. Well, lawn an S-100 system,
and I'd like to keep it as long as
possible. I'm happy with its speed -
mass data - RAM storage, etc.

I usually don't make a habit of ex-
pressing my personal views to others,
unless otherwise asked to do so.
However, statements were made in
the first issue of the Journal which
have prompted me to address the
following comments/questions to
you. I hope you accept the following
remarks as being constructive in
nature; they are not meant to be a
criticism.

1. MS-DOS: "General purpose
MS-DOS/PC-DOS software will not
be accepted." Comment: I have
several Microsoft DOS compatible
programs that I cannot be without.
For example, my Fortran Compiler,
and my 1/2-inch, 9-track tape utilities.
All of these programs - as well as
other utilities - are all generic MS-
DOS programs. Does the statement
on page 2 mean that those programs
would not be advertised or reviewed
in the Journal??

2. I have rack-mounted my system
- in a "T-bar" 19-inch cabinet - and
at present I'm trying to assemble an
A/D subsystem [... J for the purpose
of collecting and digitally analyzing

6 5-100 JOURNAL, VOL. 1 NO.2

geologic-geophysical data. If these
topics are of interest to you, please
let me know.

3. I am not an electrical/digital
engineer, but I would like to have
access to information on how to write
a BIOS for my 16-bit 8086 system
(Seattle) - needless to say the BIOS
is not available in source. But, an
article in the S-100 Journal which
would describe how one could write a
"typical" BIOS routine would be very
helpful. [... J I've got several books
on assembler language, but they do
not address the overall mechanics of
this fundamental piece of software.
Even something as simple as a block
diagram, with some minimal text,
would be a big help!

4. One important change seems to
be taking place in the computer in-
dustry in general - UNIX. UNIX is
being ported to almost all micro - mini
mainframe systems [... J, including
some S-100 systems! I honestly hope
you'll be able to provide the reader
with info on who in the S-100 industry
will implement UNIX on our bus. For
example, I know that there is a very
real possibility of getting public
domain source code in C, for UNIX
- look alikes - work alikes! Here's
an area where the Journal could be
very helpful: information on how to
develop a kernel for a "typical" S-100
system?? For the 8086-80286-6800-
3200 CPUs!??

Tony Price
Burbank, California

Thanks for writing. I will tackle
your points one at a time:

MS-DOS: You are correct! We will
neither accept ads on nor review
MS-DOS software. It's not that we
have any feud with MS-DOS, but,
because of the illogical popularity of
the IBM PC, MS-DOS occupies an
extraordinary percentage (sometimes
close to 100%) of the space of all
major computer publications. With
all that info available, there is really
no need for us to use our space on
MS-DOS. But, I do think that S-100
systems should be able to run MS-
DOS software (or anything else for
that matter), and S-100 Journal will
publish information that deals with
implementing or running MS-DOS
software in our micros.

FALL 1985

Analog to Digital: It appears that a
lot of people are using, or planning to
use, their S-100 systems to collect
analog data. And, yes, we are inter-
ested! If you succeed in your applica-
tion, we would be eager to hear
about it, and we would even consider
publishing an article describing the
process in detail.

BIOS: I am certain that S-100
Journal will address BIOS topics
many times. In this issue, you will find

an article by Howard Spindel that
gives detailed information about a
(specialized) CP/M BIOS.

UNIX: There are in fact a num-
ber of UN/Xes (or close variants)
running on S-100 systems. For
some names, see the multiuser
column that Gary Feierbach inaug-
urates in this issue. • Jay

-
BE-82 VIDEO BOARD FOR THE S-l 00 BUS

FEATURES:
• Bit-mapped characters and graphics, 640 by 330 pixel display
• Full Greek set in EPROM, 7 by 9 character, 8 by 11 window
• Characters placed on any raster line, 30 char-line display
• Load a user program in BE-82 RAM for special commands
• Create graphics on one screen while viewing another
• 660 raster lines available for a single drawing
• Lines drawn at 8800 pixels/s, pixels set at 800/s
• Effective baud rate to 10,500 in terminal mode

S-100 BUS HACKERS:
• Full documentation, user can customize to special needs
• Purchase items singly, as a group, or choose additions later
• Bare board plus hardware/software documentation $135 D
• Programmed EPROMS (three 2716s) 30 D
• Chip set plus hardware components 125 D
• Assembly and testing 100 D

HARDWARE:
• Amdek 31OA Video Monitor and Key Tronic keyboard recommended
• S-100 bus system or ZENITH Z-100 Low Profile Computer
• BE-82 VIDEO BOARD acts as a slave device at all times on bus
• Board operation is independent of host processor clock speed

SCIENTISTS AND ENGINEERS:
• DB-WRITE Technical Word Processor $100 D

Write your papers using a display that shows exactly what is printed.
Operates under CP/M 80 by Digital Research and requires a 64k system. The
BE-82 VIDEO BOARD is required to use DB-WRITE. Full documentation and all
files provided. Use CP/M to customize keyboard layout by changing jump table,
modify printer driver, etc. Printer driver included for the NEC SPINWRITER and
the Tech Math/Times Roman thimble. Example of display screen and printout:

'"
f(A) ;_[e-~(A.+~.)[a.~~~)+ HO(~)sin2(A-~»)d~

position char's 0 2 4 6
8

10 [

~11 ~12 ~13

~21 ~22 ~23

~31 ~32 ~33
a-~-y-o-e-T]-A-Il-~-!!-P-~-"t"-W

6 4 2 0 from line
8

Name _

DAddress _

City _

State Zlp· _
Additional
Information

D BAGANOFF SYSTEMS, 3141 DAVID COURT, PALO ALTO, CA 94303

7

11111••

INTRODUCTION TO THE S-100 BUS
A LITTLE HISTORY

696 Bus is our new regular column
that concentrates on the hardware
aspects of the IEEE-696 bus (i.e., the
5-100 bus) and answers questions
that readers might have about the
IEEE standard.

5-100 Journal is pleased to have
Don Pannell as our 696-bus column-
ist. Don is an 5-100 hardware enthu-
siast and is coauthor of the IEEE-696
standard. He bought his first 5-100
system (an Altair 8800 b kit) in
January 1978 and has since designed
and built most of his present com-
ponents. These include a terminal,
EPROM programmer, serial/parallel
I/O cards, two designs of DMA
floppy-disk controller, and a 68000
coprocessor card. (Don markets the
68000 coprocessor through his Peak
Electronics company.)

If you have questions about the 5-
100 bus and IEEE standard, write to
Don Pannell, P.O. Box 700112, San
Jose, CA 95170-0112. Your questions
can range from architectural con-
cerns to how to interface a specific
device or function with the bus. Don
will incorporate answers to the most
common questions in future issues.

In this first column, he gives us a
little history background and an
overview of the differences between
the original 5-100 bus and the IEEE-
696 bus.

Ihe S-100 bus first appeared
as a computer kit by MITS
Corporation, in the January

1975 issue of "Popular Electronics"
magazine. The kit was based on
the Intel 8080 and was called the
Altair 8800. It contained a front
panel with all the proper lights and
switches, an 8-amp unregulated
power supply, and a CPU card.
The main feature of the Altair was
its expandability. The CPU card
plugged into a 100-pin edge con-
nector. This sent the CPU card's
signals down a bus and out to as
many as 15 other cards plugged
into the same chassis.

The kit was just what the hobby-
ist community wanted. MITS,
although already known for its
calculator kits published in "Popu-
lar Electronics," was not ready for
the response it received for the
Altair kit. Part of the big response
was due to the low price of the kit.
At the time, Intel was asking $350
just for the 8080 chip. MITS adver-
tised the complete kit for $395.
Within one week MITS had re-
ceived 200 orders. Unfortunately,
the kit article had been published
before the Altair was ready. It
took MITS another five months
before their first product was ready
for shipping.

The quick design cycle was part
of the reason why some aspects of
the original bus were not very well
thought out. Timing specifications
were nonexistent, and future up-
grades had not even been con-

Don Pannell

sidered. Despite this great rush,
MITS did several things right. They
defined an expandable bus that
was easy to interface with, sup-
ported DMA (direct memory
access), and allowed any card to
be plugged into any slot. This
accomplishment was partially due
to Intel's design of the 8080 CPU.
MITS simply brought ALL the
8080's signals to the bus. Anyone
that has ever wondered where the
unusual S-100 pin assignment came
from has only to look at the original
Altair 8080 CPU card. An unknown
printed circuit board designer
defined the pin assignment to make
his or her job easier. All the traces
on both sides of the original MITS
card come straight down from the
buffer chips to the bus connector.
It's a beautiful card, with very few
vias (holes in the board).

THE BUS DESIGN
A MIXED BLESSING

The fact that the S-100 bus was a
direct extension of the 8080 CPU
proved to be a mixed blessing.
Initially, it allowed many other
vendors to quickly jump on the S-
100 bandwagon by designing cards
that basically followed the 8080's
timing specifications. Without this
multivendor backing, the S-100 bus
would not have gone very far. In
its first two years, the bus became
so popular that in 1977 over 60,000

(continued on page 20)

8 5-100 JOURNAL, VOL. 1 NO.2

EARTH
LAUNCHES NEW STARS
EARTH COMPUTERS launches two of the
"Hottest" new stars in the S-100 Universe.
Both the TURBOMASTER 8™ and
TURBOSLAVE ITMare Star performers, featur-
ing high speed Z-80H CPUs.

I TURBOMASTER 8
This outstanding new 8-Bit Single

Board Computer offers features that
are out of this world:
• On-board ST-506 Winchester Controller
• TurboDOS, CP/M, MP/M compatible
• 5-1/4/I and 8/1Floppy Controller
• Up to 256KB of memory
• 8 MHz, Z-80H CPU
• 2 Serial ports
• 1 Parallel port

! TURBOSLAVE I

The perfect companion to the
TURBOMASTER 8 or other
8/16-Bit Master processor. This
high speed slave utilizes an
8 MHz Z-80H CPU and offers
extensive on-board diagnostics ...
an industry exclusive.
• No paddle boards
• S-100, IEEE 696 compatible
• 128KB of RAM
• 2 RS-232 ports, 50-38.4K Baud
• FIFO communications
• Data transfers to 1 MB

EARTH's new stars are fully compatible
with the Multi-user TurboDOS operating
system, and will operate in most S-100
systems, including pre-IEEE 696 systems.

EARTH COMPUTERS also manufac-
turers a growing line of PC com-
patible stellar performers such as:

• TURBOSLAVE PCTM-an 8 MHz

Z-80 single board slave processor
that runs CP/M applications on
a PC and is compatible with the
TurboDOS multi-user operating
system.

• TURBOACCELI286™-a high
performance 81286 accelerator
that boosts PC performance up
to five times.

• EARTHNET PCrMand EARTHNET
S-100, the low cost, ARCNET-
compatible wav to tie PC and
S-100 systems ogether.

To put these stars to work for you,
call or write EARTH COMPUTERS.
BE SURE TO ASK ABOUT HOW
YOU CAN WIN .4 FREE Z-80
CO-PROCESSOr BOARD.

®-------- --------
EARTH COMPUTERS-----=-- --- -- -- -

~ "Building Blocks For The Super Micro"

P.O. Box 8067, Fountain Valley, CA 92728 .TELEX: 9109976120 EARTH FV. PHONE: (714)964-5784

me, you have already spent many
long hours customizing your BIOS to
get it just right. The thought of going
through that all over again is dis-
tressing. (All that time with the com-
puter will take some explaining to
your spouse or significant other.)
Even if you were successful with this
approach, every time you made a
BIOS change from then on, you would
have to do it in two places (CP/M and
CP/M-86).

2. Purchase a customized version
of CP/M-86 from Viasyn. This would
mean buying additional hardware. In
addition to the Dual CPU, Viasyn's
implementation of CP/M-86 requires
the CompuPro Disk 1 (or Disk 1A)
floppy disk controller and a Compu-
Pro support board like the Interfacer
or System Support 1. This can get
expensive, easily doubling the invest-
ment in the Dual CPU.

These were the alternatives that I
faced and rejected. I will show you
another way to bring up CP/M-86
using the standard Digital Research
distribution version of CP/M-86 and
your current hardware. Your hard-
ware can be almost anything as long
as you've upgraded the processor
board to the Dual CPU, and you
have CP/M running on the 8085. For
the curious, the author's hardware
configuration is listed in Table 1.

CP/M-86 THE EASY WAY

The basic approach to an easy up-
grade to CP/M-86 is simple in philo-
sophy. Why not use the 8085 and its
existing BIOS for CP/M as an I/O
(input/output) processor for the
CP/M-86 running on the 8088? After

Author's hardware configuration at the time that this
project was first completed:

Installed in CompuPro Enclosure II:
CompuPro Dual CPU
CompuPro RAM 17 (64K static RAM)
Morrow DJ2D floppy controller
Morrow Mult 10general purpose board
Fulcrum V10-X2 video board
D.C. Hayes MicroModem
ADS Promblaster

Installed in separate cabinets:
4 Shugart 801 floppy drives

Author's current hardware configuration:

Installed in CompuPro Enclosure II:
CompuPro Dual CPU
CompuPro RAM 17 (64K static RAM)
Digital Research 64K static RAM
CompuPro Disk 1 floppy controller
Morrow Mult 10general purpose board
CompuPro System Support 1
Fulcrum V10-X2 video board
Digital Research LS-100 256K RAM disk boards (2)
D.C. Hayes MicroModem
ADS Prom blaster

Installed in separate cabinets:
4 Shugart 801 floppy drives

all, a BIOS for CP/M and a BIOS for
CP/M-86 provide almost exactly the
same functions. There are a few minor
entry points in the CP/M-86 BIOS
which don't exist in CP/M, but they
are simple routines, easy to imple-
ment on the 8088. All the difficult
device driver code, most notably the
disk drivers and disk sector deblock-
ing code, is already available in 8085
code. What's more, anytime a change
needs to be made to the BIOS for
CP/M, that change is also instantly
made for CP/M-86 since both ver-
sions of CP/M are running exactly
the same code when interfacing to
BIOS devices.

The Dual CPU makes this ap-
proach possible by making it easy to
switch back and forth between the
8085 and the 8088 microprocessors.
All that is necessary is an input in-
struction to an I/O port (by default
this port is OFD hex). The micropro-
cessors can be configured so that
each time one is switched into activ-
ity, it picks up exactly where it left off.
The microprocessors do not have
any way of communicating with each
other except to share an area of
memory. This led me to the notion of
a BIOS task block. A BIOS task block
is a special area of memory into which
the 8088 can write a request for the
8085 to perform a BIOS function.
When the 8085 is finished doing the
BIOS function, the results are written
back into the BIOS task block and
read by the 8088. Note that the Dual
CPU does not allow both micropro-
cessors to run simultaneously, so
there are no problems associated
with synchronizing two independent
microprocessors.

Digital Research did something
very smart (in my opinion at least)
which considerably simplifies the
creation of BIOS task blocks. It
provided CP/M with a consistent
8085 register allocation method for
BIOS calls. Characters to be output
are always placed in register C. Input
characters always come back in
register A. 16-Bit input quantities are
always passed in BC and DE, and 16-
bit output quantities appear in HL.
Not only is this style of register allo-
cation also provided in CP/M-86, but
a constant one-to-one mapping of the
8088 registers to the 8085 registers is
maintained. This mapping is detailed

Table 1. The Author's Hardware Configuration. Almost any hardware configura-
tion can be used to run CP/M-86 with the programs described in this article. The
programs can be updated with very little effort as the underlying hardware changes.

12 5-100 JOURNAL, VOL. 1 NO.2

in Table 2 on page 16.
To implement the BIOS task

blocks, the 8088 writes to memory
the values that all 8085 registers are
to assume before executing a BIOS
function. The mapping of registers
remains consistent regardless of the

BIOS function being executed.
Hence, the BIOS task block can look
identical for all BIOS functions; the
values of 8085 registers are passed
without regards to what parameters
the registers might contain.

The following summarizes how the

8085 and 8088 communicate when-
ever the 8085 is to provide the 8088
with any BIOS function:

1. The 8088 BIOS receives a re-
quest from CP/M·86.

2. The 8088 creates a BIOS task
(continued on page 16)

The Macrotech MI-286 Dual Processor Board

Although this article was originally written with
the CompuPro 8085/88 Dual Processor in mind,
through the good will of S-100 Journal and
Macrotech I recently had the opportunity to test
my program for a few hours with the Macrotech
MI-286 Dual Processor. (The Macrotech MI-286
uses an Intel 80286 and a Zilog Z80 combination
and is advertised as a direct plug replacement for
the CompuPro Dual Processor.)

Since the MI-286 manual said that it came pre-
configured as a CompuPro replacement, I pulled
out my CompuPro board, put the Macrotech
board in, and hit the power button. I was gratified
to see the system boot CP/M 2.2 as usual. Next I
tried running the BOOT86 program to fire up
CP/M-86. My system crashed. I hit the reset
button and tried it again, and this time CP IM-86
booted up and ran! A few more tries showed me
that the system was a little flaky. I had been afraid
of this because my memory boards are older 8-
bit-only boards and I thought they might not be
fast enough for the 80286. However, Macrotech
had the foresight to also lend me the V-RAM, a
512K-byte static RAM board. I flipped through the
V-RAM manual, configured the V-RAM board for
512K of system memory at address zero, yanked
out my RAM boards, and put in the V-RAM.
Power on, run BOOT86, and I've got a reliably
running system!

I spent a little bit of time playing around with
CP IM-86 and marvelling at the extra speed of the
Macrotech board. The MI-286 has LEDs which
show which processor is active. It was really fun
to try different things and watch the relative
brightness of the Z80 and 80286 LEDs shift back
and forth.

I then ran BOOT80 to switch back to CP IM and
decided to run BOOT86 again to make sure that
the restart vector worked. Oops, crashed again. A
couple of retries convinced me that this was a
software failure. A little more thinking and the
answer came to me -I'd been bitten by the fetch-
ahead queue again. The 80286 has a much larger

fetch-ahead queue than an 8088, and the 80286
was reading the restart vector before the Z80
could write it. The fix is simple and is left "as an
exercise for the reader." For the time being, I
decided to just live with having to reset the
computer every time before booting CP IM-86.

About this time, I decided to read the MI-286
manual more thoroughly, and discovered that I
could enable memory wait states. This sounded
like just the thing I needed to use my older
memory boards. A quick jumper change and a
couple of board swaps later I had a reliable sys-
tem using my older memory boards.

I also wanted to get some idea of how much
faster the MI-286 was than the 8085/88. For a
simple test, I put both CBIOS86.A86 and
ASM86.CMD on my Digital Research RAM disk
and assembled the BIOS. I got the following
results (hand timed with a stopwatch): .

MI-286 with Macrotech 16-bit memory 15 seconds
MI-286 with my 8-bit memory 28 seconds

(1 wait state)
MI-286 with my 8-bit memory 21 seconds

(0 wait states)
CompuPro CPU 8085/88 27 seconds

The above table shows that the system RAM has
an enormous effect upon the system perform-
ance. To use the MI-286 effectively, you should
plan on using it with 16-bit memory boards.

I also became curious about how much per-
formance degradation was incurred by using the
Z80 to drive the BIOS routines as opposed to
having true CP/M-86 BIOS routines. Recently, I
broke down and bought and installed CP/M-816
from Viasyn. I tried booting CP IM-816 using the
MI-286 with the Macrotech memory board and it
worked perfectly. I then tried the above timing
test and found that the assembly took 14.5
seconds. This is only slightly faster than the
CBIOS86 approach and may in fact be within the
error limits of hand timing.

Dear Macrotech,
Your boards were wonderful to use and very fast. I truly hated to ship them back to
S-100 Journal. Since they are technically used equipment now, would you consider
selling them to me inexpensively? Pretty please?

FAll 1985

Howard Spindel

13

MACROTECH MI-286
AND

COMPUPRO CPU 8085/88

CompuPro Macrotech

CPUs
16-bit: 8088 16-bit: 80286
8-bit: 8085 8-bit: Z80H

Math
8087

(as a piggy-back board 80287 optional
coprocessor from HudsonAssoc.)

Maximum
Memory 16 megabytes 16 megabytes

Addressable

Data Bus 8 bits
8 bits (restricted)

or 16 bits

Processor active
on power-up 8085 Z80

8-bit speed 2 or 6 MHz 2 or 8 MHz

16-bit speed 10 MHz 6 MHz

I/O wait states
o or 1 - switch Z80: 0 or 1- switch selectable

selectable 286: up to 3 - switch selectable

MWRITE generator switch selectable switch selectable

Cost $350 $1095

CompuPro Macrotech
26538 Danti Court 9551 Irondale Ave.

Manufacturer Hayward, CA 94545-3999 Chatsworth, CA 91311
800-842-7961 800-824-3181

800-842-7962 (California) 818-700-1501 (California)

Jay Vilhena

I ince so much of this issue is
dedicated to dual-processor
boards, I decided to throw

in this small article with an at-a-glance
table showing you the main features
of the CompuPro CPU 8085/88 and
the Macrotech MI-286.

Although 16-bit systems (and the
CPU 8085/88 in particular) have been
available for several years, many
readers have 8-bit-only machines and
may now be considering a 16-bit up-
grade to run extra software. A dual-
processor board is a good choice be-
cause all your older 8-bit software can
still run. (Another alternative is to buy
a 16-bit slave or coprocessor board
available from several manufacturers.)

Both the Macrotech and the Com-
puPro are excellent dual-processor
boards and are now essentially bug-
free. The MI-286 offers outstanding
performance due to a fast Z80 pro-
cessor and a 16-bit data path for the
80286. The CPU 8085/88 can be ob-
tained at extremely attractive prices.
So the choice, as usually, depends on
your intentions. If what you want is an
economical and dependable upgrade
to 16 bits, the 8085/88 is ideal. Since
the 8085/88 uses an 8-bit data path for
both processors, it willwork fine with
all your old 8-bit memory. However, if
you are after the ultimate speed, want
to take advantage of 16-bit memories,
or plan to use the board in multiuser
environments, you need the MI-286.
You may also prefer the MI-286 ifyour
current CPU is a Z80, since some
Z80-specific programs may not run
with the 8085. -

14 5-100 JOURNAL, VOl. 1 NO.2

(continued from page 13)
block. The 8088 registers are con-
verted to the 8085 equivalents and
written to the task block memory
area. The 8088 also writes into the
task block memory the function code
for the requested BIOS function. The
8088 then issues an input instruction
to activate the 8085.
3. The 8085 wakes up and loads

allof its registers from the information
in the task block memory, and calls
the existing CP/M BIOS code for the
requested function. When the existing
BIOS returns, the 8085 writes all of
its registers back to the task block
memory area and in turn issues an
input instruction that reactivates the
8088.
4. The 8088 reconverts, into their

8088 equivalents, the 8085 registers
stored in the task block memory area.
It then returns to CP/M·86.
Of course, things are not always as

simple as one would like. The above
scenario becomes more complicated
when disk I/O is involved, as you will
see when each BIOS function is
examined in individualdetail.

Memory Allocation

Memory must be carefully managed
when both microprocessors on the
Dual CPU are used because both
processors can address and alter the
same physical memory. It would be
very easy (and probably disastrous)
for one of the microprocessors to
clobber information used by the

other. Not only that, but CP/M and
CP/M·86 differ significantly in their
memory layout. CP/M uses low
memory for a number of important
fields, such as the BOOS and warm-
boot vectors, and the 10BYTE.CP/M
itself runs in high memory in the 8085
address space. CP/M·86 is forced by
the architecture of the 8088 to use
low memory for interrupt vectors.
CP/M·86 itself is relocatable - that
means it can run anywhere within the
address space of the 8088. Typically,
CP/M·86 occupies a memory area
starting at address 400 (hex), with the
BIOS starting at address 2500 (hex).
Somewhere in this messy picture,

a secure area must be found for the
BIOS task blocks. The memory allo-
cation I used is pictured in Table 3.
Low memory does cause some con-
fusion due to conflicting usage by
CP/M and CP/M·86. The code that
processes the task block interface
has to do some saving and restoring
of key low-memory areas.

The Software Pieces

In order to implement the BIOS task
block approach, I wrote three separ-
ate programs. The first program is
the CP/M·86 BIOS. This is a special
BIOS which runs on the 8088 and
creates BIOS task blocks for the
8085to process. The second program
is called the BIOS Task Block Proces-
sor, and it runs on the 8085. It loads
CP/M·86 into memory and causes
the 8088 to start executing CP/M·86.

CP/M (8085)

A
B
C
D
E
H
L

CP/M-86 (8088)

AL
CH
CL
DH
DL
BH
BL

Table 2. CP/M versus CP/M·86 Register Allocation. Whenever a BIOS call is
invoked, processor registers are used to pass the parameters. This table depicts the
translation conventions used in CP/M·B6. For example, ifa CP/M BIOS call used the
8085 register C to pass a parameter, the corresponding CP/M·86 BIOS call will use
8088 register CL for that same parameter.

16

A portion of the second program re-
mains in memory to act as an inter-
face between the CP/M·86 BIOS and
the CP/M BIOS. The third program
is a very simple program, called the
CP/M Reboot Program, which runs
on the 8088. It causes your computer
to cease running CP/M·86 and re-
sume running CP/M. This allows you
to freelyalternate between CP/M and
CP/M·86 without the need to reset
(reboot) your computer.

The CP/M-86 BIOS

Listing 1 (CBIOS86.A86) is a BIOS
for CP/M·86. This code is really only
a translator to allow your existing
CP/M BIOS to do all the hard work.
Let's examine each of the routines in
this BIOS. During this discussion I
willfrequently refer to program labels
which you can find in Listing 1.
The beginningof the BIOS contains

several equates. A few of them are
very noteworthy. The equate called
IFAREA is used to locate the BIOS
task block in memory (see Table 3).
In Listing 1, the BIOS task block is
located at 0000 (hex). In the installa-

. tion section of this article, you will
learn how to locate the BIOS task
block in your system. The definition
of the task block format starts at the
equate called CODE. The task block
contains the CODE whichdetermines
the BIOS function the 8085 is to per-
form, the 8085 registers, the current
10BYTE and CDISK settings of
CP/M (remember that CP/M and
CP/M·86 conflict in their usage of low
memory, so these important low-
memory fields must be saved and
restored), and a disk buffer (labelled
DSKBUF). The disk buffer will be
used by the CP/M BIOS whenever a
disk read or write is requested by the
8088. The 8088willthen be responsi-
ble for moving the disk buffer's con-
tents to wherever CP/M·86 has cur-
rently set its DMAaddress. Since the
8085 is not capable of addressing
more than 64K, and the CP/M·86
DMA address can be outside of the
bottom 64K of memory, a fixed disk
buffer is required in the BIOS task
block.
The BIOSINITroutine is very stan-

dard. It initializesall interrupt vectors,

5·100 JOURNAL, VOl. 1 NO.2

prints a sign-on message, and enters
CP/M-86.

The console status (CONST) rou-
tine is the first place where anything
unusual happens. This routine sets
the CODE byte in the BIOS task
block. The codes used are the offsets
fro~ the base of the CP/M BIOS
jump table to the location of the jump
for the requested BIOS service. Con-
sole status uses a code of 6 because
the console-status jump is the third
jump in the BIOS jump table; there-
fore, it is at offset 6 from the beginning
of the table. Table 4 contains a listing
of the BIOS functions and their
CODES. After setting the code, the
console status routine does a jump to
the routine that will swap processors
to perform the BIOS function.

Most of the BIOS functions are as
simple as console status. The func-
tions LISTOUT (list device output),
LISTST (list device status), PUNCH
(punch device output), READER
(reader device input), HOME (cause

the disk drive head to seek to track
zero), SETTRK (select the track for
the next disk operation), and SET-
SEC (select the sector for the next
disk operation) all work the same as
console status and will not be further
discussed.

In CP/M-86 the IOBYTE was
moved from low memory to a location
inside the BIOS. Two new BIOS func-
tions, GETIOBF (get IOBYTE) and
SETIOBF (set IOBYTE), are provid-
ed. In this case, the IOBYTE itself is
in the BIOS task block area so that
the 8085 can examine it for any
changes.

The SELDSK (select disk) routine
is the most complicated routine in the
CP/M-86 BIOS. Like most of the
other BIOS routines, it starts out by
setting the CODE byte and swapping
to the 8085 to perform the SELDSK
routine in the CP/M BIOS. If no
errors were detected in the CP/M
BIOS, a pointer to a Disk Parameter
Header (DPH) is returned. The

CP/M-86 BIOS uses the information
returned to build a local copy of the
DPH for CP/M-86 to use. When the
CP/M BIOS returned its pointer to a
OPH, it returned an absolute pointer
to a location. Within the CP/M-86
BIOS, all references to memory are
made relative to the 8088's OS seg-
ment register. (If the concept of seg-
ment registers is unfamiliar, you might
want to read the series of articles on
the architecture of the 8086 which
have appeared in BYTE [4]. The 8086
and 8088 architectures are identical
from a software viewpoint.) The OS
register is always set to the base of
CP/M-86, in this case 400 (hex). Be-
fore the pointer returned from the
CP/M BIOS can be used, that pointer
must be adjusted by subtracting the
bias added by the OS register. This is
accomplished by the instruction sub
bx.cpm-oiiset. After the pointer is
adjusted, the necessary fields are
copied to the local DPH, and a pointer
to the local DPH is returned to

***S-100 & STD USERS DISCOVER DIGITAL 1/0 CONTROL ***
Engineers --- Security Systems Designers --- Clinical Psychologists ---Hackers

ENJOY lOW COST MICROCOMPUTER CONTROl- Professionals and hobbyists have discovered
the unlimited possibilities of Digital I/O control. From automated nurseries to controlled energy systems,
from instrument monitoring to an automatic cat feeder; these are only a few ways our customers are putting
our Digital I/O Control Boards to work.

AUTOMATION and ROBOTICS ARE THE FUTURE. Use MULLEN CONTROLLER BOARDS to extend
your hands, eyes, ears, even your feet through sensing and control of "Real World" operations .

., JOUTPUT' You, compute, drives e;9h/;,d;"du,' relays
(mercury-wetted or dry-reed). These relays can
operate almost anything requiring a digital (ON/OFF)
state.

"\\.,,S\.E',
,,~ 5-100 Bus (shown) and 5TD Bus controllers.

Available soon lor IBM PC'"

INPUT: Electrical signals from the outside world can be
monitored by eight opto-isolated channels. Sensing
these signals then allows conditional control through
the OUTPUTS.

All MULLEN products are supported by easy to read
user manuals that include programming examples,
diagrams of typical connections, and schematics.
Write or call for data sheets that have detailed
specifications, prices and terms.

MULLEN COMPUTER PRODUCTS, INC. has supplied high quality, products to universities.
laboratories and industrial users since 1975. Write to MCPI at 2250 American Ave. #1, Hayward. CA
94545 or call (415) 783-2866.

Texas Instruments and Understanding Series are trademarks of Texas Instruments IBM PC is a registered trademark of IBM

FALL 1985 17

CP/M-86. One of the fields in the
copied DPH (the sector translate
table pointer) must also be adjusted
for the OS register offset. Incidentally,
when I originally wrote this BIOS, I
tried not making a local copy of a
DPH and just passing to CP/M-86 the
adjusted pointer to the DPH in the
CP/M BIOS. This did not work pro-
perly, and I was not able to find out
why.
The SETDMA (set DMA address)

and SETDMAB (set DMA base ad"
dress) BIOS functions are handled
without calling the CP/M BIOS.

These two functions save pointers to
where disk records are found on disk
reads or disk writes.
The READfunction calls the CP/M

BIOS to read one disk record. Re-
member that the CP/M BIOS uses a
fixed disk buffer which is stored in
the BIOS task block area. After call-
ing the CP/M BIOS, the READ func-
tion transfers the data from the BIOS
task block area to the address speci-
fied by the current DMA address.
The WRITE function is very similar.
Before calling the CP/M BIOS, the
WRITE function copies the data from

the current DMAaddress to the BIOS
task block area. The CP/M BIOS is
then called to do the actual disk write.
The CALLCB is the routine where

the CP/M BIOS gets called. First, the
register translation is performed ac-
cording to the mapping shown in
Table 2. Second, the IN AL,SWAP
instruction shuts down the 8088 and
wakes up the 8085. After the 8085 is
finished processing the BIOS task
block, it reawakens the 8088 which
starts executing right where it left off.
Lastly, the register translation is per-
formed in reverse, and the routine
exits.
The remainder of the CP/M-86

BIOS consists of data areas. The only
one ofany real interest is the segtable.
This table defines for CP/M-86 what
memory is available in the computer.
In Listing 1, this table is set so the
area between the end of the CP/M-86
BIOS and the BIOS task block is
available for program use (see Table
3). If you have memory at or above
address 10000(hex), you willwant to
change this table to add the other
memory areas. The first byte of the
table tells howmany entries are in the
table. The remaining entries are two
words each. The first word is the
base paragraph address (physical
address divided by sixteen) of the
availablememory; the second word is
the number of paragraphs (16-byte
chunks) available in this region. Up to
eight noncontiguous memory regions
may be defined.

CP/M-86 Expansion Memory

8085 BIOS

BIOS Task Block Processor

BIOS Task Block

Available CP/M-86 Memory

•
•

CP/M-86 BIOS

CP/M-86 CCP and BOOS

CP/M-86 Interrupt Vectors and
CP/M Low Memory

10000 (hex)

BIOS base

BIOS base
-100 (hex)

BIOS base
-200 (hex)

2500 (hex)

400 (hex)

o

The BIOS Task Block Processor

Listing 2 (BOOT86.ASM) is a pro-
gram which runs on the 8085. This
program has four responsibilities. Its
first job is to load the CP/M-86system
file (a file containing the CP/M-86
CCP, BOOS, and BIOS) into mem-
ory. Second, it attempts to provide
for the 8088 reset vector. Third, it
saves part of the 8085environment in
the task block area so that some
important variables are not smashed
by CP/M-86. Fourth, it relocates a
portion of itself to the BIOS task
block area, and functions as the
interface between the BIOS task
block and the CP/M BIOS.The major
sections of Listing 2 are identified by

5-100 JOURNAL, VOL. 1 NO.2

Table 3. Memory Allocation. This table depicts the memory of the computer as it
looks when CP/M-86 is running, and the 8085 is providing BIOS services for the 8088.
The area between the top of the CP/M-86 BIOS and the bottom of the BIOS task
block is available for running programs. If more than 64K of memory is available, any
memory above the bottom 64K (memory above address 10000 hex) can also be used
for running programs.

18

comments, and you may want to
refer to each section during the
following discussion.

Loading the CP/M-86 system file is
straightforward. However, beware
that object files under CP/M-86 have,
as their first sector, an information
sector on how to set segment regis-
ters after loading. This sector is of no
use and must be discarded. Since the
CP/M-86 file must be loaded at 400
(hex), loading is started at 380 (hex)
to discard this first sector. The load
code terminates at the label EOF.

The section of code that saves
some of the important 8085 memory
regions simply copies the contents of
this memory to secure locations in
the task block. The regions copied
are those that might be smashed by
the 8088 when running CP/M-86. The
area at FFFO is saved as part of pro-
viding for an 8088 reset vector.

The next section of code attempts
to provide for the 8088 reset vector
(the reset vector is an 8088 jump
instruction to the address where the
8088 should start executing). This is a
tricky problem. A restart vector must
also be provided. The reset vector is
used the very first time that the 8088
is turned on. The restart vector is
used every subsequent time that the
8088 is turned on. The text box on
page 28 details the problems of pro-
viding for reset and restart vectors on
the Dual CPU.

Following the code for the 8088
reset vector, there is a short loop
which relocates the remainder of the
program to the BIOS task block area.
This relocation places the remaining
code in a secure area of memory (just
after the task block). The relocated
code must remain resident during
CP/M-86 operation because it pro-
cesses BIOS requests for the 8088.

CODE (hex) Function

Cold Boot
Warm Boot
Console Status
Console Input
Console Output
List Device Output
Punch Device Output
Reader Device Input
Home Disk
Select Disk
Set Disk Track
Set Disk Sector
Set Disk DMA Address
Read Disk
Write Disk
List Device Status
Translate Logical Disk Sector to Physical

Disk Sector
Terminate CP/M-86 and Resume

CP/M Operation

00
03
06
09
OC
OF
12
15
18
1B
1E
21
24
27
2A
20
30

FF

Table 4. BIOS Functions and BIOS Task Block CODES. This table lists the codes
used in the CODE field of the BIOS task blocks. The CODE field is used by the 8088
to inform the 8085 which BIOS function is to be performed. The values for the codes
are actually the offset of the requested jump vector from the beginning of the BIOS
jump vector table.

This code is relocated to the BIOS
task block area, rather than simply
being loaded at the task block area,
because it overlays a portion of the
CP/MBDOS.

The definition of the task block
area follows. This definition must
match the definition provided in the
CP/M-86 BIOS. The code that is
relocated starts at the label HIMEM.
All the jump instructions in this sec-
tion look funny because of the
relocation.

The code that starts at the label
HIMEM processes task block re-
quests. The first thing it does is to

PROGRAM LISTINGS
The listings for the three programs described in this article

are published in the S-100 Journal Supplement distributed
with this issue.

They are also available on standard IBM format 8" single-
sided, single-density diskettes from Howard Spindel, 20877
S.W. Winema Drive, Tualatin, Oregon 97062. There is a
handling charge of $30.00 which includes the disk and
shipping by United States Postal Service.

FALL 1985

allow the 8088 to run. CP/M-86 has
been loaded into memory, and the
reset vectors have been set for the
8088 to begin running at the CBOOT
(cold boot) entry point of the CP/M-
86 BIOS. After the 8088 gets an initial
chance to run, the memory at FFFO
which was altered to provide a reset
vector is restored from the values
saved in the task block area.

The code starting at the label
NXTCMD begins a loop that will
continue to execute for as long as
CP/M-86 is running. NXTCMD is the
entry point for processing task block
requests. The CP/M-86 low-memory
environment is pushed onto the stack
and the CP/M low-memory environ-
ment is restored from the values
saved in the task block area. A special
check is made to see if the task block
is requesting a return to CP/M oper-
ation (the task code for this special
request is FF). If CP/M is to be
resumed, the warm-boot vector is
rebuilt in low memory, and a jump to
o warm boots CP/M back into mem-
ory. If the task block is requesting a
BIOS operation for CP/M-86, the

(continued on page 25)

19

I
(continued from page 8)
systems were sold.

However, when the Z80 CPU
was released, great problems
emerged. Many vendors tried to
simulate the 8080's signals when
they connected the Z80 to the
S-100 bus. Unfortunately, most of
the designers were unaware of how
other vendors were using the bus
signals and which timing param-
eters those vendors were using.
The result was general incompat-
ibility between the various
products.

DMA was another sore point.
The bus supported DMA but it
tended to work very poorly. During
bus exchanges, glitches commonly
occurred on the positive true
MWRT (memory write) signal.
Also, many dynamic memory
boards failed to handle refresh
cycles properly during DMA.

THE IEEE STANDARD
IS INTRODUCED

A small group of S-100 vendors
and users got together and, with
great effort, generated a rough-
draft specification for the bus. The
goals were to create a standard
that allowed all boards to work
together, cleaned up known prob-
lem areas of the bus, and expanded
the bus to support more/wider
memory (and I/O) as well as more
processors. In order to attain these
goals, many creative ideas went
into the rough draft.

The proposed standard was first
made public in the July 1979 issue
of the "IEEE Computer" magazine.
By this time the standard was at
draft level 02 (the second draft).
This draft is probably the best
known. It was also published in
JAN/FEB 1980 issue of "S-100
Micro Systems" and in some books
on the S-100 bus. This exposure
allowed many people to examine

20

and comment on the proposed
standard, promoting the design
and building of newer, more
powerful cards. The proposed
standard brought major improve-
ments to the bus (see Table 1).
These changes, along with others,
allowed the power and flexibility of
the S-100 bus to expand. At the
same time, it permitted most older
S-100 designs to work with the
newer designs.

The final meeting of the IEEE-
696 standards committee was on
June 30th, 1981. By then the draft
was at level 04. Some final changes
were made, and a copy of the final
draft (05) was mailed to all past
and present committee members
for a vote. The draft passed the
committee, and on June 10, 1982,
it was approved by the IEEE Stan-
dards Board. The current active
standard is officially called "IEEE
Standard 696 Interface Devices"
and it has the IEEE designation
IEEE Std 696-1983. It was first
published by the IEEE organiza-
tion on June 13, 1983.

DRAFT TO FINAL
STANDARD - THE
CHANGES

Draft 02 succeeded in better de-
fining and vastly improving the
functionality and speed of the bus.
But it still contained some deficien-
cies. The major changes between
draft 02 and the final standard
were in two areas: the 16-bit data
bus interface and the temporary
master interface.
The draft's 16-bit data bus was

labeled as having high- and low-
byte significance. This created
many problems since there are
two ways of storing 16-bit numbers
in byte-addressable memory. The
68000-type processors do it by
storing the high byte of the word
in low memory. The 8080/8086-
type processors do it the reverse
way. The problem occurs when
both of these devices exist on the
same bus, attempting to share
number data in memory. After
spending months on this problem,
the committee realized that sharing
binary numbers in memory was

Original 5-100

Supported 8-bit data
transfers only

Addressability up to
64K Bytes of RAM

Addressability up to
256 bytes of I/O

Bus clock speed at 2 Mhz

Only 1 temporary bus
master allowed

No timing specifications

No DC specifications

IEEE Draft D2

Supports 8 and / or 16-bit
data transfers

Addressability up to
16 Megabytes of RAM

Addressability up to
64K bytes of I/O

Bus clock speeds to 6 Mhz

Up to 16 temporary bus
masters allowed

AC timing specifications

DC driver / receiver and
terminator specifications

Table 1. Major differences between IEEE Draft D2 and the Original 5-100.

S-100 JOURNAL, VOL. 1 NO.2

not the real issue. But, instead,
that any given processor should
be able to properly read in 8·bit
mode whatever it may have written
in 16-bit mode, and vice versa. To
insure this, the two 8-bit halves of
any 16-bit transfer are now labeled
as the "odd byte" and the "even
byte." The odd byte goes to the
odd-byte address while the even
byte goes to the even-byte address.
Bit significance is no longer implied.

The 16-bit data bus underwent
one other major change. Draft D2
defined: "if a 16-bit write to
memory is attempted to an 8-bit
device, it is recommended that the
write be performed in hardware as
two 8-bit writes." This would take
three memory accesses to per-
form: one to detect the error, and
two more to write the word as two
bytes. It was realized that if the
proper data byte appeared on the
8-bit DO (Data Out) bus, then the
error detection and the writing of
the first byte could be combined in
the same memory access. Now
only two memory accesses are
needed. To make this work, the
equations for controlling 8/16-bit
memories have the active level of
address bit AO reversed from its
value in the draft.

The temporary master interface
was changed mostly in name. Draft
D2 calls the bus arbitration lines
DMAO* to DMA3*. DMA implied
direct memory access, which in
turn implied that a temporary
master could only do memory-
type accesses. In fact, temporary
masters are allowed to perform
ALL types of bus cycles, including
I/O cycles. It was therefore decided
that the arbitration lines should be
named TMAO* to TMA3*, which
stands for Temporary Master
Access of the bus.

One other change, dealing with
the temporary master interface,
was made to the IEEE-696 specifi-
cation. An error existed in the
example arbitration circuit. IfTMA
priority device 0 (the lowest prior-
ity device) requested and won the
bus, then all TMA devices on the

FAll 1985

bus would have received the arbi-
tration win signal. This error and a
timing glitch were both fixed in the
example circuit.

The final specification also varies
from draft D2 in the followingways:
1. An IDLE bus state was defined
and added.
2. The PHANTOM* signal was
initially part of the utility bus only.
It is now mentioned with the add-
ress bus as well, with timing speci-
fications added.
3. POC* (power On Clear) is
better defined. Timing specifica-
tions were added.
4. Powerfail specifications were
changed.
5. Termination methods of open-
collector lines were changed.
6. Some timing parameters were
changed and others were added.
7. A 10" double-high board was
defined.

CONCLUSION

The S-100 bus has come a long
way in its ten years of existence.
Today, mainly due to the IEEE
specification, it is a powerful and
supported bus.

Anyone wishing a copy of the
final specification of the IEEE-696
bus can write to the IEEE Compu-
ter Society Order Dept., P.O. Box
80542, Worldway Postal Center,
Los Angeles, CA 90080. The price
is $6.75 for IEEE members, or
$7.50 for non-members (plus $2.00
shipping and handling - California
residents add sales tax). It can
also be obtained from IEEEService
Center, CP department, 445 Hoes
Lane, Piscataway, NJ 08854 (New
Jersey residents add sales tax).

NEXT TIME

In the next issue, I'll cover in more
detail the differences between draft
D2 and the standard, and I will
give an example of a fast wait state
generator. -

TERMINALS
ADDS REGENT200s - These exceptional-
ly smart terminals have separate numeric,
cursor control. & function key areas, and
support the following software-selectable
attributes: Normal, half-intensity, under-
lined, graphic, blinking, & reverse video,
protected and unprotected fields. These
attributes may be used together, and can
cover all or any part of a screen.

Online/block/page transmission modes.
Switch selectable: RS-232/Current loop;
75-19,200 baud; auto scroll on/off; upper
only or upper & lower case; normal/
reverse video; half/full duplex; even/odd/
no pari ty. $225 each.

MICRODATA PRISM 4700s - Industrial
grade RS-232 dumb terminal. Displays
upper case only, generates upper/lower
case. Numeric keypad, heavy metal
housing, detached keyboard w/S' cord,
internal fan for hostile environments.
Switch selectable: 110-9600 baud; half!
full duplex; normallreverse video; even/
odd/no parity. Power cord $S extra.
Excellent for control projects. $1S0 each.

These terminals have each been
cleaned, completely refurbished, and
tested prior to shipping. CRTs are all in
excellent shape. Buyer pays freight. I
guarantee satisfaction, or money (incl.
freight) refunded within 30 days of
purchase.

DaveSimpson, 151 Warwick, Park Forest, III.
60466-1627 or phone 312-747·3107 12-9
pm CIIT. Quantity prices available.

HUMOR

Whenever space permits,
we will continue to place
a cartoon or two in 8-100
Journal.

If you have a good idea
for a computer-related
(preferably 8-100) car-
toon, please send it to us.
It must be an original. It
can be already drawn or
simply send us the idea. If
your cartoon is published,
we will enter or extend
your subscription to
S-100 Journal for 2 years.

21

SOURCES AND RELATIONS

Multiuser OS is a new S-100 Jour-
nal column that discusses all multi-
user operating systems running on
5-100 machines.

5-100 Journal welcomes Gary
Feierbach as our regular columnist
for Multiuser OS. Gary has over 20
years of experience as a computer
professional and holds B.A. and M.S.
degrees in Computer Science and
Eli. from the University of California
at Berkeley. He has worked in
numerous operating-system environ-
ments and is actively providing imple-
mentations of various multiuser
operating systems on 5-100
machines. Gary is president of Inner
Access Corporation, one of those
intrepid companies that is ready to
offer new 5-100 products forever.

Readers are invited to write to
Gary and send questions, tidbits of
information, or gossip about any
5-100 multiuser operating system. He
will try to work them into future
columns. Write to Gary Feierbach,
P.O. Box 888, Belmont, CA 94002.

This time, Gary brings a little order
to the OS families and provides a list
of 5-100 implementations, complete
with addresses. If you have any addi-
tions or updates to this list, he invites
your input.

22

IIow does one inaugurate a
column? Do I break a
bottle of champagne over

the bow of an 5-100 system on its
way to the loading dock? 5-100
systems have traveled far since
the Altair days, and along the way
some systems did resemble battle-
ships (e.g., the Cromemco 2-2D).
Many of these early battleships
are still doing useful work for engi-
neers and developers.

The advent of the Apple II and
the IBM PC has in large measure

Gary Feierbach

gobbled up the personal computer
and engineering workstation mar-
ket. While this went on, 5-100 did
not stand still. With its revamped
IEEE-696 high-bandwidth specifi-
cation, it invaded minicomputer
territory - the multiuser systems.
Today, in spite of many industry
crosscurrents (the VME, the Multi-
bus II, the Nubus, and a variety of
other contenders), the 5-100 multi-
user arena continues to grow and
prosper. It is my opinion that we
willcontinue to see the introduction

UNIXV

Concurrent TurboDOS

DOS
Fast/Net

Mirage
D/OS

OASIS
MP/M THEOS

AMOS
RT-11

CP/M
lORIS

UNIX CROMIX

S1
PICK Reality

FORTH

OS-9

Multi-FORTHPolyFORTH

5-100JOURNAL, VOL. 1 NO.2

OIS SOFTWARE VENDOR HARDWARE VENDORS

AMOS Alpha Micro Alpha Micro, Inner Access

Concurrent DOS Digital Research High Tech, CompuPro, Lomas,
Advanced Digital, Macrotech

CROMIX Cromemco Cromemco

DIOS Dravac Alpha Micro, Dravac, Inner Access

Fast/Net Newtons Labs Newtons Labs

Mirage Sahara Ltd. Empirical, Inner Access

MP/M Digital Research Macrotech, Intercontinental, High Tech

Multi-FORTH Creative Solutions Any CP I M system

THEOS Theos Software Group Third Coast

OS-9 Microware Systems

PICK Pick Systems Climax

PolyFORTH FORTH Inc. Any CP I M system

S1 Multi Solutions CompuPro (from Multi Solutions)

TurboDOS Software 2000 Northstar, Intercontinental, Teletek
Advanced Digital, JC Systems

UNIXV AT&T or Unisoft Cromemco, Empirical, Dual, High Tech,
Dynacomp

IDRIS Whitesmith Empirical

S-100 multiuser operating systems and respective vendors.

of new S-IOOproducts well beyond
the year 2000.

Now we need to take a look at the
players in the arena. I am referring
to operating systems and not to
S-IOO manufacturers although
many of the operating systems are
strongly identified with particular
hardware.

The systems that I will describe
in the future generally trace their
lineage to common parents within a
small set of families.One well-known
family is UNIX which has evolved
and spawned several variants and
work-alikes, including UNIX V,
CROMIX, lORIS and Sl. Another

FAll 1985

is RT-ll which inspired AMOS,
Mirage, and D/OS. Another, CP/M,
evolved into MP/M and eventually
into Concurrent DOS. RT-ll can
also be considered the inspiration
for OASIS which evolved into
THEOS. Then, there are the com-
posite systems like TurboDOS and
Fast/Net that meld two or more
hardware and software systems
together, in the latter case Mirage
and CP/M. TurboDOS and Fast/
Net support multiprocessors; each
slave processor is doled out to one
or more users, and the bus master
handles such tasks as file manage-
ment and printer spooling.

Less known systems are Reality
and Forth. Reality has become
PICK. The multiuser versions of
FORTH are Poly-FORTH and
Multi-FORTH. Finally, there are the
real-time systems like OS-9, and
various real-time kernels some of
which offer multiuser capability.

This will certainly give me plenty
to talk about in the next several
issues. Next time, I will start with
AMOS, Mirage, D/OS and Fastj
Net since they have much to offer,
and many readers are probably not
very familiar with them.

The table on this page shows
the above mentioned operating

23

systems correlated to software
vendor and the particular S-100
hardware it runs on.

ADDRESSES

Advanced Digital Corp.
5432 Production Dr.
Huntington Beach, CA 92649
(714) 891-4004

Alpha Micro
3501 Sunflower St.
Santa Ana, CA 92704
(714) 957-8500

AT&T
600 Mountain Ave.
Murry Hill, NJ 07974
(201) 582-3624

Climax
3605 W. MacArthur, Suite 702
Santa Ana, CA 92704
(714) 557-2398

CompuPro
26538 Danti Ct.
Hayward, CA 94545
(415) 786-0909

Creative Solutions
4801 Randolph Rd.
Rockville, MD 20852
(301) 984-0262

Cromemco
280 Bernado Ave.
Mt. View, CA 94039
(415) 964-7400

Digital Research
60 Garden Ct.
P.O. Box DRI
Monterey, CA 93942
(408) 649-3896

Dravac Ltd
16 Muller Road
Oakland, NJ 07436
(201) 337-8350

24

- Dual Systems Control Corp.
2530 San Pablo Ave.
Berkeley, CA 94702
(415) 549-3854

Dynacomp Computer
Systems Ltd.

100-210 W. Broadway
Vancouver, B.C. Canada

V5Y 3W2

Empirical Research
Group Inc.

1112 S. 344th St., Suite 310
Federal Way, WA 98003
(206) 874-4844

Forth Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

High Technology Electronics
303-305 Portswood Rd.
Southampton, England

S02 1LD

Inner Access Corporation
3206 E. Laurel Ck. Rd.
Belmont, CA 94002
(415) 591-8295

Intercontinental Micro
Systems

4015 Leaverton Ct.
Anaheim, CA 92807
(714) 630-0964

JC Systems
469 Valley Way
Milpitas, CA 95035
(408) 945-0318

Lomas Data Products
Hopkington Rd.
Westboro, MA 01581
(617) 460-0333

Macrotech International
Corporation

9551 Irondale Ave.
Chatsworth, CA 91311
(818) 700-1501

Microware Systems
1866 N.w. 114th St.
Des Moines, IA 50322
(515) 224-1929

MultiSolutions, Inc.
123 Franklin Corner Rd. #207
Lawrenceville, NJ 08648
(609) 896-4100

Newtons Laboratories
P.O. Box 789
111-113 Wandsworth

High St.
.London, England SW184JB

Northstar Computers
14440 Catalina St.
San Leandro, CA 94577
(415) 357-8500

Pick Systems
1691 Browning
Irvine, CA 92714
(714) 261-7425

Sahara Ltd.
Unit 1F
Tideway Industrial Estate
87 Kirtling St.
London, England SW8 5BP
(01) 627-1733

Software 2000
1127 Hetrick Ave.
Arroyo Grande, CA 93420
(805) 489-1977

Teletek
4600 Pell Drive
Sacramento, CA 95838
(916) 920-4600

Theos Software Corp.
201 Lafayette Cir., Suite 100
Lafayette, CA 94549
(415) 283-4290

Third Coast Technology Inc.
555 Pilgrim Dr., Suite B
Foster City, CA 94404
(415) 570-4641

Unisoft Systems
739 Allston Way
Berkeley, CA 94710
(415) 644-1230

Whitesmith Ltd.
97 Lowell Rd.
Concord, MA 07142
(617) 369-8499

5-100JOURNAL, VOL. 1 NO.2

VOL. 1, NO.2. FALL 1985

Supplement

This supplement contains the
source code of the programs

CBIOS86.A86
BOOT86.ASM
BOOT80.A86

described in the article
CP/M-86 ON OLDER S-100 COMPUTERS
USING A DUAL-PROCESSOR BOARD

Programs by Howard Spindel

COPYRIGHT © 1983 BY HOWARD SPINDEL
PERMISSION GRANTED TO REPRODUCE THESE PROGRAMS FOR INDIVIDUALNON-PROFIT USE ONLY

; LISTING 1 - CBIOS86.A86
THIS PROGRAM COPYRIGHT 1983 BY HOWARD SPINDEL.
PERMISSION GRANTED TO REPRODUCE THIS PROGRAM
FOR INDIVIDUAL NON-PROFIT USE ONLY.

FFFF
0000

This Customized BIOS adapts CP/M-86 to any CP/M hardware
system built around the Godbout Dual CPU processor board.
Except for requiring the Dual CPU, this BIOS is hardware
independent from the target computer. Hardware independence
is achieved by allowing all I/O operations to be handled
by an existing CP/M BIOS running on the 8085. This
BIOS builds task blocks describing the requested I/O
operation, places the task blocks in a secure memory area,
wakes up the 8085 to perform the I/O operation, and waits
for the 8085 to reawaken the 8088 so that the results of
the I/O operation can be obtained from the task block.

; A couple of useful equates
true equ-1
false equ not true

0400

cpm_offset is the offset of the base of CP/M-86 from absolute
zero (which also defines the setting of the cs register on
entry to CP/M-86). 400h is the standard setting, but CP/M-86
is relocatable and may run anywhere in the 8088 address space

; above the interrupt vectors.
cpm_offset equ 0400h ;cs register on entry to cpm
; Specify the user changeable equates near the front of the
; listing so they are easily found.

CCOO
OOFD
0000

IFAREA
SWAP
SAVLOWMEM

equ
equ
equ

ODOOOH - cpm_offset ;task block address
OFDH ;Dual CPU processor swap port
false ;Debugging equate

0004
; Maximum number of disks in the system. May be changed for
; different hardware configurations if necessary.
maxdisk equ 4

0000
OOOA

; a couple more useful equates
cr equ Odh
lf equ Oah

;carriage return
;line feed

0000
0008
OOOA
OOOC
OOOE

;Equates for a
xltdirbuf
dpb
csv
alv

standard Disk
equ 0
equ 8
equ OAH
equ OCH
equ OEH

Parameter Header (DPH)
;translate table pointer
;directory buffer pointer
;disk parameter block ptr
;checksum vector pointer
;allocation vector pointer

FAll 1985 5-3

CCOO
CCOI
CC02
CC03
CC04
CC05
CC06
CC07
CC08
CC09
CC80

OOEO

2500
0000
OB06

2500 E93COO
2503 E95400
2506 E98800
2509 E98000
250C E99700
250F E99COO
2512 E9A900
2515 E9AEOO
2518 E92601
251B E9CBOO
251E E92801
2521 E92001
2524 E93EOI
2527 E94901
252A E96401
2520 E98600
2530 E92601
2533 E934012536 E93601
2539 E99200
253C E99400

253F 8CC8
2541 8EDO
5-4

253F
255A
2591
2599
25A6
25AE
25BE
25C6
2641
25E9
2649
2651
2665
2673
2691
25B6
2659
266A
266F
25CE
2503

; Equates for the relevant fields of the BIOS task block area.
; This definition must match the definitions present in
; BOOT86.ASM and BOOT80.A86
CODE EQU IFAREA
AREG EQU IFAREA+l
CREG EQU IFAREA+2
BREG EQU IFAREA+3
EREG EQU IFAREA+4
DREG EQU IFAREA+5
LREG EQU IFAREA+6
HREG EQU IFAREA+7
10BYTE EQU IFAREA+8
COISK EQU IFAREA+9

;Requested BIOS function
;8085 A register
;8085 C register
;8085 B register
;8085 E register
;8085 0 register
;8085 L register
;8085 H register
;1/0 redirection byte
;current default disk

OSKBUF EQU IFAREA+080H ;disk dma address for
; 8085 BIOS

; Software interrupt vector used for CP/M-86 system calls
bdos_int equ 224 ;reserved BOOS interrupt
; Equates for the base addresses of CP/M-8 CCP, BOOS, and BIOS
bios code equ 2500h
ccp_offset equ OOOOh
bdos_ofst equ OB06h ;BOOS entry point

ccp:
cseg
org ccpoffset
org bios_code

BIOS jump vector table
This table must start at the beginning of the BIOS.
All accesses to BIOS functions go through this jump
table, so the order of the entries in the table may
not change.

jmp INIT
jmp WBOOT
jmp CONST
jmp CONIN
jmp CONOUT
jmp LISTOUT
jmp PUNCH
jmp READER
jmp HOME
jmp SELOSK
jmp SETTRK
jmp SETSEC
jmp SETDMA
jmp READ
jmp WRITE
jmp LISTST
jmp SECTRAN
jmp SETDMAB
jmp GETSEGT
jmp GETIOBF
jmp SETIOBF

;cold bootstrap entry
;warm bootstrap entry
;console status
;console input
;console output
;list device output
;punch device output
;reader device input
;seek track 0 on current disk
;select a disk
;set disk track
;set disk sector
;set memory offset for disk I/O
;read disk sector (128 bytes)
;write disk sector (128 bytes)
;list device status
;translate logical to physical disk sector
;set memory base for disk I/O
;return pointer to memory segment table
;return current I/O redirection byte
;set new I/O redirection byte

Cold boot initialization entry point
Initialize segment registers, interrupt vectors, and
print the sign on message.

INIT:
mov
mov

ax,cs
ss,ax ;set all the segment registers

to the base address of CP/M-86
5-100JOURNAL, VOl. 1 NO.2

2543 8ED8
2545 8ECO
2547 BC9C2A

254A E81000
254D BB4127
2550 E88500
2553 8AOE09CC
2557 E9A6DA

mov
mov
mov

ds,ax
es,ax

;set a local stack for initialization
sp,offset stkbase

IF SAVLOWMEM
call savelow
ENDIF

255D call

25D8
mov
call

0000
mov
jmp

;check for debugging equate on
;save 8085 environment

makvec ;make low ram interrupt vectors
bX,offset signon
pmsg ;print signon message

;default to CURRENT DRIVE on coldstartcl,byte ptr .CDISK
ccp ;jump to CP/M-86 CCP

Warm boot entry point. Simply jump to the CCP.
ccp+6 ;jump to CP/M-86 CCP at warm boot entry255A E9A9DA 0006 WBOOT: jmp

makvec:
255D FC cld
255E 1E push
255F 06 push
2560 B80000 mov
2563 8ED8 mov
2565 8ECO mov

2567 C70600008525
256D 8COE0200
2571 BF0400
2574 BEOOOO
2577 B9FE01
257A F3A5

257C C7068003060B
2582 07
2583 1F
2584 C3

2585 FA
2586 8CC8
2588 8ED8
258A BB7A27
258D E84800
2590 F4

FAll 1985

;set forward direction
ds
es
ax,O
ds,ax
es,ax ;set up for string move operation

;set all interrupt vectors to point to the invalid interrupt trap
;first set interrupt 0 to invalid
; interrupt trap

mov intO_offset,offset int_trap
mov intO_segment,CS
mov di,4
mov si,O
mov cx,510
rep movs ax,ax

;set the BDOS interrupt vector to point to the BDOS entry point

;Now copy the interrupt 0 vector
; to all 256 interrupts

mov bdos_offset,bdos_ofst
pop es
pop ds
ret

Entry point for invalid interrupt trap.
This routine will catch any unexpected interrupts.

int_trap:
cli ;no more interrupts allowedax,cs

ds,ax
bX,offset
pmsg

;get BIOS data segmentint trp
- ;notify user of our problem

;crash and burn

mov
mov
mov

25D8 ca11
hlt

Console status routine
Input: None

; Output: AL = FF -> character ready
AL = 00 -> no character ready

$-5

2591 C60600CC06
2596 E91701 26BO

CONST:
movjmp

;Get status from the 8085
byte ptr .CODE,6
callcb

Console input routine
Input: None
Output: AL = character read

2599 E8F5FF
259C 74FB

CONIN:
2591 ca11
2599 jz

259E C60600CC09
25A3 E90A01 26BO

25A6 C60600CCOC
25AB E90201 26BO

25AE C60600CCOF
25B3 E9FAOO 26BO

25B6 C60600CC2D
25BB E9F200 26BO

25BE C60600CC12
25C3 E9EAOO 26BO

25C6 C60600CC15
25CB E9E200 26BO

5-6

movjmp

const
conin

tis data available?
;if not, wait for some
;Ask the 8085 to read the data

byte ptr .CODE,9
callcb

Console output routine
Input: CL = character to send
Output: None

;Ask the 8085 to send the data
byte ptr .CODE,OCH
callcb

List device output routine
Input: CL = character to send
Output: None

;Ask the 8085 to send the data
byte ptr .CODE,OFH
callcb

List device status routine
Input: None
Output: AL = FF -> list device ready

AL = 00 -> list device busy

;Ask the 8085 for the statusbyte ptr .CODE,2DH
callcb

Punch device output routine
Input: CL = character to send
Output: None

;Ask the 8085 to send the databyte ptr .CODE,12H
callcb

Reader device input routine
Input: None
Output: AL = character read

;Ask the 8085 to read the databyte ptr .CODE,15H
callcb

5-100JOURNAL, VOl. 1 NO.2

CONOUT:
mov
jmp

LISTOUT:
movjmp

LISTST:
movjmp

PUNCH:
movjmp

READER:
movjmp

Return the current value of the I/O redirection byte (IOBYTE)
Input: None
Output: AL = current IOBYTE

GETIOBF:
25CE 8A0608CC
2502 C3

mov
ret

Set the I/O redirection byte (IOBYTE) to a new value
Input: CL = new IOBYTE
Output: None

al,byte ptr .IOBYTE

SETIOBF:
2503 880E08CC
2507 C3

mov
ret

Handy little routine which sends a string to the
console output device. The string must be terminatedby a binary zero.
Input: BX points to string (based on OS)
Output: None

byte ptr .IOBYTE.cl

pmsg:
2508 8A07 mov al.[bx] ;get the next char to send250A 84CO test al,al ;end of the string?250C 740A 25E8 jz return ;yup, found the end of the string250E 8AC8 mov cl,al ;move character to appropriate reg25EO 53 push bx ;careful, CONOUT smashes BX25E1 E8C2FF 25A6 call CONOUT ;send the character to the console25E4 5B pop bx
25E5 43 inc bx ;point to next character of message25E6 EBFO 2508 jmps pmsg ; and do it all againreturn:
25E8 C3 ret

Select a new disk.
Input: CL = requested disk
Output: BX = pointer to selected DPH (0000 if error)

25E9 BBOOOO SELDSK: mov bx,OOOO ;prepare bad return25EC 80F904 cmp cl,maxdisk ;good select?25EF 7328 2619 jae badsel ;nope
;ask the 8085 to select the disk25F1 C60600CCIB mov byte ptr .COOE,IBH25F6 E8B700 26BO call callcb25F9 OBOB or bx.bx ;bad select?25FB 741C 2619 jz badsel ;yes25FO E81COO 261C call findph ;get pointer to OPH in 012600 81EBOO04 sub bx,cpm_offset ;correct for seg reg bias2604 8B07 mov ax,[bx]+xlt ;get translation tbl ptr2606 8905 mov [di]+xlt,ax ;put in local table2608 8B470A mov ax,[bx]+dpb ;get dpb ptr260B 89450A mov [di]+dpb,ax ;put in local table
;correct some fields for seg reg bias260E 81200004 sub [diJ+xlt,cpm_offset2612 81600AOO04 sub [di]+dpb,cpm_offset2617 8BOF mov bx,di ;return result to CP/M-862619 OBOB badsel: or bx,bx ;set condition codes for CPM261B C3 ret

FAll 1985 5-7

261C 51 push cx2610 B90400 mov cx,maxdisk2620 BF3127 mov di,OFFSET dphtbl ;point to base of table2623 3910 findl: cmp word ptr [di],bx ;is this the correct OPH?2625 7414 263B je gotit ;yes
2627 833000 cmp word ptr [di],0000 ;empty slot?
262A 7400 2639 je empty ;yes
262C 83C704 add di,4 ;point to next entry
262F E2F2 2623 loop findl
2631 BB9227 mov bX,OFFSET nodph ;send error message2634 E8AIFF 2508 call pmsg
2637 FA CLl ;die
2638 F4 HLT
2639 8910 empty: mov word ptr [di],bx ;set up a new entry
263B 47 gotit: inc di ;point to OPH pointer
263C 47 inc di
2630 8B30 mov di,word ptr [di] ;return a OPH pointer
263F 59 pop cx
2640 C3 ret

Subroutine to get a pointer to the correct local copy ofa Disk Parameter Header (OPH).
Input: BX = pOinter to OPH on 8085
Output: 01 points to local OPH

findph:

Seek to track 0 on the current disk
Input: None
Output: None

HOME:
2641 C60600CC18
2646 E96700 26BO

mov
jmp

;ask the 8085 to home the diskbyte ptr .COOE,18H
cal1cb

Seek to specified track on current disk
Input: CX = requested track
Output: None

SETTRK:
2649 C60600CC1E
264E E95FOO 26BO

mov
jmp

;ask the 8085 to seek
byte ptr .COOE,lEH
callcb

Select sector on current disk
Input: CX = requested sector
Output: None

SETSEC:
2651 C60600CC21
2656 E95700 26BO

mov
jmp

;ask the 8085 to select a sectorbyte ptr .COOE,21H
callcb

Translate a logical sector to a physical sector
Input: CX = logical sector

OX points to translate table
Output: BX = physical sector

SECTRAN:
2659 C60600CC30
265E 81C20004
2662 E94BOO

mov
add

;ask the 8085 for a translationbyte ptr .COOE,30H
dx,cpm_offset ;correct for seg reg bias

before calling 8085CBIOS26BO jmp callcb
5-8 5-100JOURNAL, VOl. 1 NO.2

2665 890EED26
2669 C3

266A 890EEF26
266E C3

266F BBAB27
2672 C3

2673 C60600CC27
2678 E83500 26BO
267B BE80CC
267E 06
267F 8E06EF26
2683 8B3EED26
2687 B94000
268A FC
268B F3A5
2680 07
268E OACO
2690 C3

2691 C60600CC2A
2696 BF80CC
2699 8B36ED26
2690 1E
269E 06
269F 1E
26AO 8E1EEF26
26A4 07
FAll 1985

Set the memory offset to be used on next disk I/O
Input: CX = requested offset
Output: None

SETDMA:
mov
ret

Set the memory base to be used on next disk I/O
Input: CX = requested base address
Output: None

SETDMAB:
mov
ret

Return the address of the memory segment table.
Input: None
Output: BX points to the memory segment table

GETSEGT:
mov
ret

bX,offset seg_table

Read a sector from the disk. Use the currently selected
disk, the currently requested track, the currently
requested sector, and place the data read at the
current DMA address.
Input: None
Output: AL = 0 -> no errors occurred

AL = 1 -> non-recoverable error occurred
READ:

mov
call
mov
push
mov
mov
mov
cld
rep
pop
or
ret

;ask the 8085 for a 128 byte sector
byte ptr .CODE,27H
callcb
si,DSKBUF ;copy from task block to dma address
es
es,dma_seg ;a block move is nice and quick
di,dma adr
cx,64 - ;copy 128 bytes (64 words)
movs ax,ax
es
al,al ;set status for CP/M-86

Write a sector to the disk. Use the currently selected
disk, the currently requested track, the currentlyrequested sector, and place the data read at the
current DMA address.
Input: None
Output: AL = 0 -> no errors occurred

AL = 1 -> non-recoverable error occurred

;ask the 8085 to write 128 bytes
byte ptr .CODE,2AH
di,DSKBUF ;copy from dma address to task block
si,dma adr
ds - ;set up for string move
es
ds
ds,dma_seg
es

5-9

WRITE:
mov
mov
mov
push
push
push
mov
pop

26A5 B94000 mov cx,64 ;copy 128 bytes (64 words)26A8 FC cld26A9 F3A5 rep movs ax,ax ;string moves are nice and quick26AB 07 pop es26AC 1F pop ds26AD E90000 26BO jmp callcb ;let the 8085 write the data
Call the 8085 BIOS using the interface area.
The interface area is set up with all the desired values
that the 8085 registers are to assume when the 8085 wakes
up. The one-to-one mapping provided by Digital Research
between 8085 BIOS registers and 8088 BIOS registers allows
this routine to be common for all BIOS function calls.

CALLCB:
26BO 880601CC
26B4 882E03CC
26B8 880E02CC
26BC 883605CC
26CO 881604CC
26C4 883E07CC
26C8 881E06CC

mov
mov
mov
mov
mov
mov
mov

26CC E4FD

IF
call
call
ENDIF
IN

IF
call
call
ENDIF

26CE 8A0601CC mov
26D2 8A2E03CC mov
26D6 8AOE02CC mov
26DA 8A3605CC mov
26DE 8A1604CC mov26E2 8A3E07CC mov
26E6 8AIE06CC mov
26EA OACO or
26EC C3 ret

;set the 8085 pseudo-registersbyte ptr .AREG,al
byte ptr .BREG,ch
byte ptr .CREG,cl
byte ptr .DREG,dh
byte ptr .EREGfdl
byte ptr .HREGfbh
byte ptr .LREGfbl
SAVLOWMEM
savelow86
restorelow

;check debugging equate
;save 8088 environment
;restore 8085 environment

ALfSWAP ;swap processors so the 8085 does
; the dirty work

SAVLOWMEM
savelow
restore 1ow86

;check debugging equate
;save 8085 environment
;restore 8088 environment
;Rebuild the 8088 registers based
; on the information returned by
; the 8085 in the task blockalfbyte ptr .AREG

ch,byte ptr .BREG
cl,byte ptr .CREG
dhfbyte ptr .DREG
dlfbyte ptr .EREG
bhfbyte ptr .HREG
blfbyte ptr .LREG
alfal ;set status for CP/M-86

These routines are only present if saving and restoring
low memory is necessary. Saving and restoring memory
is useful in debugging the initial installation of these
programs if the 8085 BIOS makes use of any low memory
areas.

IF SAVLOWMEM

savelow:
save 8085 low memory

mov
jmps

5-10

;point to 8085 save areadi,offset savarea
saveit

5-100 JOURNAL, VOL. 1 NO.2

; save 8088 low memory
savelow86:

;point to 8088 save area
mov di,offset savarea86

Save 256 bytes of memory
Input: DI points to storage area where low memory can be stored
Output: None

saveit:
push ds
push es
push dspop es
mov si ,0
mov ds,si
cld
mov cx,128
rep movs ax,ax
pop es
pop ds
ret

;Start at absolute zero

;save 256 bytes (128 words) of low mem
;a string move is quick and easy

restore 8085 low memory
restorelow:

;point to 8085 save area
mov si,offset savarea
jmps restoreit

restore 8088 low memory
restorelow86:

;point to 8088 save area
mov si,offset savarea86

restore 256 bytes of low memory
Input: SI points to memory area containing saved bytes
Output: None

restoreit:
push
mov
mov
cld
mov
rep
pop
ret
ENDIF

es
di ,0
es,di

;restore absolute 0

cx,128
movs ax,ax
es

;restore 256 bytes (128 words) low mem
;string it along

end of debugging code

; Data Areas
26ED data_offset

dseg
org

FAll 1985

equ offset $

;contiguous with code segment
5-11

storage for the current dma address
26ED 0000 dma adr dw 0 ;dma offset (from OS)26EF 0000 dma=seg dw 0 ;dma segment base

; local copies of the disk parameter headers
; storage is allocated for four disk drives - may be altered
; for different system configurations

26F1 0000 dphO dw 0 ;local copy of Disk Parameter Header Block 0
26F3 000000000000 dw 0,0,026F9 B027 dw dirbf. 26FB 0000 dw 026FO 5C29 dw csvO26FF 3028 dw alvO
2701 0000 dph1 dw 0 ;local copy of Disk Parameter Header Block 12703 000000000000 dw 0,0,0
2709 B027 dw dirbf
270B 0000 dw 02700 9C29 dw csv1270F 7B28 dw alv1
2711 0000 dph2 dw 0 ;local copy of Disk Parameter Header Block 22713 000000000000 dw 0,0,02719 B027 dw dirbf271B 0000 dw 02710 OC29 dw csv2
271F C628 dw alv2
2721 0000 dph3 dw 0 ;local copy of Disk Parameter Header Block 32723 000000000000 dw 0,0,02729 B027 dw dirbf272B 0000 dw 02720 1C2A dw csv3272F 1129 dw alv3

Table to remember which dph is which.
This table is used by the findph routine

2731 0000
2733 F126
2735 0000
2737 0127
2739 0000
273B 1127
2730 0000
273F 2127

dphtbl dw
dw
dw
dw
dw
dw
dw
dw

o
OFFSET dphO
o
OFFSET dph1
o
OFFSET dph2
o
OFFSET dph3

Signon message printed at powerup
May be changed to anything desired

2741 OOOAOOOA
2745 43502F402038

362056657273
696F6E20312E
31000A

275A OOOAOOOA
275E 537973746560

2047656E6572
617465642031
302F30372F38
322777 OOOAOO

signon db
db

db
db

db
5-12

crtIf,cr,If
'CP/M-86 Version 1.11,cr,lf

crtIf,cr,If
ISystem Generated 10/07/821

cr,lf,O
5-100JOURNAL, VOL 1 NO.2

; Interrupt trap fatal error message
; May be changed to anything desired

277A OOOA
277C 496E74657272

757074205472
61702048616C
74

278F OOOA
2791 00

db
db

cr,lf
I Interrupt Trap Halt'

cr,lf
00

Internal failure due to lack of OPH space message
May be changed to anything desired

2792 OOOA
2794 4E6F20726F6F

6020696E2044
504820746162
6C65

27A8 OOOA
27AA 00

nodph db
db

db
db

cr,lf
'No room in OPH table'

cr,lf
00

System Memory Segment Table
27AB 01
27AC EA02
27AE 160A

segtable db
dw
dw

;1 segment
;lst seg starts after BIOS
; and extends to IFAREA

Miscellaneous uninitialized data areas.
27BO dirbf rs 128 ;Used by local dph copies
2830 alvO rs 75 ;Used by local dph copies
287B alv1 rs 75 ;Used by local dph copies
28C6 alv2 rs 75 ;Used by local dph copies
2911 alv3 rs 75 ;Used by local dph copies
295C csvO rs 64 ;Used by local dph copies
299C csvl rs 64 ;Used by local dph copies
290C csv2 rs 64 ;Used by local dph copies
2A1C csv3 rs 64 ;Used by local dph copies

IF SAVLOWMEM ;Oebugging memory save areas
savarea rs 256
savarea86 rs 256

ENOIF
2A5C loc stk rw 32 ;local stack for initialization
·2A9C stkbase equ offset $
2A9C lastoff equ offset $

The following two equates are used to determine the amount
of free memory usable by CP/M-86 in the first 64k. This
information is used to build the first entry in the memory
segment table. If you have more than 64k of RAM in your
computer add more entries to the memory segment table.
Calculate the paragraph address of the first paragraph following

; the end of this BIOS.
02EA tpa_seg equ (lastoff+cpm_offset+15) / 16

FALL 1985 5-13

OA16
2A9C 00

; Calculate the number of paragraphs free between the end of this
; BIOS and the beginning of the task block.
tpa_len equ (IFAREA+cpm_offset)/16 - tpa_seg

db 0 ;fill last address for GENCMD

0000
0000
0002
0004
0380
0382

Dummy data section for establishing interrupt vectors
dseg 0 ;absolute low memory
org 0 ;point to interrupt vector 0

intO offset rw 1
intO=segment rw 1

pad to the BOOS interrupt vector (INT 224)
rw 2*(bdos_int-1)

bdos offset
bdos=segment

END
rw
rw

1
1

END OF ASSEMBLY. NUMBER OF ERRORS: O. USE FACTOR: 12%

5-14 5-100JOURNAL,VOl. 1 NO.2

LISTING 2 - BOOT86.ASM
THIS PROGRAM COPYRIGHT 1983 BY HOWARD SPINDEL.
PERMISSION GRANTED TO REPRODUCE THIS PROGRAM
FOR INDIVIDUAL NON-PROFIT USE ONLY.
This program has four tasks to accomplish. It is
responsible for loading a CP/M-86 system file into
memory. It provides for an 8088 reset or restart
vector. It saves the CP/M low core environment in
the BIOS task block area. A portion of this program
is relocated into high memory where it remains
permanently resident while CP/M-86 is running so it
can function as the interface between the BIOS task
block requests and the CP/M BIOS, thereby providing
BIOS services for CP/M-86. All of the code in this
program runs on the 8085.
Specify the user changeable equates near the front
of the listing so they are easily found.

0000 = IFAREA EQU ODOOOH ;address of the task block
OOFD = SWAP EQU OFDH ;CPU swap port

; Miscellaneous Equates
0005 = BOOS EQU 5 ;BOOS jump address
005C = FCB EQU 5CH ;Address of file control

; block at program invocation
0003 = IOBYTE EQU 3 ;Address of CP/M iobyte
0004 = CDISK EQU 4 ;Address of CP/M current disk
0100 = FWAREA EQU IFAREA+100H ;Address where BIOS task block

; processor code is relocated
0100 ORG 100H

This section of code attempts to open the CP/M-86 system
file specified by the user. If the open is successful, the
CP/M-86 system file is read into memory at address 400 (hex).
Remember that all CP/M-86 executable files contain an extra
128 bytes on the front (used for segment register initialization
information). Therefore, if the CP/M-86 system file is read
into memory starting at address 380 (hex) the first executable
code will wind up at 400 (hex) as desired.

0100 310A02
0103 AF
0104 326800
0107 326AOO
010A 327COO

LXI
XRA
STA
STA
STA

SP,STKBAS1
A
FCB+12
FCB+14
FCB+32

;Set up a stack
;Clean up the default FCB

FAll 1985 5-15

0100 OEOF
010F 115COO
0112 C00500
0115 FEFF
0117 C23601
011A OE09
011C 112501
011F C00500
0122 C30000
0125 46494C4520EMSG
0136 218003 OK:
0139 E5 LOOP:
013A OElA
013C EB
0130 C00500
0140 OE14
0142 115COO
0145 C00500
0148 El
0149 B7
014A C25401
0140 118000
0150 19
0151 C33901
0154 OEOO EOF:
0156 C00500
0159 OE1A
015B 118000
015E C00500

MVI C,OFH ;Open user specified file
LXI O,FCB
CALL BOOS
CPI OFFH ;File opened successfully?
JNZ OK ;Jump if yes
MVI C,9 ;File open failed
LXI O,EMSG ;Use BOOS call to printCALL BOOS ; failure messageJMP 0 ;Warm boot to abort
DB 'FILE NOT FOUNO',13,10,'$'
LXI H,380H ;Start reading file at 380 (hex;; to discard first sectorPUSH H ;Save current memory addressMVI C,lAH ;Set BOOS dma address toXCHG ; current memory addressCALL BOOS
MVI C,14H ;Read a sector of the CP/M-86LXI O,FCB ; system file at the currentCALL BOOS ; memory addressPOP H ;Restore current memory addressORA A ;Oid we hit end of file on read?JNZ EOF ;Jump if yes
LXI 0,128 ;Not end of file, so add 128 toDAD 0 ; current memory address andJMP LOOP ; go back to read some more
MVI C,OOH ;CP/M-86 all read in, so resetCALL BOOS ; disksMVI C,lAH ;Set the dma address to the diskLXI O,OSKBUF ; buffer in the task blockCALL BOOS

This section of code saves the memory at FFFO in the BIOS task block
so that it can be used for an 8088 restart vector. This is not
useful if a ROM exists at FFFO.

0161 110CDO LXI O,SFFFO ;Point to the task block0164 21FOFF LXI H,OFFFOH ;Point to FFFO0167 OE05 MVI C,5 ;Save 5 bytes for an 8088
; long jump0169 7E LOOP2: MOV A,M ;Fetch a byte from FFFx016A 12 STAX 0 ;Store it in the task block016B 23 INX H ;Increment the pointers016C 13 INX 0

0160 00 OCR C ;5 bytes done?016E C26901 JNZ LOOP2 ;Jump if no
This section of code saves the CP/M iobyte and cdisk fields from
low memory in the BIOS task block. The low memory area is changed
when CP/M-86 runs, and must be rebuilt every time the CP/M BIOS
is called. A pointer to the CP/M BIOS is also calculated and
saved in the task block for future use.

0171 3A0300 LOA IOBYTE ;Get the iobyte0174 320800 STA IOBYTE2 ;Store iobyte in task block0177 3A0400 LOA CDISK ;Get the current disk017A 320900 STA CDISK2 ;Store cdisk in task block
0170 2A0100 LHLO 01 ;Get a pointer to the BIOS

; warm boot
5-16 5-100JOURNAL, VOL. 1 NO.2

0180 2B OCX H ;Warm boot is second vector,0181 2B OCX H ; so three decrements points0182 2B OCX H ; to beginning of BIOS
0183 220AOO SHLO CBIOS ;Save pointer in task block

; This section of code provides for 8088 reset and restart vectors.
FFFO is set up in case it is RAM. A reset vector is stored at
address O. A restart vector is stored at address 10. In all
cases, the 8088 is to begin execution by jumping to the first
instruction of the CP/M-86 BIOS (the cold boot entry point at
address 40:2500).

0186 21FOFF LXI H,OFFFOH ;Jump goes at FFFO
0189 110000 LXI 0,0 ;Jump goes at 0018C 011000 LXI B,10H ;Jump goes at 10 too
018F 3EEA MVI A,OEAH ;Op code for 8088 long jump0191 77 MOV M,A ;Store opcode at all three0.192 12 STAX 0 ; places
0193 02 STAX B
0194 23 INX H ;Increment all three pointers0195 13 INX 0
0196 03 INX B
0197 3EOO MVI A,OO ;Store low byte of 8088 offset0199 77 MOV M,A ; at all three places019A 12 STAX 0
019B 02 STAX B
019C 23 INX H ;Increment all three pointers0190 13 INX 0
019E 03 INX B
019F 3E25 MVI A,25H ;Store high byte of 8088 offset01A1 77 MOV M,A ; at all three places01A2 12 STAX 0
01A3 02 STAX B01A4 23 INX H ;Increment all three pointers01A5 13 INX 001A6 03 INX B
01A7 3E40 MVI A,40H ;Store low byte of 8088 segment01A9 77 MOV M,A ; at all three places01AA 12 STAX 0OlAB 02 STAX B
01AC 23 INX H ;Increment all three pointers01AO 13 INX 001AE 03 INX B
OlAF 3EOO MVI A,O ;Store high byte of 8088 segment01B1 77 MOV M,A ; at all three places01B2 12 STAX 0
01B3 02 STAX B

This section of code relocates the permanently resident portion
of this program to high memory where it will remain and function
as the interface between the BIOS task blocks created by CP/M-86. and the CP/M BIOS •,

01B4 210001 LXI H,FWAREA ;Point where code is going01B7 110060 LXI O,HIMEM ;Point where code is now
01BA OE80 MVI C,TOP-HIMEM ;Get number of bytes to move
01BC 1A LOOPR: LOAX 0 ;Fetch a byte of code
01BO 77 MOV M,A ;Store it in high memory
01BE 13 INX 0 ;Increment both pointers01BF 23 INX H
01CO 00 OCR C ;Oone moving code?
01C1 C2BC01 JNZ LOOPR ;Jump if no
FAll 1985 5-17

01C4 317FDO LXI SP,STKBAS ;Reset the stack to the stack
; area allocated in the task
; block01C7 C300D1 JMP FWAREA ;Start executing the task
; block processor

01CA STACK OS 64 ;Allocate space for initial020A = STKBAS1 EQU $; stack
; Define the BIOS task block area.
; These definitions must match the definitions in BOOTBO.A86
; and CBIOS86.A86.
; Note that these register saving areas are in a very specific
; order. They must be stored low byte first because sixteen bit
; loads and stores are done.
; DO NOT CHANGE THE ORDER OF THE REGISTER SAVING AREAS.

0000 = CODE EQU IFAREA ;1 BYTE: BIOS task code0001 = AREG EQU IFAREA+1 ;1 BYTE: BOB5 A register0002 = CREG EQU IFAREA+2 ;1 BYTE: BOB5 C register0003 = BREG EQU IFAREA+3 ;1 BYTE: B085 B register0004 = EREG EQU IFAREA+4 ;1 BYTE: B085 E register0005 = DREG EQU IFAREA+5 ;1 BYTE: BOB5 0 register0006 = LREG EQU IFAREA+6 ;1 BYTE: BOB5 L register0007 = HREG EQU IFAREA+7 ;1 BYTE: B085 H register
0008 = IOBYTE2 EQU IFAREA+B ;1 BYTE: iobyte save area0009 = CDISK2 EQU IFAREA+9 ;1 BYTE: cdisk save areaOOOA = CBIOS EQU IFAREA+OAH ;2 BYTES: pointer to BIOSOOOC = SFFFO EQU IFAREA+OCH ;5 BYTES: FFFO save area007F = STKBAS EQU IFAREA+07FH ;Leave enough room for a stack
OOBO = OSKBUF EQU IFAREA+080H ;12B BYTES: disk dma address

; End of .task block interface definition.

6000
6000 DBFO

6002 210COO
6005 llFOFF
6008 OE05
600A 7E
600B 12
600C 23
6000 13
600E 00
600F C20AOl
5-18

; This portion of the code is relocated to high memory where it
; will remain resident while CP/M-B6 is running to act as an

interface between CP/M-B6 task blocks and the CP/M BIOS. All
of the jump instructions in this area look funny because of
the relocation.
Origin this code to an arbitrary place which is expected to
be higher than the end of the CP/M-B6 BIOS, lower than the
BIOS task block area, and low enough so that this program loads

; reasonably quickly under CP/M.
; This code is relocated because it overlays a portion of the
; CP/M BOOS.

ORG
HIMEM: IN

06000H
SWAP ;Let the B08B run

Restore the memory at FFFO from the bytes saved in the BIOS task
block. This is not useful if FFFO is ROM.

H,SFFFO
O,OFFFOH
C,5
A,M
oH:
o
C
FWAREA+(LOOP3-HIMEM)

;Point to save area in task block
;Point to FFFO
;Restore 5 bytes
;Fetch byte from task block
;Store at FFFx
;Increment both pointers

LXI
LXI
MVI

LOOP3: MOV
STAX
INX
INX
OCR
JNZ

;Oone with 5 bytes?
;Jump if no

5-100JOURNAL, VOL. 1 NO.2

; The remainder of the code in this program is a loop which processes
; BIOS task blocks as requested by the 8088.

6012 3A0300 NXTCMD: LDA IOBYTE ;Save the current CP/M-86 low6015 F5 PUSH PSW ; core environment on the stack6016 3A0400 LDA CDISK
6019 F5 PUSH PSW
601A 3A08DO LDA IOBYTE2 ;Restore the CP/M low core601D 320300 STA IOBYTE ; environment from bytes saved6020 3A09DO LDA CDISK2 ; in the task block6023 320400 STA CDISK
6026 2AOADO LHLD CBIOS ;Point to the CP/M BIOS start6029 3AOODO LDA CODE ;Get task block code602C FEFF CPI OFFH ;Time to go back to CP/M?602E C23FD1 JNZ FWAREA+(STAY86-HIMEM) ;Jump if not6031 23 INX H ;Three increments to the BIOS6032 23 INX H ; start makes a warm boot6033 23 INX H ; pointer6034 220100 SHLD 01 ;Put warm boot vector back at 16037 3EC3 MVI A,(JMP) ;Put 8085 jump opcode back at 06039 320000 STA 00
603C C30000 JMP 00 ;Warm boot CP/M
603F 5F STAY86: MOV E,A ;Add task block code to base of6040 1600 MVI D,O ; BIOS creating a pointer to the6042 19 DAD D ; requested routine6043 1158D1 LXI D,FWAREA+(RETPT-HIMEM) ;Push a return address6046 D5 PUSH D
6047 E5 PUSH H ;Push pointer to requested routine
6048 2A02DO LHLD CREG ;Load up the 8085 registers from
6048 44 MOV 8,H ; the values stored in the task604C 4D MOV C,L ; block
604D 2A04DO LHLD EREG
6050 EB XCHG
6051 2A0600 LHLO LREG
6054 3A01DO LDA AREG
6057 C9 RET ;This is really a funny call to

; the requested BIOS routine
; When the CP/M BIOS is done with the current request, it will return
; here.

6058 320100 RETPT: STA AREG ;Save the current value of all605B 220600 SHLO LREG ; 8085 registers in the605E EB XCHG ; appropriate task block place
605F 220400 SHLO EREG
6062 60 MOV H,B
6063 69 MOV L,C
6064 2202DO SHLD CREG

; The BIOS might have updated the low core variables, so better save. new copies in the task block •,
6067 3A0400 LOA CDISK ;Save possible new COISK606A 320900 STA COISK2
6060 3A0300 LOA IOBYTE ;Save possible new IOBYTE6070 320800 STA IOBYTE2
6073 F1 POP PSW ;Restore the CP/M-86 low core6074 320400 STA CDISK ; environment from the values6077 F1 POP PSW ; save earlier on the stack6078 320300 STA IOBYTE

FAll 1985 5-19

607B OBFO
6070 C31201

6080

5-20

TOP:
END

IN
JMP

SWAP
FWAREA+(NXTCMO-HIMEM)

;Let the 8088 run again
;Jump back to decode next task
; block request
;End of relocated code

5-100 JOURNAL, VOL. 1 NO.2

LISTING 3 - BOOT80.A86
THIS PROGRAM COPYRIGHT 1983 BY HOWARD SPINDEL.
PERMISSION GRANTED TO REPRODUCE THIS PROGRAM
FOR INDIVIDUAL NON-PROFIT USE ONLY.
This program warm boots CP/M from CP/M-86.
A BIOS task block is built using the special request
code of FF (hex) which signifies to the BIOS task
block processor that a warm boot of CP/M is desired.
Since this is the last program that the 8088 will be
running until CP/M-86 is rebooted (or a compatible
8088 application is rebooted) this program is
required to leave the 8088 executing at absolute
address 10 (hex). The 8085 can then provide for
an 8088 restart vector by writing an 8088 jump
instruction at address 10 before turning the 8088
on.
Specify the user changeable equates near the front of

; the listing so they are easily found.
0000
OOFD

IFAREA EQU
SWAP EQU

ODOOOH
OFDH

;address of the task block
;CPU swap port

; Definition of relevant portions of the BIOS task block area.
; This definition must match the definitions present
; in the CBIOS86 and the BOOT86 files.

0000
0009

CODE EQU
CDISK EQU

IFAREA+O
IFAREA+9

; Set up equates for the addresses in low memory
; where the swap instruction will be built.

0005
0006
0007
0100

opcode EQU
operand EQU
noparea EQU

5
6
7

100Htpa EQU
cseg
org tpa

Do a little cleanup of the current environment.
0100 B119 mov cl,19H ;get current disk
0102 CDEO int 224
0104 50 push ax ;save current disk
0105 B10D mov cl,ODH ;reset disk system
0107 CDEO int 224 ; to make sure all is clean
0109 58 pop ax ;restore current disk
FALL 1985 5-21

Set up the ds segment register so that memory can
be accessed from absolute zero.

010A FA
010B B90000
010E 8ED9

CLl
mov
mov

cx,OOOO
ds,cx

;must get absolute 0 relative

Set up the required fields in the BIOS task block.
0110 88060900 mov byte ptr .COISK,al

0114 C6060000FF mov byte ptr .COOE,OFFH

;save the current disk in
; the task block area so
; it is preserved across swap
;special reboot flag

Build the swap instruction at absolute location 5 and
follow it with nine no ops to leave the 8088 executing
at address 10 (hex). Nine no ops seems to be enough to
guarantee that the 8088 fetch ahead queue is full.

0119 C6060500E4 mov byte ptr .opcode,OE4H ;put in al,SWAP instruct. at 5
011E C6060600FO mov byte ptr .0perand,SWAP
0123 B90900 mov cx,9 ;put in 9 no ops to take care
0126 BE0700 mov si,noparea ; of 8088 fetch ahead queue
0129 C60490 loopr: mov byte ptr [si],90H
012C 46 inc si
0120 E2FA 0129 loop loopr

Now do a long jump to absolute address 5 to execute the
swap instruction and the no ops. The assembler doesn't
seem to want to build the instruction for us so we will
just do it with some db's.

012F EA
0130 0500
0132 0000

db
dw
dw

OEAH
opcode
OOOOH

;kludge long jump to 0:5
; offset
; segment

we will never return, so program ends here!
END

END OF ASSEMBLY. NUMBER OF ERRORS: O. USE FACTOR: 1%

5-22 5-100JOURNAL, VOL. 1 NO.2

ABOUT THE AUTHOR
Howard Spindel is a Senior Soft-
ware Designer with Corporate
Data Sciences, Inc. located in
Santa Clara, California. Prior
employment has included positions
at Concept Technologies, Inc.,
Tektronix, Inc. and Burroughs
Corp. He received a B.A. in Com-
puter Science from the University
of California at Berkeley in 1975.
His special areas of interest are
operating systems, with emphasis
on real time multitasking execu-
tives for microprocessors, and
graphics for microprocessor-based
systems.

II!
(continued from page 19)
8085 registers are loaded from the
information that the 8088 left in the
task block area. Then, based on the
task block CODE, the correct routine
in the CP/M BIOS is called. Since the
8085 instruction set does not provide
an indirect call instruction, the BIOS
call is performed with a common
8085 trick. The return address is
pushed on the stack, followed by the
address which is to be called. A return
instruction is then executed which
actually calls the intended routine.
The return instruction at the end of
the called routine will pull the return
address which was pushed on the
stack.

After the CP/M BIOS returns to
the task block processor, the 8085
registers are stored in the task block
area. The possibly updated CP/M
low-memory environment is saved
again in the task block area. The
CP/M-86 environment is rebuilt in
low memory. Then the 8088 is allowed
control again so it can use the infor-
mation which the 8085 built in the
task block area. When the 8085 next
wakes up, it will begin processing by
jumping back to NXTCMD.

The CP/M Reboot Program

Listing three (BOOT80.A86) is a pro-
gram that runs on the 8088. It will
cause CP/M-86 to terminate and
CP/M to be warm booted. This pro-
gram is quite short, but contains an
interesting trick. A task block is built
(in the task block area) which uses
the task code FF to request that the
8085 task block processor warm boot
CP/M. The trick is that this program
must leave the 8088 executing at a
known address so that, if CP/M-86 is
restarted, the 8085 can write a restart
vector into memory. As mentioned in
the text box of page 28, I have used
the convention that the 8088 will al-
ways start executing again at absolute
address 10 (hex). It seems obvious
that the way to leave the 8088 exe-
cuting at address 10 is to put at
address OE a 2-byte IN instruction
which swaps processors back to the
8085. However, the 8088 hardware
has a feature which is called a fetch
ahead queue (also called instruction
pipeline) for its instructions. This fea-
ture allows the 8088 to look ahead in
memory and ready some future in-
structions for execution, during the

execution of another instruction. This
means that, if an IN instruction were
executed at address OE, the 8088
would already have decoded the in-
struction at location 10. The 8085 will
want to write a different instruction at
location 10, but can't because the
8088 won't look at it. The way to
solve this problem is to place several
NOP instructions between the IN
instruction and location 10. That way,
the fetch ahead queue fills up with
the NOP instructions, and the 8088
does not decode the instruction at
location 10 until the 8085 has had a
chance to write something there. This
was one of the trickier problems to
figure out when debugging these
programs.

SYSTEM REQUIREMENTS
FOR INSTALLING
THESE PROGRAMS

• CP/M 2.2 computer system.
You must have CP/M 2.2 working in
your computer using the CompuPro
CPU 8085/88 (or Macrotech MI-286
- see the text box on page 13) as a

S-100 DEALERS - HELP SPREAD THE S-100 WORD!

Sell S-100 Journal in Your Store

Pay only for the copies you sell, after you sell. Having the magazine in your
store will help generate interest in S-100 products, which means more
business for you. And, if you also get an entry in the S-1 00 Directory (see
page 46), you can show your name in the magazine.

For more information, please call Linda at 919-839-0115.

FALL 1985 25

processor board. The BIOS code
must not use any interrupt-driven
code because the 8085 will not be
available to handle interrupts when
the 8088 is in control.
• CP/M-861.1 distribution disk from
Digital Research.
• CompuPro CPU 8085/88 (or
Macro-tech MI-286) Dual-Processor
board.
The CompuPro CPU board must be
strapped so that both the 8085 and
8088 reset-on-swap switches (labelled
5RS and 8RS on the circuit board)
are OFF, and the extended address
clear-on-reset switch (labelled XAC)
should be ON.
• Recommended minimum 48K
CP/M System.
You will rapidly discover that CP/M-
86 programs tend to eat up core, and
many programs probably will not run
without additional memory boards
(beyond 64K). If you plan to add
memory past 64K, you may need to
upgrade your current memory to
respond to all 24 bits of the IEEE 696
(S-100) bus.
• Provision for an 8088 Reset Vector.
5 bytes of Global RAM Memory
(memory which responds to CPU
requests without checking the upper
12 S-100 address bits) at address
FFFO, or, alternatively, an EPROM
installed at address FFFFO (or FFFO
if FFFO is global memory) which con-
tains as-byte 8088 instruction to
'execute a far 'jump to absolute ad-
dress 0:0. This memory requirement
is necessary to provide a restart vec-
tor for the 8088 on initial power-up
(as discussed in the text box on page
28).

INSTALLATION
INSTRUCTIONS

Installation of these programs (once
you get them typed in!) is fairly simple.
Usually, the only customization that
will be necessary for your system is
to determine where the task block
will reside in memory.

Examine the three source files
(BOOT86.ASM, CBIOS86.ASM, and
BOOT80.ASM). Near the beginning
of each of the files, there is an equate
called IFAREA. In the listings, there is
a constant ODOOOHas part of the

26

calculation of IFAREA. There may be
other terms involved in the calcula-
tion, but the ODOOOHterm is what
you will need to change in order to
make these programs run on your
system.

In each of the source files, the term
ODOOOHshould be changed (using
your favorite editor) to become the
base of your CP/M BIOS minus at
least 200 (hex). If you do not know

the base of your BIOS, use the DDT
program to list (L command) the
code at 0 in your system. Take the
address of the jump listed at 0, sub-
tract 3, and you have the base of your
BIOS. Now subtract 200 (hex), and
edit the resulting number into the
source files where it now has ODOOOH
in the IFAREA equate. Note that all
three source files must be set exactly
the same!

GLOSSARY

This article contains some of the jargon with which all computer
articles seem afflicted. To help explain some buzzwords, here is a
short glossary.

CP/M (also called CP/M-80)
Control Program for Microcomputers. This is a widely used oper-
ating system provided by Digital Research. It runs on 8080, Z80, and
8085 microprocessors.

CP/M-86
This is a version of the CP/ M operating system which runs on the
8086 family of microprocessors (8086, 8088, 80186, 80286). Data
files are stored in the same format as CP / M, allowing disk com-
patibility between the two operating systems.

CCP
Console Command Processor. This is the first of three parts of the
CP/M family of operating systems. The CCP is responsible for
processing keyboard input and generating the appropriate calls on
the other parts of CP/ M.

BOOS
Basic Disk Operating System. This is the second of three parts of the
CP / M family of operating systems. The BOOS is primarily respon-
sible for maintaining all of the disk structures (directories and files)
and allowing an easy, structured access to the disks. The BOOS will
also make appropriate calls to the BIOS.

BIOS
Basic Input Output System. This is the third of three parts of the
CP / M family of operating systems. The BIOS contains all the drivers
for any hardware devices in a CP/M system. All the machine
dependent code in the CP/M operating system is isolated in the
BIOS. When CP/M is ported (moved) to a new machine, only the
BIOS needs to be rewritten.

DOT
Dynamic Debugging Tool. This is a program supplied with CP/M
which allows users to examine memory and interactively debug
programs.

STAT
Another program supplied with CP/M which allows the user to
configure the current active devices, control some disk parameters,
and generally report system status.

Warm Boot
When CP/M (the 8080 version only) is running, the CCP and BOOS
may be destroyed by a running program in order to gain more useful

5-100 JOURNAL, VOl. 1 NO,2

If your dual CPU board is set so
that the processor swap port is not
the standard value of OFD (hex), you
will also need to change the equate
for SWAP found near the front of
each source file. No other changes
should be necessary to customize
these programs for your system. You
may want to change some of the
messages(the logon banner is a good
example) in CBIOS86.A86. If you

have more than 64K of memory in
your system, you will want to even-
tually change the segtable memory
table entries in CBIOS86.A86. Seg-
table entries were briefly discussed
above in the description of the CP/M-
86 BIOS. The CP/M-86 Operating
System Guide, provided by Digital
Research with CP/M-86, contains
complete information on how to
change the segtable entries.

Assuming that the address equates
are now correctly set for your system,
it is time to assemble the sources.
BOOT86.ASM is compatible with the
standard Digital Research 8080
assembler (ASM); CBIOS86.A86 and
BOOT80.A86 are compatible with the
8086 assembler distributed on Digital
Research's CP/M-86 distribution
disks (ASM86). To assemble and link
the set of programs, perform the
following steps:

memory space for running the program. A special BIOS function,
called the Warm Boot, may be called by the program to cause the
CCP and BOOS to be reloaded into memory from the disk.

Warm Boot Vector
A special jump stored at address 0 in the 8080 version of CP/M
which is used to activate the Warm Boot routine in the BIOS. A
program wishing to cause a Warm Boot need only jump to address
zero.

IOBYTE
A byte of memory which contains the current active device mappings
for CP / M. There are four logical devices in CP/ M, the console, the
reader, the punch, and the list device. The 10BYTE allows each of
the four logical devices to be mapped to one of four physical devices
controlled by the BIOS. The STAT program is used to examine or
change the setting of the 10BYTE.

CDISK
A byte of memory which contains the current default disk being
accessed by CP/ M.

DPH
Oisk Parameter Header. A table of information about the disk which
is stored in the BIOS and used by the BOOS. The disk parameter
header contains pointers to a sector translation table, a OPB, and
scratch pad areas for use by the BOOS.

DPB
Oisk Parameter Block. Another table of information about the disk
which is also stored in the BIOS and used by the BOOS. The OPB
contains several fields which determine the storage capacity of the
disk, how many directory entries the disk can contain (and therefore
how many files), and some other information which allows disks of
varying capacities and capabilities to be used by CP/M.

Sector Translation Table
A table which is used by CP/M to convert logical disk sector
numbers into physical disk sector numbers. The physical sectors of
a disk are usually numbered consecutively on each track. In order to
minimize rotational delays when accessing disks, it is usually
necessary to avoid accessing physical sectors consecutively.
Consecutive logical sectors in a file (as maintained by the BOOS) are
therefore rarely stored as consecutive physical sectors on the disk.
Given a logical sector number, the sector translation table tells how
to find the physical sector on the disk.

DMA Address
Oisk Memory Address. The address of a 128- byte buffer which is
used to contain one disk sector on any disk read or disk write
operation.

ASM BOOT86
LOAD BOOT86
ASM86 CBIOS86
PIP CPMX.H86=CPM.H86,CBIOS86.H86
GENCMD CPMX 8080 CODE[A40]
ASM86 BOOT80
GENCMD BOOT80 8080

CPM.H86, ASM86.COM, and
GENCMD.COM will be found on the
CP/M-86 distribution disk.
ASM.COM and LOAD.COM will be
found on the CP/M distribution disk.
Note that the above entire sequence
can be performed while running
under CP/M because Digital Re-
search thoughtfully provides both
CP/M and CPjM-86 versions of
ASM86 and GENCMD. It would be
inconvenient, to say the least, to
require running ASM86 and
GENCMD under CP/M-86 to bring
up CPjM-86. The filename CPMX in
the above sequence is an arbitrary
choice; you may call it anything you
like. All of the other filenames are
fixed.

Lastly, make sure that your system
is providing for the restart vector
needed by the 8088. Reread now the
system requirements section and the
text box of page 28 to determine how
to provide for the restart vector. If
you will be providing an EPROM with
an 8088 far jump to 0:0, note that the
codes to program into your EPROM
(in hexadecimal) are EA,OO,OO,OO,OO.

Your system should now be com-
pletely configured to run CP/M-86.

OPERATING
INSTRUCTIONS

Booting your CP/M-86 system is very
simple with the provided programs.
Under CP/M, execute the command:

27FALL 1985

PROVIDING FOR AN 8088
RESET OR RESTART VECTOR

When the 8085 turns on the 8088 (running the
BOOT86 program), so the 8088 can start exe-
cuting the cold boot code in the CP/M-86 BIOS,
the 8085 does not know where in memory the
8088 will start executing. If this is the very first
time the 8088 is running since a power up or front
panel reset, then the BOOT86 program must
provide for an 8088 reset vector. If the BOOT86
program has activated the 8088 since the last
power up or front panel reset, then the BOOT86
program must provide for an 8088 restart vector.
If some other program has activated the 8088
since the last power up or reset, then BOOT86 is
really lost - the computer must be reset or
power cycled before BOOT86 can work.

The Reset Vector

When an 8088 microprocessor executes its first
instruction after a reset, it automatically begins
execution at address FFFFO (hex). This is de-
signed into the 8088 microprocessor chip, and
the Dual CPU board provides no way around it.
At address FFFFO, the typical thing to find is a
jump instruction to the beginning of whatever
program the 8088 is to execute. Ideally, there
should be some RAM at address FFFFO and the
8085 should write a jump instruction into that
RAM. Unfortunately, address FFFFO is not within
the 64K addressable space of an 8085, so the
8085 can't readily write into any RAM above
address FFFF (hex). The CompuPro Dual CPU
board does provide a simple bank-switch
memory port. This allows the 8085 to latch the
upper address bits so that the 8085 can be exe-
cuting in anyone (and only one at a time) of the
many 64K banks defined by the S-100 bus. How-
ever, the bank-switch memory port does not help
solve the problem. If the 8085 sets the bank
switch so that it can address the 64K block
beginning at FOOOO(the block containing the
8088 reset vector), then whatever code the 8085
was executing disappears because it is in a
different bank and the 8085 will begin executing
meaningless instructions.
The BOOT86 program allows a solution to this

problem in either one of two ways. At address 0
(this is a nice accessible location for the 8085)
the 8085 will write a jump instruction to wherever
it wants the 8088 to begin executing. Then you
have to get the 8088 to jump from FFFFOto O.The
straightforward way is to place a ROM at address
FFFFO containing an 8088 jump instruction. The
hex codes for a jump to 0 are EA,OO,OO,OO,OO.

The alternative way requires an older memory
board that ignores the upper address bits of the
S-100 bus. This type of board is frequently called
a global memory board. A board like this must be
placed so that it responds to address FFFO (hex).
Since it ignores the upper address bits, it will also
respond to address 1FFFO,2FFFO,etc., and most
importantly FFFFO. In my system I have used this
approach with the Disk Jockey 2D board from
Morrow. If the global memory board has ROM at
FFFO, program that ROM with an 8088 jump to O.
If the global memory board has RAM at FFFO, it
will still work. As part of its initialization, the
BOOT86 program attempts to write an 8088 reset
jump at FFFO. Of course, BOOT86 saves and
restores whatever was at FFFO since that could
easily have been an important area to the 8085
BIOS.

Note that if you use the global memory ap-
proach, you may have a problem when expanding
your system beyond 64K of memory. Since the
global memory will respond in every 64K block,
other memory boards cannot occupy conflicting
addresses in any other 64K blocks. In my case,
the solution was easy; the Disk Jockey 2D RAM
has a disable port. I added an instruction to the
CP IM-86 BIOS to disable the DJ2D upon entry,
.and reenable it anytime the CP/M BIOS is called
(this instruction is not in the listings because it is
peculiar to my system only). You may have to
consult a hardware engineer to discover the best
solution for your system.

The Restart Vector

If the BOOT86 program was previously used and
the 8088 had been previously running, the 8088
will not go to address FFFFO to find its first
instruction. Instead, it will start executing wher-
ever it left off the last time it was swapped out.
(The CompuPro Dual CPU board must be
strapped so that each microprocessor begins
executing exactly where it left off after a proces-
sor swap - see the installation instructions
section of this article.) To handle microprocessor
restarts in an orderly fashion, I established a
convention that any program I write for the 8088
terminates by leaving the 8088 expecting to find
its next instruction at address 10 (hex). Once
again, this is a nice easy address for the 8085 to
get at. To handle the microprocessor restart, the
BOOT86 program also writes an 8088 jump
instruction at address 10. This instruction causes
the 8088 to start executing at the desired location.

28 5-100 JOURNAL, VOL. 1 NO.2

BOOT86 CPMX.CMD

The CPMX.CMD file is the CP/M-86
system filewhich you generated using
ASM86 and GENCMD. Note that
since BOOT86 accepts a filename
input, you may command BOOT86
to pick between multiple CP/M-86
versions on a single disk.

After some disk access time, you
will see the CP/M-86 sign-on mes-
sage, followed by a familiar-looking
CCP prompt. You are now running
CP/M-86. Pat yourself on the back,
and play with CP/M-86 for a while.

To return to CP/M-80 at any time,
execute (under CP/M-86) the follow-
ing command:

BOOT80

This will warm boot your CP/M-80
system back into memory (make sure
that a disk with your CP/M system
on the system tracks is inserted in
drive A:). You may use BOOT86 and
BOOT80 to swap back and forth
between operating systems as often
as you wish. There is no need to reset
your computer between operating
system swaps.

These programs are set up in a
way that preserves the currently
logged disk across operating system
swaps. This means that if your system
is displaying a B> prompt under
CP/M, it will also display B> after

booting in CP/M-86. The logged disk
is again preserved when using
BOOT80 to return to CP/M.

The programs will also preserve
IOBYTE changes across operating
system swaps. If you use STAT to
change the IOBYTE assignments
while running CP/M-86, you will find
that the CP/M IOBYTE also reflects
the change you made.

If you are using another package
besides CBIOS86 to run your 8088, it
will be necessary to reboot (front
panel reset) your computer if the
other package has been executed
since the last reset. This is necessary
so that the 8088 will be in a known
state at the start of BOOT86 execu-
tion. Most likely, it will also be neces-
sary to reset your computer if you
want to run another 8088 application
after running these programs.

TIPS IF YOU
HAVE PROBLEMS

This section is intended to give some
additional guidelines in case these
programs do not work
immediately.

1. Have you ever executed code
on your 8088 before? It is possible
that your 8088 does not work.

Many CPU 8085/88 boards are
shipped with the 8088 set up to run at
8 MHz, and this may be too fast for
your memory boards or other system
components. This could be your
problem. It may be corrected by re-
placing the 8088 crystal on your pro-
cessor board with a slower crystal
(remember that the 8088 uses a crys-
stal three times the desired operating
frequency).

2. Make certain that the IFAREA
equates in all of the source files are
exactly the same!

3. Be sure the switches on your
CPU 8085/88 are set the way that the
above system-requirements section
specifies.

4. These programs have to main-
tain a low-memory (0-100 hex) en-
vironment for CP/M. For almost all
users, this means rebuilding the
IOBYTE and CDISK areas after
every processor swap between the
8085 and the 8088 (since CP/M is not
running, it is not necessary to rebuild
the BDOS jump or the BIOS warm-
boot jump). If your BIOS for the 8085
is using any of the low memory areas,
other than IOBYTE and CDISK, you
will probably have problems. To verify
if this is the case, edit your
CBIOS86.A86 file to change the

5-100 ADVERTISERS
Advertise your products in S-1 00 Journal and reach a fast-growing number
of readers who are interested in S-100 products. S-100 Journal readers
want to know about and buy your new products. And by supporting S-1 00
Journal through advertising you are supporting the growth of the S-100
community. This means more profits to you and high-quality products for
computer users.
For more information, please call Jay at 919-839-0115 and request our
Advertisers Kit.

We Concentrate Your MarkerrM

FALL 1985 29

equate for SAVLOWMEMto "true."
This willcause the CP/M-86 BIOS to
save and restore all 256 bytes of the
low-memory area. Now go through
the installation steps again and try
running the system. You willnotice a
substantial reduction in the operating
speed of your system. But, if the
problems go away, then they are
caused by your 8085 BIOS using
some of the low-memory areas.
The reduction in operating speed

makes savingall256bytes an undesir-
able long-term solution. The best
solution is to rewrite the 8085 BIOS,
so that it does not use any low-mem-
ory areas except the 10BYTE and
COISK. Another possible solution is,
first, to determine the addresses that
need saving and restoring. Second,
edit the BOOT86.ASM file to save
and restore those locations in a man-
ner similar to the way that the
10BYTE and CDISK are handled
(this requires some skill with 8080
assembly language).

5. Have you correctly provided for
an initial starting vector for the 8088
as detailed in the system require-
ments?

6. If you have created a very large
version of your CP/M-86 BIOS, you
may need to change the ORG 6000H
statement in BOOT86.ASM.
BOOT86 assumes that the last ad-
dress of the CP/M-86 BIOS will be
less than 6000H. If it is more than
6000H, then a portion of the BOOT86
program will get clobbered when
CP/M-86 is loaded in. If the last
address of the CP/M-86 BIOS is
greater than 6000H then change the
ORG 6000H statement in BOOT86.
ASM to be anything greater than the
last address of the CP/M-86 BIOS.
But, it should stillbe smallenough for
your CP/M loader to be willing to
load it (small enough so that it loads
below the BOOS in your system).

SUGGESTION FOR
ENHANCEMENT

You may notice that your newly-
running CP/M-86 system is slower
than your CP/M system. This is large-
ly due to the CP/M-86 BOOS which

30

runs a lot more slowly than the CP/M
BOOS. Swapping microprocessors
back and forth to do I/O operations
does cause some additional overhead
processing which may further slow
down CP/M-86. To eliminate some of
the swapping overhead, you can
begin to rewrite portions of your
BIOS in 8088assembler and to incor-
porate them directly into the
CBIOS86.ASMfile.One easy change,
likelyto have a noticeable effect, is to
rewrite your console output driver.
Typically the console output driver is
a very easy portion of the BIOS to
rewrite.

APPLICABILITY TO
OTHER MACHINES

While the programs presented here
are specificallytailored to the Compu-
Pro Dual CPU, the idea of using a
BIOS task block interface should be
generally useful with any dual-proces-
sor board. For example, the same
approach could be taken to bring up
CP/M-68K on the 280/68000 dual-
processor board made by Cromem-
co. This approach might also be use-
fulto someone running a Zenith 2-100
which uses an 8085 and an 8088.
Operating systems like MP/M 816
(furnished by CompuPro) use similar
techniques in reverse - the 8088 is
used as an I/O processor for the
8085. Using the 8088 as an I/O pro-
cessor has an additional advantage
because the 8085BIOS becomes very
small, allowing a larger CP/M tran-
sient program area.

CONCLUSION

This article has shown a way to
bring up CP/M-86 on older 5-100
computers. The method presented
can result in considerable savings in
cost, time, and effort over alternative
methods of getting into 16-bitproces-
sing. The running system generated
with this method is suitable for long-
term use. It is also suitable for use as
a bootstrap to other implementations
of 16-bitoperating systems. The most

difficult part of upgrading to a 16-bit
operating system - getting the initial
system to work - has been greatly
simplified. _

References

1. Bray, David W. Upgrading Older
S-100 Computers to the CompuPro
Oual Processor. Microsystems, Vol.
4 No.9, September 1983; page 80.

2. Ratoff, Bruce R. The Godbout Dual
Processor Board and CP/M-86.
Microsystems, July/August 1981.

3. Kalish,Richard L. Upgrade Problems
and Solutions. CompuPro Product
Users Manuals, Vol. 2, January/
September 1981; page 4.

4. Heywood, Stephen A. The 8086 -
An Architecture for the Future.
BYTE, Vol. 8, No.6, June 1983;
page 450 (part 1).BYTE, Vol. 8, No.
7, July 1983; page 299 (part 2).
BYTE, Vol. 8, No.8, August 1983;
page 404 (part 3).

5-100JOURNAL, VOl. 1 NO.2

This column belongs to you, the
tinkerer, hacker, DIYer, home inte-
grator, or whatever it is that your 5-
100 machine files you under. If you
are one of the proud (and stubborn)
breed of high-tech frankensteinian
inclination, here is the chance to
show off your gold. If you have built
or integrated your 5-100 machine,
share it with us. Tell us what your
ultimate product has become, the
boards and 05 that you have
running, problems that you encoun-
tered and how you overcame them.

You may write a letter (2-3 pages
max.) suitable for publication - in
this case give us some thrills, stay out
of the mundane and boring prose.
Or, if your word processor regularly
laughs at your writing skills, simply
tell us in your own words about your
cherished system. We'll pick it up
from there and do the polished
writing for you. Oh! Yeah, don't for-
get a photograph . . . if you dare.
5end to Homebrewing, 5-100 Jour-
nal, P.O. Box 12881, Raleigh, NC
27605.

Today, Burt Hanagami, gives us
an account that mirrors well the evo-
lution of 5-100 systems in the past 10
years. (Don't let the nostalgia bring
you down!) Burt's system is living
proof of the great maxim: 5-100
systems are upgradable forever.

-Iwas very delighted with your
very first issue of the S-100
Journal. Your article on "As-

sembling a 68000-based S-100 Micro-
computer" brought back some old
memories.

I bought an IMSAI 8080 kit back in
1976. It took about three 24-hour
days to assemble, and the next year-
and-a-half to get it working. I was a
real hardware novice, and made many
many mistakes. I had cold solder
joints, bent leads on Ie's, the instruc-
tions had errors, and errata sheets
were confusing. There were a few
blown Ie's that I had to track down,
and some minor surgery (cutting of
traces and soldering in wires) of the
boards that had to be done. For
some reason, I could not get the
clock crystal on the CPU board to
oscillate, so I ended up kludging up
my own clock circuit, and wired it
into the system. When I finally had
the system up, I had to learn how to
use it. I don't know how I survived
those trying times, but by the time I
was through, I was a well-seasoned
computer hacker.

My original system was very primi-
tive. In order to start the system, I
had to toggle in a bootstrap loader (a
cassette reading program) through
the front panel switches. Since I had
to try several times before I got it
right, I used to keep the system
powered up 24 hours a day. I originally
wrote programs in machine language
(not assembly language, but ones and
zeros) by entering the data through
the front panel switches. Once the
programs were in and working, I could
save and load the programs on a
regular JC Penny cassette recorder
with a Tarbell cassette interface. I
could examine and modify the
memory (one byte at a time), and
run, stop, and single step my program
through my front panel switches. I
wrote a primitive ping-pong game
where I would make the A light flash

back and forth on the eight data
lights. Another program I worked on
would create sounds on a FM radio.
My system would radiate so much
EMI that nearby radios and television
sets would pick up the EMI as whis-
tles, clicks, and whirls. I could create
certain noises by executing certain
subroutines. I would actually string
subroutines together to actually
create structured noises. They were
too primitive to be called music.

Later on, I got an IMSAI Video
Input/Output (VIO) board, and
hooked up a RF modulator, a tele-
vision set, and a parallel keyboard.
Presto, I had a 40x16 character dis-
play that I could actually type on. I
added a Cromemco byte-saver board
with a built-in PROM programmer. I
programmed my bootstrap loader
into ROMs so I would not have to
toggle in the bootstrap loader each
time Ipowered up. I complemented
my 4K IMSAI RAM memory by
adding two 8K Godbout memory
boards. Eventually, I replaced all the
RAM boards with two 32K 200ns
Artec memory boards. I was running
out of slots, so I also added another
motherboard section. In the original
IMSAls, the motherboard came in 4-
slot sections. After assembling the
new 4-slot section, I installed the new
section by connecting the sections
together with 100 separate wire
jumpers. For an operating system, I
bought three books from Scelbi Com-
puter Consulting; "8080 Monitor
Routines," "An 8080 Editor Program"
and, "An 8080 Assembler Program."
These books had source listings of
the respective programs complete
with octal opcodes (most early 8080
systems did everything in octal). The
code was also available in punched
paper tape that could be read in on a
teletype machine. But, because I did
not have access to a TTY, or even
had a serial port on my machine, I
toggled in the whole thing through

fALL 1985 31

the front panel switches. Finally, I
had to spend a few weeks modifying
the software drivers to match my
hardware configuration. It was worth
it. I was finally free from the bondage
of the front panel switches. Earlier,
when I first got my system up, I used
to get blisters on my finger tips until
my callouses thickened, from handl-
ing the front panel switches. Now I
could boot up instantly, and actually
type in my programs in assembly
language. I never ran BASIC or any
other languages on my S-100 machine
until I got CP/M up and running. The
Timex computer (from Sinclair) that
finally was reduced to about $15.00 in
some department stores, did a lot
more than my machine. The Apple II
and TRS-80 computers weren't out
then, so my machine was very
impressive.

About five or six years ago, floppy
disk drives were getting affordable,
CP/M was gaining in popularity, and
my machine was obsolete again. I did
a complete overhaul of my system. I
replaced the original motherboard
with a 22-slot Jade ISO-bus, and up-
graded my power supply to a 30-
Amp. The ISO-bus motherboard had
ground traces between each signal
trace to reduce cross talk, and the
whole board was designed around a
specially tuned network mesh that
dramatically reduced the EMI output
of my machine. I got rid of the bus-
termination board to reduce the

amount of heat generating from inside
my system. I bought a SSM (Solid
State Music) 10/4 board (with 2 serial
and 2 parallel ports), and added a
Lear Siegler ADM 3 computer termi-
nal. The terminal was a major en-
hancement. I was no longer limited to
a 40x16 screen and I no longer had to
reserve a section of memory to the
video map. I also bought an Integral
Data Systems 460 G printer. The 460
G was, at that time, the most ad-
vanced printer I could afford.

I researched the S-100 market very
carefully, and decided to replace the
guts of my system with SO Systems
boards: the SBC-200 (Z80 CPU), Ex-
pandoram II (64K Memory), and the
Versafloppy II (Floppy Disk Control-
ler) boards. I installed two Shugart
single-density, single-sided 8" drives. I
originally installed CP/M 1.4, and later
upgraded to CP/M 2.2. These en-
hancements were made over a period
of a couple of years. My cash was
very limited, and the versatility of the
S-100 system enabled these upgrades
to be done gradually.

Sometime during this time frame, I
obtained a 19.5" rack-mount cabinet,
and started installing everything on
drawer slides. Everything except the
computer terminal. For the floppy
disk drives, I purchased a bare-bones
disk cabinet from Jade, and crammed
a severely modified power supply
from Sunny International. I also
managed to squeeze in a fan. I in-

32

stalled a special switch in the front
lower right of the cabinet (actually
mounted on brackets, under the
drives) to shut the disk drive motors
on and off to save wear and tear of
the floppies. The disk drives and the
CPU boxes were mounted on slides
for easy access. For the printer, I
made a platform out of some alumi-
num extrusions, and then mounted
some heavy-duty slides on the sides.
To secure the printer to the platform,
I put some long screws through the
same holes used for mounting the
rubber feet. The box of paper for the
printer sits on the bottom of the
cabinet behind the power panel. It
takes about two seconds to remove
the printer from the cabinet, and
about five seconds to put it back in.
The power panel has master power
switch, four separate switched outlets
(for the disk drives, CPU, printer,
and terminal), and two auxiliary out-
lets. I have a fuse and a Corcom EMI
filter mounted on the master power
switch, and a MOV (surge supressing,
metal-oxide varesisters) installed on
each outlet.

Today, my S-100 system is still
alive and well. I've since swapped my
Shugarts for a couple of Siemens 100-
8 0 (single-sided, double-density 8"
disk drives), and added a Ackerman
Digital Systems Promblaster II
(PROM programmer board that pro-
grams everything from a 2708 to a
27256 EPROM). Since banked CP/M
3.0 OS requires a two-bank memory
system, I bought a second Expando-
ram II (64K board). I eventually modi-
fied my 64K memory boards into
256K boards. Thus, my system is
now running with a half Meg of
memory. I am running RAM-disk soft-
ware for certain applications, and my
current copy of CPM 2.2 has ZCPR
1.4 installed. I have a running version
of CPM 3.0, but since none of my
software requires it, and because of
its added overhead, I seldom use it.
For troubleshooting purposes, I own
a Mullen TB-4 extender board with a
built-in logic probe.

The S-100 machine was my first
real machine. I literally grew up with
it. I am extremely familiar with it, and
I'll probably keep it forever.

Burt Hanagami
Ontario, California

5-100JOURNAL, VOl. 1 NO.2

••••rellDrl

CORRECTIONS FOR LOMAS MS-DOS BIOS

Below will be found several bugs un-
covered in the MSDOS version of
Lomas' BIOS for the floppy disks.
These have caused some trouble
when using Lomas' 8086, 8072 floppy
controller, and I/O boards. The solu-
tions which were implemented will
hopefully aid other users who have
run into the same problems. Unfor-
tunately, I cannot supply corrected
source code due to restrictions im-
posed by Lomas, which is under-
standable. Those wishing to follow
these procedures will have to get the
source code from Lomas and make
the changes themselves or get a
friend to do the job.
l. When trying to "type ahead"

while a floppy is working, a byte or
two of the data entered at the termi-
nal is often lost due to the keyboard
interrupts being impeded by the
floppy controller hogging the buss.
Rather than adding an 8089 DMA
controller that would eliminate the
problem completely, a partial answer
has proved quite successful. The
driver is altered so that the DTR line
connected to the terminal is brought
low before the floppy controller begins
to transfer data and then brought
high again after the transfer is com-
plete. As long as the terminal has a
keyboard buffer and a DTR/CTS
handshake, this will eliminate nearly
all lost data. This same idea can be
used with a hard disk, but is unneces-
sary unless the operator is a very fast
typist.

2. Quite often Lomas' BIOS will
read a floppy sector incorrectly and

fail to report the error, which makes
even the driver think that all is OK.
This can have serious results when-
ever you count on the data to be
100% perfect, and that is usually all
the time. This was cured by having
the driver check both status registers
1 and 2 instead of just register l. In
essence, register 2 from the 8272 is
AND'ed with 21H and then OR'ed
with the result the driver originally
got from the 8272. This value is now
used to determine whether all is OK.
After about six months use, this
seems to report all read errors.

3. There was another problem that
occurred when the driver reported a
floppy error to MSDOS. MSDOS
would then post an error message on
the screen and ask the operator if
he/she would like to abort, retry, or
ignore the trouble. If the operator
chose to retry, either MSDOS or the
driver would start writing all over the
floppy. I don't know if the problem
was with the Lomas driver or with
MSDOS. Anyway, the problem was
solved by having the driver tell
MSDOS that no sectors have been
transferred, even if MSDOS had
called for a transfer of several sectors
and some had been transferred before
an error occurred.

4. Unfortunately, Revision 2.01,
and I assume below, do not have the
ability to verify that a sector was
written correctly. Opinions on this
subject seem to vary, but I consider
the MSDOS "VERIFY ON" com-
mand a necessity. I want to be sure
the backups made from the hard disk

are 100% accurate. Fixing this omis-
sion requires writing some additional
code, but it is well worth the trouble.

In addition to these bugs, I thought
I would include a handy bit of infor-
mation and dispel the belief that a
logical disk on MSDOS is limited to
32 meg. Actually a logical disk as
large as 256 meg can be used if a 4K
sector size is used. To implement
sector sizes larger than 512 bytes,
you have to change the word at 101H
(on MSDOS 2.11) in the MSDOS.SYS
file to the maximum sector size to be
used. You will then be able to install a
driver with a sector size up to and
including that value.

I hope this information proves
useful to a few readers of the S-100
Journal.

Hul Tytus
Cincinnati, Ohio

The Bug Report department is a way
for communication among users and
between users and manufacturers.
Users can use the column to report
bugs and undocumented features (or
documented but non-existent fea-
tures) on hardware and software,
and to suggest solutions to bugs.
Manufacturers and software pub-
lishers are encouraged to send in
notices about bugs, updates, and
similar information useful to those
using their products.

FAll 1985 33

, •• 11 Iii.

THETELETEK
SBe 86/87

Ieletek's SBC 86/87 is a 16-bit
slave single board computer
intended for use on the S-100

bus in a multiuser/multiprocessing
system. This slave board gives the
system integrator the flexibility of
mixing 8-bit economy with 16-bit pro-
cessing power.

Since the SBC 86/87 is designed as
an I/O mapped slave on the S-100
bus, it can be added to any existing
S-100 system to expand the process-
ing capability. In the following pages, I
will introduce the features of this
slave SBC and show how it interfaces
to an existing S-100 bus system.

DESIGN PHILOSOPHY

The SBC 86/87 was designed to pro-
vide an easy-to-implement 16-bit
alternative for system integrators.
With this board, the integrator can
provide 16-bit, high-speed perfor-
mance where required in a system,
and yet retain the cost -effectiveness
of 8-bit SBCs for system functions
that do not need the additional capa-
bility. With the addition of this slave
to an existing 8-bit system, the user
can access CP/M-86 application soft-

ware and the power of the 8087 math
coprocessor for numeric intensive
applications.

The interface to the S-100 bus was
kept as simple as possible to allow
this board to work with a variety of
S-100 systems. All communications
to and from the slave take place
through two I/O mapped FIFO buff-
ers. This greatly simplifies the require-
ments for the bus master.

THE CPU AND NPX

The SBC 86/87 utilizes the Intel 8086
CPU and the companion 8087 math
coprocessor, both running at 8MHz.
Since the SBC 86/87 operates inde-
pendently of the S-100 bus, the inter-
nal speed can be different from that
of the main system CPU.

The 8087 coprocessor adds arith-
metic, trigonometric, exponential,
and logarithmic instructions to the
standard 8086 instruction set. The
8087 will significantly improve the
performance of the CPU during
numeric intensive operations. The
8087 coprocessor conforms to the
proposed IEEE Floating Point Stan-
dard.

Duane Chinnow
Teletek

In addition to the 8087, this board
design incorporates several other
peripheral-support ICs that increase
the capability of the slave SBe. These
include an Intel 8208 DRAM control-
ler, the Intel 8256 MUART, and the
Signetics 2651 USART.

ON-BOARD MEMORY

The standard SBC 86/87 includes
128K bytes of RAM, expandable to
512K by using 256K-bit RAM ICs.
The memory layout uses stacked
RAM ICs to reduce the physical size
of the array. The standard board also
provides 4K bytes of EPROM using
two 2716s. It is expandable to 64K
bytes by using two 27256 EPROMs.
Normally, the on-board EPROM con-
tains hardware initialization and
system-boot software.

The on-board RAM controller, an
Intel 8208, supports either 64K or
256K devices. It generates the neces-
sary signals to address, refresh, and
directly drive the memory array. The
controller is automatically initialized
upon reset by a 74LS165 shift register.
The 8208 controller allows operation
without wait states when accessing

34 5-100 JOURNAL, VOL. 1 NO.2

TELETEK see 86/87

S-100 16-bit slave SBC for
use in TurboDOS multi-
user Imultiprocessing
systems.

USE:

MANUFACTURER: TELETEK
ENTERPRISES, INC.
4600 Pell Drive
Sacramento, CA 95838
(916) 920-4600

FEATURES: Processor - 8086 16-bit,
8 MHz. Optional 8087
Math Coprocessor.

Memory - 128K RAM
(expandable to 512K using
256K DRAMs), 4K ROM
(expandable to 64K), 4K
FIFO.
1/0 - Two RS-232C serial
ports, One Centronics
compatible printer port.

SOFTWARE: TurboDOS

MANUALS: Technical Reference
Manual, 31 pages.

RAM memory, while a single wait
state is inserted for each access of
EPROM.

THE INTEL 8256 MUART

The 8256 is labeled as a Multi-
Function Universal Asynchronous
Receiver-Transmitter (MUART). As
the name implies, this peripheral-
support IC offers more than just a
serial communications port inside its
40·pin DIP package. The extra func-
tions include 16 bits of parallel I/O,
five 8·bit counter/timers, and an eight-
level priority interrupt controller.

The asynchronous serial communi-
cations port provides one of the two
RS·232C compatible serial ports on
the SBC 86/87. (The other is gener·

FALL 1985

PRICE: $899 for 128K, wi 0 8087
(100 quantity).

ated by the Signetics 2651 USART.)
To permit a variety of operating
speeds without additional external
components, the MUART serial port
includes an internal software pro-
grammable baud rate generator. This
serial port can be programmed by the
CPU for different character sizes,
parity generation and detection, error
detection, and start/stop bit handling.
The line drivers and receivers are
supplied on board of the SBC 86/87,
eliminating the requirement for "pad-
dIe boards" on the peripheral cables.

A Centronics-compatible printer
port is derived from the two parallel
ports on the 8256. One parallel port is
responsible for the printer data lines
and a portion of the other for the
printer control signals. The remaining
signals of the second parallel port are
used in the interrupt circuit. They

also provide optional control lines for
the MUART serial interface. The
cable line drivers for the Centronics
port are also included on board.

The five 8·bit timing channels turn-
ished by the MUART can also be
used for event counting. Additionally,
four of the channels can be cascaded
into two Io-bit counter/timers if
desired. The clock source for these
circuits comes from the 5.0688 MHz
oscillator used with the 2651 USART.

The SBC 86/87 supplies two cas-
caded eight-level Priority Interrupt
Controllers (PICs) to resolve all on-
board and bus master interrupts. An
Intel 8259A acts as the master PIC.
The second PIC is provided by the
8256 MUART.

Table 1 shows the PIC assignments
as well as the Non-Maskable Interrupt
(NMI) assignment.

35

8259A PIC

Number Usage

NMI Memory Parity Error

0 MUART

1 USART Transmit Buffer Empty

2 USART Receive Data Available

3 Tx INT from master

4 Rx INT from master

5 Aux. INT from master

6 8087 NPX

7 EXPANSION BUS

8256 MUART

Number Usage

o
1

2

3

4

5

6

7

Timer 1

Timer 2 or Port 1 P17 Interrupt

External Interrupt (EXTINT)

Timer 3 or Timers 3 & 5

Receiver Interrupt

Transmitter Interrupt

Timer 4 or Timers 2 & 4

Timer 5 or Port 2 Handshaking

Table 1. PIC and NMI assignments.

THE 2651 USART

The 2651 combines, in a single 28-pin
DIP package, the necessary features
for a serial interface with a program-
mable baud rate generator. This
allows the designer to conserve valu-
able board real estate for other func-
tions. The baud rates are derived
from an external clock oscillator, and
their operation is independent of the
MUART serial port. The 2651 serial
interface provides full modem control
signals. These signals support hard-
ware handshaking protocols of peri-
pheral devices that require them.

36

S-100 FIFO INTERFACE

All information other than protocol
control signals, exchanged between
the S-100 bus master and the SBC
86/87, occurs via the dual FIFO
memory circuit on board the slave.
One FIFO buffer is dedicated to
receiving data from the S-100 master.
The other is dedicated to sending
data to the master. The SBC 86/87
cannot function as the bus master of
a system. Therefore, it depends on a
master processor to manage all the
system data transfers through these
I/O mapped buffers.

This method of system communi-
cation combines the simplicity of
mapping the slaves as ports in the

master I/O space with the high per-
formance of using DMA block data
transfers between the master memory
and the slave FIFO buffer. Unlike a
memory-mapped DMA system, where
the slave's RAM is mapped into the
master's memory space, the slave
CPU does not have to be idle during
the transfer. While the data transfers
are taking place between the master
processor and the FIFO, the slave
processor is free to perform normal
operations. Also, no complicated
memory management capability is
required of the bus master.

Asynchronous communication is
inherent in the design of this type of
system. The master processor and
any SBC 86/87 slaves in the system
operate independently of each other.
In fact, the master processor and the
slaves can be running at altogether
different clock speeds.

MASTER/SLAVE
COMMUNICATIONS

The SBC 86/87 appears as a cluster
of four I/O ports to the bus master.
By accessing these ports, the master
can control data transfers between
itself and the slave. Each SBC 86/87
has option jumpers that allow it to be
addressed on any four-port boundary
within the first 256 I/O locations.
Table 2 illustrates how each port is
used.

STATUS REGISTER

The status register contains three
flags that can be set by the slave and
read or cleared (by sending inter-
rupts) by the master. This register is
normally polled by the master during
network communications over the
S-100 bus. The diagram in Figure 1
illustrates how the status register is
defined.

INTERRUPTS

The bus master can cause three
different interrupts to the slave: the
Rx INT, the Tx INT, and the Aux
INT. Anytime one of these interrupts
is sent to the slave by accessing the
appropriate I/O port, the associated

5-100 JOURNAL, VOl. 1 NO.2

flag in the status register is cleared.
The Rx INT is used to indicate to

the slave that the master has written
data to the slave RxFIFO. The Tx
INT is used to indicate that the master
has read data from the slave TxFIFO.
The Aux INT and Aux flag, in the
status register, are free for program-
mer defined functions. The most
common usage is for a "slave running"
check: the master sends an Aux INT
to the slave, and the slave responds
by setting the Aux flag in the status
register.

RESET

Two levels of reset are available on
the SBC 86/87. The first is a system
reset; all boards (and therefore all
users) in the system are reset simul-
taneously by activating the RESET*
signal (pin 75) on the S-lOO bus. The
second type of reset is a software
reset; the master issues an I/O com-
mand to individually reset one user.
This allows the master CPU to "wake
up" a user that doesn't respond to an
inquiry.

SOFTWARE
At the present time, Teletek provides
software support for the SBC 86/87
under the TurboDOS operating sys-
tem. TurboDOS allows a system inte-
grator to assemble a powerful multi-
user/multiprocessing system based
on Teletek's master, slave, and hard-
disk/tape controller boards. The
standard TurboDOS implementation
of the SBC 86/87 is CP/M-86 com-
patible. An MS-DOS 1.0 emulator is
furnished at no extra cost.

For other applications, Teletek can
provide examples of the existing soft-
ware to aid in the development of
new drivers. -

input

output

read from slave status register

= send Tx INT to slave, reset TxRDY
flag to master

FALL 1985

portO

port1 input = read data from slave TxFIFO

output = write data to slave RxFIFO

37

port2 input = send Aux INT to slave, reset Aux
flag to master

output reset slave RxFIFO address counters

port3 input

output =

reset the slave

send Rx INT to slave, reset RxRDY
flag to master

Table2. I/O Port Assignments.

67 5 4 3 2 1 o

TxRDY Flag

RxRDY Flag

Aux. Flag

These bits
are not
used

Figure 1. Slave to Master Status Register Bits.

THE
THUNDER 186

SINGLE BOARD COMPUTER

•Ifyou are looking for a powerful
yet economical system, consi-
der the Thunder-186 single

board computer by Lomas Data Pro-
ducts. The board features the power-
ful 8-MHz 80186, 256K of Dynamic
RAM, two serial ports, and one para-
llel port. It will control both 8- and
5J{-inch floppy disk drives. The
Thunder-186 is available for less than
$1000. With it, a full system with two
floppy drives and terminal can be
built for less than $2000.

PROCESSOR FEATURES
Many of the features of the Thunder-
186 are actually functions of the 80186
chip. Foremost, the processor is ob-
ject code compatible with the 8086/
8088, allowing it to run most popular
software packages. In addition, the
80186 provides several new instruc-
tions, most notably those for block
I/O, pushall and popall registers, and
some immediate arithmetic.

The real benefit of the 80186 is its
inclusion on board of several func-
tions normally requiring peripheral
chips. This allows the designer to
package more capabilities on a single

S-100 board. In the Thunder-186,
some of the extra capabilities are an
interrupt controller, two DMA con-
trollers, and three timer/counter
functions. One of the DMA control-
lers is used as the floppy disk control-
ler. Two of the timers are used by the
serial ports to set the baud rates, and
the other is used as the real-time
clock by the supplied CCP/M oper-
ating system.

Another significant advantage of
the 80186 over the 8086 is its hard-
ware computation of the complex
Intel addressing scheme, which in-
creases speed by about 20%.

Unfortunately, the external inputs
to the timer/counter circuit are ex-
cluded from the board. These were
left out probably because, in the prin-
cipal operating mode, the timers are
not available (they are tied to the
serial ports and the real-time clock).

SUPPORT FEATURES
The support hardware on the board
provides several useful features. Two
serial ports are controlled by two
8251A USARTs. One serial port is
used by the system as a terminal.

Brian Smithgall

There is also a parallel channel con-
trolled by a 8255A. The output is
used as a printer port. The input is
used by the monitor at boot time to
read the setup switches, and thus it is
not generally available.

The board supports any combina-
tion of two 8- and/or 5J{-inch floppy
disk drives. This gives a great deal of
flexibility in using existing equipment.

Dynamic memory is used with no
wait states at either 128K or 256K
bytes. Up to 1M byte of additional
memory may be added.

The more sophisticated user may
wish to alter the boot EPROMs.
These may be enlarged to a whopping
64K if necessary.

The Thunder-186 conforms to the
IEEE-696 standard with pins 65 and
66 additionally defined as external
DMA requests. Hence, boards added
to the system should not use these
pins for their own functions. Added
boards should also provide a full 20-
bit address and 16-bit port decodes,
or conflicts might arise in the system.
For example, if a graphics board used
port 28h but only decoded the lower
8 bits, a conflict would arise with the
80186 port FF28h which masks the
interrupt sources.

38 5-100 JOURNAL, VOL 1 NO.2

o I SERIAL PORT 2 I SER./TERMINAL I PAR./PRINTER B" FLOPPY OISK 5Y." FLOPPY DISK o

••
Jpg

sw1 1•• 1.
JP8

' •• 1 .' •• 1
JP3 JP2

•••••••••••••••••• JIiI,~
1•

• ' •• 1

.' •• 1.' •• 1 JP8
J '1

JP5

Thunder-186 switch and jumper settings to use with 9600-baud terminal, 8" drives, auto boot, 8K of EPROM, and no
slave boards. Red rectangles indicate installed shunts. Red dots indicate positions of microswitches.

PLEASE ENTER MY SUBSCRIPTION TO S-100 JOURNAL.
ENCLOSED IS 0 $14.00 FOR 1 YEAR. 0$25.00 FOR TWO YEARS.

(Canada, Mexico, and England please add $3.00 per year. Other
countries please add $6.00. Allpayments must be in U.S. currency.)

NAME

ADDRESS

PLEASE MAILTO: S-100JOURNAL, PO Box 12881, Raleigh,NC 27605

40 5-100 JOURNAL, VOL. 1 NO.2

The S-100 phantom line is asserted
during memory accesses within the
Thunder-186 board. This may be im-
portant to users with additional
boards.

SETUP

Configuring the Thunder-186 is very
simple. The principal options are
chosen by means of a 4-s1ide DIP
switch. Two switches select one of
four baud rates for the terminal. Ano-
ther switch determines if boot is to be
done from 8- or 5Y4-inchfloppies. The
remaining switch allows the user to
not boot, but rather to run an on-
board program called the monitor.
This monitor provides several simple
and useful commands. They are dis-
cussed below in the monitor section.

Jumper JP1 allows advanced users
to install their own boot sequence
with up to 64K of EPROMs (2xAMD
27256). Normally this is left as set at
the factory.

Jumper JP2 sets the floppy disk
drive write precompensation to 125
or 250 nanoseconds. See your disk
drive manual to determine the setting
for your drives.

Jumper JP3 is for users with slave
processors on the same S-100 bus. It
provides reset to slaves on master
reset.

The interrupt jumpers (JP5) allow
the user to connect the eight S-100
interrupt vectors to any of the four
80186 primary interrupt vectors. It
may be necessary to alter these to
match the requirements of additional
boards.

A terminal with normal handshak-
ing is required to boot the system.
The floppy drives need not be hooked
up to use the monitor (a nice feature).
The board should be used with a ter-
minated S-100 motherboard. This is
very important if other boards are to
be used in the bus. If your bus is not
terminated, purchase a small termina-
tor card from someone like Viasyn.

OPERATING SYSTEM

The operating system supplied with
the board is the popular Concurrent
CP/M-86. It allows multiusers and
multitasking. Thus, multiple jobs may

FALL 1985

be run from the same board by time-
slice task swapping. In the "single
user/multitasking" environment, a
special code, called the lead-in char-
acter, is typed to switch virtual
terminals. The lead-in character for
switching terminals may affect other
software (such as my editor), but the
manual gives instructions for
changing it.

A parallel printer can be connected
to one of the headers. Beware that
this printer header is displaced one
row- so pin one of the header cable
needs to be connected to pin three of
the connector. Alternatively, the
second serial port may be used for
the printer. This is done by running a
command file after boot or reassem-
bling the operating system.

A routine to do a track-for-track
disk copy is not available among the

operating system functions. A fairly
simple alternative technique is used
to copy the system tracks using the
monitor.

MONITOR

The monitor is a program burned in
EPROM which is available at boot
time (by setting a DIP switch). It first
performs some self-tests (another
nice feature) and board setup, and
then allows the user to perform simple
board level operations. These include
hex arithmetic, port I/O, raw disk
I/O, examining and changing
memory, and running and tracing
programs. The monitor is powerful
and simple to use. A list of the moni-
tor commands is given in Table 1. Un-
fortunately, the self-tests at boot clear

MONITOR COMMANDS:

B: BOOT SYSTEM FROM FLOPPY DISK

C: CONVERT DECIMAL TO HEX

0: DUMP MEMORY SECTION (HEX AND ASCII)

E: ENTER DATA INTO MEMORY MANUALLY

F: FILL SECTION OF MEMORY WITH VALUE

G: GO. LOAD REGISTERS, SEGMENTS, IP AND START EXECUTION

H: HEX ARITHMETIC (+,-,*,1)

I: INPUT FROM I/O PORT

L: LOAD DISK SECTORS TO MEMORY

M: MOVE MEMORY SECTION

0: OUTPUT DATA TO I/O PORT

R: DISPLAY REGISTERS, SEGMENTS, AND FLAGS. (SEE GO)

S: SEARCH MEMORY SECTION FOR DATA STRING

T: TRACE INSTRUCTION CYCLES. (SINGLE STEP CAPABILITy)

V: VERIFY MEMORY SECTION WORKS

W: WRITE MEMORY TO DISK SECTORS

Table 1. Monitor commands of the Thunder-186. In addition, the on-board monitor
sets up peripherals, automatically sizes memory, and performs memory tests.

41

6BKB-CP
The World's First 68000 Coprocessor

Peak Electronics' 68K8-CP is a high performance processor card
desiqped to function as one of several CPU elements within a multi-
processor S-100 system. This card features the MC68008™ (8-bit
object code compatible version of the industry renowned 68000), up
to 512K bytes of RAM and 128K bytes of EPROM, two serial ports
and a parallel printer port.

The true power of the 68K8-CP card is shown with its ability to be
plugged into any existing S-100 system running CP/M®-2.2 and to
be running CP/M-68K within minutes without any change in existing
hardware or software. This card does not replace your current pro-
cessor. All of the original system's devices (RAM, disks, and other
peripherals) are immediately available to the user of CP/M-68K, files
can be accessed by whichever operating system is currently active.

Features:
• Does not replace your current CPU card
• IEEE-696-1983, S-100 Compatible
• MC68008 8 or 10 MHz CPU
• 128K bytes of RAM expandable to 512K
• 8K bytes of EPROM expandable to 128K
• No wait state access to on board RAM and EPROM
• Two high speed serial ports (up to 38.4K BAUD)
• 8-bit parallel printer port
• Supports CP/M-68K and Concurrent-68K
• Onboard 16-bit counter-timer
• Includes printer buffer and RAM disk
firmware

$995°~ includes CP/M-68K
PO. Box 700112
San Jose. CA 95170-0112
(408) 253-5108

memory, so software bugs that jam
the system are not easily traced.

S-100 Journal Vol. 1 No.1 Available
A limited number of the first issue is still available for
$4.90 per copy (we pay postage). To get your copy send
this ad (or a note with your name and address) to Back
Issues, S-100 Journal, P.O. Box 12881, Raleigh, NC
27605. Prepayment is required to process your order.NAME _
ADDRESS _

NOTE: Several subscriptions that arrived during this Fall asked
that we start with the first issue. To retroactivate a subscription we
would have to incur additional expenses that the low subscription
price does not cover. So please use this form instead. Thank you
for your cooperation.

DOCUMENTATION
The Thunder-186 suffers from a
malady common to many products
these days - a lack of good docu-
mentation. The manual leaves out
some fairly major things, like the
function of certain jumpers and the
printer cable trick. In defense, how-
ever, the company has always been
very responsive to questions and
helpful in solving specific problems.

CONCLUSIONS
The Thunder-186 is an excellent com-
puter that offers the flexibility of the
5-100 bus. That makes it a great
choice for both the casual program-
mer and the sophisticated OEM. The
Thunder more than lives up to its
claims, and it offers a good deal more
versatility than many other boards on
the market.

The board is available at a discount
from Integrated Microsystems, as well
as from other dealers. The unit may
also be purchased as part of a system
with chassis, floppy drives, etc.
Options include a hard disk drive,
and more memory. -

ADDRESSES

42

Lomas Data Products
182 Cedar Hill Street
Marlboro, MA 01752
(617) 460-0333

Integrated Microsystems
PO Box 2415
Del Mar, CA 92014
(619) 481-6530

Viasyn Corporation
3506 Breakwater Court
Hayward, CA 94545
(800) VIASYN1 (outside CA)
(800) VIASYN2 (within CA)

5-100 JOURNAL, VOL. 1 NO.2

~ IF YOU ARE AN S100 BUS ~
~ DEVELOPER or SERIOUS USER l
~ then let's be frank. . . ~
i There is a wealth of fine S100 processor and ~ boards, ~

~ but WHERE 'S TIE BEEF ??? ~
~ Up lI1til row you had to develop cestom Ha"dware and Software to c:orrplete even si'rple applications. ~

~ A NEW DAY HAS COME TO S100... ~

~

CSD is making available a c:orrpIeteline of Realtine Intelligent Products to speed up your job. !
These products are Preconfi!J.lfed to plug into yOll' BUS and work.

When needed, there are simple Host corTI1'lMdsto reconfi!JM"e the board and save the new state.

~ ~
~ Write or call tor details on feature packed 80186 based products "" lhase realtime _'ocaI''''''_ ~

~ COMWNICATION FAULT TOlERANT PROCSSORS ~

~ DATAACQUISmON AUTOMATEDTEST ~

! ARRAY PROCESSING IMAGE/GRAPHICPROCESSOR ~

~ Source or Custom Software avallabte to our OEMaccounts ~

~ other fine S 100 products at the ABSOLUTE BEST PRICES !
~ COMPUPRO - MACROTECH - ADVANC ED DIGITAL ~

~ ICD - TELETEK - IMS - LOMAS - EARTH ~

~ __ ~~":::=~~"~~~::,~:~_C~R:~R:T~~:~_ v::~~~~~:"~__ . ~
~ COMPUTER SYSTEM DESIGN, LTD l
t STONY BROOK TECHNOLOGY CENTER PO BOX 2131 SETAUKET, NY 11733 ~

3 Man Thru Fri 10AM-6PM and Sat 10AM-2PM E.S.T. 516 - 689 - 3100 ~

FALL 1985 43

rllilllllr i/I
This department will be an interactive medium for readers. Everyone is invited to send questions,

answers to previous questions, or other comments for publication. Your questions and comments may
range from technical to philosophical. Whenever a discussion on a topic starts up, we'll try to keep it
going for several issues. Here's a few suggestions to get you started: The future of 5-100 computing ...
32 bits on the 5-100 bus ... Software trends ... or just plain old technical questions about any 5-100
topic.

Send your (typed/printed) letters to Reader I/O, 5-100 Journal, P.O. Box 12881, Raleigh, NC 27605.

THE S-100 SOFTWARE GUIDE
The S-lOOSOFTWARE GUIDE that was announced in the first issue of S-100
Journal is not being published this year (1985). We plan to publish it next
November (1986).

THE GUIDE is a software advertising medium for publishers of software for
S-100 systems. For more information please contact THE GUIDE, c/o S-100
Journal, PO Box 12881, Raleigh, NC 27605.

ARTICLES ON SPECIAL APPLICATIONS
S-100 Journal is seeking articles that describe in detail how S-100 systems are being
used. We especially need articles that demonstrate the outstanding power of modern
8-100 systems and how that power is being applied to perform actual tasks in industry,
academia, research, business, etc.
To learn more about writing for 8-100 Journal, please request our Author's Guidelines.
Or call Jay Vilhena at 919-839-0115 if you would like to discuss potential articles that
you are interested in submitting.

44 5-100 JOURNAL, VOL. 1 NO.2

lIill
FOR SALE

TELETEK SYSTEMASTER S-100
SBC w/ CP/M-2.2, $395; ParaGraphic
SuperGraphics board and terminal,
software, to 512x576, $295; Sequen-
tial Circuits M206 Musicboard (MAX),
6-note polyphonic, 80 voices, non-
S100, serial interface, $195; California
Digital 256K-1M memory, $150;
VT100 83-key keyboard, $150; 80-trk
drives, $50. Buckley, Riverview, Dur-
ham NH 03824. (603) 868-5006.

CP/M-80: BASCOM, V-edit, dBase II
2.4, Turbo Pascal. CP/M-86: Pascal
MT+86 3.1, Supercalc, V-edit. Up-
grading to MC68000 system. Neil
Swenson (Atlanta). (404) 255-8007.

This department is for publishing
non-commercial small advertise-
ments. There is no charge to place
an ad. Readers may take aduantage
of this seruice to sell or buy used
hardware, trade personal programs,
etc. Messages must be kept short.
Send ads to S-l 00 Journal, BITS, PO
Box 12881, Raleigh, NC 27605.

FOR SALE

RGB Video-S12 Color Graphics
S-100 board by I/O Technology. Uses
NEC 7220 graphics chip. With cable;
software C, Pascal; extra 7220 chip.
Works fine. Cost $1040, asking $700
or best offer. John Roberts (404)
449-7776.FOR SALE

CompuPro 85/88 CPU board plus
the following software with manuals.

S-100 SYSTEMS
CAN BE

UPGRADED
FOREVER!

FALL 1985 45

8·1

The 5-100 Directory will appear in the back
pages of every issue of 5-100 Journal. All services
and products being offered through the directory
must be related to 5-100 systems. Messages must
be 50 words or less.

To list your business in the directory, send $80
for one year or $140 for two years, along with your
entry, to 5-100 Directory, c/o 5-100 Journal, P.O.
Box 12881, Raleigh, NC 27605.

Users Groups and Bulletin Boards, not identified
with any non5-100 system, are also welcome for
listing in the directory. There is no charge for listing
nonprofit Groups or Boards.

ARIZONA

S-100
14455 N. 79th. St., Scottsdale, AZ 85260

S-100 stocks most popular brands of S-100 boards, peripheral
devices and software. We offer excellent pricing on all items
especially drive subsystems.

(602) 991-7870

CALIFORNIA

COCHLIN COMPUTER SYSTEMS INC. (415) 495-5999
330 Townsend St. #107, San Francisco, CA 94107
303 Potrero St. #29-104, Santa Cruz, CA 95060

Authorized CompuPro System Center. We provide on-site service
and maintenance, custom software design, multi-user system
integration, user training and more.

DATABANK (805) 962-8489
228A West Carrillo, Santa Barbara, CA 93101

SMD 8" Disk Subsystems - 84 - 168 - 300 MBytes with
S-100 Controller. Mag Tape - 9 Track Tape. Boards from
CompuPro, Macrotech, Dual Systems - all S-100.

(415) 340-9363MENTZER COMPUTER SYSTEMS
1441 Rollins Rd., Burlingame, CA 94010

CompuPro Full Service System Center. Custom S-100 systems,
CAD Systems.

MICRO POWER UNLIMITED (805) 584-6789
1716 Erring Rd. #102, Simi Valley, CA 93065

Authorized CompuPro System Center. We provide on-site service
and maintenance, custom software design, multi-user system
integration, user training and more.

PRO*ACCESS
P.O. Box 747, Mountain View, CA 94042

If you don't find the File*works File Processor program the most
powerful file backup and manipulation program you have ever
used, return it within 30 days for your money back. For CPIM 2.2
or later, including CompuPro 8/16 series. $149. Please specify
format.

(415) 969-4969

FLORIDA

JURIS SCRIVENER, INC. (305) 920-7772
2019 B Hollywood Blvd., Hollywood, FL 33020

System Integrator and Vendor. S-100 Granturbo Computers
running TURBODOS 8 and 16 bit, will also run CPIM and MS-
DOS. Systems for 4 users and up. FMS 80 Data Base Manage-
ment Software for S-100 computers. Primage printers.

ILLINOIS

SMALL BUSINESS SYSTEMS, INC.
1016 E. 31st St., LaGrange Park, IL 60525

CompuPro multi-user systems, networking, peripherals, software.
Fast, reliable, and versatile systems for any business computer
needs.

(312) 579-3311

46 5-100 JOURNAL, VOl. 1 NO.2

MARYLAND

MICRO COMPUTER COMPANY, INC. (301) 942-5442
101 Wheaton Plaza North, Wheaton, MD 20902

We offer a wide selection in Syntech Data International and
CompuPro S100 Bus products.

MICHIGAN
WALDORF ASSOCIATES, LTD.
4477 Jackson Road, Ann Arbor, MI 48103

CompuPro Full Service Center specializing in UNIX on S-100 Buss
and special configurations for both R&D shops and Universities.

(313) 996-0646

MONTANA
HARRIS-LARSEN & ASSOC.
211 North Higgins, Missoula, MT 59801

CompuPro Full Service System Center. System Integrators. S100
Consultants.

(406) 721-7070

NEW YORK
RENARD SYSTEMS INC.
4248 Ridge Lea Road, Amherst, NY 14226
Service offices in NYC and Rochester

Full Service CompuPro System Center specializing in word
processing automation, AutoCad on S-100, laser printers, very
large hard disk drives, and tape backup. Service contracts to
entire North East (out of NYC). National distributors for a variety
of system enhancing software products, including PrintMan,
Phantom Printer, Smart-Op and Speed-Op by Data Base
Administrators.

(716) 833-4758

PENNSYLVANIA

FOREFRONT TECHNOLOGY CORPORATION (215) 386-1500
3508 Market Street, 2nd Floor, Philadelphia, PA 19104

CompuPro (Viasyn) System Center Plus! Software emphasized to
take full advantage of hardware capabilities.

FRASER BUSINESS EQUIPMENT
523 Franklin Street, Reading, PA 19603

(215) 378-0101

AUSTRALIA
BJ ELECTRONIC SYSTEMS
11 Wood St., Mackay 4740, Australia

(079) 513064
TELEX AA 46044

Fully integrated Fleet Management System with fuel, mainte-
nance, driver, workshop, spare parts control and debtors,
creditors, stock control. Payroll system.

CANADA
M.A.E. MICROSYSTEMS, INC. (514) 341-1210
8255 Mountain Sights, #175, Montreal, Canada H4P 2B5

S-100 Integrator for Custom Applications. Turbodos Applications
8/16 Bits. Sweda Cash Register interfacing and more.

GERMANY
CQ-SY, COMPUTER UNO SYSTEME (2173) 52071 or 72
Krischerstr. 70, d-4019 Monheim, West-Germany

We are looking for cooperation with Software manufacturers-
authors to adapt and translate Software into German. We
specialize in UNIX and C language, MS-DOS and C, and C-Basic.

¥f@-S mIll

FALL 1985

¥ 5 -g4+

47

~--

48 5-100 JOURNAL, VOl. 1 NO.2

Since 1968 Teletek has been a leader in the design and
manufacture of single board computers, controllers,
memory boards and interface boards.

Teletek offers five distinct single board computers
(SBCs), each with its own unique features, to meet the
varied needs of the system integrator. Based on the
808616-bit and Z80 8-bit microprocessors, Teletek's SBCs

will run at 4,5,6, or 8MHz and are available with up to
512K of onboard dynamic RAM. The SBC 86/87 also offers
an optional 8087 math coprocessor for numeric intensive
applications.

Teletek's Systemaster II provides two RS232C serial
ports and two Centronics-compatible parallel ports or
may be optionally configured to provide a SCSI interface
or an IEEE-488interface to support many laboratory
testing and measuring instruments.

Teletek also offers a dual controller board, the HD/
eTC, which will control any two ST506-compatible hard

disk drives and any QIC-02lQIC-24-compatible
cartridge tape drive. This unique design saves
hardware cost as well as space in the mainframe.

Teletek's IEEE696/S-100 boards run under
the multi-user, multi-processing operating
system TurboDOS by Software 2000, support-

ing up to 16 users and
capable of running PC-DOS
application programs. For
single-user systems, Teletek
is supported by the CP/M
operating system.

In Europe:
Kode Limited
Station Road
Caine, Wiltshire
SN11 OJR England
tel: 0249-813771
telex: 449335

In Brazil:
DANVIC S.A
R. Conselheiro ~

Nebias, 1409 ~
01203 SaoPaulo, Brazil Bl ••••• •
tel: 221-6033 (PABX)
telex: 1123888 CICP BR

Teletek provides a 30 day evaluation
program to qualified customers. For
more information, call our Sales Depart-
ment at 916-920-4600 or write for our
information package.

4600 Pell Drive
Sacramento, CA 95638
916-920-4600

© 1984 Teletek

