
Computer Graphic Design by
Catherine Del Tito

Number

27
November 83

ISSN 0739·1900

$10.00

§\~~.

s~~~f~~~'
sa TPL

The Text Processing Language. A
text-file runoff program con
sisting of a set of text-processing
primitive commands from which
more complex commands
(macros) can be built (as in Logo).
Features include:

o Complete customization of
text processing through
macro definition and expan
sion, looping structures, and
conditional statements;

o Adapts to any printer;
o Pagination;
o Text justification and center

ing;
o Indexing and tables of con-

tents;
o Superscripts and subscripts;
o Bolding and underlining;
o \Iultiple headers and footers;
o End notes and footnotes;
o Wido\\ and orphan suppres·

~lOn;

o Floating tables and 'keeps.'

$50

CHROME

Chromatography data analysis
program:

o Graphic display of analog
data;

• Panning and zooming;
• Automatic peak-finding and

baseline calculation;
• Full interactise peak editing;
o Computation of peak areas;
o Strip charts on C. ltoh and

lPSO:--; printers.

$100

Blocked Keyed Data Access
Module. Maintains disk files of
keyed data. Can be used for
bibliographies, glossaries, multi
key data base construction, and
many other applications.

o Variable-length keys;
o Variable-length data;
o Sequential access and rapid

keyed access;
o Single disk access per opera

tion (store, find, delete) in
most cases;

o Multiple files;
o Dynamic memory allocation

for RAM-resident index and
current Hpage" of entries;

o Includes demonstration pro
gram and testbed program.

$50

Planimetry program:
o Bit-pad entry of cross sec

tion~;

oReal-time turtlegraphics
display;

o Calculation of areas;
o Saves calculations to text

file.

$100

1 nmento o {tware deve Or

A radical Idea s~s, witb:
Useful PasCal pr tated source listing~iled code;

• complete anno ce code and com
, (. \ witb sour

• D1Sk,s, \. tation
• User manuar~grammer docur~t~goritbmS;
• coml?b~~te Pdata structurfes a~odification.

descn lng estions or
and giving sugg on)'our own

0nc\ude tbem 1
ModiI)' tbell!' I, use tbemo
s)'stems, or sImp)' ls ~ou'n find bard

f ftware tOO J
. Ybrar'j 0 sO

A growlng 1
to resist.

The Pascal Data Management
System. A user-oriented data
management system in which
numeric and alphanumeric data
are stored in tables with named
columns and numbered rows.
Currently being used for dOlens
of different kinds of business and
scientific applications, from in
ventory management to laborato
ry data analysis. Includes over 20
Pascal programs; more than
10,000 lines of code. Main
features include:

o Maximum of 32,767 rows per
file;

o Maximum of 400 characters
per row, and 40 columns per
table;

o Full-screen editing of rows
and columns, with scrolling,
windowing, global searchl
replace, and other editing
features;

o Sorting, copying, merging,
and reducing routines;

o Mailing label program;
o Reporting program generates

reports with control breaks,
totals and subtotals, and
selects rows by field value;
many other reporting
features;

o Cross-tabulation, correla
tions, and multiple regres
sion;

o Video-display-handling
module;

o Disk-file-handling module.

Many other features. UCSD for
mats only.

$250

§\~~.
~1\~\\~~'

\a~'t ZED
Full-screen text editor; designed
to be used either with TPL or by
itself.

o Full cursor control;
o Insert mode with word wrap;
• 'Paint' mode;
o Single-keystroke or dual-

keystroke commands;
o Command synonyms;
o Global search and replace;
o Block move, block copy, and

block delete.

$50

A log logit curve fitting program
for radio-immunologic data; must
be used with PDMS (described
above).

o Multiple protocol files;
o Quality control files;
o Four-parameter non-linear

curve fit.

UCSD formats only. $250

MINT

A terminal emulation program for
communication between com
puters of any size.

o User-configurable uploading
and downloading of files;

o X-ON/X-OFF and
EOBI ACK protocols;

o Interrupt-driven serial input
(for Prometheus Versacard in
Apple 11);

o Printer-logging.

$50

For more information, call 919-942-1411. To order, use form below or call our toll-free number: I-BOO-X-PASCAL. ---_ _------_ ... _------------------------------............ -.... _--_ _------- .. _ _ __ ... _ -_ .. _ ... -....... _--_ _---_ .. _ ... _ _-_ _-_ -............ _ -.. _ _ -
Check appropriate boxes: (In N.C. use 1·800·642·0949)

FORMAT PRODUCT PRICE

o 8" UCSD SSSD
o 5'/." Apple Pascal
05',4" UCSD IBM PC 320k
08" CP/M SSSD
o 5',4 " IBM MS-DOS
o 5',4" CP/M Osborne

o DBX
[] PDMS
o TPL
o ZED
o MINT
o SCINTILLA
[) CHROME
o PLANE

$ 50
$250
$ 50
$ 50
$ 50
$250
$100
$100

Name

Address o MasterCard

(Please include card #

and expiration date)

pple and Apple Pascal are trademarks of the APPLE Computer Corp. IBM and IBM PC are trademarks of International Business
lachines. UCSD Pascal is a trademark of the Regents of the University of California. Osborne is a trademark of Osborne Com
ut!?r. EPSON is a trademark of EPSON America, Inc. C. Itoh is a trademark of C. Itoh Electronics.

o VISA 0 Check 0 C.O.D.

,
StJBVlnlSIVI~ A division of Pascal & Associates.
SOn'WAIU~

135 East Rosemary St., Chapel Hill, NC 27514

About the cover:
The cover computer graphics were created by
computer artist Catherine Del Tito. The pro·
gram was written for an Apple lIe and aVec·
trix computer system.

.asSal SlA I W i
Formerly Pascal News

Serving Pascal Users Group and the Modula-2 Users Group

November 1983

3 - EDITORIAL

5 - OPEN FORUM

8 - Two Pascal Devices
by Harley Flanders, Florida Atlantic University

9 - Zuse User's Manual
By Arthur Pyster, University of California

33 - ANNOUNCEMENTS

37 - MODULA-2 ANNOUNCEMENTS

41 - ORDER FORMS

Number 27

1

2

UCSD p-SYSTEM™
with UCSD PASCAL™

FOR THE

VICTOR 9000™
Standard Features

• System Foundation:
Operating System · Single key commands • Native Code Generator . For faster execution
Filer . For file management • Turtlegraphics ·800 x 400 pixel access
Screen Editor . Powerful text editor • RAMDISK Capability . For RAM above 128K
Utility Library • Fast development tools • Assembler . 8086 with macros

• UCSD PASCAL Complier· Only requires 128K • Documentation:

• Utilities for the Victor:
Keyboard Editor

Character Editor
Config
Diskutil
Remote

· Define your own keyboard

· Design character sets
· Define machine parameters
· Disk copy/format
· File porting

Owner's Manual
User Manual/Supplement
Architecture Guide

Installation Guide Excerpts
DEMODOC diskette • On line tutorial for

p·System overview

Optional Features
• Hard Disk Support Software . For internal hard disk • 8087 Support Software
• FORTRAN 77 Compiler . Only requires 128K • Advanced Systems Editor
• BASIC Compiler

T 0
I

• Xenofile™ . Convert CP/M files
• Applications Software (call for information)

TDI SYSTEMS, INC.
620 Hungerford Drive
Suite 33
Rockville, Maryland 20850
(301) 340-8700

TDI LIMITED
29 Alma Vale Road
Bristol, U.K. BS82HL
0272742796

UCSD p·SYSTEM and UCSD Pascal are trademarks of the Regents of the University of California
Universal Operating System and Xenofile are trademarks of SofTech Microsystems, Inc.

Victor 9000 is a trademark of Victor Technologies, Inc.

Announcing a 510,000 Contest for the Best
Article or Application Voted by the Members

Dear Member:

By now those of you in the United States
have received a questionnaire and announce
ment concerning "Pascal News." The reader
survey is a very important element in our abili
ty to contain the cost of this newsletter. When
we solicit advertisers, they want to know about
the members: Who we are, What we do, How
much we spend. I realize these are very prob
ing questions and you may feel they are too
personal. To separate your name from your in
formation, the sUbscription card is a self mailer
and the return envelope for the survey will
assure your anonymity. Thank you in advance
for your help.

Let me explain the announcement of our
name change from "Pascal News" to "Pascal
& Modula2." Pascal has encouraged and en·
dorsed rational programming. The language
aids in the segmentation of a job into small
parts through procedures and functions. I have
enjoyed learning and using this language, but
Pascal does have limitations.

Many limitations are part of the design of a
teaching language. Pascal is a very nice base, a
core, to which extensions have been added by
every implementor. We have accepted this and
published reports of large extension packages,
UCSD Pascal, Concurrant Pascal and Path
Pascal.

These extensions were added to a language
created for teaching programming principles.
This design goal allows a general purpose
language, but not an all purpose language.
Nicklaus Wirth recognized these limitations
and created a language that would contain
Pascal's good features and satisfy the goal of
an all purpose language.

Modula-2, created in 1977, is that language.
In this issue, you will read Modula-2 product
announcements. In these announcements, and
in other articles, claims are made that Pascal is
finished, that Modula-2 should replace Pascal
in all cases. Maybe. I believe Pascal can and
should remain in the position for which it was
designed. The premier teaching language is

Pascal. The easy transition from Pascal to
Modula-2 makes Modula-2 an excellent second
year language. Restrictions are necessary in
the introduction to programming and Modu
la-2's flexibility does not focus a student to
basic principles.

Of course I may be "all wet," but I believe
Pascal should remain.

Pascal's teaching tool strength, Modula·2's
all purpose ability, and the relatively painless
transition between them make Pascal and
Modula-2 proper subjects for the Pascal Users
Group. Pascal News should reflect this wider
interest in content and name. The new name,
"Pascal & Modulo 2 ... keeps Pascal as the frrst
name and can be found in the same place in
periodical indices as "Pascal News." This
should make the libraries happy.

The new logo places Pascal within Modu
la2, a reference to Modla-2's ability for operat
ing system programming, above Pascal, and its
ability for machine specific programming, be·
low Pascal. I hope you welcome the change
and contribute to the discussion and promotion.

This brings me to the contest for $10,000. It
really is a promotion. There are many ways to
promote this newsletter and I have tried a few.
One way is to keep the members we have now.
I have promised four issues per year and this is
the fourth of 1983. A renewal notice was sent
out in January and I thank you for your sub
scription. In October the reader survey and
subscription card were mailed and I hope you
renew promptly. I placed a small ad in ''PC''
magazine. It is in their Blue Book section and
will run from September 1983 through March
1984 and should attract new members. An
nouncement of our name change and subscrip
tion information was sent to fifteen magazines.
Unfortunately there are many Pascalers who
do not know of the Pascal Users Group.

I am now very familiar with the costs of this
newsletter and can say that income closely
matches costs. I also !mow that if membership
exceeds 5,000, we will have a surplus. What
would we do with this money? Well, I propose
that it be used for a promotion, and I cannot

think of a better promotion than to vote for
the best article or application published in
"Pascal & Modulo 2 ...

I do not know whether the prize will be win
ner take all or first, second and third place divi
sion of the money. Your letters will help me
form the rules.

The first rule is we must have 5000 mem
bers. Fewer members and we cannot afford
this contest.

Now, you may recognize a little circularity
here. The promotion attracts members and in
creased membership allows the promotion.
Because of my other responsibilities (wife,
home, job and country) I need your help to an
nounce this contest in all quarters. If all 4000
members will send one letter (Le. to friends, to
users groups, to fellow students, to magazines)
to announce this contest and one new member
joins per letter, well, I think you get the idea.

Rule number two-all contestants must be
members.

One more idea. If this contest generates
enough material and money the newsletter will
be published more often. Please send your
ideas.

3

4

A typesetting program called TeX, created
by Donald Knuth, is available for the cost of
distribution. 15,000 lines of Pascal code puts
TeX in the nontrivial category.

Basic information is available from two
sources. The book "TeX and MET A FONT" is
available for $12. Digital Press, 12A Esquire
Road, North Billerica, MA 01862. A new
book, "TeX Book, " should be in print by the
end of 1983 from Addison·Wessley.

Continuing information is provided by the
TeX Users Group (TUG). Membership is $30.
TeX Users Group, clo American Mathemati·
cal Society, PO Box 1571 Annex Station,
Providence, Rhode Island 02901, USA.

"Small Talk," a language from the Xerox
Palo Alto Research Center was revealed in the
August 1981 issue of "Byte" magazine. The
Small Talk virtual machine, a software inter·
face to the real machine, was given to four
companies. They agreed to debug the virtual
machine and share information.

I found it interesting that Tektronics imple·
mented the virtual machine in Pascal. I under·
stand that Tektronics internal programming
uses Pascal or Modula·2. The papers regarding
the Small Talk research are assembled in the
book ''Small Talk·BO Bits of History, Words of
Advice. " This book and ''Small Talk·BO The
Language and its Implementation" are avail·
able from Addison·Wessley.

Andy Michel informs me of a version of
"C," the Bell Labs language implemented in
Pascal. Very interesting.

A large part of this issue is devoted to a com
piler creator. With a language specification
this program will write the compiler. I have
been told this program is very valuable. Using
it, a contract for a compiler was satisfied and a
handsome profit gained. (Sounds good to me.)

Robert Gustafson in a letter complains about
the typesetting of this newsletter. Expense,
time and typographical errors are his concern.
When printing more than 2500 copies, typeset
ting reduces overall expenses. Typesetting con
sumes 3 weeks' time, not an unreasonable
amount for a quarterly.

Typographical errors are a problem and pro
grams are photographed from originals to
avoid them. A better way to assure correct in
formation and dark, clean type is to capture
the author's original keystrikes. Floppy disks
and mag tape will do the job, but I would have
to convert the many magnetic formats to one
the typesetter could use.

Computer networks may be a better solution.
Networks force all submissions to a common
format. From this, the typesetter will make on
ly one conversion to his format. If there is a
consensus, I will establish a bulletin board and
file system on the most popular network.

Please send your ideas. This is a one-man
operation and I appreciate and need your help.

I hope you enjoy this issue.

Charlie

2903 Huntington Road
Cleveland, Ohio 44120

Publisher and Editor:
Charles Gaffney

General Consultants:
Studio Graphics Advertising

Production Manager:
Spence Coghlan

National Sales Representative:
John Bachmann

The Pascal & Modula2 is published for the
Pascal Users Group and Modula-2 Users
Group, 2903 Huntington Rd., Cleveland, Ohio
44120. Pascal & Modula2is a direct benefit of
membership.

Membership dues are $25.00 U.S. regular,
other forms of member$ip please inquire. In
quiries regarding membership should be sent
to the above address. Magazine correspon
dence and advertising should be sent to the edi
tor at the aforementioned address. Advertising
rates are also available from the above address.

August 22. 1983
Dear Charlie:

I have been a subscriber to Pascal News for
a long time. According to the date on my mail
ing label, it looks like I will continue to be a
subscriber well into the distant (85) future.

I agree with many of the notes published in
PN #26 concerning your contributions to the
well being of Pascal News. particularly the
general management and timely publication.

However. I believe that PN is doomed to die
because of one change you have made_ Previ
ously, the magazine was printed using the orig
inal letters submitted by PN correspondents.
This was an inexpensive method of getting the
information out to the readers. Your current
system of rekeyboarding all of the correspon
dence can only be costing you dollars without
increasfng the utility of the information. Also,
as people decide they can do without PN for
$25/year, your circulation will decrease. One
of the previous attractions of PN was that
since it was so cheap, it reached everyone. A
reduced circulation will cause contributors to
look for other distribution media. I realize you
are saving money on postage, but since PN is
sent out bulk rate, the savings are only a small
fraction of the cost of typesetting. Since these
typesetting costs are the same whether you
send out I copy or 3000 copies, I predict that
you will not be able to compete with other
publications in the field and PN will die.

If you return to direct printing of correspon
dent copy you will be in good company. The "
DECUS special interest group newsletters
(RSX SIG for example) are printed from yechy
LA36 printer copy. I read them cover to cover
as soon as they arrive. There are also a lot of
expensive stock market newsletters which are
printed from typewriter copy. These sell for big
bucks because the buyers are interested in
TIMELY information, not typography and art
work suitable only for decorating a coffee
table.

By concentrating on quick publication, I be
lieve you will find advertisers willing to pay for
space in PN. Also, when it comes to selling ad
vertising space, 3000 subscribers are much bet
ter than 300! Another important criterion for
an advertiser is knowing that what is sent to
you will appear unchanged in the publication.

I have noticed that there are a number of
typographical errors in the typeset issues of
PN. These are inevitable in a keyed-once,
proof-read-once publication (I know the statis
tics, one of our programming systems typesets
approximately 40% of the municipal bond is
sues in the U.S. Errors here are a no-no. As a
consequence. we have done quite a bit with
automatic proofreading and word processor
telecommunications). If you use advertiser
copy directly. there can be no problems later
with omissions of important parts of the copy
or inadvertent changs to prices, etc.

You might consider including a question
naire in the next issue of PN. I'm sure that the
majority of your current subscribers would be
much more enthusiastic about paying $9/year
for the latest information from your corre
spondents and advertisers printed "as is" than
$25/year for the present "remassaged" format.
If you choose an even lower price, advertisers
will pay more for the resulting increased cir
culation. Simple economics!

Sincerely,

Robert D. Gustafson
President
Simulation Specialists Inc.
609 West Stratford Place
Chicago, IL 60657

Dear Editor:
June 29, 1983

I enclose a short article, Two Pascal De
vices, for publication in Pascal News. I shall
appreciate your acknowledgement and. if you
use the article, a copy of the issue in which it is
printed.

Sincerely yours,

Harley Flanders
Professor of Mathematics
Florida Atlantic University
Boca Raton, FL 33431

P.S. May I humbly suggest that you do not
print the output of line printers or dot matrix
printers. It is just too hard to read.

July 5, 1983
Dear Mr. News:

This is to request address correction from
that found on the label:
Jeff Davis (81)
135 Turtle Creek
1 Roper Mt. Rd.
Greenville, SC 29603
to the following:
Jeff Davis
6549 Quiet Hours Apt. #201
Columbia, MD 21045

I am entering this using an editor found in
"Software Tools in Pascal," one of the best
books on toolbuilding I've ever read, and print
ing out using a copy of "Prose" from an early
copy of Pascal News recompiled on an Apple
III! As you see, my interest is in learning by
building tools in Pascal.

By the way, there is a local bulletin Board
system (my next tool may be a speJling check
er!) called Magus which is actually an operat
ing system written in Pascal by Craig Vaughn
that is worthy of note. m suggest that he sub
mit an article describing it and see what his
reaction is.

As a last comment, I had been out of the
country for a few years and only recently re
subscribed. How's Modula-2 doing in the
states? I've ordered their documentation but
version for my computer (Apple III) somewhat
tardy.

Thanks and it's great to be back in touch
with Pascal reality again!

Sincerely,
Jeff Davis

Dear Mr. Gaffney:
May 31, 1983

We have purchased a Motorola EXORciser
development system for developing 6809 based
products. We contracted to an outside vendor
for the initial software development on a new
product. All software was written in HP64000
Pascal. We will be doing all software mainte
nance and enhancement in house and we are
reluctant to do this in assembly language.
Therefore, I am attempting to find a Pascal
compiler to run on the 6809 EXORciser which
is as compatible as possible with the HP Pas
cal. I would appreciate any help you can give
me on this.

We also have a Texas Instruments DS 990
minicomputer with a Pascal compiler which
we would like to use for electrical and elec
tronic engineering support and development.
Any information on available Pascal electron
ics packages would be helpful.

Very truly yours,

MILLER Electric Mfg. Co.
Bruce A. Casner
Project Engineer
P.O. Box 1079
Appleton. WI 54912

5

6

June 2,1983
Could you send me any information you

have on Apple and JRT Pascal? Also, I would
be very appreciative if you could recommend
any books for someone who knows BASIC and
6502 Asembler.
Thank you.

Larry Houston
169 West 8th Street
Peru, IN 46970

Mr. Gaffney:
December 10, 1982

I read about Pascal News from a UNIX
NetNews (a network of UNIX installations
sharing news) article. Could you send me the
back editions containing the Lisp compiler·
interpreter (written in Pasca!)? Enclosed is $15
for the year of back issues containing the Lisp
compiler. Send me a bill for shipping if $15
does not cover it all. I am glad to see you con·
tinuing this magazine.

Respectfully,

Fred R. Finster
8549 Evanston Ave. N.
Seattle, WA 98103

December 20, 1982

Dear Charles Gaffney (Charlie),
I have been infomed that PUG (Australia)

has distributed its last issue (#24) of Pascal
News, and that the SUbscription list and
balance of funds has been transferred to the
U.S.

According to my records, I was paid up
through 1984 (renewed for 3 years mid·1981).

However, I understand that there will prob·
ably need to be an adjustment, so please could
you apply my outstanding subscription toward
whatever extension is appropriate.

Please, if possible, inform me what the final
position is; I am very keen to maintain my con·
tinuity of membership, as I think PUG is very
worthwhile.

Thanks a lot.

Yours sincerely,

G. A. Foster
51138 Clarence Road
Indooroopilly
Queensland, Australia 4068

February 15, 1983
Dear Mr. Shaw:

I know that your job keeping going the
PUG is a great one. As we create the Mexican
Wang Users Group with 200 members now,
after 4 years about 4 people do the whole work.

Our company with 32 people has an obliga·
tion to use an accumulative half hour daily to
do some investigation; that is why we are in·
terested in implementing the Pascal in our
machine, a Want 2200·YS-80.

I believe that ou:r specifications were wrong
when we asked for the Portable Pascal P4, be
cause we have not been able to get started.

Dr. Niklaus Wirth wrote me that the PUG
has an 360 IBM compiler. I would like to know
how can we be able to get it, because our com
puter with very little modification can run
IBM assembler programs.

If I can do anything to help the PUG please
let me know.

Thanking you in advance for all the trouble
I may cause, looking forward to your answer.

Sincerely,

Miguel M. Soriano Lopez
Technical Director
Data, S.A.
Av. Homero No. 1425-1201
Mexico 5, D.F.

Dear Mr. Soriano,
June 5, 1981

It was a pleasure to hear from you after so
many years. I fondly remember that stay in
Mexico in 1963.

I guess the best way to "get in touch" with
me is by writing, as you did. However, I do not
see a chance for me to visit Mexico in the near
future, as I am quite committed and busy at
my position here at ETH.

Good luck for your Pascal compiler project.
Are you aware of the compiler for the 360, al
so available from PUG? Perhaps it would be

easier to use that compiler instead of the P, be
cause your machine is-as you write-similar
to the 360.

Sincerely yours,

Prof. Niklaus Wirth
Eidgenossische Technische Hochschule
Instit fur Informatik
ETH-Zentrum
CH-8092 Zurich

August 31, 1983
Dear Charlie:

I use Pascal at the National University of
Mexico in a Burroughs 7500 or on a PDP-II,
and at my work I am trying to install the Pas·
cal-P you send me last year.

Several doubts I had, I asked . Dr. Wirth,
who answer me and recommended that will be
easy to implement the IBM-370 version, which
is more similar to my Wang 2200-YS·80
machine.

On the 25th Pascal News is a report about
an IBM-370 Pascal. I will like to know if
Joseph A. Minor of Cornell Computer Services
would like to work together with me, to give to
the PUG a Pascal compiler for the Wang YS.
Only in Mexico there are more than 200 in
stallations; I believe that at the USA are
several hundreds who may be Pascalers, if the
PUG will have it.

I hope to hear from you soon, thanking you
for the trouble I may cause you.

Sincerely,

Miguel M. Soriano Lopez

May 26, 1983
Dear Editor:

I would appreciate it if you would publish
theenc10sed announcement of the availability
of the Edison System Report entitled "Pro
gramming a Personal Computer" in the Pascal
News.

Yours sincerely,

Per Brinch Hansen
Henry Salvatori Professor of Computer Science
University of Southern California
University Park
Los Angeles, CA 90089

.asSaI \!J)
Pre •• Ra.a •••

FOR IMMEDIATE RELEASE: October 11, 1983

Cleveland, Ohio: The ten year old publication, Pascal News is changing
its format and name to Pascal and Modula 2, according to publisher,
Charles Gaffney.

For those unfamiliar with computer terminology, Pascal is a small and
general purpose computer programming language, originally designed 10
years ago by Professor Niklaus Wirth of Switzerland as a teaching
language. Because Pascal is easy to learn and read, and can be efficiently
translated by computers, it was adapted for use in business. However,
it does have certain restrictions. To meet the increased demand for an
all purpose programming language, Wirth designed Modula 2. The
structure of Pascal is included in Modula 2, affording simple and quick
transition for programmers.

Pascal News was origninally established to be a forum of correspondence
for the Pascal U~ers Group (PUG). Because of the close linkage between
these languages, and the rapid growth in the day to day use of computers,
Gaffney expanded the publication to include articles and correspondence
about Modula 2.

"Modula 2 is a newer language on the cutting edge of computer science,"
said Gaffney. "Its design allows Pascal to settle into original standards,
and removes the pressure to be all things to all people."

Modula 2, sold only under license, will be protected from incompatible
revision. The new availability of Modula 2 from at least 4 vendors
demands a forum for new users as well as Pascal users. Pascal and
Modula 2, sponsoring the Pascal Users Group and organizing the Modula 2
Users Group, will provide that forum.

Pascal News has over 4,000 subscribers in 41 countries, according to
Gaffney who is confident the new publication will continue to serve
these user groups. Pascal and Modula 2 will provide application
software, software tools, articles on programming philosophy, the use
of Pascal as a teaching tool, the promotion and application of each
language, as well as an important open forum where users contribute
informal correspondence of general interest to the group.

P.O. BOX 538, CHESTERLAND, OHIO 44026 • (216)729-3227

7

8

By Harley Flanders
Florida Atlantic University

1. THE FORWARD DECLARATION

It was brought to my attention by H. S. Wilf
that the reserved word forward is not neces
sarily included in all versions of Pascal. If we
examine Jensen and Wirth I, we find forward
discussed on page 82 of the User Malllll, but
not in Appendix C, Syntax, pages 110-11 S, nor
in the railroad diagrams, pages 116-118; how
ever, in Appendix E, Error Number Summary.
page 120, while nowhere in the Report, pages
133-167.

Suppose we have a program in which several
procedures call each other recursively. The
usual way to handle this is via a series of for·
ward declarations. It is possible to accomplish
the same thing without using forward at all.
Suppose, for example, that we have the
declarations

procedure B; forward;

procedure C; forward;

Procedure A;
<declarations>
begin
(staterr.ents AI>; 5; <statements A2>
end~

procedure B;
<declarations>
begin
<:staten:ents Bl>; C; <staterr.ents 82>
end;

procedure C;
<declarations>
begin
~~terr.ent5 C1>; Ai <'staterr.ents C2>

The following single procedure declaration
does the same.

var CONTf'OL: eha r ;

procedure ABC;
... ·declaratic.ns;..
begin
case Cm:TfiOL of

'A': begin '-statements AI>;
CONTROL : = B; ABC;
<"statements A2> end;

'B': begin "'stateIr.ents 81>;
CQUTPOL :'" C; J..BC;
"'statereents B2> end;

'e': begin "'statelt'.~nts e1>;
COUTf'OL : = A; .a.BC;
"'statern~nts C2;.. end

end {casE:}
end; i ABC}

The statement calling ABC must initialize
CONTROL to the first entry value. Qearly,
many variations on this theme are possible.

2. THE EXIT PROCEDURE

UCSD Pascal restricts the goto statement so
it only allows jumps within a block. Hence
goto cannot be used to exit a nested sequence
of procedures. The Exit procedure was intro
duced into UCSD to make up for this short
coming; however, it fails to do the job if the
nested sequence happens to include recursive
calls of a procedure. This can be quite inconve
nient at times. Suppose, for example, one is
searching an array, and the search proceeds by
testing an element then, if unsuccessful, it par
titions the array and tests the pieces recursive
ly. Of course, once the sought element is
found, the search should be stopped. But the
search procedure may be deeply nested at that
time.

A clumsy way out is to introduce a Boolean
variable FOUND and rewrite the body of the
search procedure as follows:

procedure SEARCH;
<declarations>

"begin
if not FOUND then <statements of SEARCH>
end;

The (external) call of SEARCH must be
replaced by

FOUND: = False; SEARCH

This is costly because it adds an extra test to
each call of SEARCH. The following is an
alternative using Exit. Assume that we are
searching for X and that A denotes a test
value.

procedure DUMMY ~
procedure SEARCH;

begin
<statements of SEARCH>
if A = X then Exit (DUMMY) else ••• SEARCH
end;

begin SEARCH end;

Remember the UCSD rule is that Exit (PROC)
is a jump to immediately after the most recent
call of PROC, passing through all more recent
ly called procedures along the way, and doing
some incidental housekeeping, like closing nIes
those procedures opened.

Reference

I. K. Jensen and N. Wirth, PtlsCilI User
MfIIIIIIlIllIUl Report, 21e, Springer-Verlag,
1978.

, ,
,,~~se

A CompHer Writer

ZUSE USER'S MANUAL
Unix Implementation

Version 1.0

by
Arthur Pyster

Department of Computer Science
University of California at Santa Barbara

Santa Barbara, CA 93106

copyright (c): Regents of the University
of California, May 1981

This work was in part supported by a grant from the Instructional
Development Program of UC Santa Barbara.

1.0 Introduction

1.1 Background,

Zuse is a translator writing system written in Pascal which
produces translators which are themselves written in Pascal. It
is quite simple to use and alleviates much of the tedium inherent
in writing a translator from scratch. It is named after Konrad
Zuse whose visionary work on the programming language P1ankalkul
in the mid 1940s should be an inspiration to everyone.

This user's manual assumes that you are already familiar
with the principles of translator writing and syntax-directed
translation. Such terms as "BNF grammar" and "LL(l) parser" are
used freely without explanation. If you lack this background,
you should refer to one of the standard texts on translator writ
ing (Aho and Ullman, "Principles of Compiler Design", Addison
Wesley 1977; Lewis, Rosenkrantz, and Stearns, "Compiler Design
Theory", Addison-Wesley 1976; Pyster, "Compiler Design and Con
struction", Van Nostrand Reinhold 1980).

Zuse has been designed to be highly portable across dif
ferent Pascal implementations. Only a handful of lines of code
have been written using implementation-dependent features; e.g.,
Zuse presumes that type char is the ascii character set. This
manual describes Zuse as it is implemented on Unix. A separate
document describing any deviations from this manual should be ob
tained from whoever is responsible for Zuse's installation at
your computer center.

1.2 How to use Zuse

Zuse actually consists of two programs: generate.~ - an exe~
cutable program which accepts a translation grammar as input and
generates several files which will be, needed for the translator
eventually produced; and skeleton.~ - a partial translator writ
ten in Pascal which must be augmented by files produced both by
you and by generate.o in order to become a complete Pascal pro
gram which can be compiled. Figure 1 shows the creation of a
translator, skeleton.o. Figure 2 shows the execution of that
translator to translate source string x. When creating a trans
lator, all of the files except for the user-defined translation
grammar, and LLsup.i are part of or generated by Zuse. When exe
cuting the translator, only the source string which is to be
translated needs to be provided by the user. LLgram is produced
by Zuse. The particular manner in which Zuse creates the neces
sary files is described in later sections of this manual.

Zuse's two program~ are used in tlH.~ sequence listed below to
create a translator:

1) Write ~ context-free grammar which specifies the syntax of the
source language. The grammar tihould be prepart.~d as a file us
ing any text editor. It can be stored under any file name.
Because of the parsing method supported by Zuse, the grammar
must be an extended LL(1) grammar. The permissible ext'ensions
are specified in later sections. This grammar will eventually
be used to produce a top-down left-to-right parser.

2) Embed action code into the grammar which specifies the steps
to be taken by the translator during parsing. A language de
finition with both a syntactic specification and action code
is referred to as a "translation grammar". The transla~ion
grammar specifies the actions to be taken during the parsing

user-defined ------------
translation ==> Igenerate.ol

grammar ------------
II
\I

user-defined LLact.i
LLsup.i

II
II
II
\/

skeleton.p

II
II
II
\/

Pascal compiler

II
\/

skeleton.o

LLvar.i
LLconst.i
LLtype.i
LLf11e.i

II
\/

Fig. 1 Creating a Translator

LLgram

II
\/

skeleton.o

II
\/

source
string

x

II
\/

translation
of x

_a> LLgram

Fig. 2 Executing a Translator

of a string.
source string.

These actions produce a translation of the

3) Prepare Pascal code which defines all supporting routines
which will be called by the action code, including the lexical
analyzer -- LLNextToken. These routines, which will be needed
when skeleton.p is compiled, should be stored in the file
LLsup.i.

4) Execute generate.~ ~ the translation grammar just prepared.
Generate.o expects the grammar to come from the standard input
file so you must redirect your file:

generate.o < MyFile

Any errors it uncovers will be reported on the standard output
file., Generate.o creates several Pascal text files which must
be embedded into skeleton.p along with LLsup.i. Skeleton.p
has been peppered with "include" directives so that these
files will automatically be included during its compilation.

One additional file will be created - LLgram. It is a
modified version of the grammar specified in step 2, which has
been compressed to facilitate use by skeleton.o, the compiled
form of skeleton.p. Skeleton.o reads LLgram-before transla
tion begins.

5) Compile skeleton.~. If you are using the Pascal compiler
"pi II t then just type:

pi skeleton.p; mv obj skeleton.o

If you have another Pascal compiler, then invoke it in the
standard way. Assuming there were no errors in the specifica-

9

tion of the grammar and the definition of the routines in
LLsup.i, the resulting object code, ske1eton.o, will be a
working translator. If ,there are errors ''in the grammar, then
all the steps just listed will have to be repeated. If the
translation grammar is correct, but the support routines are
incorrect, then they must be corrected and ske1eton.p must be
recompiled. You must 'repeat this process until you are satis
fied that the translator is correct.

6) Add ~ processing capabilities. Ske1eton.o will detect any
syntactic error in a source string. The detection and pro
cessing of semantic errors is left entirely in your hands as
the translator writer. Ske1eton.o's default error recovery is
to terminate the translation, causing an appropriate message
to be printed. Zuse also supports optional 'sophisticated er
ror processing facilities which allow you to specify a number
of possible recoveries when a parsing error is detected.
These are explained in section 7.

1.3 Manual organization

This user manual itself is organized into sections based on
the steps just listed in section 1.2. A running example is used
throughout to illustrate concepts as they are introduced.

For further information about Zuse, the, reader is urged to
contact the author at the Department of Computer Science, Univer
sity of California, Santa Barbara, California 93106, phone: (805)
961-3236 or x-4321.

2.0 Write A Context-Free Grammar

The first step in generating a translator is to prepare a
context-free grammar which specifies the syntax of the language
to be translated. A context-free grammarG classically has four
components:

• nontermina1s - the grammatical categories

• terminals - the alphabet of the language

.. axiom - a non terminal which begins all derivations

productions - the rewriting rules

In fact, Zuse uses a somewhat different structure dictated by the
need to distinguish between different types of terminals. Two
classes of terminals will be defined: "groups" and "literals".
Details about them are presented in section 2.3.

The grammar specification is divided into declarations and
productions. Each vocabulary symbol used in the grammar must be
declared, indicating what type of symbol it is. Just as in Pas
cal, a symbol must be declared before it can be referenced. But
before describing how to write the grammar, the language which
will be the basis for a running example throughout the manual
will be described.

2.1 The language EXPRESSIONS

At this point the language which will serve as the running
example throughout the manual will be introduced. The language
EXPRESSIONS contains possibly empty sequences of arithmetic ex
pressions terminated by semicolons. Its grammar is called
G EXPRESSIONS. The operators are four basic arithmetic opera
tions on integer values:

+ - * /
Operands are unsigned integer literals. 90me sample strings of
EXPRESSIONS are:

(3+4)*(5-6); 4-6; 4 / 6;

12 / 3;

3· ,

The arithmetic operators follow common precedence rules; i.e., *
and are performed before + and -, with operations being per
formed left to right within precedence. Parenthesization can
override any default precedence.

The translation of a member of EXPRESSIONS will be its
numeric value. Hence, the translator in this case will be an ex-

10

pression interpreter. For the three examples above, the transla
tions are:

-7 -2 0

4

3

You will type in an expression from the terminal, and your inter
preter will print its value immediately below your input. If you
type an invalid expression, then an appropriate error message
will be printed just below the incorrect input. Hence, in this
case there really is no "object code" for the translation, since
the display of the expression's value on the terminal is the only
desired output.

2.2 Lexical structure of Zuse grammars

2.2.1 Tokens

Zuse grammars have much the same lexical structure as Pascal
programs. Within a grammar a "token" is a sequence of printable
characters which has no embedded blanks, tabs, or newlines. In
certain cases it may be necessary to surround a token with single
quotes:

,token •• '

because the unquoted token is part of the metalanguage used by
Zqse to specify the grammar. For example, each production ends
with a semicolon. Hence, it is impossible to have a literal
semicolon as a terminal symbol on the right-hand side of a pro
duction unless it is surrounded by quotes:

x = ••• ';'

In other contexts where there is no ambiguity, the semicolon can
be used without quotes.

Tokens may start in any column •
are token separators. Blank lines
where in a grammar. For convenience
word "spacer" will be uniformly used
of blanks, tabs, and newlines.

Blanks, tabs, and newlines
may be freely inserted any
in later discussion, the
to mean any positive number

Zuse is,sensitive to upper and lower case letters. For ex
ample, the following three symbols could all be declared as dis
tinct nonterainals in your grammar:

PROGRAM program PrOgRaM

so be very careful, especially if your Pascal compiler does not
.ake such distinctions for identifiers ,declared in Pascal pro
grams. Even if your coapiler would treat the three symbols,writ
ten above as the same identifier, Zuse will not.

The .axiaum permissible length of a symbol is 12. If ' 'you
write a symbol longer than the permitted maximum, generate.o wi~l
print an error message and disgard all characters of that symbol
beyond the maxiaum.

A comment may be inserted anywhere a spacer is allowed. In
Zuse comments have the form:

(* comment •• *)

This is one of the two formats for comments used in Pascal. The
other form of Pascal comment, { •• }, is not allowed in Zuse be
cause the curly brackets are used for other purposes as described
later.

2.3 Declarations

Every symbol used in the grammar must be declared, although
the order of declaration is not significant. A symbol can only
be declared once. Zuse will tell you if you declare a symbol
more than once or reference 'an undeclared symbol in a production.

The same basic format is used for all declarations:

The SPECIFIER, which is part of the same token as '%', and so
cannot be separated from it by a spacer, indicates the type of
component being declared:

n N - nonterminal

a A - axiom

1 L - literal

g G - group

Note that either lower or upper case letters can be used. There
are three other specifiers used for declaring other types of sym
bols, which are described later.

2.3.1 Terminals

Terminal symbols represent the lexemes of the source string.
They are divided into two kinds -- "literals" and "groups". For
example, in a grammar for Pascal, we might find terminals de
clared for the keywords such as lido", "program", "begin", and
"varn , for operators such as "::", "<>", and "=", and for the
identifiers and integers. Any sequence of characters with no em
bedded spacers can be declared as either a literal or a group.

A literal represents itself; i.e., it is a symbol which
literally appears in a source string. The terminals "<>", "varn ,
and "=" are examples of literals. Reading a Pascal program, we
would expect to find literal occurrences of these symbols. The
other form of terminal is a group, which represents a collection
of lexically related symbols such as the integers or identifiers.

The grammar, G EXPRESSION, has seven literal symbols which
can be declared by:-

%1+-*/();

The order in which the literals are declared is not important,
but every literal which will be used in a production must be de
clared.

The "%1" could appear anywhere on the line ("%L" could have
been used instead, but not n% 1" since no embedded spacers are
allowed), followed by the list of literal symbols. Elements of
the list are separated by one or more spacers.

Literals can be
number of separate
clarations:

declared over several
literal declarations.

%1+

%1*
%1

%1
%1 %1

(* additive ops *)

(* multiplicative ops *)

(* note ";" doesn't need
quotes here *)

is equivalent to the earlier declaration.

lines, using any
The sequence of de-

At the translator-writer's discretion, the lexical analyzer
can group symbols into a syntactic category rather than relying
on the grammar to do so directly. Doing so can sometimes simpli
fy the grammar significantly; this is usually true for integers. -
Since EXPRESSIONS contains positive integers, they will be used
to illustrate the concept of a lexical group.

There is such a large number of distinct integers that it is
impossible to enumerate them, yet they can certainly be con
sidered indivisible lexical units. To make it possible to write
a grammar which does not detail how integers are structured and
does not attempt the impossible task of enumerating them, the no
tion of a token group is introduced. The entire set of integers
can be declared by:

%g INTEGER

Having done so, you can use the symbol INTEGER in productions to
stand for any integer wherever a terminal symbol is legal. The
lexical analyzer LLNextToken must contain logic to recognize and
classify integers within the source string. The classification
details are discussed in section 5.

It is important to realize that the word "INTEGER" used in
the above declaration has no special meaning to Zuse. The symbol
"gzorp" could just as easily hsve been used:

%g gzorp (* stands for the integers *)

"INTEGER" was chosen because it is a good mnemonic, but other
equally good (but distinct) mnemonics such as "integer", "int",
and "Integer" could have been selected instead.

2.3.2 Axiom

In addition to declaring the terminal symbols, you must .also
declare the nonterminals and indicate which non terminal is the
grammar axiom. The axiom of G_EXPRESSIONS, "Ax" is declared by:

%a Ax

or

%A Ax

This declaration can appear anywhere in the declaration section.
It also has the. effect of declaring "Ax" to be a nonterminal, so
it should not be redeclared as a nonterminal elsewhere. If you
forget to declare an axiom, generate.o will remind you.

2.3.3 Nonterminals

A nonterminal is any token containing no embedded spacer.
They are declared using the specifier 'n' (or 'N'):

%n Asop Mdop E T E-list P T-list

Nonterminal names are separated by one or more spacers. Note
that nonterminals E-list and T-list include a hyphen, making them
illegal Pascal identifiers, but perfectly valid nonterminals.
All nonterminals are shown here on a single line, but they could
just as well have been written over several lines as was done for
the grammar literals.

2.3.4 Terminating the declarations

When all declarations have been stated, the declaration sec
tion is terminated by '%%'. Hence, the entire declaration sec
tion for G EXPRESSIONS could look like:

%a Ax
%n Asop Mdop E T E-list P T-list
%g INTEGER
%1+-*/()
%%

2.4 Productions

2.4.1 Alternative productions

Once the declaration section is complete, the grammar pro
ductions must be specified. They follow the "%%" which ends the
declaration section. All productions with the same left-hand
side, called alternative productions, must be declared together.
The format for declaring the set of alternative productions for
some nonterminal X is:

X LIST OF SYMBOLS

LIST_OF_SYMBOLS

LIST OF SYMBOLS

where "=" separates the left and right-hand sides of the produc
tion, LIST OF SYMBOLS is a possibly empty sequence of vocabulary
symbols, and It;" terminates each alternative production. All
nonterminals, literals, and groups used in a production must ap
pear in a declaration. Members of the list of symbols are
separated by one or more spacers.

The productions for G EXPRESSIONS are:

Ax (* empty production *)
E Ax; (* note the use of a quoted *)

11

E = T E-list ;

E-list = Asop T E-list ;
(* another empty production *)

T - P T-list

T-list = ~op P T-list

P - (E) ;
INTEGER

Asop • +

Mdop * ;

Note the use of both literals and groups in the symbol lists on
the right-hand side of productions and the use of the quoted
semicolon in the second alternative production for "Ax". The
literal semicolon must be quoted to distinguish it from the end
of the production marker. On the other hand, the declaration of
the literal semicolon did not require quotes because a semicolon
has no special significance in declarations.

2.4.2 Selection set conflicts

Because Zuse is based on LL(I) parsing, the selection set of
each production must be computed. This tells skeleton.o which
alternative production to select when it needs to expand a non
terminal while building the parse tree top-down for a source
string. Generate.o will compute the selection set of each pro
duction for you. This computation is very tedious and error
prone when done manually, and its automatic computation is one of
the more pleasant features of Zuse.

The grammar for G EXPRESSIONS given above is LL(I); i.e.,
there are no conflicts-in the computed selection sets of alterna
tive productions. Sometimes, however, you will write a grammar
in which the selection sets of two alternative productions are
not disjoint. Generate.o will always inform you when this occurs
by printing a message stating which alternatives have the con
flict, and which selection set element they share. The message
will appear on the standard output device during the processing
of the grammar. However, ~ven if there are conflicts, generate.o
will still produce a valid parser. It uses a default tie
breaking strategy whenever conflicts arise: If two alternative
productions have a selection set element in common, the produc
tion which appears first in the grammar will be selected. The
conflicting token will be erased from the selection set of the
later occurring alternative.

This tie-breaking strategy is fine provided it is con
sistent with how you envisioned the parse to proceed. However,
Zuse provides an easy way to override the default tie-breaker
whenever the default choice is inappropriate. This is nicely il
lustrated using the classic ambiguity involving the optional
"else" clause of an if-statement.

The ambiguity arises when considering nested if-statements:

if P then if r then s else t

can be parsed so that the else-clause is associated with either
the first or the second if-statement, as reflected by the two
physical nestings:

if p then
if r then 5

else t

if p then
if r then 5

else t

(I)

(2)

Th~ first nesting is common to most languages including Pascal.
The problem is getting the parser to understand which nesting is
meant.

The ambiguity is reflected in a grammar which is not quite
LL(l). Two alternative productions both contain the literal
, else' :

12

IF STMT if PRED then STMT ELSE PT

ELSE PT else STMT ;

The selection set of each alternative of ELSE PT contains "else".
The presence of other tokens in these selection sets would depend
on the other features of the language in which this statement is
embedded. According to the default tie-breaking strategy of
Zuse, the first alternative would be used. This corresponds to
(1) above.

To illustrate the statement of specific selection set- ele
ments, suppose that the order of the two alternatives were re
versed. To achieve the same nesting, you would have to write:

ELSE PT ,
else STMT %else; (* choose this prod *)

A specific selection set element can be written as part of a pro
duction. This Ust of terminals, begun by "%", and separated by
one or more spacers appears just before the semicolon ending the
production. Specifying "% else" tells skeleton.o to use the
second alternative no matter which other alternative productions
might also have "else" in their selection sets. Any production
can be written with a selection set, although no two alternatives
should specify the same selection set element.

Since you can specify selection set elements, you must also
have a way to indicate which production to select when the end of
the source string has been reached. None of the declared termi
nal s,mbols is appropriate. "@" is a pre-defined group used in a
grammar to signify "end of source". It can only be used in a
selection set and in synchronization specifications (section
7.2), never as an ordinary terminal on the right-hand side of a
production. Note that since "@" means "end of source", it should
not be used in other contexts. If you have a language in which
"@" is a token, then declare a group such as "AT-SIGN" and have
the lexical analyzer associate "@" with "AT-SIGN".

Occassionally you may want to force the selection of a pro
duction no matter what the next token's value really is. This is
normally used for error processing in which a production really
contains nothing more than a specification of the error recovery
strategy you want to employ. Forcing the selection of a produc
tion will ensure that the desired error recovery strategy is
adopted. Otherwise, if the error occurred in the token which
would have caused you to select the production with the recovery
strategy, that strategy will not be applied. This is discussed
in more detail in the section 7 on error processing.

In order to force the selection of a production, a pre
defined group element "any" is introduced. (All letters of "any"
must be lower case.) Like "@", it should only be used in selec
tion sets and in specifying synchronization. It is used to force
the selection of a production from among a set of alternatives.

Suppose the current token is w and "an," is in the selection
set of production p. If no previously occurring alternative to p
has w in its selection set, then p will be selected, even if the
current token is illegal.

2.4.3 LLselect

In a complex grammar it ma, be hard for you to anticipate
what the selection set of particular productions will be. To
help you debug your grammar, as well as for documentation,
generate.o will optionally produce a reformatted grammar for you
in file "LLselect". The reformatted grammar will be produced if
you specify "%s" as a declaration anywhere in the declaration
section. The reformatted grammar will contain the productions
numbered in increasing order by line number from the original
grammar. All error processing code will have been removed for
easier readability, and all action code will have been replaced
by the string "{a .. }". Most important is the addition of the en
tire selection set of each alternative after all conflicts have
been resolved. The messages stating selection set conflicts
which were reported on the standard output during the execution
of generate.o will be included at the front of LLselect. Appen
dix A contains LLselect for G EXPRESSIONS and Appendix B contains
LLselect for a preprocesor for FORTRAN.

2.4.4 Terminating the productions

The grammar productions are terminated in a manner similar
to the way the declarations are, by writing "%%" where the begin
ning of a production is expected.

3.0 Embed Action Routines

3.1 Fonoat

Once the graaaar has been defined, you must add action code
which specifies how the translation will proceed. Although this
step can be done while the grammar is being written, it is often
aore convenient and more reliable to first develop the gramaar,
eabedding action code only after the grammar is complete.

Action code say appear anywhere among the list of vocabulary
syabols on the right-hand side of a production. The code is ac
tually a sequence of Pascal statements enclosed by curly brack
ets:

'{a' Pascal statements 'I'

The first character after 'I' must be an 'a' to indicate that it
is action code. Other characters, discussed in section 7, are
used for other types of code.

Rewriting the grammar productions for G_EXPRESSIONS to in
clude action code yields:

Ax - (* empty production *)

{a init} E (a writeln(popopand);}
';' Ax (* note the use of a quoted

E - T E-list

E-list - Asop (a pushoptor($1.operaLor)} T
(a r :- popopand;

1 :- popopand;
popoptor(op);
if op - '+' then

pushopand(l+r)
else

pushopand(l-r)}
E-list ;

(* another empty production *)

T - P T-list

T-list - Mdop (a pushoptor($1.operator)} P

P

Asop

Melop

(a r :- popopand;
1 :- popopand;
popoptor(op);
if op - '*' then

pushopand(l*r)
else

pushopand(l div r)}

T-list

E
INTEGER (a pushopand(S1.operand)}

+ {a $O.operator := '+' };
- {a $O.operator := -'I;

* {a SO.operator := '*'};
{a $O.operator := '/'} ;

*)

Several aspects of this revised grammar warrant explanation.
For the moment ignore those strange looking identifiers which be
gin with "$". They refer to special variables which will be ex
plained in section 3.5.

Action code specifies how the translation is to take place.
All aspects of that specification are left in your hands. You
can either write all of your code directly in th~ grammar or you
can call separately declared procedures and functions from within
the action cod~, or mix the two styles. The grammar above is
written in a mixed style. The action code in the first alterna
tive for T-list has two assignment statements followed by a pro
cedure call, followed by an if-then-else statement. The action
code for the second alternative of P has just a single procedure
call. You must decide which support routines (as those user
defined routines called from action-code are called) to define
and what they will do. G EXPRESSIONS has five support routines
referenced in the action code:

init pushopand popopand pushoptor popoptor

The declaration of these five routines must be included in
LLsup.i, which contains the support routines, before skeleton.p
can be compiled. However, at this point you only need to know
what these routines do so that you can properly write the action
code.

The action code will map the infix expressions into two
stacks "opandstk" (operand stack) and "optorstk" (operator
stack) -- where the operands and operators of the expression will
be held, respectively. The algorithm to evaluate infix expres
sions using two stacks is quite standard, and it is assumed that
you are familiar with it. The code defining these five functions
is specified in section 4. "Init" initializes the two arrays
which represent the stacks and two integer variables, "topopand"
and "topoptor", which point to the top of "opandstk" and "op
torstk", respectively. "Popopand" and "pushopand" pop and push
elements onto opandstk, while "popoptor" and "pushoptor" are the
analogous routines for optorstk.

3.2 Variable, constant, type, and file declarations

3.2.1 Variable declarations

Two variables are referenced in the action code -- "I" and
"r". These variables hold temporary values of the left and right
operands of some operator. Because Pascal requires the declara
tion of each variable which is referenced, there must be some
provision for declaring these variables. Note that Zuse itself
cannot have already declared them because the particular set of
variables needed for the action routines will vary from transla
tor to translator. To permit user-declared variables, an addi
tional declaration type is permitted in grammars in the declara
tion section:

Xv Pascal variable declarations

If a 'v' (or 'V') specifier is used in a declaration, then the
variable declaration is copied verbatim into file "LLvar.i".
Note that each declaration ends with a semicolon. If more than
one variable is declared, they are copied in the order in which
they appear in the grammar.

G EXPRESSIONS needs several declarations:

Iv op: char; (* the operator popped from
optorstk *)

Xv toptorstk: integer; (* top of optorstk
topandstk: integer; (* top of opandstk

Iv opandstk: array[1 •• stksize] of integer;
optorstk: array[l •• stksize] of char;

Iv l,r: integer; (* temps *)

*)
*)

These six variable declarations can appear anywhere in the de
claration section. Since the order of variable declarations is
not important in Pascal, they can be declared in any order. Note
that several variables can be declared using a single "Xv" as in
the declaration of toptorstk and topandstk.

3.2.2 Constant declarations

The integer constant "stksize" is referenced in the declara
tion of opandstk and optorstk above. This constant and any oth
ers which you need :or your action code can be specified through
a constant declaration in the grammar. A 'c' or 'c' is used to
specify a constant declaration. G EXPRESSIONS needs:

Xc stksize = 20; (* maximum depth of stk *)

Constant declarations will be placed into the file "LLconst.i"
for inclusion into skeleton.p. They will appear in LLconst.i in
the same order as they appear in your grammar. It is your
responsibility to guarantee that a constant is defined before it
is referenced.

3.2.3 Type declarations

Although they are not needed for this example, you can de
clare new types using the 't' or 'T' specifier. For example, if
we wanted our interpretor to only work on nonnegative numbers, we
might declare:

Xt NonNegative O •• maxint;

13

and substitute NonNegative for integer in the variable declara
tions:

%v toptorstk: NonNegative; (* top of optorstk *)
topandstk: NonNegative; (* top of opandstk *)

Type declarations will be placed into the file "LLtype.i" for in
clusion into skeleton.p. They will appear in LLtype.i in the
same order as they appear in your grammar. It is your responsi
bility to guarantee that a type is defined before it is refer
enced.

3.2.4 File declarations

The purpose of skeleton.o is either to interpret the input
or to map it into some object code. It therefore must have a
file from which the source string is read and, in the latter
case, a file where the object code is placed. In addition, a
complex compiler may also need several other files. The file de
clarations themselves can be handled as ordinary variable de
clarations. For example, if we wanted a to write a C compiler,
the object code could be placed in a file called "object" which
was declared by:

%v object: file of char;

The action code which produced the object code would write tc
this file.

An additional problem arises, however, because Pascal also re
quires that each file be listed in the program statement. Hence
a %f declaration is introduced. The program heading fo!
skeleton.p has the form:

program skeleton(input, output, LLgram
lIinclude LLfile.i

) ;

if you wish to augment skeleton.p with new files, their names
should be listed in a %f declaration, begun by a comma, and
separated by commas. If we wanted to add an object and a message
file to skeleton.p we would declare these variables by:

%v object: file of char;
message: file of char;

and also declare the files by:

%f ,object, message

The former would be included into the variable declaration sec
tion of skeleton.p, while the latter would yield the program
statement:

program skeleton(input, output, LLgram
,object, message

) ;

3.3 Naming conventions

Because Pascal is a block-structured language, the scope of
declarations in skeleton.p is very important. You might acciden
tally select a name for one of your variables, types, constants,
or support routines which already has been declared in skeleton.p
at the same lexical level. This would cause a compile-time error
when you tried to compile skeleton.p. To minimize the risk of
such collisions all identifers in skeleton.p which are at the
same lexical level as those identifiers which you will declare
for inclusion within it begin with the characters "LL". For ex
ample, the main procedure of skeleton.p is called "LLMain". If
you simply avoid declaring identifiers which begin with "LL" you
should never encounter any difficulties.

3.4 Parsing action

Skeleton.o will construct a parse tree for the source string
in a top-down left-to-right manner. The axiom you declared in
the grammar will be the root of the parse tree. It will compare
the first token of the source string against the selection sets
of the alternative productions for the axiom. Assuming it finds
a production with the required selection set element, it will ex
pand the axiom by hanging tr~e nodes from it corresponding to the
right-hand of the selected production. It will then examine the
leftmost child of the axiom which was just added. There are

14

three types of nodes that child can be, depending on the kind of
symbol from the right-hand side of a production which it stands
for nonterminal, terminal, and action. The translator's
response will depend on which type of node it finds.

If the child is a nonterminal node, the same process which
was just applied to the axiom will be repeated for the child.
The alternative productions of the nonterminal will be scanned to
find one whose selection set matches the current token. Failure
to find such an alternative indicates that the source string has
a syntactic error, and error processing as detailed in section 7
will be initiated.

On the other hand, if the child is a terminal, the parser
will compare the first token of the source string against that
terminal. If they "match"; i.e, they are equal, the parser will
advance to the right sibling of that node, and advance to the
next token in the source string. At this point the whole process
will be repeated with the particular action taken depending on
whether the tree node is a nonterminal action code, or a termi
nal.

If the child is action code, that code will be executed.
Presumably this code will manipulate the variables declared in
the grammar by "%v" declarations in order to effect the desired
translation. Once this code completes execution, the parser will
advance to the right sibling of that tree node, but will not ad
vance to the next token in the source string since nothing in the
parse tree has been "matched" against it.

When the right-most child of a parent nonterminal has been
visited in the manner just described, the parsing of that nonter
minal is considered complete. Parsing continues with the right
sibling of that parent node. This process iterates until an er
ror is uncovered, in which case the error recovery policy dic
tates what then happens, or until the end of the source string is
reached t or until the entire parse tree has been constructed. If
the end of the source string is reached before the entire parse
tree has been constructed or conversely, the string is not in the
source language and error processing is initiated.

The order in which nodes are added to the tree and then ex
amined dictates when action code will be executed. For example,
in G EXPRESSIONS if the second production is selected when ex
panding axiom Ax, then the first thing the parser will do is call
init, the action routine which initializes the data structures
necessary to compute the value of the expression. Once initiali
zation is complete, the parser will attempt to expand E into a
complete expression. Based on the other action code which will
be executed during that expansion, the value of the expression
will be on the top of opandstk when E has been completely expand
ed. At that point other action code is executed which causes
opandstk to be popped, and the value to be printed. The parser
then moves on to the semicolon, and finally to Ax. If this in
terpreter is to operate correctly, the other action code embedded
in the remaining productions must ensure that the value of the
string derived from E is stored atop opandstk. To understand how
this is done, the use of synthesized attributes to pass informa
tion throughout the parse tree must be examined.

3.5 Attributes

The last feature of the action code which warrants explana
tion is the appearance of those strange variable names with a "$"
in them. They arise from the use of attributes to pass informa
tion through the tree.

Each node of the parse tree has associated with it a vari
able or "attribute" which can be used within action code to com
pute the translation of the source string. For G EXPRESSIONS
this attribute will be used to pass information about integers
and operators in the source string. Because the use of the at
tribute will vary so greatly with the source language and its in
tended translation, it would be awkward to predefine the data
type which the attribute has. Therefore, each grammar writer
must declare the attribute data type using a type declaration:

%t LLattribute = type-declaration

The reserved name "LLattribute" must be used for this purpose.

Since any Pascal type declaration can be used, a record can
be declared to actually provide several distinct attributes.
Hence, the restriction to a single attribute per parse tree node
is not actually a hindrence. For example, G_EXPRESSIONS needs

some way to store both integer values and char values, leading to
the declaration:

%t LLattribute • record
operator: char;
operand: integer

end;

In fact, if you would prefer different nodes to have different
attributes, rather than having each node have all attributes,
this is readily achieved through a variant record:

%t LLattribute = record
case selector-type of

selectorl: (fieldl);
selector2: (field2);

selectork: (fieldk)
end;

In order to refer to an attribute, the action code must use a
special naming scheme involving "S". "s" has a special meaning
when used inside action code. If n is an unsigned positive in
teger, then "sn" refers to the attribute of the n-th vocabulary
symbol on the right-hand side of the production in which the "Sn"
appears. "SO" refers to the attribute of the left-hand side of
the production. In other contexts, "s" has no special meaning.
For example, the first alternative for E-list:

E-list s Asop {a pushoptor(Sl.operator)} T
{a r :- popopand;

1 := popopand;
popoptor(op) ;
if op = '+' then

pushopand(l+r)
else

pushopand(l-r);}
E-list ;

contains action code which has "Sl.operator" in it. In this
case, Sl.operator refers to the value of the operator field of
the attribute of Asop which is the first symbol on the right-hand
side of that production.

To better understand the way in which information is passed
up the tree, consider the parsing of "3+4;". The derivation will
begin constructing the parse tree:

Ax

I

I I I I I
{a init} E {a writeln(popopand)} ; Ax

Init will be called to initialize the data structures, in this
case, setting toptorstk and topandstk to be zero showing that no
elements have been stacked yet. Then the parser will expand E, T
and P in turn giving:

Ax
I

--
I I I I I

{a init} E {a writeln(popopand)} ; Ax

I

I I
T E-l1st
I

I
P T-list
I

I I
INTEGER {a pushopand(Sl.operand)}

At this point the parser will visit the node labeled INTEGER snd
match it sgainst the current token "3" ill the source string. The
lexical analyzer should classify "3" as an INTEGER so that the
match will succeed. The current token also has an attribute.
The lexical analyzer will assign the integer value 3 to the
operand field of that token's attribute.

Next the parser advances to visit the action code which is
to the right of the node labeled INTEGER. This action code will
be executed causing $l.operand to be pushed onto the operand

stack. The first vocabulary symbol starting from the left end
among its' siblings is the node labeled INTEGER which was juat
... tched against "3" in the source string. Hence, the integer
value 3 is pushed onto the operand stack.

At this point the right-most child of the node labeled P has
been processed. Hence, the parser would next visit the node la
beled T-list. The second alternative for T-list will be selected
causing T-list to expand into the empty production.

Redrawing the parse tree, eliminating nodes already visited
which can play no further role in the translation gives:

Ax

I

I I I I I
{a init} E {a writeln(popopand)} ; Ax

I

I I
T E-l1st

E-list and Asop now expand to yield:

Ax

I

I I I I I
{a init} E {a writeln(popopand)} ; Ax

I

I I
T E-l1st

I

I I I I I
Asop {a pushoptor(Sl.operator)} T {a •• } E-list

I

I I
+ {a SO.operator := '+'}

The first alternative production is selected for Asop because the
current token is "+". The action code in that production assigns
SO.operator the character value '+'. SO refers to the attribute
on the left-hand side of the production, which corresponds to the
node labeled Asop. When that action code is executed, the opera
tor field of the node labeled Asop is assigned the value '+'.

The next node visited is the action code to the right of
Asop. It refers to Sl.operator. This is the value just assigned
to the operator field of Asop's attribute.

This scenario continues a while longer until the entire
parse tree is formed, but by now the basic information passing
mechanism using attributes should be clear.

There is a simple restriction on the use of attributes in
action code which is dictated by the order in which the parse
tree is constructed. An attribute must have a value before it
can be referenced in action code. Since skeleton.o parses top-
down left-to-right, Sn in action code A only has a value if the
n-th vocabulary symbol occurs to the left of A. For example:

x = Yl {a •• x := S2 •• } Y2 Y3

would be nonsensical because the value of $2; i.e., the attribute
of Y2, will not be known when the action code referencing it is
executed.

A~though the reference to $2 makes no sense in the above
production, the very similar:

x = Yl {a •• $2 := x •• } Y2 Y3

which assigns a value to $2 is perfectly reasonable. The attri
bute of Y2 would be assigned a value which could then be passed
down the parse tree when Y2 was expanded (assuming it were a non
terminal). This gives you the power of both synthesized and in
herited attributes.

In fact, there is no logical reason why you should not be
able to assign a value to the attribute of any vocabulary symbol
anywhere in t.he production from any action code in the produc
tion. However, generate.o has a restriction on assigning values

15

to attributes forced by design decisions for generate.o.
assign a value to the vocabulary symbol to the immediate
the action code which contains the assignment -- but not
symbol further to the right •. Hence, the production just
legal, but the similar:

x = Yl {a •• $3 := x •• } Y2 Y3

You can
right of
to any

above is

is not legal because the symbol to the immediat.e right of the ac
tion code is the second vocabulary symbol, not the third one.

4.0 Define support routines

The support routines referenced in the action code must be
defined before skeleton.p can be compiled. They can freely
reference any variables, constants, types, or files declared by
the translator-writer in the grammar. For the example, the five
routines are:

procedure init;
begin

topandstk := 0;
toptorstk :- 0;

end;

function popopand: integer;
begin

if topandstk = 0 then begin
writeln('operartd stack underflow');
LLFatal; {terminate translation}
end

else begin

end;

popopand := opandstk[topandstk];
topandstk :- topandstk - 1;
end;

procedure pushopand(element: integer);
begin

if topandstk = stksize then begin
writeln('operand stack overflow');
LLFatal; {terminate translation}
end

else begin

end;

topandstk := topandstk + 1;
opandstk[topandstk] := element;
end;

procedure popoptor(var result: char);
begin

if toptorstk = 0 then begin
writeln('operator stack underflow');
LLFatal; {terminate translation}
end

else begin

end;

result := optorstk[toptorstk];
toptorstk := toptorstk - 1;
end;

procedure pushoptor(element: char);
begin

if toptorstk - stksize then begin
writeln('operator stack overflow');
LLFatal; {terminate translation}
end

else begin

end;

toptorstk := toptorstk + 1;
optorstk[toptorstk] := element;
end;

These five function and procedure declarations should be placed
in LLsup.1.

These routines reference a procedure
described:

LLFatal

not previously

LLFatal is a pre-defined procedure which will terminate the
translation after printing an appropriate message. It is used

16

when a catastropic translation error occurs, such as overflowing
optorstk. It is also called as the default error recovery when a
syntactic error is detected by skeleton.o and no user-defined
recovery has been specified in the grammar. You can freely call
it within your action code. It takes no arguments.

5.0 Lexical Analyzer

Once the support routines are complete, the lexical analyzer
LLNextToken must be constructed. The lexical analyzer

needed for translating EXPRESSIONS has been broken down into two
routines, LLNextToken and nextchar. The latter is called by
LLNextToken to obtain the next character from the source text and
to take care of bookkeeping chores such as writing the lines of
source text out to a listing file and updating a line counter.

Several pre-defined error processing routines will need to
know the line number of the source text where the error occurred.
This information must be kept in the pre-defined integer variable
LLLineCount. Skeleton.p will initialize this counter to 0 for
you before parsing begins. It is the your responsibility to up
date it properly through LLNextToken.

procedure nextchar; {as·sign next character from source
to curchar}

begin
if noteof then begin

if LastWasEoln then begin
LLLineCount := LLLineCount+l;
LastWasEoln := false;
end;

if eoln then
LastWasEoln := true;

read(curchar);
end {if not eo£}

else
curchar := '@'

end; {nextchar}

procedure LLNextToken; {get next token from candidate}
var

i: integer;
begin with LLCurtok do begin

{curchar should become the first non-blank}
while curchar = ' I do nextchar;

{clear PrintValue field}
for i := 1 to LLStringLength do

PrintValue[i] := ' ';
if curchar in ['0' •• '9'] then begin

{token is an integer}
i := 1;
TableIndex := LLFind('INTEGER', group);
PrintValue[i] := curchar;
attribute.operand :=

ord(curchar) - ord('O');
nextchar;
while curchar in ['0' •• '9'] do begin

i := i+l;

end

PrintValue[i] :=·curchar;
attribute.operand :=

attribute.operand*10 +
ord(curchar) - ord('O');

nextchar;
end;

else if (curchar - '@') and eof then begin
PrintValue := 'end-of-file';
TableIndex := LLFind('@', group);
end

else begin
PrintValue[l] := curchar;
attribute.operator := curchar;
TableIndex := LLFind(PrintValue, literal);
nextchar;
end;

end; {with}
end; {LLNextToken}

There are·a handful of simple conventions which must be followed
in constructing LLNextToken so that it communicates with the
parser properly.

First, despite its appearance above LLNextToken does have a
parameter. Because this routine must be referenced within
skeleton.p long before the point where LLsup.i is inserted into

it, LLNextToken'pas a forward declaration in skeleton.p:

procedure LLNextToken(var LLCurTok: LLTok);
forward;

All direct communication between the
parser is through the parameter
pre-defined in skeleton.p to be:

LLTok ~ record

lexical
LLCurTok.

PrintValue: LLStrings;
attribute: LLattribute;
Tablelndex: integer

end;

LLStrings is pre-defined to be:

analyzer and the
The type LLTok is

LLStrings = packed array[1 •• LLStringLength] of char;

where LLStringLength is a pre-defined constant equal to 12.
LLattribute is the user-declared type discussed in section 3.5.

LLNextToken has one major function -- to fill-in the three
fields of LLCurTok. ·LLNextToken should assign a value to the at
tribute associated with the current token. The particulars of
this assignment will vary with the declaration of LLattribute,
the particular token encountered, and the translator being imple
mented. LLNextToken should assign to the PrintValue field of
LLCurTok the string which you want to be printed when the built
in error-processing routines are called. For ordinary literals
and groups, this is usually the characters of the candidate
string. For non-printable terminals, such as an implicit end
of-statement marker as is found in FORTRAN, the string 'end-of
stmt' might be assigned to LLCurTok.PrintValue instead.

LLNextToken must also assign a value to the "Table Index"
field of the current token. Skeleton.p has an internal symbol
table (not to be confused with any symbol table which you might
produce for your translator) to keep information about the termi
nal symbols of the grammar. This table is designed to minimize
parsing time. The table structure is hidden from you and is ir
relevant to what you have to write in LLNextToken. All of your
communication with that table will be through the pre-defined
routine "LLFind":

function LLFind(item: LLStrings; which: LLStyle): integer;

Its first argument is the literal or group name which this token
corresponds to. For literals this value normally equals
LLCurTok.PrintValue. For groups, LLFind should be called with
the group name rather than the literal value of the token. The
second argument is either the enumerated constant "group" or
"literal" depending on the token type. LLFind returns the index
into the symbol table where that argument can be found. If the
token cannot be found, the index value 0 is returned, indicating
that the token is illegal. You can process an illegal token at
the lexical level if you prefer or pass the responsibility on to
the parser. In any event, whether LLFind returns a positive or
zero integer, this index should be assigned to
LLCurTok.Tablelndex.

The special case when the end of the source string is
reached is handled quite simply. LLFind should be called with
the first character of item equal to "@" and the remaining char
acters blank. "@" is a group. The value returned by LLFind
should be assigned to LLCurTok.Tablelndex. LLCurTok.PrintValue
could be assigned the string 'end-of-file' or some other ap
propriate string, and LLCurTok.attribute should be left unde
fined.

Note that there are two user-defined variables referenced in
nextchar. They must be declared in the grammar along with the
other variables used for the other support routines in LLsup.i:

%v LastWasEoln: boolean;
curchar: char;

In order for LLNextToken to work properly the first time it
is called, curchar and LastWasEoln must already have a value.
Hence, an action routine which assigns these two variables a
value must be called before skeleton.o references LLCurTok. To
do so a special user-defined procedure, ''''LLInitialize'' will al
ways be executed before parsing really begins. After LLInitial
ize has been executed, LLNextToken will also be called automati
cally causing LLCurTok to become defined so that parsing can be
gin. LLlnitialize can also be used to reset the sourcefile if it

is not that standard input, or to reset or rewrite any supplemen
tal files declared in the grammar.

Since LLInitialize will automatically be called, you should
be sure to include a declaration for it in LLsup.i, even if it
doesn't really do anything useful in your translator.

procedure LLInitialize;
begin

LastWasEoln := true;
nextchar {must be called to ensure LLNextToken works}

end;

All support routines including LLNextToken are placed into
LLsup.i.

If you are using a true Pascal compiler such as Berkeley's
"pc" which supports separate compilation and linkage to routines
written in C, (as opposed to "pi" which produces P-code, not
machine code, and hence does not support separate compilation),
you may want to consider writing a small C program to do the ac
tual reading and writing and linking that with the compiled ver
sion of skeleton.p. Depending on the nature of the i/o, a C ver
sion of "nextchar" could perform significantly faster than a Pas
cal version. Since such a large percentage of the total time is
spent reading and writing, this could dramatically affect the
overall run-time of skeleton.o. Whether this particular strategy
will, in fact, improve skeleton.o's performance depends heavily
on the quirks of your Pascal compiler and the i/o performed in
skeleton.o.

6.0 Execute generate.o and compile skeleton.p

6.1 Normal translation

At this point all pieces necessary to construct the transla
tor are complete. Generate.o should now be executed redirecting
the input from your grammar file:

generate.o < MyFile

Generate.o will print a few informational messages as it
processes. In particular, it will tell you how many vocabulary
symbols and productions are in your grammar. It has extensive
error checking capsbilities; for example, it will flag s refer
ence to an undeclared vocabulary symbol, a second declaration of
the same symbol, or the appearance of an ill-formed production.
When generate.o finishes, it will return to the shell from which
it was called.

At this point you should compile skeleton.p using the Pascal
compiler:

pi skeleton.p; mv obj skeleton.o

All files except LLsup.i that must be included in skeleton.p will
have been generated when you executed generate.o. Assuming there
are no fatal error messages from the Pascal compiler, the object
code should be an executable version of your translator.

The Pascal compiler may issue warnings that certain pro
cedures which begin with "LLSkip" have not been referenced -
LLSkipToken, LLSkipNode, and LLSkipBoth. Do not be bothered by
these warnings. These three procedures are pre-defined for error
processing. If you use the default error recovery, they will not
be referenced (which should be the case for G EXPRESSIONS now).
Later when you add error recovery information into your grammar,
you will probably reference one or more of the routines, in which
case the warnings will disappear.

You may receive two other warnings as well which you can
safely ignore. The compiler may warn you that fields "table" and
"grammar" of LLgramA are not referenced. It is just a quirk of
pi's analysis routines that it thinks these fields are never
referenced. They, in fact, are referenced.

If other warning or error messages appear, they probably in
dicate a problem with your action code, or possibly with a gram
mar declaration for a variable, constant, or type. Fortunately,
the Berkeley Pascal compiler pinpoints which included file it was
compiling when the error was detected. You should use the fol
lowing strategy to isolate errors produced during the compilation
of skeleton.p:

17

File Where Probable Problem
Error ~

LLconst.i illegal %c declaration in grammar

LLvar.i illegal %v declaration in grammar

LLtype.i illegal %t declaration in grammar

LLfile.i illegal %f declaration in grammar

LLact.i illegal action, patch, or synch code

LLsup.i illegal support routine

Errors in the action, patch, and synchronization code will show
up as problems in the file LLact.i which was produced by
generate.o. (Patch and synchronization code are used in error
recovery, and have a form similar to action code. For more in
formation on them see section 7.2.) For convenience in discussing
LLact.i, we will refer to any action, patch, or synchronization
code as "embedded code".

LLact.i is actually the declaration of procedure
tion which structures the calls to all embedded code.
tion has the following structure:

procedure LLTakeAction(CaseIndex: integer);
begin

case C8seIndex of
1: begin embedded-code-sequence-1 end;
2: begin embedded-code-sequence-2 end;

n: begin embedded-code-sequence-n end;
end;

end;

LLTake,Ac
LLTakeAc-

where the i-th embedded-code-sequence is a copy of the i-th em
bedded . code sequence in the grammar beginning the count from the
first production. So, for example, if the compiler reports an
error in embedded-code-sequence-2 in LLact.i, then the erroneOUB
code can be found in the 2nd embedded code sequence in your gram
mar.

If you discover any errors in your translator, the correc
tive action necessary will depend on the severity of the error.
An error in the grammar will require you to modify it, reexecute
generate.o, and recompile skeleton.p. However, if the grammar is
correct, but one of the support routines or LLNextToken has a bug
in it, then only skeleton.p needs to be recompiled after the bug
is corrected.

Once skeleton.p is compiled without error, you should exe
cute skeleton.o. The source string should come from whatever
file you specified in LLNextToken. For our example this is the
standard input, so we would type either:

skeleton.o -- work interactively

or

skeleton.o < MyFile -- read from file

Since, in this case, skeleton.o writes to the standard output, as
you complete an expression and type a carriage return, tbe inter
preter will display the expression's value on the screen. An er
roneous expression will cause an error message to be displayed,
and the interpreter to terminate execution. In the next section,
you will learn how to specify any of several different error
recovery policies instead.

6.2 Verbose mode

For convenience in debugging your translator, there is a
version of the skeletal translator which includes facilities for
tracing the parsing actions it takes in translating a candidate
string skel.debug.p. These trace features are not available
in skeleton.p. Samples of the "verbose" output of skel.debug.o
which has the traci.ng features on are given in both Appendices It.
and B.

7.0 Error processing

A translator c.onstructed according to the instructions
presented so far will process correct input properly. However,
if a string which is not in the source language is given to it,

18

;..

the translator will simply report the error and halt. Because of
the viable prefix property of LL(1) parsers, a syntactic error is
detected at the leftmost position in the source string for which
there is no legitimate continuation. In most circumstances such
poor error recovery (i.e., quitting) is unacceptable. Zuse has a
number of other pre-defined error recovery strategies which you
can specify in the grammar. These fall into two major
categories: patches and synchronizations.

7.1 Patching errors

When a syntactic error is discovered, there are three easy
recovery strategies other than quitting which can be tried:

skip past the current token from the source string, but con-'
tinue the parse from the same place in the parse tree.

skip past the current node in the parse tree, (consider it
to have been matched), but continue the parse with the same
token in the source string.

skip past both the current token and the current node in the
parse tree.

None of these may prove adequate, in which case the more sophis
ticated recovery strategy of synchronization must be used. How
ever, local patching is often sufficient.

In order to specify a recovery strategy other than quitting,
you must include what is called "patch" code in the grammar. A
patch routine looks exactly like an action routine except that
instead of beginning with "{a", it starts with "{p".

A patch routine can follow any terminal symbol, and applies
to the symbol which precedes it. In our example, one of the al
ternatives for "p" can be patched quite nicely:

P = (E) {p LLSkipToken} ;

During normal parsing, patch routines are not executed. In this
respect they differ from action routines which are always execut
ed when it is their "turn" in the derivation. The parser stmply
skips over patch routines because they are not needed for normal
processing.

The parser can detect a syntactiC error in one of two ways.
If the next symbol in the sentential form is a terminal and the
current token does not match it, that is an error. Similarly, if
the next symbol is a nonterm:l.nal, but no alternative production
for that symbol has a selection set which includes the current
token, that is also an error. Patching addresses only the first
type of error, synchronization addresses both.

When the parser detects an error during the matching of a
terminal in the sentential form against the current token~in the
source string, it checks whether there is patch code associated
with that terminal symbol. Patch code is always associated. with
the term:l.nal symbol it follows. In this example, patch code is
associated with the right parenthesis since the "{p ••• } code
follows ")" in the production.

If there is no patch code, the parser quits with a fatal er
ror message. On the other hand, if a patch is present, the
parser executes the patch code. This should slter the source
string by removing the current token, or treat the terminal in
the sentential form as if it bad been matched and advance it, or
both. The parse then resumes. The patch code in the production
above states that when a closing parenthesis is expected in an
expression but none is found, tben the current token should be
skipped and the next one examined. The overall effect of this is
to remove tokens until a rigbt parenthesis is found in the source
string. If the end of the source string is reached before ")",
the translator will quit with a fatal error message.

LLSkipBotb, LLSkipToken, and LLSkipNode are three parameter
less pre-defined procedures designed to facilitate patch
recovery. They are declared in skeleton.p by:

procedure LLSkipBoth

procedure LLSkipToken

procedure LLSkipNode

LLSkipToken just removes the current token. LLSkipNode leaves

the current token in the source string unchanged, but advances
the pointer to the current node in the parse tree, essentially
ignoring the node in the parse tree which did not match the
current token. LLSkipBoth skips past both the current token and
the current node of the parse tree. All routines cause a message
to be printed both to LLMessageFile and to the terminal explain
ing the nature of the error and the recovery taken.

LLSkipBoth can be helpful when you encounter a token which
is often misplaced. For example, the following Pascal constant
declarations are both incorrect:

canst
x false;
y := 3;

After the identifer being declared, the programmer should have
written n.lI, but has written ":" and ":=" instead. These are
likely errors, especially for a beginning programmer. Assuming
that the original production for a constant declaration is:

ConstDcl = Ident 'a' Literal

the translator-writer can perform special checks for these two
likely errors by replacing that production with:

ConstDcl = Ident
'=' {p with LLCurTok do

if (Table Index
(Table Index =
LLSkipBoth

else . .. }
Literal

LLFind(':', literal» or
LLFind(':=', literal» ther

Patches are limited because they are a highly localized
recovery. Only that part of the source string immediately sur
rounding the current token is affected. Furthermore, parsing al
ways resumes in the sentential form where it left off before the
error was detected. Even if an entire section of the sentential
form has been "contaminated" by the error, it is not possible us
ing a patch to skip forward in the sentential form to a more ap
propriate pOint such as that corresponding to the beginning of
the next statement. The need to synchronize with a point later
in the sentential form motivates the recovery strategy described
in the next section.

7.2 Synchronization

Synchronization is a more sophisticated recovery strategy
which allows you to skip arbitrarily many tokens in the source
and past arbitrarily many symbols in the sentential form before
resuming the parse. It is needed when an error is so severe that
local patching is inadequate and the whole "area" surrounding the
error must be abandoned as non-repairable.

Synchronization recovery is specified in the grammar. As
with action and patch code, synchronization information is sur
rounded by curly brackets, except that it begins with "{s". The
productions for "Ax" can be modified from:

Ax

to:

Ax=

{a init} E (a writeln(popopand);}
Ax;

{a init;} E (s ';' =) 2}
(a writeln(popopand);} ';' Ax %any ;

Although only a terminal can be associated with patch code, any
vocabulary symbol can be associated with a synchronization
specification by placing the specification immediately after it.
For our example nonterminal E is associated with the synchroniza
tion specification.

Besides including synchronization recovery, the second al
ternative production has been changed so that the selection set
element "any" has been specified. It has been added to ensure
that the second alternative production for Ax will always be
selected whenever Ax must be expanded and the end of the source
string has not yet been reached (the selection set of the first
alternative is (@}). This is necessary because error recovery

(both patch and synchronization) specified in a production only
applies if that production has been previously selected. An er
ror in the token used to select a production will cause error
recovery information specified for the first vocabulary symbol on
the right-hand side of that production to be ignored -- unless
the selection set of that production has been augmented by "any".
"any" will cause the synchronization recovery which follows the E
to be applicable, even if the token used for selecting from among
the alternatives for Ax is erroneous.

Synchronization information is not written in Pascal, but in
a special format specifically designed to express that form of
recovery. The general format is:

"{s" recovery";" Pascai_code "}"

where each clause of the recovery specification, separated by
commas, has the form:

token "=)" integer

or

token "=)" "*"

The Pascal code which follows the semicolon will be described
shortly, but first the simpler form used in G EXPRESSIONS which
has only one clause and no Pascal code will be explained.

Synchronization elements are just like patch code in that
they do not affect parsing until a syntactic error is detected.
The synchronization information is simply ignored until then.
However, when the parser detects a syntactic error, one of
several things can happen depending on the circumstances. If
there is no user-defined recovery governing the parser's actions
at this point, the parser treats the error as fatal and simply
terminates execution. On the other hand, if the parser was at
tempting to match a terminal symbol against a terminal in the
sentential form which has patch code associated with it, then
this local recovery will be taken whether synchronization is
specified or not. Under all other circumstances, synchronization
recovery is activated.

To illustrate how synchronization works, suppose you were to
attempt to parse the expression "3-++5", which has an extra "+".
When the parser looks for an operand after the first "+", it will
find the operator n+" instead. The parse tree at this point,
with uninteresting portions elided will be:

Axiom

I

I I
{a initialize} Ax

I

I I I I
{a init} E {s ';' ~> 2} {a •• Ax

I

I
T E-list
I I

I I I I I
Asop {a •• } T {a •• } E-list

I

I
+ {a $O.operator := '+'}

The parser will have successfully expanded Asop, have executed
the action code following it, and be attempting to expand T when
the error is detected. The current token value is 11+" but the
selection set for the sole alternative production for T is ['(',
INTEGERl. Since T is a nonterminal, no local patch is possible.
However, synchronization can be performed even though there is no
synchronization specification directly following T.

T is a descendent of E-list, which in turn is a descendent
of E. E is followed by a synchronization element. The synchron
ization policy of a nonterminal is implicitly inherited by its
descendents. Any descendent nonterminal can explicitly override
that synchronization policy by establishing one of its own, and
any descendent terminal can override that synchronization policy
through patch code, but by failing to establish:a recovery of its

19

own, a symbol inherits its recovery policy from its parent.

The effect of this synchronization is to instruct the parser
to erase that part of the parse tree hanging, under the E, and to
skip tokens in the source string until a semicolon is found.
Failure to find a semicolon before the end of the source string
is reached is fatal. However, if a semicolon is found, the
parser will resynchronize the parse with the node in the parse
tree corresponding to the second vocabulary symbol among the' si
blings of E, since it is the E where the governing synchroniza
tion is located. In this case the second vocabulary symbol is
';'. The parse then resumes as if all nonterminals to the left
of that semicolon had been expanded and all terminals to its left
had been matched.

The total effect of the synchronization is to skip over to
kens until the end of an expression is found and to resume pars
ing at that point in the parse tree where the end of an expres
sion is expected. This decision is based on the premise that if
an error is discovered in an expression for which no local patch
is defined, then the best policy is to simply skip past the rest
of that expression and resume parsing with the expression separa
tor.

In the more general case there will be several clauses in
the synchronization specification:

"{sit token 1 "_)" intI " " , tokenk ";0)" intk "}"

Having several clauses allows the parser to resynchronize a,t dif
ferent places depending on the sequence of tokens encountered in
the source string. When synchronization recovery is initiated,
the parser will skip tokens in the source string until it finds
one which matches one of tokenl through tokenk. When it does so,
it will use that clause for synchronization, continuing the parse
at the point indicated by the integer in that clause.

The advantage of being able to synchronize in different
places become,s clear when we consider error recovery for a Pascal
compiler. When an error occurs in a statement, the translator
writer may wish to skip to different points in the source string
and parse tree depending on the circumstances. For example the
variable declaration:

var
t,3u = integer;

contains two syntax errors. The illformed token '3u' appears
where an identifier is required, and '.' is used where ':' is ex
pected. If the only error were the appearance of 3u, then one
reasonable recovery would be to skip to the ':'. However, since
that symbol is missing, we should skip to the ';' instead. As
suming the production in effect for the parsing of these type de
clarations originally were:

VarStmt = IdList '.' , TypeConstruc

It should become:

VarStmt = IdList {s ';' =) 4, ':' =) 2} TypeConstruc

to implement this strategy.

Occassionally, you will not wish to synchronize on a symbol
which occurs in the production in which the synchronization ele
ment appears; rather, you will want to skip past the whole
right-hand side, as if the parser had completed the derivation of
the entire right-hand side. To indicate this, a '.' is used in
place of an integer in a clause of the synchronization element.
For example, if the synchronization element of the alternative
production for Ax were replaced by:

{s @ =) ., ';' =) 2}

then the string:

3/4

would cause the parser to recover by terminating normally even
though no semicolon is present in the source. All of the chil
dren of Ax would be skipped. Since Ax is the rightmost child of
Axiom, the entire parse tree would be considered generated by the
parser at this point. Henc~, the translation would terminate
normally. Using the,original synchronization element, the parser
would have terminated execution with a fatal error when it was
unable to find a semicolon.

20

An important synchronization feature is the ability to op
tionally include Pascal code after a semicolon in the synchroni
zation specification. This code is occasionally necessary in
order to "clean up" any data structures which would otherwise be
left in, an inconsistent state by the synchronization. For exam
ple, if action code on the right-hand side of a production is
skipped during resynchronization, then attributes and variables
which that action code would have assigned values will not have
the proper values. This Pascal code will be executed after
determining which clause of the synchronization specification
will be used'. It can assign values, clear stacks, reset
counters, and perform any other housekeeping chores so that when
parsing resumes, all data structures are in a consistent state.
Different clean-ups are possible depending on which clause is
selected. The code can examine LLCurTok to determine which
clause was selected and then take the appropriate action. For
example, the synchronization specification:

TypeDcl =

TypeID '='
{s ',' =) 2, ':' =) 3, any -) • ;
with LLCurTok do

if TableIndex a LLFind(',' literal) then
recovery appropriate for ',' •••

else if TableIndex = LLFind(':', literal) then
recovery appropriate for ':'

else
other recovery ••• }

TypeDenote r;

permits the translator to take different action when recovering
from quite different situations:

type
speed : integer;
high,low = real;

g 123 = char;

{should be '=' -- assume it is}
{only one type identifier can be
declared per declaration -- but
can set up symbol table to accept
high and low anyhow}

{perhaps this is an embedded blank
in type identifier -- don't really
know what to do, so skip to end of
declaration and "throw out" type
identifier g found so far}

There is one final embellishment on the specification of syn
chronization information which is often quite useful. Consider a
production for a Pascal Program:

Program .-
Header LabelPart ConstPart TypePart VarPart FuncProcPart
ExecStmt • ;

One reasonable synchronization recovery strategy is:

Program ==
Header

{s PROGRAM =) I, LABEL =) 2, CONST =) 3, TYPE a) 4,
VAR =) 5, FUNCTION =) 6, PROCEDURE -) 6, BEGIN -) 7}

LabelPart
{s LABEL =) 2, CONST =) 3, TYPE =) 4, VAR =) 5,

FUNCTION =) 6, PROCEDURE =) 6, BEGIN =) 7}
ConstPart

{s CONST =) 3, TYPE =) 4, VAR =) 5, FUNCTION =) 6,
PROCEDURE =) 6, BEGIN =) 7}

TypePart
{s TYPE =) 4, VAR =) 5, FUNCTION =) 6, PROCEDURE =) 6,

BEGIN =) 7}
VarPart

{s VAR =) 5, FUNCTION =) 6, PROCEDURE -) 6, BEGIN =) 7}
FuncProcPart

{s FUNCTION -) 6, PROCEDURE -> 6, BEGIN -> 7}
ExecStmt . ,

This synchronizes the program on each major block section as
determined by a keyword. Although this specification is ade
quate, it appears highly redundant. To abbreviate the specifica
tion of recovery information common to several vocabulary sym
bols, Zuse allows you to write synchronization code which is glo
bal to the entire right-hand side. This code, written in the
same syntax as other synchronization specifications, must appear
as the first symbol on the right-hand side of the production:

ProgralD. ..
, {s PROGRAM =) I, LABEL =) 2, CONST -) 3, TYPE -) 4,

VAR -> 5, FUNCTION -> 6, PROCEDURE -> 6, BEGIN -> 7}
Header LabelPart ConstPart TypePart VarPart FuncProcPart
ExecStmt • ;

The synchronization specified in this production applies to each
vocabulary symbol with the following stipulation. Recall that it
is illegal to attempt to synchronize to the left of the vocabu
lary symbol where the error is detected. Consistent with this
view, when attempting to synchronize based on a global synchroni
zation, skeleton.o will ignore a synchronization clause which
would cause it to resynchronize to the left of the current voca
bulary symbol. For example, the text:

PROGRAM test(input,output);
LABEL 10;
CONST

pi : 3.14159;
LABEL 20;
TYPE

speed :IS realj

contains an error in the declaration of the constant pi and er
roneously has a second label declaration section. Assuming the
error recovery just specified was applicable, skeleton.o would
skip past the rest of the constant declarations, past the second
label section, and resynchronize on the keyword TYPE. The second
label declaration section would be skipped because when the error
was detected, the parser would be processing ConstPart, which is
the third vocabulary symbol on the right-hand side, but LABEL
causes resynchronization on the second symbol.

Of course,
strategy that
production. To
synchronization
synchronization

Program =

there is not always a single synchronization
is appropriate for every vocabulary symbol in a
accommodate this fact, you can overide global

by explicitly specifying either patch or another
code after any vocabulary symbol:

{s PROGRAM => 1, LABEL => 2, CONST => 3, TYPE => 4,
VAR => 5, FUNCTION =) 6, PROCEDURE => 6, BEGIN => 7}

Header LabelPart ConstPart TypePart VarPart FuncProcPart
ExecStmt

{s • => 8} . ;
If an error would occur in ExecStmt, then skeleton.o would skip
tokens until it found a period. It would then resynchronize on
the eighth vocabulary symbol. The recovery of all other vocabu
lary symbols would still be governed by the global synchroniza
tion specification.

Zuse Installation Instructions
Version 1.0

Arthur Pyster
May 1981

Zuse is very easy to install if you are running Unix with the
Berkeley Pascal compilers (pi or pc). It was designed to be
highly portable so that if you do not have these compilers, I ex
pect you will still be able to compile Zuse without too much dif
ficulty. EVery line of Zuse which is (as best as can be deter
mined) not standard Pascal has been marked with a comment brack
eted by (* " *). All other comments use the curly bracket del
imiters { •• }. Hence, it should be quite easy to browse through
the source code with a text editor and examine each non-standard
feature.

Zuse consists of two Pascal programs generate.p and
skeleton.p. Generate.p should be compiled with the resulting ob
ject code saved under the name generate.o (or whatever suits your
fancy). Skeleton.p is a skeletal Pascal program which is aug
mented by a person writing a translator in the manner described
in the Zuse Users' Manual. Hence, a user of Zuse will need ac
cess to generate.o and skeleton.p.

To create Zuse in the current directory, just type:

tar xv
pi [options] generate.p
mv obj generate.o

where [options] are whatever compiler options you desire. You
may need to qualify the tar command with the tape drive number
you mount the distribution tape on. When you execute tar, a
number of files other than generate.p and skeleton.p will be
placed in your current directory. In particular, you will also
find:

skel.debug.p debugging version of skeleton.p

Rawlnstall pre-nroff form of this document

Install post-nroff form of this document

RawUser pre-nroff form of Users' Manual

Use rManua 1 post-nroff form of Users' Manual

FOrtGrammar grammar for structured FORTRAN preprocessor

FortLLsup.i support routines for FORTRAN preprocessor

ExpGrammar grammar for arithmetic expression evaluator

ExpLLsup.i support routines for expression evaluator

The pre-nroff documents do not use either the -me or the -ms
nroff macro libraries. They are entirely self-contained, so you
can recreate either document by typing:

nroff RawInstall) MyInstall
nroff RawUser > MyUser

To create the FORTRAN preprocessor under the name Struct.o, just
type:

generate.o < FortGrammar
cp FortLLsup.i LLsup.i
pi [options] skeleton.p
mv obj Struct.o

To create the expression evaluator under the name express.D, just
type:

generate.o < ExpGrammar
cp ExpLLsup.i LLsup.i
pi [options] skeleton.p
mv obj express.o

A word of caution is necessary. Whenever you run generate.a, the
file LLgram is created. It contains a crunched version of the
grammar input to generate.o and is peculiar to the particular
translator being created with Zuse. When a translator created
with Zuse (such as Struct.o or express.o) is executed, it reads
in LLgram in order to initialize its parser. Hence, LLgram must
be in the current directory. This also means that you cannot
readily have more than one translator produced by Zuse in the
same directory, since each one will require its own version of
LLgram. For the classroom environment for which Zuse was
developed, this is no problem. However, for more varied applica
tions, this restriction can be inconvenient. With a modest bit
of surgery, this restriction is readily removed. Rename LLgram
to whatever file name is convenient after running generate.o, and
change the line:

reset(LLgram) ;

in skeleton.p to

reset(LLgram, YourName);

where YourName is the Unix file name where you moved LLgram.

1. progl"am skeleton(input ,output, LLgram
2. #lnclude 'LLfUe.i'
3. (* UNIX *)
4.);
S. {skeletal compiler to parse a candidate string}
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

May 8. 1981
Version: 1.0
Author: Arthur Pyster
Copyright (c): The Regents of the University of California
Purpose: This program is a skeletal compiler which is

fleshed out by the inclusion of a file supplied
by the user:

LLsup - support routines called directly
or indirectly as action routines
including LLNextToken

21

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

and 5 flIes provided by "generate". the
parser generator:

LLfile -

LLvar -

LLconst

LLtype -

LLact

fIle dels specified 1n grallllll8r

var dcla required for action
routines

- const dcls specified in
grammar and misc. constants

type dele specified in grammar

- LLTakeAction procedure which
calls action routines as dictated
by graDlll8r rules

The file LLgram, produced by generate.o, 1IUst be read. in.
It contains an encoded form of the gr&llllll&r. error data. and the
symbol table.

Error JIlessages are written to the standard output unit.}

43. label 1000;
44. CODst

45.
46. LLMaxStack ~ 200;
47.

{1l8X number of sentential form elements in parse
tree at anyone time.}

48.
49. 'include 'LLconst.i'
50. (* UNIX *)
51.
52. type
53. LLStrings - packed array [1 •• LLStringLength] of char;
54.
55.
56. 'include 'LLtype.i'
57. C* UNIX *)
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
15.
16.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
llO.
lli.
ll2.
113.
114.
115.
116.
117.
llij.
119.

22

LLGramEnt ry -
record case boolean of

true: (table: LLStrings);
false: (grammar: integer);

end;

LLTok -
record

PrintValue: LLStrings; {the literal token value}
Tablelndex.: integer; {index where token is in symbol
attribute: LLattribute;

table}

{value associated with the token ·by
LLNextToken -- can be used by an action routine}

end;

LLStyle - (literal. nonterminal. group. action. paten);
{literal: a terminal which stands for itself.}
{group: a terminal which is a lexical group of LLStrings.

but syntactically just a single symbol}
{action: an action routine call}
{patch: an action routine to patch synt~ctic errors}

LLRight -
record

Caselndex: integer;
synchindex: integer;
WhichChlld: integer;
case kind: LLStyle of

end;

action. patch: ();
nonterminal: (ProdStart: integer);
literal. group: (Tablelndex: integer);

LLSententlal ...
record

LastChild: boolean; {is this the rightmost child?}
Top: integer; {point to tastChild}
parent: integerj {ptr to parent of this node}
attribute: LLattribute;
data: LLR1ghtj

end;

var
include 'LLvar.i'

(* UNIX *)
{var dcls produced by parser generator}

LLadvance: boolean; {advance LLSentPtr to next node?}
LLStartTime: real; {clock time at start of compilation}
LLLocEOS: integer; {location of end-of-source in SymbolTable}
LLSentPtr: integer; {sentential form element currently being processed}
LLLtneCount: integer; {line number of souJ;ce text}
LLgram: file of LLGramEntry; {where grammar is stored}
LLCurTok: LLTok; {the current token}
LLSymbol Table: array[l .. LLTableSize] of

record
key: LLStrings;
kind: LLStyie

end;
LLStack: array[1 •• LLHaxStack] of LLSentential;

the parse tree}
LLTop: integer; {top of stack pointer}

{stack which represents'

120.
121. procedure LLNextToken(var LLCurTok: LLTok); forward;
122.
123.

function LLFind(item: LLStrlngs; which: LLStyle): integer;
{Find item in symbol table -- return index or 0 l.f not

ASBumes syabol table is sorted in ascending order.}
label 10;
var

low. midpoint, high: "integer;
begin

LLFind := 0; {assume failure}
low:"" 1;
high := LLTableSize;
if (item >~ LLSymboITable[low) .key) and

(item <= LLSymbolTable [high].key) then
while low < high do with LLSymbolTable[low]

1£ key = item then begin
if kind = which then

LLFind :- low;
goto 10
end

else begin
midpoint := (high+low+l) div 2;.

do begin

if LLSymboITable[midpoint].key < item then
low :- midpoJnt

else if LLSymbolTab1e[midpoirit].key > item then
high := midpoint-l

found.

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.

else if LLSymboITable[midpolnt].kind = which then begin
LLFirid :- midpoint;
goto 10
end

else {not in
goto 10

end;
end;

10: {emergency exit}
end; {LLFind}

table}

161. procedure LLPrtString(str: LLStrings);
162. {print non-blank prefix of str}
163. label 10;
164.
165.
166.
167.
168.
169.
170.
17l.
172.
173.
174.
175.
176.
177.
178.
179.
ISO.

var
teap: char;
i: "integer;

begin
write("~");
for i :- 1 to LLStringLength do

if 8tr[i] - ' , then

10:

goto 10
elae begin

teap :- atr[i];
write(teap);
end;

write(""");
end; {LLPrtString}

181. procedure LLBeader; {print header _aaage}
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
2ll.

var
i: integer;
teapLLCurTok: LLStringa;

begin
for i :- 1 to LLStringtength do

teapLLCurTok.[i] :_ I ";

if LLCurTok.Tablelndex • LLLocEOS then begin
teapLLCurTok[l] :- 'e'; tempLLCurTok[2] :- '0';
tempLLCurTok[3] :- 'f';
end

elae if LLCurTok.PrintValue[1] in [' ' .. '-'] then
tempLLCurTok :- LLCurTok.PrintValue;

if teapLLCurTok[l] in ['I' ,.'-'] then (- ASCII *)
LLPrtString(tempLLCurTok)

else
write('Unprintable token beginning with

'ord: '. ord(tellpLLCurTok[Ij):3);
end; {LLHeader}

procedure LLSkipTokenj
begin

{remove current token}

LLadvance : - f alae;
wri te(LLLineCount: 3.
LLHeader;
writeln(, is skipped.');
LLNextToken(LLCurTok);

end; {LLSkipToken}

');

(* ASCII *)

212. procedure LLSkipNode; {skip over sentential form node leaving current
213. token as is}
214.
215.
216.
217.
218.
219.
220.
221.

begin
write(LLLineCount;3, ~ -- ~)i

LLPrtString(LLSymbolTable [LLStack [LLSentPtr].data. TableIildex].key);
write(~ inserted before ~) j
LLReader;
writeln;
LLSentPtr :- LLSentPtr + 1;

end; {LLSkipNode}

!

•

222.
223.
224. procedure LLSkipBoth;
225.
226.
227.
228. begin

{skip over both sentential form node and current
token. used wheQ replacement is 8B8W1ed to be
correct. and attribute of· replacement does- not need
to be let; otherwise use LLReplace}

229. write(LLLineCount:3.' -- ');
230. LLHeader; ,
231. write(' replaced by ,);
232. LLPrtString(LLSyuibolTable [LLStack[LLSentPtr].data. TableIndex].key);
233. writeln; .
234. LLSentPtr:- LLSentPtr + 1;
235. LLNextToken(LLCurTok);
236. end;
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.

procedure LUatsl;
begin

{to recover from syntactic error, teI'1ll.inate c01Ipllation}

write(LLLineCount:3. ' -- ');
LLHeader;
wrlteln(~ found. Tranalation terainated.');
goto 1000;

end; {LLFatal}

248. # include 'LLoup.i'
249. (* UNIX *) {supporting routines}
250.
251.
252. # include 'LLact.i'
253. (* UNIX *) {action code produced by parler geJ1erator}
254.
255.
256.
257.
258.
259.

procedure LLMaln;
CODst

LocOfNull - 0; UocatiQn of null otring in symhol table}

260. type
261. latset - set of 1 •. LLTableSlzej
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.

aynchtype ...
record

token: integer;
sent: integer;

end;

prod -

{index to Table entry for tOken}
{how far in LLSentential fora to goto}

, record

var

lh.·: integer; rfablelndex of lh.}
rha: integer;' {index into llbsArray where
cardrhs: integer;
select: intset;
cardsel: integer;

end;

ThioRho: integer; {index into RhsArray}

rhs begins}

KhsArray: array[l •• LLRhsSlze] of LLUght; {rhs elewaentJ of productioQ.s}
oynchdata: array[O .. LLSynchSize] of synchtype;
axi01ll: integer; {pointer to first production ~hose lhs is the mo.}
productions: array[l •. LLProdSize] of prod;

286. procedure readgru.; {read grammar from disk}
287. var
288.
289.
290.

1: integer;

291. procedure BuildRight(whichprod: integer); {estabUsh contents of rhs}
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304;
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.

var
ChildCount: integer;
i: integer;
temp: integer;

{which # child in rhs is thiB?}

begin with productions[whichprod] do begin
rhs :- ThlsRhs+l;
ChildCount :- O.
for 1 :- ThisRhs+l to ThisRhs+cardrhs do

if i <- LLRhoSize then with RhsArray [i] do begin
ThisRhs : - ThisRh.+l;
get(LLgram) ;
temp :- LLgram' .gra1lllllllr; {the type of symbol}
get(LLgram); {info for that particular symbol type}
case chr(tellp) of

'1': begin
ChildCount :- ChildCount+l;
WhichChild :- ChildCount;
kind :- literal;
TableIndex :"" LLgram" . grammar;
get(LLgram};
Caselndex :- LLgram .. ·.gralDll&r;
get(LLgram) ;
synchindex :- LLgra." .grammar;
end;

~a': begin
kind :- action;
Caselndex : .. LLgram" .grammar;
end;

~n': b~gin

- ChlldCount ChildCount+l;
WhichChild := ChildCount;

324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.

kind :- nontermlna!;
ProdStart :- LLJrall'" .gr r;
get(LLgrall);
Case Index :- LLgra." .gr r;
get(LLgr ..) ;
synchindex· :- LLgrall" .gra r;
end;

'g': bellin
ChildCount :- ChildCount+l;
WhichChild : - ChildCount;
kind ':- group;
Tablelndex :- LLgr gra r;
get(LLgr ...) ;
CaseIndex :- LLgram." .gra r;
get(LLgrall) ;
synchindex :- LLgrall" .grallll8.r;
end;

'p': begin
kind :- patch;
Caeelndex :- LLgrall" .gra r;
end;

end; {case}
end {with iUHlArray}

else begin {gralllllBr in LLgram is screwed up}
writeln(~ CAtastrophic error -- The gr r used to ~);
writeln(~generate this compiler probably had an error. ~)
writeln(~Check to make sure that "generate.o" did not ~)
writeln(~produce any error "llessages when it processed ~)
writeln(~your gr8Dllllar.~);

goto 1000
end;

end; {with productions}
end; {BuildRigh t}

procedure BuildSelect(whichprod: integer); {build selection set}
var

i: integer; {loop counter}
Table Index: integer; {where in Table can element be found?}

begin with productiono[wh1chprod] do begin
select :- [J;
for i :- 1 to cardsel do begin

get(LLgram) ;
TableIndex :- LLgrall" .grammar;
select :- select + [Table Index] ;
end; {for i}

end; {with grail}
end; {BuildSelect}

begin {readgrall}
{read in symbol table}

reset(LLgr8ll) ;
if LLTableSize > 0 then begin

LLSymbolTable[l] .key :- LLgra .. ·.table;
get(LLgram) ;
if LLgrall· .• table[l] - 'g' then

LLSymbolTable[l] .kind :- group
else

LLSymbolTable[l].kind :- literal;
end;

for i :- 2 to LLTableSize do begin
get(LLgra.) ;
LLSymbolTable[i] .key :- LLgr ... • .table;
get(LLgram) ;
if LLgram·.table[I]· - 'g' then

LLSymbolTable[i] .kind :- group
else

LLSymbolTable[i] .kind := literal;
end; {for i}

{read in gra1lllll&r}
Thislhs :- 0;
get(LLgr) ;
axiom :- LLgram" .grammar;
for 1 :- 1 to LLProdSize do with productions [i] do begin

get(LLgram); Iho :- LLgram' .gra_r;
get(LLgram); cardrhs :- LLgrall" .graDlDUirj
BuildRight(i) ;
get(LLgram); cardsel :- LLgram".grammar;
BuildSelect(i) ;
end; {with}

{now read in synchronization info}
for i :- 1 to LLSynchSize do "begin

get(LLgram) ;
oynchdata[i] • token :- LLgram' .gra r; {LLSymbolTable location}
get(LLgram) ;
synchdata[i} .sent : ... LLgram" .gr8lllllUlr; {where do I skip to?}
end; { for i}

end; {readgram}

procedure parse;
var

{parse the candidate}

temp: LLStringsj
LocOfAny: integer;
i: integer;

procedure erase;

{location of "any" in L~SymbolTable}
{loop counter}

{has rhs of prod has been matched? if so then erase rhs}
label 10;

23

426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
1,73.
474,
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
S02,
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.

518.
519.
520.
521.
522.
523.
524.
525.
526.

24

begiil {only erase if at farthest polnt to the rlght in a productlon}
if LLStack[LLSentPtr].LastChlld then begln

..hile LLStack[LLSentPtr].LastChlld do begln {eraee rhs}
LLSentPtr :- LLStack[.LLSentPtr].parent;
if LLSentPtr • 0 then begln {,tack ls "'pty}

LLTop :~ 0;
LLadvance :~ false; {don't try tQ advance beyond axlowt}
goto 10;
end;

end;
LLTop :- LLStack[LLSentPtr].Top; {set \.LTop to be the LastChlld

of current rhe}
10:
end;

end; {erase}

procedure testsynch; forward;

procedure expand; {expand nonter1linal in sentential fOI'la}
var

i: integer;
where: integer;
Old Top : integer;

{loop counter}
(production Peing examined)
(top of stack ptr before expanoion)

funetion 1I8tch(sentindex: integer): integer;
{does a production whose lh. is $entlnclex and whose
selection set includes token exist?
If so, return index to that productiQD as value of match;
otherwise t se·t 1Il8tcb to o.}

label 10;
var

1: integer; {loop counter}
besin

Qlateh :- 0; {assume failure and. reBet if suc:.cessful}
for i :- sentindex to LLProdSize do with productions!l] do

if Ihs - aentindex then (production hes prop .. lhs)
if (LLCurTok. Tablelndex in oelect) or (LocOfAny in select) then

begin
match :- 1;
go to 10;
end {If LLCurTokl

else
else

go to 10;
10: (emergency exit point)

end; {match}

begin {expand}
where : - match(LLStack [LLSentPtr] .data. ProdStart);
if where <> 0 then with produotion. [where] do

(rhs of new production wUl be pllcee! in Ust)
if cardrhs > 0 then begin

LLacivance :. f alae;
01dTop :- LLTop;
1£ LLTop + cardrhs > LLMaxStaok then begin {overflow}

wr1.teln(· Il'\ternal stack overflow. l\ec01Ipl1e ,keletoQ after' •
, increasing constant LLMaxStaek');

LLFatal;
end;

for 1 :- 1 to cardrhs do begin
LLTop :~ LUop + I;
with LLStack[LLTop] do begin

parent :- LLSentPtr;
{put data into children from ehe selected production}

data :- RhsAfray[rhs+i-l];
LastChlld :- fal$e;
case data.\t·ind of

action, patch, literal. 8l'ouP:;
nonterminal:

Top :- OldTop cardl'hs;
end; {case}
end; {with l.LStack[LLTop]}

end; {for i} .
{mark ~ightmost child as ~he last}

LLStack[LLTop].LastChild :- true;
{move LLSentPtr to the first new child}

LLSentPtr :~ OldTop + 1;
end {if}

else
else

testsynch;
end; {expand}

procedure testsynch;

procedure synchronize;
{synehronize token and LL8en1;ent1a1 form. to recover froll sYQtactic
error}

l.bel 10;
var

OlclCurToklndex: integer;
i: integer;
temp: LLSt ringa;
LocOfAny: integer;

begln
wJ!ite(LLLineCount:3, ' .. - ');
L.LHeader;

527.
528.
529.
530.
531.
"2.
533.
534.
535.
536.
537.
538.
539.
54Q.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
"4,
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
60S.
606.
607.
608.
609.
·610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.

wrlteln(' unexpectedly encountered.');
OldCurToklndex :- LLCurTok. TableIndex;
for 1 :- 1 to LLString1.ength do te.p[i] :- ' ';
tap[l] :- 'a'; te.p[2] :- 'n'; tUlp[3] :- 'y';
LocOfAny :- LLFiDd(teap, grol1p);
repeat

i :- LLStack[LLSentPtr].data.synchlndex;
while synchdatal1].sent <> 0 do bea1n wlth synchdata[l] do

if «LLCurTok.Tablelndex - token) (I< (token. LocOfAny» and
(LLStack[LLSentPtr].data.Wh1chChlld < .. sent) then begln
1f LLCurTok.Tablelndex - LLLocEOS then begln

wrlteln(' Translatlon temnated.');
goto 1000;
end;

if LLCurTok. Tablelndex <> OldCurToklndex then begln
wr1te(' Skipping to ');
LLPrtString(LLCurTok.PrintValue) ;
writeln(' in Une " LLLineCoullt;3);
end;

if LLStaclt[LLSentPtr).data.easetndex <> 0 then begin
{execute code after ";"}

LLTa~tion(LLStack[LLSentPtr] .data .CaaeIndex);
end;

if sent <> auint then begin {skip to correct syabol in rhs}
whUe I.LStac:k[LLSentPtr].data.WhichChlld <> aent do

LLSentPtr :- LLSentPt~ + I;
LLadvanc:.e :- false;
eDd {if sent}

else begin {skip to ~ightmo.t node and signal reduction}
while not LLStack[LLSel\tPtr].LastChHd do

LLSentPtr :- LL$entPtr + 1;
end;

goto 10;
end; {then}

i :- 1+1;
e11d; {whHe}

if LLCurTok. T.blelndex <> LLLocEOS then
LLNextToken(LLCurTok)

else begin
writeln(' Translation terminated.'};
goto 1000;
end

until false;
10: {exit point fqr loop}

end; {8YDchronl~e}

begin (teatsynch)
while LLStack[LLl!entPtr].data.synchindex - 0 do (no synch info there)

if LLStack[LLSentPtr].parent <> 0 then {there reaUy is a parent}
LJ.SentPtr ,. LLStack[LLSentPtr].parent

elee
LL1'atal;

synchronize;
end; {teataynch}

begin {parse)
LLSentPtr :- I;. {initialize sentfo ... to be IxiQOl}
LLTop :- 1;
with LLStack[LLSentPtr], data do begin

Proc!Start :- axlOlllj
LastChild :- true;
kind :- nonterminal;
syncbindex :- 0;
end;

{£lad location of 'any' in LLSyabolTable}
fo~ i:- to LLStringLength clo

teap[i] :- ' ';
teap[I) :- 'a'; teap[2] :- 'n'; teaap[31 :- 'y';
LocOfAny :- LLFind(t •• p, group);

{find location of e"d-of~aourcerepresentecl by
"8" in LLSyabolTable}

t ... p!l] ,- '@'; tap[2] :- ' '; tap[3] :- ' ';
LLLocl!OS :- LLFind(tellp, group);

LLLineCount :- 0;
LLInitiali •• ;
LLlIextToke,,(LLCurTok); {call lexical analyzer the first t1ae}
while LLTop <> 0 do begin {derivation isn't finished}

LLadvaDce :- true; {pre.~ LLSeutPtr advanced after iteration}
with LLStack[LLSentPtr], data do begin

caae kind of
group, literal, begin

if Tablelndex - LLCurTok •. Tablelnd.,. then begin
attribute ;- LLCurTQk.att'l!'ibute;
LLlIextToken(LLCurTok) ;
end {else if}

else 1£ Tablelndex - LocOfliull then begin
(do nothing) end

eloe if not LLSt"ck[LLSentPtr} .LastChild then
if LLStack[LLSentPtr + I].data.klnd - patch then

LLTakeAct!on(LLStack[l.LSentPtr +l].data.eaoelndex)
elae teatsyneh

else te$tsynch;
end; {group, literal}

nonte~lnal: expand;
action: LLTakoAc:tion(LLStaclt[LLSentl'tr].data.easelndex);
patch: ;
end; {case}

629. end; {with}
630. if LLadvance then begin
631. {Finished with current LLStack[LLSentPtr).
632. Move on to next node in tree}
633. erase;
634. LLSentPtr :- LLSentPtr + 1;
635. end;
636. end; {while}
637. if LLCurTok.TableIndex <> LLLocEOS then LLFatal;
638. {only I18tc:.hed against part of candidate, which Is not a sentence.
639. terllinate parsing action.}
640. end; {parse}
641.
642.
643. begin {LLI!&in}
644. readgram; {get the gra1llll8.r from the user.}
645. parse;
646. end; {LLI!&in}
647.
648.
649. begin {main program}
650. LLStartTille:- clock; (. UNIX .)
651. LLI!∈
652. 1000:
653. wrtteln;
654. writeln(' •••• End of translation. " (clock-LLStartTille)/1000.0:5:1,
655. ' seconds CPU time •••• '); (. UNIX .)
656. end.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

program generate (input, output, LLgram. ConBtFl1e~ VarFl1e,
ActFile, TypeFile, FileFile, LLselect);

May 8, 1981
VersIon: 1.0
Author: Arthur Pyster
Copyright (c): The Regents of the University of california
Purpose: Accept the specification of a context-free tranalatlon

gr8111118.r frOll standard Input fIle aad output either
6 or 7 files:

LLgrUl. - a processed form. of the gr_r which
will be read by SKELETON

LLvar - Pascal var declarations which will be
included in SKELETON.

LLconst - Pascal CODstant declarations which will
be included in SKELETON.

LLtype - Pascal type declarations which will be
included in SKELETON.

LLfile - Pascal file declarations for progr_
statement which will be included in
SKELETON.

LLact - The TAKEACT procedure, included in
SKELETON, which calls action
code as dictated by the gr-.r.

LLselect - On request (%s in gra..a.r), foraatted
selection sets. }

label 1000; {emergency exit for unrecoverable error}
c:.onst

StringSize • 12i
ProdSize - 160;
SynchSi.e - 40;
RhsSize • 330;
TableSi.e - 135;
EndOfSource - '@';

{max length of vocabulary sY"bols}
{ux number of productions}
{ux number of synchronization eleaenta}
{au nuaber of rhs ele.enta of produc:.tions}
{ux nuaber of nonterainals, literals, aDd ,roups}
{end of candidate_rker}

type
setofchar • set of char;

{indicates current knowledge of whether production or syabol
is nullable}

nulltypes • (notsure, never, null);
intset • set of 1 •• TableSize;
strings - packed array[I .. StringSi.e) of char;
nonneg • O •• _nnt; {non-negative integers}
positive - l •• _xint; {positive integers}
synchtype - {synchronization info}

packed record
TableIndex: integer; {which literal or group?}
sent: nonneg; {where do we go in sentential fora}

end;
style. (action, group, literal, nonterminal, patch);

{literal: a terminal which stands for itself.
group: a terminal which is a lexical group of atriq_,

but syntactically just a single symbol.
action: action code
patch: action code called to repair a syntax error}

nsElement - \1nfo about symbol of gr r}
record

Synchlndex: nonneg; {for vocabulary symbols points to plac:.e
in syncharray where synch data about this ayabol 1_
located; not used for others}

CaseSelec t: nonnel;
{for vocabulary symbols this is the syuch code LLact

index; for action and patch this is the LLact index}
case kind: style of

nonterminal, literal, group: (Tablelndex: nonneg;
WhichVocabSymbol: nonneg);
{index to symbol table entry and relative count of

vocab symbols on rhs of production}

72.
73.
74.
75.
76.
77.

action, patch: ()
end;

prod - {a production}
record

lIne: integer; {line number where production belins}
78. lhs: integer; {index to SyabolTable entry for lhs of prod}
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.

var

rhs: nonneg; {index into RhaArray}
CardRha: 0 RhsSlze; {number of rhs elements}
select: intseti {selection set elements}
resolve: intset; {elements to be forced into selection

set by user directive}
CardSel: 0 •. TableSize; {number of selection set elements}
nullable: nulltypesj {is production nullable?}

end;

sY"bol -
record

value: strings;
ProdStart: nonneg;
case kind: style of

end;

nontenlinal: (nullable:
literal, group, action,

GrallEntry -
record ease boolean of

true: (table: strings);
false: (ara ... r: integer);

end;

nulltypes);
patch: ()

PrintSelect: boolean; {print selection sets of productions?}
ErrorFree: boolean; {any error in gr8J1118r?}
axio.: nonneg;
SyabolTable: packed array[l .. TableSize) of syabol;
IhsArray: packed array[l .. nsSize) of IhsEleaent;
CardSyabol: nonneg; {nuaber of entries in SymbolTable}

103.
104.
105.
106.
107.
108.
109.
110.
Ill.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

C8rdSync:.h: Donneg; {current place in SynchData array being addressed}
production: packed array[1,. .ProdSize] of prod;
Thislbs: nonneg; {nwaber of rhs eleaents in all prods}
Cardprod: nonneg; {number of productions}
AlIBianks: strings; {StringSize blanks}
eolninput: boolean; {eoln(input) ?}
i: integer; {loop counter}
spacers: setofchar; {blank and tab chars}
linecount: nonneg; {how uny lines of gra.aar have been read}
LLselect = file of char; {where selection sets are

printed on request (%s in gralll8r)}
LLgraa: file of Gra'llEntry; {where compact fora of gra_r is kept}
FileFile: file of char; {where file dcls are stored}
ActFile: file of char; {where action routines are stored}
ConstFile: file of char; {where gr8J1118.r defined CODstants for

inclusion in SKELETON go}
VarFile: file of char; {where grallll8r defined vars for

inclusion in SKELETON go}
TypeFile: file of char; {where gralllll8r defined types for

inclusion in SKELETON go}
nextact: integer; {case number of next action routine}
SynchData: packed array[I .. SynchStze) of synchtype;

{where synchronization data is stored until
written to LLgrall. at the end of gra ... r processing}

134.
135.

,136. procedure SortTablei
137.

{sort the sYllbol table into ascending order by
value field.}

138. label 10;
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.

var
i,j: integer;
ChangeMade: boolean j
temp: symbol;

begin
for i :- 1 to CardSymbol-l do begin

ChangeMade :- false;

10:

for j:- 1 to CardSymbol-i do
1£ Symbol Table [j) • value > Syabol Table [j+ 1] • value

\exchange}
ChangeMade :- true;
temp :- SymboITable[j];
SymbolTable [j] :- SymbolTable [j+l];
SyabolTable [j+l] .:- temp;
if axiom - j then axiom :- j+l
else ifaxioll • j+l then axiom :- j;
end;

if not ChangeMade chen goto 10
end;

159. end;
160.
161. function OrderedFind(newvalue: strings): nonneg;
162. {Find location of newvalue in SymbolTable.
163. Return index if found; otherwise, return O.
164. Assumes table is sorted in increasing order.}
165. label 10;
166. var
167. low, midpoint, high: integer;
168. begin
169. OrderedFind:" 0; {presume failure}
170. low:= 1;
171. high:- CardSymbol;
172. 1£ (newvalue <- SymbolTable[high] .value) and

then begin

25

173.
174.
175.
176.
177.
17S.
179.
ISO.
lSI.
IS2.
IS3.
IS4.
ISS.
IS6.
IS7.
ISS.
IS9.
190.
191.
192.
193.
194.
195.
196.
197.
19S.
199.
200.
201.
202.
203.
204.
205.
206.
207.
20S.
209.
210.
211.
212.
213.
214.
215.
216.
217.
21S.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.

26

(newvalue >- SymbolTable[low].value) tben
wbile low < bigb do

10:

if SymbolTable[low].value - newvalue tben begin
OrderedFind :- low;
go to 10
end

else begin
midpoInt :- (low+bigb+i) div 2;
witb SymbolTable [midpoint] do

if value > newvalue then
bigb :- midpoint-l

elae if value < newyalue then
low :- midpoint

else begin {value. newvalue}
OrderedFlnd : .. midpoint;
goto 10
end

end;

end;

function flnd(newvalue: strings): nonneg;
{find location of newvalue in Symbol Table.

Return index if found; otherwise, return O}
label 10;
var

i: positive;
begin

find :- 0; {presume it is not found}
for i :- 1 to CardSymbol do

10:

if SymbolTable[i].value - newvalue tben begin
find :- i;
goto 10;
end;

end; {find}

function PrintString(s: strings): char;
{print s to l-Lselect}

label 10;
var

i: positive;
begin

PrintString :- ' ';
for i :- 1 to StrtngSize do begin

if s[i] - ' , tben
goto 10.

write(LLselect, s[i]):
~nd.

10:
end; {PrintString}

procedure insert(var newvalue: strings;
newklnd: style);

{insert entry into SymbolTable}
begin

CardSymbol :- CardSymbol+l:
if CardSymbol <- TableSize then

with SymbolTable[CardSymbol] do begin
valu~ : - newvalue;
ProdStart :- 0;
kind :- newkindj
end {with Symbol Table}

else begin
writeln('symbol table overflow -- recompile "generate"');
writeln('after increasing the constant "TableSize"');
goto 1000:
end;

end; {insert}

procedure DoGrammar; {get the sramar from the user}
canst

var
LongStringSize - 120:

CurLine: arrayII •. LQngStrlngSlze] of char;
NextChar: char; {next character in line from input}
ch: char; {current character of line from input}
i: nonneg; {loop counter}
LineLength: integer;
LineMarker: integer;

procedure readchar;
var

tmp: char;
begin

if LineMarker)- LineLength then begin
if eof(tnput) then begin

writeln{linecount: 3, . -- unexpected end of input');
go to 1000; {emergency exit}
end;

LineLength := 0;
while not eoln(input) do begin {read 1n line}

LineLength :- LineLength+l;
read(tmp);

{only fill up through LongStrlngSize-2 chars since
last two slots are filled with blanks later}

if LlneLength <- LongStrlngSize - 2 then
CurLine[LineLength] :- t;mp

274.
275.
276.
277.
27S.
279.
280.
281.
282.
283.
284.
285.
286.
287 .•
2S8.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
32S.
329.
330.
331.
332.
333.
334.
335.
336.
337.
33S.
339.
340.
341.
342.
343.
344.
345.
346.
347.
34S.
349.
350.
351.
352.
353.
354.
355.
356.
357.
35S.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.

else if LineLength • LongStringSize - 1 then
writeln(linecount: J. ' ... - line lO'ASer than

(LongStringSize-2): 3, ' characters.
end; {wbile}

readln;
if LineLengtb > LongStringSize-2 tben {reset it}

LineLengtb :- LongStringSize-1
else

Rest lOs ignored.');

LlneLength := LlneLength+l;
CurLine [LineLengtb] :- ' ';
CurLine[LineLengtb+l] :- ' ';
LlneMarker := 0;

{count eo In in line}
{make eo In a blank}

linecount :- linecount+l;
end;

LineMarker :- LineMarker+l;
cb :- CurLine[LineHarker];
NextChar :- CurLlne[LineMarker+l);
if LineMarker-LineLength ~hen

eolnlnput := true
else

{make NextCbar of last char a blank}

eolnlnput :- false;
end; {readehar}

function printable(s: strings): char;
(print s if printable; otberwise print ord(s)}

label 10;
var

i: positive;
begin

printable :- ' ';
write(1iQ.ecount:3, ' -- "');
for i :- 1 to StringSize do

if s[i] - ' , tben
go to 10

else if s[i] in ['1' •• '-'] tben write(s[i]) (* ASCII.)
else begin

write('ord: " ord(s[i]): 3);
goto 10
end;

10: write("");
end; {printable}

procedure flll1d(var id: strings; {build an id froa input}
block: setofchar);

var
i: O •• maxint; {naber of chara in id}
quoted: boolean; {ia the id surrounded by quotes?}

begin
id :- AliBlanks;
i :- 0;
if cb - "" tben begin {id is surrounded by quotes -- just ignore tbem}

readcbar; {skip past beginning quote}
quoted :- true
end

else
quoted :- false;

while «not quoted) and (not (cb in block») or
(quoted and (ob 0 ""» do begin

i :- i + 1;
if i - StringSize+1 tben begin

writeln(linecount:3. ' -- symbol beginning with •
id, ' exceeds 1I8xillUII permissible length of ');

writeln(' " StrlngSize:2, '. Only first', StrlngSize:2.
, characters examined.');

end
else if i <- StringSi.e tben

id[i] :- cb;
readcbar;
end;

if quoted tben {skip past closing quote}
readcbar;

end; {Ullid}

procedure skips pace ;
begin

{skip comments. spaces aod tabs}

repeat
while ch in spacers do readehar;
wbile (cb - '(') and (NextCbar - '*') do begin {skip co_nts}
readchar; readehar; {skip past '(' and '*'}
wbile (cb <> '*') or (NextChar <> ')') do readchar:
readehar; readchar;
end

until not (ch in spacers);
end; hkipspace}

procedure ~eclarations; {process tbe declarations}
{procedure reads grallll8r defn from first char up through
and including %%. cb will equal char following %% wben
procedure terminates.}

var
temp: strings;
selector: char;

next: strings;

{second character of del
specifies type of declaration}

{next token in line}

375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.

function firstdc.l(candidate: strtngs): boolean;
{has the candidate been declared yet?}

var
i: integer; {loop counter}
continue: boolean;
where: DonneS;

begin
flrstdcl :- true;
where :- find(candidate);
if where > 0 then begin

firstdcl :- false;
write(linecount: 3. ~ -- ');
case SymbolTable[where].kind of

nonterm.inal: write('nontermlnal ');
11 teral: wrtte('11 teral ');
group: write('group ');
end;

write('''');
i :- 1;
continue := true;
while continue do begin

if i • StrlngSize then
continue :- false

else 1f candidate[il - ' , then
continue : .. false

else
write(candidate [i);

i :- 1+1;
end; {while}

writeln(,,, already declared. Second del ignored.');
ErrorFree :- false; {fatal error}
end; {if}

end; {firstdcl}

begin {declarations}
cardSymbol :- 0; {no symbols declared yet}
spacers :- [' " chr(9) l; {blank and tab} (* ASCII *)
a"i01l :- 0; {initially axiom is null}
temp : - AlIBIauks;
temp[11 :. EndOfSource;
iJ;lsert(temp, group);

{insert "anyU}

{inoert end of candidate symbol}

temp [1] :- 'a'; teDlp[2) :- 'n'; temp(3) :- 'y';
insert(temp, group);
rewrite(VarFile. 'LLvar.!');
rewrite(TypeFile, 'LLtype.i');
rewrite(Filel1le, 'LLfile.i');
readchar;

(* UNIX *)
(* UNIX *)
(* UNIX *)

skips..,ace; {fln4 ftrst non-spacer In del section}
if ch <> '%' then begin

ErrorFree :"'" false;
writeln(linecount: 3. ' -- should begin del with "%".'.

, Skipping until "%" is found');
while ch <> '%' do readcher;
end; {if chI

PrintSelect :- false; {presume no selection set printout}
repeat {process one declaration at a time until end of dels}

readebar; {read selector}
seleetol' :- chi
if selector <> '%' then begin {not end of del section}

If selector in ['A' •• 'Z'] then {change u.e. to I.e.}
selector :- chr(ord(selector)+32); (* ASCIl *)

if selector .. 's' then begin {print selection sets}
PrlntSelect :- true;
rewrite(LLselect); {prepare to write formatted gr8.llllar}
repeat

readehar
until ch - '%';
end

else if selector in ['a', 'g', '1', 'n'l·then begin
{not for llvar.i, llconst.! or Iltype.i}

readcbar; {skip past selector}
skipspace;
repeat

£illid(next. spacers);
if firstdcl(next) then

c~se selector of
'n': begin

insert(next, nonter:minal);
SymbolTable[find(next)].nullable :- notoure;
end;

'a':
if axiom • 0 then begin {del axiom for first tiae}

insert (next, non terminal) ;
SymboITable[find(next)].nullable :- notoure;
axiom := find(next);
end

else {axiom being redeclared}
writeln(linecount:3,

, - axiom declared for second
, time. Second del ignored.');

'1': insert(next, literal);
'g': insert(next, group);
end; {case}

skipspace
unt1l ch - 'I'
end

else if selector in ['f', 'v', 't', 'c'] then begin
{it is a del for inclusion in LLvar, LLtype, LLfile.
or LLconst}

476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522:
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.

readchar; {skip past selector}
repeat

case selector of
'c': write(ConstFile, ch);
't': write(TypeFile, ch);
'v': write(VarFile, ch);
'f': write(F1leFile, ch);
end; {case}

if eolninput then
case selector of

'c': writeln(Consttile);
't': writeln(TypeFile);
'v': writeln(VarF1le);
'f': writeln(FileFl1e);
end; {case}

readchar;
until ch - '%';
end

else begin {bad selector}

end

ErrorFree :- false;
wri teln(linecount: 3 • t -- bad selector

,.. Skipping to next "%"');
while ch <> '%' do readcbar;
end;

until selector - '%';
readcbar; {skip past '%'}
ifaxi01l • 0 then begin

ErrorFree :- false;

." , selector,

writeln('You forgot to declare an axiom foJ;' your grammar.');
end;

end; {declarations}

procedure DoProduetioDs;
{Procedure assumes that ch is first char after %%. It feads
up through next %%. ch will be second %}

procedure DoLeftHandSide; {get lhs of production}
var

where: nonneg;
temp: otrings; {string value of lhs}

begin with production[CardProd] do begin
skipopace; {skip initial blanks}
line :- linecount;
lhs :- 0; {always assign lhs a value, even if it is not legal}
if ch <> 'a' then begin

filUd(temp, spacers+[' -']);
where :- OrderedFind(temp);
if where > 0 then begin

if SymboITable[where].kind <> nonterminal then begin
ErrorFree :- false;
writeln(printable(temp), ' should be a nonterainal')
end

eloe if SymboITable[where].ProdStart - 0 then
[first alternative for lhs}

SymbolTable[where].PrQdStart :- cardProd
eloe begin

ErrorFree :- false;
writeln(prlntable(temp), ' should not have second' ,

, set of productions.');
end;

lhs :- where
end

else begin
ErrorFree :- false;
writeln(printable(temp), ' is undeclared.');
end;

skipspace;
end [if chI

else if CardProd > 1 then {not the first production}
{use lhs of previous production}

lhs :- production[cardProd-l) .lhs
eloe begin

ErrorFree :- false;
writeln(linecount:3, ' -- First production should

'have explicit right-band side.');
end;

if ch <> '.' then begin
temp :'" AlIBianks;
temp[l) :- ch;

{illegal form of production}

ErrorFree :- false;
writeln(print~ble(temp),

'left-hand side of
end

else
readehar; {skip past -}

skipspace;
end; {With}

end; {DoLeftHandSide}

found, but "011 " expected after
production')

procedure DoRightHandSide; {get the rhs of the production}
var

TotalVocab: nonneg; {how many rhs nonterms and terms seen 80 far?}
name: strings;
ProdSynchlndex: integer;
Prodease_Select: integer;

procedure CopyActlon; {copy act 1Q~, patch, or synch code to LLact}
{when CopyAction returns ch will equal closing bracket}

27

577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.

60S.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
677.

28

var
1: integer;
done: boolean;
posit: integer; {integer value of n in $n}

begin with production[CardProdJ do begin
nextact :- nextact+li
RhsArray[Th1aRhsJ .CaeeSelect :- nextact;
writelo{ktF!le,' " nextact. ': begin');
while ch <> '}' do {copy routine}

if ch - '$' then begin
if .olninput then writelil(ActFile);
readchaq
if ch in ['0' .. '9' J then begin !$n fol'll}

posit :- 0; {determine value of integer}
while ch in ['0' .. '9' J do begin

posit :- 10.posit + ord(ch)-ord('O');
if eolninput then writeln(ActFlle);
readchar;
end; {while}

if posit > 0 then {nUllber actually follows $}
{replace string in action routine}

if posit > TotalVocab+l then begin {illegal $n}
writelo(linecount:3, ' -- '.

'$', posit:2, ' refers to symhol DOt to
'its i1lll.edtate right. ');

ErrorFree :- false
end

else If posit • TotalVocab+l then {refer to next vocab
syabol}
write(ActFlle, 'LLStack[LLSentPtr+IJ .attribute')

else begin {walk back to find right vocab syaboll
done :- false;
i :- 0; {how far back we bave walked}
while not done do begin

{walk back one node over for each syabol
following the ODe we want.}

1 :- 1+1;
if RhsArray [Th1aRhs-i J • kind in

[nontenInal, literal, group] tben
if RhsArray[Th1sRhs-iJ .WhichVocabSyabol - poait then

done :- true;
end; {while}

writ.(ActFile, 'LLStack[LLSentPtr-' ,1:2,' J .attribute');
end telae begin}

elae {aso1gn to attribute of lhs}
writeln(ActF11e, 'LLStack[LLStack[LLSentPtrJ • parent J .attribute')

end {if ch in ['0' .. '9'J}
else begin {just write $ and next cbar}

write(ActFUe, '$');
write(ActF11e, ch);
TfI'iteln(linecount:3. ~ -_.,

'warning -- $' embedded 'in { ." } routine');
if eolninput then writeln(ActF11e);
if ch - 'I' then

writeln(linecount:3. ' -- .
'warning -- { embedded in { ... } routine');

readehar;
end; {e!,oe}

end {if chi
else begin {not a special character -- just copy}

write(ActFUe, ch);
if eolninput then writeln(ActF11e);
if ch - '{' then

writeln(linecount:3, ' -- .
'warning -- { embedded in { ••• } routine');

readehar;
end; {else}

if eolnlnput then writeln(ActFl1e);
writeln(ActFUe) ;
writeln(ActFl1e, ' end; {'; nextact. ' }')j
end; {with production}

end; {CopyAction}

procedure DoSynchronlzatlon;
label 10;

{process synchronization Inforraation}

var
name: strings; {token where synch takes place}
posit: no.nneg; {position in produc.tion to recover to}

begin with production[CardProdJ do begin
readchar; {skip past s}
if TotalVocab >- 1 then

{synch info does not inc.rease C4rdR.hs so CardRha
still has the value it had before synch info
was encountered}

if RhsArray[ThisRhs] .kind in [nonterm.inal, group, literal] then
RhsArray[ThisRhsJ .SynchIndex :- CardSynch+l

else begin
ErrorFree :- false;
wri teln(1inecount: 3. ~ -- Synchronization info

~must follow a vocabulary symbol. ~)
end

else {synch precedes all vocab symbols}
ProdSynchlndex :111 CardSynch+l j

repeat
skipspace;
f1l1id{nalll.e. spacers);
CardSynch :- CardSynch+l; {SynchData will be stored here}
SynchData[CardSynch] .Tablelndex :- OrderedFind(name);
if SynchData[CardSynchJ .TabIeIndex - 0 then begin {undeclared}

wri teln(printable(name). ' 1s undeclared. ~);
ErrorFree :- false:

678.
679.
680.
681.
682.
683.
684.

685.
686.
687.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.
698.
699.
700.
701.
702.
703.
704.
705.
706.
707.
708.
709.
710.
711.
712.
713.
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
725.
726.
727.
728.
729.
730.
731.
732.
733.
734.
735.

736.
737.
738.
739.
740.
741.
742.
743.
744.,
745.
746.
747.
748.
749.
750.
751.
752.
753.
754.
755.
756.
757.
758.
759.
760.
761.
762.
763.
764.
765.
766.
767.
768.
769.
770.
771.
772.
773.
774.
775.
776.
777.

end;
skipapace;
if ch <> '-' then begin

name :- AlIBI.oks;
name[IJ :- ch;
ErrorFree :- falae;
writeln(printable(name), ' found but It." expected
after token 1l8IIe.');
while ch <> '}' do readcbar;
goto 10;
end

else readcbar; {skip past -}
if ch <> '>' then begin

name :- AllBIanks; no.e[l] :- chi
ErrorFree :- false;
wrlteln(printable(naae). ' found but II)" expected after II.I"};
while ch <> ~} ~ do readchar;
goto 10;
end

else readchar;
skipspace;
posit :- 0; {determine value of nwaber}
while ch in ['0' .. '9' J do begin

posit :- 10.posit + ord(ch) - ord('O');
readchar;
end;

if posit> 0 then begin
{posit includes only nonterms and terIDS -
TotalVocab has the current nWlber seen}

if (posit < TotalVocab) then
begin {111egal to back up}
ErrorFree :- false;
writeln(linecount: 3, ~ -- synchronization

'may not resume ~,

'to the left of symbol where error occur8~);
end; {if posit <}

SynchData[cardSynchJ .sent :a posit
end {if posit >}

else if ch - ,*, then begin {skip past rest of rhs}
SynchData[CardSynchJ .sent :s ma"int;
readchar;
end

else begin
ErrorFree :~ false;
writeln(printable(naae), ' found but "." or integer expected');
while ch <> '} ~ do readchar;
goto 10;
end;

skipspacej
if ch - ',' then readchar {comma separates clauses}
else if ch - ';' then begin {"clean up" code follows}

readchar; {skip past semicolon}
CopyAction; {copy code into LLact}
if TotalVocab - 0 then {aynch code begins ~hs}

ProdCaseSelect :- nextact;
end

else if ch <> '}' then begin
ErrorFree :- false;
writeln(prlntable(name), ~found but comma expected
after clause. ');
while ch- <> ~} ~ do readchar;
goto 10;
end

until ch - '}';
10: readchar; {skip past closing brace}
end; {with production}
CardSynch :- CardSynch+l; {add closing synch data}
SynchData[CardSynchJ .Tablelndex :- 0;
SynchData[CardSynchJ .sent :- 0;

end; {DoSynchronization}

procedure DoSpecialCode; {process an action, patch, or synch routine}
begin

readchar; {skip past open bracket}
if ch - 's' then

DoSynchronization
else begin {patch or action}

with production[CardProdJ do
if Th1aRhs - RhsSi.e then begin

writeln(linecount:3, ' -- more right-hand side',
, elements in productions than limit -- " RhsSize:4);

writeln(' Recompile "generate.p" after increasing RhaSlze');
go to 1000;
end

else begin
cardRhs :- CardRhs+l;
ThisRhs :s Th1aRhs+l;
wi th RhsArray [ThisRh. J do

if ch - 'p' then begIn {patch for synctactic error}
kind :- patch;
readchar; {skip past p}
end {if chi

else if ch .. ~ a' then begin {normal action code}
kind := action;
readchar;
end {else if chi

else begin
writeln(linecount:3, ' -- illegal specifier "',

ch, ~" in { .• } code. Assume it is action code.');
kind :~ action;
end; {with}

778.
779.
780.
781.
782.
783.
784.
785.
786.
787.
788.
789.
790.
791.
792.
793.
794.
795.
796.
797.
798.
799.
800.
801.
802.
803.
804.
805.
806.
807.
808.
809.
810.
811.
812.
813.
814.
815.
816.
817.
818.
819.
820.
821.
822.
823.
824.
825.
826.
827.
828.
829.
830.
831.
832.
833.
834.
835.
836.
837.
838.
839.
840.
841.
842.
843.
844.
845.
846.
847.
848.
849,
850.
851.
852.
853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
863.
864.
865.
866.
867.
868.
869.
870.
871.
872.
873.
874.
875.
876.
877.
878.
879.

CopyActlon;
readchar; {skip past closing brace}
end; {else}

end; {else}
end; {DospeciaICode}

procedure DoS1!lectionSet; {additional selection set info 1s processed}
{Zuse automatically computes selection set for
each production. However, user can add other
elements for error processing such, 8S "any" t or
he can tell Zuse how to resolve selection set
conflicts. }

var
{selection set element} name: strings;

where: nonneg;
begin

{location of name in Symbol Table}

{cursor points to '%' which signals beginning of selection set info}
readchar; {skip past 'X'}
skipspacej
while ch <> ';' do with production[CardProd] do begin

f1llid(name, spacers+[';']);
where :- OrderedFind(name);
if where> 0 then {element has been declared}

if symbolTable[where] .kind in [literal, group] then
{element is a terminal}

resolve :- resolve + [where]
{add element to resolve which ensures this element
wiil end up in selection set of this production and
not in selection set of alternative productions}

else begin {element is not legal selection set melDber}
ErrorFree :,. false;
writeln(printable(name), ' should be a terminal.')
end

else begin {element has not been declared}
ErrorFree :- false;
writeln(printable(name), ' is undeclared.');
end;

skipspace;
end; {with}

end; {DoSelectionSetJ

begin with production[CardProd] do begin {DoRightHandSide}
resolve := [1; {no resolvants until found on rhs of production}
CardSel :::a 0; {selection set elements not computed yet}
TotalVocab :"" 0; {no nonterms or terms seen yet}

{haven't seen synch code applicable to entire rhs yet.}
ProdSynchIndex := 0;
ProdCaseSelect := 0;
rhs := ThisRhs+l; {begin storing rhs elements after last

element of previous production}
CardRhs :"",0; {no rhs elements yet}
while ch <> 'j' do begin {haven't reached end of rhs yet}

if ch =- • {' then {action, patch, or synch routine}
DoSpecialCode

else if ch = '%' then {selection set info}
DoSelectionSet

else if ThisRh~ < RhsSize then begin {normal symbol}
CardRhs :::a CardRhs+l j {another rhs element}
ThisRhs := ThisRhs+l;
TotalVocab := TotalVocab+l j {another term or nonterm}
with RhsArray[ThisRhs] do begin

WhichVocabSymbol :"" TotalVocabj
fillid(name, spacers+[';']);

{presume no synch info until found}
Synchlndex := ProdSynchIndexj

{presume no synch clean up code either}
CaseSelect: = ProdCaseSelectj
Table1ndex :"" OrderedFind(name);
if Table1ndex > 0 then

kind := Symbol Table [TableIndex] .kind
else begin

ErrorFree := false;
writeln(prlntable(name), ' is undeclared.');
kind !:z nonterminalj {treat as a nonterminal since this

is most general vocabulary class.}
end

end; {with}
end {else}

else if ThtsRhs = RhsSize then begin {prods too long}
writeln(linecount:3, ' -- number of right-hand side',

, elements in productions longer than limit -- " RhsSize:4)j
writeln(' Recompile "generate.p" after increasing RhsSize');
goto 1000;
end;

skipspace; {skip to next rhs element}
end; {while}

readchar; {skip past ';'}
end; {with}

end; {DoRightHandSide}

begin {DoProductions}
nextact := OJ {no actions yet}
CardSynch := OJ {no synch data yet}
CardProd := 0; {no productions yet}
ThisRhs := OJ {no rhs elements yet}
writeln(' All declarations processed --
skipspace;

CardSymbol:3, ' symbols.');

while (ch <> '%') or (NextChar <> 'I') do begin {another production}
CardProd := CardProd+l;

880.
881.
882.
883.
884.
885.
886.
887.
888.
889.
890.
891.
892.
893.
894.
895.
896.
897.
898.
899.
900.
901.
902.
903.
904.
905.
906.
907.
908.
909.
910.
911.
912.
913.
914.
915.
916.
917.
918.
919.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
930.
931.
932.
933.
934.
935.
936.
937.
933.
939.
940.
941.
942.
943.
944.
945.
946.
947.
948.
949.
950.
951.
952.
953.
954.
955.
956.
957.
958.
959.
960.
961.
962.
963.
964.
965.
966.
967.
968.
969.
970.
971.
972.
973.
974.
975.
976.
977.
978.
979.
980.
981.

if CardProd > ProdSlze then begin
wrlteln(11necount:3, ' -- too many productions.');
wri teln(' Recompile "generate. p" wi th ProdSlze increased.');
goto 1000;
end;

production[CardProdj.nullable :"" notsure;
DoLeftHandSidej
DoRightHandSide;
skipspace;
end; {while}

end; {DoProductions}

begIn {DoGrammar}
LineLength := OJ {initially line is empty}
LineMarker := maxint; {force the reading of the first input line}
linecount := OJ {no lines read yet}
rewrite(ActFile, 'LLact.i'); (* UNIX *)
writeln(ActFile,' procedure LLTakeAction(CaseIndex: integer); ');

{set up for case stmt}
wrlteln(ActFile t begin');
writeln(ActFile, case Case1ndex of');
writeln(ActFile, 0:; ');
declarations;
SortTable; {sort the symbol table}
DoProductions;
for i :- I to CardSymbol do with symbolTable[i] do

if (ProdStart - 0) and (kind - nonterminal) then begin
writeln('Nontermlnal " value, ' does not appear on the');
writeln(, left-hand-side of any production.');
ErrorFree : .. false
end;

writeln(ActFlle) ;
writeln(ActFile,
writeln(ActFile,

end; {DoGrammar}

end; {case}');
end; {LLTakeAct}');

procedure ComputeSelectionSetsj {compute selection set of each production}
{store in select field of production}

type
matrix:: packed array[l •• TableSize] of intset;

var
timer: real; {keep track of time used for computation}
AlITerms: intset; {set' of all literals and groups -- the terminals}
1, j: integer; {loop counter}
BDW: matrix; {holds "begins directly with" relation originally -

eventually becomes "begins with" relation}
IDEO: matrix; {holds "is direct end of" relation originally -

eventually becomes lIis end of" relation}
1FDB: matrix; {holds "Is followed c;tlrectly by" relation

which eventually becomes "is followed by"
and then "extended is followed by"}

procedure MatrixMult(var I, r, result: matrix);
{multiply matrices 1 and r yielding result}

var
i,j,k: integer;
temp: intset;

begin
for i := 1 to CardSymbol do {initially result is empty}

resu1t[i] :a [];
for j := 1 to CardSymbol do begin {j is the column index}

temp :3 [];
for k := 1 to CardSymbol do {build j-th column of matrix r}

if j in r[k] then temp :- temp + [l<];
for i := 1 to CardSymbol do {i is the row index}

if (l[i]*temp) <> [] then
{i-th row and j-th column yield non-empty product}

result[i] result[il + [j];
end; {for j}

end; {MatrixMult}

procedure FindNullablej {compute nullable nonterminals and productions}
label 10;
var

change: boolean;
i,j: integerj {loop counters}

begin
change :,. false;
for i := 1 to CardProd do with production[i] do

1f CardRhs "" 0 then begin
SymbolTable[lhs] .nullable := null;
nullable :"" null;
change : "" true
end; {if CardRhs - O}

while change do begin {add to list of nullables}
change := false; {must make a change each iteration}
for i := 1 to CardProd do begin with production[i} do

if nullable .. not sure then begin
for j :- rhs to CardRhs+rhs-l do with RhsArray[jJ do

case kind of
group, literal: begln

nullable != never;
go to 10;
end; {group,literal}

action, patch: ;
nonterminal:

case SymbolTable{TableIndexl.nullable of

29

982.
983.
984.
985.
986.
987.
988.
989.
990.
991.
992.
993.
994.
995.
996.
997.
998.
999.

1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017 •
1018.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037.
1038.
1039.
1040.
1041.
1042.
1043.
1044.
1045.
1046.
1047.
1048.
1049.
1050.
1051.
1052.
1053.
1054.
1055.
1056.
1057.
1058.
1059.
1060.
1061.
1062.
1063.
1064.
1065.
1066.
1067.
1068.
1069.
1070.
1071.
1072.
1073.
1074.
1075.
1076.
1077 •
1078.
1079.
1080.
1081.
1082.
1083.

30

never: begin
nullable :- never;
goto 10;
end; {never}

notsure: goto 10;
null: ;
end; {case SymbolTable}

end; {case kind}
nullable :- null;
SymbolTable[lhsJ .nullable :- null;
change :- true;
end; {if nullable}

10:; {early exit for loop}
end; {for i }

end; {while change}
end; {FindNullable}

function NotNullable(lndex: nonneg): booleanj
{is, SymbolTable[indexJ .value nullable?}

begin with SymbolTable[indexJ do
case kind of

nontermina1: if nullable - null tben NotNullable :- false
else NotNullable := true;

literal, group: NotNullable :- true;
end; {case kind}

end; {NotNullab1e}

procedure ReflexTrans(var RT: matrix) j

var
{compute reflexive transitive closure of RT}

i,j,k: integer;
done: boolean;
temp: intset;

begin
for i":- 1 to CardSymbol do huke relation reflexive}

RT[iJ :- RT[iJ + [iJ;
repeat {compute closure}

done :- true; {assume no change until proven otherwise}
for j :. I to C&rdSymbol do begin {j is the column index}

temp :- [J;
for k :- I to CardSymboi do {build j-th column of RT}

if j in RT[kJ then temp :- temp + [kJ;
for i :- I to CardSymbol do begin {i 18 the row index}

if not(j in RT[iJ) then ,
if (RT[iJ*temp) <> [J then begin

{i-th row and j-th column yield non-empty product}
RT[iJ :- ,RT[iJ + [jJ;
done :,. false;
end;

end; [for i}
end; {for j}

until done;
end; {ReflexTrans}

procedure ExtendedlsFollowedBy(var EIFB, lEO: matrix) i
{add EndOfSource info to "is followed by" relation}
{presume EIFB is originally "is followed bylf}

var
i: integer;
where: integer;
temp: strings;

{location of EndOfSource in Symbol Table}
{EndOfSource padded with blanks}

begin
temp :- AllBlanks;
temp[IJ :- EndOfSource;
where :- OrderedFind(temp);
for i :- 1 to CardSymbol do

{if symbol is at the end of
is at the end of symbol}

if axiom in lEO [i J then
ElPS[iJ :- EIFB[iJ + [whereJ;

end; {ExtendedlsFollowedBy}

the axiom then EndOfSource

procedure IsFollowedBy(var IFB, lEO, BW: matrix);
{x is followed by y if xy is a substring of 80111e sentential fom}

var
tem.p: matrix;

begin {lsEndOf x IsFollowedBy x BeginsWith}
MatrixMult(IEO, IFB. temp);
MatrixMult(temp, BW, IFB);

end; {IsFollowedBy}

procedure IsEndOf(var iEO: matrix)>>
{ B is end of C if there is a derivation C -> vB
in any number of stepa}

begin
{presume lEO is originally "ia direct end of" re~atlon}

R.eflexTrans(lEO);
end; {IsEndOf}

procedure IsDirectEndOf(var IDEO: matrix);
{ B is the direct end of C 1£ there 18 a production

C -> wBz where z Is nullable}
label 10;
var

i,j: integer;
begin

1084.
1085.
1086.
1087.
1088.
1089.
1090.
1091.
1092.
1093.
1094.
1095.
1096.
1097.
1098.
1099.
1100.
1101.
1102.
1103.
1104.
1105.
1106.
1107.
1108.
1109.
1110.
1111.
1112.
1113.
1114.
1115.

1116.
1117.
1118.
1119.
1120.
1121.
1122.
1123.
1124.
1125.
1126.
1127.
1128.
1129.
1130.
1131.
1132.
1133.
1134.
1135.
1136.
1137.
1138.
1139.
1140.
1141.
1142.
1143.
1144.
1145.
1146.
1147.

for i :- 1 to C&rdSymbol do {asaume no direct end of SymbolTable[iH
IDEO[iJ :- [];

for i :- 1 to C&rdProd do with production[iJ dobegln
for j :- rha-H:ardRha-l downto rhs do with RhaArray[jJ do begin

{aearch from right to left on rhs of production}

10:

if RhaArray[jJ .kind in [nonterainal, group, literalJ then begin
IDEO[RhsArray[jJ .TableIndexJ :-

IDEO[RhsArray[jJ .Tabl.Index!. + [lh.J:
{no point' aearching paat first non-nullable aymbol}

if NotNullable(RhaArray[jJ .TableIndex) then goto 10;
end; {if RhsArray}

end; {for j}

end; {for i}
end; {IsDirectEndOf}

procedure IsFollowedDirectlyBy(var IFDB: matrix);
{B is followed directly by C if there is a production

D -> wB.Cx where • is nullable}
label 10;
var

i.j,k: integer;
begin

for 1 :- 1 to CardSymbol do {presume symbol is not followed by anything}
IFDB[iJ :- [J;

for 1 :- 1 to C&rdProd 'do with production[iJ do
for j :- rhs to rhs+c&rdRhs-1 do witb EbaArray[jJ do begin

if kind in [nonterainal, group, literalJ then

10:

for k :- j+l to rhs-H:ardEbo-l do begin
if EbsArray[kJ .kind in [nonterainal, literal, groupJ then
bellin

IFDB[TabldndexJ :- IFDB[TablelndexJ +
[EbaArray[kJ. Tablelodex);

{don't aearch paat first non-nullable aymbol}
if NotNullable(EbsArray[kJ .TableIndex) tben goto 10;
end; {if EbaArray}

end; {for k}

end; {for j}
end; {IaFollowedDirectlyBy}

procedure BeginaDirectlyWith(var BDW: matrix);
{C begina directly with B if there ia a production

C --> wB. where w is nullable}
label 10;
var

i,j: integer;
begin

for i :- I to C&rdProd do with production[iJ do besin
for j :- rha to rhs+C&rdRha-l do with EbaArray[jJ do

10 :

if kind in [nonterainsl, group, literalJ tben begin
BDW[lha] :- BDW[lhaJ + [TableIndexJ;
if Notllullable(Tablelndex) then goto 10;
end; {if kind}

end; {for 1}
end; {BeginsDirectlyWith}

procedure BeginaWith(var BW' aatrix);
{C begina with B if there is a derivation C --> Bw
in any number of steps}

1148. begin
1149. Reflexrrans(BW);
1150. end; {Begf.nsWith}
1151.
1152.
1153.
1154.
1155.
1156.
1157.
1158.
1159.
1160.
1161.
1162.
1163.
1164.
1165.
1166.
1167.
1168.
1169.
1170.
1171.
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1181.
1182.
1183.
1184.

procedure First8ymbol(var FS:" 1I8trix);

begin

{terminal b is a F1ratSymbol of B if there ia a derivation
C··> bw in any number of step~}

for i :- I to CardSymbol do
if SymbolTable[iJ .kind - nonterainal then

FS[iJ :- FS[iJ* AllTeras
else

FS[iJ :- [iJ;
end; {F1rstSymbol}

procedure FlrstProd(var FS: matrix);
,{terainal b 10 in FiratProd of product'ion C --> 11

if C .-> w --> bz for sentential fat'll bz in any
number of steps}

{store computed answers in "select" field of production
since this is part of the selection set info}

label 10;
var

i,j: integer;
begin

for i :- 1 to CardProd do with productionl11 do begIn
{presuae selection set is empty}

select :- [1;
{add FirstSyabols of rhs elements up thru
first non-nullable element}

for j :- rhs to rha-H:ardRhs-1 do with EbaArray[jJ do bagin
if kind In [nontermlnal, literal, group] then begin

select :- select + FS[Tablelndex];
if NotNullable(TableIndex) then goto 10;

1185.
1186.
1187.
1188.
1189.
1190.
1191.
1192.

1193.
1194.
1195.
1196.
1197.
1198.
1199.
1200.
1201.
1202.
1203.
1204.
1205.
1206.
1207.
1208.
1209.
1210.
1211.
1212.
1213.
1214.
1215.
1216.
1217.
1218.
1219.
1220.
1221.
1222.
1223.
1224.
1225.
1226.
1227,
1228.
1229.
1230.
1231.
1232.

1233.
1234.
1235.
1236.
1237.
1238.
1239.
1240.
1241.
1242.
1243.
1244.
1245.
1246.
1247.
1248.
1249.
1250.
1251.
1252.
1253.
1254.
1255.
1256.
1257.
1258.
1259.
1260.
1261.
1262.
1263.
1264.
1265.
1266.
1267.
1268.
1269.
1270.
1271.
1272.
1273.
1274.
1275.
1276.
1277.
1278.
1279.
1280.
1281.
1282.
1283.
1284.

10 :

end; {if kind}
end; {for j}

end; {for i}
end; {FlrstProd}

procedure HandleResolvants; {give priority to resolvants in
selection sets}
label 10;
var

l,j: integer;
begin

for i ;- 1 to CardProd do with production[i] do
1£ resolve <> [] then begin

for j :- SymboITable[lhs].ProdStart to CardProd do
if production[j].lhs <> lhs then

goto 10
else

production[j] .select :- production[j1.aelect-reaolve;
10:
select :- select + resolve;
end; {if resolve}

end; {HandleResolvants}

procedure HandleConfllcts; {report conflicts among alternative
productions and resolve conflicts 8S indicated by supplemental
selection set info stored in resolve}

label 10;
var

any: boolean;
i,j,k: integer;
intersect: intset;

begin
any :- false;
for i :- 1 to CardProd do with production[1] do begin

for j :- i+1 to CardProd do
1£ production[j].lhs - lhs then begin

intersect :- select*production{j] .select;
production{j] .select :- production{j] .select - intersect;
if intersect <> [] then begin {conflict I}

1f not any then begin
1f PrintSelect then begin

writeln(LLselect, 'There are selection set conflict"',
, as indicated:');

writeln(LLselect) ;
end;

writeln('There are selection set conflicts as
indicated: ');
writeln;
any ~"" true
end;

for k : = 1 to CardSymbol do
if k in intersect then begin

if PrintSelect then

end;

writeln(LLse1ect, SymbolTable[k).value, ' in
'prods at lines "
production[i).line : 3,
, and', production{j] .11ne: 3, ' with',
, left-hand side', SymbolTable[lhs] .va1ue);

writeln(SymbolTable[k] .value, ' in '.
'prods at lines;,
production[i] .1ine : 3,
, and', production[j] .1ine: 3, ' with',
, left-hand side', SymbolTable[lhs].value);

end;

end {if production}
else go to 10; {no more alternativ,es}
10 :
end; {for i}

if PrintSelect then begin
writeln(LLselect); writeln(LLselect)j end;

end; {HandleConfllcts}

begin {ComputeselectionSets}
timer :- clock; {keep track of how much time to compute selection sets}

(* UNIX *J
writeln('Starting to compute selection sets -- " CardProd:3,

, produc tions. ') ;
FindNul1able; {determine which symbols and prods are nullable

-- store answers in Symbol Table and productions
respectively}

{compute set of all terminals}
AllTerms :- []; {initially empty}
for i :- 1 to CardSymbol do

1£ SymboITable[i].kind in [literal. group] then
AlITerms :- AlITerms + [i];

for i :- 1 to Card Symbol do {initially. BDW is empty}
BDW[i] :- [];

BeginsDirectlyWith(BDW);
BeginsWith(BDW);
FirstSymbol(BDW);
FirstProd(BDW);

{at this point selection set for each production
already includes first of rhs as computed in
PirstProd -- just add Follow, info if needed }

1285.
1286.
1287.
1288.
1289.
1290.
1291.

1292.
1293.
1294.
1295.
1296.
1297.
1298.
1299.
1300.
1301.
1302.
1303.
1304.
1305.
1306.
1307.
1308.
1309.
1310.
1311.
1312.
1313.
1314.
1315.
1316.
1317.
1318.
1319.
1320.
1321.
1322.
1323.
1324.
1325.
1326.
1327.
1328.
1329.
1330.
1331.
1332.
1333.
1334.
1335.
1336.
1337.
1338.
1339.
1340.
1341.
1342.
1343.
1344.
1345.
1346.
1347.
1348.
1349.
1350.
1351.
1352.
1353.
1354.
1355.
1356.
1357.
1358.
1359.
1360.
1361.
1362.
1363.
1364.
1365.

1366.
1367.
1368.
1369.
1370.
1371.
1372.
1373.
1374.
1375.
1376.
1377 •
1378.
1379.
1380.
1381.

1382.
1383.

lsDirectEndOf(IDEO); {computes "ls direct end of" relation}
IsEndOf(IDEO); {tranafonls "la direct end of" into "18 end of"}
IsFollowedDirectlyBy(IFDB);
IsFollowedBy(IFDB. IDEO, BOW); {transforms "la followed directly

by" into "is followed by"}
ExtendedisFollowedBy(IFDB, IDEO); {adds info for EndOfSource
.. rker to

"ls followed by"}

{can now add Follow Info to select field}
for i :- 1 to CardProd do with productlon[i] do

1£ nullable - null then {add terminal symbols}
select :- select + IFDB[lhs];

HandleResolvantsj
HandleConflictsj
for 1 :- 1 to CardProd do with productlon[l] do

for j :- 1 to CardSymbol do
if j in select then

CardSel :- CardSel+l j
writeln(' Seconds CPU time to compute selection sets -- "

(clock-timer)/1000.0 :5:2); {time 1s in milliseconds}
(* UNIX *)

end; {ComputeSelectionSets}

procedure SaveGrammarj {save entire grammar on disk in LLgraa.
Print grammar with selection sets on LLselect
if requested.}

var
NumValue: integer; {number of selection set or vocabulary elements

on current line of LLselect.}
i,j: nonneg; {loop counter}
NumberOfTerminals: nonneg;
WhichTermina1: array[1 •• TableSize] of integer; {which numbered

terminal SymbolTable [i] is}
begin

rewrite(LLgram) ;
{write Symbol Table}

NumberOfTermlnals :- OJ
for 1 :- 1 to CardSymbol do with SymbnITable[i] do

if kind in [literal, group] then begin
{write symbol and kind}

NumberOfTerminals :- NumberOfTerminals+l;
LLgram". table :"" value;
put(LLgram);
if kind - group then

LLgramA .table[l] :- 'g'
else

LLgramA
• table [1] :- 'I';

put(LLgram) ;
WhichTerminal [iJ :- NumberOfTerminals;
end; {if kind}

writeln(ConstFile,' LLTableSize - " NumberOfTerminals:4, ';');
{now the productions}

if PrintSelect then begin {print heading of selection set report.}
writeln(LLselect, 'Grammar productions with selection sets added: ');
writeln(LLselect) j
writeln(LLselect, 'Prod # Line # Production');
writeln(LLselect) ;
end;

LLgram'" • grammar :- SymbolTable [axiom] .ProdStart; put (LLgram) ;
for j :- 1 to CardProd do

with production [j] do begin
if PrintSelect then begin

write1n(LLselect) ;
write(LLselect, j: 3, line: 9, ' ,

PrintString(SymbolTable[lhs].value),' - ');
end; {if PrintSelect}

LLgram'" .grammar :- Symbol Table [lhsl.ProdStart; put(LLgr811.);
LLgram" • grammar :- CardRhsj put(LLgram);
NumValue :,. 0; {no vocab symbols on current line of LLselect yet}
for i :- rhs to rhs+CardRhs-1 do-with RhsArray[i] do begin

if PrintSelect then begin
1f NumValue - 6 then begin

writeln(LLselect) ;
wrlte(LLselect,' ');
NumValue :- 0
end; {if NumValue}

NumValue :- NumValue + 1;
if kind in [nonterminal, literal, group] then

wri tee LLselec t, PrintSt ring(Symbol Table [Table Index]
.value))

else if kind .. action then
write(LLselect. ' {a •• } ')

else
NumValue :""' NumValue - 1; {didn't print anything}

end;
case kind of

nonterminal: begin
LLgram" .grammar :,. ord('n'); put (LLgr8II.) ;
LLgram'" • grammar :"" SymbolTable[TableIndex] .ProdStart;
put(LLgram);
LLgram'" . grammar :- CaseSelect; put(LLgr8lll);
LLgram'" .grammar :- SynchIndex; put(LLgraa) j
end;

group: begin
LLgram grammar :- ord('g'); put(LLgr8JI.);
LLgram'" • grammar :- Wh1chTerminal [TableIndex1; put
(LLaraa);
LLgram'" .grammar :""' CaseSelect; put (LLgraa) ;
LLgram" .grammar :- SynchIndex; put(LLgraa);

31

1384.
1385.
1386.
1387.
1388.
1389.
1390.
1391.
1392.
1393.
1394.
1395.
1396.
1397.
1398.
1399.
1400.
1401.
1402.
1403.
1404.
1405.
1406.
1407.
1408.
1409.
1410.
1411.
1412.
1413.
1414.
1415.
1416.
1417.
1418.
1419.
1420.
1421.
1422.
1423.
1424.
1425.
1426.
1427.
1428.
1429.
1430.
1431.
1432.
1433.
1434.
1435.
1436.
1437.
1438.
1439.
1440.
1441.
1442.
1443.
1444.
1445.
1446.
1447.
1448.
1449.
1450.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
1458.
1459.

32

end;
literal, begin

LLaraa·.Sr_r ,- ord('l'); put{LLara.);
LLara .. • .sr r ,- WhichTeralnal[TableIndex]; put{LLgru);
LLgraa'" ~lr&lllll8r :- CaseSelect; put(LLgraa);
LLar .. • .Sra r ,- SynchIndex; put{LLaraa);
end;

patch, besln
LLaru' .sr r ,- ord{ 'p'); put{LLaraa);
LLaraa' .sra_r ,- caseSelect; put (LLaraa) ;
end;

aetion, besin
LLSr ... ·.srallll&r ,- ord('a'); put{LLaru);
LLar ... ·.sra r ,- caseSelect; put{LLaram);
end;

end; {case}
end; {if}

{write out selection set info}
if PtintSelect then besin

writeln{LLaelect) ;
write(LLaelect, , I');
end;

LLgra .. ·.sr_r ,- CardSel; put(LLaram);
NuaValue :- 0; {how many selection let eleaents printed on

current line of LLI.lect}
for i ,- 1 to cardSymbol do

if i in select then besin
LLar'" .sra_r ,- WhichTerainal[iJ; put{LLgru);
if PrintSelect then besin

if NuaValue - 6 the\> besin
writeln{LLselect) ;
write(LLaelect. ' ');
NwaValue :- 0;
end; {if IIuIIlValue}

NuaValue :- NuaValue + 1;
write(LLselect. PrintString{ symbolTable[l] .value»;
end; {if PrintSelect}

end; {if i}
if PrintSelect then

writeID(LLaelect. ' ;');
end; {with production}

{write how large RhsArray is}
writeln(CoDatPile, , LLRhsSlze·', ThisRhs:4, ';');

{write out synchronization info}
for 1 ,- 1 to CardSynch do besln

if SynchData[lJ .TableIndex <> 0 then
LLaraa' .sra_ar ,- WhichTerminal [SynchData[i] • TableIndexl

e1 ••
LLsr ... • .sr r ,- 0; put{LLara.);
LLara.·.sr r ,- SynchData[i] .sent; put{LLar ...);

end; {for i}
end; {SaveGr&Dlll&r}

besln {maln program}
ErrorFree :- true; (initIally no
for 1 :- 1 to StringS!ze do

AlIBianks [iJ ,- ' ';
rewrite(CoDstFile, 'LLcoDSt.1');
writeln;
Do.GrallDl&r;
if ErrorFree then begin

ComputeSelect ionSets;
SaveGram:mar ;
end

else

errors in gr.-ar}

(~ UNIX .)

writeln(' Selection
writeln(ConatFile t
writeln(ConstFile t
writeln(ConstFile t

sets not computed because of fatal error.');
LLProdSize - ' t CardProd. ';');
LLSynchSize - '. CardSynch. ';');
LLStringLength - '. StrlngSlze. '; ');

1000,
writeln;

end.

1 6032 PROCESSOR GETS
PASCAL, PLIl, FORTRAN,

AND C COMPILERS

Globally optimizing, commercial-grade
compilers for PUl, Fortran, Pascal, and C lan
guages are now available for National Semi
conductor's 16032 microprocessor. The units
are available both as cross-compilers and as
native compilers running under Bell Laborato
ries' Unix operating system-though they may
easily be retargeted to other operating systems.

Translation Systems Inc. claims that tests of
its Pascal programs by an independent tele
communications firm found a code density of
1.4, compared with 1.7 for National's and 2.2
for Motorola's. Theoretically, a proficient as
sembler programmer would write a code size
of 1.

The company is currently offering original
equipment manufacturers distribution licenses
for a one-time fee of $97,500, plus royalties.
Products in the works include compilers for
RPG-II, Cobol, Basic, and a full PUI
implementation.

Tom Lindin, Translation Systems Inc.,
530 Atlantic Ave., Boston, MA 02210
Phone (617) 357-9433

'DBX'-NEW PRODUCT

Pascal & Associates of Chapel Hill, NC, an
nounces a new product intended for PASCAL
programmers who wish to develop data man
agement applications. DBX stores keyed data
strings passed to it from a calling program. It is
fast, simple, efficient, and inexpensive. It is
written entirely in PASCAL. It is available -
on disk - for the Apple II + lIIe and IBM PC
microcomputers, Apple- and IBM-compati
bles, and computers with standard 8" SSSD
disk format. Since DBX includes complete
source listings, it can be entered and used on
any computer with a PASCAL compiler.

DBX stores variable-length keyed strings of
data in a disk file. It uses a modified ISAM (In-

dexed Sequential Access Method): It divides its
keyed entries into "pages," and indexes the
pages. In each page, the entries themselves are
kept sorted. Each page consists of an exact
number of disk blocks. This enables DBX to
use high-speed fixed-length disk 1/0 routines.
Thus, DBX can stores and retrieve entries very
quickly, while limiting the average number of
disk accesses to one per operation.

DBX also maintains memory dynamically;
it minimizes - at run-time - the memory it
uses. The number of files that DBX can simul
taneously manipulate is limited only by the
amount available memory.

DBX is modular; it comes as an "Intrinsic
Unit" for inclusion in a UCSD p-System li
brary. You can write a program to call it, or
modify the calling program we've included as
an example, or modify DBX itself. Calling pro
grams pass a simple "callblock" containing in
put keys, input data, and operations; DBX re
turns output keys, output data, the output
page, and a result code for the success or fail
ure of the operation.

For $49.95, you get OBJECT AND
SOURCE CODE for three programs:

• DBX itself;

• 'MINIBASE,' a simple example program
that calls DBX to store, retrieve, or delete
entries;

• 'DBTEST,' a diagnostic 'testbed' program
that calls DBX, and displays all current
input and output information.

You also get a 50-page manual that describes
the data structures, procedures, and principal
algorithms for all three programs, and gives
many suggestions for modifying them for dif
ferent purposes.

With no changes at all, MINIBASE is al
ready an ideal user~riented package for bibli
ographies, glossaries, inventory catalogs, and
similar applications.

DBX is available only from Pascal & Associ
ates, 135 East Rosemary Street, Chapel Hill,
NC 27514. Send $49.95 plus $3.00 for ship·
ping costs; or call 919-942-1411 - we take ma
jor credit cards.

PLUMB

LOUISVILLE, KY - Riverside Data Inc.
introduces a new publication designed to help
personal computer users get more work, fun
and information out of their machines.

"PLUMB - Probing the World of Personal
Telecommunications" is a newsletter to help
computer users explore the many services
available when the computer is connected with
a modem and a telephone.

PLUMB contains information of interest to
computer users, regardless of their level of ex
pertise or the brand of computer they own.

Unlike a particular software program, tele
communications is a common denominator, al
lowing owners of all types of machines to com
municate, share ideas and "homegrown" soft
ware, and obtain a wide range of sophisticated
services.

The popularity of commercial timesharing
services such as The Source and CompuServe
is evidence of the growing interest in personal
telecommunications.

Though most computer owners are aware of
these services, there are hundreds of private
and company-sponsored databases and sys
tems that deliver a vast array of services free or
at a minimal cost. PLUMB features these
other services:

• Electronic mail
• Software sales and exchange
• Dating services and adult bulletin boards
• Financial and investment information
• Merchandise sales
• Online games
Some "underground" bulleting boards even

deal with information to help crack protected
software. PLUMB reports on new systems and
features added to established systems. And it
publishes reports designed to help computer
users get what they want, faster and more effi~
ciently.

Riverside Data's intention is to provide the
home computer user with the kind of usable,
non-technical information about telecommuni
cations available nowhere else.

Computer magazines are filled with articles
and advertisements about modems and com
munication programs, but very little informa
tion about what's available once the user is
ready to go online.

One big attraction,of telecommunications is
its ability to serve as a common ground for all
types of computers. Apple users can trade
ideas with Atari users. Radio Shack owners
can talk to IBM people. It's like an enormous
festival for millions of computer owners.

PLUMB sells for $20 for the five issues pub
lished in 1983. Subscriptions should be mailed
to: Riverside Data Inc .. P.O. Box 300. Harrods
Creek. KY 40027.

33

SCENIC COMPUTER INTRODUCES
SPRINTER·2, A TEXT

PROCESSOR FOR LARGE DOCUMENTS

SEATTLE, WA - SPRINTER·2, a new
text processor has been developed by Scenic
Computer Systems, Inc., specifically to meet
the demands of producing books, reports,
manuals and other large documents.

SPRINTER-2 frees the user from tedious
and error-prone tasks such as compiling and
verifying indices, tables of contents, lists of
figures, and maintaining forward and back
ward references. Automatic numbering of
chapters, sections, and pages reduces prepara
tion time.

SPRINTER-2's built-in text formatting com
mands include automatic footnote placement
and numbering, multicolumn formats, and
powerful header and footer line capabilities.

According to Erik Smith, Scenic's President,
"The real power of SPRINTER-2 lies in its
Macro Formatting Language. The user can de
fine macros (one word instructions) to carry
out any sequence of the built-in commands
and other macros."

The use of macros minimizes commands
embedded in the text and assures consistency
throughout a document. An entire document
can be reliably reformatted in minutes simply
by changing the macros definitions.

A text file can be printed without modifica
tion on any of the supported printers with any
type style, since SPRINTER-2 does not rely on
any printer specific features.

Since proofing a large document for spelling
and typing errors is a major task, a spelling
checker with an expandable 40,000 word dic
tionary is available.

SPRINTER-2 supports all popular daisy
wheel printers, including Diablo 630 and 1600
Series, NEC Spinwriters, Printmaster P-IO,
Starwriter P·IO, Transtar 130 and 140, and
Qume Sprint. Drivers for additional printers,
phototypesetters and laser printers are under
development.

SPRINTER-2 is written in Pascal and is
available for any computer using SofTech Mi
crosystems' p-System. This includes Corona,
Compaq DEC PDP and LSI 11123, IBM Per
sonal Computer, NEC Advanced Personal
Computer, Sge II and Sage IV, Scenic MOdel
One, Texas Instrucments Professional Com·
puter, and Victor 9000/Sirius I.

SPRINTER-2 is priced at $350. The option
al spelling checker is $125. Product literature
or the 14O-page users' manual can be obtained
by contacting Scenic Computer Systems, Inc.,
14852 NE 31st Circle, Redmond, WA 98052;
(206) 885-5500.

34

NEWEST SAGE
SUPERMICROS BROCHURE

Sage Computer Technology of Reno, NV,
has just published a full-color brochure de-

scribing its new family of high-performance
microcomputers.

The line has been expanded from one mOdel
to four, including the original Sage II in a
brand new low-profile configuration.

A mere 3-7/8" from desk top to computer
top, the low-profile Sage II packs the same
power its predecessor is famous for - 2 million
operations per second, on-board RAM expand
ability to 1/2 MByte, p-System, RAM-Disk,
and one or two built-in low-profile floppy
drives.

Three Sage IV models offer the same level
of performance, plus RAM expandability to I
MByte. Varying Wmchester capacities and
cabinet sizes distinguish the three.

The smaller Sage IV provides 10 MBytes of
built-in Winchester capacity, while the largest
boasts four built-in Winchesters totaling 200
MBytes. In each case, one or two 640 KByte
floppy drives may be specified.

All four Sage computers. typically load a
20K program from floppy diskette in about a
second, according to a company spokesman.
He said the unique Sage architecture, which
permits the Motorola 68000 processor to han
dle data from the drives without skewing and
interleaving, accounts for the remarkable
loading speed.

The literature also includes a great deal of
information about the standard operating sys
tem, the UCSD p-System. CPIM-68K, Modula
2 and Hyper-Porth operating systems are op
tionally available.

To receive a free copy of the brochure, write
to Sage Computer Technology, 4905 Energy
Way, Reno, NV 78502. The phone number is
(702) 322-6868.

PROGRAMMING A PERSONAL
COMPUTER IN EDISON

The book ProglYlmmi"g II Peno"l1l Comput
er by Per Brinch Hansen has now been pub
lished. It describes the Edison System, a port
able software system for small, personal com
puters, and illustrates how the principles of
programming languages, compilers, operating
systems and computer architecture are applied
in the design of a complete software system.

The book includes the program text of an
operating system and a compiler written in the
programming language Edison and describes
an instruction set tailored to the language. It
also includes the text of a system kernel which
interprets the portable Edison code.

Last September, a class of USC undergradu
ates used the book and the software to build
working operating systems for IBM Personal
Computers. They now hve the necessary prac
tical background to appreciate the theoretical
principles of operating systems.

The book is published by Prentice-Hall,
Englewood Cliffs, NJ 07632. The Edison Sys
tem is currently available for the Compaq
Portable Computer and the LSI II Computer.
The software is distributed by Professor Per
Brinch· Hansen, Computer Science Depart
ment, University of Southern California, Los
Angeles, CA 90089.

CALL FOR PAPERS

SCS Conference on Simulation in Strongly
Typed Languages ADA, PASCAL, SIMULA,
... * This conference will provide a forum for
presenting new approaches to developing, vali
dating, and using simulation mOdels. The fo
cus will be on high level implementation lan
guages. In particular, we solicit new approach
es based on ADA, PASCAL, SIMULA, and
other strongly typed languages. Accepted
papers will appear in the conference Proceed
ings. Areas of interest include:
• Simulation in ADA, including discrete·
event, continuous, and combined approaches.
• Programming environments tailored to
modeling and simulation, particularly th~
based on ADA, PASCAL, or SIMULA.
• Interactive model development and analy
sis, including interactive graphics tools and
model specification languages.
• Novel hardwre and software architectures
that support efficient mOdel execution.
• The simulation of distributed computer sys
tems and, in particular, software simulation
and prototyping.

DEADLINES AND REQUIREMENTS
Papers should be no longer than 5,000

words, approximately 20 double-spaced pages
in length, with author names appearing only
on the cover paper. All papers will be refereed.
Extended abstracts will also be considered.
Submit five copies of the paper by 15 July
1983 to:

Dr. Ray Bryant
mM TJ. Watson Research center
P.O. Box 218
Yorktown Heights, NY 10598
(914) 945-3542

Authors of accepted papers will be notified
by I September 1983. Camera-ready copies
will be due no later than I November 1983.

CONFERENCE SITE
The conference will be held in beautiful San

Diego, CA. This is your opportunity to com
bine an outstanding educational experience
with a vacation from winter. Bring your family!
*This conference will be held as part of the
SCS Multiconference, incorporatirtg Modeling
and Simulation on Microcomputers, SimUla
tion in Strongly Typed Languages: ADA,
PASCAL, ·SIMULA, ... , and Simulation in
Health Care Delivery Systems.

SCREEN EDITOR
LETS USERS DEFINE

FUNCTION KEYS,
BOOSTS PRODUCTIVITY

User-definable function keys (macros) are
available for the first time on a microcomputer
screen editor that can run on all major hard
ware systems, including the IBM Personal
Computer and the Apple IITM, according to
Volition Systems, developer of the software_

Called the Advanced System Editor (ASE),
the software can be adapted to a variety of ter
minals and can increase productivity at the key
board by at least 25 percent, according to Joel
J_ McCormack, company chairman_

ASE is now available for all versions of the
UCSD Pascal™ system_ It offers OEM's, soft
ware suppliers and end users important ad
vances over the original screen-oriented editor,
which as been a major strength of all UCSD
Pascal development systems_

"ASE brings microcomputer users the text
editing and program development resources
usually associated with much larger comput
ers," McCormack said_ These include features
that were not available on the original editor
the capability of editing very large files, func
tion keys that can be easily trained, file selec
tion by menu rather than human memory, the
ability to edit a new file while still within an
other, and simplified keystroke sequences to
accomplish the most common actions_

"Because all commands derive from arbitra
ry key sequences, it is easy to customize ASE
to most keyboards, giving manufacturers and
systems houses great flexibility in the choice of
terminals," McCormack continued_ In addi
ti~n, he noted, ASE can take advantage of
features such as the insert line capability that
are found on more and more terminals today_

Application developers can define the keys
they want their users to have because ASE
comes with a separate configuration program
enabling redefinition of commands or capabili
ties based on the user or application_ "Coupled
with macros tailored to a software developer's
application packages, enhanced, more effective.
packages result," he said_

ASE is the only unbundled UCSDPa.scal
editor that is available without a full develop
ment system for distribution or incorporation
into hardware and software systems.

The software is fully supported for all ver
sions of the UCSD Pascal system. The IBM
PC operates under UCSD. Pascal systems as
well as the PhilipsP2000, Digital's new Profes
sional series, the Xerox 820, and all Texas In
struments minis and micros including the Bus
iness Systems 2000 and the Home Computer.
Versions of UCSD Pascal run on all major mi
crocomputer-based systems including those in
corporating 8080's, Z-80's, LSI-II's, 6502's,
6800's, 6809's, 8086's, Z8000's, and 68000's.
Apple Pascal is a UCSD Pascal derivative.

The Advanced System Editor was designed

specifically to improve productivity at the key
board during program development and text
editing. It incorporates user-oriented conven
iences not usually found in microcomputer
editors.

"Because we are professional programmers
with experience on a wide range of computers,"
McCormack said, "we included the features
found on larger systems that we knew would
speed work flow, and we eliminated bottle
necks and sources of frustration."

The overall result has been to increase the
capacity of files that can be edited, automate
repetitive tasks, reduce keystrokes, and boost
the capabilities of the editor so that memoriza
tion is minimized and almost all work can be
done without extra manipulation outside the
editor.

File handling has been simplified immensely
because the file size is limited by available disk
space rather than by RAM memory size as
was the case before, McCormack said. With
ASE, a single file may fill an entire disk vol
ume, so users are not forced to juggle split files.

User-defined function keys (macros), which
are not available with the original UCSD Pas
cal screen editor, are another major benefit to
users. These keys allow a user to automate
tasks that recur within their particular pro
gram development or text editing environment.

Any sequence of keystrokes, including edi
tor commands, can be "taught" to one of eight
function keys. Once taught, pressing the func
tion key, in effect, causes the same keystroke
sequence to be repeated. Such macros are easy
to use, but powerful enough for complex oper
ations. Macros can, in fact, call other function
keys, and they can also be used to make a
change that affects an entire group of files.

The function key remembers the sequence
taught to it until the editing session ends or the
key is redefined by the user. Definitions can be
saved in a terminal-independent fashion within
the file being edited or within libraries of
definitions.

"User-definable macros yield significant
time savings for any task that must be done re
petitively but selectively," McCormack noted.

In addition to user-definable function keys,
Volition looked for other ways of reducing
keystrokes and making keyboard time more
productive.

"Thescreen:Oriented editor had already
done sOme keystroke optimization, but we
took it much further," McCormack said.

Almost..all moving commands are accom
plished with just one keystroke. Furthermore,
they can be used in exchange or delete modes,
whereas before the moving commands were
only available at the outermost edit level.

Single keystroke cursor positioning com
mands have been added to permit additional
cursor movements such as moving word by
word,.moving backwards by a screen, moving
to the beginning or end of a line, deleting by
words, or returning to the home position.

Variable tabs are also available_
ASE lets the user recall search or replace

ment strings with a single keystroke. The
editor also enables the user to move portions of
the text horizontally (opening or closing
space). This feature enables users to move col
umns of data relative to each other.

Nested editing and menu selection of files
are two important features that contribute to
user satisfaction and reduce overhead_ Now
with ASE, both can be accomplished without
having to leave the editor and go into the filer.

With the previous editor, memorization was
required because files were listable only by the
filer, and that showed only the file name, size
and date last used. However, ASE is desi!!;ned
to reduce memorization. There is a menu avail
able when entering the editor and when select
ing files to be copied. The first line of each file
is available as a memory jogger. Furthermore,
a menu of the file markers is available.

"With ASE, menu selection makes the 'what
file?' decision a one-character, multiple-choice
answer by offering the selection of editable
files and, if desired, the first lines of those
files," McCormack said. Use of menus is not
mandatory, however.

Nested editing lets users work on one file,
leave it to work on another or to retrieve infor
mation from another, then "pop" back to the
precise place where they were working in the
original file. Nested editing sessions can de
scend to a depth of six files, disk space permit
ting. As a result, it is possible to edit numerous
files and move text from one file to another
without leaving the editor.

Other features of ASE not found in the orig
inal UCSD Pascal editor include extended, or
"paint-mode," exchange, and change logging.
With extended exchange, characters can be ex
changed, inserted or deleted anywhere on the
screen. It's particularly useful to users who
want to create character graphics or to rule
tables because instead of being restricted to left
to right movement, they can now type in any
direction they want.

Change logging allows the user to maintain
a dated log of what was done in each editing
session. That's an especially useful record to
have if a number of programmers have worked
on development of a program over a period of
time. It is also useful for documents that have
had multiple authors.

"Most users spend the majority of their time
entering or altering text with an inadequate
editor, and their productivity and satisfaction
suffer," McCormack said. "We believe ASE is
a vastly improved tool for text manipUlation."

ASE is offered for distribution and sublicens
ing, with substantial discounts offered for
quantity purchases. Telephone support is pro
vided. It is immediately available from Voli
tion Systems, P.O. Box 1236, Del Mar, CA
92014, (714) 457-3865, with single copies for
evaluation priced at $175.00.

ASE object and source code are available.

35

ASE can be adapted for use on non-standard
implementations of the UCSD Pascal system.

Volition Systems works to improve the pro
ductivity of ~puter users and the quality of
their tools. It concentrates on systems software
development lind on software development and
hardware design. Volition specializes in Pas
cal, Modula-2 and related software, and it has
designed hardware architectures for high-level
Ianguqes under contract to other companies.

™UCSD Pascal ~ a trademark of the REgents
of the University of California. Apple is a
trademark of Apple Computer, Inc.

ASETM - The Advanced System Editor™

Still using the standard screen editor?
H so, you're wasting your time! ASE, the

Advanced System Editor, will significantly in
crease your editing throughput. ASE lets you:
• Reduce the number of keystrokes you have

to type.
• Select flies for editing without ever having

to invoke the flier.
• Automate repetitive editing tasks with func

tion keys, so you can sit back and relax
while ASE does the editing for you.

H you aren't convinced that ASE is an abso
lute necessity, ask any ASE user or try it your
self. Once you've used ASE, you'll never want
to go back!

What is ASE?

ASE is a powerful text editor suitable for
both word processing and programming envi
ronments. It incorporates many improvements
into the standard UCSD Pascal screen editor.
ASE features include:
1) Large me editing: ASE is not limited by

memory size when editing text files; you
can edit flies as large as an entire disk
volume. Source and destination files can be
specified to reside on different disks.

2) Keystroke optimization: ASE introduces a
number of single-keystroke commands
which speed up editing: you can move to
the next word, the next character occur
rence, the beginning or end of a line, or the
previous screen. Most moving commands
can also be used in eX(change and D(elete,
allowing you to delete to the next word,
character occurrence, or end of the line.

3) Extended exchange: Exchange mode allows
you to insert, delete, or exchange charac
ters anywhere on the screen. Most edit
commands can be invoked while in ex
change mode. The typing direction in ex
change mode can be changed to go up,
down, or left, as well as right, making it'
easy to draw vertical lines and diagrams.

4) Nested editing: ASE allows you to edit
another file in the middle of an edit session;
when the nested edit session is fmished, the

36 i

editor "pops" back to the previous edit ses
sion. The copy buffer·is saved across nested
edit sessions, allowing you to easily move
text from one file to another. Edit sessions
can also be chained together, allowing you
to edit a series of files without leaving the
editor.

s) FlIe menu selection: ASE displays a menu
of available text files when you type "1" to a
file name prompt. You no longer have to
memorize all the files on your disks, or con
stantly flip between the flier and editor
while editing a number of flies. Typing "?"
to the file menu prompt displays the first
text line in each listed file, helping you to
remember the contents of each file.

6) Func:tioR keys: Function keys can be 'train
ed' to remember a sequence of keystrokes;
typing a function key causes it to auto
matically perform its routine. Function
keys greatly simplify repetitive editing
tasks; their power is limited only by your
imagination.

ASE is available now for all versions of the
UCSD Pascal system. A 100 page manual is in
cluded.

UCSD Pascal is a trademark of the Regents of
the University of California. ASE and Ad
vanced System Editor are trademarks of Voli
tion Systems.

THE HISTORY OF THE DISER
MODULA COMPUTER

1970 is an important date in the history of
computers. It was then that Pascal was imple
mented and began its rise to enthusiastic ac
ceptance by the programming world. This
easy-to-learn, well defined language was
created by Dr. Nildaus K. Wirth of Zurich,
Switzerland.
, Even as major universities, software houses,

and computer companies were enhancing
Pascal to suit their own particular needs,
Wirth was assessing those needs and positing
the next generation software development
tool. The early stage of this new project was
the creation of the language Modula. A re
search tool, Modula was not a general-purpose
programming language, but rather a vehicle
for Wirth to explore real-time control systems
and for casting new light on the subject of
assembly coding.

A year's sabbatical at Xerox Palo Alto Re
search Center (PARC), gave Wirth further in
sight into the concept of modules and high
level programming languages. He went back to
Switzerland in 1977 to begin the project which
has brought to the world the Modula Computer.

The research environment of the Institute
fur Informatik at the ETH, Zurich, Switzer
land provided the freedom to enter into the
deisgn of not only a language, but concurrent
ly the computer architecture best suited to im
plement the language. Initially, the language, a
skillful' blending of Pascal and Modula and
called Modula-2, was compiled and run on a
PDP-ll. This was quickly followed, in 1979,
by the ftrst prototype of the new computer
then called the Lilith. By 1980, the Lilith had
supported the software development Wirth
had envisioned and ten Liliths were in use at
the ETH.

Limited production of the Lilith began at
Modula Research Institute in Provo, Utah. By
1981, twenty machines were in use with twen
ty more to follow in the year to come. These
were situated primarily in the research and
development areas of major universities and
industries.

In addition to proving to be the ideal work
station for software development, 1981 saw

the addition of a laser beam printer to the
Lilith, the LPB-lO. Extensive text editing and
formatting was a natural for this system giving
the user camera-ready, typeset quality copy
from the printer.

A key component of this system was the
Mouse. With three programmable buttons,
many functions of text editing were greatly
facilitated. Additional software, including bit
map graphics, coupled with the Mouse, sup
ported various design functions.

It was time to bring this personal worksta
tion to the marketplace. In January, 1983, the
DISER Corporation was formed to begin full
fleged production of the computer, henceforth
to be known as the MODULA COMPUTER.

MODULA-2

The language Modula-2-the notation in
which this system presents itself to the soft
ware engineer-is designed as a total systems
programming language. An assembler is not
needed. The language is suited to both high
level programming in a machine-independent
manner and low-level programming of machine
dependent aspeag, such as device handling
and storage allocation. The entire operating
system, the compiler, the utility programs, and
the library modules are programmed exclusive
ly in Modula-2.

The compiler is subdivided into four parts.
Each part processes the output of its predeces
sor in sequential fashion and is, therefore, called
a pass. The ftrst pass performs lexical and syn
tactic analysis, and it collectS identifiers, allo
cating them in a table. The second pass pro
cesses declarations, generating the so-called
symbol tables that are accessed in the third
pass to perform the type-consistency checking
in expressions and statements. The fourth pass
generates code; its output is calledM-code.

OPERATING ENVIRONMENT

The operating system is an "open" system. It
is divided into three principle parts; the linking
loader, the file system, and routines for key
board input and text output to the display. The

ftIe system maps abstract files (sequences of
words and characters) onto disk pages and pr0-

vides the necessary basic routines for creating,
naming, writing, reading, positioning, and de
leting meso The loader and me system present
themselves to the Modula-2 programmer as
modules (packages) whose routines can be im
ported into any program. Whenever a program
terminates, the basic operating system acti
vates the command interpreter which requests
the me name of the next program to be loaded
and initiated.

The computer as "seen by the compiler" is
implemented as a microprogrammed interpre
ter of the M-code. The M-code is designed with
the principle goals of obtaining a high derlsity
of code and of making the process of its gen
eration relatively systematic and straight
forward. A high density of code is desirable not
only n the interest of saving memory space,
but also for reducing the frequency of instruc
tion fetches. A comparison between two differ
ent, but strongly related compilers, revealed
that M-code is shorter than code for the
PDP-ll by a factor of almost four. This sur
prising fIgure is clear evidence of the inap
propriate structure of conventional computer
instruction sets, including those of most
modem microprocessors that are still designed
with the human assembly language coder in
mind.

COMPUlER HARDWARE

The hardware consists of a central process
ing unit based on the Am2901 bit-slice proces
sor, a multi-port memory with 128K words of
16 bits, a micro-code memory of 2K instruc
tions implemented with PROMs, a controller
each for the display, the disk, and interfaces
for the keyboard, a cursor tracking device called
the mouse, and an RS-232 serial line interface.
The central processor operates at a basic clock
cycle of 150 ns, the time required to interpret a
micro-instruction. The most frequently occur
ing M-code instructions correspond to aobut 5
micro-instructions on the average.

The display is based on the raster scan
technique using 832 lines of 640 dots each.
Each of these 532,480 pixels (picture elements)
is represented in main memory by one bit. If
the entire screen is fully used, its bitmap oc
cupies approximately 25% of memory. The
display is refreshed through a 64-bit bus. The
representation of each pixel in program ac
cessible memory makes the display equally
suitable for text, technical diagrams, and
graphics in general.

In the case of text, each character is generat
ed by copying the character's bitmap into the
appropriate place of the screen's bitmap. This
is done by software, supported by appropriate
microcoded routines, corresponding to special
M-code instructions. This solution, in contrast
to hardwrae character generators, offers the
possibility to vary the character's size, thick
ness (boldface), inclination (italics), and even
style. In short, different fonts can be displayed.

37
.....

This feature, which is particularly attractive
for text processing, requires a substantial
amount of computing power to be available in
short bursts. The writing of a full screen, i.e.
conversion of characters from ASCII code to
correctly positioned bitmaps, takes about one
fourth of a second. Using a small font, a full
screen may display up to 11,000 characters.

The disk used is a Honeywell·BulI D·120
cartridge disk with a capacity of 10MBytes and
a potential transfer rate of 720 kBls resulting
in an actual rate of 60kBls for reading or writ·
ing of sequential files. Disk sectors, each con·
taining 256 Bytes, are allocated in multiples of
8 on the same track. Allocation is entirely

.. dynamic, and hence no storage contraction
processes are needed to retrieve "holes."

The mouse is an input device that transmits
signals to the computer Which represent the
mouse's movements on the table. These move·
ments are translated (again by software) to a
cursor displayed on the screen. The mouse also
has three software'programmable buttons.

Reference: Wirth, N., The Personal Computer
Lilith. Report 40. Institute fur Informatik,
ETH Zurich, Switzerland; April 1981

Diser Corporation
P.O. Box 70
385 East 800 South
Orem, Utah 84057
Tel. 801·227·2300
Telex 453213

A COMPARISON OF
MODULA·2 AND PASCAL

Modula·2-The Logical Successor to Pascal

In the years following the entrallce of Pascal
into the realm of computer languages, Pascal
became increasingly appreciated for a number
of reasons:

- clear definition of data structures and
algorithms

- detection of syntax programming errors
- protection against illegal values being

assigned to variables
- overcoming, in most instances, the need

for subsets

Designed originally as a teaching language
by Dr. Niklaus K. Wirth, the language tends to
lead programmers to write well-structured pro·
grams. In addition, it is relatively easy to learn
and essentially self-documenting.

As its popularity grew so did its
"extensions". In particular, attempts to
enhance real·time applications and 110 device
handling. But these "solutIOns" created new
problems.

While the rest of the world tried applying
"fixes" to Pascal, Wirth analyzed the needs
that had been identified and answered them
with a complete language, Modula·2. The
basic advancements fall into four categories:

38

I. module structure -
Inherent management of complex program·
ming problems occurs because Modula·2
supports structuring them as individual
tasks.

2. separate compilation -
The definition'module allows individual
modules to be compiled separately without
sacrificing error checking.

3. real·time primitives -
Coroutines allow for real·time program·
ming operations are defined in one or two
separate modules. These modules are the
only ones needing revision as a program is
transported to another computer.

4. portability through encapsulated machine·
dependent operations -
Modula·2 programs are completely portable
because machine-dependent programming
operations are defined in one or two
separate modules. These modules are the
only ones needing revision as a program is
transported to another computer.

In summary, Modula·2 is the logical successor
to Pascal. it provides the solutions to Pascal's
problems:

Pascal's Problems Modula·2's Solutions
fixed arrays
global variables only
lack of separate com·
pilation hindering
large complex
programs
rigid order of
declarations
Boolean expressions
are not conditionally
evaluated

limited 110
facilitation
does not allow low·
level programming

open arrays
local variables also
separate compilation
providing libraries
of modules

related declarations
may be grouped
evaluations of condi·
tions are ordered
allowing branching
upon satisfaction
standard library
of 110 modules
controlled low·level
access providing
machine·level
programming

VOLITION SYSTEMS

Dear fellow USUS Member:

You've probably had an experience like this:
• You spent two agonizing days hunting

down a mysterious system bug. The cause?
You changed a UNIT last week and forgot to
recompile a program that uses it.

• You gave up trying to use your serial card
with interrupts-it was too hard to program in
assembly and too slow in Pascal.

• You like UCSD Or Apple PascaI™, but
have some doubts about it--everyone keeps
saying the future belongs to UNIXTM.

You're frustrated, yet you stick with UCSD.
After all, look at the alternatives!

Anyway, that's how I felt before discovering
Modula·2, Nildaus Wirtb's latest program·
ming language. EE Times, a leading electron
ics newsweekly, has called Modula-2 "the suc
cessor to Pascal." They're right.

With Modula-2, I'm :nore productive
writing and maintaining code, and I can do
things that just weren't possible with the Pascal
system. Better yet, I'll be able to move my pro
grams to other operating systems, thanks to
the standard library Volition Systems provides
with all its Modula-2 implementations.

Because you already know Pascal, you'll be
able to pick up Modula·2 in a matter of bours
and become proficient in less than a week.
Furthermore, Modula-2 is based on the effi
cient 11.0 architecture and is compatible with
your existing UCSD Pascal and Apple Pascal
software.
Sincerely,

Roger T. Sumner
Chief Programmer

UCSD Pascal is a trademark of the Regents of
the University of California. UNIX is a
trademark of Bell Laboratories. Apple is a
trademark of Apple Computer, Inc. ASE is a
trademark of Volition Systems_

Wbat is Modula·2

The Modula-2 programming language was
designed by Niklaus Wirth, Pascal's creator, as
a simple but powerful alternative to assembly
language, Pascal, 'C', and Ada_ Modula-2 is
easily learned by Pascal programmers, and it
solves Pascal's problems in a consistent and
structured fashion. Modula-2 language fea
tures include modules, concurrent processes,
separate compilation, dynamic array parame
ters, and low-level machine access.

Modula·2 on UCSD Pascal

Modula-2 on UCSD Pascal is a software de
velopment system based on the version II
UCSD Pascal system. The Modula-2 compiler
accepts the full language with minor imple
mentation restructions. Programs are com
piled into P-code.

Separate compilation is fully supported,
with up to 50 separately compiled modules per
program. No linking is required-module bind
ing is performed at run time. Modula-2 pro
grams can call other programs as procedures.
Interrupts are fully supported, allowing real
time programming in Modula-2. System-de
pendent library modules provide access to the
UCSD Pascal file system and UCSD Pascal in
trinsics. Standard library modules provide
Modula-2 programs with a standard operating
environment.

Standard Library

Standard library modules are implemented
either as a stand·alone system or as an inter·
face to an underlying operating system. Be·
cause all implementations present the same
module interfaces, programs that use standard
library modules are portable across all Modu·
la·2 systems. Standard library facilities include:

1) Console I/O: The module InOut includes
routines for reading and writing basic data
types to the standard input and output files.
Standard I/O defaults to the system console,
but can be redirected to disk files. The mod·
ule Terminal provides console input and
output and keyboard polling.

2) File I/O: The modules Texts provides
routines for reading and writing basic data
types to text streams. The module Files in·
cludes routines for reading and writing byte
streams and arbitrary data types to files.
Random and sequential file access is sup·
ported. Directory operations allow pro·
grams to change disk file names or delete
disk files.

3) Storage management: The module Storage
includes routines for dynamic variable allo·
cation and deallocation. Storage can allo·
.cate variable·sized buffers .and indicate
whether a givcn amount of storage is avail
able.

4) Program execution: The module Program
enables a Modula-2 program to call other
programs as procedures. In addition to pro·
viding code overlays, this facility simplifies
the construction of large software systems;
major parts cn be written and tested as in·
dividual programs before being incorpor'
ated into the system as subprograms. Mod·
ula·2 programs and subprograms communi·
cate by sharing library modules.

5) Exception handling: The modules Texts,
Files, and Program include facilities for
program control of run·time error handling
and recovery.

6) Process scheduling: The module Process·
Scheduler provides process scheduling and
synchronization facilities via the type
SIGNAL and the procedures WAIT and
SEND.

7) Strings: The module Strings includes the
string operations Insert, Delete, Pos, Con·
cat, and Length.

8) Decimal arithmetic: The module Decimals
provides decimal arithmetic and COBOL
style formatting routines suitable for busi·
ness applications.

9) Math functions: The module MathLibO in·
c1udes the mathematical functions sin, cos,
arctan, exp, In, and sqrt.

System Components

The Modula·2 system includes a fast one·
pass compiler, library manager utility, and a

module library. Standard library modules pro·
vide 110, program execution, storage alloca·
tion, strings, math functions, and decimal
arithmetic. A copy of Niklaus Wirth's new
book Programming in Modu/a·2 is provided
along with complete system documentation.

System·dependent Facilities

In addition to the standard module library,
the Modula·2 system provides access to sys·
tem-dependent facilities. On the Apple II and
/II, special modules are provided to access Ap·
pie graphics and peripheral devices, and the in·
terrupt system connects to the Apple hardware
interrupt system. A utility program is also pro·
vided which can convert Apple Pascal intrinsic
units into library modules.

On the Sage, a special library module is pro·
vided for performing 32·bit arithmetic, and the
interrupt system connects to the event system
defined in the Sage BIOS. Note that the Sage
system includes UCSD Pascal·based system
software and utilities.

Modula·2 versus UCSD Pascal™ -
Seven Significant Differences

1) Modules versus units - Modula·2 divides
its separately compiled modules into separate
definition and implementation modules, allow
ing version control and easier library manage·
ment. UCSD Pascal bundles a unit's interface
and implementation parts into one compila·
tion, preventing version control and making
library management awkward. Modula·2's im·
port/export statements and identifier qualifica·
tion (e.g. "modulenamejdent") provide explicit
scope control over identifiers obrained from
other modules. UCSD Pascal offers no identifi·
er scope control between units. Finally, Modu·
la-2 allows the declaration of local modules to
improve the organization of compilation units.
UCSD Pascal does not allow local units.

2) I/O and Storage Management - Modu·
la·2 provides all 110 and storage management
routines as library modules, allowing such
routines to be redefined or removed from the
runtime system. UCSD Pascal I/O and storage
routines are hardwired into the operating
system.

3) Concurrency - Modula·2 provides co·
routines as the basic form of concurrency. Co·
routines are Simpler and faster than UCSD
Pascal semaphores, and can also be used to
construct most forms of process scheduling:
rendezvous, message passing, signals, or
semaphores.

4) Low-level Programming - Modula·2
provides explicit language features for low
level programming: type transfer functions,
absolute·address variable declarations, bitsets,
address arithmetic, and interrupt handling. In
UCSD Pascal, low-level programming relies on
assembly language or unsafe programming
tricks which violate the Pascal language.

5) Parameters - Modula·2 provides proce.
dure types: they are a generalization of Pascal's
procedure parameter, and permit the defini
tion of procedure parameters and procedure
variables (a powerful concept new to most Pas
calers). Modula·2 also provides open array pa.
rameters which accept arrays of any size.
UCSD Pascal provides neither the procedure
parameters nor conformant arrays defined in
standard Pascal.

6) Statements & Expressions - Modula·2
provides a LOOP/EXIT statement, a FOR
statement with arbitrary step values, and a
CASE statement with an ELSE part and sub·
ranges allowed in case constants. Functions
can return any type as a function result. Mod·
ula-2 defines short-circuit Boolean expression
evaluation for simpler and more efficient pro·
gramming. Constant expressions may appear
anywhere a constant is allowed. Pascal pro·
vides none of these useful features.

7) Syntax - Modula-2 programs are more
readable than Pascal. Identifiers are significant
to any length (not just the first 8 characters).
The INC and DEC procedures eliminate the
need for 'i: = i + l' statements. There is no BE·
GIN/END statement, because structured
statements (IF, WHILE) are terminated by
END.

VOLITION INTRODUCES
MODULA-2 FOR IBM PC

Niklaus Wirth's new programming language,
Modula·2, is commercially available on the
IBM Personal Computer for the first time, ac·
cording to Volition Systems in Del Mar, CA.

Modula·2 comes as part of a complete soft
ware system based on a version II UCSD Pas·
cal* operating system. The system, developed
by Volition, features a fast, easy-to·use version
of Modula·2 and works well even in the 64K
IBM PC environment, a feat not achieved by
other UCSD Pascal-based systems.

Wirth developed Modula·2 to overcome
real-world deficiencies he recognized in Pascal,
which he created earlier as a teaching Ian·
guage. The new language-designed to utilize
standard software modules-<>ffers great flex·
ibility in the development of large, complex
systems. It is paticularly suited for large in·
dustrial and commercial applications.

Volition's implementation of the new Ian·
guage offers a two-fold savings for software
program developers using the IBM PC, accord·
ing to Joel J. McCormack of Volition.

First, the use of standard software modules
and separate compilation with automatic ver·
sion control can save time and money during
program development and maintenance.

"In addition, program developers will wei·
come Modula·2's portability," McCormack pre.
dicted, "because programs written in Modula·2
for the IBM PC are directly transferable to the
Apple II system. In effect, they can double

39

their target market with a very minimal
effort."

Volition's Modula·2 system for the PC in
cludes a comprehensive module library, Modu
la-2 compiler, and tutorial programs designed
to bring Pascal programmers up to speed on
Modula-2 in a matter of hours.

The implementation makes special provi
sions for the needs of software developers, pre
senting a nicely integrated development envi
ronment. The compiler and editor communi
cate with each other to reduce development
time, modules are dynamically linked so there
is no separate linkage process required, and
friendly user interface and consistent prompts
are provided.

All the attractive features of Modula-2 are
provided: low-level machine access, real-time
control, concurrent processes, and type--secure
separate compilation with automatic version
control.

Real number and transcendental mathemat
ical support is provided directly by the 8087
numerics processor. Performance using the
8087 is considerably faster than it would be
without it.

"Interrupt handling is fully supported-pro
grammers can now write real-time or multi
tasking applications in Modula-2 instead of
resorting to error-prone assembly language,"
McCormack said.

Volition's unique development in the imple
mentation is the standard library, a collection
of modules that offers facilities normally pro
vided by an operating system. The library pro
vides console 110, random access files, disk di
rectory operations, format conversion, strings,
decimal arithmetic, storae management, pro
gram execution and process scheduling. The
standard library provides a portable interface
to the underlying operating system.

"With Modula-2, you can develop portable
software systems that run without change on a
number of different operating systems," Mc
Cormack said. "This should be of obvious in
terest to software developers faced with
writing applications which must run on all of
today's popular microcomputers."

In addition to the IBM PC system, Volition
currently provides Modula-2 for the Apple II
(under Apple Pascal·) and for the Apple 11/
(under SOS) and as part of a complete software
system for computers based on the 8080/Z80
and 68000 processors.

Modula-2 for the IBM PC is immediately
available from Volition Systems. The complete
Modula-2 system includes Pascal and Modu
la-2 compilers, module library, the Advanced
System Editor (ASE), p-NIX command shell
(that provides a UNIX-like programming en
vi-ronment), and a complete set of utility
programs.

The system is priced at $595. Educational,
retailer, and distributor discounts are
available.

Volition Systems concentrates on systems

40

software development and on research and de
velopment in hardware and software. Since the
company was founded in 1980, it has been a
leader in the implementation and dissemina
tion of the Modula-2language and other high
level languages and in the design and develop
ment of advanced computer architectures.

MRI ANNOUNCES MODULA-2
COMPILER FOR IBM PC

IBM PC owners can buy a full M'odula-2
compiler for only $40 from the Modula Re
search Institute, a nonprofit organization in
Provo, Utah. MRI has adapted the compiler
for the IBM PC from the original Modula-2
compiler developed by Niklaus Wirth at the
Institute for Informatics of the ETH in Zurich.
The IBM PC compiler generates intermediate
M-code similar in concept to the P-code of the
original Zurich Pascal compiler.

Although the 4-pass Modula-2 compiler re
quires more compile time than a single-pass
Pascal compiler, it provides M-code that is
30% more compact than the p-code and exe
cutes at least 20% faster. Use of M-code
makes it possible to use programming tools
transported from Wirth's Lilith, an optimized
programmer's workstation that directly ex
ecutes M-codes and is also available from
MRI. MRI is now developing an M-code-to
native-code translator for the IBM PC to opti
mize execution time on the IBM PC at the ex
pense of code compactness.

The $40 compiler for the IBM PC runs
under DOS 2.0, requires 128k of RAM and 2
floppy disk drives, and is distributed with sam
ple programs on two single-sided IBM floppy
disks. Source code for the compiler is available
from MRI on IBM PC floppy or 9-track tape
for an additional $160. MRI also has versions
of the compiler for the 68000 and the PDP- II.

MODULA-2 SOFTWARE FROM
VOLITION TO LAUNCH

SPRINGER-VERLAG LINE

Volition Systems Modula-2 will be the first
software offering from Springer-Verlag, the in
ternational publisher of scientific, technical
and medical books and journals, according to
Volition Systems in Del Mar, CA.

Springer-Verlag New York Inc. will be han
dling Volition Systems Modula-2 software
packages for worldwide distribution through
the publisher's traditional retail channels. Voli
tion's implementation of Niklaus Wirth's new
Modula-2 programming language will be avail
able for the Apple II and lie, the IBM Personal
Computer and the Sage II and IV
computers.

Until now, Volition has concentrated on

sales of Modula-2 to OEM's, systems houses,
software developers and manufactueres. "This
agreement will significantly expand our mar
keting effort at the retail level," according to
Joel J. McCormack of Volition Systems.

"We expect the broader availability of Mod
ula-2 software will spark additional interest in
this superior new programming language, par
ticularly in the academic, scientific and tech
nical fields where Springer's titles are highly
respected," he continued.

Modula-2 software will be distributed as
part of Springer's Computer Science Software
Project and will be available beginning in Oc
tober. Also available from Springer is Niklaus
Wirth's book Programming in Modula-2,
which includes a complete description of the
language.

Wirth created Modula-2 (from MODUlar
LAnguage) to overcome the real-world de
ficiencies of Pascal, a language which he previ-
0usly created. The new language uses modules
to facilitate development and maintenance of
large, complex software systems, making it es
pecially useful in large industrial, commercial
and scientific applications.

The Volition Systems Modula-2 is available
as a complete software development system
and includes a comprehensive set of standard
library modules and utilities as well as tutorial
programs, system documentation and Wirth's
book. Springer-Verlag will package and pro
vide support for the systems it sells through its
distribution channels.

Volition Systems concentrates on systems
software development and on research and de
velopment in hardware and software. Since the
company was founded in 1980, it has been a
leader in the implementation and dissemina
tion of the Modula-2 language and other high
level languages and in the design and develop
ment of advanced computer architectures.

Springer-Verlag is a le3ding international
scientific, technical and medical publisher with
185 science journals and 900 new titles re
leased annually. Located in New York, Berlin,
Heidelberg and Tokyo, it maintains a world
wide network of interlocking editorial, produc
tion, marketing and distribution centers and
publishes reference works, original research
and advanced texts.

UCSD Pascal System User's Society

us na
UCSD p-System User's Society

GET MORE FROM YOUR PASCAL SYSTEM
.... JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used. machine-independent
software system.

If you use UCSD Pascal*, Apple Pascal** or the UCSD p-System, USUS wililink you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and influence the development of
UCSD Pascal and the UCSD p-System and to help them learn more about their systems. USUS is non
profit and vendor-Independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS. you have formal and Informal opportunities to communicate with and learn from other
users via:

• NATIONAL MEETINGS • SOFTWARE LIBRARY
• USUS NEWS AN 0 REPORT • SPECIAL INTEREST GROUPS
• ELECTRONIC MAIL

'UCSD Pascal and Ihe uCSD p-Syslem are Irademarks ollhe RegenlS 01 !he Unlverslly of California.
"Apple Pascal IS a Irademark 01 Apple CompUler Inc

USUS MEMBERSHIP APPLICATION
IPlease complete both sides)

I am applying for $25 individual membership
$500 organization membership
$ __ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. If you reside outside North
America. air mail service IS available for a surcharge. It IS as follows: $5.00 annually for those In the
Caribbean. Central America and Columbia and Venezuela; $1 0.00 annuallyforthose in South America.
Turkey and North Africa; and $15.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. office.

Name/Title

Affiliation
Address __ __

Phone \-(_______ ~ ________ TWX/Telex

Option' Do not prrnt my phone number In USUS rosters
Option: Prrnt only my name and country In USUS rosters
Option' Do not release my name on mailing lists

41

42

USUS MEMBERSHIP BENEFITS

* * * * *
• NATIONAL MEETINGS twice a year let you learn from experts and tryout the newest products.
Meetings feature hardware and software demonstrations. tutorials. technical presentations and
Information. reduced-cost software library access. special interest group (SIG) meetings. and a chance
to query "major" vendors.

• USUS NEWS AN D REPORT brings you news and information about your operating system four times
a year. It contains technical articles and updates. library catalog listings. SIG reports. a software
vendor directory and organizational news.

• ELECTRONIC MAIL puts USUS subscribers in touch with a nationwide network of users. Compu
Serve MUSUS SIG is for data bases and bulletin board communications. GTE Telemail accommo
dates one-to-one messages.

• SOFTWARE EXCHANGE LIBRARY offers an extensive collection of tools, games. applications.
and aides in UCSD Pascal source code at nominal prices.

• SPECIAL INTEREST GROUPS zero in on specific problems. represent member interests with
manufacturers.

For more information. contact: Secretary, USUS. P O. Box 1148. La Jolla. CA 92038. USA.

Computer System:
__ Z-80 __ 8080 __ PDP/LSI-11 __ 6502/Apple __ 6800 __ 6809
__ 9900 __ 8086/8088 __ Z8000 __ 68000 __ MicroEngine __ IBM PC
Other __ _

I am interested In the following Committees/Special Interest Groups (SIGs):

__ Advanced System Editor SIG
__ Apple SIG
__ Application Developer's SIG
__ Communications SIG
~DECSIG
__ File Access SIG
__ Graphics SIG
__ IBM Display Writer SIG
___ IBM PC SIG

__ Meetings Committee
__ Modula-2 SIG
__ NEC Advanced PC SIG
__ Publications Committee
__ SageSIG
__ Software Exchange Library
__ Technical Issues Committee
__ Texas Instruments SIG
__ UCSD Pascal Compatability SIG

Mall completed application with check or money order payable to USUS and drawn on a U.S. bank or
U.s office. to Secretary USUS. PO Box 1148. La Jolla. CA 92038. USA.

Formerly Pascal News

2903 Huntington Road
Cleveland, Ohio 44120

Please enter my 0 New or 0 Renew

membership in Pascal Users Group. I understand I will receive "Pascal &
Modular whenever it is published in this calendar year.

Pascal & Modula2 should be mailed

I year 0 in USA $25 0 outside USA $35

3 year 0 in USA $50 0 outside USA $80

o AirMail anywhere $60

o AirMail anywhere $125

(Make checks payable to:
"Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $ _____ on check number ____ _

(Invoice will be sent on receipt of purchase orders. Payment must be
received before magazine will be sent. Purchase orders will be

billed $10 for additional work.)

(I have difficulty reading addresses.
Please forgive me and type or print clearly.)

My address is:
NAME __________________________________ ___

ADDRESS ________________________________ ___

PHONE __________________________________ __

COMPUTER ________________________________ _

DATE ____________________________________ _

o This is an address correction. Here is myoId address label:

--

Formerly Pascal News

2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets.

r.I5D set 0 Issues 1 ... 8 (January 1974-May 1977)
Out of Print

$250 set I Issues 9 ... 12 (September 1977~June 1978)

$250 set 2 Issues 13 ... 16 (December 1978~tober 1979)

$250 set 3 Issues 17 ... 20 (March 1980-December 1980)

$25 0 set 4 Issues 21 ... 23 (April 1981 [mailed January 1982)-
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues
published in that year. Make check payable to: "Pascal Users Group,"
drawn on USA bank in US dollars.

Enclosed please find US $ _____ on check number ____ _

(I have difficulty reading addresses.
Please forgive me and type or print clearly.)

My address is:

NAME __________________________________ ___

ADDRESS ________________________________ ___

PHONE __________________________________ __

COMPUTER ________________________________ _

DATE __________________________________ ___

43

44

Joining Pascal User Group?

• Membership is open to anyone: Particularly the Pascal user, teacher maintainer, implementor, distributor, or just
\ plain fan.

• Please enclose the proper prepayment (check payable to "P~ User's Group").

• When you join PUG any time within a year: January I to December 31, you will receive all issues of Pascal &
Modula2 for that year.

• We produce Pascal & Modula 2 as a means toward the end of promoting Pascal and communicating news of events
surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves and prefer to
share it through Pascal & Modula2. We desire to minimize paperwork, because we have other work to do.

Renewing?
• Please renew early (before November) and please write us a line or two to tell us what you are doing with Pascal,

and tell us what you think of PUG and Pascal & Modula2.

Ordering Back Issues or Extra Issues?
• Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year means

that we elinlinate many requests for back issues ahead of time, and we don't have to reprint important information
in every issue-especially about Pascal implementation!

• Issues I ... 8 (January, 1974-May 1977) are out of print.

• Issues 9 ... 12, 13 ... 16, & 17 ... 20, 21 ... 23 are available from PUG(USA) all for $25.00 a set.

• Extra single copies of new issues (current academic year) are: $10 each-PUG(USA).

Sending Material For Publication?
• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, conference

announcements, reports, implementation information, applications, etc. are welcome. Please send material single
spaced and in camera-ready (use a dark ribbon and lines 15.5 cm. wide) form.

• All letters will be printed unless they contain a request to the contrary.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not aI/-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:

• teaching programming concepts
• developing reliable '~prqduction" software
• implementing software efficiently on today's machines
• writing portable software

Pascal implementations exist for more than 105 different computer systems, and this number increases every
month. The "Implementation Notes" section of Pascal News describes how to obtain them.

The standard reference ISO 7185 tutorial manual for Pascal is:

Pascal- User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active
members in more than 41 countries.

_II ..
2903 Huntington Road
Cleveland, Ohio 44120

. Address Correction Requested

If the number on the mailing label in brackets is not [84) or higher,
it is time to renew for 1984. Please detach and mail the self-addressed card below.

IIIII~_. ___ --~------------.------~----------------------·~.~ ..

R~ne~ my subscription for 1984
~t $.25 for the year.

• ~,. c I' "'1'

i;l_ ... Ch~~1"Enclosed
~,:aiHMe .

~d¢r¢s~Change Below

" ~ " ,: .

. "' ~.~

