
PASCAL USERS GROUP

NUMBER 20

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

DECEMBER, 19 8 0

)\
(.) ·-0 n.

POLICY: PASCAL NEWS (15-Sep-80)

*Pascal News is the official but informal publication of the User's Group.

* Pascal News contains all we (the editors) know about Pascal; we use it as
·the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

l. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquirieshas at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 times during a year; usually in March, June,
September;-and December.

* ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18 .5 cm lines!) --

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements arid reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/ algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentcirs of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pasc?ls, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

[J

[J

- - - - ALL -PURFUSE COUPON - -

Pascal User's Group, c/o Rick Shaw
P.O. Box 888524

Atlanta, Georgia 30338 USA

NoTE

(15-Sep-80)

Membership fee and All Purpose Coupon is sent to your Regional
Representative.
SEE THE POLICY SECTION ON TH~ REVERSE SIDE FOk PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pascal News.

- - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - -
USA Eurof2e Aust.

[] l year $10. £6. A$ 8.
Enter nie as a new member for:

[] 2 years $18. £10. A$ 15.
Renew my subscription for:

[] 3 years $25. £14. A$ 20.

Send Back Issue(s)

[] My new address/phone is listed below

[] Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

NAME .

PHONE

DATE

$
ENCLOSED PLEASE FIND: A$

£
! CHECK no.
! .

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!
- When you join PUG any time within a year: January 1 to December 31, you

will receive all issues of Pascal News for that year.
- We produce Pascal News as a means toward the end of promoting Pascal and

communicating news Of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire .to minimize paperwork, because we have
other work to do. ~~

- American Region (North and South America): Send $10.00. per year to the
address on the reverse side. International telephone: 1-404-252-2600.

- European Re1ion (Europe, North Africa, Western and Central Asia): Join
through PUGUK). Send £5.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or· pay by direct transfer into our Post Giro account
(28 513 4000); . International telephone: 44-703-559122 x700.

- Australasian Region (Australia, East Asia - incl. Japan): PUG (AUS). Send
$Al0. DO per year to: Pascal Users Group, c/o Arthur Sale, Department of
Iriformation Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02~23 0561 x435

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and Eurppean
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

- Please renew early (before November and please write us a line or two to
tell us what you are doing with Pascal, and tell us what you think of PUG
and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means· that- we eliminate many requests for
backissues ahead of time, and we. don't have ta· reprint important information
in every issue--especially about Pascal implementations!

- Issues 1 .. 8 (January, 1974 - May 1977) are out of print.·
(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

- Issues 9 .. 12 (September, 1977 - June, 1978) are availab1e from PUG(USA)
all for $15. 00 and fr.om PUG (AUS) all for $Al5. DO

- Issues 13 • . 16 are av ail able from PUG (UK) all for £10;. from PUG (AUS) all
for $Al5.00; and from PUG(USA) all for $15.00.

- Extra single copies of new issues (current academic year) are: $5.00 each
- PUG(USA); . £3 each - PUG(UK); and $A5.00 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teachirl'g and otherwise), ideas, letters,
op·inions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form. ·

- All letters will be printed unless they contain a request to the contrary.
-~-

PASCAL NEWS #20 DEC8'1BER, 1980

Editor's Contribution
RENEWING

This is the last issue of the year. (Bet you thought it
would never get here!!) So if you have not ·renewed yet,
RENEW NOW ! ! ! It is easy to tell if you need to renew,
because all you have to do is look at your mailing
label. (Except in the Australasian Region.) If the
number in square brackets says 80 (i e. 11 [80] 11) then
this is your last issue. This number is the year your
subscription expires.

THIS ISSUE

This issue contains the full text of the "Second Draft"
of the proposed ISO Pascal Standard. I hope it is the
last one we publish; because it is the last one! Andy
Mickel (remember Andy?!) was present at the X3J 9
meeting in Huntsville, and has also been doing plenty of
long distance politicing for this standard. He asked if
he could write a guest editorial and the text follows.

l5i1 UNIVERSITY OF MINNESOTA
TWIN CITIES

University Computer Center
227 Experimental Engineering Building
208 Union Street S.E.
Minneapolis, Minnesota 55455

1981-01-08 '

This special issue of Pascal News presents the second draft proposal of the ISO
Pascal Standard now out for public comment and voting by the appropriate national
bodies. More formally this document is known as (revised) DP7185.1.

[Alice Droogan, ISO TC97/SC5 Secretariat said to send all comment to:
Jofot Pascal Committee, c/o Larry B. Weber, IBM, General Products Division,
555 Bailey Avenue, San Jose, CA 95150 USA. See also bottom of page 69,
Pascal News #18]

PASCAL NEWS #20 DEC8'iBERJ 1980

As was reported by Jim Miner on page 74 of Pascal News #19, the first draft
received 11 yes and 4 no votes. Most of the people I know associated with
ISO Pascal Standards activities (including myself) expect unanimous approval
on this draft. There are several things I can say about this:

1. The ISO Pascal standard is badly needed now and is overdue, but it
will have set speed records in approval.

2. Even though the draft standard is imperfect (and always will be) the
realization among those experts from the ISO Working Group is that
extra time spent on_the draft in an effort to perfect it has reached
the point of diminishing returns.

3. This draft can be expected to be very close to the final standard.
4. Pascal users will at last benefit from a single standard when it

will be adopted by the national standards groups in ISO member
countries (such as in the USA by ANSI/IEEE/NBS and the Federal Govt.).

What I wrote two years ago in an editorial in Pascal News #14 which introduced
the third BSI working draft of a Pascal Standard still applies:

Pascal Standards should be given special consideration (in other words,
there are not necessarily applicable precedents found in the standards
processes of other languages). The Pascal Standards process has been a
model phenomenon in Computer Science history.
First and foremost Pascal was designed by a single person (Niklaus Wirth)
and is not a committee-designed language. Pascal Standards Committees
have so far rightly refrained from adding committee-designed features.
Secondly, Pascal is the first major programming language standardized
outside the United States. As I 1 ve said before, it has European origins
but to be more accurate, Pascal is truly international. I think that 1 s
wonderful and neat!

Pascal is in very wide use (even though there are dozens of programmers ignorant
of its impact and uses). Its design goals mentioned in my Pascal News #14
editorial have been mef'and exceeded (even though there are plenty of computing
people who deny this).

Finally, let me reiterate the implications of an imperfect Pascal standard. In

the time given, with the people involved, and with the resources we 1 ve had,
it 1 s a remarkable achievement. (Thank you, Tony Addyman!) And it is still
imperfect. But now the existence of a finished standard is more important
thatn spending any more time.

In spite of the attitude of many of us technical people, you can't always
fix certain things--technical problems don't always have clean solutions. It's
not clear in some cases that solutions can be attained. In other words, if
you put enough constraints on a problem-:-lt could be the case that the set of
solutions is empty.

Therefore, regarding the conformant-array feature I am happy; after having
listened to the large volume of discussion, I know that it is equivalent in
quality to any alternative. To repeat a familiar refrain, if there had been
a natural solution, Niklaus would have incorporated it in the first place.

He 1 s said so himself.

\,

PASCAL NEWS #20 DECEMBERJ 1980

american national standards institute, inc· 1430 broadway, new york, n.y. 10018 · (212) 354-3300

Cable: Standards, New York International Telex: 42 42 96 ANS I U I

January 21, 1981

Dear Mr. Shaw:

Enclosed please find second draft proposal ISO/DP 7185 - Specification
for the Computer Programming Language - Pascal. This document is being
circulated to 97/5 committee members for voting on by March 31, 1981.

Comments on the document are welcome and will be considered but must be
in written form and must be received by March 31, 1981. Please address
all comments to ANSI's X3J9 Chairman:

Dr. Carol Sledge
On-Line Systems, Inc.
115 Evergreen Heights Drive
Pit~sburgh, PA 15229

Comments should be clearly marked with the name, address and telephone
numbe_r of the comm.en tor, the section and subsection to which the
comment applies, and a rationale or explanation for any proposed text
changes. Spe~ific proposed text changes are the most desirable form
for comments, but general changes or criticisms, or questions, are
also welcome.

AD/MAC
Encl.

Sincerely,

Q1 ~ ' fl
.. ~IJ~

Alice Droogan
Secretariat ISO/TC 97/SC 5

PASCAL NEWS #20 DECEMBtRJ 198U

ISO/TC 97/SC 5 N 59 5
January 1981 .

DP7185 SPECIFICATION FOR THE COMPUTER PROGRAMMING LANGUAGE Pascal

CONTENTS Pa9e
Foreword 1

o.
1.
2.
3.
4.
5.
5. 1
5.2
6.
6 .1
6.2
6.3
h.4
6.5
6.6
6.7
6.8
6.9
6.10
6 .11

Introd1Jction
ScoPe of this standard
References
Definitions
Definitional Conventions
ComPliance
Processors
Pros rams
Requirements
Lexical Tokens
Blocks• scope, activations
Cansta~t-definitions
TYPe-def initions
Declarations and denotations of variables
Procedure and function declarations
Expressions
Statements
InPut and output _
Programs
Hardware representation

APPENDICES

A.
B.
c.

Collected sYntax
Index
Required Identifiers

TABLES

1 •
z.
3.
4.
5.
6.

M~talan9Uase symbols
DYadic arithmetic operations
Monadic arithmetic operations
Set ot=ierations
Rel~tional operations
Alternative sYmbols

Foreword

2
2
-=· ·-·
.;:,

4
4
5
6
6
q ..

11
12
24
28
45
51
55"1
65
67

69
77
8:3

47
47
4E:
49
68

The l~nsua9e Pascal was desi9ned bY Professor Niklaus Wirth to satisfy
two Principal aims:
(a) to make available a lan9Ua9e suitable for teaching Pro9rammin9 as

a systematic disciPline bas~d on certain fundamental concepts
clearly and naturally reflected bY the language.

(b) to define a language whose implementations could be both reliable
and efficient on then available computers.

1

PASCAL NEWS·#20 DECEMBER, 1980

Seco~d Draft Proposal

Howev~rt it has become aPParent that Pascal has attributes which so
far beyond these orisinal soals. It is now beins increasinslY used
commerciall~ in the writing of both system and aPPlication software.
This standard is Primarily a consequence of the srowins commercial
interest in Pascal and the need to Promote the Portability of Pascal
prosrams between data Processins SYstems.

In draftins this standard the continu~d stability of Pascal has been a
Prime obJective. However, aPart · from changes to clarify the
sPecification1 two maJor chanses have been introduced:
<a> the sYntax used to specify Proc~du~al and functional

has been ch an 9 e d to re q u i re the use o f a. Pro c e d 1,w e
heading, as aPFroPriate <see 6.6.3.1). This change was
to overcome a lan9Ua9e insecurity;

Par-ameters
or function
introduced

 a fifth kind of Farametert the conformant array Parametert has
been introduced· (see 6:6.3.7). With this kind of Parameter• the
r~quired bounds of the index-type of an actual Parameter are not
fixed• but a~~ restricted to a specified ranse of values.

O. INTRODUCTION

The appendices are included for the tonvenience of th~ reader 6f this
standard, They do not form a Part of the requirements of this
1tandal"'d.

1. SCOPE OF THIS STANDARD

1.1 T~is standard specifies the semantics and SYntax of the comPutel"'
Pro9ramrnins langua9e Pascal bY SPecifYin9 requirements far a Processor
and for a conforming Prosram. Two levels of compliance are defined for
both Processors and Programs.

1.2 This standard does not sPecifY
Cal the size or comPlexitY of a Program and its data that will exceed

the capacity of anY specific data Processing system or the
caPacitY of a Particular processor;

(b) the minimal requirements of a d~ta processing sYstem that is
caPable of sUPPortins an imPlernentation of a Processor for
Pascall

Cc> the method of activating the Profram-block or the set of commands
used to control the environment fn which a Pascal Pro9ram is
transformed and executed; ,

(d) the mechanism by which Programs writte~ in Pascal are transformed
for usJ bY ~ data Processing system;

<e> the method for reporting errors or warnings;
(f) the tYP09raPhical representation of a Prosram published for human

reading.

2. REFERENCES

None.

2

Second Draft ProFosal

3. DEFINITIONS

3. 1

3 .-. . ..:;,
3.4

error. A violation by a Prosram of the requirements of this
standard whose detection by a Processor is optional.
implementation-defined. Possibly differing between rrocessorst but
defined for anY Particular Processor.
imPlementation-deFendent. Possibly differins between Processors
and not necessarily defined for any Particular Processor.
Processor. A compiler' interPretert or other mechanism which
accepts the Program as input and either executes it, Prepares it
for execution, or both.

4. DEFINITIONAL CONVENTIONS

The metalansuase used in this standard to specify the sYntax of the
constructs is based on Backus-Naur Form. The notation has been
modified from the orisinal to Permit sreater convenience of
descriPtion and to allow for iterative Productions to rePlace
recursive ones. Table 1 lists the meaninss of the various
meta-symbols. Further sFecificafion of the constructs is siven by
Prose andt in some casest by equivalent Prosram frasments. AnY
identifier that is defined in clause 6 as the id@ntifier of a
Predeclared or Predefined entity shall denote that entity bY its
occurrence in such a Program fragment. In all other respects, any such
Program frasment is bound by anY Pertinent re9uirement of this
standard.

Table 1. Metalansuage symbols

Meta-sYmbol Meaning
-------------------~---

= shall be defined to be

> shall have as an alternative definition

alternatively

end of definition

[xJ 0 or 1 instance of x

{x} 0 or more instances of x

<xlY) grouping: either of x or y

II XYZ II the terminal sYmbol xyz

meta-identifier a non-terminal symbol
------~--

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft ProPosal

A meta.-identi fier shal 1 be a seq1.Jence' of 1 etter-s and hYrhens beginning
with a letter.

A sequence of ter-minal and non-ter-minal sYmbols in a
imPlies the concatenation of the te:<t that theY 1.Jltimai·e:·1y
Within 6.1 this concatenation is direct; no characters may
In all other Parts of this standard the concatenation is in
with the rules set out in 6.1.

Production
rePr-esent.
intervene.
accor·dance

The characters required to form Pascal Programs are those imPlicitlY
required to form the tokens and separators defined in 6.1.

Use of the words oft int containing and closest-containing when
expressin9 a relationship between terminal or non-terminal sYmbols
shall have the following meanings.

the x of a y: refers to the x occ1.Jrrin9 directly in a Production
defining y.

the x in a y: is sYnonymo1.Js with "the x of a Y 11 •

a Y containing an x: refers to anY x directly or indirectly
derived from y.

the ~ closest-containins an x: that Y which contains an x but does
not contain another Y containins that x.

These ~Yntactic conventions are used in clause 6 to specify certain
sYntactic requirements and also the contexts within which certain
semantic specifications aPPlY.

5. COMPLIANCE

NOTE. There are two levels of tomPliance - level 0 and level 1.
Level 0 does not include conformant array parameters. Level 1 doe5
include conformant array Parameters.

5.1 Proces$Ol"'s
A Processor ~omPlYins with the requirements of this standard shall:
(a) if it complies at level Ot accePt all the features of the lan9ua9e

specified in clause 6t except for- 6.6.3.6Ce>• 6.6.3.7 and 6.6.3.8,
with the meaninss defined in clause 6;

 if it complies at level lt accePt all. the featur·es of the language
~Pe~ified in clause 6 with the meanings defined in clause 6;

Cc) not require the inclusion of substitute or additional language
elements in a Prosram in order to accomPlish a feature of the
lansuage that is specified in clause 6;

(d) be accompanied bY a document that Provides a definition of all
implementation-defined features;

(e) detect any violation bY a Pr-09ram of the re~uirements of this
standard that is not designafed an error;

(f) treat each violation that is designated an error in at least one
of the followina ways:

4

PASCAL NEWS #2U

Second Draft Proposal

1) there shall be a statement in an accomPanYin9 document that the
error is not reported;
2) the Processor shall have reported a Prior warning that ~n
occurrence of that error was Possible;
3) the Processor shall report the error durins Preparation of the
Program for execution;
4) the Processor shall report the error during execution of the
Prosram1 and terminate exectition of the Program.

(9) be accompanied by a document that seParatelY describes any
features accepted bY the Processor that are not specified in
claus~ 6. Such extensions shall be described as be1n9 'extensions
to Pascal specified by 1807185: 198-'.

Ch> be able to Process in a manner similar to that specified for
errors anY use of any such extension;

Ci) be able to process in a manner similar to that SPecified for
errors any use of an imP1ementation-dependent feature.

5.2 Progr-ams
A Pf"'09ram comPlYin9 with the r-e~uirements of this standard shall:
(a) if it complies at level 01 use onlY those features of the lan9uase

specified in clause 61 excePt for 6.6.3.6(e), 6.6.3.7 and 6.6.3.8;
(b) if it comPlies at level 11 use onlY those features of the languase

specified in clause 6;
(c) not r-elY on any Particular interpretation of

imPlementation-dePendent features.

NOTE. The results Produced by the Processin9 of a comP1Yin9
Program by different comPlYins Processors ~re not re9uired to be
the same.

PASCAL NEWS #20 DEC8'1BERJ 1980

.:.. RCQLJIREMENTS

6.1 Lexical tokens

NOTE. The syntax siven in this sub-clause (6.1) describes the
formation of lexical tokens from characters and the seParation of
these tokenst and therefore doe& not adhere to the same rules as
the sYntax in the ~est of this standard.·

6.1.1 General •. · The lexical tokens used to construct Pascal programs
shall be classified into special-sYmbolst identifiers, directivest
unsisned-numberst labels and character-strings. The representation of
any letter (upper-case or lower-caset differences of fontt etc)
occurring anywhere outside of a character-strins <see 6.1.7) shall be
insisnificant in that occurrence to the meaning of the Prosram.

1 e t t e r = 11 a 11 : u b ,. : 11 c 11 : 11 d 11 1 11 e H : 11 f 11 : 11 9 ,. : 11 h 11 : 11 i ,, l 11 .j 11 : " k 11 1 11 1 " : 11 m 11 :

11 n11 : 11 0 11 l"P": 11 q 11 I 11 r 11 I11s 11 l 11 t 11 : 11 u 11 : "v 11 I11w 11 I11~·: 11 l 11)' 11 l 11 z 11 •

disit = 11011:11111111211111311111411111511111t.ul"7":"8"l"911 •

6.1.2 SPecial-sYmbols. The special-sYmbols are tokens havins special
meanings and shall be used to delimit the sYntactic units of the
lansuage.

sPecical-sYmbol = 11 + 11 I"-"I 11 * 11 I 11 / 11 : 11 =": "< 11 : 0) 11 : "[": "J 11 :

word-sYmbol =

II. II: II t": II: It: II; II: llAll: " (II I II) II:
"< >" l 11<= 11 I" >= 11 I":·=" l 11 •• " I word-sYmbo 1

11 and 11 I'1arr·ay 11 I 11 be9in" I 11case 11 : 11 const 11 l 11 div 11 I
11 do 11 : 11 down ta" I 11 el s e 11 l 11 end" l 11 f i l e" : 11 for~· :
11 function 11 : "a o to" : "if 11 l "in 11 I 11 label " : 11 mod" I
11 ni 1 11 : ''not" I "of" I "or": "pack:ed 11 l 11 pr-ocedur·e 11 I
"pr-osr·am" I "recor·d" I 11rePeat 11 I "set 11 : 11 then 11 :

"to 11 I "type": "unti 1" I "var" l "whi 1e"I11wi th" •

6.1.3 Identifiers. Identifiers may be of anY length. All characters
af an identifier· shall be sisnificant. No identifier shall have the
same sPellins as any word-symbol.

identifier ~ letter {letter : di9it} •

ExamPles:
X time readinteser WG4
lnquireWorkstationTransformation
lnquireWorkstationldentification

AlterHeatSettin9

6.1.4 Directives. A directive shall occur only in a
Procedure-declaration or function-declaration. The directive forward
shall be the onlY required directive (see 6.6.1 and 6.6.2). Other
imPleme"tation-dePendent directives may be Provided. No directive
shall h~ve the same sPellins as anY word-symbol.

directive = letter {letter I disit} •

NOTE. On manY Processors the directive ~xternal is used to specify
that the Procedure-block or function~blqck c~rrespon~in9 to that
Procedure-heading or function-headins is external to the
Program-block. Usually it is in a libr~rY· in a form to be inPut

6

PASCAL NEWS #20 DECEMBERJ 1980

SJcond Draft Proposal

to, or that has been Produced bY1 the Proc~ssor.

6.1.5 Numbers. An unsi9ned-inte9er shall denot~ in.decimal notation a
value of inteser-tYPe (see b.4.2.2). An unsisned-real shall denote in
decimal nota.tior1 a val1Je of real-tYPe <see 6.4.2.2). Tlie letter 11 e 11

Preceding a scale factor shall mean 'times ten to the Power of'. The
value denoted by an unsisned-inteser shall be in the closed interval 0
to maxint (see 6.4.2.2 and 6.7.2.2).

disit-se9uence = di9it {digit} •
unsisned-inte9er = di9it-se9uence •
unsisned-real =

unsi9ried-inteser 11 • 11 di9it-secwence [11 e 11 scale-factor·]
unsigned-integer 11 e 11 scale-factor •

unsisned-number = unsisned-inteser : unsigned-real •
scale-factor =signed-integer •
sign = n+u : 11 - 11 •

signed-inteser = CsignJ unsi9ned-inteser •
signed-real = CsisnJ unsisned-real •
sisned-number = signed-integer l sisned-real •

ExamPles:
1e10 l +100 -0.1 5e-3 87.35E+8

6.1.6 Labels. Labels shall be disit-sequences and shall be
distinguished by their apparent int~sral values, that shall be in the
closed interval 0 to 9999.

label = disit-se9uence •

6.1.7 Character-strings. A character-strins containins a sinsle
string-element shall denote a value of char-type (see 6.4.2.2>. A
charact~r-strin9 containin9 more than one ~trins-element shall denote
a value of a strins-tYPe <see 6.4.3.2) with the same number of
components as the character-string contains st~ins-elements. If the
strin9 of characters is to contain an aPostroPhet this aPostroPhe
shall be denoted by an apostroPhe-imase. Each strins-character shall
denote an imPlementation-defined value of char-type.

character-string = 11111 strins-element
{stl"'ing-element} 11111 •

strins-element = apostroPhe-imase I strins-character •
apostrophe-image = 111111 •

string-charactel"' =
one-of-a-set-of-imPlementation-defined-characters •

Examples:
I A,
'Pascal'

./ • I , I I I ./

1 THIS IS A STRING'

7

PASCAL NEWS #20 DECEMBER.. 1980

Second Draft Proposal

6.1.8 Token separators. The construct

11 {" anY-s e9 u ence-o f-cha.rac te r s-and-s e Parat ion s-o f-1 inc~ s-no t
con ta in i ns-r i sht-brace 11 } 11

sha.11 be a comment if the 11 { 11 does not occur within a char·acter·-strins
or within a comment. The sub~titution of a space for· c:.~ .comment shall
not alter the meanins of a Prosram.

Comments• spaces <except ih character-strinss), and the separation of
consecutive lines shall be considered to be token separators. Zero or
more token separ·ators maY occ1Jr be.tween anY two 1:onsecutive tokens• or
before the first token of a Prosram text. There shall be at least one
separator between anY Pair of consecutive tokens made UP of
identifiers, word-sYmbolst labels or unsisned-numbers. No separators
sha 11 occur within tokens.

PASCAL NEWS #20 DECH1BER., 1980

6.2 Blocks, scope and activations
6.2~1 Blotk. A block closest-containin9 a label-declaration-Part in
~hich a label occurs shall closest-contain exactly one statement in
which that label occurs. The occurr·ence of a label in the
label-declaration-Part of a block shall be its definins-point as a
label for the re9ion which is the block.

block = label-declaration-Part
constant-definition-pa~t

type-definition-Part
variable-declaration-Part

procedure-and-function-declaration-part
statement-Part •

label-declaration-Part= ("label" label { 11 t 11 label} 11 ;"] _.

constant-definition-Part= [11 const 11 ·constant-definition 11 ; 11

{constant-definition ";"}J •

type-definition-part = C"tYPe" type-definition ";"
{type-definition ";"}] •

var·iable-declaration-Par·t = ["var" variable-declar·ation ";"
{var·iable-declaration 11 ; 11 }].

Procedure-and-function-declaration-part =
.{(Procedure-declaration : function-declar·ation) ";"} •

The statement-Part shall specify the algorithmic actions to be
executed upon an activation of the block.

statement-part = compound-statement •

All ·variables contained by an activationt except for those listed as
program-Parameters, shall be totally-undefined at the commencement of
th~t activation.

6.2.2 Scope
6.2.2.1 Each identifier or label contained by the Prosram-block shall

have a defining-point.
6.2.2.2 Each defining-point shall have a region that is a Fart of the

Program text, and a scoPe that is a Part or all of that
res ion.

6.2.2.3 The region of each defining-point is defined elsewhere (see
6.2.1, 6.2.2.10, 6.31 6.4.1t 6.4.2.31 6.4.3.31 6.5.1t
6.5.3.31 6.6.lt 6.6.21 6.6.3.lt 6.8.3.10).

6.2.2.4 The scope of each defining-point shall be its region
<including all regions enclosed by that resicn> subJect to
6.2.2.5 and 6.2.2.6.

6.2~2.5 When an identifier or label that has a defining-point for
region A has a further defining-point for some region B
enclosed bY At then region Band all re9ions enclosed by B
sh a 1 1 be ex c 1 u de d from the s co Pe o f ., the de f i n i n 9-p o i n t for
region A.

6_2.2.6 The field-identifier of the field-specifier of a
field-designator {see 6.5.3.3) shall be one of the
field-identifiers associated with a component of the
r~cord-tYPe Possessed by the record-variable of the
field-designator.

9

PASCAL NEWS #20 DECEMBER., 1980

Second Draft P(oposal

6.2.2.7 The scope of a defining-point of an identifier 0r label shall
include no other defining-point of the same identifier or
1abe1 •

6.2.2.8 Within the scope of a defining-point of a~ identifier or
label1 all occurrences of that identifier or label shall be
desisnated aPPlied occurrences1 except for an occurrence that
constituted the defining-point of that identifier or label;
such an occurrence shall be designated a defining occurrence.
No occurrence outside that scope shall be an aPPlied
occur-rence.

6.2.2.9 The definins-point of an identifier or label shall Precede
all aPPlied occurrences of· that identifier or label contained
bY the Pro9ram-block with one excePtion1 namely that a
type-identifier may have an aPPlied occurf'ence in the
domain-type of anY new~Pointer-tYPes contajned bY the
type-definition-Part that contains the defining-point of the
type-identifi•r. ·

6.2.2.10 Identifiers that denote required constants, tYPes1 Procedures
and functions shall be used as if their definins-points have
a region enclosins the prosram.

6.2.2.11 Whatever an identifier or label denotes at its definin9-point
shall be de'noted at all aPPlied occur-r·e11.:es of that
identifier or Jabel.

6.2.3 Activations
6.2.3.1. A Procedure-identifie~ ot
defining-point for a re9ion which
procedure-and-function-declaration-Part
desisnated local to that block.

function-identifier having a
is a blockt within the

of that block shall be

6.2.3.2. The activation of a block shall contain
(a) for the statement-part of the block1 an a19orithmt the comPletion

of which shall terminate the activation <see also 6.8.2.4);
(b) for each label in a statement, having a defining-point in the

label-declaration-part of the blockt a program-Point in the
alsorithm of the activation of that statement;

(c) for each variable-identifier havina a defining-point for the
resion which is the blockt a variable Possessins the tYPe
associated with the variable-identifier;

(d) for each Procedure-identifier local to the blockt a Procedure with
the formal parameters associated witht and the procedure-block
corresPondins tot the Procedure-identifier; and

Ce> for each function-identifier local to the block1 a function with
the formal Parameters associated with1 the function-block
correspond ins to1 and the tYPe Possessed bY1 the
function-identifier.

6.2.3.3. The activation ~f a ·Procedure or function shall be the
activation of the block of its Procedure-block or function-block,
respectively, and shall be designated within:
Ca) the activation containing the Procedure or function; and
Cb> all activations that that containing activation is ~ithin.

10

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

NOTE. An activation of a block B can onlY be within activations of
blocks containin9 B. Thus an activation is not within another
activation of the same block.

Within an activationt an applied occurrence of a label or
variable-identifiert or of a Procedure-irlentifier or
function-identifier· local to the block of the activaticir1t shall denote
the correspondin9 Pro9ram-Point1 variable• Procedure• or function•
~esPectivelYt of that activation.

6.2.3.4. A procedure-statement or function-desi9nator contained in the
alsorithm of an activation and that specifies the 3Ctivation of a
block shall be designated the activation-Point of that activation of
the block.

6.2.3.5. The
functions• if
activation.

al9orithm1 Program-pointst
anYt shall exist until

variablest Procedures and
the termination of the

6.3 Constant-definitions. A cunstant-definition shall introduce an
identifier to denote a value.

constant-definition= ident·ifier 11 = 11

constant = [sign] (unsisned-nurnber
character-string •

constant-identifier = identifier •

constant •
constant-identifier)

The occurrence of an "identifier in a constant-definition of a
constant-definition-Part of a block shall constitute its
defining-point for the region that is the block. The constant shall
not contain an aPPlied occurrence of the identifier in the
constant-definition. Each aPPlied occurrence of that identifier shall
be a constant-identifier and shall denote the value denoted bY the
constant of the constant-definition. A constant-identifier in a
constant containin9 an occurrence of a sign shall have been defined to
denote a value of real-tYPe or of integer-tYPe.

PASCAL NEWS #20 DECH1BER., 1980

6.4 TYPe-definitions
6.4.1 General. A type-definition shall introduce an identifier to
~enote a tYPe. TYPe shall be an attribute that is PossEsied bY every
value and every variable. Each occurrence of a new-type shall denote a
tYPe that is distinct from any other new-tYPe.

type-definition= identifier· 11 = 11 type-denoter •
type-denoter = type-identifier : new-tYPe •
new-tYFe = ne~-ordinal-tYPe new-structured-tYPe

neW~Pointer-tYPe •

The occurrence of an identifier in a type-definition of a
type-definition-Part of a block shall constitute ·its definins-point
fo.r the resion that is the block. Each aPPlied occ11r·rence of that
identifier shall be a type-identifier and shall denote the same tYPe
as that which is denoted bY its type-denoter. Exc~Pt for aPPlied
occurrences as the damain-tYPe of a new-Pointer-tYPet the type-denoter
shall not contain an aPPlied occurrence of the identifier in the
type-definition.·

TYPes shall be classifi~d as simPlet structured or Pointer types. The
.-.ectuired tvpes. shal 1 be denoted by- predefined type-identifiers <see
6.4.2.2 and 6.4~3.5>.

simPle-tYPe-identifier = type-identifier •
structured-type-identifie~ = type-identifier •
pointer-tYPe-identifier = type-identifier •
tvpe-identifier = identifier ,

A type-identifier shall be considered as a simPle-tYPe-identifier1 a
structured-tvPe-identifie.-.t or a Pointer-tYPe-identifiert accordin9 to
the tYPe that it denotes.

b.4.2 SimPle-tvPes
6.4.2.1 Gene.-.al. A simPle-tYPe shall determine an ordered set of
values. The values of ~ach ordinal-tYPe shall have integer ordinal
numbers, An ordinal-tYPe-identifier shall denote an ordinal-type.

simP)e-tYPe = ordinal-type l real-tYPe •
ordinal-tYPe = new-ordinal-tYPe l

inte9er-tYPe l Boolean-type l char-tYPe
brdinal-tYPe-identifier •

new-ordinal-tYPe = enumerated-tYPe l subrange-tYPe •
ordinal-type-identifier = identifier •

6.4.2.2 Required simPle-tYPes. The following tYPes shall exist:

real-type

The required inteser-tvpe-identifier integer shall
denote the integer-type. The values shall be a subset
of the whole numbers• denbted as specified in 6.1.5 bY
the si9ned-inteser values (see also 6.7.2.2>. The
ordinal number of a value of inte9er-tYPe shall bathe
value itself.

The required real-type-identifier
real-type. The values
imPlementati~n-defined subset of
denoted as specifi~d in 6.1.5
values.

12

real shall denote the
shall be an
the real numbers

bY the signed-real

PASCAL NEWS #20

Boolean-tYPe

chal"-tYPe

Second Draft Proposal

The re9uired Boolean-type-identifier Boolean shall
denote the Boolean-type. The values shall be the
enumer·ation of tr1.Jth values denoted bY the r·e9uir·ed
constant-identifiers false and truet such that false is
the predecessor of true. The ordinal numbers of the
truth values denoted bY false and. true shall be the
integer values 0 and 1 resPectivelY.

The required char-type-identifier char shall denote the
char-type. The values shall be the enumeration of a set
of imPlementation-defined characterst some Possibly
without sraPhic representations. The ordinal numbers of
the character values shall be values 01 inteser-tYPet
that are imPlementation-definedt and that are
determined by maPPins the character values on to
consecutive non-n~sative inteser val·ues starting at
zero. The maPPin9 shall be order Preserving. The
followins relations shall hold:

(a) The subset of
disits 0 to 9
conti9UOUS.

character
shall be

values rePresentin9
numerically ordered

the
and

Cb) The subset of character values representing the
lJPPer·-case letters A to Zt if avai1ablet shall be
alphabetically ordered but not necessarily contisuous.

<c> The subset of character values representing the
lower-case letters a to Zt if availablet shall be
alPhabeticallY ordered but not necessarily contiguous.

(d) The ordering relatianshiP between anY two character
values shall be the same as between their ordina~
number·s.

NOTE. Operators aPPlicab~e to the requir~d simPle-tYPes are
spe,ified in 6.7.2.

6.4.2.3 Enumerated-types. An enumerated-type shall determine an
ordered set of values by enumerati~n of the identifiers that denote
those values. The orderins of these values shall be determined by
the sequence in which their identifiers are enumerated1 i.e. if x
Precedes Y th~n x is less than Y. The ordinal number nf a value that
is of an enume~ated-tYPe shall be determined by maPPin9 all the values
of the tYPe as their identifiers occur in the identifier-list of the
enumerated-type on to consecutive non-negative values of inte9er-tYPe
starting from zero.

enumerated-tYPe = 11 (11 identifier-list 11) 11 •

identifier-1ist =identifier { 11 , 11 identifier ..
J •

The occurrence of an identifier' in the identifier-list of an

13

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft P~oPosal

enumerated-tYPe shall constitute its defining-point as a
constant-identifier for the region which is the block
close-st-containing the enumerated-tYPe.

Examic>les:
CredtYellowtsreentblue1tartan>
CclubtdiamondthearttsPade)
(marriedtdivorcedtwidowedtsingle>
Cscannins1foundtnotPresent>
CBusYtlnterruPtEnabletParitYErrortOutOfPaPer1LineBreak>

6.4.2.4 Subrange-types. The defiriition of a tYPe as a subranse of an
ordinal-tYPe shall include identification of the smallest and the
largest value in the subrange. The first constant of a subrange-type
shall specify the smallest value1 and this shall be less than or equal
to the largest value which shall be specified bY the other constant of
the subrange-tYPe. Both constahts shall be of the same ordinal-type,
and that ordinal-type shall be designated the host tYPe of the
subrange-tYPe.

subrange-tYPe = constant 0 11 constant •

ExamPles:
1. .100
-10 •• +10
red •• 9reen
'0' •• '9'

6.4.3 Structured-tYPes
6.4.3.1 General. A new-structured-type shall be classified as an
arraY-tYPet record-tYPet set-tYPe or file-tYPe accordins to the
unPacked-structured-tYPe closest-contained by the new-structured-tYPe.
A component of a value of a structured-tYPe shall be a value.

structured-tYPe = new-structured-type I
structured-tYPe-identifier •

UnPacked-structured-tYPe = arraY-tYPe I record-type I set-tYPe·l
file-tYPe •

new-structured-type = [11 packed 11 J unPacked-str1Jctul"'ed-tYPe •

The occurrence of the token Packed in a rrew-structured-tYPe shall
designat~ the type denoted thereby as Packed. The d~sianation of a
structul"'ed-tYPe as Packed shall indicate to the Processor that
data-storage of values 5hould be economisedt even if this tauses
oPer.ations on1 or accesses to components oft variables Possessins the
tYPe to be l°ess efficient ~n terms of 'space of' time.

The designation of a structured-tYPe as Packed shall affect the
representation in data-stora9e of that stl"'ucttired-tYPe only; that is
if a component is itself structured, the component's representation in
data-storage shall be Packed only if the type of th€ component is
designated Packed.

14

PASCAL NEWS #20 DECH1BER) 1980

Second Draft Proposal

NOTE. The waYs. in which the treatment of entities of a type is
affected bY whether or not the tYPe is desisnated Packed are
sP~cified in 6.4.3.21 6.4.51 6.6.3.31 6.6.3.8t 6.6.5.4 and 6.7.1.

6.4.3.2 Array-types. An arraY-tYPe shall be structured as a maPPin9
from each value specified by its index-tYPe onto a distinct component.
Each component shall have the type denoted by the type-denoter of the
comPonent-tYPe of the array-tYPe.

_a r r a Y - t y Pe = "a r ray 11 11 [11 i n de :<- t Y Pe { 11 , 11 i n d e }(- t y Pe } 11 J 11 11 o f 11

cornPonent-tYPe •
index-tYPe = ordinal-type •
component-type = type-denoter •

ExamP 1 e·s:

array [1,.100] of real
array [Boolean] of colour

An arraY-tYPe that sPecifies a sequence of two or more index-tYPes
shall be an abbreviated notation for an array-type specified to have
as its index-tYPe the first index-tYPe in the se9uence1 and to have a
component-type that is an arraY-tYPe specifYin9 the se9uence of
index-types without the first and sPecifYin9 the same component-type
as the original specification. The comPonent-tYPe thus constructed
shall be desi9nated packed if and onlY if the ori9inal array-type is
desi9nated Packed. The abbreviated form and the full farm shall be
equivalent.

NOTE. Each of the following two examples thus contains different
waYs of expressing its arraY-tYPe.

Example 1.
arraYCBooleanJ of arraY[l •• lOJ of arraY[sizeJ of real
arraY[BooleanJ of arraY[1 •• 101sizeJ of real
arraY[Boolean11 •• 10tsizeJ of real
arraY~Booleant1 •• 10J of arraY[sizeJ of real

Example 2.
Packed arraY[1 •• 101l •• 8J of Boolean
packed arraY[1 •• 10J of Packed arraY[1 •• 8J of Boolean

Let i denote a value of the index-tYPe; let v(iJ denote a value of
that component Qf the arraY-tYPe that corresponds to th~ value i by
the structure of the arr~y-type; let the smallest ~nd largest values
specified by the index-type be denoted by m and n; and let k =
<ordCn)-ordCml+l) denote the number of values specified by the
index-type. Then the values of the arraY-tYPe shall be the distinct
k-tuPles of the form: ·

(v[mJ, ••• tV[nJ)

NOTE. A value of an array-type does not therefore exist unless all
of its component v~lues are defined. If the comPonent-tYPe has c
value,, then it follows that the cardinality of the set of values

15

PASCAL NEWS #20 DECH1BER) 1980

Second Draft ProPC$al

of the ar-r·ay-typ:ie is c ra.is&d to t·he Flower k.

AnY tYP~ desisnated Packed and denoted by an arraY-tYPe having as its
index-type a denotation of a subrange-type specifying a smallest value
of lt and having as its comPonent-tYPe a denotation of the char-tYPe•
shall be desi9nated a strins-tYPe.

The correspondence of character~strin9s to values of string-types is
obtained by relatins the individual characters of the
character-string, taken in left to risht order, to th8 ~omPonents of
the values of the strins-tYPe in order of increasins index.

NOTE. The values of a strins-type Possess additional Properties
whicht allow writing them to textfiles (see 6.9.4.7> and define
their use with relational-operators (see 6.7.2.5).

6.4.3.3 Record-tYPes. The structure and values of a record-type shall
be the structure and values of the field-list of the necord-type.

record.-tYPe ·= 11 record 11 fiel d-1 ist 11 end 11 •

field-list= .
[(fixed-Pal"t [11 ; 11 variant-Part J I variant-Part) [11 ; 11 J] •

fixed-Part.= record-section { 11 ; 11 record-section} •
record-section= identifier-list 11 : 11 type-denoter •
var·iant-part. = 11 case 11 variant-selector 11 of 11

·var-iant { u;u var·iant }·.
variant-selector = [tag-field 11 :"] tag-type •
tag-field = identifier •
variant = case-constant--1 ist 11 : 11 11 (11 · f iel d-1 ist 11) 11 •

tas-tYPe = or-dinal-tYPe-identifier •
case-constant-list= case-constant { 11 t 11 case-constant } •
case-constant = constant •

A field-list which contains neither a fixed-Part nor a variant-part
shall have no comPonentst shall define a sinsle null valtJe1 and shall
be d~sisnated emPtY.

The occurrence of an identifier in the identifier-list of a
record-section of a fixed-Part of a field-list shall constitute its
defining-point as a field-identifier for the resion which is the
record-type closest-containing the field-listt and shall associate the
field-identifier with a distinct comPonentt which shall be desisnated
a fieldt of the record-tYPe and of the field-list. That component
shall have the tYPe denoted bY ~he type-denoter of the record-section.

The field-list closest-containins a variant-Part shall have a distinct
component which shall have the values and structure defined bY the
variant-Part.

Let Vi denote the value of the i-th
field-list havins rn comPonents; then the
shall b~ distinct m-tuples of the form

16

component
values of

of
the

a non-emPtY
field-list

lJL\..Ll"lDLl\J .L:::JOU

Second Draft Proposal

(V 1 , V2, ••• 1 Vm > •.

NOTE. If the tYPe of the i-th 1:omPonent has F.i val11es1 then the
cardinality of the set of values of the field-list shall be
(Fl* F2 * ... *Fm>.

A tag-type shall denote the type denoted bY the
ordinal-type-identifier of the ta9-type. A case-constant shall denote
the value denoted bY the constant of the case-constant.

The tYPe of each case-constant in the case-constant-list of a variant
of a variant-Part shall be compatible with the tas-tYPe of the
variant-selector of the variant-part. The values denoted bY all
case-constants of a tYPe that is re~uired to be compatible with a
given tag-type shall be distinct and the set thereof shall be e~ual to
the set of values specified bY the ta9-type. The values denoted bY
the case-constants of the case-constant-list of a variant shall be
desisnated as correspondins to the variant.

With each variant-Part shall be associated a type designated the
selector-type Possessed bY the variant-part. If the variant-selector
of the variant-Part contains a ta9-field1 or if the case-constant-list
of each variant of the variant-Part contains onlY one case-constantt
then the selector-type shall be denoted by the tas-tYPe1 and each
variant of the variant-Fart shall be associated with those values
specified bY the selecto~-tYPe d~noted bY the case-constants of the
case-constant-list of ·the variant. Otherwise1 the selector-type
Possessed bY the variant-part shall be a new ordinal-tYPe constructed
such that there is exactly one value of the tYPe for each variant of
the variant-Part, and no others1 and each variant shall be associated
with a distinct value of that tYPe.

Each variant-Part shall have a component which shall be desisnat~d the
selector oi the variant-Part, and which shall Possess the
selector-type of the variant-Part. If the variant-selector of the
variant-Part contains a ta9-fiefd1 then the occurrence of an
identifier in the tag-field shall constitute the definins-point of the
identifier as a field-identifier for the region which is the
record-type closest-containins the variant-partt and shall associate
the field-identifier with the selector of the variant-Part. The
selector shall be desisnated a field of the record-type if and onlY if
it is associated with a field-identifier.

Each variant of a variaot-Part shall denote a distinct component of
the variant-Part; the component shall have the values and structure
of the field-list of the variant, and shall be associated with those
values specified bY the selecto~-tYPe possessed by the variant-Part
which are associated with the variant. The value of the selector of
the variant-Part shall cause the associated variant and component of
the variant-Part to be in a state that shall be designated active.
The values of a variant-Part shall be the distinct Pairs

<kt Xk)•

17

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Propos•l

where k represents a value of the selector of the varl~nt-Partt and Xk
is a 1value of the field-list of the active variant of the
var·iant-Part.

NOTES
1. If there are n values specified by the selector-tYPet and if
the field-list of the variant associated with the i-th value has
Ti values• then the cardinalitY of the set of values of the
variant-Part is <T1 + T2 + ••• + Tn>. There is no component of a
value of a variant-part correspondins to any non-active variant of
the variant-Part.

2. Restrictions Placed on the use of fields of a record-variable
Pertainins to variant-Parts are specified in 6.5.3.3t 6.6.3.3 and
6.(: .• 5.3.

E>:amples:

record
Year : 0 .• 2000;
month : 1 •• 12;
da.Y : 1. .31

end

record
name• firstname : string;
age : 0 •• 99;
case married : Boolean of
true : CSPousesname : strins>;
false: ()

end

recor-d
Xt>' : r·eal;
ar-·ea : r·ea 1 ;
case shaPe of
tr-ian~le :

<side : real;
inclinationt an9le1t angle2

rectar19l e
(sidelt side2 real;
skew r angle);

circle :
(diameter- : r-eal);

end

6.4.3.4 Set-tYPes.
is structured as the
set-tYPe shall be
base-type.

A set-type shall determine the set of values that
Powerset of its base-tvPe. Thus each value of a
a set whos~ members shall be uni9ue values of the

set-tYP'e = 11 set 11 "of 11 base-type •

18

PASCA1- NtWS #ZD .. lJtLtr'l~tK., .l~W

Second Draft Proposal

base-tYPe = ordinal-type

NOT£. 0Pera to,-.s app 1 icab le to values .of set-types are specified in
6.7.2.4 •.

Examples:
set of char-
set of <club1 diamondt hearb spade)

NOTE. If the base-tYPe of a set-type has b values then the
cardinality of the set of values is 2 raised to the Power- b.

For every ~rdinal-tYPe s, there exists an unpacked set designated the
unpacked canonical set-of-T tYPe and there exists a Packed set type
desisnated the packed canonical set-of-T tYPe. If S is a subr-anse-tYPe
then T is the host tYPe of S; otherwise T is S. Each value of the type
set of Sis also a value of the unpacked canonical set-of-T tYPe1 and
each value of the tYPe Packed set of Sis also a value of the packed
~anonical set-of-T tYPe.

6.4.3.5 File-tYPes.

NOTE. A file-tYPe describes sequences of values of the specified
comPonent-tYPe1 together with a cur-rent position in each sequence
and a mode which indicates whether- the seq~ence is beins inspected
or generated.

file-tYPe = 11 file 11 11 of" component-type.

A type-denoter shall not be Permissible as the component-type of a
file-tYPe if it denotes either a file-tYPe or a structured-type
having any component whose type-denoter is not Permissible as the
comPonent-tYPe of a file-tYPe.

E><amPles:
file of real
file of vector

A file-tYPe shall define imPlicitlY a type designated a sequence-type
havin9 exactly those valuest which shall be desisnated sequencest
defined bY the following five rules.

NOTE. The notation x-y represents the conc~tenation of sequences x
and Y. The explicit ~ePresentation of sequences (e.s. S(c))t of
concatenation of se9uences1 of the first, last and rest selectorst
and of sequence equality is not Part of the Pascal language.
The~e notations are used to define file values, belowt and the
re~~ired file operations in 6.6.5.2 and 6.6.6.5.

(a) SC> shall be a value of the sequence-type
designated the empty sequence. The emPtY sequence
components.

19

s, and shal 1 be
shall have no

PASCAL NEWS #20 DECH1BER, 1980

Second Draft Proposa1

Cb) Let .c be ti value of the specified comPonent-tYP·et and let x be a
value of the sequence-type S. Then S(c) shall be a se~uence of
tYPe 81 consisting of the sin9le comP 1onent val:U 1e er and :S;(c)""x
shall also be a sequencet distinct from S(), of tYPe S.

(c) Let Ct St and x be as in {b); let Y denote the ss~uence S<c>-x~
and let z denote the sequence x-S(c); then the notation Y.first
shall denote c (i.e.1 ·the first component value of Y)t Y.rest
shall denote x (i.e.t the se~uence obtained from Y by deletins the
first c:JmPonent>' and z. last shan denob~ c {i.e.,, the last
comPonent value of z).

· Cd) Let ~ and Y each be a non-empty sequenc~ of tYPe S; then x = Y

shall be true if and onlY if both <x.first = Y.first> and ex.rest
= Y~rest) are true. If x is the emPtY sequencet then x = Y shall
be true if and only if Y is also the empty se9uence.

Ce) Let Xt Yt and z be se9uences of type S; then x~{y-z) = (x-y)-z,
S<>-x = Xt and x-sc> = x shaJl be true.

A file-tYPe also shall define imPlicitlY a tYPe desi9nated a mode-tYPe
having exactly two values which are designated Inspection and
Generation.

NOTE. The exPlicit den~tation of these values is not Part of the
Pascal 1 an91Ja9e.

A file-tYPe shall be structured as three components. Two of these
comPonents1 designated f.L and f.Rt shall be of th~ imPlicit
se9uence-tYPe. The third comPonent1 designated f.Mt shall b~ of the
implicit mode-tYPe.

Let f.L and f.R each be a sin91e value of the sequence-type; let f.M
be a sin9le value of the mode-type; then each value of the file-tYP~
shall be a distinct triPle of the form

Cf.Lt f.Rt f .M>

where f.R shall be the ~mPtY se9uence if f.M is the value Generation.
The valuet ft of the file-tYPe shall be designated emPtY if and onlY
if f.L-f.R is the empty sequence.

NOTE. The two comPonentst f.L and f.Rt of a value of the file-tYPe
maY be considered to represent the single se9uence f~LNf.R
together with a current Position in that sequence. Jf f.R is
non-empty, then f.R.first may be considered the current component
as determined by the ~ur~ent Position; othe~wiser the current
Position is designated the end-of-file Position.

There shall be a file-tYPe that is denoted bY the required
structured-type-identifier text. The structure -0f the tYPe denoted by
text shall define an additional sequence-tYPe whose values shall be
designated lines. A line shall be a sequence x-S(e), where x is a

20

PASCAL NEWS #20 DECEMBER~ 1980

Second Draft Proposal

£equence of components havins the char-type, and e represents a
special component value, which shall be desiBnated an end-of-linet and
which shall be indistinguishable from the char value space excePt bY
the required function eoln (6.6.6.5) and by the re9uired Procedures
reset (6.6.5.2), writeln (6.9.5), and Pa9e <6.9.6). If x is a line
then no component of x other than x.last shall be an end-of-line. This
definition shall not be construed to determine the under1Yin9
representation, if anYt of an end-of-line component used by a
Processor.

A line-sequence, z, shall be either the empty sequence or the sequence
xNY where xis a line and Y is a line-sequence.

EverY value t of the tYPe denoted by text shall satisfy one of the
fallowing two rules.

(a) If t.M = InsPectiont then t.L-t.R shall be a line-se9uence.

Cb> If t.M ~Generation, then t.L-t.R shall be x-y where x is a
line-sequence and y is a sequence of components havin~ the
char-tYPe.

NOTE. In rule (b)t Y may be consideredt especially if it is
non-emPtYt to be a. Partial line which is beins senerated. Such a
partial line cannot occur durins inspection of a file. Also• Y
does not correspond to t.R since t.R is the emPtY se9uence if t.M
= Gener-ation.

A variable that Possesses the type denoted bY the required
structured-type-identifier text shall be desisn•ted a textfile.

NOTE. All required Procedures and functions aPPlicable to a
var i ab 1 e o f t Y Pe f i 1 e o f ch a r are a P Fl. 1 i ca. b 1 e to text f i 1 e s •
Additional required Procedures and functionst applicable on1¥ to
textfilest are defined in 6.6.6.5 and 6.9.

6.4.4 Pointer-tYPes. The values of a Pointer-tYPe shall consist of a
sinsle nil-value, and a set of identifYins-values each identifYins a
distinct variable possessing the domain-tYPe of the pointer-tYFe. The
set of identifying-values shall be dYnamict in that the variables and
the values identifYins themt may be created and destroYed durins the
execution of the Prosram. IdentifYins-values and the variables
identified by them shall be created onlY bY the re9uired procedure new
(see 6.6.5.3).

NOTE. Since the nil-value is not an identifYins-value it does not
identify a variable.

The token nil shall denote the nil-value in all Pointer-tYPes.

Pointer-tYPe = new-Pointer-type : Painter-tYPe-identifier •
new-Pointer- tYPe = 11 " 11 domain-type •
domain-type = type-identifier •

21

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

NOTE. The token nil does not have a sin9le tYPet but •ssumes a
suitable pointer-tYPe to satisfy the assisnment-comPatibilitY
rules1 qr the comPatibilitY rules for operators1 if Possible.

6.4.5 Compatible types. TYPes Tl and T2 shall be desisnated
comPatible if anY of the four statements that follow is true.
(a) Tl and T2 are the same tYPe.
Cb) Tl is a subranse of T21 or T2 is a subranse of Tl1 or both Tl ~nd

T2 are subranses. of the same host tYPe.
(c) Tl and T2 are set-tYPes of compatible base-tYPest and either both

Tl .and T2 are desisnated Packed or neither Tl nor T2 is desisnated
Packed.

Cd) Tl and T2 are string-types with the same number of com~onents.

6.4.6 Assi9nment-comPatibilitY. A value of tYPe T2 shall be
desisnated assi9nment-comPatible with a type Tl if anY of the five
statements that follow is true.
(a) Tl and T2 are the same tYPe which is neither a file-tYPe nor a

structured-type with a file component <this rule is ta be
interpreted recursively),

(b) T1 is the real-type and T2 is the inteser-tYPe.
(c) Tl and T2 are compatible ordinal-tYPes and the value of tYPe T2 is

in the closed interval specified bY the tYPe Tl.
(d) Tl and T2 are compatible set-types and all the members of the

value of tYPe T2 al"e in the closed interval' specified by the
base-type of T1.

Ce> Tl and T2 are compatible string-types.

At any Place where the rule of assi9nment-comPatibilitY is used:
(a) It shall be an error if Tl and T2 are compatible ordinal-tYPes and

the value of type T~ is not in the closed interval specified bY
the tYPe Tl.

(b) It shall be an error if Tl and T2 are compatible set-tYPes and anY
member of the value of type T2 is not in the closed interval
specified bY the base-tYPe of the tYPe Tl.

6.4.7 Example of a type-definition-part

tYPe
natural = o .. maxint;
count = integer;
ranse = integer;
colour= (red1 ~ellowt 9reent blue);
s e x = C ma 1 e t f e ma 1 e > ;
Year= 1900 •• 1999;
shaP~ = <trian9let rectan9l~1 circle);
Punchedcard = arraY(1 •• 80J of char;
charsequence = file of char;
Polar = recol"d

r: real~
theta : angle

end;

22

PASCAL NEWS #20 __ _ DECtMBtK~ 1~8U

indextYPe = 1 •• limit;
vector~ arraY tindextYPeJ of real;
Person= Ape~sondetails;
Persondetails =

record
namet firstname : charse9uence;
age : inteser;
married : Boolean;
father, childt sibling : Person;

.case s : sex of

end;

male :
Cenlistedtbearded : Boolean);

female :
(mother1Prosrammer : Boolean>

File0flnte9er = file of inte9er~

NOTES
1. In the above examPle count, range and inteser denote the same
tYPe. The tYPes denoted by Year and natural are compatible witht
but not the same ast the tYPe denoted bY range, count and inteser.

2. TYPes occurring in examples in the remainder of this standard
should be assumed to have been declared as specified in 6.4.7.

PASCAL NEWS #20 DECEMBER, 1980

6.S Declarations and denotations of variables
6.5.1 Variable-declarations. A variable is an entity to which a
<current) value maY be attributed (see 6.8.2.2). Each identifier in
the idintifier-list of a v~ri~Lle-declaration shall denote a distinct
variable POl~esiins the type denoted bY the type-denoter of the
vari~ble-d1claration.

variable-de1:laration =identifier-list 11 : 11 type-denoter.

The occurrence of an identifier in the identifier-list of a
variable-declaration of the variable-declaration-Part of a block shall
constitute its definins-Point a~ a variable-identifier for the region
that is the block. The structure of a variable possessing a
structured-type shall be the structure of the structured-type. A use
of a variable-access shall be an access' at the time of the use1 to
the variable thereby denoted. A variable-access• accordin9 to whether
it is an entire-variable• a comPonent-variablet an
identified-variablet or a buffer-variable, shall denote either a
declared variable, or a component of a variablet a variable which is
identifjed by a pointer value (see 6.4.4)t or a buffer-variable,
resPecti.vel'I.

variable-access ~ entire-variable I component-variable :
identified-variable : buffer-variable •

An assisnin9-reference to a variable shall occur if any of the six
statements that follow is true.
(a) The variable is de~oted bY the variable-access of an

assignment-statement.
Cb) The variable is denoted by an actual variable Parameter in a

function-designator or Procedure~statement.
<c> The variable is denoted by an actual Parameter in a

Procedure-statement that specifies the activation of the required
Procedure read or the re~uired Procedure readln.

(d) The variable occurs as the control-variable of a for-~tatement.
(e) A Procedure-statement or a function-desi9nator contains a

Procedure-identifier associated with a Procedure-black containin9
an assi9nin9-reference to the variable.

(f) A procedure-statement or a functian-d~si9nator contains a
function-identifier· associated with a function-block containing
an assisnins-Feference ta the variable.

Example of a variable-declaration-part

var
x , y ' z t max : r ea 1 ;
itj: intesier;
k: o .. 9;
p,q,r; Boolean;
operator: (plust minust times);
a: arraY[O •• 63J of real;
c: colour;
f: file of char;
hue1thue2: set of colour;
P1tP2: Person;
m1m1tm2: arraY[1 •• 10t1 •• 10J of real;
coord : Polar;
Poolta~e : arraY[1 •• 4J of FileOfinteger;

24

PASCAL NEWS #20 DECEMBER) 1980

Second DrAf t Pr0Po1al

date I r-1c:ord
month 1 1 •• 12;
Year : inteser

end;

NOTE. Variables occurring in examples in the remainder of this
standard should be assumed to have been declared as specified in
6.5.1.

6.5.2 Entire-variables.

entire-variable =variable-identifier •
variable-identifier = identifier •

6.5.3 Component-variables
6.5.3.1 General. A comPonent of a variable shall be a variable. A
component-variable shall denote a component of a variable. A
referencet assignins-reference or access to a component of a variable
shall constitute a referencet assisnins-reference or accesst
resPectivelYt to the variable. The valuet if anYt of the component of
a variable shall be the same component of the valuet if ~nYt of the
variable.

component-variable = indexed-variable l field-designator •

6.5.3.2 Indexed-variables. A component of a variable Possessin~ an
arraY-tY~e shall be denoted by an indexed-variable.

indexed-variable =
arraY-variable 11 (11 index-expression
{ 11 1 11 index-expression} "J".

arraY-variable = variable-access •
index-expression = expression •

An array-variable ~shall be a variable-access that denotes a variable
Possessing an arraY~tYPe. For an indexed-variable closest-containing a
$insle index-expressiont the value of the index-exPr~ssion shall be
assignment-compatible with the index-tYPe of the array-type. The
component denoted by the indexed-variable shall be the component that
corresponds to the v~lue of the index-expression bY the maPPing of the
type possessed by the array-variable <see 6.4.3.2).

Examples:
at12J
a(i+jJ
mCkJ

If the array-variable is itself an indexed-variable an abbreviation
~aY be used. In the abbreviated formt a single comma shall replace the
seciuence 11] 11 11 (11 that oc•:urs in the ful 1 form. The .abbreviated form
and the ful 1 form shal 1 be equivalent.

25

PASCAL NEWS #20

Examples:

mt k H 1 J
mCkt1J

DECEMBERJ 1980

Second Draft Proposal

NOTE. The two examples denote the same component variable.

6.5.3.3 Field-designators. A field-designator either shall denote
that component of the record-variable of the field-designator which is
associated with the field-identifier of the field-specifier of the
field-desisnator1 bY the record-tYPe possessed by the record-variable;
or shall den~te the variable denoted by the
field-desisnator-identifier (se~ 6.8.3.10) of the field-designator. A
record-variable shall be a variable-access that denotes a variable
possessins ~ record-type.

The occurrence of a record-variable in a field-desi9nator shall
constitute the defining-point of the field-identifier~ associated with
components of the record-type possessed by the record-variabl~t for
the resion that is the field-specifier of the field-desisnator.

fiel.d-desisnator =record-variable 11 • 11 field-specifier·
field-designator-identifier •

record-variable = variable-access •
field-sPecifier = field-identifier •
field-identifier = identifier •

Examples:
P2 mother
coord.theta

An access to a component of a variant of a variant-Part, where the
~elector of the variant-Part is not a fiel-dt shall attr·ibute to the
selector that value specified bY its type which is associated with the
variant.

It shall be ~n error unless a variant is active for the entirety of
e~ch reference and access to ~ach component of the variant.

W~en a variant becomes not activet all of its ~omP6nents shall become
totallY~undefined.

NOTE. If the selector of a variant-Part is undefined, then no
var~ant of the variant~Part is active.

6.5.4 identified-variables. An identified-variable shall denote the
variable (if any) identified by the value of the Pointer-variable of
the identified-variable Csee 6.4.4 and 6.6.5.3).

identified-variable = Pointer-variable 11 "' 11 •

Pointer-variable = variable-access •

A variabl@ created by the re~uired Procedure new <see 6.6.5.3) shall

26

PASCAL NEWS #20 DECEMBERJ 1980

Second Dl"'aft Pr-oPosal ·

be acces~ible until the termination
F~os~am-block or until the variable
re~uired Procedure disPoset 6.6.5.3).

of the activation of the
is mad~ inaccessible Csee the

NOTE. The accessibility of the Val"'iable also depends on the
e:dstence of a Pointel"'-variable which has attributed to it the
corresponding identifying value.

A po,inter-val"'iable shall be a var-iable-access that denotes a var-iable
Passessins a Pointer-type. It shall be an error if the
Pointe~-variable of an ideritified-val"'iable either denotes a nil-value
or is undefined. It shall be an el"'ror to remove from its Pointer-type
the identifYins-value of an identified val"'iable (see 6.6.5.3) when a
~eference to the identified variable exists.

E~<ampl es::
P1"-

P1"'· .. fat her""
pfA.siblinsA.fatherA

6 .. 5.5 Suffe-r--va!"iables. A file-variable shall be a var·iable-access
that denotes a variable Possessing a file-tYPe. A buffer-variable
sh~ll denote a variable associated with the variable denoted by the
file-variable of the buffer-variable. A buffer-variable associated
~ith • textfile shall Possess the char-type; othel"'wiset a
b·u:ffef"-variable shall Possess the comPanent-tYPe of the file-tYPe
p·asses,sed:·by the file-variable of the buffer--variable.

buffer-variable= file-variable ~A"
fil~-variable = variable-access •

Exam·P l es. r
in:Pu;t""'
PQ'O;l taPe[2],A

It shall be an erro·r- to al tel"'. the value of a file-var·iable f when a
refarenc• to the buffer-variable fA exists. A reference or- access to a
buffer-variable shall constitute a. r-efel"'ence or access. r-espectivelYt
to the associated file-var-iable.

PASCAL NEWS #20 DECH1BER1 1980

6.b Procedure and function declarations
6.6.1 Procedure-declarations. A Procedure-declaration shall associate
~n id~ntifier with a Procedur~-block so that it can be activated bY a
Proc1dure-1tat~ment. Activation of the Procedure shall activate the
Procedure-block.

Procedure-declaration =
Procedure-headins 11 ; 11 directive I
Procedur·e-identification ";" Procedure-block
procedure-headins 11 ; 11 Procedure-block .

Procedure-headins =
11 Procedur·e 11 identifier [for·mal-Parameter-1 ist J

Procedure-identification =
11 procedure 11 pr·oced1Jr·e-identi f ier •

Procedure-identifier ~ identifier •
Procedure-block = block •

The occurrence of a formal-parameter-list in a Procedure-heading of a
Procedure-declaration shall define the formal Parameters of the
Procedure-blockt if any, associated with the identifier of the
Procedure-heading to be those of the formal-parameter-list.

The occurrence of an
Procedure-declaration
Procedure-identifier
closest-containing the

identifier in the Procedure-heading
shall constitute its definin8-Point

for the region that is the
the Procedure-declaration.

of a
as a
block

Each identifier havins a defining-point as a Procedure-identifier in a
Procedure-heading of a Procedure-declaration closest-containin9 the
directive 11 forwar·d 11 shall have e:<actl~ one of its corresPondins
occurrences in a Procedure-identification of a Procedure~declarationt
and th~t shall be in the same Procedure-and-function-declaration-part.

The occurrence of a Procedure-block in a Procedure-declaration
associates the ~rocedure-block with the identifier in the
Procedure-heading, or with the Procedure-identifier in the
Procedure-identification, of the procedure-declaratiQn.

ExamPle of a Procedure~and-function-declaration-part:

Procedure readinteg~r <var f: text; var x: inte~er>;
var

i :natural;
bes in

·while fA = ' ' do get(f);

end;

{The file buffer contains the fjrst n~n-sPace char>
i == o;
while f"' in C'0' •• '9'J do begin

i I ,: (1 0 * . i) + (0 i'-.d (f A) - Q r d (I 0 I)) ;

set Cf)
.end;
CThe file buffer contains a non-di9it>
x :::: i
{Of course if there are no disitst x is zero)

28

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

~rocedure AddVectors<var A181C: arraYClow •• hi9h: natural] of real);
va.r

i : natural;
bes in

fo~ i == low to hi9h do ACiJ := BCiJ + CCiJ
end { of AddVectors };

Procedure bisect(function f(x : real) rea 1 ;
atb: real;
var result: real);

{This Procedure attempts to find a zero of f(x) in Catb) by
the method of bisection. It is assumed that the Procedure is
called with suitable values of a and b such that

<f<a><O> and (f>O>
The estimate is returned in the last Parameter.)

const
EPS = 1e-10;

var
midPoint: r-eal;

begin
CThe invariant Pis true by calling assumption}
midPoint 1= a;
while abs<a-b> > EPs*abs(a) do besin

midFoint &= <a+b)/2J
if f(midPoint> < 0 then a := midpoint
else b =~midpoint
<Which re-~stablishes the invariant:

P = (f(a><O> and (f(b)>O>
and reduces the interval (a1b) Prbvided that the value
of midpoint is distinct from both a and b.)

end; .
<P tosether with the loop exit condition assures that a zero
is contained in a small sub-inter~al. Return the midPoint as
the ztr-o.>

~~sult := mi4Poi~t
endJ

PASCAL NEWS #20 DECEMBER" 1980

Second Draft Proposal

Procedure PreFareForAPPendina<var f: FileOfinte9er);
<This Procedure takes a file in an arbitrary state and sets

it UP in a condition for appending data to its end. Simpler
conditionlns is onlY Possible if assumPtions are made about the
initial state of the file.}

var
Local COPY Fi 1 e0finte9er·;

Procedure CoPYFiles(var from1into
bes:ii n

reset(from); rewrite(into>;
while not eof(from) do besin

into := fr·orn";
putCinto)J get(fram)

end;
end {of CoPYFiles };

be9in {of body of PrePareForAPPendina)
CoPYFiles(f~LocalCopy);
CoPYFiles(LocalCopy,f)

end { of PrePareFarAPPendin9);

Fil eOfI nteser);

6.6.2 Function-declarations. A function-declaration shall associate
an identifier with a function-block so that it can be activated bY a
function-designator. Activation of the f0nction shall activate the
function-block.

function-declaration =
function-heading 11 ; 11 dir·ective l
function-identification 11 ; 11 function-block
function-headins 11 ;" function-black •

function-heading =
"function" identifier [formal-Par·ameter·-1 istJ
11 :u result-tYPe

function-identification =
"function" function-identifier •

function-identifier = identifier •
result-tYPe = simPle-type-identifier :

pointer-type-identifier 1

function-block =block •

The occurrence of a formal-Parameter-list in a function-headins of a
function-declaration shal 1 define the formal PcH·i...:i.n1eters of the
function-blockt if a~y, aGsociated with the identifier of the
function-heading to be those of the formal-Parameter-list. The
function-block ~hall contain at least one assignment-statement that
attributes a value to the function-identifier <see 6.8.2.2). The value
of the function shall be the last value attributed to the
function-identifier. It shall be an error if the function is undefined
uPon completion of the algorithm of an activation of the
function-block.

30

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

The occurrence of an identifier in the function-he~ding of a
func~ion-declaration . shall constitute its definin9-point as a
function-id~ntifier Possessing the fype denoted by the result-tYPe for
the region that is the block closest-containins the the
function-declaration.

Each identifier havins a definins-point as a function-identifier in
the function-heading of a function-declaration closest-containins the
directive 11 forward 11 shall have exactly one of its cor·resPonqins
occurrences in a function-identification of a function-declaration,
an~ that shall be in the same Procedu~e-and-function-declaration-Part.

The occu~rence of a funcfion-block in a function-declaration
associates the function-block with the identifier in the
function-heading, or with the function-identifier in the
function-identification, of the function-declaration.

Example of a Procedure-and-function-declaration-Part

function SqrtCx:real >: real;
{This function comPutes the square root of x <x>O>

using Newton's method.}·
var

oldtnew: l"'eaH
bes in

new := x;
re Peat

old := new;
new := <old + x/old)*0.5;

until abs<new-old) < EPs*new;
<EPs being a global constant>
Sqrt := new

end (of S1;1rt);

31

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

function max(a: vector·): real;
<This function finds the lar9est component of the value of a.}
var

lar9estsofar: r·eal;
fence: indextYPe;

bes in
lar9estsofar := a(1J;
{Establishes larsestsofar = max(a[1J)}
for fence := 2 to limit do be9in

if larsestsofar < a(fenceJ then lar9estsofar := a[fenceJ
<Re-establishins lar9estsofar = ma:da[1Jt ... t2[fenceJ)}

end;
<So now lar9estsofar = max(a[1Jt ••• ta[limitJ)}
max := larsestsofar

e.nd {of max };

function GCD(mtn; natural): natural;
begin

if n=O then GCO == m else GCD := .GCD<ntm mod n);
end;

CThis example of the use of forward demonstrates how mutual recursion
is helpful in reading a Parenthesized expression and convertins it to
some internal form}
function ReadOPerand : formula; fo~ward;

function ReadExPression : formula;
var

this : formula;
begin
this := ReadOPerand;
while IsO?erator(nextsYm) do

this == MakeFormula(thist ReadOPeritort ReadOPerand)~
ReadExPression := this
end;

function ReadOPerand { : formula };
begin
if IsOPen(nextsYm) then

begin
SkiPSYmbol;
ReadOPerand := ReadExPression1
{nextsYm should be a close}
SkiPSYmbol
end

else ReadOPerand := ReadElement
end;

6.6.3 Parameters
6.6.3.1 General. The identifier-list in a
value-Par·ctrneter-specification shall be~ ljst of value Parameter·s. The

32

PASCAL. NEWS #20-___ -

Second Draft Proposal

identifier-list in a variable-parameter-specification shall be a list
of variable Parameters.

formal-Parameter-list=
11 (110 formal-Par-ameter-section
{ 11 ; 11 formal-Parameter·-section} 11) 11 •

formal~Parameter-section >
value-Parameter-specification l
variable-parameter-specification l
Procedural-Parameter-specification
functional-parameter-specification •

NOTE. There is also a sYntax rule for formal-Parameter-section in
6.6.3.7

value~Parameter-sPecification =
i dent i f i e r - 1 i s t 11 : " t Y Pe - i d en t i f i er· •

variable-Parameter-sPecification =
.. Va.I"'" identifier-list 11 : 11 type-identifier •

Procedural-Parameter-specification =
procedure-heading •

functional-Parameter-specification=
function-headins •

An identifier that is defined to be a Parameter-identifier for the
resion which is the formal-Parameter-list of a Procedur~-headin9 shall
be desianated a formal Parameter of the block of the procedure-block'
if anY1 associated with the identifier of the procedure-heading. An
identifier that is defined to be a p·arameter-identifier for the region
which is the formal-Parameter-list of a function-heading shall be
desisnated a formal Parameter of the block of the function-blockt if
anYt associated with the id~ntifier of the function-heading,

The oc~urrence of an identifier in the identifier-list of a
value-Parameter-sPecification or a variable-parameter-specification
shall constitute its defining-point as a Parameter-id~ntifier for the
region that is the formal-Parameter-list closest-containins it aRd its
defining-Point as the associated variable-identifier for the region
that is the blockt if anYt of which it is a formal Parameter.

The occurrence of the identifier of a Procedure-heading in a
Procedural-Parameter-specification shall constitute its defiriin9-point
as a Parameter-identifier for the region that is the
formal-Parameter-list clossst-containin9 it and its defining-point as
the associated Procedure-identifier for the region that is the block1
if anYt of which it is a formal Parameter.

The occurrence of the identifier of a function-heading in a
functional-Parameter-specification shall constitute its defining-point
as a Parameter-identifier for the region that is the
formal-Parameter-list closest-containing it and its defining-point as
the associated function-identifier for the region that is the blotkt
if anYt of which it is a formal parameter.

33

PASCAL NEWS #20 DECEMBERJ 1980

S~cond Draft Proposal

NOTE. If the formal-parameter-li~t is
Procedur~l-Farameter-specification
functional-Parameter-sPecification1 t~ere is
Procedure-block or function-block.

contained
or·

in a
a

no correspondins

6.6.3.2 Value Parameters. The formal Parameter and its associated
variable-identifier shall denote the same variable. The formal
Parameter shall Possess the tYPe denoted by the type-identifier of the
value-Parameter-specification. The actual-Parameter (see 6.7.3 and
6.8.2.3) shall be an expression whose value is assisnment-cornPatible
with the tYPe possessed by the formal Parameter. The current value of
the· expression shall be attributed uPon activation of the block to the
variable that is denoted by the formal Parameter.

6.6.3.3 Variab.le parameters. The actual-Parameter shall be a
variable-access. The actual-Parameters (see 6.7.3 and 6.8.2.3>
corresPondin9 to formal Parameters that occur in a sin9le
variable-parameter-specification shall all Possess the same type, The
tYPe possessed by the actual-parameters shal.1 be the same as that
denoted bY the tYPe-identifier1 and the formal Parameters shall also
Possess that type. The actual-Parameter shall be accessed before the
activation of the block1 and this access shall establish a reference
to the variable thereby accessed durin9 the entire activation of th~
block; the corresFondins formal Parameter and its associated
variable-identifier shall denote the referenced variable during the
activation.

An actual variable ParameteP shall
selector of a variant-Part. An
denote a comPonent of a variable
desisnated Packed.

not denote a field which is the
actual variable Parameter shall not

that Possesses a tYPe that is

6.6.3M4 Procedural parameters. The actual-Parameter Csee 6.7.3 and
6.8.2.3> shall be a·Procedure-identifier that has a defining-point
contained by the Program-block. The Procedure denoted bY the
actual-Parameter and the Procedure denoted by the for·mal parameter
shall have consruous formal-Parameter-lists (see 6.6.3.6) if either
has a formal-Parameter-list. The formal Parameter and its associated
procedure-identifier shall denote the actual Parameter durin9 the
entire activation of the block.

6.6.3.5 Functional Parameters. The actual-Parameter (see 6.7.3 and
6.8.2.3) shall be a function-identifier that has a definin9~Foint
contained by the Pro9ram-block. The function denoted by the
actual-Parameter and the function denoted bY the formal Parameter
shall have the same result-tYPe and shall have consruous
formal-Parameter-lists <see 6.6.3.6> if either has a
formal-Parameter-list. The formal Parameter and its associated
function-identifier shall denote the actual Parameter durin9 the
entire activation of the block.

6.6.3.6 Pa'rameter list consruitY. Two for·mal-par·ameter-1 ists shal 1 be

34

I
I

PASCAL NEWS #ZO 1Jtltl"'ll5tK, _L:_!~U

Second Draft Proposal

consru6us if they contain the same number of formal-Parameter-sections
and if the formal-parameter-sections in corresponding positions match.
Two formal-parameter-sections shall match if anY of the statements
that follow is true.
Ca) TheY are both value-Parameter-sPecifications containins the· same

number of parameters and the tYPe-identifier in each
value-parameter-sPecification denotes the same tYPe.

(b) They are both variable-parameter-specifications containin~ the
same number of Parameters and the tYPe-identif ier in each
variable-Parameter-specification denotes the same t1Pe.

(c) They are both Procedural-parameter-specifications and the
formal-parameter-lists of the ~rocedure-headinss thereof are
C0fl9f"UOUS.

(d) They are both functional-Par~meter-sPecificationsr the
formal-parameter-lists of the function-headin9s thereof are
congruous, and the type-identifiers of the result-types of the
function-headinss thereof denote the same type.

(e) They are both confo~mant~arraY-Paramete~-sPecifications
containing the same number of Parameters anJ e9uivalent
conformant-arraY-schemas. Two conformant-array-schemas shall be
e~uivalent if all of the four statements which fallow are true.
Cl) There is a sin9l€ index-tYPe-sPecifiecation in each
conformant-arraY-schema.
<2> The ordinal-type-identifier in each index-type-specification
denotes .the same tYPe.
(3) Either the (component> conformant~arraY-schemas of the
conformant-arraY-schemas are e~uivalent or the type-identifiers
of the conformant-arraY-schemas denote the same tYPe.
<4> Either both con formant-array-schemas are
Packed-conformant~array-schemas or both are
unPacked-conformant-arraY-schemas.

NOTES
1. The abbreviated conformant-arraY-schema and its corresPondin9
full form are equivalent <see 6.6.3.7)

The occurrence of an identifier in the identifier-list of a
canformant-array-parameter-sPecification shall constitute its
definin9-Point as a Parameter-identifier for the re9ion that is the
formal-Parameter-list closest-containing it and its definins-point as
the associated variable-identifier for the region that is the blockt
if anY1 of which it is a formal Parameter.

The occurrence of an identifier in an index-tYPe-sPecification shall
constitute its defining-point as a bound-identifier for the region
that is the form~l-Parameter-list closest-c~ntainins it and for the
resion that is the block, if anYr whose formal Parameters are

35

PASCAL NEWS #20 DECrnBERJ 1980

Second Draft Proposal

specified bY that formal-parameter-list.

formal-Parameter-section >
conformant-arraY-Parameter-sPecification •

conformant-array-parameter-specif ication =
11 var" identifier-list 11 : 11 conformant-arr·aY-schema.

conformant-array-scherna =
(Packed-conformant-arraY-schema I
unPacked-conformant-arraY-schema) •

Packed-conformant-array-schema =
· 11 packed 11 11 arraY 11 11 C11 inde:<-tYPe-specification 11] 11

11 of 11 type-identifier •
unPacked-conformant-ar~aY-schema =

"array" 11 [11 index-tYPe-sPecifica.tion
{ 11 ; 11 index-type-specification } 11] 11 "of"
(type-identifier l conformant-arraY-schema) •

index-tYPe~sFecification =
identifier 11 •• 11 identifier
11 : 11 ordinal-tYPe-.identifier •

bound-identifier = identifier •
factor > bound-identifier •

NOTE. There is also a syntax rule for formal-Parameter-section in
6.6.3.1. There is also a sYntax rule for factor in 6.7.1.

If a conformant-arraY-schema contains a conformant-arraY-schema, then
an abbreviated form of definition maY be used. In the abbreviated
farm• a sinsle semi-colon shall r·eplace the sequeni:e 11] 11 11 of 11 11 ar-raY 11

11 (11 that occurs in the full form. The abbreviated form and the full
form shall be equivalent.

Exam?les:
arraY[u •• v: T1l of array[J •• k: T2l ~f T3
arraY(u ... v: TU J •• k~ T2J of T3

Durin~ the entire activation of the block• the first bound-identifier
of an index-type-specification shall denote the smallest value
specified by the corresPonding index-tYFe (see 6.6.3.8> Possessed by
each actual-Parametert and the second bound-identifier of the
index-tYPe-sPecification shall de~ote the largest value specified bY
that index-tYPe.

The actual-parameters <see 6.7.3 and 6.8.2.3) corresponding to formal
Paramete~s that occur in a single
conformant-array-parameter-specification shall all Possess the 5ame
tYPe. The tYFe Possessed bY the actual-Parameters shall be conformable
(see 6.6.3.8) with the conformant-arraY-schema, and the formal
Parameters shall Possess an arraY-tYPe which shall be distinct from
anY other tYPet and which shall have a comPonent-tYPe that 'shall be
that ~enoted by the type-identifier contained by the
conformant-arraY-schema in the
conformant-array-parameter-~Pecific•tion and which shall have the
index-tYPeS of the tYPe Possessed b~ the ~ctual-Pararneters that

36

I

I

I

PASCAL NEWS #2U ___ _ lJtLtr·mtK., .l'::HSU

Second Draft Proposal

correspond (see 6.6.3.8) to the index-type-specifications contained bY
the conformant-arr~y-schema in the
conformant-arraY-Parameter-sPecification.

NOTE. The tYPe of the formal ~arameter can not be a string-type
(see 6.4.3.2) because it is not denoted by an arraY-tYPe.

The actual-Parameter shall be either a variable-access or an
ewpression that is not a factor that is not a variable-access. If the
actual-Parameter is an exPression1 the value of the expression shall
be attributed before activation of the block ta an auxiliary variable
which the Prosram does not otherwise contain~ The type Possessed by
this variable shall be the same as that Po~sessed by the expression.
This variable, or the actual-parameter if it is denoted by a
variable-access, shall be accessed before the activation of the blockt
and this access shall establish a reference to the variable thereby
accessed durins the entire activation of the block; the corresPondin9
formal Parameter and its associated variable-identifier shall
represent the referenced variable durin~ the activation.

NOTE. In usin9 an arraY variabl~ A as an actual parameter
corresPondins to a formal Parameter that occurs in a
confor~ant-array-parameter-specification the use of an auxiliary
variable is ensured by enclosing the variable-access A in
Parentheses.

An actual-Parameter that is
component of a variable
PaCkrtd.

a variable-access shall not denote a
that possesses a tYPe that is desisnated

If the actual-Parameter is an expression whose value is denoted
variable-access that closest-contains- an identifier which

by
has

a
a
a definin9-occu~rence in the identif~er-list. of

conformant-array-parameter-sP~cificationt then
(a) that identifier shall be contained bY an
contained by the ex~ressiont and

indexed-variable

(b) the factor closest-containing ·the indexed-variable sha 11
as the

contains
clpsest-contain at least as many index-expressions
canformant-arraY-Parameter-specification
index-tYP~-sPecificati~ns.

NOT~. This ensures that the type
&~onymoui variable will always be
consequence, the activation record
fixed size.

6.6.3.8 ConformabilitY.

of the expression and the
known and that, as a
of a Procedure can be pf ~

NOTE. This clause does not aPPlY to level o.

Given a type denoted by an array-type closest-containing a single
index-tYPe1 and a conformant-arraY-schema closest-containing a single
index-tYPA-sPetificationt then the index-tYPe and the

37

PASCAL NEWS #20 DECEMBER) 1980

Second Draft Proposal

index-type-specification shall be designated as corresPondin9. Given
two conformant-arraY-schemas closest-containin9 a · sinsle
index-tYPe-specificationt then the.two index-type-specifications shall
be designated as correspondins. Let Tl be an array-type with a siA9le
index-type and let T2 be the type denoted by the
ordinal-type-identifier of the index-type-specification of a
conformant-.ar-ra.Y-schema closest-containing a sinsle
index-type-sPecificationt then Tl shall be conformable with the
conformant-arr-aY~schema if all th~ fbllowin9 four statements are true.
(a) The index-tYPe of Tl is compatible with T2.
(b) The smallest and largest values specified by the index-type of Tl

lie within the closed interval sPe~ified by T2.
Cc) The comPonent-tYPe of Tl denot~s the same tYPe as that which is

is denoted by the type-identifier of the conformant-arraY-schemat
or is conformable to the confor-mant-array-schema in the
conformant-arraY-schema.

(d) Either Tl is not desi9nated Packed and the
conformant-arraY-schema is ari unpacked-conformant-array-schemat
or T1 is desisnated Pa~ked and the conformant-array-schema is a
packed-confbrmant-arraY-schema ~

NOTE. The abbreviated and full forms of a conformant-arraY-schema
are equivalent (see 6.6.3.7). The abbr-eviated and full forms of
an arraY-tYPe are equivalent <see 6.4.3.2>.

It shall be an err-or if the smallest or largest value specified by the
index-tYPe of .T1 lies outside the closed interval specified by T2.

6.6.4 Required Procedures and functions
6.6.4.1 General. Required Frocedur-es
Predeclared. The required Procedures and
specified in 6.6.5 and 6.6.6 respectively.

and functions shall
functions shall be

be
as

NOTE. Required Procedures and functions do not necessarily follow
the rules 9iven elsewhere for Procedur-es and functions.

6.6.5 Required Pr-ocedures
6,6.5.1 General. The requi~ed Pr-ocedures shall be file handling
Procedures1 drnamic allocation Procedures and tr-ansfer Procedures.

6.6,5.2 File handling Procedures. ExcePt for the aPPlication of
rewrite or reset to the Program Parameters denoted by inPut or outputt
the effects of applying each of the file handling Pr-ocedures rewr-ite,
Putt reset and get to a file-variable f shall L~ defined bY
Pre-assertions and Past-assertions about f, its components f.L1 f .R1
and f.Mt and about the associated buffer-var-iable fA. The use of the
variable fO within an assertio~ shall be consider-ed to represent the
state or valuet as aPProPriatet of f Prior to the operationt and
similar-lY for fOA and fA, while f <within an assertion) shall denote
the variable after the oPeration.

It shall be an error if the stated Pre-assertion does not hold
immediate1Y Prior to any use of the defined oper·ation. It shall be an

38

PASCAL NEWS #20 DtCtMBtl\., l~~U

Second Draft Proposal

error if any variable exPlicitlY denoted in an assertion of e~ualitY
is undefined. The Post-assertion shall hold Prior to the next
subse1:1uent access to the file1 its components, or its· assoi:iated
buffer-variable. The Post-assertions imPlY correspondins activities on
the external 'entities1 if anYt to which the file-variables are bound.
These .activities1 and the Point at which they are actuall~ Performed1
shall be imPlementation-defined.

rewrite(f) ~re-assertion: true.

put(f)

-reset Cf)

9et(f)

Post-assertion: Cf.L = f.R = 8()) and
{f.M = Generation) and
(fA is totally-undefined).

Pre-assertion: CfO.M =Generation) and
(fO.L is not undefined) and
(fO.R =SC)) and
CfOA is not undefined>.

post-assertion: (f.M =·Generation> and
(f.L = (fO.L~S(fOA))) and
< f. R = S ()) and
(fA is totally-undefined>.

Pre-assertion: The components fO.L and fO.R are not
undefined.

Fast-assertion: (f.L = 8()) and

Pre-assertion:

(f.R = (fO.LNfO.RNX)) and
(f.M = Inspection) and
(if f.R =SC> then (fA is
totallY-undefined)
else (fA = f.R.first)),

where1 if f is of the type denoted by the
re~uired st~uctured-tYPe-identifier text
and if fO.LNfO.R is not emFtY and if
(fO.LNfO.R>.last is not designated an
end-of-1 ine, then X shal 1 be a sec:iuence
having an end-of-line comPonent as its
onlY component; otherwise X = 8().

(fO.M = Inspection> and
(n e i th er f 0 • L n or f 0 • R a r e •.rn d e f i n e d) and
<fO.R <>SC)).

Post-assertion: (f.M =Inspection) and
(f.L = (fO.LNSCfO.R.first))) and
(f .R = fO.R.rest) and
Cif f.R =SC) then (fA is
totally-undefined)
else (fA = f.R.first>>.

When the file-variable f Possesses a tYPe other than that denoted by
text, the re9uired Procedures read and write shall be defined as
follows.

39

read

PASCAL NEWS #20 DEC81BER; 1980

Second Draft Proposal

Read(ftv1, •• ,,vn) where vl .•• vn denote variable-accesses
shall be equivalent to

be9in read(ftv1); ••• ; read(ftvn> end

ReadCftv) where v denotes a variable-access shall be
equivalent to

NOTE. The variable-access i~ not a variable Parameter.
Consequently it maY be a component of a Packed structure and the
v~lue of the buffer-variable need only be assignment-compatible
with it.

Write(f,e1t ••• ,en>t where e1 ••• en denote
equivalent to

expressions shall be

begin write(f,e1>; ••• ; write(f,en) end

·write(f,e)t where e denotes an expression shall be equivalent to

begin f~ := e; Put(f) end

NOTES. 1. The required procedures readt write, readln1 writelnt
and Pase• as applied to textfilest are described in 6.9.

2. Since the definitions of read and write include the use of get
and PUtt the imFlementation-defined aspects of their
post~asJertion~ also apply.

6.6.5.3 0Ynamic allo,ation Procedures

new{p) shall create a new variable that is.
totallY-undefineQt shall create a new
identifyin~-value of the Pointer-tYPe associated
with Pt that identifies the new variable• and
shall attribute this identifYin9-value to the
variable denoted by the variable-access P. The
created variable shall Possess the tYPe that is
the domain-tYPe of the Pointer-type Possessed by
p,

shall create a new variable that is
totallY-undefinedt shall create a new
identifying-value of the Pointer-type associated
with Pt that identifies the new variable, and
shall attribute this identifYing-value to the
variable denoted bY the variable-access P. The
created variable shall Possess the record-type
that is the domain-tYPe of the Pointer-type
Possesed bY P and shall have nested variants that
correspond to the case-constants c11 ••• 1cn. The

40

. PASCAL NEWS #20 VtLtr'ltltK., 1.~:H:SU

Second Draft Proposal

case-constants shall b• listed in order of
increasin~ nesting of the variant-Parts. Any
variant not specified shall be at a deeper level
of nesting than that specified by en. It shall be
an error if a variant of a variant~Part within the
new variable becomes active and a different
variant of the variant-part is one of the
specified variants.

disPose(9) shall ~emove the identifYins-value denoted by the
expression q frrim the Pointer-type of q. It shall
be an error if the identifYins-value had been
created using the form newCP1ci1 ••• tcn).

dispose(qtk1t •••• km>sha11 remove the identifyins-value denoted by the
exPre~sion q from the Pointer-tYPe of q. The
case-constants klt ••• tkm shall be listed in order
of increasins nesting of the v~riant-Parts. It
shall be an error if the variable had been created
usins the form newCP1cl1 •••• cn) and mis less than
n. It shall be an error if the variants in the
variable identified by qA are different from those
specified by the case-constants klr ••• ,km.

NOTE. The removal of an identifYins-J·alue from the pointe~-tYPe to
which it belonss renders the identified variable inaccessible (see
6.5.4) and makes ~ndefined all variables and functions that have
that value attributed Csee 6.8.2.2).

It shall be an error if q has a nil-value or is undefined.

It shall be an error if a variable created usins the second form of
new is accessed by the identified-variable of the variable-access of a
facto~t of an assi~nment-statementt or of an actual-Parameter.

6.6.5.4 Transfer Procedures. Let a be a variable Possessing a type
that can be denot~d by
~rraY CslJ of Tt
let i be a v•riable Possessins a tYPe that can be denoted bY
Packed arraY Cs2J of it
and u and v be the smallest and larsest values of the tYPe s2t then
the statement PackCarirz) shall be equivalent to

bes in
k == i'
for J == u to v do

bes in
z[j J := a(kJ:
if J <> v then k := succ<k>
end

end

41

PASCAL NEWS #20 DECEMBER) 1980

Second Draft Proposal

and the statement unPack(z1a1i) shall be e~uivalent to

begin
k : = i;
for J · := u to v do

besi n ·

end

a(kJ := z(j J;
if J <> v then k := succ(k)
end

where J and k denote auxiliary variables which the Pro9r~m does not
otherwise contain. The tYPe Possessed by J shall be s2t the tYPe
Possessed by k shall be Slt and i shall be an expression whose value
•ha11 be assianment-compatible with sl.

6.6.6 Requir~d functions
6.6.6.1 Gener~l. The required functions shall be arithmetic functions,
transfer functions, ordi~al functions and Boolean functions.

6.6.6.2 Arithmetic functions. For the followins arithmetic functions,
the expression x shall be either of real-tYPe or int~eer-tYPe. For the
functions abs and s~rt the type of the result shall be the same as the
type of the Parametert x. For the remainins arithmetic functions• the
result shall alwaYs be of real-tYPe.

abs(1<)
sqr-(x)

sin<x>
cosC"x>
expCx>

1 n<>d

arctan <><>

shall compute the absolute value of x.
sha11 compute the square of x. It shall be an error if
such a value does not exist.
shall compute the sine of Xt where x is in radians.
shall compute the cosine of X• where x is in radians.
shall comPute the value of the base of natural losarithms
raised ta the Power x.
shall compute the natur~l losarithm of Xt if x is sreater
t~an zero. It shall be an error if xis not greater than
Ze!"O,
ahall c~mPute the non-nesative square root of x1 if x is
not negative. It shall be an error if xis ne9ative.
shall comPute t·he Principal valuet in ra,Jianst of the
arct•n9ent of x.

6.6.6.3 Transfer functions
trunc(x) From the ex~ression x that shall be of real-tYPet this

function shall return a result of integer-type. Th~ value
of trunc(x) shall be such that if x is positive or zero
then O(=x-trunc<x><l; otherwise -l<x-trunc{x)<=O. It shall
be an error if s~ch a value does not exist.
Examples:
trunc(3.5) Yields 3
trunc(-3.5> Yields -3

round(x) From the exPression x that shall be of real-tYPe1 this
function shall return a result of inte9er-tYPe. If xis
Positive or zerot round(x) shall be equivalent to

42

I

PASCAL NEWS #20 DECEMBERJ 1980

·second Draft Proposal

trunc(x+0.5)t otherwise round<x> shall be e9uivalent to
tr- u n c (x-0 • 5) •
It shall be an error if such a value does not exist.
E>;amFles:
round(3.5) Yields 4
raund<-3.5) Yields -4

6.6.6.4 Ordinal function~
ord(x) From the expression x that shall be of an ordinal-tYPet this

function shall return a result of inteser-tYPe that shall be
the ordinal number (see 6.4.2.2 and 6.4.2.3) of the value of
the expression x.

chrCx> From the expression x that shall be of inte9er-tYPe1 this
function. shall return a result of char-tYPe which shall be
the value whose ordinal number is equal to the value of the
~~Fression x if such a character value exists~ It shall be an
'rror if such a character value does not exist.

For any valuet chi of char-tYPer the followins shall be true:
chrCord<ch)) =ch

succ<x> From the expression x that shall be of a~ ordinal-tYPet this
function shall return a result that shall be of the same tYFe
as that of the exPression (see 6.7.1). The function shall
Yield a value whose ordinal number is one greater than that
of the expression xr if such a value exists. It shall be an
error if such a value does not exist.

Pred<x> From the exPression x that shall be of an ~rdindl-tYPet this
function shall return a result that shall be of the same tYPe
as that of the exPression (see 6.7.1). The function shall
Yield a value whoie ordinal number is one less than that of
the .expression Xt if such a value exists. It shall be an
error if such a value does not exist.

6.6.6.5
odd<><>

eo f (f>

eoln(f)

Boolean functions
From the expression x that shall be of integer-typer
function shall be e~uivalent to the expression
(abs<x> mod 2 = 1).

this

The Parameter f shall be a file-var·iable; if the
actual-Parameter-list is omittedt the function shall be
aPPlied to the required textfile input (see 6.10). When
eof(f) is ~ctivatedr it shall be an error if f is
undefined; othe~wise the function shall Yield the value
true if f.R is the empty sequence (see 6.4.3.5)1 otherwise
false. ·

The Parameter f shall be a textfile; if the
a c tu a 1 - Par. a·m e t er- -1 i s t i s om i t t e d , t h e f u n a: t i o n s ha 1 l be
aPPlied to the required textfile inPut { see 6.10). When
eoln(f) is activated, it shall be an error if f is
undefined or if eof(.f) is true; otherwise the function
shall Yield·the value true if f .R.first is an end-of-line

43

PASCAL NEWS #20 DECH1BERJ 1980

Second Draft Proposal

component (see 6.4.3.5)t otherwise false.

PASCAL NEWS #20 DECHmERJ 1980

6.7 ExPr·uaions
6.7.1 Geniral. An exFression shall denote a value unless a variable
denoted by a variable-access contained bY the expression is undefined
at the time of its uset in which case that use shall be an error. The
use of a variable-access as a factor shall denote the value, if anYt
attributed to the variable accessed therebY. Operator Precedences
shall be accordins to four classes of operators as follows. The
operator not shall have the hishest Precedence, followed bY the
multiPlYins-oPeratorst then the adding-operators and sisns, and
fin~llYt with the lowest Precedencet the relational-oPerators.
Sequences of two or more operators of the same Precedence ·shall be
left associative.

unsisned-constant = unsigned-number l character-string
constant-identifier l 11 ni 1 11 •

factor > variable-access l unsisned-constant I
function-desisnator : set-constructor
11 (11 expression 11) 11 I 11 not 11 factor .

NOTE. There is also a syntax rule for factor in 6.6.3.7

set-constructor' = 11 (11 [member-desisnator
{ 11 , 11 member-desisnator } J 11 J 11 •

member-desisnatar =expression [11 •• 11 e~<Pression J.
term= factor { multiPlYins-oPerator factor } .
simPle-exPression = C sign J term { addins-oPerator term > •
exPression = _

simple-exPression C relational-oPerator simPle-exPression J •

AnY factor whose tYPe is St where Sis a subranse of Tt shall be
treated as of type T. Similarly, anY factor whose tYPe is set of S
shall be treated as of the unpacked canonical set-of-T tYPet and anY
factor whose tYPe is Packed set of. S shal 1 be treated as of the
canonical Packed set-of-T type.·

NOTE. Conse~uentlY an expression that consists of a sinsle factor
of tYPe S shal 1 itself be of type Tt and an e:{pression that
consists of a iinsle factor of tYPe set of S shall itself be of
tYP~ set of r, and an expression that 'onsists of a single factor
of tYPe packed set of S shall itself be of tYPe Packed set of T • ..

A set~cQnstructor shall denote a value of a set-type, The
set-constructor CJ shall denote that value in every set-type that
contain• no me~bers. A set-constructor containin9 one or more
member-desisnators shal 1 denote either a · v.alue of the unpacked
canonical set-of-T tYPe or, if the context so re~uires, the packed
canonic~l set-of-T tYPet where T is the tYPe of everY expression of
each member-designator of the set-constructor. The tYPe T shall be an
or di n a 1 ... t Y Pe • The v a 1 u e de o.o t e d b Y the s e t-c on s tr u c tor· s ha l l cont a i n
zero OP more members each of which shall be denoted bY at l~ast one
member-desisnator of the set-constructo~.

The member-desisnator X• where x is an exPression1 shall denote the
member that shall have the v•lue x. The member-desisnator x •• Yt where
x and Y are exPressionst shall denote zero or more members that shall
h~ve the values of the base-tYPe in the closed interval from the value
of x to the value of Y.

NOTE. The member-desisnator x •• Y denotes no member·s if the value

45

-PASCAL NEWS #20 DECEMBER_, 1980

Second Draft Proposal

of x is 9reater than the value of Y.

Examples are as follows:

(a) Factors:

(b) Ter-msr

Cc) SimPle exPressions:

(d) ExPression1n

6.7.2 0Perators
6.7.2.1 Genertal

x
15
Cx+y+z)
sin(x+y)
[redtCt9reenJ
r 1 ts, 1 o .• 1 9 , 23 J
not P

X*Y
i/(1-i)
<x <= y) and (y < z)

P or ct
><+Y
-x
huel + hue2
i*J + 1

)(= 1.5
p <= q
P = q and r
(i < J) = (j < k)
c in hue1

multiPlYins-oPerator :11 "* 11 : 11 / 11 I ·11 div 11

addin~-oP.erator • 11 + 11 I 11 - 11 1 11 or 11 •

rel•tiona1-oPerator •

"mod" 11 and 11 •

u =" 1 .. < >.. 1 11 < 11 1 11 > 11 1 11<=11 1 " >=.. 1 11 in .. •

A factor, or a term• or a simPle-exPression shall be designated an
aPerand. The order of ev•luation of the operands of a dyadic operator
shall be imPlementation-de~endent.

NOTE, This means, for examPlet that the operands maY be evaluated
in text~al ordert or in reverse order, or in Parallel or they may
not both be evaluated.

46

.UL.\..LI U.JLl\J -1.JUV

· Second Draft ProPosal

6.7.2.2 Arithmetic operators. The types of operands and results for
dyadic and monadic operations shall be as shown in tables 2 and 3
resPectivelY.

Table 2. DYadic arithmetic operations

--------------------------------~-----------------------------------
operator- operation tYPe of oper-a.nds tYPe of result

--
+ addition inteser-tYPe)inte9er-type

or real-tYPe)if both
subtraction inteser-tYPe)operands are

or real-tYPe)of inte9er--tYPe

* multiplication inte9er-tYPe >otherwise
Or' real-tYPe) rea 1-fype

I division inteser-tYPe r·ea 1-type
or r-eal-tYPe

div division with integer-type inte9er-tYPe
tr·uncat ion

mod modulo inte9er-tYPe inte3er-tYPe

Table 3. Monadic arithmetic operations

operator operation tYPe of operand tYPe of result
-----------~--

+ identity inteser-type
real-tYPe
inteser-b'FDI
real-type

i ntee er·-tYPe
real-tYPe
integer-type
real-tYPe

---------------~---------------------------------------·-------------

NOTE. The symbols +t - and * are also used as set operators <see
6.7,2.4>.

A term of the form ~/y shall be an error if Y is zerot otherwise the
value of KIY shall be the result of dividing x by Y.

A term of the form i div J shall be an error if J is zerot otherwise
the value of i div J shall be such that
abs<i> - abs(J) < abs((i div J) * J) <= abs(i)
where the value shall be zero if abs<i><abs(J), otherwise the sign of
the value shall be Positive if i and J have the same sisn and negative
if i and J have diffe~ent sisns.

A term pf the form i mod J shall be an error if J is zero or ne9ative1
otherwise the value of i mod J shall be that value of (i-(k*J)) for
integral k such that 0 <= i mod j < J.

47

PASCAL NEWS #20 DECEMBER.. 1980

Second Draft Proposal

NOTE. Only for i >= 0 does the relation
<i div J) * J + i mod J = i
ho·Td.

The required constant-identifier maxint shall denote. an
imPlementation-defined value of intege~-tYPe. This value shafl satisfy
the followin9 conditions:
(a) All intesral values in the closed interval from -maxint to +maxint

shall be values of the inte,er-tYPe.
Cb> AnY monadic operation Performed o~ an integer value in this

interval shall be correctly Performed according to the
~athematical rules for integer arithmetic.

(c) Any dyadic inteser operation on two integer values in
interval shall be correctly Performed according
mathematical rules for integer arithmetic, Provided
result is also in this interval.

this same
to the
that the

Cd) AnY relational oPeration on two integer values in this same
interval shall be correc±TY Performed accordins to the
mathematical rules for integer arithmetic.

The results of the r~al arith~etic operators and functions shall be
a.PPro·ximations to the corresPondin9 mathematical r-esu.lts. The accuracy
of this aFProKimation ~hall be implementation-defined.

It shall be an error if an inte9er operation or function is not
Performed accordin~ to the mathematical rules· for inteser arithmetic.

6.7.2.3 Boolean operators. Operands and results for Boolean operations
shall be of Boolean-tYPe. Boolean operators ort and and not shall
·d-enote resPectivelY the 109ical operatio-ns cf disJunction1 conJ,unction
a;nd negation.

Soolean-exPression ~ &xPression •

A Boolean-expression shall be an expression.that denotes a value uf
Boplean-type.

6~7.2.4 Set OPerators. The types of operands and results for set
operations shall be as shown in table 4~

Tabl~ 4. Set operations

operator operation tYPe of operands type of resuit
-~-----~--------~--

sect union))

>a)

set difference >canonical >same as the
) s·et-o f-T tYPe) aper-ands.

* set intersection))

48

PASCAL NEWS #2rJ ___ - Utltl"U:StK~ .l:J~U

Second Draft Proposal

6.7.2.5 Relational operators. The types of operands and results for
relational operations shall be as shown in table 5.

Table 5. Relational operations

-----.<---
oPel"ator type of operands type of result

-------------------------------------~-------------------------

= < >

< >
<= >=

in

anY simPlet
Pointer o~ string-type
of' canonical set-of-T tYPe

any simPle or strin9-tYPe

anY simPle Of" string-type
or canonical set-af-T tYPe

Boolean-tYPe

Boolean-type

Boolean-tYPe

left oPerand:anY ordinal tYPe T Boolean-tYPe
risht oPerand:
a canon i ca 1 i e t-o f -T t Y Pe (s e e -6 • 7 • 1)

--------~-~~----------~----~-----------------------------------

The operands of =t <>t <1), >=t and<== shall be either of compatible
tYPest the same canonical set-of-T tYPet or one operand shall be of
real-tYPt and the~ other shall be of inteser-tYPe.

The operators =1 <>, <t >shall stand for 11 equal to 11 t "not equal to 11 1

11 less than" and 11 sreater than" respectively.

Except when aPPlied to sets, the operators<= and >=shall stand for
"less than or equal to" and "sreater than or. equal to 11 resPectivelY.

Where u and v denote simPle-exPressions of a set-tYPet u <= v shall
denote the inclusion of u in v and u >= v_ sh~ll denote the inclusion
of v in u.

NOTE. Since the Boolean-type is an ordinal-tYPe with false less
than true, then if p and q are operands of Boolean-tYPet p = q
denotes their equivalence and P <= q means P imP1ies q.

When the relational operators = , <> t < , > , <= , >= are used to
compare operands of compatible strin9~tYPes <see 6.4.3.2), theY denote
lexicographic relations defined below. LexicosraPhic ordering imPoses
a total ordering on values of a string-type. If sl and s2 are two
values of compatible strin9-tYPes thent

sl = s2 iff for all i in [1 •• nJ: sl[iJ = s2[i]

s1 < s2 iff there exist~ a P in [1 •• nJ:
(for all i in [1 •• P-1]: s1[iJ = s2[iJ) and sl[pJ < s2CPJ

49

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

The operator in shall Yield the value true if the value of· the operand
of ordinal-type is a member of the ~alue of th~ set-tYPet otherwise it
shall Yield the value false.

6.7.3 Function designators. A f~nction-desi9nator shall Yield the
value of the function denoted bY the function-identifier of the
function-desisnator. The function-designator shall SPecifY the
activation of the function. If the function has anY formal Parameters
the function-desisnator shall contain a list of actual-parameters that
shall be bound to their corresPondin9 formal Parameters defined in the
function-declaration. The correspondence shall be established bY the
Positions Qf the Parameters in the lists of actual and.formal
Parameters respectively. The number of actual-Paramet~rs shall be
equal to the· num~er_ of formal Parameters. The· tYPes of the
actual-parameters shall correspond to the types of the formal
Parameters as specified bY 6.6.3. The or~er of evaluationt accessing
and bindin9 of the actual-Parameters shall be
imPlementation-dePendent.

function-designator = function-id~ntifier
· [actual-Parameter-list J •

actual-Parameter-li1t =
11 (11 actual-parameter { 11 , 11 actual-Parameter } ..) 11 •

•ctual-Parameter = expression I variable-access
Procedure-identifier i
function-identifier •

Examples: Sum(a,63)
GCDC147tk)
sfn(x+y)
eat.Cf>
ord < f"' >

I

(: .• i:: Statements
6.8.1 Ganeral. State~ents shall denote alsorithmic actionst and shall
be t.H(ecutcablt•. ThE:'Y may :bEl Prefixed by a label.

A labe'I 01:curr•ins in a statement S sli.al 1 be designated as Prefbdns S1
and sha11 be allowed to occur in a soto-statement G (see 6.8.2.4) if
and on1Y if anY of the fo11owin9 three conditions is satisfied.

(a) S contains G.
(b) S is a statement of a statement-sequence containins G.
(c) S is a statement of the statement-sequence of the

comPound-statement of the statement-Part of a block containing G.

statement= [label 11 : 11 J (simPle-statement I
structured-statement) •

NOTE. A soto-statement within a block maY refer to a label in an
enclosins block1 Prdvided that the label . Prefixes a
simP1e-statement or structured-statement at the outermost level of
nestins of the block.

6.8.2 SimPle-statements
6.8.2.1 General. A simP1e-statement shall ·be a statement not
containin9 a stab~ment ... An empty-statement shal 1 contain no symbol and
shall denote no action.

sirnP1e-statement =
emPtY-statement l assisnment-statement
Procedure-statement I Boto-statement .

empty-statement = .
6.8.2.2 Assignment-stat~ments. An assignment-statement shall
attr-ibute the value of the e:·(Pr·ession of the assisnment-staternent
either to the variable denoted by the variable-access of the
assisnment-statement1 or to the function-identifier of the
assignment-statement; the value shall be assis'lnment-comPatible with
the tYPe Possessed by the variable or function-identifier. Th~
function-block associated (6.6.2) with the function-identifier of an
assignment-statement shall contain the assisnment-statement.

assisnment-statement =
C variable-access function--identifier) 11 := 11 exPression •

The decision as to the order of accessing the variable and evaluating
the expression sha11 be imP1ementation-dePendent; the access shall
establish a reference to the variable durins the remaining execution
of the assisnment-statement.

The state of a variable or function when the variable or function does
not have attributed to it a value specified by its type shall be
designated undefined. If a variable Possesses a structured-type, the
state of the variabl~ when everY component of the variable is
totallY-undefined shall be desisnated totally-undefined.
Totally-undefined shall be sYnonYmous with undefined if the variable
does not Possess a structured-type.

}< ; = y+z
P == Cl<=i> and Ci<100)

I

PASCAL NEWS #20 DECH1BER, 1980

Second Draft Proposal

i : = sq r (k) - (i *·j)
hue1 := Cblue1succ(c)J
P1A.mother := true

6.8.2.3 Procedure-statements. A Procedure-statement shall sPe2ifY the
activation of the block of the Procedure-block associated with the
Procedure-identifier of the Procedure-statement. If the Procedure has
anY formal Parameters the Procedure-statement shall contain an
actual-Parameter-list• which is list of actual-Parameters that shall
be bound to their corresponding formal Parameters defined in the
Procedure-declaration. The correspondence shall be established by the
positions of the Parameters in the lists of actual and formal
Parameters resPectivelY. The number of actual-parameters shall be
equal to the number of formal Parameters. The tYPes of the
actual-parameters shall corresPond to the tYPes of the formal
Parameters as specified by 6.6.3. The order of evaluation, accessin9
and binding of the actual-Parameters shall be
imPlementation-dePendent.

Procedure-statement = Procedure-identifier

E:<amPl es:

[actual-pa~ameter-list J •

Printheadin9
transpose<atntm)
bisect(fct.-1.0t+l.Otxl
AddVectors<mC1J,(m[2J)t(m(kJ))

6.8.2.4 Goto-statements. A goto-statement shall indicate that further
Processin9 is to continue at the Program-Point denoted by the label in
the soto-statement and shall cause the termination of all ~ctivations
e:<cePt
(a) the activation containing the Program-Point and
Cb> anY activation containin9 the activation-point of an activation

required bY these exceptions not to be terminated.

goto-statement = 11 9oto" label •

6~8.3 Structured-statements
6.8.3.1 General.

structured-statement =
compound-statement l conditional-statementl
rePetitive-statement l with-statement •

statement-sequence = statament { 11 ; 11 statement) •

The execution of a statement-sequence specifies the execution of the
statements of the statement-sequence in textual order, except as
modified by executioo of a goto-statement.

6.8.3.2 ComPound7statements. A comPound-statement sh~ll specify
execution of the statement-se9uehce of the compound-statement.

compound-statement = 11 be9in 11 statement-sequence "end" •

52

PASCAL N!;WS #20 DECH1BER.. 1980:- -

Second Draft Proposal

ExamPle: begin z := x ; x := y; Y := z end

6.8.3.3 C~nditianal-statements.

conditional-statement = if-statement case-statement •

6.8.3.4 If-statements

if-statement = 11 if" Boolean-expression 11 then 11 statement
[else-Part J •

else-Part = 11 else 11 statement •

If the Boolean-expression of the if-statement Yields the value truet
the statement of the if-statement shall be executed. If the
Boolean-expression Yi~lds the value false• the statement of the
if-statement shall not -be executed and the statement of the else-part
Cif any) shall be executed.

An if-statement without an else-part shall not be followed bY the
token else.

NOTE. An else-Part is thus Paired with the nearest Preceding
otherwise unpaired then.

ExamPlesr

_if x < 1.5 then z == x+y else z := 1.5

if Pl<> nil then -Pl :=Pl". father

if j = 0 then
if i = 0 then writeln('indefinite')
else writelnC'infinite'>

. else writ~ln(i) J >

6.8.3.5 Case~$tat~ments. The values denoted by the case-constants of
the c~se-constant-lists of the case-list-elements of a case-statement
shall be distinct and of the same ordinal-type as the expression of
the case-index of the case-statement. On execution of the
case-statement the case-index shall be evaluated. That value shall
then sPecifY execution of the statement of the case-list-element
closest-containing the case-constant denoting that value. One of the
case-constants shall be equal to th~ value of the case-index upon
entry to the case-statement.

lt sh•ll be an err~~ if none of the case-constants is equal to the
v~l~e-of the case-index uPon _entry to the case-statement.

NOTEP Case-constants are not the same as statement labels.

53

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

case-stater.nent =
11 case 11 case-index "of"
case-list-element { 11 ; 11 case-list-element} [";"] 11 end 11 •

case-list-element= case-constant-list ":" statement •
case-indeK = expression .

Example:

case operator of
Plus: x := x+y;
minus: x == x-y;
times: x == X*Y

end

6.8.3.6. Repetitive-statements. Repetitive-statements shall sPecifY
that certain statements are to be executed repeatedly.

repetitive-statement = repeat-statement J

while-statement l for-statement •

6.8.3.7 RePeat-statements

repeat-statement :: 11 rePeat" statement-sequence
11 until 11 Boolean-expression •

The statement-sequence of the repeat-statement shall be repeatedly
executed (except as modified bY the execution of a goto-statement)
until the Baolean-exPres~ion of the repeat-statement yields the value
true an comPletion of the statement-sequence. The statement-sequence
shall be executed at least oncet because the Boolean-exPression is
evaluated after execution of the statement-sequence.

ExamPle:

repeat k := i mod J;
i :::: j;

J : = k
unt i 1 j = 0

6.8.3.8 While-statements

while-statement= "while" Boolean-expression 11 do" statement •

The whil~-statement

while t> do body

shall be equivalent to

54

PASCAL NEWS #20 --- -

bes in
if b then

rePeat
body
r;nti 1 not (b)

end

E:<amP1 es:

while i >O do

Second Draft Proposal

besin if odd(i) then z := z*x~
i := i div 2~
H := scr·p(>{.l

while not eof(f) do
besin Process(fA); getCfJ
end

6.8.3.9 For-statements. The for-statement shall specify that the
statement of the for-statement is to be repeatedly executed while a
Progression of values is attr·ibuted to a variable that is desisnated
the control-variable of the for-statement.

for-statement = 11.forn control-variable 0 :=" initial-value
C 11 to 11 t ''1downto 11 } final-val' ue 11'do'c statement •

control-variable = entire-variable •
initial-value = exPression •
final-value = exPression •

The control-variable shall be an entire-variable whose identifier is
declared in the variable-declaration-Part of the block
closest-containins the for-statement. The control-variable shall
Possess an ordinal-tYPet and the initial-value and final-value s~all

I.
: .. _· be of a tYPe comPatible with this tYPe~ The statement af a

for-statement shall rFot contain an assigning-reference (see 6.5.fJ to
the corrtr·o l-var iab le of the f or-s tate·ment. The' val 11e· of the
final-value shall be assisnment-comPatible with the control-variable
when the initial-value is assigned to the control-variable. After a
far-statement is executed Cother than beins left by a sato-statement
lea.dins out of it> the conh·ol-v-ar-iable, shall be, undefined .. A?ar·t fr·om
the restrictions imposed by these requirements, the for-statement

for v := e1 to e2.da body

shall be equivalent ta

PASCAL NEWS #20 DECH1BER~ 1980

Second Draft Proposal

b ,,, i ri

temflll1 '" 11 t
temP2 : :s e2;
if ternP1 <= temP2 then

begin
v := temP1;
body;
while v <> temP2 do

be9in
v := succ(v);
body
end

end
end

and the for-statement

for v := el downto e2 do body

shall be e~uivalent to

begin
temP1 := elJ
temP2 := e2;
if temPl >= temP2 then

begin
v := tempt;
bodY•
while v <> temF2 do

begin
v := Pred(v) s
body
end

•nd
end

where temPl and temP2 denote auxiliary variables that tl1e Program does
not otherwise contain, and that Possess the type Possess~d by the
v~riable v if that type is not a subrange-type; othsrwise the host
tYPt of the tYPe Possessed by the variable v.

Examples:

for i := 2 to 63 do
if ~(iJ > max then max := a[iJ

56

PASCAL NEWS #ZU ____ - lJt.\..D'lDt.I\, .l.='-OU

Second Draft Proposal

for i := 1 to 10 do
for j := 1 to 10 do

begin
x := 0;
for k := 1 to 10 do

x := x + ml(i1kl*m2[k1JJ;
mCitJJ := x
end

for i:= 1 to 10 do
for j := 1 to i-1 do

m[iJCjJ := 0.0

for c := blue dawnto red do q(c)

6.8.3.10 With-statements

with-statement =
"with" recor-d-variable-list 11 do 11

statement •
record-variable-list=

record-variable { 11 1 11 record-variable } .

A with-statement shall specify the execution of the statement of the
with-statement. The occurrence of a record-variable as the only
record-variable in the record-variable-list of a with-statement shall
constitute a definins-Point of each of the field-identifiers
associated with components of the record-tYPe Possessed by the
record-variable as a field-desisriator-identifier for the resion which
is the statement of the with-statement; each aPPlied occurrence of a
field-desisnator-identifier shall denote that component of the
record-variable which is associated with the field-identifier by the
record-tYPe. The record-var i ab 1 e s ha 11 be a·cce ssed be f or-e the
statement of the with-statement is executed, and that access shall
est~blish a reference to the variable durins the enti~e execution of
the statement of the with-statement.

The statement

with Vl1v21 ••• ,vn do i

shall be eciuivalent to

with v1 do
with v2 do ...

with vn do s

57

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

with date do
if month = 12 then

besin month 1= 1; Year := Year+ 1
end

else month := month+1

shall be equivalent to

if date.month = l2 then
besin date.month := 1; date.Year :=date.Year+!
end

else date.month := date.month+!

PASCAL NEWS #ZU- ----

6.9 Input and output
6.9.1 Ganeral. Text files <see 6.4.3.5) that are identified in the
Froeram-Par·a.meters (see 6.10) to a Pascal pr·o9r·am shal 1 Provide
lesible inPut an~ output.

6.9.2 The procedure read. The sYntax of the Parameter list of read
when APPlied to s. textfile ihall ber

read-parameter-list=
"("[file-variable 11 t"J variable-aci:ess
{ 11 t 11 var-ia.ble-access} 11) 11 •

If the file-variable is omittedt the Procedure shall be aPPlied to the
required textfil~ inPut.

The followins requirements shall aPPlY for the ~rocedure read <where f
denotes a textfile and v1 ••• vn denote variable-accesses possessing the
char-tYPe (or a subranse of char-tYPe)t the integer-type (or a
subrange of inte9er-type)t or the real-type):

(a) readCftv11 ••• tvn> shall be e9uivalent to

besin read(f,v1); r·eadCftvn> ·end

(b) If v is a variable~access Possessins the char-type (or subrange
thereof>• read(f,v) shall be equivalent to

besin v := fA; set(f) end

NOTE. The variable-access is not a variable Parameter.
Consequently it maY be a component of a packed structure and the
value of the buffer-variable need only be assi~nment-compatible
with it.

(c) If v is a v~riable-access Possessing the inteser-tYPe (or subrange
thereof), read(ftv) shall cause the reading from f of a se9uence
of characters, Preceding spaces and end-of-lines shall be skiPPed.
It shall be an error if the rest of the sequence does not form a
signed-inteser accordins to the sYntax of 6.1.5. The value of the
si9h~d-inteser thus read shall be assignment-compatible with the
tYPe Possessed bY Vt and shall be attribut~d to v. Readins shall
cease as soontas the buffer-variable fA does not have attnibuted
to it a character contained by the longest sequence available that
forms a si9ned-inte9er.

(d) If v is a variable-access possessing the real-tYPet read(f,v)
shall cause the reading from f of a sequence of characters.
Precedins sPaces and end-of-lines shall be skipped. It shall be an
error if the rest of ths se~uence does not form a sisned-number
according to the sYntax of 6.1.5. The value denoted by the number
thus read shall be attributed to the variable v. Readins shall
ceas~ . as soon as the buffer-variable fA does not have attributed
to it a character contained by the lon9est se~uence available that
fo~ms a sisned-number.

Ce> When read is aPPlied to ft it shall be an error if the
buffer-variable fA is undefined or the Pre-assertions for 9et do
not h~ld <see 6.4.3.5>. ·

59

PASCAL NEWS #20 DECEMBER.. 1980

Second Draft Proposal

b.9.3 The Proi:edure readln. The sY-ntaJ< of the Parameter list of r·eadln
shall be:

readln-parameter-list =
[11 (11 (file-var-iable variable-access)
{ 11 ,u var·iable-access} 11) 11] •

Readln shall only be aPPlied to textfiles. If the file-variable or the
entire readln-Parameter-list is omitted, the Procedure shall be
aPPlied to the required textfile inPut.

readln(f,v1, •• ~,vn> shall be e9uivalent to

begin read(f,v1t ••• ,vn); readln(f) end

readln(f) shall be equivalent to

begin while not eoln(f) do set(f); ~et(f) end

NOTE. The effect of readln is to Place the current file
Position Just Past the end of the current line in the
textfile. Unless this is the end-of-file Position, the current
file Position is therefore at the start 6f the next line.

6.9.4 The procedure write. The sYntaK of the Parameter list of write
when aPPlied to a textfile shall be:

write-Parameter-list=
11 (11 [file-variable "t 11 J Wl'ite-Par-ameter
{ 11 , 11 Wl'ite-parameter-} 11) 11 ,

write-parameter =
expression [11 : 11 expression [11 : 11 exPres~i-on J J •

If the file-variable is omitted, the Procedure shall be aPplied to the
required textfile outPut. When write is aPPlied to a textfile ft it
shal·l be an error if« f is undefined or f.M = IniPection (see 6.4.3.5).
An aPPlication .of write to a textfile f shall cause the
buffer-variable fA to become undefined.

6.9.4.1 Multiple Parameters. Write(f1P1t ••• ,pn) ~hall be equivalent to

begin write(f,p1); ••• ; write(f,pn) end

where f ~enotes a textfilet ~nd P1t ••• ,Pn de~ote write-Parameter$.

6.9.4.2 Write-Parameters. The write-Parameters P shall have the
following forms:

e:Tota1Width:FracDi9its e:TotalWidth e

where e is an expression whose va"l1Je is to be written on the fi 1 e f
and may be of inte9er-tYPet real-type, char-tYPet Boolean-tYPe or~
strin9-tYP~, and where TotalWidth and FracDi9its are axPressions of

60

PASCAL NEWS #20

Second DrAft Proposal

inteser-tYPe whose values are the field-width parameters. The values
of TotalWidth and FracDi9its shall be greater than or e9ual to one; it
shall be an error if either value is less than one.

Write(f,e) shall be equivalent to the form write(f,e:TotalWidth),
usins a default value for TotalWidth that depends on the tYPe of e;
for inte9er-tYPet real-type and Boolean-type the default values shall
be implementation-defined.

Write(f,e:Tota1Width:FracDi9its> shall be aPPlicable onlY if e is of
real-type (see 6.9.4.5.2).

6.9.4.3 Char-tYP~.
TotalWidth shall
shal 1 be:

If e is of char-tYPet the default value of
be one. The representation w~itten an the file f

<TotalWidth - 1> spaces,
the character value of e.

6.9.4.4 Integer-type. If e is of integer-type, the decimal
representation of e shall be written on the file f. Assume a function

function IntegerSize (x : integer) : integer ;
{ returns the number of digits, z, such that
10 to the Power Cz-1) <= absCx> < 10 to the Power z)

and let IntDisits be the Positive integer defined by:

if e = 0
then IntDisits := 1
else IntDisits 1~ InteserSize(e);

then the representation shall consist of:

Cl) if TotalWidth >= IntDi9its + 1 :
<TDtalWidth - IntDisits - 1) ~pac,st
the sisn cha.rac;.ter: '-' if e < 01 other-wise a spacet
Int0i9its disit-characters of the decimal
representation of abs(e).

(2) If TotalWidth < IntDisits + 1:
if e < 0 the sisn character '-',
IntDisits disit-characters of the decimal
representation of abs<~>.

6.9.4.5 Real-TYPe. If e is of real-tYPet a decimal representation of
the number e1 rounded to the specified number of significant fisures
or decimal Places, shall be written on the file f.

6.9.4.5.1 The floatins~Point rePresentation.
Write(f,e:TotalWidth> shall cause a floatins-point representation of e
to be written. Assume functions

61

PASCAL NEWS #20 DECEMBER; ·1980 ··

Second Draft Proposal

function TenPower (Int : inteser) : real
{ Returns 10.0 raisEd to fhe ~ower Int }

f~nction RealSize (Y : real) ·: inte9er
{Returns the valuet z, such that
TenPower(z-1) <= abs(y) < TenPower(z) }

function Truncate (Y : real ; DecPlaces
: ~eal ;
{ Returns the value of Y after truncation
to DecPlaces decimal Places >

integer)

let ExPDisits be an imPlement~tion-defined value representing the
number of disit-characters written in an exponent;

1~t ActWidth be the Positive inte9er defined by:

if TotalWidth >= ExPDisits + 6
then ActWidth := Tota1Width
els~ ActWidth := ExPDisits + 6;

and let the non-nesative number eWritten and the inte9er ExPValue be
defined by:

if e = 0.0
then besin eWritten := O.O; ExPValue := 0 end
else
bes in
eWritten := abs(e);
ExPValue :: RealSize C eWritten > - 1;
eWritten =~ eWritten I TenPower < ExPValue)
DecPlaces := ActWidth-EXP0i9its-5;
eWritten := eWritten +

0.5*TenPciwer< ~DecPlaces);
if eWritten >~ 10.0·

then
bes in
eWritten == eWritten I 10.0;.
gxPValye := ExPValue + 1
end;

eWritten := Truncate C eWritten1 DecPlaces >
end;

then th~ floating-point re~esentation of the value of e shall-~onsist
of:

the si~n character,
< '~' if (e < 0) and CeWritten > 0)~ otherwise a space >

the leading di~it-character of the decimal
representation of eWritten1

the character '.' ,
the next DecPlaces di9it-char~cters

of th~ decim~l rePresentation of eWritten,

62

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

an implementation-defined exponent character
<either 'e' or 'E');

the sisn of ExPValue
(1 - 1 if ExPValue < Ot otherwise '+')t

the ExPDisits digit-characters of the decimal
representation of ExPValue
<with leadins zeros if the ~alue re~uires them).

6.9.4.5.2 The fixed-point representation.
Write(fte:TotalWidth:FracDi9its) shall cause a
rePresentation of e to be written. Assume the function
described in clause 6.9.4.4t and the functions TenPower
described in clause 6.9.4.5.1;

let eWritten be the non-negative number defined by:

if e = 0.0
then eWritten := 0.0
else
begin
eWritten := abs(e);
eWritten := eWritten + 0.5

* TenPower (- FracDi9its);
eWritten := Tr~ncate C eWrittent FracDi9its)
end;

let IntDi9its be the Positive integer defined by:

if trunc (eWritten > = 0
then IntDi9its := 1
else IntDi9its:= IntegerSize (trunc<eWritten));

and let MinNumChars be the Positive integer defined by:

MinNumChars := IntDi9its + FracDi9its + 1;
if (e < O.OJ and CeWritten > 0)

then MinNumChars := MinNumChars + 1;{'-' required>

fi:-:ed-Point
Inte9er·Size

and Tr·uncate

then the fi"xed-Point representat{on of the value of e shall consist
of:

if TotalWidth >= MinNumCharst
<Tota1Width - MinNumChars) sPaces1

the cha!""acter '- 1 if <e < 0) and <eWritten > Q),
the first IntDi9its di9it-characters of the decimal rePresentation

of the value of eWrittent
the character '.',
the next FracDi9its digit-characters of the decimal representation

of the value of eWritten.

NOTE. At least MinNumChars ch~racters are written. If TotalWidth
is less than this valuet no initial spaces are written.

63

PASCAL NEWS #20 DECH1BERJ 1980

Second Draft Proposal

6.9.4.6 Boolean-tYPe. If e is of Boolean-tYPet a representation of the
word true or the word false (as appropriate to the value of e) shall
be written on the file f. This shall be e9uivalent to w~itin9 the
aPProPriate character-strings 'True' or 'False' <see 6.9.4.7)t where
the case of each letter is imPlementation-definedt with a field-width
Param~ter of TotalWidth.

6.9.4.7 Strins-tYPes. If the
components, the default value
representation shall consist of:

tYPe
of

of e is
Total Width

a strins-tYPe with n
shall be n. The

if TotalWidth > n1
<TotalWidth - n> spaces'
the first throush nth characters of the value of e in that order.

if 1 <= TotalWidth <= nt
the first throu9h TotalWidthth characters in that order.

6.9.5 The Procedure writeln. The syntax of the Parameter list of
writeln shall be:

writeln-parameter-list =
[11 (11 (file-var·iable l write-Parameter»
{"," wr·ite-Par·ameter} 11) 11 J.

Writeln shall onlY be aPPlied to textfiles. If the file~variable or
the writeln-parameter-1ist is omitted1 the Procedure shall be aPPlied.
to the re~uired textfile output.

writeln(ftPlt ••• ,pn) shall be equivalent to

begin write(f,Plt ••• ,pn); writeln(f) end

Writeln shall be defined by a pre-assertion and a Post-assertion usin9
the notation of 6.6.5.2.

Pre-asser·tion:
Post-assertion:

(fO is not vndefined) and (fO.M = Gene~ation).
Cf.L = CfO.L-S<e>>> and

(fA is totally-undefined) and
(f.R = 8()) and (f.M = Generation)t

.where SCe) is the sequence consistins solelY of
end-of-line component defined iri 6.4.3.5.

the

NOTE. Writeln(f) terminates the Partial linet if anY1 which is
being generated. BY the conventions of 6.6.5.2 it is an error if
the Pre-assertion is not true Prior to writ~ln(f).

6.9.6 The Procedure Pa9e. It shall be an error if the Pre-assertion
required for writeln(f) <see 6.9.5) does not hold Prior to the
activation of Pa9e(f). If the actual-Parameter-list is omitted the
Procedure shall be aPPlied to the required textfile outPut. Page(f)
shall cause an imPlementation-defined effect on the textfile ft such
that subs~quent text written to f will be on a new page if the

64

PASCAL NEWS #20 1Jtltf'1.1:5tK, l~8U

Second Draft Proposal

textfile is Printed on a suitable devicet shall Perform an imPlicit
writeln(f) if f.L is not emPtY and if f.L.last is not the end-of-line
component <see 6.4.3.5)t and shall cause the buffer-variable fA to
become total]y-undefined. The effect of insPectins a textfile to which
the pa9e procedure was aPPlied durins seneration shall be
implementation-dependent.

6.10 Prosr-ams.

Prosram = Frosram-headins ";" Prosram-block 11 • 11 •

Prosram-headins =
11 Pr-osr·am" identifier [11 (" Prosr·am-parameters ")" J •

Prosram-Parameters =identifier-list •
Pro9ram-block = block •

The identifier of the Prosram-headin9 shall be the Prosram name which
shall have no sisnificance within the Prosram. The identifiers
contained bY the Prosr·am-parameters shall be disti·nct and shall be
desisnated Pro9ram Parameters. Each Prosram Parameter shall be
declared in the variable-declaration-Part of the block of the
Prosram-block. The bindins of the variables denoted by the Pro9ram
Parameters to entities external to the program shall be
imPlementation-dePendent1 except if the vafiable Possesses a file-tYPe
in which case the bindins $hall be imPlementation-defined.

NOTE. The external representation of such external entities is not
defined by this standard, nor is anY Property of a Pascal Program
dependent on such representation.

The occurrence of the identifier inPut or the identifier output as a
Program Parameter shall constitute its defining-point for the region
that is the Pro9ram-block as a variable-identifier of the r-e9uired
tYPe denoted by text. Such occurrence of the identifier inPut shall
cause the Post-assertions of reset to holdt and of output, the
Po,t-assertions of· rewrite to holdt Prior to the first access to the
te~tfile or its associated buffer-variable. The effect of the
application of the required Procedure reset or the required Procedure
rewrite to either of these textfiles shall be implementation-defined.

ExamPles:

Program. copy(f,9);
var f 1s: file of ~eal;
begin reset(f); rewrite(9);

end.

while not eof(f) do
be9in 9A := fA; 9et(f); Put(9)
end

65

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

Program coPYtextCinPut1outPut);
<This Pro9ram copies the characters and line structure of the
textfile input to the textfile output.>

var ch: char-;
begin

while not eof do
begin

while not eoln do
besin read(ch); wr-ite<ch)
end;

r-eadln; writeln
end

end.

66

PASCAL NEWS #20 DECEMBERJ 1980

Second Draft Proposal

Prosram t6P6P3P3d2revised(output);
var slabalonet slobaltwo : inteser;

Procedure dummy;
be9in
write l n < ' fa i 14 ••• 6. 6. 3. 3-2' >
end { of dummY };

procedure p(procedure f(Procedure ff; Procedure 99);

Pr·ocedur·e 9);

var localtoP : inteser;
procedure r-;

begin
if slobalone = 1 then

bes in
if (slobaltwa <> 2) or <localtoP <> 1> then

writeln('faill .•• 6.6.3.3-2')
end

else if slobalone = 2 then
bes in
if Cslobaltwo <> 2) or <localtoP <> 2) then

write1nC'fai12 ••• 6.6.3.3-2')
else

writeln('Fass ••• 6.6.3.3-2')
end

else
writelnC'fail3 .•. 6.6.3.3-2');

slobalone := slobalone + 1
end { of r } ;

besin (of P l .
slobaltwo := slobaltwo + li
localtaP ~= slobaltwo;
if slabaltwa = 1 then

p {ft f").

else
f Cstr)

end { of pJ;

Procedure q{pracedure f; Procedures);
begin
f;
9
end { of q};

bes in
slobalon~ == t;
slobaltwo := o;
p(q,dummr>
end.

6.11 Hardware representation. The representation for lexical tokens
and separators given in 6.1 constitutes a reference rePr~sentation for

67

PASCAL NEWS #20 DECEMBER,, 1980

Second Draft Proposal

program interchange. A Processor shall accept all the reference
sYmbols and all the alternative symbols except for anY sYmbol whose
representation contains a character not available in the character set
of the Processor. The reference symbols and the alternative symbols
are 9iven in table 6.

Table 6. Alternative symbols

·Reference Symbol Alternative SYmbol
,,

@ or t
{ '*
} *)
[(.
] .)

--------------------~-------------------

NOTES. 1. The alternative comment delimiters are equivalent to the
reference comment delimiterst thus a comment may ba;:i.in with 11 { 11

and close with 11 *>"• or· be9in with 11 (*" and cl9se with 11 } 11 •

2. For anY other PUrPose than Prosram
representation is not requiredt and so does
existence of other alternative symbols.

inter·chan9e1
not e:<clude

this
the

f;t'\SCITT: NEWS #ZU ___ - lJt.l,t.l'IDt.l\J .l.:JOU

APPENDIX A~ COLLECTED SYNTAX

actual-Par•rneter = expression l variable-access l
Procedure-identifier l
function-identifier •

actual-Parameter-list=
11 (11 acti.Jal-Par·ameter { 11 t 11 actual-Parameter· } 11) 11 •

adding-operator = 11 + 11 : 11 - 11 "or" •

apostr·ophe-image = 111· 111 •

arr·aY-tYPe = 11 arr·ay 11 11 (11 indei<-tYPe { "t 0 inde:·:-i:YPe} 11] 11 11 of 11

COITIPOnent.,..tYPe •

array-variable =variable-access •

assi9nment-statement =
(variable-access l function-identifier 11 := 11 el<Pression .

base-tYPe = ordinal-type •

block = label-declaration-Part
constant-definition-Part

type-definition-Part
variable-declaration-Part

Procedure-and-function-declaration-Part
statement-part •

Boolean-expression = expression

bound-identifier = identifier •

buffer-variable = file-variable llAll

case-constant = constant •

case-constant-list= case-constant { 11 t 11 case-constant} •

case-index = expression •

case-list-element= case-constant-list

case-statement =
11 case 11 case-index 11 of 11

II • II . statement •

case-list-element {"; 11 case-list-element}(";"] 11 end 11 _,

character-strir19 = 11 ' 11 str-ing-el ement
{string-element} 11111 •

comPonent-tYPe = type-denoter •

comP~nent-variable = indexed-variable : field-designator

compound-statement = 11 begin 11 statement-se~uence "end"

conditiohal-staternent = if-statement I case-statement •

69

PASCAL NEWS #20 DECH\BER; 1980

Second Draft Proposal

conformant-array-parameter-sPecification =
"var" identi fier-1 ist 11 :" c.onfor·mant-·ar·ray-schema

conformant-array-schema =
(packed-conformant-arraY-schema
unPacked-conformant-arraY-scherna>

constant = [sisnJ (unsi9ned-number : constant-identifier)
character-strins .

constant-definition:::: identifier·"=" constant.

constant-definition-Par·t =["canst" constant-definition";"
{constant-definition ";"}] •

constant-identifier = identifier •

control-variable =entire-variable .

di 9 i t ;:: II() II : II 111 : II 2 II : II :3 It : II 4 II : II 5 fl : II 6 II : JI 7 11 : JI~=: 11 : 11 9 JI •

di9it-se9uence = digit {di9it} •

directive = letter {letter : di9it} •

domain-tYPe = type-identifier •

else-Part = "else" statement •

empty-statement =
entire-variable =variable-identifier

enumer?ted-tYPe = "(" identifier-list")"

exPr·ession =
sirnPle-exPression [relational-operator simPle-exPression J •

factor= variable-access : unsisned-constant I bound-identifier
function-designator I set-constructor
11 (" expression ")" "not" factor •

fiel d-desi9nator = r·ecord-variabl e 11 ." field-specifier·
field-designator-identifier •

field-identifier = identifier .

field-list=
[(fixed-Part [";" variant-Par·t J variant-Par·t) [";"] J.

field-specifier = field-identifier •

70

PASCAL NEWS #20 utctr1.1:1tK, 1~8u

Second Draft Proposal

file-type= 11 file 11 "of" comPonent-lYPe •

file-variable= variable-access .

final~value = exPr~ssiQn •

fixed-Part =record-section { '';" record-section } •

for-statement= "for 11 contr·ol-variable 11 := 11 initial-val1Je
("to" "down to ") final -v a 1 u e 11 do " statement

formal-Parameter-list=
11 (11 formal-Parameter-section
{"; 11 formal-Par·ameter,...section} 11) 11 •

formal-Parameter-section =
value-parameter-specification
variable-Parameter-specification :
Procedural-Parameter-specification
functional-parameter-specification
conformant-array-parameter-sPecification •

function-block = block .

function-declaration =
function-heading ";" directive :
function-identification ";" function-block
function-heading ";" function-block •

function-designator = function-identifier
[actual-Parameter-list J •

function-headin9 =
11 function 11 identifier [formal-Parameter-list]
11 : 11 result-tYPe

function-identification =
11 function 11 function-identifier •

function-identifier = identifier •

functional-Parameter-specification =
function-heading •

9oto-statement = "9oto 11 label •

identified-variable = Pointer·-variabl e ""'"

identifier = letter {letter I di9it} •

identifier-list= identifier· {· 11 , 11 identifier} •

71

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

if-statement= "if" Boolean-e:<Pression 11 then 11 statement
[else-part J

index-exPression = exPr~ssion .

index-type = ordinal-tYPe .

index-tYPe-sPecification =
identifier 11 •• 11 identifier
lt:tt Ordinal-type-identifier· •

indexed-variable =
arr· a y-v a r· i ab 1 e " [11 i n de :-:-e :·:Pr-es s ion
{ 11 t 11 index-e:·:Pression} 11] 11

initial-value = exPression •

label = disit-se9uence •

label-declar·ation-Par·t =["label" label {"t" label} "ill]

1 et t e f' = II a II i "b II : Ir c II) It d ti : II e fl : II f If : ti 9 II : ti h" l ti i II : ".j II : '! k ti l " 1 II : II m II :

ti n II : II 0 II : . ti p ti : II 9. II : II r· II : II s II : ti t II : II u ti : II v II : II w II : II){ II : II y II : II z 11 •

member-desi9na.tor =. e:<Pr·ession [11 •• 11 e:-:pr·es·sion J

multi Pl Yins-oPer·afor ::;: "* 11 II /II ti di y" "an•i"

new-ordinal-tYPe = enumerated-tYPe subrange-tYPe

new-Pointer·-type = 11 ''' 11 domain-tYPe

new-structured--type =("packed"] unPacked-str·uctur·ed-b1 Pe.

new-tYPe = new-ordinal-tYPe new-structured-tY~e
new-Pointer-type •

ordinal-tYPe = new-ordinal-tYPe
inteser-tYPe Boolean-tYPe char·-tYPe
ordinal-type-identifier •

ordinal-type-identifier = identifier •

packe~-conformant-arraY-schema =
11 Packed 11 11 a r- r· a Y" " [11 ind e :·:-t Y P e-s Pe c i f i cation 11 J 11

"of" type-identifier •

Pointer-type = new-Pointer-tYPe : Pointer-tYPe-identifier •

Pointer-type-identifier = type-identifier- •

Point~rJvariable =variable-access .

72

PASCAL NEWS #iO DECEMBERJ 1980

Second Draft Proposal

Procedural-Parameter-sPecification =
Procedure-heading •

Procedure-and-function-declaration~Part =
{(procedure-declaration l function-declaration)

procedure-block= block •

Procedure-declaration =
Procedure-heading "; 11 directive l
Pro1:ed1jre-identification 11 ; 11 Procedure-block
Procedur·e-headin9 11 ;" Proced1jre-bl ock • ·

Procedure-headin9 =

., . '' "'·
' J •

11 procedure 11 identifier· [formal-Parameter-list J

Procedure-identificatio~ =
"Procedure" Procedure-identifier •

Procedure-identifier= identifier •

Procedure-statement = Pro~edure-identifier
[actual-parameter-list J •

Program = Prosram-heading

Program-block = block •

Pr·o9ram-head i ng

It • II

' Prosram-block II II .

11 Frogram" identifier [11 (11 Program-Parameter·s 11) 11 J

Program~Parameters = identifier-list

read-Pa~ameter-list =
11 (11 (file-variable ","J variable-access.
{"1 11 variable-access)")'' •

readln-Parameter-list =
[11 (11 (file-variable l variable-access)
C"t 11 variable-access} ")") •

record-section= identifier-list IJ • II . type-denoter· •

r·ecord-br'Pe = "record" fiel d-1 ist "end"

record-variable = variable-access •

record-variable-list=
record-variable { "," recor·d-var·iable}.

relational-operator =
"=" "<"

7.-.
.J

II) II "<=" II>=" 11 in 11 •

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

r·epeat-statement = 11 repeat 11 statement-se9uence
11 u n ti 1 11 Boo 1 ea n-e x Pi"· es s ion •

repetitive-statement = repeat-statement I
while-statement

result-tYPe = simple-type-identifier
Pointer~type-identifier •

scale-factor = sisned-inteser ~

set-constructor= 11 [11 [member·-desi9nator

for·-statement.

{ 11 t 11 member-des i9natar· } J 11 J 11 •

set-type = 11 set 11 11 of 11 base-tYPe •

sign = 11 + 11 I 11_11
I •

si9ned-inte9er = [sign] unsigned-inte9er •

si9ned-number = slsned-inte9er : signed-real

si9ned-real = (sign] unsigned-real

simPle-expression = [sign J term { adding-operator term } .

simPl~-statement =
empty-statement l assignment-statement
procedure-statement 9oto~statement •

simPl~-tYPe = ordinal-tYPe real-tYPe •

simPle-type-identifier· = type-identifier •

special-symbol = "+u: 11_11: "*11: 11;11: 11=11: 11<11: 11>11: "[11l11]11·:
ti • fl : _.II I II : It : II : II ; JI : ''/..,ff : II (ff : II) II :

II< >II : II<= II : II >=II : ti : =II : II •• II : war· d- s y m b 0 l

statement = [label 11 : 11 J (simPle-statement :
structured-statement

statement-Part = compound-statement •

statement-secrnence = statement { "·; 11 statement }

string~character =
on~-of-a-set-of-imPlementatfon~defined-characters .

string-element = apostrophe-image l strin9-ch~racter •

74

PASCAL NEWS #20 DEC8'1BERJ 1980

Second Draft ProPosal

structured-statement =
compound-statement conditional-statement:
rePetitive-statement J with-statement •

structured-type = new-structured-tYPe :
structured-type-identifier .

structured-type-identifier = tYPe-identifier

subran9e-tYPe = constant " •• " constant

ta~-fie1d • identifier •

tas-tYPe = ordinal-type-identifier •

term = factor { multiP1Yin9-oPerator factor } •

type-definition= identifier 11 = 11 type-denoter· •

type-definit.ion-part =["type" type-definition "; 11

{type-definition ";"}] •

type-denoter = type-identifier l new-type •

type-identifier = identifier •

unPacked-conformant-array-schema =
11 array 11 11 [11 in-dex-type-sPecification
{ ";" inde~{-type-specification } 11] 11 11 of 11

(type-identifier : conformant-arraY-sch~ma) •

unPacked-structured-tYPe = arraY-tYPe I record-tYPe
file-tYi=ie •

set-tYPe

unsisned-constant = unsi~ned-number l charactsr-strins 1.
constant-identifier : "riil" •

unsigned-integer = digit-sequence •

unsigned-number = unsi9ned-inte9er i unsigned-real •

uns i trned-rea 1 =
unsi9ned-inte9er
u n s i srn e d- int e 9 er

II II
•

"e"
di9it-seq1Jence [11 e 11 seal e-fa.ctorJ
scale-factor •

value-parameter-sPecification.=
identifier-list 11 : 11 type-identifier •

variable-access = entire-variable I comPonent-variable
identified-variabie : buffer-variable •

variable'-declaration =identifier-list 11 : 11 type-denoter •

75

PASCAL NEWS #20 DECH1BERJ 1980

Second Draft Proposal

Variable-declaration-Part= [11 Var· 11 Variable-declar·ation ";"
{var· i ab 1e-dec1 ar·a ti on "; 11 } J

variable-identifier = identifier •

variable-parameter-specification =
"var" identifier-list 11 : 11 tYPe-iijentifier

var·iant = case-constant-1 ist ": 11 "(" field-list 11)"

variant-par·t ="case" variant-selector· "of"
variant { "; 11 var·iant }

var·iant-selector· =[tag-field":"] ta9-tYPe.

while-statement = 11 whi le" Bool ean-el{Pr·ession '1 do 11 statement •

with-statement =
"wi th 11 recor·d-variabl e-1 ist "do"
statement

wor-d-sYmbol = 11 and 11 l 11arr·aY 11 l 11be9in 11 I "case" l "canst" I "div" l
II d 0 II l 11downt0 II : II e 1 s e II : II end If : II f i l e II : 11 f 0 r· II :

II fun ct i 0 n II : 11 9 0 t 0 II : II if II : II in II : II 1 ab el II : II rno d II :

"nil": "not" l "of" l "or": "Packed" l "Pr·ocedure":
" Pr o 9 ram " : " r· e co r· d 11 i " r· e Feat 11 : 11 s e t 11 I 11 th e n 11 l
"to" l 11 tYPe 11 : "until": "var": "whi 1 e": "wi th 11

write-parameter= e~·(Pression [11 : 11 e:<Pression (":" e:-:pr·ession J J

write-Parameter-list=
" (11 (f i 1 e -v a r· i a b l e 11 , 11 J w r· i t e - Pa r· am e t e r
{'1 ," wri te-par·ameter·}" > 11

~riteln-par-ameter-list =
(11 (11 (file-var·iable l wr·ite-pi3,r·ameter·)
{ 11 1 11 write-parameter-} 11) 11]

PASCAL NEWS #ZO- -

APPENDIX B. INDEX

access

actual

actual-parameter

actual-Parameter-list

arr·aY-tYPe

arraY-varia:ble
assisnins-reference
assisnment-comPatible

assisnment-statement

base-tYPe
base-tYPes
block

body
Boolean-expression

Boolean-tYPe

buffer-variable

case-constants
char-type

character

character-strins

closed·

77

/.: .. 5. i
/.: .. 5 .5
6.C .• 5 .. 2
6.10
~ .• 5. 1

6.6.:3.5
6. 7. :3

6.9.6
6.4.3.1
c .• e:,.:=:.7
6.5.:3.2
6.5.1
6. 4./.:.
t .. 6.5.2
6.8.:3.9
c .. 5.1
6.8.2.1
1.: .• 4.:::::.4
6.4.5

6.4.1
6.6.1
c .• 6.3.2
6.1.: .• 3.5
6.8.2.3
6. 6 .1
t .. 7 .2.:;:
c .. :3.3.E:
6.4.2.1
e: .• 7.2.5
6.5.1

6.10
c .. 4.3.3
6.1. 7
~ .• 4.::::.2
6.6.6.4
6.9.4.::::
6.4.2.2
6.9.4.3
6.9.4.5.2
6.1.1
6.3
6.1.5
6./.: .• :3.8
6.4.3.3
6.4.7

t,.5.::::.1
,_:,. f:.r. :3 • :~:

l:.1 • 7. :3

t ..• 4. :3. 2
c. .• /:.1.:3.::::

c .. 5.:~:.1

6.6.5.4
6.9.2
c .. c .. 2

6.4.6

e .• 2.:~:
6.4.2.~!

6.1:.. •• :~:.::::
6.6.:::::.7
6.8.:~:.·~1
1:. •• E:·. :~:. :::
c .. !::.:3.4

e: •• 9.4.2
6.5.5

c .. 6.5.::::
t .. 4.2.1
6.4.~:.5
6.9.2

t .. 6.6.4
6.9.4.4
6. 11
6. 1. 7
6.4.:3.2
e.. 1. 6
6. 7 .1
6.4.5
6".6.:3.8

e: .• 5.:;:.:3
~ .. 6.:;:.7
/.: .• E:.:::.10

1S.1~ .• :~:.4

c. .• 1: ... ::::.4
'~' .• {; .• 5 • :3

t1 .E:.3.·~
l:.1 .1~1.:3.2

t,.E:.2.2

C:..7.1

I- ':•
_1"' 1

{: .. 5.1
.~ .. /.: .. 3.1
~ .. t .. 3.4

6.10
/:.t.:::.3.J~J

c .• :;:.3. 7

t,.7.2.:3
/:.1. ''iJ. 4 .1:..
'~~,.t .• 5.2
6.9.e..

,s.8.3.5
(: .• 4.2.2

l: .• ·;i.4.2

61 .·~1 .2
l: •• ''i'.4.5.1

1S.1.8
l .. 7. 1
6.4.6
6.7.2.2
6.4.t.
6.7.2.5

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

component

component-type

component-variable
component-variables
components

compound-statement

con formant-array-schema
con9r·uo1;s.
constant

cor·r·esPondin9

def ining-poi.nt

definition

directive
emF>tY-~tatement
entire-..var·iabl e
en ume r·a t e d-t Y Pe
error·

(:,. 5. 1
·~f:.,.5.:~:.:3

e .. f:. .• ,s.5

1S. 1S. :3. 7
(:,. 5. 1

(:,. 1 • 7

6.5.::::.:3
6.9.4.7
l:1 .2.1

f.:,.t,.:;:.1:..
(: .. 6.:~:.4

6.1.4

6.t: .. ::::.7
1:. .• 7.2.2

f:.1.4.:~:.:3
(:../.: .. 1
t: .• 1:. .• :3.4

4.

(: .. 1. 4

6. 5. 1
c .. 4.2.1 .-,
,_:, I

(:,. !.: .. 2
1.: .. 6.5.3
(: .. 6.6.4
t .. 7.2.2
6.9.2
6.9.5

(: .• 6.5.4
6.!.: .. 6.4
6.7.2.3
(:i.t:.::::.5
f:.,.s-1.4.:2

1S.4.:~:.1

1:. .• 4.::.:.!:i
f.:,. 5. ::: . 1

f:.,./:_,.:.::.7

' I; • • 4 . :~: . 5
/:_, • f:., • :::: • ~:::
{: .• 5.::::11:1

6.4.::::.1
iS.4.:3.5
(:,. (:,. 5. 2

(: .. (:,.:~:.7
1:. .• t .. :~:.5
t .. 4.2.4

t .. 2. ::.:
6. (:,. 1
1:.,.C1.:~:.:~:

/:.1.1:. .• :~:.t:

6.4.1
6.5.1
(: .. 6.2
1:. .• 1:. .• :~:.5

5. 1
1S.e .• :~:. 7
6. 6. 1

6.4.2.~:

5. 1
6.5.4
6.(: .. :3.:::
6.6.6.2
6.6.6.5
6.E:.3.5
6.9.4
6.9.6
(: .. (: .. 2
(:,.(: .. 5.2
l:.1./:.1.l:.1.2
6.6.t: .. 5
1:. .• 7. :~:
f:., • ::: •. :~: • <:;1

.6.4.6

f:., II f:., • :::: Ii ::-=:

6,.1S.5.2
/:. . . ::: • :~: . 1 ()
(: .. ·~1.6
(: .. 5.5

6.4.5

1:. .• 1;,.:;:.:3
1:. .• t,.:;:.1:..
Ci.4.:~:.:3

,f .• 4.::::.:3
6.6.2
6.(:,.::::.6
6.6.5.2

{: .. 4.2.:3
'6.5.:;:.:~:

6.6.3.1
(:,.(: .. :~:. 7

6.4.6
6.5.5
l~:a/:.,.5.2.

6.c .. 1.: .• :;:
6. 7. 1
6.8.::::.9
6.9.4.2

6.6.:~:.2
6./:. ... 5.:~:
1:., .1:. .• 1:. .• :3
6.7.1

PASCAL NEWS #20 DtC!:.MBtR, 1980

Second Draft Proposal

factor

field
field-designator
field-identifier

file-tYPe

file-variable

far·-statement
for·mal

formal-Parameter-li~t

function

f unct i on-b 1 od:

function-declaration

function-desisnator

function-identifier

functional
soto-statement

identifier

id en ti fie r-1 is t ·

if-statement
imPlementation-defined

imPlementatian-dePendent

79

c·. 1 • 5
~ .. 7.1
/:. .. 4.:~:.:~:
(: .. 2. 2
6> •. 2.2
6.8.3.1<)
t .. 4.3.1
t .. 5.5
6.5.5
tS.9.2
c .• 9. 5
6. 5. 1

6.6.:3.1
t .. 6,.3.4
6.7.:3
6°.6.1
6.6.:3.4
e .. 1 • 2
6.6
1S.6.~:.5
6.1: .. 6.5
c,~8.2.2
6.9.4.5.2
6. 1. 4

6.1.-4
~ .• 7 •. :3
c .. 2. :3
6. 7. 1

t .. 1.:,.:3.1
t;,.E:~2.2t

6.6.3.5

6.8.:3.1
4.
6.3
6.4.2.3
6.5 .• 2
6.6.2

tt . c, • ::.:: • 7
6.7.2.1
t.1 ~5.:~:.:3
c .• 5.::::.1
/:. .. 4.:3.:3

e: .• 4.:~:.5
6 I 10

6. 6. 1
1:. •• 1:.,.:~:.2

6 I 6 o 1

6.7.2.2
6.9.4.4

6.6.:~:.1
6. 2. 1

6.5.1
f:.,. 7. ::::
6. 5. 1
6.t .. 3.5

6.f:.2.1
6.8.:3.7
6.1.:~:

C•. 4 I 1
6.4.::::.::::
6.5.3.:3

6.8,3.9 6.10
t .. 4. z. 3
6.6.:3.1
~ .• E:.3.3
3.
c .. 4.2.2
6.9.4.2
6.9.6
3.

6.8.2.2
6. 10

6.6.:3. 7
ti.E:.:~:.4

5. 1

6.9.4.5.1
6 .10
5. 1
6.7.2.1
6.8.2.:3

1::. •• t .. 5.:~;

l; . • /:_, • :;: • :~:
t .. 5.:3.:::

I C:- ,-, .-1
<::1 • ~-' • ..:• • .,:1

6.4.6

e: .• 9.4

{~1 &It,. 2
1:,.6.:;:.:3
1S.(: •• 3.7

c .. 6. :;: . 1
6.6.:3.7
tS.4.~:.5

t .. 6.6.4
6.7.:3
6.9.4.5.1

6 I 5 0 1

1S.~ .• 2

·Ci. E:. 2 ~ 4
6.:::.3.9
6.:2.2

6.5.1
6.6.1
6.6.3.7

6.5.1
6 .10

6. 1. 7
t .. 1.2.2
6.9.4.C:.

c:' .-.
~-· • .L

6.7.:3
6.9.6

PASCAL NEWS #20

indexed-variable
inteser-tYPe

label

member
member-desi~nator
note

. number

operand
oPer·ator

o~dinal

ordinaJ-fype

Par·amet~r

Pointer
Pointer.-tYPe
pr-edeclared
pr-edefined
procedural

DEC8'1BER,, 1980

Second Draft Proposal

6.4.::::.2
1b !If:.,.:~:. :3
61.!'5.:~:.1

6. 1 . 5
. 6.4.2.2

6.1;,./:. .. :~:
6.7.-2.2
t .. 9.4.2
1:. .• 1. 2 .

80

1.: .• 2.2

6.4.1:..
1:. •• 7. 1
4.
6. 1 . 4
c ... 4.:;:.1

6 .5 .1
6.5.4
1::. •• I:.. •• ::::. E:
6.6.5.3
6.7,2.2
c .. :::.:3.4

6.10
/.: .. 1. 7

6.1:. .. 6.4
6.9.2
6.9.4.5.1
6.7.2.1
1:. •• 5.1 .
6.7.2.~"
6.8.3.5
6.4.2.1
1:. •• 1:. •• 6. 1
6.4.2.1
c .. 4.3.3
1:. •• 7. 1

1:. •• 5. 1

(: .. 6.:3.5
6.(: .. 5.2
6.9.2 .
6.9.4.6
6.4.1
6.4.4
4.
4.
1:..;1:. •• 3.4

6.5.:3.2

l:.1. :~:

1.: •• 4. 6

t .. 7.2.5
1:. •• 9.4.4

. 1:. •• 1. 6

6.7.1

C" .-, ·-' . ..::...
6.2.:~:

6.6.::::.7

6.6.:3.7
6.4.2.1
1:. •• 1:. •• b.2
6.6.6.5
6.9.2

(: .. 2.1
t. .. ::::.1

6. 1
t .. 4.2.2

6.4.3.2 6.4.3.3
6.4.3.5 6.4.4
c .. 5.::::.2 . 6.~l.3.3
6.6.3.1 6.6.3.7
6.6.4.1 6.6.5.2
6.7.1 6.7.2.1
6.7.2.5 6.8.1
6.8.3.5 6.9.2
6.9.4.5.2 6.9.5

c .. 4.2.2
6.4.5
/:. .• 7.:::
6.9.4.4
6.·~.4.5.2

6.4.2.3
6.6.:3.6
C:r.E:.2.3
.';. .. 9.4.5

6.7.2.2 6.7.2.5
6.7.1 6.7.2.1
6.7.2.4 6.7.2.5

6.4.2.2 6.4.2.3
6.6.~.4 6.7.2.5
6.4.2.4 6.4.3.2
6.4.:=i.4
6.7.2.5

I;; •• f:. •• 1

6.6.3.6
6.6.6.2
6.9.:~:

6. 9·.5
6. 5. 1
6.5.4
6.6.4.1
6.4.1

6.6.t .. 4

t .. 6.:3.1
/.:1 .(: •• 3.4
t...6.:3.7
C...1:. •• 6.5
6.9.4·
t .. 10
6.7.2.5
6.6.5.3

PASC.C\L NEWS #20 DECEMBER, 1980

Second Draft Proposal

pr·ocedure

Pr·ocedur·e-b 1 ock

Procedure-declaration

Procedure-identifier .

Proc~dure-statement

Program-Parameters
real-type

recor·d-tYPe

record-variable

ref e.rence

result

same

scope
set-tYP~

statement

81

c,. 1 • 2
6.5 .1
/;_,. 1.: •• 1

6.9.4
6 .10
t_ •• 1. 4
t. ~ 6. 1
6. 1. 4

"l:·. 2. :~:
t .. c .. :~:.1
t .. :::.2.:3

6.8.2.1
6.2.1
6.1.5
~ .. 4.2.2

-t .. 9.2
t .. 2.2
6.5.::::.:3
I- .-, .-, .:1 • ..!. • L.

6 . ::: .-:~: . 1 ()
c .. s.~:.1
t .. 5.5

6 .2 .1
6

• .:J

6. 6 .1
6.6.::::.7
/:. •• 1:. •• 1
6.6.6.4
c .. 1.2.5
5 .,:..

6.1.4
6.2.:3
6.4.2.4
6.4.6
c 5.3.2
6.6.:3.2

6.6.6.2
c .. 1.2.2
Q.8.:~:.5

6.2
/:. .. 4.3.1
~ .. 7.2.5
5. 1
1:..:1:. .• 5.4
6.B.:3.1
6.E:.3 .. 8

6.5.4

~ .. ·;1.2
6.'~1 .5

e: .. 2.1

t .. 5.1
6.6.:3.4

1.: •• 5. 1
e: .. :::.2.:~:
6. 9. 1
f:.,. :3
l.:1 • 4. 6

6.9.4.2
/.: .. 4.:3.1
6.C .. 5.~:
t .. 4.:3.~:

1:. •• 5.::::.:~:
t .. 6.3.:~:
t .. :=;.~:.1(>
c .. 2.2
6. 4 .1
6. 5. 1
/:. •• 1:. •• 2
1:. •• 8.:3.10
6.6.C..2
6.7.2.2

6 .1
6.1. 7
6.4.1

6.4.7
6. 6. 1
~ .. 6.:3.:;:
6.6.::::.7
6.6.6.4
6.7.2.4

c .. 2 .2
6.4.:3.4

6.8.1
6.8.:3.4
6.8.3.9

1.: •• 4. 4
f:.,. 6
c,.c .. :3.7
6.'?.3
/:_,. 9. /.:.

6 .5 .1

I:,.. /.:.. 1

6.t. .• 1
f:.,. 7 .-:~:

6.6.1

I;.. 10
t .. 4.2.1
/:..1v1~1 • ~' • 2
t.1 ~7.2.5
/:..,.•:.1.4.5
t .. 4.:3.:3
;;,.::!.3.1<)
t,11:5.::::.:3

6. 11

'~1 .4.2.3
ta1o5.:;:.:3
t .. ,~,. 3. 1
6 .10
1: ... t .. 1:. .• ~:
6.7.2.4

f::,. 1 • :3

(: .. 4.2.2
6.4.5
t.tf5.3.1

t .. {: .. :3.5
(:,.~ .. 3.8
/:. .• '7 • 1
c .. 7.2.5

6. 7. 1

(: .. 2.:3
6.t:.2.1
6.:::.:3.5
6.8.3.10

PASCAL NEWS #20 · DECEMBER~ 1980

Second Draft Proposal

strins-tYPe

string-types

structured-type

subr·an9e

sYmbo1s
tag-field
b;i}: t file

tokens

totally-undefined

tYPe-identi f ier·

undefined

variable

variable-access

var·iant
with-statement
word-symbol

6. 1. 7
l:. .• 7.2.5

6. 4. :3. 1
6.5.1

4.
l:.1 •. 4 . :3 • :~:
6.4.:3.5

6.9.4.1
t .. 10
4.

6. 2. 1

6.9.6

t .. 6.:3.1
1;,.f:.,.~:.f;,

l; .• 5.:~:.:~~
ti.t: .. 5.2
6.7.1
c .. 9.2
6.2.:~:

6.4.4
6.5.:~:.2
e:,.5.5
1:. •• 1:.,.:3.:~:
c .. t: .. 5.3
t .. 8.2.2

6. 5. 1
(: .• 5.4
(: .. 6.3.7
t .. 7. 1

f:.,. 4. ~:. :;;
c .. :::.:3.1
I; •• 1 . 2

t,."4l.:~:.2
c,.·~ .. q.::'.

(: .. 9.4.7

~ .. El. 2. 2

/.:,. 5. 5
/:.1 • '~I • :::J

6.'i.5

6. 1

·6115.:3.:~:

- 6.4.1
~,.i;,.:~:.2

t .. c .. :~: . 7
6.5.4
t .. t .. 5. ;3
6.8.2.2
6.9.4
6. 4. 1
e: .• 5.1
1:.,.5.::::.:~:

{:, • f.:, • :~: • 1
c .. 6.:~:.7
t .. t .. 5.4
6.8.:3.9

6.5.:~:.2
c .. 5.5
6.6.5.2
6.7.:=:
6.9.3
c .. 5.:3'.:3
6.E:.3.10
.: .. 1.3

6.6.:3. 7
(~,.·~J.4.7

6. 4. 6

6.4.{:.

. 6.7.1

{:, . 11

6. (: .. {:., 5
1S. 1~'.4
l~t 1l ''ii • f:.,

{: .. 1. 1
{:: .. 11

,~ .. 4.4
;:., . (: .• :3 • :3
t:r .. (:1 .. :~: • :::

f.., 1l '~). 5
l.-4.3.5
I~;• 5 w :3 a 1
(-.. 5. 4

,~ .. 7. 1

/.:. .. ,::: .. 5. :3

(,. l . 4

lH::.\,LI"IDLl\; .J..:JUV

APrENDIX C. REQUIRED IDENTIFIERS
\..

IDENTIFIER

abs
ari:tan
Boolean
i:har·
ch r
cos
dispose
eof
eoln
exP
false
set
input
inte9er
l n
m=.:dnt
new
odd
ord
output
pack
Pase
Pr·ed
put
r·ead
readln
r·ea 1
reset
rewrite
round
sin
S9r'
s9r·t
succ
text
true
trunc
unpack
write
writeln

REFERENCE CLAUSE<S>

e: .. 6.~·-2
6.6.6.2
6.4.2.~~
c,.4.2.2
6.6.6.4
t .. t .. 6.2
(: .. t .. 5.:3
6.t: .. c .. 5
6.6.t .. 5.
6.6.6.2
~t.4.2.2
6.~ .. 5.2
6.10
6.4.2.2
t .. 6.6.2
t .. 7.2.2
c .. t,.5.3
t .. 6.6.5
e: .• 6.6.4
6'.10
6.6.5.4
6.9.6
6.t .• 6 .• 4
e: .• 6.5.2

}, Q .-.
J • .,, • ..:I

c .. 4.2.2
e: .• 6.5.2
c .. c .. s.2
6.6.6.3
6.6.6.2
6.6.6.2
6.6.6.2
6.l-: .• 6.4.
6.4.:;:.5
6.4.2.2
6.6.t .• 3
6.6.5.4
6.6.5.21. 6.9.4.11 6.9.4.2
6.9.5

IMPLEMENTATION. NOTES ONE PURPOSE COUPON

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *J

2. MACH IN E/SYST-EM CON Fl GU RATI 0 N (*Any known limits on the configuration or support software required, e.g.

operating system. *)

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price.*)

4. DOCUMENTATION (*What is available and where. *J

5. MAINTENANCE (*-Is it unmaintained, fully maintained, etc?*)

6. STANDARD (*How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

7. MEASUREMENTS (*Of its speed or space. *)

8. RELIABILITY (*Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (*How was it developed and what was it written in?*)

10. LIBRARY SUPPORT (*Any other support for compiler in the form of linkages to other languages, source libraries, etc. *)

(FOLD HERE)

Bob Dietrich
M.S. 92-134
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077
U.S.A.

(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets .. Implementors should send us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.·

PLACE
POSTAGE

HERE

IMPLEMENTATION NOTES ONE PURPOSE COUPON

POLICY: -PASCAL USERS-GROUP (15-Sep-80)

Purpose:_ Tbe Pascal User's Group (PUG) promotes the use of the programming
_language Pascal as well as the ideas behind Pascal through the
vehicle of Pascal- News. PUG is intentionally designed to be non
political, and as such, it is not an "entity" which takes stands on

_issues or support causes or other efforts however well-intentioned.
Informality ·is our guiding principle; there· are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for -software production and justifies its further use. We all
strive t~ make using Pascal a respe~table activity.

Membership:_ Anyone can - join PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

-Membersh~ps from libraries are also encouraged. See the
·- ALL'-PURPOSE COUPON for details.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal ::(s a small, practical, and gerieral-purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:
* teaching programming concepts
* developing reliable "production" software
*implementing software efficiently on today's machines
* writing portable software

Pascal implementations exist for more than 105 different computer systems, and
this- nutnber increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

The programming language, Pascal, was named after the mathematician and
religious· fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently
have more than 3500 abtive members in more than 41 countries. this year Pascal
News is avetaging more than 100 pages per issue.

1J
0 ---· n
'<

