GONNECTING NON-ISDN TERMINALS TO ISDN

 DELTA-SIGMA ADGS CHALLENGE INTEGRATORS-SPECIAL REPORT: THE WIDE WORLD OF DYNAMIG RAMS -DESIGNERS' GUIDE TO PAOKAGING AND MATERIALS

OrCAD presents

 Release
The limits are gone

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price / performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge
- Expanded memory capabilities

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.

Our new function generator has all the bells and whistles.

In fact, it has any kind of waveform you can imagine. Because the Model 95 combines a high performance function generator with a powerful arbitrary generator.

As a function generator, Model 95 produces remarkably pure square waves, triangles and sines, from 1 mHz to 20 MHz with synthesized accuracy up to 0.001%. It has
the power to output $15 \mathrm{Vp}-\mathrm{p}$ into 50Ω, and includes sweep, pulse and modulation modes plus four user-selectable output impedances. There's even an internal trigger generator for trigger, gate and burst.

If you'd rather be arbitrary, Model 95 gives you up to 128 k of waveform memory to work with, and a sample rate of 20 MHz . Four different editing
modes help you produce even the most complicated wave shapes quickly and accurately, while analog and digital filters allow you to create the purest output possible.

For information about all the other bells and whistles you'll find on the Model 95, call Wavetek San Diego, Toll Free at 1-800-874-4835 today.

Bring the Modulation Domain designing on a higher level.

to your lab and start

These days, designers face problems that require a level of understanding beyond the scope of conventional measurement techniques. The Modulation Domain can give you that level of understanding. With a new dimension in signal measurement that makes it possible to analyze frequency, time-interval, and phase over continuous time. And now, HP brings the Modulation Domain to your lab with high-performance analyzers that give you insight into your designs you've never had before.
The HP 53310A streamlines Modulation Domain analysis with a simplified user interface, onebutton signal acquisition and realtime measurements for fine-tuning your designs. It gives you continuous frequency and time-interval measurements for analyzing modulations in RF and microwave signals. Characterizing VCOs, phase-locked loops, and electromechanical devices. Locating sources of jitter. And much more.
The HP 5372A is ideal for gathering in-depth Modulation Domain information in single-shot events. In addition to frequency and timeinterval measurements, it also displays phase over continuous time. And analyzes even the most complex signals with incredible detail.
Find out how to take your design skills to new heights. Call 1-800-752-0900* Ask for Ext. 1853, and we will send you a Visitor's Guide to the Modulation Domain on floppy disk. That way, you'll be up on all the latest developments.

There is a better way.

[^0]© 1990, Hewlett-Packard Co. TMSCD057/ED

Elempancleticy

cover 39 PHASE MODULATION CUTS LARGE-SWITCHER LOSSES

FEATURE

An IC controller uses a new topology for 250- to 2500 -W switchers to boost efficiency and cut size and cost.

electronic 47 DRAM DIVERSITY Yields A Memory To Suit Any System

DESIEN REPORT Many data-path options and system-control choices let designers optimize the system and exploit DRAMs.

DESIGN

APPLICATIONS

59 ADAPT NON-ISDN TERMINALS TO ISDN DATA RATES
A multiprotocol processor with a 68000 core implements V. 110 or V. 120 rate adaption.
product 87 GATE ARRAYS CHALLENGE STANDARD-CELL ASICS INNOVATIONS

Channelless sea-of-gates arrays with up to 318,000 gates use triple-layer metal for power and signal routing.

93 20-Bit DeLTA-SigMa ADCS VIE FOR INTEGRATOR JOBS

Two delta-sigma-converter families for dc-measurement applications handle multiplexed inputs.

14 EDITORIAL

18 TECHNOLOGY BRIEFING

Pump up the T\&M learning curve

23 TECHNOLOGY NEWSLETTER

- Phase modulation runs PWM power switchers
- Switch expands ASIC emulators to

1 Mgate

- Silicon ICs reach 24 Gbit/s speeds
- High gate-count arrays yield up to 250 k gates
- Software automatically inserts

JTAG test logic

- Schottky diodes of germanium?
- Non-woven substrate makes lighter PWBs
- Get 33 MFLOPS from a

Sparcstation

30 TECHNOLOGY ADVANCES

- Improved cabling schemes take the maybes out of SCSI
- Programmable to 15 MHz , continu-ous-time Gm / C filters move to CMOS
- Budget-priced chip design tools tackle cell-based ICs

71 IDEAS FOR DESICN

- Select line voltages instantly
- IC generates nonintegral powers
- Select series or parallel combo

77 QUICK L00K

- Perspectives on Time-to-Market: How to build task-network models
- Sales of CAD/CAM systems stay strong
- How to get free Spice model disks
- Engineering investors: Tax-planning strategies

83 PEASE PORRIDGE

What's all this mentoring stuff, anyhow?

99 PACKAGING \& MATERIALS GUIDE

NEW PRODUCTS

115 Digital ICs

Custom memory chips let controller maximize cache performance
117 Computer-Aided Engineering
118 Instruments
122 Computer Boards
124 Computers \& Peripherals
128 INDEX OF ADVERTISERS
129 READER SERVICE CARD

COMING NEXT ISSUE

- What's new in ASICs-world-wide-at CICC
- Compensating for inductance effects in fast rise-time power supplies
- Ensure the accuracy of bit-errorrate tests
- An integrated DSP motherboard
- Object-oriented software for design engineers
- Special Section: PC Design
- Build a speedy, low-cost graphics accelerator in hardware
- The PC as an EDA platform: Is it up to the task?
- PLUS:

Pease Porridge
Ideas for Design
Technology Advances

ELECTRONIC DESIGN (USPS 172-080; ISSN 0013-4872) is published semi monthly by Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114 2543. Paid rates for a one year subscription are as follows: $\$ 75$ U.S., $\$ 140$ Canada, $\$ 230$ International. Second-class postage paid at Cleveland, OH, and additional mailing offices. Editorial and advertising addresses: ELECTRONIC DESIGN, 611 Route \#46 West, Hasbrouck Heights, NJ 07604. Telephone (201) 393-6060. Facsimile (201) 393-0204.

Printed in U.S.A. Title registered in U.S. Patent Office. Copyright © 1991 by Penton Publishing Inc. All rights reserved. The contents of this publication may not be reproduced in whole or in part without the consent of the copyright owner.

Permission is granted to users registered with the Copyright Clearance Center Inc. (CCC) to photocopy any article, with the exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of $\$ 1$ per copy of the article plus $\$.50$ per page is paid directly to the CCC, 27 Congress St., Salem, MA 01970 (Code No. 0013-4872/91 \$1.00 + .50) Copying done for other than personal or internal reference use without the express permission of Penton Publishing, Inc. is prohibited. Requests for special permission or bulk orders should be adspecial permission or
dressed to the editor.
For subscriber change of address and subscription inquiries, call (216) 696-7000.
POSTMASTER: Please send change of address to Electronic design, Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114-2543.

OURCLASSIC EPLDS CUT^

They also cut your product costs, with prices low enough to impact your bottom line.

As for logic delays, we've cut them down to a remarkably low 12ns.

So now you can cut something from your design: PAL's and GAL's. Because our Classic parts give you a combination of speed, density and flexibility you won't find in other PLDs.

All of which helps you cut the time it takes to produce a superior design.

For example, our 20-pin, 8-macrocell EP330 is the perfect replacement for over 20 types of PALs and GALs. It stretches

counter frequencies to 125 MHz while sipping one-fourth the power of a standard PAL. And its quiet output switching circuitry allows the EP330 to run faster in-system than a 10 ns 16 V 8 .

Our 24-pin, 16-macrocell EP610 delivers 60\% more logic density than a 22 V 10 . And unlike a 22 V 10 , the 15 ns EP610 consumes a mere $20 \mu \mathrm{~A}$ in standby. And its registers

IORE THAN LOGIC DELAYS.

can be programmed for D-, T-, JK- or SR-operation or for asynchronous clocks.

To replace multiple PALs and GALs with a single chip, try our 44-pin EP910 or 68-pin EP1810. Both offer superior logic density and greater I/O at a lower cost than any other mid-range CMOS PLD.

Our Classic EPLD family also helps you get to market faster. Thanks to a host of powerful logic development tools from Altera and third parties.

What's more, we offer the industry's broadest, most flexible line of CMOS PLDs. With devices ranging from 20 to 100 pins, and logic densities from 8 to 192 macrocells, there's an EPLD for every logic design task.

So call Altera today at (408) 984-2800
for more information. And discover programmable logic that's a cut above the rest.

2610 Orchard Pkwy., San Jose, CA 95134-2020 (408) 984-2800/Fax: (408) 248-6924
\qquad

Engineers: Are you getting your share of the pie?

The challenges in engineering have never been easy to swallow. But designing in the 1990s will be tougher than ever before as growing competition creates the need for higher quality products and design-for-manufacturability.

In the June 13 issue of Electronic Design, we survey our readers to find out how engineers are coping with these increased challenges and how satisfied they are with their careers.
Our annual reader study also examines the issues that are uppermost in the minds of design engineers, from time-to-market pressures to designing with components of greater complexity. Presenting data gathered from a survey of our 130,000 domestic readers, this feature is a must-read analysis of important career issues.

Will designing in the 1990s leave you hungry? Find out June 13.
ELECTRONIC DESIGN: LEADER OF THE PACK SINCE 1952

For The Health Of Your Monitoring Systems, Burr-Brown Prescribes PWR13XX.

The DIP DC/DC Converter For Ultra High Isolation: 4000V.

Medical grade isolation is yours with a dose of 1.5 watts of unregulated output power from the PWR13XX. Its dual-in-line package uses only 1 inch 2 of PC Board space and comes in low prices that are easy to swallow.
Use as needed for applications where system integrity and reliability are critical. No external parts required.
Contact your salesperson for quick delivery.

Fax 1-602-741-3895
Write P.O. Box 11400 - Tucson, Arizona 85734

BURR-BROWN®

Your Pariner in Quality

UXART The Wait Is Over Now there's a serial I/O chip designed for UNIX.

For years, dumb UARTs have been the standard datacom solution. Now there's something better for today's multi-user, multi-protocol datacom environment. Our single-chip solution gives you multiple channels - each capable of full-duplex operation at 115.2 kbps - and replaces up to 10 chips.

Cirrus Logic introduces the UXART the first and only UART with specific features to simplify and speed up serial I/O efficiency by a factor of ten or more. So your UNIX ${ }^{\circledR}$ system can support more users, with better response time - and less waiting.

The CL-CD1400 UXART ${ }^{\text {™ }}$ gives you 4 fully independent datacom channels, each capable of full-duplex operation at 115.2 kbps . Each channel has two 12 byte FIFOs, one for transmit and one for receive. Separate vectored interrupts allow quick entry to the correct service routine.

A number of features reduce the load on the host system. Automatic expansion of Newline to CRNL, plus other CR and NL options. User-definable flow control characters for automatic flow control.

All five types of UNIXspecified parity and error handling. And more.

For high-line-count, cost-effective applications, there's the CL-CD180. It offers performance gains similar to the CL-CD1400, plus the advantage of 8 channels in a single 84-pin package.

The CL-CD2400 adds synchronous capabilities. It offers 4 independent, multi-protocol channels, plus an on-chip DMA controller for fast, efficient I/O.

For all your multi-protocol, multi-user datacom needs, the Cirrus Logic family of intelligent, highperformance data communications controllers gives you superior throughput in less space - with less waiting.

Don't wait. Call today for free product information and benchmark report on the CL-CD1400. Call 1-800-952-6300. Ask for dept. LD35

An on-chip
10 MIPS RISC-based processor handles transmit and receive functions, buffer management, flow control, and all special character processing. On-chip FIFOs reduce host interrupts to give you more efficient interrupt handling. The result: faster system throughput, lower host overhead, and less waiting.

Because Speed Well Stop

Fastest High Density CMOS PLDS At 15 ns

Fast Universal
CMOS PLD Family
At 10 ns

Fast Bipolar
PLD Family
At 5 ns

Is Everything, At Nothing.

Whatever kind of PLD you need, the fastest comes from AMD.
We'd love it if all our work amounted to "zero." As in zero delay. And we're not far off.

Not surprising-because AMD invented the PAL ${ }^{\text {® }}$ device. That's why we know programmables better. And offer you the most choices of the best devices.

Say you want speed, but can't sacrifice density. Don't. Use our new MACH"' products (Macro Array CMOS High-density) that give you up to 3600 gates and 15 ns performance. They're two to three times faster than the competition and cost 40% less.

For more speed, along with low power consumption, try our new 10- and 15-nanosecond CMOS PLDs. Use our 16V8-10s and 20V8-10s anywhere you'd use a GAL device. Or choose the everpopular AMD-invented 22 VIO , at 15 ns .

Faster still are our seventh generation bipolar PAL devices. Complete families of $16 \mathrm{~L} 8-5 \mathrm{~s}, 20 \mathrm{~L} 8-5 \mathrm{~s}$, and the $22 \mathrm{VlO}-10 \mathrm{~s}$. And for real speed freaks, we're now shipping a 4.5 ns bipolar PAL device-the world's fastest TTL programmable logic.

Along with all this speed, we're providing equally fast delivery. In quantity. In fact, we deliver more programmable logic devices than all our competitors combined

For details, call AMD now at 1-800-222-9323. And let nothing stand between you and your need for speed.

Advanced Micro Devices

901 Thompson Place, P.O. Box 3453 . Sunnyvale, CA 94088 © 1991 Advanced Micro Devices. Inc MACH is a trademark and PAL is a registered trademark of Advanced Micro Devices

GAL is a registered trademark of Lattice Semiconductor

Making mighty modems micro.

That's ATET

"Customerizing."

"Customerizing" means helping you develop fast, compact, low-power V.32 modem solutions-with the high-level integration needed for laptop/portable applications. The AT\&T V. 32 Data Pump consists of only three surface-mountable devices: A single DSP16A digital signal processor-ROMcoded with software to handle receive, transmit and echo can-cellation-complies with the V 32 standard, and is compatible with V.22bis, V.22, V.21, V.23, Bell212A and Bell103; a 16-bit linear codec allows for fully digital echo cancellation; and a controller chip integrates CPU bus interface and line interface circuitry. The 0.9 micron CMOS design draws less than 0.5 watt, versus 1.5 to 2 watts in many competing products. Sleep-mode function takes power consumption down to 50 mW . And to speed design-in, EIA/TIA Automode is built into the solution. In addition, your Data Access Arrangement (DAA) can utilize AT\&T high-performance solid state relays and transformers. For more on how AT\&T "Customerizing" can help you develop better V.32 modem or other datacomm solutions, just give AT\&T Microelectronics a call at 1800 372-2447, Ext. 626. In Canada, call 1800 553-2448, Ext. 626.

Accelerate your Stepper Motor to 27,000 Steps/second! Travel 16 Million Steps and back!

Is your motor earthbound by sluggish
 controllers that can't give you the performance you need? Look at what you get with the new CY545 single chip stepper motor controller:

- 40 -pin, cMOS, +5 v chip
- Speeds up to 27 K Steps/sec
- 16 Million steps per motion
- Programmable start rate, accel/decel, slew rate
- Pulse and Direction Output
- Separate Limit Switches
- Jog operation
- Home seek command
- ASCII or binary commands
- Parallel or Serial interface
- 8 General Purpose I/O lines
- External memory control
- LCD \& LED Display interface
- Thumbwheel Switch interface

Break the single chip speed barrier and the high performance price barrier. You can't afford to pass up this latest innovation from the company that, ten years ago, brought you the first stepper motor controller on a single chip! Order by Fax or phone or call today for free info.

Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 • Fax: (415) 726-3003

up to 35 dB 10 to 1000 MHz only 5

TOAT-R512 Accuracy		TOAT-124		TOAT-3610		TOAT-51020	
		Accl		Accu		Accu	
(dB)	($+/-\mathrm{dB}$)	(dB)	$(+/-\mathrm{dB})$	(dB)	$(+/-\mathrm{dB})$	(dB)	$(+/-\mathrm{dB})$
0.5	0.12	1.0	0.2	3.0	0.3	5.0	0.3
1.0	0.2	2.0	0.2	6.0	0.3	10.0	0.3
1.5	0.32	3.0	0.4	9.0	0.6	15.0	0.6
2.0	0.2	4.0	0.3	10.0	0.3	20.0	0.4
2.5	0.32	5.0	0.5	13.0	0.6	25.0	0.7
3.0	0.4	6.0	0.5	16.0	0.6	30.0	0.7
3.5	0.52	7.0	0.7	19.0	0.9	35.0	1.0

bold faced values are individual elements in the units

Sowould you like the number

Yes, it's true some designteams see us as the emergency number of development systems providers.

Many more, however, use Applied Microsystems
more productively by calling us in earlier-at the start of their embedded systems project.
Out of our experience comes tools and support
to help your design team work like a team to belp your design team work like a team.

Long before the sirens ever begin to sound.

Development systems for today's embedded systems.

It's getting much more complicated in there. Like, several megabytes of code

for Applied Microsystems?

in a 32 -bit design. Which means more engineers to write it, often within very different, even mismatched environments.

Our modular development system architecture helps bring your design
together by integrating your computer environment with our high performance emulators, debuggers, simulators and compilers.

We even offer a networked system for Sun* setups. And a common interface for all our systems for easier 16- or 32-bit development.

All so your design team can begin working like a real team.
We work with the processors you work with most.

Megahertz for megahertz, our tools run with the best, such as the powerful $68020 / 030$ or $1960^{\text {TT }} \mathrm{CA}$ microprocessors.

In fact, we have alliances with Motorola, Intel ${ }^{\circ}$ and others. This enables us to deliver fully tested, compatible development systems sooner to support your processor's unique features.

Moreover, supporting your development efforts is our only business. So unlike others who just dabble in development, we have to be better at it.

Which may explain why companies have called upon us to set up over 15,000 development systems worldwide.

Call before your development days are numbered.

It's never too early to talk with us about your
upcoming design projects.

In fact, you can start now by calling for our brochure on what you should expect from a development systems company (and can't afford not to get).

Just call 1-800-343-3659 (in Washington, 206-882-2000).

And of course,
 we'll be happy to take your emergency calls, too.

VCXO's Series M2000 1 MHz to 67 Mhz

These VCXO's are used to replace a distorted incoming reference signal (e.g. 1.544 MHz , T1), with a stable crystal-controlled signal of the same or any multiple frequency, from 1 to 67 MHz .

With MF VCXO's, since the specification is computer-tested over the full operating temperatures, you can be assured that the specified frequency- deviation is what you get for capture range.

	Control Voltage	Deviation
M2001	0.3 to 10 V	$\pm 175 \mathrm{ppm}$
M2002	0.3 to 4 V	$\pm 75 \mathrm{ppm}$
M2003	0.3 t 10 V	$\pm 175-300 \mathrm{ppm}$
M2004	0.3 to 4 V	$\pm 125 \mathrm{ppm}$
M2005	1.0 to 4 V	$\pm 75-300 \mathrm{ppm}$
M2006	0 t 5 V	$\pm 150 \mathrm{ppm}$
M2007	0.5 to 4.5 V	$\pm 125-250 \mathrm{ppm}$

PHASE-LOCKED LOOP-VCXO'S Series M2010, M2015

This is the complete loop, includ-
 ing the phase-comparator and the VCXO, in just one package. Add the dividers to match the frequencies. Oscillators from 10 to 30 MHz .

CIRCLE 184

Punp Up The T\&M Learning Curve

It's about time the electronics industry started to think about more formal training in test and measurement techniques. Today's designs are too complex to continue the ad-hoc test practicesstill found in many companies. Engineering schools have never really taught students to become test engineers. And with curriculums as crowded as they are, the schools aren't likely to improve their T\&M instruction.
Part of the problem is that some companies see test engineering as an entry-leveltraining ground. Homer G. Hurlbut, Jr., manager of the characterization support branch in Texas Instruments' semiconductor process

JOHN NOVELLINO TEST \& MEASUREMENT and design center, feels new engineers are too often put into the test arena because that's where they'll do the least damage. Hurlbut, a panelist at a recent conference on measurement technology sponsored by Keithley Instruments in Cleveland, has some interesting thoughts on the subject.
"Test engineering is a learning track, more often than not, where new engineers learn what the company does, learn the people and the faces and where they come from, and what wafers look like and the variations in them-that kind of thing," says Hurlbut. "By the time we get a fairly competent test engineer who's digging right into it, we turn around and say, 'Wouldn't you like to be a circuit designer? Or wouldn't you like to get into production engineering?" "
John Pesec, Keithley's manager of customer service, confirms the need to provide more training in T\&M. Pesec's four application engineers take 400 calls a week, mostly from customers, but also from the company's sales force. Many calls result from attempts to connect several instruments into an automated setup. "We get a lot of general calls because people don't know where else to turn," says Pesec. "They are implementing a system and they hook up equipment from five different vendors, but it doesn't work the way the five vendors said it should."

Because PCs are used more and more to control multi-instrument systems, the fastest growing area of concern is interface issues-how to use the IEEE488 bus to connect multivendor instruments to each other and to the outside world. But software questions are also abundant, as are problems relating to computer speeds. A group of instruments may work together very well at one speed, but users then upgrade their controllers and the system falters at the higher speed. Properly grounding a test setup is another area where many engineers are left clueless, especially when they're making high-accuracy, highresolution measurements at low levels.

Because we can't expect much help from the engineering schools, T\&M vendors will have to take an active role in educating their customers, and prospective customers. Hurlbut cites the Japanese practice of extended support and training that comes with major equipment purchases.
"One of the things that the Japanese do better than we do, and they do a lot better than we do, is they support their equipment until the user knows everything about it," says Hurlbut. "The people who supply the equipment come in, gown up, go into the clean rooms, and spend as much as six months to a year with that equipment on the customer's site. When they get through, that piece of equipment works in the environment that it needs to work in."

He acknowledges that "the first 50 things that go wrong are probably my folks trying to understand the equipment." But that's all the more reason the vendor should make available someone who can work with his people and answer questions that arise in the unit's operating environment. Besides, the communication is bidirectional, also helping the vendor's representatives. "They get the feedback that helps them understand what the user needs and what the user wants in the user's environment," notes Hurlbut.

Solid state relays for today's circuits... and tomorrow's designs.
 That's AT\&T "Customerizing."

AT\&T gives you highperformance, high-reliability SSRs, designed for your most demanding applications. We've taken our current line of solid state relays and made it even more useful to you-more com-plete-by introducing new 1 Form $\mathrm{A} \& \mathrm{~B}$ and 2 Form A products.

While all of AT\&T's SSRs feature Logic-Level Input Control, our newest products offer 3750 volt input/output isolation.

Survivability? No problem. We
integrate our current limit circuitry with photo-detector, JFET, and MOSFET switches-so that designing to withstand damage from transient currents and lightning over-voltage is as easy as adding an MOV.

For AT\&T SSRs in your choice of 6 or 8 pin DIP and throughhole or surface-mount, just call Hamilton/Avnet or Lex Electronics For more information, call AT\&T at 1800 372-2447, Ext. 627. In Canada: 1800 553-2448, Ext. 627.

The right products and support for your datacomm and telecomm applications. That's AT\&T "Customerizing."

Microelectronics

THE WORLD'S LARGEST SELECTION OF POWER SPLITTERS/ COMBINERS

$\mathbf{2 ~ K H z}$ to $\mathbf{8} \mathbf{~ G H z}$ trom $\mathbf{\$ 1 0 4 5}$

With over 300 models, from 2-way to 48 -way, $0,90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-theshelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee.
For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or Mini-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free68-page RF/IF Signal Processing Guide.
finding new ways.
setting higher standards
 Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

$T \because R$ International Rectifier

TECHNOLOGY NEWSLETTER

Phase Modulation Runs PWM POWER SWITCHERS

Full-bridge, switch-mode power supplies larger than about 500 W , which moved from PWM to resonant-mode topologies early on, are now switching to a new topology. The topology's name is undecided so far-Unitrode Corp., Merrimack, N.H. calls it phase-controlled PWM; Micro Linear Corp., San Jose, Calif., simply dubs it phase modulation (see "Phase Modulation Cuts Large Switcher Losses, "p. 39). Both companies are announcing IC controllers for the topology. The technique combines the advantages of resonant mode (low-loss zero-voltage switching at high frequencies) with those of PWM (high-power-per-pulse, constant-frequency, square-wave switching). It eliminates peak voltage and current stress on the DMOS power switches, permitting minimum-rated FETs, thus reducing cost. Unitrode points out that phase-controlled PWM actually employs reso-nant-mode techniques to achieve its zero-voltage switching. The controller can run voltage or current mode at frequencies to 2 MHz . In general, the larger the supply the lower the operating frequency. The chip's $2.5 \mathrm{~V} \pm 1 \%$ reference holds within $\pm 0.8 \%$ over input voltage change and temperature. In quantities of 1000 , the commercial-grade UC3875 controller runs $\$ 4.50$ each. For additional information, call Joe Papalardo (603) 424-2410. FG

Switch Expands ASIC
A switching matrix that routes the 4000 -plus signals between multiple ASIC emulation systems will make it possible for circuit emulations to reach 1 million gates. Up to 20 of Quickturn Systems' emulators (the RPM series), each with capacities from 10,000 to 50,000 gates, can be tied together and operated as one large emulator. Each RPM emulator from the Mountain View, Calif. company basically consists of a group of Xilinx field-programmable RAM-based logic arrays onto which any circuit pattern can be mapped for emulation purposes. Another modular RPM enhancement is the software package called OneView. It controls the emulation activity and displays the emulation data through one workstation window. The OneView software also helps a designer partition large net lists across several RPM systems. To handle the switching of over 4000 signal paths, Quickturn engineers employ, again, the RAM-based reprogrammable arrays from Xilinx. Switch programming details are downloaded through the RPMs, which are attached to the interconnection module that holds the crosspoint switch. The OneView software runs on Sun workstation families. Contact Quickturn at (415) 967-3300. DB

To demonstrate silicon's usefulness in high-speed integrated circuits, researchers at the Ruhr University in Bochum, Germany, designed a number of basic ICs operating at data rates up to $24 \mathrm{Gbit} / \mathrm{s}$. According to Hans24 Gbit/s Speeds Martin Rein, a professor in the school's electrical-engineering department, this is the highest speed reported so far for silicon-based ICs. The devices were fabricated at Hewlett-Packard, Palo Alto, Calif., using the company's advanced silicon bipolar technology called HP 25. Some of the experimental circuits developed include a time-division multiplexer and a regenerating demultiplexer, both operating at up to $24 \mathrm{Gbit} / \mathrm{s}$. A combination of these two ICs resulted in a parallel-operating decision circuit that ran at $23 \mathrm{Gbit} / \mathrm{s}$. In addition, a data rate of $15 \mathrm{Gbit} / \mathrm{s}$ was achieved for a standard decision circuit. All devices were designed with a view toward applications in optical-fiber transmission systems and measuring equipment. Only devices using gallium arsenide material have matched or surpassed these rates. "There's no doubt that the records achieved are still far from the speed limits for silicon," says Rein. "They will be improved upon in the near future by using more advanced silicon technologies." $J G$ count- 576 pins-thanks to tape-automated bonding on a special quad-sided flat package. The other family, the TC160G series from the ASIC Div. of Toshiba America Electronic Components Inc., Sunnyvale, Calif., offers as many as 416 I/O pins.
Mitsubishi employs a triple-level metal process that pushes the utilization to about 60%, yielding nearly 250,000 usable gates on the largest chip. The small features enable the gates to operate at frequencies of up to 100 MHz . However, with so many active gates on a chip, even CMOS power levels start to climb. Consequently, Mitsubishi designers allowed for an optional heat sink, so that the high-pin-count packages could dissipate as much as 22 W . One way that

How to get a high-frequency product to market before the competition has a chance to develop.

To launch a successful new product, you have to get a jump on your competition. That means exploring new designs with higher frequencies, broader spectrums and lower unit costs.

> Avantek has a wide range of low cost, off-the-shelf solutions.

Almost any broadband component you need to achieve your vision is available now, at Avantek. Discrete devices, ICs, hybrids, system subassemblies-Avantek has literally thousands of standard components for kilohertz to gigahertz applications. as well as new lightwave components.

For over 25 years, Avantek has been a pioneer of new semiconductor technologies and new levels of circuit performance. We offer the world's most com-
 plete line of active and
$\{$ For high-performance components at high $\}$ \{ frequencies, no one matches Avantek. \}
passive RF/microwave components. From surface-mount plastic MMICs to high power amplifiers, mixers, oscillators and control devices. We've developed a full range of both Si and GaAs components. So we can help you get the best performance for the price.

> Avantek engineers work with you.

Avantek also has the engineering support staff you need to find and integrate the right solution. Our sales engineers really are engineers. They can handle any technical question or design challenge you give them. And they can deliver detailed prod-
uct specs, CAD modeling software, product prototypes-almost anything you need. You'll also get the support of Avantek's application engineering teams, who make sure the design-in process goes smoothly.

$\left\{\begin{array}{c}\text { When you tace the critical make-buy } \\ \text { dilemma, alk to Avantek first. }\end{array}\right\}$
Through our world class manufacturing facilities and more than 20 stocking locations, Avantek delivers millions of RF/microwave and semiconductor components each month. We can keep pace with the most demanding JIT program. Or supply critical components for a single prototype. Or deliver a wide range of off-the-shelf components, often within 24 hours.

Your local Avantek sales engineer can help you get the jump on the market today Call:

1-800-AVANTEK.

DAVANTEK

为
yinis

$$
2
$$

(1)"

2020)

$=1^{2}$

TECHNOLOGY NEWSLETTER

the company tries to compensate for the higher power is by giving the designer four speed/ power options for most cells in the library. Thus, designers can optimize for gate delays as short as 215 ps for lightly loaded gates or power dissipations as low as $6 \mu \mathrm{~W} / \mathrm{MHz} /$ gate. A double-metal process currently used by Toshiba on its arrays limits gate utilization to approximately 40% of the total gate count, yielding about 120,000 usable gates from the 302,000 -gate chip. The company is developing a triple-level-metal process to improve the on-chip interconnection ability. Typical gate delays are about 300 ps for a lightly loaded gate. For details, contact Mitsubishi at (408) 730-5900, and Toshiba at (408) 733-3223. DB

SOFTWARE AUTOMATICALLY Inserts JTAG Test Logic er, its often difficult to backtrack and add that logic in. The release of a software package, NetTag, by Gould AMI Semiconductors Inc., Pocatello, Idaho, now eliminates the retrofitting headache. It claims to be the first commercial package (used with the company's own ASIC cell library) to automate the insertion of boundary-scan circuitry, the test-access-port controller, and the four or five dedicated test pins. The software can also automatically serialize the parallel functional-test patterns. By automating the scan insertion, substantial time can be saved in bringing a chip to market. It also simplifies the "design-for-test" issues during chip development. The NetTag package is part of the company's expert system design environment that includes the established NetTrans package, a universal net-list translator, and NetScan, a scan-path insertion and test-generation tool. All three tools can be used together to import a design from another library, insert internal scan-path logic, and then add 1149.1 boundary-scan logic. Contact Mark Alexander at (209) 586-7422. DB been developed by Germanium Power Devices, Andover, Mass. These diodes have lower voltage drops than silicon Schottky diodes. At $25^{\circ} \mathrm{C}$, a typical germanium device has forward drops of $0.28,0.36$, and 0.42 V at forward currents of 20,60 , and 100 A , respectively. In comparison, equivalent silicon rectifiers at the same currents show forward drops of $0.4,0.54$, and 0.65 , respectively. What's more, at $100^{\circ} \mathrm{C}$, the diodes' forwardvoltage drop decreases by another 0.1 V , while silicon's forward drop changes little at elevated temperatures, according to Germanium Power Devices president Oliver Ward. The low forward drop is the result of germanium's lower bandgap, as well as the company's advanced processing techniques. The diode chips, which measure 200 mils on a side, will find homes as the output rectifiers in high-current, low-voltage (5 V and below) switching power supplies, as well as in the "ORing" circuits used when the supplies are paralleled. For additional information, call Rick Kassiotis at (508) 475-5982. FG

A non-woven, paper-based substrate made from 100% aramid fiber promises significant performance advantages compared with existing fiber-glass substrates for printed-wiring boards. Lower dielectric constants, a smoother mounting surface, uniform thickness, and lighter-weight boards can be made with the Thermount reinforcement material from DuPont Electronics, Wilmington, Del. Now in its final development stage, the material will particularly suit boards with high circuit and package densities, using fine-pitch surface-mounted devices or direct-chip-attach assemblies. Call DuPont at (800) $453-8527$, ext. 10. DM

Abstract

Get 33 MFLOPS From A Sparcstation

The arrival of an enhancement board will help users upgrade their SBus-compatible computers. The Spirit-30 DSP boards developed by Sonitech International Inc., Wellesley, Mass., can perform up to a 33 MFLOPS for real-time signal processing or application acceleration. Without the board, a Sparcstation 2 typically processes about 4 MFLOPS. The Spirit-30, designed around Texas Instruments' TMS320C30 DSP chip, plugs into one SBus slot. Up to eight Spirit-30 boards can be daisy-chained together to further increase performance. Each board transfers data over the SBus through its 32-bit interface at $25 \mathrm{Mbytes} / \mathrm{s}$, and they carry from 256 kbytes to 2 Mbytes of zero-wait-state static RAM. It also dissipates 8 W of power. Application-specific modules are accepted to link with audio and video sources. The company's next generation of boards, due out in about three months, will upgrade to TI's TMS320C40 processor. $R N$

THE MEGABIT E ${ }^{2}$ WITH OPTIONS

Now you can choose the exact megabit $\mathrm{E}^{2} \mathrm{PROM}$ to meet your system needs. You don't have to design around your suppliers' shortcomings ever again. Our new megabit family can satisfy every system requirement. Call it the megabit E^{2} with options. Look:

OPTION 1
ORGANIZATIONS
$\square 128 \mathrm{~K}$ by 8 AT28C010
$\square 64 \mathrm{~K}$ by 16 AT28C1024

OPTION 2

PACKAGES
\square DIP
\square LCC
\square Flatpack
\square TAB

OPTION 3 ENVIRONMENTS \square Industrial \square Commercial Military Space

No matter what options you need, our megabit E2PROMs run as fast as 120 nanoseconds, have 300 microamp standby power, up to 100,000 write cycle endurance, individual byte programmability and on-chip error detection and correction. And, as with everything we make, they are available processed to MIL STD 883C.

So, if you want the megabit E2PROM designed for your system, in volume now, call Atmel.

HP's SoftBench: A tool integration framework and a program construction toolset.

HP Branch Validator: Provides accurate branch information quickly and easily, reducing software test time while increasing confidence.

Interleaf Technical Publishing Software: A documentation software and management system that features integrated text and graphics.

VERIL

Cadre Teamwork: A family of
tools that implement system analysis and software design methodologies.

BestCA

McCabe Test Tools: An automated software testing and reverse engineering application.

Verilog LOGISCOPE: Automated testing of source code analysis for reverse engineering.

Saber-C: A set of integrated tools for development, testing, maintaining and debugging C programs.

SEscenario.

Softool Corporation CCC: A complete, automated solution for change control and configuration management.

Frame FrameMaker*: Easy-to-use text, graphics, and layout tools for documentation.

CaseWare ${ }^{\circ}$ AMPLIFY ${ }^{\circ}$ CONTROL: A graphic development environment and configuration management system based upon an open architecture.

Apollo DSEE: Offers unequaled software development support and configuration management for complex, team-oriented projects.

IDE Software Through Pictures*: Integrated tools for improving software quality that emphasize systems analysis and software design.

How can you make sure that your software release dates don't slip? That defects are discovered sooner rather than later? That your team has the most up-to-date tools?
Hewlett-Packard's SoftBench, that's how.
SoftBench is a tool integration platform, with its own toolset. It provides a common user interface, tool communication and distributed computing
services. And you can integrate your own or third-party tools into SoftBench.
These software suppliers and SoftBench are key elements of our CASEdge program. Together, we offer a broad selection of development tools. They help automate the specification, design, implementation, debugging and maintenance processes.
This streamlines your entire CASE environment, while protecting your
investment, lowering your development costs and improving your time to market.
For more information, call us at 1-800-637-7740, Ext. 2202. We'll show you the best CASE scenario in the industry.

Improved Cabling Schemes Tare The Maybes 0ut 0f SCSI

The least-controllable portion of the Small Computer Systems Interface (SCSI) stan-dard-the cables that connect the drives to the system or host adapter-has been showered with much attention lately. This is because those cables now are the major performancelimiting bottleneck. The bottleneck has become more apparent as designers try to implement heavily loaded systems with 5 Mbyte/s data-transfer rates over byte-wide channels, or $10 \mathrm{Mbytes} / \mathrm{s}$ and faster over 16-bit-wide paths.
To try and make the upgrades as painless and smooth as possible, members of the X3T9.2 task group within the SCSI standardization committee
recently completed several theoretical and experimental studies on cable designs. Those studies are changing several existing conceptions, while clarifying others. But most important, the study has resulted in a set of cabling guidelines to help companies implement reliable, longer, higher-speed sin-gle-ended connections. The guidelines include the proper relationship of ca-ble-to-terminator impedance, cable signal attenuation, clock line isolation from data and parity lines within the cable, and improving the active signal negation of the line-driver circuits.
Single-ended cabling has been a focal point of the committee. Its lower cost, lower power, and reduced
chip count give it a vastly greater market share than the more noise-immune differential cabling scheme. Because the measured cable impedance is much lower in single-ended mode than in differential mode, it must be specified appropriately to its intended use.

One important result of the studies is a "standard" or recommended design for a shielded, twisted-pair cable that meets most needs of both single-ended and differential SCSI systems. That cable, which is also practical for customized assemblies, is reasonably economical and widely available from quality cable suppliers. With such a cable, good operation of fully loaded single-ended SCSI buses can be obtained for cable lengths well above 6 meters in both the asynchronous or synchronous modes.

Additional testing is now being done to establish requirements for the fast SCSI (10 Mtransfers/s) interface. Even more improvements are expected as forthcoming SCSI protocol chips include activenegation drivers (rather than the prevalent release-on-negation drivers). Extensive use of controlledrate ramping in the drivers will also improve bus performance by reducing overshoot and ringing. Furthermore, similar benefits may come from using clamp diodes in the terminators, a scheme that IBM has proposed at the most recent committee meeting.

One of the major problems with the single-ended SCSI is the double-clocking of the Request or Acknowledge signals due to noise coupled from data-line switching. One recommended solution provides crosstalk isolation within the cable by placing the $\overline{\mathrm{REQ}}$ and $\overline{\mathrm{ACK}}$ signal pairs in the core of the cable, and the data and parity pairs in the outer layer. That allows for a buffer layer of inactive-signal pairs during data transfers in between the data and parity signals and the REQ and $\overline{\text { ACK }}$ signals. However, to build such cables requires a level of assembly control that's not widely employed in the industry today. It also requires an 18 -pair outer layer in the new " P " cable standard (the P cable is a 16 -bit single-cable interface defined by the X3T9.2 committee).
The biggest problem, though, is the large asymmetry of received signals in single-ended cabling schemes. It turns out that such problems are best

RITTAL Is Going To Change The Way You Think About Enclosures.

CIRCLE 129
RITTAL Corporation
P.O. Box 1284

3100 Upper Valley Pike
Springifield, OH 45504
Phone: 1-1-800)-477-4000
Fax: (513) $328-5299$
dealt with if the single-ended cable impedance is less than the impedance of the terminator by about 25%. The original $220 / 330-\Omega$ re-sistor-network terminators, with an impedance of 132Ω, work best with cables whose single-ended impedance is in the range of 100Ω. The only widely used cable of that type is the 0.050 -in. pitch AWG 28 PVC coated ribbon cables. But buses employing the AWG 28 PVC coated cables are typically so short that they don't require optimized terminator impedance matching.
For longer buses, shielded twisted-pair cables can be had with impedances of up to 90Ω. Most of these cables, which have excellent performance characteristics (low loss, low delay), typically employ foamed dielectrics $(100 \Omega$ if AWG 30 conductors are used). The foam dielectric, however, may be difficult to handle for many cable assemblers who prefer the solid-dielectric cables.
To create the best solution, the committee developed a way to take advantage of the lower impedance and better control of open-circuit voltage of the $110-\Omega$ regulated terminator (see the figure). The control scheme is being introduced as part of the SCSI-2 standard and now in full commercial production. It's ideally matched to the so-called $80-\Omega$ SCSI-standard-round-shieldedcable stock and to the 0.025 -in pitch AWG 30 PVC flat-ribbon-cable stock preferred for the high-density SCSI connectors. And, unlike the original $220 / 330-\Omega$ terminators, its performance doesn't change if the Terminator Power line
voltage changes on the SCSI bus.

The $110-\Omega$ terminator also works well with the $90-$ Ω cables. Several companies have successfully used that combination. For better impedance matching of the $110-\Omega$ terminator and the $0.050-\mathrm{in} .-\mathrm{pitch}$ ribbon cable, PVC insulation and AWG 26 conductors can be specified. But in long twisted-pair round shielded cables, PVC insulation produces unacceptably low impedance and high attenuation cables.
The previously mentioned $80-\Omega$ SCSI standard cable incorporates 25 twisted pairs of AWG 28 conductors, $7 / 36$ stranded, with solid polyolefin (poly-
propylene or polyethylene) insulation to 0.033 -to- 0.025 diameter. That bundle of cables is wrapped in a po-lyolefin-based tape buffer layer, which provides a low-capacitance isolation of the outer pairs from the overall shield layers.
Examples of such cables include the Astro model 52 -107-C, Berk-Tek 271212, C\&M C801/25, Hitachi 8213, Madison 4099 and 4179, Montrose 7251, and NEK J0517-1. They have single-ended impedances of about 80Ω and differential impedances of 120Ω, and their attenuations of the SCSI signals are acceptably low. The cable performance can still be poor if the cable manufac-
turer doesn't pay attention to small details, such as making sure the twist pitch of the twisted-wire pairs is uniform so that signal skew down the cable is minimized.

The new cabling information will be included in the upcoming SCSI-3 parallel interface draft document that's scheduled to be available in June from Global Engineering Documents (800) 854-7179, or (714) 261-1455. For details about participating on the SCSI-3 project, contact John Lohmeyer of NCR Corp., Wichita, Kans., chairman of the X3T9.2 committee, at (316) 6368703.

DAVE BURSKY

Programmable To 15 MHz, Continuous-Time Gm/C Filters Move T0 CMOS

Voltage-programmable, continuous-time IC filters have been built by academia, and described at conferences like ISSCC, for at least 10 years. However, the first commercial devices appeared just last year from International Microelectronic Products (IMP), San Jose, Calif., and Silicon Systems Inc. (SSI), Tustin, Calif. (electronic desIGn, Feb. 8, 1990, p. 43). Now it looks like their time has come. At next month's Custom IC Conference (CICC) in San Diego (May 12-15), SSI will describe a new bipolar IC filter that has cutoff frequencies programmable between 2 and 10 MHz . The company recently announced another four frequencies between 1.5 and 8 MHz . IMP, on the other hand, has now built a new one in CMOS.
To date, all of these fil-
ters aim at the read-channel circuits for signals coming off magnetic media, particularly from hard disks employing constantdensity (zone-bit) recording. However, IMP feels that the architecture of its latest device (the first of a family) lends itself to gen-eral-purpose applications including image enhancement, antialiasing, and telecommunications. The filter uses a Gm / C architecture, and the cutoff frequency of its biquads can be digitally programmed from 1.5 to 15 MHz .

A Gm / C filter starts with a transconductance (Gm) amplifier, adds an integrating capacitor (C) to the output, and provides feedback from output to input. A filter pole is created at $-\mathrm{Gm} / \mathrm{C}$. Changing the amplifier's transconductance by changing its dc bias, or changing the load
capacitance, changes the filter's cutoff frequency. Low-, high- and all-pass filters can be built and individual stages cascaded to provide additional attenuation, and/or to create bandpass or band-reject responses. Virtually all common filter topologies (Butterworth, Chebyshev, Bessel) are practical.
IMP's IMP4255 contains a sixth-order low-pass Bessel section, a fourth-order all-pass section, and a pulse-slimming section that can be looked upon as an adjustable high-frequency boost stage capable of providing up to 9 dB of gain. Bessel filters are known for their slow, smooth roll-off, which results in minimum overshoot when handling pulses and linear-phase response in the frequency domain. The latter can also be expressed as minimum,

Count On IDT

The R3001 RISController:
 The Embedded Processing Solution

IDTs FCT-T Logic Family is the fastest logic family available and has the lowest ground bounce-up to 40% less than previous FCT devices! The FCT-T family provides direct TIL logic compatibility and is available in FCT, FCT-AT, and FCT-CT speeds. Call today for IIT CODE 0091C and get a copy of the High-Speed CMOS
Logic Design Guide.

IDT Subsystem Modules: Building Blocks for the '90s

IDT offers a complete line of board-level subsystem products, including cache memory, shared-port memory, writable control store, RISC CPU, high integration modules, and custom designs for specific applications. Call today for KIT CODE 0091 and receive technical. data and a free IDT puzzle!

BiCEMOS ${ }^{\text {m }}$ ECL SRAMS:

Technology for the '90s

IDT's cache tag SRAMs have the features you want to design in: single-pin block reset, totem-pole match output, 4 K and 8 K depths, industry standard pinouts, and an on-board comparator to simplify design. Call and ask for KIT CODE 0091 F to get free
samples of the IDT6178 cache tag.

Contact us today to receive data sheets and other design information on IDT's products.

(800) 345-7015
 FAX: 408-492-8454

TECHNOLOGY ADVANCES

differential group delay. It runs just 1 ns maximum from 1.5 to 15 MHz with the all-pass section (which can add phase correction) disabled. Coarse cutoff-frequency adjustment is made by switching the capacitance at the output of each Gm / C stage. For fine adjustment, each stage's dc bias is altered.

At the heart of the chip is a digital phase-lock loop (PLL). Its tuning element is a Gm / C biquad, identical to those forming the filter. The PLL tracks a reference clock from the host. The dc output of the PLL is applied to the bias inputs of the Gm / C amplifiers and the output of the up-down counter in the PLL switches their load capacitors as
it switches the capacitors in its biquad to track the reference clock. A frequency divider, located between the reference-clock input and the PLL, is also controlled by the serial I/O to further program the filter's cutoff frequencies. Each section's response is independently variable from 0.12 to 1.5 times the reference-clock frequency. The PLL ensures that changes in amplifier Gm or load capacitance, with temperature, time, or supply voltage, will not change performance-particularly cutoff frequency.

The IMP4255 runs off a 5 -V rail and comes in a 16 pin SOIC and a DIP. In lots of 1-99, pricing starts at $\$ 15$ each. An evaluation sys-
tem for the filter (and future family members), and filter-synthesis software, will soon be available. Call

Michele Drgon at IMP, (408) 434-9100, or SSI at 1 (800) 624-8999 ext. 151.

FRANK GOODENOUGH

Budget-Priced Chip Design Tools Tackle Cell-Based ICS

Designing semicustom chips usually requires a budget of many tens of thousands of dollars for CAE software. Now a combination of university research and development efforts has yielded a low-cost software-tool package, called Oasis, that can perform cell-based chip designs using a topdown methodology with synchronous circuitry. The tools, developed at the University of North Carolina
at Chapel Hill, the North Carolina State University at Raleigh, the MCNC at Research Triangle Park, N.C., among others, include a compiler and logic synthesizer, a simulator and verifier, an automatic-test-pattern generator, and an automatic layout generator.

Offered on a site license for just $\$ 3000$, and a $\$ 2000$ / year maintenance contract (maintenance price is for four seats; support for ad-

Helping you design power in without risking

TECHNOLOGY ADVANCES

ditional seats costs $\$ 500$ per seat), the software allows designers with little design experience to create CMOS chips with complexities from a few thousand transistors to over half a million devices. Typical designs implemented in $1.25-\mu \mathrm{m}$ technology are a 137,000-transistor chip that runs at 25 MHz , and in $0.8-\mu \mathrm{m}$ technology, a 594,000-transistor chip that runs at 40 MHz .

Included in the bundle of tools is a design-flow manager, Decol, that provides a template-driven user interface. Six packages for compilation and logic synthesis include: Logic3, a compiler and linker of synthesized blocks; Diet, a state-assignment optimiz-
er; Espresso2.3, a minimizer of two-level logic; Decaf, a synthesizer and optimizer of multilevel net lists; Crisp, an identifier and remover of redundancies; and Mcmap, a technology mapper for area or delay.

Once the logic is ready, another bundle of tools takes over. They include rule checkers, testability predictors, fault simulators, test-pattern generators, and test-pattern weight optimizers. Mixedlevel simulation and verification tools handle criticalpath timing analysis, layout extraction, and verification of hardware descriptions before final layout is done with a quadrisection-based cell placer and router.

The design can be captured with Logic-3, a Pas-cal-like programming language that combines functional and structural descriptions. The functional description specifies finitestate machines and decoding logic that can be synthesized into circuit structures with logic-synthesis software. Scan-path logic can be inserted into every synthesized block.

In addition, the system can accept logic blocks designed on other software systems. Such blocks, however, must be manually interconnected to the rest of the logic. Data-path logic can also be synthesized hierarchically from parameterized structural and functional descriptions of
subcomponents.
Following design verification, test-generation tools determine the fault coverage at the gate level. Automatic placement and routing are performed after the circuit meets the design specifications, and final performance verification is based on the circuit extracted from the mask data. The Oasis 1.0 software runs under Unix 4.3 BSD; SunOS, the Sun operating system; and Ultrix. It can be installed on VAX8650, DEC3100, Con-vex-C1/2, Sun 3, and Sun 4 platforms. Software licenses can be obtained from the Software distribution office at MCNC. Call (919) 248-1969.

DAVE BURSKY

power outs.

That's AT\&T "Customerizing."

AT\&T's DC/DC Board Mounted Power Modules are designed for applications demanding the utmost in reliability.

AT\&T's Power Modules handle a -40° to $+85^{\circ}$ temperature range. Provide a mean time between failures of over 1 million hours. And are hot-pluggable in parallel, for service or replacement without any system disruption. That's what we mean by "Customerizing."

Utilized in distributed power architecture, AT\&T's DC/DC modules can offer affordable $\mathrm{N}+1$ redundancy made possible by our high volume manufacturing.

With 48 V becoming the standard bus voltage for EDP systems, AT\&T's 48V telecomm experience positions us to offer you unique support.
And we offer a wide range of devices from 0.5-150W; with a variety of input ($18 \mathrm{~V}-72 \mathrm{~V}$) and output (2 V -up) voltages, all featuring EMI compliance with FCC level A.

For a catalog on what AT\&T's DC/DC modules can do for your telecomm, EDP and ATE applications, call AT\&T at 1800 372-2447, Ext. 629. In Canada, call 1800 553-2448, Ext. 629. Also available through Hamilton/Avnet or Lex Electronics.

(ACTUAL SCHEMATIC OF OUR NEW

At 10 nanoseconds, the new BiCMOS 64K SRAMs from Samsung are the fastest made.

So fast you might think you couldn't even see them.

But see them you can. As one of the world's true manufacturing giants, we can assure you
of extremely reliable, highquality chips-now.

Adding to our current line of ultra-fast 8 Kx 8 and 16 Kx 4 SRAMs, we'll soon introduce an innovative BiCMOS 256 K family-also tremendously fast, and featuring address latches

THE SAMSUNG BiCMOS SRAMs
Part Number Ory. Packages Speea
км68B65 8K×8 SOJ, DIP $10,12,15,20$ ns
KM64B65,66,67" $16 \mathrm{Kx} \times 4$ SOJ, DIP $10,12,15,20$ ns
for still-higher performance.
The Samsung BiCMOS parts will soon be joined by fast SRAMs in the 1-meg density. All

IO-NANOSECOND 64K SRAM.)

of which will join our remarkable existing line of SRAMs. These currently produced parts include fast SRAMs up to 256 K , and slow SRAMs up to 1 meg.

What all these things tell you is that, at Samsung, we're continuing to build on a genuine
commitment to the SRAM market. And that's extremely significant for your access to supply.

For data sheets on the fastest 64K BiCMOS SRAMs made, call 1-800-423-7364 or 408-954-7229 today. Or write to CIRCLE 138

SRAM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.

We'll send you the real block diagram.

SAMSUNG
Semiconductor

It is logical to choose the bus architecture that will deliver the greatest return on your development investment, for the longest possible time. - Today's Multibus II not only gets you to market quickly, with higher performance and superior reliability. But of all available buses, only Multibus II provides the performance headroom to effectively absorb silicon advances through the 1990s, to protect your investment long into the future. - During the past year Multibus II has grown faster than any other open architecture. One third more
vendors have expanded the range of available Multibus II boards, systems, software and packaging products by nearly 40 percent! - You can explore the world of Multibus II with your free copy of the new 1991

Multibus II Product Directory. Just send your business card to the MMG. And, contact the enterprising manufacturers listed below for complete information on Multibus II products that will transport you into the future. - Discover Multibus II. Your application will live long. And you will prosper.

CONCURRENT TECHNOLOGIES
Jerry Hoffman 217.356-7004 FAX 217.356.6238
NEW! 486 CPU Board/Communications Controller
INTEL
Call $800 \cdot 548 \cdot 4725$
NEW! High integration 33 MHz i486 CPU board
MENTEC
Ralph Shaw 800.446.6762 FAX 614.548.6184 NEW! 860 -based SBC running UNIX System V Rel. 4 NEW! Scalar CPU board with Hard-Realtime Unix

IC Controller Uses A New Topology For 250- To 2500-W Switchers To Boost Efficiency And Cut Size And Cost.

 Phase Modulation Cuts LaRGeSWITCHER LOSSES
Frank Goodenough

0ver the last several years, res-onant-mode operation has been the preeminent innovation in switching power supplies. By offering zero-voltage and zero-current switching topologies, the technique cut switching losses, thus creating high-density supplies. Reducing these switching losses eased the job of building higher-frequency switchers, which raises power density by cutting the size of magnetic and capacitive components.

But as total output power climbs above 400 W, many supplies employ a full-bridge pulse-width-modulated (PWM) design with four MOSFET switches instead of using one or two switches (Fig. 1). To date, most of these supplies operate below 100 kHz . And while low-loss full-bridge resonant-mode topologies have appeared, their operation has been limited in designs above 200 W . This is where phase modulation enters under the aegis of Micro Linear's controller IC, the ML4818.

Phase modulation is a new topology that features zero-voltage switching. In other words, the drain-to-source voltage of the MOSFET switch is zero when the gate of each n -channel FET is driven positive to turn it on. Phase modulation couples the low switching losses of resonant-mode designs with the efficient power transfer and constant-frequency operation of pulse-width modulation (PWM). It's often called soft switching because the transitions are resonant, but the power-transfer waveforms are basically square waves with flat tops. Phase modulation will find its major applications in highdensity switching power supplies with output power between 250 and 2500 W .

The ML4818, which can operate to over 1 MHz , typically increases the power density of today's switchers by at least 50%. By changing topologies, for example, a $400-\mathrm{W}$ supply now switching at 100 kHz can move to 500 kHz . A move to phase modulation can also cut material cost, as well as design time.

Unlike resonant-mode operation, phase modulation doesn't demand the use of MOSFETs with peak voltage and current ratings

PHASE-MODULATED CONTROLLERIC

as much as four times those used in conventional square-wave PWM designs (see the table). Low-power switchers, which typically use one 50 -cent switch, may be able to accept the added cost of resonant-mode operation (a $\$ 1.25$ switch) to gain the smaller size offered by the topology. However, because most $250-\mathrm{W}$ or larger supplies use a full-bridge topology, the compromise is more difficult at higher power. In these supplies, four FETS, rather than one that's initially more expensive (high-er-power), would have to be replaced with still more expensive devices.

On the other hand, because the cost of power FETs has dropped so dramatically, it may now be economical to move lower-power switchers (less than 200 W) from a two-switch resonant-mode topology to a fullbridge phase-modulated design. That is, use four much less-expensive FETs (lower voltage and current ratings) to replace the two devices required by a resonant-mode design.

Cross A Busy Bridge

A phase-modulated supply regulates its output voltage by controlling the phase relationship between the square waves driving each side of the supply's power transformer, points A and B (Figs. 1 and 2). If they're in phase, there's no voltage across the transformer and no power is delivered to it or to the load. If the waveforms at points A and B are 90° out of phase, 50% power is delivered to the load (Fig. 2, again). If they're 180° out of phase, maximum power is delivered. Power cycles will alternate: First A is high and B is low, then B is high and A is low.

The power cycle begins with a rising ramp at time T_{0}. Controller outputs A-2 and B-1 are high, therefore FETs Q_{2} and Q_{1} are on. When power is delivered through the transformer to the load, the following sequence of events takes place:

1. At time T_{1}, the controller's phasemodulation comparator trips due to the rising ramp on its plus input, or the current-limit comparator trips first due to a fault. The B-1 line goes low, turning off Q_{2}. With Q_{2} off, the

Feature	Topology			
	Square-wave PWM (full bridge)	Resonant mode		Phase modulation
		Zero-voltage switching	Zero-current switching	
Usable to $\mathrm{f}_{\text {MAX }}$ of:	200 kHz	3 MHz	1 MHz	2 MHz
Major switchingloss mechanism	$\begin{aligned} & 1 / 2 \mathrm{LI}^{2} f \\ & 1 / 2 \mathrm{CV}^{2} \mathrm{f} \end{aligned}$	None	$1 / 2 \mathrm{CV}^{2} \mathrm{f}$	None
Switch peakcurrent rating	$1.1 \times \mathrm{I}_{\text {AVG }}$	$1.5 \times \mathrm{I}_{\text {AVG }}$	3×1 AVG	$1.2 \times I_{\text {AVG }}$
Switch peakvoltage rating	$V_{\text {IN }}$	$4 \times \mathrm{V}_{\text {IN }}$	$2 \times \mathrm{V}_{\text {IN }}$	$V_{\text {IN }}$

drain-to source parasitic capacitances of Q_{2} and Q_{3} are charged to $V_{\text {in }}$ (which may be hundreds of volts) by the leakage-inductance's current, $\mathrm{I}_{\text {leakage }}$.
2. After $\mathrm{T}_{\text {delay }}$, B-2 goes high at time T_{2}. Then Q_{3} 's source-to-drain capacitance is charged to V_{in}, turning on Q_{3} while it has zero voltage across it-zero-voltage switching. The transformer is now effectively shorted through Q_{1} and Q_{3}, enabling $I_{\text {leakage }}$ to recirculate through the two transistors via their common source connection at $V_{\text {in }}$.
3. Next, the controller's Clock goes high at time T_{3}, taking A-2 low. Line A-1 remains low for $T_{\text {delay }}$. During this time period, both Q_{1} and Q_{4} are off. Now $I_{\text {leakage }}$ discharges the parasitic drain-to-source capacitances of Q_{1} and Q_{4} until there's zero volts between the drain and source of Q_{4}. In addition, the clock starts the discharge of the ramp capacitor at T_{3}, causing the ramp to start falling.
4. After $\mathrm{T}_{\text {delay }}$, A-1 goes high at time T_{4}, turning on Q_{4} while it has zero volts across it. Now Q_{4} and Q_{3} are both turned on, creating a voltage across the transformer and delivering power to the load.
5. At time $\mathrm{T}_{5}, \mathrm{~B}-2$ goes low and the sequence of events is repeated, except that the polarity of each output and the direction of each transition are reversed.

With an understanding of how phase-modulated switching regulators work, the features of the topology and the ML4818 should be explored. To start with, the MOSFET switches are fully clamped. That is,
they need only be rated at V_{in}. Moreover, they don't require snubbers. Constant-frequency operation, impossible with resonant supplies up to now, not only simplifies filtering, but can also synchronize multiple sup-

APRIL 25, 1991

PHASE-MODULATED CONTROLLER IC

plies. Potential beat notes, which can cause havoc with analog signals and even with data, are thus eliminated.

The lossless switching at zero volts represents one of those rare occasions where you get something for nothing. The usually wasted energy stored in the transformer's leakage and magnetizing inductance drives the voltage across each switch to zero before the next switch is even allowed to turn on. As a result, there's no charge dumping, and losses due to Miller-capacitance turn-on delays are reduced.

Charge dumping is caused by the MOSFET's output capacitance $\mathrm{C}_{\text {out }}$ (Fig. 3). The power lost with non-zero-voltage switching equals $\mathrm{C}_{\text {out }} \mathrm{V}^{2} \mathrm{f}$, where V is the supply volt-
age $V_{\text {in }}$ and f is the switching frequency. This power loss can be significant in supplies with high input voltages, such as off-line switchers operating at high frequencies. Running one standard IRF450 MOSFET at 350 V while switching at 500 kHz results in a charge-dumping loss of 20 W , which becomes 40 W switching at 1 MHz .

In most MOSFET switching circuits, the FET's drain-to-gate or Miller capacitance must be fully charged to get the FET fully into saturation. This charging current (power) comes from the gate-drive circuit. The time needed to charge the Miller capacitance slows FET turn-on, raising switching losses. However, during zero-voltage switching, the FET
turns on with a drain-to-source voltage of zero. None of the gate drive is wasted charging Miller capacitance.

Because resonant supplies shuttle more current through their passive parts than they transfer (dissipating power in the process), internal rms and peak currents run substantially higher than the de currents delivered to the load. Phase modulation, on the other hand, offers energy transfer similar to PWM designs. In addition, whereas resonant-mode supplies generally require a minimum load (often as much as 10% of full load), phase-modulated switchers can always run at zero load. Finally, unlike some topologies, this new one doesn't limit designers to just volt-age-mode operation. It also handles

1. A PHASE-MODULATED switching-regulator controller, Micro Linear's ML4818 modulates the relative phase of square waves
applied across the power transformer (points A and B). The modulation regulates the output voltage of the full-bridge switching power supply.

Keeping reliabilityup as form factors go down.

THIS IS AMP TODAY.

. 050 CL, leaf-contact design

In today's tight-corner designs, reliability all too often depends on precise (and costly) manufacturing practices. Our CHAMP . 050 connectors weigh in on your side with economic simplicity, and inherently tolerant contacts.
Overview: 0.050 " centers, trapezoidal interface, dual-row leaf-contact design. Small, friendly, and forgiving.
Board-to-board: our proprietary compliant-receptacle, fixed-plug contact system tolerates wide mat-
ing depth variations that come with pcb warp-happy news for high-line-count designs-and offers superior performance in assembly, especially in blind-mate applications. Parallel, perpendicular, and in-line styles, 30-200 positions.

Shielded I/0: here, compliant plug and receptacle contacts take full advantage of the controlled header-to-plug interface to meet emerging global intermateability standards. Shielded receptacles and
plugs provide EMI protection. Mass IDC termination and fast braid crimp keep production rates up; AMP tooling covers your volume requirements. 14-100 positions.

The CHAMP . 050 high-density line: think of it as a very big factor in small-form design. For details, call our Product Information Center toll-free at 1-800-522-6752 (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

PHASE-MODULATED CONTROLLERIC

current-mode switching as well.
The ML4818 takes full advantage of what the phase-modulation topology offers, and provides all of the safety features expected from today's controllers. To start, the ML4818's four totem-pole outputs are rated at minimum peak currents of 1.5 A (500 mA continuous). They easily charge a FET's $1000-\mathrm{pF}$ input capacitance to 12 V in just 60 ns maximum. Because the topology handles both voltage and current modes, the controller is equipped to do likewise. For the voltage mode, pin 3 (the ramp pin) should be connected to the current source from the oscillator (pin 2). The current source charges the ramp capacitor (Fig. 1, again). Alternatively, the ramp pin should be connected to a voltage proportional to switch current for current-mode operation. Such a voltage can be obtained across the current-sense resistor with current transformers in series with the FETs, or from senseFETs if available in the voltage and current ratings required.

There are several safety features to protect the switches. They include cycle-by-cycle current limiting with integrating fault detection, soft start, undervoltage lockout, and the ability to shutdown the controller
and supply in microseconds with an external signal (for example, if the system catches fire).
Current limiting starts when the current sensed on pin 4 (the currentlimit comparator's plus input) reaches 1 V . The compara-

3. PHASE-MODULATED CONTROL of a
switching regulator increases switching efficiency by reducing charge dumping and Miller-capacitance losses. tor fires, thus terminating the power cycle through QRS flip-flop \#1. QRS flip-flop \#2 then turns on current source I_{2} to charge $\mathrm{C}_{\mathrm{RST}}$ (pin 12). I_{2} stays on for the duration of the clock period. When charged to 2.3 V , the soft-start comparator triggers and initiates a soft-start reset. The number of times the cycle is terminated due to overcurrent conditions is "remembered" on $\mathrm{C}_{\text {RST }}$. Over time, if not continuously charged, the capacitor is discharged by the parallel resistor.

Because the per-power-cycle charge on $\mathrm{C}_{\text {RST }}$ is directly proportional to how early the reset takes place in the power cycle, a reset is triggered more quickly under short-circuit conditions than during a load surge. This technique is the way most circuit breakers work, and is

2. IN A FULL-BRIDGE phase-modulated switching regulator, power is delivered to the load (shaded areas) when waveform B is high and waveform A is low, and vice versa.
called Integrating Fault Detection.
When soft-start reset occurs, the soft-start comparator's output goes high, which inhibits the totem-pole outputs (via the line to the inhibit gate) and turns on the npn transistor connected to the comparator's output. The npn transistor discharges the soft-start capacitor (which was charged by current source I_{1}). The output remains off until $\mathrm{C}_{\mathrm{RST}}$ discharges to 1.1 V , through its parallel resistor, supplying a reset delay. When the circuit starts up, the error amplifier's output voltage is limited to the voltage at pin 9, effectively limiting the duty cycle.

At power-up, the undervoltagelockout circuit keeps the reference disabled and the controller draws less than 1.1 mA through the bleeder resistor from pin 20 to $\mathrm{V}_{\text {in }}$. Current through the bleeder also charges the capacitor tied to the pin. When the capacitor is charged to 9.2 V , the circuit wakes up, the reference is enabled, and the circuit runs until the voltage drops to 8.4 V . \square

Price And Availabilty

The ML4814 comes in a 24 -pin "power" DIP. A heavy copper leadframe is used, which connects to pins $6,7,18$, and 19, the middle pins on each side; these pins are the ground pins and conduct heat to the pc board's copper foil. The device is rated for the commercial operating-temperature range. In quantities of 1000, it goes for \$7.19 each. Small quantities are in stock.
Micro Linear Corp., 2092 Concourse Dr., San Jose, CA 95131; Jon Klein, (408) 433-5200.

CIRCLE 511

How Valuable?	Circle
Highly	535
Moderately	536
Slightly	537

Increased density has challenged our engineers for quite some time.

More capability in less space. That's our goal. At Precision Interconnect we pursue it every day for the world's leading electronic equipment manufacturers.

Working with strict mechanical and electrical requirements, we design and produce complete interconnect systems. We manufacture microminiature cables with conductors as small as 42 AWG and terminate them to our standard line of Micro-D and linear strip connectors with . $050^{\prime \prime}(1.27 \mathrm{~mm})$ centerline
spacing. Custom and nano strip connectors with .025 " (. 64 mm) spacing can also be assembled. When applications require even more density, multiple flexing, or protection from harsh environments, we incorporate specific features to meet those needs.

Our expertise, increasing with each unique problem we solve, ensures that all critical components of your interconnect system are designed in, built in, and tested. And that system will be as compact and reliable as possible. Because at PI, space has always been a precious commodity.

Just give us a call.

PRECISION INTERCONNECT

SIEMENS

International Exchange.

Siemens integrated circuits help bring the world closer together with telecommunications.

Siemens is continuing to provide innovative solutions in communications which are making a sound impact, throughout the industry. And the world

We offer the most comprehensive communication IC family in the world, facilitating the incorporation of data, speech, and picture sources, to meet your applicationspecific needs.
With the development of our PEB2091 ISDN Echo Cancellation Circuit (IEC-Q), we introduced the industry's

High-integration echo cancellation transceiver for ISDN. first single-chip CMOS solution for the standardized U-interface. It can double the traffic-handling capability of existing
telephone lines. And it's ideal for transmission systems such as digital added main line and other pair gain systems and intelligent channel banks.
For applications such as cellular or full-featured telephones or line cards, which require lower power consumption, we offer CMOS 8-bit microcontrollers based
 on the 8051 architecture. , Like the SAB80C537, which features 16-bit hardware multiply/divide, and 8 data pointers.

Siemens CMOS ASIC technology features both Sea-of-Gates and stan-dard-cell families. Our 1.5, 1.0 and sub-micron technologies are compatible with Toshiba even at the GDS2 database level, for true alternate sourcing
worldwide. And they come with the European content and U.S. design support you need, as well as the best service in the industry.

ASIC solutions in both Sea-of-Gates For the most advanced and standard-cell. telecommunications ICs, hook up with the leader.
For details, call (800) 456-9229, or write:
Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514.
Ask for literature package M12A 010.

thenters

Siemens

World Wise, Market Smart.

TRIPLE-PORT DRAM PHOTO FROM MICRON TECHNOLOGY

DRAM DIVERSTIT Yields A Mevory To SuIf Any System

Dave Bursky

> Many DataPath Options And System- Control Choices Let Designers Optimize The System And Exploit DRAMS.
umn, page, and fast-page-enable the chips to deliver a burst of data at a much higher rate than the standard row-and-column addressing mode. Some of those modes can bring the subsequent accesses after the first one in the series to less than 25 ns .

In its 20 or so years of its existence, the dynamic RAM has evolved considerably to keep pace with the performance needs of the system architect. Today, there are over a dozen architectural and feature variations that memory manufacturers offer to the system designer. With the wide range of choices, designers can optimally tailor the system to match the performance, capacity, cost, and expansion granularity requirements demanded by the end application.

Today's designers are free to work with DRAMs that have 1 -, 4 -, 8 - and even 16 -bit-wide data paths, with 9 -and 18 -bit parity options coming soon from most suppliers. Memory capacities continue to increase by factors of four. As a result, most DRAM suppliers are now entering mass production of 4 -Mbit chips. Some of these companies are already giving their best customers samples of 16 -Mbit chips and expect to start large-scale sampling of 16 -Mbit chips by the end of 1991 . Foundation work and processing refinements are well under way at those same companies to develop the memory-cell structures needed for the ensuing generations of 64 - and 256 -Mbit chips (see "Making DRAMs denser," $p .52$).

Not only do designers have a choice of DRAM word widths, but they also have a choice of system features. The standard DRAM can now be had with access times of less than 55 ns . And special operating modes-static col-

The need for diversity and high-performance graphics systems also created the need for a new memory type in the early 1980s-the video RAM. First offered by Texas Instruments as a 64 -kbit chip, the architecture has been through several iterations, with densities now reaching 1 Mbit. Some versions even include image-processing logic. In addition to the standard DRAM functionality on the chip, the basic VRAM offerings contain a 4 - or 8 -bit-wide serial-access port that allows the chip to deliver an entire row of data to a video subsystem at speeds comparable to the more-costly high-speed static RAMs. On the hostsystem side, the chips appear as standard DRAMs and offer the typical 60 -to- $100-\mathrm{ns}$ access times. On the video side of the chips, however, the output looks like a fast shift register, able to shift out from 2568 -bit or 5124 -bit words at clock rates as fast as $15 \mathrm{~ns} /$ word.
Even more diversity has started evolving in DRAM architectures. Last year saw Micron's introduction of the MT43C4257, a triple-port 1-Mbit memory that contains the standard DRAM port plus two video-RAM-like 512-by-4 serial-access ports (electronic design May 24, 1990, p. 37). A slightly different organization can be seen in the MT43C8128, which has its main port appearing as a 128 -k-by- 8 DRAM and the two serial ports looking as dual 256 -by-8 ports (Fig. 1). High-density pseudo-static RAMs based on a DRAM core have also started to arrive. They offer the high density of DRAMs with close to
fully-static-RAM simplicity. Specialized file memories are appearing as well. These include DRAM chips aimed at such vertical application areas as solid-state disk drives and vid-eo-frame buffers for advanced con-sumer-TV systems. Such chips are typically designed for sequential addressing and often do not contain row- and column-address inputs.

In contrast with today's diversity, the early days of DRAMs gave designers little choice-the only option was a chip organized as n kwords by 1-bit wide. That organization persist-
ed from the 1-kbit up through the 64kbit memory capacities. At the 64kbit level, designers in the mid-tolate 1970s demanded a change, because the level of memory-expansion granularity was considered too large for most systems at the time. That granularity issue brought about the introduction of̂ 16 -kword-by-4-bit architectures.

Since its introduction, the 4-bitwide architecture has gained a significant amount of popularity. In fact, at the 4 -Mbit level, the 4 -bitwide option is expected to garner be-
tween 35% and 45% of all 4 -Mbit applications. Furthermore, at the 16 Mbit level, the by-4 organization will be the most popular word option according to most DRAM experts. Just nine chips would be needed to form a 4-Mword memory (including byte parity) for a 32-bit CPU, more than plenty by today's standards for most desktop-computing applications.

As chip capacities push to the 64Mbit range, most memory designers don't even think the bit-wide versions of the memory chips will be mass produced. Rather, the 4-bit and

1. DUAL SERIAL-ACCESS PORTS plus a standard DRAM interface enable Micron's triple-port memory to tackle more than just video-subsystem applications. The chip comes in two major versions. The one shown is organized as a $128-\mathrm{k}$-by- 8 DRAM and has dual 256 -by- 8 serial ports. Another version (not shown) is set up as $256-\mathrm{k}-\mathrm{by}-4$ and has dual $512-\mathrm{by}-4$ serial ports.
eventually byte-wide and 16-bit architectures will dominate in the mid-to-late 1990s. Furthermore, designers expect 16 -bit-wide chips to make some significant application inroads at the 64 -Mbit level. For instance, a pair of 16 - or 18 -bit-wide 16 -Mbit chips could form the entire memory of a base-model desktop computer (2 Mbytes). NEC, for instance, plans to have an entire family of 16 -bit-wide, 4-Mbit DRAMs released before the end of this year, and will follow those chips with 16 -Mbit versions in late 1992.

As graphical-user-interfaces and application programs become more complex, similarly organized 64-Mbit chips could eventually form the memory subsystem (8 Mbytes). Proving such a memory is possible, designers at the Semiconductor Research Center of Matsushita Electric Industrial Co. Ltd. in Osaka, Japan, developed a 4-M-by-16 version of a 64-Mbit DRAM. They unveiled the chip earlier this year at the International Solid-State Circuits Conference (ISSCC). By paying careful attention to power and ground busing, the 16 -bit-wide I/ O bus was kept relatively free of noise.

Most DRAM vendors are already mass-producing 1 -bit- and 4-bit-wide versions of the 1 - and 4-Mbit CMOS DRAMs. Access times are as short as 70 ns for the newer 4 -Mbit chips, and companies are promising $60-\mathrm{ns}$ samples before year's end. Fine-tuning is already in place for most 1 Mbit production lines so that $60-\mathrm{ns}$ devices are readily producible. At least one supplier, NMB Technologies, has specified a $53-\mathrm{ns}$ standardspeed grade. Some designers, though, question the need for such a high-speed grade-most high-speed systems usually have an intermediate cache memory that doesn't demand such short access times for the main memory. In some cases, of course, the main memory's speed may be fast enough using these fast

2. WITH FOUR CAS LINES rather than one, the TMS44460 from Texas Instruments can replace four 1-M-by-1 DRAMs, which are typically used to handle the parity bits on a 1-M-by-36 memory in a SIMM package.

DRAMs, thus the cache may not be needed.

For users that have the most stringent speed requirements for main memory, designers at Hitachi may have the best product-a biCMOS DRAM that offers access times as short as 30 ns . However, such memory speeds don't come free. The bicMOS DRAMs will sell for close to double the price of the fastest CMOS chips. Hitachi currently has a 1-Mbit biCMOS DRAM it offers as a commercial product, and is developing a 4-Mbit version it hopes to release in late 1991 or early 1992. An early prototype of the 4 -Mbit chip was unveiled earlier this year at ISSCC.

If that solution isn't quite what's needed, perhaps some research work by designers at Mitsubishi will lead to the answer-a cache-DRAM chip that combines DRAM and static RAM on the same piece of silicon. Although it's not yet a commercial product, the concept has its appeal. This is because a very wide bus can be formed between the two memory blocks so that many bytes can be transferred from the DRAM to the cache blocks during one cycle whenever a cache line must be refilled.

Further solutions to the speed issue led to an experimental DRAM developed by Toshiba's research lab-
oratory described earlier this year at ISSCC. The chip replaces the standard, multiplexed, row and column address signals with a direct-input address, eliminating the setup and timing delays associated with demultiplexing the address. In a laboratory setting, the CMOS chip accessed data in about 17 ns-the same speed as the experimental 4-Mbit biCMOS DRAM Hitachi described at the same conference.

In addition to the main-memory-oriented DRAMs, at least three companies have developed 16 -bit-wide DRAMs that reduce the chip clutter on PC graphics adapters. The first version, a 64-kword-by-16-bit chip, offers designers of VGA-level graphics cards a perfect fit. Just two of the DRAMs plus the VGA controller and palette digital-to-analog converter would comprise a minimum interface. Hitachi, Micron, and Toshiba were the first three to release these types of chips, and several other companies, such as NEC and Vitelic, expect to release pin-compatible devices later this year. Denser, 256-k-by- 16 chips are also on the drawing boards at a few companies for release in 1992.

Unlike the main-memory arena in which densities traditionally increased by factors of four, a few companies in the video-supportmemory area feel that designers need a 2 -Mbit memory, organized as 128 kwords by 16 bits. The memory would make the "ideal" single-chip memory for low-end VGA displays, which require 256 kbytes of storage. Hitachi, as well as other Japanese memory suppliers, are planning such chips for late 1991 release.

Several options exist with these DRAMs that can simplify video-subsystem design. Control signals on the chip in one version can offer upper or lower byte control with a fast-page-mode access mode available to move data quickly. A similar version

AnalogDevices can m needs, no matter what v

Abstract

Custom Medical Instrumentation ASICProvides complete data acquisition on a chip. Replacing 30 separate ICs, it integrates a low-noise instrumentation amp with gains of 15 to 2,000, a $50 / 60 \mathrm{~Hz}$ switched-capacitor notch filter, 11-bit a/d converter, 7 -bit d/a converter, and a serial UART communications interface.

Whether your market is a few thousand or a few million,
there's one customer demand for your product that'll
always remain high - the demand for high performance.

The best way to meet this demand is to follow what
the leaders in the medical, military and instrumentation markets have been doing for 25 years, and what the leaders in
consumer electronics have been doing for several years now. Call Analog Devices.
These companies call us because we offer a complete line of high-performance linear, digital signal processing and mixed-signal components. ICs that allow them to achieve higher levels of system integration, greater reliability, and

eetyour mixed-signal olume youre dealing in.

better performance in their products.

And as a global operation, we're able to respond
to calls from any corner of the earth. In fact, international
sales account for half of our $\$ 450$ million in revenues. And
three of the top five Japanese electronics companies rely on us for their mixed-signal needs.
So call 1-800-262-5643 and request a free copy of our recent white paper on Mixed-Signal Technology.

You'll see that no matter how big or small your mixed-signal needs are, we're

MAKING DRINS DENSER

a

b

c

Since their inception, dynamic-RAM processes and circuit structures have undergone many engineering changes. These changes aim to reduce the size of the chip, packing more cells on the chip, improving the access time, and reducing chip cost. Starting with the first-generation DRAMs and up through the 256 -kbit level, chip designers have used a lateral structure for the capacitive storage cell, which contains the charge that represents the bit condition. If there's too little charge, the bit value fades or it can be upset by an alpha-particle strike. Too much charge and the memory chip is too slow or too large to be profitable.

DRAMs have employed a single-transistor/singlecapacitor storage cell since the second-generation 16kbit chips' introduction in the late 1970s. However, that lateral cell structure isn't dense enough for generations beyond 1 or 4 Mbits because the transistor and capacitor are side-by-side to each other. Even though feature sizes dropped from the $5-\mu \mathrm{m}$ range used in the late 1970s to the deep-submicron range of $0.4 \mu \mathrm{~m}$ for the prototype $64-\mathrm{Mbit}$ parts, scaling limits have been reached for some aspects of the chip.

As the capacitor's area shrinks, so does the capacitance value. Once that value drops below about 25 fF , most memory designers would not recommend using the cell for storage. Consequently, the capacitance has apparently reached the minimum reliable value. The value dictates the area of a lateral-cell capacitor. Chip designers are, of course, looking at ways to further improve the lateral cell as well as come up with new structures that pack more capacitance per unit area.

In the effort to construct a more efficient cell, DRAM makers find themselves in two opposing celldesign camps. The first camp employs a stacked-cell structure that builds the capacitor above the control transistor using wing- or cylindrical-shaped plates (Fig. A). The other uses minute etched trenches in the silicon and forms the capacitors in those trenches (Fig. B). Both cell types have their manufacturing pros and cons. Nonetheless, both work and are manufacturable. As a result, it will be up the chip makers to answer questions about long-term reliability and cost-to-manufacture of the storage cell.

To increase the capacitance by almost 35% over the value expected from the lateral area, designers at Micron Technology Inc., Boise, Idaho, developed a roughened silicon-nitride dielectric layer in a lateral cell to increase the plate surface area; the rough surface is clearly visible through the eye of an atomicforce microscope (Fig. C). The increased surface area is approximately 35% higher than that of a smooth cell. That larger area translates into a higher storage capacitance. Micron and a number of other companies reported on their experimental findings at the 1990 IEEE International Electron Devices Meeting.

You'll like the feeling of our new digital troubleshooting scope.

Now there's a 100 MHz digital scope that handles just like analog.
Digital oscilloscopes have certain advantages that are hard to overlook. But for troubleshooting, many engineers still prefer analog scopes. Simply because they like the way they handle. The HP 54600 changes that. It looks like a 100 MHz analog scope. All primary functions are controlled directly with dedicated knobs. And it feels like one.

[^1]The display responds instantly to the slightest control change. But when it comes to troubleshooting, the HP 54600 's digital performance leaves analog and hybrid scopes in the dust. At millisecond sweep speeds, the display doesn't even flicker. Low-rep-rate signals are easy to see without a hood. It has all the advantages that only a true digital scope can provide. Like storage, high-accuracy, pretrigger viewing, hard copy output, and programming. And since it's one of HP's basic instruments, the HP 54600 gives you
all this performance at a very affordable price. Only $\$ 2,395^{*}$ for a 2 -channel scope; $\$ 2,895^{*}$ for the 4-channel version.
So, if you need the power of a digital scope, but like the feel of analog, call 1-800-752-0900. Ask for Ext. 2282, \dagger and find out how well the HP 54600 handles your troubleshooting needs.
There is a better way.

【灱
 HEWLETT
 PACKARD

[^2]with static-column access is also available. For more selective write requirements, a version with write-per-bit capability makes it possible for the video controller to handle more detailed image control.

One of only several companies to offer a fast, moderate-density bytewide DRAM, Vitelic created both a static-column and a fast-page version of a $64-\mathrm{k}$-by- 8 image memory. Aimed at the laptop market where limited colors and gray-scale levels are available, this memory may be just the right size for pocket and notebook-type computers. The chip draws just 1 mA on standby, but when accessed at its best speed of 70 ns , the chip's power drain increases to about 65 mA .

Texas Instruments offers a similar chip but at the 1-Mbit level. Its 128-k-by-8 TMS48C128 comes in versions with access times as short as 70 ns. The 48C138, which has a write-per-bit feature, also comes with a masked-write capability.

Value-Added Packaging

A secondary business evolves around DRAM chips-value-added packaging in the form of single-inline memory modules (SIMMs), and some more custom-oriented hybrids (see "Adding value to DRAMs," p. 56). For personal computers and workstations, SIMMs have become the standard format for memory expansion, especially when that memory resides on the system motherboard.

The growing popularity of SIMMs has enticed TI to develop a specialty

1-M-by-4 DRAM with four Column-Address-Strobe lines (Fig. 2). By having four CAS lines, each of the four I/O bits can be read or written individually-an ideal adjunct for a 1-M-by-36 SIMM already employing standard 1-M-by-4 DRAMs. One TMS44460 could then replace four 1-M-by-1 DRAMs that have typically been used to hold the parity bits on the SIMMs. A similar chip at the 1Mbit level, the TMS44C260, is also organized as $256-\mathrm{k}-\mathrm{by}-4$ and has four CAS lines plus all of the standard control lines.

In addition to architectural variations, new-generation DRAMs are coming with new options-special low-power modes for use in batterypowered systems and a test mode to simplify functional testing. Furthermore, as the lithography requires deep submicron features to achieve the high densities, internal electrical stresses require that the power-supply level be reduced. Both the 4 - and the 16 -Mbit generations will probably still use a 5 -V external power supply and on-chip voltage-reduction circuits to drop the internal voltages to less than 4 V (3.3 V in many cases). That lower supply voltage will also help to reduce the chip's power consumption. Most DRAM manufacturers expect the 16 -Mbit chip to be a pivotal chip for system designers. They plan to offer a version that accepts either 3.3 or 5 V externally, or in two separate options, one bonded for a $5-\mathrm{V}$ supply and the other for a 3.3-V supply.

Beyond the 16 -Mbit chip, most memory manufacturers expect to
use only a lower supply voltage than today's 5-V level (most likely is the 3.3-V standard). There are some proposals wending their way through the Joint Electron Device Engineering Council (JEDEC) committees for a sub-3-V standard, but there has yet to be an industry-wide consensus that would allow a measure to be put up for balloting.

Refresh Less Often

One way to lower a DRAM's power drain is to reduce the data-refresh rate. However, by slowing the refresh rate, more charge can potentially leak off the memory cell's storage capacitor, thus causing a bit to inadvertently change value. Rather than create a special memory chip designed specifically for a slower refresh rate, most DRAM vendors can just test chips for their leakage currents and sort out those that test extremely low.

This practice is followed by Oki Semiconductor for its first version of a low-power 4-Mbit memory. The normal-power DRAMs operate with an 8 - or $16-\mathrm{ms}$ refresh period and consume tens of milliwatts on standbya level much too high for reasonable battery backup in portable systems. By slowing the refresh rate to 128 ms , the chips draw just 0.5 mA . A more optimized version is now in development, and Oki's designers hope to reduce the drain to just $0.4 \mathrm{~mW} /$ chip. Many other companies are also working on low-power, slow-refresh DRAMs, with Toshiba probably leading the pack in that research.

It may not come as a surprise to

A SHMPIIIG OF DRAM MINUFIGTURERS

Electronic Designs Inc.	Secaucus, N.J.
Hopkinton, Mass.	(201) 348-5216
(508) 435-2341	CIRCLE 303
CIRCLE 300	
	Micron Technology Inc.
Fujitsu Microelectronics Inc.	Boise, Idaho
San Jose, Calif.	(208) 368-4000
(408) 922-9000	CIRCLE 304
CIRCLE 301	Mitsubishi Electronics
	America Inc.
Hitachi Corp.	Sunnyvale, Calif.
Brisbane, Calif.	(408) 730-5900
(415) 589-8300	CIRCLE 305
CIRCLE 302	
Matsushita Electric Corp.	Mosaic Semiconductor Inc.
(Panasonic)	San Diego, Calif.

(619) 271-4565	Oki Semiconductor Corp.	(408) 980-4500
CIRCLE 306	Sunnyvale, Calif. (408) 720-1900	CIRCLE 313
Motorola Inc.	CIRCLE 310	Texas Instruments Inc.
Austin, Texas		Dallas, Texas
(512) 928-6705	Samsung Semiconductor	(214) 995-6611
CIRCLE 307	Inc.	CIRCLE 314
	San Jose, Calif.	
NEC Corp.	(408) 434-5400	Toshiba Corp.
Mountain View, Calif.	CIRCLE 311	Irvine, Calif.
(415) 960-6000		(714) 455-2000
CIRCLE 308	Mahwah, N.J.	CIRCLE 315
NMB Technologies Inc.	CIRCLE 312	Vitelic Corp.
Chatsworth, Calif.	CIRCLE 312	San Jose, Calif.
(818) 341-3355	Siemens Components Inc.	(408) 433-6000
CIRCLE 309	Santa Clara, Calif.	CIRCLE 316

Let's talk savings.

Surface mount transistors-or even T092s used with resistors in network pairing-can be replaced with a single digital
transis-
tor from ROHM. One small SOT-25 or - 36 package can
INO-COUT
contain

Dual digital transistor circuit diagram.
Dozens of layouts available. up to two transistors and four resistors. One component provides several functions, and that means lower placement cost, higher reliability, lower component count, less real estate, and reduced inventory. Standard $V_{C E}$ ratings of 11 V to 120 V , and current ranges from 30 mA to 100 mA , are available.

Let's talk added value.

If you want maximum benefit from SMT, don't change to through-hole when it comes to LEDs. You can keep everything SMT by incorporating
 ROHM's sur face mount LEDs as indicators on your board.
Our
lineup includes single-chip LEDs in red,
orange, yellow and green; and dualchip types that give you combinations of colors. You can even get a threecolor effect with red and green chips combined to make amber.
We offer standard brightness and high luminance, lensed LEDs packaged in SOT-23s, and lensed minimolded styles. Brightness ranges from 555 to 660 nanometers.
They can turn product designs into gems.

Let's talk component density.

You need density? How about 50 components per square centimeter?

That's what we've achieved in our newest hybrid circuits, thanks to TAB packaging, fine pitch lead spacing, and screening resistors and capacitors back-to-back-directly onto the substrate to improve shielding
Not to mention some unbelievably small passive components.
Take our new MCR 01, the smallest resistor package in the world. A mere $1.0 \times 0.5 \mathrm{~mm}$, it's about the size of a grain of pepper. It occupies 60% less
space and weighs 75\% less than our MCR 03-formerly the world's smallest.

Resistance range is 5.6Ω to $1.5 \mathrm{M} \Omega$ and power dissipation is 0.063 W with a maximum 12.5 V working voltage.
We're now also offering a strong line of ceramic
 chip capacitors with package sizes as small as 0603. ($1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$). They're offered in NPO, X7R, Z5U, and Y5V dielectrics.

So when you're talking popcorn or jellybeans,

Remember that ROHM introduced SMT to this country, and was the first
 manufacturer to offer surface mount products in quantity.
And we continue to offer innovations like multiplefunction transistors, unique diode packages, surface mountable networks, and industry-leading component densities.

Call us and start a little SMallTalk of your own. We'll be happy to share some information.
most designers, but it's a little known fact that the 4-Mbit chips all have a built-in functional-test mode that's activated by pulling the Write line low and reversing the timing on
the CAS and Row-Address-Strobe (RAS) lines-CAS before RAS with Write Enable low. That sequence places the memory chip into a wideword test mode, which internally

ADDING VIIUE TO DRAMS

For a long time, the DRAM was only available in the familiar $16-, 18$-, and 20 -pin DIPs. However, as designers tried to push the memory capacity of their boards to new highs, DRAM manufacturers shoehorned the new-generation chips into J-leaded plastic flat packages, zig-zag vertical in-line packages, and most recently into the very-low-profile thin-smalloutline packages (TSOPs). With these package options, designers have enough choices when dealing with individual memory chips. But, because many memory subsystems now pack megabytes of storage, laboring at the chip level is time lost for most designers.

One surging approach involves using single-in-line memory modules (SIMMs). The SIMM concept started during a period when 256 kbit DRAMs were in short supply. At that time, system manufacturers examined ways to build systems with user-installable memory that was more rugged than the venerable DIP. If they could create such a format, they could get systems out to market faster because the systems could be sold without DRAM. But then users would have to expend the cost and time to find the scarce DRAM supplies actually in the market.

As most computer-system makers adopt the SIMM format, many of the DRAM and non-DRAM makers have started offering 8and 9 -bit (byte-wide) SIMMs and the 32 - and 36 -bit word-wide versions. Capacities range from 256 kbytes for the older SIMMs up to 8 Mbytes for the largest commercial offerings.

The chewing-gum-stick-sized SIMM is a good compromise (see the figure). It offers a rugged for-

mat that most users can deal with, and its size gives most users a reasonable level of granularity for each storage-capacity increment. Furthermore, the small SIMM card is easier to remove than individual chips when system memory must be replaced with next-capacity generation DRAMs.

SIMMs have since caught on in a big way, with most system makers employing SIMMs for their hardware, even though the memory shortages have abated. Quantity pricing for the SIMMs isn't much higher than that for individual chips for 1-Mbyte units. Quantity prices for 1-Mbit DRAMs are now between $\$ 3.50$ and $\$ 6.00$, and SIMMs containing 8 or 9 chips are typically selling for about $\$ 40$ in large quantities and about $\$ 50$ to $\$ 80$ at the retail level.
checks 8 or 16 bits at a time. If a bad bit is found, the output bit pattern alerts the tester that a more thorough test must be done on that chip. Although this mode can be activated when the chip is in a computer system, no system manufacturers have incorporated this test mode into the basic boot-test of a system for selfcorrection.

Designers at Micron, though, are warning some system designers to be careful about upgrading their boards from 1 -Mbit chips to 4 -Mbit chips. On the 1 -Mbit-generation chips, pin 1 is a "don't care" pin and reversing the CAS and RAS timing has no effect-the test mode is controlled by a super-voltage level applied to pin 1. At the 4-Mbit level, the pin must be pulled low prior to the reversed CAS-before-RAS timing applied to the chip, to initiate the test action.

When designing 1-Mbit-based systems, special attention should be paid to the state of pin 1 . It should not be tied low because if a 4-Mbit device is substituted, the pin could accidentally cause the chip to go into it's selftest mode.

There are yet other slight differences between the 1-Mbit and 4-Mbitgeneration DRAMs. Those differences have to do with power-up sequencing and the number of allowed refresh cycles.
The 1-Mbit chips typically require a 0.1-ms delay followed by any 8 RAS cycles. The 4 -Mbit specifications are somewhat more restrictive and permit a chip to respond to 8 RAS-only or Write-with-CAS-before-RAS refresh cycles. This restriction is needed to also prevent the memory from entering the test mode. To partially solve the incompatibility issues, designers at Micron offer a second version of their 4-Mbit chip that requires a super-voltage signal to switch into the test mode, instead of requiring the Write-Enable line to be pulled low. \square

H0w Valuable?	Circle
Highly	538
Moderately	539
Slightly	540

That Was Then...

Quality Comes

 Through is为 He minn dard logic devion of high-speed first-in first-
introduction
out FIFO) memories.

Company Delivers On Its out (FIFO) memore
The new SRAMs are designed for the
fast-access primary and secondary cache
one
fact fact
frot fast-access prin of high-performs. said Sunneel requirementbased systems,
and $C I S C$-basg at Qua
anketing Rajpal, director, Santa Clara, Remiconductor, SRA s are of at lease process
 start-up Quaflill its plan RAMs. week werformance static high-pill introd imQuality Semiconvilobit $\times 4$ SRAM, capable of
a line of five 16 -kileron CMOS, a line of five in 1 -micron CMO 12 ns. The
plemented
access speeds as fast as

...This Is Now!

New 10ns, 16Kx 4 Cache SRAM

Remember last May when 33-MHz seemed incredibly fast? That's when Quality delivered 12ns 16Kx4 SRAMs for ultra-fast cache designs.

Today the real action starts at $40-\mathrm{MHz}$, and you'll be glad to know we're not just talking about 10ns devices-but shipping in production quantities right now!

Choose the QS8886 with output enable in 24 -pin PDIP, SOJ, or space-saving ZIP. Or the QS8888 with common I/O in 22 -pin PDIP or 24 -pin SOJ. Both give you legitimate 10 ns specs for consistent 10 ns performance, cycle after cycle.

Our 1-micron QCMOS process means low power and high density, and our 6-T cell design eliminates static hold and adds reliability over 4-T and BiCMOS designs.

And because you need more than fast cache to complete your system, ask about our 15 ns FIFO memories and QSFCT ${ }^{m " ~}$ logic family in FCT/A/B/C speeds.

To order 10 or 12ns SRAMS, call 408-986-1700. Ask about our latest High-Performance CMOS data book with logic, cache and specialty memories designed to help you keep pace in the megahertz race. After all, that was then...this is now!

QUALITY SEMICONDUCTOR
2946 Scott Boulevard, Santa Clara, CA 95054
Phone: (408) 986-1700 FAX: (408) 496-0773

DSP BOARD SLASHES IMAGE PROCESSING TIME

" The DT2878 ADVANCED PROCESSOR for the PC AT accelerates Fourier analysis, geometric processing, and custom algorithms."

-Fred Molinari, President

25 Mflops; 32-bit floating point
-AT\&T DSP32C processor
2, 4 or 8 Mbytes data memory

Extensive software support available

- Advanced Image Processing Library

More than 80 routines for:
Fourier analysis, geometric processing, morphology, convolutions, statistics
Callable from Microsoft C
-AT\&T C compiler and development tools

DT-Connect Tw

- 10 MHz interface to Data Translation's DT-Connect family of frame grabbers

Quantity pricing available
FAST 5 day delivery
Call for FREE Catalog
(508) 481-3700

In Canada, call (800) 268-0427

DATA TRANSLATION

World Headquarters: Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752-1192 USA, (508) 481-3700, Fax (508) 481-8620, TIx 951646
United Kingdom Headquarters: Data Translation Ltd., The Mulberry Business Park, Wokingham, Berkshire RG11 2QJ, U.K., (734) 793838, Fax (734) 776670 , TIx 94011914
Germany Headquarters: Data Translation GmbH, Im Weileren 10, 7120 Bietigheim-Bissingen, Germany 7142.54025 , Fax 7142.64042
International Sales Offices: Australia (2) 699-8300; Belgium (2) $466 \cdot 8199$; Brazil 11240 -0598; Canada (416) 625-1907; China (1) $513-7766 \times 1222$; Denmark 2274511 ; Finland (0) 3511800 ; France (1) 69077802
Greece (1) 361-4300; Hong Kong (5) 448963; India (22) 23-1040; Israel 52-545685; Italy (2) 82470.1; Japan (3) 502-5550, (3) 5379-1971; Korea (2) 718-9521; Netherlands (70) 399-6360; New Zealand (9) 415-8362
Norway (2) 5312 50; Poland (22) 580701; Portugal 1-7934834; Singapore 338-1300; South Africa (12) 803.7680; Spain (1) 555.8112; Sweden (8) 761 78 20; Switzerland (1) 723.1410; Taiwan (2) 3039836
GLOBAL LAB and (HSI) Color are trademarks and Data Translation is a registered trademark of Data Translation, Inc. All other trademarks and registered trademarks are the property of their respective holders.

adapt Non-ISDN Tervinals To ISDN Data Rates

A Multiprotocol Processor With A 68000 Core Implements V. 110 Or V. 120 Rate Adaption.

ROBERT W. 0'DELL AND MOTI KURNICK
Motorola Inc., 6501 William Cannon Dr. W, Austin, TX 78735; (512) 891-3417.

he emergence of the Integrated Services Digital Network (ISDN) raises a problem: How can vast quantities of older, non-ISDN compatible equipment be used with ISDN? Addressing this issue, the CCITT (Consultative Committee for International Telegraph and Telephone) proposed the V. 110 and V. 120 interface standards, which solve this problem in two different ways. These standards are usually referred to as Rate Adaption methods, because a large part of their content is devoted to adapting the data rates of various terminal equipment ($50 \mathrm{bits} / \mathrm{s}$ to $56 \mathrm{kbits} / \mathrm{s}$) to the 64 kbit/s basic rate of ISDN.

The MC68302 Integrated Multiprotocol Processor from Motorola integrates the well-known 68000 core with three serial communications controllers and other peripherals, making it ideal for implementing many communications protocols in both general-purpose and ISDN environments (See "Inside the 68302," p. 66). This article shows how the 68302's features can be used in ISDN to implement V. 110 or V. 120.

Basic-rate ISDN uses two 64-kbit/s channels to transmit some combination of voice or data information. These two channels are called bearer channels, or B channels. Configuring the B channels requires using an additional $16-\mathrm{kbit} / \mathrm{s}$ channel, called the D channel. These three channels extend from the terminal de-

1. BASIC ISDN components include TE1 (ISDN) and TE2 (non-TSDN) terminals. The R interface is defined by users and is often a common interface, such as RS-232. The TA, or terminal adaptor, block (the subject of this article) interfaces non-ISDN terminal equipment to the network. The LT box is the line termination at the central office. Between the terminal and the LT box may be a network termination device, such as a PBX. The S and T reference points are physically 4 -wire interfaces, while the U interface is 2 -wire.

2. ADAPTING A SYNCHRONOUS 48 -kbit/s or $56-\mathrm{kbit} / \mathrm{s}$ terminal to the $64-\mathrm{kbi/} /$ s B channel requires only step RA2 (a). Adapting lower synchronous data rates requires two steps (b). Asynchronous terminals require a stop-bit shaving function in addition to the twostep adaption process (c).
vice (such as an ISDN phone or ISDN card in a personal computer) to the central office through a set of interfaces and functions defined by the ISDN reference model (Fig. 1). The S and T interfaces are physically the same 4 -wire interface, while the U interface is a 2 -wire interface.

If a terminal device is ISDN-compatible, it can directly access the $2 B+D$ channels of ISDN, as shown by the TE1 box in the figure. If the terminal device isn't ISDN-compatible (as in a TE2, for example), it must be adapted with a box that can access the $2 \mathrm{~B}+\mathrm{D}$ channels. This is where V. 110 and V. 120 step in.

The V. 110 and V. 120 standards implement the Terminal Adaptor (TA) function as shown in the ISDN reference model (Fig. 1, again). They link non-ISDN terminal equipment (terminals and computers) into one of
the B channels of the $2 B+D$ basic rate S interface. V. 110 and V. 120 differ greatly in their approach to the problem and are finding different areas of acceptance. V. 110 will be preeminent in the European market, at least at first, and OEMs expecting to sell into that market will need to supply V. 110 solutions. The more recently defined V. 120 is finding favor over V. 110 in the U.S. market. In Japan, the reaction seems mixed at this time, with both standards in use.

Common Ground

Before discussing the differences in V. 110 and V.120, it will be helpful to discuss what they share in common. First, both standards offer the ability to transmit data from nonISDN terminal equipment over one of the B channels, through an ISDN to other non-ISDN terminal equip-
ment. Both can rate adapt slower equipment up to the $64 \mathrm{kbit} / \mathrm{s}$ Bchannel rate. Both accept data from this terminal equipment over standard R interfaces such as RS-232 or RS-244. Finally, both require a call to be established on the D channel before this data transfer can begin. Data is transferred on the D channel using an HDLC (high-level data-link control)-type protocol called Link Access Procedure D, or LAPD.

What are the major differences? V. 110 sends all information received over the R interface onto selected bits of a B channel, similar to a virtual circuit. The negotiated bits of the B channel are permanently assigned to the terminal for the duration of the transfer. All V. 110 data is sent over the B channel in an 80-bit frame.
V.120, on the other hand, extracts data from the R interface, packetizes data into LAPD-type frames, and sends it over the B channel using LAPD techniques. As a result, data packets need not be received in a regular, periodic fashion, as with V.110. This characteristic enables data from multiple terminals to be statistically multiplexed over a B channel using V.120, or if properly negotiated, over more than just one B channel. The V. 120 data rate may also be expanded to include six B channels ($\mathrm{H} 0=384 \mathrm{kbits} / \mathrm{s}$), 24 B channels $(\mathrm{H} 11=1536 \mathrm{kbits} / \mathrm{s})$, or 30 B channels (H12 $=1920 \mathrm{kbits} / \mathrm{s})$.
V. 110 adapts terminal data to the ISDN through either a 1 -, 2 -, or 3 step process (Fig. 2). The standard permits adapting asynchronous rates up to $19.2 \mathrm{kbits} / \mathrm{s}$, and synchronous rates up to $56 \mathrm{kbits} / \mathrm{s}$. Only step RA2 is required for synchronous 48kbit/s and 56 -kbit/s rates (commonly used by synchronous modems). Steps RA1 and RA2 are both needed for synchronous rates of $600-, 1200$-, $2400-, 4800-$, $7200-$, and $9600-$ bits/s, and for $12-, 14.4-$, and $19.2-\mathrm{kbits} / \mathrm{s}$. Many so-called V-series synchronous terminals transmit these synchronous rates. The terminals are widely available in Europe.

Adapting asynchronous terminals with up to $19.2-\mathrm{kbit} / \mathrm{s}$ data rates to ISDN requires all three steps. This is because the process of rate-adapting

FOR MILITARY POWER

THINK

MIIL-STD-VICOR

For a s Whtan power systems are Tineng Cito s shew M Series of component teva oofyc poverters. Built tough. Byth me available in two modiles $\quad 2.24 \mathrm{~L} \times 2.4^{\prime \prime} \mathrm{W} \times 0.5^{\prime \prime} \mathrm{H}$ and $480 \mathrm{~m}=2.4^{\prime \prime} \mathrm{W} \times 0.5^{\prime \prime} \mathrm{H}$.

10W to 100 W outputs. Four Mil standard input ranges. MIL-STD-810 myalited Compatible with SEM For-
 Whilitary Standard Powed rom Vicor: For complete details call or FAX today.

23 Frontage Rd., Andover, MA 01810 TEL: 508-470-2900 FAX: 508-475-6715

THE BLINDING SPEED OF GaAs.

For more information on our ASIC and standard products with integration levels up to 350K gates, call Vitesse at (805) 388-7455. And leave the competition in your wake.

FX Arrays	Raw Gates	Usable Gates	Availability
FX100K	102,000	Up To 70,000	Now
FX200K	195,000	Up To 137,000	Now
FX350K	353,000	Up To 177,000	Summer 1991

VITESSE
The GaAs Company."

Octet number	Bit number							
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
	0	0	0	0	0	0	0	0
1	1	D1	D2	D3	D4	D5	D6	S1
2	1	D7	D8	D9	D10	D11	D12	X
3	1	D13	D14	D15	D16	D17	D18	S3
4	1	D19	D20	D21	D22	D23	D24	S4
5	1	E1	E2	E3	E4	E5	E6	E7
6	1	D25	D26	D27	D28	D29	D30	S6
7	1	D31	D32	D33	D34	D35	D36	X
8	1	D37	D38	D39	D40	D41	D42	S8
9	1	D43	D44	D45	D46	D47	D48	S9

3. ACCORDING TO THE V. 110 STANDARD, a data frame from a $4800-\mathrm{bit} / \mathrm{s}$ source is formatted for transmission over the ISDN B channel in ten 8 -bit octets. This 80 -bit frame is transmitted over only one bit of the $64-\mathrm{kbit} / \mathrm{s}$ B channel. The " D " bits include any start and stop bits present from an asynchronous terminal.

asynchronous terminals requires an additional task of compensating for slight terminal underspeed or overspeed with respect to the ISDN clock rate. Thus, the RA0 function refers to stop-bit manipulation. The difficult case in stop-bit manipulation arises when data arrives from the ISDN into the terminal adaptor slightly faster than it's sent from the terminal adaptor to the terminal. If this situation goes uncompensated, data can build up until it overflows the buffers in the terminal adaptor. To avoid this problem, stop bits may be "shaved" by up to 12.5% for most data rates, and up to 25% for data rates less than or equal to $300 \mathrm{bits} / \mathrm{s}$.

In addition, the data rate itself must be mapped into one of six synchronous rates. In the asynchronous case, data from terminals with data rates as low as 50 bits/s can pass through the RA0 function mapped into the nearest $\left(2^{\mathrm{n}} \times 600\right)$-bit/s data rate (where $n=0$ to 5).

The reference model diagram for the RA2 function doesn't clearly show that if slower rates are adapted to the ISDN, then only 1,2 , or 4 bits of the B channel may be required to transmit V. 110 data. In this case, it's possible for other terminals to use remaining B-channel bits for other V. 110 transmissions.

A typical 80-bit frame contains synchronization information (0s and 1 s), data (D bits), signalling rate and clocking information (E bits), and S and X channel-control bits (Fig. 3). To perform the RA1 and RA2 func-
tions, the 80 -bit frame in this example is transmitted over 1 bit of the B channel for rateadapting a 4800bit/s synchronous data rate to an 8 kbit/s data rate. Each 80-bit frame begins with an all0 s octet, which is used for frame synchronization by the receiver. For every other octet, bit 0 (the first octet bit transmitted) is 1 , causing the all-0s octet to be unique, regardless of the data pattern.

To rate adapt the 4800 -bit/s rate, 48 data bits are included per frame. This is verified as:
$8 \mathrm{kbits} / \mathrm{s} /(80 \mathrm{bits} /$ frame $)=100$ frames/s
48 bits $\times 100 \mathrm{frames} / \mathrm{s}=4800 \mathrm{bits} / \mathrm{s}$
One common area of confusion in the V. 110 standard relates to the definition of the D bits. Although they're termed data bits, they can also transmit start bits and stop bits for asynchronous terminals. The idea is simply to transmit all information from the terminal through the ISDN, as if the channel were a transparent line.

The E1-E3 bits define the format of the 80 -bit frame. For instance, the pattern would be 011 with this frame. It would designate either 4800-bit/s rate adaption to an 8-kbit/ s rate using one B-channel bit, 9600 bit/s rate adaption to a 16 -kbit/s rate using two B-channel bits, or 19.2$\mathrm{kbit} / \mathrm{s}$ rate adaption to a $32-\mathrm{kbit} / \mathrm{s}$ rate using four B-channel bits (the
distinction between these 3 types would be made by prior negotiation over the D channel). The E4-E6 bits allow clocking information to be transmitted through the ISDN to other user equipment. This allows phase information relating to a user clock, which is within 100 ppm of the ISDN clock rate, to be passed through the ISDN. Bit E7 is used for multiframe synchronization for very low terminal rates.
The S and X bits are mainly used during the B-channel call-setup phase. Depending on which terminal initiated the transmission, the $\mathrm{S} 1, \mathrm{~S} 3$, S6, and S 8 bits represent either dataterminal ready (DTR) or data-set ready (DSR). The S 4 and S 9 bits represent ready to send (RTS) or carrier detect (CD), and the X bits represent a frame sync or clear to send (CTS).
V. 120 requires no special reference model, because it's only a slight variant from the LAPD (level 2) method used on the D channel for call setup. It doesn't need to distinguish between various speeds and terminal clocking methods. The frame structure for V. 120 is an enhancement of LAPD (Fig. 4).

The differences between V. 120 and LAPD are worth noting. First, no distinction between the user and the network exists as in LAPD. This is because the transfers are sent to terminal equipment, not to the network for call control. Second, information frames may be sent as response frames, rather than just the standard receiver ready ($R R$), receiv-er-not-ready (RNR) type responses. This increases efficiency in an environment where information frames are the rule rather than the exception. Third, the frame reject (FRMR) message may be sent as a response.

4. A LAPD + PR0T0C0L for B-channel V. 120 transmission is an extension of the common LAPD protocol. V. 120 field information contains data directly sent from the terminal. The remaining frame space is allotted to LAPD + protocol overhead.

DESIGN APPLIGATIONS MULTIPROTOCOL ISDN CONTROLLER

Other differences may arise before V. 120 is finalized.

To accomplish the rate adaption, a design must connect to at least three different sources. The first is the terminal to be rate-adapted; the second is the B channel on which the rateadapted information is sent through the ISDN; and the third is the D channel that sets up the B-channel call. Of course, a processor of some kind is required to handle the LAPD protocol over the D channel, and to control the terminal adaptor. RAM and ROM are thus required.

Either the processor or dedicated hardware must control the V. 110 or V. 120 protocol and route the data from the B channel to the terminal. Finally, in a complete system, a codec function would be needed to route voice information to a handset.

In a solution implementing the V. 110 and V. 120 standards with a Motorola MC68302, a terminal connects directly to the MC68302 through serial communications port SCC2, one of the device's three serial communications controllers (SCCs). The SCC is programmed for asynchronous, bisynchronous, or DDCMP (DEC's synchronous/asynchronous Digital Data Communications Message Protocol) operation (Fig. 5a). Data moves between this SCC and external RAM automatically (six serial DMA channels are available on the MC68302 for moving data to and from each of three SCCs).

The hardware is the same regardless of whether V. 110 or V. 120 is cho-sen-only the software changes. The 68302 program is stored in an external EPROM and handles the LAPD protocol over the D channel (in coordination with SCC3 programmed into HDLC mode). The program also translates the terminal data stored in the external RAM to the V. 110 80-bit frame format (in coordination with SCC1 programmed into V. 110 mode). If V. 120 is chosen instead of V.110, format conversion doesn't occur (buffers may be sent out as is), but the LAPD+ protocol must be run over the B channel and SCC1 is configured for HDLC operation. The RAM and EPROM used to store and run the 68302 code are se-

4. A LAPD + PR0T0C0L for B-channel V. 120 transmission is an extension of the common LAPD protocol. V. 120 field information contains data directly sent from the terminal. The remaining frame space is allotted to LAPD + protocol overhead.
lected through two of the four available chip selects on the 68302 , with wait states set between 0 and 6 .
Put simply, to get the B- and Dchannel data out from the RAM onto the ISDN, the data must be multiplexed and driven onto the 4 -wire S interface. In this design, the data is multiplexed before it ever leaves the 68302 by programming the physical interface of the 68302 for Interchip Digital Link (IDL) operation.

IDL is the method for multiplexing data in Motorola devices, in which data is formatted into a 20 -bit frame comprising the $2 \mathrm{~B}+\mathrm{D}$ data and two additional bits that aren't used in the IDL specification (Fig. 5, again). Passing between the 4 -wire S interface through the 145475 S/T transceiver, one B channel is routed to the 145554 pulse-code-modulation codec/filter monocircuit (optional for handset), while the D channel and the B channel are routed to two SCCs on the 68302. All three devices use the IDL multiplexing technique.

Finally, the serial communications
port (SCP) on the 68302 is used to connect to a similar SCP on the 145475 to pass control information relating to the status of the IDL data. IDL control information (such as the desired initial configuration of the 145475) is passed on a separate channel, rather than being multiplexed with the data. The SCP is a 3 -wire synchronous port that operates similarly to a shift register. The 68302 SCP port generates the clock for the SCP port on the S/T chip, which is configured to accept an input clock from another SCP.

Serial Interface Circuits

The 68302 links very simply to the 145475 S/T transceiver chip (Fig. 6). The interrupt output of the 145475 is connected to $\overline{\mathrm{IRQ1}}$ on the 68302 , which is a dedicated interrupt request at priority-level one to the 68302 interrupt controller. The 68302 interrupt controller will also generate the vector for the 145475 during an interrupt-acknowledge cycle. Other interrupts occurring within
the 68302 arrive at priority-level four, with an individual vector internally supplied for each source.
The IDL interface is implemented with pins L1RQ, L1GR, L1SY0, L1RXD, L1TXD, L1CLK, and L1SY1 of the 68302. From this one physical interface, the D-channel and B-channel are extracted and routed to SCC1 and SCC3 on the 68302. The SCPTXD, SCPRXD, SPCLK, PA7,
and PA8 signals from the 68302 make it possible for commands to be sent to the 145475. This is done through the separate SCP channel on the 68302.
In this example, the devices are clocked with separate crystal frequencies. However, it is possible to clock the 68302 at speeds from 8 to 16.67 MHz . With a $16.67-\mathrm{MHz}$ clock, the SCCs use only 1% of the 68302
bus bandwidth. Therefore, there's ample time to execute the higher layer LAPD protocol on the D channel, and to format V. 110 or execute the LAPD+ protocol for the B channel, plus terminal control. Results taken from actual Motorola-developed LAPD software show that an entire V. 120 application would require less than 50% of the 68302 performance bandwidth. Port SCC2 is connected

ITSIDE THE 68302

The MC68302 Integrated Multiprotocol Processor (IMP) combines the benefits of the 68000 microprocessor with a flexible communications architecture (see the diagram). The CMOS device incorporates a 68000 core processor (16.67 MHz), a communications processor with associated peripherals, and a system-integration block.
The 68000 core processor is in-struction-set and timing compatible with the 68000 microprocessor (16-bit) version of the 68000 family. It differs from the $68000 \mathrm{mi}-$ croprocessor in just a few of its external signals. First, a BUSW signal has been added, which selects whether the device supports the 16 -bit 68000 or the 8 -bit 68008 data-bus widths. This option is chosen during reset. Second, an RMC signal may be used as a bus lock. RMC is asserted externally during instructions with read-modify-write cycles. Third, an internal IPEND signal has been added to support a low-latency interrupt mechanism. Finally, the 68000 core processor on the 68302 differs in that it doesn't support the older 6800 -family of peripherals. As a result, $\overline{\text { VMA }}$ and E signals are eliminated, and $\overline{\mathrm{VPA}}$ is retained simply as the autovector input AVEC.
The communications processor consists of a RISC processor, three SCCs (serial communication controllers), six DMA channels for the three SCCs, a programmable physical interface, a serial communication port (SCP), and two serial management control-
lers (SMCs). The RISC processor is a separate processor from the 68000 core, and is dedicated to the service of the SCCs, SCP, and SMCs. It works with these channels to implement the user-chosen protocol, and to manage the six DMA channels that transfer data between the SCCs and memory. It also executes commands issued by the 68000 core and generates interrupts to the on-chip interrupt controller. The 302 supports three full-duplex independent SCCs
that support the following protocols: HDLC/SDLC, UART, BISYNC, DDCMP, V.110, and fullytransparent operation. Two DMA channels, which are dedicated to each of the three SCCs, transmit data between the SCCs and internal dual-port RAM, or directly between the SCCs and external memory. Data from each SCC may be received into (or transmitted out of) as many as 8 buffers, without intervention from the 68000 core.

MULTIPROTOCOL ISON CONTROLLER

to a terminal device through the 145407 RS-232 driver device. In this design, an asynchronous (UART) mode is chosen for SCC2. To perform the stop-bit manipulation function in V. 110 applications, the SCC in it's UART mode is configured to shave stop bits by 12.5%. This function is handled automatically by the SCC and can be enabled and disabled dynamically. The internal clock is gen-
erated from SCC2's baud-rate generator, which can generate baud rates from 150 baud to 347 -kbaud using the internal $16.67-\mathrm{MHz}$ clock.

The SCC2 port is operating as a DCE (data-communication equipment, such as network line card) rather than a DTE (data-terminal equipment, such as a handset). Therefore, the TXD2 and RXD2 pins are connected to the terminal's RXD
and TXD pins, respectively. The terminal's CD and CTS lines are driven by parallel ports PA2 and PA5 on the MC68302. These two I/O pins were reassigned from SCC2's RTS2 and RCLK2 pins, which aren't needed for this design.

The 68302 receives the terminal's RTS and DTR lines through its CD2 and CTS2 pins, respectively. These pins may be configured to automati-

The physical interface supports a standard nonmultiplexed interface for each of the three SCCs (TXD, RXD, TCLK, RCLK, CTS, RTS, and CD), as well as several multiplexed modes. In the multiplexed modes, up to three SCCs can be time-multiplexed onto the same serial channel. The multiplexed modes include IDL, GCI, and PCM Highway. IDL and GCI are alternative standards for moving $2 \mathrm{~B}+\mathrm{D}$ data between ISDN devices. IDL was developed by Motorola, and GCI was defined from IOM-2 in Europe. PCM Highway is commonly used with T1 or CEPT lines, carrying 248 -bit channels at $1.544-\mathrm{Mbit} / \mathrm{s}$ or 328 bit channels at 2.048 -Mbit/s data rates, respectively.

The SCP is a full-duplex, synchronous, character-oriented channel that provides a three-wire interface. It's used as a control channel for IDL, or as a means to communicate with other serial-pe-ripheral-interface-type (SPI) devices. The SCP implements a subset of Motorola's SPI interface. The two SMCs transmit and receive local control information multiplexed with the $2 \mathrm{~B}+\mathrm{D}$ data in the IDL or GCI buses.

The systems-integration block incorporates general-purpose peripherals that eliminate the glue logic used in most 68000 systems. It includes an independent DMA controller (IDMA), an interrupt controller, parallel I/O ports, an 1152-byte dual-port RAM, two timers, and a watchdog timer. The systems-integration block also has chip-select lines, wait-state-
generation logic, a bus arbiter, low-power modes, core-disable logic, an on-chip clock generator, and a hardware watchdog.

The IDMA controller can transfer data at up to 4 -Mbytes/s. It performs data packing and unpacking for odd address transfers. The controller can transfer both 8 - and 16 -bit quantities, and supports peripherals with $\overline{\mathrm{DREQ}}$, $\overline{\text { DACK, and }} \overline{\text { DONE lines. Re- }}$ quests may be generated internally with limited or full bandwidth, or externally by a peripheral.

The interrupt controller supports a total of 15 internal sources and 3 external sources. It can supply vectors for all sources, and can also supply dedicated inter-rupt-acknowledge signals to the external sources.

A total of 28 I/O lines are multiplexed with the three SCCs and SCP. Regardless of the way the on-chip peripherals are configured, at least five I/O lines are always available, four of which can interrupt the 68000 core.

The dual-port RAM offers 576 bytes of additional system RAM for general use, such as data buffer storage, and 576 bytes of parameter RAM used to initialize, configure, and control the communications processor. It supplies zero wait states to the 68000 core, regardless of whether the communications processor is currently accessing this RAM. If necessary, the communications processor is held off by one clock cycle to avoid contention.

Two general-purpose 16-bit timers support capture and output
pulse/toggle options. The watchdog timer includes a dedicated output pin that may be used to reset the 68302 and an interrupt capability. Four chip-select lines are supported, including one initialized to the boot-ROM area. Each chip select may be combined with a wait-state generator that supports 0 to 6 wait states.

The bus arbiter prioritizes bus requests from the external logic, the six SCC DMA channels, and the IDMA channel. It also supports a bus-clear method so that an external bus master can be cleared off the bus. This improves latency and allows the SCC DMA channels to interleave bus cycles with the IDMA without any busarbitration delay.

A feature recently added to the device is a DRAM refresh controller. This feature periodically reads all DRAM row addresses automatically.

The core-disable logic makes it possible for the 68000 core to be disabled at reset, causing the 68302 to function as a slave device to another master 68302, or to another higher-performance processor, such as the 68020 . Low-power modes can put the core to sleep while the peripherals continue to operate, reducing power consumption. An on-chip clock generator supports an external crystal, and supplies a clock-output signal to the rest of the external peripherals. Finally, the hardware watchdog can terminate bus cycles when no peripheral responds to a read or write cycle from the 68302.

TIESICN APPLICATIONS
 MULTIPROTOCOL ISDN CONTROLLER

6. THE DESIGN OF A V.110/ V. 120 terminal adaptor uses all three SCCs on the MC68302, including the additional SCP port. The 68000 core on the MC68302 is the only processor required in the design. Control lines marked with an asterisk (*) connect to the $5-\mathrm{V}$ supply through $10-\mathrm{k} \Omega$ pull-up resistors.

DESIGN APPLIGATIONS
 MULTIPROTOCOL ISDN CONTROLLER

cally enable transfers of data to or from the terminal. Consequently, the SCC mode register configures SCC2 in the automatic mode.
The MC1455 timer generates the output pulse to satisfy the power-on reset requirements of the 68302 . This application example uses 64 -kbytes of EPROM and 64 -kbytes of static RAM. The chip-select and wait-stategeneration logic on the 68302 contribute to memory-design simplicity. The Chip Select 0 signal to the ROM only activates for read cycles, while Chip Select 1 is activated for both read and write cycles.
Chip Select 0 has the added property of coming up enabled after reset for the first 8 kbytes of the address space. This is enough space for configuring the rest of the chip selects. The 68302's six SDMA channels will move data between the three SCCs and external RAM. These DMA cycles are identical to the 68000 core cycles, and may occur with wait states. The wait-state-generation logic provides DTACK automatically after the programmed number of wait states (0 to 6).
The crystal circuit is a typical configuration (Fig. 6, again). Of course, an oscillator could replace the crystal circuit. The AVEC pin is pulled high because autovectoring for external interrupts isn't needed. If external devices were added (not shown), the MC68302 interrupt controller could handle the interrupt vector generation. The BUSW pin is pulled high for 16 -bit operation and may not be modified dynamically. Two memory chips (EPROM and RAM) are required for 8 -bit operation. Another pair of devices is needed for 16 -bit operation.

Pin BERR is pulled high because it's an open-drain connection. It will be asserted low by the MC68302 if the on-chip hardware watchdog timer terminates a stalled bus cycle. Pin $\overline{\mathrm{BR}}$ is tied high because no external bus masters exist in this design. Pin $\overline{\text { BGACK }}$ is pulled high (inactive) and is asserted low during an IDMA or SDMA bus cycle. The FRZ pin is tied high since the MC68302 freeze-debugging logic is not used in this design. Pin DISCPU is tied low so that
the M68000 core on the 68302 can function normally. Tying this pin high causes the part to enter the Disable CPU mode and become an intelligent peripheral. This mode would be useful if more than three SCCs were required, but only one 68000 core needed to be operating.
Arbitration is handled by the Bus Arbitration Unit in the following priority: External Bus Master (not required in this application), SDMA channels, IDMA channel, and 68000 core cycles. Consequently, the SDMA channels have the highest priority. If the Independent DMA were required, the SDMA channels can cy-cle-steal from the IDMA, without any wasted time for external bus arbitration. This arbitration is handled internally. The BGACK pin is asserted externally by the IDMA or SDMA when the arbitration is complete.
The 68302 timers may be used as LAPD protocol timers, generating interrupts to the 68000 core. In addition, the watchdog timer can generate an interrupt, or use the WDOG output signal to assert a chip reset whenever an unexpected system state is encountered.
The 68302 combines a large number of peripherals with a low power, high performance 68000 core for implementing many complex control functions. The multiprotocol processor is ideal for ISDN-based systems and many other communications applications. Both V. 110 and V. 120 rate-adaption applications can be implemented with the hardware configuration discussed in this article. \square

Robert O'Dell, senior applications engineer in Motorola's 68000 Operations Group, has a BSES from the University of South Florida and an MSCS from the University of Texas at Austin.

Moti Kurnick, design engineering manager for the MC68302, holds a BSEE from Beer-Shave University.

How Valuable?	Circle
Highly	532
Moderately	533
SLightly	534

- Input Voltage 90 to 130 VAC ($47 / 440 \mathrm{~Hz}$)
- Single, Dual, Triple Outputs
- 1200 V Rms Isolation
- Low Isolation Capacity Available
- Continuous Short Circuit Protection
- High Efficiency
- Fully Regulated Voltage Outputs
- Operating Temperature $-25^{\circ} \mathrm{C}$. to $+70^{\circ} \mathrm{C}$. with No Heat Sink or Electrical Derating Required
- Expanded Operating Temperature Available ($-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. ambient)
- Optional Environmental Screening Available

PICO manufactures complete lines of Transformers, Inductors, DC-DC Converters and AC-DC Power Supplies

High Performance Power at Low Cost

Tel.: 800-735-6200, 508-470-2900•Fax: 508-475-6715
Vicor GmbH, Tel.: 49-8031-42083•Fax: 49-8031-45736
Component Solutions For Your Power System

1. THIS AUTOMATIC line-voltage selector is built around an MC34161 voltage monitor. With the chip, users can program its two channels for different types of voltage applications. Here, one channel senses overvoltage, the other undervoltage.

52 SELECT LINE

 CHRISTOPHER GASSMotorola Inc., Bipolar Analog IC Div., 2100 East Elliot Rd., MD EL340, Tempe, AZ 85284; (602) 897-3833.

By using this automatic linevoltage selector for switching power supplies, a jumper wire or switch for power-supply operation from 120 or 240 V ac needn't be moved mechani-
cally. The circuit is suitable for switching power supplies less than 300 W , where power-factor correction may not be required.

The heart of this circuit is an MC34161 voltage monitor (Fig. 1).

2. THE AC line
voltage relates to the triac's operation. When the voltage goes above 146 V , the triac is off. Shortly after the voltage goes below 143 V , the triac goes on. The extra time delay prevents the circuit from prematurely going into voltagedoubler mode.

This highly flexible dual-channel device can be configured to monitor a wide range of input voltages. The chip's flexibility is achieved by using a Mode Select input that lets users program its two channels for various voltage-sensing applications. In this application, the Mode Select input is tied to $\mathrm{V}_{\text {REF }}$, allowing one channel to sense overvoltage and the other undervoltage.

When the circuit's input voltage is less than 146 V ac , the triac is gated continuously, causing the input diodes to double the ac line voltage. When the input is greater than 146 V ac , the triac is off, causing the input diodes to act as a full-wave bridge rectifier. In either case, the switching power supply's input receives an input voltage that's equal to operation at 240 V ac.

The MC34161's first input (pin 2) is set for undervoltage sensing. This channel senses the negative half cycles of the ac line voltage. The 1.6 $\mathrm{M} \Omega$ and $10-\mathrm{k} \Omega$ resistors set up a divider network to trip at 146 V during power up and 143 V during power down. If the ac line voltage is less than 146 V , this channel's output will be off, allowing the $10-\mu \mathrm{F}$ capacitor

Over 50 off-the-shelf models...

FORMERS
 $3 \mathrm{KHz}-800 \mathrm{MHz}$ from $\$ 325$

to charge through the $100-\mathrm{k} \Omega$ resistor. Once the capacitor charges past the threshold voltage of the second input (pin 3), the triac is activated. This enables the circuit to act as a voltage doubler.

If the ac line voltage is greater than 146 V ac , the output of channel 1 (pin 6) is activated, pulling channel

2's input below its threshold. The triac is then turned off, making it possible for the input diodes to perform as a full-wave bridge (Fig. 2).

This circuit has two unique features. First, the circuit is powered by negative supply. This enables the triac to be activated in two of its more sensitive quadrants (quadrants 2

凤2IC GENERATES 522 NONINTEGRAL POWERS

R0BERT S. VILLANUCCI

Wentworth Institute of Technology, 550 Huntington Ave., Boston, MA 02115; (617) 442-9010.

1. WITH JUST an analog multiplier and two potentiometers, V_{0} can approximate $\mathrm{V}_{\mathrm{x}}{ }^{\mathrm{n}}$, where n equals any nonintegral power between 1 and 2 . The circuit can be scaled for the correct output voltage and calibrated for law conformity by adjusting R_{1} and R_{2}.

\mathbf{n}	\mathbf{a}	$\mathbf{R}_{\mathbf{1}}$ (setting)
1.0	1.00	0
1.2	0.72	38.47 k
1.4	0.45	61.56 k
1.6	0.30	92.34 k
1.8	0.16	173.13 k
2.0	0.00	∞

and 3), thus lowering the current requirement of the circuit. Second, only the negative half cycles are sensed, which could create a problem. However, because a delay is needed during power up to prevent the circuit from prematurely going into voltage-doubler mode, a time delay already exists.

By using a circuit built with an analog multiplier and two potentiometers, an output voltage $\left(\mathrm{V}_{0}\right)$ can be made to approximate the input voltage raised to the power of $n\left(\mathrm{~V}_{\mathrm{x}}{ }^{\mathrm{n}}\right)$ (Fig. 1). The value of n can be any nonintegral power between 1 and 2 . The circuit comes in handy when a nonlinear sensor's output requires algebraic curve fitting. In addition, it can be scaled for the correct outputvoltage level and calibrated for law conformity with just two resistor adjustments.

The circuit implements a series approximation that states:

$$
\mathrm{V}_{0} \approx \mathrm{~V}_{\mathrm{x}}^{\mathrm{n}}=(1-\mathrm{a}) \times \mathrm{V}_{\mathrm{x}}^{2}+\mathrm{a} \mathrm{~V}_{\mathrm{x}}
$$

Here, a is the resistor-divider ratio between IC_{1} 's internal 2.7-to $25-\mathrm{k} \Omega$ network and R_{1} 's setting. To create the approximation, start with the transfer function for the IC:

$$
\begin{aligned}
& \mathrm{V}_{0}=\left(\mathrm{V}_{\mathrm{x} 1}-\mathrm{V}_{\mathrm{x} 2}\right) \times\left(\mathrm{V}_{\mathrm{y} 1}-\mathrm{V}_{\mathrm{y} 2}\right) \\
& =10 \mathrm{~V} \times\left(\mathrm{V}_{\mathrm{z} 1}-\mathrm{V}_{\mathrm{z} 2}\right) .
\end{aligned}
$$

Substitute 0 V for $\mathrm{V}_{\mathrm{x} 2}$ and (1a) V_{x} for the difference voltage, $\mathrm{V}_{\mathrm{y} 1}-\mathrm{V}_{\mathrm{y} 2}$. Then, remove IC_{1} 's $10-\mathrm{V}$ scale factor by creating $\mathrm{V}_{0} / 10$ on R_{2} 's wiper and applying it to the z1 input. The approximation is completed by using the internal network at z 2 to create the term $\mathrm{aV}_{\mathrm{x}} / 10$.

The circuit's output voltage can be seen when it's superimposed on a $1-\mathrm{V}$ peak positive triangle-wave input, and n is set to 1.6 (Fig. 2). Scale the nonintegral power generator by setting the input to its maximum value $(1 \mathrm{~V})$, then adjust R_{2} until $\mathrm{V}_{0}=1 \mathrm{~V}(1$ raised to any power equals 1). To calibrate for law conformity, raise a convenient value of V_{x}, say 0.4 V , to the value of n. With n set to 1.6 in this

NKK can show you exactly where the switch industry is headed because we're already there. We have over 917,000 different ways to improve your products' reliability and functionality - starting with the just-released break - through switch ideas on this page. Send for our free 400-page catalog. Contact NKK Switches, 7850 E. Gelding Dr., Scottsdale, AZ 85260. Phone (602) 991-0942.

nus suliches

WORLD'S SMALLEST

NKK introduces the surface mount G3T with patented STC contacts, gull-wing terminals. VPS or infrared reflow solderable.

LEGENDARY

New compact, industrial-grade NB snap-in LED pushbutton with split legend up to 4 ways. Built-in resistor. Numerous options.

DOUBLE DUTY

Logic-level for PCB or power rating for snap-in panel mounting, from very low-profile UB pushbuttons with full-face LED illumination.

EASY DOES IT

-18 illuminated JB keypad switch. Red, green or yellow LED options.

100,000 CHOICES

YB pushbutton yields literally $100,000+$ part numbers with variations in mounting, illumination, circuitry and color.

Actual Size

New, full-featured products at lowest cost

- 1 and 2 watt ratings
- 5,12 and 24VDC inputs
- $5, \pm 12, \pm 15$ VDC outputs
- 500 VDCI I/O isolation
- I/O pi filters
- Compact SIP package
- High reliability design

Priced from \$5.59 to $\$ 8.24$ (1,000 pieces)
Shindengen is a $\$ 500$ million power conversion company that is known world wide for quality, reliability, performance and value. Resulting from over 40 years experience, our AC/DC and $D C / D C$ product lines range from 1 watt to over 3,750 watts.

CALL OR WRITE US TODAY FOR COMPLETE INFORMATION OR A FREE 1991 CATALOG.

Shindengen :
2649 Townsgate Road, Suite 200 Westlake Village, CA 91361
Toll Free (800) 634-3654 (West) Toll Free (800) 543-6525 (East) FAX (805) 373-3710

IDEAS FOR DESIGN

circuit, $\mathrm{V}_{0} \approx 0.4^{1.6} \approx 0.231 \mathrm{~V}$. Adjust R_{1} until the output equals 0.231 V . The values of R_{1} vary from 0 , when n $=1$, to infinity, when $\mathrm{n}=2$ (see the table).

Reference:
Analog Devices Inc. "AD632 Internally Trimmed Precision IC Multiplier" data sheet. Norwood, Mass., July, 1982.

GIRCIE
 523Select Series 0R Parallel Combo

JON VICKLUND

Ball Aerospace, P.O. Box 1062, Bldg. FA-2, Boulder, CO 80306; (303) 939-4496.

With a DPDT switch or relay, users can select either the series or parallel combination of any

current sources when all the switches are in series or low-voltage, highcurrent sources when all the switches are in parallel. There are 2^{n} combinations of loads, where n equals the number of DPDT switches or relays employed. Using different values for resistors R_{1-8} will avoid having repetitive combinations.

[^3]

MARKET FACTS

©omputer-aided design and manufacturing systems have changed the way engineers work. Apparently, engineers want more of the same. World revenues for CAD/CAM systems, which amounted to $\$ 5.2$ billion in 1989 , should top $\$ 12$ billion by 1996 . Growth in that period should average nearly 14%. So forecasts the Market Intelligence Research Corp.,
a Mountain View, Calif., market watcher.
Most CAD/CAM systems find use in the defense/aerospace industry. But while demand for CAD/CAM systems in the aerospace industry is expected to stay strong, the U. S. government will shift from defense spending to funding space programs, where CAD/CAM systems are called for as well.

Engineers can expect to pay less for the systems. As hardware costs decline, system prices will drop 2 to 4% a year, market researcher MIRC predicts. Prices for software,
though, will edge up. Makers of systems are turning to the Unix operating system, which should mean easier linking of diverse systems and better networking.

As for future growth, vendors of CAD/ CAM systems are setting their sights on Europe. In 1989, European CAD/CAM revenues amounted to 44% vs. 43% for the U. S. By 1996, Europe's share should reach 49% vs. 37% for the U.S. The remaining 14% share falls to Asia, whose market share is expected to remain about the same.

QUIGK REVIEWS

Both a refresher course on laser-printer technology and an in-depth look at the Hewlett-Packard Laserjet IIP, LaserJet IIP Essentials addresses most laser-printing issues in its 374 pages. The book, from Peachpit Press Inc., Berkeley, Calif., covers printer setup and configuration, hardware upgrading, Postscript cartridges, along with other enhancements. Several chapters deal with the technical and aesthetic aspects of using laser fonts. These chapters also supply the rudiments of typography and tips on using fonts with the IIP.

A companion book, The LaserJet Font Book, supplies more than 1000 samples of fonts available from a dozen font companies in its 368 pages. Both books will help the reader to fine-tune documents and presentation materials for that "just-right" look.

LaserJet IIP Essentials sells for \$21.95; The LaserJet Font Book, for $\$ 24.95$, in bookstores. They can be ordered from Peachpit (ISBN 0-938151-18-5 for the printer text and 0-938151-06-1 for the font book) by calling (415) 527-8555.

,book for designers on using Verilog hardware description language shows how it works through examples. Verilog's HDL is put to work in designing a pipelined processor, a cache-memory system, a UART chip, and a floppy-disk subsystem. Digital Design with Verilog HDL, written by Eli Sternheim, Rajvir Singh, and Yatin Trivedi, not only gives engineers an overview of Verilog but also has a chapter on tips and techniques in Verilog modeling.

Published by Automata Publishing Co., Digital Design with Veri$\log H D L$ is being used in classrooms at North Carolina State University, Santa Clara University, and at the University of Illinois at Ur-bana-Champaign. The book includes a disk with 5000 lines of example Verilog models.
The book's list price is $\$ 49.95$. However, volume discounts and site licenses are available for companies. To order, contact the company at 10487 Westacres Dr., Cupertino, CA 95014; (408) 255-0705; fax (415) 855-9545. Refer to ISBN 0-9627488-0-3.

Motorola's In Real

 their respective holders.

-Time,Big-Time.

$\overline{0}$ne glance at the full array of options Motorola offers in real-time, and you'll see why it's become the developer's platform of choice. For both target and host environments, no other single vendor has anything like it. One reason is our long-time experience with real-time technology, beginning with our pioneering work back in 1980. Another is the broad spectrum of our product line, which includes ICs, boards, systems, and software. In short, Motorola has
 everything you need to build realtime applications ranging from simulation to industrial automation to imaging and more.

Yet another reason to choose Motorola is our unending commitment to open standards. Our real-time platform gives you standards-based choices at various levels of integration. The centerpiece of this nonproprietary approach is VMEexec,"' our wide-open, totally integrated development environment.VMEexec allows you to use standard UNIX ${ }^{*}$ interfaces to write a single set of application code, and then reuse it for other projects. Better still, you can combine any software product that conforms to these standards.VMEexec includes a high-performance realtime executive, a strong run-time connection to UNIX-based systems, flexible and efficient real-time I/O and file systems, as well as powerful development and debug capabilities. And because VMEexec is integrated with the hardware, you can begin
software development even before the hardware is available. If youre thinking about real-time, you should be thinking about time to market, and that's all the more reason to think Motorola. Especially when you consider that we can help speed product integration by serving as a single source for boards, software and systems. Add to that the industry's best applications expertise and design support, ranging from small embedded control systems to multi-processor simulation. Then factor in Six Sigma quality control. And remember that Motorola gives you the industry's only true migration path from

CISC to RISC in both the development and run-time environments.

Give us a call today at 1-800-624-8999, ext. 230, and put the realtime resources of Motorola on your side. We think you'll find the benefits are very big, and very real.

We Do Real-Time Full-Time.

At Motorola, we've dedicated an entire division solely to realtime development systems. Our real-time system architecture begins at the microprocessor level in either CISC or RISC, and
extends all the way to the end-user. Today, you can use VMEexec to port UNIX applications to an SVID-compliant (and soon,POSIX-compliant) real-time environment, and vice versa. And they can be used for runtime capabilities as well
INTEGRATED REAL-TIME PLATFORM

as for development. Several human interfaces are available for UNIX, including Motif, X. 11 and DeltaWINDOWS." As for networking, Motorola supports all popular protocols, including TCP/IP, NFS, SNA, OSI, and X. 400 . We also offer database and CASE tools, and you can work in C, LISP, FORTRAN, ADA, BASIC, COBOL, and PASCAL. Put it all together, and you will discover only one company gives you the full story on real-time, and that's Motorola.

afree disk has Spice models of Analog Devices' amplifier ICs. The 176 -model library includes current and voltage-noise models for some devices and models of two instrumentation amplifiers. Contact the company at One Technology Way, Norwood, MA 02062; (617) 329-4700.

Speaking of Spice, 75 Spice macromodels for Burr-Brown amplifiers are available on a free disk. An accompanying application bulletin describes the macromodels and circuit models in detail. Contact John Conlon, Applications Engineering at (800) 548-6132. The macromodels and simplified circuit models also may also be downloaded from the company's electronic bulletin board at (602) 741-3978 ($300 / 1200 / 24008, \mathrm{~N}, 1$).

Afree disk demonstrates software that helps root out electromagnetic interference problems in systems. Atkinson Engineering, of Warrenton, Va., has developed a graphical EMI modeling spreadsheet for IBM PCs and compatibles as well as for the Apple Macintosh. With the GEMS package, EMI can be modeled as a set of sources, coupling paths, and fixes that are interconnected and then interrelated like numeric cells on a spreadsheet. Cells can be added, copied, moved, deleted, or changed. The system must have Microsoft Windows 3.0 installed. Contact Kenn Atkinson, (703) 347-5716.

switched capacitor filters are becoming faster, quieter, and lower in distortion. But many system designers still are unfamiliar with their use. Enter Linear Techology's application note, "AN40: Take the Mystery Out of the Switched Capacitor." The 28 -page note discusses how to use switched capacitor filters to replace active RC filter types along with power-supply effects, input and output considerations, and filter response.

Contact the company at 1630 McCarthy Blvd., Milpitas, CA 95035-7487; (800) 637-5545 or (408) 432-1900; fax (408) 434-0507.

Afree disk demonstrates Testniques' Test Executive software, which trims development time for VXI and IEEE-488 ATE systems, benchtop test systems, and customized instrumentation systems, the Minneapolis company says. Versions are available for Microsoft C and LabWindows. Contact the company at (612) 533-4107.

H O T PG PRODUGTS

would you rather give commands to your PC in English than in DOS? Using artificial intelligence techniques, $\mathrm{PC}-\mathrm{IQ}$ from A. I. Solutions prompts PC users with "Do you want me to perform a command or run a program?" Users then enter a request such as "make a file" and can add their own commands to the program's vocabulary. PCIQ, which runs on PCs, XTs, ATs, PS/2s, and compatibles, needs 640 k of RAM, DOS 2.0 , and a hard disk. The software lists for $\$ 99.95$. Contact A. I. Solutions, 58 Creekview Dr., P. 0. Box 128, West Seneca, NY 14224; (800) 6776670 or (716) 675-5311.

Iimed at keeping engineers abreast of technical information, a database on CD-ROM has information from 3000 engineering journals and conference proceedings. Ei Page One, from Ei/Engineering Information Inc, is updated monthly and is arranged in table of content format. Page One also has 60% more conference coverage than the company's other electronic publication, Compendex Plus, in print as The Engineering Index.

For price and other information, contact the company at 345 East 47 St , New York, N. Y. 10017-2387; (800) 221-1044 or (212) 7057600; fax (212) 832-1857.

...Perspectives on Time-to-Market

BY RON KMETOVICZ
President, Time to Market Associates Inc.
Cupertino, Calif;; (408) 446-4458; fax (408) 253-6085

1ask network models are formed by connecting tasks to one
 another either in series, parallel, or a combination of the two. The most important item to remember about building the network model is to make network connections based only on considering how the tasks relate to one another. Use a series connection only if activity B cannot start until activity A is finished. Use parallel arrangements in all other cases. Question all series connections and look for ways to remove them or decompose them into short work content structures. From a time-to-market perspective, serial relationships slow down the new product development process.

Once you have produced a network with a minimum of serial connections and it's entered into your computer system, you can then, to the best of your team's ability, begin estimating the work content in each activity within the network model. Please avoid confusing work content with task duration. Work content is simply the number of hours, days, or weeks of work that are needed to do the activity. It's expressed as person-hours. Knowing work content makes it possible to compute the time duration required to complete a given activity once a resource is committed to work on the task at a given rate. For example, a task with a 30 person-hour work content that is worked on at 2 hours/day takes 15 work days to complete. Each activity in your database should have a work content number in its associated data field.

Now that data is assembled about the new product development effort, you can determine time to market as a function of the resources applied to realizing the product. To do this, you assign resources to each activity and commit the assigned resource to work on the assigned activity at a given rate. The computer tool then computes the task duration from the information available and begins to provide detailed feedback about the effort's time to market. After committing all your available resources, you'll want to use leveling and constraining algorithms to ensure the resource commitments you have made are within the typical daily limits of your organization.

Most often, a development team that follows these steps finds, after consuming all its assumed-to-be-available resources that it is still short of meeting its time-to-market goals in time. If front-end work has been done correctly, the exercise becomes one of adding resources in critical areas until time to market objectives are realized.

TIPS ON IN VESTINE

as the saying goes, taxes are inevitable. And income taxes play an important role in an engineer's investment decisions, particularly during the transition between working life and retirement. This transition has three phases, each with its own tax-planning issues.

Pre-retirement, your tax-planning strategies do not change much since you are still working and your tax rate probably hasn't changed. You want to maximize after-tax investment returns and begin to reposition your portfolio to reduce risk and generate additional income for your retirement. You should begin to clarify your retirement goals and needs. If your portfolio has a large amount of stock in the company you work for, consider diversifying into more conservative investments. A financial consultant can review your portfolio and suggest appropriate investment allocations to help you meet and maintain your current lifestyle once you retire.

Of uppermost concern during the point of retirement is how and when to take distributions from employer-sponsored retirement plans. If you're receiving a lump-sum distribution, you must decide either to roll the distribution into an IRA or Keogh or take advantage of a favorable tax treatment on an immediate distribution. If you were 50 years old by Jan. 1, 1986, you can use five-or ten-year forward averaging for a lump-sum distribution (with any pre-1974 amounts eligible to be taxed at a flat 20% capital gains rate, if elected). Otherwise you can use fiveyear averaging only once, after you reach $591 / 2$. A lump-sum distribution typically represents the most money you will receive at any one time.

Post retirement involves tax planning in many different areas. Many taxpayers sell their home to move to smaller residences or retirement communities and face a large tax liability on the resulting capital gain. You are
 permitted a one-time exclusion of up to $\$ 125,000$ of profit on your primary residence. To qualify, your home must have been your primary residence for at least three of the last five years and either spouse must have reached age 55.

Once you have retired, some of your Social Security benefits may be taxable. If your adjusted gross income plus tax-free interest plus onehalf of your Social Security benefit exceeds a limit ($\$ 25,000$ for singles, $\$ 32,000$ for couples), up to one-half of the benefits will be added to taxable income. You also face a loss of benefits if you continue to work during retirement. Depending on your age, Social Security recipients lose $\$ 1$ for every $\$ 2$ or $\$ 3$ of earned income above a ceiling amount. However, no benefits are lost if you are at least 70 years old.

Your retirement years can be the most enjoyable time of your life. You may be "retired" almost as many years as you worked, so a careful analysis of your needs and goals is important. The closer you are to retirement, the more important it is to review your financial portfolio often. For a free copy of The Changing American Dream: The Real Definition of Retirement, a Shearson Lehman Brothers publication, call or write me.
Henry Wiesel is a financial consultant with Shearson Lehman Brothers, 1040 Broad St., Shrewsbury, NJ 07702; (800) 6312221 or (800) 221-0073 in N. J. Wiesel is also a qualified pension coordinator with The Private Client Group. He invites questions and comments.

MIGROPROGESSOR SURVEY WHAT'S IMPORTANT WHEN YOU SELECT A
MICROPROCESSOR FOR A DESIGN?

[^4]
MAGNESIUM. THE LIGHTWEIGHT SOLUTION FOR TOUGH DESIGN PROBLEMS.

PEASE PORRIDGE

Whar's Au Twis Mentoning Suff, AnyHow?

0nce upon a time, a new engineer came to work in our group. A woman. Now, in some areas, it's really not a surprise to have a new engineer or a woman engineer, butinourgroup, that did not happen very often. So when Jane arrived, we all tried to be polite and cheerful, for a change, and not just scream at her and give her a hard time, as newcomers are sometimes treated. Now, Jane was a bright young woman, but there were a lot of things that she had to ask questions about, so she would ask various people. Sometimes she would ask me, and sometimes she would ask Andy,

BOB PEASE
OBTAINED A
BSEE FROM MIT
IN 1961 AND IS
STAFF
SCIENTIST AT NATIONAL
SEMICONDUCT-
OR CORP.,
SANTA CLARA, CALIF.
sons behind the answer.
One day, I wandered over to get some info out of a book, andJane asked me a question. Andy had the answer quicker than I did, and I was standing around reading the book, while Andy explained theanswer toJane. Whenhe was finished, I said, "Hey, Andy, you know, Jane is your protégée, right?" Andy agreed. I continued, "And Jane is my protégée, too, right?" Andy agreed. Ithen said, "And, Andy, do you know what that makes us?" Andy could not think of the correct word. I said, "That makes us dirty old men." And all three of us broke up into laughter. Around here, no-one and nothing is taken very seriously....

Actually, there is a word that applies, soif a personis my protégé(male) or protégée (female), then I am a Mentor. I attended a nifty conference on Bipolar Circuits and Technology in Minneapolis in September. I must say, although it doesn't get nearly as much publicity as ISSCC, it's getting to be nearly as good as ISSCC, solong as you are really interested in bipolar circuits (if you're a hard-core MOS enthusiast, there's no reason for you to come to Minneapolis in September). The afterlunch speaker this past year was Jim Williams of Linear Technology Corp., Milpitas, Calif. Jim talked about several topics, but his most serious pitch was that we must do a lot of mentoring. We can't just hire a bunch of kid engineers, ignore them, throw garbage at them, and then chew them out. We probably never could do that. But in the 1990s, it's reasonably easy to see that the nurturing of new or young engineers is a major part of our jobs.

When I was a kid engineer at Philbrick, I had a number of excellent teachers, engineers who taught me
many different aspects of the profession. I must say, though, I was a rather green engineer, because I never had a hobby of ham radio, as many engineers did. In fact, I only transferred from the Physics department to become an EE in the fall of my senior year.

At Philbrick, Dr. Achard helped me appreciate technical writing. Bruce Seddon taught me a lot about worstcase design. Al Pearlman answered lots of my questions about transistors. Bob Malter did not have much time for dumb questions, but I studied his designs and asked a few questions that were not too dumb. I mean, learning how to ask questions that are not too dumb is a significant part of every student's education. After studying and learning from a whole bunch of people for over a year, I was just barely able to design my way out of a paper bag_with a little help. It took me a few more years before I understood the whole picture, well enough that I could design amplifiers without too many fatal flaws, or latch-up modes, or features that did more harm than good.

So if we also want to hire good engineers to work on linear or analog circuits, we can'tjust find themin thinair, and we can't just hire them from our competitors. And we certainly can't just find them coming out of colleges. I mean, when a student graduates from a good engineering school, the best I can hope for is that the student has learned some good study habits, some good attitudes toward work, and some ability to analyze several kinds of circuits. But not everything. Can I hope that the student really knows how to design an op amp? Well, I hope that an engineer I am interviewing knows a little bit about designing something. If he (orshe) candesign and analyze some things pretty well, there's good hope I can teach them enough to come up the learning curve quickly. That's only fair. If I can make them look good, then they can make me look good.

So I should try to avoid the "mushroom treatment," not heap manure on them and leave them in the dark. I should teach them sometimes, throw problems at them other times, challenge them, and try to set a good example. I should avoid letting them get

PEASE PORRIDGE

stuck, or hung up, or discouraged. I may not be able to answer every question. I may demur, or duck certain questions, and tell them to go figure it out for themselves. It's a little bit like when you have kids. You can't teach your own kids everything, but you try to steer them in a course where they can learn what they need.

I remember when our sons were just learning to read. For a while, my wife and I agreed that each of us read everything that Benjamin read. After about a month, we agreed, well, one or the other would try to read everything Benjamin read because he wasjust too omnivorous for each of us to fit in the time to read everything. A month after that, we sort of gave up, as we could not possibly keep up with his appetite for reading. We tried to read samples of what he was reading. But, we had gotten him turned on and he was off to the races, devouring every kind of book and magazine that was suitable
for young people, and many grownups' topics as well. Now that both my sons are taller than I am, they throw me an occasional bone, some good things for me to read that they can recommend. Turnabout is fair play.

Now, when we assign projects to engineers at work, I can't keep up with all of the details, and I can't know all of the answers. But I have to keep in touch, to tell if there's trouble, to facilitate the search for answers, and to prevent the guy from getting discouraged. This is even necessary for an experienced engineer! Because there really aren't many easy projects that our customers want us to do, every engineer gets some very challenging projects. Challenges are great for young engineers, but mentoring would advise you against loading on an unfairly heavy load. Similarly, I have to keep an eyeon the project, tomakesure theengineer doesn't make a false assumption and go barrelling down a path that
is dead-end. Everybody recognizes that after it has happened, but it's a little harder to see it in advance.

Wow, Pease, it soundslike youreally are in charge of a big group. How many people does Mr. Super-manager Pease have working for him? Well, about 2 engineers, 2 technicians, and one guy who is half-way up from technician to engineer. But, I must say, by default, I have given some of my technicians a lot of liberty, and they have responded by coming up with some brilliant moves, interspersed with a few occasional marvelous blunders. So, I have 2 boys at home, and 5 boys at work, and, oh boy, do we have fun.
All for now./Comments invited!/RAP Robert A. Pease / Engineer

ADDRESS:

Mail Stop C2500A
National Semiconductor
P.O. Box 58090

Santa Clara, CA 95052-8090

EPSON

DRAM Expansion Memory Cards

EPSON DRAM Expansion Memory Cards plug into the computer through a slot in the side of the case.

They afford users with instant add-on memory... no need ever to touch the delicate motherboard.

State of the art replacements for conventional expansion SIM modules
 - Capacities of 1 Megabyte, 4 Megabytes or 8 Megabytes, 60 -pin cards for 16 bit microprocessors.
 - Higher capacities for 16 bit cards plus a new line of 88 -pin cards for use with 32 bit microprocessors are coming.
 - Cards are $86 \mathrm{~mm} \times 54 \mathrm{~mm} \times 3 \mathrm{~mm}$, use JEDEC standard 60-pin, pin-in-hole connectors.
 - A new EPSON TAB technology process using double sided PCB's allows cards to be small and compact with high memory capacities.

THE LARGEST FAMIIY Of Imeg Srams.

AND MORE ONTHE WAY.

Sony's family of 1-Meg SRAMs gets larger and larger all the time.

Our newest additions will include an industrialgrade temperature range, synchronous ASM (Application Specific Memory), and a low, 3 -volt power requirement.
We've also adopted all of the industry's most popular package styles, making our family more compatible with all of your PCB designs.

And with the full support of two production facilities - plus another one due soon in San Antonio, TX - we'll be producing more 1-Meg

SRAMs than ever.
If you still can't find the right highdensity SRAM, we've got your answer - a full team of designers in the USA, armed with 0.8 -micron CMOS
technology. And they're ready now to discuss your needs.

So, for the strength and security of the largest 1-Meg SRAM family, look to Sony. You'll find us at Sony Corporation of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630 . For details, call us at (714) $229-4190$, FAX us at (714) $229-4285$, or write to us "Attn: Communications."

Gate Arrays Challenge Standard.Cell ASICS

Channelless Sea-Of-Gates Arrays With Up To 318,000 Gates Use Triple-Layer Metal For Power And Signal Routing.

T

Jon Campbell

raditionally, gate arrays are used as "glue logic" to integrate the miscellaneous logic in systems. However, a new family of submicron CMOS arrays with up to 318,000 gates can be loaded with huge blocks of memory-up to 256 kbits of fully diffused RAM-making them applicable for true system integration. In the past, such applications required standard-cell-based ASICs. The new gate arrays not only significantly extend the size range of gate arrays, but they blur the application lines between gate arrays and standard-cell-based ASICs.

The first sea-of-gates array family to cross the 300 k -gate barrier, the H4C Series from Motorola's ASIC Div., Chandler, Ariz., has an effective channel length of 0.7 $\mu \mathrm{m}$ and a power dissipation of $3 \mu \mathrm{~W} / \mathrm{MHz} /$ gate. Based on a triple-layer-metal single-polysilicon process, the arrays offer embedded boundary scan logic and 180ps typical gate delay (see the figure). They operate fast enough to support the

HIGH-DENSITY gate arrays

speed requirements of $60-\mathrm{MHz}$ processors. According to the company, customers can achieve a 70% typical gate utilization in most applications.

The arrays incorporate an internal core-cell architecture identical to the company's 105,000 -gate HDC Series. As a result, the new gate arrays can utilize any of the cells in the HDC library. CAD support is an extension of that used for the HDC Series.

The series will be introduced in two phases. The first phase, available now, will offer densities of up to 195,000 available gates and I/O signal density up to 256 pins. In the second phase, scheduled for the late third quarter of this year, densities of up to 318,000 gates will be available, and I/O signal density will exceed 500 pins.

Also beginning in the late third quarter, users will be able to embed blocks of fully diffused RAM and implement CAD-controlled boundaryscan configurations. The library will be expanded to include phase-lockedloop (PLL) clock-skew control macros. In addition, the CAE software will be extended to support the company's Customer Defined Array (CDA) architecture, a fully configurable RAM-cell generator, embedded boundary scan in I/O cells, and power calculation.

Array Architecture

The H4C Series can be implemented in either a conventional gate array or a CDA-an architectural hybrid that includes features of gate arrays and standard cells. As in standardcell implementations, embedded blocks or megafunctions are used in a CDA to provide performance unattainable in a conventional gate array. However, the CDA takes advantage of the low cost of manufacturing a gate array by using a fixed I/O and die size.

Market demand for gate arrays with considerably higher numbers of gates led Motorola to develop the new series. The company worked with several "technology partners," such as Apple Computer, Hewlett Packard/Apollo, and NeXT Computer, to define the features designed into the new series. By universally
shrinking array features, the number of gates in a given size die essentially doubled, compared to the HDC series. And by using reduced gateoxide thickness, performance improved 30%.

Because the array features of the HDC Series were universally shrunk, the new H4C Series can utilize any of the over 270 internal macrocells (over 150 different functions) and over 400 periphery cell combinations in the HDC library. In addition, the CAD support for the new series is the same as for the HDC Series.

Design development is supported on Apollo/Mentor Graphics and Sun engineering workstations using Motorola's Open Architecture CAD System (OACS). The OACS framework supports multichip and multilevel simulation, logic synthesis, static-timing analysis, triple-layer metal routing, and automatic testpattern generation.

While the HDC cells include a number of moderate-size preconfigured metallized static-RAM cells, the H4C Series adds the capability of integrating large, high-speed, highdensity RAMs within the gate array. These fully embedded synchronous single or dual-port static memories can be as large as 256,000 bits. A custom SRAM compiler can generate over 200,000 different physical sin-gle- and dual-port SRAM configurations in sizes up to 256,000 bits. Each RAM can be customized to the exact desired configuration.

The SRAM compiler is fully integrated into the ASIC design system. SRAMs can be generated, characterized, and modeled without engineering intervention, and are ready for immediate use in schematic capture and gate-level simulation on a user's workstation. The characterization methodology offers users different levels of simulation, depending on desired accuracy versus CPU time trade-offs. Compiled memories are placed automatically within the gatearray structure. Other megafunctions now under development by the company include a CPU and many commonly used arithmetic and peripheral functions.

ASICs communicate frequently with a number of other chips, including other ASICs, microprocessors, and RAMs. Optimizing such system performance requires that the communication between chips using synchronous interfaces be maximized. Control and distribution of clock skew both on the chip and between chips in the system is critical. The new gate arrays offer balanced clock trees for on-chip clock-skew control, and PLLs to manage clock skew between chips.

Clock-Tree Synthesis

The gate arrays support Gate-Ensemble clock-tree synthesis from Cadence Design Systems, San Jose, Calif. Balanced clock-tree networks can be synthesized during layout with little effect on design routability. The clock trees have minimal interference with critical data paths and make it possible to use embedded megafunctions, such as SRAMs. These clock trees minimize both clock skew across the chip and clock insertion delay.

Several proprietary macrocells supply PLLs to control clock skew between chips. The PLLs compensate for insertion delays and process variation by synchronizing internal storage elements with the external system clock.

The company has developed a fully integrated test strategy for the H4C Series, which it says will be implemented across all future ASIC technologies. The H4C library provides all D and JK flip-flop macros in scan versions, as well as special level-sensitive scan-design (LSSD) macros. A scan macro, which has been licensed from Storage Technology, Denver, Colo., eliminates the additional propagation delay usually associated with scan circuitry.

JTAG (1149.1) boundary-scan macrocells include specially designed I/ 0 and internal macrocells. The JTAG I/O macrocells reduce silicon overhead by placing all sequential logic in the periphery region of the array. The internal macrocells supply registers and control to the test-access port (TAP).
Typhoon, a high-pin-count, scan-

53 ns FR=:
 FROM NMBT - THE HIGH SPFED DRAM SPECIALIST

Now you don't have to compromise the performance of your 16 MHz and 20 MHz systems. Now you can create true zero waitstate 16 MHz and 20 MHz systems. Not close to zero; but true zero wait-state designs. Eliminate "patchwork" solutions requiring complex, expensive interleaving, page mode designs, or costly cache schemes.

Upgrade your systems to direct memory access - and get the benefits of higher performance and lower cost. The perfect midlife "kicker" for your current designs; stake out a strong competitive position for new designs.

* See for yourself . . . We'll send you Free samples (up to 1MB) to evaluate in your designs. Just fax us your rough block diagrams for review - we'll be in touch ASAP! Only one qualification: It must be a company funded/scheduled project.

Don't put it off. Your free samples are available now from NMB - the high-speed DRAM specialists. Fax us your design sketches today. Or give us a call at (800) 662-8321 for further information.

NOW!

Lil| 你|| INCORPORATED

NMB TECHNOLOGIES INCORPORATED
9730 Independence Avenue, Chatsworth, CA 91311
Phone: (818) 341-3355 Fax: (818) 341-8207

EXHIBITION \& CONFERENCE

MICRO
 SYSTEM

Technologies 91
2nd International Conference and Exhibition on Micro Electro, Opto, Mechanical Systems and Components

- Micro System Technologies
- Micro Electronics
- Micro Sensing
- Micro Optics
- Micro Mechanics

Concurrent International Conference under the Chairmanship of Dipl.-Ing. R. Krahn, VDI/VDE-TZ IT GmbH and Prof. Dr.-Ing. H. Reichl, Techn. University Berlin

Highlights 91:

- Micro System Applications in Automotive Engineering Medical Equipments Environmental Engineering

Informations:

MESAGO USA Corp.
376 Boylston Street
Boston, MA 02116, USA
Tel. 001 (617) 5368677
Fax 001 (617) 5368682

Organizer:
AMK Berlin
Ausstellungs-MesseKongreß GmbH MESAGO Exhibition \& Conference Group

HIGH-DENSITY GATE ARRAYS

based tester for ASICs, is being developed jointly by Motorola and the ATE Div. of Schlumberger Technologies, San Jose, Calif. It features up to 1024 signal pins with 64 scan channels. The tester supports scan rates up to 40 MHz , as well as a high-speed clock burst to enable built-in self test of RAM circuits. A commercial version of the scan-based tester, the ISS2000, will be announced by Schlumberger next month.

The H4C Arrays each have four separate power buses. Each I/O cell site has a universal buffer that's fully programmable as a power or ground pin, or as one of over 400 periphery cell combinations. The arrays have a set of fixed power and ground pads. All non-JTAG I/O cells are programmable for drive currents of 2,4 , or 8 mA . Up to six cells can be paralleled internally to deliver up to 48 mA of output current through one pin.

Available packaging includes JEDEC and EIAJ quad flat packages (QFPs) and tape-automated bonding (TAB) packages, as well as JEDEC pin-grid arrays (PGAs). Pin counts range from 128 to over $500 . \square$

Price And Availabilty
Three arrays-the $\mathrm{H}_{4} \mathrm{C} 057$ with 57,000 raw gates, the H4C123 with 123,000 gates, and the H4C195 with 195,000 gates-are available now. Five other arrays planned for the late third quarter include the 27,000gate H4C027, the 35,000-gate H4C035, the 86,000-gate H4C086, the 161,000-gate H4C161, and the 318,000-gate H4C318. Nonrecurring engineering cost ranges from $\$ 35,000$ to over $\$ 200,000$, varying with gate equivalency. Arrays using diffused and embedded functions will also entail an engineering charge based on designsupport requirements.
As a typical production pricing example, an H4C057 array (up to 40,000 usable gates) in a 160-lead QFP will cost approximately $\$ 27$ each, in 10,000 -unit quantities per year. Prototype cycle time is 4 weeks for standard arrays (without fully diffused embedded functions) and 6 to 8 weeks for CDAs (with full-diffusion options).

Motorola Inc., Semiconductor Products Sector, ASIC Div., 1300 North Alma School Rd., Chandler, AZ 85224; (602) 821-4406.

CIRCLE 514
How Valuable?
Circle
Highly
MODERATELY 545
SLIGHTLY 546

Triple Port DRAMs

WORID CLASS MEDICAL D.C. POWER SUPPLIES

MEDICAL SWITCHERS

 international requirements for safety approvals, safety leakage and EMI.

MS-Series features:

- 17 models, 5 power levels, 30 to 110 watts
- Multi-output . . . up to 5 outputs - Designed to meet IEC 601, VDE 0750, UL 544 and CSA C22.2 No. 125-M1984 medical safety specifications - most units fully approved - Less than $30 \mu \mathrm{~A}$ leakage current - Proprietary low-leakage, high attenuation EMI filter (patent pending) meets stringent FCC and VDE 0871

Class B EMI specs

- Power fail available on 110 -watt units
- Worldwide AC input ranges 90-132/180-264 VAC - Versatile output configurations for wide variety of applications
- Industry-standard packages
- 24 -hour full-load burn-in and 2 -year warranty
- Tested I.C's and $105^{\circ} \mathrm{C}$ capacitors used throughout
- Condor MED 1 quality program standard on all units
- Enclosures available for all models
- Easily modifiable for special output configurations

MEDICAL LINEARS

Condor's M-Series offers 38 single and multi-output models, all designed to meet the toughest international safety requirements.

M-Series features:

- Designed to meet IEC 601, VDE 0750, UL 544 and CSA C22.2 No. 125-M1984 medical safety specifications - most approvals are complete
- Less than $8 \mu \mathrm{~A}$ leakage current
- Meets stringent FCC and VDE 0871 Class B EMI specs without additional filtering
- Worldwide AC input ranges
- Industry-standard packages
- 8-hour, full-load burn-in and 3-year warranty
- Tested I.C's and $105^{\circ} \mathrm{C}$ capacitors used throughout
- Condor Med 1 quality program standard on all units
- MTBF of over 200,000 hours per MIL HDBK 217D on most units

PLUS CUSTOM DESIGNS TO
MEET YOUR SPECIAL NEEDS!
Condor has been designing and manufacturing custom medical switchers and linears for more than 10 years, with 100% success in obtaining required worldwide safety agency approvals. Call us for all your custom needs!

Send for our free catalog!
=CONDOR

1. SPORTING AN INPUT MULTIPLEXER and a convert command input, Crystal's 16 -bit CS5505 and 20-bit CS5506 delta-sigma
ADCs look and act like conventional sampling analog to-digital converters.

20-BIT DELTA-SIGMA ADCS VIE FOR Integrator J0BS

he first delta-sigma analog-to-digital converters (ADCs) aimed at dc instrumentation jobs-Crystal Semiconductor's 16-bit CS5501 and 20 -bit CS5503 with $10-\mathrm{Hz}$ bandwidths-were a nice fit for converter-per-channel applications. However, the 130 -ms delay through their digital filters made their use at the output of an analog multiplexer impractical. In addition, they needed a reference, four power supplies, and dissipated 40 mW , which didn't lend them to for battery-powered or control-loop applications.

Now Crystal Semiconductor and Analog Devices, a newcomer to the deltasigma arena, have each come up with a family of delta-sigma converters for classic de-measurement applications that can handle multiplexed inputs. With a convert command, Crystal's 16 -bit CS5505/07 and 20-bit CS5506/08 delta sigmas even look like conventional ADCs. On the other hand, Analog Devices converters, the 20 -bit AD7710/11/12, have added signal conditioning in the form of a programmable-gain amplifier and current sources for sensor excitation. Both easily provide sampled-data rates of 20 Hz .

These converters offer performance undreamed of a few years ago at any price, challenging IC integrating converters, as well as modules, boards, and even instruments. Yet they cost from just $\$ 9$ to $\$ 23$ each in 1000 -unit lots.

Application areas for the converters range from process control to laboratory and medical instrumentation to automatic test equipment and weigh scales (from supermarket-deli scales to roadside truck scales). They link easily with low-level sensors from thermocouples, strain gages, and resistance-tempera-

16/20-BIT DELTA-SIGMA ADCs FOR DC INSTRUMENTATION

ture detectors (RTDs), to high-level transducers, such as pH probes, thermistors, and even potentiometers. Their low-power, single-supply requirement lend them to the ubiquitous $4-20-\mathrm{mA}$ process-control loop as well as portable instruments (ELECtronic design, April 11, p. 65).

Fancy Families

Except for their resolution and front ends, the four ADCs in Crystal's family are identical. The front ends of the CS5507/08 offer a true differential analog input while those of the CS5505/06 consist of a fourchannel, pseudo-differential multiplexer that drives the fourth-order, delta-sigma modulator (Fig. 1).
The three members of Analog Devices' family are also basically differentiated by their front ends (Fig. 2a). The AD7710's front end consists of a two-channel, true-differential multiplexer. The multiplexer drives
a PGA, which in turn drives a secondorder modulator (see "Two orders or four", p. 97). A $20-\mu \mathrm{A}$ current source is also available to excite a thermistor for use with thermocouple cold-junction-compensation circuits. An on-chip, $100-\mathrm{nA}$ current source can detect an open line from a sensor. The AD7711 is virtually identical to the AD7710 but for three exceptions: two $200-\mu \mathrm{A}$ current sources are added for RTD excitation, there's no $20-$ $\mu \mathrm{A}$ source, and a single-ended input replaces one of the differential inputs.
The AD7712's front end is quite different (Fig. 2b). A single differential input drives the PGA and a sin-gle-ended input for high-level signals feeds an attenuator. A twochannel, single-ended multiplexer selects the output of the PGA, or the attenuator, for the delta-sigma modulator. The AD7712 has only the open-line-detecting current source.

Its reference is 4 V , while that of the other six ADCs is 2.5 V .

At first glance, the ADCs from the two families seem quite similar. In fact, even the specifications aren't that diverse. It appears there's more difference between family models then between families. Essentially, differential front ends drive deltasigma modulators that are followed by digital filters and serial digital outputs. Each also has differential inputs for a reference and can run off a single $5-\mathrm{V}$ rail or off $\pm 5 \mathrm{~V}$. Their inputs handle unipolar and bipolar signals, and they employ autocalibration to maintain accuracy. But that's where the similarities end.

Vive La Difference

Crystal's CS5505/6/7/8 ADCs, as noted earlier, are designed to "look like" conventional converters. Unlike any other delta-sigma ADC, a convert command (bringing pin 3

2. INPUT MULTIPLEXERS on Analog Devices' AD7710/AD7711 ADCs enable them to act as conventional sampling ADCs. The converters also have current sources for exciting sensors (a). Their cohort, the AD7712, lacks the multiplexer and current source. It does, however, offer a high-level input followed by an attenuator and switches to a $4-\mathrm{V}$ reference (b).

Citation
silicon Circuit Court
№ $111 \cdot 101$
NAME: LATTICE SEMICONDUCTOR
VEHICLE TYPE: MOS PED
LICENSE NUMBER: GAL $16188-7$

You are required to explain why you have exceeded virtually every industry standard obtain samples. We understand the part in question, along with supporting documentation, you, ce reached at:

\square Lattice Semiconductor Corporation

At $\pm 15 \mathrm{~V}$, our high-speed VIP ${ }^{m \mathrm{~m}}$ op amps are the ultimate driving devices.

Driving a $1,000 p F C_{L}$ and slewing at $250 \mathrm{~V} / \mu \mathrm{s}$, the LM6313 delivers 250 mA into the load and still remains stable.

Turbocharging your loaddriving capabilities.

Our new VIP op amps are built to drive ... and at very high speeds. Which makes a great deal of highperformance sense when you consider they're designed with an innovative bipolar technology called "Vertically Integrated PNP" or VIP.

With a $\pm 15 \mathrm{~V}$ power supply, our VIP op amps offer a higher signal-to-noise ratio, a higher dynamic range, and higher drive capability (none of which you can get from other high-speed $\pm 5 \mathrm{~V}$ amps). In fact, they'll drive capacitive loads without oscillating. Which means they're easy-to-use and very stable. Even at the highest speeds.

Packing precision and speed in the same op amp.

The LM6218, a dual op amp, is not only extremely precise, it's extremely fast. Which is why it provides a low offset voltage of 3 mV (1 mV max for the LM6218A), a bandwidth of 17 MHz , and a slew rate of $140 \mathrm{~V} / \mathrm{ms}$.

It also provides a settling time of 400 ns to 0.01% for a 10 V step and 7 mA of power dissipation. All in a dual op amp. So now you get a highperformance solution that's ideal for high-speed industrial and military applications requiring 12-bit accuracy, such as image processing and high-speed data acquisition and instrumentation (883/SMD devices are available).

Delivering the world's first high-speed, high-power monolithic op amp.
Until recently, you needed multi-chip solutions to match the world-class
performance now achieved by our one-chip solution, the LM6313.

This monolithic device delivers 35 MHz performance and a $250 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Plus, it'll drive a 75Ω cable to a $\pm 11 \mathrm{~V}$ output swing -with a peak output current of 300 mA and 220 mA continuous -making it ideal for ATE and pin-driver applications.

What's more, the LM6313 provides on-chip protection. Like overcurrent and thermal shutdown protection with earlywarning error flags.

Driving with a winner.

For your design package, call or write us today. And let our highspeed VIP op amps put your designs into overdrive.
1-800-NAT-SEMI, Ext. 123
National Semiconductor Corp.
P.O. Box 7643

Mt. Prospect, IL 60056-7643

[^5]
16/20-BIT DELTA-SIGMA ADCs FOR DC INSTRUMENTATION

high) starts a conversion. Again, as with most common converters, a data-ready output (pin 23 goes low) indicates conversion is complete and is ready at the serial-output port (pin 22). If the convert pin is high at the end of the conversion, the ADC starts a new conversion. In the CS5505/06, the convert command also latches the 2-bit address of the four-channel input multiplexer.

The chips are designed to operate with a low-cost (19 cents each in volume quantities) $32.768-\mathrm{kHz}$ watchcrystal clock. With it, the converters spit out new 16 - or 20 -bit digital words every 50 ms , or 20 sampled conversions/s. Unlike earlier delta sigmas, the digital filters in the new converters settle to within $1 / 2$ leastsignificant bit in 50 ms . A fast-settling filter is obtained by switching from the low-pass circuit in earlier instrumentation delta sigmas to a comb topology in which only one convolution (instead of several) is occurring at one time. Running at 32.768 kHz , the filter produces zeros, and thus deep, normal-mode, power-line-noise-rejecting notches (typically -120 dB) at $50,60,100$ and 120 Hz . Minimum attenuation at these frequencies runs $-48,-53,-62$ and -69 dB , respectively.

Return To Reality

The interrelationships among analog input-voltage, reference-voltage, and power-supply-voltage ranges add to the versatility of each of these converters. Like an op amp, there's no analog ground within the chip. All signal and reference inputs are floated. The digital supply is +5 V , the positive analog supply can lie between +5 and +10 V , and the negative analog supply can lie between 0 and -5 V . The absolute difference between the plus and minus analog supply rails must not exceed 12 V . Both the input voltage and reference can lie anywhere between the two analog rails. Crystal, however, recommends a reference voltage between 1 and 3 V . In addition, the maximum span of the input voltage should be within the maximum span of the reference.

The on-chip reference is 2.5 V with

TWO OBDERS OB FOUR

rystal uses a fourth-order delta-sigma modulator in its converters, while Ana\log Devices uses a secondorder modulator. Crystal's approach was dictated by its need to achieve 20 -bit performance. Analog Devices, on the other hand, felt it could meet the performance with a less complex design (and hence lower-cost unit), using a second-order approach. The key to reaching 20 -bit performance with a second-order modulator is a $10-\mathrm{MHz}$ clock, which represents a high oversampling ratio, compared with Crystal's low-cost $32.768-\mathrm{kHz}$ low-frequency clock. A second-order design is simpler, uses less silicon, and potentially cuts IC design time.
a $5-\mathrm{V}$ supply that's referenced to the plus rail. Consequently, the refer-ence-out point (pin 16) sits at +7.5 V if the plus rail is at +10 V . The reference's typical accuracy to within 4% and drift of $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are both sufficient for ratiometric applications in which sensor excitation is a refer-ence-voltage function. For non-ratiometric jobs, a precision off-chip reference should be used.

Though the Crystal and Analog Devices converters are specified as 16 - and 20 -bit devices, the prime applications for these ADCs don't demand 20 -bit accuracy, and most not even 16 -bit accuracy. Nevertheless, because all delta-sigma converters are inherently monotonic, their prime specifications are differential nonlinearity. These are specified as "no-missing codes" (NMCs) to some number of bits. Integral linearity, and gain and offset errors are similarly specified-after calibration.
The 16 -bit Crystal units guarantee NMCs to 16 bits; their 20-bit converters to 18 bits. Some codes may be missed at 20 bits due to truncation errors in the output word's digital computation, rather than as a result of analog circuits. Only a few codes are missed at 19 bits, the typical NMC specification.

Integral linearity of the top-grade Crystal units is guaranteed to be within 0.0015% (16 bits). Full-scale and offset error after calibration, at any temperature, runs a maximum of ± 24 and $\pm 64 \mathrm{LSBs}$, respectively, for the 20 -bit converters; ± 1.5 and $\pm 4 \mathrm{LSBs}$, respectively, for the 16 -bit devices. The chips take just 4.5 mW of power operating from a $9-\mathrm{V}$ battery, and a mere $25 \mu \mathrm{~W}$ when asleep. They should find many homes in handheld instruments of all types, as well as in $4-20-\mathrm{mA}$ current loops.

Another Drummer

Beyond the front end, the architecture of Analog Devices' converters bears little resemblance to Crystal's (Fig. 2, again). Two major differences stand out: The Analog Devices units include a PGA and a bidirectional serial I/O for host control of chip operation, and for shipping data words to the host. A 24 -bit control word performs several tasks. They include selecting the input channel; activating the current sources; setting signal bandwidth, word rate, and PGA gain; activating calibration; and selecting the operating mode. Other tasks involve calling for data and calibration coefficients to be sent to the host, activating the sleep mode, and selecting between bipolar and unipolar input signals. Like Crystal's ADCs, these have a data-ready output that goes low when a new data word is ready for the host and after completing a calibration step.

The master clock should run at 10 MHz and can be implemented with a crystal between two pins. As programmed by the host, the performances of the PGA and digital filter are interrelated, with both elements determining effective resolution. The PGA can be given any one of eight gains in binary increments from 1 to 128 . The data rate, and the first notch of the filter, can be set at $10,25,30,50,60,100,250,500$ and 1000 Hz . The -3 -dB frequency can range from 2.62 to 262 Hz . For a $10-$ Hz data rate, resolution is 21.5 bits at a gain of one, and 16.5 bits at a gain of 128 . At the maximum data rate of 1000 Hz , resolution is 8.5 bits regard-

A giant step in a little footprint. AtSiliconix, we're doing more thanjust shrinking devices to increase utilization of limited board space. Now we're employing digital packaging technology to carry our power products. Making assembly easier than ever. And in some casescreating entirelynew application possibilities.

Our latest offerings, the "LITTLE FOOT" 8-pin additions to our Si9000 SOIC family, have the highest power density and the lowest package height available. To achieve this, we design two MOSFETs into less space than a single transistor 4-pin DIP,TO-220, or DPAK. Not only saving valuable board spacebutalso improving reliability by reducing part count.

These devices generate less heat to make your design more efficient. The secret? OurSiMOS2.5 (2.5 million cells/sq.in.) technology combined with a copper leadframe that conducts heat directly from the backside of the die to optimize thermal performance. The result-a asmaller, cooler running device with the industry's lowest $\mathrm{R}_{\mathrm{DS}(0 \mathrm{O})}$.

The Si9000 family consists of 22 devices with more on the way. Our latest additions are the Si9952DY, an nand p-channel device with high current handling capability and ideally suited for motor control applications. The Si9953DY, a dualp-channel device that is perfect for load switching. And the dualn-channelSi9955DY that'sdesigned for higher voltage applications.

And that's not all! Our standard SOIC packaging allows you to use automated assembly techniques to ensure device compatibility. And this combined with lower part count results in reduced assembly costs. And speaking of lower costs - single MOSFETversions, the Si94XX series, are coming soon.

Step up to more compact and powerful designs! Call our toll-free hot line now. 1-800-554-5565, Ext. 557. Ask for our "LITTLE FOOT" Design Kit. And remember, atSiliconix we're committed to achieving a seamless interface between the power and digital worlds.

Siliconix

2201 Laurelwood Road, Santa Clara, CA 95056

"Quality First An award earned by the People of Plenco.

"Quality First" is the award given to Plastics Engineering Company by Eaton Corporation. Awarded only to preferred vendors who demonstrate proficiency in Statistical Process Control, the prestigious Award reads "For Quality Performance, On Time Delivery, and Attempting to Contain Prices". It is a recognition of the people of Plenco, their work ethic and the desire to do a good job.

Helping Plenco customers world wide produce quality products efficiently and economically has always been the foundation of our business and is what the people of Plenco try to do every day.
Choose Plastics Engineering Company from the beginning of your next project. You'll gain a level of quality, product performance, and total cost savings that can help to keep you competitive. For information, call 414-458-2121 or write P. O. Box 758, Sheboygan, WI 53082-0758.

THERMOSET PLASTICS
PLASTICS ENGINEERING COMPANY Sheboygan, WI 53082

SLNCE 1934

16/20-BIT DELTA-SIGMA ADCs FOR DC INSTRUMENTATION

less of PGA gain.
If a $60-\mathrm{Hz}$ notch/data rate is selected to handle power-line noise, the $-3-\mathrm{dB}$ frequency is 65.5 Hz . The notch is -100 dB minimum. Effective resolution is 18.5 bits at gains of 1 through 8, dropping off to a resolution of 15.5 bits at maximum gain.
The Analog Devices converters guarantee no-missing-code performance to 21 bits with no truncation errors. Like Crystal's units, integral nonlinearity is within 0.0015%; the filter notch is at 60 Hz . After calibration, maximum gain error runs within $\pm 0.5 \mathrm{LSB}$, and maximum offset error is $10 \mu \mathrm{~V}$.
The converters' $2.5-\mathrm{V}$ reference is with respect to ground. Its accuracy is within 1% maximum and drift rate is $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical. Power drain, however, is significantly higher than the Crystal units -45 mW maximum in the operating mode and $100 \mu \mathrm{~W}$ while asleep. But the values and relationships between supply-rail, signal, and reference-input voltages of the two families are virtually identical. The Analog Devices' units need a 5 -V digital rail while the analog rails can run from $\pm 5 \mathrm{~V}$ to 0 and 5 V , and to 0 and 10 V . \square

Price And Availabilty

The 16-bit Crystal CS5505 and 20-bit CS5506, with their four-channel multiplexer front ends, come in 24-pin plastic DIPs. The single-channel 16-bit CS5507 and 20-bit CS5508 come in 20-pin plastic DIPs. Both are rated for the extended-in-dustrial-temperature range. In quantities of 1000 , pricing ranges from $\$ 9.30$ to $\$ 22.70$ each. Military grades are also available. Small quantities are available from the factory.
Analog Devices' AD7710, AD7711, and AD7712 come in 24-pin plastic packages and are rated for the extended-industrialtemperature range. In quantities of 1000 , they go for $\$ 12.75, \$ 13.60$, and $\$ 11.90$ each, respectively. Military grades are also available. Small quantities can be had from the factory.

Crystal Semiconductor Corp., P.O. Box 17847, Austin, TX 78760; Mike Paquette, (512) 445-7222.

CIRCLE 512
Analog Devices Inc., Application Engineering, 181 Ballardvale St., Wilmington, MA 01887; (617) 937-1428.

CIRCLE 513

How Valuable?	Circle
HIGHLY	541
Moderately	542
SLIGHTLY	543

The Management Collection

Books selected to help you approach difficult business situations more knowledgeably.

LEADERSHIP

R75 Surviving the Crisis of

Change - Honing Your

 Management SkillsIn today's fast-paced business world it is not always easy to find the best answers to diffi cult questions. This series of forty articles is a coliection of industry Week's best information dealing with change that affects managYou'll learn how to gain control over difficult problems that you encounter every day. Articles include ... Expand Your Career by Expanding Yourself; The Politic Game; Surviv ing a Takeover; When Values Collide; and many more.
124 page softbound \$22.50

R85 How to be a Better Leader
Frederick Herzberg, Daniel Yankelovich, Charles Day, Perry Pascarella and others in classic articles about the changing exdeal with them. Included are: Selecting Your Meanagement Style, Dealing With Your Subor Manages, Motivating Your Workers, and more 98 pages . . . softbound $\$ 17.50$

R09 Your Toughest Tests As

A Manager

This book guides you in assessing your own management skills and helps you to develop the strong leadership capabilities you need to be a more effective manager. Articles in clude: Developing a Flexible Managemen Style, Motivating Without Manipulating, Handling Creative Staff Members, Dealing Wiol Conflict, Delega

57 pages . . . softbound \qquad

R87 the Unhealthy Executive and Some Practical Cures
Managing in an age of anxiety can drive executives into dangerous responses. This book keys on emotional awareness. It shows you how to recognize potential problems and how to deal with them.
72 pages . . . softbound \qquad .$\$ 16.00$

R89 Future Focus: Advancement

 and Leadership StrategiesShould you plan your career - or just let it happen? Are you using strategies that build few of the topics you'll find discussed in a series of articles ranging from career plan ning to executive management skills.
117 pages ... softbound ... \$18.00

MOTIVATION

R88 Herzberg on Motivation What can the manager do for himself and fo his subordinates to overcome the "burnout and work relationships? Why is scientific manament not the answer to increasing management not this book answers all these questions plus many more from prob ques that might surface in trying to make participative management work to effective eadership in a period of psychological de pression. . . this book has it all.
80 pages
softbound
third printing $\mathbf{\$ 2 2 . 5 0}$

LEGAL

R80 Right Off The Docket
This book is an invaluable reference source of more than 140 industrial accident and occupational illness claims. The index provides a cross-reference for each case by type of injury and the judicial ruling set forth so that you can quickly turn to those cases of particular interest.
130 pages . . . softbound $\$ 10.00$

Order your review copies now!
Call toll-free
800-321-7003
(in Ohio 216/696-7000)

MANUFACTURING

R72 Strategic Manufacturing
This complete series of twenty-four articles analyzes some of the key issues managementmus in the years phead The articles discuss "how" to link manufacturing with all of the functional departments of an organization so they work with a broad corporate view of their goals. Articles include. . . Ten Ways to Mismanage Technology; Learning From Foreign Strategies; CIM . . . Walking Through Fire; Challenging Tradition; and much more
94 pages .. softbound .. \$19.50

FINANCE \& ACCOUNTING

X38 Managerial Accounting for Non-Financial Managers
You'll work as a company controller in this programmed learning course. You'll learn to properly record all the company's business transactions . . . sales, inventory purchases, perating expenses, depreciation, equity changes, disposal of assets. When the company's fiscal year ends, you'll prepare the annual report, balance sheet, income statement, and the statement of source and application of funds. When you've finished the course, you'll understand better the role of accounting and how to use the information accounting gives you to be a more effective manager
Two volumes-course book and workbook \$27.50

X29 How To Read a Financial Report Written in programmed learning format, this book will review the accounting process, traacing the steps from the actual sale to the appearance of the transaction on the financial statements. Then you'll learn how to assess nancial position and performance of your company louity a cive profitability, rividy, activity, profitability, and coverage ratios.

140 pages . . spiral bound . . $\$ 19.50$

BUSINESS STRATEGY

R70 Strategic Management

Getting a fix on your competitive position, Establishing a clear purpose for the corporation, Meshing the corporate purpose with the individual goals of your people, and Getting their commitment. This collection of ten articles will help show you ways to foster greater vision of your corporate purpose and techniques for combining the human and technological factors needed for good decisionmaking.
34 pages . . . softbound $\$ 7.00$

To order these books, just fill out the coupon below and mail to:

Penton Education Division 1100 Superior Avenue Cleveland, Ohio 44114

PACKAGINGAND MATERIALS E D I I O R I A I I F

The Packaging Hurdle

Not all exotic alloys and composites go into stealth fighters or race cars. Advances in electronic gear will increasingly depend on innovative material technology.

PACKAGING ONCE was little more than an afterthought in the design of many electronic products. But no more. Today, the packages that house IC chips and modules are becoming as sophisticated as the microcircuits they contain.
The reasons are easy to understand. Thermal management problems become huge as micro processors approach the $100-\mathrm{MHz}$ region and memory chips hit 64 M bits. As the number of on-chip I/Os reach the hundreds, designers must resort to complicated schemes just to make connections between closely packed circuits.

The response to these problems has been a dramatic push in materials and packaging technologies. Massive research efforts are under way in Fortune 500 companies, firms that include AT\&T Co., Boeing Co., Digital Equipment Corp., General Electric Co. Hewlett-Packard Co., Hughes Air craft Co., IBM Corp., Intel Corp. Motorola Inc., Rockwell Inter national Corp., and Texas Instru ments Inc., as well as at other companies and in Japan.

The research consortium MCC (Microelectronics \& Computer Technology Corp.) is also involved,

HIGH-DENSITY interconnect boards based on multichip modules (MCMs) are today's most sophisticated electronic packaging technique. Within a few years, the technology will migrate into everything from PCs to automobiles. The idea behind MCMs is to mount multiple chips on a common substrate to save space and reduce interconnect length. MCMs built on silicon substrates, such as those made by nChip, San Jose, Calif., are in many ways more advanced than the chips they connect.
developing CAD tools to support the design of advanced chip and hybrid packages. Moreover, the technology is important enough to attract funding from DARPA (Defense Advanced Research Projects Agency), which is starting to work on a high-density circuit packaging initiative. Commercial vendors are working in this area as well.

ALMOST-INTEGRATED CIRCUITS

The packaging technique which is attracting the most attention in electronics today is multichip module. Multichip modules (MCMs) are said to be the packaging equivalent of ASICs. But instead of holding an array of circuit cells in silicon, MCMs comprise an assortment of bare dice mounted on an appropriate substrate and strung together with high-density interconnect. Using thin-film

NEW PLASTIC HEAT sinks eliminate the problem of thermal-expansion mismatch between plastic packages and typical heat sinks made of aluminum. The metal-filled polymer, called Deltem, has a CTE similar to that of materials commonly used to enclose PLCCs and PQFPs, yet conducts heat more readily. It also weighs 40% less than aluminum, placing less stress on solder joints. Deltem heat sinks from EG\&G Wakefield Engineering are available in sizes from 0.650 to 0.950 in. per side, corresponding to IC packages from 44 to 168 pins.

An Interdisciplinary Art

LOOK AT A team designing advanced packaging today and you're likely to find physicists, polymer chemists and material specialists, as well as crack mechanical and electronic engineers. The reason is that packaging poses tough mechanical and materials problems that can frustrate the most carefully planned circuit designs.

To understand why, consider what can happen on an integrated circuit if the mechanical engineering of the package is less than first rate. Stresses induced by factors such as bond wires or thermal expansion can change the inherent resistance of the silicon, causing circuit behavior that is nearly impossible to predict. (In fact, some industry veterans claim that poor chip packaging led to the accidental discovery that silicon can act as a variable-resistance transducer, and thus gave birth to the silicon pressure sensor industry.)

Complex interactions between packaging and circuit elements demand innumerable trade-offs that cross the boundaries of ordinary engineering disciplines. Mechanical and electrical simulations must treat each material or structure in an electronic package as a dynamic subsystem in its own right which must be described in terms of coefficient of thermal expansion, Young's modulus, dielectric constant, thermal conductivity, impedance, signal frequency,

AN EXAMPLE OF how packaging teams have become interdisciplinary: One effort to win a multimillion-dollar DARPA contract in MCMs will be led by these professionals at Texas Instruments Inc. From left to right, physicist Howard Test, a specialist in package design for power-specific applications; physicist Dr. Walter Schroen, in charge of packaging and interconnect of high lead-count ICs and ultradense boards; and polymer chemist Gail Heinen, specializing in a die-attach technology and computer simulation.
and other parameters. Rigorous testing must also gage effects that are hard to simulate by computer. Typical tests check factors such as corrosion between two materials, ingress of moisture through seals, and fracture mechanics.
technology, these modules are smaller and support higher signal speeds than printed-circuit boards and even hybrid assemblies.

Potential applications for MCMs include CPUs, memories, graphics subsystems, networking nodes, and embedded controllers. In general, any large circuit running faster than 40 MHz or which must occupy limited space is a strong candidate for multichip design.
MCMs support high speeds with interconnect lengths that are 10 to 100 times shorter than on standard circuit boards. Die spacing can be as low as 10 to 20 mils. Also, MCMs eliminate an entire level of packaging and the corresponding propagation delays. In a $40-\mathrm{MHz}$ system, for example, chip-to-chip transmission times can be cut by 4 to 6 ns , a savings of about 20% with respect to the 25 -ns clock cycle.
Although multichip technology solves two major problems for system designers, it creates several new ones for packaging engineers. The challenge is to cool a dozen or more chips operating at 50 to $100 \vdots$ MHz inside a small package. A : Risc-based computer, for example, : consisting of several VLSI chips, can dissipate up to 70 W . Aircooled modules can handle about 15 W , but manufacturers claim that exotic heat sinks will allow MCMs to take on circuits that generate from 50 to 75 W .
The trick to designing multichip modules - which also applies in hybrids and printed-circuit boards - is finding and assembling materials with the right blend of electrical, mechanical, and thermal properties. Trade-offs are almost always required and depend on the application. Although each MCM manufacturer seems to have a different recipe, the construction of these packages can be broken into three basic elements: substrate, dielectric, and interconnect method.
Substrate: One approach to multichip modules is to use familiar circuit-board technology such as FR-4. Chips are typically wire bonded and covered with an
opaque epoxy. These assemblies are called chip-on-board and can be enclosed to customer specifica tions. Although the packaging method costs relatively little, it is generally limited to applications where speed and size are not at a premium.

Ceramics are also commonly used to make MCMs. Alumina substrates, for example, date back more than 20 years in thick-film hybrids and power modules. Compared to conventional organic laminates, they are more thermally conductive, provide increased mechanical support, and allow line width and separation to be reduced by one to two orders of magnitude.

Alumina falls short, however, because it has a high dielectric constant and does not expand at the same rate as silicon over temperature variations. With twice the dielectric constant of FR-4, it tends to limit signal speed and offset the
gains of shorter connections. Parasitic capacitance inherent to the substrate/conductor interface is to blame. But help is available from glass ceramics that have dielectric properties similar to those of standard circuit boards.

One of the biggest advantages of cofired glass-ceramic, a substrate that IBM engineers are having success with, is that its coefficient of thermal expansion (CTE) closely matches that of silicon. Glass ceramic has a CTE of $30 \times 10^{-7} /{ }^{\circ} \mathrm{C}$, compared to $26 \times 10^{-7} /{ }^{\circ} \mathrm{C}$ for silicon and about $60 \times 10^{-7} /{ }^{\circ} \mathrm{C}$ for alumina. This translates into a better fatigue life for solder connections because it equalizes thermal expansion and contraction cycles between the chip and substrate.

Other new ceramics, including aluminum nitride and silicon carbide, trade off dielectric properties for higher thermal conductivity. Thermal conductivity is also

GLASS CERAMIC has thermal-expansion properties closer to those of silicon than many other substrate materials. The closer the match, the less stress placed on solder bonds, and the higher the fatigue life of the joint. Glass ceramic also offers one of the lowest dielectric constants, which translates into shorter propagation delays for signals.

ELECTRONICS

PACKAGING

AND MATERIALS
a major selling point for metal substrates such as molybdenum-copper. Unlike low-dielectric-constant ceramics, these materials allow heat to dissipate from the substrate rather than the surface of the chip itself.

An edge that silicon carbide has over other new ceramics is that its thermal-expansion properties are similar to those of a silicon die. Mixed with aluminum in a reinforced matrix, composites of silicon carbide are also easy to tool. The best CTE match, however, is provided by single-crystal silicon substrates.

Silicon may be the ideal substrate material for multichip modules. In addition to having an identical coefficient of thermal expansion, it offers high thermal conductivity and a low dielectric constant. It also allows passive elements such as terminating resistors and decoupling capacitors to be integrated into the substrate.

One firm's answer to the question of substrate material is the
"no-substrate" module. Chips are flip mounted directly to a tape film stretched across a frame. Connections are made using reachthrough vias, a solderless process that eliminates the need for bumps.

Pioneered by Polylithics Inc., Santa Clara, Calif., the method recently won an endorsement from the Air Force, which awarded the firm a Small Business Innovative Research contract. The contract is part of the Air Force's new Electronic Packaging and Interconnect Initiative under the direction of Wright Research and Development Center, Wright-Patterson AFB, Ohio.

Dielectrics: Dielectrics provide MCMs with passivation and insulation, just as in ICs. Packaging engineers are experimenting with several materials. Not surprisingly, silicon dioxide is a frequent choice. Others report success with organic polymers such as polyimide and BCB (benzo. cyclobutene). Though most di- :

LET US BE YOUR PACKAGING PARTNER

ACT is an ideal packaging partner for you, because we are completely committed to increasing your competitive edge by reducing your interconnect costs and improving reliability.
ACT offers:

- early technical assistance
- state of the art interconnects
- quality products delivered on time
- after sales service including order tracking and cost reduction workshops

For additional

Advanced Circuit Technology information, call or write:

118 Northeastern Blvd. Nashua, NH 03061 Tel: 603/880-6000 Fax: 603/880-1785

Design Engineers-Eliminate cumbersome calculations and save time with.

PERSONAL COMPUTER PROGRAMS FOR MECHANICAL DESIGN

This book is a compilation of math and mechanical programs that are written in basic programming language but may require some conversion for use with your particular computer. Review the book for 15 days and if not completely satisfied, return for full refund! Here is just a sampling of the programs included:

- find roots of polynomials and fit general order polynomials
- evaluate significance of test data
- fit straight lines to data
- speed numerical optimization
- power shaft design
- software development
- optimum cost maintenance: corrective vs. preventive action
- calculating position \& coordinate tolerances
- designing cams on a microcomputer
- special 0 -ring dimensions
- analyzing isothermal gas flow - plus more!

40 pages, softbound, $\mathbf{\$ 1 2 . 5 0}$ each. Quantity discounts available for 2 or more copies. Penton Education Division, 1100 Superior Avenue, Cleveland, Ohio 44114 800-321-7003 (in Ohio 216/696-7000)

Please send copies of PERSONAL COMPUTER PROGRAMS FOR MECHANICAL DESIGN. I understand that I may review the book for 15 days and, if not satisfied, I may return it for full refund or credit.
\square My payment is enclosed for postage-free shipment in the U.S. and Canada.
\square Bill my company and include shipping and handling charges. My purchase order is enclosed.
Chargemy \square Visa \square MasterCard \square American Express card.
Acct. No. Exp. date
Name
Company
Address (Not P.O. Box)
City
State
Exp.dat

Signature

Advances In Soldering

THE SOLDERING of leadframes to circuit boards is part of the critical path in electronic packaging. Slowdowns here cannot be tolerated. But as lead spacings become finer - some are only 10 mil apart - the limitations of conventional solder technology are beginning to cause problems. The biggest barrier seems to be the minimum resolution that the reflow process can provide without forming solder bridges.

With lead spacings smaller than 20 to 25 mils or so, standard infrared (IR) and vapor-phase reflow soldering techniques are inefficient. Instead, manufacturers are using a new soldering method called hot-bar reflow. The bar, called a thermode, is positioned over the leads and is pulse-heated to the reflow temperature of the solder. Because the thermode comes down cold it can also be used to press the leads to the bond pads.

Another advantage of hot-bar reflow is that it allows circuit-board bond pads to be plated rather than screened with solder. Higher resolution (finer lead pitch) and fewer cleaning steps are among the benefits of bond-pad plating.

Leads are also being preplated to improve the resolution of the soldering process. Inner leads on 8 -milpitch TAB frames, for example, are plated with a gold/ tin alloy and soldered by thermode to the IC. Once the hot bar heats to the eutectic point, about $550^{\circ} \mathrm{C}$, the alloy reflows and forms a strong bond with a pull :
strength of up to 25 g .
Other preplating materials include solder and palladium, but solder can only be used when subsequent thermal steps such as chip attachment and wire bonding are kept under $200^{\circ} \mathrm{C}$. As new soldering methods mature, such as laser soldering, more and more preplating materials will be feasible. Laser heating is said to provide the tightest control over solder profiles.

Patternable fluxes and pastes are also beginning to emerge. These fluxes minimize bridging and provide adhesion for package leads. In addition, solder suppliers are developing alcohol and water-based fluxes, some of which require no cleaning steps. Low-halide fluxes that reduce oxides and enhance wettability and low-melting point mixtures of indium and bismuth hold promise as well. Another trick is to use peel-away preform tapes that break solder bridges when removed.

Researchers at Texas Instruments, also working on the solder-bridge problem, have developed a new way of soldering called delayed reflow. Reflow is delayed because the solder is applied in a form where the tin and lead are not fully mixed. By the time board temperatures stabilize, the alloy mixes and temperature distribution is nearly uniform at the instant of reflow. This prevents bridging because of optimum solder profiles and better wetting of the parts to be connected.

Low Cost Laminates for Static Flex Applications are Just Around the Bend.

Design your static flex circuit with polyimide film and you're on the right track, but going in the wrong direction. Polyimide film static flex circuits are expensive and can't withstand autoinsertable component mounting without the addition of rigidizers.
Design it with BEND/flex ${ }^{\star}$ bendable circuit laminate material from Rogers and you can realize substantial savings in material and fabrication costs. Without sacrificing design flexibility or performance. In some applications, BEND/flex laminates

BEND/flex laminates save costs compared to polyimide film circuitry.
can actually increase overall product performance.

The future belongs to designers who can think small and save big. BEND/flex laminates can help make that happen. For all the ways BEND/flex laminates can improve your design options write for a free test kit.

Technology for tomorrow built on TQC today.

(1) ROGERS

Rogers Corporation
Composite Materials Division
One Technology Drive
Rogers, CT06263
203774-9605 FAX 203 774-1973
electrics are applied using : thin-film deposition techniques : such as sputtering, spin-on, and : spray-on, some manufacturers employ tape-based delivery systems.

Polyimide is the most widely used dielectric for MCMs because it can be easily applied to both silicon and ceramic substrates. In either case, conductive traces normally consist of polyimide on copper, a combination that causes minimal propagation delay. Experts claim that low-stress and acetylene-terminated polyimides are best suited for these applications. In contrast, BCB is typically used to insulate conductors on copper-clad silicon carbide and aluminum nitride

A few manufacturers, such as nChip Inc., San Jose, Calif., employ silicon dioxide as an insulator for MCMs. Users say that it is less : expensive, requires fewer processing steps, and absorbs less moisture than polyimide. And because it is more thermally conduc-

New Packages Blur Chip Boundaries

SEMICONDUCTOR MAKERS say that their products may someday be differentiated more by packaging options than by anything else. One example: A new 16M-bit DRAM. On the outside, the chip carrier looks like a standard Jedec SOJ (small-outline J-leaded) package. On the inside, both the lead frame and IC itself sport clever designs.

Instead of using perimeter bond pads, the rectangular die has only one row of pads that run along the center. The leadframe fastens to the chip with double-sided adhesive tape and is conventionally bonded with short gold wires. Called the LOCCB (lead-on-chip with center bond), a joint development of Texas Instruments Inc. and Hitachi Ltd., the package is also being considered for high-speed SRAMs, 64 M -bit DRAMs, and ECL circuits.

Center bonding improves on edge bonding by saving die space, reducing interconnect length, increasing speed, and by providing uniform lead capacitance. In contrast, lead capacitance in standard SOJ packages can vary by over 20%, causing major timing problems.

LOCCB is representative of a new design approach that optimizes the IC and its carrier as a single unit. For example, chips packaged this way need one less metal layer because the leadframe distributes power over two buses that run the length of the chip. The scheme not only eliminates one mask step, but also provides 10 times more immunity to electrical noise than where an embedded metal layer delivers power.

Although the first release of the LOCCB is wire bonded, future versions could be TABed or attached directly to copper leadframes. Copper leadframes, 2 to 3 mil thick, can be coated with gold or palladium and bonded to the chip through thermocompression Leads can attach directly to on chip aluminum bond pads or through plated gold or copper bumps.

Thermocompression combines heat and pressure to fuse metals at lower temperatures than pre viously possible. Experts say that the method can produce bonds up to 10 times stronger than con ventional gold-wire connections. It also requires less vertical and lateral clearance than wire loops.

To attach to aluminum bond pads, the surface metal must first be protected. Packaging engineers do this by sputtering a refractory metal such as titanium or tungsten, then a noble metal such as gold or palladium. The refractory provides mechanical protec tion, while the noble metal pre vents corrosion.

EPOCH 2000
The Realization of Form, Function \& Flexibility Unique modular system that combines practical design innovations with style and flexibility to produce the most versatile modular electronic cabinets available today - at a price that's affordable. CIRCLE 78

MATRIX CABINETS Strong, Stylish and Versatile Available in single or multi-bay configurations in vertical, slopefront and desk-top styles.
Features all-welded steel construction and offers a broad range of options, including EMI shielding.
CIRCLE 79

CHASSIS SLIDES Over 300 Style/ Size Combinations
Available in steel or aluminum, with capacities from 80 to 275 lbs . per pair. Available in detent, non-tilt and tilt-up only configurations. Features include extended position locking, quick disconnect. CIRCLE 80

The Most Comprehensive Selection Cabinets, Containe \& Enclosures

VAL-AN 960
Double-ended Instrument Containers for Standard 19" Rack Mounted Electronics Lightweight, stackable and locking, these portable containers are available in a variety of sizes and colors. They feature protected hardware, standard ground strap, removable frame, and are watertight.

CIRCLE 81

MODULAR CONTAINERS

Maximum Protection/Minimum Cost
These shipping and storage containers can be constructed to almost any size and configuration; made from aluminum alloy with skin thicknesses of .063 or .090 thickness. Meets most applicable military specifications. Zero engineers can solve your shock and vibration requirements.

CIRCLE 82

Zero Enclosures
777 Front St. Burbank, CA 91502
(818) 846-4191 FAX: (818) 841-5618

Zero-East
288 Main St. Monson, MA 01057-0128
(413) 267-5561 FAX: (413) 267-5569
tive, it eliminates the need for thermal pillars that normally cool polymer-insulated substrates. These structures generally lie under the die to shunt heat to the back of the substrate, but consume valuable space that otherwise could hold interconnects.

Multichip designers have avoided silicon dioxide because they cannot grow layers thick enough to isolate conductors. A newly developed plasma process, however, makes it possible to deposit up to $20 \mu \mathrm{~m}$ of high-integrity oxide. The material is sputtered under controlled compression to cancel tensile stress and prevent cracks and warpage.

Interconnect: What sets MCMs apart from printed-circuit boards and hybrids is the ratio of die-tosubstrate area. This important fig. ure of merit is determined chiefly by the interconnect system. In circuit boards and hybrids, die-tosubstrate area is about 15% tops. But using thin-film photolithography - the same technology used to make ICs - multichip modules are hitting ratios as high as 90%. The reason is that MCM designers can apply almost any conductor ($\mathrm{Cu}, \mathrm{Al}, \mathrm{Au}$) to almost any substrate with resolution of about $10 \mu \mathrm{~m}$.

There are two basic approaches to interconnecting dice in multichip modules. One is a "chipsfirst" approach, used by General Electric, Texas Instruments, and others, in which dice are placed face-up in cavities milled into ceramic substrates. Polyimide tape is laminated over the top of the chips, forming a planar surface. High-density interconnect, usually copper, is then deposited over the polyimide. Laser-drilled holes create vias and open passages for I/Os. Additional layers are built up with spun-on or sprayed-on polymer films.

The alternate way of synthesizing MCMs, a "chips-last" approach, is compatible with both silicon and ceramic substrates. Here, aluminum or copper interconnect is deposited on the substrate before the chips are at-

Tab Untangles Wire Nests

THOUGH MCMs are grabbing most of the headlines, other advanced packaging technologies may be equally important. In particular, TAB (tape-automated bonding) has become the attachment method of choice in fine-pitch applications.

Tape-automated bonding is a way to make chip connections en masse, rather than one at a time as is done with a wire bonder. A rigid leadframe is positioned over the IC with inner leads aligned to the bond pads. Connections are soldered simultaneously, often by a hotbar reflow process. These connections are stronger, pose less impedance, and accommodate smaller pads on closer centers than wire-bond attachments.

TAB leadframes are formed from various materials, ranging from multilayer tapes to copper film. Lately, TAB tapes are becoming more and more sophisticated and are assuming functions beyond mere interconnection. New tapes are going to two and three layers of metal to provide shielding, impedance matching, and the distribution of power and ground. And advanced dielectrics such as polyimide are providing dual functions of mechanical support and electrical insulation.
Signal planes, which contain up to 360 traces, are typically 1 -oz. copper with a nominal thickness of 1.4 mil. Ground planes consist of

> TAPE-AUTOMATED BONDING (TAB) replaces wires with flexible beams 1 $\times 2$ mil in cross section. The beams are tin-plated copper and are part of a rigid frame supported by polyimide tape. Innerl lads, shown at $170 \times$ in this SEM close up from Motorola Inc., solder to gold-bumped bond pads on $4-$ mil centers, providing 360 pin outs for the IC.
copper as well and are electrolessly plated with a thin layer of tin 10 to 30μ in. thick. Plating thickness determines how easy or difficult the inner lead bonding will be. Excess tin tends to cause lead-to-lead bridging, while too little tin may leave solder joints open.

Another mass-bonding technique rapidly gaining acceptance is called flip chip or bump bonding. Dice are placed face down on the mounting substrate over a matrix of soft metal bumps. Because interconnections to the IC are only a few thousandths of an inch long, signal delays and degradation are minimized. Flip chips have the smallest possible footprint because there are no connections outside the perimeter of the die.

Bump-bonded dice have a large capacity to dissipate heat. Heat shunts away from the active circuits through the metal bumps in one direction, and to the exposed back surface of the die in the other direction. Cooling gels and heat sinks are often applied to accelerate heat transfer from the chip. Cooling can also be enhanced by an "integrated cold plate," a novel technique in which grooves are etched into the back of the silicon to increase surface area.

New Materials Cure Packaging Headaches

ADHESIVES AND COATINGS are among the most critical elements in electronic packaging because they frequently come into contact with the silicon. These materials must be thermally conductive, easy to apply and cure, safe for the environment, and similar to silicon with respect to thermal expansion.

One promising new material to provide adhesion and coating in electronic packages is silicone. General Electric's GE Silicones, Waterford, N.Y., for example, offers a wide assortment of silicones for everything from coating semiconductor junctions to encapsulating power IC modules. Silicone is a solventless material that needs no primer for adhesion and eliminates the risk of ionic contamination. It can be formulated in both soft gels and hard molding compounds, and the different mixtures can be layered to suit the application.

SILICONES ARE SAFE enough to use in direct contact with silicon junctions and are safe for the environment as well because they require no solvents. They can also be used as conformal coatings on conventional circuit boards and to seal chip-on-board and power hybrid assemblies.
tached. Depending on the substrate, silicon dioxide or polyimide serves as the dielectric. Dice are then bonded through flip-chip or TAB connections. E-Systems Inc. of Dallas, Tex. and nChip are using this method.

To prevent polyimide from oxidizing copper and raising the di electric constant of the interface, a protective coating of chromium, nickel, or titanium can be applied Sputtered aluminum can also be used in place of copper.

One of the advantages of depositing copper or aluminum on silicon dioxide is that surface conductors can be isolated on rails of oxide. This reduces interconnect capacitance by a factor of two and cuts propagation delays in half with an effective dielectric constant of 1.9 .

Embedding metal in silicon dioxide also opens the door to multifunctional structures. For example, the dielectric that separates the ground and power planes forms an integral decoupling capacitor, distributed over the metal oxide-metal sandwich. It also sets up a resistive layer that can replace discrete components to terminate 50 to $100-\Omega$ lines.

MCM manufacturers are currently trying to exploit these and other novel features. For one
thing, they are developing "generic substrates" that can be massproduced and stored for future use. These substrates - having ground, power, and $x-y$ signal layers - can be quickly customized
when needed. Interconnect is mask programmable, and ultimately will be programmed by the user on-site. Spearheaded by MCC Corp., QTAI (quick-turn-around interconnect) is being produced

Optimizing Control

in the advanced new METASYS Facilities Management System from Johnson Controls. Packaging for sealed plug-in control modules. No fasteners, no tools.

Flammability performance for thinwall design. Structurally, mechanically and electrically rugged. Unmatched material and processing options, creative program support-only from GE. For more information, call: (800) 845-0600

Circle 83

GE Plastics

CAVITY PACKAGES allow chips to be enclosed free from contact with molding materials. Dice mount on plastic or metal substrates that, besides providing mechanical support, contribute to electromagnetic shielding and heat dissipation. The packages are sealed with plastic, aluminum, or glass lids, depending on the application. Glass lids, for example, seal EPROM packages to allow UV light to program chips, while aluminum-topped packages can dissipate up to 5 W of heat.
by Harris Corp. and Eastman Kodak Co., both MCC shareholders.

Researchers say the next step will be to redesign standard ICs to take advantage of special conditions in MCMs. Because chips are closer together, for example, out-
put buffers can be smaller since they need not drive as large a load. It also stands to reason that staticdischarge and surge-protection cells can be eliminated because package I/Os are typically protected. And in MCMs with active

Building Efficiency

into Johnson Control's state-of-the-art METASYS Facilities Management System. Base frame for plugin modules. An integrated, single enclosure solution.

Design and processing flexibility. Weight and space savings. Dimensional stability. Building code compliance. Breadth of material choices, depth of technical support-only from GE. For more information, call:
(800) 845-0600

Circle 83

GE Plastics

and mechanical abuse. In one method, die are bumped with copper "studs" to improve the elec trical and thermal interface. The solder-capped studs are aligned to aluminum bond pads, often protected by a thin-film system of refractory and noble metal. Special techniques are used to protect the silicon with either polyimide or silicon nitride dielectrics

Advances in soldering technol ogy are also migrating from modules to boards. Hot-bar soldering, for example, developed for tightly spaced inner leads on TAB frames, is now being used to make outerlead connections to circuit-board substrates.

Through technology transfer, circuit boards are looking more and more like multichip modules every day. In fact, some predict that one-third of all semiconductors will be housed in MCMs by the end of the decade. The few functions left to circuit boards will be provided by other levels of packaging, and MCMs will have fulfilled their purpose: to eliminate a level of packaging and bring chips closer together.

The year 2000 is likely to see modules and hybrids plugged into backplane-like structures. MCM packages, conforming to quad flatpack standards, will insert into sur-face-mount sockets with zero-insertion force connectors. These packages are already available in ceramic and aluminum nitride, and plastic versions are expected to be out soon. Called cavity-down packages, they allow heat to escape through the top of the module and even include integral metal shielding.

Packaging experts believe that connection systems that link MCMs, discretes, and passives will start to grow in the "z-direction" orthogonal to the substrate. This is already under way with three-dimensional packaging schemes that stack 50 to 75 bumped chips in the form of a cube. Multilevel TAB structures also allow several chips to be stacked. By standing dice on end, single in-line packages (SIPs) and zigzag in-line

CHIP-ON-BOARD assemblies are becoming more uniform and reliable because of improved encapsulants and application equipment. The clear encapsulant, a UV-transmissible epoxy from Dexter Corp., Industry, Calif., seals unpackaged EPROMs on a board made by Sharp Electronics Corp. for its "pocket planners".
packages (ZIPs) make use of the third dimension as well.

These developments are revolutionizing design. Because of MCMs and multifunctional interconnect, electronics are increasingly located at the spot where
they are needed rather than linked over a cable. Disk-drive chips, for example, are often mounted on the read/write head, and in antilock braking systems, control circuits are often fastened to the brake caliper itself.

Integrate Dynamic Design, Material And Processing Creativity With GE.

Systems solutions from a single source. A spectrum of material technologies. Copolymers, alloys, composites. Leading-edge process development. The exclusive Engineering Design Database-unique design and analysis tools in a total system for plastics engineering. In-depth, worldwide market expertise.
Johnson Controls' innovative METASYS Facilities Management System. Materials: Injection and foam molded Noryl ${ }^{\circ}$ resin; Lexan ${ }^{\circ}$ resin and film; Lomod ${ }^{\circ}$ engineering elastomer; Valox ${ }^{\circ}$ and Ultem ${ }^{\circ}$ resins. Resources: Iterative design reviews; materials, tool and process development support; process optimization; UL liaison. A $2^{1 / 2}$-year program. Results: Easier to use and service, greater functionality, improved design, lighter weight, cost-effective manufacturing and assembly. Partnership product develop-ment-only from GE.

For more information, call:
(800) 845-0600

CIRCLE 83

CONTR $\cos _{1}$

(38)

GE Plastics
© Registered Trademarks of GE. \quad NTI

ENGINEERING thermoplastic, Stanyl 46 nylon, has high-heat distortion temperature of $545^{\circ} \mathrm{F}$, high modulus and low creep at elevated temperatures, and high fatigue and chemical resis tance. The nylon material is for elec trical/electronic components, es pecially close-tolerance surface mounted connectors and terminal block housings where products with

PACKAGING MATERIALS FOR ELECTRONICS

HIGH-PURITY JUNCTION coatings and three soft gels have been added to line of electronic packaging materials. The coatings preserve dielectric integrity of semiconductor $p-n$ junctions and bond sites and offer primerless adhesion to most substrates. Inherently soft physical properties provide protection against mechanical stress. Silicone gels combine stress relief and self-healing characteristics of a liquid with nonflowing and dimensional stability. They also cushion sensitive electronic assemblies from external vibrations and mechanical shock. GE Sil. icones, EE-01-90, Waterford, NY 12188.

Circle 89

stand demands of IR, wave, and vapor phase soldering. Product is said to provide three times the dry impact strength of conventional nylons. DSM Engineering Plastics, 501 Crescent Dr., Reading, PA 19612.

Circle 90

VME BACKPLANES

HIGH-PERFORMANCE 10-layer VME backplanes handle fast VME signals with minimum distortion, cross talk, and other types of signal degradation. Features include four signal planes, four power planes, two pads-only planes, combination strip line with embedded microstrip, on-board decoupling capacitors, and Schottky-diode clamping. Backplanes are available in any size from two to 21 slots, and include a J2 backplane with VMEextended addressing. Electronic Solu tions, Unit of Zero Corp., 6790 Flan ders Dr., San Diego, CA 92121.

Circle 91

We Asked Some People Who Didn'tGo To DACLast Year What They Knew About The Latest In Design Automation:

They Were Spacchless.

Don't make the same mistake.
Because more than ever, you need the most advanced design automation tools to survive. Powerful tools that accelerate productivity, boost product reliability, and shrink time-to-market.

You need the 28th Design Automation Conference.

DAC has everything you need to make the best design automation choices. Because DAC is the world's largest collection of tools, tool vendors, and industry experts. Design automation from A...Z

Once again, DAC will feature the latest design tools for schematic capture, floor planning, logic synthesis, verification, ATE, and much more.

Plus, you can learn about general industry topics, such as hardware description languages, concurrent engineering, and standards issues. All under one roof! Hear it from the experts

This year's DAC has many exciting panel sessions. Including seasoned executives addressing "Global Strategies for Electronic Design." And leading technologists discussing new group and project management techniques-"Implementing the Vision: Electronic Design in the 1990s,' Plus, over 135 technical papers, and a full day of tutorials.
Sneak a peek for free!
See what all the shouting is about! Attend opening day exhibits and demonstra-
tions on FREE MONDAY, June 17. All day. Absolutely free!

To register for FREE MONDAY (and to get your DAC registration packet), call 1-800-321-4573. Or FAX/mail the above business reply card to (303) 530-4334.

But hurry! FREE MONDAY registration closes May 17.

To attend panel sessions, contact MP Associates at (303) 530-4333.

The 28th Design Automation Conference. June 17-21. Moscone Center. San Francisco.

The Power in Telecommunications

It's your choice!

However you decide to power your electronic equipment, Ericsson can provide a choice of proven power supply solutions to meet your needs.

For example, the PLY series of 150 to 400 Watt open frame switchers can supply quadruple and adjustable DC outputs from an $A C$ input to power a whole rack of electronic equipment.

A more distributed approach is offered by the PLB series of Eurocard $\mathrm{AC} / \mathrm{DC}$ switchers. Depending upon the requirements, these 60 to 100 Watt units can power one or more shelves of equipment with the added security and fault tolerance which distributed power brings.

But perhaps decentralised on-card DC/DC converters offer the ultimate distributed power system. This can be powered by an $\mathrm{AC} / \mathrm{DC}$ switcher in parallel with an optional battery back-up. Ericsson's renowned on-card DC/DC converters, PKA, PKC and PI, range from 0.3 to 40 Watts with up to three outputs and will provide a highly reliable and fault tolerant system.

Whichever you choose, you can be confident that their reliability and performance will be unsurpassed.

For full technical information on all of these products simply call us, or fax us the coupon.

Please send me your latest information

Name
Company
Job Title
Address

Telephone
Fax

Sweden Ericsson Components AB, Stockholm Tel:(08) 7216247 Fax:(08) 7217001

France

 GermanyNorway Ericsson Components Europe, Milano Tel:(02) 33200635 Fax:(02) 33200641
Ericsson Components A/S, Oslo Tel:(02) 650190 Fax:(02) 644138
United States Ericsson Components Inc, Richardson, TX Tel:(214) 9976561 Fax:(214) 6801059

Custom Memory Chips Let Controller Maximize Cache Performance dave burgry

With custom static RAMs that support a new cache architecture called concurrent writeback, system designers can achieve write hit rates of 99.8% and read hit rates of 96% for $80386-$ or $80486-$ based systems. The Simulcache chip set from Mosel achieves such high hit-rate levels by optimizing for zero-wait-state performance on CPU writes as well as on CPU reads. Concurrency enables the CPU to read and write back to the cache while the cache simultaneously performs "housekeeping" tasks in the background. Thus, in 99.8% of the write cases, the CPU can send data to the cache without waiting. The high write-rate hit is particularly valuable in 80486 -based systems, which typically have about 75% of their bus activity composed of writes.

The Simulcache chip set, which consists of a controller chip and dedicated cache-RAM chips, ties into either the 80386 to form a primary cache subsystem or the 80486 processor to form a secondary cache. Initial versions of the chip set will support CPUs running at 25 to 33 MHz with zero-wait-state memory access. The MS441 concurrent write-back cache controller manages all of the data transfers between the CPU, the MS443 dual-ported cache-memory chips, and the system logic chip set and main memory.

On the controller chip are two bus controller subsections, one to manage the CPU interface and the other to manage the logic chip-set interface. Also included are the cache-tag array, a data-path control unit, and the concurrent bus control unit. The tag block holds 2000 entries and is two-way set-associative. Users can configure the controller to set up four programmable cache regions, each with noncacheable, cacheable, and cacheable-write-protect modes.

The supporting dual-port SRAMs include special data-path registers that hold hit and miss addresses, and

read and write registers that hold data. Two banks of memory cells on the chip, both organized as four planes with each plane holding 2-kwords-by-9-bits, give the chip a total capacity of 144 kbits, including parity bits. Data can be loaded or read with standard address-access modes, or when trying to quickly transfer data. During a cache update, the memories can be switched to their "turbo" mode, which allows burst data transfers at up to 256 Mbytes/s.

Unlike the 80486, which only does burst reads, the chip set supports both burst reads and writes. As a result, cache write-back operations can be done at twice the speed of ordinary writes, improving system throughput. Although the off-chip peak transfer rate is 256 Mbytes/s over dual 36-bit data buses, the cache RAMs internally transfer data at more than twice that speed-533 Mbytes/s.

Each RAM has an internal 32-bit data bus, so four RAM chips can be cascaded to form a 64 -kbyte cache with a 128 -bit line width. The cache RAM can simultaneously latch up to 16 bytes in a single clock, to lock data
in for a full line replacement. The cache subsystem employs an internal data path similar to that used inside the 80486 CPU. The on-chip data path registers channel data into, out of, and around the memory array in single-clock increments.

Besides serving as a cache, the chip also has a bypass mode that allows fast data streaming directly between the system port and the CPU port of the MS443, while imposing only a 5 -ns delay. That mode is particularly useful when a Read Miss occurs. Also, the internal pipeline of the memory chip makes it possible for the chip to implement self-timed write operations to make the most of available timing overlaps.

The MS441 cache controller comes in a 184 -lead plastic quad-sided flat package, while the MS443 cache RAMs are housed in 64-lead PQFPs. In quantities of 10,000 , the MS441 sells for from $\$ 65$ to $\$ 114$, depending on CPU type and speed grade. The MS443 sells for $\$ 9$ in similar quantities. Delivery of samples is from stock.

Mosel Corp., 914 W. Maude Ave., Sunnyvale, CA 94086; Bert McComas, (408) 733-4556.

CIRCLE 320

Your Make/Buy Decision Just Got A Lot Easier!

BURR-BROWN'S OEM

MICROTERMINALS
SATISFY ALL YOUR
OPERATOR
INTERFACE/
CONTROL PANEL
NEEDS - INCLUDING
PRICING THAT'S SO
LOW YOUNOLONGER
NEED TO EVEN
CONSIDER BUILDING
YOUR OWN!

Cost-

Effective Solutions

These devices will save you valuable design, tooling, and development costs and time so you can concentrate on your product designs. Plus, their low pricing makes them very easy to costjustify. From \$195, with generous quantity discounts.

Industry's Widest Selection

Burr-Brown brings you fourteen models from which to choose . . . from the most basic device to

Burr-Brown OEM Microterminal allows operator to interface to a precision laser.
multifunction
microterminals to rugged, industrial units. Plus multiple customization options designed specifically with the OEM in mind. Whatever your requirements, we have models to fit your particular needs.

Years of Experience

For over a decade, Bur-Brown has been supplying quality, high-performance microterminals, worldwide. For applications such as control systems, instrumentation, communications, test \& monitoring, machine setup, medical, and many, many more.

For a copy of our new brochure, or information about demonstration units, write Burr-Brown Conp., P.O. Box 11400, Tucson, AZ 85734. Or, call Toll-Free 1-800-548-6132.

CONNECT TEST VECTORS TO PHYSICAL DEVICES

The Rapid Vector Evaluator (RVE) from Quickturn Systems tightens the integration between the company's RPM Emulation System and the simulation environment. RVE comes with a 416-bit-wide hardware port to Sun workstations that can be cascaded for wider vectors. Its driver software transfers test vectors between it and the workstation. Designers may use RVE to apply test vectors to external hardware devices, like the RPM emulator, and collect the responses. Moreover, the RPM evaluates vectors at hardware speeds, much faster than a software simulator. Other RVE applications include functional testing of chips and boards, and collecting test vectors from operating hardware for use in simulation. The Rapid Vector Evaluator will be available in June. Call the company for pricing.

Quickturn Systems Inc., 325 E. Middlefield Rd., Mountain View, CA 94043;
(415) 967-3300. GITGIF 321

SCHEMATIC CAPTURE Has KEYBOARD MACROS

Version 1.20 of the Tango-Schematic schematic-capture software enables users to create their own keyboard macros. Other new features include support for PSpice and P-CAD net lists, autopanning, wildcard searching in the browse mode, the ability to display parts in the list box, and automatic placement of wire and bus names. Tan-go-Schematic comes with component libraries totalling 10,500 parts. Every logic gate also comes with its DeMorgan equivalent symbol. Library man-
agement facilities perform on-line listing and browsing of components, merging, and renaming. Tango-Schematic Version 1.20 , which runs on PCs, is shipping now for $\$ 495$.

Accel Technologies Inc., 6825 Flanders Dr., San Diego, CA 92121; (619) 5541000. GIBGIF 322

HIGH-POWER B0ARD LAYOUT RUNS ON A PC

The Schema PCB-2000 pe-board layout and routing package brings the power of a workstation tool to 80386 -based PCs. PCB-2000 can handle designs with over 2000 ICs and up to $54 \mathrm{in}^{2}$ board sizes. Users can define grids and tracks as small as $1 \mu \mathrm{~m}$; pad sizes and shapes are also user-defined. Schema PCB2000 libraries have over 5000 parts. Components can be rotated in 1-degree increments. Schema PCB-2000, which runs on 80386 -based PCs, is shipping now for $\$ 6995$.

Omation Inc., 801 Presidential Dr., Richardson, TX 75081; (800) 5539119 GIRGIF 323

CHO-THERM T274 or T386 Thermal Transfer Material

CHO-THERM ${ }^{\text {® }}$ Conformable Elastomer Heat Sinks

CHO-THERM T274 and T386 materials are pliable elastomers which blanket over uneven component surfaces to draw heat away from PC boards into metal covers, frames or spreader plates.

Unlike liquid-filled plastic bags, these CHO-THERM materials interface with pointed, sharp surfaces without risk of punctures.

For highest conformability and good thermal performance choose CHO-THERM T274 material. For exceptional thermal conductivity select CHO-THERM T386. Both materials come in 6 thicknesses ranging from 40 to 200 mils, in sheets and custom die-cut configurations. Custom thicknesses are available on request.

Let CHO-THERM Cool A Hot Product For Longer Life.

(c) Chomerics, Inc. 1990

Property	1274			1386		
Common Thicknesses	$.040^{\prime \prime}$	$.100^{\prime \prime}$	$.200^{\prime \prime}$	$.040^{\prime \prime}$	$.100^{\prime \prime}$	$.200^{\prime \prime}$
Thermal Impedance oC-in2/Watt	1.7	2.4	4.5	1.7	2.0	3.5
Voltage Breakdown Rating (VAC/mil)	200	150	100	450	240	150
Compression Deflection @30 psi,						
\% Strain						

CHOMERICS8
 a GRACE company

16 Flagstone Drive, Hudson, NH 03051
Tel: 800-633-8800 (In NH: 603-880-4807)
Chomerics (UK) Limited, Parkway, Globe Park
Marlow, Bucks., SL7 IYB, England

NEW PRODUCTS
 INSTRUMENTS

IEEE-488

Control any
IEEE-488 (HP-IB, GP-IB) device with our cards, cables, and software for the PC/AT/386, EISA, MicroChannel, and NuBus.
sists of an 80C552 that runs a monitor program held in a 32 -kbyte EPROM, a preprogrammed 87 C 751 to handle the I/O, 32 kbytes of RAM, and a 1.25 -by7.25 -in. prototyping area. Host software includes a symbolic debugger, an on-line assembler and disassembler, an upload and download facility, and other tools. Including the host software, the DB-51 sells for $\$ 320$. The user must provide a 5-V supply.
Philips Components-Signetics Co., 811 E. Arques Ave., P.0. Box 3409, Sunnyvale, CA 94088-3409; (408) 9912000. CHIREIF 325

PC-BASED COUNTER-TIMER FEATURES 2.4-GHZ RANGE

The PC-10 universal frequency counter-timer is an IBM PC plug-in board with a $10-\mathrm{Hz}-\mathrm{to}-2.4-\mathrm{GHz}$ range. The unit's interface is a Windows 3.0based control panel and display window. Sensitivity is 10 mV or better through the unit's frequency range. For optimum balance between sample time and resolution, the PC-10's input gate is continuously variable from 1 ms to 28 seconds. A reciprocal-counting feature offers 8 -bit resolution on lowfrequency readings. The PC-10 can identify the nearest signal source and tune a companion receiver, creating a self-tuning radio. Users can lockout frequencies that aren't desired. The counter includes an easy-to-use software self-calibration feature. The PC10 costs $\$ 335$ in unit quantities and is available from stock. Model AP10H, an option that adds custom input amplifiers, signal conditioning, and frequency prescalers, costs $\$ 295$.
Optoelectronics Inc., 5821 N.E. 14th
Ave., Fort Lauderdale, FL 33334; (800)
327-5912 or (305) 771-2050. GIRGIF 324

DEVELOPMENT BOARD KEEPS COSTS D0WN

The DB-51 development board, geared for the budget-minded, allows designers to prototype and develop applications for the 80C51 family of microcontrollers. The board, which ties into a PC's serial port, offers extensive debug and development capabilities through a ROM-resident monitor and a host software package that runs on the PC. Sockets on the board allow the DB51 to accept any member of the Philips Components-Signetics 80C51 family. Hardware included on the board con-

You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

INTERFACE SYSTEM MAKES TIGHT VXI CONNECTIONS

An interface system for VXIbus mainframes offers one highly reliable connection between the mainframe and the unit under test. Two major components make up the system: an Interconnect Adapter and an Interlocking Receiver. The adapter connects the VXI card to two connector modules so that the entire module can be easily inserted and removed from the mainframe. Connections are completed with signal paths as short as 4 in . The receiver hinges downward for easy access to the VXI modules in the mainframe. When closed, the receiver automatically positions the connector modules. System prices start at $\$ 3820$.

Virginia Panel Corp., 1400 New Hope Rd., Waynesboro, VA 22980; (703) 9498376. GIIGIF 327

ANALYZERS ENHANCE PROCESSING ABILITIES

A number of new signal-processing functions and a built-in 1.44-Mbyte floppy-disk drive add to the capabilities of two digital-signal analyzers. The DSA 601A and DSA 602A perform inverse fast-Fourier-transform, convolution, and correlation operations, and can generate vertical or horizontal histograms. Other new features include the ability to select part of a waveform for further processing and a variable-rise-time low-pass digital filter for data smoothing. Users can select (six x)/x or linear interpolation to fill in between data points. The new 3-1/2-in. disk drive accepts MS-DOS format disks for storing waveform data and instrument settings for easy transfer to and from PCs. Several data formats are available to ensure compatibility with analysis and spreadsheet software. The 602 A captures signals at rates to 2 Gsamples/s using four 8-bit ADCs with a $1-\mathrm{GHz}$ bandwidth. The 601 A , which acquires signals at 1 Gsample/s, has a $500-\mathrm{MHz}$ bandwidth. Record lengths to 32 ksamples are available. A set of sophisticated trigger functions discriminate between glitches, too-slow logic transitions; runt, missing, or extra pulses; and timing violations. The DSA 601 A costs $\$ 24,745$, and the DSA 602A is priced at $\$ 32,635$. Both are available 8 weeks after receipt of an order.
Tektronix Inc., Oscilloscope Div., P.O.
Box 500, Beaverton, OR 97077; (800)
426-2200. GHGIF $32 G$

Strength In Numbers

The power of dual platforms - more than a promise.

The leading electronics design automation solutions are available today on two industryleading platforms.

Now DAZIX customers will benefit from products that reside on both Sun and Intergraph workstations. Robust solutions for the entire design process. Plus, an open-system framework that integrates Intergraph, DAZIX, and Sun products - as well as other leading EDA tools - in a simultaneous engineering environment.

Billion-dollar backing.
Intergraph's financial strength gives DAZIX customers an added benefit - confidence. The confidence that comes from a partnership with the only EDA company

that is part of a billion-dollar computer graphics corporation. Ranked No. 3 in worldwide EDA sales. With an installed base of 13,000-plus EDA seats and capabilities developed over more than 22 years of providing integrated graphics solutions around the globe.
DAZIX customers are assured of continued product development and excellent support. Not just today and tomorrow, but into the future.

To learn more about our numbers, call us. In the United States, 800-239-4111. In Europe, 33-1-4537-7100. In the AsiaPacific area, 852-8661966.

An Intergraph Company

Lengths Ahead -

with VAC permanent magnets VACODYM ${ }^{\circ}$ and VACOMAX

Our permanent magnet alloys, VACODYM* on NdFe B base and VACOMAX on a CoSm base, give you the chance to increase the efficiency and the dynamic behaviour of your products. The extremely high energy density of the magnets offers more power and improved miniaturization, e.g. in motors from the micro to the megawatt range, in magnetic couplings for chemical pumps, in electro-acoustic transducers etc.
VAC not only supplies the magnets but also the know-how for successful application. For instance, advice on individual designs and the production of tailor-made magnet systems. Why not take advantage of the head start our materials offer your products?

VACUUMSCHMELZE GMBH

186 Wood Avenue South • Iselin, N.J. 08830 露 (201) 494-3530 Fax (201) 3213029 Tx 4900006431

B0aRd Test

 SYSTEM FOSTERS CONCURRENT EngineeringThe HP 3078 board test system offers design-based tools to create a concurrent test environment that shortens time to market. The shared toolset helps designers communicate complex designs to test engi-

neers, so that test development can be complete when the design is.
The system works by integrating Mentor Graphics simulation tools and HP test software. The toolset includes schematics, simulation models, stimu-lus-response data, and test-simulation tools. With the aid of Mentor's QuickGrade and QuickFault, and HP's preview testability software, the test engineer develops digital functional tests concurrently with the design data.

QuickGrade is a graphical, statistical fault grader that delivers results faster than standard fault simulators. QuickFault creates thorough deterministic fault-coverage reports. HP preview software incorporates real-world test considerations into the circuit to improve it without affecting the design process. Instead of post-processing the design simulation results, the software simulates the tester and fixture effects on the design during the simulation.
The HP 3078 includes an HP 307X test head and controller, an HP Apollo Series 400 workstation, Mentor Graphics CAE software, and HP simulatorbased digital functional test capability with concurrent-test-environment software. Prices start at $\$ 460,000$. The simulator and concurrent-environment capability can be added to an HP 3070AT/ SMT and Mentor Idea Station for prices starting at $\$ 61,000$. The HP preview software can be added for $\$ 31,000$.

Hewlett-Packard Co. 19319 Pruneridge Ave., Cupertino, CA 95014; (800) 752-0900. GIRGIF 328

- JOHN NOVELLINO

Instrument Line Makes Very Precise ac Measurevents

Expanding its traditional focus on low-level dc measurements, Keithley Instruments has introduced a line of precision ac instruments, including two 4-1/2-digit LCZ meters and three multifunction synthesizers. All are IEEE-488 compatible.

The Model 3321 and 3322 LCZ meters feature basic accuracy within 0.1%. D and Q resolution is 0.0001 , and phase resolution is 0.01°. The 3321 has four test frequencies from 120 Hz to 100 kHz and manual or automatic triggerreading rates to 150 ms . The 3322 offers 11 test frequencies to 100 kHz and also has deviation and binning capability. Readings rates to 64 ms are available.
The synthesizers employ a technology called direct digital synthesis, which makes it possible for the instrument to change frequencies immediately on command, without requiring several cycles to stabilize on the new frequen-
cy. This technique ensures phase-continuous waveforms. Accuracy is within 0.0005%, and resolution is 11 digits (12 digits on the 3940).

All three units have five built-in waveforms: trigger, burst, and gate functions; and on-off oscillation control. Ranges are 0 to 1 MHz on the 3910 (30-ppm accuracy), $0-1.2 \mathrm{MHz}$ on the 3930A (5-ppm accuracy), and 0 to 20 MHz on the 3940 (5 -ppm accuracy). The Models 3930A and 3940 can be used as sweep generators, with user selectable linear, logarithmic, or stepped sweeps.

The Model 3321 and 3322 LCZ meters cost $\$ 3490$ and $\$ 3990$, respectively. The $3910,3930 \mathrm{~A}$, and 3940 are priced at $\$ 1695, \$ 3590$, and $\$ 5390$, respectively. Delivery is in 4 weeks.

Keithley Instruments Inc. 28775 Aurora Rd., Cleveland, OH 44139;
(800) 552-1115 or (216) 248-
0400. GIREIF 329

JOHN NOVELLINO

PICO transformers \& inductors

 PLUG-IN SURFACE MOUNT AXIAL LEADS TOROIDAL INSULATED LEADS

TaANSFORMEAS
QPL standards available QPL standio3-1 thru 16, MLL-T-27.1/258-1 thru 123, MIL-T-2 $1 / 357-1$ thru 114,
MLL-T-27-27/359-1 thru 147

- Audio Transformers ranging in size from $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ to $3 / 4^{\prime \prime} \times 13 / 6^{\prime \prime} .20 \mathrm{~Hz}$ to 250 KHz . Up to 3 watts.
- Pulse Transformers $.05 \mu$ SEC to 100μ SEC miniaturized construction.
- Ultra-miniature DC-DC Converter Transformers. 40 watts.
- Miniaturized Switchmode Inverter Transformers. 60 watts.
- 400 Hz Power Transformers. Primary voltages of 115 V or 26 V . Plug-in construction. Ultra-miniature
- Microphone/Transducer Audio Input.
- MIL-STD-1553 Interface Multiplex Data BUS Pulse Transformers.

POL standards available MIL-T-27/356-1 thru 63

Inductance values to 20 mH with DC currents to 23 amps

MEMORY MODULES PLUG ONTO SYSTEM BOARD

Low-cost, third-party memory-upgrade kits are now available for IBM's System/6000 RISC workstations. The memory upgrades replace existing 8Mbyte single-in-line memory modules (SIMMs) with higher-capacity modules. This saves cost because IBM's memory upgrade requires an additional board for each upgrade. The kits are available with either 2- or 4-Mbyte modules, for a maximum of 32 Mbytes. A 16 -Mbyte upgrade kit costs $\$ 3995$, while a 32 -Mbyte kit sells for $\$ 8995$. Both the 2- and 4 -Mbyte versions are available from stock. Discounts exist for large-quantity purchases.

Kingston Technology Corp., 17600 Newhope St., Fountain Valley, CA 92708; (714) 435-2600. GITGIF 330

15-MIPS CPU CARD DIRECTLY RUNS FORTH

The SBC32 Eurocard-sized singleboard computer directly executes Forth-language programs at up to 15 MIPS. It's based on the SC32, a 32-bit stack-chip microprocessor developed at the Johns Hopkins University. The 100-by- $160-\mathrm{mm}$ SC/Fox SBC32 card with a $10-\mathrm{MHz}$ SC32 CPU has a throughput that's comparable to 2 to 5 times that of a $20-\mathrm{MHz}$ Intel 80386 CPU . On the card are a 56 -kbit/s RS- 232 serial port, 128 kbytes of shadow EPROM, and up to 512 kbytes of zero-wait-state static RAM. The board comes in 8 -, 10 -, or 12 MHz versions, and with 64 to 512 kbytes of static RAM. Software supplied in the EPROM consists of the SC/ Forth-32 language, a Forth-83 standard with 32 -bit extensions. The language takes advantage of the SC32's instruction set and architecture, automatically optimizing multiple Forth primitives into single-cycle machine instructions. Price start at $\$ 1495$ for the $8-\mathrm{MHz}$ card with 64 kbytes of SRAM. A version that serves as a coprocessor in a PC/AT bus system sells for $\$ 2295$.

Silicon Composers Inc., 208 California Ave., Palo Alto, CA 94306; George Nicol, (415) 322-8763. GIBGIF 331

X. 25 WAN/LAN CONTROLLER FITS SBUS

The SXCM three-channel X. 25 controller is an intelligent high-packet-rate wide-area-network (WAN) controller for the SBus. This high-performance, data-communications front-end processor supplies control and interface for three full-duplex serial channels on a single-width card. The board supports T1 and CEPT ($2.048 \mathrm{Mbits} / \mathrm{s}$) data rates. Each serial channel may be programmed independently to support various data-communications protocols. These include bit- and byte-oriented synchronous, asynchronous, and packet-switched protocols. The SXCM is configured around a $20-\mathrm{MHz}$ MC68302 16-bit integrated multiprotocol processor with 128 or 256 kbytes of external EPROM. It also includes 512 kbytes or 2 Mbytes of external DRAM for program and data storage. The controller board, available now, is priced at $\$ 1800$.

Themis Computer, 6681 Owens Dr.,
Pleasanton, CA 94588; (415) 7340870. CIVGIF 332

CIRCLE 130

Engineering

WARM UP TO FLORIDA.

And heat up your career with an industry leader.

Situated between the shores of Daytona Beach and metropolitan Orlando, talented professionals set the pace at Sparton Defense Electronics, a Fortune 900 company involved in the design and high volume manufacture of expendable submarine tracking devices.
The following opportunities are currently open to qualified design engineering personnel for exploration:

- BSEE's (no EET degrees) with 2 to 4 years current experience in board level audio/voice frequency (0.20 kHz) analog product design for a high volume manufacturer. Background must include microprocessor programming (i.e., 6800 /assembly) and exposure to SMT (surface mount technology). U.S. citizenship required for clearance.
- BSEE's (no EET degrees) with 5 years current RF (UHF/VHF) experience specifically in a.m. receivers and multichannel synthesized f.m. transmitters. Smal stowable antenna design is highly desirable. U.S. citizenship required for clearance
- BSME's (no MET degrees) with 2 to 5 years current experience in the design of injection molded plastic, die cast metal, and stamped metal parts for a high vol ume/low cost manufacturer. Solid experience in finite element analysis (FEA) and knowledge of design for assembly (DFA) concepts is highly preferable. Tooling vendor interface and production floor support backgrounds are necessary. U.S. citizenship is required for clearance.
As a team member of Sparton Defense Electronics, expect a stimulating, careerbuilding technical challenge, a high quality lifestyle with a low cost of living, no state income tax, proximity to exciting Florida attractions, and a fine compensation pack age that rewards your skill, knowledge, imagination, and performance. Relocation package is available. For prompt, confidential consideration, please present your credentials with salary expectations to:

SPARTON

DEFENSE ELECTRONICS
ATTN: Mr. John S. Gould, Employment Manager 5612 Johnson Lake Road
DeLeon Springs, Florida 32130
no agencies Pleaseino phone calis pleaseleeo Mirin

LITERATURE

High Tech with Low Risk John D. Trudel's new guide to increased product success rates and improved profits. "Highly Recommended," Steve Scrupski, Electronic Design, \$18.45 from: Eastern Oregon State College RSI - La Grande, OR 97850 503/962-3755.
Satisfaction guaranteed.

$\begin{aligned} & \text { BUSINESS } \\ & \text { SERNIGES } \end{aligned}$
HARDWARE AND SOFTWARE DEVELOPMENT SERVICES
FAX YOUR ORDER! To Advertise in Penton Classifieds,
FAX: (216) 696-1267

When Bob Lawrence joined the railroad nearly 30 years ago, he began buying U.S. Savings Bonds for his retirement. Now he buys them for his grandkids. "Bonds pay good strong rates and they're simple to purchase," he says. Become the next Great American Investor. Call us to find out more.
U.S. SAVINGS BONDS

Chairman and CEO: Sal F. Marino
President and COO: Daniel J. Ramella
President, Electronics Group: James D. Atherton

Advertising Sales Staff

Publisher: Paul C. Mazzacano
Hasbrouck Heights, NJ; (201) 393-6060 San Jose, CA; (408) 441-0550
National Sales Manager: Andrew M. Dellins San Jose, CA; (408) 441-0550
General Manager, European Operations: John Allen Four Seasons House 102B Woodstock Rd., Witney, Oxford OX8 6DY England Phone: 0993-778-077 FAX: 44-993-778-246
Hasbrouck Heights: Judith L. Miller, Robert Zaremba Sales Support Supervisor: Betsy Tapp 611 Route \# 46 West, Hasbrouck Heights, NJ 07604; Phone: (201) 393-6060 TWX: 710-990-5071
Boston: Ric Wasley
400 Fifth Ave., Waltham, MA 02154 Phone: (617) 890-0891 FAX: (617) 890-6131
Colorado: Lou Demeter (408) 441-0550
Chicago/Midwest: Russell Gerches
Sales Assistant: Susan Johnson 2 Illinois Center Bldg., Suite 1300 Chicago, IL 60601; (312) 861-0880 FAX: (312) 861-0874
Arizona: James Theriault (408) 441-0550
Los Angeles/Orange County/San Diego: lan Hill Sales Coordinator: Debi Neal 16255 Ventura Blvd., Suite 300 Encino, CA 91436; (818) 990-9000 FAX: (818) 905-1206
Pacific Northwest: Bill Giller (408) 441-0550

San Jose:

Lou Demeter (408) 441-0550
Bill Giller (408) 441-0550 James Theriault (408) 441-0550
Sales Administrator: Amber Hancock
2025 Gateway PI., Suite 354
San Jose, CA 95110; (408) 441-0550
FAX: (408) 441-6052 or (408) 441-7336
Texas/Southeast: Bill Yarborough 12201 Merrit Dr., Suite 220, Dallas, TX 75251 (214) 661-5576 FAX: (214) 661-5573

Direct Connection Ad \& DAC Sales Representative: Jeanie Griffin (201) 393-6080
Canada: Tony Chisholm
Action Communications
135 Spy Court, Markham, Ontario L3R 5H6 Phone: 416-477-3222 FAX: 416-477-4320
Netherlands: W.J.M. Sanders, S.I.P.A.S. Oosterpark 6-P.O. Box 25 1483 DeRyp, Holland Phone: 02997-1303 Telex: 13039 SIPAS NL Telefax: (02997)-1500
France, Belgium, Spain: Claude Bril IMS Paris, c/o IDG Communications France Cedex 65, 92051 Paris la Defense-France Phone: 33149047900 FAX: 33149047878 Germany, Austria, Switzerland: Friedrich Anacker InterMedia Partners GmbH
Katernberger Strasse 247, 5600 Wuppertal 1 West Germany Phone: 02-02-711-091/92
Hong Kong: Tom Gorman, China Consultant Intl. Guardian Hse, Ste 905
32 Oi kwan Road, Happy Valley, Hong Kong Phone: 8528332181 FAX: 8528345620
Israel: Igal Elan, Elan Marketing Group 22 Daphna St., Tel Aviv, Israel Phone: 972-3-252967 FAX:972-3-268020
Italy: Cesare Casiraghi, Casiraghi Cesare, S.A.S. Via del Colli 1, 22070 Guanzate, Como, Italy Phone: 3931976377 FAX: 3931976382

Japan: Hirokazu Morita, Japan Advertising Communications New Gunza Buiding 3-13
Gunza 7-chome, Chuo-Ku, Tokyo 104 Japan Phone: 011-81-3-3571-8748 FAX: 011-81-3-511-8710 Korea: Young Sang Jo, Business Communications Inc K.P.O. Box 1916, Midopa Building 146, Dangju-Dong, Chongo-Ku, Seoul, Korea Phone: 011-82-2-739-7840 FAX:011-82-2-732-3662
Singapore, Australia, New Zealand: Omer Soker Media Development Ltd., 17B Washington Plaza 230 Wanchai Road, Hong Kong Phone: 834-5978 FAX: 893-9411
Taiwan: Tomung Lai, United Pacific International No. 311 Nanking E. Rd. Sec. 3 Taipei, Taiwan R.O.C. Phone: 011-886-27-150-751 FAX: 011-886-27-169-493
United Kingdom: John Maycock
Huttons Buildings, 146 West St
Sheffield, England S14ES Phone: 742-759186

5-1/4-IN. DRIVES COMBINE 2-GBYTE CAPaCITY AND 11-MS SEEK Time

The release of Fujitsu America Inc.'s M2652 family has raised the capacity level of $5-1 / 4-\mathrm{in}$. Winchester disk drives. The M2652 family has an unformatted capacity of 2.0 Gbytes, an average seek time of 11 ms , and an average latency of 5.6 ms . This family is designed to meet the needs of high-performance computing systems, such as supercomputers, mainframes, and engineering workstations. To increase the speed of data access, the drives' spindle-motor speed was increased to 5400 rpm .
The family consists of four members: the M2652P, the M2652H, the M2652HD, and the M2652HS. Model P incorporates the ANSI standard IPI-2 (Intelligent Peripheral Interface), which offers 16 -bit-wide data transfers. Model H uses the SCSI-2 interface to supply a burst data-transfer rate of $10 \mathrm{Mbytes} / \mathrm{s}$. It also supports the longcable lengths required in super minicomputers and mainframes.

The HD SCSI-2 drive allows parallel access to a storage device. The fourth member is the HS, a single-ended SCSI2 model that's suited for deskside or desktop workstations. All four of the M2652 drives are constructed with 12 platters.

The family carries an MTBF of 200,000 . This high reliability comes from an enclosure casting that contains a large surface area to dissipate any heat generated by the spindle and actuator motors. Because the actuator is integrated into the casting wall, heat is dissipated outside the drive. The drives' component count was also reduced, which cut power consumption in addition to raising reliability. Evaluation units of all four drives are available now. They are priced at $\$ 5995$. Production volumes will ship during the second quarter.

Fujitsu A merica Inc., 3055 Orchard
Dr., San Jose, CA 95134; (408) 432-
1300. GIRGIF 333

- RICHARD NASS

W0RkStation Family IS EXPANDED, UPGRADED

The RISC System/6000 family from IBM Corp. has been expanded to include new models, hardware upgrades, enhanced graphics, and expansion units. The Model 320 H , evolved from the 320 , was given a $25-\mathrm{MHz}$ processor, upgraded from the previous $20-\mathrm{MHz}$ unit. It also comes standard with 16 Mbytes of RAM, expandable to 128 Mbytes. The internal storage capabilities include a 160 Mbyte disk drive. A second similar drive is optional, as are two 320 -to-400Mbyte SCSI disk drives. The 320 H is available now, starting at under $\$ 20,500$.
Another family addition is the Powerserver 950, a rack-mounted server. This system uses a $41.6-\mathrm{MHz}$ processor and boasts 25.2 MFLOPS and a SPEC rating of 56.3. The system can be used either as a compute server or a high-performance multiuser system. It comes with 32 Mbytes of RAM, expandable to 512 Mbytes. Standard internal fixed-disk capacity is 857 Mbytes, with a maximum of 11.9 Gbytes. More fixeddisk space can be added with the 010 Drawer Expansion Unit, pushing the
total to 22.2 Gbytes. This system starts at $\$ 164,335$ and will be available in June. Users of the Model 930 can upgrade to the level of the 950 with a conversion option. This option is planned for September. The 010 expansion unit starts at $\$ 9900$.
Adding to the RISC System/6000 graphics capabilities is the Powergraphics GTO. This product also works with the Xstation 130, a low-cost X terminal. Xstation 130 comes standard with 2.5 Mbytes of memory and 1 Mbyte of video memory. Powergraphics GTO is an external graphics subsystem that offers high-performance graphics and supports PHIGS. It connects through a Micro Channel adapter. Powerstations that previously achieved $90,0003 \mathrm{D}$ vectors/s now perform 990,000 vectors/s. The 8 -bit version of Powergraphics GTO supplies 256 simultaneous colors and dual frame buffers. It sells for $\$ 19,500$. The 24 -bit model, which goes for $\$ 29,500$, adds a shading processor and support for 16.7 million direct colors.

IBM Corp., 1133 Westchester Ave.,
White Plains, NY 10604. GIBGIF 334
RICHARD NASS

Elempariletily DIRECT CONNECTION ADS

New Products/Services Presented By The Manufacturer. To Advertise, Call JEANIE GRIFFIN At 201/393-6080

DESIGN \& PROGRAM PLDS

BYTEK PLD MULTIPROGRAMMER® plus
FREE PLD design Software - $\$ 2495.00$
\checkmark Program PLDs up to 40 -pin. (44-68 pin opt.)
\checkmark Micro Disk Drive for easy library updates.

- Stand-alone with extensive editing
r RS232 \& Parallel ports for high speed transfer
\checkmark Intelligent Synthesis \& Optimization.
\checkmark Choice of Design Entry: High Level Equations, Truth Tables or State Diagrams.
Memory Programmers from $\$ 495$.
Call now: 1-800-523-1565

SIMPLIFY BOARD LAYOUT

MICRO/Q 1000 ceramic decoupling capacitors share board mounting holes with IC pins to simplify board design. Now add more active devices with increased density in the same space, or design the same package on a smaller board.
Send for your free information.
ROGERS CORPORATION
2400 S. Roosevelt St.
Tempe, AZ 85282. Phone: (602) 967-0624
ROGERS CORP.
CIRCLE 269

ADVANIECH

1991 PC-BUS Data Acquisition \& Control Reference Guide

- A/D, D/A, DIO
- Signal Conditioning
- RS232/422/485
- Industrial PCs
- 286/386/486

CPU Cards

- RAM/ROM Disks
- Application Software

Free 120 page reference guide for quality minded, budget conscious engineers.

408-293-6786

1310 Tully Rd., \#115, San Jose, CA 95122 FAX 408-293-4697
ADVANTECH
CIRCLE 289

Instant Microcontroller

Instant C Programming

Don't use a microprocessor, use a SmartBlock™ microcontroller module to build your custom controller. Our low cost Dynamic CTM makes programming a snap. 3.5×2.5 inch module includes microprocessor, memory, time/date clock, eeprom, watchdog, serial ports and more. As low as $\$ 59$ in quantity. The efficiency of a custom design without the headaches.

Z-World Engineering
1340 Covell Blvd., Davis, CA 95616 USA
Tel: (916) 753-3722
Regular Fax: (916) 753-5141
Automatic Fax: (916)-753-0618
Call from your fax, hear computer voice, use touchtone dial to request desired data sheets.)

SEE EEM 90/91 PAGES D 1320-1323

PC based emulators for the 8051 family
 152, 8751. 8752, OS5000 + CMOS \ldots more

- PC plug-in boards or RS-232 box

Full Source-level Debugger wicomplete C-variable suppor

- 48 bit wide, 16 K deep trace, with "source line trace"
- "Bond-out" pods for 8051, 83C552, 83C451, 83C652,
-

Prices: 32K Emulator 8031 S1790; 4K Trace $\mathbf{s 1 4 9 5}^{*}$
CALL OR WRITE FOR FREE DEMO DISK! Ask about our demo VIDEO
 Campbell. CA 9500
AX (408) $378-7869$
CORPORATION (408) 866-1820
SEE US AT ELECTRO BOOTH 2244 CIRCLE 288

ELECTROSTATIC
DISCHARGE SIMULATOR ESS-630A
U.S.A WATAHAN NOHARA INTERNATIONAL, INC TEL(800)366-3515

D I R E C T
 CONNECTION

A D S

ACCEL TECHNOLOGIES CIRCLE 252

WEBER - AS168 CIRCUIT BREAKER

Overload and Short Circuit Protection with high performance energy limiting capabilities. Available in single, double, triple and four pole versions with optional relay trip, auxiliary and signal contacts. 0.5 to $50 \mathrm{~A}, 480 \mathrm{VAC} / 277 \mathrm{VAC}$. Din rail mounting. Easy to install. UL/CSA/VDE.
For more information, contact:
INMARK CORPORATION, 4 Byington Place, Norwalk, CT 06854 • (203) 866-8474. INMARK

CIRCLE 278

RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?

The RelCalc 2 Software Package predicts the reliability of your system using the partstress procedure of MIL-HDBK-217E, and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc 2 is very easy to use, and features menu windows, library functions, global editing for what-if? trials, and clear report formats. Try our Demo Package for $\$ 25$.

T-CUBED SYSTEMS, 31220 La Baya Drive \# 110 , Westlake Village, CA 91362. (818) 991-0057 • FAX: (818) 991-1281

T-CUBED SYSTEMS
CIRCLE 271

Telecom Solutions from Tellione
 Loop Current Detectors

Line Sense Relays connect in series with Tip and Ring and provide a relay closure in response to loop current flow. For on-hook/off-hook
monitoring, switchhook
flash detection, and rotary dial pulse counting.
Simple design, rugged construction.

- M-949-01 for U.S. FCC Part 68
- M-949-02 for international IEC/VDE
- M-949-03 for Canadian DOC/CSA
- M-949-XX Custom modules

1-800-426-3926

Or: 206-487-1515 Fax: 206-487-2288

飞ELTロNE ${ }^{\circ}$

INNOVATING SOLUTIONS
In Telecom Interface Components
Teltone Corporation, 22121-20th Avenue SE, Bothell, WA 98021 TELTONE CIRCLE 267

ELETTROMCDETICN
 DIRECT CONNECTION ADS

1991 SCHEDULE
Issue Date: Ad Close
April 11 March 15
April 25 March 29
May 9 . April 12
May 23 April 26
June 13 May 17
June 27 May 31

Issue Date: Ad Close
July 11 June 14
July 25 June 28
August 8 July 12
August 22 July 26
Sept. 12 Aug. 16
Sept. 26 Aug. 30

Issue Date: Ad Close
Oct. 10 Sept. 13
Oct. 24 Sept. 27
Nov. 7 Oct. 11
Nov. 21 Oct. 25
Dec. 5 Nov. 8
Dec. 19 Nov. 20

NEW, POWERFUL, UNIVERSAL

PILOT-U40 is our second generation 40-pin universal programmer, following the very successful and popular Sailor-PAL line of programmers. Programs PALs, GALs, PROMs, EIEPROMs, micros, AMD MACH-110, etc, etc, 28-pin and 32 -pin versions also available. Industrial quality. $\$ 1,095$ to $\$ 2,495$. Satisfaction guaranteed.

408-243-7000, 800-627-2456, Fax 408-736-2503
ADVIN SYSTEMS INC.
1050-L E. Duane Ave., Sunnyvale, CA 94086

ELECTRONIC TEST ACCESSORIES
Over 12,000 time-saving/problem-solving solutions to common testing, hookup and assembly applications. Just ask for it

EZHOOK

P.O. Box 450, Arcadia, CA 91066
(818) 446-6175 • Fax: (818) 446-0972

E-Z HOOK
CIRCLE 268

Your AD HERE

Here's all you have to do:

- Send a B/W or 4C glossy photo.
- Include 13 lines of copy.
(37 characters per line)
- Write a headline of 32 characters or less.

We do all the rest.
No production charges.
We also accept camera-ready art. Ad size $2^{3} / 16^{\prime \prime}$ wide $\times 3^{\prime \prime}$ deep.

DIRECTCONNECTION

SUPPRESS NOISE,
POWER HIGH DENSITY BOARDS
MAGNA/PAC ${ }^{\text {T }}$ components combine power distribution and capacitance for dense boards Mount MAGNA/PAC ${ }^{\text {m }}$ between rows of ICs to save space.

- Effective decoupling ZIP arrays
- Capacitance up to $3.0 \mu \mathrm{~F}$ per linear in.
- Reduce noise over a wide frequency range
- Equalize voltage on dense boards

ROGERS CORP.
2400 S. Roosevelt St., Tempe, AZ 85282
Telephone: (602) 967-0624
ROGERS
CIRCLE 251

Free Catalog
The World's Largest Collection of Adapters \& Accessories for VLSI/Surface Mount Devices

- Emulator Pods \& Adapters
- Debugging Accessories
- Debug Tools - Prototyping Adapters
- Programming Adapters - Custom Engineering
- Socket Converters

Emulation Technology, Inc
2344 Walsh Ave. Santa Clara, CA 95051 Phone: 408-982-0660 FAX:408-982-0664 EMULATION TECHNOLOGY

CIRCLE 287

A D S

LOW COST Data Aquisition Cards for PC/XT/AT	5
12 Bit A/D \& D/A [PCL711S]	\$295
- AD converter: 8 single-ended channels; Uses AD574 device; Conversion time is less than 25 seec: Input range: ± 5; Software Trigger Mode only. - $\mathbf{D / A}$ converter: 1 channel; 12 bit resolution; 0 to $+5 / 10 \mathrm{~V}$ Output Range. - Digital I/O: 16 In/Out(TTICompatible) External Wiring Terminal Board incl.	
12 Bit A/D \& D/A [PCL812]	\$395
 - than $25^{\text {susecc; }}$ Built-in programmable pacer; Input Ranges: $\pm 10 \mathrm{~V}$, DMA and interrupt capability. Utility software and sample program in BASIC	
Fast 12 Bit A/D/A [PCL718]	\$795
- AD converter: 16 single ended or 8 differential channels; 12 bits resolution; Programmable scan rate; Built-in Interrupt and DMA control circuitry. - Conversion speed do0,000 smpls/sec (standard), 100,000 smpls/sec (optional) D/A converter 2 channels; Resolution: 12 bits; Setling time: 5μ sec, $\leq 5 V$ - Digital I/O:16In/Out(TTLcompatible); Programmable Counter/Timer (8254). - Soffware: Utility soffware for BASIC Sonware Utility software for Supporied by LabDAS, ASSYT, LABTECH, UnkeScope.	
B\&C MICROSYSTEMS	CIRCLE 263

SPICE OPTIMIZER

(Runs with your SPICE on IBM PC) * LIKE SIMULATING BACKWARDS Finds an Input that causes your Output by putting values through your SPICE simulator in an iterative procedure. *Saves valuable engineering hours by setting up loop and running unattended.

* PAYS FOR ITSELF IN 2 OR 3 USES
- US Logic
P.O. Box 5922

Orange, CA 92613-5922
(714) 744-1252

Purch. Order: $\$ 129+3.00$ (shipping) Special Limited Offer (prepaid only):
Send check for: $\$ 109+$ shipping Calif. Residents: Add 6.5\% Sales Tax [Spice Optimizer is a trademark of US Logic] us LOGIC

CIRCLE 290

PC BASED UNIVERSAL
\$695/895
DEVICE PROGRAMMER
: Programs EEEERROMs, PALs, GALs, EPLDs, MICROs, BIPOLARs, PEELS.
 Uppradeable for virtually any future programma ble devices up to to pins. - Selif subsistent operation. No additional modules or plustin adapters required
Includes use friendiy MEMORY BUFER FUL
SCREN EDITOR Commands include: Fill, Move, Insert, Delecte, Search. ASCII or HEX entry - Friendly Menu-Driven interacec. Deelice setection by PN and manufacture.

- Programming algorithm: Normal, Intelligent I\&II, Quick Pulse Programming

 Technology, Motorola Hex, Intel Hex, Tektronix Hex.
- Customer support via voice line, fax \& dedicated BBS. Full 1 year warranty. and 1 year free updates $\$ 895$ with additional L, Memory/Micro/Bipolar library - Library updates can be received via floppy or Customer Support BBS.
MC/VISA/AMEX Call today for datasheets

B\&C MICROSYSTEMS
CIRCLE 264

Analog Circuit Simulation

Completely Integrated CAE from $\$ 95$
 From Schematic Entry through Spice Simulation to Post Processing IsSpice $\$ 95$, the complete SPICE program, runs on all PC's.

IsSpice/ $386 \$ 386$, The fastest PC based SPICE program available. Has virtually no circuit size limitations.

Spicenet \$295, a schematic editor for any Spice simulator. Generates a complete SPICE netlist.
IntuScope $\mathbf{\$ 2 5 0}$, a graphics post processor that performs all the functions of a digital oscilloscope.

PheSpice $\mathbf{\$ 2 0 0}$, extensive model libraries, Monte Carlo analysis, and parameter sweeping.

Please Write or Call
P.O. Box 6607 (213) 833-0710 San Pedro, CA 30 Day Money 90734-6607 Back Guarantee
INTUSOFT
CIRCLE 272

A	H	0
ACCEL Technologies 126	Hewlett-Packard Co...2-3, 28-29, 53 Hitachi Europe 110-111**	Quality Semiconductor.............. 57
Advanced Circuit Technology 102		
Advanced Micro Devices........10-11		R
Advantech 125		
Advin Systems........................ 127		Rittal....................................31*
Aldec 122	Inmark 126	Rogers Corp. 103, 125, 127
Altera....................................6-7	Integrated Device Technology ... 33	Rohm..................................... 55
AMP..................................42-43	Intergraph 119	
Analog Devices....................50-51	International Recitfier 22	5
Applied Microsystem16-17	Intusoft................................ 127	s
Atmel 27		
AT\&T12-13*, 19*, 34-35	K	Samsung.............................36-37
Avantek................................... 125		Shindensen America................. 76
	Kaizer Aluminum...............	Siemens Components 46
		Siliconix 96D-96E
	L	
		I
	Lambda Electronics64A-64H	
Burr Brown 8, 116	Lattice Semiconductor 95	
Bytek Corp................................. 125	L-Com 126	T-Cubed Systems.................... 126
	Linear Technology Cover IV	
C	I	
		U.S. Logic 127
	MF Electronics 18	
Chomerics 117	Micron Technology 91	
Cirrus Logic.................................... 9	Mini-Circuits Laboratory,	V
Condor .. 92	a Div. of Scientific Components	
	Corp.... 15, 20-21, 72-73, Cover III	Vacuumschmelze..................... 120
Cypress Semiconductor 86	Motorola Computer.............. $78-79$	Vicor61, 70
	Multibus Manufacturing 38 Mesago Messe Kongress GmbH 90	Vitesse Semiconductor..........62-63
D		
	N	W
Data Translation 58	National Semiconductor 96	Wavetek 1
	NKK Switch 75	White Technology 98
	NMB Technology 89	
E	Nohau 125	2
	Noise Laboratory 125	
		Zero Enclosure 105
EDAC................................... 113	0	Z-World Engineering 125
Emulation Technology 127		
Epson America 114	OrCADCover II	
E-Z Hook... 127		* Domestic Advertiser Only
	P	** International Advertiser Only
¢ $\mathbf{H}^{\text {a }}$	 Measurement...19**, $31^{* *}, 113^{* *}$	
	Pico Electronics, Inc........... 69, 122	
GE Plastics . 107, 108, 109, 110-1....... 126Grammar Engine............	Plastic Engineering Co.96F	tronic Design does not assume any liability for omissions or
	Precision Interconnect............... 45	

Truly incredible ... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR

Insertion loss, typ (dB)
Isolation, typ(dB) ${ }^{\star}$
1 dB compression, typ
(dBm @ in port)
RF input, max dBm (no damage)
VSWR (on), typ
Video breakthrough
to RF, typ (mV p-p)
Rise/Fall time, typ (nsec)

dc-	$500-$	$2000-$
500 MHz	2000 MHz	5000 MHz
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
	1.4	
	30	\square
	3.0	

\star typ isolation at 5 MHz is 80 dB and decreases

Adjust your battery to any voitage.

Micropower DC to DC converter. 1 volt, 1 inductor, 1 cap.

Finally, a true micropower switching regulator with user-adjustable current limit. Linear's new LT1073 is a versatile micropower switching regulator optimized for single-cell inputs. It's small, simple, efficient, and delivers all the features you need right now.

- Only three external parts needed
- Operates at supply voltages from 1.0 V to 12 V
- Startup guaranteed at 1.0 V
- Consumes only $95 \mu \mathrm{~A}$ supply current
- Space-saving 8-pin Mini-DIP or SO8 package
- Works in step-up, step-down, or inverting mode
- Low-battery detector comparator on-chip
- User-adjustable current limit
- Internal 1 amp power switch
- Fixed or adjustable output voltage versions
- Programmable current limit with single resistor
- No frequency compensation required

- LECHNOLOGY

TOUGH PRODUCTS FOR TOUGH APPLICATIONS.

Operation of the LT1073 is guaranteed down to 1.0 V , so you can squeeze more useful energy out of a battery. Its duty cycle is set at 72%, optimizing operation where $\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {IN }}$. And the LT1073 delivers 5 V at 40 mA from a single cell, and 5 V at 100 mA from a 3 V input.

The LT1173 is optimized for higher input voltages (two or more cells) up to 30 V .
It's ideal for low-to-medium power step-down applications. The 1173 features a 50% duty cycle and operates with as little as 2 volts input. Both the LT1073 and LT1173 are available now. Pricing in quantities of 100 are $\$ 3.15$ for the LT1073CN8 and $\$ 2.40$ for the LT1173CN8. For true micropower switching solutions and more details on these new parts contact: Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call toll free 800-637-5545.

[^0]: *In Canada call 1-800-387-3867, Dept. 420.

[^1]: - U.S. Prices only.
 \dagger In Canada, call 1-800-387-3867, Dept. 428.

[^2]: © 1991 Hewlett-Packard Co. TMCOL107A/ED

[^3]: EITHER A SERIES OR A PARALLEL combination of any two, two-terminal devices can be selected by correctly configuring this circuit (a). By ganging several of the switches together, a load box can be created (b). The box supplies the loads for high-voltage, low-current sources (series) or low-voltage, high-current sources (parallel).

[^4]: Source: a survey of Electronic Design readers conducted by the Adams Co., Palo Alto, Calif.

[^5]:

